International Council for the Exploration of the Sea
Browse
R2415.pdf (270.55 kB)

From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

Download (270.55 kB)
conference contribution
posted on 2024-04-25, 08:29 authored by Nuno Cosme, Marja Koski, Michael Zwicky Hauschild

No abstracts are to be cited without prior reference to the author.

Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial variation of the modelled parameters and to characterise spatially differentiated N-emissions. Preliminary XF results range from 0.5 kgO2·kgN-1 in the Central Arctic Ocean to 16 kgO2·kgN-1 in the Baltic Sea, out of a total of 66 LME-dependent XFs. All the relevant processes were included in a mechanistic model and the uncertainty of the driving parameters is considered low. The presented XF estimation method contributes with a central component for site-dependent characterization factors (CFs) for marine eutrophication, to be coupled with environmental fate of N emissions and effects of oxygen depletion on biota.

History

Symposia

2015 Annual Science Conference, Copenhagen, Denmark

Session

Theme session R: Causes and consequences of hypoxia

Abstract reference

R:24

Recommended citation

[Authors]. 2015. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response. 2015 Annual Science Conference, Copenhagen, Denmark. CM 2015/R:24. https://doi.org/10.17895/ices.pub.25682694