## ARCTIC FISHERIES WORKING GROUP (AFWG)

## VOLUME 3 | ISSUE 58

ICES SCIENTIFIC REPORTS

RAPPORTS
SCIENTIFIQUES DU CIEM


[^0]
## International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H.C. Andersens Boulevard 44-46<br>DK-1553 Copenhagen V<br>Denmark<br>Telephone (+45) 33386700<br>Telefax (+45) 33934215<br>www.ices.dk<br>info@ices.dk

ISSN number: 2618-1371

This document has been produced under the auspices of an ICES Expert Group or Committee. The contents therein do not necessarily represent the view of the Council.
© 2020 International Council for the Exploration of the Sea.

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy.

## ICES Scientific Reports

## Volume 3 | Issue 58

# ARCTIC FISHERIES WORKING GROUP (AFWG) 

Recommended format for purpose of citation:

ICES. 2021. Arctic Fisheries Working Group (AFWG).
ICES Scientific Reports. 3:58. 817 pp. https://doi.org/10.17895/ices.pub. 8196

## Editors

Daniel Howell


#### Abstract

Authors

Jane Aanestad Godiksen • Erik Berg • Matthias Bernreuther • Bjarte Bogstad • José Miguel Casas Thomas de Lange Wenneck • Elena Eriksen • Johanna Fall • Anatoly Filin • Harald Gjøsæter • Elvar Hallfredsson • Hannes Höffle • Daniel Howell • Edda Johannesen • Yuri Kovalev • Kjell Nedreaas • Holly Ann Perryman • Dmitri Prozorkevich • Alexey Russkikh • Silje Elizabeth Seim • Arved Staby • Ross Tallman • Mikko Juhani Vihtakari • Tone Vollen •Kristin Windsland • Natalia Yaragina


## Section Contents

i Executive summary ..... vii
ii Expert group information ..... ix
1 Introduction and ecosystem considerations ..... 1
1.1 Terms of reference ..... 1
1.2 Additional requests. ..... 1
1.3 Responses to terms of reference ..... 1
1.4 Benchmarks ..... 1
1.5 Total catches ..... 2
1.5.1 Uncertainty in catch data ..... 2
1.5.2 Sampling effort-commercial fishery ..... 3
1.5.3 The percentage of the total catch that has been taken in the NEAFC regulatory areas by year in the last year ..... 4
1.6 Uncertainties in survey data ..... 7
1.7 Age reading ..... 11
1.8 Assessment method issues ..... 13
1.9 Environmental information included in the advice of NEA cod ..... 13
1.10 Proposals for status of assessments in 2021-2022 ..... 13
1.11 Ecosystem information ..... 37
1.11.1 0-group abundance. ..... 37
1.11.2 Consumption, natural mortality, and growth ..... 37
1.11.3 Maturation, condition factor, and fisheries-induced evolution. ..... 38
1.11.4 Recruitment prediction for northeast Arctic cod ..... 39
1.11.5 Historic overview ..... 39
1.11.6 Models used in 2021 ..... 41

## i Executive summary

Assessments run at AFWG provide the scientific basis for the management of cod, haddock, saithe, redfish, Greenland halibut, and capelin in subareas 1 and 2 . Taking the catch values provided by the Norwegian fisheries ministry for Norwegian catches and raising the total landed value to the total catches gives an approximate nominal first-hand landed value for the combined AFWG stocks of ca. 20 billion NOK or ca. 2 billion EUR (2018 estimates). NEA cod and coastal cod were benchmarked in 2021. For NEA cod this resulted in updates to the existing SAM assessment model. For coastal cod, the stock has been split into two components. North of $67^{\circ} \mathrm{N}$ the coastal cod is now assessed with a SAM assessment model, while between $62^{\circ} \mathrm{N}$ and $67^{\circ} \mathrm{N}$ the coastal cod is assessed using a category 3 approach based on a CPUE time-series. AFWG is currently working towards running a benchmark (and subsequent HCR evaluation) for Greenland halibut, which is planned for 2022-2023.

The key feature driving the stock assessments this year was that several key surveys (the ecosystem survey, winter survey, and the Lofoten survey) all came in with low totals for the main AFWG stocks. This has led to downward revisions of many of the stocks described here. Several data errors were discovered following the AFWG meeting in April 2021. These had very minor impacts on the NEA cod and haddock assessments (which are not updated in this report), but revised the quota for northern coastal cod from an initial estimate of zero catch to 7865 t (version in this report based on the corrected data).

## Stock-by-stock summaries

Cod in subareas 1 and 2 (Northeast Arctic) was assessed using the SAM model following the outcome of the benchmark meeting (WKBARFAR 2021). The biomass is declining, but SSB is still well above $\mathrm{B}_{\mathrm{pa}}$. The TAC advice for 2022 is 708480 tonnes, corresponding to $\mathrm{F}=0.50$. This is $20 \%$ down on the TAC and the advice for 2021. F is above $\mathrm{F}_{\mathrm{pa}}$, because the harvest control rule adopted in 2016 , limits the annual decrease to $20 \%$. Without this constraint, the advice would have been 604125 tonnes. The decrease from last year's advice is due to changes in SAM settings and input data at the benchmark, as well as low survey indices in 2021.

Cod in subareas 1 and 2 North of $67^{\circ} \mathrm{N}$ (Norwegian coastal cod North) - cod.27.2.coastN—is a new ICES stock following a benchmark in 2021 and is the northern part of the previous coastal cod stock. The stock was assessed using the new SAM model developed at the benchmark meeting (WKBARFAR 2021). The spawning-stock biomass increased by 10000 t in 2020 compared to 2019, but spawning-stock biomass is still below Blim and F increased in 2020. However, the data indicates that the stock is capable of rising above Blim within one year. The catch advice is set to be no more than 7865 t (including all commercial and recreational catches), which is estimated to be the largest catch permitting recovery above $B_{\text {lim }}$ in one year.

Cod (Gadus morhua) in Subarea 2 between $62^{\circ} \mathrm{N}$ and $67^{\circ} \mathrm{N}$ (Norwegian coastal cod South) -cod.27.2.coastS-is a new ICES stock following a benchmark in 2021 and is the southern part of the previous coastal cod stock. The stock is assessed using the 2-over-3 rule based on a CPUE series from the Norwegian coastal reference fleet (9-15 m, fishing with gillnets in the second half of the year), alongside a LBSPR model to evaluate the necessity of a precautionary buffer. In principle, the CPUE could be used to tune a SPiCT model, however, the time-series needs to be extended before this is practicable. A key uncertainty is the lack of good data on the substantial recreational portion of the overall catch. The current assessment shows a decrease in the spawning potential ratio with a decline in both mean length and mean length of largest $5 \%$. These combine to depict a somewhat depleted and worsening stock status. Given the largely stable CPUE
trend in recent years and no adopted reference points, the 2-over-3 rule, including a precautionary buffer, suggests a $6 \%$ decrease in next year's catches compared to the last three years average.

Haddock in subareas 1 and 2 (Northeast Arctic) was assessed using the SAM model. The spawn-ing-stock biomass has declined since 2013 but is still well above $B_{p a}$. The TAC advice for 2022 is 180003 tonnes, corresponding to $\mathrm{F}=0.35$. This is $23 \%$ down on the TAC and the advice for 2021. The decrease from last year's advice is mainly due to low indices from surveys in autumn 2020 and winter 2021. The retrospective trend indicates that the catch advice given in 2020 for 2021 is likely biased high. The catch in 2020 was $15 \%$ lower than TAC and the catch is expected to be below the TAC also in 2021, especially since the TAC in 2021 was higher than the 2020 TAC.

Saithe in subareas 1 and 2 (Northeast Arctic) was assessed using the SAM model. The spawningstock biomass is well above $B_{p a}$ and has been increasing since 2011, although the increase has been lower in the last years. Considering uncertainty fishing mortality has been below $\mathrm{F}_{\mathrm{pa}}=0.35$ since 2015. The TAC advice for 2022 is 197212 tonnes (corresponding to $\mathrm{F}_{\mathrm{mp}}=0.32$ ) and is very similar to the 197779 tonnes TAC and advice for 2021. Currently, particularly the strong 2013 (8year old fish) and the 2016 (5-year old fish) year classes are contributing substantially to the SSB. The retrospective trend indicates that SSB was only slightly overestimated in 2017-2019. In 2020 preliminary catches totalled 169405 tonnes, corresponding to $99 \%$ of the quota allocated.

Redfish (Sebastes mentella, Sebastes norvegicus) in subareas 1 and 2 (Northeast Arctic): is assessed on a two-year cycle, with the next advice in 2022. Interim model results for S. mentella indicate that at current levels of exploitation SSB by the end of 2020 is estimated to be 874727 t with fishing mortality of the plus-group corresponding to $\mathrm{F}_{19+}=0.05$, higher than in 2019 but still below the advised quota. Catches of S. norvegicus in 2020 amounted to 9033 t , continuing the trend of increased bycatch since the quota for beaked redfish was raised in 2019. The stock was not assessed in 2021.

Greenland halibut is assessed on a two-year cycle, with advice provided this year. Poor recruitment over the last decade combined with fishing c. $1 / 3$ above advice over the last decade has led to a continued decline in the fishable $45 \mathrm{~cm}+$ biomass, which is currently estimated at 601 kt . The previous precautionary basis for advice was rejected by the Advice Drafting Group (ADG), and an $H R_{\text {pa }}$ proposal was requested. Following a delay due to COVID-19, this has now been submitted to ICES for consideration by the ADG.

Anglerfish (Lophius budegassa, Lophius piscatorius) in subareas 1 and 2 (Northeast Arctic): AFWG does not currently give advice on this stock. However, following a recent benchmark, we are now in a position to do so if requested by the managers. Management is based on technical measures rather than a quota. Data-limited model results based on length data from the fishery suggest that the exploitation pattern is appropriate, while the rate is close that which would lead to maximum yield.
Barents Sea capelin: following ToR b), the data on Barents Sea capelin were updated. No assessment is conducted during the spring AFWG meeting, the assessment occurs in autumn following the ecosystem survey ${ }^{1}$. A benchmark will be held in 2022 for this stock together with capelin in the Iceland-East Greenland-Jan Mayen area².

[^1]
## ii Expert group information

| Expert group name | Arctic Fisheries Working Group (AFWG) |
| :--- | :--- |
| Expert group cycle | Annual |
| Year cycle started | 2020 |
| Reporting year in cycle | $1 / 1$ |
| Chair | Daniel Howell, Norway |
| Meeting venue and dates | $14-20$ April 2021, online meeting (26 participants) |

## 1 Introduction and ecosystem considerations

## Arctic Fisheries Working Group

### 1.1 Terms of reference

2020/2/FRSG02 The Arctic Fisheries Working Group (AFWG), chaired by Daniel Howell, Norway, will meet online 14-20 April 2021 to:
a) Address generic ToRs for Regional and Species Working Groups, for all stocks except the Barents Sea capelin, which will be addressed at a meeting in autumn;
b) For Barents Sea capelin oversee the process of providing intersessional assessment;
c) Conduct reviews as required of time any series computed using the STOX and ECA open source software for use in assessment in the Barents Sea.
The assessments will be carried out on the basis of the Stock Annex. The assessments must be available for audit on the first day of the meeting.

Material and data relevant to the meeting must be available to the group on the dates specified in the 2021 ICES data call.

AFWG will report by 7 May 2021 and 8 October 2021 for Barents Sea capelin for the attention of the Advisory Committee.
Only experts appointed by national Delegates or appointed in consultation with the national Delegates of the expert's country can attend this Expert Group.

### 1.2 Additional requests

There were no additional requests.

### 1.3 Responses to terms of reference

Under ToR a (address generic ToRs), the stock assessments and advice were conducted according to generic ToRs c and d, while the generic ToR e benchmark review can be found further down in this introduction and the haddock, NEA cod and coastal cod sections. Work on generic ToRs $a$ and $b$ will be conducted intersessionally as it becomes appropriate.

ToR $b$ is handled in detail by the capelin subgroup of AFWG, held in autumn after the capelin survey. A brief report on the previous capelin assessment is given in this report.

ToR c is to review data changes as required, and this was not required in 2021.

### 1.4 Benchmarks

A cod benchmark (WKBARFAR 2021) was conducted in early 2021 (ICES, 2021a). This benchmark resulted in a modification of the existing NEA cod SAM assessment model. For coastal cod, the benchmark resulted in the stock being split into two, a category one northern stock (with a SAM stock assessment) and a category three southern stock (2-over-3 rule based on a CPUE series).

Capelin ${ }^{3}$ is scheduled to have a benchmark in 2022, with HCR revision conducted at the benchmark. Greenland halibut is scheduled for a benchmark in $2023^{4}$, followed by an HCR evaluation.

### 1.5 Total catches

In this report, the terms 'landings' and 'catches' are, somewhat incorrectly, used as synonyms, as discards are in no cases used in the assessments. This does not mean, however, that discards have not occurred, but the WG has no information on the possible extent. In contrast, available information indicates low discard rates at present (less than $5 \%$ of catch) and it is assumed that discards are negligible in the context of the precision of the advice.

As in previous years, a report from the Norwegian-Russian Analysis group dealing with estimation of total catch of cod and haddock in the Barents Sea in 2018 was available to AFWG. The report presents estimated catches made by Norwegian, Russian and third countries separately. According to that report, the total catches of both cod and haddock reported to AFWG are very close (within $1 \%$ ) to the estimates made by the analysis group. Thus, it was decided to set the IUU catches for 2017 to zero.

For further information on under- and misreporting, we refer to the 2016 AFWG report.
Discards estimates (1994-2020) of redfish, cod, haddock and Greenland halibut juveniles in the commercial shrimp fishery in the Barents Sea are presented in Figure 0.1. These estimates are obtained with a spatio-temporal model based on a procedure elaborated in Breivik et al. (2017). In Breivik et al. (2017) an extensive validation study indicates that the new procedure obtains bycatch estimates with approximately correct uncertainty. Previous estimates for the period 1982-2015 are given in earlier reports (e.g. AFWG 2018), and we have not been able to compare these two time-series in detail. Such a comparison should be performed on a relatively fine spa-tio-temporal resolution. The bycatch estimates illustrated in Figure 0.1 and are available for each quarter in each main statistical area (not shown in report). Note that it is still a work in progress regarding improving the new estimates.

The new time-series in Figure 0.1 are obtained by scaling the estimated bycatch in the Norwegian fishery with the international fishery in each ICES area. The scaling procedure assumes that the Norwegian fishery is representative of the international fishery. This assumption is necessary because the international catch data are available only to a low spatio-temporal resolution. If the international vessels in a relatively high degree trawl at locations not trawled by Norwegian vessels, the bycatch estimates illustrated in figure 0.1 may be biased.

### 1.5.1 Uncertainty in catch data

For the Norwegian estimates of catch numbers at-age and mean weight-at-age for cod and haddock methods for estimating the precision have been developed, and the work is still in progress (Aanes and Pennington, 2003; Hirst et al., 2004; Hirst et al., 2005; Hirst et al., 2012). The methods are general and can in principle be used for the total catch, including all countries' catches, and provide estimates both at-age and at-length groups. Typical error coefficients of variation for the catch numbers-at-age are in the range of $5-40 \%$ depending on age and year. It is evident that the estimates of the oldest fish are the most imprecise due to the small numbers in the catches and resulting small number of samples on these age groups. From 2006 onwards, the Norwegian catch-at-age in the assessment has been calculated using the ECA method described by Hirst et

[^2]al. (2005). The methodology for using ECA to split cod catches into NEA cod and coastal cod is still under development (WKARCT 2015). ECA has now been implemented for saithe, and with partial success for S. mentella. A new version of the program (StoX-ECA) is now being tested.

Aging error is another source of uncertainty, which causes increased uncertainty in addition to bias in the estimates: An estimated age distribution appears smoother than it would have been in absence of ageing error. Some data have been analysed to estimate the precision in ageing (Aanes, 2002). If the ageing error is known, this can currently be taken into account for the estimation of catch-at-age described above.

For capelin, the uncertainty in the catch data is not evaluated. The catch data are used, however, only when parameters in the predation model are updated at infrequent intervals, and the uncertainty in the catch data are considered small compared with other types of uncertainties in the estimation.

We note that the SToX survey methodology reviewed by the group is able to produce uncertainty estimates for the survey time-series.

Additional sources of uncertainty arising from sources beyond sampling or age-reading errors have implications for a number of the stocks assessed here. Coastal cod catches, and to a lesser extent catches of the much larger NEA cod stock, have uncertainty issues due to the difficulty of splitting catches between the two stocks. A similar issue applies to small S. norvegicus stock and the larger $S$. mentella stock, where species misidentification can be a significant source of error. Finally, there is no agreement between Norway and Russia on an age-reading methodology for Greenland halibut, and such data are not used for tuning the model. The absence of age data creates an important (but unquantifiable) source of error on the GHL stock estimate.

### 1.5.2 Sampling effort-commercial fishery

Concerns about commercial sampling: The main Norwegian sampling program for demersal fish in ICES subareas 1 and 2 has been port sampling, carried out onboard a vessel travelling from port to port for approximately 6 weeks each quarter. A detailed description of this sampling program is given in Hirst et al. (2004). However, this program was, for economic reasons, terminated 1 July 2009. Sampling by the 'reference fleet' and the Coast Guard has increased in recent years. However, the reduction in port sampling of many different vessels seems to have increased the uncertainty in the catch-at-age estimates from 2009 onwards (WD6, 2010). A Norwegian port sampling program was restarted in 2011, although with a lower effort, this improved the basis for the 2011-2019 catch-at-age estimates. From 2014 this program is run by 4 -year contracts of a vessel that sails between fish landing sites along the coast from about $66^{\circ} \mathrm{N}$ to Varanger $\left(70^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}\right)$ three periods a year during the first, second, and fourth quarters, altogether up to 120 days. This is a reduction compared to about 180 days a year before 2009. The catch sampling is done of landed fish, mainly from the fleet fishing in coastal waters, and usually inside the plant, and the rented vessel acts as a transport, accommodation and working (age reading, data work) platform. AFWG recommends that such sampling is also carried out during the third quarter.

Table 0.1-Table 0.4 show the development of the Norwegian, Russian, Spanish and German sampling of commercial catches in the period 2008-2020. The tables show the total sampling effort, but do not show how well the sampling covers the fishery. Indices of coverage should be developed to indicate this. The main reason for the general strong decrease in numbers of Norwegian samples in the first part of this period is the termination of the port sampling program in northern Norway. This program is now up and running again. It should be considered whether catch sampling carried out by different countries fishing by trawl for the same time and area could be coordinated and data shared on a detailed level to a greater extent than is done today.

Cod, haddock and saithe: Available catch-at-age and length data covered the largest portion of catches by the respective fisheries. However, there was a period in spring 2020 when port sampling was at a lower level than usual due to the COVID-19 situation. However, the aggregation level (time and space) used when splitting these catches into Northeast Arctic cod and Norwegian Coastal Cod is also an important issue. Despite the improvement in sampling coverage in 2016-2020, the number of samples should be increased in the coming years, with the aim of covering all quarters and areas contributing the highest catches.

Due to the adopted amendments of the Russian Federal Law "On fisheries and preservation of aquatic biological resources" coming into force, especially concerning the destruction of biological resources caught under scientific research, sampling activities (age sample numbers and length/weight measurements of fish) on board fishing vessels are also reduced, especially in ICES subareas 2.a and 2.b, which may result in greater uncertainty of the stock assessments due to possible biases in the age-length distributions of the commercial catch.

Length measurements of fish and age sampling by Russia have been especially low in ICES subareas 2.a and 2.6 in the first half of 2020 due to administrative difficulties in arrangement (stationing) observers onboard fishing vessels (a prolonged procedure via open contest). Available Norwegian data on cod and haddock length measurements onboard Russian vessels made by the Norwegian Coast Guard in the Norwegian economic zone have been used, where possible, in calculations of catch-at-age data by Russia.

Data issues with S. mentella: There is still a concern about the biological sampling from the fishery and scientific surveys that may have become critically low, however, there is also a lag of several years between collection of age samples and the processing of them. This is elaborated in the section for this stock.

Data issues with S. norvegicus: Despite a recent increase in age-reading for this species, age data are rather poor, and effort in age sampling from the catches is required. The other main source of uncertainty is species misidentification from S. mentella, and consequently, careful monitoring that species composition is being reported correctly is required.

Data issues with NEA Greenland halibut: There is still a concern about the biological sampling from the fishery that may have become critically low. Age information is not available, due to disagreements on age reading method, and may affect precision in the assessment which at the moment is length-based. Norwegian landings are split on Greenland halibut by sex for area, gear groups, and quarters. Annual sample level has decreased in the last years and may affect the precision of the catch distribution.
The samples and data basis behind each stock assessment are discussed more in detail under each stock-specific section of this report (e.g. the coastal cod). The number of aged individuals per 1000 t is now well below the standard set by the EU in their Data Collection regulations. For several stocks sampling is inadequate for area/quarter/gear combinations making up considerable proportions of the total catch.
Discontinuation of the Russian autumn survey decreased considerably the biological sampling (age sample numbers, abundance indices evaluations, maturity status of fish definitions, feeding data collections, etc.).

### 1.5.3 The percentage of the total catch that has been taken in the NEAFC regulatory areas by year in the last year

Generic ToR c-iii asks for the percentage of the total catch that has been taken in the NEAFC regulatory area by year in the last year. In the area where AFWG stocks are distributed, there are two areas outside national EEZs which are part of the NEAFC regulatory area: The International
area in ICES Subarea 1 in the Barents Sea ("loophole", denoted as 1.a or 27_1_A) and the International area in ICES divisions 2.a and 2.b in the Norwegian Sea ("banana hole", denoted as 2.a.1 and $2 . b .1$ or $27 \_2 \_A \_1$ and $27 \_2 \_B \_1$ ). In the table below the WG presents the most likely landings from these areas based on the official reports and discussions within the WG. The text table below shows the percentages for S. mentella, Northeast Arctic cod and haddock and Greenland halibut. For the other AFWG stocks, no catches are taken in those areas. The highest precision in these numbers is probably the $S$. mentella figures since these figures have been tabulated each year since 2004, and have been given regular and special attention, also by NEAFC.

|  | ICES 1.a | ICES 2.a. 1 | ICES 2.b. 1 | Total | \%NEAFC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2020 |  |  |  |  |  |
| NEA cod | 1607 | 9 | 0 | 1616 | 0.23\% |
| Coastal cod | 0 | 0 | 0 | 56653 | 0.0\% |
| NEA haddock | 0 | 0 | 0 | 182468 | 0.0\% |
| NEA saithe | 0 | 3 | 0 | 169405 | <0.1\% |
| Sebastes mentella | 0 | 5469 | 0 | 54686 | 10.0\% |
| Sebastes norvegicus | 0 | 0 | 0 | 9033 | 0.0\% |
| Greenland halibut | 450 | 0 | 0 | 28713 | 1.5\% |
| Capelin | 0 | 0 | 0 | 0 | 0.0\% |
| Anglerfish | 0 | 0 | 0 | 2280 | 0.0\% |
| 2019 |  |  |  |  |  |
| NEA cod | 1094 | 0 | 0 | 692609 | 0.16\% |
| Coastal cod | 0 | 0 | 0 | 52807 | 0.0\% |
| NEA haddock | 394 | 0 | 0 | 175402 | 0.225\% |
| NEA saithe | 250 | 7 | 0 | 163180 | 0.001\% |
| Sebastes mentella | 0 | 6060 | 0 | 45954 | 13.2\% |
| Sebastes norvegicus | 0 | 0 | 0 | 8285 | 0.0\% |
| Greenland halibut | 1108 | 3 | 0 | 28832 | 3.8\% |
| Capelin | 0 | 0 | 0 | 0 | 0.0\% |
| Anglerfish | 0 | 0 | 0 | 2809 | 0.0\% |
| 2018 |  |  |  |  |  |
| NEA cod | 1724 | 2 | 0 | 778627 | 0.22\% |
| Coastal cod | 0 | 0 | 0 | 36375 | 0.0\% |
| NEA haddock | 24.1 | 0 | 0 | 191276 | 0.013\% |


|  | ICES 1.a | ICES 2.a. 1 | ICES 2.b. 1 | Total | \%NEAFC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NEA saithe | 2.4 | 0 | 0 | 181280 | 0.001\% |
| Sebastes mentella | 3 | 7823 | 0 | 38765 | 20.2\% |
| Sebastes norvegicus | 0 | 0 | 0 | 6647 | 0.0\% |
| Greenland halibut | 798 | 0 | 0 | 28544 | 2.80\% |
| Capelin | 0 | 0 | 0 | 0 | 0.0\% |
| Anglerfish | 0 | 0 | 0 | 1903 | 0.0\% |
| 2017 |  |  |  |  |  |
| NEA cod | 1212 | 12 | 0 | 868276 | 0.14\% |
| Coastal cod | 0 | 0 | 0 | 51053 | 0.0\% |
| NEA haddock | 90 | 0 | 0 | 227588 | 0. 0004\% |
| NEA saithe | 70 | 11 | 0 | 145403 | 0.06\% |
| Sebastes mentella | 0 | 6463 | 0 | 31200 | 20.7\% |
| Sebastes norvegicus | 5 | 0 | 0 | 5340 | 0.1\% |
| Greenland halibut | 592 | 6 | 0 | 26380 | 2.3\% |
| Capelin | 0 | 0 | 0 | 0 | 0.0\% |
| Anglerfish | 0 | 0 | 0 | 1478 | 0.0\% |
| 2016 |  |  |  |  |  |
| NEA cod | 3619 | 0 | 0 | 849422 | 0.4\% |
| Coastal cod | 0 | 0 | 0 | 54767 | 0.0\% |
| NEA haddock | 7 | 0 | 0 | 233416 | 0.003\% |
| NEA saithe | 81 | 0 | 0 | 140392 | 0.06\% |
| Sebastes mentella | 0 | 7170 | 0 | 35429 | 20.2\% |
| Sebastes norvegicus | 10 | 0 | 0 | 4674 | 0.2\% |
| Greenland halibut | 363 | 5 | 0 | 24972 | 1.5\% |
| Capelin | 0 | 0 | 0 | 0 | 0.0\% |
| Anglerfish | 0 | 0 | 0 | 1435 | 0.0\% |
| 2015 |  |  |  |  |  |
| NEA cod | 9 | 0 | 0 | 864384 | 0.001\% |
| Coastal cod | 0 | 0 | 0 | 35843 | 0.0\% |


|  | ICES 1.a | ICES 2.a. 1 | ICES 2.b. 1 | Total | \%NEAFC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NEA haddock | 702 | 0 | 0 | 194756 | 0.4\% |
| NEA saithe | 30 | 0 | 0 | 131765 | 0.0\% |
| Sebastes mentella | 0 | 4752 | 0 | 25856 | 18.4\% |
| Sebastes norvegicus | 13 | 0 | 0 | 3632 | 0.4\% |
| Greenland halibut | 55 | 0 | 0 | 24748 | 0.2\% |
| Capelin | 0 | 0 | 0 | 115044 | 0.0\% |
| Anglerfish | 0 | 0 | 0 | 1043 | 0.0\% |
| 2014 |  |  |  |  |  |
| NEA cod | 534 | 0 | 0 | 986449 | 0.1\% |
| Coastal cod | 0 | 0 | 0 | 33660 | 0.0\% |
| NEA haddock | 0 | 0 | 0 | 177522 | 0.0\% |
| NEA saithe | 0 | 0 | 0 | 132005 | 0.0\% |
| Sebastes mentella | 0 | 4020 | 0 | 18780 | 21.4\% |
| Sebastes norvegicus | 0 | 0 | 0 | 4438 | 0.0\% |
| Greenland halibut | 211 | 0 | 0 | 23025 | 0.9\% |
| Capelin | 0 | 0 | 0 | 66000 | 0.0\% |
| Anglerfish | 0 | 0 | 0 | 1657 | 0.0\% |

### 1.6 Uncertainties in survey data

While the area coverage of the winter surveys for demersal fish was incomplete in 1997 and 1998, the coverage was normal for these surveys in 1999-2002. In autumn 2002, 2006 and winter 2003, 2007, 2016 and 2017 however, surveys were again incomplete due to lack of access to both the Norwegian and Russian Economic Zones. This affects the reliability of some of the most important survey time-series for cod and haddock and consequently also the quality of the assessments.

It is very important that the Norwegian and Russian authorities give each other's research vessels full access to the respective economic zones when assessing the joint resources, as was the case for Joint winter surveys (BS-NoRu-Q1 (Btr) and BS-NoRu-Q1 (Aco)) in 2004-2005, 2008-2011 and 2013, for example.
The area coverage in the winter survey was extended from 2014 onwards (Figure 0.2, Table 3.5). With the recent expansion of the cod distribution, it is likely that in years before 2014 the coverage in the February survey (BS-NoRu-Q1 (BTr) and BS-NoRu-Q1 (Aco)) has been incomplete, in particular for the younger ages. This could cause a bias in the assessment, but the magnitude is unknown. The 2014-2021 surveys covered considerably larger areas than earlier winter surveys and showed that cod, haddock and Greenland halibut was distributed far outside the standard survey area. The 2017 and 2018 surveys were restricted by ice Northeast of Hopen Island, and
the survey did not extend quite as far as in the years 2014-2016. In 2019 the coverage was almost as extensive as in 2014. Coverage in 2020 and 2021 was less extensive mainly due to increased ice cover in the east. For all stocks except Greenland halibut, mainly younger age groups are found in the northern area. It should however be noted that the survey index from this survey is currently not used in the assessment of Greenland halibut.

The survey estimates within the new, extended area are now used for the tuning data for cod, but with the bottom trawl series split in 2014, as decided at the WKBARFAR 2021 benchmark. For haddock, the new northern area is also included as decided at the WKDEM benchmark in 2020.

There are also other issues with incomplete survey coverage of stocks, e.g. haddock off the Norwegian coast south of Finnmark is not covered in the winter survey and the S. mentella survey in the Norwegian Sea does not cover the entire distribution area.

From 2004 onwards, a joint Norwegian-Russian survey has been conducted in August-September. This is a multi-purpose survey termed an "ecosystem survey" because most of the ecosystem is covered; including an acoustic survey for the pelagic species, which is used for capelin assessment, and a bottom trawl survey which includes non-commercial species. The ecosystem survey is now included in both cod and haddock assessments. The survey is also utilized in the assessment of redfish and Greenland halibut.

In 2018, a large area in the eastern Barents Sea was not covered due to technical problems with one vessel, while in 2019, most of the Barents Sea was covered except parts of the International waters and the Northeastern most part. In 2020 the spatial coverage was good, but for COVID19 related reasons, the survey was less synoptic than usual as the time between the start and end of the survey was 13 weeks while the normal is about 8 weeks (Fig 0.3). Also, one of the vessels used had not previously been used in this type of bottom trawl surveys. The bottom trawl survey indices for cod and haddock from this survey in 2020 were considerably lower than expected, in particular for cod, but it was decided to include them in the assessment. Also, the survey coverage for capelin was not complete at the time assessment and advice had to be provided. Although this did not affect the advice this year, which would have been zero catch even when using the final estimate for the entire area, that may not be the case in future.

It is very important that this survey should be continued with complete spatial coverage and as synoptic as possible. In addition to being the only survey used in capelin assessment and being used in assessment of demersal stocks, it has been shown to be valuable for sampling of synoptic ecosystem information, cover the entire area of fish distribution in the Barents Sea, and provide additional data on geographical distribution of demersal fish, which could prove valuable in future inclusion of more ecosystem information in the fish stock assessments.

The Norwegian coastal survey (NOcoast-Aco-4Q) has in its current design been conducted since 2002. The survey covers the coastal area, including most fjords, and shelf area, including banks, between Kirkenes in northern Norway and Stadt off central Norway. The survey area is divided into seventeen strata, each containing several substrata, and is generally covered by two vessels, which collect acoustic data along defined transects and catch and biological data from both fixed bottom trawl stations and trawl stations identifying acoustic registrations. The coverage of the area has been fairly consistent throughout the time-series. In 2020 bad weather prevented the coverage of three substrata in the southern part of the survey area. Historically the contribution of these areas to the saithe and coastal cod survey index has been low, and it is therefore assumed that the lack of coverage of these areas in the 2020 estimate will not affect the final survey index.


Figure 0.1. Estimated bycatch of cod, haddock, redfish and Greenland halibut in the Barents Sea shrimp fishery. Intervals are $90 \%$ confidence intervals.


Figure 0.2. Strata (1-26) and main areas ( $A, B, C, D, D^{\prime}, E$ and $S$ ) used for swept-area estimations and acoustic estimations with StoX. Strata (24-26, main area $N$ ) are covered since 2014, and are now included in the standard time-series.


Fig 0.3. Barents Sea Ecosystem Survey (BESS) 2020, area coverage and trawl stations.

After AFWG 2021 minor errors were discovered in the Norwegian SToX dataseries for 2021 for NEA cod and haddock. The advice has been updated and reflects the corrected data. However the values presented in this report are prior to the correction. More detail is given in the relevant stock sections.

### 1.7 Age reading

In 1992, PINRO, Murmansk and IMR, Bergen began a routine exchange program of cod otoliths in order to validate age readings and ensure consistency in age interpretations (Yaragina et al., 2009b, AFWG 2008, WD 20). Later, a similar exchange program has been established for haddock, capelin and S. mentella otoliths. Once a year (now every second year, no exchanges of redfish age readers so far) the age readers have come together and evaluated discrepancies, which are seldom more than 1 year, and the results show an improvement over the period, despite still observing discrepancies for cod in the magnitude of $15-30 \%$. An observation that is supported by the results of an NEA cod otolith exchange between Norway, Russia and Germany (Høie et al., 2009; AFWG 2009, WD 6). 100 cod otoliths were read by three Norwegian, two Russian and one German reader, reaching nearly $83 \%$ agreement (coefficient of variation $8 \%$ ). The age reading comparisons of these 100 cod otoliths show that there are no reading biases between readers within each country. However, there is a clear trend of bias between the readers from different countries, Russian age readers assign higher ages than the Norwegian and German age readers. This systematic difference is a source of concern and is also discussed in Yaragina et al. (2009b). This seems to be a persistent trend and will be revealed in the following annual otolith and age reader exchanges.

From 2009 onwards, it was decided to have meetings between cod and haddock otolith readers only every second year. The overall percentage agreement for the 2017-2018 exchange was $87.7 \%$ for cod (WD 08), which was a little lower than at the previous meeting. The general trend is that the Russian readers assigned slightly higher ages than the Norwegian readers compared to the modal age for age group 7 years and older. The main reason for cod ageing discrepancies between Russian and Norwegian specialists was still a result of different interpretations of the false zones. This can partly be caused by different reading techniques, i.e. IMR reading opaque zones and PINRO reading translucent zones. For haddock, the main reason for discrepancies between PINRO and IMR readers was a different interpretation of the otolith summer structures in the first and second year of fish life due to false zones. Sometimes discrepancies were caused by a different interpretation of the latest increments that were very thin in some cases.
For both species, the samples collected in autumn appeared to be the hardest to interpret. The main reason for that seems to be difficulties in determining if the marginal increment represents summer (opaque) or winter (translucent) growth.
A positive development is seen for haddock age readings showing that the frequency of a different reading (usually $\pm 1$ year) has decreased from above $25 \%$ in 1996-1997 to about $10 \%$ at present. The discrepancies are always discussed and a final agreement on the exchanged cod and haddock otoliths is achieved for all otoliths at present, except ca. $2-5 \%$. For haddock, the overall percentage agreement for recent data (2017-2018) was $88.1 \%$ and the precision CV was $3.0 \%$, the same values for cod totalled $87.7 \%$ and $3.7 \%$ accordingly and considered to be satisfactory.

The next workshop on cod and haddock otolith reading will be held in May-June of 2021.
As the EU catches only make up a few percent ( $<10 \%$ ) of the total, the German and Spanish length and age data do not have a major impact on the assessment of the relevant stocks. But in order to use consistent datasets, regular age-reading comparisons should be made. EU age readers could be invited to the NOR-RUS exchanges and workshops.

To determine the effects of changes in age reading protocols between contemporary and historical practices, randomly chosen cod otolith material from each decade for the period 1940s-1980s has been re-read by experts (Zuykova et al., 2009). Although some year-specific differences in age determination were seen between historical and contemporary readers, there was no significant effect on length-at-age for the historical period. A small systematic bias in the number spawning zones detection was observed, demonstrating that the age at first maturation in the historic material as determined by the contemporary readers is younger than that determined by historical readers. The difference was largest in the first sampled years constituting approximately 0.6 years in 1947 and 1957. Then it decreased with time and was found to be within the range of $0.0-0.28$ years in the 1970-1980s. The study also shows that cod otoliths could be used for age and growth studies even after long storage.

For capelin otoliths, there is a very good correspondence between the Norwegian and Russian age readings, with a discrepancy in less than $5 \%$ of the otoliths. This was confirmed at the Nor-wegian-Russian age reading workshop on capelin in October 2011 (WD 13, 2012).

For some of the samples, a very high agreement was reached after the initial reading by the different experts. In other cases, some disagreement was evident after the first reading. After the initial reading, the results were analysed. The otoliths that caused disagreement were read again and discussed among the readers. After discussions about the reasons for disagreement, some readers wanted to change their view on some of the otoliths. When the samples were read once more, the agreement was $95 \%$.

It was concluded that experts from all laboratories normally interpret capelin otoliths equally. Difficult otoliths are sometimes interpreted differently, but these samples are few, and should not cause large problems for common work on capelin biology and stock assessment. All participants noted the great value of conducting joint work on otolith reading, and it was decided to continue the programme of capelin otolith exchange and to involve the labs at Iceland and Newfoundland in the exchange program. Readers from Norway and Russia should continue to meet at Workshops every second year. A capelin age reading Workshop was held in Murmansk in April 2016, and the report from that meeting was presented to the capelin assessment meeting in October 2016. An age reading Workshop for capelin was held in Murmansk in October 2019.

In order to achieve the most accurate age estimates, ICES recommends methods and best practices for age reading of both redfish and Greenland halibut. Still there continue to be differences in opinion between PINRO and IMR regarding age reading methods for these species. It is recommended to start an annual or biannual exchange of otoliths and age reading experts on these species in order to identify the differences in interpretation and to discuss possibilities for a common approach.

The report from the Workshop on Age Reading of Greenland Halibut (WKARGH; ICES CM 2011/ACOM:41) described and evaluated several age reading methods for Greenland Halibut. A second workshop (WKARGH 2) was conducted in August 2016 and worked on further validation on new age reading methods. The workshop recommended that two new methods can be used to provide age estimations for stock assessments. Further, recognizing some bias and low precision in methods, the WKARGH2 recommends that an ageing error matrix or growth curve with error be provided for use in future stock assessments (WKARGH2 report 2016, ICES CM 2016/SSGIEOM:16). WKARGH2 recommends regular inter-lab calibration exercises to improve precision (i.e. exchange of digital images between readers for each method and between methods). The new age readings are not comparable with older data or the Russian age readings, and the new methods show that the species is more slow-growing and vulnerable than the previous age readings suggest. AFWG suggests that Russian and Norwegian scientists and age readers meet to work out issues of disagreements on Greenland halibut aging.

From 2009 onwards, an exchange of Sebastes mentella otoliths is conducted annually between the Norwegian and Russian laboratories (see section 6.2.2). In 2011 ICES/PGCCDBS identified differences in the interpretation of age structure by different national laboratories and recommended that international exchanges of otoliths be conducted (ICES C.M. 2011/ACOM:40). The work was conducted during 2011 (Heggebakken, 2011) with participation from Canada, Iceland, Norway, Poland and Spain. Unfortunately, Russia did not respond to the invitation to participate. The agreement in age determination was $79.2 \%$ (with allowance for $\pm 1$ years) for all ages combined, but $38.6 \%$ when only fish older than 20 years were considered. It is recommended that 1) future exchanges be conducted every 3-5 years, 2) that these should primarily focus on $20+$-year-old fish and 3) that Russian scientists contribute to future exchanges. A meeting between S. mentella age readers from Norway and Russia was held in 2013. Otolith exchanges took place in 2014. It is recommended that such meetings and otolith exchanges be conducted regularly in future.

### 1.8 Assessment method issues

For coastal cod, the benchmark has resulted in a split into two stocks. For the northern (north of 67 degrees) part there is now a SAM assessment model. However there is no Fmsy (since we have no data above Blim), and there is a need for a rebuilding plan for this stock. In addition, since this is the first assessment model it is likely that there will be a need for a revision once we accumulate some years' experience running the model. The southern (between 62 and 67 degrees north) now gives advice based on a 2-over-3 rule. A surplus production, based on the reference fleet CPUE, was developed. However, the CPUE time-series was too short to adequately tune the model. This should be investigated further as the time-series is extended, with a view to an eventual benchmark and adoption of the production model for assessment purposes.

Work is in progress on revising the capelin assessment methodologies, with a planned benchmark (in conjunction with Iceland) in 2022. Greenland halibut also has a benchmark (again jointly with Iceland) in 2022, planned to be followed by an HCR evaluation. For Greenland halibut the target F is the key issue, with the previous $\mathrm{F}_{\mathrm{pa}}$ being rejected by the Advice Drafting Group. A revised $\mathrm{F}_{\mathrm{pa}}$ has therefore been submitted.

### 1.9 Environmental information included in the advice of NEA cod

For the fourteenth time, environmental information has been applied in the advice from AFWG. In this year's assessment ecosystem information was directly used in the projection of NEA cod. A combination of regression models, which is based on both climate and stock parameters, were used for the prediction of recruitment-at-age 3 , see section 1.11.4.

In addition, the temperature is part of the NEA cod consumption calculations that goes into the historical back-calculations of the amount of cod, haddock, and capelin eaten by cod.

### 1.10 Proposals for status of assessments in 2021-2022

For anglerfish there is currently no advice, however following the benchmark in 2018 we are now in a position to conduct an assessment and provide advice if requested to do so. Greenland halibut is assessed this year and will be benchmarked next year in time for the next advice in 2023, the two redfish stocks will get an update assessment in 2022.

Table 0.1. Age and length sampling by Norway of commercial catches in 2008-2019. Number of samples and average number of fish per sample. Also, number of age samples and aged individuals per 1000 t caught. For comparison, also the EU DCF requirements are shown.

| Stock Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of unique vessels (***) | No of age samples | No of aged individuals | Landing tonnes | Lengthsamples per 1000 t | Age samples per 1000 t | Aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NEA-cod + coastal cod |  |  |  |  |  |  |  |  |  |  |  |
| 2008 | 336 | 2526 | 51263 |  | 464 | 16026 | 196067 | 12.9 | 2.4 | 81.7 | 125 |
| 2009 | 272 | 2669 | 53350 |  | 417 | 14170 | 224816 | 11.9 | 1.9 | 63.0 | 125 |
| 2010 | 175 | 2542 | 39733 |  | 338 | 7671 | 263816 | 9.6 | 1.3 | 29.1 | 125 |
| 2011 | 273 | 2305 | 46227 |  | 434 | 10043 | 331535 | 7.0 | 1.3 | 30.3 | 125 |
| 2012 | 356 | 3132 | 57954 |  | 618 | 14710 | 363207 | 8.6 | 1.7 | 40.5 | 125 |
| 2013 | 266 | 2917 | 81583 | 84 | 1275 | 13940 | 464258 | 6.3 | 2.7 | 30.0 | 125 |
| 2014 | 556 | 2063 | 254627 | 306 | 1170 | 14815 | 465554 | 4.4 | 2.5 | 31.8 | 125 |
| 2015 | 498 | 1654 | 130514 | 89 | 1392 | 16500 | 413741 | 4.0 | 3.4 | 39.9 | 125 |
| 2016 | 482 | 2500 | 91590 | 401 | 1398 | 17027 | 403907 | 6.2 | 3.5 | 42.2 | 125 |
| 2017 | 413 | 2615 | 91366 | 348 | 1458 | 15471 | 408423 | 6.4 | 3.6 | 37.9 | 125 |
| 2018 | 873 | 3163 | 122788 | 346 | 1545 | 15535 | 369897 | 8.6 | 4.2 | 42.0 | 125 |
| 2019 | 842 | 3093 | 135375 | 337 | 1457 | 12519 | 322233 | 9.6 | 4.5 | 38.9 | 125 |
| 2020 | 389 | 1869 | 53587 | 259 | 653 | 12431 | 334773 | 5.6 | 2.0 | 37.1 | 125 |


| Stock | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of unique vessels (***) | No of age samples | No of aged individuals | Landing tonnes | Lengthsamples per 1000 t | Age samples per 1000 t | Aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NEA-haddock |  |  |  |  |  |  |  |  |  |  |  |  |
| 2008 |  | 285 | 2177 | 45038 |  | 281 | 9474 | 72553 | 30.0 | 3.9 | 130.6 | 125 |
| 2009 |  | 233 | 2255 | 41481 |  | 206 | 6010 | 104882 | 21.5 | 2.0 | 57.3 | 125 |
| 2010 |  | 154 | 2155 | 38045 |  | 232 | 5458 | 123517 | 17.4 | 1.9 | 44.2 | 125 |
| 2011 |  | 227 | 2028 | 39663 |  | 312 | 7225 | 158293 | 12.8 | 2.0 | 45.6 | 125 |
| 2012 |  | 258 | 2609 | 47995 |  | 386 | 8191 | 159008 | 16.4 | 2.4 | 51.5 | 125 |
| 2013 |  | 89 | 2142 | 62193 | 86 | 965 | 5718 | 99127 | 21.6 | 9.7 | 57.7 | 125 |
| 2014 |  | 425 | 1479 | 114560 | 126 | 825 | 7297 | 91333 | 16.2 | 9.0 | 79.9 | 125 |
| 2015 |  | 397 | 1380 | 76574 | 47 | 967 | 8394 | 95086 | 14.5 | 10.2 | 88.3 | 125 |
| 2016 |  | 237 | 1986 | 47032 | 208 | 391 | 8202 | 108718 | 18.3 | 3.6 | 75.4 | 125 |
| 2017 |  | 215 | 2108 | 57461 | 150 | 1084 | 8805 | 113206 | 18.6 | 9.6 | 77.8 | 125 |
| 2018 |  | 536 | 2435 | 85303 | 130 | 1088 | 8397 | 93839 | 25.9 | 11.6 | 89.5 | 125 |
| 2019 |  | 497 | 2269 | 83378 | 123 | 1003 | 7652 | 93860 | 24.2 | 10.7 | 81.5 | 125 |
| 2020 |  | 142 | 1055 | 32009 | 70 | 342 | 6589 | 88108 | 12.0 | 3.9 | 74.8 | 125 |
| NEA-saithe |  |  |  |  |  |  |  |  |  |  |  |  |
| 2008 |  | 252 | 1327 | 19419 |  | 160 | 5262 | 165998 | 8.0 | 1.0 | 31.7 | 125 |
| 2009 |  | 182 | 1337 | 13354 |  | 113 | 2981 | 144570 | 9.2 | 0.8 | 20.6 | 125 |


| Stock | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of unique vessels (***) | No of age samples | No of aged individuals | Landing tonnes | Lengthsamples per 1000 t | Age samples per 1000 t | Aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 |  | 138 | 1316 | 15998 |  | 151 | 3667 | 174544 | 7.5 | 0.9 | 21.0 | 125 |
| 2011 |  | 152 | 1210 | 17412 |  | 215 | 4843 | 143314 | 8.4 | 1.5 | 33.8 | 125 |
| 2012 |  | 209 | 1474 | 19191 |  | 204 | 4113 | 143104 | 10.3 | 1.4 | 28.7 | 125 |
| 2013 |  | 87 | 1570 | 69469 | 69 | 788 | 5507 | 111981 | 14.0 | 7.0 | 49.2 | 125 |
| 2014 |  | 192 | 697 | 54365 | 94 | 575 | 5390 | 115880 | 6.0 | 5.0 | 46.5 | 125 |
| 2015 |  | 206 | 839 | 69375 | 43 | 614 | 6484 | 114830 | 7.3 | 5.3 | 56.5 | 125 |
| 2016 |  | 226 | 1448 | 52376 | 151 | 737 | 7278 | 121710 | 11.9 | 6.1 | 59.8 | 125 |
| 2017 |  | 195 | 1416 | 42812 | 141 | 788 | 6348 | 128651 | 11.0 | 6.1 | 49.3 | 125 |
| 2018 |  | 388 | 1665 | 43938 | 148 | 823 | 6937 | 162454 | 10.2 | 5.1 | 42.7 | 125 |
| 2019 |  | 380 | 1629 | 43503 | 136 | 817 | 6552 | 144133 | 11.3 | 5.7 | 45.5 | 125 |
| 2020 |  |  |  |  |  |  |  |  |  |  |  |  |
| S. Norvegicus |  |  |  |  |  |  |  |  |  |  |  |  |
| 2008 |  | 104 | 1093 | 18305 |  | 98 | 2281 | 6180 | 176.9 | 15.9 | 369.1 | 125 |
| 2009 |  | 66 | 1131 | 17386 |  | 96 | 2302 | 6215 | 182.0 | 15.4 | 370.4 | 125 |
| 2010 |  | 49 | 1050 | 19339 |  | 97 | 2164 | 6515 | 161.2 | 14.9 | 332.2 | 125 |
| 2011 |  | 75 | 1064 | 16347 |  | 106 | 2310 | 4645 | 229.1 | 22.8 | 497.3 | 125 |
| 2012 |  | 78 | 993 | 12994 |  | 76 | 1297 | 4250 | 39.1 | 3.1 | 56.7 | 125 |


| Stock | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of unique vessels (***) | No of age samples | No of aged individuals | Landing tonnes | Lengthsamples per 1000 t | Age samples per 1000 t | Aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 |  | 35 | 654 | 627 | 17 | 74 | 1122 | 4244 | 154.1 | 17.4 | 264.4 | 125 |
| 2014 |  | 24 | 66 | 919 | 24 | 24 | 365 | 3053 | 21.6 | 7.9 | 119.6 | 125 |
| 2015 |  | 28 | 121 | 3497 | 22 | 405 | 1281 | 2492 | 48.6 | 162.5 | 514.0 | 125 |
| 2016 |  | 54 | 642 | 2376 | 36 | 517 | 1585 | 4606 | 139.4 | 112.2 | 344.1 | 125 |
| 2017 |  | 69 | 695 | 6177 | 44 | 571 | 1633 | 3354 | 207.2 | 170.2 | 486.9 | 125 |
| 2018 |  | 64 | 778 | 7354 | 32 | 629 | 1252 | 4287 | 181.5 | 146.7 | 292.0 | 125 |
| 2019 |  | 47 | 810 | 9828 | 17 | 206 | 958 | 5667 | 142.9 | 36.4 | 173.8 | 125 |
| 2020 |  | 47 | 761 | 9631 | 15 | 172 | 0 | 5902 | 128.9 | 29.1 | 0 |  |
| S. mentella ** |  |  |  |  |  |  |  |  |  |  |  |  |
| 2008 |  | 13 | 178 | 1038 |  | 0 | 0 | 2214 | 80.4 | 0.0 | 0.0 | 125 |
| 2009 |  | 12 | 319 | 1841 |  | 2 | 40 | 2567 | 124.3 | 0.8 | 15.6 | 125 |
| 2010 |  | 11 | 284 | 3664 |  | 11 | 320 | 2245 | 126.5 | 4.9 | 142.5 | 125 |
| 2011 |  | 9 | 255 | 3210 |  | 11 | 298 | 2690 | 94.8 | 4.1 | 110.8 | 125 |
| 2012 |  | 13 | 166 | 2187 |  | 13 | 241 | 2098 | 79.1 | 6.2 | 114.9 | 125 |
| 2013 |  | 14 | 184 | 383 | 5 | 13 | 390 | 1361 | 135.2 | 9.6 | 286.6 | 125 |
| 2014 |  | 11 | 36 | 4664 | 12 | 49 | 5 | 13402 | 2.7 | 3.7 | 0.4 | 125 |
| 2015 |  | 21 | 166 | 23794 | 10 | 21 | 184 | 19700 | 8.4 | 1.1 | 9.3 | 125 |


| Stock | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of unique vessels (***) | No of age samples | No of aged individuals | Landing tonnes | Lengthsamples per 1000 t | Age samples per 1000 t | Aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2016 |  | 23 | 285 | 5470 | 9 | 22 | 169 | 19083 | 15.0 | 1.2 | 8.9 | 125 |
| 2017 |  | 30 | 256 | 3196 | 24 | 211 | 24 | 17280 | 14.8 | 12.2 | 1.4 | 125 |
| 2018 |  | 39 | 409 | 8782 | 20 | 364 | 25 | 19287 | 21.2 | 18.9 | 1.3 | 125 |
| 2019 |  | 21 | 345 | 5884 | 5 | 24 | 0 | 24141 | 14.3 | 1.0 | 0 | 125 |
| 2020 |  | 29 | 475 | 10796 | 8 | 65 | 0 | 33997 | 14.0 | 1.9 | 0 |  |
| Greenland halibut |  |  |  |  |  |  |  |  |  |  |  |  |
| 2008 |  | 53 | 580 | 9074 |  | 0 | 0 | 7394 | 78.4 | 0.0 | 0.0 | 125 |
| 2009 |  | 36 | 922 | 12853 |  | 0 | 0 | 8446 | 109.2 | 0.0 | 0.0 | 125 |
| 2010 |  | 26 | 519 | 8395 |  | 0 | 0 | 7685 | 67.5 | 0.0 | 0.0 | 125 |
| 2011 |  | 29 | 463 | 8204 |  | 0 | 0 | 8273 | 56.0 | 0.0 | 0.0 | 125 |
| 2012 |  | 34 | 610 | 7716 |  | 0 | 0 | 10074 | 60.6 | 0.0 | 0.0 | 125 |
| 2013 |  | 26 | 597 | 4930 |  | 0 | 0 | 12613 | 47.3 | 0.0 | 0.0 | 125 |
| 2014 |  | 33 | 236 | 2559 | 10 | 0 | 0 | 10876 | 21.7 | 0.0 | 0.0 | 125 |
| 2015 |  | 31 | 273 | 8769 | 11 | 0 | 0 | 10704 | 25.5 | 0.0 | 0.0 | 125 |
| 2016 |  | 83 | 384 | 2304 | 60 | 0 | 0 | 12573 | 30.5 | 0.0 | 0.0 | 125 |
| 2017 |  | 67 | 556 | 10022 | 43 | 317 | 0 | 13194 | 42.1 | 24.0 | 0.0 | 125 |
| 2018 |  | 96 | 582 | 11720 | 63 | 342 | 0 | 14876 | 39.1 | 23.0 | 0.0 | 125 |



| Stock |  | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of unique vessels (***) | No of age samples | No of aged individuals | Landing tonnes | Lengthsamples per 1000 t | Age samples per 1000 t | Aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2013 |  | 12 | 213 | 12215 | 47 | 47 | 773 | 156340 | 1.4 | 0.3 | 4.9 | 125 |
|  | 2014 |  | 27 | 113 | 9054 | 1 | 8 | 1086 | 40021 | 2.8 | 0.2 | 27.1 | 125 |
|  | 2015 |  | 65 | 722 | 83776 | 65 | 722 | 5393 | 71435 | 10.1 | 10.1 | 75.5 | 125 |
|  | 2016 |  | 7 | 27 | 1863 | 7 | 27 | 649 |  |  |  |  | 125 |
|  | 2017 |  | 21 | 43 | 2294 | 14 | 25 | 305 |  |  |  |  | 125 |
|  | 2018 |  | 68 | 207 | 15022 | 33 | 76 | 823 | 123461 | 1.7 | 0.6 | 6.7 | 125 |
|  | 2019 |  | 4 | 26 | 260 | 2 | 13 | 0 | 0 |  |  |  | 125 |
|  | 2020 |  |  |  |  |  |  |  | 0 |  |  |  |  |

*) In addition to age the otoliths are also used for identification of coastal cod.
**) Age samples from surveys with commercial trawl come in addition.
***) From 2013 No of unique vessels are split by length and age samples.
****) Only from large meshed gillnets as basis for assessment

Table 0.2. Age and length sampling by Russia of commercial catches and age sampling of surveys in 2008-2020. Also length-measured individuals and aged individuals per 1000 t caught. For comparison also the EU DCF requirements are shown.

| Stock | Year | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NEA-cod* |  |  |  |  |  |  |  |  |  |  |
|  | 2008 | 380592 | 3097 | 7565 | 10662 | 190225 | 2001 | 16.3 | 56.0 | 125 |
|  | 2009 | 178038 | 1075 | 7426 | 8501 | 229291 | 776 | 4.7 | 37.1 | 125 |
|  | 2010 | 126502 | 1828 | 7670 | 9498 | 267547 | 473 | 6.8 | 35.5 | 125 |
|  | 2011 | 122623 | 2376 | 5783 | 8159 | 310326 | 395 | 7.7 | 26.3 | 125 |
|  | 2012*** | 140028 | 2040 | 7742 | 9782 | 329943 | 424 | 6.2 | 29.6 | 125 |
|  | 2013 | 131455 | 1999 | 8103 | 10102 | 432314 | 304 | 4.6 | 23.4 | 125 |
|  | 2014 | 114538 | 3110 | 7154 | 10264 | 433479 | 264 | 7.2 | 23.7 | 125 |
|  | 2015*** | 105721 | 2486 | 6095 | 8581 | 381188 | 277 | 6.5 | 22.5 | 125 |
|  | 2016 | 158006 | 5090 | 2704 | 7794 | 394107 | 401 | 12.9 | 19.8 | 125 |
|  | 2017 | 161192 | 4918 | 6121 | 11039 | 396195 | 407 | 12.4 | 27.9 | 125 |
|  | 2018 | 157048 | 3129 | 1982 | 5111 | 340364 | 461 | 9.2 | 15.0 | 125 |
|  | 2019*** | 83018 | 2093 | 3737 | 5830 | 316813 | 262 | 6.6 | 18.4 | 125 |
|  | 2020*** | 112950 | 3105 | 3858 | 6963 | 312683 | 361 | 9.9 | 22.3 | 125 |


| Stock | Year | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NEA-haddock |  |  |  |  |  |  |  |  |  |  |
|  | 2008 | 216959 | 2498 | 5677 | 8175 | 68792 | 3154 | 36.3 | 118.8 | 125 |
|  | 2009 | 43254 | 489 | 5421 | 5910 | 85514 | 506 | 5.7 | 69.1 | 125 |
|  | 2010 | 85445 | 834 | 5060 | 5894 | 111372 | 767 | 7.5 | 52.9 | 125 |
|  | 2011 | 61990 | 1570 | 3584 | 5154 | 139912 | 443 | 11.2 | 36.8 | 125 |
|  | 2012*** | 87880 | 1545 | 5034 | 6579 | 143886 | 611 | 10.7 | 45.7 | 125 |
|  | 2013 | 42927 | 1205 | 4021 | 5226 | 85668 | 501 | 14.1 | 61.0 | 125 |
|  | 2014 | 45447 | 899 | 3796 | 4695 | 78725 | 577 | 11.4 | 59.6 | 125 |
|  | 2015*** | 31009 | 914 | 2972 | 3886 | 91864 | 338 | 9.9 | 42.3 | 125 |
|  | 2016 | 55598 | 2691 | 1884 | 4575 | 115710 | 480 | 23.3 | 39.5 | 125 |
|  | 2017 | 74297 | 3554 | 2614 | 6168 | 106714 | 696 | 33.3 | 57.8 | 125 |
|  | 2018 | 61360 | 2274 | 1136 | 3410 | 90486 | 678 | 25.1 | 37.7 | 125 |
|  | 2019*** | 44728 | 1923 | 1778 | 3701 | 76125 | 588 | 25.3 | 48.6 | 125 |
|  | 2020*** | 69301 | 2356 | 1575 | 3931 | 89030 | 778 | 26.5 | 44.2 | 125 |
| NEA-saithe |  |  |  |  |  |  |  |  |  |  |
|  | 2008 | 8865 | 479 | 175 | 654 | 11577 | 766 | 41.4 | 56.5 | 125 |
|  | 2009 | 5279 | 7 | 68 | 75 | 11899 | 444 | 0.6 | 6.3 | 125 |


| Stock | Year | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2010 | 422 | 112 | 249 | 361 | 14664 | 29 | 7.6 | 24.6 | 125 |
|  | 2011 | 88 | 9 | 27 | 36 | 10007 | 9 | 0.9 | 3.6 | 125 |
|  | 2012 | 4062 | 145 | 104 | 249 | 13607 | 299 | 10.7 | 18.3 | 125 |
|  | 2013 | 17124 | 402 | 76 | 478 | 14796 | 1157 | 27.2 | 32.3 | 125 |
|  | 2014 | 2302 | 278 | 26 | 304 | 12396 | 186 | 22.4 | 24.5 | 125 |
|  | 2015 | 1505 | 104 | 131 | 235 | 13181 | 114 | 7.9 | 17.8 | 125 |
|  | 2016 | 4233 | 272 | 16 | 288 | 15203 | 278 | 17.9 | 18.9 | 125 |
|  | 2017 | 1762 | 228 | 110 | 338 | 14551 | 121 | 15.7 | 23.2 | 125 |
|  | 2018 | 4758 | 454 | 9 | 463 | 14171 | 336 | 32.0 | 32.7 | 125 |
|  | 2019 | 4528 | 94 | 0 | 94 | 13990 | 324 | 6.7 | 6.7 | 125 |
|  | 2020 | 83 | 17 | 96 | 113 | 14082 | 6 | 1.2 | 8.0 | 125 |
| S. marinus (norvegicus) |  |  |  |  |  |  |  |  |  |  |
|  | 2008 | 1196 | 45 | 17 | 62 | 749 | 1597 | 60.1 | 82.8 | 125 |
|  | 2009 | 241 | 2 | 27 | 29 | 698 | 345 | 2.9 | 41.5 | 125 |
|  | 2010 | 486 | 25 | 199 | 224 | 806 | 603 | 31.0 | 277.9 | 125 |
|  | 2011 | 885 | 77 | 62 | 139 | 919 | 963 | 83.8 | 151.3 | 125 |
|  | 2012 | 1564 | 58 | 54 | 112 | 681 | 2297 | 85.2 | 164.5 | 125 |


| Stock | Year | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2013 | 770 | 22 | 142 | 164 | 797 | 966 | 27.6 | 205.8 | 125 |
|  | 2014 | 589 | 25 | 33 | 58 | 806 | 731 | 31.0 | 72.0 | 125 |
|  | 2015 | 120 |  | 20 | 20 | 664 | 181 | 0.0 | 30.1 | 125 |
|  | 2016 | 1113 | 147 | 34 | 181 | 776 | 1434 | 189.4 | 233.2 | 125 |
|  | 2017 | 1426 | 86 | 101 | 187 | 1131 | 1261 | 76.0 | 165.3 | 125 |
|  | 2018 | 1877 | 30 | 21 | 51 | 1546 | 1214 | 19.4 | 33.0 | 125 |
|  | 2019 | 1015 | 150 | 0 | 150 | 1804 | 563 | 83.2 | 83.2 | 125 |
|  | 2020 | 2107 | 47 | 31 | 78 | 2492 | 846 | 18.9 | 31.3 | 125 |
| S. mentella |  |  |  |  |  |  |  |  |  |  |
|  | 2008 | 21446 | 471 | 3379 | 3850 | 7117 | 3013 | 66.2 | 541.0 | 125 |
|  | 2009 | 29435 | 761 | 1447 | 2208 | 3843 | 7659 | 198.0 | 574.6 | 125 |
|  | 2010 | 2776 | 100 | 2295 | 2395 | 6414 | 433 | 15.6 | 373.4 | 125 |
|  | 2011 | 917 | 7 | 640 | 647 | 5037 | 182 | 1.4 | 128.4 | 125 |
|  | 2012 | 7802 | 422 | 1146 | 1568 | 4101 | 1902 | 102.9 | 382.3 | 125 |
|  | 2013 | 19092 | 1253 | 1625 | 2878 | 3677 | 5192 | 340.8 | 782.7 | 125 |
|  | 2014 | 817 | 25 | 1297 | 1322 | 1704 | 479 | 14.7 | 775.8 | 125 |
|  | 2015 | 771 |  | 1818 | 1818 | 1142 | 675 | 0.0 | 1591.9 | 125 |


| Stock | Year | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2016 | 27765 | 1076 | 85 | 1161 | 8419 | 3298 | 127.8 | 137.9 | 125 |
|  | 2017 | 958 | 99 | 1000 | 1099 | 4952 | 193 | 20.0 | 221.9 | 125 |
|  | 2018 | 21004 | 845 | 39 | 884 | 10497 | 2001 | 80.5 | 84.2 | 125 |
|  | 2019 | 6881 | 400 | 469 | 869 | 13164 | 523 | 30.4 | 66.0 | 125 |
|  | 2020 | 8718 | 340 | 612 | 952 | 13997 | 623 | 24.3 | 68.0 | 125 |
| Greenland halibut |  |  |  |  |  |  |  |  |  |  |
|  | 2008 | 106411 | 1519 | 3366 | 4885 | 5294 | 20100 | 286.9 | 922.7 | 125 |
|  | 2009 | 77554 | 819 | 2282 | 3101 | 3335 | 23255 | 245.6 | 929.8 | 125 |
|  | 2010 | 32090 | 416 | 2784 | 3200 | 6888 | 4659 | 60.4 | 464.6 | 125 |
|  | 2011 | 9892 | 115 | 1541 | 1656 | 7053 | 1403 | 16.3 | 234.8 | 125 |
|  | 2012 | 82943 | 2140 | 2506 | 4646 | 10041 | 8260 | 213.1 | 462.7 | 125 |
|  | 2013 | 12608 | 555 | 2756 | 3311 | 10310 | 1223 | 53.8 | 321.1 | 125 |
|  | 2014 | 24346 | 633 | 2106 | 2739 | 10061 | 2420 | 62.9 | 272.2 | 125 |
|  | 2015 | 22116 | 575 | 2489 | 3064 | 12953 | 1707 | 44.4 | 236.5 | 125 |
|  | 2016 | 11818 | 574 | 221 | 795 | 10576 | 1117 | 54.3 | 75.2 | 125 |
|  | 2017 | 24061 | 1205 | 1579 | 2784 | 10713 | 2246 | 112.5 | 259.9 | 125 |
|  | 2018 | 21893 | 954 | 308 | 1262 | 12072 | 1814 | 79.0 | 104.5 | 125 |


| Stock | Year | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2019 | 861 | 125 | 1552 | 1677 | 12198 | 71 | 10.2 | 137.5 | 125 |
|  | 2020 | 1387 | 165 | 1853 | 2018 | 12266 | 113 | 13.5 | 164.5 | 125 |
| Capelin |  |  |  |  |  |  |  |  |  |  |
|  | 2008** | 82625 | 1644 | 2341 | 3985 | 5000 | 16525 | 328.8 | 797.0 | 125 |
|  | 2009 | 94541 | 900 | 2511 | 3411 | 73000 | 1295 | 12.3 | 46.7 | 125 |
|  | 2010 | 67265 | 1072 | 4043 | 5115 | 77000 | 874 | 13.9 | 66.4 | 125 |
|  | 2011 | 63784 | 1273 | 2271 | 3544 | 86531 | 737 | 14.7 | 41.0 | 125 |
|  | 2012 | 20023 | 1130 | 1783 | 2913 | 68182 | 294 | 16.6 | 42.7 | 125 |
|  | 2013 | 54708 | 1565 | 1007 | 2572 | 60413 | 906 | 25.9 | 42.6 | 125 |
|  | 2014 | 13206 | 850 | 1249 | 2099 | 25720 | 513 | 33.0 | 81.6 | 125 |
|  | 2015 | 27200 | 1000 | 1004 | 2004 | 115 |  |  |  | 125 |
|  | 2016 | 8669 | 3954 | 1047 | 5001 | 0 |  |  |  | 125 |
|  | 2017 |  |  | 4115 | 4115 | 6 |  |  |  | 125 |
|  | 2018 | 14491 | 250 | 1050 | 1300 | 65934 | 220 | 3.8 | 19.7 | 125 |
|  | 2019 |  |  | 1498 | 1498 | 34 |  |  |  | 125 |
|  | 2020 |  |  | 1245 | 1245 | 19 |  |  |  | 125 |

## *) In addition also used long-term mean age-length keys.

${ }^{* *}$ ) Age samples from surveys with commercial trawl come in addition.
${ }^{* * *}$ ) In addition used samples from Russian vessels, sampled by the Norwegian Coast Guard in 2012, 2015, 2019 and 2020.
Table 0.3. Age and length sampling by Spain ${ }^{5}$ of commercial catches and length sampling of surveys in 2008-2020. Also length-measured individuals and aged individuals per 1000 t caught. For comparison also the EU DCF requirements are shown.

| Stock | Year | No of vessels | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Lengthmeasured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NEA-cod |  |  |  |  |  |  |  |  |  |  |  |
|  | 2008 | 2 | 10108 | 610 |  | 610 | 9658 | 1047 | 63 | 63 | 125 |
|  | 2009 | 2 | 8733 | 1834 |  | 1834 | 12013 | 727 | 153 | 153 | 125 |
|  | 2010 | 2 | 28297 | 1735 |  | 1735 | 12657 | 2236 | 137 | 137 | 125 |
|  | 2011 | 2 | 11633 | 964 |  | 964 | 13291 | 875 | 73 | 73 | 125 |
|  | 2012 | 2 | 9849 | 998 |  | 998 | 12814 | 769 | 78 | 78 | 125 |
|  | 2013 | 2 | 30295 | 2381 |  | 2381 | 15041 | 2014 | 158 | 158 | 125 |
|  | 2014 | 2 | 27828 | 2306 |  | 2306 | 16479 | 1689 | 140 | 140 | 125 |

${ }^{5}$ The onshore and the at-sea sampling programs coordinated by the IEO were suspended in most of 2020, due notably to administrative problems and to a lesser extend to COVID-19. This affected all stocks. Both sampling programmes are hired by IEO through call for tenders addressed to specialized companies. The public tender launched in 2019 (to start in 2020 ) was declared void, having to be re-launched again. This second launch was delayed as a result of the paralysis of public activity during the state of alarm due to the COVID-19 pandemic, and could only be reopened in June-July. Given that the process of awarding the contract by public tender takes three-four months under normal conditions, it was finally resolved in December 2020 and signed in January 2021. Since then all activities have been resumed. The sampling to obtain the biological variables of the population (mainly reproduction and growth) is normally carried out in the IEO laboratories. This activity has also faced problems in 2020. On the one hand the administrative and financial difficulties of the IEO prevented the purchasing of samples in the market and on the other hand the three months closure of the labs ( 15 March to 21 June) due to COVID-19 did not allow for a normal activity.

| Stock | Year | No of vessels | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Lengthmeasured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2015 | 2 | 18568 | 1445 |  | 1445 | 18772 | 989 | 77 | 77 | 125 |
|  | 2016 | 2 | 27937 | 1246 |  | 1246 | 14640 | 1908 | 85 | 85 | 125 |
|  | 2017 | 2 | 33984 | 2018 |  | 2018 | 14414 | 2358 | 140 | 140 | 125 |
|  | 2018 | 1 | 25933 | 911 |  | 911 | 14415 | 1799 | 63 | 63 | 125 |
|  | 2019 | 1 | 5781 | 1117 |  | 1117 | 13939 | 415 | 80 | 80 | 125 |
|  | 2020 |  |  |  |  |  | 11403 |  |  |  | 125 |
| NEA-haddock* |  |  |  |  |  |  |  |  |  |  |  |
|  | 2009 | 1 | 2561 |  |  |  | 240 |  |  |  |  |
|  | 2010 | 1 | 3243 |  |  |  | 379 |  |  |  |  |
|  | 2011 | 1 | 1796 |  |  |  | 408 |  |  |  |  |
|  | 2012 | 2 | 3198 |  |  |  | 647 |  |  |  |  |
|  | 2013 | 1 | 660 |  |  |  | 413 |  |  |  |  |
|  | 2014 | 1 | 2460 |  |  |  | 370 |  |  |  |  |
|  | 2015 | 1 | 702 |  |  |  | 418 |  |  |  |  |
|  | 2016 | 2 | 701 |  |  |  | 357 |  |  |  |  |
|  | 2017 | 1 | 710 |  |  |  | 156 |  |  |  |  |
|  | 2018 | 1 | 154 |  |  |  | 169 |  |  |  |  |


| Stock | Year | No of vessels | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Lengthmeasured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2019 |  |  |  |  |  | 280 |  |  |  |  |
|  | 2020 |  |  |  |  |  | 45 |  |  |  |  |
| NEA-saithe |  |  |  |  |  |  |  |  |  |  |  |
|  | 2009 | 1 | 123 |  |  |  | 2 |  |  |  |  |
|  | 2013 | 1 |  |  |  |  | 5 |  |  |  |  |
|  | 2014 | 1 |  |  |  |  | 13 |  |  |  |  |
|  | 2015 | 1 |  |  |  |  | 33 |  |  |  |  |
|  | 2016 |  |  |  |  |  | 25 |  |  |  |  |
|  | 2017 |  |  |  |  |  | 85 |  |  |  |  |
|  | 2018 |  |  |  |  |  | 60 |  |  |  |  |
|  | 2019 |  |  |  |  |  | 199 |  |  |  |  |
|  | 2020 |  |  |  |  |  | 0 |  |  |  |  |
| S. mentella |  |  |  |  |  |  |  |  |  |  |  |
|  | 2008** | 1 | 2275 | 28 |  |  | 987 | 2304 | 28 | 0 | 125 |
|  | 2011* | 1 | 86 |  |  |  | 1237 |  |  |  |  |
|  | 2012** | 2 | 11579 | 476 |  |  | 1612 | 7183 | 295 | 0 | 125 |
|  | 2014** | 1 | 6177 |  |  |  | 1146 | 5390 |  |  |  |


| Stock | Year | No of vessels | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Lengthmeasured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2015** | 1 | 6117 |  |  |  | 2371 | 2580 |  |  |  |
|  | 2016** | 1 | 11806 |  |  |  | 3133 | 3768 |  |  |  |
|  | 2017** | 1 | 5015 |  |  |  | 2624 | 1911 |  |  |  |
|  | 2018** | 1 | 11638 |  |  |  | 2399 | 4851 |  |  |  |
|  | 2019** | 1 | 11952 |  |  |  | 1908 | 6265 |  |  |  |
|  | 2020** |  |  |  |  |  | 737 |  |  |  |  |
|  | 2018 |  | 21004 | 845 | 39 | 884 | 10497 | 2001 | 80.5 | 84.2 | 125 |
|  | 2019 |  | 6881 | 400 | 469 | 869 | 13164 | 523 | 30.4 | 66.0 | 125 |
|  | 2020 |  | 8718 | 340 | 612 | 952 | 13997 | 623 | 24.3 | 68.0 | 125 |
| Greenland halibut |  |  |  |  |  |  |  |  |  |  |  |
|  | 2008 | 2 | 11662 |  |  |  | 112 | 103826 |  |  |  |
|  | 2009 | 1 | 3383 |  |  |  | 210 | 16143 |  |  |  |
|  | 2010 | 1 | 5783 |  |  |  | 182 | 31800 |  |  |  |
|  | 2011 | 1 | 8541 |  |  |  | 169 | 50600 |  |  |  |
|  | 2012 | 1 | 4809 |  |  |  | 186 | 25907 |  |  |  |
|  | 2013 | 1 | 11988 |  |  |  | 190 | 63019 |  |  |  |
|  | 2014 | 1 | 12002 |  |  |  | 206 | 58262 |  |  |  |


| Stock | Year | No of vessels | No of lengthmeasured individuals (commercial catches) | No of aged individuals (commercial catches) | No of aged individuals (surveys) | Total no of aged individuals | Landings tonnes | Lengthmeasured individuals per 1000 t | Aged individuals per 1000 t (commercial catches) | Total aged individuals per 1000 t | EU DCF for comparison per 1000 t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2015 | 1 | 17552 |  |  |  | 111 | 158126 |  |  |  |
|  | 2016 | 1 | 15031 |  |  |  | 218 | 68837 |  |  |  |
|  | 2017 |  |  |  |  |  |  |  |  |  |  |
|  | 2018 |  |  |  |  |  |  |  |  |  |  |
|  | 2019 | 1 |  |  |  |  | 49 |  |  |  |  |
|  | 2020 |  |  |  |  |  | 96 |  |  |  |  |

*) Sampling from bycatch in cod fishery.
${ }^{* *}$ ) Sampling from pelagic redfish fishery.
***) Sampling from Spanish Greenland halibut survey.
Table 0.4. Age and length sampling by Germany of commercial catches and age sampling of surveys in 2008-2020. Also length-measured individuals and aged individuals per 1000 t caught. For comparison also the EU DCF requirements are shown.

| Stock | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Age-sampled individuals per 1000 t | EU DCF for comparison |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NEA cod |  |  |  |  |  |  |  |  |  |
|  | 2008 | 5 | 3 | 65800 | 2033 | 4955 | 13280 | 410 | 125 |
|  | 2009 | 5 | 2 | 43107 | 2419 | 8585 | 5021 | 282 | 125 |
|  | 2010 | 5 | 2 | 51923 | 3075 | 8442 | 6151 | 364 | 125 |
|  | 2011 | 4 | 1 | 7318 | 769 | 4621 | 1584 | 166 | 125 |


| Stock | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Age-sampled individuals per 1000 t | EU DCF for comparison |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2012 | 4 | 2 | 16315 | 1924 | 8500 | 1919 | 226 | 125 |
|  | 2013 | 4 | 2 | 29281 | 2043 | 7939 | 3688 | 257 | 125 |
|  | 2014 | 4 | 1 | 23137 | 1291 | 6225 | 3717 | 207 | 125 |
|  | 2015 | 4 | 1 | 39335 | 886 | 6427 | 6120 | 138 | 125 |
|  | 2016 | 3 | 1 | 22109 | 1060 | 6636 | 3332 | 160 | 125 |
|  | 2017 | 4 | 1 | 19942 | 785 | 5969 | 3341 | 132 | 125 |
|  | 2018 | 4 | 2 | 43371 | 2283 | 7774 | 5579 | 294 | 125 |
|  | 2019 | 2 | 1 | 17954 | 1444 | 8535 | 2104 | 169 | 125 |
|  | 2020 | 2 | 1 | 21716 | 1021 | 9786 | 2219 | 104 | 125 |
| NEA haddock |  |  |  |  |  |  |  |  |  |
|  | 2008 | 5 | 3 | 5548 | 442 | 535 | 10370 | 826 | 125 |
|  | 2009 | 5 | 2 | 23348 | 958 | 1957 | 11931 | 490 | 125 |
|  | 2010 | 5 | 2 | 54704 | 1039 | 3539 | 15457 | 294 | 125 |
|  | 2011 | 4 | 1 | 1925 | 160 | 1724 | 1117 | 93 | 125 |
|  | 2012 | 4 | 2 | 4088 | 502 | 1111 | 3680 | 452 | 125 |
|  | 2013 | 4 | 1 | 7040 | 478 | 501 | 14052 | 954 | 125 |
|  | 2014 | 4 | 1 | 3113 | 261 | 340 | 9156 | 768 | 125 |
|  | 2015 | 4 | 1 | 616 | 325 | 124 | 4968 | 2621 | 125 |


| Stock | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Age-sampled individuals per 1000 t | EU DCF for comparison |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2016 | 3 | 1 | 4807 | 544 | 170 | 28276 | 3200 | 125 |
|  | 2017 | 4 | 1 | 3464 | 527 | 155 | 22348 | 3400 | 125 |
|  | 2018 | 4 | 2 | 4345 | 497 | 391 | 11113 | 1271 | 125 |
|  | 2019 | 2 | 1 | 5031 | 393 | 208 | 24188 | 1889 | 125 |
|  | 2020 | 2 | 1 | 2979 | 356 | 283 | 10527 | 1258 | 125 |
| NEA saithe |  |  |  |  |  |  |  |  |  |
|  | 2008 | 5 | 3 | 10210 | 605 | 2263 | 4512 | 267 | 125 |
|  | 2009 | 6 | 2 | 8667 | 1091 | 2021 | 4288 | 540 | 125 |
|  | 2010 | 7 | 2 | 11424 | 1001 | 1592 | 7176 | 629 | 125 |
|  | 2011 | 4 | 1 | 4863 | 530 | 1371 | 3547 | 387 | 125 |
|  | 2012 | 7 | 2 | 14193 | 1202 | 1371 | 10356 | 877 | 125 |
|  | 2013 | 4 | 1 | 1190 | 414 | 1212 | 982 | 342 | 125 |
|  | 2014 | 3 | 1 | 25 | 0 | 259 | 97 | 0 | 125 |
|  | 2015 | 4 | 0 | 0 | 0 | 424 | 0 | 0 | 125 |
|  | 2016 | 3 | 1 | 13981 | 909 | 951 | 14701 | 956 | 125 |
|  | 2017 | 4 | 1 | 15734 | 603 | 1154 | 13634 | 523 | 125 |
|  | 2018 | 4 | 1 | 19718 | 473 | 1651 | 11943 | 286 | 125 |
|  | 2019 | 2 | 1 | 9465 | 1521 | 1387 | 6824 | 1097 | 125 |


| Stock | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Age-sampled individuals per 1000 t | EU DCF for comparison |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2020 | 2 | 1 | 11900 | 745 | 1573 | 7565 | 474 | 125 |
| Redfish |  |  |  |  |  |  |  |  |  |
|  | 2008 | 5 | 3 | 330 | 0 | 46 | 7174 | 0 | 125 |
|  | 2009 | 8 | 2 | 0 | 0 | 100 | 0 | 0 | 125 |
|  | 2010 | 6 | 2 | 0 | 0 | 52 | 0 | 0 | 125 |
|  | 2011 | 6 | 1 | 7937 | 0 | 844 | 9404 | 0 | 125 |
|  | 2012 | 9 | 2 | 4036 | 0 | 584 | 6911 | 0 | 125 |
|  | 2013 | 4 | 1 | 1315 | 0 | 81 | 16235 | 0 | 125 |
|  | 2014 | 4 | 1 | 571 | 0 | 451 | 1266 | 0 | 125 |
|  | 2015 | 4 | 1 | 76 | 0 | 266 | 286 | 0 | 125 |
|  | 2016 | 3 | 1 | 6095 | 0 | 497 | 12264 | 0 | 125 |
|  | 2017 | 4 | 1 | 977 | 0 | 770 | 1269 | 0 | 125 |
|  | 2018 | 4 | 2 | 3438 | 0 | 2508 | 1371 | 0 | 125 |
|  | 2019 | 2 | 1 | 8958 | 0 | 1741 | 5145 | 0 | 125 |
|  | 2020 | 3 | 1 | 4248 | 0 | 1998 | 2126 | 0 | 125 |
| Greenland halibut |  |  |  |  |  |  |  |  |  |
|  | 2008 | 5 | 2 | 0 | 0 | 5 | 0 | 0 | 125 |
|  | 2009 | 3 | 2 | 0 | 0 | 19 | 0 | 0 | 125 |


| Stock | Year | No of unique vessels | No of length samples | No of lengthmeasured individuals | No of aged individuals | Landings tonnes | Length-measured individuals per 1000 t | Age-sampled individuals per 1000 t | EU DCF for comparison |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2010 | 2 | 2 | 0 | 0 | 14 | 0 | 0 | 125 |
|  | 2011 | 3 | 1 | 0 | 0 | 81 | 0 | 0 | 125 |
|  | 2012 | 4 | 2 | 0 | 0 | 40 | 0 | 0 | 125 |
|  | 2013 | 3 | 1 | 1298 | 0 | 49 | 26544 | 0 | 125 |
|  | 2014 | 4 | 1 | 1076 | 0 | 34 | 31647 | 0 | 125 |
|  | 2015 | 4 | 1 | 658 | 0 | 32 | 20563 | 0 | 125 |
|  | 2016 | 3 | 1 | 365 | 0 | 9 | 40556 | 0 | 125 |
|  | 2017 | 4 | 1 | 0 | 0 | 21 | 0 | 0 | 125 |
|  | 2018 | 4 | 1 | 257 | 0 | 52 | 4942 | 0 | 125 |
|  | 2019 | 2 | 1 | 511 | 0 | 45 | 11356 | 0 | 125 |
|  | 2020 | 2 | 1 | 305 | 0 | 74 | 4122 | 0 | 125 |



Figure 0.4. Proportion of swept-area biomass in the Joint winter survey found in the new northern area ( N ), by year and species. For 2020 the indices for redfish and Greenland halibut have not yet been calculated.


Figure 0.5. Barents Sea Ecosystem survey (BESS) 2019, realized vessel tracks with pelagic and bottom trawl sampling stations.

### 1.11 Ecosystem information

The aim of this section is to collect important ecosystem information influencing the assessment of fish stocks handled by AFWG. In general, such information is collected and updated by the ICES WGIBAR group, here we only provide information that is directly relevant to the assessment of the AFWG stocks as well as information that is updated after the 2021 WGIBAR report was finished.

### 1.11.1 0-group abundance

The recruitment of the Barents Sea fish species measured as 0-group has shown a large year-toyear variability. The most important reasons for this variability are variations in the spawning biomass, hydrographic conditions, changes in circulation pattern, food availability and predator abundance, and distribution. In 2018 and 2020, 0-group indices were strongly affected by incomplete area coverage in the Barents Sea, but attempts have been made to correct for this (Prozorkevitch and Van der Meeren, 2021).

### 1.11.2 Consumption, natural mortality, and growth

Cod is the most important predator among fish species in the Barents Sea. It feeds on a wide range of prey, including larger zooplankton, most available fish species, including own juveniles and shrimp (Tables 1.1-1.2). Cod prefer capelin as a prey, and fluctuations of the capelin stock may have a strong effect on growth, maturation, and fecundity of cod, as well as on cod recruitment because of cannibalism. The role of euphausiids for cod feeding increases in the years when capelin stock is at a low level (Ponomarenko and Yaragina, 1990). Also, according to Ponomarenko (1973; 1984), interannual changes of euphausiid abundance are important for the survival rate of cod during the first year of life.

The food consumption by NEA cod in 1984-2020, based on data from the Joint Russian-Norwegian stomach content database, is presented in Tables 1.1-1.2. The Norwegian (IMR) calculations are based on the method described by Bogstad and Mehl (1997). The main prey items in 2020 were capelin (about 2 million tonnes), followed by krill, amphipods and polar cod of which the consumption was about 500 thousand tonnes of each category. Shrimp, long rough dab, cod, herring, haddock and snow crab were all less important (between 90 and 180 thousand tonnes for each species). The increase in consumption of polar cod from 2019 to 2020 is consistent with the markedly increased abundance of this species. The decrease in consumption of young cod and haddock is consistent with the low abundance of age 0 and 1 of these species in 2020 . The consumption calculations made by The consumption per cod by cod age-groups are shown in Tables 1.3-1.4 (IMR and PINRO estimates), while the proportion of cod and haddock in the diet by cod age-group (IMR estimates) is given in Tables 1.5 and Table 1.6. IMR show that the total consumption by age 1 and older cod in 2020 was 5.2 million tonnes. For technical reasons, PINRO estimates (Table 1.2 and 1.4) were not updated this year.

Growth of cod as calculated from weight at age in the winter survey has shown a declining trend in the last years, but this decline has now been halted, and for age 6 and older the trend seems to have been reversed. However, weight at age 3 and 4 was the lowest in this survey series from 1994-present, and for ages 3 and 6-8 it was among the three lowest values in the same period. The trends in consumption per cod by age-group in recent years seem consistent with the trends in size at age.

Weight at age in the Lofoten survey was stable from 2019 to 2021, while weight-at-age in catch of cod decreased slightly for ages 3-9 from 2018-2020.

How is the outlook for cod food abundance in 2021? Total abundance of pelagic fish stocks is at an average level, for the most important pelagic species, capelin, the abundance of immature capelin in 2020 was intermediate due to a very strong 2019 year class (the strongest since 2000). Polar cod abundance in 2020 was close to the highest value observed in the 35 -year time-series due to the 2019 year class being the strongest ever observed. However, the herring abundance in the Barents Sea is now low as the strong 2016 year class has left the Barents Sea and the following year classes, which still are found in the Barents Sea, are weak. Also, age 1-2 cod and haddock abundance in 2021 is low. On the positive side, shrimp abundance is high, while the abundance of other prey species is around average. Altogether there seems to be reasonable consistency between growth, consumption and feeding data.

One direct application for the management of results from the trophic investigations in the Barents Sea is the inclusion of predator's consumption into fish stock assessment. Predation on cod and haddock by cod has since 1995 been included in the assessment of these two species. These data, summarized in Tables 1.1, 1.3 and 1.5, are used for estimation of cod and haddock consumed by cod and further for estimation of their natural mortality within the SAM model (see sections 3.3.3 and 4.5.5). The average natural mortality for the last years is used as predicted M for the coming years for cod and haddock.

Cod consumption was used in capelin assessment for the first time in 1990, to account for natural mortality due to cod predation on mature capelin in the period January-March (Bogstad and Gjøsæter, 1994). This methodology has been developed further using the Bifrost and CapTool models (Gjøsæter et al., 2002; Tjelmeland, 2005; ICES CM 2009/ACOM:34). CapTool is a tool (in Excel with @RISK) for implementing results from Bifrost in the short term (half-year) prognosis used for determining the quota.

In recent years the abundance of large cod and haddock has been very high, and it is still at a high level for cod. There are a limited number of predators on such large fish. As predation is likely to be a major source of natural mortality, it could thus be considered whether the natural mortality in older age groups should be reduced in such a situation. The assumption of reduced natural mortality on older cod was explored by IBPCOD 2017, but no evidence of this was found based on available catch and survey data. To investigate this further, analyses on predator consumption and biomass flow at higher trophic levels like those done by Bogstad et al. (2000) should be updated, and such work is ongoing for marine mammals. For cod, in particular, the fishing mortality since 2008 has been so much lower than before that the relative impact of the natural mortality on the survival of older fish has increased considerably.
The amount of commercially important prey consumed by other fish predators (haddock, Greenland halibut, long rough dab, and thorny skate), has also been calculated (Dolgov et al., 2007), but these consumption estimates have not been used in assessment for any prey stocks yet. Marine mammals are not included in the current fish stock assessments. However, it has been attempted to extend the stock assessment models of Barents Sea capelin (Bifrost) by including the predatory effects of minke whales, and harp seals (Tjelmeland and Lindstrøm, 2005).

### 1.11.3 Maturation, condition factor, and fisheries-induced evolution

Data on maturity-at-age are one of the basic components for spawning-stock biomass (SSB) estimates. There have been substantial changes observed in maturity-at-age of NEA cod over a large historical period (since 1946) showing an acceleration in maturity rates, especially in the 1980s. They are thought to be connected both with compensatory density-dependence mechanisms and genetic changes in individuals (Heino et al., 2002; Jørgensen et al., 2008; Kovalev and Yaragina, 2009; Eikeset et al., 2013; Kuparinen et al., 2014) resulted from strong fishing pressure.

Studies on possible evolutionary effects for this stock should be updated with data for recent years to investigate the effects on population dynamics, including growth, maturation and evolutionary effects, of a prolonged period with low fishing mortality and high stock size.

Recent laboratory and fieldwork have shown that skipped spawning does occur in NEA cod stock (Skjæraasen et al., 2009; Yaragina, 2010). Experimental work on captive fish has demonstrated that skipped spawning is strongly influenced by individual energy reserves (Skjæraasen et al., 2009). This is supported by the field data, which suggest that gamete development could be interrupted by a poor liver condition especially. Fish that will skip spawning seem to remain in the Barents Sea and do not migrate to the spawning grounds. These fish need to be identified and excluded when estimating the stock-recruitment potential as currently they are included in the estimate of SSB. However, more work needs to be undertaken to improve our knowledge of skipped spawning in cod (e.g. comparisons and intercalibration of Norwegian and Russian databases on maturity stages should be done) and other species in order to quantify its influence on the stock reproductive potential.

### 1.11.4 Recruitment prediction for northeast Arctic cod

Prediction of recruitment in fish stocks is essential to harvest prognosis. Traditionally, prediction methods have been based on spawning-stock biomass and survey indices of juvenile fish and have not included effects of ecosystem drivers. Multiple linear regression models can be used to incorporate both environmental and parental fish stock parameters. In order for such models to give predictions, there need to be a time-lag between the predictor and response variables. In this section, a model for Northeast Arctic cod which is in use in assessment is presented. Note that a recruitment model for Barents Sea capelin with similar features also was presented to the group (WD 13).

### 1.11.5 Historic overview

Several statistical models, which use multiple linear regressions, have been developed for the recruitment of northeast Arctic cod. All models try to predict recruitment-at-age 3 (at 1 January), as calculated from the assessment model, with cannibalism included. This quantity is denoted as R3. A collection of the most relevant models previously presented to AFWG is described below.

Stiansen et al. (2005) developed a model (JES1) with 2-year prediction possibility:

```
JES1: R3~ Temp(-3) + Age1(-2) + MatBio(-2)
JES2: R3~ Temp(-3) + Age2(-1) + MatBio(-2)
JES3: R3~ Temp(-3) + Age3(0) + MatBio(-2)
```

Temp is the Kola annual temperature ( $0-200$ m, station 3-7), Age1 is the winter survey bottom trawl index for cod age 1, and MatBio the maturing biomass of capelin on 1 October. The number in parentheses is the time-lag in years. Two other similar models (JES2, JES3) can be made by substituting the winter index term Age1(-2) with Age2(-1) and Age3(0), giving 1 and 0 -year predictions, respectively.

Svendsen et al. (2007) used a model (SV) based only on data from the ROMS numerical hydrodynamical model, with 3-year prognosis possibility:
SV: R3~ Phyto(-3) + Inflow(-3)

Where Phyto is the modelled phytoplankton production in the whole Barents Sea and Inflow is the modelled inflow through the western entrance to the Barents Sea in autumn. The number in parentheses is the time-lag in years. The model has not been updated since 2007.

The recruitment model (TB) suggested by T. Bulgakova (AFWG 2005, WD14) is a modification of Ricker's model for stock-recruitment defined by:

TB: R3~ m(-3) $\exp [-S S B(-3)+N(-3)]$
Where R3 is the number of age 3 recruits for NEA cod, $m$ is an index of population fecundity, SSB is the spawning-stock biomass and N is equal to the number of months with positive temperature anomalies (TA) on the Kola Section in the birth year for the year class. The number in parentheses is the time-lag in years. For the years before 1998 TA was calculated relative to monthly average for the period 1951-2000. For intervals after 1998, the TA was calculated with relatively linear trend in the temperature for the period 1998-present. The model was run using two-time intervals (using cod year classes 1984-2000 and year classes 1984-2004) for estimating the model coefficients. The models have not been updated since 2009.
Titov (Titov, AFWG 2010, WD 22) and Titov et al. (AFWG 2005, WD 16) developed models with 1 to 4-year prediction possibility (TITOV0, TITOV1, TITOV2, TITOV3, TITOV4, respectively), based on the oxygen saturation at bottom layers of the Kola section stations 3-7 (OxSat), air temperature at the Murmansk station (Ta), water temperature: 3-7 stations of the Kola section (layer $0-200 \mathrm{~m}$; Tw), ice coverage in the Barents Sea (I), spawning-stock biomass (SSB), annual values of 0 -group cod abundance index, corrected for capture efficiency (CodC0) and the bottom trawl swept-area abundance of cod at the age 1 and 2, 3 derived from the joint winter Barents Sea acoustic survey (CodB1, CodB2, CodB3). At the 2010 AFWG assessment it was suggested (Dingsør et al., 2010, WD 19, and related discussions in the working group to try to simplify these models).

Hjermann et al., (2007) developed a model with a one-year prognosis, which has been modified by Dingsør et al. (AFWG 2010, WD19) to four models with 2-year projection possibility.

```
H1: \(\log (\mathrm{R} 3) \sim \operatorname{Temp}(-3)+\log (\) Age0 \()(-3)+\mathrm{BM}_{\text {cod3-6 }} / \mathrm{ABM}_{\text {capelin }}(-2,-1)\)
H2: \(\log (\) R3 \() \sim\) Temp(-2) +I (surv) + Age1(-2) + BM \(_{\text {cods-6 }} /\) ABM \(_{\text {capelin }}(-2,-1)\)
H3: \(\log (\) R3 \() \sim\) Temp(-1) + Age2(-1) + BM \(_{\text {cod3-6 }} /\) ABM \(_{\text {capelin }}(-1)\)
H4: \(\log (\) R3 \() \sim\) Temp \((-1)+\) Age3(0)
```

Temp is the Kola yearly temperature ( $0-200 \mathrm{~m}$ ), Age0 is the 0 -group index of cod, Age1, Age2 and Age3 are the winter survey bottom trawl index for cod age 1, 2 and 3, respectively, $\mathrm{BM}_{\text {cod } 3-6}$ is the biomass of cod between age 3 and 6 , and $A B M$ is the maturing biomass of capelin. The number in parentheses is the time-lag in years. The models were not updated this year.

At AFWG 2008, Subbey et al. presented a comparative study (AFWG 2008, WD27) on the ability of some of the above models in predicting stock-recruitment for NEA cod (Age 3). At the assessment in 2010, a WD by Dingsør et al. (AFWG 2010, WD19) was presented, which investigated the performance of some of the mentioned recruitment models. It was strongly recommended by the working group that a Study Group should be appointed to look at criteria for choosing/rejecting recruitment models suitable for use in stock assessment.

The "Study Group on Recruitment Forecasting" (SGRF; ICES CM 2011/ACOM:31, ICES CM 2012/ACOM:24, ICES CM 2013/ACOM:24) have had three meetings (in October 2011 and 2012, and November 2013). Their mandate is to give a "best practice" (Standards and guidelines) for choosing recruitment models after their next meeting, which may be implemented at the next AFWG.

The SGRF 2012 report addressed the problem of combining several model predictions to obtain a recruitment estimate with minimum variance. The method (involving a weighted average of individual model predictions) was proposed as a replacement for the hybrid method of Subbey et al. (2008). One major issue not addressed in ICES SGRF (2012) was how to choose the initial ensemble of models, whose weighted average is sought. There are practical constraints (with
respect to time and personnel), which stipulates that not all plausible models can be included in the calculation of the hybrid recruitment value. A methodology for choosing models to include in the calculation of a hybrid, representative recruitment forecast was addressed in SGRF 2013. Details can be found in the SGRF 2013 ICES report.

### 1.11.6 Models used in 2021

The model approach taken in 2021 was the same as in 2018-2020. Some changes were made in 2018, they are described below.

In 2018 at the meeting of the AFWG, the correction and simplification of models were continued. Due to the fact that in 2017-2018 there was a significant correction of the initial biological data, which caused significant changes in the results of the prognostic models, in 2018 a complete audit of both prognostic models and the hybrid model combining the results of their work was carried out. The main purpose of the model revision was to increase the stability of the models, that is, to reduce the possibility of potential correction of the models due to correction of the biological data included in the model. The solution to the problem was found by increasing the retrospective database backwards in time, that is, from the beginning of the 1980s to the beginning of the 1960s. Accordingly, sets of predictor sets have been revised. The number of models was reduced from 5 to 2 and the names of the models were changed from Titov0(1,2,3,4) to TitovES (environment, short prediction) and TitovEL (environment, long prediction).

This has been conducted and has improved the statistical performance (details are shown in Titov, AFWG 2018, WD23):

TitovES: R32 ~ DOxSat2(t-13) + ITw(t-43) + expIce(t-40) + Ice(t-15)
TitovEL: R34~OxSat(t-39)+ ITw(t-43)
Where DOxSat $(\mathrm{t}-13) \sim \operatorname{expOxSat}(\mathrm{t}-13)+\operatorname{OxSat}(\mathrm{t}-39), \operatorname{ITw}(\mathrm{t}-43) \sim \mathrm{I}(\mathrm{t}-43)+\mathrm{Tw}(\mathrm{t}-46)$. The number in parentheses is the time-lag in months, relative to April in the year when the prediction is carried out.

At the 2018 AFWG assessment, a hybrid model (i.e. an average combination) of the best functioning statistical recruitment models were repeated. A statistical analysis of the accuracy of the model's work was carried out, which consisted in estimating the errors in the recovery of data on the number of NEA cod recruitment. Accuracy of the model's work was verified by calculation of standard deviations of the NEA cod recruitment predicted values from the SAM values for the period 2005-2015 when the model was adjusted for data from 1983 to 2004, which consisted in estimating the errors in the recovery of data on the number of NEA cod recruitment.

Figure 1.1 shows the standard deviations of the NEA cod recruitment prediction. It can be seen that the addition of biological parameters (CodB1, CodB2, CodB3, CodC0, SSB) to environmental models (TitovES, TitovEL) substantially increases the error.

Based on these calculations, after comparing the results of constructing independent retrospective forecasts using the methodology previously used in ICES SGRF (ICES CM 2013/ACOM:24), it was decided to abandon the use of biological predictors and to use only environmental data in the NEA cod recruitment forecasting models. It was also found that all models (TitovES, TitovEL, RCT3) satisfy the quality conditions with respect to the forecast for the mean values accepted as the criterion for entering into the calculation of the hybrid model adopted earlier (ICES CM 2013/ACOM:24). It was decided that all biological data will be included in calculations based on the RCT3 model, and the remaining two models (TitovES, TitovEL) will be used only to account for the effect of environmental conditions on NEA cod recruitment.

In AFWG 2021 the procedure for estimating weights for various models (TitovES, TitovEL, RCT3) was repeated using the same method as was made on Study Group on Recruitment

Forecasting (SGRF) in 2013. The input data for the models are given below in Tables 1.7 (TitovES, TitovEL) and 1.8 (RCT3).

In summary, the SAM estimate for age 3 from the AFWG 2021 assessment was used as historical R3. The recruitment forecast for 2021-2024 are based on a hybrid model with weighting estimated at AFWG 2021. The weights and forecasts for the 2021 AFWG assessment can be found in Table 1.9.

It was noted that the oceanographic dataset for the Titov ES and EL models cover the year classes from 1959 onwards, while the survey data used in the RCT3 model only cover the year classes from 1991 onwards, although those survey dataseries started in 1981. Further, the area covered in the surveys was extended in 2014, which is accounted for in the cod assessment by splitting the bottom trawl survey series in that year, while no such split was made in the RCT3 model. It should be investigated how this area expansion in the survey best could be accounted for in the recruitment model.

New software in R was presented during AFWG 2021 for predicting cod recruitment using the hybrid model (WD 20) including the automatic procedure for the submodel's weight estimation. A comparison of predicted values with "old" software (WD 21) was done and the results were identical.

Table 1.1. The North-east arctic COD stock's consumption of various prey species in 1984-2020 ( 1000 tonnes) based on Norwegian consumption calculations

| Year | Other | Amphipods | Krill | Shrimp | Capelin | Herring | Polar cod | Cod | Haddock | Redfish | G. halibut | Blue whiting | Long rough c | Snow crab | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 494 | 27 | 119 | 447 | 739 | 82 | 16 | 23 | 52 | 374 | 0 | 0 | 25 | 0 | 2398 |
| 1985 | 1252 | 188 | 64 | 179 | 1780 | 214 | 3 | 31 | 54 | 244 | 0 | 2 | 48 | 0 | 4058 |
| 1986 | 679 | 1426 | 133 | 165 | 961 | 162 | 156 | 74 | 110 | 340 | 0 | 0 | 66 | 0 | 4273 |
| 1987 | 813 | 1372 | 89 | 233 | 295 | 38 | 225 | 26 | 6 | 340 | 1 | 0 | 11 | 0 | 3449 |
| 1988 | 447 | 1419 | 337 | 151 | 382 | 8 | 99 | 11 | 2 | 259 | 0 | 5 | 6 | 0 | 3126 |
| 1989 | 679 | 823 | 245 | 123 | 589 | 3 | 37 | 8 | 10 | 222 | 0 | 0 | 67 | 0 | 2805 |
| 1990 | 1149 | 123 | 80 | 162 | 1409 | 7 | 5 | 16 | 14 | 188 | 0 | 81 | 86 | 0 | 3320 |
| 1991 | 688 | 63 | 71 | 164 | 2441 | 7 | 10 | 22 | 16 | 264 | 7 | 8 | 240 | 0 | 4002 |
| 1992 | 826 | 97 | 154 | 354 | 2266 | 275 | 92 | 46 | 88 | 172 | 23 | 2 | 94 | 0 | 4487 |
| 1993 | 709 | 242 | 669 | 305 | 2873 | 155 | 269 | 261 | 69 | 92 | 2 | 2 | 27 | 0 | 5674 |
| 1994 | 611 | 552 | 693 | 506 | 1060 | 146 | 599 | 223 | 48 | 76 | 0 | 1 | 43 | 0 | 4558 |
| 1995 | 827 | 972 | 527 | 358 | 607 | 117 | 245 | 367 | 114 | 194 | 2 | 0 | 36 | 0 | 4366 |
| 1996 | 604 | 620 | 1166 | 345 | 548 | 46 | 101 | 536 | 67 | 95 | 0 | 10 | 37 | 0 | 4173 |
| 1997 | 466 | 404 | 545 | 350 | 978 | 5 | 115 | 350 | 44 | 33 | 0 | 34 | 15 | 0 | 3340 |
| 1998 | 448 | 411 | 513 | 375 | 836 | 104 | 174 | 163 | 36 | 9 | 0 | 14 | 18 | 0 | 3100 |
| 1999 | 422 | 166 | 306 | 300 | 2047 | 151 | 258 | 67 | 30 | 18 | 1 | 35 | 9 | 0 | 3808 |
| 2000 | 427 | 188 | 492 | 503 | 1935 | 61 | 218 | 83 | 58 | 8 | 0 | 41 | 21 | 0 | 4035 |
| 2001 | 721 | 176 | 382 | 291 | 1836 | 76 | 264 | 68 | 51 | 6 | 1 | 157 | 32 | 0 | 4060 |
| 2002 | 376 | 96 | 260 | 241 | 2004 | 86 | 280 | 108 | 127 | 1 | 0 | 239 | 16 | 0 | 3834 |
| 2003 | 545 | 285 | 545 | 238 | 2152 | 216 | 275 | 110 | 166 | 3 | 0 | 74 | 53 | 0 | 4662 |
| 2004 | 626 | 560 | 347 | 246 | 1253 | 216 | 358 | 126 | 198 | 3 | 11 | 56 | 65 | 1 | 4065 |
| 2005 | 781 | 579 | 527 | 274 | 1399 | 132 | 388 | 118 | 324 | 2 | 5 | 115 | 53 | 0 | 4697 |
| 2006 | 870 | 225 | 1078 | 353 | 1737 | 170 | 108 | 80 | 361 | 12 | 2 | 163 | 130 | 0 | 5287 |
| 2007 | 1259 | 310 | 1091 | 428 | 2140 | 285 | 266 | 88 | 378 | 46 | 0 | 44 | 75 | 0 | 6411 |
| 2008 | 1578 | 160 | 931 | 385 | 2865 | 105 | 514 | 187 | 293 | 59 | 13 | 18 | 93 | 0 | 7201 |
| 2009 | 1495 | 243 | 635 | 265 | 3978 | 123 | 730 | 196 | 252 | 28 | 3 | 5 | 115 | 2 | 8072 |
| 2010 | 1616 | 415 | 1049 | 281 | 3900 | 52 | 334 | 241 | 267 | 142 | 10 | 14 | 133 | 7 | 8462 |
| 2011 | 1556 | 254 | 902 | 221 | 4120 | 84 | 424 | 286 | 279 | 115 | 0 | 26 | 122 | 9 | 8398 |
| 2012 | 1975 | 316 | 842 | 345 | 3641 | 51 | 519 | 373 | 220 | 51 | 34 | 8 | 125 | 7 | 8506 |
| 2013 | 1774 | 261 | 566 | 267 | 3660 | 51 | 137 | 380 | 200 | 111 | 1 | 21 | 167 | 15 | 7612 |
| 2014 | 1409 | 326 | 475 | 202 | 3713 | 72 | 31 | 358 | 88 | 31 | 11 | 18 | 106 | 9 | 6849 |
| 2015 | 1595 | 619 | 637 | 243 | 3278 | 126 | 147 | 213 | 178 | 140 | 43 | 59 | 85 | 33 | 7396 |
| 2016 | 1691 | 530 | 745 | 299 | 2210 | 95 | 346 | 198 | 222 | 57 | 6 | 87 | 120 | 10 | 6617 |
| 2017 | 1053 | 126 | 582 | 251 | 2950 | 193 | 88 | 315 | 272 | 45 | 4 | 24 | 139 | 53 | 6097 |
| 2018 | 1032 | 267 | 644 | 180 | 2886 | 203 | 246 | 246 | 276 | 34 | 70 | 47 | 52 | 44 | 6227 |
| 2019 | 779 | 212 | 415 | 308 | 2600 | 181 | 168 | 188 | 212 | 44 | 0 | 2 | 99 | 50 | 5258 |
| 2020 | 919 | 523 | 535 | 172 | 2021 | 107 | 467 | 115 | 92 | 30 | 14 | 13 | 150 | 90 | 5247 |


|  | NOT UPD | ATED THIS Y | YEAR |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Other | Amphipods | Krill | Shrimp | Capelin | Herring | Polar cod | Cod | Haddock | Redfish | G. halibut | Blue whitin! | Long rough | Snow crab | Total |
| 1984 | 560 | 31 | 94 | 353 | 593 | 34 | 18 | 14 | 50 | 197 | 0 | 5 | 52 |  | 2000 |
| 1985 | 767 | 441 | 31 | 211 | 1041 | 26 | 0 | 89 | 36 | 100 | 0 | 18 | 22 |  | 2779 |
| 1986 | 615 | 949 | 66 | 159 | 855 | 51 | 169 | 26 | 99 | 166 | 1 | 3 | 26 |  | 3186 |
| 1987 | 541 | 593 | 79 | 233 | 175 | 9 | 118 | 23 | 2 | 119 | 1 | 10 | 5 |  | 1908 |
| 1988 | 544 | 196 | 239 | 146 | 348 | 21 | 0 | 21 | 76 | 133 | 0 | 0 | 22 |  | 1745 |
| 1989 | 496 | 324 | 190 | 117 | 767 | 4 | 37 | 35 | 2 | 178 | 0 | 0 | 64 |  | 2213 |
| 1990 | 278 | 31 | 105 | 266 | 1264 | 65 | 8 | 24 | 15 | 237 | 0 | 39 | 79 |  | 2409 |
| 1991 | 289 | 81 | 55 | 277 | 3204 | 25 | 45 | 52 | 22 | 141 | 5 | 6 | 46 |  | 4248 |
| 1992 | 788 | 38 | 211 | 258 | 2021 | 335 | 196 | 82 | 37 | 117 | 1 | 0 | 42 |  | 4125 |
| 1993 | 563 | 174 | 184 | 220 | 2743 | 170 | 170 | 144 | 148 | 40 | 5 | 4 | 47 |  | 4611 |
| 1994 | 447 | 296 | 359 | 458 | 1276 | 102 | 486 | 383 | 72 | 55 | 0 | 1 | 40 |  | 3976 |
| 1995 | 502 | 455 | 396 | 533 | 670 | 192 | 191 | 541 | 130 | 110 | 3 | 0 | 52 |  | 3775 |
| 1996 | 674 | 346 | 957 | 195 | 469 | 74 | 74 | 451 | 57 | 67 | 0 | 9 | 45 |  | 3415 |
| 1997 | 463 | 134 | 510 | 257 | 511 | 52 | 111 | 383 | 35 | 29 | 2 | 17 | 17 |  | 2520 |
| 1998 | 311 | 220 | 645 | 286 | 916 | 73 | 134 | 131 | 23 | 15 | 0 | 24 | 20 |  | 2797 |
| 1999 | 179 | 81 | 458 | 268 | 1540 | 80 | 177 | 49 | 16 | 14 | 0 | 27 | 9 |  | 2898 |
| 2000 | 243 | 122 | 437 | 394 | 1800 | 53 | 167 | 59 | 32 | 4 | 0 | 28 | 21 |  | 3360 |
| 2001 | 384 | 75 | 411 | 322 | 1522 | 93 | 148 | 62 | 52 | 4 | 2 | 145 | 31 |  | 3250 |
| 2002 | 225 | 45 | 286 | 202 | 2400 | 55 | 302 | 100 | 80 | 4 | 0 | 110 | 17 |  | 3825 |
| 2003 | 400 | 171 | 547 | 227 | 1219 | 153 | 221 | 132 | 331 | 2 | 0 | 28 | 51 |  | 3481 |
| 2004 | 496 | 393 | 478 | 256 | 1097 | 129 | 369 | 86 | 144 | 7 | 16 | 48 | 62 |  | 3583 |
| 2005 | 620 | 163 | 688 | 244 | 1023 | 168 | 320 | 112 | 271 | 7 | 2 | 67 | 47 |  | 3731 |
| 2006 | 786 | 86 | 1547 | 274 | 1341 | 268 | 125 | 95 | 285 | 17 | 1 | 103 | 148 |  | 5076 |
| 2007 | 831 | 192 | 1340 | 420 | 1881 | 275 | 289 | 68 | 329 | 29 | 1 | 32 | 73 |  | 5760 |
| 2008 | 1021 | 51 | 1005 | 345 | 3278 | 122 | 664 | 156 | 331 | 60 | 13 | 17 | 121 |  | 7184 |
| 2009 | 1048 | 189 | 938 | 284 | 3360 | 229 | 828 | 142 | 347 | 28 | 0 | 8 | 285 |  | 7687 |
| 2010 | 973 | 330 | 1843 | 255 | 4120 | 143 | 512 | 181 | 246 | 163 | 1 | 16 | 136 |  | 8918 |
| 2011 | 1251 | 202 | 831 | 226 | 4473 | 85 | 422 | 259 | 359 | 143 | 2 | 57 | 170 |  | 8479 |
| 2012 | 1771 | 164 | 600 | 273 | 2986 | 97 | 439 | 291 | 415 | 41 | 7 | 33 | 133 |  | 7251 |
| 2013 | 1366 | 210 | 648 | 334 | 3676 | 45 | 146 | 447 | 272 | 178 | 2 | 40 | 216 |  | 7581 |
| 2014 | 1391 | 121 | 744 | 208 | 3340 | 56 | 98 | 390 | 170 | 20 | 7 | 27 | 154 |  | 6726 |
| 2015 | 1122 | 301 | 1160 | 442 | 2675 | 69 | 159 | 175 | 180 | 87 | 14 | 39 | 117 |  | 6539 |
| 2016 | 1542 | 654 | 775 | 216 | 2221 | 86 | 248 | 239 | 158 | 48 | 3 | 51 | 328 |  | 6568 |
| 2017 | 1042 | 85 | 681 | 316 | 2709 | 99 | 75 | 271 | 315 | 188 | 3 | 26 | 249 |  | 6060 |
| 2018 | 1153 | 146 | 1541 | 178 | 1624 | 271 | 117 | 352 | 479 | 41 | 41 | 41 | 121 |  | 6105 |
| 2019 | 751 | 97 | 498 | 189 | 2103 | 379 | 131 | 415 | 292 | 47 | 0 | 15 | 159 |  | 5075 |

Table $1.3 \quad$ Consumption per cod by cod age group (kg/year), based on Norwegian consumption calculations.

| Year/Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0.247 | 0.815 | 1.683 | 2.521 | 3.951 | 5.208 | 8.009 | 8.524 | 9.180 | 9.912 | 9.954 |
| 1985 | 0.304 | 0.761 | 1.833 | 3.105 | 4.675 | 7.360 | 11.246 | 11.972 | 12.497 | 13.751 | 13.869 |
| 1986 | 0.161 | 0.498 | 1.343 | 3.152 | 5.669 | 6.884 | 11.018 | 11.944 | 12.749 | 13.513 | 13.768 |
| 1987 | 0.219 | 0.602 | 1.290 | 2.051 | 3.532 | 5.489 | 7.077 | 8.107 | 8.923 | 9.343 | 9.301 |
| 1988 | 0.164 | 0.702 | 1.150 | 2.149 | 3.743 | 5.877 | 10.098 | 11.222 | 12.575 | 13.127 | 13.373 |
| 1989 | 0.223 | 0.715 | 1.606 | 2.714 | 3.980 | 5.611 | 7.678 | 8.499 | 9.597 | 10.198 | 10.628 |
| 1990 | 0.363 | 0.906 | 1.909 | 3.058 | 4.218 | 5.447 | 6.527 | 6.877 | 7.075 | 7.455 | 7.955 |
| 1991 | 0.293 | 0.972 | 2.178 | 3.536 | 5.318 | 7.073 | 9.470 | 10.238 | 11.292 | 12.339 | 12.037 |
| 1992 | 0.215 | 0.665 | 2.100 | 3.135 | 4.142 | 5.093 | 7.868 | 9.023 | 9.402 | 10.124 | 10.156 |
| 1993 | 0.112 | 0.529 | 1.548 | 3.045 | 4.823 | 6.292 | 9.413 | 11.272 | 11.798 | 12.288 | 12.880 |
| 1994 | 0.130 | 0.406 | 0.924 | 2.523 | 3.508 | 4.544 | 6.404 | 8.844 | 9.716 | 9.988 | 10.232 |
| 1995 | 0.103 | 0.299 | 0.918 | 1.824 | 3.359 | 5.261 | 7.726 | 10.425 | 12.300 | 12.770 | 13.191 |
| 1996 | 0.108 | 0.359 | 0.938 | 1.855 | 3.055 | 4.434 | 7.409 | 11.124 | 14.591 | 15.048 | 15.432 |
| 1997 | 0.140 | 0.327 | 0.952 | 1.778 | 2.717 | 3.537 | 5.261 | 8.128 | 12.659 | 13.389 | 13.205 |
| 1998 | 0.117 | 0.400 | 0.991 | 1.953 | 2.922 | 4.188 | 5.751 | 8.078 | 11.375 | 12.071 | 12.113 |
| 1999 | 0.163 | 0.505 | 1.095 | 2.720 | 3.719 | 5.444 | 6.975 | 9.193 | 10.953 | 12.063 | 12.181 |
| 2000 | 0.170 | 0.499 | 1.239 | 2.467 | 4.262 | 5.650 | 7.975 | 9.405 | 12.679 | 13.401 | 13.542 |
| 2001 | 0.171 | 0.448 | 1.308 | 2.435 | 3.688 | 5.305 | 7.550 | 11.238 | 13.477 | 14.400 | 14.674 |
| 2002 | 0.199 | 0.553 | 1.163 | 2.443 | 3.382 | 4.721 | 6.366 | 9.069 | 10.301 | 11.513 | 11.098 |
| 2003 | 0.207 | 0.648 | 1.316 | 2.391 | 4.002 | 5.958 | 8.438 | 10.435 | 12.903 | 13.576 | 14.443 |
| 2004 | 0.222 | 0.476 | 1.298 | 2.285 | 3.339 | 5.568 | 7.444 | 11.468 | 17.366 | 19.237 | 18.956 |
| 2005 | 0.203 | 0.659 | 1.380 | 2.746 | 4.247 | 6.365 | 7.670 | 10.284 | 13.851 | 14.895 | 15.610 |
| 2006 | 0.204 | 0.626 | 1.584 | 2.811 | 4.241 | 6.316 | 7.868 | 11.626 | 14.023 | 15.100 | 15.929 |
| 2007 | 0.256 | 0.653 | 1.738 | 3.092 | 4.471 | 6.237 | 8.277 | 10.287 | 12.786 | 13.554 | 13.988 |
| 2008 | 0.204 | 0.724 | 1.469 | 2.877 | 4.082 | 7.111 | 8.407 | 11.463 | 15.655 | 16.348 | 16.617 |
| 2009 | 0.192 | 0.618 | 1.494 | 2.769 | 4.434 | 5.759 | 8.470 | 11.487 | 12.793 | 13.632 | 13.821 |
| 2010 | 0.203 | 0.635 | 1.357 | 2.504 | 3.989 | 5.709 | 8.447 | 12.078 | 15.363 | 16.040 | 16.394 |
| 2011 | 0.219 | 0.663 | 1.419 | 2.627 | 4.033 | 5.351 | 7.272 | 9.663 | 15.139 | 16.314 | 16.304 |
| 2012 | 0.231 | 0.763 | 1.503 | 2.688 | 4.103 | 5.077 | 7.312 | 10.038 | 15.400 | 16.594 | 16.518 |
| 2013 | 0.182 | 0.674 | 1.447 | 2.531 | 3.908 | 4.999 | 5.954 | 7.582 | 11.489 | 12.510 | 13.450 |
| 2014 | 0.224 | 0.648 | 1.308 | 2.549 | 3.763 | 4.253 | 5.837 | 8.010 | 10.796 | 11.514 | 12.026 |
| 2015 | 0.218 | 0.662 | 1.426 | 2.528 | 4.254 | 5.695 | 7.376 | 8.628 | 13.081 | 13.892 | 15.034 |
| 2016 | 0.252 | 0.722 | 1.578 | 2.769 | 3.919 | 5.514 | 7.201 | 8.040 | 12.056 | 12.652 | 14.479 |
| 2017 | 0.248 | 0.791 | 1.529 | 2.653 | 3.977 | 5.628 | 7.031 | 8.143 | 11.271 | 14.168 | 16.982 |
| 2018 | 0.194 | 0.775 | 1.566 | 2.813 | 4.391 | 5.208 | 6.811 | 10.602 | 12.879 | 17.074 | 15.980 |
| 2019 | 0.191 | 0.515 | 1.343 | 2.288 | 3.517 | 4.417 | 6.219 | 8.963 | 12.186 | 11.715 | 12.973 |
| 2020 | 0.175 | 0.465 | 1.086 | 2.461 | 3.503 | 4.926 | 6.796 | 10.080 | 11.988 | 13.655 | 15.837 |
| Average | 0.201 | 0.613 | 1.406 | 2.590 | 3.969 | 5.500 | 7.639 | 9.785 | 12.275 | 13.221 | 13.647 |

Table $1.4 \quad$ Consumption per cod by cod age group (kg/year), based on Russian consumption calculations.


Table 1.5 Proportion of cod in cod diet, based on Norwegian consumption calculations

| Year/age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0.0000 | 0.0000 | 0.0032 | 0.0000 | 0.0432 | 0.0262 | 0.0332 | 0.0361 | 0.0371 | 0.0392 | 0.0394 |
| 1985 | 0.0015 | 0.0009 | 0.0014 | 0.0017 | 0.0312 | 0.0074 | 0.0822 | 0.0826 | 0.0833 | 0.0835 | 0.0840 |
| 1986 | 0.0000 | 0.0022 | 0.0015 | 0.0004 | 0.0130 | 0.1743 | 0.1760 | 0.1761 | 0.1758 | 0.1749 | 0.1745 |
| 1987 | 0.0000 | 0.0000 | 0.0007 | 0.0050 | 0.0103 | 0.0244 | 0.0383 | 0.0395 | 0.0412 | 0.0409 | 0.0443 |
| 1988 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0059 | 0.0014 | 0.0037 | 0.0036 | 0.0031 | 0.0035 | 0.0031 |
| 1989 | 0.0000 | 0.0006 | 0.0016 | 0.0019 | 0.0027 | 0.0039 | 0.0036 | 0.0036 | 0.0039 | 0.0038 | 0.0040 |
| 1990 | 0.0000 | 0.0000 | 0.0000 | 0.0007 | 0.0010 | 0.0010 | 0.0165 | 0.0172 | 0.0181 | 0.0179 | 0.0178 |
| 1991 | 0.0000 | 0.0005 | 0.0000 | 0.0003 | 0.0032 | 0.0020 | 0.0222 | 0.0227 | 0.0230 | 0.0231 | 0.0231 |
| 1992 | 0.0000 | 0.0021 | 0.0037 | 0.0129 | 0.0248 | 0.0475 | 0.0119 | 0.0160 | 0.0232 | 0.0232 | 0.0231 |
| 1993 | 0.0000 | 0.0410 | 0.0370 | 0.0515 | 0.0541 | 0.1135 | 0.0498 | 0.0795 | 0.0797 | 0.0796 | 0.0802 |
| 1994 | 0.0000 | 0.0037 | 0.0927 | 0.0349 | 0.0285 | 0.0785 | 0.1248 | 0.1330 | 0.2659 | 0.2674 | 0.2668 |
| 1995 | 0.0069 | 0.0812 | 0.0747 | 0.0803 | 0.0923 | 0.1118 | 0.1387 | 0.2526 | 0.2542 | 0.2539 | 0.2545 |
| 1996 | 0.0000 | 0.1500 | 0.2566 | 0.2051 | 0.1321 | 0.1263 | 0.1874 | 0.2091 | 0.2436 | 0.2447 | 0.2437 |
| 1997 | 0.0000 | 0.0687 | 0.0762 | 0.1137 | 0.1558 | 0.1555 | 0.2315 | 0.2269 | 0.2919 | 0.2850 | 0.2916 |
| 1998 | 0.0000 | 0.0134 | 0.0272 | 0.0418 | 0.1037 | 0.0978 | 0.1090 | 0.1498 | 0.2722 | 0.2741 | 0.2718 |
| 1999 | 0.0000 | 0.0000 | 0.0048 | 0.0136 | 0.0147 | 0.0338 | 0.0618 | 0.1114 | 0.1902 | 0.1907 | 0.1843 |
| 2000 | 0.0000 | 0.0000 | 0.0287 | 0.0148 | 0.0134 | 0.0266 | 0.0497 | 0.0570 | 0.2682 | 0.2699 | 0.2594 |
| 2001 | 0.0000 | 0.0160 | 0.0116 | 0.0082 | 0.0131 | 0.0241 | 0.0498 | 0.0375 | 0.3250 | 0.3233 | 0.3268 |
| 2002 | 0.0000 | 0.0385 | 0.0597 | 0.0142 | 0.0187 | 0.0284 | 0.0357 | 0.0623 | 0.1582 | 0.1560 | 0.1555 |
| 2003 | 0.0000 | 0.0190 | 0.0198 | 0.0199 | 0.0206 | 0.0188 | 0.0451 | 0.1030 | 0.2194 | 0.2219 | 0.2228 |
| 2004 | 0.0081 | 0.0234 | 0.0280 | 0.0269 | 0.0296 | 0.0319 | 0.0380 | 0.0663 | 0.1062 | 0.1062 | 0.1077 |
| 2005 | 0.0000 | 0.0266 | 0.0230 | 0.0266 | 0.0145 | 0.0277 | 0.0436 | 0.0779 | 0.1484 | 0.1462 | 0.1437 |
| 2006 | 0.0000 | 0.0103 | 0.0007 | 0.0128 | 0.0288 | 0.0158 | 0.0392 | 0.0368 | 0.0810 | 0.0821 | 0.0820 |
| 2007 | 0.0000 | 0.0000 | 0.0011 | 0.0117 | 0.0119 | 0.0304 | 0.0282 | 0.0901 | 0.1407 | 0.1413 | 0.1383 |
| 2008 | 0.0000 | 0.0559 | 0.0257 | 0.0101 | 0.0157 | 0.0098 | 0.0764 | 0.0873 | 0.0975 | 0.0959 | 0.0981 |
| 2009 | 0.0116 | 0.0225 | 0.0262 | 0.0251 | 0.0152 | 0.0139 | 0.0219 | 0.0945 | 0.1078 | 0.1082 | 0.1076 |
| 2010 | 0.0000 | 0.0327 | 0.0580 | 0.0270 | 0.0243 | 0.0243 | 0.0203 | 0.0383 | 0.1367 | 0.1369 | 0.1353 |
| 2011 | 0.0129 | 0.0152 | 0.0492 | 0.0170 | 0.0361 | 0.0300 | 0.0238 | 0.0575 | 0.1279 | 0.1279 | 0.1278 |
| 2012 | 0.0274 | 0.0608 | 0.0640 | 0.0618 | 0.0274 | 0.0432 | 0.0410 | 0.0373 | 0.0685 | 0.0691 | 0.0681 |
| 2013 | 0.0214 | 0.0303 | 0.0459 | 0.0389 | 0.0276 | 0.0224 | 0.0478 | 0.0538 | 0.1166 | 0.1171 | 0.1335 |
| 2014 | 0.0824 | 0.0363 | 0.0450 | 0.0342 | 0.0213 | 0.0456 | 0.0661 | 0.0787 | 0.0658 | 0.0658 | 0.0752 |
| 2015 | 0.0000 | 0.0088 | 0.0308 | 0.0283 | 0.0266 | 0.0192 | 0.0233 | 0.0281 | 0.0555 | 0.0553 | 0.0539 |
| 2016 | 0.0157 | 0.0192 | 0.0063 | 0.0393 | 0.0146 | 0.0172 | 0.0266 | 0.0137 | 0.0906 | 0.0914 | 0.0910 |
| 2017 | 0.0419 | 0.0354 | 0.0386 | 0.0470 | 0.0436 | 0.0400 | 0.0560 | 0.0913 | 0.0686 | 0.1015 | 0.1409 |
| 2018 | 0.0000 | 0.0186 | 0.0680 | 0.0480 | 0.0351 | 0.0378 | 0.0567 | 0.0310 | 0.0243 | 0.0076 | 0.0252 |
| 2019 | 0.0000 | 0.0000 | 0.0328 | 0.0296 | 0.0339 | 0.0228 | 0.0366 | 0.0741 | 0.0934 | 0.0252 | 0.0792 |
| 2020 | 0.0000 | 0.0227 | 0.0013 | 0.0041 | 0.0110 | 0.0177 | 0.0311 | 0.0504 | 0.0683 | 0.0649 | 0.1118 |

Table 1.6 Proportion of haddock in cod diet, based on Norwegian consumption calculations

| Year/age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0.0443 | 0.0175 | 0.0053 | 0.0225 | 0.0455 | 0.0215 | 0.0022 | 0.0020 | 0.0019 | 0.0018 | 0.0017 |
| 1985 | 0.0205 | 0.0227 | 0.0052 | 0.0076 | 0.0207 | 0.0109 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 1986 | 0.0000 | 0.0187 | 0.0015 | 0.0866 | 0.0005 | 0.0530 | 0.0249 | 0.0248 | 0.0257 | 0.0286 | 0.0301 |
| 1987 | 0.0000 | 0.0052 | 0.0003 | 0.0025 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 1988 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0034 | 0.0034 | 0.0034 | 0.0039 | 0.0035 | 0.0039 |
| 1989 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0339 | 0.0338 | 0.0349 | 0.0347 | 0.0356 |
| 1990 | 0.0000 | 0.0000 | 0.0000 | 0.0024 | 0.0021 | 0.0007 | 0.0130 | 0.0124 | 0.0117 | 0.0118 | 0.0119 |
| 1991 | 0.0000 | 0.0000 | 0.0098 | 0.0079 | 0.0045 | 0.0051 | 0.0031 | 0.0030 | 0.0029 | 0.0028 | 0.0028 |
| 1992 | 0.0000 | 0.0000 | 0.0014 | 0.0683 | 0.0208 | 0.0271 | 0.0278 | 0.0317 | 0.0462 | 0.0462 | 0.0461 |
| 1993 | 0.0000 | 0.0000 | 0.0204 | 0.0073 | 0.0149 | 0.0144 | 0.0278 | 0.0261 | 0.0261 | 0.0261 | 0.0263 |
| 1994 | 0.0000 | 0.0000 | 0.0065 | 0.0131 | 0.0069 | 0.0141 | 0.0298 | 0.0491 | 0.0456 | 0.0452 | 0.0453 |
| 1995 | 0.0000 | 0.0354 | 0.0030 | 0.0429 | 0.0260 | 0.0241 | 0.0393 | 0.0956 | 0.1617 | 0.1615 | 0.1619 |
| 1996 | 0.0000 | 0.0000 | 0.0592 | 0.0155 | 0.0098 | 0.0170 | 0.0376 | 0.0485 | 0.0925 | 0.1016 | 0.0981 |
| 1997 | 0.0000 | 0.0000 | 0.0242 | 0.0189 | 0.0245 | 0.0158 | 0.0127 | 0.0175 | 0.0561 | 0.0569 | 0.0539 |
| 1998 | 0.0000 | 0.0000 | 0.0115 | 0.0120 | 0.0227 | 0.0192 | 0.0106 | 0.0323 | 0.0161 | 0.0166 | 0.0160 |
| 1999 | 0.0000 | 0.0000 | 0.0028 | 0.0078 | 0.0158 | 0.0124 | 0.0120 | 0.0139 | 0.0224 | 0.0225 | 0.0217 |
| 2000 | 0.0000 | 0.0000 | 0.0233 | 0.0102 | 0.0178 | 0.0116 | 0.0158 | 0.0525 | 0.0286 | 0.0285 | 0.0287 |
| 2001 | 0.0000 | 0.0081 | 0.0052 | 0.0163 | 0.0147 | 0.0171 | 0.0194 | 0.0198 | 0.0337 | 0.0330 | 0.0345 |
| 2002 | 0.0000 | 0.0000 | 0.0185 | 0.0339 | 0.0353 | 0.0471 | 0.0747 | 0.0761 | 0.1830 | 0.1793 | 0.1785 |
| 2003 | 0.0000 | 0.0000 | 0.0145 | 0.0311 | 0.0595 | 0.0436 | 0.0553 | 0.1215 | 0.1079 | 0.1078 | 0.1078 |
| 2004 | 0.0044 | 0.0418 | 0.0745 | 0.0388 | 0.0575 | 0.0501 | 0.0564 | 0.0996 | 0.0910 | 0.0911 | 0.0924 |
| 2005 | 0.0000 | 0.0853 | 0.1047 | 0.0595 | 0.0621 | 0.0646 | 0.1038 | 0.1082 | 0.1115 | 0.1101 | 0.1085 |
| 2006 | 0.0000 | 0.0409 | 0.0829 | 0.0872 | 0.0604 | 0.0897 | 0.0716 | 0.1063 | 0.0962 | 0.0957 | 0.0958 |
| 2007 | 0.0000 | 0.0035 | 0.0462 | 0.0415 | 0.0833 | 0.0980 | 0.1335 | 0.1152 | 0.1631 | 0.1627 | 0.1648 |
| 2008 | 0.0000 | 0.0045 | 0.0106 | 0.0156 | 0.0383 | 0.0753 | 0.1148 | 0.1327 | 0.2329 | 0.2346 | 0.2321 |
| 2009 | 0.0000 | 0.0218 | 0.0241 | 0.0182 | 0.0142 | 0.0362 | 0.1090 | 0.0595 | 0.1881 | 0.1868 | 0.1891 |
| 2010 | 0.0000 | 0.0031 | 0.0279 | 0.0182 | 0.0178 | 0.0217 | 0.0362 | 0.1420 | 0.1819 | 0.1806 | 0.1810 |
| 2011 | 0.0000 | 0.0049 | 0.0362 | 0.0285 | 0.0087 | 0.0204 | 0.0411 | 0.0924 | 0.1633 | 0.1630 | 0.1625 |
| 2012 | 0.0000 | 0.0000 | 0.0113 | 0.0282 | 0.0337 | 0.0271 | 0.0368 | 0.0335 | 0.0859 | 0.0848 | 0.0872 |
| 2013 | 0.0000 | 0.0073 | 0.0309 | 0.0112 | 0.0314 | 0.0233 | 0.0147 | 0.0363 | 0.0615 | 0.0615 | 0.0916 |
| 2014 | 0.0000 | 0.0089 | 0.0037 | 0.0255 | 0.0080 | 0.0047 | 0.0022 | 0.0340 | 0.0143 | 0.0143 | 0.0194 |
| 2015 | 0.0000 | 0.0175 | 0.0409 | 0.0254 | 0.0172 | 0.0166 | 0.0258 | 0.0197 | 0.0384 | 0.0385 | 0.0399 |
| 2016 | 0.0000 | 0.0051 | 0.0799 | 0.0771 | 0.0265 | 0.0259 | 0.0323 | 0.0420 | 0.0342 | 0.0343 | 0.0339 |
| 2017 | 0.0106 | 0.0429 | 0.0153 | 0.0450 | 0.0462 | 0.0568 | 0.0466 | 0.0528 | 0.0795 | 0.0677 | 0.0867 |
| 2018 | 0.0000 | 0.0000 | 0.0434 | 0.0365 | 0.0590 | 0.0661 | 0.0551 | 0.0588 | 0.0821 | 0.0304 | 0.1164 |
| 2019 | 0.0000 | 0.0000 | 0.0284 | 0.0564 | 0.0422 | 0.0491 | 0.0513 | 0.0401 | 0.0345 | 0.0644 | 0.2709 |
| 2020 | 0.0000 | 0.0000 | 0.0011 | 0.0063 | 0.0037 | 0.0096 | 0.0257 | 0.0707 | 0.0514 | 0.0816 | 0.0287 |
| Average | 0.0022 | 0.0107 | 0.0236 | 0.0277 | 0.0257 | 0.0296 | 0.0378 | 0.0516 | 0.0706 | 0.0706 | 0.0785 |

Table 1.7. Parameters of TitovES and TitovEL models (subscripts correspond to the time-lag in months before the start of the year to which the value Cod3 is attributed).

| Year | Cod3 | OxSatt ${ }_{39}$ | DOxSatt ${ }_{13}$ | ITwt ${ }_{43}$ | Icet $_{15}$ | explcet $_{40}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1962 | 1252375 | -0.19 | -6.6 | 1.86 | 0.5 | 0 |
| 1963 | 900621 | -0.94 | -2.37 | 1.59 | 1.5 | 0 |
| 1964 | 468028 | 1.63 | 1.23 | 2.47 | 9 | 0 |
| 1965 | 870506 | 0.88 | -0.2 | 3.91 | 15.7 | 0 |
| 1966 | 1842715 | -1.09 | -3.98 | 7.97 | 5.3 | 0 |
| 1967 | 1311586 | -0.23 | -2.84 | 8.23 | 5 | 9.3 |
| 1968 | 183717 | 1.5 | -0.13 | 3.78 | 15.5 | 0 |
| 1969 | 110450 | 0.85 | 0.63 | 1.77 | 15.9 | 0 |
| 1970 | 205641 | -0.17 | -0.23 | 3.51 | 19.8 | 7.9 |
| 1971 | 402577 | 0.06 | -0.12 | -0.13 | 18.8 | 2.7 |
| 1972 | 1045979 | -3.32 | -6.59 | 14.55 | -0.6 | 428.9 |
| 1973 | 1723668 | -2.1 | -10.37 | 19.14 | 1.8 | 768.6 |
| 1974 | 568211 | 1.06 | -1.73 | 2.4 | 2 | 0 |
| 1975 | 608710 | 1.9 | 0.78 | -2.64 | -1.2 | 0 |
| 1976 | 607084 | 1.33 | -1.28 | -3.07 | -1.9 | 0 |
| 1977 | 372778 | -0.07 | -1.84 | -2.44 | 2.5 | 0 |
| 1978 | 622679 | 1.19 | 0.1 | 1.05 | -1 | 0 |
| 1979 | 202675 | 0.5 | -1.48 | -0.12 | 3.5 | 0 |
| 1980 | 130292 | -0.31 | -2.72 | 1.98 | 12.9 | 0 |
| 1981 | 143781 | 0.76 | -0.18 | 1.94 | 14.7 | 0 |
| 1982 | 183737 | 0.8 | 0.61 | -3.15 | 8 | 0.1 |
| 1983 | 141514 | 0.78 | 0.22 | 1.87 | 12.2 | 8.5 |
| 1984 | 442251 | -2.21 | -2.35 | -3.08 | 12.9 | 0 |
| 1985 | 534310 | -0.1 | -1.17 | 3.59 | -1.2 | 0.1 |
| 1986 | 1374917 | -2.14 | -4.39 | 1.39 | -8.5 | 2.9 |
| 1987 | 360087 | -0.33 | -1.69 | 2.12 | 0.6 | 0 |
| 1988 | 335536 | 0.87 | -1.4 | -2.34 | 3.8 | 0 |
| 1989 | 157635 | 0.32 | -3.42 | -5.17 | 10.5 | 0 |


| Year | Cod3 | OxSatt ${ }_{39}$ | DOxSatt ${ }_{13}$ | ITwt ${ }_{43}$ | Icet $_{15}$ | explcet $_{40}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 130130 | 1.11 | -1.32 | -4.21 | 10.5 | 0 |
| 1991 | 295846 | 0.88 | 0.7 | 2.42 | 6.5 | 0 |
| 1992 | 715916 | 1.34 | 0.48 | 1.37 | -0.9 | 0 |
| 1993 | 988150 | -1.98 | -3.86 | 6.12 | -0.6 | 0 |
| 1994 | 752473 | -0.5 | -2.26 | 8.25 | -4.9 | 0 |
| 1995 | 539384 | 0.83 | -2.42 | 4.36 | 1.8 | 0 |
| 1996 | 407389 | 0.86 | -0.08 | 0.55 | 0.7 | 0 |
| 1997 | 785420 | 0.88 | 0.17 | 3.11 | -7.3 | 0 |
| 1998 | 1063528 | 0.3 | -6.08 | -2.32 | -2.5 | 0 |
| 1999 | 632034 | -0.72 | -2.4 | -6.81 | 2.9 | 0 |
| 2000 | 749727 | 1.86 | 1.55 | -2.29 | 13.6 | 0 |
| 2001 | 593152 | 0.62 | 0.05 | -6.04 | 2.3 | 0 |
| 2002 | 374202 | -0.88 | -0.98 | 3.63 | -9.9 | 0.8 |
| 2003 | 756675 | -0.39 | -0.64 | 8.5 | -5.8 | 0 |
| 2004 | 242069 | -2.2 | -2.53 | -4.62 | -1.4 | 0 |
| 2005 | 693264 | -1.65 | -1.82 | -1.45 | 4.9 | 0 |
| 2006 | 536630 | -1.18 | -1.65 | -4 | -6 | 0 |
| 2007 | 1243906 | -1.39 | -4.42 | 7.42 | -12.3 | 0 |
| 2008 | 1002761 | -1.14 | -1.59 | 3.39 | -18 | 0 |
| 2009 | 581758 | 0.79 | -1.83 | -1.61 | -17.5 | 0 |
| 2010 | 201832 | -0.38 | -2.6 | -8.94 | -9 | 0 |
| 2011 | 358117 | 0.83 | -0.07 | -5 | -4.3 | 0 |
| 2012 | 503017 | 0.91 | -0.13 | -5.05 | -4.3 | 0 |
| 2013 | 464921 | 0.04 | -0.09 | 1.44 | -10.5 | 0 |
| 2014 | 852202 | -0.46 | -1 | 1.43 | -17.8 | 0 |
| 2015 | 452019 | -1.26 | -1.62 | -2.22 | -10.5 | 0 |
| 2016 | 286334 | -1.31 | -1.92 | -7.52 | -5.8 | 0 |
| 2017 | 781901 | -0.33 | -0.64 | -1.69 | -14.4 | 0 |
| 2018 | 508296 | -1.24 | -1.41 | 0.1 | -20.9 | 0 |


| Year | Cod3 | OxSatt $_{39}$ | DOxSatt ${ }_{13}$ | ITwt $_{43}$ | Icet $_{15}$ | explcet $_{40}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 2019 | 659091 | -0.63 | -1.08 | -1.71 | -13.2 | 0 |
| 2020 | 572413 | -2.02 | -2.19 | -6.35 | -13.6 | 0 |
| 2021 | NA | -0.8 | -1.08 | -1.33 | -9.2 | 0 |
| 2022 | NA | -1.55 | -2.1 | -2.47 | -12.8 | 0 |
| 2023 | NA | -1.52 | NA | -4.18 | NA | 0 |
| 2024 | NA | -0.31 | NA | -5.63 | NA | 0 |

Table 1.8 Initial data for RCT3 model.

| year class | recruitment | BST1 | BST2 | BST3 | BSA1 | BSA2 | BSA3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 534 | NA | NA | NA | NA | NA | NA |
| 1983 | 1375 | NA | NA | NA | NA | NA | NA |
| 1984 | 360 | NA | NA | NA | NA | NA | NA |
| 1985 | 336 | NA | NA | NA | NA | NA | NA |
| 1986 | 158 | NA | NA | NA | NA | NA | NA |
| 1987 | 130 | NA | NA | NA | NA | NA | NA |
| 1988 | 296 | NA | NA | NA | NA | NA | NA |
| 1989 | 716 | NA | NA | NA | NA | NA | NA |
| 1990 | 988 | NA | NA | NA | NA | NA | NA |
| 1991 | 752 | NA | NA | 294 | NA | NA | 324 |
| 1992 | 539 | NA | 557 | 283 | NA | 624 | 138 |
| 1993 | 407 | 1044 | 541 | 163 | 903 | 212 | 99 |
| 1994 | 785 | 5356 | 792 | 318 | 2175 | 272 | 159 |
| 1995 | 1064 | 5899 | 1423 | 355 | 1826 | 565 | 391 |
| 1996 | 632 | 5044 | 496 | 188 | 1699 | 475 | 148 |
| 1997 | 750 | 2491 | 350 | 246 | 2524 | 232 | 295 |
| 1998 | 593 | 473 | 242 | 183 | 365 | 263 | 177 |
| 1999 | 374 | 129 | 78 | 118 | 153 | 52 | 61 |
| 2000 | 757 | 713 | 419 | 377 | 364 | 209 | 307 |
| 2001 | 242 | 34 | 66 | 64 | 19 | 53 | 33 |
| 2002 | 693 | 3022 | 243 | 249 | 1505 | 117 | 125 |


| year class | recruitment | BST1 | BST2 | BST3 | BSA1 | BSA2 | BSA3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 537 | 323 | 217 | 116 | 161 | 139 | 65 |
| 2004 | 1244 | 853 | 289 | 361 | 500 | 158 | 59 |
| 2005 | 1003 | 674 | 370 | 194 | 411 | 47 | 200 |
| 2006 | 582 | 595 | 102 | 126 | 85 | 94 | 108 |
| 2007 | 202 | 69 | 36 | 37 | 51 | 26 | 23 |
| 2008 | 358 | 389 | 95 | 85 | 205 | 44 | 40 |
| 2009 | 503 | 1028 | 226 | 76 | 620 | 91 | 83 |
| 2010 | 465 | 617 | 100 | 69 | 266 | 40 | 61 |
| 2011 | 852 | 703 | 143 | 227 | 497 | 89 | 287 |
| 2012 | 452 | 436 | 191 | 144 | 313 | 211 | 139 |
| 2013 | 286 | 1246 | 343 | 99 | 1759 | 211 | 56 |
| 2014 | 782 | 1642 | 306 | 179 | 1904 | 202 | 112 |
| 2015 | 508 | 312 | 129 | 139 | 241 | 73 | 109 |
| 2016 | 659 | 645 | 501 | 282 | 439 | 280 | 204 |
| 2017 | 572 | 2714 | 559 | 238 | 2058 | 362 | 117 |
| 2018 | NA | 1791 | 274 | 115 | 1437 | 158 | 70 |
| 2019 | NA | 165 | 33 | NA | 93 | 17 | NA |
| 2020 | NA | 88 | NA | NA | 44 | NA | NA |

Table 1.9. Overview available prognoses of NEA cod recruitment (in million individuals of age 3) from different models.

| Model | Parameter | Years of prediction | 2021 | 2022 | 2023 | 2024 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Prognosis | Prognosis | Prognosis | Prognosis |
| TitovEL | $R$ at age 3 | 4 | 590 | 614 | 548 | 386 |
|  | Model weight |  | 0.34 | 0.47 | 1 | 1 |
| TitovES | $R$ at age 3 | 2 | 559 | 627 |  |  |
|  | Model weight |  | 0.42 | 0.53 | 0 | 0 |
| RCT3 | $R$ at age 3 | 3 | 525 | 301 | 384 |  |
|  | Model weight |  | 0.24 | 0 | 0 |  |
| Hybrid | $R$ at age 3 | 4 | 561 | 621 | 548 | 386 |



Figure 1.1. Standard errors of the NEA cod recruitment predicted values from the SAM values.


[^0]:    ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA
    CIEM CONSEIL INTERNATIONAL POUR L'EXPLORATION DE LA MER

[^1]:    ${ }^{1}$ As of October 2021, Section 10 of this report has been updated to reflect the outcomes of the autumn survey and the consequent meeting held online 4-5 October 2021.
    ${ }^{2}$ The two capelin stocks will be included in the benchmark workshop WKREDCAP 2022, together with beaked redfish (Sebastes mentella) in Subarea 14 and Division 5.a, Icelandic slope stock (East of Greenland, Iceland grounds).

[^2]:    ${ }^{3}$ Currently part of benchmark workshop WKREDCAP 2022.
    ${ }^{4}$ Proposed for a 2022-2023 benchmark together with NWWG Greenland halibut, ghl.27.561214.

