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Executive summary 

The Working Group on Effectiveness of Recovery Actions for Atlantic Salmon (WGER-
AAS) was established in 2012 in response to a question to ICES Working Group on North 
Atlantic Salmon (WGNAS) by the North Atlantic Salmon Conservation Organisation 
(NASCO). The NASCO question resulted in a new ToR for WGNAS: “provide a review 
of examples of successes and failures in wild salmon restoration and rehabilitation and 
develop a classification of activities which could be recommended under various condi-
tions or threats to the persistence of populations”.  

WGERAAS met on 18–22 February 2013 in Belfast, Northern Ireland; 12–16 May 2014 at 
ICES HQ, Copenhagen, Denmark; and on 10–12 November 2015 for a third and final time 
at that same location.   

At the 2013 meeting the Working Group decided that the development of a ‘classification 
system’ for rebuilding and recovery actions for Atlantic salmon (ToR a) would be best 
achieved by the development of a river-specific database; ‘Database on Effectiveness of 
Recovery Actions for Atlantic Salmon’ (DBERAAS). Local experts provided a range-wide 
overview of conservation status, programme goals, population stressors and the benefits 
of recovery actions. To further highlight the results from DBERAAS detailed case studies 
were compiled and presented on a number of rivers, providing ‘on-the-ground’ examples 
of the effects of stressors, benefit of actions, and the results of recovery and rebuilding 
programmes.  

An analysis of DBERAAS suggested that Climate Change (resulting in low marine sur-
vival), barriers to migration, and habitat destruction were the most common stressors 
having a high or very high negative impact on Atlantic salmon populations. Improve-
ments in river connectivity, improvements in water quality, and habitat restoration were 
the three actions most likely to have a high or very high benefit to recovery and restora-
tion actions. The case studies were largely in agreement with the results from DBERAAS, 
and further highlighted that successful restoration and recovery actions are generally 
characterised by being conducted on stocks experiencing relatively high marine survival, 
with few stressors acting on the stock thereby reducing synergistic and additive effects, 
with actions addressing most or all stressors, and not relying (solely) on stocking. 

The Working Group recommends that the primary principles of any recovery or restora-
tion programme for Atlantic salmon should to be founded on habitat restoration and 
protection combined with sound management based on population monitoring. As 
stocking poses substantial risks to wild salmon populations a time-limited stocking pro-
gramme should only be considered in cases where population extirpation is imminent 
and should not inhibit the use of other restoration and recovery actions. Also recom-
mended is pre- and post-project evaluation and continuous monitoring of restora-
tion/recovery programmes to assess costs, benefits and impacts. Outcomes of such 
studies should be published in order to inform stakeholders and contribute towards a 
better understanding of restoration/recovery action successes and failures. 

The Working Group does not suggest any follow-up work. Suggestions for follow-up 
work should come from WGNAS or NASCO after review of this report. 
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1 Administrative details 

Working Group name 

Working Group on Effectiveness of Recovery Actions for Atlantic Salmon (WGERAAS) 

Year of Appointment 

2013 

Reporting year concluding the current three-year cycle 

2015 

Chair(s) 

Dennis Ensing, UK 

Meeting venues and dates 

18–22 February 2013; AFBINI Headquarters, Belfast, UK (Participants: 23)  

12–16 May 2014; ICES HQ, Copenhagen, Denmark (Participants: 7) 

10–12 November 2015; ICES HQ, Copenhagen, Denmark (Participants: 3) 

 

2 Terms of Reference 

a ) develop a classification system for recovery / re-building programs for Atlantic 
salmon, including threats to populations, population status, life history attrib-
utes, actions taken to re-build populations, program goals, and metrics for 
evaluating the success of re-building programs;  

b ) populate the system by collecting data on recovery / re-building programs for 
Atlantic salmon populations from around the North Atlantic; 

c ) summarize the resulting data set to determine the conditions under which var-
ious recovery / re-building actions are successful and when they are not; 

d ) provide recommendations on appropriate recovery / rebuilding actions for At-
lantic salmon given threats to populations, status and life history. 

3 Summary of Work plan 

At the first meeting the Working Group decided that the development of a ‘classification 
system’ for rebuilding and recovery actions for Atlantic salmon would be best achieved 
by the development of a river-specific database, DBERAAS (Data Base on Effectiveness of 
Recovery Actions for Atlantic salmon). This database would ideally list all salmon rivers 
in the North Atlantic and contain information on conservation status, population stress-
ors, and recovery actions undertaken. An analysis of the completed DBERAAS, which 
fully completed would comprise of 2773 rivers, would allow for a North Atlantic wide 
assessment of conservation status and an overview and detailed analysis of population 



4  | ICES WGERAAS REPORT 2015 

 

stressors, recovery and rebuilding actions, and the effects of recovery and rebuilding 
actions across varying spatial scales. 

To further highlight the results from the DBERAAS detailed case studies were compiled 
and presented on a number of rivers, providing ‘on-the-ground’ examples of the effects 
of stressors and the results of recovery and rebuilding actions. 

At the second WGERAAS meeting DBERAAS was further developed and a guide was 
produced to assist contributors in populating the database. 

At the third WGERAAS meeting an analysis of a partially filled in DBERAAS was con-
ducted in order to investigate the potential of a fully populated database. The results 
were discussed in detail in the 2014 Interim Report and the working group was of the 
opinion that the analysis presented in the report was a good example of the potential of 
the database to address the ToRs successfully. At the third meeting various case studies 
were also discussed and a standard format for case studies was adopted. Following this 
meeting requests went out to representatives from all countries contributing to WGNAS 
and WGBAST (Assessment Working Group on Baltic Salmon and Trout) to populate 
DBERAAS and to provide relevant case studies of successful and/or unsuccessful restora-
tion and recovery actions for Atlantic salmon. 

After discussions at WGNAS 2015 and a suggestion from NASCO the working group 
decided to address the ToRs by focusing on the case studies, with DBERAAS in a sup-
porting role. 

At the fourth WGERAAS meeting DBERAAS, as far as populated, was analysed. Case 
studies were discussed and used to answer the ToRs, with supporting information pro-
vided by peer-reviewed studies, ICES Working Group documents, and DBERAAS. 

 

4 Summary of Achievements of the WG during 3-year term 

• Presentation to ICES Working Group North Atlantic Salmon (WGNAS), Co-
penhagen, Denmark, 2013.  

• Contribution to the Symposium: “What works? A Workshop on Wild Atlantic 
Salmon Recovery Programs.” St. Andrews, New Brunswick, Canada, 2013. 

• Presentation to ICES Working Group North Atlantic Salmon (WGNAS), Co-
penhagen, Denmark, 2014. 

• Presentation to ICES Working Group on the Science Requirements to Support 
Conservation, Restoration and Management of Diadromous Species 
(WGRECORDS), A Coruna, Spain, 2014. 

• Presentation to ICES Working Group North Atlantic Salmon (WGNAS), Monc-
ton, New Brunswick, Canada, 2015. 

• Presentation to ICES Working Group on the Science Requirements to Support 
Conservation, Restoration and Management of Diadromous Species 
(WGRECORDS), Copenhagen, Denmark, 2015. 

• Data Base on Effectiveness of Recovery Actions for Atlantic Salmon (DBER-
AAS) completed, 2015. To be hosted permanently by NASCO? 
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• Presentation to ICES Working Group North Atlantic Salmon (WGNAS), Co-
penhagen, Denmark, 2016. 

• Presentation to North Atlantic Salmon Conservation Organisation (NASCO) 
annual meeting, Bad Neuenahr, Germany, 2016. 

• Presentation to ICES Working Group on the Science Requirements to Support 
Conservation, Restoration and Management of Diadromous Species 
(WGRECORDS), Riga, Latvia, 2016. 

• Presentation to ICES Working Group North Atlantic Salmon (WGNAS), Co-
penhagen, Denmark, 2017. 

• Presentation to North Atlantic Salmon Conservation Organisation (NASCO) 
annual meeting, Varberg, Sweden, 2017. 

5 Final report on ToRs, workplan and Science Implementation Plan 

5.1 Background 

The Working Group on Effectiveness of Recovery Actions for Atlantic Salmon (WGER-
AAS) was established in 2012 in response to a question to ICES Working Group on North 
Atlantic Salmon (WGNAS) by the North Atlantic Salmon Conservation Organisation 
(NASCO). The NASCO question resulted in a new ToR for WGNAS: “provide a review 
of examples of successes and failures in wild salmon restoration and rehabilitation and 
develop a classification of activities which could be recommended under various condi-
tions or threats to the persistence of populations”. WGERAAS was established to answer 
this WGNAS ToR.  

5.2 Data Base on Effectiveness of Recovery Actions for Atlantic Salmon 
(DBERAAS) 

Introduction 

For the data population of DBERAAS a template was developed including descriptive 
information for each Atlantic salmon river (name, location, ID) as well as general catego-
ries of information such as population status, threats to populations (i.e. Stressors), life 
history characteristics, actions taken to rebuild populations (i.e. Recovery actions), pro-
gram goals and metrics for evaluating the success. Definitions for these categories and 
how they are assessed are provided below. 

• Threats to populations (i.e. Stressor) – an agent or event that causes a demo-
graphic impact on the population. See table 1 for a list of stressors, table 2 lists 
assessment of stressor impacts and their definitions. 

• Population status – categorical measure of population productivity against CL 
attainment based on adult monitoring/catch data, juvenile abundance 
measures, other stock status indicators or expert opinion.  

• Life history attributes – this assessment was not segregated by individual 
population life history attributes given the difficulty in accomplishing the as-
sessment for the population as a whole. 
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• Actions taken to re-build populations (i.e. Recovery action) – an action aimed 
to relieve or reverse the demographic impact of one or multiple stressors on 
the population. See table 3 for a list of recovery actions.  

• Program goals – description of the overarching goals of the recovery actions. 
• Metrics for evaluating the success – In an effort to reduce the workload associ-

ated with populating the database, a description of what metrics were used to 
assess the effect of the recovery action were not included, as the provided data 
are assumed to represent the best available information as provided by the re-
gional experts. Metrics are presented within individual case studies (ToR c). 

Atlantic salmon rivers listed in the NASCO Rivers database and in the HELCOM Baltic 
river database were combined to form a new database designed for WGERAAS called 
‘Database on Effectiveness of Recovery Actions for Atlantic salmon’ (DBERAAS). Rivers 
identified by regional experts that were missing from the combined river databases were 
included in the database. Rivers from Iceland, currently not a NASCO member state, 
were also added to DBERAAS.  For each individual river the impact of 12 stressors was 
assessed (Table 1), taking into account the stressor impact definitions (Table 2). Also re-
quired was an assessment of the benefits of 11 recovery/rebuilding actions (Table 3), tak-
ing into account the given recovery/rebuilding benefit definitions (Table 4). The 
recovery/rebuilding actions benefits were assessed against Conservation Limit attain-
ment. The Working Group considered and discussed at length the various metrics 
against which the effects of recovery and rebuilding actions could be measured, and fi-
nally settled on using Conservation Limit attainment. The main reason behind the choice 
for CL attainment was that NASCO, who defines CL as the spawning stock level that 
produces maximum sustainable yield, requires that stocks are maintained above their 
CL. As a result CL attainment is annually assessed in many Atlantic salmon stocks and is 
therefore an appropriate biological reference point to measure the effects of recovery and 
restoration actions against. However, the Working Group acknowledges that in some 
countries and for certain restoration/recovery projects other metrics were used against 
which success was evaluated. The validity of different approaches is not disputed, but for 
the purpose of this study all projects were evaluated against CL attainment. This can, in 
some cases, result in different conclusions on project success of the same project evaluat-
ed here and in other publications. 

In addition population status (Table 5) before the recovery/rebuilding actions com-
menced needed to be selected, as was the recovery programme goal (Table 6), for each 
population entered in DBERAAS.  

A complete list of all DBERAAS entry categories is given below. 

NASCO River ID  

Helcom River ID  

Party  

Country  

Region/Province  

River name  
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E/W  

Decimal latitude 

Decimal longitude 

Population status 

Recovery action? 

Program goals  

Stressor 1 Pollution 

Stressor 2 Barriers 

Stressor 3 Water Regulation 

Stressor 4 Exploitation 

Stressor 5 Aquaculture 

Stressor 6 Habitat Degradation 

Stressor 7 Diseases/Parasites 

Stressor 8 Climate Change 

Stressor 9 Invasives 

Stressor 10 Stocking 

Stressor 11 Predators 

Stressor 12 Other 

Action 1 Stocking 

Action 2 Improved connectivity 

Action 3 Habitat restoration 

Action 4 Improved water quality 

Action 5 Reduction fishing mortality 

Action 6 Predator control 

Action 7 Invasive species removal/control 

Action 8 Farmed fish removal 

Action 9 Flow management 

Action 10 Parasite/disease control 

Action 11 Other 

Comments stressors 

Comments actions 

Name assessor  
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DBERAAS was used to assess the conservation status of Atlantic salmon populations, 
assess the prevalence of population stressors, assess the application of recovery and re-
building actions, and assess the efficacy of recovery and rebuilding actions in the North 
Atlantic and Baltic areas. 

Stressors 

In this section the 12 Stressors are discussed in more detail. 

Pollution 

The stressor pollution, in the context of this study, is defined as organic and inorganic 
pollutants having a negative effect on the abundance of adult Atlantic salmon in a partic-
ular river. For the purpose of this study this also includes acidification, which was not 
given a specific stressor category of its own. Other main categories of pollutants are halo-
genated and non-halogenated hydrocarbons, organometals, non-organic metals, and 
organic substances. Pollution has been widely reported as one of the main causes for the 
decline of Atlantic salmon stocks (Hindar, 2003, Parrish et al., 1998). 

Pollutants can affect fish directly or indirectly. An example of the former is damage to the 
DNA of an individual as a result of exposure to pollution. This damage caused by oxida-
tive radicals or by mutagenic chemicals can result in mutations and tumour formation, 
which can lead to death of the individual, diseases and malformations in the next genera-
tion, or (in case of recessive mutations) have detrimental effects on the population viabil-
ity in the long term (Cajaraville et al., 2003). An example of pollutants having an indirect 
effect on salmon populations is eutrophication. Anthropogenic activities have increased 
the natural rate of nutrient input (nitrogen and phosphorous) in the earth’s terrestrial and 
aquatic environments and atmosphere. In the case of nitrogen this has increased to which 
is double the natural input (Smith et al., 1999). Sources of this increased nitrogen and 
phosphorous input include agricultural fertilisers, animal manures, combustion of fossil 
fuels (Smith et al., 1999), and aquaculture activities (Cao et al., 2007, Brown et al., 1987). 
When these nutrients reach the aquatic environment they contribute to excessive weed 
growth, algal blooms, and blooms of cyanobacteria (Carpenter et al., 1998). Algae and 
cyanobacteria can release toxins that are harmful to fish, and decomposing algae and 
weeds can cause deoxygenation of water which can be lethal to fish (Carpenter et al., 
1998), especially fish species with low tolerances to low oxygen conditions, such as Atlan-
tic salmon (Davis, 1975). Eutrophication has been identified as a having a negative effect 
on salmonid juvenile densities in streams (Miltner et al., 1998, McGarrigle, 1993) and is 
regarded as the most widespread water quality problem in the USA and many other 
countries (Carpenter et al., 1998). 

Acidification of aquatic habitats is caused by acid deposition, commonly referred to as 
‘acid rain’, as a result of large quantities of nitrates and sulphites released into the atmos-
phere by coal-fired powerplants and other industries (McCormick et al., 2009). Effects of 
acid rain on aquatic ecosystems range from increased water acidity (i.e. decreased pH), 
reduced buffering capacity of waterbodies and the surrounding soils, and increases in 
concentrations of aluminium and other metals (McCormick et al., 2009, Mant et al., 2013). 
In regions where the substrate is base-poor, effects of acid rain are particularly pro-
nounced as the capacity to neutralise these acids is very limited. Examples of such re-
gions are Scandinavia and eastern Nova Scotia (Canada). The gills of a fish, an organ 
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involved in osmoregulation and respiration is the main site of aluminium and acid toxici-
ty (Gensemer and Playle, 1999). Aluminium can accumulate on the surface and within 
the gill, where it can damage the branchial epithelium, resulting in loss of ion regulatory 
function as a consequence of increased permeability of the branchial epithelium and an 
inhibition of active ion uptake (Monette and McCormick, 2008). All Atlantic salmon life 
stages can be affected by acidification, but during the smoltification process, a period 
during which large physiological changes occur to facilitate the transition from a fresh-
water to a marine environment, salmon are particularly sensitive to exposure to in-
creased acid/aluminium concentrations (Mant et al., 2013, McCormick et al., 2009, Monette 
and McCormick, 2008) and even short-term exposure to moderately acidified freshwater 
conditions can cause reduced seawater tolerance and higher mortality in the post-smolt 
phase (Thorstad et al., 2013). Regions chronically affected by acidification such as Norway 
and eastern Nova Scotia have seen Atlantic salmon extirpated from some rivers as a re-
sult of this issue (Clair and Hindar, 2005). Even in regions which experience episodic 
acidification events, lasting only a few days, such events can cause mortality and thus 
negatively impact on salmon populations (McCormick et al., 2009). The effects of acidifi-
cation however vary quite considerably between rivers and regions as a result of differ-
ences in genetic variation between populations to tolerance to acidic water (Gjedrem and 
Rosseland, 2012) and between-river differences in the Total Organic Carbon (TOC) con-
tent, which can bind toxic inorganic aluminium and thus reduce its concentration 
(Rosseland and Kroglund, 2011). Hesthagen and Hansen (1991) reported the (near) extir-
pation of Atlantic salmon from 25 Norwegian rivers and estimated the annual losses of 
Norwegian salmon due to acidification in the late 1980s between 90 000 and 300 000 indi-
viduals.   

Pollution through discharges from the mining industry into rivers and streams has also 
been reported as having a negative effect on Atlantic salmon populations (Saunders and 
Sprague, 1967). Laboratory experiments have confirmed that chemicals from mine dis-
charges can be toxic to Atlantic salmon (Dubé et al., 2005, Olsvik et al., 2015), yet examples 
of this in peer-reviewed literature are relatively scarce in relation to Atlantic salmon. 

Various other environmental contaminants have been shown to influence the osmoregu-
latory function of salmon, restricting the ability of smolts to adapt physiologically to sa-
line conditions once they enter the marine environment (McCormick et al., 2009). These 
contaminants include pesticides (Fairchild et al., 2002; Moore et al., 2007, 2008; Waring 
and Moore, 2004), oestrogenic compounds (Fairchild et al., 1999) and brominated flame 
retardants (Lower and Moore, 2007). For example, the exposure of juvenile Atlantic 
salmon to the widely used pesticide atrazine during the parr–smolt transformation re-
duces gill Na+K+ATPase activity, reduces the ability to adapt to salt water, and increases 
the mortality of smolts on exposure to full-strength seawater (Moore et al., 2003; Waring 
and Moore, 2004). 

Barriers 

There are many types of barrier to migration present in the habitat of Atlantic salmon. 
Examples of such barriers are weirs, shipping locks, fish traps, hydroelectric dams, diver-
sion dams, closure dams, culverts, and (tidal) barrages. 

Barriers can have various negative impacts on Atlantic salmon populations. A very obvi-
ous impact is the habitat loss due to dam construction. Especially when barriers com-
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pletely block access (i.e. are impassable), large areas of a watershed can become inacces-
sible to migrating salmonids, with the resulting habitat loss causing extirpation of entire 
populations (Sheer and Steel, 2006). Other effects of barriers are increased mortality as a 
result of delayed migration of both adult and juvenile life-stages (Garcia de Leaniz, 2008, 
Marschall et al., 2011, Stich et al., 2015), increased predation due to aggregation of preda-
tors near barriers (Lawrence et al., 2016), lethal injuries resulting from turbine blade 
strikes in hydroelectric dam (Ferguson et al., 2008) or tidal barrage turbines, and delayed 
mortality effects as a result of behavioural and/or physiological stress of hydro dam pas-
sage (Budy et al., 2002). 

Even barriers that are partially passable to fish can have a significant effect on flow and 
temperature regimes, sediment transport, and water chemistry, and can for instance dis-
rupt natural gravel recruitment downstream of the barrier causing degradation of 
spawning habitat, resulting in lower juvenile recruitment (Garcia de Leaniz, 2008). In 
addition the cumulative effects of a series of partially passable barriers may be very se-
vere even if the negative effects of a single barrier are negligible (Naughton et al., 2005, 
McKay et al., 2013). Recent work in the US has demonstrated a significant latent mortality 
affect from passing multiple hydro-electric facilities being realized in later stages of mi-
gration. Stich et al. (2015) showed that estuarine mortality of outmigrating Atlantic salm-
on smolts increased by approximately 5–6% for each dam passed. It is estimated that in 
the USA alone there might be as many as two million in-river barriers of all sizes (Graf, 
2003), while in Europe over 7 000 large (>15m) in-river barriers exist (Limburg and 
Waldman, 2009). The possible cumulative negative effects of all such structures com-
bined on the connectivity of riverine habitat, and thus Atlantic salmon persistence, could 
be very significant. 

Barriers are therefore commonly reported in the peer-reviewed literature as a major 
cause for the decline and extirpation of Atlantic salmon stocks throughout the range of 
this species (Parrish et al., 1998, MacCrimmon and Gots, 1979). This process likely started 
with the expansion of watermill technology across Europe as early as the Middle Ages 
(Lenders et al., 2016). 

Water Regulation 

Water regulation includes, in the context of this study, such actions as water abstraction 
and hydro-regulation. The effects of hydro-regulation are closely linked to hydrodams, 
discussed in the previous paragraph on barriers, but for the purpose of this study the 
regulatory effects of hydrodams on river hydrology are placed under this particular 
stressor. 

Changes in water discharge regime is one of the effects hydrodams have on the riverine 
habitat both upstream and downstream of the structure. Rapid changes in flow (hy-
dropeaking) can cause dewatering of habitat resulting in loss of ova, alevins (Casas-
Mulet et al., 2016), and juveniles (Saltveit et al., 2001) which can have negative effects on 
the productivity of populations of salmonid fish (Harnish et al., 2014). Another effect of 
hydrodams can be a reduction in water temperature of the river downstream of the dam 
if water releases are from deep hyperlimnetic reservoirs. Water temperatures are posi-
tively correlated to growth rates in salmonids and any reductions in water temperature 
can result in lower growth rates which can cause a size reduction in juveniles (Saltveit, 
1990). It is well documented that smaller smolts experience higher marine mortality 
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compared to larger ones (Kallio-nyberg et al., 2004, Saloniemi et al., 2004) and can thus 
cause reductions in adult returns, potentially compromising population resilience. 

Water abstraction can be for use as drinking water, in agriculture and aquaculture, for 
industrial purposes, or to feed hydropower stations. The timing and the intensity of high 
and low flows can have negative effects on the biodiversity of rivers and flow regimes 
can be altered as a result of water abstraction (Poff et al., 1997). Water abstraction for use 
in hydropower is mostly associated with run-of-river (ROR) schemes. In contrast to large 
scale hydropower stations ROR schemes operate without water storage (i.e. no need for 
hydrodams with reservoirs) and use the river flow in-channel. In ROR schemes a portion 
of the river flow is deflected, often by using existing weir-type structures, into a second-
ary channel to a turbine before being returned to the river further downstream. Such 
schemes are often viewed as having less of a negative impact on the environment com-
pared to large scale storage-type hydro schemes (Bilotta et al., 2016, Tranell et al., 2012). 
Through European Union and national renewable energy subsidies and targets there has 
been a surge in ROR hydro scheme development in Europe in recent times (Bilotta et al., 
2016). Peer-reviewed sources on the impact of ROR schemes are scarce and studies often 
suffer from an opportunistic post-hoc approach and it is likely that impacts will vary 
significantly among scheme type (Anderson et al., 2015) and could depend to a great deal 
on the local legislation regulating ROR schemes. For example Bilotta et al. (2016) only 
found statistically significant change in one of six metrics of fish community composition 
in a UK stream after a ROR scheme, while Kubečka et al. (1997) reported very clear 
changes in the composition of the fish community after the introduction of a ROR scheme 
on a Czech river, before the adoption of more developed environmental legislation in 
that country. For ROR schemes, just like any in-river type of partially passable barrier, 
the cumulative effects of a series of ROR schemes in sequence on the same river could 
have very strong effects on connectivity, even though the passability of individual 
schemes is fairly good. Other potential effects of water abstraction are increases in tem-
perature (Webb et al., 2003) which can negatively impact aquatic fauna and flora 
(Richardson et al., 1994), water quality changes due to lesser dilution of harmful sub-
stances (Armitage and Petts, 1992), and reduced growth in aquatic flora having a knock-
on effect on aquatic fauna (Franklin et al., 2008).  

Water regulation has frequently been reported in the peer-reviewed literature has having 
a negative effect on salmonid populations, yet extirpations mainly attributed to this 
stressor are rare. A very early Atlantic salmon extirpation event on the River Lagan in 
Northern Ireland in the 18th century can possibly be attributed to water regulation as the 
entire river flow was deflected into a canal with no access to fish leaving a substantial 
part of the riverbed dry and the spawning areas inaccessible to diadromous fish species 
(pers. comm. R. Rosell). 

Exploitation 

Exploitation of Atlantic salmon occurs in freshwater, transitional waters, and in the ma-
rine environment in commercial, recreational, and subsistence fisheries. Exploitation 
rates can vary per year and per stock but with reported exploitation rates ranging be-
tween 12 and 44% in 2016 for NEAC stocks exploitation is a major cause of mortality in 
Atlantic salmon, even taking into account the much reduced current exploitation rates 
compared to the 1980s when exploitation rates on some stock components were as high 
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as 72% (NASCO, 2016). Overexploitation is fishing a spawning stock to below the man-
agement target, causing reductions in ova deposition, smolt production, and ultimately 
resulting in fewer returning adults thus compromising population resilience. A second-
ary effect of exploitation in general is fisheries induced evolution as a result of removing 
a large part of the spawning biomass before it had a chance to reproduce causing changes 
in traits like run timing and body size in some salmon stocks (Hard et al., 2008). The pos-
sible consequences of this fisheries induced selection are not clearly understood, but as 
adaptation of the fish stocks through natural and sexual selective processes is disturbed 
this could in some instances negatively influence population viability in the long term 
(Hard et al., 2008). However, strict adherence to MSY should ensure minimisation of the 
probability of fisheries induced evolution for commercially exploited species such as 
Atlantic salmon (Hutchings, 2009).  

Overexploitation has been suggested as one of the historic stressors to have caused extir-
pation of Atlantic salmon stocks from the River Rhine (de Groot, 2002) and River Elbe 
(Andreska and Hanel, 2015, Wolter, 2015), and severely depleted salmon stocks in the 
Bay of Fundy (Jackson, 2008). Hoffmann (2015) reports overexploitation as a cause for 
significant reductions in spawning stock in salmon populations across Western Europe 
(excluding Scotland) in the Middle Ages. In other salmonids overexploitation has been 
identified as a major threat to population persistence in Oncorhynchus nerka (Rand et al., 
2012), as well as diadromous O. mykiss (Katz et al., 2013).   

Aquaculture 

The effects of aquaculture on Atlantic salmon stocks can be divided into four categories; 
pollution, water abstraction, genetic effects of escapees, and issues related to sea lice. The 
effects of the former two are discussed in the sections ‘pollution’ and ‘water regulation’ 
respectively, the latter two in this section.  

The sea- or salmon louse (Lepeophtheirus salmonis) is a naturally occurring ectoparasitic 
copepod that can affect growth, fecundity, and survival of their hosts by causing skin 
lesions leading to osmoregulation problems and secondary infections, as a result of their 
feeding (Boxaspen, 2006). The ICES Workshop WKCULEF (Workshop to address the 
NASCO request for advice on possible effects of salmonid aquaculture on wild Atlantic 
salmon populations in the North Atlantic) recently reported (ICES, 2016b) on the effects 
of sea lice on Atlantic salmon. This Workshop concluded that there is substantial and 
growing evidence that salmon aquaculture activities can affect wild Atlantic salmon. 
ICES noted that salmon farming can increase the local abundance of lice and the infection 
risk in wild populations, and that mortality measured as losses in returning adults to 
rivers in areas with open-cage salmon farming varied considerably, ranging from 0.6% to 
39% across populations. 

ICES WKCULEF also reviewed the genetics effects of Atlantic salmon escapees from aq-
uaculture facilities in both fresh- and marine waters. The Workshop concluded that in 
some areas escapees make up over 50% of spawners, but have reduced spawning success 
compared to wild fish, however introgression of farmed genetic material into wild popu-
lations is common. The latter has also been confirmed by other authors (Glover et al., 
2012, Skaala et al., 2006), even in areas with limited open-cage salmon aquaculture 
(Ensing, 2015). Further, a recent study (Shephard and Gargan, 2017)  which analysed 26-
year time series reported that adult returns were >50% lower on the River Erriff (Ireland) 
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in years following high lice levels on nearby salmon farms during the smolt out-
migration. Cultured salmon and wild/cultured hybrids have lower fitness compared to 
their wild counterparts (McGinnity et al., 2003, McGinnity et al., 1997), compete together 
with recent escapees with wild fish for territory and food, which can lead to decreased 
population productivity in the long-term and could ultimately threaten population per-
sistence, especially in combination with other stressors (ICES, 2016b). In a recently pub-
lished study, Bolstad et al. (2017) demonstrated that individuals with high levels of 
introgression (domesticated ancestry) have altered age and size at maturation for a large 
number of studied populations in Norway, which may threaten their productivity by 
inducing genetic changes in fitness-related traits. 

Furunculosis, a bacterial pathogen, has also been reported to transmit from salmonid 
aquaculture to wild stocks, causing contractions in the size of salmonid populations re-
sulting in concerns regarding population persistence (Johnsen and Jensen, 1994). 

Habitat Degradation 

Habitat degradation can take many forms, some of which have already been covered in 
previous sections under ‘pollution’, ‘water regulation’, and ‘barriers’. These will not be 
covered in this section. In the context of this report ‘habitat degradation’ refers to changes 
to the habitat such as in-river gravel extraction, siltation, substrate removal for river arte-
rial drainage schemes, and removal or introduction of aquatic or riparian vegetation, etc. 

In-river gravel extraction and substrate removal for the benefit of arterial drainage 
schemes have quite similar effects; they can alter geomorphology, increase sedimenta-
tion, change turbidity, cause changes to the biota, and ultimately reduce the quality of 
salmonid habitat (Brown et al., 1998, Kennedy et al., 1983). Results are general reductions 
in the numbers of fish in affected rivers, notably of siltation-sensitive species (Brown et 
al., 1998). On the River Bush in Northern Ireland an arterial drainage scheme is estimated 
to have degraded Atlantic salmon habitat to a degree where current natural smolt pro-
duction is about ⅓ to ½ of the production capacity from before the scheme was imple-
mented (pers. comm. R. Kennedy). This is likely to have severe knock-on effects on the 
number of returning spawners, and possibly population persistence. 

Atlantic salmon is a species sensitive to siltation (Lapointe et al., 2004), whether caused by 
gravel extraction or river drainage, or by such causes as bank erosion through agricultur-
al activities, road construction, mining, forestry or reservoirs (Wood and Armitage, 1997). 
Siltation can increase turbidity, limit light penetration, reduce primary production, modi-
fy the surface of substrate, increase fine sediments in the groundwater, and can in ex-
treme cases smother the entire riverbed changing channel morphology, kill flora, clog the 
substrate, increase invertebrate drift, and reduce habitat for benthic organisms (Wood 
and Armitage, 1997). The most visible effect of siltation on salmonids is the silting of 
spawning gravels which can lead to higher mortality in ova and fry (Collins et al., 2010, 
Lisle, 1989) by restricting oxygenation or, in extreme cases, entombation of fry and ova 
(Wood and Armitage, 1997). In some reported cases losses of ova and fry can be extreme-
ly severe, to a degree where it limits recruitment and prevents recovery of depleted 
salmonid populations (Turnpenny and Williams, 1980). 
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Diseases and Parasites   

For the purpose of this study ‘diseases and parasites’ are defined as naturally occurring 
diseases and parasites, and not pathogens associated with open-cage salmonid aquacul-
ture. 

Atlantic salmon are host to as many as 80 known parasites and pathogens (McVicar, 
1997), reviewed by Bakke and Harris (1998), but few have been reported to have signifi-
cant impacts on wild populations (Bakke and Harris, 1998). There are however some 
notable exceptions. Furunculosis, caused by the bacterium Aeromonas salmonicida, is one 
of the best known and most important diseases of salmonids, and has been reported 
widely in the peer-reviewed literature (Johnsen and Jensen, 1994). A first phase of fresh-
water epidemics occurred in the first part of the 20th century (Bakke and Harris, 1998) 
causing high mortality in European salmon stocks (Austin and Austin, 1987). In the UK, 
the threat of Furunculosis to the survival of salmon stocks was perceived as so severe 
that a national Furunculosis Committee (1930) was set up to investigate ways to combat 
the disease (McCraw, 1952). A second wave of epidemics occurred in the 1980s in Scot-
land and Norway, of a marine strain of Furunculosis, with salmonid aquaculture playing 
a role in the spread of this epidemic (Austin and Austin, 1987, Johnsen and Jensen, 1994). 

Gyrodactylus, a genus of parasitic flatworms, contains several species that can infect At-
lantic salmon, but only G. salaris is pathogenic in populations outside the Baltic Sea basin 
(Bakke and Harris, 1998). In populations where G. salaris is pathogenic, effects can be 
severe, causing high mortality in juveniles and reducing the size of adult returns 
(Johnsen and Jensen, 1991). Extermination of the entire river stock appears the only effec-
tive way to eradicate the pathogen from rivers and to stop further spread of the disease 
(Johnsen and Jensen, 1991).  

Ulcerative Dermal Necrosis (UDN) is a condition of the head and skin of adult Atlantic 
salmon and sea trout which occurs just prior to entering freshwater and during their 
upstream migration (Roberts, 1993). The disease starts with lesions on the head that rap-
idly ulcerate and become infected with a number of opportunistic pathogens which ex-
tended the lesions by fungal activity, resulting in death due to secondary bacterial and/or 
fungal infection or circulatory failure resulting from the osmotic haemodilution induced 
by the large area of ulceration (Roberts, 1993). The condition was first described in the 
19th century, but resurfaced in the 1960s in Britain and Ireland, after which it disappeared 
again in the 1970s. Despite several attempts it has been impossible to isolate a specific 
viral or bacterial agent from the lesions, or from other organs (Roberts, 1993), shrouding 
the exact causes of the disease still in mystery. 

Climate Change 

Climate change is (together with ‘stocking’) unique in the list of stressors here because it 
is the only stressor without a corresponding recovery/restoration action. This is because 
there is no realistic direct short/medium term action available to mitigate for this global 
stressor. 

Climate change manifests itself as a stressor in Atlantic salmon populations mainly as 
decreased marine survival (Friedland et al., 2014). This increased marine mortality may 
be a result of changes in seaward migration timing of smolts (Kennedy & Crozier, 2010; 
Russell et al., 2012), altered marine conditions (Friedland et al. 2011), or issues with feed-
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ing in the marine environment (Beaugrand & Reid, 2012; Mills et al., 2013). Other temper-
ature and flow effects are also expected to increase mortality in the freshwater phases of 
the Atlantic salmon’s lifecycle (Jonsson & Jonsson, 2009). Higher temperatures and in-
creased climate variability are predicted to affect all components of the global freshwater 
system, with temperature increases over land expected to exceed those over the surface 
of the oceans (IPCC, 2007). Among the changes, rainfall levels are expected to increase 
with “wet” areas typically becoming even wetter, but with increased variability such that 
the risk of both floods and droughts will increase. Increasing trends in river water tem-
peratures are also predicted (IPCC, 2007). 

As a result, salmon stocks that experience very strong decreases in marine survival as a 
result of climate change have virtually no chance of successful stock restoration or re-
building until the situation in the marine environment changes to allow for better marine 
survival. As will be discussed later in this document this does not mean that no restora-
tion actions should be undertaken in such rivers, but that management and stakeholders 
should be aware of the limited effects of not being able to mitigate for the strongest 
stressor acting on the stock. In Canada the Department of Fisheries and Oceans (DFO) 
has conducted Recovery Potential Assessments (RPAs) to provide scientific information 
and advice on population viability and recovery potential for populations with enough 
information to model population dynamics, as well as information on threats to persis-
tence and recovery (ICES, 2014). Such approaches are very useful in determining the 
extinction risk and recovery potential of salmon populations under different environ-
mental scenarios. This allows pre-project analysis of the most likely outcomes of recovery 
and restoration actions, and direction of efforts where populations are most threatened or 
where success is most likely. An example is given in the West River case study in the 
Case Study section of this report. 

Invasives 

Little evidence exists in the peer-reviewed literature of studies indicating clear negative 
effects of invasive species on Atlantic salmon populations, with the possible exception of 
Gyrodactylus. In regions where this parasite is invasive (i.e. outside the Baltic Sea basin) 
the impact is much greater compared to impacts on salmon population within the natural 
range of the species (Johnsen and Jensen, 1991). There are however suggestions from 
various studies that there might be impacts of other invasives on certain salmon stocks. 
With current general worldwide increases in the introduction and spread of non-native 
and invasive flora and fauna this stressor might become relatively more important in the 
near future. 

There are indications that non-native smallmouth bass (Micropterus dolomieu) in Atlantic 
Canada could be a competitor for resources, and could predate on juvenile salmon (DFO, 
2009). ICES WGNAS (ICES, 2013) reviewed the impacts of non-native salmonids on At-
lantic salmon stocks and reported some cases that cause concern. One example is the 
establishment and range expansion of non-native rainbow trout (Oncorhynchus mykiss) in 
Quebec, Canada. Competition for food resources is evident between these species when 
living in sympatry, as well as predatory interactions (Coghlan et al., 2007) and therefore 
the presence of rainbow trout in rivers containing Atlantic salmon could negatively im-
pact on juvenile production. Non-native brown trout (Salmo trutta) were introduced in 
Newfoundland, Canada, in the 1880s and are currently expanding their range (Westley 



16  | ICES WGERAAS REPORT 2015 

 

and Fleming, 2011). Impacts of this range expansion are believed to include displacement 
of native Atlantic salmon (Van Zyll De Jong et al., 2005) and hybridisation between the 
two species (Verspoor, 1988). Other possible effect of non-native salmonids have been 
reported from Norway where non-native rainbow trout might play a role in the spread of 
Gyrodactylus (Bakke et al., 1991) and sea lice (Skilbrei, 2012), and Sweden where spawn-
ing rainbow trout have been reported to dig up native salmonids redds (Landergren, 
1999). 

Further evidence of non-native invasive species impacting negatively on Atlantic salmon 
stocks comes from a study on signal crayfish (Pacifastacus leniusculus) in a stream in Eng-
land which suggests that population densities of juvenile salmonids decreased after the 
appearance of the invading crustacean (Peay et al., 2009). Finally the report from the 
symposium “What works? A Workshop on Wild Atlantic Salmon Recovery Programs” 
held in 2013 in St. Andrews, New Brunswick, Canada, suggests non-native species might 
have played a role in the lack of success of recovery actions for Atlantic salmon in both 
the St. Croix and Magaguadavic rivers (Carr et al., 2015). 

Stocking 

Stocking, in this study, is both listed as a potential action and a potential stressor. The 
stocking of Atlantic salmon can negatively impact the wild stock in three ways; 1) by 
competition of stocked fish with wild fish for resources, 2) by the introduction of para-
sites or diseases through the stocked individuals into the wild population, and 3) by ge-
netic interactions between wild and stocked fish.  

Stocked (hatchery origin) and wild juvenile Atlantic salmon display different habitat use 
living in sympatry; wild fish actively avoid habitat used by stocked fish and occupy glide 
areas with substantial vegetation cover (Laffaille, 2011). This is in contrast to habitat use 
by wild and stocked fish living in allopatry, under which conditions habitat use between 
wild and stocked fish is similar (Laffaille, 2011). This intra-species competition could 
have negative impacts on wild salmon populations, especially when survival of less 
adapted stocked fish is (much) lower compared to that of wild fish (Araki et al., 2008). 
The use of local origin broodstock, which is currently favoured by managers instead of 
using non-native broodstock, can increase fitness of the stocked component to a degree 
(Araki et al., 2008), but as even locally sourced stocking material can already experience 
loss of fitness after only one generation of captive breeding (Milot et al., 2013) stocking 
hatchery fish can be a very real threat to the persistence of wild Atlantic salmon due to 
displacement of individuals with higher fitness by individuals with lower fitness. 

The spread of diseases and parasites into wild populations through stocking of hatchery 
fish has been suggested as a potential threat, but examples in the peer-reviewed literature 
are lacking. However, as juvenile cultured salmon have been responsible for the spread 
of Gyrodactylus from Sweden to Norway (Johnsen and Jensen, 1988) it is certainly possi-
ble for hatchery fish to spread diseases and parasites to wild populations too.  

Genetic interactions between wild and stocked Atlantic salmon have been reported on in 
peer-reviewed publications, and stocking has recently come under increased scrutiny 
from management and scientists as a potentially harmful recovery action for Atlantic 
salmon. Stocking of hatchery material impacts on the genetics of original wild popula-
tions in several different ways. In the first place, interbreeding of hatchery fish with the 
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indigenous wild stock can change the neutral genetic structure of salmonid populations 
(Marie et al., 2010), reducing the genetic differentiation between the wild and the hatch-
ery genepools (Finnegan and Stevens, 2008). In addition, interbreeding of hatchery fish 
with the wild stocks can also cause changes to adapted genetic variation in the wild 
stock, causing loss of local adaptation, and ultimately to genetic fitness reductions in the 
introgressed hybrid stock (Perrier et al., 2013, McGinnity et al., 2003). In some instances, 
however, poor performance of the introduced stock (and possibly wild/stocked hybrids) 
relative to the locally adapted autochthonous stock (Milot et al., 2013) can lead to low 
levels of introgression and a rapid recovery of original genetic structure of the wild 
population (Perrier et al., 2013). Another factor potentially affecting rates of introgression 
is the relative abundance of stocked and wild fish, where low numbers of stocked fish in 
a relatively large population of wild fish can limit the level of introgression significantly 
(Currat et al., 2008). Conversely however, large numbers of stocked fish relative to the 
wild population size could significantly increase the level of introgression. Dispersal and 
colonisation from near-by populations can also dilute the number of stocked fish, and 
reduce the level of introgression in wild salmon stocks (Vasemagi et al., 2001).  

It is safe to conclude that the effects of stocking of hatchery fish on wild populations vary 
widely as many additional factors determine the level and persistence of the genetic dis-
turbance of the wild genepool. However, the effects can be severe and long lasting, and 
can be detected on vast geographical scales in areas where stocking has long been a tradi-
tional method to augment, restore, and recover depleted Atlantic salmon populations 
such as in France (Perrier et al., 2013). 

Predators   

Predation is a natural occurring phenomenon in all of nature, and Atlantic salmon is not 
an exception. Predation on salmon occurs in all life stages, by a variety of predators; birds 
(Hawkes et al. 2013, Vilches et al., 2013, Kennedy and Greek, 1988), mammals (Carss et al., 
1990, Heggenes and Borgstrøm, 1988, Jounela et al., 2006) , fish (Jepsen et al., 1998, Palm et 
al., 2009, Svenning et al., 2005, Ward et al., 2008), and crustaceans (Findlay et al., 2015, 
Peay et al., 2009). The effects that these predators have on salmon populations varies con-
siderably. For example predation rates on migrating smolts by cormorants (Phalacrocorax 
carbo) in an Irish river were estimated to be around 65% (Kennedy and Greek, 1988), 1% 
on parr by kingfishers (Alcedo atthis) in an English river (Vilches et al., 2013), 56% of 
smolts migrating through a Danish reservoir being predated by pike (Esox lucius) (Jepsen 
et al., 1998), and between 2 and 20% predation by striped bass (Morone saxatilis) for 
migrating smolts in the Miramichi river in Canada (ICES, 2017). Predation by seals can be 
substantial too, but quantifying this predation has proven difficult, just as other forms of 
marine predation are currently poorly understood (Jonsson and Jonsson, 2004). It is ex-
actly this marine predation that is very likely an important factor in marine survival of 
Atlantic salmon (Fleming et al., 1996). 

Other stressors such as barriers (Gauld et al., 2013) and parasites and diseases (Krkošek et 
al., 2011) can have a synergistic effect with predation, increasing losses due to predation 
because the other stressors restrict predator avoidance success. 
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Other 

Listed here are all stressors that are not given discrete categories of their own. At 
WGERAAS meetings experts suggested that this category might include stressors like: 
noise pollution, light pollution, and shipping. But for the purpose of this study and the 
population of DBERAAS this can include any uncategorised stressor. 

For example Artificial light at night (ALAN) is known to cause stress in juvenile Atlantic 
salmon (Newman et al., 2015), but effects on mortality are not known. Recent studies on 
Atlantic salmon also report delay and disruption by ecologically relevant intensities of 
ALAN to both the dispersal of fry from artificial redds (Riley et al., 2013 & 2015) and the 
diel migratory pattern of smolts leaving their natal stream (Riley et al., 2012). Hansen & 
Jonsson (1985) have also observed a reduced speed of descent in hatchery-reared Atlantic 
salmon smolts under river illumination. As the synchronous nocturnal dispersal of fry 
and the diel migration timing of smolts are predator avoidance tactics, any alteration or 
disruption to these processes may affect recruitment in the population. 

In an example relating to noise pollution underwater noise did not appear to affect salm-
onids in a study on the effects of piling during construction work (Nedwell et al., 2006), 
possibly as a result of poor hearing in Atlantic salmon relative to other fish species 
(Hawkins and Johnstone, 1978). 

Actions 

In the sections below the DBERAAS action categories will be discussed on more detail. 

Stocking 

Stocking for the purpose of this study is defined as introducing cultured fish or ova, of 
any life stage, into the wild. The source of the donor material can be local broodstock, 
exogenous, or a combination of the two. 

Stocking as a means to recover or enhance Atlantic salmon populations has a long history 
in both Europe and North America. In Europe, stocking was recorded to have com-
menced in the upper reaches of the River Elbe catchment in Bohemia (now the Czech 
Republic, then Austro-Hungarian Empire) in the early 1870s (Andreska and Hanel, 2015), 
and in the 1860s on the River Rhine in Germany and The Netherlands (de Groot, 2002). In 
North America, stocking was initiated to re-establish the extirpated salmon population of 
Lake Ontario in the 1860s (Crawford, 2001) and on Prince Edward Island, Canada in the 
1880s (Cairns et al., 2010). Stocking in the US has been ongoing since the late 1800s (Fay et 
al. 2006). Since the late 19th century stocking has become a very common management 
measure throughout the (former) natural range of Atlantic salmon (Wang and Ryman, 
2001). 

Improved connectivity 

This action is about improving the connectivity of water bodies where the construction of 
any kind of barrier or obstacle impaired or blocked access previously. The most simple of 
these is the removal of the obstacle, as has happened for example on the Penobscot River 
in Maine, USA (Hogg et al., 2015). In North America, dam removal is a more commonly 
used restoration/recovery action, with over 600 dams removed before 2005 (Garcia de 
Leaniz, 2008). In Europe, this method is less practiced compared to North America, but is 
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increasingly used to improve connectivity for diadromous fish species, for example in 
France (van Ast, 2000) and Germany (Weyand et al., 2005). 

A second method of increasing connectivity, without (total) removal of the obstacle, is 
the construction of fish passages. These can be either upstream or downstream. There are 
three major categories of upstream fish passage systems; fishways, fish lifts or locks, and 
trapping and trucking (Larinier and Travade, 2002). Fishways are artificial flow passages 
that fish negotiate by swimming or leaping in order to bypass a single obstacle. Fish lifts 
and locks are passive fish passage systems where fish are attracted to a chamber at the 
base of the obstruction which rises and empties upstream (fish lift) or is connected to an 
upstream chamber by a vertical shaft with sluice gates at either end which moves fish 
upstream in a similar way as ships in a shipping lock. Trapping and trucking is another 
example of a passive fish passage system where fish are trapped at the base of the ob-
struction and transported by truck upstream of the barrier, or sometimes upstream both 
of the barrier and the associated impoundment lake. Downstream passage of obstacles 
concerns mainly measures designed at preventing downstream migrating fish (smolts or 
kelts) from passing through a hydroelectric turbine. These systems aim for the migrating 
fish to bypass the turbines through an alternative channel by either physically (screens or 
filters) preventing fish from passing through the turbine, or by behavioural barriers (vis-
ual, auditory, hydrodynamic, or electric stimuli) that attract or repel fish (Travade and 
Larinier, 2002). With downstream migration too, trapping followed by transport by truck 
or barge is also an option for passage of the obstacle. Another way to improve down-
stream fish passage through hydroelectric facilities are modifications to the turbines to 
increase survival of fish that pass through. 

Habitat restoration 

This action, in the context of this study, includes categories such as riparian rehabilita-
tion, floodplain rehabilitation, and instream habitat improvements. 

Riparian rehabilitation actions can be aimed at improving fencing and limiting grazing 
by (farm) animals, and restoring and protecting vegetation. Floodplain rehabilitation 
includes restoration of existing floodplain habitat, re-meandering of rivers, introduction 
of constructed habitats such as side channels, and restoration of natural flood regimes. 
Instream habitat improvements typically involve the introduction of artificial (weirs and 
stream deflectors) or natural (logs, boulders, or gravel) structures into the streamchannel 
to improve habitat. The latter is a very common habitat restoration action taken, with 
some references to this type of action dating back as far as the 1930s (Roni et al., 2008). 

Improved water quality  

This action includes any measures taken to improve water quality in order to recover or 
restore Atlantic salmon stocks. 

Often actions that are aimed to improve water quality are in response to legislative 
measures on local, national, or trans-national scale such as the European Union Directive 
on Integrated Pollution Prevention Control (IPPC) (O'Malley, 1999), the EU Urban Waste 
Water Treatment Directive, and the EU Water Framework Directive (Page and Kaika, 
2003, Kallis and Butler, 2001). Legislation can either be aimed at preventing polluting 
substances to be released or to ban the production and/or use of the substance. 
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Examples of practical actions to improve water quality, whether or not in response to 
legislation, are domestic wastewater treatment, filtering out polluting chemicals from 
water used in industrial processes, reducing emissions from motor vehicles, industry, 
and power stations, reducing the release of nitrous and phosphorous into the environ-
ment by agricultural activities. 

Reduction in fishing mortality   

Reducing fishing mortality includes measures against illegal fishing and bycatch of At-
lantic salmon in other fisheries, as well as reducing the exploitation of salmon in com-
mercial, recreational, and subsistence fisheries in marine-, transitional-, and freshwater. 
Reducing exploitation in salmon is a very common measure taken with the aim to recov-
er or restore Atlantic salmon stocks. Exploitation in distant-water commercial fisheries 
has been substantially reduced since the signing of the NASCO convention in 1984 and 
the setting on quotas. Exploitation in the home-water commercial fisheries across the 
North Atlantic has also seen major reductions since exploitation peaked in the 1970s 
(ICES, 2016a). Exploitation by recreational fishers has followed the same trend as the 
commercial equivalent with current exploitation rates the lowest since time series began 
in the 1960s, in addition to current catch & release figures the highest since records began 
(ICES, 2016a). 

Predator control 

Recovery and restoration actions aiming to control predation on Atlantic salmon by ei-
ther removing predators or by limiting access of the predators to their salmon prey. This 
action has a long history with removal of predatory fish (pike, trout, grayling) from wa-
ters inhabited by Atlantic salmon a common practice in management of salmonid fisher-
ies until fairly recently (Craig, 2013). Licences have been issued to enable limited 
shooting of avian predators in England and Wales (and other countries) in order to pro-
tect salmonid fish from predation (Harris et al., 2008) and non-lethal harassment 
measures have been attempted in the US (Hawkes et al. 2013). Such efforts are commonly 
targeted at areas where fish are thought to be particularly vulnerable, for example migra-
tion bottlenecks. Grey seal (Halichoerus grypus) culling has also occurred in areas such as 
the Gulf of Bothnia in the Baltic Sea (Stenman, 2007). 

Invasive species removal/control 

The removal or control of invasive species in rivers and streams is an action that has been 
reported on, albeit not often with the sole purpose of conserving Atlantic salmon popula-
tions. Such actions are more often part of a holistic approach to remove or reduce the 
negative effects of the invasive on the native flora and fauna as a whole, which can in-
clude salmonid fish species. Examples are attempts to remove or control invasive signal 
crayfish (Pacifastacus leniusculus) in the river North Esk in Scotland (Peay and Hiley, 
2006), smallmouth bass (Micropterus dolomieu) in Canada (Loppnow et al., 2013), and chub 
(Squalius cephalus) in the river Inny in Ireland (pers. comm. K. Gallagher). In general, 
however, the preferred approach to avoiding potential unwanted interactions is to adopt 
a precautionary approach to potential new introductions, based on the simple edict that 
prevention is better than cure. 
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Farmed fish removal 

Removal of farmed fish is an action that has to date, to the knowledge of the Working 
Group, primarily been applied in Norway for Atlantic salmon. A transportable, semi-
permanent, system called the ‘Resistance Board Weir’ (Tobin et al., 1994) for catching 
adult salmonids in rivers has been successfully trialled on the River Etne in Norway as a 
means of removing escaped aquaculture fish from the wild (Skaala et al., 2015). Other 
methods, such as harpooning, angling, and various ways of netting have also been 
trialled in Norway (Skaala et al., 2014). Farm escaped adult fish were also routinely re-
moved using a permanent fish trap on the Magaguadavic River in Canada (Carr and 
Whoriskey, 2006). Similarly, in a more-or-less opportunistic way, farmed salmon were 
removed when encountered in a fish trap on the River Bush in Northern Ireland (pers. 
comm. R. Kennedy). Efforts to remove farmed fish encountered in fish traps or opportun-
istic in-river removals are also employed in the USA (pers. comm. T. Sheehan). 

Flow management 

In most cases measures aimed at a more natural flow regime are part of a holistic ap-
proach at improving conditions in riverine habitats for a whole range of flora and fauna. 
Legislation exists at national and supra-national levels to ensure regulated rivers retain a 
certain level of natural flow characteristics (Acreman and Ferguson, 2010) which should 
also be beneficial to Atlantic salmon. 

An example of a flow management action specifically taken to assist in the restoration of 
an Atlantic salmon stock is the so-called ‘Kierbesluit’ in the Netherlands. Here the 
Haringvliet, the major migration route for diadromous salmonids between the River 
Rhine and Meuse catchments and the North Sea, will have the sluices between the fresh-
water and the marine environments set permanently partly open to facilitate unrestricted 
movement in and out of the River Meuse and Rhine delta (Hop, 2011). 

Parasite/disease control 

This action has been fairly widely reported on in the peer-reviewed literature. For exam-
ple, Gyrodactlyus in Norway is combated by destroying all possible hosts in an infected 
river, after which the river is repopulated with hatchery fish or by natural re-colonisation 
(Mo et al., 2006). Vaccination against furunculosis and sea lice is possible in salmon and 
can be successful to a degree, but is usually applied to aquaculture fish and not to wild 
individuals (Midtlyng et al., 1996, Torrissen et al., 2013). However, vaccinations of aqua-
culture fish can sometimes stop the spread of diseases and parasites in wild populations 
as open-cage Atlantic salmon aquaculture facilities can act as a vector in the spread of the 
pathogen (McVicar, 1997). For disease outbreaks like UDN there is no known treatment 
and the infection will have to run its course, after which it can disappear for long times 
before resurfacing again sometime in the future (Bakke and Harris, 1998). 

The control of the impact of salmon lice (Lepeophtheirus salmonis) originating from open-
cage salmon aquaculture is reliant on the efforts to reduce infestation levels in farmed 
fish, through use of for example cleaner fish (Powell et al., 2017) and chemical methods 
(Skilbrei & Wennevik 2006). Such measures should become more effective if implement-
ed as part of a comprehensive multifaceted large scale approach, such as in the Norwe-
gian National Action Plan against Salmon Lice on Salmonids (Heuch et al., 2005). 
However, in 2017 review of threats to the persistence of Norwegian salmon populations 
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salmon lice originating from open-cage salmon aquaculture are still listed as one of the 
top two threats (Forseth et al., 2017). 

Other  

Actions in response to the examples of ‘other stressors’ are not known to the members of 
the Working Group. 

 

Analysis of DBERAAS 

Out of the total of 2 773 rivers in DBERAAS, data were received for 568 rivers from USA, 
Iceland, Sweden, Finland, Estonia, Denmark, Germany, Spain, Ireland, UK (England & 
Wales), and UK (Northern Ireland). These entries cover a large part of the natural range 
of the Atlantic salmon, including the north west and north east Atlantic areas as well as 
the Baltic area. 

The entries for the ‘population status’ category indicated 40% of rivers had full or sub-
stantial populations, 8% were extirpated, and for 19% population status was unknown 
(Fig 1). Overall, 45% of entered rivers had a restoration or recovery action taken, 26% had 
no restoration or recovery action taken, and for 29% of rivers it was unknown if a restora-
tion or recovery action had been taken (Fig 1). Over half (54%) of rivers had ‘rebuilding’ 
as the programme goal, about a quarter (26%) ‘recovery’, 13% ‘re-establishment’, and 7 % 
to maintain a fishery (Fig 1). 

Stressors 

Pie charts showing the reported proportions of the impact categories of each of the 
stressors on the river stocks can be found in Figure 2. A good way to demonstrate the 
relative impact of the stressors is to rank the stressors based on the combined scores of 
the ‘very high impact’ and ‘high impact’ categories. In this ranking (Table 7) the stressor 
‘Climate Change’ tops the list with 46%, followed by ‘Barriers’ (26%) and ‘Habitat Deg-
radation’ (22%). The stressors ‘Aquaculture’, ‘Diseases/parasites’, and ‘Invasives’ all 
scored 0% in the ‘very high impact’ and ‘high impact’ categories and were lowest ranked 
on the list. Under the ‘Other’ category problems with ice cover, peat mining, and drain-
age were reported. These were however limited to one or two rivers. 

Actions 

Pie charts showing the reported proportions of the effect categories of each of the actions 
on the river stocks can be found in Figure 3. Similar to the stressors listed above the rela-
tive effects of the actions can be demonstrated well by ranking (Table 8) based on com-
bined scores of the ‘very high effect’ and ‘high effect’ categories. In this ranking the action 
‘Improved connectivity’ scores highest with 34%, followed by ‘Improved water quality’ 
(23%) and ‘Habitat restoration’ (14%). The list was concluded with ‘Invasive species con-
trol’, ‘Parasite/disease control’, ‘Farmed fish removal’, and ‘Other’ all scoring 0%. Not a 
single entry was made under the ‘Other’ actions suggesting that the list presented here 
was comprehensive.  
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DBERAAS Discussion 

Population status 

Analysis of DBERAAS showed that about one-third (30%) of rivers in the database had a 
CL at or above 100%. This suggests that Atlantic salmon stocks in a large number of riv-
ers in this study were at full reproductive capacity at the time of the assessment and 
might currently not be under threat. Eight percent of river stocks were extirpated, and 
the stock status of 19% of river stocks was unknown. The latter highlights the general 
need for a better knowledge on stock status of many rivers, and rivers that are the focus 
of recovery and restoration actions in particular.  

Recovery actions taken 

Nearly half (45%) of the river stocks in the database were known to be the subject of re-
covery or restoration actions. On almost one-third (30%) of rivers it was unknown if re-
covery/restoration actions had taken place. This suggests the urgent need for a better 
availability of very basic information on the existence of recovery/restoration actions to 
national and/or international fishery management bodies. 

Programme goals 

Over half (54%) of recovery/restoration actions programme goals were in the ‘Rebuild’ 
category. This could be expected as most river stocks in DBERAAS are below their bio-
logical reference points. Seven percent of entered programme goals were in the ‘Fishery’ 
category. These stocks are all confined to the Baltic area, with the Danish River Gudenå, 
which flows into the Kattegat west of Denmark, as the single exception. 

Stressors 

Climate change is ranked as the most important stressor (46%) on stocks in DBERAAS. 
The effects of climate change on marine survival of Atlantic salmon are increasingly re-
ported on in the scientific literature as being a major driver of reductions in population 
size, especially so for the stocks towards the southern end of the species’ range (Chaput, 
2012, Mills et al., 2013). This ranking is probably a fair reflection of the impact that climate 
change has on the conservation status of the Atlantic salmon stock as a whole. In addi-
tion, climate change has also been reported as a major factor in the declines in recently 
restored salmon populations in the New England region of the USA (Gephard, 2008). 

Barriers have been reported as strong or very strong stressors throughout the Atlantic 
salmon’s range and was the second most important stressor according to the DBERAAS 
at 26%. It is no surprise barriers are often reported in the scientific literature as having 
severe impacts. Without highly successful fish passage systems barriers can result in 
large sections of rivers having reduced or completely eliminated access for spawners and 
thus significantly reduced production in those areas. In addition, the cumulative effects 
of a sequence of partially passable barriers can also be very significant, as discussed earli-
er in this document. Therefore the high rank of ‘barriers’ in the DBERAAS list of very 
strong and strong stressors appears to be supported by reports in a wide range of scien-
tific studies, many of which are quoted and discussed in previous chapters of this docu-
ment. 
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Habitat degradation and pollution were ranked third (22%) and fourth (14%) respectively 
on the list of high to very high impact stressors. The scientific literature provides many 
examples of how degradation of salmon habitat and pollution of watercourses impacts 
on salmonid populations, resulting in decreasing population sizes or even extirpations. 
In review papers on global stock status of Atlantic salmon both Hindar (2003) and 
Parrish et al. (1998) reported pollution as one of the most important agents responsible for 
the decline in salmon stocks. This view appears to be supported by the results from the 
DBERAAS analysis. 

Water regulation ranked fifth (12%) on the list of stressors with a high or very high im-
pact. From the literature it is known that this stressor can have a negative impact on 
salmon populations, yet actual extirpations, which are a realistic probability if a stressor 
has a strong or very strong impact, as a direct result of this stressor appear to be very 
rare. It might be possible that the effects of this stressor are underestimated in the scien-
tific literature, as it appears that from the DBERAAS results that water regulation is an 
important and high-impact stressor on salmon stocks. 

Under ‘other stressors’ (ranked sixth at 9% in the list of high to very high impact stress-
ors) it was mainly rivers from Finland that periodically suffered from low pH as a result 
of natural sulphite deposition. As this is a natural phenomenon it cannot be listed under 
the stressor ‘pollution’ with the rest of rivers that suffer from acidification and it warrants 
listing in the ‘other’ category. 

Exploitation ranked seventh out of 12 stressors. From reports in the scientific literature it 
might have been expected that this stressor would rank higher. A possible explanation is 
that the relatively low rank might have been an artefact of data from countries reporting 
some of the most substantial remaining homewater commercial fisheries for Atlantic 
salmon (ICES, 2016a) are missing from DBERAAS (Canada, Scotland, Russia, and Nor-
way). Alternatively, it could be that exploitation of Atlantic salmon, which has been 
greatly reduced since the late 2000s (ICES, 2016a), is not a very common ‘very strong’ or 
‘strong’ stressor any more in many stocks that were assessed for DBERAAS. 

Stocking and predators are stressors that only very occasionally got listed as having a 
high or very high impact. Stocking, introgression of domesticated genetic material in 
wild populations, and their negative impacts on wild fish has been proven both theoreti-
cally and also been observed in the wild (e.g. Christie et al., 2014, 2016). However, reports 
on this being a major impact in declines of wild salmon stocks have thus far not appeared 
in the literature. But considering the mounting body of evidence that stocking can have 
very negative effects on the genetic composition and persistence of wild salmon popula-
tions over time this could be currently unreported. If new studies can link these effects 
with population declines in the wild stocking might have to be reassessed as an action 
that ‘if it doesn’t work it certainly does not harm’ to an action that can potentially become 
an actual stressor. 

From the literature it becomes apparent that the exact impact of predation on wild salm-
on stocks is very difficult to determine and thus currently poorly understood, despite 
every salmon population being subjected to predation in various degrees. In the few cas-
es where reliable data exists it becomes clear that predation can, in some circumstances, 
have strong impacts on salmon population sizes as shown for example by Kennedy and 
Greer (1988). It appears however that these effects are of a local, and not global nature. It 
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has to be noted too that predation is a natural phenomenon and it is very difficult to de-
termine what ‘natural’ and ‘un-natural’ levels of predation are, especially since predation 
levels are not naturally temporally stable. 

Aquaculture, diseases/parasites, and invasives were not once reported as having a very 
strong or strong impact on stocks. It is known from the literature discussed earlier in this 
report that aquaculture, diseases like UDN, and parasites like Gyrodactylus salaris can be 
strong stressors on stocks. The fact that the countries where aquaculture (Canada, Scot-
land, and Norway) and diseases and parasites (Norway) are most regularly encountered 
did not submit data must be regarded as a plausible explanation for these stressors not 
being identified as ‘very strong’ or ‘strong’ in DBERAAS. Outside of this WGERAAS 
report information on the impact of the stressors ‘aquaculture’ and ‘diseases/parasites’ 
does exist for example for Norway in the shape of the annual ‘Status for Norske lak-
sebestander. Rapport fra vitenskapelig råd for lakseforvaltning’ (Status of Norwegian Salmon 
Stocks. Report of the Scientific Council for Salmon Management). In 2015 this publication 
(Anon, 2015) reported a strong effect of aquaculture escapees on wild Norwegian salmon 
stocks, with genetic introgression levels of domesticated genetic material ranging be-
tween 2 and 47%. Especially small and depleted stocks were reported be at risk, the larg-
er stocks being more resilient to introgression. Annual numbers of escaped aquaculture 
salmon in Norway alone were estimated to be between one and two million individuals. 
Various studies on the number of escaped fish ascending Norwegian rivers are discussed 
in Anon (2015), with one large study reporting 21% of rivers having >10% of the adult 
spawners comprising of aquaculture escapees. This indicates that in countries like Nor-
way, with a large indigenous open-cage salmon aquaculture industry, escapees from 
such facilities can pose a substantial threat to the persistence of the local salmon popula-
tions. In fact the Norwegian Scientific Council for Salmon Management classifies both 
aquaculture escapees and sea lice as the two most severe ‘non-stabilised’ population 
threats to Norwegian wild salmon stocks, also reported by Forseth et al. (2017). A ‘non-
stabilised’ threat is defined as a threat that affects populations so severely that it can re-
duce populations to critically low numbers or even total population loss, and with a high 
probability of causing further loss if implemented measures are not sufficient to control 
or reduce the factor’s effect and prevalence. If this assessment by Norwegian scientists 
generally applies to other regions with high levels of open-cage salmon aquaculture but 
not present with data in DBERAAS (e.g. Scotland and some parts of Canada), aquacul-
ture is probably a strong to very strong stressor on salmon populations in areas where 
salmon aquaculture is concentrated, despite not being reported as such in this study on a 
frequent basis. 

The parasite G. salaris, discussed in detail on page 12 of this document, is regarded by the 
Norwegian Scientific Council for Salmon Management as one of the greatest threats 
against Norwegian salmon populations, albeit that the threat of this parasite appears to 
be reduced as a result of successful eradication measures in many salmon rivers in recent 
years (Anon, 2015). With 50 Norwegian rivers reported to having been infected with G. 
salaris and the parasite having had a very strong negative impact on the salmon stocks of 
those rivers it would appear that in certain countries that were not included in DBERAAS 
diseases and parasites are having ‘strong’ or ‘very strong’ impacts on salmon populations 
and thus the impacts of diseases and parasites are most likely underestimated in DBER-
AAS. G. salaris has thus far had a heavy impact mainly on wild Norwegian stocks (Bakke 
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et al., 2007) with additional infections reported from rivers on the Swedish west coast 
(Alenäs et al., 1998), and a river in the White Sea in the Russian Federation (Ieshko et al., 
1995). In countries outside the native Baltic range such as Poland (Rokicka et al., 2007), 
Denmark (Lindenstrøm et al., 2003), and recently Romania (Hansen et al., 2016), the spe-
cies has been reported infecting brown- and rainbow trout in aquaculture facilities. It 
appears therefore that the effects of this stressor can be locally extremely severe, but do 
not act globally on a range-wide scale. 

Actions 

Improved connectivity was most often reported as an action having either a ‘very strong’ 
or ‘strong’ effect. As the equivalent stressor (‘Barriers’) to this action was also reported as 
the most common ‘strong’ or ‘very strong’ stressors after Climate Change it is perhaps 
not surprising that actions aimed at reducing the stressor ‘Barriers’ results in a strong 
positive effect on the conservation status of stocks. In the absence of a clear action against 
climate change, ‘Improved connectivity’ is the action most likely to have a positive effect, 
especially considering this action also scored very highly in the ‘Moderate effect’ catego-
ry (42%) resulting in 76% of all reported improved connectivity actions in DBERAAS 
indicating at least a moderate effect or higher. Improvements in water quality was 
ranked as the second most successful action on the basis of entries in the ‘very high ef-
fect’ or ‘high effect’ categories. This is probably an effect of the equivalent stressor (‘Pol-
lution’) ranking as fourth in the list of strongest stressors, just as with the previous action 
‘Improved connectivity’. When comparing the list of strongest stressors to the list of most 
effective actions this rule generally applies; if the stressor is strong, a successful action 
mitigating for or removing the stressor will result in an improved population status of 
the stock in question. In the list of ranked actions too equivalent actions to the stressors 
‘Aquaculture’ and ‘Diseases/parasites’, ‘Farmed fish removal’ and ‘Disease/parasite con-
trol’ respectively, are not reported a single time in the ‘very strong’ or ‘strong’ categories. 
This is again very likely a result of the countries with the largest Atlantic salmon aquacul-
ture production (Norway, Canada, and Scotland) and regular reports of local problems 
with outbreaks of parasite infestations (Norway), not supplying data for DBERAAS. It 
could be possible that the actions ‘Farmed fish removal’ and ‘Disease/parasite control’ 
can have very strong or strong positive effects in areas where ‘Aquaculture’ and ‘Dis-
ease/parasites’ are commonly occurring strong or very strong stressors on some river 
stocks. 

5.3 Case studies 

Introduction 

The WGERAAS case studies are supported by the results from DBERAAS and are in-
tended to form the basis of the study to answer the ToRs of this working group. 

In 2015, the suggestion from NASCO was received in relation to the answering of the 
ToRs to focus on the case studies. WGERAAS interpreted this suggestion by changing the 
focus from DBERAAS supported by case studies to using the case studies as the primary 
tool to answer the ToRs, with support of an analysis of DBERAAS. 

The case studies cover both successful and less successful examples of recovery and res-
toration actions for Atlantic salmon and the aim was to collect examples from a broad 
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geographical range. This resulted in the 15 well documented case studies presented in 
Annex 3, and summarised in Table 9. Successes and failures are both present, as are ex-
amples that lie somewhere between these two extremes. The geographical spread ranges 
from the south of France to the north of the Russian Federation, and from Maine in the 
USA to the Gulf of Bothnia in the Baltic Sea.  

All case studies were documented using a standard template in order to facilitate a com-
mon approach. This template utilises the same Stressor and Action definitions as used in 
DBERAAS. In addition details on the actions taken are required, as is information on 
project duration, evaluation (pre-, mid-, and post project), metrics used, project goals, 
and project success. 

Discussion – case studies 

Of the 15 case studies presented here five achieved the project goals, nine did not achieve 
project goals, and two claimed partial success. However, it has to be noted that the two 
projects that claim partial success (Rhine and West River) did not achieve goals (yet) and 
should therefore be currently classified as not having achieved pre-project objectives. 
Both projects did achieve some level of success (small increases in adults returns, smolts, 
or improved water quality), but all nine case studies that did not achieve project goals 
also reported improvements in some metrics as a result from the actions taken. Therefore, 
both the Rhine and West River recovery/restoration actions, for the purpose of this study, 
should be regarded as currently not achieving project goals. 

The Working Group wants to explicitly stress that ‘project goals’ and the achievement of 
those is assessed within the specific context of this study. Some of the case studies pre-
sented here as not having achieved project goals might have achieved project goals as 
defined by their respective national fisheries management bodies. But for WGERAAS 
project goals are linked to CL attainment, and project success is assessed on that basis. 
The Working Group acknowledges that certain projects that did not achieve WGERAAS 
project goals have had some measure of success, even though CL attainment might not 
be a realistic possibility. There can certainly be value in projects that do not achieve 
WGERAAS defined project goals, such as decreasing of population extinction risk and 
gaining of knowledge on what measures work best in restoration and recovery actions. 

What common characteristics defined the successful case studies? Firstly, all the success-
ful case studies had fewer stressors listed compared to unsuccessful and partially suc-
cessful case studies. Secondly, four out of five successful case studies were found in 
Northern NEAC countries, where currently marine survival estimates for stocks are on 
average higher compared to Southern NEAC countries and the southern part of NAC. It 
was in these latter two areas where all unsuccessful and partially successful case studies 
in this study were confined. Thirdly, successful restoration and recovery projects man-
aged to address all stressors acting on the population, in contrast to many unsuccessful 
ones where not all stressors were, or could be, addressed. Finally, projects that just use 
stocking and do not take actions specifically aimed to address certain other stressors that 
are known to act on a population are not likely to be successful. However, in four out of 
five successful case studies (Mandalselva, Testeboån, and Tornionjoki) stocking was re-
ported among the principal restoration actions. This might indicate that in certain cir-
cumstances stocking can be an effective action, or that the strength of certain stressors 
acting on the population decreased unobserved during the study. It would also be possi-
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ble that because stocking has been such a widely used, almost ubiquitous, conservation 
measure, restoration and recovery programmes almost by default will have had a stock-
ing element present. It is therefore very difficult in many cases to single out the effect of 
the stocking versus the effects of other conservation measures. This might result in an 
overestimation of the benefits of stocking, or an underestimation of the benefits of alter-
native restoration actions. 

The River Tyne case study in this report is a good example of this. Although claimed in 
some grey literature as having recovered mainly through stocking, research has shown 
that stocking may largely have contributed to stabilising the population in the early stag-
es of recovery. However, the main reason for the recovery was the much improved water 
quality in the lower river (Milner et al., 2004, 2008). These conclusions could only have 
been reached because of a number of scientific studies on the details of the salmon stock 
recovery in this river. Such extensive scientific studies on recovering salmon stocks are by 
no means the norm, as this report has shown. There is therefore a risk that in situations 
where scientific studies are lacking stock recovery is incorrectly (solely) attributed to 
stocking efforts, which in turn can lead to the perpetuation of an inefficient restoration 
action not only locally, but also in general when stocking remains the first reaction of 
management to a perceived reduction in stock size. Carr et al. (2015) also observed this 
and suggest that ‘the ‘stock first’ approach is knee-jerk and could eventually inflict more 
harm than good’. 

Another argument against the use of stocking given by Carr et al. (2015) is that stocking 
large numbers of hatchery origin fish also can disguise the negative effects that stressors 
such as overexploitation, pollution, and loss of connectivity are having on a salmon pop-
ulation. Such a situation would be very undesirable as it would give the false impression 
that the stressors on the population have successfully been addressed, whilst in reality 
population persistence relies on the continuation of a large scale stocking programme. If 
the stocking programme was to be scaled down or discontinued population numbers will 
most likely collapse once more in such cases. Further caution for using stocking as the 
main action against population declines comes from a study from Spain: Horreo et al. 
(2011) reported that habitat restoration and improved connectivity were the most effi-
cient measures to increase salmon numbers, in contrast to supportive breeding pro-
grammes, which were deemed ineffective and possibly harmful by reducing natural 
variation in local salmon stocks and the threatening the survival of sympatric trout 
(Salmo trutta). These conclusions are supported by both the case studies and the analysis 
of DBERAAS in this study. 

As mentioned above, from the case studies is appears populations from the Northern 
NEAC area were more likely to be successfully recovered or restored compared to South-
ern NEAC. This is probably caused by the current cycle of low marine survival experi-
enced by many southern stocks compared to more northerly stocks, on both sides of the 
Atlantic (ICES, 2016a). The theoretical effects of marine mortality on a restoration pro-
gramme for Atlantic salmon are very well illustrated by an equilibrium modelling ap-
proach of population dynamics predicting the population-level response to potential 
recovery and restoration actions in the Nashwaak River (Gibson et al., 2009). What be-
comes apparent from this particular analysis is that at very low marine survival rates 
(3.2% for 1SW, 0.9 for 2SW) actions in freshwater have little to no effect on potential ova 
deposition and smolt production, and the population remains well below conservation 



ICES WGERAAS REPORT 2015 |  29 

 

requirements. Only in scenarios where marine survival rates were more than doubled, in 
combination with significant improvements in freshwater production and connectivity 
did the population exceed conservation requirements. 

This exercise is very useful in determining the possible benefits of recovery actions which 
can help the decision making process in selecting the most effective measures, as well 
informing what the likely causes are when actions are failing to effectively recover de-
pleted stocks. It would be very beneficial for all cases where recovery or restoration ac-
tions are considered to undertake similar modelling exercises as part of a pre-project 
assessment. This would enable the design of a maximum impact strategy where re-
sources are committed in areas where the greatest benefits can be achieved, as well as 
inform stakeholders of possible limited (short term) benefits of actions taken in cases 
where not all stressors can immediately be addressed. It has to be noted that limited (po-
tential) benefits of actions should not automatically result in a rejection of implementing 
certain actions. As Gibson et al. (2009) have shown, situations where multiple stressors 
are acting simultaneously on a population are extremely complex and that disentangling 
the effects of the individual stressors needs careful analysis and, most of all, good quality 
population data. Under some conditions, like for example low marine survival (Gibson et 
al., 2009), only a partial population recovery might be possible in the short-to-medium 
term. Such an outcome would be preferable to taking no actions and increasing the 
chances of a complete loss of the population. An example of this can be found in the Pe-
nobscot River in the USA where ongoing restoration actions such as dam removal, im-
proved passage efficiency at existing dams, improved connectivity throughout the 
watershed, and stocking are primarily aimed at decreasing the extirpation risk of the 
local salmon stock as persistently low marine survival prevents this population of attain-
ing CL (pers. comm. T. Sheehan). Pre-project modelling of population responses to ac-
tions under various environmental conditions can prevent projects from aiming for 
unrealistic goals, in addition to the already mentioned selection of the most effective ac-
tions. 

As was shown by the case studies, populations with few stressors acting on them ap-
peared to have a higher success rate of successful restoration compared to populations 
that face a multitude of stressors. The example by Gibson et al. (2009) shows the complex-
ity and difficulty of mitigating for situations where multiple stressors affect a salmon 
population, and it can be easily envisaged how a single stressor situation can be much 
more easily mitigated. An added problem with multiple stressor situations is that interac-
tions between multiple stressors are not always simply additive in nature, but can dis-
play synergistic (where effects of the combined stressors are greater than the sum of the 
individual stressors) or antagonistic (where effects of the combined stressors are lesser 
than the sum of the individual stressors) effects as well. In a study of multiple human 
stressors on fish assemblages in European rivers, Schinegger et al. (2016) reported 40% of 
stressors interactions were additive, 30% synergistic, and 30% antagonistic. Brown et al. 
(2013) reported that the greatest benefits are achieved if local (i.e. not global), synergisti-
cally interacting stressors are addressed. Benefits were smaller, or even negative, when 
local stressor interactions were antagonistic in nature. The authors also reported address-
ing local stressors had little effect on the impact of global stressors like climate change, 
and concluded that focussing on local synergistic stressors could at best buy time to al-
low evolutionary adaptation, development of alternative management strategies, or 
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global warming mitigation. This research highlights the importance in multi stressor 
scenarios of understanding the nature of stressor interactions (additive, synergistic, or 
antagonistic) as well as the scale on which the stressors operate (local or global). Only 
when these factors are known and understood can realistic predictions be made on the 
likely outcome of restoration and recovery actions. 

Brown et al. (2013) thus offers an explanation why recovery and restoration actions in the 
southern parts of the Atlantic salmon’s range have often been unsuccessful; in these areas 
the effects of the globally acting stressor climate change manifest themselves to a greater 
extent than in more northern areas. Modelling exercises (Brown et al., 2013) predict that 
in these areas addressing locally acting stressors will provide little benefit to populations, 
whereas addressing local synergistic stressors in areas where global stressors are largely 
absent (northern range of Atlantic salmon) will likely result in substantial benefits. This 
was exactly what has been observed in the case studies where recovery and restoration 
actions taken in more northern areas (Norway, Finland, and Russia) generally resulted in 
very substantial benefits. The report from the Salmon Summit held in La Rochelle, 
France, in 2011: “Salmon at Sea: Scientific Advances and their Implications for Manage-
ment” echoes Brown et al. (2013) suggesting that salmon populations are currently adapt-
ing to climate change effects, and that this takes time and comes at a cost of high 
mortality at sea (Anon., 2011). This could suggest that conservation measures aimed to 
conserve stocks affected strongly by climate change should primarily be taken with the 
intention of buying time to allow evolutionary adaption to the new climatic conditions to 
occur. Inherent phenotypic plasticity (especially when transgenerational) could act as an 
initial buffer to climate change in fish, allowing evolutionary adaption (taking multiple 
generations) time to ‘catch up’ (Shama et al., 2016), even though evidence of actual evolu-
tionary responses to climate change in fish remain rare in the literature (Crozier and 
Hutchings, 2014). It should be clear that any activities that can disrupt or delay this pro-
cess of evolutionary adaptation (such as stocking or translocation of fish) should not be 
undertaken as it can seriously jeopardise population persistence. 

Based on the case studies, it appears that a successful recovery or restoration programme 
for Atlantic salmon is characterised by: 

• A limited number of stressors acting on the population; 
• Recovery/restoration actions that successfully address all or most stressors act-

ing on the population; 
• Conducted in an area of high average levels of marine survival; 
• Does not mainly rely on stocking as a recovery/restoration action. 

It has to be reiterated that a restoration or recovery programme that does not reach its 
goals (e.g. (re)establish a self-sustaining population, increase population to attain CL) can 
nonetheless be very valuable. As the previous discussion showed, programmes that do 
not result in meeting the defined pre-project goals can still reduce short-term extirpation 
risks and allow populations time to adapt to global stressors such as climate change. The 
value of such outcomes should not be underestimated. 

Recommendations 

The report of this Working Group is not the only document published in recent times on 
the topic of restoration and recovery actions for Atlantic salmon. For example a confer-
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ence on salmon stocking organised by the Atlantic Salmon Trust and IBIS (Integrated 
Aquatic Resources Management Between Ireland, Northern Ireland and Scotland), an 
European Union Interreg IVA funded collaboration between the Loughs Agency, Univer-
sity of Glasgow and Queen’s University Belfast in 2013 produced a report titled ‘To stock 
or not to stock’, which summarises the advice on stocking from various salmon manage-
ment organisations (Anon, 2013). The Atlantic Salmon Federation (ASF) organised a 
workshop in that same year in St. Andrews, Canada, on restoration and recovery actions 
for salmon titled “What works? A Workshop on Wild Atlantic Salmon Recovery Pro-
grams”. The proceedings of this workshop were published by the ASF (Carr et al., 2015). 
In the peer-reviewed literature too examples can be found of studies on recovery and 
restoration actions for Atlantic salmon, such as Palmer et al., 2005. 

The aforementioned publications all produced a set of recommendations or guidelines on 
how to increase the chances of conducting a successful restoration or recovery pro-
gramme of Atlantic salmon. The “To stock or not to stock” report concluded (Anon, 2013, 
see Annex 5) that stocking poses substantial risks to wild salmon populations and a time-
limited stocking programme should only be considered in cases where population extir-
pation is imminent and all other appropriate and possible fishery management and habi-
tat restoration interventions have been realised. The authors also highlight the need for a 
well-planned monitoring programme to accompany stocking programmes in order to 
assess costs, benefits and impacts of the programme on the wild salmon populations. 

The main recommendations from the symposium “What works? A Workshop on Wild 
Atlantic Salmon Recovery Programs” (Carr et al., 2015, see Annex 4) mirrored the “To 
stock or not to stock” report regarding stocking and the use of hatcheries. They also high-
light that stocking in itself is unlikely to produce results and should not inhibit the use of 
other restoration and recovery actions. In addition, they generally suggest a holistic ap-
proach based on the knowledge that healthy and diverse habitat is needed to support 
healthy and resilient salmon populations. Emphasised is that the first principles of any 
recovery program will need to be founded on habitat restoration and protection com-
bined with sound management based on population monitoring. Habitat restoration 
should aim for a healthier and dynamic natural state compared to current conditions, to 
measurably improve the ecological condition of the system or population, to build resili-
ent and self-sustaining populations minimising the need for future interventions, to en-
sure no lasting harm is inflicted on the ecosystem, and to publicise pre- and post-project 
assessment data (Palmer et al., 2005). 

This Working Group endorses all the above as the results of this study suggest that im-
plementing the recommendations made would likely increase the success of restoration 
and recovery programmes, would reduce the risk of actions that are potentially harmful 
to salmon populations, and would result in more available data supporting scientific 
work on salmon restoration and recovery. In addition this Working Group is of the opin-
ion that modelling population responses to actions under different stressor scenarios as 
part of the pre-project phase can be a very informative exercise to determine possible 
outcomes of different actions. If sufficient population data is available such studies 
should be considered as part of the project evaluation, both before and during the project. 
Although already mentioned in other publications (Anon, 2013, Carr et al., 2015, Palmer 
et al., 2005) the Working Group recognises the need for improved documentation relating 
to all restoration and recovery projects for Atlantic salmon, and recommends that after 
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completion an in-depth evaluation and analysis exercise should be conducted, and re-
sults published so others can benefit from lessons learned 

5.4 Tables and Figures 

Table 1. The 12 stressors (i.e. threats to populations) against which populations will be assessed in 
DBERAAS. 

1. Pollution (organic and chemical pollution, incl. acidification)       

2. Barriers (in-river obstructions; e.g. dams, weirs) 

   

  

3. Water Regulation (e.g. abstraction, hydro-regulation) 

  

  

4. Exploitation (e.g. legal & illegal fishing) 

   

  

5. Aquaculture (e.g. escapees, sediments, sea lice) 

   

  

6. Habitat degradation (e.g. gravel extraction, siltation)   

  

  

7. Diseases/parasites (e.g. furunculosis, gyrodactylus, UDN) 

  

  

8. Climate change (e.g. extreme water temperatures, marine mortality induced by climate change) 

9. Invasives (non-native invasive flora and fauna)   

   

  

10. Stocking (stocking of Atlantic salmon having negative impact on population) 

 

  

11. Predators (predation during any stage of lifecycle; e.g. cormorants, pike, trout, seals, dolphins, otters)   

12. Other (incl. noise pollution, light pollution, shipping, etc.       

 

Table 2. The five options in DBERAAS to assess the impact of the stressors and their definitions. 

•Very strong impact. A recognised stressor having a sustained and very significant impact on key life 
stages or habitats which affects  the entire population, and whose impact - if removed - is likely to result 
in a full population recovery within the context of the prevailing climatic conditions. 
• Strong impact. A recognised stressor having a sustained and significant impact on key life stages or 
habitats which affects the entire population, and whose impact - if removed - is likely to result in a 
substantial recovery within the context of the prevailing climatic conditions. 
• Moderate impact. A recognised stressor having an intermittent or moderate impact on non-key stages 
or habitats on a localised scale, and whose impact - if removed - is likely to result in some increase in the 
abundance of the population within the context of the prevailing climatic conditions. 
• Low impact. A recognised stressor having an occasional or low impact on non-key stages or habitats on 
a localised scale, and whose impact - if removed - is not likely to result in a detectable increase on  the 
abundance of the population within the context of the prevailing climatic conditions. 

 

Table 3.The 11 recovery/rebuilding actions listed in DBERAAS.  

1. Stocking (introduction of hatchery origin Atlantic salmon)        

2. Improved connectivity (e.g. fish passes, weir removal) 

  

  

3. Habitat restoration (e.g. riparian vegetation, gravel beds) 

  

  

4. Improved water quality (e.g. water treatment plants) 

  

  

5. Reduction fishing mortality (e.g. legal actions, quotas, anti-poaching measures) 

 

  

6. Diseases/parasite control (e.g. furunculosis, gyrodactylus, UDN) 
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7. Predator control (e.g. culling of predators)  

   

  

8. Invasive species control (e.g. culling/removal of invasive flora or fauna, legislation)   

9. Farmed fish escapes removal  

    

  

10. Flow management (e.g. reduction in water abstraction, stricter control of hydro-regulation)   

11. Others (e.g. reduction in shipping traffic, removing sources of light or noise pollution, etc.)    

 

Table 4. DBERAAS population recovery benefits categories and definitions. 

• Very High benefit. An action having a sustained and very substantial benefit on key life stages or habitats,  

which affects the entire population, and which helps achieve full population recovery  within the context of prevailing climatic conditions 

 

• High benefit. An action having a sustained and substantial benefit on key life stages or habitats, which affects  

the entire population, and which helps achieve a substantial population recovery within the context of prevailing climatic conditions 

 

• Moderate benefit. An action having an intermittent or moderate benefit on non-key life stages or habitats, which affects  

parts of the population, and which helps achieve a moderate population recovery within the context of prevailing climatic conditions 

 

• Low benefit. An action having an intermittent or small benefit on non-key life stages or habitats, which affects 

 parts of the population, and which helps achieve some population recovery within the context of prevailing climatic conditions 

• Nil benefit. An action having no detectable benefit on this population within the context of prevailing climatic conditions 

 

• No action. This action was not taken on this particular river 

 

 

Table 5. DBERAAS population status category options for database entry and definitions. 

• Full Population. According to adult monitoring/catch data, juvenile abundance measures, other stock status indicators or expert  

opinion suggest, greater than 100% of Conservation Limit (CL) has been met. 

  

• Substantial Population. According to adult monitoring/catch data, juvenile abundance measures, other stock status indicators or 

 expert opinion suggest, 75% and 100% of CL has been met. 

  

• Moderate Population. According to adult monitoring/catch data, juvenile abundance measures, other stock status indicators or  

expert opinion suggest, 50% and 75% of CL has been met. 

  

• Low Population. According to adult monitoring/catch data, juvenile abundance measures, other stock status indicators or  

expert opinion, between 25% and 50% of CL has been met. 
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• Very Low Population. According to adult monitoring/catch data, juvenile abundance measures, other stock status indicators or  

expert opinion, 25% or less of CL has been met. 

  

• Extirpated. According to adult monitoring/catch data, juvenile abundance measures, other stock status indicators or expert opinion  

this population has been extirpated. 

  

•  Unknown. Population status unknown. 

 

Table 6. DBERAAS program goal categories and definitions. 

• Re-establish. Recovery actions are being implemented to re-establish a population that has been shown to be extirpated. Once a popu-
lation is re-established, it would then be considered within the ‘Recovery’ category. 

 

• Recovery. Recovery actions are being implemented to recover a population that is at low abundance, may or may not be dependent on 
hatchery inputs and may or may not be threatened with extinction if current population trends continue into the future. Once a popula-
tion is recovered, it would then be considered within the Rebuild category. 

 

• Rebuild. Recovery actions are being implemented to increase the abundance of a self sustaining population of salmon to meet or ex-
ceed its CL. 

As a guideline, a program considered within the Rebuild category should be at >25% of CL. 

 

• Fishery. Recovery actions are implemented to provided recreational and/or commercial fishing opportunities.  There is no expectation 
of  increased natural reproduction as a result of the actions being implemented (e.g. ranching programs). 

 

Table 7. Ranked stressors based on the combined scores of the ‘very high impact’ and ‘high impact’ 
categories in DBERAAS. 

Stressor    % score rank 

Stressor 8 Climate Change 46 1 

Stressor 2 Barriers 26 2 

Stressor 6 Habitat Degradation 22 3 

Stressor 1 Pollution 14 4 

Stressor 3 Water Regulation 12 5 

Stressor 12 Other 9 6 

Stressor 4 Exploitation 7 7 

Stressor 11 Predators 2 8 

Stressor 10 Stocking 1 9 

Stressor 5 Aquaculture 0 10 

Stressor 7 Diseases/Parasites 0 10 

Stressor 9 Invasives 0 10 
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Table 8. Ranked recovery and restorations actions based on the combined scores of the ‘very high 
effect’ and ‘high effects’ categories in DBERAAS. 

Action   % score rank 

Action 2 Improved connectivity 34 1 

Action 4 Improved water quality 
(including liming) 

23 2 

Action 3 Habitat restoration 14 3 

Action 9 Flow management 11 4 

Action 1 Stocking 10 5 

Action 5 Reduction fishing mortality 4 6 

Action 6 Predator control 4 6 

Action 7 Invasive species control 0 7 

Action 8 Farmed fish removal 0 7 

Action 10 Parasite/disease control 0 7 

Action 11 Other 0 7 
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Table 9. Overview table case studies. 

River Jurisdic-
tion Goal 

Main stressors Principal restoration actions 
Goal achieved? Evaluation 

1 2 1 2 

Dennys 
USA, 
Maine 

Annual returns of 
60–120 fish 

Climate change / 
marine survival   

Stocking pro-
gramme   No 

Poor survival of stocked fish in estuarine / 
nearshore areas. Compounded by low 
marine survival. 

Man-
dalselva Norway 

Re-establish sus-
tainable population 
above CL Acidification 

Hydroelectric 
power schemes 

Water quality 
improvement - 
liming Stocking programme 

Yes, largely. CL 
achieved in 6 of 
last 8 years 

Recovery not fully sustainable yet as still 
dependent on liming 

Tuloma 

Russian 
Federa-
tion 

Maintain popula-
tion at historic level 

Hydroelectric 
power schemes - 
barriers   

Installation of fish 
passage facilities   Yes  

Numbers of ascending salmon maintained 
at historic levels 

West 

Canada, 
Scotia 
Fundy 

Increase freshwater 
survival and hence 
production of 
salmon Acidification 

Climate change / 
marine survival 

Water quality 
improvement - 
liming 

Habitat improve-
ments No 

Freshwater environment improved with 
some evidence of better smolt survival. 
However, adult returns not monitored and 
thought to remain low 

Tyne 

UK 
(England 
& Wales) 

Restore self-
sustaining popula-
tion 

Water quality in 
estuary   

Progressive im-
provements in 
water quality Stocking programme Yes 

Dominant process was the improvement in 
water quality enabling natural recovery. 
Stocking programme is thought to have 
accelerated and stabilised stock recovery in 
its early stages when water quality im-
provements were still inconsistent 

Gave of 
Pau France 

Re-establish a self-
sustaining popula-
tion of 1000–2000 
adults per year 

Barriers / river 
connectivity Exploitation 

Fish passage 
improvements - 
fishways Stocking programme No 

Some improvement in adult returns, but 
well below target level. Project has so far 
failed to establish a self-sustaining breed-
ing population 
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Shannon, 
Erne, Lee & 
Liffey Ireland 

Restore self-
sustaining popula-
tions 

Hydroelectric 
power schemes - 
barriers 

Climate change / 
marine survival 

Improve connectiv-
ity Stocking programme 

No - rivers far 
below CL 

Extensive stocking programmes over the 
last 13 years, particularly for rivers with 
major HEP stations have made little real 
contribution to the productivity of these 
rivers or to the goal of restoring self-
sustaining salmon runs. 

Rhine 

Nether-
lands, 
Germany, 
Luxem-
burg, 
France, 
Switzer-
land 

Restore self-
sustaining popula-
tion 

Pollution / water 
quality / water 
regulation Barriers 

Water quality 
improvement  Stocking programme No 

Water quality and spawning habitats in a 
number of tributaries shown to be suitable. 
Adult returns achieved and some evidence 
of natural spawning. However, numbers of 
returns currently falling and self-sustaining 
population not yet achieved 

Garonne France 

Restore self-
sustaining popula-
tion 

Barriers / river 
connectivity Water regulation 

Improve connectiv-
ity Stocking programme No 

The project has so far failed to establish a 
self-sustaining breeding population. Num-
bers of returning adults are currently 
similar to those at the beginning of the 
programme. Various possible reasons for 
this, including reduced marine survival. 

Testeboån 
Sweden - 
Baltic Sea 

Restore self-
sustaining popula-
tion 

Hydroelectric 
power schemes - 
barriers 

Habitat degrada-
tion 

Stocking pro-
gramme Improve connectivity Yes 

The reintroduction programme has been 
very successful. Even though the salmon 
population has not yet reached the MSY-
based management objective, the restora-
tion efforts have resulted in the re-
establishment of a self-sustaining wild 
salmon population 
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Tornionjoki 
Finland - 
Baltic Sea 

Increase spawners 
numbers. Improve 
population status Over-exploitation    

Control of exploita-
tion (1990s on) 

Stocking programme 
(1977–2002) Yes 

Population has recovered. Key factor was 
the introduction of restrictions on the sea 
fishery; this was associated with the simul-
taneous occurrence of relatively favourable 
natural conditions for marine survival. 
Stocking has had only minor, and perhaps 
even non-existent, impact on stock recov-
ery.  

Thames 

UK 
(England 
& Wales) 

Restore self-
sustaining popula-
tion 

Pollution / water 
quality   

Barriers / river 
connectivity 

Stocking pro-
gramme Improve connectivity No / Partial 

Failed to achieve self-sustaining stock over 
anticipated timescales, although a number 
of project goals were achieved.  In particu-
lar, the project raised the profile of the river 
and of fish migration and water quality 
requirements, and led to improvements.  
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Figure 1. Pie charts of DBERAAS entries for the categories ‘Population status’, ‘Action taken?’, and 
‘Programme goal’. 
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Figure 2. Pie charts of DBERAAS entries for the 12 Stressor categories.  
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Figure 3. Pie charts of DBERAAS entries for the 11 Action categories. 
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Annex 2: WGERAAS self-evaluation 

1 ) Working Group on Effectiveness of Recovery Actions for Atlantic Salmon 
(WGERAAS). 

2 ) Year of appointment: 2013 
3 ) Dennis Ensing (UK) 
4 ) Meetings: 

18–22/02/2013 AFBINI Headquarters, Belfast, UK. Participants: 23  
12–16/05/2014 ICES HQ, Copenhagen, Denmark. Participants: 7 
10–12/11/2015 ICES HQ, Copenhagen, Denmark. Participants: 3 

WG Evaluation 

5 ) Main outcomes: 
- Report and presentation to ICES Working Group North Atlantic Salmon 

(WGNAS) 2013 
- Report and presentation to ICES WGNAS 2014 
- Report and presentation to ICES WGNAS 2015 
- Report and presentation to ICES WGNAS 2016 
- Report and presentation to ICES WGNAS 2017 

- Report and presentation to ICES Working Group on the Science Requirements to 
Support Conservation, Restoration and Management of Diadromous Species 
(WGRECORDS), 2014. 

- Report and presentation to ICES WRECORDS 2015 
- Report and presentation to ICES WRECORDS 2016 

- Update included in WGNAS presentation North Atlantic Salmon Conservation 
Organisation annual meeting 2016 

- Update included in WGNAS presentation North Atlantic Salmon Conservation 
Organisation annual meeting 2017 

- Presentation on WGERAAS at Atlantic Salmon Federation Workshop on At-
lantic Salmon Recovery, Chamcook, NB, Canada, 18–19/09/2013 

- ‘Database on Effectiveness of Recovery Actions for Atlantic Salmon’ (DBER-
AAS), one of the outputs of the WG, will be made available to NASCO in 
2017. The WG recommends this database be electronically hosted by North 
Atlantic Salmon Conservation Organisation (NASCO) or another party.   

6 ) Not yet as of 01/07/2017. The WG will report its advice in a final report to 
WGNAS in April 2018. WGNAS will, based on this advice, advice NASCO in 
June 2018. 

7 )  
- Associated and Advisory Partner in 2013 EU Atlantic Area Programme bid 

‘SALAWARE' Safeguarding our Atlantic Salmon Cultural Heritage – Eu-
rope’s Oldest Natural Legacy. Bid unsuccessful in acquiring funding. 
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- Associated and Advisory Partner in 2014 EU COST Action Programme bid 
‘SALNET’ (A Network for the Promotion and Safeguarding of our Atlantic 
Salmon Heritage). Bid unsuccessful in acquiring funding.    

- Representation and presentation on WGERAAS at Atlantic Salmon Federa-
tion Workshop on Atlantic Salmon Recovery, Chamcook, NB, Canada, 18–
19/09/2013 

8 ) Data to populate the database DBERAAS was not received from many coun-
tries, in spite of frequent requests for data at the various meetings of WGER-
AAS and WGNAS between 2013 and 2016. There appeared to be a reluctance 
to provide data by representatives from several nations without an official re-
quest to provide data by either NASCO or ICES.   

Future plans 

9 ) The WG does not request an extension 

The recommendations for the final chapter (‘Recommendations’) of the report. 
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Annex 3: WGERAAS case studies 

Case Study 01: Dennys River, USA 

Helcom or NASCO River ID number: NASCO 130 

River Catchment size (km2): ~342 

Starting and end year of project: 2001–2007 

Situation before restoration: Estimates of returning Atlantic salmon to the Dennys River 
in the late 1960s through early 1980s were between 50 and 500 adults annually (Beland 
1996).  In the years immediately preceding this study, returns were at 10 fish or below 
per year (USASAC 2014). 

Main stressors on population:  Very strong: Climate change (i.e. marine survival), Mod-
erate: Pollution, Aquaculture, Habitat Degradation, Invasives, Predators. 

Actions taken: stocking of 50K 1+ Dennys River strain smolts annually, 2001–2005. 

Metrics used to evaluate success: adult counts. 

Assessment before project: adult monitoring.  

Project Aims: Annual returns of 60–120 fish as predicted from contemporary returns 
rates for other Maine smolt stocking programs. 

Actions taken in more detail: 
- A variety of other restoration activities have been undertaken on the Dennys 

River including improving connectivity, a variety of habitat restoration projects, 
improvements to water quality to address cultural oligotrophication 

- Annual stocking of juveniles from the mid 1990-present (USASAC 2014):  
o Approximately 50K Dennys River strain 1+ smolts (2001 onwards) 
o Approximately 29K Dennys River strain parr  
o Approximately 142K Dennys River strain fry 

Assessment during project: 
- Annual counts of returning adults 
- Ultrasonic telemetry monitoring of 1+ hatchery smolt migration through fresh-

water, estuarine and nearshore environs  

Adjustments to goals during project: The goals of the projected were not adjusted dur-
ing the effort as the approved restoration plan outlined a five-year stocking effort of 50K 
1+ smolts annually. 

Project success: The project was not successful.  Total adult returns to the Dennys River 
from 2002–2007 were 22 fish (Figure 1, USASAC 2014).  Of these, 18 were from the smolt 
stocking and 4 were from fry stocking or natural rearing.  In a single year, 2005, there 
were zero returns to the Dennys River.  Expected returns based on contemporary returns 
rates for other Maine smolt stocking programs were 300–600 total adult returns (60–120 
per year).  
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Project evaluation: The smolt stocking effort was not successful in increasing adult re-
turns to the Dennys River by the predicted amount.  Concurrent ultrasonic telemetry 
investigations revealed that high proportions of the tagged smolts were not successfully 
making it to the open ocean environment (Figure 2).  It was estimated that approximately 
between 35–90% of the smolts died before reaching the open ocean with the majority of 
the mortalities occurring with the estuarine and nearshore zones. 

Although the causal mechanisms for the lack of adult returns from the smolt stocking 
program have not been identified, a number of factors may have contributed to the poor 
performance of the stocked smolts.  The broodstock for the hatchery population are Den-
nys River origin fish, but this population’s adaptive ability may be compromised due to 
recent population bottlenecks, introgression from aquaculture escapees and/or brood-
stock selection biases. Environmental challenges related to the Denny’s river being a 
small coastal river, the highly energetic estuarine and nearshore environments, the 
changing seasonal cues due to earlier snowmelt and runoff (Dudley and Hodgkins 2002) 
and decreases in marine productivity for many North American Stocks (Mills et al. 2013) 
as well as shifting predator-prey dynamics as a consequence of past natural resource 
management actions and changing climate may have also contributed. 

 

Figure 1. Adult returns to the Dennys River, 1992–2007. Of the 22 returns recorded from 2002–2007, 18 
originated from the smolt stocking program.  
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Figure 2. Cumulative survival 2001–2005 (2001 – solid circle, 2002 – open circle with X, 2003 – grey, 2004 
– open circle and 2005 half solid black half open circle) through freshwater (FW and FW to Est), estua-
rine (Est and Est to DB) and nearshore (DB, DB to LN, LN to CB) environments. 

 

Case study 02: River Mandalselva, Norway 

Helcom or NASCO River ID number: NASCO 4845 

River Catchment size (km2): ~1.880 

Starting and end year of project: 1997 – present 

Situation before restoration: stock lost due to acidification. 

Main stressors on population: Pollution (acidification: low pHs and high concentrations 
of inorganic aluminium), barriers (hydroelectric power generation). 

Actions taken: Water quality improvement (liming), stocking. 

Metrics used to evaluate success: mean juvenile salmon densities. 

Assessment before project: Assessment of stock status (electro-fishing for juvenile salm-
on) and water quality. River Mandalselva is also severely affected by hydroelectric power 
generation by the creation of obstacles to adult migration through stretches of low water 
flow and passage through dams, reduced rearing areas for younger fish, fluctuating wa-
ter levels, and the descent of smolts through tunnels in which turbines have been in-
stalled. 

Project aims: Re-establish a self-sustaining Atlantic salmon population above CL. 
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Actions taken in more detail: 
- Substantial improvement of water quality in the whole catchment by full-scale 

liming since 1997 
- Stocking in the period 1996–2005 with ova: 689 500; fry: 702 913; smolts: 31 123 

Assessment during project: 
- Annual assessment of mean juvenile salmon densities by electro-fishing at 18 

sites over 8 years 

Adjustments to goals during project: none 

Project success: the benefit of recovery action is high (Fig. 1), CL was exceeded in the last 
6 of 8 years, showing a substantial recovery. In recent years, major reductions in fossil 
fuel emissions have improved water quality in previously acidified waters (Skjelkvåle et 
al., 2003; 2005). However, water quality in unlimed reaches is still inadequate for the sur-
vival of smolts of Atlantic salmon (see Kroglund et al., 2008). River Mandalselva (like 
other rivers in southern Norway) therefore still need to be limed to sustain healthy popu-
lations of Atlantic salmon and probably will continue to be needed for many years to 
come. The benefit of the recovery action can therefore also seen to be moderate as it is not 
truly sustained. 

Project evaluation: Parr densities remained low during the first 3–5 years after the start 
of liming. For formerly lost and reduced salmon stocks, 3 and 5 years of liming, respec-
tively, was needed to obtain a significant increase in parr densities (both p < 0.05). Annu-
al rod catches of adult salmon increased significantly after liming started, reaching about 
45 t after 10 years of treatment in 13 rivers including river Mandalselva. This is 11%–12% 
of the current total catch of Atlantic salmon in all Norwegian rivers. It was concluded 
that liming thus makes an important contribution to the restoration of salmon in formerly 
acidified rivers (Hesthagen et al., 2011). 

 

Case study 03: Tuloma River, Russian Federation 

Helcom or NASCO River ID number: NASCO 51 

River Catchment size (km2): ~21140 

Starting and end year of project: 1936 –present 

Situation before restoration: With construction of the Lower Tuloma Dam in 1936 at the 
tidal extent of the river, and the larger Upper Tuloma Dam in 1965, both for hydro-
electric power generation, salmon migration routes were interrupted. A fish ladder in the 
Lower Tuloma Dam provides passage over the dam, however, no salmon can ascend 
over the Upper Tuloma Dam. The Upper Tuloma Dam was constructed with a Borland 
lift fish pass, which was closed after five years of operation due to low numbers of salm-
on using it. The Padun Falls in the largest spawning tributary below the Upper Tuloma 
Dam was an obstacle for migrating salmon. 

Main stressors on population: Barriers. 
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Actions taken: Maintained good connectivity in the lower part of the river by making the 
Lower Tuloma Dam passable for salmon, improved connectivity by construction the 
Pecha fish pass on the Pecha River which offers the largest spawning and nursery 
grounds for salmon below the Upper Tuloma Dam. 

Metrics used to evaluate success: adult counts. 

Assessment before project: feasibility study, adequate nursery habitat available in the 
Pecha River, problems with the impassable Upper Tuloma Dam.   

Project Aims: to maintain the Atlantic salmon population in the Tuloma River system at 
the historical level. 

Actions taken in more detail: 
- The Lower Tuloma fish pass. The Lower Tuloma Dam was completed in 1936 

and was located at the head of the Kola bay (Figure 1). About 50 km of the for-
mer main stem of the Tuloma River has become a part the Lower Tuloma Reser-
voir. The height of the Lower Tuloma Dam ranges tidally from 16 m to 20 m.  A 
fish ladder was constructed at the same time as the dam and had a fish trap at its 
upstream exit 

- The Upper Tuloma fish pass. The Upper Tuloma Dam was completed in 1965 
and was located just above the Lower Tuloma Reservoir (Figure 1).  The dam 
height is 63 m with the reservoir surface level varying by 5.5 m under normal op-
erating conditions.  A Borland lift fish pass was constructed at the same time as 
the dam, but it was closed after 5 years due to low numbers of ascending fish 

- The Pecha River fish pass. The Padun Falls is located in the Pecha River about 1 
km upstream of the Lower Tuloma Reservoir, and has a head drop of around 3.5 
m depending upon the river conditions.  A fish pass was constructed here at the 
same time as the Upper Tuloma Dam however it did not function as effectively 
as expected and was replaced by the efficient Pecha fish pass in 1991 

 

Assessment during project: 
- Annual counts of returning adults at the Lower Tuloma fish pass 
- Electrofishing surveys to establish juvenile densities in the Pecha River 

Adjustments to goals during project: The project objective has been to maintain a salm-
on population in the Tuloma River system at the historical level through natural repro-
duction in the spawning tributaries below the Upper Tuloma Dam. An additional goal of 
bringing Atlantic salmon above the Upper Tuloma Dam has been formulated recently. 
This could be achieved by transportation of adult fish trapped at the Lower Tuloma fish 
pass via road to the Upper Tuloma reservoir. 

Project success: The project has succeeded in maintaining the Atlantic salmon population 
in the River Tuloma at the historical level. The numbers of adult salmon ascending the 
river in 1965–2012 have been at the same level as before the construction of the Upper 
Tuloma Dam in 1965 (Figure 2). There have been no long-term upward or downward 
trends in adult returns over the period. 
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Project evaluation: The project has reached its initial goals. Current issues are: continu-
ing operation of the Lower Tuloma fish pass, adjustment in the spillway at the Lower 
Tuloma Dam. Additional issue is: bringing adult fish above the Upper Tuloma Dam. 

Murmansk

Lower Tuloma Dam

Upper Tuloma Dam

BARENTS SEA  

RUSSIA

Lotta River 

NORWAY

Nota
 R

ive
r 

FINLAND

N

S

EW

  0                         50                       100  km

Kola Fjord

Lower Tuloma Reservoir

Upper Tuloma Reservoir
(Lake Nota)

Pecha
River

 

Figure 1. Tuloma River System (Tuloma River Project. Technical Feasibility of Migration Routes. 2000. 
Report No. 1014. EU Tacis Programme). 
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Figure 2. Number of adult salmon assended the Lower Tuloma fish pass in 1952–2012. (ICES North 
Atlantic Salmon Working Group Working Paper 2014/15). 

 

Case study 04: West River, Canada 

Helcom or NASCO River ID number: NASCO 2692 

River Catchment size (km2): ~262 

Starting and end year of project: 2005 – present 

Situation before restoration: Abundance of Atlantic salmon populations in the Southern 
Upland region of Nova Scotia has been in decline for more than two decades. A recent 
Recovery Potential Assessment for the Southern Upland (DFO 2013) noted that river 
acidification has significantly contributed to reduced abundance or extirpation of popula-
tions from many rivers in the region during the last century. The Southern Upland Atlan-
tic Salmon RPA identified acidification, altered hydrology, invasive fish species, habitat 
fragmentation due to dams and culverts and illegal fishing and poaching as the freshwa-
ter threats with the highest overall level of concern, and salmonid aquaculture and ma-
rine ecosystem changes as the threats with the highest overall level of concern in the 
estuarine and marine environment (Bowlby et al. 2014). 

The West River, Sheet Harbour is one of approximately 25 known rivers within the 
Southern Upland region to have a remnant population of Atlantic salmon.  Juvenile den-
sities are low (Halfyard 2007, Bowlby et. al. 2013) and well below reference values 
thought to reflect freshwater productivity of healthy populations.  The river has been 
shown to be acidified to the point which is detrimental to salmon and is also subject to a 
number of other stressors such as habitat degradation and barrier construction associated 
with historical logging.  

Main stressors on population: Pollution (acidification), climate change (marine survival). 

Actions taken: Improved water quality (Acid mitigation program; i.e. liming). 
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Metrics used to evaluate success: Water chemistry, primary/secondary productivity, and 
juvenile and smolt Atlantic salmon abundance estimates. 

Assessment before project: Water chemistry, primary/secondary productivity, and juve-
nile salmon monitoring. 

Project Aims: The primary goal was to increase the freshwater survival, and consequent-
ly production, of Atlantic salmon (Halfyard 2007).  Other goals were to increase the like-
lihood of population persistence, to monitor efficacy of lime dosing and associated 
biological response, and to demonstrate the efficacy of using lime dosing as part of a 
larger conservation effort (NSSA 2013). 

Actions taken in more detail: Installation of a Kemira Kemwater lime doser ~30 km from 
the head of tide to provide automated dose to control the pH of river water at a pH of 
approximately 5.5 (Halfyard 2007).  A pH above 5.5 has been shown to significantly re-
duce acid-related mortality in Atlantic salmon (Lacroix and Knox 2005). 

A number of other restoration activities were ongoing within the watershed including: 
- Watershed habitat planning, mapping and enhancement 
- Supportive rearing 
- Kelt reconditioning 
- Smolt and sea trout research 

Assessment during project: water chemistry, primary/secondary productivity, juvenile 
and smolt salmon monitoring. 

Adjustments to goals during project: unknown. 

Project success: No adult salmon abundance monitoring was conducted in conjunction 
with the project, so an assessment of adult return rates is not possible. The project was 
successful at improving water chemistry, and monitoring suggests a biological response 
for invertebrates and smolt production (Halfyard 2007, NSSA 2013).  

Project evaluation: Adult salmon monitoring was not conducted for this project, so it is 
not possible to determine whether there was a significant response in adult returns asso-
ciated with these mitigation initiatives.  However, the population is thought to remain at 
low abundance.  

The West River Sheet Harbour Acid Mitigation Program resulted in improvements in the 
freshwater environment.  The primary goal of the West River, Sheet Harbour, Acid Rain 
Mitigation Project is to increase the freshwater survival, and consequently production, of 
Atlantic salmon (Halfyard 2007).  The analysis of monitoring results indicate that the acid 
rain mitigation project coupled with other initiatives, such as supportive rearing and kelt 
reconditioning, provides some evidence of a positive biological response in smolt pro-
duction when compared to the control site and to other smolt trends within Atlantic 
Canada and the USA (NSSA 2013).   

During the recent RPA for Southern Upland Atlantic Salmon, population viability anal-
yses for two of the larger populations remaining in the Southern Upland indicated that 
relatively small increases in either freshwater productivity or at-sea survival are expected 
to decrease extinction probabilities (Gibson and Bowlby 2013).  It was further noted that 
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larger changes in at-sea survival are required to restore populations to levels above con-
servation requirements.   

Not all stressors (or at least all the major stressors) for the West River Sheet Harbour 
salmon population were addressed via this recovery action or other ongoing recovery 
actions.  For any recovery effort to be successful at restoring populations above conserva-
tion requirements all stressors to the population should be identified and the magnitude 
of their effect on the productivity of the salmon population should be understood.  At a 
minimum, the duration of time since this recovery project began coupled with low ma-
rine survival were not sufficient to allow increases in juvenile production to result in an 
adult population size that meets or exceeds the conservation requirement.  A more com-
plete understanding of the factors driving marine mortality will a) further allow re-
searchers and managers to accurately set and communicate objectives and goals for 
recovery efforts and b) further allow for evaluation of recovery to reduce the stressor’s 
impact on the salmon population’s productivity. 

 

Case study 05: River Tyne, UK (England & Wales)  

Helcom or NASCO River ID number: NASCO 448 

River Catchment size (km2):  2936 km2  

Starting and end year of project: not specific project start date, water quality improve-
ments in 1960s with closure of industrial plant and hatchery started in 1979. 

Situation before restoration: Historically, the River Tyne supported substantial runs of 
salmon and sea trout. However, during the first half of the 20th century there was a dra-
matic decline in numbers of fish due mainly to a reduction in estuarine water quality as a 
result of industrial and urban sewage pollution. Records continue to show catches of a 
few hundred salmon in most years through the 1930s, but after World War II virtually no 
fish were reported. Zero catches were recorded in 1951 and 1959. 

Main stressors on population: Pollution, exploitation, habitat degradation. 

Actions taken: Improvements water quality, stocking. 

Metrics used to evaluate success: Rod catch data, routine juvenile monitoring surveys. A 
specific investigation to evaluate the contribution of hatchery-reared fish to the recovery 
was based on an analysis of tag returns from a major coded wire microtagging pro-
gramme (1983–2000). 

Assessment before project: Catch data. 

Project Aims: Recovery of salmon stock. 

Actions taken in more detail: 

- 160 000 0+ and 1+ salmon parr stocked annually, numbers stocked have often ex-
ceeded this level with up to 600 000 parr being stocked in some years (Milner et 
al., 2004, 2008); the majority of the stocked fish were 0+ parr. 
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- Between 1983 and 2000, batches of the stocked salmon parr were marked with 
coded wire microtags (CWTs). Only 1+ parr were tagged.  

Assessment during project: 

Detailed assessment of CWT recoveries was achieved through both active screening of 
catches and voluntary returns. Rod catches and juvenile survey data are also available. 

Adjustments to goals during project: Not applicable. 

Project success: The River Tyne stock has recovered rapidly with an average rod catch 
over the last 10 years of almost 4000 salmon (3968); (Figure 1).  The River Tyne is also one 
of relatively few rivers in UK (England & Wales) which currently exceeds its conserva-
tion limits (CL) on a regular basis and which is classified as ‘Not at Risk’ against the 
management objective of meeting the CL in four years out of five, on average. As such, 
the recovery of the Tyne stock can be considered a success.  

In terms of the salmon stocking programme, the first returns of adult fish from hatchery-
reared parr were in 1980. Hatchery returns peaked between 1984 and 1987, when these 
were estimated to contribute up to 274 fish (best estimate; range 128–566) to the rod catch 
annually and 2084 fish (best estimate; range 975–4,515) to the spawning escapement.  
Percentage returns of stocked parr to the coast and to the river declined since the start of 
the programme, due to reductions in marine survival. Estimates of the long term (1980–
2000) weighted returns to the coast and river were 0.6% (range 0.5–0.8%) and 0.3% (range 
0.1–0.6%) respectively (Figure 2). Over the same time the weighted contributions to the 
Tyne rod catch was estimated at 6% (range 3–14%); later estimates (post-1995) were low-
er.  

In the early years of the stocking programme, contributions of hatchery fish to the run 
and escapement were higher because the natural recovery was in its early stages.  Best 
estimates of annual % hatchery contribution to the rod catch ranged between 22 and 42% 
between 1983 and 1986 (Figure 3). These estimates are based on first returns; it has not 
been possible to assess potential contribution of stocked fish to later generations. 

Project evaluation: The Tyne recovery has been a success. However, natural recovery 
was the dominant process following the clean-up of the estuary, thereby removing this 
barrier to smolt and adult migration. The contribution from stocking is thought to have 
accelerated and stabilised stock recovery in its early stages when water quality improve-
ments were still inconsistent. 
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Figure 1. Declared rod catch of salmon on the River Tyne, 1951–2013. 
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Figure 2. Estimated return rates of stocked hatchery-origin Tyne salmon to: (a) the coast (pre coastal 
fishery), and (b) the river (pre-rod fishery). Upper, middle and lower lines are MAX, BEST and MIN 
estimates, respectively [see Milner et al., 2004; 2008 for further details]. 
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Figure 3. Annual Tyne salmon rod catch [corrected for underreporting – see Milner et al., 2004; 2008], 
estimates of hatchery derived salmon in the rod catch and the % hatchery contribution. 

 

Case study 06: River Gave of Pau, France 

NASCO River ID : NASCO 780  

River Catchment size (km2): 2710 

Starting and end year of project: 1983 –present. A priority since 2004. 

Situation before restoration: Strong decrease in 1917 after building of 2 dams in lower 
part of the river.  Second important regression in 1958 due to the building of Artix-
Pardies dam, without fishway and totally no-passable by fish: no more  access to the 
main spawning area.  Loss of functionality in lower stretches during the second half of 
20th century. Previous barriers in lower part (downstream of Orthez) have never 
extirpated the population. The population has alsways been exploited. 

Main stressors on population: Barriers, Exploitation, Pollution. 
- Barriers: N =55 (29 hydroelectric power plants, storage and run-of-the-

river stations), cumulative head around 125 m. 37 barrages on main 
river, cum. head of 105 m (of which 15 downstream the best production 
areas), others on tributaries Few fish reach the best spawning  grounds 
(upstream of Nay, 1010 km up the confluence with river Adour). Issues 
with flow fluctuations and lack of attractive water in by-passed stretches 
leading to delay in migration 

- Exploitation: essentially by net in estuary and coast exerted on mixed 
stock composed by Nives, Oloron and pau populations Pau) 
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- Habitat degradation: gravel extraction in salmon habitat in the 1950s, 
stopped in the 1980s. Main river is classified as a “heavily modified 
water body” 

- Pollution:  issues with industrial discharge in lower part and domestic 
waste in middle and upper reaches  

Actions taken:   Improved connectivity, stocking. 
- Connectivity restoration: 42 fishways built mainly in 1980s and 1990s on 

main stem and one tributary, giving theoretically free access to all the 
main stem from the mid 1990s onwards at an estimated cost of 12 
Millions €. Many by-pass facilities exist but some of which have low 
efficiency. In practical terms the high numbers of dams and several poor 
facilities for fish passage are still a problem 

- Stocking: fair effort since middle of years 2000, with 500 000 fish yearly 
(coming from wild strains and F1) . 0.15 M€ per year these last years 

Metrics used to evaluate success:  juvenile counts, adult counts, monitoring of 
exploitation, passage, and fry survival.   

Assessment before project: No real feasibility study undertaken. Many barriers exist on 
the river but of limited size (compared with rivers Garonne or Dordogne for example). 
Good quantity nursery habitat available and a healthy potential donor population in the 
geographically close river Gave d’Oloron.  

Project Aims: Re-establish a self-sustaining salmon population of 1000–2000 returning 
adults per year (which is the estimated potential level of the population, once all 
obstacles removed). 

Actions taken in more detail: 
- Making weirs passable, facilitating access to middle part of river by 

constructing  42 fishways potentially making more than 200 km 
accessible. Many by-pass facilities however are not efficient  

- Installation of video-counter at the ninth obstacle (Artix) to monitor 
upstream fish movements 

- Stocking of juveniles : mainly since 2004, with Gave d’Oloron stock.  
- Juvenile abundance surveys  

Assessment during project: 
- Fish passage:  the 15 lower dams allow passage for only 35% of  expected 

run (telemetry studies by ONEMA during 5 years) 
- Exploitation: catch supposed to be around 35% of stock 
- Reproduction: redd counting from 2011 : low natural reproduction is 

observed  
- Survival of released fish 5 to 10 times better with late releases than with 

early ones (‘late’ refers to after snow melt flow) 
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- Stocking efficiency study comparing wild and hatchery origin adult fish 
by otolith Sr: Ca methodology (Fig 1 showing returning adult numbers 
and stocked fish per stage) 

- Stocking   
o Fed fry mainly, coming from local spawners from early 90s 

(discontinued  stocking non-native strains as was done 
previously)  

o 40 000 fish annually before 2004, more than 500 000 after 2003 
o Early stocking in april and may, on main river and tributary 

Ouzom; late release since 2 years 
- Returns:  

o Clear increase: 100–200 fish before 2005 ; 350–600 fish from 2005 
to 2012 

o Mainly 1SW fish before 2006 but 30% of returning adults are 
MSW after 2006. 

o Possible explanation: increased stocking from 2004, limited but 
increasing natural spawning contribution as a result of recent 
improvement of fish passage on two weirs in lower part of the 
river (Casteltarbe (2000) and Baigts (2001)). 

o Return rate (rough proxi) : 0, 057% to 0, 57 per 1000 stocked 
juveniles. More accurate return rate estimations will be available 
from 2014.  

Adjustments to goals during project:  No real change of goal except small increase of 
initial aim of 1500–2500 fish per year, which is the potential level of the population, once 
all obstacles removed . Achievable if:  1) free passage is fully restored without delay, and 
2) exploitation is reduced.  

Project success: The project has so far failed to establish a self-sustaining breeding 
population, but it probably was impossible to achieve in the period and the current 
effort. 

Project evaluation: No attainment of goal. Among causes : 
- Impact of dams preventing two-thirds of runs to reach spawning grounds 

and killing at least 20% of smolt production ; 30 to 40% of good quality 
spawning habitat is only available today (against  70 and 65% on rivers 
Oloron and Nive) 

- Over-exploitation during this rebuilding phase. A third of run is harvested   
- Unsuccessful stocking : lack of genetic diversity and sub-optimal timing of 

release  

Possible improvements : 
- Stocking : 

o improve genetic quality: increase the number of wild spawners in the 
broodstock (currently under review)    
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o delay fish release after spates and snow melt to improve fry survival 
- Fish passage 

o replace old fishways and build new ones with increased flow.  Ten 
fishways will facilitate 80% of returning adult fish to reach good habitats  

o equip all hydroelectricity plants with good by-pass structures and flows 
to reduce mortality by one third. 

- Counting adult fish 
o plan to build  a video-counting facility, furher downstream of 

current counter,  on the fourth dam. 

  

 

Figure 1. River Gave de Pau fry stocking (bottom) and adult returns (top). The stocking graph is shift-
ed to the right by 2 years. 
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Case study 07: River Shannon, Erne, Lee and Liffey, Ireland 

River Catchment size (km2): Shannon 30 896, Erne 6 457, Lee 1 923, and Liffey 2 308  

Starting and end year of project: Dams built between 1925 and 1960s. Hatcheries built 
between 1958 and 1970s. The River Shannon rises in the mountains of Cavan, and ex-
tends south for almost 160 miles where it enters the Sea at Limerick. The river flows 
through three large lakes or loughs i.e. Lough Allen, Lough Ree and Lough Derg. While 
the harnessing of the river for hydro power did not significantly affect the environment 
for fish life in the upper reaches, it created an obvious entry and exit problem for salm-
on. Upstream passage was facilitated by the installation of fish lifts or ladders. Dams also 
present problems for juvenile fish travelling downstream. Similar connectivity issues 
related to hydropower developments apply on the Erne, Lee and Liffey. To compensate 
for this, fish hatcheries were built to produce juveniles for restocking each year. This 
case study examines the outcome of more recent stocking efforts from 1994 to 2007. 

Situation before restoration: Prior to 1929, the salmon stock on these rivers was large 
with significant commercial fisheries operating.  Some were particularly noted for the 
presence of very large multi-sea winter salmon. With the introduction of a hydroelectric 
power station the return of salmon declined dramatically in most instances.  

Main stressors on population: Barriers, climate change, exploitation. 

Actions taken: Improved connectivity, stocking.  

Metrics used to evaluate success: Assessment of adult returns from restocking activities 
related to Conservation limit requirement in numbers of adult salmon (Table 1).  The 
magnitude of the potential returns estimated from these releases has been compared to 
the individual Conservation Limits for these rivers to gauge, at least in numerical terms 
the possible contribution these stocking activities might have on the wild stocks.  The 
issue of quality of the returning fish and their ability to perform as well on spawning 
beds or in survival through subsequent life-history stages compared to wild stocks is not 
dealt with here. 

Assessment before project: Catch data. 

Project Aims: Recovery of salmon stock. 

Actions taken in more detail: In 1994, the Fisheries Research Centre (and subsequently 
the Marine Institute from 1996) began collecting records of all of the stocking activities in 
Ireland in an effort to establish the scale of restocking programmes i.e. the number and 
size of the rivers being stocked, the numbers and source of any wild fish being removed 
for broodstock purposes and the possible impacts and effects on wild salmon stocks.  
Under this programme, (ESOPS, Enhancement Stocks – Origin, Progress and Status) all 
hatchery operators have been requested to supply details of the broodstock captured, 
eggs produced, and all locations, dates and numbers of progeny at each life stage re-
leased into the wild. In this way a comprehensive overview of the stocking activities in 
Ireland has been produced since 1995.  

In order to quantify the returning adults from the various stocking strategies using dif-
ferent life-history stages of Atlantic salmon in Ireland, conversion factors for the survival 
of eyed ova, unfed fry, fry and parr to the smolt stage are required. These have derived 
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from de Eyto et al., 2007, McGinnity, 1997 and McGinnity (pers. comm). Subsequently, 
conversion of smolts to adults is based on returns from the Irish National Coded Wire 
Tagging and Tag Recovery Programme (Ó Maoiléidigh et al., 2001). A distinction is made 
when converting smolts from plantings to adult returns and smolts reared entirely in the 
hatchery to adult returns. In the former, the survival rates generated in the National CWT 
programme for “wild” Irish smolts is used which would be considerably higher in most 
instances than hatchery reared smolts. Similarly, the exploitation rates used for adults 
derived from the returns of planted smolts is also based on the wild exploitation index on 
the assumption that the planted progeny will have spent more time in the wild and will 
subsequently behave more like true wild salmon. This will result in higher overall re-
turns of planted hatchery progeny (eyed ova to parr) than assuming survivals and ex-
ploitation rates derived for smolts reared entirely in the hatchery. 

The main objective of most restocking programmes in Ireland has generally been to re-
store depleted salmon stocks.  While often significant returns of salmon have been gener-
ated from these programmes, the difficulty has been in gauging the long term success of 
the strategy. This was essentially due to the lack of an acceptable population “bench-
mark” with which to measure the outcome of the restocking projects. 

Assessment during project: Detailed assessment of CWT recoveries was achieved 
through a National Coded Wire Tagging and Tag Recovery Programme. Both active 
screening of catches, broodstock and voluntary returns information were available.  

Adjustments to goals during project: Not applicable. 

Project success: There are four rivers which have been harnessed for hydro-electrical 
power generation. Of these the highest estimated return of hatchery fish relative to the 
Conservation Limit is to the River Lee, with over 10% of the required Conservation Limit 
being generated (Fig. 9). However, despite consistent restocking this river is estimated to 
be only meeting 2.2% of its Conservation Limit (based on the runs of wild fish past the 
fish counter) suggesting that the overall contribution of the hatchery fish is probably 
much less. Early restocking programmes for the river Erne are likely to have generated 
up to 40% on average of the returns required to meet the Conservation Limit. However, 
more recent contributions are estimated to be much lower (less than 5%) and the river is 
far below its Conservation Limit (only 9.5% of Conservation Limit being attained at the 
time based on upstream counts). The decline in potential returns is linked to decreasing 
marine survival. Both the Liffey and Shannon are only generating a small fraction of the 
Conservation Limit in numbers of salmon (Fig. 1). 

Project evaluation: In general the results suggest that the contribution being made by 
hatchery reared intervention (in this instance simply in terms of adult numbers being 
generated) is minimal for rivers with hydro dams as these are still significantly below 
conservation limits. The objective of establishing self-sustaining runs of salmon in the 
first instance and the further objective of meeting the required Conservation Limit are 
unlikely to be fulfilled with the a restocking strategy alone. In fact may limit the re-
establishment of small quasi-wild populations which could have established following 
extensive restocking in earlier years. 

On the basis of the present results, it is concluded that extensive stocking programmes 
undertaken in Ireland over the last thirteen years, particularly for rivers with major hy-
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dro-power generating stations have made little real contribution to the productivity of 
these rivers or to the goals of restoring self-sustaining salmon runs.   

 

Figure 1. Estimated potential returns of hatchery-reared Atlantic salmon relative to Conservation 
Limit requirements – Rivers currently below CL and with hydroelectric installations. 

River
Wetted Area U/S 
Dams Total CL 1SW CL 2SW CL Average Count

Shannon 30,895,619                   49,524             45,909                3,729                  707

Erne 6,457,264                     16,554             15,345                1,247                  1445
Liffey 2,308,361                     4,391               4,062                  329                     1157

Lee 1,923,476                     2,789               2,585                  210                     57  

Table 1. Stocks above large rivers impounded for hydroelectric schemes in the Republic of Ireland for 
case study 07. Counts are average counts for the most recent 5 years with the exception of the Liffey 
(Islandbridge) which is the most recent 4 years.  

 

Case study 08: River Rhine (Netherlands, Germany, Luxemburg, France, Switzerland)  

Helcom or NASCO River ID number: NASCO 284, 784 

River Catchment size (km2): ~185.300 

Starting and end year of project: 1987 – present (ongoing) 

Situation before restoration: One of the world’s largest Salmon populations (> 1 Mio. 
returners / year in 19th century) extirpated since ~1960 (Fig 2). 
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Main stressors on population: Pollution, barriers, water regulation, habitat degradation, 
exploitation, climate change, predation, others (shipping). 

Actions taken: Water quality improvement, stocking, improved connectivity, reduction 
of fishing mortality. 

Metrics used to evaluate success: adult counts, grilse-MSW-ratio; some regions: also 
juvenile counts, redd counts. 

Assessment before project: feasibility studies (pilot projects); cartography of adequate 
nursery habitat available in selected tributaries and upper river, potential problems with 
lack of spawning habitat in some tributaries, impassable weirs in the Upper Rhine and 
most tributaries.   

Project aims: Re-establish a self-sustaining Atlantic salmon population in river Rhine by 
the year 2020 (formerly year 2000). 

Actions taken in more detail: 
- Substantial improvement of water quality in the whole catchment (nutrients, 

heavy metals, residual pollution like PCB etc., micropollutants) 
- Making several weirs in tributaries passable, making access to tributaries in the 

upper part of the main stream (fish-passes Iffezheim and Gambsheim allow ac-
cess to tributaries up to Strassbourg, fish-pass Strassbourg is under construction 
and will operate 2015, construction of fish-pass Gerstheim will begin 2015), im-
provement of existing fish passes in tributaries and in the High Rhine. 

- Monitoring intensified; video observations and traps at fish-passes Iffezheim and 
Gambsheim (river Rhine), Koblenz (river Moselle), Siegburg (river Sieg)  & Kos-
theim (river Main) to monitor ascending adults  

- Stocking of juveniles: approx. 40 Mio. since 1994; 251 950 ova,  7 558 370 YOY and 
311 060 farm reared smolts (mostly age 1) between 2009–2013 (Fig 1). 

- Some stocking material is gained from brood-stocks partly consisting of fish 
caught as ‘naturally spawned’ fry and/or stripped returners. 

- Reduction of fishing mortality by implementation of fishing regulations (full pro-
tection of the species in the whole Rhine river basin, ban zones on “hot spots”), 
but lack of saturation anti-poaching measures 

Assessment during project: 
- Annual counts of returning adults (traps, video-observations, electro-fishing, te-

lemetry and other methods) and estimations (partial counts) of migrating smolts 
- Electro-fishing surveys to establish juvenile densities (stocked and wild fish) 
- Redd counts 
- Genetic studies (brood-stock, returners) 

Adjustments to goals during project: The time span of the project was extended (year 
2000 to 2020) taking into account that the re-introduction of an extinct species and espe-
cially the main action to promote it – the restoration of connectivity – is a complex and 
protracted task. The goal of establishing a self-sustaining breeding population can only 
be achieved once marine survival improves significantly and factors concerning survival 



84  | ICES WGERAAS REPORT 2015 

 

of smolts and adults in the migration corridor (river and/or estuary and/or coastline) are 
further identified and reduced (e.g. poaching, predation, barrier in the Delta-Rhine).  

Project success: The re-introduction of Atlantic salmon in river Rhine proved that water 
quality and spawning habitats in numeral tributaries are suitable for the species. The 
selected strains used for stocking (Ätran in the Lower and Middle Rhine, Allier in the 
Upper and High Rhine) basically manage to make their way from the North Sea to their 
home waters. Salmon use the installed fish passes and benefit from improved patency in 
program waters (481 barrage weirs were altered between 2000 and 2013). Accessible habi-
tat is used for spawning in most program waters. However, the project has so far failed 
to establish a self-sustaining breeding population of Atlantic salmon in the River Rhine 
system. Numbers of recorded returning adults experienced a peak when two monitoring-
facilities (Iffezheim at the Upper Rhine and Buisdorf near Siegburg at river Sieg, Lower 
Rhine) started to operate in the year 2000 (Figure 3). Another high followed in the year 
2007 – the year after the Irish drift net fisheries where closed. Since then the number of 
recorded adults has declined from ~800 (in 2007) to ~300 (in 2013) individuals. The ap-
parent downward trend in the last six years is attributed to decreasing marine survival, 
poaching (including by-catch), predation (e.g. cormorants), and probably navigation. 
Redds and ‘naturally spawned’ fry have been encountered annually throughout more 
than 12 years of the project in some tributaries, but numbers are also decreasing signifi-
cantly. It is expected that at least some returning adults originate from natural reproduc-
tion already. 

Project evaluation: As stated before, very low marine survival and factors within the 
migration corridor (poaching, predation, probably navigation) are generally seen as the 
main causes for the projects not reaching its initial goals. Additional issues preventing 
achievement of projects goals are: installation of new hydro power plants in program 
waters, passage problems with some obstructions particularly in low-flow conditions. 
With current marine survival levels etc. the goal of establishing a self-sustaining breeding 
population of Atlantic salmon until 2020 does not appear to be within reach and might be 
‘readjusted’. 

 

Case study 09: River Garonne, South West France 

Helcom or NASCO River ID number: NASCO 780 

River Catchment size (km2): 55 846. However, access restricted to only 30% of the catchment after 
1950–60, following the construction of large dams in the upper river.  

Starting and end year of project: 1985 – present 

Situation before restoration: Salmon declined in the second part of the nineteenth centu-
ry following the construction of the Bazacle dam at Toulouse and the continuation of 
fishing. Mid-19th century industrial development contributed to the elimination of the 
last salmon from the river. Some restocking trials took place in the mid-19th century and 
again after the Second World War. The dam linked with the Golfech nuclear power plant 
downstream of Toulouse prevented migration of fish in the early 1970s. A subsequent 
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restoration programme was initiated in the late 1980s with the re-opening of the Golfech 
and Toulouse dams to fish migration. 

Main stressors on population: Barriers, water regulation, habitat degradation, pollution, 
over-exploitation 

Barriers: There are 95 obstructions on the nine rivers / tributaries of relevance to salmon. 
This includes 45 hydroelectric plants with a cumulative head of around 200 meters: three 
on the main stem of the Garonne (downstream production areas), 20 on the upper Ga-
ronne, and others on different tributaries (10 on the Ariège, 10 on the Neste and 1 on the 
Pique); (Figure 1). 

Water Regulation:  There are particular problems due to abstraction in summer, includ-
ing water storage in many reservoirs in the Upper-Pyrenees and diversion of water for 
irrigation (e.g. Neste and St Martory canals). 

Habitat degradation: Key issues include lack of gravel caused by extraction in the lower 
and middle parts of the river and sediment retention due to dams built in upstream are-
as. 

Pollution: There are few problems in the upper Garonne basin. However, there are great-
er concerns in downstream areas and in the estuary, with pollution by sewage down-
stream of large towns (Toulouse, Bordeaux), agricultural run-off and some industrial 
discharges (e.g. heavy metals from factories on the Lot tributary). 

Over-exploitation: Prior to 2000, by-catches occurred in the net fisheries in the estuary 
and on the coast; this is considered less of an issue now due to an imposed moratorium 
on catches to protect shad. Some fish were previously also intercepted in fisheries else-
where (in the mid-1980s, some 40 micotagged fish were reported caught by nets on the 
west coast of Ireland). 

Actions taken: Connectivity restoration, stocking with monitoring of adults and survival 
of stocked fish, improved management / governance. 

Connectivity restoration: 34 fishways have been built over a period of 80 - 90 years on the 
main stem and principal tributaries at an estimated cost of up to 15 million €. In the initial 
stages, by-pass facilities on some fishways were poorly developed (average mortality of 
20%).  

As an alternative strategy, since 1999, some fish have been trapped and trucked over 60 
km from upstream of Toulouse (Carbonne) to spawning and rearing areas in the upper 
Garonne (Pointis), with a similar programme to transport smolts moving downstream 
(Figure 2). This enables adult fish to by-pass 18 dams and smolts to by-pass 21 turbine 
systems, although other downstream migration problems persist.   

Stocking: Stocking has taken place since the early 1990s, with 460 000 fish stocked annual-
ly since 2000. Broodstock were originally sourced from native stocks in Loire-Allier and 
Adour-Gaves, but later relied on captive broodstock from fish returning to the Garonne. 
The cost of the stocking has been estimated at 0.3 million € per year in the most recent 
years. 

Monitoring: Since 1993, there has been year-round video-counting of adult returns in the 
fishways of 2 dams (Golfech and Toulouse), and, since 1999, additional information has 
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been derived from trapping adults at Carbonne power plant, smolts at the Pointis power 
plant, and monitoring of natural spawning levels. Smolt production from stocked fry is 
assessed in the upper Garonne to evaluate run sizes and habitat productivity. Juvenile 
abundance is monitored by electrofishing surveys since 1990 at a yearly cost of 0.25 mil-
lion €. 

Metrics used to evaluate success: Juvenile counts, adult counts, juvenile survival rate, 
smolt to adult return rate. 

Assessment before project:  There was only a limited feasibility study before restoration 
work started. This indicated the availability of 20 000 functional units (100 m2) of nursery 
habitat (10 000 units on the main stem of the Garonne and 10 000 in the Ariège basin). 
While there were a number of impassable weirs on both the main stem and Ariege tribu-
tary, there was a strong belief that engineering solutions could be applied to restore free 
upstream passage and minimise problems during downstream passage. 

Project Aims: Re-establish a self-sustaining salmon population on the River Garonne. 

Actions taken in more detail: 

• Many weirs have been made passable providing access to upstream sections of 
the river (34 fishways installed and 120 km made available), with an associated ‘trap and 
truck’ initiative. 

• In recent years, additional improvements to fish by-pass facilities on tributaries 
(6 on the River Ariège, 2 on the River Neste) at a cost of around 6 million €.  

• Installation of video counting facilities in the first (Golfech) and second (Bazacle, 
Toulouse) dams and trapping since 1999 at Carbonne dam to monitor ascending adults. 

• Installation of facilities to monitor smolt runs since 2000 at two trap and truck 
stations (Camon and Pointis) on the River Garonne. 

• Monitoring of juvenile abundance by electric fishing operations since 1990.  

• Stocking of juveniles: Since 1995, Bergerac hatchery produces juveniles (F1) from 
returning adults (F0) trapped in Golfech and Tuilières fish facilities (this latter being on 
the Dordogne River) and Pont Crouzet hatchery produces juveniles (F2). Genetic analysis 
of adults show native wild origins.  

Assessment during project: 

• Annual counts of adults and smolts. 

• Electrofishing surveys to assess juvenile abundance and survival of released fish. 

Results: Figure 3 shows returning adult numbers and stocked fish per stage (X1000). 

Juvenile counts indicate low levels of natural spawning, but fair abundance of released 
fish (up to 30 0+ parr per unit) and an estimated survival rate of around 7% from fed fry 
to smolt (70% of smolts are  1 year old). 

Adult returns, based on monitoring at Golfech since 1993, have ranged from 50 to 600 
fish, with an average of 120 fish per year. Prior to 2003, almost 80% of adult returns were 
grilse, but returns have had a high proportion of MSW fish since this time. The average 
return rate (smolt to adult) is low at 0.5%, with the best rate of 1.1 % recorded for a batch 
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of released fry marked as smolts during subsequent trapping. For assessment purposes, 
released fry are only assumed to contribute to smolt runs in the following spring. 

Adjustments to goals during project: There has been no overall change in the project 
objectives, but considerable effort has been focused on improving downstream migration 
conditions. This has included:  

• Work to improve upstream passage on the two lower dams (Golfech and Baza-
cle); 

• Building and improving by-pass facilities on the Ariège tributary; 

• Safeguarding downstream runs through by-passing dams and related problems 
of turbine mortality through enhanced trap and truck operations on the upper-Garonne 
(e.g. replacing spaced bar screens ahead of turbines and the use of two successive trap-
ping facilities to save 90% of the smolt runs); 

• Transporting adult fish trapped in the Golfech fish-lift directly to spawning 
grounds in the Ariège tributary, to confirm its potential for natural spawning. There is no 
stocking at this site and assessment is made by redd surveys, monitoring of juvenile fish 
and genetic studies. There is no smolt trap and truck programme on the River Ariège  

• Investigating the adult losses between Golfech and Toulouse. These are consid-
ered surprisingly high given improvement of the fishways in Toulouse (attraction water) 
and based on the assessments at the fish lift and the efficiency of the fishways. Various 
possible causes have been considered, including reduction in water quality and increased 
predation by Wels catfish, which are increasing in abundance with warming water.  

Project success: The project has so far failed to establish a self-sustaining breeding popu-
lation of salmon. Numbers of returning adults are currently similar to those at the begin-
ning of the programme, but the age structure is inversed, with mostly MSW salmon in 
the current returns. Some redds and ‘naturally spawned’ fry are encountered annually, 
with 5–10% of spawners assessed as arising from natural spawning (based on a genetic 
assignment study).  It is unclear whether the MSW increase is some habitat effect or is a 
result of prevailing environmental conditions. 

There is concern that increased temperatures, low flows and reduced oxygen levels may 
be preventing grilse from entering the river during the summer months, possibly linked 
with climate change. 

Project evaluation: 

As yet, the project goals have not been attained. Possible causes for this are: 

• The continuing impact of the two lower dams, despite these being equipped with 
apparently good fishways; 

• Low flows in late spring / early summer preventing grilse runs; 

• Spawning and juvenile habitat less functional than expected (e.g. lack of coarse 
sediment and negative effect of floods leaving spawning grounds covered in fine sedi-
ment); 
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• Too much exploitation of returning fish in national and international waters: 
earlier interception by nets on the coast of Ireland before the closure of this fishery and in 
mixed fisheries in Gironde (no control and evaluation of salmon catch); 

• Low marine survival since the mid-1990s due to modification of the marine habi-
tat with climate change. This coincided with the middle of the restoration effort. 

Issues that remain: 

• Is restoration achievable? And, if so, at what level?  

• Is it possible to restore free passage conditions sustainably? 

• Do salmon have the ability to survive in much modified rivers? 
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Figure 1. Dams, stocking areas and fish traps in the upper Garonne basin (Legend: river, towns, hy-
droelectric plants, fish control facilities, main dams, stocking areas, new stocking area). 

 

Figure 2. Catch and ‘trap and truck’ strategy on the upper Garonne river. 
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Figure 3. River Garonne - adult returns (top panel) and stocking details (bottom panel, X1000). 

 

Case study 10:  River Testeboån, Sweden, Baltic Sea 

Helcom or NASCO River ID number: 1039 

River Catchment size (km2): 1112 

Starting and end year of project: 1991 - present 

Situation before restoration: The salmon in the River Testeboån have suffered from hu-
man perturbations over a very long time, and the local population was finally extirpated 
in the 1960s mainly due to increased hydropower generation. In 1997, when the Salmon 
Action Plan was adopted in the Baltic Sea by the International Baltic Sea Fisheries Com-
mission, the Testeboån was classified as a “potential salmon river” by ICES. In the 1990s, 
the River Testeboån was also selected for reintroduction efforts nationally.  

Main stressors on population: The river has been affected by anthropogenic impacts for 
centuries, in earlier years by the iron industry and later by hydropower production. The 
river has also been used for transporting timber and many stretches have been subject to 
gravel abstraction. During the most recent decades, hydropower production has been the 
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main stressor on the salmon population (Figures 1 and 2). Several migration barriers 
(dams) have hampered or prohibited salmon from reaching spawning and nursery areas, 
and increased hydropower generation finally resulted in the population being extirpated 
in the 1960s. Acidification has been a concern further upstream in the river system, but it 
is uncertain to what extent it has affected salmonid fish. During the reintroduction pro-
gramme prior to 2010, high fishing pressure at sea also had a negative effect on the re-
covery of the salmon population. 

Actions taken: Stocking of salmon eggs and fry, improved migration possibilities, resto-
ration of river habitats, liming, reduced sea fishery. 

Metrics used to evaluate success: The salmon population is monitored annually using 
electrofishing and in recent years also counting of ascending adults and out-migrating 
smolts. The function of fish ladders / fishways and water regulation regimes has been 
evaluated by means of visual inspection. The timing and survival of smolts during 
downstream migration has been evaluated using tagging studies. 

Assessment before project: Water chemistry, habitat inventories and electrofishing to 
estimate abundance of salmon and trout. 

Project Aims: To reintroduce a wild, self-sustaining salmon population in good status. 

Actions taken in more detail: Reintroduction efforts started in 1991, when eyed salmon 
eggs from the nearby River Dalälven were stocked in the Testeboån. Between 1994 and 
2006, stocking of mainly eyed eggs and fry was carried out on an annual basis. Stocking 
material during the whole period originated from the River Dalälven. Migration possibil-
ities for fish have been improved successively at the power plant at Strömsbro, situated 
about 2 km from the river mouth, by means of new water regulations. This has helped 
attract fish to fishways and has made it possible for more ascending spawners to find 
their way upriver. In addition, survival during the smolt migration has been improved 
by closing the power plant, or decreasing the amount of water passing through the tur-
bines, during the smolt migration period. In 2014, a permanent smolt diverter was in-
stalled in the inlet channel to the power plant at Strömsbro, to prevent smolts from 
passing the turbines. In 2005, the second power plant on the river, situated at Forsby 
about 5 km from the river mouth, was removed. This made 21 km of the river accessible 
for salmon and sea trout. Restoration work to restore salmon and trout habitats, by 
means of putting back stones and boulders, has been undertaken in other parts of the 
river. To address acidification issues, liming is undertaken in the upper parts of the 
catchment. The exploitation in the sea fishery has declined in recent years as a result of 
reduced quotas and nationally imposed changes in the geographical distribution of the 
fisheries to reduce mixed-stock fishing. These measures have facilitated recovery of the 
salmon population. 

Assessment during project: The salmon population has been monitored using electro-
fishing and in some years also counting of ascending adults and out-migrating smolts. In 
2013, the reintroduction programme was evaluated by ICES. The outcome of this evalua-
tion was a decision that the Testeboån should be regarded as a wild, self-sustaining 
salmon river. Since then, the population status has been evaluated in relation to the MSY-
based management objectives agreed for wild Baltic salmon populations, by comparing 
estimates of the current smolt production with expert opinions about the potential smolt 
production capacity (PSPC). The wild smolt production in recent years has varied, main-
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ly as a result of varying possibilities for adult spawners to reach the spawning grounds, 
and is believed to be below 50% of the PSPC. Thus, according to ICES analyses, the river 
has not yet reached the MSY-based management objective (75% of PSPC). 

Adjustments to goals during project: There have been no changes to the overall project 
aims and objectives. 

Project success: The reintroduction programme has been very successful. Even though 
the salmon population has not yet reached the MSY-based management objective, the 
restoration efforts have resulted in the re-establishment of a self-sustaining wild salmon 
population.  

Project evaluation: Despite the success of this reintroduction project, there is a need for 
ongoing improvements to enable further development of the salmon population. The 
function of the permanent smolt diverter at Strömsbro is unclear, and an evaluation may 
be carried out during 2016. The problems for adult salmon in finding their way upriver 
has not been solved completely, as water levels in summer, and the amount of water 
passing the power plant at Strömsbro, still affect upstream migration. A more sustainable 
solution, enabling more adult salmon to reach spawning areas, is probably necessary to 
secure a continued recovery of the salmon population in the Testeboån. 

 

Figure 1.  The River Testeboån downstream of the power plant at Strömsbro. The photo is taken from 
the dam construction (see Figure 2). 
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Figure 2.  Construction of the smolt leader/diverter at Strömsbro. The steel rods prevent smolts from 
entering the inlet channel to the power plant. The photo is taken from the inlet channel. The dam 
construction with fishways for smolts and adults, a smolt trap and equipment for counting adults and 
registering PIT tags can be seen in the background.  

 

Case study 11: River Tornionjoki/Torneälven, Finland/Sweden, Baltic Sea 

Helcom or NASCO River ID number: HELCOM 899 

River Catchment size (km2): 40 010 

Starting and end year of project: 1980s - present 

Situation before restoration: The River Tornionjoki is the most northerly of the river 
basins in the Baltic Sea catchment and is the largest producer of wild salmon in the Baltic 
Sea. It is also the largest unregulated river in Western Europe, with no migration obsta-
cles, either natural or man-made, in the main river, and both the river habitat and water 
quality are considered to be in an almost pristine state. Salmon spawn widely throughout 
the catchment and parr occur in the swiftly flowing sections of the main river, in the 
headwaters and in the major tributaries from the lowermost riffles up to 400–500 km 
from the sea. 

The highest catches recorded in the river were around 400 tonnes and these occurred 2 to 
4 centuries ago when almost all fishing was confined to the river. Since that time, salmon 
fishing has spread gradually from the rivers to the Baltic Sea. Offshore fishing targeted at 
feeding salmon dominated catches during the second half of the 20th century; coastal 
fishing also expanded during this period. Consequently, in more recent times, salmon 
have been harvested by various fisheries along their whole migration route and the vast 
majority of the catch has been taken by sea fisheries.  
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The abundance of Tornionjoki salmon declined rapidly after World War II and the stock 
was especially weak throughout the entire 1980s, when it was considered to be on the 
verge of extinction. Annual smolt runs of wild Tornionjoki salmon were no more than 70 
000 - 80 000 individuals in the late 1980s.  

Main stressors on population: Over-exploitation due to consecutive fisheries operating 
along the salmon’s whole migration route. 

Actions taken: Hatchery supplementation programme (1977–2002) and restrictions on 
fishing activity (early 1990s on). 

Metrics used to evaluate success: Population abundance of wild-origin and stocked 
salmon over time. Comparison of the development of the supplemented and non-
supplemented salmon populations of the area, with similar fishing pressure over time. 

Assessment before project: Population abundance and harvest estimates prior to years 
with enforced fishing restrictions (i.e. from 1980s). Parr densities (electrofishing) and 
river catches from years before hatchery supplementation started. 

Project Aims: The primary goal of the fishing restrictions was to increase survival to 
spawning, with the ultimate goal of increasing wild reproduction. The objective of the 
supplementation programme was to increase juvenile and adult population abundance 
(wild and stocked), with the ultimate goal of increasing wild reproduction. 

Actions taken in more detail: 

Restriction of Fishing: Total allowable catches (TAC) were introduced in 1991 for Baltic 
Sea fisheries.  TACs were reduced from 600 000–700 000 salmon during the early 1990s to 
400 000–460 000 during 1996–2007. Further reductions in TAC were enforced in 2008–
2013 and currently the TAC is around 100 000 salmon. In 1997, the International Baltic 
Sea Fisheries Commission, which manages sea fishing in the Baltic Sea, adopted a so-
called Salmon Action Plan (SAP). The most important management goal of the SAP was 
to attain at least 50% of the estimated potential smolt production capacity in each wild 
salmon river by 2010. Reductions in TACs were made mainly in response to achieving 
this goal. Wild spawners, especially old females, tend to return to rivers earlier in the 
season than younger and reared salmon. To safeguard these fish, early-season closures of 
coastal fishing has been enforced in both Finland and Sweden since the 1980s. The clo-
sures were of relatively short duration until the mid-1990s, when the closure periods 
were extended substantially. These stricter restrictions have remained in force ever since. 
Restrictions on river fishing have also been strengthened in parallel with the restrictions 
on sea fishing. 

Supplementary stocking: A joint Finnish-Swedish hatchery programme, using salmon of 
Tornionjoki origin, started in 1977. This annual supplementary stocking increased in 
volume throughout the 1980s and early 1990s and was at its highest level in the mid and 
late 1990s. Altogether, about 3 million eggs or fry, 8 million parr (mostly 1-year old) and 
0.8 million smolts (mostly 2-year old) were released. Released parr and smolts were 
marked by removing the adipose fin before stocking.  The stocking was discontinued in 
2002, due to the recovery of the Tornionjoki stock. Only salmon native to the river were 
used for rearing; both wild-caught and captive broodstock were used for egg production. 
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Assessment during project: Reconstruction of population abundance dynamics from the 
late 1980s to the present, with separation of wild-origin and stocked stock components. 
This was based on the following input data: stocking statistics, electrofishing surveys, 
smolt trapping, tag-recapture data, catch and effort statistics by fishery, and catch sam-
ples. Observations of wild-reared proportions at smolt and spawner stages were includ-
ed. Nearby salmon populations were also assessed using the same methodology, 
although the available input data differed in some cases. 

Adjustments to goals during project:  

Goal for the years before 1997: increase in wild abundance.  

Goal for 1997–2010: to attain at least 50% of the estimated potential smolt production 
capacity by 2010. 

Goal since 2010: to attain at least 75% of the estimated potential smolt production capaci-
ty (MSY proxy). 

Project success:  

The abundance of wild smolt runs stayed at the same level of magnitude (50 000–100 000 
per year) in the 1980s. Recovery started in the late 1980s - early 1990s (70 000–200 000 per 
year), jumped to 600 000–800 000 per year at the turn of millennium, and has increased 
further since 2008 to the present 1.3 - 1.5 million smolts per year. The abundance of wild 
spawners has increased from 3000–4000 individuals in the early 1990s to 80 000 - 120 000 
individuals in the period 2012 to 2015. The overall abundance of both wild and reared-
origin (arising from both parr and smolt stocking) smolts and spawners, and their rela-
tive contributions to these runs, are shown in Figures 1 - 2. 

The abundance of wild-origin Tornionjoki salmon has increased from 15-fold (smolts) to 
30-fold (spawners), from the beginning of 1990s to present. This time period covers 3 to 4 
wild salmon generations (the average lifespan of female Tornionjoki salmon is 6–7 years), 
which means that the  average increase in abundance has been 4 to 10 fold per genera-
tion. 

Reared-origin salmon accounted for up to about half of the total smolt runs in the late 
1980s and in the 1990s (Figure 2). Survival of stocked 1-year old juveniles to smolt varied 
from about 10% to 25%. Based on the stocking statistics and abundance of wild salmon 
parr in the 1970s and early 1980s, the contribution of stocking to the population was simi-
lar or lower prior to 1987. Smolts of different groups showed synchronous variation and 
similar patterns of capture in net fisheries as wild salmon. Post-smolt survival of wild 
Tornionjoki smolts was on average two times higher than that of smolts stocked as parr 
and 2.5 times higher than that of stocked smolts. Average survival from smolt to spawn-
ers of wild salmon was 2.8 times higher than that of salmon stocked as parr and 3.3 times 
higher than that of salmon stocked as smolts (Romakkaniemi, 2008). 

 Total cumulative mortality of Tornionjoki salmon has decreased from about 95% in the 
late 1980s to about 40% in the 2010s (Figure 3). As a result, survival of maturing fish from 
fishing has increased over 10-fold (5% vs. 60%) during the time period. The correspond-
ing survival to spawning has not increased as much because adult natural mortality af-
fects final spawner numbers even if salmon are not exploited in fisheries. 
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Wild salmon stocks of northern Baltic rivers (including the Tornionjoki and the Simojoki) 
have shown similar overall patterns of stock recovery, regardless of whether these have 
been supplemented by stocking initiatives or not (Romakkaniemi et al., 2003; Romak-
kaniemi, 2008). 

Project evaluation: 

The key factor behind the recovery of the Tornionjoki salmon stock was the introduction 
of restrictions on the sea fishery; this was associated with the simultaneous occurrence of 
relatively favourable natural conditions for survival (Romakkaniemi, 2003 and 2008). An 
ongoing reduction in fishing pressure has maintained the recovery of the stock at the 
present time. 

The relative impact of decreased fishing pressure (over a 10-fold increase in survival 
from fishing from the 1980s to the 2010s) overshadowed and fully masked the presumed 
impact of supplementary stocking, which was not the key factor in the revival (about 1.2x 
increase in spawner abundance over 4 salmon generations: 1.2^4 ≈ twofold total effect). 
Only the increase in survival from fishing could have increased abundance with the doc-
umented speed. Moreover, the results of the comparison of the recovery of stocks with 
and without supplementary stocking confirms that stocking has had only minor, and 
perhaps even non-existent, impact on stock recovery. 
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Figure 1. Estimated abundance (number of individuals, median values) of wild-origin and stocked 
salmon (originating from parr and smolt introductions) in the annual smolt run (upper panel, years 
1987–2015) and spawning stock (lower panel, years 1992–2015) on the River Tornionjoki (ICES, 2015; 
Romakkaniemi, 2008). 
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Figure 2. Estimated proportions of wild-origin and stocked salmon (originating from parr and smolt 
introductions) in the annual smolt run (upper panel, years 1987–2015) and spawning stock (lower 
panel, years 1992–2015) on the River Tornionjoki, based on the estimates from Figure 1 (ICES, 2015; 
Romakkaniemi, 2008). 
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Figure 3. Total cumulative fishing mortality (presented as harvest rates, 1=100% mortality) across the 
life of Tornionjoki salmon maturing as 2SW (upper panel) and 3SW (lower panel) fish. The X-axis 
indicates the year of smolting (1987–2011) (ICES, 2015). 

 

Case study 12: River Thames, United Kingdom (England) 

Helcom or NASCO River ID number: NASCO 452 

River Catchment size (km2): 12 860 

Starting and end year of project: 1979 - present 

Situation before restoration: The River Thames is known to have supported a large run 
of salmon historically and a substantial fishery existed on the river until the early 19th 
Century. The industrial revolution and urbanization of London and other parts of the 
catchment resulted in increased levels of pollution and the construction of barriers, and 
salmon were last recorded in the 1830s. Some limited, and unsuccessful, efforts were 
made to restore salmon to the Thames prior to the 1970s. Following improvements in 
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water quality through London, a salmon was recorded in the lower Thames, downstream 
of London, in 1974 and this helped stimulate interest in fresh initiatives to restore salmon 
to the river. The Thames Salmon Rehabilitation Scheme was established in 1979. 

Main stressors on population:  Pollution, multiple barriers, river flows / abstraction, 
exploitation. 

Actions taken: Hatchery stocking started in the 1970s with an associated tagging pro-
gramme; fish passes were constructed on many barriers and their performance evaluat-
ed; evaluation of spawning and juvenile habitat. 

Metrics used to evaluate success: Monitoring of adult returns at trapping facility; catch 
records; tagging programme to evaluate success of stocking; habitat and juvenile surveys; 
genetic analysis. 

Assessment before project: General monitoring of water quality and multi-species fish-
ery surveys. 

Project Aims: The Thames Salmon Rehabilitation Scheme set out initial aims extending 
over a period of more than two decades. These aims were split into a number of phases: 

• Phase 1 (7 years) – Juvenile stocking programme. Provision of adult trap in lower 
river for the capture of adult salmon and the use of some returning adults as broodstock 
for the rearing programme.  

• Phase 2 (5 years) - Maintenance of the juvenile rearing programme and work to 
facilitate natural spawning and rearing of salmon in the main river and tributaries. Un-
dertake weir modifications to enable adult salmon to ascend a further 30km of the main 
river and permit access to some lower tributaries. 

• Phase 3 (5 years) - Continuation of the artificial rearing programme. Undertake 
further weir modifications to allow access to a further 80 km of main river and additional 
tributaries, including the Kennet. 

• Subsequent Phases (at least 5 years) - Reviews of Scheme. Refocusing of stocking 
programme to establish the most cost-effective methods and optimize survival rates. 
Particular focus on returning adults to the River Kennet, the tributary of the Thames with 
the largest amount of suitable breeding and nursery habitat. Completion of fish pass 
construction programme and assessing connectivity by radio tracking. Development of a 
Thames ‘stock’. Assessment of the productive spawning habitat in the catchment. 

The project objectives were subsequently reviewed and updated in line with Salmon 
Action Plan delivery in 2003/4 (see below). 

Actions taken in more detail: 

• Stocking programme commenced in the 1970s – fish from various sources were 
used. Initially, stocking relied mainly on Scottish hatchery lines, although occasional 
releases of fish from rivers in southern England were also made. Subsequent switch to 
utilise fish that were only subject to one generation of captive breeding from Irish 
sources, with increasing emphasis on using fish reared from adults returning to the 
Thames.  
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• A programme of fish pass construction to enable returning adults to negotiate 
the numerous weirs (e.g. 36 between the tidal limit and spawning/rearing habitat in the 
Kennet tributary). 

• Ongoing improvements to water quality through improved treatment of waste, 
new interceptor sewers, etc. 

Assessment during project: Monitoring of varying life stages as well as water quality 
and flows. Adult salmon returns were evaluated using a trapping facility a short distance 
upstream of the head of tide, combined with catch records. A coded wire tagging pro-
gramme was instigated to evaluate the success of stocking and the impact of interception 
fisheries. Tracking studies were used to assess the efficacy of fish passes and river con-
nectivity. Habitat surveys were conducted to evaluate the extent and suitability of 
spawning and rearing habitat. Juvenile surveys of appropriate areas and genetic analysis 
of returning fish were also undertaken. 

Adjustments to goals during project:  

The initial focus was primarily on achieving adult returns to the river. As fish pass con-
struction advanced, the focus shifted to establishment of a self-sustaining run in the River 
Kennet, which was identified as the tributary with the most suitable spawning and rear-
ing habitat. 

As part of a process of developing river-specific Salmon Action Plans for all the principal 
salmon rivers in England and Wales, revised objectives were formulated to further pro-
gress the restoration of salmon to the Thames in 2004. Eight specific targets were identi-
fied, which included: 

• Achieving an average of 250 adult salmon returns to the river each year; 

• Demonstrating that adult salmon have successfully spawned and produced ju-
veniles in the River Kennet; 

• Fish passes to be open throughout the fish migration period and operate at great-
er than 95% efficiency; 

• Ensuring the effective input of salmon water quality requirements in determin-
ing future water quality standards for the Thames tideway; 

• Continuing the programme of work to evaluate the exploitation of salmon out-
side of the freshwater Thames. 

More recently, in view of decreasing returns, ongoing water quality issues, funding pres-
sures, and the general decline in the survival of Atlantic salmon at sea, the juvenile stock-
ing programme was stopped. There is an ongoing aspiration to return salmon to the 
Thames, but the focus now is away from single species activities and more towards 
achieving general improvements in water quality and aquatic biodiversity consistent 
with meeting Water Framework Directive requirements. Evidence from other rivers in 
England and Wales indicates that if the habitat is suitable, natural recovery will occur.  

Project success: In the early part of the programme, the numbers of adult salmon record-
ed in the river gradually rose, reaching a peak of 338 in 1993. However, in 1997 the num-
bers of adult salmon recorded in the Thames declined significantly, reaching a low in 
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2005 when no salmon were captured (Figure 1). Subsequent to this, stocking was discon-
tinued. 

Salmon habitat assessments indicated that two tributaries, the Kennet and Lambourn, 
contained large areas of salmon nursery habitat. Although areas of ‘text-book’ spawning 
habitat were limited and sedimentation was identified as a concern, it was considered 
that successful breeding and rearing was possible in these areas assuming fish had up-
stream access. 

The efficacy of the fish passes on the Thames and Kennet was monitored by a radio track-
ing investigation over a number of years (1996–2004). Many weirs were found to have 
high passage efficiency rates, particularly those further upstream. However, there were 
issues with passes in the lower river and, based on the derived efficiencies, the cumula-
tive effect suggested that only 9 salmon from every 100 entering the river would reach 
the Kennet. 

Two major construction projects were agreed to resolve the long-standing problem of 
storm sewage discharges into the Thames Tideway. These will substantially reduce the 
level of untreated sewage overflowing into the river by capturing it from 34 sewer over-
flow points and transferring it to treatment works. One tunnel was due to be completed 
in 2014 and the other in 2020. 

A number of the objectives established in the Salmon Action Plan process were achieved. 
However, the one that was repeatedly missed, and which was the main one many stake-
holders cared about, was how many adult salmon were coming back each year. Thus, 
while the programme might not be considered a success, a number of the major issues 
identified at the outset in the SAP (e.g. water quality in the tideway, entrainment at water 
intakes, interception in fisheries outside freshwater) have been addressed, or are likely to 
be over the coming years. 

Project evaluation: 

The rehabilitation scheme failed to achieve the hoped for reintroduction of a self-
sustaining stock of salmon in the River Thames over anticipated timescales, although a 
number of the project goals were achieved.  In particular, the project raised the profile of 
the river and of fish migration and water quality requirements, and led to improvements 
that have benefited wildlife and river users. The project was a template for many other 
rehabilitation schemes around Britain 

The juvenile stocking programme has now ceased and motivation for further restoration 
work has been reduced because the expectation of returning adults has also been re-
duced. Nonetheless, there is still the aspiration of returning salmon to the Thames, alt-
hough the focus now is away from single species activities and more towards more 
general habitat and biodiversity improvements in line with meeting wider Water 
Framework Directive requirements. The expectation is that if the conditions are suitable 
the fish will return. This is supported by a recent genetic investigation (Griffiths et al., 
2011),  which indicated that untagged salmon ascending the river in 2005–8 originated 
not from exogenous fish stocked into the Thames, but predominantly from other rivers in 
southern England. This highlighted the potential for natural processes of recolonisation 
to operate in rivers where salmon have become locally extirpated. 
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Figure 1. Adult salmon captures recorded in the River Thames, together with the 5-year average. 
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Annex 4: ‘Conclusion’ chapter from the report on the Atlantic Salmon 
Federation (ASF) hosted workshop ‘What works? A Workshop on 
Wild Atlantic Salmon Recovery Programs’  

St. Andrews, New Brunswick, Canada, 18–19 September 2013 

Conclusions 

Developing a salmon restoration plan is a complicated undertaking. There are numerous 
factors that need to be considered from the state of the salmon resource in question, to 
the state of the riverine, estuarine, and marine environments as well as the societal and 
political factors. The complexities of these issues were clearly exemplified by the content 
of the presentations, posters and panel discussion associated with this workshop. There 
is not one clear universally agreed upon approach or menu that practitioners can apply 
to create a successful salmon restoration program. There are however, general guiding 
principles that we can recommend based on our experiences from this workshop. 

Suggested Approach 

In a completely natural state, Atlantic salmon survival and productivity will vary over 
time. Significant decreases in adult abundance due to natural variation can be interpreted 
as a call for concern and action. However, it is important to consider population abun-
dance trends over some specified time-frame. Short-term population fluctuations are 
expected and therefore, should not carry the same weight or level of concern as long-
term population declines. Maintaining longterm monitoring programs allows for the 
detection of these types of population trends and allows the increases and decreases to be 
put into historical context. It is difficult for local, provincial/state and federal agencies to 
maintain the funding needed for these types of programs as they often do not compete 
well against other short-term projects and investigations. However, maintaining these 
programs is essential to the responsible management of any salmon population. In the 
absence of long-term monitoring, contemporary field data can provide information on 
population status. In the absence of any contemporary data, expert opinion may be the 
best information available, including that provided by local and traditional knowledge. 
This hierarchy highlights the importance of long-term monitoring data and underscores 
that it is never too late to start a monitoring program. Healthy and diverse freshwater, 
estuarine, and marine habitats are fundamental to having healthy wild salmon popula-
tions. These provide the key elements needed for salmon survival and productivity and 
the basis for life history complexity within a population. Life history complexity (e.g., 
multiple river ages, multiple sea ages, ‘early’ and ‘late’ returns, repeat spawners, etc.) 
enables the development of increased population complexity. Diverse populations and 
ecosystems are more resilient, thereby providing greater buffering against environmental 
variation. When stock diversity decreases it can lead to increased annual fluctuations in 
returning salmon and a higher probability of major population declines (Schindler et al. 
2010). Long-term population declines and loss of life history and ecosystem diversity can 
often be caused by anthropogenic (i.e., human induced) impacts on aquatic communities 
(e.g., out of balance predator-prey relationships, declining co-evolved diadromous com-
plex, excessive indirect or direct harvest etc.), habitat conditions (e.g., decrease water 
quality and quantity, decrease habitat quality and quantity etc.) and/or connectivity (lim-
ited access to the full suite of habitats types needed). Therefore, the first principles of any 
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recovery program will need to be founded on habitat restoration and protection com-
bined with sound management based on population monitoring. As referenced earlier, 
the process of developing a salmon restoration plan is complicated and there is no one 
template available that will fit all possible situations. The development of an effective 
restoration program for Atlantic salmon requires:  

• An understanding of the problem 
• A clear statement of desired outcomes 
• An evaluation of available options 
• A long-term commitment to the program 

The following flow chart is intended to provide guidance on the steps that should be 
taken when assessing the status of the salmon population and habitat in the watershed, 
both of which are essential components for the development of an effective restoration 
plan.  
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*Gibson (this workshop, see Section 5) provided clear examples of how population modeling can 
allow scientists and managers to investigate 1) how the dynamics of the populations have changed, 
resulting in the population decline and 2) how populations would be expected to respond to specific 
recovery actions based on those dynamics. Understanding the impacts of threats to the population 
through these types of modeling effort are absolutely essential to effective and efficient restoration 
planning. 

Following the above process will aid managers in determining what root-cause problems 
are affecting the productivity of the salmon population(s) they are focused on so that 
suitable plans can be developed to address them. 

Stocking 

For many years, stocking has been used as the default method of countering low fish 
numbers. However, stocking has often resulted in unforeseen consequences (e.g., delete-
rious genetic changes resulting in loss of wild traits) and as such, must be very carefully 
considered before incorporating into a recovery plan. Otherwise, the “stock first” ap-
proach is knee-jerk and could eventually inflict more harm than it does good for the 
population under recovery. Hatcheries were originally thought of as a “techno” fix to the 
problem of declining salmon populations. Instead of analyzing and fixing the habitat 



ICES WGERAAS REPORT 2015 |  107 

 

problems and/or reducing the excess harvest of adult spawners, hatcheries were de-
signed to simply increase the number of salmon available. This practice often simply 
disguised the problems limiting production. The flow chart above will focus the manag-
er’s attention on the task of identifying the limiting factors for the population. Unless the 
factors limiting the population are identified and mitigated, stocking will not achieve 
population recovery. Through continued research and innovation of hatchery and rear-
ing practices, our understanding of how to effectively use and manage hatcheries is con-
tinually growing, but remains far from complete. There are significant ecological and 
genetic risks associated with the use of hatcheries. Salmon stocks were once viewed as 
interchangeable (i.e. transferrable from one region or watershed to another), which is in 
contrast to the contemporary knowledge of unique populations within and among rivers. 
Despite these concerns, the use of hatcheries to rear Atlantic salmon for stocking may be 
justified in some cases. A clear example for hatchery intervention is when populations 
are in danger of extirpation. In other situations stocking should only be considered after 
all available fishery management measures have been exhausted and a full understand-
ing of the threats has been developed (see figure above) and actions have been undertak-
en to improve habitat quality and quantity, and fish passage. Simply put, stocking fish 
into poor habitat and/or areas with poor fish passage will likely yield few, if any, benefits 
toward recovery. If stocking is to be considered as part of the overall recovery plan, it is 
important to have an understanding of the goals and timelines for hatchery intervention. 
There are a number of guiding principles that should be considered for hatchery inter-
vention:  

• First, consult with population dynamics and genetic experts to fully under-
stand the pros and cons of the proposed effort. 

• If the objective of the program is recovery of wild populations then human in-
tervention should be minimized so as not to interfere with natural smolt re-
cruitment processes. 

• The start and finish of a stocking program should be predetermined. 

Spawning and Rearing 

• Use local wild broodstock if available. 
• Use a large number of randomly selected breeders (e.g., mix sizes of fish). 
• Obtain a representative genetic composition to balance the demographic gains 

with genetic diversity (April, this workshop). Minimize time spent in the 
hatchery. 

• Maximize wild or “wild-like” exposure. 
• Alter artificial rearing environments to promote fish traits that may be more 

favorable in nature. 
• Wild exposure of hatchery products can improve short (within generation) 

and long term (transgenerational) success of artificially reared fish. 

Releases 

• Need to identify and fix limiting factors that may impede survival at each life 
stage and plan releases accordingly. 
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• Carefully consider the most appropriate choice of life stage to be stocked, 
based on the tenet of minimizing hatchery involvement and maximizing wild 
exposure. 

• Long term monitoring is essential to understanding long-term contribution of 
the stocked fish and therefore to measuring success (egg to at least F1 genera-
tion). 

And remember that: 

• Stocking should be considered a temporary tool. 
• Stocking should not inhibit other restoration/recovery measures. 
• Stocking, by itself, will not be sufficient to recover/restore populations. 

Wrap-Up 

The information presented at this workshop and above demonstrates the significant pro-
gress that has been made in our knowledge of wild Atlantic salmon recovery and restora-
tion programs. In this workshop there were a series of presentations that described 
advantages and disadvantages of various hatchery techniques, stocking strategies, habi-
tat restoration and fish passage improvement methods. The workshop presentations did 
not span the full range of human intervention but highlighted various approaches along 
the spectrum. Some techniques showed promise, but in all cases hatchery intervention 
alone did not result in recovery. For many years fisheries professionals have focused on 
monitoring for the primary purpose of assessing stock abundance. Stock restoration and 
enhancement techniques were often undertaken without a firm understanding of the full 
suite of threats in the watershed; the effect of these on the population; and the risks, limi-
tations, and benefits associated with particular recovery actions. The lessons highlighted 
and demonstrated within this workshop show the benefit of, and our progress towards, 
moving away from this paradigm. The existing approach to resource management typi-
cally has not achieved long term conservation goals. Science based decisions have been 
compromised by short term government priorities and the needs of dominant stakehold-
ers. This often leads to short term band aid approaches (e.g. stocking) rather than ad-
dressing long term management of habitat and harvest. These approaches need to 
change. More stakeholders (NGOS, recreational anglers, scientists, First Nations) need to 
become involved to create an active and committed decision making body to develop 
locally tailored solutions. The lessons highlighted within this workshop are not unique to 
salmon recovery initiatives. They are reflective of the general evolution towards an eco-
system approach to natural resource management and restoration. There are many other 
recent examples of ecosystem and holistic based natural resource management, which 
can be helpful guides when developing an Atlantic salmon management plan. For exam-
ple, Palmer et al. (2005) proposed five criteria that could be used to measure the success 
of river restoration projects. These criteria help bring an ecological perspective to pro-
cesses of river restoration. Given that salmon restoration and river restoration activities 
often overlap (Fleming, this workshop), the criteria proposed by Palmer et al. (2005) may 
provide a solid foundation for both evaluating the potential effects of proposed salmon 
restoration actions, as well as the outcomes of salmon restoration efforts post-
implementation. The five criteria proposed by Palmer et al. (2005) are summarized below:  
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1. There should be a specific guiding image of the restoration effort under consideration 
that envisions a more dynamic and healthy state than currently exists. 

2. The ecological condition of the system/population must be measurably improved. 

3. The population should be more self-sustaining and resilient to external perturbations 
so minimal follow-up is needed. 

4. No lasting harm should be inflicted. 

5. Both pre- and post-assessment activities must be completed and data must be made 
publicly available. 

This workshop focused on the science and management of Atlantic salmon, with particu-
lar emphasis on the biology and ecology of the species and new techniques in restoration. 
However, the successful restoration and management of the species will involve a full 
suite of additional considerations such as regional economics, the available resources 
(e.g. fiscal, standing stock, infrastructure, etc.), and political and societal views of the 
effort. The development of an effective management and or restoration plan for the spe-
cies will require that all of these additional factors be taken into account. It is impossible 
for us to suggest a recovery plan that would meet the needs of your watershed and salm-
on population. The particulars of what you are dealing with within your watershed (e.g., 
population status, habitat status, politics and local engagement) will determine the best 
course of actions. We can, however, suggest a number of building blocks or principles 
that should form the foundation of any recovery plan. Below we present five guiding 
principles: 

1. Team 

a. The foundation of a recovery plan requires a solid and committed team to create a local 
decision making body. 

b. A ‘champion’ (individual or organization) needs to be identified as project leader. 

i. Teams need a good leader, someone who has passion for the watershed, resto-
ration tasks, and can leverage the strengths of each member to ensure the work 
identified as needed by the team is accomplished. Finding effective leaders is no 
simple task, but is essential to success. 

c. The team should consist of a diverse group of stakeholders (e.g. NGOs, First Nations, 
recreational anglers, scientists, and watershed users), government officials (i.e. science 
and management) and policy makers (i.e. elected officials).  

d. Partnering allows for the pooling of resources, increases funding options and allows 
for the addressing of critical questions at a broader level. 

e. Team members must share knowledge, discuss options for best recovery strategies, 
and work together to plan and prioritize projects using science based decision processes 
that include and take into consideration local and traditional knowledge wherever possi-
ble. 

f. The team must meet regularly to review progress (e.g., stock status reports, research 
projects, etc.) and determine best management options.  
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2. Holistic Approach 

It is now generally recognized in conservation circles that any given population cannot 
be recovered in isolation of other co-existent native fish populations and ecosystem cir-
cumstances, nor is there much chance at recovery if the strategy is to address symptoms 
as opposed to root cause issues. As such, we suggest that any recovery strategy must take 
a holistic approach, taking into consideration the following: 

a. Need to take a multi-species and ecosystem-wide approach if you want to achieve the 
best chance of salmon recovery (e.g., status of population in nearby rivers/watersheds, 
status of other native fish communities). 

b. Must identify and understand the root cause(s) of limiting factors and how they relate 
to the entire ecosystem. 

c. Coupling salmon restoration interests with those of the diadromous species complex 
will ensure that: 

i. The salmon’s long-term interests are represented. 

ii. Actions taken will provide greater benefit to the entire ecosystem that sup-
ports wild Atlantic salmon. 

iii. There is a broader ecosystem recovery potential. 

iv. An expanded potential resource pool is available to support restoration ef-
forts. 

d. Practical, management plans should be developed for each watershed. A practical 
management plan accurately characterizes the status of the salmon resource as best as 
can be accomplished with combined scientific, local and traditional knowledge. It will 
also characterize the effects of individual threats allowing managers to identify and pri-
oritize restoration actions on a watershed by watershed basis. 

i. Specific issues/threats are often not limited to a single tributary, but rather are 
occurring within the larger watershed. For example, conducting targeted stream 
bank restoration programs to address localized erosion issues often only serve as 
applying “band-aids” on issues that are symptomatic of larger scale issues that 
should be addressed.  

ii. This should not be considered an indictment of in-stream work. It can often 
provide important short-term benefits. However, the larger watershed level is-
sues (i.e. the root causes) must be properly identified and addressed to support a 
long term solution so as to avoid or prevent similar problematic symptoms in the 
future. 

e. Prioritizing actions should occur independently of fiscal concerns, and perhaps more 
importantly political concerns. 

f. A multilevel approach is needed: (local, regional, national, international). 

i. Local groups should focus efforts in freshwater and estuarine areas, i.e. areas 
within their sphere of influence. 

ii. Larger efforts (e.g., marine mortality) must be taken on by larger entities, with 
the support of local groups. 
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g. The causes of marine mortality and an understanding of post-smolt to adult migration 
behavior and mortality (where, when, and how), including indirect bycatch and directed 
harvest, must be identified. Increase support to study marine mortality using the state of 
the art technologies. 

h. Productivity limitations caused by low marine survival should not be considered a 
reason to prevent freshwater actions. One of the fundamental goals of any recovery effort 
should be to improve or maximize freshwater production of highly fit juvenile salmon to 
help offset the effects of high marine mortality. 

3. Long-term commitment (funding and leadership) 

a. Any recovery effort requires a long term commitment by the team involved. 

b. Clear goals and timelines (e.g., start and end dates) must be defined for each phase of 
the project. 

c. Performance measures must be established for each phase of the project. 

d. Funding sources must be confirmed and reviewed periodically. 

4. Monitoring and evaluation 

a. Monitoring and evaluation must be fundamental components of any recovery pro-
gram. 

b. There must be a clear understanding of the project purpose, experimental design, and 
performance measures when designing a monitoring program so that the outcomes of 
the recovery effort can be understood and adjustments can be made as necessary.  

c. Spatially and temporally representative monitoring of all restoration efforts is needed 
to assess effectiveness. 

d. Thorough monitoring and evaluation of a recovery program can take multiple genera-
tions, extending well beyond the time frame of the recovery actions (it takes 4 to 8 years 
to complete a single salmon generation from egg to returning adult). 

5. Outreach and communication 

a. Recovery and management plans that are based on science and local/traditional 
knowledge must be communicated to policy makers and politicians. 

b. The science and management information needs to be transferred to policy makers and 
politicians. 

c. A collective vision (from the team) would help inform and influence decision makers 
(i.e. elected officials) and others (e.g., industry, philanthropist foundations who can influ-
ence policy and funding actions). 

d. Documenting and sharing lessons learned from failed restoration programs is just as 
important as for successful programs to prevent future failures. 

e. Ultimately, political will is needed to accomplish on the ground recovery actions, and 
this of course depends entirely on the presence of a strong team with strong leadership. 
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One final thought 

There are no guarantees that a holistic recovery program that addresses multiple threats 
within a watershed in support of either a wild population, or a live gene banking pro-
gram will be successful in recovering salmon. However, by ensuring that freshwater hab-
itat is as productive as possible, it puts the watershed and its salmon population in a 
better position so that the chances of recovery are improved.  
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Annex 5: Summary of the output document ‘To stock or not to stock’ 
from the conference on salmon stocking organised by the Atlantic 
Salmon Trust and IBIS 

EU Interreg funded collaboration between the Loughs Agency, University of Glasgow 
and Queen’s University Belfast (IBIS 2013) 

Glasgow, UK, 27–28 November 2013 

A scientific consensus on salmon stocking 

Kyle A Young, Colin Adams, Andy Ferguson, Carlos Garcia de Leaniz, Stephen 
Gephard, Neil Metcalfe, Phil McGinnity, Ted Potter, Tom Reed, Ian Russell, Jamie Ste-
vens & Eric Verspoor  

On 27–28 November in Glasgow UK, the Atlantic Salmon Trust supported a conference 
on Atlantic salmon (Salmo salar) stocking sponsored by IBIS, a European funded collabo-
ration between the Loughs Agency, University of Glasgow and Queen’s University Bel-
fast (IBIS 2013). As an output from that conference, the organisers have published a 
document, ‘To stock or not to stock’, which summarises the advice on stocking from var-
ious salmon management organisations. In support of that document, this paper summa-
rises what the authors believe accurately reflects the current scientific consensus on 
salmon stocking. 

We have written this paper for fisheries policy makers and managers who may not be 
familiar with the relevant scientific terminology, concepts and evidence. It presents our 
consensus view of the current scientific understanding of stocking in a series of brief 
statements, using non-technical language as far as possible (see Definitions).  

The following statements are informed not only by research on Atlantic salmon, but also 
by research on other ecologically similar salmonids. The statements are sufficiently gen-
eral to often apply to the stocking of these species as well. We recognise that uncertainty 
remains around specific scientific questions related to stocking. The complexity of salm-
onid ecology and life histories, the diversity of habitats and stocking programmes, and 
the difficulty in studying long-lived organisms that spend the majority of their lives at 
sea, all contribute to this uncertainty. We do not believe, however, that current areas of 
uncertainty preclude stating the following evidence-based principles. 

• Removing adult salmon from the natural environment, breeding them in captiv-
ity, and stocking their hatchery-reared offspring into the natural environment can, but 
does not always, increase the number of adults they contribute to the next generation. 
The net demographic outcome of stocking depends on the balance between the higher 
survival rates experienced by fish in captivity, and the subsequently lower survival rates 
of stocked fish relative to wild fish of the same age.  

• Hatchery fish that survive to reproduce as adults in the natural environment, 
whether through mating with other hatchery fish or wild fish, typically produce fewer 
adults in subsequent generations than do wild fish, and this difference is more pro-
nounced where permanent hatchery lines or non-native fish are used for stocking.  
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• Stocking may thus increase the number of adults in a population temporarily, 
but is likely to reduce the longer-term productivity of the population. 

• Stocking poses a risk to wild salmon populations through a variety of ecological 
and evolutionary mechanisms, such as increased competition for food and interbreeding 
between hatchery and wild fish.  

• The risk to wild populations is scale-dependent. The more hatchery fish that are 
stocked and the higher the ratio of hatchery to wild fish in the natural environment, the 
greater the risk to the wild population.   

• The impact of stocking on the genetic make-up of a salmon population depends 
in part on the type of broodstock used. Some impacts can be minimised by using wild 
native broodstock (i.e. same population) bred and reared using best practice. However, 
even in this case genetic changes can occur due to the absence of sexual selection (i.e. 
crosses are artificially produced that would not happen in the wild), and relaxed selec-
tion in the hatchery environment, which may lead to domestication. 

• Following the cessation of stocking, the integrity of a wild population is likely to 
recover over time. However, in some cases stocking may lead to permanent changes in 
the genetic composition of a population, which may affect population productivity. 

• Where the integrity of wild salmon is a management priority, stocking hatchery 
fish into wild populations is unlikely to contribute to management objectives. 

• Where a population is at imminent risk of extinction, and all appropriate and 
possible fishery management and habitat restoration interventions have been realised, 
time-limited stocking may be appropriate to rescue the population. That is, when local 
extinction is imminent, the benefit of a short-term increase in adult abundance may out-
weigh the risk of long-term damage.  

• Where the integrity of wild salmon is not a management priority, stocking may 
support fisheries by producing adults for capture or harvest. In such instances, however, 
some stocked fish will inevitably stray to neighbouring populations, which may have 
different management objectives. It is important to appreciate and assess this risk. 

• The costs, benefits and impacts of a stocking programme on wild populations 
can only be assessed with well-planned monitoring programmes.  Such monitoring is an 
important part of all stocking activities. 

• Science alone does not determine the role of stocking in salmon management. 
Social, political and economic factors all influence fisheries management decisions. 

Definitions 

• wild  refers to fish whose entire life, from the fertilisation of eggs to death, occurs 
in the natural environment in the absence of direct human intervention. Intervention in 
this context includes the direct and indirect effects of stocking, e.g. when hatchery fish 
survive to reproduce in the natural environment, their offspring are not wild. This defini-
tion does not strictly depend on habitat quality or stocking history. Wild salmon can be 
present in severely degraded ‘non-wild’ rivers and in rivers currently or historically sub-
jected to stocking. 



ICES WGERAAS REPORT 2015 |  115 

 

• hatchery refers to fish that have spent some portion of their life (from fertilisa-
tion) in captivity, without regard to the duration of time spent in, or the naturalness of, 
that captive environment. 

• stocking refers to the act of placing hatchery eggs or fish in the natural environ-
ment. 

• population refers to a group of interbreeding salmon which is to some degree 
genetically distinct from other such groups. For example, a river’s salmon stock might 
contain multiple populations that spawn at different times or locations within the same 
catchment. 

• productivity refers to a population’s capacity to grow in size. 

• integrity refers to the degree to which a wild salmon population interacts natu-
rally with the environment and other species sharing aquatic ecosystems 


	Executive summary
	1  Administrative details
	2 Terms of Reference
	3 Summary of Work plan
	4 Summary of Achievements of the WG during 3-year term
	5 Final report on ToRs, workplan and Science Implementation Plan
	5.1 Background
	5.2 Data Base on Effectiveness of Recovery Actions for Atlantic Salmon (DBERAAS)
	5.3 Case studies
	5.4 Tables and Figures
	5.5 References

	6 Cooperation
	Annex 1: List of participants
	Annex 2: WGERAAS self-evaluation
	Annex 3: WGERAAS case studies
	Annex 4: ‘Conclusion’ chapter from the report on the Atlantic Salmon Federation (ASF) hosted workshop ‘What works? A Workshop on Wild Atlantic Salmon Recovery Programs’
	Annex 5: Summary of the output document ‘To stock or not to stock’ from the conference on salmon stocking organised by the Atlantic Salmon Trust and IBIS

