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i Executive summary 

The Workshop on the Review and Future of State Space Stock Assessment Models in ICES fo-
cused on future directions of state-space assessment models for ICES stocks (WKRFSAM), utilis-
ing recent advances in fisheries modelling research to help define best practises. State-space 
models consist of a process model for unobserved quantities (e.g. true stock abundances) and an 
observation model for observed quantities (e.g. catches or survey data). Standard statistical as-
assessment models do not include stochastic population processes. Prediction is a natural part 
of the state-space model formulation which is a more practical advantage of the approach for 
stock assessment. 

Lognormal observation error models for survey indices can be parameterized such that the mean 
or median is proportional to the true stock abundance, but this makes little difference on assess-
ment results. Empirical results for 14 stocks indicated that this is also the case for catch observa-
tion models. There is no practical difference whether the mean or median of fishing mortality 
rates (F’s) are constant for the data period, but there are important differences if F is projected 
into the future. 

Including random deviations in the natural mortality rate (M) leads to convergence issues for 
some stocks, and similar assessment results for other stocks, but this depends on the details of 
how this is implemented. Including time- and age-varying M increases model flexibility and po-
tential confounding of F, M, and stock size index catchability, Q. When model parameters are 
confounded then we can anticipate less robustness.  

Including external variances and correlations that are reliably estimated will be more relevant 
and useful in situations where these differ substantially over time, such as when a survey in 
some year has a large set, or poor coverage, etc. 

Two general criteria to select between alternative models are Goodness-of-it and Out-of-sample 
prediction. Minimizing out-of-sample prediction error (e.g. Akaike Information Criterion, AIC) 
is increasingly seen as a better approach for model selection.  

The main tool for model validation are residuals. However, for state-space models, Pearson are 
not independent because of the dependence structure of the unobserved states. One-observation-
ahead and one-step-ahead residuals are preferred. These can be formulated to be independent 
and Gaussian distributed. 

Key research recommendations involve when and how M can be estimated, how to include in-
formation about the precision of model inputs, and improved usage of diagnostics and model 
selection criteria. 
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1 Introduction 

1.1 Background 

State-space stock assessment models make up a large proportion of the stock assessments for 
category 1 stocks in ICES. It is important that stock assessors and reviewers of ICES stock assess-
ments understand advantages, disadvantages and limitations of the underlying formulations of 
state space models, which was the focus of this workshop (i.e. WKRFSAM). This is important 
from the view point of extending models to include new dynamics and new datasets but also to 
review current model formulations with respect to new developments in fisheries science. 

1.2 Conduct of the meeting 

The list of participants and agenda for the workshop are presented in Annex 2 and Annex 3, 
respectively. 

No working documents were received prior to the meeting but contributed presentations were 
first given by participants which provided a partial basis for three discussion groups during the 
remainder of the meeting. Abstracts of presentations are provided in Annex 4. The conclusions 
of these groups provide the basis for this report. The discussion groups and topics were: 

a) Model formulation and selection 
• The F and the M process models 
• Random effects on survival 
• Random walks on fishing mortality in log scale 
• Other components of variation 

b) Model estimation efficiency and robustness 
• Do certain formulations affect model robustness or result in models with impractical op-

timisation times  
• Observation error models 
• Treatment of survey indices and fishery catch statistics 
• Modelling catches and survey indices on the log scale 

c) Model validation 
• Do different models provide a practical difference? 
• Are there reliable ways to conduct model selection between alternatives? 
• Diagnostics 

Several participants worked by correspondence during the meeting and the facilities of WebEx 
were relied upon for their contribution to the workshop plenary discussions. This included two 
participants who could not attend in person because of flight cancellations. Attendance by We-
bEx worked reasonably well. 

Given ICES role as a knowledge provider, it is essential that experts contributing to ICES science 
and advice maintain scientific independence, integrity and impartiality. It is also essential that 
their behaviours and actions minimize any risk of actual, potential or perceived Conflicts of In-
terest (CoI). 

To ensure credibility, salience, legitimacy, transparency and accountability in ICES work, to 
avoid CoI and to safeguard the reputation of ICES as an impartial knowledge provider, all con-
tributors to ICES work are required to abide by the ICES Code of Conduct. The ICES Code of 



2 | ICES SCIENTIFIC REPORTS 2:32 | ICES 
 

 

Conduct document dated January 2019 was brought to the attention of participants at the work-
shop and no CoI was reported. 

1.3 Structure of the report 

The outcomes of the subgroup discussions are presented in Section 2. The three subgroups de-
scribed above provided summary text that was reviewed in plenary. It was obvious that there 
was significant discussion overlap between subgroups on some topics. 

1.4 Follow-up process within ICES 

Subgroup leads at WKRFSAM agreed to provide text for the draft workshop report and to then 
comment on the compiled draft report. The draft report was then provided to all workshop par-
ticipants for comment, and after this the report was finalized by the Chairs and formatted by the 
ICES Secretariat. 
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2 Advice on state-space assessment models 

2.1 State-space assessment models (SSAMs) 

The state-space paradigm is in many ways the natural choice for the challenge of assessing a fish 
stock. The actual size of a fish stock is an unobservable process, which is assumed stochastic 
because it is influenced by many things we can never hope to directly account for in our models. 
The observations available to estimate the stock size process are often indirect and always subject 
to observation noise. State-space models are designed exactly for such situations. 

The main difference between a standard statistical (full parametric) assessment model and a 
state-space assessment model (SSAM) is that the latter allows for quantities which are unob-
served to be random variables with a specified probability distribution. In particular, SSAMs 
consist of two models for two time-series, a process model for unobserved quantities, e.g. true 
abundances, and an observation model for observed quantities, e.g. catches or sample data. This 
gives the flexibility to formulate models where time-varying quantities follow e.g. a random 
walk or an autoregressive (AR) process. 

Estimating model parameters in state-space models require evaluation of high dimensional in-
tegrals, which until recently was often not feasible for estimation and simulation testing of full-
scale assessment models. However, with recent advances in algorithms and software (e.g. Kris-
tensen et al., 2016) the run-time to fully optimize such models (a few seconds) is no longer prob-
lematic. 

A more practical advantage of SSAMs compared to full parametric and deterministic models is 
that the method to do short-term predictions is a natural part of the model formulation. SSAMs 
are formulated via the transitions from one year to the next and the uncertainties of these pre-
dicted transitions. 

 

Figure 1. Simplified illustration of an assessment problem. The challenge is to estimate an unobserved process from in-
direct observations with noise (A). Deterministic models assume that observation-noise is negligible and reconstructs 
the unknown process accordingly (B). Full parametric statistical models express the unknown process as a simplified 
parametric function (here blocks), then estimates all parameters (C). State-space models formulate a stochastic model 
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for the unknown process via a few model parameters, then predicts the unknown process in the data period and beyond 
(D). 

2.2 Model formulation and selection 

Types of data and observation models 

The same types of observation models for fishery independent and dependent data sources are 
available to both state-space and traditional statistical catch-at-age models. The suite of observa-
tion models can be generally split into two types: those that use estimates of numbers or biomass 
captured at age or those that model the aggregate catch and the proportions at age separately. 
Some assessment models even separately model proportions at length and proportions at age 
conditional on length (i.e. age-length keys) separately. However, the types of models to consider 
for the marginal proportions at age or the marginal proportions at length and the conditional 
proportions at age are the same. Recent work by Albertsen et al. (2017) provides a methodology 
to compare the relative performance of alternative observations models using the AIC intervals 
of alternative data likelihoods. 

Lognormal observation error models are commonly used. Whether the observations models are 
parameterized such that the mean (e.g. Aldrin et al., 2019; Nielsen and Berg, 2019) or median is 
proportional to the true stock abundance for survey indices has very little effect because the 
transformation bias correction is confounded with the unknown catchability Q parameters (e.g. 
Cadigan and Myers, 2000). Some explorations of the consequences of mean- or median model 
assumptions was presented (14 stocks), and the effect was small, presumably because the catch 
error standard deviations were low. In practice, transformation adjustment seems to have rather 
small influence on the results. For example, there was only a 5% difference between mean and 
median when the log catch error standard deviation (SD) was 0.3, and this SD is at the high end 
of what is normally observed. 

Observation error models, particularly for catches, that are constructed to be mean-unbiased will 
be sensitive to the size of the estimated variance of these components and the uncertainty in the 
estimates of corresponding variance parameters, whereas this should be less of a problem for 
observation or process error models that are constructed in terms of medians. However, the em-
pirical results examine during the workshop suggests that catch transformation bias correction 
will have little influence on assessment results  

Model frameworks that can accommodate multiple fleets could be used for modelling discards 
as a separate discarding fleet in addition of the landing fleet(s). Discard mortality would be there-
fore treated differently from landings-based mortality and fishing mortality reference points 
could lead to quotas that explicitly account for variations in future discards rather than assuming 
discard proportions are constant in the future. However, estimating discards would be depend-
ent on the availability of discard data and alternative observation models may be needed to ac-
commodate larger frequencies of zero observations. Other models that can model discarding 
practices via the use of priors on discard proportions may be helpful. 

An interesting long-term research question involves how much aggregation or summarization 
of raw data should be done prior to modelling population dynamics and catches. What are the 
advantages of working with indices, for example, compared to temporally or spatially finer scale 
sample data? Information is clearly lost by aggregation and summarization, but what is the prac-
tical effect? By using such an approach, we are able to utilize more information from the surveys 
and catch data. Accounting for uncertainty in indices and catch estimates may lead to improved 
estimates of population dynamics (e.g. Knape, Besbeas, and de Valpine, 2013) It was discussed 
if the models for indices and catches need to accommodate for the sampling approach. Levels of 
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the sampling procedure can be included as latent variables and thereby be accommodated for. It 
was noted that raw data approaches with catch observations may be problematic for legal rea-
sons. 

Including external variances and correlations that are reliably estimated will be more relevant 
and useful in situations where these differ substantially over time, such as when a survey in 
some year has a large set, or poor coverage, etc. However, with the further development of the 
Regional Database Estimation System (RDBES), it is expected that raised (i.e. expanded) catch 
data will be provided along with their covariances. In addition, there is an increase in the use of 
model-based approaches for survey index estimation which may introduce correlation across 
ages through the use of common covariates. Therefore, considering the inclusion of the correla-
tion across ages in observation models may become standard in the future. The RDBES may also 
facilitate access to raw data for use in stock assessment models directly. 

The F and the M process models 

In general, time-series models for F can be useful in predicting F for years where catch was 
known to have occurred, but there are no observations. Time-series models include the simple 
random walk, more complicated multivariate normal random walks with correlation among 
ages, and multivariate autoregressive models with correlation across ages and years. These ap-
proaches may also be used to model M in some situations. The random walk, like other classical 
time-series models, is a simplification of the actual process determining F. In reality, F is deter-
mined by the stock size and fishing effort, which in turn is determined by, for instance, quotas, 
fuel price, and the spatial distribution of the stock. While simple time-series models are useful 
for reconstructing past F’s in state-space stock assessment models, they may not be appropriate 
for long-term forecasting or scenario modelling. Therefore, future research may be directed at 
determining links between fishing mortalities and the underlying driving factors, namely, to 
model F as a function of measurable covariates to improve forecasting and understanding of the 
consequences of management. 

For practical purposes there is no difference whether the mean or median of F are constant for 
the data period, but there are important differences if F is projected into the future. Regardless, 
it is unlikely to be useful to project F in a management setting because F or catch are typically 
specified for short-term projections and in longer-term projections when investigating manage-
ment procedures and harvest control rules. 

Alternative interpretation of variability in numbers at age due to variability in M or not by chang-
ing process variability from abundance at age to natural mortality often provides similar model 
fits and assessment results when applied to several stocks in the North Atlantic. It is also reason-
able to consider the inclusion of environmental conditions to model variation in M. 

Other issues 

Checking for parameter identifiability is only possible with simulation studies for current assess-
ment model frameworks. There is a difference in theoretically identifiable vs. practically identi-
fiable due to insufficient information (also known as lack of estimability). The former is a subset 
of the latter in that models may be theoretically identifiable, but the model may not be identifia-
ble given particular realizations of the data and the frequency of this sample-dependent identi-
fiability may also depend on the sampling methodology. A readily available method to deter-
mine theoretical identifiability of configured assessment models would at least determine 
whether to exclude models that will never be practically identifiable. There have been recent 
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advances (Cole and McCrea, 2016; Polansky, Newman, and Mitchell, 2019) in theoretical ap-
proaches to determining identifiability in state-space models that are worth exploring. 

Spatial and temporal refinement are worthwhile longer term investigations. Discrete space mod-
els would be useful for modelling populations in multiple management areas. Sub-annual time 
intervals could be useful to isolate seasons within a year where different mortality sources or 
movement between regions may occur. These features may affect parameter identifiability. It can 
improve identifiability of mortality rates in certain cases although movement rates may not be 
identifiable without likelihood components for tagging experiments. The finer the temporal and 
spatial resolution of the model, the closer we get to requiring raw data observations to fit the 
model. 

2.3 Model estimation efficiency and robustness 

Model formulation 

Robustness and efficiency may have different definitions depending on the context. Robustness 
may refer to e.g. proportion of converged models in a simulation study or consistency in esti-
mates of stock size under slightly different model formulations, but it may also refer to how 
sensitive an estimator is to outliers or slight violations of the model assumptions or small per-
turbations to data. Efficiency may refer to either computational efficiency i.e. running times, or 
to the precision of an estimator as measured by variance or mean squared error. In this section 
we consider efficiency mainly as the amount of computational effort needed, and we will con-
sider both definitions of robustness. 

The formulation of a state-space stock assessment model, including formulation of the process 
model and the observation model, will affect model robustness and result in models with low 
computational efficiency and impractical optimisation times. Lack of sparseness in the Hessian 
matrix of the joint negative log-likelihood with respect to the unobserved variables will increase 
optimisation times. In Gaussian models, sparseness in the Hessian matrix is obtained by condi-
tional independence between most unobserved variables.  

Some model choices may seem a little more realistic and produce small improvements in fits to 
data (see Section 2.4 below), but could result in long optimization times and convergence issues 
and therefore less simulation testing or examination of alternative model formulations, etc. and 
result in poorer stock assessment overall. Small improvements in model fit should not be the sole 
motivation for model selection if this is associated with much longer run times. We should in-
clude “jitter convergence rates” (e.g. Cass-Calay et al., 2014) and consider run times in addition 
to delta AIC when reporting model selection criteria. 

Model formulations can affect robustness but this is also affected by the data available. Including 
time- and age-varying natural mortality increases model flexibility and potential confounding of 
F, M, and stock size index catchability, Q. When model parameters are confounded then we can 
anticipate less robustness, because small changes in model inputs can produce large changes in 
outputs. Confounding between both random and fixed effects can be investigated through ex-
amination of the eigenvalues of the joint Hessian matrix, while confounding between fixed ef-
fects is better examined through the marginal Hessian matrix. 

In the context of confounding between F, M, and Q, Q’s should be constrained based on 
knowledge of the survey gear and stock behaviour. Surveys are often scientifically designed, and 
we understand the gear and capture efficiency relatively well. Q’s could be constrained to be: 1) 
equal for some age groups, 2) smoothly varying across ages via a parametric model, 3) weakly 
smooth via adding a positive correlation structure, or 4) smooth via low curvature using a spline 
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model for example. However, inappropriate coupling (i.e. constraining to be equal) of Q’s or F’s 
for subsets of ages can also cause assessment bias and introduce retrospective patterns so such 
model configurations need to be thoroughly investigated. 

Including random deviations in M leads to convergence issues for some stocks, but this depends 
on the details of how this is implemented. Having a functional relationship between size or con-
dition and M can also help with estimation of M. 

Full implementation of the integrated assessment philosophy involves using raw data and not 
aggregated summary estimates of catch and stock size (Maunder and Punt, 2013). Such an ap-
proach fully informs the model about the quality of inputs compared to including information 
on survey index or catch observation variances. However, this will result in loss of computational 
efficiency, and this loss may be substantial. 

In the short term, fitting a stock assessment model to raw data (in a so-called integrated model) 
will not be practical and some summarization of data is required. Two basic approaches were 
illustrated during the workshop, involving (1) fitting to age-based catch and survey indices and 
(2) fitting to age-aggregated survey indices and catch numbers or weight, and fitting to age com-
positions of both these data sources. Advantages and disadvantages of both these approaches 
were discussed. Computational efficiency does not seem much different between these two ap-
proaches, but additional research is required about robustness and statistical efficiency for vari-
ous types of stocks, data availability, and quality. 

2.4 Model Validation 

Model selection 

There are reliable ways to conduct model selection between alternative models, including be-
tween state-space assessment models (SSAMs). The two general criteria are: 

1. Goodness-of-it (GOF): how well a model can explain/recover data which were used for 
fitting; 

2. Out-of-sample prediction: how well a model can predict out-of-sample data not used for 
fitting. 

GOF is related to what some literatures call the training error of a model, while out-of-sample 
prediction/forecasting error is also referred to as test/validation/generalization error. Maximiz-
ing GOF, e.g. with highly flexible non-parametric models, is known to lead to overfitting which 
in turn can yield high out-of-sample prediction error (weak generalization beyond the available 
data). Thus, minimizing out-of-sample prediction error is increasingly seen as a better bench-
mark. This is strengthened by the fact that many estimates of prediction error such as the Akaike 
Information Criterion (AIC) incorporate both an in-sample error term (which decreases as GOF 
increases) and a "penalty" term that increases with model complexity/flexibility so that minimiz-
ing such an information criterion implies a trade-off between high GOF and low out-sample 
prediction error. Nonetheless, model validation, of which computing some GOF measure is part, 
is crucial for assessing whether a model is even acceptable in the first place. 

Diagnostics and Criteria for Goodness-of-Fit 
Residuals 

The main tool for model validation, and on which many GOF measures are constructed, is the 
residual. There are many types of residuals with different properties given the model assump-
tions. The most common one is the Pearson residual, defined as a rescaled "observation minus 
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fitted value" quantity. It is easy to interpret and is used as a diagnostic for models assuming 
independent and normally distributed observations, e.g. linear regression. But for SSAMs, be-
cause of the dependence structure of the unobserved states and also due to distributions some-
times assumed to be non-Gaussian, Pearson residuals do not enjoy the usual expected properties: 
they are not independent anymore and not necessarily normally distributed. This does not mean 
they should not be used, indeed the econometrics literature still uses Pearson residuals for diag-
nostics purposes (e.g. the smoothation residuals defined in Harvey, Koopman and Penzer, 1998), 
but they should be interpreted in full knowledge of their properties. Those properties are not 
trivial to derive for general SSAMs. 

This is why one-observation-ahead (OOA) and one-step-ahead (OSA) residuals are to be pre-
ferred. Both are based on the idea of using only part of the available data (training set) to predict 
some data points not used in the fitting. They differ in what data points are predicted: for OOA 
residuals we predict the next single observation, i.e. one value at a time in the vector of observa-
tions indexed by time, while for OSA residuals we predict the entire vector of observations for 
the subsequent year. For both types of residuals, we sequentially expand the training set with 
what has been previously predicted and repeat the process with the next observation/time step. 
Both OOA and OSA residuals are guaranteed to be independent and identically distributed as 
Gaussian (or uniform, depending on the definition) and thus can be interpreted in the usual way 
by non-experts. Thygesen et al. (2017) implemented OOA residuals (which they refer to as pre-
diction residuals) in TMB and provided convincing evidence of their usefulness through simple 
examples. For instance, they showed how OOA residuals can detect a missing drift term in a 
(missspecified) random walk model, whereas the Pearson residuals fail to do so. We note that 
usually OOA residuals are computed forward in time, implying some artefact near the beginning 
of the time-series; a backwards-in-time version of OOA residuals (with artefacts near the end of 
the time-series) can thus also be computed as a complement. 

Process residuals can detect deviations from model assumptions in the dynamics and distribu-
tion assumed for the unobserved states, something which the aforementioned residuals cannot 
(or indirectly at best) detect. These were also presented in Thygesen et al. (2017, Section 5) and 
implemented in TMB. 

OOA and process residuals should be computed and inspected for any departure from inde-
pendence and deviation from a reference distribution (Gaussian or uniform, depending on the 
definition). Visualization through bubble plots and quantile-quantile plots should be part of any 
model validation step and can also help discriminate between models. Also, since a well-speci-
fied model would tend to lead to small residuals (in absolute value), some simple summary of 
all OOA and process residuals can be computed for model comparison, such as a sum of squared 
residuals. 

Differences in Log-Likelihood 

The log-likelihood itself can serve as a GOF criterion. For SSAMs fitted with TMB, the model 
parameters are usually estimated by minimizing the (Laplace-approximated) marginal negative 
log-likelihood. Thus two competing models, say M1 and M2, can be compared if their respective 
log-likelihood functions are on the same scale. This is typically the case when one model is nested 
within the other, say when M2 generalizes M1 by specifying an additional parameter. Thus if 
M2 achieves a smaller negative log-likelihood value, M2 is deemed to provide a higher GOF. 
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Diagnostics and Criteria for Out-of-Sample Prediction Error 
Information-Theoretic Criteria 
Many criteria are constructed on some distance between distributions and are meant to estimate 
out-of-sample prediction error. The most popular ones are the AIC and Bayesian Information 
Criterion (BIC). Both can be interpreted as a GOF term (i.e. the marginal negative log-likelihood, 
which is minimized in the estimation process) and a penalty that increases with model complex-
ity. Thus minimizing the AIC/BIC means finding a trade-off between GOF and out-of-sample 
prediction since a more complex/flexible model that may not generalize well would induce a 
larger penalty. To return to the M1 and M2 models presented above: M2 would need to lower 
the negative log-likelihood by a large enough amount so as to compensate its extra parameter 
relative to M1 if it were to be considered better. If using the AIC, the penalty term is two times 
the number of parameters. So a rule of thumb is that if M1 is nested in M2 and only differs by 
one parameter, a difference of at least two in their log-likelihoods is necessary to select M2 over 
M1; if the difference is no more than two, then the less complex model M1 is to be preferred. The 
use of AIC for selecting competing SSAMs is well illustrated in Albertsen, Nielsen and Thygesen 
(2017). 

Forward Validation 

Forward validation (also known as walk forward validation) is closely related to the OSA resid-
uals described above. It computes an explicit out-of-sample prediction error measure by repeat-
edly considering two subsets of the available data: the first subset is used for fitting the model 
(training set), the second subset is used for evaluating prediction error (test set), and this split is 
then updated sequentially by incorporating the previous test set into a new training set and con-
sidering a new test set of future observations. The test subset typically consists of the next year 
(or few years) of data immediately following the training set., although the exact number of years 
to consider for sequential test sets depends on how much data overall is available. General rules 
of thumb, such as 80% used for fitting and 20% used for prediction, make sense only if enough 
data are available to fit the model with enough numerical stability with only such a subset of the 
data. For each training-test pair, the model is fitted to the training set, the years of data in the test 
set are predicted given the fitted model and then compared to the actual observations, say 
through a simple summary such as a sum of squared differences. The forward validation crite-
rion is thus the average of such sum of squared differences over all training-test pairs. Among 
competing models, the one that achieves the lowest forward validation error is to be preferred. 

Cross-Validation 

Cross-validation (CV) is a more general form of validation in that it also proceeds by splitting 
the available data, but the multiple fitting-prediction pairs of subsets are not necessarily chron-
ologically ordered and typically defined in a randomized way. The simplest CV scheme is leave-
one-out CV: a single year of data is left out for prediction while all other years are used for fitting, 
this process is repeated for all years. That is, if the total data consist of n years, then the leave-
one-year-out fitting and prediction will be done n times and the overall prediction error could 
be, for example, the average of the n sum of squared differences computed each time. CV is thus 
more general than forward validation as it evaluates the prediction power of the model for all 
years, not just the few last years in the data. However, in time-series models such as SSAMs, the 
CV prediction ability is less relevant than the forward prediction ability. While the forward val-
idation only uses data before the years left out for model fitting, CV will utilize years before and 
after the year left out. When assessing a stock, the future is often not available for predictions. 
Again, a smaller CV prediction error estimate indicates a better model formulation. 
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Other Diagnostics 

Other diagnostics that should be routinely computed during the development of a model do not 
pertain to either GOF or out-of-sample prediction. These relate more to numerical and compu-
tational aspects of the fitting procedure, in particular surrounding the minimization of the (La-
place-approximated) marginal log-likelihood. TMB has a few such diagnostics built-in: a "La-
place checker" function that assesses if the Laplace approximation is accurate enough by looking 
at the Monte Carlo expectation of the likelihood score equations; a simple jitter function that 
adds random noise to the initial parameter values to then check if the minimizer reaches the 
same solution at convergence; the possibility of approximating the marginal likelihood by other 
methods such as variants of Markov Chain Monte Carlo (MCMC) and particle filters, and then 
compare the outputs to the Laplace approximation. 

In addition, any general-purpose optimizer should return an assessment of the convergence, to 
verify that at least a local minimum was reached: all components of the gradient should be close 
to zero and the (numerical) Hessian matrix should be positive definite. 

Finally, we note that plots of retrospective patterns are often difficult to interpret. This is partly 
due to the fact that the uncertainty of the magnitude of retrospective differences is difficult to 
estimate, as shown e.g. in Miller and Legault (2017). By overlaying uncertainty envelopes for all 
curves in a retrospective plot, and not just the last curve, one often finds that the patterns are not 
significantly different as long as the model was properly validated in the first place. Furthermore, 
retrospective patterns may highlight issues in a model, but would not indicate what the issues 
may be. Most, if not all, issues retrospective plots could detect would also be detected by the 
diagnostics presented above. We thus recommend inspecting retrospective plots, with uncer-
tainty represented, as part of the computation of derived quantities, at the very end of a model 
validation-selection procedure (see next Section). 

Do different models provide a practical difference? 

In general, practical differences should be expected from different models. How large those dif-
ferences are, and ultimately whether they matter as far as scientific advice is concerned, depends 
on the data, the models that are compared, and the criteria used for assessing differences. 

There is a high chance that if two models differ much in terms of GOF and out-of-sample pre-
diction error according to the criteria presented above, then they will also differ in terms of de-
rived quantities such as average fishing mortality and spawning stock biomass. Hence, we ad-
vise to perform model validation and model selection based on GOF and prediction error first, 
and then compute derived quantities. In fact, relying on derived quantities for comparing models 
may be misleading since such quantities often combine many components of a model, e.g. in 
non-linear functions of predicted states. Thus, lack of fit that would appear in residuals may not 
be reflected in derived quantities. 

Overall, the working group recommends the following procedure: 

1. Check the numerical stability of the achieved solution in any optimization involved in 
fitting a model; 

2. Validate all models separately, mainly through residuals; 
3. Compare and select competing models based on GOF and out-of-sample prediction; 
4. Compute derived quantities of interest, including retrospective plots. 
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3 Future research 

1. Evaluate stock assessment models that constrain numbers-at-age in a cohort to be fewer than 
those at the previous age. This would include potential random effects on survival, and/or 
other fates (Hierarchical Multinomial model for the survival process). Establish links with 
classical instantaneous rate models. 

2. M may be easier to estimate for some stocks in which there is evidence of production rela-
tionship in total catch and total survey indices (Lee et al., 2011), and age information is avail-
able. Explore what are the data requirements (i.e. number of surveys, model configuration) 
to estimate M random effects (i.e. estimate change in M) or to estimate both absolute M and 
change in M. 

3. The efficacy and robustness of methods to include reliable external variance estimates when 
fitting stock assessment models requires further research. 

4. Additional research is required about robustness and statistical efficiency of (1) fitting to age-
based catch and survey indices, vs. (2) fitting to age-aggregated survey indices and catch 
numbers or weight, and fitting to age compositions of both these data sources. This research 
should consider various types of stocks, data availability, and quality. 

5. It is often difficult to explain to non-experts that Pearson residuals cannot be interpreted in 
the usual way when validating SSAMs. A comprehensive simulation study, freely available 
online with open-source code, would help convincing and save time during assessment 
meetings. 

6. It is unclear what model misspecification retrospective plots can actually detect in a reliable 
way. A simulation study with SSAMs would be welcome, following for instance the works 
of Hurtado-Ferro et al. (2015) and Miller and Legault (2017). 

7. All diagnostics and model selection criteria presented above can be readily computed within 
TMB. Having all of them as part of the automatic reporting in stockassessment.org, with 
standardized colouring scheme and layout, would help increase the best practices outlined 
above. 

8. Conduct simulations to examine impacts of regime shifts. This could include a state space 
model involving a third (deeper) hierarchical level in which parameters governing the un-
observed states equations could switch in time (finite state space).  
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Annex 1: Resolution 

The Workshop on the Review and Future of State Space Stock Assessment Models in ICES 
(WKRFSAM), chaired by Noel Cadigan (Canada) will meet 21-23 January 2020 in ICES HQ, Co-
penhagen, Denmark, to address the objectives in the table below:  
Explore future directions of state-space assessment models for ICES stocks, utilising recent ad-
vances in fisheries modelling research to help define best practises. More specifically, provide 
advice on the advantages and disadvantages of methods/tools relating to: 

1) model formulation and selection for example, 
a. the F and the M process models 
b. observation error models 
c. other components of variation 

2) model estimation efficiency and robustness (including treatment of survey indi-
ces and fishery catch statistics), for example do certain formulations affect model ro-
bustness or result in models with impractical optimisation times. 
3) model validation, including: 

a. do different models provide a practical difference? 
b. are there reliable ways to conduct model selection between alter-
natives?  

4) specific issues to consider 
a. Random effects on survival 
b. Random walks on fishing mortality in log scale 
c. Modelling catches on the log scale 

WKRFSAM will report by 7 February 2020 for the attention of the Advisory Committee. 
 

Supporting Information 

Priority: Very high 

Scientific justifica-
tion and relation to 
action plan: 

This workshop relates to item 5.1 in the action plan: Improve methods of single-species and 
multi-species stock assessment, including data-limited methods. Develop and conduct manage-
ment strategy evaluations, address uncertainty, and improve the transparency, robustness, effi-
ciency and repeatability of stock assessment. 

State space stock assessment models make up a large proportion of the stock assess-
ments for category 1 stocks in ICES. It is important that stock assessors and reviewers 
of ICES stock assessments understand advantages, disadvantages and limitations of the 
underlying formulations of state space models.  This is important from the view point 
of extending models to include new dynamics and new data sets but also to review 
current model formulations with respect to new developments in fisheries science. 

Resource require-
ments: 

 Meeting room 

Participants: Stock assessment model experts, statistical modelling experts. 

Secretariat facili-
ties: 

None. 

Financial: 

 

Linkages to advi-
sory committee: 

ACOM 
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Linkages to other 
committees or 
groups: 

Stock assessment EGs, ADGs, FRSG, SCICOM 

Linkages to other 
organizations: 
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Annex 3: Workshop agenda 

WKRFSAM 

21-23 January, ICES Headquarters 
H. C. Andersens Boulevard 44-46, Copenhagen, Denmark,  
Chair: Noel Cadigan, Canada (noel.Cadigan@mi.mun.ca) 
Professional Officer: Colin Millar (colin.millar@ices.dk) 
Supporting Officer: Jette Fredslund (jette.fredslund@ices.dk) 
 
Tuesday January 21 
09:00 – 9:30 

• Round of introduction 
• Facilities  
• Meeting Terms of Reference/Objectives and reporting requirements 
• ICES Code of Conduct 

 
10:00 – 10:45  
• Anders Nielsen: The SAM model and tools for validating state-space models 

 
10:45 – 11:15: BREAK 

 
11:15 – 12:30  
• Christoffer Moesgaard Albertsen: Investigating distributional assumptions in single-

stock state-space assessment models. 45 minutes. 
• Andrea Perreault: A simulation study of SAM process errors. 30 minutes. 

 

12:30 – 1:30: LUNCH BREAK 

 

1:30 – 3:00 
• Sondre Aanes: Efficient use of data in stock assessment. 45 minutes. 
• William Aeberhard: Flexibility and Robustness Considerations in Building State 

Space Assessment Models. 45 minutes. 
 

3:00 – 3:30: BREAK 

 
3:30 – 5:00  

• Emily M. Liljestrand: Application of State Space Stock Assessment Modeling to 
Lake Whitefish (Coregonus Clupeaformis). 30 minutes. 

• Paul Regular: The northern cod assessment model: overview and outlook. 30 
minutes. . Via WebEx. 
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• Hans J. Skaug: Towards a state-space assessment model for harp and hooded seals. 
30 minutes. 

Wednesday, January 22 
09:00 – 10:45 

• M Aldrin: The specification of the data model part in the SAM model matters. 45 
minutes. 

• Robin Cook: A Stock Assessment Model with Time Varying Natural Mortality. 30 
minutes. 

• Tim Miller: WHAM: Toward a state-space assessment framework in the Northeast 
US. 30 minutes. 

 
10:45 – 11:15: BREAK 

 

11:15 – 12:30: Subgroups 

 
A. Model formulation and selection 
 The F and the M process models 
 Random effects on survival 
 Random walks on fishing mortality in log scale 
 Other components of variation 

 
B. Model estimation efficiency and robustness 
 Do certain formulations affect model robustness or result in models with im-

practical optimisation times  
 Observation error models 
 Treatment of survey indices and fishery catch statistics 
 Modelling catches and survey indices on the log scale 

 
C. Model validation 
 Do different models provide a practical difference? 
 Are there reliable ways to conduct model selection between alternatives? 
 Diagnostics 

 

12:30 – 1:30: LUNCH BREAK 

 

1:30 – 2:00 

• Jonathan Babyn: Trials and Tribulations of Assessing 3Ps Cod, and Hybrid an At-
tempt to Overcome Them. Via WebEx. 



18 | ICES SCIENTIFIC REPORTS 2:32 | ICES 
 

 

 

2:00 – 3:00: Subgroups Continue 

 

3:00 – 3:30: BREAK 

 

3:30 – 5:00: SubGroups Report to Workshop + Discussion 

Thursday, January 23 
09:00 – 10:45: Subgroups Continue plus writing 

10:45 – 11:15: BREAK 

 

11:15 – 12:30: Subgroups Continue plus writing 

 

12:30 – 1:30: LUNCH BREAK 

 

1:30 – 3:00: SubGroups Report to Workshop + Discussion + Conclusions 

 

3:00 – 3:30: BREAK 

 

3:30 – 5:00:  

• Closing remarks and agreeing on time-line and responsibilities to finish tasks 
• Report writing 



ICES | WKRFSAM   2020 | 19 
 

 

Annex 4: Abstracts 

1. The SAM model and tools for validating state-space models 
Anders Nielsen 

The state-space assessment model SAM is an open-source project with many contributors. Over 
the last 10 years it has developed into a fairly general and configurable assessment model which 
is used for a number of ICES stocks. The development has largely been directed by the needs of 
the working groups where it has been applied. The current status of the project will be presented. 

Updating from purely parametric assessment models to state-space assessment models also im-
plies that we should evaluate if our standard set of model validation techniques needs to be 
updated as well. Some standard validation techniques remain useful, but the simple residuals 
should be replaced by one-observation-ahead prediction residuals (Thygesen et. al., 2017). Fur-
ther, the set of standard validation techniques should be extended to include single-joint-sample 
process residuals (Thygesen et. al., 2017) and a validation of the Laplace approximation (Kristen-
sen et. al., 2016). Finally, it should be validated that the short term predictions are as accurate as 
the model suggests. These validation techniques will be illustrated in the context of full fish stock 
assessment models. 

2. Investigating distributional assumptions in single-stock state-space assessment 
models 
Christoffer Moesgaard Albertsen 

Single stock assessment models are simplifications of the true marine system being managed. 
Input data result from combinations of complicated biological, ecological, fishery, and sampling 
processes summarized to, for instance, a single landings-at-age or stock weight number per year. 
Since the data is in fact model output, different types of errors, both stochastic and misspecifica-
tion, propagate through these processes making it difficult to identify a particular family of dis-
tributions for modelling errors on observations a priori. To investigate this issue, Albertsen et al. 
(2017) compared model fit and perceived stock status for several observational likelihoods 
through AIC intervals based on fitting the full observational model. While the best observational 
likelihood differed for different stocks, model fit was improved by allowing correlation between 
age groups within years. The observational likelihood can be important for the perception of 
stock status; especially when uncertainty is ignored. 

Further, it is often assumed that stocks are independent of the world surrounding them; there is 
no environmental impact, no migration, and predation is known through the natural mortality. 
Alternatively, complex full ecosystem models are used. Albertsen et al. (2018) presented a simple 
alternative by connecting single stock assessments through correlation in the survival (i.e. N) 
process. While only using the data from single-stock assessments, the model provides a better fit 
to data, as measured by AIC, and better confidence intervals for estimated fishing mortality and 
spawning stock biomass. The correlation model can also be used for single stocks. 

References: 

Albertsen et al. (2017) Choosing the observational likelihood in state-space stock assessment models, Can. 
J. Fish. Aquat. Sci., 74(5), 779-789. doi: 10.1139/cjfas-2015-0532 

Albertsen et al. (2018) Connecting single-stock assessment models through correlated survival, ICES J. Mar. 
Sci. 75(1), 235-244. doi: 10.1093/icesjms/fsx114 
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3. A simulation study of SAM process errors 
Andrea M.J. Perreault and Noel G. Cadigan 

State-space stock assessment models are fast becoming the favoured approach for fisheries man-
agement as the models allow for errors in the underlying population processes and in the obser-
vations. This a much more realistic configuration, however how the process errors are treated in 
the model formulation has received little attention. Process errors are typically assumed inde-
pendent and this assumption may be incorrect as it is reasonable to consider that the abundance 
of fish that are closer in ages and years will be more alike. This work uses a popular state-space 
assessment model software package (SAM) to fit three process error formulations: no process 
errors, independent process errors and correlated process errors across ages and years. We sim-
ulation test the process error configurations with three case studies (Gulf of Maine cod, white 
hake and North Sea cod) using various model mis-specifications. Our results will help provide 
a deeper understanding of the role of process errors not only in the SAM model formulation but 
in state-space stock assessment models. 

4. Efficient use of data in stock assessment 
Sondre Aanes. Norwegian Computing Center. Norway 

Critical input to age structured assessments are typically estimates of catch-at-age and abun-
dance indices at age. The estimates are based on routinely conducted sample surveys which are 
inherently expensive. To control both cost and quality, it is of critical importance to analyse the 
data according to their sampling design to estimate realistic measures of variability, necessary 
for evaluating sampling design and effort. An increasing part of currently used stock assessment 
models include an observation model which establishes the link between data and the underly-
ing dynamical model, including the definition of the error structure in the data. However, in 
most approaches, the error structures are simplified and parameterized by few parameters which 
are estimated simultaneously with the dynamical parameters, utilizing only the point estimates 
of the input data. In this way, it may be argued that available information about the input data 
is not used effectively, since information on covariances typically are omitted. In 2016, a frame-
work for bridging this gap was proposed and adopted by ICES for Norwegian Spring Spawning 
herring, the XSAM model. This approach focuses on utilizing prior knowledge about the input 
data to a larger degree, and appear to provide more efficient use of the available data as it lead 
to a significant improvement of the model fits. Here, the main ideas are presented and it is illus-
trated how knowledge about sampling errors can be used to build more efficient observation 
models for stock assessment models. 

5. Flexibility and Robustness Considerations in Building State Space Assessment Mod-
els 
William Aeberhard, Department of Mathematical Sciences. Stevens Institute of Technology, US. 

Depending on whom you ask, flexibility and robustness may refer to the same concept. In the 
statistics literature, the former is generally thought of as a property of a model, and related to 
model complexity, while the latter is defined as a property of a statistic, e.g. an estimator, for a 
given model. 

That said, when building a complex model such as a state space assessment model, it is some-
times difficult to distinguish the two. In this talk, we will discuss both concepts in model building 
and will provide a survey of the latest robust methods for state space models. Some extensions, 
such as ways to define a robust version of the Akaike Information Criterion, will be mentioned. 
The assessment of the pollock fishery in the North Sea will serve as a motivating example. 
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6. Application of state space stock assessment modeling to lake whitefish (coregonus 
clupeaformis)  
Emily M. Liljestrand*1, James R. Bence1, Jonathan J. Deroba2 
1Department of Fisheries and Wildlife, Michigan State University, Quantitative Fisheries Center 
2National Marine Fisheries Service, Northeast Fisheries Science Center 

State space modeling (SSM) is an emerging technique in fisheries stock assessment science that 
has the potential to improve estimates of parameters such as natural mortality or abundance by 
explicitly estimating observation and process error and their respective variances. However, be-
cause of differences in model structure and assumptions, these estimates from SSM models may 
differ considerably from non-SSM models. To explore this possibility, we modified an existing 
statistical catch at age (SCAA) model of Lake Michigan Lake Whitefish to have a state space 
framework, then compared the output and fit of the two models. The key changes to the model 
were: 1) log recruitment followed a random walk with normal error and estimated variance (ra-
ther than estimated values which have a penalty for deviating from a Ricker stock recruitment 
curve), 2) age- and year- specific catchability followed a log-scale multivariate random walk with 
an estimated covariance matrix (rather than based on year-specific log-scale catchability and a 
selectivity function at age for which some parameters varied over years- both log-scale catcha-
bility and the varying selectivity parameters followed random walks), and 3) the random effects 
were integrated out of the likelihood function (rather than treated as fixed effects in a penalized 
likelihood approach). The Lake Whitefish commercial fisheries in the Lake Michigan region of 
interest are gill net and trap net, and fishing mortality for each was modeled as the product of 
fishery-specific catchability and effort. The trends in estimated abundance, biomass, and mortal-
ity were similar between the SSM and non-SSM models but there were clear differences in the 
retrospective patterns. We will present the findings from simulations for model checking and 
verification and discuss the implications for future application. This research is part of a program 
intending to determine to what extent theoretical advantages of SSMs can be realized in the face 
of multiple time-varying processes. 

7. The northern cod assessment model: overview and outlook 
Paul Regular1 and Noel Cadigan2 
1Centre for Fisheries Ecosystems Research (CFER), Marine Institute of Memorial University of New-
foundland 
2Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada 

The northern cod assessment model (NCAM) is an integrated state-space model used by Fisher-
ies and Oceans Canada (DFO) to provide harvest advice for Atlantic cod (Gadus morhua) in 
Northwest Atlantic Fisheries Organization Divisions 2J3KL. This model utilizes information 
from multiple monitoring programs to extract as much information as possible about the biolog-
ical and fisheries processes acting on this stock. Specifically, the model integrates data from three 
surveys (offshore trawl, Sentinel fishery and inshore acoustic) along with fisheries monitoring 
information (age-composition and partial fishery landings) and an extensive tagging dataset. In 
this presentation we will provide an overview of how this model is structured and we will walk 
through some potential next steps for refining or augmenting this assessment model. Next steps 
are largely focused on the following items: 1) extending the time series further back in time, 2) 
conflicts between the offshore trawl survey and inshore Sentinel survey, 3) refining estimates of 
natural mortality using information on potential drivers, and 4) refining estimates of recruitment 
by integrating data from a juvenile survey. We will discuss the pros and cons of the ideas pre-
sented through these steps and, in the process, we hope to spur discussion on fruitful pathways 
for refining such models. 
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8. Towards a state-space assessment model for harp and hooded seals 
Hans J. Skaug  

The ICES working group WGHARP have for many years based their management advice on a 
deterministic population dynamic model fitted to a range of data sources. There is now an inter-
est in exploring state-space models. I will present a state space model fitted to harp seals in the 
White Sea published in Øigård and Skaug (2014). 

Øigård, Tor Arne, and Hans J. Skaug. "Fitting state–space models to seal populations with scarce data." 
ICES Journal of Marine Science 72.5 (2014): 1462-1469. 

9. The specification of the data model part in the SAM model matters 
Aldrin, M., Tvete, I.F., Aanes, S., Subbey, S. 

This presentation considers a general state-space stock assessment modelling framework that 
integrates a population model for a fish stock and a data model. This way observed data are 
linked to unobserved quantities in the population model. Using this framework, we identify ar-
eas of modification to improve accuracy in results obtained from the stock assessment model 
SAM (state-space assessment model). We demonstrate the efficacy of these modifications using 
empirical data from 14 different fish stocks. Our results indicate that the modifications lead to 
improved fit to data and prediction performance, as well as reduced prediction bias. 

10. A stock assessment model with time varying natural mortality 
Robin Cook 
MASTS Marine Population Modelling Group 
Department of Mathematics and Statistics 
University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, Scotland 

Most data rich ICES stock assessments treat natural mortality, M, as fixed value derived exter-
nally to the stock assessment model. These values may be based on life history traits, meta-anal-
yses or multispecies models that estimate predation mortality. It is common place in some re-
gions (e.g. the US Pacific coast) to estimate M as a single size and time invariant values within 
the assessment model (typically Stock Synthesis) but with an informative prior based on meta-
analyses. ICES assessments often make use of much more detailed and informative data and it 
should therefore be possible to estimate M least as a constant. In this paper a model is explored 
that allows M to be estimated as a size and time varying value. The model is applied to a number 
of North Sea demersal stocks that allow comparison of the estimated M values to those derived 
from multispecies models or life history assumptions. 

11. WHAM: Toward a state-space assessment framework in the Northeast US 
Tim Miller 
NOAA, Northeast Fisheries Science Center. Woods Hole, MA 

A TMB/R package for estimating state-space age-structured stock assessment models has been 
developed at NOAA Fisheries, Northeast Fisheries Science Center. We cover research conducted 
using the model in applications to stocks of yellowtail flounder, Acadian redfish, and Atlantic 
cod. We also describe useful features of the assessment model framework and ongoing research 
projects using WHAM. 
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12. Trials and tribulations of assessing 3Ps cod, and Hybrid an attempt to overcome 
them 
Jonathan Babyn, Dalhousie University 

The cod stock located in NAFO subdivision 3Ps is not the easiest stock to assess despite the 
wealth of data available. Conflicting signals between data sets, subcomponents that migrate sea-
sonally between inshore and offshore, non-random patterns of missing fish at older ages in RV 
surveys, noisy surveys etc. This presentation will give a brief overview of the data used in 3Ps 
assessment along with some of the challenges. 

Limitations with the previous assessment framework and challenges in the data available led to 
the development of a new state space stock assessment framework for 3Ps cod dubbed Hybrid. 
Hybrid combines certain aspects of SAM and NCAM in construction such as utilizing a random 
walk across years for fishing mortality F and censored likelihoods to deal with catch uncertainty    
and non-random pattern of missing fish. Hybrid also offers a novel approach to estimating nat-
ural mortality based on an index of fish condition. 
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