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Executive summary 

The Stock Assessment Workshop for Irish Sea stocks (WKIrish3), chaired by External 
Chair Daniel Howell, Norway and ICES Chair Hans Gerritsen, Ireland, and attended 
by invited external experts Jim Ianelli, US, and Rebecca Lauerburg, Germany met in 
Galway, Ireland, 30 January–3 February 2017. As part of the WKIrish regional 
benchmark process, WKIrish3 built on the conclusions and recommendations of the 
Scoping Workshop (WKIrish1) and the Data Evaluation Workshop (WKIrish2). 

The objectives of the workshop were to develop methods to determine stock status 
and short-term outlook and to propose biological reference points for the Irish Sea 
stocks of cod, haddock, herring, plaice and whiting. 

The meeting was mainly conducted through plenary sessions with some time sched-
uled to address feedback given by the group. The report sections are structured along 
the ToRs of the workshop as well as the headings in the stock annex. 

The main outcomes of the workshop are as follows: 

• Cod: ASAP model accepted, new reference points proposed. This will form 
the basis of the advice for 2018. 

• Haddock: ASAP model accepted, new reference points proposed. Shortly 
after the workshop ended, the advice for 2017 was re-issued, based on the 
new method and reference points. 

• Whiting: ASAP model accepted, new reference points proposed. This will 
form the basis of the advice for 2018. 

• Plaice: SAM model accepted by correspondence, shortly after the meeting, 
new reference points proposed. This will form the basis of the advice for 
2018. 

• Herring: SAM model rejected. No new reference points proposed. 
WKIrish3 recommends that the remaining issues are addressed before the 
assessment working group (HAWG) through an inter-benchmark. 
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1 Opening of the meeting 

The Stock Assessment Workshop for Irish Sea stocks (WKIrish3), chaired by External 
Chair Daniel Howell, Norway and ICES Chair Hans Gerritsen, Ireland, and attended 
by invited external experts Jim Ianelli, US, and Rebecca Lauerburg, Germany met in 
Galway, Ireland, 30 January–3 February 2017. 

As part of the WKIrish regional benchmark process, WKIrish3 will work building on 
the conclusions and recommendations of the Scoping Workshop (WKIrish1) and the 
Data Evaluation Workshop (WKIrish2), to: 

a ) Evaluate the appropriateness of data and methods to determine stock sta-
tus and investigate methods for short-term outlook for the stocks listed in 
the table below. The evaluation shall include consideration of (while pay-
ing particular attention to the conclusions and recommendations of 
WKIrish 1 and 2): 
i ) Stock identity and migration issues; 
ii ) Life-history data; 
iii ) Fishery-dependent and fishery-independent data, also including rec-

reational fisheries; 
iv ) Further inclusion of environmental drivers, multispecies information, 

and ecosystem impacts for stock dynamics in the assessments and out-
look. 

b ) Agree and document the preferred method for evaluating stock status and 
(where applicable) short-term forecast and update the stock annex as ap-
propriate. Knowledge of environmental drivers, including multispecies in-
teractions, and ecosystem impacts should be integrated in the 
methodology. 

If no analytical assessment method can be agreed, then an alternative method 
(the former method, or following the ICES approach for stocks without ana-
lytical assessments) should be put forward; 

c ) Evaluate the possible implications for biological reference points, when 
new standard analyses methods are proposed. Re-examine and update, if 
necessary, MSY and PA reference points according to ICES guidelines (see 
reports of WKMSYREF3, WKMSYREF4 and ACOMs Technical document 
on reference points); 

d ) Develop recommendations for future improving of the assessment meth-
odology and data collection; 

e ) Identify aspects that require special attention by the ongoing Irish Sea re-
gional benchmark process, in particular pertaining to the development of 
integrated multispecies and ecosystem advice (to culminate in the synthe-
sis workshop WKIrish4). 

f ) Ensure that relevant work is prepared in advance of the meeting, as the 
meeting should mainly focus on evaluating and reviewing the work. The 
main aspects of the work should be presented as working documents and 
be ready at least seven days prior to the start of the meeting. 
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STOCKS STOCK LEADER 

cod-27.7 Pia Schuchert 

had.27.7a Mathieu Lundy 

her.27.nirs Pieter-Jan Schön 

ple.27.7a Timothy Earl 

whg.27.7a Sara-Jane Moore / Colm Lordan 

The meeting was mainly conducted through plenary sessions with some time sched-
uled to address feedback given by the group. The external chair coordinated the in-
put of the external experts and took responsibility of the technical chairing during the 
meeting. The ICES chair focused on the preparation before the meeting as well as the 
finalisation of the report. 

The report sections are structured along the ToRs of the workshop as well as the 
headings in the stock annex. 
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2 Derivation of natural mortality (M) 

Drivers for focus on M estimates 

Natural mortality is, along with the shape of the stock–recruit relationship, a key var-
iable and source of uncertainty in estimation of MSY reference points and associated 
FMSY catch forecasts. Estimates of recruitment and biomass from catch-based assess-
ments inflate substantially as input M values are increased, and fishing mortality es-
timates are consequently reduced for a given catch. Incorrect M values are a problem 
if the assessment model estimates of abundance are being treated as absolute, for ex-
ample to compute total food consumption by the stock. As the next phase (WKIrish4) 
in the Irish Sea benchmark process will run ecosystem models which require infor-
mation on fishery selectivity and biomass from single-species assessments, WKIrish 
participants felt it was desirable to carry out these assessments using values or ranges 
of values of M, and age dependence of M, that are likely to encompass the true values 
and for which there is evidence to help bound the plausible ranges. Previous ICES 
assessments of Irish Sea cod, haddock, whiting and plaice have used age and year 
invariant values of M (0.2 for gadoids; 0.12 for plaice). 

M in herring 

There are no direct estimates of M for Irish Sea herring. Age-dependent estimates of 
M for North Sea herring from the stochastic multispecies assessment model (SMS) 
runs for the North Sea have been used in the Irish Sea herring stock assessment for 
many years (Table 2.1). There are no data to indicate if M is likely to be similar in the 
two areas, although differences in life history (growth, maturity, maximum observed 
age, etc.) could be examined. 

Table 2.1. Mean M-at-age for cod, haddock and whiting since 2000 given by North Sea SMS key 
runs (ICES, WGSAM) and reported by the ICES North Sea assessment working group 
(WGNSSK) in 2016. Herring figures are for the North Sea stock from the same model, but as re-
ported by the ICES Herring Assessment WG as being used for Irish Sea herring. 

AGE COD HADDOCK WHITING HERRING 

0 1.172 

   1 1.180 1.272 1.313 0.787 

2 0.888 0.495 0.729 0.380 

3 0.234 0.321 0.610 0.353 

4 0.200 0.294 0.604 0.335 

5 0.200 0.276 0.568 0.315 

6 0.200 0.236 0.568 0.311 

7 0.200 0.216 0.568 0.304 

M in plaice 

The M value used for many years by ICES for Irish Sea plaice was apparently based 
on statistical modelling of data from tagging studies that were carried out in the Irish 
Sea between the 1960s and 1980s (Siddeek, 1989). The annual M values derived by 
Siddeek were 0.17 (SE 0.06) for males and 0.11 (SE 0.08) for females. Estimates using 
data only for mature male plaice were lower, indicating an age or size dependence. 
The 1989 Siddeek paper states that the less precise estimate of M for females, and 
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higher M values obtained by applying traditional methods to the same dataset, indi-
cated that a value of 0.2 is more appropriate to both sexes, which is almost double the 
currently used value. WKIrish could not evaluate the potential for bias in these esti-
mates for plaice. 

M in cod, haddock and whiting 

For Irish Sea cod, haddock, whiting and herring, there are no direct estimates of M 
from tagging, multispecies assessments or other methods. All three of the gadoid 
species show very steep age profiles in fishery and survey catches, and apparent 
short lifespans. Evidence on age dependence and magnitude of M for other stocks of 
these species can be obtained from the SMS model key runs for the North Sea. The 
stocks of cod, haddock and whiting in the North Sea show M ~1.2 at age 1, with steep 
decline up to age 3 (Table 2.1). From age 3, the M for cod and haddock is 0.2–0.3, 
close to or just above the “traditional” value of 0.2 previously used as a year- and 
age-invariant value for assessments of the three gadoid species in the Irish Sea. The 
SMS estimate of M for whiting remains relatively high at 0.6 from age 3 onwards. 
There are differences in predator populations in the North and Irish Seas, and sea 
temperatures in the Irish Sea (and more southerly Celtic Sea) are seasonally at or near 
the upper range for North Atlantic cod. Fast initial growth and early maturity are 
features of Irish Sea cod, haddock and whiting. M-at-age for these stocks could poten-
tially be higher than in the North Sea. North Sea plaice are not included in the SMS 
model. 

Life-history based inferences on M 

In the absence of multispecies model estimates of M for Irish Sea gadoid and plaice 
stocks, and poor understanding of biases in the plaice tagging estimates of M, 
WKIrish2 explored possible M values given by a wide range of life-history based 
methods, including those such as from Lorenzen (1996) giving age-dependent values. 
These methods use one or more stock-specific datasets on size-at-age, growth param-
eters, maturity and maximum observed ages. The methods and results are described 
in detail in the WKIrish2 data evaluation workshop report, and values considered by 
WKIrish3 are described in the separate stock sections of the present report. 

Brodziak et al. (2009) reviewed the use of maximum observed age and life-history 
parameters for deriving plausible size/age-dependent or age-invariant natural mor-
tality rate for fish and invertebrate fishery resources. Empirical evidence and ecologi-
cal theory indicated that M scales with body mass or size, and that for a given 
species, early life-history stages experience higher M than juvenile stages which, in 
turn, experience higher M than mature adults. Brodziak et al. note that the traditional 
assumption of a constant M may be appropriate when only mature fish are of explicit 
interest in the assessment, but when juvenile fish need to be modelled explicitly (e.g. 
because these juveniles are targeted in a fishery or caught as bycatch), then size de-
pendence in M should be incorporated into the assessment application, for example, 
by means of a Lorenzen (1996) curve.  

Also, the size-dependent mortality model for juveniles may be extended into the 
adult age groups, or combined with either a constant adult M or a more complex 
model for adults that allows for increasing M at age due to reproduction or senes-
cence. Brodziak et al. suggest that, where multiple estimates of M are available, aver-
aging the set of candidate estimates is considered good practice, unless a single best 
value can be identified based on relative credibility or goodness-of-fit to observed 
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data; however it is important to characterize the variability of estimates of M for stock 
assessment applications. 

A more recent evaluation of the predictive performance of empirical estimators of 
natural mortality rate, using information on over 200 fish species, is presented by 
Then et al. (2015). They evaluated estimators based on various combinations of max-
imum age (tmax), growth parameters, and water temperature by seeing how well these 
estimators matched 200 independent, direct estimates of M. They concluded that a 
tmax based estimator performs the best among all estimators evaluated. The tmax-based 
estimators in turn performed better than the Alverson–Carney (1975) method based 
on tmax and the von Bertalanffy K coefficient, Pauly’s (1980) method based on growth 
parameters and water temperature and methods based just on K. Based on cross-
validation prediction error, model residual patterns, model parsimony, and biological 
considerations, they recommend the use of a tmax based estimator (M = 4.899tmax 
−0.916, prediction error = 0.32) when possible and a growth-based method (M = 
4.118K0.73 Linf−0.33,prediction error = 0.6) otherwise. 

Evidence to help bound plausible ranges of M 

A wide range of values are given by life-history methods for each stock, and there is 
very little information to bound the range of plausible values. North Sea SMS esti-
mates of M may not reflect the values in the Irish Sea due to differences in the ecosys-
tems. Overestimation of M carries high risk because M values are positively 
correlated with both the assessment model estimates of biomass and the derived val-
ues of FMSY. Since changes in the input M values translate into changes in biomass 
across the age ranges affected, this offers a possibility to use fishery-independent 
survey estimates of biomass to identify M vectors that lead to assessment model es-
timates of SSB in the same biomass range. This is not feasible from trawl surveys 
without knowledge of the true catchability at-age, but could potentially be done us-
ing the acoustic surveys for herring and the annual egg production method (AEPM) 
estimates of SSB for cod, haddock and plaice (Armstrong et al., 2012). 

The AEPM estimates of SSB for Irish Sea cod and plaice are for 1995, 2000, 2006, 2008 
and 2010. Haddock SSB was estimated in the final three of these years. The AEPM 
estimates are based on well-understood aspects of reproductive biology, and were 
designed to give SSB estimates as close to absolute as possible in order to address 
opinions from the fishing industry that stocks such as cod were far more abundant 
than indicated by ICES assessments. The AEPM surveys were therefore designed to 
reduce biases as far as possible. There are some differences in estimates when apply-
ing stratified mean vs. GAM estimates of egg abundance in each survey, but the es-
timates are relatively close. Underestimation of SSB is possible, as annual egg 
production was for stage-1 eggs without consideration of early stage egg mortality 
which is difficult to estimate with sufficient accuracy. The use of the AEPM estimates 
to constrain assumptions about M assumes that catch estimates are unbiased, and 
that fleet selectivity patterns have been accurately described and parameterised given 
that estimates of M and selectivity can be confounded. 

For Irish Sea herring, an assumption that the industry-led acoustic surveys can give 
an absolute estimate of SSB could potentially be used for evaluating assessment mod-
el SSB estimates at different M, but this would require an evaluation of the range of 
uncertainty around the survey catchability and how accurately the reported landings 
data represent the true fishery removals each year. 
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3 Irish Sea herring 

Irish Sea herring is a commercially important stock in the Irish Sea, and is currently 
managed as an ICES category one (data-rich) stock under the MSY approach. The 
current assessment of Irish Sea herring uses catch-at-age, acoustic survey-at-age and 
a larval survey (biomass) as input data to estimate fisheries exploitation and stock 
size. For the WKIrish3 benchmark no new model is proposed; instead the inclusion of 
a new survey index and the model settings are investigated. 

Figure 1.1 shows that trends in SSB closely follow the trends in recruitment, which 
seems to be very smooth over time. This pattern may be overly smoothed by the 
model fitted configuration to reflect the biological processes within the stock, as re-
cruitment seems to spike from time to time. The current assessment model uses a 
random walk to predict recruitment. In those cases where the information of recruit-
ment in the catch and survey data are not good, the random walk prediction domi-
nates the results, resulting in overly smooth recruitment patterns. 
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Figure 1.1. Original ICES 2016 assessment of Irish Sea herring, showing spawning–stock biomass, 
fishing mortality and recruitment. 
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The observation variances from the current assessment model (Figure 1.2) indicate 
that the larval survey (NINEL) and the age-1 data in both the catch and the survey 
have a very high observation variance, in part implying that the data are ignored by 
the assessment model, and that the model fits to the catch data much better. In gen-
eral, the stock trends are informed to a larger extent by the catch than the survey da-
ta, something that is common across many stock assessments but not necessarily the 
ideal situation. In this case, if we compare the assessment with a VPA run (without 
any tuning), we note that results are markedly the same in terms of SSB, but not for 
fishing mortality and recruitment (Figure 1.3) supporting the view that SAM model 
smooths out recruitment and fishing mortality. 

 

Figure 1.2. Original ICES 2016 assessment of Irish Sea herring, showing spawning–stock biomass, 
fishing mortality and recruitment. 



ICES WKIrish3 REPORT 2017 |  13 

 

 

Figure 1.3. VPA (in red) compared to the SAM assessment (in blue). 

It also considered that the current assessment model may not accurately estimate the 
catchability of the acoustic survey. By design, acoustic surveys are designed to get an 
as absolute estimate of stock biomass as possible, which would result in a catchability 
of ~1 in the assessment. This assessment estimates catchability to be around ~2.5 (see 
Figure 1.5). Also, there appears to be a year-effect in the survey in 2001. Dropping 
this year of data results in improved correlation within the survey with on average a 
16% improvement between each age-pairs. 

 
 

Figure 1.5.  Estimated survey catchability of the acoustic survey including confidence bounds. 

The SAM model has the ability to estimate process error, which represents the mis-
match between cohort patterns estimated in year y and in the following year. This is 
not accounted for in the VPA. The process error does not show specific blocks of un-
der–over estimation of numbers-at-age (Figure 1.6) and it is likely that the modelled 
process error can be explained by variation in natural mortality processes. 
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Figure 1.6. Process error as estimated by the SAM model for each age and year combination. Pro-
cess error expressed as difference in relative numbers-at-age. 

3.1 Issue list 

There are some concerns over the quality of the current stock assessment that is used 
as the basis of the advice, specifically in relation to the acoustic survey time-series. An 
inter-benchmark was initially proposed to review overall assessment quality, and to 
consider possible solutions to address the issues with survey coverage in relation to 
the adult stock as well as catchability in the fishery and survey. 

A new survey index is available for formal inclusion in the assessment model that 
only focuses on the Irish Sea spawning population: 7aN spawning–stock biomass 
index (2007–present). The primary aims were to 1) find an optimal set of parameters 
to include a new survey index in the stock assessment, 2) investigate inflated catcha-
bility estimates for the current acoustic survey and 3) review if the current assessment 
methodology can be improved or propose other assessment tools that merits investi-
gation. 

3.2 Data 

Additional tuning series data were presented at WKIrish2 (2016) and WGIPS (2017). 

Stock identity and migration 

Stock identity and migration issues were considered at the previous benchmark of 
the stock (WKPELA 2012). 
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WKIrish considered the evidence of mixing between the Irish Sea and Celtic Sea 
stocks, but found there were insufficient data to quantify to which extent this takes 
place. 

No new information is available that will change this evaluation and no changes in 
existing stock areas have thus been proposed. 

Life-history data 

No changes in existing biological data are proposed for the stock. 

Fishery-dependent data 

Fishery-dependent data are available as a time-series of landings. Catch-at-age data 
are maintained annual by national labs and coordinated through the Herring As-
sessment Working Group (HAWG). The stock is well sampled and in most years, 90–
100% of all landings are sampled. 

Fishery-independent data 

A number of tuning series are available. The suitability of these as input data were 
explored at WKIrish2 (ICES, 2016).  An acoustic survey of 7.aN herring 2007–present 
is proposed as an additional source of useful information of the spawning–stock bi-
omass. The existing acoustic survey (AC_7.a(N)) and NINEL larval survey are also 
available. 

Environmental drivers and ecosystem impacts 

Explicit environmental drivers are not included in the current assessment investiga-
tion. 

Summary of Input data types and characteristics 

Type Name  Year range Age 
range 

Variable from year 
to year 
Yes/No 

Caton Catch in tonnes 1961–last data year NA Yes 

Canum Catch-at-age in numbers  1961–last data year 1–8+ Yes 

Weca Weight-at-age in the commercial 
catch 

1961–1971 
1972–1983 
1984–last data year 

1–8+ 
1–8+ 
1–8+ 

Yes 
No 
Yes 

West Weight-at-age of the spawning 
stock at spawning time.  

1961–1971 
1972–1983 
1984–last data year 

1–8+ 
1–8+ 
1–8+ 

Yes 
No 
Yes 

Mprop Proportion of natural mortality 
before spawning 

1961–last data year NA No 

Fprop Proportion of fishing mortality 
before spawning 

1961–last data year NA No 

Matprop Proportion mature at age 1961–last data year 1–8+ Yes 

Natmor Natural mortality 1961–last data year 1–8+ No 
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Tuning data: 

Type Name  Year range Age range 

Tuning fleet 1 AC_VIIa(N) 1994–last data year 1–8+ 

Tuning fleet 2 NINEL 1993–last data year SSB 

New tuning data: 

Type Name  Year range Age range 

Tuning fleet 3 VIIaNSpawn 2007–last data year 1–8+ 

Overview of 7.aNSpawn 

The 7.aNSpawn acoustic survey is conducted annually within the territorial waters 
around the Isle of Man and north along the Mull of Galloway, during the spawning 
area closure (late September). The survey is conducted on board a commercial fishing 
vessel using commercial fishing gear. The survey design consists of systematic; paral-
lel transects covering approximately 620 nm and randomized within +/-4 nm of a 
baseline starting position each year. Transect spacing is set between 2 and 4 nm in 
strata around the Isle of Man (where highest densities of adult herring are expected 
based on previous surveys and fishery data) to improve precision of estimates of 
adult herring biomass. 

A sphere-calibrated Simrad EK60 acoustic system with a 38 kHz split-beam sounder 
is employed, and resultant data archived and analysed using Echoview software 
(Echoview Software Ltd, Tasmania) Targets are identified where possible by aimed 
midwater trawling. Acoustic records are manually partitioned to species by scrutinis-
ing the echograms and using trawl compositions where appropriate. ICES-
recommended target strengths are used for herring, sprat, mackerel, horse mackerel 
and gadoids. The survey design and implementation follows, where possible, the 
guidelines for ICES herring acoustic surveys in the North Sea and West of Scotland. 
The survey data are analysed in 15-minute elementary distance sampling units (ap-
proximately 2.5 nm). An estimate of density by age class, and spawning–stock bio-
mass, is obtained for each EDSU and a distance-weighted average calculated for each 
stratum. These are raised by stratum area to give population numbers and SSB by 
stratum. 

3.3 Model exploration 

Biomass dynamic model 

As an exploratory assessment, a biomass dynamic assessment model was fitted to the 
input data of the 2016 ISH assessment. The data were fitted to the landings data and a 
survey time-series (Figure 1.7). This survey time-series (AC_7.a(N)) was calculated as 
the sum of the product of survey-at-age and stock weights-at-age, per year. The mod-
el has five parameters: The first is B1 the biomass in the first year of the assessment. 
This is the year for the first survey information (1994). The parameters r and K stand 
for the intrinsic population growth rate and the carrying capacity, respectively. The 
catchability of the survey is estimated in a q parameter. Finally, the observation error 

in the survey is estimated in a  parameter. 
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The model is implemented in TMB. More specifically, a grid of plausible starting val-
ues was created from which the nlminb routine was used for optimization. Unfortu-
nately, there was no solution found for which the Hessian was positive definite. The 
results should thus be interpreted with care, and no uncertainty estimates can be giv-
en from the final model (Figure 1.8). 

Results 

 

Figure 1.7. Input data to unstructured biomass dynamics model. Left, the acoustic survey convert-
ed into biomass and right, the catch data (in tonnes). 

 

Figure 1.8. Outputs from unstructured biomass dynamics model. Left, the estimated stock bio-
mass and right, the estimated Biomass versus BMSY. 
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Alternative catch-at-age model 

This AAP model (Aarts and Poos, 2009) uses a tensor spline (Wood, 2007) to describe 
the F-at-age matrix underlying the data were fitted to catch only, as discards are re-
garded as negligible. 

Not all data were used in this assessment: the NINEL SSB survey was removed from 
the model, and the model was started in 1985. The SSB survey was removed, because 
the interannual variability in that survey is very large, and this variability is not seen 
in the other data sources. This suggests that the observation error in the survey will 
be estimated to be large, and the survey to have only a small effect on the final out-
comes of the assessment. Indeed the SAM model that is currently used for this stock, 
estimates the SSB survey to have the largest observation error among all of the data 
in the model. The model was started in 1985 because AC_7.a(N) only started in 1994, 
and estimates prior to this year will be almost completely “VPA like” and depending 
on the assumed relationship between the F values of the oldest ages. 

The AAP assessment requires a number of settings: First, a vector kf with two ele-
ments, describing the dimensions of the component (marginal) bases of the tensor 
product for age and year. Second, a ku vector giving the number of knots for the basis 
spline describing the catchability at-age for the surveys.   Third, a pu plateau for the 
age above which the survey selectivity is constant. Finally, a pf plateau for the age 
above which the F-at-age selectivity is constant. The plateaus’ ages above which the 
survey and F-at-age selectivities are constant (pu and pf), were chosen to mimic the 
current SAM assessment. 

The kf (of length 2) and ku (of length 1) vectors are currently chosen arbitrarily: kf is set 
to 5,10, and ku is set to 4 (equal to the number of ages up to the plateau). 

The observation errors for each age of the catch-at-age matrix and the age-structured 
survey are estimated using a quadratic polynomial function of age assuming lognor-
mal distributions. The coefficients for these polynomials are independently (but sim-
ultaneously) estimated for the catch-at-age model and the age-structured survey.  
Parameter estimation for the model is done in ADMB (Fournier et al., 2012). Uncer-

tainties in resulting , , and  are calculated using the delta method. 

Results 

The model has 98 parameters, and a negative log-likelihood of 304.7 (see also Appen-
dix C). An overview of the assessment results is given in Figure 1.8. The AAP as-
sessment results are given in blue, with the light blue areas giving the 95% CI. The 
current SAM results are given by the dashed black lines. Clearly, the results from the 

AAP model in terms of  and  are fairly similar to the SAM results, with the ex-

ception of  in the recent years being consistently lower in the AAP assessment. The 
recruitment, however, is substantially less smooth than the SAM estimates of re-
cruitment. The survey catchabilities are estimated to be >1 for all ages. The observa-
tion errors (“Sigma”) are consistently lower for the landings than for the survey for 
all ages. Both landings-at-age and survey-at-age observation errors are lower for ages 
4–6. Estimated landings and observed landings follow similar trends, and since 2005, 
their correspondence is high. 

Figure 1.9 shows some of the background information on the assessment fit. The se-
lectivities in the F-at-age matrix are generally increasing with age, with the exception 
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of the most recent decade, where the selectivity in the F-at-age matrix is rather flat 
after age 3. 

The residuals show some marked year effects in the data, the negative residuals for 
the survey in 2015 being a case in point. In that year, all residuals apart for age 1 are 
negative. Something similar is seen in 1997, 1998, and 2006. The F-at-age residuals 
also show some year effects, for instance, in 2001, all residuals are positive. This result 
(of large catch observations compared to model results) can also be seen in landings 
panel of Figure 1.8, where the observed landings (in red) spike, while the model es-
timated landings follow a smoother trend. 

The standard deviation of the standardised residuals (also Figure 1.9, bottom panels) 
suggest that there is some underestimation of the observation error of age 1 in both 
data sources, with some overestimation of age 2 and 3 observation error. The reason 
for this is that the variance in age 1 is large, and the quadratic polynomial smooths 
out the observation error estimated in the model. This could be improved by extend-
ing the quadratic polynomial to e.g. a cubic polynomial. 

 

Figure 1.8. Summary plot for the AAP assessment. The black dashed lines in the SSB, mean F and 
recruitment plot show the SAM 2016 assessment results. 
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Figure 1.9. Background plot of assessment run. In case of residual plots, grey indicates negative. 

Investigate the catchability estimates of the acoustic survey 

Imposing a survey catchability equal to 1 

The catchability of AC_7.a(N) for the age 4+ was set manually to 1 (while the Q for 
younger ages is still estimated by the model). The resulting assessment (named noQ) 
is compared to the original Irish Sea Herring assessment (ISH) to investigate reasons 
why Q is estimated to be around ~2.5 in the ISH, a value which is regarded as rela-
tively large. The AC_7.a(N) values were plotted against the modelled abundances-at-
age on a log scale. The model assumes a slope of 1 and the value of Q corresponds to 
the intercept (log(Obs) = log(Q) + log (N)). 

For ages four and five, the points are indeed closer to the expected to the 1:1 line (ex-
pected with a Q=1), showing that the model has effectively used a Q=1 (Figure 2.0). In 
comparison, the points for ISH are on average log(2.2)= 0.8 above the 1:1 line. The 
slope of the linear regression seems to be different from 1, suggesting that a power 
model may be more appropriate. 
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Figure 2.0. Observed AC_7.a(N) for age four and five vs. estimated numbers-at-age (log–log rela-
tionship) for the ISH and noQ assessments. Black line is the 1:1 line, blue line is the linear regres-
sion of the datapoints. 

Assessment output 

As expected, forcing the model to have a Q=1 for AC_7.a(N) for ages 4+ mechanically 
increases the stock number-at-age estimated for the period covered by the survey, 
which reflects in the difference in the SSB time-series (Figure 2.1), up to 80% higher in 
the recent year. The difference of at least 10% is also visible is the six years preceding 
the start of the AC survey, which can be explained by the random walks in the model 
prevent abrupt changes from happening. The recruitment is also estimated higher in 
the noQ assessment than in the ISH assessment, but by no more than 40%. The fish-
ing mortality is estimated to be much (50%) lower. 

The age profile of the fishing mortality is also different between the ISH and noQ as-
sessments (Figure 2.2). Shortly after the start of the AC_7.a(N), the selection pattern 
of the noQ assessment starts to change toward a more flat shape, with quite similar F 
values for ages 2 and older, while for most of the years (except the recent years) the F 
values in the ISH kept increasing with age). Assuming a Q=1 would therefore imply 
that marked changed in the fishing practices occurred at around the time of the start 
of the survey, going from targeting older fish to targeting equally all ages (except re-
cruits). 
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Figure 2.1. Comparison of the historical stock development for the ISH and noQ assessments. 

 

 

Figure 2.2. Age profiles for the fishing mortality from the ISH assessment (red) and the noQ 
(blue). 
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Fixing the Q value at 1 affects the other model parameters (Figure 2.3). The other 
“scale parameters” (Qs) are all lower. The Q for the young ages of the AC (logFpar1-3 
on Figure 4) remains higher than 1, which is interpreted by the fact that some juvenile 
herring from the Celtic Sea stock are also probably sampled by the survey. The noQ 
assessment has a less variable F random walk variance and a smaller recruitment var-
iability, but a larger process error, which is not a good sign. Observation variances 
are not very different and remain very large (>0.5) for catches at-age 1, and all survey 
indices, indicating that the assessment mostly relies on the catches. The parameter 
standard deviations are not markedly different (Figure 2.4) expect the process error, 
which is better defined in noQ and some of the observation variances, which are less 
well defined. 

 

Figure 2.3. Parameter value from the ISH and noQ assessments. 

 

Figure 2.4. Standard deviation to the parameter estimates from the ISH and noQ assessments. 

The model uncertainty (standard deviation on logSSB and logFbar) are quite similar 
with a slightly larger uncertainty for the noQ assessment, except for the years after 
2010, when noQ is slightly less uncertain than ISH (Figure 2.5). 
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Figure 2.5. Standard deviation of the log SSB and log Fbar from the ISH and noQ assessments. 

Log catch curve estimate of F 

The log catch curve method was used to get an estimate of the total mortality (and 
using the natural mortality used in the assessment, of the fishing mortality). The 
method uses the assumption of a constant F applied on a cohort over its lifetime. A 
rapid inspection of the log catches plotted against the age of the cohort (figure 2.6), 
shows that age 1 are not fully recruited an should not be incorporated, as well as the 
plus group. 

Total mortality was therefore estimated as the slope of the regression of log catches 
from age 2 to 7 against the age. The average natural mortality over these ages (0.3388) 
was subtracted to get a proxy for F (Figure 2.7). Since the log catch curve method as-
sumes a flat selection pattern over ages 2 and older, which is not the case for SAM, 
the order of magnitude of F are not directly comparable. The log catch curve estimate 
has in general a similar trend as the F estimate from the ISH with a rise of F in the late 
1960s high F in the 1970s, a decrease in the 1980s and a slow increase from the 1980s 
to the 2000s. The F estimate from the noQ assessment differs for this latter period in 
that it is stable or even decreasing and not increasing as the log Catch ratio F sug-
gests. 
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Figure 2.6. Log catches-at-age plotted by cohort. 

  

Figure 2.7. Log catch curve estimate of F (black line with dots), with the average fishing mortality 
for ages 2 and older, from the ISH assessment and the noQ assessment (in red and blue respec-
tively). 
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The correlations between parameter estimates are shown on Figure 2.8. The catchabil-
ity of the AC survey for ages 4+ (logFpar4) is positively correlated to the other 
catchabilities, but no correlation with any other parameters. This indicates that the 
catchability are well defined, and that there is no confounding with any other param-
eters. 

 

Figure 2.8. Parameter correlation for the current assessment. 

Sensitivity to Linear vs. power catchability model 

The scatterplots of observed vs fitted for the AC_7.a(N) (Figure 2.0) show some sign 
of a slope higher than 1 for some ages. A slope different from 1 would suggest that a 
power model would be more appropriate to represent the relationship between the 
modelled stock-numbers-at-age and the abundance index : log (Index) = log(Q) + sl * 
log(modelled N). The SAM model was fitted estimating a slope with the same age 
groupings as for the catchability estimates. Among the four slopes estimated, only 
the slope for age 3 was different (larger) from 1. The slope estimates for the ages 4 to 
8 was very close to 1 (Table 2.1). The stock trajectories from the assessment with and 
without a power model for the catchability of the AC survey are very close (Figure 
2.9). 
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Table 2.1. Estimated slopes by SAM using a power low model. 

Age Value CV Lower bound Upper Bound 

1 1.83 0.38 0.86 3.87 

2 1.42 0.22 0.91 2.20 

3 1.59 0.18 1.13 2.24 

4 0.97 0.09 0.81 1.17 

5 0.97 0.09 0.81 1.17 

6 0.97 0.09 0.81 1.17 

7 0.97 0.09 0.81 1.17 

8 0.97 0.09 0.81 1.17 

 

Figure 2.9. Stock trajectories from the assessment with and without a power model for the catcha-
bility of the AC_7.a(N) survey. 

Sensitivity of the assessment to the scale of the catches and of AC_VIIa(N) 

The assessment was run with a catch-at-age matrix doubled; wherein the estimated 
numbers are age are all multiplied by 2 and the estimated catchability is then close to 
one. Other model parameters (observation and process variances) are unchanged. 
Performing a similar exercise with the AC_7.a(N) index does not modify the assess-
ment output compare to ISH. Only the value of Q is different. 

Sensitivity to one particular year in the AC_7.a(N) 

To visualise how much influence the AC_7.a(N) has on the assessment output, the 
index for the terminal assessment year was divided by two. This affects the stock tra-
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jectory over the last decade (Figure 3.2). Even if the observation variance is large, a 
single year of data has quite an effect on the resulting stock trajectories. 

 

Figure 3.2. Sensitivity of the assessment to a single year of AC_7.a(N). 

Sensitivity to replace the random walk recruitment by Beverton and Holt model 

The estimate recruitment variability is very low. The high observation variances for 
the catches and survey at-age 1 mean that the estimates of recruitment are not follow-
ing any of these two sources of information, and by default, recruitment is estimated 
as a very correlated random walk. In order to relax the random walk constraint, the 
model was fitted using a Beverton and Holt model for recruitment. The resulting re-
cruitment is a little more variable, but no major different is seen in the other model 
parameters or in the trajectories of Fbar and SSB. 

Sensitivity to changing the Selectivity plateau 

Figure 2.2 shows that a flat selectivity pattern is observed when a value of Q = 1 is 
imposed. The model was run imposing a catchability plateau at a young age (4+). The 
estimated Q for the AC_7.a(N) survey ages 4+ decreases from 2.2 to 1.9 and conse-
quently the SSB estimated slightly larger. 

Incorporating a new survey time-series in the assessment model 

Since 2007, another acoustic survey is in place (7.aNSpawn) with repeated survey 
activity during the spawning season. This survey is available as a numbers-at-age 
index, but also as an SSB survey. The inclusion of this information within a SAM 
framework was proposed as a potential model solution. We investigated how this 
survey could be used in the current SAM assessment. 
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The internal consistency of the numbers-at-age survey is low (Figure 3.3) and sug-
gests there are issues with sampling, with low numbers of targeted trawls occurring 
during the acoustic survey. The tuning index was converted to an SSB index. The cur-
rent SAM framework does not allow using two SSB indices at the same time. 

 

Figure 3.3. Internal consistency of new acoustic survey showing the correlation in age-pairs. 
Darker yellow colours indicate higher correlation. 

Four different types of parameter settings; 

• one parameter for all ages, 
• free parameters for all ages, 
• the same type of binding as the other acoustic survey, 
• interpreting the maximum freedom version and binding those parameters 

that result in similar observation variances. 
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Figure 3.4. Estimated observation variances for the new acoustic survey (in green) under the best 
parameter configuration. 

Using AIC criteria identified that using only one parameter for all ages is statistically 
most sound. The resulting observation variances are shown in Figure 3.4. The current 
SAM framework does not allow use of two SSB indices at the same time. Given that 
the NINEL survey has a very small contribution to the assessment given its large ob-
servation variance (which downscales its weight in the assessment fitting), this sur-
vey was removed and replaced with the new acoustic survey converted SSB time-
series. 

At first, the new SSB survey was fitted in a similar manner as the NINEL survey, es-
timating freely a catchability parameter and an observation variance parameter. The 
results in terms of observation variance are given in Figure 3.5. The results show that 
the index is fitted well, and shows low observation variance. The catchability of the 
survey is estimated at ~3.8, well above the expected value of one.  In an attempt to 
use the new acoustic SSB survey as an absolute survey, the catchability of the survey 
was fixed to one. Given that observation variance is estimated by the model too, the 
model has the possibility to increase observation variance if catchability is fixed to 
thereby ignore the survey. To circumvent this problem, a range of fixed observation 
variances for the SSB survey was evaluated with the attempt to keep observation var-
iance as high as possible, (but not exceeding 0.4, i.e. the estimate from the free as-
sessment). An observation variance of 0.1 was found to result in a residual pattern 
with both positive and negative residuals. Although there still are more positive than 
negative residuals. Lowering the observation variance even further to e.g. 0.05 did 
not result in any improvement in the residual pattern. In addition, the random walk 
assumption for recruitment was turned off leaving a free estimation of recruitment 
(Dickey-Collas et al., 2015). 

Based on the assessment, the observation variances of all other data sources were 
evaluated as well as their residual patterns, which showed to be very similar between 
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the original assessment (using 1980 as a starting year) and the assessment with fixed 
observation variance and catchability. The biggest change in model fit, was observed 
in the fishery selection patterns over time (see Figure 3.6), which has become almost 
flat at ages 2+. The catchability of the age-disaggregated 7.aNSpawn index is shown 
in Figure 3.7 and shows a substantial reduction to values ~0.72. 

 

Figure 3.5. Estimated observation variances for the new acoustic survey as SSB index (in green). 

 

  

 

Figure 3.6. Selection pattern of the fishery under the assessment model with fixed variance and 
catchability for the SSB survey (left) and the original 2016 assessment (time-series truncated to 
start from 1980 onwards) (right). 
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Figure 3.7. Catchability of the acoustic survey (age-disaggregated) under the assessment model 
with fixed variance and catchability for the SSB survey (left) and the original 2016 assessment 
(time-series truncated to start from 1980 onwards) (right). 

To test whether the model is suitable for advice purposes, a retrospective assessment 
was run, and the results are given in Figure 3.8. This shows that the assessment is 
sensitive to the fixed catchability, and does not converge back in time. For the fishing 
mortality, this effect is most profound with considerable changes over retrospective 
runs. Although mohns rho is only 13% for this assessment, the retrospective pattern 
in F needs to be investigated prior to continuing with this assessment for advice pur-
poses. 

Furthermore, under the this alternative assessment, it is advised to re-consider all 
other parameter settings, to ensure the best model configuration is found, as there 
appear correlations between parameters that may result from too rigid or too much 
freedom parameter in binding assumptions which may cause the observed retrospec-
tive pattern as well. 
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Figure 3.8. Retrospective analyses of the assessment including the acoustic SSB index with fixed 
variance and catchability. 

The lack of recruitment pattern in the original 2016 assessment was compared to the 
new configuration with the new SSB survey, while the random walk assumption on 
recruitment was turned on again. The results in recruitment are shown in Figure 3.9. 
The lack in any variability in recruitment is apparent from this figure and may cause 
problems in reliably estimating reference points. 
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Figure 3.9.  Assessment results including the acoustic SSB index with fixed variance and catcha-
bility and random walk assumption on recruitment. 

3.4 Follow-up exploratory model runs for IBP 

During the WKIrish3 meeting, the group could not agree on an accepted model for 
Irish Sea herring. The group recommended an Inter-Benchmark Protocol (IBP) to deal 
with the remaining issues. The report of this IBP is included below: 

Issues to be addressed 

• Examine the difference of the model with q = 1 and freely estimated q for 
the 7.aNSpawn SSB index; 

• Compare the ratio of the model-estimated mean SSB from 2007–2015 to the 
period 1994–2006 with the ratio of SSB from AC_7.a(N) survey for these 
two periods. 

Comparing Irish Sea herring (ISH) without the spawning SSB survey (Original) and with the 
spawning SSB survey (with a q set to 1, Q=1) 

Concern was raised at WKIrish3 that the trends seem to show different perceptions of 
stock status in the recent years compared to the period before ~2002 where either 
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with or without the 7.NSpawn the dynamics are, in absolute terms, very similar (Fig-
ure 4.0). The concern related to catchability estimated for the AC_7.a(N), which were 
lower under the two survey model configuration (noQ). As catchability is an estimat-
ed parameter applicable to the entire time-series, it was unclear why stock trends 
would not be markedly different in the period before 2002, as the same lower catcha-
bility would apply (suggesting that biomass would be estimated lower under the 
‘original’ model configuration for the period before 2002). 

 

Figure 4.0. Spawning–stock biomass (top panel), fishing mortality (middle panel) and recruitment 
(bottom panel) for the two different model configurations. 

The differences in parameter estimates between the two models are presented in Fig-
ure 4.1. Under the noQ model, the catchabilities for the acoustic survey are lower, 
which is to be explained by the increase in biomass estimated for the stock, being 
more in line with absolute acoustic survey estimates. The variance in the random 
walk for fishing mortalities increases with age and are generally larger than under 
the original model configuration. As the step changes from year to year are higher in 
SSB and R, this implies higher step changes in F as well, resulting in larger RW-F var-
iances. The RW-N is not well estimated under the original model (hitting the pre-
defined parameter boundary of a variance of 0.05) while the RW-N is estimated ap-
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propriately under the noQ model. Under the original model, RW-N is bound to 0.05, 
while it is estimated to be 0.1 under the noQ model configuration. It is therefore that 
this difference shows a 100% change. The observation variances under the noQ mod-
el are generally smaller (less noisy) than under the original model configuration. 

 

Figure 4.1. Comparison of parameters estimated for the two model configurations, expressed as 
percentage difference. 

These results do however, not explain the biomass in the period before 2002 being 
similar under both model configurations, while catchability dropped under the noQ 
model. Therefore, the entire model fit was investigated through a comparison of the 
residuals by age and model configuration over time (Figure 4.2.A and 4.2.B). 
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Figure 4.2.A. Comparison of standardized residuals, by age, for the two model configurations. 
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Figure 4.2.B. Summed standardised residuals for the entire time-series by age for the two model 
configurations. 

The differences in the standardized residuals (Figure 4.2) show residuals under the 
original model configuration tend to be more negative for the period before 2002 and 
more positive for the period after 2002 in comparison with the noQ model configura-
tion. This implies that the acoustic survey fit is not a matter of catchability scaling, 
but a matter of data interpretation as a whole over the period, with the fit to the data 
by the acoustic survey is tilted with a turning point around 2002. The summed stand-
ardized residuals for the noQ model is lower (Figure 4.2.B). 

SSB ratio comparison 

To explore the validity of the perceived stepwise shift in SSB in the noQ model it was 
compared with the SSB trend from the AC_7.a(N) survey (1994–2015). The acoustic 
index has been converted to an SSB estimate by multiplying index-at-age with stock-
weight-at-age and maturity-at-age. The ratio of SSB between the 1994–2006 and 2007–
2015 period for the model with a fixed catchability of 1 for the SSB survey is 2.579. 
The ratio in the model without the 7.aNSpawn survey (original model) is 2.0 com-
pared to the SSB trend form and the data ratio in the AC_7.a(N) survey was 2.858. 
This suggests that the SSB trend in the noQ model is not the product of the Q as-
sumptions, but allows the model estimated SSB to be a more appropriate reflection of 
SSB trend for the stock. 
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Figure 4.3. Ratio of most recent period vs historic period in assessment without SSB survey (‘o’), 
in the acoustic survey (‘a’) and the model with the SSB survey catchability set to 1 (‘q’). 

Figure 4.3 indicates that the trend in ratio is very similar between the two model con-
figurations and that data-wise, the acoustic survey shows a clear breakpoint in 2007. 
This breakpoint is related to the interpretation of the influence of the 7.aNSpawn sur-
vey (which starts in 2007). From 2007 onwards, there is a larger absolute difference 
visible in the two assessment model configurations, which seems to coincide with the 
breakpoint in acoustic survey data as well. 

3.5 Conclusion 

Whilst the benchmark accepted the SAM model configuration for Irish Sea herring, 
further exploration of the sensitivity to catchability assumption for the SSB survey 
was requested. Following the WKIrish3 meeting, further exploration and analysis 
was carried out and reviewed.  This was completed after the benchmark meeting; it 
was proposed that HAWG (ICES, 2017) was the best place to review the final assess-
ment model. The report of this work is provided here in Annex 12. Reference points 
were estimated during WKIrish3; however, it was agreed that these should be re-
examined following the work carried out after the WKIrish3 meeting Annex 13. 
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4 Irish Sea cod 

4.1 Issue list 

• Natural mortality – Lorenzen M is proposed to replace 0.2 for all ages 
• Tuning series – Available surveys were reviewed by WKIrish2 
• Discard data reconstruction – Documented by WKIrish2 
• Changes in growth and maturity – Documented by WKIrish2 
• Assessment method – ASAP is proposed as the new assessment method 
• Biological reference points – estimated according to ICES procedures 

Not addressed: 

• Prey relations – Investigate the role of whiting in Irish Sea multispecies 
foodweb dynamics. 

• Ecosystem drivers – some discussing by WKIrish2, no firm conclusions. 

4.2 Data 

Data exploration was done by WKIrish2, below is a description of the sensitivity of 
the proposed model to the input data. 

4.2.1 Stock identity and migration 

See WKIrish2. 

4.2.2 Life-history data 

See Section 2 for a discussion on natural mortality, the choice of the Lorenzen method 
for estimating M is documented in the WKIrish2 report. Assessment runs were per-
formed with M=0.2 and Lorenzen M. 

Sensitivity to maturity was not investigated. Other biological information is in 
WKIrish2 report. 

4.2.3 Fishery-dependent data 

No sensitivity analysis was performed to the fisheries-dependent data. Data quality 
and quantity has been described in WKIrish2 report. 

4.2.4 Fishery-independent data 

The available fishery-independent data are described in the WKIrish2 report. 

4.2.5 Environmental drivers and ecosystem impacts 

The WKIrish2 report includes a discussion on environmental drives and ecosystem 
impacts. 

4.3 Assessment and forecast 

4.3.1 Assessment models and runs 

Initial assessment runs were performed using SAM and ASAP.  Initial considerations 
included the updating of the previous SAM model with data agreed at the WKIrish2 
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workshop, such as inclusion of some discards, maturity ogive and a range of M val-
ues, such as Lorenzen and Gislason M. 

Exploration in SAM did however not look at the inclusion of age 0 cod or the differ-
ent combination of indices. 
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Figure 4.1. SAM outputs. Estimates from the updated run and point wise 95% confidence inter-
vals are shown by black line and shaded area. The previous version is the overlying grey lines. 
This version, as well as the previous one, do not believe the catches in the last seven years. 

Further exploration was in ASAP, as WKIrish3 preferred the use of ASAP as an as-
sessment method for the following reasons: 

• It allows uncertainty in the catch data; 
• It allows the fixing of parameters to values, which enables rigorous testing 

and integration of parameters; 
• ASAP was also proposed for the other gadoids in the Irish Sea. 

It focused on the inclusion/exclusion of various survey indices and the sensitivity of 
the model to settings in CVs, lambdas and the number/shape of selectivities. ASAP 
was set to believe the catches in the recent years.  Due to the change in fisheries in 
2000, the introduction of two fleets was explored but resulted in the model failing to 
converge. Currently this is still investigated in a slightly different manner. Failing the 
two fleet model, a two fishery selectivity model was explored with success. To give 
more influence to the surveys and prevent the model from latching on to the strong 
catch series, a range of options were explored: truncating the catch series in 1993, 
strengthening survey data by putting more confidence into them relative to catches 
(survey CVs considerably lower than catch CVs, survey ESS larger than catch ESS). 

https://www.stockassessment.org/datadisk/stockassessment/userdirs/user244/CodCombine/res/big_Feb-10-15.59.23_004.png
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The following runs were performed. The model diagnostics are available on the 
SharePoint under the section working documents (cod_asap_diagnostics - 
runXX.pdf). 

Run 1–Exploratory run 

The first run was presented at the workshop after a range of settings and tests prior 
to the workshop. This was a run including two catch selectivities, catch CVs of 0.2 
(1968–2002, 2007–present) /0.8 (2003–2006) and survey CVs as in Run 4. A number of 
settings were changed during the workshop to provide a more realistic starting point 
(see run 2). 

Run 2-Base run 

The settings of the base run were similar for the cod, haddock and whiting ASAP 
models. They are described below. 

Input Justification 

Fleets A single fleet (see final run for justification). 

Selectivity Three selectivity blocks were used to allow a smooth transition to reflect changes in 
fishery from 2000 onwards. Additionally the second block was to ensure that older 
fish would be represented in-between the first selectivity block and the start of the 
UKFSPW survey. 
1st Block (1968–1999): Single logistic 
2nd Block (2000–2006): Fixed to 1 for ages 2,3 and 4 
3rd Block: Double logistic 

Index 
specification 

The two Northern Irish groundfish surveys (Q1 and Q4) were included (Q1: ages 1–
4, Q4: ages 0–2), the UKFSPW (ages 2–5) survey as well as the NI MIK net survey 
(see final run for justification). 

Index 
selectivity 

The MIK net only catches one age class (age 0). 
Q1 Groundfish: set to 1 ages 2–4 and estimated at-age 1 
Q4 Groundfish: Estimated for ages 0–2 
UKFSPW: Single logistic function 

Index CV and 
ESS 

The CVs of the two NI groundfish indices were set to CVs calculated from survey 
data. The CV for the MIK net was set to 0.7; The CV for the UKFSP was set to 0.4. 
The effective sample size for the proportions-at-age was set at 50 for all surveys 
including catch-at-age information which was slightly lower than the number of 
stations in the survey. 

Fleet CV and 
ESS 

The CV for the catches (catch volume) was initially set at 0.05 for all years except 
2003–2005. Years 2003–3005 had experienced problems in fisheries data collection 
which is reflected in CVs of 0.075. The actual precision is lower but the starting 
point was to assume accurate and precise catch data. 
The effective samples size for the proportions-at-age was set at 100 prior 1990, 50 
from 1990 onwards. Years 2003–2005 were assigned values of 1 to reflect the poor 
data quality. 

Recruitment 
Deviations 

The CV for recruitment deviations was set at 0.5 to allow considerable variability 
between years, the lambda was set to 0.1 to allow unconstrained variation in 
recruitment. 
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Run 3–M =0.2 

M was set to 0.2 for all ages/years as in recent cod assessment. All other parameters 
were equal to base run. 

This change had more impact on the stock trend than any of the other changes. 
Changes had effect on the stock–recruitment which was considerably lower than in 
the base run. SSB was lowest of all runs and F highest. Lorenzen M is considered to 
be a better reflection of mortality and has been applied to other gadoid stocks in Eu-
rope. 

Run 4–survey CVs 

The survey CVs of Q1 were reduced to 0.2 and those of Q4 to 0.4 as in the exploratory 
runs. This was to investigate the impact of rather high CV settings in the base run 
which uses real CV values.  All other settings like base run. This change had little im-
pact on the output, it was hence decided to use real survey CVs. 

Run 5–Two selectivities (option 1) 

Catch selectivity blocks were reduced to two, removing the third selectivity block. All 
other settings were as in the base run. Fit-at-age in catch declined slightly, otherwise 
there was little impact on the model output. 

Run 6–Truncate time-series in 1993 

Because the model has been observed to latch onto the strong catch curve at an early 
point in time, it was considered to truncate the catch series prior to 1993. 

Though likelihood results are not comparable to those of the other runs, the cut of the 
catch curve had no impact on the dynamics in the later years. 

Run 7–Two selectivities (option 2) 

Catch selectivities were reduced to two blocks. In contrast to Run 5 the third block 
was removed and the second block was allowed to be estimated by a double logistic 
function. All other settings were like base run. The outcome was a strong dome-
shaped selection curve for the second selectivity block. 

This run produced the best likelihoods and best fit of catch-at-age and survey at-age 
data. 

This option is the best at the current time, but will have to be revisited should the 
fishery one day return to a fleet targeting large cod. 

Run 8–Less precise catch data 

The catch CV was increased to 0.1 (0.15 for year 2003–2005) which was believed to be 
more realistic. All other settings like base run. 

These changes had very little impact on the stock trend but poor fit to catches and 
surveys. 
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Comparison of stock trends 

Figure 4.2 provides an overview of the runs described above. 

Table 4.1. Likelihoods/objective functions for the various runs and parameters. Highlighted are 
generally the two best fitting runs for each parameter. Run 6 was not comparable due to the na-
ture of the run (time-series 1993–2015). 

RUN TOTAL  CATCH 
TOTAL 

INDEX 
CATCH 

AGE COMP 

CATCH-
AT-AGE 

INDEX 

N YEAR 1 RECRUITMENT 

DEVIATION 

1 2589.65 405.748 631.974 514.234 428.858 52.79 537.212 

2 1758.36 303.199 440.806 563.433 392.825 54.72 5.417 

3 1705.55 302.866 443.041 517.698 380.019 51.01 4.423 

4 1794.68 305.412 468.221 562.56 399.37 55.01 5.463 

5 1808.66 303.445 445.694 603.438 398.13 55.16 5.463 

6 This run is not comparable in Likelihoods due to a considerably shorter time-series 

7 1721.06 303.251 440.851 529.301 381.354 54.69 5.415 

8 1785.99 336.971 439.989 561.308 390.927 53.09 5.422 

 

Figure 4.2. Comparing the 8 runs as listed above. 
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4.3.2 Final assessment model run 

Describe the model configuration and justify the choice of settings 

TYPE NAME  YEAR RANGE AGE RANGE 
VARIABLE FROM 

YEAR TO YEAR? 

Caton Catch in tonnes 1968–current  Yes (except years 
2003–2005) 

Canum Catch-at-age in 
numbers 

1968–current 0–6+ Yes (except years 
2003–2005) 

Weca Weight-at-age in 
the commercial 
catch 

1968–current 0–6+ Yes (except years 
2003–2005) 

West Weight-at-age of 
the spawning 
stock at spawning 
time. 

1968–current 0–6+ Yes (except years 
2003–2005) 

Mprop Proportion of 
natural mortality 
before spawning 

1968–current 0–6+ No 

Fprop Proportion of 
fishing mortality 
before spawning 

Not relevant   

Matprop Proportion mature 
at-age 

1968–current 0–6+ Yes 

Natmor Natural mortality 1968–current 0–6+ No 

The final run was Run 7, based on the best likelihood fit and most appropriate set-
tings. The two-selectivity approach with the dome-shaped 2nd selectivity block is 
prioritized over the three selectivity base run as a simpler model. The effect on the 
stock trend was very small. This can probably be explained by the lack of older fish in 
the population. If the age structure recovers, it might be important to consider the 
three selectivity option again. 
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The final settings are justified below. 

Input Justification 

Fleets A single fleet was used because models with separate landings and discard fleets 
were unlikely to converge. 

Selectivity Two selectivity blocks were used in the final run, with the first selectivity block 
(1968–1999) an asymptotic shape and the second one a sharply dome-shaped. For 
cod and haddock, fisheries selectivity is believed to have changed with the decline 
of the midwater gadoid fleet and introduction of restrictions in 2000. 
The choice of selectivity blocks was based on patterns in the logratios of the catch 
numbers-at-age (cnaa) as well as estimated F patterns in runs with a single 
selectivity block. 
The final choice for two selectivity blocks rather than three was for a simpler model. 
It was also based on a better likelihood fit. Allowing the second selectivity block to 
dome-shape rather than to force it to higher selectivity values for ages 2–4 resulted 
in a better fit and is likely to represent the current fishery better. 
If the age structure recovers, it might be important to consider this option again. 

Catch All available age classes (age 0–6) were included. Note that ASAP treats the first age 
class (in this case age 0) as age 1. Therefore the outputs need to be offset by one age 
class. 

Index 
specification 

The two Northern Irish groundfish surveys (Q1, ages 1–4, and Q4, ages 0–2) were 
included (all available ages) as well as the NI MIK net survey and UK FSPW (ages 
2–5) survey. 

Index 
selectivity 

The MIK net only catches one age class (age 0). 
Q1 Groundfish: set to 1 ages 2–4 and estimated at-age 1 
Q4 Groundfish: Estimated for ages 0–2 
UKFSPW: Single logistic function 

Index CV 
and ESS 

The CVs for all years of the two NI groundfish indices were set to real Q1 and Q4 
survey CVs. CVs of all years for MIKNET were set to 0.7 and to 0.4 for UKFSPW.  
The effective sample size for the proportions-at-age was set at 50 which was slightly 
lower than the number of stations in the survey. 

Fleet CV and 
ESS 

The CV for the catches (catch volume) was initially set at 0.05 for all years, except 
2003–2005 it was 0.075 to represent difficulties in sampling and high uncertainties in 
those years. 
The effective samples size for the proportions-at-age was set at 100 for years 1968–
1990 and to 50 for 1991–present to reflect the small number of fish sampled for age 
from large portions of the catch. Years 2003–2005 were assigned an effective sample 
size of 1 to account for the absence of sampling effort. 

Recruitment 
deviations 

Lambda for recruitment deviations was set at 0.1 to allow unconstrained variation in 
recruitment. If future runs fail to converge Lambda can be set to 1 with a high CV to 
reduce the number of parameters. This appears to have very little impact on the 
stock trend or fit to catches. 
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Diagnostic plots 

 

Figure 4.3. Catch Fit. 
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Figure 4.4. Catch proportion-at-age residuals, bottom figure Standardized residuals. 
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Figure 4.5. Index fit. 

 

Figure 4.6. Catch-at-age proportion index fit. 
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Figure 4.7. Index proportion-at-age residuals. 
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Figure 4.8. Catch selectivities, block 1: 1968–1999, Block 2: 2000–current. 

 

Figure 4.9. Index selectivities: Index1-Q1, index2-Q4, Index3-UKFSPW, Index4-MIKNET. 
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Figure 4.10. Index catchability. 

 

Figure 4.11. Catch effective sample size. 
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Figure 4.12. Index effective sample size. 

 

Figure 4.13. Log stock numbers-at-age. 
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Figure 4.14. Objective function. 

 

Figure 4.15. RMSE fit. 
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Stock trends 

 

Figure 4.16. Stock trends from the final model run. 

4.3.3 Short-term forecast 

Model used: 

Software used: 

Initial stock size: 

Maturity: 

F and M before spawning: 

Weight-at-age in the stock: 

Weight-at-age in the catch: 

Exploitation pattern: 

Intermediate year assumptions: 

Stock–recruitment model used: 

Procedures used for splitting projected catches: 
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4.4 Reference points 

The derivation of the MSY reference points is described in Annex 8. 

 TYPE VALUE TECHNICAL BASIS 

MSY  MSY Btrigger 17 521 t Bpa 

Approach FMSY 0.61 Median point estimates of ‘EqSim’ simulations 

 Blim 6000 t Suggested breakpoint in SSB where recruitment 
changes 

Precautionary Bpa 17 521 t Blim combined with the assessment error; Blim x exp(1.645 
x σ); σ = 0.15 

Approach Flim 1.27 F with 50% probability of SSB < Blim 

 Fpa 0.914 Flim combined with the assessment error; Flim x exp(-
1.645 x σ); σ =  0.2 

4.5 Future research and data requirements 

Introduction of multiple fleets 

The stock has been harvested by a range of different fleets and vessels/gears. A step 
forward will be to explore the introduction of multiple fleets to the model which 
would represent these trends. 

4.6 Multispecies information: WKIrish4 

None identified. 
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5 Irish Sea haddock 

Stock assessment models for Irish Sea haddock were explored during WKIrish3. Ex-
ploratory assessment models were formulated for the stock on the basis of the issue 
list below and data decisions made at WKIrish 2. Initial model solutions were com-
pared with existing trends based assessment model (SurbaR) and model solutions 
previously used for the stock (XSA). Potential assessment solutions explored includ-
ed SAM, A4A and ASAP and update of SPiCT model. Initial exploratory model con-
figurations are presented in working documents provided to WKIrish3. 

5.1 Issue list 

• Maturity –  update to time-series of proportion mature at-age from NIGFS-
Q1 by WKIrish2; 

• Tuning series – available surveys were reviews updated by WKIrish2; 
• Discard data incorporated into catch estimates as previously created by 

WKRound 2013; 
• Assessment method – ASAP is proposed as the new assessment method; 
• Biological reference points – estimated according to ICES procedures. 

Not addressed: 

• Prey relations – Investigate the role of whiting in Irish Sea multispecies 
foodweb dynamics; 

• Ecosystem drivers – some discussing by WKIrish2, no firm conclusions. 

5.2 Data 

Data exploration was done by WKIrish2, below is a description of the sensitivity of 
the proposed model to the input data. 

5.2.1 Stock identity and migration 

5.2.2 Life-history data 

Estimates of natural mortality were calculated at WKIrish2 (ICES, 2016) for a discus-
sion on natural mortality, the choice of the Lorenzen method for estimating M is doc-
umented in the WKIrish2 report. Assessment runs were performed with M=0.2, 
Lorenzen M, Lorenzen M rescaled to M=2 at-age 5 and Gislason M. The proportion of 
fish ‘mature at-age’ was estimated from the NIFGS-Q1 survey for female haddock, 
with LOWESS smoother fitted for temporal smoothing. 

5.2.3 Other biological information 

Stock weights-at-age are estimated as the Q1 weights-at-age from survey and com-
mercial catches. Stock weights are calculated by fitting a von Bertalanffy growth 
curve to all available survey estimates of mean length-at-age in March and first-
quarter landings, with an additional vector of parameters estimated to allow for year-
class effects in asymptotic length. 
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5.2.4 Fishery-dependent data 

An underling requirement of the current assessment exploration is to address chang-
es in the quality of the commercial catch series data and assumptions of selectivity 
change in the fishery due to technical measures and management prescriptions which 
may have resulted in data quality and fishery selectivity changes over time. 

Sensitivity analysis in ASAP model assumptions to the confidence in the catch series 
was applied by introducing a time-series of variable coefficient of variation (CV) es-
timates for the catch estimates. These were formulated to reflect the discussion of the 
catch estimates presented in WKIrish2 (ICES, 2016). 

Sensitivity analysis to fishery selectivity patterns, due to management prescriptions, 
was explored by means of defining selectivity blocks within the commercial fleet. 
Blocks were selected to reflect change points in management. The initial model for-
mulation consisted of a two block model based on specific time points of manage-
ment measures. Sensitivity to introduction of a transitional block to reflect gradual 
changes in fishery behaviour was explored. 

5.2.5 Fishery-independent data 

A number of tuning series are available. The suitability of these as input data were 
explored at WKIrish2 (ICES, 2016). Initial exploration of tuning series identified 
NIGFS-Q1, NIGFS-Q4, NI-MIK and UKFSPW as robust dataset for inclusion in the 
assessment models of haddock. Sensitivity testing was applied for scenarios of sur-
vey series CV. At WKIRISH2 CV’s for NIGFS-Q1 and NIGFS-Q4 and NIMIK surveys 
were derived from as observed CVs. 

5.2.6 Environmental drivers and ecosystem impacts 

Explicit environmental drivers are not included in the current assessment investiga-
tion. 

5.3 Assessment and forecast 

Initial assessment runs were performed using, SurbaR, VPA, XSA, SAM, A4A and 
ASAP. At present, ASAP is presented as the preferred assessment method for the fol-
lowing reasons: 

• It allows uncertainty in catch data to be accounted for; 
• Allows appropriate incorporation of selectivity change; 
• ASAP was also proposed for the other gadoids in the Irish Sea. 

5.3.1 Assessment models and runs 

Run 1: Exploratory model 

A preferred model ASAP model configuration was presented at the workshop. Re-
view of initial model explorations and normalisation with other Irish Sea gadoid spe-
cies being explored at WKIrish3 suggested provided a base model configuration as 
detailed in Table 5.1. 

The initial model included three tuning indices, NIGFS-Q1, NIGFS-Q4 & NI-MIK. A 
highly divergent retrospective pattern when the UKFSPW index was included was 
reported. The model included two selectivity blocks in fishery-dependent data, re-
flecting bycatch and targeted fishery until the year 2000 (asymptotic). This was re-
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placed by a fleet selectivity pattern without targeted fishing of older fish (dome-
shaped) after 2000, reflecting management measures. 

Table 5.1. Initial model configuration and justification (Base Model). 

INPUT JUSTIFICATION 

Fleets A single fleet was (see final run for justification). 

Selectivity Two selectivity blocks were used. Block 1; 1993 to 2000 asymptotic selection 
reflecting bycatch and targeted nature of catches. Block 2; 2001 to present domed-
shaped selection reflecting limited targeted fishery activity. 

Index 
specification 

NIGFS-Q1 [ages 1 : 4]; NIGFS-Q4 [age 0:3]; NIMIK [age 0]. 

Index 
selectivity 

Selectivity-at-age for NIGFS-Q1 and NIGFS-Q4 surveys were asymptotic. 

Index CV and 
ESS 

The CVs for NIGFS-Q1 and NIGFS-Q4 indices were as observed for numbers of fish 
measured between stations; the effective sample size for the proportions-at-age was 
set at 50 which is slightly lower than the number of stations in the survey (63). 

Fleet CV and 
ESS 

The CV for the catches (catch volume) was initially set at 0.3 <2003, 0.7 for 2003–
2006 and 0.3 2007 to present.   The effective samples size for the proportions-at-age 
was set at 50 for all years apart from 2003–2006 when it is set to 1. 

Recruitment 
Deviations 

The CV for recruitment deviations was set at 1 to allow considerable variability 
between years. 

Run 2: Normalisation to Irish Sea gadoids 

Review of initial model explorations and in discussion with other gadoid stocks be-
ing examined at WKIrish3 initial settings were normalised between stocks to reflect 
the shared fishery history, survey sources and sampling of commercial fisheries. This 
refined the catch CV to a 0.35 before 2003, 0.4 during 2003–2006 and 0.30 after 2006. 
Examination of this initial in Run 1 model suggested that it was disproportionally 
tuned to the survey series compared to the catch series (Figure 5.1). In the Run 2 the 
CV for survey series was set to 0.3 for NIGFS-Q1 & NIGFS-Q4 and 0.6 for NI-MIK. 
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Figure 5.1. Fitted and observed index and catch series from model Run 2. 

Run 3: Sensitivity to catch coefficient of variation 

It was proposed that a sensitivity analysis to catch CV scenarios was required with 
fixed CVs of survey series. The catch information from 2007 to present is regarded as 
the most confident, during 2003–2006 it is regarded that catch and sampling infor-
mation is of relatively lower quality due to lack of sampling opportunity. Before 2003 
the catch series is regarded as of intermediate confidence. The highest confidence pe-
riod was initially set at 0.05, 0.1 and 0.075, for the high, low and intermediate confi-
dence periods. These CVs were increased by increments of 0.025 for 5 iterations and 
settings as in Run 1. The model fit and log-likelihood compared (Figures 5.2 and 5.3 
and Table 5.2). 

Examination of the model fit log-likelihoods shows that selecting highest confidence 
in catch resulted in the smallest overall log-likelihood, but demonstrated that this 
was a trade-off between fit to the indices vs. fit the catch. There was clear incremental 
improved of fit to catch by increasing the confidence scenario (Figure 5.2). However, 
the highest catch confidence resulted in a fit to the survey indices which were sub-
stantially different from that achieved by other scenarios. The survey indices are re-
garded to reflect the stock status and track clear classes well (WKIrish2), furthermore 
data issues have been noted with catch data, including back population of a discard 
series and low confidence associated with applying mist report estimates before 2007. 
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It was therefore decided that given only the marginal improved model fit to both 
catch and indices that the lowest confidence scenario could should be used. 

 

Figure 5.2. Catch coefficients of variation (CV) scenarios used for sensitivity testing. 

 

Figure 5.3. Index fit Index fit and model predicted fit under catch CV scenarios. 
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Table 5.2. Model fit log likelihood values for catch coefficient of variation (CV) sensitivity test-
ing. 

CATCH CV TOTAL CATCH INDEX CATCH AGE INDEX AGE SELECTIVITY PARAMETERS INDEX SELECTIVITY 

0.15* 1370.96 164.53 639.21 204.44 347.42 14.87 0.49 

0.125 1371.15 158.46 642.35 205.43 350.39 14.10 0.43 

0.1 1370.33 151.20 644.93 206.47 354.23 13.15 0.35 

0.075 1367.89 142.74 646.33 207.54 358.93 12.08 0.27 

0.05 1336.14 133.07 663.16 192.03 337.70 9.48 0.71 

*Selected model for further sensitivity testing and model configuration runs. 

Run 4: Sensitivity to natural mortality assumptions 

At WKIrish2, Lorenzen estimates of M and Gislason estimates of M were calculated 
for Irish Sea haddock. Sensitivity to these estimates was carried out using the model 
selected from Run 3. In addition to Lorenzen and Gislason estimates, a rescaled Lo-
renzen M was used, with M = 0.2 at oldest age (5) and M=0.2, for all ages (Figure 5.4). 

Examination of the model fit log-likelihoods supported selection of the Lorenzen es-
timates of natural mortality, with the lowest total log-likelihood of all sensitivity, and 
lowest log-likelihood to catch age survey age (Table 5.3). The Lorenzen M estimates 
were selected for further sensitivity testing and model configuration runs. 

 

Figure 5.4. Estimates of natural mortality used for sensitivity testing. 
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Table 5.3. Model fit log-likelihood values for natural mortality sensitivity testing. 

NATURAL MORTALITY TOTAL CATCH INDEX CATCH AGE INDEX AGE SELECTIVITY PARAMETERS INDEX SELECTIVITY 

Lorenzen* 1370.96 164.53 639.21 204.44 347.42 14.87 0.49 

M=0.2 1560.86 158.05 634.45 299.42 462.36 1.83 4.74 

Re-scaled Lorenzen 1398.63 163.05 636.78 215.83 369.65 7.80 5.53 

Gislason 2382.95 151.31 637.43 734.76 452.45 404.57 2.43 

*Selected model for further sensitivity testing and model configuration runs. 

Run 5: Sensitivity to survey CV assumptions 

At WKIrish2 coefficients of variation were calculated for survey indices, as CV of the 
number of fish measured between survey strata. These observed CVs were used and 
comparison made with a fixed CV, as used in Run1 and a rescaled observed CV, re-
scaled to have a mean of the fixed CV.  A lower limit of 0.1 was applied to all ob-
served CVs. 

The CV series for indices and the resultant fit of the model to observer catch is shown 
in Figure 5.5. Examination of the log-likelihood values of the model fit (Table 5.4). 
Using observed CVs resulted in the best model fit in terms, of total fit, fit to catch se-
ries, fit to survey series, fit to catch age and fit to index age. Using an observed CV 
series was selected for further model configuration runs and sensitivity testing. 

Table 5.4. Model fit log likelihood values for natural mortality sensitivity testing. 

SURVEY CV TOTAL CATCH INDEX CATCH AGE INDEX AGE SELECTIVITY PARAMETERS INDEX SELECTIVITY 

Fixed 1370.96 164.53 639.21 204.44 347.42 14.87 0.49 

Scaled 1374.12 167.62 643.73 202.49 343.74 16.03 0.52 

Observed* 1359.44 160.57 640.27 200.85 340.79 16.40 0.56 

*Selected model for further sensitivity testing and model configuration runs. 
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Figure 5.5. Time-series of indices coefficient of variation (CV) used in sensitivity testing and 
model fit to catch series. 

Run 6: Sensitivity to Survey selectivity 

Initial model configuration and testing was applied with asymptotic selection by age 
for survey series. It was discussed during the benchmark meeting that it is likely that 
the survey gear used in the NIGFS-Q1 and Q4 surveys is likely to have a domed-
shaped selectivity.  Domed shape selectivity was parameterised using the double lo-
gistic function for the NIGFS-Q1 survey. Given the age range used in the NIGSF-Q4 
survey the selectivity pattern was retained as asymptotic. 

Although considered a more appropriate selection pattern for the NIGFS-Q1 survey 
dome shaped selection did not provide an overall improved (Table 5.5). It was con-
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sidered necessary to examine this assumption in the context of the imposed break-
point in catch selectivity and the inclusion of a tuning series which targeted old fish, 
namely the UKFSPW series. 

Table 5.5. Model fit log likelihood values for assumptions of selectivity of NIGFS-Q1 survey. 

SURVEY SELECTIVITY TOTAL CATCH INDEX CATCH AGE INDEX AGE SELECTIVITY PARAMETERS INDEX SELECTIVITY 

Domed* 1373.63 159.59 649.46 200.87 349.07 11.27 3.39 

Asymptotic 1359.44 160.57 640.27 200.85 340.79 16.40 0.56 

*Selected model for further sensitivity testing and model configuration runs. 

 

Figure 5.6. NIGFS index selectivity scenarios tested and stock trend plots of model fit to catch, 
predicted SSB, recruitment and fishing pressure – F. 

Run 7: Sensitivity to catch selectivity 

In the previously model configurations a breakpoint in selectivity was applied in 
2000, associated with management measures to reduce fishing mortality on cod. A 
third selectivity block was suggested to allow a transition between a fully selected 
stock to a regime without targeted fishing of older fish. A third selectivity was intro-
duced form 2000–2007. The initial block prior to 2000 was maintained as a asymptot-
ic, with the later blocks fitted as age-based selection using defined coefficients of 
selectivity for each age; allowing the model to select final parameterisation, but giv-
ing initial values which reflected an increasingly dome shape selection in the later 
two blocks. The log-likelihood model fit parameters in Table 5.6 support the use of a 
three selectivity blocks. This configuration was selected for trial with the inclusion of 
the UKFSPW index. 
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Figure 5.7. Selectivity patterns applied for a two block and three block selectivity pattern for the 
fishery. 

Table 5.6. Model fit log-likelihood values comparison for a two block and three block fishery 
selectivity model. 

FISHERY SELECTIVITY TOTAL CATCH INDEX CATCH AGE INDEX AGE SELECTIVITY PARAMETERS INDEX SELECTIVITY 

Two Blocks 1373.634 159.5875 649.4597 200.8671 349.0659 11.26902 3.385016 

Three Blocks* 1344.325 159.2254 641.9206 201.5052 338.3684 -0.68547 3.991138 

*Selected model for further comparison with model including UKFSPW survey. 

Run 8: Sensitivity to inclusion of UKFSPW survey 

Having both a dome-shape selection in the fishery, NIGFS-Q1 survey prompted a 
requirement to include a source of information for older aged fish, with higher selec-
tivity coefficients. The UKFSPW survey a continuing survey series, targeting older 
fish was included, although the series is short; 2007–present (excluding 2014).  While 
the log-likelihood fit of the model including a fourth index was not reduced, the ad-
ditional information provided by the index was deemed an important addition. The 
UKFSPW index includes the only fully selected source of information for the oldest 
age fish. It is assumed to asymptotic selection of fish, in contrast to the NIGFS-Q1 and 
NIGFS-Q4 surveys which target juvenile fish and commercial fishery data which, due 
to recent management measures has resulted in limited targeted fishing form had-
dock. 

The use of current specified selectivity blocks may require review at annual at regular 
intervals. With advice and management for haddock or other species it is possible 
that the character of the fishery may change. A model including the UKFSPW survey 
with four selectivity blocks was applied (Table 5.7). In recent years 2013–present it 
has been observed that targeted fishing of haddock has increased, due to the strength 
of the 2013 year class. As this year class has matured and the cohort progressed full 
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selection of the older fish may need to be taken into consideration in model configu-
ration; at present this selectivity period is too short to be parameterised robustly. 

Table 5.7. Model fit log-likelihood values comparison of models including the FSP index and a 
model with this index. 

FOURTH INDEX TOTAL CATCH INDEX CATCH AGE INDEX AGE SELECTIVITY PARAMETERS INDEX SELECTIVITY 

UKFSPW excluded 1344.325 159.2254 641.9206 201.5052 338.3684 -0.68547 3.991138 

UKFSPW* included 1426.381 158.809 677.7911 200.102 382.1372 0.311632 7.229801 

4 Block model 1458.015 163.691 681.8343 196.782 409.185 -1.098711 7.621659 

*Final model configuration. 

A retrospective analysis demonstrated a consistent historic downward revision of the 
perceived SSB trend and upward revision of the F trend. The initial two years of the 
retrospective plot show significant deviations. This was considered due to the model 
having a selectivity block, beginning in 2007, with reduced selection for older fish 
and the introduction of the UKFSPW, with an asymptotic selectivity pattern, starting 
in 2007. The short period to estimate the selectivity parameters for both the fishery 
and survey index are considered to contribute to the instability of the model during 
this time. 

 

Figure 5.8. A retrospective plot the final assessment model. 
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5.3.2 Final assessment model run 

Describe the model configuration and justify the choice of settings. 

    

Catch (tonnes) 1993–current 0–5+ Yes 

Catch-at-age in numbers 
(thousands) 

1993–current 0–5+ Yes 

Weight-at-age in the 
commercial catch (kg) 

1993–current 0–5+ Yes 

Weight-at-age of the stock at 
spawning time (kg). 

1993–current 0–5+ Yes 

Weight-at-age of the stock at 
Jan. 1 (same as stock weights) 

1993–current 0–5+ Yes 

Proportion of natural 
mortality before spawning 
(Lorenzen M) 

1993–current 0–5+ No 

Proportion of fishing 
mortality before spawning 

1993–current 0–5+ No 

Proportion mature-at-age 1993–current 0–5+ No 

Model configuration 

INPUT JUSTIFICATION 

Fleets A single fleet. Recommendation to consider splitting fleets in future. Age 
disaggregation not possible without review of all ageing data 

Selectivity Three selectivity blocks were used. Block 1; 1993 to 2000 asymptotic selection 
reflecting bycatch and targeted nature of catches. Block 2; 2001 to 2007; 2007–
present - increasing dome-shaped selection reflecting limited targeted fishery 
activity. A fourth block should be considered if the recent / current fishery 
behaviour is considered to have change 

Index 
specification 

NIGFS-Q1 [ages 1 : 4]; NIGFS-Q4 [age 0:3]; NI MIK [age 0]; UKFSPW [2–5]. 

Index 
selectivity 

Dome-shape selectivity for NIGFS-Q1; Asymptotic selection for NIGFS-Q4 & 
UKFSPW. 

Index CV and 
ESS 

The CVs for NIGFS-Q1 and NIGFS-Q4 indices were as observed for numbers of fish 
measured between strata; the effective sample size for the proportions-at-age was 
set at 50 which is slightly lower than the number of stations in the survey (63). The 
effective sample size for the UKFSPW was 10 with a CV of 0.7. 

Fleet CV and 
ESS 

The CV for the catches (catch volume) was initially set at 0.175 <2003, 0.2 for 2003–
2006 and 0.15 2007 to present.   The effective samples size for the proportions-at-age 
was set at 50 for all years apart from 2003–2006 when it is set to 1. 

Recruitment 
Deviations 

The CV for recruitment deviations was set at 1 to allow considerable variability 
between years. 

Natural 
Mortality 

Lorenzen M 
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ASAP model settings 

OPTION SETTING 

Use likelihood constant Yes 

Mean F (Fbar) age range 2–4 

Fleet selectivity block 1 Assymtotpic 

Fleet selectivity block 2 Age coefficineits (age 0–5) (0.2;0.5;0.8;1;0.7;0.5) 

Fleet selectivity block 3 Age coefficients (age 0–5) (0.3;0.6;0.7;8;0.6;0.4) 

Discards Included in catch (not specified separately from landings) 

Index units 4 (numbers) 

Index month NIGFS-Q1 (3); NIGFS-Q4 (10); NIMIK (7); UKFSPW(3) 

Index selectivity linked to fleet -1 (not linked) 

Index age range NIGFS-Q1 (1–4); NIGFS-Q4 (0–3); NIMIK (0); UKFSPW(2–5) 

Index Selectivity (NIGFS-Q1)  Double logistic 

Index Selectivity (NIGFS-Q4) Asytotpic 

Index Selectivity  (NIMIK) NA (age 0 only) 

Index Selectivity  (UK-FSPW) Aysmytotic 

Index CV & ESS  (NIGFS-Q1) Observed strata CV (lower limit 0.1); ESS = 50 

Index CV & ESS  (NIGFS-Q4)  Observed strata CV (lower limit 0.1); ESS = 50 

Index CV & ESS (NIMIK)  Observed station CV (lower limit 0.1); ESS = 50 

Index CV & ESS (UK-FSPW)  CV = 0.7; ESS = 10  

Phase for F-Mult in 1st year 1 

Phase for F-Mult deviations 2 

Phase for recruitment deviations 3 

Phase for N in 1st Year 1 

Phase for catchability in 1st Year 3 

Phase for catchability deviations -5 (Assume constant catchability in indices) 

Phase for unexploited stock size 1 

Phase for steepness -5 (Do not fit stock–recruitment curve) 

Catch total CV 1993-2000 (0.175); 2003-2006 (0.2); 2007-2015 (0.15) 

Catch effective sample size 1993-2000 (50); 2003-2006 (1); 2007-2015 (50) 

Lambda for recruit deviations 0 (freely estimated) 

Lambda for total catch 1 

Lambda for total discards NA (discards included in catch) 

Lambda for F-Mult in 1st year 0 (freely estimated) 

Lambda for F-Mult deviations 0 (freely estimated) 

Lambda for index 1 for both indices in the model 

Lambda for index catchability 0 for all indices (freely estimated) 

Lambda for catchability devs NA (phase is negative) 

Lambda N in 1st year deviations 0 (freely estimated) 

Lambda devs initial steepness 0 (freely estimated) 

Lambda devs unexpl stock size 0 (freely estimated) 
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5.3.3 Short-term forecast 

Software used: FLAssess – Short-Term Forecast (stf) 

  

Initial stock size Long-term GM (omitting last two years) 

Stock numbers-at-age 1 and older from model 

Natural mortality Lorenzen M, as in model 

Maturity Most rectent estimate 

F and M before spawning 0 for all ages in all years 

Stock / catch weights-at-age Average last 3 years 

Exploitation pattern Average last 3 years 

Intermediate year assumptions F in the last year – check retrospective pattern for 
evidence of bias 

Stock–recruit model None, long-term GM recruitment (omitting last two 
years) 

Fbar range 2–4 

Rescale to last year No 

5.4 Reference points 

The derivation of reference points is documented in Annex 9. 

Blim was set to the SSB in 1993, from which the fishery developed, an SSB of 2300 t in 
1993. The S–R plot for Irish Sea haddock shows no obvious S–R relationship (Figure 
5.9), mainly because the recruitment is highly variable. The S–R pairs from 1993:2012 
were not used initially as the 2013 recruitment event and 2015 SSB were considered to 
be highly influential. The fitted relationship, compared to the selecting Blim at 2300 t 
provides a Blim of 4035 t, a value which has only been exceeded on eight occasions. 
However, the fitted segmented regression in a much better fitted given an Akaike 
Information Criterion weight of 94%. Whereas the selected Blim of 2300 t is used pro-
posed as a more realistic value for the stock, the modelled relationship is used for 
further MSY simulations. 

The entire time-series is used for MSY simulations (1993–2105). Fcv is 0.22 (F error in 
last year) and SSBcv as 0.15 (SSB error in last year). Bpa was calculated as Blim com-
bined with the assessment error; Blim x exp(1.645 x σ); σ = 0.15 as 3093 t.  MSYBtrigger is 
set to Bpa as the stock has not been fished at or below FMSY for more than five years. 
FMSY median point estimates is 0.27 (0.273). The upper bound of the FMSY range giving 
at least 95% of the maximum yield was estimated to 0.35(0.351) and the lower bound 
at 0.19 (0.192) (Figure 5.4.2). Fp.05, without assessment error of Btrigger as estimated 0.40 
(0.0445) and therefore the upper bound does not need to be restricted because of pre-
cautionary limits. Flim is estimated to be 0.47 (0.445) as F with 50% probability of SSB 
<Blim with Fpa as 0.34 calculated as Flim combined with the assessment error; Flim x 
exp(-1.645 x σ); σ = 0.22. 
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Figure 5.9. Stock–recruitment relationship for Irish Sea haddock with fitted segmented regres-
sion. 
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No MYSBtrigger, No error – to estimate Flim. 

 TYPE VALUE TECHNICAL BASIS 

MSY MSY Btrigger 3093 t Bpa 

Approach FMSY 0.27 Median point estimates of ‘EqSim’ simulations 

 Blim 2300t SSB in 1993 – SSB at start of current period of stock 
development 

Precautionary Bpa 3093t Blim combined with the assessment error; Blim x exp(1.645 
x σ); σ = 0.15 

Approach Flim 0.47 F with 50% probability of SSB <Blim 

 Fpa 0.34 Flim combined with the assessment error; Flim x exp(-
1.645 x σ); σ =  0.22 

5.5 Future research and data requirements 

This section addresses Tor d) 

Consider selection blocks = additional blocks as fishery develops / changes 

Consider splitting model 

5.6 Multispecies information: WKIrish4 

This section addresses Tor e). 

Identify aspects that require special attention by the ongoing Irish Sea regional 
benchmark process, in particular pertaining to the development of integrated multi-
species and ecosystem advice (to culminate in the synthesis workshop WKIrish4). 
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6 Irish Sea whiting 

6.1 Issue list 

• Natural mortality – Lorenzen M is proposed to replace 0.2 for all ages 
• Tuning series – Available surveys were reviewed by WKIrish2 
• Discard data reconstruction – Documented by WKIrish2 
• Changes in growth and maturity – Documented by WKIrish2 
• Assessment method – ASAP is proposed as the new assessment method 
• Biological reference points – estimated according to ICES procedures 

Not addressed: 

• Prey relations – Investigate the role of whiting in Irish Sea multispecies 
foodweb dynamics. 

• Ecosystem drivers – some discussing by WKIrish2, no firm conclusions. 

6.2 Data 

Data exploration was done by WKIrish2, below is a description of the sensitivity of 
the proposed model to the input data. 

6.2.1 Stock identity and migration 

See WKIrish2. 

6.2.2 Life-history data 

See Section 2 for a discussion on natural mortality; the choice of the Lorenzen method 
for estimating M is documented in the WKIrish2 report. Assessment runs were per-
formed with M=0.2 and time-varying M. However there is too much uncertainty 
about M to justify estimating it for each year as this can potentially just add noise. 

Sensitivity to maturity was not investigated; this appears to be consistently knife-
edged at-age 2. 

6.2.3 Other biological information 

6.2.4 Fishery-dependent data 

No sensitivity analysis was performed to the fisheries-dependent data. 

6.2.5 Fishery-independent data 

The inclusion of different available surveys was tested in a series of preliminary 
model runs. (Described in working document: “WD Whg7a ASAP runs.docx” on the 
WKIrish3 SharePoint site.) 
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6.2.6 Environmental drivers and ecosystem impacts 

6.3 Assessment and forecast 

6.3.1 Assessment models and runs 

Exploratory assessment runs were performed using XSA and ASAP (see working 
documents). WKIrish3 preferred the use of ASAP as an assessment method for the 
following reasons: 

• It allows uncertainty in the catch data; 
• ASAP is more transparent than XSA; 
• ASAP was also proposed for the other gadoids in the Irish Sea; 
• The XSA shows strong trends in catchability residuals and a substantial 

retrospective bias. 

XSA did inform the periods chosen for selection blocks for the ASAP. 

The following runs were performed. The model diagnostics are available on the 
SharePoint under the section working documents (5_asap_diagnostics - runXX.pdf) 

Run 1–Exploratory run 

The first run was presented at the workshop. A number of settings were changed 
during the workshop to provide a more realistic starting point (see run 2). 

Run 2–Base run 

The settings of the base run were similar for the cod, haddock and whiting ASAP 
models. They are described below. 

Input Justification 

Fleets A single fleet was (see final run for justification). 

Selectivity Two selectivity blocks were used (see final run for justification). 

Index 
specification 

The two Northern Irish groundfish surveys (Q1 and Q4) were included (all 
available ages) as well as the NI MIK net survey (see final run for justification). 

Index 
selectivity 

Selectivity-at-age for the two NI groundfish surveys was set at 1 for all ages (see 
final run for justification). The MIK net only catches one age class (age 0). 

Index CV and 
ESS 

The CVs for all years of the two NI groundfish indices were set to 0.2 (which is 
similar to the between-station variability of the survey). The CV for the MIK net was 
set to 0.5; the effective sample size for the proportions-at-age was set at 50 which 
was slightly lower than the number of stations in the survey. 

Fleet CV and 
ESS 

The CV for the catches (catch volume) was initially set at 0.05 for all years. The 
actual precision is lower but the starting point was to assume accurate and precise 
catch data. 
The effective samples size for the proportions-at-age was set at 50. 

Recruitment 
Deviations 

The CV for recruitment deviations was set at 1 to allow considerable variability 
between years. However, the lambda was set to 1, which constrains the recruitment 
somewhat and helps with convergence. 
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Run 3–Less precise catch data 

The catch CV was increased to 0.2 which was believed to be more realistic, the effec-
tive sample size was reduced to 10 to reflect the small number of age samples taken 
for significant portions of the catches throughout the time-series. All other settings 
like run 2. 

These changes had very little impact on the stock trend or fit to catches. 

Run 4–survey selectivity 

The selectivity of the surveys was initially set to 1 for all ages. To investigate if this 
was a realistic assumption, a single logistic curve was estimated for both groundfish 
surveys (the MIK net survey only has a single age class). All other settings like run 3. 

The logistic curves suggested partial selection for age 1 (and age 0 for the Q4 survey) 
and full selection for the other ages. 

These changes resulted in a slight decrease in SSB in recent years and increase in F 
but very similar trends. The residual patterns improved somewhat and therefore this 
change was considered sensible. 

Run 5–survey CV 

The survey CV was increased to 0.5 to account for additional variability like year-
effects. This increase was later considered too high but subsequent runs used this 
value. All other settings like run 4. 

Run 6–time-varying M 

Because there have been significant changes in the mean size-at-age, this is likely to 
affect the natural mortality. A time-varying M was calculated based in the Lorenzen 
method applied to the catch weights smoothed over five years. All other settings like 
run 5. 

This change had more impact on the stock trend than any of the other changes. In 
principle this is a sensible approach. However, there is a lack of knowledge of M to 
justify this approach as it potentially introduces additional noise to the assessment. 

Run 7–double logistic survey selectivity 

Survey selectivity was estimated by a double logistic curve for both groundfish sur-
veys. All other settings like run 5. 

The outcome was a strong dome-shaped selection curve for both surveys. However 
the effect on the stock trend was very small. This can probably be explained by the 
lack of older fish in the population. If the age structure recovers, it might be im-
portant to consider this option again. However because there is very little infor-
mation to inform the shape of the curve, therefore the workshop decided to use the 
simpler single logistic model. 

In order to further investigate the possible shape of the selectivity of the surveys, rela-
tive to the catches, the mean catch curves over the period of the surveys were plotted 
(Figure 6.3.1.1). These catch curves were close to parallel, therefore there is no strong 
evidence of dome-shaped selectivity in the surveys (relative to the commercial catch-
es). 
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Figure 6.3.1.1. Mean catch curves for the period 1992–2015 for the commercial catch and the two NI 
groundfish surveys as well as the UK Fisheries-Science Partnership survey. 

Run 8–FSP survey 

The UK Fisheries Science Partnership survey is the only potential tuning fleet that 
catches older fish. However, it is discontinued and the time-series is relatively short 
and only covers a small spatial area (the only area where most large whiting are 
found). This run includes the FSP survey. All other settings like run 5. 

The model converged when all age classes were included. However there single lo-
gistic selectivity curve did not fit well. This appeared to be caused by the youngest 
fish (age 1) which were more abundant than the model expected, causing strong neg-
ative residuals at-age 2 and positive residuals at-age 3. The next step was to omit age 
1 from the survey as these are poorly selected anyway. However the model failed to 
converge. There was insufficient time available to investigate this further and it was 
agreed to omit the FSP survey. 

Comparison of stock trends 

Figure 6.3.1.2 provides an overview of the runs described above. 
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Figure 6.3.1.2. Comparison of the stock trends in the exploratory runs. The plots were ‘cropped’ to 
the last 20 years as the differences between the runs were nearly imperceptible if the full time-
series was shown. 1) Exploratory run; 2) Base run; 3) Less precise catch data; 4) survey selectivity; 
5) survey CV; 6) time-varying M; 7) double logistic survey selectivity. 8) FSP survey. 
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6.3.2 Final assessment model run 

The final run was based on run 5 with the following changes: 

• The CV for the groundfish surveys was changed to 0.3 as this was consid-
ered the most realistic value. 

• Lambda for recruitment deviations was set at 0.1 to allow unconstrained 
variation in recruitment. 

These changes had very little impact on the stock trend or fit to catches. However 
these settings were considered to be more appropriate. 

TYPE NAME  YEAR RANGE 
AGE 

RANGE 
VARIABLE FROM YEAR 

TO YEAR? 

Caton Catch in tonnes 1980–
current 

 Yes 

Canum Catch-at-age in numbers  1980–
current 

0–6+ Yes 

Weca Weight-at-age in the commercial catch 1980–
current 

0–6+ Yes 

West Weight-at-age of the spawning stock at 
spawning time. 

1980–
current 

0–6+ Yes 

Mprop Proportion of natural mortality before 
spawning 

1980–
current 

0–6+ No 

Fprop Proportion of fishing mortality before 
spawning 

Not 
relevant 

  

Matprop Proportion mature at-age 1980–
current 

0–6+ No 

Natmor Natural mortality 1980–
current 

0–6+ No 
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The final settings are justified below. 

Input Justification 

Fleets A single fleet was used because models with separate landings and discard fleets 
were unlikely to converge. 

Selectivity Two selectivity blocks were used. For cod and haddock, fisheries selectivity is 
believed to have changed with the decline of the midwater gadoid fleet. This fleet 
did not catch much whiting and the reason for using more than one selectivity block 
is an apparent step-change in total mortality. 
The choice of selectivity blocks was based on patterns in the logratios of the catch 
numbers-at-age (cnaa) as well as estimated F patterns in XSA runs. The logratio 
patterns suggest a step change since the 1995 cohort, the F-patterns from the XSA 
suggested a change from 2000 onwards. The F-bar estimate was quite sensitive to 
the year range of the two selectivity blocks. 
The final choice was for the first selectivity block to run from 1980–1994 and the 
second block from 1995–2015. This choice was mainly based on residual patterns in 
the cnaa in early runs. 
The model tended to not converge if selectivity was estimated for more than two age 
classes. Therefore a single logistic models were used for both catch selectivity 
blocks. 

Catch All available age classes (age 0–6) were included. Note that ASAP treats the first age 
class (in this case age 0) as age 1. Therefore the outputs need to be offset by one age 
class. 

Index 
specification 

The two Northern Irish groundfish surveys (Q1 and Q4) were included (all available 
ages) as well as the NI MIK net survey. The UK beam trawl survey was not included 
because it is unlikely that this survey catches whiting in a quantitative way, 
considering their vertical distribution. The UK FSP survey was not included because 
it prevented the model to converge. 

Index 
selectivity 

Single logistic. The MIK net only catches one age class (age 0). 

Index CV 
and ESS 

The CVs for all years of the two NI groundfish indices were set to 0.3 (which is 
somewhat higher than the between-station variability of the survey in order to 
account for other variability like year effects.). The effective sample size for the 
proportions-at-age was set at 50 which was slightly lower than the number of 
stations in the survey. 
The CV for the MIK net was set to 0.5 

Fleet CV and 
ESS 

The CV for the catches (catch volume) was initially set at 0.2 for all years. 
The effective samples size for the proportions-at-age was set at 10 to reflect the small 
number of fish sampled for age from large portions of the catch. 

Recruitment 
deviations 

Lambda for recruitment deviations was set at 0.1 to allow unconstrained variation in 
recruitment. Note that this prevents some of the retrospective runs to converge. If 
future runs fail to converge Lambda can be set to 1 with a high CV to reduce the 
number of parameters. This appears to have very little impact on the stock trend or 
fit to catches. 

Diagnostic plots and Stock trends 

See Annex 6. 

6.3.3 Short-term forecast 

Model used: FLAssess::stf FLAssess::project 

Software used: R 
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wts.nyears: 3 (Number of years over which to calculate mean for *.wt, *.spwn, mat 
and m slots) 

fbar.nyrs: 3 (Number of years over which to calculate mean for harvest slot) 

Intermediate year assumptions:  recruitment = GM from 2000 onwards, excluding last 
year 

Stock–recruitment model used: none 

Procedures used for splitting projected catches: average proportions landings.n and 
discards.n last three years 

6.4 Reference points 

A full re-evaluation of reference points was carried out following the ICES Guidelines 
(ICES, 2016).  This analysis is detailed in Annex 7 and the resulting reference points 
are provided below. 

Whiting in Division 7.a. Reference points, values, and their technical basis. 

REFERENCE 

POINT VALUE TECHNICAL BASIS 

MSY Btrigger 16 300 t Bpa 

FMSY 
0.22 Median point estimates of EqSim with a combined S–R 

relationship 

Blim 10 000 t Below 10 000 recruitment is impaired. 

Bpa 
16 300 t Blim combined with the assessment error; Blim x exp(1.645 x σ); 

σ = 0.297 

Flim 0.37 F with 50% probability of SSB < Blim 

Fpa 
0.22 Flim combined with the assessment error; Flim x exp(-1.645 x 

σ); σ =  0.423 

SSBMGT Not applicable  

FMGT Not applicable  

6.5 Future research and data requirements 

Time-varying M 

The stock shows very strong changes in weights-at-age over time (they can change by 
a factor of up to 2). This is likely to affect the natural mortality. Further information to 
support this would be very useful for future benchmarks. 

Dome-shaped selectivity surveys 

There are very few data to inform the question whether survey catchability is flat-
topped or dome-shaped. At the moment the highly truncated age structure means 
that this makes little difference in the model outputs. However if the stock recovers 
and a greater number of older fish appear, then this will need to be revisited. 

FSP survey 

The FSP survey potentially has useful information on the older fish (although the 
survey is discontinued). Including the survey in the final assessment run resulted in 
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many of the retrospective runs to fail to converge. It appears therefore that it causes 
the model to be unstable and was omitted from the final run. For future benchmarks 
it may be useful to investigate why this survey makes the model unstable. 

6.6 Multispecies information: WKIrish4 

No specific issues identified. 
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7 Irish Sea plaice 

7.1 Issue list 

The following issues were identified prior to WKIrish: 

Discards 

• Raised estimates of discards are only available for the period from 2004 
onwards, but make up a substantial proportion of the catch (around 60–
70% by weight from Figure 5 in Fischer, 2017). 

Biological parameters 

• Review the estimates of M and maturity currently used in the assessment 
to ensure that they remain the best available. 

Assessment method 

• The current assessment method (AP; Aarts and Poos) estimates discard 
ogive at-age based on a spline. The model is currently configured with ze-
ro discards above age 5, but discard fractions above this age are substantial 
(Figure 1 in Fischer, 2017). The convergence of the AP model has been sen-
sitive to the optimiser used, which affects the scaling of the stock trajecto-
ry, and so the assessment has been accepted as a category 3 assessment 
(trends only). 

Recalculation of reference points 

• Currently there are proxy reference points. The adoption of a new assess-
ment method requires the estimation of reference points consistent with 
the model of the stock. 

7.2 Data 

7.2.1 Stock identity and migration 

No evidence was presented to WKIrish2 (2016) to revise the stock hypothesis, or pro-
vide information about migration. 

7.2.2 Life-history data 

WKIrish2 (2016) identified uncertainty about the rate of natural mortality, and pro-
vided guidance about possible sensitivity runs; investigating M in the range 0.12–0.2, 
and the effect of a Lorenzen age profile compared to constant across all ages. 

7.2.3 Other biological information 

There is considerable uncertainty about the survival rate of discarded fish. The con-
clusion of WKIrish2 was that a survival rate of around 40% may be suitable, but that 
sensitivities over the whole range 0–100% should be investigated. 

7.2.4 Fishery-dependent data 

The availability of landings and discards estimates, and the quality of these estimates 
was evaluated by WKIrish2 (2016). Methods for reconstructing discards prior to 2003 
are documented in Annex 4 of this report. 
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7.2.5 Fishery-independent data 

WKIrish2 (2016) noted that the maturity ogive assumed by the NI surveys differed 
from that used in the assessment, and recommended to investigate the impact of up-
dating the maturity ogives on the indices, and assessment. 

7.2.6 Environmental drivers and ecosystem impacts 

No relevant environmental drivers or ecosystem impacts were identified by 
WKIrish1 or WKIrish2 (2016). 

7.3 Assessment and forecast 

7.3.1 Assessment models and runs 

The model runs were performed using the R package ‘stockassessment’ (Nielsen et 
al., 2016) using the software and package specified in Table 7.1. In all the outputs 
from the model, Fbar and catch refer to that portion of the catch assumed to suffer 
mortality, i.e. all of the landings, and the proportion of the discards that does not sur-
vive. 

A baseline run of the model was performed using discards since 1981 reconstructed 
according to the medium discard scenario (Annex 4). Discard survival was set at 40%, 
and natural mortality followed a Lorenzen curve, scaled to 0.12. The updated SSB 
indices were used for the NI Q1 and Q4 survey. The model followed the default pa-
rameterisation provided in the package. The output from this model, and the diag-
nostics are shown in Figures 1–5. The UKBTS catchability (Figure 1) shows the 
expected decreasing selectivity by age. The catch and survey residuals (Figure 2) 
show an acceptable fit to the data, but there is evidence that the method of discard 
reconstruction at-age 1 reduces the residual variability compared to the data since 
2004. There is a trend in residuals in the catch plusgroup showing that in the second 
half of the assessment period, catches have been below the model expectations, sug-
gesting that there may be some model misspecification in this area. Figure 4 shows 
the retrospective pattern, when the same assessment is fitted to successively fewer 
years. In general the retrospective pattern is acceptable, as the future assessments 
remain within the confidence intervals of previous assessments, and there is little 
evidence of bias. The 2005 assessment was the assessment that seems most inaccurate 
in hindsight, this is likely to be due to a combination of the stock trajectory changing, 
and the limited amount of (unreconstructed) catch data included at that time. Figure 
5 shows the effect on the model output of including different combinations of survey 
data. The largest impact is the inclusion or exclusion of the UKBTS, which is con-
sistent with being the only age-based fisheries-independent data. The inclusion of the 
SSBQ1 survey has a slightly larger effect than the SSBQ4, but these changes are rela-
tively minor rescaling of the assessment. 

Sensitivities of the model to key assumptions were tested by running alternative 
models. These sensitivity runs are summarised in the table below. 
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MODEL NO NAME IN R SCRIPT PURPOSE DIFFERENCES FROM MODEL 1 

1 fit_b9 Baseline run  

2 fit_b9_app1 Sensitivity to 
discards 
reconstruction 

Discards numbers-at-age from the high 
discards scenario (discards review working 
document) 

3 fit_b9_app2 Discards numbers-at-age from the low 
discards scenario (discards review working 
document) 

4 fit_list[[1]] Sensitivity to 
discards survival 
(model 1 assumes 
40% survival) 

Discard survival 0% at all ages 

5 fit_list[[2]] Discard survival 20% at all ages 

6 fit_list[[4]] Discard survival 60% at all ages 

7 fit_list[[5]] Discard survival 80% at all ages 

8 fit_list[[6]] Discard survival 100% at all ages 

9 fit_m1 Sensitivity to 
natural mortality 

M=0.12 for all ages 

10 fit_m2 M=0.2 for all ages 

11 fit_m3 Lorenzen M scaled to 0.2 across ages 3–6 

12 fit_surv_old Sensitivity to 
change in NI survey 
maturity 

NI SSB survey indices calculated as in 
WGCSE (2016) 

13 fit_b9 Sensitivity to 
assumptions about 
F random walks in 
model 

SAM configured so that random walks in F 
at-age were uncorrelated. 

14 fit_b9_1964 Sensitivity of 
assessement to 
length of catch data 

Catch-at-age data (reconstructed) was 
extended back to 1964 

15 fit_b9_1997 Catch-at-age data (reconstructed) was 
truncated to 1997. 
Convergence failed 

The largest effect on model outputs was related to methods of discard estimation, 
shown in Figure 5. The low and medium discards reconstruction methods show a 
broadly similar trend, albeit rescaled to reflect that a larger catch would have re-
quired a larger stock to sustain it while following the same trajectory. The high dis-
card scenario implies high recruitment in the 1980s, and a strong growth in SSB in the 
most recent years. There is no evidence available to the working group to support (or 
refute) the high early recruitment, and the recent recruitment is growing more rapid-
ly that the survey indices, so this scenario may imply greater productivity of the stock 
than is supported by evidence. 

The effect of different assumptions about discard survival is shown in Figure 7.6. This 
is implemented by modifying the catch data before they are supplied to the SAM 
model, by reducing the discards-at-age by the discard survival rate. As a conse-
quence, the model outputs relate only to the portion of the catch that does not sur-
vive, hence the scaling evident on the catch data, catch fit and Fbar estimates. 
WKIrish2 (2016) acknowledged significant uncertainty about the survival rate, and 
suggested a most likely value of 40%, but to test sensitivity to all values (0–100%). 
The model output in Figure 7.6 shows that the recruitment trends and SSB estimates 
have a very low sensitivity to survival rate, except in the case that survival is 100%. 
This seems to be caused by the reduction in cohort signals, and hence increase in pro-
cess error, at ages 1–3 which are mostly discarded. The consequence is that recruit-
ment year-class strengths are poorly estimated. 
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WKIrish2 (2016) noted that there is considerable uncertainty about the rate of natural 
mortality, and that the only data specific to this stock (Siddeek, 1981) may not reflect 
current rates within the stock. Four scenarios are shown in Figure 7, based on M val-
ues of 0.12 and 0.2 either flat across all ages, or used to scale a Lorenzen relationship 
scaled to these values across the Fbar ages (3–6). The choice of a Lorenzen relationship 
over a flat relationship makes little difference to the model outputs, and the higher M 
leads to a higher recruitment and SSB, but following very similar trends. 

The data compilation workshop noted that the maturity ogive used for assessment 
was not the same as the maturity ogive used to estimate SSB from the length-based 
data collected during the NI surveys. The ogive used in the surveys was modified to 
be consistent with the assessment assumption. The resulting effect on the model is 
shown in Figure 8, and is very minor. 

Figure 9 shows the impact of alternative assumptions about the correlation in the 
random walk deviations used to model fishing mortality (F) at-age. The effect of re-
moving the correlation is that estimates of the stock trajectory become smoother, and 
a slightly larger stock is estimated. 

As well as the baseline run starting in 1981, assessments were tried starting in 1964, 
and 1997, all using the same method of discard reconstruction. The shorter time-
series failed to converge, and the model predictions (Figure 7.10) were insensitive to 
the inclusion of a longer time-series. 

7.3.2 Final assessment model run 

Describe the model configuration and justify the choice of settings 

The largest sensitivity of the model output was to assumptions about discards. The 
medium discards scenario, and a survival rate of 60% incorporate the best available 
data, notwithstanding that the stock size is estimated to be considerably below the 
AEPM method of estimating stock size (Figure 7.11). The model run was insensitive 
to inclusion of catch data prior to 1981, but the quality of these data is lower because 
of a lack of data on discarding practices, and so the stock trajectory in the early period 
is speculative, and should not be included. 

Decisions about the maturity used by the SSB surveys and the natural mortality had a 
smaller impact on the assessment than the catch data. Consideration of the impact of 
these values on multispecies models led to using the Lorenzen M scaled to 0.12, and 
the most recent maturity ogive for the survey. The choice of M reflected that the val-
ue had been estimated specifically for this stock, and that biological principles sup-
ported the higher rates of mortality in young fish. 

The benchmark discussed the configuration of the model to include correlation in the 
random walks between F at-age, and accepted that in the absence of any convincing 
difference in the diagnostics, correlation seemed more plausible than independence. 

These considerations lead to model 1, the baseline run, being preferred by the 
benchmark, using the configuration outlined in Table 7.2. 
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TYPE NAME  YEAR RANGE AGE RANGE 
VARIABLE FROM 

YEAR TO YEAR? 

Caton Catch in tonnes 1981–present All Yes 

Canum Catch-at-age in 
numbers 

1981–present 1–8+ Yes 

Weca Weight-at-age in 
the commercial 
catch 

1981–present 1–8+ Yes 

West Weight-at-age of 
the spawning 
stock at spawning 
time. 

1981–present 1–8+ Yes 

Mprop Proportion of 
natural mortality 
before spawning 

All All No 

Fprop Proportion of 
fishing mortality 
before spawning 

1981–present 1–8+ No 

Matprop Proportion mature 
at-age 

1981–present 1–8+ No 

Natmor Natural mortality 1981–present 1–8+ No 

7.3.3 Short-term forecast 

Model used: FLR projection 

Software used: FLR projection 

Initial stock size: Taken from last year of assessment 

Maturity: The constant maturity ogive used in the assessment 

F and M before spawning: 0 

Weight-at-age in the stock: Average of the last three years’ catch weights-at-age 

Weight-at-age in the catch: Average of the last three years’ catch weights-at-age 

Exploitation pattern: Average of the last three years’ selectivity 

Intermediate year assumptions:  average F from last three years 

Stock–recruitment model used: Geometric mean recruitment 

Procedures used for splitting projected catches: Split according to average landings 
fractions at-age from last ten years. Discard numbers multiplied by 5/3 to account for 
discard survival. Total catch is sum of three components: landings, discards assumed 
to die, and discards assumed to survive. 

7.4 Reference points 

Precautionary and MSY reference points were updated according to the technical 
guidance provided by ACOM. Detailed application to this stock is shown in Annex 5. 
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 TYPE VALUE TECHNICAL BASIS 

MSY MSY Btrigger 10 400 t Lower 5%ile of current biomass 

Approach FMSY 0.154 Stochastic simulations with segmented regression from 
entire time-series (1981–2015). 

 Blim 4200 t Median breakpoint of stochastic fitting of segmented 
regression stock–recruit function 

Precautionary Bpa 7900 t SSB cv taken from model outputs (0.38)  

Approach Flim 0.48 F that gives average SSB of Blim with no assessment 
error. 

 Fpa 0.25 F cv taken from model outputs (0.40) 

7.5 Future research and data requirements 

The issues that remain outstanding from the stock issue list are: 

• Incorporating data on changes in maturity and natural mortality over time, 
linked to the decreasing in weights-at-age observed in survey data. 

• Incorporate information about the differences in growth and maturity be-
tween the east and west sides of the Irish Sea, and by sex. 

• Creating age-based indices for the NI groundfish surveys. 

7.6 Multispecies information: WKIrish4 

None identified. 

References 

Armstrong, M., Aldridge, J., Beggs, S., Goodsir, F., Greenwood, L., Maxwell, D., Milligan, S., 
Praël, A., Roslyn, S., Taylor, N., Walton, A., Warren, E. and Witthames, P. 2012. Egg pro-
duction survey estimates of spawning–stock biomass of cod, haddock and plaice in the 
Irish Sea: 1995, 2000, 2006, 2008 and 2010. Working Document to ICES WKROUND, Feb-
ruary 2012. (Copy on WKIrish3 SharePoint). 

Fischer, S. 2017. Stock assessment input data including discards for Irish Sea plaice (ple-iris, 
plaice 7a). Working document for ICES WKIrish (2017). 

Anders Nielsen, Casper Berg, Kasper Kristensen, Mollie Brooks and Christoffer Moesgaard 
Albertsen. 2016. Stock assessment: State–Space Assessment Model. R package version 
0.0.5. https://github.com/fishfollower/SAM . 

ICES. 2015. Report of the Benchmark Workshop on sharing information on the Irish Sea ecosys-
tem, stock assessments and fisheries issues, and scoping needs for assessment and man-
agement advice (WKIrish1), 14–15 September 2015, Dublin, Ireland. ICES CM 
2015/BSG:01. 37 pp. 

ICES. 2016. Report of the Second workshop on the impact of ecosystem and environmental 
drivers on Irish Sea fisheries management (WKIrish2), AFBI in Belfast, UK, 26–29 Septem-
ber 2016. ICES CM 2016/2/BSG02. 

https://github.com/fishfollower/SAM


94  | ICES WKIrish3 REPORT 2017 

 

Table 7.1. Plaice in 7.a. Details of the software used. 

R version 3.3.0 (2016-05-03) 
Platform: i386-w64-mingw32/i386 (32-bit) 
Running under: Windows 7 x64 (build 7601) Service Pack 1 
 
Package: stockassessment 
Title: State-Space Assessment Model 
Version: 0.0.5 
Date: 2016-11-23 
Authors@R: c(person("Anders","Nielsen",role=c("aut","cre"), 
email="an@aqua.dtu.dk"), 
             person("Casper","Berg",role="aut"), 
person("Kasper","Kristensen",role="aut"), person("Mollie", 
             "Brooks", role="aut"), person(c("Christoffer","Moesgaard"), 
"Albertsen", role="aut")) 
Description: Fitting SAM... 
License: GPL-2 
Imports: TMB 
LinkingTo: TMB, RcppEigen 
Suggests: knitr, testthat 
VignetteBuilder: knitr 
URL: https://github.com/fishfollower/SAM 
LazyData: TRUE 
BugReports: https://github.com/fishfollower/SAM/issues 
Author: Anders Nielsen [aut, cre], Casper Berg [aut], Kasper Kristensen [aut], 
Mollie Brooks [aut], Christoffer 
             Moesgaard Albertsen [aut] 
Maintainer: Anders Nielsen <an@aqua.dtu.dk> 
Built: R 3.3.2; x86_64-w64-mingw32; 2017-01-04 11:02:33 UTC; windows 
RemoteType: github 
RemoteHost: https://api.github.com 
RemoteRepo: SAM 
RemoteUsername: fishfollower 
RemoteRef: mack 
RemoteSha: 3115cd5eee77e316a48d308b269c22b0a47077d2 
RemoteSubdir: stockassessment 
GithubRepo: SAM 
GithubUsername: fishfollower 
GithubRef: mack 
GithubSHA1: 3115cd5eee77e316a48d308b269c22b0a47077d2 

GithubSubdir: stockassessment 
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Table 7.2. Plaice in 7.a. Parameters for the model 1 run used as baseline and preferred model. 

PARAMETER VALUE 

minAge, maxAge, maxAgePlusGroup  1 8 1 

keyLogFsta 

 

 0    1    2    3    4    5    6    6 
-1   -1   -1   -1   -1   -1   -1   -1 
-1   -1   -1   -1   -1   -1   -1   -1 
-1   -1   -1   -1   -1   -1   -1   -1 

CorFlag 2 
keyLogFpar -1   -1   -1   -1   -1   -1   -1   -1 

 0    1    2    3    4    5    6   -1 
 7   -1   -1   -1   -1   -1   -1   -1 
 8   -1   -1   -1   -1   -1   -1   -1 

KeyQpow -1   -1   -1   -1   -1   -1   -1   -1 
-1   -1   -1   -1   -1   -1   -1   -1 
-1   -1   -1   -1   -1   -1   -1   -1 
-1   -1   -1   -1   -1   -1   -1   -1 

KeyVarF 0    0    0    0    0    0    0    0 
-1   -1   -1   -1   -1   -1   -1   -1 
-1   -1   -1   -1   -1   -1   -1   -1 
-1   -1   -1   -1   -1   -1   -1   -1 

keyVarLogN 0 1 1 1 1 1 1 1 
KeyVarObs 0    0    0    0    0    0    0    0 

1    1    1    1    1    1    1   -1 
2   -1   -1   -1   -1   -1   -1   -1 
3   -1   -1   -1   -1   -1   -1   -1 

obsCorStruct ID ID ID ID 
KeyVarObs NA  NA  NA  NA  NA  NA  NA 

NA  NA  NA  NA  NA  NA  -1 
NA  -1  -1  -1  -1  -1  -1 
NA  -1  -1  -1  -1  -1  -1 
 

stockRecruitmentModelCode 0 
noScaledYears 0 
keyScaledYears numeric(0) 
keyParScaledYA <0 x 0 matrix> 
FbarRange 3 6 
obsLikelihoodFlag LN LN LN LN 
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Figure 7.1. Plaice in 7.a. Baseline model estimates of survey selectivity for the UK Quarter 3 beam 
trawl survey and the NI Quarter 1 and Quarter 4 surveys. 

 

Figure 7.2. Plaice in 7.a. Landings and discards partial fishing mortality estimated by the baseline 
model. 
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Figure 7.3. Plaice in 7.a. Residuals in fits to catch and survey data from the baseline model. 

 

Figure 7.4. Plaice in 7.a. Retrospective assessments for years 2005–2015 from the baseline model. 
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Figure 7.5. Plaice in 7.a. Effect of using different combinations of surveys. 

 

Figure 7.6. Plaice in 7.a. Impact of alternative methods of discard reconstruction on key model 
outputs. 
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Figure 7.7. Plaice in 7.a. Impact of alternative discard survival rates on key model outputs. Note 
that Catch and Fbar refer to the portion of the catch which does not survive. 

 

Figure 7.8. Plaice in 7.a. Impact of alternative natural mortality assumptions on key model out-
puts. 
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Figure 7.9. Plaice in 7.a. Impact of alternative survey maturity ogives assumptions on key model 
outputs. 

 

Figure 7.10. Plaice in 7.a. Impact of alternative F random walk assumptions on key model outputs. 
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Figure 7.11. Plaice in 7.a. Impact of assessment length on key model outputs. 

 

Figure 7.12. Plaice in 7.a. Comparison of the baseline model with the previous model used by 
WGCSE and the annual egg production method estimates (Armstrong et al., 2012). 
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conclusions
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Present work done 
and final 
conclusions
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Recommendations, 
stock annex and 
report
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stocks

Present work done 
and final 
conclusions

Reference points
Recommendations, 
stock annex and 
report

plenary
subgroups  
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Annex 3: Radiocarbon (14C) activities in gadoid Otoliths 

Stella Heymans (SAMS) presented work on 14C activities in gadoid otoliths that could 
be used to help inform on migration and stock boundaries. 

WKIrish3 would support a proposal for the use the Sellafield 14C signal to investigate 
the possibility of southward migration of gadoids, such as cod and whiting from the 
Irish Sea to the Celtic Sea. Initial studies performed by SAMS/SUERC have shown 
that the signal in 14C between the Irish Sea and the Celtic Sea are substantially differ-
ent, and if it was possible to use this signal either for stock movement or individual 
movement (via age rings in the otoliths), it would improve our understanding of spe-
cifically the whiting stocks in the Irish Sea and their possible movement to the Celtic 
Sea. 

In the UK, the Sellafield nuclear fuel reprocessing facility is authorised to discharge 
waste 14C to the marine environment. Low-level radioactive effluent containing 14C is 
discharged via pipelines that extend 2.1 km offshore into the Irish Sea. 14C is released 
primarily as inorganic carbon and is incorporated into the dissolved inorganic carbon 
(DIC) component of seawater (Begg et al., 1991; 1992; Begg, 1992; Cook et al., 1995). 
>99% of Sellafield 14C dispersed through the North Channel (Gulliver et al., 2001). 

Sellafield 14C discharges are made in addition to existing “background” inputs of 14C 
from natural production and fallout from atmospheric testing of nuclear weapons in 
the 1950s and early 1960s. The background activities range from 248 ± 1.0 Bq kg–1 C in 
1995 (Cook et al., 1998) to 249 ± 0.8 Bq kg–1 C for 2014 (Tierney et al., 2016a). Any 14C 
activities which are higher than these background activities in UK waters can be de-
fined as enriched and the only significant source of additional 14C to waters on the 
UK west coast is Sellafield. 

14C enters the marine foodweb via the efficient uptake of soluble 14C in DIC during 
photosynthesis by primary producing organisms, mainly phytoplankton (Muir et al., 
2017; Tierney et al., 2017). Enriched 14C activities have been found in a range of ma-
rine species occupying the lowest (phytoplankton) to middle-upper (e.g. piscivorous 
fish) trophic levels in the Irish Sea (Muir et al., 2017) and West of Scotland (Tierney et 
al., 2017) marine environments. The uptake of Sellafield-derived 14C in carbonate 
producing organisms, specifically molluscs, has also been investigated (Cook et al., 
2004; Muir et al., 2015; Tierney et al., 2016). Similarly to 14C uptake by molluscs, fish 
will produce otoliths with a 14C signature representative of the environment it inhab-
its. In UK waters, the Irish Sea has the highest 14C activity. Net northerly dispersion 
has resulted in enriched activities being found in the West of Scotland and lower, 
closer to background, activities are expected in the Celtic Sea. 

In the first instance, a small number of cod otoliths (twelve) were analysed for 14C 
activity to investigate differences in 14C activity in these different UK coastal areas 
and to consider the possible migration of immature Irish Sea cod to other areas. The 
results are shown in Table 1. Irish Sea otolith 14C activity was highest. The east basin 
was more variable with proximity to the pipelines affecting activity. The sample with 
the highest activity (802 ± 3 Bq kg–1 C) comes from an individual caught due west of 
Sellafield, the other two samples (413 ± 2 and 349 ± 2 Bq kg–1 C) come from fish 
caught further south. The large difference in 14C activity suggests that these immature 
fish had not moved any real distance by this stage of their lives. The west basin ap-
pears to be more consistent (415–422 Bq kg–1 C), which is expected due to dilution 
and subsequent dispersion of discharged 14C. These activities are comparable to pub-
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lished 14C activities for Irish Sea shells and organisms (Cook et al., 1998; 2004; Muir et 
al., 2015; 2017; Tierney et al., 2016). 

Two of the West of Scotland otolith samples come from fish caught relatively far 
north and therefore have enriched activities which are only slightly above back-
ground (252 ± 1 and 256 ± 1 Bq kg–1 C). The third West of Scotland otolith has a higher 
activity (265 ± 1 Bq kg–1 C) and is comparable to activities measured in West of Scot-
land shells and organisms (Tierney et al., 2016; Tierney et al., 2017). 

The Celtic Sea activities are higher than would be expected and warrant further in-
vestigation. The activities measured indicate that either 14C is being transported 
southwards through the St Georges Channel, which is unlikely based on previous 
studies (Cook et al., 1998; Gulliver et al., 2001). The alternative is that these cod have 
spent a period of time in the Irish Sea. Thus we can use the 14C signal to investigate 
the possibility of southward migration of gadoids, such as cod and whiting from the 
Irish Sea. To undertake this study we would need to measure 14C from otoliths ob-
tained in both the Irish and Celtic seas and ambient seawater for DIC 14C activity. 
Larger otoliths could also be used to address an individual’s movement through 
time; i.e. higher activities in the Irish Sea vs. lower activities in the Celtic Sea. 

Table 1. 14C activities in cod otoliths. 

YEAR AREA LATITUDE LONGITUDE 
OTOLITH 

WEIGHT (MG) 

OTOLITH 14C 

ACTIVITY 
(BQ KG–1 C) 

2005 Irish Sea E 54.330 -3.924 71.5 802 ± 3 

2005 Irish Sea E 53.515 -4.235 44.7 413 ± 2 

2005 Irish Sea E 52.558 -6.040 156.0 349 ± 2 

2005 Irish Sea W 54.117 -5.532 41.3 415 ± 2 

2005 Irish Sea W 53.958 -5.692 41.6 426 ± 2 

2005 Irish Sea W 53.583 -5.899 31.9 422 ± 2 

2010 W Scotland 55.767 -9.081 1210.0 265 ± 1 

2010 W Scotland 58.795 -6.215 7340.0 252 ± 1 

2010 W Scotland 58.134 -6.127 3338.0 256 ± 1 

2010 N Celtic Sea 51.460 -8.505 117.0 273 ± 1 

2010 N Celtic Sea 51.590 -7.464 166.0 292 ± 2 

2010 N Celtic Sea 51.348 -8.108 148.0 273 ± 1 
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Annex 4: Reconstructing Irish Sea plaice discard numbers 

Tim Earl, Simon Fischer and Mike Armstrong 

9 February 2017 

Introduction 

WKIrish2 (ICES, 2016a) and WKFLAT (ICES, 2011) identified the importance of mod-
elling discards within this stock because of the large proportion of the catch that is 
currently discarded; in the period 2011–2015 66% of catch by weight was discarded 
(ICES, 2016b). Discards have been routinely sampled since 2004 by UK, Ireland and 
Belgium to provide raised estimates of discard numbers-at-age, but there is limited 
data on discard levels before 2004. WKIrish2 identified the following sources of data: 

• Discard numbers-at-age since 2004 (shown as proportions in Figure A1); 
• Discard numbers-at-length since 2004 (Figures A2–A4); 
• UK beam trawl survey data showing changing length-at-age since 1993 

(Figure A5); 
• Legislation setting a minimum landing size (MLS) of 250 mm in 1981 

(Council Regulation (EEC) No 2527/80) and 270 mm in 1998 (Council 
Regulation (EEC) No 850/98); 

• A report showing numbers discarded and retained by length and age for a 
set of UK (England) vessels sampled in 1993 during a selectivity investiga-
tion in the eastern Irish Sea during the period when the MLS was 250 mm 
(Emberton et al., 1995); 

• A report giving observer data from 1998/1999 (Commission 2002) showing 
overall discard rates of 69–83% by number in 1999 and 2000 for UK 
(Northern Ireland) single and multiple rig Nephrops trawlers, and 91–100% 
for UK(NI) midwater trawlers. 

Observer data from 2004–2006 are based on relatively few trips with data on plaice 
(Figure A6). 

From these data sources the following conclusions can be drawn: 

• A large proportion of the discards occur below the minimum landing size, 
and this was still true when the minimum landing size was 250 mm based 
on a single study. 

• The growth rate of plaice in the Irish Sea has been declining over time, so 
constant selectivity and discarding ogive by length will have led to an in-
creasing trend in discard rates at-age. 

• Discards have made up a substantial proportion of the catch during the 
time period back to the early 1990s for which reports exist, although the 
rates decline going back in time due to the changes in growth and MLS. 
No direct evidence of discard rates prior to the early 1990s was available to 
WKIrish. 
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Scenarios 

Three possible scenarios are investigated as potential discard reconstructions to be 
used in stock assessment models: 

• Low discards: The decline in discard fractions at-age between 2008 and 
2004 is extrapolated backwards to a point where the fraction is zero. No 
discarding occurred before that. 

• Medium discards: The method is described in more detail below. It creates 
a discard time-series that is consistent with the key conclusions drawn 
from the historical data. 

• High discards: The discard fractions at-age between 2008 and 2004 are as-
sumed to be typical of the entire period. WKIrish3 noted that it was sensi-
tive to the reference period (i.e. changing 2008–2004 to 2009–2005 increased 
catches in some years by around 70%) 

The high and low discards scenarios do not fit well with the key conclusions drawn 
from the review of discards, and are treated as upper and lower bounds that can be 
used in sensitivity testing the assessment model. The low discards option requires an 
extrapolation of a trend that is heavily driven by 2004–2006 data which are based on 
relatively few observer trips (Figure A6) and is likely to be extremely inaccurate, as 
well as invoking an implausible assumption of zero discarding in earlier years. The 
medium discards scenario will be taken forward as a potential input to the assess-
ment used for management. 

Medium discards reconstruction method 

The intention of this method was to derive historical discards numbers using a meth-
od that is data-driven as far as possible, although some important assumptions are 
required. The data sources available suggest a strong relationship across age groups 
between mean size-at-age and the fraction of the catch that is discarded. Data on 
length-at-age distributions of landings were not available for the entire time-series, 
and so landings weights-at-age are used as a proxy. These landings data have high 
variability between years, and so a lowess smoother (with smoothing span 0.15 cho-
sen by eye) was fitted to remove the intra-annual variability, while retaining infor-
mation about the longer term trends. The fit of the smoother is shown in Figure 1 and 
a comparison of the trends across all year is shown in Figure 2. 

A plot of the relationship between the smoothed landings weights and discard frac-
tions at-age based on the observer data from 2004 onwards is shown in Figure 3. Each 
point represents a combination of age and year, colour indicates ages 1:8+. Existing 
data show little or no retention of fish below the MLS (Commission 2002; Appendix 
Figures A2–A4), but some discarding above the MLS. The line plotted in Figure 3 
therefore indicates a lower bound on discards (fitted by eye rather than a best fit) to 
capture the discarding due only to the MLS and not influenced by other factors (e.g. 
economic) that may have been responsible for higher rates of discarding in each age 
class in recent years. This means that the discard fractions estimated from this rela-
tionship are likely to be an underestimate of the discard fractions. 

Prior to 1998, the MLS was 250 mm, rather than 270 mm. Using the length–weight 
relationship used by the NI survey (a=8E-6, b=3.0572) the change in length would 
equate to a change in weight of 40 g, and so prior to 1998 the logistic fit was shifted to 
the left by this amount. 
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The relationships between smoothed landings weights and discard fraction was used 
to estimate the discard fraction prior to 2004, and the estimated proportions are 
shown in Figure 4. For ages 3–8+, discard numbers prior to 2004 are estimated by 
raising the landings numbers by the discard fraction. The discard fractions at-ages 1 
and 2 exceed 90% at some points prior to the start of discards data, implying a raising 
factor of at least ten times would be applied to landings to estimate discards. In years 
with zero landings at these ages, no figure for discards can be obtained. These factors 
would substantially amplify the errors in landings estimation, and create very noisy 
estimate of discard numbers (and hence catch numbers) at these youngest ages, and 
so an alternative approach is needed to estimate discard numbers at these ages. 

 

Figure 1. Plaice 7.a. Landings weight-at-age (red) and a lowess smoother (blue) fitted to the data. 
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Figure 2. Plaice 7.a. Smoothed landings weight-at-age. Note that in some years there were no 
samples of age 1 fish in the landings, which is indicated by the breaks in this line. 

 

Figure 3. Plaice 7.a. Relationship between smoothed landings weights and proportion discarded, 
showing a logistic function fitted as a lower bound (black line). 
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Figure 4. Plaice 7.a. Discard fraction in numbers by age. 2004–2015 based on data from WGCSE. 
Fractions prior to 2004 based on relationship with smoothed landings weights as described in the 
text. 

An alternative approach to estimating discards for ages 1 and 2 

An alternative approach to estimating discards at-ages 1 and 2 is to assume that there 
will be a cohort effect that is a large number of discards at-age 1 in one year, would 
be associated with a large number of discards at-age 2 in the subsequent year. There-
fore, we fit the following linear models to the period for which discards data exist: 

 

for  

where  is the number of discards at-age in a given year 

 is the fraction (n) of the catch that is discarded at-age in a given year. 

These models are used to predict age 2 and age 1 catch numbers from age 3 catch 
numbers (raised from landings using the weight-varying landings factors). The dis-
card fractions estimated by this method for the medium discard scenario are shown 
in Figure 5. This method was also applied to the high and low discard scenarios. 

The calculated proportions discarded at-age in Figure 5 are compared below with 
values derived from a crude visual inspection of the proportions discarded in the 
Emberton et al. (1995) report, as presented in the Commission (2002) report. Given 
that the Emberton study covered only part of the fleet, the estimates from Figure 5 at-
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ages 1–3 are not completely out of line with Emberton, though are much lower at-
ages 4 and 5. 

Source 

% discarded at age 

Age 1 Age 2 Age 3 Age 4 Age 5 

Present study (Figure 5) 
estimates for 1993 

94% 78% 51% 21% 6% 

Emberton et al., 1995/ 
Commission 2012 

~100% 60–80% 50–65% 40–50% 20–40% 

 

Figure 5. Plaice 7.a. Discard fraction in numbers by age. 2004–2015 based on data from WGCSE. 
Fractions prior to 2004 based on relationship with smoothed landings weights as described in the 
text, with alternative approach for ages 1 and 2. 

Reconstructed time-series 

Figures 6–8 show the total weight of discards implied by each of the three discard 
scenarios, low, medium and high respectively. 

Given the lack of information about the MLS prior to 1981, or any survey data to in-
dicate if changes in mean weight-at-age in landings are related to changes in discard-
ing ogives rather than growth, it is recommended to use data from 1981–present for 
the baseline stock assessment run, and consider the inclusion of the earlier period as a 
sensitivity run. 
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Figure 6. Plaice 7.a. Discards reconstruction from the low discards scenario (green), compared to 
discards data (red) and landings data (blue). 

 

Figure 7. Plaice 7.a. Discards reconstruction from the medium discards scenario (green), compared 
to discards data (red) and landings data (blue). 
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Figure 8. Plaice 7.a. Discards reconstruction from the high discards scenario (green), compared to 
discards data (red) and landings data (blue). 

Conclusion 

The medium discards scenario for the period 1980–2015 provides a discards dataset 
that can be used in a stock assessment for catch advice. Additional sensitivity runs 
should look at the effect of including a longer time-series (back to 1964) or the 
high/low discards scenario. 
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Appendix 

 

Figure A1. Plaice 7.a. Discard fractions by age from the period 2004–present based on WGCSE 
(ICES, 2016) data. 
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Figure A2. Plaice 7.a. Length distributions of discarded and retained catches from UK(E&W). 
Source: ICES (2016). 
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Figure A3. Plaice 7.a. Length distributions of discarded and retained catches from Ireland. Source: 
ICES (2016). 
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Figure A4. Plaice 7.a. Length distributions of discarded and retained catches from Belgium. 
Source: ICES (2016). 
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Figure A5. Plaice 7.a. Length-at-age over time from the UKBTS, broken down by sex and area 
within the Irish Sea. Source: ICES (2016). 
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Figure A6. Plaice 7.a. Numbers of observer trips in the Irish Sea, by country and gear since 2004, 
where plaice were recorded (Ireland is all trips; OTB: bottom otter trawl). 
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Figure A6. Plaice in 7.a. Catch-at-age distributions for beam trawl, otter trawl, Nephrops trawl 
and anchor seine gear types for plaice in the Irish Sea between October 1993 and August 1994, 
sampled as part of the Emberton et al. (1995) study but as given in the Commission (2002) report 
(presumably through reworking of the data by SeaFish). 
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Annex 5: Plaice in 7.a reference points 

Read in assessment outputs 

library(msy)  

library(icesAdvice)  

library(FLCore)  

withr::with_libpaths(new = paste0(.libPaths(), 
"/../library2"),  

                     library("stockassessment"))  

path <- "C:/Ple7a Benchmark/Models/SAM/"  

  

load(paste0(path, "SAM/fit_b9.rdata"))           ## Model fit  

load(paste0(path, "da-
ta/new_stocks/ple7a_dis_app5_1981.RData"))   ## Input Ple7a  

  

SAM_to_FLStock <- function(stock_object, ### FLStock object  

                           SAM_object ### SAM object  

){  

  ### enter stock numbers estimations  

  stock.n(stock_object)[] <- exp(SAM_object$pl$logN)  

    

  ### get ages available in F@age estimations  

  ### (neccessary because of possible linked F patterns at 
age)  

  ages <- SAM_object$conf$keyLogFsta[1, ] + 1  

  ### enter F estimations  

  harvest(stock_object)[] <- exp(SAM_object$pl$logF)[ages, ]  

    

  return(stock_object)  

    

}  

ple7a_proj <- SAM_to_FLStock(stock,fit_b9)  

plot(rec(ple7a_proj),type='l')  

Figure 13. Plaice in 7.a. Recruitment time-series. 
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Finding Blim 

Plot stock–recruit data to determine the stock–recruit relationship type. 

##Find Blim by using eqsr_fit to estimate breakpoint  

FIT <- eqsr_fit(ple7a_proj,  

                nsamp = 1000,   

                models = c("Segreg"))  

  

  

eqsr_plot(FIT,n=2e4)  

Figure 14. Plaice in 7.a. Stock–recruit relationship, showing stochastic fits of segmented regres-
sion form. 

It doesn’t seem clear at this point whether the form best fits in ICES Type 2 (Stocks 
with a wide dynamic range of SSB, and evidence that recruitment is or has been im-
paired.) or Type 5 (Stocks showing no evidence of impaired recruitment…). Type 2 
implies Blim would be the breakpoint, Type 5 implies lowest SSB. Choosing the break-
point, as slightly more precautionary, but it doesn’t make a difference in the end. 

bp <- median(FIT$sr.sto[,2]) ##median breakpoint  

bp    

## [1] 4209.485  

Blim <- bp  

Calculating Flim from Blim 

ICES advice suggests a Beverton–Holt relationship as a preferred form for Type 2, 
and segmented regression for Type 5, so plot these and see what the relative 
weighting shows. 

FIT2 <- eqsr_fit(ple7a_proj,  

                 nsamp = 1000,   

                 models = c("Segreg", "Bevholt"))     

#Combination of approaches for Types 2 and 5  

eqsr_plot(FIT2,n=2e4)  

Figure 15. Plaice in 7.a. Stock–recruit fits using segmented regression and Beverton–Holt stock–
recruit forms. 

This plot highlights a problem, although the forms are equally likely from the data, 
the Beverton–Holt has the undesirable property of assuming that recruits remain 
high at very low stock sizes. In practice, forward projections are unlikely to use this 
part of the curve much, but to avoid overestimating recruitment, only the segmented 
regression will be used going forward. 

Find Flim by looking for the F that gives a median SSB of Blim assuming no assessment 
error, see Page 10 of guidance, approach a). 

#Find Flim by looking for the F that gives a median SSB of 
Blim  
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#Page 10 of guidance, approach a)  

  

SIM0 <- eqsim_run(FIT, #for finding Flim  

                 bio.years = c(2006:2015),  

                 sel.years = c(2006:2015),  

                 Fcv=0, ##  

                 Fphi=0, ##Default from WKMSYREF4  

                 Blim=Blim,   

                 Bpa=Bpa,   

                 Fscan = seq(0,1.2,len=40),  

                 verbose=FALSE,  

                 extreme.trim=c(0.05,0.95),  

                 Btrigger=0)  

  

eqsim_plot_range(SIM0, type="ssb")  

Figure 16. Plaice in 7.a. Relationship between Median SSB and F assuming no assessment error. 

Reading across from our Blim gives: 

Flim <- approx(SIM0$rbp[SIM0$rbp$variable=="Spawning–stock bio-
mass","p50"],  

               SIM0$rbp[SIM0$rbp$variable=="Spawning-stock bio-
mass","Ftarget"],  

               Blim)$y  

Flim  

## [1] 0.4821977  

Fpa and Bpa 

Using the CVs from the assessment outputs, we can calculate the PA reference points. 

SSBcv <- 
mean(ssbtable(fit_b9)["2015",3]/ssbtable(fit_b9)["2015",1]-1)  

SSBcv  

## [1] 0.383187  

Bpa <- Bpa(Blim, SSBcv)  

Bpa  

## [1] 7906.481  

Fcv <- 
mean(fbartable(fit_b9)["2015",3]/fbartable(fit_b9)["2015",1]-
1)  

Fcv  

## [1] 0.3950325  
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Calculating FMSY, step 1 

Step 1, from page 13 of guidance, FMSY without Btrigger 

SIM1 <- eqsim_run(FIT,  

                  bio.years = c(2006:2015),  

                  sel.years = c(2006:2015),  

                  Fcv=Fcv,   

                  Fphi=0.423, ##Default from WKMSYREF4  

                  Blim=Blim,  

                  Bpa=Bpa,  

                  Fscan = seq(0,1.2,len=40),  

                  verbose=FALSE,  

                  Btrigger=0,  

                  extreme.trim=c(0.05,0.95))  

  

  

Fmsy.notrig <- SIM1$Refs2["lanF","meanMSY"]  

Fmsy.notrig   

## [1] 0.1538462  

Fmsy.notrig < Fpa  #True, so MSY consistent with PA  

## [1] TRUE   

eqsim_plot(SIM1,catch=TRUE)  

  

eqsim_plot_range(SIM1, type="median")  

  

eqsim_plot_range(SIM1, type="ssb")  

So FMSY with no trigger is 0.154, and this is consistent with the precautionary ap-
proach. 

Calculating FMSY, step 2 

Step 2, from page 13 of guidance, select MSY Btrigger. 

fbar(ple7a_proj) < Fmsy.notrig           

## An object of class "FLQuant"  

## , , unit = unique, season = all, area = unique  

##   

##      year  

## age   1981  1982  1983  1984  1985  1986  1987  1988  1989  
1990  1991   

##   all FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
FALSE FALSE  

##      year  
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## age   1992  1993  1994  1995  1996  1997  1998  1999  2000  
2001  2002   

##   all FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
FALSE FALSE  

##      year  

## age   2003  2004  2005  2006  2007  2008  2009  2010  2011  
2012  2013   

##   all FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  
TRUE  TRUE  

##      year  

## age   2014  2015   

##   all  TRUE  TRUE  

##   

## units:  f  

F below candidate FMSY for last five years, so go down in flowchart (page 16) 

eqsim_plot_range(SIM1, type="ssb")     ##Lower=11232 >> 
Bpa,       down in flowchart  

Lower 5%ile of Biomass much bigger than Bpa, so go down in flowchart. There’s no 
current Btrigger to compare to, so have a look at which options make more sense; seems 
sensible to go to bottom left box, in which case go right, to choose MSY Btrigger as the 
lower 5%ile of current biomass. 

Btrigger <-ssbtable(fit_b9)["2015","Low"]  

Btrigger <- 10392.13 #lower 5% of current SSB  

Calculating FMSY, step 3 

Step 3, from page 13 of guidance, evaluate whole advice rule including Btrigger. 

SIM.trig <- eqsim_run(FIT,  

                 bio.years = c(2006:2015),  

                 sel.years = c(2006:2015),  

                 Fcv=Fcv, ##  

                 Fphi=0.423, ##Default from WKMSYREF4  

                 Blim=Blim,  

                 Bpa=Bpa,  

                 Fscan = seq(0,1.2,len=40),  

                 verbose=FALSE,  

                 Btrigger=Btrigger,  

                 extreme.trim=c(0.05,0.95))  

  

eqsim_plot(SIM.trig,catch=TRUE)  
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eqsim_plot_range(SIM.trig, type="median")   

  

eqsim_plot_range(SIM.trig, type="ssb") ##lower percentile=11274 
>> Blim  
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Annex 6: Diagnostics and stock summary plots 

 



ASAP assessment
Hans Gerritsen

February 02, 2017

R and FLR versions

library(FLCore)

## Warning: package 'FLCore' was built under R version 3.1.2

library(lattice)
sessionInfo()

## R version 3.1.1 (2014-07-10)
## Platform: i386-w64-mingw32/i386 (32-bit)
##
## locale:
## [1] LC_COLLATE=English_Ireland.1252 LC_CTYPE=English_Ireland.1252
## [3] LC_MONETARY=English_Ireland.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Ireland.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] FLCore_2.5.20150309 MASS_7.3-33 lattice_0.20-29
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.8 evaluate_0.8.3 formatR_1.3 grid_3.1.1
## [5] htmltools_0.2.6 knitr_1.12.3 rmarkdown_0.9.5 stats4_3.1.1
## [9] stringr_0.6.2 tools_3.1.1 yaml_2.1.13

Read the stock object

First set the main directory and data and output directories

maindir <- '.'
#datadir <- paste0(maindir,'/1_Data/LowestoftFiles')
asapdir <- paste0(maindir,'/asap')
outdir <- paste0(maindir,'/4_Outputs')

The ASAP assessment is not done in R, however it produces an rdat file with outputs

Note that in this asap assessment the first age is age 0, so be careful!

asap <- dget(file.path(asapdir,'run-final.rdat'))
retrofiles <- paste0('run-final_',sprintf('%03d',0:8),'.rdat')
retro <- lapply(retrofiles,FUN=function(x) dget(file.path(asapdir,x)))

1
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pal <- c("#1B9E77", "#D95F02", "#7570B3", "#E7298A", "#66A61E", "#E6AB02",
"#A6761D", "#666666")
for(i in 1:8) retro[[i]]$col <- pal[i]
# years 2010 and 2014 converged but hessian was not positive
# maybe leave out

#xsa results
load('./4_Outputs/whg7a_xsa.Rdata')
load('./4_Outputs/whg7a_stock.Rdata')

Some housekeeping

Some handy parameters to keep for later

years <- asap$parms$styr:asap$parms$endyr
nyears <- length(years)
ages <- 1:asap$parms$nages -1 # note the age offset
nages <- length(ages)
nindices <- asap$parms$nindices
indices <- c('NI-Q1','NI-Q4','NI-MIK')
fbarage <- asap$options$Freport.agemin:asap$options$Freport.agemax - 1 # note the age offset

A Function to save the plots

SavePlot0<-function(plotname,width=6,height=4){
file <- file.path(outdir,paste0('whg7a_asap_',plotname,'.png'))
dev.print(png,file,width=width,height=height,units='in',res=300,pointsize=8)

}

A bubble plot function

bubbles <- function(x,z,cex, key.space = 'right',...){
maxz <- max(abs(z),na.rm=T)
panel.fun <- function(x,z,subscripts,cex,...){

pt.cex <- sqrt(abs(z)/maxz)*cex
pt.bg <- ifelse(z<0, '#FF000050','#00000050')
lpoints(x,cex=pt.cex[subscripts],pch=21,fill=pt.bg[subscripts],col=1,...)

}
text <- as.character(round(seq(maxz,-maxz,length=6),2))
key = list(space = key.space, text = list(text),

points = list(pch = c(21), cex=sqrt(abs(seq(cex,-cex,length=6)))^2,
fill = rep(c('#00000050','#FF000050'),each=3)),
rep = FALSE)

xyplot(x,z=z,cex=cex,panel=panel.fun,key=key,...)
}

Diagnostic plots

Observed and predicted catch
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catch <- data.frame(years,observed=c(asap$catch.obs),predicted=c(asap$catch.pred))
xyplot(observed+predicted~years,data=catch,type='b',auto.key=T,xlab='Year',ylab='Catch (t)')
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a <- SavePlot0('Fleet_Catch',4,4)

Catch-at-age proportions-at-age (only for first fleet)

res1 <- data.frame(year=years,age=rep(ages,each=nyears),obs=c(asap$catch.comp.mats$catch.fleet1.ob),pred=c(asap$catch.comp.mats$catch.fleet1.pr))
res1$res <- res1$obs-res1$pred
res2 <- merge(res1,with(res1,aggregate(list(obsbar=obs),list(age=age),mean)))
res2$sres <- res2$res/res2$obsbar
res2$sres <- ifelse(is.finite(res2$sres),res2$sres,NA)

xyplot(obs+pred~year|factor(age),data=res1,type='l',auto.key=T,as.table=T,scales=list(y='free',alternating=F),ylab='Proportion-at-age')
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a <- SavePlot0('FleetCaaRes1')

panfun <- function(x, y) {
panel.xyplot(x, y)
panel.abline(h=0)

}
xyplot(res~year|factor(age),data=res1,type='l',auto.key=T,as.table=T,ylab='Proportion-at-age residuals',panel=panfun)
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a <- SavePlot0('FleetCaaRes2')

bubbles(age~year,data=res1,z=res1$res,cex=5,xlab='Year',ylab='Age')
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a <- SavePlot0('FleetResidualsAge',6,3.5)

bubbles(age~year,data=res2,z=res2$sres,cex=5,xlab='Year',ylab='Age')
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a <- SavePlot0('FleetStResidualsAge',6,3.5)

Index fit

ind1 <- NULL
for(i in 1:nindices){

ind1 <- rbind(ind1, data.frame(years=years[asap$index.year.counter[[i]]],name=indices[i],observed=asap$index.obs[[i]],predicted=asap$index.pred[[i]]))
}
xyplot(observed+predicted~years|name,data=ind1,type='b',xlab='Year',ylab='Index',scales=list(alternating=1,y=list(relation='free')),auto.key=T)
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a <- SavePlot0('IndexFit')

Index proportions-at-age fit

#note: hard-coded for 2 indices with naa
res1 <- NULL
for(i in 1:2){

iob <- grep('ob',names(asap$index.comp.mats))[i]
ipr <- grep('pr',names(asap$index.comp.mats))[i]
res1 <- rbind(res1,data.frame(year=years,age=rep(ages,each=nyears),name=indices[i],obs=unlist(asap$index.comp.mats[iob]),pred=unlist(asap$index.comp.mats[ipr])))

}
res1$obs <- ifelse(res1$obs==0 & res1$pred==0, NA,res1$obs)
res1$pred <- ifelse(res1$obs==0 & res1$pred==0, NA,res1$pred)
res1$res <- res1$obs-res1$pred
res2 <- merge(res1,with(res1,aggregate(list(obsbar=obs),list(age=age,name=name),mean,na.rm=T)))
res2$sres <- res2$res/res2$obsbar
#key <- simpleKey(text=c('obs','pred'),points=F,lines=T,space='right')
key <- simpleKey(text=c('obs','pred'),points=F,lines=T,space='top')
xyplot(obs+pred~year|paste(name,'Age',age),data=res1,type='l',key=key,scales=list(alternating=1),par.strip.text=list(cex=0.6),ylab='Proportion-at-age',layout=c(nages,2),as.table=T)
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a <- SavePlot0('IndexCaa',6,6)

panfun <- function(x, y) {
panel.xyplot(x, y)
panel.abline(h=0)

}
xyplot(res~year|paste(name,'Age',age),data=res1,type='l',scales=list(alternating=1),par.strip.text=list(cex=0.6),ylab='Proportion-at-age',layout=c(nages,2),as.table=T,panel=panfun)
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a <- SavePlot0('IndexResAge',6,6)

res1 <- subset(res1,res!=0 & name!='NI-MIK')
bubbles(age~year|name,data=res1,z=res1$res,cex=3,xlab='Year',ylab='Age',layout=c(1,2),scales=list(alternating=1),key.space='top')
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a <- SavePlot0('IndexResidualsAge',3.1,6)

res2 <- subset(res2,sres!=0 & is.finite(sres))
bubbles(age~year|name,data=res2,z=res2$sres,cex=3,xlab='Year',ylab='Age',layout=c(1,2),scales=list(alternating=1),key.space='top')
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a <- SavePlot0('IndexStResidualsAge',3.1,6)

Selectivity at age in catches. Age 0 is fixed at 0% and ages 3+ are fixed at 100%.

sel <- stack(as.data.frame(asap$fleet.sel.mats$sel.m.fleet1))
sel <- data.frame(years,sel)
sel$block <- c(asap$fleet.sel.blocks)
sel$age <- as.numeric(as.character(sel$ind))-1

key <- simpleKey(text=paste('Block',unique(sel$block)),points=T,space='right')
key$points$pch <- unique(sel$block)
key$space<-'top'
xyplot(values~age,groups=block,data=sel,xlab='Age',ylab='Selectivity',type='b',key=key,pch=key$points$pch)
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a <- SavePlot0('Fleet_S')

Index selectivity-at-age. For index 1 (EVHOE/IGFS) ages 1+ are fixed at 100%, for index 2 (IRL-GAD)
ages 4+ are fixed at 100%.

sel1 <- data.frame(name=paste('index',1:nindices),age=rep(ages,each=nindices),sel=c(asap$index.sel))
sel1$sel <- ifelse(sel1$sel<0,NA,sel1$sel)
xyplot(sel~age|name,data=sel1,type='b',xlab='Age',ylab='Selectivity',scales=list(alternating=1),ylim=c(-.04,1.04))
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a <- SavePlot0('IndexSelectivity')

Save selectivity at age table for report

sel2 <- data.frame(ages,subset(sel,years==max(years))$values,t(asap$index.sel))
names(sel2) <- c('Age','Catch',indices[1:nindices])
for(i in 2:ncol(sel2)) sel2[,i] <- ifelse(sel2[,i]<0,NA,sel2[,i])
write.csv(sel2,file.path(outdir,'whg7a_asap_sel.csv'),row.names=F)

Index q

ind3 <- NULL
for(i in 1:nindices){

ind3 <- rbind(ind3, data.frame(years=years[asap$index.year.counter[[i]]],name=indices[i],q=asap$q.indices[[i]]))
}
xyplot(q~years|name,data=ind3,type='b',scales=list(alternating=1))
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a <- SavePlot0('IndexQ')

Catch and discards effective sample size

ees <- rbind(data.frame(years,type='input',value=c(asap$fleet.catch.Neff.init))
,data.frame(years,type='estimated',value=c(asap$fleet.catch.Neff.est)))

xyplot(value~years,groups=type,data=ees,type='b',auto.key=T,xlab='Year',ylab='Effective sample size (log scale)',scales=list(alternating=1,y=list(log=T)))
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a <- SavePlot0('Fleet_EES')

Index effective sample size

ind2 <- NULL
for(i in 1:2){

ind2 <- rbind(ind2, data.frame(years,name=indices[i],observed=asap$index.Neff.init[i,],predicted=asap$index.Neff.est[i,]))
}
xyplot(observed+predicted~years|name,data=ind2,type='b',auto.key=T,xlab='Year',ylab='Effective sample size',scales=list(alternating=1,y=list(log=T)))
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a <- SavePlot0('IndexEffSampSize')

Population numbers.

snaa <- asap$N.age
snaa.df <- stack(as.data.frame(snaa))
snaa.df$year <- years
# something wrong with cohorts i think
snaa.df$cohort <- snaa.df$year - as.numeric(as.character(snaa.df$ind))-1
key <- simpleKey(as.character(ages),space='right',title='age',cex.title=1)
key$points$pch <- 1:nages
xyplot(log(values)~cohort,groups=factor(ind),data=snaa.df,type='b',key=key,pch=1:nages,scales=list(alternating=1),xlab='Cohort',ylab='Log stock numbers at age',cex=0.6)
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a <- SavePlot0('StockNos')

The objective function. I think you want the value to be approximately evenly spread between the parameters

obj <- unlist(asap$like)[-1]
par(las=1,mar=c(5,12,4,2))
b <- barplot(obj,names=gsub('lk.','',names(obj)),horiz=T,xlab='Value')
text(obj,b,ifelse(obj==0,0,''),pos=4)
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a <- SavePlot0('ObjectiveFunction')

RMSE

rmse <- unlist(asap$RMSE)
rmse.n <- unlist(asap$RMSE.n)
ylim <- c(0,max(rmse)*1.2)
plot(rmse~rmse.n,ylim=ylim,xlab='Number of residuals',ylab='RMSE')
text(rmse~rmse.n,labels=gsub('rmse.','',names(rmse)),pos=3)
abline(h=1)
lines(c(1,3,5,10,20,30,40,50,100),c(.063,.348,.473,.634,.737,.786,.815,.832,.883),lty=3)
lines(c(1,3,5,10,20,30,40,50,100),c(1.960,1.619,1.487,1.351,1.253,1.211,1.183,1.162,1.116),lty=3)
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a <- SavePlot0('RMSE')

Retrospective

par(mfrow=c(2,2))
xlim <- range(years)
ylim <- c(0,max(unlist(lapply(retro,function(x) x$catch.pred/1000))))
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='Kt',main='Catch')
a <- lapply(retro,function(x) lines(as.numeric(colnames(x$catch.pred)),x$catch.pred/1000,col=x$col))
ylim <- c(0,max(unlist(lapply(retro,function(x) x$SSB/1000))))
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='Kt',main='SSB')
a <- lapply(retro,function(x) lines(as.numeric(colnames(x$catch.pred)),x$SSB/1000,col=x$col))
ylim <- c(0,max(unlist(lapply(retro,function(x) x$F.report))))
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='F',main=paste0('Fbar ',paste(range(fbarage),collapse='-')))
a <- lapply(retro,function(x) lines(as.numeric(colnames(x$catch.pred)),x$F.report,col=x$col))
ylim <- c(0,max(unlist(lapply(retro,function(x) x$N.age[,1]/1000))))
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='Millions',main='Recruits age 0')
a <- lapply(retro,function(x) lines(as.numeric(colnames(x$catch.pred)),x$N.age[,1]/1000,col=x$col))
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a <- SavePlot0('Retrospective',6,6)

Retrospective, zoomed in

par(mfrow=c(2,2))
xlim <- c(1995,2015)
ylim <- c(0,3)
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='Kt',main='Catch')
a <- lapply(retro,function(x) lines(as.numeric(colnames(x$catch.pred)),x$catch.pred/1000,col=x$col))
ylim <- c(0,3)
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='Kt',main='SSB')
a <- lapply(retro,function(x) lines(as.numeric(colnames(x$catch.pred)),x$SSB/1000,col=x$col))
ylim <- c(0,max(unlist(lapply(retro,function(x) x$F.report))))
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='F',main=paste0('Fbar ',paste(range(fbarage),collapse='-')))
a <- lapply(retro,function(x) lines(as.numeric(colnames(x$catch.pred)),x$F.report,col=x$col))
ylim <- c(0,350)
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plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='Millions',main='Recruits age 0')
a <- lapply(retro,function(x) lines(as.numeric(colnames(x$catch.pred)),x$N.age[,1]/1000,col=x$col))
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a <- SavePlot0('Retrospective1',6,6)

Organise the data for the tables

asap.std <- read.table(file.path(asapdir,'run-final.std'),header=T,fill=T)

#lan <- c(stock0@landings)
#dis <- c(stock0@discards)
catch <- c(asap$catch.obs)
catch.pred <- c(asap$catch.pred) # asap predicted catch
#catchInt <- c(landings(stf1)[,nyears+1]+discards(stf1)[,nyears+1]) # catch in intermediate year, assuming fsq
#landInt <- c(landings(stf1)[,nyears+1])
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ssb <- c(asap$SSB)
#ssbInt <- c(ssb(stf1)[,nyears+1]) # ssb in intermediate year (1 jan)
tsb <- c(apply(asap$N.age * asap$WAA.mats$WAA.ssb,1,sum))
recr <- c(asap$N.age[,1])
fbar <- c(asap$F.report)
ssbSTD <- subset(asap.std,name=='SSB')$std # standard deviation
recrSTD <- subset(asap.std,name=='recruits')$std # standard deviation
fbarSTD <- subset(asap.std,name=='Freport')$std # standard deviation

Summary plot

par(mfrow=c(2,2))

xlim <- range(years)+0:1
ylim <- c(0,max(catch)/1000)
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='Kt',main='Catch')
points(years,catch/1000)
lines(years,catch.pred/1000)
legend('topright',c('Observed','Predicted'),lty=c(NA,1),pch=c(1,NA),bty='n')
#lines(years,lan/1000,lty=2)
#points(max(years)+1,catchInt/1000)
#points(max(years)+1,landInt/1000,pch=2)
#legend('topright',c('Catch','Landings','Catch Fsq','Land Fsq'),lty=c(1,2,NA,NA),pch=c(NA,NA,1,2),bty='n',y.intersp=0.8)

ylim <- c(0,max(ssb+ssbSTD)/1000)
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='Kt',main='SSB')
polygon(c(years,rev(years)),c((ssb-ssbSTD),rev((ssb+ssbSTD)))/1000,border=0,col='grey')
lines(years,ssb/1000)
lines(years,c(ssb(xsa+stock))/1000,col=2)
legend('topright',c('asap','xsa'),lty=1,col=1:2,bty='n')
#points(max(years)+1,ssbInt/1000)
#legend('topleft',c('StDev',paste('1 jan',max(years)+1)),fill=c('grey',NA),border=NA,,pch=c(NA,1),bty='n')

ylim <- c(0,max(fbar+fbarSTD,fbar(xsa+stock)))
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='F',main=paste0('Fbar ',paste(range(fbarage),collapse='-')))
polygon(c(years,rev(years)),c((fbar-fbarSTD),rev((fbar+fbarSTD))),border=0,col='grey')
lines(years,fbar)
lines(years,c(fbar(xsa+stock)),col=2)
legend('topright',c('asap','xsa'),lty=1,col=1:2,bty='n')

#points(max(years)+1,fsq)
#legend('bottomleft',c('StDev','Fsq'),pch=c(NA,1),fill=c('grey',NA),border=NA,bty='n')

ylim <- c(0,max(recr/1000))
plot(NA,xlim=xlim,ylim=ylim,xlab='Year',ylab='Millions',main='Recruits age 0')
polygon(c(years,rev(years)),c((recr-recrSTD),rev((recr+recrSTD)))/1000,border=0,col='grey')
lines(years,recr/1000)
lines(years,c(xsa@stock.n[1,])/1000,col=2)
legend('topright',c('asap','xsa'),lty=1,col=1:2,bty='n')
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#points(max(years)+1,GM/1000)
#legend('topleft',c('StDev','GM'),pch=c(NA,1),fill=c('grey',NA),border=NA,bty='n')

a <- SavePlot0('Summary',6,6)
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Annex 7: Whiting reference points 

 



Whiting 7a MSY evaluations
Colm Lordan

17 February 2017

The ICES approach to setting Reference Points

This Markdown document outlines the steps involved in estimating PA and MSY reference points for Irish
Sea whiting as part of the WKIRISH3 benchmark. The objective is to have a reproducible document that
transparently outlines the process, settings and decisions.

The ICES technical guidelines document establishes the procedures to be followed.

These have been developed based on the experiences and approach applied at WKMSYREF4 which
estimated PA reference points and Fmsy and MSY ranges for category 1 stocks in western waters and
WKMSYREF3 which estimated Fmsy and MSY ranges for North Sea stocks.

For typical age-based assessments the preferred ICES approach used the EqSim methodology. This is available
from the developmental repository for the ‘msy package’ which is located on github, more specifically on
github.com/ices-tools-prod/msy

To download the required packages for the very first time run the following code chunk by switching ‘eval =
TRUE’.
install.packages("devtools")
install.packages("icesAdvice")
install.packages("ggplot2")
library(devtools)
install.packages("FLCore", repo = "http://flr-project.org/R")
install.packages("ggplotFL", repo = "http://flr-project.org/R")
install_github("ices-tools-prod/msy")

knitr::opts_chunk$set(eval = TRUE, echo = TRUE, message = FALSE, warning = FALSE)

Load Packages

First we load the various packages needed to preform the analysis.
library(ggplot2)
library(ggplotFL)
library(FLCore)
library(msy)
library(icesAdvice)
library(knitr)

Load the data

Next we load the data. The current version of eqsim only takes FLStock objects as inputs. Note ‘eqsim’ will
internally use the landings and catch numbers at age provided in the FLStock object used as input to eqsim
to calculate a discard ratio at age, which it then uses to split the long-term catch into landings and discards
(at age).
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Fix for zero weights

If there are a few zeros in the catch and stock weights and numbers that produces NaNs so this is a fix to fill
them in with a low value.
load("L:/Data for ICESWG/2016/Benchmarks/WKIRISH/whgVIIa/Assessment/4_Outputs/whg7a_asap.Rdata")

stock@stock.n <- ifelse(stock@stock.n==0,0.000001,stock@stock.n)
stock@stock.wt <- ifelse(stock@stock.wt==0,0.000001,stock@stock.wt)
stock@catch.n <- ifelse(stock@catch.n==0,0.000001,stock@catch.n)
stock@catch.wt <- ifelse(stock@catch.wt==0,0.000001,stock@catch.wt)
stock@discards.n <- ifelse(stock@discards.n==0,0.000001,stock@discards.n)
stock@discards.wt <- ifelse(stock@discards.wt==0,0.000001,stock@discards.wt)
stock@landings.n <- ifelse(stock@landings.n==0,0.000001,stock@landings.n)
stock@landings.wt <- ifelse(stock@landings.wt==0,0.000001,stock@landings.wt)

Stock Recruit summary

The first step in the process is to examine the stock and recruit pairs and decide on a Blim value. The default
is approach is to choose the SSB value below which recruitment reduces with SSB, e.g. the change point of a
segmented regression. However you should use the technical guidelines document to guide your expert
decision.

In the case of Irish Sea Whiting there is clear evidence of impaired recruitment at stock sizes below 10,000t
based on the S/R pairs from the assessment and that looks like and appropriate Blim. Various summary
statistics on the SSB estimates are provided in Table 1.
# plotting SR relationship
ssb <-as.data.frame(ssb(stock))
ssb$var <- "SSB"
rec <-as.data.frame(rec(stock))
rec$var <- "Recruitment"
sr <- data.frame(year=ssb$year, SSB=ssb$data, Recruitment=rec$data)
ggplot(sr, aes(SSB, Recruitment)) + geom_point() +

geom_text(aes(label=year), hjust=-0.1) + theme_bw() +
xlim(0, max(sr$SSB)*1.05)
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Figure 1: Stock and recruitment pairs for Irish Sea whiting by year.
stock.cur <- ssb$data[ssb$year==stock@range[5]]
stock.loss <- min(ssb$data)
stock.50 <- as.numeric(quantile(ssb$data,0.5))
stock.75 <- as.numeric(quantile(ssb$data,0.75))
stock.max <- max(ssb$data)

An example fit of a Beverton and Holt stock and recruitment model is shown in Figure 2 below. The functional
form of the relationship is quite different to the fitted model but despite that the residuals by year show a
reasonable fit. There is no indication of autocorrelation in residuals as the slope in panel 3 is pretty much
horizontal. The clumped nature of the stock-recruit pairs with lots of recruitments observed at low stock size
is particularly obvious in the residuals by SSB plot (panel 4). The Q-Q plot and the residuals by recruits
look relatively good.
srbh <- fmle(as.FLSR(stock, model="bevholt"), method="L-BFGS-B", lower=c(1e-6, 1e-6), upper=c(max(rec(stock)) * 3, Inf))

## iter 10 value -24.250382
## final value -24.487859
## converged
plot(srbh)
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Figure 2: Example of fit with Beverton and Holt Stock and recruitment model. Panels: (1) stock-recruit data,
fitted model in this case a Beverton and Holt and lowess smoother, (2) residuals by year, (3) lag 1-correlated
residuals, (4) residuals by SSB, (5) residuals qqplot and (6) residuals by fitted values. Blue lines are loewess
smoothers, to better visualize trends in the data shown.

Table 1. Summary of SSB values

SSB ref value SSB Estimate
Terminal SSB 852t
Min observed 531t
50th Percentile 2622t
75th Percentile 15380t
Max observed 43330t

Estimating the breakpoint stochastically

The msy package can be use to estimate the break-point stochastically. In the case of Irish Sea whiting the
break-point is very low because there are many observations of low recruitment at low stock size and the
estimated break-point is not considered a good candidate for Blim. Figure 3 below gives the estimates of the
stochastic breakpoints.
fit <- eqsr_fit(stock, nsamp = 1000, models = "Segreg")
boxplot(fit$sr.sto$b.b, main="Stochastic Breakpoint estimates")
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Figure 3: Box plot of break-point estimates for Irish Sea whiting.

The median estimate of the break-point is 3489t.

Uncertainty parameters

In the ICES approach Bpa is the estimated SSB which ensures that the true SSB has less than 5% probability
of being below Blim. In practice this requires an estimate of sigma, the standard deviation of ln(SSB) at the
start of the year following the terminal year of the assessment.

In the absence of an estimate the default is 0.2.

In the case of the ASAP assessments you can take the Fcv and SSBcv from the final year of the assessment
model.
Fcv <- 0.303757
SSBcv <- 0.297147
Blim <- 10000
Bpa <- round(Bpa(Blim, SSBcv)/100, 0)*100
Fphi <- 0.423

For Irish Sea whiting Blim is set at 10000 t and Bpa is estimated at 16300 t.
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Estimating Fmsy using multiple Stock and Recruit models

The base Eqsim analysis largely uses default settings for the input parameters: Selection pattern is the
default 10 year range. Biological parameters is the default of 10 years (although this is something the WG
should monitor as trends maybe developing) The scan sequence is fairly granular to have more consistent
interpolations. The uncertainties are as specified above.

In the case of the Irish Sea whiting we have a priori ruled out the segmented regression alone as a S/R
relationship. The software allows for uncertainty in the stock-recruitment model is taken into account by
applying model averaging using smooth AIC weights (Buckland et al. 1997). Here we use the three standard
model and also specify a segmented regression with a fixed break-point at Blim.

The fit of the mixed model to the observations looks good. The Beverton and Holt gets most of the weight.
The two segmented regression options get no weight.

The issue here is that the F0.5 - the 5% probability of dropping below Blim is pretty much the same and
Fmsy. This is potentially not a problem and F0.5 becomes the upper bound of the Fmsy range.
setup <- list(data = stock,
bio.years = c(2006, 2015),
bio.const = FALSE,
sel.years = c(2006, 2015),
sel.const = FALSE,
Fscan = seq(0, 1.5, by=0.025),
Fcv = Fcv, Fphi = Fphi,
Blim = Blim,
Btrigger = 0,
Bpa = Bpa(Blim, SSBcv),
extreme.trim=c(0.05,0.95)
)

FixedBlim<-function (ab, ssb)
{log(ifelse(ssb >= Blim, ab$a * Blim, ab$a * ssb))}

res <- within(setup,
{
fit <- eqsr_fit(data, nsamp = 1000, models = c("Ricker", "Bevholt", "FixedBlim",

"Segreg"))
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,
sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa, Btrigger = Btrigger,
extreme.trim = extreme.trim, verbose = FALSE)
})

Fmsy is initially calculated as the F that maximizes median long-term yield in stochastic simulation under
constant F exploitation (i.e. without MSY Btrigger). EqSim internally uses the landings and catch numbers
at age provided in the FLStock object used as input to calculate a discard ratio at age, which it then uses to
split the long-term catch into landings and discards (at age). The choice of yield is a choice for policy and,
following discussions with clients, ICES defines yield to be catch above the minimum catch/conservation
size. When the selection pattern corresponding to this cannot be estimated, ICES uses the recent landings
selection to define yield. In the case of Irish Sea whithing where discarding accounts for more than 95%
of the catch the logic of defining Fmsy based on the sparse landings at age data in recent years is open to
question. Nevertheless we estimate Fmsy here according to the guidelines although there is a strong caveat
that it is based on current retention practices and selection patterns which are not well estimated.

In figure 4 below we see that the median estimate if Fmsy is 0.22 which is expected to generate median
landings of around 1600t. The Fmsy value is also very close to F(5%). Following the ICES procedure we
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need to calculate the Fpa because if Fmsy is greater than Fpa then we reduce Fmsy to Fpa.
eqsim_plot_range(res$sim, type="median")
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Figure 4: Yield curve and FMSY upper and lower ranges (vertical blue lines) and Flim upper and lower
ranges (vertical green lines) for the mixed stock recruit model. Fmsy median point estimates and upper and
lower bound are given (bottom right).

The Median SSB for the Fmsy range is shown in Figure 5 below. The value for median SSB corresponding to
the lower and upper Fmsy bounds are also shown on the plot. For some reason the code returns an NA for
the median SSB corresponding to the median Fmsy.
eqsim_plot_range(res$sim, type="ssb")
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Figure 5: Median SSB curve over a range of target F values. Blue line correspond to the FMSY range.

Figure 6 shows the Eqsim summary of various recruitment models using the default “Buckland” method
(Ricker, Beverton and Holt, segmented regression and fixed break-point). This plot indicates that the final SR
model is driven by the Beverton and Holt and the two segmented regression options don’t fit well to the data.
eqsr_plot(res$fit,ggPlot=FALSE)
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Figure 6: Eqsim summary of recruitment models using the default “Buckland” method (Ricker, Beverton
and Holt and segmented regression). The final model is shown in yellow, the Ricker is shown as black, the
Beverton an Holt is the black dashed line, estimated segmented regression is the black dash and dot line and
the fixed break-point at 10,000t is the black dotted line. The various weights are also indicated on the plot.

The Eqsim summary plots in Figure 7b and c highlight the fact that F and catch in the past has been well
above the sustainable ranges estimated. Figure 5d indicates that the risk to Blim overlaps with the Fmsy
probability at a fairly low F values.
eqsim_plot(res$sim, catch = TRUE)
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Figure 7: Eqsim summary plot. Panels a-c: historic values (dots) median (solid black) and 90% intervals
(dotted black) recruitment, SSB and landings for exploitation at fixed values of F. Panel c also shows mean
landings (red solid line). Panel d shows the probability of SSB less than Blim (red), SSB less than BPA
(green) and the cumulative distribution of FMSY based on yield as landings (brown) and catch (cyan).

Carmen said The same output can be obtained from the slot refs_interval. In this case, the value to use
is the one labelled FmsyMedianL, which should coincide with the one obtained in Refs2 (minor differences
between both values could occur because the interpolation has been done differently for the 2 slots. but the
differences should, if they exist at all, be very minor. . . otherwise it d be a signal that something is wrong in
the EqSim code).

Table 2. Output values from the Eqsim analysis.
kable(t(res$sim$Refs2), digits=c(3,3,0,0,0,0))

catF lanF catch landings catB lanB
F05 0.217 NA 4144 NA 16114 NA
F10 0.243 NA 4300 NA 14706 NA
F50 0.356 NA 4548 NA 9990 NA
medianMSY NA 0.210 NA 1669 NA 16511
meanMSY 0.350 0.225 4550 1666 10189 15673
Medlower NA 0.150 NA 1584 NA 20480
Meanlower NA 0.152 NA 1709 NA NA
Medupper NA 0.296 NA 1584 NA 12252
Meanupper NA 0.297 NA 1705 NA NA
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refs <- round(t(res$sim$refs_interval), 3)
refs[c(5,4,6),]

## FmsylowerMedianL FmsyMedianL FmsyupperMedianL
## 0.158 0.219 0.294
fmsy <- refs[4,]

No error run to estimate Flim and MSY Btrigger

Next Eqsim is run with no error to estimate Flim and the MSY Btrigger you would get from the analysis.
There a a few different approaches to estimating the Flim point. Here we use a loess smoother to predict the
F that has a 50% probability of bringing the stock to Blim. A similar approach is used to estimate the MSY
Btrigger you would get from the analysis to test if this is higher than Bpa.
setup <- list(data = stock,
bio.years = c(2006, 2015),
bio.const = FALSE,
sel.years = c(2006, 2015),
sel.const = FALSE,
Fscan = seq(0, 1.5, by=0.025),
Fcv = 0, Fphi = 0,
Blim = 10000,
Btrigger = 0,
Bpa = 16300,
extreme.trim=c(0.05,0.95)
)

res <- within(setup,
{
fit <- eqsr_fit(data, nsamp = 1000, models = c("Ricker", "Bevholt", "FixedBlim",

"Segreg"))
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,
sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa, Btrigger = Btrigger,
extreme.trim = extreme.trim, verbose = FALSE)
})

data.95 <- res$sim$rbp
x.95 <- data.95[data.95$variable == "Spawning stock biomass", ]$Ftarget
b.95 <- data.95[data.95$variable == "Spawning stock biomass", ]$p50
#plot(b.95~x.95, ylab="SSB", xlab="F")
b.lm <- loess(x.95 ~ b.95, span = 0.3)
flim<- round(predict(b.lm, Blim), 3)
fpa<- round(Fpa(flim, Fcv),3)

###BTrigger
data.05 <- res$sim$rbp
x.05 <- data.05[data.05$variable == "Spawning stock biomass", ]$Ftarget
b.05 <- data.05[data.05$variable == "Spawning stock biomass", ]$p05
#plot(b.05~x.05, ylab="SSB", xlab="F")
b.lm <- loess(b.05 ~ x.05, span = 0.2)
msybtrig <- predict(b.lm, 0.5)
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Running the code with no error gives an estimate of Flim = 0.371, and estimate of Fpa = 0.225, and MSY
Btrigger of 4281t.

In this case the Fmsy estimate 0.219 very close to Fpa 0.225 so the lower of the two values should be used as
fmsy.
fmsy <- ifelse(fmsy>fpa, fpa, fmsy)

Evaluate the ICES MSY Advice Rule

The next step is to evaluate the ICES advice rune via the stochastic simulation with these values of FMSY
and MSY Btrigger. If the Fmsy is less than the F5% in this run the the Fmsy stays the same if it is greater
than Fmsy is reduced to F5%.

So EqSim is run again this time including the selected MSY Btrigger value and error.
setup <- list(data = stock,
bio.years = c(2006, 2015),
bio.const = FALSE,
sel.years = c(2006, 2015),
sel.const = FALSE,
Fscan = seq(0, 1.5, by=0.025),
Fcv = 0.303757, Fphi = 0.423, #in the absence of this use WKMSYREF4 defaults

#Fcv=0.212, Fphi=0.423
Blim = 10000,
Btrigger = 16300,
Bpa = 16300,
extreme.trim=c(0.05,0.95)
)

res <- within(setup,
{
fit <- eqsr_fit(data, nsamp = 1000, models = c("Ricker", "Bevholt", "FixedBlim",

"Segreg"))
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,
sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa,
extreme.trim = extreme.trim, verbose = FALSE)
})

knitr::kable(t(res$sim$Refs2), digits=c(2,2,0,0,0,0))

catF lanF catch landings catB lanB
F05 0.22 NA 4114 NA 16246 NA
F10 0.24 NA 4274 NA 14803 NA
F50 0.36 NA 4537 NA 10010 NA
medianMSY NA 0.23 NA 1672 NA 15628
meanMSY 0.35 0.22 4538 1670 10272 15733
Medlower NA 0.15 NA 1590 NA 20181
Meanlower NA 0.15 NA 1708 NA NA
Medupper NA 0.30 NA 1590 NA 12328
Meanupper NA 0.30 NA 1704 NA NA
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refs <- round(t(res$sim$refs_interval), 3)
refs[c(5,4,6),]

## FmsylowerMedianL FmsyMedianL FmsyupperMedianL
## 0.158 0.226 0.294

If the FMSY calculated above is less than the EqSim output Fp.05 (F that gives 5% probability of SSB less
than Blim), then FMSY stays unchanged. In this case Fmsy = 0.219 is very close to the Fp.05 =0.226 but
the lower of the two becomes the final choice of FMSY.
fmsy <- ifelse(fmsy>refs[4,], refs[4,], fmsy)

Retrospective analysis

This code does a retrospective analysis. It takes a long time to run so only run it when you need to.

The objective of the retrospective analysis is to investigate how stable the Fmsy estimate has been over time
using the same input data but with a moving window for biological data and selection. Because the approach
is to optimise the Fmsy on landings and the F is partioned between landings and discards based on numbers
in the catch it is useful to see that the Fmsy is relatively stable over time.

The Fmsy for Irish Sea whiting shows a slightly declining trend over time (Figure 8). The distribution Fmsy
estimate look to be very skewed with median estimates close to or at the lower bound in some years. The
range also seems to be narrower towards the end of the time serise.
out <- NULL
setup$Fscan <- seq(0, 1.5, by=0.05)
for(y in 2006:2015){

setup$bio.years <- c(y-10,y)
setup$sel.years <- c(y-10,y)
fit <- eqsr_fit(trim(setup$data, year=stock@range[4]:y), nsamp=1000,

models=c("Ricker", "Segreg", "Bevholt", "FixedBlim"))
sim <- with(setup, eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,
sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa,
extreme.trim = extreme.trim, verbose = FALSE))

out0 <- data.frame(y,
Fmsy05 = with(subset(sim$p,variable=='pFmsyLandings'),

Ftarget[which.min(abs(value-0.05))]),
Fmsy95 = with(subset(sim$p,variable=='pFmsyLandings'),

Ftarget[which.min(abs(value-0.95))]),
FmsyMed = sim$Refs2[2,4],
FmsyMean = sim$Refs2[2,5]

)
out <- rbind(out,out0)

}

write.csv(out,
"L:/Data for ICESWG/2016/Benchmarks/WKIRISH/whgVIIa/Assessment/4_Outputs/out.csv",
row.names = FALSE)

out <- read.csv("L:/Data for ICESWG/2016/Benchmarks/WKIRISH/whgVIIa/Assessment/4_Outputs/out.csv")

par(mar=c(4.5,4,.5,.5))

13

166



plot(out$y,out$FmsyMed,type='b',ylim=c(0,0.7),xlab='Year', ylab='Fmsy')
lines(out$y,out$Fmsy05-out$FmsyMed+out$FmsyMean,lty=3)
lines(out$y,out$Fmsy95-out$FmsyMed+out$FmsyMean,lty=3)
legend('bottomright',c('FmsyMedian','5% and 95%'),lty=c(1,3),pch=c(1,NA),bty='n',inset=0.02)
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Figure 8: Retrospective analysis using a 10 year moving window of biological parameters and selection to
estimate Fmsy and the 95% confidence intervals (broken lines).

Table 2. Summary of reference ploints

Reference point Value Technical basis
MSY Btrigger 16300 t Bpa
FMSY 0.22 Median point estimates of EqSim with combined SR
Blim 10000 t Below 10,000 t recruitment is impaired
Bpa 16300 t Blim combined with the assessment error
Flim 0.37 F with 50% probability of SSB less than Blim
Fpa 0.22 Flim combined with the assessment error

rps <- FLPar(Catch=NA, Rec=NA, SSB=Blim, Harvest=fmsy)
rps2 <- FLPar(Catch=NA, Rec=NA, SSB=16000, Harvest=0.4)
plot(stock, rps) + theme_bw()
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Figure 9: Stock summary plot with Blim and Fmsy shown as blue lines.

Session information

sessionInfo()

## R version 3.3.2 (2016-10-31)
## Platform: i386-w64-mingw32/i386 (32-bit)
## Running under: Windows Server 2008 R2 x64 (build 7601) Service Pack 1
##
## locale:
## [1] LC_COLLATE=English_Ireland.1252 LC_CTYPE=English_Ireland.1252
## [3] LC_MONETARY=English_Ireland.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Ireland.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] knitr_1.15.1 icesAdvice_1.2-0 msy_0.1.18
## [4] ggplotFL_2.5.9.9000 FLCore_2.6.0.20170214 lattice_0.20-34
## [7] MASS_7.3-45 ggplot2_2.2.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.9 magrittr_1.5 munsell_0.4.3 colorspace_1.3-2
## [5] highr_0.6 stringr_1.1.0 plyr_1.8.4 tools_3.3.2
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## [9] grid_3.3.2 gtable_0.2.0 htmltools_0.3.5 yaml_2.1.14
## [13] lazyeval_0.2.0 rprojroot_1.2 digest_0.6.12 assertthat_0.1
## [17] tibble_1.2 Matrix_1.2-7.1 gridExtra_2.2.1 reshape2_1.4.2
## [21] evaluate_0.10 rmarkdown_1.3 labeling_0.3 stringi_1.1.2
## [25] scales_0.4.1 backports_1.0.5 stats4_3.3.2

16

169



170  | ICES WKIrish3 REPORT 2017 

 

Annex 8: Cod reference points 

 



Cod 7a MSY evaluations
WKIrish3
Sys.date()

R Markdown To Look at various eqsim runs

First load librarys and data.
library(FLCore)

## Warning: package 'FLCore' was built under R version 3.3.2
library(msy)
library(dplyr)

## Warning: package 'dplyr' was built under R version 3.3.2
library(icesAdvice)

## Warning: package 'icesAdvice' was built under R version 3.3.2
#setwd("C:/Users/User1/Documents/")
load("~/Cod7a_asap.Rdata")
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SR summary
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Table 1. Summary of values for SSB

SSB ref value SSB Estimate
Terminal SSB 6913t
Min observed 845t
50th Percentile 7178t
75th Percentile 13076t
Max observed 20357t

There have been several TCMs introduced and changes in mesh size for some fleets over time.

fix for zero weights

stock@catch.n <- ifelse(stock@catch.n==0,0.001,stock@catch.n)
stock@catch.wt <- ifelse(stock@catch.wt==0,0.001,stock@catch.wt)
stock@discards.n <- ifelse(stock@discards.n==0,0.001,stock@discards.n)
stock@landings.n <- ifelse(stock@landings.n==0,0.001,stock@landings.n)
stock@landings.wt <- ifelse(stock@landings.wt==0,0.001,stock@landings.wt)
stock@discards.wt <- ifelse(stock@discards.wt==0,0.001,stock@discards.wt)
stock@discards<-stock@catch-stock@landings

Stock recruitment fitted by ‘segmented regression’
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fit <- eqsr_fit(stock, nsamp = 1000, models = "Segreg")
boxplot(fit$sr.sto$b.b)
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median(fit$sr.sto$b.b)

## [1] 12609.55
Blim <- median(fit$sr.sto$b.b)
median(ssb(stock))

## [1] 7178.078
Bpa(Blim, SSBcv)

## [1] 17521.95
eqsr_plot(fit,ggPlot=FALSE)
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Stock-recruitment comparrison of segmented regression, Ricker and Beverton-Holt

Stock-recruitment comparison of ‘fixed’ segmented regression
SetBlim<- 6000
FixedBlim<-function (ab, ssb)
{log(ifelse(ssb >= SetBlim, ab$a * SetBlim, ab$a * ssb))}
fit <- eqsr_fit(stock, nsamp = 1000, models = "FixedBlim")
eqsr_plot(fit, ggPlot = FALSE)
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MSY reference points with Blim set at 6000 using SR estimated by segreg
Blim<-6000

Fcv <- 0.15
SSBcv <- 0.2
setup <- list(data = stock,
bio.years = c(2006, 2015),
bio.const = FALSE,
sel.years = c(2006, 2015),
sel.const = FALSE,
Fscan = seq(0,1.5,by=0.05),
Fcv = Fcv, Fphi = 0.423,
Blim = Blim,
Btrigger = Bpa(Blim, SSBcv),
Bpa = Bpa(Blim, SSBcv),
extreme.trim=c(0.05,0.95)
)

res <- within(setup,
{
fit <- eqsr_fit(stock, nsamp = 1000, models = "Segreg")
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,
sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa, Btrigger = Btrigger,
extreme.trim = extreme.trim, verbose = FALSE)
})
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knitr::kable(t(res$sim$Refs2), digits=c(2,2,0,0,0,0))

catF lanF catch landings catB lanB
F05 1.07 NA 8105 NA 12239 NA
F10 1.14 NA 7425 NA 10382 NA
F50 NA NA NA NA NA NA
medianMSY NA 0.60 NA 6780 NA 32717
meanMSY 0.75 0.60 9686 6780 24071 32983
Medlower NA 0.41 NA 6441 NA 52202
Meanlower NA 0.42 NA 6910 NA NA
Medupper NA 0.83 NA 6444 NA 20487
Meanupper NA 0.85 NA 6909 NA NA

eqsim_plot_range(res$sim, type="median")
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lower = 0.212
estimate = 1.068
upper = 1.104

eqsim_plot_range(res$sim, type="ssb")
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lower = 52202
median = NA
upper = 20487

#eqsr_plot(res$fit,ggPlot=FALSE)

#eqsim_plot2(res$sim, ymax.multiplier = 1.1, catch = FALSE) # note I modify the eqsim_plot function

No error run to estimate Flim and MSY Btrigger with fixed Blim from SegReg For the record we run Eqsim
with no error to estimate Flim and the MSY Btrigger you would get from the analysis to test if this is higher
than Bpa.
setup <- list(data = stock,
bio.years = c(2006, 2015),
bio.const = FALSE,
sel.years = c(2006, 2015),
sel.const = FALSE,
Fscan = seq(0,1.5,by=0.05),
Fcv = 0.0, Fphi = 0.0,
Blim = Blim,
Btrigger = Bpa(Blim, SSBcv),
Bpa = Bpa(Blim, SSBcv),
extreme.trim=c(0.05,0.95)
)

res <- within(setup,
{
fit <- eqsr_fit(data, nsamp = 1000, models = "FixedBlim")
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,
sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
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Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa,
extreme.trim = extreme.trim, verbose = FALSE)
})

knitr::kable(t(res$sim$Refs2), digits=c(2,2,0,0,0,0))

catF lanF catch landings catB lanB
F05 0.97 NA 6892 NA 11765 NA
F10 1.03 NA 6775 NA 10482 NA
F50 1.31 NA 5376 NA 5997 NA
medianMSY NA 0.60 NA 4831 NA 23876
meanMSY 0.80 0.60 7025 4830 15842 24074
Medlower NA 0.41 NA 4593 NA 38207
Meanlower NA 0.42 NA 5032 NA NA
Medupper NA 0.88 NA 4590 NA 13552
Meanupper NA 0.92 NA 5031 NA NA

eqsim_plot_range(res$sim, type="median")
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lower = 0.318
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upper = 1.062

eqsim_plot_range(res$sim, type="ssb")
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upper = 13552

# eqsr_plot(res$fit,ggPlot=FALSE)
# eqsim_plot(res$sim, catch = FALSE)

data.95 <- res$sim$rbp
x.95 <- data.95[data.95$variable == "Spawning stock biomass", ]$Ftarget
b.95 <- data.95[data.95$variable == "Spawning stock biomass", ]$p50
plot(b.95~x.95, ylab="SSB", xlab="F")
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b.lm <- loess(x.95 ~ b.95, span = 0.3)
(flim<- predict(b.lm, Blim))

## [1] 1.307203
###BTrigger
data.05 <- res$sim$rbp
x.05 <- data.05[data.05$variable == "Spawning stock biomass", ]$Ftarget
b.05 <- data.05[data.05$variable == "Spawning stock biomass", ]$p05
plot(b.05~x.05, ylab="SSB", xlab="F")
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b.lm <- loess(b.05 ~ x.05, span = 0.2)
msybtrig <- predict(b.lm, 0.5)

Running the code with no error gives an estimate of Flim = 1.31 and MSY Btrigger of 18167t.
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Annex 9: Haddock reference points 

 



Haddock 7a MSY evaluations
WKIrish3

16 February 2017

R Markdown To Look at various eqsim runs

First load librarys and data.
library(FLCore)
library(msy)
library(dplyr)
library(icesAdvice)
load("C:\\Users\\Matt Lundy\\Desktop\\HaddockBenchmark\\Outputs\\had7aso.Rdata")

SR summary

Next set some parameters
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Table 1. Summary of values for SSB

SSB ref value SSB Estimate
Terminal SSB 12788t
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SSB ref value SSB Estimate
Min observed 2301t
50th Percentile 3785t
75th Percentile 4968t
Max observed 12788t

There have been several TCMs introduced and changes in mesh size for some fleets over time.

fix for zero weights

stock@catch.n <- ifelse(stock@catch.n==0,0.001,stock@catch.n)
stock@catch.wt <- ifelse(stock@catch.wt==0,0.001,stock@catch.wt)
stock@discards.n <- ifelse(stock@discards.n==0,0.001,stock@discards.n)
stock@landings.n <- ifelse(stock@landings.n==0,0.001,stock@landings.n)
stock@landings.wt <- ifelse(stock@landings.wt==0,0.001,stock@landings.wt)
stock@discards.wt <- ifelse(stock@discards.wt==0,0.001,stock@discards.wt)

fit <- eqsr_fit(stock, nsamp = 1000, models = "Segreg")
boxplot(fit$sr.sto$b.b)
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## [1] 5006.099
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Blim <- median(fit$sr.sto$b.b)
Blim<-median(ssb(stock))
Blim<-2300#SSB in 1993
Bpa(Blim, SSBcv)

## [1] 3092.591

Fcv <- 0.22
SSBcv <- 0.15
setup <- list(data = stock,
bio.years = c(2003,2012),
bio.const = FALSE,
sel.years = c(2003,2012),
sel.const = FALSE,
Fscan = seq(0,1.5,by=0.05),
Fcv = 0.22, Fphi = 0.423,
Blim = Blim,
Btrigger = NA,
Bpa = Bpa(Blim, SSBcv),
extreme.trim=c(0.05,0.95)
)

res <- within(setup,
{
fit <- eqsr_fit(data, nsamp = 1000, models = "Segreg")
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,
sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa,
extreme.trim = extreme.trim, verbose = FALSE)
})

knitr::kable(t(res$sim$Refs2), digits=c(2,2,0,0,0,0))

catF lanF catch landings catB lanB
F05 0.37 NA 1980 NA 6438 NA
F10 0.40 NA 1910 NA 5601 NA
F50 0.48 NA 908 NA 2158 NA
medianMSY NA 0.27 NA 1238 NA 9210
meanMSY 0.35 0.30 2028 1228 7045 8452
Medlower NA 0.19 NA 1169 NA 12198
Meanlower NA 0.19 NA 1252 NA NA
Medupper NA 0.35 NA 1170 NA 6979
Meanupper NA 0.35 NA 1253 NA NA

eqsim_plot_range(res$sim, type="median")
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eqsim_plot_range(res$sim, type="ssb")
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eqsr_plot(res$fit,ggPlot=FALSE)
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#eqsim_plot2(res$sim, ymax.multiplier = 1.1, catch = FALSE) # note I modify the eqsim_plot function

Another run with with Btrigger as BPa
setup <- list(data = stock,
bio.years = c(2003,2012),
bio.const = FALSE,
sel.years = c(2003,2012),
sel.const = FALSE,
Fscan = seq(0,1.5,by=0.05),
Fcv = Fcv, Fphi = 0.423,
Blim = Blim,
Btrigger = Bpa(Blim, SSBcv),
Bpa = Bpa(Blim, SSBcv),
extreme.trim=c(0.05,0.95)
)

res <- within(setup,
{
fit <- eqsr_fit(data, nsamp = 1000, models = "Segreg")
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,
sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa,
extreme.trim = extreme.trim, verbose = FALSE)
})
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knitr::kable(t(res$sim$Refs2), digits=c(2,2,0,0,0,0))

catF lanF catch landings catB lanB
F05 0.37 NA 1985 NA 6580 NA
F10 0.40 NA 1916 NA 5708 NA
F50 0.49 NA 924 NA 2163 NA
medianMSY NA 0.27 NA 1239 NA 9299
meanMSY 0.35 0.25 2022 1233 7041 10001
Medlower NA 0.19 NA 1172 NA 12188
Meanlower NA 0.19 NA 1256 NA NA
Medupper NA 0.35 NA 1172 NA 7048
Meanupper NA 0.35 NA 1256 NA NA

eqsim_plot_range(res$sim, type="median")
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eqsim_plot_range(res$sim, type="ssb")
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#eqsim_plot2(res$sim, ymax.multiplier = 1.1, catch = FALSE) # note I modify the eqsim_plot function

Another run with with no Btrigger and no error
setup <- list(data = stock,
bio.years = c(2003,2012),
bio.const = FALSE,
sel.years = c(2003,2012),
sel.const = FALSE,
Fscan = seq(0,1.5,by=0.05),
Fcv = Fcv, Fphi = 0.423,
Blim = Blim,
Btrigger = Bpa(Blim, SSBcv),
Bpa = Bpa(Blim, SSBcv),
extreme.trim=c(0.05,0.95)
)

res <- within(setup,
{
fit <- eqsr_fit(data, nsamp = 1000, models = "Segreg")
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,
sel.years = sel.years, sel.const = sel.const, Fscan = Fscan, Blim = Blim, Bpa = Bpa,
extreme.trim = extreme.trim, verbose = FALSE)
})

knitr::kable(t(res$sim$Refs2), digits=c(2,2,0,0,0,0))
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catF lanF catch landings catB lanB
F05 0.40 NA 2061 NA 6167 NA
F10 0.41 NA 1989 NA 5617 NA
F50 0.50 NA 1083 NA 2349 NA
medianMSY NA 0.28 NA 1272 NA 9332
meanMSY 0.35 0.30 2106 1267 7355 8716
Medlower NA 0.20 NA 1205 NA 12202
Meanlower NA 0.20 NA 1275 NA NA
Medupper NA 0.37 NA 1204 NA 6863
Meanupper NA 0.37 NA 1275 NA NA

eqsim_plot_range(res$sim, type="median")
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eqsim_plot_range(res$sim, type="ssb")
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#eqsim_plot2(res$sim, ymax.multiplier = 1.1, catch = FALSE) # note I modify the eqsim_plot function

data.95<-res$sim$rbp
x.95<-data.95[data.95$variable == "Spawning stock biomass",]$Ftarget
b.95<-data.95[data.95$variable == "Spawning stock biomass",]$p50
b.lm<-loess(x.95~b.95)
(flim<-predict(b.lm, 2300))

## [1] 0.4457289

Fpa(flim, .2)

## [1] 0.3207657
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Annex 10: Stock Annexes 

The table below provides an overview of the stock annexes updated at WKIrish3. 
Stock Annexes for other stocks are available on the ICES website Library under the 
Publication Type “Stock Annexes”. Use the search facility to find a particular Stock 
Annex, refining your search in the left-hand column to include the year, ecoregion, spe-
cies, and acronym of the relevant ICES expert group. 

STOCK ID STOCK NAME LAST UPDATED LINK 

cod.27.7a Cod (Gadus morhua) in 
Division 7.a (Irish Sea) 

March 2017 cod.27.7a  

had.27.7a Haddock 
(Melanogrammus 
aeglefinus) in Division 
7.a (Irish Sea) 

March 2017 had.27.7a  

whg.27.7a Whiting (Merlangius 
marlangus) in Division 
7.a (Irish Sea) 

May 2017 whg.27.7a  

ple.27.7a Plaice (Pleuronectes 
platessa) in Division 7.a 
(Irish Sea) 

May 2017 ple.27.7a  

http://tinyurl.com/lemtn4t
http://www.ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2017/cod.27.7a_SA.pdf
http://ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2017/had.27.7a_SA.pdf
http://ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2017/whg.27.7a_SA.pdf
http://ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2017/ple.27.7a_SA.pdf
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Annex 11: Summary report from external panel 

Daniel Howell, Jim Ianelli and Rebecca Lauerburg acted as external experts for the 
WKIrish3 benchmark of the Irish Sea Whiting, Cod, Haddock, Plaice and Herring 
stocks. The panel reviewed modelling approaches used for assessment concerning 
suitability for advice at the workshop held at the Marine Institute in Oranmore, Ire-
land 29 January–4 February 2017. 

The reviewers highlight the efforts of all working group participants during the 
benchmark process. All requests from the panel were addressed extensively from the 
researchers during the workshop which enhanced the panel’s understanding of the 
individual stock assessments. In summary, the work conducted by the working 
group during the benchmark process greatly improved the consistency in assessment 
applications and was successful in implementing valuable information in the man-
agement process. 

In the following section the panel outlines the central topics of each stock assessment 
that were addressed during the workshop along with conclusions on the eligibility of 
the current assessment for providing advice and additional recommendations for fu-
ture work. 

Recommendations for future work 

Discard estimation approaches 

Specifically for plaice the issue arose in which the method which used the recent pe-
riod for which data were available to expand and estimate historical discards was 
problematic because of known changes in the fisheries. Historically more plaice were 
landed and in recent years, a much larger fraction is estimated to be discarded. 

Disaggregating fishery data 

For the cod and haddock assessments (and perhaps whiting?) the models would be 
improved by splitting the fisheries such that the Nephrops and bycatch fisheries were 
treated separately from the directed fishery. This would be preferred for a number of 
reasons. Namely, the advice could be tailored to account for the expected effort in the 
bycatch fishery (and concomitant impacts) relative to future potential allowances in 
directed fisheries. 

Natural mortality specifications / estimation 

The group noted that in general the following treatment / specification of natural 
mortality advanced for these stocks was considered extensively (see section of main 
report titled “Derivation of natural mortality (M) values for cod, haddock, whiting, 
plaice and herring”). This should be considered further, specifically as relates to the 
potential for evaluating time-varying values (similar to what’s being done in the 
North Sea from multispecies model estimates). 

Consideration of environmental factors 

In general, fish distributions in the Irish Sea seem likely to be affected by environ-
mental drivers and this seems to be a benefit of having a regional benchmark. How-
ever, common environmental effects on how fish distributions may change due to 
interannual variability and longer term factors could have been provided and dis-
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cussed at least in general terms. Application of the ICES FISHDISH working group 
document might have been helpful in setting the stage for potential trends/changes in 
distributional characteristics of stocks within this region. 

Cod 

Issues addressed at the benchmark 

The current assessment is based on survey trends and the analysts provided results 
from SAM (a work in progress), and ASAP were presented. The group agreed that 
the analyst’s choice of proceeding with the ASAP modelling framework was appro-
priate. Alternative model configurations (some 20 or so) were evaluated and a candi-
date configuration was selected based on evaluations of residuals, the likelihood 
values of data fitting and model assumptions, and interpretation of known fishery 
patterns (e.g., uncertain catch totals and shifts to being primarily a bycatch fishery). 

Use of final stock annex as basis for providing stock advice 

The review panel felt able accept the final model as suitable for use in assessments, 
and felt that a reasonable job had been done in exploring and evaluating the model 
settings. The group noted that the model selected had fishery selectivity in the most 
recent period that declined significantly in the oldest ages and that should the stock 
increase and a fishery redevelop, that a change in selectivity where older ages are 
more fully selected might be considered. 

Haddock 

Issues addressed at the benchmark 

The group evaluated a large number of model configurations (within the ASAP mod-
el framework) The final model included FSP survey, 3 selectivity blocks, a considera-
tion of uncertainty in catches during the period 2004–2007, and downweighting the 
influence of the internal penalty on the stock–recruitment relationship. 

Use of final stock annex as basis for providing stock advice 

The review panel felt able accept the final model as suitable for use in assessments, 
and felt that a reasonable job had been done in exploring and evaluating the model 
settings. They noted that, as with cod, future changes in fishery selectivity are likely 
should the directed fishery redevelop and that this should be a consideration in up-
dating advice to ICES. 

Herring 

Issues addressed at the benchmark 

The key issue for herring addressed at the benchmark was that the model results 
have been considerably lower than that suggested by the acoustic surveys. A new 
SSB acoustic series was therefore presented, with the aim of using this as an absolute 
estimate (i.e. q=1) in the model tuning. An evaluation of the impact of introducing 
this new acoustic SSB tuning series, both with and without fixed catchability (q=1), 
was conducted using the SAM modelling framework. When the catchability was not 
fixed the model estimated a very high catchability (q=3.8), indicating almost a four-
fold difference between the survey and model biomass estimates. 
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The analysis was complicated by a number of factors. Within the SAM model, the 
ability to ascertain what aspects of the model process errors and/or data components 
are tending to underestimate the spawning biomass estimated using acoustic meth-
ods was problematic. Furthermore the version of SAM used was not well suited to 
exploring sensitivity issues around survey q or CV, with hardcoded changes required 
at each stage. Partly as a result of these difficulties, analysing the effect of the differ-
ent proposed model variants was difficult. 

There was extensive, and somewhat inconclusive, discussion around the quality of 
the survey, it’s suitability as an absolute estimate, and the degree to which the survey 
had been evaluated by other working groups. The methodology used is consistent 
with other approaches to develop acoustic-trawl survey biomass estimates, and the 
survey appeared to present a reasonable, if somewhat noisy, SSB estimate. The issue 
of discussion centred only on the issue of whether to use the survey as a relative or 
absolute estimate. 

Use of final stock annex as basis for providing stock advice 

The new SSB tuning series only covers the latter part of the time-series of the model 
(2007 onwards). With q set to one for this survey, the model gives a strong increase in 
modelled SSB around the year the acoustic SSB survey begins. This implies that the 
model is forcing an increase to occur at the start of the survey series, which is likely 
resulting in an artificially high stock post 2007 relative to the earlier period (which 
has no fixed q survey data). The result of only having a forced catchability for part of 
the time-series is thus to produce an over rapid rise in the stock and distort the histor-
ical stock dynamics. The review panel therefore does not believe that this forms an 
acceptable basis for an assessment. 

Some reviewers are not, in principle against fixing q=1 for an acoustic survey for this 
stock. One reviewer (JI) was comfortable treating the survey as an absolute index of 
biomass provided an appropriate CV was used. One reviewer (RL) did not agree to 
use the new acoustics survey in terms of absolute estimates without justification of 
the underlying model assumptions that are used to calculate the SSB from the hydro-
acoustics data and thoroughly presentation of uncertainties and error estimates. 
However, all reviewers agreed that diagnostics to evaluate models with this option 
were insufficient and hence the panel was unwilling to accept as the basis for an as-
sessment. 

Subsequent to the review, a number of email exchanges on this topic occurred along 
with updated diagnostics and some further evaluation. Our discussions were provid-
ed to the HAWG for further consideration. 

Recommendations for further work 

The review panel strongly recommends further work on this topic to try to resolve 
the discrepancy between the survey and model levels of biomass, and supports the 
WG recommendation for the forthcoming HAWG assessment group to decide on 
ToRs for an inter-benchmark focussed specifically on this issue. We consider that it 
would be preferable for future work on this stock to include a reviewer with greater 
knowledge of the stock. 

As part of the analysis we recommend that, if the q was to be fixed in future assess-
ment model, then a sensitivity of the resulting population estimate to the choice of q 
should be conducted. A situation where SSB (and hence catch) is sensitive to a 
(somewhat uncertain) choice of survey CV would be rather unfortunate. It would 



ICES WKIrish3 REPORT 2017 |  197 

 

also seem likely from the analysis at this WG that any absolute estimates would need 
to apply to the whole model time-series to avoid distorting stock dynamics. 

The review panel notes that the standard ICES benchmark workflow (issues list, data 
evaluation meeting prior to the benchmark) has not been well followed for the her-
ring (although it was for the other stocks). This contributed to the situation where 
magnitude of the proposed change, and major problems in the proposed assessment 
model, were not identified until late in the physical meeting. We would recommend 
that future work on this stock be more structured to avoid a repetition of this issue. 

Plaice 

Issues addressed at the benchmark 

A variety of methods (AP, XSA, SAM, and SPICT) were presented with the most ex-
tensive being the application of the SAM modelling framework for the assessment. 
Sensitivities ranged over natural mortality, discard approaches, retrospectives, time-
series lengths, data omissions (sensitivities to inputs), linkages to plus group, and a 
number of other aspects related to random walk specifications. The biggest effect was 
discard approach selected followed by M specifications. The updated runs made dur-
ing the week with the Lorenzen “shape” but scaled to have the mean M (for the older 
ages) were most defensible because the original M estimate was based on an earlier 
tagging study. 

The Panel considered these sensitivities as useful and going forward, thought that the 
SAM model configuration with the higher discard estimates, using 9+ instead of 8+, 
correlation flag set to 2 for F-over ages, Lorenzen M vector scaled to 0.12 for older 
ages, updated SSB index (to be consistent with maturity at age / size assumption). 

Use of final stock annex as basis for providing stock advice 

Discard estimation was evaluated against size-selection expansions by ages and the 
updated results of this during the week caused unacceptable patterns in the retro-
spective analyses (lack of convergence, etc.), and in some cases complete lack of con-
vergence. The working group will revisit the discard estimation and at such time the 
SAM assessment model framework will be reviewed by the externals and potentially 
accepted for the annex and upcoming advice. 

As a follow-up a well-documented revision of the discard estimation method was 
presented to the reviewers. Three different approaches to provide discard reconstruc-
tions were evaluated. The low and high discards scenarios were rejected since both 
were more inaccurate compared to the third scenario. The medium discards scenario 
was chosen for input to the assessment used for management since it was the most 
data-driven approach and was consistent with the key conclusions drawn from the 
historical data. Discard estimates for the period 1980–2015 were used for the baseline 
stock assessment run, since there is no information on the minimum landing size pri-
or to 1981. The panel felt comfortable with the final discard estimates that were used 
in the assessment model. 

Apart from the discard issue, the review panel was happy to accept the proposed 
model configuration and appreciated the detailed examinations that were carried out 
prior to and during the benchmark review. 
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The group reviewed the selection choices for near-term projections for this stock and 
agreed with the analysts view that a 3-year mean for partial Fs and landing fractions 
was appropriate, as was the median recruitment estimates from 1992–2015. 

Whiting 

Issues addressed at the benchmark 

A characteristic of the available data was that the recent period (2004–2015) suggest 
greater negative slopes for the older whiting in both the surveys and in the fishery 
data. The fishery data was partially explainable because the catch has shifted to pri-
marily bycatch in the Nephrops fishery but the survey data suggest a higher mortality 
even though the catch has remained relatively low over this period. This was dis-
cussed at length and may reflect a change in natural mortality. 

The current assessment is based on survey trends and the analysts provided results 
from XSA and ASAP were presented. The group agreed that proceeding with the 
ASAP model framework for this assessment was appropriate. A broad array of con-
figurations were evaluated and the group stepped through decision points for final 
specifications. This included evaluating sensitivities for time-varying natural mortali-
ty (based on estimated changes in mean weight-at-age via the Lorenzen formula), the 
number of periods selectivity was allowed to change, specified CV on catch biomass 
estimates, effective sample sizes for composition data, CV assumed for index data, 
including FSP survey explicitly, and some minor output changes such as age range 
over which F was averaged. 

Use of final stock annex as basis for providing stock advice 

The review panel felt able accept the final model as suitable for use in assessments, 
and felt that a reasonable job had been done in exploring and evaluating the model 
settings. 

Regional Benchmark General comments 

In general having a Regional Benchmark covering similar fish was helpful in that it 
identified common trends, and allowed consistency in approaches between stocks. 
The fact that the same model was chosen for many of the stocks evaluated here facili-
tated this partial harmonization of approaches between stocks. It also allowed for the 
different stock assessors to borrow strength from each other, which facilitated the 
work. This is a region where many of the stocks experienced strong declines in bio-
mass, and consequent changes in selectivity, at around the same time. 

Having herring in the list of stocks was problematic due to the lack of herring exter-
nal experts and the fact that a long running intractable problem was included in the 
benchmark at a rather late stage (the proposed survey had not been evaluated at the 
data workshop). It may be sensible if regional benchmarks become the norm to have 
a separate place to address particularly difficult issues (where these can be identified 
in advance), and avoid them dominating over much of the regional benchmark. 

The panel was presented with a wide range of model approaches to assess the differ-
ent Irish Sea fish stocks subject to WKIrish3. A lot of work has been carried out on 
model choice and model improvement by sensitivity analyses of model settings. The 
model settings for the Irish Sea herring stock could not be agreed on during the meet-



ICES WKIrish3 REPORT 2017 |  199 

 

ing and the panel suggested a revision of the model settings during an inter-
benchmark workshop. 

The panel felt able to accept the final model settings for whiting, haddock and cod 
stocks and considered those model to be useful to provide the basis for stock assess-
ment and advice. After a successful resolution to the plaice discard estimation issue, 
the same can be said for the plaice assessment. A reasonable job had been done in 
exploring and evaluating the model settings. 
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Annex 12: Irish Sea herring-WKIrish3 follow-up document 2017 

Following the WKIrish3 benchmark, there were a few outstanding issues with the 
Irish Sea herring assessment model that were not agreed upon. Specifically the points 
to address were: 

• Examine the difference of the model with and without q=1. Until the point 
where the survey series started, apparently, the difference was minimal, 
but something happens once the survey time-series is added. Potentially it 
is not feasible to set q=1 for only part of the model time-series, however, if 
this is chosen, then it needs to be evaluated to ensure that it isn’t distorting 
the stock dynamics. 

• Thorough examination of the diagnostics is needed (effects on SSB, etc.); 
the benchmark did not have time enough to do these. 

The reviewers were also request to highlight any specific model runs. The following 
were requested: 

• For the two cases, i.e., excluding the SSB survey (case A) and with the SSB 
survey q set to 1 and CV of 0.4 (case B), provide the following: 
• output on variance terms estimated for the two cases; 
• ratio of the model-estimated mean SSB from 2007–2015 (the period of 

the "new" SSB series) relative to the period prior (and post decline, say 
from 1994–2006); 

• ratio of the average acoustic survey data index over the same periods 
(2007–2015 divided by the mean index values from 1994–2006). 

12.1 Comparing Irish Sea herring (ISH) without the spawning SSB survey 
(Original-Case A) and with the spawner survey (with a q set to 1, 
Q=1-Case B); including a thorough examination of the diagnostics 

Concern was raised at WKIrish3 that the trends seem to show different perceptions of 
stock status in the recent years compared to the period before ~2002, with or without 
the inclusion of the 7.aNSpawn survey. The dynamics are, in absolute terms, very 
similar (Figure 1.1). The concern, however, relates to catchability estimated for the 
main acoustic survey (AC_7.a(N)) used in the current assessment, which were lower 
under the two survey model configuration (noQ; for clarification the noQ refers to the 
fact that Q is not estimated the model with the default model assumption being Q=1 
and thus in effect setting it to 1). As catchability is an estimated parameter applicable 
to the entire time-series, it is unclear why stock trends are not be markedly different 
in the period before 2002. The same lower catchability would apply, suggesting that 
biomass would be estimated lower under the ‘original’ model configuration for the 
period before 2002 and this is clearly not the case. 
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Figure 1.1. Spawning–stock biomass (top panel), fishing mortality (middle panel) and recruitment 
(bottom panel) for the two different model configurations. 

For completeness, the detailed model residuals for the different runs are appended to 
this document: 

• The default assessment currently used to provide advice with the data 
starting in 1980 (Appendix 1 - defaultTS1980.pdf). 

• Same as the default above, but with no random walk on R. This is similar 
to the assessment labeled “original” in the figures (Appendix 2 - samISH-
NoRW.pdf). 

• Assessment with new SSB survey included, q=1 and var = 0.4. Assumption 
on random walk on R the same as in Appendix 2, i.e., no random walk. 
This is the same as the assessment labeled “noQ” in the figures (Appendix 3 
- samISHNoQSSBVar04NoRW.pdf). 
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An examination of the residual plots illustrates an equally good fit to all the models. 
The observed differences are generally small, but more significant differences are fur-
ther examined here. 

Notably, the differences in the random walk on R assumption improves the fit tre-
mendously for the youngest ages in the benchmark configured models, compared to 
the currently used assessment model. The two models with the no RW assumption 
have been taken forward, similar to what was presented at WKIrish3. 

The differences in parameter estimates between the two models are presented in Fig-
ure 1.2. Under the noQ model, the catchabilities for the acoustic survey are lower. 
This is explained by the increase in biomass estimated for the stock, being more in 
line with absolute acoustic survey estimates. The variance in the random walk for 
fishing mortalities increases with age and are generally larger than under the original 
model configuration. As the step-changes from year to year are higher in SSB and R, 
it implies higher step-changes in F as well and result in larger RW-F variances. The 
RW-N is not well estimated under the original model (hitting the pre-defined param-
eter boundary of a variance of 0.05), but is estimated appropriately under the noQ 
model. RW-N is bound to 0.05 in the original model, while it is estimated to be 0.1 
under the noQ model configuration (thus illustrated by a 100% change). The observa-
tion variances under the noQ model are generally smaller (less noisy) than under the 
original model configuration. 

 

Figure 1.2. Comparison of parameters estimated for the two model configurations, expressed as 
percentage difference. 
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An evaluation of the differences in parameter estimates does however, not provide 
explanation why the biomass pre-2002 are similar under both model configurations 
(while catchability decreases under the noQ model for the main acoustic survey). 
Therefore, the entire model fit was investigated through a comparison of the residu-
als by age and model configuration over time (Figure 1.3). 

The differences in the standardized residuals (Figure 1.3) show residuals under the 
original model configuration tend to be more negative for the period before 2002 and 
more positive for the period after 2002, in comparison with the noQ model configura-
tion. This implies that the acoustic survey fit is not just linked to catchability scaling, 
but a matter of data interpretation as a whole over the period. The fit to the data by 
the acoustic survey is tilted with a turning point around 2002. 

The summed standardized residuals for the two model configurations (Figure 1.4), as 
an illustration of the contribution to the log-likelihood for the acoustic survey, shows 
that the contribution for the noQ model is lower for all ages. 

Figure 1.3. Comparison of standardized residuals for the two model configurations. 
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Figure 1.4. Summed standardised residuals for the entire time-series by age for the two model 
configurations. 

12.2 SSB ratio comparison with the acoustic survey index between periods 

 Ratio 2007–2015 vs 1994–2006 

NoQ 2.579 

Original 2.000 

Acoustic 2.858 

For this statistic, the acoustic index has been converted to an SSB estimate by multi-
plying index-at-age with stock-weight-at-age and maturity-at-age (which are sam-
pled from that same acoustic survey). It shows the ratio between the 1994–2006 and 
2007–2015 periods for the model with a fixed catchability of 1 for the SSB survey, the 
ratio in the model without the SSB survey (original) and the data ratio in the acoustic 
survey. 

The comparison of ratio of the model estimated SSB to that derived from the acoustic 
survey index was further examined. Figure 2.1 compares the ratio of survey index 
and model estimated SSB for the survey and the two different assessments for “cur-
rent” and “historic” periods. The breakpoint is the point of split between the two pe-
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riods (e.g. a breakpoint to 2000 means that the periods compared were 2000–2015 vs. 
1994–1999; the statistics provided in the text table above has a breakpoint of 2007). 

 

Figure 2.1. Ratio of most recent period vs historic period in assessment without SSB survey (‘o’), 
in the acoustic survey (‘a’) and the model with the SSB survey catchability set to 1 (‘q’). 

The figure indicates that the trend in ratio is very similar between the two model con-
figurations, and that data-wise, the acoustic survey shows a clear breakpoint in 2007. 
This breakpoint is related to the interpretation of the influence of the SSB survey 
(which starts in 2007). From 2007 onwards, there is a larger absolute difference visible 
in the two assessment model configurations, which seems to coincide with the break-
point in acoustic survey data as well. 

12.3 Influence of catch data: investigating immigration–emigration model 
configurations 

As reported at WKIrish3, for the current assessment model, the stock trends are in-
formed to a larger extent by the catch than the survey data. In fact, a comparison be-
tween a VPA (without any tuning) and the assessment model estimated (with survey 
data), shows a very similar trend in SSB (Figure 3.1). The information from the catch 
dominating an assessment is something that is common across many stock assess-
ments, but not necessarily the ideal situation, especially if at sea observation gives a 
different perspective of stock size. 
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Figure 3.1. Stock summary trends for VPA (in red) compared to the SAM assessment (in blue). 

The model estimated SSB form the current assessment model (dominated by catch 
information is significantly lower than the SSB estimates generated from repeated 
acoustic surveys since 2007. This raises questions on the quality of the information 
coming from the data catch (nearly all landings are sampled, so there is not much 
scope to increase the quality of the data itself or the representativeness thereof). The 
migration patterns and mixing of stocks form different spawning origins are well 
documented. The catch data collected from a fishery operating on this “mixture” 
might be the cause of this mismatch. This was further investigated here, though a 
very preliminary analysis ultimately aimed to evaluate the quality of the signal com-
ing from the catch. 

Substantial immigration and emigration of herring in and out of the Irish Sea takes 
place. To account for the immigration and emigration of herring in the Irish Sea, two 
options were considered: 1) a data wise approach by which herring from different 
origin are separated in the catch and surveys, or 2) an assessment approach in which 
these processes are accounted for. The first approach has been attempted in the past, 
but proved expensive and also extremely difficult, due to evidence of mixing of her-
ring from different spawning origin seasons (winter and autumn) within the autumn 
spawning aggregations. The second approach was attempted here. 

In the SAM a catch-multiplier feature is embedded which allows, based on the fit to 
all the data, to multiply the catch-at-age numbers. This feature is recently evaluated 
in the ICES WKBALT meeting as a useful proxy for migration dynamics. 

From 1994 onwards, there are sufficient data available (more than only the catch da-
ta) to estimate catch multipliers. An overview of the estimated multipliers by age is 
given in Figure 3.2. An increasing (but uncertain) trend in catch multipliers have been 
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observed, which is in agreement with the biological understanding of immigration 
and emigration. 

 

Figure 3.2. Estimated catch multipliers by age for the period 1994–2015. 

The baseline situation is where no trend over time is assumed, (same catch multiplier 
by age for the period 1994–2015). To assess whether there is a trend over time, ages 1–
2, 3–6 and 7–8 are bound together to reduce the amount of parameters to estimate in 
the model. Three time period blocks were considered, i.e. 1994–2001, 2002–2008 and 
2009–2015 (each ~7 years). Under the baseline “no-year-trend” analysis, the AIC of 
the model fit equals 954 and for the three block-trend analyses, the AIC amounts to 
936, indicated a substantially better fit. The catch multipliers increase substantially in 
the 2000s compared to the 1990s (Figure 3.3). There could be several reasons for this, 
e.g. 1) Irish Sea herring migration rates have increased, 2) the catch information is no 
longer informative on year-class strength (owing to temporal window being very 
short (1–2 week fishing season)), 3) changes in migration rates of other stocks have 
changed (e.g. Celtic Sea herring). Note that in this analysis the catchability for the SSB 
survey is estimated freely, and the parameter estimates of the catch multipliers is 
based especially on age data coming from the catch and the acoustic survey. 
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Figure 3.3. Estimated catch multipliers by age and ~7 year period (‘9’ being 1994–2001, ‘0’ being 
2002–2008 and ‘1’ being 2009–2015). 

12.4 Discussion and conclusion 

The primary issue with the current perception of stock status of Irish Sea herring is 
trying to reconcile the SAM model estimates of stock size (primarily driven by catch 
data), and the much higher estimate of stock size estimates from nine years of repeat 
surveys that specifically focussed on the spawning population within the Irish Sea. 
This is clearly not an ideal situation to form the basis of advice. 

By design, acoustic surveys are designed to get an as absolute estimate of stock bio-
mass as possible, which would result in a catchability of ~1. The current assessment 
estimates catchability to be around ~2.5 for the acoustic survey. During the WKIrish3 
benchmark, an attempt was made to improve the assessment of stock by including an 
acoustically derived spawning–stock biomass survey in the assessment model. This 
had little influence on the model estimates. To try to reconcile the model output with 
at-sea observation, an assessment was proposed with the catchability of the spawn-
ing–stock biomass survey set to 1. In effect, this constrains the model to give more 
weight to the absolute SSB observed at sea. There are, of course, a number of acoustic 
survey assumptions made to derive at this point, and this was discussed thoroughly 
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at the benchmark. In an attempt to accommodate this, the variance of the catchability 
was set at 0.4 (which is the same as what it is when catchability is allowed to be esti-
mated by the model), rather than fixing the variance at a very low value as was ini-
tially proposed. 

A few issues with the model fit remained unresolved, and what has been addressed 
in this document. A thorough examination of the diagnostics was done, comparing 
an assessment without the SSB survey (Original - Case A) and with the SSB survey 
(with a q set to 1, Q=1 - Case B). The observation variances for the assessment with 
the spawning survey included (with catchability at 1) were found to be generally 
smaller (less noisy) and the summed standardized residuals lower than for the as-
sessment without this survey. Thus, indicating an improved assessment model. 

An investigation of the fit of the assessment model over the entire time-series and the 
apparent change to the model only during the recent period that overlapped with the 
spawning survey data period was explained. The analysis shows that the acoustic 
survey fit was not just linked to catchability scaling, but rather a matter of data inter-
pretation as a whole over the period. The fit to the data by the acoustic survey is tilted 
with a turning point around 2002. 

A preliminary investigate on the quality of the catch data also indicated that there are 
very significant issues with the catch data, on which the current assessment and ad-
vice is based on. This provides further rational for finding an assessment solution that 
deviates from the catch data and provides more weight to robust survey observa-
tions. 

All the concerns from the benchmark have been satisfactorily addressed, and did not 
highlight any major issues that could not be explained. In general, the assessment 
model fit has been improved in the proposed model where the SSB survey is includ-
ed at the catchability set to 1. Given that the primary aim is to provide credible scien-
tific advice, the best proposal on this trade-off scenario (neither of which are ideal), is 
to base the assessment and advice on a more balanced assessment model. 
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Annex 13: Herring NIRS MSY evaluations 

See below. 



Herring NIRS msy evaluations
HAWG / WKIRISH - post review

1st June 2017

The ICES approach to setting Reference Points

This Markdown document outlines the steps involved in estimating PA and MSY reference points for Northern
Irish Sea herring as part of the WKIRISH3 benchmark. The outputs of individual Eqsim runs can have small
varaiations at the 3rd decimal place. The recruimnet age is shifted by 2 years.

## Warning: replacing previous import 'FLCore::tail' by 'utils::tail' when
## loading 'FLSAM'

SSB summary and recruitment summary

Next set some parameters - for autumn spawning herring S/R pairs recruiment is offset by two years.
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The first step in the process is to examine the stock and recruit pairs and decide on a Blim value. The default
is approach is to choose the SSB value below which recruitment reduces with SSB, e.g. the change point of
a segmented regression. However you should use the technical guidelines document to guide your expert
decision.
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In the case of Northern Irish Sea herring it is identified as a ‘TYPE 1’ stock - Spasmodic stocks - stockswith
occasional large year classes.The lowest SBB at which above average recruitment has been observed.

Blim of 8500t is based on the lowest SSB with above average recruitment (8451t)

Table 1. Summary of values for SSB and recruitment

SSB ref value SSB Estimate
Terminal SSB 25868t
Min observed 5611t
50th Percentile 15203t
75th Percentile 20510t
Max observed 25868t
Average Recruitment 186541t
Lowest SSB 8451t

Fix for zero weights If there are a few zeros in the catch and stock weights and numbers that produces NaNs
so this is a fix to fill them in with a low value.

Estimating the breakpoint stochastically

The msy package can be use to estimate the break-point stochastically, as a candidate of Blim, using
segemented regression. In the case of Northern Irish Sea herring the break-point is much higher that that
derived by the technical guidance. Figure 2 below gives the estimates of the stochastic breakpoints as
estimated by the segmented regression and that using a fixed breakpoint at 8500t.

While the fit to the Stock - Recruit pairs may be better (86% vs. 14%) the use of this method to select Blim
as “A deterministic biomass limit below which a stock is considered to have reduced reproductive capacity.”
is not appropiate especially given highest observed recruitment occurred below this point.
SetBlim<- 8500
FixedBlim<-function (ab, ssb)
{log(ifelse(ssb >= SetBlim, ab$a * SetBlim, ab$a * ssb))}

fit <- eqsr_fit_shift(stock, nsamp = 1000, models = c("Segreg","FixedBlim"), rshift = 2)
eqsr_plot(fit,ggPlot=FALSE)
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Figure 2. Fitted and Fixed segmented regression breakpoints of stock - recruit relationships. The fixed
breakpoint and fitted segmented regession breakpoints of the Northern Irish Sea herring stock - recruit
relationships. The yellow line in is the model averaged fit based on AIC.

Uncertainty parameters

In the ICES approach Bpa is the estimated SSB which ensures that the true SSB has less than 5% probability
of being below Blim. In practice this requires an estimate of sigma, the standard deviation of ln(SSB) at the
start of the year following the terminal year of the assessment.

The SSBcv from the final year of the Northern Irish Sea herring assessment is 0.201 and Fcv is 0.231.

Refernce Point Estimate
Blim 8500t
Bpa 11831t

Estimating Fmsy using model averaged stock recruit relationship

The base Eqsim analysis largely uses default settings for the input parameters: Selection pattern is the default
10 year range. Biological parameters is the default of 10 years. The scan sequence is fairly granular to have
more consistent interpolations. The uncertainties are as specified above.

In the case of the Northern Irish Sea herring we use a model averaged stock recruit relationship of segmented
regression, Berton-Holt and Ricker models. This is considered appropriate guven the equal weighting of the
separate models. Blim and Bpa are set from the analysis above with Blim from the stock recruit pairs as
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8500t as having a priori ruled out the segmented regression alone as a S/R relationship.
fit <- eqsr_fit_shift(stock, nsamp = 1000, models = c("Segreg","Ricker", "Bevholt"), rshift = 2)
eqsr_plot(fit,ggPlot=FALSE)
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Figure 3. Model averaged stock recruit relationship

Run with with Blim = 8500t, error and model averaged stock recruit relation-
ships

Step 1

setup <- list(data = stock,
bio.years = c(2007,2016),
bio.const = FALSE,
sel.years = c(2007,2016),
sel.const = FALSE,
Fscan = seq(0,1.5,by=0.05),
Fcv = Fcv, Fphi = 0.423,
Blim = blim,
Btrigger = NA,
Bpa = Bpa(blim, SSBcv),
extreme.trim=c(0.05,0.95)

)
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res <- within(setup,
{

fit <- eqsr_fit_shift(stock, nsamp = 1000, models = c("Segreg", "Ricker", "Bevholt"), rshift = 2)
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,

sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa,
extreme.trim = extreme.trim, verbose = FALSE)

})

knitr::kable(t(res$sim$Refs2), digits=c(3,3,0,0,0,0))

catF lanF catch landings catB lanB
F05 0.257 NA 4717 NA 16343 NA
F10 0.282 NA 4701 NA 14782 NA
F50 0.401 NA 4108 NA 8503 NA
medianMSY NA 0.266 NA 4707 NA 15740
meanMSY 0.250 0.250 4722 4693 16795 16795
Medlower NA 0.198 NA 4465 NA 20602
Meanlower NA 0.195 NA 4653 NA NA
Medupper NA 0.345 NA 4466 NA 11106
Meanupper NA 0.332 NA 4653 NA NA

Fmsy is initially calculated as the F that maximizes median long-term yield in stochastic simulation under
constant F exploitation (i.e. without MSY Btrigger). In figure 3 below we see that the median estimate of
Fmsy is 0.266 which is expected to generate median landings of 4706.745 t.
fmsy<-round((res$sim$Refs2["lanF", "medianMSY"]),3)
eqsim_plot_range(res$sim, type="median")
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Figure 4: Yield curve and FMSY upper and lower ranges (vertical blue lines) and Flim upper and lower
ranges (vertical green lines) for the segmented regression recruit model. Fmsy median point estimates and
upper and lower bound are given. The value for median SSB corresponding to the lower and upper Fmsy
bounds are also shown on the plot.

Fpa (Segmented regression stock recruit relationship)

Following the ICES procedure we need to calculate the Fpa because if Fmsy is greater than Fpa then we
reduce Fmsy to Fpa

Eqsim is run with no error to estimate Flim with segmented regression with breakpoint at BLim.

To calulate Flim we use a loess smoother to predict the F that has a 50% probability of bringing the stock to
Blim.
setup <- list(data = stock,

bio.years = c(2007,2016),
bio.const = FALSE,
sel.years = c(2007,2016),
sel.const = FALSE,
Fscan = seq(0,1.5,by=0.05),
Fcv = 0, Fphi = 0,
Blim = blim,
Btrigger = NA,
Bpa = Bpa(blim, SSBcv),
extreme.trim=c(0.05,0.95)

)
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res <- within(setup,
{

fit <- eqsr_fit_shift(stock, nsamp = 1000, models = c("FixedBlim"), rshift = 2)
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,

sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa,
extreme.trim = extreme.trim, verbose = FALSE)

})

data.95<-res$sim$rbp
x.95<-data.95[data.95$variable == "Spawning stock biomass",]$Ftarget
b.95<-data.95[data.95$variable == "Spawning stock biomass",]$p50
b.lm<-loess(x.95~b.95)
(flim<-predict(b.lm, blim))

## [1] 0.3973859
(fpa<-Fpa(flim, .2))

## [1] 0.285976
fmsy<-ifelse(fmsy>fpa,fpa,fmsy)

Running the code with no error gives an estimate of Flim = 0.397, and estimate of Fpa = 0.286.

MSY Btrigger without error and model averaged stock recruit relationships

Following the ICES procedure we calculate, with no assessment/advice errorand Btrigger = 0 A similar
approach is used to estimate the MSYBtrigger you would get from the analysis to test if this is higher than
Bpa.
setup <- list(data = stock,

bio.years = c(2007,2016),
bio.const = FALSE,
sel.years = c(2007,2016),
sel.const = FALSE,
Fscan = seq(0,1.5,by=0.05),
Fcv = 0, Fphi = 0,
Blim = blim,
Btrigger = 0,
Bpa = Bpa(blim, SSBcv),
extreme.trim=c(0.05,0.95)

)

res <- within(setup,
{

fit <- eqsr_fit_shift(stock, nsamp = 1000, models = c("Segreg", "Ricker", "Bevholt"), rshift = 2)
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,

sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa, Btrigger = 0,
extreme.trim = extreme.trim, verbose = FALSE)

})
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data.05<-res$sim$rbp
x.05 <- data.05[data.05$variable == "Spawning stock biomass", ]$Ftarget
b.05 <- data.05[data.05$variable == "Spawning stock biomass", ]$p05
plot(b.05~x.05, ylab="SSB", xlab="F")

0.0 0.5 1.0 1.5

0
50

00
15

00
0

25
00

0

F

S
S

B

b.lm <- loess(b.05 ~ x.05)
(msybtrig <- predict(b.lm, fmsy))

## [1] 8632.065
msybtrig<-ifelse(msybtrig<bpa,bpa,msybtrig)

This gives MSYBtrigger of 11831t (Bfmsy). Northern Irish Sea herring has been fished at, or below Fmsy for
> 5years. The 5th percentile of Bfmsy 11831t is smaller than Bpa 11831t MSYBtrigger is Bpa 11831t

ICES Advice rule - assessment error and Btrigger and model averaged stock recruit relation-
ships

The next step is to evaluate the ICES advice run via the stochastic simulation with these values of FMSY
and MSY Btrigger. If the F5% in this run is larger than the candidate Fmsy the the initial Fmsy is reduced
to F5%.

So EqSim is run again this time including the selected MSY Btrigger value and error.
setup <- list(data = stock,

bio.years = c(2007, 2016),
bio.const = FALSE,
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sel.years = c(2007, 2016),
sel.const = FALSE,
Fscan = seq(0, 1.5, by=0.025),
Fcv = Fcv, Fphi = 0.423,
Blim = blim,
Btrigger = msybtrig,
Bpa = bpa,
extreme.trim=c(0.05,0.95)

)
res <- within(setup,

{
fit <- eqsr_fit_shift(stock, nsamp = 1000, models = c("Segreg", "Ricker", "Bevholt"), rshift = 2)
sim <- eqsim_run(fit, bio.years = bio.years, bio.const = bio.const,

sel.years = sel.years, sel.const = sel.const, Fscan = Fscan,
Fcv = Fcv, Fphi = Fphi, Blim = Blim, Bpa = Bpa,Btrigger = Btrigger,
extreme.trim = extreme.trim, verbose = FALSE)

})

eqsim_plot_range(res$sim, type="median")
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ffmsy<-round((res$sim$Refs2[2,4]),3)
ff5<-round<- round((res$sim$Refs["catF", "F05"]),3)
fmsy<-ifelse(ff5>fmsy,fmsy, ff5)

Fmsy estimated as to 0.266

Reference Point Value Rationale
MSY Btrigger 11831t 5th percentile of SSB when fishing at Fmsy
Fmsy 0.266 Median point estimates of (F05) EqSim with combined SR
Blim 8500t Lowest SBB with above ave recruitment
Bpa 11831t Blim combined with the assessment error
Flim 0.397 F with 50% probability of SSB less than Blim
Fpa 0.286 Flim combined with the assessment error
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