HERRING ASSESSMENT WORKING GROUP FOR THE AREA SOUTH OF $62^{\circ} \mathrm{N}$ (HAWG)

Please note: Annex 7 was added to this report 25 October 2019

VOLUME 1 | ISSUE 2

ICES SCIENTIFIC REPORTS
RAPPORTS
SCIENTIFIQUES DU CIEM

[^0]
International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H.C. Andersens Boulevard 44-46

DK-1553 Copenhagen V
Denmark
Telephone (+45) 33386700
Telefax (+45) 33934215
www.ices.dk
info@ices.dk

The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary.

This document is the product of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council.

ISSN number: 2618-1371 I © 2019 International Council for the Exploration of the Sea

ICES Scientific Reports

Volume 1 | Issue 2

HERRING ASSESSMENT WORKING GROUP FOR THE AREA SOUTH OF $62^{\circ} \mathrm{N}$ (HAWG)

Recommended format for purpose of citation:

ICES. 2019. Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG).
ICES Scientific Reports. 1:2. 971 pp. http://doi.org/10.17895/ices.pub. 5460

Editors

Valerio Bartolino • Susan Mærsk Lusseau

Abstract

Authors

Valerio Bartolino • Dorte Bekkevold • Florian Berg • Benoit Berges • Tanja Baagoe Buch • Cindy van Damme • Mikael van Deurs • Afra Egan • Michael Gras • Tomas Gröhsler • Ole Henriksen • Kirsten Birch Håkansson • Espen Johnsen • Jan Arge Jacobsen • Matthias Kloppmann • Cecilie Kvamme • Christophe Loots • Mathieu Lundy • Susan Mærsk Lusseau • Steven Mackinson • Henrik Mosegaard • Richard Nash • Martin Pastoors • Mark Payne • Lisa Readdy • Anna Rindorf • Norbert Rohlf • Claus Reedtz Sparrevohn • Vanessa Trijoulet

Contents

i Executive summary ii
ii Expert group information iii
1 Introduction 1
1.1 Terms of Reference. 1
1.2 Generic ToRs for Regional and Species Working Groups 2
1.3 Reviews of groups or projects important for the WG 3
1.3.1 Meeting of the Chairs of Assessment Related Expert Groups (WGCHAIRS) 3
1.3.2 Working Group for International Pelagic Surveys (WGIPS) 4
1.3.3 PGDATA, WGBIOP and WGCATCH 6
1.3.4 WGSAM 8
1.3.5 WKNSMSE 8
1.3.6 WKSPRAT \& WKSPRATMSE 12
1.3.7 IBPher6a7bc 13
1.3.8 IHLS and MIK surveys 13
1.3.9 Stock separation of herring in surveys and catches 14
1.3.9.1 Stock separation mini symposium 14
1.3.9.2 WKMIXHER 2018 15
1.3.9.3 WKSIDAC 2017 16
1.3.10 Other activities relevant for HAWG 18
1.4 Commercial catch data collation, sampling, and terminology 21
1.4.1 Commercial catch and sampling: data collation and handling 21
1.4.2 Sampling 22
1.4.3 Terminology 22
1.5 Methods Used 23
1.5.1 SAM 23
1.5.2 ASAP 23
1.5.3 SMS 23
1.5.4 Short term predictions. 24
1.5.5 Reference Points 24
1.5.6 Repository setup for HAWG 24
1.6 Ecosystem overview and considerations 24
1.7 Summary of relevant Mixed fisheries overview and considerations, species interaction effects and ecosystem drivers, Ecosystem effects of fisheries, and Effects of regulatory changes on the assessment or projections for all stocks 28
1.8 Stock overview 32
1.9 Mohn's rho and Bias in the assessments 40
1.10 Transparent Assessment Framework (TAF) 42
1.11 Benchmark process. 43
1.11.1 Ecosystem and long-term benchmark planning 44
1.12 Recommendations 44
2 Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners 45
2.1.1 ICES advice and management applicable to 2018 and 2019 45
2.1.2 Catches in 2018 45
2.1.3 Regulations and their effects 46
2.1.4 Changes in fishing technology and fishing patterns. 47
2.2 Biological composition of the catch 47
2.2.1 Catch in numbers-at-age 48
2.2.2 Other Spring-spawning herring in the North Sea 48
2.2.3 Data revisions 49
2.2.4 Quality of catch and biological data 49
2.3 Fishery independent information 50
2.3.1 Acoustic Surveys in the North Sea (HERAS), West of Scotland 6.a (N) and the Malin Shelf area (MSHAS) in June-July 2018. 50
2.3.2 International Herring Larvae Surveys in the North Sea (IHLS) 50
2.3.3 International Bottom Trawl Survey (IBTS-Q1) 51
2.4 Mean weights-at-age, maturity-at-age and natural mortality 52
2.4.1 Mean weights-at-age 52
2.4.2 Maturity ogive. 52
2.4.3 Natural mortality 53
2.5 Recruitment 53
2.5.1 Relationship between 0-ringer and 1-ringer recruitment indices 53
2.6 Assessment of North Sea herring 54
2.6.1 Data exploration and preliminary results 54
2.6.2 Exploratory Assessment for NS herring 55
2.6.3 Final Assessment for NS herring 55
2.6.4 State of the Stock 56
2.7 Short term predictions 56
2.7.1 Comments on the short-term projections 57
2.7.2 Exploratory short-term projections 58
2.8 Medium term predictions and HCR simulations 59
2.9 Precautionary and Limit Reference Points and FMSY targets 59
2.10 Quality of the assessment 59
2.11 North Sea herring spawning components 60
2.11.1 International Herring Larval Survey 60
2.11.2 IBTSO Larval Index 60
2.11.3 Component considerations 60
2.12 Ecosystem considerations 60
2.13 Changes in the environment 60
3 Herring in Division 3.a and subdivisions 22-24, spring spawners [update assessment] 242
3.1 The Fishery 242
3.1.1 Advice and management applicable to 2018 and 2019 242
3.1.2 Landings in 2018 242
3.1.3 Regulations and their effects 244
3.1.4 Changes in fishing technology and fishing patterns 244
3.1.5 Winter rings vs. ages 244
3.2 Biological composition of the landings 244
3.2.1 Quality of Catch Data and Biological Sampling Data 245
3.3 Fishery-independent Information 246
3.3.1 German Autumn Acoustic Survey (GERAS) in subdivisions 21-24 246
3.3.2 Herring Summer Acoustic Survey (HERAS) in Division 3.a 247
3.3.3 Larvae Surveys (N20) 247
3.3.4 IBTS/BITS Q1 and Q3-Q4 247
3.4 Mean weights-at-age and maturity-at-age 247
3.5 Recruitment 248
3.6 Assessment of Western Baltic spring spawners in Division 3.a and subdivisions 22-24 248
3.6.1 Input data 248
3.6.2 Assessment method 249
3.6.3 Assessment configuration 249
3.6.4 Final run 250
3.7 State of the stock 252
3.8 Comparison with previous years perception of the stock 252
3.9 Short term predictions 253
3.9.1 Input data 253
3.9.2 Intermediate year 2019 253
3.9.3 Catch scenarios for 2020 254
3.9.4 Exploring a range of total WBSS catches for 2020 (advice year) 254
3.10 Reference points 256
3.11 Quality of the Assessment 256
3.12 Management Considerations 256
3.13 Ecosystem considerations 258
3.14 Changes in the Environment 258
4 Herring (Clupea harengus) in divisions $6 . a$ (combined) and 7.b-c 372
4.1 The Fishery 372
4.1.1 Advice applicable to 2016-2018 372
4.1.2 Changes in the fishery 373
4.1.3 Regulations and their affects 373
4.1.4 Catches in 2018 373
4.2 Biological Composition of the Catch 373
4.3 Fishery-independent Information 373
4.3.1 Acoustic surveys 373
4.3.1.1 Industry-Science Acoustic survey 375
4.3.2 Scottish Bottom-trawl surveys 375
4.4 Mean Weights-at-age, Maturity-at-age and natural mortality 375
4.4.1 Mean weight-at-age 375
4.4.2 Maturity ogive 376
4.4.3 Natural mortality 376
4.5 Recruitment 376
4.6 Assessment of 6.a and 7.b-c herring 376
4.6.1 Final Assessment for 6.a and 7.b-c herring 378
4.6.2 State of the combined stocks 378
4.7 Short-term Projections 378
4.7.1 Short-term projections 378
4.7.2 Yield per Recruit 378
4.8 Precautionary and Yield Based Reference Points 378
4.9 Quality of the Assessment 379
4.10 Management Considerations 379
4.11 Ecosystem Considerations 380
4.12 Changes in the Environment 380
5 Herring (Clupea harengus) in divisions 6.a (South), 7.b-c, and 6.a (North), separate 490
5.1 Herring in divisions 6.a (South) and 7.b-c 490
5.1.1 The Fishery 490
5.1.1.1 Advice and management applicable to 2018. 490
5.1.1.2 Catches in 2018 490
5.1.1.3 Regulations and their effects 491
5.1.1.4 Changes in fishing technology and fishing pattern 491
5.1.2 Biological composition of the catch 491
5.1.2.1 Catch s-at-age 491
5.1.2.2 Quality of the catch and biological data 491
5.1.3 Fishery-independent Information 491
5.1.3.1 Acoustic Surveys 491
5.1.3.2 Industry acoustic survey in 2018 492
5.1.4 Mean weights-at-age and maturity-at-age 492
5.1.4.1 Mean Weights-at-Age 492
5.1.4.2 Maturity Ogive 492
5.1.5 Recruitment 492
5.1.5.1 Stock Assessment of 6.a (South) and 7.b-c 492
5.1.5.2 State of the stock 493
5.1.6 Short-term projections 493
5.1.7 Medium-term simulations 493
5.1.8 Long-term simulations 493
5.1.9 Precautionary and yield based reference points 493
5.1.10 Quality of the assessment 493
5.1.11 Management considerations 493
5.1.12 Environment 493
5.1.12.1 Ecosystem considerations 493
5.1.12.2 Changes in the environment 494
5.2 Herring in Division 6.a (North) 509
5.2.1 The Fishery 509
5.2.1.1 Advice and management applicable to 2018 509
5.2.1.2 The monitoring fishery. 509
5.2.1.3 Stock recovery plan. 510
5.2.1.4 Catches in 2018 510
5.2.1.5 Regulations and their affects 510
5.2.1.6 Changes in fishing technology and fishing pattern 510
5.2.2 Biological Composition of the Catch 510
5.2.3 Fishery-independent Information 511
5.2.3.1 Acoustic survey-MSHAS_N 511
5.2.3.2 Acoustic survey- 6 .a Herring industry-science survey 2018 511
5.2.4 Mean Weights-at-age and Maturity-at-age 512
5.2.4.1 Mean weight-at-age 512
5.2.4.2 Maturity ogive 512
5.2.5 Recruitment 512
5.2.6 Assessment of 6.a (North) Herring 512
5.2.6.1 Stock Assessment 512
5.2.6.2 State of the stock 512
5.2.7 Short-term Projections 512
5.2.7.1 Deterministic short-term projections 512
5.2.7.2 Yield-per-recruit 512
5.2.8 Precautionary and Yield Based Reference Points 512
5.2.9 Quality of the Assessment 513
5.2.10 Management Considerations 513
5.2.11 Ecosystem Considerations 513
5.2.12 Changes in the Environment 513
References 529
6 Herring in the Celtic Sea (divisions 7.a South of $52^{\circ} 30^{\prime} \mathrm{N}$ and 7.g, 7.h and 7.j) 530
6.1 The Fishery 530
6.1.1 Advice and management applicable to 2018-2019. 530
6.1.2 The fishery in 2018-2019 530
6.1.3 Changes in fishing technology and fishing patterns 531
6.1.4 Discarding 531
6.2 Biological composition of the catch 532
6.2.1 Catches in numbers-at-age 532
6.2.2 Quality of catch and biological data 532
6.3 Fishery-Independent Information 532
6.3.1 Acoustic Surveys 532
6.4 Mean weights-at-age and maturity-at-age and Natural Mortality 533
6.5 Recruitment 534
6.6 Assessment 534
6.6.1 Stock Assessment. 534
6.7 Short-term projections 535
6.7.1 Deterministic Short-Term Projections 535
6.7.2 Multiannual short-term forecasts 535
6.7.3 Yield-per-recruit. 535
6.8 Long-term simulations 535
6.9 Precautionary and yield-based reference points 536
6.10 Quality of the Assessment 536
6.11 Management Considerations 537
6.12 Ecosystem considerations 537
6.13 Changes in the environment 537
$7 \quad$ Herring in Division 7.a North (Irish Sea) 573
7.1 The Fishery 573
7.1.1 Advice and management applicable to 2018 and 2019 573
7.1.2 The fishery in 2018 573
7.1.3 Regulations and their effects 573
7.1.4 Changes in fishing technology and fishing patterns 574
7.2 Biological Composition of the Catch 574
7.2.1 Catch in numbers 574
7.2.2 Quality of catch and biological data 574
7.3 Fishery Independent Information 574
7.3.1 Acoustic surveys AC(7.aN) 574
7.3.2 Spawning stock biomass survey (7.aNSpawn) 575
7.4 Mean weight, maturity and natural mortality-at-age 576
7.5 Recruitment 576
7.6 Assessment 576
7.6.1 Data exploration and preliminary modelling 576
7.6.2 Final assessment 578
7.6.3 State of the stock 578
7.7 Short term projections 579
7.7.1 Deterministic short term projections 579
7.7.2 Yield per recruit 579
7.8 Medium term projections 579
7.9 Reference points 579
7.10 Quality of the assessment 579
7.11 Management considerations 580
7.12 Ecosystem Considerations 581
8 Stocks with limited data 653
8.1 Clyde herring 653
8.2 Division 7.e,f 653
8.3 Subarea 8 (Bay of Biscay) 653
9 Sandeel in Division 3.a and Subarea 4 658
9.1 General. 658
9.1.1 Ecosystem aspects 658
9.1.2 Fisheries 658
9.1.3 ICES Advice 659
9.1.4 Norwegian advice 659
9.1.5 Management 659
9.1.6 Catch 660
9.1.7 Sampling the catch 661
9.1.8 Survey indices 661
9.2 Sandeel in SA 1r 661
9.2.1 Catch data 661
9.2.2 Weight at age 661
9.2.3 Maturity 661
9.2.4 Natural mortality 662
9.2.5 Effort and research vessel data 662
9.2.6 Data analysis 662
9.2.7 Final assessment 663
9.2.8 Historic Stock Trends 663
9.2.9 Short-term forecasts 664
9.2.10 Biological reference points 664
9.2.11 Quality of the assessment. 664
9.2.12 Management Considerations 665
9.3 Sandeel in SA $2 r$ 665
9.3.1 Catch data 665
9.3.2 Weight at age 665
9.3.3 Maturity 666
9.3.4 Natural mortality 666
9.3.5 Effort and research vessel data. 666
9.3.6 Data analysis 666
9.3.7 Final assessment 668
9.3.8 Historic Stock Trends 668
9.3.9 Short-term forecasts 668
9.3.10 Biological reference points 668
9.3.11 Quality of the assessment 668
9.3.12 Status of the Stock 669
9.3.13 Management considerations 669
9.4 Sandeel in SA 3r 670
9.4.1 Catch data 670
9.4.2 Weight at age 670
9.4.3 Maturity 670
9.4.4 Natural mortality 670
9.4.5 Effort and research vessel data. 670
9.4.6 Data Analysis 671
9.4.7 Final assessment 672
9.4.8 Historic Stock Trends 672
9.4.9 Short-term forecasts 672
9.4.10 Biological reference points 672
9.4.11 Quality of the assessment. 672
9.4.12 Status of the Stock 673
9.4.13 Management Considerations 673
9.5 Sandeel in SA 4 673
9.5.1 Catch data 673
9.5.2 Weight at age 673
9.5.3 Maturity 673
9.5.4 Natural mortality 673
9.5.5 Effort and research vessel data. 673
9.5.6 Data analysis 674
9.5.7 Final assessment 674
9.5.8 Historic Stock Trends 674
9.5.9 Short-term forecasts 675
9.5.10 Biological reference points 675
9.6 Sandeel in SA 5 676
9.6.1 Catch data 676
9.7 Sandeel in SA 6 676
9.7.1 Catch data 676
9.8 Sandeel in SA 7 676
9.8.1 Catch data 676
9.9 References 676
10 Sprat in Division 3.a and Subarea 4 (Skagerrak, Kattegat and North Sea) 778
10.1 The Fishery 778
10.1.1 ACOM advice applicable to 2019 and 2020 778
10.1.2 Catches in 2018 778
10.1.3 Regulations and their effects 778
10.1.4 Changes in fishing technology and fishing patterns 778
10.2 Biological composition of the catch 779
10.3 Fishery Independent Information 779
10.3.1 IBTS Q1 and Q3 779
10.3.2 Acoustic Survey (HERAS) 779
10.4 Mean weights-at-age and maturity-at-age 780
10.5 Recruitment 780
10.6 Stock Assessment 780
10.6.1 Input data 781
10.6.2 Stock assessment model 782
10.7 Reference points 782
10.8 State of the stock 783
10.9 Short-term projections 783
10.10 Quality of the assessment 784
10.11 Management Considerations 784
10.11.1 Stock units 784
10.12 Ecosystem Considerations 784
10.13 Changes in the environment 785
10.14 Audit of spr.27.3a4 (Sprat in the North Sea) 845
11 Sprat in the North Sea 846
12 Sprat in the English Channel (divisions.de) 847
12.1 The Fishery 847
12.1.1 ICES advice applicable for 2018 and 2019 847
12.1.2 Landings 847
12.1.3 Fleets 847
12.1.4 Regulations and their effects 847
12.1.5 Changes in fishing technology and fishing patterns 848
12.2 Biological Composition of the Catch 848
12.2.1 Catches in number and weight-at-age 848
12.3 Fishery-independent information 848
12.4 Mean weight-at-age and maturity at age 849
12.5 Recruitment 849
12.6 Stock Assessment 849
12.6.1 Data exploration 850
12.7 State of the Stock 851
12.8 Short term projections 851
12.9 Reference Points 851
12.10 Quality of the Assessment 852
12.11 Management Considerations 852
12.12 Ecosystem Considerations 852
13 Sprat in the Celtic Seas (subareas 6 and 7) 863
13.1 The Fishery 863
13.1.1 ICES advice applicable for 2019 and 2020 863
13.1.2 Landings 863
13.1.3 Fleets 864
13.1.4 Regulations and their effects 865
13.1.5 Changes in fishing technology and fishing patterns 865
13.2 Biological Composition of the Catch 865
13.2.1 Catches in number and weight-at-age 865
13.2.2 Biological sampling from the Scottish Fishery (6a) 865
13.3 Fishery-independent information 865
13.4 Mean weight-at-age and maturity at age 867
13.5 Recruitment 867
13.6 Stock Assessment 867
13.7 State of the Stock 867
13.8 Short term projections 867
13.9 Reference Points 867
13.10 Quality of the Assessment 867
13.11 Management Considerations 867
13.12 Ecosystem Considerations 868
14 References 891
Annex 1: List of participants 895
Annex 2: Recommendations 897
Annex 3: Resolutions for next meeting 898
Annex 4: List of Stock Annexes 899
Annex 5: Working documents 900
Annex 6: Summaries of presentations from Stock ID mini symposium 960
Annex 7: Special Request - Evaluation of a sentinel TAC for Celtic Sea Herring 972

i Executive summary

The ICES herring assessment working group (HAWG) met for seven days in March 2019 to assess the state of five herring stocks and three sprat stocks. HAWG also provided advice for seven sandeel stocks but reported on those prior to this meeting in February. The working group conducted update assessments for the five herring stocks. An analytical assessment was performed for the combined North Sea and Division 3.a sprat, and data limited assessments (ICES category 3 and 5) were conducted for English Channel sprat (spr.27.7de) and sprat in the Celtic Sea (spr.27.67a-cf-k).

The North Sea autumn spawning herring (her.27.3a47d) SSB in 2018 was estimated at 1.9 mill tonnes while F_{2-6} in 2018 was estimated at 0.21 , which is below Fmš. Fishing mortality on juveniles, mean F_{0-1} is 0.028 , below the agreed ceiling. Recruitment in 2018 has increased compared to 2017 but remains within the low recruitment regime observed since 2015. Year classes since 2002 are estimated to be consistently weak with year classes 2015 to 2017 some of the weakest on record. ICES considers that the stock is still in a low productivity phase.

The Western Baltic spring spawning herring (her.27.20-24) assessment was updated. The SSB in 2018 is estimated to be around 74132 tonnes. Fishing mortality has been estimated at 0.416 which is above the estimate of $\mathrm{F}_{\mathrm{mSY}}$ (0.31). Recruitment has been low since 2006 and continues to decrease with 2018 the lowest observed in the time-series. Under a historical perspective the estimate of SSB in 2018 is considered low, below both $B_{p a}$ and $B_{l i m}$, The stock has decreased consistently during the second half of the 2000s and given the continued low recruitments the stock is not able to recover above Blim unless a drastic reduction in fishing effort is applied.

The Celtic Sea autumn and winter spawning stock (her.27.irls) is estimated to be at a very low level, declining from a high biomass that peaked in 2011. SSB is currently estimated at 23000 tonnes in 2018, coming down from 136000 tonnes in 2011. The stock is now below Blim (34000 t). Mean $\mathrm{F}_{(2-5 \text { rings) }}$ was estimated at 0.33 in 2018 , having increased from 0.06 in 2009. Recruitment has been consistently below average since 2013.The assessment of the combined stock of herring in $6 . a N$ and $6 . a S / 7 . b$, $\mathbf{c}(H e r .27 .6 a 7 b c$) went through an interbenchmark procedure in 2019 and the advice is now based on trends from an analytical assessment. SSB and recruitment have been declining since around 2000 and are currently at the lowest level in the time series. Fishing mortality has reduced since 2016 when catches have been limited to a scientific monitoring TAC but recovery of the stock is hampered by the very low recruitment.

Irish Sea autumn spawning herring (her.27.nirs) assessment shows a stable SSB in 2018 compared to previous years at around 22020 tonnes. The stock has experienced large incoming year classes in most recent years. Fishing mortality (F_{4-6}) is estimated at 0.16 , one of the lowest in the time series and below $\mathrm{Fmsy}^{(0.266)}$. Catches have been relatively stable since the 1980s, and close to TAC levels in recent years. North Sea and 3.a Sprat (spr.27.3a4) were combined into a single assessment unit during the recent WKSPRAT benchmark. The long-term dynamics and perception of the status of the combined stock is consistent with previous perception for sprat in Subarea 4 . Despite the fact that fishing mortality in the last years has fluctuated at high levels between $0.6-2.2$, recruitments slightly above the average during recent years have contributed to an increase in SSB well above MSY Bescapement. The estimates for 2019 show an SSB of 249000 t which is nearly double of $\mathrm{B}_{\mathrm{pa}}(125000 \mathrm{t})$.

Catch advice for sprat in the English Channel (7.d, e) (spr.27.7de) was based on criteria for an ICES category 3-based method. Data available are landings and a short time series of acoustic
biomass (2013-2018). The acoustic biomass indicates an overall decline in the stock size. Quantitative advice was provided for Sprat in the Celtic Sea (spr.27.67a-cf-k) using an ICES category 5-based method where only data on landings are available.

The HAWG reviewed the assessments performed on seven sandeel stocks and the related advice of these stocks. Section 9 of this report contains the assessments of sandeel in Division 3.a and Subarea 4.

Standard issues such as the quality and availability of data, estimating the amounts of discarded fish, availability of data through industry surveys and scientific advances particularly with respect to stock discrimination relevant for small pelagic fish were discussed.

All data and scripts used to perform the assessments and perform the forecast calculations are available on GitHub and accessible to anyone.

ii Expert group information

Expert group name	Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG)
Expert group cycle	Annual
Year cycle started	2019
Reporting year in cycle	$1 / 1$
Valerio Bartolino, Sweden	
Meeting venue and dates	HAWan Mærsk Lusseau, United Kingdom

1 Introduction

1.1 Terms of Reference

2018/2/ACOM07 The Herring Assessment Working Group for the Area South of 62N (HAWG), chaired by Susan Lusseau*, UK, and Valerio Bartolino*, Sweden, will meet at ICES Head-quarters for two meetings: 29-31 January 2019 to:
a) Compile the catch data of sandeel in assessment areas $1 \mathrm{r}, 2 \mathrm{r}, 3 \mathrm{r}, 4,5 \mathrm{r}, 6$, and 7 r and address generic ToRs for Regional and Species Working Groups that are specific to sandeel stocks in the North Sea ecoregion; and 13-21 March 2019 to:
b) compile the catch data of North Sea and Western Baltic herring on 13-14 March;
c) address generic ToRs for Regional and Species Working Groups 15-21 March for all other stocks assessed by HAWG.

The assessments will be carried out based on the Stock Annex. The assessments must be available for audit on the first day of the meeting.

Material and data relevant for the meeting must be available to the group on the dates specified in the 2019 ICES data call. HAWG will report by 11 February and 5 April 2019 for the attention of ACOM.

Fish Stock	Stock Name	Stock Coord.	Assesss. Coord. 1	Assess. Coord. 2	Advice	Review (SA)
san-sa	Sandeel in Division 3.a and Subarea 4	Denmark	Denmark	Norway	Update	Sweden/Ger-many/Norway/Denmark
her-27.20-24	Herring in Subdivisions 20-24 (Western Baltic Spring spawners)	Denmark	Denmark	Denmark	Update	UK/Denmark
her-27.3a47d	Herring in Subarea 4 and Division 3.a and 7.d (North Sea Autumn spawners)	Germany	NL	UK (Scotland)	Update	Norway/UK (Scotland)/Denmark
her-27.irls	Herring in Division 7.a South of $52^{\circ} 30^{\prime} \mathrm{N}$ and 7.g-h and 7.j-k (Celtic Sea and South of Ireland)	Ireland	Ireland		Update	Netherlands
her-27.6a7bc	Herring in Divisions 6.a and 7.b and 7.c	UK (Scot- land) / Ireland	Ireland	UK (Scotland)	Update	UK (Northern Ireland)
her-27.nirs	Herring in Division 7.a North of $52^{\circ} 30^{\prime} \mathrm{N}$ (Irish Sea)	UK (Northern Ireland)	UK (Northern Ireland)	-	Update	Netherlands

Fish Stock	Stock Name	Stock Coord.	Assesss. Coord. 1	Assess. Coord. 2	Advice	Review (SA)
spr-27.3a4	Sprat in Division 3.a (Skagerrak - Kattegat) and Subarea 4 (North Sea)	Norway	Denmark	-	Update	France/(Denmark/Nor- way
spr-27.7de	Sprat in the Western Channel	UK	UK	-	Update	Norway / Ireland
spr-27.67a-cf-k	Sprat in the Celtic Seas	UK	UK	-	Update	

1.2 Generic ToRs for Regional and Species Working Groups

2018/2/ACOM05 The following ToRs apply to: AFWG, HAWG, NWWG, NIPAG, WGWIDE, WGBAST, WGBFAS, WGNSSK, WGCSE, WGDEEP, WGBIE, WGEEL, WGEF, WGHANSA and WGNAS

The working group should focus on:

- Consider and comment on Ecosystem and Fisheries overviews where available;
- b) For the aim of providing input for the Fisheries Overviews, consider and comment for the fisheries relevant to the working group on:
- i) descriptions of ecosystem impacts of fisheries
- ii) descriptions of developments and recent changes to the fisheries
- iii) mixed fisheries considerations, and
- iv) emerging issues of relevance for the management of the fisheries;
- c) Conduct an assessment on the stock(s) to be addressed in 2019 using the method (analytical, forecast or trends indicators) as described in the stock annex and produce a brief report of the work carried out regarding the stock, summarising where the item is relevant:
- i) Input data and examination of data quality;
- ii) Where misreporting of catches is significant, provide qualitative and where possible quantitative information and describe the methods used to obtain the information;
- iii) For relevant stocks (i.e., all stocks with catches in the NEAFC Regulatory Area) estimate the percentage of the total catch that has been taken in the NEAFC Regulatory Area in 2018.
- iv) Estimate MSY proxy reference points for the category 3 and 4 stocks
- v) The developments in spawning stock biomass, total stock biomass, fishing mortality, catches (wanted and unwanted landings and discards) using the method described in the stock annex;
- vi) The state of the stocks against relevant reference points;
- vii) Catch scenarios for next year(s) for the stocks for which ICES has been requested to provide advice on fishing opportunities;
- viii)Historical and analytical performance of the assessment and catch options with a succint description of quality issues with these. For the analytical performance of category 1 and 2 age-structured assessment, report the mean Mohn's rho (assessment retrospective (bias) analysis) values for R, SSB and F. The WG report should include a plot of this retrospective analysis. The values should be calculated in accordance with the "Guidance for completing ToR viii) of the Generic ToRs for Regional and Species Working

Groups - Retrospective bias in assessment" and reported using the ICES application for this purpose.Produce a first draft of the advice on the stocks under considerations according to ACOM guidelines.

- d) Review progress on benchmark processes of relevance to the Expert Group;
- e) Prepare the data calls for the next year update assessment and for planned data evaluation workshops;
- f) Identify research needs of relevance for the work of the Expert Group.

Information of the stocks to be considered by each Expert Group is available here.

The ToRs are addressed in the sections shown in the text table below.

Stock	Addressed in Section
Herring in Subarea 4 and Division 3.a and 7.d (North Sea Autumn spawners)	Section 02
Herring in Division 3.a and subdivisions 20-24 (Western Baltic Spring spawners)	Section 03
Herring in divisions 6.a and 7.b-c	Section 04
Herring in divisions 6.a (South), 7.b-c, and 6.a (North), separately	Section 05
Herring in Division 7.a South of 52 ${ }^{\circ} 30^{\prime} \mathrm{N}$ and 7.g-h and 7.j-k (Celtic Sea and South of Ireland)	Section 06
Herring in Division 7.a North of 52 ${ }^{\circ} 30^{\prime} \mathrm{N}$ (Irish Sea)	Section 07
Stocks with limited data	Section 08
Sandeel in Division 3.a and Subarea 4	Section 09
Sprat in Division 3.a (Skagerrak - Kattegat)	Section 10
Sprat in Subarea 4 (North Sea) and Division 3.a (Kattegat-Skagerrak) 11	

1.3 Reviews of groups or projects important for the WG

HAWG was briefed throughout the meeting about other groups and projects that were of relevance to their work. Some of these briefings and/or groups are described below.

1.3.1 Meeting of the Chairs of Assessment Related Expert Groups (WGCHAIRS)

As usual WGCHAIRS met at the beginning of the year in preparation of the new year of advice and science working groups' activities.

Under the new ICES strategy, a new steering group, Fisheries Resources Steering Group (FRSG), will be created. Activities of advisory working groups such as HAWG will be conducted under the umbrella of FRSG. This re-organisation is mainly motivated by the intention to enhance the
transfer of new science into advice and facilitate interaction between the individual working groups and both ACOM and SCICOM, FRSG will become operative throughout 2019. Advisory expert groups will maintain their prerogative of "closed groups" in the sense that members will be still nominated at a national level.

Overall, the format of the advice had no major changes. WGCHAIRS remarked the importance of quality assurance of the ICES advice and the role of the audit system in this. Audits should be performed rigorously according to a given template (same as last year). At HAWG this is implemented assigning at least two members as auditors for each stock.

This year ICES has increased its attention towards evaluation of potential Conflict of Interest (CoI) in relation to any of its advisory activity. Expert groups are now considering CoI even more carefully than before with specific reference to a code of conduct which has been discussed and explicitly agreed by all members of HAWG at the beginning of the meeting.

WGCHAIRS remarked that while considerable progresses have been made in the documentation and quality assurance of scientific data (incl. both surveys and commercial data collected for scientific purposes), quality of the landing data is generally poorly documented by member countries. It remains the responsibility of the individual countries to implement quality assurance frameworks for the landings data.

From 2019, ICES will publish the reports from expert working groups (incl. assessment groups) as part of the new ICES scientific report series. This means that all the reports will have an ISSN and a DOI number, and most importantly authorship of the report will now lay on the members of the working group with the chairs named as editors and all the members presented as authors.

1.3.2 Working Group for International Pelagic Surveys (WGIPS)

The Working Group of International Pelagic Surveys (WGIPS) met in Santa Cruz, Spain on 1418 January 2019. Among the core objectives of the Expert Group are combining and reviewing results of annual pelagic ecosystem surveys to provide indices for the stocks of herring, sprat, mackerel, boarfish, and blue whiting in the Northeast Atlantic, Norwegian Sea, North Sea, and Western Baltic; and to coordinate timing, coverage, and methodologies for the upcoming 2019 surveys.

Results of the surveys covered by WGIPS and coordination plans for the 2019 pelagic acoustic surveys are available from the WGIPS report (WGIPS, ICES 2019). The following text refers only to the surveys of relevance to HAWG.

Review of larvae surveys in 2018:

These surveys are no longer dealt with in WGIPS. From 2019 the planning, analysis and reporting on larvae surveys will fall under WGSINS. In the interim period results from for the 2017/18 larvae surveys can be found in the HAWG report, Section 3.3.2 and for 2018/19 they will be coordinated and reported on in WGEGGS2.

North Sea, West of Scotland and Malin Shelf summer herring acoustic surveys in 2018: Six surveys were carried out during late June and July covering most of the continental shelf in the North Sea, West of Scotland, Malin Shelf, West of Ireland and Celtic Sea.

The estimate of North Sea autumn spawning herring spawning stock biomass is higher than previous year at 2.3 million tonnes (2017: 1.9) due to an increase in the number of fish (2017: 11.621 mill. fish, 2018: 12.315) and an increase in weight-at-age for mature herring. The spawning stock is dominated by young fish of age 4 and 5 wr , which is in accordance with the strongest year classes in the 2017 survey.

The 2018 estimate of Western Baltic spring-spawning herring 3+ group is 107000 tonnes and 745 million. This is a decrease of 52 and 45%, respectively, compared to the 2017 estimates of 221000 tonnes and 1353 million fish.

The West of Scotland estimate (6.a.N) of SSB is 152000 tonnes and 875 million individuals, a small increase compared to the 139000 tonnes and 765 million herring estimate in 2017.

The 2018 SSB estimate for the Malin Shelf area (6.a and 7.b,c) is 159000 tonnes and 925 million individuals. This is a about the same level as the 2017 estimates (145000 tonnes and 798 million herring). There was some herring distribution south of $56^{\circ} \mathrm{N}$ in 2017-2018; this resulted in a slightly higher estimate for the Malin Shelf compared to the West of Scotland.

There was a sprat benchmark in November 2018 (ICES, 2018), resulting in the two sprat stocks in the North Sea and Skagerrak-Kattegat being merged into one. For consistency, the survey results are presented separately in this report for these two areas.

The total abundance of North Sea sprat (Subarea 4) in 2018 was estimated at 120141 million individuals and the biomass at 834000 tonnes (Table 5.10). This is nearly 3 times as many sprat as last year, the second highest in the time series and high above the long-term average of the time series, in terms of both abundance (137% above) and biomass (88%). The stock is dominated by 1-year-old sprat (89% in numbers). The estimate also included $0-\mathrm{gr}$ sprat (3% in numbers, and 0.1% in biomass), which only occasionally is observed in the HERAS survey.

In for sprat in Division 3.a, the abundance in 2018 is estimated at 3438 million individuals and the biomass at 33400 tonnes; the second highest estimate of the time series as for the North Sea. This is well above the long-term average both in terms of abundance (86%) and biomass (38%). The stock is dominated by 1 - and 2 -year-old sprat.

Irish Sea Acoustic Survey:

The herring abundance for the Irish Sea and North Channel (7.a.N) in Aug/Sept 2017 and Aug/Sept 2018 was reported by Northern Ireland The estimate of herring SSB of 91332 tonnes for 2016 was near the series high 2010 estimate. In 2018 the estimate was 39997 tonnes, similar to that observed in 2017. The biomass estimate of 54661 tonnes for $1+$ ringers is a 25% increase on last year's biomass estimate. Unlike in previous years when a large proportion of the $1+$ biomass estimate is seen in north of the Isle of Man and in North Channel, in the current year the majority of biomass was observed in the south east of the Isle of Man area. The western and northern Irish Sea are areas of mixed size fish. In 2018 the sampling intensity was relatively high during the 2018 survey with 32 successful trawls completed. The herring were fairly widely distributed within mixed schools at low abundance, with a few distinct high abundance areas. The bulk of $1+$ herring targets in 2018 were observed off the east coast of the Isle of Man, and on the eastern coast of Northern Ireland, with a fairly scattered lower abundance observed throughout the Irish Sea. Sprat and 0-group herring were distributed around the periphery of the Irish Sea, with the most abundance of 0 -group herring in the eastern side. The length frequencies generated from these trawls highlight the spatial heterogeneous nature of herring age groups in the Irish Sea. The survey estimates are influenced by the timing of the spawning migration.

Irish Sea spawning acoustic survey: A series of additional acoustic surveys has been conducted since 2007 by Northern Ireland, following the annual pelagic acoustic survey (conducted during the beginning of September). The survey uses a stratified design similar to the AC(7.aN). Survey methodology, data processing and subsequent analysis is exactly the same as for $\mathrm{AC}(7 . \mathrm{aN})$ and follows standard protocols for surveys coordinated by WGIPS. The survey was presented to WGIPS in 2017 prior to inclusion into the benchmark. The results of the survey is reported in the WGIPS 2018 report (ICES, 2018). The survey is included in the assessment as a SSB index. The SSB in 2017 was estimated as 20171 41, 683 declining to 38974 in 2018. The herring were
distributed within a few distinct high abundance areas to the southwest and southeast of the Isle of Man. The estimate of herring SSB from the 2018 commercial acoustic survey remain within range for the time series.

Celtic Sea herring acoustic survey (CSHAS): Herring and sprat abundance for the Celtic Sea in October 2018 was reported by the Marine Institute, Ireland. The Celtic Sea herring stock was considered to have been contained within the survey area in 2018. The spawning stock biomass (SSB) estimate in 2018 was 7760 tonnes and is comparable to the 2017 survey estimate. Both years represent the lowest SSB points in the survey time series. The CV on the survey estimate was high (~ 0.50) in 2018. The downward trend in the standing stock biomass has continued from a medium term high around 2012 and has been exacerbated by a prolonged period of poor recruitment since then. Observations made during the WESPAS summer survey in June 2018 confirm the currently low standing stock abundance of herring in the Celtic Sea. The potential of a positive signal in recruitment was evident from survey catches with 0-group herring observed across the CSHAS survey area and further east into UK waters. The biomass and abundance of sprat in 2018 was higher than in 2017 and more in line with the 2016 estimate.

Pelagic ecosystem survey in Western Channel and eastern Celtic Sea (PELTIC): This survey was conducted by Cefas, UK, in the Western Channel and eastern Celtic Sea in October 2018. Geographical coverage extended southwards in 2017 to include French waters in the western Channel and in 2018 was further extended in to Division 7.d Both the number of completed acoustic transects and trawls exceeded those achieved in 2017. Preliminary results indicated some differences in ichthyofauna observations when compared to 2017. In the Bristol Channel, other than the usual hotspot inside the estuary, the majority of fish biomass was found more inshore, as demonstrated also by the location of the trawl effort. In the French waters of the western Channel more fish activity was found along the western-most transects. Further east in the western Channel, very few schools were encountered, which matched last year's results. The transects east of Lyme Bay, sampled for the first time during PELTIC, yielded little fish biomass. Sprat was in general the dominant small pelagic species in the trawl samples, with highest densities in the eastern parts of the western Channel and the Bristol Channel. As in previous years, large schools in the Bristol Channel appeared to consist mainly of juvenile sprat, whereas those in the English Channel also included larger size classes. The age distribution of sprat in the survey area shows a marked distinction between the young fish (0 and 1) found in the Bristol Channel and the older age classes that occupy the Western English Channel. Whether the two clusters belong to the same stock has yet to be proved: the circulation pattern of the area would allow sprat eggs/larvae to travel northward, from division 7.e to 7.g; however, the formation of a front in late spring/early summer seems to suggest the hypothesis of two different stocks.

Sprat biomass had increased in Lyme Bay in 2017 (English Channel: 34109 tonnes) compared to the low biomass estimate from 2016. A decline in biomass was observed in 2018 again to 17091 tonnes.

1.3.3 PGDATA, WGBIOP and WGCATCH

The Planning Group on Data Needs for Assessments and Advice (PGDATA coordinates the activities of both WGBIOP and WGCATCH. One of its main focuses is on the quality of data going into stock assessments and development of methods for identifying improvements in data quality, or collections of new data, that have the greatest impacts on the quality of advice.

The ICES Working Group on Biological Parameters (WGBIOP) coordinates the practical implementation of quality assured and statistically sound development of methods, standards and guidelines for the provision of accurate biological parameters for stock assessment purposes. The
overall aim for WGBIOP is to review the status of current issues, achievements and developments of biological parameters and identify future needs in line with ICES requirements and the wider European environmental monitoring and management.

As biological parameters are among the main input data for most stock assessment and mixed fishery modelling, these activities are considered to have a very high priority. The main link between stock-assessment working groups and WGBIOP is through the benchmark process. WGBIOP works in close association with the BSG (ICES benchmark steering group), reviewing all issue lists pointing to either missing issues in relation to specific stocks and guiding the process to get issues related to biological parameters resolved. WGBIOP will align its scheduling of age and maturity calibration exchanges and workshops with the newly proposed ICES benchmark prioritisation system. WGBIOP has a close working relationship with WGSMART (The Working Group on SmartDots Governance) and in cooperation will further develop the SmartDots tool as a platform for supporting the provision of quality assured data to the end users.

The last WGBIOP (October 2018) reviewed the following activities falling within its remit and of interest for HAWG:

- Herring (Clupea harengus) Otolith Microstructure (OM) exchange. In 2018, 4 readers from Sweden and Denmark took part in an exchange of ground and polished otoliths ($\mathrm{n}=96$) from ICES areas 3.aN, 3.aS and 4.b, the overall agreement across readers was 45%. 23 of the samples had a genetically validated stock ID, there were just 5 of these where all 4 readers were in agreement with the genetic results. Readers agreed that overtime OM patterns have changed and it has become more and more difficult to clearly distinguish between the spawning types, mostly between the Western Baltic spring spawners (WBSS) and the Downs winter spawners. In early 2019 another exchange took place with the same 4 readers participating and all samples ($n=93$) had a genetically validated stock ID assigned. The overall agreement was 85% with the Downs winter spawners being the most difficult to identify correctly. The presence of samples from sub-stocks where the OM varies from those described in the past can cause confusion for the readers and work continues on updating reading guidelines using genetically identified stock IDs.
- The Workshop on sexual maturity staging of herring and sprat (WKMSHS2) concluded; agreement with the validated material (herring 52%) was much lower compared to the agreement with the modal stage (herring 74%); there was no improvement achieved over the calibration rounds for herring and a small improvement for sprat; males are generally more difficult to stage compared to females and a mismatch exists between the herring stage description and the WKMATCH scale.
- The Workshop for advancing sexual maturity staging in fish (WKASMSF) proposed the 'WKMATCH 2012 maturity scale revised', prepared conversion tables to be used when uploading national maturity data to the ICES survey and commercial fisheries databases and prepared an implementation plan for reporting maturity data in the 'WKMATCH 2012 maturity scale revised' to these databases from 1 January 2020.

The ICES Working Group on Commercial Catches (WGCATCH) continues to document national fishery sampling schemes, establish best practice and guidelines on sampling and estimation procedures, and provide advice on other uses of fishery data. The group evaluates how new data collection regulations, or management measures (such as the landings obligation) will alter how data need to be collected and provide guidelines about biases and disruptions this may induce in time series of commercial data. WGCATCH also develop and promote the use of a range of indicators of fishery data quality for different types of end users. These include indicators to allow stock assessment and other ICES scientists to decide if data are of sufficient quality to be
used, or how different data sets can be weighted in an assessment model according to their relative quality.

WGCATCH 2018 finalized best practice guidelines for sampling and estimation of foreign landings in national ports. These guidelines were based on case studies highlighting the present problems and successes with sampling of foreign landing (a lot of the case studies focused on small pelagic fish). WGCATCH 2018 started to work on best practice guidelines in data request and provision for frequency data (e.g. DLS stocks), by summarising current national practise and developing tools to support national data submitters and stock coordinators to summarise the quality of the data provided. Further the group continued the work on guidelines for best-practice in sampling of small-scale fisheries, data recording, estimation of commercial catches under the landing obligation and sampling of commercial catches, including by-catch of protected, endangered and threatened species (PETS).

1.3.4 WGSAM

The Working Group on Multispecies Assessment Methods WGSAM provides estimates of natural mortality (M) for a number of fish stocks based on estimates from multispecies models. WGSAM provides M estimates for the following HAWG stocks: North Sea herring (updated at WKPELA 2018), North Sea sprat (evaluated and updated at HAWG 2018), sandeel SA1 (evaluated and updated at HAWG 2018), sandeel SA3 (evaluated and NOT updated at HAWG 2018). No update of natural mortalities are available from WGSAM for the 2019 HAWG assessments.

1.3.5 WKNSMSE

The Workshop on North Sea stocks Management Strategy Evaluation (WKNSMSE) evaluated long-term management strategies for a number of jointly-managed stocks in the North Sea between the European Union and Norway, following a request from EU-Norway. The North Sea Autumn spawning herring was among those stocks. The full-feedback simulations performed by WKNSMSE aimed to find "optimal" combinations of harvest control rule parameters ($\mathrm{F}_{\text {target }}$ and $\mathrm{B}_{\text {trigger }}$) for management strategies with (scenarios C,D,E) or without (scenarios A, B) stability mechanisms (TAC constraints and banking and borrowing scenarios; see Table 1.2.5.1). "Optimal" combinations were defined as those combinations of $\mathrm{F}_{\text {target }}$ and Btrigger that simultaneously maximised long-term yield while being precautionary (long-term risk $3 \leq 5 \%$).

The Management Strategy Evaluation (MSE) considers four components: the biological stock unit of herring in the North Sea [1], four fisheries targeting the stock unit [2], the fisheries-independent surveys [3], the stock assessment procedure which is used to obtain a perceived status of the stock unit and to set management targets [4]. The framework includes feedback loops, where over time, the result of setting management targets affects the stock unit the year after, and thereby also affects the fisheries and management. In order to reflect the uncertainties related to stock dynamics, fisheries dynamics and management implementation, the simulations are run with 1000 replicates, each representing a different but likely version of the true dynamics of the stock unit and fisheries.

Contrary to the expectations, the risk criteria does not stabilize in the medium to long term. Therefore the results referred to as "long-term" are achieved at equilibrium and are actually conditional to some of the assumptions (i.e., 20 -year projection period, 1000 replicates and risk $3 \leq 5 \%$ over the last 10 years). This means that the outcomes of the MSE should be considered precautionary only within the 20 years evaluated and the strategies should be re-evaluated within that time frame.

All the scenarios tested are precautionary with the exception of the strategy E for which no optimal target was found. In general, for all the other scenarios (A-D) there is less than 0.2% difference in the long-term yield (Table 1.2.5.2).

The optimal $\mathrm{F}_{\text {target }}$ values for all the scenarios $(0.22-0.23)$ are somewhat smaller than the FMSY value (0.26) estimated using EqSim at the last benchmark in 2018. Thus, the current FMSY in combination with an MSY $B_{\text {trigger }}$ of 1.4 mt has an associated risk $>5 \%$. There are fundamental differences in the way EqSim and the MSE evaluate risk and make use of implementation error which may explain the difference (i.e., the up to 50% flexibility for the human consumption fishery in 3a is accounted in the identification of the $\mathrm{F}_{\text {target }}$ but it is not part of the EqSim calculation).

Among the sensitivity tests performed, the MSE evaluated the consequences of reducing the bycatch of the B and D fleets which showed a reduction in risk and some consequent increase in fishing opportunities for the human consumption fishery (A-fleet). These results are in line with previous results as obtained in ICES 2015 (WKHerTAC).

Despite the use of high-performance clusters, computational time represented a challenge (running time for a 1000 replicate scenario was around 500 h with approx. 50 evaluations per core) which limited part of the evaluation.

Table 1.2.5.1 Management strategies for the North Sea herring stock tested at WKNSMSE.

HCR	A-fleet	B-fleet	Condition	Stability	Bank \& Borrowing
A					
B					
C			if SSB $>\mathrm{B}_{\text {trig }}$	TAC ${ }_{y}$ A-fleet in AdY $0.8 \mathrm{TAC}_{y-1}<\mathrm{TAC}_{y}<1.25 \mathrm{TAC}_{y-1}$	+/-10\%
D			if SSB $>\mathrm{B}_{\text {trig }}$	TAC ${ }_{y}$ A+B-fleet in AdY $0.8 \mathrm{TAC}_{y-1}<\mathrm{TAC}_{y}<1.25 \mathrm{TAC}_{y-1}$	+/-10\%
E				TAC ${ }_{y}$ A+B-fleet in AdY $0.8 \mathrm{TAC}_{y-1}<\mathrm{TAC}_{y}<1.25 \mathrm{TAC}_{y-1}$	+/-10\% except when: $\begin{aligned} & S S B<B_{p a} \& F>F_{p a} \text { in } A d Y \\ & B<B_{p a} \text { in } A d Y \text { and } C t Y \end{aligned}$

SSB and F are calculated at spawning time; $\operatorname{Im} \mathrm{Y}, \mathrm{AdY}, \mathrm{CtY}$ are the intermediate, advice and continuation years. The red square shows when stability and flexibility measures apply.

Table 1.2.5.2 Short-, medium- and long-term yield (total catch) and SSB for the "optimised" strategies and for FMSY given the "optimal" $B_{\text {triger }}$. Cases where risk3 $\mathbf{>}$ 5\% are in red text. E is not included since no "optimum" was found for it. The time period are: short =2019:2021, med = 2022:2026, long = 2027:2036. Management strategies with an asterisk indicate $F_{\text {target }}=F_{\text {MSy }}$ and $B_{\text {trigger }}=$ MSY $B_{\text {trigger }}$.

Management Strategy	F case	$F_{\text {target }}$	$\mathrm{B}_{\text {trigger }}$	Yield			SSB			risk3			IAV			Realised mean $\mathrm{F}_{(2-6)}$		
				short	med	long												
$F=0$	$F=0$	0	0	0	0	0	2310249	2643789	2687033	0	0	0	0	0	0	0	0	0
A	$\mathrm{F}_{\text {target }}$	0.22	1400000	269747	339827	345646	1293350	1461235	1471026	0.037	0.025	0.046	0.186	0.147	0.151	0.179	0.219	0.219
A*	$\mathrm{F}_{\text {MSY }}$	0.26	1400000	296446	361936	358346	1253241	1370185	1363961	0.065	0.053	0.072	0.190	0.164	0.168	0.205	0.253	0.248
B	$\mathrm{F}_{\text {target }}$	0.22	1400000	271574	338313	344582	1291883	1456469	1467080	0.037	0.029	0.05	0.183	0.147	0.149	0.179	0.219	0.219
B*	$\mathrm{F}_{\text {MSY }}$	0.26	1400000	298388	359776	356365	1250953	1360849	1354684	0.061	0.054	0.081	0.188	0.165	0.168	0.205	0.251	0.247
C	$\mathrm{F}_{\text {target }}$	0.22	1400000	269690	335932	345095	1293654	1469648	1473686	0.037	0.025	0.048	0.186	0.158	0.157	0.179	0.219	0.219
C*	$\mathrm{F}_{\text {MSY }}$	0.26	1400000	296510	359024	358001	1253728	1377431	1365667	0.062	0.051	0.076	0.190	0.172	0.171	0.205	0.253	0.249
D	$\mathrm{F}_{\text {target }}$	0.23	1400000	276805	342173	349286	1283906	1446680	1446241	0.048	0.03	0.049	0.186	0.162	0.159	0.186	0.228	0.228
D*	$\mathrm{F}_{\text {MSY }}$	0.26	1400000	296510	359438	358937	1253750	1378526	1368652	0.061	0.047	0.076	0.189	0.171	0.171	0.205	0.254	0.249

1.3.6 WKSPRAT \& WKSPRATMSE

The 2018 benchmark workshop on sprat (WKSPRAT) focused on the following three stocks: North Sea (area 4) sprat, Kattegat-Skagerrak (area 3.a) sprat and the Channel sprat. During the benchmark process, several evidences including genetics, otolith shape, recruitment and cohort dynamics were presented on the connection between sprat in the North Sea and in the KattegatSkagerrak. It was therefore agreed to merge the two stocks and assess them as one stock assessment unit. For the purposes of the new joined assessment for the two areas, both the catch data and the indices of abundance from 3.a were included in the data from area 4 . Three surveys are carried out throughout the assessment area including the IBTS in Q1 and Q3 and the acoustic HERAS survey. All the surveys were used as tuning indices in the model. The indices were standardized using a delta-GAM approach: the inclusion of 3.a data increased the internal consistency between all age classes for all indices. The SMS model, previously used to assess the North Sea component, was used to assess the new combined stock. The final model formulation includes a power function for the age 0 catchability of IBTS Q1, a constant maturity ogive and the inclusion of the very few catches reported for Q4 in the Q1 of the following year. The new stock assessment shows a considerable improvement in the retrospective pattern, as well a better fitting to some ages of the IBTS surveys. The stock reference points were revised following ICES standard guidelines using a segmented stock recruitment relationship limited to years from 1982 and onwards. Blim was estimated at 94000 t as the breakpoint of the segmented regression and $B_{p a}$ was derived from $B_{l i m}$ at a value of 124946 t . However, an escapement strategy, where the stock is fished down to $B_{p a}$, has been proved not to be precautionary for such stock, unless an F limit control rule ($\mathrm{F}_{\text {cap }}$) is applied. For this reason, a full closed loop management strategy evaluation was carried out after the benchmark by WKSPRATMSE to test for different $\mathrm{F}_{\text {cap }}$ values, where the $\mathrm{F}_{\text {cap }}$ chosen corresponds to the F providing a probability of SSB falling below Blim lower than 5%. The results suggested that an $\mathrm{F}_{\text {cap }}$ of 0.69 is precautionary under the assumption that only errors in the stock numbers and exploitation patterns are included.

WKSPRAT benchmarked also sprat from the area 7.d,e. Not enough evidences were available to change the boundaries of this stock. An acoustic survey (revised for the benchmark) is carried out in the English part of area 7.e since 2013, and extended to the French part of 7.e in 2017 and to the Eastern Channel in 2018. In addition, an IBTS index in Q1 is available for the Eastern Channel from 2007 onwards. Overall, the short time series in the acoustic index and the lack of sufficient contrast in the data do not allow any analytical model to converge. Thus, the stock is in a category 3 (data poor stock). The benchmark proposed a seasonal advice based on an empirical method where trends are informed by both the indices, but only the acoustic survey is used for provision of the advice. In line with preliminary results from WKLIFE, the benchmark agreed that the "2-over-3" rule is not appropriate for short, highly productive stocks as sprat in area 7.d,e. Therefore, WKSPRATMSE compared through simulations the performances of the alternative " 1 -over- 2 " rule and of different fixed harvest rates. The results suggested that a 1 -over- 2 rule might cause the stock to fall below safe levels and eventually to collapse because the rule is not reactive enough to limit the catches when there is a recruitment failure. The risk decreases but remains still above safe limits also when removing the uncertainty cap. Simulations suggest that a 20% fixed harvest rate may be considered appropriate to maintain the stock at safe biomass levels and to produce relatively high yield. Further work is required in the light of the relevant upcoming Workshop for Data-limited Short-lived Stocks (WKDLSSLS).

1.3.7 IBPher6a7bc

The Inter-Benchmark Protocol for Herring in 6.a, 7.b-c 2019 (IBPher6a7bc, ICES 2019) was held to seek a solution to the consistent and increasing retrospective bias in the assessment of this herring stock.

At the meeting several improvements to the survey series used in the assessment were presented and reviewed. This included re-calculated and extended Scottish West Coast International Bottom Trawl Survey Quarter 1 and Quarter 4 (SWS BTS Q1 and Q4) and the two acoustic survey indices used in the assessment were re-examined and combined in to one to give a better acoustic index. Survey data analysis improvements were carried out first and agreed, and model optimisation was performed with the improved indices in the attempt to minimise the retrospective bias.

Extensive work was carried out to find a model configuration that would improve the retrospective, but it became clear that minimising the retrospective bias caused problems elsewhere in the models. Eventually, the interbenchmark agreed on a final model configuration. Although it was agreed the final model is a better assessment, there is still a retrospective bias. The new assessment also provides a radically different perception of the stock than previously and the assessment output raises a number of questions as to the dynamics of these combined stocks, over the time series that could not be investigated in depth during the inter-benchmark.

With an agreed final assessment the MSY and PA reference points were investigated according to ICES guidelines. The new stock assessment data, when implemented in the routines for estimating the reference points, using the same procedures as previously, lead to a number of questions as to how one could 'objectively' apply the ICES guidelines for estimating reference points. Extensive explorations, including limiting the length of the time series, indicated that the reference points were very sensitive to the choice of input data.
Surplus Production in Continuous Time (SPiCT) analysis was also undertaken but did not provide an alternative way of estimating sensible/believable reference points. The final conclusion was that since there was no objective way to choose a definitive data set for use in calculating a set of plausible reference points, no new reference points, based on the new assessment, were presented.

In regard to advice, it was decided that the assessment should be considered as a representation of trends rather than absolute estimates of stock size. Therefore, it is appropriate to consider the stock assessment as category 3 so that relative changes in fishing and stock size are used as basis for ICES advice (i.e the $2 / 3$ rule, where advice based on previous advice, modified according to index information; typically the trend in the last 5-years of the index).

1.3.8 IHLS and MIK surveys

The International herring larvae survey (IHLS) index provides information on the contribution and distribution of the different spawning components to the North Sea herring stock. This is the only index currently used in the assessment to provide information on the relative sizes of the four North Sea herring stock components, as in the other surveys or catch data the fish cannot be split into the different spawning components. The IHLS thus provides important information for the management of this stock.

In recent years the coverage of the IHLS survey has been compromised due to technical issues with the vessels available to conduct the surveys. This has led to the decision in 2018 to reject the information of 3 of the 4 surveys in the IHLS. Due to this break in the time-series it is necessary
to review the current setup of the IHLS. Because information on the relative sizes of stock components of North Sea herring is required, HAWG is recommending that the Working Group on Surveys on Ichthyoplankton in the North Sea and adjacent Seas (WGSINS) review the current design of the IHLS, in the light of the available survey effort, to deliver information on the relative stock components abundances, and if necessary to implement a new survey protocol that can deliver these data.

Down's herring recruitment information

In 2016, WKHERLARS evaluated the North Sea herring larvae surveys (ICES, 2016), and concluded that the current IBTS-MIK recruitment index does not contain information on the Downs spawning component. It was recommended to investigate the possibility to collect data to include information on Down's recruitment. In 2017, the effect of omitting one of the three IHLS surveys, carried out on the Downs component, from the herring assessment was investigated. The omission resulted in a negligible effect and it was, thus, decided to drop the Dutch IHLS participation in the second half of January. The vessel time and budget of this survey was instead used to conduct a Downs Recruitment Survey (DRS) in 2018.

The DRS was carried out in April, following the IBTS-MIK protocol, but the sampling was carried out both day and night, instead of only at night. Results were presented at HAWG. Due to time constraints it was not possible to cover the whole larvae distribution area. Compared to the MIK, numbers of herring larvae found in the DRS samples were much higher per sample. Length distributions of the herring larvae in the DRS were very similar to that for the MIK in 2018.

HAWG has a positive view on the continuation of the Downs Recruitment Survey (DRS), but cannot include the survey in the advice based on only one year of a survey. HAWG foresees potential future use of the combined IBTS0-DRS-index for a complete NSAS recruitment index for the advice if the surveys are continued. Thus HAWG supports the continuation of the exploratory surveys in April and have had a positive response from several laboratories. In 2019 IMR, Norway will participate in the DRS and for 2020 Danish Industry and IFREMER, France are investigating possibly participation. HAWG recommends that WGSINS investigate calculation of a Downs and combined North Sea herring recruitment index based on the combination of the IBTS-MIK and DRS data.

1.3.9 Stock separation of herring in surveys and catches

The mixing of herring stocks in surveys and catches is an issue in many of the stock assessments carried out in HAWG. Presently only the mixing between North Sea herring and Western Baltic Spring spawning herring in catches in the transfer area and in the HERAS survey in the Danish and Norwegian strata is routinely quantified and accounted for in the assessments. The development of operational methods to enable estimation of proportion contribution from different stock in catches and survey indices throughout the management areas for herring assessed by HAWG is a topic that HAWG continues to have high on the list of issues to solve to improve upon assessments. Several ICES workshops have been held to progress this topic, most recently WKMIXHER in 2018 and WKSIDAC in 2017. During HAWG 2019 a mini symposium was also arranged to facilitate exchange of ideas and foster collaboration of researchers working of different aspects and methods and to update HAWG on progress on projects currently underway of relevance to HAWG stocks.

1.3.9.1 Stock separation mini symposium

The mini symposium was held on $19^{\text {th }}$ March with 6 talks on projects of relevance to HAWG stocks. Detailed summaries of these talks are in Annex 6.

Edward Farrell from UCD updated the HAWG on progress made to assess the genetic population structure of herring stocks in ICES 6.a/7.bc and to develop genetic baselines of the $6 . a \mathrm{~N}$ and 6.aS/7.bc stocks to be used to discriminate mixed aggregations of non-spawning herring in area $6 a$.

Dorte Bekkevold from DTU Aqua presented how Single Nucleotide Polymorphism (SNP) marker classification tools can already be used with high statistical accuracy to distinguish among major herring stocks and sub-stocks mixing in the North Sea, 3.a and Division 22-25.

Florian Berg from IMR is working on splitting Norwegian Spring-spawning herring, North Sea and Western Baltic Spring spawning herring in the HERAS survey and in catches using otolith shape analysis.

Julie Coad Davies from DTU Aqua presented the latest in using otolith microstructure to separate mixed catches of Western Baltic Spring spawners and North Sea herring and presented results from calibration exercises between readers using otoliths from fish genetically assigned to stock.

Jan Arge Jacobsen from Faroe Marine Research Institute presented the otolith classification method used to separate Norwegian spring-spawning herring (NSSH) and other herring stocks (e.g. Icelandic summer-spawning ISSH, Faroese autumn-spawning (FASH) and North Sea type autumn-spawning herring (NASH)) in the International ecosystem surveys in the Nordic Seas (IESNS and IESSNS).

Finally, Michaël Gras from the Marine Institute in Ireland gave an update on the project to use body and otolith morphometry to discriminate herring in 6.a, 7.bc.

Seeing these projects presented together made it clear how much progress is being made towards understanding the population structures of the herring stocks assessed in HAWG and towards developing operational tools to allow routine discrimination of different stocks in the surveys and catches used in the assessments. Many of the researchers already collaborate and exchange material and compare results and will continue to do so, and already were discussing how to further increase these collaborations. One of the outcomes from the symposium is a drive to collect tissue samples for genetic analysis from the entire HERAS survey area in 2019 as well as otoliths from the same fish for shape analysis from the northern most area. This will create a unique dataset to compare results from several methods and help to identify the best method (or combination of methods) to reliably separate different stocks in this survey (6.aN, 6.aS, North Sea Autumn spawners, Western Baltic Spring spawners and potentially also Norwegian spring spawners).

It would be valuable to continue to invite presentations to HAWG on this topic to continue to work towards solutions until enough progress is made to warrant a second round of workshops along the lines of WKSIDAC and WKMIXHER.

1.3.9.2 WKMIXHER 2018

The workshop on mixing of western and central Baltic herring stocks (WKMixHer) took place on 11-13 September 2018 in Gdynia. The aims of workshop were to review recent research and available methods to discriminate western Baltic spring spawning herring and central Baltic herring in mixed catches, evaluate potential implication of mixing for the assessment, develop a coordinated plan to collect and analyse relevant data to quantify the mixing. The central Baltic herring is dominated by a northern component and a southern component and analyses presented at the workshop suggested how the latter actually shares numerous characters with the adjacent western Baltic herring stock (i.e., growth pattern, otolith shape, parasite infestation, etc.). Preliminary analyses performed in conclusion of the workshop suggested a progressive genetic differentiation along the entire southern Baltic coasts from SD24 to SD26 rather than a
clear cut division between different assessment units. The workshop results suggest that the issue of separating of the Central Baltic herring stock from the western Baltic spring spawning herring stock is related to understand if the southern component should be considered together with the western Baltic herring, maintained with the central Baltic herring, or if it should be considered separately. Depending on the task, the methodologies reviewed for stock identification could be promising or insufficient. A coordinated plan for sampling herring at spawning time was delineated at the workshop with the objective to validate herring assessment units in the area and look for operational methods to separate them in mixed catches.

Table 1.2.9.2.1 Methodologies for separating the different herring components found in the western and central Baltic (SD22-26) and discussed at the workshop. WBC: WBSSH from SD22-24; CBSC: Southern component of Spring spawning CBH; CBNC: Northern component of the Spring spawning CBH; AC: Autumn spawning component. The score-card below is limited to the results presented at the workshop, the suitability of the different techniques for stock discrimination span from high (green), limited or to be confirmed TBC (yellow) and none (red). Copied from WKMixHer report (ICES, 2018).

Stock discrimination methods	WBC-CBSC	WBCCBNC	$\begin{aligned} & \text { CBSC- } \\ & \text { CBNC } \end{aligned}$	WBC-AC	CBSC-AC	CBNC-AC
Growth	NO	YES	YES	limited	limited	limited
Natural tags Anisakis simplex	O	YES	YES	NA	NA	NA
Otolith shape	limited	YES	YES	YES	YES	YES
Body morphometry	TBC	YES	YES	NA	NA	NA
Vertebrae	NA	NA	NA	NA	NA	NA
Other meristics	NA	NA	NA	NA	NA	NA
Otolith chemistry	TBC	TBC	NA	NA	NA	NA
Genetics 9 microsatellite	limited	limited	limited	NA	NA	NA
Genetics 96 SNPs	TBC	YES	YES	YES	YES	YES

1.3.9.3 WKSIDAC 2017

In 2017 the "Workshop on stock identification and allocation of catches of herring to stocks" (WKSIDAC) was held in Galway, Ireland.

This workshop had several objectives; improve the accuracy and precision of the methods currently applied across laboratories by area; compare alternative available methods; outline a common generic approach in terms of methods; and draft guidelines for conducting stock-splits for
assessment purposes. Key issues relating to stock mixes in each of the management areas (2, 3, 5,6 and 7) were outlined along with why the stock identification was important for the assessments of each of these stocks (see Table 1.2.5.1).

Table 1.2.5.1: Co-occurrence of herring stocks in management areas.

Stocks/stock complexes	stockcode	Spawning components	2a	3a	$\begin{array}{\|l\|} \hline 3 \\ \text { sd22-24 } \\ \hline \end{array}$	$\begin{aligned} & \hline 3 \\ & \mathrm{sd} 25 \\ & \hline \end{aligned}$	4a	4bc	5a	5b	6 aN	6aS	clyde	7aN	7bc	7d	7e	$7 \mathrm{~g}-\mathrm{k}$
Norwegian Spring Spawning	her.27.1-24a514a	NSSH	x	?			?		?	?	?							
North Sea Autumn Spawning	her.3a47d	Downs	x2							x	x	x	x					
		Banks	x2							X	x	x	x					
		Buchan	x2							x	x	x	x					
		Orkney-Shetland	x2							x	x	x	x					
Western Baltic Spring Spawning	her.27.20-24	Rugen	?	x	x	x	x											
		local Spring		x	x													
		local Aut-Winter		x	?													
Central Baltic	her.27.25-2932	CBH		?	x	x												
North West of the British Isles	her.27.6a7bc	6aN	?				?			?	x	x			x			
		6aS-7bc					?				x	x		?	x			
		Clyde									x	x	x		x			
Irish Sea	her.27.7c	Douglas Bank									x	x	x	x	x			
		Mourne									x	x	x	x	x			
Celtic Sea, South West Ireland	her.27.irls	Celtic Sea					-							x			?	x

The workshop concluded from the review on information on stock identification and validation work done so far that there was no consistency between areas and in most either there was no validation or the validation needed to be updated. Only a few areas currently utilize herring stock identification methodology for the assessments, namely areas 3.a and 4 for separation of WBSS from NSAS although the methodology was not ideal, Icelandic waters for separation of ISS from NSS and in Faroese waters for separating autumn from spring spawners. The workshop was focused on potential methods and highlighted the necessity of validation and Standard protocols or operating procedures. The workshop also concluded that the optimal allocation method for stock assessment purposes (as perceived by the Workshop members) varied by area (see Table 1.2.5.2). Otolith shape analyses appeared the most widely recommended, however, other techniques such as genetics and otolith microstructure and micro-chemistry would be necessary for validating the shape analyses results. In the Baltic, separation based on the growth, through length-at-age was favoured and in Area 6.a, a combined approach using genetics and morphology is preferred. Baselines would also need to be updated on a regular basis.

The Workshop was not able to provide an outline of a manual by method for stock identification of herring for implementation in individual laboratories nor provide guidance on retrospective corrections of herring survey time-series but recommended that these topics need to be taken up in some future Workshop/Meeting when further progress has been made.

Table 1.2.5.2. Methodologies for separating herring stocks in each of the management areas.

1.3.10 Other activities relevant for HAWG

Industry-Science survey of herring in 6.a, 7b-c. in 2018.
(see Section 06 for additional details).
In 2018, industry and scientific institutions from Scotland, Northern Ireland, Netherlands and Ireland again successfully carried out scientific surveys with the aim to improve the knowledge base for the herring spawning components in $6 . a \mathrm{~N}$ and $6 . \mathrm{aS}, 7 . \mathrm{b}-\mathrm{c}$, and submit relevant data to ICES to assist in assessing the herring stocks and contribute to establishing a rebuilding plan.

Following agreement on a monitoring fishery TAC of 5800 t (EU2018/120), the scientific survey was designed using ICES advice on sampling required to collect assessment-relevant data, a review of spawning areas and timing and discussions with fishing skippers following the experiences from the 2016 and 2017 surveys.

Biological samples taken during the survey and subsequent commercial catches were used to construct a catch-at-age used in the 2019 stock assessment. Acoustic surveys on the biomass of the spawning components (ICES, 2019) provide a third set of data points in a spawning stock time series. Morphometric and genetic data from spawning fish will continue to contribute to the new baseline data required to assess separately the stocks in $6 . \mathrm{aN}$ and $6 . \mathrm{aS}, 7 . \mathrm{b}-\mathrm{c}$. This information would be considered in a future benchmark assessment.

Ichthyophonus

Ichthyophonus hoferi is a parasite found in fish. It has a low host-specificity, has been observed in more than 80 fish species, mostly marine, and is common in herring, haddock and plaice. Ichthyophonus belong to the Class Mesomycetozoea, a group of micro-organisms residing between the fungi and animals (McVivar and Jones, 2013). Epidemics associated with high mortality have been reported several times for Atlantic herring: in 1991-1994 for herring in the North Sea, Skagerrak, Kattegat and the Baltic Sea (Mellergaard and Spanggaard, 1997), and in 2008-2010 for Icelandic summer-spawning herring (Óskarsson and Pálsson, 2011). A time series of the Norwegian data on Ichthyophonus was presented at HAWG 2017. The occurrence is usually below 1%, except for the beginning of the 1990s, but high occurrences (22%) were again observed again in the Norwegian IBTSQ1 2017 which is carried on in the North Sea (Figure 1.2.6.1). Because of the high lethal level of this parasite and episodic outburst, HAWG 2017 decided to continue monitoring the level of Ichthyophonus infestation in the following years and Sweden extended the coverage
of the sampling to the Skagerrak and Kattegat since IBTSQ3. In the 2018 and 2019 IBTSQ1 surveys, the occurrences of Ichthyophonus in the Norwegian part were again fairly low: 4.4% and less than 1%, respectively. In the Kattegat-Skagerrak, the data suggests levels of incidence generally $<3 \%$ but with areas of $>20 \%$ infestation (Figure 1.2.6.2) and with a peak around 50% in 45 G 0 in 2018, although the sample was rather small. Infestation in Q3 2018 appears more localised in the north-eastern part of the Skagerrak compared to 2017. In 2017 the infestation affected mainly age 0-4 and rapidly declined for older fish, while in 2018 also fish of age 5-7 present some level of infestation. It is relevant that all countries continue to screen herring for Ichthyophonus during the IBTS surveys (both Q1 and Q3) and HERAS, as well as for the commercial sampling.

Figure 1.2.6.1 Occurrence of Ichthyophonus hoferi in the Norwegian part of the IBTSQ1 2017. Bubble size show the percentage of diseased herring, whereas the numbers show the number of herring.

Figure 1.2.6.2 Occurrence of Ichthyophonus hoferi in the Kattegat-Skagerrak from Swedish samples collected during the IBTSQ3 2017-2018. Left map with distribution of the proportion of infested herring and number of samples in each rectangle; right distribution of infestation among ages.

HAWG's feedbacks to RDBES

During this year meeting, HAWG had a discussed on the process leading to a joint regional estimation of assessment input data. In particular, HAWG finds that it would be preferable if the estimator role is led by a single individual with input from national experts. This is preferred over an intermediate step within the RDBES wherein the estimation is carried out by multiple individuals with intermediate creation of data subsets. A single estimation would be carried out using a scripted method prepared with input from all national experts currently carrying out estimation procedures. This represents a collaborative approach to define a combined method as a foundation of a single estimation process, it is foreseen that the responsibility to apply the combined method would be taken by a single individual e.g. the stock coordinator.

HAWG also discussed the importance of implementing a framework for co-production and feedback which could allow participation of the different actors to the actual estimation. Need for data check and quality control procedures has been stressed by the group. The general process discussed and proposed by HAWG can be summarised in the main following steps:

- Data are submitted by individual countries which have responsibility on the quality of what they submit (procedures for checking data quality at the level of submission are necessary and should be expected).
- Once data are in the RDB the stock coordinator runs a first diagnostic script which check the data quality once again and eventually report back to the data submitter possible "anomalies". Ideally, this should trigger an iterative process where errors are corrected with amendments on the initial submission.
- The stock coordinator runs an exploratory data analysis script which produces both visual and tabulated representation of the data. These are circulated among the stock coordinator, assessor and all the experts working on the stock for comments and feedback.
- Once agreed on the quality and interpretation of the data, the stock coordinator runs the estimation script which implements an estimation procedure agreed among the stock coordinator, assessor and other experts contributing to the assessment of the stock. Visual and tabulated output (i.e., WECA, CANUM, ...) are circulated among these same experts for comments and feedback.
- Once agreed on the representativeness and quality of the estimation outputs, these can be passed to the assessment model.

1.4 Commercial catch data collation, sampling, and terminology

1.4.1 Commercial catch and sampling: data collation and handling

Input spreadsheet and initial data processing

Since 1999 (catch data 1998), the Working Group members have used a spreadsheet to provide all necessary landing and sampling data. These data were then further processed with the SAL-LOC-application (Patterson, 1998). This program gives the required standard outputs on sampling status and biological parameters. It documents any decisions made by the species co-ordinators for filling in missing data and raising the catch information of one nation/quarter/area with information from another data set.

Since 2015, ICES requested relevant countries within a data call to submit the national catches into InterCatch or to accessions@ices (via the standard exchange files). National catch data submission was due by 1 March 2019 All EU member states and Norway delivered their data in due time.
"InterCatch is a web-based system for handling fish stock assessment data. National fish stock catches are imported to InterCatch. Stock coordinators then allocate sampled catches to unsampled catches, aggregate to stock level and download the output. The InterCatch stock output can then be used as input for the assessment models". Stock coordinators used InterCatch for the first time at the 2007 Herring Assessment Working Group. However, InterCatch does not provide the output as needed for the assessment of NSAS and WBSS. Both data collation methods are, therefore, still used in parallel.

Excel was used to allocate samples to catches for 6 .a following the same procedure outlined in WD01 to HAWG 2017.

More information on data handling transparency, data archiving and the current methods for compiling fisheries assessment data are given in the Stock Annex for each stock. Figure 1.5.1 shows the separation of areas as applied to the data in the archive.

1.4.2 Sampling

Quality of sampling for the whole area

The level of catch sampling by area is given in the table below for all herring stocks covered by HAWG (in terms of fraction of catch sampled and number of age readings per 1000 tonnes catch). There is considerable variation between areas. Further details of the sampling quality and the required level of samples can be found by stock in the respective sections in the report and the stock annexes.

Area	Official Catch	Sampled Catch	Age Readings	Age Readings per 1000t
4.a(E)	74581	71183	1247	17
4.a(W)	374490	335958	5612	15
4.b	107796	80034	1455	13
4.c	2188	671	109	50
7.d	43277	14284	445	10
7.a(N)	6804	3567	1119	164
6.a(N)	4063	3867	717	176
3.a	23258	20745	3567	153
SD22-24	18992	18860	4675	246
Celtic, 7.j	3982	3671	599	150
6.a(S), 7.b and 7.c	1495	1495	1852	1239

Given the diversity of the fleets harvesting most stocks assessed by HAWG, an appropriate spread of sampling effort over the different metiers is more important to the quality of catch-atage data than a sufficient overall sampling level. The WG therefore recommends that all metiers with substantial catch should be sampled (including by-catches in the industrial fisheries), that catches landed abroad should be sampled, and information on these samples should be made available to the national laboratories and incorporated into the national InterCatch upload.

1.4.3 Terminology

The WG noted that for herring the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout the report. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks, there is a difference of one year between "age" and "rings". Further elaboration on the rationale behind this, specific to each stock, can be found in the individual Stock Annexes. It is the responsibility of any user of age based data for any of these herring stocks to consult the relevant annex and if in doubt consult a relevant member of the Working Group.

1.5 Methods Used

1.5.1 SAM

The Spate-space stock Assessment Model SAM described in described in Nielsen and Berg (2014) is currently used to assess several of the HAWG stocks. This model has the standard exponential decay equations to carry forth the Ns (with appropriate treatment of the plus-group), and the Baranov catch equation to calculate catch-at-age based on the Fs. The additional components of SAM are the introduction of process error down the cohort (additional error term in the exponential decay equations), and the random walk on Fs. The steps (or deviations) in the random walk process are treated as random effects that are "integrated out", so are not viewed as estimable parameters. The sigma parameter controls how large the random walk deviations are, and this parameter is estimated. SAM provides the option of correlated errors across ages for the random walks on F , where the correlation is an additional parameter estimated to be estimated. The current implementation of SAM is an R-package based on Template Model Builder (TMB) (Kristensen et al., 2016) and is maintained and available at https://github.com/fishfollower/SAM. At WKPELA 2018 a multi-fleet version of SAM was presented (ICES, 2018) and it is currently used for the assessment and forecasts of Western Baltic Spring Spawning herring, and to provide fleet specific selection patterns for short and medium-term forecasts for the North Sea herring.
SAM is currently run by HAWG via both the web browser at www.stockassessment.org and within the FLR (Fisheries Library in R) system (www.flr-project.org) which is an attempt to implement a framework for modelling integrated fisheries systems including population dynamics, fleet behaviour, stock assessment and management objectives. The stock assessment tools in FLR can also be used on their own in the WG context. The combination of the statistical and graphical tools in R with the stock assessment aids the exploration of input data and results.

1.5.2 ASAP

The ASAP 3 (http://nft.nefsc.noaa.gov) model has been used for Celtic Sea herring. ASAP (A Stock Assessment Program) is an age-structured stock assessment modelling program (Legault and Restrepo, 1998). ASAP is a variant of a statistical catch-at-age model that can integrate annual catches and associated age compositions (by fleet), abundance indices and associated age compositions, annual maturity, fecundity, weight, and natural mortality at age. It is a forward projecting model that assumes separability of fishing mortality into year and age components, but allows specification of various selectivity time blocks. It is also possible to include a BevertonHolt stock-recruit relationship and flexible enough to handle data poor stocks without age data (dynamic pool models) or with only new and post-recruit age or size groups.

1.5.3 SMS

SMS is a stochastic multi-species assessment model, including seasonality, used for sandeel in Division 3.a and Subarea 4, for sprat in the North Sea and 3.a. The model is run in single species mode for these stock assessments. Major difference with the other stock assessment models used by HAWG is the ability to assess in seasonal time-steps, necessary to distinguish the fishing season and off-season for both the sandeel and sprat stocks. Furthermore, it integrates catches, effort time series, maturity, weight and natural mortality at age. The model allows to set separate selectivity year blocks to account for changes in the fishing fleet.

1.5.4 Short term predictions

Short-term predictions for the North Sea used a code developed in R. The method was developed in 2009 and intensively compared to the MFDP approach. Celtic Sea herring and Irish Sea herring forecast used the standard projection routines developed under FLR package FLCore (version 2.6.0.20170228). For sprat in the North Sea, a forecast using the FLR framework is in use. North Sea herring is assessed using a fleet-wise projection method using native R and FLR routines (some maintenance of the code has been done this year mainly to improve readability and documentation).

The Western Baltic Spring Spawning herring uses an R-based multi-fleet forecast routine available at www.stockassessment.org.

1.5.5 Reference Points

The eqsim software (https://github.com/ices-tools-prod/msy) was used in recent benchmarks to estimate MSY reference points for herring stocks of HAWG.

For sprat in the North Sea (Division 4) and sandeel in management area 1-4, the ICES guide for setting management reference points for category 1 stocks is used to find Blim. MSY Bescapement is
 mented ($\mathrm{F}_{\text {cap }}$) if the difference between $\mathrm{B}_{\lim }$ and MSY Bescapement is not compatible with the ICES Fmsy criteria (i.e. that the average probability in the long-term of getting below Blim should be no more than 5% per year). $\mathrm{F}_{\text {cap }}$ is calculated/optimized using a management strategy evaluation framework (MSE).

The recent benchmark (WKPELA 2018) of the North Sea herring, Western Baltic herring and Celtic Sea herring presented considerable challenges in the estimation of reference points and their calculation remains at time still controversial. An overview and critical discussion of those main challenges are provided in last year's report (ICES 2018, Section 1.2.6) and maintain their validity in the on-going discussion on reference points.

1.5.6 Repository setup for HAWG

To increase the efficiency and verifiability of the data and code used to perform the assessments as well as the short term forecasts within HAWG a repository system was set up in 2009. Within this repository, all stocks own a subfolder where they store their data and code used to run the assessments presented in this report and used as base for the advice. At the same time, there is one common folder, used by all assessments, that ensures that the FLR libraries used are identical for all stocks, as well as the output generated to evaluate the performance of the assessment.

The repository was moved from google code to github in 2016 and is now available as a branch of the ICES github site. https://github.com/ICES-dk/wg HAWG. Contributing to the repository is not possible for outsiders as a password is required. Downloading data and code is possible to the public. The repository is maintained by members of the WG and the ICES Secretariat.

1.6 Ecosystem overview and considerations

General ecosystem overviews for the areas relevant for herring, sprat and sandeel stocks covered by the Herring Assessment Working Group for herring stocks south of $62^{\circ} \mathrm{N}$ (HAWG) are given for the Greater North Sea and Celtic Seas Ecoregions (ICES, 2016a, b).

A more detailed account specific to herring is documented in ICES HAWG (2015). A number of topics are covered in this section including the use of single species assessment and management, the use of ecosystem drivers, factors affecting early life history stages, the effects of gravel extraction, variability in the biology and ecology of species and populations (including biological and environmental drivers), and disease.

It should be pointed out that whilst numerous studies have greatly improved our understanding on the effects of environmental forcing on the herring stock productivity and dynamics, further work is still required to move beyond simple correlative understanding and elucidate the underlying mechanisms. Furthermore, mechanisms to incorporate this understanding into the provision of management advice are limited. ICES could therefore benefit greatly from developments that unify these two aspects of its community.

ICES is currently reviewing the level of inclusion of ecosystem information into the single-species assessments that provide the base for the current advices to evaluate progresses toward eco-system-based fisheries management. The intent is to quantify whether and how the ICES assessments incorporated broader system-level considerations, from the inclusion of technical interactions among fisheries (i.e., catch and bycatch of target and non-target species) to interactions with the physical environment (i.e., environmentally-driven recruitment, climate), and biological components (i.e., density-dependency, predation).

Following the recent ACOM request (March 2019), HAWG has collected information on where and how change in ecosystem productivity (either annually or over time-periods) is incorporated in its fish stock assessments, MSE operating models and management advice products for the following six categories (relevant variables in parenthesis) below:

1. Stock assessments (weight-at-age [in stock or catch], length distribution, maturity, sex ratio)
2. Forecasts (recruitment over recent years - reflecting productivity changes, recent weight-at-age, maturity, natural mortality)
3. Natural mortality (predation, diseases, parasites) assessed and included as variable by year (including smoothed)
4. Stock distribution (changes caused by year-class strength, predators, prey, habitat suitability/quality)
5. Mixed fisheries (catch and bycatch of target/non-target species)
6. Climate change (is this considered and how?)

Because the inclusion of system-level information may span from the use of qualitative background considerations to inclusion of quantitative information into analytical assessments, the following scoring system recently proposed by Marshall et al. (2019) has been applied:

- \quad Score 0 - information unavailable / not used.
- Score 1 (Background) - productivity is mentioned in the report and/or considered in the output as background information.
- Score 2 (Qualitative) - applicable in two cases: i) when quantitative data/information on productivity change were included in the report, but not used in any analyses/models, or ii) explicit link between the productivity change and assessment parameters or output was established. For example, including numerical data from diet studies on the target species would receive a score of 2 , as would discussing a link between sea surface temperature and recruitment predictions.
- Score 3 (Quantitative) - productivity-related data was explicitly included in the assessment model through data inputs or estimated parameters.

Stock code	Stock assessment					Short term forecast				
	variable w@a	length distribution	variable mat@a	estimated variable nat mort	estimated variable sex ratio	environ. driven recruitment	truncating recruitment time series	recent or trend weight@a	recent or trend mat@a	recent or trend nat mort
her.27.20-24	3	2	3	3	0	1	3	3	3	3
her.27.3a47d	3	2	0	3	0	1	3	3	0	3
her.27.6a7bc	3	2	3	2	0	1	2	2	2	2
her.27.irls	3	2	1	2	0	0	3	3	0	0
her.27.nirs	3	2	3	2	0	0	3	3	3	2
san.sa.1r	3	0	1	3	0	0	1	3	1	3
san.sa.2r	3	0	1	1	0	0	3	3	1	1
san.sa.3r	3	0	1	3	0	0	1	3	1	3
san.sa. 4	3	0	1	1	0	0	3	3	1	1
san.sa.5r	0	0	0	0	0	0	0	0	0	0
san.sa. 6	0	0	0	0	0	0	0	0	0	0
san.sa. 7 r	0	0	0	0	0	0	0	0	0	0
spr.27.3a4	3	0	1	3	0	0	3	3	1	3
spr.27.67a-cf-k	3	0	0	0	0	0	0	0	0	0
spr.27.7de	3	0	0	0	0	0	0	0	0	0

Stock code	MSE (management/rebuilding plans). Uncertainty or differing operating models					Advice escapement or other productivity rule	Distribution \& habitats			Mixed fisheries			Climate consideration of changes from climate
	environ. driven recruitment	truncating recruitment time series	```variable weight@a (env or density)```	recent or trend mat@a (envir or density)	dynamic nat mort		influence of population state	habitat suitability/ quality	within species stock mixing	Catch and bycatch of target species	bycatch of nontarget species	consideration in mixed fisheries advice	
her.27.20-24						0	2	2	3	3	3	0	1
her.27.3a47d	0	3	2	2	2	0	2	1	3	3	1	0	1
her.27.6a7bc						0	2	2	1	3	3	0	0
her.27.irls	0	3	0	0	0	0	1	0	0	0	0	0	0
her.27.nirs						0	1	1	1	0	0	0	0
san.sa.1r	0	3	0	0	0	3	0	1	0	0	0	0	1
san.sa.2r	0	3	0	0	0	3	0	1	0	0	0	0	0
san.sa.3r	0	3	0	0	0	3	0	1	0	0	0	0	0
san.sa. 4	0	3	0	0	0	3	0	1	0	0	0	0	0
san.sa.5r						0	0	0	0	0	0	0	0
san.sa. 6						0	0	0	0	0	0	0	0
san.sa.7r						0	0	0	0	0	0	0	0
spr.27.3a4	0	3	0	0	0	3	0	0	0	0	1	0	0
spr.27.67a-cf-k						0	0	0	0	0	0	0	0
spr.27.7de	0	2	2	0	2	0	0	1	0	0	0	0	1

1.7 Summary of relevant Mixed fisheries overview and considerations, species interaction effects and ecosystem drivers, Ecosystem effects of fisheries, and Effects of regulatory changes on the assessment or projections for all stocks.

Brief summaries are given here, more detailed information can be found in the relevant stock summaries.

North Sea Autumn spawning herring (her.27.3a47d):

The North Sea herring fishery is a multinational fishery that seasonally targets herring in the North Sea and English Channel. An industrial fishery, which catches juvenile herring as a bycatch operates in the Skagerrak, Kattegat and in the central North Sea. Most fleets that execute the fishery on adult herring target other fish at other times of the year, both within and beyond the North Sea (e.g. mackerel Scomber scombrus, horse mackerel Trachurus trachurus and blue whiting Micromestistius poutasou). In addition, Western Baltic Spring spawners are also caught in this fishery at certain time of the year in the northern North Sea to the west of the Norwegian coast. The fishery for human consumption has mostly single-species catches, although some mixed herring and mackerel catches occur in the northern North Sea, especially in the purse-seine fishery. The by-catch of sea mammals and birds is also very low, i.e. undetectable using observer programmes. There is less information readily available to assess the impact of the industrial fisheries that by-catch juvenile herring. The pelagic fisheries on herring and mackerel claim to be some of the "cleanest" fisheries in terms of by-catch, disturbance of the seabed and discarding. Pelagic fish interact with other components of the ecosystem, including demersal fish, zooplankton and other predators (sea mammals, elasmobranchs and seabirds). Thus a fishery on pelagic fish may impact on these other components via second order interactions. There is a paucity of knowledge of these interactions, and the inherent complexity in the system makes quantifying the impact of fisheries very difficult.

Another potential impact of the North Sea herring fishery is the removal of fish that could provide other "ecosystem services". The North Sea ecosystem needs a biomass of herring to graze the plankton and act as prey for other organisms. If herring biomass is very low other species, such as sandeel, may replace its role or the system may shift in a more dramatic way. Likewise large numbers of herring can have a predatory impact on species with pelagic egg and larvae stages.

The populations of herring constitute some of the highest biomass of forage fish in the North Sea and are thus an integral and important part of the ecosystem, particularly the pelagic components. The influence of the environment of herring productivity means that the biomass will always fluctuate. North Sea herring has a complex sub-stock structure with different spawning components, producing offspring with different morphometric and physiological characteristics, different growth patterns and differing migration routes. Productivity of the spawning components varies. The three northern components show similar recruitment trends and differ from the Downs component, which appears to be influenced by different environmental drivers. Having their spawning and nursery areas near the coasts, means herring are particularly sensitive and vulnerable to anthropogenic impacts. The most serious of these is the ever increasing pressure for marine sand and gravel extraction and the development of wind farms. Climate models predict a future increase in air and water temperature and a change in wind, cloud cover and
precipitation. Analysis of early life stages' habitats and trends over time suggests that the projected changes in temperature may not widely affect the potential habitats but may influence the productivity of the stock. Relatively major changes in wind patterns may affect the distribution of larvae and early stage of herring.

Western Baltic Spring spawning herring (her.27.20-24):

The Western Baltic herring fishery is a multinational fishery that seasonally targets herring in the eastern parts of the North Sea (Eastern 4.a and 4.b), the Skagerrak and Kattegat (Division 3.a) and Western Baltic (SD 22-24). The fishery for human consumption has mostly single-species catches, although in recent years some mackerel by catch may occur in the trawl fishery for herring. In addition, North Sea herring are also caught within Division 3.a. The by-catch of sea mammals and birds is low enough to be below detection levels based on observer programmes. At present there is a very limited industrial fishery in Division 3.a and hence a limited by catch of juvenile herring. The pelagic fisheries on herring claim to be some of the "cleanest" fisheries in terms of by catch, disturbance of the seabed and discarding. Pelagic fish interact with other components of the ecosystem, including demersal fish, zooplankton and predators (sea mammals, elasmobranchs and seabirds). Another potential impact of the Western Baltic herring fishery is the removal of fish that could provide other "ecosystem services." There is, however, no recent research on multispecies or ecosystem interactions in which the WBSS interact. Although a fishery on pelagic fish may impact on these other components via second order interactions.

Dominant drivers of larval survival and year class strength of recruitment are considered to be linked to oceanographic dispersal, sea temperatures and food availability in the critical phase when larvae start feeding actively. However, research on larval herring survival dynamics indicates that driving variables might not only vary at the population level and by region of spawning but also by larval developmental stage. Since WBSS herring relies on inshore, transitional waters for spawning and larval retention, the suit of environmental variables driving reproduction success potentially differs from other North Atlantic stocks recruiting from coastal shelf spawning areas.

Herring in the Celtic Sea and 7.j (her.27.irls):

There are few documented reports of by-catch in the Celtic Sea herring fishery. Small quantities of non-target whitefish species were caught in the nets. Of the non-target species caught whiting was most frequent followed by mackerel and haddock. The only marine mammals recorded were grey seals (Halichoerus grypus). The seals were observed on a number of occasions feeding on herring when the net was being hauled and during towing. They appear to be able to avoid becoming entangled in the nets. Occasional entanglement of cetaceans may occur but overall incidental catches are thought to be minimal.

Temperatures in this area have been increasing over the last number of decades. There are indications that salinity is also increasing. Herring are found to be more abundant when the water is cooler while pilchards favour warmer water and tend to extend further east under these conditions. However, studies have been unable to demonstrate that changes in the environmental regime in the Celtic Sea have had any effect on productivity of this stock. Herring larval drift occurs between the Celtic Sea and the Irish Sea. The larvae remain in the Irish Sea for a period as juveniles before returning to the Celtic Sea. Catches of herring in the Irish Sea may therefore impact on recruitment into the Celtic Sea stock. The residence of Celtic Sea fish in the Irish Sea may have an influence on growth and maturity rates.

The spawning grounds for herring in the Celtic Sea are well known and are located inshore close to the coast. Spawning grounds tend to be vulnerable to anthropogenic influences such as dredging and sand and gravel extraction. Herring are an important component of the Celtic sea ecosystem. There is little information on the specific diet of this stock. Herring form part of the food
source for larger gadoids such as hake. Recent research showed that fin whales Balaenoptera physalus are an important component of the Celtic Sea ecosystem, with a high re-sighting rate indicating fidelity to the area. There is the suggestion that the peak in fin whale sightings in November may coincide with the inshore spawning migration of herring.

Herring in 6.a North (part of her-6.a):

Herring are an important prey species in the ecosystem and also one of the dominant planktivorous fish. Herring fisheries tend to be clean with little by-catch of other fish. Herring represent an important prey item for many predators including cod and other large gadoids, dog-fish and sharks, marine mammals and sea birds. Because of the trophic importance of herring puts its stocks under immense pressure from constant exploitation.

The benthic spawning behaviour of herring makes this species vulnerable to anthropogenic activity such as offshore oil and gas industries, gravel extraction and the construction of wind farms. There are many hypotheses as to the cause of the irregular cycles shown in the productivity of herring stocks (weights-at-age and recruitment), but in most cases it is thought that the environment plays a key role (through prey, predation and transport). The $6 . a \mathrm{~N}$ herring stock has shown a marked decline in productivity during the late 1970s and has remained at a low level since then.

Herring in 6.a South and 7.b and 7.c (part of her-6.a):

Sea surface temperatures from Malin head on the North coast of Ireland since 1958 indicate that since 1990 sea surface temperatures have displayed a sustained increasing trend, with winter temperatures $>6^{\circ} \mathrm{C}$ and higher summer temperatures. Environmental conditions can cause significant fluctuations in abundance in a variety of marine species including fish. Oceanographic variation associated with temperature and salinity fluctuations appears to affect herring in the first year of life, probably during the winter larval drift.

Productivity in this region is reasonably high on the shelf but drops rapidly west of the shelf break. This area is important for many pelagic fish species. The shelf edge is a spawning area for mackerel Scomber scombrus and blue whiting Micromesistius potassou. Preliminary examination of productivity shows that overall productivity in this area is currently lower than it was in the 1980s.

The spawning grounds for herring along the northwest coast are located in inshore areas close to the coast and tend to be vulnerable to anthropogenic influences such as dredging and sand and gravel extraction.

Herring in the Irish Sea (her.27.nirs):

The targeted fishery for herring in the Irish Sea is considered to have limited by-catch of other species. Herring are preyed upon by many species but at present the extent of this is not quantified. The main fish predators on herring in the Irish Sea include spurdog (Squalus acanthias), whiting (Merlangius merlangus) (mainly $0-1$ ring) and hake (Merluccius merluccius) (all age classes). Small clupeids are an important source of food for piscivorous seabirds and marine mammals which can occur seasonally in areas where herring aggregate. Whilst small juvenile herring occur throughout the coastal waters of the western and eastern Irish Sea, their distribution overlaps extensively with sprats (Sprattus sprattus).
Stock discrimination techniques, tagging, and otolith microstructure and shape show that juveniles originating from the Celtic Sea are present in the Irish Sea. The majority of mixing between these populations occurs at winterrings 1-2. Over the period 2006 to 2010 interannual variation in the proportion of mixing was large, with between 15% and 60% observed in the wintering $1+$
biomass estimate during the study period. There are irregular cycles in the productivity of herring stocks which are probably caused by changes in the environment (e.g. transport, prey, and predation).

North Sea and 3a Sprat (spr.27.3a4):

Sprat is a short-lived forage fish that is predated by a wide range of marine organisms, from predatory gadoids, through birds to marine mammals. Therefore, the dynamics of sprat populations are affected by the dynamics of other species through annually varying natural mortality rates. Because sprat interacts with many other components of the ecosystem (fish, zooplankton and predators) the fishery may impact on these other components via second order interactions. It is uncertain how many sprat migrate into and out of adjacent management areas, i.e. the English Channel (7.d and 7.e) and the western Baltic and the Sound (SD22-24), or how this may vary annually. Uncertain is also the boundary with local populations occurring along the Scandinavian Skagerrak coasts. While genetic information has supported the exclusion of sprat along the Norwegian coasts from the current assessment unit, similar information was insufficient for the Swedish coasts despite the fact that local populations likely exist. Young herring as a by-catch is acknowledged for this fishery with by-catch regulations in force. The by-catch of marine mammals and birds is considered to be very low (undetectable using observer programs).

Sprat in the English Channel (7.d and 7.e) (spr.27.7de):

The fishery considered here is primarily in Lyme Bay with small trawlers targeting sprat with very little to no by-catch of other species. The relationship of the sprat in this area to the sprat stock or population in the adjacent areas is unknown: Sprat larvae most likely drift away from the main spawning area in Lyme Bay, but to which extent they expand westward into the Celtic Sea or eastern deep into the Eastern English Channel and the North Sea is unknown. The potential for mixed fisheries, if the fisheries are expanded to cover the whole of the English Channel, is unknown at present. It is acknowledged that sprat is prey for many species and these will affect the natural mortality, however, this has not been quantified in this area. In addition, changes in the size of the sprat population through fishing will affect the available prey for a number of commercially exploited species.

Sprat in the Celtic Seas ecoregion (6 and 7 (excluding 7.d and 7.e)) (spr.27.67a-cf-k):

This ecoregion currently has fisheries in the Celtic Sea and a variety of Scottish Sea lochs with the possibility of fisheries being revived in the Clyde. Generally, mixed fisheries are not an issue as sprat are targeted with very little to no other species caught as a by-catch. If a fishery was to be prosecuted in the Clyde and Irish Seas then by-catch of young herring may become an issue due to the overlap in distribution between young herring and sprat. It is acknowledged that sprat is prey for many species and these will affect the natural mortality, however, this has not been quantified in this area. Since sprat preys on e.g. zooplankton and is preyed upon by many species fisheries for sprat can have effects on the ecosystem dynamics.

Sandeel in the North Sea ecoregion (san.sa.1r-7r)

A mosaic of sandeel fishing grounds occur throughout different areas of the North Sea ecoregion. The grounds present different degrees of larval connectivity which has supported the division of sandeel in the North Sea into a number of more or less reproductively isolated sub-populations. Whereas the fishing grounds are assumed to remain relatively constant over time, the actual distribution of the fishery varies greatly from year to year in response to both changes in the availability of sandeel and changes in management between areas.

Sandeel is targeted by a highly seasonal industrial fishery which has experienced a progressive change towards fewer larger vessels owing most of the quota since the introduction of ITQ in
2004. Time restrictions and bycatch limits represent the main management measures. Although the fishery has little bycatch of protected species, competition with other predators is a central aspect of the sandeel management within an ecosystem approach.

Sandeel play in fact an important role in the North Sea food web as they are a high quality, lipidrich food resource for many predatory fish, seabirds and marine mammals. Concerns of local depletion exist, especially for those sandeel aggregations occurring at less than 100 km from seabird colonies as some bird species (i.e., black-legged kittiwake and sandwich tern) may be particularly affected whereas more mobile marine mammals and fish are likely to be less vulnerable to local sandeel depletion.

1.8 Stock overview

The WG was able to perform analytical assessments for 10 of the 15 stocks investigated. Results of the assessments are presented in the subsequent sections of the report and are summarized below and in figures 1.7.2-1.7.5.

Figure 1.7.1 ICES areas as used for the assessment of herring stocks south of $62^{\circ} \mathrm{N}$. Area names in italics indicate the area separation applied to the commercial catch and sampling data kept in long term storage. "Transfer area" refers to the transfer of Western Baltic Spring Spawners caught in the North Sea to the Baltic Assessment.

North Sea autumn spawning herring (her.27.3a47d) is the largest stock assessed by HAWG. The spawning stock biomass was low in the late 1970s and the fishery was closed for a number of years. This stock began to recover until the mid-1990s, when it appeared to decrease again. A management scheme was adopted to halt this decline. Based on the WG assessment the stock is classified as being at full reproductive capacity and is being harvested sustainably at FmSY and under management plan target for several years. In 2019, no management plan was in place and the advice is based on the Fmsy advice rule. The spawning stock at spawning time in 2018 is estimated at 1.9 million tonnes. Recruitment in 2018 has increased compared to 2017 but remains within the low recruitment regime observed since 2015. The strongest recruitment remains the one observed back in 2014. Mean F_{2-6} in 2018 is estimated at approximately 0.21 , which is below Fmsy. The SSB for the stock from the 2019 assessment has been revised upward for a number of years.

In 2019 SSB is expected to decrease to ~ 1.5 million tonnes. Under all scenarios, SSB is predicted to decrease in 2020 (to approx. 1.3 million tonnes) and further in 2021 to around 1.1 million tonnes. SSB is expected to be above $B_{p a}$ in 2020 and 2021.

Western Baltic Spring Spawners (her.27.20-24) is the only spring spawning stock assessed within this WG. It is distributed in the eastern part of the North Sea, the Skagerrak, the Kattegat and the subdivisions 22,23 and 24 . Within the northern area, the stock mixes with North Sea autumn spawners, and recently mixing with Central Baltic herring stock has been reported in the western Baltic area. The stock has decreased consistently during the second half of the 2000s. SSB was at a minimum of about 70000 t in 2011 and recruitment is record low in 2018. Under a historical perspective the estimate of SSB of 74132 tonnes in 2018 is considered low, below both B_{pa} and $\mathrm{B}_{\mathrm{lim}}$. Fishing mortality (F_{3-6}) was reduced from 0.50 in 2009 to 0.37 in 2011. It had then remained stable slightly above $\mathrm{F}_{\mathrm{MSY}}(0.31)$ until $2015(\sim 0.36)$ but showed an increase in recent years with an estimated F_{3-6} in 2018 well above $\mathrm{FmSY}^{(0.416)}$. The 2020 advised catch of WBSS is 0 t , which if applied by managers, will result in an increase in SSB from 76273 t in 2020 to 101269 t in 2021. The zero catch will not allow the stock to rebuild above $B_{\lim }(120000 \mathrm{t})$ by 2021.

Herring in the Celtic Sea and 7.j (her.27.irls): The herring fisheries to the south of Ireland in the Celtic Sea and in Division 7.j have been considered to exploit the same stock. For the purpose of stock assessment and management, these areas have been combined since 1982. The stock has fluctuated over time. Low stock size was observed from the mid-70s to the early 80s. The SSB increased again before declining in the late 90s. From 2005 the stock increased when several strong cohorts (2004, 2008, 2009, 2010 and 2013) entered the fishery and as they gained weight, they maintained the stock at a high level. The SSB has decreased since its peak in 2011 and is estimated to be around 23000 t in 2018, which is below B_{pa} (at 54000 t) and $\mathrm{B}_{\lim }(34000 \mathrm{t}$). Recruitment has been below average since 2013. Fishing mortality (F_{2-5}) declined between 2003 and 2009 but started to rise again in 2010 due to increased catches. F decreased in 2018 in line with reduced catches. This year assessment estimates a fishing mortality, F_{2-5} of 0.33 in 2018 which a decrease from 2017 (0.64) but above the $\mathrm{Fmsy}^{\text {(}} 0.26$) and below Flim (0.45). Short term projections predict SSB to remain around 23000 t in 2019.

Herring in 6.a: The stock was much larger in the 1960s when the productivity of the stock was higher. The stock experienced a heavy fishery in the mid-1970s following closure of the North Sea fishery. The fishery was closed before the stock collapsed. It was opened again along with the North Sea. In the mid-1990s there was substantial area misreporting of catch into this area and sampling of catch deteriorated. Area misreporting was reduced to a very low level and information on catch has improved; in recent years misreporting has remained relatively low. The assessment is a combination of two herring stocks, one residing in $6 . a S, 7 . \mathrm{b}$ and 7.c, and one in 6.aN. It is currently not possible to separate the two stocks for assessment purposes and therefore stock size is estimated combined. SSB and recruitment have been declining since around 2000
and are currently predicted to be at the lowest level in the time series. Fishing mortality has reduced since 2016 when catches have been limited to a scientific monitoring TAC.

Herring in the Irish Sea (her.27.nirs): comprises two spawning groups (Manx and Mourne). This stock complex experienced a decline during the 1970s. In the mid-1980s the introduction of quotas resulted in a temporary increase, but the stock continued its decline from the late 1980s up to the early 2000s. During this time period the contribution of the Mourne spawning component declined. An increase in activity on the Mourne spawning area has been observed since 2006. In the past decade there have been problems in assessing the stock, partly as a consequence of the variability in spawning migrations and mixing with the Celtic Sea stock. A benchmark in 2017 resulted in a substantial revision of SSB perception leading to an increased SSB in the most recent period compared to pre-benchmark perceptions. In 2018, SSB and recruitment have been estimated at 22020 t and 333701 thousand respectively, estimates of SSB in recent years appear to be relatively stable. F_{4-6} is estimated at 0.16 in 2018 . Under the MSY approach the stock is expected to show minor decline to 22005 t in 2020.

North Sea and 3a Sprat (spr.27.3a4): The catches are dominated by age 1-2 fish. Due to the short life cycle and early maturation, most of the stock consists of mature fish. To undertake the assessment and fit with the natural life cycle of sprat the assessment model is shifted by six months so that an assessment year and advice runs from 1 July to 30 June each year, and thus provide in-year advice. Sprat in Division 3.a and Subarea 4 were combined into a single assessment unit during the recent WKSPRAT benchmark (ICES, 2018). Various changes were made to the assessment model, which improved the quality in terms of both fitting and retrospective bias. The advice is based on the MSY escapement strategy with an additional precautionary $\mathrm{F}_{\text {cap }}$ which has been re-evaluated by a dedicated workshop (WKSPRATMSE; ICES 2019). The $\mathrm{F}_{\text {cap }}$ of 0.69 is used to ensure that after the fishery has been conducted, escapement biomass is preserved above $\mathrm{B}_{\mathrm{lim}}$ with high probability. The long-term dynamics and perception of the status of the combined stock is consistent with previous perception for sprat in Subarea 4. Despite the fact that fishing mortality in the last years has fluctuated at high levels between $0.6-2.2$, recruitments slightly above the average during recent years have contributed to an increase in SSB well above MSY Bescapement. The estimates for 2019 show an SSB of $249000 t$ which is nearly double of $B_{p a}(125000 t)$. The ICES advise for the period 1 July 2019-30 June 2020 indicates that catches of sprat should not exceed 138726 t.

Sprat in the English Channel (7.d and 7.e) (spr.27.7de): Consists of a small midwater trawl fleet targeting sprat primarily in the vicinity of Lyme Bay, western English Channel. The stock identity of sprat in the English Channel relative to sprat in the North Sea and Celtic Sea is unknown. This year, ICES has provided catch advice for sprat in divisions 7.d and 7.e (primarily in the vicinity of Lyme Bay) based on criteria for data limited stocks. Data available are catches, a time series of LPUE (1988-2016) and one acoustic survey that has been carried out since 2013 in the area where the fishery occurs and further offshore, also including the waters north off the Cornish Peninsula and, from 2017, the French part of the Western English Channel. The advice provided is based on the biomass estimates from the acoustic survey which in 2018 remained at low level in relation to the estimates for 2013-2015. The advised catch for 2020 is 20% lower compared to last year (applying the uncertainty cap).

Sprat in the Celtic Sea (spr.27.67a-cf-k): The stock structure of sprat populations in this ecoregion (subareas 6 and 7 (excluding 7.d and 7.e)) is not clear, and further work for the identification of management units for sprat is required. Most sprat in the Celtic Seas ecoregion are caught by small pelagic vessels that also target herring, mainly Irish and Scottish vessels. The quality of information available for sprat is heterogeneous across this composite area. There is evidence from different survey sources of significant inter-annual variation in sprat abundance. Landed biomass, but not biological information on the catch, is available from 1970s in some areas (i.e.,
6.a and 7.a), while Irish acoustic surveys started in 1991, with some gaps in the time series provide sprat estimates but their validity to provide a reliable sprat index is questionable because they do not always cover the core of sprat distribution in the area. Acoustic estimates in the Irish Sea are more reliable. The state of the stock of sprat in the Celtic Seas ecoregion is uncertain. ICES advice a catch of no more than 2800 tonnes for 2020 and 2021 in this eco-region based on the precautionary approach.

Sandeel in 4 (san-nsea): Sandeels in the North Sea can be divided into a number of more or less reproductively isolated sub-populations. A decline in the sandeel population in recent years concurrent with a marked change in distribution has increased the concern about local depletion, of which there has been some evidence. Since 2010 this has been accounted for by dividing the North Sea into 7 management areas. Denmark and Norway are responsible for most of the fishery of sandeel in the North Sea. The catches are largely represented by age 1 fish. Analytical assessments are performed in four of the management areas (A1r-4) where most of the fishery takes place and data are available. Note that a benchmark in 2016 revised most of the area definitions.

A1: SSB has been above $\mathrm{B}_{\mathrm{pa}}(145000 \mathrm{t})$ since 2016, but a marked decrease is estimated in the last year which brings the SSB at the beginning of 2019 down to 97000 t which is below Blim (110 000 t). Recruitment in 2018 was slightly above the geometric mean of the time-series, following the 2017 lowest record. Fishing mortality (F) has fluctuated, showing a declining trend since the mid-2000s followed by an increase in 2017 and 2018 to approximately the long-term average. The pronounced decrease in SSB contributes to a reduction in the advised catch.

A2: SSB has been below Blim since 2004 (except in 2011), it increased in 2018 to above $B_{p a}$ as the result of the exceptionally high 2016 year class but decreased again in 2019 to just below $\mathrm{B}_{\mathrm{lim}}$. With the exception of 2016, recruitment has been low since 2000 and continued to be very low in the last two years. A zero-catch advice is confirmed for this year.

A3: The stock has increased from the record low SSB in 2004 when it was half of $\operatorname{Blim}(80000 \mathrm{t})$ to above $B_{p a}(129000 t)$ where it has been since 2015. SSB had a peak of more than $270000 t$ in 2018 followed by a decrease to around $182600 t$ at the beginning of 2019 consistently with the low 2017 recruitment. The recruitments in 2016 and 2018 were among the five highest on record which explain the 23% increase in the advised catch.

A4: Fishing mortality (F) has been low since 2006 but increased in 2018. SSB has increased from the time-series low in 2009 to levels well above precautionary reference points ($B_{p a}=$ MSY Bescapement) and has remained at this level since 2016. The 2016 and 2017 year classes are estimated to be above the long-term average, but the 2018 year class is estimated to be the second lowest on record. This results in SSB falling to just below MSY Bescapement in 2020, even in the absence of fishing, which triggered a zero-catch advice.

Figure 1.7.2 WG estimates of catch/landings (yield) of the herring, sprat and sandeel stocks presented in HAWG 2019.

Figure 1.7.3 Spawning stock biomass estimates for the sprat, herring and sandeel stocks presented in HAWG 2019.

Figure 1.7.4 Estimates of mean F for the sprat, herring and sandeel stocks presented in HAWG 2019.

Figure 1.7.5 Estimates of recruitment for the sprat, herring and sandeel stocks presented in HAWG 2019.

Given the marked decrease in the weight-at-age of several of the herring stocks assessed by HAWG, the time series of the relative weight change are presented for comparative reasons (Figure 1.7.6) for the stocks in the North Sea (NSH, her.27.3a47d), the Malin Shelf (MSH, her. 27.6 a 7 bc) and the Irish Sea (ISH, her.27.nirs).

Figure 1.7.6 Relative mean individual weight is calculated by average of stock weight-at-age by year and then it is divided by the mean weight of the time series for each stock.

1.9 Mohn's rho and Bias in the assessments

ICES is planning a workshop in Autumn 2019 (WKFORBIAS) to document the extent of the retrospective bias in SSB, Fbar and recruitment for category 1 and 2 assessments based on the 20182019 assessments. Additional objectives are to identify and compile possible causes for retrospective bias and to develop approaches for retrospective bias correction and guidelines for acceptability of a stock assessment with retrospective bias. To support the workshop and in response to the ToR c-viii, HAWG reports on retrospective bias in category 1 and 2 age-based fish stock assessments made in 2019. Mohn's rho values have been uploaded at https://community.ices.dk/ExpertGroups/Lists/Retrobias2019/Allitems.aspx and they are included in this report in Table 1.8.1.

Mohn's rho (ρ) is a measure of the relative difference between an estimate from an assessment with a truncated time series and an estimate of the same quantity from an assessment using the exact same methodology over the full time series. The average of the relative change over a series of years is calculated as*:
$\rho_{\mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d=\mathrm{T}-\mathrm{i}}-\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d=\mathrm{T}}}{\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d=\mathrm{T}}}$

[^1]where $X_{y, d}$ is the assessment quantity, e.g. SSB or Fbar, for year y from the assessment with terminal year $d, \mathrm{~T}$ is the terminal year of the most recent assessment (the year of the most recent catch at age data), and n is the number of retrospective assessments used to calculate rho.

The two year subscripts for quantity X refer to the year for the quantity and the terminal year of the assessment from which the quantity was derived. For example, for an assessment WG in 2018, using catch at age up to 2017, the relevant quantities for the first retrospective ($i=1$) calculation are: $\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, \mathrm{d}=\mathrm{T}}=\mathrm{X}_{\mathrm{y}=2016, d=2017}$ which corresponds to the assessment quantity for 2016 (T-i) derived from the assessment using the full time series with terminal year 2017 (T); and $\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d=\mathrm{T}-\mathrm{i}}=\mathrm{X}_{\mathrm{y}=2016, d=2016}$ which is the estimate of the assessment quantity for the same year $\mathrm{T}-\mathrm{i}=2016$) estimated from an assessment where the data is truncated to have terminal year 2016 (T-i).

Table 1.8.1 Mohn's rho value calculated by HAWG on category 1 and 2 stocks with age-based fish stock assessments.

Stock code	Terminal year of catch data	Number of retrospective assessments used (n)	Fbar rho value	SSB rho: was the intermediate year used as the terminal year?	SSB rho value	Recruitment rho: was the intermediate year used as the terminal year?	Recruitment rho value
her.27.nirs	2018	5	0.0520	No	0.0.700	No	-13.8000
her.27.3a47d	2018	5	-12.0000	No	11.1000	No	8.0000
her.27.6a7bc	2018	5	25.0000	No	-23.2700	No	-7.8700
san.sa.1r	2018	3	-0.1200	Yes	0.2800	Yes	-0.1200
san.sa. 2 r	2018	3	-0.0900	Yes	0.7300	Yes	0.7600
san.sa.3r	2018	5	0.0200	Yes	0.1000	Yes	1.1000
san.sa. 4	2018	5	-0.0300	Yes	0.1300	Yes	0.2200
her.27.irls	2018	5	-0.0580	No	0.1720	No	1.1000
her.27.20-24	2018	5	-0.0700	No	0.1300	No	-0.0700
spr.27.3a4	2019	5	0.0890	No	0.2700	No	0.2200

1.10 Transparent Assessment Framework (TAF)

TAF (https://taf.ices.dk) is a framework to organize all ICES stock assessments. Using a standard sequence of R scripts, it makes the data, analysis, and results available online, and documents how the data were pre-processed. Among the key benefits of this structured and open approach are improved quality assurance and peer review of ICES stock assessments. Furthermore, a fully scripted TAF assessment is easy to update and rerun later, with a new year of data.

The following HAWG 2019 scripts are now on TAF:

1. North Sea herring (her.27.3a47d) update single-fleet SAM assessment, multifleet model run required for the forecast, and the forecast analysis.
2. Herring west of Scotland and Ireland (her.27.6a7bc) SAM assessment.
3. Herring south of $52^{\circ} 30^{\prime}$ N Irish Sea, Celtic Sea, and southwest of Ireland (her.27.irls) ASAP assessment.
4. Sandeel in area 1r (san.sa.1r) SMS assessment.
5. Sandeel in area 5 r (san.sa.5r) category 5.4 analysis.
6. Sandeel in area 6 (san.sa.6) category 5.2 analysis.
7. Sandeel in area 7 r (san.sa.7r) category 5.3 analysis.

1.11 Benchmark process

HAWG has made some strategic decisions regarding the future benchmarking of its stocks listed in the table below. In the next 12 months (end of 2019) there are no plans to benchmark stocks assessed by HAWG.

Stock	Ass status	Latest benchmark	Benchmark next 12 months	Planning Year +2	Further planning	Comments
NSAS	Update	2018	No	No		Issue list in prep
WBSS	Update	2018	No	No	Split mixed catches with central Baltic herring. Compile catch matrix by fleet from data in the Regional Database	Issue list in prep, likely need for an interbenchmark to revisit reference points
6.a, 7.bc	Update	2015, interbenchmark in 2019	No	2021*	Splitting of surveys and assessment, recruitment signal	Issue list in prep
Celtic Sea	Update	$\begin{gathered} \text { 2015, } \\ \text { Interbenchmark in } 2018 \end{gathered}$	No	No	Mixing with Irish Sea herring, recruitment signal	Issue list in prep
7.aN	Update	2017	No	No	Explore stock mixing and review acoustic survey design and methods, recruitment signal	Issue list in prep
Sprat NS.3a	Update	2018	No	No	Consider stock component, local components in 3a, boundary with the Baltic	Issue list in prep
Sprat 7.d and 7.e	Exploratory	2018	No	No	Consider stock components	Issue list in prep
Sprat Celtic	Exploratory	2013	No	No	Consider stock components	Issue list in prep
Sandeel areas 1-4	Update	2016	No	2021*	Update reference points for sandeel area 3 based on the new M estimates.	Issue list in prep

* Provisional, timeline to be decided

1.11.1 Ecosystem and long-term benchmark planning

HAWG is developing a longer-term perspective towards its benchmark process, by identifying issues that should be addressed in the next round of benchmarks, even though they are several years in the future. The following list of issues is intended to focus development work during this inter-benchmark period.

General

- Develop assessment tools that can take account of uncertainty estimates in surveys.

North Sea Autumn Spawning (NSAS) herring

- Splitting of catches, where possible, into autumn and winter-spawning components.
- Refinement of the IBTS0 index calculation to provide component-resolved information.
- Modification of the assessment model to account for reduced precision in catch statistics prior to the 1960s.
- In-depth understanding of the reasons at the origin of the retrospective pattern related to inclusion of the 2018 data
- Investigate the use of a wider range of ages for the $\mathrm{F}_{\mathrm{bar}}$ (currently age2-6) and application of a weighted mean of F

Western Baltic Spring Spawning (WBSS) herring

- Account for mixing of central Baltic herring (CBH) in the commercial catches in SD2224. Check for mixing of WBSS-CBH in SD25 catch
- Account for mixing of WBSS-NSAS outside of the transfer area (4.a.E, 4.b.E).
- Improve estimation of catch matrix in synergy with the RDBES
- Identify main drivers of stock productivity
- Reference points may need to be revisited.

6.a herring

- Extraction of West of Scotland herring larval abundance estimates from the North Sea IBTS0 survey.
- Develop genetic methods to split surveys and commercial catches by components

Irish Sea herring

- Develop techniques to maximize the information content in the Irish Sea larval survey. Explore levels of stock mixing, spawning behaviour and timing.

Celtic Sea herring

- Use genetic techniques to assess the mixture of Celtic Sea herring in the Irish Sea.
- Assess the interannual variation in this mixing as well as the distribution patterns.

1.12 Recommendations

All recommendations have been uploaded to the ICES Recommendation database.

1 Introduction

1.1 Terms of Reference

2018/2/ACOM07 The Herring Assessment Working Group for the Area South of 62N (HAWG), chaired by Susan Lusseau*, UK, and Valerio Bartolino*, Sweden, will meet at ICES Head-quarters for two meetings: 29-31 January 2019 to:
a) Compile the catch data of sandeel in assessment areas $1 \mathrm{r}, 2 \mathrm{r}, 3 \mathrm{r}, 4,5 \mathrm{r}, 6$, and 7 r and address generic ToRs for Regional and Species Working Groups that are specific to sandeel stocks in the North Sea ecoregion; and 13-21 March 2019 to:
b) compile the catch data of North Sea and Western Baltic herring on 13-14 March;
c) address generic ToRs for Regional and Species Working Groups 15-21 March for all other stocks assessed by HAWG.

The assessments will be carried out based on the Stock Annex. The assessments must be available for audit on the first day of the meeting.

Material and data relevant for the meeting must be available to the group on the dates specified in the 2019 ICES data call. HAWG will report by 11 February and 5 April 2019 for the attention of ACOM.

Fish Stock	Stock Name	Stock Coord.	Assesss. Coord. 1	Assess. Coord. 2	Advice	Review (SA)
san-sa	Sandeel in Division 3.a and Subarea 4	Denmark	Denmark	Norway	Update	Sweden/Ger-many/Norway/Denmark
her-27.20-24	Herring in Subdivisions 20-24 (Western Baltic Spring spawners)	Denmark	Denmark	Denmark	Update	UK/Denmark
her-27.3a47d	Herring in Subarea 4 and Division 3.a and 7.d (North Sea Autumn spawners)	Germany	NL	UK (Scotland)	Update	Norway/UK (Scotland)/Denmark
her-27.irls	Herring in Division 7.a South of $52^{\circ} 30^{\prime} \mathrm{N}$ and 7.g-h and 7.j-k (Celtic Sea and South of Ireland)	Ireland	Ireland		Update	Netherlands
her-27.6a7bc	Herring in Divisions 6.a and 7.b and 7.c	UK (Scot- land) / Ireland	Ireland	UK (Scotland)	Update	UK (Northern Ireland)
her-27.nirs	Herring in Division 7.a North of $52^{\circ} 30^{\prime} \mathrm{N}$ (Irish Sea)	UK (Northern Ireland)	UK (Northern Ireland)	-	Update	Netherlands

Fish Stock	Stock Name	Stock Coord.	Assesss. Coord. 1	Assess. Coord. 2	Advice	Review (SA)
spr-27.3a4	Sprat in Division 3.a (Skagerrak - Kattegat) and Subarea 4 (North Sea)	Norway	Denmark	-	Update	France/(Denmark/Nor- way
spr-27.7de	Sprat in the Western Channel	UK	UK	-	Update	Norway / Ireland
spr-27.67a-cf-k	Sprat in the Celtic Seas	UK	UK	-	Update	

1.2 Generic ToRs for Regional and Species Working Groups

2018/2/ACOM05 The following ToRs apply to: AFWG, HAWG, NWWG, NIPAG, WGWIDE, WGBAST, WGBFAS, WGNSSK, WGCSE, WGDEEP, WGBIE, WGEEL, WGEF, WGHANSA and WGNAS

The working group should focus on:

- Consider and comment on Ecosystem and Fisheries overviews where available;
- b) For the aim of providing input for the Fisheries Overviews, consider and comment for the fisheries relevant to the working group on:
- i) descriptions of ecosystem impacts of fisheries
- ii) descriptions of developments and recent changes to the fisheries
- iii) mixed fisheries considerations, and
- iv) emerging issues of relevance for the management of the fisheries;
- c) Conduct an assessment on the stock(s) to be addressed in 2019 using the method (analytical, forecast or trends indicators) as described in the stock annex and produce a brief report of the work carried out regarding the stock, summarising where the item is relevant:
- i) Input data and examination of data quality;
- ii) Where misreporting of catches is significant, provide qualitative and where possible quantitative information and describe the methods used to obtain the information;
- iii) For relevant stocks (i.e., all stocks with catches in the NEAFC Regulatory Area) estimate the percentage of the total catch that has been taken in the NEAFC Regulatory Area in 2018.
- iv) Estimate MSY proxy reference points for the category 3 and 4 stocks
- v) The developments in spawning stock biomass, total stock biomass, fishing mortality, catches (wanted and unwanted landings and discards) using the method described in the stock annex;
- vi) The state of the stocks against relevant reference points;
- vii) Catch scenarios for next year(s) for the stocks for which ICES has been requested to provide advice on fishing opportunities;
- viii)Historical and analytical performance of the assessment and catch options with a succint description of quality issues with these. For the analytical performance of category 1 and 2 age-structured assessment, report the mean Mohn's rho (assessment retrospective (bias) analysis) values for R, SSB and F. The WG report should include a plot of this retrospective analysis. The values should be calculated in accordance with the "Guidance for completing ToR viii) of the Generic ToRs for Regional and Species Working

Groups - Retrospective bias in assessment" and reported using the ICES application for this purpose.Produce a first draft of the advice on the stocks under considerations according to ACOM guidelines.

- d) Review progress on benchmark processes of relevance to the Expert Group;
- e) Prepare the data calls for the next year update assessment and for planned data evaluation workshops;
- f) Identify research needs of relevance for the work of the Expert Group.

Information of the stocks to be considered by each Expert Group is available here.

The ToRs are addressed in the sections shown in the text table below.

Stock	Addressed in Section
Herring in Subarea 4 and Division 3.a and 7.d (North Sea Autumn spawners)	Section 02
Herring in Division 3.a and subdivisions 20-24 (Western Baltic Spring spawners)	Section 03
Herring in divisions 6.a and 7.b-c	Section 04
Herring in divisions 6.a (South), 7.b-c, and 6.a (North), separately	Section 05
Herring in Division 7.a South of 52 ${ }^{\circ} 30^{\prime} \mathrm{N}$ and 7.g-h and 7.j-k (Celtic Sea and South of Ireland)	Section 06
Herring in Division 7.a North of 52 ${ }^{\circ} 30^{\prime} \mathrm{N}$ (Irish Sea)	Section 07
Stocks with limited data	Section 08
Sandeel in Division 3.a and Subarea 4	Section 09
Sprat in Division 3.a (Skagerrak - Kattegat)	Section 10
Sprat in Subarea 4 (North Sea) and Division 3.a (Kattegat-Skagerrak) 11	

1.3 Reviews of groups or projects important for the WG

HAWG was briefed throughout the meeting about other groups and projects that were of relevance to their work. Some of these briefings and/or groups are described below.

1.3.1 Meeting of the Chairs of Assessment Related Expert Groups (WGCHAIRS)

As usual WGCHAIRS met at the beginning of the year in preparation of the new year of advice and science working groups' activities.

Under the new ICES strategy, a new steering group, Fisheries Resources Steering Group (FRSG), will be created. Activities of advisory working groups such as HAWG will be conducted under the umbrella of FRSG. This re-organisation is mainly motivated by the intention to enhance the
transfer of new science into advice and facilitate interaction between the individual working groups and both ACOM and SCICOM, FRSG will become operative throughout 2019. Advisory expert groups will maintain their prerogative of "closed groups" in the sense that members will be still nominated at a national level.

Overall, the format of the advice had no major changes. WGCHAIRS remarked the importance of quality assurance of the ICES advice and the role of the audit system in this. Audits should be performed rigorously according to a given template (same as last year). At HAWG this is implemented assigning at least two members as auditors for each stock.

This year ICES has increased its attention towards evaluation of potential Conflict of Interest (CoI) in relation to any of its advisory activity. Expert groups are now considering CoI even more carefully than before with specific reference to a code of conduct which has been discussed and explicitly agreed by all members of HAWG at the beginning of the meeting.

WGCHAIRS remarked that while considerable progresses have been made in the documentation and quality assurance of scientific data (incl. both surveys and commercial data collected for scientific purposes), quality of the landing data is generally poorly documented by member countries. It remains the responsibility of the individual countries to implement quality assurance frameworks for the landings data.

From 2019, ICES will publish the reports from expert working groups (incl. assessment groups) as part of the new ICES scientific report series. This means that all the reports will have an ISSN and a DOI number, and most importantly authorship of the report will now lay on the members of the working group with the chairs named as editors and all the members presented as authors.

1.3.2 Working Group for International Pelagic Surveys (WGIPS)

The Working Group of International Pelagic Surveys (WGIPS) met in Santa Cruz, Spain on 1418 January 2019. Among the core objectives of the Expert Group are combining and reviewing results of annual pelagic ecosystem surveys to provide indices for the stocks of herring, sprat, mackerel, boarfish, and blue whiting in the Northeast Atlantic, Norwegian Sea, North Sea, and Western Baltic; and to coordinate timing, coverage, and methodologies for the upcoming 2019 surveys.

Results of the surveys covered by WGIPS and coordination plans for the 2019 pelagic acoustic surveys are available from the WGIPS report (WGIPS, ICES 2019). The following text refers only to the surveys of relevance to HAWG.

Review of larvae surveys in 2018:

These surveys are no longer dealt with in WGIPS. From 2019 the planning, analysis and reporting on larvae surveys will fall under WGSINS. In the interim period results from for the 2017/18 larvae surveys can be found in the HAWG report, Section 3.3.2 and for 2018/19 they will be coordinated and reported on in WGEGGS2.

North Sea, West of Scotland and Malin Shelf summer herring acoustic surveys in 2018: Six surveys were carried out during late June and July covering most of the continental shelf in the North Sea, West of Scotland, Malin Shelf, West of Ireland and Celtic Sea.

The estimate of North Sea autumn spawning herring spawning stock biomass is higher than previous year at 2.3 million tonnes (2017: 1.9) due to an increase in the number of fish (2017: 11.621 mill. fish, 2018: 12.315) and an increase in weight-at-age for mature herring. The spawning stock is dominated by young fish of age 4 and 5 wr , which is in accordance with the strongest year classes in the 2017 survey.

The 2018 estimate of Western Baltic spring-spawning herring 3+ group is 107000 tonnes and 745 million. This is a decrease of 52 and 45%, respectively, compared to the 2017 estimates of 221000 tonnes and 1353 million fish.

The West of Scotland estimate (6.a.N) of SSB is 152000 tonnes and 875 million individuals, a small increase compared to the 139000 tonnes and 765 million herring estimate in 2017.

The 2018 SSB estimate for the Malin Shelf area (6.a and 7.b,c) is 159000 tonnes and 925 million individuals. This is a about the same level as the 2017 estimates (145000 tonnes and 798 million herring). There was some herring distribution south of $56^{\circ} \mathrm{N}$ in 2017-2018; this resulted in a slightly higher estimate for the Malin Shelf compared to the West of Scotland.

There was a sprat benchmark in November 2018 (ICES, 2018), resulting in the two sprat stocks in the North Sea and Skagerrak-Kattegat being merged into one. For consistency, the survey results are presented separately in this report for these two areas.

The total abundance of North Sea sprat (Subarea 4) in 2018 was estimated at 120141 million individuals and the biomass at 834000 tonnes (Table 5.10). This is nearly 3 times as many sprat as last year, the second highest in the time series and high above the long-term average of the time series, in terms of both abundance (137% above) and biomass (88%). The stock is dominated by 1-year-old sprat (89% in numbers). The estimate also included $0-\mathrm{gr}$ sprat (3% in numbers, and 0.1% in biomass), which only occasionally is observed in the HERAS survey.

In for sprat in Division 3.a, the abundance in 2018 is estimated at 3438 million individuals and the biomass at 33400 tonnes; the second highest estimate of the time series as for the North Sea. This is well above the long-term average both in terms of abundance (86%) and biomass (38%). The stock is dominated by 1 - and 2 -year-old sprat.

Irish Sea Acoustic Survey:

The herring abundance for the Irish Sea and North Channel (7.a.N) in Aug/Sept 2017 and Aug/Sept 2018 was reported by Northern Ireland The estimate of herring SSB of 91332 tonnes for 2016 was near the series high 2010 estimate. In 2018 the estimate was 39997 tonnes, similar to that observed in 2017. The biomass estimate of 54661 tonnes for $1+$ ringers is a 25% increase on last year's biomass estimate. Unlike in previous years when a large proportion of the $1+$ biomass estimate is seen in north of the Isle of Man and in North Channel, in the current year the majority of biomass was observed in the south east of the Isle of Man area. The western and northern Irish Sea are areas of mixed size fish. In 2018 the sampling intensity was relatively high during the 2018 survey with 32 successful trawls completed. The herring were fairly widely distributed within mixed schools at low abundance, with a few distinct high abundance areas. The bulk of $1+$ herring targets in 2018 were observed off the east coast of the Isle of Man, and on the eastern coast of Northern Ireland, with a fairly scattered lower abundance observed throughout the Irish Sea. Sprat and 0-group herring were distributed around the periphery of the Irish Sea, with the most abundance of 0 -group herring in the eastern side. The length frequencies generated from these trawls highlight the spatial heterogeneous nature of herring age groups in the Irish Sea. The survey estimates are influenced by the timing of the spawning migration.

Irish Sea spawning acoustic survey: A series of additional acoustic surveys has been conducted since 2007 by Northern Ireland, following the annual pelagic acoustic survey (conducted during the beginning of September). The survey uses a stratified design similar to the AC(7.aN). Survey methodology, data processing and subsequent analysis is exactly the same as for $\mathrm{AC}(7 . \mathrm{aN})$ and follows standard protocols for surveys coordinated by WGIPS. The survey was presented to WGIPS in 2017 prior to inclusion into the benchmark. The results of the survey is reported in the WGIPS 2018 report (ICES, 2018). The survey is included in the assessment as a SSB index. The SSB in 2017 was estimated as 20171 41, 683 declining to 38974 in 2018. The herring were
distributed within a few distinct high abundance areas to the southwest and southeast of the Isle of Man. The estimate of herring SSB from the 2018 commercial acoustic survey remain within range for the time series.

Celtic Sea herring acoustic survey (CSHAS): Herring and sprat abundance for the Celtic Sea in October 2018 was reported by the Marine Institute, Ireland. The Celtic Sea herring stock was considered to have been contained within the survey area in 2018. The spawning stock biomass (SSB) estimate in 2018 was 7760 tonnes and is comparable to the 2017 survey estimate. Both years represent the lowest SSB points in the survey time series. The CV on the survey estimate was high (~ 0.50) in 2018. The downward trend in the standing stock biomass has continued from a medium term high around 2012 and has been exacerbated by a prolonged period of poor recruitment since then. Observations made during the WESPAS summer survey in June 2018 confirm the currently low standing stock abundance of herring in the Celtic Sea. The potential of a positive signal in recruitment was evident from survey catches with 0-group herring observed across the CSHAS survey area and further east into UK waters. The biomass and abundance of sprat in 2018 was higher than in 2017 and more in line with the 2016 estimate.

Pelagic ecosystem survey in Western Channel and eastern Celtic Sea (PELTIC): This survey was conducted by Cefas, UK, in the Western Channel and eastern Celtic Sea in October 2018. Geographical coverage extended southwards in 2017 to include French waters in the western Channel and in 2018 was further extended in to Division 7.d Both the number of completed acoustic transects and trawls exceeded those achieved in 2017. Preliminary results indicated some differences in ichthyofauna observations when compared to 2017. In the Bristol Channel, other than the usual hotspot inside the estuary, the majority of fish biomass was found more inshore, as demonstrated also by the location of the trawl effort. In the French waters of the western Channel more fish activity was found along the western-most transects. Further east in the western Channel, very few schools were encountered, which matched last year's results. The transects east of Lyme Bay, sampled for the first time during PELTIC, yielded little fish biomass. Sprat was in general the dominant small pelagic species in the trawl samples, with highest densities in the eastern parts of the western Channel and the Bristol Channel. As in previous years, large schools in the Bristol Channel appeared to consist mainly of juvenile sprat, whereas those in the English Channel also included larger size classes. The age distribution of sprat in the survey area shows a marked distinction between the young fish (0 and 1) found in the Bristol Channel and the older age classes that occupy the Western English Channel. Whether the two clusters belong to the same stock has yet to be proved: the circulation pattern of the area would allow sprat eggs/larvae to travel northward, from division 7.e to 7.g; however, the formation of a front in late spring/early summer seems to suggest the hypothesis of two different stocks.

Sprat biomass had increased in Lyme Bay in 2017 (English Channel: 34109 tonnes) compared to the low biomass estimate from 2016. A decline in biomass was observed in 2018 again to 17091 tonnes.

1.3.3 PGDATA, WGBIOP and WGCATCH

The Planning Group on Data Needs for Assessments and Advice (PGDATA coordinates the activities of both WGBIOP and WGCATCH. One of its main focuses is on the quality of data going into stock assessments and development of methods for identifying improvements in data quality, or collections of new data, that have the greatest impacts on the quality of advice.

The ICES Working Group on Biological Parameters (WGBIOP) coordinates the practical implementation of quality assured and statistically sound development of methods, standards and guidelines for the provision of accurate biological parameters for stock assessment purposes. The
overall aim for WGBIOP is to review the status of current issues, achievements and developments of biological parameters and identify future needs in line with ICES requirements and the wider European environmental monitoring and management.

As biological parameters are among the main input data for most stock assessment and mixed fishery modelling, these activities are considered to have a very high priority. The main link between stock-assessment working groups and WGBIOP is through the benchmark process. WGBIOP works in close association with the BSG (ICES benchmark steering group), reviewing all issue lists pointing to either missing issues in relation to specific stocks and guiding the process to get issues related to biological parameters resolved. WGBIOP will align its scheduling of age and maturity calibration exchanges and workshops with the newly proposed ICES benchmark prioritisation system. WGBIOP has a close working relationship with WGSMART (The Working Group on SmartDots Governance) and in cooperation will further develop the SmartDots tool as a platform for supporting the provision of quality assured data to the end users.

The last WGBIOP (October 2018) reviewed the following activities falling within its remit and of interest for HAWG:

- Herring (Clupea harengus) Otolith Microstructure (OM) exchange. In 2018, 4 readers from Sweden and Denmark took part in an exchange of ground and polished otoliths ($\mathrm{n}=96$) from ICES areas 3.aN, 3.aS and 4.b, the overall agreement across readers was 45%. 23 of the samples had a genetically validated stock ID, there were just 5 of these where all 4 readers were in agreement with the genetic results. Readers agreed that overtime OM patterns have changed and it has become more and more difficult to clearly distinguish between the spawning types, mostly between the Western Baltic spring spawners (WBSS) and the Downs winter spawners. In early 2019 another exchange took place with the same 4 readers participating and all samples ($n=93$) had a genetically validated stock ID assigned. The overall agreement was 85% with the Downs winter spawners being the most difficult to identify correctly. The presence of samples from sub-stocks where the OM varies from those described in the past can cause confusion for the readers and work continues on updating reading guidelines using genetically identified stock IDs.
- The Workshop on sexual maturity staging of herring and sprat (WKMSHS2) concluded; agreement with the validated material (herring 52%) was much lower compared to the agreement with the modal stage (herring 74%); there was no improvement achieved over the calibration rounds for herring and a small improvement for sprat; males are generally more difficult to stage compared to females and a mismatch exists between the herring stage description and the WKMATCH scale.
- The Workshop for advancing sexual maturity staging in fish (WKASMSF) proposed the 'WKMATCH 2012 maturity scale revised', prepared conversion tables to be used when uploading national maturity data to the ICES survey and commercial fisheries databases and prepared an implementation plan for reporting maturity data in the 'WKMATCH 2012 maturity scale revised' to these databases from 1 January 2020.

The ICES Working Group on Commercial Catches (WGCATCH) continues to document national fishery sampling schemes, establish best practice and guidelines on sampling and estimation procedures, and provide advice on other uses of fishery data. The group evaluates how new data collection regulations, or management measures (such as the landings obligation) will alter how data need to be collected and provide guidelines about biases and disruptions this may induce in time series of commercial data. WGCATCH also develop and promote the use of a range of indicators of fishery data quality for different types of end users. These include indicators to allow stock assessment and other ICES scientists to decide if data are of sufficient quality to be
used, or how different data sets can be weighted in an assessment model according to their relative quality.

WGCATCH 2018 finalized best practice guidelines for sampling and estimation of foreign landings in national ports. These guidelines were based on case studies highlighting the present problems and successes with sampling of foreign landing (a lot of the case studies focused on small pelagic fish). WGCATCH 2018 started to work on best practice guidelines in data request and provision for frequency data (e.g. DLS stocks), by summarising current national practise and developing tools to support national data submitters and stock coordinators to summarise the quality of the data provided. Further the group continued the work on guidelines for best-practice in sampling of small-scale fisheries, data recording, estimation of commercial catches under the landing obligation and sampling of commercial catches, including by-catch of protected, endangered and threatened species (PETS).

1.3.4 WGSAM

The Working Group on Multispecies Assessment Methods WGSAM provides estimates of natural mortality (M) for a number of fish stocks based on estimates from multispecies models. WGSAM provides M estimates for the following HAWG stocks: North Sea herring (updated at WKPELA 2018), North Sea sprat (evaluated and updated at HAWG 2018), sandeel SA1 (evaluated and updated at HAWG 2018), sandeel SA3 (evaluated and NOT updated at HAWG 2018). No update of natural mortalities are available from WGSAM for the 2019 HAWG assessments.

1.3.5 WKNSMSE

The Workshop on North Sea stocks Management Strategy Evaluation (WKNSMSE) evaluated long-term management strategies for a number of jointly-managed stocks in the North Sea between the European Union and Norway, following a request from EU-Norway. The North Sea Autumn spawning herring was among those stocks. The full-feedback simulations performed by WKNSMSE aimed to find "optimal" combinations of harvest control rule parameters ($\mathrm{F}_{\text {target }}$ and $\mathrm{B}_{\text {trigger }}$) for management strategies with (scenarios C,D,E) or without (scenarios A, B) stability mechanisms (TAC constraints and banking and borrowing scenarios; see Table 1.2.5.1). "Optimal" combinations were defined as those combinations of $\mathrm{F}_{\text {target }}$ and Btrigger that simultaneously maximised long-term yield while being precautionary (long-term risk $3 \leq 5 \%$).

The Management Strategy Evaluation (MSE) considers four components: the biological stock unit of herring in the North Sea [1], four fisheries targeting the stock unit [2], the fisheries-independent surveys [3], the stock assessment procedure which is used to obtain a perceived status of the stock unit and to set management targets [4]. The framework includes feedback loops, where over time, the result of setting management targets affects the stock unit the year after, and thereby also affects the fisheries and management. In order to reflect the uncertainties related to stock dynamics, fisheries dynamics and management implementation, the simulations are run with 1000 replicates, each representing a different but likely version of the true dynamics of the stock unit and fisheries.

Contrary to the expectations, the risk criteria does not stabilize in the medium to long term. Therefore the results referred to as "long-term" are achieved at equilibrium and are actually conditional to some of the assumptions (i.e., 20 -year projection period, 1000 replicates and risk $3 \leq 5 \%$ over the last 10 years). This means that the outcomes of the MSE should be considered precautionary only within the 20 years evaluated and the strategies should be re-evaluated within that time frame.

All the scenarios tested are precautionary with the exception of the strategy E for which no optimal target was found. In general, for all the other scenarios (A-D) there is less than 0.2% difference in the long-term yield (Table 1.2.5.2).

The optimal $\mathrm{F}_{\text {target }}$ values for all the scenarios $(0.22-0.23)$ are somewhat smaller than the FMSY value (0.26) estimated using EqSim at the last benchmark in 2018. Thus, the current FMSY in combination with an MSY $B_{\text {trigger }}$ of 1.4 mt has an associated risk $>5 \%$. There are fundamental differences in the way EqSim and the MSE evaluate risk and make use of implementation error which may explain the difference (i.e., the up to 50% flexibility for the human consumption fishery in 3a is accounted in the identification of the $\mathrm{F}_{\text {target }}$ but it is not part of the EqSim calculation).

Among the sensitivity tests performed, the MSE evaluated the consequences of reducing the bycatch of the B and D fleets which showed a reduction in risk and some consequent increase in fishing opportunities for the human consumption fishery (A-fleet). These results are in line with previous results as obtained in ICES 2015 (WKHerTAC).

Despite the use of high-performance clusters, computational time represented a challenge (running time for a 1000 replicate scenario was around 500 h with approx. 50 evaluations per core) which limited part of the evaluation.

Table 1.2.5.1 Management strategies for the North Sea herring stock tested at WKNSMSE.

HCR	A-fleet	B-fleet	Condition	Stability	Bank \& Borrowing
A					
B					
C			if SSB $>\mathrm{B}_{\text {trig }}$	TAC ${ }_{y}$ A-fleet in AdY $0.8 \mathrm{TAC}_{y-1}<\mathrm{TAC}_{y}<1.25 \mathrm{TAC}_{y-1}$	+/-10\%
D			if SSB $>\mathrm{B}_{\text {trig }}$	TAC ${ }_{y}$ A+B-fleet in AdY $0.8 \mathrm{TAC}_{y-1}<\mathrm{TAC}_{y}<1.25 \mathrm{TAC}_{y-1}$	+/-10\%
E				TAC ${ }_{y}$ A+B-fleet in AdY $0.8 \mathrm{TAC}_{y-1}<\mathrm{TAC}_{y}<1.25 \mathrm{TAC}_{y-1}$	+/-10\% except when: $\begin{aligned} & S S B<B_{p a} \& F>F_{p a} \text { in } A d Y \\ & B<B_{p a} \text { in } A d Y \text { and } C t Y \end{aligned}$

SSB and F are calculated at spawning time; $\operatorname{Im} \mathrm{Y}, \mathrm{AdY}, \mathrm{CtY}$ are the intermediate, advice and continuation years. The red square shows when stability and flexibility measures apply.

Table 1.2.5.2 Short-, medium- and long-term yield (total catch) and SSB for the "optimised" strategies and for FMSY given the "optimal" $B_{\text {triger }}$. Cases where risk3 $\mathbf{>}$ 5\% are in red text. E is not included since no "optimum" was found for it. The time period are: short =2019:2021, med = 2022:2026, long = 2027:2036. Management strategies with an asterisk indicate $F_{\text {target }}=F_{\text {MSy }}$ and $B_{\text {trigger }}=$ MSY $B_{\text {trigger }}$.

Management Strategy	F case	$F_{\text {target }}$	$\mathrm{B}_{\text {trigger }}$	Yield			SSB			risk3			IAV			Realised mean $\mathrm{F}_{(2-6)}$		
				short	med	long												
$F=0$	$F=0$	0	0	0	0	0	2310249	2643789	2687033	0	0	0	0	0	0	0	0	0
A	$\mathrm{F}_{\text {target }}$	0.22	1400000	269747	339827	345646	1293350	1461235	1471026	0.037	0.025	0.046	0.186	0.147	0.151	0.179	0.219	0.219
A*	$\mathrm{F}_{\text {MSY }}$	0.26	1400000	296446	361936	358346	1253241	1370185	1363961	0.065	0.053	0.072	0.190	0.164	0.168	0.205	0.253	0.248
B	$\mathrm{F}_{\text {target }}$	0.22	1400000	271574	338313	344582	1291883	1456469	1467080	0.037	0.029	0.05	0.183	0.147	0.149	0.179	0.219	0.219
B*	$\mathrm{F}_{\text {MSY }}$	0.26	1400000	298388	359776	356365	1250953	1360849	1354684	0.061	0.054	0.081	0.188	0.165	0.168	0.205	0.251	0.247
C	$\mathrm{F}_{\text {target }}$	0.22	1400000	269690	335932	345095	1293654	1469648	1473686	0.037	0.025	0.048	0.186	0.158	0.157	0.179	0.219	0.219
C*	$\mathrm{F}_{\text {MSY }}$	0.26	1400000	296510	359024	358001	1253728	1377431	1365667	0.062	0.051	0.076	0.190	0.172	0.171	0.205	0.253	0.249
D	$\mathrm{F}_{\text {target }}$	0.23	1400000	276805	342173	349286	1283906	1446680	1446241	0.048	0.03	0.049	0.186	0.162	0.159	0.186	0.228	0.228
D*	$\mathrm{F}_{\text {MSY }}$	0.26	1400000	296510	359438	358937	1253750	1378526	1368652	0.061	0.047	0.076	0.189	0.171	0.171	0.205	0.254	0.249

1.3.6 WKSPRAT \& WKSPRATMSE

The 2018 benchmark workshop on sprat (WKSPRAT) focused on the following three stocks: North Sea (area 4) sprat, Kattegat-Skagerrak (area 3.a) sprat and the Channel sprat. During the benchmark process, several evidences including genetics, otolith shape, recruitment and cohort dynamics were presented on the connection between sprat in the North Sea and in the KattegatSkagerrak. It was therefore agreed to merge the two stocks and assess them as one stock assessment unit. For the purposes of the new joined assessment for the two areas, both the catch data and the indices of abundance from 3.a were included in the data from area 4 . Three surveys are carried out throughout the assessment area including the IBTS in Q1 and Q3 and the acoustic HERAS survey. All the surveys were used as tuning indices in the model. The indices were standardized using a delta-GAM approach: the inclusion of 3.a data increased the internal consistency between all age classes for all indices. The SMS model, previously used to assess the North Sea component, was used to assess the new combined stock. The final model formulation includes a power function for the age 0 catchability of IBTS Q1, a constant maturity ogive and the inclusion of the very few catches reported for Q4 in the Q1 of the following year. The new stock assessment shows a considerable improvement in the retrospective pattern, as well a better fitting to some ages of the IBTS surveys. The stock reference points were revised following ICES standard guidelines using a segmented stock recruitment relationship limited to years from 1982 and onwards. Blim was estimated at 94000 t as the breakpoint of the segmented regression and $B_{p a}$ was derived from $B_{l i m}$ at a value of 124946 t . However, an escapement strategy, where the stock is fished down to $B_{p a}$, has been proved not to be precautionary for such stock, unless an F limit control rule ($\mathrm{F}_{\text {cap }}$) is applied. For this reason, a full closed loop management strategy evaluation was carried out after the benchmark by WKSPRATMSE to test for different $\mathrm{F}_{\text {cap }}$ values, where the $\mathrm{F}_{\text {cap }}$ chosen corresponds to the F providing a probability of SSB falling below Blim lower than 5%. The results suggested that an $\mathrm{F}_{\text {cap }}$ of 0.69 is precautionary under the assumption that only errors in the stock numbers and exploitation patterns are included.

WKSPRAT benchmarked also sprat from the area 7.d,e. Not enough evidences were available to change the boundaries of this stock. An acoustic survey (revised for the benchmark) is carried out in the English part of area 7.e since 2013, and extended to the French part of 7.e in 2017 and to the Eastern Channel in 2018. In addition, an IBTS index in Q1 is available for the Eastern Channel from 2007 onwards. Overall, the short time series in the acoustic index and the lack of sufficient contrast in the data do not allow any analytical model to converge. Thus, the stock is in a category 3 (data poor stock). The benchmark proposed a seasonal advice based on an empirical method where trends are informed by both the indices, but only the acoustic survey is used for provision of the advice. In line with preliminary results from WKLIFE, the benchmark agreed that the "2-over-3" rule is not appropriate for short, highly productive stocks as sprat in area 7.d,e. Therefore, WKSPRATMSE compared through simulations the performances of the alternative " 1 -over- 2 " rule and of different fixed harvest rates. The results suggested that a 1 -over- 2 rule might cause the stock to fall below safe levels and eventually to collapse because the rule is not reactive enough to limit the catches when there is a recruitment failure. The risk decreases but remains still above safe limits also when removing the uncertainty cap. Simulations suggest that a 20% fixed harvest rate may be considered appropriate to maintain the stock at safe biomass levels and to produce relatively high yield. Further work is required in the light of the relevant upcoming Workshop for Data-limited Short-lived Stocks (WKDLSSLS).

1.3.7 IBPher6a7bc

The Inter-Benchmark Protocol for Herring in 6.a, 7.b-c 2019 (IBPher6a7bc, ICES 2019) was held to seek a solution to the consistent and increasing retrospective bias in the assessment of this herring stock.

At the meeting several improvements to the survey series used in the assessment were presented and reviewed. This included re-calculated and extended Scottish West Coast International Bottom Trawl Survey Quarter 1 and Quarter 4 (SWS BTS Q1 and Q4) and the two acoustic survey indices used in the assessment were re-examined and combined in to one to give a better acoustic index. Survey data analysis improvements were carried out first and agreed, and model optimisation was performed with the improved indices in the attempt to minimise the retrospective bias.

Extensive work was carried out to find a model configuration that would improve the retrospective, but it became clear that minimising the retrospective bias caused problems elsewhere in the models. Eventually, the interbenchmark agreed on a final model configuration. Although it was agreed the final model is a better assessment, there is still a retrospective bias. The new assessment also provides a radically different perception of the stock than previously and the assessment output raises a number of questions as to the dynamics of these combined stocks, over the time series that could not be investigated in depth during the inter-benchmark.

With an agreed final assessment the MSY and PA reference points were investigated according to ICES guidelines. The new stock assessment data, when implemented in the routines for estimating the reference points, using the same procedures as previously, lead to a number of questions as to how one could 'objectively' apply the ICES guidelines for estimating reference points. Extensive explorations, including limiting the length of the time series, indicated that the reference points were very sensitive to the choice of input data.
Surplus Production in Continuous Time (SPiCT) analysis was also undertaken but did not provide an alternative way of estimating sensible/believable reference points. The final conclusion was that since there was no objective way to choose a definitive data set for use in calculating a set of plausible reference points, no new reference points, based on the new assessment, were presented.

In regard to advice, it was decided that the assessment should be considered as a representation of trends rather than absolute estimates of stock size. Therefore, it is appropriate to consider the stock assessment as category 3 so that relative changes in fishing and stock size are used as basis for ICES advice (i.e the $2 / 3$ rule, where advice based on previous advice, modified according to index information; typically the trend in the last 5-years of the index).

1.3.8 IHLS and MIK surveys

The International herring larvae survey (IHLS) index provides information on the contribution and distribution of the different spawning components to the North Sea herring stock. This is the only index currently used in the assessment to provide information on the relative sizes of the four North Sea herring stock components, as in the other surveys or catch data the fish cannot be split into the different spawning components. The IHLS thus provides important information for the management of this stock.

In recent years the coverage of the IHLS survey has been compromised due to technical issues with the vessels available to conduct the surveys. This has led to the decision in 2018 to reject the information of 3 of the 4 surveys in the IHLS. Due to this break in the time-series it is necessary
to review the current setup of the IHLS. Because information on the relative sizes of stock components of North Sea herring is required, HAWG is recommending that the Working Group on Surveys on Ichthyoplankton in the North Sea and adjacent Seas (WGSINS) review the current design of the IHLS, in the light of the available survey effort, to deliver information on the relative stock components abundances, and if necessary to implement a new survey protocol that can deliver these data.

Down's herring recruitment information

In 2016, WKHERLARS evaluated the North Sea herring larvae surveys (ICES, 2016), and concluded that the current IBTS-MIK recruitment index does not contain information on the Downs spawning component. It was recommended to investigate the possibility to collect data to include information on Down's recruitment. In 2017, the effect of omitting one of the three IHLS surveys, carried out on the Downs component, from the herring assessment was investigated. The omission resulted in a negligible effect and it was, thus, decided to drop the Dutch IHLS participation in the second half of January. The vessel time and budget of this survey was instead used to conduct a Downs Recruitment Survey (DRS) in 2018.

The DRS was carried out in April, following the IBTS-MIK protocol, but the sampling was carried out both day and night, instead of only at night. Results were presented at HAWG. Due to time constraints it was not possible to cover the whole larvae distribution area. Compared to the MIK, numbers of herring larvae found in the DRS samples were much higher per sample. Length distributions of the herring larvae in the DRS were very similar to that for the MIK in 2018.

HAWG has a positive view on the continuation of the Downs Recruitment Survey (DRS), but cannot include the survey in the advice based on only one year of a survey. HAWG foresees potential future use of the combined IBTS0-DRS-index for a complete NSAS recruitment index for the advice if the surveys are continued. Thus HAWG supports the continuation of the exploratory surveys in April and have had a positive response from several laboratories. In 2019 IMR, Norway will participate in the DRS and for 2020 Danish Industry and IFREMER, France are investigating possibly participation. HAWG recommends that WGSINS investigate calculation of a Downs and combined North Sea herring recruitment index based on the combination of the IBTS-MIK and DRS data.

1.3.9 Stock separation of herring in surveys and catches

The mixing of herring stocks in surveys and catches is an issue in many of the stock assessments carried out in HAWG. Presently only the mixing between North Sea herring and Western Baltic Spring spawning herring in catches in the transfer area and in the HERAS survey in the Danish and Norwegian strata is routinely quantified and accounted for in the assessments. The development of operational methods to enable estimation of proportion contribution from different stock in catches and survey indices throughout the management areas for herring assessed by HAWG is a topic that HAWG continues to have high on the list of issues to solve to improve upon assessments. Several ICES workshops have been held to progress this topic, most recently WKMIXHER in 2018 and WKSIDAC in 2017. During HAWG 2019 a mini symposium was also arranged to facilitate exchange of ideas and foster collaboration of researchers working of different aspects and methods and to update HAWG on progress on projects currently underway of relevance to HAWG stocks.

1.3.9.1 Stock separation mini symposium

The mini symposium was held on $19^{\text {th }}$ March with 6 talks on projects of relevance to HAWG stocks. Detailed summaries of these talks are in Annex 6.

Edward Farrell from UCD updated the HAWG on progress made to assess the genetic population structure of herring stocks in ICES 6.a/7.bc and to develop genetic baselines of the $6 . a \mathrm{~N}$ and 6.aS/7.bc stocks to be used to discriminate mixed aggregations of non-spawning herring in area $6 a$.

Dorte Bekkevold from DTU Aqua presented how Single Nucleotide Polymorphism (SNP) marker classification tools can already be used with high statistical accuracy to distinguish among major herring stocks and sub-stocks mixing in the North Sea, 3.a and Division 22-25.

Florian Berg from IMR is working on splitting Norwegian Spring-spawning herring, North Sea and Western Baltic Spring spawning herring in the HERAS survey and in catches using otolith shape analysis.

Julie Coad Davies from DTU Aqua presented the latest in using otolith microstructure to separate mixed catches of Western Baltic Spring spawners and North Sea herring and presented results from calibration exercises between readers using otoliths from fish genetically assigned to stock.

Jan Arge Jacobsen from Faroe Marine Research Institute presented the otolith classification method used to separate Norwegian spring-spawning herring (NSSH) and other herring stocks (e.g. Icelandic summer-spawning ISSH, Faroese autumn-spawning (FASH) and North Sea type autumn-spawning herring (NASH)) in the International ecosystem surveys in the Nordic Seas (IESNS and IESSNS).

Finally, Michaël Gras from the Marine Institute in Ireland gave an update on the project to use body and otolith morphometry to discriminate herring in 6.a, 7.bc.

Seeing these projects presented together made it clear how much progress is being made towards understanding the population structures of the herring stocks assessed in HAWG and towards developing operational tools to allow routine discrimination of different stocks in the surveys and catches used in the assessments. Many of the researchers already collaborate and exchange material and compare results and will continue to do so, and already were discussing how to further increase these collaborations. One of the outcomes from the symposium is a drive to collect tissue samples for genetic analysis from the entire HERAS survey area in 2019 as well as otoliths from the same fish for shape analysis from the northern most area. This will create a unique dataset to compare results from several methods and help to identify the best method (or combination of methods) to reliably separate different stocks in this survey (6.aN, 6.aS, North Sea Autumn spawners, Western Baltic Spring spawners and potentially also Norwegian spring spawners).

It would be valuable to continue to invite presentations to HAWG on this topic to continue to work towards solutions until enough progress is made to warrant a second round of workshops along the lines of WKSIDAC and WKMIXHER.

1.3.9.2 WKMIXHER 2018

The workshop on mixing of western and central Baltic herring stocks (WKMixHer) took place on 11-13 September 2018 in Gdynia. The aims of workshop were to review recent research and available methods to discriminate western Baltic spring spawning herring and central Baltic herring in mixed catches, evaluate potential implication of mixing for the assessment, develop a coordinated plan to collect and analyse relevant data to quantify the mixing. The central Baltic herring is dominated by a northern component and a southern component and analyses presented at the workshop suggested how the latter actually shares numerous characters with the adjacent western Baltic herring stock (i.e., growth pattern, otolith shape, parasite infestation, etc.). Preliminary analyses performed in conclusion of the workshop suggested a progressive genetic differentiation along the entire southern Baltic coasts from SD24 to SD26 rather than a
clear cut division between different assessment units. The workshop results suggest that the issue of separating of the Central Baltic herring stock from the western Baltic spring spawning herring stock is related to understand if the southern component should be considered together with the western Baltic herring, maintained with the central Baltic herring, or if it should be considered separately. Depending on the task, the methodologies reviewed for stock identification could be promising or insufficient. A coordinated plan for sampling herring at spawning time was delineated at the workshop with the objective to validate herring assessment units in the area and look for operational methods to separate them in mixed catches.

Table 1.2.9.2.1 Methodologies for separating the different herring components found in the western and central Baltic (SD22-26) and discussed at the workshop. WBC: WBSSH from SD22-24; CBSC: Southern component of Spring spawning CBH; CBNC: Northern component of the Spring spawning CBH; AC: Autumn spawning component. The score-card below is limited to the results presented at the workshop, the suitability of the different techniques for stock discrimination span from high (green), limited or to be confirmed TBC (yellow) and none (red). Copied from WKMixHer report (ICES, 2018).

Stock discrimination methods	WBC-CBSC	WBCCBNC	$\begin{aligned} & \text { CBSC- } \\ & \text { CBNC } \end{aligned}$	WBC-AC	CBSC-AC	CBNC-AC
Growth	NO	YES	YES	limited	limited	limited
Natural tags Anisakis simplex	O	YES	YES	NA	NA	NA
Otolith shape	limited	YES	YES	YES	YES	YES
Body morphometry	TBC	YES	YES	NA	NA	NA
Vertebrae	NA	NA	NA	NA	NA	NA
Other meristics	NA	NA	NA	NA	NA	NA
Otolith chemistry	TBC	TBC	NA	NA	NA	NA
Genetics 9 microsatellite	limited	limited	limited	NA	NA	NA
Genetics 96 SNPs	TBC	YES	YES	YES	YES	YES

1.3.9.3 WKSIDAC 2017

In 2017 the "Workshop on stock identification and allocation of catches of herring to stocks" (WKSIDAC) was held in Galway, Ireland.

This workshop had several objectives; improve the accuracy and precision of the methods currently applied across laboratories by area; compare alternative available methods; outline a common generic approach in terms of methods; and draft guidelines for conducting stock-splits for
assessment purposes. Key issues relating to stock mixes in each of the management areas (2, 3, 5,6 and 7) were outlined along with why the stock identification was important for the assessments of each of these stocks (see Table 1.2.5.1).

Table 1.2.5.1: Co-occurrence of herring stocks in management areas.

Stocks/stock complexes	stockcode	Spawning components	2a	3a	$\begin{array}{\|l\|} \hline 3 \\ \text { sd22-24 } \\ \hline \end{array}$	$\begin{aligned} & \hline 3 \\ & \mathrm{sd} 25 \\ & \hline \end{aligned}$	4a	4bc	5a	5b	6 aN	6aS	clyde	7aN	7bc	7d	7e	$7 \mathrm{~g}-\mathrm{k}$
Norwegian Spring Spawning	her.27.1-24a514a	NSSH	x	?			?		?	?	?							
North Sea Autumn Spawning	her.3a47d	Downs	x2							x	x	x	x					
		Banks	x2							X	x	x	x					
		Buchan	x2							x	x	x	x					
		Orkney-Shetland	x2							x	x	x	x					
Western Baltic Spring Spawning	her.27.20-24	Rugen	?	x	x	x	x											
		local Spring		x	x													
		local Aut-Winter		x	?													
Central Baltic	her.27.25-2932	CBH		?	x	x												
North West of the British Isles	her.27.6a7bc	6aN	?				?			?	x	x			x			
		6aS-7bc					?				x	x		?	x			
		Clyde									x	x	x		x			
Irish Sea	her.27.7c	Douglas Bank									x	x	x	x	x			
		Mourne									x	x	x	x	x			
Celtic Sea, South West Ireland	her.27.irls	Celtic Sea					-							x			?	x

The workshop concluded from the review on information on stock identification and validation work done so far that there was no consistency between areas and in most either there was no validation or the validation needed to be updated. Only a few areas currently utilize herring stock identification methodology for the assessments, namely areas 3.a and 4 for separation of WBSS from NSAS although the methodology was not ideal, Icelandic waters for separation of ISS from NSS and in Faroese waters for separating autumn from spring spawners. The workshop was focused on potential methods and highlighted the necessity of validation and Standard protocols or operating procedures. The workshop also concluded that the optimal allocation method for stock assessment purposes (as perceived by the Workshop members) varied by area (see Table 1.2.5.2). Otolith shape analyses appeared the most widely recommended, however, other techniques such as genetics and otolith microstructure and micro-chemistry would be necessary for validating the shape analyses results. In the Baltic, separation based on the growth, through length-at-age was favoured and in Area 6.a, a combined approach using genetics and morphology is preferred. Baselines would also need to be updated on a regular basis.

The Workshop was not able to provide an outline of a manual by method for stock identification of herring for implementation in individual laboratories nor provide guidance on retrospective corrections of herring survey time-series but recommended that these topics need to be taken up in some future Workshop/Meeting when further progress has been made.

Table 1.2.5.2. Methodologies for separating herring stocks in each of the management areas.

1.3.10 Other activities relevant for HAWG

Industry-Science survey of herring in 6.a, 7b-c. in 2018.
(see Section 06 for additional details).
In 2018, industry and scientific institutions from Scotland, Northern Ireland, Netherlands and Ireland again successfully carried out scientific surveys with the aim to improve the knowledge base for the herring spawning components in $6 . a \mathrm{~N}$ and $6 . \mathrm{aS}, 7 . \mathrm{b}-\mathrm{c}$, and submit relevant data to ICES to assist in assessing the herring stocks and contribute to establishing a rebuilding plan.

Following agreement on a monitoring fishery TAC of 5800 t (EU2018/120), the scientific survey was designed using ICES advice on sampling required to collect assessment-relevant data, a review of spawning areas and timing and discussions with fishing skippers following the experiences from the 2016 and 2017 surveys.

Biological samples taken during the survey and subsequent commercial catches were used to construct a catch-at-age used in the 2019 stock assessment. Acoustic surveys on the biomass of the spawning components (ICES, 2019) provide a third set of data points in a spawning stock time series. Morphometric and genetic data from spawning fish will continue to contribute to the new baseline data required to assess separately the stocks in $6 . \mathrm{aN}$ and $6 . \mathrm{aS}, 7 . \mathrm{b}-\mathrm{c}$. This information would be considered in a future benchmark assessment.

Ichthyophonus

Ichthyophonus hoferi is a parasite found in fish. It has a low host-specificity, has been observed in more than 80 fish species, mostly marine, and is common in herring, haddock and plaice. Ichthyophonus belong to the Class Mesomycetozoea, a group of micro-organisms residing between the fungi and animals (McVivar and Jones, 2013). Epidemics associated with high mortality have been reported several times for Atlantic herring: in 1991-1994 for herring in the North Sea, Skagerrak, Kattegat and the Baltic Sea (Mellergaard and Spanggaard, 1997), and in 2008-2010 for Icelandic summer-spawning herring (Óskarsson and Pálsson, 2011). A time series of the Norwegian data on Ichthyophonus was presented at HAWG 2017. The occurrence is usually below 1%, except for the beginning of the 1990s, but high occurrences (22%) were again observed again in the Norwegian IBTSQ1 2017 which is carried on in the North Sea (Figure 1.2.6.1). Because of the high lethal level of this parasite and episodic outburst, HAWG 2017 decided to continue monitoring the level of Ichthyophonus infestation in the following years and Sweden extended the coverage
of the sampling to the Skagerrak and Kattegat since IBTSQ3. In the 2018 and 2019 IBTSQ1 surveys, the occurrences of Ichthyophonus in the Norwegian part were again fairly low: 4.4% and less than 1%, respectively. In the Kattegat-Skagerrak, the data suggests levels of incidence generally $<3 \%$ but with areas of $>20 \%$ infestation (Figure 1.2.6.2) and with a peak around 50% in 45 G 0 in 2018, although the sample was rather small. Infestation in Q3 2018 appears more localised in the north-eastern part of the Skagerrak compared to 2017. In 2017 the infestation affected mainly age 0-4 and rapidly declined for older fish, while in 2018 also fish of age 5-7 present some level of infestation. It is relevant that all countries continue to screen herring for Ichthyophonus during the IBTS surveys (both Q1 and Q3) and HERAS, as well as for the commercial sampling.

Figure 1.2.6.1 Occurrence of Ichthyophonus hoferi in the Norwegian part of the IBTSQ1 2017. Bubble size show the percentage of diseased herring, whereas the numbers show the number of herring.

Figure 1.2.6.2 Occurrence of Ichthyophonus hoferi in the Kattegat-Skagerrak from Swedish samples collected during the IBTSQ3 2017-2018. Left map with distribution of the proportion of infested herring and number of samples in each rectangle; right distribution of infestation among ages.

HAWG's feedbacks to RDBES

During this year meeting, HAWG had a discussed on the process leading to a joint regional estimation of assessment input data. In particular, HAWG finds that it would be preferable if the estimator role is led by a single individual with input from national experts. This is preferred over an intermediate step within the RDBES wherein the estimation is carried out by multiple individuals with intermediate creation of data subsets. A single estimation would be carried out using a scripted method prepared with input from all national experts currently carrying out estimation procedures. This represents a collaborative approach to define a combined method as a foundation of a single estimation process, it is foreseen that the responsibility to apply the combined method would be taken by a single individual e.g. the stock coordinator.

HAWG also discussed the importance of implementing a framework for co-production and feedback which could allow participation of the different actors to the actual estimation. Need for data check and quality control procedures has been stressed by the group. The general process discussed and proposed by HAWG can be summarised in the main following steps:

- Data are submitted by individual countries which have responsibility on the quality of what they submit (procedures for checking data quality at the level of submission are necessary and should be expected).
- Once data are in the RDB the stock coordinator runs a first diagnostic script which check the data quality once again and eventually report back to the data submitter possible "anomalies". Ideally, this should trigger an iterative process where errors are corrected with amendments on the initial submission.
- The stock coordinator runs an exploratory data analysis script which produces both visual and tabulated representation of the data. These are circulated among the stock coordinator, assessor and all the experts working on the stock for comments and feedback.
- Once agreed on the quality and interpretation of the data, the stock coordinator runs the estimation script which implements an estimation procedure agreed among the stock coordinator, assessor and other experts contributing to the assessment of the stock. Visual and tabulated output (i.e., WECA, CANUM, ...) are circulated among these same experts for comments and feedback.
- Once agreed on the representativeness and quality of the estimation outputs, these can be passed to the assessment model.

1.4 Commercial catch data collation, sampling, and terminology

1.4.1 Commercial catch and sampling: data collation and handling

Input spreadsheet and initial data processing

Since 1999 (catch data 1998), the Working Group members have used a spreadsheet to provide all necessary landing and sampling data. These data were then further processed with the SAL-LOC-application (Patterson, 1998). This program gives the required standard outputs on sampling status and biological parameters. It documents any decisions made by the species co-ordinators for filling in missing data and raising the catch information of one nation/quarter/area with information from another data set.

Since 2015, ICES requested relevant countries within a data call to submit the national catches into InterCatch or to accessions@ices (via the standard exchange files). National catch data submission was due by 1 March 2019 All EU member states and Norway delivered their data in due time.
"InterCatch is a web-based system for handling fish stock assessment data. National fish stock catches are imported to InterCatch. Stock coordinators then allocate sampled catches to unsampled catches, aggregate to stock level and download the output. The InterCatch stock output can then be used as input for the assessment models". Stock coordinators used InterCatch for the first time at the 2007 Herring Assessment Working Group. However, InterCatch does not provide the output as needed for the assessment of NSAS and WBSS. Both data collation methods are, therefore, still used in parallel.

Excel was used to allocate samples to catches for 6 .a following the same procedure outlined in WD01 to HAWG 2017.

More information on data handling transparency, data archiving and the current methods for compiling fisheries assessment data are given in the Stock Annex for each stock. Figure 1.5.1 shows the separation of areas as applied to the data in the archive.

1.4.2 Sampling

Quality of sampling for the whole area

The level of catch sampling by area is given in the table below for all herring stocks covered by HAWG (in terms of fraction of catch sampled and number of age readings per 1000 tonnes catch). There is considerable variation between areas. Further details of the sampling quality and the required level of samples can be found by stock in the respective sections in the report and the stock annexes.

Area	Official Catch	Sampled Catch	Age Readings	Age Readings per 1000t
4.a(E)	74581	71183	1247	17
4.a(W)	374490	335958	5612	15
4.b	107796	80034	1455	13
4.c	2188	671	109	50
7.d	43277	14284	445	10
7.a(N)	6804	3567	1119	164
6.a(N)	4063	3867	717	176
3.a	23258	20745	3567	153
SD22-24	18992	18860	4675	246
Celtic, 7.j	3982	3671	599	150
6.a(S), 7.b and 7.c	1495	1495	1852	1239

Given the diversity of the fleets harvesting most stocks assessed by HAWG, an appropriate spread of sampling effort over the different metiers is more important to the quality of catch-atage data than a sufficient overall sampling level. The WG therefore recommends that all metiers with substantial catch should be sampled (including by-catches in the industrial fisheries), that catches landed abroad should be sampled, and information on these samples should be made available to the national laboratories and incorporated into the national InterCatch upload.

1.4.3 Terminology

The WG noted that for herring the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout the report. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks, there is a difference of one year between "age" and "rings". Further elaboration on the rationale behind this, specific to each stock, can be found in the individual Stock Annexes. It is the responsibility of any user of age based data for any of these herring stocks to consult the relevant annex and if in doubt consult a relevant member of the Working Group.

1.5 Methods Used

1.5.1 SAM

The Spate-space stock Assessment Model SAM described in described in Nielsen and Berg (2014) is currently used to assess several of the HAWG stocks. This model has the standard exponential decay equations to carry forth the Ns (with appropriate treatment of the plus-group), and the Baranov catch equation to calculate catch-at-age based on the Fs. The additional components of SAM are the introduction of process error down the cohort (additional error term in the exponential decay equations), and the random walk on Fs. The steps (or deviations) in the random walk process are treated as random effects that are "integrated out", so are not viewed as estimable parameters. The sigma parameter controls how large the random walk deviations are, and this parameter is estimated. SAM provides the option of correlated errors across ages for the random walks on F , where the correlation is an additional parameter estimated to be estimated. The current implementation of SAM is an R-package based on Template Model Builder (TMB) (Kristensen et al., 2016) and is maintained and available at https://github.com/fishfollower/SAM. At WKPELA 2018 a multi-fleet version of SAM was presented (ICES, 2018) and it is currently used for the assessment and forecasts of Western Baltic Spring Spawning herring, and to provide fleet specific selection patterns for short and medium-term forecasts for the North Sea herring.
SAM is currently run by HAWG via both the web browser at www.stockassessment.org and within the FLR (Fisheries Library in R) system (www.flr-project.org) which is an attempt to implement a framework for modelling integrated fisheries systems including population dynamics, fleet behaviour, stock assessment and management objectives. The stock assessment tools in FLR can also be used on their own in the WG context. The combination of the statistical and graphical tools in R with the stock assessment aids the exploration of input data and results.

1.5.2 ASAP

The ASAP 3 (http://nft.nefsc.noaa.gov) model has been used for Celtic Sea herring. ASAP (A Stock Assessment Program) is an age-structured stock assessment modelling program (Legault and Restrepo, 1998). ASAP is a variant of a statistical catch-at-age model that can integrate annual catches and associated age compositions (by fleet), abundance indices and associated age compositions, annual maturity, fecundity, weight, and natural mortality at age. It is a forward projecting model that assumes separability of fishing mortality into year and age components, but allows specification of various selectivity time blocks. It is also possible to include a BevertonHolt stock-recruit relationship and flexible enough to handle data poor stocks without age data (dynamic pool models) or with only new and post-recruit age or size groups.

1.5.3 SMS

SMS is a stochastic multi-species assessment model, including seasonality, used for sandeel in Division 3.a and Subarea 4, for sprat in the North Sea and 3.a. The model is run in single species mode for these stock assessments. Major difference with the other stock assessment models used by HAWG is the ability to assess in seasonal time-steps, necessary to distinguish the fishing season and off-season for both the sandeel and sprat stocks. Furthermore, it integrates catches, effort time series, maturity, weight and natural mortality at age. The model allows to set separate selectivity year blocks to account for changes in the fishing fleet.

1.5.4 Short term predictions

Short-term predictions for the North Sea used a code developed in R. The method was developed in 2009 and intensively compared to the MFDP approach. Celtic Sea herring and Irish Sea herring forecast used the standard projection routines developed under FLR package FLCore (version 2.6.0.20170228). For sprat in the North Sea, a forecast using the FLR framework is in use. North Sea herring is assessed using a fleet-wise projection method using native R and FLR routines (some maintenance of the code has been done this year mainly to improve readability and documentation).

The Western Baltic Spring Spawning herring uses an R-based multi-fleet forecast routine available at www.stockassessment.org.

1.5.5 Reference Points

The eqsim software (https://github.com/ices-tools-prod/msy) was used in recent benchmarks to estimate MSY reference points for herring stocks of HAWG.

For sprat in the North Sea (Division 4) and sandeel in management area 1-4, the ICES guide for setting management reference points for category 1 stocks is used to find Blim. MSY Bescapement is
 mented ($\mathrm{F}_{\text {cap }}$) if the difference between $\mathrm{B}_{\lim }$ and MSY Bescapement is not compatible with the ICES Fmsy criteria (i.e. that the average probability in the long-term of getting below Blim should be no more than 5% per year). $\mathrm{F}_{\text {cap }}$ is calculated/optimized using a management strategy evaluation framework (MSE).

The recent benchmark (WKPELA 2018) of the North Sea herring, Western Baltic herring and Celtic Sea herring presented considerable challenges in the estimation of reference points and their calculation remains at time still controversial. An overview and critical discussion of those main challenges are provided in last year's report (ICES 2018, Section 1.2.6) and maintain their validity in the on-going discussion on reference points.

1.5.6 Repository setup for HAWG

To increase the efficiency and verifiability of the data and code used to perform the assessments as well as the short term forecasts within HAWG a repository system was set up in 2009. Within this repository, all stocks own a subfolder where they store their data and code used to run the assessments presented in this report and used as base for the advice. At the same time, there is one common folder, used by all assessments, that ensures that the FLR libraries used are identical for all stocks, as well as the output generated to evaluate the performance of the assessment.

The repository was moved from google code to github in 2016 and is now available as a branch of the ICES github site. https://github.com/ICES-dk/wg HAWG. Contributing to the repository is not possible for outsiders as a password is required. Downloading data and code is possible to the public. The repository is maintained by members of the WG and the ICES Secretariat.

1.6 Ecosystem overview and considerations

General ecosystem overviews for the areas relevant for herring, sprat and sandeel stocks covered by the Herring Assessment Working Group for herring stocks south of $62^{\circ} \mathrm{N}$ (HAWG) are given for the Greater North Sea and Celtic Seas Ecoregions (ICES, 2016a, b).

A more detailed account specific to herring is documented in ICES HAWG (2015). A number of topics are covered in this section including the use of single species assessment and management, the use of ecosystem drivers, factors affecting early life history stages, the effects of gravel extraction, variability in the biology and ecology of species and populations (including biological and environmental drivers), and disease.

It should be pointed out that whilst numerous studies have greatly improved our understanding on the effects of environmental forcing on the herring stock productivity and dynamics, further work is still required to move beyond simple correlative understanding and elucidate the underlying mechanisms. Furthermore, mechanisms to incorporate this understanding into the provision of management advice are limited. ICES could therefore benefit greatly from developments that unify these two aspects of its community.

ICES is currently reviewing the level of inclusion of ecosystem information into the single-species assessments that provide the base for the current advices to evaluate progresses toward eco-system-based fisheries management. The intent is to quantify whether and how the ICES assessments incorporated broader system-level considerations, from the inclusion of technical interactions among fisheries (i.e., catch and bycatch of target and non-target species) to interactions with the physical environment (i.e., environmentally-driven recruitment, climate), and biological components (i.e., density-dependency, predation).

Following the recent ACOM request (March 2019), HAWG has collected information on where and how change in ecosystem productivity (either annually or over time-periods) is incorporated in its fish stock assessments, MSE operating models and management advice products for the following six categories (relevant variables in parenthesis) below:

1. Stock assessments (weight-at-age [in stock or catch], length distribution, maturity, sex ratio)
2. Forecasts (recruitment over recent years - reflecting productivity changes, recent weight-at-age, maturity, natural mortality)
3. Natural mortality (predation, diseases, parasites) assessed and included as variable by year (including smoothed)
4. Stock distribution (changes caused by year-class strength, predators, prey, habitat suitability/quality)
5. Mixed fisheries (catch and bycatch of target/non-target species)
6. Climate change (is this considered and how?)

Because the inclusion of system-level information may span from the use of qualitative background considerations to inclusion of quantitative information into analytical assessments, the following scoring system recently proposed by Marshall et al. (2019) has been applied:

- \quad Score 0 - information unavailable / not used.
- Score 1 (Background) - productivity is mentioned in the report and/or considered in the output as background information.
- Score 2 (Qualitative) - applicable in two cases: i) when quantitative data/information on productivity change were included in the report, but not used in any analyses/models, or ii) explicit link between the productivity change and assessment parameters or output was established. For example, including numerical data from diet studies on the target species would receive a score of 2 , as would discussing a link between sea surface temperature and recruitment predictions.
- Score 3 (Quantitative) - productivity-related data was explicitly included in the assessment model through data inputs or estimated parameters.

Stock code	Stock assessment					Short term forecast				
	variable w@a	length distribution	variable mat@a	estimated variable nat mort	estimated variable sex ratio	environ. driven recruitment	truncating recruitment time series	recent or trend weight@a	recent or trend mat@a	recent or trend nat mort
her.27.20-24	3	2	3	3	0	1	3	3	3	3
her.27.3a47d	3	2	0	3	0	1	3	3	0	3
her.27.6a7bc	3	2	3	2	0	1	2	2	2	2
her.27.irls	3	2	1	2	0	0	3	3	0	0
her.27.nirs	3	2	3	2	0	0	3	3	3	2
san.sa.1r	3	0	1	3	0	0	1	3	1	3
san.sa.2r	3	0	1	1	0	0	3	3	1	1
san.sa.3r	3	0	1	3	0	0	1	3	1	3
san.sa. 4	3	0	1	1	0	0	3	3	1	1
san.sa.5r	0	0	0	0	0	0	0	0	0	0
san.sa. 6	0	0	0	0	0	0	0	0	0	0
san.sa. 7 r	0	0	0	0	0	0	0	0	0	0
spr.27.3a4	3	0	1	3	0	0	3	3	1	3
spr.27.67a-cf-k	3	0	0	0	0	0	0	0	0	0
spr.27.7de	3	0	0	0	0	0	0	0	0	0

Stock code	MSE (management/rebuilding plans). Uncertainty or differing operating models					Advice escapement or other productivity rule	Distribution \& habitats			Mixed fisheries			Climate consideration of changes from climate
	environ. driven recruitment	truncating recruitment time series	```variable weight@a (env or density)```	recent or trend mat@a (envir or density)	dynamic nat mort		influence of population state	habitat suitability/ quality	within species stock mixing	Catch and bycatch of target species	bycatch of nontarget species	consideration in mixed fisheries advice	
her.27.20-24						0	2	2	3	3	3	0	1
her.27.3a47d	0	3	2	2	2	0	2	1	3	3	1	0	1
her.27.6a7bc						0	2	2	1	3	3	0	0
her.27.irls	0	3	0	0	0	0	1	0	0	0	0	0	0
her.27.nirs						0	1	1	1	0	0	0	0
san.sa.1r	0	3	0	0	0	3	0	1	0	0	0	0	1
san.sa.2r	0	3	0	0	0	3	0	1	0	0	0	0	0
san.sa.3r	0	3	0	0	0	3	0	1	0	0	0	0	0
san.sa. 4	0	3	0	0	0	3	0	1	0	0	0	0	0
san.sa.5r						0	0	0	0	0	0	0	0
san.sa. 6						0	0	0	0	0	0	0	0
san.sa.7r						0	0	0	0	0	0	0	0
spr.27.3a4	0	3	0	0	0	3	0	0	0	0	1	0	0
spr.27.67a-cf-k						0	0	0	0	0	0	0	0
spr.27.7de	0	2	2	0	2	0	0	1	0	0	0	0	1

1.7 Summary of relevant Mixed fisheries overview and considerations, species interaction effects and ecosystem drivers, Ecosystem effects of fisheries, and Effects of regulatory changes on the assessment or projections for all stocks.

Brief summaries are given here, more detailed information can be found in the relevant stock summaries.

North Sea Autumn spawning herring (her.27.3a47d):

The North Sea herring fishery is a multinational fishery that seasonally targets herring in the North Sea and English Channel. An industrial fishery, which catches juvenile herring as a bycatch operates in the Skagerrak, Kattegat and in the central North Sea. Most fleets that execute the fishery on adult herring target other fish at other times of the year, both within and beyond the North Sea (e.g. mackerel Scomber scombrus, horse mackerel Trachurus trachurus and blue whiting Micromestistius poutasou). In addition, Western Baltic Spring spawners are also caught in this fishery at certain time of the year in the northern North Sea to the west of the Norwegian coast. The fishery for human consumption has mostly single-species catches, although some mixed herring and mackerel catches occur in the northern North Sea, especially in the purse-seine fishery. The by-catch of sea mammals and birds is also very low, i.e. undetectable using observer programmes. There is less information readily available to assess the impact of the industrial fisheries that by-catch juvenile herring. The pelagic fisheries on herring and mackerel claim to be some of the "cleanest" fisheries in terms of by-catch, disturbance of the seabed and discarding. Pelagic fish interact with other components of the ecosystem, including demersal fish, zooplankton and other predators (sea mammals, elasmobranchs and seabirds). Thus a fishery on pelagic fish may impact on these other components via second order interactions. There is a paucity of knowledge of these interactions, and the inherent complexity in the system makes quantifying the impact of fisheries very difficult.

Another potential impact of the North Sea herring fishery is the removal of fish that could provide other "ecosystem services". The North Sea ecosystem needs a biomass of herring to graze the plankton and act as prey for other organisms. If herring biomass is very low other species, such as sandeel, may replace its role or the system may shift in a more dramatic way. Likewise large numbers of herring can have a predatory impact on species with pelagic egg and larvae stages.

The populations of herring constitute some of the highest biomass of forage fish in the North Sea and are thus an integral and important part of the ecosystem, particularly the pelagic components. The influence of the environment of herring productivity means that the biomass will always fluctuate. North Sea herring has a complex sub-stock structure with different spawning components, producing offspring with different morphometric and physiological characteristics, different growth patterns and differing migration routes. Productivity of the spawning components varies. The three northern components show similar recruitment trends and differ from the Downs component, which appears to be influenced by different environmental drivers. Having their spawning and nursery areas near the coasts, means herring are particularly sensitive and vulnerable to anthropogenic impacts. The most serious of these is the ever increasing pressure for marine sand and gravel extraction and the development of wind farms. Climate models predict a future increase in air and water temperature and a change in wind, cloud cover and
precipitation. Analysis of early life stages' habitats and trends over time suggests that the projected changes in temperature may not widely affect the potential habitats but may influence the productivity of the stock. Relatively major changes in wind patterns may affect the distribution of larvae and early stage of herring.

Western Baltic Spring spawning herring (her.27.20-24):

The Western Baltic herring fishery is a multinational fishery that seasonally targets herring in the eastern parts of the North Sea (Eastern 4.a and 4.b), the Skagerrak and Kattegat (Division 3.a) and Western Baltic (SD 22-24). The fishery for human consumption has mostly single-species catches, although in recent years some mackerel by catch may occur in the trawl fishery for herring. In addition, North Sea herring are also caught within Division 3.a. The by-catch of sea mammals and birds is low enough to be below detection levels based on observer programmes. At present there is a very limited industrial fishery in Division 3.a and hence a limited by catch of juvenile herring. The pelagic fisheries on herring claim to be some of the "cleanest" fisheries in terms of by catch, disturbance of the seabed and discarding. Pelagic fish interact with other components of the ecosystem, including demersal fish, zooplankton and predators (sea mammals, elasmobranchs and seabirds). Another potential impact of the Western Baltic herring fishery is the removal of fish that could provide other "ecosystem services." There is, however, no recent research on multispecies or ecosystem interactions in which the WBSS interact. Although a fishery on pelagic fish may impact on these other components via second order interactions.

Dominant drivers of larval survival and year class strength of recruitment are considered to be linked to oceanographic dispersal, sea temperatures and food availability in the critical phase when larvae start feeding actively. However, research on larval herring survival dynamics indicates that driving variables might not only vary at the population level and by region of spawning but also by larval developmental stage. Since WBSS herring relies on inshore, transitional waters for spawning and larval retention, the suit of environmental variables driving reproduction success potentially differs from other North Atlantic stocks recruiting from coastal shelf spawning areas.

Herring in the Celtic Sea and 7.j (her.27.irls):

There are few documented reports of by-catch in the Celtic Sea herring fishery. Small quantities of non-target whitefish species were caught in the nets. Of the non-target species caught whiting was most frequent followed by mackerel and haddock. The only marine mammals recorded were grey seals (Halichoerus grypus). The seals were observed on a number of occasions feeding on herring when the net was being hauled and during towing. They appear to be able to avoid becoming entangled in the nets. Occasional entanglement of cetaceans may occur but overall incidental catches are thought to be minimal.

Temperatures in this area have been increasing over the last number of decades. There are indications that salinity is also increasing. Herring are found to be more abundant when the water is cooler while pilchards favour warmer water and tend to extend further east under these conditions. However, studies have been unable to demonstrate that changes in the environmental regime in the Celtic Sea have had any effect on productivity of this stock. Herring larval drift occurs between the Celtic Sea and the Irish Sea. The larvae remain in the Irish Sea for a period as juveniles before returning to the Celtic Sea. Catches of herring in the Irish Sea may therefore impact on recruitment into the Celtic Sea stock. The residence of Celtic Sea fish in the Irish Sea may have an influence on growth and maturity rates.

The spawning grounds for herring in the Celtic Sea are well known and are located inshore close to the coast. Spawning grounds tend to be vulnerable to anthropogenic influences such as dredging and sand and gravel extraction. Herring are an important component of the Celtic sea ecosystem. There is little information on the specific diet of this stock. Herring form part of the food
source for larger gadoids such as hake. Recent research showed that fin whales Balaenoptera physalus are an important component of the Celtic Sea ecosystem, with a high re-sighting rate indicating fidelity to the area. There is the suggestion that the peak in fin whale sightings in November may coincide with the inshore spawning migration of herring.

Herring in 6.a North (part of her-6.a):

Herring are an important prey species in the ecosystem and also one of the dominant planktivorous fish. Herring fisheries tend to be clean with little by-catch of other fish. Herring represent an important prey item for many predators including cod and other large gadoids, dog-fish and sharks, marine mammals and sea birds. Because of the trophic importance of herring puts its stocks under immense pressure from constant exploitation.

The benthic spawning behaviour of herring makes this species vulnerable to anthropogenic activity such as offshore oil and gas industries, gravel extraction and the construction of wind farms. There are many hypotheses as to the cause of the irregular cycles shown in the productivity of herring stocks (weights-at-age and recruitment), but in most cases it is thought that the environment plays a key role (through prey, predation and transport). The $6 . a \mathrm{~N}$ herring stock has shown a marked decline in productivity during the late 1970s and has remained at a low level since then.

Herring in 6.a South and 7.b and 7.c (part of her-6.a):

Sea surface temperatures from Malin head on the North coast of Ireland since 1958 indicate that since 1990 sea surface temperatures have displayed a sustained increasing trend, with winter temperatures $>6^{\circ} \mathrm{C}$ and higher summer temperatures. Environmental conditions can cause significant fluctuations in abundance in a variety of marine species including fish. Oceanographic variation associated with temperature and salinity fluctuations appears to affect herring in the first year of life, probably during the winter larval drift.

Productivity in this region is reasonably high on the shelf but drops rapidly west of the shelf break. This area is important for many pelagic fish species. The shelf edge is a spawning area for mackerel Scomber scombrus and blue whiting Micromesistius potassou. Preliminary examination of productivity shows that overall productivity in this area is currently lower than it was in the 1980s.

The spawning grounds for herring along the northwest coast are located in inshore areas close to the coast and tend to be vulnerable to anthropogenic influences such as dredging and sand and gravel extraction.

Herring in the Irish Sea (her.27.nirs):

The targeted fishery for herring in the Irish Sea is considered to have limited by-catch of other species. Herring are preyed upon by many species but at present the extent of this is not quantified. The main fish predators on herring in the Irish Sea include spurdog (Squalus acanthias), whiting (Merlangius merlangus) (mainly $0-1$ ring) and hake (Merluccius merluccius) (all age classes). Small clupeids are an important source of food for piscivorous seabirds and marine mammals which can occur seasonally in areas where herring aggregate. Whilst small juvenile herring occur throughout the coastal waters of the western and eastern Irish Sea, their distribution overlaps extensively with sprats (Sprattus sprattus).
Stock discrimination techniques, tagging, and otolith microstructure and shape show that juveniles originating from the Celtic Sea are present in the Irish Sea. The majority of mixing between these populations occurs at winterrings 1-2. Over the period 2006 to 2010 interannual variation in the proportion of mixing was large, with between 15% and 60% observed in the wintering $1+$
biomass estimate during the study period. There are irregular cycles in the productivity of herring stocks which are probably caused by changes in the environment (e.g. transport, prey, and predation).

North Sea and 3a Sprat (spr.27.3a4):

Sprat is a short-lived forage fish that is predated by a wide range of marine organisms, from predatory gadoids, through birds to marine mammals. Therefore, the dynamics of sprat populations are affected by the dynamics of other species through annually varying natural mortality rates. Because sprat interacts with many other components of the ecosystem (fish, zooplankton and predators) the fishery may impact on these other components via second order interactions. It is uncertain how many sprat migrate into and out of adjacent management areas, i.e. the English Channel (7.d and 7.e) and the western Baltic and the Sound (SD22-24), or how this may vary annually. Uncertain is also the boundary with local populations occurring along the Scandinavian Skagerrak coasts. While genetic information has supported the exclusion of sprat along the Norwegian coasts from the current assessment unit, similar information was insufficient for the Swedish coasts despite the fact that local populations likely exist. Young herring as a by-catch is acknowledged for this fishery with by-catch regulations in force. The by-catch of marine mammals and birds is considered to be very low (undetectable using observer programs).

Sprat in the English Channel (7.d and 7.e) (spr.27.7de):

The fishery considered here is primarily in Lyme Bay with small trawlers targeting sprat with very little to no by-catch of other species. The relationship of the sprat in this area to the sprat stock or population in the adjacent areas is unknown: Sprat larvae most likely drift away from the main spawning area in Lyme Bay, but to which extent they expand westward into the Celtic Sea or eastern deep into the Eastern English Channel and the North Sea is unknown. The potential for mixed fisheries, if the fisheries are expanded to cover the whole of the English Channel, is unknown at present. It is acknowledged that sprat is prey for many species and these will affect the natural mortality, however, this has not been quantified in this area. In addition, changes in the size of the sprat population through fishing will affect the available prey for a number of commercially exploited species.

Sprat in the Celtic Seas ecoregion (6 and 7 (excluding 7.d and 7.e)) (spr.27.67a-cf-k):

This ecoregion currently has fisheries in the Celtic Sea and a variety of Scottish Sea lochs with the possibility of fisheries being revived in the Clyde. Generally, mixed fisheries are not an issue as sprat are targeted with very little to no other species caught as a by-catch. If a fishery was to be prosecuted in the Clyde and Irish Seas then by-catch of young herring may become an issue due to the overlap in distribution between young herring and sprat. It is acknowledged that sprat is prey for many species and these will affect the natural mortality, however, this has not been quantified in this area. Since sprat preys on e.g. zooplankton and is preyed upon by many species fisheries for sprat can have effects on the ecosystem dynamics.

Sandeel in the North Sea ecoregion (san.sa.1r-7r)

A mosaic of sandeel fishing grounds occur throughout different areas of the North Sea ecoregion. The grounds present different degrees of larval connectivity which has supported the division of sandeel in the North Sea into a number of more or less reproductively isolated sub-populations. Whereas the fishing grounds are assumed to remain relatively constant over time, the actual distribution of the fishery varies greatly from year to year in response to both changes in the availability of sandeel and changes in management between areas.

Sandeel is targeted by a highly seasonal industrial fishery which has experienced a progressive change towards fewer larger vessels owing most of the quota since the introduction of ITQ in
2004. Time restrictions and bycatch limits represent the main management measures. Although the fishery has little bycatch of protected species, competition with other predators is a central aspect of the sandeel management within an ecosystem approach.

Sandeel play in fact an important role in the North Sea food web as they are a high quality, lipidrich food resource for many predatory fish, seabirds and marine mammals. Concerns of local depletion exist, especially for those sandeel aggregations occurring at less than 100 km from seabird colonies as some bird species (i.e., black-legged kittiwake and sandwich tern) may be particularly affected whereas more mobile marine mammals and fish are likely to be less vulnerable to local sandeel depletion.

1.8 Stock overview

The WG was able to perform analytical assessments for 10 of the 15 stocks investigated. Results of the assessments are presented in the subsequent sections of the report and are summarized below and in figures 1.7.2-1.7.5.

Figure 1.7.1 ICES areas as used for the assessment of herring stocks south of $62^{\circ} \mathrm{N}$. Area names in italics indicate the area separation applied to the commercial catch and sampling data kept in long term storage. "Transfer area" refers to the transfer of Western Baltic Spring Spawners caught in the North Sea to the Baltic Assessment.

North Sea autumn spawning herring (her.27.3a47d) is the largest stock assessed by HAWG. The spawning stock biomass was low in the late 1970s and the fishery was closed for a number of years. This stock began to recover until the mid-1990s, when it appeared to decrease again. A management scheme was adopted to halt this decline. Based on the WG assessment the stock is classified as being at full reproductive capacity and is being harvested sustainably at FmSY and under management plan target for several years. In 2019, no management plan was in place and the advice is based on the Fmsy advice rule. The spawning stock at spawning time in 2018 is estimated at 1.9 million tonnes. Recruitment in 2018 has increased compared to 2017 but remains within the low recruitment regime observed since 2015. The strongest recruitment remains the one observed back in 2014. Mean F_{2-6} in 2018 is estimated at approximately 0.21 , which is below Fmsy. The SSB for the stock from the 2019 assessment has been revised upward for a number of years.

In 2019 SSB is expected to decrease to ~ 1.5 million tonnes. Under all scenarios, SSB is predicted to decrease in 2020 (to approx. 1.3 million tonnes) and further in 2021 to around 1.1 million tonnes. SSB is expected to be above $B_{p a}$ in 2020 and 2021.

Western Baltic Spring Spawners (her.27.20-24) is the only spring spawning stock assessed within this WG. It is distributed in the eastern part of the North Sea, the Skagerrak, the Kattegat and the subdivisions 22,23 and 24 . Within the northern area, the stock mixes with North Sea autumn spawners, and recently mixing with Central Baltic herring stock has been reported in the western Baltic area. The stock has decreased consistently during the second half of the 2000s. SSB was at a minimum of about 70000 t in 2011 and recruitment is record low in 2018. Under a historical perspective the estimate of SSB of 74132 tonnes in 2018 is considered low, below both B_{pa} and $\mathrm{B}_{\mathrm{lim}}$. Fishing mortality (F_{3-6}) was reduced from 0.50 in 2009 to 0.37 in 2011. It had then remained stable slightly above $\mathrm{F}_{\mathrm{MSY}}(0.31)$ until $2015(\sim 0.36)$ but showed an increase in recent years with an estimated F_{3-6} in 2018 well above $\mathrm{FmSY}^{(0.416)}$. The 2020 advised catch of WBSS is 0 t , which if applied by managers, will result in an increase in SSB from 76273 t in 2020 to 101269 t in 2021. The zero catch will not allow the stock to rebuild above $B_{\lim }(120000 \mathrm{t})$ by 2021.

Herring in the Celtic Sea and 7.j (her.27.irls): The herring fisheries to the south of Ireland in the Celtic Sea and in Division 7.j have been considered to exploit the same stock. For the purpose of stock assessment and management, these areas have been combined since 1982. The stock has fluctuated over time. Low stock size was observed from the mid-70s to the early 80s. The SSB increased again before declining in the late 90s. From 2005 the stock increased when several strong cohorts (2004, 2008, 2009, 2010 and 2013) entered the fishery and as they gained weight, they maintained the stock at a high level. The SSB has decreased since its peak in 2011 and is estimated to be around 23000 t in 2018, which is below B_{pa} (at 54000 t) and $\mathrm{B}_{\lim }(34000 \mathrm{t}$). Recruitment has been below average since 2013. Fishing mortality (F_{2-5}) declined between 2003 and 2009 but started to rise again in 2010 due to increased catches. F decreased in 2018 in line with reduced catches. This year assessment estimates a fishing mortality, F_{2-5} of 0.33 in 2018 which a decrease from 2017 (0.64) but above the $\mathrm{Fmsy}^{\text {(}} 0.26$) and below Flim (0.45). Short term projections predict SSB to remain around 23000 t in 2019.

Herring in 6.a: The stock was much larger in the 1960s when the productivity of the stock was higher. The stock experienced a heavy fishery in the mid-1970s following closure of the North Sea fishery. The fishery was closed before the stock collapsed. It was opened again along with the North Sea. In the mid-1990s there was substantial area misreporting of catch into this area and sampling of catch deteriorated. Area misreporting was reduced to a very low level and information on catch has improved; in recent years misreporting has remained relatively low. The assessment is a combination of two herring stocks, one residing in $6 . a S, 7 . \mathrm{b}$ and 7.c, and one in 6.aN. It is currently not possible to separate the two stocks for assessment purposes and therefore stock size is estimated combined. SSB and recruitment have been declining since around 2000
and are currently predicted to be at the lowest level in the time series. Fishing mortality has reduced since 2016 when catches have been limited to a scientific monitoring TAC.

Herring in the Irish Sea (her.27.nirs): comprises two spawning groups (Manx and Mourne). This stock complex experienced a decline during the 1970s. In the mid-1980s the introduction of quotas resulted in a temporary increase, but the stock continued its decline from the late 1980s up to the early 2000s. During this time period the contribution of the Mourne spawning component declined. An increase in activity on the Mourne spawning area has been observed since 2006. In the past decade there have been problems in assessing the stock, partly as a consequence of the variability in spawning migrations and mixing with the Celtic Sea stock. A benchmark in 2017 resulted in a substantial revision of SSB perception leading to an increased SSB in the most recent period compared to pre-benchmark perceptions. In 2018, SSB and recruitment have been estimated at 22020 t and 333701 thousand respectively, estimates of SSB in recent years appear to be relatively stable. F_{4-6} is estimated at 0.16 in 2018 . Under the MSY approach the stock is expected to show minor decline to 22005 t in 2020.

North Sea and 3a Sprat (spr.27.3a4): The catches are dominated by age 1-2 fish. Due to the short life cycle and early maturation, most of the stock consists of mature fish. To undertake the assessment and fit with the natural life cycle of sprat the assessment model is shifted by six months so that an assessment year and advice runs from 1 July to 30 June each year, and thus provide in-year advice. Sprat in Division 3.a and Subarea 4 were combined into a single assessment unit during the recent WKSPRAT benchmark (ICES, 2018). Various changes were made to the assessment model, which improved the quality in terms of both fitting and retrospective bias. The advice is based on the MSY escapement strategy with an additional precautionary $\mathrm{F}_{\text {cap }}$ which has been re-evaluated by a dedicated workshop (WKSPRATMSE; ICES 2019). The $\mathrm{F}_{\text {cap }}$ of 0.69 is used to ensure that after the fishery has been conducted, escapement biomass is preserved above $\mathrm{B}_{\mathrm{lim}}$ with high probability. The long-term dynamics and perception of the status of the combined stock is consistent with previous perception for sprat in Subarea 4. Despite the fact that fishing mortality in the last years has fluctuated at high levels between $0.6-2.2$, recruitments slightly above the average during recent years have contributed to an increase in SSB well above MSY Bescapement. The estimates for 2019 show an SSB of $249000 t$ which is nearly double of $B_{p a}(125000 t)$. The ICES advise for the period 1 July 2019-30 June 2020 indicates that catches of sprat should not exceed 138726 t.

Sprat in the English Channel (7.d and 7.e) (spr.27.7de): Consists of a small midwater trawl fleet targeting sprat primarily in the vicinity of Lyme Bay, western English Channel. The stock identity of sprat in the English Channel relative to sprat in the North Sea and Celtic Sea is unknown. This year, ICES has provided catch advice for sprat in divisions 7.d and 7.e (primarily in the vicinity of Lyme Bay) based on criteria for data limited stocks. Data available are catches, a time series of LPUE (1988-2016) and one acoustic survey that has been carried out since 2013 in the area where the fishery occurs and further offshore, also including the waters north off the Cornish Peninsula and, from 2017, the French part of the Western English Channel. The advice provided is based on the biomass estimates from the acoustic survey which in 2018 remained at low level in relation to the estimates for 2013-2015. The advised catch for 2020 is 20% lower compared to last year (applying the uncertainty cap).

Sprat in the Celtic Sea (spr.27.67a-cf-k): The stock structure of sprat populations in this ecoregion (subareas 6 and 7 (excluding 7.d and 7.e)) is not clear, and further work for the identification of management units for sprat is required. Most sprat in the Celtic Seas ecoregion are caught by small pelagic vessels that also target herring, mainly Irish and Scottish vessels. The quality of information available for sprat is heterogeneous across this composite area. There is evidence from different survey sources of significant inter-annual variation in sprat abundance. Landed biomass, but not biological information on the catch, is available from 1970s in some areas (i.e.,
6.a and 7.a), while Irish acoustic surveys started in 1991, with some gaps in the time series provide sprat estimates but their validity to provide a reliable sprat index is questionable because they do not always cover the core of sprat distribution in the area. Acoustic estimates in the Irish Sea are more reliable. The state of the stock of sprat in the Celtic Seas ecoregion is uncertain. ICES advice a catch of no more than 2800 tonnes for 2020 and 2021 in this eco-region based on the precautionary approach.

Sandeel in 4 (san-nsea): Sandeels in the North Sea can be divided into a number of more or less reproductively isolated sub-populations. A decline in the sandeel population in recent years concurrent with a marked change in distribution has increased the concern about local depletion, of which there has been some evidence. Since 2010 this has been accounted for by dividing the North Sea into 7 management areas. Denmark and Norway are responsible for most of the fishery of sandeel in the North Sea. The catches are largely represented by age 1 fish. Analytical assessments are performed in four of the management areas (A1r-4) where most of the fishery takes place and data are available. Note that a benchmark in 2016 revised most of the area definitions.

A1: SSB has been above $\mathrm{B}_{\mathrm{pa}}(145000 \mathrm{t})$ since 2016, but a marked decrease is estimated in the last year which brings the SSB at the beginning of 2019 down to 97000 t which is below Blim (110 000 t). Recruitment in 2018 was slightly above the geometric mean of the time-series, following the 2017 lowest record. Fishing mortality (F) has fluctuated, showing a declining trend since the mid-2000s followed by an increase in 2017 and 2018 to approximately the long-term average. The pronounced decrease in SSB contributes to a reduction in the advised catch.

A2: SSB has been below Blim since 2004 (except in 2011), it increased in 2018 to above $B_{p a}$ as the result of the exceptionally high 2016 year class but decreased again in 2019 to just below $\mathrm{B}_{\mathrm{lim}}$. With the exception of 2016, recruitment has been low since 2000 and continued to be very low in the last two years. A zero-catch advice is confirmed for this year.

A3: The stock has increased from the record low SSB in 2004 when it was half of $\operatorname{Blim}(80000 \mathrm{t})$ to above $B_{p a}(129000 t)$ where it has been since 2015. SSB had a peak of more than $270000 t$ in 2018 followed by a decrease to around $182600 t$ at the beginning of 2019 consistently with the low 2017 recruitment. The recruitments in 2016 and 2018 were among the five highest on record which explain the 23% increase in the advised catch.

A4: Fishing mortality (F) has been low since 2006 but increased in 2018. SSB has increased from the time-series low in 2009 to levels well above precautionary reference points ($B_{p a}=$ MSY Bescapement) and has remained at this level since 2016. The 2016 and 2017 year classes are estimated to be above the long-term average, but the 2018 year class is estimated to be the second lowest on record. This results in SSB falling to just below MSY Bescapement in 2020, even in the absence of fishing, which triggered a zero-catch advice.

Figure 1.7.2 WG estimates of catch/landings (yield) of the herring, sprat and sandeel stocks presented in HAWG 2019.

Figure 1.7.3 Spawning stock biomass estimates for the sprat, herring and sandeel stocks presented in HAWG 2019.

Figure 1.7.4 Estimates of mean F for the sprat, herring and sandeel stocks presented in HAWG 2019.

Figure 1.7.5 Estimates of recruitment for the sprat, herring and sandeel stocks presented in HAWG 2019.

Given the marked decrease in the weight-at-age of several of the herring stocks assessed by HAWG, the time series of the relative weight change are presented for comparative reasons (Figure 1.7.6) for the stocks in the North Sea (NSH, her.27.3a47d), the Malin Shelf (MSH, her. 27.6 a 7 bc) and the Irish Sea (ISH, her.27.nirs).

Figure 1.7.6 Relative mean individual weight is calculated by average of stock weight-at-age by year and then it is divided by the mean weight of the time series for each stock.

1.9 Mohn's rho and Bias in the assessments

ICES is planning a workshop in Autumn 2019 (WKFORBIAS) to document the extent of the retrospective bias in SSB, Fbar and recruitment for category 1 and 2 assessments based on the 20182019 assessments. Additional objectives are to identify and compile possible causes for retrospective bias and to develop approaches for retrospective bias correction and guidelines for acceptability of a stock assessment with retrospective bias. To support the workshop and in response to the ToR c-viii, HAWG reports on retrospective bias in category 1 and 2 age-based fish stock assessments made in 2019. Mohn's rho values have been uploaded at https://community.ices.dk/ExpertGroups/Lists/Retrobias2019/Allitems.aspx and they are included in this report in Table 1.8.1.

Mohn's rho (ρ) is a measure of the relative difference between an estimate from an assessment with a truncated time series and an estimate of the same quantity from an assessment using the exact same methodology over the full time series. The average of the relative change over a series of years is calculated as*:
$\rho_{\mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d=\mathrm{T}-\mathrm{i}}-\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d=\mathrm{T}}}{\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d=\mathrm{T}}}$

[^2]where $X_{y, d}$ is the assessment quantity, e.g. SSB or Fbar, for year y from the assessment with terminal year $d, \mathrm{~T}$ is the terminal year of the most recent assessment (the year of the most recent catch at age data), and n is the number of retrospective assessments used to calculate rho.

The two year subscripts for quantity X refer to the year for the quantity and the terminal year of the assessment from which the quantity was derived. For example, for an assessment WG in 2018, using catch at age up to 2017, the relevant quantities for the first retrospective ($i=1$) calculation are: $\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, \mathrm{d}=\mathrm{T}}=\mathrm{X}_{\mathrm{y}=2016, d=2017}$ which corresponds to the assessment quantity for 2016 (T-i) derived from the assessment using the full time series with terminal year 2017 (T); and $\mathrm{X}_{\mathrm{y}=\mathrm{T}-\mathrm{i}, d=\mathrm{T}-\mathrm{i}}=\mathrm{X}_{\mathrm{y}=2016, d=2016}$ which is the estimate of the assessment quantity for the same year $\mathrm{T}-\mathrm{i}=2016$) estimated from an assessment where the data is truncated to have terminal year 2016 (T-i).

Table 1.8.1 Mohn's rho value calculated by HAWG on category 1 and 2 stocks with age-based fish stock assessments.

Stock code	Terminal year of catch data	Number of retrospective assessments used (n)	Fbar rho value	SSB rho: was the intermediate year used as the terminal year?	SSB rho value	Recruitment rho: was the intermediate year used as the terminal year?	Recruitment rho value
her.27.nirs	2018	5	0.0520	No	0.0.700	No	-13.8000
her.27.3a47d	2018	5	-12.0000	No	11.1000	No	8.0000
her.27.6a7bc	2018	5	25.0000	No	-23.2700	No	-7.8700
san.sa.1r	2018	3	-0.1200	Yes	0.2800	Yes	-0.1200
san.sa. 2 r	2018	3	-0.0900	Yes	0.7300	Yes	0.7600
san.sa.3r	2018	5	0.0200	Yes	0.1000	Yes	1.1000
san.sa. 4	2018	5	-0.0300	Yes	0.1300	Yes	0.2200
her.27.irls	2018	5	-0.0580	No	0.1720	No	1.1000
her.27.20-24	2018	5	-0.0700	No	0.1300	No	-0.0700
spr.27.3a4	2019	5	0.0890	No	0.2700	No	0.2200

1.10 Transparent Assessment Framework (TAF)

TAF (https://taf.ices.dk) is a framework to organize all ICES stock assessments. Using a standard sequence of R scripts, it makes the data, analysis, and results available online, and documents how the data were pre-processed. Among the key benefits of this structured and open approach are improved quality assurance and peer review of ICES stock assessments. Furthermore, a fully scripted TAF assessment is easy to update and rerun later, with a new year of data.

The following HAWG 2019 scripts are now on TAF:

1. North Sea herring (her.27.3a47d) update single-fleet SAM assessment, multifleet model run required for the forecast, and the forecast analysis.
2. Herring west of Scotland and Ireland (her.27.6a7bc) SAM assessment.
3. Herring south of $52^{\circ} 30^{\prime}$ N Irish Sea, Celtic Sea, and southwest of Ireland (her.27.irls) ASAP assessment.
4. Sandeel in area 1r (san.sa.1r) SMS assessment.
5. Sandeel in area 5 r (san.sa.5r) category 5.4 analysis.
6. Sandeel in area 6 (san.sa.6) category 5.2 analysis.
7. Sandeel in area 7 r (san.sa.7r) category 5.3 analysis.

1.11 Benchmark process

HAWG has made some strategic decisions regarding the future benchmarking of its stocks listed in the table below. In the next 12 months (end of 2019) there are no plans to benchmark stocks assessed by HAWG.

Stock	Ass status	Latest benchmark	Benchmark next 12 months	Planning Year +2	Further planning	Comments
NSAS	Update	2018	No	No		Issue list in prep
WBSS	Update	2018	No	No	Split mixed catches with central Baltic herring. Compile catch matrix by fleet from data in the Regional Database	Issue list in prep, likely need for an interbenchmark to revisit reference points
6.a, 7.bc	Update	2015, interbenchmark in 2019	No	2021*	Splitting of surveys and assessment, recruitment signal	Issue list in prep
Celtic Sea	Update	$\begin{gathered} \text { 2015, } \\ \text { Interbenchmark in } 2018 \end{gathered}$	No	No	Mixing with Irish Sea herring, recruitment signal	Issue list in prep
7.aN	Update	2017	No	No	Explore stock mixing and review acoustic survey design and methods, recruitment signal	Issue list in prep
Sprat NS.3a	Update	2018	No	No	Consider stock component, local components in 3a, boundary with the Baltic	Issue list in prep
Sprat 7.d and 7.e	Exploratory	2018	No	No	Consider stock components	Issue list in prep
Sprat Celtic	Exploratory	2013	No	No	Consider stock components	Issue list in prep
Sandeel areas 1-4	Update	2016	No	2021*	Update reference points for sandeel area 3 based on the new M estimates.	Issue list in prep

* Provisional, timeline to be decided

1.11.1 Ecosystem and long-term benchmark planning

HAWG is developing a longer-term perspective towards its benchmark process, by identifying issues that should be addressed in the next round of benchmarks, even though they are several years in the future. The following list of issues is intended to focus development work during this inter-benchmark period.

General

- Develop assessment tools that can take account of uncertainty estimates in surveys.

North Sea Autumn Spawning (NSAS) herring

- Splitting of catches, where possible, into autumn and winter-spawning components.
- Refinement of the IBTS0 index calculation to provide component-resolved information.
- Modification of the assessment model to account for reduced precision in catch statistics prior to the 1960s.
- In-depth understanding of the reasons at the origin of the retrospective pattern related to inclusion of the 2018 data
- Investigate the use of a wider range of ages for the $\mathrm{F}_{\mathrm{bar}}$ (currently age2-6) and application of a weighted mean of F

Western Baltic Spring Spawning (WBSS) herring

- Account for mixing of central Baltic herring (CBH) in the commercial catches in SD2224. Check for mixing of WBSS-CBH in SD25 catch
- Account for mixing of WBSS-NSAS outside of the transfer area (4.a.E, 4.b.E).
- Improve estimation of catch matrix in synergy with the RDBES
- Identify main drivers of stock productivity
- Reference points may need to be revisited.

6.a herring

- Extraction of West of Scotland herring larval abundance estimates from the North Sea IBTS0 survey.
- Develop genetic methods to split surveys and commercial catches by components

Irish Sea herring

- Develop techniques to maximize the information content in the Irish Sea larval survey. Explore levels of stock mixing, spawning behaviour and timing.

Celtic Sea herring

- Use genetic techniques to assess the mixture of Celtic Sea herring in the Irish Sea.
- Assess the interannual variation in this mixing as well as the distribution patterns.

1.12 Recommendations

All recommendations have been uploaded to the ICES Recommendation database.

2 Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners

Abstract

The WG noted that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout this section. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks, there is a difference of one year between "age" and "rings", which is not the case for the spring spawners. Further elaboration on the rationale behind this, specific to the North Sea autumn spawners, Western Baltic spring spawners and the mixed stock catches, can be found in the Stock Annexes. It is the responsibility of any user of age based data for any of these herring stocks to consult the relevant annex and if in doubt consult a relevant member of the Working Group.

2.1.1 ICES advice and management applicable to 2018 and 2019

Norway and the European Union had submitted a joint request to ICES to evaluate possible elements for long-term management strategies for several fish stocks, including North Sea autumn spawning herring.

These management strategy evaluations are in progress, but not finalized at the time of HAWG 2019. Results will become available in April 2019. There is currently no agreed EU-Norway management plan as the basis of advice. Until new agreed management strategies will become available, the MSY approach is used as the basis of ICES advice.
The final TAC adopted by the management bodies for 2018 was 610257 tonnes for Area 4 and Division 7.d, where no more than 66040 tonnes should be caught in Division 4.c and 7.d. For 2019, the total TAC has decreased by 35% to 398198 tonnes (385008 tonnes for the A-Fleet), including a TAC of 42351 tonnes for Division 4.c and 7.d.

The by-catch TAC for the B-Fleet in the North Sea (and Division 2.a) was 9669 tonnes in 2018 and has increased by 36% to 13190 tonnes for 2019. As North Sea autumn spawners are also caught in Division 3.a, regulations for the fleets operating in this area have to be taken into account for the management of the WBSS stock (see Section 3). Catches of spring spawning herring in the Thames estuary are in general low and not included in the TAC. For a definition of the different fleets harvesting North Sea herring see the Stock Annex and Section 2.7.2.

2.1.2 Catches in 2018

Total landings and estimated catches are given in the Table 2.1.1 for the North Sea and for each Division in tables 2.1.2 to 2.1.5. Total Working Group (WG) catches per statistical rectangle and quarter are shown in figures 2.1.1 (a-d), the total for the year in Figure 2.1.1(e). Each nation provided most of their catch data (either official landings or Working Group catch) by statistical rectangle. The catch figures in tables 2.1.1-2.1.5 are mostly provided by WG members and may or may not reflect national catch statistics. These figures can therefore not be used for legal purposes.

The total WG catch of all herring caught in the North Sea amounted to 602328 tonnes in 2018. Official catches by the human consumption fishery were 593851 tonnes, corresponding to a slight undershoot of 1% of the TAC for the human consumption fishery (600588 tonnes).

As in previous years, the vast majority of catches are taken in the 3rd quarter in Division $4 . a(W)$.
In the southern North Sea and the eastern Channel, the total catch sums to 45462 tonnes. The separate TAC for this area was 66040 tonnes, so 31% of the TAC remains in Division 4.c and 7.d (but due to catch regulations, 50% of the TAC could have been taken in Division 4.b). The obtained catch continues to relieve the fishing pressure on the Downs stock component, as observed since 2012.

Information on by-catches in the industrial fishery is provided by Denmark. While the Norwegian by-catches are included in the A-fleet figure for Norway, catches taken in the small-meshed fishery by Denmark account to a separate EU quota (B-fleet).

Landings of herring taken as by-catch in the Danish small-meshed fishery were 8477 tonnes in 2018. The by-catch ceiling for the B-Fleet was 9669 tonnes. Since the introduction of yearly bycatch ceilings in 1996, these ceilings have only fully been taken in 2014 and 2016.

The total North Sea TAC and catch estimates for the years 2013 to 2018 are shown in the table below (adapted from Table 2.1.6).

| Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TAC HC (‘OOO t) | 478 | 470 | 445 | 518 | 482 | 601 |
| "Official" landings HC (‘000 t) * | 490 | 490 | 472 | 545 | 485 | 594 |
| Working Group catch HC (‘000 t) | 490 | 493 | 474 | 545 | 485 | 594 |
| Excess of landings over TAC HC (‘000 t) | 12 | 23 | 28 | 27 | 3 | -7 |
| By-catch ceiling ('000 t) ** | 14 | 13 | 16 | 13 | 11 | 10 |
| Reported by-catches ('000 t) *** | 8 | 14 | 8 | 15 | 7 | 8 |
| Working Group catch North Sea ('000 t) | 498 | 507 | 482 | 560 | 492 | 602 |

HC = human consumption fishery

* Landings might be provided by WG members to HAWG before the official landings become available; they may then differ from the official catches and cannot be used for management purposes. Norwegian by-catches included in this figure.
** by-catch ceiling for EU industrial fleets only, Norwegian by-catches included in the HC figure.
*** provided by Denmark only.

2.1.3 Regulations and their effects

Following the apparent recovery of the NSAS herring, some regulatory measures were amended. A licence scheme introduced in 1997 by UK/Scotland to reduce misreporting between the North Sea and 6.aN was relaxed. The minimal amount of target species in the EU industrial fisheries in 3.a has been reduced to 50% (for sprat, blue whiting and Norway pout).

In 2019, half of the EU quota for Division 3.a can be taken in the North Sea (4); based on correspondence with the Pelagic RAC, HAWG notes that this transfer will be in the order of magnitude of 48%. Norway can take up to 50% of its quota for Division 3.a in the North Sea (4).

In the North Sea, Norway can take up to 50000 tonnes of its quota in EU-waters in divisions 4.a and 4.b. 50000 tonnes of the EU-quota can be taken within Norwegian waters south of $62^{\circ} \mathrm{N}$.

Half of the EU quota for divisions 4.c and 7.d can be taken in Division 4.b. HAWG has no information to which extend these transfers were utilised.

In 2014, an agreed record between EU and Norway was applied, enabling an inter-annual quota flexibility of 10% of the TAC. Each party could transfer non-utilised quota of up to 10% of its quota into the next year, where it is added to the quota allocated to the party concerned in the following year (or borrow 10% of the TAC, to be subtracted the following year). This inter-annual flexibility has changed in 2015 so that 25% of the TAC can be transferred into the next year, while up to 10% can be borrowed.

HAWG has not applied this record to national catches, e.g. to what extent or which party may have used this annual quota flexibility.
Since 2015, a landing obligation is in place for pelagic fleets operating in the North Sea and the Baltic. All catches of (quota) regulated species have to be landed into port.

2.1.4 Changes in fishing technology and fishing patterns.

There have been no major changes to fishing technology of the fleets that target North Sea herring.

The fishery concentrated in the north-western part of the North Sea, around the Fladen Ground area (figures 2.1.1 a-e). The majority of catches is taken in Subdivision 4.aW, in the order of 60% of the total. In line with the TAC, catches in 2018 increased in all areas except Subdivision 4.aEast. Their proportion of the total North Sea catch was 12% in 2018. Catches in Division 4.b contributed 18% in 2018.

The utilisation of catches in divisions 4.c and 7.d has decreased since 2010. Since 2014, catches in the southern North Sea contributed less than 10% to the total catch, while they were in the range of 15% for the period before 2010. The TAC in this Division is not fully taken since 2012. Catches in Division 4.c were only 2188 tonnes in 2018.
As in former years, most of the catches in the B-Fleet are taken in Division 4.b (76\%). The bycatch ceiling for this fleet has not fully been taken in 2018.

After a substantial decline in misreporting since 2009, misreporting is regarded as a minor problem in the herring fishery.

2.2 Biological composition of the catch

Biological information (numbers, weight, catch (SOP) at age and relative age composition) on the catch as obtained by sampling of commercial catches is given in tables 2.2.1-2.2.5. Data are given for the whole year and by quarter. Except in cases where the necessary data are missing, data are displayed separately by area for herring caught in the North Sea, for Western Baltic spring spawners (only in 4.aE), and for the total NSAS stock, including catches in Division 3.a.

Biological information on the NSAS caught in Division 3.a was obtained using splitting procedures described in Section 2.2 and in the Stock Annex.

The tables are laid out as follows:

- Table 2.2.6: Total catches of NSAS (SOP figures), mean weights- and numbers-at-age by fleet
- Table 2.2.7: Data on catch numbers-at-age and SOP catches for the period 2003-2018 (herring caught in the North Sea)
- Table 2.2.8: WBSS taken in the North Sea (see below)
- Table 2.2.9: NSAS caught in Division 3.a
- Table 2.2.10: Total numbers of NSAS
- Table 2.2.11: Mean weights-at-age, separately for the different Divisions where NSAS are caught, for the period 2008-2018.

Note that SOP catch estimates may deviate in some instances slightly from the WG catch used for the assessment.

2.2.1 Catch in numbers-at-age

The total number of herring taken in the North Sea is 4.5 billion fish and the estimated overall number of NSAS caught in the North Sea and 3a amounts to 4.6 billion fish in 2018. The proportion of 0 - and 1-ringers of herring taken in the North Sea is 31% of the total catch in numbers in 2018 (Table 2.2.5), compared to 18% in 2017. Most of these young herring are still taken in the BFleet in Division 4.b. Here, 0- and 1-ringers amount to 73% of the total catch in numbers.

The proportion of $3+$ winterring herring is 65% of the total catch in numbers taken in the North Sea (compared to 80% in 2017). The 4 and 5 winterring herring contributed most to the catches in 2018, both in terms of numbers and in biomass.

Western Baltic (WBSS) and local Division 3.a spring-spawners are taken in the eastern North Sea during the summer feeding migration (see Stock Annex and Section 2.2.2). These catches are included in Table 2.1.1 and listed as WBSS. Table 2.2.8 specifies the estimated catch numbers of WBSS caught in the North Sea, which are transferred from the North Sea assessment to the assessment of Division 3.a/Western Baltic in 2003-2018. After splitting the herring caught in the North Sea and 3.a between stocks, the total catch of North Sea Autumn spawners amounts to 603536 tonnes.

Area	Allocated	Unallocated	BMS	Total
4.a West	374491			374491
4.a East	74580			74580
4.b	107795			107795
4.c/7.d	45462			45462
	Total catch in the North Sea			602328
Autumn spawners caught in Division 3.a (SOP)				3372
Baltic spring spawners caught in the North Sea (SOP)				-2 164
Total catch NSAS used for the assessment				603536

2.2.2 Other Spring-spawning herring in the North Sea

Norwegian spring-spawners and local fjord-type spring spawning herring are taken in Division 4.a (East) close to the Norwegian coast under a separate TAC. These catches are not included in the Norwegian North Sea catch figures given in tables 2.1.1-2.1.6, but are listed separately in the respective catch tables. Along with the reduction in biomass of these spring-spawning herring in recent years, the catches have decreased in recent years and amount to 310 tonnes in 2018.

Blackwater herring are caught in the Thames estuary under a separate quota and included in the catch figure for England and Wales. In recent years, these catches have been relatively small and also in 2018 only 10 tonnes were caught.

In recent years no larger quantities of spring spawners were reported from routine sampling of commercial catch taken in the west.

2.2.3 Data revisions

No data revisions were applied in this year's assessment.

2.2.4 Quality of catch and biological data

Annual misreporting and non-allocation of catches were often substantial, but have reduced in the recent decade and are meanwhile regarded as a minor issue in the North Sea herring fishery. In 2018, no unallocated catches were reported. The Working Group catch, which include estimates of all fleets (and misreported or unallocated catches; see Section 1.5), is thus estimated to be the same as the official catch.

Since 2015, a landing obligation is in place for pelagic fleets operating in the North Sea and the Baltic. All catches have to be landed into port. Reported catches in the BMS category (below minimum landing size, including any fishes lost or damaged during processing procedures) were zero in 2018. Some countries stated these to be zero, and other countries have not reported any catches in this category. In accordance with the landing obligation, no discards were reported in the 2018 North Sea herring fishery. However, discards occurred in demersal fisheries not targeting on herring. These discards sum to 96 tonnes in 2018.

The sampling of commercial landings covers 83\% of the total catch (2017: 84\%).
More important than a sufficient overall sampling level is an appropriate spread of sampling effort over the different metiers (here defined as each combination of fleet/nation/area and quarter). Of 103 different reported metiers, 33 were sampled in 2018. The recommended sampling level of more than 1 sample per 1000 tonnes catch has been met for only 14 metiers. With regards to age readings, 14 metiers appear to be sampled sufficiently (recommended level >25 fish aged per 1000 tonnes catch).

However, some of the metiers yielded very little catch. In 52 metiers the catch is below 1000 t . The total catch in these metiers sums to 9742 t , so the remaining 51 metiers represent 592589 tonnes of the working group catch (98%). Of these 51 metiers 27 were sampled. Only 8 fulfil the recommended level of more than 1 sample per 1000 tonnes catch and of 25 age readings per 1000 tonnes catch.
According to the DCF regulations, some catches of UK (England and Wales) were landed into and sampled by other nations.

The WG recommends that all metiers with substantial catch should be sampled (including bycatches in the industrial fisheries), and that catches landed abroad should be sampled based on criteria provided above, and information on these samples should be made available to the national laboratories (see Section 1.5).

2.3 Fishery independent information

2.3.1 Acoustic Surveys in the North Sea (HERAS), West of Scotland 6.a (N) and the Malin Shelf area (MSHAS) in June-July 2018

Six surveys were carried out during late June and July covering most of the continental shelf in the North Sea, West of Scotland and the Malin Shelf. The survey methods and full results are given in the report of the Working Group for International Pelagic Surveys (WGIPS; ICES CM 2018/EOSG:14). The vessels, areas and dates of cruises are given in Table 2.3.1.1 and in Figure 2.3.1.1.

The global survey results provide spatial distributions of herring, abundance by number and biomass-at-age by strata and distributions of mean weight- and proportion mature-at-age.
The estimate of North Sea autumn spawning herring spawning stock biomass is higher than previous year at 2.3 million tonnes (2017: 1.9) due to an increase in the number of fish (2017: 11,621 mill. fish, 2018: 12,315) and an increase in weight-at-age for mature herring. The spawning stock is dominated by fish of age 4 and 5 wr , which is in accordance with the strongest year classes in the 2017 survey.
The time series of abundance of North Sea autumn spawning herring is given in Table 2.3.1.3.
The coverage per country is shown in Figure 2.3.1 and the spatial distribution of herring from the survey is shown in Figure 2.3.1.2. The distribution of adult herring in the North Sea is still concentrated in the areas east and north of Scotland. This year the distribution is slightly further north compared to the previous two years. Substantial aggregations of juvenile herring were encountered around the Dogger Bank area in addition to the usual distribution in the south eastern parts of the North Sea and in Kattegat.

The abundance of immature fish in the stock has increased from 18434 million in 2017 to 20290 million this year. This is mainly due to the high number of 1 wr fish this year and partly due to the exceptionally low maturity level of the 2 wr fish this year.

Maturity of 2 winter ringers was at an all-time low at 37%. Maturities for ages 3 and above were comparable to the long-term average, with 91% of 3 winter ringers and 98% or higher maturity for all ages 4 and above. 100% maturity was achieved by age 5 .

2.3.2 International Herring Larvae Surveys in the North Sea (IHLS)

Four survey areas were covered within the framework of the International Herring Larval Surveys in the North Sea during the sampling period 2018/2019. They monitored the abundance and distribution of newly hatched herring larvae in the Orkney/Shetlands area, in the Buchan area and the central North Sea (CNS) in the second half of September and in the southern North Sea (SNS) in the second half of December 2018 (Figure 2.3.2.1).

The German survey contribution around the Orkneys started as scheduled, but after one day of sampling the research vessel had to face severe technical problems. There was no opportunity to conduct a safe journey any further, thus the survey had to be stopped after 28 plankton hauls. The vessel steamed back to Bremerhaven, where it is still in repair at the time of HAWG 2019. No charter vessel was available for the survey planned in early January 2019. As a consequence, the estimate for the Orkney/Shetland area is very low and biased due to the low area coverage, and no estimate for the Downs components is available in January 2019.

The survey contribution of The Netherlands in September 2018 was as planned and covered the Buchan and the central North Sea. The December survey in the Southern North Sea was conducted on-board a smaller vessel, which turned out to be more sensitive to weather conditions. Thus the area coverage is limited, and no information about larvae abundance in the western part of the sampling area (the main spawning ground) is available.

No survey was planned for the second half of January 2019. An additional MIK sampling will be undertaken instead in March/April in the German Bight and southern North Sea. This sampling should shade light on the foraging and recruitment of herring larvae originating from the Downs stock component.
During the most recent benchmark of the North Sea herring assessment (ICES, WKPELA 2018), it was decided to use the Larvae Abundance Index (LAI) as direct input into the assessment model and to resolve spatial stock dynamics inside the model. However, only the estimates from the Buchan and central North Sea were included in the assessment. The biased estimates of the Orkney/Shetlands and the southern North Sea were excluded and not used as data input to the assessment at HAWG 2019. Instead these larval abundances were estimated by the model.

Most of the survey areas have not been fully covered since the beginning of the 1990s, e.g. the first half of September in Orkney/Shetland and Buchan and CNS. It is very unlikely that survey effort will increase in the upcoming years. Thus the survey design will be revisited at the Working Group on Surveys of Ichthyoplankton in the North Sea (WGSINS) meetings, examining different and more efficient ways to make use of the current survey effort.

2.3.3 International Bottom Trawl Survey (IBTS-Q1)

The International Bottom Trawl Survey (IBTS) provides the time series for 1-ringer herring abundance index in the North Sea from GOV catches carried out during day-time. In addition, night time catches with a fine meshed 2 m ring trawl provide abundance estimates for large herring larvae in late development stage (0-ringers) of the autumn spawning stock components.

2.3.3.1 The 0 -ringer abundance (IBTSO survey)

The total abundance of 0-ringers in the survey area is used as a recruitment index for the stock. This year, 637 depth-integrated hauls were completed with the MIK-net. The coverage of the survey area was good with at least 2 hauls in most of ICES rectangles in the North Sea as well as in the Kattegat and Skagerrak.

Index values are calculated as described in detail in the Stock Annex.
Larvae were measured to standard length (SL). As in most years, the smallest larvae $<10 \mathrm{~mm}$ were the most numerous but. Larger larvae $>18 \mathrm{~mm}$ SL were rarer and were caught in lower densities than last year (Figure 2.3.3.1). The smallest larvae were chiefly caught in 7.d and in the Southern Bight. The large larvae appeared in moderate to high quantities only in the western part of the North Sea, in 3 rectangles of the Southern Bight and in the Skagerrak. In the eastern part of the North Sea, the potential nurseries, abundance of large herring larvae was very low, and virtually no larvae occurred in the German Bight. Instead sardine larvae were found in considerable numbers in the German Bight, which has not been shown before.

To exclude the newly hatched Downs larvae from the index, the rule has been applied to exclude larvae below 18 mm for the calculation of the MIK index. The results of the calculation can be found in Table 2.3.3.1.2. The 2019 index is 51.6.

2.3.3.2 The 1-ringer herring abundances (IBTS-1)

The 1-ringer recruitment estimate (IBTS-1 index) is based on GOV catches in the entire survey area. The time series for year classes 1995 to 2016 is shown in Table 2.3.3.2. The index from the 2019 survey is 1539 which is almost double that of 2018 but lower than the long-term average of the time series. Figure 2.3.3.3 illustrates the spatial distribution of 1-ringers as estimated by trawling in January/February 2017, 2018 and 2019. For the 2017 year class, the majority of the 1-ringers were distributed chiefly in the southern German Bight and in the Kattegat. The mean abundance in the southeastern North Sea was apparently lower and more dispersed than in 2018. Highest abundances, however, were observed in 3 rectangles in the Kattegat contributing the most to the higher index for this year. It appears noteworthy, that the trajectories for five recent 1-ringer abundances (year classes 2013-2017) correspond very well to the trajectories of their 5 respective 0 -ringer indices (Figure 2.3.3.4).

2.4 Mean weights-at-age, maturity-at-age and natural mortality

2.4.1 Mean weights-at-age

Table 2.4.1.1 shows the historic mean weights-at-age (winter ringers, wr) in the North Sea stock during the $3^{\text {rd }}$ quarter in divisions 4 and 3.a from the North Sea acoustic survey (HERAS) as well as the mean weights-at-age in the catch from 1996 to 2018 for comparison. The data for 2018 were sourced from Table 2.3.1.2 and Table 2.2.2. In the third quarter most fish are approaching their peak weights just prior to spawning.
The mean weights in the acoustic survey in 2018 were lighter for groups 1 to 4 -wr and 7 -wr compared to those in the catch (Table 2.4.1.1).

However, the general trend towards smaller mean weight at age observed in recent years in the acoustic survey and, but less pronounced, in the catch in the $3^{\text {rd }}$ quarter (Figure 2.4.1.1), seems to be discontinued in 2018. Only 1, 2 and 3-wr in the acoustic survey had lower mean weight at age compared to 2017, while all other ages had higher mean weight. In the $3^{\text {rd }}$ quarter catch, all aged were heavier expect of 1 and $3-$ wr.

The mean weight-at-age of the $9+$ wr are almost the same weight than the 8 -wr in the survey. The 2007 year class (part of the plus group) seems to have been growing slower throughout the years and was also the year class exhibiting greatly reduced maturity as 2-wr in 2010 and 3-wr in 2011.

2.4.2 Maturity ogive

The percentages at age of North Sea autumn spawning herring that were considered mature in 2018 were estimated from the North Sea acoustic survey (Table 2.4.2.1). The method and justification for the use of values derived from a single year's data was described fully in ICES (HAWG; ICES CM 1996/ACFM:10). While $5+$ group herring were considered fully mature in the period prior to 2015, WGIPS reported maturity stage for all groups up to $7+$ separately in the most recent years.

Maturity of 2 winter ringers was at an all-time low at 37%. Maturities for ages 3 and above were comparable to the long-term average, with 91% of 3 winter ringers and 98% or higher maturity for all ages 4 and above. 100% maturity was achieved by age 5 .

2.4.3 Natural mortality

One of the improvements of the 2012 benchmark of the North Sea herring stock (ICES WKPELA, 2012) was the integration of fundamental links between the North Sea ecosystem and the NSAS stock dynamics.

From 2012 onwards, the assessment of NSAS includes variable estimates of natural mortality (M) at age derived directly from a multispecies stock assessment model, the SMS model, used in WGSAM (Lewy and Vinther 2004; ICES 2011). The input data to the assessment are the smoothed values of the raw SMS model annual M values, which are variable both at-age and over the time Natural mortality in years outside the time-period covered by the model are filled and estimated for each age as a five year running mean in the forward direction and in the reverse direction for years prior. The M estimates are variable along the time period covered by the assessment and are the result of predator-prey overlap and diet composition. The trends in total M of NSAS are a result of the contribution of each of the predators to the predation mortality of the NSAS stock. The time series of M adopted at the benchmark in 2012 was from the 2011 key run of the SMS model covering the period 1963-2010 (ICES WGSAM, 2011). Since 2012, the M time series were updated following the latest key runs of the SMS model (ICES WGSAM, 2014; 2016).

During the 2018 benchmark (ICES WKPELA, 2018), it was decided to use the new M time series from the 2017 SMS model key run (ICES WGSAM, 2018). However, because of the substantial impact the absolute level of M has on the assessment, an age and year independent offset is applied. This offset is calculated using a likelihood profiling of the assessment model which allows one to find the M that best fits the input data to the assessment. The optimal offset obtained is of 0.11 .

2.5 Recruitment

Information on the development in North Sea herring recruitment comes from the International Bottom Trawl Surveys, from which IBTS0 and the IBTS-1 indices are derived. Further, the SAM assessment provides estimates of the recruitment of herring in which information from the catch and from all fishery independent indices is incorporated. The recruitment trends from the assessment are dealt with in Section 2.6.

2.5.1 Relationship between 0-ringer and 1-ringer recruitment indices

The estimation of 0-ringer abundance (IBTS0 index) predicts the year class strength one year before the strength is estimated from abundance of 1-ringers (IBTS-1 index). The relationship between year class estimates from the two indices is illustrated in Figure 2.5.1.1 and is described by the fitted linear regression

The time series of 0- and 1-ringer abundance from the Q1 IBTS survey exists since the 1977 year class. For more than a decade until the mid-1990s, there has been very good agreement between the indices in their description of temporal trends in recruitment, with the 0 -ringer index explaining more than 70% of the variability of the respective 1-ringer abundance. It has to be borne in mind that the IBTS 0-ringer (or MIK) index only reflects recruitment in the autumn spawning components. Hence, once the contribution of the winter spawning Downs component to the total North Sea stock increased, the relationship between the two indices started to erode. This was particularly true in recent years (the 2009 and the 2006-2007 year classes), but also already for the 1995 year class, when the predicted levels of recruitment have deviated between the two indices

Since 2017, the MIK index time series is calculated with the new algorithm, which only dates back to 1992 and excludes larvae of Downs origin more rigorously. The correlation between 0and 1-ringer indices utilizing the newly calculated MIK index time series is much weaker, explaining only 30% recruitment variability (Figure 2.5.1.1). However, starting with the 2013 year class there was once again good agreement between the trends of the two indices. In 2014, it was recorded as the largest 0-ringer abundance since 2002, and the strength of this year class was confirmed in 2015 with one of the largest 1-ringer abundances. This was the first strong year class observed since 2002. Since then, the IBTS 1-ringer index followed the ups and downs of the MIK 0 -ringer index for the respective year class (Figure 2.5.1.1).

2.6 Assessment of North Sea herring

2.6.1 Data exploration and preliminary results

Thorough investigation of the assessment was undertaken during the last benchmark (2018). These are described in the WKPELA report (ICES WKPELA, 2018). The subsequent assessment methodology is described in the Stock Annex. In short, the changes to the assessment are as follows:

- Use of the new natural mortality from the last SMS key run (ICES WGSAM, 2018) together with a new strategy for using different SMS key runs and during interim years.
- Use of revised IBTS0 index.
- Standardization of IBTSQ1 and IBTSQ1 indices
- Introduction of IBTSQ3 age 2-5 index as a new data source
- Calculation of larvae index within the model as opposed to the SCAI model index.

The tool for the assessment of North Sea herring is FLSAM, an implementation of the State-space assessment model (www.stockassessment.org), embedded inside the FLR library (Kell et al., 2007).

Acoustic (HERAS ages 1-8+), bottom trawl (IBTS-Q1 age 1, IBTS-Q3 age 2-5), IBTS0 and larval index (LAI) indices are available for the assessment of North Sea autumn spawning herring. The surveys and the years for which they are available are given in Table 2.6.1.1. The input data and the performance of the assessment have been scrutinised to check for potential problems.
The proportion mature of 2, 3 and 4-wr individuals are $37 \%, 91 \%$ and 98% respectively. The historical proportion mature at age are given in Table 2.6.3.5 and plotted in Figure 2.6.1.1. There is an overall decreasing trend for 2-wr individuals since 2012. The tracking of each cohort can be observed in Figure 2.6.1.2 and time series of natural mortality at age is shown in Figure 2.6.1.3.

The numbers at age over all ages in the acoustic survey can still be considered relatively high in the recent time period (see Figure 2.6.1.4). The internal consistency of the acoustic survey remains high, as it has been for a long period (see Figure 2.6.1.5).

The SAM model fits the catch and the surveys well and residuals are random and small for all ages (figures 2.6.1.6-2.6.1.41). A small block of positive residuals can be observed for age 7 catch data over the years 2000-2006, while at age 8 for catch data, a similar block of negative residuals can be observed (figures 2.6.1.12 and 2.6.1.13). This likely indicates a trade-off in model fit to either the age 7 or age $8+$ catch information. There is a methodological need however to link age 7 and age 8+ together in the stock assessment model. The residuals are very small and are not considered an issue for the performance of the assessment. The fitting of the LAI index is poor due to the intrinsic noise to the larvae survey (figures 2.6.1.31-2.6.1.41). All other surveys fit well inside the model. Further visualisation of residuals for the catch data and the survey indices can be observed in figures 2.6.1.43-2.6.1.46.

A feature of the assessment model is the estimation of an observation variance parameter for each data set (see Figure 2.6.1.46). Overall, all data sources are associated with low observation variances. The catch at ages $1-5$ stands out as the most precise data source while the LAI indices, IBTSQ3 age 0 and HERAS age 1 to be the noisiest data. The increase in observation variance from the SCAI index that was used in previous years is due to the change in methodology. Previously the observation variance was perceived as lower because of the pre-processing (e.g. smoothing) when modelling the SCAI index. The uncertainty associated with the parameter estimated is low for most data sources where only the CV of the catch at age 0 is somewhat high (Figure 2.6.1.47). However, the CV quantities do not indicate a lack of convergence of the assessment model.

The analytical retrospective pattern has increased compared to the 2018 assessment. This is particularly pronounced in the SSB showing a higher perception in the current assessment, but a very similar perception in F and recruits (Figure 2.6.1.48). The mean mohn's rho with a 5 year period for the peel is of -12% (Fbar), 8% (rec), 11.3% (SSB). The difference in perception of SSB is a result of the inclusion of the 2018 HERAS (Figure 2.6.2.9). For 2018, the HERAS index for ages 2-8+ exemplifies an increase in the SSB while the assessment model predicts a decrease in the SSB (Figure 2.6.2.10).

Figure 2.6.1.49 shows the model uncertainty plot, representing the parametric uncertainty of the fit of the assessment model in terminal F and SSB.

Further data screening of the input data on mature - immature biomass ratios, survey CPUEs, proportion of catch numbers- and weights-at-age and proportion of IBTS and acoustic survey ages have been executed, as well as correlation coefficient analyses for the acoustic and IBTS survey and assessment parameters (see Figure 2.6.1.50).

2.6.2 Exploratory Assessment for NS herring

An exploratory assessment using fleet disaggregated data for (1) catches at age (2) weight in the catch at age was carried out. The configuration of the multi-fleet model is presented in Table 2.6.2.1. It is important to note that fleet B and D are combined because of their similarity. More details on the model configuration exploration is provided in the 2018 benchmark report (ICES WKPELA, 2018). Tables for the multi-fleet assessment and results (including fleet wise fishing mortalities) are given in Table 2.6.2.2 to 2.6.2.5.

Of particular relevance when running the SAM model using a multi-fleet configuration is the fishing mortality at age that is outputted for each fleet. The subsequent catch residuals for each fleet is shown in Figure 2.6.2.1 to Figure 2.6.2.3. The observation variance is shown in Figure 2.6.2.4, with high levels for fleet B and D. Expectedly, the model is driven by catch data from fleet A which represents most of the overall catches. The model uncertainty and the correlation coefficients between the estimated parameters are shown in Figure 2.6.2.5 and 2.6.2.6 respectively.

As for the single fleet assessment, the retrospective over 7 year for $\mathrm{SSB}, \mathrm{Fbar}_{\mathrm{b}}$ and the recruitment is low (Figure 2.6.2.7). With respect to SSB, $\mathrm{F}_{\text {bar }}$ and recruitment, the multi-fleet assessment yields very similar results to the single fleet assessment (Figure 2.6.2.8).

2.6.3 Final Assessment for NS herring

In accordance with the settings described in the Stock Annex, the final assessment of North Sea herring was carried out by fitting the state space model (SAM, in the FLR environment). The input data and model settings are shown in tables 2.6.3.1-2.6.3.11, the SAM output is presented in tables 2.6.3.13-2.6.3.33, the stock summary in Table 2.6.3.12. Figure 2.6.3.1 shows the stock
time series for $\operatorname{SSB}, \mathrm{F}_{\text {bar }}$ and recruitment and Figure 2.6.3.2 shows the management strategy currently under assessment, including the biomass trigger points and contains the F_{2-6} vs SSB estimates of the past 10 years.

The spawning stock at spawning time in 2018 is estimated at approximately 1.5 million tonnes, which is a decrease of 21% in comparison to 2017.

The abundance of 0-wr fish in 2019 (2018 year class) is estimated to be at approximately 26 billion, which is 22% below the 10 year weighted mean (33 billion, see Table 2.6.3.14).

Mean F_{2-6} in 2018 is estimated at approximately 0.21 , which is below the management agreement target F. The mean F_{0-1} is 0.052 .

2.6.4 State of the Stock

Based on the most recent estimates of SSB and fishing mortality, ICES classifies the stock as is being harvested sustainably. Fishing mortality is below the estimated $\mathrm{F}_{\text {msy }}(0.26)$ and the management plan target (0.26).

The SSB in autumn 2018 was estimated at 1.5 million tonnes, which is above $B_{p a}(0.9$ million $t)$ and MSY Btrigger $(1.4$ million t).

The recruitment for the stock in recent years (since 2013) is low and the further aging of the 2013 and 2012 year classes is driving the decrease in SSB. In line with the recruitment level since 2014, the recruitment in 2019 remains low (26 billion, 22% lower than the 10 years weighted mean).

Similarly to recent years' assessments, fishing mortality on older ages remains high in recent years. According to the assessment, the fishing mortality at age 7 is around 0.54 in 2018, which is substantially higher than $F_{b a r 2-6}$ (0.21). In the 2017 assessment (ICES HAWG, 2017), comparison of the only acoustic survey and catch data gave the same impression that the catches at the older ages are relatively high compared to the estimated number of fish in those ages.

2.7 Short term predictions

Short term predictions for the years 2019, 2020 and 2021 were done with code developed in the R programming language. During HAWG 2019, a modification to the code has been made because the 2015 EU-Norway management rule is no longer in force and because the ICES advice for WBSS herring resulted in a zero catch advice. The revamping of the R code also resulted in a more functional and intelligible code. As a result, it is now easier to implement different assumptions on the different fleets (e.g. TAC status quo or zero TAC for WBSS).
The various assumptions for the short term predictions for both the stock and the four different fleets are given in Table 2.7.1 and 2.7.2 respectively.
In the short-term predictions, recruitment is assumed constant at 33 billion for the years 2020 and 2021 following the same recruitment regime since 2002 (weighted mean of the past 10 yearclasses, weighted by the uncertainty in the estimate). The recruitment estimate of the 2018 year class, obtained from the assessment served as the estimate for 2019.
For the intermediate year (2019), no overshoot for the A fleet was assumed, as there was minimal deviation from the TAC in 2018. Previous negotiations between the EU and Norway resulted in the allowance of 50% of the C-fleet TAC in the Kattegat-Skagerrak area to be taken in the North Sea. Because a TAC for the C-fleet had been agreed for 2019, despite the zero advice for WBSS herring, the pelagic AC was requested to estimate the percentage of the 3.a herring TAC that would be taken in the North Sea. The pelagic AC estimated it at 48% in 2019. The same proportion has been used in this projection for the scenarios where the C-fleet catch was not set to zero.

The expected catches of Western Baltic Spring Spawning herring caught under the North Sea TAC are deducted from the expected A fleet catches (amounting to 22276 t) in the intermediate year. In the projected year 2020, the C and D fleet outtake was set to 0 in agreement with the 0 catch advice for WBSS for 2020.

For the catch options with a TAC status quo for the C and D fleets, the fraction of North Sea Autumn Spawning (NSAS) herring caught in 3.a by the C and D fleet was used to derive C and D fleet NSAS catches, based on projected TACs in 3.a for these fleets.

In the absence of an agreed management plan for NSAS herring, it has not been possible to derive fleet based fishing mortalities for the prediction year. Therefore, the ICES MSY Advice Rule (MSY AR) has been used as the basis for the advice. The MSY AR stipulates a fishing mortality of $\mathrm{F}_{\text {MSY }}=0.26$ when the stock is above MSY Btrigger (1400000 tonnes) and a linear decline in F when the stock is below MSY Btrigger. There is no specific allowance in the ICES MSY AR for multiple fishing mortality targets, such as the F for 0 and 1 WR herring, which were previously integral part of the management plans for NSAS herring. Therefore additional assumptions needed to be made for e.g. the B-fleet. An 86% uptake (3 year average) of the advised TAC in 2019 was used. For the projection year 2020, an F status quo for the B fleet was assumed ($\mathrm{F}_{0-1}=0.046$). In addition, two scenarios are presented in which the TACs of the C and D fleet are the same as in 2019.

EU and Norway have requested ICES to evaluate a number of different potential management strategies to be used in the future (EU-Norway 20181). While the Management Strategy Evaluations (MSE) have not been completely finalized, preliminary results for applicable target fishing mortalities and trigger biomasses were already available and have been tentatively used as scenarios in the projection.

It is noted that making fleet-wise predictions for four fleets that are more or less independent, could potentially result in many different options for 2020. The scenarios presented in Table 2.7.5 are based on certain assumptions to limit the number of options. The scenarios are for illustrative purposes only.

All predictions are for North Sea autumn spawning herring only.

2.7.1 Comments on the short-term projections

Although the SSB is expected to decrease between 2019 to 2021, due to a series of weak yearclasses recruiting to the fishery, the projection still estimates a substantially higher catch compared to the projection that was carried out in HAWG 2018. This counter-intuitive result was further investigated during the working group. It was concluded that the main reasons for the higher predicted catch were: 1) a higher estimate of stock size due to a retrospective bias in this year's assessment (see Section 2.10), 2) a relatively large contribution of older fish in the population (year classes 2012 and 2013, age 6 and 7 in 2020), and 3) a high selection on the oldest ages in the population. The high proportion of age 6 and 7 in the forecast year (2020) is exemplified in Figure 2.7.2.1 and 2.7.2.2. This leads to a projection where the estimated catch (in tonnes) in 2020 consists for around 50% of fish that are age 6 (WR) and older, and that the average fishing mortality on ages 7 and $8(\mathrm{WR})$ is around 0.54 .

[^3]The predicted catch according to the MSY Advice Rule for 2020 (418 649 tonnes) implies a 44\% increase compared to the recommended catch for the A fleet in 2019 (291 040 tonnes) and a 9\% increase compared to the A fleet TAC in 2019 (385 008 tonnes).

2.7.2 Exploratory short-term projections

To explore the sensitivity of the short-term projection to the particular situation for North Sea herring (stock mainly consisting of older fish that are highly selected for), HAWG 2019 carried out two exploratory short-term projections:

1. Using an age range of $2-8 \mathrm{WR}$ for fishing mortality instead of the standard $2-6 \mathrm{WR}$.
2. Extending the MSY AR projection to 2025 , using a fixed recruitment and fixed F patterns.

Age range 2-8

When using the age range $2-8$ instead of $2-6$, the highly selected older ages are included in the average fishing mortality which is being optimizing in the projection to comply to the MSY approach $(\mathrm{F}=0.26)$. This resulted in a projected catch of 309000 tonnes with an F_{2-8} of 0.25 , compared to the recommended catch of 418000 tonnes with the F_{2-6}. Of course, it was noted that, although this may be seen as an expression of the dependency of the forecast on the oldest ages, it is not a fair comparison. Normally, if the mean age of fishing mortality would be changed, this would also require the re-estimation of reference points and this has not been attempted as part of the HAWG 2019.

Extending projection to 2025

To explore the future consequences of harvesting the recommended catch in 2020, the MSY AR projection was extended, deterministically, using the same (low) recruitment and the same fishing patterns by fleet for the years 2021-2025 (Figure 2.7.2.3). This resulted in a catch for the A fleet of 311000 tonnes in 2021 and catches around 280000 tonnes in the subsequent year, while the SSB would be around 1200000 tonnes in all years. It should be noted that this does not constitute a real evaluation of the MSY AR rule because the fishing mortality was not adapted according to the rule, but simply kept constant during the years of the projection.

Conclusions on the sensitivity of the short-term projections

The projection according to the MSY AR resulted in an A-fleet catch of 418000 tonnes in 2020. This result is heavily dependent on the skewed age composition of the stock (many old fish due to strong 2013 year class) and a high selection for the oldest ages. Using a different age range for calculating the average fishing mortality resulted in a substantially lower projected catch (311 000 tonnes) under the assumption that $\mathrm{F}_{\text {MSY }}$ would not change (untested). If the current projection is extended into the future, the projected catches would be in the range of $280-$ 310000 tonnes.

2.8 Medium term predictions and HCR simulations

No medium term prediction or HCR simulations were carried out during the Working Group. The management strategy evaluation was still being evaluated (ICES WKNSMSE, 2019) at the time of the working group, following a EU-Norway request (EU-Norway, 2018²).

2.9 Precautionary and Limit Reference Points and FMSY targets

The precautionary reference points for this stock were originally adopted in 1998.
New reference points were calculated during the 2018 benchmark meeting (ICES WKPELA, 2018) and did not change the perception of the stock assessment. Reference points prior to 2018 and out of the 2018 benchmark are presented in Table 2.9.1 and 2.9.2 respectively. Overall, the fishing pressure remains below FMSY while the SSB is above MSY $\mathrm{B}_{\text {Trigger. }}$. The derivation of reference points and the history of the reference points for North Sea herring are further described in the Stock Annex.

2.10 Quality of the assessment

The data used within the assessment, the assessment methods and settings were carefully scrutinized during the 2018 benchmark (ICES WKPELA, 2018) and these are described in the North Sea Herring Stock Annex (a list of links to the Stock Annexes can be found in Annex 4). The 2019 assessment was classified as an update assessment and was carried out following these procedures and settings.

The natural mortality is very impactful for the assessment and. The time series are those from the latest SMS key run available. To date, it is the SMS key run from 2017 (ICES WGSAM, 2018). However, the assessment model is sensitive to the absolute level of these time series and previous changes have caused the perception of the stock to change (ICES HAWG, 2016). During the benchmark in 2018 (ICES WKPELA, 2018), a methodology was developed to use an optimal offset (time and age independent) based on the assessment performance. This resulted in improved consistency between different assessments.

The 2019 assessment has increased the estimates of the 2016-2018 recruitments by 4.6% compared to the 2018 assessment. The SSB has been increased by 33% for 2018 and the fishing mortality is estimated to be lower by around 44.7% (see text table below and discussion in Section 2.6.4 and 2.7).

2018 Assessment				2019 Assessment												\% change 2019/2018	
Year	Rec	SSB	Catch	F_{2-6}	Rec	SSB	Catch	F_{2-6}	Rec	SSB	Catch	F_{2-6}					
2016	321	2357	544	0.22	329	2596	563	0.2	2.5	10.1	3.5	-9.1					
2017	185	1887	497	0.21	200	2214	498	0.18	8.1	17.3	0.2	-14.3					
2018	357	1404	639	0.38	368	1870	603	0.21	3.1	33.2	-5.6	-44.7					

[^4]
2.11 North Sea herring spawning components

The North Sea autumn-spawning herring stock is generally understood as representing a complex of multiple spawning components (Cushing, 1955; Harden Jones, 1968; Iles and Sinclair, 1982; Heath et al., 1997). Monitoring and maintaining the diversity of local populations is widely viewed as critical to the successful management of marine fish stocks.

2.11.1 International Herring Larval Survey

The spawning component abundance index (SCAI: Payne 2010) was developed to characterize the relative dynamics of the individual North Sea spawning components.

The dynamics of the components are documented in Table 2.3.2.1 and can be observed in Figure 2.11.1 (SSB based on index proportions) and Figure 2.11.2 (proportions).

Prior to 2002 there were large differences in the contributions of each of the components to the total SSB with northern components (Orkney/Shetland and Buchan) being the major contributors. Since 2002 there has been a more even contribution from each of the four components with some inter-annual variability. However, the Downs component may be under-represented in some years due late spawning and Orkney-Shetland due to a lack of sampling due to vessel constraints.

2.11.2 IBTSO Larval Index

The ring net hauls for 0-ringers during the IBTS in the North Sea and eastern English Channel also include Downs herring larvae. These larvae are, however, too small to have passed their critical period of high and highly variable mortality. Their abundance cannot be used for recruitment prediction. These small larvae (separated as $<18 \mathrm{~mm}$) have been excluded from the standard estimation of 0-ringer recruitment (IBTS0 index).

2.11.3 Component considerations

The Downs TAC was set up to conserve the spawning aggregation of Downs herring. Uncertainties concerning the status of, and recruitment to, this component of the North Sea herring stock are high, and HAWG is not aware of any evidence to suggest that this measure is inappropriate. HAWG therefore recommends that the 4.c-7.d TAC be maintained at 11% of the total North Sea TAC (as recommended by ICES). Any new management approach should provide an appropriate balance of F across stock components and be similarly conservative until the uncertainty about contribution of the Downs and other components to the catch in all fisheries in the North Sea is reduced.

2.12 Ecosystem considerations

The status as of 2015 can be found in ICES HAWG (2015) and the stock annex.

2.13 Changes in the environment

For all herring stocks in the working group, the mean weight at age in the catch and in the stock has been decreasing since the early 1980s. This applies to the Celtic Sea herring, Irish Sea herring and North Sea Autumn Spawning herring. No real pattern is observed for Western Baltic Spring Spawning herring and an increase in mean weight is seen in the combined Malin Shelf herring.

Decreases in mean weight in the catch could drive the recent increase in selectivity of the fisheries for older ages. The fisheries often target certain weight classes of herring which could be of an older age in the recent years.

The North Sea Autumn Spawning herring stock has, since 2002, produced a series of below average year classes, a situation which has not been observed previously (Payne et al., 2009): the most recent year class also appears to represent a continuation of this trend. This low recruitment has occurred in spite of a spawning stock biomass that is well above the $B_{\lim }$ of 800000 tonnes (where impaired recruitment is expected to set in) (Figure 2.13.1).

Stock productivity, as represented by the number of recruits-per-spawner from the assessment, has been low for the last decade (Figure 2.13.2). Although there have been changes during this low-productivity regime, at no point has this metric approached the levels seen during the 1990s. The most recent recruits-per-spawner is amongst the lowest observed during the recent period.

Year-class strength in this stock is determined during the larvae phase (Dickey-Collas and Nash, 2005; Payne et al. 2009). Updating these analyses with the most recent data sets suggests that the trend of reduced larval survival between the early (as indicated by the SSB/LAI index) and the late (as indicated by the IBTS0 index) larval stages has continued in the most recent years (Figure 2.13.3). (It should be noted that the switch from the SCAI calculation to the LAI calculation inside the assessment model, has caused a higher variability in the larvae survival relationship between SSB/LAI and IBTS0 indices). The most recent observation continues the trend of relatively poor survival.

The IBTS0 index is regarded by the working group as not being representative of recruitment to the Downs spawning component, as observations of small larvae in this region are removed from the index calculation. A more appropriate metric is therefore to base the metric of larval survival on the abundance of larvae from the three northern components (i.e. excluding the Downs). However, this refined metric shows a very similar trend (Figure 2.13.4) with continued poor survival.

All indicators therefore suggest that the stock remains in the low-productivity regime observed in previous years.

Table 2.1.1: Herring caught in the North Sea. Total catch (tonnes) by country, 2014-2018. These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2014	2015	2016	2017	2018
Belgium	27	18	26	13	32
Denmark *	124423	113481	133962	110318	132231
Faroe Islands	118	981	833	442	497
France	29679	30269	35177	28801	31505
Germany	36767	44377	44231	43707	51636
Netherlands	74647	70076	98859	84914	111302
Norway	142002	134349	150183	134132	162594
Lithuania	9830	-	-	-	-
Sweden	15583	13184	16625	18518	19408
Ireland	68	183	127	868	515
UK (England)	19287	18897	20485	16997	19591
UK (Scotland)	45119	48332	59240	49514	66005
UK (N.Ireland)	6612	5948	-	3469	6916
Unallocated landings	3292	1516	8	0	0
Total landings	507454	481611	559756	491693	602232
Discards/BMS	31	-	170	-	96
Total catch	507485	481611	559926	491693	602328

Estimates of the parts of the catches which have been allocated to spring spawning stocks

| WBSS | 2953 | 2204 | 1839 | 632 | 2164 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Thames estuary ${ }^{* *}$ | 10 | 10 | 1 | 0 | 0 |
| Norw. Spring Spawners *** | 2307 | 2191 | 216 | 83 | 310 |

* Including any by-catches in the industrial fishery
** Landings from the Thames estuary area are included in the North Sea catch figure for UK (England).
*** These catches (including some local fjord-type Spring Spawners) are taken by Norway under a separate quota south of $62^{\circ} \mathrm{N}$ and are not included in the Norwegian North Sea catch figure for this area.

Table 2.1.2: Herring caught in the North Sea. Catch in tonnes in Division 4.a (West). These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2014	2015	2016	2017	2018
Denmark *	74719	68017	81080	76277	90763
Faroe Islands	118	981	811	405	496
France	12620	13401	15073	11064	14745
Germany	23245	32253	27926	32736	35884
Netherlands	37380	44309	66740	55832	56990
Norway	89974	47010	57056	57744	78647
Lithuania	8129	-	-	-	-
Sweden	7760	10388	9933	12447	14132
Ireland	68	183	127	868	515
UK (England)	10085	12249	13010	12072	12313
UK (Scotland)	41844	46931	58557	49012	64424
UK (N. Ireland)	6021	4878	-	3469	5582
Unallocated landings **	3292	1939	0	0	0
Total Landings	315255	282539	330313	311926	374491
Discards/BMS	31	-	100	-	-
Total catch	315286	282539	330413	311926	374491

* Including any by-catches in the industrial fishery.
** May include misreported catch from 6.aN and discards. Negative unallocated catches due to misreporting into other areas.

Table 2.1.3: Herring caught in the North Sea. Catch in tonnes in Division 4.a (East). These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2014	2015	2016	2017	2018
Denmark *	-	16739	16305	3928	751
Faroe Islands	-	-	-	-	-
France	30	-	-	-	-
Germany	-	-	-	-	-
Netherlands	-	-	-	-	-
Norway	44060	67254	78125	74216	73452
UK (Scotland)	124	1369	-	-	-
Sweden	940	570	3985	705	377
Unallocated landings	0	-423	0	0	0
Total landings	45154	85509	98415	78849	74580
Discards/BMS	-	-	-	-	-
Total catch	45154	85509	98415	78849	74580
Norw. Spring Spawners ***	2307	2191	216	85	310

* Including any bycatches in the industrial fishery.
** Negative unallocated catches due to misreporting into other areas.
*** These catches (including some fjord-type spring spawners) are taken by Norway under a separate quota south of $62^{\circ} \mathrm{N}$ and are not included in the Norwegian North Sea catch figure for this area.

Table 2.1.4: Herring caught in the North Sea. Catch in tonnes in Division 4.b. These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2014	2015	2016	2017	2018
Denmark*	49118	28551	36149	30045	4067
Faroe Islands	-	-	22	37	1
France	7839	6342	6225	7423	6090
Germany	4424	107	3419	2048	4964
Lithuania	1701	-	-	-	-
Netherlands	22628	10606	17233	15739	34491
UK (N. Ireland)	591	1070	-	-	1334
Norway	7968	20077	15002	2172	10495
Sweden	6883	2226	2705	5366	4899
UK (England)	4498	3484	3820	2435	3262
UK (Scotland)	3151	32	683	502	1581
Unallocated landings**	0	0	0	0	0
Total landings	108801	72495	85258	65767	107794
Discards	-	-	-	-	1
Total catch	108801	72495	85258	65767	107795

[^5]Table 2.1.5: Herring caught in the North Sea. Catch in tonnes in Division 4.c and 7.d. These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2014	2015	2016	2017	2018
Belgium	27	18	26	13	32
Denmark*	586	174	428	68	40
France	9190	10526	13879	10314	10670
Germany	9098	12017	12886	8923	10788
Netherlands	14639	15161	14886	13343	19821
Norway	-	8	-	-	-
Sweden	-	-	2	-	-
UK (England)	4704	3164	3655	2490	4016
UK (Scotland)	-	-	-	-	-
Unallocated landings***	0	0	8	0	0
Total landings	38244	41068	45770	35151	45367
Discards/BMS	-	-	70	-	95
Total catch	38244	41068	45840	35151	45462
Coastal spring spawners included above**	10	10	1	-	10

* Including any bycatches in the industrial fishery
** Landings from the Thames estuary area are included in the North Sea catch figure for UK (England).
*** Negative unallocated catches due to misreporting into other areas.

Table 2.1.6 ("The Wonderful Table"): Herring caught in the North Sea. Catch in thousand tonnes in Subarea 4, Division 7.d and Division 3.a.

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Sub-Area 4 and Division 7.d: TAC (4 and 7.d)														
Agreed Divisions 4.a,b	404.7	303.5	174.6	147.4	149.0	173.5	360.4	427.7	418.3	396.3	461.2	428.7	534.5	342.7
Agreed Div. 4.c, 7.d	50.0	37.5	26.7	23.6	15.3	26.5	44.6	50.3	51.7	49.0	57.0	53.0	66.0	42.4
Bycatch ceiling in the small mesh fishery *	42.5	31.9	18.8	16.0	13.6	16.5	17.9	14.4	13.1	15.7	13.4	11.4	9.7	13.2
CATCH (4 and 7.d)														
National catch Divisions 4.a,b **	439.2	326.8	201.2	145.0	148.1	191.7	387.2	453.8	465.9	439	514.0	456.5	556.9	
Unallocated catch Divisions 4.a,b	13.3	21.9	14.0	-1.1	0.0	0.0	-3.0	0.0	3.3	1.5	0.0	0.0	0.0	
Discard/slipping Divisions 4.a, ${ }^{* * *}$	1.5	0.1	0.2	0.1	0.0	-	-	-	0.0	-	0.1	-	0.0	
Total catch Divisions 4.a,b \#	454.0	348.8	215.4	143.9	148.1	191.7	384.2	453.9	469.2	440.5	514.1	456.5	556.9	
National catch Divisions 4.c, 7.d **	51.2	34.3	26.5	21.5	26.5	26.7	37.1	44.7	38.2	41.1	45.8	35.2	45.4	
Unallocated catch Divisions 4.c,7.d	5.4	4.7	3.1	0.4	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	
Discard/slipping Divisions 4.c, 7.d ***	-	-	-	-	-	-	-	-	-	-	0.1	-	0.1	
Total catch Divisions 4.c, 7.d	56.6	39.0	29.6	21.9	26.5	26.7	40.4	44.7	38.2	41.1	45.8	35.2	45.5	
Total catch 4 and 7.d as used by ICES \#	510.6	387.8	245.0	165.8	174.6	218.4	424.6	498.5	507.5	481.6	559.9	491.7	602.3	
CATCH BY FLEET/STOCK (4 and 7.d) \#\#														
North Sea autumn spawners directed fisheries (Fleet A)	487.1	379.6	236.3	152.1	164.8	209.2	411.8	489.9	490.5	471.5	543.6	484.1	591.7	
North Sea autumn spawners industrial (Fleet B)	11.9	7.1	8.6	9.8	9.1	8.9	10.6	8.1	14.0	7.9	14.5	7.0	8.5	

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
North Sea autumn spawners in 4 and 7.d total	499.0	386.7	244.9	161.9	173.9	218.1	422.5	498.1	504.5	479.4	558.1	491.1	600.2	
Baltic-3.a-type spring spawners in 4	11.0	1.1	0.1	3.9	0.8	0.3	2.1	0.5	3.0	2.2	1.8	0.6	2.2	
Coastal-type spring spawners	0.1	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
Norw. Spring Spawners caught under a separate quota in 4 \#\#\#	0.6	0.7	2.7	44.6	56.9	12.2	9.6	3.2	2.3	2.2	0.2	0.1	0.3	
Division 3.a: TAC (3.a)														
Agreed herring TAC	81.6	69.4	51.7	37.7	33.9	30.0	45.0	55.0	46.8	43.6	51.1	50.7	48.4	29.3
Bycatch ceiling in the small mesh fishery	20.5	15.4	11.5	8.4	7.5	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7
CATCH (3.a)														
National catch	88.9	47.3	38.2	38.8	37.3	20.0	27.7	31.2	28.9	27.8	29.9	26.8	23.3	
Catch as used by ICES	51.2	47.4	38.2	38.8	37.3	20.0	27.7	31.2	28.9	27.8	29.9	26.8	23.3	
CATCH BY FLEET/STOCK (3.a) \#\#														
Autumn spawners human consumption (Fleet C)	11.6	16.4	9.2	5.1	12.0	6.6	7.8	11.8	9.5	10.2	4.1	7.4	3.2	
Autumn spawners mixed clupeoid (Fleet D)	3.4	3.4	3.7	1.5	1.8	1.8	4.4	1.6	3.3	4.4	1.4	0.2	0.2	
Autumn spawners in 3.a total	15.0	19.8	12.9	6.5	13.8	8.4	12.2	13.4	12.8	14.7	5.5	7.6	3.4	
Spring spawners human consumption (Fleet C)	30.2	25.3	23.0	29.4	23.0	10.8	14.5	16.6	15.4	11.3	23.3	19.0	19.7	
Spring spawners mixed clupeoid (Fleet D)	5.9	2.3	2.2	2.9	0.5	0.8	1.0	1.3	0.6	1.8	1.1	0.2	0.2	
Spring spawners in 3.a total	36.1	27.6	25.2	32.3	23.5	11.6	15.5	17.9	16.1	13.1	24.4	19.2	19.9	
North Sea autumn spawners Total as used by ICES	514.6	406.5	257.9	168.4	187.6	226.5	434.6	511.4	517.3	494.1	563.6	498.7	603.5	

Table 2.2.1: North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea and Division 3.a in 2018. Catch in numbers (millions) at age (CANUM), by quarter and division.

WR	$\begin{array}{r} 3 . a \\ \text { NSAS } \end{array}$	$\begin{array}{r} \hline \text { 4.aE } \\ \text { all } \end{array}$	$\begin{array}{r} 4 . a E \\ \text { WBBS } \end{array}$	4.aE NSAS only	4.aW	4.b	$4 . c$	7.d	$\begin{array}{r} \text { 4.a \& } \\ \text { 4.b } \\ \text { NSAS } \\ \hline \end{array}$	$\begin{array}{r} \hline 4 . c \& \\ 7 . d \end{array}$	Total NSAS	Herring caught in the North Sea
Quarters: 1-4												
0	14.5	0.0	0.0	0.0	54.1	1266.6	2.2	0.0	1320.7	2.2	1337.4	1322.9
1	19.2	1.4	0.0	1.4	11.0	40.5	1.2	0.0	52.9	1.2	73.3	54.1
2	28.5	35.5	0.3	35.2	94.5	25.8	0.3	22.0	155.4	22.3	206.2	178.1
3	1.1	23.3	0.9	22.4	111.7	26.8	4.0	34.4	161.0	38.4	200.5	200.3
4	1.8	110.1	2.3	107.8	798.9	179.5	7.5	83.1	1086.3	90.6	1178.6	1179.1
5	1.0	136.7	4.3	132.5	476.6	154.4	4.6	79.9	763.5	84.4	849.0	852.2
6	0.2	40.1	1.7	38.4	128.8	37.5	0.3	18.4	204.7	18.8	223.6	225.2
7	0.1	19.8	0.9	18.9	91.9	23.4	0.5	10.1	134.2	10.6	145.0	145.7
8	0.1	18.4	0.3	18.2	95.8	19.8	0.4	10.0	133.8	10.3	144.2	144.4
9+	0.0	24.3	0.4	24.0	115.1	26.9	0.0	22.3	166.0	22.3	188.3	188.7
Sum	66.5	409.8	11.0	398.7	1978.5	1801.2	21.0	280.3	4178.4	301.2	4546.1	4490.6

Quarter: 1

0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	5.2	0.0	0.0	0.0	1.3	11.1	1.0	0.0	12.4	1.0	18.6	13.4
2	23.6	0.2	0.0	0.2	6.4	1.6	0.3	0.9	8.2	1.2	33.1	9.5
3	0.5	0.1	0.0	0.1	5.4	0.0	2.3	4.4	5.6	6.6	12.7	12.2
4	0.1	0.5	0.0	0.5	25.4	0.3	6.1	11.9	26.1	18.0	44.3	44.1
5	0.0	0.6	0.0	0.6	16.6	0.2	3.6	10.7	17.4	14.3	31.8	31.7
6	0.0	0.2	0.0	0.2	3.7	0.0	0.2	1.2	3.9	1.4	5.3	5.3
7	0.0	0.1	0.0	0.1	1.7	0.0	0.3	3.5	1.8	3.8	5.5	5.5
8	0.0	0.1	0.0	0.1	0.2	0.0	0.2	2.7	0.3	2.9	3.2	3.2
9+	0.0	0.1	0.0	0.1	2.1	0.0	0.0	6.1	2.2	6.1	8.4	8.4
Sum	29.5	1.7	0.0	1.7	62.9	13.3	14.0	41.4	77.9	55.4	162.8	133.3

Quarter: 2

0	0.0	0.0	0.0	0.0	0.0	232.5	0.0	0.0	232.5	0.0	232.5	232.5
1	0.5	1.1	0.0	1.1	1.9	5.1	0.0	0.0	8.1	0.0	8.6	8.1
2	0.6	31.1	0.2	30.9	36.2	0.1	0.0	0.0	67.2	0.0	67.8	67.4
3	0.0	18.4	0.1	18.2	20.3	0.0	0.0	0.0	38.6	0.1	38.7	38.8
4	0.0	84.9	0.4	84.5	117.6	0.7	0.1	0.1	202.9	0.2	203.1	203.5
5	0.0	111.4	0.8	110.5	80.2	0.5	0.1	0.1	191.2	0.2	191.4	192.2
6	0.0	31.1	0.0	31.1	11.8	0.2	0.0	0.0	43.0	0.0	43.1	43.1
7	0.0	15.3	0.0	15.3	6.4	0.1	0.0	0.0	21.7	0.0	21.8	21.8
8	0.0	15.0	0.0	15.0	8.7	0.1	0.0	0.0	23.7	0.0	23.7	23.7
9+	0.0	19.3	0.0	19.3	8.7	0.1	0.0	0.1	28.1	0.1	28.1	28.1
Sum	1.2	327.5	1.6	325.9	291.7	239.4	0.2	0.4	857.0	0.6	858.8	859.2

Quarter: 3

0	4.0	0.0	0.0	0.0	1.9	899.9	0.0	0.0	901.8	0.0	$\mathbf{9 0 5 . 9}$	$\mathbf{9 0 1 . 8}$
1	4.8	0.2	0.0	0.2	2.1	15.1	0.0	0.0	17.3	0.0	$\mathbf{2 2 . 1}$	$\mathbf{1 7 . 4}$
2	3.7	3.6	0.1	3.5	35.8	10.0	0.0	0.0	49.4	0.0	$\mathbf{5 3 . 1}$	$\mathbf{4 9 . 5}$
3	0.5	4.2	0.8	0.0	74.7	14.6	0.1	0.0	89.3	0.1	$\mathbf{8 9 . 9}$	$\mathbf{9 3 . 6}$
4	1.6	21.5	1.8	0.0	533.8	127.3	0.1	0.0	661.0	0.1	$\mathbf{6 6 2 . 7}$	$\mathbf{6 8 2 . 6}$
5	1.0	21.5	3.5	0.0	283.5	98.1	0.1	0.0	381.6	0.1	$\mathbf{3 8 2 . 6}$	$\mathbf{4 0 3 . 2}$
6	0.2	7.7	1.7	0.0	93.9	26.3	0.0	0.0	120.2	0.0	$\mathbf{1 2 0 . 3}$	$\mathbf{1 2 7 . 9}$
7	0.1	3.9	0.8	0.0	68.1	15.9	0.0	0.0	84.0	0.0	$\mathbf{8 4 . 1}$	$\mathbf{8 7 . 8}$
8	0.1	3.0	0.2	0.0	71.8	11.3	0.0	0.0	83.0	0.0	$\mathbf{8 3 . 1}$	$\mathbf{8 6 . 1}$
$9+$	0.0	4.3	0.3	0.0	83.7	11.4	0.0	0.0	95.2	0.0	$\mathbf{9 5 . 2}$	$\mathbf{9 9 . 5}$
Sum	$\mathbf{1 5 . 9}$	$\mathbf{7 0 . 0}$	$\mathbf{9 . 2}$	$\mathbf{3 . 8}$	$\mathbf{1 2 4 9 . 3}$	$\mathbf{1 2 2 9 . 7}$	$\mathbf{0 . 4}$	$\mathbf{0 . 0}$	$\mathbf{2 4 8 2 . 8}$	$\mathbf{0 . 4}$	$\mathbf{2 4 9 9 . 0}$	$\mathbf{2 5 4 9 . 3}$

Table 2.2.2: North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea and Division 3.a in 2018. Mean weight-at-age (kg) in the catch (WECA), by quarter and division.

| Quarters: 1-4 | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0.010 | 0.000 | 0.000 | 0.010 | 0.005 | 0.010 | 0.000 | 0.005 | 0.010 | 0.005 | 0.005 |
| 1 | 0.049 | 0.091 | 0.096 | 0.065 | 0.027 | 0.011 | 0.000 | 0.037 | 0.011 | 0.039 | 0.036 |
| 2 | 0.058 | 0.125 | 0.127 | 0.114 | 0.117 | 0.061 | 0.114 | 0.117 | 0.113 | 0.109 | 0.117 |
| 3 | 0.103 | 0.152 | 0.163 | 0.156 | 0.138 | 0.104 | 0.118 | 0.152 | 0.116 | 0.145 | 0.145 |
| 4 | 0.156 | 0.173 | 0.183 | 0.188 | 0.192 | 0.121 | 0.146 | 0.187 | 0.144 | 0.184 | 0.184 |
| 5 | 0.179 | 0.188 | 0.197 | 0.193 | 0.211 | 0.132 | 0.157 | 0.195 | 0.156 | 0.191 | 0.192 |
| 6 | 0.190 | 0.201 | 0.213 | 0.220 | 0.237 | 0.170 | 0.164 | 0.220 | 0.164 | 0.215 | 0.215 |
| 7 | 0.187 | 0.212 | 0.224 | 0.241 | 0.248 | 0.164 | 0.190 | 0.238 | 0.189 | 0.234 | 0.234 |
| 8 | 0.203 | 0.219 | 0.232 | 0.250 | 0.246 | 0.218 | 0.195 | 0.245 | 0.196 | 0.242 | 0.242 |
| $9+$ | 0.000 | 0.230 | 0.243 | 0.258 | 0.258 | 0.259 | 0.209 | 0.254 | 0.209 | 0.249 | 0.249 |

Quarter: 1

0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$
1	0.029	0.088	0.088	0.015	0.013	0.007	0.000	0.013	0.007	$\mathbf{0 . 0 1 7}$	$\mathbf{0 . 0 1 3}$
2	0.050	0.110	0.110	0.085	0.028	0.055	0.075	0.074	0.000	$\mathbf{0 . 0 5 7}$	$\mathbf{0 . 0 7 4}$
3	0.074	0.125	0.125	0.102	0.085	0.084	0.092	0.102	0.000	$\mathbf{0 . 0 9 4}$	$\mathbf{0 . 0 9 5}$
4	0.096	0.154	0.154	0.137	0.135	0.111	0.113	0.137	0.112	$\mathbf{0 . 1 2 7}$	$\mathbf{0 . 1 2 7}$
5	0.118	0.174	0.174	0.150	0.148	0.119	0.136	0.150	0.132	$\mathbf{0 . 1 4 2}$	$\mathbf{0 . 1 4 2}$
6	0.143	0.190	0.190	0.170	0.170	0.113	0.149	0.171	0.145	$\mathbf{0 . 1 6 4}$	$\mathbf{0 . 1 6 4}$
7	0.175	0.200	0.200	0.177	0.176	0.135	0.153	0.178	0.000	$\mathbf{0 . 1 6 0}$	$\mathbf{0 . 1 6 0}$
8	0.000	0.216	0.216	0.196	0.000	0.193	0.175	0.200	0.176	$\mathbf{0 . 1 7 8}$	$\mathbf{0 . 1 7 8}$
$9+$	0.000	0.224	0.224	0.214	0.215	0.000	0.187	0.214	0.187	$\mathbf{0 . 1 9 4}$	$\mathbf{0 . 1 9 4}$

Quarter: 2

Quarter:							$\mathbf{0 . 0 0 3}$				
0	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	$\mathbf{0 . 0 0 3}$	$\mathbf{0 . 0 3 7}$
1	0.023	0.088	0.088	0.078	0.010	0.000	0.000	0.037	0.000	$\mathbf{0 . 0 3 6}$	$\mathbf{0 . 1 1 3}$
2	0.048	0.123	0.123	0.104	0.136	0.071	0.075	0.113	0.000	$\mathbf{0 . 1 1 2}$	$\mathbf{0 . 1 3 8}$
3	0.063	0.149	0.149	0.128	0.142	0.084	0.092	0.138	0.088	$\mathbf{0 . 1 3 8}$	$\mathbf{0 . 1 5 7}$
4	0.091	0.169	0.169	0.149	0.201	0.111	0.113	0.157	0.112	$\mathbf{0 . 1 5 7}$	$\mathbf{0 . 1 7 6}$
5	0.119	0.185	0.185	0.163	0.215	0.119	0.136	0.176	0.130	$\mathbf{0 . 1 7 6}$	$\mathbf{0 . 1 9 3}$
6	0.000	0.198	0.198	0.180	0.229	0.113	0.149	0.193	0.143	$\mathbf{0 . 1 9 3}$	$\mathbf{0 . 2 0 3}$
7	0.000	0.208	0.208	0.190	0.246	0.135	0.153	0.203	0.000	$\mathbf{0 . 2 1 2}$	
8	0.000	0.216	0.216	0.204	0.259	0.193	0.175	0.212	0.177	$\mathbf{0 . 2 1 2}$	$\mathbf{0 . 2 2 5}$
$9+$	0.000	0.227	0.227	0.220	0.270	0.000	0.187	0.225	0.187	$\mathbf{0 . 2 2 5}$	

Quarter: 3

0	0.008	0.000	0.000	0.005	0.005	0.000	0.000	0.005	0.000	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 0 5}$
1	0.059	0.104	0.104	0.094	0.033	0.000	0.000	0.041	0.000	$\mathbf{0 . 0 4 5}$	$\mathbf{0 . 0 4 1}$
2	0.106	0.138	0.138	0.127	0.127	0.000	0.000	0.128	0.000	$\mathbf{0 . 1 2 6}$	$\mathbf{0 . 1 2 8}$
3	0.133	0.164	0.164	0.168	0.137	0.131	0.000	0.163	0.131	$\mathbf{0 . 1 6 3}$	$\mathbf{0 . 1 6 3}$
4	0.161	0.186	0.186	0.203	0.199	0.170	0.000	0.202	0.170	$\mathbf{0 . 2 0 2}$	$\mathbf{0 . 2 0 2}$
5	0.181	0.200	0.200	0.207	0.223	0.184	0.000	0.211	0.184	$\mathbf{0 . 2 1 1}$	$\mathbf{0 . 2 1 1}$
6	0.192	0.213	0.213	0.233	0.246	0.225	0.000	0.235	0.225	$\mathbf{0 . 2 3 5}$	$\mathbf{0 . 2 3 5}$
7	0.187	0.224	0.224	0.254	0.261	0.212	0.000	0.254	0.212	$\mathbf{0 . 2 5 4}$	$\mathbf{0 . 2 5 4}$
8	0.202	0.232	0.232	0.262	0.267	0.245	0.000	0.262	0.245	$\mathbf{0 . 2 6 2}$	$\mathbf{0 . 2 6 2}$
$9+$	0.000	0.244	0.244	0.270	0.284	0.000	0.000	0.270	0.000	$\mathbf{0 . 2 7 1}$	$\mathbf{0 . 2 7 1}$

Quarter: \mathbf{Q}											
0	0.011	0.000	0.000	0.010	0.010	0.010	0.000	0.010	0.010	$\mathbf{0 . 0 1 0}$	$\mathbf{0 . 0 1 0}$
1	0.056	0.104	0.104	0.061	0.045	0.041	0.000	0.051	0.041	$\mathbf{0 . 0 5 3}$	$\mathbf{0 . 0 5 1}$
2	0.082	0.138	0.138	0.122	0.121	0.127	0.116	0.122	0.116	$\mathbf{0 . 1 1 9}$	$\mathbf{0 . 1 2 0}$
3	0.119	0.164	0.164	0.152	0.139	0.131	0.122	0.146	0.122	$\mathbf{0 . 1 3 2}$	$\mathbf{0 . 1 3 2}$
4	0.148	0.184	0.184	0.173	0.174	0.169	0.152	0.173	0.152	$\mathbf{0 . 1 6 7}$	$\mathbf{0 . 1 6 7}$
5	0.178	0.200	0.200	0.182	0.189	0.184	0.161	0.185	0.161	$\mathbf{0 . 1 7 7}$	$\mathbf{0 . 1 7 7}$
6	0.181	0.213	0.213	0.192	0.216	0.224	0.165	0.201	0.165	$\mathbf{0 . 1 8 8}$	$\mathbf{0 . 1 8 8}$
7	0.196	0.223	0.223	0.211	0.220	0.212	0.210	0.214	0.210	$\mathbf{0 . 2 1 3}$	$\mathbf{0 . 2 1 3}$
8	0.226	0.231	0.231	0.219	0.217	0.244	0.203	0.219	0.204	$\mathbf{0 . 2 1 5}$	$\mathbf{0 . 2 1 5}$
$9+$	0.000	0.242	0.242	0.231	0.238	0.259	0.218	0.234	0.218	$\mathbf{0 . 2 2 9}$	$\mathbf{0 . 2 2 9}$

Table 2.2.3: North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea in 2018. Mean length-at-age (cm) in the catch, by quarter and division.

WR	$\begin{array}{r} \text { 3.a } \\ \text { NSAS } \end{array}$	$\begin{gathered} \text { 4.aE } \\ \text { all } \end{gathered}$	$\begin{array}{r} \text { 4.aW } \\ \text { WBSS } \end{array}$	4.aW	4.b	4.6	7.d	$\begin{array}{r} \hline \text { 4.a \& } \\ \text { 4.b } \\ \text { all } \end{array}$	$\begin{array}{r} \hline \text { 4.c \& } \\ \text { 7.d } \end{array}$	Herring caught in the North Sea

Quarters: 1-4

0	n.d.	0.0	n.d.	11.0	8.8	11.1	0.0	8.9	11.1	8.9
1	n.d.	20.6	n.d.	19.0	14.7	11.5	0.0	15.8	11.5	15.7
2	n.d.	23.1	n.d.	23.2	23.3	20.1	23.9	23.2	23.8	23.3
3	n.d.	24.8	n.d.	25.7	24.7	23.7	24.2	25.4	24.2	25.2
4	n.d.	26.0	n.d.	27.1	27.1	24.9	25.9	27.0	25.8	26.9
5	n.d.	26.9	n.d.	27.5	28.0	25.9	26.5	27.5	26.5	27.4
6	n.d.	27.6	n.d.	28.6	29.0	27.4	26.9	28.5	26.9	28.4
7	n.d.	28.1	n.d.	29.5	29.5	27.4	28.6	29.3	28.5	29.2
8	n.d.	28.5	n.d.	29.7	29.6	30.3	28.7	29.6	28.7	29.5
9+	n.d.	29.0	n.d.	29.9	30.1	30.5	29.3	29.8	29.3	29.8

Quarter: 1

0	n.d.	0.0	n.d.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	n.d.	20.4	n.d.	12.3	12.1	10.6	0.0	12.1	10.6	12.0
2	n.d.	22.6	n.d.	21.9	16.2	19.6	21.7	20.8	0.0	20.8
3	n.d.	23.9	n.d.	23.3	22.6	23.0	23.3	23.3	0.0	23.2
4	n.d.	26.0	n.d.	25.8	26.1	24.6	24.5	25.9	24.5	25.3
5	n.d.	26.8	n.d.	26.7	26.9	25.6	26.1	26.7	26.0	26.4
6	n.d.	27.6	n.d.	27.6	27.7	25.8	27.6	27.6	27.4	27.6
7	n.d.	28.0	n.d.	28.0	28.1	27.0	27.9	28.0	0.0	27.9
8	n.d.	28.4	n.d.	28.2	0.0	29.8	28.7	28.2	28.8	28.7
$9+$	n.d.	29.0	n.d.	29.3	29.4	0.0	29.6	29.3	29.6	29.5

Quarter: 2

0	n.d.	0.0	n.d.	0.0	7.6	0.0	0.0	0.0	0.0	7.6
1	n.d.	20.4	n.d.	19.8	11.0	0.0	0.0	14.4	0.0	14.4
2	n.d.	23.0	n.d.	22.3	24.2	20.8	21.7	22.6	0.0	22.6
3	n.d.	24.7	n.d.	23.9	24.6	23.0	23.3	24.3	23.2	24.3
4	n.d.	25.9	n.d.	25.1	27.4	24.6	24.5	25.5	24.5	25.5
5	n.d.	26.8	n.d.	26.0	28.0	25.6	26.1	26.5	25.9	26.5
6	n.d.	27.5	n.d.	26.8	28.7	25.8	27.6	27.3	27.3	27.3
7	n.d.	28.0	n.d.	27.4	29.5	27.0	27.9	27.8	0.0	27.8
8	n.d.	28.4	n.d.	28.0	30.1	29.8	28.7	28.3	28.8	28.3
$9+$	n.d.	28.9	n.d.	28.6	30.6	0.0	29.6	28.8	29.6	28.8

Quarter: 3

0	n.d.	0.0	n.d.	8.8	8.8	0.0	0.0	8.8	0.0	8.8
1	n.d.	21.4	n.d.	21.2	15.9	0.0	0.0	16.6	0.0	16.6
2	n.d.	23.8	n.d.	24.0	24.0	0.0	0.0	24.0	0.0	24.0
3	n.d.	25.3	n.d.	26.3	24.7	24.6	0.0	26.0	24.6	26.0
4	n.d.	26.6	n.d.	27.6	27.4	26.4	0.0	27.6	26.4	27.6
5	n.d.	27.3	n.d.	27.8	28.4	27.2	0.0	27.9	27.2	27.9
6	n.d.	27.9	n.d.	28.9	29.2	28.8	0.0	28.9	28.8	28.9
7	n.d.	28.4	n.d.	29.7	29.9	27.8	0.0	29.7	27.8	29.7
8	n.d.	28.8	n.d.	30.0	30.5	30.8	0.0	30.0	30.8	30.0
9+	n.d.	29.3	n.d.	30.1	31.0	0.0	0.0	30.2	0.0	30.2

Quarter: 4

Quar.										
0	n.d.	0.0	n.d.	11.1	11.1	11.1	0.0	11.1	11.1	$\mathbf{1 1 . 1}$
1	n.d.	21.4	n.d.	19.4	18.1	17.8	0.0	18.6	17.8	$\mathbf{1 8 . 6}$
2	n.d.	23.8	n.d.	24.2	23.5	25.0	24.0	23.9	24.0	$\mathbf{2 3 . 9}$
3	n.d.	25.3	n.d.	26.0	24.8	24.6	24.4	25.4	24.4	$\mathbf{2 4 . 8}$
4	n.d.	26.5	n.d.	27.2	26.4	26.4	26.1	27.0	26.1	$\mathbf{2 6 . 7}$
5	n.d.	27.3	n.d.	27.9	27.2	27.2	26.6	27.6	26.6	$\mathbf{2 7 . 3}$
6	n.d.	27.9	n.d.	28.4	28.4	28.8	26.9	28.4	26.9	$\mathbf{2 7 . 8}$
7	n.d.	28.4	n.d.	29.4	28.6	28.0	28.9	29.1	28.9	$\mathbf{2 9 . 1}$
8	n.d.	28.8	n.d.	29.5	28.5	30.8	28.7	29.2	28.7	$\mathbf{2 9 . 1}$
$9+$	n.d.	29.3	n.d.	29.9	29.4	30.5	29.2	29.7	29.2	$\mathbf{2 9 . 5}$

Table 2.2.4: North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea and Division 3.a in 2018. Catches (tonnes) at-age (SOP figures), by quarter and division.

Quarters: 1-4

0	0.1	0.0	0.0	0.0	0.5	6.6	0.0	0.0	7.1	0.0	7.3	7.1
1	0.9	0.1	0.0	0.1	0.7	1.1	0.0	0.0	1.9	0.0	2.9	2.0
2	1.6	4.4	0.0	4.4	10.8	3.0	0.0	2.5	18.2	2.5	22.4	20.8
3	0.1	3.5	0.1	3.4	17.4	3.7	0.4	4.1	24.5	4.5	29.1	29.1
4	0.3	19.0	0.4	18.6	150.4	34.4	0.9	12.1	203.3	13.0	216.7	216.8
5	0.2	25.7	0.8	24.8	91.8	32.5	0.6	12.6	149.2	13.2	162.5	163.2
6	0.0	8.1	0.4	7.7	28.4	8.9	0.1	3.0	45.0	3.1	48.1	48.4
7	0.0	4.2	0.2	4.0	22.1	5.8	0.1	1.9	31.9	2.0	34.0	34.1
8	0.0	4.0	0.1	4.0	23.9	4.9	0.1	2.0	32.8	2.0	34.8	34.9
$9+$	0.0	5.6	0.1	5.5	29.7	6.9	0.0	4.7	42.2	4.7	46.8	46.9
Sum	3.4	74.7	2.2	72.5	375.8	107.8	2.2	42.8	556.1	45.0	604.5	603.3

Quarter: 1

0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$
1	0.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2	0.0	$\mathbf{0 . 3}$	$\mathbf{0 . 2}$
2	1.2	0.0	0.0	0.0	0.5	0.0	0.0	0.1	0.6	0.1	$\mathbf{1 . 9}$	$\mathbf{0 . 7}$
3	0.0	0.0	0.0	0.0	0.6	0.0	0.2	0.4	0.6	0.6	$\mathbf{1 . 2}$	
4	0.0	0.1	0.0	0.1	3.5	0.0	0.7	1.3	3.6	2.0	$\mathbf{5 . 6}$	$\mathbf{5 . 6}$
5	0.0	0.1	0.0	0.1	2.5	0.0	0.4	1.5	2.6	1.9	$\mathbf{4 . 5}$	$\mathbf{4 . 5}$
6	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.2	0.7	0.2	$\mathbf{0 . 9}$	$\mathbf{0 . 9}$
7	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.5	0.3	0.6	$\mathbf{0 . 9}$	$\mathbf{0 . 9}$
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.1	0.5	$\mathbf{0 . 6}$	$\mathbf{0 . 6}$
$9+$	0.0	0.0	0.0	0.0	0.5	0.0	0.0	1.1	0.5	1.1	$\mathbf{1 . 6}$	$\mathbf{1 . 6}$
Sum	$\mathbf{1 . 4}$	$\mathbf{0 . 3}$	$\mathbf{0 . 0}$	$\mathbf{0 . 3}$	$\mathbf{8 . 5}$	$\mathbf{0 . 3}$	$\mathbf{1 . 4}$	$\mathbf{5 . 6}$	$\mathbf{9 . 1}$	$\mathbf{7 . 0}$	$\mathbf{1 7 . 5}$	$\mathbf{1 6 . 1}$

Quarter: 2

0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.7	0.0	$\mathbf{0 . 7}$	$\mathbf{0 . 7}$
1	0.0	0.1	0.0	0.1	0.2	0.1	0.0	0.0	0.3	0.0	$\mathbf{0 . 7}$	
2	0.0	3.8	0.0	3.8	3.7	0.0	0.0	0.0	7.6	0.0	$\mathbf{0 . 3}$	$\mathbf{7 . 6}$
3	0.0	2.7	0.0	2.7	2.6	0.0	0.0	0.0	5.3	0.0	$\mathbf{5 . 3}$	$\mathbf{5 . 3}$
4	0.0	14.4	0.1	14.3	17.5	0.1	0.0	0.0	31.9	0.0	$\mathbf{3 1 . 9}$	$\mathbf{3 2 . 0}$
5	0.0	20.6	0.1	20.5	13.1	0.1	0.0	0.0	33.7	0.0	$\mathbf{3 3 . 7}$	$\mathbf{3 3 . 8}$
6	0.0	6.2	0.0	6.2	2.1	0.0	0.0	0.0	8.3	0.0	$\mathbf{8 . 3}$	$\mathbf{8 . 3}$
7	0.0	3.2	0.0	3.2	1.2	0.0	0.0	0.0	4.4	0.0	$\mathbf{4 . 4}$	$\mathbf{4 . 4}$
8	0.0	3.2	0.0	3.2	1.8	0.0	0.0	0.0	5.0	0.0	$\mathbf{5 . 0}$	$\mathbf{5 . 0}$
$9+$	0.0	4.4	0.0	4.4	1.9	0.0	0.0	0.0	6.3	0.0	$\mathbf{6 . 3}$	$\mathbf{6 . 3}$
Sum	$\mathbf{0 . 0}$	$\mathbf{5 8 . 6}$	$\mathbf{0 . 3}$	$\mathbf{5 8 . 3}$	$\mathbf{4 4 . 1}$	$\mathbf{1 . 1}$	$\mathbf{0 . 0}$	$\mathbf{0 . 1}$	$\mathbf{1 0 3 . 5}$	$\mathbf{0 . 1}$	$\mathbf{1 0 3 . 6}$	$\mathbf{1 0 3 . 9}$

Quarter: 3

0	0.0	0.0	0.0	0.0	0.0	4.5	0.0	0.0	4.5	0.0	$\mathbf{4 . 5}$	$\mathbf{4 . 5}$
1	0.3	0.0	0.0	0.0	0.2	0.5	0.0	0.0	0.7	0.0	$\mathbf{0 . 0}$	
2	0.4	0.5	0.0	0.5	4.5	1.3	0.0	0.0	6.3	0.0	$\mathbf{0 . 7}$	
3	0.1	0.7	0.1	0.6	12.6	2.0	0.0	0.0	15.1	0.0	$\mathbf{6 . 7}$	$\mathbf{6 . 3}$
4	0.3	4.0	0.3	0.0	108.3	25.3	0.0	0.0	133.6	0.0	$\mathbf{1 3 7 . 5}$	$\mathbf{1 5 . 3}$
5	0.2	4.3	0.7	3.6	58.7	21.8	0.0	0.0	84.2	0.0	$\mathbf{8 4 . 4}$	$\mathbf{8 4 . 9}$
6	0.0	1.6	0.4	0.0	21.9	6.5	0.0	0.0	28.4	0.0	$\mathbf{2 9 . 7}$	$\mathbf{3 0 . 0}$
7	0.0	0.9	0.2	0.7	17.3	4.1	0.0	0.0	22.1	0.0	$\mathbf{2 2 . 1}$	$\mathbf{2 2 . 3}$
8	0.0	0.7	0.1	0.6	18.8	3.0	0.0	0.0	22.5	0.0	$\mathbf{2 2 . 5}$	$\mathbf{2 2 . 5}$
$9+$	0.0	1.0	0.1	1.0	22.6	3.3	0.0	0.0	26.8	0.0	$\mathbf{2 6 . 8}$	$\mathbf{2 6 . 9}$
Sum	$\mathbf{1 . 3}$	$\mathbf{1 3 . 8}$	$\mathbf{1 . 8}$	$\mathbf{7 . 0}$	$\mathbf{2 6 4 . 9}$	$\mathbf{7 2 . 3}$	$\mathbf{0 . 1}$	$\mathbf{0 . 0}$	$\mathbf{3 4 4 4 . 2}$	$\mathbf{0 . 1}$	$\mathbf{3 5 0 . 5}$	$\mathbf{3 5 1 . 1}$

Quarter: 4

0	0.1	0.0	0.0	0.0	0.5	1.3	0.0	0.0	1.9	0.0	$\mathbf{2 . 0}$	$\mathbf{1 . 9}$
1	0.5	0.0	0.0	0.0	0.3	0.4	0.0	0.0	0.8	0.0	$\mathbf{0 . 9}$	
2	0.0	0.1	0.0	0.1	2.0	1.7	0.0	2.4	3.7	2.4	$\mathbf{6 . 2}$	$\mathbf{6 . 2}$
3	0.0	0.1	0.0	0.1	1.7	1.7	0.2	3.7	3.5	3.9	$\mathbf{7 . 4}$	$\mathbf{7 . 4}$
4	0.0	0.6	0.0	0.6	21.1	8.9	0.2	10.8	30.6	11.0	$\mathbf{4 1 . 6}$	$\mathbf{4 1 . 5}$
5	0.0	0.7	0.0	0.7	17.5	10.5	0.1	11.1	28.7	11.2	$\mathbf{3 9 . 9}$	$\mathbf{9 . 9}$
6	0.0	0.2	0.0	0.2	3.7	2.4	0.0	2.8	6.4	2.9	$\mathbf{9 . 2}$	$\mathbf{6 . 2}$
7	0.0	0.1	0.0	0.1	3.3	1.6	0.0	1.4	5.1	1.4	$\mathbf{6 . 5}$	$\mathbf{6 . 5}$
8	0.0	0.1	0.0	0.1	3.3	1.8	0.0	1.5	5.2	1.5	$\mathbf{6 . 7}$	$\mathbf{6 . 8}$
$9+$	0.0	0.2	0.0	0.1	4.7	3.7	0.0	3.5	8.5	3.5	$\mathbf{1 2 . 1}$	$\mathbf{1 2 . 1}$
Sum	$\mathbf{0 . 7}$	$\mathbf{2 . 1}$	$\mathbf{0 . 0}$	$\mathbf{2 . 0}$	$\mathbf{5 8 . 2}$	$\mathbf{3 4 . 1}$	$\mathbf{0 . 7}$	$\mathbf{3 7 . 2}$	$\mathbf{9 4 . 3}$	$\mathbf{3 7 . 9}$	$\mathbf{1 3 2 . 9}$	$\mathbf{1 3 2 . 2}$

Table 2.2.5: North Sea autumn spawning herring (NSAS), and western Baltic spring spawners (WBSS) caught in the North Sea in 2018. Percentage age composition (based on numbers, 3+ group summarised), by quarter and division.

WR	$\begin{array}{r} \text { 3.a } \\ \text { NSAS } \end{array}$	$\begin{gathered} \text { 4.aE } \\ \text { all } \end{gathered}$	$\begin{array}{r} \text { 4.aE } \\ \text { WBSS } \end{array}$	4.aE NSAS only	4.aW	4.b	4.6	7.d	$\begin{array}{r} \text { 4.a \& } \\ \text { 4.b } \\ \text { NSAS } \end{array}$	$\begin{array}{r} \text { 4.c \& } \\ \text { 7.d } \end{array}$	Total NSAS	Herring caught in the North Sea

Quarters: 1-4

Quarters: 1-4									
0	21.8%	0.0%	0.0%	0.0%	2.7%	70.3%	10.6%	0.0%	31.6%

Quarter: 1

Qual	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Quarter: 2

0	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	97.1\%	0.0\%	0.0\%	27.1\%	0.0\%	27.1\%	27.1\%
1	41.6\%	0.3\%	0.8\%	0.3\%	0.7\%	2.1\%	0.0\%	0.0\%	0.9\%	0.0\%	1.0\%	0.9\%
2	55.4\%	9.5\%	14.3\%	9.5\%	12.4\%	0.0\%	1.4\%	2.3\%	7.8\%	2.0\%	7.9\%	7.8\%
3	2.3\%	5.6\%	6.4\%	5.6\%	7.0\%	0.0\%	17.8\%	10.5\%	4.5\%	13.0\%	4.5\%	4.5\%
4	0.5\%	25.9\%	26.9\%	25.9\%	40.3\%	0.3\%	47.6\%	28.7\%	23.7\%	35.1\%	23.6\%	23.7\%
5	0.1\%	34.0\%	50.2\%	33.9\%	27.5\%	0.2\%	28.2\%	25.9\%	22.3\%	26.7\%	22.3\%	22.4\%
6	0.0\%	9.5\%	0.0\%	9.5\%	4.0\%	0.1\%	1.2\%	3.0\%	5.0\%	2.4\%	5.0\%	5.0\%
7	0.0\%	4.7\%	1.3\%	4.7\%	2.2\%	0.1\%	2.4\%	8.3\%	2.5\%	6.3\%	2.5\%	2.5\%
8	0.0\%	4.6\%	0.0\%	4.6\%	3.0\%	0.0\%	1.4\%	6.6\%	2.8\%	4.8\%	2.8\%	2.8\%
9+	0.0\%	5.9\%	0.0\%	5.9\%	3.0\%	0.0\%	0.0\%	14.8\%	3.3\%	9.8\%	3.3\%	3.3\%
Sum 3+	2.9\%	90.2\%	84.8\%	90.2\%	86.9\%	0.7\%	98.6\%	97.7\%	64.1\%	98.0\%	64.0\%	64.2\%

Quarter: 3

0	25.3\%	0.0\%	0.0\%	0.0\%	0.2\%	73.2\%	0.0\%	0.0\%	36.3\%	0.0\%	36.2\%	35.4\%
1	29.9\%	0.4\%	0.2\%	6.2\%	0.2\%	1.2\%	0.0\%	0.0\%	0.7\%	0.0\%	0.9\%	0.7\%
2	23.2\%	5.2\%	1.1\%	93.8\%	2.9\%	0.8\%	0.0\%	0.0\%	2.0\%	0.0\%	2.1\%	1.9\%
3	3.3\%	6.0\%	8.6\%	0.0\%	6.0\%	1.2\%	40.0\%	0.0\%	3.6\%	40.0\%	3.6\%	3.7\%
4	9.9\%	30.7\%	19.5\%	0.0\%	42.7\%	10.4\%	28.0\%	0.0\%	26.6\%	28.0\%	26.5\%	26.8\%
5	6.1\%	30.8\%	37.5\%	0.0\%	22.7\%	8.0\%	20.0\%	0.0\%	15.4\%	20.0\%	15.3\%	15.8\%
6	1.0\%	11.0\%	18.2\%	0.0\%	7.5\%	2.1\%	4.0\%	0.0\%	4.8\%	4.0\%	4.8\%	5.0\%
7	0.7\%	5.5\%	9.1\%	0.0\%	5.5\%	1.3\%	4.0\%	0.0\%	3.4\%	4.0\%	3.4\%	3.4\%
8	0.5\%	4.3\%	2.4\%	0.0\%	5.7\%	0.9\%	4.0\%	0.0\%	3.3\%	4.0\%	3.3\%	3.4\%
9+	0.0\%	6.2\%	3.4\%	0.0\%	6.7\%	0.9\%	0.0\%	0.0\%	3.8\%	0.0\%	3.8\%	3.9\%
Sum 3+	21.5\%	94.4\%	98.7\%	0.0\%	96.8\%	24.8\%	100.0\%	0.0\%	61.0\%	100.0\%	60.7\%	62.0\%

Quarter: 4

0	52.5\%	0.0\%	0.0\%	0.0\%	13.9\%	42.1\%	35.0\%	0.0\%	26.5\%	0.9\%	20.6\%	19.9\%
1	43.7\%	0.4\%	0.0\%	0.4\%	1.5\%	2.9\%	2.3\%	0.0\%	2.1\%	0.1\%	2.5\%	1.6\%
2	2.8\%	5.4\%	0.0\%	5.5\%	4.3\%	4.4\%	0.4\%	8.8\%	4.4\%	8.6\%	5.4\%	5.5\%
3	0.3\%	6.1\%	0.0\%	6.3\%	3.0\%	3.8\%	23.8\%	12.6\%	3.4\%	12.9\%	5.8\%	5.9\%
4	0.4\%	30.1\%	21.0\%	30.2\%	32.6\%	16.1\%	18.2\%	29.8\%	25.1\%	29.5\%	25.7\%	26.2\%
5	0.3\%	31.1\%	0.0\%	31.8\%	25.7\%	17.4\%	12.7\%	29.0\%	22.1\%	28.5\%	23.2\%	23.7\%
6	0.1\%	11.1\%	32.9\%	10.7\%	5.2\%	3.4\%	2.4\%	7.2\%	4.5\%	7.1\%	5.1\%	5.2\%
7	0.0\%	5.5\%	0.0\%	5.6\%	4.2\%	2.3\%	2.7\%	2.8\%	3.4\%	2.8\%	3.2\%	3.2\%
8	0.0\%	4.2\%	18.8\%	3.9\%	4.0\%	2.6\%	2.5\%	3.0\%	3.4\%	3.0\%	3.2\%	3.3\%
9+	0.0\%	6.1\%	27.3\%	5.7\%	5.5\%	4.8\%	0.1\%	6.8\%	5.2\%	6.6\%	5.4\%	5.6\%
Sum 3+	1.0\%	94.2\%	100.0\%	94.1\%	80.3\%	50.6\%	62.4\%	91.2\%	67.0\%	90.4\%	71.6\%	73.1\%

Table 2.2.6: Total catch of herring caught in the North Sea and Division 3.a: North Sea autumn spawners (NSAS). Catch in numbers (millions) at mean weight-at-age ($\mathbf{k g}$) by fleet, and SOP catches (' 000 t). SOP catch might deviate from reported catch as used for the assessment.

2016	Fleet A		Fleet B	Fleet C			Fleet D	TOTAL		
Total		Mean Weight								
$\frac{\text { Winter rings }}{0}$	Numbers	Weight 0.007								
1	2.3	0.102	83.6	0.021	10.8	0.054	12.5	0.023	109.2	0.026
2	556.2	0.135	23.0	0.055	42.1	0.061	5.4	0.040	626.7	0.127
3	807.1	0.156	9.6	0.084	5.9	0.124	0.1	0.081	822.7	0.155
4	292.7	0.181	1.2	0.093	0.5	0.149	0.0	0.000	294.4	0.180
5	281.3	0.206	0.0	0.000	0.2	0.188	0.1	0.078	281.6	0.206
6	368.0	0.215	0.8	0.146	0.2	0.208	0.0	0.000	369.0	0.215
7	308.0	0.231	0.0	0.000	0.0	0.209	0.0	0.000	308.0	0.231
8	186.3	0.221	0.0	0.000	0.1	0.235	0.0	0.000	186.4	0.221
9+	173.9	0.239	0.0	0.000	0.0	0.000	0.0	0.000	173.9	0.239
TOTAL	2'975.7		1 '568.4		59.9		151.4		4'755.4	
SOP catch		545.5		14.4		4.1		1.4		565.4

Figures for A fleet include unsampled bycatch in the industrial fishery

2017	Fleet A		Fleet B		Fleet C		Fleet D		TOTAL	
Total		Mean								
Winter rings	Numbers	Weight								
0	0.0	0.000	462.0	0.009	0.1	0.034	0.0	0.000	462.1	0.009
1	11.4	0.083	121.9	0.026	75.6	0.052	0.4	0.016	209.4	0.039
2	74.3	0.114	0.0	0.000	26.7	0.080	7.7	0.025	108.7	0.099
3	1072.9	0.156	0.0	0.000	6.9	0.103	0.0	0.075	1'079.9	0.156
4	834.8	0.173	0.0	0.000	3.0	0.138	0.0	0.000	837.8	0.173
5	221.6	0.188	0.0	0.000	1.2	0.172	0.0	0.000	222.8	0.188
6	145.4	0.215	0.0	0.000	0.1	0.153	0.0	0.000	145.5	0.214
7	175.5	0.220	0.0	0.000	0.0	0.147	0.0	0.000	175.5	0.220
8	106.5	0.230	0.0	0.000	0.0	0.160	0.0	0.000	106.6	0.230
9+	114.7	0.231	0.0	0.000	0.0	0.000	0.0	0.000	114.7	0.231
TOTAL	2'757.2		583.9		113.8		8.0		$3 ' 463.0$	
SOP catch		484.2		7.3		7.4		0.2		499.1

2018	Fleet A		Fleet B		Fleet C		Fleet D		TOTAL	
Total		Mean								
Winter rings	Numbers	Weight								
0	0.0	0.000	1322.9	0.005	0.1	0.022	14.4	0.010	1'337.4	0.005
1	8.6	0.089	45.5	0.026	17.6	0.050	1.6	0.036	73.3	0.039
2	175.9	0.118	1.9	0.027	28.2	0.057	0.3	0.044	206.2	0.108
3	199.4	0.145	0.0	0.000	1.1	0.105	0.0	0.048	200.5	0.145
4	1176.8	0.184	0.0	0.000	1.8	0.158	0.0	0.000	1'178.6	0.184
5	847.9	0.191	0.0	0.000	1.0	0.181	0.0	0.000	849.0	0.191
6	223.5	0.215	0.0	0.000	0.2	0.189	0.0	0.000	223.6	0.215
7	144.9	0.234	0.0	0.000	0.1	0.187	0.0	0.000	145.0	0.234
8	144.1	0.242	0.0	0.000	0.1	0.202	0.0	0.000	144.2	0.241
9+	188.3	0.249	0.0	0.000	0.0	0.000	0.0	0.000	188.3	0.249
TOTAL	3'109.3		1'370.3		50.2		16.3		4'546.1	
SOP catch		592.7		8.4		3.1		0.2		604.5

Table 2.2.7: Catch at age (numbers in millions) of North Sea herring, 2003-2018.

Year/rings	0	1	2	3	4	5	6	7	8	9+	Total
2003	347	172	1022	507	809	244	106	121	37	8	3375
2004	627	136	274	1333	517	721	170	100	70	22	3970
2005	919	408	203	487	1326	480	577	116	108	39	4664
2006	844	72	354	309	475	1017	257	252	65	44	3689
2007	553	46	142	413	284	307	628	147	133	23	2677
2008	713	148	260	183	199	137	118	215	74	43	2090
2009	533	98	253	108	96	88	40	58	112	34	1421
2010	526	84	243	234	124	84	63	34	59	56	1508
2011	575	124	306	271	218	130	63	52	60	66	1865
2012	627	110	412	671	403	306	151	104	89	109	2982
2013	461	327	239	482	571	422	327	145	153	160	3287
2014	1104	309	303	380	616	487	284	192	92	123	3890
2015	508	225	454	241	282	456	431	270	167	170	3204
2016	1450	86	578	813	293	280	368	307	186	173	4534
2017	462	133	74	1075	836	222	146	176	107	115	3345
2018	1323	54	178	200	1179	852	225	146	144	189	4491

Table 2.2.8: Catch at age (numbers in millions) of WBSS Herring taken in the North Sea, and transferred to the assessment of the spring spawning stock in 3.a, 2003-2018.

Year/rings	0	1	2	3	4	5	6	7	8	9+	Total
2003	0.0	0.0	0.0	3.1	6.0	3.5	1.2	1.3	0.5	0.1	15.7
2004	0.0	0.0	15.1	27.9	3.5	4.1	1.0	0.5	0.1	0.0	52.3
2005	0.0	0.0	6.6	17.4	12.7	2.6	3.8	1.1	0.4	0.3	44.8
2006	0.0	0.1	3.5	8.8	14.0	22.4	5.1	5.3	2.1	1.0	62.2
2007	0.0	0.0	0.1	2.6	1.3	0.6	0.8	0.4	0.5	0.2	6.3
2008	0.0	0.0	0.1	0.1	0.2	0.1	0.1	0.2	0.0	0.0	0.7
2009	0.0	0.0	1.0	2.1	3.4	1.4	1.7	4.5	1.8	1.4	17.2
2010	0.0	0.0	0.0	0.5	1.0	0.4	0.5	0.3	0.3	0.7	3.8
2011	0.0	0.0	0.1	0.4	0.4	0.2	0.1	0.1	0.1	0.2	1.6
2012	0.0	0.0	0.0	0.2	0.4	0.0	1.4	0.0	1.1	6.3	9.4
2013	0.0	0.0	0.1	0.4	0.2	0.5	0.3	0.1	0.2	0.5	2.2
2014	0.0	0.0	2.5	3.4	5.4	0.8	2.1	1.0	0.5	1.1	16.8
2015	0.0	0.0	0.1	0.9	1.4	3.9	1.8	1.4	0.9	1.2	11.7
2016	0.0	0.0	1.2	4.1	1.0	1.1	1.2	0.7	0.4	0.8	10.6
2017	0.0	0.0	0.0	2.4	1.0	0.2	0.1	0.1	0.0	0.1	4.0
2018	0.0	0.0	0.3	0.9	2.3	4.3	1.7	0.9	0.3	0.4	11.0

Table 2.2.9: Catch at age (numbers in millions) of NSAS taken in 3.a, and transferred to the assessment of NSAS, 20032018.

Year/rings	0	1	2	3	4	5	6	7	8+	Total
2003	21.6	445.0	182.3	13.0	16.2	1.8	1.1	1.2	0.2	682.4
2004	88.4	70.9	179.9	20.7	6.0	9.7	1.8	2.0	0.9	380.4
2005	96.4	307.5	159.2	16.2	5.4	2.4	2.3	0.5	0.2	589.9
2006	35.1	150.1	50.2	10.2	3.3	3.3	0.6	0.4	0.2	253.3
2007	67.7	189.3	76.9	2.1	0.4	1.4	0.3	0.6	0.0	338.7
2008	85.7	86.6	72.0	1.9	0.3	0.1	0.1	0.3	0.1	247.0
2009	116.8	77.5	7.0	0.4	0.2	0.0	0.0	0.0	0.1	202.0
2010	48.6	197.0	43.3	0.3	0.1	0.1	0.0	0.1	0.0	289.6
2011	203.8	35.4	61.5	3.2	0.3	0.2	0.1	0.1	0.0	304.6
2012	145.8	174.9	43.7	1.9	1.2	0.2	0.2	0.1	0.0	368.0
2013	0.9	86.2	85.8	2.4	0.4	0.3	0.0	0.0	0.0	175.9
2014	284.7	61.1	80.2	5.9	0.5	0.5	0.2	0.0	0.1	433.3
2015	30.7	169.6	97.6	7.0	1.3	4.9	1.1	1.2	0.4	313.6
2016	133.3	23.3	47.6	6.0	0.5	0.3	0.2	0.0	0.1	211.3
2017	0.1	76.0	34.4	6.9	3.0	1.2	0.1	0.0	0.0	121.8
2018	14.5	19.2	28.5	1.1	1.8	1.0	0.2	0.1	0.1	66.5

Table 2.2.10: Catch at age (numbers in millions) of the total NSAS stock 2003-2018.

Year/rings	0	1	2	3	4	5	6	7	8	9+	Total
2003	369	617	1204	517	820	243	106	120	37	8	4042
2004	716	207	439	1326	520	726	171	101	71	22	4298
2005	1016	716	355	486	1318	480	576	115	108	39	5209
2006	879	222	401	311	465	999	253	249	63	44	3885
2007	621	236	219	412	283	308	628	147	132	23	3009
2008	798	235	332	185	199	137	118	215	74	43	2336
2009	650	176	259	107	93	86	38	53	110	33	1606
2010	575	281	287	233	123	83	63	34	59	55	1794
2011	779	160	368	274	218	130	63	52	60	65	2168
2012	773	285	455	673	404	306	150	104	88	102	3341
2013	462	413	325	484	571	422	327	145	152	160	3461
2014	1389	371	383	386	617	488	285	192	92	123	4323
2015	538	395	552	248	283	461	432	271	168	170	3517
2016	1584	109	625	819	293	280	368	307	186	173	4745
2017	462	209	109	1080	838	223	146	176	107	115	3463
2018	1337	73	206	201	1179	849	224	145	144	188	4546

Table 2.2.11: Comparison of mean weight (kg) at age (rings) in the catch of adult North Sea herring (by Division) and NSAS caught in Division 3.a in 2008-2018

		Age (Rings)							
Division	Year	2	3	4	5	6	7	8	9+
3.a	2008	0.087	0.109	0.139	0.168	0.176	0.204	0.198	-
	2009	0.101	0.082	0.206	0.000	0.000	0.000	0.269	-
	2010	0.077	0.122	0.149	0.191	0.221	0.216	0.205	-
	2011	0.084	0.114	0.134	0.191	0.193	0.234	0.248	-
	2012	0.067	0.124	0.169	0.175	0.200	0.221	0.216	-
	2013	0.075	0.134	0.160	0.201	0.000	0.000	0.000	-
	2014	0.074	0.109	0.162	0.191	0.209	0.221	0.228	-
	2015	0.068	0.133	0.157	0.180	0.196	0.197	0.215	-
	2016	0.059	0.123	0.149	0.157	0.208	0.211	0.235	-
	2017	0.068	0.103	0.139	0.173	0.171	0.185	0.162	-
	2018	0.058	0.103	0.156	0.179	0.190	0.187	0.203	-
4.a(E)	2008	0.138	0.173	0.172	0.174	0.216	0.210	0.253	0.266
	2009	0.139	0.167	0.208	0.219	0.232	0.245	0.253	0.288
	2010	0.131	0.154	0.201	0.201	0.210	0.223	0.248	0.235
	2011	0.142	0.162	0.180	0.204	0.215	0.209	0.216	0.222
	2012	0.146	0.185	0.195	0.203	0.216	0.225	0.225	0.232
	2013	0.129	0.147	0.184	0.191	0.205	0.215	0.215	0.228
	2014	0.146	0.161	0.167	0.195	0.200	0.216	0.227	0.224
	2015	0.127	0.148	0.163	0.178	0.191	0.203	0.212	0.227
	2016	0.129	0.153	0.167	0.183	0.195	0.205	0.216	0.229
	2017	0.132	0.154	0.170	0.182	0.193	0.198	0.203	0.209
	2018	0.125	0.152	0.173	0.188	0.201	0.212	0.219	0.230
4.a(W)	2008	0.142	0.187	0.187	0.188	0.230	0.219	0.262	0.281
	2009	0.152	0.180	0.211	0.223	0.266	0.251	0.252	0.278
	2010	0.137	0.166	0.195	0.223	0.220	0.216	0.236	0.252
	2011	0.141	0.161	0.185	0.195	0.216	0.223	0.220	0.243
	2012	0.132	0.184	0.186	0.206	0.226	0.240	0.242	0.254
	2013	0.139	0.158	0.201	0.197	0.218	0.234	0.234	0.251

		Age (Rings)							
Division	Year	2	3	4	5	6	7	8	9+
	2014	0.143	0.172	0.184	0.215	0.212	0.227	0.246	0.242
	2015	0.124	0.158	0.198	0.211	0.233	0.228	0.239	0.252
	2016	0.138	0.161	0.189	0.215	0.227	0.242	0.233	0.250
	2017	0.120	0.160	0.177	0.192	0.218	0.226	0.236	0.236
	2018	0.114	0.156	0.188	0.193	0.220	0.241	0.250	0.258
4.b	2008	0.142	0.172	0.185	0.191	0.222	0.228	0.265	0.223
	2009	0.140	0.188	0.228	0.219	0.223	0.243	0.255	0.255
	2010	0.134	0.176	0.182	0.229	0.237	0.235	0.232	0.265
	2011	0.145	0.162	0.187	0.206	0.235	0.234	0.240	0.268
	2012	0.131	0.141	0.178	0.209	0.214	0.245	0.250	0.258
	2013	0.125	0.162	0.205	0.206	0.228	0.251	0.261	0.246
	2014	0.133	0.187	0.208	0.233	0.240	0.249	0.256	0.277
	2015	0.140	0.162	0.189	0.203	0.208	0.216	0.227	0.250
	2016	0.126	0.161	0.192	0.211	0.218	0.236	0.236	0.253
	2017	0.095	0.157	0.184	0.194	0.230	0.240	0.249	0.263
	2018	0.117	0.138	0.192	0.211	0.237	0.248	0.246	0.258

Table 2.2.11 continued: Comparison of mean weight (kg) at age (rings) in the catch of adult North Sea herring (by Division) and NSAS caught in Division 3.a in 2008-2018.

		Age (Rings)							
Division	Year	2	3	4	5	6	7	8	9+
4.a \& 4.b	2008	0.142	0.182	0.185	0.188	0.226	0.220	0.262	0.275
	2009	0.142	0.183	0.217	0.221	0.248	0.248	0.253	0.277
	2010	0.136	0.167	0.192	0.224	0.222	0.220	0.236	0.250
	2011	0.142	0.161	0.184	0.198	0.220	0.224	0.224	0.243
	2012	0.132	0.171	0.185	0.207	0.222	0.239	0.243	0.248
	2013	0.132	0.158	0.198	0.198	0.217	0.234	0.235	0.244
	2014	0.138	0.174	0.187	0.216	0.213	0.227	0.246	0.243
	2015	0.129	0.157	0.190	0.203	0.223	0.219	0.228	0.245
	2016	0.134	0.159	0.185	0.210	0.218	0.235	0.226	0.242
	2017	0.116	0.159	0.176	0.190	0.217	0.223	0.231	0.230
	2018	0.117	0.152	0.187	0.195	0.220	0.238	0.245	0.254
4.c \& 7.d	2008	0.120	0.157	0.156	0.173	0.188	0.192	0.215	0.247
	2009	0.156	0.162	0.197	0.197	0.211	0.192	0.219	0.244
	2010	0.145	0.167	0.187	0.204	0.207	0.207	0.223	0.216
	2011	0.122	0.154	0.179	0.189	0.195	0.205	0.209	0.217
	2012	0.119	0.165	0.186	0.202	0.212	0.234	0.209	0.226
	2013	0.126	0.144	0.180	0.196	0.206	0.216	0.218	0.226
	2014	0.119	0.148	0.166	0.183	0.208	0.222	0.227	0.233
	2015	0.114	0.127	0.154	0.157	0.183	0.197	0.204	0.210
	2016	0.114	0.127	0.137	0.166	0.177	0.199	0.193	0.216
	2017	0.100	0.122	0.146	0.165	0.186	0.193	0.220	0.241
	2018	0.113	0.116	0.144	0.156	0.164	0.189	0.196	0.209
Total	2008	0.141	0.180	0.181	0.183	0.216	0.216	0.256	0.273
North Sea	2009	0.145	0.181	0.216	0.216	0.239	0.243	0.248	0.273
Catch	2010	0.138	0.167	0.192	0.222	0.219	0.217	0.234	0.245
	2011	0.141	0.160	0.183	0.197	0.217	0.221	0.223	0.240
	2012	0.130	0.171	0.185	0.206	0.222	0.239	0.239	0.247
	2013	0.131	0.156	0.198	0.198	0.215	0.233	0.234	0.241

Age (Rings)									
Division	Year	2	3	4	5	6	7	8	$9+$
	2014	0.137	0.173	0.186	0.215	0.212	0.226	0.244	0.241
2015	0.123	0.154	0.188	0.200	0.221	0.217	0.226	0.243	
2016	0.132	0.155	0.180	0.206	0.215	0.231	0.221	0.239	
	0.114	0.156	0.173	0.189	0.215	0.220	0.230	0.231	

Table 2.2.12: Sampling of commercial landings of North Sea herring (Division 4 and 7.d) in 2018 by quarter. Sampled catch means the proportion of the reported catch to which sampling was applied. It is not possible to judge the quality of the sampling by this figure alone. Note that only one nation sampled their by-catches in the industrial fishery (Denmark, fleet B). Metiers are each reported combination of nation/fleet/area/quarter.

Country (fleet)	Quarter	No of metiers	Metiers sampled	Sampled Catch \%	Official landings	No. of samples	No. fish aged	No. fish measured	>1 sample per 1 kt catch
Belgium	1	2	0	0\%	17	0	0	0	n
	2	2	0	0\%	2	0	0	0	n
	3	1	0	0\%	1	0	0	0	n
	4	2	0	0\%	11	0	0	0	n
total		7	0	0\%	31	0	0	0	n
Denmark (A)	1	3	1	97\%	6335	7	184	888	y
	2	2	1	81\%	1893	1	29	138	n
	3	3	2	99\%	77149	43	1184	4859	n
	4	2	2	100\%	38379	22	612	2500	n
total		10	6	99\%	123756	73	2009	8385	n
Denmark (B)	1	3	2	90\%	214	7	17	17	y
	2	2	1	100\%	768	3	23	47	y
	3	3	1	100\%	5126	42	382	798	y
	4	3	1	71\%	2368	16	92	99	y
total		11	5	92\%	8476	68	514	961	y
England and Wales	1	3	2	100\%	736	7	175	1430	y
	2	4	1	100\%	3479	10	250	1870	y
	3	4	2	100\%	11563	15	375	1744	y
	4	3	1	84\%	3814	6	150	1372	y
total		14	6	97\%	19592	38	950	6416	y
France	1	2	0	0\%	4541	0	0	0	n
	2	4	0	0\%	3454	0	0	0	n
	3	4	0	0\%	15537	0	0	0	n
	4	4	0	0\%	8072	0	0	0	n
total		14	0	0\%	31604	0	0	0	n
Germany	2	1	0	0\%	2221	0	0	0	n
	3	3	1	89\%	33936	21	200	15505	n
	4	3	1	70\%	15479	53	195	15559	y
total		7	2	79\%	51636	74	395	31064	y
Ireland	4	1	0	0\%	515	0	0	0	n
total		1	0	0\%	515	0	0	0	n
Netherlands	1	1	0	0\%	1721	0	0	0	n
	2	2	0	0\%	1270	0	0	0	n
	3	2	2	100\%	81019	59	1475	7321	n
	4	4	2	6\%	27292	2	50	261	n
total		9	4	74\%	111302	61	1525	7582	n
Norway	1	2	0	0\%	763	0	0	0	n
	2	3	2	100\%	83313	33	1438	3300	n
	3	3	2	95\%	47128	8	269	800	n
	4	3	2	93\%	31390	5	220	430	n
total		11	6	97\%	162594	46	1927	4530	n
Scotland	1	1	0	0\%	1269	0	0	0	n
	2	1	1	100\%	2882	5	187	781	y
	3	2	2	100\%	60965	26	1163	4074	n
	4	1	0	0\%	888	0	0	0	n
total		5	3	97\%	66005	31	1350	4855	n
Sweden	2	2	0	0\%	4378	0	0	0	n
	3	3	1	65\%	11983	3	198	198	n
	4	2	0	0\%	3046	0	0	0	n
total		7	1	40\%	19407	3	198	198	n
Faroese	3	2	0	0\%	401	0	0	0	n
	4	1	0	0\%	96	0	0	0	n
total		3	0	0\%	497	0	0	0	n
Northern Ireland	1	1	0	0\%	453	0	0	0	n
	3	2	0	0\%	5411	0	0	0	n
	4	1	0	0\%	1052	0	0	0	n
total		4	0	0\%	6916	0	0	0	n
arand total		103	33	83\%	602328	394	8868	63991	n
Period total		18	5	44\%	16050	21	376	2335	V
Period total 2		23	6	89\%	103660	52	1927	6136	n
Period total 3		32	13	91\%	350219	217	5246	35299	n
Period total 4		30	9	64\%	132403	104	1319	20221	n
Total for stock 2018		103	33	83\%	602328	394	8868	63991	n
Human Cons. only		92	28	84\%	593851	326	8354	63030	n
Total for stock 2016									
		109	42	89\%	559919	445	10296	69930	n
Total for stock 2017		100	27	84\%	491694	326	7783	58280	n
Human Cons. only		89	24	84\%	484718	288	7439	57846	n

Table 2.3.1.1. North Sea herring. Acoustic Surveys in the North Sea (HERAS) in June-July 2018. Vessels, areas and cruise dates.

Vessel	Period	Contributing to Stocks	Strata
Celtic Explorer (IRL)	$3-21$ July	MSHAS, WoS	$2,3,4,5,6$
EIGB			
Scotia (SCO)	29 June - 19 July	MSHAS,WoS, NSAS, Sprat NS	1,91 (north of $58^{\circ} 30^{\prime} \mathrm{N}$), 111, 121
MXHR6			
Johan Hjort (NOR)	2-17 July	NSAS, WBSS	11, 141
LDGJ			
Tridens (NED)	$2-20$ July	NSAS, Sprat NS	81, 91 (south of $58^{\circ} 30^{\prime} \mathrm{N}$), 101
PBVO			
Solea (GER)	29 June - 19 July	NSAS, Sprat NS	51, 61, 71, 131
DBFH			
Dana (DEN)	25 June - 10 July	NSAS, WBSS, Sprat NS, Sprat 3.a	21, 31, 41, 42, 151, 152
OXBH			
Celtic Explorer (IRL)	$3-21$ July	MSHAS, WoS	$2,3,4,5,6$
EIGB			

Table 2.3.1.2. North Sea herring. Acoustic Surveys in the North Sea (HERAS) in June-July 2018. Total numbers (millions of fish) and biomass (thousands of tonnes) of North Sea autumn spawning herring in the area surveyed in the pelagic acoustic surveys, with mean weight and mean length by age ring.

Age (ring)	Numbers	Biomass	Maturity	Weight(g)	Length (cm)
0	7,480	39	0.00	5.2	8.9
1	9,938	401	0.01	40.3	17.2
2	4,254	392	0.37	92.3	22.0
3	1,692	246	0.91	145.4	25.2
4	5,150	991	0.98	192.4	27.2
5	2,440	546	1.00	223.8	28.5
6	719	164	1.00	228.0	28.8
7	529	127	1.00	240.1	29.3
8	293	80	1.00	272.1	30.3
9+	111	30	1.00	272.9	30.4
Immature	20,290	679		33.5	14.7
Mature	12,315	2,337		189.7	27.0
Total	32,606	3,016	0.38	92.5	19.4

Table 2.3.1.3. Estimates of North Sea autumn spawners (millions) at age from acoustic surveys, 1986-2018. For 1986 the estimates are the sum of those from the Division 4.a summer survey, the Division 4.b autumn survey, and the divisions 4.c, 7.d winter survey. The 1987 to 2018 estimates are from summer surveys in divisions 4.a, b, c, and 3.a excluding estimates of Western Baltic spring spawners. For 1999 and 2000 the Kattegat was excluded from the results because it was not surveyed. Total numbers include 0-ringers from 2008 onwards.

Years / Age (rings)	1	2	3	4	5	6	7	8	9+	Total	SSB ('000 t)
1986	1,639	3,206	1,637	833	135	36	24	6	8	7,542	942
1987	13,736	4,303	955	657	368	77	38	11	20	20,165	817
1988	6,431	4,202	1,732	528	349	174	43	23	14	13,496	897
1989	6,333	3,726	3,751	1,612	488	281	120	44	22	16,377	1,637
1990	6,249	2,971	3,530	3,370	1,349	395	211	134	43	18,262	2,174
1991	3,182	2,834	1,501	2,102	1,984	748	262	112	56	12,781	1,874
1992	6,351	4,179	1,633	1,397	1,510	1,311	474	155	163	17,173	1,545
1993	10,399	3,710	1,855	909	795	788	546	178	116	19,326	1,216
1994	3,646	3,280	957	429	363	321	238	220	132	13,003	1,035
1995	4,202	3,799	2,056	656	272	175	135	110	84	11,220	1,082
1996	6,198	4,557	2,824	1,087	311	99	83	133	206	18,786	1,446
1997	9,416	6,363	3,287	1,696	692	259	79	78	158	22,028	1,780
1998	4,449	5,747	2,520	1,625	982	445	170	45	121	16,104	1,792
1999	5,087	3,078	4,725	1,116	506	314	139	54	87	15,107	1,534
2000	24,735	2,922	2,156	3,139	1,006	483	266	120	97	34,928	1,833
2001	6,837	12,290	3,083	1,462	1,676	450	170	98	59	26,124	2,622
2002	23,055	4,875	8,220	1,390	795	1,031	244	121	150	39,881	2,948
2003	9,829	18,949	3,081	4,189	675	495	568	146	178	38,110	2,999
2004	5,183	3,415	9,191	2,167	2,590	317	328	342	186	23,722	2,584
2005	3,113	1,890	3,436	5,609	1,211	1,172	140	127	107	16,805	1,868
2006	6,823	3,772	1,997	2,098	4,175	618	562	84	70	20,199	2,130
2007	6,261	2,750	1,848	898	806	1,323	243	152	65	14,346	1,203
2008	3,714	2,853	1,709	1,485	809	712	1,749	185	270	20,355	1,784
2009	4,655	5,632	2,553	1,023	1,077	674	638	1,142	578	31,526	2,591
2010	14,577	4,237	4,216	2,453	1,246	1,332	688	1,110	1,619	43,705	3,027
2011	10,119	4,166	2,534	2,173	1,016	651	688	440	1,207	25,524	2,431

Years /										
Age (rings)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 +}$	Total
2012	7,437	4,718	4,067	1,738	1,209	593	247	218	478	23,641
2013	6,388	2,683	3,031	2,895	1,546	849	464	250	592	36,484
2014	11,634	4,918	2,827	2,939	1,791	1,236	669	211	250	61,339

Table 2.3.2.1: North Sea herring - LAI time-series of herring larval abundance <10 mm long (<11 mm for the SNS), by standard sampling area and time periods. The number of larvae are expressed as mean number per ICES rectangle * 10^{9}.

	Orkney/ Shetland		Buchan		Central North Sea			Southern North Sea		
Period/ Year	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$\begin{gathered} 16-30 \\ \text { Sep. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$16-30$ Sep.	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$\begin{gathered} 16-30 \\ \text { Sep. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Oct. } \end{aligned}$	$\begin{gathered} \text { 16-31 } \\ \text { Dec. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Jan. } \end{aligned}$	$\begin{gathered} \text { 16-31 } \\ \text { Jan. } \end{gathered}$
1972	1133	4583	30		165	88	134	2	46	
1973	2029	822	3	4	492	830	1213			1
1974	758	421	101	284	81		1184		10	
1975	371	50	312			90	77	1	2	
1976	545	81		1	64	108			3	
1977	1133	221	124	32	520	262	89	1		
1978	3047	50		162	1406	81	269	33	3	
1979	2882	2362	197	10	662	131	507		111	89
1980	3534	720	21	1	317	188	9	247	129	40
1981	3667	277	3	12	903	235	119	1456		70
1982	2353	1116	340	257	86	64	1077	710	275	54
1983	2579	812	3647	768	1459	281	63	71	243	58
1984	1795	1912	2327	1853	688	2404	824	523	185	39
1985	5632	3432	2521	1812	130	13039	1794	1851	407	38
1986	3529	1842	3278	341	1611	6112	188	780	123	18
1987	7409	1848	2551	670	799	4927	1992	934	297	146

	Orkney/ Shetland		Buchan		Central North Sea			Southern North Sea		
Period/ Year	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$\begin{gathered} 16-30 \\ \text { Sep. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$\begin{gathered} \text { 16-30 } \\ \text { Sep. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$\begin{gathered} 16-30 \\ \text { Sep. } \end{gathered}$	$\begin{aligned} & \text { 1-15 } \\ & \text { Oct. } \end{aligned}$	$\begin{gathered} \text { 16-31 } \\ \text { Dec. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Jan. } \end{aligned}$	$\begin{gathered} \text { 16-31 } \\ \text { Jan. } \end{gathered}$
1988	7538	8832	6812	5248	5533	3808	1960	1679	162	112
1989	11477	5725	5879	692	1442	5010	2364	1514	2120	512
1990		10144	4590	2045	19955	1239	975	2552	1204	
1991	1021	2397		2032	4823	2110	1249	4400	873	
1992	189	4917		822	10	165	163	176	1616	
1993		66		174		685	85	1358	1103	
1994	26	1179				1464	44	537	595	
1995		8688					43	74	230	164
1996		809		184		564		337	675	691
1997		3611		23				9374	918	355
1998		8528		1490	205	66		1522	953	170
1999		4064		185		134	181	804	1260	344
2000		3352	28	83		376		7346	338	106
2001		11918		164		1604		971	5531	909
2002		6669		1038			3291	2008	260	925
2003		3199		2263		12018	3277	12048	3109	1116
2004		7055		3884		5545		7055	2052	4175
2005		3380		1364		5614		498	3999	4822
2006	6311	2312		280		2259		10858	2700	2106
2007		1753		1304		291		4443	2439	3854
2008	4978	6875		533		11201		8426	2317	4008
2009		7543		4629		4219		15295	14712	1689
2010		2362		1493		2317		7493	13230	8073
2011		3831		2839		17766		5461	6160	1215
2012		19552		5856		517		22768	11103	3285
2013		21282		8618		7354		5	9314	2957
2014		6604		5033		1149				1851

	Orkney/ Shetland		Buchan		Central North Sea			Southern North Sea		
Period/ Year	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$\begin{gathered} 16-30 \\ \text { Sep. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$\begin{gathered} 16-30 \\ \text { Sep. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Sep. } \end{aligned}$	$\begin{gathered} 16-30 \\ \text { Sep. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Oct. } \end{aligned}$	$\begin{gathered} \text { 16-31 } \\ \text { Dec. } \end{gathered}$	$\begin{aligned} & 1-15 \\ & \text { Jan. } \end{aligned}$	$\begin{gathered} \text { 16-31 } \\ \text { Jan. } \end{gathered}$
2015		9631		3496		3424		2011	1200	645
2016				3872		3288		20710	1442	1545
2017				5833		3965		10553	5880	
2018		102		1740		1509		1140		

Table 2.3.3.1 North Sea herring. Density and abundance estimates of 0-ringers caught in February during the IBTS. Values given for the 1991 to 2018 year classes by areas are density estimates in numbers per square metre according to the new index calculation algorithm. Total abundance is found by multiplying density by area and summing up. Data for the period 1976 to 1994, calculated with the old algorithm, are recorded in the stock annex.

【			$\begin{aligned} & \text { 岗 } \\ & \frac{3}{N} \\ & \text { NTH } \\ & \dot{U} \end{aligned}$						
Area $\mathrm{m}^{2} \times 10^{9}$	83	34	86	102	37	93	31	31	
Year class									no. in 10^{9}
1991	0.227	0.074	0.364	0.444	0.466	0.329	0.330	0.259	164.0
1992	0.191	0.037	0.576	0.387	0.638	0.300	0.359	0.871	195.8
1993	0.574	0.231	0.545	0.178	0.117	0.140	0.223	0.322	155.1
1994	0.131	0.023	0.438	0.359	0.360	0.174	0.503	1.277	170.5
1995	0.222	0.053	0.644	0.069	0.246	0.015	0.015	0.424	107.0
1996	0.026	0.003	0.878	0.099	0.443	0.298	0.040	0.034	134.5
1997	0.039	0.021	0.295	0.059	0.181	0.035	0.021	0.186	51.7
1998	0.095	0.054	1.074	0.543	0.994	0.296	0.242	0.839	255.5
1999	0.042	0.011	0.725	0.149	0.316	0.141	0.105	0.043	111.1
2000	0.237	0.005	0.764	0.161	0.813	0.790	0.065	4.354	342.0
2001	0.076	0.018	0.528	0.456	0.487	0.301	0.261	NA	152.9
2002	0.117	0.031	0.241	0.030	0.127	0.058	0.003	0.841	70.9
2003	0.044	0.004	0.248	0.068	0.119	0.019	0.036	0.145	43.9
2004	0.016	0.008	0.205	0.097	0.511	0.228	0.053	0.399	83.3
2005	0.013	0.018	0.315	0.079	0.291	0.154	0.011	0.068	64.5

$\stackrel{\text { 【 }}{\substack{4}}$									$\begin{aligned} & \stackrel{\circ}{i} \text { x } \\ & \stackrel{\omega}{\underline{0}} \\ & \underline{0} \end{aligned}$
Area $\mathrm{m}^{2} \times 10^{9}$	83	34	86	102	37	93	31	31	
Year class									no. in 10^{9}
2006	0.004	0.001	0.213	0.038	0.133	0.020	0.065	0.698	52.9
2007	0.013	0.009	0.185	0.031	0.084	0.058	0.019	0.320	39.5
2008	0.145	0.138	0.281	0.253	0.158	0.139	0.160	0.279	99.2
2009	0.073	0.074	0.194	0.052	0.390	0.291	0.000	0.042	73.5
2010	0.025	0.004	0.595	0.063	0.188	0.082	NA	0.096	77.6
2011	0.008	0.001	0.312	0.132	0.214	0.129	0.076	0.059	65.1
2012	0.022	0.003	0.193	0.072	0.144	0.257	0.005	0.195	61.2
2013	0.132	0.151	0.240	0.253	0.389	0.313	0.037	0.213	113.8
2014	0.009	0.006	0.150	0.047	0.038	0.002	0.009	0.038	21.7
2015	0.015	0.015	0.136	0.059	0.083	0.324	0.002	0.927	81.2
2016	0.005	0.001	0.143	0.020	0.082	0.035	0.020	0.196	27.8
2017	0.111	0.001	0.395	0.181	0.397	0.260	0.031	0.019	102.1
2018	0.017	0.023	0.290	0.103	0.112	0.029	0.083	0.144	51.6

Table 2.3.3.2. North Sea herring. Indices of 1-ringers from the IBTS 1 ${ }^{\text {st }}$ Quarter for the 1995 to 2017 year classes (the data for the 1977 to 1994 year classes can be found in the stock annex). Estimation of the small sized component (possibly Downs herring) in different areas. " North Sea" = total area of sampling minus 3.a.

Year class	Year of sampling	All 1-ringers in total area (IBTS-1 index) (no/hour)	Small<13cm 1ringers in total area (no/hour)	Proportion of small in total area vs. all sizes	Small<13cm 1ringers in North Sea (no/hour)	Proportion of small in North Sea vs. all sizes	Proportion of small in 3.a vs small in total area
1995	1997	4403	1356	0.31	1089	0.25	0.25
1996	1998	2276	1322	0.58	1399	0.61	0.02
1997	1999	753	152	0.2	149	0.20	0.09
1998	2000	3304	1068	0.32	939	0.28	0.18
1999	2001	2499	328	0.13	307	0.12	0.13
2000	2002	3881	1520	0.39	1436	0.37	0.12
2001	2003	2837	664	0.23	180	0.06	0.75
2002	2004	979	665	0.68	710	0.73	0.01
2003	2005	1015	341	0.34	357	0.35	0.02
2004	2006	900	115	0.13	121	0.13	0.02
2005	2007	1322	303	0.23	304	0.23	0.07
2006	2008	1792	417	0.23	444	0.25	0.01
2007	2009	2339	734	0.31	623	0.27	0.21
2008	2010	1206	279	0.23	286	0.24	0.05
2009	2011	2939	1331	0.45	1407	0.48	0.02
2010	2012	1353	279	0.21	288	0.21	0.04
2011	2013	1665	747	0.45	796	0.48	0.01
2012	2014	2615	1297	0.5	1245	0.48	0.11
2013	2015	3918	1808	0.46	1105	0.28	0.43
2014	2016	783	368	0.47	364	0.47	0.08
2015	2017	2396	1306	0.54	1008	0.42	0.28
2016	2018	778	406	0.52	424	0.55	0.03
2017	2019	1539	432	0.28	397	0.26	0.15

Table 2.4.1.1. North Sea herring. Mean stock weight-at-age (wr) in the third quarter, in divisions 4.a, 4.b and 3.a. Mean catch weight-at-age for the same quarter and area is included for comparison. AS = acoustic survey, 3Q = catch.

W. rings	1		2		3		4		5		6		7		8		9+	
Year	AS	30																
1996	45	75	119	135	196	186	253	224	262	229	299	253	306	292	325	300	335	302
1997	45	43	120	129	168	175	233	220	256	247	245	255	265	278	269	295	329	295
1998	52	54	109	131	198	172	238	209	275	237	307	263	289	269	308	313	363	298
1999	52	62	118	128	171	163	207	193	236	228	267	252	272	263	230	275	260	306
2000	46	54	118	123	180	172	218	201	232	228	261	241	295	266	300	286	280	271
2001	50	69	127	136	162	167	204	199	228	218	237	237	255	262	286	288	294	298
2002	45	50	138	140	172	177	194	200	224	224	247	244	261	252	280	281	249	298
2003	46	65	104	119	185	177	209	198	214	210	243	236	281	247	290	272	307	282
2004	35	45	116	125	139	159	206	203	231	234	253	250	262	264	279	262	270	299
2005	43	53	135	124	171	177	181	201	229	234	248	249	253	261	274	287	295	270
2006	45	61	127	139	158	163	188	192	188	205	225	242	243	257	244	260	265	285
2007	66	75	123	153	155	171	171	183	204	215	198	211	218	252	247	263	233	273
2008	62	67	141	151	180	192	183	207	194	211	230	240	217	243	268	276	282	312
2009	56	56	148	166	208	217	236	242	232	259	240	261	266	274	249	274	263	292
2010	38	74	138	150	183	190	229	222	245	245	233	239	237	248	252	265	251	271
2011	35	86	151	155	171	176	210	201	242	227	258	244	249	246	252	253	275	267
2012	48	61	125	142	192	198	194	205	212	223	232	223	242	251	239	256	243	268
2013	38	48	131	149	161	170	221	217	210	207	236	222	257	252	249	254	252	265
2014	44	49	130	142	177	191	195	208	225	239	218	233	225	243	250	264	246	266
2015	49	33	121	134	146	168	183	212	200	226	220	253	205	243	210	255	229	276
2016	37	31	112	141	158	169	187	200	223	227	235	241	243	259	232	244	236	263
2017	43	47	100	109	156	167	178	187	198	207	225	235	233	242	237	254	230	252
2018	40	45	92	126	145	163	192	202	224	211	228	235	240	254	272	262	273	270

Table 2.4.2.1. North Sea herring. Percentage maturity at 2, 3, 4, 5, 6 and 7+ ring for autumn spawning herring in the North Sea. The values are derived from the acoustic survey for 1988 to 2018. In the period 1988-2014, maturity of age 5+ were set to 100%.

Year \ Ring	2	3	4	5	6	7+
1988	65.6	87.7	100	100	100	100
1989	78.7	93.9	100	100	100	100
1990	72.6	97.0	100	100	100	100
1991	63.8	98.0	100	100	100	100
1992	51.3	100	100	100	100	100
1993	47.1	62.9	100	100	100	100
1994	72.1	85.8	100	100	100	100
1995	72.6	95.4	100	100	100	100
1996	60.5	97.5	100	100	100	100
1997	64.0	94.2	100	100	100	100
1998	64.0	89.0	100	100	100	100
1999	81.0	91.0	100	100	100	100
2000	66.0	96.0	100	100	100	100
2001	77.0	92.0	100	100	100	100
2002	86.0	97.0	100	100	100	100
2003	43.0	93.0	100	100	100	100
2004	69.8	64.9	100	100	100	100
2005	76.0	97.0	96.0	100	100	100
2006	66.0	88.0	98.0	100	100	100
2007	71.0	92.0	93.0	100	100	100
2008	86.0	98.0	99.0	100	100	100
2009	89.0	100	100	100	100	100
2010	45.0	90.0	100	100	100	100
2011	87.0	84.0	99.0	100	100	100
2012	91.0	99.0	100	100	100	100
2013	83.0	96.0	98.0	100	100	100
2014	85.0	100	100	100	100	100
2015	70.0	90.0	96.0	98.0	99.0	100

| Year \Ring | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7 +}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2016 | 71.0 | 89.0 | 95.0 | 97.0 | 98.0 | 100 |
| 2017 | 55.0 | 96.0 | 97.0 | 98.0 | 98.0 | 100 |
| 2018 | 37.0 | 91.0 | 0.98 | 100 | 100 | 100 |

Table 2.6.1.1 North Sea herring. Years of duration of survey and years used in the assessment.

Survey	Age range	Years survey has been running	Years used in assessment
LAI (Larvae survey)	SSB	$1972-2018$	$1973-2018$
IBTS 1st Quarter (Trawl survey)	1 wr	$1971-2019$	$1984-2019$
IBTS 3 ${ }^{\text {rd }}$ Quarter (Trawl survey)	$0-5 \mathrm{wr}$	$1991-2018$	$1998-2018$
Acoustic (+trawl)	1 wr	$1995-2018$	
$1984-2018$	$1989-2018$		
IBTS0	0 wr	$1977-2019$	$1992-2019$

Table 2.6.2.1 North Sea herring multi-fleet assessment model. SAM model configuration (control object).

```
An object of class "FLSAM.control"
Slot "name":
[1] "North Sea herring multifleet"
Slot "desc":
[1] "Imported from a VPA file. ( ./data/index.txt ). Sun Mar 18 16:36:34 2018"
Slot "range":
min max plusgroup minyear maxyear minfbar maxfbar
        0 8 <lllll
Slot "fleets":
    catch A catch BD catch C HERAS IBTS-Q1 IBTSO IBTS-Q3 LAI-ORSH
```



```
    LAI-BUN LAI-CNS LAI-SNS sumFleet
            6 6
Slot "plus.group":
plusgroup
    TRUE
Slot "states":
            age
fleet }\quad0\quad
    catch A 
    catch BD 7 8 8 9 10 10 10 -1 -1 -1
    catch C -1 11 12 13 14 14 14 14 -1 -1
    HERAS -1 -1 -1 -1 -1 -1 -1 -1 -1
    IBTS-Q1 -1 -1 -1 -1 -1 -1 -1 -1 -1
    IBTS0 -1 -1 -1 -1 -1 -1 -1 -1 -1
    IBTS-Q3 
    LAI-ORSH -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-BUN 1-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-CNS -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-SNS -1 -1 -1 -1 -1 -1 -1 -1 -1
    sumFleet -1 -1 -1 -1 -1 -1 -1 -1 -1
Slot "logN.vars":
0 1 2 3 4 5 6 7 8
0
Slot "logP.vars":
[1] 0 1 2
Slot "catchabilities":
            age
fleet }\quad0\quad
    catch A -1 -1 -1 -1 -1 -1 -1 -1 -1
    catch BD -1 -1 -1 -1 -1 -1 -1 -1 -1
    catch C -1 -1 -1 -1 -1 -1 -1 -1 -1
    HERAS 
    IBTS-Q1 -1 0 -1 -1 -1 -1 -1 -1 -1
```

```
IBTS0 1 -1 -1 -1 -1 -1 -1 -1 -1
IBTS-Q3 5 5 6 % 7 8 8 9 10 -1 -1 -1
LAI-ORSH 11 -1 -1 -1 -1 -1 -1 -1 -1
LAI-BUN 11 -1 -1 -1 -1 -1 -1 -1 -1
LAI-CNS 11 -1 -1 -1 -1 -1 -1 -1 -1 -1
LAI-SNS 11 -1 -1 -1 -1 -1 -1 -1 -1 -1
sumFleet -1 -1 (-1 -1 -1 -1 -1 -1 -1
```

```
Slot "power.law.exps":
            age
fleet }\quad0\quad
    catch A -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
    catch BD -1 -1 -1 -1 -1 -1 -1 -1 -1
    catch C -1 -1 -1 -1 -1 -1 -1 -1 -1
    HERAS 
    IBTS-Q1 -1 -1 -1 -1 -1 -1 -1 -1 -1
    IBTSO -1 -1 -1 -1 -1 -1 -1 -1 -1
    IBTS-Q3 -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-ORSH -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-BUN -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-CNS -1 -1 -1 -1 -1 -1 -1 -1 -1
```

Table 2.6.2.1 (continued) North Sea herring multi-fleet assessment model. SAM model configuration (control object).

```
LAI-SNS [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
sumFleet -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Slot "f.vars":
            age
fleet }\quad0\quad
    catch A -1 0
    catch BD 2 
    catch C C -1 4
    HERAS 
    IBTS-Q1 -1 -1 -1 -1 -1 -1 -1 -1 -1
    IBTS0 -1 -1 -1 -1 -1 -1 -1 -1 -1
    IBTS-Q3 -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-ORSH -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-BUN -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-CNS -1 -1 -1 -1 -1 -1 -1 -1 -1
    LAI-SNS -1 -1 -1 -1 -1 -1 -1 -1 -1
    sumFleet -1 -1 -1 -1 -1 -1 -1 -1 -1
Slot "obs.vars":
            age
fleet 0
    catch A 
    catch BD 3 4 4 5 5 5 5 5 5 -1 -1 -1
    catch C C -1 6
    HERAS -1 9 10 10 10 10 10 11 11
    IBTS-Q1 -1 12 -1 -1 -1 -1 -1 -1 -1
    IBTSO 13 -1 -1 -1 -1 -1 -1 -1 -1
```

```
IBTS-Q3 14 15 16 16 16 16 -1 -1 -1
LAI-ORSH 17 -1 -1 -1 -1 -1 -1 -1 -1
LAI-BUN 17 -1 -1 -1 -1 -1 -1 -1 -1
LAI-CNS 17 -1 -1 -1 -1 -1 -1 -1 -1
LAI-SNS 17 -1 -1 -1 -1 -1 -1 -1 -1
sumFleet -1 -1 -1 -1 -1 -1 -1 -1 -1
```

Slot "srr":
[1] 0
Slot "scaleNoYears":
[1] 0
Slot "scaleYears":
[1] NA
Slot "scalePars":
age
years $\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
Slot "cor.F":
[1] 222
Slot "cor.obs":
age
fleet $\quad 0-1$ 1-2 $2-3$ 3-4 4-5 5-6 6-7 7 -8
catch A NA NA NA NA NA NA NA NA
catch BD NA NA NA NA NA NA NA NA
catch C NA NA NA NA NA NA NA NA
HERAS -1 NA NA NA NA NA NA NA
$\begin{array}{lllllllll}\text { IBTS-Q1 } & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
$\begin{array}{lllllllll}\text { IBTS0 } & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
IBTS-Q3 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad-1$
LAI-ORSH $-1 \begin{array}{llllllll}-1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$

LAI-CNS $\quad-1 \begin{array}{llllllll} & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
LAI-SNS $\quad-1 \begin{array}{llllllll} & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
sumpleet $-1 \begin{array}{llllllll}1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
Slot "cor.obs.Flag":
[1] ID ID ID ID ID ID AR ID ID ID ID <NA>
Levels: ID AR US
Slot "biomassTreat":
[1] $-1 \begin{array}{lllllllllllll} & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$

Table 2.6.2.1 (continued) North Sea herring multi-fleet assessment model. SAM model configuration (control object).

```
Slot "timeout":
[1] 3600
Slot "likFlag":
[1] LN LN
Levels: LN ALN
Slot "fixVarToWeight":
[1] FALSE
Slot "simulate":
[1] FALSE
Slot "residuals":
[1] FALSE
Slot "sumFleets":
[1] "A" "BD" "C"
```


Table 2.6.2.2 North Sea herring. Weights at age in the catch

```
Units : kg
, , area = A
    year rrrrr 2000 2001 199 2002 2003
    0 0.0000000 0.0000000 0.0090000 0.0170000 0.000000 0.0000000 0.0380000
    1 0.0800000 0.0730000 0.0660000 0.0770000 0.104000 0.0820000 0.0780000
    2 0.1180000 0.1200000 0.1240000 0.1270000 0.126000 0.1290000 0.1150000
    30.1480000 0.1460000 0.1530000 0.1600000 0.149000 0.1530000 0.1580000
    4 0.1920000 0.1840000 0.1700000 0.1800000 0.175000 0.1690000 0.1740000
    5 0.2300000 0.2210000 0.2080000 0.2000000 0.194000 0.1990000 0.1850000
    6 0.2300000 0.2370000 0.2330000 0.2190000 0.216000 0.2150000 0.2040000
    7 0.2280000 0.2500000 0.2440000 0.2440000 0.229000 0.2280000 0.2210000
    8 0.2602961 0.2805291 0.2718305 0.2707487 0.221922 0.2505347 0.2358647
    year
age 2004 2005 2006 2007 2008 2009 2010
    0 0.0000000 0.1190000 0.0650000 0.0080000 0.0100000 0.0170000 0.0000000
    1 0.0730000 0.0880000 0.1110000 0.0990000 0.0610000 0.0760000 0.0860000
    2 0.1210000 0.1220000 0.1270000 0.1490000 0.1410000 0.1480000 0.1390000
    30.1380000 0.1550000 0.1450000 0.1520000 0.1800000 0.1810000 0.1670000
    4 0.1830000 0.1660000 0.1720000 0.1640000 0.1810000 0.2160000 0.1920000
    5 0.2060000 0.2080000 0.1810000 0.1940000 0.1830000 0.2160000 0.2220000
    6 0.2210000 0.2230000 0.2200000 0.1900000 0.2160000 0.2390000 0.2220000
    7 0.2290000 0.2400000 0.2370000 0.2240000 0.2160000 0.2430000 0.2170000
    8 0.2467643 0.2657338 0.2460451 0.2375272 0.2622255 0.2538328 0.2393368
    year
age 2011 2012 2013 2014 2015 2017
\(00.00000000 .0350000 .0000000 \quad 0.0180000 \quad 0.0000000 \quad 0.0000000 \quad 0.0000000\)
```

```
    10.1120000 0.086000 0.0460000 0.0840000 0.0750000 0.1020000 0.0832800
    0.1410000 0.131000 0.1400000 0.1370000 0.1230000 0.1350000 0.1136900
    0.1600000 0.171000 0.1560000 0.1730000 0.1540000 0.1560000 0.1561400
    0.1830000 0.185000 0.1980000 0.1860000 0.1880000 0.1810000 0.1732200
    0.1970000 0.206000 0.1980000 0.2150000 0.2000000 0.2060000 0.1884900
    6 0.2170000 0.222000 0.2150000 0.2120000 0.2210000 0.2150000 0.2145200
    70.2210000 0.239000 0.2330000 0.2260000 0.2170000 0.2310000 0.2203100
    8 0.2318784 0.243845 0.2375962 0.2428564 0.2345792 0.2296907 0.2307355
    year
age 2018
    0.0000000
    0.0890300
    0.1175900
    0.1453400
    0.1838400
    0.1914100
    0.2151200
    0.2342400
    0.2455873
```

, , area $=$ BD
year

age	1997	1998	1999	2000

 00.014945800 .019288570 .0093639230 .014342640 .011949300 .01240503
 0.028650870 .032313270 .0292720000 .018931010 .029000000 .02303098
 \(0.042902940 .060415950 .066093750 \quad 0.067875000 .052348390 .05288193\)
 \(0.091533330 .117677850 .123714286 \quad 0.129722220 .096164840 .11445833\)
 0.124727270 .136144390 .1425319150 .149000000 .126000000 .16755556
 50.150357140 .196571430 .1630000000 .119000000 .121000000 .18000000
 0.157000000 .210000000 .1740000000 .189000000 .122000000 .19300000
 70.000000000 .232000000 .1650000000 .170000000 .154000000 .22800000
 80.000000000 .285000000 .0000000000 .199000000 .251000000 .24400000
 year
 | age | 2003 | 2004 | 2005 | 2006 | 2007 |
| :--- | :--- | :--- | :--- | :--- | :--- |

 0.013431190 .013963580 .011339060 .010100780 .011911880 .007894138
 0.023601080 .033159180 .032733520 .026470220 .036499330 .036908795
 0.048000000 .070207070 .068000000 .051149360 .059000000 .085000000
 0.116538460 .110055430 .105000000 .114539790 .085000000 .110000000
 40.132782610 .140561930 .158000000 .150097060 .130000000 .133000000
 50.162000000 .173575410 .157000000 .165801420 .145000000 .187000000
 60.168800000 .171868770 .160000000 .197000000 .191000000 .161000000
 70.178000000 .204808860 .178000000 .225000000 .165000000 .184000000
 80.178000000 .231366540 .000000000 .213524740 .216000000 .159000000
 year
 age 2009 2010 2011 201202013
00.009000000 .007000000 .0077405150 .010376370 .008000000 .007425728
10.029910540 .026869380 .0331470620 .028894860 .026851190 .029558819
20.086135720 .068837920 .0450000000 .074482090 .045926810 .026215384
30.148137050 .183990010 .0710000000 .130676370 .148161740 .116530800
40.186000000 .143000000 .0000000000 .000000000 .197187030 .188000000
$50.000000000 .205000000 .000000000 \quad 0.19500000 \quad 0.28800000 \quad 0.214000000$
$60.312000000 .191000000 .000000000 \quad 0.16000000 \quad 0.21500000 \quad 0.206000000$

```
    70.00000000 0.000000000 0.000000000 0.00000000 0.23300000 0.227000000
    8 0.26300000 0.00000000 0.000000000 0.18400000 0.23400000 0.226309343
    year
\begin{tabular}{llll} 
age 2015 & 2016 & 2017 & 2018
\end{tabular}
00.0084283220 .007000000 .008900000 .005449234
10.0202144370 .021260040 .026369880 .026532076
20.0550000000 .052127310 .024790000 .029537017
\(30.095000000 \quad 0.083976680 .07500000 \quad 0.048000000\)
40.0000000000 .093000000 .000000000 .000000000
50.1470000000 .078000000 .000000000 .000000000
\(60.0000000000 .14600000 \quad 0.000000000 .000000000\)
\(70.0000000000 .00000000 \quad 0.00000000 \quad 0.000000000\)
\(80.0000000000 .00000000 \quad 0.00000000 \quad 0.000000000\)
```

```
, , area = C
    year
age 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
    0}00.021 0.029 0.018 0.022 0.025 0.015 0.013 0.024 0.027 0.020 0.048
    1 0.032 0.060 0.054 0.041 0.066 0.054 0.054 0.060 0.065 0.068 0.071
    2 0.084 0.082 0.091 0.078 0.076 0.101 0.073 0.069 0.072 0.081 0.075
    30.130}0.119 0.118 0.108 0.108 0.120 0.124 0.120 0.106 0.119 0.111
    4 0.170 0.163 0.139 0.164 0.130}0.143 0.151 0.138 0.154 0.141 0.123
    5 0.183 0.178 0.159 0.191 0.147 0.161 0.163 0.149 0.175 0.184 0.152
    6 0.192 0.196 0.191 0.183 0.221 0.179 0.193 0.169 0.189 0.188 0.179
```



```
    8 0.201 0.226 0.210 0.198 0.000 0.000 0.187 0.178 0.209 0.206 0.144
    year
age 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
    0 0.036 0.018 0.028 0.021 0.027 0.034 0.014 0.015 0.000 0.03380 0.02163
    1 0.071 0.086 0.072 0.053 0.065 0.091 0.065 0.042 0.054 0.05160 0.04951
    2 0.087 0.102 0.080 0.085 0.073 0.080 0.090 0.071 0.061 0.08015 0.05690
    30.109 0.081 0.122 0.115 0.124 0.135 0.117 0.133 0.124 0.10318 0.10484
    4 0.139 0.207 0.149 0.134 0.169 0.161 0.162 0.157 0.149 0.13839 0.15789
    5 0.168 0.000 0.191 0.191 0.175 0.200 0.191 0.180 0.188 0.17196 0.18110
    6 0.175 0.000 0.221 0.193 0.199 0.000 0.209 0.196 0.208 0.15292 0.18925
    7 0.203 0.000 0.216 0.234 0.220 0.000 0.221 0.197 0.209 0.14710 0.18664
    8 0.199 0.269 0.205 0.248 0.216 0.000 0.228 0.215 0.235 0.15980 0.20210
```


Table 2.6.2.3 North Sea herring. Fishing mortality at age in the stock

```
Units : f
, area = A
    year
\begin{tabular}{llllll} 
age & 1947 & 1948 & 1949 & 1950 & 1951
\end{tabular}
    0 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
    1 0.001169498 0.001137948 0.001394607 0.00180942 0.002770707 0.003361101
    2 0.036142885 0.034857073 0.043694035 0.05780169 0.091086620 0.111485848
    30.083349094 0.082967687 0.097375128 0.11422967 0.157135869 0.165444314
    4 0.096381376 0.097284351 0.114020430 0.12942817 0.172595304 0.178207629
    5 0.126601498 0.124855905 0.144059181 0.14720594 0.178781054 0.191601796
    60.201566782 0.182792643 0.230566945 0.19885984 0.211122461 0.253210357
    70.225319608 0.205576929 0.271372399 0.21492187 0.206739870 0.281855825
    8 0.225319608 0.205576929 0.271372399 0.21492187 0.206739870 0.281855825
        year
\begin{tabular}{lllllll} 
age & 1953 & 1954 & 1955 & 1956 & 1957 & 1958
\end{tabular}
    0 0.000000000 0.0000000 0.000000000 0.000000000 0.000000000 0.000000000
    1 0.003965779 0.0050085 0.005357893 0.006175305 0.006577958 0.006933927
    2 0.132475384 0.1696193 0.181136524 0.210052569 0.223574944 0.235579638
    30.179067999 0.2139477 0.204589980 0.215402896 0.225238078 0.227002241
    4 0.180611010 0.2049446 0.182735362 0.184080302 0.195995168 0.187292100
    5 0.192360078 0.2216014 0.189053115 0.187156189 0.208650546 0.188640856
    6 0.243002037 0.3079924 0.213264194 0.202271047 0.232228579 0.164578375
    7 0.265687713 0.3338752 0.193517590 0.201666847 0.226967523 0.140567031
    8 0.265687713 0.3338752 0.193517590 0.201666847 0.226967523 0.140567031
    year
\begin{tabular}{lllllll} 
age & 1959 & 1960 & 1961 & 1962 & 1963 & 1964
\end{tabular}
\(00.0000000000 .0000000000 .0000000 \quad 0.0000000000 .000000000 \quad 0.000000000\) \(10.0079847750 .006804058 \quad 0.00746360 .0073513460 .005592108 \quad 0.008251031\)
    2 0.273429590 0.228739997 0.2521264 0.246658184 0.181815926 0.275623784
    30.259591831 0.210018074 0.2411735 0.277656201 0.187721071 0.292061896
    4 0.221744357 0.178730431 0.2086920 0.256052291 0.155196157 0.249323647
    5 0.222763429 0.180008138 0.2015160 0.260383896 0.149616544 0.239023630
    6 0.244576084 0.200624995 0.2074843 0.314262496 0.113534890 0.194911852
    70.242922185 0.226590520 0.1978591 0.298293791 0.124197617 0.189720089
    8 0.242922185 0.226590520 0.1978591 0.298293791 0.124197617 0.189720089
    year
\begin{tabular}{llllll} 
age & 1965 & 1966 & 1967 & 1968 & 1969
\end{tabular}
    00.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
    1 0.01402998 0.01277427 0.01525286 0.02630874 0.01955873 0.02149259
    2 0.48839311 0.43872583 0.52916627 0.95312464 0.68557111 0.75621445
    30.54593223 0.51442258 0.68542072 1.20180888 0.86221304 0.95230315
    4 0.47731597 0.45306529 0.62398482 0.95064757 0.77365429 0.86091820
    5 0.46442529 0.45767109 0.64947769 0.90434202 0.80266984 0.81439004
    6 0.46582072 0.39136531 0.73981738 1.12527176 1.13502376 1.13918944
    70.47480496 0.47814241 0.90539475 1.16470657 1.01116067 0.87102139
    80.47480496 0.47814241 0.90539475 1.16470657 1.01116067 0.87102139
    year
\begin{tabular}{lllllll} 
age & 1971 & 1972 & 1973 & 1974 & 1975 & 1976
\end{tabular}
\(00.00000000 .000000000 .000000000 .000000000 .00000000 \quad 0.00000000\)
\(10.02334250 .016563270 .023313730 .02175198 \quad 0.026307210 .01843697\)
20.82176310 .562462100 .812040500 .750162800 .919017820 .62263842
```


Abstract

$\begin{array}{llllllll}3 & 1.0493504 & 0.64108415 & 0.95426570 & 0.88038294 & 1.14897726 & 0.85532943\end{array}$ $\begin{array}{llllllll}4 & 1.0256065 & 0.54018084 & 0.81078464 & 0.77873437 & 1.01228610 & 0.73828466\end{array}$ $\begin{array}{lllllllll}5 & 1.0991274 & 0.49695633 & 0.81126259 & 0.84255776 & 1.11858418 & 0.78303777\end{array}$ $62.76450060 .488383161 .00952180 \quad 0.890059151 .217185310 .69402811$ $\begin{array}{lllllll}7 & 1.6631636 & 0.28676433 & 0.66717546 & 0.78787253 & 1.52461754 & 0.98119349\end{array}$ $81.66316360 .286764330 .66717546 \quad 0.787872531 .524617540 .98119349$ year

age	1977	1978	1979	1980	1981

$00.0000000000 .0000000000 .00000000 \quad 0.000000000 \quad 0.000000000 \quad 0.000000000$
$10.006505918 \quad 0.0053178930 .00505360 \quad 0.005204518 \quad 0.005976583 \quad 0.005135481$
$20.1994279350 .1593797370 .15010870 \quad 0.154371350 \quad 0.178393214 \quad 0.150444554$
$\begin{array}{llllllll}3 & 0.301904035 & 0.222252047 & 0.19487674 & 0.187851109 & 0.230943561 & 0.193657473\end{array}$
$\begin{array}{lllllll}4 & 0.266490116 & 0.191236050 & 0.15841367 & 0.144649268 & 0.214026911 & 0.168324348\end{array}$
$\begin{array}{lllllllll}5 & 0.316097997 & 0.211637757 & 0.16129184 & 0.131864576 & 0.228563176 & 0.152831311\end{array}$
$\begin{array}{llllllll}6 & 0.206828553 & 0.106940172 & 0.06497829 & 0.043439160 & 0.182324153 & 0.091158048\end{array}$
$\begin{array}{lllllllll}7 & 0.341610828 & 0.184961461 & 0.11320405 & 0.073402500 & 0.323501186 & 0.130631218\end{array}$
$8 \quad 0.341610828 \quad 0.1849614610 .113204050 .073402500 \quad 0.323501186 \quad 0.130631218$ year

| age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 |
| 1 | 0.00607374 | 0.007259319 | 0.009172353 | 0.008689891 | 0.008276882 | 0.007822664 |
| 2 | 0.17964803 | 0.217013529 | 0.278334702 | 0.261240495 | 0.246785279 | 0.231149105 |
| 3 | 0.23863970 | 0.300451761 | 0.384844976 | 0.339836476 | 0.302989580 | 0.275135866 |
| 4 | 0.24133319 | 0.333448447 | 0.431261836 | 0.387717124 | 0.355899497 | 0.337441415 |
| 5 | 0.24149479 | 0.336577266 | 0.420065203 | 0.392829425 | 0.365139176 | 0.357992212 |
| 6 | 0.22056152 | 0.348661399 | 0.471495991 | 0.463762242 | 0.393165517 | 0.393537145 |
| 7 | 0.30014060 | 0.451038648 | 0.534541986 | 0.524262692 | 0.399796623 | 0.411269558 |
| 8 | 0.30014060 | 0.451038648 | 0.534541986 | 0.524262692 | 0.399796623 | 0.411269558 |

year

age	1989	1990	1991	1992	1993	1994

00.0000000000 .0000000000 .0000000000 .000000000 .000000000 .00000000 0.0080923620 .0071686580 .0085876110 .009485570 .010757770 .01051794
0.2390903190 .2088600840 .2537205390 .282076850 .322790180 .31461714
$\begin{array}{llllllll}0.271846932 & 0.224437679 & 0.257470735 & 0.29777361 & 0.36834541 & 0.39692750\end{array}$
0.3302424390 .2603947710 .2736613660 .319064460 .388699700 .41683999
0.3408368050 .2648435540 .2593493820 .299161530 .337638410 .33298279
60.3591844100 .2474223310 .2376498990 .316345950 .362009320 .31799641
70.3694298030 .2656207560 .2209295670 .305451550 .347181630 .27566160
80.3694298030 .2656207560 .2209295670 .305451550 .347181630 .27566160
year
$\begin{array}{llllll}\text { age } & 1995 & 1996 & 1997 & 1998 & 1999\end{array}$
00.0000000000 .0000000000 .0000000000 .0000000000 .000000000
0.0081678020 .0038530340 .0031850230 .0040461580 .003811862
$0.2380760740 .1046273290 .084874360 \quad 0.1086346540 .099230443$
0.3429289040 .1627749550 .1433306510 .1860157010 .184839631
$0.364438588 \quad 0.1717962870 .1541216020 .1955694100 .192636382$
$\begin{array}{lllllll}0.324841100 & 0.164434605 & 0.150457059 & 0.195875238 & 0.189753719\end{array}$
$\begin{array}{llllll}0.328249001 & 0.125447248 & 0.118910514 & 0.180143355 & 0.159068300\end{array}$
$70.2738477560 .0943855680 .094453528 \quad 0.1196590960 .099199973$
$80.2738477560 .094385568 \quad 0.094453528 \quad 0.1196590960 .099199973$
year

age 2000	2001	2002	2004	2005

$00.0000000000 .000000000 \quad 0.000000000 \quad 0.000000000 \quad 0.00000000 \quad 0.000000000$

```
    1 0.003589421 0.002716575 0.002409158 0.002354906 0.00226575 0.002699024
    2 0.090853935 0.065700332 0.056451973 0.053942103 0.05111798 0.059776552
    3 0.176601411 0.137999093 0.120530936 0.122501137 0.12424791 0.141244129
    4 0.197187957 0.169291337 0.157247458 0.175835573 0.19405195 0.228018803
    5 0.197825118 0.186408684 0.179798950 0.220548567 0.26374291 0.313811806
    6 0.162611260 0.164368847 0.162577339 0.211371234 0.32117289 0.455301525
    7 0.106540545 0.144811340 0.149179726 0.183661609 0.27867914 0.474793354
    8 0.106540545 0.144811340 0.149179726 0.183661609 0.27867914 0.474793354
    year
age 2006 2007 2008 2009 2010
    0 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
    1 0.002911738 0.002809547 0.002688573 0.001938206 0.002050783
    0.063168652 0.058869710 0.054464161 0.037628045 0.039612275
    0.140164399 0.128220366 0.093108299 0.055318719 0.060053852
    0.217166292 0.194025445 0.126495940 0.071509774 0.071543216
    0.284763822 0.249630544 0.154333114 0.087347412 0.084475618
    0.385458758 0.327381827 0.151669088 0.065109955 0.059720998
    0.437922286 0.384243535 0.191012156 0.091894370 0.072728563
    8 0.437922286 0.384243535 0.191012156 0.091894370 0.072728563
    year
age 2011201220132014
    0 0.000000000 0.000000000 0.00000000000.000000000 0.000000000
    1 0.002338586 0.003337446 0.002959385 0.002765175 0.002177255
    0.045618917 0.066329964 0.057714957 0.054708370 0.043722274
    0.077040133 0.127472235 0.124004224 0.122078685 0.103709645
    0.094583522 0.164276293 0.180549048 0.182706187 0.169082281
    0.111825994 0.197064741 0.234882768 0.233656512 0.242764995
    0.087299693 0.211294742 0.303034914 0.279546869 0.351920810
    0.095140620 0.225081061 0.351250994 0.341557584 0.491015440
    8 0.095140620 0.225081061 0.351250994 0.341557584 0.491015440
    year
age 2016 2017 2018 2019
    0.000000000 0.000000000 0.000000000 0.000000000
    0.002135441 0.001781414 0.001964486 0.001964561
    0.044023560 0.036437381 0.040719119 0.040720541
    0.118857830 0.112133968 0.126632708 0.126636771
    0.191939429 0.183535435 0.223534424 0.223541007
    0.266123147 0.231406492 0.285192514 0.285200224
    0.397733888 0.286839099 0.368016036 0.368031274
    7 0.605846106 0.440086912 0.579202991 0.579225007
    8 0.605846106 0.440086912 0.579202991 0.579225007
```

, , area = BD
year

age	1947	1948	1949	1950

$0 \quad 0.00043087530 .0004101282 \quad 0.0007586030 \quad 0.00131306470 .0021697177$
$10.0006286880 \quad 0.00056864530 .0019860730 \quad 0.0060628199 \quad 0.0168332478$
$20.00017586010 .0001653714 \quad 0.0003471257 \quad 0.0006761594 \quad 0.0012501567$
$30.00025295210 .00024420540 .0003770118 \quad 0.00055716810 .0007983842$
year
$\begin{array}{llllll}\text { age } & 1952 & 1953 & 1954 & 1955 & 1956\end{array}$
00.00300011050 .0037296270 .0046971270 .0049484930 .004461943

1	0.0325318031	0.050653124	0.072151780	0.102999129	0.105884951	
2	0.0018512485	0.002398864	0.002943234	0.003641530	0.003712477	
3	0.0009905517	0.001144244	0.001277606	0.001433136	0.001428982	
year						
age	1957	1958	1959	1960	1961	1962
0	0.005084987	0.005402454	0.009176446	0.014875082	0.015231080	0.009042185
1	0.129662457	0.118814505	0.145484721	0.160634396	0.113842420	0.077984367
2	0.004143640	0.003937690	0.004398226	0.004604385	0.003734830	0.002901230
3	0.001512647	0.001460329	0.001531056	0.001536058	0.00136032	0.001175422
year						
age	1963	1964	1965	1966	1967	
0	0.013132038	0.016660653	0.015295214	0.022237794	0.029456463	
1	0.120071551	0.211658023	0.203044662	0.226606310	0.282736252	
2	0.003722241	0.005200043	0.005073039	0.005362213	0.006019418	
3	0.001349254	0.001667440	0.001667439	0.001740669	0.001875400	
year						
age	1968	1969	1970	1971	1972	
0	0.031513131	0.021476181	0.035517040	0.049720420	0.065319524	
1	0.299176361	0.259298251	0.313203133	0.495596935	0.563369790	
2	0.006259859	0.005723343	0.006400774	0.008347661	0.009091763	
3	0.001927786	0.001830203	0.001964014	0.002292534	0.002425260	
year						
age	1973	1974	1975	1976	1977	
0	0.070502646	0.092877772	0.115611467	0.083816075	0.075558350	
1	0.565283896	0.469487928	0.440053093	0.187769368	0.110590380	
2	0.009063563	0.008072741	0.007687611	0.004550954	0.003228502	
3	0.002429585	0.002276470	0.002220589	0.001630533	0.001325561	
year						
age	1978	1979	1980	1981	1982	
0	0.093894997	0.115974144	0.143448131	0.324923014	0.320385250	
1	0.100277331	0.093721593	0.086085796	0.180227216	0.172645054	
2	0.003092176	0.003030648	0.002952982	0.004506611	0.004465142	
3	0.001288112	0.001270840	0.001250345	0.001571264	0.001560173	
year						
age	1983	1984	1985	1986	1987	
0	0.317458795	0.192582893	0.126008430	0.099842672	0.135466758	
1	0.201647446	0.181323993	0.228377766	0.237009822	0.320344506	
2	0.005015408	0.004883518	0.005886646	0.006368538	0.008116381	
3	0.001670043	0.001659781	0.001862617	0.001940922	0.002236236	
year						
age	1988	1989	1990	1991	1992	
0	0.128996432	0.116733450	0.093809951	0.119791175	0.204018258	
1	0.400976448	0.325952567	0.276054020	0.229697963	0.271072846	
2	0.009877430	0.009636276	0.009769915	0.010223003	0.012634381	
3	0.002500554	0.002455701	0.002455145	0.002512647	0.002857337	
year						
age	1993	1994	1995	1996	1997	
0	0.222036668	0.146745052	0.139011122	0.067667348	0.023768167	
1	0.248690283	0.125787734	0.111286449	0.066870381	0.022721983	
2	0.013593518	0.010339827	0.010796173	0.009121549	0.005947058	
3	0.003028262	0.002623274	0.002727878	0.002468370	0.001943285	
year						
age	1998	1999	2000	2001	2002	

```
    0 0.021229026 0.025186593 0.030066107 0.020566130 0.026126945
    1 0.022818314 0.017644046 0.018896219 0.007026746 0.016336999
    2 0.006570483 0.006338086 0.006736067 0.004049759 0.006677948
    30.002014357 0.001989735 0.001841882 0.001284373 0.001334168
    year
age 2003 2004 2005 2006 2007
    0 0.028251025 0.0363813207 0.0522822356 0.043048438 0.0302461105
    1 0.024831019 0.0294468367 0.0392793632 0.020246005 0.0112945841
    2 0.007603846 0.0083311712 0.0084456718 0.005443603 0.0027274768
    30.001003498 0.0008512123 0.0005845575 0.000395756 0.0001407086
    year
age 2008 2009 2010 2011 2012
    0 0.03136458899 0.0251592233 0.0263721531 0.0312818557 0.0344530762
    1 0.01147505260 0.0108995567 0.0102602778 0.0121202132 0.0176274987
    2 0.00205231879 0.0020225402 0.0023440871 0.0022278983 0.0032948113
    30.00007903096 0.0001015617 0.0001968298 0.0001855711 0.0002646568
    year
age 2013201420152017
    0 0.025511983 0.0331986882 0.0458908101 0.06059885335 0.04486903308
    1 0.014826916 0.0157264724 0.0168750431 0.01982957074 0.01256092602
    2 0.003233521 0.0031696099 0.0024208938 0.00248500709 0.00132270577
    30.000243034 0.0002117316 0.0001066504 0.00009276139 0.00003299441
    year
age 2018 2019
    00.04609561841 0.04616935994
    10.00880101292 0.00881408292
    20.00092349257 0.00092430301
    30.00002310725 0.00002311924
```

Table 2.6.2.4 North Sea Herring. Negative log-likelihood

```
1518.22018831688
```

Table 2.6.2.5 North Sea herring. FLR, R software versions
FLSAM.version 2.1.0

FLCore.version $\quad 2.6 .9$
R.version \quad version 3.5 .2 (2018-12-20)
platform x86_64-w64-mingw32
run.date 2019-03-17 14:06:48

Table 2.6.3.1 North Sea Herring. CATCH IN NUMBER

Table 2.6.3.2 North Sea Herring. WEIGHTS AT AGE IN THE CATCH


```
40.17400000 .17300000 .17700000 .18400000 .18900000 .18900000 .1810000
\(50.19700000 .20800000 .19300000 .2030000 \quad 0.20700000 .20400000 .2140000\)
\(60.21600000 .23100000 .22900000 .2170000 \quad 0.22300000 .22800000 .2400000\)
\(70.23700000 .24700000 .23600000 .2350000 \quad 0.23700000 .24400000 .2550000\)
\(\begin{array}{llllllllll}8 & 0.2565714 & 0.2631489 & 0.2608182 & 0.2630415 & 0.2631664 & 0.2734558 & 0.2761973\end{array}\) year
\begin{tabular}{lllllll} 
age & 1995 & 1996 & 1997 & 1998 & 1999 & 2000
\end{tabular}
00.00900000 .01500000 .01500000 .02100000 .0090000 .01500000 .012000
10.04200000 .01800000 .04400000 .05100000 .0450000 .03300000 .048000
20.13000000 .11200000 .10800000 .11400000 .1150000 .11300000 .118000
30.16900000 .15600000 .14800000 .14500000 .1510000 .15700000 .149000
40.19800000 .18800000 .19500000 .18300000 .1710000 .17900000 .177000
\(50.20700000 .20400000 .22700000 .21900000 .2070000 .2010000 \quad 0.198000\)
60.24300000 .21200000 .22600000 .23800000 .2330000 .21600000 .213000
70.24700000 .26100000 .23500000 .24700000 .2450000 .24600000 .238000
\(8 \quad 0.28091530 .2814938 \quad 0.25494370 .28789520 .2677190 .27312610 .269744\) year
\begin{tabular}{llllll} 
age & 2002 & 2003 & 2004 & 2005 & 2006
\end{tabular} \(2007 \quad 2008\)
00.01200000 .01400000 .01400000 .01100000 .01000000 .01240000 .007900
\(10.03700000 .03700000 .03600000 .04400000 .04900000 .0638000 \quad 0.053500\)
20.11800000 .10400000 .10000000 .09900000 .11700000 .12140000 .128800
30.15300000 .15800000 .13800000 .15300000 .14400000 .15130000 .179600
40.17000000 .17400000 .18300000 .16600000 .17200000 .16340000 .181200
50.19900000 .18400000 .20100000 .20800000 .18100000 .19330000 .183200
60.21400000 .20500000 .21600000 .22300000 .22000000 .19000000 .215700
70.22800000 .22200000 .22800000 .24000000 .23700000 .22320000 .216100
80.25040170 .23664640 .25451150 .26536760 .24600610 .23749330 .262076 year
\begin{tabular}{lllllll} 
age 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015
\end{tabular}
00.00940000 .00750000 .0080000 .01060000 .00770000 .00750000 .0087000
10.05140000 .05710000 .0413000 .04630000 .04680000 .05220000 .0261000
20.14400000 .12920000 .1317000 .12430000 .11620000 .12400000 .1135000
30.18110000 .16690000 .1593000 .17060000 .15630000 .17190000 .1538000
40.21580000 .19120000 .1831000 .18540000 .19770000 .18610000 .1883000
50.21620000 .22030000 .1970000 .20580000 .19800000 .21480000 .2001000
60.23900000 .21930000 .2167000 .22150000 .21540000 .21180000 .2212000
70.24280000 .21600000 .2211000 .23870000 .23340000 .22640000 .2170000
80.25327230 .23838920 .2319180 .24272130 .23784320 .24265410 .2347182
year
age 201620172018
00.00710000 .00900000 .0054000
10.02650000 .03800000 .0394000
20.12670000 .09900000 .1085000
30.15490000 .15600000 .1451000
40.18030000 .17300000 .1838000
50.20590000 .18800000 .1914000
60.21510000 .21500000 .2151000
70.23130000 .22000000 .2342000
80.22992440 .23051840 .2455776
```


Table 2.6.3.3 North Sea Herring. WEIGHTS AT AGE IN THE STOCK

```
Units : kg
    year
age 1947 1948 1949 1950 1951 1952 1953
    0 0.0150 0.0150 0.0150000 0.0150000 0.0150000 0.0150000 0.0150000
    1 0.0500 0.0500 0.0500000 0.0500000 0.0500000 0.0500000 0.0500000
    2 0.1220 0.1220 0.1240000 0.1260000 0.1300000 0.1330000 0.1360000
    3 0.1400 0.1400 0.1416667 0.1453333 0.1510000 0.1576667 0.1630000
    4 0.1560 0.1560 0.1576667 0.1610000 0.1676667 0.1750000 0.1830000
    5 0.1710 0.1710 0.1726667 0.1756667 0.1816667 0.1893333 0.1976667
    6 0.1850 0.1850 0.1863333 0.1890000 0.1943333 0.2013333 0.2096667
    7 0.1970 0.1970 0.1983333 0.2006667 0.2053333 0.2113333 0.2186667
    8 0.2625 0.2625 0.2630000 0.2640000 0.2658333 0.2683333 0.2713333
        year
age 1954 1955 1956 1957 19 1958 1959 190
    0 0.0150000 0.0150000 0.0150000 0.0150000 0.0150000 0.0150000 0.0150000
    1 0.0500000 0.0500000 0.0500000 0.0500000 0.0500000 0.0500000 0.0500000
    2 0.1376667 0.1386667 0.1396667 0.1403333 0.1406667 0.1416667 0.1463333
    3 0.1670000 0.1686667 0.1703333 0.1716667 0.1730000 0.1743333 0.1790000
    4 0.1886667 0.1926667 0.1950000 0.1966667 0.1980000 0.1993333 0.2076667
    5 0.2050000 0.2100000 0.2136667 0.2160000 0.2176667 0.2193333 0.2263333
    6 0.2170000 0.2230000 0.2273333 0.2306667 0.2326667 0.2343333 0.2486667
    7 0.2260000 0.2323333 0.2376667 0.2413333 0.2436667 0.2453333 0.2636667
    8 0.2743333 0.2771667 0.2795000 0.2815000 0.2828333 0.284000000.2936240
        year
age 1961 1962 1963 1964 19 1965 1966 1967
    0 0.0150000 0.0150000 0.0150000 0.0150000 0.0150000 0.0150000 0.0150000
    1 0.0500000 0.0500000 0.0500000 0.0500000 0.0500000 0.0500000 0.0500000
    2 0.1510000 0.1550000 0.1550000 0.1550000 0.1550000 0.1550000 0.1550000
    30.1833333 0.1870000 0.1870000 0.1870000 0.1870000 0.1870000 0.1870000
    4 0.2156667 0.2230000 0.2230000 0.2230000 0.2230000 0.2230000 0.2230000
    5 0.2330000 0.2390000 0.2390000 0.2390000 0.2390000 0.2390000 0.2390000
    6 0.2626667 0.2760000 0.2760000 0.2760000 0.2760000 0.2760000 0.2760000
    70.2816667 0.2990000 0.2990000 0.2990000 0.2990000 0.299000000.2990000
    8 0.3034146 0.3090087 0.3092903 0.3101214 0.3069573 0.3102731 0.3100755
        year
\begin{tabular}{lllllllll} 
age & 1968 & 1969 & 1970 & 1971 & 1972 & 1973 & 1974 & 1975
\end{tabular}
    0 0.0150000 0.0150000 0.0150000 0.015000 0.0150 0.0150 0.015000 0.01500
    1 0.0500000 0.0500000 0.0500000 0.050000 0.0500 0.0500 0.050000 0.05000
    2 0.1550000 0.1550000 0.1550000 0.155000 0.1550 0.1550 0.155000 0.15500
    3 0.1870000 0.1870000 0.1870000 0.187000 0.1870 0.1870 0.187000 0.18700
    4 0.2230000 0.2230000 0.2230000 0.223000 0.2230 0.2230 0.223000 0.22300
    5 0.2390000 0.2390000 0.2390000 0.239000 0.2390 0.2390 0.239000 0.23900
    6 0.2760000 0.2760000 0.2760000 0.276000 0.2760 0.2760 0.276000 0.27600
    7 0.2990000 0.2990000 0.2990000 0.299000 0.2990 0.2990 0.29900000.29900
    8 0.3112209 0.3088686 0.3090248 0.311952 0.3076 0.3078 0.308129 0.30775
        year
age 1976 1977 1978 1979 1980 1981 1982 1983
    0 0.0150000 0.015 0.0150 0.0150000 0.0150 0.015 0.0150000 0.0150000
    1 0.0500000 0.050 0.0500 0.0500000 0.0500 0.050 0.0500000 0.0500000
    2 0.1550000 0.155 0.1550 0.1550000 0.1550 0.155 0.1550000 0.1550000
    3 0.1870000 0.187 0.1870 0.1870000 0.1870 0.187 0.1870000 0.1870000
```

```
    4 0.2230000 0.223 0.2230 0.2230000 0.2230 0.223 0.2230000 0.2230000
    5 0.2390000 0.239 0.2390 0.2390000 0.2390 0.239 0.2390000 0.2390000
    6 0.2760000 0.276 0.2760 0.2760000 0.2760 0.276 0.2760000 0.2760000
    7 0.2990000 0.299 0.2990 0.2990000 0.2990 0.299 0.2990000 0.2990000
    8 0.3077143 0.306 0.3096 0.3068571 0.3072 0.307 0.3074043 0.3091429
    year
age 1984 1985 1986 198 1987 1988
    0 0.01733333 0.01566667 0.0140000 0.00900000 0.0080000000.008666667
    1 0.05666667 0.05633333 0.0610000 0.05033333 0.04833333 0.043666667
    2 0.15033333 0.13800000 0.1300000 0.12166667 0.12300000 0.122333333
    30.19033333 0.18700000 0.1833333 0.17000000 0.16633333 0.165333333
    4 0.22966667 0.23233333 0.2316667 0.21233333 0.20833333 0. 204666667
    5 0.24333333 0.24666667 0.2520000 0.23000000 0.22900000 0.228333333
    6 0.28200000 0.27466667 0.2730000 0.24200000 0.24833333 0.252333333
    7 0.31066667 0.32100000 0.3146667 0.27466667 0.25866667 0.261333333
    8 0.34351178 0.35438242 0.3627746 0.30562963 0.28535714 0.288595745
        year
\begin{tabular}{lllllll} 
age & 1990 & 1991 & 1992 & 1993 & 1994 & 1995
\end{tabular}
    0 0.01233333 0.01133333 0.01033333 0.005666667 0.007333333 0.00600000
    1 0.05200000 0.05900000 0.06366667 0.061000000 0.060000000 0.05733333
    2 0.12566667 0.13900000 0.13666667 0.134000000 0.126333333 0.12933333
    3 0.17433333 0.18366667 0.19400000 0.184333333 0.191666667 0.18566667
    4 0.21166667 0.21200000 0.21400000 0.213000000 0.214333333 0.21066667
    5 0.24366667 0.23866667 0.23433333 0.234333333 0.239666667 0.22433333
    6 0.27066667 0.26533333 0.25300000 0.261666667 0.274666667 0. 26800000
    7 0.28366667 0.27966667 0.27166667 0.272666667 0.291333333 0.29333333
    8 0.30788452 0.30953886 0.29870453 0.307936434 0.320523728 0.32614016
        year
age 1996 1997 1998 2000 2001
    0 0.0060000 0.00500000 0.005666667 0.00600000 0.005666667 0.00600000
    1 0.0540000 0.04866667 0.047333333 0.05066667 0.051333333 0.05066667
    2 0.1296667 0.12333333 0.116000000 0.11600000 0.115666667 0.12166667
    3 0.1993333 0.18333333 0.187333333 0.17933333 0.183666667 0.17166667
    4 0.2273333 0.23033333 0.241333333 0.22633333 0.221333333 0.21000000
    5 0.2343333 0.23733333 0.264333333 0.25600000 0.248333333 0.23266667
    6 0.2736667 0.25666667 0.283666667 0.27333333 0.278666667 0.25533333
    7 0.3006667 0.28033333 0.286666667 0.27600000 0.286000000 0.27466667
    8 0.3270679 0.31004007 0.308339011 0.27811880 0.284171183 0.27449422
        year
age 2002 2003 2004 2005 2007
    0 0.006333333 0.006666667 0.006666667 0.005666667 0.006666667 0.00600000
    1 0.047333333 0.047000000 0.042000000 0.041333333 0.041000000 0.05133333
    2 0.128000000 0.123000000 0.119333333 0.118000000 0.125666667 0.12800000
    30.171666667 0.173000000 0.165333333 0.164333333 0.155333333 0.16066667
    4 0.205333333 0.202333333 0.202666667 0.198000000 0.191000000 0.17966667
    5 0.228333333 0.222000000 0.223000000 0.224666667 0.216000000 0.20700000
    6 0.248333333 0. 242333333 0.247666667 0.248000000 0.242000000 0.22366667
    7 0.270333333 0.265666667 0.267666667 0. 265000000 0.252333333 0.23800000
    8 0.286521182 0.284946134 0.280490193 0.284851772 0.270150625 0.25639104
        year
age 2008 2009 2010 2011 2012 2013
    00.00800000 0.007333333 0.007333333 0.006666667 0.0060000000.00600000
    1 0.05766667 0.061333333 0.052000000 0.043000000 0.04033333 0.04033333
```

```
    2 0.13033333 0.137333333 0.142333333 0.145666667 0.13800000 0.13566667
    30.16433333 0.181000000 0.190333333 0.187333333 0.18200000 0.17466667
    4 0.18066667 0.196666667 0.216000000 0.225000000 0.21133333 0.20866667
    5 0.19533333 0.210000000 0.223666667 0.239666667 0.23300000 0.22133333
    60.21766667 0.222666667 0.234333333 0.243666667 0. 24100000 0.24200000
    7 0.22600000 0.233666667 0.240000000 0.250666667 0.24266667 0.24933333
    8 0.25556215 0.255734029 0.260650879 0.257270953 0.25251076 0.25179433
    year
age 2014 2015 2016 2017 2018
    0 0.005666667 0.005333333 0.00500000 0.004166667 0.004566667
    1 0.043333333 0.043666667 0.04333333 0.042866667 0.039966667
    2 0.128666667 0.127333333 0.12100000 0.110866667 0.101300000
    30.176666667 0.161333333 0.16033333 0.153166667 0.152966667
    4 0.203666667 0.200000000 0.18866667 0.182966667 0.185766667
    5 0.215666667 0.211666667 0.21600000 0.207100000 0.215033333
    60.228666667 0.224666667 0.22433333 0.226533333 0.229200000
    7 0.241333333 0.229000000 0.22433333 0.227066667 0.238766667
    8 0.246572539 0.239358137 0.23372066 0.229232697 0.246755779
```


Table 2.6.3.4 North Sea Herring. NATURAL MORTALITY


```
40.36119340 .36119310 .36119360 .36119260 .36119470 .36119050 .3611990
50.34447020 .34447020 .34447020 .34447020 .34447020 .34447020 .3444702
\(\begin{array}{llllllllll}6 & 0.3356421 & 0.3356424 & 0.3356418 & 0.3356430 & 0.3356406 & 0.3356454 & 0.3356358\end{array}\)
\(\begin{array}{lllllllllll}7 & 0.3302641 & 0.3302646 & 0.3302637 & 0.3302654 & 0.3302620 & 0.3302688 & 0.3302552\end{array}\)
80.32955630 .32955670 .32955590 .32955750 .32955420 .32956090 .3295474 year
\begin{tabular}{llllllll} 
age & 1968 & 1969 & 1970 & 1971 & 1972 & 1973 & 1974
\end{tabular}
\(\begin{array}{llllllllll}0 & 0.8156566 & 0.8155348 & 0.8157783 & 0.8152912 & 0.8162654 & 0.8143171 & 0.8182138\end{array}\)
\(10.66778960 .6681510 \quad 0.66742820 .66887390 .66598250 .67176520 .6601998\)
\(20.44058440 .4406828 \quad 0.44048590 .44087970 .44009210 .44166730 .4385170\)
\(\begin{array}{llllllllll}3 & 0.3878968 & 0.3879806 & 0.3878129 & 0.3881483 & 0.3874775 & 0.3888192 & 0.3861357\end{array}\)
\(40.36118200 .36121590 .3611480 \quad 0.3612838 \quad 0.36101220 .36155550 .3604690\)
\(\begin{array}{lllllllllllll}5 & 0.3444703 & 0.3444701 & 0.3444704 & 0.3444698 & 0.3444710 & 0.3444687 & 0.3444733\end{array}\)
\(\begin{array}{llllllllllll}6 & 0.3356550 & 0.3356165 & 0.3356934 & 0.3355396 & 0.3358473 & 0.3352320 & 0.3364625\end{array}\)
\(\begin{array}{llllllllllll}7 & 0.3302824 & 0.3302281 & 0.3303366 & 0.3301196 & 0.3305537 & 0.3296854 & 0.3314221\end{array}\)
\(8 \quad 0.32957450 .32952020 .32962880 .32941170 .32984580 .32897770 .3307138\) year
\begin{tabular}{rrrrrrrrr} 
age & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 \\
0 & 0.8104203 & 0.8057025 & 0.8047344 & 0.8064925 & 0.8102209 & 0.8172173 & 0.8274914 \\
1 & 0.6833306 & 0.7028286 & 0.7182187 & 0.7301416 & 0.7391092 & 0.7443256 & 0.7458190 \\
2 & 0.4448176 & 0.4496803 & 0.4530271 & 0.4549542 & 0.4555319 & 0.4544437 & 0.4517433 \\
3 & 0.3915027 & 0.3953336 & 0.3974290 & 0.3980001 & 0.3972606 & 0.3948411 & 0.3907612 \\
4 & 0.3626420 & 0.3638296 & 0.3639133 & 0.3629697 & 0.3611322 & 0.3583281 & 0.3545417 \\
5 & 0.3444641 & 0.3438615 & 0.3425790 & 0.3406726 & 0.3382412 & 0.3352751 & 0.3317545 \\
6 & 0.3340014 & 0.3313040 & 0.3283186 & 0.3250641 & 0.3216048 & 0.3180074 & 0.3142432 \\
7 & 0.3279486 & 0.3243595 & 0.3206191 & 0.3167357 & 0.3127549 & 0.3087363 & 0.3046563 \\
8 & 0.3272416 & 0.3236265 & 0.3198121 & 0.3158315 & 0.3117531 & 0.3076064 & 0.3033674
\end{tabular}
80.32724160 .32362650 .31981210 .31583150 .31175310 .30760640 .3033674 year
\begin{tabular}{llllllll} 
age & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988
\end{tabular}
00.83835550 .85905810 .88092670 .89341300 .90372760 .90894020 .9055544
10.74533710 .73912670 .73042590 .72308710 .71388850 .70445240 .6956670
20.44805610 .44288780 .43661000 .42753640 .41599040 .40691060 .3996457
30.38581790 .37820720 .36942080 .35929930 .34720280 .33815160 .3327748
40.34999190 .34381740 .33662850 .32661550 .31419980 .30515510 .3001102
50.32776300 .32280280 .31719520 .30964740 .30049450 .29349000 .2889626
60.31023330 .30573920 .30087070 .29452300 .28707050 .28117650 .2771440
70.30043560 .29586860 .29106350 .28504670 .27815490 .27274530 .2690913
80.29902440 .29416640 .28908150 .28334360 .27701110 .27184920 .2681644 year
\begin{tabular}{llllllll} 
age & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995
\end{tabular}
00.89696490 .89057810 .88477890 .87652580 .87108550 .86534650 .8611988
10.68721700 .67891940 .66708190 .65254720 .64193500 .63227770 .6253381
20.39248700 .38878710 .39102140 .39658570 .40121310 .40629280 .4119019
\(\begin{array}{llllllllll}3 & 0.3287391 & 0.3266214 & 0.3289607 & 0.3346403 & 0.3387533 & 0.3412051 & 0.3434764\end{array}\)
40.29642640 .29497640 .29901740 .30703470 .31274270 .31696750 .3205615
\(50.28529250 .28331070 .28487020 .2889228 \quad 0.29194810 .29500660 .2978004\)
60.27381760 .27167210 .27191040 .27385300 .27515150 .27596970 .2768056
\(70.26614600 .26428580 .26466070 .2666571 \quad 0.26800600 .26874520 .2695653\)
\(8 \quad 0.26513730 .26284370 .26196130 .26223820 .26235600 .26175430 .2614389\) year
\(\begin{array}{llllllll}\text { age } & 1996 & 1997 & 1998 & 1999 & 2000 & 2001\end{array}\)
\(\begin{array}{llllllllll}0 & 0.8644131 & 0.8714153 & 0.8809581 & 0.8953693 & 0.9138225 & 0.9303382 & 0.9462271\end{array}\)
\(\begin{array}{lllllllll}1 & 0.6266946 & 0.6323094 & 0.6414736 & 0.6612056 & 0.6887892 & 0.7089131 & 0.7237124\end{array}\)
```

```
    2 0.4148836 0.4175451 0.4218480 0.4291405 0.4376797 0.4447908 0.4528783
    3 0.3428210 0.3407633 0.3411658 0.3447208 0.3494167 0.3550605 0.3641446
    4 0.3193077 0.3158974 0.3144479 0.3140061 0.3129517 0.3144011 0.3206260
    5 0.2970118 0.2949494 0.2944949 0.2949689 0.2952192 0.2974189 0.3032716
    6 0.2759604 0.2744636 0.2745619 0.2760781 0.2779683 0.2811793 0.2871590
    7 0.2692426 0.2684613 0.2687931 0.2699709 0.2713117 0.2737630 0.2783370
    8 0.2612232 0.2610349 0.2620768 0.2649014 0.2687185 0.2727170}0.277417
    year
age 2003 2004 2005 2006 2007 2008 2009
    0 0.9636406 0.9778611 0.9924404 1.0051537 1.0126169 1.0176157 1.0160229
    1 0.7391891 0.7458320 0.7351250 0.7212731 0.7089871 0.6927028 0.6815790
    2 0.4623603 0.4675825 0.4670940 0.4651993 0.4606177 0.4534194 0.4486089
    30.3756800 0.3842515 0.3917235 0.3982069 0.3992761 0.3979235 0.3972307
    4 0.3294129 0.3371511 0.3469816 0.3567311 0.3614871 0.3648674 0.3680856
    5 0.3111539 0.3182483 0.3270457 0.3358458 0.3408919 0.3449711 0.3487946
    6 0.2949874 0.3020598 0.3098954 0.3176953 0.3228500 0.3272613 0.3316144
    7 0.2843214 0.2900766 0.2964710 0.3030145 0.3082212 0.3132112 0.3182143
    8 0.2830219 0.2882408 0.2937930 0.2992683 0.3031155 0.3064383 0.3102376
        year
\begin{tabular}{lllllll} 
age & 2010 & 2011 & 2012 & 2013 & 2014 & 2015
\end{tabular}
    0 1.0077651 0.9945248 0.9758610 0.9522143 0.9234139 0.8891311 0.8495409
    1 0.6742762 0.6682724 0.6657074 0.6645925 0.6661190 0.6716350 0.6800092
    2 0.4455843 0.4427270 0.4410072 0.4395108 0.4388913 0.4398892 0.4419012
    30.3969625 0.3960316 0.3949324 0.3931928 0.3911678 0.3893188 0.3873211
    4 0.3710640 0.3734170 0.3753545 0.3766790 0.3775302 0.3781232 0.3783272
    5 0.3522990 0.3552698 0.3578357 0.3598761 0.3615013 0.3628765 0.3639009
    6 0.3358301 0.3397322 0.3434756 0.3469157 0.3501437 0.3532930 0.3562775
    7 0.3231951 0.3281086 0.3330175 0.3378633 0.3426801 0.3475198 0.3523502
    8 0.3144489 0.3187356 0.3232706 0.3278875 0.3326709 0.3377392 0.3430125
        year
age 2017 2018
    0 0.8693360 0.8495409
    1 0.6758221 0.6800092
    2 0.4408952 0.4419012
    30.3883200 0.3873211
    4 0.3782252 0.3783272
    50.3633887 0.3639009
    6 0.3547852 0.3562775
    70.3499350 0.3523502
    8 0.3403759 0.3430125
```

Table 2.6.3.5 North Sea Herring. PROPORTION MATURE

year														
age	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1
year														
age	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
1	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00
2	1	1	1	1	1	1	1	1	1	1	1	0.82	0.82	0.82
3	1	1	1	1	1	1	1	1	1	1	1	1.00	1.00	1.00
4	1	1	1	1	1	1	1	1	1	1	1	1.00	1.00	1.00
5	1	1	1	1	1	1	1	1	1	1	1	1.00	1.00	1.00
6	1	1	1	1	1	1	1	1	1	1	1	1.00	1.00	1.00
7	1	1	1	1	1	1	1	1	1	1	1	1.00	1.00	1.00
8	1	1	1	1	1	1	1	1	1	1	1	1.00	1.00	1.00
year														
age	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.00
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.00
2	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.7	0.75	0.8	0.85
3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	1.00	1.0	0.93
4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	1.00	1.0	1.00
5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	1.00	1.0	1.00
6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	1.00	1.0	1.00
7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	1.00	1.0	1.00
8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	1.00	1.0	1.00
year														
age	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.82	0.91	0.86	0.50	0.47	0.73	0.67	0.61	0.64	0.64	0.69	0.67	0.77	0.87
3	0.94	0.97	0.99	0.99	0.61	0.93	0.95	0.98	0.94	0.89	0.91	0.96	0.92	0.97
4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
year														1.00
age	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.43	0.70	0.76	0.66	0.71	0.86	0.89	0.45	0.87	0.91	0.83	0.85	0.70	0.71
3	0.93	0.65	0.96	0.88	0.92	0.98	1.00	0.90	0.84	0.99	0.96	1.00	0.90	0.89

```
    4 1.00 1.00 0.96 0.98 0.93 0.99 1.00 1.00 1.00 1.00 0.98 1.00 0.96 0.95
    5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
    6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
    7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
    8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
    year
age 2017 2018
    0 0.00 0.00
    1 0.00 0.00
    2 0.55 0.37
    30.96 0.91
    40.97 0.98
    5 1.00 1.00
    6 1.00 1.00
    71.00 1.00
    8 1.00 1.00
```

Table 2.6.3.6 North Sea Herring. FRACTION OF HARVEST BEFORE SPAWNING

Units : NA			
year			
age	1947	\ldots	2018
0	0.67		0.67
1	0.67		0.67
2	0.67		0.67
3	0.67		0.67
4	0.67		0.67
5	0.67		0.67
6	0.67		0.67
7	0.67		0.67
8	0.67		0.67

Table 2.6.3.7 North Sea Herring. FRACTION OF NATURAL MORTALITY BEFORE SPAWNING

Units $: ~ N A ~$			
year			
age 1947	\ldots	2018	
0	0.67		0.67
1	0.67		0.67
2	0.67		0.67
3	0.67		0.67
4	0.67		0.67
5	0.67		0.67
6	0.67		0.67
7	0.67		0.67
8	0.67		0.67

Table 2.6.3.8 North Sea Herring. SURVEY INDICES

HERAS - Configuration

Index type : number

HERAS - Index Values

IBTS-Q1 - Configuration

```
Herring in Sub-area IV, Divisions VIId & IIIa (autumn-spawners) (13/Mar/2018 17:31)
Imported from VPA file.
\begin{tabular}{rrrrr} 
min & max & plusgroup & minyear & maxyear \\
1.0000000 & 1.0000000 & NA 1984.0000000 & 2019.0000000 \\
startf & endf & & \\
0.1008259 & 0.1008259 & & &
\end{tabular}
```

Index type : number

IBTS-Q1 - Index Values

```
Units : NA
    year
age 1984 1985 1986 1987 19 1988 1989 198 190 1901
    1 1183824 1761019 1944621 3737913 1800985 1969284 905937.3 1284049
        year
\begin{tabular}{lllllllll} 
age & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999
\end{tabular}
    1 1345606 2213999 3260479 2671352 1493010 2166324 1945292 799496.3
        year
age 2000 2001 2002 2003 2004 2005 2006 2007
    1 2476525 1891274 2096503 1577394 856713.3 1073097 832198.31016684
        year
age 2008 2009 2010 2011 2012 2013 2014 2015
    1 896865.2 845210.2 1066098 1867168 956023.3 584592.2 1902857 2271779
        year
age 2016 2017 2018 2019
    1 659354.3 1583103 810957.2 1097713
```


IBTSO - Configuration

Herring in Sub-area IV, Divisions VIId \& IIIa (autumn-spawners) (13/Mar/2018 17:31) • Imported from VPA file.

min	max plusgroup	minyear	maxyear	startf	endf	
0.00	0.00	NA	1992.00	2019.00	0.08	0.17

Index type : number

IBTSO - Index Values

```
Units : NA
\begin{tabular}{lllllllll} 
& 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999
\end{tabular}
\begin{tabular}{lllllllllll}
0 & 164.0899 & 195.7571 & 155.1368 & 170.4691 & 106.264 & 134.6798 & 51.71666 & 255.4222
\end{tabular}
        year
\begin{tabular}{lllllll} 
age 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006
\end{tabular}
\begin{tabular}{lllllllll}
0 & 109.8237 & 341.3018 & 150.7038 & 70.83748 & 43.88171 & 82.06045 & 64.41743
\end{tabular}
        year
\begin{tabular}{llllll} 
age 2007 & 2008 & 2009 & 2011 & 2012
\end{tabular}
    0 50.91532 39.53371 99.18411 74.10116 77.63466 65.07967 61.17656
        year
age 2014 2015 2016 2017 2018 2019
    0113.7963 21.76008 81.69031 27.83202 102.1129 51.62587
```


IBTS-Q3 - Configuration

```
Herring in Sub-area IV, Divisions VIId & IIIa (autumn-spawners) (13/Mar/2018 17:31) .
Imported from VPA file.
\begin{tabular}{rrrrr} 
min & max & plusgroup & minyear & maxyear \\
0.0000000 & 5.0000000 & NA 1998.0000000 & 2018.0000000 \\
startf & endf & & \\
0.6084662 & 0.6084662 & & &
\end{tabular}
```

Index type : number

IBTS-Q3 - Index Values

LAI-ORSH - Configuration

min	max plusgroup	minyear	maxyear	startf	endf	
0.00	1.00	1.00	1972.00	2018.00	0.67	0.67

Index type : partial

```
LAI-ORSH - Index Values
Units : NA
    year
```



```
    0 1133 2029 758 371 545 1133 3047 2882 3534 3667 2353 2579 1795 5632
    1 4583 822 421 50 50 81 221 
    year
age 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    0 3529 7409 7538 11477 -1 1021 189 (1)
    1 1842 1848 8832 5725 10144 2397 4917 66 1179 8688 809 3611 8528
        year
age 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 20092010 2011
    0
    14064 3972 11918 6669 3199 7055 3380 2312 1753 6875 7543 2362 3831
        year
age 2012 20132014 2015 2016 2017 2018
    0
    1 19552 21282 6604 9631 -1 -1 -1
```


LAI-BUN - Configuration

min	max	plusgroup	minyear	maxyear	startf	endf
0.00	1.00	1.00	1972.00	2018.00	0.67	0.67

Index type : partial

LAI-BUN - Index Values

```
Units : NA
    year
age 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
    0
    1 0
        year
age 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    0 3278 2551 6812 5879 4590 -1 1
    1 341 670 5248 692 2045 2032 822 174 1-1 
        year
age 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
    0
    1 155 164 1038 2263 3884 1364 280 1304 533 4629 1493 2839 5856 8618
        year
age 2014 2015 201620172018
    0
    1 5033 3496 3872 5833 1740
LAI-CNS - Configuration
```

min	max plusgroup	minyear	maxyear	startf	endf
0.00	3.00	3.00	1972.00	2018.00	0.67
		0.67			

```
Index type : partial
```

LAI-CNS - Index Values

Units	NA													
year														
age 1972	1973	1974	1975	1976	1977	1978	1979	19801	19811	19821	19831	1984		1985
0165	492	81	-1	64	520	1406	662	317	903	861	1459	688		130
188	830	-1	90	108	262	81	131	188	235	64	2812	2404		3039
2134	1213	1184	77	0	89	269	507	9	1191	1077	63	824		1794
322	152	-1	6	10	3	2	7	13	0	23	-1	433		215
year														
age 1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997		8	1999
01611	799	5533	1442	19965	4823	10	-1	-1	-1	-1	-1		05	
16112	4927	3808	5010	1239	2110	165	685	1464	-1	564	-1		66	
2188	1992	1960	2364	975	1249	163	85	44	43	-1	-1		-1	181
336	113	206	2	-1	-1	-1	-1	-1	-1	-1	-1		-1	
year														
age 2000	2001	2002	2003	2004	2005	2006	2007	2008	82009	92010	0201	11	2012	
$0-1$	-1	-1	-1	-1	-1	-1	-1	-1	$1-1$	$1-1$	1 -	-1		1
1376	1604	-1	12018	5545	5614	2259	291	11201	14219	92317	71776		517	7
$2-1$	-1	3291	3277	-1	-1	-1	-1	-1	$1-1$	$1-1$	1 -	-1	-1	-1
$3-1$	-1	-1	-1	-1	-1	-1	-1	-1	$1-1$	$1-1$	1 -	-1	-1	-1

 year
 age 201320142015201620172018
$\begin{array}{lllllll}0 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
1735411493424328839651509
$\begin{array}{lllllll}2 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
$\begin{array}{lllllll}3 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
LAI-SNS - Configuration

$$
\begin{array}{rrrrrrr}
\text { min } & \text { max plusgroup } & \text { minyear } & \text { maxyear } & \text { startf } & \text { endf } \\
0.00 & 2.00 & 2.00 & 1972.00 & 2018.00 & 0.67 & 0.67
\end{array}
$$

Index type : partial

LAI-SNS - Index Values

```
Units : NA
    year
age 1972 1973 1974 1975 1976 1977 1978 1979 1980}191981 1982 1983 1984 1985
    0
    1
    2 0
        year
age 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    0
    1 123 297 162 2120 1204 873 1616 1103 595 5% 230
    2 140}1
        year
age 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
    0 7346 971 2008 12048 6528 498
```

```
    1 338 5531 260 3109 2052 3999 2700 2439 2317 14712 13230 6160 11103
    2 106 909 925 1116 4175 4822 2106 3854 4008 1689 8073 1215
    year
age 2013 2014 2015 2016 2017 2018
    0
    1 9314 -1 1200 1442 5880 -1
    2 2957}1851 645 1545 (1) -1 -1 
```


Table 2.6.3.9 North Sea Herring. STOCK OBJECT CONFIGURATION

min	max	plusgroup	minyear	maxyear	minfbar	maxfbar
0	8	8	1947	2018	2	6

Table 2.6.3.10 North Sea Herring. sam CONFIGURATION SETTINGS

Table 2.6.3.11 North Sea Herring. FLR, R SOFTWARE VERSIONS

FLSAM.version	2.1 .0	
FLCore.version		2.6 .9
R.version	R version	$3.5 .2(2018-12-20)$
platform		x86_64-w64-mingw32
run.date	$2019-03-1611: 10: 54$	

Table 2.6.3.12 North Sea Herring. STOCK SUMMARY

Year	Recruitment	Low	High	TSB	Low	High	SSB	Low	High	Fbar	Low	High	ndings	Landings
	Age 0									(Ages 2-6)				SOP
										f	f	£	tonnes	
1947	56498843	30620640	104247309	9606501	7210950	12797880	5499127	3921926	7710598	0.1202	0.0809	0.1785	581760	1.4609
1948	56131111	31906700	98747337	8389309	6325501	11126471	4474572	3211959	6233517	0.1199	0.0832	0.1726	502100	1.3326
1949	50827034	29110164	88745203	8202009	6229780	10798608	4340323	3154805	5971337	0.1316	0.0918	0.1886	508500	1.4502
1950	69744880	40862620	119041518	8194126	6275345	10699603	4292964	3158431	5835029	0.1383	0.0984	0.1943	491700	1.3073
1951	62253823	36950804	104883739	8437900	6505363	10944534	4110431	3037857	5561699	0.1674	0.1214	0.2307	600400	1.3238
1952	59223654	35647795	98391534	8217672	6340386	10650794	4115723	3030463	5589635	0.1696	0.1223	0.2352	664400	1.2720
1953	59817829	37160716	96289123	7871497	6098818	10159421	3893052	2851634	5314796	0.1768	0.1271	0.2459	698500	1.1979
1954	57013588	36110404	90016974	7645433	5950167	9823699	3650056	2657419	5013477	0.1977	0.1414	0.2765	762900	1.2509
1955	48110288	30783785	75188929	7163514	5593932	9173501	3546303	2594784	4846749	0.1948	0.1401	0.2710	806400	1.0598
1956	35317077	22695283	54958376	6468230	5079069	8237336	3280044	2403396	4476454	0.1967	0.1436	0.2694	675200	1.2712
1957	85860021	54954481	134146355	6412407	5087747	8081960	2960955	2179799	4022046	0.2096	0.1534	0.2864	682900	1.1575
1958	32872393	21327397	50666953	6306514	5021727	7920009	2407651	1773153	3269196	0.2190	0.1622	0.2957	670500	1.1674
1959	37590204	23776823	59428606	6855324	5504165	8538165	3582878	2691780	4768969	0.2386	0.1779	0.3199	784500	1.5186
1960	15840010	10045722	24976395	5593026	4519846	6921020	2963112	2238848	3921676	0.2083	0.1577	0.2753	696200	1.1830
1961	70192832	45117348	109204860	5666933	4647609	6909818	2853716	2201424	3699284	0.2437	0.1896	0.3133	696700	1.1348
1962	31786138	20723437	48754390	5193356	4269575	6317011	1996944	1523397	2617693	0.2738	0.2118	0.3539	627800	1.17
1963	42242324	28200543	63275873	5726691	4749076	6905553	2890983	2266494	3687540	0.1935	0.1514	0.2474	716000	0.8602
1964	44126903	29599452	65784447	5704432	4902714	6637253	2637471	2146847	3240220	0.2842	0.2336	0.3456	871200	1.0656
1965	21543007	14426084	32170971	5119294	4491825	5834415	2127516	1775531	2549279	0.4737	0.3935	0.5702	1168800	1.1496
1966	22437282	15239848	33033900	3788113	3351346	4281801	1627149	1367011	1936789	0.4827	0.4088	0.5698	895500	1.0707
1967	28707627	19583756	42082215	2932396	2612121	3291940	1030211	876347	1211088	0.6403	0.5462	0.7506	695500	1.1757
1968	29523424	20089552	43387356	2525017	2219929	2872033	572620	485464	675423	0.9759	0.8329	1.1436	717800	1.2551
1969	13917587	9291194	20847614	1908024	1655079	2199627	495461	401913	610783	0.8695	0.7420	1.0188	546700	0.9674
1970	29134241	19823998	42816992	1866419	1622797	2146614	476038	384571	589260	0.9354	0.8082	1.0826	563100	0.9657
1971	22495314	15547340	32548280	1725102	1487553	2000585	327242	267550	400253	1.2768	1.0977	1.4850	520100	1.0747
1972	15700734	10873732	22670509	1525825	1326524	1755069	332972	271597	408217	0.6593	0.5564	0.7813	497500	0.9197
1973	7943077	5454630	11566774	1215162	1073350	1375711	296816	245365	359056	0.8735	0.7562	1.0091	484000	0.9575
1974	14125092	9519630	20958611	873783	764106	999201	199400	166314	239069	0.8749	0.7526	1.0170	275100	0.9680
1975	3234709	2120580	4934189	703078	591377	835878	114031	93368	139268	1.0492	0.8666	1.2703	312800	0.9343
1976	4172725	2648909	6573135	507825	424717	607195	152997	114926	203679	0.8144	0.6262	1.0592	174800	0.9530
1977	5007480	3092230	8108989	350528	280200	438508	103059	74928	141752	0.3691	0.2722	0.5006	46000	1.1979
1978	5351563	3213764	8911428	422916	330133	541777	136726	100538	185942	0.2652	0.1909	0.3685	11000	1.2152
1979	10154904	6327825	16296608	559792	444963	704254	180923	137973	237243	0.2170	0.1581	0.2980	25100	1.0056
1980	15476298	10488097	22836918	758817	614997	936270	198388	156486	251510	0.1918	0.1512	0.2433	70764	1.0936
1981	36915280	25882473	52650991	1367608	1112296	1681523	298043	234631	378593	0.2134	0.1695	0.2687	174879	1.0081
1982	58525556	41480591	82574539	2088227	1701799	2562402	416941	331573	524289	0.1890	0.1510	0.2364	275079	0.9786
1983	57946932	41779245	80371172	2880920	2385997	3478504	636454	508532	796554	0.2348	0.1899	0.2903	387202	1.0771
1984	55810044	39556240	78742596	3737447	3153966	4428871	1063317	850072	1330055	0.3046	0.2484	0.3734	428631	1.0543

67271137	46873404	96545278	4267288	3637854	5005628	61899	944100	1429942
81400120	56476345	117323095	4792740	4070076	5643718	1178763	966922	1437016
78363264	54933974	111785125	4855865	4152448	5678440	1401032	1148329	1709345
44888160	31394064	64182416	4730061	4077637	5486875	1834721	1506527	2234411
37759805	26470260	53864330	4127771	3616380	4711477	1875132	1582179	2222327
31642520	21947133	45620950	4063191	3565240	4630690	1977732	1675189	2334914
35056748	24507867	50146167	3862999	3388321	4404176	1749100	1485708	2059187
65995432	48296353	90180662	3942160	3442500	4514344	1367746	1157046	1616815
68551684	49507263	94922101	3701372	3188302	4297005	997149	835950	1189432
52883203	37595401	74387639	3591860	3042023	4241078	1062653	889581	1269397
61076456	43597797	85562431	3520559	2983411	4154417	1137472	943837	1370833
50221463	35941421	70175170	3459214	2934664	4077524	1257945	1046952	1511459
39918411	28334610	56237919	3529498	3011553	4136523	1422790	1189096	1702413
25190062	18165504	34931000	3821681	3288631	4441132	1667748	1407251	1976465
80033627	57682107	111046247	3795927	3283609	4388179	1714787	1447404	2031565
54550943	39602297	75142241	4668472	4008258	5437433	1775676	1500791	2100909
101911822	72472174	143310443	5272611	4526414	6141822	2260925	1911336	2674455
49214248	35455231	68312690	6235461	5321187	7306824	2670349	2257415	3158818
27618571	19952416	38230231	6587881	5651521	7679380	2743141	2332247	3226426
32210582	23242587	44638819	5525183	4787041	6377142	2666900	2268245	3135620
29939013	21795786	41124670	4637352	4043810	5318013	2459492	2083990	2902652
27222228	19707704	37602032	3924472	3423446	4498826	2003189	1699934	2360543
31275814	22313507	43837866	3270134	2838327	3767634	1624274	1375888	1917500
29088826	20825130	40631670	3306520	2850154	3835960	1691045	1433299	1995141
47585226	34220233	66170028	3773138	3238403	4396169	1986853	1679150	2350941
38129806	27593327	52689628	4582165	3934257	5336772	2103979	1767809	2504076
34223670	24825811	47179108	4617809	3997698	5334110	2527300	2159041	2958372
32791167	23699940	45369761	4629001	4023237	5325973	2682517	2291650	3140051
40829468	29131873	57224108	4470275	3903649	5119149	2450179	2097507	2862148
65480092	46469608	92267671	4772852	4158357	5478153	2382257	2036402	2786850
17336518	12345488	24345321	5039562	4349746	5838773	2207598	1884709	2585804
32864572	23764831	45448677	4976585	4275864	5792139	2596513	2198151	3067069
20022379	14043056	28547607	4125961	3549110	4796571	2214966	1853509	2646911
36780645	24968423	54181069	3808857	3232792	4487574	1870362	1518929	2303106

0.3842	0.3117	0.4736	613780	1.0419

0.3608	0.2945	0.4420	671488	1.1373

$0.3474 \quad 0.2860 \quad 0.4221 \quad 792058 \quad 1.0173$

0.3287	0.2719	0.3974	887686	1.1641

| 0.3163 | 0.2644 | 0.3785 | 787899 | 1.0335 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$0.2599 \quad 0.2159 \quad 0.3128 \quad 645229 \quad 1.0515$

| 0.2848 | 0.2378 | 0.3411 | 658008 | 1.0197 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Table 2.6.3.13 North Sea Herring. ESTIMATED FISHING MORTALITY

age	1947	1948	1949	1950	1951
0	0.0038661741	0.0038662635	0.0038676221	0.003863291	0.003864838
1	0.0002098233	0.0002098233	0.0009181941	0.004018362	0.017558989
2	0.0424970463	0.0319309926	0.0403457560	0.053293389	0.079736246
3	0.0912614961	0.1052793472	0.1085242628	0.121412008	0.144898098
4	0.0985225772	0.1087694263	0.1164251562	0.144906319	0.199024504
5	0.1339668466	0.1424411147	0.1492052864	0.148456334	0.199266141
6	0.2345331861	0.2108477341	0.2435877214	0.223369315	0.213920148
7	0.2418795492	0.2339693985	0.3026499558	0.238360684	0.213387269
8	0.2418795492	0.2339693985	0.3026499558	0.238360684	0.213387269

```
    year
age 1952 1953 1954 1955 1956
    0 0.003865515 0.003865372 0.005289537 0.004921243 0.004171613
    1 0.035354971 0.054507651 0.075824545 0.115973417 0.118790273
    2 0.111221338 0.133454174 0.160285163 0.191426319 0.240727208
    30.129706337 0.159378397 0.201779790 0.204962636 0.211341119
    4 0.172272203 0.166798611 0.170308933 0.172121970 0.182093352
    5 0.189643470 0.185633608 0.200369491 0.174985448 0.164451316
    6 0.244995088 0.238827195 0.255827470 0.230554862 0.184684729
    7 0.298467993 0.280197650 0.323562492 0.176964932 0.200123751
    8 0.298467993 0.280197650 0.323562492 0.176964932 0.200123751
    year
age 1957 1958 1959 1960 196 1961 
    0 0.004683415 0.004779727 0.009000079 0.01708684 0.02184032 0.008357611
    1 0.148446919 0.139758260 0.168802750 0.17490714 0.10235820 0.096209595
    2 0.230769348 0.253565188 0.284151084 0.28493838 0.31544371 0.197236911
    30.216028018 0.247308253 0.247310882 0.21052883 0.24009517 0.321303257
    4 0.189465994 0.182028330 0.219959134 0.18000616 0.23008441 0.279953377
    5 0.209871019 0.233408354 0.215188430 0.15884462 0.20917331 0.259917987
    6 0.201995179 0.178614180 0.226257754 0.20741318 0.22383356 0.310412202
    7 0.207992203 0.131055807 0.231430460 0.24866003 0.19644619 0.268994385
    8 0.207992203 0.131055807 0.231430460 0.24866003 0.19644619 0.268994385
    year
\begin{tabular}{lllllll} 
age & 1963 & 1964 & 1965 & 1966 & 1967 & 1968
\end{tabular}
    0 0.01434202 0.01569993 0.01237093 0.02344326 0.03224588 0.03619225
    1 0.12876105 0.23296138 0.23865661 0.22547150 0.28230872 0.30735982
    2 0.23377283 0.30893292 0.48427202 0.47341294 0.46101161 0.91672083
    3 0.23384228 0.31176011 0.50153155 0.51565315 0.68470867 1.35089733
    4 0.18280909 0.28559700 0.48741846 0.46726029 0.65696694 0.79921522
    5 0.16577602 0.26600996 0.46481070 0.58680520 0.68864602 0.87449193
    6 0.15132524 0.24856125 0.43053844 0.37015167 0.71021691 0.93833361
    7 0.15834006 0.20263480 0.46157870 0.55571962 0.94617856 1.14944834
    8 0.15834006 0.20263480 0.46157870 0.55571962 0.94617856 1.14944834
        year
age 1969 1970 1971 1972 1974
    0 0.01579872 0.04027013 0.04683482 0.06684017 0.06067618 0.09978477
    1 0.32174722 0.31670313 0.56605303 0.59045575 0.64750393 0.48927003
    2 0.70671094 0.77171172 0.74592531 0.70429489 0.82012018 0.85328377
    3 0.80181003 0.99287505 0.92840418 0.72588849 0.98090840 0.82546871
    4 0.75197970 0.96714238 0.94907720 0.67890078 0.78090078 0.79130625
    5 0.83619094 0.83731167 0.75445327 0.55096336 0.76632178 0.97457008
    6 1.25061482 1.10777171 3.00607256 0.63660476 1.01937475 0.92970974
    7 1.01124709 0.95802464 1.38763493 0.34470995 0.59813915 0.80510541
    8 1.01124709 0.95802464 1.38763493 0.34470995 0.59813915 0.80510541
        year
age 1975 1976 1977 1978 1979 1980
    0 0.1198694 0.08905352 0.08104804 0.1008820 0.1190851 0.14397283
    1 0.5223482 0.20786616 0.12870926 0.1167623 0.1109513 0.09945719
    2 0.9940270 0.69899014 0.18868726 0.1926415 0.2043881 0.21999129
    3 1.0787004 0.95388078 0.51893882 0.3310773 0.2831328 0.25339636
    4 0.9714990 0.88212239 0.32059951 0.2553486 0.1989259 0.18411116
    5 1.2642925 0.90953803 0.47763160 0.3457965 0.2885803 0.23402367
    6 0.9375579 0.62756619 0.33977298 0.2011652 0.1101807 0.06763346
```

[^6]```
 5 0.24604275 0.14765894 0.08954221 0.09020184 0.11911432 0.19263406
 6 0.27422981 0.14243047 0.06833312 0.07164222 0.10484653 0.19775562
 7 0.37705869 0.18213992 0.09579685 0.07167322 0.09513919 0.22179500
 8 0.37705869 0.18213992 0.09579685 0.07167322 0.09513919 0.22179500
 year
\begin{tabular}{lllll}
age 2013 & 2014 & 2015 & 2016 & 2017
\end{tabular}
 0 0.02060872 0.03231707 0.04733709 0.06452758 0.03970319 0.05275195
 1 0.04366785 0.02901607 0.02157146 0.02148032 0.02148952 0.01258808
 2 0.07331662 0.07076370 0.05918835 0.05167726 0.04311670 0.04606404
 3 0.12450024 0.12659413 0.09216315 0.12622307 0.14185241 0.11455586
 4 0.18084262 0.19949177 0.16237291 0.17368945 0.20756407 0.25293465
 5 0.23384042 0.24772573 0.26240532 0.25684190 0.21826380 0.31694265
 6 0.28280236 0.26671677 0.36905700 0.37066147 0.28544336 0.31095937
 7 0.33868727 0.34838909 0.50227857 0.62608893 0.47431093 0.53511001
 8 0.33868727 0.34838909 0.50227857 0.62608893 0.47431093 0.53511001
 year
age 2019
 0.05286042
 1 0.01259689
 2 0.04606404
 3 0.11455586
 4 0.25293465
 5 0.31694265
 6 0.31095937
 70.53511001
 8 0.53511001
```

Table 2.6.3.14 North Sea Herring. ESTIMATED POPULATION ABUNDANCE




```
3 4169972.8 5905447.5 5016394.8 3744237.3 3655273.0 8061944.0
4 2809933.8 3126418.4 4066106.1 3874968.1 2320502.1 2220746.0
5 1404793.6 1979680.1 2319224.2 2607203.8 2328081.5 1439131.5
6 786174.5 917523.3 1326328.4 1488758.4 1490263.7 1308824.7
7 729885.8 498623.4 575660.9 789299.8 824532.0 744497.5
8 1716852.4 1378781.5 1151820.4 847829.8 878714.3 768926.3
year
age 2017 2018 2019
0 20022378.5 36780645.0 26191234.3
1 12461780.5 8790338.4 14066353.7
2 3274372.2 5620370.6 4397586.7
3 9410218.1 2275811.4 3450200.5
4 5291507.4 6114577.5 1377760.9
5 1416926.3 3498836.4 3252467.2
6 726788.5 922321.2 1771075.3
7 606557.2 462910.6 473265.6
8 610748.7 656236.1 463287.4
```


## Table 2.6.3.18 North Sea Herring. PREDICTED INDEX AT AGE catch unique

```
Units : NA
 year
\begin{tabular}{rrrrrrr}
age & 1947 & 1948 & 1949 & 1950 & 1951 & 1952 \\
0 & 149093.09 & 148126.108 & 134176.07 & 183910.6 & 164223.1 & 156256.9 \\
1 & 3079.91 & 3812.781 & 16711.53 & 62921.4 & 407407.9 & 692167.4 \\
2 & 477791.72 & 262536.199 & 479344.73 & 542693.3 & 655501.1 & 1325532.4 \\
3 & 421802.00 & 665721.108 & 645920.46 & 1039053.7 & 926751.0 & 598328.8 \\
4 & 645197.03 & 326312.546 & 404656.23 & 618425.2 & 1180679.0 & 619111.6 \\
5 & 529604.20 & 599115.866 & 284937.23 & 300626.4 & 599909.1 & 653751.6 \\
6 & 739642.13 & 509822.692 & 616623.04 & 255316.0 & 268130.2 & 440769.2 \\
7 & 430273.02 & 413468.284 & 425161.35 & 336821.1 & 142271.0 & 219357.6 \\
8 & 1304305.70 & 947362.442 & 990728.71 & 605919.8 & 484668.2 & 521485.9
\end{tabular}
 year
age 1953 1954 1955 1956 195 1957 1958 1959
 0 157818.8 205714.7 161529.2 100546.7 274370.1 107201.1 230406.0
 1 1007027.9 1466251.6 1958603.3 1748078.2 1447281.3 4296443.1 1588124.6
 2 1324270.8 1493432.0 1935915.5 1817312.4 1664904.8 1040119.2 4799961.9
 3 1010852.9 1087224.1 1034782.5 1215241.7 751953.0 980327.0 482785.9
 4 475619.4 592459.5 483892.6 515341.3 636790.7 331600.2 476545.3
 5 390221.9 351645.3 340823.0 258376.0 339253.0 451558.1 227428.0
 6 479841.5 315381.6 228071.9 208746.4 195495.7 160953.6 236796.2
 7 283398.3 360410.6 125473.5 111086.0 140653.3 77264.2 122058.5
 8 390108.3 443480.5 240849.3 264818.5 234961.0 139890.9 256586.5
 year
age 1960 1961 1962 1963 1965
 0 183685.0 1038289.02 180972.7 411651.08 470453.91 181238.42
 2147738.6 375900.98 2238592.3 1307923.92 2760131.71 3133725.54
 2 1159389.1 1778234.56 292638.2 2967610.46 1562266.77 2144428.86
 2014669.3 488486.51 760112.4 188599.88 2257829.01 1251384.67
 4 175260.6 1430023.63 313184.7 176894.33 147182.01 1893131.65
 5 179750.9 122866.72 998895.7 89906.98 149886.84 137531.44
```



| 4 | 778174.25 | 876557.50 | 555467.40 | 363940.26 | 309243.3 | 329206.76 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5 | 209518.31 | 388227.69 | 510839.21 | 357741.77 | 213401.9 | 113390.75 |
| 6 | 118192.76 | 88362.27 | 206426.88 | 368810.85 | 226942.8 | 98983.24 |
| 7 | 59108.55 | 54029.86 | 45410.51 | 134435.47 | 199514.5 | 90675.78 |
| 8 | 28007.33 | 40705.50 | 39837.82 | 69013.28 | 122912.7 | 116853.83 |

Table 2.6.3.19 North Sea Herring. INDEX AT AGE RESIDUALS catch unique




## Table 2.6.3.20 North Sea Herring. PREDICTED INDEX AT AGE LAI-ORSH



Table 2.6.3.21 North Sea Herring. INDEX AT AGE RESIDUALS LAI-ORSH


```
 1 -0.01235815 0.00768455 0.2559046 -0.2674838 -0.503655 0.1055157
 year
\begin{tabular}{rrrrrrr}
age & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 \\
0 & NA & NA & NA & NA & 0.1835403 & NA
\end{tabular}
 1 -0.4377433 -0.9313368 0.09634665 -0.133518-0.2962107 -0.1714446
 year
\begin{tabular}{rrrrrrrr}
age & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 \\
0 & 0.4385315 & NA & NA & NA & NA & NA & NA
\end{tabular}
 1 0.9142136 0.8323503-0.0262811 0.3392524 1.564697 1.629567 0.4608897
 year
age 2015
 N NA
 10.8190273
```


## Table 2.6.3.22 North Sea Herring. PREDICTED INDEX AT AGE LAI-BUN

```
Units : NA
 year
age 1972 1973 1974 1975 1976 1977 1978
 0 20.17108 17.980788 115.21680 79.23387 NA 62.17679 NA
 1 NA 6.894264 44.17688 NA 9.976697 23.84007 46.30571
 year
age 1979 1980 1981 1982 198 1983 1984 1985
 0 62.50242 15.543846 28.18107 353.2187 1912.314 3095.003 2775.272
 1 23.96492 5.959882 10.80530 135.4325 733.227 1186.698 1064.106
 year
age 1986 1987 1988 1989 1990 1991 1992
 0 2442.7277 2729.098 4852.736 4347.070 5222.146 NA NA N
 1 936.6002 1046.401 1860.655 1666.771 2002.296 3183.409 4406.128
 year
\begin{tabular}{lllllll}
age & 1993 & 1996 & 1997 & 1998 & 1999 & 2000
\end{tabular}
 1 3000.924 585.9286 167.9755 341.6611 160.0735 76.28461 224.2111
 year
age 2002 2003 2004 2005 2006 2007 2008 2009
```



```
 1 736.3416 1438.28 1751.812 1299.705 712.9991 826.2714 720.1596 1283.587
 year
age 2010 2011 2012 2013 2014 2015 2016
 0NA NA NA NA NA NA
 1 1364.208 2063.419 2731.211 3558.615 3340.625 2829.269 3052.609
 year
age 2017 2018
 0 NA NA
 1 2555.367 2041.325
```


## Table 2.6.3.23 North Sea Herring. INDEX AT AGE RESIDUALS LAI-BUN



## Table 2.6.3.24 North Sea Herring. PREDICTED INDEX AT AGE LAI-CNS

```
Units : NA
 lllllll
 0436.97309 389.52405 293.0104 NA 181.199918 133.717081
 1 615.41030 548.58553 NA 216.800085 255.192596 188.320223
 2 299.17351 266.68754 200.6095 105.394469 NA 91.549364
 3 20.53753 18.30745 NA 7.235074 8.516313 6.284642
 year
age 1978 1979 1980 1981 1982 1983
 0 173.667767 204.228614 169.960254 259.0735 382.18278 564.0432
 1 244.584704 287.625021 239.363234 364.8658 538.24646 794.3693
 2 118.901590 139.825066 116.363242 177.3746 261.66134 386.1720
```

| 3 | 8.162305 | 59.598 | 651 |  | 988054 | NA 17 | 7.96242 | NA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| year |  |  |  |  |  |  |  |  |
| age | 1984 |  | 1985 |  | 1986 | 1987 | 1988 | 1989 |
| 0 | 1184.90921 | 11419.58 | 8991 | 1449. | .144631759 | 59.87536 | 2049.04685 | 1741.33764 |
| 1 | 1668.76487 | 71999.27 |  | 2040. | . 900372478 | 78.51748 | 2885.77164 | 2452.40991 |
| 2 | 811.24778 | 8971.92 |  | 992. | .15648120 | 04.89820 | 1402.87938 | 1192.20635 |
| 3 | 55.69019 | 966.72 | 2008 |  | . 10913 | 82.71334 | 96.30426 | 81.84207 |
| year |  |  |  |  |  |  |  |  |
| age | 1990 | 1991 |  | 1992 | 1993 | 1994 | 1995 | 1996 |
| 0 | 1759.1531 | 1041.749 | 200. | . 8764 | NA | NA | NA | NA |
| 1 | 2477.5001 | 1467.145 | 282. | . 9039 | 246.5006 | 206.1376 | NA | 539.1198 |
| 2 | 1204.403 | 713.233 | 137. | . 5300 | 119.8330 | 100.2110 | 163.2379 | NA |
| 3 | NA | NA |  | NA | NA | NA | NA | NA |
| year |  |  |  |  |  |  |  |  |
| age | 1998 | 1999 |  | 2000 | 2001 | 2002 | 2003 | 2004 |
| 0 | 339.3828 | NA |  | NA | NA | NA | NA | NA |
| 1 | 477.96925 | 521.2126 | 700. | . 2131 | 1456.917 | NA | 3334.394 | 3232.993 |
| 2 | NA 2 | 253.3806 |  | NA | NA | 1287.909 | 1620.971 | NA |
| 3 | NA | NA |  | NA | NA | NA | NA | NA |
| year |  |  |  |  |  |  |  |  |
| age | 2005 | 2006 |  | 2007 | 2008 | 2009 | 2010 | 2011 |
| 0 | NA | NA |  | NA | NA | NA | NA | NA |
| 1 | 3065.5062 | 2261.331 | 1594 | 4.225 | 1877.436 | 2022.673 | 2089.757 | 2712.303 |
| 2 | NA | NA |  | NA | NA | NA | NA | NA |
| 3 | NA | NA |  | NA | NA | NA | NA | NA |
| year |  |  |  |  |  |  |  |  |
| age | 2012 | 2013 |  | 2014 | 2015 | 2016 | 2017 | 2018 |
| 0 | NA | NA |  | NA | NA | NA | NA | NA |
| 1 | 2476.5882 | 2342.377 | 2207 | 7.447 | 2216.571 | 2591.573 | 2146.804 | 1814.087 |
| 2 | NA | NA |  | NA | NA | NA | NA | NA |
| 3 | NA | NA |  | NA | NA | NA | NA | NA |

## Table 2.6.3.25 North Sea Herring. INDEX AT AGE RESIDUALS LAI-CNS

| age | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.3973697 | 0.6810220 | -1.243468 | NA - | -0.7104605 | 2.07419265 |
| 1 | -0.5600099 | 0.6728195 | NA - | -1.2555050 - | -0.4229849 | 0.94892775 |
| 2 | 0.4471919 | 1.4043932 | 1.333157 | -0.5658798 | NA | 0.54685897 |
| 3 | 0.9580033 | 1.6642744 |  | -0.3548709 | 0.4380947 - | -0.08224662 |
| year |  |  |  |  |  |  |
| age | 1978 | 1979 | 91980 | 801981 | $1 \quad 1982$ | 21983 |
| 0 | 2.6079172 | 1.1603823 | 30.4101570 | $70 \quad 1.1408653$ | $3-1.1487182$ | 20.8363521 |
| 1 | -0.3153520 | -0.5677118 | -0.3352371 | 1-0.3694387 | -1.4416647 | $7-0.8536445$ |
| 2 | 1.2431209 | 1.1396007 | -2.1217312 | 2-0.2900957 | 71.5467230 | 0-1.3216019 |
| 3 | -0.6759367 | -0.2797871 | 10.5526948 | 8 NA | A 0.4141005 |  |
| year |  |  |  |  |  |  |
| age | 1984 | 1985 | 1986 | 861987 | 71988 | 1989 |
| 0 | 0.09048517 | -1.729994 | -0.02282842 | -0.4969550 | 00.8762427 | -0.3030657 |



Table 2.6.3.26 North Sea Herring. PREDICTED INDEX AT AGE LAI-SNS


```
 1 266.0555 399.9125 608.0649 1047.3342 1416.283 1325.464 478.0906
 2 111.9871 168.3297 255.9445 440.8401 NA NA NA
 year
age 1993 1994 1995 1996 1907 199 199
 0 622.5602 457.5958 579.2585 1077.7781 1270.6562 1276.309 1190.2914
 1 491.4801 361.2490 457.2957 850.8519 1003.1196 1007.583 939.6755
 2NA NA 192.4832 358.1375 422.2295 424.108 395.5248
age 2000 2001 2002 2003 2004 2005 2006
 0 1184.6146 2003.991 2581.9084 3872.084 4529.302 4831.710 5123.479
 1 935.1940 1582.051 2038.2876 3056.817 3575.657 3814.393 4044.731
 2 393.6385 665.911 857.9487 1286.664 1505.053 1605.541 1702.493
 year
age 2007 2008 2009 2010 2011 2012 2013
 04581.339 4663.266 5471.740 5882.609 5568.579 5028.711 2506.2060
 1 3616.738 3681.415 4319.665 4644.026 4396.115 3969.916 1978.5244
 2 1522.345 1549.568 1818.218 1954.747 1850.397 1671.003 832.7934
 year
age 2014 2015 2016 2017
 0 NA 2708.8780 4186.297 4110.988
 1 NA 2138.5238 3304.872 3245.420
 2 921.8612 900.1397 1391.075 NA
```

Table 2.6.3.27 North Sea Herring. INDEX AT AGE RESIDUALS LAI-SNS


```
 2 0.7529942 -0.4195821 -0.9340476 -0.1565826-1.130872 0.2706269
 year
age 2002 2003 2004 2005 2006 2007
 0-0.2308005 1.34525983 0.6619628 -1.3701593 0.9887725 0.34107362
 1-1.5456231 0.20063622 -0.1885606 0.6646223 -0.1079630-0.01274843
 2 0.3842286 0.03683787 1.0669840}1.3503173 0.3845864 1.02583295
 year
age 2008 2009 2010 2011 2012 2013
 0 0.85590931 1.23993099 0.3244882 -0.05923322 1.2815459-5.001002
 1-0.09829849 1.25059987 0.9154226 0.21734052 0.7214930
 2 1.04304087 0.08691057 1.1281742 -0.41874880 0.3619254 1.350660
 year
age 2014 2015 2016 2017
 0 NA -0.007473306 1.7011867 1.1735474
 1 NA -0.231789761 -0.5270191 0.6712067
 2 0.8197007 -0.007107003 0.2749441 NA
```

Table 2.6.3.28 North Sea Herring. PREDICTED INDEX AT AGE IBTS-Q1

```
Units : NA
 yyar
 1 1431037 1617310 2267470 2961980 2267154 1400818 1139265 1141292
 year
age 1992 1993 1994 1995 1901996 1997 1998 199 190
 1 1123254 1822733 1862454 1624404 1713833 1762133 1502130 953697.8
 year
age 2000 2001 2002 2003 2004 2005 2006 2007
 1 2757796 1844032 3771799 1676648 910496.9 1220550 893551.4 816741.6
 year
age 2008 2009 2010 2011 2012 2013 2014 2015
 1 948290.4 957340.1 1548922 1363295 1110158 1046438 1623232 2403300
 year
 age 2016 2017 2018 2019
 1 640977.8 1128956 796726.2 1274925
```

Table 2.6.3.29 North Sea Herring. INDEX AT AGE RESIDUALS IBTS-Q1

```
Units : NA
 year
age 1984 1985 1986 1987 1988 1989
 1-0.5983535 -0.02108412 0.1714256 0.999168-1.333818 0.9813158
 year
age 1990 1991 1992 1993 1994 1995
 1-0.7428275 0.9269406 -0.08925471 -0.005913962 1.379777 0.8798408
 year
 age 1996 1997 1998 1999 2002
```

```
 1 -0.8198707 1.352621 0.8475135 0.1238665 -0.8663838 0.4228553 -1.281313
 year
age 2003 2004 2005 2006 2007 2008
 1 -0.5338658 -0.1567298 0.4342834 -0.3732443 0.3052899 -0.02695991
 year
age 2009 2010 2011 2012 2013 2014 2015
 1 0.40285 -1.273407 1.229416 -0.7958101 -1.684211 1.164109 0.2899732
 year
age 2016 2017 2018 2019
 1 -0.2531854 1.18272 0.2108529 -0.8614033
```


## Table 2.6.3.30 North Sea Herring. PREDICTED INDEX AT AGE HERAS



```
 5 1103501.2 862767.5 951055.1 895155.9 1043011.6 1409605.8 1612558.1
 6 1829680.8 737922.2 615452.3 850745.4 593355.5 656638.8 904116.3
 7 338401.2 1303606.3 532678.8 464454.2 557373.2 354191.4 382431.3
 8 341336.0 463869.4 1414150.9 1565780.5 1317840.8 984666.1 769403.8
 year
age 2014 2015 2016 2017 2018
 1 9370040.6 13884976.3 3689472.8 6510486.9 4604315.2
 2 4233582.7 7439177.7 9591454.8 2073069.1 3550637.9
 3 2714430.3 2703342.3 5858177.8 6775644.6 1664354.7
 4 2719120.7 1661372.2 1579908.9 3695264.9 4164577.6
 5 1797391.9 1590856.8 985865.3 991748.5 2318915.6
 6 1022041.9 965406.3 845731.3 492573.2 615876.5
 7 520188.5 497980.1 418928.9 371517.9 273845.5
 8 561847.3 533566.2 434902.8 376057.1 390210.6
```


## Table 2.6.3.31 North Sea Herring. INDEX AT AGE RESIDUALS HERAS




Table 2.6.3.32 North Sea Herring. PREDICTED INDEX AT AGE IBTSO

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| year |  |  |  |  |  |  |  |
| age | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| 0 | 5892 | 147.1261 | 114.7846 | 132.3417 | 110.1666 | 88.01224 | 55.48879 |
| year |  |  |  |  |  |  |  |
| age | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
|  | 7439 | 119.4748 | 222.8213 | 107.4426 | 60.17169 | 69.94551 | 64.76096 |
| year |  |  |  |  |  |  |  |
| age | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
|  | 80255 | 67.62273 | 62.81363 | 102.9794 | 82.58967 | 74.16434 | 71.22697 |
| year |  |  |  |  |  |  |  |
| age | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
| 0 | 10461 | 143.2068 | 38.00685 | 72.25102 | 44.04582 | 80.97941 | 57.66408 |

## Table 2.6.3.33 North Sea Herring. INDEX AT AGE RESIDUALS IBTSO

```
Units : NA
 year
\begin{tabular}{lllllll}
age 1992 & 1993 & 1994 & 1995 & 1997
\end{tabular}
 0-0.2111753 0.2642233 0.4882644 -0.007001825 0.5985823 2.000488
 year
age 1998 1999 2000 2001 2002 2003 2004
 0 -0.4833896 1.546787 -0.7140618 1.567597 0.3369015 -0.2801556 -1.084573
 year
 age 2005 2006 2007 2008 2009 2010
 0 0.1449227 0.05225986 -0.08132162 -1.057652 1.271977 -0.3363734
```

```
age 2011 2012 2013 2014 2015
 0-0.4354624 -0.300994 0.4554999 -0.2777381 -2.649368 0.369407
 year
age 2017 2018 2019
 0-0.8051455 0.7306622 -0.6343659
```

Table 2.6.3.34 North Sea Herring. PREDICTED INDEX AT AGE IBTS-Q3

| age | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1140152.35 | 3567345.94 | 2400807.59 | 4448035.42 | 2132489.17 | 1184793.84 |
| 1 | 455137.95 | 290047.49 | 824019.29 | 547948.58 | 1118545.07 | 490267.56 |
| 2 | 263600.35 | 168504.20 | 162484.28 | 364940.29 | 239600.94 | 570838.94 |
| 3 | 93633.59 | 142016.37 | 84655.24 | 97785.10 | 222951.56 | 131405.29 |
| 4 | 36063.96 | 40718.58 | 72748.52 | 41003.15 | 43562.00 | 112599.75 |
| 5 | 16596.62 | 14244.52 | 19074.40 | 32778.13 | 17864.42 | 17500.09 |
| year |  |  |  |  |  |  |
| age | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| 0 | 1359817.08 | 1240266.33 | 1120119.06 | 1292863.75 | 1194983.67 | 1975765.89 |
| 1 | 266654.48 | 354239.28 | 264781.21 | 243451.09 | 285739.59 | 291141.96 |
| 2 | 189528.60 | 116410.66 | 159351.64 | 110042.12 | 132191.71 | 157244.58 |
| 3 | 314134.61 | 110569.28 | 70654.38 | 84873.14 | 64419.74 | 78629.33 |
| 4 | 69578.79 | 149020.32 | 54653.79 | 36460.34 | 41431.11 | 33957.27 |
| 5 | 50026.10 | 30393.65 | 71616.33 | 24274.33 | 19083.71 | 21103.44 |
| year |  |  |  |  |  |  |
| age | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 0 | 1589978.41 | 1430418.28 | 1386288.94 | 1766017.59 | 2861852.41 | 766637.49 |
| 1 | 473213.08 | 418870.84 | 339109.85 | 317768.38 | 496216.84 | 735400.86 |
| 2 | 167369.27 | 209866.91 | 196201.92 | 145752.45 | 175316.67 | 308253.97 |
| 3 | 108515.50 | 104221.83 | 143162.02 | 122622.57 | 91521.66 | 91341.35 |
| 4 | 48040.26 | 58909.52 | 63150.96 | 80952.14 | 76236.81 | 46679.97 |
| 5 | 19858.23 | 23095.19 | 31074.07 | 35458.28 | 39486.74 | 34916.60 |
| year |  |  |  |  |  |  |
| age | 2016 | 2017 | 2018 |  |  |  |
| 0 | 1473246.33 | 900309.971 | 1660651.40 |  |  |  |
| 1 | 195313.82 | 344737.26 | 243870.64 |  |  |  |
| 2 | 397564.74 | 85976.56 | 147221.86 |  |  |  |
| 3 | 197567.19 | 228286.74 | 56168.71 |  |  |  |
| 4 | 44361.19 | 103552.16 | 116393.83 |  |  |  |
| 5 | 21643.81 | 21822.79 | 50731.18 |  |  |  |

## Table 2.6.3.35 North Sea Herring. INDEX AT AGE RESIDUALS IBTS-Q3



Table 2.6.3.37 North Sea Herring. FIT PARAMETERS

| name | value | std.dev |
| ---: | ---: | ---: |
| logFpar | -12.9135007 | 0.09439437 |
| logFpar | -0.2657307 | 0.12262130 |
| logFpar | -0.1908894 | 0.07304127 |
| logFpar | -0.0368668 | 0.07044761 |
| logFpar | -2.3310657 | 0.07536233 |
| logFpar | -2.5487471 | 0.14163121 |
| logFpar | -3.1633485 | 0.10161671 |
| logFpar | -3.3453018 | 0.09427366 |
| logFpar | -3.3963570 | 0.09491828 |
| logFpar | -3.5773500 | 0.09694926 |
| logFpar | -3.8193747 | 0.09894651 |
| logFpar | -4.2600988 | 0.11287755 |


| logSdLogFsta | -0.5960752 | 0.11981768 |
| :---: | :---: | :---: |
| logSdLogFsta | -1.1344043 | 0.09819444 |
| logSdLogFsta | -0.6697067 | 0.09990409 |
| $\operatorname{logSdLogN}$ | -0.5519211 | 0.11601123 |
| $\operatorname{logSdLogN}$ | -1.7136356 | 0.09217653 |
| $\operatorname{logSdLog} P$ | 0.1509277 | 0.09921606 |
| logSdLogP | -0.3418938 | 0.17591259 |
| $\operatorname{logSdLogP~}$ | -0.1961220 | 0.12796682 |
| logSdLogObs | -1.5048191 | 0.45071808 |
| logSdLogObs | -2.1971163 | 0.49099302 |
| logSdLogObs | -1.4005467 | 0.18500732 |
| logSdLogObs | -0.7421974 | 0.16017598 |
| logSdLogObs | -1.5753020 | 0.08853870 |
| logSdLogObs | -1.2410904 | 0.14189622 |
| logSdLogObs | -1.2473213 | 0.15130768 |
| logSdLogobs | -1.1127152 | 0.18083902 |
| logSdLogObs | -0.6097656 | 0.18316388 |
| logSdLogObs | -1.0802296 | 0.18090664 |
| logSdLogObs | -1.1723392 | 0.10694524 |
| logSdLogObs | 0.1697697 | 0.04443655 |
| transfIRARdist | -0.3945483 | 0.27665461 |
| rhop | 0.4174042 | 0.24047329 |
| logAlphascb.LAI-ORSH | -0.4558852 | 0.31715525 |
| logAlphascB. LAI-BUN | -0.9586141 | 0.34968719 |
| logAlphascB.LAI-CNS | 0.3424176 | 0.33883253 |
| logAlphascB. LAI-CNS | -0.3788479 | 0.35328456 |
| logAlphascB.LAI-CNS | -3.0576174 | 0.40751305 |
| logAlphascB.LAI-SNS | -0.2364188 | 0.25391303 |
| logAlphascb. LAI-SNS | -1.1017398 | 0.27359799 |

Table 2.6.3.38 North Sea Herring. NEGATIVE LOG-LIKELIHOOD
1305.49216198626

Table 2.7.1. North Sea herring. Intermediate year (2019) assumptions for the stock.

| Variable | Value | Notes |
| :--- | :---: | :--- |
| $F_{\text {ages (wr) 2-6 (2019) }}$ | 0.19 | Catch constraint |
| SSB (2019) | 1528855 | Calculated based on catch constraint (in tonnes). |
| $R_{\text {age (wr) } 0 \text { (2019) }}$ | 26191234 | Estimated by assessment model (in thousands). |
| $R_{\text {age (wr) } 0}(2020)$ | 43943979 | Weighted mean over 2009-2018 (in thousands) |
| Total catch (2019) | Agreed catch options, including a 48\% transfer (14 076t) of <br> C-fleet TAC to the A-fleet in the North Sea (in tonnes). |  |

Table 2.7.1. North Sea herring. Intermediate year (2019), fleet wise assumptions for the catches and the fishing mortality. Weights are in tonnes

|  | Field | Value | Note |
| :---: | :---: | :---: | :---: |
| TACs | A-fleet TAC | 385008 |  |
|  | B-fleet TAC | 13190 |  |
|  | C-fleet TAC | 29326 | Total TAC in Illa (including WBSS and NSAS) |
|  | D-fleet TAC | 6659 | Total TAC in Illa (including WBSS and NSAS) |
| TACs to catches variables | WBSS/NSAS split in the north sea | 0.0036 | Value from terminal year |
|  | B-fleet uptake | 0.86 | Average over the last 3 years (2016-2018) |
|  | C-fleet transfer | 0.48 | Value for the Intermediate year |
|  | C-fleet NSAS/WBSS split | 0.19 | Average over the last 3 years (2016-2018) |
|  | D-fleet NSAS/WBSS split | 0.56 | Average over the last 3 years (2016-2018) |
|  | D-fleet uptake | 0.16 | Average over the last 3 years (2016-2018) |
| F by fleet and total | $F_{(w r) ~ 2-6}$ <br> A-fleet | 0.19 |  |
|  | $F_{(\mathrm{wr}) 0-1}$ <br> B-fleet | 0.046 |  |
|  | $F_{\text {(wr) 0-1 }}$ <br> C-fleet | 0.002 |  |
|  | $\mathrm{F}_{(\mathrm{wr}) 0-1}$ <br> D-fleet | 0.002 |  |
|  | $\mathrm{F}_{(\mathrm{wr}) \text { 2-6 }}$ | 0.19 |  |
|  | $F_{(w r) 0-1}$ | 0.052 |  |
| NSAS catches by fleet | Catches <br> A-fleet | 397648 | Includes C-fleet transfer and split of WBSS/NSAS in the north sea |
|  | Catches <br> B-fleet | 11324 | Includes fleet uptake |
|  | Catches <br> C-fleet | 2886 | Includes TAC transfer to the A fleet and WBSS/NSAS split. |
|  | Catches <br> D-fleet | 604 | Includes WBSS/NSAS split and fleet uptake |

Table 2.7.1. North Sea herring. Reference points prior used at HAWG 2018.

| Framework | Reference point | Value | Technical basis | Source |
| :---: | :---: | :---: | :---: | :---: |
| MSY approach | MSY $\mathrm{B}_{\text {trigger }}$ | 1500000 t | Biomass trigger value that results in < 5\% probability of being below $\mathrm{B}_{\text {lim }}$ when the ICES MSY AR is applied. | ICES (2016a) |
|  | $\mathrm{F}_{\mathrm{MSY}}$ | 0.33 | Stochastic simulations with Beverton and Ricker stock-recruitment curve from short time-series (2002-2015). | ICES (2016a) |
| Precautionary approach | $\mathrm{Blim}_{\text {l }}$ | 800000 t | Breakpoint in the segmented regression of the stock-recruitment time-series (1985-2015). | ICES (2016a) |
|  | $\mathrm{B}_{\mathrm{pa}}$ | 1000000 t | $\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\text {lim }} \times \exp (1.645 \times \sigma)$ with $\sigma \approx 0.10$, based on the average CV from the terminal assessment year. | ICES (2012) |
|  | Flim | 0.39 | FP50\% from stochastic simulations with Beverton and Ricker stock-recruitment curve (2002-2015). | ICES (2016a) |
|  | $\mathrm{F}_{\mathrm{pa}}$ | 0.34 | $\mathrm{F}_{\mathrm{pa}}=\mathrm{F}_{\text {lim }} \times \exp (-1.645 \times \sigma)$ with $\sigma \approx 0.08$, based on the average CV from the terminal assessment year. | ICES (2016a) |
| Management plan | SSB ${ }_{\text {mgt }}$ | $\begin{gathered} 800000 \mathrm{t} \text { and } \\ 1500000 \mathrm{t} \\ \hline \end{gathered}$ | Informed by simulations and chosen by managers. | EU-Norway (2014) |
|  | $F_{\text {mgt }}$ | $\begin{gathered} F_{\text {ages }(w r) 0-1}=0.05 \\ F_{\text {ages }(w r r) 2-6}=0.26 \end{gathered}$ | SSB is greater than the SSB $_{\text {MGT }}$ upper trigger of 1.5 million $t$ (based on simulations). | EU-Norway (2014) |
|  |  | $\begin{gathered} F_{\text {ages }(w r) 0-1}=0.05 \\ F_{\text {ages }(w r)^{2-6}}= \\ 0.26-(0.16 \times(1500 \\ 000-\text { SSB }) / 700000) \\ \hline \end{gathered}$ | SSB is between the $\mathrm{SSB}_{\mathrm{MP}}$ triggers of 0.8 and 1.5 million $t$ (based on simulations). | EU-Norway (2014) |
|  |  | $\begin{gathered} F_{\text {ages }(w r) 0-1}=0.04 \\ F_{\text {ages }}(w r)^{2-6}=0.10 \end{gathered}$ | SSB is less than the SSB ${ }_{M P}$ lower trigger of 0.8 million $t$ (based on simulations). |  |

Table 2.7.2. North Sea herring. Framework from new management plan requested (ICES, 2018).

| Framework^ | Reference point | Value | Technical basis | Source |
| :---: | :---: | :---: | :---: | :---: |
| MSY approach | MSY Btrigger | 1400000 | 5th percentile of BFMSY | ICES (2018d) |
|  | $\mathrm{F}_{\text {MSY }}$ | 0.26 | Stochastic simulations with a segmented regression and Ricker stock-recruitment curve from the short time-series (2002-2016). | ICES (2018d) |
| Precautionary approach | $\mathrm{Blim}^{\text {m }}$ | 800000 | Breakpoint in the segmented regression of the stock-recruitment time-series (1947-2016). | ICES (2018d) |
|  | $\mathrm{B}_{\mathrm{pa}}$ | 900000 | $\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\mathrm{lim}} \times \exp (1.645 \times \sigma)$ with $\sigma \approx 0.10$, based on the average $C V$ from the terminal assessment year. | ICES (2018d) |
|  | $\mathrm{F}_{\text {lim }}$ | 0.34 | $\mathrm{F}_{\mathrm{P} 50 \%}$ leading to $50 \%$ probability of SSB $>\mathrm{B}_{\text {lim }}$ with a segmented regression and Ricker stock-recruitment curve (2002-2016). | ICES (2018d) |
|  | $\mathrm{F}_{\mathrm{pa}}$ | 0.30 | $\mathrm{F}_{\mathrm{pa}}=\mathrm{F}_{\text {lim }} \times \exp (-1.645 \times \sigma)$ with $\sigma \approx 0.08$, based on the average $C V$ from the terminal assessment year. | ICES (2018d) |
| Management plan option A | $\mathrm{B}_{\text {trigger }}$ | 1500000 t | Informed by simulations. | $\begin{aligned} & \text { EU-Norway } \\ & (2017 ; 2018) \end{aligned}$ |
|  |  | $\begin{aligned} & \hline F_{\text {ages }(w r) 0-1}=0.05 \\ & F_{\text {ages }}(w r)_{2-6}=0.23 \\ & \hline \end{aligned}$ | SSB is greater than $\mathrm{B}_{\text {trigger }}$ | EU-Norway (2017; 2018) |
|  | $\mathrm{F}_{\text {target }}$ | $\begin{gathered} \mathrm{F}_{\text {ages }}(\mathrm{wr}) 0-1= \\ 0.05 * \mathrm{SSB} / \mathrm{B}_{\text {trigger }} \\ \mathrm{F}_{\text {ages }}(\mathrm{wr}) 2-6= \\ 0.23 * \mathrm{SSB} / \mathrm{B}_{\text {trigger }} \\ \hline \end{gathered}$ | SSB is less than $\mathrm{B}_{\text {trigger }}$ | $\begin{aligned} & \text { EU-Norway } \\ & (2017 ; 2018) \end{aligned}$ |
| Management plan option A $+C^{*}$ | $\mathrm{B}_{\text {trigger }}$ | 1500000 t | Informed by simulations. | $\begin{aligned} & \text { EU-Norway } \\ & (2017 ; 2018) \end{aligned}$ |
|  | $\mathrm{F}_{\text {target }}$ | $\begin{aligned} & F_{\text {ages }(w r) 0-1}=0.05 \\ & F_{\text {ages }}(w r)_{2-6}=0.23 \end{aligned}$ | SSB is greater than $\mathrm{B}_{\text {trigger }}$ | $\begin{aligned} & \text { EU-Norway } \\ & (2017 ; 2018) \end{aligned}$ |
|  |  | $\begin{gathered} \hline \mathrm{F}_{\text {ages }}(\mathrm{wr}) 0-1= \\ 0.05 * \mathrm{SSB} / \mathrm{B}_{\text {trigger }} \\ \mathrm{F}_{\text {ages }}(\mathrm{wr}) 2-6= \\ 0.23 * \mathrm{SSB} / \mathrm{B}_{\text {trigger }} \\ \hline \end{gathered}$ | SSB is less than $\mathrm{B}_{\text {trigger }}$ | $\begin{aligned} & \text { EU-Norway } \\ & (2017 ; 2018) \end{aligned}$ |
| $\begin{aligned} & \text { Management } \\ & \text { plan option } \\ & \text { A+D** } \end{aligned}$ | $\mathrm{B}_{\text {trigger }}$ | 1500000 t | Informed by simulations. | $\begin{aligned} & \text { EU-Norway } \\ & (2017 ; 2018) \end{aligned}$ |
|  | $\mathrm{F}_{\text {target }}$ | $\begin{aligned} & F_{\text {ages }(w r) 0-1}=0.05 \\ & F_{\text {ages }}(w r)_{2-6}=0.23 \end{aligned}$ | SSB is greater than $\mathrm{B}_{\text {trigger }}$ | $\begin{aligned} & \text { EU-Norway } \\ & (2017 ; 2018) \end{aligned}$ |
|  |  | $\begin{gathered} \hline \mathrm{F}_{\text {ages }}(\mathrm{wr}) 0-1= \\ 0.05 * \mathrm{SSB} / \mathrm{B}_{\text {trigger }} \\ \mathrm{F}_{\text {ages }}(\mathrm{wr} 2-6= \\ 0.23 * \mathrm{SSB} / \mathrm{B}_{\text {trigger }} \\ \hline \end{gathered}$ | SSB is less than $\mathrm{B}_{\text {trigger }}$ | $\begin{aligned} & \text { EU-Norway } \\ & (2017 ; 2018) \end{aligned}$ |
| Management plan option B | $\mathrm{B}_{\text {trigger }}$ | 1500000 t | Informed by simulations. | EU-Norway <br> (2017; 2018) |
|  | $\mathrm{F}_{\text {target }}$ | $\begin{aligned} & F_{\text {ages }(w r) 0-1}=0.05 \\ & F_{\text {ages }}(w r)_{2-6}=0.23 \\ & \hline \end{aligned}$ | SSB is greater than $\mathrm{B}_{\text {trigger }}$ | $\begin{gathered} \text { EU-Norway } \\ (2017 ; 2018) \end{gathered}$ |
|  |  | $\begin{gathered} \text { Fages }(w r) 0-1=0.05^{F_{\text {ages }}(w r)^{2-6}=} \\ 0.23 * \text { SSB } / B_{\text {trigger }} \\ \hline \end{gathered}$ | SSB is less than $\mathrm{B}_{\text {trigger }}$ and greater than $\mathrm{Bl}_{\text {lim }}$ | $\begin{aligned} & \text { EU-Norway } \\ & (2017 ; 2018) \end{aligned}$ |
|  |  | $\begin{gathered} F_{\text {ages }(w r) 0-1}=0.04 \\ F_{\text {ages }(w r) 2-6}=0.1 \\ \hline \end{gathered}$ | SSB is less than $\mathrm{B}_{\text {lim }}$ | EU-Norway (2017; 2018) |

[^7]Table 2.7.3. North Sea Herring. Scenarios for prediction year (2019). Weights in tonnes.

| Basis | F values by fleet and total |  |  |  |  |  |  |  |  | Catches by fleet |  |  |  | Total stock catch | Biomass* |  |  |  | \% Advice change ${ }^{\wedge}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\stackrel{\text { 苞 }}{\stackrel{\text { U }}{\dot{U}}}$ | - | + |  |  |  | A-fleet | Bfleet | Cfleet" | Dfleet\# |  | SSB 2020 | $\text { SSB } 2021$ |  |  |  |
| MSY approach^^ |  | 0.24 | 0.046 |  | 0 |  | 0 | 0.24 | 0.048 | 418649 | 12413 | 0 | 0 | 431062 | 1286788 | 1167712 | -15.8 | 8.7 | 38.4 |
| Other scenarios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EU-Norway Management strategy option $\mathrm{A}^{\ddagger}$ |  | 0.20 | 0.043 |  | 0 |  | 0 | 0.20 | 0.044 | 364795 | 11563 | 0 | 0 | 376359 | 1323117 | 1227801 | -13.5 | -5.2 | 20.8 |
| EU-Norway Management strategy option $A+C^{\ddagger \ddagger}$ |  | 0.20 | 0.043 |  | 0 |  | 0 | 0.20 | 0.044 | 364795 | 11563 | 0 | 0 | 376359 | 1323117 | 1227801 | -13.5 | -5.2 | 20.8 |
| EU-Norway Management strategy option A+D ${ }^{\ddagger \ddagger}$ |  | 0.20 | 0.043 |  | 0 |  | 0 | 0.20 | 0.044 | 364795 | 11563 | 0 | 0 | 376359 | 1323117 | 1227801 | -13.5 | -5.2 | 20.8 |
| EU-Norway Management strategy option $\mathrm{B}^{\ddagger \ddagger \ddagger}$ |  | 0.21 | 0.049 |  | 0 |  | 0 | 0.21 | 0.050 | 376286 | 13090 | 0 | 0 | 389376 | 1315365 | 1214353 | -14.0 | -2.3 | 25.0 |
| $F=F_{M S Y}$ |  | 0.26 | 0.046 |  | 0 |  | 0 | 0.26 | 0.048 | 448772 | 12412 | 0 | 0 | 461185 | 1266292 | 1135230 | -17.2 | 16.6 | 48.0 |
| $F=0$ |  | 0 | 0 |  | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1558516 | 1699799 | 1.9 | -100.0 | -100.0 |
| No change in A-fleet TAC |  | 0.22 | 0.046 |  | 0 |  | 0 | 0.22 | 0.047 | 385008 | 12414 | 0 | 0 | 397422 | 1309518 | 1204811 | -14.3 | 0.0 | 27.6 |
| A-fleet TAC reduction of $15 \%$ |  | 0.18 | 0.046 |  | 0 |  | 0 | 0.18 | 0.047 | 327257 | 12415 | 0 | 0 | 339672 | 1348146 | 1270564 | -11.8 | -15.0 | 9.0 |


| Basis | F values by fleet and total |  |  |  |  |  | Catches by fleet |  |  |  | Total stock catch | Biomass* |  |  |  | \% Advice change ^ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | A-fleet | Bfleet | Cfleet ${ }^{\#}$ | Dfleet ${ }^{\#}$ |  | SSB 2020 | $\begin{aligned} & \text { SSB } 2021 \\ & * * \end{aligned}$ | \%SSB <br> change <br> *** |  |  |
| A-fleet TAC increase of 15\% | 0.26 | 0.046 | 0 | 0 | 0.26 | 0.048 | 442759 | 12412 | 0 | 0 | 455172 | 1270395 | 1141659 | -16.9 | 15.0 | 46.1 |
| $\mathrm{F}=\mathrm{F}_{2018}$ | 0.19 | 0.046 | 0 | 0 | 0.19 | 0.047 | 351394 | 12415 | 0 | 0 | 363809 | 1332061 | 1242761 | -12.9 | -8.7 | 16.8 |
| $\mathrm{F}_{\mathrm{pa}}$ | 0.30 | 0.046 | 0 | 0 | 0.30 | 0.048 | 503560 | 12411 | 0 | 0 | 515971 | 1228661 | 1077894 | -19.6 | 30.8 | 65.6 |
| $\mathrm{F}_{\text {lim }}$ | 0.34 | 0.046 | 0 | 0 | 0.34 | 0.048 | 555312 | 12409 | 0 | 0 | 567721 | 1192695 | 1025745 | -22.0 | 44.2 | 82.2 |
| $S S S B_{2020}=\mathrm{B}_{\mathrm{pa}}$ | 0.75 | 0.046 | 0 | 0 | 0.75 | 0.050 | 957157 | 12395 | 0 | 0 | 969552 | 899590 | 679381 | -41.2 | 148.6 | 211.2 |
| $\mathrm{SSB}_{2020}=\mathrm{Bl}_{\text {lim }}$ | 0.95 | 0.046 | 0 | 0 | 0.95 | 0.051 | 1087848 | 12388 | 0 | 0 | 1100237 | 799618 | 585305 | -47.7 | 182.6 | 253.1 |
| $S S B_{2020}=$ MSY $\mathrm{B}_{\text {trigger }}$ | 0.13 | 0.046 | 0 | 0 | 0.13 | 0.047 | 249400 | 12417 | 0 | 0 | 261817 | 1399457 | 1363458 | -8.5 | -35.2 | -16.0 |
| MSY approach with C and $D$ fleets catches and C fleet TAC transfer"\# | 0.25 | 0.046 | 0.002 | 0.002 | 0.25 | 0.052 | 429474 | 12392 | 2886 | 604 | 445357 | 1286867 | 1165739 | -15.8 | 11.5 | 42.9 |
| MSY approach with C and $D$ fleets catches and no C fleet TAC transfer"\#\# | 0.24 | 0.046 | 0.003 | 0.002 | 0.24 | 0.053 | 415398 | 12388 | 5550 | 604 | 433940 | 1286942 | 1164080 | -15.8 | 7.9 | 39.3 |

* For autumn-spawning stocks, the SSB is determined at spawning time and is influenced by fisheries between 1 January and spawning.
** Assuming same catch scenario in 2020 as in 2019.
*** SSB (2020) relative to SSB (2019).
**** A-fleet catches (2020) relative to TAC 2019 for the A-fleet (385008 tonnes).
$\wedge$ Advice value 2020 relative to advice value 2019, using catches for all fleets.
$\wedge \wedge$ Following the MSY advise rule FMSY $\times$ SSB2020 $^{\prime} / \mathrm{MSY}$ B trigger (ICES, 2016).
$\wedge \wedge \wedge$ Status quo on the fishing mortality for the B fleet for all catch options except management strategy options
* The catch for C and D fleets are set to zero because of the zero catch advice given for 2019 for the Western Baltic spring-spawning herring stock.
${ }^{* 4}$ Following the MSY advise rule $\mathrm{F}_{\mathrm{MSY}} \times$ SSB $_{2020} /$ MSY Btrigger (ICES, 2016), assuming same catches as in 2019 for the C and D fleet and a $48 \%$ C fleet TAC transfer to the A fleet.
 $\ddagger$ scenario based on current MSE results ${ }^{11}$ for case A: Btriger $=1500000, \mathrm{~F}_{\text {target }}=0.23, \mathrm{~F}_{01}=0.05$.
$\ddagger$ scenario based on current MSE results ${ }^{11}$ for case A+C: Btrigger $=1500000, \mathrm{~F}_{\text {target }}=0.23, \mathrm{~F}_{01}=0.05$.
${ }^{\ddagger \#}$ scenario based on current MSE results ${ }^{1)}$ for case A+D: Btrigger $=1500000, F_{\text {target }}=0.23, F_{01}=0.05$.
$\ddagger \# \#$ scenario based on current MSE results ${ }^{1{ }^{1}}$ for case B: $\mathrm{B}_{\text {trigger }}=1500000, \mathrm{~F}_{\text {target }}=0.23, \mathrm{~F}_{01}=0.05$.
${ }^{1)}$ The MSE assumed a fixed transfer from the C-fleet into the North Sea (between 19370 tonnes and 24214 tonnes) while the scenarios above are based on a 0 catch option for the $C$ and $D$ fleet because of the advice on WBSS herring.


Figure 2.1.1a: Herring catches in the North Sea in the 1st quarter of 2018 (in tonnes) by statistical rectangle.


Figure 2.1.1b: Herring catches in the North Sea in the 2 nd quarter of 2018 (in tonnes) by statistical rectangle.


Figure 2.1.1c: Herring catches in the North Sea in the 3rd quarter of 2018 (in tonnes) by statistical rectangle.


Figure 2.1.1d: Herring catches in the North Sea in the 4th quarter of 2018 (in tonnes) by statistical rectangle.


Figure 2.1.1e: Herring catches in the North Sea in all quarters of 2018 (in tonnes) by statistical rectangle.


Figure 2.2.1: Proportions of age groups (numbers) in the total catch of herring caught in the North Sea (upper, 19602018, and lower panel, 1980-2018).


Figure 2.2.2: Proportion of age groups (numbers) in the total catch of NSAS and herring caught in the North Sea in 2018.


Figure 2.3.1.1. Cruise tracks and survey area coverage in the HERAS acoustic surveys in 2018 by nation.


Figure 2.3.1.2. Distribution of NASC attributed to herring in HERAS in 2018. Acoustic intervals represented by light grey dot with green circles representing size and location of herring aggregations. NASC values are resampled at 5 nmi intervals along the cruise track. The red lines show the strata system.


Figure 2.3.2.1: North Sea herring - Abundance of larvae < $10 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$ in the Buchan, Central and Southern North Sea as obtained from the International Herring Larvae Surveys in autumn and winter 2018/2019 (maximum circle size $=3500 \mathrm{n} / \mathrm{m}^{2}$ ). The survey around the Orkneys had to be stopped after 28 hauls due to technical problems of the research vessel.


Figure 2.3.3.1. North Sea herring. Length distribution of all herring larvae caught during the 2019 Q1 IBTS.


Figure 2.3.3.2. North Sea herring. Distribution of 0-ringer herring, year classes 2015-2017. Density estimates of 0-ringers within each statistical rectangle are based on MIK catches during IBTS in January/February 2016-2018. Areas of filled circles illustrate densities in no $\mathrm{m}^{-2}$, the area of the largest circle represents a density of $1.83 \mathrm{~m}^{-2}$. All circles are scaled to the same order of magnitude of the square root transformed densities.

1-ringers yearclass 2015 1-ringers yearclass 2016 1-ringers yearclass 2017


Figure 2.3.3.3. North Sea herring. Distribution of 1-ringer herring, year classes 2014-2016. Density estimates of 1-ringers within each statistical rectangle are based on GOV catches during IBTS in January/February 2016-2018. Areas of filled circles illustrate numbers per hour, scaled proportionally to the square root transformed CPUE data, the area of the largest circle extending across the boundary of a rectangle represents $99136 \mathrm{~h}^{-1}$.


Figure 2.3.3.4 North Sea herring. Time series of 0-ringer, and 1-ringer indices (red). Year classes 1991 to 2018 for 0-ringers, year classes 1991-2017 for 1-ringers. The new 0-ringer index only covers the 1991-2017 year classes



Figure 2.4.1.1. North Sea Herring. Mean weights-at-age for the 3rd quarter in Divisions 4 and 3.a from the acoustic survey (upper panel) and mean weights-in-the-catch (lower panel) for comparison.


Figure 2.5.1.1 North Sea herring. Relationship between indices of 0 -ringers, calculated with the new algorithm, and 1ringers for year classes 1991 to 2018.


Figure 2.6.1.1 North Sea Herring. Time series of proportion mature at ages $\mathbf{0}$ to 8+ as used in the North Sea herring assessment.


Figure 2.6.1.2. North Sea Herring. Time series of catch-at-age proportion at ages 0-8+ as used in the North Sea herring assessment. Colours indicate year-classes. All ages are scaled independently and therefore the size of the bars can only be compared within an age.


Figure 2.6.1.3. North Sea Herring. Time series of absolute natural mortality values at age 0-8+ as used in the North Sea herring assessment. Natural mortality values are based on the 2017 North Sea key-run (ICES WGSAM, 2018).


Figure 2.6.1.4. North Sea Herring. Time series of the HERAS acoustic index by age 1-8+. Colours indicate year-classes. All ages are scaled independently and cannot be compared between ages.


Figure 2.6.1.5. North Sea herring. Internal consistency plot of the acoustic survey (HERAS). Above the diagonal the linear regression is shown including the observations (in points) while under the diagonal the $r^{2}$ value that is associated with the linear regression is given.


Figure 2.6.1.6 North Sea herring. Diagnostics of the assessment model fit to the catch at age 0 time series. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from catch abundance at 0 wr . Top right: scatterplot of catch observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: catch observation versus standardized residuals at $\mathbf{0} \mathbf{w r}$. Middle left: Time series of standardized residuals of the catch at $0 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.7 North Sea herring. Diagnostics of the assessment model fit to the catch at age 1 time series. Top left: Estimates of numbers at 1 wr (line) and numbers predicted from catch abundance at 1 wr . Top right: scatterplot of catch observations versus assessment model estimates of numbers at 1 wr with the best-fit catchability model (linear function). Middle right: catch observation versus standardized residuals at 1 wr. Middle left: Time series of standardized residuals of the catch at 1 wr. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.8 North Sea herring. Diagnostics of the assessment model fit to the catch at age 2 time series. Top left: Estimates of numbers at 2 wr (line) and numbers predicted from catch abundance at $\mathbf{2} \mathbf{w r}$. Top right: scatterplot of catch observations versus assessment model estimates of numbers at $2 \mathbf{w r}$ with the best-fit catchability model (linear function). Middle right: catch observation versus standardized residuals at $\mathbf{2} \mathbf{w r}$. Middle left: Time series of standardized residuals of the catch at $\mathbf{2} \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.9 North Sea herring. Diagnostics of the assessment model fit to the catch at age $\mathbf{3}$ time series. Top left: Estimates of numbers at 3 wr (line) and numbers predicted from catch abundance at 3 wr . Top right: scatterplot of catch observations versus assessment model estimates of numbers at 3 wr with the best-fit catchability model (linear function). Middle right: catch observation versus standardized residuals at 3 wr. Middle left: Time series of standardized residuals of the catch at $3 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.10 North Sea herring. Diagnostics of the assessment model fit to the catch at age 4 time series. Top left: Estimates of numbers at 4 wr (line) and numbers predicted from catch abundance at 4 wr . Top right: scatterplot of catch observations versus assessment model estimates of numbers at 4 wr with the best-fit catchability model (linear function). Middle right: catch observation versus standardized residuals at $4 \mathbf{w r}$. Middle left: Time series of standardized residuals of the catch at 4 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.11 North Sea herring. Diagnostics of the assessment model fit to the catch at age 5 time series. Top left: Estimates of numbers at 5 wr (line) and numbers predicted from catch abundance at 5 wr . Top right: scatterplot of catch observations versus assessment model estimates of numbers at 5 wr with the best-fit catchability model (linear function). Middle right: catch observation versus standardized residuals at 5 wr. Middle left: Time series of standardized residuals of the catch at 5 wr. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.12 North Sea herring. Diagnostics of the assessment model fit to the catch at age 6 time series. Top left: Estimates of numbers at 6 wr (line) and numbers predicted from catch abundance at 6 wr . Top right: scatterplot of catch observations versus assessment model estimates of numbers at 6 wr with the best-fit catchability model (linear function). Middle right: catch observation versus standardized residuals at 6 wr. Middle left: Time series of standardized residuals of the catch at 6 wr. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.13 North Sea herring. Diagnostics of the assessment model fit to the catch at age $\mathbf{7}$ time series. Top left: Estimates of numbers at 7 wr (line) and numbers predicted from catch abundance at 7 wr . Top right: scatterplot of catch observations versus assessment model estimates of numbers at 7 wr with the best-fit catchability model (linear function). Middle right: catch observation versus standardized residuals at $7 \mathbf{w r}$. Middle left: Time series of standardized residuals of the catch at 7 wr. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.14. North Sea herring. Diagnostics of the assessment model fit to the catch at age 8+ time series. Top left: Estimates of numbers at $8+\mathbf{w r}$ (line) and numbers predicted from catch abundance at $8+\mathbf{w r}$. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 8+ wr with the best-fit catchability model (linear function). Middle right: catch observation versus standardized residuals at $8+\mathbf{w r}$. Middle left: Time series of standardized residuals of the catch at $8+\mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.15. North Sea herring. Diagnostics of the assessment model fit to the HERAS index at age 1 wr time series. Top left: Estimates of numbers at 1 wr (line) and numbers predicted from index abundance at 1 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 1 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $1 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $1 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.16. North Sea herring. Diagnostics of the assessment model fit to the HERAS index at age $\mathbf{2}$ wr time series. Top left: Estimates of numbers at $\mathbf{2} \mathbf{w r}$ (line) and numbers predicted from index abundance at $\mathbf{2} \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at $\mathbf{2} \mathbf{w r}$ with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $2 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $\mathbf{2} \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.17. North Sea herring. Diagnostics of the assessment model fit to the HERAS index at age $\mathbf{3} \mathbf{w r}$ time series. Top left: Estimates of numbers at 3 wr (line) and numbers predicted from index abundance at 3 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 3 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 3 wr . Middle left: Time series of standardized residuals of the index at $\mathbf{3} \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.18. North Sea herring. Diagnostics of the assessment model fit to the HERAS index at age 4 wr time series. Top left: Estimates of numbers at 4 wr (line) and numbers predicted from index abundance at 4 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 4 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 4 wr . Middle left: Time series of standardized residuals of the index at 4 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.19. North Sea herring. Diagnostics of the assessment model fit to the HERAS index at age 5 wr time series. Top left: Estimates of numbers at 5 wr (line) and numbers predicted from index abundance at 5 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 5 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $5 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at 5 wr. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.20. North Sea herring. Diagnostics of the assessment model fit to the HERAS index at age 6 wr time series. Top left: Estimates of numbers at 6 wr (line) and numbers predicted from index abundance at 6 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at $6 \mathbf{w r}$ with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $6 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at 6 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.21. North Sea herring. Diagnostics of the assessment model fit to the HERAS index at age 7 wr time series. Top left: Estimates of numbers at 7 wr (line) and numbers predicted from index abundance at 7 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 7 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 7 wr . Middle left: Time series of standardized residuals of the index at 7 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.22. North Sea herring. Diagnostics of the assessment model fit to the HERAS index at age 8+ wr time series. Top left: Estimates of numbers at 8+ wr (line) and numbers predicted from index abundance at 8+ wr. Top right: scatterplot of index observations versus assessment model estimates of numbers at 8+ wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 8+ wr. Middle left: Time series of standardized residuals of the index at 8+ wr. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.23 North Sea herring. Diagnostics of the assessment model fit to the IBTS-Q1 index at age 1 wr time series. Top left: Estimates of numbers at 1 wr (line) and numbers predicted from index abundance at 1 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 1 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $1 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at 1 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.24. North Sea herring. Diagnostics of the assessment model fit to the IBTSO index at age 0 wr time series. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at 0 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at $0 \mathbf{w r}$ with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $0 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.25. North Sea herring. Diagnostics of the assessment model fit to the IBTS-Q3 index at age 0 wr time series. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at 0 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $0 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.26. North Sea herring. Diagnostics of the assessment model fit to the IBTS-Q3 index at age 1 wr time series. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at 0 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $0 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.27. North Sea herring. Diagnostics of the assessment model fit to the IBTS-Q3 index at age 2 wr time series. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at 0 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $0 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.28. North Sea herring. Diagnostics of the assessment model fit to the IBTS-Q3 index at age 3 wr time series. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at 0 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at $0 \mathbf{w r}$ with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $0 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.29. North Sea herring. Diagnostics of the assessment model fit to the IBTS-Q3 index at age 4 wr time series. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at 0 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at $0 \mathbf{w r}$ with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $0 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.30. North Sea herring. Diagnostics of the assessment model fit to the IBTS-Q3 index at age 5 wr time series. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at 0 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $0 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.31. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Buchan area for the first week time series available for this component. Top left: Estimates of numbers at $0 \mathbf{w r}$ (line) and numbers predicted from index abundance at $0 \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 0 wr . Middle left: Time series of standardized residuals of the index at 0 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.32. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Buchan area for the second week time series available for this component. Top left: Estimates of numbers at $0 \mathbf{w r}$ (line) and numbers predicted from index abundance at $0 \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $\mathbf{0} \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $\mathbf{0} \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.33. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Banks area for the first week time series available for this component. Top left: Estimates of numbers at $0 \mathbf{w r}$ (line) and numbers predicted from index abundance at $0 \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 0 wr . Middle left: Time series of standardized residuals of the index at $0 \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.34. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Banks area for the second week time series available for this component. Top left: Estimates of numbers at $0 \mathbf{w r}$ (line) and numbers predicted from index abundance at $0 \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $\mathbf{0} \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.35. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Banks area for the third week time series available for this component. Top left: Estimates of numbers at $0 \mathbf{w r}$ (line) and numbers predicted from index abundance at $0 \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 0 wr . Middle left: Time series of standardized residuals of the index at 0 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.36. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Banks area for the fourth week time series available for this component. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at $0 \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at $0 \mathbf{w r}$ with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 0 wr . Middle left: Time series of standardized residuals of the index at 0 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.37. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Orkney/Shetland area for the first week time series available for this component. Top left: Estimates of numbers at $0 \mathbf{w r}$ (line) and numbers predicted from index abundance at 0 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $\mathbf{0} \mathbf{w r}$. Bottom left: normal QQ plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.38. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Orkney/Shetland area for the second week time series available for this component. Top left: Estimates of numbers at $0 \mathbf{w r}$ (line) and numbers predicted from index abundance at 0 wr . Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $\mathbf{0} \mathbf{w r}$. Bottom left: normal QQ plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.39. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Downs area for the first week time series available for this component. Top left: Estimates of numbers at $0 \mathbf{w r}$ (line) and numbers predicted from index abundance at $0 \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 0 wr . Middle left: Time series of standardized residuals of the index at 0 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.40. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Downs area for the second week time series available for this component. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at $0 \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at 0 wr with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at $0 \mathbf{w r}$. Middle left: Time series of standardized residuals of the index at $\mathbf{0} \mathbf{w r}$. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.41. North Sea herring. Diagnostics of the assessment model fit to the LAI index in the Downs area for the third week time series available for this component. Top left: Estimates of numbers at 0 wr (line) and numbers predicted from index abundance at $0 \mathbf{w r}$. Top right: scatterplot of index observations versus assessment model estimates of numbers at $0 \mathbf{w r}$ with the best-fit catchability model (linear function). Middle right: index observation versus standardized residuals at 0 wr . Middle left: Time series of standardized residuals of the index at 0 wr . Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation plot.


Figure 2.6.1.42. North Sea herring. Bubble plot of standardised catch residual.


Figure 2.6.1.43. North Sea herring. Bubble plot of standardised acoustic survey residuals.


Figure 2.6.1.44. North Sea herring. Bubble plot of standardised IBTSQ1 residuals.


Figure 2.6.1.45. North Sea herring. Bubble plot of standardised IBTSQ3 residuals.

## Observation variances by data source



Figure 2.6.1.46. North Sea herring. Observation variance by data source as estimated by the assessment model. Observation variance is ordered from least (left) to most (right). Colours indicate the different data sources. Observation variance is not individually estimated for each data source thereby reducing the parameters needed to be estimated in the assessment model. In these cases of parameter bindings, observation variances have equal values.

Observation variance vs uncertainty


Figure 2.6.1.47. North Sea herring. Observation variance by data source as estimated by the assessment model plotted against the CV estimate of the observation variance parameter.


Figure 2.6.1.48. North Sea herring. Assessments retrospective pattern of SSB (top panel) F (middle panel) and recruitment (bottom panel) from 2011 to 2018.


Figure 2.6.1.49. North Sea herring. Model uncertainty; distribution and quantiles of estimated SSB and $F_{2-6}$ in the terminal year of the assessment. Estimates of precision are based on a parametric bootstrap from the FLSAM estimated variance / covariance estimates from the model.


Figure 2.6.1.50. North Sea herring. Correlation plot of the FLSAM assessment model with the final set of parameters estimated in the model. The diagonal represents the correlation with the data source itself.

## Residuals by year Catch $A$



Figure 2.6.2.1. North Sea herring multi-fleet assessment model. Bubble plot of standardised residuals for catches of fleet A.


Figure 2.6.2.2. North Sea herring multi-fleet assessment model. Bubble plot of standardised residuals for catches of fleet B\&D.

## Residuals by year Catch $\mathbf{C}$



Figure 2.6.2.3. North Sea herring multi-fleet assessment model. Bubble plot of standardised residuals for catches of fleet C.

Observation variances by data source


Figure 2.6.2.4. North Sea herring multi-fleet assessment model. Observation variance by data source as estimated by the assessment model. Observation variance is ordered from least (left) to most (right). Colours indicate the different data sources. Observation variance is not individually estimated for each data source thereby reducing the parameters needed to be estimated in the assessment model. In these cases of parameter bindings, observation variances have equal values.

## Observation variance vs uncertainty



Figure 2.6.2.5. North Sea herring multi-fleet assessment model. Observation variance by data source as estimated by the assessment model plotted against the CV estimate of the observation variance parameter.

## North Sea herring multifleet



Figure 2.6.2.6. North Sea multi-fleet assessment model. Correlation plot of the FLSAM assessment model with the final set of parameters estimated in the model. The diagonal represents the correlation with the data source itself.


Figure 2.6.2.7. North Sea herring multi-fleet assessment model. Assessments retrospective pattern of SSB (top panel) F (middle panel) and recruitment (bottom panel) from 2006 to 2018.



Figure 2.6.2.8. North Sea herring multi-fleet assessment model. Comparison SSB, F bar and recruitment trajectories for multi-fleet and single fleet assessment model outputs.


Figure 2.6.2.9. North Sea herring. SSB trajectory for the 2018 and 2019 assessments and the 2019 assessment without including the 2018 from HERAS.

North Sea Herring HERAS vs. stock index (age 2-8+)


Figure 2.6.2.10. North Sea herring. SSB trajectory (age 2-8+ winter rings) for the 2019 assessments and the HERAS SSB index.


Figure 2.6.3.1 North Sea herring. Stock summary plot of North Sea herring with associated uncertainty for SSB (top panel), F ages 2-6 (middle panel) and recruitment (bottom panel).


Figure 2.6.3.2. North Sea herring. Agreed management plan for North Sea herring including the most recent 10 years of SSB and $F$ as estimated within the assessment in relation with the management plan.


Figure 2.7.2.1. North Sea Herring. Predicted and projected catch (in weight) between 2018 assessment (2019 as forecast year) and 2019 assessment (2020 as forecast year).


Figure 2.7.2.2. North Sea Herring. Catch proportions for the different ages between the 2018 short term forecast (2019 as forecast year) and the 2019 short term forecast (2020 as forecast year).


Figure 2.7.2.3. North Sea Herring. Short term projections using an F status quo from TAC year (i.e. advice year). Intermediate year is in 2019 and the TAC year is 2020.


Figure 2.11.1. North Sea herring. Time-series of spawning stock biomass of each component, as estimated from the LAI index. Areas are arranged from top to bottom according to the south-to-north arrangement of the components.


Figure 2.11.2. North Sea herring. Time-series of the contribution of each spawning component to the total stock, as estimated from the LAI index (Payne, 2010). Areas are arranged from top to bottom according to the north-to-south arrangement of the components.


Figure 2.13.1. North Sea Autumn Spawning Herring stock recruitment curve, plotting estimated spawning stock biomass against the resulting recruitment. Year classes spawned after 2001 are plotted with open red circles, to highlight the years of recent poor recruitment. The most recent year class is plotted in solid red. Note the logarithmic scaling on both axes.


Figure 2.13.2. North Sea Autumn Spawning Herring time series of recruits per spawner (RPS). RPS is calculated as the estimated number of recruits from the assessment divided by the estimated number of mature fish at the time of spawning and is plotted against the year in which spawning occurred. Black points: RPS in a given year. Red line: Smoother to aid visual interpretation. Note the logarithmic scale on the vertical axis.


Figure 2.13.3. North Sea Autumn Spawning Herring time series of larval survival ratio (Dickey-Collas \& Nash, 2005; Payne et al., 2009), defined as the ratio of the SSB larval index (representing larvae less than $\mathbf{1 0} \mathbf{- 1 1} \mathbf{~ m m}$ ) and the IBTSO index (representing the late larvae, $\mathbf{> 1 8} \mathbf{~ m m}$ ). Survival ratio is plotted against the year in which the larvae are spawned.


Figure 2.13.4. North Sea Autumn Spawning Herring time series of larval survival ratio (Dickey-Collas \& Nash, 2005; Payne et al., 2009) for the northern-most spawning components (Banks, Buchan, Orkney-Shetland), defined as the ratio of the sum of the larvae indices for these components (representing larvae less than $\mathbf{1 0 - 1 1 ~ m m}$ ) and the IBTSO index (representing the late larvae, > $18 \mathbf{m m}$ ). Survival ratio is plotted against the year in which the larvae are spawned.

## 3 Herring in Division 3.a and subdivisions 22-24, spring spawners [update assessment]

### 3.1 The Fishery

### 3.1.1 Advice and management applicable to 2018 and 2019

ICES advised in 2018 on the basis of the MSY approach. This corresponds to zero catch in 2019 (ICES CM 2018/ACOM:07).

The EU and Norway agreement on a herring TAC for 2018 was 48427 t in Division 3.a for the human consumption fleet and a bycatch ceiling of 6659 t to be taken in the small mesh fishery. For 2019, the EU and Norway agreement on herring TACs in Division 3.a was 29326 t for the human consumption fleet and a bycatch ceiling of 6659 t to be taken in the small mesh fishery.

Prior to 2006, no separate TAC for subdivisions 22-24 was set. In 2018, a TAC of 17309 t was set on the Western Baltic stock component. The TAC for 2019 was set at 9001 t .

### 3.1.2 Landings in 2018

Herring caught in Division 3.a are a mixture of North Sea Autumn Spawners (NSAS) and Western Baltic Spring Spawners (WBSS). This section gives the landings of both NSAS and WBSS but the stock assessment applies only to the spring spawners.
Landings from 1989 to 2018 are given in Table 3.1.1 and Figure 3.1.1. In 2018, the total landings in Division 3.a and subdivisions 22-24 have overall increased to 42250 t . Landings in 2018 decreased by $14 \%$ in the Skagerrak, by $12 \%$ in the Kattegat and by $28 \%$ in subdivisions $22-24$. As in previous years the 2018 landing data are calculated by fleet according to the fleet definitions used when setting TACs.

### 3.1.2.1 Fleets

One of the unresolved issues from the benchmark in 2018 was the definition of the fleets, which differs between years and countries (ICES WKPELA, 2018).

The definition of the fleets in the EU TAC and quota regulation, since 1998 (e.g. EU 2017/127 and 2016/1903)

Fleet C: Catches of herring in Kattegat and Skagerrak taken in fisheries using nets with mesh sizes equal to or larger than 32 mm .

Fleet D: Exclusively for catches of herring in Kattegat and Skagerrak taken as bycatch in fisheries using nets with mesh sizes smaller than 32 mm .

Fleet F: Not defined directly in the regulation, but landings from subdivisions 22-24. Most of the catches are taken in a directed fishery for herring and some as bycatch in a directed sprat fishery

The definition used by HAWG, since 2010
Fleet C: Directed fishery for herring in Kattegat and Skagerrak in which trawlers (with 32 mm minimum mesh size) and purse seiners participate. Since 2010 this fleet also includes the Swedish fishery with mesh sizes less than 32 mm , since an earlier change in the Swedish industrial fishery
implies that there is no difference in age structure of the landings between vessels using different mesh sizes since both are basically targeting herring for human consumption.

Fleet D: Bycatch of herring in Kattegat and Skagerrak in the industrial fleet and only including Danish landings. Covering all fisheries with mesh sizes less than 32 mm e.g. the sprat fishery, but also including other fisheries where herring is landed as bycatch e.g. Norway pout and blue whiting fisheries.

Fleet F: Landings from subdivisions 22-24. Most of the catches are taken in a directed fishery for herring and some as bycatch in a directed sprat fishery.

In Table 3.1.2 the landings are given for 2003 to 2018 in thousands of tonnes by fleet (as defined by HAWG) and quarter.

The text table below gives the TACs and Quotas (t) for the fishery by the C- and D-fleets in Division 3.a and for the F-fleet in subdivisions 22-24.

|  | TAC | DK | GER | FI | PL | SWE | EC | NOR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2018 |  |  |  |  |  |  |  |  |
| Div. 3.a fleet-C | 48427 | 20255 | 324 | 200 |  | 21189 | 41768 | 6459 |
| Div. 3.a fleet-D | 6659 | 5692 | 51 |  |  | 916 | 6659 |  |
| SD 22-24 <br> fleet-F | 17309 | 2426 | 9551 | 1 | 2252 | 3079 | 17309 | 17309 |
| \% of 3.a fleet-C can be taken in 4 EU waters |  |  |  |  |  |  | -50\% |  |
| \% of 3.a fleet-C can be taken in 4 Norwegian waters |  |  |  |  |  |  |  | -50\% |
|  | TAC | DK | GER | FI | PL | SWE | EC | NOR |
| 2019 |  |  |  |  |  |  |  |  |
| Div. 3.a fleet-C | 29326 | 12325 | 197 | 0 |  | 12893 | 25415 | 3911 |
| Div. 3.a fleet-D | 6659 | 5692 | 51 |  |  | 916 | 6659 |  |
| SD 22-24 <br> fleet-F | 9001 | 1262 | 4966 | 1 | 1171 | 1601 | 9001 |  |
| \% of 3.a fleet-C can be taken in 4 EU waters |  |  |  |  |  |  | -50\% |  |
| \% of 3.a fleet-C can be taken in 4 Norwegian waters |  |  |  |  |  |  |  | -50\% |

### 3.1.3 Regulations and their effects

Before 2009, HAWG has calculated a substantial part of the catch reported as taken in Division 3.a in fleet C actually has been taken in Area 4. These catches have been allocated to the North Sea stock and accounted for under the A-fleet. Misreported catches have been moved to the appropriate stock for the assessment. However, from 2009 and on onwards, information from both the industry and VMS estimates suggest that this pattern of misreporting of catches into Division 3.a does no longer occur. Thus no catches were moved out of Division 3.a to the North Sea for catches taken in 2018.

Regulations allowing quota transfers from Division 3.a to the North Sea were introduced as an incentive to decrease misreporting of the fishery, and the percentage has gradually been reduced until 2010. Since 2011 the EU-Norway agreement allowed $50 \%$ of the Division 3.a quotas for human consumption (Fleet C) to be taken in the North Sea. The optional transfer of quotas from one management area to another introduces uncertainty for catch predictions and thus influence the quality of the stock projections. To decrease the uncertainty industry agreed in the 2013 benchmark to inform HAWG prior to the meeting of the assumed transfer in the intermediate year. In the last few years this information has proved to be highly valuable and consistent with the realised distribution of the catches. For the fishery in 2019 the industry (Pelagic RAC) informed HAWG that about $52 \%$ of the predicted catches in the C-fleet will be taken in Division 3.a.

The quota for the C fleet and the bycatch TAC for the D fleet (see above) are set for the NSAS and the WBSS stocks together. The implication for the catch of NSAS must also be taken into account when setting quotas for the fleets that exploit these stocks.

### 3.1.4 Changes in fishing technology and fishing patterns

The amount of WBSS herring caught in the D-fleet was reduced from a typical catch of 1107 t in 2016 to 151 t in 2018. This was caused by an early in the year closure of the sprat fishery as agreed between fishers and the Danish regulation authorities due to problems with bycatch issues.

### 3.1.5 Winter rings vs. ages

To avoid confusion and facilitate comparability among herring stocks with different "spawning style" (i.e. NSAS) the age of WBSS, as well as other HAWG herring stocks, is specified in terms of winter rings (wr) throughout the entire assessment and advice. In the case of WBSS perfect correspondence exists between wr and age with no actual risk of confusion, so that a wr 1 is also an age 1 WBSS herring.

### 3.2 Biological composition of the landings

Table 3.2.1 and Table 3.2.2 show the total catch in numbers and mean weight-at-age in the catch for herring by quarter and fleet landed from Skagerrak and Kattegat, respectively. The total catch in numbers and mean weights-at-age for herring landed from subdivisions 22-24 are shown in Table 3.2.3.

In 2018, a small correction was made to the number at age in subdivision $241^{\text {st }}$ quarter 2017. In 2017 a small amount of 0 wr was reported caught in this stratum. The estimates were based on a single fish and after re-evaluation the fish was judged to be 1 wr . This correction also influenced the mean weight at age in the stock.

The $42250 t$ of landed herring were submitted stratified by area, fleet and quarter, resulting in 66 strata with landings. 30 of these strata were sampled - accounting for $96 \%$ of the landings and in general strata with the majority of the landings were well sampled. A minor number of strata had less than 3 samples, but in general the landings were minor and in total these only account for 7556 t (Table 3.2.4). Un-sampled strata accounted in total for 1792 t and samples from either other nations or adjacent areas and quarters were used to estimate catch in numbers and mean weight-at-age (Table 3.2.5).
Based on the proportions of spring- and autumn-spawners in the landings, catches were split between NSAS and WBSS (Table 3.2.6 and the stock annex for more details).

The total numbers and mean weight-at-age of the WBSS and NSAS landed from Kattegat, Skagerrak, and Division 3.a respectively were then estimated by quarter and fleet (tables 3.2.7-3.2.12).
The total catch, expressed as SOP, of the WBSS taken in the North Sea + Division 3.a in 2018 was estimated to be 20066 t , which represents an increase of $11 \%$ compared to 2016 (Table 3.2.13).
Total catches of WBSS from the North Sea, Division 3.a, and subdivisions 22-24 respectively, by quarter, were estimated for 2018 (Table 3.2.14). Additionally, the total catches of WBSS in numbers and tonnes, divided between the North Sea and Division 3.a and subdivisions 22-24 respectively for 1993-2018, are presented in tables 3.2.15 and 3.2.16.

The total catch of NSAS in Division 3.a amounted to 3372 t in 2018, which represents the third lowest value in the 26 year time series (Table 3.2.17).
The catches of WBSS from Subarea 4.aE and the catches of NSAS from Division 3.a in 2018 were reallocated to the appropriate stocks as shown in the text table below:

| Stock | Catch reallocation | Tonnes |
| :---: | :---: | :---: |
| WBSS | $4 . a E$ (A-fleet) | 2164 |
| NSAS | $3 . a$ (C+D-fleet) | 3372 |

### 3.2.1 Quality of Catch Data and Biological Sampling Data

No quantitative estimates of discards were available to the Working Group. However, the amount of discards for 2018 is assumed to be insignificant, as in previous years.

Table 3.2.4 shows the number of fish aged by country, area, fishery and quarter. The overall sampling in 2018 meets the recommended level of one sample per 1000 t landed per quarter and the coverage of areas, times of the year and gear (mesh size). Fortunately occasional lack of national sampling of catches by quarter and area has been covered by similar fisheries in other countries.
Splitting of catches into WBSS (Spring spawners) and NSAS (Autumn spawners) in Division 3.a were based on Danish and Swedish analyses of otolith micro-structure of hatch type and extended with discriminant analysis of otolith shape calibrated with hatch type and applied on production samples with classification parameters: herring otolith metrics as well as age, length and ICES Subdivision (see Stock Annex). The total sample size for hatch type was 1424 with $26 \%$ of the samples in Subdivision 20 (Skagerrak) and $74 \%$ in Subdivision 21 (Kattegat). There were no split samples available for the second quarter.

No samples for split of commercial catches in the transfer area in Division 4.a East were available in 2018. The split was therefor based on 724 Norwegian vertebral count (VC) observations from scientific cruises and commercial catches in the period 2008-2016, and from 424 vs counts from the HERAS in the 3 rd quarter of 2018. The applied method was based on the average VC by age group and quarters 1-4 as described in the Stock Annex.

There are clear indications from weight at age of mixing with Central Baltic herring in catches from SD 24 throughout the year from most of the countries. However, the catches are dominated by the German directed fishery in the spawning areas where mixing is likely to be minimum. Catch data are not corrected for this mixing neither potential catches of Western Baltic Spring Spawning herring from SD 25-26.

### 3.3 Fishery-independent Information

### 3.3.1 German Autumn Acoustic Survey (GERAS) in subdivisions 21-24

As a part of Baltic International Acoustic Survey (BIAS); the German autumn acoustic survey (GERAS) was carried out with R/V "SOLEA" between 1-19 October 2018 in the Western Baltic, covering subdivisions $21,22,23$ and 24 . A survey report is given in the report of the 'ICES Working Group of International Pelagic Surveys' (ICES WGIPS, 2019). In the western Baltic, the distribution areas of two stocks, the Western Baltic Spring Spawning herring (WBSSH) and the Central Baltic herring $(\mathrm{CBH})$ overlap. Survey results indicated in the recent years that in SD 24, which is part of the WBSSH management area, a considerable fraction of CBH is present and correspondingly erroneously allocated to WBSSH stock indices (ICES 2013/ACOM:46). Accordingly, a stock separation function (SF) based on growth parameters in 2005 to 2010 has been developed to quantify the proportion of CBH and WBSSH in the area (Gröhsler et al., 2013; Gröhsler et al., 2016). The estimates of the growth parameters based on baseline samples of WBSSH and CBH in 2011-2017 and in 2018 (despite the occurrence of some CBH in the GERAS baseline samples of WBSSH in SD 21 and 23) support the applicability of the SF (Oeberst et al., 2013 - WD for HAWG 2013; Oeberst et al., 2014 - WD for WGIPS 2014; Oeberst et al., 2015 - WD for WGIPS 2015; Oeberst et al., 2016 - WD for WGBIFS 2016, Oeberst et al., 2017 - WD for WGIPS 2017; Gröhsler, T. and Schaber, M., 2018 - WD for WGBIFS 2018 Gröhsler, T. and Schaber, M., 2019 - WD for WGBIFS 2019). Thus, the SF was applied to correct the GERAS index for WBSS from 2005-2018.

Individual mean weight, total numbers and biomass by age as estimated from the GERAS are presented in Table 3.3.1. The Western Baltic spring spawning herring stock index in 2017 was estimated to be $3.2 \times 10^{9}$ fish or about $65.1 \times 10^{3}$ tonnes in subdivisions $21-24$. Compared to previous results, the present estimates of herring show a further significant decrease in biomass. The biomass index in 2018 represents the second record low in the 24 year time series (with a difference of only 9000 tonnes compared to the former record low in 2009).

The time series has been revised in 2008 (ICES 2008/ACOM:02) to include the southern part of SD 21. The years 1991-1993 were excluded from the assessment due to different recording method and 2001 was also excluded from the assessment since SD 23 was not covered during that year (ICES 2008/ACOM:02).
Age (wr) classes (1-4) are included in the assessment.

### 3.3.2 Herring Summer Acoustic Survey (HERAS) in Division 3.a

The Herring acoustic survey (HERAS) was conducted from 25 June to 10 July 2018 and covered the Skagerrak and the Kattegat. The 2018 estimate of Western Baltic spring-spawning herring was 130 tonnes and 1,074 million herring. Compared to the value in 2018, the 2018 estimates represent a decrease of $57 \%$ in numbers and of $56 \%$ in biomass. The stock biomass is dominated by $1-4$ winter ring ( $62 \%$ ). The present numbers of older herring ( $3+$ group) in the stock decreased to $51 \%$ of the average of the whole times series (2018: 744 million; mean 1991-2018: 1468 million). The results from the HERAS index are summarised in Table 3.3.2.

The 1999 survey was excluded from the assessment due to different survey area coverage. Ages (wr) 3-6 are used in the assessment.

### 3.3.3 Larvae Surveys (N20)

Herring larvae surveys (Greifswalder Bodden and adjacent waters; SD 24) were conducted in the western Baltic at weekly intervals during the 2018 spawning season (March-June). The larval index was defined as the total number of larvae that reach the length of 20 mm (N20; Table 3.3.3; Oeberst et al., 2009). With an estimated product of 1563 million larvae, the 2018 N20 recruitment index is in similar dimensions as the previous year and more than double as high as the record low of 2016. However, the value is only in the range of about $1 / 5$ of the time series mean thus not countering the decreasing trend of larval production observed in the system during the past two decades.
The larval index is used as recruitment index (age (wr) 0) in the assessment.

### 3.3.4 IBTS/BITS Q1 and Q3-Q4

Since the recent benchmark (ICES, WKPELA 2018), the IBTS and the BITS data are combined according to the standardization methodology proposed by Berg et al., (2014), (hauls showed in Figure 3.3.1). In addition to the standardization model, two extra modelling steps are included, which consist of splitting the survey length and age data by stock using subsamples of stockidentified individuals. First, the length distributions are split by haul into WBSS / non-WBSS. Next the individual age samples are split into WBSS / non-WBSS. This gives a stock-specific ALK, which is used to convert the split length distributions from the first step into numbers-at-age by haul. The following equation describes the model considered for both the presence/absence and positive parts of the Delta-Lognormal model:
$\mathrm{g}\left(\mu_{\mathrm{i}}\right)=$ Year $(\mathrm{i})+$ Gear $(\mathrm{i})+\mathrm{f} 1($ loni; lati $)+\mathrm{ff}_{2}($ Depthi $)+\mathrm{f} 3\left(\right.$ time $\left._{\mathrm{i}}\right)+\log ($ HaulDuri $)$
where Gear(i) and Year(i) maps the $\mathrm{i}^{\text {th }}$ haul to categorical gear/year effects for each age group. Age (wr) classes (1-3) and (2-3) are included in the assessment from the surveys in Q1 and Q34.

### 3.4 Mean weights-at-age and maturity-at-age

Mean weights at age in the catch in the 1st quarter were used as estimates of mean weight at age in the stock (Table 3.6.3).

The maturity ogive of WBSS applied in HAWG has been assumed constant between years and has been the same since 1991 (ICES 1992/Assess:13), although large year-to-year variations in the percentage mature have been observed (Gröhsler and Müller, 2004). Maturity ogive has been
investigated in the recent benchmark assessment of WBSS (ICES 2013/ACOM:46). WKPELA in 2013 decided to carry on with the application of the constant maturity ogive vector for WBSS.

The same maturity ogive was used as in the last year assessment (ICES CM 2018/ACOM:07):

| W-rings | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8 +}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maturity | 0.00 | 0.00 | 0.20 | 0.75 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 |

### 3.5 Recruitment

Indices of recruitment of 0-ringer WBSS for 2018 were available from the N20 larval surveys (see Section 3.3.3).

The strong correlation of the N20 with the 1-wr group of the GERAS ( $\mathrm{R}^{2}=0.7$, Figure 3.5.1), which also shows a good internal consistency with the GERAS 2-wr group, indicates that the N20 is a good proxy for the strength of the new incoming year class. Since 2010, the N20 recruitment index lies below the long-term average (1992-2018: 5828 million). The 2016 N20 recruitment index represents the sixth record low in the 27 year time series (Table 3.3.3).

### 3.6 Assessment of Western Baltic spring spawners in Division 3.a and subdivisions 22-24

### 3.6.1 Input data

All input data can be found in tables 3.6.1-3.6.8.
Only the input landings data differs between the single and multi-fleet model - the rest of the input files are the same for both models.

### 3.6.1.1 Landings data

Catch in numbers at age from 1991 to 2018 were available for Subdivision 27.4.a (East, fleet A), Division 27.3.a (fleet C and D, respectively) and subdivisions 27.3.c-27.3.d. 24 (fleet F) (Table 3.6.1.a-f). Years before 1991 are excluded due to lack of reliable data for splitting spawning type and also due to a large change in fishing pattern caused by changes in the German fishing fleets (ICES 2008/ACOM:02).

Mean weights at age in the catch vary annually and are available for the same period as the catch in numbers (Table 3.6.2.a-f; Figure 3.6.1.1). Proportions at age thus reflect the combined variation in weight at age and numbers at age (Figures 3.6.1.2 and 3.6.1.3).

### 3.6.1.2 Biological data

Estimates of the mean weight of individuals in the stock (Table 3.6.3 (Q1) and Figure 3.6.1.4) are available for all years considered.
Natural mortality was assumed constant over time and equal to $0.3,0.5$, and 0.2 for 0 -ringers, 1 ringers, and $2+$-ringers respectively (Table 3.6.4). The estimates of natural mortality were derived as a mean for the years 1977-1995 from the Baltic MSVPA (ICES 1997/J:2) as no new values were available as confirmed in the recent benchmark.

The percentage of individuals that are mature is assumed constant over time (Table 3.6.5): ages (wr) $0-1$ are assumed to be all immature, ages (wr) $2-4$ are $20 \%, 75 \%$ and $90 \%$ mature respectively, and all older ages are $100 \%$ mature.

The proportions of fishing mortality and natural mortality before spawning are 0.1 and 0.25 respectively and are assumed to be constant over time (Table 3.6.6-7). The difference between these two values is due to differences in the seasonal patterns of fishing and natural mortality.

### 3.6.1.3 Surveys

Surveys indices used in the both model runs can be found in tables 3.6.8a-e.
According to the last benchmark of WBSS (ICES WKPELA, 2018), the following age (w-rings) classes (in grey) are used from each survey to tune the assessment of this stock:

| Survey | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $8+$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HERAS |  |  |  |  |  |  |  |  |  |
| GERAS |  |  |  |  |  |  |  |  |  |
| N20 |  |  |  |  |  |  |  |  |  |
| IBTS/BITS Q1 |  |  |  |  |  |  |  |  |  |
| IBTS/BITS Q3-4 |  |  |  |  |  |  |  |  |  |

### 3.6.2 Assessment method

Since the 2018 benchmark (ICES WKPELA, 2018), the WBSS assessment is based on the statespace multi-fleet assessment model SAM. The assessment model presents one fishing mortality matrix for each of the four fleets fishing WBSS herring (A, C, D, and F). The model is designed to handle fleet disaggregated catches which are available only from year 2000 while the model is run over the time period 1991-2018. The current implementation is an R-package based on Template Model Builder (TMB) and can be found at https://github.com/fishfollower/SAM (branch "multi").

The benchmark found highly consistent estimates of SSB, F and Recruitment as well as combined age selections between the multi- and the single-fleet SAM using comparable model settings.

For this year's update assessment, the corresponding single fleet version is available with a configuration as close as possible to the multi-fleet model. The single fleet model output is represented as an overlay in the SSB, F, recruitment and total catch plots in the multi-fleet output. Both the multi-fleet (WBSS_HAWG_2019) and the single fleet (WBSS_HAWG_2019_sf) outputs are available at www.stockassessment.org.

Details of the software version employed are given in Table 3.6.9.

### 3.6.3 Assessment configuration

The model configuration was set as specified in Table 3.6.10.

### 3.6.4 Final run

The results of the assessment are given in tables 3.6.11-3.6.14. The estimated SSB for 2018 is 74132 [55 092, 99751 ( $95 \%$ CI)] t. The mean fishing mortality (ages 3-6) is estimated as 0.416 [0.297, 0.584 ( $95 \% \mathrm{CI}$ )] yr ${ }^{-1}$.

After a marked decline from almost 300000 t in the early 1990s to a low of about 120000 t in the late 1990s, the SSB of this stock stabilised above 100000 t in the early 2000s (Figure 3.6.4.1). After a small peak in 2006 coinciding with the maturing of the last major year-class, the SSB has declined up to 2011 with the lowest SSB ( 69 kt ) observed in the time series. SSB has only slightly increased in the following period up to 90 kt in 2015 and then has declined to 74 kt in 2018, which is the lowest SSB since 2013.

Fishing mortality on this stock was high in the mid-1990s, reaching a maximum of over $0.6 \mathrm{yr}^{-1}$. In 1999-2009, $\mathrm{F}_{3-6}$ stabilised between 0.5 and 0.6 . In 2010 and 2011, $\mathrm{F}_{3-6}$ decreased significantly to a value of approx. $0.36 \mathrm{yr}^{-1}$, where it stabilized for few years until increasing again above 0.4 since 2016. (Table 3.6.11, Figure 3.6.4.2).

Recruitment has been decreasing overall since 2000 and the 2018 estimate of 954391 thousands is the lowest on record (Tables 3.6.11, Figure 3.6.4.3). The stock-recruitment plot for the WBSS stock (Figure 3.6.4.4) shows three distinct periods of recruitment with an early period of high recruitments varying between 3 and 5 billion coinciding with a declining SSB from 300 kt to 120 kt in the years 1991-1998 and no signs of density-dependence. This is followed by a distinct decline in recruitment to values below 2 billion at a relatively constant spawning stock biomass between 120 and 160 kt over the period from 1998-2006. In the most recent period, from 2007 to 2018 recruitment has varied from about 2 billion to less than 1 billion at SSB between 74 kt and 105 kt , with a worrying trend of declining recruitment in the latest years from 2013 to 2018.

The total catch is well fitted (Figure 3.6.4.5) but also the catch per fleet (Figure 3.6.4.6) except for the fleet A where some observations are outside the confidence interval of the estimated catch.

The estimated partial fishing mortalities show remarkable differences between the four fleets reflecting the targeted ages of the individual fisheries, increasing with age for the A-fleet and the F-fleet, whereas distinct peaks are found for the C-fleet and the D-fleet at ages 2 and 1 wr respectively (Figure 3.6.4.7). For all fleets except the C-fleet there is a decreasing trend in F for the last three decades. The corresponding selectivity pattern for the F-fleet is relatively stable throughout the time period of the assessment, whereas the D-fleet has a tendency of shifting its highest selectivity from age 1 to age 2 ( wr ) in later years. Total fishing mortality on the WBSS stock increased with herring age (Figure 3.6.4.8). It decreased over time but showed an increase in the past 4 years.

The model was constrained to have the same selectivity for the two oldest ages (wr) 7+ in all fleets. The fishing mortality was assumed to be independent across ages for the A-fleet. The estimated correlation parameter in the F random walk for the C-fleet was estimated to a very high value, which caused convergence problems in initial runs, it was therefore assigned a fixed high value in the subsequent assessment runs resulting in parallel selection patterns.

The estimated survey catchability is rather different among the surveys. The HERAS and the GERAS surveys are relatively constant over the applied ages (wr) 3-6 and 1-4 respectively. Whereas both IBTS Q1 and Q3.4 surveys show, sharp declines with increasing ages 1-3 and 2-3, respectively (Figure 3.6.4.9).

Interpretation of the different catchability patterns is complex, and likely a number of reasons including ontogenetic differences in the spatial distribution and behaviour of the different age classes at the time of the surveys may affect their relative availability to the different samplings.

The surveys present some strong correlations notably between the older ages (Figure 3.6.4.10). The same is observed for fleets C and F. The tracking of each cohort can be observed in Figure 3.6.4.11.

The F-fleet has a lower observation variance than the GERAS and the fleet C, and the IBTS Q3.4 surveys variance is lower than the HERAS, the IBTS Q1 and the N20. Both the D-fleet and the Afleet have very high observation variances (Figure 3.6.4.12).

Inspection of model diagnostics shows the occurrence of high residuals in some years (i.e. 2009 and 2018 in the GERAS and 2013-2014 in HERAS; Figure 3.6.4.13). Overall, the agreement between the data and the fitted model appears acceptable throughout the data sources, which are most influential in the model.

Residuals for catch in different fleets generally show poorer fit to the youngest year-classes 0-1 wr (Figure 3.6.4.13). Further, the fit by fleet to some degree follows the amount of catches in the fleets with increasingly better fit from A-fleet, D-fleet, C-fleet to the F-fleet (figures 3.6.4.133.6.4.17). The fit to the combined fleets in the beginning of the time series follows the observations to some degree except for the two youngest age classes $0-1 \mathrm{wr}$, which exhibit a rather poor fit. (Figure 3.6.4.18).

The individual survey diagnostics show some differences in how the model fit the different survey data, and the level of fitting is widely in agreement with the estimated observation variance for each data component (figures 3.6.4.19-24). In general, a similar fit is found for all included ages (wr) 3-6 of the HERAS index (Figure 3.6.4.19). The GERAS appears to fit slightly better for the ages (wr) 3-4 than for the younger ages (Figure 3.6.4.20). In recent years, GERAS shows a clear drop in indices for ages (wr) 2-4 that was poorly fitted in the last year assessment (ICES, 2018). In this year assessment, while the estimated indices for ages (wr) $2-4$ are not as low as the observed ones, a clear decrease is seen (Figure 3.6.4.20) and residuals in 2018 are larger (Figure 3.6.4.13). The N20 pics up the negative trend in the observations of the recruitment index (Figure 3.6.4.21) however still with negative residuals by the end of the time series (Figure 3.6.4.13). Poorer fit is observed for the IBTS+BITS-Q1 for all ages (wr) 1-3, over the entire time series (Figure 3.6.4.22) and likewise to the IBTS+BITS-Q3.4 for the two ages (wr) 2-3 (Figure 3.6.4.23) with large positive residuals for age (wr) 2 in recent years (Figure 3.6.4.13).

Retrospective analysis suggests that the assessment method gives a consistent perception of the stock until the 2017 assessment but the 2018 SSB estimates differ from the estimates from the previous assessment years (Figure 3.6.4.24). The SSB has a Mohn's rho of $13 \%$ and the retrospective estimates are within the confidence interval of this year SSB estimates. Average fishing mortality retrospective is within the confidence bounds for F (Mohn's rho $=-7 \%$, Figure 3.6.4.25) and the retrospective for recruitment is acceptable having a Mohn's rho $=-7 \%$, with little bias and two outliers (Figure 3.6.4.26). Changes from year to year retrospective are very tight for total catch (Figure 3.6.4.27). The difference between the 2018 assessment estimates and the 2019 ones seems to be mainly due to the GERAS survey that pushes the stock down due to very low indices for ages 2-4 in 2018. Indeed, for the single fleet model, leaving out the GERAS survey from the dataset induces an increase in the perception of the stock with increasing SSB in recent year (Figures 3.6.4.28-31). However, this pattern is less obvious in the multi-fleet model (figures 3.6.4.3235). The reason for this difference may be that disaggregating the catch into fleets in the multifleet model gives relatively more weight to the catch than in the single fleet model (four observation errors with specific estimated variance vs. one in the single fleet) and therefore the effect of GERAS is less strong in the multi-fleet model.

### 3.7 State of the stock

The stock was benchmarked in 2018 with a substantial increase in the chosen value of $\mathrm{B}_{\mathrm{lim}}$ and a slight downwards revision of the SSB levels. The stock has decreased consistently from mid 2000s to a historical low in 2011. With the new Blim the stock has been in a state of impaired recruitment since 2007.

The 2018 benchmark calculated a new $\mathrm{F}_{\text {MSY }}$ of 0.31 . Fishing mortality ( $\mathrm{F}_{3-6}$ ) was reduced between 2009 and 2011 from above 0.50 to 0.37 . $\mathrm{F}_{3-6}$ has then remained stable slightly above FMSY until 2015 $(\sim 0.36)$ but shows an increase in recent years with an estimated $F_{3-6}$ in 2018 well above $\mathrm{F}_{\text {MSY }}$ (0.416).

Recruitment has be declining in the last five years with a historical low value in 2018 of 954391 thousands (Tables 3.6.11, Figure 3.6.4.3).

The lower level of fishing mortality since 2011 has allowed a slight increase in SSB (from 70 kt in 2011 to 90 kt in 2015) despite the general low recruitment level, but since the strong 2013 yearclass, recruitment has declined to historic low values that will not support a rebuilding of the stock with present levels of fishing mortalities.

### 3.8 Comparison with previous years perception of the stock

The table below summarises the differences between the current and the previous year's assessment. The addition of the 2018 data resulted in a change in the perception of the stock compared to last year's assessment. While the recent estimates of recruitment are more optimistic in the current assessment ( $+11 \%$ ), F appears to be larger than previously estimated ( +17 to $+20 \%$ ) and SSB smaller ( -16 to $-24 \%$ ).

In this year's assessment, recruitment for the 2013 year-class was estimated to be 1743986 thousands compared to 1946458 thousands in the 2018 assessment. This decrease in recruitment induced a decrease in the SSB estimates in the following years compared to the 2018 assessment. This change in the perception of the stock resulted in an increase in the fishing mortality estimates since 2013 to satisfy the observed catches. The change in the perception of the stock is supported by all surveys but mainly GERAS (see 3.6.4).

| Parameter | Assessment in $\mathbf{2 0 1 8}$ | Assessment in 2019 | Difference 2019/2018 (+/-)\% |
| :--- | :---: | :---: | :---: |
| SSB (t) 2016 | 102294 | 88443 | $-15.66 \%$ |
| $F_{(3-6)} 2016$ | 0.334 | 0.402 | $16.92 \%$ |
| Recr. (‘000) 2016 | 934898 | 1054035 | $11.30 \%$ |
| SSB (t) 2017 | 104170 | 83895 | $-24.17 \%$ |
| $F_{(3-6)} 2017$ | 0.332 | 0.416 | $20.19 \%$ |

### 3.9 Short term predictions

Short term projections are possible both as stochastic and deterministic forecasts. While SAM runs with parameter values represented by percentiles, forecasts in multi-fleet SAM have to switch to a representation by means and standard deviations in order for catches in the individual fleets to add up the totals predicted. However, to be in line with the median representation, all values would have to be recalculated back from the representation by means. Although statistically correct, the HAWG did not want to perform these operations without a prior scrutinising of the effects on the presentation of the advice. Therefore, HAWG in line with all other assessments of the working group calculated deterministic predictions using that forecast option of the multi-fleet SAM and following the settings in the stock annex.

### 3.9.1 Input data

In the short term predictions recruitment ( 0 -winter ring, wr) is assumed to be constant, and it is calculated as the geometric mean of the last five years prior the last year model estimate (i.e. for the 2019 assessment, recruitment for the forecasts was calculated on the period 2013-2017). For all older ages, the stock numbers are projected forward from the last data year to the intermediate year according to the estimated total mortalities based on fleet wise expected catches and natural mortalities. The mean weight-at-age in the catch and in the stock as well as the maturity ogive were calculated as the arithmetic averages over the last five years of the assessment (2014-2018). Based on earlier considerations in the herring working group, the different periods were chosen to reflect recent levels in recruitment and weights.

### 3.9.2 Intermediate year 2019

A catch constraint was assumed for the intermediate year (2019). Predicted 2019 catch by fleet is summarised in the Table below and depends on two main assumptions:

- Both NSAS and WBSS herring stocks are caught in the divisions 3.a (C and D-fleets) and 4.aE (A-fleet) whereas the subdivision 22-24 catch (F-fleet) is assumed to be only WBSS herring.
- The C- and D-fleets do not use their entire TAC.

| Fleets | TAC 2019 NSAS+WBSS ( $\mathbf{t}$ ) | TAC WBSS ( $\mathbf{t}$ ) | TAC WBSS given utilization ( $\mathbf{t}$ ) |
| :---: | :---: | :---: | :---: |
| A | 385008 | 1545 | $100 \%=1545$ |
| C | 29326 | $81 \%=23754$ | $52 \%=12352$ |
| D | 6659 | $44 \%=2930$ | $16 \%=469$ |
| Total | 9001 | 9001 | $100 \%=9001$ |

The amount of WBSS taken in Division 4.aE by the A-fleet in 2019 is assumed equal to the average over the last 3 years (2016-2018) corresponding to 1545 t .

The expected catch of WBSS in Division 3.a was calculated assuming the same WBSS proportions in the catch of each fleet in 2019 as the average of 2016-2018 in Division 3.a. This resulted in $81 \%$
of the C-fleet catch being WBSS herring. In addition, the EU-Norway agreement allows an optional transfer of $50 \%$ of the human consumption (C-fleet) TAC for herring in Division 3.a into the Area 4 in the North Sea (A-fleet). Based on information from the Pelagic Advisory Council (AC) and last year's value, ICES assumes a $48 \%$ TAC transfer in 2019 so that the TAC utilisation for the C-fleet in Division 3.a is assumed 52\%.

Forty four percent of the D-fleet 2019 catch is assumed to be WBSS herring (average NSAS/WBSS split 2016-2018). In addition, the proportion of the TAC taken in the small meshed fishery (Dfleet) has varied largely during the last 6 years from a maximum of $94 \%$ to the minimum of $6 \%$ recorded in 2017 and 2018 due to choke species effects of restricting whiting quotas. The problems with bycatches under the landings obligation may persist and $16 \%$ utilisation of the TAC in 2019 for the D-fleet is assumed as the average utilisation over the last 3 years.

The catch by the F-fleet fishing for human consumption in subdivisions 22-24 is usually very close to the TAC ( 9001 t ) and an utilisation of $100 \%$ is assumed for the intermediate year.

Misreporting of catches from the North Sea into Division 3.a is no longer assumed to occur after 2008. Therefore, no account was taken in the compilations.

These assumptions give the expected catch by fleet summing up to a total of 23367 t WBSS in 2019.

### 3.9.3 Catch scenarios for 2020

The output of the short-term prediction, based on a catch constraint in the intermediate year 2019 of 23367 t is given in tables 3.9.1-3.9.14.

Different catch options for 2020 were explored with fleet-wise selection patterns and deterministic forecasts. To most closely resemble current WBSS management, a constraint is added to the forecasts so that, after the intermediate year, all scenarios (except the constant 2019 TAC and $\mathrm{F}=0$ scenarios) assume the F fleet gets $50 \%$ of the total catch for WBSS herring.

### 3.9.4 Exploring a range of total WBSS catches for 2020 (advice year)

ICES gives advice according to the Fmsy approach for the WBSS stock. Because SSB in 2019 is below Blim, ICES advises a zero catch for 2020. None of the catch scenarios for 2020, including zero catch, is expected to bring SSB above $\mathrm{B}_{\lim }$ in 2021. Besides requested standard scenarios HAWG also calculated the potential development of the stock projections until 2022 with different low F scenarios, where $\mathrm{F}_{2021}=\mathrm{F}_{2020}$. The highest fishing mortality that brings SSB above Blim in 2022 will be $\mathrm{F}=0.05$ with a yield of 5301 t in 2020 . The TAC for 2019 was set according to the agreed management rule between EU and Norway, however, ICES has not evaluated the rule after the 2018 benchmark revised the reference points for this stock. ICES advises that a recovery plan be developed for the WBSS stock, taking advantage of the fleet-wise analysis and projection for this stock.

| Table | Basis | $\begin{aligned} & \text { Total catch } \\ & \text { (2020) } \end{aligned}$ | $\begin{gathered} F_{3-6} \\ (2020) \end{gathered}$ | $\begin{gathered} \text { SSB* } \\ (2020) \end{gathered}$ | $\begin{gathered} \text { SSB* } \\ (2021) \end{gathered}$ | $\begin{gathered} \text { \% SSB } \\ \text { change } \end{gathered}$ | \% advice change ${ }^{* * *}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ICES advice basis |  |  |  |  |  |  |
| 3.9.2 | MSY approach: $\mathrm{F}=0^{\prime}\left\{\mathrm{SSB}_{2019}<\mathrm{B}_{\mathrm{lim}}\right\}$ | 0 | 0 | 76273 | 101269 | 33\% |  |
|  | Other scenarios |  |  |  |  |  |  |
| 3.9.3 | $\begin{aligned} & \text { MAP 2018^: } \\ & \text { F = } F_{\text {MSY }}(0.310) \times \\ & \text { SSB }_{y-1} / \text { MSY B }_{\text {trigger }} \end{aligned}$ | 15704 | 0.144 | 75137 | 86888 | 16\% |  |
| 3.9.4 | $\begin{aligned} & \text { MAP 2018^: } \\ & \text { F = } \text { F }_{\text {MSYlower }}(0.216) \times \\ & \left(\text { SSB }_{y-1} / \text { MSY }_{\text {trigger }}\right) \end{aligned}$ | 11123 | 0.1 | 75482 | 91026 | 21\% |  |
| 3.9.5 | MAP 2018^: $\begin{aligned} & \mathrm{F}=\mathrm{F}_{\text {MSY upper }}(0.379) \times \\ & \left(\text { SSB }_{y-1} / \text { MSY }_{\text {trigger }}\right) \end{aligned}$ | 18922 | 0.176 | 74886 | 83997 | 12\% |  |
| 3.9.6 | $F=F_{\text {MSY }}(0.310)$ | 31428 | 0.31 | 73848 | 73111 | -1\% |  |
| 3.9.7 | $F=F_{\text {pa }}(0.350)$ | 34878 | 0.35 | 73541 | 70130 | -5\% |  |
| 3.9.8 | $F=F_{\text {lim }}(0.450)$ | 42984 | 0.45 | 72779 | 63222 | -13\% |  |
|  | SSB (2021) $=\mathrm{B}_{\text {lim }} \wedge \wedge$ | 0 | 0 | 76273 | 101269 | 33\% |  |
|  | SSB (2021) = $\mathrm{B}_{\mathrm{pa}}{ }^{\wedge}$ ^ | 0 | 0 | 76273 | 101269 | 33\% |  |
|  | $\begin{aligned} & \text { SSB }(2021)= \\ & \text { MSY B }_{\text {trigger }} \end{aligned} \text { ^^ }$ | 0 | 0 | 76273 | 101269 | 33\% |  |
| 3.9.9 | $F=F_{2019}(0.238)$ | 24897 | 0.238 | 74404 | 78820 | 6\% |  |
| 3.9.10 | $\begin{aligned} & \mathrm{F}=0 \\ & \left\{\text { SSB }_{2022}=132063 \mathrm{t}\right\} \\ & \wedge \wedge \wedge \wedge \end{aligned}$ | 0 | 0 | 76273 | 101269 | 33\% |  |
| 3.9.11 | $\begin{aligned} & \mathrm{F}=0.05 \\ & \left\{\mathrm{SSB}_{2022}=134648 \mathrm{t}\right\} \wedge \wedge \wedge \end{aligned}$ | 5301 | 0.05 | 75877 | 96189 | 27\% |  |
| 3.9.12 | $\begin{aligned} & \mathrm{F}=0.1 \\ & \left\{\mathrm{SSB}_{2022}=122673 \mathrm{t}\right\} \wedge \wedge \wedge \end{aligned}$ | 10359 | 0.1 | 75483 | 91383 | 21\% |  |
| 3.9.13 | $\begin{aligned} & \mathrm{F}=0.15 \\ & \left\{\mathrm{SSB}_{2022}=111881 \mathrm{t}\right\}^{\wedge \wedge \wedge} \end{aligned}$ | 15186 | 0.15 | 75092 | 86838 | 16\% |  |
| 3.9.14 | Constant 2019 TAC^^^^^ | 23367 | 0.222 | 74532 | 80342 | 8\% |  |

' There is no catch option for 2020 that is consistent with a stock recovering to above $B_{l i m}$.

* For spring-spawning stocks, the SSB is determined at spawning time and is influenced by fisheries and natural mortality between 1 January and spawning time (April).
** SSB (2021) relative to SSB (2020).
*** The advice catch in 2019 was 0 tonne.
${ }^{\wedge}$ Revised Baltic MAP (2018) which refers to most recent reference points. As SSB is currently (2018) below MSY $B_{\text {trigger, }}$ the Flower and Fupper values in the MAP are adjusted by the SSBy-1/MSY Btrigger ratio.
$\wedge \wedge$ The Blim and $B_{p a}$ cannot be achieved in 2020 even with zero catch advice.
$\wedge \wedge \wedge$ To explore potential development of the stock, projections until 2022 with different low $F$ scenarios are provided, where F2021 = F2020.
$\wedge \wedge \wedge \wedge$ Assumptions for 2019 catches kept constant for 2020-2021. These include a $48 \%$ transfer of the C-fleet TAC to the North Sea.


### 3.10 Reference points

The WBSS stock was benchmarked in 2018 (ICES WKPELA, 2018) with subsequent changes of reference points. Blim was revised from 90000 to 120000 t to take account of the new perception that recruitment is impaired when the spawning-stock biomass (SSB) is below 120000 t . Ba and MSY Btrigger were subsequently set to 150000 t . Using the eqSim software FMSY was estimated to $0.31, \mathrm{~F}_{\lim } 0.45$ ( $5 \%$ risk to $\mathrm{B}_{\mathrm{lim}}$ ) and $\mathrm{F}_{\mathrm{pa}} 0.35$. The values were based on stochastic simulation of recruitment generated on a combination of Beverton \& Holt, Ricker and segmented regression (ICES 2014/ACOM:64).

### 3.11 Quality of the Assessment

The stock was benchmarked in 2018 (ICES, 2018), which led to a change in perception for the entire time series. The 2019 assessment shows a downward revision in the SSB estimates in recent years compared to the 2018 assessment, which is supported by all the surveys, especially GerAS (see 3.6.4).

The herring assessed in subdivisions 20-24 is a complex mixture of populations predominantly spawning in spring, but with local components spawning also in autumn and winter. The population dynamics and the relative contribution of these components is presently unknown but are likely to affect the precision of the assessment. Moreover, mixing between WBSS and central Baltic herring in subdivisions 22-24 may contribute to uncertainty in the assessment.

Inter-annual variability in the herring migration patterns and in the distribution of the fisheries (including the optional transfer of quotas between divisions 3.a and 4) certainly add uncertainty to the assessment and forecasts of this meta-population. Since these cannot be predicted, recent average proportions between stocks are assumed in projections.

### 3.12 Management Considerations

## Quotas in Division 3.a

The quota for the C-fleet and the bycatch quota for the D-fleet are set for both stocks of North Sea autumn spawners (NSAS) and Western Baltic spring spawners (WBSS) together (see Section 2.7). Fifty percent of the EU and Norwegian quotas for human consumption can optionally be transferred from Division 3.a and taken in Area 4 as NSAS in 2018. ICES assumes that a transfer of $48 \%$ will be applied in 2019 (cf. part 3.9).

## ICES catch predictions versus management TAC

ICES gives advice on catch scenarios for the entire distribution of the NSAS and WBSS herring stocks separately whereas herring is managed by areas (see the following text diagram). The procedure of setting TACs in ICES Division 3.a and SD22-24 takes into account the occurrence of different fleets catches of both WBSS and NSAS herring utilization of TACs and the proportion of NSAS and WBSS that mix in the areas. In the flowchart below a schematic is presented:


Box 1: Each year estimations of the WBSS and NSAS stock size are made using a stock assessment model. Stock size estimation together with the estimated pattern of harvesting is used as the starting point for the short term forecast.

Box 2: To derive at a TAC proposal in the forecast year first the intermediate year (the year where the TAC has already been agreed on) catches need to be resolved. Four different fleets catch WBSS the A-fleet (within the 4.a East area where they take it as a mixture of mainly NSAS and partly WBSS) the C- and D-fleet (within the 3.a area where they take it as a mixture of mainly WBSS and partly NSAS) and the F-fleet (within area 22-24 where they only take WBSS). Each of these fleets target herring taking into account a fleet share of the total TAC. Only part of this TAC is WBSS catches and not all fleets utilize their full TAC fleet share. This results in an estimate of the intermediate year WBSS catches. Given WBSS stock size and these intermediate year catches the fishing mortality that the WBSS stock is exploited at can be estimated.

Box 3: Based on the estimated fishing mortality we can now calculate the survivors from the intermediate year to the forecast year assuming an incoming constant recruitment. The calculation of the stock size January $1^{\text {st }}$ in the forecast year is needed to project catches in the forecast year.

Box 4: The management rule for the C-fleet TAC uses the potential WBSS catches calculated from the FMSY advice plus a fraction of the NSAS LTMP TAC to define the total TAC in ICES Division 3.a as well as SD22-24 (see Application of the management rule below). Dependent on the relative development of the NSAS and WBSS stocks and the quota transfer from the C-fleet to the A-fleet the realised WBSS catches may deviate from the predictions based on $\mathrm{F}_{\text {MSY }}$.

Box 5: The TAC advice from box 4 is taken into the political arena. The result of this will be taken into account to calculate the WBSS population again the year after. Hence box 5 is similar to box 1 .

## Application of the management rule for the herring fishery for human consumption in Di vision 3.a

ICES has not evaluated the agreed management rule after revision of reference points in the 2018 benchmark.

The agreed management rule has since 2014 been the basis for setting the C-fleet TAC in Division 3.a, and is calculated as the sum of $41 \%$ of the WBSS MSY advised catch and $5.7 \%$ of the North Sea herring management plan determined TAC for the A-fleet, with a further associated TAC constraint of $+/-15 \%$ for the C-fleet.

However, given the new $\mathrm{B}_{\mathrm{lim}}$, the stock has been below SSB for ten years raising serious concerns about the status of the WBSS stock. According to a safety clause, which was part of the TACsetting procedure evaluation, the procedure itself therefore should not be applied and it should be re-evaluated.

### 3.13 Ecosystem considerations

Herring in Division 3.a and subdivisions 22-24 is a migratory stock. There are feeding migrations from the Western Baltic into more saline waters of Division 3.a and the eastern parts of Division 4.a. There are indications from parasite infections that yet unknown proportions of stock components spawning at the southern coast in the Baltic Sea may perform similar migrations (Podolska et al., 2006). Herring in Division 3.a and subdivisions 22-24 migrate back to Rügen area (SD 24) and other spawning areas at the beginning of the winter. Moreover, there are recent indications that Central Baltic herring perform migrations into Subdivision 24 (Gröhsler et al., 2013).

Similar to the NSAS, the WBSS has produced a series of poor year classes in the last one and a half decade and the trend continues to decline. An earlier analysis on different Baltic herring stocks showed that the Baltic Sea Index (BSI) reflecting Sea Surface Temperature (SST) was the main predictor for the recruitment of WBSS (Cardinale et al. 2009), however at the moment there is no understanding of the mechanisms driving this relationship. At the current stage there are no indications of systematic changes in growth or age at maturity that could be related to environmental variability, as well as there is no clear study that linked WBSS recruitment to the abundance of prey and/or predators. The low recruitment phase appears to have been initiated before the observed occurrence of Mnemiopsis leidyi (Ctenophore) in the Western Baltic (Kube et al., 2007). The specific reasons for this low recruitment are unknown. Further investigation of the causes of the poor recruitment will require targeted research projects.

### 3.14 Changes in the Environment

There are no evident changes in the environment in the last decade that are thought to strongly affect productivity, migration patterns or growth of WBSS. There are indications that higher SST observed in the last decades might affect recruitment negatively, although the analyses were not conclusive (Cardinale et al., 2009).

Table 3.1.1 Western Baltic herring. Total catch (both WBSS and NSAS) in 1989-2018 (1000 tonnes). (Data provided by Working Group members 2019).

| Year | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Skagerrak |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 47.4 | 62.3 | 58.7 | 64.7 | 87.8 | 44.9 | 43.7 | 28.7 | 14.3 | 10.3 | 10.1 | 16.0 | 16.2 | 26.0 | 15.5 |
| Faroe Islands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.7 |
| Lithuania |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Norway | 1.6 | 5.6 | 8.1 | 13.9 | 24.2 | 17.7 | 16.7 | 9.4 | 8.8 | 8.0 | 7.4 | 9.7 |  |  |  |
| Sweden | 47.9 | 56.5 | 54.7 | 88.0 | 56.4 | 66.4 | 48.5 | 32.7 | 32.9 | 46.9 | 36.4 | 45.8 | 30.8 | 26.4 | 25.8 |
| Total | 96.9 | 124.4 | 121.5 | 166.6 | 168.4 | 129.0 | 108.9 | 70.8 | 56.0 | 65.2 | 53.9 | 71.5 | 47.0 | 52.3 | 42.0 |
| Kattegat |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 57.1 | 32.2 | 29.7 | 33.5 | 28.7 | 23.6 | 16.9 | 17.2 | 8.8 | 23.7 | 17.9 | 18.9 | 18.8 | 18.6 | 16.0 |
| Sweden | 37.9 | 45.2 | 36.7 | 26.4 | 16.7 | 15.4 | 30.8 | 27.0 | 18.0 | 29.9 | 14.6 | 17.3 | 16.2 | 7.2 | 10.2 |
| Total | 95.0 | 77.4 | 66.4 | 59.9 | 45.4 | 39.0 | 47.7 | 44.2 | 26.8 | 53.6 | 32.5 | 36.2 | 35.0 | 25.9 | 26.2 |
| Subdivisions 22+24 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 21.7 | 13.6 | 25.2 | 26.9 | 38.0 | 39.5 | 36.8 | 34.4 | 30.5 | 30.1 | 32.5 | 32.6 | 28.3 | 13.1 | 6.1 |
| Germany | 56.4 | 45.5 | 15.8 | 15.6 | 11.1 | 11.4 | 13.4 | 7.3 | 12.8 | 9.0 | 9.8 | 9.3 | 11.4 | 22.4 | 18.8 |
| Poland | 8.5 | 9.7 | 5.6 | 15.5 | 11.8 | 6.3 | 7.3 | 6.0 | 6.9 | 6.5 | 5.3 | 6.6 | 9.3 |  | 4.4 |
| Sweden | 6.3 | 8.1 | 19.3 | 22.3 | 16.2 | 7.4 | 15.8 | 9.0 | 14.5 | 4.3 | 2.6 | 4.8 | 13.9 | 10.7 | 9.4 |
| Total | 92.9 | 76.9 | 65.9 | 80.3 | 77.1 | 64.6 | 73.3 | 56.7 | 64.7 | 49.9 | 50.2 | 53.3 | 62.9 | 46.2 | 38.7 |
| Subdivision 23 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 1.5 | 1.1 | 1.7 | 2.9 | 3.3 | 1.5 | 0.9 | 0.7 | 2.2 | 0.4 | 0.5 | 0.9 | 0.6 | 4.6 | 2.3 |
| Sweden | 0.1 | 0.1 | 2.3 | 1.7 | 0.7 | 0.3 | 0.2 | 0.3 | 0.1 | 0.3 | 0.1 | 0.1 | 0.2 |  | 0.2 |
| Total | 1.6 | 1.2 | 4.0 | 4.6 | 4.0 | 1.8 | 1.1 | 1.0 | 2.3 | 0.7 | 0.6 | 1.0 | 0.8 | 4.6 | 2.6 |


| Grand Total | 286.4 | 279.9 | 257.8 | 311.4 | 294.9 | 234.4 | 231.0 | 172.7 | 149.8 | 169.4 | 137.2 | 162.0 | 145.7 | 128.9 | 109.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Year | 2004 | 2005 | 2006** | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Skagerrak |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 11.8 | 14.8 | 5.2 | 3.6 | 3.9 | 12.7 | 5.3 | 3.6 | 3.2 | 4.9 | 6.4 | 4.1 | 3.6 | 2.7 | 0.9 |
| Faroe Islands |  | 0.4 |  |  | 0.0 | 0.6 | 0.4 |  |  |  |  | 0.5 | 0.3 | 0.4 | 0.1 |
| Germany | 0.5 | 0.8 | 0.6 | 0.5 | 1.6 | 0.3 | 0.1 | 0.1 | 0.6 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 |
| Lithuania |  |  |  |  |  |  | 0.4 |  |  |  |  |  |  |  |  |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  | 0.03 |  |  |  |
| Norway |  |  |  | 3.5 | 4.0 | 3.3 | 3.3 | 0.1 | 0.4 | 3.0 | 2.0 | 2.5 | 3.9 | 3.3 | 3.4 |
| Sweden | 21.8 | 32.5 | 26.0 | 19.4 | 16.5 | 12.9 | 17.4 | 9.5 | 16.2 | 16.7 | 12.6 | 12.9 | 13.3 | 11.9 | 11.3 |
| Total | 34.1 | 48.5 | 31.8 | 26.9 | 26.0 | 29.7 | 27.0 | 13.2 | 20.5 | 24.8 | 21.2 | 20.1 | 21.2 | 18.5 | 16.0 |
| Kattegat |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 7.6 | 11.1 | 8.6 | 9.2 | 7.0 | 4.9 | 7.6 | 5.2 | 6.3 | 3.9 | 4.3 | 4.0 | 2.4 | 0.9 | 1.3 |
| Sweden | 9.6 | 10.0 | 10.8 | 11.2 | 5.2 | 3.6 | 2.7 | 1.7 | 0.8 | 2.6 | 3.4 | 3.8 | 6.2 | 7.4 | 6.0 |
| Germany |  |  |  |  |  | 0.6 | 0.0 |  |  |  |  |  |  |  |  |
| Total | 17.2 | 21.1 | 19.4 | 20.3 | 12.2 | 9.1 | 10.3 | 6.8 | 7.1 | 6.5 | 7.7 | 7.7 | 8.7 | 8.3 | 7.3 |
| Subdivisions 22+24 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 7.3 | 5.3 | 1.4 | 2.8 | 3.1 | 2.1 | 0.8 | 3.1 | 4.1 | 5.1 | 4.3 | 4.5 | 5.7 | 5.6 | 4.5 |
| Finland |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.001 |
| Germany | 18.5 | 21.0 | 22.9 | 24.6 | 22.8 | 16.0 | 12.2 | 8.2 | 11.2 | 14.6 | 10.2 | 13.3 | 14.4 | 14.7 | 11.3 |
| Poland | 5.5 | 6.3 | 5.5 | 2.9 | 5.5 | 5.2 | 1.8 | 1.8 | 2.4 | 3.1 | 2.4 | 2.6 | 2.9 | 3.3 | 1.8 |
| Sweden | 9.9 | 9.2 | 9.6 | 7.2 | 7.0 | 4.1 | 2.0 | 2.2 | 2.7 | 2.1 | 1.1 | 1.5 | 1.7 | 2.3 | 0.9 |
| Total | 41.2 | 41.8 | 39.4 | 37.6 | 38.5 | 27.4 | 16.8 | 15.3 | 20.4 | 24.8 | 18.0 | 21.9 | 24.7 | 25.9 | 18.5 |
| Subdivision 23 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 0.1 | 1.8 | 1.8 | 2.9 | 5.3 | 2.8 | $0.1{ }^{* * *}$ | 0.03 | 0.04 | 0.04 | 0.05 | 0.03 | 0.03 | 0.3 | 0.1 |
| Sweden | 0.3 | 0.4 | 0.7 |  | 0.3 | 0.8 | 0.9 | 0.5 | 0.7 | 0.6 | 0.3 | 0.2 | 0.3 | 0.4 | 0.4 |
| Total | 0.4 | 2.2 | 2.5 | 2.9 | 5.7 | 3.6 | 1.0 | 0.6 | 0.7 | 0.7 | 0.4 | 0.2 | 0.4 | 0.6 | 0.5 |


\section*{| Grand Total | 92.8 | 113.6 | 93.0 | 87.7 | 82.3 | 69.9 | 55.2 | 35.9 | 48.8 | 56.7 | 47.2 | 50.0 | 55.0 | 53.3 | 42.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

*Preliminary data
**2000 t of Danish catches are missing (HAWG 2007)
***3103 t officially reported catches (HAWG 2011)

Table 3.1.2 Western Baltic herring. Catch (SOP) in 2004-2018 by fleet and quarter (1000 t). (both WBSS and NSAS)

| Year | Quarter | Div. IIla |  | $\begin{array}{\|r\|} \hline \text { SD 22-24 } \\ \hline \text { Fleet F } \\ \hline \end{array}$ | Div. Illa + SD 22-24 $\frac{\text { Total }}{}$ Year | Quarter | Div. IIla |  | SD 22-24 | Div. IIIa + SD 22-24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Fleet C | Fleet D |  |  |  | Fleet C | Fleet D | Fleet F | Total |
| 2004 | 1 | 13.5 | 2.8 | 20.4 | 36.72012 | 1 | 4.5 | 1.8 | 14.0 | 20.3 |
|  | 2 | 2.8 | 3.3 | 10.4 | 16.5 | 2 | 0.3 | 0.7 | 2.5 | 3.5 |
|  | 3 | 8.2 | 10.8 | 2.4 | 21.4 | 3 | 12.3 | 1.7 | 1.1 | 15.0 |
|  | 4 | 5.9 | 5.0 | 8.6 | 19.4 | 4 | 5.2 | 1.1 | 3.5 | 9.9 |
|  | Total | 30.3 | 22.0 | 41.7 | 93.9 | Total | 22.3 | 5.4 | 21.1 | 48.8 |
| 2005 | 1 | 16.6 | 6.1 | 20.4 | 43.12013 | 1 | 8.5 | 0.8 | 11.7 | 20.9 |
|  | 2 | 3.4 | 1.9 | 15.6 | 20.9 | 2 | 1.7 | 0.6 | 8.5 | 10.8 |
|  | 3 | 23.4 | 3.4 | 1.9 | 28.7 | 3 | 8.4 | 1.0 | 1.1 | 10.4 |
|  | 4 | 12.0 | 2.6 | 5.8 | 20.5 | 4 | 9.8 | 0.5 | 4.3 | 14.7 |
|  | Total | 55.4 | 14.1 | 43.7 | 113.3 | Total | 28.4 | 2.9 | 25.5 | 56.7 |
| 2006 | 1 | 15.3 | 5.9 | 15.1 | 36.22014 | 1 | 6.2 | 0.2 | 10.8 | 17.3 |
|  | 2 | 2.6 | 0.1 | 17.2 | 19.9 | 2 | 2.3 | 0.5 | 2.3 | 5.1 |
|  | 3 | 15.7 | 0.8 | 3.0 | 19.5 | 3 | 10.7 | 2.4 | 0.8 | 14.0 |
|  | 4 | 8.3 | 2.4 | 6.5 | 17.3 | 4 | 5.7 | 0.8 | 4.4 | 10.9 |
|  | Total | 41.9 | 9.3 | 41.9 | 93.0 | Total | 24.9 | 4.0 | 18.3 | 47.2 |
| 2007 | 1 | 7.7 | 3.0 | 18.8 | 29.52015 | 1 | 9.0 | 1.9 | 14.2 | 25.1 |
|  | 2 | 3.8 | 0.1 | 10.5 | 14.4 | 2 | 1.0 | 0.1 | 2.8 | 3.9 |
|  | 3 | 22.4 | 0.8 | 1.7 | 24.9 | 3 | 7.5 | 1.5 | 0.9 | 9.9 |
|  | 4 | 7.7 | 1.8 | 9.5 | 18.9 | 4 | 4.1 | 2.8 | 4.3 | 11.1 |
|  | Total | 41.6 | 5.7 | 40.5 | 87.7 | Total | 21.6 | 6.3 | 22.1 | 50.0 |
| 2008 | 1 | 8.2 | 3.9 | 18.4 | 30.52016 | 1 | 7.9 | 0.7 | 15.5 | 24.0 |
|  | 2 | 2.7 | 0.3 | 11.3 | 14.3 | 2 | 0.4 | 0.3 | 3.5 | 4.1 |
|  | 3 | 14.9 | 0.6 | 6.0 | 21.5 | 3 | 15.7 | 1.3 | 1.4 | 18.5 |
|  | 4 | 6.5 | 1.0 | 8.4 | 16.0 | 4 | 3.4 | 0.3 | 4.7 | 8.3 |
|  | Total | 32.3 | 5.9 | 44.1 | 82.3 | Total | 27.4 | 2.5 | 25.1 | 55.0 |
| 2009 | 1 | 11.1 | 2.7 | 19.5 | 33.22017 | 1 | 7.5 | 0.0 | 16.8 | 24.3 |
|  | 2 | 3.1 | 0.1 | 6.8 | 10.1 | 2 | 0.2 | 0.1 | 3.4 | 3.6 |
|  | 3 | 14.3 | 0.9 | 1.4 | 16.6 | 3 | 12.1 | 0.1 | 1.0 | 13.2 |
|  | 4 | 6.0 | 0.7 | 3.3 | 10.0 | 4 | 6.6 | 0.3 | 5.3 | 12.2 |
|  | Total | 34.5 | 4.3 | 31.0 | 69.9 | Total | 26.4 | 0.4 | 26.5 | 53.3 |
| 2010 |  | 8.4 | 1.1 | 10.2 | 19.82018 | 1 | 10.0 | 0.0 | 12.0 | 21.9 |
|  | 2 | 3.9 | 0.7 | 5.4 | 10.1 | 2 | 0.2 | 0.1 | 3.4 | 3.8 |
|  | 3 | 13.4 | 0.4 | 0.4 | 14.3 | 3 | 10.2 | 0.1 | 0.2 | 10.6 |
|  | 4 | 9.2 | 0.1 | 1.8 | 11.1 | 4 | 2.5 | 0.1 | 3.4 | 6.0 |
|  | Total | 35.0 | 2.3 | 17.9 | 55.2 | Total | 22.9 | 0.4 | 19.0 | 42.2 |
| 2011 | 1 | 7.0 | 0.5 | 7.8 | 15.3 |  |  |  |  |  |
|  | 2 | 0.5 | 0.2 | 4.1 | 4.8 |  |  |  |  |  |
|  | 3 | 6.5 | 1.0 | 0.8 | 8.3 |  |  |  |  |  |
|  | 4 | 3.4 | 0.9 | 3.2 | 7.4 |  |  |  |  |  |
|  | Total | 17.4 | 2.6 | 15.8 | 35.9 |  |  |  |  |  |

Table 3.2.1 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers and quarter (both WBSS and NSAS).

## Division:

Skagerrak
Year: 2018
Country: ALL

| Quarter | W-rings | Fleet C |  | Fleet D |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 1 | 1 | 0.78 | 34 |  |  | 0.78 | 34 |
|  | 2 | 88.63 | 52 |  |  | 88.63 | 52 |
|  | 3 | 2.73 | 74 |  |  | 2.73 | 74 |
|  | 4 | 1.04 | 91 |  |  | 1.04 | 91 |
|  | 5 | 0.52 | 119 |  |  | 0.52 | 119 |
|  | 6 | 0.13 | 174 |  |  | 0.13 | 174 |
|  | 7 | 0.13 | 175 |  |  | 0.13 | 175 |
|  | 8+ |  |  |  |  |  |  |
|  | Total | 93.96 |  | 0.00 |  | 93.96 |  |
|  | SOP |  | 4,995 |  | 0 |  | 4,995 |
| Quarter | W-rings | Fleet C |  | Fleet D |  | Total |  |
|  |  | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 2 | 1 | 0.03 | 34 | 0.52 | 23 | 0.55 | 23 |
|  | 2 | 3.81 | 52 | 1.56 | 42 | 5.36 | 49 |
|  | 3 | 0.12 | 74 | 0.06 | 48 | 0.18 | 65 |
|  | 4 | 0.04 | 91 |  |  | 0.04 | 91 |
|  | 5 | 0.02 | 119 |  |  | 0.02 | 119 |
|  | 6 | 0.01 | 174 |  |  | 0.01 | 174 |
|  | 7 | 0.01 | 175 |  |  | 0.01 | 175 |
|  | 8+ |  |  |  |  |  |  |
|  | Total | 4.04 |  | 2.14 |  | 6.17 |  |
|  | SOP |  | 215 |  | 80 |  | 295 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 3 | 0 |  |  | 1.27 | 8 | 1.27 | 8 |
|  | 1 | 5.66 | 65 | 0.55 | 42 | 6.21 | 63 |
|  | 2 | 13.80 | 115 | 0.02 | 77 | 13.81 | 115 |
|  | 3 | 8.52 | 135 |  |  | 8.52 | 135 |
|  | 4 | 11.07 | 163 |  |  | 11.07 | 163 |
|  | 5 | 15.58 | 181 |  |  | 15.58 | 181 |
|  | 6 | 4.34 | 190 |  |  | 4.34 | 190 |
|  | 7 | 2.74 | 187 |  |  | 2.74 | 187 |
|  | 8+ | 2.18 | 202 |  |  | 2.18 | 202 |
|  | Total | 63.89 |  | 1.84 |  | 65.72 |  |
|  | SOP |  | 9,510 |  | 35 |  | 9,545 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 4 | 0 |  |  | 0.54 | 11 | 0.54 | 11 |
|  | 1 | 8.55 | 57 | 0.03 | 44 | 8.58 | 57 |
|  | 2 | 2.57 | 84 |  |  | 2.57 | 84 |
|  | 3 | 0.50 | 135 |  |  | 0.50 | 135 |
|  | 4 | 0.54 | 171 |  |  | 0.54 | 171 |
|  | 5 | 0.91 | 187 |  |  | 0.91 | 187 |
|  | 6 | 0.23 | 198 |  |  | 0.23 | 198 |
|  | 7 | 0.14 | 190 |  |  | 0.14 | 190 |
|  | 8+ | 0.04 | 226 |  |  | 0.04 | 226 |
|  | Total | 13.47 |  | 0.57 |  | 14.04 |  |
|  | SOP |  | 1,114 |  | 7 |  | 1,121 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| Total | 0 | 0.00 | 0 | 1.81 | 9 | 1.81 | 9 |
|  | 1 | 15.02 | 59 | 1.10 | 33 | 16.12 | 57 |
|  | 2 | 108.80 | 60 | 1.57 | 42 | 110.37 | 60 |
|  | 3 | 11.87 | 120 | 0.06 | 48 | 11.94 | 120 |
|  | 4 | 12.69 | 157 |  |  | 12.69 | 157 |
|  | 5 | 17.03 | 179 |  |  | 17.03 | 179 |
|  | 6 | 4.70 | 190 |  |  | 4.70 | 190 |
|  | 7 | 3.01 | 187 |  |  | 3.01 | 187 |
|  | 8+ | 2.22 | 203 |  |  | 2.22 | 203 |
|  | Total | 175.35 |  | 4.54 |  | 179.89 |  |
|  | SOP |  | 15,834 |  | 122 |  | 15,956 |

Table 3.2.2 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers and quarter (both WBSS and NSAS).
Division:
Kattegat
Year: 2018
Country: ALL

| Quarter | W-rings | Fleet C |  | Fleet D |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 1 | 1 | 5.08 | 29 | 0.03 | 23 | 5.11 | 29 |
|  | 2 | 87.75 | 48 | 0.08 | 42 | 87.83 | 48 |
|  | 3 | 4.68 | 73 | 0.00 | 48 | 4.69 | 73 |
|  | 4 | 1.07 | 100 |  |  | 1.07 | 100 |
|  | 5 | 1.07 | 118 |  |  | 1.07 | 118 |
|  | 6 | 0.13 | 113 |  |  | 0.13 | 113 |
|  | 7 |  |  |  |  |  |  |
|  | 8+ | 0.27 | 168 |  |  | 0.27 | 168 |
|  | Total | 100.06 |  | 0.11 |  | 100.17 |  |
|  | SOP |  | 4,959 |  | 4 |  | 4,964 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 2 | 1 | 0.0010 | 29 | 0.22 | 23 | 0.2172 | 23 |
|  | 2 | 0.0175 | 48 | 0.65 | 42 | 0.6660 | 42 |
|  | 3 | 0.0009 | 73 | 0.03 | 48 | 0.0280 | 49 |
|  | 4 | 0.0002 | 100 |  |  | 0.0002 | 100 |
|  | 5 | 0.0002 | 118 |  |  | 0.0002 | 118 |
|  | 6 | 0.0000 | 113 |  |  | 0.0000 | 113 |
|  | 7 |  |  |  |  |  |  |
|  | 8+ | 0.0001 | 168 |  |  | 0.0001 | 168 |
|  | Total | 0.0200 |  | 0.89 |  | 0.9116 |  |
|  | SOP |  | 0.991 |  | 33.448 |  | 34.439 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 3 | 0 |  |  | 2.81 | 8 | 2.81 | 8 |
|  | 1 | 2.93 | 59 | 1.23 | 42 | 4.16 | 54 |
|  | 2 | 3.23 | 68 | 0.04 | 77 | 3.26 | 68 |
|  | 3 | 0.36 | 82 |  |  | 0.36 | 82 |
|  | 4 | 0.44 | 109 |  |  | 0.44 | 109 |
|  | 5 | 0.69 | 187 |  |  | 0.69 | 187 |
|  | 6 | 0.38 | 210 |  |  | 0.38 | 210 |
|  | 7 | 0.11 | 178 |  |  | 0.11 | 178 |
|  | 8+ | 0.11 | 188 |  |  | 0.11 | 188 |
|  | Total | 8.25 |  | 4.08 |  | 12.33 |  |
|  | SOP |  | 718 |  | 77 |  | 795 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 4 | 0 | 0.10 | 22 | 10.07 | 11 | 10.18 | 11 |
|  | 1 | 13.51 | 55 | 0.49 | 44 | 14.00 | 55 |
|  | 2 | 5.16 | 81 |  |  | 5.16 | 81 |
|  | 3 | 0.84 | 110 |  |  | 0.84 | 110 |
|  | 4 | 0.51 | 124 |  |  | 0.51 | 124 |
|  | 5 | 0.28 | 149 |  |  | 0.28 | 149 |
|  | 6 | 0.06 | 119 |  |  | 0.06 | 119 |
|  | 7 | 0.04 | 215 |  |  | 0.04 | 215 |
|  | 8+ |  |  |  |  |  |  |
|  | Total | 20.50 |  | 10.56 |  | 31.07 |  |
|  | SOP |  | 1,380 |  | 129 |  | 1,509 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| Total | 0 | 0.10 | 22 | 12.89 | 10 | 12.99 | 10 |
|  | 1 | 21.53 | 50 | 1.96 | 40 | 23.49 | 49 |
|  | 2 | 96.16 | 50 | 0.76 | 44 | 96.92 | 50 |
|  | 3 | 5.88 | 79 | 0.03 | 48 | 5.91 | 79 |
|  | 4 | 2.02 | 108 |  |  | 2.02 | 108 |
|  | 5 | 2.04 | 145 |  |  | 2.04 | 145 |
|  | 6 | 0.58 | 178 |  |  | 0.58 | 178 |
|  | 7 | 0.15 | 187 |  |  | 0.15 | 187 |
|  | 8+ | 0.38 | 174 |  |  | 0.38 | 174 |
|  | Total | 128.83 |  | 15.64 |  | 144.48 |  |
|  | SOP |  | 7,059 |  | 243 |  | 7,302 |

Table 3.2.3 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers and quarter (WBSS).
Subdivisions: 22-24
Year: 2018
Country: ALL

| Quarter | W-rings | Sub-division 22 |  | Sub-division 23 |  | Sub-division 24 |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numbers | Mean W. |
| 1 | 0 |  |  |  |  |  |  |  |  |
|  | 1 | 38.98 | 12 |  |  | 5.40 | 16 | 44.37 | 12 |
|  | 2 | 0.40 | 37 | 0.01 | 144 | 11.21 | 42 | 11.62 | 42 |
|  | 3 | 0.16 | 94 | 0.01 | 162 | 22.54 | 86 | 22.71 | 86 |
|  | 4 | 0.11 | 114 | 0.03 | 174 | 12.26 | 111 | 12.40 | 111 |
|  | 5 | 0.33 | 147 | 0.06 | 186 | 33.05 | 144 | 33.45 | 144 |
|  | 6 | 0.10 | 159 | 0.02 | 207 | 9.40 | 155 | 9.52 | 155 |
|  | 7 | 0.08 | 173 | 0.01 | 210 | 4.75 | 169 | 4.83 | 169 |
|  | 8+ | 0.04 | 190 | 0.00 | 232 | 2.56 | 187 | 2.61 | 187 |
|  | Total | 40.21 |  | 0.14 |  | 101.17 |  | 141.51 |  |
|  | SOP |  | 584 |  | 25 |  | 11,347 |  | 11,957 |
| Quarter |  | Sub-division 22 |  | Sub-division 23 |  | Sub-division 24 |  | Total |  |
|  | W-rings | Numbers | Mean W. |
| 2 | 1 | 0.00 | 44 |  |  | 0.72 | 21 | 0.72 | 21 |
|  | 2 | 0.00 | 55 | 0.0001 | 144 | 1.34 | 50 | 1.34 | 50 |
|  | 3 | 0.00 | 97 | 0.0001 | 162 | 4.94 | 67 | 4.94 | 67 |
|  | 4 | 0.00 | 146 | 0.0001 | 174 | 5.01 | 85 | 5.01 | 85 |
|  | 5 | 0.04 | 150 | 0.0003 | 186 | 10.25 | 126 | 10.30 | 126 |
|  | 6 | 0.06 | 160 | 0.0001 | 207 | 4.74 | 123 | 4.79 | 123 |
|  | 7 | 0.04 | 165 | 0.0001 | 210 | 3.20 | 138 | 3.24 | 139 |
|  | 8+ | 0.02 | 176 | 0.0000 | 232 | 1.60 | 152 | 1.62 | 153 |
|  | Total | 0.16 |  | 0.0007 |  | 31.80 |  | 31.96 |  |
|  | SOP |  | 26 |  | 0.1 |  | 3,402 |  | 3,428 |
| Quarter |  | Sub-division 22 |  | Sub-division 23 |  | Sub-division 24 |  | Total |  |
|  | W-rings | Numbers | Mean W. |
| 3 | 0 |  |  |  |  | 0.10 | 11 | 0.10 | 11 |
|  | 1 | 0.0000 | 46 |  |  | 0.92 | 29 | 0.92 | 29 |
|  | 2 | 0.0002 | 55 | 0.05 | 144 | 0.20 | 41 | 0.24 | 61 |
|  | 3 | 0.0001 | 76 | 0.05 | 162 | 0.26 | 42 | 0.31 | 61 |
|  | 4 | 0.0002 | 133 | 0.13 | 174 | 0.60 | 42 | 0.72 | 65 |
|  | 5 | 0.0012 | 150 | 0.24 | 186 | 0.06 | 63 | 0.31 | 161 |
|  | 6 | 0.0017 | 160 | 0.07 | 207 | 0.38 | 51 | 0.45 | 74 |
|  | 7 | 0.0011 | 165 | 0.05 | 210 | 0.10 | 68 | 0.15 | 112 |
|  | 8+ | 0.0005 | 176 | 0.01 | 232 | 0.04 | 83 | 0.05 | 107 |
|  | Total | 0.0051 |  | 0.58 |  | 2.65 |  | 3.24 |  |
|  | SOP |  | 0.8 |  | 106 |  | 105 |  | 212 |
| Quarter | W-rings | Sub-division 22 |  | Sub-division 23 |  | Sub-division 24 |  | Total |  |
|  |  | Numbers | Mean W. |
| 4 | 0 |  |  |  |  | 0.27 | 18 | 0.27 | 18 |
|  | 1 | 0.00 | 46 |  |  | 2.36 | 49 | 2.36 | 49 |
|  | 2 | 0.00 | 55 | 0.03 | 140 | 5.22 | 74 | 5.25 | 75 |
|  | 3 | 0.00 | 75 | 0.13 | 139 | 6.55 | 108 | 6.68 | 109 |
|  | 4 | 0.00 | 132 | 0.72 | 179 | 4.21 | 123 | 4.93 | 131 |
|  | 5 | 0.01 | 150 | 0.89 | 209 | 6.32 | 150 | 7.22 | 158 |
|  | 6 | 0.02 | 160 | 0.06 | 209 | 1.41 | 153 | 1.50 | 156 |
|  | 7 | 0.01 | 165 |  |  | 0.61 | 176 | 0.62 | 176 |
|  | 8+ | 0.01 | 176 | 0.01 | 241 | 0.22 | 104 | 0.23 | 111 |
|  | Total | 0.06 |  | 1.84 |  | 27.17 |  | 29.08 |  |
|  | SOP |  | 9 |  | 353 |  | 3,033 |  | 3,395 |
| Quarter |  | Sub-division 22 |  | Sub-division 23 |  | Sub-division 24 |  | Total |  |
|  | W-rings | Numbers | Mean W. |
| Total | 0 |  |  |  |  | 0.37 | 16 | 0.37 | 16 |
|  | 1 | 38.98 | 12 |  |  | 9.40 | 26 | 48.38 | 14 |
|  | 2 | 0.41 | 38 | 0.09 | 143 | 17.96 | 52 | 18.46 | 52 |
|  | 3 | 0.16 | 94 | 0.19 | 146 | 34.28 | 87 | 34.64 | 87 |
|  | 4 | 0.12 | 116 | 0.87 | 178 | 22.07 | 106 | 23.06 | 108 |
|  | 5 | 0.39 | 148 | 1.20 | 203 | 49.69 | 141 | 51.27 | 143 |
|  | 6 | 0.18 | 160 | 0.14 | 208 | 15.93 | 143 | 16.26 | 143 |
|  | 7 | 0.13 | 170 | 0.06 | 210 | 8.66 | 157 | 8.84 | 158 |
|  | 8+ | 0.07 | 185 | 0.02 | 237 | 4.42 | 170 | 4.51 | 170 |
|  | Total | 40.43 |  | 2.56 |  | 162.79 |  | 205.79 |  |
|  | SOP |  | 620 |  | 485 |  | 17,887 |  | 18,992 |

Table 3.2.4 Western Baltic spring spawning herring. Samples of commercial catch by quarter and area for 2018 available to the Working Group.
$\left.\begin{array}{lrrrrrrrr}\hline \text { Country } & \text { Fleet } & \text { Quarter } & \begin{array}{c}\text { Landings } \\ \text { ('000 tons) }\end{array} & \begin{array}{c}\text { Numbers of } \\ \text { samples }\end{array} & \begin{array}{c}\text { Numbers of Numbers of } \\ \text { fish meas. }\end{array} \\ \text { fish aged }\end{array}\right)$

Continued on next page

Table 3.2.4 (continued) Western Baltic spring spawning herring. Samples of commercial catch by quarter and area for 2018 available to the Working Group.

|  | Country | Fleet | Quarter | $\begin{array}{r} \text { Landings } \\ \text { ('000 tons) } \end{array}$ | Numbers of samples | Numbers of fish meas. | Numbers of fish aged |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subdivision 22 | Denmark | F | 1 | 0.469 | 7 | 396 | 209 |
|  |  | F | 2 | 0.012 | No data available |  |  |
|  |  | F | 3 | 0.000 | No data available |  |  |
|  |  | F | 4 | 0.002 | No data available |  |  |
|  | Total | Total |  | 0.484 | 7 | 396 | 209 |
|  | Sweden | F | 1 | 0.000 | - |  |  |
|  |  | F | 2 | 0.000 | - |  |  |
|  |  | F | 3 | 0.000 | - |  |  |
|  |  | F | 4 | 0.000 | - |  |  |
|  | Total | Total |  | 0.000 | 0 | 0 | 0 |
|  | Germany | F | 1 | 0.1149 | 1 | 339 | 70 |
|  |  | F | 2 | 0.0135 | 4 | 1,538 | 218 |
|  |  | F | 3 | 0.0005 | No data available |  |  |
|  |  | F | 4 | 0.0074 | No data available |  |  |
|  | Total | Total |  | 0.1363 | 5 | 1,877 | 288 |
| Subdivision 23 | Denmark | F | 1 | 0.000 | No data available |  |  |
|  |  | F | 2 | 0.000 | No data available |  |  |
|  |  | F | 3 | 0.024 | 1 | 177 | 60 |
|  |  | F | 4 | 0.046 | 1 | 101 | 51 |
|  | Total | Total |  | 0.069 | 2 | 278 | 111 |
|  | Sweden | F | 1 | 0.025 | No data available |  |  |
|  |  | F | 2 | 0.000 | - |  |  |
|  |  | F | 3 | 0.083 | No data available |  |  |
|  |  | F | 4 | 0.308 | 2 | 52 | 52 |
|  | Total | Total |  | 0.416 | 2 | 52 | 52 |
| Subdivision 24 | Denmark | F | 1 | 3.328 | 4 | 702 | 214 |
|  |  | F | 2 | 0.015 | 1 | 172 | 58 |
|  |  | F | 3 | 0.001 | No data available |  |  |
|  |  | F | 4 | 0.659 | 7 | 1,006 | 156 |
|  | Total | Total |  | 4.003 | 12 | 1,880 | 428 |
|  | Finland | F | 1 | 0.001 | No data available |  |  |
|  |  | F | 2 | 0.000 | 呥 |  |  |
|  |  | F | 3 | 0.000 | - |  |  |
|  |  | F | 4 | 0.000 | - |  |  |
|  | Total | Total |  | 0.001 | 0 | 0 | 0 |
|  | Germany | F | 1 | 7.5213 | 13 | 5,048 | 1,069 |
|  |  | F | 2 | 2.4715 | 8 | 3,122 | 548 |
|  |  | F | 3 | 0.0001 | No data available |  |  |
|  |  | F | 4 | 1.1749 | 1 | 349 | 119 |
|  | Total | Total |  | 11.1679 | 22 | 8,519 | 1,736 |
|  | Poland | F | 1 | 0.104 | 1 | 194 | 54 |
|  |  | F | 2 | 0.916 | 1 | 820 | 132 |
|  |  | F | 3 | 0.103 | 1 | 1,021 | 100 |
|  |  | F | 4 | 0.650 | 1 | 451 | 126 |
|  | Total | Total |  | 1.773 | 4 | 2,486 | 412 |
|  | Sweden | F | 1 | 0.393 | 7 | 776 | 774 |
|  |  | F | 2 | 0.000 | No data available |  |  |
|  |  | F | 3 | 0.000 | No data available |  |  |
|  |  | F | 4 | 0.549 | 5 | 666 | 665 |
|  | Total | Total |  | 0.943 | 12 | 1,442 | 1,439 |
| Total | Skagerrak | C | 1-4 | 15.834 | 24 | 1,669 | 1,615 |
|  |  | D | 1-4 | 0.122 | 0 | 0 | 0 |
|  | Kattegat | C | 1-4 | 7.059 | 27 | 2,721 | 1,562 |
|  |  | D | 1-4 | 0.243 | 15 | 478 | 390 |
|  | Subdivision 22 | F | 1-4 | 0.620 | 12 | 2,273 | 497 |
|  | Subdivision 23 | F | 1-4 | 0.485 | 4 | 330 | 163 |
|  | Subdivision 24 | F | 1-4 | 17.887 | 50 | 14,327 | 4,015 |
|  | Total | Total | 1-4 | 42.250 | 132 | 21,798 | 8,242 |

Table 3.2.5 Western Baltic spring spawning herring. Samples of catch by quarter and area used to estimate catch in numbers and mean weight at age as W-ringers for 2018.

|  | Country | Quarter | Fleet | Sampling |
| :---: | :---: | :---: | :---: | :---: |
| Skagerrak | Denmark | 1 | C | Sweden Q1 27.3.a. 20 fleet-C |
|  |  | 2 | C | Sweden Q1 27.3.a. 20 fleet-C |
|  |  | 3 | C | Sweden Q3 27.3.a. 20 fleet-C |
|  |  | 4 | C | Sweden Q3 27.3.a. 20 fleet-C |
|  | Germany | 1 | C | No landings |
|  |  | 2 | C | No landings |
|  |  | 3 | C | Sweden Q3 27.3.a. 20 fleet-C |
|  |  | 4 | C | Sweden Q3 27.3.a. 20 fleet-C |
|  | Sweden | 1 | C | Sweden Q1 27.3.a. 20 fleet-C |
|  |  | 2 | C | Sweden Q1 27.3.a. 20 fleet-C |
|  |  | 3 | C | Sweden Q3 27.3.a. 20 fleet-C |
|  |  | 4 | C | Sweden Q4 27.3.a. 20 fleet-C |
|  | Denmark | 1 | D | No landings |
|  |  | 2 | D | Denmark Q1 27.3.a. 21 fleet-D |
|  |  | 3 | D | Denmark Q3 27.3.a. 21 fleet-D |
|  |  | 4 | D | Denmark Q4 27.3.a. 21 fleet-D |
|  | Netherlands | 1 | C | No landings |
|  |  | 2 | C | No landings |
|  |  | 3 | C | No landings |
|  |  | 4 | C | No landings |
|  | Faroe Is lands | 1 | C | No landings |
|  |  | 2 | C | No landings |
|  |  | 3 | C | Sweden Q3 27.3.a. 20 fleet-C |
|  |  | 4 | C | No landings |
|  | Norway | 1 | C | Sweden Q1 27.3.a. 20 fleet-C |
|  |  | 2 | C | Sweden Q1 27.3.a. 20 fleet-C |
|  |  | 3 | C | Norway Q3 27.3.a. 20 fleet-C |
|  |  | 4 | C | Sweden Q3 27.3.a. 20 fleet-C |
| Kattegat | Denmark | 1 | C | Sweden Q1 27.3.a. 21 fleet-C |
|  |  | 2 | C | Sweden Q1 27.3.a. 21 fleet-C |
|  |  | 3 | C | Denmark Q3 27.3.a. 21 fleet-C |
|  |  | 4 | C | Denmark Q4 27.3.a. 21 fleet-C |
|  | Sweden | 1 | C | Sweden Q1 27.3.a. 21 fleet-C |
|  |  | 2 | C | Sweden Q1 27.3.a. 21 fleet-C |
|  |  | 3 | C | Sweden Q3 27.3.a. 21 fleet-C |
|  |  | 4 | C | Sweden Q4 27.3.a. 21 fleet-C |
|  | Germany | 1 | C | No landings |
|  |  | 2 | C | No landings |
|  |  | 3 | C | No landings |
|  |  | 4 | C | No landings |
|  | Denmark | 1 | D | Denmark Q1 27.3.a. 21 fleet-D |
|  |  | 2 | D | Denmark Q1 27.3.a. 21 fleet-D |
|  |  | 3 | D | Denmark Q3 27.3.a. 21 fleet-D |
|  |  | 4 | D | Denmark Q4 27.3.a. 21 fleet-D |
| Subdivision 22 | Denmark | 1 | F | Denmark Q1 27.3.c. 22 fleet-F |
|  |  | 2 | F | Germany Q2 27.3.c. 22 fleet-F |
|  |  | 3 | F | Germany Q3 27.3.c. 22 fleet-F |
|  |  | 4 | F | Germany Q4 27.3.c. 22 fleet-F |
|  | Sweden | 1 | F | No landings |
|  |  | 2 | F | No landings |
|  |  | 3 | F | No landings |
|  |  | 4 | F | No landings |
|  | Germany | 1 | F | Germany Q1 27.3.c. 22 fleet-F (WD Gröhsler) |
|  |  | 2 | F | Germany Q2 27.3.c. 22 fleet-F (WD Gröhsler) |
|  |  | 3 | F | German sampling as in WD Gröhsler |
|  |  | 4 | F | German sampling as in WD Gröhsler |

Fleet $C=$ Human consumption, Fleet $D=$ Industrial catch, Fleet $F=$ All catch from Subdivisions 22-24.

Table 3.2.5 (continued) Western Baltic spring spawning herring. Samples of catch by quarter and area used to estimate catch in numbers and mean weight at age as W-ringers for 2018.

|  | Country | Quarter | Fleet | Sampling |
| :---: | :---: | :---: | :---: | :---: |
| Subdivision 23 | Denmark | 1 | F | Denmark Q3 27.3.b. 23 fleet-F |
|  |  | 2 | F | Denmark Q3 27.3.b. 23 fleet-F |
|  |  | 3 | F | Denmark Q3 27.3.b. 23 fleet-F |
|  |  | 4 | F | Denmark Q4 27.3.b. 23 fleet-F |
|  | Sweden | 1 | F | Denmark Q3 27.3.b. 23 fleet-F |
|  |  | 2 | F | No landings |
|  |  | 3 | F | Denmark Q3 27.3.b. 23 fleet-F |
|  |  | 4 | F | Sweden Q4 27.3.b.23 fleet-F |
| Subdivision 24 | Denmark | 1 | F | Denmark Q1 27.3.d. 24 fleet-F |
|  |  | 2 | F | Denmark Q1 27.3.d. 24 fleet-F |
|  |  | 3 | F | Denmark Q4 27.3.d. 24 fleet-F |
|  |  | 4 | F | Denmark Q4 27.3.d.24 fleet-F |
|  | Finland | 1 | F | Germany Q1 27.3.d. 24 fleet-F |
|  |  | 2 | F | No landings |
|  |  | 3 | F | No landings |
|  |  | 4 | F | No landings |
|  | Germany | 1 | F | Germany Q1 27.3.d. 24 fleet-F |
|  |  | 2 | F | Germany Q2 27.3.d. 24 fleet-F |
|  |  | 3 | F | German sampling as in WD Gröhsler |
|  |  | 4 | F | Germany Q4 27.3.d. 24 fleet-F |
|  | Poland | 1 | F | Poland Q1 27.3.d. 24 fleet-F |
|  |  | 2 | F | Poland Q2 27.3.d. 24 fleet-F |
|  |  | 3 | F | Poland Q3 27.3.d. 24 fleet-F |
|  |  | 4 | F | Poland Q4 27.3.d. 24 fleet-F |
|  | Sweden | 1 | F | Sweden Q1 27.3.d. 24 fleet-F |
|  |  | 2 | F | Germany Q2 27.3.d. 24 fleet-F |
|  |  | 3 | F | Sweden Q4 27.3.d. 24 fleet-F |
|  |  | 4 | F | Sweden Q4 27.3.d. 24 fleet-F |

Fleet $C=$ Human consumption, Fleet D = Industrial catch, Fleet F = All catch from Subdivisions 22-24.

Table 3.2.6 Western Baltic spring spawning herring. Proportion of North Sea autumn spawners (NSAS) and Western Baltic spring spawners (WBSS) given in \% in Skagerrak and Kattegat by age as W-ringers and quarter. Year: 2018

| Quarter 1 | W-rings | Skagerrak |  |  | Kattegat |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NSAS | WBSS | n | NSAS | WBSS | n |
|  | 1 | 50.00\% | 50.00\% | 6 | 93.94\% | 6.06\% | 45 |
|  | 2 | 9.80\% | 90.20\% | 51 | 16.97\% | 83.03\% | 78 |
|  | 3 | 14.29\% | 85.71\% | 21 | 2.91\% | 97.09\% | 35 |
|  | 4 | 12.50\% | 87.50\% | 8 | 0.00\% | 100.00\% | 8 |
|  | 5 | 4.62\% | 95.38\% | 3 | 0.00\% | 100.00\% | 8 |
|  | 6 | 4.62\% | 95.38\% | 1 | 0.00\% | 100.00\% | 1 |
|  | 7 | 4.62\% | 95.38\% | 1 | 0.00\% | 100.00\% | 0 |
|  | 8+ | 4.62\% | 95.38\% | 0 | 0.00\% | 100.00\% | 2 |
| Quarter 2 | W-rings | Skagerrak |  |  | Kattegat |  |  |
|  |  | NSAS | WBSS | n | NSAS | WBSS | n |
|  | 1 | 50.00\% | 50.00\% | 0 | 93.94\% | 6.06\% | 0 |
|  | 2 | 9.80\% | 90.20\% | 0 | 16.97\% | 83.03\% | 0 |
|  | 3 | 14.29\% | 85.71\% | 0 | 2.91\% | 97.09\% | 0 |
|  | 4 | 12.50\% | 87.50\% | 0 | 0.00\% | 100.00\% | 0 |
|  | 5 | 4.62\% | 95.38\% | 0 | 0.00\% | 100.00\% | 0 |
|  | 6 | 4.62\% | 95.38\% | 0 | 0.00\% | 100.00\% | 0 |
|  | 7 | 4.62\% | 95.38\% | 0 | 0.00\% | 100.00\% | 0 |
|  | 8+ | 4.62\% | 95.38\% | 0 | 0.00\% | 100.00\% | 0 |
| Quarter 3 | W-rings | Skagerrak |  |  | Kattegat |  |  |
|  |  | NSAS | WBSS | n | NSAS | WBSS | n |
|  | 0 | 98.73\% | 1.27\% | 0 | 98.73\% | 1.27\% | 79 |
|  | 1 | 40.00\% | 60.00\% | 50 | 54.72\% | 45.28\% | 53 |
|  | 2 | 20.41\% | 79.59\% | 49 | 26.71\% | 73.29\% | 24 |
|  | 3 | 6.12\% | 93.88\% | 49 | 0.00\% | 100.00\% | 4 |
|  | 4 | 14.29\% | 85.71\% | 14 | 0.00\% | 100.00\% | 6 |
|  | 5 | 4.55\% | 95.45\% | 22 | 37.50\% | 62.50\% | 24 |
|  | 6 | 3.85\% | 96.15\% | 6 | 0.00\% | 100.00\% | 14 |
|  | 7 | 3.85\% | 96.15\% | 6 | 3.85\% | 96.15\% | 4 |
|  | 8 | 3.85\% | 96.15\% | 2 | 3.85\% | 96.15\% | 4 |
| Quarter <br> 4 | W-rings | Skagerrak |  |  | Kattegat |  |  |
|  |  | NSAS | WBSS | n | NSAS | WBSS | n |
|  | 0 | 98.73\% | 1.27\% | 0 | 97.75\% | 2.25\% | 222 |
|  | 1 | 36.00\% | 64.00\% | 50 | 40.36\% | 59.64\% | 260 |
|  | 2 | 9.37\% | 90.63\% | 32 | 6.32\% | 93.68\% | 100 |
|  | 3 | 6.12\% | 93.88\% | 0 | 2.37\% | 97.63\% | 34 |
|  | 4 | 14.29\% | 85.71\% | 0 | 0.00\% | 100.00\% | 25 |
|  | 5 | 4.55\% | 95.45\% | 0 | 2.94\% | 97.06\% | 17 |
|  | 6 | 3.85\% | 96.15\% | 0 | 2.94\% | 97.06\% | 3 |
|  | 7 | 3.85\% | 96.15\% | 0 | 2.94\% | 97.06\% | 2 |
|  | 8 | 3.85\% | 96.15\% | 0 | 2.94\% | 97.06\% | 1 |

when *n for an age <12 data were borrowed according to the below table borrowing either a mean of age groups or ages borrowed individually

| Q | ages | Skagerrak | ages | Kattegat |
| :---: | :--- | :--- | :--- | :--- |
| 1 | $5-8+$ | mean(4-8+) | $5-8+$ | mean(5-8+) |
| 2 | $1-8+$ | Q1 Sk(age) | $1-8+$ | Q1 Ka(age) |
| 3 | $6-8+$ | mean(6-8+) | $7-8+$ | mean(6-8+) |
| 4 | $3-8+$ | Q3 Sk(age) | $5-8+$ | mean(5-8+) |

Table 3.2.7 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP ( t ) by age as $\mathbf{W}$ ringers, quarter and fleet. North Sea Autumn spawners Division: Kattegat

| Quarter | W-rings | Fleet C |  | Fleet D |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 1 | 1 | 4.78 | 29 | 0.03 | 23 | 4.80 | 29 |
|  | 2 | 14.89 | 48 | 0.01 | 42 | 14.91 | 48 |
|  | 3 | 0.14 | 73 | 0.00 | 48 | 0.14 | 73 |
|  | 4 |  |  |  |  | 0.00 |  |
|  | 5 |  |  |  |  | 0.00 |  |
|  | 6 |  |  |  |  | 0.00 |  |
|  | 7 |  |  |  |  | 0.00 |  |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 19.80 |  | 0.04 |  | 19.84 |  |
|  | SOP |  | 856.3 |  | 1.1 |  | 857.5 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 2 | 1 | 0.0010 | 29 | 0.20 | 23 | 0.20 | 23 |
|  | 2 | 0.00298 | 48 | 0.11 | 42 | 0.11 | 42 |
|  | 3 | 0.00003 | 73 | 0.00 | 48 | 0.00 | 49 |
|  | 4 |  |  |  |  | 0.00 |  |
|  | 5 |  |  |  |  | 0.00 |  |
|  | 6 |  |  |  |  | 0.00 |  |
|  | 7 |  |  |  |  | 0.00 |  |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 0.004 |  | 0.31 |  | 0.32 |  |
|  | SOP |  | 0.2 |  | 9.3 |  | 9.4 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 3 | 0 |  |  | 2.78 | 8 | 2.78 | 8 |
|  | 1 | 1.61 | 59 | 0.67 | 42 | 2.28 | 54 |
|  | 2 | 0.86 | 68 | 0.01 | 77 | 0.87 | 68 |
|  | 3 |  |  |  |  | 0.00 |  |
|  | 4 |  |  |  |  | 0.00 |  |
|  | 5 | 0.26 | 187 |  |  | 0.26 | 187 |
|  | 6 |  |  |  |  | 0.00 |  |
|  | 7 | 0.00 | 178 |  |  | 0.00 | 178 |
|  | 8+ | 0.00 | 188 |  |  | 0.00 | 188 |
|  | Total | 2.73 |  | 3.46 |  | 6.19 |  |
|  | SOP |  | 202.6 |  | 51.4 |  | 253.9 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 4 | 0 | 0.10 | 22 | 9.85 | 11 | 9.95 | 11 |
|  | 1 | 5.45 | 55 | 0.20 | 44 | 5.65 | 55 |
|  | 2 | 0.33 | 81 |  |  | 0.33 | 81 |
|  | 3 | 0.02 | 110 |  |  | 0.02 | 110 |
|  | 4 |  |  |  |  | 0.00 |  |
|  | 5 | 0.01 | 149 |  |  | 0.01 | 149 |
|  | 6 | 0.00 | 119 |  |  | 0.00 | 119 |
|  | 7 | 0.00 | 215 |  |  | 0.00 | 215 |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 5.91 |  | 10.04 |  | 15.96 |  |
|  | SOP |  | 334.4 |  | 113.7 |  | 448.1 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| Total | 0 | 0.10 | 22 | 12.62 | 10 | 12.73 | 10 |
|  | 1 | 11.83 | 45 | 1.10 | 38 | 12.93 | 45 |
|  | 2 | 16.08 | 49 | 0.13 | 44 | 16.22 | 49 |
|  | 3 | 0.16 | 78 | 0.001 | 48 | 0.16 | 78 |
|  | 4 | 0.00 |  | 0.00 |  | 0.00 |  |
|  | 5 | 0.27 | 186 | 0.00 |  | 0.27 | 186 |
|  | 6 | 0.002 | 119 | 0.00 |  | 0.00 | 119 |
|  | 7 | 0.01 | 186 | 0.00 |  | 0.01 | 186 |
|  | 8+ | 0.00 | 188 | 0.00 |  | 0.00 | 188 |
|  | Total | 28.45 |  | 13.86 |  | 42.31033 |  |
|  | SOP |  | 1,393.5 |  | 175.4 |  | 1,569.0 |

Table 3.2.8 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet. North Sea Autumn spawners Division: Skagerrak Year: 2018 Country: All

| Quarter | W-rings | Fleet C |  | Fleet D |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 1 | 1 | 0.39 | 34 |  |  | 0.39 | 34 |
|  | 2 | 8.69 | 52 |  |  | 8.69 | 52 |
|  | 3 | 0.39 | 74 |  |  | 0.39 | 74 |
|  | 4 | 0.13 | 91 |  |  | 0.13 | 91 |
|  | 5 | 0.02 | 119 |  |  | 0.02 | 119 |
|  | 6 | 0.01 | 174 |  |  | 0.01 | 174 |
|  | 7 | 0.01 | 175 |  |  | 0.01 | 175 |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 9.63 |  | 0.00 |  | 9.63 |  |
|  | SOP |  | 506.2 |  | 0.0 |  | 506.2 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 2 | 1 | 0.02 | 34 | 0.26 | 23 | 0.28 | 23 |
|  | 2 | 0.37 | 52 | 0.15 | 42 | 0.53 | 49 |
|  | 3 | 0.02 | 74 | 0.01 | 48 | 0.03 | 65 |
|  | 4 | 0.01 | 91 |  |  | 0.01 | 91 |
|  | 5 | 0.00 | 119 |  |  | 0.00 | 119 |
|  | 6 | 0.00 | 174 |  |  | 0.00 | 174 |
|  | 7 | 0.00 | 175 |  |  | 0.00 | 175 |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 0.41 |  | 0.42 |  | 0.83 |  |
|  | SOP |  | 21.7 |  | 12.7 |  | 34.5 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 3 | 0 |  |  | 1.25 | 8 | 1.25 | 8 |
|  | 1 | 2.26 | 65 | 0.22 | 42 | 2.48 | 63 |
|  | 2 | 2.82 | 115 | 0.00 | 77 | 2.82 | 115 |
|  | 3 | 0.52 | 135 |  |  | 0.52 | 135 |
|  | 4 | 1.58 | 163 |  |  | 1.58 | 163 |
|  | 5 | 0.71 | 181 |  |  | 0.71 | 181 |
|  | 6 | 0.17 | 190 |  |  | 0.17 | 190 |
|  | 7 | 0.11 | 187 |  |  | 0.11 | 187 |
|  | 8+ | 0.08 | 202 |  |  | 0.08 | 202 |
|  | Total | 8.25 |  | 1.48 |  | 9.72 |  |
|  | SOP |  | 995.9 |  | 19.6 |  | 1,015.5 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 4 | 0 |  |  | 0.53 | 11 | 0.53 | 11 |
|  | 1 | 3.08 | 57 | 0.01 | 44 | 3.09 | 57 |
|  | 2 | 0.24 | 84 |  |  | 0.24 | 84 |
|  | 3 | 0.03 | 135 |  |  | 0.03 | 135 |
|  | 4 | 0.08 | 171 |  |  | 0.08 | 171 |
|  | 5 | 0.04 | 187 |  |  | 0.04 | 187 |
|  | 6 | 0.01 | 198 |  |  | 0.01 | 198 |
|  | 7 | 0.01 | 190 |  |  | 0.01 | 190 |
|  | 8+ | 0.00 | 226 |  |  | 0.00 | 226 |
|  | Total | 3.48 |  | 0.54 |  | 4.03 |  |
|  | SOP |  | 224.5 |  | 6.1 |  | 230.6 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| Total | 0 | 0.00 |  | 1.78 | 9 | 1.78 | 9 |
|  | 1 | 5.75 | 59 | 0.49 | 32 | 6.24 | 56 |
|  | 2 | 12.12 | 67 | 0.16 | 43 | 12.27 | 67 |
|  | 3 | 0.96 | 109 | 0.01 | 48 | 0.97 | 109 |
|  | 4 | 1.79 | 158 | 0.00 |  | 1.79 | 158 |
|  | 5 | 0.78 | 179 | 0.00 |  | 0.78 | 179 |
|  | 6 | 0.18 | 190 | 0.00 |  | 0.18 | 190 |
|  | 7 | 0.12 | 187 | 0.00 |  | 0.12 | 187 |
|  | 8+ | 0.09 | 203 | 0.00 |  | 0.09 | 203 |
|  | Total | 21.78 |  | 2.44 |  | 24.21 |  |
|  | SOP |  | 1,748.3 |  | 38.5 |  | 1,786.8 |

Table 3.2.9 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet. Baltic Spring spawners
Division: Kattegat Year: 2018 Country: All

| Quarter | W-rings | Fleet C |  | Fleet D |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 1 | 1 | 0.31 | 29 | 0.00 | 23 | 0.31 | 29 |
|  | 2 | 72.86 | 48 | 0.07 | 42 | 72.93 | 48 |
|  | 3 | 4.55 | 73 | 0.00 | 48 | 4.55 | 73 |
|  | 4 | 1.07 | 100 |  |  | 1.07 | 100 |
|  | 5 | 1.07 | 118 |  |  | 1.07 | 118 |
|  | 6 | 0.13 | 113 |  |  | 0.13 | 113 |
|  | 7 |  |  |  |  | 0.00 |  |
|  | 8+ | 0.27 | 168 |  |  | 0.27 | 168 |
|  | Total | 80.26 |  | 0.07 |  | 80.33 |  |
|  | SOP |  | 4,103.1 |  | 3.0 |  | 4,106.1 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 2 | 1 | 0.0001 | 29 | 0.01 | 23 | 0.01 | 23 |
|  | 2 | 0.01 | 48 | 0.54 | 42 | 0.55 | 42 |
|  | 3 | 0.0009 | 73 | 0.03 | 48 | 0.03 | 49 |
|  | 4 | 0.0002 | 100 |  |  | 0.00 | 100 |
|  | 5 | 0.0002 | 118 |  |  | 0.00 | 118 |
|  | 6 | 0.0000 | 113 |  |  | 0.00 | 113 |
|  | 7 |  |  |  |  | 0.00 |  |
|  | 8+ | 0.0001 | 168 |  |  | 0.00 | 168 |
|  | Total | 0.016 |  | 0.58 |  | 0.59 |  |
|  | SOP |  | 0.8 |  | 24.2 |  | 25.0 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 3 | 0 |  |  | 0.04 | 8 | 0.04 | 8 |
|  | 1 | 1.33 | 59 | 0.56 | 42 | 1.89 | 54 |
|  | 2 | 2.37 | 68 | 0.03 | 77 | 2.39 | 68 |
|  | 3 | 0.36 | 82 |  |  | 0.36 | 82 |
|  | 4 | 0.44 | 109 |  |  | 0.44 | 109 |
|  | 5 | 0.43 | 187 |  |  | 0.43 | 187 |
|  | 6 | 0.38 | 210 |  |  | 0.38 | 210 |
|  | 7 | 0.11 | 178 |  |  | 0.11 | 178 |
|  | 8+ | 0.11 | 188 |  |  | 0.11 | 188 |
|  | Total | 5.52 |  | 0.62 |  | 6.13 |  |
|  | SOP |  | 515.2 |  | 25.4 |  | 540.6 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 4 | 0 | 0.00 | 22 | 0.23 | 11 | 0.23 | 11 |
|  | 1 | 8.06 | 55 | 0.29 | 44 | 8.35 | 55 |
|  | 2 | 4.83 | 81 |  |  | 4.83 | 81 |
|  | 3 | 0.82 | 110 |  |  | 0.82 | 110 |
|  | 4 | 0.51 | 124 |  |  | 0.51 | 124 |
|  | 5 | 0.27 | 149 |  |  | 0.27 | 149 |
|  | 6 | 0.06 | 119 |  |  | 0.06 | 119 |
|  | 7 | 0.04 | 215 |  |  | 0.04 | 215 |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 14.59 |  | 0.52 |  | 15.11 |  |
|  | SOP |  | 1,046.0 |  | 15.1 |  | 1,061.1 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| Total | 0 | 0.00 | 22 | 0.26 | 10 | 0.26 | 10 |
|  | 1 | 9.69 | 55 | 0.86 | 42 | 10.56 | 54 |
|  | 2 | 80.08 | 50 | 0.63 | 43 | 80.71 | 50 |
|  | 3 | 5.72 | 79 | 0.03 | 48 | 5.75 | 79 |
|  | 4 | 2.02 | 108 | 0.00 |  | 2.02 | 108 |
|  | 5 | 1.77 | 139 | 0.00 |  | 1.77 | 139 |
|  | 6 | 0.58 | 178 | 0.00 |  | 0.58 | 178 |
|  | 7 | 0.14 | 187 | 0.00 |  | 0.14 | 187 |
|  | 8+ | 0.37 | 173 | 0.00 |  | 0.37 | 173 |
|  | Total | 100.38 |  | 1.79 |  | 102.17 |  |
|  | SOP |  | 5,665.1 |  | 67.7 |  | 5,732.9 |

Table 3.2.10 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP ( t ) by age as Wringers, quarter and fleet. Baltic Spring spawners Division: Skagerrak Year: 2018

Country: All

| Quarter | W-rings | Fleet C |  | Fleet D |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 1 | 1 | 0.39 | 34 |  |  | 0.39 | 34 |
|  | 2 | 79.94 | 52 |  |  | 79.94 | 52 |
|  | 3 | 2.34 | 74 |  |  | 2.34 | 74 |
|  | 4 | 0.91 | 91 |  |  | 0.91 | 91 |
|  | 5 | 0.50 | 119 |  |  | 0.50 | 119 |
|  | 6 | 0.12 | 174 |  |  | 0.12 | 174 |
|  | 7 | 0.12 | 175 |  |  | 0.12 | 175 |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 84.33 |  | 0.00 |  | 84.33 |  |
|  | SOP |  | 4,488.9 |  | 0 |  | 4,488.9 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 2 | 1 | 0.02 | 34 | 0.26 | 23 | 0.28 | 23 |
|  | 2 | 3.43 | 52 | 1.40 | 42 | 4.84 | 49 |
|  | 3 | 0.10 | 74 | 0.06 | 48 | 0.16 | 65 |
|  | 4 | 0.04 | 91 |  |  | 0.04 | 91 |
|  | 5 | 0.02 | 119 |  |  | 0.02 | 119 |
|  | 6 | 0.01 | 174 |  |  | 0.01 | 174 |
|  | 7 | 0.01 | 175 |  |  | 0.01 | 175 |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 3.62 |  | 1.72 |  | 5.34 |  |
|  | SOP |  | 192.8 |  | 67.5 |  | 260.3 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 3 | 0 |  |  | 0.02 | 8 | 0.02 | 8 |
|  | 1 | 3.39 | 65 | 0.33 | 42 | 3.73 | 63 |
|  | 2 | 10.98 | 115 | 0.01 | 77 | 10.99 | 115 |
|  | 3 | 8.00 | 135 |  |  | 8.00 | 135 |
|  | 4 | 9.48 | 163 |  |  | 9.48 | 163 |
|  | 5 | 14.87 | 181 |  |  | 14.87 | 181 |
|  | 6 | 4.17 | 190 |  |  | 4.17 | 190 |
|  | 7 | 2.64 | 187 |  |  | 2.64 | 187 |
|  | 8+ | 2.10 | 202 |  |  | 2.10 | 202 |
|  | Total | 55.64 |  | 0.36 |  | 56.00 |  |
|  | SOP |  | 8,514.3 |  | 14.9 |  | 8,529.2 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 4 | 0 |  |  | 0.01 | 11 | 0.01 | 11 |
|  | 1 | 5.47 | 57 | 0.02 | 44 | 5.49 | 57 |
|  | 2 | 2.33 | 84 |  |  | 2.33 | 84 |
|  | 3 | 0.47 | 135 |  |  | 0.47 | 135 |
|  | 4 | 0.46 | 171 |  |  | 0.46 | 171 |
|  | 5 | 0.87 | 187 |  |  | 0.87 | 187 |
|  | 6 | 0.22 | 198 |  |  | 0.22 | 198 |
|  | 7 | 0.13 | 190 |  |  | 0.13 | 190 |
|  | 8+ | 0.04 | 226 |  |  | 0.04 | 226 |
|  | Total | 9.99 |  | 0.02 |  | 10.01 |  |
|  | SOP |  | 889.9 |  | 0.8 |  | 890.7 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| Total | 0 | 0.00 |  | 0.02 | 9 | 0.02 | 9 |
|  | 1 | 9.27 | 59 | 0.61 | 34 | 9.88 | 57 |
|  | 2 | 96.69 | 60 | 1.42 | 42 | 98.10 | 59 |
|  | 3 | 10.91 | 121 | 0.06 | 48 | 10.97 | 121 |
|  | 4 | 10.90 | 157 | 0.00 |  | 10.90 | 157 |
|  | 5 | 16.26 | 179 | 0.00 |  | 16.26 | 179 |
|  | 6 | 4.52 | 190 | 0.00 |  | 4.52 | 190 |
|  | 7 | 2.90 | 187 | 0.00 |  | 2.90 | 187 |
|  | 8+ | 2.14 | 203 | 0.00 |  | 2.14 | 203 |
|  | Total | 153.58 |  | 2.10 |  | 155.68 |  |
|  | SOP |  | 14,085.8 |  | 83.3 |  | 14,169.1 |

Table 3.2.11 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet. North Sea Autumn spawners

## Division: 3.a

| Quarter | W-rings | Fleet C |  | Fleet D |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 1 | 1 | 5.17 | 29 | 0.03 | 23 | 5.19 | 29 |
|  | 2 | 23.58 | 49 | 0.01 | 42 | 23.59 | 49 |
|  | 3 | 0.53 | 74 | 0.00 | 48 | 0.53 | 74 |
|  | 4 | 0.13 | 91 |  |  | 0.13 | 91 |
|  | 5 | 0.02 | 119 |  |  | 0.02 | 119 |
|  | 6 | 0.01 | 174 |  |  | 0.01 | 174 |
|  | 7 | 0.01 | 175 |  |  | 0.01 | 175 |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 29.43 |  | 0.04 |  | 29.47 |  |
|  | SOP |  | 1,362.5 |  | 1.1 |  | 1,363.7 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 2 | 1 | 0.02 | 33 | 0.46 | 23 | 0.48 | 23 |
|  | 2 | 0.38 | 51 | 0.26 | 42 | 0.64 | 48 |
|  | 3 | 0.02 | 74 | 0.01 | 48 | 0.03 | 65 |
|  | 4 | 0.01 | 91 |  |  | 0.01 | 91 |
|  | 5 | 0.0010 | 119 |  |  | 0.0010 | 119 |
|  | 6 | 0.0003 | 174 |  |  | 0.0003 | 174 |
|  | 7 | 0.0003 | 175 |  |  | 0.0003 | 175 |
|  | 8+ |  |  |  |  | 0.00 |  |
|  | Total | 0.42 |  | 0.74 |  | 1.15 |  |
|  | SOP |  | 21.9 |  | 22.0 |  | 43.9 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 3 | 0 |  |  | 4.03 | 8 | 4.03 | 8 |
|  | 1 | 3.87 | 62 | 0.90 | 42 | 4.76 | 58 |
|  | 2 | 3.68 | 104 | 0.01 | 77 | 3.69 | 104 |
|  | 3 | 0.52 | 135 |  |  | 0.52 | 135 |
|  | 4 | 1.58 | 163 |  |  | 1.58 | 163 |
|  | 5 | 0.97 | 183 |  |  | 0.97 | 183 |
|  | 6 | 0.17 | 190 |  |  | 0.17 | 190 |
|  | 7 | 0.11 | 187 |  |  | 0.11 | 187 |
|  | 8+ | 0.09 | 202 |  |  | 0.09 | 202 |
|  | Total | 10.98 |  | 4.94 |  | 15.92 |  |
|  | SOP |  | 1,198.5 |  | 71.0 |  | 1,269.5 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 4 | 0 | 0.10 | 22 | 10.38 | 11 | 10.48 | 11 |
|  | 1 | 8.53 | 56 | 0.21 | 44 | 8.74 | 56 |
|  | 2 | 0.57 | 82 |  |  | 0.57 | 82 |
|  | 3 | 0.05 | 125 |  |  | 0.05 | 125 |
|  | 4 | 0.08 | 171 |  |  | 0.08 | 171 |
|  | 5 | 0.05 | 181 |  |  | 0.05 | 181 |
|  | 6 | 0.01 | 185 |  |  | 0.01 | 185 |
|  | 7 | 0.01 | 195 |  |  | 0.01 | 195 |
|  | 8+ | 0.002 | 226 |  |  | 0.002 | 226 |
|  | Total | 9.40 |  | 10.59 |  | 19.98 |  |
|  | SOP |  | 558.9 |  | 119.8 |  | 678.7 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| Total | 0 | 0.10 | 22 | 14.41 | 10 | 14.51 | 10 |
|  | 1 | 17.58 | 50 | 1.59 | 36 | 19.17 | 48 |
|  | 2 | 28.20 | 57 | 0.29 | 44 | 28.49 | 57 |
|  | 3 | 1.12 | 105 | 0.01 | 48 | 1.13 | 104 |
|  | 4 | 1.79 | 158 | 0.00 |  | 1.79 | 158 |
|  | 5 | 1.04 | 181 | 0.00 |  | 1.04 | 181 |
|  | 6 | 0.18 | 189 | 0.00 |  | 0.18 | 189 |
|  | 7 | 0.12 | 187 | 0.00 |  | 0.12 | 187 |
|  | 8+ | 0.09 | 202 | 0.00 |  | 0.09 | 202 |
|  | Total | 50.23 |  | 16.29 |  | 66.52 |  |
|  | SOP |  | 3,141.8 |  | 213.9 |  | 3,355.7 |

Table 3.2.12 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet. Baltic Spring spawners

## Division: 3.a Year: 2017 Country: All

| Quarter | W-rings | Fleet C |  | Fleet D |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 1 | 1 | 0.70 | 31 | 0.00 | 23 | 0.70 | 31 |
|  | 2 | 152.80 | 50 | 0.07 | 42 | 152.87 | 50 |
|  | 3 | 6.88 | 74 | 0.00 | 48 | 6.89 | 74 |
|  | 4 | 1.98 | 96 |  |  | 1.98 | 96 |
|  | 5 | 1.57 | 118 |  |  | 1.57 | 118 |
|  | 6 | 0.26 | 142 |  |  | 0.26 | 142 |
|  | 7 | 0.12 | 175 |  |  | 0.12 | 175 |
|  | 8+ | 0.27 | 168 |  |  | 0.27 | 168 |
|  | Total | 164.58 |  | 0.07 |  | 164.65 |  |
|  | SOP |  | 8,592.0 |  | 3.0 |  | 8,595.0 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 2 | 1 | 0.02 | 34 | 0.27 | 23 | 0.29 | 23 |
|  | 2 | 3.45 | 51 | 1.94 | 42 | 5.39 | 48 |
|  | 3 | 0.10 | 74 | 0.08 | 48 | 0.18 | 63 |
|  | 4 | 0.04 | 91 |  |  | 0.04 | 91 |
|  | 5 | 0.02 | 119 |  |  | 0.02 | 119 |
|  | 6 | 0.01 | 174 |  |  | 0.01 | 174 |
|  | 7 | 0.01 | 175 |  |  | 0.01 | 175 |
|  | 8+ | 0.00 | 168 |  |  | 0.00 | 168 |
|  | Total | 3.64 |  | 2.30 |  | 5.93 |  |
|  | SOP |  | 193.6 |  | 91.7 |  | 285.3 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 3 | 0 |  |  | 0.05 | 8 | 0.05 | 8 |
|  | 1 | 4.72 | 63 | 0.89 | 42 | 5.61 | 60 |
|  | 2 | 13.35 | 107 | 0.04 | 77 | 13.39 | 107 |
|  | 3 | 8.36 | 133 |  |  | 8.36 | 133 |
|  | 4 | 9.92 | 161 |  |  | 9.92 | 161 |
|  | 5 | 15.30 | 181 |  |  | 15.30 | 181 |
|  | 6 | 4.55 | 192 |  |  | 4.55 | 192 |
|  | 7 | 2.74 | 187 |  |  | 2.74 | 187 |
|  | 8+ | 2.20 | 202 |  |  | 2.20 | 202 |
|  | Total | 61.15 |  | 0.98 |  | 62.13 |  |
|  | SOP |  | 9,029 |  | 40.4 |  | 9,069.8 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| 4 | 0 | 0.00 | 22 | 0.23 | 11 | 0.24 | 11 |
|  | 1 | 13.53 | 56 | 0.31 | 44 | 13.84 | 56 |
|  | 2 | 7.16 | 82 |  |  | 7.16 | 82 |
|  | 3 | 1.29 | 119 |  |  | 1.29 | 119 |
|  | 4 | 0.97 | 146 |  |  | 0.97 | 146 |
|  | 5 | 1.14 | 178 |  |  | 1.14 | 178 |
|  | 6 | 0.28 | 181 |  |  | 0.28 | 181 |
|  | 7 | 0.17 | 196 |  |  | 0.17 | 196 |
|  | 8+ | 0.04 | 226 |  |  | 0.04 | 226 |
|  | Total | 24.58 |  | 0.54 |  | 25.12 |  |
|  | SOP |  | 1,935.9 |  | 15.9 |  | 1,951.8 |
| Quarter |  | Fleet C |  | Fleet D |  | Total |  |
|  | W-rings | Numbers | Mean W. | Numbers | Mean W. | Numbers | Mean W. |
| Total | 0 | 0.00 | 22 | 0.29 | 10 | 0.29 | 10 |
|  | 1 | 18.97 | 57 | 1.47 | 38 | 20.44 | 56 |
|  | 2 | 176.76 | 55 | 2.05 | 43 | 178.81 | 55 |
|  | 3 | 16.63 | 107 | 0.09 | 48 | 16.72 | 106 |
|  | 4 | 12.91 | 149 | 0.00 |  | 12.91 | 149 |
|  | 5 | 18.03 | 175 | 0.00 |  | 18.03 | 175 |
|  | 6 | 5.10 | 189 | 0.00 |  | 5.10 | 189 |
|  | 7 | 3.04 | 187 | 0.00 |  | 3.04 | 187 |
|  | 8+ | 2.51 | 198 | 0.00 |  | 2.51 | 198 |
|  | Total | 253.96 |  | 3.89 |  | 257.85 |  |
|  | SOP |  | 19,750.9 |  | 151.0 |  | 19,901.9 |

multifleet assessment input

Table 3.2.13 Western Baltic spring spawning herring. Total catch in numbers (mill) and mean weight (g), SOP (tonnes) of Western Baltic Spring spawners in Division 3.a and the North Sea in the years 1993-2018.

| Year/ | W-rings | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8+ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | Numbers | 161.25 | 371.50 | 315.82 | 219.05 | 94.08 | 59.43 | 40.97 | 21.71 | 8.22 | 1,292.03 |
|  | Mean W. | 15.1 | 25.9 | 81.4 | 127.5 | 150.1 | 171.1 | 195.9 | 209.1 | 239.0 |  |
|  | SOP | 2,435 | 9,612 | 25,696 | 27,936 | 14,120 | 10,167 | 8,027 | 4,541 | 1,966 | 104,498 |
| 1994 | Numbers | 60.62 | 153.11 | 261.14 | 221.64 | 130.97 | 77.30 | 44.40 | 14.39 | 8.62 | 972.19 |
|  | Mean W. | 20.2 | 42.6 | 94.8 | 122.7 | 150.3 | 168.7 | 194.7 | 209.9 | 220.2 |  |
|  | SOP | 1,225 | 6,524 | 24,767 | 27,206 | 19,686 | 13,043 | 8,642 | 3,022 | 1,898 | 106,013 |
| 1995 | Numbers | 50.31 | 302.51 | 204.19 | 97.93 | 90.86 | 30.55 | 21.28 | 12.01 | 7.24 | 816.86 |
|  | Mean W. | 17.9 | 41.5 | 97.8 | 138.0 | 163.1 | 198.5 | 207.0 | 228.8 | 234.3 |  |
|  | SOP | 902 | 12,551 | 19,970 | 13,517 | 14,823 | 6,065 | 4,404 | 2,747 | 1,696 | 76,674 |
| 1996 | Numbers | 166.23 | 228.05 | 317.74 | 75.60 | 40.41 | 30.63 | 12.58 | 6.73 | 5.63 | 883.60 |
|  | Mean W. | 10.5 | 27.6 | 90.1 | 134.9 | 164.9 | 186.6 | 204.1 | 208.5 | 220.2 |  |
|  | SOP | 1,748 | 6,296 | 28,618 | 10,197 | 6,665 | 5,714 | 2,568 | 1,402 | 1,241 | 64,449 |
| 1997 | Numbers | 25.97 | 73.43 | 158.71 | 180.06 | 30.15 | 14.15 | 4.77 | 1.75 | 2.31 | 491.31 |
|  | Mean W. | 19.2 | 49.7 | 76.7 | 127.2 | 154.4 | 175.8 | 184.4 | 192.0 | 208.0 |  |
|  | SOP | 498 | 3,648 | 12,176 | 22,913 | 4,656 | 2,489 | 879 | 337 | 480 | 48,075 |
| 1998 | Numbers | 36.26 | 175.14 | 315.15 | 94.53 | 54.72 | 11.19 | 8.72 | 2.19 | 2.09 | 699.98 |
|  | Mean W. | 27.8 | 51.3 | 71.5 | 108.8 | 142.6 | 171.7 | 194.4 | 184.2 | 230.0 |  |
|  | SOP | 1,009 | 8,980 | 22,542 | 10,287 | 7,804 | 1,922 | 1,695 | 403 | 481 | 55,121 |
| 1999 | Numbers | 41.34 | 190.29 | 155.67 | 122.26 | 43.16 | 22.21 | 4.42 | 3.02 | 2.40 | 584.77 |
|  | Mean W. | 11.5 | 51.0 | 83.6 | 114.9 | 121.2 | 145.2 | 169.6 | 123.8 | 152.3 |  |
|  | SOP | 477 | 9,698 | 13,012 | 14,048 | 5,232 | 3,225 | 749 | 373 | 366 | 47,179 |
| 2000 | Numbers | 114.83 | 318.22 | 302.10 | 99.88 | 50.85 | 18.76 | 8.21 | 1.35 | 1.40 | 915.60 |
|  | Mean W. | 22.6 | 31.9 | 67.4 | 107.7 | 140.2 | 170.0 | 157.0 | 185.0 | 210.1 |  |
|  | SOP | 2,601 | 10,145 | 20,357 | 10,756 | 7,131 | 3,189 | 1,288 | 249 | 294 | 56,010 |
| 2001 | Numbers | 121.68 | 36.63 | 208.10 | 111.08 | 32.06 | 19.67 | 9.84 | 4.17 | 2.42 | 545.65 |
|  | Mean W. | 9.0 | 51.2 | 76.2 | 108.9 | 145.3 | 171.4 | 188.2 | 187.2 | 203.3 |  |
|  | SOP | 1,096 | 1,875 | 15,863 | 12,093 | 4,657 | 3,371 | 1,852 | 780 | 492 | 42,079 |
| 2002 | Numbers | 69.63 | 577.69 | 168.26 | 134.60 | 53.09 | 12.05 | 7.48 | 2.43 | 2.02 | 1,027.26 |
|  | Mean W. | 10.2 | 20.4 | 78.2 | 117.7 | 143.8 | 169.8 | 191.9 | 198.2 | 215.5 |  |
|  | SOP | 709 | 11,795 | 13,162 | 15,848 | 7,632 | 2,046 | 1,435 | 481 | 435 | 53,544 |
| 2003 | Numbers | 52.11 | 63.02 | 182.53 | 65.45 | 64.37 | 21.47 | 6.26 | 4.35 | 1.81 | 461.38 |
|  | Mean W. | 13.0 | 37.4 | 76.5 | 113.3 | 132.7 | 142.2 | 153.5 | 169.9 | 162.2 |  |
|  | SOP | 678 | 2,355 | 13,957 | 7,416 | 8,540 | 3,053 | 961 | 740 | 294 | 37,994 |
| 2004 | Numbers | 25.67 | 209.34 | 96.02 | 93.98 | 18.24 | 16.84 | 4.51 | 1.51 | 0.59 | 466.71 |
|  | Mean W. | 27.1 | 43.2 | 81.9 | 117.1 | 145.4 | 157.4 | 170.7 | 184.4 | 187.1 |  |
|  | SOP | 695 | 9,047 | 7,869 | 11,005 | 2,652 | 2,651 | 769 | 279 | 111 | 35,078 |
| 2005 | Numbers | 95.3 | 96.9 | 203.3 | 75.4 | 46.9 | 9.3 | 11.5 | 3.5 | 1.4 | 543.51 |
|  | Mean W. | 14.1 | 54.9 | 85.6 | 121.6 | 148.3 | 162.7 | 176.3 | 178.3 | 200.6 |  |
|  | SOP | 1,341 | 5,319 | 17,415 | 9,163 | 6,961 | 1,519 | 2,028 | 618 | 282 | 44,645 |
| 2006 c | Numbers | 7.3 | 104.1 | 115.6 | 114.2 | 48.9 | 55.7 | 11.1 | 10.3 | 5.2 | 472.49 |
|  | Mean W. | 16.6 | 36.9 | 82.9 | 113.0 | 142.5 | 175.2 | 198.2 | 209.5 | 220.0 |  |
|  | SOP | 121 | 3,847 | 9,584 | 12,907 | 6,972 | 9,765 | 2,199 | 2,159 | 1,134 | 48,688 |
| 2007 | Numbers | 1.6 | 103.9 | 90.9 | 36.9 | 30.8 | 12.8 | 9.4 | 6.2 | 2.7 | 295.22 |
|  | Mean W. | 25.2 | 65.6 | 85.0 | 115.7 | 138.4 | 159.2 | 190.8 | 178.6 | 211.9 |  |
|  | SOP | 41 | 6,816 | 7,723 | 4,269 | 4,265 | 2,035 | 1,802 | 1,114 | 567 | 28,632 |
| 2008 | Numbers | 4.9 | 101.8 | 71.1 | 38.9 | 13.5 | 15.1 | 7.7 | 4.5 | 1.3 | 258.80 |
|  | Mean W. | 19.2 | 71.5 | 91.1 | 114.5 | 142.2 | 171.2 | 181.4 | 200.0 | 196.4 | 98.02 |
|  | SOP | 94 | 7,281 | 6,472 | 4,456 | 1,917 | 2,590 | 1,402 | 900 | 256 | 25,368 |
| 2009 | Numbers | 14.8 | 149.6 | 132.3 | 45.9 | 24.4 | 10.9 | 7.8 | 7.7 | 5.3 | 398.63 |
|  | Mean W. | 13.4 | 52.0 | 90.3 | 118.6 | 167.5 | 181.4 | 213.9 | 228.9 | 259.5 | 90.89 |
|  | SOP | 199 | 7,783 | 11,946 | 5,436 | 4,094 | 1,974 | 1,669 | 1,757 | 1,371 | 36,230 |
| 2010 | Numbers | 9.1 | 48.6 | 106.1 | 45.2 | 20.8 | 8.6 | 5.9 | 7.2 | 5.9 | 257.38 |
|  | Mean W. | 8.2 | 59.3 | 84.7 | 129.8 | 165.9 | 196.2 | 221.8 | 234.3 | 257.2 | 106.71 |
|  | SOP | 75 | 2,878 | 8,991 | 5,870 | 3,445 | 1,686 | 1,311 | 1,696 | 1,513 | 27,465 |
| 2011 | Numbers | 6.2 | 83.1 | 29.9 | 21.0 | 13.4 | 6.0 | 3.0 | 1.0 | 1.1 | 164.56 |
|  | Mean W. | 8.4 | 33.7 | 89.0 | 120.4 | 140.2 | 170.2 | 185.9 | 216.3 | 211.8 | 72.57 |
|  | SOP | 52 | 2,797 | 2,660 | 2,522 | 1,878 | 1,020 | 554 | 222 | 237 | 11,941 |
| 2012 | Numbers | 1.5 | 30.5 | 94.3 | 20.7 | 9.5 | 7.1 | 4.2 | 2.2 | 8.6 | 178.68 |
|  | Mean W. | 9.3 | 47.0 | 76.1 | 134.2 | 165.1 | 182.0 | 204.1 | 222.0 | 225.6 | 98.24 |
|  | SOP | 14 | 1,434 | 7,180 | 2,780 | 1,570 | 1,290 | 858 | 495 | 1,931 | 17,553 |
| 2013 | Numbers |  | 12.0 | 51.7 | 71.4 | 11.3 | 4.4 | 1.4 | 0.5 | 1.0 | 153.62 |
|  | Mean W. |  | 59.5 | 94.2 | 131.8 | 162.6 | 195.0 | 207.8 | 247.9 | 238.1 | 119.29 |
|  | SOP |  | 716 | 4,872 | 9,409 | 1,830 | 848 | 290 | 118 | 242 | 18,325 |
| 2014 | Numbers | 25.3 | 31.5 | 22.4 | 24.2 | 44.6 | 7.6 | 4.6 | 2.3 | 2.9 | 165.42 |
|  | Mean W. | 9.3 | 52.2 | 98.5 | 137.4 | 178.2 | 199.2 | 211.7 | 225.1 | 227.0 | 114.98 |
|  | SOP | 236 | 1,647 | 2,203 | 3,332 | 7,942 | 1,513 | 964 | 524 | 659 | 19,020 |
| 2015 | Numbers | 3.3 | 57.8 | 59.9 | 21.0 | 14.1 | 14.6 | 4.9 | 2.7 | 3.9 | 182.10 |
|  | Mean W. | 16.0 | 31.8 | 67.9 | 115.2 | 152.4 | 172.8 | 193.4 | 198.7 | 212.9 | 84.28 |
|  | SOP | 53 | 1,838 | 4,067 | 2,418 | 2,150 | 2,521 | 939 | 532 | 830 | 15,348 |
| 2016 | Numbers | 23.9 | 27.2 | 161.7 | 43.0 | 13.3 | 12.1 | 13.2 | 3.6 | 6.6 | 304.65 |
|  | Mean W. | 7.1 | 40.1 | 63.8 | 126.1 | 160.7 | 175.1 | 200.8 | 212.8 | 235.0 | 86.08 |
|  | SOP | 170 | 1,091 | 10,312 | 5,426 | 2,142 | 2,119 | 2,661 | 765 | 1,539 | 26,224 |
| 2017 | Numbers | 1.4 | 48.4 | 42.2 | 42.8 | 34.2 | 10.2 | 10.9 | 7.4 | 2.9 | 200.41 |
|  | Mean W. | 30.5 | 44.1 | 61.3 | 113.2 | 141.8 | 162.8 | 171.2 | 182.9 | 169.9 | 98.93 |
|  | SOP | 44 | 2,137 | 2,585 | 4,848 | 4,844 | 1,668 | 1,863 | 1,345 | 493 | 19,827 |
| 2018 | Numbers | 0.3 | 20.5 | 179.1 | 17.6 | 15.2 | 22.3 | 6.8 | 3.9 | 3.1 | 268.88 |
|  | Mean W. | 10.3 | 55.7 | 55.3 | 109.3 | 154.4 | 179.7 | 195.0 | 194.9 | 206.4 | 82.07 |
|  | SOP | 3 | 1,140 | 9,902 | 1,927 | 2,346 | 4,007 | 1,334 | 761 | 647 | 22,066 |

Data for 1995 to 2001 was revised in 2003.
c values have been corrected in 2007.

Table 3.2.14 Western Baltic spring spawning herring. Catch in numbers (mill.), mean weight (g.) and SOP (t) by age as Wringers, quarter and fleet. Western Baltic Spring spawners. (values from the North Sea, see tables 2.2.1-2.2.5) Division: 4 + 3.a + 22-24 Year: 2018 Country: All


Table 3.2.15 Western Baltic spring spawning herring. Total catch in numbers (mill) of Western Baltic Spring Spawners in Division 3.a + North Sea + Subdivisions 22-24 in the years 1993-2018.


Data for 1995-2001 for the North Sea and Division 3.a was revised in 2003.
c values have been corrected in 2007.

Table 3.2.16 Western Baltic spring spawning herring. Mean weight (g) and SOP ( $\mathbf{t}$ ) of Western Baltic Spring Spawners in Division 3.a + North Sea + Subdivisions 22-24 in the years 1993-2018.


Data for 1995-2001 for the North Sea and Division 3.a was revised in 2003.
c values have been corrected in 2007.

Table 3.2.17 Western Baltic spring spawning herring. Transfers of North Sea autumn spawners from Div. 3.a to the North Sea. Numbers (millions) and mean weight (g), SOP (tonnes) in 1993-2018.

|  | W-Rings | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8+ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year |  |  |  |  |  |  |  |  |  |  |  |
| 1993 | Number | 2,795.4 | 2,032.5 | 237.6 | 26.5 | 7.7 | 3.6 | 2.7 | 2.2 | 0.7 | 5,109.0 |
|  | Mean W. | 12.5 | 28.6 | 79.7 | 141.4 | 132.3 | 233.4 | 238.5 | 180.6 | 203.1 |  |
|  | SOP | 34,903 | 58,107 | 18,939 | 3,749 | 1,016 | 850 | 647 | 390 | 133 | 118,734 |
| 1994 | Number | 481.6 | 1,086.5 | 201.4 | 26.9 | 6.0 | 2.9 | 1.6 | 0.4 | 0.2 | 1,807.5 |
|  | Mean W. | 16.0 | 42.9 | 83.4 | 110.7 | 138.3 | 158.6 | 184.6 | 199.1 | 213.9 |  |
|  | SOP | 7,723 | 46,630 | 16,790 | 2,980 | 831 | 460 | 287 | 75 | 37 | 75,811 |
| 1995 | Number | 1,144.5 | 1,189.2 | 161.5 | 13.3 | 3.5 | 1.1 | 0.6 | 0.4 | 0.3 | 2,514.4 |
|  | Mean W. | 11.2 | 39.1 | 88.3 | 145.7 | 165.5 | 204.5 | 212.2 | 236.4 | 244.3 |  |
|  | SOP | 12,837 | 46,555 | 14,267 | 1,940 | 573 | 225 | 133 | 86 | 65 | 76,680 |
| 1996 | Number | 516.1 | 961.1 | 161.4 | 17.0 | 3.4 | 1.6 | 0.7 | 0.4 | 0.3 | 1,661.9 |
|  | Mean W. | 11.0 | 23.4 | 80.2 | 126.6 | 165.0 | 186.5 | 216.1 | 216.3 | 239.1 |  |
|  | SOP | 5,697 | 22,448 | 12,947 | 2,151 | 565 | 307 | 145 | 77 | 66 | 44,403 |
| 1997 | Number | 67.6 | 305.3 | 131.7 | 21.2 | 1.7 | 0.8 | 0.2 | 0.1 | 0.1 | 528.7 |
|  | Mean W. | 19.3 | 47.7 | 68.5 | 124.4 | 171.5 | 184.7 | 188.7 | 188.7 | 192.4 |  |
|  | SOP | 1,304 | 14,571 | 9,025 | 2,643 | 285 | 146 | 40 | 16 | 25 | 28,057 |
| 1998 | Number | 51.3 | 745.1 | 161.5 | 26.6 | 19.2 | 3.0 | 3.1 | 1.2 | 0.5 | 1,011.6 |
|  | Mean W. | 27.4 | 56.4 | 79.8 | 117.8 | 162.9 | 179.7 | 197.2 | 178.9 | 226.3 |  |
|  | SOP | 1,409 | 41,994 | 12,896 | 3,137 | 3,136 | 547 | 608 | 211 | 108 | 64,045 |
| 1999 | Number | 598.8 | 303.0 | 148.6 | 47.2 | 13.4 | 6.2 | 1.2 | 0.5 | 0.5 | 1,119.4 |
|  | Mean W. | 10.4 | 50.5 | 87.7 | 113.7 | 137.4 | 156.5 | 188.1 | 187.3 | 198.8 |  |
|  | SOP | 6,255 | 15,297 | 13,037 | 5,369 | 1,841 | 974 | 230 | 90 | 92 | 43,186 |
| 2000 | Number | 235.3 | 984.3 | 116.0 | 21.9 | 22.9 | 7.5 | 3.3 | 0.6 | 0.1 | 1,391.8 |
|  | Mean W. | 21.3 | 28.5 | 76.1 | 108.8 | 163.1 | 190.3 | 183.9 | 189.4 | 200.2 |  |
|  | SOP | 5,005 | 28,012 | 8,825 | 2,377 | 3,731 | 1,436 | 601 | 114 | 13 | 50,115 |
| 2001 | Number | 807.8 | 563.6 | 150.0 | 17.2 | 1.4 | 0.3 | 0.5 | 0.0 | 0.0 | 1,540.8 |
|  | Mean W. | 8.7 | 49.4 | 75.3 | 108.2 | 130.1 | 147.1 | 219.1 | 175.8 | 198.1 |  |
|  | SOP | 7,029 | 27,849 | 11,300 | 1,856 | 177 | 43 | 109 | 8 | 5 | 48,376 |
| 2002 | Number | 478.5 | 362.6 | 56.7 | 5.6 | 0.7 | 0.2 | 0.1 | 0.0 | 0.0 | 904.5 |
|  | Mean W. | 12.2 | 38.0 | 100.6 | 121.5 | 142.7 | 160.9 | 178.7 | 177.4 | 218.6 |  |
|  | SOP | 5,859 | 13,790 | 5,705 | 684 | 106 | 26 | 21 | 8 | 5 | 26,205 |
| 2003 | Number | 21.6 | 445.0 | 182.3 | 13.0 | 16.2 | 1.8 | 1.1 | 1.2 | 0.2 | 682.4 |
|  | Mean W. | 20.5 | 33.7 | 67.0 | 123.2 | 150.3 | 163.5 | 190.2 | 214.6 | 186.8 |  |
|  | SOP | 442 | 14,992 | 12,219 | 1,606 | 2,436 | 293 | 213 | 264 | 33 | 32,498 |
| 2004 | Number | 88.4 | 70.9 | 179.9 | 20.7 | 6.0 | 9.7 | 1.8 | 2.0 | 0.9 | 380.4 |
|  | Mean W. | 22.5 | 55.3 | 70.2 | 120.6 | 140.9 | 151.7 | 170.6 | 186.6 | 178.5 |  |
|  | SOP | 1,993 | 3,921 | 12,638 | 2,498 | 851 | 1,479 | 312 | 367 | 154 | 24,214 |
| 2005 | Number | 96.4 | 307.5 | 159.2 | 16.2 | 5.4 | 2.4 | 2.3 | 0.5 | 0.2 | 589.9 |
|  | Mean W. | 16.5 | 50.5 | 71.0 | 105.9 | 154.6 | 173.5 | 184.5 | 200.2 | 208.9 |  |
|  | SOP | 1,595 | 15,527 | 11,304 | 1,712 | 828 | 412 | 420 | 95 | 34 | 31,927 |
| 2006 | Number | 35.1 | 150.1 | 50.2 | 10.2 | 3.3 | 3.3 | 0.6 | 0.4 | 0.2 | 253.3 |
|  | Mean W. | 14.3 | 53.5 | 79.2 | 117.6 | 140.2 | 185.5 | 190.4 | 215.6 | 206.9 |  |
|  | SOP | 503 | 8,035 | 3,975 | 1,200 | 456 | 620 | 107 | 81 | 37 | 15,015 |
| 2007 | Number | 67.7 | 189.3 | 76.9 | 2.1 | 0.4 | 1.4 | 0.3 | 0.6 | 0.0 | 338.7 |
|  | Mean W. | 26.7 | 62.6 | 71.1 | 108.1 | 124.4 | 151.7 | 183.7 | 174.7 | 153.8 |  |
|  | SOP | 1,807 | 11,857 | 5,464 | 224 | 55 | 219 | 48 | 110 | 3 | 19,788 |
| 2008 | Number | 85.7 | 86.6 | 72.0 | 1.9 | 0.3 | 0.1 | 0.1 | 0.3 | 0.1 | 247.0 |
|  | Mean W. | 16.2 | 57.6 | 86.4 | 109.1 | 138.7 | 167.7 | 175.4 | 203.1 | 197.7 |  |
|  | SOP | 1,386 | 4,986 | 6,222 | 205 | 35 | 25 | 10 | 67 | 13 | 12,949 |
| 2009 | Number | 116.8 | 77.5 | 7.0 | 0.4 | 0.2 | 0.0 | 0.0 | 0.0 | 0.1 | 202.0 |
|  | Mean W. | 9.4 | 59.8 | 101.0 | 81.3 | 206.4 | 0.0 | 0.0 | 0.0 | 268.5 |  |
|  | SOP | 1,095 | 4,635 | 710 | 29 | 46 | 0 | 0 | 0 | 28 | 6,542 |
| 2010 | Number | 48.6 | 197.0 | 43.3 | 0.3 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 289.6 |
|  | Mean W. | 7.5 | 50.6 | 76.8 | 122.3 | 149.3 | 191.3 | 221.5 | 216.3 | 204.5 |  |
|  | SOP | 364 | 9,975 | 3,325 | 35 | 22 | 19 | 4 | 13 | 3 | 13,759 |
| 2011 | Number | 203.8 | 35.4 | 61.5 | 3.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.0 | 304.6 |
|  | Mean W. | 7.5 | 35.1 | 83.6 | 113.3 | 133.9 | 191.5 | 193.2 | 234.3 | 248.3 |  |
|  | SOP | 1,524 | 1,244 | 5,137 | 364 | 37 | 33 | 23 | 22 | 5 | 8,388 |
| 2012 | Number | 145.83 | 174.74 | 43.05 | 1.85 | 1.14 | 0.19 | 0.20 | 0.11 | 0.03 | 367.1 |
|  | Mean W. | 12.29 | 39.70 | 66.75 | 123.69 | 169.16 | 174.56 | 199.39 | 219.78 | 215.93 |  |
|  | SOP | 1,792 | 6,937 | 2,873 | 229 | 193 | 33 | 39 | 24 | 6 | 12,128 |
| 2013 | Number | 0.90 | 86.19 | 85.82 | 2.39 | 0.36 | 0.28 |  |  |  | 175.9 |
|  | Mean W. | 33.66 | 75.39 | 74.64 | 133.88 | 160.14 | 200.37 |  |  |  |  |
|  | SOP | 30 | 6,498 | 6,405 | 320 | 57 | 56 |  |  |  | 13,367 |
| 2014 | Number | 284.74 | 61.13 | 80.21 | 5.90 | 0.54 | 0.50 | 0.17 | 0.03 | 0.06 | 433.3 |
|  | Mean W. | 8.98 | 56.96 | 73.62 | 108.56 | 162.38 | 190.94 | 209.02 | 221.12 | 227.82 |  |
|  | SOP | 2,557 | 3,482 | 5,905 | 641 | 88 | 95 | 36 | 6 | 13 | 12,823 |
| 2015 | Number | 30.71 | 169.58 | 97.57 | 6.96 | 1.25 | 4.89 | 1.11 | 1.20 | 0.35 | 313.6 |
|  | Mean W. | 15.79 | 29.72 | 68.01 | 132.87 | 157.09 | 179.85 | 195.87 | 197.22 | 214.93 |  |
|  | SOP | 485 | 5,040 | 6,636 | 925 | 197 | 880 | 218 | 238 | 75 | 14,692 |
| 2016 | Number | 133.30 | 23.33 | 47.56 | 5.95 | 0.53 | 0.30 | 0.22 | 0.03 | 0.06 | 211.3 |
|  | Mean W. | 6.74 | 37.42 | 59.01 | 123.13 | 149.08 | 156.65 | 207.97 | 209.50 | 234.59 |  |
|  | SOP | 899 | 873 | 2,807 | 733 | 79 | 47 | 46 | 7 | 15 | 5,506 |
| 2017 | Number | 0.15 | 75.99 | 34.43 | 6.91 | 2.97 | 1.20 | 0.07 | 0.05 | 0.03 | 121.8 |
|  | Mean W. | 30.81 | 48.55 | 67.62 | 102.48 | 138.67 | 172.88 | 170.96 | 184.78 | 161.99 |  |
|  | SOP | 5 | 3,690 | 2,328 | 709 | 412 | 208 | 12 | 8 | 5 | 7,375 |
| 2018 | Number | 14.51 | 19.17 | 28.49 | 1.13 | 1.79 | 1.04 | 0.18 | 0.12 | 0.09 | 66.5 |
|  | Mean W. | 10.05 | 48.67 | 57.48 | 102.82 | 155.48 | 179.69 | 189.49 | 186.69 | 202.12 |  |
|  | SOP | 146 | 933 | 1,638 | 116 | 279 | 187 | 35 | 22 | 17 | 3,372 |

Corrections for the years 1991-1998 was made in HAWG 2001, but are NOT included in the North Sea assessment.

Table 3.3.1 Western Baltic spring spawning herring. German acoustic survey (GERAS) on the Spring Spawning Herring in Subdivisions 21 (Southern Kattegat, 41G0-42G2) - 24 in autumn 1993-2018 (September/October).

| Year | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $2000{ }^{\prime \prime}$ | ${ }^{*} 2001{ }^{\prime}$ | $2002$ | 2003 | 2004 | $\begin{aligned} & \hline \text { *** } \\ & \hline 2005 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W-rings/Numbers in millions |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 893.140 | 5,474.540 | 5,107.780 | 1,833.130 | 2,859.220 | 2,490.090 | 5,993.820 | 1,008.910 | 2,477.972 | 4,102.595 | 3,776.780 | 2,554.680 | 3,055.595 |
| 1 | 491.880 | 415.730 | 1,675.340 | 1,439.460 | 1,955.400 | 801.350 | 1,338.710 | 1,429.880 | 1,125.716 | 837.557 | 1,238.480 | 968.860 | 750.199 |
| 2 | 436.550 | 883.810 | 328.610 | 59.010 | 738.180 | 678.530 | 287.240 | 453.980 | 1,226.932 | 421.396 | 222.530 | 592.360 | 590.756 |
| 3 | 529.670 | 559.720 | 357.960 | 434.090 | 394.530 | 394.070 | 232.510 | 328.960 | 844.088 | 575.358 | 217.270 | 346.230 | 295.659 |
| 4 | 403.400 | 443.730 | 353.850 | 295.170 | 162.430 | 236.830 | 155.950 | 201.590 | 366.841 | 341.120 | 260.350 | 163.150 | 142.778 |
| 5 | 125.140 | 189.420 | 253.510 | 305.550 | 118.910 | 100.190 | 51.940 | 78.930 | 131.430 | 63.678 | 96.960 | 143.320 | 8.541 |
| 6 | 55.290 | 60.400 | 126.760 | 119.260 | 99.290 | 50.980 | 8.130 | 38.610 | 85.690 | 24.520 | 38.040 | 79.030 | 79.018 |
| 7 | 28.030 | 23.510 | 46.430 | 46.980 | 33.280 | 23.640 | 1.470 | 5.920 | 19.471 | 9.690 | 8.580 | 22.600 | 25.564 |
| $8+$ | 12.940 | 2.330 | 27.240 | 18.910 | 47.850 | 9.330 | 2.100 | 4.190 | 9.683 | 13.380 | 9.890 | 11.770 | 15.013 |
| Total | 2,976.040 | 8,053.190 | 8,277.480 | 5,082.560 | 6.409.090 | 4,785.010 | 8,071.870 | 3,550.970 | 6,287.823 | 6,389.293 | 5,868.880 | 4,882.000 | 5,033.123 |
| 3+ group | 1,154.470 | 1,279.110 | 1,165.750 | 1,219.960 | 856.290 | 815.040 | 452.100 | 658.200 | 1,457.203 | 1,027.746 | 631.090 | 766.100 | 636.573 |
| W-rings/Biomass ('000 tonnnes) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| - | 12.765 | 66.889 | 58.540 | 16.564 | 28.497 | 23.760 | 71.814 | 13.784 | 31.163 | 38.209 | 33.928 | 23.074 | 32.794 |
| 1 | 19.520 | 14.466 | 58.620 | 46.643 | 76.396 | 39.899 | 51.117 | 57.530 | 48.177 | 34.165 | 44.791 | 35.885 | 29.790 |
| 2 | 21.696 | 40.972 | 20.939 | 29.127 | 43.461 | 50.085 | 22.016 | 28.431 | 75.879 | 29.957 | 16.089 | 34.542 | 46.478 |
| 3 | 33.838 | 40.749 | 30.091 | 31.035 | 35.942 | 35.280 | 27.484 | 27.740 | 77.137 | 56.769 | 22.008 | 27.726 | 31.876 |
| 4 | 25.674 | 43.038 | 40.104 | 21.174 | 22.291 | 28.049 | 16.664 | 24.065 | 37.936 | 40.360 | 34.167 | 18.364 | 20.414 |
| 5 | 12.695 | 24.198 | 27.268 | 37.141 | 16.743 | 11.430 | 6.768 | 9.259 | 18.458 | 9.029 | 14.561 | 17.348 | 12.772 |
| 6 | 7.058 | 12.313 | 14.915 | 16.056 | 13.998 | 6.157 | 0.867 | 5.620 | 13.267 | 3.497 | 5.715 | 12.225 | 13.820 |
| 7 | 2.269 | 5.294 | 9.269 | 6.101 | 5.333 | 3.716 | 0.350 | 1.210 | 3.866 | 1.075 | 1.343 | 3.413 | 5.111 |
| $8+$ | 1.781 | 0.627 | 6.570 | 2.930 | 10.636 | 2.170 | 0.458 | 0.757 | 2.101 | 1.908 | 1.615 | 1.991 | 3.447 |
| Total | 137.296 | 248.545 | 266.316 | 206.771 | 253.297 | 200.547 | 197.537 | 168.395 | 307.984 | 214.967 | 174.218 | 174.568 | 196.503 |
| 3+ group | 83.315 | 126.218 | 128.217 | 114.438 | 104.943 | 86.802 | 52.590 | 68.651 | 152.765 | 112.637 | 79.410 | 81.067 | 87.441 |
| W-rings/Mean weight (g) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 14.3 | 12.2 | 11.5 | 9.0 | 10.0 | 9.5 | 12.0 | 13.7 | 12.6 | 9.3 | 9.0 | 9.0 | 10.7 |
| 1 | 39.7 | 34.8 | 35.0 | 32.4 | 39.1 | 49.8 | 38.2 | 40.2 | 42.8 | 40.8 | 36.2 | 37.0 | 39.7 |
| 2 | 49.7 | 46.4 | 63.7 | 49.4 | 58.9 | 73.8 | 76.6 | 62.6 | 61.8 | 71.1 | 72.3 | 58.3 | 78.7 |
| 3 | 63.9 | 72.8 | 84.1 | 71.5 | 91.1 | 89.5 | 118.2 | 84.3 | 91.4 | 98.7 | 101.3 | 80.1 | 107.8 |
| 4 | 63.6 | 97.0 | 113.3 | 71.7 | 137.2 | 118.4 | 106.9 | 119.4 | 103.4 | 118.3 | 131.2 | 112.6 | 143.0 |
| 5 | 101.4 | 127.7 | 107.6 | 121.6 | 140.8 | 114.1 | 130.3 | 117.3 | 140.4 | 141.8 | 150.2 | 121.0 | 162.6 |
| 6 | 127.7 | 203.9 | 117.7 | 134.6 | 141.0 | 120.8 | 106.6 | 145.5 | 154.8 | 142.6 | 150.2 | 154.7 | 174.9 |
| 7 | 81.0 | 225.2 | 199.6 | 129.9 | 160.2 | 157.2 | 237.9 | 204.5 | 198.6 | 110.9 | 156.6 | 151.0 | 199.9 |
| $8+$ | 137.7 | 269.1 | 241.2 | 154.9 | 222.3 | 232.6 | 217.9 | 180.7 | 217.0 | 142.6 | 163.3 | 169.2 | 229.6 |
| Total | 46.1 | 30.9 | 32.2 | 40.7 | 39.5 | 41.9 | 24.5 | 47.4 | 49.0 | 33.6 | 29.7 | 35.8 | 39.0 |
|  | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | ***** | *** |  |
| Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| W-rings/Numbers in millions |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 4,159.311 | 2,588.922 | 2,150.306 | 2,821.022 | 4,561.405 | 2,929.434 | 4,103.180 | 8,996.225 | 5,473.400 | 888.081 | 2,638.277 | 1,290.650 | 2,635.830 |
| 1 | 940.892 | 558.851 | 392.737 | 27.959 | 534.633 | 1,206.762 | 755.034 | 893.837 | 769.320 | 440.738 | 493.366 | 463.940 | 428.530 |
| 2 | 226.959 | 260.402 | 165.347 | 95.866 | 305.540 | 360.354 | 294.242 | 456.204 | 242.590 | 509.769 | 155.417 | 145.360 | 89.280 |
| 3 | 279.618 | 117.412 | 166.301 | 43.553 | 214.539 | 210.455 | 193.974 | 307.567 | 279.650 | 221.344 | 196.061 | 123.230 | 41.160 |
| 4 | 212.201 | 76.782 | 102.018 | 17.761 | 107.364 | 115.984 | 124.548 | 262.908 | 332.660 | 129.795 | 60.953 | 137.500 | 20.240 |
| 5 | 139.813 | 43.919 | 82.174 | 9.016 | 85.635 | 57.840 | 70.135 | 87.114 | 317.240 | 95.579 | 30.490 | 46.550 | 17.570 |
| 6 | 97.261 | 12.144 | 29.727 | 3.227 | 47.140 | 50.844 | 45.017 | 32.684 | 211.600 | 86.150 | 14.980 | 21.230 | 4.940 |
| 7 | 66.937 | 9.262 | 11.443 | 1.947 | 25.021 | 29.234 | 22.520 | 22.565 | 85.630 | 47.093 | 3.300 | 2.130 | 1.060 |
| $8+$ | 27.789 | 8.839 | 9.262 | 1.704 | 15.309 | 14.774 | 21.404 | 11.300 | 56.590 | 37.886 | 0.000 | 1.790 | 1.100 |
| Total | 6,150.781 | 3,676.532 | 3,109.314 | 3,265.055 | 5.896.586 | 4.975.682 | 5,630.054 | 11,070.405 | 7.768.680 | 2.456.435 | 3,592.844 | 2,232.380 | 3,239.710 |
| 3+group | 823.619 | 268.357 | 400.924 | 77.208 | 495.007 | 479.131 | 477.597 | 724.139 | 1,283.370 | 617.846 | 305.784 | 332.430 | 86.070 |
| W-rings/Biomass ('000 tonnnes) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 42.958 | 25.202 | 23.699 | 29.449 | 36.791 | 35.064 | 46.955 | 85.185 | 61.640 | 8.179 | 24.072 | 13.623 | 32.010 |
| 1 | 38.230 | 22.782 | 17.602 | 10.473 | 21.336 | 46.384 | 29.825 | 38.404 | 30.369 | 16.822 | 18.553 | 18.296 | 18.825 |
| 2 | 18.013 | $\underline{20.202}$ | 10.446 | 7.069 | 24.593 | 29.560 | 20.380 | 30.587 | 21.490 | 38.573 | 10.579 | 10.159 | 5.797 |
| 3 | 31.946 | 11.366 | 15.297 | 4.433 | 23.540 | 24.382 | 22.068 | 27.349 | 32.448 | 22.841 | 18.068 | 11.511 | 3.323 |
| 4 | 31.253 | 9.679 | 11.077 | 1.961 | 15.193 | 16.361 | 18.653 | 27.350 | 58.819 | 15.196 | 5.859 | 17.427 | 1.785 |
| 5 | 24.876 | 6.724 | 11.584 | 1.385 | 15.433 | 9.867 | 11.450 | 10.934 | 63.755 | 14.581 | 3.417 | 6.711 | 2.239 |
| 6 | 17.959 | 2.001 | 4.823 | 0.616 | 9.018 | 8.391 | 7.985 | 4.849 | 45.705 | 14.304 | 1.723 | 3.175 | 0.719 |
| 7 | 13.431 | 1.703 | 1.756 | 0.384 | 4.728 | 5.295 | 4.448 | 3.751 | 18.709 | 8.433 | 0.450 | 0.257 | 0.182 |
| $8+$ | 6.344 | 1.798 | 1.303 | 0.284 | 3.013 | 3.015 | 3.876 | 1.821 | 13.498 | 7.108 | 0.000 | 0.190 | 0.203 |
| Total | 225.010 | 101.456 | 97.588 | 56.055 | 153.646 | 178.320 | 165.640 | 230.231 | 346.433 | 146.035 | 82.722 | 81.349 | 65.083 |
| 3+group | 125.809 | 33.270 | 45.840 | 9.064 | 70.926 | 67.312 | 68.480 | 76.055 | 232.933 | 82.462 | 29.518 | 39.271 | 8.451 |
| W-rings/Mean weight (g) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 10.3 | 9.7 | 11.0 | 10.4 | 8.1 | 12.0 | 11.4 | 9.5 | 11.3 | 9.2 | 9.1 | 10.6 | 12.1 |
| 1 | 40.6 | 40.8 | 44.8 | 38.7 | 39.9 | 38.4 | 39.5 | 43.0 | 39.5 | 38.2 | 37.6 | 39.4 | 43.9 |
| 2 | 79.4 | 77.6 | 63.2 | 73.7 | 80.5 | 82.0 | 69.3 | 67.0 | 88.6 | 75.7 | 68.1 | 69.9 | 64.9 |
| 3 | 114.2 | 96.8 | 92.0 | 101.8 | 109.7 | 115.9 | 113.8 | 88.9 | 116.0 | 103.2 | 92.2 | 93.4 | 80.7 |
| 4 | 147.3 | 126.1 | 108.6 | 110.4 | 141.5 | 141.1 | 149.8 | 104.0 | 176.8 | 117.1 | 96.1 | 126.7 | 88.2 |
| 5 | 177.9 | 153.1 | 141.0 | 153.6 | 180.2 | 170.6 | 163.3 | 125.5 | 201.0 | 152.5 | 112.1 | 144.2 | 127.4 |
| 6 | 184.6 | 164.8 | 162.2 | 190.9 | 191.3 | 165.0 | 177.4 | 148.4 | 216.0 | 166.0 | 115.0 | 149.5 | 145.6 |
| 7 | 200.6 | 183.8 | 153.5 | 197.4 | 189.0 | 181.1 | 197.5 | 166.2 | 218.5 | 179.1 | 136.4 | 120.5 | 172.0 |
| $8+$ | 228.3 | 203.4 | 140.7 | 166.9 | 196.8 | 204.1 | 181.1 | 161.1 | 238.5 | 187.6 | - | 106.4 | 184.2 |
| Total | 36.6 | 27.6 | 31.4 | 17.2 | 26.1 | 35.8 | 29.4 | 20.8 | 44.6 | 59.5 | 23.0 | 36.4 | 20.1 |
| small revision in 2015 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| *incl. mean for Sub-division 23, which was not covered by RV SOLEA |  |  |  |  |  |  |  |  |  |  | (<0.5\%) |  |  |
| ${ }^{* *}$ incl. mean for Sub-division 21, which was not covered by RV SOLEA |  |  |  |  |  |  |  |  |  |  | small revision in 2018 |  |  |
| ```*** excl. Central Baltic Herring in SD 24 (SD 23) based on SF (Gröhsler et al. 2013) ***** excl. Central Baltic Herring in SD 22, SD 24 (SD 23) based on SF & excl. mature herring in SD 23 (stages>=6) ***** excl. Central Baltic Herring in SD 22, SD 24 (SD 23) based on SF``` |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 3.3.2 Western Baltic spring spawning herring. Acoustic surveys (HERAS) on the Western Baltic Spring Spawning Herring in the North Sea/Division 3.a in 1991-2018 (July).


Table 3.3.3 Western Baltic spring spawning herring. N20 Larval Abundance Index. Estimation of 0-Group herring reaching 20 mm in length in Greifswalder Bodden and adjacent waters (March/April to June).

| Year | $\begin{gathered} \mathrm{N} 2 \mathrm{O} \\ \text { (millions) } \end{gathered}$ |
| :---: | :---: |
| 1992 | 1,060 |
| 1993 | 3,044 |
| 1994 | 12,515 |
| 1995 | 7,930 |
| 1996 | 21,012 |
| 1997 | 4,872 |
| 1998 | 16,743 |
| 1999 | 20,364 |
| 2000 | 3,026 |
| 2001 | 4,845 |
| 2002 | 11,324 |
| 2003 | 5,507 |
| 2004 | 5,640 |
| 2005 | 3,887 |
| 2006 | 3,774 |
| 2007* | 1,829 |
| 2008* | 1,622 |
| 2009 | 6,464 |
| 2010 | 7,037 |
| 2011 | 4,444 |
| 2012 | 1,140 |
| 2013 | 3,021 |
| 2014 | 539 |
| 2015 | 2,478 |
| 2016 | 442 |
| 2017 | 1,247 |
| 2018 | 1563 |

[^8]Table 3.6.1.a WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet - Fleet A. Catch in number (CANUM, thousands).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 0 | 0 | 8161 | 9752 | 10223 | 5660 | 2466 | 605 | 778 |
| 2001 | 0 | 454 | 11344 | 10224 | 6123 | 7151 | 2664 | 1556 | 410 |
| 2002 | 0 | 0 | 7589 | 14825 | 10583 | 3349 | 2877 | 969 | 620 |
| 2003 | 0 | 0 | 30 | 3130 | 5992 | 3502 | 1167 | 1305 | 605 |
| 2004 | 0 | 0 | 15140 | 27898 | 3520 | 4110 | 1002 | 456 | 146 |
| 2005 | 0 | 0 | 6569 | 17434 | 12680 | 2573 | 3787 | 1084 | 714 |
| 2006 | 0 | 129 | 3514 | 8783 | 13962 | 22370 | 5102 | 5258 | 3055 |
| 2007 | 0 | 0 | 74 | 2627 | 1253 | 596 | 806 | 377 | 613 |
| 2008 | 0 | 0 | 70 | 87 | 167 | 77 | 81 | 182 | 35 |
| 2009 | 0 | 0 | 1017 | 2075 | 3375 | 1423 | 1733 | 4471 | 3144 |
| 2010 | 0 | 26 | 32 | 518 | 985 | 389 | 518 | 270 | 1018 |
| 2011 | 0 | 0 | 63 | 442 | 400 | 235 | 69 | 109 | 298 |
| 2012 | 0 | 0 | 16 | 214 | 359 | 0 | 1432 | 0 | 7395 |
| 2013 | 0 | 0 | 53 | 409 | 172 | 494 | 312 | 67 | 645 |
| 2014 | 0 | 34 | 2451 | 3369 | 5406 | 802 | 2116 | 1045 | 1573 |
| 2015 | 0 | 20 | 95 | 868 | 1404 | 3872 | 1837 | 1446 | 2170 |
| 2016 | 0 | 20 | 1209 | 4109 | 1033 | 1137 | 1182 | 689 | 1210 |
| 2017 | 0 | 2.858 | 46.79 | 2368 | 1013 | 245.2 | 90.16 | 108.3 | 136.3 |
| 2018 | 0 | 28.6 | 329.8 | 900.6 | 2277 | 4270 | 1744 | 860.9 | 623.1 |

Table 3.6.1.b WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet - Fleet C. Catch in number (CANUM, thousands).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 59181 | 209579 | 294752 | 99060 | 55666 | 20361 | 7311 | 978 | 772 |
| 2001 | 2924 | 22479 | 184831 | 97597 | 25224 | 12059 | 5979 | 1672 | 882 |
| 2002 | 1207 | 108742 | 133960 | 118066 | 40768 | 8532 | 4442 | 1459 | 1345 |
| 2003 | 4704 | 27998 | 155177 | 57513 | 54639 | 16425 | 4427 | 2786 | 1051 |
| 2004 | 6559 | 78442 | 56286 | 42645 | 9927 | 7987 | 2586 | 671 | 290 |
| 2005 | 5318 | 62322 | 175515 | 53573 | 30534 | 6613 | 7336 | 2142 | 692 |
| 2006 | 2105 | 41760 | 91008 | 86554 | 29334 | 26306 | 4849 | 4390 | 1833 |
| 2007 | 230 | 90083 | 79527 | 31939 | 26596 | 11189 | 7371 | 5701 | 1931 |
| 2008 | 824 | 92818 | 60484 | 34255 | 12424 | 14454 | 7281 | 4175 | 1121 |
| 2009 | 442 | 91310 | 119936 | 41373 | 20153 | 9000 | 5845 | 3043 | 1921 |
| 2010 | 230 | 41741 | 96890 | 42943 | 17084 | 7087 | 4177 | 2768 | 2739 |
| 2011 | 89 | 41858 | 28489 | 19924 | 12990 | 5756 | 2913 | 915 | 822 |
| 2012 | 0 | 15350 | 81497 | 20357 | 9152 | 7091 | 2774 | 2230 | 1166 |
| 2013 | 0 | 6260 | 40605 | 68642 | 10640 | 3858 | 1085 | 409 | 372 |
| 2014 | 49 | 23096 | 16886 | 18895 | 39169 | 6795 | 2439 | 1283 | 1329 |
| 2015 | 115 | 17357 | 47337 | 19590 | 12579 | 10401 | 3016 | 1232 | 1727 |
| 2016 | 0 | 13761 | 146136 | 38528 | 12298 | 10290 | 12066 | 2906 | 5340 |
| 2017 | 1427 | 47128 | 36117 | 40438 | 33155 | 10000 | 10792 | 7246 | 2762 |
| 2018 | 2.36 | 18967 | 176762 | 16634 | 12912 | 18031 | 5096 | 3041 | 2511 |

Table 3.6.1.c WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet - Fleet D. Catch in number (CANUM, thousands).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 58480 | 109337 | 13888 | 5033 | 555 | 156 | 87 | 18 | 10 |
| 2001 | 118759 | 13695 | 11926 | 3256 | 711 | 460 | 1197 | 938 | 1130 |
| 2002 | 68427 | 468952 | 26715 | 1707 | 1742 | 169 | 160 | 0 | 53 |
| 2003 | 47410 | 35021 | 27318 | 4810 | 3741 | 1543 | 665 | 263 | 158 |
| 2004 | 19111 | 130900 | 24598 | 23435 | 4794 | 4746 | 918 | 387 | 156 |
| 2005 | 90002 | 35287 | 21250 | 4344 | 3718 | 149 | 377 | 238 | 0 |
| 2006 | 1551 | 47777 | 17551 | 14152 | 3926 | 5720 | 652 | 428 | 234 |
| 2007 | 1395 | 13772 | 11277 | 2346 | 2960 | 997 | 1270 | 161 | 133 |
| 2008 | 4079 | 8946 | 10511 | 4583 | 888 | 598 | 366 | 141 | 148 |
| 2009 | 14358 | 58292 | 11338 | 2404 | 913 | 457 | 224 | 164 | 219 |
| 2010 | 8879 | 6826 | 8183 | 202 | 310 | 83 | 0 | 0 | 0 |
| 2011 | 6080 | 41200 | 1317 | 590 | 0 | 0 | 0 | 0 | 0 |
| 2012 | 1521 | 15193 | 12792 | 138 | 0 | 0 | 0 | 0 | 0 |
| 2013 | 0 | 5770 | 11071 | 2313 | 444 | 0 | 0 | 0 | 0 |
| 2014 | 25267 | 8397 | 3039 | 1979 | 0 | 0 | 0 | 0 | 0 |
| 2015 | 3195 | 40377 | 12506 | 526 | 121 | 313 | 0 | 0 | 0 |
| 2016 | 23879 | 13397 | 14390 | 391 | 0 | 674 | 0 | 0 | 0 |
| 2017 | 0 | 1294 | 6017 | 18.3 | 0 | 0 | 0 | 0 | 0 |
| 2018 | 285.3 | 1471 | 2047 | 85.05 | 0 | 0 | 0 | 0 | 0 |

Table 3.6.1.d WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet - Fleet F. Catch in number (CANUM, thousands).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 37749 | 616321 | 194300 | 86731 | 77777 | 52964 | 30056 | 12428 | 9291 |
| 2001 | 634631 | 498179 | 283245 | 147601 | 75897 | 47807 | 28743 | 13928 | 4188 |
| 2002 | 80637 | 81436 | 113576 | 186714 | 119192 | 45110 | 31053 | 11414 | 6310 |
| 2003 | 1374 | 63857 | 82330 | 95798 | 125060 | 82178 | 22858 | 13098 | 7006 |
| 2004 | 217885 | 248412 | 101789 | 70788 | 74972 | 74400 | 44450 | 13363 | 10422 |
| 2005 | 11586 | 207562 | 115890 | 102482 | 83461 | 51304 | 54195 | 27767 | 11214 |
| 2006 | 650 | 44762 | 72070 | 118995 | 101731 | 43005 | 31364 | 22110 | 12157 |
| 2007 | 9095 | 68189 | 93857 | 106993 | 96054 | 52215 | 20752 | 15017 | 12082 |
| 2008 | 4707 | 73668 | 68438 | 98131 | 75655 | 70738 | 37572 | 13260 | 18475 |
| 2009 | 5934 | 31481 | 110715 | 55478 | 45495 | 37211 | 31948 | 13230 | 7244 |
| 2010 | 3285 | 26490 | 31314 | 39307 | 28455 | 22420 | 13894 | 7958 | 7505 |
| 2011 | 5643 | 15458 | 16413 | 17831 | 35934 | 21639 | 19649 | 11212 | 8214 |
| 2012 | 479 | 46311 | 36497 | 43760 | 37810 | 28353 | 13964 | 9008 | 8440 |
| 2013 | 1029 | 60576 | 37098 | 43312 | 55919 | 28716 | 25322 | 11498 | 10987 |
| 2014 | 5840 | 35272 | 37735 | 42119 | 37499 | 19023 | 11196 | 6541 | 6186 |
| 2015 | 26670 | 46242 | 72781 | 38506 | 48439 | 29846 | 14860 | 7857 | 9120 |
| 2016 | 20012 | 22342 | 37247 | 93863 | 45681 | 30535 | 17423 | 10455 | 8256 |
| 2017 | 51.79 | 9435 | 32839 | 38541 | 78328 | 38496 | 26936 | 13463 | 10170 |
| 2018 | 367.8 | 48383 | 18459 | 34635 | 23065 | 51273 | 16259 | 8843 | 4507 |

Table 3.6.2.a WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet - Fleet A. Weight at age as $\mathbf{W}$-ringers in the catch (WECA, kg).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 0.0000 | 0.0000 | 0.1407 | 0.1652 | 0.1839 | 0.2070 | 0.2024 | 0.2176 | 0.2663 |
| 2001 | 0.0000 | 0.0790 | 0.1275 | 0.1514 | 0.1784 | 0.1884 | 0.1982 | 0.2208 | 0.2666 |
| 2002 | 0.0000 | 0.0000 | 0.1431 | 0.1542 | 0.1652 | 0.1864 | 0.1976 | 0.2075 | 0.2235 |
| 2003 | 0.0000 | 0.0000 | 0.1014 | 0.1356 | 0.1414 | 0.1632 | 0.1752 | 0.1846 | 0.1923 |
| 2004 | 0.0000 | 0.0000 | 0.1206 | 0.1328 | 0.1639 | 0.1659 | 0.1748 | 0.1843 | 0.2079 |
| 2005 | 0.0000 | 0.0000 | 0.1071 | 0.1539 | 0.1676 | 0.1793 | 0.1887 | 0.1864 | 0.2084 |
| 2006 | 0.0000 | 0.0247 | 0.1246 | 0.1488 | 0.1641 | 0.1752 | 0.2140 | 0.2243 | 0.2367 |
| 2007 | 0.0000 | 0.0000 | 0.1566 | 0.1482 | 0.1565 | 0.1850 | 0.1858 | 0.1993 | 0.2248 |
| 2008 | 0.0000 | 0.0000 | 0.1418 | 0.1647 | 0.1657 | 0.1680 | 0.1922 | 0.1994 | 0.2158 |
| 2009 | 0.0000 | 0.0000 | 0.1381 | 0.1701 | 0.2111 | 0.2110 | 0.2481 | 0.2484 | 0.2845 |
| 2010 | 0.0000 | 0.0678 | 0.1323 | 0.1573 | 0.2003 | 0.2056 | 0.2109 | 0.2190 | 0.2352 |
| 2011 | 0.0000 | 0.0000 | 0.1497 | 0.1670 | 0.1828 | 0.2078 | 0.2130 | 0.2106 | 0.2188 |
| 2012 | 0.0000 | 0.0000 | 0.1396 | 0.1846 | 0.2053 | 0.0000 | 0.2131 | 0.0000 | 0.2264 |
| 2013 | 0.0000 | 0.0000 | 0.1350 | 0.1542 | 0.2143 | 0.1956 | 0.2206 | 0.2433 | 0.2530 |
| 2014 | 0.0000 | 0.1036 | 0.1478 | 0.1595 | 0.1666 | 0.1957 | 0.1997 | 0.2116 | 0.2215 |
| 2015 | 0.0000 | 0.1147 | 0.1367 | 0.1436 | 0.1624 | 0.1809 | 0.2028 | 0.2040 | 0.2161 |
| 2016 | 0.0000 | 0.1218 | 0.1213 | 0.1537 | 0.1742 | 0.1819 | 0.2099 | 0.2198 | 0.2247 |
| 2017 | 0.0000 | 0.1013 | 0.1231 | 0.1460 | 0.1660 | 0.1801 | 0.2001 | 0.1973 | 0.2109 |
| 2018 | 0.0000 | 0.0964 | 0.1275 | 0.1626 | 0.1827 | 0.1974 | 0.2134 | 0.2236 | 0.2387 |

Table 3.6.2.b WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet - Fleet C. Weight at age as W-ringers in the catch (WECA, kg).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 0.0216 | 0.0402 | 0.0685 | 0.1072 | 0.1390 | 0.1600 | 0.1463 | 0.1767 | 0.1554 |
| 2001 | 0.0244 | 0.0644 | 0.0744 | 0.1049 | 0.1377 | 0.1623 | 0.1906 | 0.1682 | 0.1987 |
| 2002 | 0.0095 | 0.0453 | 0.0856 | 0.1129 | 0.1382 | 0.1633 | 0.1887 | 0.1921 | 0.2132 |
| 2003 | 0.0130 | 0.0554 | 0.0808 | 0.1136 | 0.1327 | 0.1407 | 0.1553 | 0.1652 | 0.1473 |
| 2004 | 0.0237 | 0.0569 | 0.0736 | 0.1133 | 0.1392 | 0.1546 | 0.1677 | 0.1870 | 0.1774 |
| 2005 | 0.0230 | 0.0667 | 0.0863 | 0.1121 | 0.1413 | 0.1565 | 0.1711 | 0.1748 | 0.1926 |
| 2006 | 0.0262 | 0.0560 | 0.0842 | 0.1103 | 0.1343 | 0.1744 | 0.1816 | 0.1922 | 0.1962 |
| 2007 | 0.0472 | 0.0708 | 0.0881 | 0.1142 | 0.1379 | 0.1587 | 0.1912 | 0.1775 | 0.2078 |
| 2008 | 0.0362 | 0.0740 | 0.0925 | 0.1149 | 0.1421 | 0.1712 | 0.1809 | 0.1999 | 0.1967 |
| 2009 | 0.0227 | 0.0740 | 0.0902 | 0.1153 | 0.1605 | 0.1772 | 0.2039 | 0.2015 | 0.2247 |
| 2010 | 0.0279 | 0.0662 | 0.0880 | 0.1280 | 0.1592 | 0.1942 | 0.2109 | 0.2117 | 0.2257 |
| 2011 | 0.0215 | 0.0509 | 0.0910 | 0.1208 | 0.1389 | 0.1687 | 0.1853 | 0.2170 | 0.2093 |
| 2012 | 0.0000 | 0.0662 | 0.0818 | 0.1340 | 0.1635 | 0.1820 | 0.1994 | 0.2220 | 0.2206 |
| 2013 | 0.0000 | 0.0937 | 0.0994 | 0.1324 | 0.1628 | 0.1949 | 0.2041 | 0.2487 | 0.2123 |
| 2014 | 0.0141 | 0.0633 | 0.1046 | 0.1411 | 0.1798 | 0.1996 | 0.2221 | 0.2361 | 0.2336 |
| 2015 | 0.0175 | 0.0409 | 0.0747 | 0.1145 | 0.1500 | 0.1706 | 0.1877 | 0.1924 | 0.2089 |
| 2016 | 0.0000 | 0.0563 | 0.0659 | 0.1236 | 0.1595 | 0.1807 | 0.1999 | 0.2112 | 0.2374 |
| 2017 | 0.0305 | 0.0449 | 0.0673 | 0.1113 | 0.1410 | 0.1624 | 0.1710 | 0.1827 | 0.1679 |
| 2018 | 0.0216 | 0.0570 | 0.0553 | 0.1068 | 0.1495 | 0.1755 | 0.1887 | 0.1868 | 0.1984 |

Table 3.6.2.c WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet - Fleet D. Weight at age as W-ringers in the catch (WECA, kg).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 0.0236 | 0.0161 | 0.0658 | 0.1304 | 0.1549 | 0.1669 | 0.1937 | 0.0804 | 0.1499 |
| 2001 | 0.0086 | 0.0287 | 0.0564 | 0.0940 | 0.1276 | 0.1440 | 0.1540 | 0.1655 | 0.1840 |
| 2002 | 0.0102 | 0.0146 | 0.0230 | 0.1363 | 0.1427 | 0.1700 | 0.1797 | 0.0000 | 0.1790 |
| 2003 | 0.0130 | 0.0229 | 0.0516 | 0.0951 | 0.1184 | 0.1102 | 0.1043 | 0.1469 | 0.1469 |
| 2004 | 0.0282 | 0.0350 | 0.0772 | 0.1053 | 0.1448 | 0.1548 | 0.1746 | 0.1800 | 0.1855 |
| 2005 | 0.0135 | 0.0340 | 0.0738 | 0.1093 | 0.1402 | 0.1490 | 0.1531 | 0.1727 | 0.0000 |
| 2006 | 0.0142 | 0.0245 | 0.0721 | 0.1123 | 0.1368 | 0.1824 | 0.1961 | 0.2195 | 0.2047 |
| 2007 | 0.0215 | 0.0316 | 0.0624 | 0.0997 | 0.1355 | 0.1502 | 0.1915 | 0.1682 | 0.2107 |
| 2008 | 0.0158 | 0.0465 | 0.0826 | 0.1102 | 0.1396 | 0.1717 | 0.1884 | 0.2042 | 0.1896 |
| 2009 | 0.0132 | 0.0176 | 0.0871 | 0.1296 | 0.1607 | 0.1728 | 0.2103 | 0.2068 | 0.2058 |
| 2010 | 0.0077 | 0.0166 | 0.0399 | 0.0940 | 0.0410 | 0.1110 | 0.0000 | 0.0000 | 0.0000 |
| 2011 | 0.0082 | 0.0162 | 0.0448 | 0.0711 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 2012 | 0.0093 | 0.0275 | 0.0398 | 0.0852 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 2013 | 0.0000 | 0.0224 | 0.0748 | 0.1114 | 0.1378 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 2014 | 0.0093 | 0.0216 | 0.0244 | 0.0643 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 2015 | 0.0159 | 0.0279 | 0.0415 | 0.0971 | 0.2840 | 0.1470 | 0.0000 | 0.0000 | 0.0000 |
| 2016 | 0.0071 | 0.0234 | 0.0375 | 0.0805 | 0.0000 | 0.0780 | 0.0000 | 0.0000 | 0.0000 |
| 2017 | 0.0000 | 0.0150 | 0.0250 | 0.0750 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 2018 | 0.0102 | 0.0385 | 0.0427 | 0.0480 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

Table 3.6.2.d WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet - Fleet F. Weight at age as W-ringers in the catch (WECA, kg).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 0.0165 | 0.0222 | 0.0428 | 0.0804 | 0.1235 | 0.1332 | 0.1434 | 0.1554 | 0.1514 |
| 2001 | 0.0129 | 0.0221 | 0.0467 | 0.0689 | 0.0933 | 0.1504 | 0.1445 | 0.1455 | 0.1522 |
| 2002 | 0.0108 | 0.0273 | 0.0578 | 0.0817 | 0.1088 | 0.1321 | 0.1866 | 0.1778 | 0.1577 |
| 2003 | 0.0224 | 0.0258 | 0.0464 | 0.0753 | 0.0952 | 0.1172 | 0.1259 | 0.1571 | 0.1626 |
| 2004 | 0.0037 | 0.0143 | 0.0474 | 0.0777 | 0.0964 | 0.1255 | 0.1504 | 0.1658 | 0.1510 |
| 2005 | 0.0136 | 0.0142 | 0.0483 | 0.0733 | 0.0893 | 0.1156 | 0.1436 | 0.1599 | 0.1702 |
| 2006 | 0.0212 | 0.0340 | 0.0567 | 0.0840 | 0.1022 | 0.1253 | 0.1439 | 0.1758 | 0.1700 |
| 2007 | 0.0119 | 0.0278 | 0.0573 | 0.0749 | 0.1063 | 0.1213 | 0.1407 | 0.1627 | 0.1855 |
| 2008 | 0.0163 | 0.0369 | 0.0649 | 0.0877 | 0.1103 | 0.1332 | 0.1406 | 0.1583 | 0.1748 |
| 2009 | 0.0105 | 0.0283 | 0.0480 | 0.0905 | 0.1238 | 0.1452 | 0.1604 | 0.1712 | 0.1818 |
| 2010 | 0.0122 | 0.0222 | 0.0522 | 0.0871 | 0.1198 | 0.1548 | 0.1706 | 0.1919 | 0.1941 |
| 2011 | 0.0124 | 0.0230 | 0.0551 | 0.0781 | 0.1132 | 0.1366 | 0.1476 | 0.1612 | 0.1680 |
| 2012 | 0.0181 | 0.0159 | 0.0550 | 0.0954 | 0.1151 | 0.1503 | 0.1676 | 0.1774 | 0.1912 |
| 2013 | 0.0137 | 0.0178 | 0.0541 | 0.0868 | 0.1294 | 0.1369 | 0.1453 | 0.1591 | 0.1798 |
| 2014 | 0.0165 | 0.0300 | 0.0590 | 0.0823 | 0.1221 | 0.1584 | 0.1560 | 0.1630 | 0.1755 |
| 2015 | 0.0071 | 0.0159 | 0.0504 | 0.0793 | 0.1076 | 0.1447 | 0.1706 | 0.1356 | 0.1494 |
| 2016 | 0.0103 | 0.0341 | 0.0517 | 0.0846 | 0.0950 | 0.1295 | 0.1604 | 0.1681 | 0.1692 |
| 2017 | 0.0220 | 0.0342 | 0.0577 | 0.0828 | 0.1179 | 0.1235 | 0.1376 | 0.1475 | 0.1398 |
| 2018 | 0.0159 | 0.0145 | 0.0518 | 0.0872 | 0.1084 | 0.1427 | 0.1434 | 0.1577 | 0.1701 |

Table 3.6.3 WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Weight at age as W-ringers in the stock (WEST, kg).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.0001 | 0.0308 | 0.0528 | 0.0787 | 0.1041 | 0.1245 | 0.1449 | 0.1594 | 0.1640 |
| 1992 | 0.0001 | 0.0203 | 0.0451 | 0.0818 | 0.1075 | 0.1313 | 0.1593 | 0.1710 | 0.1869 |
| 1993 | 0.0001 | 0.0156 | 0.0402 | 0.0967 | 0.1079 | 0.1409 | 0.1672 | 0.1827 | 0.1891 |
| 1994 | 0.0001 | 0.0186 | 0.0529 | 0.0836 | 0.1077 | 0.1392 | 0.1566 | 0.1768 | 0.2028 |
| 1995 | 0.0001 | 0.0130 | 0.0459 | 0.0708 | 0.1327 | 0.1674 | 0.1892 | 0.2097 | 0.2338 |
| 1996 | 0.0001 | 0.0182 | 0.0546 | 0.0905 | 0.1170 | 0.1197 | 0.1538 | 0.1467 | 0.1280 |
| 1997 | 0.0001 | 0.0131 | 0.0515 | 0.1063 | 0.1333 | 0.1662 | 0.1943 | 0.2090 | 0.2264 |
| 1998 | 0.0001 | 0.0221 | 0.0558 | 0.0829 | 0.1128 | 0.1338 | 0.1678 | 0.1683 | 0.1843 |
| 1999 | 0.0001 | 0.0211 | 0.0567 | 0.0870 | 0.1081 | 0.1480 | 0.1601 | 0.1439 | 0.1504 |
| 2000 | 0.0001 | 0.0140 | 0.0431 | 0.0837 | 0.1250 | 0.1436 | 0.1629 | 0.1650 | 0.1831 |
| 2001 | 0.0001 | 0.0169 | 0.0509 | 0.0783 | 0.1159 | 0.1690 | 0.1763 | 0.1681 | 0.1805 |
| 2002 | 0.0001 | 0.0164 | 0.0637 | 0.0905 | 0.1239 | 0.1736 | 0.1983 | 0.1980 | 0.2036 |
| 2003 | 0.0001 | 0.0144 | 0.0445 | 0.0793 | 0.1051 | 0.1268 | 0.1506 | 0.1729 | 0.1847 |
| 2004 | 0.0001 | 0.0131 | 0.0456 | 0.0811 | 0.1092 | 0.1440 | 0.1628 | 0.1932 | 0.2076 |
| 2005 | 0.0001 | 0.0126 | 0.0514 | 0.0800 | 0.1066 | 0.1322 | 0.1573 | 0.1677 | 0.1820 |
| 2006 | 0.0001 | 0.0185 | 0.0621 | 0.0953 | 0.1174 | 0.1659 | 0.1710 | 0.1858 | 0.1871 |
| 2007 | 0.0001 | 0.0150 | 0.0550 | 0.0800 | 0.1140 | 0.1430 | 0.1710 | 0.1750 | 0.1880 |
| 2008 | 0.0001 | 0.0180 | 0.0680 | 0.0860 | 0.1100 | 0.1390 | 0.1430 | 0.1410 | 0.1580 |
| 2009 | 0.0001 | 0.0230 | 0.0520 | 0.0900 | 0.1300 | 0.1560 | 0.1740 | 0.1850 | 0.1990 |
| 2010 | 0.0001 | 0.0140 | 0.0626 | 0.0974 | 0.1283 | 0.1618 | 0.1813 | 0.2023 | 0.2045 |
| 2011 | 0.0001 | 0.0090 | 0.0580 | 0.0950 | 0.1260 | 0.1560 | 0.1730 | 0.1850 | 0.1920 |
| 2012 | 0.0001 | 0.0120 | 0.0500 | 0.0920 | 0.1140 | 0.1580 | 0.1780 | 0.1910 | 0.2010 |
| 2013 | 0.0001 | 0.0140 | 0.0560 | 0.0950 | 0.1290 | 0.1430 | 0.1610 | 0.1790 | 0.1990 |
| 2014 | 0.0001 | 0.0160 | 0.0520 | 0.0810 | 0.1300 | 0.1650 | 0.1740 | 0.1900 | 0.2050 |
| 2015 | 0.0001 | 0.0150 | 0.0490 | 0.0880 | 0.1160 | 0.1570 | 0.1800 | 0.1690 | 0.1940 |
| 2016 | 0.0001 | 0.0138 | 0.0415 | 0.0811 | 0.1057 | 0.1366 | 0.1735 | 0.1824 | 0.1903 |
| 2017 | 0.0001 | 0.0177 | 0.0479 | 0.0815 | 0.1181 | 0.1324 | 0.1558 | 0.1731 | 0.1751 |
| 2018 | 0.0001 | 0.0125 | 0.0491 | 0.0828 | 0.1091 | 0.1432 | 0.1544 | 0.1696 | 0.1853 |

Table 3.6.4 WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Natural mortality (NATMOR).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 1992 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 1993 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 1994 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 1995 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 1996 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 1997 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 1998 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 1999 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2000 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2001 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2002 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2003 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2004 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2005 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2006 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2007 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2008 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2009 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2010 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2011 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2012 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2013 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2014 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2015 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2016 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2017 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| 2018 | 0.3 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |

Table 3.6.5 WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Proportion mature (MATPROP).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 1992 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 1993 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 1994 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 1995 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 1996 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 1997 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 1998 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 1999 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2000 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2001 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2002 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2003 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2004 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2005 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2006 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2007 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2008 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2009 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2010 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2011 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2012 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2013 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2014 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2015 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2016 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2017 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |
| 2018 | 0 | 0 | 0.2 | 0.75 | 0.9 | 1 | 1 | 1 | 1 |

Table 3.6.6 WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Fraction of harvest before spawning (FPROP).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1992 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1993 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1994 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1995 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1996 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1997 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1998 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 1999 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2000 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2001 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2002 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2003 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2004 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2005 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2006 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2007 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2008 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2009 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2010 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2011 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2012 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2013 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2014 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2015 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2016 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2017 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 2018 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |

Table 3.6.7 WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Fraction of natural mortality before spawning (MPROP).

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 1992 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 1993 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 1994 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 1995 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 1996 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 1997 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 1998 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 1999 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2000 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2001 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2002 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2003 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2004 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2005 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2006 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2007 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2008 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2009 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2010 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2011 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2012 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2013 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2014 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2015 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2016 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2017 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 2018 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |

Table 3.6.8.a WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Survey indices: HERAS (number).

|  | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| 1991 | 1927000 | 866000 | 350000 | 88000 |
| 1992 | 1799000 | 1593000 | 556000 | 197000 |
| 1993 | 1274000 | 598000 | 434000 | 154000 |
| 1994 | 935000 | 501000 | 239000 | 186000 |
| 1995 | 1022000 | 1270000 | 255000 | 174000 |
| 1996 | 247000 | 141000 | 119000 | 37000 |
| 1997 | 787000 | 166000 | 67000 | 69000 |
| 1998 | 901000 | 282000 | 111000 | 51000 |
| 1999 | NA | NA | NA | NA |
| 2000 | 673600 | 363900 | 185700 | 55600 |
| 2001 | 452300 | 153100 | 96400 | 37600 |
| 2002 | 1392800 | 524300 | 87500 | 39500 |
| 2003 | 394600 | 323400 | 103400 | 25200 |
| 2004 | 726000 | 306900 | 183700 | 72100 |
| 2005 | 463500 | 201300 | 102500 | 83600 |
| 2006 | 1780400 | 490000 | 180400 | 27000 |
| 2007 | 933000 | 499000 | 154000 | 34000 |
| 2008 | 843000 | 333000 | 274000 | 176000 |
| 2009 | 205000 | 161000 | 82000 | 86000 |
| 2010 | 254000 | 115000 | 65000 | 24000 |
| 2011 | 259000 | 163000 | 70000 | 53000 |
| 2012 | 236000 | 87000 | 76000 | 33000 |
| 2013 | 525000 | 53000 | 30000 | 12000 |
| 2014 | 176000 | 248000 | 28000 | 37000 |
| 2015 | 446000 | 224000 | 171000 | 82000 |
| 2016 | 381000 | 99000 | 40000 | 40000 |
| 2017 | 661000 | 401000 | 94000 | 53000 |
| 2018 | 271000 | 175000 | 169000 | 50000 |

Table 3.6.8.b WESTERN BALTIC SPRING SPAWNING HERRING, continued. Multi fleet. Survey indices: GerAS (number in thousands).

|  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1994 | 415730 | 883810 | 559720 | 443730 |
| 1995 | 1675340 | 328610 | 357960 | 353850 |
| 1996 | 1439460 | 590010 | 434090 | 295170 |
| 1997 | 1955400 | 738180 | 394530 | 162430 |
| 1998 | 801350 | 678530 | 394070 | 236830 |
| 1999 | 1338710 | 287240 | 232510 | 155950 |
| 2000 | 1429880 | 453980 | 328960 | 201590 |
| 2001 | NA | NA | NA | NA |
| 2002 | 837549 | 421393 | 575356 | 341119 |
| 2003 | 1238480 | 222530 | 217270 | 260350 |
| 2004 | 968860 | 592360 | 346230 | 163150 |
| 2005 | 750199 | 590756 | 295659 | 142778 |
| 2006 | 940892 | 226959 | 279618 | 212201 |
| 2007 | 558851 | 260402 | 117412 | 76782 |
| 2008 | 392737 | 165347 | 166301 | 102018 |
| 2009 | 270959 | 95866 | 43553 | 17761 |
| 2010 | 534633 | 305540 | 214539 | 107364 |
| 2011 | 1206762 | 360354 | 210455 | 115984 |
| 2012 | 755034 | 294242 | 193974 | 124548 |
| 2013 | 893837 | 456204 | 307567 | 262908 |
| 2014 | 769320 | 242590 | 279650 | 332660 |
| 2015 | 440738 | 509769 | 221344 | 129795 |
| 2016 | 493366 | 155417 | 196061 | 60953 |
| 2017 | 463940 | 145360 | 123230 | 137500 |
| 2018 | 428530 | 89280 | 41160 | 20240 |

Table 3.6.8.c WESTERN BALTIC SPRING SPAWNING HERRING, continued. Multi fleet .Survey indices: N20 (number in millions).

|  | 0 |
| :---: | :---: |
| 1992 | 1060 |
| 1993 | 3044 |
| 1994 | 12515 |
| 1995 | 7930 |
| 1996 | 21012 |
| 1997 | 4872 |
| 1998 | 16743 |
| 1999 | 20364 |
| 2000 | 3026 |
| 2001 | 4845 |
| 2002 | 11324 |
| 2003 | 5507 |
| 2004 | 5640 |
| 2005 | 3887 |
| 2006 | 3774 |
| 2007 | 1829 |
| 2008 | 1622 |
| 2009 | 6464 |
| 2010 | 7037 |
| 2011 | 4444 |
| 2012 | 1140 |
| 2013 | 3021 |
| 2014 | 539 |
| 2015 | 2478 |
| 2016 | 442 |
| 2017 | 1247 |
| 2018 | 1563 |

Table 3.6.8.d WESTERN BALTIC SPRING SPAWNING HERRING, continued. Multi fleet. Survey indices: IBTS+BITS-Q1 (number per hour).

|  |  | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 2002 | 1685921 | 66568 | 15361 |
| 2003 | 677316 | 137968 | 4606 |
| 2004 | 397528 | 79234 | 16531 |
| 2005 | 281731 | 135149 | 8461 |
| 2006 | 171192 | 34974 | 8390 |
| 2007 | 259420 | 40925 | 4085 |
| 2008 | 226275 | 38457 | 4944 |
| 2009 | 760622 | 45336 | 1568 |
| 2010 | 330962 | 87048 | 12069 |
| 2011 | 217289 | 78029 | 15795 |
| 2012 | 419748 | 91357 | 4881 |
| 2013 | 206366 | 87070 | 17144 |
| 2014 | 179149 | 20326 | 4118 |
| 2015 | 364206 | 74560 | 2527 |
| 2016 | 246559 | 116596 | 7753 |
| 2017 | 570307 | 80518 | 13972 |
| 2018 | 128716 | 72751 | 3773 |

Table 3.6.8.e WESTERN BALTIC SPRING SPAWNING HERRING, continued. Multi fleet. Survey indices: IBTS+BITS-Q3.4 (number per hour).

|  | 2 |  |
| :---: | :---: | :---: |
| 2002 | 3994 | 1727 |
| 2003 | 7980 | 1839 |
| 2004 | 4164 | 1592 |
| 2005 | 4376 | 790 |
| 2006 | 3412 | 1557 |
| 2007 | 4432 | 805.2 |
| 2008 | 2900 | 1520 |
| 2009 | 3984 | 726.1 |
| 2010 | 4688 | 1430 |
| 2011 | 3458 | 845.1 |
| 2012 | 7288 | 1065 |
| 2013 | 6334 | 1842 |
| 2014 | 1540 | 1585 |
| 2015 | 12370 | 1788 |
| 2016 | 9957 | 2785 |
| 2017 | 6436 | 1973 |
| 2018 | 7455 | 1198 |

Table 3.6.9 WESTERN BALTIC SPRING SPAWNING HERRING. SAM software version.
Multi fleet:
Model version: [ $0.5 .4,0.5 .4,0.5 .4]$
Model SHA: [ e2a30d42316c , e2a30d42316c , e2a30d42316c]

## Table 3.6.10 WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. SAM configuration settings.

\# Configuration saved: Tue Feb 13 12:34:28 2018
\# Where a matrix is specified rows corresponds to fleets and columns to ages.
\# Same number indicates same parameter used
\# Numbers (integers) starts from zero and must be consecutive

## \$minAge

\# The minimium age class in the assessment
0
\$maxAge
\# The maximum age class in the assessment
8
\$maxAgePlusGroup
\# Is last age group considered a plus group (1 yes, or 0 no).
1
\$keyLogFsta
\# Coupling of the fishing mortality states (nomally only first row is used).
$\begin{array}{lllllllll}-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 6\end{array}$
$\begin{array}{lllllllll}7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 14\end{array}$
$\begin{array}{llllllll}15 & 16 & 17 & 18 & 19 & 20 & 21 & 22\end{array} 22$
232425262728293030
-1
-1
-1
-1
-1

\$corFlag
\# Correlation of fishing mortality across ages ( 0 independent, 1 compound symmetry, or $2 \mathrm{AR}(1)$
0222
\$keyLogFpar
\# Coupling of the survey catchability parameters (nomally first row is not used, as that is covered by fishing mortality).

| -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -1 | -1 |  |  |  |  |
| -1 | -1 | -1 | -1 | -1 | -1 | -1 |
|  | -1 | -1 |  |  |  |  |
| -1 | -1 | -1 | -1 | -1 | -1 | -1 |
|  | -1 | -1 |  |  |  |  |
| -1 | -1 | -1 | -1 | -1 | -1 | -1 |
|  | -1 | -1 |  |  |  |  |
| -1 | -1 | -1 | 0 | 1 | 2 | 3 |
|  | -1 | -1 |  |  |  |  |
| -1 | 4 | 5 | 6 | 7 | -1 | -1 |
|  | -1 | -1 |  |  |  |  |
| 8 | -1 | -1 | -1 | -1 | -1 | -1 |
|  | -1 | -1 |  |  |  |  |
| -1 | 9 | 10 | 11 | -1 | -1 | -1 |
|  | -1 | -1 |  |  |  |  |
| -1 | -1 | 12 | 13 | -1 | -1 | -1 |
|  | -1 | -1 |  |  |  |  |
| -1 | -1 | -1 | -1 | -1 | -1 | -1 |
|  | -1 | -1 |  |  |  |  |

## continued

Table 3.6.10- WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. SAM configuration settings.
\$keyQpow
\# Density dependent catchability power parameters (if any).
-1 -1 -1 $-1 \begin{array}{lllll}1 & -1 & -1 & -1 & -1\end{array}$
-1
-1
-1
-1
-1
-1
-1
-1
-1 $-1 \begin{array}{lllllll}1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
\$keyVarF
\# Coupling of process variance parameters for $\log (\mathrm{F})$-process (nomally only first row is used)
$\begin{array}{lllllllll}-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
222222222
$\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}$
-1
-1 $-1 \begin{array}{lllllll}1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}$
-1
-1
-1
-1
\$keyVarLogN
\# Coupling of process variance parameters for $\log (\mathrm{N})$-process
011111111
\$keyVarObs
\# Coupling of the variance parameters for the observations.

| -1 | 0 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 |  |  |  |
| 2 | 3 | 4 | 4 | 4 | 4 |
| 4 | 4 | 4 |  |  |  |
| 5 | 6 | 6 | 6 | 6 | 6 |
| 6 | 6 | 6 |  |  |  |
| 7 | 8 | 8 | 8 | 8 | 8 |
| 8 | 8 | 8 |  |  |  |
| -1 | -1 | -1 | 9 | 9 | 9 |
| 9 | -1 | -1 |  |  |  |
| -1 | 10 | 10 | 10 | 10 | -1 |
| -1 | -1 | -1 |  |  |  |
| 11 | -1 | -1 | -1 | -1 | -1 |
| -1 | -1 | -1 |  |  |  |
| -1 | 12 | 12 | 12 | -1 | -1 |
| -1 | -1 | -1 |  |  |  |
| -1 | -1 | 13 | 13 | -1 | -1 |
| -1 | -1 | -1 |  |  |  |
| -1 | -1 | -1 | -1 | -1 | -1 |
| -1 | -1 | -1 |  |  |  |

\$obsCorStruct
\# Covariance structure for each fleet ("ID" independent, "AR" AR(1), or "US" for unstructured). I Possible values are: "ID" "AR" "US"
"ID" "AR" "ID" "AR" "AR" "AR" "ID" "AR" "US" "NA"

## continued

Table 3.6.10 WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. SAM configuration settings.
\$keyCorObs
\# Coupling of correlation parameters can only be specified if the $\operatorname{AR}(1)$ structure is chosen above.
\# NA's indicate where correlation parameters can be specified ( -1 where they cannot).
\#0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8
NA NA NA NA NA NA NA NA
$\begin{array}{llllllll}3 & 3 & 3 & 3 & 4 & 4 & 4 & 4\end{array}$
NA NA NA NA NA NA NA NA
$\begin{array}{llllllll}3 & 3 & 3 & 3 & 4 & 4 & 4 & 4\end{array}$
-1 -1 -1 $00018 c c \mid c$
$\begin{array}{llllllll}-1 & 2 & 1 & 0 & -1 & -1 & -1 & -1\end{array}$
-1
-1 $2 \begin{array}{llllll}1 & -1 & -1 & -1 & -1 & -1\end{array}$
-1 -1 NA -1 -1 -1 -1 -1
$\begin{array}{ccccccc}-1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}-1$
\$stockRecruitmentModelCode
\# Stock recruitment code ( 0 for plain random walk, 1 for Ricker, and 2 for Beverton-Holt). 0
\$noScaledYears
\# Number of years where catch scaling is applied.
0
\$keyScaledYears
\# A vector of the years where catch scaling is applied.
\$keyParScaledYA
\# A matrix specifying the couplings of scale parameters (nrow = no scaled years, ncols = no ages).
\$fbarRange
\# lowest and higest age included in Fbar
36
\$keyBiomassTreat
\# To be defined only if a biomass survey is used ( 0 SSB index, 1 catch index, and 2 FSB index).
-1 -1-1-1-1-1-1-1-1-1
\$obsLikelihoodFlag
\# Option for observational likelihood I Possible values are: "LN" "ALN"
"LN" "LN" "LN" "LN" "LN" "LN" "LN" "LN" "LN" "LN"
\$fixVarToWeight
\# If weight attribute is supplied for observations this option sets the treatment ( 0 relative weight, 1 fix variance to weight).
0

Table 3.6.11 WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Stock summary - Estimated recruitment (1000), spawning stock biomass (SSB) (tons), average fishing mortality and total stock biomass (TSB) (tons).

| Year | $\mathbf{R}_{\text {(age 0) }}$ | Low | High | SSB | Low | High | $\mathrm{F}_{\text {bar }(3-6)}$ | Low | High | TSB | Low | High |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 4994620 | 3840771 | 6495110 | 297743 | 243137 | 364614 | 0.490 | 0.390 | 0.617 | 593376 | 501032 | 702739 |
| 1992 | 3542228 | 2823683 | 4443621 | 292363 | 243576 | 350921 | 0.523 | 0.438 | 0.624 | 506385 | 433303 | 591795 |
| 1993 | 3004215 | 2344313 | 3849874 | 274789 | 230037 | 328247 | 0.560 | 0.477 | 0.656 | 438432 | 374855 | 512793 |
| 1994 | 4456350 | 3472205 | 5719437 | 221515 | 186391 | 263259 | 0.592 | 0.507 | 0.692 | 365959 | 314514 | 425820 |
| 1995 | 4132201 | 3270593 | 5220793 | 190874 | 160150 | 227491 | 0.614 | 0.526 | 0.717 | 310882 | 267681 | 361056 |
| 1996 | 4186672 | 3325467 | 5270907 | 131122 | 110988 | 154908 | 0.626 | 0.534 | 0.733 | 274398 | 237783 | 316652 |
| 1997 | 3474711 | 2685029 | 4496643 | 148064 | 125219 | 175078 | 0.614 | 0.526 | 0.718 | 280206 | 242093 | 324320 |
| 1998 | 4623046 | 3659476 | 5840333 | 120878 | 102496 | 142556 | 0.602 | 0.517 | 0.702 | 266555 | 231021 | 307554 |
| 1999 | 4896152 | 3935234 | 6091709 | 121711 | 103214 | 143523 | 0.576 | 0.493 | 0.674 | 272034 | 236687 | 312661 |
| 2000 | 2921274 | 2324862 | 3670689 | 122677 | 104350 | 144224 | 0.580 | 0.498 | 0.676 | 256410 | 223269 | 294470 |
| 2001 | 2822649 | 2298761 | 3465930 | 136818 | 116982 | 160017 | 0.568 | 0.486 | 0.664 | 277696 | 241921 | 318763 |
| 2002 | 2694436 | 2183779 | 3324505 | 164949 | 141056 | 192890 | 0.533 | 0.453 | 0.625 | 294439 | 256279 | 338282 |
| 2003 | 2894969 | 2349207 | 3567520 | 129138 | 110356 | 151118 | 0.506 | 0.428 | 0.600 | 222932 | 194373 | 255686 |
| 2004 | 1976097 | 1585086 | 2463565 | 129940 | 111175 | 151873 | 0.499 | 0.425 | 0.588 | 221749 | 193512 | 254106 |
| 2005 | 1747738 | 1426297 | 2141622 | 119352 | 102382 | 139135 | 0.509 | 0.437 | 0.593 | 208597 | 181824 | 239311 |
| 2006 | 1352125 | 1098553 | 1664228 | 132111 | 113193 | 154191 | 0.520 | 0.447 | 0.605 | 223781 | 194888 | 256959 |
| 2007 | 1446726 | 1180408 | 1773130 | 104839 | 89580 | 122697 | 0.531 | 0.456 | 0.619 | 171371 | 148965 | 197146 |
| 2008 | 1189959 | 967196 | 1464028 | 86646 | 74402 | 100905 | 0.531 | 0.449 | 0.628 | 152469 | 133355 | 174324 |
| 2009 | 1155814 | 933572 | 1430963 | 80833 | 69388 | 94166 | 0.505 | 0.427 | 0.597 | 141308 | 123827 | 161258 |
| 2010 | 1593242 | 1272694 | 1994526 | 75973 | 65286 | 88408 | 0.437 | 0.368 | 0.519 | 126606 | 110627 | 144893 |
| 2011 | 1403676 | 1146518 | 1718514 | 69299 | 59508 | 80700 | 0.368 | 0.301 | 0.450 | 115018 | 100362 | 131816 |
| 2012 | 1152037 | 916988 | 1447335 | 70821 | 60753 | 82558 | 0.361 | 0.302 | 0.432 | 124242 | 108255 | 142590 |
| 2013 | 1743986 | 1298427 | 2342439 | 83044 | 70988 | 97148 | 0.354 | 0.295 | 0.426 | 140170 | 121422 | 161812 |
| 2014 | 1247045 | 977042 | 1591663 | 89459 | 75831 | 105538 | 0.345 | 0.284 | 0.419 | 148422 | 128372 | 171603 |
| 2015 | 1014505 | 778367 | 1322280 | 90109 | 75905 | 106972 | 0.367 | 0.298 | 0.451 | 150846 | 129126 | 176219 |
| 2016 | 1054035 | 769034 | 1444655 | 88443 | 73246 | 106793 | 0.402 | 0.315 | 0.513 | 135468 | 113683 | 161426 |
| 2017 | 1057849 | 702464 | 1593028 | 83895 | 66603 | 105676 | 0.416 | 0.311 | 0.557 | 130734 | 105897 | 161398 |
| 2018 | 954391 | 512215 | 1778279 | 74132 | 55092 | 99751 | 0.416 | 0.297 | 0.584 | 114957 | 88016 | 150145 |

Table 3.6.12.a WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Estimated fishing mortality - Sum all fleets.

| Year Age | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.027 | 0.212 | 0.344 | 0.394 | 0.459 | 0.515 | 0.594 | 0.667 | 0.667 |
| 1992 | 0.026 | 0.211 | 0.360 | 0.416 | 0.487 | 0.550 | 0.638 | 0.721 | 0.721 |
| 1993 | 0.033 | 0.242 | 0.387 | 0.444 | 0.521 | 0.588 | 0.686 | 0.775 | 0.775 |
| 1994 | 0.039 | 0.269 | 0.415 | 0.471 | 0.551 | 0.621 | 0.726 | 0.820 | 0.820 |
| 1995 | 0.063 | 0.352 | 0.451 | 0.494 | 0.571 | 0.641 | 0.750 | 0.847 | 0.847 |
| 1996 | 0.048 | 0.299 | 0.434 | 0.492 | 0.579 | 0.658 | 0.774 | 0.880 | 0.880 |
| 1997 | 0.050 | 0.295 | 0.419 | 0.478 | 0.566 | 0.646 | 0.767 | 0.883 | 0.883 |
| 1998 | 0.054 | 0.304 | 0.420 | 0.471 | 0.556 | 0.633 | 0.750 | 0.873 | 0.873 |
| 1999 | 0.036 | 0.244 | 0.395 | 0.451 | 0.532 | 0.606 | 0.717 | 0.839 | 0.839 |
| 2000 | 0.028 | 0.221 | 0.388 | 0.449 | 0.535 | 0.610 | 0.725 | 0.851 | 0.851 |
| 2001 | 0.029 | 0.219 | 0.369 | 0.431 | 0.522 | 0.599 | 0.720 | 0.844 | 0.844 |
| 2002 | 0.028 | 0.211 | 0.353 | 0.405 | 0.490 | 0.562 | 0.673 | 0.793 | 0.793 |
| 2003 | 0.025 | 0.200 | 0.331 | 0.381 | 0.465 | 0.535 | 0.645 | 0.762 | 0.762 |
| 2004 | 0.025 | 0.199 | 0.315 | 0.370 | 0.459 | 0.528 | 0.641 | 0.757 | 0.757 |
| 2005 | 0.017 | 0.176 | 0.320 | 0.379 | 0.471 | 0.538 | 0.649 | 0.766 | 0.766 |
| 2006 | 0.017 | 0.186 | 0.356 | 0.403 | 0.483 | 0.545 | 0.648 | 0.756 | 0.756 |
| 2007 | 0.013 | 0.171 | 0.357 | 0.410 | 0.496 | 0.558 | 0.660 | 0.763 | 0.763 |
| 2008 | 0.013 | 0.171 | 0.364 | 0.411 | 0.496 | 0.558 | 0.657 | 0.752 | 0.752 |
| 2009 | 0.014 | 0.187 | 0.380 | 0.401 | 0.472 | 0.528 | 0.619 | 0.704 | 0.704 |
| 2010 | 0.008 | 0.135 | 0.309 | 0.342 | 0.409 | 0.457 | 0.540 | 0.613 | 0.613 |
| 2011 | 0.006 | 0.104 | 0.237 | 0.276 | 0.344 | 0.389 | 0.465 | 0.530 | 0.530 |
| 2012 | 0.006 | 0.098 | 0.218 | 0.262 | 0.336 | 0.385 | 0.461 | 0.522 | 0.522 |
| 2013 | 0.006 | 0.097 | 0.211 | 0.253 | 0.330 | 0.380 | 0.455 | 0.514 | 0.514 |
| 2014 | 0.006 | 0.094 | 0.210 | 0.249 | 0.321 | 0.370 | 0.439 | 0.495 | 0.495 |
| 2015 | 0.007 | 0.113 | 0.245 | 0.270 | 0.342 | 0.393 | 0.462 | 0.521 | 0.521 |
| 2016 | 0.006 | 0.117 | 0.284 | 0.310 | 0.377 | 0.428 | 0.494 | 0.554 | 0.554 |
| 2017 | 0.005 | 0.110 | 0.292 | 0.328 | 0.390 | 0.441 | 0.505 | 0.562 | 0.562 |
| 2018 | 0.005 | 0.111 | 0.295 | 0.330 | 0.391 | 0.442 | 0.503 | 0.557 | 0.557 |

Table 3.6.12.b WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Estimated fishing mortality - Fleet A.

| Year Age | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.000 | 0.000 | 0.002 | 0.012 | 0.015 | 0.017 | 0.021 | 0.026 | 0.026 |
| 1992 | 0.000 | 0.000 | 0.002 | 0.012 | 0.015 | 0.017 | 0.021 | 0.027 | 0.027 |
| 1993 | 0.000 | 0.000 | 0.002 | 0.012 | 0.015 | 0.017 | 0.022 | 0.028 | 0.028 |
| 1994 | 0.000 | 0.000 | 0.002 | 0.012 | 0.015 | 0.017 | 0.022 | 0.029 | 0.029 |
| 1995 | 0.000 | 0.000 | 0.002 | 0.012 | 0.015 | 0.017 | 0.022 | 0.030 | 0.030 |
| 1996 | 0.000 | 0.000 | 0.002 | 0.012 | 0.015 | 0.017 | 0.023 | 0.031 | 0.031 |
| 1997 | 0.000 | 0.000 | 0.002 | 0.012 | 0.015 | 0.017 | 0.023 | 0.033 | 0.033 |
| 1998 | 0.000 | 0.000 | 0.002 | 0.012 | 0.015 | 0.017 | 0.023 | 0.035 | 0.035 |
| 1999 | 0.000 | 0.000 | 0.002 | 0.012 | 0.015 | 0.018 | 0.023 | 0.037 | 0.037 |
| 2000 | 0.000 | 0.000 | 0.002 | 0.012 | 0.016 | 0.018 | 0.024 | 0.039 | 0.039 |
| 2001 | 0.000 | 0.000 | 0.002 | 0.011 | 0.016 | 0.018 | 0.024 | 0.039 | 0.039 |
| 2002 | 0.000 | 0.000 | 0.002 | 0.011 | 0.015 | 0.017 | 0.023 | 0.039 | 0.039 |
| 2003 | 0.000 | 0.000 | 0.001 | 0.011 | 0.015 | 0.016 | 0.022 | 0.038 | 0.038 |
| 2004 | 0.000 | 0.000 | 0.001 | 0.010 | 0.014 | 0.014 | 0.021 | 0.036 | 0.036 |
| 2005 | 0.000 | 0.000 | 0.001 | 0.009 | 0.013 | 0.013 | 0.021 | 0.036 | 0.036 |
| 2006 | 0.000 | 0.000 | 0.001 | 0.008 | 0.012 | 0.012 | 0.020 | 0.035 | 0.035 |
| 2007 | 0.000 | 0.000 | 0.001 | 0.007 | 0.011 | 0.010 | 0.018 | 0.031 | 0.031 |
| 2008 | 0.000 | 0.000 | 0.001 | 0.006 | 0.010 | 0.008 | 0.017 | 0.028 | 0.028 |
| 2009 | 0.000 | 0.000 | 0.001 | 0.006 | 0.009 | 0.008 | 0.017 | 0.028 | 0.028 |
| 2010 | 0.000 | 0.000 | 0.001 | 0.005 | 0.009 | 0.007 | 0.016 | 0.026 | 0.026 |
| 2011 | 0.000 | 0.000 | 0.001 | 0.005 | 0.008 | 0.006 | 0.016 | 0.024 | 0.024 |
| 2012 | 0.000 | 0.000 | 0.001 | 0.005 | 0.008 | 0.006 | 0.016 | 0.022 | 0.022 |
| 2013 | 0.000 | 0.000 | 0.001 | 0.005 | 0.008 | 0.006 | 0.016 | 0.023 | 0.023 |
| 2014 | 0.000 | 0.000 | 0.001 | 0.005 | 0.008 | 0.007 | 0.017 | 0.025 | 0.025 |
| 2015 | 0.000 | 0.000 | 0.001 | 0.005 | 0.008 | 0.007 | 0.017 | 0.026 | 0.026 |
| 2016 | 0.000 | 0.000 | 0.001 | 0.005 | 0.008 | 0.007 | 0.016 | 0.025 | 0.025 |
| 2017 | 0.000 | 0.000 | 0.001 | 0.005 | 0.008 | 0.007 | 0.016 | 0.024 | 0.024 |
| 2018 | 0.000 | 0.000 | 0.001 | 0.005 | 0.008 | 0.008 | 0.016 | 0.024 | 0.024 |

Table 3.6.12.c - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Estimated fishing mortality - Fleet C

| Year Age | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.000 | 0.047 | 0.166 | 0.136 | 0.111 | 0.099 | 0.095 | 0.094 | 0.094 |
| 1992 | 0.000 | 0.050 | 0.175 | 0.144 | 0.118 | 0.105 | 0.100 | 0.099 | 0.099 |
| 1993 | 0.000 | 0.053 | 0.185 | 0.152 | 0.125 | 0.111 | 0.106 | 0.105 | 0.105 |
| 1994 | 0.000 | 0.057 | 0.199 | 0.164 | 0.134 | 0.119 | 0.114 | 0.113 | 0.113 |
| 1995 | 0.000 | 0.060 | 0.210 | 0.173 | 0.141 | 0.126 | 0.120 | 0.119 | 0.119 |
| 1996 | 0.000 | 0.058 | 0.204 | 0.167 | 0.137 | 0.122 | 0.116 | 0.115 | 0.115 |
| 1997 | 0.000 | 0.055 | 0.193 | 0.159 | 0.130 | 0.116 | 0.110 | 0.109 | 0.109 |
| 1998 | 0.000 | 0.056 | 0.196 | 0.161 | 0.132 | 0.117 | 0.112 | 0.111 | 0.111 |
| 1999 | 0.000 | 0.055 | 0.194 | 0.160 | 0.130 | 0.116 | 0.111 | 0.110 | 0.110 |
| 2000 | 0.000 | 0.055 | 0.193 | 0.159 | 0.130 | 0.116 | 0.110 | 0.109 | 0.109 |
| 2001 | 0.000 | 0.049 | 0.173 | 0.142 | 0.116 | 0.104 | 0.099 | 0.098 | 0.098 |
| 2002 | 0.000 | 0.049 | 0.173 | 0.142 | 0.116 | 0.104 | 0.099 | 0.098 | 0.098 |
| 2003 | 0.000 | 0.043 | 0.151 | 0.124 | 0.101 | 0.090 | 0.086 | 0.085 | 0.085 |
| 2004 | 0.000 | 0.035 | 0.122 | 0.101 | 0.082 | 0.073 | 0.070 | 0.069 | 0.069 |
| 2005 | 0.000 | 0.041 | 0.143 | 0.118 | 0.096 | 0.086 | 0.082 | 0.081 | 0.081 |
| 2006 | 0.000 | 0.049 | 0.170 | 0.140 | 0.114 | 0.102 | 0.097 | 0.096 | 0.096 |
| 2007 | 0.000 | 0.052 | 0.183 | 0.150 | 0.123 | 0.109 | 0.104 | 0.103 | 0.103 |
| 2008 | 0.000 | 0.055 | 0.191 | 0.157 | 0.129 | 0.115 | 0.109 | 0.108 | 0.108 |
| 2009 | 0.000 | 0.059 | 0.208 | 0.171 | 0.140 | 0.125 | 0.119 | 0.118 | 0.118 |
| 2010 | 0.000 | 0.054 | 0.190 | 0.156 | 0.128 | 0.114 | 0.109 | 0.108 | 0.108 |
| 2011 | 0.000 | 0.040 | 0.139 | 0.114 | 0.093 | 0.083 | 0.079 | 0.079 | 0.079 |
| 2012 | 0.000 | 0.033 | 0.117 | 0.097 | 0.079 | 0.070 | 0.067 | 0.066 | 0.066 |
| 2013 | 0.000 | 0.029 | 0.102 | 0.084 | 0.069 | 0.061 | 0.058 | 0.058 | 0.058 |
| 2014 | 0.000 | 0.031 | 0.108 | 0.089 | 0.073 | 0.065 | 0.062 | 0.061 | 0.061 |
| 2015 | 0.000 | 0.035 | 0.123 | 0.101 | 0.083 | 0.074 | 0.070 | 0.070 | 0.070 |
| 2016 | 0.000 | 0.049 | 0.171 | 0.141 | 0.115 | 0.103 | 0.098 | 0.097 | 0.097 |
| 2017 | 0.000 | 0.057 | 0.199 | 0.164 | 0.134 | 0.119 | 0.114 | 0.113 | 0.113 |
| 2018 | 0.000 | 0.058 | 0.202 | 0.166 | 0.136 | 0.121 | 0.116 | 0.115 | 0.115 |

Table 3.6.12.d - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Estimated fishing mortality - Fleet D

| Year Age | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.016 | 0.051 | 0.017 | 0.008 | 0.004 | 0.003 | 0.005 | 0.004 | 0.004 |
| 1992 | 0.014 | 0.041 | 0.014 | 0.007 | 0.004 | 0.003 | 0.004 | 0.003 | 0.003 |
| 1993 | 0.021 | 0.062 | 0.020 | 0.010 | 0.005 | 0.004 | 0.005 | 0.004 | 0.004 |
| 1994 | 0.026 | 0.080 | 0.025 | 0.012 | 0.006 | 0.004 | 0.006 | 0.005 | 0.005 |
| 1995 | 0.050 | 0.158 | 0.047 | 0.020 | 0.009 | 0.006 | 0.009 | 0.006 | 0.006 |
| 1996 | 0.035 | 0.103 | 0.030 | 0.013 | 0.006 | 0.004 | 0.006 | 0.005 | 0.005 |
| 1997 | 0.037 | 0.103 | 0.029 | 0.012 | 0.006 | 0.004 | 0.006 | 0.005 | 0.005 |
| 1998 | 0.041 | 0.116 | 0.033 | 0.013 | 0.006 | 0.004 | 0.006 | 0.005 | 0.005 |
| 1999 | 0.024 | 0.064 | 0.020 | 0.008 | 0.004 | 0.003 | 0.004 | 0.003 | 0.003 |
| 2000 | 0.016 | 0.042 | 0.014 | 0.005 | 0.003 | 0.002 | 0.003 | 0.003 | 0.003 |
| 2001 | 0.018 | 0.050 | 0.019 | 0.008 | 0.005 | 0.005 | 0.009 | 0.010 | 0.010 |
| 2002 | 0.018 | 0.057 | 0.021 | 0.007 | 0.004 | 0.003 | 0.004 | 0.003 | 0.003 |
| 2003 | 0.016 | 0.060 | 0.031 | 0.014 | 0.009 | 0.008 | 0.010 | 0.008 | 0.008 |
| 2004 | 0.016 | 0.068 | 0.043 | 0.023 | 0.014 | 0.012 | 0.012 | 0.009 | 0.009 |
| 2005 | 0.009 | 0.040 | 0.026 | 0.012 | 0.007 | 0.005 | 0.004 | 0.003 | 0.003 |
| 2006 | 0.008 | 0.049 | 0.043 | 0.023 | 0.013 | 0.013 | 0.011 | 0.009 | 0.009 |
| 2007 | 0.005 | 0.031 | 0.030 | 0.015 | 0.008 | 0.009 | 0.008 | 0.007 | 0.007 |
| 2008 | 0.005 | 0.032 | 0.033 | 0.014 | 0.005 | 0.006 | 0.005 | 0.006 | 0.006 |
| 2009 | 0.007 | 0.054 | 0.048 | 0.014 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 |
| 2010 | 0.003 | 0.021 | 0.016 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2011 | 0.001 | 0.013 | 0.008 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2012 | 0.001 | 0.012 | 0.009 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2013 | 0.001 | 0.014 | 0.017 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2014 | 0.001 | 0.013 | 0.014 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2015 | 0.002 | 0.027 | 0.031 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2016 | 0.001 | 0.017 | 0.022 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2017 | 0.000 | 0.004 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2018 | 0.000 | 0.003 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table 3.6.12.e - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Estimated fishing mortality - Fleet F

| Year Age | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.011 | 0.113 | 0.159 | 0.237 | 0.328 | 0.395 | 0.473 | 0.544 | 0.544 |
| 1992 | 0.011 | 0.120 | 0.169 | 0.252 | 0.351 | 0.425 | 0.513 | 0.591 | 0.591 |
| 1993 | 0.012 | 0.127 | 0.180 | 0.270 | 0.377 | 0.456 | 0.553 | 0.638 | 0.638 |
| 1994 | 0.012 | 0.132 | 0.188 | 0.283 | 0.396 | 0.480 | 0.584 | 0.674 | 0.674 |
| 1995 | 0.013 | 0.135 | 0.193 | 0.290 | 0.406 | 0.493 | 0.600 | 0.693 | 0.693 |
| 1996 | 0.013 | 0.139 | 0.198 | 0.299 | 0.421 | 0.514 | 0.629 | 0.728 | 0.728 |
| 1997 | 0.013 | 0.136 | 0.195 | 0.295 | 0.416 | 0.509 | 0.628 | 0.736 | 0.736 |
| 1998 | 0.012 | 0.132 | 0.189 | 0.286 | 0.403 | 0.494 | 0.610 | 0.722 | 0.722 |
| 1999 | 0.012 | 0.124 | 0.179 | 0.271 | 0.383 | 0.469 | 0.579 | 0.688 | 0.688 |
| 2000 | 0.011 | 0.124 | 0.179 | 0.272 | 0.387 | 0.475 | 0.588 | 0.700 | 0.700 |
| 2001 | 0.011 | 0.119 | 0.175 | 0.269 | 0.385 | 0.473 | 0.588 | 0.698 | 0.698 |
| 2002 | 0.010 | 0.105 | 0.157 | 0.245 | 0.355 | 0.439 | 0.548 | 0.653 | 0.653 |
| 2003 | 0.009 | 0.097 | 0.147 | 0.233 | 0.340 | 0.421 | 0.527 | 0.630 | 0.630 |
| 2004 | 0.009 | 0.097 | 0.149 | 0.237 | 0.348 | 0.429 | 0.537 | 0.643 | 0.643 |
| 2005 | 0.009 | 0.095 | 0.149 | 0.240 | 0.354 | 0.434 | 0.542 | 0.646 | 0.646 |
| 2006 | 0.008 | 0.089 | 0.142 | 0.232 | 0.344 | 0.418 | 0.519 | 0.616 | 0.616 |
| 2007 | 0.008 | 0.088 | 0.144 | 0.238 | 0.355 | 0.430 | 0.529 | 0.621 | 0.621 |
| 2008 | 0.008 | 0.084 | 0.139 | 0.234 | 0.352 | 0.429 | 0.526 | 0.610 | 0.610 |
| 2009 | 0.007 | 0.073 | 0.123 | 0.210 | 0.319 | 0.391 | 0.481 | 0.554 | 0.554 |
| 2010 | 0.006 | 0.061 | 0.103 | 0.177 | 0.272 | 0.336 | 0.415 | 0.479 | 0.479 |
| 2011 | 0.005 | 0.052 | 0.089 | 0.155 | 0.242 | 0.300 | 0.370 | 0.428 | 0.428 |
| 2012 | 0.005 | 0.053 | 0.091 | 0.160 | 0.250 | 0.309 | 0.378 | 0.433 | 0.433 |
| 2013 | 0.005 | 0.053 | 0.092 | 0.162 | 0.253 | 0.313 | 0.381 | 0.433 | 0.433 |
| 2014 | 0.005 | 0.050 | 0.087 | 0.154 | 0.241 | 0.298 | 0.360 | 0.409 | 0.409 |
| 2015 | 0.005 | 0.052 | 0.090 | 0.160 | 0.251 | 0.312 | 0.375 | 0.425 | 0.425 |
| 2016 | 0.005 | 0.051 | 0.090 | 0.162 | 0.253 | 0.317 | 0.380 | 0.431 | 0.431 |
| 2017 | 0.005 | 0.050 | 0.088 | 0.159 | 0.248 | 0.314 | 0.375 | 0.425 | 0.425 |
| 2018 | 0.005 | 0.050 | 0.087 | 0.158 | 0.246 | 0.313 | 0.371 | 0.418 | 0.418 |

Table 3.6.13 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Estimated stock numbers at age

| Year Age | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 4994620 | 4038068 | 2224444 | 1882555 | 930749 | 565330 | 169222 | 50680 | 17225 |
| 1992 | 3542228 | 3633694 | 1974043 | 1295106 | 1040321 | 479862 | 275737 | 76996 | 28818 |
| 1993 | 3004215 | 2559018 | 1806525 | 1119318 | 705523 | 522434 | 225700 | 119294 | 42294 |
| 1994 | 4456350 | 2124513 | 1216170 | 1018802 | 580691 | 347199 | 236468 | 92873 | 60949 |
| 1995 | 4132201 | 3206989 | 987145 | 649441 | 533794 | 267367 | 154653 | 93111 | 55316 |
| 1996 | 4186672 | 2866299 | 1373342 | 516011 | 322248 | 246379 | 114815 | 59835 | 52103 |
| 1997 | 3474711 | 2962036 | 1283619 | 737858 | 257955 | 146702 | 103191 | 43234 | 38322 |
| 1998 | 4623046 | 2419112 | 1335824 | 691050 | 377637 | 119788 | 63347 | 38593 | 27590 |
| 1999 | 4896152 | 3256134 | 1072965 | 714066 | 354101 | 179109 | 51733 | 24723 | 22288 |
| 2000 | 2921274 | 3537911 | 1552326 | 587459 | 370617 | 171616 | 80307 | 20723 | 16611 |
| 2001 | 2822649 | 2080789 | 1725163 | 871579 | 303087 | 177744 | 75916 | 32094 | 13061 |
| 2002 | 2694436 | 2027765 | 995229 | 978877 | 472807 | 145169 | 80442 | 29769 | 16017 |
| 2003 | 2894969 | 1927662 | 997820 | 566183 | 534587 | 238800 | 67358 | 33694 | 16926 |
| 2004 | 1976097 | 2115708 | 960310 | 590429 | 316185 | 273675 | 114903 | 29008 | 19242 |
| 2005 | 1747738 | 1414362 | 1059363 | 581960 | 333121 | 163850 | 131957 | 49776 | 18487 |
| 2006 | 1352125 | 1274935 | 706236 | 630405 | 333682 | 169634 | 79484 | 56019 | 26028 |
| 2007 | 1446726 | 976824 | 646563 | 402046 | 340762 | 171607 | 78771 | 35079 | 31137 |
| 2008 | 1189959 | 1066907 | 492654 | 371050 | 216954 | 168798 | 81822 | 33339 | 25354 |
| 2009 | 1155814 | 867890 | 550821 | 279555 | 198901 | 108907 | 78077 | 35040 | 22685 |
| 2010 | 1593242 | 833844 | 436318 | 306303 | 154406 | 102442 | 52818 | 33657 | 23547 |
| 2011 | 1403676 | 1180495 | 437100 | 260108 | 176959 | 83932 | 53720 | 25308 | 25135 |
| 2012 | 1152037 | 1032210 | 657141 | 281883 | 160209 | 102505 | 46643 | 27762 | 24305 |
| 2013 | 1743986 | 838529 | 562871 | 441787 | 177078 | 93940 | 56596 | 24228 | 25328 |
| 2014 | 1247045 | 1315245 | 451557 | 369587 | 285285 | 102699 | 52736 | 29428 | 24565 |
| 2015 | 1014505 | 918454 | 750014 | 299880 | 234844 | 165992 | 58554 | 27721 | 27320 |
| 2016 | 1054035 | 740328 | 496479 | 491326 | 187232 | 136851 | 90031 | 30174 | 27009 |
| 2017 | 1057849 | 779493 | 397635 | 298736 | 301847 | 105514 | 73898 | 44314 | 26778 |
| 2018 | 954391 | 785232 | 429157 | 241251 | 170043 | 171417 | 55844 | 36731 | 32596 |

Table 3.6.14.a - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Predicted catch in numbers - Sum fleets

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 115143.85 | 647736.81 | 643672.84 | 613948.60 | 342269.57 | 227230.90 | 76051.46 | 24909.60 | 8466.32 |
| 1992 | 77887.58 | 579320.76 | 595502.77 | 443072.04 | 402904.36 | 203535.37 | 131219.63 | 40146.44 | 15025.92 |
| 1993 | 86026.80 | 467140.53 | 584000.71 | 407006.15 | 289484.38 | 234322.18 | 113697.82 | 65745.86 | 23309.32 |
| 1994 | 148758.06 | 429357.34 | 419456.23 | 390656.39 | 250429.43 | 163087.03 | 124745.88 | 53511.82 | 35117.91 |
| 1995 | 219718.04 | 837414.12 | 369426.20 | 260796.31 | 237696.37 | 129266.16 | 83980.51 | 55126.28 | 32749.68 |
| 1996 | 170505.31 | 641939.32 | 493668.64 | 205516.99 | 144723.28 | 120990.89 | 63490.69 | 36231.53 | 31549.74 |
| 1997 | 148756.29 | 653278.23 | 447270.91 | 285933.25 | 113420.00 | 70864.83 | 56490.80 | 26186.07 | 23211.27 |
| 1998 | 210270.44 | 549938.39 | 467044.28 | 265002.62 | 163737.99 | 57035.86 | 34178.72 | 23255.89 | 16625.83 |
| 1999 | 150584.74 | 598901.15 | 353474.58 | 262849.33 | 148073.46 | 82378.57 | 26986.33 | 14503.76 | 13075.61 |
| 2000 | 70133.35 | 589457.01 | 501656.63 | 215171.71 | 155600.65 | 79354.74 | 42199.30 | 12279.97 | 9843.10 |
| 2001 | 70450.50 | 344429.48 | 533363.73 | 307410.91 | 124236.84 | 80640.96 | 39614.28 | 18895.44 | 7689.51 |
| 2002 | 64092.60 | 325129.12 | 295391.40 | 327478.96 | 183922.77 | 62568.19 | 39836.00 | 16713.90 | 8992.85 |
| 2003 | 62416.07 | 292664.21 | 280276.46 | 179539.17 | 198597.01 | 98617.98 | 32208.81 | 18316.85 | 9201.50 |
| 2004 | 41955.97 | 320660.33 | 258509.86 | 181889.96 | 115412.24 | 111175.86 | 54187.07 | 15539.64 | 10307.94 |
| 2005 | 26312.32 | 189531.83 | 287672.66 | 183052.76 | 124396.23 | 67557.92 | 62867.77 | 26945.91 | 10007.96 |
| 2006 | 19336.02 | 181080.65 | 213036.77 | 211083.52 | 128825.74 | 71689.06 | 38340.40 | 30463.23 | 14154.36 |
| 2007 | 16348.70 | 127804.46 | 194508.99 | 136449.64 | 134295.75 | 73830.94 | 38543.03 | 19190.82 | 17034.14 |
| 2008 | 12851.29 | 139399.93 | 150915.35 | 126208.41 | 85483.99 | 72590.30 | 39896.81 | 18059.62 | 13734.30 |
| 2009 | 13596.70 | 123960.86 | 175786.23 | 93104.80 | 75429.21 | 44907.03 | 36540.76 | 18172.99 | 11765.12 |
| 2010 | 11528.80 | 86807.34 | 113700.57 | 87719.71 | 51623.14 | 37335.93 | 22071.15 | 15612.35 | 10922.86 |
| 2011 | 7785.18 | 95031.85 | 88751.38 | 60923.70 | 50246.77 | 26372.37 | 19626.22 | 10309.83 | 10239.57 |
| 2012 | 6105.53 | 78376.22 | 123817.08 | 62857.98 | 44384.85 | 31662.36 | 16807.65 | 11084.09 | 9704.09 |
| 2013 | 9167.43 | 62926.66 | 103280.18 | 95054.89 | 47957.97 | 28580.44 | 20079.70 | 9513.68 | 9945.69 |
| 2014 | 6222.23 | 95309.16 | 82016.15 | 78658.01 | 75749.62 | 30615.72 | 18212.93 | 11260.56 | 9399.88 |
| 2015 | 5891.92 | 80401.71 | 158713.61 | 68802.80 | 66116.98 | 52360.85 | 21178.64 | 11098.80 | 10938.55 |
| 2016 | 5538.19 | 67001.93 | 120024.96 | 128437.54 | 58024.53 | 46970.11 | 34887.05 | 12877.10 | 11526.51 |
| 2017 | 4618.04 | 65846.66 | 97626.83 | 82398.20 | 96960.66 | 37425.32 | 29344.02 | 19255.07 | 11635.53 |
| 2018 | 4164.73 | 66787.36 | 106175.61 | 66873.56 | 54686.57 | 60928.32 | 22142.54 | 15870.56 | 14084.11 |

Table 3.6.14.b - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Predicted catch in numbers - Fleet A

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 0.00 | 11.74 | 3813.84 | 20239.28 | 12387.52 | 8686.22 | 3188.94 | 1185.30 | 402.86 |
| 1992 | 0.00 | 10.57 | 3385.87 | 13903.77 | 13861.23 | 7330.07 | 5263.25 | 1854.74 | 694.19 |
| 1993 | 0.00 | 7.44 | 3095.72 | 12057.60 | 9458.96 | 7959.15 | 4373.53 | 2957.87 | 1048.67 |
| 1994 | 0.00 | 6.18 | 2084.58 | 10925.16 | 7889.62 | 5282.00 | 4660.33 | 2373.93 | 1557.93 |
| 1995 | 0.00 | 9.32 | 1691.65 | 6971.93 | 7270.59 | 4094.04 | 3099.12 | 2458.75 | 1460.71 |
| 1996 | 0.00 | 8.33 | 2350.89 | 5527.54 | 4408.17 | 3805.97 | 2333.25 | 1657.04 | 1442.92 |
| 1997 | 0.00 | 8.61 | 2196.43 | 7874.86 | 3537.72 | 2271.89 | 2113.49 | 1278.78 | 1133.51 |
| 1998 | 0.00 | 7.03 | 2288.06 | 7335.06 | 5211.63 | 1878.72 | 1296.09 | 1215.47 | 868.95 |
| 1999 | 0.00 | 9.47 | 1838.24 | 7591.61 | 4915.41 | 2846.53 | 1072.06 | 816.27 | 735.90 |
| 2000 | 0.00 | 10.29 | 2657.50 | 6216.12 | 5253.13 | 2753.13 | 1706.48 | 711.21 | 570.07 |
| 2001 | 0.00 | 6.27 | 2847.18 | 8983.70 | 4271.24 | 2803.97 | 1630.81 | 1118.56 | 455.20 |
| 2002 | 0.00 | 5.90 | 1516.71 | 9800.61 | 6464.85 | 2184.41 | 1690.65 | 1038.74 | 558.89 |
| 2003 | 0.00 | 5.57 | 1335.33 | 5416.06 | 7012.09 | 3342.35 | 1358.50 | 1146.45 | 575.92 |
| 2004 | 0.00 | 6.23 | 1248.73 | 5444.56 | 3970.86 | 3543.85 | 2212.42 | 937.18 | 621.66 |
| 2005 | 0.00 | 4.36 | 1244.32 | 4923.25 | 3995.15 | 1939.05 | 2467.12 | 1586.80 | 589.35 |
| 2006 | 0.00 | 4.20 | 712.60 | 4730.53 | 3669.73 | 1816.04 | 1409.59 | 1744.35 | 810.49 |
| 2007 | 0.00 | 3.26 | 533.30 | 2611.72 | 3324.87 | 1531.25 | 1288.19 | 968.34 | 859.52 |
| 2008 | 0.00 | 3.66 | 349.40 | 2070.98 | 1908.27 | 1288.20 | 1230.93 | 838.09 | 637.37 |
| 2009 | 0.00 | 3.13 | 349.50 | 1455.35 | 1676.69 | 760.86 | 1165.86 | 891.75 | 577.31 |
| 2010 | 0.00 | 3.21 | 239.25 | 1466.78 | 1213.25 | 640.51 | 760.54 | 785.88 | 549.83 |
| 2011 | 0.00 | 4.69 | 218.15 | 1172.24 | 1298.25 | 474.73 | 750.28 | 534.78 | 531.14 |
| 2012 | 0.00 | 4.33 | 308.03 | 1221.60 | 1126.97 | 532.27 | 674.36 | 555.04 | 485.93 |
| 2013 | 0.00 | 3.80 | 268.39 | 1925.21 | 1226.40 | 529.85 | 826.99 | 500.74 | 523.48 |
| 2014 | 0.00 | 6.58 | 228.46 | 1689.34 | 2041.56 | 627.90 | 793.28 | 658.18 | 549.42 |
| 2015 | 0.00 | 4.93 | 375.78 | 1404.23 | 1684.93 | 1085.82 | 878.01 | 644.08 | 634.78 |
| 2016 | 0.00 | 4.17 | 255.27 | 2382.01 | 1346.29 | 915.24 | 1314.42 | 686.08 | 614.12 |
| 2017 | 0.00 | 4.49 | 200.11 | 1478.37 | 2180.28 | 714.32 | 1037.00 | 955.47 | 577.38 |
| 2018 | 0.00 | 4.66 | 219.26 | 1190.43 | 1262.81 | 1204.68 | 804.46 | 805.05 | 714.43 |

Table 3.6.14.c - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Predicted catch in numbers - Fleet C

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 887.74 | 147021.76 | 308782.12 | 218026.79 | 89093.36 | 48522.84 | 13864.25 | 4118.16 | 1399.69 |
| 1992 | 664.25 | 139417.06 | 287875.94 | 157691.16 | 104760.38 | 43342.46 | 23776.36 | 6585.00 | 2464.62 |
| 1993 | 596.76 | 103867.40 | 277719.53 | 143792.48 | 75012.77 | 49839.71 | 20558.50 | 10777.74 | 3821.11 |
| 1994 | 952.92 | 92657.14 | 199937.75 | 140120.71 | 66164.42 | 35512.56 | 23097.86 | 8998.09 | 5905.13 |
| 1995 | 928.94 | 146850.99 | 169802.94 | 93533.47 | 63733.61 | 28666.34 | 15837.13 | 9457.75 | 5618.71 |
| 1996 | 913.71 | 127519.08 | 229991.48 | 72317.03 | 37424.39 | 25689.07 | 11433.07 | 5909.99 | 5146.31 |
| 1997 | 719.11 | 125133.07 | 204851.69 | 98457.63 | 28502.38 | 14547.79 | 9771.64 | 4060.81 | 3599.49 |
| 1998 | 970.58 | 103634.65 | 215980.14 | 93440.00 | 42289.50 | 12040.09 | 6080.21 | 3674.24 | 2626.74 |
| 1999 | 1019.29 | 138351.69 | 172158.48 | 95802.13 | 39340.40 | 17858.87 | 4925.69 | 2334.85 | 2104.94 |
| 2000 | 606.08 | 149824.93 | 248303.35 | 78567.83 | 41043.68 | 17056.40 | 7621.47 | 1950.81 | 1563.68 |
| 2001 | 523.54 | 78984.37 | 249072.41 | 105037.67 | 30202.49 | 15884.82 | 6476.96 | 2716.07 | 1105.30 |
| 2002 | 499.36 | 76912.82 | 143583.56 | 117879.08 | 47078.16 | 12963.48 | 6857.70 | 2517.49 | 1354.53 |
| 2003 | 468.91 | 64080.93 | 127106.32 | 60092.63 | 46843.34 | 18752.63 | 5048.28 | 2505.11 | 1258.45 |
| 2004 | 259.07 | 57138.39 | 100361.16 | 51290.10 | 22630.22 | 17537.54 | 7024.63 | 1759.23 | 1166.95 |
| 2005 | 268.79 | 44687.38 | 128590.30 | 58818.90 | 27781.77 | 12243.93 | 9410.01 | 3521.62 | 1307.96 |
| 2006 | 246.80 | 47646.11 | 100478.09 | 74843.31 | 32750.75 | 14933.18 | 6679.71 | 4671.23 | 2170.43 |
| 2007 | 283.22 | 39090.76 | 98092.40 | 50950.42 | 35732.47 | 16147.30 | 7077.24 | 3127.54 | 2776.06 |
| 2008 | 244.05 | 44681.17 | 77990.16 | 49100.55 | 23770.42 | 16601.20 | 7684.81 | 3107.33 | 2363.12 |
| 2009 | 257.77 | 39439.89 | 94091.46 | 39972.23 | 23575.62 | 11594.20 | 7939.71 | 3536.24 | 2289.35 |
| 2010 | 324.78 | 34715.32 | 68699.06 | 40312.60 | 16825.71 | 10020.87 | 4934.22 | 3120.24 | 2183.01 |
| 2011 | 208.99 | 36134.81 | 51492.20 | 25507.19 | 14317.76 | 6085.88 | 3717.58 | 1737.85 | 1726.00 |
| 2012 | 144.86 | 26758.99 | 66053.74 | 23545.15 | 11025.05 | 6317.50 | 2742.86 | 1619.91 | 1418.23 |
| 2013 | 191.05 | 18975.69 | 49648.15 | 32342.30 | 10669.45 | 5066.79 | 2912.13 | 1236.96 | 1293.13 |
| 2014 | 144.59 | 31478.07 | 42039.12 | 28572.37 | 18161.27 | 5854.13 | 2868.34 | 1588.21 | 1325.78 |
| 2015 | 134.00 | 24993.28 | 78985.25 | 26257.40 | 16951.20 | 10735.16 | 3614.39 | 1698.00 | 1673.48 |
| 2016 | 193.67 | 27851.97 | 71108.25 | 58737.90 | 18514.78 | 12145.71 | 7632.19 | 2538.57 | 2272.32 |
| 2017 | 225.72 | 33933.98 | 65288.86 | 41033.73 | 34360.74 | 10790.41 | 7221.34 | 4297.95 | 2597.18 |
| 2018 | 206.88 | 34712.54 | 71479.49 | 33622.74 | 19644.67 | 17792.91 | 5539.07 | 3616.01 | 3208.98 |

Table 3.6.14.d - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Predicted catch in numbers - Fleet D

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 68487.87 | 159277.74 | 33274.14 | 14272.67 | 3525.85 | 1603.68 | 698.42 | 167.76 | 57.02 |
| 1992 | 43001.67 | 116039.36 | 24930.26 | 8449.06 | 3474.02 | 1229.79 | 1059.71 | 242.34 | 90.70 |
| 1993 | 54695.65 | 121770.51 | 32266.18 | 9952.70 | 3102.93 | 1711.42 | 1089.33 | 462.64 | 164.02 |
| 1994 | 100451.64 | 128360.75 | 27495.86 | 10922.90 | 3021.70 | 1315.46 | 1306.73 | 407.83 | 267.64 |
| 1995 | 174101.72 | 370232.48 | 40712.44 | 11612.54 | 4283.82 | 1473.97 | 1186.63 | 545.82 | 324.26 |
| 1996 | 123184.49 | 220694.49 | 36569.73 | 6062.03 | 1770.27 | 974.90 | 660.60 | 275.43 | 239.84 |
| 1997 | 110253.70 | 229838.95 | 33291.63 | 8015.65 | 1289.27 | 528.28 | 545.67 | 187.91 | 166.56 |
| 1998 | 160673.68 | 210094.69 | 39321.78 | 7866.07 | 1910.40 | 428.35 | 327.11 | 166.26 | 118.86 |
| 1999 | 100877.76 | 159149.03 | 19211.11 | 5039.48 | 1140.86 | 423.70 | 183.20 | 76.76 | 69.20 |
| 2000 | 40745.85 | 114407.73 | 19048.57 | 2850.19 | 846.65 | 296.31 | 214.40 | 50.49 | 40.47 |
| 2001 | 43062.29 | 80218.79 | 29104.92 | 6303.02 | 1358.82 | 779.86 | 637.49 | 281.99 | 114.76 |
| 2002 | 40968.79 | 88417.97 | 18609.40 | 6217.54 | 1594.54 | 370.86 | 269.61 | 77.67 | 41.79 |
| 2003 | 39538.81 | 88028.00 | 27694.94 | 7161.31 | 4280.66 | 1676.39 | 593.01 | 237.97 | 119.55 |
| 2004 | 26489.63 | 109701.50 | 36463.00 | 11927.41 | 4037.44 | 2994.10 | 1292.62 | 247.03 | 163.86 |
| 2005 | 12819.55 | 43366.34 | 24697.32 | 6359.74 | 1989.85 | 748.07 | 520.15 | 137.52 | 51.08 |
| 2006 | 9577.00 | 48123.92 | 27129.43 | 12944.45 | 3974.82 | 2042.77 | 814.60 | 453.51 | 210.72 |
| 2007 | 5964.32 | 23674.23 | 17294.33 | 5383.97 | 2442.37 | 1394.61 | 580.38 | 237.09 | 210.44 |
| 2008 | 4689.66 | 26872.52 | 14320.40 | 4522.12 | 1054.38 | 926.89 | 369.82 | 169.86 | 129.17 |
| 2009 | 6613.52 | 36205.70 | 23326.55 | 3592.11 | 683.79 | 383.76 | 182.16 | 104.52 | 67.66 |
| 2010 | 3486.40 | 13453.36 | 6095.68 | 783.14 | 54.95 | 28.20 | 6.69 | 5.66 | 3.96 |
| 2011 | 1688.56 | 11548.50 | 3230.45 | 241.44 | 10.89 | 4.00 | 1.41 | 1.19 | 1.18 |
| 2012 | 1049.17 | 9402.95 | 5531.23 | 252.31 | 6.90 | 3.51 | 0.88 | 1.04 | 0.91 |
| 2013 | 1521.51 | 9498.85 | 8509.59 | 836.36 | 15.07 | 6.08 | 1.56 | 1.24 | 1.30 |
| 2014 | 1061.87 | 13008.04 | 5586.48 | 464.98 | 12.62 | 5.32 | 1.04 | 1.10 | 0.92 |
| 2015 | 1579.98 | 19015.36 | 20793.83 | 754.47 | 24.42 | 30.42 | 2.78 | 2.03 | 2.00 |
| 2016 | 1045.04 | 10052.16 | 9920.71 | 635.91 | 8.85 | 17.56 | 3.25 | 1.84 | 1.65 |
| 2017 | 209.89 | 2167.18 | 1876.82 | 76.98 | 2.73 | 2.90 | 0.93 | 1.26 | 0.76 |
| 2018 | 185.13 | 2080.71 | 1995.33 | 61.67 | 1.40 | 4.07 | 0.71 | 1.13 | 1.00 |

Table 3.6.14.e - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Predicted catch in numbers - Fleet F

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 45768.24 | 341425.57 | 297802.74 | 361409.86 | 237262.84 | 168418.16 | 58299.85 | 19438.38 | 6606.75 |
| 1992 | 34221.66 | 323853.77 | 279310.70 | 263028.05 | 280808.73 | 151633.05 | 101120.31 | 31464.36 | 11776.41 |
| 1993 | 30734.39 | 241495.18 | 270919.28 | 241203.37 | 201909.72 | 174811.90 | 87676.46 | 51547.61 | 18275.52 |
| 1994 | 47353.50 | 208333.27 | 189938.04 | 228687.62 | 173353.69 | 120977.01 | 95680.96 | 41731.97 | 27387.21 |
| 1995 | 44687.38 | 320321.33 | 157219.17 | 148678.37 | 162408.35 | 95031.81 | 63857.63 | 42663.96 | 25346.00 |
| 1996 | 46407.11 | 293717.42 | 224756.54 | 121610.39 | 101120.45 | 90520.95 | 49063.77 | 28389.07 | 24720.67 |
| 1997 | 37783.48 | 298297.60 | 206931.16 | 171585.11 | 80090.63 | 53516.87 | 44060.00 | 20658.57 | 18311.71 |
| 1998 | 48626.18 | 236202.02 | 209454.30 | 156361.49 | 114326.46 | 42688.70 | 26475.31 | 18199.92 | 13011.28 |
| 1999 | 48687.69 | 301390.96 | 160266.75 | 154416.11 | 102676.79 | 61249.47 | 20805.38 | 11275.88 | 10165.57 |
| 2000 | 28781.42 | 325214.06 | 231647.21 | 127537.57 | 108457.19 | 59248.90 | 32656.95 | 9567.46 | 7668.88 |
| 2001 | 26864.67 | 185220.05 | 252339.22 | 187086.52 | 88404.29 | 61172.31 | 30869.02 | 14778.82 | 6014.25 |
| 2002 | 22624.45 | 159792.43 | 131681.73 | 193581.73 | 128785.22 | 47049.44 | 31018.04 | 13080.00 | 7037.64 |
| 2003 | 22408.35 | 140549.71 | 124139.87 | 106869.17 | 140460.92 | 74846.61 | 25209.02 | 14427.32 | 7247.58 |
| 2004 | 15207.27 | 153814.21 | 120436.97 | 113227.89 | 84773.72 | 87100.37 | 43657.40 | 12596.20 | 8355.47 |
| 2005 | 13223.98 | 101473.75 | 133140.72 | 112950.87 | 90629.46 | 52626.87 | 50470.49 | 21699.97 | 8059.57 |
| 2006 | 9512.22 | 85306.42 | 84716.65 | 118565.23 | 88430.44 | 52897.07 | 29436.50 | 23594.14 | 10962.72 |
| 2007 | 10101.16 | 65036.21 | 78588.96 | 77503.53 | 92796.04 | 54757.78 | 29597.22 | 14857.85 | 13188.12 |
| 2008 | 7917.58 | 67842.58 | 58255.39 | 70514.76 | 58750.92 | 53774.01 | 30611.25 | 13944.34 | 10604.64 |
| 2009 | 6725.41 | 48312.14 | 58018.72 | 48085.11 | 49493.11 | 32168.21 | 27253.03 | 13640.48 | 8830.80 |
| 2010 | 7717.62 | 38635.45 | 38666.58 | 45157.19 | 33529.23 | 26646.35 | 16369.70 | 11700.57 | 8186.06 |
| 2011 | 5887.63 | 47343.85 | 33810.58 | 34002.83 | 34619.87 | 19807.76 | 15156.95 | 8036.01 | 7981.25 |
| 2012 | 4911.50 | 42209.95 | 51924.08 | 37838.92 | 32225.93 | 24809.08 | 13389.55 | 8908.10 | 7799.02 |
| 2013 | 7454.87 | 34448.32 | 44854.05 | 59951.02 | 36047.05 | 22977.72 | 16339.02 | 7774.74 | 8127.78 |
| 2014 | 5015.77 | 50816.47 | 34162.09 | 47931.32 | 55534.17 | 24128.37 | 14550.27 | 9013.07 | 7523.76 |
| 2015 | 4177.94 | 36388.14 | 58558.75 | 40386.70 | 47456.43 | 40509.45 | 16683.46 | 8754.69 | 8628.29 |
| 2016 | 4299.48 | 29093.63 | 38740.73 | 66681.72 | 38154.61 | 33891.60 | 25937.19 | 9650.61 | 8638.42 |
| 2017 | 4182.43 | 29741.01 | 30261.04 | 39809.12 | 60416.91 | 25917.69 | 21084.75 | 14000.39 | 8460.21 |
| 2018 | 3772.72 | 29989.45 | 32481.53 | 31998.72 | 33777.69 | 41926.66 | 15798.30 | 11448.37 | 10159.70 |

Table 3.9.1 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Input table for short term predictions

| 2018 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| wr | N | M | Mat | PM | PF | SWt |
| 0 | 954391 | 0.3 | 0.00 | 0.25 | 0.1 | 0.0001 |
| 1 | 785232 | 0.5 | 0.00 | 0.25 | 0.1 | 0.0125 |
| 2 | 429157 | 0.2 | 0.20 | 0.25 | 0.1 | 0.0491 |
| 3 | 241251 | 0.2 | 0.75 | 0.25 | 0.1 | 0.0828 |
| 4 | 170043 | 0.2 | 0.90 | 0.25 | 0.1 | 0.1091 |
| 5 | 171417 | 0.2 | 1.00 | 0.25 | 0.1 | 0.1432 |
| 6 | 55844 | 0.2 | 1.00 | 0.25 | 0.1 | 0.1544 |
| 7 | 36731 | 0.2 | 1.00 | 0.25 | 0.1 | 0.1696 |
| $8+$ | 32596 | 0.2 | 1.00 | 0.25 | 0.1 | 0.1853 |
| 2019 |  |  |  |  |  |  |
| wr | N | M | Mat | PM | PF | SWt |
| 0 | 1223484 | 0.3 | 0.00 | 0.25 | 0.1 | 0.0001 |
| 1 |  | 0.5 | 0.00 | 0.25 | 0.1 | 0.0150 |
| 2 |  | 0.2 | 0.20 | 0.25 | 0.1 | 0.0479 |
| 3 |  | 0.2 | 0.75 | 0.25 | 0.1 | 0.0829 |
| 4 |  | 0.2 | 0.90 | 0.25 | 0.1 | 0.1158 |
| 5 |  | 0.2 | 1.00 | 0.25 | 0.1 | 0.1468 |
| 6 |  | 0.2 | 1.00 | 0.25 | 0.1 | 0.1675 |
| 7 |  | 0.2 | 1.00 | 0.25 | 0.1 | 0.1768 |
| 8+ |  | 0.2 | 1.00 | 0.25 | 0.1 | 0.1899 |
| 2020 |  |  |  |  |  |  |
| wr | N | M | Mat | PM | PF | SWt |
| 0 | 1223484 | 0.3 | 0.00 | 0.25 | 0.1 | 0.0001 |
| 1 |  | 0.5 | 0.00 | 0.25 | 0.1 | 0.0150 |
| 2 |  | 0.2 | 0.20 | 0.25 | 0.1 | 0.0479 |
| 3 |  | 0.2 | 0.75 | 0.25 | 0.1 | 0.0829 |
| 4 |  | 0.2 | 0.90 | 0.25 | 0.1 | 0.1158 |
| 5 |  | 0.2 | 1.00 | 0.25 | 0.1 | 0.1468 |
| 6 |  | 0.2 | 1.00 | 0.25 | 0.1 | 0.1675 |
| 7 |  | 0.2 | 1.00 | 0.25 | 0.1 | 0.1768 |
| 8+ |  | 0.2 | 1.00 | 0.25 | 0.1 | 0.1899 |

Input units are thousands and kg

| $\mathrm{M}=$ | Natural mortality |
| :--- | :--- |
| $\mathrm{MAT}=$ | Maturity ogive |
| $\mathrm{PF}=$ | Proportion of $F$ before spawning |
| $\mathrm{PM}=$ | Proportion of M before spawning |
| $\mathrm{SWt}=$ | Weight in stock $(\mathrm{kg})$ |


| $\mathrm{N}_{2018}$ wr 0-8+: | Populations numbers from the assessment |
| :--- | :--- |
| $\mathrm{N}_{20192020}$ wr 0: | Geometric Mean of wr 0 for the years 2013-2017 |
| Natural Mortality $(\mathrm{M})$ : | Constant |
| Weight in the Stock 2019-2020 (SWt): | Average for 2014-2018 |

Table 3.9.2 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. MSY approach (zero catch)

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.000 | 0.000 | 0.000 |
| fbar:low | 0.416 | 0.238 | 0.000 | 0.000 | 0.000 |
| fbar:high | 0.416 | 0.238 | 0.000 | 0.000 | 0.000 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 76273 | 101269 | 132063 |
| ssb:low | 74132 | 69743 | 76273 | 101269 | 132063 |
| ssb:high | 74132 | 69743 | 76273 | 101269 | 132063 |
| catch:Estimate | 36561 | 23367 | 0 | 0 | 0 |
| catch:low | 36561 | 23367 | 0 | 0 | 0 |
| catch:high | 36561 | 23367 | 0 | 0 | 0 |

Per fleet

| Year | 2018 | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 0 | 0 | 0 |
| Fleet C : Estimate | 16302 | 12352 | 0 | 0 | 0 |
| Fleet D : Estimate | 155 | 469 | 0 | 0 | 0 |
| Fleet F : Estimate | 19114 | 9001 | 0 | 0 | 0 |

Table 3.9.3 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. MAP 2018: F = $\mathrm{F}_{\mathrm{MSY}}(\mathbf{0 . 3 1})$ * SSBy-1/MSY Brrigger

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.144 | 0.155 | 0.180 |
| fbar:low | 0.416 | 0.238 | 0.144 | 0.155 | 0.180 |
| fbar:high | 0.416 | 0.238 | 0.144 | 0.155 | 0.180 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 75138 | 87270 | 100826 |
| ssb:low | 74132 | 69743 | 75138 | 87270 | 100826 |
| ssb:high | 74132 | 69743 | 75138 | 87270 | 100826 |
| catch:Estimate | 36561 | 23367 | 14619 | 18227 | 23649 |
| catch:low | 36561 | 23367 | 14619 | 18227 | 23649 |
| catch:high | 36561 | 23367 | 14619 | 18227 | 23649 |

## Per fleet

| Year | 2018 | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 820 | 1003 | 1346 |
| Fleet C : Estimate | 16302 | 12352 | 6250 | 7814 | 10129 |
| Fleet D : Estimate | 155 | 469 | 239 | 297 | 350 |
| Fleet F : Estimate | 19114 | 9001 | 7309 | 9114 | 11825 |

Table 3.9.4-WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. MAP 2018: F = FMsy lower (0.216)

* SSBy-1/MSY B ${ }_{\text {trigger }}$

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.100 | 0.109 | 0.131 |
| fbar:low | 0.416 | 0.238 | 0.100 | 0.109 | 0.131 |
| fbar:high | 0.416 | 0.238 | 0.100 | 0.109 | 0.131 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 75483 | 91298 | 109170 |
| ssb:low | 74132 | 69743 | 75483 | 91298 | 109170 |
| ssb:high | 74132 | 69743 | 75483 | 91298 | 109170 |
| catch:Estimate | 36561 | 23367 | 10359 | 13568 | 18846 |
| catch:low | 36561 | 23367 | 10359 | 13568 | 18846 |
| catch:high | 36561 | 23367 | 10359 | 13568 | 18846 |

Per fleet

| Year | 2018 | 2019 | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 584 | 762 | 1112 |
| Fleet C : Estimate | 16302 | 12352 | 4427 | 5807 | 8045 |
| Fleet D : Estimate | 155 | 469 | 168 | 215 | 266 |
| Fleet F : Estimate | 19114 | 9001 | 5180 | 6784 | 9423 |

Table 3.9.5 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. MAP 2018: F = FMsY upper (0.379) *SSBy-1/MSY B ${ }_{\text {trigger }}$

| Year | 2018 | 2019 | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | 2022 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| fbar:Estimate | 0.416 | 0.238 | 0.176 | 0.189 | 0.213 |
| fbar:low | 0.416 | 0.238 | 0.176 | 0.189 | 0.213 |
| fbar:high | 0.416 | 0.238 | 0.176 | 0.189 | 0.213 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 74889 | 84458 | 95186 |
| ssb:low | 74132 | 69743 | 74889 | 84458 | 95186 |
| ssb:high | 74132 | 69743 | 74889 | 84458 | 95186 |
| catch:Estimate | 36561 | 2361 | 23367 | 17609 | 21329 |

Per fleet

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Fleet A : Estimate | 990 | 1545 | 984 | 1156 | 1459 |
| Fleet C : Estimate | 16302 | 12352 | 7531 | 9154 | 11306 |
| Fleet D : Estimate | 155 | 469 | 289 | 355 | 404 |
| Fleet F : Estimate | 19114 | 9001 | 8805 | 10664 | 13170 |

Table 3.9.6 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. $\mathbf{F}=\mathrm{F}_{\mathrm{MSY}} \mathbf{= 0 . 3 1}$

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.310 | 0.310 | 0.310 |
| fbar:low | 0.416 | 0.238 | 0.310 | 0.310 | 0.310 |
| fbar:high | 0.416 | 0.238 | 0.310 | 0.310 | 0.310 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 73852 | 73874 | 76971 |
| ssb:low | 74132 | 69743 | 73852 | 73874 | 76971 |
| ssb:high | 74132 | 69743 | 73852 | 73874 | 76971 |
| catch:Estimate | 36561 | 23367 | 29215 | 29824 | 30807 |
| catch:low | 36561 | 23367 | 29215 | 29824 | 30807 |
| catch:high | 36561 | 23367 | 29215 | 29824 | 30807 |

Per fleet

| Year | 2018 | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 1608 | 1518 | 1538 |
| Fleet C : Estimate | 16302 | 12352 | 12510 | 12857 | 13330 |
| Fleet D : Estimate | 155 | 469 | 491 | 537 | 535 |
| Fleet F : Estimate | 19114 | 9001 | 14608 | 14912 | 15404 |

Table 3.9.7- WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. $\mathrm{F}=\mathrm{F}_{\mathrm{pa}}=0.35$

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.350 | 0.350 | 0.350 |
| fbar:low | 0.416 | 0.238 | 0.350 | 0.350 | 0.350 |
| fbar:high | 0.416 | 0.238 | 0.350 | 0.350 | 0.350 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 73546 | 70975 | 72021 |
| ssb:low | 74132 | 69743 | 73546 | 70975 | 72021 |
| ssb:high | 74132 | 69743 | 73546 | 70975 | 72021 |
| catch:Estimate | 36561 | 23367 | 32413 | 32085 | 32415 |
| catch:low | 36561 | 23367 | 32413 | 32085 | 32415 |
| catch:high | 36561 | 23367 | 32413 | 32085 | 32415 |

Per fleet

| Year | 2018 | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 1775 | 1602 | 1564 |
| Fleet C : Estimate | 16302 | 12352 | 13883 | 13850 | 14058 |
| Fleet D : Estimate | 155 | 469 | 548 | 591 | 585 |
| Fleet F : Estimate | 19114 | 9001 | 16206 | 16042 | 16207 |

Table 3.9.8- WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. $\mathrm{F}=\mathrm{F}_{\mathrm{lim}}=\mathbf{0 . 4 5}$

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.450 | 0.450 | 0.450 |
| fbar:low | 0.416 | 0.238 | 0.450 | 0.450 | 0.450 |
| fbar:high | 0.416 | 0.238 | 0.450 | 0.450 | 0.450 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 72786 | 64257 | 61199 |
| ssb:low | 74132 | 69743 | 72786 | 64257 | 61199 |
| ssb:high | 74132 | 69743 | 72786 | 64257 | 61199 |
| catch:Estimate | 36561 | 23367 | 39917 | 36641 | 35148 |
| catch:low | 36561 | 23367 | 39917 | 36641 | 35148 |
| catch:high | 36561 | 23367 | 39917 | 36641 | 35148 |

Per fleet

| Year | $\mathbf{2 0 1 8}$ | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 2162 | 1741 | 1554 |
| Fleet C : Estimate | 16302 | 12352 | 17112 | 15866 | 15326 |
| Fleet D : Estimate | 155 | 469 | 685 | 714 | 694 |
| Fleet F : Estimate | 19114 | 9001 | 19959 | 18321 | 17574 |

Table 3.9.9 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. $\mathbf{F}=\mathrm{F}_{2019}=\mathbf{0 . 2 3 8}$

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.238 | 0.238 | 0.238 |
| fbar:low | 0.416 | 0.238 | 0.238 | 0.238 | 0.238 |
| fbar:high | 0.416 | 0.238 | 0.238 | 0.238 | 0.238 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 74407 | 79426 | 86916 |
| ssb:low | 74132 | 69743 | 74407 | 79426 | 86916 |
| ssb:high | 74132 | 69743 | 74407 | 79426 | 86916 |
| catch:Estimate | 36561 | 23367 | 23157 | 25008 | 26943 |
| catch:low | 36561 | 23367 | 23157 | 25008 | 26943 |
| catch:high | 36561 | 23367 | 23157 | 25008 | 26943 |

Per fleet

| Year | 2018 | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 1285 | 1318 | 1430 |
| Fleet C : Estimate | 16302 | 12352 | 9909 | 10755 | 11606 |
| Fleet D : Estimate | 155 | 469 | 384 | 431 | 436 |
| Fleet F : Estimate | 19114 | 9001 | 11579 | 12504 | 13472 |

Table 3.9.10 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. $\mathrm{F}=\mathbf{0}$

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| fbar:Estimate | 0.416 | 0.238 | 0.000 | 0.000 | 0.000 |
| fbar:low | 0.416 | 0.238 | 0.000 | 0.000 | 0.000 |
| fbar:high | 0.416 | 0.238 | 0.000 | 0.000 | 0.000 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 76273 | 101269 | 132063 |
| ssb:low | 74132 | 69743 | 76273 | 101269 | 132063 |
| ssb:high | 74132 | 69561 | 23367 | 76273 | 101269 |
| catch:Estimate | 36561 | 23367 | 0 | 0 | 0 |
| catch:low | 23367 | 0 | 0 | 0 | 0 |
| catch:high |  |  | 0 | 0 | 0 |

Per fleet

| Year | 2018 | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 0 | 0 | 0 |
| Fleet C : Estimate | 16302 | 12352 | 0 | 0 | 0 |
| Fleet D : Estimate | 155 | 469 | 0 | 0 | 0 |
| Fleet F : Estimate | 19114 | 9001 | 0 | 0 | 0 |

Table 3.9.11 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. $\mathrm{F}=0.05$

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.050 | 0.050 | 0.050 |
| fbar:low | 0.416 | 0.238 | 0.050 | 0.050 | 0.050 |
| fbar:high | 0.416 | 0.238 | 0.050 | 0.050 | 0.050 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 75877 | 96189 | 120704 |
| ssb:low | 74132 | 69743 | 75877 | 96189 | 120704 |
| ssb:high | 74132 | 69743 | 75877 | 96189 | 120704 |
| catch:Estimate | 36561 | 23367 | 5301 | 6665 | 8115 |
| catch:low | 36561 | 23367 | 5301 | 6665 | 8115 |
| catch:high | 36561 | 23367 | 5301 | 6665 | 8115 |

Per fleet

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 301 | 384 | 501 |
| Fleet C : Estimate | 16302 | 12352 | 2264 | 2847 | 3449 |
| Fleet D : Estimate | 155 | 469 | 85 | 102 | 107 |
| Fleet F : Estimate | 19114 | 9001 | 2651 | 3333 | 4058 |

Table 3.9.12 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. $\mathrm{F}=0.1$

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.100 | 0.100 | 0.100 |
| fbar:low | 0.416 | 0.238 | 0.100 | 0.100 | 0.100 |
| fbar:high | 0.416 | 0.238 | 0.100 | 0.100 | 0.100 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 75483 | 91383 | 110440 |
| ssb:low | 74132 | 69743 | 75483 | 91383 | 110440 |
| ssb:high | 74132 | 69743 | 75483 | 91383 | 110440 |
| catch:Estimate | 36561 | 23367 | 10359 | 12500 | 14706 |
| catch:low | 36561 | 23367 | 10359 | 12500 | 14706 |
| catch:high | 36561 | 23367 | 10359 | 12500 | 14706 |

Per fleet

| Year | 2018 | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 584 | 703 | 873 |
| Fleet C : Estimate | 16302 | 12352 | 4427 | 5349 | 6275 |
| Fleet D : Estimate | 155 | 469 | 168 | 198 | 205 |
| Fleet F : Estimate | 19114 | 9001 | 5180 | 6250 | 7353 |

Table 3.9.13 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. $\mathrm{F}=0.15$

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.150 | 0.150 | 0.150 |
| fbar:low | 0.416 | 0.238 | 0.150 | 0.150 | 0.150 |
| fbar:high | 0.416 | 0.238 | 0.150 | 0.150 | 0.150 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 75092 | 86838 | 101160 |
| ssb:low | 74132 | 69743 | 75092 | 86838 | 101160 |
| ssb:high | 74132 | 69743 | 75092 | 86838 | 101160 |
| catch:Estimate | 36561 | 23367 | 15186 | 17594 | 20028 |
| catch:low | 36561 | 23367 | 15186 | 17594 | 20028 |
| catch:high | 36561 | 23367 | 15186 | 17594 | 20028 |

Per fleet

| Year | 2018 | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 851 | 967 | 1143 |
| Fleet C : Estimate | 16302 | 12352 | 6493 | 7543 | 8576 |
| Fleet D : Estimate | 155 | 469 | 248 | 287 | 295 |
| Fleet F : Estimate | 19114 | 9001 | 7593 | 8797 | 10014 |

Table 3.9.14 - WESTERN BALTIC SPRING SPAWNING HERRING. Multi fleet. Forecast table. Constant 2019 TAC

| Year | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fbar:Estimate | 0.416 | 0.238 | 0.222 | 0.202 | 0.182 |
| fbar:low | 0.416 | 0.238 | 0.222 | 0.202 | 0.182 |
| fbar:high | 0.416 | 0.238 | 0.222 | 0.202 | 0.182 |
| rec:Estimate | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:low | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| rec:high | 954391 | 1223484 | 1223484 | 1223484 | 1223484 |
| ssb:Estimate | 74132 | 69743 | 74532 | 80342 | 89893 |
| ssb:low | 74132 | 69743 | 74532 | 80342 | 89893 |
| ssb:high | 74132 | 69743 | 74532 | 80342 | 89893 |
| catch:Estimate | 36561 | 23367 | 23367 | 23367 | 23367 |
| catch:low | 36561 | 23367 | 23367 | 23367 | 23367 |
| catch:high | 36561 | 23367 | 23367 | 23367 | 23367 |

Per fleet

| Year | 2018 | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ | $\mathbf{2 0 2 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Fleet A : Estimate | 990 | 1545 | 1545 | 1545 | 1545 |
| Fleet C : Estimate | 16302 | 12352 | 12352 | 12352 | 12352 |
| Fleet D : Estimate | 155 | 469 | 469 | 469 | 469 |
| Fleet F : Estimate | 19114 | 9001 | 9001 | 9001 | 9001 |



Figure 3.1.1 Western Baltic Spring Spawning Herring. CATCH and TACs (1000 t) by area. Note, the TAC for Illa excludes the bycatch TAC, while the CATCH includes the bycatch


Figure 3.3.1 WESTERN BALTIC SPRING SPAWNING HERRING. Map showing the hauls used in the calculation of the IBTS+BITS-Q1 and IBTS+BITS-Q3.3 indices. Hauls colored by gear type.


Figure 3.5.1 WESTERN BALTIC SPRING SPAWNING HERRING. Correlation of 1 wr herring from GERAS with the N20 larvae index. Note the year lag between surveys. Labels show the year of the N20.

Mean weight at age in catch


Figure 3.6.1.1 WESTERN BALTIC SPRING SPAWNING HERRING. Weight (kg) at age as $\mathbf{W}$-ringers (wr) in the catch (WECA).


Figure 3.6.1.2 WESTERN BALTIC SPRING SPAWNING HERRING. Catch in weight. Upper panel: Catch in weight (1000 tons) at age as $\mathbf{W}$-ringers ( $\mathbf{w r}$ ). Lower panel: Proportion (by weight) of a given age as $\mathbf{W}$-ringers ( $\mathbf{w r}$ ) in the catch.

Number at age in catch


Figure 3.6.1.3 WESTERN BALTIC SPRING SPAWNING HERRING. Catch in Numbers. Upper panel: Catch in numbers (millions) at age as $\mathbf{W}$-ringers (wr). Lower panel: Proportion (by number) of a given age as $\mathbf{W}$-ringers ( $\mathbf{w r}$ ) in the catch.


Figure 3.6.1.4 WESTERN BALTIC SPRING SPAWNING HERRING. Weight (kg) at age as W-ringers (wr) in the catch (WEST).


Figure 3.6.4.1 WESTERN BALTIC SPRING SPAWNING HERRING. Stock summary plot. Spawning stock biomass (SSB). Estimates from the WBSS multi fleet (multi) and the WBSS single fleet (single) assessment runs and point wise 95\% confidence intervals are shown by line and shaded area.


Figure 3.6.4.2 WESTERN BALTIC SPRING SPAWNING HERRING. Stock summary plot. Average fishing mortality (F) for the shown age range. Estimates from the WBSS multi fleet (multi) and the WBSS single fleet (single) assessment runs and point wise $95 \%$ confidence intervals are shown by line and shaded area.


Figure 3.6.4.3 WESTERN BALTIC SPRING SPAWNING HERRING. Stock summary plot. Yearly recruitment (age 0 equal 0 Wringers). Estimates from the WBSS multi fleet (multi) and the WBSS single fleet (single) assessment runs and point wise $95 \%$ confidence intervals are shown by line and shaded area.

stockassessment.org, WBSS HAWG 2019, r10815, git: e2a30d42316c
Figure 3.6.4.4 WESTERN BALTIC SPRING SPAWNING HERRING. Recruitment at age 0-wr (in thousands) is plotted against spawning stock biomass (tonnes) as estimated by the assessment.


Figure 3.6.4.5 WESTERN BALTIC SPRING SPAWNING HERRING. Total catch in weight (tons). Prediction from the WBSS multi fleet (multi) and the WBSS single fleet (single) assessment runs and point wise $95 \%$ confidence intervals are shown by line and shaded area. The yearly observed total catch weight (crosses) are calculated sum of catch per fleet.


Figure 3.6.4.6 WESTERN BALTIC SPRING SPAWNING HERRING. Total catch in weight (tons) by fleet. Prediction from the WBSS multi fleet assessment run and point wise $95 \%$ confidence intervals are shown by line and shaded area. The plot also show the observed total catch weight per fleet (crosses)


Figure 3.6.4.7 WESTERN BALTIC SPRING SPAWNING HERRING. Estimated selection pattern at age as W-ringers (wr) per fleet and year. Order: 1 equal 1st year in the respective time span.


Figure 3.6.4.8 Western Baltic Spring Spawning Herring. Time-series of estimated fishing mortality-at-age as W-ringers (wr)


Figure 3.6.4.9 Western Baltic Spring Spawning Herring. Estimated survey catchabilities. N2O only covers an age 0 and therefore no line


Figure 3.6.4.10 WESTERN BALTIC SPRING SPAWNING HERRING. Estimates correlations between age groups for each fleet.


Figure 3.6.4.11 WESTERN BALTIC SPRING SPAWNING HERRING. Estimated age distribution in the stock. Colours represent a cohort

stockassessment.org. WBSS HAWG 2019, r10815, git: e2a30d42316

Figure 3.6.4.12 WESTERN BALTIC SPRING SPAWNING HERRING. Estimated observation variance in the WBSS multi fleet assessment run.


Figure 3.6.4.13 WESTERN BALTIC SPRING SPAWNING HERRING. BUBBLE PLOT. Standardized one-observation-ahead residuals from multi fleet run.


Figure 3.6.4.14 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. Fleet A. Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.


Figure 3.6.4.15 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. Fleet C. Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.


Figure 3.6.4.16 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. Fleet D. Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.


Figure 3.6.4.17 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. Fleet F. Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.


Figure 3.6.4.18 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of commercial catches fit per fleet. Sum of fleets Plot of predicted (line) and observed (points) catches (log scale) per W-ringers (a) and year.


Figure 3.6.4.19 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the HERAS index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.


Figure 3.6.4.20 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the GerAs index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.


Figure 3.6.4.21 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the N20 index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.


Figure 3.6.4.22 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the IBTS+BITS-Q1 index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.


Figure 3.6.4.23 WESTERN BALTIC SPRING SPAWNING HERRING. Diagnostics of the IBTS+BITS-Q3.4 index. Plot of predicted (line) and observed (points) index (log scale) per W-ringers (a) and year.

stockassessment.org, WBSS HAWG 2019, r10815, git: e2a30d42316c

Figure 3.6.4.24 WESTERN BALTIC SPRING SPAWNING HERRING. Analytical retrospective pattern over 5 years from multi fleet run. Spawning stock biomass.

stockassessment.org, WBSS HAWG 2019, r10815, git: e2a30d42316c

Figure 3.6.4.25 WESTERN BALTIC SPRING SPAWNING HERRING. Analytical retrospective pattern over 5 years from multi fleet run. Average fishing mortality for the shown age range.

stockassessment.org, WBSS HAWG 2019, r10815, git: e2a30d42316c

Figure 3.6.4.26 WESTERN BALTIC SPRING SPAWNING HERRING. Analytical retrospective pattern over 5 years from multi fleet run. Recruitment.

stockassessment.org, WBSS HAWG 2019, r10815, git: e2a30d42316c

Figure 3.6.4.27 WESTERN BALTIC SPRING SPAWNING HERRING. Analytical retrospective pattern over 5 years from multi fleet run. Catch.


Figure 3.6.4.28 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from single fleet run. Spawning stock biomass.


Figure 3.6.4.29 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from single fleet run. Average fishing mortality for the shown age range.


Figure 3.6.4.30 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from single fleet run. Recruitment.


Figure 3.6.4.31 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from single fleet run. Catch.

stockassessment.org, WBSS HAWG 2019, r10815, git: e2a30d42316c

Figure 3.6.4.32 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from multi fleet run. Spawning stock biomass.

stockassessment.org, WBSS HAWG 2019, r10815, git: e2a30d42316c

Figure 3.6.4.33 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from multi fleet run. Average fishing mortality for the shown age range.

stockassessment.org, WBSS HAWG 2019, r10815, git: e2a30d42316c

Figure 3.6.4.34 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from multi fleet run. Recruitment.

stockassessment.org, WBSS HAWG 2019, r10815, git: e2a30d42316c

Figure 3.6.4.35 WESTERN BALTIC SPRING SPAWNING HERRING. Leave-one out from multi fleet run. Catch.

## 4 Herring (Clupea harengus) in divisions $6 . a$ (combined) and 7.b-c


#### Abstract

This is the fifth time since 1982 that the working group presents a joint assessment of herring in Division 6.aN and 6.aS/7.b and 7.c. This follows from the benchmark workshop, ICES, WKWEST (2015). This benchmark was unable to differentiate the two stocks and although HAWG still considers them to be discrete, they will be assessed together as a meta-population until the combined survey indices can be successfully split. The WG noted that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout this section. However, if the word "age" is used, it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks, there is a difference of one year between "age" and "rings", which is not the case for the spring spawners. Further elaboration on the rationale behind this, specific to the 6.a, 7.b and 7.c autumn, winter and spring spawners, can be found in the Stock Annex. It is the responsibility of any user of age-based data for any of these herring stocks to consult the stock annex and if in doubt, consult a relevant member of the Working Group.


### 4.1 The Fishery

### 4.1.1 Advice applicable to 2016-2018

ICES gave separate advice for the constituent stocks up to 2015 and advice for the combined stocks since 2016.

After the benchmarking process in early 2015 (WKWEST, 2015), the stocks were assessed together. The management plans in place for either stock were no longer applicable for the combined stocks. Considering the low SSB and low recruitment estimated for the combined stocks in recent years, ICES advised in 2016 that it was not possible to identify any non-zero catch that would be compatible with the MSY and precautionary approach. There were no catch options consistent with the combined stocks recovering to above Blim, and consequently, ICES advised that the TAC be set at 0 t . In February 2016, the European Commission asked ICES to provide advice on a TAC of sufficiently small size to enable ongoing collection of fisheries-dependent data and continue the long-term catch-at-age dataset. ICES advised on a scientific monitoring TAC of 4840 t (with a TAC split of 3480 t to be taken in $6 . \mathrm{aN}$ and 1360 t in $6 . \mathrm{aS}$ and $7 . \mathrm{b}-\mathrm{c}$ (ICES, 2016a)). Furthermore, the data should be collected in a way that (i) satisfied standard length, age, and reproductive monitoring purposes by EU Member States for ICES, and (ii) ensured that sufficient spawning-specific samples were available for morphometric and genetic analyses as agreed by the Pelagic Advisory Council monitoring scheme 2016 (Pelagic Advisory Council, 2016).

The EC set a monitoring TAC slightly higher than this advice, at 5800 t (TAC split of 4170 t in 6.aN and 1630 t in $6 . \mathrm{aS}$ and 7.b-c; EU 2016/0203, and the same for 2017 (EU, 2017/127) and 2018 (EU2018/120).

### 4.1.2 Changes in the fishery

There have been no significant changes in the fishing technology of the fleets in this area in recent years. In 6.aN, the fishery has become restricted to the northern part of the area since 2006. Prior to 2006 there was a much more even distribution of effort, both temporally and spatially. In $6 . a S$, only two main areas have been fished in recent years, particularly in Lough Swilly and in inshore areas of Donegal Bay. There has been little effort in 7.b in recent years.

In 6.aN there were three fisheries prior to 2016, (i) a Scottish domestic pair trawl fleet and the Northern Irish fleet; (ii) the Scottish single boat trawl and purse-seine fleets and (iii) an international freezer-trawler fishery. In 6.aS a wide size range of pair and single trawlers predominate, and there are also small scale artisanal fisheries using drift and ringnets in coastal waters.

Since 2016 the fishery has been restricted to a monitoring fishery with a combined TAC of 5800 t , a significant reduction on the 2015 TAC of 22690 t for $6 . \mathrm{aN}$; in $6 . \mathrm{aS}$ and $7 . \mathrm{b}-\mathrm{c}$ the TAC was already zero in 2015. For a detailed description of the monitoring fisheries in $6 . \mathrm{aN}$ and $6 . \mathrm{aS} / 7 . \mathrm{b}-$ c see Section 5, this report.

### 4.1.3 Regulations and their affects

The $4^{\circ}$ meridian divides $6 . \mathrm{aN}$ from the North Sea stock. It is not clear if this boundary is appropriate, as it bisects some of the spawning grounds. Area misreporting is known to have occurred across the boundary. The north-south boundary between $6 . a \mathrm{~N}$ and $6 . \mathrm{aS}$ (56th parallel) is not appropriate as a boundary, because it traverses the spawning and feeding grounds of $6 . a S$ herring. Transboundary catches have occurred along this line in the past, although this has been less of an issue recently.

### 4.1.4 Catches in 2018

The Working Group's best estimate of removals from the stock is shown in Table 5.1.2 for the 6.aS and 7.b-c constituent stock and in Table 5.2.1 for the $6 . a \mathrm{~N}$ constituent stock.

### 4.2 Biological Composition of the Catch

Catch and sample data for the $6 . \mathrm{aS}, 7 . \mathrm{b}-\mathrm{c}$ and $6 . \mathrm{aN}$ constituent stocks were combined to construct the input data for the Herring in Division 6.a (Combined) and 7.b-c assessment. Catch numberand weight-at-age information is given in the stock assessment report Section 4.6 (cf tables 4.6.1a, b and 4.6.2a, b respectively).

The 2013 year class (age 4-wr) dominates both in the catches and the acoustic survey in 2018. This year class was already strongly represented at-age 3 wr in the 2017 catches. Previous stronger cohorts are less influential in the stock with small amounts of older fish present.

### 4.3 Fishery-independent Information

### 4.3.1 Acoustic surveys

An acoustic survey has been carried out in Division 6.aN by Marine Scotland Science in JuneJuly since 1991. It originally covered an area bounded by the 200 m depth contour in the north and west, to the $4^{\circ} \mathrm{W}$ in the east and extended south to $56^{\circ} \mathrm{N}$; it had provided an age-disaggregated index of abundance as the sole tuning index for the analytical assessment of $6 . a \mathrm{~N}$ herring
since 2002. In 2008, it was decided that this survey should be expanded into a larger coordinated summer survey on recommendation from WESTHER, HAWG and SGHERWAY (Hatfield et al., 2007; HAWG ICES, 2007; HAWG ICES, 2010a). The Scottish $6 . a \mathrm{~N}$ survey was augmented with the participation of the Irish Marine Institute and the area was expanded to cover all of ICES divisions 6.a and 7.b. The Malin Shelf Herring Acoustic Survey (MSHAS), as it is now known, has covered this increased geographical area in the period 2008 to 2018 as well as maintaining coverage of the original survey area in 6.aN.
The Malin Shelf herring estimate of SSB for 2018 is 159000 tonnes and 925 million individuals (Table 4.3.1.2), a slight increase compared to the 145000 tonnes and 798 million herring estimate in 2017. The estimate is still however very low in the time-series (Table 4.3.1.3). In 2018, 83\% of the biomass was observed north of $56^{\circ} \mathrm{N}$ (the geographic area included in the West of Scotland (6.aN index) in line with observations through the time-series. The West of Scotland (6.aN) estimate of SSB is 152000 tonnes and 875 million individuals (Table 5.2.4), an increase compared to the 139000 tonnes and 765 million herring estimate in 2017. Long-term indices of abundance per age class for West of Scotland herring are provided in Table 5.2.5. In 2018, the biomass of herring located in $6 . \mathrm{aS}$ and $7 . \mathrm{b}-\mathrm{c}$ during the MSHAS was 7000 tonnes.

Although there was a slight increase in the 2018 estimates for the Malin Shelf and West of Scotland compared to 2017, the estimates are still among the lowest in the time-series. The distribution of herring schools was similar to 2017 with some herring distributed south of $56^{\circ} \mathrm{N}$ line of latitude (WGIPS ICES, 2019). There were some strong herring marks found to the west and northwest of the Outer Hebrides and around St. Kilda in 2018 again. This year larger aggregations of herring were observed around the Northern end of the Hebrides, around the Butt of Lewis and the North Minch and on Stanton banks. These were predominantly juvenile herring. Herring has in the past been found in high densities to the east of the $4^{\circ} \mathrm{W}$ line in association with a specific bathymetric feature and the occurrence of these herring west of the line in some years has the ability to strongly influence the annual estimate of abundance of the Malin Shelf/West of Scotland estimates. There no evidence in 2018 that herring distributions in this area influenced the Malin Shelf/West of Scotland estimates. It appears that the increase in the 2017 and 2018 estimates compared to 2016 were a result of a greater spread in the distribution of herring rather than distributions occurring around the $4^{\circ} \mathrm{W}$ line.
In 2017, 3 to 6 winter ringed fish dominated the index representing $89 \%$ of both biomass and total abundance. This year (2018), the 2012- and 2013-year classes (age 4 and 5 winter rings in 2018) are still strong in the stock and comprised $20 \%$ of total abundance and $35 \%$ of the biomass. In contrast to recent years, a large proportion of the stock was made up of 1 and 2 winter ring fish this year ( $69 \%$ of the total abundance and $44 \%$ of total biomass). As 1 winter ring fish are only sporadically picked up in the survey due to their distribution typically being in the more inshore areas it cannot be confirmed yet whether 2016 is a strong year class, but it looks like the 2015-year class (2 winter ringers in 2018) is above average. Age disaggregated survey abundance indices for the West of Scotland and Malin Shelf (WoS_MSHAS) herring since 2008 are given in Table 4.3.1.3 and Figure 4.3.1.3.

The stock is highly contagious in its spatial distribution, which explains some of the high variability in the time-series. The survey covers the area at the time of year when aggregations of herring from both the $6 . \mathrm{aN}$ and $6 . \mathrm{aS}, 7 . \mathrm{b}-\mathrm{c}$ stocks are offshore feeding (i.e. not at spawning time). These distributions of offshore herring aggregations are considered to be more available to the survey compared to surveying spawning aggregations, which aggregate close to the seabed and are generally found inshore in areas unsuitable for the large vessels carrying out the summer acoustic surveys.

### 4.3.1.1 Industry-Science Acoustic survey

In 2016-2018 industry acoustic surveys of herring during the spawning and pre-spawning period were undertaken as part of the monitoring fishery on this stock. The surveys covers known active spawning grounds in both $6 . \mathrm{aN}$ and $6 . \mathrm{aS}, 7 \mathrm{~b}$ at spawning time and aims to provide estimates of minimum spawning stock size in each of the areas. Full results from the surveys can be found in (WGIPS ICES, 2019) and a summary for each of the components is in Section 05 of this report. Consistent with observations from other surveys, the industry acoustic/trawl survey recorded an abundance of juvenile herring, which has not previously been seen during these surveys (Figure 4.3.1.1.1)

### 4.3.2 Scottish Bottom-trawl surveys

Marine Scotland Science carries out two annual bottom-trawl surveys in western waters covering the herring stocks in ICES Division 6.a. The Scottish West Coast Ground fish survey in quarter 1 has been carried out in a consistent manner since 1987 and in quarter 4 since 1996. For quarter 1 in the years 1990-1993 age-data were not available on haul resolution and therefore the survey index for quarter 1 starts in 1994. For quarter 4 there were no survey in 2010, and in 2013 only part of the area were covered and the data were not included in the survey calculations. The two indices were recalculated in 2019 following an Interbenchmark procedure (IBPher6a7bc, ICES 2019).

The internal consistencies in the trawl surveys indicate ability to follow cohorts particularly in the Q1 and Q4 indices (figures 4.3.2.1 and 4.3.2.2). Historic retrospectives for the index calculations for Q1 and Q4 are given in Figures 4.3.2.5 and 4.3.2.6, no new data were added to the index calculations between the interbenchmark and the calculations for the assessment and the lines therefore overlap completely. For Q4 data from 2018 were added to the calculations after the interbenchmark and the two calculated Q 4 indices show good agreement.

The abundance of 2 winter ring fish were at higher levels earlier in the time-series particularly in quarter 1, but since 2003 older fish have been numerically more abundant in the index in both quarters (figures 4.3.2.3 and 4.3.2.4). Recent years show an increase in 3 wr for quarter 4 and an increase in 4 wr for the most recent year in quarter 1. Full details for the survey can be found in the Stock Annex.

### 4.4 Mean Weights-at-age, Maturity-at-age and natural mortality

### 4.4.1 Mean weight-at-age

Weights-at-age in the stock are obtained from the acoustic surveys and are given in Table 4.3.1.2 (for the current year) and Table 4.6 .3 (for the time-series). The weights-at-age in the stock have been declining since 2010 particularly for younger ages. Weights-at-age in the catches for $6 . \mathrm{aN}$ and $6 . a S, 7 . \mathrm{bc}$ are presented separately in Table 4.6 .2 a and 4.6 .2 b and are used separately in the multi fleet assessment. Both areas show fluctuations in catch weights over time. In several years no 1 winter ring fish have been taken in the $6 . \mathrm{aN}$ fishery. In 2018 the catch weights have decreased slightly for most age classes.

### 4.4.2 Maturity ogive

The maturity ogive is obtained from the acoustic survey (Table 4.3.1.2, Figure 4.4.2.1). The Malin Shelf Acoustic Survey (MSHAS) provides estimated values for the period 2008 to 2018 (cf. Table 4.6.5). For earlier years, the maturity ogive is as per the $6 . \mathrm{aN}$ stock, and from 1991 is taken from the geographically split west of Scotland acoustic survey. The proportion mature of ages 2,3and 4 -wr in 2018 were lower than in 2016 and 2017 (Figure 4.4.2.1). A greater proportion of immature fish were encountered in the survey in 2018 than in previous years.

### 4.4.3 Natural mortality

The natural mortality used in previous assessments of several herring stocks to the West of Scotland, including 6.aN, were based on the results of a multispecies VPA for North Sea herring calculated by the ICES multispecies working group in 1987 (ICES, 1987). From 2012 onwards the assessment of North Sea herring has used variable estimates of M-at-age derived from a new multispecies stock assessment model, the SMS model, used in WGSAM (Lewy and Vinther, 2004; ICES, 2011).

The most recent benchmark of herring in Division 6.a and 7.b-c (WKWEST 2015) agreed to use the natural mortalities for North Sea herring from the current North Sea multispecies model, as it is deemed the best available proxy for natural mortality of herring in $6 . a$ and $7 . \mathrm{b}-\mathrm{c}$. The input data to the assessment of herring in divisions $6 . \mathrm{a}$ and $7 . \mathrm{b}-\mathrm{c}$ are averaged annual M values from the 2011 SMS key run (period 1974-2010) for each age (Table 4.6.4). This approach is similar to the pre-benchmarked assessment in that it is time invariant and age variant. This time-series reflects the most recent period of stability in terms of M from the North Sea SMS as it excludes the gadoid outburst of the 1960 which is of little relevance to present day conditions.

Detailed explanation regarding the natural mortality estimates can be found in the Stock Annex.

### 4.5 Recruitment

There are no specific recruitment indices for this stock. Although both the catch and the surveys generally have some catches at 1-wr, both the fishery and survey encounter this age group only incidentally. The first reliable appearance of a cohort appears at $2-\mathrm{wr}$ in both the catch and the stock.

### 4.6 Assessment of 6.a and 7.b-c herring

The assessment presented here follows the procedure agreed by the recent interbenchmark (IBPher6a7bc, ICES 2019). The tool for the assessment of herring in $6 . a$ and $7 . b-c$ is a multi-fleet implementation of the State-space Assessment Model (www.stockassessment.org), embedded inside the FLR library (Kell et al., 2007).

## Data Exploration

A comparison of the age structure in each of the data sources is presented in Figure 4.3.1.1 there is generally good agreement between the catch data and the tuning indices. In some years the acoustic survey picks up a higher proportion of 1 winter ring fish but this is variable between years.

The internal consistency from the combined acoustic survey is presented in Figure 4.3.1.2. The best agreement is seen for older ages and is poor for the younger ages. The survey estimates were slightly higher in 2018 than 2017. The internal consistency for the IBTS survey Q1 (Figure 4.3.2.1)
and Q4 (Figure 4.3.2.2) is similar across all ages. The poorest consistency can be seen for 9 wr in the IBTS Q4.

The two trawl surveys and the West of Scotland acoustic surveys were updated and the methods used are the same as the interbenchmark (IBPher6a7bc, ICES 2019). Both of the trawl surveys have obvious year effects (1998 and 2004 in IBTS-Q1 and 2000-2002 in IBTS-Q4), and are generally noisy with low internal consistencies (Figures 4.3.2.1 and 4.3.2.2). Similarly for the West of Scotland acoustic survey which has a marked year effect in 2005.

## Assessment

The catch residuals are presented for 6.aN in Figure 4.6.1. The biggest residuals can be seen in the earliest part of the time series. The residuals from 6.aS, 7.b, c are presented in Figure 4.6.2 and show the biggest residuals at older ages in the most recent years. This is unsurprising because there are very few older ages present in this tuning series. There are no age or year effects in the residuals.

The residuals from each of the tuning series are also presented. The combined acoustic survey (Figure 4.6.3) shows the smallest residuals overall. The IBTS Q1 (Figure 4.6.4) and IBTS Q4 (Figure 4.6.5) both show the largest residuals for younger and older age classes. In the previous assessment strong year effects were seen in both of these surveys. Adding correlation to the survey observations in the updated assessment has fixed this problem.

The estimated observation variance parameters for each data set fitted by the model are presented in Figure 4.6.6. The model is influenced largely by information from the catch in both North and South followed by the acoustic survey (combined WOS MSHERAS) ages 3-6. The youngest age ( 1 wr ) in both the catch data from the North and South have a higher variance compared to older ages and contribute less to the model fit.

The observation variance by data source as estimated by the assessment model plotted against the CV estimate of the observation variance parameter and presented in Figure 4.6.7. The uncertainty associated with the parameters estimated is low for most data (Figure 4.6.7). The IBTS Q4 age 2 wr have a low observation variance and a high CV value. The CVs do not indicate a lack of convergence of the assessment model.

The estimated catchability for each of the tuning indices is presented in Figure 4.6.8. The catchability in the acoustic survey remains a problem in this update assessment Catchability is free for all ages and is only bound for the two oldest ages. The assessment shows catchability to be increasing towards the oldest ages reaching values of almost 6 . It is not clear what is causing this catchability pattern or why the catchability is so high. The IBTS surveys show a similar catchability pattern but the magnitude of the estimates is lower.

Figure 4.6 .9 shows the correlation plot of the parameters estimated in the model. The horizontal and vertical axes show the parameters fitted by the model (labelled with names stored and fitted by FLSAM). The colouring of each pixel indicates the Pearson correlation between the two parameters. The diagonal represents the correlation with the data source itself.

Uncertainty estimates from this assessment of recruitment, SSB and Mean F are shown in Figure 4.6.10. The highest uncertainty can be seen for recruitment in the terminal year. This is unsurprising given that there is no independent index of recruitment in this assessment.

Figure 4.6 .11 shows the trajectories for SSB , recruitment and mean F over the complete timeseries from 1957-2018. SSB peaked in the early 1970s and has been declining steadily since 2004. Recruitment also peaked in the early period of the time-series with no comparatively strong year classes evident in recent years. Since 2010, recruitment has dropped to an even lower level. Fishing mortality was at its highest in the early 1970s. The zero catch advice in 2016, 2017 and 2018 and the resulting monitoring fishery has decreased F.

The analytical retrospective for this stock is shown in Figure 4.6.12. The 2018 assessment had a strong retrospective bias in SSB, pulling down the series as far back as the mid-1980s (ICES, 2018). The changes applied to the assessment following the interbenchmark have improved the retrospective but bias is still present. The Mohn's Rho on 5 year peels is -23 .

The diagnostics of the assessment model fit to each of the individual data sources, catch N , catch S, WOS_MSHAS, IBTSQ1 and IBTS Q4 by age are presented in figures 4.6.13-4.6.57. These plots show a good fit to the catch data. Some divergence can be seen between observed and predicted values at some ages in the tuning data particularly the IBTS Q4 in more recent years.

The final assessment in 2018 and 2019 are compared in Figure 4.6.58. The new assessment shows a very different perception of stock status. The SSB has been significantly revised downwards and F has been revised upwards. Recruitment has also been revised downwards. SSB and recruitment are at very low levels with decreases in F evident in recent years.

### 4.6.1 Final Assessment for 6.a and 7.b-c herring

In accordance with the settings described in the Stock Annex, the final assessment of 6.a and 7.bc herring was carried out by fitting a State-space model (multi fleet SAM, in the FLR environment). This follows on from the interbenchmark in early 2019 (IBPher6a7bc, ICES 2019).

### 4.6.2 State of the combined stocks

Fishing mortality has been reduced since the introduction of zero catch advice and in line with the monitoring TAC in 2016. However, there is no information on the F on each of the constituent stocks. Unless the two stocks are of equal size, F on the smaller stock will be higher than indicated in the overall F. SSB has decreased steadily since 2003. SSB in 2018 is estimated to be at a very low level. Recruitment has been low with no big cohorts evident in recent years. Recent catches have been amongst the lowest in the time-series.

### 4.7 Short-term Projections

### 4.7.1 Short-term projections

No short term projections were carried out in 2019.

### 4.7.2 Yield per Recruit

No yield per recruit analysis was conducted at HAWG 2019.

### 4.8 Precautionary and Yield Based Reference Points

The change in perception of SSB and recruitment had a profound effect on the breakpoints estimated by the segmented regression analysis. IBPher6a7bc concluded that after a considerable amount of work being carried out within the interbenchmark and given all the uncertainties and the inability to estimate several reference points, the IBP decided not to present any reference points for 6.a, 7.bc herring. It is anticipated that a full benchmark will be carried out within a few years which hopefully will allow the two separate stocks to again be assessed independently. That would also be the time to revisit the estimation of reference points (IBPher6a7bc, ICES 2019).

### 4.9 Quality of the Assessment

This assessment combines two separate stocks, as estimation of independent stock sizes was not possible. These stocks are $6 . a \mathrm{~N}$ herring and $6 . \mathrm{aS} / 7 . \mathrm{b}-\mathrm{c}$ herring. The stock went through an interbenchmark in 2019. Improvements were made to the input data. The IBTS data series was recalculated using the delta GAM method and the acoustic surveys were combined into a single tuning index. The model was changed to a multi fleet SAM assessment with data from $6 . a \mathrm{~N}$ and 6.aS 7.bc treated separately. The updated assessment provides the best statistical fit to the input data, but the assessment still has a strong retrospective bias. There is also a pattern of increasing catchability with age for the acoustic survey data which cannot be explained, given what would reasonably be expected for an acoustic survey.

The assessment does not provide any information on the state of either constituent stock. The fishing mortality information from this assessment is not informative of the mortality being experienced by either stock. The overall F may mask important differences in $F$ between the stocks. Unless the two stocks are of equal size, which is not likely, the smaller stock may be experiencing a much higher $F$ than the overall $F$ estimates imply.

SSB is at a very low level. Recruitment is estimated to be the lowest in the series. This reflects very low numbers of 1-wr fish in the catches in recent years. Since 2012, there have been very few 1 -wr herring observed in the 6.a (combined) and 7.b-c fishery.

The updated assessment shows a very different perception of the stock with SSB and recruitment revised downwards and at very low levels. The fishing mortality has been revised upward with a decrease evident since the introduction of the monitoring TAC in 2016.

The interbenchmark points to continued concerns with the quality of the combined assessment and how well it is able to represent the dynamics of the separate stocks and fisheries in $6 . a \mathrm{~N}$ and 6.aS/7.bc. The new model remains sensitive to assumptions on age-dependent catchabilities, lack of information on recruitment and the abundance of fish of younger ages. Given unresolved issues with the assessment it was used as indicative of trends only.

### 4.10 Management Considerations

There is anecdotal evidence that the stocks are not the same size and managers are advised to ensure that any exploitation pattern imposed in this area ensures that the smaller, more vulnerable, stock is not over-exploited. There is a clear need to determine the relative stock sizes and to ensure that the smaller / weaker stock is adequately assessed and protected from over-exploitation.

The working group suggests that it returns to assessing each discrete, constituent stock in this area separately when methods allow doing so. Until that is possible, a joint assessment is necessary.

A research project is currently underway to assess the identity of herring stocks in this area through genetic analysis. The project also aims to develop genetic profiles of these stocks, which can be used in the future to discriminate the stocks even during times of mixing. The final results of this project are expected at the end of 2020. It is anticipated that when these results are available it will be possible to carry out a full benchmark on these stocks.

In its autumn 2015 plenary report, STECF noted that from a stock assessment perspective, it would be beneficial to allow small catches to maintain an uninterrupted time-series of fisherydependent catch data from the stocks in both management areas ( $6 . \mathrm{aN}$ and $6 . \mathrm{aS} / 7 . \mathrm{b}-\mathrm{c}$ ). The monitoring TAC taken in 2016-2018 and agreed for 2019 (5800 t) is associated with decreased F.

### 4.11 Ecosystem Considerations

Herring constitute some of the highest biomass of forage fish to the west of Scotland and Ireland, and are thus an integral part of the ecosystem. As a dominant planktivore, herring link zooplankton production with higher trophic level predators that eat them, including fish, sea mammals and birds. Ecosystem models of the West of Scotland (Bailey et al., 2011; Alexander et al., 2015) show herring to be an important mid-trophic level species along with sprat, sandeel, and horse mackerel. They can also act as predators on other fish species by their predation on fish eggs at certain times of year (ICES, WGSAM 2012). Recent work, using length-based ecosystem modelling, suggests a link between herring biomass and North Sea cod (Speirs et al., 2010), via the predation of cod eggs by herring.

There is no ecosystem model that covers the whole of the $6 . a$ and $7 . b-c$ area, so it is difficult to predict the impact of increasing or reducing the herring biomass on the ecosystem functioning as a whole. However, as herring constitute an important part of the overall biomass of plankton feeding and forage fish in the west of Scotland and Ireland ecosystem, impacts from changes in productivity from environmental drivers are likely to be widely felt.

Observers monitor some of the fleets. Herring fisheries tend to be clean with little bycatch of other fish. Scottish pelagic discard observer programs since 1999 and more recently Dutch observers indicate that discarding of herring in these directed fisheries is at a low level. The Scottish pelagic discard observer programme has recorded occasional catches of seals and zero catches of cetaceans in the past. Unfortunately, the Scottish pelagic discard observer programme is no longer active.

### 4.12 Changes in the Environment

Grainger (1978; 1980) found significant negative correlations between sea surface temperature and catches from the west of Ireland component of this stock at a time lag of 3-4 years later. This indicates that recruitment responds favourably to cooler temperatures. The influence of the environment on herring productivity means that the biomass will always fluctuate (Dickey-Collas et al., 2010). Temperature trends are similar for the sea area to the west of Scotland and the North Sea. The broad trend in oceanic temperatures over the period 1900-2006 is for warming. Oceanic temperatures around the Scottish coast for the period (1970-2006) have increased by $\sim 0.5^{\circ} \mathrm{C}$ (Baxter et al., 2008). Salinity and surface temperature of coastal waters around the Scottish coast also shows a slight increasing trend over the same time period.

The environmental conditions in the North Sea and west of Scotland are similarly impacted by climate change, with trends in oceanic temperature, sea surface temperature and salinity all increasing over recent decades around the coast of Scotland. Climate models predict a future increase in air and water temperature and a change in wind, cloud cover and precipitation in Europe (Drinkwater, 2010).

Table 4.3.1.2. Herring in Divisions 6.a (combined) and 7.b-c. Total numbers (millions) and biomass (thousands of tonnes) of Malin Shelf herring (6.a.N-S, 7.b and 7.c) June-July 2018. Mean weights, mean lengths and fraction mature by age ring.

| Age (ring) | Numbers | Biomass | Maturity | Weight (g) | Length (cm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 294 | 0.7 | 0.00 | 2.5 | 6.6 |
| 1 | 1289 | 64.2 | 0.00 | 49.8 | 17.7 |
| 2 | 447 | 47.9 | 0.40 | 107.0 | 22.7 |
| 3 | 106 | 16.2 | 0.85 | 152.1 | 25.4 |
| 4 | 343 | 60.2 | 0.98 | 175.8 | 26.8 |
| 5 | 153 | 29.1 | 0.98 | 190.0 | 27.5 |
| 6 | 52 | 10.8 | 1.00 | 208.8 | 28.6 |
| 7 | 72 | 15.1 | 1.00 | 209.4 | 28.8 |
| 8 | 27 | 5.8 | 1.00 | 218.0 | 29.1 |
| 9+ | 13 | 3.0 | 1.00 | 224.4 | 29.4 |
| Immature | 1872 | 95 |  | 50.5 | 16.7 |
| Mature | 925 | 159 |  | 171.4 | 26.5 |
| Total | 2797 | 253 | 0.33 | 90.5 | 19.9 |

Table 4.3.1.3. Herring in Divisions 6.a (combined) and 7.b-c. Numbers-at-age (millions) and SSB (thousands of tonnes) of Malin Shelf herring acoustic survey combined with West of Scotland acoustic survey (WoS_MSHAS) (6.a.N-S, 7.b and 7.c) time-series. Age (rings) from acoustic surveys 1991 to 2018.

| Year\Age (Rings) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | SSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 338 | 294 | 328 | 368 | 488 | 176 | 99 | 90 | 58 | 410 |
| 1992 | 74 | 503 | 211 | 258 | 415 | 240 | 106 | 57 | 63 | 351 |
| 1993 | 2 | 579 | 690 | 689 | 565 | 900 | 296 | 158 | 161 | 845 |
| 1994 | 494 | 542 | 608 | 286 | 307 | 268 | 407 | 174 | 132 | 534 |
| 1995 | 441 | 1103 | 473 | 450 | 153 | 187 | 169 | 237 | 202 | 452 |
| 1996 | 41 | 576 | 803 | 329 | 95 | 61 | 77 | 78 | 115 | 370 |
| 1997 | 792 | 642 | 286 | 167 | 66 | 50 | 16 | 29 | 24 | 175 |
| 1998 | 1222 | 795 | 667 | 471 | 179 | 79 | 28 | 14 | 37 | 376 |
| 1999 | 534 | 322 | 1388 | 432 | 308 | 139 | 87 | 28 | 35 | 460 |
| 2000 | 448 | 316 | 337 | 900 | 393 | 248 | 200 | 95 | 65 | 445 |
| 2001 | 313 | 1062 | 218 | 173 | 438 | 133 | 103 | 52 | 35 | 359 |
| 2002 | 425 | 436 | 1437 | 200 | 162 | 424 | 152 | 68 | 60 | 549 |
| 2003 | 439 | 1039 | 933 | 1472 | 181 | 129 | 347 | 114 | 75 | 739 |
| 2004 | 564 | 275 | 760 | 442 | 577 | 56 | 62 | 82 | 76 | 396 |
| 2005 | 50 | 243 | 230 | 423 | 245 | 153 | 13 | 39 | 27 | 223 |
| 2006 | 112 | 835 | 388 | 285 | 582 | 415 | 227 | 22 | 59 | 472 |
| 2007 | 0 | 126 | 294 | 203 | 145 | 347 | 243 | 164 | 32 | 299 |
| 2008 | 50 | 267 | 996 | 720 | 363 | 331 | 744 | 386 | 274 | 841 |
| 2009 | 773 | 265 | 274 | 444 | 380 | 225 | 193 | 500 | 456 | 593 |
| 2010 | 133 | 375 | 374 | 242 | 173 | 146 | 102 | 100 | 297 | 366 |
| 2011 | 63 | 257 | 900 | 485 | 213 | 228 | 205 | 113 | 264 | 494 |
| 2012 | 796 | 548 | 832 | 517 | 249 | 115 | 111 | 57 | 105 | 427 |
| 2013 | 0 | 209 | 434 | 672 | 195 | 71 | 61 | 29 | 37 | 282 |
| 2014 | 1012 | 278 | 242 | 502 | 534 | 148 | 33 | 19 | 13 | 285 |
| 2015 | 0 | 212 | 397 | 747 | 423 | 476 | 90 | 24 | 2 | 430 |
| 2016 | 0 | 30 | 108 | 88 | 112 | 79 | 62 | 6 | 1 | 88 |
| 2017 | 0 | 25 | 339 | 155 | 106 | 110 | 47 | 13 | 5 | 145 |
| 2018 | 1289 | 447 | 106 | 343 | 153 | 52 | 72 | 27 | 13 | 159 |

Table 4.6.1a. Herring in $6 . a$ (combined) and 7.b-c. CATCH-IN-NUMBER for 6.aN

| age | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6496 | 15616 | 53092 | 3561 | 13081 | 55048 | 11796 | 26546 | 299483 | 211675 | 207947 |
| 2 | 74622 | 30980 | 67972 | 102124 | 45195 | 92805 | 78247 | 82611 | 19767 | 500853 | 27416 |
| 3 | 58086 | 145394 | 35263 | 60290 | 61619 | 22278 | 53455 | 70076 | 62642 | 33456 | 218689 |
| 4 | 25762 | 39070 | 116390 | 22781 | 33125 | 67454 | 11859 | 26680 | 59375 | 60502 | 37069 |
| 5 | 33979 | 24908 | 24946 | 48881 | 22501 | 44357 | 40517 | 7283 | 22265 | 40908 | 39246 |
| 6 | 19890 | 27630 | 17332 | 11631 | 12412 | 19759 | 26170 | 24227 | 5120 | 19344 | 29793 |
| 7 | 8885 | 17405 | 16999 | 10347 | 5345 | 24139 | 8687 | 18637 | 22891 | 5563 | 11770 |
| 8 | 1427 | 9857 | 7372 | 6346 | 4814 | 6147 | 13662 | 8797 | 18925 | 17811 | 5533 |
| 9 | 4423 | 7159 | 8595 | 4617 | 2582 | 7082 | 6088 | 15103 | 19531 | 27083 | 25799 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| age | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 |
| 1 | 220255 | 37706 | 238226 | 207711 | 534963 | 51170 | 309016 | 172879 | 69053 | 34836 | 22525 |
| 2 | 94438 | 92561 | 99014 | 335083 | 621496 | 235627 | 124944 | 202087 | 319604 | 47739 | 46284 |
| 3 | 20998 | 71907 | 253719 | 412816 | 175137 | 808267 | 151025 | 89066 | 101548 | 95834 | 20587 |
| 4 | 159122 | 23314 | 111897 | 302208 | 54205 | 131484 | 519178 | 63701 | 35502 | 22117 | 40692 |
| 5 | 13988 | 211243 | 27741 | 101957 | 66714 | 63071 | 82466 | 188202 | 25195 | 10083 | 6879 |
| 6 | 23582 | 21011 | 142399 | 25557 | 25716 | 54642 | 49683 | 30601 | 76289 | 12211 | 3833 |
| 7 | 15677 | 42762 | 21609 | 154424 | 10342 | 18242 | 34629 | 12297 | 10918 | 20992 | 2100 |
| 8 | 6377 | 26031 | 27073 | 16818 | 55763 | 6506 | 22470 | 13121 | 3914 | 2758 | 6278 |
| 9 | 10814 | 26207 | 24082 | 31999 | 16631 | 32223 | 21042 | 13698 | 12014 | 1486 | 1544 |


| age | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 247 | 2692 | 36740 | 13304 | 81923 | 2207 | 40794 | 33768 | 19463 | 1708 | 6216 |
| 2 | 142 | 279 | 77961 | 250010 | 77810 | 188778 | 68845 | 154963 | 65954 | 119376 | 36763 |
| 3 | 77 | 95 | 105600 | 72179 | 92743 | 49828 | 148399 | 86072 | 45463 | 41735 | 109501 |
| 4 | 19 | 51 | 61341 | 93544 | 29262 | 35001 | 17214 | 118860 | 32025 | 28421 | 18923 |
| 5 | 13 | 13 | 21473 | 58452 | 42535 | 14948 | 15211 | 18836 | 50119 | 19761 | 18109 |
| 6 | 8 | 9 | 12623 | 23580 | 27318 | 11366 | 6631 | 18000 | 8429 | 28555 | 7589 |
| 7 | 4 | 8 | 11583 | 11516 | 14709 | 9300 | 6907 | 2578 | 7307 | 3252 | 15012 |
| 8 | 1 | 1 | 1309 | 13814 | 8437 | 4427 | 3323 | 1427 | 3508 | 2222 | 1622 |
| 9 | 0 | 0 | 1326 | 4027 | 8484 | 1959 | 2189 | 1971 | 5983 | 2360 | 3505 |


| age | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 14294 | 26396 | 5253 | 17719 | 1728 | 266 | 1952 | 1193 | 9092 | 7635 | 4511.46 |
| 2 | 40867 | 23013 | 24469 | 95288 | 36554 | 82176 | 37854 | 55810 | 74167 | 35252 | 22960.61 |
| 3 | 40779 | 25229 | 24922 | 18710 | 40193 | 30398 | 30899 | 34966 | 34571 | 93910 | 21825.16 |
| 4 | 74279 | 28212 | 23733 | 10978 | 6007 | 21272 | 9219 | 31657 | 31905 | 25078 | 51420.22 |
| 5 | 26520 | 37517 | 21817 | 13269 | 7433 | 5376 | 7508 | 23118 | 22872 | 13364 | 15504.75 |
| 6 | 13305 | 13533 | 33869 | 14801 | 8101 | 4205 | 2501 | 17500 | 14372 | 7529 | 9002.21 |
| 7 | 9878 | 7581 | 6351 | 19186 | 10515 | 8805 | 4700 | 10331 | 8641 | 3251 | 3897.69 |
| 8 | 21456 | 6892 | 4317 | 4711 | 12158 | 7971 | 8458 | 5213 | 2825 | 1257 | 1835.56 |
| 9 | 5522 | 4456 | 5511 | 3740 | 10206 | 9787 | 31108 | 9883 | 3327 | 1089 | 576.39 |
| year |  |  |  |  |  |  |  |  |  |  |  |


| 8 | 4741.98 | 1547.87 | 9187.62 | 9023.67 | 1194.95 | 3041.71 | 13585.45 | 8142.31 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 9 | 1028.78 | 1422.68 | 1407.96 | 4265.93 | 1430.76 | 5088.99 | 4242.60 | 8968.60 |
| age | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 1 | 1923.62 | 10074.12 | 1667.19 | 979.53 | 0.00 | 0.00 | 231.18 | 12 |
| 2 | 11508.54 | 20339.85 | 40587.92 | 14952.63 | 13681.14 | 8705.73 | 10854.96 | 8148 |
| 3 | 10475.63 | 16331.31 | 15782.93 | 46647.39 | 18181.74 | 15144.82 | 13937.56 | 3341 |
| 4 | 16586.96 | 9957.96 | 10333.90 | 9704.45 | 53116.88 | 21063.66 | 15716.60 | 3197 |
| 5 | 8332.17 | 14608.15 | 7190.29 | 8097.30 | 11681.99 | 42229.47 | 19386.70 | 2791 |
| 6 | 5688.68 | 6322.33 | 5071.43 | 6311.66 | 7093.01 | 7130.95 | 21621.33 | 2821 |
| 7 | 7514.70 | 4322.24 | 3164.16 | 3873.67 | 5098.64 | 2944.09 | 6397.35 | 3148 |
| 8 | 11793.98 | 5388.91 | 2611.38 | 1129.80 | 4324.63 | 2854.21 | 1932.73 | 739 |
| 9 | 9443.85 | 13199.28 | 7225.68 | 4013.80 | 5031.77 | 3511.43 | 1250.55 | 431 |
| age | 2017 | 2018 |  |  |  |  |  |  |
| 1 | 0.00 | 0.00 |  |  |  |  |  |  |
| 2 | 1122.16 | 1508.98 |  |  |  |  |  |  |
| 3 | 11929.71 | 3215.53 |  |  |  |  |  |  |
| 4 | 4082.50 | 6873.26 |  |  |  |  |  |  |
| 5 | 2075.35 | 5253.61 |  |  |  |  |  |  |
| 6 | 1443.79 | 3068.25 |  |  |  |  |  |  |
| 7 | 1416.35 | 844.50 |  |  |  |  |  |  |
| 8 | 767.37 | 852.31 |  |  |  |  |  |  |
| 9 | 273.34 | 680.89 |  |  |  |  |  |  |

## Table 4.6.1b Herring in 6.a (combined) and 7.b-c. CATCH-IN-NUMBER for 6.aS/7.bc.

year

| age | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 100 | 1060 | 516 | 1768 | 259 | 132 | 88 | 234 | 0 | 0 | 574 | 1495 |
| 2 | 7709 | 3349 | 7251 | 18221 | 7129 | 7170 | 6446 | 7030 | 3847 | 16809 | 1232 | 10192 | 15038 |
| 3 | 9965 | 9410 | 3585 | 7373 | 14342 | 5535 | 5929 | 5903 | 10135 | 11894 | 55013 | 4702 | 13013 |
| 4 | 1394 | 6130 | 8642 | 3551 | 6598 | 10427 | 2032 | 4048 | 9008 | 10319 | 12681 | 78638 | 4410 |
| 5 | 6235 | 4065 | 3222 | 2284 | 2481 | 5235 | 3192 | 2195 | 2426 | 7392 | 9071 | 5316 | 54809 |
| 6 | 2062 | 5584 | 1757 | 770 | 2392 | 3322 | 3541 | 3972 | 2019 | 3356 | 6348 | 4534 | 4918 |
| 7 | 943 | 3279 | 2002 | 1020 | 566 | 4111 | 2079 | 3779 | 6349 | 7112 | 3455 | 1889 | 3234 |
| 8 | 287 | 1192 | 858 | 578 | 706 | 1653 | 1293 | 1830 | 2737 | 2987 | 4862 | 839 | 1954 |
| 9 | 490 | 2195 | 839 | 326 | 387 | 1525 | 2517 | 3559 | 4276 | 6109 | 8165 | 3340 | 3136 |


| year |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| age | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
| 1 | 135 | 883 | 1001 | 6423 | 3374 | 7360 | 16613 | 4485 | 10170 | 5919 | 2856 | 1620 |
| 2 | 35114 | 6177 | 28786 | 40390 | 29406 | 41308 | 29011 | 44512 | 40320 | 50071 | 40058 | 22265 |
| 3 | 26007 | 7038 | 20534 | 47389 | 41116 | 25117 | 37512 | 13396 | 27079 | 19161 | 64946 | 41794 |
| 4 | 13243 | 10856 | 6191 | 16863 | 44579 | 29192 | 26544 | 17176 | 13308 | 19969 | 25140 | 31460 |
| 5 | 3895 | 8826 | 11145 | 7432 | 17857 | 23718 | 25317 | 12209 | 10685 | 9349 | 22126 | 12812 |
| 6 | 40181 | 3938 | 10057 | 12383 | 8882 | 10703 | 15000 | 9924 | 5356 | 8422 | 7748 | 12746 |
| 7 | 2982 | 40553 | 4243 | 9191 | 10901 | 5909 | 5208 | 5534 | 4270 | 5443 | 6946 | 3461 |
| 8 | 1667 | 2286 | 47182 | 1969 | 10272 | 9378 | 3596 | 1360 | 3638 | 4423 | 4344 | 2735 |
| 9 | 1911 | 2160 | 4305 | 50980 | 30549 | 32029 | 15703 | 4150 | 3324 | 4090 | 5334 | 5220 |

    year
    age 19 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 1 | 748 | 1517 | 2794 | 9606 | 918 | 12149 | 0 | 2241 | 878 | 675 | 2592 | 191 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$21813643688 \quad 81481 \quad 151432711044160 \quad 29135 \quad 6919 \quad 24977 \quad 344371551920562$
$31700449534286606735527818 \quad 802134630078842 \quad 19500 \quad 278104253222666$
42822025316178541275666383415044100826149151978124202683941967

| 5 | 18280 | 31782 | 7190 | 11241 | 14644 | 99222 | 23381 | 21481 | 24362 | 100444 | 12565 | 23379 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 8121 | 18320 | 12836 | 7638 | 7988 | 15226 | 45692 | 15008 | 20164 | 17921 | 73307 | 13547 |  |
| 7 | 4089 | 6695 | 5974 | 9185 | 5696 | 12639 | 6946 | 24917 | 16314 | 14865 | 8535 | 67265 |  |
| 8 | 3249 | 3329 | 2008 | 7587 | 5422 | 6082 | 2482 | 4213 | 8184 | 11311 | 8203 | 7671 |  |
| 9 | 2875 | 4251 | 4020 | 2168 | 2127 | 10187 | 1964 | 3036 | 1130 | 7660 | 6286 | 6013 |  |
| year |  |  |  |  |  |  |  |  |  |  |  |  |  |
| age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |  |
| 1 | 11709 | 284 | 4776 | 7458 | 7437 | 2392 | 4101 | 2316 | 4058 | 1731 | 1401 | 209 |  |
| 2 | 56156 | 34471 | 24424 | 56329 | 72777 | 51254 | 34564 | 21717 | 32640 | 32819 | 15122 | 28123 |  |
| 3 | 31225 | 35414 | 69307 | 25946 | 80612 | 61329 | 38925 | 21780 | 37749 | 28714 | 32992 | 30896 |  |
| 4 | 16877 | 18617 | 31128 | 38742 | 38326 | 34901 | 30706 | 17533 | 18882 | 24189 | 19720 | 26887 |  |
| 5 | 21772 | 19133 | 9842 | 14583 | 30165 | 10092 | 13345 | 18450 | 11623 | 9432 | 9006 | 10774 |  |
| 6 | 13644 | 16081 | 15314 | 5977 | 9138 | 5887 | 2735 | 9953 | 10215 | 5176 | 4924 | 5452 |  |
| 7 | 8597 | 5749 | 8158 | 8351 | 5282 | 1880 | 1464 | 1741 | 2747 | 2525 | 1547 | 1348 |  |
| 8 | 31729 | 8585 | 12463 | 3418 | 3434 | 1086 | 690 | 1027 | 1605 | 923 | 975 | 858 |  |
| 9 | 10093 | 14215 | 6472 | 4264 | 2942 | 949 | 1602 | 508 | 644 | 303 | 323 | 243 |  |
| year |  |  |  |  |  |  |  |  |  |  |  |  |  |
| age | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| 1 | 598 | 76 | 483 | 202 | 1271 | 121 | 5142 | 61 | 34 | 22 | 69 | 30 | 6 |
| 2 | 22036 | 24577 | 12265 | 12574 | 13507 | 14207 | 12844 | 3118 | 465 | 1320 | 1983 | 1051 | 1567 |
| 3 | 36700 | 43958 | 19661 | 12077 | 20127 | 9315 | 16387 | 4532 | 8825 | 994 | 4252 | 5241 | 1838 |
| 4 | 30581 | 23399 | 28483 | 12096 | 6541 | 9114 | 4042 | 12238 | 6735 | 2291 | 1369 | 4078 | 3280 |
| 5 | 21956 | 13738 | 11110 | 12574 | 7588 | 3386 | 1776 | 1665 | 12146 | 1886 | 3025 | 1025 | 2288 |
| 6 | 9080 | 5474 | 5989 | 5239 | 6780 | 3780 | 553 | 1792 | 2406 | 663 | 2085 | 2250 | 613 |
| 7 | 2418 | 1825 | 2738 | 2040 | 2563 | 2871 | 541 | 425 | 1045 | 107 | 824 | 1061 | 700 |
| 8 | 832 | 231 | 745 | 853 | 661 | 980 | 103 | 382 | 437 | 23 | 43 | 480 | 260 |
| 9 | 369 | 131 | 267 | 17 | 189 | 95 | 21 | 202 | 204 | 10 | 9 | 76 | 29 |

## Table 4.6.2a. Herring in $6 . a$ (combined) and 7.b-c. WEIGHTS-AT-AGE IN THE CATCH for 6.aN

```
Units : kg
, , area = 6.aN
```

| year |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| age | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
| 1 | 0.079 | 0.079 | 0.079 | 0.079 | 0.079 | 0.079 | 0.079 | 0.079 | 0.079 | 0.079 | 0.079 | 0.079 |
| 2 | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 | 0.104 |
| 3 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 |
| 4 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 |
| 5 | 0.164 | 0.164 | 0.164 | 0.164 | 0.164 | 0.164 | 0.164 | 0.164 | 0.164 | 0.164 | 0.164 | 0.164 |
| 6 | 0.170 | 0.170 | 0.170 | 0.170 | 0.170 | 0.170 | 0.170 | 0.170 | 0.170 | 0.170 | 0.170 | 0.170 |
| 7 | 0.180 | 0.180 | 0.180 | 0.180 | 0.180 | 0.180 | 0.180 | 0.180 | 0.180 | 0.180 | 0.180 | 0.180 |
| 8 | 0.183 | 0.183 | 0.183 | 0.183 | 0.183 | 0.183 | 0.183 | 0.183 | 0.183 | 0.183 | 0.183 | 0.183 |
| 9 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 |
| year |  |  |  |  | 19 |  |  | 1970 | 1971 | 1972 | 1973 | 1974 |
| age | 1969 | 1970 | 1976 | 1977 | 1978 | 1979 | 1980 |  |  |  |  |  |
| 1 | 0.079 | 0.079 | 0.079 | 0.079 | 0.090 | 0.090 | 0.090 | 0.090 | 0.090 | 0.090 | 0.090 | 0.090 |
| 2 | 0.104 | 0.104 | 0.104 | 0.104 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 | 0.121 |
| 3 | 0.130 | 0.130 | 0.130 | 0.130 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 | 0.158 |
| 4 | 0.158 | 0.158 | 0.158 | 0.158 | 0.175 | 0.175 | 0.175 | 0.175 | 0.175 | 0.175 | 0.175 | 0.175 |
| 5 | 0.164 | 0.164 | 0.164 | 0.164 | 0.186 | 0.186 | 0.186 | 0.186 | 0.186 | 0.186 | 0.186 | 0.186 |
| 6 | 0.170 | 0.170 | 0.170 | 0.170 | 0.206 | 0.206 | 0.206 | 0.206 | 0.206 | 0.206 | 0.206 | 0.206 |
| 7 | 0.180 | 0.180 | 0.180 | 0.180 | 0.218 | 0.218 | 0.218 | 0.218 | 0.218 | 0.218 | 0.218 | 0.218 |

```
 8 0.183 0.183 0.183 0.183 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224
 9}00.185 0.185 0.185 0.185 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224
 year
age 1981 1982 1983 1984 1985
 1 0.090 0.080 0.080 0.080 0.069 0.113 0.073 0.080 0.082 0.079 0.084 0.091
 2 0.121 0.140 0.140 0.140 0.103 0.145 0.143 0.112 0.142 0.129 0.118 0.119
 3 0.158 0.175 0.175 0.175 0.134 0.173 0.183 0.157 0.145 0.173 0.160 0.183
 4 0.175 0.205 0.205 0.205 0.161 0.196 0.211 0.177 0.191 0.182 0.203 0.196
 5 0.186 0.231 0.231 0.231 0.182 0.215 0.220 0.203 0.190}0.20.2090.211 0.227
 6 0.206 0.253 0.253 0.253 0.199 0.230}0.238 0.194 0.213 0.224 0.229 0.219
 7 0.218 0.270 0.270 0.270 0.213 0.242 0.241 0.240}00.216 0.228 0.236 0.244
 8 0.224 0.284 0.284 0.284 0.223 0.251 0.253 0.213 0.204 0.237 0.261 0.256
 9 0.224 0.295 0.295 0.295 0.231 0.258 0.256 0.228 0.243 0.247 0.271 0.256
 year
age 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
 1 0.089 0.083 0.106 0.081 0.089 0.097 0.076 0.0834 0.0490 0.1066 0.0609
 2 0.128 0.142 0.142 0.134 0.136 0.138 0.130}0.1373 0.1398 0.1464 0.1448
 3 0.158 0.167 0.181 0.178 0.177 0.159 0.158 0.1637 0.1628 0.1625 0.1593
 4 0.197 0.190 0.191 0.210 0.205 0.182 0.175 0.1829 0.1828 0.1728 0.1690
 5 0.206 0.195 0.198 0.230 0.222 0.199 0.191 0.2014 0.1922 0.1595 0.1852
 6 0.228 0.201 0.214 0.233 0.223 0.218 0.210 0.2147 0.1959 0.1780 0.1997
 7 0.223 0.244 0.208 0.262 0.219 0.227 0.225 0.2394 0.2047 0.1863 0.1942
 8 0.262 0.234 0.227 0.247 0.238 0.212 0.223 0.2812 0.2245 0.2449 0.1854
 9 0.263 0.266 0.277 0.291 0.263 0.199 0.226 0.2526 0.2716 0.2802 0.2938
 year
age 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
 1 0.0000 0.1084 0.0908 0.1152 0.0000 0.1121 0.0818 0.0613 0.0725 0.0000
 2 0.1541 0.1327 0.1580 0.1667 0.1705 0.1726 0.1549 0.1550 0.1469 0.1441
 3 0.1732 0.1632 0.1676 0.1881 0.2060 0.2141 0.1883 0.1894 0.1894 0.1746
 4 0.1948 0.1845 0.1929 0.1968 0.2310 0.2379 0.2129 0.2178 0.2076 0.1965
 5 0.2160 0.2108 0.2076 0.2105 0.2309 0.2457 0.2337 0.2340 0.2161 0.2020
 6 0.2197 0.2258 0.2251 0.2214 0.2489 0.2535 0.2394 0.2388 0.2261 0.2124
 7 0.1986 0.2341 0.2443 0.2161 0.2529 0.2599 0.2369 0.2470 0.2408 0.2304
 8 0.1885 0.2556 0.2615 0.2618 0.2840 0.2549 0.2400 0.2463 0.2817 0.2343
 9 0.3030 0.2496 0.2750 0.3030 0.2877 0.2730 0.2549 0.2522 0.2467 0.2476
 year
age 2014 2015 2016 2017 2018
 1 0.0000 0.0769 0.100 0.000 0.000
 2 0.1451 0.1425 0.144 0.137 0.126
 3 0.1877 0.1795 0.178 0.167 0.151
 4 0.2030 0.2059 0.204 0.187 0.174
 5 0.2279 0.2136 0.219 0.204 0.190
 6 0.2449 0.2307 0.229 0.213 0.208
 7 0.2608 0.2386 0.237 0.221 0.218
 8 0.2614 0.2454 0.251 0.233 0.238
 90.2835 0.2685 0.257 0.249 0.246
```


## Table 4.6.2b. Herring in $6 . a$ (combined) and 7.b-c. WEIGHTS-AT-AGE IN THE CATCH for 6.aS/7.bc.

year
age $\begin{array}{llllllllllllllll}1957 & 1958 & 1959 & 1960 & 1961 & 1962 & 1963 & 1964 & 1965 & 1966 & 1967 & 1968\end{array}$
$\begin{array}{llllllllllllllll}1 & 0.110 & 0.110 & 0.110 & 0.110 & 0.110 & 0.110 & 0.110 & 0.110 & 0.110 & 0.110 & 0.110 & 0.110\end{array}$
$\begin{array}{lllllllllllll}2 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129\end{array}$
$\begin{array}{llllllllllllll}3 & 0.165 & 0.165 & 0.165 & 0.165 & 0.165 & 0.165 & 0.165 & 0.165 & 0.165 & 0.165 & 0.165 & 0.165\end{array}$
$40.191 \quad 0.191 \quad 0.191$
$\begin{array}{lllllllllllllllll}5 & 0.209 & 0.209 & 0.209 & 0.209 & 0.209 & 0.209 & 0.209 & 0.209 & 0.209 & 0.209 & 0.209 & 0.209\end{array}$
$\begin{array}{lllllllllllllll}6 & 0.222 & 0.222 & 0.222 & 0.222 & 0.222 & 0.222 & 0.222 & 0.222 & 0.222 & 0.222 & 0.222 & 0.222\end{array}$
$\begin{array}{lllllllllllllllll}7 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231\end{array}$
$\begin{array}{llllllllllllll}8 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237\end{array}$
$\begin{array}{llllllllllllllllll}9 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241\end{array}$
year
$\begin{array}{llllllllllllllll}\text { age } & 1969 & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980\end{array}$
$10.1100 .1100 .110 \quad 0.110 \quad 0.1100 .110$
$\begin{array}{llllllllllllll}2 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129 & 0.129\end{array}$
30.1650 .1650 .1650 .1650 .1650 .1650 .1650 .1650 .1650 .1650 .1650 .165
$40.191 \quad 0.191 \quad 0.191$
$50.2090 .2090 .209 \quad 0.2090 .209 \quad 0.209 \quad 0.209 \quad 0.209 \quad 0.209 \quad 0.209 \quad 0.209 \quad 0.209$
$60.2220 .2220 .222 \quad 0.222 \quad 0.222$
$\begin{array}{llllllllllllllllllll}7 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231 & 0.231\end{array}$
$\begin{array}{llllllllllllllll}8 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237 & 0.237\end{array}$
$\begin{array}{lllllllllllllllllll}9 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241\end{array}$ year
$\begin{array}{lllllllllllllll}\text { age } & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992\end{array}$
$10.1100 .1100 .090 \quad 0.1060 .0770 .0950 .0850 .0820 .080 \quad 0.094 \quad 0.089 \quad 0.095$
$20.1290 .129 \quad 0.129 \quad 0.141 \quad 0.122 \quad 0.138 \quad 0.102 \quad 0.098 \quad 0.130 \quad 0.138 \quad 0.134 \quad 0.141$
$30.1650 .1650 .1650 .181 \quad 0.1610 .164 \quad 0.150 \quad 0.133 \quad 0.141 \quad 0.148 \quad 0.1450 .147$
$40.191 \quad 0.191 \quad 0.191 \quad 0.210 \quad 0.184 \quad 0.194 \quad 0.169 \quad 0.153 \quad 0.164 \quad 0.160 \quad 0.15710 .157$
$\begin{array}{lllllllllllllll}5 & 0.209 & 0.209 & 0.209 & 0.226 & 0.196 & 0.212 & 0.177 & 0.166 & 0.174 & 0.176 & 0.167 & 0.165\end{array}$
$\begin{array}{llllllllllllll}6 & 0.222 & 0.222 & 0.222 & 0.237 & 0.206 & 0.225 & 0.193 & 0.171 & 0.183 & 0.189 & 0.185 & 0.171\end{array}$
$\begin{array}{llllllllllllll}7 & 0.231 & 0.231 & 0.231 & 0.243 & 0.212 & 0.239 & 0.205 & 0.183 & 0.192 & 0.194 & 0.199 & 0.180\end{array}$
$\begin{array}{lllllllllllllll}8 & 0.237 & 0.237 & 0.237 & 0.247 & 0.225 & 0.208 & 0.215 & 0.191 & 0.193 & 0.208 & 0.207 & 0.194\end{array}$
$\begin{array}{lllllllllllllll}9 & 0.241 & 0.241 & 0.241 & 0.248 & 0.230 & 0.288 & 0.220 & 0.201 & 0.203 & 0.216 & 0.230 & 0.219\end{array}$ year
age $19931994199519961997 \quad 1998 \quad 1999 \quad 2000 \quad 2001 \quad 2002 \quad 2003 \quad 2004$
$\begin{array}{lllllllllllllll}1 & 0.112 & 0.081 & 0.080 & 0.085 & 0.093 & 0.095 & 0.106 & 0.102 & 0.086 & 0.097 & 0.102 & 0.085\end{array}$
$\begin{array}{llllllllllllll}2 & 0.138 & 0.141 & 0.140 & 0.135 & 0.135 & 0.136 & 0.144 & 0.129 & 0.122 & 0.127 & 0.134 & 0.140\end{array}$
$30.1530 .164 \quad 0.1610 .1720 .155 \quad 0.1450 .1450 .1540 .1390 .140 \quad 0.150 \quad 0.150$
$\begin{array}{llllllllllllll}4 & 0.170 & 0.177 & 0.173 & 0.182 & 0.181 & 0.173 & 0.163 & 0.172 & 0.167 & 0.155 & 0.167 & 0.167\end{array}$
$\begin{array}{lllllllllllllll}5 & 0.181 & 0.189 & 0.182 & 0.199 & 0.201 & 0.191 & 0.186 & 0.180 & 0.183 & 0.175 & 0.183 & 0.182\end{array}$
$\begin{array}{lllllllllllllll}6 & 0.184 & 0.187 & 0.198 & 0.209 & 0.217 & 0.196 & 0.195 & 0.184 & 0.188 & 0.196 & 0.196 & 0.193\end{array}$
$\begin{array}{llllllllllllll}7 & 0.196 & 0.191 & 0.194 & 0.220 & 0.217 & 0.202 & 0.200 & 0.204 & 0.222 & 0.204 & 0.216 & 0.222\end{array}$
$\begin{array}{lllllllllllllll}8 & 0.229 & 0.204 & 0.206 & 0.233 & 0.231 & 0.222 & 0.216 & 0.203 & 0.222 & 0.218 & 0.210 & 0.221\end{array}$
$\begin{array}{lllllllllllllllllll}9 & 0.236 & 0.220 & 0.217 & 0.237 & 0.239 & 0.217 & 0.222 & 0.204 & 0.213 & 0.226 & 0.228 & 0.285\end{array}$ year
age 2005 2006 2007 2008 $2009 \quad 2010 \quad 2011 \quad 2012 \quad 2013 \quad 2014 \quad 20152016$ $\begin{array}{llllllllllllllll}1 & 0.105 & 0.106 & 0.118 & 0.111 & 0.077 & 0.104 & 0.094 & 0.090 & 0.083 & 0.105 & 0.090 & 0.090\end{array}$
$20.1350 .137 \quad 0.1440 .1480 .146 \quad 0.131 \quad 0.122 \quad 0.134 \quad 0.121 \quad 0.139 \quad 0.113 \quad 0.125$
$30.150 \quad 0.1410 .1450 .150 \quad 0.171 \quad 0.168 \quad 0.141 \quad 0.179 \quad 0.141 \quad 0.1360 .1450 .149$
$40.1620 .158 \quad 0.1680 .1660 .194 \quad 0.189 \quad 0.174 \quad 0.196 \quad 0.170 \quad 0.1550 .152 \quad 0.163$
$\begin{array}{llllllllllllllll}5 & 0.174 & 0.169 & 0.179 & 0.175 & 0.200 & 0.201 & 0.193 & 0.214 & 0.181 & 0.168 & 0.161 & 0.182\end{array}$
$\begin{array}{llllllllllllllll}6 & 0.188 & 0.178 & 0.189 & 0.185 & 0.207 & 0.212 & 0.202 & 0.237 & 0.196 & 0.175 & 0.168 & 0.188\end{array}$

```
 7 0.200 0.199 0.197 0.194 0.211 0.218 0.217 0.228 0.202 0.184 0.176 0.190
 8 0.237 0.221 0.233 0.199 0.218 0.226 0.218 0.243 0.226 0.183 0.185 0.210
 9 0.296 0.243 0.237 0.241 0.275 0.229 0.246 0.236 0.226 0.187 0.188 0.201
 year
age 2017 2018
 1 0.072 0.085
 20.106 0.101
 3 0.132 0.127
 4 0.145 0.144
 50.159 0.155
 60.168 0.166
 70.172 0.172
 8 0.179 0.170
 9 0.183 0.174
```

Table 4.6.3. Herring in $6 . a$ (combined) and 7.b-c. WEIGHTS-AT-AGE IN THE STOCK.

```
Units : kg
 year
age 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
 1 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090
 2 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164
 3 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208
 4 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233
 5 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246
 6 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252
 7 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258
 8 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269
 9 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0. 292
 year
age 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
 1 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090
 2 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164
 3 0.208 0. 208 0.208 0.208 0. 208 0.208 0.208 0.208 0.208 0.208 0.208 0. 208
 4 0.233 0. 233 0.233 0.233 0. 233 0.233 0.233 0.233 0.233 0.233 0.233 0.233
 5 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246
 6 0.252 0. 252 0.252 0.252 0. 252 0. 252 0.252 0.252 0.252 0.252 0.252 0. 252
 7 0.258 0.258 0.258 0.258 0.258}0.2.258 0.258 0.258 0.258 0.258 0.258 0.258
 8 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269
 9 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292
 year
age 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
 1 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.068
 2 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.152
 3 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.186
 4 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.206
 5 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.233
 6 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.253
 7 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.273
 8 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.299
 9 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0. 302
 year
age 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
```

```
 1 0.073 0.052 0.042 0.045 0.054 0.066 0.054 0.062 0.062 0.062 0.064 0.059
 2 0.164 0.150 0.144 0.140 0.142 0.138 0.137 0.141 0.132 0.153 0.138 0.138
 3 0.196 0.192 0.191 0.180 0.180 0.176 0.166 0.173 0.170 0.177 0.176 0.159
 4 0.206 0.220 0.202 0.209 0.199 0.194 0.188 0.183 0.190}00.198 0.190 0.180
 5 0.225 0.221 0.225 0.219 0.213 0.214 0.203 0.194 0.198 0.212 0.204 0.189
 6 0.234 0.233 0.227 0.222 0.222 0.226 0.219 0.204 0.212 0.215 0.213 0.202
 7 0.253 0.241 0.247 0.229 0.231}00.234 0.225 0.211 0.220 0.225 0.217 0.213
 8 0.259 0.270 0.260 0.242 0.242 0.225 0.235 0.222 0.236 0.243 0.223 0.214
 9}00.2760.2960.293 0.263 0.263 0.249 0.245 0.230 0.254 0.259 0.228 0.206
 year
age 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
 1 0.0751 0.075 0.075 0.055 0.059 0.068 0.057 0.066 0.06366667 0.064
 2 0.1296 0.135 0.168 0.172 0.151 0.162 0.132 0.150 0.155000000.108
 30.1538 0.166 0.183 0.191 0.206 0.194 0.160 0.183 0.16500000 0.158
 4 0.1665 0.185 0.191 0.208 0.223 0.227 0.208 0.189 0.20200000 0.180
 5 0.1802 0.192 0.195 0.214 0.233 0.239 0.236 0.206 0.21000000 0.206
 6 0.1911 0.204 0.195 0.214 0.231 0.248 0.245 0.217 0.236000000.214
 7 0.2125 0.211 0.202 0.221 0.232 0.258 0.238 0.214 0.24300000 0.231
 8 0.2030 0.224 0.203 0.224 0.232 0.226 0.222 0.218 0.245000000.244
 9 0.2284 0.231 0.214 0.238 0.238 0.212 0.253 0.215 0.254000000.264
 year
age 2015 2016 2017 2018
 1 0.06373333 0.0638 0.0638 0.0478
 2 0.15500000 0.1370 0.1350 0.1100
 30.18300000 0.1400 0.1700 0.1550
 4 0.19500000 0.1750 0.1810 0.1761
 5 0.20400000 0.2020 0.1980 0.1901
 6 0.21100000 0.2080 0.1990 0.2097
 7 0.21700000 0.2090 0.2140 0.2094
 8 0.21500000 0.2100 0.2230 0.2180
 9 0.22000000 0.2420 0.2360 0.2222
```

Table 4.6.4. Herring in 6.a (combined) and 7.b-c. NATURAL MORTALITY.

| age | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.767005 | 0.767005 | 0.767005 | 0.767005 | 0.767005 | 0.767005 | 0.767005 | 0.767005 |
| 2 | 0.384728 | 0.384728 | 0.384728 | 0.384728 | 0.384728 | 0.384728 | 0.384728 | 0.384728 |
| 3 | 0.355633 | 0.355633 | 0.355633 | 0.355633 | 0.355633 | 0.355633 | 0.355633 | 0.355633 |
| 4 | 0.338791 | 0.338791 | 0.338791 | 0.338791 | 0.338791 | 0.338791 | 0.338791 | 0.338791 |
| 5 | 0.319385 | 0.319385 | 0.319385 | 0.319385 | 0.319385 | 0.319385 | 0.319385 | 0.319385 |
| 6 | 0.313574 | 0.313574 | 0.313574 | 0.313574 | 0.313574 | 0.313574 | 0.313574 | 0.313574 |
| 7 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 |
| 8 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 |
| 9 | $0.306805$ <br> year | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 | 0.306805 |
| age | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 |
| 1 | 0.767005 | 0.767005 | 0.767005 | 0.767005 | 0.767005 | 0.767005 | 0.767005 | 0.767005 |
| 2 | 0.384728 | 0.384728 | 0.384728 | 0.384728 | 0.384728 | 0.384728 | 0.384728 | 0.384728 |
| 3 | 0.355633 | 0.355633 | 0.355633 | 0.355633 | 0.355633 | 0.355633 | 0.355633 | 0.355633 |
| 4 | 0.338791 | 0.338791 | 0.338791 | 0.338791 | 0.338791 | 0.338791 | 0.338791 | 0.338791 |
| 5 | 0.319385 | 0.319385 | 0.319385 | 0.319385 | 0.319385 | 0.319385 | 0.319385 | 0.319385 |

```
\(6 \quad 0.3135740 .3135740 .3135740 .3135740 .3135740 .3135740 .3135740 .313574\)
70.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
80.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
90.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
 year
age 1973 1974 1975 1976 1977 1978 1979 1980
10.7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .767005
\(\begin{array}{llllllllllll}2 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728\end{array}\)
\(\begin{array}{lllllllllll}3 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633\end{array}\)
\(\begin{array}{llllllllllllllllllll}4 & 0.338791 & 0.338791 & 0.338791 & 0.338791 & 0.338791 & 0.338791 & 0.338791 & 0.338791\end{array}\)
50.3193850 .3193850 .3193850 .3193850 .3193850 .3193850 .3193850 .319385
\(\begin{array}{lllllllllll}6 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574\end{array}\)
\(\begin{array}{lllllllllll}7 & 0.306805 & 0.306805 & 0.306805 & 0.306805 & 0.306805 & 0.306805 & 0.306805 & 0.306805\end{array}\)
80.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
90.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805 year
\begin{tabular}{llllllllll}
age & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988
\end{tabular}
10.7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .767005
\(\begin{array}{llllllllllllllll}2 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728\end{array}\)
\(\begin{array}{llllllllllll}3 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633\end{array}\)
\(\begin{array}{lllllllllllllllllll}4 & 0.338791 & 0.338791 & 0.338791 & 0.338791 & 0.338791 & 0.338791 & 0.338791 & 0.338791\end{array}\)
50.3193850 .3193850 .3193850 .3193850 .3193850 .3193850 .3193850 .319385
\(\begin{array}{llllllllllll}6 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574\end{array}\)
70.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
80.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
90.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805 year
\begin{tabular}{lllllllll}
age 1989 & 1990 & 1991 & 1992 & 1993 & 1996
\end{tabular}
10.7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .767005
\(20.3847280 .384728 \quad 0.384728 \quad 0.384728 \quad 0.3847280 .3847280 .3847280 .384728\)
30.3556330 .3556330 .3556330 .3556330 .3556330 .3556330 .3556330 .355633
40.3387910 .3387910 .3387910 .3387910 .3387910 .3387910 .3387910 .338791
50.3193850 .3193850 .3193850 .3193850 .3193850 .3193850 .3193850 .319385
```



```
70.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
80.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
90.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805 year
age 1997 1998 1999 2000 2001 2002 2003 2004
10.7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .767005
\(20.3847280 .384728 \quad 0.384728 \quad 0.384728 \quad 0.3847280 .3847280 .3847280 .384728\)
30.3556330 .3556330 .3556330 .3556330 .3556330 .3556330 .3556330 .355633
\(40.338791 \quad 0.338791 \quad 0.338791 \quad 0.338791 \quad 0.3387910 .3387910 .3387910 .338791\)
50.3193850 .3193850 .3193850 .3193850 .3193850 .3193850 .3193850 .319385
\(\begin{array}{lllllllllll}6 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574 & 0.313574\end{array}\)
70.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
80.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805
90.3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .3068050 .306805 year
age 2005 2006 2007 2008 2009 2010 2011 2012
10.7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .7670050 .767005
\(\begin{array}{lllllllllll}2 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728 & 0.384728\end{array}\)
\(\begin{array}{llllllllllll}3 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633 & 0.355633\end{array}\)
```

```
 4 0.338791 0.338791 0.338791 0.338791 0.338791 0.338791 0.338791 0.338791
 5 0.319385 0.319385 0.319385 0.319385 0.319385 0.319385 0.319385 0.319385
 6 0.313574 0.313574 0.313574 0.313574 0.313574 0.313574 0.313574 0.313574
 7 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805
 8 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805
 9 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805
 year
age 2013 2014 2015 2016 2017 2018
 1 0.767005 0.767005 0.767005 0.767005 0.767005 0.767005
 2 0.384728 0.384728 0.384728 0.384728 0.384728 0.384728
 3 0.355633 0.355633 0.355633 0.355633 0.355633 0.355633
 4 0.338791 0.338791 0.338791 0.338791 0.338791 0.338791
 5 0.319385 0.319385 0.319385 0.319385 0.319385 0.319385
 6 0.313574 0.313574 0.313574 0.313574 0.313574 0.313574
 7 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805
 8 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805
 9 0.306805 0.306805 0.306805 0.306805 0.306805 0.306805
```


## Table 4.6.5. Herring in $6 . a$ (combined) and 7.b-c. PROPORTION MATURE.

```
Units : NA
 year
age 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
```



```
 3 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 year
age 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 2 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
 3 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 year
age 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 2 0.57 0.57 0.57 0.57 0.57 0.47 0.93 0.59 0.21 0.76 0.55 0.85 0.57 0.45 0.93
 3 0.96 0.96 0.96 0.96 0.96 1.00 0.96 0.93 0.98 0.94 0.95 0.97 0.98 0.92 0.99
 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
```

```
 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 year
age 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
 1 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
```



```
 31.00 1.00 0.97 1.00 0.97 1 0.99 0.99 0.99 0.93 0.99 0.72 0.73 0.85 0.99
 41.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00
 5 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 6 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 71.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 8 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 9 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 year
age 2017 2018
 1 0.00 0.00
 2 0.95 0.40
 31.00 0.85
 41.00 0.98
 5 1.00 0.98
 6 1.00 1.00
 71.00 1.00
 8 1.00 1.00
 91.00 1.00
```


## Table 4.6.6. Herring in $6 . a$ (combined) and 7.b-c. FRACTION OF HARVEST BEFORE SPAWNING.

```
Units : NA
 year
age 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
 1 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 3 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 4 0.67 0.67 0.67 0.67 0.67 0.67 07 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 5 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 6 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 70.6 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 8}00.670.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 9 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 year
```



```
 1 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 07 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 3 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 5 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 6 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 .67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 7 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
```



```
 9 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 year
age 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
 1 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
```

```
 3 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 5 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
```



```
 7 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
```



```
 9 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 year
```

age 200220032004200520062007200820092010201120122013201420152016
$\begin{array}{lllllllllllllllllll}1 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67\end{array}$

$\begin{array}{lllllllllllllllllllllllll}3 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67\end{array}$
$\begin{array}{lllllllllllllllllllll}4 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67\end{array}$
$\begin{array}{llllllllllllllllllllll}5 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67\end{array}$
$\begin{array}{llllllllllllllllllll}6 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67\end{array}$
$\begin{array}{lllllllllllllllllllllllll}7 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67\end{array}$
$\begin{array}{llllllllllllllllllllllll}8 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67\end{array}$
$\begin{array}{llllllllllllllllllllllllllll}9 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67\end{array}$
year
age 20172018
$10.67 \quad 0.67$
20.670 .67
30.670 .67
40.670 .67
50.670 .67
60.670 .67
70.670 .67
80.670 .67
90.670 .67

Table 4.6.7. Herring in $6 . a$ (combined) and 7.b-c. FRACTION OF NATURAL MORTALITY BEFORE SPAWNING.

```
Units : NA
 year
age 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
 1 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 3 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 5 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 6 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 7 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 07 0.67 0.67 0.67 0.67 0.67 0.67
```



```
 9 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 year
age 1972 1973 1974 1975 1976 1977 1978 1979}19890 1981 1982 1983 1984 1985 1986
 1 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 3 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 5 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 6 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 67 0.67 0.67
```

```
 70.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 8}00.6
 9 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 year
age 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
 1 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 3 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 5 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 6 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 70.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 8}00.6
 9 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 year
age 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
 1 0.67 0.67 0.67 0.67 0.67 0.67 0.67 67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 3 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 5 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 6 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 7 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 8 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
 9 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.6.67 0.67 0.67
 year
age 2017 2018
 10.67 0.67
 20.67 0.67
 30.67 0.67
 40.67 0.67
 5 0.67 0.67
 60.67 0.67
 70.67 0.67
 80.67 0.67
 90.67 0.67
```


## Table 4.6.8. Herring in $6 . a$ (combined) and 7.b-c. SURVEY INDICES.

## MS_HERAS - Configuration

Malin Shelf assessment . Imported from VPA file.

| min | max plusgroup | minyear | maxyear | startf | endf |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.00 | 9.00 | 9.00 | 1991.00 | 2018.00 | 0.52 | 0.57 |

Index type : number

MS_HERAS - Index Values

Units : NA
year

| age | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 338312 | 74310 | 2357 | 494150 | 441200 | 41220 | 792320 | 1221700 | 534200 | 447600 |


| 2 | 294484 | 503430 | 579320 | 542080 | 1103400 | 576460 | 641860 | 794630 | 322400 | 316200 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 327902 | 210980 | 689510 | 607720 | 473300 | 802530 | 286170 | 666780 | 1388000 | 337100 |
| 4 | 367830 | 258090 | 688740 | 285610 | 450300 | 329110 | 167040 | 471070 | 432000 | 899500 |
| 5 | 488288 | 414750 | 564850 | 306760 | 153000 | 95360 | 66100 | 179050 | 308000 | 393400 |
| 6 | 176348 | 240110 | 900410 | 268130 | 187200 | 60600 | 49520 | 79270 | 138700 | 247600 |
| 7 | 98741 | 105670 | 295610 | 406840 | 169200 | 77380 | 16280 | 28050 | 86500 | 199500 |
| 8 | 89830 | 56710 | 157870 | 173740 | 236700 | 78190 | 28990 | 13850 | 27600 | 95000 |
| 9 | 58043 | 63440 | 161450 | 131880 | 201700 | 114810 | 24440 | 36770 | 35400 | 65000 |


| age | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 313100 | 424700 | 438800 | 564000 | 50200 | 112300 | -1 | 50389 | 772520 | 132551 |
| 2 | 1062000 | 436000 | 1039400 | 274500 | 243400 | 835200 | 126000 | 267367 | 265151 | 375304 |
| 3 | 217700 | 1436900 | 932500 | 760200 | 230300 | 387900 | 294400 | 995596 | 273910 | 373804 |
| 4 | 172800 | 199800 | 1471800 | 442300 | 423100 | 284500 | 202500 | 719782 | 443603 | 242388 |
| 5 | 437500 | 161700 | 181300 | 577200 | 245100 | 582200 | 145300 | 363484 | 380436 | 173333 |
| 6 | 132600 | 424300 | 129200 | 55700 | 152800 | 414700 | 346900 | 331462 | 225046 | 145891 |
| 7 | 102800 | 152300 | 346700 | 61800 | 12600 | 227000 | 242900 | 743706 | 192866 | 101960 |
| 8 | 52400 | 67500 | 114300 | 82200 | 39000 | 21700 | 163500 | 386202 | 500074 | 100421 |
| 9 | 34700 | 59500 | 75200 | 76300 | 26800 | 59300 | 32100 | 273892 | 456113 | 297021 |


| year |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| age | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| 1 | 62834 | 796012 | -1 | 1012160 | -1 | -1 | -1 | 1287728 |
| 2 | 257258 | 548481 | 209403 | 277504 | 212467 | 29593 | 25426 | 447304 |
| 3 | 899637 | 832257 | 434425 | 241674 | 396545 | 108126 | 338563 | 106491 |
| 4 | 484732 | 517267 | 671507 | 502471 | 747121 | 87773 | 155357 | 342609 |
| 5 | 212913 | 249024 | 194706 | 534431 | 423139 | 111676 | 105728 | 153194 |
| 6 | 227515 | 114507 | 70507 | 148259 | 476249 | 79130 | 110226 | 51928 |
| 7 | 205093 | 111385 | 61392 | 32565 | 90102 | 62045 | 47158 | 72276 |
| 8 | 113298 | 56526 | 28597 | 18677 | 23931 | 5530 | 13069 | 26636 |
| 9 | 263837 | 104571 | 37398 | 13003 | 2086 | 957 | 4721 | 12887 |

## IBTS_Q1 - Configuration

Malin Shelf assessment . Imported from VPA file.

| min | max plusgroup | minyear | maxyear | startf | endf |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2.00 | 9.00 | 9.00 | 1994.00 | 2018.00 | 0.00 |

Index type : number
IBTS_Q1 - Index Values

```
Units : NA
 year
age \(199941995 \quad 1996 \quad 1997 \quad 1998 \quad 1999 \quad 2000 \quad 2001 \quad 2002 \quad 2003 \quad 2004\)
 248858 359063 102681 105593 8228
 3 85955 130445 166694 182703 50010 333860 133023 78560 151663 124660 341797
 427794 99865 51454 86852 34866 208576 174698 57335 39246 128306 200643
 5 26540 12344 56103 29176 17070 90024 70164 104040 15131 21032 197167
 6 37467 28326 29507 20283 5848 39781 61480 54985 42189 16407 53480
 7 24419 12360 12935 11476 6776 26574 33102 40676 13304 30259 48221
 8 9183 20940 19509 26942 2517 18665 9304 17583 13566 12989 54582
 9
 year
age 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
 2 125745 268325 26180 27389 42487 14782 91792 8778 53919 9274 5269
 3 140658 327416 80640 33459 85317 41870 103871 125519 55635 36331 9431
 4 274189 141568 51265 34702 82570 21274 82452 48715 115480 26226 23111
 5 215004 386173 45189 27111 80809 20394 39608 26421 47149 42635 10477
 6 204336 372941 79092 23681 58959 21170 47603 13956 38007 8153 12225
 7 28338 214968 58735 28915 54262 22578 34354 13225 26073 5237 3574
 8 58870 35946 31858 33013 94629 18305 25936 10641 22175 4801 2960
 9 52942 104800 28751 20189 114061 38890 69963 28906
 year
age 2016 2017 2018
 2 12389 6201 6875
 3 1972060854 30327
 4668824001 201648
 5 14430 11204 45882
 6 17865 11704 34825
 7 5893 10430 17341
 8 1303 5470 13837
 9 541 2965 5129
```


## IBTS_Q4 - Configuration

Malin Shelf assessment . Imported from VPA file.

| min | max plusgroup | minyear | maxyear | startf | endf |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2.00 | 9.00 | 9.00 | 1996.00 | 2018.00 | 0.75 |

Index type : number

```
IBTS_Q4 - Index Values
Units : NA
 year
age 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
 2 17315 13923 12755 6865 5626 33686 10282 15064 16457 5361 7120 7145 3142
 3 15935 8976 10203 15684 4192 6757 7886 10166 18695 3768 2449 4221 3784
 4 6763 7137 8434 11078 10446 7423 1199 16343 13894 7389 3240}28855 3742
 5 5334 4245 11118 9835 4424 14837}101734 2331 9265 8881 6430 4974 2100
 6}22228 3038 6295 9164 5664 10428 3401 3326 2185 6120 7978 3734 2902
 7 2020
 8
 9
 year
age 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
 2 7394 -1 10574 2212 -1 3510 6530 13701 5834 4029
 3 3741 -1 4559 5937 -1 8345 6330}11385 33661 4814,
 4 3648 -1 3880 3599 -1 6947 10553 12037 18397 14217
 54576 -1 2263 3819 -1 11708 11892 14342 24040 6490
 6 1723 -1 2194 2709 -1 2998 5400 14991 12292 3827
 7 1966
 8 2342 -1
 9 3371 [llllllllllllll
```


## Table 4.6.9. Herring in $6 . a$ (combined) and 7.b-c. STOCK OBJECT CONFIGURATION.

| min | max plusgroup | minyear | maxyear | minfbar | maxfbar |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9 | 9 | 1957 | 2018 | 3 | 6 |

## Table 4.6.10. Herring in $6 . a$ (combined) and 7.b-c. SAM CONFIGURATION SETTINGS.

| name | : Herring in $6 . a N$ and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| desc | : Imported fr |  | om | a V | VPA | file. ( . |  |  | /data/index.txt ). |  |  |  | Mar 13 <br> minfbar | $14: 39: 39$ <br> maxfbar | 2019 |
| range | : | min |  |  | max | plus | sgr | oup |  | min | nyear | maxyear |  |  |  |
| range | : | 1 |  |  | 9 |  |  | 9 |  |  | 1957 | 2018 | 3 |  | 6 |
| fleets | : | catch N C | atch | h S | S MS | _HER | RAS | IB | TS | _Q1 | IBT |  |  |  |  |
| fleets | : | 0 |  |  | 0 |  | 2 |  |  | 2 |  | 2 |  |  |  |
| plus.group | : | TRUE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| states | : | a | ge |  |  |  |  |  |  |  |  |  |  |  |  |
| states | : | fleet |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |
| states | : | catch N | 0 |  | 2 | 3 | 4 | 5 | 6 | 7 | 7 |  |  |  |  |
| states | : | catch S | 8 | 9 | 10 |  | 12 | 131 | 4 |  | 15 |  |  |  |  |
| states | : | MS_HERAS |  |  | -1 |  |  |  | -1 |  |  |  |  |  |  |
| states | : | IBTS_Q1 |  |  |  |  |  |  | -1 |  |  |  |  |  |  |
| states | : | IBTS_Q4 |  | -1 |  |  |  |  | -1 |  |  |  |  |  |  |
| $\operatorname{logN}$. vars |  | $\begin{array}{lllllll}0 & 1 & 1 & 1 & 1\end{array}$ | 1 | 11 |  |  |  |  |  |  |  |  |  |  |  |
| logP.vars | : |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| catchabilities | : |  | ge |  |  |  |  |  |  |  |  |  |  |  |  |
| catchabilities | : | fleet |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |
| catchabilities | : | catch N |  |  |  |  |  |  | -1 |  | -1 |  |  |  |  |
| catchabilities | : | catch S |  |  |  |  |  |  |  |  |  |  |  |  |  |
| catchabilities | : | MS_HERAS |  |  | 2 |  |  | 5 | 6 | 7 | 7 |  |  |  |  |
| catchabilities | : | IBTS_Q1 |  | 8 | 9 | 10 | 11 | 121 | 3 |  |  |  |  |  |  |
| catchabilities |  | IBTS_Q4 |  | 15 | 16 | 17 | 18 | 192 | 0 |  |  |  |  |  |  |
| power.law.exps | : |  | ge |  |  |  |  |  |  |  |  |  |  |  |  |
| power.law.exps |  | fleet |  | 2 | 3 |  |  | 6 | 7 | 8 | 9 |  |  |  |  |
| power.law.exps | : | catch N | -1 | -1 |  | -1 | -1 | -1 - | -1 |  |  |  |  |  |  |
| power.law.exps | : | catch S |  | -1 | -1 | -1 | -1 | -1 - | -1 |  |  |  |  |  |  |
| power.law.exps | : | MS_HERAS | -1 | -1 | -1 | -1 | -1 | -1 - | 1 | -1 |  |  |  |  |  |
| power.law.exps | : | IBTS_Q1 |  | -1 |  |  | -1 | -1 - | -1 |  |  |  |  |  |  |
| power.law.exps | : | IBTS_Q4 |  | -1 | -1 |  | -1 | -1 - | 1 | -1 |  |  |  |  |  |
| f.vars | : |  | ge |  |  |  |  |  |  |  |  |  |  |  |  |
| f.vars | : | fleet |  | 2 | 3 |  | 5 | 6 | 7 | 8 | 9 |  |  |  |  |
| f.vars | : | catch N |  | 5 | 5 |  | 5 | 5 | 5 | 5 | 5 |  |  |  |  |
| f.vars |  | catch S |  | 1 | 2 |  | 2 | 2 | 2 | 3 | 3 |  |  |  |  |
| f.vars | : | MS_HERAS | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |  |  |  |  |
| f.vars |  | IBTS_Q1 | -1 | -1 | -1 | -1 | -1 | -1 - | -1 | -1 |  |  |  |  |  |

```
f.vars : IBTS_Q4 -1 -1 -1 -1 -1 -1 -1 -1 -1
obs.vars : age
obs.vars : fleet 1
obs.vars : catch N 4
obs.vars : catch S 0
obs.vars : MS_HERAS 8
obs.vars : IBTS_Q1 -1 12 13 13 13 14 14 15 15
obs.vars : IBTS_Q4 -1 16 17 17 17 17 18 18 18
srr : 0
scaleNoYears : 0
scaleYears : NA
scalePars :
cor.F : 2
cor.obs : NA NA 0 -1 -1 NA NA 0 2 3 NA NA 1 2 4 NA NA 1 2 5 NA NA 1 2 6 NA NA 1 2 6 NA NA 1 2
6NA NA 1 2 6
cor.obs.Flag : ID ID AR AR AR
biomassTreat : -1 -1 -1 -1 -1
timeout : 3600
likFlag : LN LN LN LN LN
fixVarToWeight : FALSE
simulate : FALSE
residuals : TRUE
sumFleets :
```


## Table 4.6.11. Herring in 6.a (combined) and 7.b-c. FLR, R SOFTWARE VERSIONS.

| FLSAM. version | 2.1 .0 |
| :--- | ---: | ---: |
| FLCore.version | 2.6 .12 |
| R.version | $R$ version $3.5 .2(2018-12-20)$ |
| platform | x86_64-w64-mingw32 |
| run.date | $2019-03-1314: 46: 47$ |

Table 4.6.12. Herring in $6 . a$ (combined) and 7.b-c. STOCK SUMMARY.


| 2006 | 843148 | 294471 | 147296 | 0.2768 | 46539 | 0.9990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 2007 | 549669 | 254200 | 143269 | 0.2927 | 47407 | 0.9990 |
| 2008 | 667165 | 210217 | 117085 | 0.2351 | 29394 | 1.0008 |
| 2009 | 746488 | 203230 | 96390 | 0.2748 | 28976 | 1.0312 |
| 2010 | 1175669 | 233411 | 97335 | 0.3298 | 30118 | 0.9960 |
| 2011 | 536483 | 189613 | 81330 | 0.2785 | 24678 | 0.9992 |
| 2012 | 559713 | 186930 | 93817 | 0.2592 | 25087 | 1.0017 |
| 2013 | 279995 | 155402 | 66594 | 0.3730 | 26947 | 0.9978 |
| 2014 | 358520 | 114563 | 45040 | 0.4198 | 27123 | 1.0091 |
| 2015 | 564442 | 117552 | 39992 | 0.4837 | 19885 | 0.9982 |
| 2016 | 226356 | 93324 | 57094 | 0.1616 | 6937 | 1.0011 |
| 2017 | 240130 | 94444 | 58095 | 0.1341 | 6424 | 0.9986 |
| 2018 | 230732 | 82724 | 42979 | 0.1305 | 5558 | 0.9978 |

Table 4.6.13. Herring in $6 . a$ (combined) and 7.b-c. ESTIMATED FISHING MORTALITY for $6 . a N$ and $6 . a S / 7 . b c$.

```
Units : f
```

, , area $=6 . \mathrm{aN}$

| year |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| age | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 10.012781770 .016103260 .015947310 .013167910 .010948250 .01626646 20.058782040 .075814110 .074150570 .059137940 .047049140 .07171389 30.101140920 .128126990 .117563360 .086212780 .063163290 .09415807 40.123246860 .159695520 .150324080 .104689690 .072442910 .10809145 50.150480650 .198581060 .188006970 .132195290 .087273770 .12945948 60.164902650 .220831950 .202948910 .136583160 .084873130 .13161823 70.201123990 .282889190 .260626640 .171961130 .103139540 .15956093 80.207755370 .303889870 .283916690 .185857100 .111450800 .17574467 90.207755370 .303889870 .283916690 .185857100 .111450800 .17574467

    year
    | age | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllll}1 & 0.01330236 & 0.01278744 & 0.01252865 & 0.01619423 & 0.01517169 & 0.01190372\end{array}$ 20.055922240 .051892560 .049313580 .064512260 .059891090 .04609725 $30.073995670 .06891798 \quad 0.066880240 .083093030 .079087220 .06165659$
$40.082682920 .078124630 .08074841 \quad 0.10014797 \quad 0.095477260 .07158418$
$50.096044920 .087301260 .090366150 .11096398 \quad 0.105944730 .07781175$
60.099520390 .093385080 .097059640 .121422310 .120291690 .08961747
$\begin{array}{lllllll}7 & 0.12084483 & 0.11869889 & 0.12625118 & 0.15200437 & 0.15303354 & 0.11659806\end{array}$
$8 \quad 0.138960560 .14387040 \quad 0.15881044 \quad 0.190965470 .189872840 .14252748$
$90.138960560 .14387040 \quad 0.15881044 \quad 0.190965470 .189872840 .14252748$ year

| age | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllll}1 & 0.01713674 & 0.02701114 & 0.05705368 & 0.03427909 & 0.04728765 & 0.05746725\end{array}$
$\begin{array}{lllllllll}2 & 0.07113783 & 0.12146322 & 0.29098771 & 0.16796766 & 0.25098660 & 0.32509170\end{array}$
30.102138090 .179129360 .424477140 .234314240 .344612800 .43796930
40.119170660 .191684130 .414806640 .226238110 .340789200 .46455641
$\begin{array}{llllllll}5 & 0.13244474 & 0.19153373 & 0.37884952 & 0.21210538 & 0.32268129 & 0.46926458\end{array}$
$\begin{array}{lllllll}6 & 0.15382260 & 0.20071352 & 0.36358973 & 0.20808172 & 0.31886692 & 0.50834745\end{array}$
$70.207660370 .249073040 .40108500 \quad 0.21960390 \quad 0.306701250 .48718406$
$8 \quad 0.25453618 \quad 0.291728640 .438524690 .228820340 .298324660 .45335881$
90.254536180 .291728640 .438524690 .228820340 .298324660 .45335881 year

```
\begin{tabular}{lllllll}
age & 1975 & 1976 & 1977 & 1978 & 1979 & 1980
\end{tabular}
10.049625530 .046904120 .026641480 .014788060 .000048784190 .00005343669 20.289520220 .286939080 .161015440 .088094870 .000150063880 .00017753511 30.370061530 .354073200 .201574600 .106954190 .000167891050 .00019090145 40.382038520 .350378060 .200976990 .109679540 .000157231130 .00017723446 50.396976780 .352240120 .195535140 .100233190 .000139226430 .00015494038 60.461784040 .443825440 .253430250 .125689090 .000169921950 .00018068337 70.460279680 .468284950 .278634200 .142677950 .000199147930 .00021545996 80.420468800 .426779580 .246972240 .127610640 .000171303250 .00018031362
90.420468800 .426779580 .246972240 .127610640 .000171303250 .00018031362
```


## year

```
\begin{tabular}{rrrrrrrr}
age & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 \\
1 & 0.01755653 & 0.0257593 & 0.01921557 & 0.01146841 & 0.008928836 & 0.01036853 \\
2 & 0.13279036 & 0.2247249 & 0.17649501 & 0.10788163 & 0.087509220 & 0.11201649 \\
3 & 0.15207306 & 0.2665520 & 0.22091020 & 0.13749947 & 0.110248755 & 0.13870318 \\
4 & 0.14802983 & 0.2689499 & 0.22956689 & 0.14074597 & 0.109810758 & 0.13679712 \\
5 & 0.13966180 & 0.2772086 & 0.25956520 & 0.15952817 & 0.125382670 & 0.15380591 \\
6 & 0.16075887 & 0.3223159 & 0.31163899 & 0.18252316 & 0.141830290 & 0.16475123 \\
7 & 0.18694822 & 0.3855203 & 0.38696947 & 0.21507346 & 0.156958108 & 0.16615139 \\
8 & 0.15492649 & 0.3555088 & 0.38919552 & 0.21995284 & 0.161875035 & 0.17149119 \\
9 & 0.15492649 & 0.3555088 & 0.38919552 & 0.21995284 & 0.161875035 & 0.17149119
\end{tabular}
```


## year

| age | 1987 | 1988 | 1989 | 1990 | 1991 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllll}1 & 0.007245468 & 0.005396861 & 0.004530871 & 0.005790776 & 0.004481547 & 0.004880897\end{array}$
20.0813191390 .0633383900 .0558348120 .0791084450 .0642025670 .077778193
$\begin{array}{lllllll}3 & 0.102649760 & 0.080478060 & 0.071035283 & 0.100161219 & 0.080047804 & 0.094432000\end{array}$
40.1072096840 .0826581060 .0708585620 .1027307490 .0806216810 .089661374
0.1316033130 .1019242760 .0873445650 .1288484670 .0992730170 .105998643
$\begin{array}{lllllll}0.152307750 & 0.115084617 & 0.097550110 & 0.148042204 & 0.115132554 & 0.122420468\end{array}$
0.1734562670 .1339725430 .1209207190 .1902484790 .1464060120 .155719279 0.2016990150 .1631003830 .1565686880 .2598699880 .1927075440 .199097523 $90.2016990150 .1631003830 .156568688 \quad 0.259869988 \quad 0.1927075440 .199097523$ year

| age | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.0049030480 .0040053630 .0038505050 .0025743140 .0042311130 .003964946 0.0860186260 .0761761630 .0802819670 .0550415980 .1035123960 .102156677 0.1006350700 .0932927050 .1026453620 .0742714390 .1496103170 .152688765 0.0880287620 .0813832420 .0957118470 .0776571810 .1785843920 .183960032 0.1020822280 .0941885360 .1114290930 .1030576230 .2658409520 .272377322 60.1164448540 .1081800680 .1246289430 .1240505600 .3392892780 .339735738

70.1624809960 .1636040110 .1986315050 .2083053460 .5403512000 .507937177 $80.2050625390 .2162651360 .254722578 \quad 0.2630184480 .5667077080 .481151810$ $90.2050625390 .2162651360 .254722578 \quad 0.263018448 \quad 0.5667077080 .481151810$ year

| age | 1999 | 2000 | 2001 | 2002 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllll}1 & 0.003149817 & 0.002535134 & 0.001945686 & 0.002031844 & 0.001477374 & 0.001181301\end{array}$
20.0844473840 .0715604310 .0574621770 .0639047600 .0469169040 .037479888
$0.1300472550 .1176845620 .102005490 \quad 0.124216328 \quad 0.0979589790 .081922898$
$\begin{array}{llllllll}0.143099767 & 0.132247471 & 0.118059574 & 0.149979478 & 0.124812312 & 0.112786551\end{array}$
0.1914930750 .1797646220 .1747649670 .2309743030 .1945220240 .190654142
$\begin{array}{lllllll}0.214269162 & 0.194877542 & 0.197193930 & 0.254196306 & 0.214351432 & 0.225276836\end{array}$
$\begin{array}{llllllll}0.286196757 & 0.250103850 & 0.264070765 & 0.332081821 & 0.303179720 & 0.322616984\end{array}$
$8 \quad 0.2595921110 .223553408 \quad 0.244448168 \quad 0.3064642850 .3093067330 .361438034$

```
 9 0.259592111 0.223553408 0.244448168 0.306464285 0.309306733 0.361438034
 year
\begin{tabular}{lllll}
age 2005 & 2006 & 2007 & 2009 & 2010
\end{tabular}
 1 0.0007333903 0.001080441 0.001437691 0.0009702172 0.001564754 0.002018582
 0.0225186830 0.035533432 0.049412290 0.0316488618}0.054061709 0.072285284
 0.0473412964 0.073555028 0.092339048 0.0572734325 0.097569908 0.128257385
 0.0580753805 0.096804119 0.110683735 0.0660452761 0.117799893 0.156135705
 0.0887044790 0.167390525 0.185429500 0.1026524138 0.171746496 0.227730579
 0.1040185940 0.224184567 0.260768370 0.1451893537 0.221793394 0.273312025
 0.1396443335 0.326201506 0.385431459 0.2207289831 0.313172938 0.354746272
 0.1564480167 0.393049589 0.494120339 0.3015101596 0.432626876 0.498871480
 90.1564480167 0.393049589 0.494120339 0.3015101596 0.432626876 0.498871480
 year
\begin{tabular}{lllll}
age & 2011 & 2012 & 2013 & 2014
\end{tabular}
 1 0.001793122 0.001783682 0.002141142 0.002049314 0.002312379 0.0006698209
 0.064360977 0.065542822 0.082686375 0.080841367 0.095132695 0.0239647897
 0.114395612 0.121514032 0.163911832 0.167952043 0.209982068 0.0544504591
 0.139624155 0.151739383 0.228850320 0.245648137 0.305295386 0.0768266804
 0.203606155 0.225115704 0.355038431 0.400968415 0.500381454 0.1197889519
 0.242708054 0.277198711 0.465345759 0.547094835 0.749126106 0.1754474321
 0.303798188 0.335648764 0.582426172 0.704778821 0.997481615 0.2368863480
 0.442203100 0.512121956 0.989231889 1.250386797 1.646342940 0.4088762822
 9 0.442203100 0.512121956 0.989231889 1.250386797 1.646342940 0.4088762822
 year
age 20172018
 10.0005330201 0.0005830342
 2 0.0185296877 0.0204985278
 0.0445931532 0.0505987136
 0.0591564231 0.0670626578
 0.0854696625 0.0998463358
 0.1109208818 0.1248782228
 0.1302726325 0.1274293945
 80.2236598358 0.2147850956
 90.2236598358 0.2147850956
```

```
, area = 6aS7bc
```

year

| age | 1957 | 1958 | 1959 | 1960 | 1961 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0001589773 | 0.0002042697 | 0.0001828107 | 0.0001484279 | 0.0001667669 |
| 2 | 0.0065364441 | 0.0078171070 | 0.0070886591 | 0.0060569519 | 0.0066217797 |
| 3 | 0.0125584731 | 0.0148187859 | 0.0130706318 | 0.0109673455 | 0.0120617523 |
| 4 | 0.0144572900 | 0.0175988390 | 0.0150490615 | 0.0120804380 | 0.0133104753 |
| 5 | 0.0178033591 | 0.0214425967 | 0.0172542021 | 0.0128835828 | 0.0139366203 |
| 6 | 0.0214289913 | 0.0261401890 | 0.0205906859 | 0.0150497172 | 0.0163097676 |
| 7 | 0.0306303584 | 0.0376988069 | 0.0296914693 | 0.0216963942 | 0.0234151110 |
| 8 | 0.0315731831 | 0.0448287516 | 0.0300213017 | 0.0177281391 | 0.0199461634 |
| 9 | 0.0315731831 | 0.0448287516 | 0.0300213017 | 0.0177281391 | 0.0199461634 |
| year |  |  |  |  |  |
| age | 1962 | 1963 | 1964 | 1965 | 1966 |
| 1 | 0.0001665472 | 0.0001017708 | $9.420517 \mathrm{e}-05$ | 0.0001044282 | 0.000144639 |
| 2 | 0.0068117956 | 0.0049036203 | $4.706336 \mathrm{e}-03$ | 0.0050949340 | 0.006370028 |
| 3 | 0.0130200127 | 0.0099443437 | $9.926018 \mathrm{e}-03$ | 0.0110717530 | 0.013948578 |
| 4 | 0.0150791394 | 0.0119818664 | $1.254819 \mathrm{e}-02$ | 0.0144100393 | 0.018557938 |

```
 5 0.0162574449 0.0132474413 1.430961e-02 0.0165386602 0.021372168
 60.0199211789 0.0168699651 1.857932e-02 0.0217310636 0.027705518
 7 0.0292845584 0.0255118665 2.826636e-02 0.0327151622 0.040781395
 8 0.0293030011 0.0236239911 2.746558e-02 0.0332697906 0.045007870
 90.0293030011 0.0236239911 2.746558e-02 0.0332697906 0.045007870
 year
\begin{tabular}{llllll}
age & 1967 & 1968 & 1969 & 1970 & 1971
\end{tabular}
10.00017573840 .00017057750 .00021347660 .00024541610 .0002493541
 0.0072535495 0.0070364169 0.0081788664 0.0090668206 0.0090018534
 0.0158174372 0.0147758405 0.0164262938 0.0176301576 0.0173038117
 0.0215720128 0.0197914574 0.0216983678 0.0230279648 0.0228191323
 5 0.0249238250 0.0225636450 0.0253286386 0.0274125260 0.0283994994
 6 0.0317827439 0.0277828158 0.0313715356 0.0347430524 0.0377365634
 7 0.0452690212 0.0373469428 0.0406283964 0.0443283074 0.0493512017
 8 0.0513763890 0.0341119472 0.0361487547 0.0391181965 0.0464664152
 9 0.0513763890 0.0341119472 0.0361487547 0.0391181965 0.0464664152
 year
\begin{tabular}{llllll}
age & 1972 & 1973 & 1974 & 1975 & 1976
\end{tabular}
 1 0.0004753816 0.00100625 0.002032569 0.003201889 0.004271171
 2 0.0139196510 0.02316667 0.038064614 0.052459926 0.064540910
 30.0253040382 0.03917356 0.061987021 0.083678335 0.102374806
 4 0.0328164566 0.04985552 0.078447341 0.107222807 0.133907107
 5 0.0410332544 0.06089953 0.094417854 0.126781046 0.159281889
 60.0553201500 0.08038675 0.120961970 0.158237126 0.191633253
 7 0.0729189824 0.10440900 0.152786381 0.194799887 0.228053471
 8 0.0879772526 0.15382251 0.273567726 0.386060549 0.468661448
 90.0879772526 0.15382251 0.273567726 0.386060549 0.468661448
 year
\begin{tabular}{llllll}
age & 1977 & 1978 & 1979 & 1980 & 1981
\end{tabular}
 1 0.003249554 0.002832315 0.002371403 0.002172779 0.001492657
 0.054157623 0.050146604 0.045554575 0.044268395 0.035039648
 0.086764206 0.082474057 0.078242530 0.079786892 0.066446901
 4 0.114630548 0.107904694 0.104317654 0.106969533 0.089372679
 5 0.138991509 0.131469950 0.128378003 0.132321121 0.110480667
 6 0.168320600 0.161489881 0.161218843 0.165773966 0.139965772
 7 0.195109902 0.188397618 0.191467908 0.196634784 0.163560958
 8 0.339736387 0.310061888 0.319315197 0.330681889 0.237638413
 9 0.339736387 0.310061888 0.319315197 0.330681889 0.237638413
 year
\begin{tabular}{llllll}
age & 1982 & 1983 & 1984 & 1985 & 1986
\end{tabular}
 1 0.001191179 0.00175845 0.001356946 0.001121586 0.001079304
 2 0.030689992 0.04127501 0.034310802 0.030019594 0.029847338
 30.060828389 0.08239441 0.070470891 0.063841300 0.065248990
 4 0.082249193 0.11208178 0.095519251 0.088156973 0.091539929
 50.101517617 0.13859894 0.119439303 0.112699479 0.117754628
 60.128371213 0.17499850 0.154976185 0.149491584 0.154697315
 7 0.148026889 0.19733156 0.176946035 0.172960257 0.177302805
 8 0.190212225 0.28534197 0.232427264 0.217592273 0.215274178
 90.190212225 0.28534197 0.232427264 0.217592273 0.215274178
 year
19871988198919901
10.0017857170 .0011653170 .00095203520 .0010914350 .001288945
\(20.0432468540 .0325971860 .0288444308 \quad 0.0328218060 .038090023\)
```

| 3 | 0.094526599 | 0.074100689 | 0.0662339394 | 0.073328117 | 0.083294793 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0.134312016 | 0.106130662 | 0.0952300091 | 0.104543227 | 0.114833921 |
| 5 | 0.173189336 | 0.136059875 | 0.1220428082 | 0.131351702 | 0.143801586 |
| 6 | 0.226539496 | 0.178373695 | 0.1608699461 | 0.170472474 | 0.186370481 |
| 7 | 0.253231211 | 0.198091670 | 0.1798019766 | 0.186330810 | 0.204158943 |
| 8 | 0.365574587 | 0.235852863 | 0.2024422795 | 5 0.209601944 | 0.248363985 |
| 9 | 0.365574587 | 0.235852863 | 0.2024422795 | 50.209601944 | 0.248363985 |
| year |  |  |  |  |  |
| age | 1992 | 1993 | 1994 | 1995 | 1996 |
| 1 | 0.001510267 | 0.001636317 | 0.002245863 | 0.002122482 | 0.002697911 |
| 2 | 0.043766962 | 0.047857446 | 0.060277565 | 0.059173212 | 0.069738074 |
| 3 | 0.095400556 | 0.104866721 | 0.127803470 | 0.127378009 | 0.146479859 |
| 4 | 0.128846573 | 0.142872184 | 0.173239581 | 0.173648696 | 0.197794930 |
| 5 | 0.152354335 | 0.163595203 | 0.195545539 | 0.196322566 | 0.218302961 |
| 6 | 0.194462871 | 0.197063188 | 0.227014279 | 0.223943184 | 0.244733628 |
| 7 | 0.209338263 | 0.209703252 | 0.231947003 | 0.221189081 | 0.237988282 |
| 8 | 0.258352952 | 0.257024269 | 0.304176004 | 0.272896082 | 0.299015053 |
| 9 | 0.258352952 | 0.257024269 | 0.304176004 | 0.272896082 | 0.299015053 |
| year |  |  |  |  |  |
| age | 1997 | 1998 | 1999 | 2000 | 2001 |
| 1 | 0.002843992 | 0.004068604 | 0.002883136 | 0.002213862 | 0.001761528 |
| 2 | 0.072258408 | 0.093883635 | 0.074816153 | 0.063358660 | 0.055043020 |
| 3 | 0.146750085 | 0.185103797 | 0.147072019 | 0.127371244 | 0.115586992 |
| 4 | 0.194478802 | 0.238410479 | 0.182336885 | 0.154048886 | 0.143810977 |
| 5 | 0.208575812 | 0.249641807 | 0.183983130 | 0.152988925 | 0.144289950 |
| 6 | 0.225206739 | 0.259852527 | 0.186625018 | 0.151072892 | 0.142742851 |
| 7 | 0.219344966 | 0.248890655 | 0.176215379 | 0.139513293 | 0.126241495 |
| 8 | 0.254490300 | 0.309493389 | 0.177950920 | 0.120793342 | 0.097364445 |
| 9 | 0.254490300 | 0.309493389 | 0.177950920 | 0.120793342 | 0.097364445 |
| year |  |  |  |  |  |
| age | 2002 | 2003 | 2004 | 2005 | 2006 |
| 1 | 0.001662131 | 0.001262449 | 0.001045556 | 0.001072574 | 0.001530505 |
| 2 | 0.054044729 | 0.045814261 | 0.041638442 | 0.044508485 | 0.059228305 |
| 3 | 0.114109246 | 0.098230126 | 0.090931919 | 0.098726105 | 0.133306413 |
| 4 | 0.144816778 | 0.121455313 | 0.108887571 | 0.114461656 | 0.155183069 |
| 5 | 0.146606763 | 0.123324543 | 0.106800492 | 0.106163063 | 0.138962784 |
| 6 | 0.143438600 | 0.119858120 | 0.103299999 | 0.096718109 | 0.117933567 |
| 7 | 0.122154517 | 0.098182531 | 0.082130288 | 0.074448996 | 0.084762708 |
| 8 | 0.087220864 | 0.056445716 | 0.039543047 | 0.031023314 | 0.034363561 |
| 9 | 0.087220864 | 0.056445716 | 0.039543047 | 0.031023314 | 0.034363561 |
| year |  |  |  |  |  |
| age | 2007 | 2008 | 2009 | 2010 | 2011 |

$10.0013532420 .0014019470 .001051942 \quad 0.001126647 \quad 0.0007363583$ $0.0556982330 .057151538 \quad 0.046393462 \quad 0.047901536 \quad 0.0349135597$ 0.1282734590 .1325948290 .1094778760 .1127607720 .0836460763 $0.151354689 \quad 0.162310281 \quad 0.135685290 \quad 0.141716088 \quad 0.1064507314$ $0.1341220940 .150824780 \quad 0.1321018860 .1453455090 .1129309505$ $0.1078333270 .123595701 \quad 0.1128286140 .1338187570 .1104700665$ $0.071881989 \quad 0.0796293830 .072518827 \quad 0.091156091 \quad 0.0816286505$ $0.022494948 \quad 0.024034621 \quad 0.0191382330 .0292179790 .0268711485$ $90.022494948 \quad 0.024034621 \quad 0.0191382330 .0292179790 .0268711485$ year

```
1 0.0004018293 0.0003197844 0.0002969859 0.0001177891 0.0001658619
2 0.0221264628 0.0192405070 0.0186747194 0.0097720916 0.0125053416
30.0534987588 0.0500219509 0.0516185641 0.0279236885 0.0353760600
4 0.0663321058 0.0666729176 0.0724792559 0.0384894842 0.0487520727
5 0.0705822141 0.0773105695 0.0901709256 0.0481121137 0.0623865732
6 0.0708167593 0.0848520590 0.1031662529 0.0553136896 0.0735708607
7 0.0557654459 0.0725928308 0.0928753848 0.0513095794 0.0689572323
8 0.0159486652 0.0287221535 0.0466716716 0.0181330149 0.0296255954
90.0159486652 0.0287221535 0.0466716716 0.0181330149 0.0296255954
 year
age 2017 2018
1 0.0001744684 0.0001197688
2 0.0131663799 0.0102258848
30.0370794782 0.0290036334
40.0515349763 0.0393430248
5 0.0665782298 0.0504790904
60.0812296454 0.0606409796
70.0789686261 0.0593940431
80.0392509947 0.0245791324
90.0392509947 0.0245791324
```


## Table 4.6.14. Herring in 6.a (combined) and 7.b-c. ESTIMATED POPULATION ABUNDANCE.

```
Units : NA
\begin{tabular}{llllllll}
year & & & & \\
ge & 1957 & 1958 & 1959 & 1960 & 1961 & 1962 & 1963
\end{tabular}
 1 1610615.96 2805288.50 3974532.03 1697902.88 2725456.77 3594942.66 3587444.8
 2 1771371.62 722740.65 1326798.30 1906067.39 726257.04 1239482.00 1671885.6
 3 616188.84 1155157.62 466763.25 877000.97 1215145.79 401900.57 748487.1
 4 261592.85 354935.42 708713.16 319478.81 591316.39 776974.16 225806.7
 5 293587.64 175340.91 196004.52 400845.29 230643.24 413692.11 476194.4
 6 133240.36 174076.71 108527.57 108424.14 242663.10 161820.24 276533.1
 59006.40 79050.04 92787.47 66969.00 67386.05 170271.06 102449.5
\(10613.32 \quad 35189.44 \quad 40273.14 \quad 48472.35 \quad 41808.96 \quad 45093.27 \quad 107156.9\)
\begin{tabular}{lllllllll}
9 & 33821.54 & 27028.70 & 32307.77 & 36811.86 & 47960.91 & 58653.93 & 64381.7
\end{tabular}
\begin{tabular}{llllllll}
age & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970
\end{tabular}
 1 2484700.95 9759776.38 1850327.58 3777158.64 5042445.61 3793197.4 4109763.6
 1702988.73 1051739.56 5232226.11 736931.90 1741150.90 2350523.0 1680008.1
 1087399.14 1112578.63 682251.19 3726170.60 449311.47 1087210.2 1563024.8
 445913.94 721128.39 725580.31 447112.79 2675235.63 287624.0
 5 138961.96 275114.68 451980.23 460413.07 273213.90 1835845.3 183812.1
 6 310588.53 89871.73 174000.42 278870.01 294870.66 180520.4 1133044.7
 7 186236.79 205537.29 60235.69 104484.20 167645.21 196015.7 110093.0
 8 67666.48 121706.69 127067.78 38078.46 61157.98 104986.0 109968.5
 9 113750.43 118335.31 149982.39 162345.14 114710.30 109040.3 113912.5
 year
\begin{tabular}{lllllll}
age & 1971 & 1972 & 1973 & 1974 & 1975 & 1976
\end{tabular}
 1 8163796.88 3332761.21 2037609.86 2160900.12 2285652.33 1505048.02
 2 1825662.91 3911449.42 1444316.58 861051.38 934359.16 1018962.28
 3 966551.35 951038.08 2417613.85 711924.47 403218.07 440027.53
 4 898749.51 405493.27 518138.20 1213988.39 299770.51 181543.30
```

| 5 | 394448.69 | 410487.58 | 229922.19 | 251305.70 | 509766.85 | 131723.22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 110321.40 | 189034.02 | 232828.17 | 116582.30 | 102057.86 | 220521.22 |
| 7 | 661911.85 | 55327.30 | 106207.19 | 114942.86 | 44056.30 | 39337.36 |
| 8 | 60504.93 | 320342.96 | 29936.85 | 54362.21 | 45416.53 | 16500.99 |
| 9 | 115750.86 | 80613.61 | 214776.86 | 114540.62 | 62035.68 | 36224.95 |
| year |  |  |  |  |  |  |
| e | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| 1 | 1805695.42 | 2540324.65 | 2839958.62 | 1846186.52 | 2384168.94 | 1939623.80 |
| 2 | 631149.16 | 805980.14 | 1162590.25 | 1337463.68 | 802459.16 | 1115883.92 |
| 3 | 483770.90 | 336023.85 | 475751.99 | 751952.97 | 859742.35 | 434726.34 |
| 4 | 188596.02 | 257226.21 | 196991.57 | 309351.00 | 491423.03 | 473682.37 |
| 5 | 80343.28 | 98743.67 | 136208.56 | 133340.08 | 193812.40 | 274372.78 |
| 6 | 57221.70 | 41667.83 | 58212.00 | 86821.76 | 90330.25 | 109001 |
| 7 | 87442.71 | 25351.81 | 22792.71 | 36460.41 | 59900.00 | 48820.01 |
| 8 | 14385.93 | 40249.46 | 12966.44 | 13245.44 | 20796.92 | 32947.88 |
| 9 | 15456.81 | 12595.65 | 24712.57 | 20073.73 | 17421.50 | 19099.32 |
| year |  |  |  |  |  |  |
| e | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| 1 | 4732220.37 | 2535308.76 | 2939427.96 | 2616126.96 | 4460708.36 | 1977987.20 |
| 2 | 845013.29 | 2358553.22 | 1136078.90 | 1334427.73 | 1169279.43 | 2175024.33 |
| 3 | 595955.66 | 450833.73 | 1512597.66 | 702197.44 | 760259.62 | 688902.18 |
| 4 | 216285.49 | 305048.11 | 243234.37 | 948887.24 | 406517.98 | 431866.76 |
| 5 | 231534.43 | 108864.07 | 170904.37 | 144101.27 | 550805.20 | 232097.80 |
| 6 | 134912.07 | 106717.65 | 59569.64 | 101869.51 | 77737.75 | 296713.93 |
| 7 | 51874.23 | 59935.28 | 55004.50 | 31635.74 | 53921.92 | 37317.48 |
| 8 | 21659.51 | 21274.12 | 29718.59 | 27990.63 | 17343.14 | 25016.86 |
| 9 | 22865.09 | 16464.18 | 17448.23 | 23135.35 | 27106.83 | 18505.83 |
| year |  |  |  |  |  |  |
| e | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| 1 | 1648685.45 | 1292288.47 | 1039444.11 | 1538777.45 | 1280468.25 | 2094557.85 |
| 2 | 894761.60 | 755342.32 | 591351.09 | 457199.23 | 734335.69 | 599023.79 |
| 3 | 1462535.57 | 586682.46 | 456825.08 | 361384.62 | 256931.67 | 421180.97 |
| 4 | 403071.87 | 908843.77 | 392139.46 | 281277.77 | 212489.25 | 131128.04 |
| 5 | 246725.27 | 249666.94 | 494090.51 | 281318.20 | 166690.51 | 122815.35 |
| 6 | 133518.92 | 139554.21 | 141229.10 | 255644.47 | 183816.49 | 98870.52 |
| 7 | 156494.24 | 80987.21 | 72440.20 | 76570.94 | 125686.87 | 104783.08 |
| 8 | 19265.48 | 80969.83 | 44479.44 | 37072.82 | 40411.82 | 61615.60 |
| 9 | 21863.62 | 20714.69 | 42735.70 | 40515.67 | 36254.16 | 37054.40 |


|  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1620769.77 | 1777371.67 | 2009731.93 | 1047500.80 | 932291.141 | 2602808.770 |
| 2 | 995716.77 | 773871.62 | 830721.41 | 963208.64 | 454647.401 | 397915.062 |
| 3 | 336259.90 | 555563.07 | 462346.46 | 476350.95 | 650038.389 | 257116.200 |
| 4 | 226813.54 | 182525.43 | 266773.03 | 246850.18 | 237843.603 | 377285.292 |
| 5 | 69179.55 | 103740.51 | 101599.91 | 126249.10 | 115184.498 | 118810.907 |
| 6 | 71259.01 | 40538.49 | 55532.54 | 48142.53 | 49633.954 | 57901.116 |
| 7 | 53164.42 | 37326.53 | 21011.45 | 22472.22 | 19679.432 | 25115.885 |
| 8 | 55279.24 | 28838.55 | 21490.99 | 7337.87 | 7050.697 | 8718.176 |
| 9 | 44383.03 | 45707.57 | 28533.56 | 17214.76 | 8744.604 | 7609.857 |


| age | 2001 | 2002 | 2003 | 2004 | 2005 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllll}1 & 1790111.970 & 1935692.87 & 1097488.47 & 952223.78 & 946705.14 & 843147.819 & 549668.68\end{array}$
$21291491.952 \quad 828547.32 \quad 922600.74 \quad 504337.80 \quad 430109.22 \quad 455340.594 \quad 406813.97$

```
213419.943 832334.84 497125.11 581053.82 311410.81 243852.397 275439.04
136625.322 108615.57 463557.21 305271.22 374338.12 175305.981 126201.75
208101.504 77347.05 56430.73 236873.14 200291.76 244199.460 100272.47
63875.802 115281.13 41259.86 28087.54 119678.12 138606.604 128930.67
31857.617 34750.35 53267.75 27404.15 13106.02
12527.812 15057.47 16861.23 23060.11 15618.15 8179.643 35014.53
 8395.482 10718.30 12691.02 15389.00 16786.71 19699.141 13249.04
year
age 2008 2009 2010 2011 2012
1 667164.58 746488.47 1175669.40 536482.565 559713.280 279995.27 358520.358
256221.16 314104.80 338568.10 571431.694 239529.315 254031.43 123804.230
232692.70 156847.57 191384.55 199294.092 375506.331 160196.25 153123.954
148332.25 125646.97 85805.60 102219.938 110960.181 226355.05 103682.821
67300.42 83148.67 67740.91 44018.491 52258.476 58559.57 120651.491
52706.78 39071.72 39866.51 33555.394 23892.213 25215.61 26377.016
68160.73 29980.52 20933.13 17239.873 16789.613 13828.48 10213.488
35366.47 37214.42 15223.87 9596.348 7358.307 8012.51 5673.299
23058.20 31255.76 33454.63 22186.352 14992.954 9734.98 4347.939
year
\begin{tabular}{lll}
age 2015 & 2016 & 2017
\end{tabular}
564442.027 226356.3443 240130.092 230731.697
164147.988 285939.2209 100490.150 111951.569
77170.660 99657.0864 217108.465 69031.229
88747.433 47046.5979 69375.816 147482.236
56734.745 42543.8359 32208.033 48040.283
46898.085 26097.0808 24500.318 20182.669
 9192.354 13512.6529 14833.385 14224.709
4027.079 2370.7618 5834.938 8540.271
1716.545 804.2196 1608.691 3724.353
```

Table 4.6.15. Herring in $6 . a$ (combined) and 7.b-c. PREDICTED CATCH NUMBERS-AT-AGE.
Units : NA
$<0 \times 0$ matrix>

Table 4.6.16. Herring in 6a (combined) and 7.b-c. CATCH-AT-AGE RESIDUALS.
Units : NA
$<0 \times 0$ matrix $>$

## Table 4.6.18. Herring in $6 . a$ (combined) and 7.b-c. PREDICTED INDEX-AT-AGE catch unique $6 . a N$ and 6.aS/7.bc.

```
Units : NA
Area: 6.aN
 year
\begin{tabular}{rrrrrrrrr}
age & 1957 & 1958 & 1959 & 1960 & 1961 & 1962 & 1963 \\
1 & 14294.621 & 31321.613 & 43950.093 & 15522.018 & 20735.706 & 40542.831 & 33129.560 \\
2 & 83846.886 & 43751.386 & 78642.598 & 90774.079 & 27664.141 & 71141.943 & 75444.345 \\
3 & 49739.929 & 116548.265 & 43455.777 & 60806.303 & 62357.341 & 30293.336 & 44815.624 \\
4 & 25646.785 & 44277.651 & 83677.959 & 26864.027 & 34904.692 & 67257.258 & 15150.377 \\
5 & 34963.706 & 26911.778 & 28673.722 & 42386.976 & 16431.974 & 42827.516 & 37195.703 \\
6 & 17291.119 & 29427.447 & 17041.272 & 11841.697 & 16858.505 & 17031.715 & 22368.341 \\
7 & 9175.975 & 16610.450 & 18208.642 & 9060.516 & 5640.082 & 21422.725 & 9955.077 \\
8 & 1699.011 & 7843.893 & 8518.520 & 7055.813 & 3772.831 & 6202.647 & 11884.055 \\
9 & 5414.247 & 6024.826 & 6833.697 & 5358.469 & 4327.982 & 8067.937 & 7140.145
\end{tabular}
\begin{tabular}{rrrrrrrrr}
age & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 \\
1 & 22062.682 & 84916.440 & 20775.705 & 39749.662 & 41694.365 & 45049.43 & 76602.72 \\
2 & 71450.086 & 41976.039 & 271109.062 & 35510.381 & 64997.219 & 133779.26 & 159464.10 \\
3 & 60783.629 & 60377.250 & 45594.618 & 237248.228 & 22494.589 & 88428.46 & 215124.47 \\
4 & 28321.391 & 47240.875 & 58312.861 & 34283.580 & 155637.016 & 27226.57 & 101761.28 \\
5 & 9901.497 & 20241.157 & 40355.029 & 39275.162 & 17361.287 & 193361.22 & 27224.11 \\
6 & 23622.741 & 7081.944 & 16913.816 & 26818.825 & 21468.180 & 21864.16 & 175002.48 \\
7 & 17770.385 & 20744.537 & 7206.632 & 12553.405 & 15662.700 & 31236.97 & 20618.30 \\
8 & 7738.328 & 15217.959 & 18726.024 & 5566.157 & 6911.848 & 20117.71 & 23720.07 \\
9 & 13008.482 & 14796.409 & 22102.958 & 23730.965 & 12964.132 & 20894.61 & 24570.79
\end{tabular}
\begin{tabular}{rrrrrrrrr}
age & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 \\
1 & 317253.52 & 78578.575 & 65885.719 & 84503.28 & 77408.04 & 48210.593 & 33158.159 \\
2 & 384646.45 & 501555.066 & 265501.023 & 197109.97 & 192267.00 & 206940.844 & 76423.255 \\
3 & 282728.16 & 166427.390 & 588849.595 & 209534.45 & 102294.18 & 106684.287 & 71898.084 \\
4 & 259263.74 & 69052.192 & 125349.438 & 374760.74 & 77879.70 & 43348.981 & 27816.327 \\
5 & 106214.40 & 66289.553 & 53286.007 & 78322.22 & 136722.25 & 31513.324 & 11531.601 \\
6 & 28657.75 & 29887.708 & 53089.986 & 38372.38 & 30634.93 & 63206.271 & 10268.005 \\
7 & 186179.08 & 9139.398 & 23241.434 & 36198.16 & 13024.90 & 11629.065 & 16913.496 \\
8 & 18328.83 & 54539.429 & 6258.418 & 15361.54 & 11518.42 & 4097.289 & 2349.167 \\
9 & 35064.54 & 13724.729 & 44899.955 & 32366.62 & 15733.32 & 8994.859 & 2524.038
\end{tabular}
\begin{tabular}{rrrrrrrrr}
age & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 \\
1 & 26031.838 & 96.643587 & 68.823034 & 28987.456 & 34482.109 & 62920.022 & 20190.414 \\
2 & 55290.615 & 141.769580 & 193.063533 & 81867.969 & 185205.999 & 112024.805 & 197781.847 \\
3 & 27705.895 & 64.797850 & 116.368808 & 99470.389 & 83963.904 & 96421.101 & 47387.676 \\
4 & 21637.779 & 25.019690 & 44.234192 & 55293.884 & 92025.947 & 36018.630 & 32651.268 \\
5 & 7609.135 & 15.285850 & 16.622387 & 20636.765 & 54744.220 & 42886.992 & 13069.256 \\
6 & 3936.931 & 7.874077 & 12.461535 & 10849.811 & 24562.675 & 28937.764 & 14315.918 \\
7 & 2674.175 & 3.574513 & 6.171651 & 8207.382 & 12731.208 & 13286.250 & 9275.193 \\
8 & 3622.173 & 1.650682 & 1.765877 & 2317.787 & 7881.835 & 5370.435 & 3278.734 \\
9 & 1133.521 & 3.146016 & 2.676222 & 1941.602 & 4568.964 & 5669.358 & 2537.434
\end{tabular}
 year
\begin{tabular}{llllllll}
age & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991
\end{tabular}
\begin{tabular}{llllllllll}
1 & 18247.112 & 18847.246 & 22480.177 & 7432.959 & 5203.805 & 5209.939 & 3244.712
\end{tabular}
 2 78154.484 116207.828 74507.988 109377.783 39871.434 47094.825 30055.658
 3 129459.863 74590.744 59950.775 43425.456 82023.010 45630.971 28527.791
 4 20668.798 99070.856 33065.675 27739.450 22425.622 71944.188 24492.596
```



| age | 1957 | 1958 | 881959 | 1960 | - 1961 | 11962 | 1963 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 177.7938 | 397.3142 | 2503.8182 | 174.9632 | 315.8523 | $3 \quad 415.1054$ | 253.4605 |
| 2 | 9323.6042 | 4511.1561 | 617518.0884 | 9297.1493 | 3893.5009 | 96757.4686 | 6615.4438 |
| 3 | 6176.1113 | 13479.6248 | 84831.3901 | 7735.3234 | 11907.8462 | 24188.9093 | 6022.8112 |
| 4 | 3008.4581 | 4879.5060 | 60 8377.0658 | 3099.9159 | 6413.2987 | 79382.6250 | 2195.4933 |
| 5 | 4136.5546 | 2905.9085 | 52631.5099 | 4130.9800 | - 2623.9979 | 95378.2543 | 5130.3902 |
| 6 | 2246.9696 | 3483.3683 | 1728.9646 | 1304.8035 | 3239.6390 | 02577.8484 | 3791.7167 |
| 7 | 1397.4633 | 2213.5669 | 2074.3902 | 1143.1683 | 1280.4317 | 73931.7586 | 2101.6422 |
| 8 | 258.2036 | 1157.1031 | 1900.7468 | 673.0248 | - 675.2173 | 31034.2059 | 2020.3487 |
| 9 | 822.8188 | 888.7609 | 9722.5939 | 511.1222 | 2774.5717 | 71345.2173 | 1213.8603 |
| year |  |  |  |  |  |  |  |
| age | 1964 | 1965 | 1966 | 1967 | 1968 | 81969 | 91970 |
| 1 | 162.536 | 707.7915 | 185.5585 | 460.4326 | 6 597.4704 | 4561.1917 | $7 \quad 695.9922$ |
| 2 | 6480.083 | 4336.84072 | 26769.6799 | 4300.7450 | 9921.3629 | 915380.8839 | 9 11903.4588 |
| 3 | 8754.455 | 9995.2096 | 7653.8323 | 47449.6236 | 55990.7693 | 314221.4505 | 521172.8458 |
| 4 | 4548.912 | 8430.41831 | 10805.6750 | 7745.9895 | 43030.2273 | 34957.3629 | 9 12225.0876 |
| 5 | 1622.961 | 3704.5022 | 7772.5621 | 9239.6035 | 5034.3801 | 136978.2641 | 13896.3451 |
| 6 | 4699.836 | 1585.6043 | 3859.3075 | 7085.9078 | 6655.4712 | 24459.1121 | 1 30292.5306 |
| 7 | 4231.751 | 5375.4817 | 1933.4740 | 3713.4367 | 5016.8413 | 36111.4603 | 33669.5028 |
| 8 | 1477.286 | 3188.0667 | 4413.4599 | 1506.1083 | 1654.2537 | 72857.0795 | 53180.6490 |
| 9 | 2483.385 | 3099.7547 | 5209.3557 | 6421.1988 | 3102.7827 | 72967.4131 | 1 3294.7228 |
| year |  |  |  |  |  |  |  |
| age | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 |
| 1 | 1386.562 | 1089.726 | 1402.005 | 2988.811 | 4994.444 | $4390.140 \quad 40$ | 4044.415 |
| 2 | 11899.234 | 41564.379 | 24506.383 | 23079.381 | 34838.0244 | 46546.98925 | 5704.999 |
| 3 | 11525.414 | 17972.809 | 66936.972 | 29655.997 | 23130.7673 | 30846.11630 | 2947.254 |
| 4 | 14262.485 | 10016.209 | 18337.911 | 63283.990 | 21857.6921 | 16567.067158 | 5865.502 |
| 5 | 7962.095 | 12824.173 | 10056.650 | 15758.734 | 43664.4911 | 14250.2278 | 8196.964 |
| 6 | 2974.355 | 7945.881 | 13384.053 | 9130.760 | 10497.5122 | $27290.963 \quad 68$ | 6819.694 |
| 7 | 22908.265 | 3034.717 | 7911.983 | 11352.149 | 5512.408 | 5663.323118 | 1843.451 |
| 8 | 1942.137 | 20969.417 | 3226.973 | 9269.529 | 10575.829 | 4499.37532 | 3231.527 |
| 9 | 3715.466 | 5276.908 | 23151.368 | 19530.803 | 14445.813 | 9877.5663 | 3472.081 |
| year |  |  |  |  |  |  |  |
| age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| 1 | 4985.804 | 4697.852 | 2798.400 | 2464.515 | 1594.545 | 5757.920238 | 2388.938 |
| 2 | 31473.305 | 43036.691 | 48140.409 | 21602.658 | 25293.0182 | 26198.05262 | 2902.777 |
| 3 | 21364.450 | 30197.844 | 48636.117 | 43462.656 | 19160.9463 | 35962.84924 | 4287.016 |
| 4 | 21287.634 | 16599.737 | 26697.465 | 33383.559 | 28143.0121 | 17585.42822 | 2159.247 |
| 5 | 9980.453 | 14094.787 | 14195.737 | 16324.890 | 20048.0922 | 22900.1879 | 9784.998 |
| 6 | 5058.311 | 7470.781 | 11433.250 | 9446.459 | 9782.7641 | 16249.78112 | 2155.314 |
| 7 | 3531.087 | 3436.664 | 5632.422 | 7180.636 | 4888.357 | 6775.2027 | 7630.921 |
| 8 | 8800.972 | 3076.929 | 3238.488 | 3555.204 | 4217.115 | $3937.380 \quad 3$ | 3464.685 |
| 9 | 2754.173 | 5864.282 | 4907.994 | 2978.181 | 2444.589 | 4156.5382 | 2681.342 |
| year |  |  |  |  |  |  |  |
| age | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| 1 | 2292.092 | 1961.890 | 5540.460 | 1604.962 | 1093.433 | 981.9601 | 933.2171 |
| 2 | 26810.499 | 30964.142 | 39624.572 | 56291.419 | 20597.7021 | 19539.471617 | 17831.3853 |
| 3 | 74965.798 | 35089.108 | 55206.586 | 39984.266 | 76478.9953 | 33406.47472 | 29684.9672 |
| 4 | 16593.080 | 66294.810 | 41424.592 | 35616.666 | 30138.8027 | 73213.49823 | 34886.1600 |
| 5 | 14764.940 | 12812.227 | 70959.080 | 24209.010 | 23385.7962 | 24888.75365 | 54342.9689 |
| 6 | 6681.767 | 11676.026 | 12707.498 | 39673.546 | 16357.4351 | 17633.83691 | 19659.0938 |
| 7 | 7037.096 | 4123.978 | 9676.072 | 5462.741 | 21087.6571 | 10932.622810 | 10839.1128 |



| 6 | 1562.02454 | 963.53231 |
| ---: | ---: | ---: |
| 7 | 915.05057 | 666.80161 |
| 8 | 174.59519 | 161.74232 |
| 9 | 48.13585 | 70.53469 |

## Table 4.6.19. Herring in 6.a (combined) and 7.b-c. INDEX-AT-AGE RESIDUALS catch 6.aN and 6.aS/7.bc.

```
Units : NA
```


## Area 6.aN

## year

| age | 1957 | 1958 | 1959 | 1960 | 1961 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4.3917972158 | 5.022033576696010 | 1.70247523 | -1.77488509 | -0.03983159 |
| 2 | 0.0007331323 | 1.556387285203030 | 0.28173625 | 1.18023271 | -0.86506926 |
| 3 | 0.0007765353 | 1.432487194204824 | -0.09186191 | -0.01015073 | -0.09283212 |
| 4 | 0.4522077984 | 0.000000026169952 | 1.42626448 | 0.06541195 | 0.10625283 |
| 5 | 1.0739205341 | 5.889297200829849 | -0.76677184 | -0.05674340 | 2.38542371 |
| 6 | 1.8038697426 | -0.000000009133377 | 0.20707534 | -1.16350511 | -0.82079381 |
| 7 | 2.5811242810 | -4.775733081218419 | -0.84623080 | 0.41770971 | 0.01150809 |
| 8 | -0.0156308090 | -0.610909562467760 | -0.45900596 | -0.43563998 | 1.05131617 |
| 9 | 0.2094578318 | -0.015843162368102 | -0.11765810 | -1.48054103 | -1.67397781 |


| age | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1.269258418 | -0.44968310 | 0.796223563 | 2.3878086 | 2.04026200 | 0.67156742 |
| 2 | 0.006445572 | 0.31751772 | 0.040389662 | -1.2988343 | 0.97492027 | -1.89325120 |
| 3 | -2.661977958 | -0.07217268 | -0.007199186 | 1.1241703 | -2.11175109 | 2.50401816 |
| 4 | 0.133812306 | -1.81319449 | -1.547110693 | 1.0888458 | -0.77381574 | 0.77429340 |
| 5 | 1.401858195 | 0.02582365 | -1.196911480 | -0.2990116 | -0.26040681 | -0.02259793 |
| 6 | 2.097960573 | 1.13472979 | 0.198874974 | -1.0705915 | -0.07685659 | 0.17042617 |
| 7 | 0.625360692 | -0.26082616 | 0.648640421 | 0.4197033 | -1.10908559 | -0.47604216 |
| 8 | 0.556184228 | 0.82575143 | 0.814302805 | 0.6795441 | -0.25337062 | 0.09933413 |
| 9 | 0.482647198 | 0.45854583 | 0.897037057 | 0.8988713 | 0.51124979 | 0.19912689 |


| age | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | | |
|---|---|---|---|---|---|---|---|---|
| 1 | 1.3785544 | -0.28188070 | 0.75449313 | 0.8704819 | 1.07754106 | -1.153220797 |
| 2 | -0.1060101 | 0.08349402 | -0.54059647 | 0.2795461 | 0.50008389 | -0.003190731 |
| 3 | -1.2980853 | 0.34482081 | 1.98406248 | 0.5955658 | -0.57635434 | 2.080997531 |
| 4 | 0.4681987 | 0.25102076 | -0.07464869 | -0.1402377 | -1.68001974 | -0.010204198 |
| 5 | -1.1803030 | 1.26393032 | -0.42545055 | -1.0033699 | 0.02943696 | 0.407580545 |
| 6 | 0.2652489 | 0.17142699 | -1.46703936 | -0.2422761 | -0.29109911 | -0.019581108 |
| 7 | -0.2669021 | 1.21181720 | -0.27784866 | -0.9628498 | 0.21199259 | -1.684307647 |
| 8 | -0.5126255 | 0.31171576 | -0.29538062 | -0.2903139 | -0.10365019 | -0.209019474 |
| 9 | -0.2738214 | 0.32718757 | -0.47294208 | -0.9123296 | 1.10486894 | -0.893016451 | | year |
| :--- |
| age |


| 1 | 0.1422292 | 0.05168102 | -0.43330660 | -0.8311299 | -0.42909607 | -2.4541592 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | -1.2092655 | -0.18202540 | 0.52613569 | -0.7663225 | -0.11594789 | -3.2375007 |
| 3 | -0.2183268 | -1.07110065 | -1.21958117 | 0.9082179 | -1.15028155 | -2.2825087 |
| 4 | 2.4417072 | -0.66393707 | -0.67170603 | -0.7034812 | 1.71193774 | -2.3694639 |
| 5 | 0.6140869 | 0.99552769 | -0.69381595 | -0.2066251 | -1.11112898 | -1.6691966 |
| 6 | 1.4282400 | 0.04495045 | 0.98942171 | 0.7003477 | -0.64000735 | -0.2648352 |
| 7 | -0.0689113 | -0.22175532 | -0.04007801 | 0.8611206 | -1.11608855 | 0.2032683 |
| 8 | 0.6780525 | 0.08013269 | -0.43833676 | -0.2090611 | 0.95378344 | -1.7070140 |
| 9 | -1.0276136 | -0.18819528 | 0.36626645 | -1.9070495 | -0.01367888 | 0.0000000 |


| age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.3323675 | $2.287328-$ | -0.74457174 | 0.07998807 | -1.6169597 | 0.01548741 |
| 2 | -0.3342339 | 3.284511 | 1.77438826 | -0.51474458 | 1.8968439 | 9393072 |
| 3 | -1.1390351 | $2.741852-$ | -1.13712917 | 0.20046123 | -0.8328606 | 0.83921794 |
| 4 | 0.2877466 | 1.788054 | 0.04451531 | -1.06192351 | -0.7794058 | -1.53450505 |
| 5 | -0.3470003 | 1.199861 | 0.69322347 | 0.15117435 | -0.2261800 | -0.23665098 |
| 6 | -1.0065887 | 1.310477 - | -0.13908931 | -0.20603872 | -1.6972269 | -0.02068447 |
| 7 | 1.0267917 | 1.592876 - | -0.22524711 | 0.34586410 | -0.7902994 | -0.57862836 |
| 8 | -1.3665184 | -1.224726 | 2.21345755 | 1.35050486 | 0.3872153 | 0.23719959 |
| 9 | 0.0000000 | -1.456588-0 | -0.41502612 | 0.50479145 | -1.4021758 | 0.63324617 |
| year |  |  |  |  |  |  |
| age | 1986 | 1987 | 71988 | 1989 | 91990 | 01991 |
| 1 | -0.1356420 | -0.61446545 | $5-1.5022477$ | -0.53215975 | 0.05523805 | $5 \quad 0.28583697$ |
| 2 | 0.5698682 | -0.05972924 | $4 \quad 1.4178990$ | 0.08589540 | 0.01593894 | $4-0.77088581$ |
| 3 | 0.1736999 | -0.64250851 | 1-0.5402370 | 1.30006566 | 0.44485120 | $0-0.07990382$ |
| 4 | 0.4199626 | 0.64797743 | $3-0.3240279$ | -1.38773148 | 0.376099 | 83 |
| 5 | -0.2258954 | 0.57137162 | 20.2151300 | -0.23853892 | 0. | 7188178 |
| 6 | 0.2805172 | 0.15375861 | 1-0.1693651 | -0.88313437 | -0.591698 | 50.31548680 |
| 7 | -2.6179585 | 0.87890807 | $7-0.8139342$ | 0.32013748 | 0.4634628 | 3-0.36097224 |
| 8 | -2.0700684 | 1.78631546 | $6-0.3642854$ | -0.09006003 | 0.92657029 | 90.58975651 |
| 9 | -1.1563733 | 0.99312886 | 6-0.3083588 | 0.42167418 | -0.03430650 | 0-1.76396662 |
| year |  |  |  |  |  |  |
| age | 1992 | 199 | 931994 | 41995 | 1996 | 1997 |
| 1 | -0.38347586 | 0.4310876 | $64-0.7401649$ | $9-1.9027985$ | -0.6006532 | 0.7882884 |
| 2 | 0.07415504 | 1.5001176 | $63 \quad 1.1242039$ | 91.9596362 | 0.5950655 | 886 |
| 3 | 0.25499161 | -1.8146540 | $04-0.1606038$ | 8-0.3238788 | -0.9732834 | 514 |
| 4 | 0.76876892 | -0.3639756 | $63-1.8268762$ | 20.4652382 | -0.1492441 | 0.4904937 |
| 5 | 0.67026937 | 0.4448661 | $12-0.1091893$ | $3-0.6310172$ | -0.0535481 | 1.8705754 |
| 6 | 0.26303737 | 0.6084802 | $26 \quad 0.5458070$ | $0-1.0329587$ | 70.3379536 | 1.7033877 |
| 7 | -0.93973863 | 1.1226421 | $17 \quad 0.6388384$ | 41.2692288 | 80.7585103 | 1.2242269 |
| 8 | -0.34078474 | 0.0130265 | $51 \quad 1.0420958$ | $8 \quad 0.1440212$ | 1.9392218 | -0.7229502 |
| 9 | 0.01694900 | -0.0784202 | $21 \quad 1.6637021$ | 11.1107856 | 63.1974302 | -0.4967928 |
| year |  |  |  |  |  |  |
| age | 1998 | 1999 | 92000 | 02001 | - 2002 | 2003 |
| 1 | -0.05541706 | -0.1723384 | $4-0.17595453$ | $3-1.7947362$ | -0.7018864 | -2.1864311 |
| 2 | 0.10997431 | -0.5262732 | 2-0.37017852 | 22.1062474 | 40.5706162 | 1.2877754 |
| 3 | -0.74881122 | 2.1782942 | 20.38144779 | $9-1.2526717$ | 0.9027011 | 0.6578451 |
| 4 | 0.59628642 | $-1.2568593$ | 31.34567783 | 3-0.6410266 | -1.2858047 | 0.4597038 |
| 5 | 0.04385107 | -1.2866145 | $5-0.29636476$ | $6 \quad 0.6766599$ | 1.3656502 | -0.5597169 |
| 6 | 1.07549085 | -1.1495778 | $8-0.01414491$ | 10.6428161 | 0.5355600 | -0.9180326 |
| 7 | 0.11631606 | -1.0987785 | 5-0.55522214 | $4 \quad 0.9319922$ | -0.1081675 | 0.5116131 |
| 8 | 0.14615194 | -0.4258939 | 90.29026377 | $7 \quad 1.6500542$ | -1.9320623 | 2.4898505 |
| 9 | -0.51520904 | -0.1621007 | 7-1.45563062 | $2-0.9627594$ | -0.9043214 | $-1.3646884$ |
| year |  |  |  |  |  |  |
| age | 2004 | 2005 | 52006 | $6 \quad 2007$ | -2008 | 2009 |
| 1 | 0.00000000 | -0.9659948 | $8-0.58622648$ | $8-0.5932267$ | 0.0000000 | 0.931966123 |
| 2 | -0.77137155 | 5 0.2765088 | $8 \quad 0.59225515$ | 51.9450531 | 0.1257339 | -0.001491468 |
| 3 | 0.40350331 | 0.8773285 | 5-0.82056636 | $6-1.6234822$ | -0.6249303 | -0.371324364 |
| 4 | 1.71776993 | -0.8345316 | $6 \quad 1.15490996$ | $6-2.1052749$ | -1.3568968 | 1.155190713 |
| 5 | 1.23025881 | -1.6789009 | 92.16191048 | 80.2906616 | -1.6171798 | -1.096754204 |
| 6 | -0.05130849 | -0.6285523 | 32.01006883 | $3 \quad 0.8782066$ | 6 0.2708454 | -0.638199198 |
| 7 | 1.94359562 | -2.0034600 | $0 \quad 1.16768317$ | 70.4152053 | 31.1552937 | -0.247997100 |


| 8 | 0.74205014 | -0.1369614 | 1.21735119 | 0.6153892 | 0.3773517 | 70.001648594 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 0.24028030 | -0.8055671 | 0.06385637 | 0.1464580 | 1.7387483 | -0.034654312 |
| year |  |  |  |  |  |  |
| age | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 1 | 1.26348195 | -0.0129332 | -0.1552613 | 0.0000000 | 0.0000000 | -0.4430714 |
| 2 | -0.56498314 | 0.3847270 | -0.1786066 | -0.4392724 | -0.3203017 | 0.4845850 |
| 3 | -0.41329309 | -0.8211570 | 1.1994448 | 1.3508415 | 0.2029241 | 0.6181630 |
| 4 | 0.07272197 | -0.1288458 | -1.1037785 | 1.6305154 | 1.6055511 | -0.6210978 |
| 5 | 0.75034313 | 0.1807860 | -0.2676154 | -0.8800551 | 0.8333459 | 0.3390211 |
| 6 | -1.53750872 | -0.4250448 | 1.2623347 | -0.3407591 | -0.9826136 | -0.1590258 |
| 7 | -0.96830317 | -1.2649829 | -0.5729064 | 0.7435359 | -1.1645701 | 0.2476817 |
| 8 | 0.22042849 | -0.2175667 | $-2.1289042$ | 0.2550639 | 0.1330717 | -0.7014103 |
| 9 | 0.46041282 | 0.3830976 | -0.2052476 | -0.2556361 | -0.3624311 | -1.4333914 |
| year |  |  |  |  |  |  |
| age | 2016 | 2017 | 2018 |  |  |  |
| 1 | -1.91656870 | 0.00000000 | 0.00000000 |  |  |  |
| 2 | 1.17848168 | -0.75234568 | 0.03388321 |  |  |  |
| 3 | -1.65251515 | 2.37082235 | 0.57947239 |  |  |  |
| 4 | 0.29306482 | -0.20982771 | -0.39270017 |  |  |  |
| 5 | -1.60833567 | -0.76141442 | 1.37794418 |  |  |  |
| 6 | -0.06505294 | -2.09648883 | 0.79524817 |  |  |  |
| 7 | -0.06002684 | $-1.35620752$ | -2.85900054 |  |  |  |
| 8 | -0.05484937 | -1.84190880 | -1.34388727 |  |  |  |
| 9 | 0.78231276 | -0.06251396 | -0.2642484 |  |  |  |

```
Units : NA
```


## Area 6aS7bc

## year

| age | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.000000000 | -0.00001154036 | 1.299234398 | 0.12012274 | 0.3963300 | -0.8488289 |  |
| 2 | 2.438927976 | 2.28623830802 | 1.771175211 | 1.98403294 | -0.3060049 | -0.4391285 |  |
| 3 | 0.346625541 | -2.65423307329 | -0.002432615 | -0.02072613 | 0.5640517 | 0.2152831 |  |
| 4 | 0.246431619 | 0.00581784888 | 0.266145195 | 0.82009179 | 0.7749017 | 0.5531736 |  |
| 5 | 0.004254281 | 1.71736645378 | -1.718123763 | -2.97119194 | 0.3413027 | 0.5412235 |  |
| 6 | 1.841818048 | 0.13021008621 | -0.025617407 | -0.21647183 | 0.1850896 | 1.4810754 |  |
| 7 | 0.131966240 | 1.71777849047 | -0.145918042 | 0.60278966 | -0.4712157 | 0.8535776 |  |
| 8 | 0.005179995 | 0.00554113526 | -0.631754037 | -0.11005742 | 0.4886074 | 1.2238293 |  |
| 9 | -0.173476870 | 0.54549813623 | -0.557871432 | -1.33353006 | -0.4428591 | 0.6274153 |  |
| year |  |  |  |  |  |  |  |


| age | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $-1.0967866$ | -0.96966547 | 0.07061733 | 0.0000000 | 0.0000000 | 0.24198619 |
| 2 | -0.5469598 | 0.22661170 | 0.26985868 | 0.0784538 | -2.1205248 | 0.08898079 |
| 3 | -0.8447105 | -0.46286632 | 0.59541030 | 2.0540424 | 1.6220396-0 | -0.64254308 |
| 4 | -0.4458808 | 0.15350023 | 0.45075294 | 0.3413917 | 1.5725720 | 1.51002244 |
| 5 | -1.0364109 | 1.17660080 | -0.89778545 | 0.1128351 | $0.1763672-0$ | -0.17984802 |
| 6 | 0.5519582 | 0.06229596 | 1.12049436 | -0.3222501 | -0.3934966-1 | -1.23706377 |
| 7 | 0.6369200 | 0.34505346 | 0.45128476 | 2.0754478 | -0.4042260-1 | -1.88779443 |
| 8 | -0.2159319 | 0.50534880 | -0.29792968 | -0.8604611 | $1.3999317-1$ | -1.61934910 |
| 9 | 1.5548010 | 0.68746454 | 0.51166015 | 0.1675243 | -0.1688788-0 | -0.10066140 |
| year |  |  |  |  |  |  |
| age | 1969 | 1970 | 1971 | 1972 | 2973 | 31974 |
| 1 | 1.0918879 | -1.01011563 | 0.16945425 | 0.02237775 | 1.69452054 | 40.7491029 |
| 2 | 0.5054955 | 1.86815813 | -2.30890476 | 1.20601406 | 0.62374254 | 40.4146509 |



| 1 | -0.51837177 | 0.3736147 | -0.01294346 | 0.6369771 | 0.1957462 | 0.295545884 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.31406774 | 0.4054136 | -0.93901859 | 0.2965149 | 0.3527435 | 0.4245344 |
| 3 | -0.31351493 | 0.5928672 | 0.18192596 | -1.2203810 | -0.7354446 | -0.00427922 |
| 4 | -0.27673552 | -1.1437593 | 0.57644500 | 1.0976674 | -1.4429527 | -0.593566737 |
| 5 | -1.34699218 | -0.3710227 | -0.20429310 | 0.6430705 | 1.4097366 | -2.121904538 |
| 6 | -0.82165418 | -2.0877564 | 1.09523365 | -0.3980346 | 1.0128479 | 1.815331838 |
| 7 | -0.37673295 | -0.6869495 | -0.90928797 | -0.2439391 | $-1.0522905$ | 0.108250080 |
| 8 | 0.03114187 | -0.3535679 | -0.41210949 | 0.1648984 | -0.6187893 | -0.463164457 |
| 9 | 0.09677066 | 1.3342508 | -0.53074976 | -0.6268842 | -1.3578118 | -0.987227093 |
| year |  |  |  |  |  |  |
| age | 2005 | 2006 | 62007 | 2008 | 2009 | 2010 |
| 1 | $-1.15984856$ | 0.17162452 | -1.9858085 | -0.1675898 | -0.8809157 | 0.412299984 |
| 2 | 0.90900068 | 1.25759576 | 60.1790318 | -0.1901420 | 0.1764853 | -0.344743953 |
| 3 | 0.46165828 | 1.27114417 | 1.0554124 | -0.9095596 | -0.5407717 | 0.285586726 |
| 4 | -0.04242593 | 1.05780661 | 1.0064921 | 1.1090280 | -0.8709138 | -1.078603244 |
| 5 | -0.32376097 | 0.01865539 | 0.6953537 | 1.2384328 | 0.9924570 | 0.004331795 |
| 6 | $-1.37851862$ | -0.36610251 | -1.7319523 | 0.7608910 | 1.3240547 | 1.425677518 |
| 7 | 0.75749602 | -0.95916560 | -1.0982359 | -0.4075279 | 0.4859469 | 1.432526161 |
| 8 | 0.83348653 | 1.24958723 | -1.9704124 | -0.1526282 | 0.1184041 | 1.540895817 |
| 9 | -1.63675520 | -1.28267769 | -0.8922525 | -0.7281057 | -4.6283770 | $-1.435634768$ |
| year |  |  |  |  |  |  |
| age | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 1 | -1.4968219 | 2.10305940 | -1.03202106 | -0.7826962 | -0.74239886 | 0.7505958 |
| 2 | -0.5487751 | -0.04118249 | -0.61763779 | -2.0638298 | -0.24473311 | 0.1418034 |
| 3 | -1.0764889 | -1.19701777 | -0.07982554 | 1.7713074 | -1.94997107 | 1.3718954 |
| 4 | -0.1288369 | -1.90475346 | 0.38617936 | 1.1193788 | -0.64247339 | -0.3611380 |
| 5 | -0.5674248 | -1.95215759 | -0.97973439 | 1.3786205 | -0.31158143 | 1.1575249 |
| 6 | 0.6335438 | -2.30536837 | 0.97849146 | 0.5978095 | -2.82666554 | 1.2289272 |
| 7 | 1.3996383 | -0.30174470 | 0.10663319 | 0.7680451 | -1.50245275 | -0.1091049 |
| 8 | 2.3616819 | 0.50963250 | 2.57311035 | 1.6914877 | -0.09134806 | -0.2181315 |
| 9 | -2.2133260 | -2.49298732 | 0.62984123 | -0.2409165 | -0.95943349 | -0.9825197 |
| year |  |  |  |  |  |  |
| age | 2017 | 2018 |  |  |  |  |
| $10.02490121-1.04635313$ |  |  |  |  |  |  |
|  | 0.20751043 | 1.12041830 |  |  |  |  |
| $3-0.12532476-0.09719226$ |  |  |  |  |  |  |
| $4 \quad 1.01282077-1.04019078$ |  |  |  |  |  |  |
| $5-0.87946454 \quad 0.12660661$ |  |  |  |  |  |  |
| $6 \quad 1.06379383-1.64020169$ |  |  |  |  |  |  |
| $7 \quad 0.393787560 .08492086$ |  |  |  |  |  |  |
| $8 \quad 1.20110611 \quad 0.30435272$ |  |  |  |  |  |  |
| $90.61330771-1.87391211$ |  |  |  |  |  |  |

## Table 4.6.20. Herring in $6 . a$ (combined) and 7.b-c. PREDICTED INDEX-AT-AGE IBTS_Q1.



## Table 4.6.21. Herring in $6 . a$ (combined) and 7.b-c. INDEX-AT-AGE RESIDUALS IBTS_Q1.



## Table 4.6.22. Herring in $6 . a$ (combined) and 7.b-c. PREDICTED INDEX-AT-AGE WoS_MSHAS.

```
Units : NA
 year
\begin{tabular}{lllllllll}
age & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998
\end{tabular}
 1 208934.3 309198.5 257273.7 420907.9 325748.1 357359.0 403680.57 210294.16
 2 469128.0 358917.4 572618.1 466449.3 774079.9 606446.4 633154.63 726067.76
 3 715260.4 557717.2 393145.4 639018.3 507699.4 843062.1 673283.17 678188.87
 4 864220.7 612157.6 459337.1 279817.8 480131.9 385099.6 533688.73 480738.60
 5 1237136.4 698542.2 412260.8 299791.9 167217.0 248902.9 224257.98 271528.75
 6 413182.3 741674.9 534269.7 283994.5 203196.7 114330.0 140772.28 119727.11
 7 253650.1 266004.6 434938.9 358013.0 179260.4 124055.2 58867.27 63058.38
 8 174607.7 144239.1 156833.3 231637.4 207005.2 105985.6 68578.52 23808.57
 9 167762.5 157634.2 140698.0 139302.2 166201.9 167981.6 91051.62 55855.27
 year
age 1999 2000 2001 2002 2003 2004 2005
 1 187369.09 523470.90 360227.66 389525.99 220966.18 191772.47 190704.79
 2 349652.15 310108.72 1018873.94 651714.61 735737.47 405184.31 347833.75
 3 956584.67 385037.45 324420.91 1251020.95 764549.33 905063.77 492194.58
 4 488326.56 791321.34 290399.30 226758.32 993712.52 663230.26 835358.32
 5 268328.56 283296.51 499922.24 179977.59 135652.85 575778.76 514854.24
 6 137553.45 165342.39 183002.50 320053.27 118577.95 80969.82 369898.64
 7 64832.80 86091.57 109159.34 114994.37 181424.74 93163.83 49434.24
 8 27731.36 36076.43 51912.62 60655.73 68963.72 92524.00 70397.71
 9 34393.73 31490.12 34789.11 43176.35 51907.23 61745.24 75664.90
 year
age 2006 2007 2008 2009 2010 2011 2012
 1 169769.65 110666.13 134352.53 150306.6 236654.68 108026.73 112725.62
 2 362714.43 322236.60 204764.40 249433.9 265984.68 454071.92 191542.81
 3 372855.71 418007.93 359102.69 239799.1 287234.15 306193.34 584210.43
 4 374628.14 268219.29 321094.32 268287.9 178839.56 219148.58 241545.16
 5 590715.40 240819.36 167558.57 201410.4 158012.70 105890.83 127148.83
 6 396632.48 363657.18 156974.12 112264.2 110109.48 95444.06 68149.85
 7 245802.79 253210.01 245286.16 102986.5 69586.36 59229.49 57494.65
 8 32349.77 131908.22 147856.31 145239.3 56994.47 37100.69 27548.00
 9 77908.37 49912.33 96399.22 121984.0 125246.04 85775.24 56130.56
 year
\begin{tabular}{rrrrrrr}
age & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 \\
1 & 56382.27 & 72199.27 & 113662.831 & 45621.462 & 48400.90 & 46506.67 \\
2 & 201567.26 & 98364.56 & 130035.898 & 235125.243 & 82847.42 & 92345.49 \\
3 & 244001.31 & 232513.82 & 116016.055 & 162413.831 & 355403.36 & 113130.68 \\
4 & 472377.58 & 213725.19 & 180398.041 & 107708.891 & 160123.52 & 341193.80 \\
5 & 132254.19 & 263893.80 & 120273.626 & 110118.919 & 84746.24 & 126522.99 \\
6 & 64420.38 & 63810.99 & 104311.529 & 78565.544 & 76080.26 & 62899.68 \\
7 & 41017.42 & 28029.01 & 21999.796 & 48482.070 & 56097.78 & 54457.14 \\
8 & 22968.36 & 13968.05 & 8115.699 & 9319.662 & 25241.15 & 37421.22 \\
9 & 27905.93 & 10704.92 & 3459.323 & 3161.454 & 6958.98 & 16319.13
\end{tabular}
```


## Table 4.6.23. Herring in $6 . a$ (combined) and 7.b-c. INDEX-AT-AGE RESIDUALS WoS_MSHAS.



```
60.55059409 0.000790029 0.009104051 -1.2730669
7-0.82462491 -0.396057770 -1.500914762 1.2390189
8 0.02384646-1.550467808 -2.245276343 -1.6852266
9-4.64968914 -1.977259611 0.989580125 -0.4590744
```

Table 4.6.24. Herring in $6 . a$ (combined) and 7.b-c. PREDICTED INDEX-AT-AGE IBTS_Q4.

| year |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age | 1996 | 1997 | 1998 | 81999 | 92000 | 02001 | 2002 |
| 2 | 15487.631 | 15899.902 | 18111.6011 | 18828.494 | 47893.205 | 526125.954 | 416681.262 |
| 3 | 14881.962 | 11592.105 | 11518.0052 | 216574.695 | 56742.491 | 15732.739 | 21955.661 |
| 4 | 7631.287 | 10240.551 | 9075.6495 | 59518.562 | 215625.120 | 05780.517 | 74464.939 |
| 5 | 7181.488 | 6151.724 | 7332.3386 | 67604.938 | 88143.159 | 914435.021 | 15097.363 |
| 6 | 3829.911 | 4420.756 | 3716.5724 | 44559.297 | 75580.653 | 36188.988 | 10619.786 |
| 7 | 3849.195 | 1647.073 | 1766.0086 | 62000.966 | $6 \quad 2721.687$ | 73450.157 | 73558.715 |
| 8 | 4056.261 | 2409.486 | -844.9836 | 61105.839 | 9 1483.545 | $5 \quad 2136.551$ | 1 2454.020 |
| 9 | 6428.958 | 3199.072 | 1982.3445 | 51371.513 | $3 \quad 1294.946$ | 61431.805 | 51746.836 |
| year |  |  |  |  |  |  |  |
| age | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| 2 | 18989.282 | 10504.835 | 9 9054.015 | 9355.338 | 8282.975 | 5291.8006 | 6421.465 |
| 3 | 13605.871 | 16230.960 | 8905.144 | 6611.989 | 7379.128 | 6403.912 | 52.184 |
| 4 | 19882.366 | 13378.157 | 17125.646 | 7481.488 | 5338.719 | 6462.596 | 55.179 |
| 5 | 3918.475 | 16744.272 | 15488.074 | 17128.274 | 6952.407 | 4944.018 | 44.887 |
| 6 | 4017.791 | 2748.615 | 13097.703 | 13404.119 | 12182.786 | 5434.855 | 3803.342 |
| 7 | 5713.350 | 2930.600 | 1656.003 | 7716.227 | 7828.101 | 7986.25132 | 3260.022 |
| 8 | 2815.983 | 3734.349 | 3048.728 | 1294.326 | 5124.601 | 6118.0325 | 5764.565 |
| 9 | 2119.519 | 2492.092 | 3276.835 | 3117.142 | 1939.081 | 3988.82948 | 4841.561 |
| year |  |  |  |  |  |  |  |
| age | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 2 | 6803.109 | 11694.254 | 4951.9585 | 5186.659625 | 2533.097533 | 3342.75262 | 6182.2718 |
| 3 | 5036.538 | 5445.667 | 10469.4794 | 4316.878941 | 4105.996920 | 2036.38646 | 2993.5562 |
| 4 | 3517.855 | 4385.040 | 4878.0549 | 9299.0246417 | 4176.036234 | 3495.12904 | 2242.6197 |
| 5 | 4481.927 | 3060.089 | 3699.7703 | 3678.641071 | 7199.154332 | 3219.60690 | 3326.5500 |
| 6 | 3642.145 | 3213.763 | 2298.6332 | 2032.600019 | 1947.974830 | 3026.38153 | 2737.9463 |
| 7 | 2159.410 | 1875.064 | 1816.5511 | 1187.9806 | 774.4735 | 559.53245 | 1575.6688 |
| 8 | 2205.853 | 1464.144 | 1066.195 | 756.2541 | 419.4431 | 215.87681 | 371.5210 |
| 9 | 4847.388 | 3385.038 | 2172.430 | 918.8280 | 321.4555 | 92.01766 | 126.0289 |
| year |  |  |  |  |  |  |  |
| age | 2017 | 2018 |  |  |  |  |  |
| 2 | 2181.7855 | 2432.6967 |  |  |  |  |  |
| 3 | 6568.3234 | 2092.2332 |  |  |  |  |  |
| 4 | 3350.3704 | 7149.1274 |  |  |  |  |  |
| 5 | 2585.6536 | 3862.4800 |  |  |  |  |  |
| 6 | 2701.5618 | 2238.4209 |  |  |  |  |  |
| 7 | 1882.2365 | 1840.7562 |  |  |  |  |  |
| 8 | 1066.2465 | 1593.0923 |  |  |  |  |  |
| 9 | 293.9639 | 694.7364 |  |  |  |  |  |

Table 4.6.25. Herring in $6 . a$ (combined) and 7.b-c. INDEX-AT-AGE RESIDUALS IBTS_Q4.


Table 4.6.29. Herring in 6.a (combined) and 7.b-c. FIT PARAMETERS.

|  |  | name | value |
| :--- | ---: | ---: | ---: | std.dev

```
5 2 ~ t r a n s f I R A R d i s t ~ - 1 . 4 8 9 0 5 6 8 0 ~ 0 . 2 5 2 9 7 8 3 5 ~
5 3 \text { transfIRARdist -1.79995564 0.57247491}
5 4 ~ t r a n s f I R A R d i s t ~ - 3 . 0 3 4 8 7 6 9 2 ~ 0 . 5 2 8 2 4 1 4 9 ~
5 5 \text { transfIRARdist -2.07064797 0.46442481}
5 6 ~ t r a n s f I R A R d i s t ~ - 1 . 1 8 3 4 7 9 7 1 ~ 0 . 3 3 6 6 8 0 8 1)
57 itrans_rho 2.96513107 0.21662760
58 itrans_rho 1.74454624 0.20887268
```

Table 4.6.30. Herring in 6.a (combined) and 7.b-c. NEGATIVE LOG-LIKELIHOOD.
1538.0642221481


Figure 4.3.1.1. Herring in 6.a (combined) and 7.b-c. Comparison of the proportions-at-age, by age (-wr), of the catch, acoustic survey (WOS MSHAS), IBTS Q1 and IBTSQ4.


Figure 4.3.1.2. Herring in $6 . a$ (combined) and 7.b-c. Internal consistency between ages (rings) in the WoS_MSHAS herring acoustic survey time-series (1991-2018).


Figure 4.3.1.3 Herring in Divisions 6.a (combined) and 7.b-c. Catch numbers-at-age from Malin Shelf herring acoustic survey combined with West of Scotland acoustic survey (WoS_MSHAS) (6.a.N-S, 7.b and 7.c) time-series. Age (rings) from acoustic surveys 1991 to 2018.


Figure 4.3.1.1.1 Length-frequency distributions recorded from industry survey samples.

IBTS-Q1

$\log _{10}$ (Index Value)
Lower right panels show the Coefficient of Determination $\left(r^{2}\right)$

Figure 4.3.2.1. Herring in divisions 6.a (combined) and 7.b-c. Internal consistency plot of the quarter 1 Scottish bottomtrawl survey (1994-2018). Above the numbered diagonal the linear regression is shown including the observations (in points) while under the numbered diagonal the $r^{2}$ value that is associated with the linear regression is given.

IBTS-Q4


Figure 4.3.2.2. Herring in divisions $6 . a$ (combined) and 7.b-c. Internal consistency plot of the quarter 4 Scottish bottomtrawl survey in (1996-2018). Above the numbered diagonal the linear regression is shown including the observations (in points) while under the numbered diagonal the $r^{2}$ value that is associated with the linear regression is given.


Figure 4.3.2.3. Herring in $6 . a$ (combined) and 7.b-c. Trends in stock composition from abundance-at-age index from Scottish ground fish survey in Quarter 1.


Figure 4.3.2.4. Herring in $6 . a$ (combined) and 7.b-c. Trends in stock composition from abundance-at-age index from Scottish ground fish survey in Quarter 4. There was no survey in 2010 and in 2013 only half of the survey was completed and the data were not used for the index.


Figure 4.3.2.5 Herring in 6.a (combined) and 7.b-c. Abundance-at-age index from Scottish ground fish survey in Quarter 1 for age from the IBPher6a7bc in 2019 and from HAWG 2019. There were no additional data included between the IBPher6a7bc and HAWG 2019, the line therefor completely overlap. Each index was mean standardized by year.


Figure 4.3.2.6 Herring in 6.a (combined) and 7.b-c. Abundance-at-age index from Scottish ground fish survey in Quarter 4 for age from the IBPher6a7bc in 2019 and from HAWG 2019. Each index was mean standardized by years.


Figure 4.4.2.1. Herring in 6.a (combined) and 7.b-c. Maturity-at-ages 2-4 wr for the years 2008 to 2018.


Figure 4.6.1. Herring in $6 . a$ (combined) and 7.b-c. Bubble plot of catch $\mathbf{N}$ residuals (1957-2018).



Figure 4.6.3. Herring in $6 . a$ (combined) and 7.b-c. Bubble plot of standardised survey residuals from the WoS_MSHAS acoustic survey (1991-2018).


Figure 4.6.4. Herring in $6 . a$ (combined) and 7.b-c. Bubble plot of standardised survey residuals from the Scottish bottomtrawl survey in quarter 1 (1994-2018).


Figure 4.6.5. Herring in $6 . a$ (combined) and 7.b-c. Bubble plot of standardised survey residuals from the Scottish bottomtrawl survey in quarter 4 (1996-2018).

## Observation variances by data source



Figure 4.6.6. Herring in $6 . a$ (combined) and 7.b-c. Observation variance by data source, ordered from least (left) to most (right). Colours indicate the different data sources. In cases where parameters are bound, observation variances have equal values.


Figure 4.6.7. Herring in $6 . a$ (combined) and 7.b-c. Observation variance by data source as estimated by the assessment model plotted against the CV estimate of the observation variance parameter.

## Survey catchability parameters



Figure 4.6.8. Herring in $6 . a$ (combined) and 7.b-c. Survey catchability parameters from the WOS_MSHAS acoustic survey (topleft), Scottish groundfish survey index quarter 1 (IBTS_Q1, topright) and Scottish groundfish survey index quarter 4 (IBTS_Q4, bottomleft).

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet


Figure 4.6.9. Herring in $6 . a$ (combined) and 7.b-c. Correlation plot of the parameters estimated in the model. The horizontal and vertical axes show the parameters fitted by the model (labelled with names stored and fitted by FLSAM). The colouring of each pixel indicates the Pearson correlation between the two parameters. The diagonal represents the correlation with the data source itself.


Figure 4.6.10. Herring in 6.a (combined) and 7.b-c. Uncertainty estimates in SSB, $\mathrm{F}_{\mathrm{bar}}$ and recruitment parameters (19572018).


Figure 4.6.11. Herring in $6 . a$ (combined) and 7.b-c. Stock summary plot with associated uncertainty for SSB (top panel), F ages 3-6 (middle panel) and recruitment (bottom panel).


Figure 4.6.12. Herring in 6.a (combined) and 7.b-c. Analytical retrospective of the estimated spawning-stock biomass (top panel), fishing mortality (middle panel) and recruitment (bottom panel) as estimated over the years 2011-2018.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - catch N , age 1


Figure 4.6.13. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 1-winter ring time-series. Top left: Estimates of numbers at 1-winter ring (line) and numbers predicted from catch abundance at 1winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 1-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 1winter ring. Middle right: catch observation versus standardized residuals at 1-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6aN and 6as,7bc multifleet Diagnostics - catch N , age 2


Figure 4.6.16. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 2-winter ring time-series. Top left: Estimates of numbers at 2-winter ring (line) and numbers predicted from catch abundance at 2winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at $\mathbf{2 - w i n t e r ~ r i n g ~}$ with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 2winter ring. Middle right: catch observation versus standardized residuals at 2-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - catch N , age 3


Figure 4.6.17. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 3-winter ring time-series. Top left: Estimates of numbers at 3-winter ring (line) and numbers predicted from catch abundance at 3winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 3-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 3winter ring. Middle right: catch observation versus standardized residuals at 3-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.18. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 4-winter ring time-series. Top left: Estimates of numbers at 4-winter ring (line) and numbers predicted from catch abundance at 4winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 4-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 4winter ring. Middle right: catch observation versus standardized residuals at 4-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - catch N , age 5


Figure 4.6.19. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 5 -winter ring time-series. Top left: Estimates of numbers at 5-winter ring (line) and numbers predicted from catch abundance at 5winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 5-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 5winter ring. Middle right: catch observation versus standardized residuals at 5-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.20. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 6-winter ring time-series. Top left: Estimates of numbers at 6-winter ring (line) and numbers predicted from catch abundance at 6winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 6-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 6winter ring. Middle right: catch observation versus standardized residuals at 6-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.21. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 7-winter ring time-series. Top left: Estimates of numbers at 7 -winter ring (line) and numbers predicted from catch abundance at 7winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 7-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 7winter ring. Middle right: catch observation versus standardized residuals at 7-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - catch N , age 8


Figure 4.6.22. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 8 -winter ring time-series. Top left: Estimates of numbers at 8 -winter ring (line) and numbers predicted from catch abundance at 8winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 8 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 8winter ring. Middle right: catch observation versus standardized residuals at 8-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.23. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 9 -winter ring time-series. Top left: Estimates of numbers at 9 -winter ring (line) and numbers predicted from catch abundance at 9 winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 9 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 9 winter ring. Middle right: catch observation versus standardized residuals at 9-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.24. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 1-winter ring time-series. Top left: Estimates of numbers at 1-winter ring (line) and numbers predicted from catch abundance at 1winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 1-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 1winter ring. Middle right: catch observation versus standardized residuals at 1-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - catch $\mathbf{S}$, age 2


Figure 4.6.25. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 2-winter ring time-series. Top left: Estimates of numbers at 2-winter ring (line) and numbers predicted from catch abundance at 2winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at $\mathbf{2 - w i n t e r ~ r i n g ~}$ with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 2winter ring. Middle right: catch observation versus standardized residuals at 2-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.26. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 3-winter ring time-series. Top left: Estimates of numbers at 3-winter ring (line) and numbers predicted from catch abundance at 3winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 3-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 3winter ring. Middle right: catch observation versus standardized residuals at 3-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.27. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 4-winter ring time-series. Top left: Estimates of numbers at 4-winter ring (line) and numbers predicted from catch abundance at 4winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 4-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 4winter ring. Middle right: catch observation versus standardized residuals at 4-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - catch S, age 5


Figure 4.6.28. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 5-winter ring time-series. Top left: Estimates of numbers at 5-winter ring (line) and numbers predicted from catch abundance at 5winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 5-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 5winter ring. Middle right: catch observation versus standardized residuals at 5-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.29. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 6 -winter ring time-series. Top left: Estimates of numbers at 6 -winter ring (line) and numbers predicted from catch abundance at 6winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 6 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 6winter ring. Middle right: catch observation versus standardized residuals at 6-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and 6as,7bc multifleet Diagnostics - catch $\mathbf{S}$, age 7


Figure 4.6.30. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 7-winter ring time-series. Top left: Estimates of numbers at 7-winter ring (line) and numbers predicted from catch abundance at 7winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 7-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 7winter ring. Middle right: catch observation versus standardized residuals at 7-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.31. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 8 -winter ring time-series. Top left: Estimates of numbers at 8 -winter ring (line) and numbers predicted from catch abundance at 8winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 8 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 8winter ring. Middle right: catch observation versus standardized residuals at 8-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.32. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the catch at 9 -winter ring time-series. Top left: Estimates of numbers at 9 -winter ring (line) and numbers predicted from catch abundance at 9 winter ring. Top right: scatterplot of catch observations versus assessment model estimates of numbers at 9-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the catch at 9winter ring. Middle right: catch observation versus standardized residuals at 9-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - WOS_MSHAS, age 1


Figure 4.6.33. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the WoS_MSHAS acoustic survey index at 1-winter ring time-series. Top left: Estimates of numbers at 1-winter ring (line) and numbers predicted from index abundance at 1-winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 1-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 1-winter ring. Middle right: index observation versus standardized residuals at 1-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot. There were no observations of 1 winter ring fish in this survey in 2015 and 2016, therefore the figure stops at 2014.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - WOS_MSHAS, age 2


Figure 4.6.34. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the WoS_MSHAS acoustic survey index at 2-winter ring time-series. Top left: Estimates of numbers at 2-winter ring (line) and numbers predicted from index abundance at 2 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 2-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 2 -winter ring. Middle right: index observation versus standardized residuals at 2 -winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - WOS_MSHAS, age 3


Figure 4.6.35. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the WoS_MSHAS acoustic survey index at 3-winter ring time-series. Top left: Estimates of numbers at 3-winter ring (line) and numbers predicted from index abundance at 3-winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 3 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 3-winter ring. Middle right: index observation versus standardized residuals at 3-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - WOS_MSHAS, age 4


Figure 4.6.36. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the WoS_MSHAS acoustic survey index at 4-winter ring time-series. Top left: Estimates of numbers at 4-winter ring (line) and numbers predicted from index abundance at 4-winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 4-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 4-winter ring. Middle right: index observation versus standardized residuals at 4-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.37. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the WoS_MSHAS acoustic survey index at 5-winter ring time-series. Top left: Estimates of numbers at 5-winter ring (line) and numbers predicted from index abundance at 5-winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 5 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 5-winter ring. Middle right: index observation versus standardized residuals at 5-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - WOS_MSHAS, age 6


Figure 4.6.38. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the WoS_MSHAS acoustic survey index at 6 -winter ring time-series. Top left: Estimates of numbers at 6 -winter ring (line) and numbers predicted from index abundance at 6 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 6 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 6-winter ring. Middle right: index observation versus standardized residuals at 6-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6aN and 6aS,7bc multifleet Diagnostics - WOS_MSHAS, age 7


Figure 4.6.39. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the WoS_MSHAS acoustic survey index at 7 -winter ring time-series. Top left: Estimates of numbers at 7 -winter ring (line) and numbers predicted from index abundance at 7 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 7 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 7-winter ring. Middle right: index observation versus standardized residuals at 7-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - WOS_MSHAS, age 8


Figure 4.6.40. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the WoS_MSHAS acoustic survey index at 8 -winter ring time-series. Top left: Estimates of numbers at 8 -winter ring (line) and numbers predicted from index abundance at 8 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 8 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 8-winter ring. Middle right: index observation versus standardized residuals at 8-winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6aN and 6aS,7bc multifleet Diagnostics - WOS_MSHAS, age 9


Figure 4.6.41. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the WoS_MSHAS acoustic survey index at 9 -winter ring time-series. Top left: Estimates of numbers at 9 -winter ring (line) and numbers predicted from index abundance at 9 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 9 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 9 -winter ring. Middle right: index observation versus standardized residuals at 9 -winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - IBTS_Q1, age 2


Figure 4.6.42. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 1 at 2-winter ring time-series. Top left: Estimates of numbers at 2-winter ring (line) and numbers predicted from index abundance at 2-winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 2 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 2-winter ring. Middle right: index observation versus standardized residuals at 2winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - IBTS_Q1, age 3


Figure 4.6.43. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 1 at 3 -winter ring time-series. Top left: Estimates of numbers at 3 -winter ring (line) and numbers predicted from index abundance at 3 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 3 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 3-winter ring. Middle right: index observation versus standardized residuals at 3winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.44. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 1 at 4-winter ring time-series. Top left: Estimates of numbers at 4 -winter ring (line) and numbers predicted from index abundance at 4 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 4-winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 4-winter ring. Middle right: index observation versus standardized residuals at 4winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.45. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 1 at 5 -winter ring time-series. Top left: Estimates of numbers at 5 -winter ring (line) and numbers predicted from index abundance at 5 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 5 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 5-winter ring. Middle right: index observation versus standardized residuals at 5winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - IBTS_Q1, age 6


Figure 4.6.46. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 1 at 6 -winter ring time-series. Top left: Estimates of numbers at 6 -winter ring (line) and numbers predicted from index abundance at 6 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 6 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 6-winter ring. Middle right: index observation versus standardized residuals at 6winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - IBTS_Q1, age 7


Figure 4.6.47. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 1 at 7 -winter ring time-series. Top left: Estimates of numbers at 7 -winter ring (line) and numbers predicted from index abundance at 7 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 7 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 7-winter ring. Middle right: index observation versus standardized residuals at 7winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.48. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 1 at 8 -winter ring time-series. Top left: Estimates of numbers at 8 -winter ring (line) and numbers predicted from index abundance at 8 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 8 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 8-winter ring. Middle right: index observation versus standardized residuals at 8winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.49. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 1 at 9 -winter ring time-series. Top left: Estimates of numbers at 9 -winter ring (line) and numbers predicted from index abundance at 9 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 9 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 9 -winter ring. Middle right: index observation versus standardized residuals at 9 winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - IBTS_Q4, age 2


Figure 4.6.50. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 4 at 2-winter ring time-series. Top left: Estimates of numbers at 2 -winter ring (line) and numbers predicted from index abundance at 2-winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 2 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 2-winter ring. Middle right: index observation versus standardized residuals at 2winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6aN and 6aS,7bc multifleet Diagnostics - IBTS_Q4, age 3


Figure 4.6.51. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 4 at 3 -winter ring time-series. Top left: Estimates of numbers at 3 -winter ring (line) and numbers predicted from index abundance at 3 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 3 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 3-winter ring. Middle right: index observation versus standardized residuals at 3winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and $6 \mathrm{aS}, 7 \mathrm{bc}$ multifleet Diagnostics - IBTS_Q4, age 4


Figure 4.6.52. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 4 at 4-winter ring time-series. Top left: Estimates of numbers at 4-winter ring (line) and numbers predicted from index abundance at 4-winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 4 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 4-winter ring. Middle right: index observation versus standardized residuals at 4winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.53. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 4 at 5 -winter ring time-series. Top left: Estimates of numbers at 5 -winter ring (line) and numbers predicted from index abundance at 5 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 5 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 5-winter ring. Middle right: index observation versus standardized residuals at 5winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - IBTS_Q4, age 6


Figure 4.6.54. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 4 at 6 -winter ring time-series. Top left: Estimates of numbers at 6 -winter ring (line) and numbers predicted from index abundance at 6 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 6 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 6-winter ring. Middle right: index observation versus standardized residuals at 6winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - IBTS_Q4, age 7


Figure 4.6.55. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 4 at 7 -winter ring time-series. Top left: Estimates of numbers at 7 -winter ring (line) and numbers predicted from index abundance at 7 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 7 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 7-winter ring. Middle right: index observation versus standardized residuals at 7 winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.

Herring in 6 aN and 6aS,7bc multifleet Diagnostics - IBTS_Q4, age 8


Figure 4.6.56. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 4 at 8 -winter ring time-series. Top left: Estimates of numbers at 8 -winter ring (line) and numbers predicted from index abundance at 8 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 8 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 8-winter ring. Middle right: index observation versus standardized residuals at 8winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Figure 4.6.57. Herring in $6 . a$ (combined) and 7.b-c. Diagnostics of the assessment model fit to the Scottish bottom-trawl survey index in quarter 4 at 9 -winter ring time-series. Top left: Estimates of numbers at 9 -winter ring (line) and numbers predicted from index abundance at 9 -winter ring. Top right: scatterplot of index observations versus assessment model estimates of numbers at 9 -winter ring with the best-fit catchability model (linear function). Middle left: Time-series of standardized residuals of the index at 9 -winter ring. Middle right: index observation versus standardized residuals at 9 winter ring. Bottom left: normal Q-Q plot of standardized residuals. Bottom right: Autocorrelation of residuals plot.


Fishing Mortality


Recruitment


Figure 4.6.58. Herring in 6.a (combined) and 7.b-c. Perception of stock estimates in the 2018 and 2019 HAWG assessments.

# 5 Herring (Clupea harengus) in divisions 6.a (South), 7.b-c, and 6.a (North), separate 

### 5.1 Herring in divisions 6.a (South) and 7.b-c

Since 2015, this stock has been combined with herring in 6.a.N (Section 5.2) for assessment and advisory purposes. This management unit existed since 1982, when it was separated from 6.a.N. Until that time, $7 . \mathrm{b}-\mathrm{c}$ was also a separate management unit. The stock comprises autumn, winter, and spring-spawning components.

The WG noted that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout this section. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks, there is a difference of one year between "age" and "rings", which is not the case for the spring spawners. Further elaboration on the rationale behind this, specific to Area 6.a.S, 7.b-c autumn, winter and spring spawners, can be found in the Stock Annex. It is the responsibility of any user of age-based data for any of these herring stocks to consult the stock annex and if in doubt consult a relevant member of the Working Group.

### 5.1.1 The Fishery

### 5.1.1.1 Advice and management applicable to 2018

In 2016 ICES advised TAC of $0 t$ and that a stock recovery plan be developed for herring stocks in 6.a and 7.b-c stocks (ICES, 2016a). However in February 2016, the European Commission asked ICES to advise on a TAC of sufficiently small size to allow ongoing collection of fisheriesdependent data. In June 2016, ICES advised on a scientific monitoring TAC of 1360 t for this stock (ICES, 2016b). The EC set a TAC slightly higher than this advice, at 1630 t was established by the EC (EU 2016/0203). This TAC was the same in 2017 and 2018.

## Rebuilding plan

A revised proposed rebuilding plan for both $6 . a . \mathrm{N}$ and $6 . a . S, 7 . \mathrm{b}-\mathrm{c}$ stocks combined was reviewed by HAWG 2018 (ICES 2018, Annex 9). While the plan was considered to provide a framework for recovery of these combined stocks, it was considered unlikely that the revised proposed plan can aid the recovery of the combined stocks by 2020 as recent poor recruitments hamper a speedy recovery. Furthermore, ICES ACOM considered that further quantitative evaluation would be required to be used as the basis for advice.

### 5.1.1.2 Catches in 2018

The Working Group estimates of landings from 1991-2018 are given in Table 5.1.2. The catch has declined from 19000 t in 2006 to 1495 t in 2018 as there is now a monitoring TAC in place for the combined stocks in 6.a and 7.b-c. In 2018 the majority of the quota taken close inshore. Catches over time are shown in Figure 5.1.1.

In 2018 the majority of the catch was taken in the fourth quarter. Subdivision 6.aS accounted for the vast majority of catch (Figure 5.1.9).

### 5.1.1.3 Regulations and their effects

Within the Irish fishery, the monitoring TAC in 2018 was allocated on a similar basis to 2016 and 2017. The quota was allocated, to a wide spectrum of small and large vessels. This resulted in more fishing opportunities across the fleet.

### 5.1.1.4 Changes in fishing technology and fishing pattern

The monitoring TAC, introduced in 2016 and continued in 2017 and 2018, has led to a change in the pattern of the fishery. In previous years, larger vessels dominated in the fishery and took their quotas often in one haul, in a somewhat opportunistic basis. The monitoring TAC is now allocated to vessels in six different categories from over 24 m down to under 12 m . The larger vessels were unable to utilize their quota in 2018 due to the timing of the fishery which opens in November.

### 5.1.2 Biological composition of the catch

### 5.1.2.1 Catch s-at-age

Catch-at-age data for this fishery are shown in Table 5.1.3 and Figure 5.1.2 and in percentage terms since 1992 in Table 5.1.4. In 2018, the fishery was dominated by 4- and 5-ringers (2012 and 2013 cohort), accounting for $53 \%$ of the catch, followed by 3-ringer at $17 \%$ (Table 5.1.4). These cohorts featured prominently in the previous year. Proportion-at-age in the catches from the fishery are similar to the catches from the MSHAS for most year, in 2018 catches from the MSHAS were dominated my 1-ringers (Figure 5.1.4).

### 5.1.2.2 Quality of the catch and biological data

The 6.a.S/7.b-c stock is well sampled, there have been sufficient samples to achieve the precision level sought by the ICES advice on the monitoring fishery since 2016. The numbers of samples and the associated biological data are shown in Table 5.1.7. The catch-at-age matrix tracks cohorts well in the past two years.

Mixing of autumn, winter and spring spawners takes place in this area which may lead to ageing difficulties regarding counting of winter rings.

### 5.1.3 Fishery-independent Information

### 5.1.3.1 Acoustic Surveys

The Irish Marine Institute conducted acoustic surveys in $6 . a . S$ and $7 . b-c$ on the west and northwest coasts of Ireland between 1994 and 2007 at various times of the year. An acoustic survey has been carried out in Division 6.a.N in June-July since 1991 by Marine Scotland Science. It originally covered an area bounded by the 200 m depth contour and $4^{\circ} \mathrm{W}$ in the north and west and extended south to $56^{\circ} \mathrm{N}$, it had provided an age-disaggregated index of abundance as the sole tuning index for the analytical assessment of 6.a.N herring since 2002 (ICES, 2015b). In 2008, it was decided that these surveys should be expanded into a larger coordinated summer survey on recommendation from WESTHER, HAWG and SGHERWAY (Hatfield et al., 2007; ICES, 2007; ICES, 2010a). The Scottish 6 .aN survey was augmented with the participation of the Irish Marine Institute and the area was expanded to cover all of ICES divisions 6.a and 7.b. The Malin Shelf Herring Acoustic Survey (MSHAS), as it is now known, has covered this increased geographical area in the period 2008 to 2018 as well as maintaining coverage of the original survey area in 6.a.N.

### 5.1.3.2 Industry acoustic survey in 2018

An acoustic survey of Atlantic herring Clupea harengus and horse mackerel Trachurus trachurus was conducted in ICES areas 6 aS and 7 b in November 2018 using the pair trawl vessels MFV Eilean Croine and MFV Sparkling Star. This survey is the third in a time-series that is hoped will be developed into a long-term index of spawning/prespawning herring in 6 aS and 7 b , for use in stock assessments in future. The survey track and associated biological hauls are presented in Figure 5.1.5 and the herring NASC values in Figure 5.1.6. In total 1400 nmi of cruise track was completed using 37 transects and related to a total area coverage of approximately $5600 \mathrm{nmi}^{2}$. Parallel transect spacing was set at 7.5 nmi for the wider area strata, and 3.5 nmi for Donegal Bay and Achill strata. Coverage extended from inshore coastal areas to the 200 m contour in the west and north where possible. A survey was carried out in Lough Swilly using a zig-zag design. Very strong herring marks were evident in Lough Swilly, an area where boats in the monitoring fishery were concentrating effort. There were a few herring marks in discrete areas around Glen Head, Bruckless Bay, Inishmurray and Inishbofin. Biological samples from the monitoring fishery of herring were used to augment the samples from the survey. Herring samples were taken from boats fishing in Lough Swilly and Bruckless Bay as close spatially and temporally as possible to the survey in these areas. Herring were dominated overall by 4 -wr fish, $29 \%$ of the overall numbers. This age class is dominant in the catch data and the Malin shelf acoustic survey also. The total-stock biomass (TSB) estimate of herring for the combined 6aS/7b area was 50145 tonnes (Lough Swilly $=32372$ tonnes, Donegal Bay $=9517$ tonnes, NW area $=7710$ tonnes and the remaining Achill strata $=545$ tonnes). This is considered to be a minimum estimate of herring in the $6 \mathrm{aS} / 7 \mathrm{~b}$ survey area at the time of the survey. The CV estimates on biomass and abundance are high ( $\sim 0.51$ for herring) for the survey in 2018. For herring, this is mostly caused by the overreliance on a few acoustic marks of herring in Lough Swilly and Bruckless Bay in particular (O'Malley et al., 2019).

### 5.1.4 Mean weights-at-age and maturity-at-age

### 5.1.4.1 Mean Weights-at-Age

The mean weights-at-age ( kg ) in the catches in 2018 are presented in Figure 5.1.7. In recent years there was a decrease in mean weights relative to the late 1990s. Over the longer time-series there is little trend over time, but they have dropped in 2018 relative to 2017.

The mean weights in the stock at spawning time have been calculated from samples taken during the main spawning period that extends from October to February (Figure 5.1.8). The mean weights in the stock have dropped in 2018 relative to 2017 and have been showing a downward trend recently. Trends over the recent and longer time-series are similar to those in the catches.

### 5.1.4.2 Maturity Ogive

One ringers are considered to be immature. All older ages are assumed to be $100 \%$ mature.

### 5.1.5 Recruitment

There is little information on terminal year recruitment in the catch-at-age data and there are as yet no recruitment indices from the surveys. Numbers of 1-ringers in the catches vary widely but, with the exception of 2012 ( 2010 cohort), have been consistently low in recent years. Since the mid-1990s recruitment has been low, based on exploratory assessments.

### 5.1.5.1 Stock Assessment of 6.a (South) and 7.b-c

The ICES, WKWEST 2015 benchmark workshop (ICES, 2015) for the herring stocks in 6.aN, 6.aS and 7.b-c concluded that the assessment would be a combined stock assessment. Details of the
combined assessment for $6 . a$ and $7 . b-c$ are outlined in Section 4. No separate assessment is presented in 2018.

### 5.1.5.2 State of the stock

Not analytically determined.

### 5.1.6 Short-term projections

Not undertaken.

### 5.1.7 Medium-term simulations

Not undertaken.

### 5.1.8 Long-term simulations

Not undertaken.

### 5.1.9 Precautionary and yield based reference points

Not determined.

### 5.1.10 Quality of the assessment

Not ascertained.

### 5.1.11 Management considerations

There is no new information to alter the previous perception that this stock is in a state of collapse.

Fishing mortality should be kept low to allow rebuilding. The monitoring TAC should be maintained allowing sampling to continue.

The combined assessment ( $6 \mathrm{a}, 7 \mathrm{~b}, \mathrm{c}$ ) shows SSB and recruitment at very low levels. F has reduced since the introduction of the monitoring TAC in 2016. The working group advocates maintaining separate management of each component.

### 5.1.12 Environment

### 5.1.12.1 Ecosystem considerations

Grainger (1978; 1980) found significant negative correlations between sea surface temperature (SST) and catches from the west of Ireland component of this stock at a time-lag of 3-4 years later. This indicates that recruitment responds favourably to cooler temperatures. Cannaby and Hosrevoglu (2009) present long time-series of sea surface temperature for this stock area, showing an increasing trend. Their data when compared with herring biology and fisheries data show that strong historic herring recruitments/fisheries correspond to cooler temperatures (Clarke et al., WD 02 to HAWG 2012).

### 5.1.12.2 Changes in the environment

Since the mid-1990s the AMO has been in a positive phase, indicating warmer sea temperatures in this area. In recent year the AMO has mostly been in a positive phase, see: http://www.esrl.noaa.gov/psd/data/timeseries/AMO/. Warmer temperatures associated with positive AMO are considered detrimental to herring recruitment.

Table 5.1.2. Herring in divisions 6.a.S and 7.b-c. Estimated Herring catches in tonnes, 1991-2018. These data do not in all cases correspond to the official statistics and cannot be used for management purposes.

| Country | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| France | - | - | - | - | - | - | - | - | - |
| Germany, Fed. Rep. | - | 250 | - | - | 11 | - | - | - | - |
| Ireland | 22500 | 26000 | 27600 | 24400 | 25450 | 23800 | 24400 | 25200 | 16325 |
| Netherlands | 600 | 900 | 2500 | 2500 | 1207 | 1800 | 3400 | 2500 | 1868 |
| UK (N. Ireland) | - | - | - | - | - | - | - | - | - |
| UK (England + Wales) | - | - | 50 | 24 | - | - | - | - |  |
| UK (Scotland) | 200 | - | - | - | - | - | - |  |  |
| Total landings | 23100 | 27150 | 30300 | 26950 | 26692 | 25600 | 27800 | 27700 | 18193 |
| Unallocated/ area misreported | 11200 | 4600 | 6250 | 6250 | 1100 | 6900 | -700 | 11200 | 7916 |
| Discards | 3400 | 100 | 250 | 700 | - | - | 50 | - |  |
| WG catch | 37700 | 31850 | 36800 | 33900 | 27792 | 32500 | 27150 | 38900 | 26109 |


| Country | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| France | - | - | 515 | - | - | - | - | - | - |
| Germany, Fed. Rep. | - | - | - |  | - | - | - | - | - |


| Ireland | 10164 | 11278 | 13072 | 12921 | 10950 | 13351 | 14840 | 12662 | 10237 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Netherlands | 1234 | 2088 | 366 | - | 64 | - | 353 | 13 | - |
| UK (N. Ireland) | - | - | - | - | - | - | - | - | - |
| UK (England + Wales) | - | - | - | - | - | - | - | - | - |
| UK (Scotland) | - | - | - | - | - | - | 6 | - | - |
| Total landings | 11398 | 13366 | 13953 | 12921 | 11014 | 13351 | 15199 | 12675 | 10237 |
| Unallocated/ area misreported | 8448 | 1390 | 3873 | 3581 | 2813 | 2880 | 4000 | 5116 | 3103 |
| Discards | - | - | - | - | - | - | - | - | - |
| WG catch | 19846 | 14756 | 17826 | 16502 | 13827 | 16231 | 19199 | 17791 | 13340 |


| Country | 2019 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| France | - | - | - | - | - | - | - | - | - |
| Germany, Fed. Rep. | - | - | - | - | - | - | - | - | - |
| Ireland | 8533 | 7513 | 4247 | 3791 | 1460 | 2933 | 73 | 1171 | 1707 |
| Netherlands | - | - | - | - | 40 | - | + | 72 | - |
| UK (N. Ireland) | - | - | - | - | - | - | - | - | - |
| UK (England + Wales) | - | - | - | - | - | - | - | - | - |
| UK (Scotland) | - | - | - | - | - | - | 5 | - | - |
| Total landings | 8533 | 7513 | 4247 | 3791 | 1500 | 2933 | 78 | 1243 | 1707 |
| Unallocated/ area misreported | 1935 | 2728 | 2672 | 2780 | 2468 | 2163 | 1000 | 971 | 520 |
| Discards | - | - | - | - | - | - | - | - | - |
| WG catch | 10468 | 10241 | 6919 | 6571 | 3968 | 5096 | 1078 | 2214 | 2227 |


| Country | 2018 |
| :--- | :--- |
| France |  |
| Germany Fed. Rep. | 970 |
| Ireland |  |
| Netherlands |  |
| UK (N. Ireland) |  |
| UK (England + Wales) |  |
| UK (Scotland) |  |
| Total landings | 1495 |
| Unallocated/ area misreported | 525 |
| Discards |  |
| WG catch |  |

Table 5.1.3. Herring in divisions 6.a.S and 7.b-c. Catch in numbers-at-age (winter rings) from 1970-2018.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 135 | 35114 | 26007 | 13243 | 3895 | 40181 | 2982 | 1667 | 1911 |
| 1971 | 883 | 6177 | 7038 | 10856 | 8826 | 3938 | 40553 | 2286 | 2160 |
| 1972 | 1001 | 28786 | 20534 | 6191 | 11145 | 10057 | 4243 | 47182 | 4305 |
| 1973 | 6423 | 40390 | 47389 | 16863 | 7432 | 12383 | 9191 | 1969 | 50980 |
| 1974 | 3374 | 29406 | 41116 | 44579 | 17857 | 8882 | 10901 | 10272 | 30549 |
| 1975 | 7360 | 41308 | 25117 | 29192 | 23718 | 10703 | 5909 | 9378 | 32029 |
| 1976 | 16613 | 29011 | 37512 | 26544 | 25317 | 15000 | 5208 | 3596 | 15703 |
| 1977 | 4485 | 44512 | 13396 | 17176 | 12209 | 9924 | 5534 | 1360 | 4150 |
| 1978 | 10170 | 40320 | 27079 | 13308 | 10685 | 5356 | 4270 | 3638 | 3324 |
| 1979 | 5919 | 50071 | 19161 | 19969 | 9349 | 8422 | 5443 | 4423 | 4090 |
| 1980 | 2856 | 40058 | 64946 | 25140 | 22126 | 7748 | 6946 | 4344 | 5334 |
| 1981 | 1620 | 22265 | 41794 | 31460 | 12812 | 12746 | 3461 | 2735 | 5220 |
| 1982 | 748 | 18136 | 17004 | 28220 | 18280 | 8121 | 4089 | 3249 | 2875 |
| 1983 | 1517 | 43688 | 49534 | 25316 | 31782 | 18320 | 6695 | 3329 | 4251 |
| 1984 | 2794 | 81481 | 28660 | 17854 | 7190 | 12836 | 5974 | 2008 | 4020 |
| 1985 | 9606 | 15143 | 67355 | 12756 | 11241 | 7638 | 9185 | 7587 | 2168 |
| 1986 | 918 | 27110 | 27818 | 66383 | 14644 | 7988 | 5696 | 5422 | 2127 |
| 1987 | 12149 | 44160 | 80213 | 41504 | 99222 | 15226 | 12639 | 6082 | 10187 |
| 1988 | 0 | 29135 | 46300 | 41008 | 23381 | 45692 | 6946 | 2482 | 1964 |
| 1989 | 2241 | 6919 | 78842 | 26149 | 21481 | 15008 | 24917 | 4213 | 3036 |
| 1990 | 878 | 24977 | 19500 | 151978 | 24362 | 20164 | 16314 | 8184 | 1130 |
| 1991 | 675 | 34437 | 27810 | 12420 | 100444 | 17921 | 14865 | 11311 | 7660 |
| 1992 | 2592 | 15519 | 42532 | 26839 | 12565 | 73307 | 8535 | 8203 | 6286 |
| 1993 | 191 | 20562 | 22666 | 41967 | 23379 | 13547 | 67265 | 7671 | 6013 |
| 1994 | 11709 | 56156 | 31225 | 16877 | 21772 | 13644 | 8597 | 31729 | 10093 |
| 1995 | 284 | 34471 | 35414 | 18617 | 19133 | 16081 | 5749 | 8585 | 14215 |
| 1996 | 4776 | 24424 | 69307 | 31128 | 9842 | 15314 | 8158 | 12463 | 6472 |
| 1997 | 7458 | 56329 | 25946 | 38742 | 14583 | 5977 | 8351 | 3418 | 4264 |
| 1998 | 7437 | 72777 | 80612 | 38326 | 30165 | 9138 | 5282 | 3434 | 2942 |


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1999 | 2392 | 51254 | 61329 | 34901 | 10092 | 5887 | 1880 | 1086 | 949 |
| 2000 | 4101 | 34564 | 38925 | 30706 | 13345 | 2735 | 1464 | 690 | 1602 |
| 2001 | 2316 | 21717 | 21780 | 17533 | 18450 | 9953 | 1741 | 1027 | 508 |
| 2002 | 4058 | 32640 | 37749 | 18882 | 11623 | 10215 | 2747 | 1605 | 644 |
| 2003 | 1731 | 32819 | 28714 | 24189 | 9432 | 5176 | 2525 | 923 | 303 |
| 2004 | 1401 | 15122 | 32992 | 19720 | 9006 | 4924 | 1547 | 975 | 323 |
| 2005 | 209 | 28123 | 30896 | 26887 | 10774 | 5452 | 1348 | 858 | 243 |
| 2006 | 598 | 22036 | 36700 | 30581 | 21956 | 9080 | 2418 | 832 | 369 |
| 2007 | 76 | 24577 | 43958 | 23399 | 13738 | 5474 | 1825 | 231 | 131 |
| 2008 | 483 | 12265 | 19661 | 28483 | 11110 | 5989 | 2738 | 745 | 267 |
| 2009 | 202 | 12574 | 12077 | 12096 | 12574 | 5239 | 2040 | 853 | 17 |
| 2010 | 1271 | 13507 | 20127 | 6541 | 7588 | 6780 | 2563 | 661 | 189 |
| 2011 | 121 | 14207 | 9315 | 9114 | 3386 | 3780 | 2871 | 980 | 95 |
| 2012 | 5142 | 12844 | 16387 | 4042 | 1776 | 553 | 541 | 103 | 21 |
| 2013 | 61 | 3118 | 4532 | 12238 | 1665 | 1792 | 425 | 382 | 202 |
| 2014 | 34 | 465 | 8825 | 6735 | 12146 | 2406 | 1045 | 437 | 204 |
| 2015 | 27 | 1842 | 598 | 2553 | 1699 | 685 | 96 | 9 | 0 |
| 2016 | 69 | 1983 | 4252 | 1369 | 3025 | 2085 | 824 | 43 | 9 |
| 2017 | 30 | 1051 | 5241 | 4078 | 1025 | 2250 | 1061 | 480 | 76 |
| 2018 | 6 | 1567 | 1838 | 3280 | 2288 | 613 | 700 | 260 | 29 |

Table 5.1.4. Herring in divisions 6.a.S and 7.b-c. Percentage age composition (winter rings).

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1992 | 1\% | 8\% | 22\% | 14\% | 6\% | 37\% | 4\% | 4\% | 3\% |
| 1993 | 0\% | 10\% | 11\% | 21\% | 12\% | 7\% | 33\% | 4\% | 3\% |
| 1994 | 6\% | 28\% | 15\% | 8\% | 11\% | 7\% | 4\% | 16\% | 5\% |
| 1995 | 0\% | 23\% | 23\% | 12\% | 13\% | 11\% | 4\% | 6\% | 9\% |
| 1996 | 3\% | 13\% | 38\% | 17\% | 5\% | 8\% | 4\% | 7\% | 4\% |
| 1997 | 5\% | 34\% | 16\% | 23\% | 9\% | 4\% | 5\% | 2\% | 3\% |
| 1998 | 3\% | 29\% | 32\% | 15\% | 12\% | 4\% | 2\% | 1\% | 1\% |
| 1999 | 1\% | 30\% | 36\% | 21\% | 6\% | 3\% | 1\% | 1\% | 1\% |
| 2000 | 3\% | 27\% | 30\% | 24\% | 10\% | 2\% | 1\% | 1\% | 1\% |
| 2001 | 2\% | 23\% | 23\% | 18\% | 19\% | 10\% | 2\% | 1\% | 1\% |
| 2002 | 3\% | 27\% | 31\% | 16\% | 10\% | 9\% | 2\% | 1\% | 1\% |
| 2003 | 2\% | 31\% | 27\% | 23\% | 9\% | 5\% | 2\% | 1\% | 0\% |
| 2004 | 2\% | 18\% | 38\% | 23\% | 10\% | 6\% | 2\% | 1\% | 0\% |
| 2005 | 0\% | 27\% | 29\% | 26\% | 10\% | 5\% | 1\% | 1\% | 0\% |
| 2006 | 0\% | 18\% | 29\% | 25\% | 18\% | 7\% | 2\% | 1\% | 0\% |
| 2007 | 0\% | 22\% | 39\% | 21\% | 12\% | 5\% | 2\% | 0\% | 0\% |
| 2008 | 1\% | 15\% | 24\% | 35\% | 14\% | 7\% | 3\% | 1\% | 0\% |
| 2009 | 0\% | 22\% | 21\% | 21\% | 22\% | 9\% | 4\% | 1\% | 0\% |
| 2010 | 2\% | 23\% | 34\% | 11\% | 13\% | 11\% | 4\% | 1\% | 0\% |
| 2011 | 0\% | 32\% | 21\% | 21\% | 8\% | 9\% | 7\% | 2\% | 0\% |
| 2012 | 12\% | 31\% | 40\% | 10\% | 4\% | 1\% | 1\% | 0\% | 0\% |
| 2013 | 0\% | 13\% | 19\% | 50\% | 7\% | 7\% | 2\% | 2\% | 1\% |
| 2014 | 0\% | 1\% | 27\% | 21\% | 38\% | 7\% | 3\% | 1\% | 1\% |
| 2015 | 0\% | 25\% | 8\% | 34\% | 23\% | 9\% | 1\% | 0\% | 0\% |
| 2016 | 0\% | 15\% | 31\% | 10\% | 22\% | 15\% | 6\% | 0\% | 0\% |
| 2017 | 0\% | 7\% | 34\% | 27\% | 7\% | 15\% | 7\% | 3\% | 0\% |
| 2018 | 0\% | 15\% | 17\% | 31\% | 22\% | 6\% | 7\% | 2\% | 0\% |

Table 5.1.5. Herring in divisions 6.a.S and 7.b-c. Mean weights-at-age in the catches 1970-2018.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1971 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1972 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1973 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1974 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1975 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1976 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1977 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1978 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1979 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1980 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1981 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1982 | 0.110 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1983 | 0.090 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1984 | 0.106 | 0.141 | 0.181 | 0.210 | 0.226 | 0.237 | 0.243 | 0.247 | 0.248 |
| 1985 | 0.077 | 0.122 | 0.161 | 0.184 | 0.196 | 0.206 | 0.212 | 0.225 | 0.230 |
| 1986 | 0.095 | 0.138 | 0.164 | 0.194 | 0.212 | 0.225 | 0.239 | 0.208 | 0.288 |
| 1987 | 0.085 | 0.102 | 0.150 | 0.169 | 0.177 | 0.193 | 0.205 | 0.215 | 0.220 |
| 1988 |  | 0.098 | 0.133 | 0.153 | 0.166 | 0.171 | 0.183 | 0.191 | 0.201 |
| 1989 | 0.080 | 0.130 | 0.141 | 0.164 | 0.174 | 0.183 | 0.192 | 0.193 | 0.203 |
| 1990 | 0.094 | 0.138 | 0.148 | 0.160 | 0.176 | 0.189 | 0.194 | 0.208 | 0.216 |
| 1991 | 0.089 | 0.134 | 0.145 | 0.157 | 0.167 | 0.185 | 0.199 | 0.207 | 0.230 |
| 1992 | 0.095 | 0.141 | 0.147 | 0.157 | 0.165 | 0.171 | 0.180 | 0.194 | 0.219 |
| 1993 | 0.112 | 0.138 | 0.153 | 0.170 | 0.181 | 0.184 | 0.196 | 0.229 | 0.236 |
| 1994 | 0.081 | 0.141 | 0.164 | 0.177 | 0.189 | 0.187 | 0.191 | 0.204 | 0.220 |
| 1995 | 0.080 | 0.140 | 0.161 | 0.173 | 0.182 | 0.198 | 0.194 | 0.206 | 0.217 |
| 1996 | 0.085 | 0.135 | 0.172 | 0.182 | 0.199 | 0.209 | 0.220 | 0.233 | 0.237 |
| 1997 | 0.093 | 0.135 | 0.155 | 0.181 | 0.201 | 0.217 | 0.217 | 0.231 | 0.239 |
| 1998 | 0.095 | 0.136 | 0.145 | 0.173 | 0.191 | 0.196 | 0.202 | 0.222 | 0.217 |


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1999 | 0.106 | 0.144 | 0.145 | 0.163 | 0.186 | 0.195 | 0.200 | 0.216 | 0.222 |
| 2000 | 0.102 | 0.129 | 0.154 | 0.172 | 0.180 | 0.184 | 0.204 | 0.203 | 0.204 |
| 2001 | 0.086 | 0.122 | 0.139 | 0.167 | 0.183 | 0.188 | 0.222 | 0.222 | 0.213 |
| 2002 | 0.097 | 0.127 | 0.140 | 0.155 | 0.175 | 0.196 | 0.204 | 0.218 | 0.226 |
| 2003 | 0.102 | 0.134 | 0.150 | 0.167 | 0.183 | 0.196 | 0.216 | 0.210 | 0.228 |
| 2004 | 0.085 | 0.140 | 0.150 | 0.167 | 0.182 | 0.193 | 0.222 | 0.221 | 0.285 |
| 2005 | 0.105 | 0.135 | 0.150 | 0.162 | 0.174 | 0.188 | 0.200 | 0.237 | 0.296 |
| 2006 | 0.106 | 0.137 | 0.141 | 0.158 | 0.169 | 0.178 | 0.199 | 0.221 | 0.243 |
| 2007 | 0.118 | 0.144 | 0.145 | 0.168 | 0.179 | 0.189 | 0.197 | 0.233 | 0.237 |
| 2008 | 0.1108 | 0.1478 | 0.1503 | 0.1663 | 0.1745 | 0.1845 | 0.1938 | 0.1990 | 0.2407 |
| 2009 | 0.077 | 0.146 | 0.171 | 0.194 | 0.200 | 0.207 | 0.211 | 0.218 | 0.275 |
| 2010 | 0.104 | 0.131 | 0.168 | 0.189 | 0.201 | 0.212 | 0.218 | 0.226 | 0.229 |
| 2011 | 0.094 | 0.122 | 0.141 | 0.174 | 0.193 | 0.202 | 0.217 | 0.218 | 0.246 |
| 2012 | 0.09 | 0.134 | 0.179 | 0.196 | 0.214 | 0.237 | 0.228 | 0.243 | 0.236 |
| 2013 | 0.083 | 0.121 | 0.141 | 0.170 | 0.181 | 0.196 | 0.202 | 0.226 | 0.226 |
| 2014 | 0.105 | 0.139 | 0.136 | 0.155 | 0.168 | 0.175 | 0.184 | 0.183 | 0.187 |
| 2015 | 0.090 | 0.113 | 0.145 | 0.152 | 0.161 | 0.168 | 0.176 | 0.185 | 0.188 |
| 2016 | 0.09 | 0.125 | 0.149 | 0.163 | 0.182 | 0.188 | 0.19 | 0.21 | 0.201 |
| 2017 | 0.072 | 0.106 | 0.132 | 0.145 | 0.159 | 0.168 | 0.172 | 0.179 | 0.183 |
| 2018 | 0.085 | 0.101 | 0.127 | 0.144 | 0.155 | 0.166 | 0.172 | 0.170 | 0.174 |

Table 5.1.6. Herring in divisions 6.a.S and 7.b-c. Mean weights-at-age in the stock at spawning time 1970-2018.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1971 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1972 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1973 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1974 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1975 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1976 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1977 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1978 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1979 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1980 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1981 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1982 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1983 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1984 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1985 | 0.100 | 0.150 | 0.196 | 0.227 | 0.238 | 0.251 | 0.252 | 0.269 | 0.284 |
| 1986 | 0.098 | 0.169 | 0.209 | 0.238 | 0.256 | 0.276 | 0.280 | 0.287 | 0.312 |
| 1987 | 0.097 | 0.164 | 0.206 | 0.233 | 0.252 | 0.271 | 0.280 | 0.296 | 0.317 |
| 1988 | 0.097 | 0.164 | 0.206 | 0.233 | 0.252 | 0.271 | 0.280 | 0.296 | 0.317 |
| 1989 | 0.138 | 0.157 | 0.168 | 0.182 | 0.200 | 0.217 | 0.227 | 0.238 | 0.245 |
| 1990 | 0.113 | 0.152 | 0.170 | 0.180 | 0.200 | 0.217 | 0.225 | 0.233 | 0.255 |
| 1991 | 0.102 | 0.149 | 0.174 | 0.190 | 0.195 | 0.206 | 0.226 | 0.236 | 0.248 |
| 1992 | 0.102 | 0.144 | 0.167 | 0.182 | 0.194 | 0.197 | 0.214 | 0.218 | 0.242 |
| 1993 | 0.118 | 0.166 | 0.196 | 0.205 | 0.214 | 0.220 | 0.223 | 0.242 | 0.258 |
| 1994 | 0.098 | 0.156 | 0.192 | 0.209 | 0.216 | 0.223 | 0.226 | 0.230 | 0.247 |
| 1995 | 0.090 | 0.144 | 0.181 | 0.203 | 0.217 | 0.226 | 0.227 | 0.239 | 0.246 |
| 1996 | 0.086 | 0.137 | 0.186 | 0.206 | 0.219 | 0.234 | 0.233 | 0.249 | 0.253 |
| 1997 | 0.094 | 0.135 | 0.169 | 0.194 | 0.210 | 0.224 | 0.231 | 0.230 | 0.239 |
| 1998 | 0.095 | 0.136 | 0.145 | 0.173 | 0.191 | 0.196 | 0.202 | 0.222 | 0.217 |


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1999 | 0.104 | 0.145 | 0.154 | 0.174 | 0.200 | 0.222 | 0.230 | 0.240 | 0.246 |
| 2000 | 0.100 | 0.134 | 0.157 | 0.177 | 0.197 | 0.207 | 0.217 | 0.230 | 0.245 |
| 2001 | 0.091 | 0.125 | 0.150 | 0.172 | 0.191 | 0.200 | 0.203 | 0.203 | 0.216 |
| 2002 | 0.092 | 0.127 | 0.146 | 0.170 | 0.190 | 0.201 | 0.210 | 0.227 | 0.229 |
| 2003 | 0.094 | 0.131 | 0.155 | 0.175 | 0.192 | 0.203 | 0.232 | 0.222 | 0.243 |
| 2004 | 0.081 | 0.133 | 0.151 | 0.175 | 0.194 | 0.207 | 0.238 | 0.233 | 0.276 |
| 2005 | 0.095 | 0.127 | 0.15 | 0.172 | 0.185 | 0.196 | 0.223 | 0.234 | 0.274 |
| 2006 | 0.092 | 0.130 | 0.133 | 0.162 | 0.177 | 0.186 | 0.209 | 0.238 | 0.247 |
| 2007 | 0.114 | 0.133 | 0.133 | 0.171 | 0.186 | 0.196 | 0.208 | 0.228 | 0.229 |
| 2008 | 0.098 | 0.136 | 0.140 | 0.174 | 0.185 | 0.196 | 0.192 | 0.205 | 0.234 |
| 2009 | 0.072 | 0.141 | 0.162 | 0.197 | 0.215 | 0.223 | 0.225 | 0.221 | 0.286 |
| 2010 | 0.092 | 0.128 | 0.157 | 0.189 | 0.208 | 0.227 | 0.234 | 0.239 | 0.247 |
| 2011 | 0.082 | 0.118 | 0.136 | 0.177 | 0.199 | 0.207 | 0.225 | 0.239 | 0.240 |
| 2012 | 0.084 | 0.135 | 0.182 | 0.203 | 0.214 | 0.226 | 0.225 | 0.21 | 0.226 |
| 2013 | 0.074 | 0.114 | 0.140 | 0.170 | 0.188 | 0.198 | 0.204 | 0.223 | 0.222 |
| 2014 | 0.093 | 0.128 | 0.135 | 0.154 | 0.169 | 0.170 | 0.188 | 0.169 | 0.206 |
| 2015 | 0.077 | 0.112 | 0.146 | 0.155 | 0.165 | 0.173 | 0.179 | 0.183 | 0.217 |
| 2016 | 0.078 | 0.119 | 0.147 | 0.164 | 0.185 | 0.191 | 0.197 | 0.21 | 0.175 |
| 2017 | 0.064 | 0.099 | 0.130 | 0.145 | 0.163 | 0.173 | 0.176 | 0.185 | 0.180 |
| 2018 | 0.072 | 0.097 | 0.126 | 0.146 | 0.156 | 0.168 | 0.172 | 0.169 | 0.170 |

Table 5.1.7. Herring in divisions 6.a.S and 7.b-c. Sampling intensity of catches in 2018.

| Year | Quarter | Landings (t) | No. Samples | No. aged | No. Measured | Aged/1000 t |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $6 . a . S$ | 4 | 1495 | 29 | 1852 | 5952 | 1184 |
| Total | 4 | 1495 | 29 | 1852 | 5952 | 1184 |

Table 5.1.8. Herring in divisions 6.a.S and 7.b-c. Details of acoustic surveys dedicated to the 6a.S/7.b-c stock alone.

| Year | Type | Biomass | SSB |
| :---: | :---: | :---: | :---: |
| 1994 | Feeding phase | - | 353772 |
| 1995 | Feeding phase | 137670 | 125800 |
| 1996 | Feeding phase | 34290 | 12550 |
| 1997 | - | - | - |
| 1998 | - | - | - |
| 1999 | Autumn | 23762 | 22788 |
| 2000 | Autumn | 21000 | 20500 |
| 2001 | Autumn | 11100 | 9800 |
| 2002 | Winter | 8900 | 7200 |
| 2003 | Winter | 10300 | 9500 |
| 2004 | Winter | 41700 | 41399 |
| 2005 | Winter | 71253 | 66138 |
| 2006 | Winter | 27770 | 27200 |
| 2007 | Winter | 14222 | 13974 |
| 2016 | Winter | 35475 | 35475 |
| 2017 | Winter | 40646 | 40646 |
| 2018 | Winter | 50145 | 49523 |



Figure 5.1.1. Herring in divisions 6.a.S and 7.b-c. Working group estimate of catches from 1957-2018.

6aS 7bc Herring Mean Standardised Catch Numbers At Age


Figure 5.1.2. Herring in divisions 6.a.S and 7.b-c. catch numbers-at-age standardized by year for the fishery 1957-2018.


Figure 5.1.4. Herring in divisions 6.a.S and 7.b-c. Percentages-at-age in the 6aS/7.b-c catch and 6aS/7.b-c Malin Shelf acoustic survey (MSHAS) 2008-2018.


Figure 5.1.5. Herring in divisions 6.a.S and 7.b-c. Acoustic survey in 2018: distribution of biological samples obtained in 6 aS .


Figure 5.1.6. Herring in division 6.a.S and 7.b-c. Acoustic survey in 2018: NASC of herring.

6aS 7bc Mean Weights in the Catch


Figure 5.1.7. Herring in divisions 6.a.S and 7.b-c. Mean weights in the catch (kg) by age in winter rings (1980-2018). Prior to 1981 weights were fixed.

6aS 7b,c Mean Weights in the stock


Figure 5.1.8. Herring in divisions 6.a.S and 7.b-c. Mean weights in the stock ( $\mathbf{k g}$ ) at spawning time by age in winter rings (1980-2018). Prior to 1981 weights were fixed.


Figure 5.1.9. Herring in divisions 6.a.S and 7.b-c. Irish catches in 2018.

### 5.2 Herring in Division 6.a (North)

Since 2015 this stock has been combined with herring in $6 . a S 7 . b-c$ (Section 5.1) for assessment and advisory purposes. Prior to 2015 6.aN existed as a distinct management unit since 1982 when it was separated from 6.aS 7.b-c.

The location of the area occupied by the stock is shown in Figure 5.2.1. For assessment purposes the stock is considered as an autumn spawning stock only despite spring-spawning components occurring in the area.

The WG noted that the use of "age" "winter rings" "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings" "ringers" "winter ringers" or "wr" instead of "age" throughout this section. However if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that for autumn and winter spawning stocks there is a difference of one year between "age" and "rings" which is not the case for the spring spawners. Further elaboration on the rationale behind this specific to Division 6.aN autumn spawners can be found in the Stock Annex. It is the responsibility of any user of age-based data for any of these herring stocks to consult the stock annex and if in doubt consult a relevant member of the Working Group.

### 5.2.1 The Fishery

### 5.2.1.1 Advice and management applicable to 2018

Since 2016 ICES has advised a TAC of $0 t$ for the combined stock and that a stock recovery plan be developed for herring stocks in 6.a and 7.b-c (ICES 2018a). In 2016 the European Commission asked ICES to provide advice on a TAC of sufficiently small size to allow ongoing collection of fisheries-dependent data. ICES advised on a scientific monitoring TAC of 3480 t for the $6 . \mathrm{aN}$ stock component (ICES 2016) aiming to take 29 catch samples. Furthermore it was stipulated the data should be collected in a way that (i) satisfied standard length age and reproductive monitoring purposes by EU Member States for ICES and (ii) ensured that sufficient spawning-specific samples were available for morphometric and genetic analyses as agreed by the Pelagic Advisory Council monitoring scheme 2016 (Pelagic Advisory Council 2016).

The EC set a monitoring TAC for the $6 . a \mathrm{~N}$ stock component slightly higher than this advice at 4170 t (EU 2016/0203) and the same for 2017 (EU 2017/127) and 2018 ((EU 2018/120).

### 5.2.1.2 The monitoring fishery

The industry-science survey aim is to improve the knowledge base for the spawning components of herring in 6.aN and 6.aS 7.b-c and submit relevant data to ICES to assist in assessing the herring stocks and contribute to establishing a rebuilding plan.

Utilizing ICES advice on the monitoring fishery (ICES 2016) together with the experience from 2016 a review of spawning areas and timing and discussions with fishing skippers four areas were selected for surveying in $6 . a \mathrm{~N}$ (Figure 5.2.2). Areas 2 and 4 are considered to be active spawning areas and Area 1 a prespawning aggregation area that contains an unknown mixture of stocks of Western and potentially North Sea herring where a large proportion of catches has been taken in recent years (ICES 2016). Area 5 was a new addition for 2018 based on evidence from 2017 and local creel fishers of herring on the east side of the North Minch. Systematic acoustic surveys were conducted only in areas 2-5 in $6 . \mathrm{aN}$ but ad hoc acoustic data recorded by other vessels also.

A limited discard derogation was granted to the vessels during the period of the scientific survey to account for any bycatch of other species and any non-retained catches that could not be landed in marketable condition this particularly being the case for the three Scottish refrigerated-seawater (RSW) vessels.

All vessels completed their scientific survey duties prior to catching their allocated quota. Samples for biological morphometric and genetic data were taken from all areas. Each of the five vessels involved in the survey were assigned specific objectives and provided with a vessel-specific survey manual describing the aims methods and sampling protocols and data recording templates.
Details of the survey are reported in WGIPS ICES (2019) and Mackinson et al. (2019).

### 5.2.1.3 Stock recovery plan

The Pelagic Advisory Council submitted a revised proposed rebuilding plan for both $6 . \mathrm{aN}$ and 6.a.S 7.b-c stocks combined which was reviewed by HAWG 2018 (ICES 2018 Annex 9)). While the plan was considered to provide a framework for recovery of these combined stocks it was considered unlikely that the revised proposed plan can aid the recovery of the combined stocks by 2020 as recent poor recruitments hamper a speedy recovery. Furthermore ICES ACOM considered that further quantitative evaluation would be required to be used as the basis for advice.

### 5.2.1.4 Catches in 2018

Historically catches have been taken from this area by Scottish and Northern Irish pelagic refrigerated seawater (RSW) trawlers and an international freezer-trawler fishery including vessels from the Netherlands Germany and England. The details of these fleets are described in the Stock Annex.

Implementation of the scientific monitoring fishery in 2018 resulted in the $6 . \mathrm{aN}$ TAC being split between the seven participating pelagic vessels.

The 2018 official catches of herring in $6 . a \mathrm{~N}$ total 4063 t compared with the 4170 t monitoring TAC. This included 196 t caught out with the monitoring fishery by primarily as bycatch during the mackerel fishery. There were 4.31 t of non-retained herring catch during the monitoring fishery in 2018 under the discard derogation and 9.76 t of other species (Mackinson et al., 2019).

### 5.2.1.5 Regulations and their affects

There are no new changes to the regulations relevant to the fishery in $6 . \mathrm{aN}$.

### 5.2.1.6 Changes in fishing technology and fishing pattern

Implementation of the scientific monitoring fishery in 2016-2018 resulted in the 6.aN TAC being split between the seven participating pelagic vessels. In previous years the TAC would have been taken by a larger number of vessels.

### 5.2.2 Biological Composition of the Catch

Catch and sample data by country and by period (quarter) are detailed in tables 5.2.1 and 5.2.2. Biological data sampled from commercial hauls $(\mathrm{n}=34)$ were used to allocate the age distribution for the $6 . a \mathrm{~N}$ catches used in the assessment. One sample provided by Northern Ireland was not used as it contained only 46 fish in total. The samples were used to allocate catch-at-age (winter rings) (using the sample number weighting) to un-sampled catches in the same or adjacent quarters. The allocation of age distributions to un-sampled catches and the calculation of total international catch-at-age and mean weight-at-age in the catches were done following established
raising methods. A detailed description of the process in 2016 can be found in (WD02 HAWG 2017)). The same principles described in that document were followed in 2018.

The 2012 and 2013 year classes ( 4 and 5-ringers in 2018) continue to be prominent both in the catch in $6 . a \mathrm{~N}$ and in the MSHAS_N acoustic survey index ( $54 \%$ of the catch $24 \%$ of MSHAS_N index figures 5.2.3 and 5.2.4 Table 5.2.5). These year classes are also coming through clearly in the neighbouring North Sea autumn spawning stock. One ringer herring were absent from the catch again this year which is not unusual. They are observed in survey data in $6 . \mathrm{aN}$ intermittently only and are rarely representative of year-class strength.

### 5.2.3 Fishery-independent Information

### 5.2.3.1 Acoustic survey-MSHAS_N

The survey values for number- weight- and proportion mature-at-age in the stock were revised in 2009 and reported in the 2010 HAWG (see Section 5.6.1 in HAWG ICES 2010). The 2018 survey values are shown in tables 5.2.4 and 5.2.5.

Full details of the 2018 survey are available in the Report of the Working Group for International Pelagic Surveys (WGIPS ICES 2019 Annex 4c).

| Vessel | Period | Strata |
| :--- | :--- | :--- |
| Celtic Explorer (IRL) 03 July-21 July <br> EIGB 23456 <br> Scotia (SCO) 29 June-19 July <br> MXHR6  |  |  |

The spawning-stock-biomass estimate for the acoustic survey in the area historically used for the 6.a (North) spawning-stock-biomass (Table 5.2.4) was 152 kt in 2018 an increase from the estimate of 139 kt in 2017 (Table 5.2.5).

The proportions of each year class in the catch and the survey are shown in Figure 5.2.5. The large proportion of 4-ringers observed in the catches was also evident in the acoustic survey results. The acoustic survey encountered only a very small proportion herring above age 7 (wr) similar to the pattern in the catches.

In contrast to recent years a large proportion of the stock was made up of 1 and 2 winter ring fish this year ( $64 \%$ of the total abundance and $44 \%$ of total biomass). As 1 winter ring fish are only sporadically picked up in the survey due to their distribution typically being in the more inshore areas it cannot be confirmed yet whether 2016 is a strong year class but it looks like the 2015-year class ( 2 winter ringers in 2018) is above average.

### 5.2.3.2 Acoustic survey- 6.a Herring industry-science survey 2018

An acoustic survey was undertaken to collect acoustic data and information on the size and age of herring required to generate an age-disaggregated acoustic estimate of the biomass of prespawning/ spawning herring in $6 . a \mathrm{~N}$. Total herring biomass was estimated to be 118000 t (Table 5.2.6, figures 5.2.6 5.2.7 and 5.2.8) The survey methods and results were reviewed by ICES WGIPS (2019) who conclude that the survey provides a reliable estimate of the minimum biomass of mature herring at age observed in survey areas 5432 during the survey period. The survey provides a third datapoint in a new SSB survey series.

### 5.2.4 Mean Weights-at-age and Maturity-at-age

### 5.2.4.1 Mean weight-at-age

Weights-at-age in the stock are obtained from the West of Scotland part of the Malin Shelf herring acoustic survey (WGIPS ICES 2019) and are given in Table 5.2.4 (for the current year). The weights-at-age in the stock in 2018 were higher for 3 winter rings and similar for other age groups compared to last year (Table 5.2.7). Overall there is a trend of decreasing weights-at-age in the stock for all ages over the last ten years.

Weights in the catch (Table 5.2.8) in 2018 were lower for all age groups compared to 2016 and 2017 except age group 8 which were higher than in 2017 but lower than 2016.

### 5.2.4.2 Maturity ogive

The maturity ogive is obtained from the West of Scotland part of the Malin Shelf herring acoustic survey (Table 5.2.4 WGIPS ICES 2018). The survey provides estimated values for the period 1992-2018 (Table 5.2.9). In 2018 only $48 \%$ of age 2 winter ring fish were mature $91 \%$ of age 3 winter ring fish. Above age 5 maturity levels were $100 \%$.

### 5.2.5 Recruitment

There are no specific recruitment indices for this stock. Both catch and acoustic survey recorded no catches of 1-ringer and typically the encounter of this age group occurs only incidentally. The first reliable appearance of a cohort appears at 3-ring in both the catch and the survey for this stock. In 2018 the proportion of 3-ringers was relatively high in the catches but moderate in the survey (Figure 5.2.4).

### 5.2.6 Assessment of 6.a (North) Herring

### 5.2.6.1 Stock Assessment

The ICES WKWEST 2015 Benchmark Workshop (ICES 2015/ACOM:34) for the herring stocks in 6.aN 6.aS and 7.b-c concluded that a combined stock assessment for these two stocks should be undertaken until it is possible to provide survey indices segregated by stock. Data for this stock were examined in detail by the benchmark group WKWEST (ICES 2015/ACOM:34). Details of the 2018 assessment for $6 . a$ (combined) and 7.b-c are outlined in Section 5.6 of this report.

### 5.2.6.2 State of the stock

Not determined.

### 5.2.7 Short-term Projections

### 5.2.7.1 Deterministic short-term projections

Not undertaken.

### 5.2.7.2 Yield-per-recruit

Not undertaken.

### 5.2.8 Precautionary and Yield Based Reference Points

Not determined.

### 5.2.9 Quality of the Assessment

Not relevant.

### 5.2.10 Management Considerations

Recruitment has been at a low level since 1998 and even lower since 2013. The 2008 year class appears to be the only strong year class since 2000 from both the catch data and acoustic survey (Figure 5.2.3). The 2013 year class ( $4-w r$ in 2018) was strong in the 2016 catches and again in the 2017 and 2018 in both the catches and survey. This year class was also exceptionally large in the neighbouring North Sea herring stock. There is an almost complete absence in the stock of 8 and $9+$ winter ring fish in both the catches and the acoustic survey the last couple of years. The acoustic survey index has been decreasing steadily since 2008. The 2016 value was the lowest on record for this stock. Although the 2017 and 2018 estimates was nearly double of 2016 the stock still remains at a very low level compared to the time-series overall.

The overall meta-population (the two stocks in $6 . a$ and $7 . \mathrm{b}-\mathrm{c}$ ) is not in a healthy state and is estimated to be well below the Blim value. The working group advocates maintaining separate management of each component.

A monitoring TAC of 4170 t was instated since 2016 to allow sampling for stock separation and maintaining the time-series of catch composition.

### 5.2.11 Ecosystem Considerations

Herring fisheries tend to be clean with little bycatch of other fish. Observers monitor some of the fleets. Scottish discard observer programs since 1999 and more recently Dutch observers indicate that discarding of herring in these directed fisheries is at a low level. The Scottish discard observer programme has recorded occasional catches of seals and zero catches of cetaceans in the past. The Scottish pelagic discard observer programme is no longer active it was terminated in 2011.

Herring are an important prey species in the ecosystem west of the British Isles and one of the dominant planktivorous fish in 6.aN. Bird mammal and stocks of larger predatory fish in the region rely on healthy productive herring populations.

### 5.2.12 Changes in the Environment

Temperatures in this area have been increasing over the last number of decades (Baxter et al., 2008). There are indications that salinity is also increasing (ICES 2006/LRC:03). It is considered that this may have implications for herring. There is evidence that similar environmental changes have affected the North Sea herring and contributed to the recent changes in productivity of that stock (ICES 2007/ACFM:11).

Table 5.2.1. Herring in 6.a (North). Catch in tonnes by country 1991-2018. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

| Country | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Faroes | 482 |  |  | 274 |  |  |  |  |  |  |
| France | 1168 | 119 | 818 | 5087 | 3672 | 2297 | 3093 | 1903 | 463 |  |
| Germany | 6450 | 5640 | 4693 | 7938 | 3733 | 7836 | 8873 | 8253 | 6752 |  |
| Ireland | 8000 | 7985 | 8236 | 6093 | 3548 | 9721 | 1875 | 11199 | 7915 |  |
| Netherlands | 7979 | 8000 | 6132 | 8183 | 7808 | 9396 | 9873 | 8483 | 7244 |  |
| Norway | 3318 | 2389 | 7447 | 30676 | 4840 | 6223 | 4962 | 5317 | 2695 |  |
| UK | 32628 | 32730 | 32602 | -4287 | 42661 | 46639 | 44273 | 42302 | 36446 |  |
| Unallocated | -10597 | -5485 | -3753 | 700 | -4541 | -17753 | -8015 | -11748 | -8155 |  |
| Discards* | 1180 | 200 |  |  |  |  |  |  |  |  |

[^9]| Country | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark |  |  |  |  |  |  |  | 23 |  |
| Faroes | 1544 | 70 |  |  |  | 360 |  |  |  |
| France | 1049 | 511 | 504 | 244 | 586 | 589 |  |  |  |
| Germany | 27 | 3583 | 3518 | 1829 | 4025 | 3354 | 3292 | 1028 |  |
| Ireland | 1935 | 2728 | 3956 | 3451 | 3124 | 2632 | 1799 | 569 | 10 |
| Lithuania |  |  |  |  |  | 770 |  |  |  |
| Norway |  |  |  |  |  |  | 0.98 |  |  |
| Netherlands | 5675 | 3600 | 1684 | 3523 | 1775 | 1641 | 956 | 300 | 829 |
| UK | 11076 | 12018 | 11696 | 12249 | 15906 | 16769 | 15260 | 3254 | 3356 |
| Unallocated |  |  |  |  |  |  |  |  |  |
| Discards* |  | 95 |  |  | 30 |  |  |  |  |
| Total | 21306 | 22510 | 21358 | 21296 | 25446 | 26115 | 21307 | 5174 | 4201 |
| Area-Misreported | -2798 | -2728 | -3599 | -2780 | -2468 | -4088 | -2506 | -450 |  |
| WG Estimate | 18508 | 19877 | 17759 | 18516 | 22978 | 22027 | 18801 | 4724 | 4201 |
| Source (WG) | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |

* Unraised discards.

| Country | $\mathbf{2 0 1 8}$ |
| :--- | :--- |
| Denmark | 39 |
| Faroes | 7 |
| France | 17 |
| Germany | 84 |
| Ireland | 4 |
| Lithuania | 1000 |
| Norway | 2911 |
| Netherlands |  |
| UK |  |
| Unallocated | 4063 |
| Discards* |  |
| Total | 4063 |
| Area-Misreported |  |
| WG Estimate | 2019 |
| Source (WG) |  |

[^10]Table 5.2.2. Herring in 6.a (North). Catch and sampling effort by nation in the fishery in 2018.

| Country | Quarter | Sampled <br> Catch (t) | Official <br> Catch ( t ) | No. Hauls | No. of samples | No. measured | No. aged | SOP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UK (Sco) | Q1 | 0 | 9 | - | - | - | - | 0\% |
|  | Q3 | 1196 | 1199 | 8 | 8 | 922 | 316 | 99\% |
| UK (NI) | Q1 | 0 | 10 | - | - | - | - | 0\% |
|  | Q4 | 757 | 758 | 1 | 1* | 46* | 42 | 100\%* |
| UK(E\&W) | Q1 | 0 | 7 | - | - | - | - | 0\% |
|  | Q4 | 925 | 927 | 10 | 9 | 1553 | 185 | 100\% |
| Ireland | Q1 | 0 | 67 | - | - | - | - | 0\% |
|  | Q4 | 0 | 17 | - | - | - | - | 0\% |
| Netherlands | Q1 | 0 | 1 | - | - | - | - | 0\% |
|  | Q2 | 0 | 4 | - | - | - | - | 0\% |
|  | Q3 | 777 | 781 | 12 | 12 | 1543 | 92 | 99\% |
|  | Q4 | 212 | 215 | 4 | 4 | 372 | 82 | 98\% |
| Others | All | 0 | 68 | - | - | - | - | 0\% |
| Total |  | 3867 | 4063 | 35 | 34 | 4436 | 717 | 95\% |

* This sample was not used in the catch raising as it contained too few fish to be considered representative especially of such a large haul.

Table 5.2.3. Herring in 6.a (North). Catch in number.
Units: Thousands


```
6
7}1515677\quad42762 21609 154424 10342 18242 34629 12297 10918 20992 2100
8
9
year
age 1979 1980
1
2
3 7
4
5
6
7
8
9
year
age 1990
1
40867 23013 24469 95288 36554 82176 37854 55810 74167 35252 22960.61
4077925229 24922 1871040193 30398 3089934966 34571 93910 21825.16
74279}282122373310978 6007 21272 9219 31657 31905 25078 51420.22
5}22652037517 21817 13269 7433 5376 7508 23118 22872 13364 15504.75
6
9878
21456
9
year
age }2001 2001 2002 2003 2004 2005 2006 2007 2008
1
2 83318.40 38481.61 33331.96 7235.79}96632.71 6691.49 34326.00 7898.43
315368.56 93975.05 46865.58 23483.3223236.71 9186.0717754.83 13039.08
4 9569.99 9014.40 53766.66 29421.79 20602.39 13644.88 6555.14 5427.59
5 25175.0818113.71 7462.9848394.2810237.9341067.7914264.99 3219.52
6 9544.89 28016.08 4344.55 4151.94 9783.17 27781.86 30566.16 5688.56
7
8}44741.981547.87 9187.62 9023.67 1194.95 3041.71 13585.45 8142.31
9 1028.78}1422.68 1407.96 4265.93 1430.76 5088.99 4242.60 8968.60
year
age 2009 2010 2011 2012 2013 2014 2015 2016
 1 1923.62 10074.12 1667.19 979.53
 2 11508.54 20339.85 40587.92 14952.63 13681.14 8705.73 10854.96 8148
 3 10475.63 16331.31 15782.93 46647.39 18181.74 15144.82 13937.56 3341
 4 16586.96 9957.96 10333.90 9704.45 53116.88 21063.66 15716.60 3197
 5 8332.17 14608.15 7190.29 8097.30 11681.99 42229.47 19386.70 2791
 6 5688.68 6322.33 5071.43 6311.66 7093.01 7130.95 21621.33 2821
 7 7514.70 4322.24 3164.16 3873.67 5098.64 2944.09 6397.35 3148
 8 11793.98 5388.91 2611.38 1129.80 4324.63 2854.21 1932.73 739
 9 9443.85 13199.28 7225.68 4013.80 5031.77 3511.43 1250.55 431
 year
age 2017 2018
 1 0.00 0.00
 2 1122.16 1508.98
 311929.71 3215.53
```

```
44082.50 6873.26
5 2075.35 5253.61
6 1443.79 3068.25
7 1416.35 844.50
8767.37 852.31
9 273.34 680.89
```

Table 5.2.4. Herring in 6.a (North). Total numbers (millions) biomass (thousands of tonnes) mean weights mean lengths and fraction mature by winter ring of herring in the $6 a(N)$ part not including Clyde and North Channel of the MSHAS survey in July 2018.

| Age (ring) | Numbers | Biomass | Maturity | Weight (g) | Length (cm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 294 | 0.7 | 0.00 | 2.5 | 6.6 |
| 1 | 964 | 46.1 | 0.00 | 47.8 | 17.5 |
| 2 | 323 | 35.5 | 0.48 | 110.0 | 22.9 |
| 3 | 92 | 14.3 | 0.91 | 155.0 | 25.6 |
| 4 | 331 | 58.2 | 0.98 | 176.1 | 26.8 |
| 5 | 153 | 29.0 | 0.98 | 190.1 | 27.5 |
| 6 | 51 | 10.6 | 1.00 | 209.7 | 28.7 |
| 7 | 72 | 15.1 | 1.00 | 209.4 | 28.8 |
| 8 | 27 | 5.8 | 1.00 | 218.0 | 29.1 |
| 9+ | 13 | 2.8 | 1.00 | 222.2 | 29.3 |
| Immature | 1443 | 67 |  | 46.1 | 16.0 |
| Mature | 875 | 152 |  | 173.2 | 26.6 |
| Total | 2318 | 218 | 0.38 | 94.1 | 20.0 |

Table 5.2.5. Herring in $6 . a$ (North). Estimates of abundance and SSB for the time-series of the West of Scotland acoustic survey in 6.a ( $\mathbf{N}$ ) not including Clyde and North Channel. Since 2008 this index comes from a spatial subset of the MSHAS survey. Thousands of fish at-age and spawning biomass (SSB tonnes). N.B. In this table "age" refers to number of rings (winter rings in the otolith).

| Year/Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | SSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 338312 | 294484 | 327902 | 367830 | 488288 | 176348 | 98741 | 89830 | 58043 | 410000 |
| 1992 | 74310 | 503430 | 210980 | 258090 | 414750 | 240110 | 105670 | 56710 | 63440 | 351460 |
| 1993 | 2357 | 579320 | 689510 | 688740 | 564850 | 900410 | 295610 | 157870 | 161450 | 845452 |
| 1994 | 494150 | 542080 | 607720 | 285610 | 306760 | 268130 | 406840 | 173740 | 131880 | 533740 |
| 1995 | 441200 | 1103400 | 473300 | 450300 | 153000 | 187200 | 169200 | 236700 | 201700 | 452300 |
| 1996 | 41220 | 576460 | 802530 | 329110 | 95360 | 60600 | 77380 | 78190 | 114810 | 370300 |
| 1997 | 792320 | 641860 | 286170 | 167040 | 66100 | 49520 | 16280 | 28990 | 24440 | 175000 |
| 1998 | 1221700 | 794630 | 666780 | 471070 | 179050 | 79270 | 28050 | 13850 | 36770 | 375890 |
| 1999 | 534200 | 322400 | 1388000 | 432000 | 308000 | 138700 | 86500 | 27600 | 35400 | 460200 |
| 2000 | 447600 | 316200 | 337100 | 899500 | 393400 | 247600 | 199500 | 95000 | 65000 | 444900 |
| 2001 | 313100 | 1062000 | 217700 | 172800 | 437500 | 132600 | 102800 | 52400 | 34700 | 359200 |
| 2002 | 424700 | 436000 | 1436900 | 199800 | 161700 | 424300 | 152300 | 67500 | 59500 | 548800 |
| 2003 | 438800 | 1039400 | 932500 | 1471800 | 181300 | 129200 | 346700 | 114300 | 75200 | 739200 |
| 2004 | 564000 | 274500 | 760200 | 442300 | 577200 | 55700 | 61800 | 82200 | 76300 | 395900 |
| 2005 | 50200 | 243400 | 230300 | 423100 | 245100 | 152800 | 12600 | 39000 | 26800 | 222960 |
| 2006 | 112300 | 835200 | 387900 | 284500 | 582200 | 414700 | 227000 | 21700 | 59300 | 471700 |
| 2007 | - | 126000 | 294400 | 202500 | 145300 | 346900 | 242900 | 163500 | 32100 | 298860 |
| 2008 | 47840 | 232570 | 911950 | 668870 | 339920 | 272230 | 720860 | 365890 | 263740 | 788200 |
| 2009 | 345821 | 186741 | 264040 | 430293 | 373499 | 219033 | 186558 | 499695 | 456039 | 578800 |
| 2010 | 119788 | 493908 | 483152 | 171452 | 163436 | 93289 | 64076 | 53116 | 223311 | 308055 |
| 2011 | 22239 | 184919 | 733384 | 451487 | 204324 | 219863 | 198768 | 112646 | 263185 | 457900 |
| 2012 | 792479 | 179425 | 728758 | 471381 | 240832 | 107492 | 106779 | 56071 | 104571 | 374913 |
| 2013 | - | 136931 | 319711 | 599897 | 161597 | 69341 | 60566 | 24302 | 37398 | 256089 |
| 2014 | 1031086 | 243227 | 217650 | 469032 | 519032 | 143402 | 30318 | 18677 | 11449 | 272000 |
| 2015 | 0 | 121640 | 324964 | 649835 | 377636 | 442135 | 83103 | 22556 | 2086 | 387000 |
| 2016 | 0 | 29593 | 108126 | 87773 | 111676 | 79130 | 62045 | 5530 | 957 | 87907 |
| 2017 | 0 | 23287 | 325407 | 147112 | 101785 | 104599 | 44927 | 13004 | 4569 | 139000 |
| 2018 | 964099 | 322798 | 92037 | 330580 | 152548 | 50636 | 72276 | 26636 | 12549 | 152000 |

Table 5.2.6. Total Abundance and overall biological composition of herring in 6.a North from the industry acoustic survey in 2018.

| Age | Abundance | Mature | Spawning | Biomass | Mean length | Mean weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ('000s) |  |  | (t) | (cm) | (g) |
| 1 | 3454 | 0\% | 0\% | 198 | 19.1 | 57.3 |
| 2 | 14252 | 98\% | 3\% | 1918 | 25.5 | 134.6 |
| 3 | 57465 | 99\% | 31\% | 9335 | 26.7 | 162.4 |
| 4 | 18576 | 97\% | 27\% | 3366 | 27.9 | 181.2 |
| 5 | 8360 | 100\% | 40\% | 1764 | 28.8 | 210.9 |
| 6 | 7806 | 98\% | 37\% | 1676 | 29.4 | 214.7 |
| 7 | 5307 | 99\% | 35\% | 1215 | 29.6 | 229.0 |
| 8 | 1895 | 100\% | 54\% | 447 | 30.1 | 235.6 |
| 9 | 593 | 100\% | 60\% | 126 | 29.0 | 211.8 |
| 10 | 225 | 100\% | 40\% | 60 | 31.2 | 266.7 |
| Immature | 4958 | - | - | 425 | 21.5 | 85.7 |
| Mature | 112980 | - | - | 19679 | 27.3 | 174.2 |
| Spawning* | 33063 | - | - | 6149 | 27.8 | 186.0 |
| TOTAL | 117937 |  |  | 20104 | 27.1 | 170.5 |

*Spawning herring is a subset of the mature herring.

Table 5.2.7. Herring in 6.a (North). Weights-at-age in the stock.

```
Units: kg
```

    year
    age 195719581959196019611962196319641965196619671968 10.0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .090 20.1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .164 30.2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .208 40.2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .233 50.2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .246 60.2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .252 70.2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .258 80.2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .269 90.2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .292 year
age 196919701971197219731974197519761977197819791980 10.0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .090 20.1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .164 30.2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .208 40.2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .233 50.2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .246

### 60.2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .252 70.2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .258 80.2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .269 90.2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .0000 .000 year

age 198119821983198419851986198719881989199019911992 10.0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .068 20.1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .152 30.2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .2080 .186 40.2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .2330 .206 50.2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .2460 .233 60.2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .2520 .253 70.2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .2580 .273 80.2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .2690 .299 90.2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .2920 .302 year
age 199319941995199619971998199920002001200220032004 10.0730 .0520 .0420 .0450 .0540 .0660 .0540 .0620 .0620 .0620 .0640 .059 20.1640 .1500 .1440 .1400 .1420 .1380 .1370 .1410 .1320 .1530 .1380 .138 30.1960 .1920 .1910 .1800 .1800 .1760 .1660 .1730 .1700 .1770 .1760 .159 40.2060 .2200 .2020 .2090 .1990 .1940 .1880 .1830 .1900 .1980 .1900 .180 50.2250 .2210 .2250 .2190 .2130 .2140 .2030 .1940 .1980 .2120 .2040 .189 60.2340 .2330 .2270 .2220 .2220 .2260 .2190 .2040 .2120 .2150 .2130 .202 70.2530 .2410 .2470 .2290 .2310 .2340 .2250 .2110 .2200 .2250 .2170 .213 80.2590 .2700 .2600 .2420 .2420 .2250 .2350 .2220 .2360 .2430 .2230 .214 90.2760 .2960 .2930 .2630 .2630 .2490 .2450 .2300 .2540 .2590 .2280 .206 year
age $20052006200720082009201020112012 \quad 20132014$ 10.07510 .0750 .07500 .0550 .0590 .0680 .0570 .0660 .063666670 .064 20.12960 .1350 .16750 .1720 .1510 .1620 .1320 .1500 .155000000 .108 30.15380 .1660 .18300 .1910 .2060 .1940 .1600 .1830 .165000000 .158 40.16650 .1850 .19140 .2080 .2230 .2270 .2080 .1890 .202000000 .180 50.18020 .1920 .19510 .2140 .2330 .2390 .2360 .2060 .210000000 .206 60.19110 .2040 .19510 .2140 .2310 .2480 .2450 .2170 .236000000 .214 70.21250 .2110 .20210 .2210 .2320 .2580 .2380 .2140 .243000000 .231 80.20300 .2240 .20340 .2240 .2320 .2260 .2220 .2180 .245000000 .244 90.22840 .2310 .21380 .2380 .2380 .2120 .2530 .2150 .254000000 .264 year
age $2015 \quad 2016 \quad 2017 \quad 2018$
$\begin{array}{llllll}1 & 0.06373333 & 0.0638 & 0.0638 & 0.0478\end{array}$
$\begin{array}{llllll}2 & 0.15500000 & 0.1370 & 0.1350 & 0.1100\end{array}$
$3 \quad 0.18300000 \quad 0.1400 \quad 0.1700 \quad 0.1550$
$\begin{array}{llllll}4 & 0.19500000 & 0.1750 & 0.1810 & 0.1761\end{array}$
$\begin{array}{llllll}5 & 0.20400000 & 0.2020 & 0.1980 & 0.1901\end{array}$
$\begin{array}{llllll}6 & 0.21100000 & 0.2080 & 0.1990 & 0.2097\end{array}$
$\begin{array}{llllll}7 & 0.21700000 & 0.2090 & 0.2140 & 0.2094\end{array}$
$\begin{array}{lllllll}8 & 0.21500000 & 0.2100 & 0.2230 & 0.2180\end{array}$
$\begin{array}{llllll}9 & 0.22000000 & 0.2420 & 0.2360 & 0.2222\end{array}$

Table 5.2.8. Herring in $6 . a$ (North). Weights-at-age in the catch.


#### Abstract

Units : kg year age 195719581959196019611962196319641965196619671968 10.0790 .0790 .0790 .0790 .0790 .0790 .0790 .0790 .0790 .0790 .0790 .079 20.1040 .1040 .1040 .1040 .1040 .1040 .1040 .1040 .1040 .1040 .1040 .104 30.1300 .1300 .1300 .1300 .1300 .1300 .1300 .1300 .1300 .1300 .1300 .130 40.1580 .1580 .1580 .1580 .1580 .1580 .1580 .1580 .1580 .1580 .1580 .158 50.1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .1640 .164 60.1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .170 70.1800 .1800 .1800 .1800 .1800 .1800 .1800 .1800 .1800 .1800 .1800 .180 80.1830 .1830 .1830 .1830 .1830 .1830 .1830 .1830 .1830 .1830 .1830 .183 90.1850 .1850 .1850 .1850 .1850 .1850 .1850 .1850 .1850 .1850 .1850 .185 year age 196919701971197219731974197519761977197819791980 10.0790 .0790 .0790 .0790 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .090 20.1040 .1040 .1040 .1040 .1210 .1210 .1210 .1210 .1210 .1210 .1210 .121 30.1300 .1300 .1300 .1300 .1580 .1580 .1580 .1580 .1580 .1580 .1580 .158 40.1580 .1580 .1580 .1580 .1750 .1750 .1750 .1750 .1750 .1750 .1750 .175 50.1640 .1640 .1640 .1640 .1860 .1860 .1860 .1860 .1860 .1860 .1860 .186 60.1700 .1700 .1700 .1700 .2060 .2060 .2060 .2060 .2060 .2060 .2060 .206 70.1800 .1800 .1800 .1800 .2180 .2180 .2180 .2180 .2180 .2180 .2180 .218 80.1830 .1830 .1830 .1830 .2240 .2240 .2240 .2240 .2240 .2240 .2240 .224 90.1850 .1850 .1850 .1850 .2240 .2240 .2240 .2240 .2240 .2240 .0000 .000 year age 198119821983198419851986198719881989199019911992 10.0900 .0800 .0800 .0800 .0690 .1130 .0730 .0800 .0820 .0790 .0840 .091 20.1210 .1400 .1400 .1400 .1030 .1450 .1430 .1120 .1420 .1290 .1180 .119 30.1580 .1750 .1750 .1750 .1340 .1730 .1830 .1570 .1450 .1730 .1600 .183 40.1750 .2050 .2050 .2050 .1610 .1960 .2110 .1770 .1910 .1820 .2030 .196 50.1860 .2310 .2310 .2310 .1820 .2150 .2200 .2030 .1900 .2090 .2110 .227 60.2060 .2530 .2530 .2530 .1990 .2300 .2380 .1940 .2130 .2240 .2290 .219 70.2180 .2700 .2700 .2700 .2130 .2420 .2410 .2400 .2160 .2280 .2360 .244 80.2240 .2840 .2840 .2840 .2230 .2510 .2530 .2130 .2040 .2370 .2610 .256 90.2240 .2950 .2950 .2950 .2310 .2580 .2560 .2280 .2430 .2470 .2710 .256 year age $19931994199519961997199819992000 \quad 2001 \quad 2002 \quad 2003$ 10.0890 .0830 .1060 .0810 .0890 .0970 .0760 .08340 .04900 .10660 .0609 20.1280 .1420 .1420 .1340 .1360 .1380 .1300 .13730 .13980 .14640 .1448 30.1580 .1670 .1810 .1780 .1770 .1590 .1580 .16370 .16280 .16250 .1593 40.1970 .1900 .1910 .2100 .2050 .1820 .1750 .18290 .18280 .17280 .1690 50.2060 .1950 .1980 .2300 .2220 .1990 .1910 .20140 .19220 .15950 .1852 60.2280 .2010 .2140 .2330 .2230 .2180 .2100 .21470 .19590 .17800 .1997 70.2230 .2440 .2080 .2620 .2190 .2270 .2250 .23940 .20470 .18630 .1942 80.2620 .2340 .2270 .2470 .2380 .2120 .2230 .28120 .22450 .24490 .1854 90.2630 .2660 .2770 .2910 .2630 .1990 .2260 .25260 .27160 .28020 .2938 year


age $200420052006 \quad 20072008 \quad 200920102011 \quad 20122013$ 10.00000 .10840 .09080 .11520 .00000 .11210 .08180 .06130 .07250 .0000 20.15410 .13270 .15800 .16670 .17050 .17260 .15490 .15500 .14690 .1441 30.17320 .16320 .16760 .18810 .20600 .21410 .18830 .18940 .18940 .1746 40.19480 .18450 .19290 .19680 .23100 .23790 .21290 .21780 .20760 .1965 50.21600 .21080 .20760 .21050 .23090 .24570 .23370 .23400 .21610 .2020

```
60.21970.2258 0.2251 0.2214 0.2489 0.2535 0.2394 0.2388 0.2261 0.2124
70.1986 0.2341 0.2443 0.2161 0.2529 0.2599 0.2369 0.2470 0.2408 0.2304
80.1885 0.2556 0.2615 0.2618 0.2840 0.2549 0.2400 0.2463 0.2817 0.2343
9.3030 0.2496 0.2750 0.3030 0.2877 0.2730 0.2549 0.2522 0.24670.2476
year
age 2014 2015201620172018
10.00000.0769 0.100 0.000 0.000
20.1451 0.14250.144 0.1370.126
30.1877 0.1795 0.178 0.1670.151
40.2030 0.2059 0.204 0.1870.174
50.22790.2136 0.219 0.2040.190
6.24490.23070.229 0.2130.208
70.26080.2386 0.237 0.2210.218
80.26140.2454 0.251 0.2330.238
90.28350.26850.257 0.2490.246
```

Table 5.2.9. Herring in 6.a (North). Proportion mature.

```
Units : NA
 year
age 195719581959196019611962196319641965196619671968196919701971
 1
2
```



```
4}11.001.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5
llllllllllllllllllllllllllllllllll
7}1.001.001.001.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8
9
year
age 197219731974197519761977197819791980198119821983198419851986
1
2
3}00.960.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
4}1.001.001.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5}11.001.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6}11.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7}1.001.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8}11.001.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9
year
age 198719881989199019911992199319941995199619971998199920002001
1
2
3}00.960.96 0.96 0.96 0.96 1.00 0.96 0.93 0.98 0.94 0.95 0.97 0.98 0.92 0.99
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5}1.001.001.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
year
```

age 2002200320042005200620072008200920102011201220132014201520162017
$\begin{array}{llllllllllllllllllll}1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}$
$\begin{array}{lllllllllllllll}2 & 0.92 & 0.76 & 0.83 & 0.84 & 0.81 & 1.00 & 0.98 & 0.70 & 0.79 & 0.46 & 0.85 & 0.52 & 0.18 & 0.58 \\ 0.97 & 0.89\end{array}$
$\begin{array}{llllllllllllllllllllllll}3 & 1.00 & 1.00 & 0.97 & 1.00 & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 0.92 & 1.00 & 0.81 & 0.73 & 0.92 & 0.99 & 1.00\end{array}$
$\begin{array}{lllllllllllllllllll}4 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.99 & 0.99 & 0.99 & 1.00 & 1.00\end{array}$
$\begin{array}{llllllllllllllllllllllllllll}5 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.98 & 1.00 & 0.98 & 1.00 & 1.00\end{array}$

$\begin{array}{llllllllllllllllllllllllllllllllll}7 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.97 & 1.00 & 1.00\end{array}$
$\begin{array}{lllllllllllllllllllllllllllllllllll}8 & 1.00 & 1.0 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$
$\begin{array}{lllllllllllllllllllllllllllllllllll}9 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$
year
age 2018
10.00
20.48
30.91
40.98
50.98
$6 \quad 1.00$
$7 \quad 1.00$
81.00
$9 \quad 1.00$


Figure 5.2.1. Location of ICES area 6.a (North) and adjacent areas with place names.


Figure 5.2.2. Planned survey areas used in the 6.a North surveys. Area 1- North pre-spawning mixing area Area 2 -East of cape Wrath Area 3 - The Minch Area 4 - Outer Hebrides Area 5 - east Minch.


Figure 5.2.3. Herring in 6.a (North). West of Scotland (6.aN) autumn spawning herring subset from MSHAS indices (millions) by age (winter rings) and year from the acoustic surveys 1993-2018. Age 9+ includes ages 9 and older.

6aN Herring Mean Standardised Catch Numbers At Age


Figure 5.2.4. Herring in 6.a (North). Mean standardized catch numbers-at-age standardized by age 1957 to 2018.
Proportions at age from the catch in 6 aN and acoustic survey 1991-2018


Figure 5.2.5. Herring in $6 . a$ (North). Comparison of the proportions-at-age by year class in the acoustic survey and the catch 1991-2018.


Figure 5.2.6. Maps of relative acoustic density (NASC $\mathrm{m}^{2} / \mathrm{mn}^{2}$ ) recorded during the 2018 6.aN herring industry-science survey. Bottom right panel - derived biomass estimates for each area (details in WGIPS 2019).


Figure 5.2.7. Herring in 6.a (North). Herring catches in tonnes in all quarters in 2018 by statistical rectangle. (Radius of bubbles of 0.25 degrees latitude $\mathbf{= 3 0 0 0} \mathbf{t}$ ). WG estimates.


Figure 5.2.8. Herring in $6 . a$ (North). Herring catches in tonnes by quarters in 2018 by statistical rectangle (Radius of bubbles of 0.25 degrees latitude $=\mathbf{3 0 0 0} \mathbf{t}$ ). WG estimates.

## References

O'Malley M. Blaszkowski M. White E. O'Brien S. \& Mullins E. (2019). Atlantic Herring and Horse Mackerel in $6 \mathrm{aS} / 7 \mathrm{~b}$; Industry Acoustic Survey Cruise Report. FEAS Survey Series: Industry Acoustic Survey/01/2018. Marine Institute

## 6 Herring in the Celtic Sea (divisions 7.a South of $52^{\circ} 30^{\prime} \mathrm{N}$ and 7.g, 7.h and 7.j)


#### Abstract

The assessment year for this stock runs from 1 April until 31 March. Unless otherwise stated, year and year class are referred to by the first year in the season i.e. 2018 refers to the 2018-2019 season.

The WG notes that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout the report. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks such as this one, there is a difference of one year between "age" and "rings". Further elaboration on the rationale behind this, specific to each stock, can be found in the individual Stock Annexes. It is the responsibility of any user of age based data for any of these herring stocks to consult the relevant annex and if in doubt consult a relevant member of the Working Group.


### 6.1 The Fishery

### 6.1.1 Advice and management applicable to 2018-2019

The TAC is set by calendar year and in 2018 was 10127 t (agreed by the Council of the European Union, based on the long-term management plan). The TAC for 2019 is 4742 t (based on the ICES MSY approach).

## Long-Term Management Plan

A long-term management plan has been proposed by the Pelagic RAC. The most recent evaluation of this plan took place in 2018.

ICES advises that the harvest control rule in the long-term management plan for Celtic Sea herring is no longer consistent with the precautionary approach. The management plan results in a greater than $5 \%$ probability of the stock falling below $B_{\lim }$ in several years throughout the 20 year simulated period. The simulations indicate the management plan cannot ensure that the stock is fished and maintained at levels which can produce maximum sustainable yield as soon as or by 2020.

### 6.1.2 The fishery in 2018-2019

In 2018 the Irish fishery took place in 7.g in Q3 and in 7.g and 7.a.S in Q4.
The Netherlands reported catches of just over 400 t coming from 7.g and 7.h, Germany, France and the UK did not utilize their quota. 7.h is part of the management area, but it is unclear if it is part of the stock area.
The spatial distribution of the 2018 landings is presented in Figure 6.1.2.1. There was not full quota uptake in 2018.
The estimated catches from 1988-2018 for the combined areas by quota year and by assessment year (1 April-31 March) are given in tables 6.1.2.1 and 6.1.2.2 respectively. The catch taken during the 2018-2019 season decreased to about 4400 t (Figure 6.1.2.2).

The catch data include discards in the directed fishery until 1997. An independent observer study of the Celtic Sea herring fishery was conducted annually from 2012 to 2017. This observer programme was discontinued in 2018. Discards from these trips were raised to the total international catch using a weighted average for each year from 2012 to 2017.

## Regulations and their effects

Under the previous rebuilding plan, the closure of Subdivision 7.aS from the 2007-present, except for a sentinel fishery, meant that only small dry hold vessels, no more than 50 feet total length, could fish in that area. In 2012 local quota management arrangements were adopted to restrict fishing in $7 . \mathrm{aS}$ to vessels under 50 feet, but the total quota allocation increased from $8 \%$ to $11 \%$. Therefore, from 2012 there was a slight increase in landings from this area. There is evidence that closure of Subdivision 7.aS under the rebuilding plan, helped to reduce fishing mortality (Clarke and Egan, 2017). The exact mechanisms for this are unclear.

### 6.1.3 Changes in fishing technology and fishing patterns

The fishery in the past number of years has changed compared to previous years. In recent years, herring have been found very close to the bottom in the main fishery, in the acoustic dead-zone of the echosounder, particularly offshore in Division 7.g. The fishery reports that herring are often not visible on echosounders at all. Tow duration has increased markedly because it takes longer to catch the desired quantity of herring. In 2017, the fishery was concentrated offshore initially, but effort shifted to more inshore areas in Division $7 . \mathrm{g}$ when herring became difficult to locate offshore. It was difficult for the Irish fleet to catch its quota in 2017. The fishery in 2018 was mainly concentrated inshore in $7 . g$ with no significant offshore fishery. Irish vessels had difficulty catching the quota again in 2018.

Vessels greater than 50 feet total length are excluded from $7 . a S$ under local Irish legislation. This has shifted effort onto The Smalls/Celtic Deep ground, south of the $52^{\circ} \mathrm{N}$ line, in an area which straddles the boundary between the Irish and UK exclusive economic zones (EEZs).
The increase in the TAC from 2010 attracted more Irish vessels, and some non-Irish vessels to fish this stock. Irish quota is allocated to vessels on a weekly basis. The large number of vessels involved has led to individual quotas being reduced. This initially led to increased discarding risk due to vessels being unable to catch their small allocations without extra-quota catches that are often slipped. However, in 2012, flexibility was introduced to the system, whereby a vessel could use some of the following week's quota to mitigate slippage.

### 6.1.4 Discarding

As in all pelagic fisheries, estimation of discarding is very difficult. Individual instances of discarding may be quite infrequent in occurrence. However individual slippages could result in considerable quantities of herring being discarded. The estimates produced by the HAWG in 2012 provided a sensitivity analysis of the assessment to maximum possible discarding. The risk of discarding (slippage induced by restrictive vessel quotas) is now reduced, due to the flexibility mechanism introduced in quota allocation since 2012. Available evidence is that the discard rate is negligible in directed fisheries. The Marine Institute carried out four herring directed discard trips in 2018 with no discarding observed.

Estimates of discarding from observer trips for the purposes of marine mammal bycatch studies, reported $1 \%$ discarding in 2012, $0.8 \%$ in 2013 (McKeogh and Berrow, 2013), $3.4 \%$ in 2014 (McKeogh and Berrow, 2014), $1.4 \%$ in 2015 in the main fishery and $1.5 \%$ in the $7 . \mathrm{aS}$ small boat fishery (Pinfield and Berrow, 2015,), $1.13 \%$ in 2016 (O'Dwyer et al., 2016) and $1.19 \%$ in 2017
(O'Dwyer and Berrow, 2017). This observer programme was discontinued in 2018 and no discard estimates were available.

Since 2015, this stock is covered by the landings obligation.

### 6.2 Biological composition of the catch

### 6.2.1 Catches in numbers-at-age

Catch numbers-at-age are available for the period 1958 to 2018. Three winter ring fish were the main age class in 2018, followed by 2 - and 4 -wr respectively (Table 6.2.1.1). The yearly mean standardized catch numbers-at-age are shown in Figure 6.2.1.1. Older ages ( 8 and 9 wr ) are present in very small numbers in 2018. Truncation of ages is again evident in this stock.

The overall proportions-at-age in the catch and the survey are presented in Figure 6.2.1.2. There is generally good agreement between the data sources. The Q4 acoustic survey picks up 1-wr fish in larger proportions than the catch data in some years including 2018. The catch and survey data both show a peak in three winter ring fish in 2018. These samples were taken inshore and are comprised mainly of younger fish.

Length-frequency data by division and quarter are presented in Table 6.2.1.2. The greatest length range was found in 7.g Q4. The fishery here took place inshore and smaller fish were encountered here.

### 6.2.2 Quality of catch and biological data

Biological sampling of the catches was carried out in the area exploited by the Irish fishery (Table 6.2.2.1) in 2018. Under the Data Collection Framework the sampling of this stock is well above that required by the Minimum Programme (Section 1.5).

### 6.3 Fishery-Independent Information

### 6.3.1 Acoustic Surveys

The Celtic Sea herring acoustic survey (CSHAS) time-series currently used in the assessment runs from 2002 to 2018, excluding 2004 and 2017. The full survey time-series is presented in Table 6.3.1.1. The internal consistency between ages $1-9$ from the acoustic survey is presented in Figure 6.3.1.4.

The acoustic survey of the 2018-2019 season was carried out from 8 to 28 October 2018, on the Celtic Explorer http://hdl.handle.net/10793/1385 (O'Donnell et al., 2018). Survey effort for the core area consisted of 2311 nautical miles of transects for acoustic integration and the geographical coverage was 19347 square nautical miles. The three adaptive surveys accounted for 459 nautical miles of transects covering an area of 3304 square nautical miles. The acoustic survey track is shown in Figure 6.3.1.1.

The 2018 survey consisted of replicate surveys (two broad-scale, and three adaptive mini-surveys) covering the same area. The highest biomass estimate from the broad-scale surveys was used to estimate numbers-at-age for the assessment (i.e. Pass 1 in 2018). NASC distribution plots from the broad-scale survey are presented in Figure 6.3.1.2 and from the adaptive mini survey in Figure 6.3.1.3. Herring TSB (total-stock biomass) and abundance (TSN) estimates from the 2018 survey were 9788 t and 213491 individuals respectively.

A total of 15 trawl hauls were carried out during the survey in 2018, with four hauls containing $>50 \%$ herring by weight of catch. All hauls contained some herring. A total of 529 herring were aged from survey samples in addition to 1668 length measurements and 807 length-weights recorded. Herring age samples ranged from $0-8$ winter-rings.

Immature 0-group herring were observed across the survey area, appearing in every haul in small numbers. The presence of this year class was reported further east toward the UK coast by the RV Cefas Endeavour as part of the PELTIC survey program that takes place at the same time (J. Vanderkooij, pers. comm.). Overall, the contribution of 0-group herring accounts for over $51 \%$ of the total stock abundance for the Pass 1 estimate. This signal is encouraging as a potential source of recruitment in a period of low stock abundance and persistent poor recruitment.

The contribution of 1-winter ring fish from around the Cork Harbour area is an annual occurrence in low background numbers. In 2018, this age group represents a significant contribution to the overall biomass ( $31.7 \%$ of TSB and $26.1 \%$ of TSN). It is important to note that this proportion is relative to the low contribution of other age classes in the overall low abundance estimate and not a sign of a stronger than normal year class for this cohort.

The spawning-stock-biomass (SSB) estimate in 2018 represents one of the lowest SSB points in the current time-series. The absence of the offshore migratory component of the stock within the wider survey area cannot be attributed to containment as good area coverage was attained.

WGIPS have highlighted in recent years that herring are frequently distributed close to the bottom, within the acoustic dead-zone of the echosounder and therefore it is difficult to accurately estimate the biomass in the survey area. This behaviour was not observed in 2018 and there were no herring observed offshore in the survey.

In 2018 the Western European Shelf Pelagic Acoustic Survey (WESPAS) directed at boarfish, horse mackerel and herring on the Malin Shelf, also had some coverage in the Celtic Sea. An abundance estimate for Celtic Sea herring was calculated for this survey in $2018 \mathrm{http}: / / \mathrm{hdl} . \mathrm{han}-$ dle.net/10793/1380 but cannot be used for stock assessment purposes. This survey will continue in 2019 and methods will be further refined to increase the precision of future estimates. This survey has the potential to be used as an index for the Celtic Sea herring stock when a sufficient time-series of data becomes available.

### 6.4 Mean weights-at-age and maturity-at-age and Natural Mortality

The mean weights in the catch and mean weights in the stock at spawning time are presented in Figure 6.4.1.1 and Figure 6.4.1.2 respectively. There has been an overall downward trend in mean weights-at-age in the catch since the mid-1980s. After a slight increase around 2008, they have declined again. In 2018 slight increases in mean weights at some ages can be seen. Mean weights in the stock at spawning time were calculated from biological samples from the Q4 (Figure 6.4.1.2). The overall trends in stock weights are as in the catch weights.

In the assessment, $50 \%$ of $1-\mathrm{wr}$ fish are considered mature. Sampling data from the Celtic Sea catches suggest that greater than $50 \%$ of 1-wr fish are mature (Lynch, 2011). However, the 2014 benchmark (ICES, 2014) concluded that there was insufficient information to change the maturity ogive.

Following the final procedure of ICES, HAWG 2015, natural mortality values used in the final assessment incorporated the SMS run as obtained in 2011.

The time-invariant natural mortalities and maturities-at-age are presented in the text table below.

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9 +}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Maturity | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Natural mortality | 0.767 | 0.385 | 0.356 | 0.339 | 0.319 | 0.314 | 0.307 | 0.307 | 0.307 |

### 6.5 Recruitment

At present there are no independent recruitment estimates for this stock.

### 6.6 Assessment

This stock was benchmarked in 2015 by WKWEST (ICES, 2015) and inter-benchmarked by WKPELA 2018.

### 6.6.1 Stock Assessment

This update assessment was carried out using ASAP. The assessment was tuned using the Celtic Sea herring acoustic survey (CSHAS) ages 2-7 winter ring and excluding the 2017 survey. The input data are presented in tables 6.6.1.1 and 6.6.1.2. The ASAP settings are as per the 2018 interbenchmark and are presented in (Table 6.6.1.3). The stock summary is presented in Table 6.6.1.4.

Figure 6.6.1.1 shows the catch proportions-at-age residuals. The residuals are large for the young ages, which is to be expected because these are estimated with low precision. Larger residuals can be seen in recent years. Overall there are no clear patterns in the residuals. Figure 6.6.1.2 shows the observed and predicted catches. In general, the model followed the observed catches quite closely. The observed and predicted catch proportions-at-age are shown in Figure 6.6.1.3. There is some divergence in the most recent year, most notable at 3 wr with a larger proportion observed than predicted. Overall the fits are good throughout the full time-series.

The selection pattern in the fishery for the final assessment run is shown in Figure 6.6.1.4. Selection is fixed at 1 for $3-$ wr which is the age that Celtic Sea herring are considered to be fully selected. Selection at all other ages is estimated by the model. This gives a dome-shaped selection pattern which is considered appropriate to this fishery. The model predicts a drop in selection at-age 9 -wr. This may be the case given the lesser abundance of 9 -wr in the catch data.
Figure 6.6.1.5 shows the residuals of the index proportions-at-age. The largest residuals can be seen at the younger ages. The index fit shows generally good agreement with the exception of the very large survey index in 2012 (Figure 6.6.1.6). The selectivity parameters were adjusted at the inter-benchmark. Selection is now fixed for ages 3-5. This gives a more dome-shaped selection pattern with selection declining at older ages (Figure 6.6.1.7).

The analytical retrospective from ASAP is shown in Figure 6.6.1.8. The Mohn's Rho on SSB (Mohn, 1999) is calculated as -0.17 over a five-year peel. This is a slight increase on the 2018 assessment where the Mohns Rho on SSB was -0.12 .

Figure 6.6.1.9 shows uncertainties over time in the assessment estimates. The greatest uncertainty is seen with the estimates of recruitment. This may be related to the lack of a fisheries-independent estimate of recruitment.

## State of the stock

The stock summary plots from the final assessment in 2018 and the update ASAP assessment in 2019 are presented in Figure 6.6.1.10 and the stock summary in Table 6.6.1.4. The assessment shows SSB is declining and is estimated to be 22977 t in 2018. The stock is currently below $\mathrm{B}_{\mathrm{pa}}$ and $B_{\text {lim. }}$

Mean F (2-5 ring) in 2018 is estimated as being 0.33, which is a decrease from 2017 when $F$ was 0.64. F is above $\mathrm{F}_{\mathrm{pa}}$ and $\mathrm{F}_{\mathrm{msy}}$ and just below $\mathrm{Flim}_{\text {. Recruitment was good for several years with }}$ strong cohorts in 2005, 2007, 2009, 2010, 2011, and 2012 having entered the stock. Recruitment has been lower in recent years and has been below the long-term average since 2013.

### 6.7 Short-term projections

### 6.7.1 Deterministic Short-Term Projections

An updated procedure for STF was performed, using the procedure agreed at the 2014 benchmark (ICES 2014/ACOM 43). The 2019 short-term forecast follows the benchmark procedures.

Recruitment (final year, interim year and advice year) in the short-term forecast is to be set to the same value based on the segmented stock-recruit relationship, based on the SSB in the forecast year - 2 (2017). As this SSB value ( 21999 t ) is below the change-point ( 47575 t ), the following adjustment is applied.

Recruitment (forecast year) $=$ plateau recruitment *(SSB forecast year -2) / SSB Changepoint)
Recruitment $2019=441902$ * $(21$ 999/47575 $)=204340$
Interim year catch was taken to be the TAC, plus carryover on the national quotas. Non-Irish intermediate year catches were further adjusted based on recent quota uptake. The intermediate year catch was estimated as 5320 t .

A deterministic short-term forecast was performed using in FLR. The input data are presented in Table 6.7.1.1.

The results of the short-term projection are presented in Table 6.7.1.2. Fishing in accordance with the MSY approach implies a zero catch in 2020.

### 6.7.2 Multiannual short-term forecasts

No multiannual simulations were conducted in 2019.

### 6.7.3 Yield-per-recruit

No yield-per-recruit analyses were conducted in 2019.

### 6.8 Long-term simulations

Long-term simulations were carried out as part of the ICES evaluation of the long-term management plan for Celtic Sea herring. ICES advises that the harvest control rule is no longer consistent with the precautionary approach. The management plan results in a greater than $5 \%$ probability of the stock falling below Blim in several years throughout the 20 year simulated period. The simulations indicate the management plan cannot ensure that the stock is fished and maintained at levels which can produce maximum sustainable yield as soon as or by 2020. The long-term management plan is no longer used to give advice for this stock.

Further simulations are currently being conducted as part of the development of a rebuilding plan for this stock. Harvest control rules with different $F$ values and constant catch options are being explored using the SimpSIM simulation package.

### 6.9 Precautionary and yield-based reference points

Reference points were re-estimated by WKPELA 2018.

| Framework | Reference point | Value | Technical basis | Source |
| :---: | :---: | :---: | :---: | :---: |
| MSY approach | MSY $\mathrm{B}_{\text {trigger }}$ | 54000 t | $\mathrm{B}_{\mathrm{pa}}$ | ICES (2018a) |
|  | $\mathrm{F}_{\mathrm{MSY}}$ | 0.26 | Stochastic simulations using segmented regression stock-recruitment relationship from 1970-2014 | ICES (2018a) |
| Precautionary approach | $\mathrm{Blim}_{\text {lim }}$ | 34000 t | $\mathrm{B}_{\text {loss }}$ = the lowest observed SSB (1980) | ICES (2018a) |
|  | $\mathrm{B}_{\mathrm{pa}}$ | 54000 t | $\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\text {lim }} \times \exp (1.645 \times \sigma \mathrm{B})$, with $\sigma \mathrm{B}=0.29$. | ICES (2018a) |
|  | $\mathrm{F}_{\text {lim }}$ | 0.45 | Equilibrium F maintaining SSB $>\mathrm{B}_{\mathrm{lim}}$ with $50 \%$ probability | ICES (2018a) |
|  | $\mathrm{F}_{\mathrm{pa}}$ | 0.27 | $\mathrm{F}_{\mathrm{pa}}=\mathrm{F}_{\text {lim }} \times \exp (-1.645 \times \sigma \mathrm{F})$, where $\sigma \mathrm{F}=0.30$ from assessment uncertainty (capped) in the terminal year | ICES (2018a) |

### 6.10 Quality of the Assessment

Figure 6.6.1.9 shows uncertainties over time in the assessment estimates. The uncertainties for the key parameters (SSB, recruitment and F) are between 0.1 and 0.3 for the majority of the timeseries; uncertainties have increased in the final years. Recruitment estimates in the final year show the highest uncertainty.

The SSB and F values based on the assessment and forecast in 2018 are compared with the assessment outputs in 2019 and are shown in the text table below. The assessment in 2019 shows a more pessimistic outlook for this stock with SSB revised downwards and F revised upwards. This can also be seen in the historical retrospective plot in Figure 6.10.1

| 2018 Assessment |  |  | 2019 Assessment |  | \% change in the estimates |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | SSB | Catch | F 2-5 | Year | SSB | Catch | F 2-5 | SSB | F 2-5 |
| 2016 | 46734 | 16,318 | 0.41 | 2016 | 35398 | 16318 | 0.58 | $-24 \%$ | $42 \%$ |
| 2017 | 35738 | 10767 | 0.41 | 2017 | 21999 | 10767 | 0.64 | $-38 \%$ | $56 \%$ |
| $2018^{*}$ | 36139 | 10,887 | 0.44 | 2018 | 22977 | 4418 | 0.33 | $-36 \%$ | $-24 \%$ |

* from intermediate year in STF.

The 2018 acoustic survey estimate is the lowest in the current time-series. The survey time-series used in the assessment includes data from 2002 to 2018 (no survey in 2014 and the 2017 survey excluded). Since 2014, herring have been observed close to the bottom, and less reliably estimated by the acoustic survey.

Estimates of recruitment are uncertain and this may be related to the lack of a fisheries-independent recruitment estimator. In the Irish Sea, mixing occurs between juvenile winter spawned Celtic Sea fish and autumn spawned Irish Sea fish but the level of mixing is unquantified.

### 6.11 Management Considerations

The stock has declined substantially from a high in 2012, as older cohorts have moved through the fishery. Recruitment has been below average since 2013. The stock is currently forecast to be below $\mathrm{B}_{\lim }$ in 2019. Fishing is currently above Fmsy of 0.26 .

The advice provided for this stock for 2020 is based on the ICES MSY approach. The basis for the advice is the same as previous years. The TAC however was set according to the long-term management plan from 2012-2018. Evaluations conducted in 2018 found that the long-term management plan is no longer precautionary (ICES, 2018). A rebuilding plan is currently being developed for this stock

A change in fish behaviour has been observed by the acoustic survey since 2014. The fish have been observed close to the bottom and have been difficult to detect acoustically.

The closure of the Subdivision 7.aS as a measure to protect first time spawners has been in place since 2007-2008, with limited fishing allowed. Currently only vessels of no more than 50 feet in registered length are permitted to fish in this area. A maximum catch limitation of $11 \%$ of the Irish quota is allocated to this fishery.

### 6.12 Ecosystem considerations

Herring are an important prey species in the ecosystem and also one of the dominant planktivorous fish.

The spawning grounds for herring in the Celtic Sea are well known and are located close to the coast (O'Sullivan et al., 2013). These spawning grounds may contain one or more spawning beds on which herring deposit their eggs. Individual spawning beds within the spawning grounds have been mapped and consist of either gravel or flat stone (Breslin, 1998). Spawning grounds tend to be vulnerable to anthropogenic influences such as dredging, sand and gravel extraction, dumping of dredge spoil and waste from fish cages. There have been several proposals for extraction of gravel and to dump dredge spoil in recent years. Many of these proposals relate to known herring spawning grounds. ICES have consistently advised that activities that perturb herring spawning grounds should be avoided.

Herring fisheries are considered to be clean with little bycatch of other fish. Mega-fauna bycatch is unquantified, though anecdotal reports suggest that seals, blue sharks, tunas, and whitefish are caught from time to time. In the 2017 observer study of the Celtic Sea herring fishery, whiting was the most frequently recorded bycatch species followed by haddock and mackerel. No marine mammals or seabirds were recorded as bycatch in the fishery, with only one elasmobranch (an unidentified dogfish species) recorded. A total of 26 marine mammal sightings were recorded during observer trips (O'Dwyer and Berrow, 2017).

### 6.13 Changes in the environment

Weights in the catch and in the stock at spawning time have shown fluctuations over time (Figures 6.4.4.1 and 6.4.1.2), but with a decline to lowest observations in the series at the end. The declines in mean weights are a cause for concern, because of their impact on yield and yield-perrecruit. Harma (unpublished) and Lyashevska et al. (in prep) found that global environmental
factors, reflecting recent temperature increases (AMO and ice extent) were linked to changes in the size characteristics during the 1970s-1980s. Outside this period, size-at-age patterns were correlated with more local factors (SST, salinity, trophic and fishery-related indicators). Generally, length-at-age was mostly correlated with global temperature-related indices (AMO and Ice), and weight was linked to local temperature variables (SST). There was no evidence of densitydependent growth in the Celtic Sea herring population, which is in accordance with previous studies (Molloy, 1984; Brunel and Dickey-Collas, 2010; Lynch, 2011). Rather, stock size exhibited a positive relationship with long-term size-at-age of Celtic Sea herring (Harma, unpublished).
In the Celtic Sea, a change towards spawning taking place later in the season has been documented by Harma et al. (2013). The causes of this are likely to be environmental, though to date they have not been elucidated (Harma et al., 2013). It should be noted that declines in mean weights, examined by Harma et al. (2013) are not explained by the relative contribution of heavier at-age autumn spawners. Rather, both autumn and winter spawners experienced concurrent declines in mean weights in recent years.

A shift towards later spawning has also been reported by local fishers in this area. WKWEST received a submission from the Celtic Sea Herring Management Advisory Committee of substantial spawning aggregations in Division 7.j in January 2015. This area is mainly an autumn spawning area (O'Sullivan et al., 2012).

Analyses of productivity changes over time in European herring stocks was examined by ICES, HAWG (2006). It was found that this stock was the only one not to experience a change in productivity or so-called regime shift. This is also seen in the Surplus production per unit stock biomass using information from the 2013 assessment. Evidence from the new ASAP assessment, in terms of recruits per spawner, does not alter this perception (ICES, WKWEST 2015).

Table 6.1.2.1. Herring in the Celtic Sea. Landings by quota year ( t ), 1988-2018. (Data provided by Working Group members). These figures may not in all cases correspond to the official statistics and cannot be used for management purposes.

| Year | France | Germany | Ireland | Netherlands | UK | Unallocated | Discards | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 | - | - | 16800 | - | - | - | 2400 | 19200 |
| 1989 | + | - | 16000 | 1900 | - | 1300 | 3500 | 22700 |
| 1990 | + | - | 15800 | 1000 | 200 | 700 | 2500 | 20200 |
| 1991 | + | 100 | 19400 | 1600 | - | 600 | 1900 | 23600 |
| 1992 | 500 | - | 18000 | 100 | + | 2300 | 2100 | 23000 |
| 1993 | - | - | 19000 | 1300 | + | -1100 | 1900 | 21100 |
| 1994 | + | 200 | 17400 | 1300 | + | -1500 | 1700 | 19100 |
| 1995 | 200 | 200 | 18000 | 100 | + | -200 | 700 | 19000 |
| 1996 | 1000 | 0 | 18600 | 1000 | - | -1800 | 3000 | 21800 |
| 1997 | 1300 | 0 | 18000 | 1400 | - | -2600 | 700 | 18800 |
| 1998 | + | - | 19300 | 1200 | - | -200 | - | 20300 |
| 1999 |  | 200 | 17900 | 1300 | + | -1300 | - | 18100 |
| 2000 | 573 | 228 | 18038 | 44 | 1 | -617 | - | 18267 |
| 2001 | 1359 | 219 | 17729 | - | - | -1578 | - | 17729 |
| 2002 | 734 | - | 10550 | 257 | - | -991 | - | 10550 |
| 2003 | 800 | - | 10875 | 692 | 14 | -1506 | - | 10875 |
| 2004 | 801 | 41 | 11024 | - | - | -801 | - | 11065 |
| 2005 | 821 | 150 | 8452 | 799 | - | -1770 | - | 8452 |
| 2006 | - | - | 8530 | 518 | 5 | -523 | - | 8530 |
| 2007 | 581 | 248 | 8268 | 463 | 63 | -1355 | - | 8268 |
| 2008 | 503 | 191 | 6853 | 291 | - | -985 | - | 6853 |
| 2009 | 364 | 135 | 5760 | - | - | -499 | - | 5760 |
| 2010 | 636 | 278 | 8406 | 325 | - | -1239 | na | 8406 |
| 2011 | 241 | - | 11503 | 7 | - | -248 | na | 11503 |
| 2012 | 3 | 230 | 16132 | 3135 | - | 2104 | 161* | 21765 |
| 2013 | - | 450 | 14785 | 832 | - | - | 118 | 16185 |
| 2014 | 244 | 578 | 17287 | 821 | - |  | 644 | 19574 |
| 2015 | - | 477 | 15798 | 1304 | + | - | 247 | 17825 |
| 2016 | - | 419 | 15107 | 1025 | 559 | -451 | 182 | 16847 |
| 2017 | - | 298 | 10184 | 648 | 64 |  | 130 | 11324 |
| 2018 |  |  | 4398 | 436 |  | -245 |  | 4589 |

[^11]Table 6.1.2.2. Herring in the Celtic Sea. Landings (t) by assessment year (1 April-31 March) 1988/1989-2018/2019. (Data provided by Working Group members). These figures may not in all cases correspond to the official statistics and cannot be used for management purposes.

| Year | France | Germany | Ireland | Netherlands | UK | Unallocated | Discards | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988/1989 | - | - | 17000 | - | - | - | 3400 | 20400 |
| 1989/1990 | + | - | 15000 | 1900 | - | 2600 | 3600 | 23100 |
| 1990/1991 | + | - | 15000 | 1000 | 200 | 700 | 1700 | 18600 |
| 1991/1992 | 500 | 100 | 21400 | 1600 | - | -100 | 2100 | 25600 |
| 1992/1993 | - | - | 18000 | 1300 | - | -100 | 2000 | 21200 |
| 1993/1994 | - | - | 16600 | 1300 | + | -1100 | 1800 | 18600 |
| 1994/1995 | + | 200 | 17400 | 1300 | + | -1500 | 1900 | 19300 |
| 1995/1996 | 200 | 200 | 20000 | 100 | + | -200 | 3000 | 23300 |
| 1996/1997 | 1000 | - | 17900 | 1000 | - | -1800 | 750 | 18800 |
| 1997/1998 | 1300 | - | 19900 | 1400 | - | -2100 | - | 20500 |
| 1998/1999 | + | - | 17700 | 1200 | - | -700 | - | 18200 |
| 1999/2000 |  | 200 | 18300 | 1300 | + | -1300 | - | 18500 |
| 2000/2001 | 573 | 228 | 16962 | 44 | 1 | -617 | - | 17191 |
| 2001/2002 | - | - | 15236 | - | - | - | - | 15236 |
| 2002/2003 | 734 | - | 7465 | 257 | - | -991 | - | 7465 |
| 2003/2004 | 800 | - | 11536 | 610 | 14 | -1424 | - | 11536 |
| 2004/2005 | 801 | 41 | 12702 | - | - | -801 | - | 12743 |
| 2005/2006 | 821 | 150 | 9494 | 799 | - | -1770 | - | 9494 |
| 2006/2007 | - | - | 6944 | 518 | 5 | -523 | - | 6944 |
| 2007/2008 | 379 | 248 | 7636 | 327 | - | -954 | - | 7636 |
| 2008/2009 | 503 | 191 | 5872 | 150 | - | -844 | - | 5872 |
| 2009/2010 | 364 | 135 | 5745 | - | - | -499 | - | 5745 |
| 2010/2011 | 636 | 278 | 8370 | 325 | - | -1239 | na | 8370 |
| 2011/2012 | 241 | - | 11470 | 7 | - | -248 | na | 11470 |
| 2012/2013 | 3 | 230 | 16132 | 3135 | - | 2104 | 161* | 21765 |
| 2013/2014 | - | 450 | 14785 | 832 | - | - | 118 | 16185 |
| 2014/2015 | 244 | 578 | 17287 | 821 | - | - | 644 | 19574 |
| 2015/2016 | - | 477 | 16320 | 1304 | + | - | 254 | 18355 |
| 2016/2017 | - | 419 | 14585 | 1025 | 559 | -451 | 182 | 16319 |
| 2017/2018 | - | 298 | 9627 | 648 | 64 | - | 130 | 10767 |
| 2018/2019 | - | - | 4227 | 436 | - | -245 | - | 4418 |

[^12]Table 6.2.1.1. Herring in the Celtic Sea. Comparison of age distributions (percentages) in the catches of Celtic Sea and 7.j herring from 1970-2018/2019. Age is in winter rings.

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 1\% | 24\% | 33\% | 17\% | 12\% | 5\% | 4\% | 1\% | 2\% |
| 1971 | 8\% | 15\% | 24\% | 27\% | 12\% | 7\% | 3\% | 3\% | 1\% |
| 1972 | 4\% | 67\% | 9\% | 8\% | 7\% | 2\% | 1\% | 1\% | 0\% |
| 1973 | 16\% | 26\% | 38\% | 5\% | 7\% | 4\% | 2\% | 2\% | 1\% |
| 1974 | 5\% | 43\% | 17\% | 22\% | 4\% | 4\% | 3\% | 1\% | 1\% |
| 1975 | 18\% | 22\% | 25\% | 11\% | 13\% | 5\% | 2\% | 2\% | 2\% |
| 1976 | 26\% | 22\% | 14\% | 14\% | 6\% | 9\% | 4\% | 2\% | 3\% |
| 1977 | 20\% | 31\% | 22\% | 13\% | 4\% | 5\% | 3\% | 1\% | 1\% |
| 1978 | 7\% | 35\% | 31\% | 14\% | 4\% | 4\% | 1\% | 2\% | 1\% |
| 1979 | 21\% | 26\% | 23\% | 16\% | 5\% | 2\% | 2\% | 1\% | 1\% |
| 1980 | 11\% | 47\% | 18\% | 10\% | 4\% | 3\% | 2\% | 2\% | 1\% |
| 1981 | 40\% | 22\% | 22\% | 6\% | 5\% | 4\% | 1\% | 0\% | 1\% |
| 1982 | 20\% | 55\% | 11\% | 6\% | 2\% | 2\% | 2\% | 0\% | 1\% |
| 1983 | 9\% | 68\% | 18\% | 2\% | 1\% | 0\% | 0\% | 1\% | 0\% |
| 1984 | 11\% | 53\% | 24\% | 9\% | 1\% | 1\% | 0\% | 0\% | 0\% |
| 1985 | 14\% | 44\% | 28\% | 12\% | 2\% | 0\% | 0\% | 0\% | 0\% |
| 1986 | 3\% | 39\% | 29\% | 22\% | 6\% | 1\% | 0\% | 0\% | 0\% |
| 1987 | 4\% | 42\% | 27\% | 15\% | 9\% | 2\% | 1\% | 0\% | 0\% |
| 1988 | 2\% | 61\% | 23\% | 7\% | 4\% | 2\% | 1\% | 0\% | 0\% |
| 1989 | 5\% | 27\% | 44\% | 13\% | 5\% | 2\% | 2\% | 0\% | 0\% |
| 1990 | 2\% | 35\% | 21\% | 30\% | 7\% | 3\% | 1\% | 1\% | 0\% |
| 1991 | 1\% | 40\% | 24\% | 11\% | 18\% | 3\% | 2\% | 1\% | 0\% |
| 1992 | 8\% | 19\% | 25\% | 20\% | 7\% | 13\% | 2\% | 5\% | 0\% |
| 1993 | 1\% | 72\% | 7\% | 8\% | 3\% | 2\% | 5\% | 1\% | 0\% |
| 1994 | 10\% | 29\% | 50\% | 3\% | 2\% | 4\% | 1\% | 1\% | 0\% |
| 1995 | 6\% | 49\% | 14\% | 23\% | 2\% | 2\% | 2\% | 1\% | 1\% |
| 1996 | 3\% | 46\% | 29\% | 6\% | 12\% | 2\% | 1\% | 1\% | 1\% |
| 1997 | 3\% | 26\% | 37\% | 22\% | 6\% | 4\% | 1\% | 1\% | 0\% |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1998 | 5\% | 34\% | 22\% | 23\% | 11\% | 3\% | 2\% | 0\% | 0\% |
| 1999 | 11\% | 27\% | 28\% | 11\% | 12\% | 7\% | 1\% | 2\% | 0\% |
| 2000 | 7\% | 58\% | 14\% | 9\% | 4\% | 5\% | 2\% | 0\% | 0\% |
| 2001 | 12\% | 49\% | 28\% | 5\% | 3\% | 1\% | 1\% | 0\% | 0\% |
| 2002 | 6\% | 46\% | 32\% | 9\% | 2\% | 2\% | 1\% | 0\% | 0\% |
| 2003 | 3\% | 41\% | 27\% | 16\% | 6\% | 4\% | 3\% | 0\% | 1\% |
| 2004 | 5\% | 10\% | 50\% | 24\% | 9\% | 2\% | 1\% | 0\% | 0\% |
| 2005 | 12\% | 38\% | 30\% | 10\% | 4\% | 3\% | 2\% | 1\% | 1\% |
| 2006 | 3\% | 58\% | 19\% | 4\% | 11\% | 4\% | 1\% | 0\% | 0\% |
| 2007 | 12\% | 17\% | 56\% | 9\% | 2\% | 3\% | 1\% | 0\% | 0\% |
| 2008 | 3\% | 31\% | 20\% | 38\% | 6\% | 1\% | 1\% | 0\% | 0\% |
| 2009 | 24\% | 11\% | 30\% | 12\% | 20\% | 2\% | 1\% | 1\% | 0\% |
| 2010 | 4\% | 33\% | 13\% | 25\% | 8\% | 16\% | 1\% | 0\% | 1\% |
| 2011 | 7\% | 19\% | 38\% | 8\% | 15\% | 6\% | 6\% | 1\% | 0\% |
| 2012 | 6\% | 34\% | 24\% | 20\% | 3\% | 6\% | 3\% | 2\% | 0\% |
| 2013 | 5\% | 24\% | 33\% | 18\% | 13\% | 3\% | 4\% | 1\% | 0\% |
| 2014 | 11\% | 16\% | 25\% | 22\% | 15\% | 7\% | 2\% | 2\% | 1\% |
| 2015 | 0\% | 9\% | 18\% | 24\% | 21\% | 15\% | 7\% | 3\% | 2\% |
| 2016 | 2\% | 8\% | 20\% | 18\% | 20\% | 18\% | 8\% | 4\% | 1\% |
| 2017 | 1\% | 15\% | 34\% | 17\% | 12\% | 10\% | 7\% | 3\% | 2\% |
| 2018 | 4\% | 19\% | 51\% | 15\% | 6\% | 3\% | 1\% | 1\% | 0\% |

Table 6.2.1.2. Herring in the Celtic Sea. Length frequency distributions of the Irish catches (raised numbers in '000s) in the 2018/2019 season.

| Length cm | 7G Q4 | 7aS Q4 |
| :---: | :---: | :---: |
| 17.5 | 10 |  |
| 18 | 10 |  |
| 18.5 | 20 |  |
| 19 | 99 |  |
| 19.5 | 139 | 163 |
| 20 | 288 | 163 |
| 20.5 | 198 | 325 |
| 21 | 347 |  |
| 21.5 | 496 | 163 |
| 22 | 1190 | 650 |
| 22.5 | 1329 | 650 |
| 23 | 2589 | 650 |
| 23.5 | 3779 | 325 |
| 24 | 5376 | 1300 |
| 24.5 | 4176 | 488 |
| 25 | 2291 | 488 |
| 25.5 | 1289 | 488 |
| 26 | 714 | 975 |
| 26.5 | 298 | 325 |
| 27 | 317 | 650 |
| 27.5 | 79 | 163 |
| 28 | 40 |  |
| 28.5 | 20 | 163 |
| 29 |  |  |
| 29.5 |  |  |
| 30 | 10 |  |
| 30.5 |  |  |

Table 6.2.2.1. Herring in the Celtic Sea. Sampling intensity of commercial catches (2018-2019). Only Ireland provides samples of this stock.

| Division | Year | Quarter | Catch (t) | No. Samples | No. Measured | No. aged | Aged/1000 t |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7.9 | 2018 | 3 | 311 | 0 |  |  |  |
| 7.9 | 2018 | 4 | 2787 | 11 | 2531 | 549 | 197 |
| $7 . a S$ | 2018 | 4 | 884 | 1 | 2581 | 50 | 150 |
| Total | 2018 |  | 3982 | 12 |  |  |  |

Table 6.3.1.1. Herring in the Celtic Sea. Revised acoustic index of abundance used in the assessment. Total stock numbers-at-age (10 ${ }^{6}$ ) estimated using combined acoustic surveys (age refers in winter rings, biomass and SSB in 000's tonnes). 27 ring abundances are used in tuning. There was no survey in 2004. The survey in 2017 (shaded) was excluded; it was not recommended for tuning by HAWG in 2018; the single biological sample of herring obtained on the survey in 2017 was considered not adequate.

|  | $\begin{aligned} & 2002 \\ & 2003 \end{aligned}$ | $\begin{aligned} & 2003 \\ & 2004 \end{aligned}$ | $\begin{aligned} & 2004 \\ & 2005 \end{aligned}$ | $\begin{aligned} & 2005 \\ & 2006 \end{aligned}$ | $\begin{aligned} & 2006 \\ & 2007 \end{aligned}$ | $\begin{aligned} & 2007 \\ & 2008 \end{aligned}$ | $\begin{aligned} & 2008 \\ & 2009 \end{aligned}$ | $\begin{aligned} & 2009 \\ & 2010 \end{aligned}$ | $\begin{aligned} & 2010 \\ & 2011 \end{aligned}$ | $\begin{aligned} & 2011 \\ & 2012 \end{aligned}$ | $\begin{aligned} & 2012 \\ & 2013 \end{aligned}$ | $\begin{aligned} & 2013 \\ & 2014 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 24 | - | 2 | - | 1 | 99 | 239 | 5 | 0 | 31 | 4 |
| 1 | 42 | 13 | - | 65 | 21 | 106 | 64 | 381 | 346 | 342 | 270 | 698 |
| 2 | 185 | 62 | - | 137 | 211 | 70 | 295 | 112 | 549 | 479 | 856 | 291 |
| 3 | 151 | 60 | - | 28 | 48 | 220 | 111 | 210 | 156 | 299 | 615 | 197 |
| 4 | 30 | 17 | - | 54 | 14 | 31 | 162 | 57 | 193 | 47 | 330 | 43 |
| 5 | 7 | 5 | - | 22 | 11 | 9 | 27 | 125 | 65 | 71 | 49 | 38 |
| 6 | 7 | 1 | - | 5 | 1 | 13 | 6 | 12 | 91 | 24 | 121 | 10 |
| 7 | 3 | 0 | - | 1 | - | 4 | 5 | 4 | 7 | 33 | 25 | 5 |
| 8 | 0 | 0 | - | 0 | - | 1 |  | 6 | 3 | 4 | 23 | 0 |
| 9 | 0 | 0 | - | 0 | - | 0 |  | 1 |  | 2 | 3 | 1 |
| Nos. | 423 | 183 | - | 312 | 305 | 454 | 769 | 1147 | 1414 | 1300 | 2322 | 1286 |
| SSB | 41 | 20 | - | 33 | 36 | 46 | 90 | 91 | 122 | 122 | 246 | 71 |
| CV | . 49 | . 34 | - | . 48 | . 35 | . 25 | . 20 | . 24 | . 20 | . 28 | . 25 | . 28 |


|  | 2014 | 2015 | 2016 | 2017 | 2018 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2015 | 2016 | 2017 | 2018 | 2019 |
| 0 | 0 | 0 | 0 | 0 | 109 |
| 1 | 41 | 0 | 125 | 0 | 55 |
| 2 | 117 | 40 | 21 | 6 | 16 |
| 3 | 112 | 48 | 43 | 3 | 27 |
| 4 | 69 | 41 | 40 | 7 | 6 |
| 5 | 20 | 38 | 36 | 5 | 0 |
| 6 | 24 | 7 | 25 | 4 | 0 |
| 7 | 7 | 6 | 5 | 1 | - |
| 8 | 17 | 5 | 6 | 1 | - |
| 9 | 1 | 0 | 0 | 0 |  |
| Nos. | 408 | 184 | 301 | 27 | 213 |
| SSB | 48 | 25 | 30 | 4 | 8 |
| CV | 0.59 | 0.18 | 0.33 | - | 49.6 |

Table 6.6.1.1. Herring in the Celtic Sea: Natural mortality inputs to the ASAP model. Age is in winter rings.

| Age 1 | Age 2 | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 | Age 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.767 | 0.385 | 0.356 | 0.339 | 0.319 | 0.314 | 0.307 | 0.307 | 0.307 |

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Maturity inputs to the ASAP model. Age is in winter rings.

| Age 1 | Age 2 | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 | Age 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Weight-at-age in the catch inputs to the ASAP model. Age is in winter rings.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1958 | 0.096 | 0.115 | 0.162 | 0.185 | 0.205 | 0.217 | 0.227 | 0.232 | 0.23 |
| 1959 | 0.087 | 0.119 | 0.166 | 0.185 | 0.2 | 0.21 | 0.217 | 0.23 | 0.231 |
| 1960 | 0.093 | 0.122 | 0.156 | 0.191 | 0.205 | 0.207 | 0.22 | 0.225 | 0.239 |
| 1961 | 0.098 | 0.127 | 0.156 | 0.185 | 0.207 | 0.212 | 0.22 | 0.235 | 0.235 |
| 1962 | 0.109 | 0.146 | 0.17 | 0.187 | 0.21 | 0.227 | 0.232 | 0.237 | 0.24 |
| 1963 | 0.103 | 0.139 | 0.194 | 0.205 | 0.217 | 0.23 | 0.237 | 0.245 | 0.251 |
| 1964 | 0.105 | 0.139 | 0.182 | 0.215 | 0.225 | 0.23 | 0.237 | 0.245 | 0.253 |
| 1965 | 0.103 | 0.143 | 0.18 | 0.212 | 0.232 | 0.243 | 0.243 | 0.256 | 0.26 |
| 1966 | 0.122 | 0.154 | 0.191 | 0.212 | 0.237 | 0.248 | 0.24 | 0.253 | 0.257 |
| 1967 | 0.119 | 0.158 | 0.185 | 0.217 | 0.243 | 0.251 | 0.256 | 0.259 | 0.264 |
| 1968 | 0.119 | 0.166 | 0.196 | 0.215 | 0.235 | 0.248 | 0.256 | 0.262 | 0.266 |
| 1969 | 0.122 | 0.164 | 0.2 | 0.217 | 0.237 | 0.245 | 0.264 | 0.264 | 0.262 |
| 1970 | 0.128 | 0.162 | 0.2 | 0.225 | 0.24 | 0.253 | 0.264 | 0.276 | 0.272 |
| 1971 | 0.117 | 0.166 | 0.2 | 0.225 | 0.245 | 0.253 | 0.262 | 0.267 | 0.283 |
| 1972 | 0.132 | 0.17 | 0.194 | 0.22 | 0.245 | 0.259 | 0.264 | 0.27 | 0.285 |
| 1973 | 0.125 | 0.174 | 0.205 | 0.215 | 0.245 | 0.262 | 0.262 | 0.285 | 0.285 |
| 1974 | 0.141 | 0.18 | 0.21 | 0.225 | 0.237 | 0.259 | 0.262 | 0.288 | 0.27 |
| 1975 | 0.137 | 0.187 | 0.215 | 0.24 | 0.251 | 0.26 | 0.27 | 0.279 | 0.284 |
| 1976 | 0.137 | 0.174 | 0.205 | 0.235 | 0.259 | 0.27 | 0.279 | 0.288 | 0.293 |
| 1977 | 0.134 | 0.185 | 0.212 | 0.222 | 0.243 | 0.267 | 0.259 | 0.292 | 0.298 |
| 1978 | 0.127 | 0.189 | 0.217 | 0.24 | 0.279 | 0.276 | 0.291 | 0.297 | 0.302 |
| 1979 | 0.127 | 0.174 | 0.212 | 0.23 | 0.253 | 0.273 | 0.291 | 0.279 | 0.284 |
| 1980 | 0.117 | 0.174 | 0.207 | 0.237 | 0.259 | 0.276 | 0.27 | 0.27 | 0.275 |
| 1981 | 0.115 | 0.172 | 0.21 | 0.245 | 0.267 | 0.276 | 0.297 | 0.309 | 0.315 |
| 1982 | 0.115 | 0.154 | 0.194 | 0.237 | 0.262 | 0.273 | 0.279 | 0.288 | 0.293 |
| 1983 | 0.109 | 0.148 | 0.198 | 0.22 | 0.276 | 0.282 | 0.276 | 0.319 | 0.325 |
| 1984 | 0.093 | 0.142 | 0.185 | 0.213 | 0.213 | 0.245 | 0.246 | 0.263 | 0.262 |
| 1985 | 0.104 | 0.14 | 0.17 | 0.201 | 0.234 | 0.248 | 0.256 | 0.26 | 0.263 |


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 0.112 | 0.155 | 0.172 | 0.187 | 0.215 | 0.248 | 0.276 | 0.284 | 0.332 |
| 1987 | 0.096 | 0.138 | 0.186 | 0.192 | 0.204 | 0.231 | 0.255 | 0.267 | 0.284 |
| 1988 | 0.097 | 0.132 | 0.168 | 0.203 | 0.209 | 0.215 | 0.237 | 0.257 | 0.283 |
| 1989 | 0.106 | 0.129 | 0.151 | 0.169 | 0.194 | 0.199 | 0.21 | 0.221 | 0.24 |
| 1990 | 0.099 | 0.137 | 0.153 | 0.167 | 0.188 | 0.208 | 0.209 | 0.229 | 0.251 |
| 1991 | 0.092 | 0.128 | 0.168 | 0.182 | 0.19 | 0.206 | 0.229 | 0.236 | 0.251 |
| 1992 | 0.096 | 0.123 | 0.15 | 0.177 | 0.191 | 0.194 | 0.212 | 0.228 | 0.248 |
| 1993 | 0.092 | 0.129 | 0.155 | 0.18 | 0.201 | 0.204 | 0.21 | 0.225 | 0.24 |
| 1994 | 0.097 | 0.135 | 0.168 | 0.179 | 0.19 | 0.21 | 0.218 | 0.217 | 0.227 |
| 1995 | 0.088 | 0.126 | 0.151 | 0.178 | 0.188 | 0.198 | 0.207 | 0.227 | 0.227 |
| 1996 | 0.088 | 0.118 | 0.147 | 0.159 | 0.185 | 0.196 | 0.207 | 0.219 | 0.231 |
| 1997 | 0.093 | 0.124 | 0.141 | 0.157 | 0.172 | 0.192 | 0.206 | 0.216 | 0.22 |
| 1998 | 0.099 | 0.121 | 0.153 | 0.163 | 0.173 | 0.185 | 0.199 | 0.204 | 0.225 |
| 1999 | 0.09 | 0.12 | 0.149 | 0.167 | 0.18 | 0.183 | 0.202 | 0.209 | 0.208 |
| 2000 | 0.092 | 0.111 | 0.148 | 0.168 | 0.185 | 0.187 | 0.197 | 0.21 | 0.224 |
| 2001 | 0.082 | 0.107 | 0.139 | 0.162 | 0.177 | 0.19 | 0.185 | 0.204 | 0.229 |
| 2002 | 0.096 | 0.115 | 0.139 | 0.156 | 0.185 | 0.196 | 0.203 | 0.211 | 0.226 |
| 2003 | 0.089 | 0.102 | 0.128 | 0.146 | 0.165 | 0.184 | 0.195 | 0.202 | 0.214 |
| 2004 | 0.08 | 0.13 | 0.134 | 0.151 | 0.159 | 0.174 | 0.203 | 0.215 | 0.225 |
| 2005 | 0.077 | 0.102 | 0.142 | 0.147 | 0.158 | 0.168 | 0.181 | 0.208 | 0.252 |
| 2006 | 0.093 | 0.105 | 0.127 | 0.151 | 0.155 | 0.165 | 0.174 | 0.186 | 0.198 |
| 2007 | 0.074 | 0.106 | 0.123 | 0.141 | 0.166 | 0.162 | 0.17 | 0.171 | 0.229 |
| 2008 | 0.091 | 0.12 | 0.144 | 0.156 | 0.172 | 0.191 | 0.194 | 0.199 | 0.224 |
| 2009 | 0.078 | 0.122 | 0.146 | 0.16 | 0.169 | 0.185 | 0.187 | 0.197 | 0.211 |
| 2010 | 0.076 | 0.111 | 0.131 | 0.145 | 0.158 | 0.159 | 0.163 | 0.178 | 0.19 |
| 2011 | 0.07 | 0.104 | 0.127 | 0.141 | 0.154 | 0.161 | 0.167 | 0.18 | 0.179 |
| 2012 | 0.072 | 0.094 | 0.124 | 0.138 | 0.152 | 0.157 | 0.164 | 0.164 | 0.171 |
| 2013 | 0.062 | 0.101 | 0.122 | 0.142 | 0.153 | 0.164 | 0.17 | 0.166 | 0.18 |
| 2014 | 0.067 | 0.1 | 0.127 | 0.14 | 0.153 | 0.161 | 0.163 | 0.179 | 0.176 |


|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2015 | 0.071 | 0.102 | 0.122 | 0.137 | 0.143 | 0.151 | 0.158 | 0.167 | 0.182 |
| 2016 | 0.061 | 0.095 | 0.119 | 0.131 | 0.140 | 0.144 | 0.151 | 0.157 | 0.162 |
| 2017 | 0.06 | 0.080 | 0.090 | 0.123 | 0.143 | 0.160 | 0.163 | 0.171 | 0.178 |
| 2018 | 0.067 | 0.092 | 0.11 | 0.124 | 0.136 | 0.146 | 0.162 | 0.143 | 0.15 |

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Weight-at-age in the stock inputs to the ASAP model. Age is in winter rings.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1958 | 0.096 | 0.115 | 0.162 | 0.185 | 0.205 | 0.217 | 0.227 | 0.232 | 0.23 |
| 1959 | 0.087 | 0.119 | 0.166 | 0.185 | 0.2 | 0.21 | 0.217 | 0.23 | 0.231 |
| 1960 | 0.093 | 0.122 | 0.156 | 0.191 | 0.205 | 0.207 | 0.22 | 0.225 | 0.239 |
| 1961 | 0.098 | 0.127 | 0.156 | 0.185 | 0.207 | 0.212 | 0.22 | 0.235 | 0.235 |
| 1962 | 0.109 | 0.146 | 0.17 | 0.187 | 0.21 | 0.227 | 0.232 | 0.237 | 0.24 |
| 1963 | 0.103 | 0.139 | 0.194 | 0.205 | 0.217 | 0.23 | 0.237 | 0.245 | 0.251 |
| 1964 | 0.105 | 0.139 | 0.182 | 0.215 | 0.225 | 0.23 | 0.237 | 0.245 | 0.253 |
| 1965 | 0.103 | 0.143 | 0.18 | 0.212 | 0.232 | 0.243 | 0.243 | 0.256 | 0.26 |
| 1966 | 0.122 | 0.154 | 0.191 | 0.212 | 0.237 | 0.248 | 0.24 | 0.253 | 0.257 |
| 1967 | 0.119 | 0.158 | 0.185 | 0.217 | 0.243 | 0.251 | 0.256 | 0.259 | 0.264 |
| 1968 | 0.119 | 0.166 | 0.196 | 0.215 | 0.235 | 0.248 | 0.256 | 0.262 | 0.266 |
| 1969 | 0.122 | 0.164 | 0.2 | 0.217 | 0.237 | 0.245 | 0.264 | 0.264 | 0.262 |
| 1970 | 0.128 | 0.162 | 0.2 | 0.225 | 0.24 | 0.253 | 0.264 | 0.276 | 0.272 |
| 1971 | 0.117 | 0.166 | 0.2 | 0.225 | 0.245 | 0.253 | 0.262 | 0.267 | 0.283 |
| 1972 | 0.132 | 0.17 | 0.194 | 0.22 | 0.245 | 0.259 | 0.264 | 0.27 | 0.285 |
| 1973 | 0.125 | 0.174 | 0.205 | 0.215 | 0.245 | 0.262 | 0.262 | 0.285 | 0.285 |
| 1974 | 0.141 | 0.18 | 0.21 | 0.225 | 0.237 | 0.259 | 0.262 | 0.288 | 0.27 |
| 1975 | 0.137 | 0.187 | 0.215 | 0.24 | 0.251 | 0.26 | 0.27 | 0.279 | 0.284 |
| 1976 | 0.137 | 0.174 | 0.205 | 0.235 | 0.259 | 0.27 | 0.279 | 0.288 | 0.293 |
| 1977 | 0.134 | 0.185 | 0.212 | 0.222 | 0.243 | 0.267 | 0.259 | 0.292 | 0.298 |
| 1978 | 0.127 | 0.189 | 0.217 | 0.24 | 0.279 | 0.276 | 0.291 | 0.297 | 0.302 |
| 1979 | 0.127 | 0.174 | 0.212 | 0.23 | 0.253 | 0.273 | 0.291 | 0.279 | 0.284 |
| 1980 | 0.117 | 0.174 | 0.207 | 0.237 | 0.259 | 0.276 | 0.27 | 0.27 | 0.275 |


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 0.115 | 0.172 | 0.21 | 0.245 | 0.267 | 0.276 | 0.297 | 0.309 | 0.315 |
| 1982 | 0.115 | 0.154 | 0.194 | 0.237 | 0.262 | 0.273 | 0.279 | 0.288 | 0.293 |
| 1983 | 0.109 | 0.148 | 0.198 | 0.22 | 0.276 | 0.282 | 0.276 | 0.319 | 0.325 |
| 1984 | 0.093 | 0.142 | 0.185 | 0.213 | 0.213 | 0.245 | 0.246 | 0.263 | 0.262 |
| 1985 | 0.104 | 0.14 | 0.17 | 0.201 | 0.234 | 0.248 | 0.256 | 0.26 | 0.263 |
| 1986 | 0.112 | 0.155 | 0.172 | 0.187 | 0.215 | 0.248 | 0.276 | 0.284 | 0.332 |
| 1987 | 0.096 | 0.138 | 0.186 | 0.192 | 0.204 | 0.231 | 0.255 | 0.267 | 0.284 |
| 1988 | 0.097 | 0.132 | 0.168 | 0.203 | 0.209 | 0.215 | 0.237 | 0.257 | 0.283 |
| 1989 | 0.106 | 0.129 | 0.151 | 0.169 | 0.194 | 0.199 | 0.21 | 0.221 | 0.24 |
| 1990 | 0.099 | 0.137 | 0.153 | 0.167 | 0.188 | 0.208 | 0.209 | 0.229 | 0.251 |
| 1991 | 0.092 | 0.128 | 0.168 | 0.182 | 0.19 | 0.206 | 0.229 | 0.236 | 0.251 |
| 1992 | 0.096 | 0.123 | 0.15 | 0.177 | 0.191 | 0.194 | 0.212 | 0.228 | 0.248 |
| 1993 | 0.092 | 0.129 | 0.155 | 0.18 | 0.201 | 0.204 | 0.21 | 0.225 | 0.24 |
| 1994 | 0.097 | 0.135 | 0.168 | 0.179 | 0.19 | 0.21 | 0.218 | 0.217 | 0.227 |
| 1995 | 0.088 | 0.126 | 0.151 | 0.178 | 0.188 | 0.198 | 0.207 | 0.227 | 0.227 |
| 1996 | 0.088 | 0.118 | 0.147 | 0.159 | 0.185 | 0.196 | 0.207 | 0.219 | 0.231 |
| 1997 | 0.093 | 0.124 | 0.141 | 0.157 | 0.172 | 0.192 | 0.206 | 0.216 | 0.22 |
| 1998 | 0.099 | 0.121 | 0.153 | 0.163 | 0.173 | 0.185 | 0.199 | 0.204 | 0.225 |
| 1999 | 0.09 | 0.12 | 0.149 | 0.167 | 0.18 | 0.183 | 0.202 | 0.209 | 0.208 |
| 2000 | 0.092 | 0.111 | 0.148 | 0.168 | 0.185 | 0.187 | 0.197 | 0.21 | 0.224 |
| year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 2001 | 0.082 | 0.107 | 0.139 | 0.162 | 0.177 | 0.19 | 0.185 | 0.204 | 0.229 |
| 2002 | 0.096 | 0.115 | 0.139 | 0.156 | 0.184 | 0.196 | 0.203 | 0.211 | 0.223 |
| 2003 | 0.078 | 0.1 | 0.13 | 0.141 | 0.156 | 0.158 | 0.168 | 0.2 | 0.213 |
| 2004 | 0.077 | 0.127 | 0.133 | 0.151 | 0.156 | 0.168 | 0.216 | 0.228 | 0.257 |
| 2005 | 0.074 | 0.103 | 0.145 | 0.143 | 0.155 | 0.161 | 0.175 | 0.221 | 0.233 |
| 2006 | 0.085 | 0.104 | 0.123 | 0.153 | 0.15 | 0.157 | 0.164 | 0.177 | 0.188 |
| 2007 | 0.068 | 0.101 | 0.122 | 0.138 | 0.156 | 0.159 | 0.163 | 0.167 | 0.251 |
| 2008 | 0.083 | 0.117 | 0.14 | 0.156 | 0.17 | 0.18 | 0.177 | 0.189 | 0.232 |


|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2009 | 0.076 | 0.117 | 0.142 | 0.158 | 0.168 | 0.176 | 0.17 | 0.186 | 0.226 |
| 2010 | 0.076 | 0.106 | 0.127 | 0.139 | 0.152 | 0.157 | 0.164 | 0.188 | 0.18 |
| 2011 | 0.067 | 0.108 | 0.127 | 0.138 | 0.148 | 0.16 | 0.17 | 0.194 | 0.197 |
| 2012 | 0.061 | 0.094 | 0.125 | 0.138 | 0.149 | 0.159 | 0.161 | 0.165 | 0.167 |
| 2013 | 0.06 | 0.101 | 0.126 | 0.144 | 0.153 | 0.159 | 0.168 | 0.17 | 0.186 |
| 2014 | 0.065 | 0.1 | 0.128 | 0.142 | 0.153 | 0.158 | 0.163 | 0.177 | 0.169 |
| 2016 | 0.065 | 0.098 | 0.119 | 0.133 | 0.14 | 0.146 | 0.153 | 0.16 | 0.162 |
| 2017 | 0.055 | 0.079 | 0.088 | 0.116 | 0.139 | 0.158 | 0.164 | 0.170 | 0.177 |
| 2018 | 0.65 | 0.95 | 0.121 | 0.142 | 0.154 | 0.166 | 0.171 | 0.166 | 0.170 |

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Fishery Selectivity block inputs (1-9) to the ASAP model. Age is in winter rings.

| Age | Selectivity | Block | \#1 | Data |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0.3 | 1 | 0 | 1 |
| 2 | 0.5 | 1 | 0 | 1 |
| 3 | 1 | -1 | 0 | 1 |
| 4 | 1 | 1 | 0 | 1 |
| 5 | 1 | 1 | 0 | 1 |
| 7 | 1 | 1 | 0 | 1 |
| 8 | 1 | 1 | 0 | 1 |
| 9 | 1 | 1 | 0 | 1 |

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Catch numbers-at-age and total catch inputs to the ASAP model. Age is in winter rings.

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Total catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1958 | 1642 | 3742 | 33094 | 25746 | 12551 | 23949 | 16093 | 9384 | 5584 | 22978 |
| 1959 | 1203 | 25717 | 2274 | 19262 | 11015 | 5830 | 17821 | 3745 | 7352 | 15086 |
| 1960 | 2840 | 72246 | 24658 | 3779 | 13698 | 4431 | 6096 | 4379 | 4151 | 18283 |
| 1961 | 2129 | 16058 | 32044 | 5631 | 2034 | 5067 | 2825 | 1524 | 4947 | 15372 |
| 1962 | 772 | 18567 | 19909 | 48061 | 8075 | 3584 | 8593 | 3805 | 5322 | 21552 |
| 1963 | 297 | 51935 | 13033 | 4179 | 20694 | 2686 | 1392 | 2488 | 2787 | 17349 |
| 1964 | 7529 | 15058 | 17250 | 6658 | 1719 | 8716 | 1304 | 577 | 2193 | 10599 |
| 1965 | 57 | 70248 | 9365 | 15757 | 3399 | 4539 | 12127 | 1377 | 7493 | 19126 |
| 1966 | 7093 | 19559 | 59893 | 9924 | 13211 | 5602 | 3586 | 8746 | 3842 | 27030 |
| 1967 | 7599 | 39991 | 20062 | 49113 | 9218 | 9444 | 3939 | 6510 | 6757 | 27658 |
| 1968 | 12197 | 54790 | 39604 | 11544 | 22599 | 4929 | 4170 | 1310 | 4936 | 30236 |
| 1969 | 9472 | 93279 | 55039 | 33145 | 12217 | 17837 | 4762 | 2174 | 3469 | 44389 |
| 1970 | 1319 | 37260 | 50087 | 26481 | 18763 | 7853 | 6351 | 2175 | 3367 | 31727 |
| 1971 | 12658 | 23313 | 37563 | 41904 | 18759 | 10443 | 4276 | 4942 | 2239 | 31396 |
| 1972 | 8422 | 137690 | 17855 | 15842 | 14531 | 4645 | 3012 | 2374 | 1020 | 38203 |
| 1973 | 23547 | 38133 | 55805 | 7012 | 9651 | 5323 | 3352 | 2332 | 1209 | 26936 |
| 1974 | 5507 | 42808 | 17184 | 22530 | 4225 | 3737 | 2978 | 903 | 827 | 19940 |
| 1975 | 12768 | 15429 | 17783 | 7333 | 9006 | 3520 | 1644 | 1136 | 1194 | 15588 |
| 1976 | 13317 | 11113 | 7286 | 7011 | 2872 | 4785 | 1980 | 1243 | 1769 | 9771 |
| 1977 | 8159 | 12516 | 8610 | 5280 | 1585 | 1898 | 1043 | 383 | 470 | 7833 |
| 1978 | 2800 | 13385 | 11948 | 5583 | 1580 | 1476 | 540 | 858 | 482 | 7559 |
| 1979 | 11335 | 13913 | 12399 | 8636 | 2889 | 1316 | 1283 | 551 | 635 | 10321 |
| 1980 | 7162 | 30093 | 11726 | 6585 | 2812 | 2204 | 1184 | 1262 | 565 | 13130 |
| 1981 | 39361 | 21285 | 21861 | 5505 | 4438 | 3436 | 795 | 313 | 866 | 17103 |
| 1982 | 15339 | 42725 | 8728 | 4817 | 1497 | 1891 | 1670 | 335 | 596 | 13000 |
| 1983 | 13540 | 102871 | 26993 | 3225 | 1862 | 327 | 372 | 932 | 308 | 24981 |
| 1984 | 19517 | 92892 | 41121 | 16043 | 2450 | 1085 | 376 | 231 | 180 | 26779 |
| 1985 | 17916 | 57054 | 36258 | 16032 | 2306 | 228 | 85 | 173 | 132 | 20426 |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Total catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 4159 | 56747 | 42881 | 32930 | 8790 | 1127 | 98 | 29 | 12 | 25024 |
| 1987 | 5976 | 67000 | 43075 | 23014 | 14323 | 2716 | 1175 | 296 | 464 | 26200 |
| 1988 | 2307 | 82027 | 30962 | 9398 | 5963 | 3047 | 869 | 297 | 86 | 20447 |
| 1989 | 8260 | 42413 | 68399 | 19601 | 8205 | 3837 | 2589 | 767 | 682 | 23254 |
| 1990 | 2702 | 41756 | 24634 | 35258 | 8116 | 3808 | 1671 | 695 | 462 | 18404 |
| 1991 | 1912 | 63854 | 38342 | 16916 | 28405 | 4869 | 2588 | 954 | 593 | 25562 |
| 1992 | 10410 | 26752 | 35019 | 27591 | 10139 | 18061 | 3021 | 6285 | 689 | 21127 |
| 1993 | 1608 | 94061 | 9372 | 10221 | 4491 | 2790 | 5932 | 855 | 508 | 18618 |
| 1994 | 12130 | 35768 | 61737 | 3289 | 3025 | 4773 | 1713 | 1705 | 474 | 19300 |
| 1995 | 9450 | 79159 | 22591 | 36541 | 3686 | 3420 | 2651 | 1859 | 842 | 23305 |
| 1996 | 3476 | 61923 | 38244 | 7943 | 16114 | 2077 | 1586 | 1507 | 1025 | 18816 |
| 1997 | 3849 | 37440 | 53040 | 31442 | 8318 | 6142 | 1148 | 827 | 603 | 20496 |
| 1998 | 5818 | 41510 | 27102 | 28274 | 13178 | 3746 | 2675 | 597 | 387 | 18041 |
| 1999 | 14274 | 34072 | 36086 | 14642 | 15515 | 8877 | 1865 | 2012 | 551 | 18485 |
| 2000 | 9953 | 77378 | 18952 | 12060 | 5230 | 6227 | 2320 | 662 | 578 | 17191 |
| 2001 | 15724 | 62153 | 35816 | 5953 | 4249 | 1774 | 1145 | 466 | 386 | 15269 |
| 2002 | 3495 | 26472 | 18532 | 5309 | 1416 | 1269 | 437 | 154 | 201 | 7465 |
| 2003 | 2711 | 37006 | 24444 | 14763 | 5719 | 3363 | 2335 | 388 | 542 | 11536 |
| 2004 | 4276 | 9470 | 46243 | 21863 | 8638 | 1412 | 473 | 191 | 75 | 12743 |
| 2005 | 15419 | 30710 | 5766 | 18666 | 7349 | 1923 | 435 | 77 | 60 | 9494 |
| 2006 | 1460 | 33894 | 10914 | 2469 | 6261 | 2331 | 561 | 57 | 48 | 6944 |
| 2007 | 8043 | 11028 | 36223 | 5509 | 1365 | 2040 | 410 | 56 | 4 | 7636 |
| 2008 | 1288 | 12468 | 8144 | 15565 | 2328 | 518 | 321 | 58 | 11 | 5872 |
| 2009 | 10171 | 4465 | 12859 | 4887 | 8458 | 971 | 279 | 247 | 80 | 5745 |
| 2010 | 2468 | 20929 | 8183 | 15917 | 4846 | 10080 | 919 | 273 | 321 | 8370 |
| 2011 | 6384 | 17151 | 33453 | 7301 | 13087 | 5347 | 5165 | 1089 | 141 | 11470 |
| 2012 | 11712 | 62528 | 44819 | 37500 | 6303 | 11811 | 5549 | 3540 | 347 | 21820 |
| 2013 | 6191 | 30471 | 42133 | 22649 | 16687 | 3305 | 5463 | 1778 | 535 | 16247 |
| 2014 | 16664 | 24120 | 39102 | 33320 | 22450 | 11165 | 3047 | 2774 | 1022 | 19574 |


| Year | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | Total catch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2015 | 286 | 12247 | 23835 | 32140 | 27382 | 19861 | 9820 | 4207 | 3279 | 18355 |
| 2016 | 2023 | 9822 | 25030 | 22800 | 25310 | 22447 | 10484 | 4684 | 1464 | 16318 |
| 2017 | 707 | 14144 | 31912 | 16004 | 10718 | 8963 | 6722 | 2401 | 1473 | 10767 |
| 2018 | 1654 | 7646 | 20545 | 5974 | 2296 | 1011 | 264 | 380 | 188 | 4418 |

Table 6.6.1.1. Continued. Herring in the Celtic Sea: Index selectivity inputs (2-7) to the ASAP model. Age is in winter rings.

| Age (wr) | Index-1 | Selectivity |
| :--- | :--- | :--- |
| 2 | 0.8 | 4 |
| 3 | 1 | -1 |
| 4 | 1 | -1 |
| 5 | 1 | -1 |
| 7 | 1 | 4 |

Table 6.6.1.2. Herring in the Celtic Sea. Survey data input to ASAP. Age is in winter rings.

| year | value | CV | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | Sample Size |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2002 | 381900 | 0.5 | 185200 | 150600 | 29700 | 6600 | 7100 | 2700 | 15 |
| 2003 | 146400 | 0.5 | 61700 | 60400 | 17200 | 5400 | 1400 | 300 | 15 |
| 2004 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 |
| 2005 | 246700 | 0.5 | 137100 | 28200 | 54200 | 21600 | 4900 | 700 | 18 |
| 2006 | 284999 | 0.5 | 211000 | 48000 | 14000 | 11000 | 1000 | -1 | 17 |
| 2007 | 346120 | 0.5 | 69800 | 220000 | 30600 | 8970 | 13100 | 3650 | 21 |
| 2008 | 606000 | 0.5 | 295000 | 111000 | 162000 | 27000 | 6000 | 5000 | 21 |
| 2009 | 519370 | 0.5 | 112040 | 209850 | 57490 | 124630 | 11710 | 3650 | 23 |
| 2010 | 1060760 | 0.5 | 548940 | 155860 | 193030 | 65240 | 91040 | 6650 | 18 |
| 2011 | 953000 | 0.5 | 479000 | 299000 | 47000 | 71000 | 24000 | 33000 | 16 |
| 2012 | 1995300 | 0.5 | 856000 | 615000 | 330000 | 48500 | 121000 | 24800 | 13 |
| 2013 | 584900 | 0.5 | 291400 | 197400 | 43700 | 37900 | 9800 | 4700 | 9 |
| 2014 | 349000 | 0.5 | 117300 | 112100 | 69400 | 19800 | 23600 | 6800 | 5 |
| 2015 | 179400 | 0.5 | 40100 | 48100 | 41200 | 37700 | 6800 | 5500 | 6 |
| 2016 | 169376 | 0.5 | 20629 | 42736 | 39835 | 36124 | 24590 | 5462 | 10 |
| 2017 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 |
| 2018 | 49130 | 0.5 | 16104 | 26831 | 5984 | 110 | 101 | 0 | 9 |

Table 6.6.1.3. Herring in the Celtic Sea. ASAP final Run settings.

| Discards Included | No |
| :---: | :---: |
| Use likelihood constant | No |
| Mean F (Fbar) age (wr)range | 2-5 |
| Number of selectivity blocks | 1 |
| Fleet selectivity | By Age: 1-9-wr: 0.3,0.5,1,1,1,1,1,1,1 Fixed at-age 3-wr |
| Index units | 2 (numbers) |
| Index month | October (10) |
| Index selectivity linked to fleet | -1 (not linked) |
| Index Years | 2002-2018 (no survey in 2004 and 2017 not included) |
| Index age (wr)range | 2-7 |
| Index Selectivity | 0.8,1,1,1,1,1 Fixed from ages 3-5-wr |
| Index CV | 0.5 all years |
| Sample size | No of herring samples collected per survey |
| Phase for F-Mult in 1st year | 1 |
| Phase for F-Mult deviations | 2 |
| Phase for recruitment deviations | 3 |
| Phase for N in 1st Year | 1 |
| Phase for catchability in 1st Year | 1 |
| Phase for catchability deviations | -5 |
| Phase for Stock recruit relationship | 1 |
| Phase for steepness - | -5 (Do not fit stock-recruitment curve) |
| Recruitment CV by year | 1 |
| Lambdas by index | 1 |
| Lambda for total catch in weight by fleet | 1 |
| Catch total CV | 0.2 for all years |
| Catch effective sample size | No of samples from Irish sampling programme. Downweighted to 5 in 2015, 2016, 2017 and 2018 |
| Lambda for F-Mult in 1st year | 0 (freely estimated) |
| CV for F mult in the first year | 0.5 |
| Lambda for F-Mult deviations | 0 (freely estimated) |


| CV for f mult deviations by fleet | 0.5 |
| :--- | :--- |
| Lambda for N in 1st year deviations | 0 (freely estimated) |
| CV for N in the 1st year deviations | 1 |
| Lambda for recruitment deviations | 1 |
| Lambda for catchability in 1st year index | 0 |
| Lambda for catchability deviations | 0 |
| CV for catchability deviations | 1 |
| Lambda for deviation from initial steep- <br> ness 1st year by index | 0 |
| CV for deviation from initial steepness <br> Lambda for deviation from unexplained <br> stock size | 0 |

Table 6.6.1.4. Herring in the Celtic Sea. Update assessment stock summary table. Recruitment is at 1-winter ring.

| Year | Catch | SSB | TSB | Fbar 2-5 | Recruitment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1958 | 22978 | 233325 | 313306 | 0.120 | 432921 |
| 1959 | 15086 | 220788 | 353876 | 0.104 | 1635380 |
| 1960 | 18283 | 208855 | 279895 | 0.118 | 380345 |
| 1961 | 15372 | 175958 | 241391 | 0.113 | 411312 |
| 1962 | 21552 | 170916 | 271946 | 0.183 | 876079 |
| 1963 | 17349 | 157804 | 223213 | 0.146 | 417379 |
| 1964 | 10599 | 176475 | 303892 | 0.092 | 1416300 |
| 1965 | 19126 | 180087 | 252379 | 0.134 | 426955 |
| 1966 | 27030 | 174004 | 277211 | 0.193 | 749003 |
| 1967 | 27658 | 166671 | 270026 | 0.219 | 781200 |
| 1968 | 30236 | 168961 | 283498 | 0.237 | 912571 |
| 1969 | 44389 | 147456 | 236457 | 0.355 | 468508 |
| 1970 | 31727 | 111593 | 171454 | 0.325 | 253287 |
| 1971 | 31396 | 101635 | 197638 | 0.446 | 827508 |
| 1972 | 38203 | 88827 | 152559 | 0.550 | 283975 |


| Year | Catch | SSB | TSB | Fbar 2-5 | Recruitment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1973 | 26936 | 66939 | 121313 | 0.511 | 330198 |
| 1974 | 19940 | 51969 | 88598 | 0.486 | 162981 |
| 1975 | 15588 | 41249 | 75930 | 0.506 | 205075 |
| 1976 | 9771 | 38230 | 70499 | 0.378 | 229833 |
| 1977 | 7833 | 38727 | 66193 | 0.283 | 187854 |
| 1978 | 7559 | 37387 | 60642 | 0.262 | 147816 |
| 1979 | 10321 | 37090 | 72142 | 0.417 | 281942 |
| 1980 | 13130 | 33959 | 61339 | 0.534 | 169396 |
| 1981 | 17103 | 37537 | 88462 | 0.821 | 471852 |
| 1982 | 13000 | 58759 | 128861 | 0.446 | 736210 |
| 1983 | 24981 | 78168 | 161935 | 0.542 | 797560 |
| 1984 | 26779 | 80971 | 151676 | 0.460 | 678457 |
| 1985 | 20426 | 87319 | 157404 | 0.311 | 654705 |
| 1986 | 25024 | 95648 | 174584 | 0.356 | 667243 |
| 1987 | 26200 | 108449 | 216165 | 0.378 | 1223210 |
| 1988 | 20447 | 112106 | 174916 | 0.225 | 484625 |
| 1989 | 23254 | 98534 | 168464 | 0.279 | 586679 |
| 1990 | 18404 | 91935 | 150949 | 0.242 | 512524 |
| 1991 | 25562 | 73439 | 114846 | 0.374 | 211557 |
| 1992 | 21127 | 73225 | 156456 | 0.473 | 978544 |
| 1993 | 18618 | 75914 | 122518 | 0.317 | 365941 |
| 1994 | 19300 | 82712 | 155249 | 0.315 | 780801 |
| 1995 | 23305 | 84144 | 153260 | 0.379 | 733569 |
| 1996 | 18816 | 74460 | 119323 | 0.302 | 358158 |
| 1997 | 20496 | 61708 | 107430 | 0.400 | 379927 |
| 1998 | 18041 | 49665 | 85509 | 0.435 | 254369 |
| Year | Catch | SSB | TSB | Fbar 2-5 | Recruitment |
| 1999 | 18485 | 43794 | 90881 | 0.606 | 502744 |
| 2000 | 17191 | 44349 | 91308 | 0.605 | 498757 |


| Year | Catch | SSB | TSB | Fbar 2-5 | Recruitment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 15269 | 44550 | 88144 | 0.502 | 520736 |
| 2002 | 7465 | 57700 | 106184 | 0.195 | 571806 |
| 2003 | 11536 | 46422 | 69891 | 0.284 | 152742 |
| 2004 | 12743 | 43225 | 77350 | 0.359 | 393483 |
| 2005 | 9494 | 60953 | 129599 | 0.274 | 1169160 |
| 2006 | 6944 | 75416 | 114578 | 0.118 | 393857 |
| 2007 | 7636 | 78923 | 131027 | 0.117 | 803252 |
| 2008 | 5872 | 93644 | 131300 | 0.070 | 324154 |
| 2009 | 5745 | 106082 | 179467 | 0.068 | 1108940 |
| 2010 | 8370 | 114286 | 178137 | 0.090 | 817497 |
| 2011 | 11470 | 123378 | 195407 | 0.116 | 1041780 |
| 2012 | 21820 | 112915 | 172969 | 0.225 | 689412 |
| 2013 | 16247 | 100858 | 144540 | 0.187 | 399890 |
| 2014 | 19574 | 79531 | 119514 | 0.278 | 330244 |
| 2015 | 18355 | 53288 | 82083 | 0.385 | 194060 |
| 2016 | 16318 | 35398 | 62727 | 0.578 | 286552 |
| 2017 | 10767 | 21999 | 37370 | 0.643 | 124377 |
| 2018 | 4418 | 22977 | 43040 | 0.333 | 330242 |

Table 6.7.1.1. Herring in the Celtic Sea. Input data for short-term forecast.

| 2019 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 1 | 204340 | 0.77 | 0.5 | 0.5 | 0.5 | 0.06 | 0.04 | 0.06 |
| 2 | 149877.9 | 0.38 | 1 | 0.5 | 0.5 | 0.09 | 0.41 | 0.09 |
| 3 | 28891.37 | 0.36 | 1 | 0.5 | 0.5 | 0.11 | 0.55 | 0.11 |
| 4 | 25680.19 | 0.34 | 1 | 0.5 | 0.5 | 0.13 | 0.55 | 0.13 |
| 5 | 6644.41 | 0.32 | 1 | 0.5 | 0.5 | 0.14 | 0.55 | 0.14 |
| 6 | 5193.834 | 0.31 | 1 | 0.5 | 0.5 | 0.16 | 0.55 | 0.15 |
| 7 | 3334.937 | 0.31 | 1 | 0.5 | 0.5 | 0.16 | 0.49 | 0.16 |
| 8 | 3504.547 | 0.31 | 1 | 0.5 | 0.5 | 0.17 | 0.48 | 0.16 |
| 9 | 16453.6 | 0.31 | 1 | 0.5 | 0.5 | 0.17 | 0.13 | 0.16 |


| 2020 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 1 | 204340 | 0.77 | 0.5 | 0.5 | 0.5 | 0.06 | 0.04 | 0.06 |
| 2 | - | 0.38 | 1 | 0.5 | 0.5 | 0.09 | 0.41 | 0.09 |
| 3 | - | 0.36 | 1 | 0.5 | 0.5 | 0.11 | 0.55 | 0.11 |
| 4 | - | 0.34 | 1 | 0.5 | 0.5 | 0.13 | 0.55 | 0.13 |
| 5 | - | 0.32 | 1 | 0.5 | 0.5 | 0.14 | 0.55 | 0.14 |
| 6 | - | 0.31 | 1 | 0.5 | 0.5 | 0.16 | 0.55 | 0.15 |
| 7 | - | 0.31 | 1 | 0.5 | 0.5 | 0.16 | 0.49 | 0.16 |
| 8 | - | 0.31 | 1 | 0.5 | 0.5 | 0.17 | 0.48 | 0.16 |
| 9 | - | 0.31 | 1 | 0.5 | 0.5 | 0.17 | 0.13 | 0.16 |


| 2021 |  |  | M | Mat | PF | PM | SWt | Sel | CWt |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Age | $\mathbf{N}$ | 0.4340 | 0.77 | 0.5 | 0.5 | 0.5 | 0.06 | 0.04 | 0.06 |
| 1 | - | 0.38 | 1 | 0.5 | 0.5 | 0.09 | 0.41 | 0.09 |  |
| 2 | - | 0.36 | 1 | 0.5 | 0.5 | 0.11 | 0.55 | 0.11 |  |
| 3 | - | 0.34 | 1 | 0.5 | 0.5 | 0.13 | 0.55 | 0.13 |  |
| 4 | - | 0.31 | 1 | 0.5 | 0.5 | 0.16 | 0.55 | 0.15 |  |
| 6 | - | 0.31 | 1 | 0.5 | 0.5 | 0.16 | 0.49 | 0.16 |  |
| 7 | - | 0.31 | 1 | 0.51 | 0.5 | 0.14 | 0.14 |  |  |
| 8 | - | 1 | 0.5 | 0.5 | 0.17 | 0.13 | 0.16 |  |  |
| 9 | - | - | 0.5 | 0.17 | 0.16 |  |  |  |  |

$\qquad$

Table 6.7.1.2. Herring in the Celtic Sea. Results of short-term deterministic forecast.

| Rationale | Fbar <br> (2019) | Catch <br> (2019) | SSB <br> (2019) | $F_{\text {bar }}$ <br> (2020) | $\begin{aligned} & \text { Catch } \\ & \text { (2020) } \end{aligned}$ | $\begin{aligned} & \text { SSB } \\ & \text { (2020) } \end{aligned}$ | $\begin{aligned} & \text { SSB } \\ & (2021) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Catch(2020) = Zero | 0.34 | 5320 | 22787 | 0 | 0 | 24248 | 27628 |
| $\mathrm{F}_{\text {bar(2020) }}=\mathrm{F}_{\text {MSY }}$ | 0.34 | 5320 | 22787 | 0.26 | 4258 | 22018 | 19871 |
| $\mathrm{F}_{\mathrm{bar}(2020)}=\mathrm{F}_{\mathrm{pa}}$ | 0.34 | 5320 | 22787 | 0.27 | 4404 | 21938 | 19779 |
| $\mathrm{F}_{\text {bar(2020) }}=\mathrm{F}_{\text {lim }}$ | 0.34 | 5320 | 22787 | 0.45 | 6823 | 20553 | 18263 |
| $F_{\text {bar } 2020)}=F_{2019}$ | 0.34 | 5320 | 22787 | 0.34 | 5334 | 21416 | 19194 |
| $\begin{aligned} & \text { Catch }(2020)=2019 \\ & \text { TAC } \end{aligned}$ | 0.34 | 5320 | 22787 | 0.294 | 4742 | 21750 | 19566 |



Figure 6.1.2.1. Herring in the Celtic Sea. Total official herring catches by statistical rectangle in 2018/2019.


Figure 6.1.2.2. Herring in the Celtic Sea. Working Group estimates of herring catches per season.

CS herring mean standardised catch numbers at age


Figure 6.2.1.1. Herring in the Celtic Sea. Catch numbers-at-age standardized by yearly mean. 9 -wr is the plus group. Age in winter rings.


Figure 6.2.1.2. Herring in the Celtic Sea. Proportions at age in the survey (1-9 wr) and the commercial fishery (1-9 wr) by year. Age in winter rings.


Figure 6.3.1.1. Herring in the Celtic Sea. Acoustic survey tracks for the core and adaptive surveys in 2018, haul positions are numbered.


Figure 6.3.1.2. Herring in the Celtic Sea. NASC (Nautical area scattering coefficient) distribution plot of the distribution of herring in 2018 in the broad-scale surveys (1st pass = black lines; 2nd pass = orange lines).


Figure 6.3.1.3. Herring in the Celtic Sea. NASC (nautical area scattering coefficient) plot of the distribution of herring in 2018 in the adaptive mini-survey 2 strata. Top Panel: coastal area; bottom panel: offshore area (no herring).


Figure 6.3.1.4. Herring in the Celtic Sea. Internal consistency between ages in the Celtic Sea Herring acoustic survey timeseries. Age in winter rings.


Figure 6.4.1.1. Herring in the Celtic Sea. Trends over time in mean weight-at-age in the catch from 1958-2018 for 1-9+.


Figure 6.4.1.2. Herring in the Celtic Sea. Trends over time in mean weight-at-age in the stock at spawning time from 19582018 for 1-9+. Age in winter rings.
Catch proportions-at-age residuals


Figure 6.6.1.1. Herring in the Celtic Sea. Catch proportion-at-age residuals. Age in winter rings.
Observed and predicted catch
Observed :
Predicted :


Figure 6.6.1.2. Herring in the Celtic Sea. Observed catch and predicted catch for the final ASAP assessment.


Figure 6.6.1.3. Herring in the Celtic Sea. Observed and predicted catch proportions-at-age for the final ASAP assessment.


Figure 6.6.1.4. Herring in the Celtic Sea. Selection pattern in the fishery from the final ASAP assessment.


Figure 6.6.1.5. Herring in the Celtic Sea. Index proportions-at-age residuals (observed-predicted). Age in winter rings.


Figure 6.6.1.6. Herring in the Celtic Sea. Index fits.


Figure 6.6.1.7. Herring in the Celtic Sea. Survey Selectivity pattern from the final assessment run.


Figure 6.6.1.8. Herring in the Celtic Sea. Retrospective plots for SSB (top right), Mean F (bottom left), Recruitment (bottom right) and the catch data time-series (top left). Age in winter rings.

## Uncertainty of key parameters



Figure 6.6.1.9. Herring in the Celtic Sea. Uncertainty of key parameters in the final assessment.


Figure 6.6.1.10. Herring in the Celtic Sea. Stock Summary from the final assessment run showing SSB (top), Recruitment (middle) and Mean $\mathrm{F}_{2-5}$ (bottom)


Figure 6.10.1. Herring in the Celtic Sea. Historical retrospective from the final assessments 2015-2019

## 7 Herring in Division 7.a North (Irish Sea)

The stock was benchmarked in 2017 and a state-space assessment model, SAM, was proposed as the assessment model for the stock (WKIRISH, 2017).

The WG notes that the use of "age", "winter rings", "rings" and "ringers" still causes confusion outside the group (and sometimes even among WG members). The WG tries to avoid this by consequently using "rings", "ringers", "winter ringers" or "wr" instead of "age" throughout the report. However, if the word "age" is used it is qualified in brackets with one of the ring designations. It should be observed that, for autumn and winter spawning stocks such as this one, there is a difference of one year between "age" and "rings". Further elaboration on the rationale behind this, specific to each stock, can be found in the individual Stock Annexes. It is the responsibility of any user of age based data for any of these herring stocks to consult the relevant annex and if in doubt consult a relevant member of the Working Group.

### 7.1 The Fishery

### 7.1.1 Advice and management applicable to 2018 and 2019

In 2018 a TAC of 7016 t was adopted, partitioned as 5190 t to the UK and 1826 t to the Republic of Ireland. In 2018 ACOM advised on the basis of MSY approach that landings in 2019 should be equal or less than 6896 t . A TAC of 6896t was adopted for 2019 as advised by ICES.

### 7.1.2 The fishery in 2018

The catches reported from each country for the period 1987 to 2018 are given in Table 7.1.1, and total catches from 1961 to 2018 in Figure 7.1.1. Reported international landings in 2018 for the Irish Sea amounted to 6804 t with UK vessels acquiring the majority of the quota through swaps with the Republic of Ireland. The majority of catches in 2018 were taken during the $3^{\text {rd }}$ quarter.

The 2018 7.a(N) herring fishery started off in late August, with catches taken to the north west of the Isle of Man, before moving to the Douglas Bank. The majority of catches were taken by a UK pair trawlers and by mid-water pelagic fishing vessels from Ireland. In previous years a 'Mourne' fishery, limited to boats under 40ft usually in October and November, this fishery landed 9.5 t in 2018

### 7.1.3 Regulations and their effects

Closed areas for herring fishing in the Irish Sea along the east coast of Ireland and within 12 nautical miles of the west coast of Britain were maintained throughout the year. The traditional gillnet fishery on the Mourne herring has a derogation to fish within the Irish closed box. The area to the east of the Isle of Man, encompassing the Douglas Bank spawning ground (described in ICES 2001, ACFM:10), was closed from 21 September to 15 November. Boats from the Republic of Ireland are not permitted to fish east of the Isle of Man.
The arrangement of closed areas in Division 7.a(N) prior to 1999 is discussed in detail in ICES (1996/ACFM:10) with a change to the closed area to the east of the Isle of Man being altered in 1999 (ICES 2001/ACFM:10). The closed areas consist of: all year juvenile closures along part of the east coast of Ireland, and the west coast of Scotland, England and Wales; spawning closures along the east coast of the Isle of Man from 21 September to 15 November, and along the east
coast of Ireland all year round. Any alterations to the present closures should be considered carefully.

### 7.1.4 Changes in fishing technology and fishing patterns

UK pair trawlers takes the majority of catches during the $3^{\text {rd }}$ and $4^{\text {th }}$ quarters, but from 2011 to 2015 a single pelagic trawler took some of the TAC. A small local fishery continues to record landings on the traditional Mourne herring grounds during the $3^{\text {rd }}$ or $4^{\text {th }}$ quarter. This fishery resumed in 2006 and has seen increasing catches of herring since, peaking at $\sim 171 \mathrm{t}$ in 2009, there was less than 10 t landings attributed to this fishery in 2018. There was a marked increase in the landings made by Irish vessels in 2018 comprising $19 \%$ of the landings compared to an average of $2 \%$ in the preceding three years.

### 7.2 Biological Composition of the Catch

### 7.2.1 Catch in numbers

Routine sampling of the main catch component was conducted in 2018, with sampling coverage concentrated on the pelagic trawlers, with sampling carried out on landings at fish processing factories for both Irish and Northern Irish vessels. There was no biological sampling of the main catch component (pair trawlers) in 2009 due to a failure to acquire samples from the landings. Catches in numbers-at-age are given in Table 7.6.3.1 for the years 1972 to 2018 and a graphical representation is given in Figure 7.2.1. The catch in numbers at length is given in Table 7.2.2 for 1995 to 2018, excluding 2009.

### 7.2.2 Quality of catch and biological data

The number of samples acquired from the main catch component was 21 in 2018, which are similar sampling levels than has been achieved in the past. The number of measurements also remained similar to past sampling levels. At sea observer data have been collected since $2010(\sim 7 \%$ of fishing trips sampled annually) with no discards observed. Discarding is not thought to be a feature of this fishery. Details of sampling are given in Table 7.2.3.

As a result of quality issues identified with the ageing of herring in the Irish Sea, a larger scale otolith exchange was completed in 2015 . The results indicated relatively good agreement between ages and a consistent issue with inexperience readers that can be solved through further training.

The 2017 benchmark concluded to conduct future assessments only to include data back to 1980. Data extends back to 1961 and the entire data series was included in the assessment up to 2016, but there are well documented concerns over the quality of historic landings information, especially in the 1970s (see Stock Annex). Recent landings data, particularly since the introduction of buyers and sellers regulation in 2006, are considered to be of good quality.

### 7.3 Fishery Independent Information

### 7.3.1 Acoustic surveys $\mathrm{AC}($ 7.aN $)$

The information on the time-series of acoustic surveys in the Irish Sea is given in Table 7.3.1. The SSB estimates from the survey are calculated using the (annually varying) maturity ogives from the commercial catch data.

The acoustic survey in 2018 was carried out over the period 29 August- 13 September. The survey conditions were good. A survey design of stratified, systematic transects was employed, as in previous years (Figure 7.3.1). Sprat and 0-group herring were distributed around the periphery of the Irish Sea (Figure 7.3.1). The bulk of 1+ herring targets in 2018 were observed on both the east and western sides of the Isle of Man (Figure 7.3.1) and off the Northern Ireland County Down coast, where herring aggregations have now been observed consistently for a number of years. Abundance of herring was particularly high in this area. The continuing observation of herring aggregation in the western Irish Sea in distinct areas merits an investigation of possibly re-stratifying the survey area and index. The survey followed the methods described in the ICES WGIPS 2018 report. Sampling intensity was high during the 2017 survey with 32 successful trawls completed. The length frequencies generated from these trawls highlight the spatial heterogeneous nature of herring age groups in the Irish Sea (Figure 7.3.2).

The estimate of herring SSB of 91332 t for 2016 was near the series high 2010 estimate (Table 7.3.1, Figure 7.3.4). In 2018 the estimate was 39997 t , similar to that observed in 2017. The biomass estimate of 54661 t for $1+$ ringers is a $25 \%$ increase on last year's biomass estimate. Unlike in previous years when a large proportion of the 1+biomass estimate is seen in north of the Isle of Man and in North Channel, in the current year the majority of biomass was observed in the south east of the Isle of Man area. The western and northern Irish Sea are areas of mixed size fish.

The age-disaggregated acoustic estimates of the herring abundance, excluding 0-ring fish, are given in Table 7.3.2. Results of a microstructure analysis of 1-ringer+ fish (Figure 7.3.6-7) have not been updated since 2011. Winter hatched fish, of which the majority are thought to be of Celtic Sea origin, are present in the pre-spawning aggregations sampled in the Irish Sea during the acoustic survey. The presence of these winter hatched fish has implications for the estimates of 1-ringer+ biomass and SSB, as well as confounding traditional cohort type assessment methods. However, removal of the winter hatched fish, leaving only fish of autumn spawning origin, does not change the perception of a significant increase in biomass estimates (Figures 7.3.6-7). The benchmark working group (ICES WKPELA 2012) investigated the mixing issue and its impact on the assessment. The benchmark group concluded that the data should be treated as for a mixed stock. Both the fishery and survey operate on this mixture and by using the data without adjustment for winter hatched fish, the assessment is conducted on the mixed stock. The recruitment data ( 1 winter rings) have the highest proportion of "alien" stock. The benchmark suggested that this is considered in the assessment model configuration and dealt with objectively within the model.

### 7.3.2 Spawning stock biomass survey (7.aNSpawn)

A series of additional acoustic surveys has been conducted since 2007 by Northern Ireland, following the annual pelagic acoustic survey (conducted during the beginning of September). The enhanced survey programme was initiated to investigate the temporal and spatial variability in the population estimates from the routine acoustic survey. The purpose was to track the spawning migration entering into the Irish Sea via the North Channel on route to the main spawning grounds of the Douglas Bank. The survey only concentrates on the spawning grounds surrounding the Isle of Man and the Scottish coastal waters (Figure 7.3.4). Herring found in this area represents $>75 \%$ of the SSB index generated from the routine survey.

The surveys were roughly timed every fortnight, except for the last survey. The density distributions from the surveys highlight the temporal and spatial complexity of the herring distributions. Problems with timing of the survey are further exacerbated by the significant interannual variation in the migration patterns, evident from the changes in density distributions. The results confirm the high estimate of abundance observed during the routine annual acoustic survey estimates. The survey results support the high abundance of herring in the Irish Sea. Since 2012
this extended survey series has been reduced to one repeat survey in late September to coincide with the main spawning time. The primary aim to generate an SSB index constituted from herring on or around the Irish Sea spawning ground to eliminate some of the age and mixing issues.

The 2012 benchmark (ICES WKPELA 2012) also suggested that the survey series could be used to fine tune the main survey used as the tuning fleet in the assessment The survey uses a stratified design similar to the $\mathrm{AC}(7 . \mathrm{aN}$. Survey methodology, data processing and subsequent analysis is exactly the same as for $\mathrm{AC}(7 . \mathrm{aN})$ and follows standard protocols for surveys coordinated by WGIPS. The survey was presented to WGIPS in 2017 prior to inclusion into the benchmark. The results of the survey is reported in the WGIPS 2018 report (ICES, 2018). The survey is included in the assessment as a SSB index. Comparison with the SSB estimates from this survey compared to the acoustic survey that is conducted earlier confirms the high abundance of herring in the Irish Sea, but with some clear year effect (Figure 7.3.5). This index is generated from a survey where the timing mostly coinciding with the spawners being present on the Douglas Bank. The survey has been conducted on a chartered commercial vessel since 2007.

### 7.4 Mean weight, maturity and natural mortality-at-age

Biological sampling in 2018 was used to calculate mean weights-at-age in the catch (Table 7.6.3.2). The mean weights-at-age in the $3^{\text {rd }}$ quarter catches (for the whole time-series 1961 to present) are used as estimates of stock weights at spawning time (Table 7.6.3.3). Mean weights-at-age have shown a general downward trend (Figure 7.4.1). No biological sampling information was available for 2009 and the weights at age for 2009 were replaced by averaging the weight at age observed in 2008 and 2010. The final agreed model from the 2012 benchmark used the natural mortality estimates from the North Sea (Table 7.6.3.4). These were again reviewed at the 2017 benchmark and although not considered ideal it is still the best available in the absence of specific Irish Sea derived natural mortality estimates. A variable maturity ogive is used based on the corresponding annual quarter 3 biological sampling from the catch (Table 7.6.3.5).

### 7.5 Recruitment

An estimate of total abundance of 0-ringers and 1-ringers is provided by the Northern Ireland acoustic survey, with trends also provided by the groundfish surveys. There is evidence that a proportion of these are of Celtic Sea origin (e.g., Brophy and Danilowicz, 2002). Further, the SAM assessment provides estimates of the recruitment of herring in which information from the catch and from all fishery independent indices is incorporated. The recruitment trends from the assessment are dealt with in Section 7.6.

### 7.6 Assessment

### 7.6.1 Data exploration and preliminary modelling

The stock was benchmarked in 2017. The assessment model did not change and was applied without change in 2019. At the benchmark the following changes were made to the input data and model setting:

- The input data series was shortened to include data only from 1980 onwards, to remove poor quality historic data. Mohn's rho was reduced from 13.3 to $9 \%$ under shortened time series, which will improve the basis for advice
- Minor changes have been made to the variance and parameter bindings, to improve the model fit (see Table 7.6.3.10)
- The random walk assumption on recruitment was removed. Recruitment patterns are now estimated from cohort back-tracking from older ages
- Includes a new SSB survey index (derived from acoustic methods; see Section 7.3.2). The primary aim is to generate an SSB index constituting mainly herring on or around spawning ground to eliminate some of the age and mixing issues. The larval survey (also an indicator of SSB) was removed as it contributes little to the assessment model. In addition, the modelling framework did not allow from a technical perspective to include two SSB surveys
- The SSB survey index was included in the assessment without estimating catchability, which effectively implies an assumed catchability of 1 , with variance fixed at 0.4 (this corresponded to the observation variance value when catchability was freely estimated in a trial run)

The benchmark accepted the assessment and model settings, but requested further exploration of the sensitivity to catchability assumption for the SSB survey. This was completed post benchmark, however, the reviewers could not reach consensus and proposed that HAWG is best place to propose a final assessment model.

HAWG in 2017 had discussions on the final assessment model that could form the basis for the advice. This process is described in detail in Section 1.9 in the HAWG 2017 report. Despite ongoing concerns over the catchability assumption and the mixing issues from some members, the decision was made to use the SAM assessment settings agreed at the benchmark, together with the catchability assumptions discussed at HAWG, as the final model. .

The primary issue with the current perception of stock status of Irish Sea herring is trying to reconcile the SAM model estimates of stock size (primarily driven by catch data) and the much higher estimate of stock size estimates from 9 years of repeat surveys that specifically focussed on the spawning population within the Irish Sea. By design, acoustic surveys are aimed to produce an absolute estimate of stock biomass (with some uncertainty). This would result in a catchability of $\sim 1$. The previous assessment estimates catchability to be around $\sim 2.5$ for the acoustic survey. The benchmark also revealed very significant issues with the catch data, on which the previous assessment and advice is based on.

The concerns from the benchmark were satisfactorily addressed and did not highlight any major issues that could not be explained. In general the assessment model fit improved in the proposed model where the SSB survey is included at the catchability set to 1 . Given that the primary aim is to provide credible scientific advice, the best proposal on this trade-off scenario (neither of which are ideal), is to base the assessment and advice on a more balanced assessment model. HAWG did recognise that this is not an ideal scenario and further work needs to be done in the short term to improve the assessment (see Section 1.9, HAWG 2017)

Acoustic (AC(7.aN)) 1-8+ winter rings) and the SSB indices are available for the assessment of Irish Sea herring. 2018 catch-at-age data derived from the international landings. The SAM model fits the catch well, with the model being weighted towards the catch information. The residuals are relatively small (Figures 7.6.1-17). The residuals in the numbers-at-age in the catch and acoustic survey generally appear to be independent of time, but there are still some patterns in later years. These patterns are somewhat expected and could be explained by annual changes in migration patterns, magnitude and extent of the mixed component and converging trends in the surveys in recent years. The year effect in the 2011 survey is also evident from these plots with consistent negative residuals at older (3+) ages (winter rings).

The acoustic survey fits reasonably well at all ages except for 1 winter rings. The model fit is poor for SSB survey index (Figure 7.6.17). This is expected considering the catchability assumption, but it also highlights the fact that the model can deviate from the $\mathrm{q}=1$ fit and the realised catchability for the survey deviated from one.

Model fit is poor for 1 ringers in the catch and survey, which is the age with the highest occurrence of fish mixing from different hatching seasons. The modelled acoustic survey catchability parameter and the selectivity of the fishery by pentad are illustrated in figures 7.6.18-19. The variability in fishery selection reflects is thought to reflect variable migration patterns and the effect of the spawning closure.

A feature of the assessment model is the estimation of an observation variance parameter for each data set (Figure 7.6.20). Overall, the catch data ( $2+$ winter ring) are associated with low observation variances, where 1 ringers (from catch and survey) are perceived to be the noisiest data series. Figure 7.6 .21 shows observation variance vs. uncertainty of the data sources used in the model. Although the majority of the data sources are associated with relatively high observation variances, none of the uncertainty estimates are particularly high. The CVs do not indicate a lack of convergence of the assessment model.

### 7.6.2 Final assessment

The final assessment was carried out by fitting the state-space model (SAM, in the FLR environment) using the settings and data inputs in accordance to the stock annex (as decided at the 2017 benchmark and HAWG 2017). The input data and model settings are shown in tables 7.6.3.1-11, the SAM output is presented in tables 7.6.3.13-21, the stock summary in Table 7.6.3.12 and Figure 7.6.22, model fit and parameter estimates in Table 7.6.3.22, and negative log-likelihood for the model fit in Table 7.6.3.23.

Diagnostics and selectivity parameters for this run are presented in Figure 7.6.1-19. The stock parameters are estimated well by the model, as indicated by the relatively low uncertainty associated with the stock parameter (Figure 7.6.23), except for the most recent estimates.

The retrospective pattern shows a very similar perception in SSB, F and recruitment for the years 2016-18 (Figure 7.6.24). The retrospective bias from the model is low.

## Comparison with previous assessments

A comparison of the estimates of this year's assessment with last year's is given in Figure 7.6.25. The stock was benchmarked in 2017, with updates made to the model configurations and input data sources (including a new SSB survey). The new perception of the stock provides biomass estimates more in between the acoustic survey and catch estimates. Recruitment assumptions in the assessment were changed, which resulted in higher interannual variability.

### 7.6.3 State of the stock

Trends from the final assessment indicate an increase in SSB and recruitment since the mid 2000s, with a stabilising trend in the most recent years (although uncertain). The associated F has decreased significantly over the last 10 years to below $\mathrm{F}_{\text {msy. }}$. Based on the most recent estimates the stock is being harvested sustainably at Fmš.

### 7.7 Short term projections

### 7.7.1 Deterministic short term projections

A deterministic short term forecast was conducted for Irish Sea herring with code developed in R software. Population abundances, F at age and input data were taken from the final SAM assessment, 1980-2018 (Table 7.7.1). Geometric mean recruitment of 1-ringers (2007-2016) replaced recruitment for 1-ringers in 2018. The forecast was based on a TAC ( 2019 quota $=6896 \mathrm{t}$ ) assuming full uptake of the quota. Fishing mortality, maturity at age, catch weights at age and stock weights were averaged over the most recent three years. Fishing mortality was not scaled to the last year, as the terminal estimate of F was not considered more informative.

The short term catch option table is given in Table 7.7.2. SSB is expected to be well above MSY $B_{\text {trigger }}$ in 2018-2020, but is predicted to decrease if fishing at Fmš.SSB with zero catch is forecast to increase ( $+19.3 \%$ ). This is largely in response to maturation of the 2018 year class, which will contribute more than $26 \%$ of the SSB in 2020.

### 7.7.2 Yield per recruit

Not available, previous explorations are detailed in the stock annex.

### 7.8 Medium term projections

No medium term stock projections of stock size were conducted by the Working Group.

### 7.9 Reference points

## MSY evaluations

New reference points were derived using the stock-recruit pairs generated by the 2017 assessment (WKIRISH3 and HAWG 2017). Blim was set to the lowest SSB that generate above average recruitment, 8500 t . $\mathrm{B}_{\mathrm{pa}}, 11800 \mathrm{t}$ calculated from $\mathrm{B}_{\mathrm{lim}}$ with assessment error ( $\sigma=0.201$, based on the average CV from the terminal assessment year) MSY $B_{\text {trigger }}$ is set to $B_{p a}$ as the stock has not been fished at or below FmSy for more than five years. FmSy median point estimates is 0.27 (0.266). The upper bound of the FmSy range giving at least $95 \%$ of the maximum yield was estimated to $0.35(0.345)$ and the lower bound at $0.20(0.198)$. Flim is estimated to be $0.40(0.397)$ as F with $50 \%$ probability of $\mathrm{SSB}<\mathrm{B}_{\lim }$ with $\mathrm{F}_{\mathrm{pa}}$ as $0.29(0.286)$ calculated as Flim combined with the assessment error; $\mathrm{F}_{\lim } \mathrm{x} \exp (-1.645 \times \sigma) ; \sigma=0.231$.

### 7.10 Quality of the assessment

The data used within the assessment, the assessment methods and settings were scrutinized during the 2017 benchmark (WKIRISH3 2017). The benchmark group performed sensitivity tests to test model configurations and optimised the model fit to the data with the least amount of parameters estimated. The Working Group checked for convergence and judged that a good model fit was found. FLSAM will not run if convergence criteria are not achieved.

The stock is very well sampled and catch information is representative of the fishery (with the exception of 2009 when no samples were provided). The current assessment, being a time-series model, can estimate the missing catch numbers in 2009.

The main issues with the stock are stock mixing (at younger ages from fish of different spawning season origin) and the different trends in mortality observed in the survey and the commercial catches. The majority of this variation may arise from the inter-annual variation in herring migration patterns and their effect on the selectivity of both the fishery and acoustic survey, but is also affected by the effect the annual closure of the Douglas Bank spawning grounds has on the fishery patterns. There are some inconsistencies between observed and modelled landings. The magnitude of these differs between years, but is on average $+/-12 \%$ over the assessment period and mostly falls within the confidence limits of the estimate. The reason behind these needs further investigation, but might be due to conflicting mortality signals from the surveys and catches and the use of a constant M throughout the time series.

The data are treated as for a mixed stock. Both the fishery and survey operate on this mixture and by using the data without adjustment for winter hatched fish, the assessment is conducted on the mixed stock. The mixing issue was considered in detail during the 2012 benchmark, but no further analysis was performed at the 2017 benchmark given that there was no new information presented. The noise in the data due to juvenile stock mixing resulted in increased estimates of F , catchability estimates $>1$ across the younger ages in the survey, or most likely a combination of these. Most of the mixing occurs at younger ages, and this is objectively, but only partially, corrected for in the model through a high catchability (3) estimated for the acoustic survey. Currently, the model doesn't have the structure to specifically deal with the emigration of small herring from other stocks.

The Fbar range 4-6 is considered representative of the mortality on the autumn spawning stock in the Irish Sea, excluding most the ages with significant mixed components.

The survey data quality is good, but the survey index is variable linked to the migration and biological characteristics of the stock and the need to assess similar stock components which the fishery exploits to ensure the sustainable exploitation of the Irish Sea spawning stock.

No major validations of the assumption underpinning the assessment model were found. The final assessment model is dominated by information from the catch, but with the noise being added to the survey information as age and year effects. The model does fit the catch data significantly better despite the significant quality issues with the catch data reported at the 2017 benchmark. This is not desirable. The new survey information adds more weight to the previously observed increase abundance trend observed from the main age-disaggregated acoustic survey. The 2017 assessment model attempted to provide a more balanced model, giving more weight to the SSB survey.

SAM down weights the 1 ring data and survey information in general. The uncertainty estimates of the model parameters, suggest the model is both appropriate for the available data and that the model describes these data reasonably well. Very little retrospective bias was also present.

### 7.11 Management considerations

Given the historical landings from this stock and the knowledge that fishing pressure is light and mostly confined to one pair of UK vessels it can be assumed that fishing pressure and activity has not varied considerably in recent years. The catches have been close to TAC levels and the main fishing activity has not varied considerably as shown from landing data (Figure 7.1.1).

The current assessment and forecast indicate SSB to be the highest in the time series and fishing mortalities below Fmsy. The Working Group supports the development of a long-term management plan for this stock. Such a plan should be further developed with stakeholders and forwarded to ICES for evaluation.

Characteristically of most herring stocks, the Irish Sea herring represents a mixture and management of this stock should be considered as part of a metapopulation. The consequence of this needs to be further evaluated for management and advice.

### 7.12 Ecosystem Considerations

No additional information presented (see Stock Annex).

Table 7.1.1 Herring in Division 7.a North (Irish Sea). Working Group catch estimates in tonnes by country, 1987-2018. The total catch does not in all cases correspond to the official statistics and cannot be used for management purposes.

| Country | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ireland | 1200 | 2579 | 1430 | 1699 | 80 | 406 | 0 | 0 | 0 |
| UK | 3290 | 7593 | 3532 | 4613 | 4318 | 4864 | 4408 | 4828 | 5076 |
| Unallocated | 1333 | - | - | - | - | - | - | - | - |
| Total | 5823 | 10172 | 4962 | 6312 | 4398 | 5270 | 4408 | 4828 | 5076 |


| Country | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Ireland | 100 | 0 | 0 | 0 | 0 | 862 | 286 | 0 | 749 |
| UK | 5180 | 6651 | 4905 | 4127 | 2002 | 4599 | 2107 | 2399 | 1782 |
| Unallocated | 22 | - | - | - | - | - |  | - | - |
| Total | 5302 | 6651 | 4905 | 4127 | 2002 | 5461 | 2393 | 2399 | 2531 |


| Country | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ireland | 1153 | 581 | 0 | 0 | 0 | 0 | 0 | 18 | 0 |
| UK | 3234 | 3821 | 4629 | 4895 | 4594 | 4894 | 5202 | 5675 | 4828 |
| Unallocated | - | - |  |  |  | - |  |  |  |
| Total | 4387 | 4402 | 4629 | 4895 | 4594 | 4894 | 5202 | 5693 | 4828 |
| Country | 2014 | 2015 | 2016 | 2017 | 2018 |  |  |  |  |
| Ireland | 119 | 0 | 82 | 200 | 1299 |  |  |  |  |
| UK | 5089 | 4868 | 4245 | 3696 | 5504 |  |  |  |  |
| Unallocated | - | 22 | - |  |  |  |  |  |  |
| Total | 5208 | 4891 | 4327 | 3896 | 6804 |  |  |  |  |

Table 7．2．2 Herring in Division 7．a North（Irish Sea）．Catch at length data 1995－2018．Numbers of fish in thousands．Table amended with 1990－1994 year－classes removed（see Annex 8）．

| Length （cm） | 익 | ুু | 人 | が | 욱 | 움 | Oi | No | Ò | O | 승 | ষ্Nి | 이N | Oi | ＊ | 음 | $\underset{\sim}{\underset{N}{1}}$ | $\underset{\sim}{N}$ | $\underset{\sim}{n}$ | $\underset{N}{\underset{N}{A}}$ | $\stackrel{\text { Ni }}{\substack{n}}$ | $\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$ | Nì | $\underset{\sim}{\infty}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － |  |  |  |  | － |  |  |  | 16 |
| 14.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － |  |  |  |  | － |  |  |  | 0 |
| 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － |  |  |  |  | 15 |  |  |  | 31 |
| 15.5 |  |  |  |  | 10 |  |  |  |  |  |  |  | 16 |  | － | 93 |  |  |  | 14 |  |  |  | 54 |
| 16 | 21 | 21 | 17 |  | 19 | 12 | 9 |  |  |  |  | 2 |  |  | － | 107 | 30 |  | 8 | 0 |  | 109 |  | 47 |
| 16.5 | 55 | 51 | 94 |  | 53 | 49 | 27 |  |  | 13 | 1 | 44 | 33 | 1 | － | 487 | 165 |  | 84 | 14 |  | 174 |  | 176 |
| 17 | 139 | 127 | 281 | 26 | 97 | 67 | 53 |  |  | 25 | 39 | 140 | 69 | 3 | － | 764 | 356 | 89 | 202 | 213 | 16 | 261 | 86 | 431 |
| 17.5 | 148 | 200 | 525 | 30 | 82 | 97 | 105 |  |  | 84 | 117 | 211 | 286 | 11 | － | 1155 | 851 | 143 | 470 | 808 | 32 | 413 | 62 | 749 |
| 18 | 300 | 173 | 1022 | 123 | 145 | 115 | 229 |  |  | 102 | 291 | 586 | 852 | 34 | － | 1574 | 1406 | 301 | 533 | 1644 | 72 | 326 | 148 | 594 |
| 18.5 | 280 | 415 | 1066 | 206 | 135 | 134 | 240 | 36 |  | 114 | 521 | 726 | 2088 | 64 | － | 1405 | 841 | 533 | 555 | 3246 | 64 | 457 | 148 | 1097 |
| 19 | 310 | 554 | 1720 | 317 | 234 | 164 | 385 | 18 |  | 203 | 758 | 895 | 2979 | 85 | － | 866 | 1029 | 479 | 588 | 5357 | 136 | 522 | 234 | 841 |
| 19.5 | 305 | 652 | 1263 | 277 | 82 | 97 | 439 | 0 | 29 | 269 | 933 | 1246 | 3527 | 108 | － | 673 | 1026 | 493 | 680 | 5371 | 199 | 718 | 382 | 928 |
| 20 | 326 | 749 | 1366 | 427 | 218 | 109 | 523 | 0 | 73 | 368 | 943 | 984 | 3516 | 100 | － | 787 | 1062 | 298 | 1041 | 4025 | 271 | 826 | 1121 | 1608 |
| 20.5 | 404 | 867 | 1029 | 297 | 242 | 85 | 608 | 18 | 215 | 444 | 923 | 1443 | 2852 | 133 | － | 888 | 1502 | 511 | 1419 | 2905 | 279 | 1087 | 1343 | 1881 |
| 21 | 468 | 886 | 1510 | 522 | 449 | 115 | 1086 | 307 | 272 | 862 | 1256 | 1521 | 3451 | 192 | － | 1470 | 1874 | 643 | 2364 | 2608 | 439 | 1783 | 3154 | 3352 |


| Length （cm） | 슥 | Һ | 人 | か̊ | 욱 | O- | O- | No | ÒO | O | 으N | O O | Nò | Oio | 羋 | 음 | -i | $\begin{gathered} \text { N } \\ \text { N } \end{gathered}$ | $\underset{\sim}{\underset{\sim}{c}}$ | $\stackrel{\text { N }}{\sim}$ | $\stackrel{\sim}{N}$ | $\begin{aligned} & 0 \\ & \stackrel{1}{N} \end{aligned}$ | $\stackrel{\text { Ni}}{N}$ | $\stackrel{\infty}{\underset{\sim}{N}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21.5 | 782 | 1258 | 1192 | 549 | 362 | 138 | 1201 | 433 | 290 | 1007 | 1380 | 1621 | 2929 | 217 | － | 1758 | 1396 | 1104 | 2963 | 2381 | 854 | 1762 | 3007 | 3838 |
| 22 | 1509 | 1530 | 2607 | 1354 | 1261 | 289 | 1748 | 1750 | 463 | 1495 | 1361 | 2748 | 3821 | 271 | － | 2363 | 2372 | 1586 | 3052 | 2906 | 1896 | 2588 | 4374 | 5232 |
| 22.5 | 2541 | 2190 | 2482 | 1099 | 2305 | 418 | 1763 | 1949 | 600 | 2140 | 1448 | 3629 | 3503 | 229 | － | 3362 | 2778 | 2404 | 3599 | 2766 | 2028 | 2675 | 2711 | 6046 |
| 23 | 4198 | 2362 | 3508 | 2493 | 4784 | 607 | 2670 | 2490 | 1158 | 2089 | 1035 | 4358 | 4196 | 322 | － | 4530 | 4100 | 3920 | 3432 | 2596 | 2470 | 2893 | 3475 | 7485 |
| 23.5 | 4547 | 2917 | 3902 | 2041 | 4183 | 951 | 2254 | 1552 | 1380 | 2214 | 1256 | 2920 | 3697 | 264 | － | 5232 | 3394 | 6024 | 3039 | 1775 | 1977 | 3110 | 2625 | 6404 |
| 24 | 4416 | 3649 | 4714 | 3695 | 4165 | 1436 | 3489 | 1029 | 1273 | 2054 | 1276 | 3679 | 3178 | 259 | － | 4559 | 4759 | 8849 | 3882 | 2161 | 2124 | 2849 | 2649 | 6912 |
| 24.5 | 3391 | 4077 | 4138 | 2769 | 3397 | 1783 | 4098 | 758 | 1249 | 2269 | 1083 | 2431 | 2136 | 204 | － | 3616 | 3729 | 7777 | 3985 | 1879 | 1911 | 2523 | 2144 | 4992 |
| 25 | 3100 | 4015 | 5031 | 2625 | 2620 | 2144 | 5566 | 776 | 1163 | 1749 | 1086 | 3438 | 1503 | 148 | － | 3083 | 3430 | 7020 | 3364 | 2282 | 2367 | 2414 | 2378 | 4462 |
| 25.5 | 2358 | 3668 | 3971 | 2797 | 1817 | 1791 | 4785 | 1335 | 1211 | 1206 | 584 | 2198 | 952 | 114 | － | 2582 | 2662 | 5759 | 2693 | 2264 | 2319 | 2458 | 1824 | 2632 |
| 26 | 2334 | 2480 | 3871 | 3115 | 1694 | 1349 | 3814 | 1570 | 1140 | 823 | 438 | 1714 | 643 | 78 | － | 1777 | 2343 | 4835 | 1934 | 1612 | 1962 | 1936 | 1331 | 1455 |
| 26.5 | 1807 | 2177 | 2455 | 2641 | 1547 | 840 | 2243 | 1552 | 1573 | 587 | 203 | 605 | 330 | 42 | － | 950 | 1595 | 2664 | 1026 | 900 | 1016 | 1631 | 739 | 798 |
| 27 | 1622 | 1949 | 1711 | 2992 | 1475 | 616 | 1489 | 776 | 1607 | 510 | 165 | 445 | 147 | 23 | － | 460 | 1083 | 1716 | 412 | 498 | 827 | 826 | 370 | 458 |
| 27.5 | 990 | 1267 | 1131 | 1747 | 867 | 479 | 644 | 433 | 1189 | 383 | 60 | 155 | 72 | 10 | － | 216 | 472 | 629 | 179 | 326 | 252 | 283 | 123 | 198 |
| 28 | 834 | 906 | 638 | 1235 | 276 | 212 | 496 | 162 | 726 | 198 | 45 | 104 | 33 | 12 | － | 9 | 248 | 231 | 85 | 256 | 141 | 65 | 37 | 104 |
| 28.5 | 123 | 564 | 440 | 170 | 169 | 58 | 179 | 108 | 569 | 51 | 18 | 9 | 26 | 1 | － |  | 53 | 159 | 28 | 156 | 48 | 65 | 12 | 0 |
| 29 | 248 | 210 | 280 | 111 | 61 | 42 | 10 | 36 | 163 |  | 12 | 46 |  |  | － | 9 |  | 108 |  | 57 | 16 | 22 | 25 | 16 |


| Length (cm) | ハু | \% | $\stackrel{-}{7}$ | かু | - ${ }_{-}$ | O | - | N్~ | No | O | 이N | O | $\stackrel{\text { N}}{\text { N }}$ | $\stackrel{\circ}{\circ}$ | * | $\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$ | $\underset{\sim}{\underset{\sim}{7}}$ | Nì | $\underset{\sim}{n}$ | $\underset{N}{\underset{N}{A}}$ | $\stackrel{\text { ñ }}{\text { n }}$ | $\begin{aligned} & 0 \\ & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$ | $\underset{\sim}{\infty}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 29.5 | 56 | 79 | 59 | 92 |  | 12 | 0 | 36 | 129 |  |  |  | 7 |  | - |  |  | 54 |  | 14 | 8 |  | 12 | 0 |
| 30 | 40 | 32 | 8 | 84 |  | 6 | 9 |  | 43 |  |  |  |  |  | - |  |  | 17 |  | 0 | 8 |  |  |  |
| 30.5 | 5 | 0 | 5 | 3 |  |  |  |  | 43 |  |  |  |  |  | - |  |  | 17 |  | 14 |  |  |  |  |
| 31 | 1 | 2 |  |  |  |  |  |  | 43 |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |
| 31.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |
| 32 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |
| 32.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |
| 33 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |
| 33.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |

Table 7.2.3 Herring in Division 7.a North (Irish Sea). Sampling intensity of commercial landings in 2018.


[^13]Table 7.3.1 Herring in Division 7.a North (Irish Sea). Summary of acoustic survey AC(7.aN) information for the period 1989-2018. Small clupeoids include sprat and 0-ring herring unless otherwise stated. CVs are approximate. Biomass in t . All surveys carried out at 38 kHz except December 1996, which was at 120 kHz.

| Year | Area | Dates | herring biomass (1+rings) | CV | herring biomass (SSB) | CV | $\begin{gathered} \text { small clu- } \\ \text { peoids (bi- } \\ \text { omass) } \end{gathered}$ | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1989 | Douglas Bank | 25/09-26/09 |  |  | 18000 | - | - | - |
| 1990 | Douglas Bank | 26/09-27/09 |  |  | 26600 | - | - | - |
| 1991 | W. Irish Sea | 26/07-8/08 | 12760 | 0.23 |  |  | 660001 | 0.20 |
| 1992 | W. Irish Sea + IOM E. coast | 20/07-31/07 | 17490 | 0.19 |  |  | 43200 | 0.25 |
| 1994 | Area 7.a(N) | 28/08-8/09 | 31400 | 0.36 | 25133 | - | 68600 | 0.10 |
|  | Douglas Bank | 22/09-26/09 |  |  | 28200 | - | - | - |
| 1995 | Area 7.a(N) | 11/09-22/09 | 38400 | 0.29 | 20167 | - | 348600 | 0.13 |
|  | Douglas Bank | 10/10-11/10 |  | - | 9840 | - | - | - |
|  | Douglas Bank | 23/10-24/10 |  |  | 1750 | 0.51 | - | - |
| 1996 | Area 7.a(N) | 2/09-12/09 | 24500 | 0.25 | 21426 | 0.25 | -2 | - |
| 1997 | Area 7.a(N)-reduced | 8/09-12/09 | 20100 | 0.28 | 10702 | 0.35 | 46600 | 0.20 |
| 1998 | Area 7.a(N) | 8/09-14/09 | 14500 | 0.20 | 9157 | 0.18 | 228000 | 0.11 |
| 1999 | Area 7.a(N) | 6/09-17/09 | 31600 | 0.59 | 21040 | 0.75 | 272200 | 0.10 |
| 2000 | Area 7.a(N) | 11/09-21/09 | 40200 | 0.26 | 33144 | 0.32 | 234700 | 0.11 |
| 2001 | Area 7.a(N) | 10/09-18/09 | 35400 | 0.40 | 13647 | 0.42 | 299700 | 0.08 |
| 2002 | Area 7.a(N) | 9/09-20/09 | 41400 | 0.56 | 25102 | 0.83 | 413900 | 0.09 |
| 2003 | Area 7.a(N) | 7/09-20/09 | 49500 | 0.22 | 24390 | 0.24 | 265900 | 0.10 |
| 2004 | Area 7.a(N) | $\begin{gathered} 6 / 09-10 / 09 \\ 15 / 09-16 / 09 \\ 28 / 09-29 / 09 \end{gathered}$ | 34437 | 0.41 | 21593 | 0.41 | 281000 | 0.07 |
| 2005 | Area 7.a(N) | 29/08-14/09 | 36866 | 0.37 | 31445 | 0.42 | 141900 | 0.10 |
| 2006 | Area 7.a(N) | 30/08-9/09 | 33136 | 0.24 | 16332 | 0.22 | 143200 | 0.09 |
| 2007 | Area 7.a(N) | 29/08-13/09 | 120878 | 0.53 | 51819 | 0.42 | 204700 | 0.09 |
| 2008 | Area 7.a(N) | 27/08-14/09 | 106921 | 0.22 | 77172 | 0.23 | 252300 | 0.12 |
| 2009 | Area 7.a(N) | 1/09-13/09 | 95989 | 0.39 | 71180 | 0.47 | 175000 | 0.08 |
| 2010 | Area 7.a(N) | 28/08-11/09 | 131849 | 0.22 | 99877 | 0.22 | 107400 | 0.10 |


| Year | Area | Dates | herring bi- <br> omass <br> (1+rings) | CV | herring bi- <br> omass <br> (SSB) | CVsmall clu- <br> peoids (bi- <br> omass) | CV |  |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2011 | Area 7.a(N) | 27/08-10/09 |  |  |  |  |  |  |
| $11-12 / 10$ | 131527 | 0.36 | 49128 | 0.22 | 280000 | 0.11 |  |  |
| 2012 | Area 7.a(N) | $29 / 08-12 / 09$ | 79051 | 0.18 | 56759 | 0.22 | 171190 | 0.11 |
| 2013 | Area 7.a(N) | $29 / 08-12 / 09$ | 65649 | 0.24 | 55350 | 0.25 | 255268 | 0.09 |
| 2014 | Area 7.a(N) | $27 / 08-14 / 09$ | 79826 | 0.30 | 56629 | 0.33 | 393024 | 0.10 |
| 2015 | Area 7.a(N) | $29 / 08-17 / 09$ | 55773 | 0.24 | 29056 | 0.23 | 237063 | 0.09 |
| 2016 | Area 7.a(N) | $31 / 08-15 / 09$ | 102840 | 0.25 | 91332 | 0.28 | 240926 | 0.10 |
| 2017 | Area 7.a(N) | $28 / 08-09 / 09$ | 40974 | 0.21 | 36499 | 0.23 | 219186 | 0.09 |
| 2018 | Area 7.a(N) | $29 / 08-13 / 09$ | 54661 | 0.29 | 39997 | 0.31 | 196600 | 0.13 |

${ }^{1}$ sprat only
${ }^{2}$ Data can be made available for the IoM waters only

Table 7.3.2 Herring in Division 7.a North (Irish Sea). Age-disaggregated acoustic estimates (thousands) of herring abundance from the Northern Ireland surveys in September AC(7.aN). Ages in winter rings.

| AGE (RINGS) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1994 | 66.8 | 68.3 | 73.5 | 11.9 | 9.3 | 7.6 | 3.9 | 10.1 |
| 1995 | 319.1 | 82.3 | 11.9 | 29.2 | 4.6 | 3.5 | 4.9 | 6.9 |
| 1996 | 11.3 | 42.4 | 67.5 | 9 | 26.5 | 4.2 | 5.9 | 5.8 |
| 1997 | 134.1 | 50 | 14.8 | 11 | 7.8 | 4.6 | 0.6 | 1.9 |
| 1998 | 110.4 | 27.3 | 8.1 | 9.3 | 6.5 | 1.8 | 2.3 | 0.8 |
| 1999 | 157.8 | 77.7 | 34 | 5.1 | 10.3 | 13.5 | 1.6 | 6.3 |
| 2000 | 78.5 | 103.4 | 105.3 | 27.5 | 8.1 | 5.4 | 4.9 | 2.4 |
| 2001 | 387.6 | 93.4 | 10.1 | 17.5 | 7.7 | 1.4 | 0.6 | 2.2 |
| 2002 | 391 | 71.9 | 31.7 | 24.8 | 31.3 | 14.8 | 2.8 | 4.5 |
| 2003 | 349.2 | 220 | 32 | 4.7 | 3.9 | 4.1 | 1 | 0.9 |
| 2004 | 241 | 115.5 | 29.6 | 15.4 | 2.1 | 2.3 | 0.2 | 0.2 |
| 2005 | 94.3 | 109.9 | 97.1 | 17 | 8 | 0.8 | 0.6 | 5.8 |
| 2006 | 374.7 | 96.6 | 15.6 | 10.0 | 0.5 | 0.4 | 0.5 | 0.5 |
| 2007 | 1316.7 | 251.3 | 46.6 | 21.1 | 20.8 | 1.2 | 0.7 | 0.6 |
| 2008 | 475.7 | 452.4 | 114.2 | 39.1 | 26.4 | 17.1 | 4.3 | 0.6 |


| AGE (RINGS) | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8 +}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | 371.2 | 182.6 | 177.8 | 92.7 | 32.5 | 15.1 | 13.9 | 6.9 |
| 2010 | 580.6 | 561.2 | 117.7 | 120.8 | 34.3 | 16.8 | 4.3 | 6.5 |
| 2011 | 1927.0 | 330.2 | 43.9 | 15.0 | 21.9 | 6.3 | 2.7 | 2.0 |
| 2012 | 369.1 | 191.9 | 161.0 | 51.4 | 21.6 | 19.3 | 12.1 | 3.1 |
| 2013 | 200.0 | 285.2 | 81.6 | 54.3 | 41.2 | 13.4 | 11.1 | 6.8 |
| 2015 | 491.9 | 141.9 | 25.2 | 17.0 | 10.3 | 9.0 | 1.9 | 4.3 |
| 2016 | 131.5 | 449.3 | 257.2 | 110.2 | 32.2 | 18.3 | 8.2 | 7.0 |
| 2017 | 42.2 | 89.7 | 104.1 | 56.5 | 9.0 | 20.3 | 4.4 | 11.8 |
| 2018 | 237.9 | 120.7 | 63.3 | 110.9 | 29.6 | 7.6 | 7.9 | 5.1 |

Table 7.6.3.1 Irish Sea Herring. CATCH IN NUMBER (Thousands)

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5840 | 5050 | 5100 | 1305 | 1168 | 2429 | 4491 | 2225 | 2607 | 1156 | 2313 | 1999 | 12145 |
| 2 | 25760 | 15790 | 16030 | 12162 | 8424 | 10050 | 15266 | 12981 | 21250 | 6385 | 12835 | 9754 | 6885 |
| 3 | 19510 | 3200 | 5670 | 5598 | 7237 | 17336 | 7462 | 6146 | 13343 | 12039 | 5726 | 6743 | 6744 |
| 4 | 8520 | 2790 | 2150 | 2820 | 3841 | 13287 | 8550 | 2998 | 7159 | 4708 | 9697 | 2833 | 6690 |
| 5 | 1980 | 2300 | 330 | 445 | 2221 | 7206 | 4528 | 4180 | 4610 | 1876 | 3598 | 5068 | 3256 |
| 6 | 910 | 330 | 1110 | 484 | 380 | 2651 | 3198 | 2777 | 5084 | 1255 | 1661 | 1493 | 5122 |
| 7 | 360 | 290 | 140 | 255 | 229 | 667 | 1464 | 2328 | 3232 | 1559 | 1042 | 719 | 1036 |
| 8 | 230 | 240 | 380 | 59 | 479 | 724 | 877 | 1671 | 4213 | 1956 | 1615 | 815 | 392 |
| Year / Age | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
| 1 | 646 | 1970 | 3204 | 5335 | 9551 | 3069 | 1810 | 1221 | 2713 | 179 | 694 | 3225 | 8692 |
| 2 | 14636 | 7002 | 21330 | 17529 | 21387 | 11879 | 16929 | 3743 | 11473 | 9021 | 4694 | 8833 | 13980 |
| 3 | 3008 | 12165 | 3391 | 9761 | 7562 | 3875 | 5936 | 5873 | 7151 | 1894 | 3345 | 5405 | 10555 |
| 4 | 3017 | 1826 | 5269 | 1160 | 7341 | 4450 | 1566 | 2065 | 13050 | 1866 | 2559 | 2161 | 3287 |
| 5 | 2903 | 2566 | 1199 | 3603 | 1641 | 6674 | 1477 | 558 | 3386 | 2395 | 882 | 623 | 1422 |
| 6 | 1606 | 2104 | 1154 | 780 | 2281 | 1030 | 1989 | 347 | 936 | 953 | 2945 | 213 | 415 |


| 7 | 2181 | 1278 | 926 | 961 | 840 | 2049 | 444 | 251 | 650 | 474 | 872 | 673 | 292 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8 | 848 | 1991 | 1452 | 1364 | 1432 | 451 | 622 | 147 | 803 | 337 | 605 | 127 | 368 |
| Year / Age | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| 1 | 5669 | 20290 | 8939 | NA | 9588 | 7454 | 2491 | 3889 | 27377 | 1654 | 2216 | 2112 | 7991 |
| 2 | 15253 | 18291 | 18974 | NA | 17627 | 17598 | 9664 | 18916 | 9567 | 15414 | 19064 | 12844 | 22903 |
| 3 | 8198 | 4980 | 7487 | NA | 6679 | 8984 | 12247 | 6836 | 7917 | 4840 | 5992 | 12419 | 15657 |
| 4 | 6318 | 1655 | 2696 | NA | 6201 | 3982 | 7944 | 6631 | 1997 | 7376 | 4677 | 4407 | 12364 |
| 5 | 1325 | 1062 | 2082 | NA | 3200 | 3671 | 3061 | 2901 | 1759 | 1613 | 2050 | 609 | 3240 |
| 6 | 605 | 325 | 1761 | NA | 925 | 1751 | 3158 | 1472 | 964 | 4276 | 1421 | 1065 | 538 |
| 7 | 262 | 122 | 328 | NA | 370 | 690 | 1591 | 625 | 409 | 1678 | 896 | 487 | 391 |
| 8 | 246 | 111 | 216 | NA | 185 | 425 | 652 | 352 | 830 | 1112 | 759 | 623 | 150 |

Table 7.6.3.2 Irish Sea Herring. WEIGHTS (Kgs) AT AGE IN THE CATCH

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.074 | 0.074 | 0.074 | 0.074 | 0.076 | 0.087 | 0.068 | 0.058 | 0.07 | 0.081 | 0.096 | 0.073 |
| 2 | 0.155 | 0.155 | 0.155 | 0.155 | 0.142 | 0.125 | 0.143 | 0.13 | 0.124 | 0.128 | 0.14 | 0.123 |
| 3 | 0.195 | 0.195 | 0.195 | 0.195 | 0.187 | 0.157 | 0.167 | 0.16 | 0.16 | 0.155 | 0.166 | 0.155 |
| 4 | 0.219 | 0.219 | 0.219 | 0.219 | 0.213 | 0.186 | 0.188 | 0.175 | 0.17 | 0.174 | 0.175 | 0.171 |
| 5 | 0.232 | 0.232 | 0.232 | 0.232 | 0.221 | 0.202 | 0.215 | 0.194 | 0.18 | 0.184 | 0.187 | 0.181 |
| 6 | 0.251 | 0.251 | 0.251 | 0.251 | 0.243 | 0.209 | 0.228 | 0.21 | 0.198 | 0.195 | 0.195 | 0.19 |
| 7 | 0.258 | 0.258 | 0.258 | 0.258 | 0.24 | 0.222 | 0.239 | 0.218 | 0.212 | 0.205 | 0.207 | 0.198 |
| 8 | 0.278 | 0.278 | 0.278 | 0.278 | 0.273 | 0.258 | 0.254 | 0.229 | 0.232 | 0.218 | 0.218 | 0.217 |
| Year / Age | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| 1 | 0.062 | 0.089 | 0.07 | 0.075 | 0.067 | 0.064 | 0.08 | 0.069 | 0.064 | 0.067 | 0.085 | 0.081 |
| 2 | 0.114 | 0.127 | 0.123 | 0.121 | 0.116 | 0.118 | 0.123 | 0.12 | 0.12 | 0.106 | 0.113 | 0.116 |
| 3 | 0.14 | 0.157 | 0.153 | 0.146 | 0.148 | 0.146 | 0.148 | 0.145 | 0.148 | 0.139 | 0.144 | 0.136 |
| 4 | 0.155 | 0.171 | 0.17 | 0.164 | 0.162 | 0.165 | 0.163 | 0.167 | 0.168 | 0.156 | 0.167 | 0.16 |
| 5 | 0.165 | 0.182 | 0.18 | 0.176 | 0.177 | 0.176 | 0.181 | 0.176 | 0.188 | 0.168 | 0.18 | 0.167 |
| 6 | 0.174 | 0.191 | 0.189 | 0.181 | 0.199 | 0.188 | 0.177 | 0.188 | 0.204 | 0.185 | 0.184 | 0.172 |
| 7 | 0.181 | 0.198 | 0.202 | 0.193 | 0.2 | 0.204 | 0.188 | 0.19 | 0.2 | 0.198 | 0.191 | 0.186 |


| 8 | 0.197 | 0.212 | 0.212 | 0.207 | 0.214 | 0.216 | 0.222 | 0.21 | 0.213 | 0.205 | 0.217 | 0.199 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year / Age | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 1 | 0.073 | 0.067 | 0.064 | 0.067 | 0.071 | 0.062 | 0.053 | 0.058 | 0.07 | 0.059 | 0.066 | 0.07 |
| 2 | 0.107 | 0.103 | 0.105 | 0.112 | 0.11 | 0.108 | 0.106 | 0.106 | 0.12 | 0.1 | 0.11 | 0.106 |
| 3 | 0.13 | 0.136 | 0.131 | 0.135 | 0.135 | 0.133 | 0.131 | 0.134 | 0.138 | 0.13 | 0.146 | 0.136 |
| 4 | 0.157 | 0.156 | 0.149 | 0.158 | 0.153 | 0.149 | 0.145 | 0.152 | 0.152 | 0.142 | 0.177 | 0.148 |
| 5 | 0.165 | 0.166 | 0.164 | 0.173 | 0.156 | 0.1545 | 0.153 | 0.159 | 0.164 | 0.157 | 0.174 | 0.155 |
| 6 | 0.187 | 0.18 | 0.177 | 0.183 | 0.182 | 0.173 | 0.164 | 0.175 | 0.174 | 0.165 | 0.176 | 0.157 |
| 7 | 0.2 | 0.191 | 0.184 | 0.199 | 0.196 | 0.1855 | 0.175 | 0.187 | 0.179 | 0.17 | 0.196 | 0.167 |
| 8 | 0.205 | 0.209 | 0.211 | 0.227 | 0.206 | 0.189 | 0.172 | 0.196 | 0.191 | 0.18 | 0.198 | 0.171 |
| Year / Age | 2016 | 2017 | 2018 |  |  |  |  |  |  |  |  |  |
| 1 | 0.054 | 0.072 | 0.060 |  |  |  |  |  |  |  |  |  |
| 2 | 0.102 | 0.093 | 0.096 |  |  |  |  |  |  |  |  |  |
| 3 | 0.126 | 0.121 | 0.120 |  |  |  |  |  |  |  |  |  |
| 4 | 0.143 | 0.14 | 0.132 |  |  |  |  |  |  |  |  |  |
| 5 | 0.159 | 0.147 | 0.147 |  |  |  |  |  |  |  |  |  |
| 6 | 0.161 | 0.154 | 0.159 |  |  |  |  |  |  |  |  |  |
| 7 | 0.167 | 0.154 | 0.164 |  |  |  |  |  |  |  |  |  |
| 8 | 0.177 | 0.162 | 0.204 |  |  |  |  |  |  |  |  |  |

Table 7.6.3.3 Irish Sea Herring. WEIGHTS (Kgs) AT AGE IN THE STOCK

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.074 | 0.074 | 0.074 | 0.074 | 0.076 | 0.087 | 0.068 | 0.058 | 0.07 | 0.081 | 0.077 | 0.07 |
| 2 | 0.155 | 0.155 | 0.155 | 0.155 | 0.142 | 0.125 | 0.143 | 0.13 | 0.124 | 0.128 | 0.135 | 0.121 |
| 3 | 0.195 | 0.195 | 0.195 | 0.195 | 0.187 | 0.157 | 0.167 | 0.16 | 0.16 | 0.155 | 0.163 | 0.153 |
| 4 | 0.219 | 0.219 | 0.219 | 0.219 | 0.213 | 0.186 | 0.188 | 0.175 | 0.17 | 0.174 | 0.175 | 0.167 |
| 5 | 0.232 | 0.232 | 0.232 | 0.232 | 0.221 | 0.202 | 0.215 | 0.194 | 0.18 | 0.184 | 0.188 | 0.18 |
| 6 | 0.251 | 0.251 | 0.251 | 0.251 | 0.243 | 0.209 | 0.229 | 0.21 | 0.198 | 0.195 | 0.196 | 0.189 |
| 7 | 0.258 | 0.258 | 0.258 | 0.258 | 0.24 | 0.222 | 0.239 | 0.218 | 0.212 | 0.205 | 0.207 | 0.195 |
| 8 | 0.278 | 0.278 | 0.278 | 0.278 | 0.273 | 0.258 | 0.254 | 0.229 | 0.232 | 0.218 | 0.217 | 0.214 |


| Year / Age | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.061 | 0.088 | 0.073 | 0.072 | 0.067 | 0.063 | 0.073 | 0.068 | 0.063 | 0.066 | 0.085 | 0.081 |
| 2 | 0.111 | 0.126 | 0.126 | 0.12 | 0.115 | 0.119 | 0.121 | 0.121 | 0.12 | 0.105 | 0.113 | 0.116 |
| 3 | 0.136 | 0.157 | 0.154 | 0.147 | 0.148 | 0.148 | 0.15 | 0.145 | 0.149 | 0.139 | 0.144 | 0.136 |
| 4 | 0.151 | 0.171 | 0.174 | 0.168 | 0.162 | 0.167 | 0.166 | 0.168 | 0.171 | 0.156 | 0.167 | 0.16 |
| 5 | 0.159 | 0.183 | 0.181 | 0.18 | 0.177 | 0.178 | 0.179 | 0.178 | 0.188 | 0.167 | 0.18 | 0.167 |
| 6 | 0.171 | 0.191 | 0.19 | 0.185 | 0.195 | 0.189 | 0.19 | 0.189 | 0.204 | 0.183 | 0.184 | 0.172 |
| 7 | 0.179 | 0.198 | 0.203 | 0.197 | 0.199 | 0.206 | 0.2 | 0.199 | 0.205 | 0.199 | 0.191 | 0.186 |
| 8 | 0.191 | 0.214 | 0.214 | 0.212 | 0.212 | 0.214 | 0.23 | 0.214 | 0.215 | 0.205 | 0.217 | 0.199 |
| Year / Age | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 1 | 0.067 | 0.067 | 0.064 | 0.073 | 0.071 | 0.066 | 0.06 | 0.057 | 0.059 | 0.057 | 0.069 | 0.07 |
| 2 | 0.114 | 0.103 | 0.105 | 0.114 | 0.11 | 0.114 | 0.118 | 0.109 | 0.109 | 0.1 | 0.112 | 0.106 |
| 3 | 0.144 | 0.136 | 0.131 | 0.137 | 0.135 | 0.135 | 0.134 | 0.136 | 0.131 | 0.131 | 0.15 | 0.136 |
| 4 | 0.161 | 0.156 | 0.149 | 0.158 | 0.153 | 0.15 | 0.147 | 0.155 | 0.149 | 0.142 | 0.178 | 0.148 |
| 5 | 0.17 | 0.166 | 0.164 | 0.174 | 0.156 | 0.155 | 0.153 | 0.162 | 0.153 | 0.157 | 0.174 | 0.155 |
| 6 | 0.192 | 0.18 | 0.177 | 0.183 | 0.182 | 0.174 | 0.165 | 0.177 | 0.162 | 0.167 | 0.176 | 0.157 |
| 7 | 0.202 | 0.191 | 0.184 | 0.199 | 0.196 | 0.186 | 0.176 | 0.188 | 0.168 | 0.175 | 0.196 | 0.167 |
| 8 | 0.214 | 0.209 | 0.211 | 0.227 | 0.206 | 0.1895 | 0.173 | 0.197 | 0.19 | 0.18 | 0.202 | 0.171 |
| Year / Age | 2016 | 2017 | 2018 |  |  |  |  |  |  |  |  |  |
| 1 | 0.054 | 0.072 | 0.060 |  |  |  |  |  |  |  |  |  |
| 2 | 0.102 | 0.093 | 0.096 |  |  |  |  |  |  |  |  |  |
| 3 | 0.126 | 0.121 | 0.120 |  |  |  |  |  |  |  |  |  |
| 4 | 0.143 | 0.14 | 0.132 |  |  |  |  |  |  |  |  |  |
| 5 | 0.159 | 0.147 | 0.147 |  |  |  |  |  |  |  |  |  |
| 6 | 0.161 | 0.154 | 0.159 |  |  |  |  |  |  |  |  |  |
| 7 | 0.167 | 0.154 | 0.164 |  |  |  |  |  |  |  |  |  |
| 8 | 0.177 | 0.162 | 0.204 |  |  |  |  |  |  |  |  |  |

Table 7.6.3.4 Irish Sea Herring. NATURAL MORTALITY

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 |
| 2 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
| 3 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 |
| 4 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 |
| 5 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 |
| 6 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 |
| 7 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 |
| 8 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 |
| Year / Age | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| 1 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 |
| 2 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
| 3 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 |
| 4 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 |
| 5 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 |
| 6 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 |
| 7 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 |
| 8 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 |
| Year / Age | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 1 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 |
| 2 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
| 3 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 | 0.353 |
| 4 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 | 0.335 |
| 5 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 | 0.315 |
| 6 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 | 0.311 |
| 7 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 |
| 8 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 | 0.304 |
| Year / Age | 2016 | 2017 | 2018 |  |  |  |  |  |  |  |  |  |
| 1 | 0.787 | 0.787 | 0.787 |  |  |  |  |  |  |  |  |  |
| 2 | 0.38 | 0.38 | 0.38 |  |  |  |  |  |  |  |  |  |


| 3 | 0.353 | 0.353 |
| :--- | :--- | :--- |
| 0.353 |  |  |
| 4 | 0.335 | 0.335 |
| 5 | 0.335 |  |
| 6 | 0.315 | 0.315 |
| 0.311 | 0.315 |  |
| 7 | 0.304 | 0.304 |
| 8 | 0.304 | 0.304 |
| 0.304 |  |  |

Table 7.6.3.5 Irish Sea Herring. PROPORTION MATURE

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.2 | 0.19 | 0.1 | 0.02 | 0 | 0.14 | 0.31 | 0 | 0 | 0.07 | 0.06 | 0.04 | 0.28 | 0 | 0.19 |
| 2 | 0.88 | 0.89 | 0.8 | 0.73 | 0.69 | 0.62 | 0.73 | 0.85 | 0.9 | 0.63 | 0.66 | 0.3 | 0.48 | 0.46 | 0.68 |
| 3 | 0.95 | 0.9 | 0.89 | 0.88 | 0.83 | 0.71 | 0.66 | 0.91 | 0.96 | 0.93 | 0.9 | 0.74 | 0.72 | 0.99 | 0.99 |
| 4 | 0.95 | 0.94 | 0.91 | 0.9 | 0.93 | 0.88 | 0.81 | 0.87 | 0.99 | 0.95 | 0.95 | 0.82 | 0.81 | 1 | 0.97 |
| 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Year / Age | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| 1 | 0.1 | 0.02 | 0.04 | 0.3 | 0.02 | 0.14 | 0.15 | 0.02 | 0.11 | 0.114 | 0.2 | 0.19 | 0.16 | 0.16 | 0.13 |
| 2 | 0.86 | 0.6 | 0.82 | 0.83 | 0.84 | 0.79 | 0.54 | 0.92 | 0.76 | 1 | 0.97 | 0.89 | 0.94 | 0.84 | 0.82 |
| 3 | 0.94 | 0.96 | 0.95 | 0.97 | 0.95 | 0.99 | 0.88 | 0.95 | 0.95 | 0.97 | 0.99 | 1 | 0.98 | 1 | 0.97 |
| 4 | 0.99 | 0.83 | 1 | 0.99 | 0.97 | 1 | 0.97 | 0.98 | 0.97 | 1 | 1 | 1 | 1 | 1 | 0.98 |
| 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Year / Age | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |  |  |  |  |  |  |
| 1 | 0.11 | 0.08 | 0.1 | 0.06 | 0.16 | 0.11 | 0.07 | 0.1 | 0.08 |  |  |  |  |  |  |
| 2 | 0.92 | 0.9 | 0.84 | 0.82 | 0.94 | 0.87 | 0.81 | 0.85 | 0.67 |  |  |  |  |  |  |
| 3 | 1 | 1 | 1 | 0.99 | 1 | 1 | 0.99 | 1 | 0.97 |  |  |  |  |  |  |
| 4 | 0.98 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |
| 5 | 0.97 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |
| 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |
| 7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |
| 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |

Table 7.6.3.6 Irish Sea Herring. FRACTION OF HARVEST BEFORE SPAWNING

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 2 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 3 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 4 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 5 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 6 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 7 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| Year / Age | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| 1 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 2 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 3 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 4 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 5 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 6 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 7 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| 8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| Year / Age | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |  |  |  |  |  |  |
| 1 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |  |  |  |  |  |  |
| 2 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |  |  |  |  |  |  |
| 3 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |  |  |  |  |  |  |
| 4 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |  |  |  |  |  |  |
| 5 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |  |  |  |  |  |  |
| 6 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |  |  |  |  |  |  |
| 7 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |  |  |  |  |  |  |
| 8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |  |  |  |  |  |  |

Table 7.6.3.7 Irish Sea Herring. FRACTION OF NATURAL MORTALITY BEFORE SPAWNING

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 2 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 3 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 4 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 5 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 6 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 7 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 8 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| Year / Age | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| 1 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 2 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 3 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 4 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 5 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 6 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 7 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 8 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| Year / Age | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |  |  |  |  |  |  |
| 1 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |  |  |  |  |  |  |
| 2 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |  |  |  |  |  |  |
| 3 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |  |  |  |  |  |  |
| 4 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |  |  |  |  |  |  |
| 5 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |  |  |  |  |  |  |
| 6 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |  |  |  |  |  |  |
| 7 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |  |  |  |  |  |  |
| 8 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |  |  |  |  |  |  |

## Table 7.6.3.8 Irish Sea Herring. SURVEY INDICES

AC(7.aN) - Configuration
Irish Sea herring (Division 7.a) (run name: ICAMDC20) . Imported from VPA file.

| min | max plusgroup | minyear | maxyear | startf | endf |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.0 | 8.0 | 8.0 | 1994.0 | 2018.0 | 0.7 | 0.8 |

Index type : number
AC(7.aN) - Index Values
Units : NA

| Year / Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 66830 | 319116 | 11340 | 134146 | 110438 | 157756 | 78524 | 387559 | 390982 | 349216 | 241014 |
| 2 | 68290 | 82256 | 42372 | 49977 | 27312 | 77722 | 103439 | 93402 | 71935 | 220014 | 115529 |
| 3 | 73529 | 11935 | 67473 | 14812 | 8083 | 34017 | 105291 | 10194 | 31701 | 31984 | 29593 |
| 4 | 11860 | 29246 | 8954 | 10985 | 9266 | 5108 | 27543 | 17489 | 24804 | 4735 | 15398 |
| 5 | 9299 | 4574 | 26469 | 1751 | 6479 | 10260 | 8072 | 7704 | 31277 | 3921 | 2067 |
| 6 | 7550 | 3500 | 4171 | 4553 | 1778 | 13521 | 5432 | 1372 | 14830 | 4089 | 2299 |
| 7 | 3867 | 4887 | 5911 | 571 | 2254 | 1586 | 4899 | 626 | 2756 | 977 | 238 |
| 8 | 10118 | 6894 | 5815 | 1910 | 780 | 6289 | 2359 | 2263 | 4461 | 906 | 240 |
| Year / Age | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |  |
| 1 | 94330 | 374731 | 1316673 | 475675 | 371230 | 580602 | 1927032 | 369094 | 100023 | 299689 |  |
| 2 | 109938 | 96623 | 251276 | 452364 | 182643 | 561245 | 330180 | 191900 | 285238 | 193267 |  |
| 3 | 97111 | 15625 | 46570 | 114210 | 177813 | 117699 | 43855 | 160980 | 81601 | 127352 |  |
| 4 | 17023 | 9982 | 21101 | 39076 | 92741 | 120777 | 14978 | 51363 | 54347 | 29691 |  |
| 5 | 8029 | 530 | 20818 | 26370 | 32490 | 34325 | 21896 | 21643 | 41153 | 43057 |  |
| 6 | 810 | 369 | 1200 | 17063 | 15071 | 16759 | 6308 | 19285 | 13441 | 17342 |  |
| 7 | 607 | 478 | 718 | 4254 | 13940 | 4336 | 2715 | 12105 | 11132 | 7848 |  |
| 8 | 5804 | 469 | 556 | 599 | 6871 | 6453 | 1959 | 3128 | 6776 | 12481 |  |
| Year / Age | 2015 | 2016 | 2017 | 2018 |  |  |  |  |  |  |  |
| 1 | 491894 | 131512 | 42175 | 237857 |  |  |  |  |  |  |  |
| 2 | 141854 | 449316 | 89653 | 120683 |  |  |  |  |  |  |  |
| 3 | 25153 | 257152 | 104059 | 63334 |  |  |  |  |  |  |  |
| 4 | 17018 | 110196 | 56474 | 110874 |  |  |  |  |  |  |  |
| 5 | 10340 | 32232 | 9007 | 29555 |  |  |  |  |  |  |  |
| 6 | 8954 | 18312 | 20297 | 7645 |  |  |  |  |  |  |  |


| 7 | 1890 | 8157 | 4395 | 7926 |
| :--- | :--- | :--- | :--- | :--- |
| 8 | 4342 | 7042 | 11779 | 5053 |

7.aNSpawn - Configuration

FLT05: SSB acoustic (Catch: Unknown) (Effort: Unknown)

| min | max plusgroup | minyear | maxyear | startf | endf |
| ---: | ---: | ---: | ---: | ---: | ---: |
| NA | NA | NA | 2007 | 2018 | NA |

Index type : biomass
7.aNSpawn - Index Values

Units : NA
year
$\begin{array}{lllllllll}\text { age } & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014\end{array}$
all $47582.6141909 .9776786 .9791388 .88 \quad 61907.54 \quad 52071.02 \quad 114044.2 \quad 28396.84$ year
age $2015 \quad 2016 \quad 2017 \quad 2018$
all 60328.2774275 .7341683 .638973 .8

## Table 7.6.3.9 Irish Sea Herring. STOCK OBJECT CONFIGURATION

| min | max plusgroup | minyear | maxyear | minfbar | maxfbar |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8 | 8 | 1980 | 2018 | 4 | 6 |

## Table 7.6.3.10 Irish Sea Herring. sam CONFIGURATION SETTINGS

| name | : |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| desc | : |  |  |  |  |
| range | min | max plusgroup minyear | maxyear | minfbar | maxfbar |
| range | 1 | 881980 | 2018 | 4 | 6 |
| fleets | catch | AC(7.aN) 7.aNSpawn |  |  |  |
| fleets | 0 | 23 |  |  |  |
| plus.group | TRUE |  |  |  |  |
| states | : | age |  |  |  |
| states | : fleet | $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ |  |  |  |
| states | : catch | $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 7\end{array}$ |  |  |  |
| states | AC(7.aN) | NA NA NA NA NA NA NA NA |  |  |  |
| states | : 7.aNSpawn | NA NA NA NA NA NA NA NA |  |  |  |
| $\operatorname{logN}$. vars | : 111111 | 11 |  |  |  |
| catchabilities | : | age |  |  |  |
| catchabilities | : fleet | $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ |  |  |  |
| catchabilities | catch | NA NA NA NA NA NA NA NA |  |  |  |
| catchabilities | AC(7.aN) | $1 \begin{array}{llllllll}1 & 2 & 3 & 4 & 4 & 4 & 4 & 4\end{array}$ |  |  |  |
| catchabilities | 7.aNSpawn | NA NA NA NA NA NA NA NA |  |  |  |
| power.law.exps | : | age |  |  |  |
| power.law.exps | : fleet | $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ |  |  |  |
| power.law.exps | : catch | NA NA NA NA NA NA NA NA |  |  |  |



Table 7.6.3.11 Irish Sea Herring. FLR, R SOFTWARE VERSIONS

| FLSAM.version | 1.0 |
| :--- | ---: |
| FLCore.version | 2.5 .20150309 |
| R.version | R version $3.4 .4(2018-03-15)$ |
| platform | i386-w64-mingw32 |
| run.date | $2018-03-16$ 11:27:17 |

Table 7.6.3.12 Irish Sea Herring. STOCK SUMMARY

| Year | Recruitment | Low | High | TSB | Low | High | SSB | Low | High | Fbar | Low | High | Landings | Landings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 174556 | 90497 | 336695 | 36243 | 25863 | 50788 | 13874 | 9473 | 20321 | 0.2893 | 0.1908 | 0.4385 | 10613 | 1.0308 |
| 1981 | 203414 | 104714 | 395145 | 37760 | 26550 | 53702 | 13924 | 9715 | 19958 | 0.2769 | 0.1869 | 0.4102 | 4377 | 1.0999 |
| 1982 | 222348 | 114428 | 432053 | 42959 | 29767 | 61998 | 14691 | 10021 | 21538 | 0.2637 | 0.1816 | 0.383 | 4855 | 1.0166 |
| 1983 | 183506 | 91366 | 368563 | 45071 | 31184 | 65143 | 16217 | 10991 | 23927 | 0.2577 | 0.1808 | 0.3671 | 3933 | 1.0165 |
| 1984 | 131006 | 67830 | 253026 | 43783 | 32039 | 59831 | 17257 | 12152 | 24509 | 0.2628 | 0.1903 | 0.3629 | 4066 | 1.0392 |
| 1985 | 171099 | 89174 | 328293 | 46028 | 34426 | 61539 | 16205 | 12237 | 21460 | 0.2809 | 0.2114 | 0.3733 | 9187 | 0.9802 |
| 1986 | 211928 | 110671 | 405827 | 47240 | 35593 | 62698 | 18574 | 14102 | 24464 | 0.2897 | 0.2215 | 0.3788 | 7440 | 1.0238 |
| 1987 | 273484 | 140482 | 532408 | 46630 | 34513 | 63002 | 16850 | 12472 | 22765 | 0.2981 | 0.2296 | 0.3869 | 5823 | 0.9632 |
| 1988 | 117360 | 60942 | 226008 | 43391 | 32880 | 57261 | 19732 | 14272 | 27281 | 0.3124 | 0.2406 | 0.4056 | 10172 | 0.9505 |
| 1989 | 151600 | 78515 | 292714 | 40175 | 29881 | 54016 | 15060 | 11060 | 20507 | 0.3096 | 0.2393 | 0.4004 | 4949 | 0.9966 |
| 1990 | 128927 | 67877 | 244886 | 37496 | 28583 | 49189 | 14357 | 10746 | 19181 | 0.3112 | 0.2417 | 0.4006 | 6312 | 0.9872 |
| 1991 | 78905 | 41609 | 149633 | 28796 | 22533 | 36801 | 9860 | 7453 | 13044 | 0.3092 | 0.2419 | 0.3953 | 4398 | 0.9994 |
| 1992 | 244019 | 128891 | 461979 | 32177 | 23152 | 44720 | 10267 | 7919 | 13311 | 0.3164 | 0.249 | 0.4019 | 5270 | 0.989 |
| 1993 | 63704 | 34667 | 117062 | 29912 | 22898 | 39073 | 10331 | 7897 | 13515 | 0.3182 | 0.2507 | 0.4039 | 4409 | 0.9869 |
| 1994 | 161458 | 89715 | 290572 | 30669 | 23220 | 40507 | 11485 | 8804 | 14982 | 0.3241 | 0.255 | 0.412 | 4828 | 0.9757 |
| 1995 | 132588 | 72479 | 242548 | 29466 | 22340 | 38865 | 11133 | 8436 | 14693 | 0.3287 | 0.2579 | 0.4189 | 5076 | 1.0007 |
| 1996 | 85991 | 46370 | 159468 | 24441 | 18768 | 31828 | 8962 | 6675 | 12034 | 0.3376 | 0.2633 | 0.433 | 5301 | 0.9999 |


| Year | Recruitment | Low | High | TSB | Low | High | SSB | Low | High | Fbar | Low | High | Landings | Landings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1997 | 124991 | 68798 | 227084 | 23506 | 17571 | 31446 | 8309 | 6087 | 11342 | 0.3529 | 0.2711 | 0.4592 | 6651 | 0.9996 |
| 1998 | 166875 | 93347 | 298321 | 26742 | 19593 | 36500 | 9477 | 7136 | 12585 | 0.3612 | 0.2726 | 0.4787 | 4905 | 0.9951 |
| 1999 | 77111 | 42346 | 140416 | 22629 | 17197 | 29777 | 9085 | 6625 | 12458 | 0.3517 | 0.265 | 0.4666 | 4127 | 1.0001 |
| 2000 | 78669 | 42400 | 145960 | 19867 | 15054 | 26218 | 8718 | 6427 | 11825 | 0.3404 | 0.2562 | 0.4524 | 2002 | 0.9993 |
| 2001 | 109098 | 57533 | 206877 | 19932 | 14001 | 28377 | 6683 | 4665 | 9573 | 0.353 | 0.2586 | 0.4819 | 5461 | 1.0004 |
| 2002 | 82619 | 44879 | 152099 | 19206 | 13981 | 26384 | 6926 | 4852 | 9886 | 0.3472 | 0.25 | 0.4822 | 2393 | 0.9984 |
| 2003 | 146825 | 81138 | 265693 | 22629 | 15826 | 32356 | 6243 | 4520 | 8622 | 0.344 | 0.2425 | 0.4879 | 2399 | 1.001 |
| 2004 | 157000 | 85158 | 289449 | 24612 | 17465 | 34684 | 9118 | 6463 | 12864 | 0.3216 | 0.2275 | 0.4547 | 2531 | 0.9979 |
| 2005 | 176487 | 95645 | 325656 | 27889 | 19590 | 39706 | 10918 | 7664 | 15555 | 0.3065 | 0.2157 | 0.4353 | 4387 | 1.0062 |
| 2006 | 306202 | 167814 | 558711 | 36864 | 25410 | 53481 | 12150 | 8789 | 16798 | 0.281 | 0.1991 | 0.3966 | 4402 | 1.0005 |
| 2007 | 528607 | 273739 | 1020772 | 65251 | 42347 | 100543 | 19585 | 13970 | 27456 | 0.2452 | 0.1735 | 0.3467 | 4629 | 1.0012 |
| 2008 | 266999 | 133410 | 534358 | 59101 | 41480 | 84207 | 25084 | 17518 | 35919 | 0.2288 | 0.1602 | 0.327 | 4895 | 1.0008 |
| 2009 | 343176 | 176804 | 666107 | 61636 | 42963 | 88424 | 25034 | 17371 | 36077 | 0.2153 | 0.1486 | 0.3119 | 4594 | NA |
| 2010 | 394352 | 211814 | 734199 | 63831 | 45195 | 90152 | 26556 | 18647 | 37819 | 0.2026 | 0.1386 | 0.2961 | 4894 | 0.9989 |
| 2011 | 252206 | 127686 | 498156 | 56162 | 40509 | 77863 | 26849 | 19147 | 37651 | 0.1951 | 0.1331 | 0.2859 | 5202 | 1.0014 |
| 2012 | 291268 | 158535 | 535131 | 54122 | 39335 | 74468 | 24101 | 16999 | 34170 | 0.1898 | 0.1293 | 0.2785 | 5693 | 0.9999 |
| 2013 | 160011 | 86427 | 296247 | 44312 | 32632 | 60172 | 22018 | 15639 | 30998 | 0.1801 | 0.1213 | 0.2674 | 4828 | 0.9982 |
| 2014 | 340783 | 180798 | 642334 | 56331 | 39806 | 79717 | 23671 | 17130 | 32709 | 0.1707 | 0.1133 | 0.2573 | 5083 | 0.9405 |


| Year | Recruitment | Low | High | TSB | Low | High | SSB | Low | High | Fbar | Low | High | Landings | Landings |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2015 | 378890 | 205288 | 699299 | 59516 | 42493 | 83358 | 22093 | 15960 | 30583 | 0.1707 | 0.1139 | 0.2559 | 4891 | 1.0001 |
| 2016 | 208772 | 110175 | 395607 | 50970 | 37758 | 68807 | 24367 | 17429 | 34067 | 0.1648 | 0.1082 | 0.2509 | 4327 | 0.9999 |
| 2017 | 192529 | 89663 | 413406 | 48630 | 34761 | 68033 | 22948 | 16323 | 32263 | 0.1566 | 0.0999 | 0.2455 | 3896 | 0.9999 |
| 2018 | 333701 | 86352 | 1289560 | 54885 | 30958 | 97306 | 22020 | 14800 | 32763 | 0.1563 | 0.0982 | 0.2486 | 6804 | 1.0061 |

Table 7.6.3.13 Irish Sea Herring. ESTIMATED FISHING MORTALITY

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.026292 | 0.025766 | 0.024972 | 0.023971 | 0.023645 | 0.023783 | 0.024026 |
| 2 | 0.330219 | 0.293376 | 0.259111 | 0.230017 | 0.213931 | 0.216406 | 0.219347 |
| 3 | 0.337969 | 0.298257 | 0.269146 | 0.249749 | 0.24522 | 0.25459 | 0.255227 |
| 4 | 0.333137 | 0.321261 | 0.300863 | 0.277843 | 0.271037 | 0.283087 | 0.28176 |
| 5 | 0.269335 | 0.248976 | 0.229788 | 0.23087 | 0.245539 | 0.266628 | 0.278121 |
| 6 | 0.265405 | 0.260566 | 0.260488 | 0.264266 | 0.271797 | 0.293054 | 0.30919 |
| 7 | 0.242731 | 0.190882 | 0.166161 | 0.086917 | 0.169297 | 0.318925 | 0.383794 |
| 8 | 0.242731 | 0.190882 | 0.166161 | 0.086917 | 0.169297 | 0.318925 | 0.383794 |
| Year / Age | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| 1 | 0.024072 | 0.024682 | 0.025082 | 0.026168 | 0.027305 | 0.028207 | 0.028252 |
| 2 | 0.216233 | 0.21773 | 0.219874 | 0.231448 | 0.243704 | 0.259059 | 0.272477 |
| 3 | 0.252991 | 0.256892 | 0.251956 | 0.253118 | 0.25579 | 0.264689 | 0.271145 |
| 4 | 0.277898 | 0.28462 | 0.276374 | 0.272586 | 0.268931 | 0.275133 | 0.273269 |
| 5 | 0.290254 | 0.306021 | 0.304313 | 0.308449 | 0.30919 | 0.318574 | 0.324685 |
| 6 | 0.326084 | 0.346421 | 0.348018 | 0.352502 | 0.349553 | 0.355333 | 0.35665 |
| 7 | 0.470796 | 0.703097 | 0.570022 | 0.553779 | 0.423929 | 0.310895 | 0.336957 |
| 8 | 0.470796 | 0.703097 | 0.570022 | 0.553779 | 0.423929 | 0.310895 | 0.336957 |
| Year / Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
| 1 | 0.028898 | 0.030032 | 0.031039 | 0.03099 | 0.029674 | 0.028504 | 0.027215 |
| 2 | 0.299063 | 0.32514 | 0.350113 | 0.360523 | 0.330582 | 0.300953 | 0.275436 |
| 3 | 0.282352 | 0.292 | 0.298018 | 0.305563 | 0.301616 | 0.289877 | 0.277926 |
| 4 | 0.275739 | 0.280495 | 0.289558 | 0.312391 | 0.32566 | 0.322485 | 0.323777 |
| 5 | 0.334473 | 0.341332 | 0.351375 | 0.367218 | 0.373566 | 0.354836 | 0.335209 |
| 6 | 0.362149 | 0.364183 | 0.371915 | 0.378984 | 0.384428 | 0.37763 | 0.362366 |
| 7 | 0.408007 | 0.402951 | 0.518 | 0.844636 | 0.63575 | 0.410676 | 0.200008 |
| 8 | 0.408007 | 0.402951 | 0.518 | 0.844636 | 0.63575 | 0.410676 | 0.200008 |


| Year / Age | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.02614 | 0.024833 | 0.02522 | 0.026713 | 0.028184 | 0.028846 | 0.029585 |
| 2 | 0.27346 | 0.251981 | 0.226774 | 0.216189 | 0.214853 | 0.205255 | 0.188341 |
| 3 | 0.283569 | 0.266308 | 0.260826 | 0.259266 | 0.249574 | 0.234125 | 0.209779 |
| 4 | 0.347219 | 0.343764 | 0.342255 | 0.320267 | 0.301285 | 0.268904 | 0.229351 |
| 5 | 0.340786 | 0.328211 | 0.321937 | 0.308943 | 0.295821 | 0.27101 | 0.234453 |
| 6 | 0.37109 | 0.369686 | 0.367732 | 0.335679 | 0.322227 | 0.303037 | 0.271851 |
| 7 | 0.481562 | 0.490917 | 0.968074 | 0.5301 | 0.462962 | 0.409217 | 0.217121 |
| 8 | 0.481562 | 0.490917 | 0.968074 | 0.5301 | 0.462962 | 0.409217 | 0.217121 |
| Year / Age | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| 1 | 0.029709 | 0.029349 | 0.028993 | 0.02845 | 0.027529 | 0.027332 | 0.026909 |
| 2 | 0.174366 | 0.169653 | 0.164212 | 0.160478 | 0.160301 | 0.163687 | 0.165018 |
| 3 | 0.193206 | 0.186188 | 0.178637 | 0.174122 | 0.171221 | 0.168217 | 0.163213 |
| 4 | 0.211506 | 0.20303 | 0.194991 | 0.19367 | 0.193728 | 0.188643 | 0.184464 |
| 5 | 0.219128 | 0.204763 | 0.191455 | 0.179892 | 0.170146 | 0.156343 | 0.142388 |
| 6 | 0.255892 | 0.238163 | 0.221308 | 0.211697 | 0.20542 | 0.19546 | 0.18537 |
| 7 | 0.225892 | 0.165002 | 0.12032 | 0.16967 | 0.184981 | 0.09715 | 0.116426 |
| 8 | 0.225892 | 0.165002 | 0.12032 | 0.16967 | 0.184981 | 0.09715 | 0.116426 |
| Year / Age | 2015 | 2016 | 2017 | 2018 |  |  |  |
| 1 | 0.025253 | 0.024783 | 0.024699 | 0.024967 |  |  |  |
| 2 | 0.1652 | 0.167579 | 0.176453 | 0.188266 |  |  |  |
| 3 | 0.160703 | 0.15812 | 0.164458 | 0.174697 |  |  |  |
| 4 | 0.191283 | 0.192396 | 0.186169 | 0.188266 |  |  |  |
| 5 | 0.136395 | 0.12986 | 0.125531 | 0.127314 |  |  |  |
| 6 | 0.18452 | 0.172131 | 0.158089 | 0.153217 |  |  |  |
| 7 | 0.197247 | 0.131941 | 0.087004 | 0.028607 |  |  |  |
| 8 | 0.197247 | 0.131941 | 0.087004 | 0.028607 |  |  |  |

Table 7.6.3.14 Irish Sea Herring. ESTIMATED POPULATION ABUNDANCE

Units : NA

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 174555.8 | 203414.3 | 222348.2 | 183505.5 | 131006.2 | 171099.4 | 211927.6 |
| 2 | 52891.61 | 73939.32 | 87991.9 | 96567.74 | 86681.87 | 60839.83 | 76879.92 |
| 3 | 32435.22 | 20702.3 | 36026.14 | 46027.76 | 56726.68 | 59694.79 | 34856.68 |
| 4 | 26984.02 | 12226.98 | 9595.984 | 19938.34 | 28623.98 | 37835.38 | 35525.29 |
| 5 | 4932.494 | 12732.33 | 4821.788 | 4507.509 | 12572.91 | 20211.36 | 21074.1 |
| 6 | 3821.889 | 2284.951 | 6764.881 | 2756.729 | 2721.667 | 8496.418 | 12523.97 |
| 7 | 1788.799 | 2052.472 | 1169.58 | 3757.466 | 1586.364 | 1761.463 | 4996.535 |
| 8 | 1172.156 | 1657.723 | 2150.38 | 1699.348 | 3688.223 | 3331.24 | 2894.304 |
| Year / Age | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| 1 | 273484.4 | 117359.8 | 151599.9 | 128926.8 | 78905.01 | 244018.7 | 63703.83 |
| 2 | 92410.88 | 127899.5 | 51123.52 | 71467.64 | 57182.32 | 34166.47 | 100810.7 |
| 3 | 40215.19 | 52365.33 | 73791.59 | 30031.44 | 40660 | 31225.8 | 17349.17 |
| 4 | 19047.67 | 22359.35 | 26795.79 | 44267.23 | 17525.29 | 24270.09 | 16680.57 |
| 5 | 20060.34 | 11307.26 | 10784.88 | 14408.88 | 25925.96 | 10988.45 | 13210.93 |
| 6 | 11958.53 | 11602.78 | 5678.827 | 5593.162 | 7480.089 | 15602.71 | 6284.867 |
| 7 | 7259.745 | 6561.011 | 5487.346 | 2855.208 | 2669.643 | 4004.604 | 8442.215 |


| 8 | 4348.56 | 6087.544 | 4690.995 | 4154.303 | 2805.957 | 2408.357 | 3502.037 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year / Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
| 1 | 161457.9 | 132587.8 | 85991.18 | 124991.4 | 166874.9 | 77110.91 | 78668.65 |
| 2 | 29554.76 | 78433 | 55436.86 | 39735.49 | 50412.78 | 76649.63 | 32565.22 |
| 3 | 54176.36 | 14531.88 | 42873.11 | 25796.65 | 16081.1 | 26186.52 | 42787.45 |
| 4 | 9379.671 | 28339.16 | 7546.959 | 23365.13 | 13011.65 | 7734.143 | 14071.41 |
| 5 | 9354.38 | 5106.656 | 15740.62 | 4372.106 | 12911.84 | 6138.895 | 4133.997 |
| 6 | 7148.087 | 4906.911 | 2752.046 | 7994.427 | 2468.831 | 6299.339 | 2731.483 |
| 7 | 3491.546 | 3613.023 | 2676.593 | 1369.773 | 4132.344 | 1267.498 | 2747.372 |
| 8 | 6674.837 | 5080.678 | 4221.307 | 2881.885 | 1267.118 | 2160.943 | 1493.384 |
| Year / Age | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| 1 | 109097.8 | 82619.42 | 146825.5 | 156999.8 | 176486.6 | 306201.9 | 528606.7 |
| 2 | 35596.41 | 44267.23 | 39300.79 | 68665.35 | 67846.29 | 76191.1 | 135537 |
| 3 | 17574.43 | 15269.31 | 20979.48 | 21741.97 | 43044.94 | 34030.08 | 39815.04 |
| 4 | 25745.11 | 8627.413 | 7264.829 | 10413.93 | 10848.69 | 22538.95 | 17831.11 |
| 5 | 7912.507 | 12439.1 | 3674.602 | 3101.683 | 4902.007 | 4531.009 | 11984.87 |
| 6 | 2401.383 | 3876.934 | 5886.401 | 1621.651 | 1541.791 | 2109.065 | 2450.629 |
| 7 | 1387.141 | 1287.04 | 1673.211 | 2343.732 | 817.3766 | 783.4443 | 1003.651 |
| 8 | 2428.429 | 1603.59 | 1182.398 | 633.3986 | 1332.351 | 890.2479 | 759.3782 |


| Year / Age | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 266998.9 | 343176.4 | 394352.3 | 252205.6 | 291268.3 | 160011.3 | 340782.6 |
| 2 | 209190.4 | 110414.9 | 150843.8 | 167879.2 | 96761.07 | 135401.5 | 71825.87 |
| 3 | 73570.54 | 114233.5 | 57930.54 | 75659.63 | 93807.49 | 50312.06 | 72765.7 |
| 4 | 22719.98 | 43870.61 | 58162.73 | 29732.62 | 43521.05 | 49711.92 | 24440.58 |
| 5 | 11432.32 | 13637.79 | 23599.95 | 29673.21 | 17520.03 | 22948.32 | 26081.98 |
| 6 | 7622.045 | 6687.531 | 7524.352 | 12842.3 | 17066.97 | 9884.271 | 11766.36 |
| 7 | 1612.756 | 4243.315 | 3588.896 | 4189.765 | 7786.136 | 9178.325 | 5356.146 |
| 8 | 1054.371 | 1685.808 | 3142.268 | 3724.918 | 4451.961 | 6408.625 | 9277.988 |
| Year / Age | 2015 | 2016 | 2017 | 2018 |  |  |  |
| 1 | 378889.5 | 208772.4 | 192528.6 | 333700.8 |  |  |  |
| 2 | 137447.9 | 182955.8 | 99111.43 | 96857.88 |  |  |  |
| 3 | 39026.65 | 77419.97 | 111190.5 | 66237.36 |  |  |  |
| 4 | 40134.84 | 23647.2 | 44134.63 | 73570.54 |  |  |  |
| 5 | 14033.46 | 22925.38 | 10511.24 | 27173.57 |  |  |  |
| 6 | 16079.49 | 9018.2 | 14298.36 | 6197.492 |  |  |  |
| 7 | 6723.741 | 8580.093 | 5092.886 | 9824.161 |  |  |  |
| 8 | 8058.639 | 7752.728 | 8568.946 | 6461.392 |  |  |  |

Table 7.6.3.15 Irish Sea Herring. PREDICTED CATCH NUMBERS AT AGE

Units : NA
<0 x 0 matrix>

Table 7.6.3.16 Irish Sea Herring. CATCH AT AGE RESIDUALS

```
Units : NA
<0 x 0 matrix>
```

Table 7.6.3.18 Irish Sea Herring. PREDICTED INDEX AT AGE Fleet 1

Units : NA

| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3139.253 | 3588.322 | 3801.42 | 3012.634 | 2122.437 | 2788.503 | 3487.254 |
| 2 | 12504.83 | 15783.18 | 16854.28 | 16634.76 | 13981.36 | 9916.249 | 12678.84 |
| 3 | 7913.932 | 4537.947 | 7218.915 | 8634.318 | 10464.25 | 11387.25 | 6665.365 |
| 4 | 6554.453 | 2880.531 | 2136.299 | 4141.528 | 5816.71 | 7987.715 | 7467.309 |
| 5 | 1006.103 | 2422.875 | 854.204 | 801.961 | 2363.077 | 4085.993 | 4420.862 |
| 6 | 770.9242 | 453.5067 | 1342.193 | 553.9808 | 560.5957 | 1869.04 | 2885.461 |
| 7 | 334.4542 | 309.012 | 155.0473 | 270.3264 | 213.973 | 418.1332 | 1386.558 |
| 8 | 219.1705 | 249.5876 | 285.0544 | 122.2612 | 497.4773 | 790.7248 | 803.1568 |
| Year / Age | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| 1 | 4509.673 | 1984.595 | 2604.536 | 2309.07 | 1473.108 | 4706.736 | 1231.231 |
| 2 | 15055.67 | 20972.77 | 8451.676 | 12370.75 | 10364.79 | 6539.788 | 20165.93 |
| 3 | 7628.221 | 10073.26 | 13953.42 | 5702.557 | 7789.952 | 6165.719 | 3499.306 |
| 4 | 3957.39 | 4745.917 | 5540.389 | 9046.199 | 3537.693 | 5000.784 | 3415.195 |
| 5 | 4368.435 | 2577.435 | 2446.785 | 3306.912 | 5961.873 | 2593.102 | 3168.869 |
| 6 | 2883.73 | 2945.989 | 1447.452 | 1441.097 | 1913.616 | 4047.157 | 1635.379 |
| 7 | 2378.678 | 2907.416 | 2085.388 | 1061.523 | 803.9523 | 929.9306 | 2100.037 |


| 8 | 1424.833 | 2697.471 | 1782.781 | 1544.615 | 844.9944 | 559.3078 | 871.2161 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year / Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
| 1 | 3189.534 | 2719.709 | 1822.237 | 2644.851 | 3384.969 | 1503.574 | 1465.073 |
| 2 | 6418.245 | 18299.52 | 13771.13 | 10115.66 | 11923.54 | 16737.55 | 6579.934 |
| 3 | 11319.48 | 3127.033 | 9386.99 | 5772.959 | 3558.983 | 5600.438 | 8819.32 |
| 4 | 1935.517 | 5934.868 | 1625.336 | 5375.194 | 3100.845 | 1827.803 | 3337.275 |
| 5 | 2301.002 | 1278.113 | 4037.173 | 1163.77 | 3486.906 | 1587.729 | 1018.871 |
| 6 | 1884.146 | 1299.39 | 741.6222 | 2188.453 | 683.933 | 1719.708 | 720.3376 |
| 7 | 1019.023 | 1043.818 | 945.3261 | 687.8495 | 1703.108 | 371.8795 | 431.6133 |
| 8 | 1948.373 | 1467.917 | 1491.041 | 1447.597 | 522.2467 | 634.1148 | 234.6347 |
| Year / Age | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| 1 | 1951.669 | 1404.491 | 2535.13 | 2869.032 | 3400.372 | 6036.442 | 10691.67 |
| 2 | 7150.088 | 8265.372 | 6680.446 | 11187.36 | 10984.28 | 11836.82 | 19465.91 |
| 3 | 3686.6 | 3031.491 | 4088.854 | 4215.696 | 8067.589 | 6026.49 | 6389.428 |
| 4 | 6477.501 | 2153.005 | 1806.235 | 2446.638 | 2418.251 | 4549.534 | 3125.283 |
| 5 | 1977.76 | 3011.098 | 875.0053 | 712.8065 | 1085.016 | 929.3264 | 2162.348 |
| 6 | 645.9809 | 1039.838 | 1571.287 | 400.9032 | 368.021 | 477.4455 | 504.9402 |
| 7 | 462.6635 | 435.8334 | 916.6356 | 842.6739 | 264.2697 | 229.2172 | 169.8117 |
| 8 | 810.1343 | 543.1416 | 647.8764 | 227.764 | 430.7165 | 260.4576 | 128.4809 |


| Year / Age | 2008 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5423.03 | 7816.952 | 4905.636 | 5485.92 | 2992.337 | 6273.126 | 6552.684 |
| 2 | 27998.33 | 19110.06 | 20820.64 | 11984.75 | 17094.46 | 9136.658 | 17495.69 |
| 3 | 10949.84 | 8024.142 | 10235.73 | 12499.7 | 6594.953 | 9276.875 | 4906.764 |
| 4 | 3703.635 | 8802.667 | 4472.309 | 6547.247 | 7296.791 | 3516.003 | 5970.524 |
| 5 | 1941.061 | 3543.995 | 4208.662 | 2361.849 | 2861.382 | 2979.349 | 1540.327 |
| 6 | 1489.313 | 1291.242 | 2117.031 | 2738.348 | 1515.848 | 1719.193 | 2339.354 |
| 7 | 282.8566 | 351.8623 | 566.2468 | 1139.232 | 734.5955 | 509.1537 | 1043.004 |
| 8 | 184.8103 | 308.1541 | 503.4629 | 651.3779 | 512.8995 | 881.9188 | 1250.251 |
| Year / Age | 2016 | 2017 | 2018 |  |  |  |  |
| 1 | 3543.11 | 3257.32 | 5703.641 |  |  |  |  |
| 2 | 23618.84 | 13407.51 | 13914.68 |  |  |  |  |
| 3 | 9580.068 | 14269.22 | 8991.905 |  |  |  |  |
| 4 | 3537.304 | 6402.732 | 10779.48 |  |  |  |  |
| 5 | 2403.569 | 1067.346 | 2796.265 |  |  |  |  |
| 6 | 1231.121 | 1804.358 | 759.7124 |  |  |  |  |
| 7 | 917.6261 | 366.7755 | 239.1043 |  |  |  |  |
| 8 | 829.033 | 617.0685 | 157.2458 |  |  |  |  |

Table 7.6.3.19 Irish Sea Herring. INDEX AT AGE RESIDUALS Fleet 1

| Units : N |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| year |  |  |  |  |  |  |  |
| Year / Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 1 | 0.740459 | 0.407608 | 0.350534 | -0.99795 | -0.71246 | -0.16465 | 0.301742 |
| 2 | 1.78992 | 0.001082 | -0.12419 | -0.77564 | -1.25478 | 0.033173 | 0.459891 |
| 3 | 2.2347 | -0.86517 | -0.59816 | -1.07322 | -0.91328 | 1.04091 | 0.27961 |
| 4 | 0.649561 | -0.07908 | 0.015832 | -0.95186 | -1.02782 | 1.26034 | 0.335337 |
| 5 | 1.5618 | -0.12006 | -2.19404 | -1.35874 | -0.14304 | 1.30883 | 0.055238 |
| 6 | 0.382602 | -0.7334 | -0.43818 | -0.31153 | -0.897 | 0.806283 | 0.237242 |
| 7 | 0.169801 | -0.14649 | -0.23552 | -0.13464 | 0.156572 | 1.07731 | 0.125378 |
| 8 | 0.111272 | -0.09037 | 0.663205 | -1.68087 | -0.08731 | -0.20338 | 0.20291 |
| Year / Age | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| 1 | -0.84271 | 0.325391 | -0.96894 | 0.002033 | 0.364145 | 1.13074 | -0.76936 |
| 2 | -0.36721 | 0.032535 | -0.6945 | 0.091238 | -0.15042 | 0.127393 | -0.7938 |
| 3 | -0.53508 | 0.696217 | -0.36548 | 0.010161 | -0.35745 | 0.222031 | -0.3747 |
| 4 | -0.68762 | 1.01813 | -0.40321 | 0.172048 | -0.55015 | 0.720764 | -0.30703 |
| 5 | -0.10173 | 1.3413 | -0.6128 | 0.194629 | -0.37474 | 0.525164 | -0.20216 |
| 6 | -0.08699 | 1.25877 | -0.32914 | 0.327623 | -0.5726 | 0.543348 | -0.04181 |
| 7 | -0.04968 | 0.244156 | -0.67111 | -0.04283 | -0.25762 | 0.249164 | 0.087276 |
| 8 | 0.367648 | 1.02856 | 0.213904 | 0.102795 | -0.08338 | -0.81996 | -0.0623 |
| Year / Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |  |
| 1 | -0.57477 | 0.195474 | 1.2814 | 1.53167 | -0.11689 | 0.221256 |  |
| 2 | 0.215608 | 0.37952 | 0.597581 | 1.85427 | -0.00928 | 0.028159 |  |
| 3 | 0.178419 | 0.200702 | 0.096774 | 0.668589 | 0.210686 | 0.144126 |  |
| 4 | -0.14426 | -0.29474 | -0.83536 | 0.771938 | 0.894646 | -0.38286 |  |
| 5 | 0.251458 | -0.1474 | -0.26248 | 0.792737 | 1.49766 | -0.16676 |  |
| 6 | 0.254599 | -0.27374 | 0.116398 | 0.095553 | 0.944574 | 0.335608 |  |
| 7 | 0.522406 | -0.27628 | 0.037932 | 0.461 | 0.42654 | 0.408907 |  |
| 8 | 0.049917 | -0.02515 | -0.20545 | -0.02498 | -0.33835 | -0.04451 |  |


| Year / Age | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.21738 | 0.392896 | -2.45733 | -1.54538 | 0.13951 | 1.11952 | -0.07492 |
| 2 | -1.39717 | 1.17116 | 0.216672 | -0.87401 | -0.58522 | 0.597274 | 0.627996 |
| 3 | -1.00695 | 1.6409 | -1.16493 | -0.49731 | 0.615471 | 0.665582 | 0.762126 |
| 4 | -1.18887 | 1.73478 | -0.35433 | 0.862808 | -0.30747 | 0.760157 | 0.813293 |
| 5 | -1.38897 | 1.24038 | -0.52811 | 0.018368 | -0.31066 | 0.623938 | 0.818279 |
| 6 | -1.68495 | 0.855503 | -0.20117 | 1.44923 | -1.45895 | 0.277138 | 0.546229 |
| 7 | -1.25053 | 0.784278 | 0.193662 | -0.11516 | -0.51867 | 0.2302 | 0.308365 |
| 8 | -1.0787 | -0.02042 | -1.10105 | -0.15795 | -1.34751 | -0.36304 | -0.13173 |
| Year / Age | 2007 | 2008 | 2010 | 2011 | 2012 | 2013 | 2014 |
| 1 | 0.764219 | 0.596152 | 0.243598 | 0.499053 | -0.94175 | 0.312647 | 1.75758 |
| 2 | -0.15418 | -0.96357 | -0.20008 | -0.41649 | -0.53306 | 0.250777 | 0.11399 |
| 3 | -0.61723 | -0.94152 | -0.45443 | -0.32305 | -0.05058 | 0.088908 | -0.39257 |
| 4 | -1.57448 | -0.78646 | -0.86768 | -0.28759 | 0.478929 | -0.23697 | -1.401 |
| 5 | -1.64031 | 0.161711 | -0.23554 | -0.31532 | 0.598163 | 0.031732 | -1.21565 |
| 6 | -1.01645 | 0.386553 | -0.76951 | -0.43791 | 0.328921 | -0.06772 | -1.33458 |
| 7 | -0.76282 | 0.341595 | 0.115941 | 0.455996 | 0.770516 | -0.37272 | -0.5053 |
| 8 | -0.33738 | 0.35975 | -1.1771 | -0.39084 | 0.0022 | -0.86844 | -0.13997 |
| Year / Age | 2015 | 2016 | 2017 | 2018 |  |  |  |
| 1 | -1.64218 | -0.55981 | -0.51682 | 0.402246 |  |  |  |
| 2 | -0.31374 | -0.53057 | -0.10635 | 1.23417 |  |  |  |
| 3 | -0.03394 | -1.1622 | -0.34395 | 1.37354 |  |  |  |
| 4 | 0.523569 | 0.691716 | -0.9251 | 0.339657 |  |  |  |
| 5 | 0.106348 | -0.36706 | -1.29443 | 0.339783 |  |  |  |
| 6 | 1.39139 | 0.330904 | -1.21627 | -0.79608 |  |  |  |
| 7 | 1.09693 | -0.05502 | 0.654036 | 1.13455 |  |  |  |
| 8 | -0.27035 | -0.20361 | 0.022073 | -2.64322 |  |  |  |

Table 7.6.3.20 Irish Sea Herring. PREDICTED INDEX AT AGE Fleet 2

| Year / Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 185090.5 | 151812.3 | 98380.71 | 143028.6 | 191262.1 | 88468.34 | 90327.75 |
| 2 | 47164.65 | 122700.3 | 85093 | 60500.08 | 78503.62 | 122149.4 | 52881.03 |
| 3 | 62855.9 | 16742.24 | 49148.42 | 29413.23 | 18392.53 | 30224.25 | 49816.42 |
| 4 | 9903.366 | 29810.02 | 7886.281 | 24006.98 | 13232.48 | 7884.152 | 14331.71 |
| 5 | 9593.586 | 5210.338 | 15938.93 | 4375.342 | 12861.33 | 6200.902 | 4237.209 |
| 6 | 7202.763 | 4936.639 | 2752.432 | 7953.282 | 2446.295 | 6274.882 | 2751.799 |
| 7 | 3417.279 | 3549.919 | 2412.406 | 966.0156 | 3409.088 | 1238.108 | 3143.336 |
| 8 | 6533.839 | 4992.24 | 3805.033 | 2033.004 | 1045.364 | 2111.175 | 1708.772 |
| Year / Age | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| 1 | 125316.8 | 94968.45 | 168771.3 | 180232 | 202359.3 | 350950.3 | 605918 |
| 2 | 57907.37 | 73123.13 | 66171.16 | 116611.1 | 115254.7 | 130378.9 | 234849.5 |
| 3 | 20375.53 | 17933.04 | 24738.1 | 25670.56 | 51184.91 | 40949.71 | 48800.7 |
| 4 | 25752.84 | 8655.411 | 7295.989 | 10632.71 | 11236.58 | 23918.32 | 19492.6 |
| 5 | 8076.792 | 12815.49 | 3804.006 | 3241.917 | 5173.89 | 4873.268 | 13250.49 |
| 6 | 2403.281 | 3884.735 | 5904.441 | 1666.449 | 1600.162 | 2220.128 | 2642.023 |
| 7 | 1284.699 | 1183.688 | 1075.617 | 2091.8 | 767.4244 | 765.5925 | 1132.723 |


| 8 | 2249.538 | 1475.128 | 760.2368 | 565.3811 | 1250.789 | 869.9276 | 857.0275 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year / Age | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| 1 | 306048.8 | 393446.4 | 452118.7 | 289207.6 | 334302 | 183689.1 | 391171 |
| 2 | 366333.7 | 194172.1 | 266305.7 | 297241.4 | 171287.7 | 239043.3 | 126677.5 |
| 3 | 91253.81 | 142528.9 | 72634.84 | 95187.13 | 118302.5 | 63595.63 | 92327.75 |
| 4 | 25182.38 | 48917.97 | 65231.65 | 33382.93 | 48849.53 | 55999.61 | 27628.41 |
| 5 | 12783.75 | 15414.59 | 26932.8 | 34152.81 | 20322.42 | 26900.5 | 30878.02 |
| 6 | 8318.357 | 7394.561 | 8425.01 | 14480.53 | 19338.05 | 11283.09 | 13532.24 |
| 7 | 1809.471 | 4983.81 | 4357.44 | 4901.517 | 9004.502 | 11337.83 | 6521.502 |
| 8 | 1182.268 | 1979.639 | 3816.16 | 4358.094 | 5148.496 | 7916.227 | 11295.96 |
| Year / Age | 2015 | 2016 | 2017 | 2018 |  |  |  |
| 1 | 435652.4 | 240073.4 | 221460.6 | 383540.3 |  |  |  |
| 2 | 242292.3 | 322223.3 | 173268.9 | 167946.4 |  |  |  |
| 3 | 49632.44 | 98567.81 | 140899.2 | 83333.01 |  |  |  |
| 4 | 45152.46 | 26587.59 | 49826.39 | 82900.8 |  |  |  |
| 5 | 16695.76 | 27413.75 | 12608.42 | 32552.19 |  |  |  |
| 6 | 18503.03 | 10476.4 | 16785.15 | 7302.85 |  |  |  |
| 7 | 7702.344 | 10324.14 | 6338.516 | 12774.55 |  |  |  |
| 8 | 9232.914 | 9327.385 | 10664.01 | 8401.033 |  |  |  |

## Table 7.6.3.21 Irish Sea Herring. INDEX AT AGE RESIDUALS Fleet 2

| Units : |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| year |  |  |  |  |  |  |  |
| Year / Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
| 1 | -1.07903 | 0.786881 | -2.28842 | -0.06786 | -0.58167 | 0.612656 | -0.1483 |
| 2 | 0.605701 | -0.65436 | -1.14096 | -0.31272 | -1.72765 | -0.73987 | 1.09797 |
| 3 | 0.25665 | -0.55385 | 0.518473 | -1.12249 | -1.3454 | 0.193509 | 1.22468 |
| 4 | 0.295038 | -0.03126 | 0.207785 | -1.2794 | -0.58307 | -0.71025 | 1.069 |
| 5 | -0.05103 | -0.21314 | 0.829988 | -1.49859 | -1.12199 | 0.824006 | 1.05464 |
| 6 | 0.063747 | -0.4656 | 0.562736 | -0.75515 | -0.43198 | 1.03931 | 0.920656 |
| 7 | 0.16738 | 0.432753 | 1.21327 | -0.71182 | -0.56012 | 0.33525 | 0.600751 |
| 8 | 0.592043 | 0.436963 | 0.574169 | -0.0845 | -0.39643 | 1.47776 | 0.43655 |
| Year / Age | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| 1 | 1.19582 | 1.4989 | 0.770237 | 0.307782 | -0.80847 | 0.069496 | 0.822046 |
| 2 | 0.782232 | -0.02686 | 1.96598 | -0.01523 | -0.07726 | -0.49031 | 0.110687 |
| 3 | -1.13324 | 0.93224 | 0.420328 | 0.232648 | 1.04795 | -1.57653 | -0.07662 |
| 4 | -0.63324 | 1.72281 | -0.70748 | 0.605946 | 0.679726 | -1.42995 | 0.129735 |
| 5 | -0.07733 | 1.46002 | 0.049577 | -0.73648 | 0.71908 | -3.63053 | 0.739287 |
| 6 | -0.7589 | 1.81355 | -0.49739 | 0.435626 | -0.9217 | -2.42944 | -1.06845 |
| 7 | -0.97329 | 1.14416 | -0.13018 | -2.9425 | -0.31748 | -0.63769 | -0.61721 |
| 8 | 0.008075 | 1.49816 | 0.237464 | -1.16002 | 2.07779 | -0.83639 | -0.58579 |
| Year / Age | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| 1 | 0.467119 | -0.0616 | 0.264905 | 2.00891 | 0.104834 | -0.64378 | -0.2822 |
| 2 | 0.345135 | -0.10019 | 1.21992 | 0.171917 | 0.185942 | 0.289182 | 0.691317 |
| 3 | 0.367158 | 0.361933 | 0.78978 | -1.26805 | 0.504002 | 0.407999 | 0.526212 |
| 4 | 0.718992 | 1.04671 | 1.00801 | -1.31143 | 0.082036 | -0.04902 | 0.117848 |
| 5 | 1.18482 | 1.22011 | 0.396914 | -0.72747 | 0.103021 | 0.695718 | 0.544061 |
| 6 | 0.972642 | 0.963943 | 0.931055 | -1.125 | -0.00372 | 0.236922 | 0.335816 |
| 7 | 1.15726 | 1.39247 | -0.00668 | -0.79977 | 0.400579 | -0.02481 | 0.250668 |
| 8 | -0.92049 | 1.68467 | 0.711154 | $-1.0825$ | -0.67462 | -0.21055 | 0.135055 |


| Year / Age | 2015 | $\mathbf{2 0 1 6}$ | 2017 | 2018 |
| :---: | :--- | :--- | :--- | :--- |
| 1 | 0.128627 | -0.63743 | -1.75663 | -0.50611 |
| 2 | -0.87602 | 0.544119 | -1.07818 | -0.54077 |
| 3 | -1.1122 | 1.56915 | -0.4959 | -0.44909 |
| 4 | -1.59669 | 2.32655 | 0.204908 | 0.475725 |
| 5 | -0.78404 | 0.264898 | -0.55042 | -0.15811 |
| 7 | -0.98263 | 0.756009 | 0.257192 | 0.061986 |
| 8 | -1.90202 | -0.31897 | -0.49574 | -0.64618 |
| 7 | -0.38051 | 0.134627 | -0.68824 |  |

Table 7.6.3.22 Irish Sea Herring. PREDICTED INDEX AT AGE Fleet 3
Units : NA

| Year / Age | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 19584.62 | 25074.33 | 25039.25 | 26542.43 | 26857.49 | 24103.2 | 22015.46 |
| Year / Age | 2014 | 2015 | 2016 | 2017 | 2018 |  |  |
| 8 | 23668.49 | 22086.02 | 24374.68 | 22941.44 | 22018.1 |  |  |

Table 7.6.3.23 Irish Sea Herring. INDEX AT AGE RESIDUALS Fleet 3

| Units : NA |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| year |  |  |  |  |  |  |  |
| Year / Age | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 8}$ | $\mathbf{2 0 0 9}$ | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 1 1}$ | $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 3}$ |
| 8 | 1.40362 | 0.812138 | 1.77176 | 1.95493 | 1.32038 | 1.21793 | 2.60072 |
| Year / Age | $\mathbf{2 0 1 4}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 8}$ |  |  |
| 8 | 0.288037 | 1.58879 | 1.76184 | 0.944197 | 0.902875 |  |  |

Table 7.6.3.25 Irish Sea Herring. FIT PARAMETERS

|  | name | value | std.dev |
| :---: | :---: | :---: | :---: |
| 1 | logFpar | 0.74855 | 0.22053 |
| 2 | logFpar | 0.97627 | 0.16771 |
| 3 | logFpar | 0.62531 | 0.17124 |
| 4 | logFpar | 0.51233 | 0.16253 |
| 5 | logSdLogFsta | -1.8965 | 0.57726 |
| 6 | logSdLogFsta | -1.9814 | 0.32321 |
| 7 | logSdLogFsta | $-2.0027$ | 0.46105 |
| 8 | logSdLogFsta | -0.55843 | 0.20587 |
| 9 | $\operatorname{logSdLogN}$ | $-1.4842$ | 0.25548 |
| 10 | logSdLogObs | -0.17635 | 0.14484 |
| 11 | $\operatorname{logSdLogObs}$ | -0.90691 | 0.12719 |
| 12 | $\operatorname{logSdLogObs}$ | -0.83591 | 0.10832 |
| 13 | logSdLogObs | -0.05752 | 0.1609 |
| 14 | logSdLogObs | -0.49248 | 0.079939 |
| 15 | $\operatorname{logSdLogObs}$ | -0.30198 | 0.0977 |

## Table 7.6.3.26 Irish Sea Herring. NEGATIVE LOG-LIKELIHOOD

530.852

Table 7.7.1. Herring in Division 7.a North (Irish Sea). Input data for short-term forecast.

| 2019 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 1 | 300739.6 | 0.787 | 0.083333 | 0.9 | 0.75 | 0.062 | 0.024816 | 0.062 |
| 2 | 148157.8 | 0.38 | 0.776667 | 0.9 | 0.75 | 0.097 | 0.177433 | 0.097 |
| 3 | 54870.66 | 0.353 | 0.986667 | 0.9 | 0.75 | 0.122333 | 0.165759 | 0.122333 |
| 4 | 39077.52 | 0.335 | 1 | 0.9 | 0.75 | 0.138333 | 0.188944 | 0.138333 |
| 5 | 43596.59 | 0.315 | 1 | 0.9 | 0.75 | 0.151 | 0.127568 | 0.151 |
| 6 | 17460.32 | 0.311 | 1 | 0.9 | 0.75 | 0.158 | 0.161145 | 0.158 |
| 7 | 3895.912 | 0.304 | 1 | 0.9 | 0.75 | 0.161667 | 0.082517 | 0.161667 |
| 8 | 11677.59 | 0.304 | 1 | 0.9 | 0.75 | 0.181 | 0.082517 | 0.181 |
| 2020 |  |  |  |  |  |  |  |  |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 1 | 300739.6 | 0.787 | 0.083333 | 0.9 | 0.75 | 0.062 | 0.024816 | 0.062 |
| 2 | - | 0.38 | 0.776667 | 0.9 | 0.75 | 0.097 | 0.177433 | 0.097 |
| 3 | - | 0.353 | 0.986667 | 0.9 | 0.75 | 0.122333 | 0.165759 | 0.122333 |
| 4 | - | 0.335 | 1 | 0.9 | 0.75 | 0.138333 | 0.188944 | 0.138333 |
| 5 | - | 0.315 | 1 | 0.9 | 0.75 | 0.151 | 0.127568 | 0.151 |
| 6 | - | 0.311 | 1 | 0.9 | 0.75 | 0.158 | 0.161145 | 0.158 |
| 7 | - | 0.304 | 1 | 0.9 | 0.75 | 0.161667 | 0.082517 | 0.161667 |
| 8 | - | 0.304 | 1 | 0.9 | 0.75 | 0.181 | 0.082517 | 0.181 |
| 2021 |  |  |  |  |  |  |  |  |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 1 | 300739.6 | 0.787 | 0.083333 | 0.9 | 0.75 | 0.062 | 0.024816 | 0.062 |
| 2 | - | 0.38 | 0.776667 | 0.9 | 0.75 | 0.097 | 0.177433 | 0.097 |
| 3 | - | 0.353 | 0.986667 | 0.9 | 0.75 | 0.122333 | 0.165759 | 0.122333 |
| 4 | - | 0.335 | 1 | 0.9 | 0.75 | 0.138333 | 0.188944 | 0.138333 |
| 5 | - | 0.315 | 1 | 0.9 | 0.75 | 0.151 | 0.127568 | 0.151 |
| 6 | - | 0.311 | 1 | 0.9 | 0.75 | 0.158 | 0.161145 | 0.158 |
| 7 | - | 0.304 | 1 | 0.9 | 0.75 | 0.161667 | 0.082517 | 0.161667 |
| 8 | - | 0.304 | 1 | 0.9 | 0.75 | 0.181 | 0.082517 | 0.181 |

Table 7.7.2. Herring in Division 7.a North (Irish Sea). Management options table.

| Rationale | Fbar (2019) | Catch (2019) | SSB (2019) | Fbar (2020) | Catch (2020) | SSB (2020) | SSB (2021) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.218704 | 6896 | 23247.28 | 0 | 0 | 27725.76 | 28137.48 |
| 1 | 0.218704 | 6896 | 23247.28 | 0.1 | 3265.306 | 25408.68 | 26053.54 |
| 1 | 0.218704 | 6896 | 23247.28 | 0.2 | 6242.902 | 23296.36 | 24167.12 |
| 1 | 0.218704 | 6896 | 23247.28 | 0.3 | 8960.642 | 21370.23 | 22458.45 |
| 1 | 0.218704 | 6896 | 23247.28 | 0.4 | 11443.6 | 19613.45 | 20909.76 |
| 1 | 0.218704 | 6896 | 23247.28 | 0.5 | 13714.34 | 18010.74 | 19505.1 |
| 1 | 0.218704 | 6896 | 23247.28 | 0.6 | 15793.2 | 16548.19 | 18230.14 |
| 1 | 0.218704 | 6896 | 23247.28 | 0.7 | 17698.47 | 15213.17 | 17072 |
| 1 | 0.218704 | 6896 | 23247.28 | 0.8 | 19446.65 | 13994.23 | 16019.12 |
| 1 | 0.218704 | 6896 | 23247.28 | 0.9 | 21052.59 | 12880.95 | 15061.11 |
| 1 | 0.218704 | 6896 | 23247.28 | 1 | 22529.7 | 11863.86 | 14188.62 |
| 1 | 0.218704 | 6896 | 23247.28 | 1.1 | 23890.03 | 10934.36 | 13393.26 |
| 1 | 0.218704 | 6896 | 23247.28 | 1.2 | 25144.48 | 10084.62 | 12667.47 |
| 1 | 0.218704 | 6896 | 23247.28 | 1.3 | 26302.86 | 9307.549 | 12004.48 |
| 1 | 0.218704 | 6896 | 23247.28 | 1.4 | 27374.03 | 8596.675 | 11398.17 |
| 1 | 0.218704 | 6896 | 23247.28 | 1.5 | 28365.99 | 7946.126 | 10843.05 |
| 1 | 0.218704 | 6896 | 23247.28 | 1.6 | 29285.94 | 7350.56 | 10334.2 |
| 1 | 0.218704 | 6896 | 23247.28 | 1.7 | 30140.41 | 6805.119 | 9867.151 |
| 1 | 0.218704 | 6896 | 23247.28 | 1.8 | 30935.28 | 6305.384 | 9437.919 |
| 1 | 0.218704 | 6896 | 23247.28 | 1.9 | 31675.87 | 5847.335 | 9042.899 |
| 1 | 0.218704 | 6896 | 23247.28 | 2 | 32366.98 | 5427.314 | 8678.851 |



Figure 7.1.1 Herring in Division 7.a North (Irish Sea). Landings of herring from 7.a(N) from 1961 to 2018.


Figure 7.2.1 Herring in Division 7.a North (Irish Sea). Landings (catch-at-age) of herring from 7.a(N) from 1980 to 2018. No 2009 commercial samples.


Figure 7.3.1 Herring in Division 7.a North (Irish Sea). Density distribution of 1-ring and older herring (top left panel) for the 2018 acoustic survey; SSB (top right panel); 0-ring herring (bottom left panel) and sprat biomass (bottom right panel). Note: size of ellipses is proportional to square root of the fish density ( t n.mile ${ }^{-2}$ ) per 15-minute interval and the same scaling is used for all figures.


Figure 7.3.2 Herring in Division 7.a North (Irish Sea). Percentage length compositions of herring in each trawl sample in the September 2018 acoustic survey.


Figure 7.3.3 Herring in Division 7.a North (Irish Sea). Distribution plots for the 7.aNSpawn survey (2008-2018) (size of ellipses is proportional to square root of the fish density ( t n.mile ${ }^{-2}$ ) per 15-minute interval).


Figure 7.3.4 Herring in Division 7.a North (Irish Sea). Acoustic survey (AC(7.aN)) log mean-standardised indices by year and age class, scatter plots and catch curves.


Figure 7.3.5 Herring in Division 7.a North (Irish Sea). Comparison of SSB indices from the acoustic survey estimates of SSB (red line) and the later survey 7.aNSpawn (dotted line).


Figure 7.3.6 Herring in Division 7.a North (Irish Sea). Comparison of 1-ringer+ biomass estimates from acoustic survey with adjusted data ("winter spawners removed") and unadjusted data sets.


Figure 7.3.7 Herring in Division 7.a North (Irish Sea). Comparison of SSB biomass estimates from acoustic survey with adjusted data ("winter spawners removed") and unadjusted data sets.

Irish Sea herring timeseries of stock.wt


Figure 7.4.1 Herring in Division 7.a North (Irish Sea). Time series of catch weights at age.

ISH_assessment 2019 Diagnostics - Fleet 1, age 1


Figure 7.6.1 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to the catch data at age1.

ISH_assessment 2019 Diagnostics - Fleet 1, age 2


Figure 7.6.2 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to the catch data at age2.

ISH_assessment 2019 Dlagnostics - Fleet 1, age 3


Figure 7.6.3 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to the catch data at age3.

ISH_assessment 2019 Dlagnostics - Fleet 1, age 4


Figure 7.6.4 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to the catch data at age4.

ISH_assessment 2019 Dlagnostics - Fleet 1, age 5


Figure 7.6.5 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to the catch data at age5.


Figure 7.6.6 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to the catch data at age6.


Figure 7.6.7 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to the catch data at age7.


Figure 7.6.8 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to the catch data at age8.

ISH_assesament 2019 Dlagnostics - Fleet 2, age 1


Figure 7.6.9 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to acoustic survey (AC(7.aN)) data at age1.


Figure 7.6.10 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to acoustic survey (AC(7.aN)) data at age2.

ISH_assessment 2019 Dlagnostics - Fleat 2, age 3


Figure 7.6.11 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to acoustic survey (AC(7.aN)) data at age3.


Figure 7.6.12 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to acoustic survey ( $\mathrm{AC}(7 . a \mathrm{~N})$ ) data at age4.

ISH_assessment 2019 Dlagnostics - Fleat 2, age 5


Figure 7.6.13 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to acoustic survey (AC(7.aN)) data at age5.

ISH_assessment 2019 Dlagnostics - Fleet 2, age 6


Figure 7.6.14 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to acoustic survey (AC(7.aN)) data at age6.

ISH_assessment 2019 Dlagnostics - Fleet 2, age 7


Figure 7.6.15 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to acoustic survey (AC(7.aN)) data at age7.

ISH_assesament 2019 Dlagnostics - Fleet 2, age 8


Figure 7.6.16 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to acoustic survey ( $\mathrm{AC}(7 . a N)$ ) data at age8.

ISH_assesament 2019 Dlagnostics - Fleat 3, age 8


Figure 7.6.17 Herring in Division 7.a North (Irish Sea). FLSAM run output. Diagnostics of model fit to the SSB acoustic survey (SSB 7.aN)).


Figure 7.6.18 Herring in Division 7.a North (Irish Sea). FLSAM run output. Survey catchability parameter from the acoustic survey $A C(7 . a N)$.

## Selectivity of the Fishery by Pentad



Figure 7.6.19 Herring in Division 7.a North (Irish Sea). FLSAM run output. Selectivity of the fishery by pentad.


Figure 7.6.20 Herring in Division 7.a North (Irish Sea). Observation variances of all the data sources fitted in the FLSAM assessment model. The observation variance of 7.aNSpawn is fixed at 0.4


Figure 7.6.21 Herring in Division 7.a North (Irish Sea). Observation variances vs uncertainty of the data sources fitted in the FLSAM assessment model.

ISH_assessment 2019


Figure 7.6.22 Herring in Division 7.a North (Irish Sea). Stock trends from the final FLSAM run, with 95\% confidence intervals. Summary of estimates of spawning stock at spawning time, recruitment at 1-winter ring, mean F $_{4-6}$.

Uncertainties of key parameters


Figure 7.6.23 Herring in Division 7.a North (Irish Sea). Uncertainty of stock parameter estimates from the final FLSAM assessment. Rec = recruitment 1 winter ring.


Figure 7.6.24 Herring in Division 7.a North (Irish Sea). Analytical retrospective patterns (2018 to 2013) of SSB, recruitment and mean $\mathrm{F}_{4-6}$ from the final FLSAM assessment.


Figure 7.6.25 Herring in Division 7.a North (Irish Sea). Comparison of stock parameters between the 2018 (red line) and previous assessments.

## 8 Stocks with limited data

Three herring stocks have very little data associated with them and have been poorly described in recent reports. These are Clyde herring, part of Division 6.aN (Section 5.11 in ICES 2005a), herring in 7.e, f and herring in the Bay of Biscay (Subarea 8). In this section, only the time-series of landings are maintained.

### 8.1 Clyde herring

In 2011 under the provisions of the TAC and Quota Regulations (57/2011), the European Commission delegated the function of setting the TAC for certain stocks which are only fished by one Member State, to that Member State. This provision currently applies to herring in the Firth of Clyde with TAC setting responsibility delegated to Scotland. The stock is as such not an ICES stock with limited data, but it has been decided to continue to display the updated historical landings table for reasons of continuity. Since 1998 the agreed TAC for Clyde herring has never been reached. The TAC has been 583 t in 2018. No landings are reported in 2018 (Table 12.1).

### 8.2 Division 7.e,f

Figure 12.1 shows the time series of landings over the period 1974-2018 in Division 7.e and 7.f. Data are taken from the ICES historical and official nominal databases and adjusted, where possible, with data supplied by working group members.

Since 1999, landings in Division 7.e are stable and have fluctuated between 5 and 800 t except in 2008 where they reached more than 1000 t (Figure 12.1).

In Division 7.f, there was a pulse of landings in the late 1970s. Since then landings have fluctuated between 50 and 200 t in recent years, without any obvious trend. However, landings decreased in 2017 to 28 t and further down to 3 t in 2018 (Figure 12.1).

### 8.3 Subarea 8 (Bay of Biscay)

In the Bay of Biscay, French landings peaked at 1700 t in 1976, declining gradually to very low levels by the late 1980s. More recently there was a sudden peak pulse of Dutch landings of 8000 t in 2002, declining to low levels since (Figure 12.2, Table 12.3). Data before 2005 were taken from the FISHSTAT database, and data from Spain updated. Data for later years were adjusted, where possible, with data supplied by working group members and from ICES official and preliminary catch statistics.

| Year | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Catches |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 10530 | 15680 | 10848 | 3989 | 7073 | 14509 | 15096 | 9807 | 7929 | 9433 | 10594 | 7763 | 4088 | 4226 | 4715 |
| Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| All Catches |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 4061 | 3664 | 4139 | 4847 | 3862 | 1951 | 2081 | 2135 | 4021 | 4361 | 5770 | 4800 | 4650 | 3612 | 1923 |
| Year | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| Scotland | 2135 | 2184 | 713 | 929 | 852 | 608 | 392 | 598 | 371 | 779 | 16 | 1 | 78 | 46 | 88 |
| Other UK | - | - | - | - | 1 | - | 194 | 127 | 475 | 310 | 240 | 0 | 392 | 335 | 240 |
| Unallocated* | 208 | 75 | 18 | - | - | - | - | - | - | - | - | - | - | - | - |
| Discards | ** | ** | ** | ** | ** | ** | ** | - | - | - | - | - | - | - | - |
| Agreed TAC | 3200 | 2600 | 2900 | 2300 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
| Total | 2343 | 2259 | 731 | 929 | 853 | 608 | 586 | 725 | 846 | 1089 | 256 | 1 | 480 | 381 | 328 |
| Year | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| Scotland | - | - | + | 163 | 54 | 266 | - | 90 | 119 | 21 | 0 | 0 | 0 | 0 | 0 |
| Other UK | - | 318 | 512 | 458 | 622 | 488 | 301 | 111 | 184 | - | - | - | - | - | - |
| Unallocated* | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Discards | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Agreed TAC | 1000 | 1000 | 1000 | 800 | 800 | 800 | 720 | 720 | 720 | 648 | 648 | 583 | 583 | 583 | 583 |
| Total | 0 | 318 | 512 | 621 | 676 | 754 | 301 | 201 | 303 | 21 | 0 | 0 | 0 | 0 | 0 |

* Calculated from estimates of weight per box and in some years estimated by-catch in the sprat fishery.
** Reported to be at a low level, assumed to be zero, for 1989-1995.

Table 12.2. Stocks with limited data. Landings of herring in Divisions 7.e and 7.f. Source: ICES official landings database 2006-2016, national databases and ICES preliminary catch statistics 2017 and 2018.

| Division | Country | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017* | 2018* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 e | UK (Eng,Wal,NI,Scot,Guernsey) | 218 | 162 | 274 | 435 | 268 | 204 | 22 | 11 |
| 7 e | Denmark | - | - | - | - | - | - | - | - |
| 7 e | France | 486 | 278 | 7 | 314 | 3 | 1 | 1 | 380 |
| 7 e | Germany, Fed. Rep. Of | - | - | - | - | - | - | - | - |
| 7 e | Netherlands | 6 | - | - | 4 | 0 | - | - | - |
|  | Total | 710 | 440 | 275 | 753 | 271 | 205 | 23 | 391 |
| Division | Country | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017* | 2018* |
| 7 f | UK (Eng, Wal, Scot, NI) | 78 | 113 | 136 | 20 | 111 | 227 | 29 | 3 |
| 7f | Belgium | - | - | - | - | - | - | - | - |
| 7 f | France | 26 | - | - | - | - | - | - | - |
| 7 f | Netherlands | - | - | - | - | - | - | - | - |
| 7f | Poland | - | - | - | - | - | - | - | - |
|  | Total | 104 | 113 | 136 | 20 | 111 | 227 | 29 | 3 |

* Preliminary data

Table 12.3. Stocks with limited data. Landings of herring in Subarea 8.

| Country | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | $2017 *$ | $2018 *$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| France | 12 | 12 | 34 | 50 | 82 | 22 | 7 | 5 | 5 | 4 | 12 | 3 |
| Netherlands | 24 | 24 | 68 | 502 | 222 | - | - | - | - | - | - | - |
| Portugal | - | - | - | - | - | - | - | - | - | - | - | - |
| Spain | 120 | 131 | 55 | 38 | 54 | 2 | - | - | - | - | - | - |
| UK | 0 | 0 | - | - | - | - | - | - | - | - | - |  |
| Ireland | - | - | - | - | - | - | - | - | - | - | 1 | 1 |

* Preliminary data


Figure 12.1. Stocks with limited data. Landings over time of herring in divisions 7.e (upper panel) and 7.f (lower panel).


Figure 12.2. Stocks with limited data. Landings over time of herring in Subarea 8.

## 9 Sandeel in Division 3.a and Subarea 4

Larval drift models and studies on recruitment and growth differences have indicated that the assumption of a single stock unit in the area is invalid. As a result, the total stock is divided in several sub-populations (ICES, 2016, Figure 9.1.1), each of which is assessed by area specific assessments. Currently fishing takes place in five out of these seven areas (sandeel area (SA) 1r-3r, 4 and 6). Analytical stock assessments are currently carried out in SA 1-4, whereas SA 6 is managed under the ICES approach for data limited stocks (Category 5).

In 2010, the SMS-effort model was used for the first time to estimate fishing mortalities and stock numbers at age by half year, using data from 1983 to 2010. This model assumes that fishing mortality is proportional to fishing effort and is still used to assess sandeel in SAs 1r, 2r, 3r and 4.
Further information on the stock areas and assessment model can be found in the Stock Annex and in the benchmark report (ICES, 2016).

### 9.1 General

### 9.1.1 Ecosystem aspects

Sandeel in the North Sea can be divided into a number of more or less reproductively isolated sub-populations (see the Stock Annex). A decline in the sandeel population in several areas in recent years concurrent with a marked change in distribution has increased the concern about local depletion, of which there has been some evidence (ICES, 2007; ICES, 2008a, ICES 2016). Since 2010 this has been accounted for by dividing the North Sea and 3.a into seven management areas.
Local depletion of sandeel aggregations at a distance less than 100 km from seabird colonies may affect some species of birds, especially black-legged kittiwake and sandwich tern, whereas the more mobile marine mammals and fish are likely to be less vulnerable to local sandeel depletion.

The Stock Annex contains a comprehensive description of ecosystem aspects.

### 9.1.2 Fisheries

General information about the sandeel fishery can be found in the Stock Annex.
The size distribution of the Danish fleet has changed through time, with a clear tendency towards fewer and larger vessels (ICES, 2007). During the last fifteen years, the number of Danish vessels participating in the North Sea sandeel fishery has been stable with around 100 active vessels.

The same tendency has been seen for the Norwegian vessels towards fewer and larger vessels. In 2008, 42 vessels participated in the sandeel fishery, but in 201825 vessels participated in the fishery. From 2011 to 2018, the average GRT per vessel in the Norwegian fleet increased from 1100 to 1340 tonnes.

The rapid changes of the structure of the fleet that have occurred in the past may introduce more uncertainty in the assessment, as the fishing pattern and efficiency of the current fleet may differ from the previous fleet and the participation of fewer vessels has limited the spatial coverage of the fishery. This is to some degree accounted for in the stock assessments through the introduction of separate catchability periods.

The sandeel fishery in 2018 was opened 1 April and continued until the middle of July. In NEEZ the fishery opened 15 April and ended 23 June.

### 9.1.3 ICES Advice

ICES advised that the fishery in 2018 should be allowed only if the analytical stock assessment indicated that the stock would be above $B_{p a}$ by 2019 (Escapement strategy). This approach resulted in an advised TAC for 2018 in SA $1 \mathrm{r}, \mathrm{SA} 2 \mathrm{r}, \mathrm{SA} 3 \mathrm{r}$, and 4 of $134461 \mathrm{t}, 5000 \mathrm{t}$ (monitoring catch), 108365 t and 59345 t , respectively. Advised catches for SA5, SA6 and SA7 for 2018 and 2019 were based on data limited approaches and set at $0 t, 175 t$ and $0 t$, respectively.

### 9.1.4 Norwegian advice

Based on a recommendation from the Norwegian Institute for Marine Research, an opening TAC of 70000 tonnes for 2018 was given. The acoustic survey abundance estimate of age 1 was low, and the individual growth was also low, which together gave a low biomass estimate. Therefore, there was no increase in the final TAC. Fishery was allowed in the subareas 1b, 1c, 2a, 2c, 3a, 3b, 4a (see Stock Annex for area definitions).

### 9.1.5 Management

## Norwegian sandeel management plan

An Area Based Sandeel Management Plan for the Norwegian EEZ was fully implemented in 2011, but was also partly used in 2010 (see Stock Annex for details).

## Closed periods

From 2005 to 2007, the fishery in the Norwegian EEZ opened 1 April and closed again 23 June. In 2008, the ordinary fishery was stopped 2 June, and only a restricted fishery with five vessels continued. No fishery was allowed in 2009. From 2010 to 2014 the fishing season was 23 April-23 June, and from 2015 and onwards from 15 April to 23 June in the Norwegian EEZ.

Since 2005, Danish vessels have not been allowed to fish sandeel before 31 March and after 1 August.

## Closed areas

The Norwegian EEZ was only open for an exploratory fishery in 2006 based on the results of a three week RTM fishery. In 2007, no regular fishery was allowed north of $57^{\circ} 30^{\prime} \mathrm{N}$ and in the ICES rectangles 42F4 and 42F5 after the RTM fishery ended. In 2008, the ordinary fishery was closed except in ICES rectangles 42F4 and 44F4, and for five vessels only, the ICES rectangles 44F3, 45F3, 44F2 and 45F2 were open. The Norwegian EEZ was closed to fishery in 2009. In accordance with the Norwegian sandeel management plan, many of the Norwegian management subareas have been closed each year (see Stock Annex for details).

In the light of studies linking low sandeel availability to poor breeding success of kittiwake, there has been a moratorium on sandeel fisheries on Firth of Forth area along the U.K. coast since 2000. Note that a limited fishery for stock monitoring purposes occurs in May-June in this area.

### 9.1.6 Catch

## Adjustment of official catches

Previously, there has been substantial misreporting of catches between areas (ICES, 2015, 2016b (HAWG)). Since 2015, the Danish regulation has not allowed fishing in several stock areas on a single fishing trip. This eliminated the misreporting issue for Danish catches. However, German and Swedish catches were still high in the four rectangles, and an analysis of Swedish VMS for the years 2012 to 2015 indicated that misreporting had also occurred of Swedish catches in 2014 and 2015 (see HAWG 2017). Because of this, the working group decided to keep the practice from last year's assessment and reallocate reported catches (14781t) from rectangles 41F2, 41F3 and 41F4 to SA 1 in 2015. From 2016 onwards, no correction was made.

## Catch and trends in catches

Catch statistics for Division 4 are given by country in Table 9.1.1. Catch statistics and effort by assessment area are given in tables 9.1.2-9.1.7. Figure 9.1.1 shows the areas for which catches are tabulated.

The sandeel fishery developed during the 1970s, and catches peaked in 1997 and 1998 with more than 1 million t . Since 1983 the total catches have fluctuated between 1.2 million $t$ (1997) and 73420 t (2016) (Figure 9.1.3).

## Spatial distribution of catches

Yearly catches for the period 2000-2018 distributed by ICES rectangle are shown in Figure 9.1.2 (with no spatial adjustment of official catches distribution in 2014 and 2015). The spatial distribution is variable from one year to the next, however with common characteristics. The Dogger Bank area includes the most important fishing banks for SA 1r sandeel. The fishery in SA 3r has varied over time, primarily as a result of changes in regulations and very low abundance of sandeel on the northern fishing grounds.

Table 9.1.2 shows catch weight by area. There are large differences in the regional patterns of the catches. SAs 1 r and 3 r have consistently been the most important with regard to sandeel catches. On average, these areas together have contributed $\sim 75 \%$ of the total sandeel catches in the period since 1983.

The third most important area for the sandeel fishery is SA 2r. In the period since 2003 catches from this area contributed $\sim 17 \%$ of the total catches on average.

SA 4 has contributed about 5\% of the total catches since 1994, but there have been a few outstanding years with particular high catches (1994, 1996 and 2003 contributing 19, 17 and $20 \%$ of the total catches, respectively). In 2017 and 2018, the first non-monitoring fishery was advised in the area since 2011 with a total TAC of 54043 and 59345 t , respectively.

Several banks in the northern areas of Norwegian EEZ have not provided catches between 2001 and 2008. In this period, almost all catches from the Norwegian EEZ came from the Vestbank area (management area 3 in Figure 9.1.5).From 2010, catches have been taken mainly from the Norwegian management areas 1, 2 and 3, and from area 4 in 2016, 2017 and 2018.

## Effect of vessel size on CPUE

In order to avoid bias in effort introduced by changes in the average size of fishing vessels over time, the CPUEs are used to estimate a vessel standardization coefficient, $b$. The parameter $b$ was estimated using a mixed model for separate time periods. Because the model estimates the parameter from several years of data, the time series for the most recent period is updated for all years as the parameter $b$ is updated with the most recent data. More information can be found in the Stock Annex.

### 9.1.7 Sampling the catch

Sampling activity for commercial catches is shown in Table 9.1.8.

### 9.1.8 Survey indices

Abundance of sandeel is monitored by a Danish/Norwegian dredge survey (covering SA 1r-3r) and a Scottish dredge survey (SA 4) in November/December. See the Stock Annex for more details. An acoustic survey was carried out in Norwegian EEZ in April/May following the standard procedures described in the benchmark report (ICES, 2010a).
The dredge survey in 2018 was carried out as planned and nearly all planned positions were covered in accordance with the survey protocol without notable problems related to weather or other potentially obstructive factors in areas $1 r, 2 r$ and $3 r$. In area 4 , the northern part (Turbot bank) was not surveyed due to poor weather and hence the index only covers the Firth of Forth area. As this is the case for the majority of the time series, the lack of coverage is not expected to bias the index. The survey in area 1 r and 2 r was expanded to the south in 2017 , where new positions were visited south of $54^{\circ} \mathrm{N}$. Since 2017 two vessels were used to complete the survey. This was arranged to ensure that all positions can be visited within the 3 week period of the survey (note that new positions have been included gradually over time). All available data were included in the estimated dredge index by area.

### 9.2 Sandeel in SA $1 r$

### 9.2.1 Catch data

Total catch weight by year for SA 1 is given in tables 9.1.2-9.1.4. Catch numbers at age by half-year is given in Table 9.2.1.

In 2018, the proportion 2 -group was $81 \%$ by weight, corresponding to the very high catch of the 2016 cohort in the 2016 and 2017 dredge survey (Figure 9.2.1).

### 9.2.2 Weight at age

The methods applied to compile age-length-weight keys and mean weights at age in the catches and in the stock are described in the Stock Annex.

The mean weights at age observed in the catch are given in Table 9.2.2 and Figure 9.2.2 by half year. Mean weight at age in the first half year has generally decreased since 2017 to levels observed in 2014.

### 9.2.3 Maturity

Maturity estimates are obtained from the average observed in the Danish dredge survey in December as described in the Stock Annex. The values used are given in Table 9.2.3.

### 9.2.4 Natural mortality

In 2017, WGSAM provided updated estimates of natural mortality at age from multispecies modelling of southern sandeel (SMS, WGSAM 2017). The effect of using 3-year averages of these new values on historical development and stock recruitment relationship of the stock was evaluated by the working group in 2018 and it was decided that the effect on reference points was minor and all natural mortalities were therefore updated to the new values from WGSAM. The last value provided was used for all years following the latest data point. In later years, natural mortality has been historically high as a result of the increasing grey gurnard and mackerel stocks. More details are given in the Stock Annex and in WGSAM (2017). Natural mortalities are listed in Table 9.2.8.

### 9.2.5 Effort and research vessel data

## Trends in overall effort and CPUE

Tables 9.1.5-9.1.7 and Figure 9.2.3 show the trends in the international effort over years measured as number of fishing days standardized to a 200 GRT vessel. The standardization includes just the effect of vessel size, and does not take changes in efficiency into account. Total international standardized effort peaked in 2001, after which substantial effort reduction has taken place. Effort has fluctuated without a trend since 2006.

The average CPUE in the period 1994 to 2002 was around $60 t^{\text {tday }}$. In 2003, CPUE declined to the all-time lowest at $21 \mathrm{t}^{\text {day }}$. Since 2004, the CPUE has increased and reached the all-time highest ( $101 \mathrm{t}^{\text {-day }}$ ) in 2010 followed by progressively lower CPUEs ending with CPUEs in 2014 below long-term average. CPUE peaked again in 2016, but have decreased to levels below average in 2018.

## Tuning series used in the assessments

A commercial tuning series (RTM) describing the average catch in numbers at age per fishing day of a standard vessel in April/early May is used in the assessment. This time series was not updated in 2018 due to the low catches and hence low number of samples in this time period.

CPUE data from the dredge survey (Table 9.2.4 and Figure 9.2.5) in 2018 show a increase from the second lowest observed index for age 0 and a decreased index for the 1-group to levels seen before 2017.

The internal consistency, i.e. the ability of the survey to follow cohorts, (Figure 9.2.4) still shows a low correlation between the 0 -group and 1-group (i.e. $\mathrm{r}^{2}=0.22$ on log scales). This can be a result of highly variable total mortality.

### 9.2.6 Data analysis

Following the two latest Benchmark assessments (ICES, 2010, 2016) the SMS-effort model was used to estimate fishing mortalities and stock numbers at age by half year, using data from 1983 to 2018. In the SMS model, it is assumed that fishing mortality is proportional to fishing effort. For details about the SMS model and model settings, see the Stock Annex.

The diagnostics output from SMS are shown in Table 9.2.5. The seasonal effect on the relation between effort and F (" F , Season effect" in the table) is rather constant over the five year ranges used. The "age selection" ("F, age effect" in the table) shows a change in the fishery pattern where the fishery was mainly targeting the age $2+$ sandeel in the
beginning of the assessment period, to a fishery targeting age $1+$ in a similar way, and then in the most recent period back to mainly targeting $2+$ sandeel.

The CV of the dredge survey ("sqrt (Survey variance) $\sim \mathrm{CV}$ " in the table) is low (0.36) for age 0 and moderate ( 0.77 ) for age 1 . The survey residual plot (Figure 9.2.6) shows no clear patterns.

The CV of the RTM time series is moderate ( 0.57 and 0.59 , respectively) for age 1 and age 3 and low ( 0.41 ) for age 2 . The survey residual plot (Figure 9.2.6b) shows no clear patterns.
The model CV of catch at age ("sqrt(catch variance) $\sim$ CV", in Table 9.2.5 is low (0.341) for age 1 and age 2 in the first half of the year and moderate to high ( $>0.57$ ) for the remaining ages and season combinations. The catch at age residuals (Figure 9.2.7) show no alarming patterns, except for a tendency to positive residuals (observed catch is more than model catch) for age 1 in 2013-2017, followed by negative residuals in 2018.

The CV of the fitted Stock recruitment relationship (Table 9.2.5) is high (0.848), which is also indicated by the stock recruitment plot (Figure 9.2.8). The high CV of recruitment is probably due to biological characteristic of the stock (i.e. weak stock-recruitment relationship) and not so much due to the quality of the assessment. The a priori weight on likelihood contributions from SSR-R observations is therefore set low ( 0.05 in "objective function weight" in Table 9.2.5) such that SSB-R estimates do not contribute much to the overall likelihood and model fit.

The retrospective analysis (Figure 9.2.9) shows consistent assessment results from one year to the next except for SSB, where there seems to have been an overestimation in the previous assessments. It is likely that this is connected to the short period used for the latest exploitation pattern, a decision made under the benchmark to accommodate an intermediate period around 2009 with a significantly different exploitation pattern. The stability of F estimates is partly due to the assumed robust relationship between effort and F, which is rather insensitive to removal of a few years. Recruitment and SSB estimates show virtually no retrospective pattern in the last three years.

Uncertainties of the estimated SSB, F and recruitment (Figure 9.2.10) are in general small. The overall pattern with a lower F:effort ratio for older data indicates that the model assumption of no efficiency creeping is violated across periods but not within catchability periods.

### 9.2.7 Final assessment

The output from the assessment is presented in Tables 9.2 .6 (fishing mortality at age by year), 9.2.7 (fishing mortality at age by half year), 9.2.9 (stock numbers at age) and 9.2.10 (stock summary).

### 9.2.8 Historic Stock Trends

The stock summary (Figure 9.2.13 and Table 9.2.10) shows that SSB have been at or below Blim from 2004 to 2007 and again in 2014 and 2019. Since 2008, SSB has been above Blim but below $\mathrm{B}_{\mathrm{pa}}$ in 2008, 2010, 2013 and 2015, and below $\mathrm{B}_{\lim }$ in 2019. $\mathrm{F}_{(1-2)}$ is estimated to have been below the long-time average since 2010. Recruitment in 2017 was estimated to be the lowest observed in the time series, whereas 2018 show average recruitment.

### 9.2.9 Short-term forecasts

## Input

Input to the short term forecast is given in Table 9.2.11. Stock numbers in the TAC year are taken from the assessment for age 1 and older. Recruitment in 2019 is the geometric mean of the recruitment 1983-2017 (108 billion at age 0). The exploitation pattern and $\mathrm{F}_{\mathrm{sq}}$ is taken from the assessment values in 2018. However, as the SMS-model assumes a fixed exploitation pattern since 2010, the choice of years is not critical. Mean weight at age in the catch and in the sea is the average value for the years 2014-2018. Natural mortality is the fixed $M$ as applied in the assessment in final year. The Stock Annex gives more details about the forecast methodology.

## Output

The short term forecast (Table 9.2.12) shows that to obtain an SSB equal to MSY Btrigger, a TAC of 91916 t should be set for 2019. This will leave SSB at the MSY Btrigger of 145000 t in 2019 and predicted F below $\mathrm{F}_{\text {cap }}$ (0.5). The TAC according to the escapement strategy is therefore 91916 t in 2019.

### 9.2.10 Biological reference points

$B_{\text {lim }}$ is set at 110000 t and $\mathrm{B}_{\mathrm{pa}}$ at 145000 t . MSY $\mathrm{B}_{\text {trigger }}$ is set at $\mathrm{B}_{\mathrm{pa}}$.
Further information about biological reference points for sandeel in 1 can be found in the Stock Annex.

### 9.2.11 Quality of the assessment

The quality of the present assessment has improved compared to the combined assessment for the whole of the North Sea previously presented by ICES before 2010. This is mainly due to the fact that the present division of stock assessment areas better reflects the spatial stock structure and dynamics of sandeel. Addition of fishery independent data from the dredge survey has also improved the quality of the assessment. Together with the application of the statistical assessment model SMS-effort, this has removed the retrospective bias in F and SSB for the most recent years. The model provides rather narrow confidence limits for the model estimates of F, SSB and recruitment, but a poorer fit for the oldest data.

The model uses effort as basis for the calculation of F. The total international effort is derived from Danish CPUE and total international catches. Danish catches are by far the largest in the area, but effort data from the other countries could improve the quality of the assessment.

Abundance of the 1-group, which in most years dominates the catches, is estimated on the basis of the 0 -group index from the dredge survey in December of the preceding year. The model estimates a low variance on the survey index for age 0 . There are indications of a retrospective pattern in recent years as older fish do not seem to appear in the catches at the expected level. This pattern can be caused by uncertainty in the selection pattern when using a relatively short period to estimate this or unallocated mortality caused by e.g. overwintering mortality increasing when fish condition is low (van Deurs et al., 2011).

### 9.2.11.1 Status of the stock

The very high recruitment in 2016 and the restrictive $F$ below average in 2017 resulted in an SSB above $B_{p a}$ in 2018. As noted in last year's report (ICES, 2018), the introduction of a very low recruitment in 2018 combined with a decrease in mean weight at age led to a stock below MSY Blim and $B_{\text {trigger }}$ at the beginning of 2019.

### 9.2.12 Management Considerations

A management plan needs to be developed. The ICES approach for MSY based management of a short-lived species such as sandeel is the so-called escapement strategy, i.e. to maintain SSB above MSY B trigger after the fishery has taken place. Management strategy evaluations presented at the ICES WKMSYREF2 and WKMSYREF5 meetings (ICES, 2014a, 2017) indicated that the escapement-strategy is not sustainable for shortlived species, unless the strategy is combined with a ceiling ( $\mathrm{F}_{\text {cap }}$ ) on the fishing mortality. This means that if the TAC that comes out of the escapement strategy corresponds to an $F_{b a r}$ that exceeds $F_{\text {cap, }}$ then the escapement strategy should be disqualified and the TAC is instead determined based on a fishing mortality corresponding to $\mathrm{F}_{\text {cap }}$. $\mathrm{F}_{\text {cap }}$ for SA 1 r is 0.49 (ICES, 2017).

Based on the misreporting of catches as observed in 2014 and 2015, management measures to avoid area misreporting (only one fishing area per trip) have been mandatory for the Danish fishery since 2015. There are indications of area misreporting for other nations (e.g. Sweden) in 2015 but likely not in the most recent years. Similar management measures as used for the Danish fishery would reduce further the risk of misreporting for other nations as well.

Self-sampling on board the commercial vessels for biological data should be mandatory for all nations utilising a monitoring TAC. Today samples are only obtained from the Danish fishery.

### 9.3 Sandeel in SA $2 r$

### 9.3.1 Catch data

Total catch weight by year for SA 2 r is given in tables 9.1.29-.1.4. Catch numbers at age by half-year are given in Table 9.3.1.

The proportion of the 1-group in the catch has decreased since 2013 only to increase to the record high level of $98 \%$ in 2017 originating from a high recruitment in 2016. This year-class is seen in the 2018 catch with highest proportion of 2-group in the time-series (94\%). Furthermore, the proportion of age 1 is the lowest on record (1\%) (Figure 9.3.1).

### 9.3.2 Weight at age

The methods applied to compile age-length-weight keys and mean weights at age in the catches and in the stock are described in the Stock Annex.

The mean weights at age observed in the catch are given in Table 9.3 .2 by half year. It is assumed that the mean weights in the sea are the same as in the catch. The time series of mean weight in the catch and in the stock is shown in Figure 9.3.2. Mean weight at age for all age groups in 2018 was below the historic average, reaching only $89 \%$ of the long term average for age 2.

### 9.3.3 Maturity

Maturity estimates are obtained from the average observed in the Danish dredge survey in December as described in the Stock Annex. The values used are given in Table 9.3.3.

### 9.3.4 Natural mortality

Long term averages of natural mortality at age from multispecies modelling of southern and northern sandeel (SMS, WGSAM 2015, ICES 2016) were used. More details are given in the Stock Annex. Natural mortalities are listed in Table 9.3.8. Mortalities were not updated in response to the new WGSAM key run (WGSAM 2017) as the update is not likely to affect long-term averages greatly.

### 9.3.5 Effort and research vessel data

## Trends in overall effort and CPUE

Tables 9.1.5-9.1.7 and Figure 9.3.3 show the trends in the international effort over years measured as number of fishing days standardised to a 200 GRT vessel. The standardisation includes just the effect of vessel size, and does not take changes in efficiency into account.

Total international standardized effort in 2018 was the third lowest in the time-series and CPUE was decreased to the levels observed in 2014-2015.

## Tuning series used in the assessments

No commercial tuning series are used in the present assessment.
The dredge survey in SA 2r (Table 9.3.4 and Figure 9.3.5) increased coverage in 2010 and this is therefore used as the start year of the dredge time series for the assessment. The coverage has however varied somewhat in this period and the time series is still short. Details about the dredge survey are given in the Stock Annex and the benchmark report (ICES, 2016).

### 9.3.6 Data analysis

The diagnostics output from SMS-effort are shown in Table 9.3.5.
The CV of the dredge survey (Table 9.3.5) is medium (0.57) for age 0 indicating a reasonable consistency between the results from the dredge survey and the overall model results. The residual plot (Figure 9.3.6) shows no bias for this time series.

The model CV of catch at age 1 and 2 is low (0.323) in the first half of the year and medium or high ( $>0.70$ ) for the remaining ages and season combinations. The residual plots for catch at age (Figure 9.3.7) confirm that the fit is generally poor except for age 1 and 2 in the first half year. The residual plot (Figure 9.3.7) shows no long term bias for this time series for ages 1 and 2 in the first half year. However, in 2017 and 2018, the model consistently finds fewer fish in the catch of the 2014 and 2015 cohorts than it expects from the high F. The 2014 and 2015 cohorts also showed large negative residuals at ages $2+$ indicating that the year classes seen in the dredge and at age 1 in the catches were less abundant than expected in the subsequent catches.

The CV of the fitted stock recruitment relationship (Table 9.3.5) is high (1.12 which is also indicated by the stock recruitment plot (Figure 9.3.8). The high CV of recruitment
is probably due to highly variable recruitment success and less due to the quality of the assessment.

Uncertainties of the estimated SSB, F and recruitment (Figure 9.3.10) are in general low, which gives narrow confidence limits on estimated values (Figure 9.3.11).

The plot of standardized fishing effort and estimated F (Figure 9.3.12) shows a good relationship between effort and F as specified by the model. As the model assumes a different efficiency and catchability for the five periods 1983-1988, 1989-1998, 19992004, 2005-2009 and 2010-2018, the relation between effort and F varies between these periods. An effort unit in the early part of the time series gives a smaller $F$ than an effort unit in the most recent years. This indicates technical creep, i.e. a standard 200 GT vessel has become more efficient over time (see Stock Annex for further discussion, ICES 2016).

The retrospective analysis (Figure 9.3.9) shows consistent assessment estimates of F from one year to the next. There has been an overestimation of SSB in 2015 and 2016 as a result of an overestimation of recruitment in 2013 and 2014, and the lower than expected abundance of these cohorts in the subsequent catches. This pattern can be connected to either overestimation of recruitment in the dredge survey, lower than expected survival of the two cohorts, or lower than expected catchability of these cohorts in the fishery. Both the selectivity pattern and the dredge survey are based on a relatively short time series, and hence variation between years is to be expected. However, a systematic bias like this is not expected. Possible causes suggested were:

Spatial distribution of recruitment and/or catch differs from other years: There was no indication that the spatial distribution of recruitment and catch were outside those previously observed.

Survival of older age groups is low: There was no information to assess whether predation mortality has changed. Overwintering mortality can be linked to sandeel condition at the end of the season, but there was no evidence of the weight at age 3 and 4+ being outside the historical range in the last decade.

The fishery has changed selection pattern in 2017 and 2018 as it was probably targeting the very large 2016 year class. There are historical examples of a change in selection pattern towards the most abundant year class in 1997 and 2002 where there was both a large incoming year class and a large catch. In both cases, 3 and $4+$ showed negative catch residuals in the year with abundant age 1 and positive catch residuals of age $4+$ in the subsequent year, indicating that the cohorts remained in the stock but were underrepresented in the catches in the year of abundant 1-group.
Based on these considerations, HAWG considered that there was not sufficient information to determine the cause of the low catch of $2+$ fish in 2017 and 1 and 3+ fish in 2018 or the balance between different co-occurring effects. The problem with assuming a constant selection pattern was discussed at the benchmark in 2016, in particular the presence of density dependent catchability. Ideally, such a relationship should be considered and possibly included in the model formulation at the next benchmark of the stock. The very high CPUE and the high dredge catch of the 2016 cohort confirmed that there was a large year class this year. The downscaling of this cohort in the 2018 assessment is within the range of the downscaling of recruitment observed in the previous years and the 2019 confirms the 2018 assessment. Given that there is not sufficient information to decide whether it is most appropriate to assume that selectivity has changed, that there is a survival issue for 3+ sandeel or there is a bias in the dredge
survey catches of 0-group, HAWG decided to keep the benchmarked settings for the assessment.

### 9.3.7 Final assessment

The output from the assessment is presented in tables 9.3.6 (fishing mortality at age by year), 9.3.7 (fishing mortality at age by half year), 9.3.9 (stock numbers at age) and 9.3.10 (stock summary).

### 9.3.8 Historic Stock Trends

The stock summary (Figure 9.3.13 and Table 9.3.10) show that recruitment has been highly variable and with a weak decreasing trend over the full time series until the 2016 year class, which is estimated to be the $4^{\text {th }}$ strongest on record, followed by a 2017 year class which is estimated to be the lowest observed and a 2018 year class which is the fifth lowest on record. SSB has been at or below Blim in 1989, 2002, from 2004 to 2010 and again from 2011 to 2016 and 2019. Since 2004, SSB has been below $B_{p a}$ in all years except 2018. $\mathrm{F}_{1-2}$ is estimated to have been below the long-time average since 2010 with the exception of 2013 and 2017, but has dropped to the fourth lowest in the time-series in 2018.

### 9.3.9 Short-term forecasts

Input
Input to the short-term forecast is given in Table 9.3.11. Stock numbers for age 1 and older in the TAC year are taken from the assessment. Recruitment in 2019 is the geometric mean of the recruitment in 2008-2017 (20 billion at age 0 ). The exploitation pattern and $\mathrm{F}_{\mathrm{sq}}$ is taken from the assessment values in 2018. As the SMS-model assumes a fixed exploitation pattern since 2010, the choice of year is not critical. Mean weight at age in the catch and in the sea is the average (i.e. 5-year mean) value for the years 20142018. Natural mortality and proportion mature are the fixed values applied in the terminal year in the assessment.

## Output

The short term forecast (Table 9.3.12) shows that a SSB will be below the MSY Btrigger of 84000 t and $\mathrm{B}_{\lim }$ of 55000 t in 2020 even in the complete absence of fishing. The TAC according to the escapement strategy is therefore $0 t$ in 2019. A monitoring TAC at 5000 t in 2019 will lead to an SSB in 2020 at 44435 t .

### 9.3.10 Biological reference points

$B_{\text {lim }}$ is set at 56000 t and $\mathrm{B}_{\mathrm{pa}}$ at 84000 t . MSY $\mathrm{B}_{\text {trigger }}$ is set at $\mathrm{B}_{\text {pa }}$. $\mathrm{F}_{\text {cap }}$ is set at 0.45 (ICES, 2016). Further information about biological reference points can be found in the Stock Annex.

### 9.3.11 Quality of the assessment

This stock was benchmarked between the 2016 and 2017 assessments where the ICES statistical rectangles included in sandeel area 2 changed. The assessment now includes fisheries independent information from a dredge survey representative for the area. The assessment is considered to be of good quality but with indications of a retrospective pattern in recent years as older fish do not seem to appear in the catches at the expected level. This pattern can be caused by uncertainty in the selection pattern when
using a relatively short period to estimate this or unallocated mortality caused by e.g. overwintering mortality increasing when fish condition is low (van Deurs et al., 2011.). HAWG also highlighted that the pattern might also have a link to the possible multispecies fishery within this area (i.e. suspected to catch Ammodytes tobianus). The dredge survey time-series in SA2 is still short (2010-2018) and the quality of the assessment will likely improve once a longer time-series becomes available.

During the meeting, an analysis was made of the effect of having age composition and weight at age in the catch available from a monitoring fishery in years with a zero TAC. Such effect was evaluated from the monitoring fishery in 2016 by removing the age composition from the likelihood and assuming average weight at age from the previous 5 years. Not including age composition and mean weight at age from the monitoring fishery led to an estimate of SSB in the assessment following the monitoring fishery that was twice as large as that estimated when including the monitoring fishery age composition and mean weight. In following year, the availability of age composition and weight at age of catch (2017) compensated for the lack of 2016 data and the two methods provided similar results. However, this fishery was dependent on the assessment in 2017, and hence on the SSB in 2017, and an overestimation of this SSB would have led to an overestimation of the sustainable TAC.

|  | Value relative to 2019 assessment* |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Assessment year | N <br> (average of 2015-2017) | SSB <br> 2017 | Mean weight <br> at age 1 and 2 2016 |  |
| 2017 | no monitoring in 2016 | 2.06 | 3.05 | 1.46 |
| 2017 | monitoring in 2016 | 1.39 | 1.56 | 1 |
| 2018 | no monitoring in 2016 | 1.17 | 1.42 | 1.46 |
| 2018 | monitoring in 2016 | 1.31 | 1.41 | 1 |

* a value of 1 corresponds to identical estimates


### 9.3.12 Status of the Stock

A moderate F in most of the years from 2010 in combination with a low recruitment have given a slow increase in SSB since the historical low values in 2004 to 2010. F in 2017 was the highest in recent years. SSB in 2016 and 2017 are estimated below Blim. Recruitment in 2016 is estimated to be the fourth highest on record while the 2017 and 2018 year classes are extremely low.

### 9.3.13 Management considerations

A management plan needs to be developed. The ICES approach for MSY based management of a short-lived species such as sandeel is the escapement strategy, i.e. to maintain SSB above MSY $B_{\text {trigger }}$ after the fishery has taken place. Management strategy evaluations (ICES, 2016) established that the escapement-strategy is not sustainable for short-lived species, unless the strategy is combined with a ceiling ( $\mathrm{F}_{\text {cap }}$ ) on the fishing mortality and estimated this Fcap for SA2r sandeel at 0.45 . This means that if the TAC that results from the escapement strategy corresponds to an $\mathrm{F}_{\text {bar }}$ that exceeds $\mathrm{F}_{\text {cap }}$, then the TAC is determined based on a fishing mortality corresponding to $\mathrm{F}_{\text {cap }}$.

### 9.4 Sandeel in SA 3r

### 9.4.1 Catch data

Total catch weight by year for SA3 is given in tables 9.1.2-9.1.4. Catch numbers at age by half-year is given in Table 9.4.1.
The proportions of age groups in the 2013-2015 catches are quite similar with approximately $65 \%$ 1-group, but in 2018, the 2-group provided the largest contribution to the catches similar to what has been reported in 2011 when the large 2009 year-class were 2 years old (Figure 9.4.1). The proportion of group-1 was low in 2018.

### 9.4.2 Weight at age

The mean weights at age observed in the catch are given in Table 9.4 .2 by half year. It is assumed that the mean weights in the sea are the same as in the catch. The timeseries of mean weight in the catch and in the stock is shown in Figure 9.4.2. Mean weight at age in the first half-year has increased since 2013, but has declined recently.

### 9.4.3 Maturity

Maturity estimates are obtained from the average observed in the dredge survey in December as described in the Stock Annex. The values used are given in Table 9.4.3.

### 9.4.4 Natural mortality

In 2017, WGSAM provided updated estimates of natural mortality at age from multispecies modelling of northern sandeel (SMS, WGSAM 2017). In later years, natural mortality has been historically high as a result of the increasing grey seal population as well as grey gurnard and saithe stocks.

The effect of using 3-year averages of these new values on historical development and stock recruitment relationship of the stock was evaluated by the working group and it was decided that the new natural mortality values resulted in a substantial change in the historic perception of the stock, including possible changes to reference points. For this reason, it was decided not to use the new natural mortalities but to refer to HAWG for consideration of whether new reference points should be estimated.

3-year averages of natural mortality at age from the 2015 multispecies modelling of southern and northern sandeel (SMS, WGSAM 2015, ICES 2016) were used. The last value provided was used for all years following the latest data point. More details are given in the stock annex. Natural mortalities are listed in Table 9.4.8.

### 9.4.5 Effort and research vessel data

## Trends in overall effort and CPUE

Tables 9.1.5-9.1.7 and Figure 9.4.3 show the trends in the international effort over years measured as number of fishing days standardised to a 200 GRT vessel. The standardisation includes just the effect of vessel size, and does not take changes in efficiency into account. Total international standardized effort peaked in 1998, and declined thereafter and has been less than 2000 days per year since 2003.

## Tuning series used in the assessments

CPUE data from the dredge survey (Table 9.4.4 and Figure 9.4.5) in 2018 show an above average recruitment in 2018 (Table 9.4.4). The internal consistency plot (Figure 9.4.4)
shows medium consistency for age 0 vs. age 1 (i.e. $r^{2}=0.30$ on $\log$ scales). In 2014, 13 new positions were included in the survey in SA 3r. Only two of the new positions were taken in squares not included before (42F5 and 42F6). All the new positions have been included in the survey index since 2014 (Table 9.4.4) for assessment purposes, to obtain a better spatial coverage. Details about the dredge survey are given in the Stock Annex and the benchmark report (ICES, 2016).
The Norwegian acoustic survey (2009-2018) carried out in Norwegian EEZ is used as tuning series in the assessment in SA 3r (Table 9.4.13 and figures 9.4.14-9.4.16). The survey covers the main sandeel grounds in SA 3r. The acoustic estimate in number of individuals by age and survey is presented in Table 9.4.12. The age 1 index in 2017 and the age 2 index in 2018 is the highest observed in the time series supporting that the 2016 year class was very strong.

### 9.4.6 Data Analysis

The diagnostics output from SMS-effort model is shown in Table 9.4.5.
The CV of the dredge survey (Table 9.4.5) is high for both age $0(0.68)$ and age 1 ( 0.92 ), showing an overall poor consistency between the results from the dredge survey and the overall model results. The dredge survey residuals (Figure 9.4.6) plot shows a series of negative residuals from 2007-2011 for the 0 group followed by positive residuals, while the residuals for the 1-group are more randomly distributed. The internal consistency of the survey seems to indicate the large and small year-classes can be followed in the dredge, but the exact size of small or large cohorts cannot.

The CV of the acoustic survey (Table 9.4.5) is medium for both age $0(0.78)$ and age 1 (0.61), showing an overall medium consistency between the results from the dredge survey and the overall model results. The acoustic survey residuals (Figure 9.4.15) plot shows a series of positive residuals followed by a series of negative residuals for the 2group, while the residuals for the 1-group are more randomly distributed.
The model CV of catch at age is medium (0.65) for age 1 and age 2 in the first half of the year (Table 9.4.5). For the older ages and for all ages in the second half year, the CVs are high (>1.01). The catch residual plots for catch at age (Figure 9.4.7) confirm that the fits are generally very poor except for age 1 and 2 in the first half year. There is a tendency for cluster of negative or positive residuals for ages 1 and 2.
The CV of the fitted stock recruitment relationship (Table 9.4.5) is high (1.06), which is also indicated by the stock recruitment plot (Figure 9.4.8). The high CV of recruitment is probably due to the biological characteristics of the stock and less due to the quality of the assessment. The a priori weight on likelihood contributions from SSR-R observations is therefore set low ( 0.01 in "objective function weight" in Table 9.4.5) such that SSB-R estimates do not contribute much to the overall model likelihood and fit.
There is a large retrospective pattern in the recruitment that consistently overestimates large recruiting year-classes by more than $100 \%$.
Uncertainties of the estimated SSB, F and recruitment (Figure 9.4.10) are in general medium, which gives wide confidence limits (Figure 9.4.11) on output variables.
The plot of standardized fishing effort and estimated F (Figure 9.4.12) shows a moderate relation between effort and F as assumed by the model specification. As the model assumes a different catchability at age for the three periods 1986-1998, 1999-2018, the relation between effort and F varies between these periods. There is a shift in the ratio
between effort and F over the full time series. In the year range 1986-1998, F is in generally lower than effort on the plot, while the opposite is the case for the remaining periods, corresponding to a technical creep over time (ICES, 2016).

### 9.4.7 Final assessment

The output from the final assessment is presented in Tables 9.4.6 (fishing mortality at age), 9.4.7 (fishing mortality at age by half year), 9.4.9 (stock numbers at age) and 9.4.10 (Stock summary).

### 9.4.8 Historic Stock Trends

SSB has been at or below $\mathrm{B}_{\mathrm{lim}}$ from 1999 to 2006 after which SSB increased to above $\mathrm{B}_{\mathrm{pa}}$ in 2008. This was followed by SSB below Blim in 2013 (Figure 9.4.16 and Table 9.4.17). Above average recruitments in 2013, 2014 and 2016 together with a fishing mortality below average have resulted in SSB above $B_{p a}$ in 2015 onwards.

The estimated recruitment in 2016 is the highest in the time series, and the recruitment in 2018 is also estimated to be among the five highest recruitments.

### 9.4.9 Short-term forecasts

## Input

Input to the short term forecast is given in Table 9.4.11. Stock numbers in the TAC year are taken from the assessment for age 2 and older. Recruitment in 2019 is the geometric mean of the recruitment 1986-2017 (105 billion at age 0 ). The exploitation pattern and $\mathrm{F}_{\mathrm{sq}}$ is taken from the assessment values in 2018. As the SMS-model assumes a fixed exploitation pattern since 1999, the choice of year is not critical. Mean weight at age in the catch and in the sea is the average value (i.e. 5-year mean) for the years 2014-2018, corresponding to a $23 \%$ decrease in mean weight at age 2 compared to the values used in the forecast for 2018. Proportion mature and natural mortality are equal to the terminal assessment year.

The Stock Annex gives more details about the forecast methodology.

## Output

The short term forecast (Table 9.4.12) shows that a TAC of 133610 t in 2019 will result in a fishing mortality of 0.29 , identical to Fcap, and leave SSB at 262800 t , well above MSY B trigger $^{\text {of }} 129000 \mathrm{t}$, in 2020. The TAC according to the escapement strategy is therefore 133610 t in 2019.

### 9.4.10 Biological reference points

$B_{\text {lim }}$ is set at 80000 t and $\mathrm{B}_{\mathrm{pa}}$ is estimated to 129000 t . MSY $\mathrm{B}_{\text {trigger }}$ is set at $\mathrm{B}_{\mathrm{pa}}$. Further information about biological reference points can be found in the Stock Annex.

### 9.4.1 1 Quality of the assessment

This stock was benchmarked between the 2016 and 2017 assessment. The new sandeel area $3 r$ is slightly different from the previous sandeel area 3, and mainly consists of fishing grounds in Norwegian EEZ. There is a large retrospective pattern in the recruitment that overestimates high recruitments. This pattern may be caused by a variety of issues in the assessment, most likely of which are the shift in 2011 from using Danish to using Norwegian effort data and the change in the spatial coverage of the dredge
survey. Even though the new assessment for SA 3r sandeel is considered uncertain, it is considered adequate as the basis for TAC advice.

### 9.4.12 Status of the Stock

The SSB has increased from below $B_{\lim }$ in 2013 to above $B_{\text {pa }}$ since 2015, due to above average recruitment in 2013, 2014 and 2016 combined with a low fishing mortality. Recruitment estimate for 2018 is fifth largest on record.

### 9.4.13 Management Considerations

Since 2011 the Norwegian sandeel fishery in the current SA3r has been managed according to an area-based management plan for the Norwegian EEZ and an advice provided by the IMR in Bergen.

### 9.5 Sandeel in SA 4

### 9.5.1 Catch data

Catch numbers at age by half-year from area SA 4 is given in Table 9.5.1. Total catch weight by year for SA 4 is given in tables 9.5.2-9.5.4. In 2018, age groups 1,3 and 4 contributed almost equally to the catches (Figure 9.5.1).

### 9.5.2 Weight at age

The methods applied to compile age-length-weight keys and mean weights at age in the catches and in the stock are described in the Stock Annex. The mean weights at age observed in the catch are given in Table 9.5.2 and Figure 9.5.2 by half year. Mean weight at age in the first half year seems to have recovered to historical levels after the very low levels in 2001 to 2005. The second half year mean weights are affected by the very limited sampling at this time of year.

### 9.5.3 Maturity

Maturity estimates are obtained from the average observed in the dredge survey in December as described in the Stock Annex. Maturities are listed in Table 9.5.3.

### 9.5.4 Natural mortality

Long-term averages of natural mortality at age from multispecies modelling of northern sandeel (SMS, WGSAM 2015, ICES 2016) were used. More details are given in the stock annex. Natural mortalities are listed in Table 9.5.8. Mortalities were not updated in response to the new WGSAM key run (WGSAM 2017) as the update is not likely to affect long-term averages greatly.

### 9.5.5 Effort and research vessel data

## Trends in overall effort and CPUE

Table 9.5.5-9.5.7 and Figure 9.5.3 show the trends in the international effort over years measured as number of fishing days standardized to a 200 GRT vessel. The standardization includes just the effect of vessel size, and does not take changes in efficiency into account. Total international standardized effort peaked in 1994, after which substantial effort reduction has taken place. The effort in 2018 was the highest since 2004 reflecting the TAC given. Effort since 2004 has been extremely low. CPUE in later years has been around the average prior to 2004.

## Tuning series used in the assessments

No commercial tuning series are used in the present assessment.
CPUE data from the dredge survey (Table 9.5.4 and Figure 9.5.5) show that the 2018 year-class lowest recruitment on record.
The internal consistency, i.e. the ability of the survey to follow cohorts, (Figure 9.5.4) shows a high correlation between the 0-group and 1-group (see WD01 on sandeel dredge in SA4).

### 9.5.6 Data analysis

Following the Benchmark assessment (ICES, 2016) the SMS-effort model was used to estimate fishing mortalities and stock numbers at age by half year, using data from 1993 to 2018. In the SMS model, it is assumed that fishing mortality is proportional to fishing effort. For details about the SMS model and model settings, see the Stock Annex.

The diagnostics output from SMS are shown in Table 9.5.5. The CV of the dredge survey ("sqrt (Survey variance) $\sim$ CV" in the table) is very low (0.30) for all ages. In fact, the CV of the dredge survey hits the lower bound and this suggests that the model due to very low catches in recent years is essentially only using the survey to estimate stock size etc..

The model CV of catch at age ("sqrt(catch variance) $\sim \mathrm{CV}$ ", in Table 9.5 .5 is moderate (0.70) for age 1 and age 2 . The catch at age residuals (Figure 9.5.6) show no alarming patterns, except for a tendency to positive residuals (observed catch is higher than model catch) for age 1 in the beginning of the time series.

The CV of the fitted Stock recruitment relationship (Table 9.5.5) is high (1.29), which is also indicated by the stock recruitment plot (Figure 9.5.7). The high CV of recruitment is probably due to biological characteristic of the stock and not so much due to the quality of the assessment. The a priori weight on likelihood contributions from SSR-R observations is therefore set low ( 0.05 in "objective function weight" in Table 9.5.5) such that SSB-R estimates do not contribute much to the overall likelihood and model fit.

The retrospective analysis (Figure 9.5.9) shows very consistent assessment results from one year to the next. This is partly due to the assumed robust relationship between effort and F, which is rather insensitive to removal of a few years.

Uncertainties of the estimated SSB, F and recruitment (Figure 9.5.9) are moderate to high.

### 9.5.7 Final assessment

The output from the assessment is presented in tables 9.5.6 (fishing mortality at age by year), 9.5.7 (fishing mortality at age by half year), 9.5.9 (stock numbers at age) and 9.5.10 (stock summary).

### 9.5.8 Historic Stock Trends

The stock summary (Figure 9.5.13 and Table 9.5.10) shows that SSB have been at or below Blim from 2007 to 2010. Since 2010, SSB has been above Blim but below Bpa in 2015 only. SSB is estimated substantially above $\mathrm{B}_{\mathrm{pa}}$ in 2016 to 2019. $\mathrm{F}_{(1-2)}$ is estimated to have been very low since 2005 increasing in 2018 to the highest since 2004. Recruitment in

2014, 2016 and 2017 are estimated to be above average, whereas 2018 show the second lowest in record.

### 9.5.9 Short-term forecasts

## Input

Input to the short term forecast is given in Table 9.5.11. Stock numbers in the TAC year are taken from the assessment for age 1 and older. Recruitment in 2019 is the geometric mean of the recruitment 1993-2017 (81 billion at age 0). The exploitation pattern and $\mathrm{F}_{\mathrm{sq}}$ is taken from the assessment values in 2018. However, as the SMS-model assumes a fixed exploitation pattern, the choice of years is not critical. Mean weight at age in the catch and in the sea is the average value (i.e. 5-year mean) for the years 2014-2018. Natural mortality and maturity are as applied in the assessment in final year. The Stock Annex gives more details about the forecast methodology.

## Output

The short term forecast (Table 9.3.12) shows that a SSB will be below the MSY Btrigger of 84000 t and $\mathrm{B}_{\lim }$ of 55000 t in 2020 even in the complete absence of fishing. The TAC according to the escapement strategy is therefore $0 t$ in 2019. A monitoring TAC at 5000 t in 2019 will lead to an SSB in 2020 at 38915 t .

The short-term forecast (Table 9.5.12) shows that that a SSB will be below the MSY $B_{\text {trigger }}$ of 102000 t in 2020 even in the absence of fishing. The TAC according to the escapement strategy is therefore 0 t in 2019. A monitoring TAC at 5000 t in 2019 will lead to an SSB in 2020 at 97744 t .

### 9.5.10 Biological reference points

$B_{\text {lim }}$ is set at 48000 t and $\mathrm{B}_{\mathrm{pa}}$ at 102000 t . MSY $\mathrm{B}_{\text {trigger }}$ is set at $\mathrm{B}_{\mathrm{pa}}$.
Further information about biological reference points for sandeel in SA 4 can be found in the Stock Annex.

### 9.5.10.1 Quality of the assessment

The analytical assessment of SA 4 was initiated in 2017 following the 2016 benchmark of the stock.

Abundance of the 1-group, which in most years dominates the catches, is estimated on the basis of the 0-group index from the dredge survey in December of the preceding year. The model estimates a low variance on the survey index for age 0 but the CV on SSB in 2019 is high (0.37). The assessment accuracy is improved compared to the 2018 assessment as catches were increased in 2018.

### 9.5.10.2 Status of the Stock

Recruitment in 2014, 2016 and 2017 are all above the long-term average, while 2018 is the second lowest on record. A very restrictive F since 2005 together with the return of recruitment to historic levels has resulted in SSB above $B_{p a}$ in 2016 to 2019.

### 9.5.10.3 Management considerations

A management plan needs to be developed. The ICES approach for MSY based management of a short-lived species such as sandeel is the escapement strategy, i.e. to maintain SSB above MSY Btrigger after the fishery has taken place. Management strategy
evaluations presented at the ICES WKMSYREF2 and WKMSYREF5 meeting (ICES, 2014a, 2017) indicated that the escapement-strategy is not sustainable for short-lived species, unless the strategy is combined with a ceiling ( $\mathrm{F}_{\text {cap }}$ ) on the fishing mortality. This means that if the TAC that comes out of the Escapement-strategy corresponds to an Fbar that exceeds $\mathrm{F}_{\text {cap }}$, then the Escapement-strategy should be disqualified and the TAC is instead determined based on a fishing mortality corresponding to $\mathrm{F}_{\text {cap }}$. Fcap for SA 4 (in accordance with the concepts of a conventional management strategy evaluation and a selection criteria of 0.05 probability of $\mathrm{SSB}<\mathrm{B}_{\mathrm{lim}}$ ) is set at 0.15 (ICES, 2016).

### 9.6 Sandeel in SA 5

### 9.6.1 Catch data

Total catch weight by year for SA 5 is given in tables 9.1.2-9.1.4. No landings from this area have been taken since 2004. Acoustic surveys have been carried out since 2005 on Vikingbanken, which is the main sandeel ground in SA5. The survey estimates show that the biomass of sandeel on Vikingbanken still is very low (Table 9.6.1)

### 9.7 Sandeel in SA 6

### 9.7.1 Catch data

Total catch weight by year for SA 6 is given in tables 9.1.2-9.1.4.

### 9.8 Sandeel in SA 7

### 9.8.1 Catch data

Total catch weight by year for SA 7 is given in tables 9.1.2-9.1.4 No catches from this area have been taken since 2003.

### 9.9 References

ICES. 2016. Report of the Benchmark on Sandeel (WKSand 2016), 31 October - 4 November 2016, Bergen, Norway. ICES CM 2016/ACOM:33. 301pp.
van Deurs, M., Hartvig, M., \& Steffensen, J. F. (2011). Critical threshold size for overwintering sandeels (Ammodytes marinus). Marine biology, 158(12), 2755-2764.
WD01 Marine Scotland Science sandeel dredge survey indices for SA4.

Table 9.1.1 Sandeel. Catches ('000 t), 1955-2018. (Data provided by Working Group Members).

| Year | Denmark | Germany | Faroes | Ireland | Netherlands | Norway | Sweden | UK | Lithuania | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1952 | 1.6 | - | - | - | - | - | - | - | - | 1.6 |
| 1953 | 4.5 | - | - | - | - | - | - | - | - | 4.5 |
| 1954 | 10.8 | - | - | - | - | - | - | - | - | 10.8 |
| 1955 | 37.6 | - | - | - | - | - | - | - | - | 37.6 |
| 1956 | 81.9 | 5.3 | - | - | - | 1.5 | - | - | - | 88.7 |
| 1957 | 73.3 | 25.5 | - | - | 3.7 | 3.2 | - | - | - | 105.7 |
| 1958 | 74.4 | 20.2 | - | - | 1.5 | 4.8 | - | - | - | 100.9 |
| 1959 | 77.1 | 17.4 | - | - | 5.1 | 8 | - | - | - | 107.6 |
| 1960 | 100.8 | 7.7 | - | - | - | 12.1 | - | - | - | 120.6 |
| 1961 | 73.6 | 4.5 | - | - | - | 5.1 | - | - | - | 83.2 |
| 1962 | 97.4 | 1.4 | - | - | - | 10.5 | - | - | - | 109.3 |
| 1963 | 134.4 | 16.4 | - | - | - | 11.5 | - | - | - | 162.3 |
| 1964 | 104.7 | 12.9 | - | - | - | 10.4 | - | - | - | 128.0 |
| 1965 | 123.6 | 2.1 | - | - | - | 4.9 | - | - | - | 130.6 |
| 1966 | 138.5 | 4.4 | - | - | - | 0.2 | - | - | - | 143.1 |
| 1967 | 187.4 | 0.3 | - | - | - | 1 | - | - | - | 188.7 |
| 1968 | 193.6 | - | - | - | - | 0.1 | - | - | - | 193.7 |
| 1969 | 112.8 | - | - | - | - | - | - | 0.5 | - | 113.3 |
| 1970 | 187.8 | - | - | - | - | - | - | 3.6 | - | 191.4 |
| 1971 | 371.6 | 0.1 | - | - | - | 2.1 | - | 8.3 | - | 382.1 |
| 1972 | 329.0 | - | - | - | - | 18.6 | 8.8 | 2.1 | - | 358.5 |
| 1973 | 273.0 | - | 1.4 | - | - | 17.2 | 1.1 | 4.2 | - | 296.9 |
| 1974 | 424.1 | - | 6.4 | - | - | 78.6 | 0.2 | 15.5 | - | 524.8 |
| 1975 | 355.6 | - | 4.9 | - | - | 54 | 0.1 | 13.6 | - | 428.2 |
| 1976 | 424.7 | - | - | - | - | 44.2 | - | 18.7 | - | 487.6 |
| 1977 | 664.3 | - | 11.4 | - | - | 78.7 | 5.7 | 25.5 | - | 785.6 |
| 1978 | 647.5 | - | 12.1 | - | - | 93.5 | 1.2 | 32.5 | - | 786.8 |
| 1979 | 449.8 | - | 13.2 | - | - | 101.4 | - | 13.4 | - | 577.8 |
| 1980 | 542.2 | - | 7.2 | - | - | 144.8 | - | 34.3 | - | 728.5 |
| 1981 | 464.4 | - | 4.9 | - | - | 52.6 | - | 46.7 | - | 568.6 |
| 1982 | 506.9 | - | 4.9 | - | - | 46.5 | 0.4 | 52.2 | - | 610.9 |
| 1983 | 485.1 | - | 2 | - | - | 12.2 | 0.2 | 37 | - | 536.5 |
| 1984 | 596.3 | - | 11.3 | - | - | 28.3 | - | 32.6 | - | 668.5 |
| 1985 | 587.6 | - | 3.9 | - | - | 13.1 | - | 17.2 | - | 621.8 |
| 1986 | 752.5 | - | 1.2 | - | - | 82.1 | - | 12 | - | 847.8 |
| 1987 | 605.4 | - | 18.6 | - | - | 193.4 | - | 7.2 | - | 824.6 |
| 1988 | 686.4 | - | 15.5 | - | - | 185.1 | - | 5.8 | - | 892.8 |
| 1989 | 824.4 | - | 16.6 | - | - | 186.8 | - | 11.5 | - | 1039.1 |
| 1990 | 496.0 | - | 2.2 | - | 0.3 | 88.9 | - | 3.9 | - | 591.3 |
| 1991 | 701.4 | - | 11.2 | - | - | 128.8 | - | 1.2 | - | 842.6 |
| 1992 | 751.1 | - | 9.1 | - | - | 89.3 | 0.5 | 4.9 | - | 854.9 |
| 1993 | 482.2 | - | - | - | - | 95.5 | - | 1.5 | - | 579.2 |
| 1994 | 603.5 | - | 10.3 | - | - | 165.8 | - | 5.9 | - | 785.5 |


| Year | Denmark | Germany | Faroes | Ireland | Netherlands | Norway | Sweden | UK | Lithuania | Total |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1995 | 647.8 | - | - | - | - | 263.4 | - | 6.7 | - | 917.9 |
| 1996 | 601.6 | - | 5 | - | - | 160.7 | - | 9.7 | - | 776.9 |
| 1997 | 751.9 | - | 11.2 | - | - | 350.1 | - | 24.6 | - | 1137.8 |
| 1998 | 617.8 | - | 11 | - | - | 343.3 | 8.5 | 23.8 | - | 1004.4 |
| 1999 | 500.1 | - | 13.2 | 0.4 | - | 187.6 | 22.4 | 11.5 | - | 735.1 |
| 2000 | 541.0 | - | - | - | - | 119 | 28.4 | 10.8 | - | 699.1 |
| 2001 | 630.8 | - | - | - | - | 183 | 46.5 | 1.3 | - | 861.6 |
| 2002 | 629.7 | - | - | - | - | 176 | 0.1 | 4.9 | - | 810.7 |
| 2003 | 274.0 | - | - | - | - | 29.6 | 21.5 | 0.5 | - | 325.6 |
| 2004 | 277.1 | 2.7 | - | - | - | 48.5 | 33.2 | - | - | 361.5 |
| 2005 | 154.8 | - | - | - | - | 17.3 | - | - | - | 172.1 |
| 2006 | 250.6 | 3.2 | - | - | - | 5.6 | 27.8 | - | - | 287.9 |
| 2007 | 144.6 | 1 | 2 | - | - | 51.1 | 6.6 | 1 | - | 206.3 |
| 2008 | 234.4 | 4.4 | 2.4 | - | - | 81.6 | 12.4 | - | - | 335.2 |
| 2009 | 285.7 | 12.2 | 2.5 | - | 1.8 | 27.4 | 12.4 | 3.6 | - | 345.6 |
| 2010 | 275.1 | 13 | - | - | - | 78 | 32 | 4 | 0.6 | 402.7 |
| 2011 | 278.5 | 9.8 | - | - | - | 109 | 32.7 | 6.1 | 1.65 | 437.8 |
| 2012 | 51.5 | 1.706 | - | - | - | 42.46 | 5.652 | - | - | 101.4 |
| 2013 | 208.7 | 7.9 | - | - | 0.4 | 30.446 | 26.8 | 2.436 | 1.3 | 278.0 |
| 2014 | 148.0 | 5.052 | - | - | - | 82.499 | 18.815 | 0.03 | 0.825 | 255.2 |
| 2015 | 163.2 | 9.097 | - | - | - | 100.859 | 33.439 | 2 | - | 308.6 |
| 2016 | 28.9 | - | - | - | - | 40.867 | 4.139 | - | - | 73.9 |
| 2017 | 307.0 | - | - | - | - | 120.204 | 41.123 | - | 3.324 | 471.7 |
| 2018 | 168.6 | 5.905 | - | - | - | 69.531 | 16.387 | 1.849 | - | 262.2 |

Table 9.1.2 Sandeel. Total catch (tonnes) by area as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 382629 | 156208 | 24828 | 2782 | 0 | 364 | 0 | 566810 |
| 1984 | 498671 | 133398 | 49111 | 2563 | 5821 | 791 | 744 | 691098 |
| 1985 | 460057 | 111889 | 20859 | 38122 | 3004 | 1927 | 0 | 635858 |
| 1986 | 382844 | 225581 | 282334 | 12718 | 628 | 13219 | 10650 | 927973 |
| 1987 | 373021 | 49067 | 395298 | 8154 | 1713 | 1163 | 0 | 828417 |
| 1988 | 422805 | 151543 | 336919 | 1338 | 0 | 2726 | 0 | 915330 |
| 1989 | 446129 | 227292 | 374252 | 4384 | 2903 | 909 | 450 | 1056318 |
| 1990 | 306302 | 133796 | 163224 | 3314 | 374 | 499 | 0 | 607508 |
| 1991 | 332204 | 215565 | 274839 | 41372 | 1168 | 17 | 2529 | 867694 |
| 1992 | 558602 | 184241 | 87022 | 68905 | 1099 | 4277 | 3455 | 907600 |
| 1993 | 144389 | 147964 | 200123 | 133136 | 586 | 4490 | 80 | 630768 |
| 1994 | 193241 | 244944 | 267281 | 158690 | 2757 | 3748 | 4 | 870666 |
| 1995 | 400759 | 122155 | 213168 | 52591 | 152274 | 1830 | 0 | 942776 |
| 1996 | 291709 | 186460 | 159304 | 158490 | 27570 | 1263 | 1 | 824796 |
| 1997 | 426414 | 242680 | 474093 | 58446 | 10772 | 2372 | 3061 | 1217839 |
| 1998 | 372604 | 99305 | 474843 | 58911 | 3010 | 941 | 5228 | 1014841 |
| 1999 | 425478 | 70085 | 193621 | 53338 | 145 | 0 | 4415 | 747083 |
| 2000 | 374724 | 101952 | 196525 | 37792 | 303 | 0 | 4371 | 715667 |
| 2001 | 540248 | 97210 | 196209 | 47918 | 1678 | 26 | 971 | 884260 |
| 2002 | 610161 | 120520 | 115207 | 12762 | 8 | 493 | 453 | 859604 |
| 2003 | 178642 | 56248 | 35365 | 64049 | 44 | 111 | 260 | 334718 |
| 2004 | 215352 | 116837 | 33658 | 6882 | 0 | 573 | 0 | 373302 |
| 2005 | 126261 | 34569 | 13994 | 1557 | 0 | 259 | 0 | 176640 |
| 2006 | 247510 | 37952 | 7094 | 86 | 0 | 161 | 0 | 292802 |
| 2007 | 110395 | 44069 | 75376 | 11 | 4 | 0 | 0 | 229855 |
| 2008 | 236069 | 35655 | 74943 | 1168 | 0 | 0 | 0 | 347836 |
| 2009 | 309712 | 37049 | 6161 | 0 | 0 | 0 | 0 | 352922 |
| 2010 | 300896 | 52470 | 60542 | 275 | 0 | 0 | 0 | 414183 |
| 2011 | 320241 | 24310 | 92450 | 270 | 0 | 489 | 0 | 437761 |
| 2012 | 45954 | 12672 | 40141 | 2618 | 0 | 214 | 0 | 101599 |
| 2013 | 214787 | 48172 | 9838 | 5119 | 0 | 72 | 0 | 277989 |
| 2014 | 99059 | 64707 | 95426 | 4505 | 0 | 65 | 0 | 263762 |
| 2015 | 162861 | 39492 | 104607 | 4736 | 0 | 198 | 0 | 311894 |
| 2016 | 15407 | 9569 | 44074 | 6232 | 0 | 123 | 0 | 75405 |
| 2017 | 242069 | 141314 | 115642 | 18474 | 0 | 0 | 0 | 517499 |
| 2018 | 132828 | 20569 | 74933 | 42528 | 0 | 0 | 0 | 270858 |
| arith. mean | 302806 | 105486 | 149536 | 30951 | 5996 | 1203 | 1019 | 596998 |

Table 9.1.3 Sandeel. Total catch (tonnes) by area, first half year as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 314744 | 92566 | 21008 | 2782 | 0 | 364 | 0 | 431465 |
| 1984 | 419640 | 86141 | 43578 | 2563 | 5821 | 735 | 744 | 559223 |
| 1985 | 377702 | 76422 | 17131 | 37900 | 3004 | 973 | 0 | 513132 |
| 1986 | 346053 | 181733 | 138020 | 12539 | 108 | 12020 | 7832 | 698305 |
| 1987 | 307194 | 36400 | 394339 | 7833 | 1713 | 1091 | 0 | 748570 |
| 1988 | 395186 | 107289 | 288174 | 1257 | 0 | 2114 | 0 | 794020 |
| 1989 | 435721 | 173510 | 371557 | 4382 | 1587 | 897 | 450 | 988104 |
| 1990 | 285321 | 101899 | 105554 | 2926 | 0 | 485 | 0 | 496185 |
| 1991 | 257591 | 153869 | 215770 | 17140 | 1168 | 17 | 2529 | 648083 |
| 1992 | 521575 | 135823 | 83068 | 67068 | 1099 | 4270 | 3455 | 816357 |
| 1993 | 129403 | 86179 | 155984 | 123143 | 250 | 4393 | 3 | 499354 |
| 1994 | 177685 | 184792 | 242027 | 147019 | 2754 | 3222 | 4 | 757503 |
| 1995 | 365681 | 70518 | 203151 | 52497 | 152269 | 1829 | 0 | 845945 |
| 1996 | 257507 | 63193 | 110862 | 48496 | 14551 | 1168 | 0 | 495777 |
| 1997 | 345199 | 178735 | 394181 | 47668 | 8615 | 2194 | 2448 | 979040 |
| 1998 | 352275 | 70075 | 354639 | 57373 | 2907 | 939 | 4565 | 842773 |
| 1999 | 395813 | 27461 | 94655 | 51183 | 145 | 0 | 2152 | 571409 |
| 2000 | 333044 | 82405 | 192474 | 37792 | 288 | 0 | 3808 | 649812 |
| 2001 | 368782 | 49319 | 59951 | 47492 | 1678 | 26 | 735 | 527983 |
| 2002 | 604584 | 105397 | 114646 | 12762 | 8 | 493 | 101 | 837991 |
| 2003 | 155006 | 25111 | 22803 | 62580 | 44 | 111 | 187 | 265841 |
| 2004 | 199483 | 91405 | 21632 | 6860 | 0 | 571 | 0 | 319951 |
| 2005 | 121795 | 24841 | 13982 | 1557 | 0 | 259 | 0 | 162434 |
| 2006 | 241345 | 23497 | 6959 | 55 | 0 | 160 | 0 | 272015 |
| 2007 | 110389 | 44069 | 75376 | 11 | 4 | 0 | 0 | 229849 |
| 2008 | 232249 | 32602 | 74943 | 1168 | 0 | 0 | 0 | 340963 |
| 2009 | 293529 | 25399 | 6024 | 0 | 0 | 0 | 0 | 324952 |
| 2010 | 293359 | 44910 | 60251 | 275 | 0 | 0 | 0 | 398796 |
| 2011 | 316351 | 24045 | 92450 | 270 | 0 | 489 | 0 | 433605 |
| 2012 | 45946 | 11520 | 40141 | 2618 | 0 | 213 | 0 | 100438 |
| 2013 | 207886 | 43818 | 9838 | 5119 | 0 | 72 | 0 | 266733 |
| 2014 | 94278 | 62110 | 95426 | 4505 | 0 | 65 | 0 | 256383 |
| 2015 | 162860 | 38723 | 104607 | 4736 | 0 | 197 | 0 | 311123 |
| 2016 | 15407 | 9519 | 44074 | 6232 | 0 | 123 | 0 | 75354 |
| 2017 | 239742 | 130640 | 115642 | 18474 | 0 | 0 | 0 | 504498 |
| 2018 | 126182 | 20284 | 74352 | 42528 | 0 | 0 | 0 | 263346 |
| arith. mean | 273514 | 75451 | 123869 | 26078 | 5500 | 1097 | 806 | 506314 |

Table 9.1.4 Sandeel. Total catch (tonnes) by area, second half year as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 67885 | 63641 | 3820 | 0 | 0 | 0 | 0 | 135345 |
| 1984 | 79031 | 47257 | 5532 | 0 | 0 | 55 | 0 | 131875 |
| 1985 | 82355 | 35468 | 3728 | 222 | 0 | 953 | 0 | 122726 |
| 1986 | 36791 | 43848 | 144314 | 179 | 519 | 1199 | 2818 | 229668 |
| 1987 | 65828 | 12667 | 959 | 321 | 0 | 72 | 0 | 79847 |
| 1988 | 27619 | 44254 | 48744 | 81 | 0 | 612 | 0 | 121310 |
| 1989 | 10407 | 53782 | 2694 | 2 | 1316 | 12 | 0 | 68214 |
| 1990 | 20981 | 31896 | 57670 | 388 | 374 | 14 | 0 | 111323 |
| 1991 | 74613 | 61697 | 59069 | 24232 | 0 | 0 | 0 | 219611 |
| 1992 | 37027 | 48418 | 3954 | 1837 | 0 | 6 | 0 | 91243 |
| 1993 | 14986 | 61785 | 44138 | 9993 | 336 | 97 | 78 | 131414 |
| 1994 | 15557 | 60152 | 25254 | 11671 | 3 | 526 | 0 | 113163 |
| 1995 | 35078 | 51637 | 10017 | 94 | 5 | 1 | 0 | 96831 |
| 1996 | 34202 | 123267 | 48441 | 109994 | 13020 | 95 | 1 | 329019 |
| 1997 | 81215 | 63945 | 79912 | 10779 | 2157 | 179 | 613 | 238799 |
| 1998 | 20329 | 29230 | 120203 | 1538 | 103 | 1 | 663 | 172068 |
| 1999 | 29666 | 42624 | 98967 | 2155 | 0 | 0 | 2263 | 175674 |
| 2000 | 41680 | 19547 | 4051 | 0 | 15 | 0 | 562 | 65855 |
| 2001 | 171466 | 47891 | 136258 | 426 | 0 | 0 | 236 | 356277 |
| 2002 | 5577 | 15123 | 561 | 0 | 0 | 0 | 352 | 21613 |
| 2003 | 23636 | 31137 | 12562 | 1469 | 0 | 0 | 73 | 68877 |
| 2004 | 15869 | 25432 | 12026 | 22 | 0 | 2 | 0 | 53351 |
| 2005 | 4466 | 9728 | 11 | 0 | 0 | 0 | 0 | 14206 |
| 2006 | 6165 | 14455 | 136 | 30 | 0 | 0 | 0 | 20787 |
| 2007 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 2008 | 3821 | 3053 | 0 | 0 | 0 | 0 | 0 | 6873 |
| 2009 | 16183 | 11650 | 137 | 0 | 0 | 0 | 0 | 27970 |
| 2010 | 7537 | 7560 | 291 | 0 | 0 | 0 | 0 | 15387 |
| 2011 | 3891 | 265 | 0 | 0 | 0 | 0 | 0 | 4156 |
| 2012 | 8 | 1153 | 0 | 0 | 0 | 0 | 0 | 1161 |
| 2013 | 6902 | 4354 | 0 | 0 | 0 | 0 | 0 | 11256 |
| 2014 | 4781 | 2598 | 0 | 0 | 0 | 0 | 0 | 7379 |
| 2015 | 1 | 769 | 0 | 0 | 0 | 0 | 0 | 771 |
| 2016 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 51 |
| 2017 | 2327 | 10673 | 0 | 0 | 0 | 0 | 0 | 13000 |
| 2018 | 6646 | 285 | 581 | 0 | 0 | 0 | 0 | 7512 |
| arith. mean | 29292 | 30036 | 25668 | 4873 | 496 | 106 | 213 | 90684 |

Table 9.1.5 Sandeel. Effort (days fishing for a standard 200 GT vessel) by area, as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 8992 | 4719 | 864 | 63 | 0 | 9 | 0 | 14649 |
| 1984 | 10166 | 4009 | 1378 | 48 | 212 | 50 | 37 | 15901 |
| 1985 | 10876 | 3570 | 619 | 655 | 139 | 65 | 0 | 15923 |
| 1986 | 7372 | 5038 | 4641 | 284 | 12 | 469 | 145 | 17962 |
| 1987 | 5680 | 1153 | 5094 | 177 | 64 | 45 | 0 | 12213 |
| 1988 | 7980 | 3876 | 7472 | 42 | 0 | 90 | 0 | 19460 |
| 1989 | 8553 | 6552 | 7677 | 57 | 31 | 44 | 0 | 22914 |
| 1990 | 8529 | 4209 | 5143 | 55 | 0 | 24 | 0 | 17960 |
| 1991 | 5991 | 5117 | 5864 | 338 | 19 | 1 | 0 | 17330 |
| 1992 | 8805 | 4944 | 2383 | 571 | 0 | 197 | 0 | 16900 |
| 1993 | 3893 | 4396 | 5124 | 1387 | 29 | 265 | 0 | 15093 |
| 1994 | 3149 | 4230 | 4854 | 1588 | 0 | 114 | 0 | 13934 |
| 1995 | 5899 | 2497 | 3791 | 437 | 1915 | 50 | 0 | 14589 |
| 1996 | 5497 | 4608 | 4352 | 1464 | 605 | 48 | 0 | 16573 |
| 1997 | 5366 | 5308 | 7749 | 622 | 0 | 60 | 6 | 19111 |
| 1998 | 6580 | 2743 | 11062 | 611 | 96 | 26 | 0 | 21118 |
| 1999 | 8900 | 1975 | 6179 | 850 | 0 | 0 | 0 | 17904 |
| 2000 | 7141 | 2597 | 4117 | 421 | 5 | 0 | 149 | 14429 |
| 2001 | 11021 | 2505 | 4726 | 669 | 0 | 1 | 0 | 18921 |
| 2002 | 8162 | 3162 | 2491 | 140 | 1 | 13 | 0 | 13968 |
| 2003 | 6805 | 2351 | 1634 | 1098 | 19 | 6 | 0 | 11913 |
| 2004 | 7057 | 4208 | 1264 | 203 | 0 | 27 | 0 | 12758 |
| 2005 | 3412 | 1131 | 468 | 88 | 0 | 10 | 0 | 5109 |
| 2006 | 4160 | 1235 | 205 | 1 | 0 | 5 | 0 | 5606 |
| 2007 | 1560 | 874 | 1214 | 1 | 0 | 0 | 0 | 3650 |
| 2008 | 2878 | 906 | 1344 | 7 | 0 | 0 | 0 | 5136 |
| 2009 | 3551 | 802 | 111 | 0 | 0 | 0 | 0 | 4464 |
| 2010 | 2859 | 1136 | 1446 | 4 | 0 | 0 | 0 | 5444 |
| 2011 | 3195 | 677 | 924 | 7 | 0 | 18 | 0 | 4821 |
| 2012 | 585 | 472 | 561 | 68 | 0 | 13 | 0 | 1699 |
| 2013 | 3876 | 1799 | 273 | 37 | 0 | 8 | 0 | 5992 |
| 2014 | 2211 | 1416 | 1096 | 51 | 0 | 4 | 0 | 4777 |
| 2015 | 2046 | 1233 | 1441 | 43 | 0 | 5 | 0 | 4769 |
| 2016 | 146 | 429 | 561 | 79 | 0 | 6 | 0 | 1220 |
| 2017 | 2813 | 2093 | 1247 | 172 | 0 | 0 | 0 | 6324 |
| 2018 | 3265 | 561 | 1489 | 547 | 0 | 0 | 0 | 5862 |
| arith. mean | 5527 | 2737 | 3079 | 358 | 87 | 47 | 9 | 11844 |

Table 9.1.6 Sandeel. Effort (days fishing for a standard 200 GT vessel) by area, first half year as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 6926 | 3032 | 739 | 63 | 0 | 9 | 0 | 10770 |
| 1984 | 7910 | 2471 | 1172 | 48 | 212 | 46 | 37 | 11896 |
| 1985 | 8449 | 2564 | 508 | 652 | 139 | 29 | 0 | 12341 |
| 1986 | 6568 | 3884 | 2508 | 281 | 4 | 437 | 81 | 13763 |
| 1987 | 4287 | 779 | 5063 | 161 | 64 | 42 | 0 | 10395 |
| 1988 | 7172 | 2660 | 6030 | 40 | 0 | 69 | 0 | 15970 |
| 1989 | 8240 | 4852 | 7586 | 56 | 31 | 42 | 0 | 20808 |
| 1990 | 8008 | 3380 | 3738 | 49 | 0 | 24 | 0 | 15201 |
| 1991 | 4588 | 3538 | 4750 | 111 | 19 | 1 | 0 | 13008 |
| 1992 | 7926 | 3793 | 2290 | 309 | 0 | 197 | 0 | 14514 |
| 1993 | 3496 | 2597 | 3950 | 1200 | 29 | 256 | 0 | 11527 |
| 1994 | 2852 | 3097 | 4411 | 1410 | 0 | 98 | 0 | 11867 |
| 1995 | 5298 | 1527 | 3589 | 436 | 1915 | 50 | 0 | 12815 |
| 1996 | 4805 | 1627 | 3147 | 519 | 441 | 48 | 0 | 10587 |
| 1997 | 3997 | 3440 | 5895 | 490 | 0 | 52 | 0 | 13874 |
| 1998 | 6011 | 1707 | 7059 | 576 | 93 | 26 | 0 | 15473 |
| 1999 | 7875 | 772 | 3204 | 850 | 0 | 0 | 0 | 12702 |
| 2000 | 6181 | 1991 | 4040 | 421 | 5 | 0 | 149 | 12786 |
| 2001 | 8041 | 1362 | 1681 | 656 | 0 | 1 | 0 | 11741 |
| 2002 | 7942 | 2489 | 2491 | 140 | 1 | 13 | 0 | 13076 |
| 2003 | 5907 | 1034 | 1246 | 1027 | 19 | 6 | 0 | 9239 |
| 2004 | 6601 | 3179 | 862 | 201 | 0 | 27 | 0 | 10870 |
| 2005 | 3288 | 816 | 468 | 88 | 0 | 10 | 0 | 4670 |
| 2006 | 3982 | 858 | 200 | 1 | 0 | 5 | 0 | 5046 |
| 2007 | 1560 | 874 | 1214 | 1 | 0 | 0 | 0 | 3650 |
| 2008 | 2793 | 797 | 1344 | 7 | 0 | 0 | 0 | 4942 |
| 2009 | 3377 | 608 | 110 | 0 | 0 | 0 | 0 | 4094 |
| 2010 | 2725 | 948 | 1436 | 4 | 0 | 0 | 0 | 5113 |
| 2011 | 3070 | 665 | 924 | 7 | 0 | 18 | 0 | 4684 |
| 2012 | 585 | 447 | 561 | 68 | 0 | 13 | 0 | 1674 |
| 2013 | 3704 | 1618 | 273 | 37 | 0 | 8 | 0 | 5639 |
| 2014 | 2130 | 1344 | 1094 | 51 | 0 | 4 | 0 | 4623 |
| 2015 | 2046 | 1214 | 1441 | 43 | 0 | 5 | 0 | 4749 |
| 2016 | 146 | 413 | 561 | 79 | 0 | 6 | 0 | 1205 |
| 2017 | 2762 | 1838 | 1247 | 172 | 0 | 0 | 0 | 6018 |
| 2018 | 2942 | 555 | 1477 | 547 | 0 | 0 | 0 | 5522 |
| arith. mean | 4839 | 1910 | 2453 | 300 | 83 | 43 | 7 | 9635 |

Table 9.1.7 Sandeel. Effort (days fishing for a standard 200 GT vessel) by area, second half year as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 2066 | 1687 | 126 | 0 | 0 | 0 | 0 | 3879 |
| 1984 | 2256 | 1538 | 207 | 0 | 0 | 4 | 0 | 4005 |
| 1985 | 2427 | 1005 | 110 | 3 | 0 | 35 | 0 | 3582 |
| 1986 | 804 | 1154 | 2133 | 3 | 8 | 32 | 64 | 4199 |
| 1987 | 1393 | 374 | 31 | 16 | 0 | 3 | 0 | 1817 |
| 1988 | 809 | 1215 | 1442 | 2 | 0 | 22 | 0 | 3490 |
| 1989 | 313 | 1700 | 92 | 0 | 0 | 1 | 0 | 2106 |
| 1990 | 520 | 828 | 1405 | 5 | 0 | 0 | 0 | 2759 |
| 1991 | 1403 | 1579 | 1113 | 227 | 0 | 0 | 0 | 4322 |
| 1992 | 879 | 1151 | 93 | 262 | 0 | 0 | 0 | 2385 |
| 1993 | 398 | 1799 | 1174 | 187 | 0 | 10 | 0 | 3567 |
| 1994 | 297 | 1133 | 443 | 178 | 0 | 16 | 0 | 2067 |
| 1995 | 601 | 970 | 201 | 1 | 0 | 0 | 0 | 1774 |
| 1996 | 691 | 2981 | 1205 | 945 | 163 | 0 | 0 | 5986 |
| 1997 | 1369 | 1868 | 1854 | 132 | 0 | 7 | 6 | 5237 |
| 1998 | 568 | 1036 | 4003 | 35 | 3 | 0 | 0 | 5645 |
| 1999 | 1024 | 1203 | 2975 | 0 | 0 | 0 | 0 | 5202 |
| 2000 | 960 | 606 | 78 | 0 | 0 | 0 | 0 | 1643 |
| 2001 | 2979 | 1143 | 3044 | 13 | 0 | 0 | 0 | 7180 |
| 2002 | 220 | 672 | 0 | 0 | 0 | 0 | 0 | 892 |
| 2003 | 898 | 1316 | 388 | 71 | 0 | 0 | 0 | 2673 |
| 2004 | 456 | 1028 | 402 | 2 | 0 | 0 | 0 | 1888 |
| 2005 | 124 | 316 | 0 | 0 | 0 | 0 | 0 | 439 |
| 2006 | 178 | 377 | 5 | 0 | 0 | 0 | 0 | 560 |
| 2007 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 85 | 109 | 0 | 0 | 0 | 0 | 0 | 194 |
| 2009 | 174 | 194 | 2 | 0 | 0 | 0 | 0 | 370 |
| 2010 | 134 | 187 | 10 | 0 | 0 | 0 | 0 | 331 |
| 2011 | 126 | 11 | 0 | 0 | 0 | 0 | 0 | 137 |
| 2012 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 25 |
| 2013 | 172 | 181 | 0 | 0 | 0 | 0 | 0 | 353 |
| 2014 | 81 | 71 | 2 | 0 | 0 | 0 | 0 | 155 |
| 2015 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 19 |
| 2016 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 15 |
| 2017 | 51 | 255 | 0 | 0 | 0 | 0 | 0 | 306 |
| 2018 | 322 | 6 | 12 | 0 | 0 | 0 | 0 | 340 |
| arith. mean | 688 | 826 | 626 | 58 | 5 | 4 | 2 | 2209 |

Table 9.1.8 Sandeel. Number of samples from commercial catches by year and area.

|  | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | Area 6 | Area 7 | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 79 | 49 | 0 | 0 | 0 | 0 | 0 | 128 |
| 1984 | 116 | 46 | 13 | 0 | 2 | 3 | 0 | 180 |
| 1985 | 101 | 32 | 1 | 19 | 2 | 3 | 0 | 158 |
| 1986 | 26 | 17 | 27 | 1 | 0 | 1 | 0 | 72 |
| 1987 | 62 | 12 | 60 | 1 | 0 | 1 | 0 | 136 |
| 1988 | 42 | 15 | 67 | 0 | 0 | 1 | 0 | 125 |
| 1989 | 40 | 9 | 43 | 0 | 0 | 1 | 0 | 93 |
| 1990 | 1 | 4 | 37 | 0 | 0 | 2 | 0 | 44 |
| 1991 | 25 | 32 | 30 | 1 | 0 | 0 | 0 | 88 |
| 1992 | 56 | 42 | 24 | 4 | 0 | 7 | 0 | 133 |
| 1993 | 23 | 63 | 64 | 15 | 0 | 7 | 0 | 172 |
| 1994 | 20 | 38 | 50 | 15 | 0 | 4 | 0 | 127 |
| 1995 | 41 | 32 | 58 | 7 | 7 | 2 | 0 | 147 |
| 1996 | 43 | 62 | 113 | 27 | 19 | 1 | 0 | 265 |
| 1997 | 41 | 84 | 116 | 25 | 8 | 3 | 0 | 277 |
| 1998 | 53 | 30 | 145 | 7 | 0 | 2 | 0 | 237 |
| 1999 | 263 | 42 | 40 | 44 | 0 | 0 | 0 | 389 |
| 2000 | 102 | 34 | 47 | 59 | 0 | 0 | 0 | 242 |
| 2001 | 213 | 39 | 32 | 90 | 1 | 0 | 0 | 375 |
| 2002 | 288 | 97 | 50 | 62 | 0 | 0 | 0 | 497 |
| 2003 | 281 | 75 | 30 | 160 | 0 | 1 | 0 | 547 |
| 2004 | 451 | 217 | 26 | 47 | 0 | 1 | 0 | 742 |
| 2005 | 320 | 42 | 34 | 30 | 0 | 1 | 0 | 427 |
| 2006 | 550 | 56 | 72 | 2 | 0 | 2 | 0 | 682 |
| 2007 | 295 | 79 | 95 | 0 | 0 | 0 | 0 | 469 |
| 2008 | 290 | 100 | 45 | 1 | 0 | 0 | 0 | 436 |
| 2009 | 302 | 102 | 3 | 0 | 0 | 0 | 0 | 407 |
| 2010 | 169 | 194 | 30 | 1 | 0 | 0 | 0 | 394 |
| 2011 | 167 | 54 | 17 | 4 | 0 | 4 | 0 | 246 |
| 2012 | 220 | 112 | 31 | 21 | 0 | 12 | 0 | 396 |
| 2013 | 292 | 220 | 41 | 5 | 0 | 3 | 0 | 561 |
| 2014 | 143 | 133 | 29 | 18 | 0 | 5 | 0 | 328 |
| 2015 | 308 | 117 | 48 | 38 | 0 | 4 | 0 | 515 |
| 2016 | 154 | 159 | 42 | 35 | 0 | 0 | 0 | 390 |
| 2017 | 279 | 204 | 50 | 40 | 0 | 0 | 0 | 573 |
| 2018 | 350 | 136 | 166 | 71 | 0 | 0 | 0 | 723 |
| Sum | 6206 | 2779 | 1776 | 850 | 39 | 71 | 0 | 11721 |

Table 9.2.1 Sandeel Area-1r. Catch at age numbers (million) by half year.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 10223 | 1846 | 264 | 28971 | 3085 | 772 | 564 | 320 | 2 |
| 1984 | 0 | 47117 | 9241 | 1701 | 90 | 10002 | 566 | 333 | 43 |
| 1985 | 8524 | 6217 | 1354 | 31364 | 2305 | 1987 | 1595 | 211 | 213 |
| 1986 | 87 | 44940 | 4163 | 7553 | 228 | 1652 | 188 | 31 | 14 |
| 1987 | 187 | 4504 | 1938 | 23572 | 4173 | 1199 | 123 | 171 | 32 |
| 1988 | 0 | 1997 | 0 | 8564 | 162 | 15229 | 1439 | 2354 | 47 |
| 1989 | 0 | 62503 | 757 | 6364 | 77 | 1346 | 16 | 4736 | 58 |
| 1990 | 522 | 16846 | 1257 | 13917 | 417 | 2060 | 62 | 622 | 18 |
| 1991 | 7344 | 14939 | 6917 | 6870 | 209 | 983 | 67 | 338 | 0 |
| 1992 | 104 | 50883 | 3041 | 8451 | 298 | 845 | 122 | 524 | 26 |
| 1993 | 1624 | 2181 | 362 | 5882 | 271 | 1638 | 156 | 491 | 43 |
| 1994 | 0 | 22172 | 1533 | 2669 | 126 | 1195 | 55 | 882 | 78 |
| 1995 | 76 | 36677 | 3440 | 6236 | 940 | 737 | 109 | 289 | 28 |
| 1996 | 6470 | 10402 | 1064 | 12301 | 1027 | 4527 | 211 | 860 | 65 |
| 1997 | 19 | 38667 | 8899 | 2332 | 177 | 3522 | 164 | 713 | 56 |
| 1998 | 211 | 9387 | 438 | 28364 | 1384 | 2164 | 136 | 1505 | 90 |
| 1999 | 440 | 44621 | 2498 | 5433 | 205 | 10158 | 717 | 699 | 149 |
| 2000 | 7887 | 32625 | 2760 | 3355 | 170 | 630 | 84 | 1076 | 122 |
| 2001 | 47080 | 56780 | 3127 | 8549 | 474 | 1098 | 49 | 972 | 98 |
| 2002 | 16 | 84878 | 605 | 10772 | 108 | 1212 | 15 | 225 | 6 |
| 2003 | 2474 | 3843 | 386 | 13302 | 4390 | 1117 | 141 | 302 | 31 |
| 2004 | 566 | 30654 | 2479 | 786 | 110 | 2364 | 230 | 480 | 47 |
| 2005 | 44 | 11106 | 383 | 4435 | 211 | 263 | 14 | 435 | 27 |
| 2006 | 37 | 33600 | 800 | 2590 | 94 | 817 | 43 | 163 | 19 |
| 2007 | 0 | 10581 | 0 | 4674 | 0 | 315 | 0 | 172 | 0 |
| 2008 | 6 | 26735 | 281 | 4009 | 75 | 1205 | 33 | 214 | 6 |
| 2009 | 979 | 18898 | 2254 | 14265 | 278 | 1556 | 12 | 392 | 3 |
| 2010 | 10 | 39951 | 1184 | 2130 | 35 | 942 | 16 | 108 | 2 |
| 2011 | 5 | 1894 | 39 | 32692 | 325 | 1305 | 14 | 266 | 1 |
| 2012 | 0 | 383 | 0 | 419 | 0 | 3354 | 0 | 129 | 0 |
| 2013 | 3 | 18090 | 598 | 7916 | 131 | 2182 | 100 | 4301 | 49 |
| 2014 | 925 | 8930 | 131 | 3354 | 98 | 401 | 23 | 360 | 25 |
| 2015 | 0 | 25326 | 0 | 1918 | 0 | 579 | 0 | 172 | 0 |
| 2016 | 0 | 208 | 0 | 1193 | 0 | 97 | 0 | 17 | 0 |
| 2017 | 3 | 33038 | 253 | 3015 | 40 | 4604 | 38 | 103 | 7 |
| 2018 | 91 | 1702 | 159 | 14567 | 797 | 975 | 43 | 343 | 11 |
| arith. <br> mean | 2665 | 23753 | 1739 | 9291 | 625 | 2362 | 198 | 703 | 39 |

Table 9.2.2 Sandeel Area-1r. Individual mean weight (gram) at age in the catch and in the sea.

|  | Age 0, <br> 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 3.3 | 4.9 | 4.0 | 9.7 | 8.3 | 17.2 | 13.2 | 20.5 | 11.6 |
| 1984 | 3.7 | 5.5 | 7.3 | 10.1 | 12.8 | 14.1 | 16.8 | 13.4 | 15.8 |
| 1985 | 3.0 | 5.1 | 5.8 | 9.2 | 10.7 | 16.4 | 12.9 | 17.9 | 16.6 |
| 1986 | 3.0 | 5.3 | 7.5 | 11.7 | 12.7 | 11.7 | 12.8 | 13.6 | 14.7 |
| 1987 | 4.0 | 7.2 | 7.8 | 10.6 | 11.2 | 18.5 | 20.2 | 14.7 | 16.1 |
| 1988 | 3.9 | 6.1 | 6.8 | 10.4 | 12.0 | 16.0 | 17.0 | 17.8 | 24.4 |
| 1989 | 6.2 | 5.0 | 9.6 | 8.6 | 15.5 | 9.1 | 17.2 | 12.0 | 28.3 |
| 1990 | 5.0 | 6.6 | 9.0 | 9.6 | 13.1 | 14.2 | 19.3 | 17.0 | 23.1 |
| 1991 | 3.8 | 7.8 | 6.1 | 14.2 | 11.8 | 37.8 | 32.0 | 19.6 | 17.2 |
| 1992 | 4.9 | 7.8 | 9.5 | 11.9 | 15.3 | 17.7 | 19.7 | 19.0 | 21.2 |
| 1993 | 4.0 | 7.3 | 7.5 | 11.5 | 10.5 | 14.4 | 13.6 | 20.2 | 18.2 |
| 1994 | 4.4 | 5.5 | 7.6 | 8.7 | 12.3 | 12.7 | 16.3 | 19.8 | 18.8 |
| 1995 | 3.8 | 7.6 | 6.8 | 11.3 | 9.9 | 14.1 | 14.1 | 19.0 | 19.0 |
| 1996 | 2.9 | 5.6 | 4.6 | 8.4 | 7.6 | 12.2 | 9.5 | 17.7 | 14.2 |
| 1997 | 3.7 | 7.3 | 8.5 | 8.3 | 14.2 | 9.9 | 15.5 | 14.4 | 16.1 |
| 1998 | 3.2 | 6.3 | 6.7 | 8.9 | 10.0 | 11.5 | 11.9 | 13.5 | 14.5 |
| 1999 | 3.4 | 5.3 | 5.9 | 7.5 | 9.6 | 10.3 | 12.8 | 13.1 | 14.7 |
| 2000 | 3.1 | 6.3 | 4.8 | 8.7 | 7.9 | 11.9 | 10.6 | 14.5 | 12.2 |
| 2001 | 3.1 | 4.5 | 5.0 | 8.7 | 12.1 | 11.5 | 16.5 | 16.6 | 23.6 |
| 2002 | 3.8 | 6.0 | 6.7 | 7.4 | 10.8 | 9.8 | 14.4 | 13.8 | 16.5 |
| 2003 | 2.2 | 3.6 | 2.7 | 7.2 | 3.6 | 9.5 | 8.4 | 12.8 | 9.1 |
| 2004 | 3.5 | 5.1 | 4.5 | 8.3 | 6.6 | 9.0 | 6.7 | 10.4 | 8.8 |
| 2005 | 3.0 | 6.5 | 5.3 | 8.7 | 8.5 | 10.3 | 11.3 | 12.1 | 13.0 |
| 2006 | 3.2 | 5.9 | 5.5 | 9.7 | 8.9 | 11.6 | 11.9 | 13.0 | 13.7 |
| 2007 | 4.1 | 5.6 | 7.0 | 9.4 | 11.3 | 13.5 | 15.1 | 14.7 | 17.3 |
| 2008 | 4.5 | 6.3 | 7.8 | 10.9 | 12.6 | 13.3 | 16.8 | 15.8 | 19.3 |
| 2009 | 2.8 | 6.2 | 4.9 | 9.4 | 7.9 | 12.1 | 10.5 | 13.2 | 12.1 |
| 2010 | 3.4 | 6.3 | 5.9 | 12.4 | 9.5 | 13.9 | 12.6 | 17.2 | 14.5 |
| 2011 | 2.8 | 5.3 | 4.9 | 8.7 | 7.8 | 12.7 | 10.4 | 14.8 | 12.0 |
| 2012 | 3.8 | 6.4 | 6.6 | 9.5 | 10.6 | 11.3 | 14.1 | 14.5 | 16.2 |
| 2013 | 3.8 | 4.7 | 6.5 | 6.5 | 10.5 | 10.1 | 14.0 | 11.3 | 16.1 |
| 2014 | 3.0 | 4.7 | 5.2 | 7.1 | 8.5 | 9.5 | 11.3 | 11.7 | 13.0 |
| 2015 | 4.0 | 5.5 | 6.9 | 8.3 | 11.1 | 10.6 | 14.8 | 14.0 | 17.0 |
| 2016 | 3.2 | 5.2 | 5.4 | 10.1 | 8.7 | 12.5 | 11.6 | 14.7 | 13.3 |
| 2017 | 2.9 | 5.3 | 6.0 | 7.1 | 8.2 | 9.2 | 10.5 | 10.7 | 12.4 |
| 2018 | 2.4 | 4.7 | 4.1 | 7.0 | 6.6 | 9.5 | 8.8 | 11.5 | 10.1 |
| arith. <br> mean | 3.6 | 5.8 | 6.3 | 9.3 | 10.3 | 13.0 | 14.0 | 15.0 | 16.0 |

Table 9.2.3 Sandeel Area-1r. Proportion mature.

|  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1983-2016 | 0.02 | 0.8 | 0.99 | 1 |

Table 9.2.4. Sandeel Area-1r. Dredge survey indices (number/hour).

| Year | Age 0 | Age 1 |
| :--- | ---: | ---: |
| 2004 | 140061.87 | 7077.655 |
| 2005 | 277241.20 | 3288.987 |
| 2006 | 117233.03 | 12244.596 |
| 2007 | 402355.16 | 5326.731 |
| 2008 | 35633.70 | 13619.791 |
| 2009 | 474590.87 | 9040.642 |
| 2010 | 49722.00 | 125308.581 |
| 2011 | 77113.07 | 27178.527 |
| 2012 | 136586.42 | 3922.222 |
| 2013 | 80356.85 | 13156.382 |
| 2014 | 235943.73 | 3413.488 |
| 2015 | 23030.02 | 13597.662 |
| 2016 | 304655.46 | 7277.881 |
| 2017 | 32663.00 | 38561.000 |
| 2018 | 165064.00 | 11168.000 |

Table 9.2.5 Sandeel Area-1r. SMS settings and statistics.



| season | 2 : |  | 0.021 | 0.107 | 0.386 |  | 0.564 | 0.564 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1989-1998 | season | 1 : |  | 0 | 0.829 | 1.094 | 1.079 | 1.079 |
| season | 2. |  | 0.001 | 0.033 | 0.044 |  | 0.044 | 0.044 |
| 1999-2004 | season | 1: |  | 0 | 0.814 | 0.889 | 0.871 | 0.871 |
| season | 2. |  | 0.019 | 0.142 | 0.155 |  | 0.152 | 0.152 |
| 2005-2009 | season | 1: |  | 0 | 0.754 | 1.111 | 1.119 | 1.119 |
| season | 2. |  | 0.001 | 0.054 | 0.080 |  | 0.081 | 0.081 |
| 2010-2018 | season | 1: |  | 0 | 0.523 | 1.378 | 2.102 | 2.102 |
| season | $2:$ |  | 0.001 | 0.027 | 0.072 |  | 0.110 | 0.110 |

sqrt(catch
variance)
CV:
----------------------
age
1
2

| 0 |  | 1.610 |
| :--- | :--- | :--- |
| 1 | 0.341 | 0.572 |
| 2 | 0.341 | 0.572 |
| 3 | 0.691 | 0.911 |
| 4 | 0.691 | 0.911 |

Survey catchability:


Table 9.2.6 Sandeel Area-1r. Annual fishing mortality (F) at age.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.252 | 0.913 | 1.333 | 1.333 | 0.583 | 0.252 |
| 1984 | 0.285 | 1.032 | 1.507 | 1.507 | 0.659 | 0.285 |
| 1985 | 0.305 | 1.102 | 1.610 | 1.610 | 0.704 | 0.305 |
| 1986 | 0.204 | 0.741 | 1.082 | 1.082 | 0.473 | 0.204 |
| 1987 | 0.160 | 0.578 | 0.845 | 0.845 | 0.369 | 0.160 |
| 1988 | 0.221 | 0.801 | 1.170 | 1.170 | 0.511 | 0.221 |
| 1989 | 0.698 | 0.921 | 0.908 | 0.908 | 0.810 | 0.698 |
| 1990 | 0.697 | 0.919 | 0.907 | 0.907 | 0.808 | 0.697 |
| 1991 | 0.494 | 0.653 | 0.644 | 0.644 | 0.574 | 0.494 |
| 1992 | 0.721 | 0.951 | 0.938 | 0.938 | 0.836 | 0.721 |
| 1993 | 0.318 | 0.420 | 0.415 | 0.415 | 0.369 | 0.318 |
| 1994 | 0.258 | 0.340 | 0.335 | 0.335 | 0.299 | 0.258 |
| 1995 | 0.483 | 0.638 | 0.629 | 0.629 | 0.561 | 0.483 |
| 1996 | 0.451 | 0.595 | 0.587 | 0.587 | 0.523 | 0.451 |
| 1997 | 0.444 | 0.585 | 0.577 | 0.577 | 0.515 | 0.444 |
| 1998 | 0.545 | 0.719 | 0.709 | 0.709 | 0.632 | 0.545 |
| 1999 | 0.890 | 0.972 | 0.952 | 0.952 | 0.931 | 0.890 |
| 2000 | 0.719 | 0.785 | 0.768 | 0.768 | 0.752 | 0.719 |
| 2001 | 1.158 | 1.264 | 1.239 | 1.239 | 1.211 | 1.158 |
| 2002 | 0.792 | 0.866 | 0.848 | 0.848 | 0.829 | 0.792 |
| 2003 | 0.684 | 0.747 | 0.732 | 0.732 | 0.716 | 0.684 |
| 2004 | 0.694 | 0.757 | 0.742 | 0.742 | 0.726 | 0.694 |
| 2005 | 0.803 | 1.183 | 1.191 | 1.191 | 0.993 | 0.803 |
| 2006 | 0.984 | 1.448 | 1.459 | 1.459 | 1.216 | 0.984 |
| 2007 | 0.355 | 0.523 | 0.527 | 0.527 | 0.439 | 0.355 |
| 2008 | 0.673 | 0.991 | 0.998 | 0.998 | 0.832 | 0.673 |
| 2009 | 0.844 | 1.243 | 1.252 | 1.252 | 1.044 | 0.844 |
| 2010 | 0.304 | 0.801 | 1.222 | 1.222 | 0.553 | 0.304 |
| 2011 | 0.337 | 0.887 | 1.352 | 1.352 | 0.612 | 0.337 |
| 2012 | 0.062 | 0.164 | 0.250 | 0.250 | 0.113 | 0.062 |
| 2013 | 0.392 | 1.033 | 1.575 | 1.575 | 0.713 | 0.392 |
| 2014 | 0.234 | 0.617 | 0.941 | 0.941 | 0.426 | 0.234 |
| 2015 | 0.219 | 0.579 | 0.882 | 0.882 | 0.399 | 0.219 |
| 2016 | 0.015 | 0.041 | 0.062 | 0.062 | 0.028 | 0.015 |
| 2017 | 0.299 | 0.787 | 1.200 | 1.200 | 0.543 | 0.299 |
| 2018 | 0.348 | 0.918 | 1.400 | 1.400 | 0.633 | 0.348 |
| arith. <br> mean | 0.482 | 0.792 | 0.939 | 0.939 | 0.637 | 0.482 |

Table 9.2.7 Sandeel Area-1r. Fishing mortality (F) at age.

|  | Age 0, <br> 2nd half | Age 1, <br> 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.012 | 0.190 | 0.062 | 0.688 | 0.225 | 1.005 | 0.328 | 1.005 | 0.328 |
| 1984 | 0.013 | 0.217 | 0.068 | 0.786 | 0.246 | 1.148 | 0.359 | 1.148 | 0.359 |
| 1985 | 0.014 | 0.232 | 0.073 | 0.839 | 0.263 | 1.225 | 0.385 | 1.225 | 0.385 |
| 1986 | 0.005 | 0.180 | 0.024 | 0.653 | 0.088 | 0.954 | 0.128 | 0.954 | 0.128 |
| 1987 | 0.008 | 0.118 | 0.042 | 0.426 | 0.152 | 0.623 | 0.222 | 0.623 | 0.222 |
| 1988 | 0.005 | 0.197 | 0.024 | 0.713 | 0.088 | 1.041 | 0.129 | 1.041 | 0.129 |
| 1989 | 0.001 | 0.671 | 0.027 | 0.885 | 0.036 | 0.873 | 0.035 | 0.873 | 0.035 |
| 1990 | 0.002 | 0.652 | 0.045 | 0.860 | 0.059 | 0.848 | 0.059 | 0.848 | 0.059 |
| 1991 | 0.005 | 0.373 | 0.121 | 0.493 | 0.160 | 0.486 | 0.158 | 0.486 | 0.158 |
| 1992 | 0.003 | 0.645 | 0.076 | 0.851 | 0.100 | 0.839 | 0.099 | 0.839 | 0.099 |
| 1993 | 0.001 | 0.284 | 0.034 | 0.375 | 0.045 | 0.370 | 0.045 | 0.370 | 0.045 |
| 1994 | 0.001 | 0.232 | 0.026 | 0.306 | 0.034 | 0.302 | 0.033 | 0.302 | 0.033 |
| 1995 | 0.002 | 0.431 | 0.052 | 0.569 | 0.069 | 0.561 | 0.068 | 0.561 | 0.068 |
| 1996 | 0.003 | 0.391 | 0.060 | 0.516 | 0.079 | 0.509 | 0.078 | 0.509 | 0.078 |
| 1997 | 0.005 | 0.325 | 0.119 | 0.429 | 0.156 | 0.423 | 0.154 | 0.423 | 0.154 |
| 1998 | 0.002 | 0.496 | 0.049 | 0.654 | 0.065 | 0.645 | 0.064 | 0.645 | 0.064 |
| 1999 | 0.017 | 0.758 | 0.132 | 0.828 | 0.144 | 0.811 | 0.141 | 0.811 | 0.141 |
| 2000 | 0.016 | 0.595 | 0.124 | 0.650 | 0.135 | 0.636 | 0.132 | 0.636 | 0.132 |
| 2001 | 0.050 | 0.774 | 0.384 | 0.845 | 0.419 | 0.828 | 0.411 | 0.828 | 0.411 |
| 2002 | 0.004 | 0.764 | 0.028 | 0.835 | 0.031 | 0.818 | 0.030 | 0.818 | 0.030 |
| 2003 | 0.015 | 0.568 | 0.116 | 0.621 | 0.126 | 0.608 | 0.124 | 0.608 | 0.124 |
| 2004 | 0.008 | 0.635 | 0.059 | 0.693 | 0.064 | 0.679 | 0.063 | 0.679 | 0.063 |
| 2005 | 0.001 | 0.749 | 0.054 | 1.103 | 0.080 | 1.111 | 0.080 | 1.111 | 0.080 |
| 2006 | 0.001 | 0.906 | 0.078 | 1.334 | 0.114 | 1.344 | 0.115 | 1.344 | 0.115 |
| 2007 | 0.000 | 0.355 | 0.000 | 0.523 | 0.000 | 0.527 | 0.000 | 0.527 | 0.000 |
| 2008 | 0.000 | 0.636 | 0.037 | 0.936 | 0.055 | 0.943 | 0.055 | 0.943 | 0.055 |
| 2009 | 0.001 | 0.768 | 0.076 | 1.131 | 0.112 | 1.139 | 0.113 | 1.139 | 0.113 |
| 2010 | 0.001 | 0.289 | 0.015 | 0.761 | 0.040 | 1.161 | 0.061 | 1.161 | 0.061 |
| 2011 | 0.001 | 0.326 | 0.011 | 0.859 | 0.028 | 1.310 | 0.042 | 1.310 | 0.042 |
| 2012 | 0.000 | 0.062 | 0.000 | 0.164 | 0.000 | 0.250 | 0.000 | 0.250 | 0.000 |
| 2013 | 0.000 | 0.392 | 0.000 | 1.033 | 0.000 | 1.575 | 0.000 | 1.575 | 0.000 |
| 2014 | 0.000 | 0.225 | 0.009 | 0.593 | 0.024 | 0.904 | 0.037 | 0.904 | 0.037 |
| 2015 | 0.000 | 0.219 | 0.000 | 0.579 | 0.000 | 0.882 | 0.000 | 0.882 | 0.000 |
| 2016 | 0.000 | 0.015 | 0.000 | 0.041 | 0.000 | 0.062 | 0.000 | 0.062 | 0.000 |
| 2017 | 0.000 | 0.293 | 0.006 | 0.772 | 0.015 | 1.177 | 0.023 | 1.177 | 0.023 |
| 2018 | 0.002 | 0.312 | 0.036 | 0.822 | 0.096 | 1.254 | 0.146 | 1.254 | 0.146 |
| arith. mean | 0.006 | 0.424 | 0.057 | 0.699 | 0.093 | 0.830 | 0.109 | 0.830 | 0.109 |

Table 9.2.8 Sandeel Area-1r. Natural mortality (M) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, <br> 2nd half | Age 3, 1 st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.512 | 0.396 | 0.481 | 0.353 | 0.388 | 0.295 | 0.355 | 0.269 | 0.351 |
| 1984 | 0.502 | 0.401 | 0.466 | 0.360 | 0.386 | 0.274 | 0.336 | 0.256 | 0.348 |
| 1985 | 0.516 | 0.385 | 0.468 | 0.346 | 0.385 | 0.290 | 0.363 | 0.264 | 0.344 |
| 1986 | 0.531 | 0.376 | 0.478 | 0.342 | 0.412 | 0.282 | 0.380 | 0.267 | 0.361 |
| 1987 | 0.538 | 0.387 | 0.477 | 0.349 | 0.418 | 0.287 | 0.381 | 0.271 | 0.366 |
| 1988 | 0.546 | 0.394 | 0.475 | 0.360 | 0.419 | 0.298 | 0.373 | 0.293 | 0.366 |
| 1989 | 0.523 | 0.416 | 0.449 | 0.382 | 0.393 | 0.319 | 0.366 | 0.291 | 0.357 |
| 1990 | 0.543 | 0.402 | 0.476 | 0.343 | 0.404 | 0.292 | 0.368 | 0.285 | 0.368 |
| 1991 | 0.550 | 0.394 | 0.452 | 0.330 | 0.386 | 0.246 | 0.349 | 0.246 | 0.355 |
| 1992 | 0.533 | 0.391 | 0.424 | 0.313 | 0.365 | 0.234 | 0.328 | 0.235 | 0.335 |
| 1993 | 0.512 | 0.400 | 0.392 | 0.340 | 0.325 | 0.252 | 0.315 | 0.234 | 0.312 |
| 1994 | 0.512 | 0.378 | 0.435 | 0.324 | 0.355 | 0.253 | 0.327 | 0.229 | 0.320 |
| 1995 | 0.510 | 0.370 | 0.463 | 0.329 | 0.374 | 0.250 | 0.341 | 0.227 | 0.331 |
| 1996 | 0.538 | 0.334 | 0.483 | 0.299 | 0.385 | 0.246 | 0.350 | 0.219 | 0.343 |
| 1997 | 0.552 | 0.364 | 0.497 | 0.316 | 0.380 | 0.267 | 0.346 | 0.229 | 0.340 |
| 1998 | 0.591 | 0.409 | 0.525 | 0.344 | 0.377 | 0.299 | 0.343 | 0.244 | 0.336 |
| 1999 | 0.594 | 0.444 | 0.542 | 0.369 | 0.383 | 0.306 | 0.341 | 0.254 | 0.333 |
| 2000 | 0.582 | 0.458 | 0.527 | 0.381 | 0.356 | 0.314 | 0.327 | 0.247 | 0.306 |
| 2001 | 0.589 | 0.403 | 0.512 | 0.359 | 0.357 | 0.293 | 0.323 | 0.233 | 0.301 |
| 2002 | 0.645 | 0.445 | 0.549 | 0.416 | 0.445 | 0.347 | 0.353 | 0.277 | 0.332 |
| 2003 | 0.663 | 0.465 | 0.566 | 0.433 | 0.456 | 0.380 | 0.368 | 0.322 | 0.363 |
| 2004 | 0.679 | 0.525 | 0.601 | 0.456 | 0.458 | 0.403 | 0.366 | 0.346 | 0.360 |
| 2005 | 0.662 | 0.518 | 0.527 | 0.407 | 0.380 | 0.378 | 0.359 | 0.306 | 0.342 |
| 2006 | 0.695 | 0.543 | 0.551 | 0.417 | 0.399 | 0.329 | 0.355 | 0.277 | 0.338 |
| 2007 | 0.731 | 0.526 | 0.536 | 0.387 | 0.411 | 0.299 | 0.379 | 0.264 | 0.362 |
| 2008 | 0.694 | 0.523 | 0.582 | 0.396 | 0.437 | 0.289 | 0.371 | 0.266 | 0.364 |
| 2009 | 0.669 | 0.445 | 0.566 | 0.332 | 0.432 | 0.271 | 0.387 | 0.247 | 0.368 |
| 2010 | 0.675 | 0.451 | 0.624 | 0.344 | 0.453 | 0.281 | 0.413 | 0.246 | 0.384 |
| 2011 | 0.723 | 0.488 | 0.665 | 0.336 | 0.442 | 0.294 | 0.426 | 0.255 | 0.388 |
| 2012 | 0.716 | 0.544 | 0.638 | 0.414 | 0.434 | 0.333 | 0.407 | 0.295 | 0.381 |
| 2013 | 0.653 | 0.541 | 0.581 | 0.452 | 0.390 | 0.335 | 0.365 | 0.296 | 0.348 |
| 2014 | 0.635 | 0.473 | 0.524 | 0.439 | 0.348 | 0.297 | 0.327 | 0.278 | 0.319 |
| 2015 | 0.606 | 0.514 | 0.516 | 0.390 | 0.331 | 0.271 | 0.323 | 0.251 | 0.304 |
| 2016 | 0.606 | 0.514 | 0.516 | 0.390 | 0.331 | 0.271 | 0.323 | 0.251 | 0.304 |
| 2017 | 0.606 | 0.514 | 0.516 | 0.390 | 0.331 | 0.271 | 0.323 | 0.251 | 0.304 |
| 2018 | 0.606 | 0.514 | 0.516 | 0.390 | 0.331 | 0.271 | 0.323 | 0.251 | 0.304 |
| arith. <br> mean | 0.598 | 0.446 | 0.516 | 0.370 | 0.390 | 0.295 | 0.355 | 0.263 | 0.343 |

Table 9.2.9 Sandeel Area-1r. Stock numbers (millions). Age 0 at start of 2nd half-year, age 1+ at start of the year.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 307789 | 13764 | 53428 | 3205 | 202 |
| 1984 | 76138 | 182227 | 4452 | 10216 | 469 |
| 1985 | 518904 | 45492 | 57608 | 753 | 1286 |
| 1986 | 77487 | 305345 | 14299 | 9210 | 218 |
| 1987 | 46882 | 45338 | 106044 | 3207 | 1651 |
| 1988 | 205021 | 27161 | 16292 | 27615 | 1082 |
| 1989 | 93494 | 118199 | 9130 | 3357 | 4557 |
| 1990 | 132179 | 55351 | 24779 | 1675 | 1645 |
| 1991 | 161729 | 76615 | 11469 | 4680 | 695 |
| 1992 | 36290 | 92840 | 20047 | 2919 | 1556 |
| 1993 | 149627 | 21225 | 19966 | 3929 | 995 |
| 1994 | 215287 | 89540 | 6989 | 6740 | 1852 |
| 1995 | 54971 | 128926 | 30677 | 2523 | 3461 |
| 1996 | 387500 | 32947 | 34546 | 8028 | 1801 |
| 1997 | 60464 | 225590 | 9272 | 9612 | 3032 |
| 1998 | 113895 | 34620 | 61198 | 2573 | 3887 |
| 1999 | 150716 | 62937 | 7892 | 14506 | 1736 |
| 2000 | 244417 | 81770 | 9640 | 1408 | 3303 |
| 2001 | 405754 | 134449 | 14880 | 2105 | 1224 |
| 2002 | 25513 | 214039 | 16920 | 2053 | 538 |
| 2003 | 151085 | 13333 | 35859 | 3010 | 561 |
| 2004 | 67761 | 76681 | 2399 | 6978 | 821 |
| 2005 | 149597 | 34110 | 12429 | 451 | 1733 |
| 2006 | 74627 | 77088 | 5374 | 1735 | 341 |
| 2007 | 206138 | 37224 | 9653 | 558 | 246 |
| 2008 | 66094 | 99251 | 9030 | 2577 | 245 |
| 2009 | 479825 | 33017 | 16764 | 1457 | 539 |
| 2010 | 31323 | 245514 | 5164 | 2254 | 299 |
| 2011 | 40855 | 15945 | 61825 | 1044 | 379 |
| 2012 | 91537 | 19809 | 3598 | 11700 | 183 |
| 2013 | 51269 | 44716 | 5711 | 1308 | 4418 |
| 2014 | 189591 | 26682 | 9841 | 876 | 614 |
| 2015 | 28959 | 100443 | 7791 | 2417 | 315 |
| 2016 | 233749 | 15802 | 28799 | 2123 | 627 |
| 2017 | 20795 | 127551 | 5556 | 13443 | 1441 |
| 2018 | 110803 | 11344 | 33794 | 1230 | 2485 |
| 2019 |  | 60357 | 2860 | 6562 | 519 |

Table 9.2.10 Sandeel Area-1r. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (Yield) and average fishing mortality.

|  | Recruits (thousands) | $\begin{gathered} \mathrm{TSB} \\ \text { (tonnes) } \end{gathered}$ | $\begin{gathered} \text { SSB } \\ \text { (tonnes) } \end{gathered}$ | Yield (tonnes) | Mean $\mathrm{F}_{1-2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 307812072 | 646348 | 476870 | 378795 | 0.583 |
| 1984 | 76133581 | 1190140 | 205048 | 498626 | 0.658 |
| 1985 | 518784950 | 793723 | 462314 | 437114 | 0.703 |
| 1986 | 77516393 | 1894430 | 277340 | 382844 | 0.472 |
| 1987 | 46875232 | 1533910 | 991526 | 373021 | 0.369 |
| 1988 | 205098313 | 795387 | 593623 | 413646 | 0.511 |
| 1989 | 93455879 | 753101 | 160332 | 446028 | 0.809 |
| 1990 | 132222941 | 656341 | 250196 | 306240 | 0.808 |
| 1991 | 161659043 | 950504 | 331042 | 332204 | 0.574 |
| 1992 | 36288085 | 1042360 | 286359 | 558599 | 0.836 |
| 1993 | 149678467 | 461536 | 262761 | 132024 | 0.370 |
| 1994 | 215183132 | 675313 | 180232 | 193241 | 0.299 |
| 1995 | 54953614 | 1429380 | 399512 | 400588 | 0.560 |
| 1996 | 387412277 | 603306 | 364397 | 265869 | 0.523 |
| 1997 | 60490688 | 1851450 | 233748 | 426089 | 0.515 |
| 1998 | 113919202 | 844877 | 522301 | 377073 | 0.632 |
| 1999 | 150729892 | 567762 | 225258 | 422718 | 0.931 |
| 2000 | 244322590 | 662828 | 142629 | 299167 | 0.752 |
| 2001 | 405649482 | 781692 | 160653 | 531265 | 1.211 |
| 2002 | 25520689 | 1428820 | 154972 | 606466 | 0.829 |
| 2003 | 151031654 | 342920 | 243531 | 148039 | 0.716 |
| 2004 | 67795068 | 478922 | 94278 | 203646 | 0.726 |
| 2005 | 149528864 | 356073 | 117243 | 123422 | 0.993 |
| 2006 | 74626035 | 530434 | 75584 | 240646 | 1.216 |
| 2007 | 206126373 | 308942 | 88345 | 109624 | 0.439 |
| 2008 | 66121201 | 758791 | 129314 | 234447 | 0.832 |
| 2009 | 479857623 | 386188 | 155127 | 290995 | 1.043 |
| 2010 | 31327285 | 1646980 | 119731 | 300508 | 0.552 |
| 2011 | 40873807 | 643056 | 452707 | 318840 | 0.612 |
| 2012 | 91513769 | 295400 | 163081 | 46117 | 0.113 |
| 2013 | 51289674 | 309657 | 97246 | 214359 | 0.712 |
| 2014 | 189519030 | 211182 | 73644 | 78830 | 0.426 |
| 2015 | 28947662 | 645626 | 93153 | 163381 | 0.399 |
| 2016 | 233805469 | 409101 | 270493 | 14613 | 0.028 |
| 2017 | 20790361 | 852929 | 183689 | 241916 | 0.543 |
| 2018 | 110773707 | 331641 | 231886 | 130460 | 0.633 |
| 2019 |  |  | 97636 |  |  |
| arith. mean | 151612992 | 779751 | 253196 | 295596 | 0.637 |
| geo. mean | 107822833 |  |  |  |  |

arith. mean for the period 1983-2018
geo. mean for the period 1983-2017

Table 9.2.11 Sandeel Area-1r. Input to forecast.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Stock numbers(2019) | 107870.298 | 60357.3 | 2860.25 | 6561.6 | 519.456 |
| Exploitation pattern 1st half |  | 0.312 | 0.822 | 1.254 | 1.254 |
| Exploitation pattern 2nd half | 0.002 | 0.036 | 0.096 | 0.146 | 0.146 |
| Weight in the stock 1st half |  | 5.077 | 7.927 | 10.257 | 12.511 |
| Weight in the catch 1st half |  | 5.077 | 7.927 | 10.257 | 12.511 |
| weight in the catch 2nd half | 1.099 | 5.519 | 8.615 | 11.384 | 13.154 |
| Proportion mature(2019) |  | 0.021 | 0.801 | 0.988 | 1.000 |
| Proportion mature(2020) | 0.000 | 0.021 | 0.801 | 0.988 | 1.000 |
| Natural mortality 1st half |  | 0.514 | 0.390 | 0.271 | 0.251 |
| Natural mortality 2nd half | 0.606 | 0.516 | 0.331 | 0.323 | 0.304 |

Table 9.2.12 Sandeel Area-1r. Short term forecast (000 tonnes).
Basis: $\mathrm{Fsq}=\mathrm{F}(2018)=0.6328 ;$ Yield $(2018)=130.461$; Recruitment $(2018)=110.773707$; Recruitment(2019) = geometric mean (GM 1983-2017) = 107.870298 billions; $\operatorname{SSB}(2019)=97.636$

| F multiplier | Basis | $\mathrm{F}(2019)$ | Catch(2019) | SSB(2020) | \%SSB change* |
| ---: | ---: | ---: | ---: | ---: | ---: | \%TAC change**

Table 9.3.1 Sandeel Area-2r. Catch at age numbers (million) by half year.

|  | $\begin{gathered} \text { Age 0, } \\ \text { 2nd half } \end{gathered}$ | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 12882 | 4162 | 476 | 6190 | 877 | 203 | 104 | 67 | 0 |
| 1984 | 0 | 10284 | 3846 | 912 | 186 | 1154 | 193 | 38 | 10 |
| 1985 | 1827 | 1411 | 392 | 5501 | 768 | 473 | 387 | 109 | 50 |
| 1986 | 1443 | 24479 | 3495 | 3144 | 208 | 436 | 95 | 6 | 7 |
| 1987 | 45 | 831 | 512 | 2621 | 591 | 131 | 17 | 20 | 4 |
| 1988 | 5602 | 1030 | 545 | 3379 | 226 | 3163 | 775 | 478 | 31 |
| 1989 | 2819 | 23364 | 3809 | 1666 | 273 | 938 | 10 | 909 | 34 |
| 1990 | 5046 | 7332 | 854 | 3967 | 196 | 587 | 29 | 177 | 9 |
| 1991 | 10053 | 14203 | 3628 | 2099 | 110 | 451 | 35 | 156 | 1 |
| 1992 | 6830 | 12016 | 886 | 4066 | 85 | 475 | 34 | 298 | 7 |
| 1993 | 14083 | 4814 | 873 | 1294 | 660 | 642 | 226 | 475 | 56 |
| 1994 | 0 | 25596 | 4477 | 3619 | 919 | 341 | 275 | 199 | 118 |
| 1995 | 1798 | 4897 | 1316 | 1598 | 1777 | 209 | 211 | 88 | 159 |
| 1996 | 26463 | 2472 | 7161 | 1573 | 475 | 905 | 278 | 260 | 186 |
| 1997 | 284 | 29071 | 8330 | 1640 | 193 | 628 | 83 | 207 | 47 |
| 1998 | 1070 | 645 | 106 | 4749 | 1424 | 437 | 136 | 348 | 144 |
| 1999 | 4130 | 841 | 1113 | 177 | 102 | 855 | 501 | 186 | 149 |
| 2000 | 519 | 8160 | 1066 | 566 | 164 | 217 | 98 | 518 | 134 |
| 2001 | 5767 | 2625 | 2414 | 1010 | 563 | 129 | 73 | 367 | 228 |
| 2002 | 4 | 15855 | 1379 | 891 | 185 | 393 | 35 | 85 | 28 |
| 2003 | 3711 | 267 | 79 | 1723 | 453 | 136 | 43 | 67 | 17 |
| 2004 | 755 | 10761 | 2034 | 711 | 212 | 537 | 297 | 174 | 55 |
| 2005 | 15 | 2171 | 490 | 513 | 336 | 48 | 32 | 116 | 91 |
| 2006 | 8 | 2441 | 1030 | 276 | 125 | 100 | 64 | 27 | 39 |
| 2007 | 0 | 6431 | 0 | 240 | 0 | 32 | 0 | 5 | 0 |
| 2008 | 1 | 4621 | 187 | 434 | 64 | 90 | 36 | 15 | 5 |
| 2009 | 103 | 2817 | 1867 | 671 | 145 | 42 | 25 | 4 | 1 |
| 2010 | 2 | 6490 | 1308 | 193 | 35 | 374 | 27 | 60 | 4 |
| 2011 | 0 | 404 | 19 | 1474 | 91 | 236 | 17 | 59 | 3 |
| 2012 | 0 | 168 | 6 | 194 | 51 | 293 | 6 | 60 | 10 |
| 2013 | 0 | 4824 | 431 | 1158 | 47 | 296 | 16 | 99 | 5 |
| 2014 | 301 | 2987 | 141 | 2371 | 28 | 340 | 3 | 119 | 5 |
| 2015 | 0 | 2275 | 42 | 772 | 9 | 561 | 2 | 197 | 2 |
| 2016 | 4 | 272 | 1 | 136 | 3 | 108 | 0 | 66 | 0 |
| 2017 | 0 | 23040 | 1325 | 243 | 5 | 51 | 25 | 20 | 2 |
| 2018 | 0 | 51 | 0 | 1984 | 22 | 62 | 2 | 13 | 0 |
| arith. mean | 2932 | 7336 | 1545 | 1771 | 322 | 447 | 116 | 169 | 46 |

Table 9.3.2 Sandeel Area-2r. Individual mean weight (gram) at age in the catch and in the sea.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, 2nd half | Age 3, <br> 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 3.3 | 5.2 | 9.9 | 10.8 | 16.5 | 12.8 | 22.9 | 15.0 | 27.3 |
| 1984 | 5.9 | 5.6 | 10.2 | 11.1 | 14.1 | 15.6 | 25.8 | 18.8 | 30.1 |
| 1985 | 4.5 | 6.7 | 10.7 | 9.9 | 16.8 | 17.5 | 23.3 | 24.1 | 27.5 |
| 1986 | 3.2 | 5.9 | 9.8 | 10.3 | 15.8 | 12.7 | 15.0 | 15.0 | 17.0 |
| 1987 | 2.8 | 5.8 | 8.7 | 11.1 | 12.9 | 16.4 | 21.1 | 14.6 | 19.4 |
| 1988 | 3.5 | 5.5 | 7.2 | 11.1 | 15.3 | 16.1 | 21.0 | 23.1 | 30.6 |
| 1989 | 4.8 | 5.7 | 9.4 | 9.1 | 13.4 | 10.1 | 14.4 | 12.1 | 18.0 |
| 1990 | 4.4 | 7.1 | 8.1 | 9.7 | 11.8 | 14.4 | 17.4 | 17.3 | 20.8 |
| 1991 | 3.8 | 7.7 | 5.7 | 12.1 | 11.0 | 35.8 | 32.6 | 21.2 | 20.1 |
| 1992 | 4.7 | 6.9 | 15.0 | 9.9 | 20.6 | 13.5 | 29.3 | 17.9 | 29.2 |
| 1993 | 2.8 | 7.7 | 9.3 | 15.1 | 14.8 | 16.9 | 17.5 | 22.3 | 22.0 |
| 1994 | 3.6 | 5.4 | 7.6 | 10.5 | 18.8 | 15.3 | 23.0 | 19.5 | 20.7 |
| 1995 | 5.2 | 7.6 | 8.9 | 12.4 | 13.2 | 16.0 | 17.6 | 19.2 | 21.1 |
| 1996 | 2.7 | 7.0 | 4.9 | 12.4 | 13.2 | 17.0 | 15.8 | 27.9 | 24.5 |
| 1997 | 3.2 | 5.3 | 7.1 | 8.0 | 11.2 | 13.1 | 13.8 | 15.9 | 14.9 |
| 1998 | 3.4 | 6.2 | 6.7 | 11.4 | 14.0 | 14.7 | 16.5 | 17.4 | 18.3 |
| 1999 | 5.3 | 8.1 | 9.1 | 11.8 | 12.8 | 15.4 | 15.3 | 19.1 | 19.6 |
| 2000 | 3.1 | 6.8 | 10.2 | 10.0 | 13.0 | 15.2 | 17.9 | 18.1 | 19.5 |
| 2001 | 4.0 | 6.0 | 5.0 | 12.9 | 16.1 | 16.6 | 21.7 | 20.4 | 26.2 |
| 2002 | 3.2 | 5.7 | 8.3 | 8.4 | 13.2 | 9.6 | 15.3 | 17.3 | 17.7 |
| 2003 | 5.4 | 6.0 | 8.1 | 11.3 | 16.0 | 15.1 | 21.4 | 18.2 | 27.2 |
| 2004 | 4.8 | 6.5 | 7.4 | 9.4 | 10.9 | 12.4 | 12.2 | 13.1 | 13.7 |
| 2005 | 3.4 | 7.5 | 7.4 | 11.8 | 11.9 | 14.4 | 15.4 | 14.8 | 17.5 |
| 2006 | 4.6 | 7.6 | 9.9 | 11.5 | 15.9 | 13.9 | 20.6 | 14.8 | 23.4 |
| 2007 | 5.8 | 6.2 | 6.2 | 12.4 | 12.4 | 15.4 | 15.4 | 17.8 | 17.8 |
| 2008 | 3.4 | 5.5 | 7.5 | 12.5 | 12.0 | 16.1 | 15.6 | 18.0 | 17.7 |
| 2009 | 6.0 | 6.1 | 5.0 | 8.7 | 10.9 | 16.5 | 18.6 | 12.2 | 11.0 |
| 2010 | 2.5 | 5.7 | 5.3 | 10.3 | 8.4 | 11.5 | 11.0 | 13.2 | 12.5 |
| 2011 | 3.6 | 6.9 | 7.6 | 11.1 | 12.2 | 13.8 | 15.8 | 14.6 | 18.0 |
| 2012 | 4.4 | 8.2 | 9.4 | 12.4 | 15.1 | 14.8 | 19.6 | 21.8 | 22.3 |
| 2013 | 3.9 | 5.9 | 8.8 | 7.9 | 11.5 | 14.2 | 14.4 | 14.1 | 16.5 |
| 2014 | 3.3 | 5.3 | 7.0 | 9.9 | 11.2 | 12.0 | 14.6 | 18.6 | 16.6 |
| 2015 | 5.3 | 6.8 | 11.4 | 12.4 | 18.4 | 15.3 | 23.9 | 17.3 | 27.1 |
| 2016 | 2.6 | 3.3 | 5.5 | 12.2 | 8.9 | 14.6 | 11.5 | 16.0 | 13.1 |
| 2017 | 2.9 | 5.5 | 7.8 | 7.8 | 10.7 | 13.1 | 10.8 | 14.8 | 15.5 |
| 2018 | 3.2 | 4.6 | 7.0 | 9.6 | 11.3 | 12.4 | 14.5 | 14.4 | 16.5 |
| arith. <br> mean | 4.0 | 6.3 | 8.1 | 10.8 | 13.5 | 15.0 | 18.1 | 17.5 | 20.3 |

Table 9.3.3 Sandeel Area-2r. Proportion mature.

|  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: |
| $1983-2016$ | 0.02 | 0.83 | 1 | 1 |

Table 9.3.4. Sandeel Area-2r. Dredge survey indices (number/hour).

| Year | Age 0 | Age 1 |
| ---: | ---: | ---: |
| 2010 | 938.752 | 1482.382 |
| 2011 | 2290.448 | 259.021 |
| 2012 | 11342.580 | 94.156 |
| 2013 | 7546.966 | 2103.482 |
| 2014 | 5760.235 | 810.806 |
| 2015 | 706.350 | 106.920 |
| 2016 | 53839.804 | 113.297 |
| 2017 | 899.000 | 2976.000 |
| 2018 | 2326.000 | 372.000 |

Table 9.3.5 Sandeel Area-2r. SMS settings and statistics.


| objective | function |  |  |  |  | weight: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | CPUE |  |  | S/R |
|  | 1.00 |  |  |  |  | 0.10 |
| unweighted | objective |  | ction |  | utions | (total): |
| Catch | CPUE | S/R | Stom. | Stom | Penalty | Sum |
| 53.6 | 4.3 | 22.2 | 0.0 | 0.0 | 0.00 | 80 |


| unweighted | objective | function | contributions | (per | observation): |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Catch |  | CPUE | S/R |  | Stomachs |
| 0.17 |  | 0.24 | 0.62 |  | 0.00 |



| Exploitation |  | pattern | (scaled | to |  | mean | $\mathrm{F}=1$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 |  | 2 |  | 3 | 4 |
| 1983-1988 | season | 1 : | 0 | 0.300 | 0.968 | 1.644 | 1.644 |
| season | 2 . | 0.051 | 0.173 |  |  | 0.948 | 0.948 |


sqrt(catch
variance)
~ CV:
---------------------

| age | 1 | 2 |  |
| :--- | :--- | :--- | :--- |
|  |  |  | 1.563 |
| 0 |  |  | 0.703 |
| 1 |  | 0.323 | 0.703 |
| 2 |  | 0.808 | 1.094 |
| 3 | 0.808 | 1.094 |  |

Survey
Dredge $\quad$ age
squrv
---------------------

|  | age | 0 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Dredge | survey | 2010-2018 |  |  |
| Recruit-SSB |  |  | alfa | beta |
| Area-2r | 1056.582 | $5.600 \mathrm{e}+004$ | 1.266 | 1.125 |

catchability:

|  | age | 1 |
| :--- | ---: | ---: |
| 49.001 |  | 22.100 |
| $\sim$ |  | $\mathrm{CV}:$ |

$\begin{array}{lrr} & \text { age } & 1 \\ 0.57 & & 1.04\end{array}$
recruit s2 recruit s

Table 9.3.6 Sandeel Area-2r. Annual fishing mortality (F) at age.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.337 | 1.088 | 1.848 | 1.848 | 0.713 | 0.337 |
| 1984 | 0.286 | 0.925 | 1.571 | 1.571 | 0.606 | 0.286 |
| 1985 | 0.256 | 0.824 | 1.399 | 1.399 | 0.540 | 0.256 |
| 1986 | 0.358 | 1.156 | 1.963 | 1.963 | 0.757 | 0.358 |
| 1987 | 0.082 | 0.265 | 0.451 | 0.451 | 0.174 | 0.082 |
| 1988 | 0.277 | 0.893 | 1.515 | 1.515 | 0.585 | 0.277 |
| 1989 | 0.635 | 0.766 | 0.897 | 0.897 | 0.701 | 0.635 |
| 1990 | 0.414 | 0.501 | 0.586 | 0.586 | 0.458 | 0.414 |
| 1991 | 0.489 | 0.591 | 0.691 | 0.691 | 0.540 | 0.489 |
| 1992 | 0.482 | 0.583 | 0.681 | 0.681 | 0.533 | 0.482 |
| 1993 | 0.409 | 0.494 | 0.577 | 0.577 | 0.452 | 0.409 |
| 1994 | 0.409 | 0.494 | 0.577 | 0.577 | 0.452 | 0.409 |
| 1995 | 0.233 | 0.282 | 0.330 | 0.330 | 0.258 | 0.233 |
| 1996 | 0.400 | 0.483 | 0.565 | 0.565 | 0.442 | 0.400 |
| 1997 | 0.501 | 0.605 | 0.709 | 0.709 | 0.553 | 0.501 |
| 1998 | 0.260 | 0.314 | 0.367 | 0.367 | 0.287 | 0.260 |
| 1999 | 0.407 | 0.501 | 0.501 | 0.501 | 0.454 | 0.407 |
| 2000 | 0.489 | 0.603 | 0.604 | 0.604 | 0.546 | 0.489 |
| 2001 | 0.492 | 0.606 | 0.606 | 0.606 | 0.549 | 0.492 |
| 2002 | 0.589 | 0.725 | 0.725 | 0.725 | 0.657 | 0.589 |
| 2003 | 0.462 | 0.569 | 0.570 | 0.570 | 0.516 | 0.462 |
| 2004 | 0.808 | 0.995 | 0.996 | 0.996 | 0.902 | 0.808 |
| 2005 | 1.189 | 0.990 | 1.075 | 1.075 | 1.090 | 1.189 |
| 2006 | 1.277 | 1.063 | 1.154 | 1.154 | 1.170 | 1.277 |
| 2007 | 0.620 | 0.517 | 0.561 | 0.561 | 0.569 | 0.620 |
| 2008 | 0.735 | 0.611 | 0.664 | 0.664 | 0.673 | 0.735 |
| 2009 | 0.776 | 0.647 | 0.701 | 0.701 | 0.712 | 0.776 |
| 2010 | 0.289 | 0.467 | 0.761 | 0.761 | 0.378 | 0.289 |
| 2011 | 0.178 | 0.289 | 0.471 | 0.471 | 0.234 | 0.178 |
| 2012 | 0.100 | 0.162 | 0.264 | 0.264 | 0.131 | 0.100 |
| 2013 | 0.450 | 0.727 | 1.186 | 1.186 | 0.589 | 0.450 |
| 2014 | 0.329 | 0.533 | 0.870 | 0.870 | 0.431 | 0.329 |
| 2015 | 0.283 | 0.459 | 0.748 | 0.748 | 0.371 | 0.283 |
| 2016 | 0.122 | 0.198 | 0.322 | 0.322 | 0.160 | 0.122 |
| 2017 | 0.586 | 0.950 | 1.548 | 1.548 | 0.768 | 0.586 |
| 2018 | 0.157 | 0.255 | 0.414 | 0.414 | 0.206 | 0.157 |
| arith. <br> mean | 0.449 | 0.615 | 0.819 | 0.819 | 0.532 | 0.449 |

Table 9.3.7 Sandeel Area-2r. Fishing mortality (F) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.036 | 0.214 | 0.123 | 0.690 | 0.398 | 1.172 | 0.676 | 1.172 | 0.676 |
| 1984 | 0.033 | 0.174 | 0.112 | 0.562 | 0.363 | 0.955 | 0.616 | 0.955 | 0.616 |
| 1985 | 0.022 | 0.182 | 0.074 | 0.585 | 0.239 | 0.994 | 0.405 | 0.994 | 0.405 |
| 1986 | 0.025 | 0.274 | 0.084 | 0.884 | 0.272 | 1.501 | 0.462 | 1.501 | 0.462 |
| 1987 | 0.008 | 0.055 | 0.027 | 0.177 | 0.088 | 0.301 | 0.150 | 0.301 | 0.150 |
| 1988 | 0.026 | 0.188 | 0.089 | 0.606 | 0.287 | 1.028 | 0.487 | 1.028 | 0.487 |
| 1989 | 0.077 | 0.503 | 0.132 | 0.607 | 0.159 | 0.711 | 0.186 | 0.711 | 0.186 |
| 1990 | 0.038 | 0.350 | 0.064 | 0.423 | 0.078 | 0.495 | 0.091 | 0.495 | 0.091 |
| 1991 | 0.072 | 0.367 | 0.122 | 0.443 | 0.148 | 0.518 | 0.173 | 0.518 | 0.173 |
| 1992 | 0.052 | 0.393 | 0.089 | 0.475 | 0.108 | 0.555 | 0.126 | 0.555 | 0.126 |
| 1993 | 0.082 | 0.269 | 0.140 | 0.325 | 0.169 | 0.380 | 0.197 | 0.380 | 0.197 |
| 1994 | 0.051 | 0.321 | 0.088 | 0.388 | 0.106 | 0.453 | 0.124 | 0.453 | 0.124 |
| 1995 | 0.044 | 0.158 | 0.075 | 0.191 | 0.091 | 0.224 | 0.106 | 0.224 | 0.106 |
| 1996 | 0.135 | 0.169 | 0.231 | 0.204 | 0.279 | 0.238 | 0.327 | 0.238 | 0.327 |
| 1997 | 0.085 | 0.356 | 0.145 | 0.430 | 0.175 | 0.504 | 0.205 | 0.504 | 0.205 |
| 1998 | 0.047 | 0.180 | 0.080 | 0.217 | 0.097 | 0.254 | 0.113 | 0.254 | 0.113 |
| 1999 | 0.036 | 0.139 | 0.268 | 0.171 | 0.330 | 0.171 | 0.330 | 0.171 | 0.330 |
| 2000 | 0.017 | 0.362 | 0.127 | 0.446 | 0.157 | 0.447 | 0.157 | 0.447 | 0.157 |
| 2001 | 0.036 | 0.224 | 0.268 | 0.276 | 0.330 | 0.276 | 0.330 | 0.276 | 0.330 |
| 2002 | 0.020 | 0.445 | 0.144 | 0.548 | 0.177 | 0.548 | 0.177 | 0.548 | 0.177 |
| 2003 | 0.037 | 0.193 | 0.269 | 0.238 | 0.331 | 0.238 | 0.332 | 0.238 | 0.332 |
| 2004 | 0.030 | 0.585 | 0.223 | 0.721 | 0.274 | 0.721 | 0.275 | 0.721 | 0.275 |
| 2005 | 0.001 | 0.603 | 0.586 | 0.502 | 0.488 | 0.545 | 0.530 | 0.545 | 0.530 |
| 2006 | 0.001 | 0.577 | 0.700 | 0.480 | 0.583 | 0.521 | 0.633 | 0.521 | 0.633 |
| 2007 | 0.000 | 0.620 | 0.000 | 0.517 | 0.000 | 0.561 | 0.000 | 0.561 | 0.000 |
| 2008 | 0.000 | 0.547 | 0.188 | 0.455 | 0.156 | 0.494 | 0.170 | 0.494 | 0.170 |
| 2009 | 0.000 | 0.403 | 0.373 | 0.336 | 0.311 | 0.364 | 0.337 | 0.364 | 0.337 |
| 2010 | 0.000 | 0.236 | 0.053 | 0.382 | 0.085 | 0.622 | 0.139 | 0.622 | 0.139 |
| 2011 | 0.000 | 0.159 | 0.019 | 0.258 | 0.031 | 0.420 | 0.051 | 0.420 | 0.051 |
| 2012 | 0.000 | 0.093 | 0.007 | 0.150 | 0.012 | 0.245 | 0.019 | 0.245 | 0.019 |
| 2013 | 0.000 | 0.395 | 0.055 | 0.639 | 0.088 | 1.042 | 0.144 | 1.042 | 0.144 |
| 2014 | 0.000 | 0.309 | 0.020 | 0.500 | 0.033 | 0.816 | 0.054 | 0.816 | 0.054 |
| 2015 | 0.000 | 0.278 | 0.005 | 0.450 | 0.009 | 0.734 | 0.014 | 0.734 | 0.014 |
| 2016 | 0.000 | 0.118 | 0.004 | 0.191 | 0.007 | 0.311 | 0.011 | 0.311 | 0.011 |
| 2017 | 0.001 | 0.514 | 0.072 | 0.833 | 0.117 | 1.358 | 0.190 | 1.358 | 0.190 |
| 2018 | 0.000 | 0.155 | 0.002 | 0.252 | 0.003 | 0.410 | 0.004 | 0.410 | 0.004 |
| arith. <br> mean | 0.028 | 0.309 | 0.141 | 0.432 | 0.183 | 0.587 | 0.232 | 0.587 | 0.232 |

Table 9.3.8 Sandeel Area-2r. Natural mortality (M) at age.

|  | Age 0, 2nd half | Age 1, 1st half | $\begin{aligned} & \text { Age 1, } \\ & \text { 2nd half } \end{aligned}$ | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1984 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1985 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1986 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1987 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1988 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1989 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1990 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1991 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1992 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1993 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1994 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1995 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1996 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1997 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1998 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1999 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2000 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2001 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2002 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2003 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2004 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2005 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2006 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2007 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2008 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2009 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2010 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2011 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2012 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2013 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2014 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2015 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2016 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2017 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2018 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| arith. <br> mean | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |

Table 9.3.9 Sandeel Area-2r. Stock numbers (millions). Age 0 at start of 2nd half-year, age $1+$ at start of the year.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 165822 | 16306 | 14367 | 709 | 32 |
| 1984 | 46688 | 63735 | 3647 | 1909 | 56 |
| 1985 | 282288 | 18002 | 14996 | 571 | 195 |
| 1986 | 62255 | 110082 | 4371 | 2595 | 91 |
| 1987 | 35120 | 24204 | 24107 | 542 | 180 |
| 1988 | 182143 | 13884 | 6987 | 7292 | 221 |
| 1989 | 86859 | 70719 | 3300 | 1129 | 788 |
| 1990 | 156507 | 32044 | 11752 | 605 | 376 |
| 1991 | 109124 | 60069 | 6636 | 2810 | 263 |
| 1992 | 115520 | 40480 | 11548 | 1450 | 736 |
| 1993 | 234965 | 43693 | 7834 | 2544 | 531 |
| 1994 | 108021 | 86295 | 9102 | 1886 | 826 |
| 1995 | 74724 | 40890 | 17976 | 2192 | 731 |
| 1996 | 420437 | 28496 | 10150 | 5350 | 1008 |
| 1997 | 15316 | 146350 | 5990 | 2471 | 1730 |
| 1998 | 26134 | 5608 | 27794 | 1290 | 995 |
| 1999 | 75890 | 9937 | 1356 | 8011 | 762 |
| 2000 | 43060 | 29162 | 2074 | 324 | 2540 |
| 2001 | 132731 | 16866 | 5602 | 448 | 761 |
| 2002 | 10221 | 51003 | 3233 | 1206 | 318 |
| 2003 | 48018 | 3994 | 8872 | 618 | 353 |
| 2004 | 19015 | 18448 | 788 | 1980 | 264 |
| 2005 | 19132 | 7352 | 2577 | 115 | 396 |
| 2006 | 27522 | 7619 | 702 | 378 | 85 |
| 2007 | 39049 | 10958 | 666 | 96 | 70 |
| 2008 | 24271 | 15562 | 1847 | 157 | 45 |
| 2009 | 82924 | 9670 | 2341 | 395 | 50 |
| 2010 | 12435 | 33031 | 1395 | 484 | 106 |
| 2011 | 12992 | 4953 | 7759 | 345 | 132 |
| 2012 | 56377 | 5177 | 1299 | 2293 | 143 |
| 2013 | 27880 | 22466 | 1469 | 436 | 894 |
| 2014 | 18017 | 11105 | 4493 | 280 | 197 |
| 2015 | 5480 | 7179 | 2504 | 1040 | 96 |
| 2016 | 185342 | 2184 | 1695 | 624 | 257 |
| 2017 | 1386 | 73859 | 606 | 549 | 306 |
| 2018 | 11059 | 552 | 12878 | 92 | 87 |
| 2019 |  | 4407 | 148 | 3941 | 57 |

Table 9.3.10 Sandeel Area-2r. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (Yield) and average fishing mortality.

|  | Recruits (thousands) | $\begin{gathered} \text { TSB } \\ \text { (tonnes) } \end{gathered}$ | $\begin{gathered} \text { SSB } \\ \text { (tonnes) } \end{gathered}$ | $\begin{aligned} & \text { Yield } \\ & \text { (tonnes) } \end{aligned}$ | Mean F1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 165751461 | 249032 | 140225 | 155664 | 0.713 |
| 1984 | 46688106 | 425883 | 71682 | 133343 | 0.606 |
| 1985 | 282164276 | 283374 | 140225 | 110546 | 0.540 |
| 1986 | 62270602 | 724736 | 84881 | 225470 | 0.758 |
| 1987 | 35110121 | 420706 | 236570 | 49070 | 0.174 |
| 1988 | 182087883 | 276926 | 188528 | 149466 | 0.585 |
| 1989 | 86876663 | 456875 | 53960 | 223507 | 0.701 |
| 1990 | 156567847 | 356203 | 114462 | 133874 | 0.458 |
| 1991 | 109124501 | 647313 | 182225 | 215508 | 0.540 |
| 1992 | 115525287 | 428556 | 133786 | 184033 | 0.533 |
| 1993 | 234977424 | 509086 | 159692 | 139826 | 0.451 |
| 1994 | 108038694 | 604749 | 133519 | 244939 | 0.451 |
| 1995 | 74700698 | 584284 | 240386 | 113899 | 0.258 |
| 1996 | 420518907 | 444242 | 227521 | 182562 | 0.441 |
| 1997 | 15309743 | 880457 | 115036 | 242094 | 0.553 |
| 1998 | 26140594 | 387628 | 299839 | 99814 | 0.287 |
| 1999 | 75905523 | 234779 | 153123 | 69427 | 0.454 |
| 2000 | 43055477 | 270282 | 71898 | 92908 | 0.546 |
| 2001 | 132752892 | 195834 | 85050 | 90200 | 0.549 |
| 2002 | 10221460 | 332832 | 45342 | 117388 | 0.657 |
| 2003 | 48013847 | 139811 | 99409 | 53710 | 0.516 |
| 2004 | 19019969 | 154594 | 36534 | 110546 | 0.902 |
| 2005 | 19134432 | 92820 | 33894 | 34396 | 1.090 |
| 2006 | 27508346 | 72096 | 14354 | 37860 | 1.170 |
| 2007 | 39036201 | 78340 | 10895 | 43090 | 0.568 |
| 2008 | 24276030 | 112737 | 24173 | 35604 | 0.673 |
| 2009 | 82887929 | 85996 | 25135 | 35687 | 0.711 |
| 2010 | 12434681 | 209963 | 22675 | 51670 | 0.378 |
| 2011 | 12994022 | 127403 | 78984 | 24896 | 0.234 |
| 2012 | 56401144 | 95666 | 51328 | 10594 | 0.131 |
| 2013 | 27868289 | 162764 | 31101 | 47814 | 0.588 |
| 2014 | 18020130 | 110302 | 45252 | 48033 | 0.431 |
| 2015 | 5482107 | 97711 | 44356 | 37902 | 0.371 |
| 2016 | 185395141 | 40989 | 30516 | 5230 | 0.160 |
| 2017 | 1386094 | 426022 | 23813 | 141314 | 0.768 |
| 2018 | 11061708 | 128861 | 105345 | 20568 | 0.206 |
| 2019 |  |  | 55770 |  |  |
| arith. mean | 82631198 | 301385 | 97596 | 103124 | 0.532 |
| geo. mean | 47583661 |  |  |  |  |

arith. mean for the period 1983-2018
geo. mean for the period 1983-2017

Table 9.3.11 Sandeel Area-2r. Input to forecast.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Stock numbers(2019) | 20477.415 | 4407.14 | 147.917 | 3940.91 | 57.258 |
| Exploitation pattern 1st half |  | 0.155 | 0.252 | 0.410 | 0.410 |
| Exploitation pattern 2nd half | 0.000 | 0.002 | 0.003 | 0.004 | 0.004 |
| Weight in the stock 1st half |  | 5.103 | 10.386 | 13.482 | 16.195 |
| Weight in the catch 1st half |  | 5.103 | 10.386 | 13.482 | 16.195 |
| weight in the catch 2nd half | 3.469 | 7.760 | 12.086 | 15.070 | 17.762 |
| Proportion mature(2019) | 0.000 | 0.020 | 0.830 | 1.000 | 1.000 |
| Proportion mature(2020) | 0.000 | 0.020 | 0.830 | 1.000 | 1.000 |
| Natural mortality 1st half |  | 0.570 | 0.440 | 0.320 | 0.310 |
| Natural mortality 2nd half | 0.920 | 0.590 | 0.490 | 0.420 | 0.410 |

Table 9.3.12 Sandeel Area-2r. Short term forecast (000 tonnes).

Basis: $\mathrm{Fsq}=\mathrm{F}(2018)=0.2056$; Yield $(2018)=20.568$; Recruitment $(2018)=11.061708$; Recruitment $(2019)=$ geometric mean $(G M 2008-2017)=20.477415$ billions;
SSB(2019) $=55.77$

| F multiplier | Basis | $\mathrm{F}(2019)$ | Catch(2019) | SSB(2020) | \%SSB <br> change | \%TAC <br> change** |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| 0 | $\mathrm{~F}=0$ | 0.000 | 0.001 | 44.435 | $-20 \%$ | $-100 \%$ |
| 1 | $\mathrm{Fsq}^{* 1}$ | 0.206 | 18.622 | 32.046 | $-43 \%$ | $-9 \%$ |
| 0.24 | $\mathrm{Fsq}^{*} 0.24$ | 0.048 | 5.004 | 41.080 | $-26 \%$ | $-76 \%$ |
| 0.4 | $\mathrm{Fsq}^{*} 0.4$ | 0.082 | 8.248 | 38.915 | $-30 \%$ | $-60 \%$ |
| 0.5 | $\mathrm{Fsq}^{*} 0.5$ | 0.103 | 10.132 | 37.660 | $-32 \%$ | $-51 \%$ |
| 0.6 | $\mathrm{Fsq}^{*} 0.6$ | 0.123 | 11.952 | 36.452 | $-35 \%$ | $-42 \%$ |
| 0.7 | $\mathrm{Fsq}^{*} 0.7$ | 0.144 | 13.708 | 35.288 | $-37 \%$ | $-33 \%$ |
| 0.8 | $\mathrm{Fsq}^{*} 0.8$ | 0.164 | 15.403 | 34.166 | $-39 \%$ | $-25 \%$ |
| 0.9 | $\mathrm{Fsq}^{*} 0.9$ | 0.185 | 17.041 | 33.086 | $-41 \%$ | $-17 \%$ |
| No conversion for cal- <br> culation of MSY catch |  | NA | NA | NA |  |  |

*SSB in 2020 relative to SSB in 2019
**TAC in 2019 relative to catches in 2018

Table 9.4.1 Sandeel Area-3r. Catch at age numbers (million) by half year.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 7965 | 18939 | 7987 | 2063 | 533 | 161 | 2 | 0 | 0 |
| 1987 | 5 | 33760 | 65 | 14020 | 4 | 453 | 0 | 200 | 0 |
| 1988 | 8769 | 6584 | 853 | 17321 | 233 | 893 | 144 | 19 | 13 |
| 1989 | 159 | 47004 | 190 | 1844 | 13 | 2806 | 0 | 4 | 0 |
| 1990 | 9793 | 9302 | 1377 | 2791 | 286 | 413 | 43 | 125 | 13 |
| 1991 | 14442 | 24009 | 942 | 1391 | 30 | 526 | 9 | 184 | 3 |
| 1992 | 525 | 7100 | 87 | 2862 | 8 | 342 | 3 | 215 | 1 |
| 1993 | 9663 | 15164 | 851 | 558 | 155 | 211 | 71 | 1336 | 12 |
| 1994 | 0 | 23742 | 615 | 4818 | 684 | 938 | 78 | 386 | 10 |
| 1995 | 1020 | 25037 | 484 | 1894 | 78 | 238 | 13 | 156 | 17 |
| 1996 | 6263 | 4319 | 3111 | 3394 | 97 | 465 | 33 | 399 | 248 |
| 1997 | 2975 | 66856 | 10388 | 2912 | 134 | 607 | 13 | 194 | 9 |
| 1998 | 30136 | 3954 | 992 | 28137 | 740 | 2553 | 192 | 290 | 32 |
| 1999 | 6444 | 5182 | 1835 | 1554 | 118 | 1979 | 401 | 421 | 169 |
| 2000 | 0 | 18793 | 344 | 3286 | 4 | 541 | 1 | 533 | 9 |
| 2001 | 18263 | 5327 | 3968 | 992 | 9 | 163 | 2 | 160 | 6 |
| 2002 | 0 | 9075 | 21 | 2680 | 3 | 387 | 1 | 135 | 0 |
| 2003 | 2755 | 939 | 61 | 808 | 53 | 130 | 2 | 78 | 1 |
| 2004 | 1091 | 1976 | 737 | 256 | 16 | 74 | 6 | 92 | 1 |
| 2005 | 0 | 1404 | 1 | 146 | 0 | 21 | 0 | 12 | 0 |
| 2006 | 0 | 769 | 3 | 47 | 1 | 27 | 0 | 4 | 0 |
| 2007 | 0 | 8600 | 0 | 571 | 0 | 86 | 0 | 19 | 0 |
| 2008 | 0 | 4077 | 0 | 2012 | 0 | 460 | 0 | 73 | 0 |
| 2009 | 1 | 827 | 12 | 69 | 2 | 8 | 0 | 0 | 0 |
| 2010 | 0 | 3042 | 51 | 740 | 1 | 1006 | 1 | 173 | 0 |
| 2011 | 0 | 1304 | 0 | 5224 | 0 | 825 | 0 | 24 | 0 |
| 2012 | 0 | 32 | 0 | 186 | 0 | 1157 | 0 | 356 | 0 |
| 2013 | 0 | 648 | 0 | 211 | 0 | 55 | 0 | 42 | 0 |
| 2014 | 0 | 5384 | 0 | 2373 | 0 | 643 | 0 | 319 | 0 |
| 2015 | 0 | 6451 | 0 | 2340 | 0 | 956 | 0 | 99 | 0 |
| 2016 | 0 | 156 | 0 | 2006 | 0 | 415 | 0 | 284 | 0 |
| 2017 | 0 | 11734 | 0 | 671 | 0 | 434 | 0 | 409 | 0 |
| 2018 | 0 | 276 | 9 | 6114 | 44 | 758 | 2 | 216 | 1 |
| arith. <br> mean | 3644 | 11266 | 1060 | 3524 | 98 | 628 | 31 | 211 | 16 |

Table 9.4.2 Sandeel Area-3r. Individual mean weight (gram) at age in the catch and in the sea.

|  | Age 0, 2nd half | Age 1, <br> 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 4.0 | 6.1 | 12.7 | 9.7 | 21.0 | 12.4 | 18.9 | 15.9 | 20.4 |
| 1987 | 6.9 | 6.4 | 12.8 | 11.7 | 20.4 | 20.5 | 31.6 | 22.5 | 29.6 |
| 1988 | 4.1 | 5.1 | 6.4 | 13.1 | 16.1 | 23.0 | 22.5 | 36.2 | 31.5 |
| 1989 | 4.8 | 6.1 | 9.3 | 10.5 | 12.7 | 14.3 | 14.0 | 18.8 | 17.5 |
| 1990 | 4.4 | 7.5 | 7.7 | 9.8 | 11.2 | 15.2 | 16.5 | 20.2 | 19.8 |
| 1991 | 3.7 | 7.3 | 5.7 | 11.4 | 13.8 | 36.4 | 27.5 | 26.3 | 16.3 |
| 1992 | 4.6 | 6.1 | 13.4 | 10.3 | 26.7 | 14.7 | 28.7 | 23.0 | 30.9 |
| 1993 | 3.5 | 5.8 | 7.3 | 16.4 | 16.7 | 17.9 | 20.8 | 23.3 | 22.4 |
| 1994 | 3.6 | 6.1 | 13.0 | 14.6 | 20.8 | 20.6 | 35.2 | 21.1 | 27.1 |
| 1995 | 4.7 | 5.6 | 8.2 | 9.7 | 10.2 | 13.8 | 13.7 | 16.5 | 16.1 |
| 1996 | 2.5 | 8.8 | 8.0 | 13.3 | 14.0 | 26.1 | 15.7 | 38.5 | 24.0 |
| 1997 | 2.9 | 5.2 | 6.7 | 10.1 | 10.2 | 13.7 | 14.2 | 18.3 | 14.4 |
| 1998 | 3.2 | 5.0 | 7.0 | 10.1 | 15.2 | 13.7 | 17.3 | 20.3 | 20.7 |
| 1999 | 8.7 | 7.4 | 14.5 | 10.1 | 19.4 | 14.1 | 21.1 | 26.3 | 30.7 |
| 2000 | 5.2 | 6.9 | 10.8 | 10.5 | 17.4 | 15.3 | 23.7 | 20.5 | 25.6 |
| 2001 | 5.6 | 6.8 | 8.9 | 13.7 | 16.0 | 17.8 | 15.9 | 23.2 | 25.5 |
| 2002 | 9.4 | 8.1 | 19.7 | 12.7 | 31.6 | 14.6 | 43.2 | 19.2 | 46.7 |
| 2003 | 4.3 | 5.3 | 5.4 | 14.6 | 15.3 | 20.3 | 24.1 | 26.9 | 26.7 |
| 2004 | 5.8 | 7.3 | 7.3 | 9.5 | 14.1 | 14.5 | 18.4 | 15.1 | 12.7 |
| 2005 | 3.4 | 7.8 | 7.0 | 16.5 | 11.2 | 19.9 | 15.3 | 22.6 | 16.6 |
| 2006 | 11.0 | 7.5 | 23.1 | 13.5 | 36.9 | 17.1 | 50.5 | 26.9 | 54.5 |
| 2007 | 4.1 | 7.5 | 8.6 | 15.1 | 13.9 | 21.7 | 18.9 | 14.6 | 20.5 |
| 2008 | 4.1 | 8.0 | 8.6 | 15.0 | 13.9 | 22.0 | 18.9 | 25.8 | 20.5 |
| 2009 | 4.2 | 6.3 | 8.8 | 10.4 | 14.1 | 19.9 | 19.2 | 12.1 | 20.8 |
| 2010 | 2.5 | 7.5 | 5.2 | 17.7 | 8.3 | 20.7 | 11.4 | 24.3 | 12.3 |
| 2011 | 4.1 | 7.7 | 8.6 | 12.6 | 13.9 | 19.4 | 18.9 | 36.2 | 20.5 |
| 2012 | 4.1 | 9.9 | 8.6 | 15.2 | 13.9 | 22.7 | 18.9 | 30.0 | 20.5 |
| 2013 | 4.1 | 9.1 | 8.6 | 11.6 | 13.9 | 14.3 | 18.9 | 16.2 | 20.5 |
| 2014 | 4.1 | 8.6 | 8.6 | 12.7 | 13.9 | 13.9 | 18.9 | 18.3 | 20.5 |
| 2015 | 5.6 | 8.3 | 11.7 | 12.7 | 18.8 | 19.3 | 25.7 | 30.1 | 27.7 |
| 2016 | 1.5 | 4.0 | 3.1 | 12.4 | 5.0 | 19.8 | 6.8 | 32.1 | 7.4 |
| 2017 | 4.3 | 7.7 | 8.8 | 11.9 | 14.1 | 17.7 | 18.9 | 24.2 | 20.5 |
| 2018 | 3.3 | 5.9 | 6.8 | 9.4 | 10.9 | 14.6 | 14.6 | 18.4 | 15.9 |
| arith. <br> mean | 4.6 | 6.9 | 9.4 | 12.4 | 15.9 | 18.2 | 21.2 | 23.1 | 22.9 |

Table 9.4.3 Sandeel Area-3r. Proportion mature.

|  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: |
| $1983-2016$ | 0.04 | 0.77 | 1 | 1 |

Table 9.4.4. Sandeel Area-3r. Dredge survey indices (number/hour).

| Year | Age 0 | Age 1 |
| ---: | ---: | ---: |
| 2005 | 68667.988 |  |
| 2006 | 55709.239 | 1225.934 |
| 2007 | 10611.085 | 3717.149 |
| 2008 | 16658.095 | 1521.160 |
| 2009 | 37088.951 | 16328.039 |
| 2010 | 1844.740 | 5076.749 |
| 2011 | 973.111 | 1961.856 |
| 2012 | 47713.266 | 767.514 |
| 2013 | 174467.733 | 790.887 |
| 2014 | 92703.238 | 5349.152 |
| 2015 | 2667.397 | 11100.794 |
| 2016 | 194644.941 | 322.967 |
| 2017 | 6359.000 | 15640.000 |
| 2018 | 82359.000 | 5980.000 |

Table 9.4.5 Sandeel Area-3r. SMS settings and statistics.


| objective | function |  |  |  |  |  |  | weight: S/R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Catch |  |  | PUE |  |  |  |  |
|  | 1.00 | 1.00 |  |  |  |  |  | 0.01 |
| unweighted |  | objective |  | ction |  | con | utions | (total): |
| Catch |  | CPUE | S/R | Stom. | Stom | N. | Penalty | Sum |
| 102.3 |  | 15.5 |  | 0.0 | 0.0 |  | 0.00 | 136 |


| unweighted | objective | function | contributions | (per | observation): |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Catch |  | CPUE |  |  | Stomachs |
| 0.34 |  | 0.23 |  |  | 0.00 |



| age: 0 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986-1998: |  |  |  |  |  | 0.000 |  | 1.000 |
| 1999-2018: |  |  |  |  |  | 0.000 |  | 1.000 |
| age: |  |  |  |  |  |  |  | 4 |
| 1986-1998: |  |  |  |  |  | 0.901 |  | 0.500 |
| 1999-2018: |  |  |  |  |  | 1.034 |  | 0.500 |
| F, | age |  |  |  |  |  |  | effect: |
| 0 |  | 1 |  | 2 |  |  | 3 | 4 |
| 1986-1998: | 0.102 |  | 0.359 |  | 0.387 |  | 0.293 | 0.293 |
| 1999-2018: | 0.058 |  | 0.190 |  | 0.301 |  | 0.323 | 0.323 |


| Exploitation |  | pattern |  | (scaled |  | to |  | mean | $\mathrm{F}=1$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 |  | 1 |  | 2 |  |  | 3 | 4 |
| 1986-1998 | season | $1:$ |  | 0 | 0.654 |  | 0.705 | 0.535 | 0.535 |
| season | 2 : |  | 0.176 | 0.309 |  | 0.332 |  | 0.252 | 0.252 |
| 1999-2018 | season | 1 : |  | 0 | 0.535 |  | 0.847 | 0.909 | 0.909 |
| season | 2 : |  | 0.145 | 0.239 |  | 0.378 |  | 0.406 | 0.406 |

season

| age | 1 | 2 |
| :--- | :--- | :--- |
| 0 |  |  |
| 1 |  | 0.651 |
| 2 | 0.651 | 1.146 |
| 3 | 1.149 | 1.019 |
| 4 | 1.149 | 1.019 |

Survey


Table 9.4.6 Sandeel Area-3r. Annual fishing mortality (F) at age.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 0.414 | 0.446 | 0.338 | 0.338 | 0.430 | 0.414 |
| 1987 | 0.570 | 0.613 | 0.466 | 0.466 | 0.592 | 0.570 |
| 1988 | 0.766 | 0.825 | 0.625 | 0.625 | 0.796 | 0.766 |
| 1989 | 0.857 | 0.922 | 0.700 | 0.700 | 0.890 | 0.857 |
| 1990 | 0.506 | 0.545 | 0.413 | 0.413 | 0.526 | 0.506 |
| 1991 | 0.602 | 0.648 | 0.492 | 0.492 | 0.625 | 0.602 |
| 1992 | 0.263 | 0.282 | 0.215 | 0.215 | 0.273 | 0.263 |
| 1993 | 0.516 | 0.556 | 0.422 | 0.422 | 0.536 | 0.516 |
| 1994 | 0.523 | 0.562 | 0.427 | 0.427 | 0.543 | 0.523 |
| 1995 | 0.415 | 0.446 | 0.339 | 0.339 | 0.431 | 0.415 |
| 1996 | 0.428 | 0.461 | 0.349 | 0.349 | 0.445 | 0.428 |
| 1997 | 0.776 | 0.835 | 0.634 | 0.634 | 0.806 | 0.776 |
| 1998 | 1.028 | 1.107 | 0.839 | 0.839 | 1.068 | 1.028 |
| 1999 | 0.832 | 1.316 | 1.413 | 1.413 | 1.074 | 0.832 |
| 2000 | 0.732 | 1.159 | 1.243 | 1.243 | 0.946 | 0.732 |
| 2001 | 0.568 | 0.900 | 0.966 | 0.966 | 0.734 | 0.568 |
| 2002 | 0.451 | 0.714 | 0.766 | 0.766 | 0.583 | 0.451 |
| 2003 | 0.259 | 0.410 | 0.440 | 0.440 | 0.335 | 0.259 |
| 2004 | 0.190 | 0.300 | 0.322 | 0.322 | 0.245 | 0.190 |
| 2005 | 0.084 | 0.133 | 0.143 | 0.143 | 0.109 | 0.084 |
| 2006 | 0.036 | 0.058 | 0.062 | 0.062 | 0.047 | 0.036 |
| 2007 | 0.218 | 0.345 | 0.370 | 0.370 | 0.282 | 0.218 |
| 2008 | 0.241 | 0.382 | 0.410 | 0.410 | 0.312 | 0.241 |
| 2009 | 0.020 | 0.032 | 0.034 | 0.034 | 0.026 | 0.020 |
| 2010 | 0.261 | 0.413 | 0.443 | 0.443 | 0.337 | 0.261 |
| 2011 | 0.166 | 0.262 | 0.281 | 0.281 | 0.214 | 0.166 |
| 2012 | 0.101 | 0.159 | 0.171 | 0.171 | 0.130 | 0.101 |
| 2013 | 0.049 | 0.077 | 0.083 | 0.083 | 0.063 | 0.049 |
| 2014 | 0.196 | 0.310 | 0.333 | 0.333 | 0.253 | 0.196 |
| 2015 | 0.258 | 0.409 | 0.439 | 0.439 | 0.334 | 0.258 |
| 2016 | 0.101 | 0.159 | 0.171 | 0.171 | 0.130 | 0.101 |
| 2017 | 0.224 | 0.354 | 0.380 | 0.380 | 0.289 | 0.224 |
| 2018 | 0.265 | 0.419 | 0.450 | 0.450 | 0.342 | 0.265 |
| arith. <br> mean | 0.391 | 0.502 | 0.460 | 0.460 | 0.447 | 0.391 |

Table 9.4.7 Sandeel Area-3r. Fishing mortality (F) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, 2nd half | Age 3, <br> 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 0.076 | 0.281 | 0.133 | 0.303 | 0.143 | 0.230 | 0.108 | 0.230 | 0.108 |
| 1987 | 0.001 | 0.568 | 0.002 | 0.611 | 0.002 | 0.464 | 0.002 | 0.464 | 0.002 |
| 1988 | 0.051 | 0.676 | 0.090 | 0.728 | 0.097 | 0.552 | 0.073 | 0.552 | 0.073 |
| 1989 | 0.003 | 0.851 | 0.006 | 0.916 | 0.006 | 0.695 | 0.005 | 0.695 | 0.005 |
| 1990 | 0.050 | 0.419 | 0.087 | 0.451 | 0.094 | 0.342 | 0.071 | 0.342 | 0.071 |
| 1991 | 0.039 | 0.533 | 0.069 | 0.573 | 0.075 | 0.435 | 0.057 | 0.435 | 0.057 |
| 1992 | 0.003 | 0.257 | 0.006 | 0.276 | 0.006 | 0.210 | 0.005 | 0.210 | 0.005 |
| 1993 | 0.042 | 0.443 | 0.073 | 0.477 | 0.079 | 0.362 | 0.060 | 0.362 | 0.060 |
| 1994 | 0.016 | 0.495 | 0.028 | 0.532 | 0.030 | 0.404 | 0.023 | 0.404 | 0.023 |
| 1995 | 0.007 | 0.402 | 0.013 | 0.433 | 0.013 | 0.329 | 0.010 | 0.329 | 0.010 |
| 1996 | 0.043 | 0.353 | 0.075 | 0.380 | 0.081 | 0.288 | 0.061 | 0.288 | 0.061 |
| 1997 | 0.066 | 0.661 | 0.115 | 0.711 | 0.124 | 0.540 | 0.094 | 0.540 | 0.094 |
| 1998 | 0.140 | 0.783 | 0.245 | 0.843 | 0.264 | 0.639 | 0.200 | 0.639 | 0.200 |
| 1999 | 0.156 | 0.575 | 0.257 | 0.910 | 0.406 | 0.977 | 0.436 | 0.977 | 0.436 |
| 2000 | 0.004 | 0.725 | 0.007 | 1.148 | 0.011 | 1.232 | 0.011 | 1.232 | 0.011 |
| 2001 | 0.162 | 0.302 | 0.266 | 0.479 | 0.421 | 0.514 | 0.452 | 0.514 | 0.452 |
| 2002 | 0.000 | 0.451 | 0.000 | 0.714 | 0.000 | 0.766 | 0.000 | 0.766 | 0.000 |
| 2003 | 0.021 | 0.224 | 0.035 | 0.354 | 0.056 | 0.380 | 0.060 | 0.380 | 0.060 |
| 2004 | 0.021 | 0.155 | 0.035 | 0.245 | 0.055 | 0.263 | 0.059 | 0.263 | 0.059 |
| 2005 | 0.000 | 0.084 | 0.000 | 0.133 | 0.000 | 0.143 | 0.000 | 0.143 | 0.000 |
| 2006 | 0.000 | 0.036 | 0.000 | 0.057 | 0.001 | 0.061 | 0.001 | 0.061 | 0.001 |
| 2007 | 0.000 | 0.218 | 0.000 | 0.345 | 0.000 | 0.370 | 0.000 | 0.370 | 0.000 |
| 2008 | 0.000 | 0.241 | 0.000 | 0.382 | 0.000 | 0.410 | 0.000 | 0.410 | 0.000 |
| 2009 | 0.000 | 0.020 | 0.000 | 0.032 | 0.000 | 0.034 | 0.000 | 0.034 | 0.000 |
| 2010 | 0.001 | 0.260 | 0.001 | 0.412 | 0.001 | 0.442 | 0.001 | 0.442 | 0.001 |
| 2011 | 0.000 | 0.166 | 0.000 | 0.262 | 0.000 | 0.281 | 0.000 | 0.281 | 0.000 |
| 2012 | 0.000 | 0.101 | 0.000 | 0.159 | 0.000 | 0.171 | 0.000 | 0.171 | 0.000 |
| 2013 | 0.000 | 0.049 | 0.000 | 0.077 | 0.000 | 0.083 | 0.000 | 0.083 | 0.000 |
| 2014 | 0.000 | 0.196 | 0.000 | 0.310 | 0.000 | 0.333 | 0.000 | 0.333 | 0.000 |
| 2015 | 0.000 | 0.258 | 0.000 | 0.409 | 0.000 | 0.439 | 0.000 | 0.439 | 0.000 |
| 2016 | 0.000 | 0.101 | 0.000 | 0.159 | 0.000 | 0.171 | 0.000 | 0.171 | 0.000 |
| 2017 | 0.000 | 0.224 | 0.000 | 0.354 | 0.000 | 0.380 | 0.000 | 0.380 | 0.000 |
| 2018 | 0.000 | 0.265 | 0.000 | 0.419 | 0.000 | 0.450 | 0.000 | 0.450 | 0.000 |
| arith. mean | 0.027 | 0.345 | 0.047 | 0.442 | 0.060 | 0.406 | 0.054 | 0.406 | 0.054 |

Table 9.4.8 Sandeel Area-3r. Natural mortality (M) at age.

|  | Age 0, 2nd half | Age 1, <br> 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 1.340 | 0.760 | 0.600 | 0.600 | 0.470 | 0.420 | 0.370 | 0.360 | 0.350 |
| 1987 | 1.430 | 0.750 | 0.570 | 0.600 | 0.440 | 0.420 | 0.350 | 0.360 | 0.340 |
| 1988 | 1.540 | 0.710 | 0.580 | 0.570 | 0.430 | 0.390 | 0.350 | 0.350 | 0.340 |
| 1989 | 1.330 | 0.680 | 0.490 | 0.550 | 0.360 | 0.390 | 0.330 | 0.360 | 0.320 |
| 1990 | 1.280 | 0.630 | 0.480 | 0.490 | 0.350 | 0.340 | 0.300 | 0.310 | 0.290 |
| 1991 | 1.220 | 0.630 | 0.470 | 0.490 | 0.350 | 0.330 | 0.290 | 0.300 | 0.280 |
| 1992 | 1.190 | 0.650 | 0.520 | 0.490 | 0.390 | 0.330 | 0.290 | 0.300 | 0.290 |
| 1993 | 1.140 | 0.670 | 0.520 | 0.510 | 0.400 | 0.350 | 0.320 | 0.330 | 0.310 |
| 1994 | 1.110 | 0.690 | 0.580 | 0.530 | 0.460 | 0.360 | 0.340 | 0.340 | 0.320 |
| 1995 | 1.010 | 0.710 | 0.550 | 0.560 | 0.450 | 0.410 | 0.350 | 0.380 | 0.340 |
| 1996 | 0.990 | 0.660 | 0.570 | 0.530 | 0.470 | 0.390 | 0.360 | 0.360 | 0.350 |
| 1997 | 0.900 | 0.640 | 0.530 | 0.520 | 0.430 | 0.400 | 0.380 | 0.380 | 0.360 |
| 1998 | 0.970 | 0.630 | 0.510 | 0.490 | 0.410 | 0.380 | 0.360 | 0.350 | 0.330 |
| 1999 | 1.040 | 0.730 | 0.580 | 0.540 | 0.470 | 0.360 | 0.330 | 0.330 | 0.300 |
| 2000 | 1.120 | 0.800 | 0.650 | 0.610 | 0.550 | 0.420 | 0.390 | 0.390 | 0.370 |
| 2001 | 1.190 | 0.820 | 0.780 | 0.660 | 0.670 | 0.490 | 0.510 | 0.450 | 0.490 |
| 2002 | 1.220 | 0.840 | 0.800 | 0.720 | 0.670 | 0.580 | 0.630 | 0.540 | 0.610 |
| 2003 | 1.220 | 0.830 | 0.770 | 0.720 | 0.640 | 0.580 | 0.620 | 0.540 | 0.600 |
| 2004 | 1.210 | 0.850 | 0.700 | 0.710 | 0.570 | 0.560 | 0.550 | 0.510 | 0.530 |
| 2005 | 1.150 | 0.840 | 0.650 | 0.690 | 0.530 | 0.500 | 0.470 | 0.470 | 0.450 |
| 2006 | 1.120 | 0.820 | 0.610 | 0.660 | 0.490 | 0.480 | 0.420 | 0.440 | 0.410 |
| 2007 | 1.050 | 0.770 | 0.580 | 0.610 | 0.470 | 0.450 | 0.400 | 0.420 | 0.390 |
| 2008 | 0.990 | 0.680 | 0.500 | 0.550 | 0.400 | 0.430 | 0.380 | 0.400 | 0.370 |
| 2009 | 0.990 | 0.590 | 0.470 | 0.480 | 0.390 | 0.370 | 0.340 | 0.340 | 0.330 |
| 2010 | 1.110 | 0.590 | 0.500 | 0.450 | 0.420 | 0.360 | 0.370 | 0.330 | 0.350 |
| 2011 | 1.210 | 0.660 | 0.550 | 0.510 | 0.460 | 0.390 | 0.420 | 0.350 | 0.390 |
| 2012 | 1.190 | 0.700 | 0.540 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2013 | 1.190 | 0.700 | 0.540 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2014 | 1.190 | 0.700 | 0.540 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2015 | 1.190 | 0.700 | 0.540 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2016 | 1.190 | 0.700 | 0.540 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2017 | 1.190 | 0.700 | 0.540 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2018 | 1.190 | 0.700 | 0.540 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| arith. <br> mean | 1.164 | 0.713 | 0.572 | 0.566 | 0.463 | 0.419 | 0.403 | 0.385 | 0.386 |

Table 9.4.9 Sandeel Area-3r. Stock numbers (millions). Age 0 at start of 2nd half-year, age 1+ at start of the year.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 508628 | 92585 | 6386 | 245 | 747 |
| 1987 | 115398 | 123493 | 15707 | 1403 | 341 |
| 1988 | 361602 | 27585 | 18660 | 3006 | 514 |
| 1989 | 105977 | 73662 | 3530 | 3010 | 905 |
| 1990 | 211506 | 27937 | 9711 | 565 | 956 |
| 1991 | 124520 | 55954 | 5548 | 2430 | 544 |
| 1992 | 269677 | 35341 | 10203 | 1253 | 986 |
| 1993 | 196507 | 81772 | 8436 | 3190 | 985 |
| 1994 | 185145 | 60288 | 14851 | 1949 | 1412 |
| 1995 | 143194 | 60066 | 10045 | 3146 | 1108 |
| 1996 | 779957 | 51784 | 11252 | 2340 | 1433 |
| 1997 | 61168 | 277707 | 9868 | 2612 | 1276 |
| 1998 | 92780 | 23289 | 39659 | 1655 | 958 |
| 1999 | 117131 | 30591 | 2665 | 5333 | 551 |
| 2000 | 121434 | 35424 | 3593 | 260 | 723 |
| 2001 | 117009 | 39459 | 3996 | 353 | 131 |
| 2002 | 27690 | 30286 | 4512 | 430 | 69 |
| 2003 | 61734 | 8175 | 3742 | 550 | 70 |
| 2004 | 39343 | 17840 | 1274 | 637 | 121 |
| 2005 | 67318 | 11486 | 3133 | 262 | 183 |
| 2006 | 115686 | 21315 | 2380 | 810 | 150 |
| 2007 | 57000 | 37736 | 4919 | 712 | 370 |
| 2008 | 79747 | 19946 | 7869 | 1184 | 324 |
| 2009 | 129990 | 29632 | 4816 | 2078 | 449 |
| 2010 | 13397 | 48296 | 10059 | 1953 | 1209 |
| 2011 | 9867 | 4413 | 12503 | 2786 | 997 |
| 2012 | 78759 | 2942 | 1115 | 3647 | 1294 |
| 2013 | 188227 | 23960 | 770 | 350 | 1786 |
| 2014 | 214535 | 57263 | 6603 | 262 | 867 |
| 2015 | 8452 | 65256 | 13619 | 1780 | 356 |
| 2016 | 463596 | 2571 | 14585 | 3328 | 588 |
| 2017 | 19835 | 141036 | 673 | 4576 | 1408 |
| 2018 | 297171 | 6034 | 32639 | 174 | 1753 |
| 2019 |  | 90406 | 1340 | 7895 | 544 |

Table 9.4.10 Sandeel Area-3r. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (Yield) and average fishing mortality.

|  | Recruits (thousands) | $\begin{gathered} \mathrm{TSB} \\ \text { (tonnes) } \end{gathered}$ | $\begin{gathered} \text { SSB } \\ \text { (tonnes) } \end{gathered}$ | Yield (tonnes) | Mean $\mathrm{F}_{1-2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 508512319 | 643843 | 82951 | 282315 | 0.430 |
| 1987 | 115409820 | 1013520 | 205253 | 395296 | 0.592 |
| 1988 | 361582215 | 473076 | 279847 | 330358 | 0.795 |
| 1989 | 106005337 | 548609 | 104715 | 350409 | 0.889 |
| 1990 | 211555937 | 331555 | 108445 | 163224 | 0.526 |
| 1991 | 124522876 | 576107 | 166209 | 274839 | 0.625 |
| 1992 | 269748338 | 362098 | 129444 | 86788 | 0.273 |
| 1993 | 196466011 | 690574 | 202805 | 175786 | 0.536 |
| 1994 | 185209838 | 652850 | 248948 | 267281 | 0.542 |
| 1995 | 143235402 | 493734 | 148747 | 173607 | 0.431 |
| 1996 | 780152522 | 721161 | 247212 | 159024 | 0.444 |
| 1997 | 61159759 | 1610440 | 187775 | 470670 | 0.806 |
| 1998 | 92803972 | 556904 | 352216 | 462081 | 1.067 |
| 1999 | 117154016 | 341576 | 118539 | 191253 | 1.074 |
| 2000 | 121448395 | 299796 | 56444 | 186837 | 0.946 |
| 2001 | 117036920 | 332856 | 60840 | 193684 | 0.734 |
| 2002 | 27701580 | 309932 | 60415 | 116298 | 0.583 |
| 2003 | 61712681 | 111061 | 56444 | 34673 | 0.334 |
| 2004 | 39349743 | 152965 | 25009 | 31285 | 0.245 |
| 2005 | 67322159 | 150168 | 52156 | 13991 | 0.108 |
| 2006 | 115640870 | 209789 | 48194 | 7094 | 0.047 |
| 2007 | 57024981 | 376789 | 87816 | 74972 | 0.281 |
| 2008 | 79717524 | 312560 | 130875 | 74933 | 0.311 |
| 2009 | 129994149 | 284576 | 91766 | 6261 | 0.026 |
| 2010 | 13403146 | 610233 | 219476 | 61241 | 0.338 |
| 2011 | 9869897 | 280906 | 211504 | 92452 | 0.214 |
| 2012 | 78766631 | 167654 | 135673 | 40116 | 0.130 |
| 2013 | 188197029 | 261581 | 48582 | 9844 | 0.063 |
| 2014 | 214538550 | 592986 | 101215 | 90876 | 0.253 |
| 2015 | 8452730 | 759194 | 196811 | 104631 | 0.334 |
| 2016 | 463816705 | 275985 | 223686 | 42845 | 0.130 |
| 2017 | 19835821 | 1205740 | 160011 | 115642 | 0.289 |
| 2018 | 297225004 | 378095 | 272120 | 74933 | 0.342 |
| 2019 |  |  | 182590 |  |  |
| arith. mean | 163150899 | 487543 | 147203 | 156228 | 0.447 |
| geo. mean | 98542649 |  |  |  |  |

arith. mean for the period 1986-2018
geo. mean for the period 1986-2017

Table 9.4.11 Sandeel Area-3r. Input to forecast. Table XXX. Area-3r Sandeel. input to forecast

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Stock numbers(2019) | 93435.991 | 90405.7 | 1339.86 | 7895.09 | 544.185 |
| Exploitation pattern 1st half |  | 0.265 | 0.419 | 0.450 | 0.450 |
| Exploitation pattern 2nd half | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Weight in the stock 1st half |  | 6.870 | 11.821 | 17.056 | 24.603 |
| Weight in the catch 1st half |  | 6.870 | 11.821 | 17.056 | 24.603 |
| weight in the catch 2nd half | 3.759 | 7.820 | 12.550 | 16.993 | 18.389 |
| Proportion mature(2019) | 0.000 | 0.036 | 0.766 | 1.000 | 1.000 |
| Proportion mature(2020) | 0.000 | 0.036 | 0.766 | 1.000 | 1.000 |
| Natural mortality 1st half |  | 0.700 | 0.550 | 0.420 | 0.390 |
| Natural mortality 2nd half | 1.190 | 0.540 | 0.450 | 0.440 | 0.420 |

Table 9.4.12 Sandeel Area-3r. Short term forecast (000 tonnes).
Basis: $\mathrm{Fsq}=\mathrm{F}(2018)=0.3421$; Yield $(2018)=74.933$; Recruitment $(2018)=297.225004$; Recruitment (2019) $=$ geometric mean (GM 1986-2017) $=98.516877$ billions; $\operatorname{SSB}(2019)=182.59$

| F multiplier | Basis | $F(2019)$ | Catch(2019) | SSB(2020) | \%SSB change* | \%TAC change** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | $\mathrm{F}=0$ | 0.000 | 0.001 | 340.918 | 87 \% | -100 \% |
| 0.850 | Fsq ${ }^{*} 0.85$ | 0.290 | 133.610 | 262.800 | 44 \% | 78 \% |
| 1.000 | Fsq* ${ }^{*}$ | 0.342 | 154.348 | 250.965 | 37 \% | 106 \% |
| 1.500 | Fsq* 1.5 | 0.513 | 216.496 | 216.044 | 18 \% | 189 \% |
| 2.000 | Fsq*2 | 0.684 | 270.594 | 186.399 | 2 \% | 261 \% |
| 2.500 | Fsq*2.5 | 0.855 | 317.819 | 161.186 | -12 \% | 324 \% |
| 3.000 | Fsq*3 | 1.026 | 359.162 | 139.705 | -23 \% | 379 \% |
| 3.500 | Fsq*3.5 | 1.197 | 395.459 | 121.370 | -34\% | 428 \% |
| 4.000 | Fsq* 4 | 1.368 | 427.414 | 105.696 | -42 \% | 470 \% |
| 3.282 | MSY | 1.123 | 380.226 | 129.000 | -29 \% | 407 \% |

*SSB in 2020 relative to SSB in 2019
**TAC in 2019 relative to catches in 2018

Table 9.4.13. Sandeel Area-3r. Acoustic survey indices (millions of individuals).

| Year | Age 1 | Age 2 | Age 3 | Age 4 |
| :--- | ---: | ---: | ---: | ---: |
| 2009 | $7709.06(\mathrm{CV}=0.29)$ | $4923.33(\mathrm{CV}=0.34)$ | $945.29(\mathrm{CV}=0.3)$ | $64.03(\mathrm{CV}=0.47)$ |
| 2010 | $16852.06(\mathrm{CV}=0.19)$ | $6133.6(\mathrm{CV}=0.18)$ | $1123.19(\mathrm{CV}=0.38)$ | $608.57(\mathrm{CV}=0.4)$ |
| 2011 | $816.16(\mathrm{CV}=0.73)$ | $8622.2(\mathrm{CV}=0.19)$ | $855.81(\mathrm{CV}=0.33)$ | $192.37(\mathrm{CV}=0.49)$ |
| 2012 | $846.68(\mathrm{CV}=0.81)$ | $211.31(\mathrm{CV}=0.67)$ | $3226.29(\mathrm{CV}=0.25)$ | $368.16(\mathrm{CV}=0.24)$ |
| 2013 | $2154.47(\mathrm{CV}=0.2)$ | $258.25(\mathrm{CV}=0.36)$ | $72.62(\mathrm{CV}=0.41)$ | $554.48(\mathrm{CV}=0.43)$ |
| 2014 | $21889.62(\mathrm{CV}=0.23)$ | $1711.1(\mathrm{CV}=0.36)$ | $170.41(\mathrm{CV}=0.64)$ | $80.34(\mathrm{CV}=0.85)$ |
| 2015 | $9466.6(\mathrm{CV}=0.12)$ | $2254.92(\mathrm{CV}=0.27)$ | $686.55(\mathrm{CV}=0.29)$ | $7.03(\mathrm{CV}=1.18)$ |
| 2016 | $79.55(\mathrm{CV}=1)$ | $6317.38(\mathrm{CV}=0.29)$ | $679.13(\mathrm{CV}=0.25)$ | $259.1(\mathrm{CV}=0.37)$ |
| 2017 | $35267.58(\mathrm{CV}=0.16)$ | $131.65(\mathrm{CV}=0.77)$ | $3465.88(\mathrm{CV}=0.27)$ | $631.09(\mathrm{CV}=0.27)$ |
| 2018 | $1544.39(\mathrm{CV}=0.30940475)$ | $16989.62(\mathrm{CV}=0.09694092)$ | $79.82(\mathrm{CV}=0.34325033)$ | $440.33(\mathrm{CV}=0.30654509)$ |

Table 9.5.1 Sandeel Area-4. Catch at age numbers (million) by half year.

|  | Age 0, 2nd half | Age 1, 1st half | $\begin{gathered} \text { Age 1, } \\ \text { 2nd half } \end{gathered}$ | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 674 | 1235 | 149 | 6337 | 381 | 1861 | 122 | 534 | 39 |
| 1994 | 0 | 1070 | 256 | 1522 | 62 | 5144 | 257 | 2092 | 159 |
| 1995 | 4 | 2690 | 4 | 1229 | 1 | 529 | 0 | 30 | 0 |
| 1996 | 2666 | 754 | 2584 | 2536 | 3461 | 476 | 227 | 130 | 1110 |
| 1997 | 0 | 2879 | 1369 | 291 | 35 | 1683 | 43 | 413 | 10 |
| 1998 | 0 | 2159 | 61 | 3766 | 97 | 235 | 6 | 130 | 3 |
| 1999 | 0 | 1472 | 86 | 1137 | 46 | 1543 | 47 | 252 | 11 |
| 2000 | 0 | 6537 | 0 | 376 | 0 | 323 | 0 | 297 | 0 |
| 2001 | 0 | 2048 | 64 | 4961 | 20 | 601 | 1 | 377 | 0 |
| 2002 | 0 | 337 | 0 | 807 | 0 | 511 | 0 | 101 | 0 |
| 2003 | 145 | 4322 | 148 | 1002 | 10 | 2721 | 5 | 1253 | 1 |
| 2004 | 0 | 920 | 4 | 220 | 1 | 45 | 0 | 82 | 0 |
| 2005 | 0 | 49 | 0 | 145 | 0 | 32 | 0 | 17 | 0 |
| 2006 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2007 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2009 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2012 | 0 | 83 | 0 | 40 | 0 | 196 | 0 | 3 | 0 |
| 2013 | 0 | 182 | 0 | 100 | 0 | 71 | 0 | 133 | 0 |
| 2014 | 0 | 346 | 0 | 54 | 0 | 15 | 0 | 47 | 0 |
| 2015 | 0 | 866 | 0 | 29 | 0 | 9 | 0 | 14 | 0 |
| 2016 | 0 | 181 | 0 | 406 | 0 | 20 | 0 | 36 | 0 |
| 2017 | 0 | 719 | 0 | 468 | 0 | 578 | 0 | 30 | 0 |
| 2018 | 0 | 876 | 0 | 1259 | 0 | 349 | 0 | 1150 | 0 |
| arith. <br> mean | 134 | 1143 | 182 | 1026 | 158 | 652 | 27 | 274 | 51 |

Table 9.5.2 Sandeel Area-4. Individual mean weight (gram) at age in the catch and in the sea.

|  | Age 0, <br> 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 3.0 | 7.4 | 6.7 | 11.9 | 12.0 | 14.9 | 14.0 | 20.1 | 18.9 |
| 1994 | 3.8 | 10.9 | 8.6 | 11.1 | 15.5 | 14.7 | 18.0 | 20.5 | 24.4 |
| 1995 | 4.4 | 8.4 | 10.1 | 15.7 | 18.0 | 19.1 | 21.0 | 15.5 | 28.5 |
| 1996 | 6.3 | 5.3 | 7.3 | 12.9 | 13.1 | 18.6 | 18.0 | 23.0 | 22.3 |
| 1997 | 3.1 | 6.7 | 7.0 | 7.5 | 12.4 | 11.2 | 14.5 | 18.1 | 19.6 |
| 1998 | 2.6 | 6.1 | 6.0 | 10.4 | 10.7 | 13.6 | 12.5 | 14.6 | 16.9 |
| 1999 | 3.2 | 6.1 | 7.2 | 10.8 | 12.9 | 16.1 | 15.1 | 20.2 | 20.4 |
| 2000 | 4.0 | 3.9 | 9.0 | 8.0 | 16.2 | 13.2 | 18.8 | 17.3 | 25.5 |
| 2001 | 1.8 | 3.4 | 4.2 | 6.0 | 7.5 | 9.0 | 8.7 | 14.2 | 11.8 |
| 2002 | 4.0 | 3.8 | 9.0 | 5.9 | 16.2 | 9.5 | 18.8 | 17.9 | 25.5 |
| 2003 | 3.6 | 4.6 | 5.6 | 6.6 | 6.2 | 8.1 | 7.8 | 10.9 | 10.1 |
| 2004 | 1.4 | 4.0 | 3.3 | 7.4 | 5.8 | 9.3 | 6.8 | 13.8 | 9.2 |
| 2005 | 4.0 | 4.2 | 9.0 | 6.1 | 16.2 | 8.6 | 18.8 | 11.0 | 25.5 |
| 2006 | 4.0 | 5.5 | 9.0 | 10.0 | 16.2 | 14.3 | 18.8 | 18.1 | 25.5 |
| 2007 | 4.0 | 4.8 | 9.0 | 8.8 | 16.2 | 12.6 | 18.8 | 16.0 | 25.5 |
| 2008 | 4.0 | 4.8 | 9.0 | 8.7 | 16.2 | 12.4 | 18.8 | 15.7 | 25.5 |
| 2009 | 4.0 | 5.8 | 9.0 | 10.7 | 16.2 | 15.2 | 18.8 | 19.3 | 25.5 |
| 2010 | 4.0 | 5.1 | 9.0 | 9.4 | 16.2 | 13.4 | 18.8 | 17.0 | 25.5 |
| 2011 | 4.0 | 4.9 | 9.0 | 8.9 | 16.2 | 12.7 | 18.8 | 16.1 | 25.5 |
| 2012 | 4.0 | 4.0 | 9.0 | 8.2 | 16.2 | 9.6 | 18.8 | 12.2 | 25.5 |
| 2013 | 4.0 | 5.3 | 9.0 | 9.3 | 16.2 | 14.7 | 18.8 | 17.1 | 25.5 |
| 2014 | 4.0 | 7.1 | 9.0 | 12.4 | 16.2 | 17.2 | 18.8 | 20.0 | 25.5 |
| 2015 | 4.7 | 4.4 | 7.7 | 9.5 | 12.2 | 11.4 | 16.6 | 16.2 | 19.2 |
| 2016 | 4.7 | 5.0 | 7.7 | 9.9 | 12.2 | 18.1 | 16.6 | 24.7 | 19.2 |
| 2017 | 4.7 | 7.5 | 7.7 | 10.2 | 12.2 | 13.4 | 16.6 | 18.5 | 19.2 |
| 2018 | 4.7 | 5.8 | 7.7 | 9.4 | 12.2 | 13.1 | 16.6 | 18.3 | 19.2 |
| arith. mean | 3.8 | 5.6 | 7.9 | 9.4 | 13.7 | 13.2 | 16.5 | 17.2 | 21.7 |

Table 9.5.3 Sandeel Area-4. Proportion mature.

|  | Age 1 | Age 2 | Age 3 | Age 4 |
| ---: | ---: | ---: | ---: | ---: |
| 1983-2016 | 0 | 0.79 | 0.98 | 1 |

Table 9.5.4. Sandeel Area-4. Dredge survey indices (number/hour).

| Year | Age 0 | Age 1 |
| ---: | ---: | ---: |
| 1999 | 615 | 494 |
| 2000 | 586 | 3170 |
| 2001 | 48 | 2656 |
| 2002 | 243 | 404 |
| 2003 | 580 |  |
| 2004 |  |  |
| 2005 |  |  |
| 2006 |  |  |
| 2007 |  |  |
| 2008 | 52 | 24 |
| 2009 | 832 | 87 |
| 2010 | 147 | 1032 |
| 2011 | 89 | 165 |
| 2012 | 95 | 135 |
| 2013 | 62 | 85 |
| 2014 | 445 | 43 |
| 2015 | 136 | 1044 |
| 2016 | 300 | 81 |
| 2017 | 346 | 223 |
| 2018 | 16 | 461 |
|  |  |  |

Table 9.5.5 Sandeel Area-4. SMS settings and statistics.



| season |  |  |
| :--- | :---: | ---: |
| -------------------- |  |  |
| age | 1 |  |
|  |  |  |
| 0 |  |  |
| 1 |  | 0.700 |


| 2 |  |  |  |  |  | 0.700 |  |  | 0.382 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  |  |  | 0.730 |  |  | 1.270 |
| 4 |  |  |  |  |  | 0.730 |  |  | 1.270 |
| Survey |  |  |  |  |  |  |  |  | atchability: |
| age |  |  | 0 |  |  |  |  | age | 1 |
| Old | Dredge | survey |  | 9-2003 |  |  | 0.763 |  | 17.355 |
| New | Dredge | survey |  | 8-2018 |  |  | 0.570 |  | 2.724 |
| sqrt(Survey |  |  |  | varian |  |  | ~ |  | CV: |
| age |  |  | 0 |  |  |  |  | age | 1 |
| Old | Dredge | survey | 1999 | 2003 |  |  | 0.30 |  | 0.30 |
| New | Dredge | survey | 2008 | -2018 |  |  | 0.30 |  | 0.30 |
| Recruit-SSB |  |  |  | alfa | beta |  | recruit s2 |  | recruit s |
| Area-4 | 1372.5484 .800 |  | +004 | 1.655 |  |  |  |  |  |

Table 9.5.6 Sandeel Area-4. Annual fishing mortality (F) at age.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 0.269 | 0.488 | 0.670 | 0.670 | 0.379 | 0.269 |
| 1994 | 0.308 | 0.561 | 0.770 | 0.770 | 0.435 | 0.308 |
| 1995 | 0.086 | 0.156 | 0.215 | 0.215 | 0.121 | 0.086 |
| 1996 | 0.263 | 0.479 | 0.657 | 0.657 | 0.371 | 0.263 |
| 1997 | 0.119 | 0.217 | 0.297 | 0.297 | 0.168 | 0.119 |
| 1998 | 0.119 | 0.217 | 0.298 | 0.298 | 0.168 | 0.119 |
| 1999 | 0.168 | 0.306 | 0.420 | 0.420 | 0.237 | 0.168 |
| 2000 | 0.083 | 0.151 | 0.208 | 0.208 | 0.117 | 0.083 |
| 2001 | 0.132 | 0.240 | 0.330 | 0.330 | 0.186 | 0.132 |
| 2002 | 0.028 | 0.050 | 0.069 | 0.069 | 0.039 | 0.028 |
| 2003 | 0.215 | 0.391 | 0.537 | 0.537 | 0.303 | 0.215 |
| 2004 | 0.040 | 0.073 | 0.100 | 0.100 | 0.057 | 0.040 |
| 2005 | 0.017 | 0.032 | 0.044 | 0.044 | 0.025 | 0.017 |
| 2006 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 |
| 2007 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 |
| 2008 | 0.001 | 0.003 | 0.004 | 0.004 | 0.002 | 0.001 |
| 2009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.001 | 0.001 | 0.002 | 0.002 | 0.001 | 0.001 |
| 2011 | 0.001 | 0.002 | 0.003 | 0.003 | 0.002 | 0.001 |
| 2012 | 0.013 | 0.024 | 0.033 | 0.033 | 0.019 | 0.013 |
| 2013 | 0.007 | 0.013 | 0.019 | 0.019 | 0.010 | 0.007 |
| 2014 | 0.010 | 0.018 | 0.024 | 0.024 | 0.014 | 0.010 |
| 2015 | 0.008 | 0.014 | 0.020 | 0.020 | 0.011 | 0.008 |
| 2016 | 0.015 | 0.028 | 0.038 | 0.038 | 0.022 | 0.015 |
| 2017 | 0.034 | 0.062 | 0.085 | 0.085 | 0.048 | 0.034 |
| 20.079 | 0.143 | 0.197 | 0.197 | 0.111 | 0.079 |  |
| 20.108 | 0.196 | 0.270 | 0.270 | 0.152 | 0.108 |  |
| 20 |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |

Table 9.5.7 Sandeel Area-4. Fishing mortality (F) at age.

|  | Age 0, 2nd half | Age 1, <br> 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, 2nd half | Age 3, <br> 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 0.002 | 0.237 | 0.032 | 0.430 | 0.058 | 0.591 | 0.079 | 0.591 | 0.079 |
| 1994 | 0.002 | 0.278 | 0.030 | 0.506 | 0.055 | 0.694 | 0.076 | 0.694 | 0.076 |
| 1995 | 0.000 | 0.086 | 0.000 | 0.156 | 0.000 | 0.214 | 0.001 | 0.214 | 0.001 |
| 1996 | 0.009 | 0.102 | 0.161 | 0.186 | 0.293 | 0.255 | 0.402 | 0.255 | 0.402 |
| 1997 | 0.001 | 0.097 | 0.022 | 0.176 | 0.041 | 0.241 | 0.056 | 0.241 | 0.056 |
| 1998 | 0.000 | 0.113 | 0.006 | 0.206 | 0.011 | 0.283 | 0.015 | 0.283 | 0.015 |
| 1999 | 0.000 | 0.168 | 0.000 | 0.306 | 0.000 | 0.420 | 0.000 | 0.420 | 0.000 |
| 2000 | 0.000 | 0.083 | 0.000 | 0.151 | 0.000 | 0.208 | 0.000 | 0.208 | 0.000 |
| 2001 | 0.000 | 0.130 | 0.002 | 0.236 | 0.004 | 0.324 | 0.006 | 0.324 | 0.006 |
| 2002 | 0.000 | 0.028 | 0.000 | 0.050 | 0.000 | 0.069 | 0.000 | 0.069 | 0.000 |
| 2003 | 0.001 | 0.203 | 0.012 | 0.369 | 0.022 | 0.507 | 0.030 | 0.507 | 0.030 |
| 2004 | 0.000 | 0.040 | 0.000 | 0.072 | 0.001 | 0.099 | 0.001 | 0.099 | 0.001 |
| 2005 | 0.000 | 0.017 | 0.000 | 0.032 | 0.000 | 0.044 | 0.000 | 0.044 | 0.000 |
| 2006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 |
| 2007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 |
| 2008 | 0.000 | 0.001 | 0.000 | 0.003 | 0.000 | 0.004 | 0.000 | 0.004 | 0.000 |
| 2009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000 |
| 2011 | 0.000 | 0.001 | 0.000 | 0.002 | 0.000 | 0.003 | 0.000 | 0.003 | 0.000 |
| 2012 | 0.000 | 0.013 | 0.000 | 0.024 | 0.000 | 0.033 | 0.000 | 0.033 | 0.000 |
| 2013 | 0.000 | 0.007 | 0.000 | 0.013 | 0.000 | 0.019 | 0.000 | 0.019 | 0.000 |
| 2014 | 0.000 | 0.010 | 0.000 | 0.018 | 0.000 | 0.024 | 0.000 | 0.024 | 0.000 |
| 2015 | 0.000 | 0.008 | 0.000 | 0.014 | 0.000 | 0.020 | 0.000 | 0.020 | 0.000 |
| 2016 | 0.000 | 0.015 | 0.000 | 0.028 | 0.000 | 0.038 | 0.000 | 0.038 | 0.000 |
| 2017 | 0.000 | 0.034 | 0.000 | 0.062 | 0.000 | 0.085 | 0.000 | 0.085 | 0.000 |
| 2018 | 0.000 | 0.108 | 0.000 | 0.196 | 0.000 | 0.270 | 0.000 | 0.270 | 0.000 |
| arith. mean | 0.001 | 0.069 | 0.010 | 0.125 | 0.019 | 0.171 | 0.026 | 0.171 | 0.026 |

Table 9.5.8 Sandeel Area-4. Natural mortality (M) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, <br> 1st half | Age 2, 2nd half | Age 3, <br> 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1994 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1995 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1996 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1997 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1998 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1999 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2000 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2001 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2002 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2003 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2004 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2005 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2006 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2007 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2008 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2009 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2010 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2011 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2012 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2013 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2014 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2015 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2016 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2017 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2018 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| arith. <br> mean | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |

Table 9.5.9 Sandeel Area-4. Stock numbers (millions). Age 0 at start of 2nd half-year, age 1+ at start of the year.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1993 | 115583 | 21689 | 23227 | 7439 | 1561 |
| 1994 | 253303 | 36902 | 4260 | 4793 | 2038 |
| 1995 | 68529 | 80879 | 6965 | 818 | 1409 |
| 1996 | 371687 | 21917 | 19064 | 2002 | 812 |
| 1997 | 96739 | 117846 | 4327 | 3971 | 649 |
| 1998 | 42876 | 30902 | 26879 | 1172 | 1517 |
| 1999 | 229416 | 13708 | 7047 | 7276 | 900 |
| 2000 | 196908 | 73371 | 2977 | 1745 | 2372 |
| 2001 | 23448 | 62975 | 17346 | 860 | 1510 |
| 2002 | 85668 | 7498 | 14180 | 4588 | 772 |
| 2003 | 150258 | 27398 | 1874 | 4533 | 2211 |
| 2004 | 12750 | 48024 | 5676 | 426 | 1757 |
| 2005 | 8752 | 4078 | 11854 | 1774 | 901 |
| 2006 | 5422 | 2799 | 1029 | 3861 | 1143 |
| 2007 | 9747 | 1734 | 719 | 346 | 2220 |
| 2008 | 27273 | 3117 | 445 | 242 | 1173 |
| 2009 | 392249 | 8723 | 800 | 149 | 644 |
| 2010 | 67444 | 125449 | 2241 | 269 | 362 |
| 2011 | 47438 | 21570 | 32206 | 752 | 284 |
| 2012 | 41282 | 15172 | 5534 | 10802 | 460 |
| 2013 | 26934 | 13203 | 3846 | 1816 | 4793 |
| 2014 | 317986 | 8614 | 3367 | 1276 | 2949 |
| 2015 | 52262 | 101698 | 2191 | 1112 | 1871 |
| 2016 | 114852 | 16714 | 25923 | 726 | 1323 |
| 2017 | 163314 | 36732 | 4229 | 8475 | 893 |
| 2018 | 7625 | 52231 | 9123 | 1337 | 3797 |
| 2019 |  | 2439 | 12046 | 2520 | 1783 |
|  |  |  |  |  |  |

Table 9.5.10 Sandeel Area-4. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (Yield) and average fishing mortality.

|  | Recruits <br> (thousands) | TSB <br> (tonnes) | SSB <br> (tonnes) | Yield <br> (tonnes) | Mean F1-2 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 1993 | 115525287 | 576799 | 357182 | 132599 | 0.378 |
| 1994 | 253278441 | 560500 | 148153 | 158690 | 0.435 |
| 1995 | 68544930 | 827656 | 123500 | 52591 | 0.121 |
| 1996 | 371849589 | 417494 | 248948 | 158490 | 0.371 |
| 1997 | 96784750 | 877167 | 80660 | 58446 | 0.168 |
| 1998 | 42883599 | 503930 | 257816 | 58746 | 0.168 |
| 1999 | 229405101 | 294876 | 193300 | 53334 | 0.237 |
| 2000 | 196859336 | 372014 | 82454 | 37714 | 0.117 |
| 2001 | 23441066 | 347081 | 111190 | 47902 | 0.186 |
| 2002 | 85668864 | 169830 | 123130 | 12736 | 0.039 |
| 2003 | 150278380 | 199332 | 69982 | 63731 | 0.303 |
| 2004 | 12749467 | 262814 | 61267 | 6882 | 0.056 |
| 2005 | 8753814 | 114747 | 81961 | 1557 | 0.025 |
| 2006 | 5422134 | 101481 | 82951 | 0 | 0.000 |
| 2007 | 9742419 | 54635 | 44846 | 0 | 0.000 |
| 2008 | 27261881 | 40157 | 24465 | 0 | 0.002 |
| 2009 | 392089230 | 74002 | 21367 | 0 | 0.000 |
| 2010 | 67456938 | 673402 | 26265 | 0 | 0.001 |
| 2011 | 47441124 | 405289 | 240145 | 0 | 0.002 |
| 2012 | 41284596 | 215777 | 143344 | 2585 | 0.019 |
| 2013 | 26936694 | 214438 | 136626 | 5225 | 0.010 |
| 2014 | 318139333 | 183842 | 113437 | 4314 | 0.014 |
| 2015 | 52273494 | 507367 | 59278 | 4392 | 0.011 |
| 2016 | 114834211 | 386423 | 248948 | 6188 | 0.022 |
| 2017 | 163283743 | 449019 | 161943 | 18474 | 0.048 |
| 2018 | 7625436 | 473207 | 154508 | 42526 | 0.152 |
| 2019 |  |  | 169058 |  |  |
| arith. mean | 112682460 | 357818 | 132091 | 35659 | 0.111 |
| geo. mean | 65857245 |  |  |  |  |

arith. mean for the period 1993-2018
geo. mean for the period 1993-2017

Table 9.5.11 Sandeel Area-4. Input to forecast.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Stock numbers(2019) | 80801.276 | 2438.59 | 12045.9 | 2520.43 | 1782.86 |
| Exploitation pattern 1st half |  | 0.108 | 0.196 | 0.270 | 0.270 |
| Exploitation pattern 2nd half | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Weight in the stock 1st half |  | 5.940 | 10.295 | 14.642 | 19.545 |
| Weight in the catch 1st half |  | 5.940 | 10.295 | 14.642 | 19.545 |
| weight in the catch 2nd half | 4.522 | 7.967 | 12.959 | 17.069 | 20.434 |
| Proportion mature(2019) | 0.000 | 0.000 | 0.790 | 0.980 | 1.000 |
| Proportion mature(2020) | 0.000 | 0.000 | 0.790 | 0.980 | 1.000 |
| Natural mortality 1st half |  | 0.767 | 0.602 | 0.431 | 0.398 |
| Natural mortality 2nd half | 1.140 | 0.592 | 0.488 | 0.392 | 0.378 |

Table 9.5.12 Sandeel Area-4. Short term forecast (000 tonnes).

Basis: $\mathrm{Fsq}=\mathrm{F}(2018)=0.1522$; Yield $(2018)=42.526$; Recruitment $(2018)=7.625436$; Recruitment $(2019)=$ geometric mean $(G M 2008-2017)=80.801276$ billions; SSB(2019) = 169.058

| F multiplier | Basis | $F(2019)$ | Catch(2019) | SSB(2020) | $\begin{gathered} \% \text { SSB } \\ \text { change }^{*} \end{gathered}$ | \%TAC <br> change** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathrm{F}=0$ | 0.000 | 0.001 | 100.879 | -40\% | -100 \% |
| 0.99 | Fsq** 0.99 | 0.150 | 31.408 | 81.351 | -52 \% | -26 \% |
| 0.14 | Fsq* ${ }^{*} 0.14$ | 0.022 | 5.001 | 97.744 | -42 \% | -88\% |
| 2.65 | Fsq*2.65 | 0.403 | 72.062 | 56.804 | -66 \% | $69 \%$ |
| 3 | Fsq*3 | 0.456 | 79.026 | 52.708 | -69\% | 86 \% |
| 3.5 | Fsq*3.5 | 0.533 | 88.183 | 47.383 | -72 \% | 107 \% |
| 4 | Fsq* 4 | 0.609 | 96.495 | 42.618 | -75 \% | 127 \% |
| 4.5 | Fsq* 4.5 | 0.685 | 104.048 | 38.350 | -77 \% | 145 \% |
| 5 | Fsq*5 | 0.761 | 110.918 | 34.528 | -80\% | 161 \% |
| No conversion for calculation of MSY catch |  | NA | NA | NA |  |  |

[^14]Table 9.6.1 Acoustic survey index (Area-5) is estimated as biomass (tonnes) methods and acoustic target strength described in ICES (2016) (Benchmark report).

| Year | Biomass (tonnes) |
| :---: | :---: |
| 2009 | 256.5 |
| 2010 | 6320.9 |
| 2011 | 3300.2 |
| 2012 | 732.2 |
| 2013 | 3949.1 |
| 2014 | 1331.8 |
| 2015 | 10477.6 |
| 2016 | 733.2 |
| 2017 | 493.1 |
| 2018 | 945.0 |



Figure 11.1.1 Sandeel in ICES Division 4 and 3.a. Sandeel management areas.


Figure 11.1.2 Sandeel in ICES Division 4 and 3.a. Catch by ICES rectangles 2003-2018. Area of the circles is proportional to catch by rectangle.


Figure 11.1.3 Sandeel in ICES Division 4 and 3.a. Total catches by year and area.


Figure 11.1.4 Sandeel in ICES Division 4 and 3.a. Danish survey indices by year and ICES rectangles. Red circles: 0-group, black circles: 1-group. Area of the circles is proportional to catch numbers by rectangle.


Figure 11.1.5 Map of the Norwegian sandeel management areas and sub-areas in the North Sea . Historical important fishing grounds are depicted in red, and areas with suitable sandeel habitat are depicted in pink. Areas valid from 2017.


Figure 11.2.1 Sandeel Area-1r. Catch numbers, proportion at age.


Figure 11.2.2 Sandeel Area-1r. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).

Area-1r Sandeel


Figure 11.2.3 Sandeel Area-1r. CPUE and effort.


Figure 11.2.4 Sandeel Area-1r. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 11.2.5 Sandeel Area-1r. Dredge survey index timeline.


Figure 11.2.6 Sandeel Area-1r. Survey CPUE at age residuals (log(observed CPUE)- $\log (e x p e c t e d$ CPUE). "Red" dots show a positive residual.

Area-1r s:1


Area-1r S:2


Figure 11.2.7 Sandeel Area-1r. Catch at age residuals (log(observed CPUE)- log(expected CPUE). "Red" dots show a positive residual.

Area-1r: Hockey stick, 1983:2018


Figure 11.2.8 Sandeel Area-1r. Estimated stock recruitment relation. Red line $=$ median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines $=2$ standard deviations. The area within the light blue lines can be seen as the $95 \%$ confidence interval of recruitment. Years shown in red are not used in the fit.

Retrospective anlysis: 2013-2018




Figure 11.2.9 Sandeel Area-1r. Retrospective analysis.


Figure 11.2.10 Sandeel Area-1r. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 11.2.11 Sandeel Area-1r. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 11.2.12 Sandeel Area-1r. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.


Figure 11.2.13 Sandeel Area-1r. Stock summary.

RTM 2008-2017


Figure 11.2.14 Sandeel Area-1r. RTM survey. Survey CPUE at age residuals (log(observed CPUE)log(expected CPUE). "Red" dots show a positive residual.


Figure 11.3.1 Sandeel Area-2r. Catch numbers, proportion at age.


Figure 11.3.2 Sandeel Area-2r. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 11.3.3 Sandeel Area-2r. CPUE and effort.


Figure 11.3.4 Sandeel Area-2r. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 11.3.5 Sandeel Area-2r. Dredge survey index timeline.

Dredge survey 2010-2018


Figure 11.3.6 Sandeel Area-2r. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE). "Red" dots show a positive residual.

Area-2r S:1


Area-2r S:2


Figure 11.3.7 Sandeel Area-2r. Catch at age residuals (log(observed CPUE)- $\log ($ expected CPUE). "Red" dots show a positive residual.

Area-2r: Hockey stick, 1983:2018


Figure 11.3.8 Sandeel Area-2r. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines $=2$ standard deviations. The area within the light blue lines can be seen as the $95 \%$ confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 11.3.9 Sandeel Area-2r. Retrospective analysis.


Figure 11.3.10 Sandeel Area-2r. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 11.3.11 Sandeel Area-2r. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 11.3.12 Sandeel Area-2r. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.


Figure 11.3.13 Sandeel Area-2r. Stock summary.


Figure 11.4.1 Sandeel Area-3r. Catch numbers, proportion at age.


Figure 11.4.2 Sandeel Area-3r. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 11.4.3 Sandeel Area-3r. CPUE and effort.


Figure 11.4.4 Sandeel Area-3r. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 11.4.5 Sandeel Area-3r. Dredge survey index timeline.


Figure 11.4.6 Sandeel Area-3r. Survey CPUE at age residuals (log(observed CPUE)- $\log$ (expected CPUE). "Red" dots show a positive residual.

Area-3r s:1


Area-3r S:2


Figure 11.4.7 Sandeel Area-3r. Catch at age residuals (log(observed CPUE)- $\log$ (expected CPUE). "Red" dots show a positive residual.

Area-3r: Hockey stick, 1986:2018


Figure 11.4.8 Sandeel Area-3r. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines $=2$ standard deviations. The area within the light blue lines can be seen as the $95 \%$ confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 11.4.9 Sandeel Area-3r. Retrospective analysis.


Figure 11.4.10 Sandeel Area-3r. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 11.4.11 Sandeel Area-3r. Model output (mean F, SSB and Recruitment) with mean values and plus/minus $2{ }^{*}$ standard deviation.


Figure 11.4.12 Sandeel Area-3r. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.


Figure 11.4.13 Sandeel Area-3r. Stock summary.


Figure 11.4.14 Sandeel Area-3r. Acoustic survey index timeline.


Figure 11.4.15 Sandeel Area-3r. Norwegian acoustic survey. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE). "Red" dots show a positive residual.


Figure 11.4.16 Sandeel Area-3r. Internal consistency by age of the acoustic survey. Red dot indicates the most recent data point.


Figure 11.5.1 Sandeel Area-4. Catch numbers, proportion at age.


Figure 11.5.2 Sandeel Area-4. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 11.5.3 Sandeel Area-4. CPUE and effort.


Figure 11.5.4 Sandeel Area-4. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 11.5.5 Sandeel Area-4. Dredge survey index timeline.


Figure 11.5.6 Sandeel Area-4. Survey CPUE at age residuals ( $\log$ (observed CPUE)- $\log ($ expected CPUE). "Red" dots show a positive residual.

Area-4 S:1


Area-4 S:2


Figure 11.5.7 Sandeel Area-4. Catch at age residuals (log(observed CPUE)- $\log ($ expected CPUE). "Red" dots show a positive residual.

Area-4: Hockey stick, 1993:2018


Figure 11.5.8 Sandeel Area-4. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines = 2 standard deviations. The area within the light blue lines can be seen as the $95 \%$ confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 11.5.9 Sandeel Area-4. Retrospective analysis.


Figure 11.5.10 Sandeel Area-4. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 11.5.11 Sandeel Area-4. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 11.5.12 Sandeel Area-4. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.


Figure 11.5.13 Sandeel Area-4. Stock summary.


Figure 11.5.1 Sandeel Area-4. Old dredge survey. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE). "Red" dots show a positive residual.

# 10 Sprat in Division 3.a and Subarea 4 (Skagerrak, Kattegat and North Sea) 

### 10.1 The Fishery

### 10.1.1 ACOM advice applicable to 2019 and 2020

There have never been any explicit management objectives for this stock. Last year, the advised TAC (July 2018 to June 2019) was set to 177545 t for sprat in Subarea 4 and 7506 t for Division 3.a. The 2019 herring bycatch quotas are 13190 t for the North Sea and 6659 t for Division 3.a. During the WKSPRAT benchmark meeting in 2018, sprat in Subarea 4 and Division 3.a were merged into one stock assessment model. Also a number of other modifications were made to the configurations of the assessment model (see (WKSPRAT: ICES, 2018) for further details).

### 10.1.2 Catches in 2018

Catch statistics for 1996-2018 for sprat in the North Sea by area and country are presented in Table 10.1.1. Catch data prior to 1996 are considered less reliable (see Stock Annex). The small catches of sprat from the fjords of Norway are not included in the catch tables (Table 10.1.110.1.2). The WG estimate of total catches for the North Sea and Division 3.a in 2018 were 191184 t (total official catches amounted to 190159 t ). This is a $49 \%$ increase compared to 2017, but still not far from the average for the time series. The Danish catches represent $87 \%$ of the total catches.

The spatial distribution of landings was similar to 2017 (Figure 10.1.1). As in previous years, a low percentage ( $12 \%$ in 2018) of the catches were landed in the first and second quarter of 2018 (Table 10.1.2).

### 10.1.3 Regulations and their effects

The Norwegian vessels have a maximum vessel quota of 550 t when fishing in the North Sea. A herring by-catch of up to $10 \%$ in biomass is allowed in Norwegian sprat catches.

Most sprat catches are taken in an industrial fishery where catches are limited by herring bycatch quantities. By-catches of herring are practically unavoidable except in years with high sprat abundance or low herring recruitment. By-catch is especially considered to be a problem in area 4.c. This led to the introduction of a closed area (sprat box) to ensure that sprat catches were not taken close to the Danish west coast where large by-catches were expected.

ICES evaluated the effectiveness of the sprat box in 2017 (ICES, 2017). The evaluation concluded that fishing inside the sprat box would be expected to reduce unwanted catches of herring (by weight) and that other management measures are sufficient to control herring bycatch. The sprat box was removed in 2017.

### 10.1.4 Changes in fishing technology and fishing patterns

No major changes in fishing technology and fishing patterns for the sprat fisheries in the North Sea have been reported. From about 2000, Norwegian pelagic trawlers were licensed to take part in the sprat fishery in the North Sea. In the first years, the Norwegian catches were mainly taken
by purse seine, and the catches taken by trawl were low. In recent years, the share of the total Norwegian catches taken by trawl has increased (2018: 92\% taken by trawl).

### 10.2 Biological composition of the catch

Only data on by-catch from the Danish fishery were available to the Working Group (Table 10.2.1). The Danish sprat fishery was conducted with a $4.4 \%$ and $7.8 \%$ by-catch of herring in 2018 in the North Sea and Division 3.a, respectively. The total amount of herring caught as by-catch in the sprat fishery has mostly been less than $10 \%$.

The estimated quarterly landings at age in numbers for the period 1974-2018 are presented in Table 10.2.2. In the model year 2018 (1 July 2018-30 June 2019), one-year old sprat contributed $55 \%$ of the total landings, which is lower compared to the 1990-2018 average ( $62 \%$ ) and the lowest since 2011 ( $45 \%$ ). 2-year olds contributed $23 \%$ in 2018 (model year), which corresponds to the 1990-2018 average ( $23 \%$ ). 0-year olds contributed $17 \%$ of the total landings, which is higher than the 1990-2018 average (9\%).
Denmark, Sweden and Norway provided age data of commercial landings in 2018 (Table 10.2.4). Quarters 1, 3 and 4 were covered. The sample data were used to raise the landings data from the North Sea. The landings by the Netherlands, UK-England, UK-Scotland, Germany and Belgium were minor and unsampled. The sampling level has been greatly improved since 2014 because of the implementation of a sampling programme for collecting haul based samples from the Danish sprat fishery. The sampling level in 2018 (model year) was 1.5 samples per 2000 t . The required sampling level in the EU directive for the collection of fisheries data (Commission Regulation 1639/2001) is 1 sample per 2000 tonnes (see also the Stock Annex). This level was met by Denmark, Sweden and Norway, thus the total sampling level was above the EU directive required minimum level.

The number of samples used for the assessment, both length and age-length samples, is shown in Table 10.2.4-5 and Figure 10.2.1.

### 10.3 Fishery Independent Information

### 10.3.1 IBTS Q1 and Q3

Table 10.3.1 and Figure 10.3.1 gives the time series of IBTS indices by age (calculated using a delta-GAM model formulation; see WKSPRAT-report (WKSPRAT: ICES, 2018) for further details). The data source is the IBTS Q1 data from 1983-2019. The index for IBTS Q1 1-year olds in 2018 (age-0 in the model and the table, serving as a recruitment index) was the fifth highest in the time series, $58 \%$ of last year's index. There has been a tendency for an increase in the IBTS age 0 in the time series since 1990. IBTS Q3 survey indices were also used in the assessment, and the 2018 values were $33 \%$ lower for age- 1 and $8 \%$ and $16 \%$ higher for age- 2 and age- 3 , respectively, compared to 2017. To track changes in Subarea 4 and Division 3.a, separately, IBTS indices for roundfish areas 6-9 are shown in Figure 10.3.2a (stratified averages downloaded directly from ICES DATRAS database).

### 10.3.2 Acoustic Survey (HERAS)

Abundance indices were provided by WGIPS (ICES, 2019 (see Section 1.4.2)). The abundance indices for Subarea 4 and Division 3.a were summed (Table 10.3.2 and Figure 10.3.2.b). The 2018 values were $286 \%, 276 \%$, and $53 \%$ (age-1, age-2, and age-3, respectively) of the 2017 -values. Compared to the long-term average, the 2018 values were $283 \%, 69 \%$, and $23 \%$ higher. To track
changes in Subarea 4 and Division 3.a separately, IBTS indices for roundfish areas 6-9 are shown in Figure 10.3.3 (stratified averages downloaded directly from ICES DATRAS database).

### 10.4 Mean weights-at-age and maturity-at-age

Mean weights-at-age in catches are given in Table 10.2.3 and Figure 10.4.1. Mean weights in model season 1 and 2 (S1,2; quarter 3 and 4), where most of the catches are taken, show a declining trend over the past decade. In 2018, the mean weights of age-1 and age-2 fish in S1 was the lowest observed for two decades. Mean weight-at-age was also very low in S2; among the lowest observed for two decades (Figure 10.4.1).

Proportion of mature fish was derived from IBTSQ1, following the benchmark procedure. Longterm average maturity ogives were used in the assessment model ( $0.0,0.41,0.87$, and 0.95 for age-0 to age-3+). More details about the maturity staging are given in Section 4.5.3.2 in the WKSPRAT 2013 report (ICES, 2013).

### 10.5 Recruitment

The IBTS Q1 age-1 index (age-0 in the model) (Table 10.3.1) is used as a recruitment index for this stock. The 2019 value, indicative of the 2018 recruitment, was the fifth highest in the time series, although only $58 \%$ of last year's index. The recruitment estimated by the model for 2018 is $83 \%$ of the recruitment in 2017 (after updating the 2017 recruitment) and $48 \%$ higher than the 1990-2018 average. After the latest benchmark it was decided to implement a power model (directly within the assessment model) to the age-0 IBTS Q1 index to dampen the effect of very high index values. This was done to reduce the retrospective bias on recruitment (see WKSPRAT report (WKSPRAT: ICES, 2018) for further details).

### 10.6 Stock Assessment

The stock assessment was benchmarked in November 2018 (WKSPRAT: ICES, 2018). During the WKSPRAT benchmark meeting in 2018, sprat in Subarea 4 and Division 3.a were merged into one stock assessment model. Also a number of other modifications were made to the configuration of the assessment model (see WKSPRAT report (ICES, 2018) for further details).

In-year advice is the only possible type of advice for this short-lived species with a fishery dominated by 1 - and 2 -year-old fish. This, however, requires information about incoming 1 -year-old fish. In order to meet this requirement and to come up with a model that logically matches the natural life cycle of sprat, the annual time-step in the model was shifted, relative to the calendar year, to a time-step going from July to June (see text table below). SSB and recruitment was estimated at 1 July. In figures and tables with assessment output and input, the years refer to the shifted model year (July to June) and in each figure and table it is noted whether model year or calendar year apply (when the model year is given the year refers to the year at the beginning of the model year; for example: 2000 refers to the model year 1 July 2000 to 30 June 2001). The following schematic illustrates the shifted model year relative to the calendar year and provides an overview of the timing of surveys etc.

| Model year | Calendar year |  |  |
| :--- | :--- | :--- | :--- |
| 2000 | Season 1 | 2000 | Quarter 3 |
| 2000 | Season 2 | 2000 | Quarter 4 |
| 2000 | Season 3 | 2001 | Quarter 1 |
| 2000 | Season 4 | 2001 | Quarter 2 |



### 10.6.1 Input data

### 10.6.1.1 Catch data

Information on catch data is provided in Tables 10.1.1-2 and in Figures 10.1.13 and 10.6.1. Sampling effort is presented in Table 10.2.5 and Figure 10.2.1.

Since catches in quarter 2 (season 4 in the model) are often less than 5000 tonnes, these are poorly estimated by the model and the number of samples from these catches are low (sometimes no samples). Furthermore, at the time of the assessment working group, S 4 catches are unknown. Therefore, during the latest benchmark it was decided to move S4 catches into S1 in the following model year.

### 10.6.1.2 Weight at age

The mean weights at age observed in the catch are given in Table 10.2.3 and Figure 10.4.1 by season. It is assumed that the mean weights in the stock are the same as in the catch. Note that it is the mean weight at age of S1 that is used to calculated SSB.

### 10.6.1.3 Surveys

Three surveys were included (Tables 10.3.1-3), IBTS Q1 (1975-present), IBTS Q3 (1991-present) and HERAS (Q3) (2003-present). 0-group (young-of-the-year) sprat is unlikely to be fully recruited by the time of IBTS Q3 and HERAS, and for this reason these age indices were excluded from runs. Internal consistency in survey data and external consistency between surveys are presented in Figures 10.3.1-5.

### 10.6.1.4 Natural mortality

New natural mortalities were available from the 2017 North Sea key run from WGSAM (ICES, 2017). The major changes were changes to the mackerel consumption leading to a much lower M of 0-group in the second half of the year. HAWG reviewed stock recruitment plots based on the old and new M's and considered that updating the entire time series of Ms did not affect the stock recruitment plot substantially, and did not lead to a change in the perception of $\mathrm{B}_{\mathrm{lim}} / \mathrm{B}_{\mathrm{pa}}$. Therefore, the new M's were used. Variable mortality is applied as three year averages up till 2015, and after this the average mortality for 2013-2015 is used. Natural mortalities used in the model are given in Table 10.6.2.

### 10.6.1.5 Proportion mature

Proportion of mature fish was derived from IBTSQ1, following the benchmark procedure. Longterm average maturity ogives were used in the assessment model ( $0.0,0.41,0.87$, and 0.95 for age-0 to age-3+). More details about the maturity staging are given in Section 4.5.3.2 in the WKSPRAT 2013 report (ICES, 2013).

### 10.6.2 Stock assessment model

The assessment was made using SMS (Lewy and Vinther, 2004) with quarterly time steps (referred to as season S1-S4). Three surveys were included, IBTS Q1 ages $1-4+$, IBTS Q3 ages $1-3$ and HERAS (Q3) ages 1-3. 0-group sprat is unlikely to be fully recruited to the IBTSQ3 or HERAS in Q3 and these age indices were excluded from runs. External consistency between IBTS Q1, IBTS Q3 and HERAS can be found in the benchmark report (WKSPRAT: ICES, 2018).

The model converged and fitted the catches of the main ages caught in the main seasons reasonably (ages 1-2, seasons 1 and 2, Table 10.6.2). All surveys had low CVs (Table 10.6.2). There were no patterns in the residuals raising concern. Although, there appears to be a periodic cycling (on a decadal time scale) between positive and negative residuals in the IBTS Q3 survey and the catches (Figures 10.6.2-3). Common CVs were estimated for the groups: 1 to 3-year olds in IBTS Q1 and 2 and 3-year olds in IBTS Q3 and HERAS.

The retrospective analyses showed a tendency to overestimate recruitment ( 5 years mohn's rho $=0.22$ ) (Figure 10.6.5). As $41 \%$ of the recruiting year class contributes to the SSB at the end of the year, there is a similar large retrospective pattern in SSB ( 5 year mohn's rho $=0.27$ ). However, the assessment model has been improved with this respect and mohn's rho reduced by roughly a factor of 3 during the last benchmark.

The final outputs detailing trends in mean F, SSB and recruitment are given in Figures 10.6.4-7 and Tables 10.6.3-4.

### 10.7 Reference points

A Blim of 94000 t (Figure 10.7.1) and $\mathrm{B}_{\mathrm{pa}}$ of 125000 t were agreed at the most recent benchmark. $B_{p a}$ is defined as the upper $90 \%$ confidence interval of $B_{l i m}$ and calculated based on a terminal SSB CV of 0.173.

### 10.8 State of the stock

The sprat stock appears to be abundant judged by all the surveys and by the assessment output. The stock appears to have been well above $B_{\text {pa }}$ since 2013 and above $B_{\text {lim }}$ since 1991. The current SSB is more than twice the Blim, and among the six highest since 1980. Fishing mortality has been above the long-term average for the last 4 years. The advised TAC was based on the predicted catch at $F$ equal to $F_{\text {cap }}(0.69)$. A large overshoot of $\mathrm{F}_{\text {cap }}$ is seen in simulations applying the escapement strategy on very large incoming year classes, and this is the rationale for implementing an $\mathrm{F}_{\text {cap }}$ as otherwise, the escapement strategy is unprecautionary at large stock sizes.

A stock summary from the assessment output can be found in Table 10.6.4 and Figure 10.6.7.

### 10.9 Short-term projections

Management strategy evaluations for this stock were made in December 2018 (WKSPRATMSE: ICES, 2018). These evaluations clearly show that the current management strategy (Bescapement) is not precautionary unless an additional constraint is imposed on the fishing mortality (referred to as $\mathrm{F}_{\text {cap }}$ ). During the WKSPRATMSE (ICES, 2018) 0.69 was found to be the optimal $\mathrm{F}_{\text {cap }}$ value (from both a full MSE and a shortcut MSE, see the WKSPRATMSE report (WKSPRATMSE: ICES, 2018) for further details), which is a revision of the previous value of 0.7. This means, that the fishing mortality ( $\mathrm{F}_{\mathrm{bar}}(1-2)$ ) derived from the $B_{\text {escapement }}$ strategy, should not exceed 0.69.

Since the catch projections are based on an assessment year from 1 July to 30 June each year rather than the calendar TAC years of 1 January to 31 December, the following figure (see below) illustrates the timing of steps in the process in relation to the spawning and fisheries of North Sea sprat.


SSB in 2019 is expected to be above the long-term average and well above $B_{\text {pa }}$. Using the input and assumptions detailed above, the projection for an $F=0$ is an SSB in July 2020 of $361000 t$ (Table 10.9.2). The $\mathrm{F}_{\text {MSY }}$ approach prescribes the use of an F value of 0.69 ( $\mathrm{F}_{\text {cap, }}$ see explanation above) and results in a TAC advice of 138726 t (July 2019-June 2020), which is anticipated to result in an SSB of 271000 t in July 2020, well above Bpa.

### 10.10 Quality of the assessment

The data used within the assessment, the assessment methods and settings were carefully scrutinized during the 2018 benchmark (ICES, 2018). A complete overview of the choices made during the benchmark can be found in the WKSPRAT report (ICES, 2018) and these are also described in the Stock Annex for sprat in Division 3.a and Subarea 4.
The assessment shows medium to high CVs for the catches but low CVs for surveys. The CVs of F, SSB and recruitment are genrally low (see Table 10.6.2 and Figure 10.6.4). The model converged and fitted the catches of the main ages caught in the main seasons (the periods with most samples) reasonably well (ages $1-2$, season 2 , Table 10.6.2). There is a small retrospective bias in SSB and recruitment ( 5 years mohn's rho of 0.27 and 0.22 , respectively).

### 10.11 Management Considerations

A management plan needs to be developed. Sprat is an important forage fish, thus also multispecies considerations should be made.

The sprat stock in the North Sea is dominated by young fish. The stock size is mostly driven by the recruiting year class. Thus, the fishery in a given year will be dependent on that year's incoming year class.
In the forecast table for North Sea herring, industrial fisheries are allocated a bycatch of 13190 t and 6659 t of juvenile herring in 2019 in the North Sea and Division 3.a, respectively. It is important to continue monitoring bycatch of juvenile herring to ensure compliance with this allocation.

### 10.11.1 Stock units

After the latest benchmark, sprat in the Subarea 4 and Division 3.a is considered to be one cohesive stock. This is documented in the WKSPRAT report (ICES, 2018). In addition, there are several peripheral areas of the North Sea and Division 3.a where there may be populations of sprat that behave as separate stocks from the main stock. Local depletion of sprat in such areas can be an issue of ecological concern.

### 10.12 Ecosystem Considerations

Sprat is an important prey species in the North Sea ecosystem. Many of the plankton-feeding fish, including sprat, recruited strongly in 2016 (e.g. sandeel, Norway pout). This is in contrast to a previous period of poor recruitment. The implications of the environmental change for sprat and the influence of the sprat fishery on other fish species and sea birds are at present unknown.
In the North Sea, the key predators consuming sprats are included in the stock assessment, using SMS estimates of sprat consumption for each predatory fish stock, and estimates for seabirds. Impacts of changes in zooplankton communities and consequent changes in food densities for sprats are not included in the assessment, but it may be useful to explore the possibility of including this, or a similar proxy bottom-up driver, in future assessments. However, the effect of changes in productivity is included in the observed quarterly weight at age and in the estimated recruitment, as a decline in e.g available food can lead to lower observed weights and lower estimated recruitment even in the absence of a causal link in the model.

### 10.13 Changes in the environment

Temperatures in this area have been increasing over the last few decades. This may have implications for sprat, although the correlation between temperature and recruitment from the model has been found to be low (see WKSPRAT: ICES, 2018).

Table 10.1.1. North Sea \& 3.a sprat. Landings (' 000 t ) 1996-2018. See ICES CM 2006/ACFM:20 for earlier data. Catch in coastal areas of western Norway excluded. Data provided by Working Group members. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

| Country | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Division 27.4.a |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 0.3 |  |  | 0.7 |  | 0.1 | 1.1 |  | * |  | * | 0.8 | * | * |  |  |  |  | * | * | 0.1 | 0.1 |  |
| Norway |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | * |  |  |  |  |  |  |  |
| Sweden |  |  |  |  |  | 0.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UK (Scotland) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.5 |  |  |  |  |  | 0.0 | 0.0 |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * | * |  |  |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  |  |  |
| Total | 0.3 |  |  | 0.7 |  | 0.2 | 1.1 |  | * |  | * | 0.8 | * | * |  | 0.5 |  |  | * | * | 0.1 | 0.1 | 0.0 |
| Division 27.4.b |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 76.5 | 93.1 | 119.3 | 160.3 | 162.9 | 143.9 | 126.1 | 152.9 | 175.9 | 204.0 | 79.5 | 55.5 | 51.4 | 115.6 | 80.8 | 90.9 | 65.7 | 44.7 | 121.3 | 234.4 | 177.6 | 100.6 | 156.5 |
| Norway | 52.8 | 3.1 | 15.3 | 13.1 | 0.9 | 5.9 | * |  | 0.1 |  | 0.8 | 3.7 | 1.3 | 4.0 | 8.0 | 0.1 | 6.2 | * | 8.9 | 0.3 | 19.6 | 9.7 | 9.3 |
| Sweden | 0.5 |  | 1.7 | 2.1 |  | 1.4 |  |  |  | 0.0 |  |  |  | 0.3 | 0.6 | 1.1 | 1.8 | 0.1 | 3.9 | 5.5 | 11.7 | 8.1 | 7.6 |
| UK(Scotland) |  |  |  | 1.4 |  |  |  |  |  |  |  | 0.1 |  | 2.5 | 1.1 | 1.9 | 0.7 |  |  |  |  |  | 0.0 |
| UK(Engl.\&Wales) |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  |  |  |  |  |  |  | 0.0 | 0.0 |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3.3 | 0.5 | 0.6 | 1.5 | 3.1 | 5.4 | 6.0 | 3.7 |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.1 | 2.7 | 0.4 | 2.4 | 1.2 | 1.0 | 1.6 | 1.6 |
| Faroe Islands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4.7 | 1.0 | 1.0 |


| Country | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total | 129.8 | 96.2 | 136.3 | 176.9 | 163.8 | 151.2 | 126.1 | 152.9 | 176.0 | 204.1 | 80.3 | 59.3 | 52.7 | 122.4 | 90.4 | 98.4 | 77.5 | 45.8 | 138.0 | 244.6 | 220.0 | 127.0 | 179.7 |
| Division 27.4.c |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 3.9 | 5.7 | 11.8 | 3.3 | 28.2 | 13.1 | 14.8 | 22.3 | 16.8 | 2.0 | 23.8 | 20.6 | 8.1 | 8.2 | 48.5 | 20.0 | 3.2 | 15.4 | 2.2 | 34.0 | 18.7 | 1.5 | 6.2 |
| Norway |  | 0.1 | 16.0 | 5.7 | 1.8 | 3.6 |  |  |  |  | 9.0 | 2.9 |  | 1.8 | 3.2 | 9.9 | 3.0 | 1.7 | 0.1 | 8.8 | 0.6 |  | 0.5 |
| Sweden |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.6 | 0.6 | 0.2 | 0.4 | 1.3 |  | 1.2 | 0.4 | 8.1 |  |
| UK(Scotland) |  |  |  |  |  |  |  |  |  |  |  |  | 0.2 |  |  | 0.4 |  |  |  |  | * |  |  |
| UK(Engl.\&Wales) | 2.6 | 1.4 | 0.2 | 1.6 | 2.0 | 2.0 | 1.6 | 1.3 | 1.5 | 1.6 | 0.5 | 0.3 | * | * | 0.8 | 0.6 | 0.5 | * | * | * | * | 0.0 | 0.1 |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * | * | 1.0 |  | 0.6 | 0.2 |  |  |
| Netherlands |  |  |  | 0.2 |  |  |  |  |  |  |  |  |  |  |  | 4.2 | 1.0 | 0.7 | * | 1.2 | 0.8 | 0.0 | 0.7 |
| Belgium |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | * | * | * | * | 0.0 |  |
| France |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | 0.0 |  |
| Total | 6.5 | 7.2 | 28.0 | 10.8 | 32.0 | 18.7 | 16.4 | 23.6 | 18.3 | 3.6 | 33.4 | 23.8 | 8.4 | 10.6 | 53.0 | 35.2 | 8.0 | 20.1 | 2.3 | 45.8 | 20.6 | 1.6 | 7.5 |
| Division 27.3.a |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 10.4 | 11.6 | 11.2 | 17.2 | 12.8 | 20.2 | 13.4 | 10.2 | 14.4 | 31.9 | 7.8 | 9.9 | 5.8 | 6.9 | 8.4 | 8.0 | 8.4 | 1.9 | 16.7 | 11.7 | 6.7 | 1.0 | 2.9 |
| Sweden | 6.6 | 3.8 | 6.2 | 9.3 | 6.4 | 7.6 | 4.3 | 5.5 | 6.5 | 7.7 | 4.4 | 4.2 | 2.4 | 1.6 | 1.4 | 2.0 | 1.5 | 1.1 | 1.5 | 1.3 | 1.1 | 0.2 | 1.1 |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.0 |  |  |  | 0.0 |
| Faroe Islands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.0 |  |  |
| Total | 17.0 | 15.4 | 17.4 | 26.5 | 19.2 | 27.7 | 17.7 | 15.7 | 20.9 | 39.6 | 12.2 | 14.1 | 8.2 | 8.5 | 9.8 | 10.0 | 9.9 | 3.0 | 18.3 | 13.0 | 7.9 | 1.2 | 4.0 |


| Country | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total North Sea \& Skagerrak-Kattegat |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 91.1 | 110.4 | 142.3 | 181.5 | 203.9 | 177.3 | 155.4 | 185.4 | 207.1 | 237.9 | 111.2 | 86.7 | 65.4 | 130.7 | 137.7 | 119.0 | 77.4 | 62.1 | 140.2 | 280.1 | 203.1 | 103.3 | 165.6 |
| Norway | 52.8 | 3.2 | 31.3 | 18.8 | 2.7 | 9.5 | * |  | 0.1 |  | 9.8 | 6.7 | 1.3 | 5.8 | 11.1 | 10.0 | 9.1 | 1.7 | 9.0 | 9.1 | 20.2 | 9.7 | 9.8 |
| Sweden | 7.1 | 3.8 | 7.9 | 11.4 | 6.4 | 9.1 | 4.3 | 5.5 | 6.5 | 7.8 | 4.4 | 4.2 | 2.4 | 2.5 | 2.6 | 3.3 | 3.7 | 2.5 | 5.4 | 8.1 | 13.2 | 8.3 | 8.7 |
| UK(Scotland) |  |  |  | 1.4 |  |  |  |  |  |  |  | 0.1 | 0.2 | 2.5 | 1.1 | 2.8 | 0.7 |  |  |  | * | 0.0 | 0.0 |
| UK(Engl.\&Wales) | 2.6 | 1.4 | 0.2 | 1.6 | 2.0 | 2.0 | 1.6 | 1.3 | 1.5 | 1.6 | 0.5 | 0.3 | * | * | 0.8 | 0.6 | 0.5 | * | * | * | * | 0.0 | 0.1 |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3.3 | 0.5 | 1.6 | 1.6 | 3.7 | 5.6 | 6.0 | 3.7 |
| Netherlands |  |  |  | 0.2 |  |  |  |  |  |  |  |  |  |  |  | 5.3 | 3.7 | 1.1 | 2.4 | 2.4 | 1.8 | 1.6 | 2.3 |
| Faroe Islands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4.7 | 1.0 | 1.0 |
| Belgium |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | * | * | * | * | 0.0 |  |
| France |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | 0.0 |  |
| Total | 136.6 | 103.4 | 164.3 | 188.4 | 195.9 | 170.2 | 143.6 | 176.5 | 194.3 | 207.7 | 113.7 | 83.8 | 61.1 | 133.1 | 143.5 | 133.6 | 85.6 | 65.9 | 140.4 | 290.4 | 240.7 | 128.7 | 191.2 |
| * $<50 \mathrm{t}$ |  |  |  |  |  |  |  |  |  | 207.6 | 0.036 |  |  |  |  |  |  |  |  |  |  |  |  |
| Total North Sea |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 80.7 | 98.8 | 131.1 | 164.3 | 191.144 | 157.141 | 141.958 | 175.179 | 192.738 | 206.029 | 103.367 | 76.829 | 59.5854 | 123.774 | 129.295 | 110.968 | 68.929 | 60.1777 | 123.474 | 268.4 | 196.376 | 102.27 |  |
| Norway | 52.8 | 3.2 | 31.3 | 18.8 | 2.706 | 9.536 | * |  | 0.056 |  | 9.807 | 6.673 | 1.266 | 5.83 | 11.121 | 10.0278 | 9.137 | 1.666 | 9.014 | 9.064 | 20.1521 | 9.74246 |  |
| Sweden | 0.5 |  | 1.7 | 2.1 |  | 1.51 |  |  |  | * |  |  |  | 0.87 | 1.2 | 1.24 | 2.223 | 1.365 | 3.872 | 6.75715 | 12.094 | 8.1 |  |
| UK(Scotland) |  |  |  | 1.4 |  |  |  |  |  |  |  | 0.07 | 0.19187 | 2.54943 | 1.07534 | 2.75865 | 0.651 |  |  |  | * | 0.00121 |  |
| UK(Engl.\&Wales) | 2.6 | 1.4 | 0.2 | 1.6 | 2.027 | 1.996 | 1.633 | 1.31022 | 1.48 | 1.60524 | 0.543 | 0.25 | * | * | 0.79409 | 0.5729 | 0.48503 | * | * | * | * | 0.04699 |  |


| Country | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3.26 | 0.471 | 1.583 | 1.544 | 3.70483 | 5.55025 | 5.99381 |  |
| Netherlands |  |  |  | 0.2 |  |  |  |  |  |  |  |  |  |  |  | 5.288 | 3.66881 | 1.10066 | 2.444 | 2.42085 | 1.76696 | 1.58357 |  |
| Faroe Islands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4.711 | 0.9625 |  |
| Belgium |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | * | * | * | * | 2.8E-05 |  |
| France |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | 1.2E-05 |  |
| Total | 136.6 | 103.4 | 164.3 | 188.4 | 195.877 | 170.183 | 143.604 | 176.489 | 194.274 | 207.67 | 113.717 | 83.822 | 61.083 | 133.072 | 143.485 | 133.608 | 85.5648 | 65.8924 | 140.378 | 290.38 | 240.673 | 128.66 |  |

Table 10.1.2. North Sea \& 3.a sprat. Catches (tonnes) by quarter. Catches in coastal areas of Norway excluded. Data for 1996-1999 in ICES CM 2007/ACFM:11.

| Year | Quarter | Division |  |  |  | Total | Year | Quarter | Division |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 27.4.a | 27.4.b | 27.4.c | 27.3.a |  |  |  | 27.4.a | 27.4.b | 27.4.c | 27.3.a |  |
| 2000 | 1 |  | 18126 | 28063 |  | 46189 | 2010 | 1 |  | 10976 | 17072 | 1462 | 29510 |
|  | 2 |  | 1722 | 45 |  | 1767 |  | 2 |  | 3235 | 3 | 648 | 3886 |
|  | 3 |  | 131306 | 1216 |  | 132522 |  | 3 |  | 14220 |  | 3405 | 17625 |
|  | 4 |  | 12680 | 2718 |  | 15398 |  | 4 |  | 62006 | 35973 | 4278 | 102257 |
|  | Total |  | 163834 | 32042 |  | 195876 |  | Total |  | 90437 | 53048 | 9793 | 153278 |
| 2001 | 1 | 115 | 40903 | 9716 |  | 50734 | 2011 | 1 |  | 3747 | 21039 | 3216 | 28002 |
|  | 2 |  | 1071 |  |  | 1071 |  | 2 |  | 2067 | 3 | 617 | 2687 |
|  | 3 |  | 44174 | 481 |  | 44655 |  | 3 |  | 22309 | 451 | 2311 | 25072 |
|  | 4 | 79 | 65102 | 8538 |  | 73719 |  | 4 | 8 | 70256 | 13759 | 3887 | 87910 |
|  | Total | 194 | 151249 | 18735 |  | 170177 |  | Total | 8 | 98380 | 35252 | 10031 | 143671 |
| 2002 | 1 | 1136 | 2182 | 2790 |  | 6108 | 2012 | 1 |  | 81 | 1649 | 4668 | 6399 |
|  | 2 |  | 435 | 93 |  | 528 |  | 2 |  | 2924 | 0 | 909 | 3832 |
|  | 3 |  | 70504 | 647 |  | 71151 |  | 3 |  | 26779 | 307 | 1631 | 28717 |
|  | 4 |  | 52942 | 12911 |  | 65853 |  | 4 |  | 47765 | 6060 | 2728 | 56553 |
|  | Total | 1136 | 126063 | 16441 |  | 143640 |  | Total |  | 77549 | 8016 | 9936 | 95501 |
| 2003 | 1 |  | 11458 | 7727 | 5217 | 24402 | 2013 | 1 |  | 1281 | 3158 | 1296 | 5734 |
|  | 2 |  | 625 | 26 | 1397 | 2049 |  | 2 |  | 32 | 0 | 443 | 474 |


| Year | Quarter | Division |  |  |  | Total | Year | Quarter | Division |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 27.4.a | 27.4.b | 27.4.c | 27.3.a |  |  |  | 27.4.a | 27.4.b | 27.4.c | 27.3.a |  |
|  | 3 |  | 56207 | 165 | 1720 | 58092 |  | 3 |  | 25577 | 720 | 211 | 26509 |
|  | 4 |  | 84629 | 15651 | 7349 | 107629 |  | 4 |  | 18892 | 16276 | 943 | 36110 |
|  | Total |  | 152919 | 23570 | 15683 | 192172 |  | Total |  | 45781 | 20154 | 2893 | 68827 |
| 2004 | 1 |  | 827 | 1831 | 4456 | 7113 | 2014 | 1 |  | 59 | 125 | 384 | 568 |
|  | 2 | 7 | 260 | 16 | 1510 | 1793 |  | 2 |  | 11631 | 3 | 1415 | 13050 |
|  | 3 |  | 54161 | 496 | 4138 | 58794 |  | 3 | 1 | 88457 | 1428 | 9622 | 99507 |
|  | 4 |  | 120685 | 15937 | 10775 | 147397 |  | 4 | 7 | 37851 | 822 | 6905 | 45586 |
|  | Total | 7 | 175932 | 18280 | 20879 | 215097 |  | Total | 8 | 137999 | 2378 | 18327 | 158711 |
| 2005 | 1 |  | 11538 | 2457 | 8148 | 22143 | 2015 | 1 | * | 14816 | 16972 | 1442 | 33230 |
|  | 2 |  | 2515 | 123 | 4722 | 7360 |  | 2 |  | 16843 | 107 | 619 | 17568 |
|  | 3 |  | 107530 |  | 19418 | 126948 |  | 3 |  | 124512 | 335 | 6528 | 131375 |
|  | 4 |  | 82474 | 1033 | 7296 | 90803 |  | 4 | 25 | 88395 | 28375 | 4389 | 121184 |
|  | Total |  | 204057 | 3613 | 39584 | 247254 |  | Total | 25 | 244566 | 45789 | 12978 | 303358 |
| 2006 | 1 | 47 | 13713 | 33534 | 8105 | 55399 | 2016 | 1 | 68 | 18487 | 5969 | 746 | 25250 |
|  | 2 |  | 190 | 8 | 324 | 522 |  | 2 |  | 8927 | 51 | 669 | 9647 |
|  | 3 |  | 40051 | 8 | 1440 | 41499 |  | 3 | * | 158522 | 111 | 4664 | 163297 |
|  | 4 | 2 | 26579 | 77 | 2335 | 28993 |  | 4 | 2 | 34070 | 14466 | 1764 | 50301 |


| Year | Quarter | Division |  |  |  | Total | Year | Quarter | Division |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 27.4.a | 27.4.b | 27.4.c | 27.3.a |  |  |  | 27.4.a | 27.4.b | 27.4.c | 27.3.a |  |
|  | Total | 49 | 80533 | 33627 | 12204 | 126413 |  | Total | 70 | 220007 | 20596 | 7843 | 248516 |
| 2007 | 1 |  | 582 | 247 | 2646 | 3475 | 2017 | 1 | 1 | 3432 | 1220 | 92 | 4745 |
|  | 2 |  | 241 | 3 | 1291 | 1535 |  | 2 |  | 1327 | 0 | 33 | 1360 |
|  | 3 |  | 16603 |  | 5357 | 21960 |  | 3 | 0 | 92885 | 217 | 227 | 93329 |
|  | 4 | 769 | 41850 | 23531 | 4761 | 70911 |  | 4 | 94 | 29310 | 174 | 849 | 30426 |
|  | Total | 769 | 59276 | 23781 | 14055 | 97881 |  | Total | 95 | 126954 | 1611 | 1200 | 129860 |
| 2008 | 1 |  | 2872 | 43 | 2890 | 5805 | 2018 | 1 | 0 | 8994 | 1628 | 168 | 10790 |
|  | 2 |  | 52 | * | 1017 | 1069 |  | 2 |  | 11898 | 0 | 224 | 12122 |
|  | 3 |  | 21787 |  | 636 | 22423 |  | 3 |  | 112361 | 1 | 1328 | 113690 |
|  | 4 |  | 27994 | 8334 | 3672 | 40001 |  | 4 |  | 46411 | 5922 | 2249 | 54582 |
|  | Total |  | 52706 | 8377 | 8215 | 69298 |  | Total | 0 | 179664 | 7551 | 3969 | 191184 |
| 2009 | 1 |  | 36 | 1268 | 2600 | 3904 |  |  |  |  |  |  |  |
|  | 2 |  | 2526 | 1 | 300 | 2827 |  |  |  |  |  |  |  |
|  | 3 | 22 | 41513 |  | 3300 | 44835 |  |  |  |  |  |  |  |
|  | 4 |  | 78373 | 9336 | 2400 | 90109 |  |  |  |  |  |  |  |
|  | Total | 22 | 122448 | 10604 | 8600 | 141675 |  |  |  |  |  |  |  |

* $<0.5$ t

Table 10.2.1. North Sea \& 3.a sprat. Species composition in Danish sprat fishery in tonnes and percentage of the total catch. Left: North Sea, right: Division 3.a.

|  | Year | Sprat | Herring | Horse mack. | Whiting | Haddock | Mackerel | Cod | Sandeel | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tonnes | 1998 | 129315 | 11817 | 573 | 673 | 6 | 220 | 11 | 2174 | 1187 | 145978 |
| Tonnes | 1999 | 157003 | 7256 | 413 | 1088 | 62 | 321 | 7 | 4972 | 635 | 171757 |
| Tonnes | 2000 | 188463 | 11662 | 3239 | 2107 | 66 | 766 | 4 | 423 | 1911 | 208641 |
| Tonnes | 2001 | 136443 | 13953 | 67 | 1700 | 223 | 312 | 4 | 17020 | 1141 | 170862 |
| Tonnes | 2002 | 140568 | 16644 | 2078 | 2537 | 27 | 715 | 0 | 4102 | 801 | 167471 |
| Tonnes | 2003 | 172456 | 10244 | 718 | 1106 | 15 | 799 | 11 | 5357 | 3504 | 194210 |
| Tonnes | 2004 | 179944 | 10144 | 474 | 334 | 0 | 4351 | 3 | 3836 | 1821 | 200906 |
| Tonnes | 2005 | 201331 | 21035 | 2477 | 545 | 4 | 1009 | 16 | 6859 | 974 | 234251 |
| Tonnes | 2006 | 103236 | 8983 | 577 | 343 | 25 | 905 | 4 | 5384 | 576 | 120033 |
| Tonnes | 2007 | 74734 | 6596 | 168 | 900 | 6 | 126 | 18 | 6 | 253 | 82807 |
| Tonnes | 2008 | 61093 | 7928 | 26 | 380 | 10 | 367 | 0 | 23 | 1735 | 71563 |
| Tonnes | 2009 | 112721 | 7222 | 44 | 307 | 3 | 116 | 1 | 1526 | 407 | 122345 |
| Tonnes | 2010 | 112395 | 4410 | 11 | 119 | 2 | 18 | 0 | 1236 | 577 | 118769 |
| Tonnes | 2011 | 109376 | 8073 | 35 | 191 | 0 | 127 | 0 | 1881 | 345 | 120026 |
| Tonnes | 2012 | 67263 | 8573 | 2 | 354 | 0 | 246 | 0 | 93 | 411 | 76943 |
| Tonnes | 2013 | 55792 | 5176 | 47 | 445 | 0 | 277 | 2 | 1 | 369 | 62109 |
| Tonnes | 2014 | 123180 | 11402 | 0 | 897 | 0 | 70 | 16 | 16 | 1700 | 137280 |
| Tonnes | 2015 | 265356 | 4568 | 5 | 1809 | 0 | 527 | 0 | 147 | 3311 | 275723 |
| Tonnes | 2016 | 192718 | 11107 | 18 | 4223 | 0 | 439 | 0 | 46 | 2093 | 210643 |
| Tonnes | 2017 | 100833 | 5130 | - 1 | 1344 | 0 | 197 | 0 | 503 | 12386 | 120394 |
| Tonnes | 2018 | 161536 | 7528 | 174 | 716 | 0 | 366 | 0 | 24 | 344 | 170687 |
| Percent | 1998 | 88.6 | 8.1 | 0.4 | 0.5 | 0.0 | 0.2 | 0.0 | 1.5 | 0.8 | 100.0 |
| Percent | 1999 | 91.4 | 4.2 | 0.2 | 0.6 | 0.0 | 0.2 | 0.0 | 2.9 | 0.4 | 100.0 |
| Percent | 2000 | 90.3 | 5.6 | 1.6 | 1.0 | 0.0 | 0.4 | 0.0 | 0.2 | 0.9 | 100.0 |
| Percent | 2001 | 79.9 | 8.2 | 0.0 | 1.0 | 0.1 | 0.2 | 0.0 | 10.0 | 0.7 | 100.0 |
| Percent | 2002 | 83.9 | 9.9 | 1.2 | 1.5 | 0.0 | 0.4 | 0.0 | 2.4 | 0.5 | 100.0 |
| Percent | 2003 | 88.8 | 5.3 | 0.4 | 0.6 | 0.0 | 0.4 | 0.0 | 2.8 | 1.8 | 100.0 |
| Percent | 2004 | 89.6 | 5.0 | 0.2 | 0.2 | 0.0 | 2.2 | 0.0 | 1.9 | 0.9 | 100.0 |
| Percent | 2005 | 85.9 | 9.0 | 1.1 | 0.2 | 0.0 | 0.4 | 0.0 | 2.9 | 0.4 | 100.0 |
| Percent | 2006 | 86.0 | 7.5 | 0.5 | 0.3 | 0.0 | 0.8 | 0.0 | 4.5 | 0.5 | 100.0 |
| Percent | 2007 | 90.3 | 8.0 | 0.2 | 1.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.3 | 100.0 |
| Percent | 2008 | 85.4 | 11.1 | 0.0 | 0.5 | 0.0 | 0.5 | 0.0 | 0.0 | 2.4 | 100.0 |
| Percent | 2009 | 92.1 | 5.9 | 0.0 | 0.3 | 0.0 | 0.1 | 0.0 | 1.2 | 0.3 | 100.0 |
| Percent | 2010 | 94.6 | 3.7 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 1.0 | 0.5 | 100.0 |
| Percent | 2011 | 91.1 | 6.7 | 0.0 | 0.2 | 0.0 | 0.1 | 0.0 | 1.6 | 0.3 | 100.0 |
| Percent | 2012 | 87.4 | 11.1 | 0.0 | 0.5 | 0.0 | 0.3 | 0.0 | 0.1 | 0.5 | 100.0 |
| Percent | 2013 | 89.8 | 8.3 | 0.1 | 0.7 | 0.0 | 0.4 | 0.0 | 0.0 | 0.6 | 100.0 |
| Percent | 2014 | 89.7 | 8.3 | 0.0 | 0.7 | 0.0 | 0.1 | 0.0 | 0.0 | 1.2 | 100.0 |
| Percent | 2015 | 96.2 | 1.7 | 0.0 | 0.7 | 0.0 | 0.2 | 0.0 | 0.1 | 1.2 | 100.0 |
| Percent | 2016 | 91.5 | 5.3 | 0.0 | 2.0 | 0.0 | 0.2 | 0.0 | 0.0 | 1.0 | 100.0 |
| Percent | 2017 | 83.8 | 4.3 | 0.0 | 1.1 | 0.0 | 0.2 | 0.0 | 0.4 | 10.3 | 100.0 |
| Percent | 2018 | 94.6 | 4.4 | 0.1 | 0.4 | 0.0 | 0.2 | 0.0 | 0.0 | 0.2 | 100.0 |


|  | Year | Sprat | Herring | Horse mack. | Whiting | Haddock | Mackerel | Cod | Sandeel | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tonnes | 1998 | 9143 | 3385 | 230 | 467 | 54 | 0 | 49 | 7 | 2866 | 16202 |
| Tonnes | 1999 | 16603 | 8470 | 138 | 1026 | 210 | 5 | 75 | 3337 | 2896 | 32760 |
| Tonnes | 2000 | 12578 | 8034 | 5 | 1062 | 308 | 8 | 52 | 13 | 3556 | 25617 |
| Tonnes | 2001 | 18236 | 8196 | 75 | 1266 | 50 | 13 | 35 | 4281 | 1271 | 33423 |
| Tonnes | 2002 | 11451 | 12982 | 21 | 1164 | 3 | 6 | 30 | 606 | 2280 | 28541 |
| Tonnes | 2003 | 8182 | 4928 | 340 | 252 | 4 | 4 | 4 | 1 | 567 | 14282 |
| Tonnes | 2004 | 13374 | 4620 | 97 | 976 | 18 | 24 | 27 | 116 | 2155 | 21408 |
| Tonnes | 2005 | 30157 | 6171 | 244 | 871 | 63 | 18 | 20 | 746 | 1758 | 40047 |
| Tonnes | 2006 | 6814 | 2852 | 215 | 276 | 13 | 3 | 45 | 1 | 232 | 10451 |
| Tonnes | 2007 | 7116 | 2043 | 34 | 190 | 31 | 8 | 4 | 1 | 469 | 9896 |
| Tonnes | 2008 | 4805 | 1948 | 14 | 285 | 0 | 0 | 11 | 462 | 39 | 7563 |
| Tonnes | 2009 | 4839 | 3016 | 37 | 169 | 15 | 0 | 1 | 53 | 47 | 8177 |
| Tonnes | 2010 | 2851 | 2134 | 25 | 142 | 6 | 1 | 2 | 135 | 171 | 5466 |
| Tonnes | 2011 | 4754 | 2461 | 0 | 43 | 0 | 7 | 1 | 141 | 40 | 7447 |
| Tonnes | 2012 | 5707 | 5495 | 9 | 149 | 7 | 10 | 5 | 0 | 228 | 11610 |
| Tonnes | 2013 | 1143 | 1751 | 2 | 46 | 0 | 0 | 1 | 1 | 27 | 2971 |
| Tonnes | 2014 | 16751 | 3777 | 5 | 343 | 1 | 20 | 5 | 12 | 888 | 21801 |
| Tonnes | 2015 | 11448 | 5831 | 0 | 565 | 0 | 29 | 8 | 1 | 154 | 18036 |
| Tonnes | 2016 | 7001 | 2140 | 0 | 335 | 1 | 19 | 3 | 0 | 78 | 9579 |
| Tonnes | 2017 | 963 | 328 | 0 | 172 | 0 | 19 | 1 | 0 | 32 | 1515 |
| Tonnes | 2018 | 2872 | 257 | 2 | 150 | 1 | 11 | 0 | 0 | 12 | 3304 |
| Percent | 1998 | 56.4 | 20.9 | 1.4 | 2.9 | 0.3 | 0.0 | 0.3 | 0.0 | 17.7 | 100.0 |
| Percent | 1999 | 50.7 | 25.9 | 0.4 | 3.1 | 0.6 | 0.0 | 0.2 | 10.2 | 8.8 | 100.0 |
| Percent | 2000 | 49.1 | 31.4 | 0.0 | 4.1 | 1.2 | 0.0 | 0.2 | 0.1 | 13.9 | 100.0 |
| Percent | 2001 | 54.6 | 24.5 | 0.2 | 3.8 | 0.2 | 0.0 | 0.1 | 12.8 | 3.8 | 100.0 |
| Percent | 2002 | 40.1 | 45.5 | 0.1 | 4.1 | 0.0 | 0.0 | 0.1 | 2.1 | 8.0 | 100.0 |
| Percent | 2003 | 57.3 | 34.5 | 2.4 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 100.0 |
| Percent | 2004 | 62.5 | 21.6 | 0.5 | 4.6 | 0.1 | 0.1 | 0.1 | 0.5 | 10.1 | 100.0 |
| Percent | 2005 | 75.3 | 15.4 | 0.6 | 2.2 | 0.2 | 0.0 | 0.0 | 1.9 | 4.4 | 100.0 |
| Percent | 2006 | 65.2 | 27.3 | 2.1 | 2.6 | 0.1 | 0.0 | 0.4 | 0.0 | 2.2 | 100.0 |
| Percent | 2007 | 71.9 | 20.6 | 0.3 | 1.9 | 0.3 | 0.1 | 0.0 | 0.0 | 4.7 | 100.0 |
| Percent | 2008 | 63.5 | 25.8 | 0.2 | 3.8 | 0.0 | 0.0 | 0.1 | 6.1 | 0.5 | 100.0 |
| Percent | 2009 | 59.2 | 36.9 | 0.5 | 2.1 | 0.2 | 0.0 | 0.0 | 0.6 | 0.6 | 100.0 |
| Percent | 2010 | 52.2 | 39.0 | 0.5 | 2.6 | 0.1 | 0.0 | 0.0 | 2.5 | 3.1 | 100.0 |
| Percent | 2011 | 63.8 | 33.0 | 0.0 | 0.6 | 0.0 | 0.1 | 0.0 | 1.9 | 0.5 | 100.0 |
| Percent | 2012 | 49.2 | 47.3 | 0.1 | 1.3 | 0.1 | 0.1 | 0.0 | 0.0 | 2.0 | 100.0 |
| Percent | 2013 | 38.5 | 58.9 | 0.1 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 100.0 |
| Percent | 2014 | 76.8 | 17.3 | 0.0 | 1.6 | 0.0 | 0.1 | 0.0 | 0.1 | 4.1 | 100.0 |
| Percent | 2015 | 63.5 | 32.3 | 0.0 | 3.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.9 | 100.0 |
| Percent | 2016 | 73.1 | 22.3 | 0.0 | 3.5 | 0.0 | 0.2 | 0.0 | 0.0 | 0.8 | 100.0 |
| Percent | 2017 | 63.6 | 21.6 | 0.0 | 11.4 | 0.0 | 1.2 | 0.1 | 0.0 | 2.1 | 100.0 |
| Percent | 2018 | 86.9 | 7.8 | 0.1 | 4.5 | 0.0 | 0.3 | 0.0 | 0.0 | 0.4 | 100.0 |

Table 10.2.2. North Sea \& 3.a sprat. Catch in numbers by age (1000's) by season and year. (Model year)
Catch at age used as input for the assessment model (years refer to the model years)

Note that all catches in S4 has been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 1 | 0 | 16101061 | 2155723 | 475613 |
| 1974 | 2 | 1884146 | 11544114 | 866399 | 48228 |
| 1974 | 3 | 2842702 | 11091303 | 1336036 | 34534 |
| 1974 | 4 | 1302331 | 2511315 | 359117 | 14822 |
| 1975 | 1 | 250931 | 27723510 | 10052550 | 260182 |
| 1975 | 2 | 1179567 | 14541887 | 4378415 | 166807 |
| 1975 | 3 | 5240024 | 4755878 | 2206781 | 66186 |
| 1975 | 4 | 0 | 0 | 0 | 0 |
| 1976 | 1 | 2143211 | 42209830 | 2888653 | 180913 |
| 1976 | 2 | 7439656 | 18762732 | 1613139 | 88604 |
| 1976 | 3 | 7703416 | 6925346 | 267638 | 8289 |
| 1976 | 4 | 0 | 0 | 0 | 0 |
| 1977 | 1 | 2690194 | 12786056 | 5181867 | 109712 |
| 1977 | 2 | 2520082 | 4904593 | 3679153 | 67688 |
| 1977 | 3 | 15857197 | 1843468 | 2200876 | 37836 |
| 1977 | 4 | 0 | 0 | 0 | 0 |
| 1978 | 1 | 454090 | 32184524 | 427473 | 96435 |
| 1978 | 2 | 5517665 | 10344970 | 1209584 | 116695 |
| 1978 | 3 | 6154606 | 4973568 | 1119045 | 29941 |
| 1978 | 4 | 0 | 0 | 0 | 0 |
| 1979 | 1 | 3579389 | 36866800 | 644042 | 117139 |
| 1979 | 2 | 1052920 | 11355949 | 2152261 | 63386 |
| 1979 | 3 | 3882781 | 6399259 | 332781 | 25964 |
| 1979 | 4 | 0 | 0 | 0 | 0 |
| 1980 | 1 | 0 | 14237558 | 17421360 | 1481066 |
| 1980 | 2 | 0 | 9415158 | 11520576 | 979415 |

Catch at age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 has been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 3 | 2536060 | 3866612 | 389674 | 8724 |
| 1980 | 4 | 0 | 0 | 0 | 0 |
| 1981 | 1 | 428776 | 12322431 | 1483241 | 130805 |
| 1981 | 2 | 40632 | 3540737 | 3025289 | 202048 |
| 1981 | 3 | 374254 | 3854059 | 319763 | 9835 |
| 1981 | 4 | 0 | 0 | 0 | 0 |
| 1982 | 1 | 545769 | 6350511 | 601581 | 64879 |
| 1982 | 2 | 818525 | 5021082 | 1070960 | 55333 |
| 1982 | 3 | 2530673 | 401839 | 46913 | 3525 |
| 1982 | 4 | 0 | 0 | 0 | 0 |
| 1983 | 1 | 5613728 | 2819244 | 969599 | 155653 |
| 1983 | 2 | 2375763 | 1334333 | 588678 | 91112 |
| 1983 | 3 | 1697718 | 596857 | 7271 | 0 |
| 1983 | 4 | 0 | 0 | 0 | 0 |
| 1984 | 1 | 954757 | 6475021 | 417235 | 2532 |
| 1984 | 2 | 521866 | 2535354 | 247654 | 4803 |
| 1984 | 3 | 405095 | 612407 | 10648 | 1053 |
| 1984 | 4 | 0 | 0 | 0 | 0 |
| 1985 | 1 | 0 | 1304457 | 1972027 | 37680 |
| 1985 | 2 | 0 | 576004 | 870780 | 16638 |
| 1985 | 3 | 84760 | 215856 | 150819 | 14916 |
| 1985 | 4 | 0 | 0 | 0 | 0 |
| 1986 | 1 | 0 | 177780 | 452745 | 347620 |
| 1986 | 2 | 0 | 156913 | 399604 | 306818 |
| 1986 | 3 | 580936 | 58710 | 740 | 0 |
| 1986 | 4 | 0 | 0 | 0 | 0 |
| 1987 | 1 | 2236 | 2250587 | 128512 | 2525 |

Catch at age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 has been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | 2 | 49451 | 1790264 | 267597 | 978 |
| 1987 | 3 | 209788 | 826994 | 34626 | 32980 |
| 1987 | 4 | 0 | 0 | 0 | 0 |
| 1988 | 1 | 4082942 | 2096911 | 2830054 | 42364 |
| 1988 | 2 | 1163964 | 314106 | 527986 | 11526 |
| 1988 | 3 | 1817700 | 637489 | 129384 | 5491 |
| 1988 | 4 | 0 | 0 | 0 | 0 |
| 1989 | 1 | 12451 | 1706824 | 3613841 | 5716 |
| 1989 | 2 | 783 | 76415 | 88925 | 342 |
| 1989 | 3 | 469458 | 416920 | 34789 | 12751 |
| 1989 | 4 | 0 | 0 | 0 | 0 |
| 1990 | 1 | 1568 | 2633068 | 2234213 | 342514 |
| 1990 | 2 | 1225 | 2058041 | 1746290 | 267714 |
| 1990 | 3 | 291837 | 62050 | 1941 | 429 |
| 1990 | 4 | 0 | 0 | 0 | 0 |
| 1991 | 1 | 40504 | 1684266 | 2416750 | 8159 |
| 1991 | 2 | 1552315 | 2936717 | 614233 | 9587 |
| 1991 | 3 | 208352 | 64565 | 1036 | 99 |
| 1991 | 4 | 0 | 0 | 0 | 0 |
| 1992 | 1 | 18948 | 9695465 | 1315325 | 177584 |
| 1992 | 2 | 222991 | 1185132 | 132166 | 16491 |
| 1992 | 3 | 1279875 | 1583952 | 259251 | 5821 |
| 1992 | 4 | 0 | 0 | 0 | 0 |
| 1993 | 1 | 264173 | 3026867 | 5339043 | 247839 |
| 1993 | 2 | 1441317 | 4911453 | 1324444 | 31435 |
| 1993 | 3 | 1867838 | 1819506 | 338969 | 43965 |
| 1993 | 4 | 0 | 0 | 0 | 0 |

Catch at age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 has been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1994 | 1 | 445326 | 40720484 | 516854 | 100737 |
| 1994 | 2 | 1856101 | 7146622 | 1455656 | 142774 |
| 1994 | 3 | 818875 | 2936362 | 559871 | 22813 |
| 1994 | 4 | 0 | 0 | 0 | 0 |
| 1995 | 1 | 170693 | 24466578 | 3192395 | 371759 |
| 1995 | 2 | 612010 | 8620522 | 2863267 | 505875 |
| 1995 | 3 | 1797666 | 4488224 | 533786 | 128194 |
| 1995 | 4 | 0 | 0 | 0 | 0 |
| 1996 | 1 | 299367 | 233497 | 816511 | 286503 |
| 1996 | 2 | 1083655 | 776795 | 2208631 | 911256 |
| 1996 | 3 | 1670742 | 289815 | 113580 | 49534 |
| 1996 | 4 | 0 | 0 | 0 | 0 |
| 1997 | 1 | 6447 | 2286585 | 130593 | 202822 |
| 1997 | 2 | 148657 | 4395265 | 1078225 | 277615 |
| 1997 | 3 | 596223 | 728240 | 181187 | 46667 |
| 1997 | 4 | 0 | 0 | 0 | 0 |
| 1998 | 1 | 86124 | 3567341 | 1498339 | 258993 |
| 1998 | 2 | 5465889 | 2665032 | 1451844 | 326463 |
| 1998 | 3 | 1615982 | 1096547 | 489541 | 241493 |
| 1998 | 4 | 0 | 0 | 0 | 0 |
| 1999 | 1 | 830 | 15939248 | 477815 | 69219 |
| 1999 | 2 | 90557 | 2456063 | 254931 | 44836 |
| 1999 | 3 | 1967130 | 3351942 | 641059 | 183015 |
| 1999 | 4 | 0 | 0 | 0 | 0 |
| 2000 | 1 | 6101 | 9822669 | 1767256 | 70160 |
| 2000 | 2 | 81906 | 801375 | 384854 | 49827 |
| 2000 | 3 | 1093613 | 2807143 | 1310052 | 176418 |

Catch at age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 has been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 4 | 0 | 0 | 0 | 0 |
| 2001 | 1 | 13056 | 5767627 | 315550 | 7694 |
| 2001 | 2 | 550512 | 3967343 | 1528712 | 498496 |
| 2001 | 3 | 143017 | 531588 | 59709 | 13418 |
| 2001 | 4 | 0 | 0 | 0 | 0 |
| 2002 | 1 | 63416 | 6586442 | 594557 | 108679 |
| 2002 | 2 | 927294 | 4326530 | 661656 | 59022 |
| 2002 | 3 | 1182692 | 1199165 | 296900 | 65718 |
| 2002 | 4 | 0 | 0 | 0 | 0 |
| 2003 | 1 | 197639 | 4003316 | 594498 | 68144 |
| 2003 | 2 | 2785630 | 6826281 | 1115905 | 218400 |
| 2003 | 3 | 713229 | 39824 | 29774 | 26427 |
| 2003 | 4 | 0 | 0 | 0 | 0 |
| 2004 | 1 | 229309 | 4217281 | 731500 | 78913 |
| 2004 | 2 | 24806798 | 4735686 | 264373 | 53425 |
| 2004 | 3 | 5233945 | 309955 | 44145 | 15707 |
| 2004 | 4 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 97602 | 13409729 | 479222 | 88858 |
| 2005 | 2 | 839944 | 7903545 | 228337 | 22051 |
| 2005 | 3 | 1089274 | 5408581 | 230703 | 38557 |
| 2005 | 4 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 0 | 1987696 | 1401797 | 295158 |
| 2006 | 2 | 319709 | 493221 | 1003837 | 235542 |
| 2006 | 3 | 176742 | 129541 | 176585 | 10933 |
| 2006 | 4 | 0 | 0 | 0 | 0 |
| 2007 | 1 | 0 | 1693273 | 189551 | 67672 |
| 2007 | 2 | 609939 | 4186796 | 1681648 | 254768 |

Catch at age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 has been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | 3 | 404452 | 329724 | 19675 | 20964 |
| 2007 | 4 | 0 | 0 | 0 | 0 |
| 2008 | 1 | 11590 | 422430 | 1447939 | 329770 |
| 2008 | 2 | 2087187 | 1901763 | 1006626 | 260966 |
| 2008 | 3 | 893785 | 131774 | 41692 | 21858 |
| 2008 | 4 | 0 | 0 | 0 | 0 |
| 2009 | 1 | 0 | 4776947 | 219922 | 39037 |
| 2009 | 2 | 231412 | 8163927 | 554425 | 137328 |
| 2009 | 3 | 168362 | 3385107 | 519516 | 88967 |
| 2009 | 4 | 0 | 0 | 0 | 0 |
| 2010 | 1 | 12414 | 1732171 | 689166 | 90040 |
| 2010 | 2 | 349703 | 3105417 | 3011291 | 2157387 |
| 2010 | 3 | 298472 | 2412405 | 683264 | 90603 |
| 2010 | 4 | 0 | 0 | 0 | 0 |
| 2011 | 1 | 2469 | 1847215 | 1105017 | 281708 |
| 2011 | 2 | 420004 | 4234059 | 2917969 | 999295 |
| 2011 | 3 | 57320 | 250247 | 95834 | 42266 |
| 2011 | 4 | 0 | 0 | 0 | 0 |
| 2012 | 1 | 147896 | 2527701 | 729427 | 121665 |
| 2012 | 2 | 187098 | 3756225 | 1690250 | 281071 |
| 2012 | 3 | 78240 | 463743 | 86910 | 30157 |
| 2012 | 4 | 0 | 0 | 0 | 0 |
| 2013 | 1 | 10002 | 1973364 | 411558 | 72705 |
| 2013 | 2 | 462029 | 2176971 | 745578 | 144434 |
| 2013 | 3 | 193678 | 1554 | 2447 | 4794 |
| 2013 | 4 | 0 | 0 | 0 | 0 |
| 2014 | 1 | 2640874 | 9499013 | 627237 | 105519 |

Catch at age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 has been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2014 | 2 | 1215080 | 4046244 | 323320 | 92685 |
| 2014 | 3 | 1755944 | 2496884 | 177328 | 21685 |
| 2014 | 4 | 0 | 0 | 0 | 0 |
| 2015 | 1 | 1682642 | 12947813 | 2926867 | 161595 |
| 2015 | 2 | 615375 | 10862082 | 1632428 | 226924 |
| 2015 | 3 | 374504 | 1926029 | 733105 | 90223 |
| 2015 | 4 | 0 | 0 | 0 | 0 |
| 2016 | 1 | 4450616 | 12775033 | 4537366 | 439570 |
| 2016 | 2 | 3593237 | 1451842 | 1251213 | 301252 |
| 2016 | 3 | 533954 | 47715 | 7358 | 2718 |
| 2016 | 4 | 0 | 0 | 0 | 0 |
| 2017 | 1 | 1767809 | 9076648 | 738627 | 88295 |
| 2017 | 2 | 1302514 | 2796713 | 182538 | 82806 |
| 2017 | 3 | 658881 | 807010 | 184005 | 68052 |
| 2017 | 4 | 0 | 0 | 0 | 0 |
| 2018 | 1 | 4350565 | 11667334 | 2940924 | 279993 |
| 2018 | 2 | 2025377 | 2923947 | 1574333 | 527760 |
| 2018 | 3 | 120913 | 978572 | 267657 | 6437 |
| 2018 | 4 | 0 | 0 | 0 | 0 |

Table 10.2.3. North Sea \& 3.a sprat. Mean weight at age (kg) in catches by season and year. (Model year)
Catch at age used as input for the assessment model (years refer to the model years)

Note that weights in S4 are not used since there is no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 1 | 0.0063 | 0.0083 | 0.0135 | 0.0184 |
| 1974 | 2 | 0.0058 | 0.0089 | 0.0150 | 0.0197 |
| 1974 | 3 | 0.0050 | 0.0077 | 0.0150 | 0.0197 |
| 1974 | 4 | 0.0066 | 0.0107 | 0.0183 | 0.0163 |
| 1975 | 1 | 0.0048 | 0.0086 | 0.0129 | 0.0172 |
| 1975 | 2 | 0.0075 | 0.0111 | 0.0168 | 0.0216 |
| 1975 | 3 | 0.0048 | 0.0106 | 0.0154 | 0.0192 |
| 1975 | 4 | 0.0062 | 0.0116 | 0.0170 | 0.0171 |
| 1976 | 1 | 0.0049 | 0.0070 | 0.0113 | 0.0134 |
| 1976 | 2 | 0.0043 | 0.0090 | 0.0153 | 0.0190 |
| 1976 | 3 | 0.0022 | 0.0059 | 0.0104 | 0.0126 |
| 1976 | 4 | 0.0034 | 0.0057 | 0.0085 | 0.0106 |
| 1977 | 1 | 0.0054 | 0.0082 | 0.0126 | 0.0180 |
| 1977 | 2 | 0.0059 | 0.0110 | 0.0146 | 0.0196 |
| 1977 | 3 | 0.0023 | 0.0080 | 0.0106 | 0.0138 |
| 1977 | 4 | 0.0025 | 0.0063 | 0.0083 | 0.0122 |
| 1978 | 1 | 0.0038 | 0.0069 | 0.0122 | 0.0146 |
| 1978 | 2 | 0.0044 | 0.0103 | 0.0155 | 0.0196 |
| 1978 | 3 | 0.0031 | 0.0089 | 0.0123 | 0.0166 |
| 1978 | 4 | 0.0020 | 0.0052 | 0.0087 | 0.0094 |
| 1979 | 1 | 0.0050 | 0.0058 | 0.0087 | 0.0113 |
| 1979 | 2 | 0.0057 | 0.0105 | 0.0150 | 0.0173 |
| 1979 | 3 | 0.0032 | 0.0077 | 0.0129 | 0.0165 |
| 1979 | 4 | 0.0029 | 0.0106 | 0.0121 | 0.0153 |
| 1980 | 1 | 0.0063 | 0.0052 | 0.0068 | 0.0083 |
| 1980 | 2 | 0.0051 | 0.0052 | 0.0069 | 0.0083 |
| 1980 | 3 | 0.0032 | 0.0086 | 0.0131 | 0.0168 |

Catch at age used as input for the assessment model (years refer to the model years)

Note that weights in S4 are not used since there is no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 4 | 0.0046 | 0.0073 | 0.0105 | 0.0101 |
| 1981 | 1 | 0.0038 | 0.0099 | 0.0129 | 0.0156 |
| 1981 | 2 | 0.0082 | 0.0126 | 0.0153 | 0.0194 |
| 1981 | 3 | 0.0049 | 0.0089 | 0.0157 | 0.0194 |
| 1981 | 4 | 0.0060 | 0.0139 | 0.0191 | 0.0192 |
| 1982 | 1 | 0.0085 | 0.0089 | 0.0171 | 0.0155 |
| 1982 | 2 | 0.0071 | 0.0110 | 0.0160 | 0.0219 |
| 1982 | 3 | 0.0029 | 0.0075 | 0.0115 | 0.0174 |
| 1982 | 4 | 0.0044 | 0.0078 | 0.0114 | 0.0160 |
| 1983 | 1 | 0.0044 | 0.0092 | 0.0128 | 0.0152 |
| 1983 | 2 | 0.0042 | 0.0124 | 0.0169 | 0.0211 |
| 1983 | 3 | 0.0034 | 0.0094 | 0.0174 | 0.0163 |
| 1983 | 4 | 0.0038 | 0.0093 | 0.0127 | 0.0156 |
| 1984 | 1 | 0.0060 | 0.0081 | 0.0121 | 0.0166 |
| 1984 | 2 | 0.0053 | 0.0122 | 0.0168 | 0.0164 |
| 1984 | 3 | 0.0093 | 0.0135 | 0.0197 | 0.0197 |
| 1984 | 4 | 0.0093 | 0.0135 | 0.0197 | 0.0197 |
| 1985 | 1 | 0.0063 | 0.0093 | 0.0135 | 0.0197 |
| 1985 | 2 | 0.0051 | 0.0093 | 0.0135 | 0.0197 |
| 1985 | 3 | 0.0073 | 0.0099 | 0.0166 | 0.0166 |
| 1985 | 4 | 0.0073 | 0.0099 | 0.0166 | 0.0166 |
| 1986 | 1 | 0.0063 | 0.0073 | 0.0099 | 0.0166 |
| 1986 | 2 | 0.0051 | 0.0073 | 0.0099 | 0.0166 |
| 1986 | 3 | 0.0083 | 0.0164 | 0.0228 | 0.0163 |
| 1986 | 4 | 0.0084 | 0.0156 | 0.0208 | 0.0156 |
| 1987 | 1 | 0.0066 | 0.0086 | 0.0117 | 0.0153 |
| 1987 | 2 | 0.0060 | 0.0093 | 0.0112 | 0.0165 |

Catch at age used as input for the assessment model (years refer to the model years)

Note that weights in S4 are not used since there is no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | 3 | 0.0064 | 0.0125 | 0.0175 | 0.0206 |
| 1987 | 4 | 0.0068 | 0.0125 | 0.0167 | 0.0189 |
| 1988 | 1 | 0.0042 | 0.0088 | 0.0115 | 0.0138 |
| 1988 | 2 | 0.0046 | 0.0085 | 0.0113 | 0.0137 |
| 1988 | 3 | 0.0052 | 0.0132 | 0.0208 | 0.0158 |
| 1988 | 4 | 0.0063 | 0.0117 | 0.0155 | 0.0175 |
| 1989 | 1 | 0.0054 | 0.0086 | 0.0099 | 0.0170 |
| 1989 | 2 | 0.0044 | 0.0082 | 0.0109 | 0.0130 |
| 1989 | 3 | 0.0048 | 0.0077 | 0.0125 | 0.0155 |
| 1989 | 4 | 0.0046 | 0.0086 | 0.0115 | 0.0129 |
| 1990 | 1 | 0.0046 | 0.0070 | 0.0092 | 0.0115 |
| 1990 | 2 | 0.0038 | 0.0069 | 0.0092 | 0.0113 |
| 1990 | 3 | 0.0044 | 0.0099 | 0.0133 | 0.0156 |
| 1990 | 4 | 0.0048 | 0.0089 | 0.0119 | 0.0135 |
| 1991 | 1 | 0.0128 | 0.0143 | 0.0154 | 0.0168 |
| 1991 | 2 | 0.0048 | 0.0146 | 0.0189 | 0.0168 |
| 1991 | 3 | 0.0052 | 0.0101 | 0.0147 | 0.0172 |
| 1991 | 4 | 0.0062 | 0.0118 | 0.0152 | 0.0186 |
| 1992 | 1 | 0.0081 | 0.0099 | 0.0124 | 0.0148 |
| 1992 | 2 | 0.0058 | 0.0121 | 0.0153 | 0.0178 |
| 1992 | 3 | 0.0035 | 0.0096 | 0.0141 | 0.0179 |
| 1992 | 4 | 0.0042 | 0.0078 | 0.0104 | 0.0118 |
| 1993 | 1 | 0.0065 | 0.0109 | 0.0123 | 0.0138 |
| 1993 | 2 | 0.0075 | 0.0107 | 0.0135 | 0.0164 |
| 1993 | 3 | 0.0022 | 0.0080 | 0.0116 | 0.0152 |
| 1993 | 4 | 0.0023 | 0.0128 | 0.0154 | 0.0134 |
| 1994 | 1 | 0.0068 | 0.0067 | 0.0095 | 0.0129 |

Catch at age used as input for the assessment model (years refer to the model years)

Note that weights in S4 are not used since there is no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1994 | 2 | 0.0087 | 0.0104 | 0.0125 | 0.0151 |
| 1994 | 3 | 0.0030 | 0.0082 | 0.0097 | 0.0140 |
| 1994 | 4 | 0.0038 | 0.0068 | 0.0090 | 0.0131 |
| 1995 | 1 | 0.0032 | 0.0082 | 0.0117 | 0.0121 |
| 1995 | 2 | 0.0051 | 0.0101 | 0.0133 | 0.0155 |
| 1995 | 3 | 0.0084 | 0.0096 | 0.0129 | 0.0158 |
| 1995 | 4 | 0.0058 | 0.0107 | 0.0142 | 0.0161 |
| 1996 | 1 | 0.0071 | 0.0108 | 0.0142 | 0.0175 |
| 1996 | 2 | 0.0079 | 0.0115 | 0.0150 | 0.0169 |
| 1996 | 3 | 0.0029 | 0.0062 | 0.0087 | 0.0103 |
| 1996 | 4 | 0.0031 | 0.0057 | 0.0077 | 0.0086 |
| 1997 | 1 | 0.0071 | 0.0128 | 0.0148 | 0.0163 |
| 1997 | 2 | 0.0058 | 0.0120 | 0.0161 | 0.0199 |
| 1997 | 3 | 0.0071 | 0.0097 | 0.0122 | 0.0147 |
| 1997 | 4 | 0.0052 | 0.0095 | 0.0127 | 0.0144 |
| 1998 | 1 | 0.0056 | 0.0139 | 0.0166 | 0.0186 |
| 1998 | 2 | 0.0050 | 0.0124 | 0.0153 | 0.0177 |
| 1998 | 3 | 0.0043 | 0.0061 | 0.0095 | 0.0094 |
| 1998 | 4 | 0.0039 | 0.0073 | 0.0097 | 0.0110 |
| 1999 | 1 | 0.0053 | 0.0097 | 0.0115 | 0.0121 |
| 1999 | 2 | 0.0046 | 0.0116 | 0.0135 | 0.0164 |
| 1999 | 3 | 0.0036 | 0.0094 | 0.0118 | 0.0138 |
| 1999 | 4 | 0.0052 | 0.0097 | 0.0129 | 0.0146 |
| 2000 | 1 | 0.0067 | 0.0122 | 0.0148 | 0.0185 |
| 2000 | 2 | 0.0062 | 0.0149 | 0.0174 | 0.0183 |
| 2000 | 3 | 0.0051 | 0.0105 | 0.0131 | 0.0150 |
| 2000 | 4 | 0.0036 | 0.0046 | 0.0080 | 0.0135 |

Catch at age used as input for the assessment model (years refer to the model years)

Note that weights in S4 are not used since there is no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 1 | 0.0078 | 0.0109 | 0.0118 | 0.0159 |
| 2001 | 2 | 0.0048 | 0.0116 | 0.0136 | 0.0166 |
| 2001 | 3 | 0.0062 | 0.0127 | 0.0150 | 0.0162 |
| 2001 | 4 | 0.0065 | 0.0120 | 0.0161 | 0.0181 |
| 2002 | 1 | 0.0073 | 0.0109 | 0.0141 | 0.0154 |
| 2002 | 2 | 0.0077 | 0.0122 | 0.0142 | 0.0158 |
| 2002 | 3 | 0.0047 | 0.0101 | 0.0133 | 0.0145 |
| 2002 | 4 | 0.0060 | 0.0116 | 0.0129 | 0.0155 |
| 2003 | 1 | 0.0042 | 0.0125 | 0.0146 | 0.0228 |
| 2003 | 2 | 0.0058 | 0.0108 | 0.0145 | 0.0167 |
| 2003 | 3 | 0.0049 | 0.0115 | 0.0135 | 0.0141 |
| 2003 | 4 | 0.0050 | 0.0092 | 0.0123 | 0.0139 |
| 2004 | 1 | 0.0088 | 0.0116 | 0.0139 | 0.0154 |
| 2004 | 2 | 0.0041 | 0.0094 | 0.0126 | 0.0153 |
| 2004 | 3 | 0.0030 | 0.0097 | 0.0112 | 0.0130 |
| 2004 | 4 | 0.0044 | 0.0093 | 0.0115 | 0.0129 |
| 2005 | 1 | 0.0076 | 0.0097 | 0.0130 | 0.0154 |
| 2005 | 2 | 0.0066 | 0.0103 | 0.0115 | 0.0141 |
| 2005 | 3 | 0.0055 | 0.0080 | 0.0114 | 0.0138 |
| 2005 | 4 | 0.0047 | 0.0087 | 0.0115 | 0.0130 |
| 2006 | 1 | 0.0063 | 0.0108 | 0.0133 | 0.0152 |
| 2006 | 2 | 0.0055 | 0.0143 | 0.0158 | 0.0180 |
| 2006 | 3 | 0.0041 | 0.0095 | 0.0129 | 0.0134 |
| 2006 | 4 | 0.0050 | 0.0093 | 0.0124 | 0.0139 |
| 2007 | 1 | 0.0063 | 0.0119 | 0.0131 | 0.0149 |
| 2007 | 2 | 0.0065 | 0.0101 | 0.0127 | 0.0151 |
| 2007 | 3 | 0.0045 | 0.0075 | 0.0106 | 0.0126 |

Catch at age used as input for the assessment model (years refer to the model years)

Note that weights in S4 are not used since there is no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | 4 | 0.0048 | 0.0089 | 0.0118 | 0.0133 |
| 2008 | 1 | 0.0088 | 0.0103 | 0.0114 | 0.0131 |
| 2008 | 2 | 0.0044 | 0.0076 | 0.0126 | 0.0142 |
| 2008 | 3 | 0.0034 | 0.0076 | 0.0082 | 0.0085 |
| 2008 | 4 | 0.0044 | 0.0068 | 0.0090 | 0.0081 |
| 2009 | 1 | 0.0063 | 0.0096 | 0.0123 | 0.0142 |
| 2009 | 2 | 0.0046 | 0.0095 | 0.0130 | 0.0160 |
| 2009 | 3 | 0.0043 | 0.0077 | 0.0103 | 0.0135 |
| 2009 | 4 | 0.0087 | 0.0096 | 0.0105 | 0.0141 |
| 2010 | 1 | 0.0066 | 0.0080 | 0.0097 | 0.0137 |
| 2010 | 2 | 0.0047 | 0.0094 | 0.0114 | 0.0148 |
| 2010 | 3 | 0.0050 | 0.0072 | 0.0094 | 0.0130 |
| 2010 | 4 | 0.0038 | 0.0071 | 0.0095 | 0.0107 |
| 2011 | 1 | 0.0052 | 0.0085 | 0.0101 | 0.0134 |
| 2011 | 2 | 0.0044 | 0.0089 | 0.0114 | 0.0145 |
| 2011 | 3 | 0.0042 | 0.0102 | 0.0128 | 0.0171 |
| 2011 | 4 | 0.0050 | 0.0092 | 0.0123 | 0.0139 |
| 2012 | 1 | 0.0085 | 0.0087 | 0.0106 | 0.0150 |
| 2012 | 2 | 0.0072 | 0.0087 | 0.0119 | 0.0152 |
| 2012 | 3 | 0.0040 | 0.0069 | 0.0113 | 0.0146 |
| 2012 | 4 | 0.0047 | 0.0087 | 0.0117 | 0.0132 |
| 2013 | 1 | 0.0061 | 0.0096 | 0.0120 | 0.0150 |
| 2013 | 2 | 0.0043 | 0.0097 | 0.0124 | 0.0156 |
| 2013 | 3 | 0.0026 | 0.0051 | 0.0071 | 0.0084 |
| 2013 | 4 | 0.0022 | 0.0094 | 0.0128 | 0.0153 |
| 2014 | 1 | 0.0086 | 0.0086 | 0.0104 | 0.0168 |
| 2014 | 2 | 0.0070 | 0.0079 | 0.0116 | 0.0139 |

Catch at age used as input for the assessment model (years refer to the model years)

Note that weights in S4 are not used since there is no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2014 | 3 | 0.0053 | 0.0083 | 0.0116 | 0.0119 |
| 2014 | 4 | 0.0065 | 0.0099 | 0.0101 | 0.0115 |
| 2015 | 1 | 0.0076 | 0.0082 | 0.0104 | 0.0150 |
| 2015 | 2 | 0.0072 | 0.0088 | 0.0109 | 0.0155 |
| 2015 | 3 | 0.0038 | 0.0078 | 0.0107 | 0.0153 |
| 2015 | 4 | 0.0044 | 0.0082 | 0.0109 | 0.0123 |
| 2016 | 1 | 0.0041 | 0.0077 | 0.0112 | 0.0145 |
| 2016 | 2 | 0.0051 | 0.0074 | 0.0118 | 0.0145 |
| 2016 | 3 | 0.0073 | 0.0143 | 0.0199 | 0.0235 |
| 2016 | 4 | 0.0076 | 0.0141 | 0.0188 | 0.0212 |
| 2017 | 1 | 0.0064 | 0.0083 | 0.0103 | 0.0139 |
| 2017 | 2 | 0.0038 | 0.0078 | 0.0099 | 0.0162 |
| 2017 | 3 | 0.0042 | 0.0064 | 0.0098 | 0.0130 |
| 2017 | 4 | 0.0076 | 0.0141 | 0.0188 | 0.0212 |
| 2018 | 1 | 0.0046 | 0.0066 | 0.0086 | 0.0123 |
| 2018 | 2 | 0.0053 | 0.0074 | 0.0097 | 0.0132 |
| 2018 | 3 | 0.0042 | 0.0066 | 0.0097 | 0.0128 |
| 2018 | 4 | 0.0076 | 0.0141 | 0.0188 | 0.0212 |

Table 10.2.4. North Sea \& 3.a sprat. Sampling for biological parameters in 2018. This table only shows age-length samples, and therefore the number of samples may differ from Table 10.2.5.

| Country | Quarter | Landings <br> ('000 tonnes) | No. <br> samples | No. <br> measured | No. <br> aged |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Denmark | 1 | 9.81 | 8 | 790 | 348 |
|  | 2 | 11.90 | 6 | 762 | 287 |
|  | 3 | 98.60 | 61 | 8002 | 2972 |
|  | 4 | 45.32 | 47 | 5351 | 2312 |
| Notal | 165.62 | 122 | 14905 | 5919 |  |
|  | 1 | 0.78 | 1 | 100 | 50 |
|  | 2 |  |  |  |  |
| Sweden | 3 | 5.92 | 5 | 369 | 213 |
|  | 4 | 3.07 | 3 | 305 | 107 |
|  | Total | 9.78 | 9 | 774 | 370 |
|  | 1 | 0.13 | 3 | 107 | 107 |
|  | 2 |  |  |  |  |
| All countries | 3 | 5.92 |  |  |  |
|  | 4 | 2.62 | 10 | 840 | 840 |
|  | Total | 8.67 | 13 | 947 | 947 |
| Total North Sea | 1 | 10.79 | 12 | 997 | 505 |

Table 10.2.5. North Sea \& 3.a sprat. Number of biological samples taken from 1991 and onward. The number of samples may differ from Table 8.2.4, since this table shows both length and age-length samples. These are the samples used to generate the catch-at-age matrix for the assessment model (Model year).

| Year | S1 | S2 | S3 | S4 |
| :---: | :---: | :---: | :---: | :---: |
| 1974 | 15 | 31 | 102 | 25 |
| 1975 | 67 | 46 | 40 | 11 |
| 1976 | 54 | 70 | 53 | 16 |
| 1977 | 37 | 51 | 32 | 18 |
| 1978 | 52 | 78 | 47 | 22 |
| 1979 | 86 | 55 | 90 | 9 |
| 1980 | 0 | 0 | 49 | 28 |
| 1981 | 61 | 32 | 29 | 14 |
| 1982 | 27 | 48 | 13 | 16 |
| 1983 | 11 | 44 | 27 | 8 |


| Year | S1 | S2 | S3 | S4 |
| :---: | :---: | :---: | :---: | :---: |
| 1984 | 9 | 23 | 29 | 7 |
| 1985 | 4 | 4 | 0 | 4 |
| 1986 | 4 | 1 | 0 | 1 |
| 1987 | 16 | 15 | 4 | 3 |
| 1988 | 8 | 4 | 9 | 1 |
| 1989 | 13 | 0 | 7 | 2 |
| 1990 | 4 | 0 | 13 | 1 |
| 1991 | 6 | 56 | 15 | 8 |
| 1992 | 42 | 35 | 24 | 4 |
| 1993 | 21 | 30 | 24 | 7 |
| 1994 | 42 | 50 | 32 | 5 |
| 1995 | 40 | 47 | 41 | 4 |
| 1996 | 2 | 12 | 8 | 3 |
| 1997 | 9 | 34 | 12 | 1 |
| 1998 | 25 | 38 | 16 | 3 |
| 1999 | 41 | 25 | 25 | 1 |
| 2000 | 29 | 23 | 22 | 14 |
| 2001 | 23 | 9 | 17 | 4 |
| 2002 | 26 | 37 | 28 | 7 |
| 2003 | 12 | 60 | 17 | 2 |
| 2004 | 26 | 43 | 24 | 15 |
| 2005 | 77 | 56 | 56 | 2 |
| 2006 | 23 | 7 | 13 | 0 |
| 2007 | 34 | 40 | 13 | 4 |
| 2008 | 10 | 9 | 14 | 5 |
| 2009 | 33 | 36 | 18 | 5 |
| 2010 | 35 | 28 | 15 | 3 |
| 2011 | 28 | 57 | 20 | 3 |
| 2012 | 37 | 88 | 15 | 3 |


| Year | S1 | S2 | S3 | S4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | 31 | 23 | 10 | 10 |
| 2014 | 116 | 19 | 21 | 2 |
| 2015 | 165 | 47 | 3 | 0 |
| 2016 | 90 | 21 | 11 | 6 |
| 2018 | 65 | 60 | 11 | 0 |

Table 10.3.1. North Sea sprat. Abundance indices by age from IBTS Q1
IBTS Q1 survey index (sa 4 and 3a combined; years and ages apply to the model year)

Index is calculated using a delta GAM model formulation (see Stock Annex)

| Year | Age 0 | Age 1 | Age 2 | Age 3 |
| :---: | :---: | :---: | :---: | :---: |
| 1982 | 252619 | 551262 | 574173 | 47111 |
| 1983 | 619180 | 553686 | 100186 | 25687 |
| 1984 | 374594 | 292408 | 75083 | 19254 |
| 1985 | 116338 | 137304 | 39250 | 9993 |
| 1986 | 503284 | 86061 | 25143 | 9769 |
| 1987 | 248663 | 789924 | 77117 | 15148 |
| 1988 | 744970 | 154929 | 114877 | 11326 |
| 1989 | 360108 | 185946 | 47580 | 21180 |
| 1990 | 1412224 | 176334 | 33438 | 7582 |
| 1991 | 1882139 | 281520 | 36961 | 9645 |
| 1992 | 1863182 | 1224852 | 103248 | 10709 |
| 1993 | 1195289 | 887347 | 132008 | 8288 |
| 1994 | 2258852 | 2257140 | 263386 | 10391 |
| 1995 | 604673 | 967027 | 199658 | 28253 |
| 1996 | 599335 | 270098 | 168138 | 27513 |
| 1997 | 1072937 | 1104108 | 180777 | 16056 |
| 1998 | 5183400 | 583736 | 73757 | 5308 |
| 1999 | 2017439 | 1164352 | 150449 | 25036 |

IBTS Q1 survey index (sa 4 and 3a combined; years and ages apply to the model year)
Index is calculated using a delta GAM model formulation (see Stock Annex)

| Year | Age 0 | Age 1 | Age 2 | Age 3 |
| :---: | :---: | :---: | :---: | :---: |
| 2000 | 1997862 | 1309083 | 239142 | 13995 |
| 2001 | 1191954 | 968965 | 87712 | 10393 |
| 2002 | 2493114 | 589410 | 66441 | 5540 |
| 2003 | 4084377 | 685280 | 106637 | 9076 |
| 2004 | 8918279 | 675529 | 29062 | 2718 |
| 2005 | 1230441 | 1416990 | 58676 | 7654 |
| 2006 | 1917763 | 1035569 | 162880 | 12506 |
| 2007 | 1526985 | 803061 | 47400 | 8526 |
| 2008 | 4133598 | 312030 | 34043 | 3833 |
| 2009 | 3288300 | 2489705 | 118665 | 17586 |
| 2010 | 1078333 | 926246 | 206207 | 47562 |
| 2011 | 3356603 | 3143308 | 245116 | 36666 |
| 2012 | 1137772 | 1116849 | 203191 | 29306 |
| 2013 | 3886605 | 443621 | 50655 | 9871 |
| 2014 | 7727188 | 3460669 | 317090 | 26651 |
| 2015 | 2112309 | 3409890 | 675849 | 37763 |
| 2016 | 10317128 | 1707447 | 128002 | 15146 |
| 2017 | 10440866 | 1547476 | 94598 | 11384 |
| 2018 | 6097175 | 2511994 | 226057 | 9585 |

Table 10.3.1. North Sea sprat. Abundance indices by age from IBTS Q3
IBTS Q3 survey index (sa 4 and 3a combined; years and ages apply to the model year and calendar year)

Index is calculated using a delta GAM model formulation (see Stock Annex)

| Year | Age 1 | Age 2 | Age 3 |
| :---: | :---: | :---: | :---: |
| 1992 | 14555861 | 2633020 | 104865 |
| 1993 | 5767651 | 3015219 | 217792 |
| 1994 | 16468664 | 1326478 | 95089 |
| 1995 | 30622687 | 7433288 | 454582 |
| 1996 | 2317117 | 2219591 | 215543 |
| 1997 | 13080865 | 1171944 | 200385 |
| 1998 | 2676263 | 1107920 | 117795 |
| 1999 | 13792780 | 1719505 | 82599 |
| 2000 | 8212868 | 3228536 | 133847 |
| 2001 | 8998081 | 2277278 | 187452 |
| 2002 | 10011480 | 1319291 | 102476 |
| 2003 | 11610320 | 1272970 | 66231 |
| 2004 | 14371331 | 1945227 | 122791 |
| 2005 | 52835449 | 2266372 | 102272 |
| 2006 | 9340785 | 5459057 | 155440 |
| 2007 | 10549586 | 1552282 | 184767 |
| 2008 | 7894186 | 2085499 | 130785 |
| 2009 | 35252950 | 3032568 | 337850 |
| 2010 | 35355908 | 9422666 | 428224 |
| 2011 | 16742275 | 8341042 | 1191533 |
| 2012 | 11469646 | 5231406 | 575643 |
| 2013 | 9052264 | 3060010 | 414534 |
| 2014 | 63182232 | 3573736 | 215965 |
| 2015 | 59775893 | 18619852 | 653613 |
| 2016 | 27891385 | 4266699 | 482295 |
| 2017 | 27754797 | 2886164 | 173266 |
| 2017 | 18709889 | 3123833 | 200733 |

Table 10.3.2. North Sea \& 3.a sprat. HERAS survey index.

HERAS abundance index (sa 4 and 3.a summed), data is from WGIPS (2019)

Years and ages apply to the model year and calendar year

| Year | Age 1 | Age 2 | Age 3 |
| :---: | :---: | :---: | :---: |
| 2006 | 21923 | 21368 | 1413 |
| 2007 | 42862 | 5837 | 2252 |
| 2008 | 17188 | 7868 | 840 |
| 2009 | 47690 | 16920 | 2815 |
| 2010 | 20328 | 14087 | 1174 |
| 2011 | 26581 | 14207 | 3412 |
| 2012 | 22036 | 12831 | 4693 |
| 2013 | 9347 | 6342 | 2049 |
| 2014 | 59020 | 20274 | 3982 |
| 2015 | 27082 | 22676 | 10142 |
| 2016 | 58604 | 33989 | 8160 |
| 2017 | 38135 | 3664 | 1465 |
| 2018 | 109180 | 10113 | 779 |

Table 10.6.1. North Sea \& 3.a sprat. Natural mortality input (Model year). From multi-species SMS (WKSAM: ICES, 2015) 2015 key run.

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 1 | 0.483 | 0.456 | 0.402 | 0.280 |
| 1974 | 2 | 0.327 | 0.235 | 0.217 | 0.188 |
| 1974 | 3 | 0.297 | 0.275 | 0.175 | 0.175 |
| 1974 | 4 | 0.445 | 0.409 | 0.318 | 0.318 |
| 1975 | 1 | 0.518 | 0.492 | 0.422 | 0.237 |
| 1975 | 2 | 0.289 | 0.220 | 0.200 | 0.169 |
| 1975 | 3 | 0.329 | 0.299 | 0.218 | 0.218 |
| 1975 | 4 | 0.474 | 0.442 | 0.423 | 0.423 |
| 1976 | 1 | 0.490 | 0.466 | 0.415 | 0.290 |
| 1976 | 2 | 0.318 | 0.242 | 0.225 | 0.195 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 3 | 0.364 | 0.332 | 0.240 | 0.240 |
| 1976 | 4 | 0.485 | 0.443 | 0.421 | 0.421 |
| 1977 | 1 | 0.441 | 0.411 | 0.368 | 0.312 |
| 1977 | 2 | 0.373 | 0.245 | 0.227 | 0.199 |
| 1977 | 3 | 0.380 | 0.351 | 0.248 | 0.248 |
| 1977 | 4 | 0.490 | 0.440 | 0.432 | 0.432 |
| 1978 | 1 | 0.411 | 0.398 | 0.385 | 0.330 |
| 1978 | 2 | 0.347 | 0.230 | 0.218 | 0.192 |
| 1978 | 3 | 0.382 | 0.356 | 0.208 | 0.208 |
| 1978 | 4 | 0.445 | 0.396 | 0.374 | 0.374 |
| 1979 | 1 | 0.436 | 0.424 | 0.419 | 0.405 |
| 1979 | 2 | 0.416 | 0.252 | 0.245 | 0.227 |
| 1979 | 3 | 0.393 | 0.366 | 0.232 | 0.232 |
| 1979 | 4 | 0.444 | 0.389 | 0.377 | 0.377 |
| 1980 | 1 | 0.470 | 0.464 | 0.444 | 0.415 |
| 1980 | 2 | 0.447 | 0.261 | 0.257 | 0.230 |
| 1980 | 3 | 0.388 | 0.355 | 0.232 | 0.232 |
| 1980 | 4 | 0.419 | 0.372 | 0.336 | 0.336 |
| 1981 | 1 | 0.501 | 0.486 | 0.448 | 0.360 |
| 1981 | 2 | 0.409 | 0.271 | 0.267 | 0.232 |
| 1981 | 3 | 0.361 | 0.314 | 0.222 | 0.222 |
| 1981 | 4 | 0.376 | 0.330 | 0.267 | 0.267 |
| 1982 | 1 | 0.511 | 0.431 | 0.377 | 0.245 |
| 1982 | 2 | 0.331 | 0.231 | 0.217 | 0.177 |
| 1982 | 3 | 0.305 | 0.231 | 0.182 | 0.182 |
| 1982 | 4 | 0.318 | 0.277 | 0.205 | 0.205 |
| 1983 | 1 | 0.532 | 0.429 | 0.349 | 0.224 |
| 1983 | 2 | 0.336 | 0.235 | 0.217 | 0.194 |
| 1983 | 3 | 0.296 | 0.207 | 0.173 | 0.173 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 4 | 0.312 | 0.259 | 0.168 | 0.168 |
| 1984 | 1 | 0.539 | 0.425 | 0.287 | 0.182 |
| 1984 | 2 | 0.397 | 0.236 | 0.209 | 0.189 |
| 1984 | 3 | 0.309 | 0.239 | 0.177 | 0.177 |
| 1984 | 4 | 0.321 | 0.274 | 0.197 | 0.197 |
| 1985 | 1 | 0.549 | 0.502 | 0.373 | 0.198 |
| 1985 | 2 | 0.482 | 0.277 | 0.251 | 0.210 |
| 1985 | 3 | 0.323 | 0.249 | 0.178 | 0.178 |
| 1985 | 4 | 0.318 | 0.269 | 0.165 | 0.165 |
| 1986 | 1 | 0.590 | 0.534 | 0.422 | 0.254 |
| 1986 | 2 | 0.452 | 0.313 | 0.288 | 0.227 |
| 1986 | 3 | 0.346 | 0.258 | 0.188 | 0.188 |
| 1986 | 4 | 0.335 | 0.284 | 0.169 | 0.169 |
| 1987 | 1 | 0.596 | 0.484 | 0.443 | 0.256 |
| 1987 | 2 | 0.470 | 0.315 | 0.299 | 0.232 |
| 1987 | 3 | 0.356 | 0.217 | 0.190 | 0.190 |
| 1987 | 4 | 0.338 | 0.281 | 0.185 | 0.185 |
| 1988 | 1 | 0.622 | 0.502 | 0.455 | 0.258 |
| 1988 | 2 | 0.493 | 0.342 | 0.316 | 0.270 |
| 1988 | 3 | 0.371 | 0.238 | 0.220 | 0.220 |
| 1988 | 4 | 0.361 | 0.301 | 0.233 | 0.233 |
| 1989 | 1 | 0.603 | 0.509 | 0.433 | 0.214 |
| 1989 | 2 | 0.525 | 0.332 | 0.294 | 0.261 |
| 1989 | 3 | 0.356 | 0.228 | 0.221 | 0.221 |
| 1989 | 4 | 0.374 | 0.312 | 0.281 | 0.281 |
| 1990 | 1 | 0.518 | 0.489 | 0.402 | 0.244 |
| 1990 | 2 | 0.496 | 0.331 | 0.283 | 0.261 |
| 1990 | 3 | 0.337 | 0.260 | 0.249 | 0.249 |
| 1990 | 4 | 0.387 | 0.319 | 0.287 | 0.287 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 1 | 0.462 | 0.423 | 0.320 | 0.263 |
| 1991 | 2 | 0.396 | 0.269 | 0.232 | 0.211 |
| 1991 | 3 | 0.310 | 0.264 | 0.223 | 0.223 |
| 1991 | 4 | 0.389 | 0.320 | 0.287 | 0.287 |
| 1992 | 1 | 0.410 | 0.360 | 0.281 | 0.255 |
| 1992 | 2 | 0.312 | 0.227 | 0.204 | 0.180 |
| 1992 | 3 | 0.294 | 0.275 | 0.212 | 0.212 |
| 1992 | 4 | 0.371 | 0.299 | 0.270 | 0.270 |
| 1993 | 1 | 0.456 | 0.414 | 0.340 | 0.303 |
| 1993 | 2 | 0.238 | 0.209 | 0.190 | 0.173 |
| 1993 | 3 | 0.272 | 0.253 | 0.192 | 0.192 |
| 1993 | 4 | 0.347 | 0.274 | 0.244 | 0.244 |
| 1994 | 1 | 0.502 | 0.446 | 0.348 | 0.337 |
| 1994 | 2 | 0.292 | 0.223 | 0.197 | 0.182 |
| 1994 | 3 | 0.258 | 0.219 | 0.190 | 0.190 |
| 1994 | 4 | 0.318 | 0.248 | 0.223 | 0.223 |
| 1995 | 1 | 0.512 | 0.460 | 0.338 | 0.308 |
| 1995 | 2 | 0.290 | 0.223 | 0.195 | 0.182 |
| 1995 | 3 | 0.222 | 0.191 | 0.178 | 0.178 |
| 1995 | 4 | 0.265 | 0.211 | 0.190 | 0.190 |
| 1996 | 1 | 0.504 | 0.395 | 0.263 | 0.214 |
| 1996 | 2 | 0.363 | 0.227 | 0.202 | 0.177 |
| 1996 | 3 | 0.215 | 0.171 | 0.151 | 0.151 |
| 1996 | 4 | 0.238 | 0.195 | 0.156 | 0.156 |
| 1997 | 1 | 0.451 | 0.293 | 0.210 | 0.155 |
| 1997 | 2 | 0.298 | 0.204 | 0.187 | 0.154 |
| 1997 | 3 | 0.227 | 0.193 | 0.171 | 0.171 |
| 1997 | 4 | 0.269 | 0.214 | 0.171 | 0.171 |
| 1998 | 1 | 0.430 | 0.283 | 0.226 | 0.190 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1998 | 2 | 0.362 | 0.197 | 0.176 | 0.145 |
| 1998 | 3 | 0.252 | 0.209 | 0.173 | 0.173 |
| 1998 | 4 | 0.318 | 0.245 | 0.197 | 0.197 |
| 1999 | 1 | 0.421 | 0.287 | 0.232 | 0.214 |
| 1999 | 2 | 0.291 | 0.191 | 0.169 | 0.152 |
| 1999 | 3 | 0.275 | 0.241 | 0.191 | 0.191 |
| 1999 | 4 | 0.335 | 0.267 | 0.242 | 0.242 |
| 2000 | 1 | 0.406 | 0.342 | 0.253 | 0.219 |
| 2000 | 2 | 0.355 | 0.199 | 0.180 | 0.170 |
| 2000 | 3 | 0.254 | 0.213 | 0.157 | 0.157 |
| 2000 | 4 | 0.279 | 0.236 | 0.192 | 0.192 |
| 2001 | 1 | 0.409 | 0.328 | 0.233 | 0.190 |
| 2001 | 2 | 0.299 | 0.213 | 0.202 | 0.195 |
| 2001 | 3 | 0.266 | 0.225 | 0.191 | 0.191 |
| 2001 | 4 | 0.306 | 0.258 | 0.213 | 0.213 |
| 2002 | 1 | 0.434 | 0.321 | 0.240 | 0.171 |
| 2002 | 2 | 0.315 | 0.223 | 0.214 | 0.206 |
| 2002 | 3 | 0.252 | 0.206 | 0.194 | 0.194 |
| 2002 | 4 | 0.323 | 0.262 | 0.218 | 0.218 |
| 2003 | 1 | 0.419 | 0.269 | 0.215 | 0.168 |
| 2003 | 2 | 0.295 | 0.229 | 0.208 | 0.204 |
| 2003 | 3 | 0.259 | 0.229 | 0.226 | 0.226 |
| 2003 | 4 | 0.383 | 0.308 | 0.286 | 0.286 |
| 2004 | 1 | 0.436 | 0.276 | 0.231 | 0.192 |
| 2004 | 2 | 0.278 | 0.216 | 0.193 | 0.185 |
| 2004 | 3 | 0.231 | 0.212 | 0.208 | 0.208 |
| 2004 | 4 | 0.376 | 0.302 | 0.278 | 0.278 |
| 2005 | 1 | 0.442 | 0.321 | 0.227 | 0.216 |
| 2005 | 2 | 0.309 | 0.219 | 0.181 | 0.174 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 3 | 0.220 | 0.201 | 0.179 | 0.179 |
| 2005 | 4 | 0.367 | 0.291 | 0.225 | 0.225 |
| 2006 | 1 | 0.504 | 0.315 | 0.226 | 0.215 |
| 2006 | 2 | 0.265 | 0.212 | 0.172 | 0.166 |
| 2006 | 3 | 0.217 | 0.197 | 0.172 | 0.172 |
| 2006 | 4 | 0.364 | 0.277 | 0.202 | 0.202 |
| 2007 | 1 | 0.480 | 0.312 | 0.204 | 0.184 |
| 2007 | 2 | 0.287 | 0.222 | 0.170 | 0.166 |
| 2007 | 3 | 0.210 | 0.175 | 0.152 | 0.152 |
| 2007 | 4 | 0.312 | 0.237 | 0.175 | 0.175 |
| 2008 | 1 | 0.478 | 0.307 | 0.187 | 0.166 |
| 2008 | 2 | 0.269 | 0.203 | 0.157 | 0.151 |
| 2008 | 3 | 0.200 | 0.173 | 0.167 | 0.167 |
| 2008 | 4 | 0.304 | 0.225 | 0.197 | 0.197 |
| 2009 | 1 | 0.444 | 0.362 | 0.233 | 0.162 |
| 2009 | 2 | 0.327 | 0.200 | 0.158 | 0.150 |
| 2009 | 3 | 0.190 | 0.170 | 0.163 | 0.163 |
| 2009 | 4 | 0.293 | 0.215 | 0.190 | 0.190 |
| 2010 | 1 | 0.527 | 0.412 | 0.312 | 0.170 |
| 2010 | 2 | 0.395 | 0.217 | 0.179 | 0.164 |
| 2010 | 3 | 0.207 | 0.182 | 0.159 | 0.159 |
| 2010 | 4 | 0.309 | 0.226 | 0.197 | 0.197 |
| 2011 | 1 | 0.511 | 0.437 | 0.386 | 0.182 |
| 2011 | 2 | 0.381 | 0.239 | 0.193 | 0.179 |
| 2011 | 3 | 0.229 | 0.202 | 0.179 | 0.179 |
| 2011 | 4 | 0.338 | 0.254 | 0.224 | 0.224 |
| 2012 | 1 | 0.509 | 0.432 | 0.344 | 0.176 |
| 2012 | 2 | 0.368 | 0.238 | 0.191 | 0.178 |
| 2012 | 3 | 0.219 | 0.176 | 0.145 | 0.145 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2012 | 4 | 0.292 | 0.225 | 0.180 | 0.180 |
| 2013 | 1 | 0.399 | 0.367 | 0.285 | 0.150 |
| 2013 | 2 | 0.271 | 0.209 | 0.164 | 0.158 |
| 2013 | 3 | 0.206 | 0.175 | 0.148 | 0.148 |
| 2013 | 4 | 0.270 | 0.221 | 0.178 | 0.178 |
| 2014 | 1 | 0.367 | 0.335 | 0.245 | 0.140 |
| 2014 | 2 | 0.257 | 0.198 | 0.167 | 0.154 |
| 2014 | 3 | 0.211 | 0.181 | 0.153 | 0.153 |
| 2014 | 4 | 0.272 | 0.227 | 0.184 | 0.184 |
| 2015 | 1 | 0.365 | 0.339 | 0.249 | 0.139 |
| 2015 | 2 | 0.237 | 0.194 | 0.164 | 0.149 |
| 2015 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2015 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |
| 2016 | 1 | 0.377 | 0.347 | 0.260 | 0.143 |
| 2016 | 2 | 0.255 | 0.200 | 0.165 | 0.153 |
| 2016 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2016 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |
| 2017 | 1 | 0.377 | 0.347 | 0.260 | 0.143 |
| 2017 | 2 | 0.255 | 0.200 | 0.165 | 0.153 |
| 2017 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2017 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |
| 2018 | 1 | 0.377 | 0.347 | 0.260 | 0.143 |
| 2018 | 2 | 0.255 | 0.200 | 0.165 | 0.153 |
| 2018 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2018 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |

Table 10.6.2. North Sea sprat. Assessment diagnostics.
Date: 03/15/19 Start time:16:38:31 run time:1 seconds
objective function (negative log likelihood): 266.022
Number of parameters: 137
Maximum gradient: 0.0264053
Akaike information criterion (AIC): 806.044
Number of observations used in the likelihood:
Catch CPUE S/R Stomach Sum
$\begin{array}{lllll}720 & 268 & 45 & 0 & 1033\end{array}$
objective function weight:
Catch CPUE S/R
1.001 .000 .10
unweighted objective function contributions (total):
Catch CPUE S/R Stom. Stom N. Penalty Sum
$\begin{array}{lllllll}365.3 & -100.5 & 11.8 & 0.0 & 0.0 & 0.00 & 277\end{array}$
unweighted objective function contributions (per observation):
Catch CPUE S/R Stomachs
$\begin{array}{llll}0.51 & -0.37 & 0.26 & 0.00\end{array}$
contribution by fleet:

| IBTS Q1 | total: -49.835 mean: -0.337 |
| :--- | :--- |
| IBTS Q3 | total: -41.144 mean: -0.508 |
| Acoustic | total: -9.508 mean: -0.244 |

F, season effect:
age: 0
1974-2018: 0.0330 .2120 .3940 .250
age: 1
1974-2018: 0.5210 .5390 .2180 .250
age: 2

```
1974-2018: 0.2450 .4910 .1360 .250
```

age: 3
1974-2018: 0.2150 .4960 .3190 .250

F, age effect:
$\qquad$
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
1974-2018: 0.0380 .4171 .4801 .480

Exploitation pattern (scaled to mean $\mathrm{F}=1$ )

```
\(0 \quad 1 \quad 2 \quad 3\)
```

1974-2018 season 1: 0.0010 .1890 .3150 .277
season 2: 0.0070 .1960 .6330 .639
season 3: 0.0130 .0790 .1760 .412
season 4: 0.0080 .0910 .3220 .322
sqrt(catch variance) $\sim \mathrm{CV}$ :
$\qquad$
season
age $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}0 & 1.414 & 1.414 & 1.155 & 0.100\end{array}$
$1 \quad 0.861 \quad 0.6931 .414 \quad 0.100$
$2 \quad 1.035 \quad 1.0631 .414 \quad 0.100$
$3 \quad 1.035 \quad 1.0631 .414 \quad 0.100$

Survey catchability:
age 0 age 1 age 2 age 3
$\begin{array}{lllll}\text { IBTS Q1 } & 0.000 & 1.470 & 2.827 & 4.487\end{array}$
$\begin{array}{llll}\text { IBTS Q3 } & 0.772 & 0.997 & 0.932\end{array}$
Acoustic $\quad 1.045 \quad 2.333 \quad 6.072$

Stock size dependent catchability (power model)


Table 10.6.3. North Sea \& 3.a Sprat. Assessment output: Stock numbers (thousands) (years, seasons, and age refer to the model year).

| $\begin{aligned} & \text { Year/Age } \\ & \text { Quarter } \end{aligned}$ | ${ }^{\text {A00S } 1}$ | ${ }^{\text {a00S2 }}$ | 10053 | 0054 | 0151 | 0152 | 153 | 0154 | ${ }^{2251}$ | 0252 | 0253 | 0254 | 23S1 | A0352 | ${ }^{0353}$ | A0354 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 336 | 328875 | 35319 | 172346000 | 138012000 | 38510 | 44432900 | 30828200 | 10746300 | 5006380 | 1948140 | 1336540 | 48558 | 7092 | 0628 | 55619 |
| 1975 | 712689000 | 423481000 | 312599000 | 219115000 | 109421000 | 45596200 | 24606900 | 15548000 | 18451300 | 6383020 | 148770 | 815527 | 699739 | 314887 | 72750 | 25385 |
| 1976 | 330409000 | 20222000 | 144894000 | 88009200 | 136460000 | 57750600 | 30179300 | 18354400 | 7240 | 3423270 | 731948 | 9113 | 9925 | 231443 | 50329 | 16791 |
| 1977 | 631497000 | 40578800 | 275921000 | 184392000 | 60321000 | 28883400 | 15579900 | 9496200 | 11785000 | 459886 | 1160670 | 55792 | 7305 | 120807 | 31009 | 11452 |
| 1978 | 1033370000 | 684142000 | 479393000 | 32228000 | 113014000 | 60452900 | 37928900 | 24138700 | 6117920 | 846870 | 1067060 | ${ }^{0} 1460$ | 34619 | 223763 | 5446 | 42267 |
| 1979 | 534780000 | 345451000 | 226623000 | 151382000 | 206526000 | 116433000 | 77560800 | 50529400 | 16239200 | 8330960 | 3957680 | 2733000 | 511616 | 274342 | 132104 | 75735 |
| 1980 | 328622000 | 20478800 | 128468000 | 84170100 | 97069800 | 36530600 | 16588300 | 44830 | 34233600 | 9322120 | 1290550 | 634258 | 1926640 | 598756 | 726 | 21669 |
| 1981 | 94281300 | 57064600 | 37548000 | 25738500 | 55360000 | 26534100 | 15623400 | 10283000 | 6440630 | 2713730 | 900184 | 571346 | 468557 | 226575 | 77223 | 35885 |
| 1982 | 49287200 | 29542100 | 21035300 | 15261800 | 17665200 | 9127130 | 5717620 | 4122110 | 7390680 | 3457780 | 1292650 | 870694 | 464976 | 260023 | 100318 | 50762 |
| 1983 | 66959800 | 39231000 | 27634600 | 20018500 | 11104800 | 4923770 | 2613990 | 1809790 | 3125200 | 1160900 | 257741 | 151580 | 750389 | 341225 | 76568 | 27864 |
| 1984 | 33535900 | 19546000 | 13041000 | 9432390 | 14649500 | 7681260 | 4832080 | 3471250 | 139620 | 725586 | 281622 | 192142 | 151643 | 91497 | 35957 | 18636 |
| 1985 | 23326400 | 13445100 | 820929 | 5824610 | 6839640 | 306280 | 1698140 | 1166720 | 2638750 | 1097510 | 10481 | 196274 | 173042 | 91146 | 26601 | 11533 |
| 1986 | 791607 | 43826900 | 626500 | 19215400 | 36710 | 1933460 | 1090380 | 758119 | 33 | 384686 | 124529 | 81724 | 176193 | 94570 | 32251 | 15474 |
| 1987 | 40836300 | 22491100 | 14007900 | 9752320 | 13743100 | 7783180 | 5201730 | 4042630 | 57043 | 318041 | 177599 | 135739 | 82060 | 56091 | 33415 | 978 |
| 1988 | 60893000 | 32651900 | 19729300 | 13333700 | 6956140 | 3123930 | 1629070 | 1132460 | 3052250 | 1176030 | 35312 | 191624 | 131958 | 65750 | 18265 | 644 |
| 1989 | 54629700 | 29865400 | 17615500 | 12279100 | 9290040 | 5202980 | 3468820 | 2680900 | 837769 | 48840 | 284187 | 213304 | 157917 | 114954 | 69761 | 47948 |
| 1990 | 73835200 | 43904700 | 26400500 | 18398600 | 8446340 | 3636000 | 1810980 | 1203860 | 1962720 | 727217 | 167490 | 93938 | 197178 | 91909 | 21398 | 7716 |
| 1991 | 112582000 | 70847800 | 47414200 | 34374200 | 12449900 | 6941390 | 4471330 | 3205800 | 875415 | 488868 | 220587 | 151345 | 76309 | 46071 | 21370 | 1937 |
| 1992 | 10425100 | 69105100 | 226800 | 36950400 | 23299100 | 13428700 | 183870 | 6158140 | 2327630 | 1277310 | 549667 | 372199 | 122524 | 7176 | 141 | 16760 |
| 1993 | 15039900 | 169800 | 7396690 | 54926500 | 25504900 | 11620100 | 6414900 | 4261430 | 4566470 | 1745690 | 414980 | 242167 | 296851 | 126945 | 30293 | 11106 |
| 1994 | 128713000 | 77807400 | 57739600 | 44133500 | 38804300 | 21109200 | 14272500 | 10706400 | 3238940 | 174190 | 831909 | 591407 | 19849 | 111713 | 53804 | 31233 |
| 1995 | 36331900 | 2950 | 51000 | 12557300 | 32119400 | 14373200 | 18530 | 56720 | 56880 | 3352310 | 9562 | 8148 | 98233 | 220989 | 57464 | 22700 |
| 1996 | 60863800 | 36695200 | 25224200 | 19911700 | 9637460 | 4723710 | 278850 | 1997540 | 4661890 | 2108050 | 594150 | 388068 | 455689 | 238805 | 66007 | 28393 |
| 1997 | 49103400 | 31231700 | 22995800 | 18033300 | 15695400 | 9265190 | 5929210 | 4431900 | 1643930 | 901345 | 341263 | 231379 | 349417 | 212301 | 82476 | 41750 |
| 1998 | 109864000 | 71336000 | 4898810 | 37069100 | 13776800 | 7010460 | 3832230 | 2638020 | 3577060 | 1480310 | 32721 | 194197 | 230196 | 106922 | 24470 | 874 |
| 1999 | 77583000 | 50844100 | 3773470 | 28274200 | 26976200 | 16457600 | 10979000 | 7913680 | 206240 | 1158330 | 488975 | 333190 | 166699 | 99329 | 42360 | ${ }^{22293}$ |
| 2000 | 73316900 | 48756100 | 33757500 | 25594900 | 20233400 | 10242100 | 5908950 | 4142240 | 6058510 | 267250 | 715873 | 446259 | 278978 | 136317 | 36524 | 14907 |
| 2001 | 61396800 | 4071230 | 29793800 | 227610 | 19371100 | 70820 | 5871 | 52460 | 3272560 | 1429950 | 354083 | 209889 | 380576 | 186540 | 45976 | 17464 |
| 2002 | 8225000 | 53134800 | 38226500 | 28962100 | 16388800 | 8158960 | 442488 | 3073410 | 2897880 | 1215670 | 278086 | 161287 | 183700 | 89144 | 20305 | 7359 |
| 2003 | 106874000 | 70149900 | 51684600 | 39112300 | 20974800 | 11998400 | 7073870 | 4982780 | 2365920 | 1176690 | 362314 | 220558 | 135640 | 74963 | 22963 | 9752 |
| 2004 | 188359000 | 121451000 | 90500900 | 69706900 | 26678000 | 13037300 | 6660790 | 4482050 | 3661390 | 1395120 | 263657 | 142258 | 173259 | 75000 | 14076 | 4385 |
| 2005 | 66445300 | 42649800 | 30958400 | 24323500 | 47872200 | 25646200 | 15050800 | 10842400 | 3312600 | 1590730 | 480232 | 302627 | 111011 | 57305 | 17251 | 7442 |
| 2006 | 84862900 | 51157500 | 38706300 | 30343500 | 16855200 | 8364420 | 38870 | 3171110 | 810270 | 3394780 | 784029 | 460667 | 247597 | 113392 | 26016 | 9439 |
| 2007 | 6093430 | 37622400 | 27838800 | 21995300 | 21079400 | 10639200 | 5801840 | 4169550 | 2403350 | 1054130 | 256226 | 155750 | 383995 | 185232 | 44644 | 1706 |
| 2008 | 140415000 | 86918600 | 65670600 | 52607200 | 1604460 | 8654010 | 5102970 | 3763230 | 3288200 | 1614890 | 482581 | 305066 | 145069 | 77530 | 23063 | 985 |
| 2009 | 114653000 | 73449500 | 52569800 | 42860200 | 38817500 | 22096800 | 14683700 | 11389300 | 3003660 | 1700030 | 739763 | 520872 | 258635 | 163644 | 71266 | 39024 |
| 2010 | 120614000 | 71099600 | 47474800 | 38000000 | 31989500 | 16772500 | 10638800 | 8015450 | 9183040 | 4554560 | 1743150 | 1196510 | 463153 | 277415 | 106974 | 54881 |
| 2011 | 91679800 | 54947800 | 37252500 | 29212000 | 27899900 | 14583000 | 9226180 | 6897860 | 6391570 | 3051960 | 1237290 | 849219 | 1027860 | 628130 | 256428 | 135101 |
| 2012 | 72997200 | 43789300 | 29940400 | 23531200 | 20832900 | 9811780 | 5542980 | 4063920 | 5352700 | 2219540 | 625012 | 400794 | 786532 | 411606 | 116141 | 49862 |
| 2013 | 171319000 | 114754000 | 8659310 | 69081200 | 17576200 | 9153830 | 5530910 | 4120100 | 3244730 | 1515520 | 494954 | 327263 | 376562 | 213405 | 69459 | 32167 |
| 2014 | 188465000 | 130470000 | 100361000 | 80484300 | 52737100 | 32955200 | 23497300 | 18530400 | 3303640 | 2063630 | 1110610 | 840083 | 300737 | 214462 | 11648 | 741 |
| 2015 | 101492000 | 70318500 | 54818100 | 43363000 | 61321400 | 31590100 | 18613200 | 13612000 | 14766000 | 6703480 | 1922850 | 1225490 | 761030 | 411571 | 118504 | 5040 |
| 2016 | 133857000 | 91534100 | 69562200 | 54278400 | 32842100 | 13738700 | 6535470 | 4394740 | 10876500 | 3496870 | 51223 | 27093 | 1065150 | 427885 | 6229 | 171 |
| 2017 | 190734000 | 130571000 | 99935700 | 79012000 | 41109200 | 20854500 | 12112400 | 8830090 | 351540 | 1557500 | 435192 | 275428 | 240482 | 128182 | 35827 | 1499 |
| 2018 | 158388000 | 108428000 | 82982800 | 65601000 | 59841900 | 30306000 | 17571700 | 12800900 | 7055540 | 3120640 | 867067 | 547900 | 242449 | 128913 | 35827 | ${ }^{14935}$ |
| 2019 | 0 |  |  |  | 49684700 |  |  |  | 10228400 |  |  |  | 46989 |  |  |  |

Table 10.6.4. North Sea \& 3.a Sprat. Assessment output: Estimated recruitment, spawning stock biomass (SSB), average fishing mortality (F), and landings weight (Yield). All estimates refers to the model year.

| Year | Recruits (in 1000s) | SSB (tonnes) | F (ages 1-2) | Yield (tonnes) |
| :---: | :---: | :---: | :---: | :---: |
| 1974 | 533516203 | 605615 | 1.148 | 463344 |
| 1975 | 713005719 | 605010 | 1.609 | 732312 |
| 1976 | 330461262 | 497325 | 1.653 | 628598 |
| 1977 | 631747281 | 337729 | 1.442 | 385257 |
| 1978 | 1033275820 | 388481 | 0.957 | 458804 |
| 1979 | 534584303 | 619706 | 0.626 | 463638 |
| 1980 | 328484431 | 425491 | 2.158 | 387434 |
| 1981 | 94300778 | 302549 | 1.049 | 280582 |
| 1982 | 49278577 | 180954 | 0.963 | 162357 |
| 1983 | 66986389 | 87378 | 1.615 | 115440 |
| 1984 | 33531639 | 65578 | 0.925 | 113444 |
| 1985 | 23324153 | 60355 | 1.269 | 62514 |
| 1986 | 79161450 | 23040 | 1.054 | 27520 |
| 1987 | 40832954 | 55492 | 0.356 | 53942 |
| 1988 | 60915609 | 57412 | 1.255 | 103652 |
| 1989 | 54624879 | 42531 | 0.296 | 58420 |
| 1990 | 73809647 | 41940 | 1.487 | 78180 |
| 1991 | 112560341 | 86163 | 0.692 | 125815 |
| 1992 | 104218478 | 121297 | 0.802 | 156471 |
| 1993 | 150428734 | 166542 | 1.564 | 208848 |
| 1994 | 128700686 | 135402 | 0.682 | 424206 |
| 1995 | 36324391 | 198590 | 1.448 | 446555 |
| 1996 | 60854724 | 108120 | 1.335 | 95496 |
| 1997 | 49081856 | 108662 | 0.983 | 125174 |
| 1998 | 109891052 | 134457 | 1.651 | 188907 |
| 1999 | 77593949 | 130092 | 0.869 | 243158 |
| 2000 | 73294784 | 184241 | 1.425 | 222027 |
| 2001 | 61404888 | 125492 | 1.498 | 153321 |


| Year | Recruits (in 1000s) | SSB (tonnes) | F (ages 1-2) | Yield (tonnes) |
| :---: | :---: | :---: | :---: | :---: |
| 2002 | 82227471 | 111302 | 1.582 | 174713 |
| 2003 | 106856781 | 139944 | 1.216 | 174988 |
| 2004 | 188385320 | 173338 | 1.848 | 231352 |
| 2005 | 66452635 | 228891 | 1.275 | 280275 |
| 2006 | 84901303 | 172474 | 1.622 | 78028 |
| 2007 | 60915609 | 135402 | 1.561 | 99902 |
| 2008 | 140399151 | 102539 | 1.318 | 69892 |
| 2009 | 114604772 | 187963 | 0.846 | 170934 |
| 2010 | 120601225 | 188151 | 0.98 | 145415 |
| 2011 | 91696980 | 166542 | 0.89 | 122472 |
| 2012 | 73002190 | 134592 | 1.35 | 96030 |
| 2013 | 171312512 | 108228 | 1.198 | 60207 |
| 2014 | 188385320 | 219476 | 0.568 | 190268 |
| 2015 | 101442227 | 349759 | 1.361 | 298227 |
| 2016 | 133819174 | 224583 | 2.203 | 227169 |
| 2017 | 190659562 | 174207 | 1.393 | 135824 |
| 2018 | 158457979 | 217510 | 1.4 | 190052 |
| 2019 |  | 216305 |  |  |

Table 10.9.1. North Sea \& 3.a Sprat. Input to forecast (years and age refer to the model year).

| Age | Age 0 | Age 1 | Age 2 | Age 3 |
| :---: | :---: | :---: | :---: | :---: |
| Stock numbers(2019) (millions) | 126950 | 49685 | 10228 | 470 |
| Exploitation pattern Q1 | 0.002 | 0.292 | 0.487 | 0.428 |
| Exploitation pattern Q2 | 0.011 | 0.302 | 0.978 | 0.987 |
| Exploitation pattern Q3 | 0.020 | 0.122 | 0.272 | 0.636 |
| Exploitation pattern Q4 | 0.000 | 0.002 | 0.008 | 0.008 |
| Weight in the stock Q1 (gram) | 5.042 | 7.552 | 10.003 | 13.592 |
| Weight in the catch Q1 (gram) | 5.04 | 7.55 | 10.00 | 13.59 |
| Weight in the catch Q2 (gram) | 4.72 | 7.53 | 10.45 | 14.66 |
| Weight in the catch Q3 (gram) | 5.23 | 9.09 | 13.15 | 16.42 |
| Weight in the catch Q4 (gram) | 7.60 | 14.07 | 18.76 | 21.17 |
| Proportion mature(2019) | 0.00 | 0.41 | 0.87 | 0.95 |
| Proportion mature(2020) | 0.00 | 0.41 | 0.87 | 0.95 |
| Natural mortality Q1 | 0.38 | 0.35 | 0.26 | 0.14 |
| Natural mortality Q2 | 0.26 | 0.20 | 0.16 | 0.15 |
| Natural mortality Q3 | 0.21 | 0.18 | 0.15 | 0.15 |
| Natural mortality Q4 | 0.28 | 0.22 | 0.18 | 0.18 |

Table 10.9.2. Sprat North Sea \& 3.a. Short-term predictions options table.
Catch options. Landings and SSB are in thousands of tonnes.

3-year average weight-at-age was used to calculate SSB. Recruitment(2019) = geom average 2008-2017.

| Basis | F(2019) | Landings(2019) | SSB(2020) | \%SSB change | \%TAC change |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{\text {cap }}$ | 0.69 | 139 | 271 | 8.83\% | not applicable |
| $\mathrm{F}_{\text {(status quo) }}$ | 1.4 | 229 | 217 | -12.95\% | not applicable |
| $\mathrm{F}=0$ | 0 | 0 | 361 | 44.94\% | not applicable |
| $\mathrm{F}=0.1$ | 0.1 | 25 | 344 | 38.35\% | not applicable |
| $\mathrm{F}=0.2$ | 0.2 | 48 | 329 | 32.30\% | not applicable |
| $\mathrm{F}=0.3$ | 0.3 | 69 | 315 | 26.73\% | not applicable |
| $\mathrm{F}=0.4$ | 0.4 | 89 | 303 | 21.60\% | not applicable |
| $\mathrm{F}=0.5$ | 0.5 | 107 | 291 | 16.86\% | not applicable |
| $\mathrm{F}=0.6$ | 0.6 | 124 | 280 | 12.49\% | not applicable |
| $\mathrm{F}=0.7$ | 0.7 | 140 | 270 | 8.43\% | not applicable |
| $\mathrm{F}=0.8$ | 0.8 | 155 | 260 | 4.68\% | not applicable |
| $\mathrm{F}=0.9$ | 0.9 | 170 | 252 | 1.19\% | not applicable |
| $\mathrm{F}=1.0$ | 1 | 183 | 244 | -2.05\% | not applicable |
| $\mathrm{B}_{\text {escapement }}$ without $\mathrm{F}_{\text {cap }}$ | 5.187 | 418 | 125 | -49.76\% | not applicable |



Figure 10.1.1. North Sea \& 3.a sprat. Sprat catches in the North Sea and Division 3.a (in tonnes) for each calendar year by statistical rectangle.


Figure 10.2.1. North Sea \& 3.a sprat. Number of samples taken in the North Sea and Division 3.a for each calendar year by statistical rectangle.

IBTS-Q1


Figure 10.3.1. North Sea \& 3.a sprat. IBTS Q1 survey index for Subarea 4 and Division 3.a combined. The index is calculated using a delta-GAM model formulation (see WKSPRAT report (ICES, 2018) for details). Years refer to the calendar year.

IBTS-Q3


Figure 10.3.2a. North Sea \& 3.a sprat. IBTS Q3 survey index for Subarea 4 and Division 3.a combined. The index is calculated using a delta-GAM model formulation (see WKSPRAT report (ICES, 2018) for details). Years refer to the calendar year.

HERAS


Figure 10.3.2b. North Sea \& 3.a sprat. HERAS survey index for Subarea 4 and Division 3.a combined (sum of abundance indices published by WGIPS). Years refer to the calendar year.


Figure 10.3.2c. North Sea \& 3.a sprat. IBTS Q1 indices for round fish areas 6-9 (6 and 7 belong to Subarea 4, and 8 and 9 belongs to Division 3.a) for age 1 (top figure) and age-2 (bottom figure), respectively. Data were downloaded from the ICES DATRAS database. Years and age refer to the calendar year.



Figure 10.3.3. North Sea \& 3.a sprat. IBTS Q3 indices for round fish areas 6-9 (6 and 7 belong to Subarea 4 and 8, and 9 belongs to Division 3.a) for age 1 (top figure) and age-2 (bottom figure), respectively. Data were downloaded from the ICES DATRAS database. Years and age refer to the calendar year.


Figure 10.3.4. North Sea \& 3.a sprat. HERAS survey index (abundance) for Subarea 4 and Division 3.a, respectively. Data were taken from the most recent WGIPS report.


Figure 10.4.1. North Sea \& 3.a sprat. Top: Mean weight at age in season 1 (years refer to the model year). Age 1 (grey), age 2 (black), age 3 (white). Red dot is the status quo weight and the red dashed line refer to the 3 -year average used in the forecast last year. Middle: Mean weight at age in season 2 (years refer to the model year). Age 1 (grey), age 2 (black), age 3 (white). Red dot is the status quo weight and the red dashed line refer to the average of the three previous years. Bottom: Mean weight at age in season 3 (years refer to the model year). Age 1 (grey), age 2 (black), age 3 (white). Red dot is the status quo weight and the red dashed line refer to the average of the three previous years.

## Total landings by year (model year) and season (S1-S4)



Figure 10.6.1. North Sea \& 3.a sprat. Seasonal distribution of catches (Calendar year). Year and season 1-4 refer to the time steps of the model. Note that since the model year of 2018 is not yet finished, the 2018 column will be updated next year. Also note that there are no catches shown for S4, since these are moved to S1 in the following year (see WKSPRAT report (ICES, 2018) for details).

## Proportion at age in catches (years refer to model year)



Figure 10.6.1. North Sea \& 3.a sprat. Proportion of each age group in the catches. Year and age refer to the model year.

## Sprat S:1



Sprat S:2


Sprat S:3


Sprat S:4


Figure 10.6.2. North Sea \& 3.a sprat. Catch residuals by age. (Model year)

IBTS Q1



Acoustic


Figure 10.6.3. North Sea \& 3.a sprat. Survey residuals by age. (Model year)


Figure 10.6.4. North Sea \& 3.a sprat. Coefficients of variance (Model year).

Retrospective anlysis: 2013-2018




Figure 10.6.5. North Sea \& 3.a sprat. Retrospective analysis (Model year)


Figure 10.6.6. North Sea \& 3.a sprat. Temporal development in Mean F, SSB and recruitment. Hatched lines are 95\% confidence intervals (Model year).


Figure 10.6.7. North Sea \& 3.a sprat. Assessment summary (Model year)


Figure 10.7.1. North Sea \& 3.a sprat. Stock-recruitment relationship (Model year).

### 10.14 Audit of spr.27.3a4 (Sprat in the North Sea)

Working Group: HAWG

Stock Name: $\quad$ Sprat (Sprattus sprattus) in Division 3.a and Subarea 4 (Skagerrak, Kattegat and North Sea)

Date: 20/03/2019
Auditor: Henrik Mosegaard, Christophe Loots, Florian Berg

## General

During the last benchmark in 2018 the stock unit was re-defined, combining division 3.a and subarea 4.

For single stock summary sheet advice:

1) Assessment type: Update
2) Assessment: Analytical assessment
3) Forecast: presented
4) Assessment model: SMS in quarterly steps. Tuning data IBTS Q1 (age 0-3), IBTS Q3 (age 1-3), HERAS (age 1-3)
5) Data issues: No data issues
6) Consistency: First assessment for the re-defined stock
7) Stock status: $B>$ Bescapement, $F$ is higher than Fcap (0.69).
8) Management Plan: No management plan has been developed.

## Technical comments

There is no technical issue with this stock

## Conclusions

The assessment has been performed correctly

## 11 Sprat in the North Sea

The information formerly kept in this section is now found in Section 10: "Sprat in the North Sea and 3.a"

## 12 Sprat in the English Channel (divisions.de)

The stock structure of sprat populations in this region is not clear, despite evidence from acoustic surveys suggesting the stock is mainly confined to the UK side of 7.e. Further investigations and work is required to resolve this uncertainty.

### 12.1 The Fishery

### 12.1.1 ICES advice applicable for 2018 and 2019

The TAC for the English Channel (7.d and e) was set equal to 3296 and 2637 tonnes for 2018 and 2019, respectively.

### 12.1.2 Landings

The total sprat landings by country are provided in Table 12.1.1. Total landings from the international sprat fishery are available since 1950 (Figure 12.1.1.). Sprat landings prior to 1985 in $7 . \mathrm{de}$ were extracted from official catch statistics dataset (STATLANT27, Historical Nominal Catches 1950-2010, Official Nominal Catches 2006-2013), from 1985 onwards they come from WG estimates. Since 1985 sprat catch has been taken mainly by UK, England and Wales. According to official catch statistics large catches were taken by Danish trawlers in the English Channel between the late 1970s and 1980s. The identity of these catches was not confirmed by the Danish data managers, raising the question of whether those reported catches were the result of species misreporting (i.e. herring misreported as sprat). Therefore, ICES cannot verify the quality of catch data prior to 1988.

The fishery starts in August and runs into the following year into February and sometimes March. Most of the catch is taken in 7.e, in particular in the Lyme Bay area. In the last decade catch from UK covered about $99 \%$ of landed sprat, however in 2015 and 2016 this percentage diminished, with Netherlands, Denmark, and for the first time in the whole times series, Germany, contributing to about $11 \%$ of the reported landings. In $2018,21 \%$ of the catches were reported from Denmark with the rest being reported by UK (England, Wales and Northern Ireland). UK has a history of taking the majority of the total landings.
Sprat is found by sonar search and sometimes the shoals are found too far offshore for sensible economic exploitation. This offshore/near shore shift may be related to environmental changes such as temperature and/or salinity.

### 12.1.3 Fleets

In the English Channel the primary gear used for sprat is midwater trawl. Within that gear type three vessels under 15 m have actively target sprat and have been responsible for the majority of landings (since 2003 they took on average $96 \%$ of the total landings). Sprat is also caught by driftnet, fixed nets, lines and pots and most of the landings are sold for human consumption.

### 12.1.4 Regulations and their effects

There is a TAC for sprat in ICES divisions 7.de, English Channel. Up until the recent period the TAC was not limiting for the sprat landing in the area (Figure 12.1.2).

### 12.1.5 Changes in fishing technology and fishing patterns

There is insufficient information available.

### 12.2 Biological Composition of the Catch

### 12.2.1 Catches in number and weight-at-age

In 2017/2018 fishing season a pilot self-sampling programme started in the South West of UK, involving sprat fisherman from Lyme bay. The skippers have been collecting length frequency distribution of the catches and they have been recording information on fishing trips. The main processors for the fishery have been engaged as well and asked to provide length-weight data from catch subsamples. The length in the fisherman samples ranged from 11 to 15 cm (Figure 12.2.1). The length structure in the processors sample are slightly smaller: few very small individuals have been measured, and the bulk of the catches start from 8 cm up to 15 (Figure 12.2.2).

Four length samples (2 in January and 2 in December) were also collected by the UK within the Data Collection Framework: The length distribution echoes those provided by the skippers within the self-sampling programme (Figure 12.2.3).

Last year was the first year that length frequency distribution for sprat in the English Channel were presented at HAWG. The sampling programme is intended to continue in the future. The data shown are raw numbers-at-length in the samples, and not yet raised to the total catches.

### 12.3 Fishery-independent information

## PELTIC Acoustic Survey

A pelagic survey was undertaken in autumn in the English Channel and Eastern Celtic Sea to acoustically asses the biomass of the small pelagic fish community within this area (divisions 7.d-g). This survey, conducted from the RV Cefas Endeavour, is divided into three geographically separated regions: the western English Channel, the Isles of Scilly and the Bristol Channel (Figure 12.3.1). In 2017, the survey was expanded to cover the southern area of division 7.e and in 2018 was further extended in to division 7.d

Calibrated acoustic data were collected during daylight hours only over three frequencies (38, $120,200 \mathrm{kHz}$ ) from transducers mounted on a lowered drop keel at 8.2 m below the surface. Pulse duration was set to $0.516 \mathrm{~m} / \mathrm{s}$ for all three frequencies and the ping rate was set to $0.6 \mathrm{~s}^{-1}$ as the depth did not exceed 100 m . Data from 38 kHz was used to determine target species abundance for all swim bladder fish. To distinguish between organisms with different acoustic properties (echotypes) a multifrequency algorithm was developed, principally based on a threshold applied to the summed backscatter of the three frequencies, eventually resulting in separate echograms for each of the echotypes.

The acoustic data were then processed using the echoR software. The global area has been split into several strata. For each strata, energies where converted into biomass by applying catch ratio and then weighted by abundance of fish in the haul surrounded area.

## Biological data

Biological information from trawl catches carried out during the PELTIC acoustic survey, identified 4 age classes from 0 to 3 contributing on average to $25 \%, 33 \%, 36 \%$, and $6 \%$ respectively in the samples collected. The age structured observed in 2018 is shown in Figure 12.3.2. Sex ratio is on average skewed towards female, which contributed to $72 \%$ of the sampled fish.

## FSP Acoustic Survey off the western English Channel

In October 2011 and 2012, two Fisheries Science Partnership (FSP) surveys were conducted covering the Lyme bay area, where the main sprat population is thought to be concentrated during the onset of the fishing season (September-October).

The estimated sprat biomasses were similar in both years. In 2012, both estimates (2011, and 2012) were re-computed using a new more robust Target Strength (TS) published for herring (Saunders et al., 2012), which has brought down the estimates but still shows a healthy population. The revised 2011 sprat biomass estimate is 33861 tonnes and the estimate for 2012 is 27971 tonnes.

## Biological data

Biological information from trawl catches carried out during the FSP acoustic survey where sampling information was available, suggested that most ( $73.1 \%$ by number) of the sprat were mature (spent), with $26.9 \%$ immature, and that the sex ratio slightly favored females (59:41). Four age classes were identified: $0,1,2$ and 3 , contributing $1.5 \%, 8.9 \%, 70.1 \%$ and $19.4 \%$ to the population by number, respectively. Low numbers of the 0 and 1 age groups may be the result of gear selectivity. The observed low numbers of sprat age 4 and older could be the result of exploitation as the fishery targets the larger fish for human consumption. However, just three of the trawl hauls contained good samples of sprat, so it is equally possible that the age $4+$ sprat were undersampled because of their different geographic distribution or behavior.

## IBTS Q1 in the Eastern English Channel

Starting in 2006, the French in quarter 1 started to carry out additional tows in the Eastern English Channel as part of the standard IBTS survey. This proved successful and starting in 2007 the RV ‘Thalassa' carried out 8 GOV trawls and 20 MIK stations.

During the IBTSWG in 2009, Roundfish Area 10 was created to cover these new stations fished by France and the Netherlands.
Data are stored in DATRAS database and available for the period 2007 to 2012.

### 12.4 Mean weight-at-age and maturity at age

No data on mean weight-at-age or maturity-at-age in the catch are available.

### 12.5 Recruitment

The acoustic surveys may provide an index of sprat recruitment in divisions 7.d-e. However further work is required.

### 12.6 Stock Assessment

An attempt for an analytical assessment was carried out for sprat in the English Channel (WKSPRAT, 2013) but was considered preliminary and still not suitable to be used as a basis for advice. A Landing per Unit Effort index (LPUE) based on hours at sea of between 2 and 4 vessels in the Lyme Bay area was used as basis for the assessment until 2015; in 2016 the LPUE was replaced by the PELTIC acoustic survey index, which is currently used as a basis for advice of the sprat stock in divisions 7.d-e.

The advice is based on the ICES framework for category 3 stocks using the ratio between average of the two latest values from the PELTIC acoustic survey and the average of the three preceding values multiplied by the recent ICES advised catch.

The recent workshop on management strategy evaluations (WKSpratMSE, 2018) concluded that for short lived species the " 2 over 3 " rule was not dynamic enough and a " 1 over 2 " rule was tested and found to be not precautionary. Further work is due to be carried out in the autumn of 2019 to develop a more appropriate method for providing advice for sprat and other short-lived species.

### 12.6.1 Data exploration

## Biomass Index

A 6-years time-series of biomass estimates from the PELTIC survey is shown in Table 12.6.1: despite being a short time series, the acoustic survey covers a much wider area compared to the original survey carried out in partnership with the fishery. The stock identity for sprat in the Channel is still unclear. However, the extension of the survey into ICES division 7.d and the southern part of 7.e suggests that the stock is mainly located in the more Northerly part of division 7.e during October. The survey conducted in 2018 showed very low numbers of sprat, mainly 0 year old's, in the southern area of 7.e. The transects located in the very eastern part of division 7.e seems to confirm that the sprat stock in the western English Channel do not extend in to the Eastern English Channel (Figure 12.6.1).

Sprat was in general the dominant small pelagic species in the trawl samples, with highest densities in the eastern parts of the western Channel and the Bristol Channel. As in previous years, large schools in the Bristol Channel appeared to consist mainly of juvenile sprat, whereas those in the English Channel also included larger size classes. For more details on the survey design please refer to ICES 2015/SSGIEOM:05.

The age distribution of sprat in the survey area shows a marked distinction between the young fish (0 and 1) found in the Bristol Channel and the older age classes that occupy the Western English Channel. Whether the two clusters belong to the same stock has yet to be proved: the circulation pattern of the area would allow sprat eggs/larvae to travel northward, from division 7.e to 7.g; however, the formation of a front in late spring/early summer seems to suggest the hypothesis of two different stocks.

In 2018 the biomass index from the PELTIC acoustic survey was used to provide advice on sprat in Division 7.d-e applying the " 2 over 3" rule (ratio between average biomass of the last 2 years and average biomass of the previous 3 years). The index was also used to provide an indication of the current harvest rate.

The biomass, as estimated by the survey for the English Channel strata only, is stable at high levels in 2013-2014. This trend is followed by a $23 \%$ decrease in 2015 and an $85 \%$ drop in 2016 to its lowest level of the series. The estimates for 2017 resulted in an upward rescaling (by 3 times) of the biomass compared to 2016, but still remained at about half the values observed at the beginning of the time series (Table 12.6.1, Figure 12.6.2). A slight decline in biomass was observed in 2018.

## Landings per Unit of Effort

A data exploration for English Channel sprat was carried out in 2013 at the benchmark workshop WKSPRAT. An LPUE time-series for English Channel sprat based on mid-water trawler data was constructed and used as the basis for advice until 2015. In 2016 the LPUE index was replaced as basis for advice by the PELTIC acoustic survey, which is deemed to provide a more accurate representation of the stock status. The index is shown here as it provides an indication of the
stock development over time due to the long time series, but it is no longer used for the assessment.

The LPUE was based on data from $\sim$ three $<15 \mathrm{~m}$ vessels that target sprat in the area: the time series was revised in 2017 to account for changes in the database and has been recalculated using days instead of hours, as this information is no longer available (Table 12.6.2 and Figure 12.6.3). Vessels considered for LPUE calculations have been making use of standard sonar technology to locate the fish throughout the period of analysis and no other major technical advances need to be factored out. Also, these vessels account for on average $95 \%$ of total landings for the area. The LPUE was computed seasonally from 1 August to 31 March. If there were no landings in August or March, the effort in those months were excluded from the computation.

The index shows an increasing trend over the time series with the highest values observed between 2010 and 2014. A slight drop is observed in 2015 stabilizing around $9000 \mathrm{~kg} /$ day (Figure 12.6.3), two to three times higher than that observed at the beginning of the time series.

### 12.7 State of the Stock

The acoustic estimates for 2017 show a three-time increase compared to the all-time low value in 2016, even though the biomass is still half of the high levels recorded in the period 2013-2015. The estimate in 2018 shows a slight decline on the 2017 value but is still twice that of the lowest level of the time series. The harvest rate index (Figure 12.7.1) has dropped from the value of $34 \%$ recorded in 2016 to less than 15\% which is higher than that observed in 2013-2015.

## CATCH ADVICE

Catch advice for 2019 is based on the 5 years (2014-2018) acoustic estimates. Discards occur but are believed to be negligible, therefore the advice is for catch. The advice is based on category 3.2 (WKLIFE, 2012) according to the data and analyses available and uses the " 2 over 3 " rule for the calculation of a catch multiplier to be applied to last year catch advice. The ratio resulting from the " 2 over 3 " rule is 0.47 ; a $20 \%$ uncertainty cap is applied, which means that a reduction of maximum $20 \%$ of last year advised catch (1883 tonnes) is recommended; hence, ICES advise that catch in 2020 should not exceed 1506 tonnes.

### 12.8 Short term projections

No projections are presented for this stock.

### 12.9 Reference Points

No precautionary reference points are defined for sprat populations in this region due to uncertainty in stock definition.

An attempt was made to estimate reference points for this stock following ICES guidelines and using the SPiCT model: convergence was achieved using only the last 5 years of the time series and, despite converging, the confidence intervals around the estimated variables were huge, indicating that the data are not informative and the results not reliable. One year of length frequency distribution is available for this stock: however, length-based reference points are not considered suitable for such short lived species. An upcoming benchmark in 2018 will discuss the issues and propose some solutions.

### 12.10 Quality of the Assessment

The coverage of the PELTIC acoustic survey was extended in 2017 towards the southern part of Division 7.e: this extension confirmed that the bulk of the sprat distribution in 7.e is located in Lyme Bay and surrounding areas, and very little extend outside. In fact, the transects carried out off the French coast found very little sprat, mostly of ages 0 and 1 .

The extent to which the population migrate into Division 7.d was investigated during the 2018 survey. The survey showed that very little sprat was found on the eastern border of division 7.e suggesting no movements of sprat between the two areas and very little was found in 7.d.

Concerns have been raised about the connection between the Western English Channel stock and the Bristol Channel, where large numbers of juveniles are found. The most plausible hypothesis is that the pool of young fish in the Bristol Channel contribute mainly to the Irish Sea population. Investigations are continuing to resolve this uncertainty.

### 12.11 Management Considerations

Sprat is a short-lived species with large inter-annual fluctuations in stock biomass. The natural inter-annual variability in stock abundance, mainly driven by recruitment variability, is high and does not appear to be strongly influenced by the observed levels of fishing effort.

Sprat annual landings from 7.d-e over the past 20 years have been 2990 tonnes on average. The harvest rate, estimated as the ratio between catches and the acoustic index, is low (around 10\%) throughout the 5 -year time series available, with the exception of 2016 value (34\%). In general, however, it seems that Lyme Bay, where most of the fishery occurs, consistently hosts quite substantial level of the sprat stock: this is confirmed by the fact that even in 2016, when the estimated biomass is overall very low, Lyme Bay still contributed to $50 \%$ of the total sprat population in the Western English Channel. This is also supported by the high LPUE values observed in the last few years.

The strong biomass fluctuations observed in the acoustic index and the relatively strong increase in biomass observed in 2017, suggests that the low level of catch is not impairing the recovery of the stock and that the decline in sprat biomass is not to be ascribed to fishing mortality, but it is most likely caused by environmental factors.

### 12.12 Ecosystem Considerations

Multispecies investigations have demonstrated that sprat is one of the important prey species in the North Sea ecosystem, for both fish and seabirds. At present, there are no analysis available on the total amount of sprat, and in general of other pelagic species, taken by seabirds, marine mammals and large predators in the Celtic Seas Ecoregion. However, a wide spectrum of data that covers the whole trophic chains have been collected during the PELTIC acoustic survey: these data in the future will be able to provide a substantial contribution to knowledge available in the area.

Table 12.1.1 Sprat in 7.d-e. Landings of sprat, 1985-2018.

| Country | Denmark | France | Netherlands | UK Eng+Wales+N.Irl. | UK Scotland | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 0 | 14 | 0 | 3771 | 0 | 0 | 3785 |
| 1986 | 15 | 0 | 0 | 1163 | 0 | 0 | 1178 |
| 1987 | 250 | 23 | 0 | 2441 | 0 | 0 | 2714 |
| 1988 | 2529 | 2 | 1 | 2944 | 0 | 0 | 5476 |
| 1989 | 2092 | 10 | 0 | 1520 | 0 | 0 | 3622 |
| 1990 | 608 | 79 | 0 | 1562 | 0 | 0 | 2249 |
| 1991 | 0 | 0 | 0 | 2567 | 0 | 0 | 2567 |
| 1992 | 5389 | 35 | 0 | 1791 | 0 | 0 | 7215 |
| 1993 | 0 | 3 | 0 | 1798 | 0 | 0 | 1801 |
| 1994 | 3572 | 1 | 0 | 3176 | 40 | 0 | 6789 |
| 1995 | 2084 | 0 | 0 | 1516 | 0 | 0 | 3600 |
| 1996 | 0 | 2 | 0 | 1789 | 0 | 0 | 1791 |
| 1997 | 1245 | 1 | 0 | 1621 | 0 | 0 | 2867 |
| 1998 | 3741 | 0 | 0 | 1973 | 0 | 0 | 5714 |
| 1999 | 3064 | 0 | 1 | 3558 | 0 | 0 | 6623 |
| 2000 | 0 | 1 | 1 | 1693 | 0 | 0 | 1695 |
| 2001 | 0 | 0 | 0 | 1349 | 0 | 0 | 1349 |
| 2002 | 0 | 0 | 0 | 1196 | 0 | 0 | 1196 |
| 2003 | 0 | 2 | 72 | 1368 | 0 | 0 | 1442 |
| 2004 | 0 | 6 | 0 | 836 | 0 | 0 | 842 |
| 2005 | 0 | 0 | 0 | 1635 | 0 | 0 | 1635 |
| 2006 | 0 | 7 | 0 | 1969 | 0 | 0 | 1976 |
| 2007 | 0 | 0 | 0 | 2706 | 0 | 0 | 2706 |
| 2008 | 0 | 0 | 0 | 3367 | 0 | 0 | 3367 |
| 2009 | 0 | 2 | 0 | 2773 | 0 | 0 | 2775 |
| 2010 | 0 | 2 | 0 | 4408 | 0 | 0 | 4410 |
| 2011 | 0 | 1 | 37 | 3138 | 0 | 0 | 3176 |


| Country | Denmark | France | Netherlands | UK Eng+Wales+N.Irl. | UK Scotland | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2012 | 6 | 2 | 8 | 4458 | 0 | 0 | 4474 |
| 2013 | 0 | 0 | 0 | 3793 | 0 | 0 | 3793 |
| 2014 | 45 | 0 | 275 | 3338 | 0 | 0 | 3658 |
| 2015 | 0 | 1 | 352 | 2659 | 0 | 0 | 3012 |
| 2016 | 185 | 7 | 231 | 2867 | 0 | 49 | 3339 |
| 2017 | 0 | 0 | 235 | 2498 | 0 | 0 | 2733 |
| 2018 | 474 | 1 | 0 | 1776 | 0 | 0 | 2252 |

Table 12.6.1. Sprat in 7.d-e. Annual sprat biomass in ICES Subdivision 7.e (Source: Cefas annual pelagic acoustic survey).

| Survey | Area | Season | 2011 | 2012 | $\mathbf{2 0 1 3}$ | $\mathbf{2 0 1 4}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Partial | Lyme Bay | Oct | 33861 | 24246 | 62040 | 67538 | 12212 | 6181 | 29996 | 15310 |
| FSP | Lyme Bay* | Oct | 33861 | 27971 |  |  |  |  |  |  |
| PELTIC | W Eng Ch | May | 85358 |  |  |  |  |  |  |  |
| PELTIC | W Eng Ch | Oct |  | 70680 | 85184 | 65219 | 9826 | 32751 | 17091 |  |
| * |  |  |  |  |  |  |  |  |  |  |

* ICES rectangles 29E6, 30E6

Table 12.6.2. Sprat in 7.d-e. Landings per unit effort (LPUE) for 3 vessels that target sprat. The years refer to the start of the season 1 August year ( y ) to 31 March in year ( $\mathrm{y}+1$ ). Please note that LPUE for 2018 and 2019 is estimated as kg/day, as number of hours were not available.

| Year | HAWG 2015 | HAWG 2016 | HAWG 2017 | HAWG 2018 | HAWG 2019* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 | 283 | 283 | 624 | 3815 | 3815 |
| 1989 | 668 | 682 | 395 | 4432 | 4432 |
| 1990 | 429 | 429 | 569 | 3684 | 3684 |
| 1991 | 528 | 528 | 481 | 4147 | 4147 |
| 1992 | 422 | 422 | 560 | 3887 | 3784 |
| 1993 | 630 | 630 | 850 | 4779 | 4737 |
| 1994 | 742 | 747 | 612 | 7809 | 7809 |
| 1995 | 599 | 599 | 899 | 5831 | 5831 |
| 1996 | 803 | 803 | 927 | 6768 | 6768 |
| 1997 | 868 | 868 | 601 | 6845 | 6808 |


| Year | HAWG 2015 | HAWG 2016 | HAWG 2017 | HAWG 2018 | HAWG 2019* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1998 | 736 | 736 | 971 | 6794 | 6794 |
| 1999 | 970 | 970 | 844 | 8919 | 8919 |
| 2000 | 631 | 683 | 732 | 8369 | 8369 |
| 2001 | 508 | 521 | 944 | 5976 | 5976 |
| 2002 | 598 | 644 | 622 | 5992 | 5992 |
| 2003 | 352 | 375 | 841 | 4215 | 4190 |
| 2004 | 588 | 588 | 1108 | 5938 | 5841 |
| 2005 | 1050 | 1050 | 1388 | 8820 | 8820 |
| 2006 | 992 | 992 | 1059 | 8035 | 8035 |
| 2007 | 1050 | 1050 | 945 | 8241 | 8241 |
| 2008 | 1029 | 1029 | 890 | 8085 | 8085 |
| 2009 | 773 | 773 | 1388 | 7474 | 7474 |
| 2010 | 1527 | 1527 | 1288 | 13260 | 13260 |
| 2011 | 1042 | 1042 | 1709 | 9801 | 9801 |
| 2012 | 1904 | 1904 | 1870 | 13475 | 13475 |
| 2013 | 1933 | 1933 | 2225 | 11398 | 11398 |
| 2014 | 2413 | 2405 | 1683 | 11977 | 11977 |
| 2015 |  | 2221 | 1765 | 8763 | 8763 |
| 2016 |  |  | 624 | 9459 | 9459 |
| 2017 |  |  |  | 9515 | 9457 |
| 2018 |  |  |  |  | 8373 |



Figure 12.1.1. Sprat in 7.d-e. Landings of sprat 1950-2018.


Figure 12.1.2. Sprat in 7.d-e. ICES catch (blue line) and agreed TAC (red line) from 2000 to 2019.


Figure 12.2.1. Sprat in 7.d-e. Length frequency distribution of sprat for 4 samples collected by one vessel from the Lyme bay area within a self-sampling programme.


Figure 12.2.2. Sprat in 7.d-e. Length frequency distribution of sprat from samples in November (right) and December (left) collected by one processor in the Lyme Bay area within a self-sampling programme.


Figure 12.2.3. Sprat in 7.d-e. Length frequency distribution of sprat from samples in Quarter 1 (left) and quarter 4 (right) provided by UK within the Data Collection Framework.


Figure 12.3.2. Sprat in 7.d-e. Proportion of numbers-at-age in the biological sample collected during the 2018 PELTIC acoustic survey


Figure 12.3.1. Sprat in 7.d-e. Survey design with acoustic transects (blue lines), zooplankton stations (red squares) and oceanographic stations (yellow circles).


Figure 12.6.1. Sprat in 7.d-e. Acoustic backscatter attributed to sprat per 1 nmi equidistant sampling unit (EDSU) during October.


Figure 12.6.2. Sprat in 7.d-e. Biomass of sprat estimated from the PELTIC acoustic survey from 2013 to 2018 for Division 7.e (red line) and the Lyme Bay area (blue line).


Figure 12.6.3. Sprat in 7.d-e. LPUE (kg/day). LPUE time series from 1989 to 2018.


Figure 12.7.1. Sprat in 7.d-e. Harvest rate index (ratio between landings and PELTIC acoustic survey biomass estimate).

# 13 Sprat in the Celtic Seas (subareas 6 and 7) 

Most sprat fisheries in the Celtic Seas area are sporadic and occur in different places at different times. Separate fisheries have taken place in the Minch, and the Firth of Clyde (6.aN); in Donegal Bay (6.aS); Galway Bay and in the Shannon Estuary (7.b); in various bays in 7.j; in 7.aS; in the Irish Sea and in the English Channel (7.d-e). A map of these areas is provided in Figure 13.1.
The stock structure of sprat populations in this ecoregion is not clear. In 2014, HAWG presented an update of the available data on these sprat populations, in a single chapter. However, HAWG does not necessarily advocate that 6 and 7 constitutes a management unit for sprat, and further work is required to resolve the problem.

### 13.1 The Fishery

### 13.1.1 ICES advice applicable for 2019 and 2020

ICES analyzed data for sprat in the Celtic Sea and West of Scotland. Currently there is no TAC for sprat in this area, and it is not clear whether there should be one or several management units. ICES stated that there is insufficient information to evaluate the status of sprat in this area. Therefore, based on precautionary consideration, ICES advised that catches should not be allowed to increase in 2019. The TAC for the English Channel (7.d and e) is the only one in place for sprat in this area.

### 13.1.2 Landings

The total sprat landings, by ICES Subdivision (where available) are provided in tables 13.1.113.1.8 and in figures 13.2.1-13.2.8.

## Division 6.a (West of Scotland and Northwest of Ireland)

Landings have been dominated by UK-Scotland and Ireland (Table 10.1.1). The Scottish fisheries have taken place in both the Minch and in the Firth of Clyde. The Irish fishery has always been in Donegal Bay. Despite the wide separation of these areas, the trends in landings between the two countries are similar, though the UK data have been higher. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length.
The Scottish fishery is mainly for human consumption and is typically a winter fishery taking place in November and December, occasionally continuing into January. Landings were high in the early part of the time series peaking with average annual landings of $\sim 7000 t$ in the period 1972 to 1978 (Figure 10.2.1). Landings were low for a period after this until a second peak in the period 1995 to 2000 where landings averaged just around 4600 tonnes annually. In 2005 to 2009 the fishery was virtually absent but has slowly picked up again since 2010. In 2013 landings reached 968 tonnes, lower than in 2012, but then increased again in the last 3 years, until 2176 t in 2016. In 2015 Irish landings were higher than the Scottish ones, with 1300 t , but decreased again to low values in 2016. 2018 landing were only recorded for Ireland and much lower than that of 2017, 1 tonne in total.

## Division 7.a

The main historic fishery was by Irish boats, in the 1970s, in the western Irish Sea. This was an industrial fishery and landings were high throughout the 1970s, peaking at over 8000 t in 1978
(figures $13.2 .2-3$ ). The fishery came to an end in 1979, due to the closure of the fish meal factory in the area. It is not known what proportion of the catch was made up of juvenile herring, though the fishing grounds were in the known herring nursery areas. In the late 1990s and early 2000s, UK vessels landed up to 500 t per year. In recent years a trial fishery for sprat was carried out by the vessels that fish herring in the area. This was carried out to investigate the feasibility of a clean commercially viable sprat fishery. The results of the trials were inconclusive and plans to conduct further experiments are under discussion.
Irish Landings from 1950-1994 may be from 7.aN or 7.aS. Very high catches in 7.aS were reported in 2012 (Table 13.1.3) with a decrease in 2013 and only 16 t reported in 2014. In 2015 the catches raised again to over $3500 t$ and dropped again to less than 1000 t in 2016. Despite the high catches registered in some years, those figures should be interpreted with caution because they may be over-estimated. No landings from 7.aN were reported in 2009-2013 or 2018 (Table 13.1.2), however there have been reported landings of 522 t in 2014, 771 t in 2015 and 150 t in 2016 and 2017. With the exception of 2014, the last decade, Irish landings are mainly from 7.aS, predominantly from Waterford Harbour.

## Divisions 7.b-c (West of Ireland)

Sporadic fisheries have taken place, mainly in Galway Bay and the Mouth of the Shannon. The highest recorded landings were in 1980 and 1981 during the winter of 1980/1981, when over 5000 t were landed by Irish boats (Table 13.1.4, Figure 13.2.4). This fishery took place in Galway Bay in the winter of 1980/1981 (Department of Fisheries and Forestry, 1982). Since the early 1990s landings fluctuated from very low levels to no more than 700 t per year in 2000 . Zero catches were reported for 2016, increasing to above 500 tonnes in the two most recent years. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length.

## Divisions 7.g-k (Celtic Sea)

Sprat landings in the Celtic Sea from 1985 onwards are WG estimates. In the Celtic Sea, Ireland has dominated landings. Patterns of Irish landings in divisions 7.g and 7.j are similar, though the 7.j landings have been higher. Landings for 7.g and 7.j were aggregated in this report. Landings have increased from low levels in the early 1990s, with catches fluctuating between 0 t in 1993 and just under 4200 t in 2005 (Table 13.1.7). The average catches in the last 10 years were equal to 2452 t . Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length.

## Divisions 7.d-e (English Channel)

Please refer to Section 12 (Sprat in subarea 7.de).

### 13.1.3 Fleets

Most sprat in the Celtic Seas Ecoregion are caught by small pelagic vessels that also target herring, mainly Irish, English and Scottish vessels. In Ireland, many polyvalent vessels target sprat on an opportunistic basis. At other times these boats target demersals and tuna, as well as other small pelagics. Targeted fishing takes place when there are known sprat abundances. However, the availability of herring quota is a confounding factor in the timing of a sprat-targeted fishery around Ireland.

Sprat may also be caught in mixed shoals with herring. The level of discarding is unknown, but based on a limited number of samples available to the working group this is estimated to be less than $1 \%$ of the catch.

In the English Channel the primary gear used for sprat is midwater trawl. Within that gear type between two and four vessels under 15 m have actively target sprat and have been responsible for the majority of landings (since 2003 they took on average $96 \%$ of the total landings). In the most recent year only three of the vessels have been targeting sprat. Sprat is also caught by driftnet, fixed nets, lines and pots and most of the landings are sold for human consumption.

In Ireland, larger sprats are sold for human consumption whilst smaller ones for fish meal. Other countries mainly land catches for industrial purposes.

### 13.1.4 Regulations and their effects

There is a TAC for sprat for 7.d-e, English Channel. No other TACs or quotas for sprat exist in this ecoregion. Most sprat catches are taken in small-mesh fisheries for either human consumption or reduction to fish meal and oil. It is not clear whether bycatches of herring in sprat fisheries in Irish and Scottish waters are subtracted from quota.

### 13.1.5 Changes in fishing technology and fishing patterns

There is insufficient information available.

### 13.2 Biological Composition of the Catch

### 13.2.1 Catches in number and weight-at-age

There is no information on catches in number or weight in the catch for sprat in this ecoregion.

### 13.2.2 Biological sampling from the Scottish Fishery (6a)

Between 1985 and 2002 the fishery was relatively well sampled and length and age data exists for this period with some gaps. Unfortunately, the data is not available electronically at the present time.

Sampling of sprat in 6.a came to an end in 2003 and no information on biological composition of catches exists in the period 2003-2011. Sampling was resumed in 2012 where a total of 8 landings were sampled. The sampling programme has been carried out since and it is anticipated that it will continue in the future.

### 13.3 Fishery-independent information

## Celtic Sea Acoustic Survey

The Irish Celtic Sea Herring Acoustic Survey was used to calculate sprat biomass. Biomass estimates for Celtic Sea Sprat for the period November 1991 to October 2014 are shown in Figure 13.3.1 and Table 13.3.1. However, the survey results prior to 2002 are not comparable with the latter surveys because different survey designs were applied.

Since 2004 the survey has taken place each October in the Celtic Sea. Due to the lack of reliable 38 kHz data in 2010, no sprat abundance is available for this year.

It can be seen that there are large inter-annual variations in sprat abundance. Large sprat schools were notably missing in 2006, and so no biomass could be calculated. The utility of this survey as an index of sprat abundance should be considered carefully (Fallon et al., 2012). Sprat is the second most abundant species observed from survey data. Sprat biomass over the time series up
to 2009 is highly variable, more so than could be accounted for by 'normal' inter survey variability (Figure 13.3.1). Biomass in 2015 is really high, while the value for 2016 dropped down again. This is in part due to the behaviour of sprats in the Celtic Sea which are often seen in the highest numbers after the survey has ended in November/December and again in spring during spawning. The survey is placed to coincide with peak herring abundance and is temporally mismatched with what would be considered sprat peak abundance.

## Scottish Acoustic Surveys

A Clyde herring and sprat acoustic survey was carried out in June/July 1985-1990 and then discontinued (Figure 13.3.2 for coverage). Biomass estimates from all years as well as lengths and ages from some years are available from this survey but not presented here.

In 2012 this survey was reinstated as an October/November survey for herring mainly. Full results from these surveys for sprats are not available at the moment. Age and length distribution from the survey in 2012 are in Figure 13.3.3. In 2013 the survey was cancelled due to technical problems but has been continued up to 2018.

## Scottish IBTS surveys

The Scottish West Coast IBTS has been carried out in Q1 since 1981 to the present and in Q4 from 1991 onwards (Figure 13.3.2). Although the survey is a ground fish bottom trawl survey it does catch sprat throughout the survey area. The survey provides numbers at length per haul and aggregated age-length keys on a sub area basis. In the period 1981 to 2012 a total of 1434 hauls were completed and approximately half of these caught sprat. Although the survey is still carried out the figure has not been updated in the last five years (2013 to 2018).

## Northern Ireland Groundfish Survey

The Agri-Food and Biosciences Institute of Northern Ireland (AFBINI) groundfish survey of ICES Division 7.aN are carried out in March and October at standard stations between $53^{\circ} 20^{\prime} \mathrm{N}$ and $54^{\circ} 45^{\prime} \mathrm{N}$ (see Stock Annex for more detail on the survey). Sprat is routinely caught in the groundfish surveys however; data were not available at the time of submission of this report.

## AFBI Acoustic Survey

The Agri-Food and Biosciences Institute of Northern Ireland (AFBINI) carries out an annual acoustic survey in the Irish Sea each September (see the Stock Annex for a description of the survey). While targeting herring, a sprat biomass is also calculated. The annual calculated biomass from 1998-2014 is shown in Figure 13.3.4 and Table 13.3.2. The biomass is estimated to have peaked in 2002 with 405000 t and it has declined since then to just under 95000 t in 2010 . Recent estimates suggest an increase with 2014 being the second highest estimate in the time series, followed by a decline in the final year of the survey. Spatial distribution of sprat at the time of the survey is shown in Figure 13.3.5. Further work is required to investigate the utility of this survey for measuring sprat biomass in this area. No further updates were provided to the working group.

## PELTIC Acoustic Survey

Please refer to Section 12 (Sprat in divisions 7.d-e).

## FSP Acoustic Survey off the western English Channel

Please refer to Section 12 (Sprat in divisions 7.d-e).
IBTS Q1 in the Eastern English Channel
Please refer to Section 12 (Sprat in divisions 7.d-e).

### 13.4 Mean weight-at-age and maturity at age

No data on mean weight at age or maturity at age in the catch are available.

### 13.5 Recruitment

The various ground fish and acoustic surveys may provide an index of sprat recruitment in this ecoregion. However further work is required.

### 13.6 Stock Assessment

An analytical assessment was carried out for sprat in the English Channel at WKSPRAT 2013 and requires further development prior to its acceptance. Currently, the only assessment carried out in the Celtic ecoregion is for sprat in 7.d-e and it is based on a survey index of biomass (Please refer to Section 12 - Sprat in divisions 7.d-e).

### 13.7 State of the Stock

The state of the sprat stock in the Celtic Seas is currently unknown and the data available are not enough to provide any indication on its status. The only assessment available in the area for this species is for sprat in the English Channel (for that, please refer to Section 12 of this report).

### 13.8 Short term projections

No projections are presented for this stock.

### 13.9 Reference Points

No precautionary reference points are defined for sprat populations in the region

### 13.10 Quality of the Assessment

The stock status is unknown and the Working Group does not have enough information to assess the status of the stock in relation to reference points.

### 13.11 Management Considerations

Sprat is a short-lived species with large inter-annual fluctuations in stock biomass. The natural inter-annual variability in stock abundance, mainly driven by recruitment variability, is high and does not appear to be strongly influenced by the observed levels of fishing effort.

The sprat has mainly been fished together with herring. The human consumption fishery only takes a minor proportion of the total catch. Within the current management regime, where there is a by-catch ceiling limitation of herring as well as by-catch percentage limits, the sprat fishery is controlled by these factors. Most management areas in this ecoregion do not have a quota for sprat. However, there is a quota in 7.d-e, English Channel, which has not been fully utilized.

### 13.12 Ecosystem Considerations

In the North Sea Multispecies investigations have demonstrated that sprat is one of the important prey species in the North Sea ecosystem, for both fish and seabirds. At present, there are no data available on the total amount of sprat, and in general of other pelagic species, taken by seabirds in the Celtic Seas Ecoregion.

The Celtic Seas Ecoregion is a feeding ground for several species of large baleen whales (O'Donnell et al., 2004-2009). These whales feed primarily on sprat and herring from September to February.

Table 13.1.1 Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2018, Division 6.a. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length. (tonnes)

| Country | Denmark | Faeroe Islands | Ireland | Norway | UK Eng+Wales+N.Irl. | UK <br> Scotland | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 0 | 0 | 51 | 557 | 0 | 2946 | 3554 |
| 1986 | 0 | 0 | 348 | 0 | 2 | 520 | 870 |
| 1987 | 269 | 0 | 0 | 0 | 0 | 582 | 851 |
| 1988 | 364 | 0 | 150 | 0 | 0 | 3864 | 4378 |
| 1989 | 0 | 0 | 147 | 0 | 0 | 1146 | 1293 |
| 1990 | 0 | 0 | 800 | 0 | 0 | 813 | 1613 |
| 1991 | 0 | 0 | 151 | 0 | 0 | 1526 | 1677 |
| 1992 | 28 | 0 | 360 | 0 | 0 | 1555 | 1943 |
| 1993 | 22 | 0 | 2350 | 0 | 0 | 2230 | 4602 |
| 1994 | 0 | 0 | 39 | 0 | 0 | 1491 | 1530 |
| 1995 | 241 | 0 | 0 | 0 | 0 | 4124 | 4365 |
| 1996 | 0 | 0 | 269 | 0 | 0 | 2350 | 2619 |
| 1997 | 0 | 0 | 1596 | 0 | 0 | 5313 | 6909 |
| 1998 | 40 | 0 | 94 | 0 | 0 | 3467 | 3601 |
| 1999 | 0 | 0 | 2533 | 0 | 310 | 8161 | 11004 |
| 2000 | 0 | 0 | 3447 | 0 | 0 | 4238 | 7685 |
| 2001 | 0 | 0 | 4 | 0 | 98 | 1294 | 1396 |
| 2002 | 0 | 0 | 1333 | 0 | 0 | 2657 | 3990 |
| 2003 | 887 | 0 | 1060 | 0 | 0 | 2593 | 4540 |
| 2004 | 0 | 0 | 97 | 0 | 0 | 1416 | 1513 |
| 2005 | 0 | 252 | 1134 | 0 | 13 | 0 | 1399 |
| 2006 | 0 | 0 | 601 | 0 | 0 | 0 | 601 |
| 2007 | 0 | 0 | 333 | 0 | 0 | 14 | 347 |
| 2008 | 0 | 0 | 892 | 0 | 0 | 0 | 892 |
| 2009 | 0 | 0 | 104 | 0 | 0 | 70 | 174 |
| 2010 | 0 | 0 | 332 | 0 | 0 | 537 | 869 |
| 2011 | 0 | 0 | 468 | 0 | 248 | 507 | 1223 |
| 2012 | 0 | 0 | 113 | 0 | 0 | 1688 | 1801 |


| Country | Denmark | Faeroe <br> Islands | Ireland | Norway | UK <br> Eng+Wales+N.Irl. | UK <br> Scotland | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | 0 | 0 | 487 | 0 | 0 | 968 | 1455 |
| 2014 | 0 | 0 | 3 | 0 | 0 | 1540 | 1543 |
| 2015 | 0 | 0 | 1305 | 0 | 0 | 1060 | 2365 |
| 2016 | 0 | 0 | 431 | 0 | 0 | 2177 | 2608 |
| 2017 | 0 | 0 | 604 | 0 | 0 | 1354 | 1958 |
| 2018 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

Table 13.1.2 Sprat in the Celtic Seas Ecoregion. Irish landings of sprat, 1985-2018 from Division 7.aN. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length. (tonnes)

| Country | Ireland | Isle of Man | UK Eng+Wales+N.Irl. | UK Scotland | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 668 | 0 | 20 | 0 | 688 |
| 1986 | 1152 | 1 | 6 | 0 | 1159 |
| 1987 | 41 | 0 | 0 | 0 | 41 |
| 1988 | 0 | 0 | 4 | 6 | 10 |
| 1989 | 0 | 0 | 1 | 0 | 1 |
| 1990 | 0 | 0 | 0 | 0 | 0 |
| 1991 | 0 | 0 | 3 | 0 | 3 |
| 1992 | 0 | 0 | 0 | 0 | 0 |
| 1993 | 0 | 0 | 0 | 0 | 0 |
| 1994 | 0 | 0 | 0 | 0 | 0 |
| 1995 | 0 | 0 | 30 | 0 | 30 |
| 1996 | 0 | 0 | 0 | 0 | 0 |
| 1997 | 0 | 0 | 2 | 0 | 2 |
| 1998 | 0 | 0 | 3 | 0 | 3 |
| 1999 | 0 | 0 | 146 | 0 | 146 |
| 2000 | 0 | 0 | 371 | 0 | 371 |
| 2001 | 0 | 0 | 269 | 3 | 272 |
| 2002 | 0 | 0 | 306 | 0 | 306 |
| 2003 | 0 | 0 | 592 | 0 | 592 |


| Country | Ireland | Isle of Man | UK <br> Eng+Wales+N.Irl. | UK Scotland | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2004 | 0 | 0 | 134 | 0 | 134 |
| 2005 | 0 | 0 | 591 | 0 | 591 |
| 2006 | 0 | 0 | 563 | 0 | 563 |
| 2007 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 0 | 0 | 2 | 0 | 2 |
| 2009 | 0 | 0 | 0 | 0 | 0 |
| 2010 | 0 | 0 | 0 | 0 | 0 |
| 2011 | 0 | 0 | 0 | 0 | 0 |
| 2012 | 0 | 0 | 0 | 0 | 0 |
| 2013 | 0 | 0 | 0 | 0 | 0 |
| 2014 | 522 | 0 | 0 | 0 | 522 |
| 2015 | 792 | 0 | 0 | 0 | 771 |
| 2016 | 150 | 0 | 0 | 0 | 150 |
| 2017 | 150 | 0 | 0 | 0 | 150 |
| 2018 | 0 | 0 | 0 | 0 | 0 |

Table 13.1.3 Sprat in the Celtic Seas Ecoregion. Irish landings of sprat, 1985-2018 from Division 7.aS. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length. (tonnes)

| Country | Ireland |
| :--- | :--- |
| 1985 | 0 |
| 1986 | 0 |
| 1987 | 0 |
| 1988 | 0 |
| 1990 | 0 |
| 1991 | 0 |
| 1992 | 0 |
| 1993 | 0 |


| 1995 | 0 |
| :---: | :---: |
| 1996 | 0 |
| 1997 | 0 |
| 1998 | 7 |
| 1999 | 25 |
| 2000 | 123 |
| 2001 | 7 |
| 2002 | 0 |
| 2003 | 3103 |
| 2004 | 408 |
| 2005 | 361 |
| 2006 | 114 |
| 2007 | 0 |
| 2008 | 102 |
| 2009 | 0 |
| 2010 | 433 |
| 2011 | 1535 |
| 2012 | 6261 |
| 2013 | 2545 |
| 2014 | 16 |
| 2015 | 3659 |
| 2016 | 935 |
| 2017 | 935 |
| 2018 | 1117 |

Table 13.1.4. Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2018, from divisions 7.b-c. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length. (tonnes)

| Country | Ireland |
| :---: | :---: |
| 1985 | 0 |
| 1986 | 0 |
| 1987 | 100 |
| 1988 | 0 |
| 1989 | 0 |
| 1990 | 400 |
| 1991 | 40 |
| 1992 | 50 |
| 1993 | 3 |
| 1994 | 145 |
| 1995 | 150 |
| 1996 | 21 |
| 1997 | 28 |
| 1998 | 331 |
| 1999 | 5 |
| 2000 | 698 |
| 2001 | 138 |
| 2002 | 11 |
| 2003 | 38 |
| 2004 | 68 |
| 2005 | 260 |
| 2006 | 40 |
| 2007 | 32 |
| 2008 | 1 |
| 2009 | 238 |
| 2010 | 0 |
| 2011 | 0 |
| 2012 | 23 |


| Country | Ireland |
| :--- | :--- |
| 2013 | 237 |
| 2014 | 0 |
| 2015 | 250 |
| 2016 | 0 |
| 2018 | 508 |

Table 13.1.5 Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2018, from divisions 7.d-e. (tonnes)

| Country | Denmark | France | Netherlands | $\begin{gathered} \text { UK } \\ \text { Eng+Wales+N.Irl. } \end{gathered}$ | UK Scotland | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 0 | 14 | 0 | 3771 | 0 | 0 | 3785 |
| 1986 | 15 | 0 | 0 | 1163 | 0 | 0 | 1178 |
| 1987 | 250 | 23 | 0 | 2441 | 0 | 0 | 2714 |
| 1988 | 2529 | 2 | 1 | 2944 | 0 | 0 | 5476 |
| 1989 | 2092 | 10 | 0 | 1520 | 0 | 0 | 3622 |
| 1990 | 608 | 79 | 0 | 1562 | 0 | 0 | 2249 |
| 1991 | 0 | 0 | 0 | 2567 | 0 | 0 | 2567 |
| 1992 | 5389 | 35 | 0 | 1791 | 0 | 0 | 7215 |
| 1993 | 0 | 3 | 0 | 1798 | 0 | 0 | 1801 |
| 1994 | 3572 | 1 | 0 | 3176 | 40 | 0 | 6789 |
| 1995 | 2084 | 0 | 0 | 1516 | 0 | 0 | 3600 |
| 1996 | 0 | 2 | 0 | 1789 | 0 | 0 | 1791 |
| 1997 | 1245 | 1 | 0 | 1621 | 0 | 0 | 2867 |
| 1998 | 3741 | 0 | 0 | 1973 | 0 | 0 | 5714 |
| 1999 | 3064 | 0 | 1 | 3558 | 0 | 0 | 6623 |
| 2000 | 0 | 1 | 1 | 1693 | 0 | 0 | 1695 |
| 2001 | 0 | 0 | 0 | 1349 | 0 | 0 | 1349 |
| 2002 | 0 | 0 | 0 | 1196 | 0 | 0 | 1196 |
| 2003 | 0 | 2 | 72 | 1368 | 0 | 0 | 1442 |
| 2004 | 0 | 6 | 0 | 0836 | 0 | 0 | 842 |


| Country | Denmark | France | Netherlands | UK Eng+Wales+N.Irl. | UK Scotland | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 0 | 0 | 0 | 1635 | 0 | 0 | 1635 |
| 2006 | 0 | 7 | 0 | 1969 | 0 | 0 | 1976 |
| 2007 | 0 | 0 | 0 | 2706 | 0 | 0 | 2706 |
| 2008 | 0 | 0 | 0 | 3367 | 0 | 0 | 3367 |
| 2009 | 0 | 2 | 0 | 2773 | 0 | 0 | 2775 |
| 2010 | 0 | 2 | 0 | 4408 | 0 | 0 | 4410 |
| 2011 | 0 | 1 | 37 | 3138 | 0 | 0 | 3176 |
| 2012 | 6 | 2 | 8 | 4458 | 0 | 0 | 4474 |
| 2013 | 0 | 0 | 0 | 3793 | 0 | 0 | 3793 |
| 2014 | 45 | 0 | 275 | 3358 | 0 | 0 | 3658 |
| 2015 | 0 | 1 | 346 | 2657 | 0 | 0 | 3012 |
| 2016 | 185 | 7 | 231 | 2867 | 0 | 49 | 3339 |
| 2017 | 0 | 0 | 235 | 2498 | 0 | 0 | 2733 |
| 2018 | 474 | 1 | 0 | 1776 | 0 | 0 | 2252 |

Table 13.1.6 Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2018, Division 7.f. (tonnes)

| Country | Netherlands | UK |  |
| :---: | :---: | :---: | :---: |
| 1985 | 273 | 0 | Total |
| 1986 | 0 | 0 | 273 |
| 1987 | 0 | 0 | 0 |
| 1988 | 0 | 0 | 0 |
| 1990 | 0 | 0 | 0 |
| 1991 | 0 | 0 | 0 |
| 1993 | 0 | 0 | 0 |
| 1995 | 0 | 0 | 0 |


| Country | Netherlands | UK Eng+Wales+N.Irl. | Total |
| :---: | :---: | :---: | :---: |
| 1996 | 0 | 0 | 0 |
| 1997 | 0 | 0 | 0 |
| 1998 | 0 | 51 | 51 |
| 1999 | 0 | 0 | 0 |
| 2000 | 0 | 0 | 0 |
| 2001 | 0 | 0 | 0 |
| 2002 | 0 | 0 | 0 |
| 2003 | 0 | 0 | 0 |
| 2004 | 0 | 0 | 0 |
| 2005 | 0 | 0 | 0 |
| 2006 | 0 | 0 | 0 |
| 2007 | 0 | 2 | 2 |
| 2008 | 0 | 0 | 0 |
| 2009 | 0 | 1 | 1 |
| 2010 | 0 | 7 | 7 |
| 2011 | 0 | 1 | 1 |
| 2012 | 0 | 2 | 2 |
| 2013 | 0 | 2 | 2 |
| 2014 | 0 | 1 | 1 |
| 2015 | 0 | 0 | 0 |
| 2016 | 0 | 1 | 1 |
| 2017 | 0 | 0 | 0 |
| 2018 | 0 | 0 | 0 |

Table 13.1.7 Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2018, divisions 7.g-k. Irish data may be underestimated due to difficulties in quantifying the landings from vessels of less than 10 m length. (tonnes)

| Country | Denmark | France | Ireland | Netherlands | Spain | UK Eng+Wales+N.Irl. | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 0 | 0 | 3245 | 0 | 0 | 0 | 3245 |
| 1986 | 538 | 0 | 3032 | 0 | 0 | 2 | 3572 |
| 1987 | 0 | 1 | 2089 | 0 | 0 | 0 | 2090 |
| 1988 | 0 | 0 | 703 | 1 | 0 | 0 | 704 |
| 1989 | 0 | 0 | 1016 | 0 | 0 | 0 | 1016 |
| 1990 | 0 | 0 | 125 | 0 | 0 | 0 | 125 |
| 1991 | 0 | 0 | 14 | 0 | 0 | 0 | 14 |
| 1992 | 0 | 0 | 98 | 0 | 0 | 0 | 98 |
| 1993 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1994 | 0 | 0 | 48 | 0 | 0 | 0 | 48 |
| 1995 | 250 | 0 | 649 | 0 | 0 | 0 | 899 |
| 1996 | 0 | 0 | 3924 | 0 | 0 | 0 | 3924 |
| 1997 | 0 | 0 | 461 | 0 | 0 | 6 | 467 |
| 1998 | 0 | 0 | 1146 | 0 | 0 | 0 | 1146 |
| 1999 | 0 | 0 | 3263 | 0 | 0 | 0 | 3263 |
| 2000 | 0 | 0 | 1764 | 0 | 0 | 0 | 1764 |
| 2001 | 0 | 0 | 306 | 0 | 0 | 0 | 306 |
| 2002 | 0 | 0 | 385 | 0 | 0 | 0 | 385 |
| 2003 | 0 | 0 | 747 | 0 | 0 | 0 | 747 |
| 2004 | 0 | 0 | 3523 | 0 | 0 | 0 | 3523 |
| 2005 | 0 | 0 | 4173 | 0 | 0 | 0 | 4173 |
| 2006 | 0 | 0 | 768 | 0 | 0 | 0 | 768 |
| 2007 | 0 | 0 | 3380 | 0 | 1 | 0 | 3381 |
| 2008 | 0 | 0 | 1358 | 0 | 0 | 0 | 1358 |
| 2009 | 0 | 0 | 3431 | 0 | 0 | 0 | 3431 |
| 2010 | 0 | 0 | 2436 | 0 | 0 | 0 | 2436 |
| 2011 | 0 | 0 | 1767 | 0 | 0 | 12 | 1779 |
| 2012 | 0 | 0 | 2632 | 0 | 0 | 0 | 2642 |


| Country | Denmark | France | Ireland | Netherlands | Spain | UK <br> Eng+Wales+N.Irl. | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | 0 | 0 | 1648 | 0 | 0 | 0 | 1648 |  |
| 2014 | 0 | 0 | 2311 | 0 | 0 | 0 | 2311 |  |
| 2015 | 0 | 0 | 3322 | 0 | 0 | 0 | 3322 |  |
| 2016 | 0 | 0 | 3248 | 0 | 0 | 0 | 1759 |  |
| 2017 | 10 | 0 | 1955 | 0 | 0 | 0 | 1965 |  |
| 2018 | 0 | 1755 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 13.1.8 Sprat in the Celtic Seas Ecoregion. Landings of sprat, 1985-2018. Total Landings, subareas 6 and 7. Irish data may be underestimated, due to difficulties in quantifying the landings from vessels of less than 10 m length. (tonnes)

| Country | Denmark | Faeroe Islands | France | Ireland | Isle of Man | Netherlands | Norway | Spain | UK <br> England \& Wales | UK <br> Scotland | Other. | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 0 | 0 | 14 | 3964 | 0 | 273 | 557 | 0 | 3791 | 2946 | 0 | 11545 |
| 1986 | 553 | 0 | 0 | 4532 | 1 | 0 | 0 | 0 | 1173 | 520 | 0 | 6779 |
| 1987 | 519 | 0 | 24 | 2230 | 0 | 0 | 0 | 0 | 2441 | 582 | 0 | 5796 |
| 1988 | 2893 | 0 | 2 | 853 | 0 | 2 | 0 | 0 | 2948 | 3870 | 0 | 10568 |
| 1989 | 2092 | 0 | 10 | 1163 | 0 | 0 | 0 | 0 | 1521 | 1146 | 0 | 5932 |
| 1990 | 608 | 0 | 79 | 1325 | 0 | 0 | 0 | 0 | 1562 | 813 | 0 | 4387 |
| 1991 | 0 | 0 | 0 | 205 | 0 | 0 | 0 | 0 | 2571 | 1526 | 0 | 4302 |
| 1992 | 5417 | 0 | 35 | 508 | 0 | 0 | 0 | 0 | 1791 | 1555 | 0 | 9306 |
| 1993 | 22 | 0 | 3 | 2353 | 0 | 0 | 0 | 0 | 1798 | 2230 | 0 | 6406 |
| 1994 | 3572 | 0 | 1 | 232 | 0 | 0 | 0 | 0 | 3178 | 1531 | 0 | 8514 |
| 1995 | 2575 | 0 | 0 | 799 | 0 | 0 | 0 | 0 | 1546 | 4124 | 0 | 9044 |
| 1996 | 0 | 0 | 2 | 4214 | 0 | 0 | 0 | 0 | 1789 | 2350 | 0 | 8355 |
| 1997 | 1245 | 0 | 1 | 2085 | 0 | 0 | 0 | 0 | 1629 | 5313 | 0 | 10273 |
| 1998 | 3781 | 0 | 0 | 1578 | 0 | 0 | 0 | 0 | 2027 | 3467 | 0 | 10853 |
| 1999 | 3064 | 0 | 0 | 5826 | 0 | 1 | 0 | 0 | 4014 | 8161 | 0 | 21066 |
| 2000 | 0 | 0 | 1 | 6032 | 0 | 1 | 0 | 0 | 2064 | 4238 | 0 | 12336 |
| 2001 | 0 | 0 | 0 | 455 | 0 | 0 | 0 | 0 | 1716 | 1297 | 0 | 3468 |


| 2002 | 0 | 0 | 0 | 1729 | 0 | 0 | 0 | 0 | 1502 | 2657 | 0 | 5888 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 887 | 0 | 2 | 4948 | 0 | 72 | 0 | 0 | 1960 | 2593 | 0 | 10462 |
| 2004 | 0 | 0 | 6 | 4096 | 0 | 0 | 0 | 0 | 970 | 1416 | 0 | 6488 |
| 2005 | 0 | 252 | 0 | 5928 | 0 | 0 | 0 | 0 | 2239 | 0 | 0 | 8419 |
| 2006 | 0 | 0 | 7 | 1523 | 0 | 0 | 0 | 0 | 2532 | 0 | 0 | 4062 |
| 2007 | 0 | 0 | 0 | 3745 | 0 | 0 | 0 | 1 | 2708 | 14 | 0 | 6468 |
| 2008 | 0 | 0 | 0 | 2353 | 0 | 0 | 0 | 0 | 3369 | 0 | 0 | 5722 |
| 2009 | 0 | 0 | 2 | 3773 | 0 | 0 | 0 | 0 | 2774 | 70 | 0 | 6619 |
| 2010 | 0 | 0 | 2 | 3200 | 0 | 0 | 0 | 0 | 4415 | 537 | 0 | 8154 |
| 2011 | 0 | 0 | 1 | 3770 | 0 | 37 | 0 | 0 | 3399 | 507.3 | 0 | 7714 |
| 2012 | 6 | 0 | 2 | 9029 | 0 | 8 | 0 | 0 | 4460 | 1688 | 0 | 15193 |
| 2013 | 0 | 0 | 0 | 4916 | 0 | 0 | 0 | 0 | 3795 | 968 | 0 | 9680 |
| 2014 | 45 | 0 | 0 | 2852 | 0 | 275 | 0 | 0 | 3339 | 1540 | 0 | 8050 |
| 2015 | 0 | 0 | 1 | 9328 | 0 | 346 | 0 | 0 | 2657 | 1060 | 0 | 13392 |
| 2016 | 185 | 0 | 7 | 4763 | 0 | 231 | 0 | 0 | 2868 | 2177 | 49 | 10280 |
| 2017 | 0 | 0 | 0 | 4318 | 0 | 235 | 0 | 0 | 2498 | 1354 | 0 | 8405 |
| 2018 | 484 | 0 | 1 | 3580 | 0 | 0 | 0 | 0 | 1776 | 0 | 0 | 5842 |

Table 13.3.1. Sprat in the Celtic Seas Ecoregion. Sprat biomass by year in the Celtic Sea (Source: MI Celtic Sea Herring Acoustic Survey, ICES, 2016).

| Year | Biomass (t) |
| :---: | :---: |
| Nov/Dec-91 | 36880 |
| Jan-92 | 15420 |
| Jan-92 | 5150 |
| Nov-92 | 27320 |
| Jan-93 | 18420 |
| Nov-93 | 95870 |
| Jan-94 | 8035 |
| Nov-95 | 75440 |
| 2002 | 20600 |
| 2003 | 1395 |
| 2004 | 14675 |
| 2005 | 29019 |
| 2008 | 5493 |
| 2009 | 16229 |
| 2011 | 31593 |
| 2012 | 35100 |
| 2013 | 44685 |
| 2014 | 33728 |
| 2015 | 83779 |
| 2016 | 28016 |

Table 13.3.2. Sprat in the Celtic Seas Ecoregion. Annual sprat biomass in ICES Division 7.a (Source: AFBI annual herring acoustic survey).

| Sprat \& 0-group herring |  |  |  | Sprat |
| :---: | :---: | :---: | :---: | :---: |
| Year | Biomass (t) | CV | \% sprat | Biomass (t) |
| 1994 | 68,600 | 0.1 | 95 | 65,200 |
| 1995 | 348,600 | 0.13 | n/a | n/a |
| 1996 | n/a | n/a | n/a | n/a |
| 1997 | 45,600 | 0.2 | n/a | n/a |
| 1998 | 228,000 | 0.11 | 97 | 221,300 |
| 1999 | 272,200 | 0.1 | 98 | 265,400 |
| 2000 | 234,700 | 0.11 | 94 | 221,400 |
| 2001 | 299,700 | 0.08 | 99 | 295,100 |
| 2002 | 413,900 | 0.09 | 98 | 405,100 |
| 2003 | 265,900 | 0.1 | 95 | 253,800 |
| 2004 | 281,000 | 0.07 | 96 | 270,200 |
| 2005 | 141,900 | 0.1 | 96 | 136,100 |
| 2006 | 143,200 | 0.09 | 87 | 125,000 |
| 2007 | 204,700 | 0.09 | 91 | 187,200 |
| 2008 | 252,300 | 0.12 | 83 | 209,800 |
| 2009 | 175,200 | 0.08 | 78 | 136,200 |
| 2010 | 107,400 | 0.1 | 87 | 93,700 |
| 2011 | 280,000 | 0.11 | 85 | 238,400 |
| 2012 | 171,200 | 0.11 | 95 | 162,600 |
| 2013 | 255,300 | 0.09 | 77 | 197,500 |
| 2014 | 393,000 | 0.1 | 93 | 367,100 |
| 2015 | 237,000 | 0.09 | 84 | 199,100 |
| 2016 |  |  |  | 236,000 |
| 2017 |  |  |  |  |
| 2018 |  |  |  |  |



Figure 13.1. Sprat in the Celtic Seas Ecoregion. Map showing areas mentioned in the text.


Figure 13.2.1. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2018 ICES Division 6.a.


Figure 13.2.2. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2018 ICES Division 7.aN. Note: Irish landings from 1973-1995 may be from 7.aN or 7.aS.


Figure 13.2.3. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2018 ICES Division 7.aS.


Figure 13.2.4. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2018 ICES divisions 7.b-c.


Figure 13.2.5. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2018 ICES divisions 7.d-e.


Figure 13.2.6. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2018 ICES Division 7.f.


Figure 13.2.7. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2018 ICES divisions 7.g-k.


Figure 13.2.8. Sprat in the Celtic Seas Ecoregion. Landings of sprat 1950-2018 ICES subareas 6 and 7 (Celtic Seas Ecoregion).


Figure 13.3.1. Sprat in the Celtic Seas Ecoregion. Estimated sprat biomass in the Celtic Sea. (Source: MI Celtic Sea Herring Acoustic Survey). Solid bars correspond to the period where the surveys are considered consistent.


Figure 13.3.2: Extent of Scottish surveys that may provide information about sprat in 6.a. In purple is the extent of the Clyde Herring and Sprat Acoustic Surveys carried out in July between 1985 and 1989 and again in October 2012. In green is the extent of the Sea Lochs Surveys carried out annually in Q1 and Q4 between 2001 and 2005. Red markers indicate all hauls from the Q1 and Q4 Scottish West Coast IBTS between 1985 and 2012.


Figure 13.3.3. Length and age of sprat caught in the October 2012 Clyde Herring and Sprat Acoustic Survey. Data from six hauls were combined giving equal weight to the age and length distribution in each haul. 1442 sprat were measured and 182 were aged.


Figure 13.3.4. Sprat in the Celtic Seas Ecoregion. Annual sprat biomass in ICES Division 7.aN.


Figure 13.3.5. Sprat in the Celtic Seas Ecoregion. Sprat acoustic densities in ICES Division 7.aN. Size of ellipse is proportional to square root of the fish density ( t n.mile ${ }^{-2}$ ) per 15-minute interval) for the UK (NI). September 2015 acoustic survey (AC(7.aN)) . Maximum density was 470 t n.mile ${ }^{-2}$.

## 14 References

Alexander, Karen A.; Heymans, Johanna J.; Magill, Shona; Tomczak, Maciej T.; Holmes, Steven J.; Wilding, Thomas A. 2015. Investigating the recent decline in gadoid stocks in the west of Scotland shelf ecosystem using a foodweb model. ICES JOURNAL OF MARINE SCIENCE, Vol. 72, No. 2, 2015, p. 436-449.

Beggs, S. 2007. Stock Identification of 0-group Herring in the Irish Sea (VIIaN): Otolith microstructure and shape. Working Document to ICES HAWG.

Beggs, S., -Jan Schon, P.-J.,McCurdy, W., Peel, J., McCorriston, P. and McCausland, I. 2008. Seasonal Origin of Irish Sea Herring. Working Document to ICES HAWG 2008. Bowers, A. 1964. 0-group herring in the North Irish Sea. Seasonal Report of the Marine Biological Station Port Erin, 77: 34-42.

Berg, Casper W., Nielsen, Anders and Kristensen, Kasper. 2014. Evaluation of alternative age-based methods for estimating relative abundance from survey data in relation to assessment models. Fisheries Research, 151: 91-99.

Burke, N., Brophy, D., and King, P. A. 2008. Otolith shape analysis: its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. - ICES Journal of Marine Science, 65: 1670-1675.

Burke, N., Brophy, D., Schön, P-J., and King, P. A. 2009. Temporal trends in stock origin and abundance of juvenile herring (Clupea harengus) in the Irish Sea. ICES Journal of Marine Science, 66: 1749-1753.

Clarke, M., and Egan, A. 2012. Evaluation of proposed long term management plan for Celtic Sea Herring. ICES CM 2012/ACOM:75. 48 pp.

Clarke, M., and Egan, A. 2017. "Good luck or good governance? The recovery of Celtic Sea herring." Marine Policy 78 (2017): 163-170.

Darby, C. D., \& Flatman, S. 1994. Lowestoft VPA Suite Version 3.1 User Guide. MAFF: Lowestoft.
EU 2016/0203 (NLE). Proposal for a COUNCIL REGULATION amending Regulations (EU) 2016/72 and (EU) 2015/2072 as regards certain fishing opportunities.

EU 2017/127. COUNCIL REGULATION (EU) 2017/127 of 20 January 2017 fixing for 2017 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX\%3A32017R0127

EU 2018/120. COUNCIL REGULATION of 23 January 2018 fixing for 2018 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters, and amending Regulation (EU) 2017/127. http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32018R0120\&from=EN

Fernández, A.C. and Prista, N. 2012. Portuguese discard data on anglershouthernLophiuspiscatorius and blackbellied angler Lophiusbudegassa (2004-2010). Working document-07 presented at WKFLAT2012. ICES CM: ACOM: 46.

Harma, C., Brophy, D., Minto, C., and Clarke, M. 2012. The rise and fall of autumn-spawning herring (Clupea harengus L.) in the Celtic Sea between 1959 and 2009: Temporal trends in spawning component diversity. Fisheries Research 121-122: 31-42.

Hintzen, N. T., Roel, B., Benden, D., Clarke, M., Egan, A., Nash, R. D. M., Rohlf, N., and Hatfield, E. M. C. 2015.Managing a complex population structure: exploring the importance of information from fisher-ies-independent sources. - ICES Journal of Marine Science, 72: 528-542.

ICES, 1994. Report of the Study Group on Herring Assessment and Biology in the Irish Sea and Adjacent Waters. ICES C.M.1994/H:5. 67 pp.

ICES. 2006. Report of the Herring Assessment Working Group South of 620 N (HAWG), 14-23 March, ICES Headquarters. ICES CM 2006/ACFM:20. 647 pp.

ICES 2007. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG). ICES CM 2007/ACFM:11, 340 pp.

ICES. 2008. Report of the Herring Assessment Working Group South of 62 N (HAWG), 11-19 March 2008, ICES Headquarters, Copenhagen. ICES CM 2008/ACOM:02. 601 pp.

ICES. 2010. Report of the Herring Assessment Working Group for the Area South of 62n (HAWG), 15-23 March 2010, ICES Headquarters, Copenhagen, Denmark. 688 pp.

ICES, 2012a. Report of the Anglerfish (Lophiuspiscatorius) illicia and otoliths exchange 2011. 61 pp.
ICES. 2012b. Report of the Benchmark Workshop on the Flatfish Species and Anglerfish (WKFLAT), 1-8 March 2012, Bilbao, Spain. ICES CM 2012/ACOM:46.

ICES. 2013. Report of the Benchmark Workshop on Sprat Stocks (WKSPRAT), 11-15 February 2013, Copenhagen, Denmark. ICES CM 2013/ACOM:48. 220 pp

ICES. 2013. Report of the Benchmark Workshop on Sprat Stocks (WKSPRAT), 11-15 February 2013, Copenhagen, Denmark. ICES CM 2013/ACOM:48. 220 pp
ICES. 2014a. Interim Report of the Working Group on Multispecies Assessment Methods (WGSAM), 20-24 October 2014, London, UK. ICES CM 2014/SSGSUE:11. 104 pp.

ICES. 2014b. Report of the Workshop to consider reference points for all stocks (WKMSYREF2), 8-10 January 2014, ICES Headquarters, Copenhagen, Denmark. ICES CM 2014/ACOM:47. 91 pp.

ICES. 2015b. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG), 1019 March 2015, ICES HQ, Copenhagen, Denmark. ICES CM 2015/ACOM:06. 864 pp.
ICES. 2016. Report of the Working Group on Multispecies Assessment Methods (WGSAM), 9-13 November 2016, Woods Hole, USA. ICES CM 2016/SSGEPI:20. 206 pp.

ICES 2016a. General context of ICES advice. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 1, Section 1.2.

ICES 2016a. Celtic Seas Ecoregion - Ecosystem overview. In Report of the ICES Advisory Committee 2016. ICES Advice, 2016. Book 5. Section 5.1.

ICES. 2016b. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58.

ICES 2016b. Greater North Sea Ecoregion - Ecosystem overview. In Report of the ICES Advisory Committee 2016. ICES Advice, 2016. Book 6. Section 6.1.

ICES 2016. Report of the Working Group on Integrated Assessments of the North Sea (WGINOSE). ICES CM 2016/SSGIEA:06.

ICES 2016a. EU request for advice on a scientific monitoring fishery for herring in ICES divisions 6.a, 7.b, and 7.c. Section 5.4.3 in ICES Special Request Advice Celtic Seas Ecoregion. 29 April 2016.

ICES. 2017. Interim Report of the Working Group of International Pelagic Surveys (WGIPS). 16-20 January 2017. Reykjavik, Iceland. ICES CM 2017/SSGIEOM:15. 577 pp.

ICES. 2017. EU request to assess the effects of lifting the "sprat box". In Report of the ICES Advisory Committee, 2017. ICES Advice 2017, sr.2017.06.

ICES 2017a. Herring (Clupea harengus) in divisions 6.a and 7.b-c (west of Scotland, west of Ireland). In Report of the ICES Advisory Committee, 2017. Advice book 5. Section 5.3.33: June 30th 2017. Version 2: 11 July 2017 Version 3: 06 October 2017 DOI: 10.17895/ices.pub.3061. http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2017/2017/her.27.6a7bc.pdf

ICES. 2017. EU request for ICES to evaluate the recovery plan for herring in divisions $6 . a$ and $7 . \mathrm{b}-\mathrm{c}$. In Report of the ICES Advisory Committee, 2017. ICES Advice 2017, sr.2017.20. 9 pp.

ICES 2017b. EU request for ICES to evaluate the recovery plan for herring in divisions $6 . a$ and $7 . b-c$. ICES Special Request Advice Celtic Seas and Bay of Biscay and the Iberian Coast Ecoregions Published 24 November 2017 sr. 2017.20 DOI: 10.17895/ices.pub. 3599

ICES. 2018a. Report of the Benchmark Workshop on Pelagic Stocks (WKPELA 2018), 12-16 February 2018, ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:32. 313 pp.

ICES, 2018b EU request for ICES to evaluate the long-term management plan for Celtic Sea herring
ICES. 2018. Report of the Working Group on International Pelagic Surveys (WGIPS). ICES WGIPS Report 2018 15-19 January 2018. Den Helder, the Netherlands. 340 pp.

ICES. 2018. Interim Report of the Working Group of International Pelagic Surveys (WGIPS). 13-18 January 2018. Santa Cruz, Tenerife. ICES CM 2018/SSGIEOM:15. 577 pp.

ICES. 2018a. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG). 29-31 January 2018 and 12-20 March 2018. ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:07. 960 pp.
http://www.ices.dk/sites/pub/Publication\ Reports/Expert\ Group\ Report/acom/2018/HAW G/01\%20HAWG\%20Report\%202018.pdf

ICES. 2018. Benchmark Workshop on Sprat (WKSPRAT 2018). ICES WKSPRAT Report 2018, 5-9 November 2018. ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:35. 60 pp.

ICES. 2018 Report of the workshop on mixing of western and central Baltic herring stocks (WKMixHER). 11-13 September 2018, Gdynia, Poland. ICES CM 2018/ACOM:63. 39 pp.

ICES. 2019. Workshop on the management strategy evaluation of the reference point, Fcap, for Sprat in Division 3.a and Subarea 4 (WKspratMSE). 11-12 December 2018. ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:69.

ICES. 2019. Interbenchmark Protocol for Herring in 6.a, 7.b-c 2019 (IBPher6a7bc). ICES Scientific Reports. 1:19. 74 pp . http://doi.org/10.17895/ices.pub. 5261
ICES. 2019. ICES Working Group of International Pelagic Surveys (WGIPS). ICES Scientific Reports. 1:11. 499 pp. http://doi.org/10.17895/ices.pub. 5122

Landa, L., Duarte, R. and I. Quincoces. 2008. Growth of white anglerfish (Lophiuspiscatorius) tagged in the Northeast Atlantic, and a review of age studies on anglerfish. ICES Journal of Marine Science 65: 7280.

Lewy, P. and Vinther, M., 2004. A Stochastic age-length-structured multispecies model applied to North Sea stocks. ICES CM 2004/FF:20

Mackinson, S. and Daskalov, G., 2007. An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Sci. Ser. Tech Rep., Cefas Lowestoft, 142: 196pp.
Mackinson, S. 2017. Working Document on the location and timing of spawning for herring in $6 . \mathrm{aN}$ for discussion in survey planning 2017. 21 April 2017.

Mackinson, S., Pastoors,M., Lusseau, S., Armstrong, E., O'Connell, S, Haan,D., Burgraaf, D., Berges, B., McClean, A, Langlands, B., Scott, A., Wiseman, A., O’Malley,M., Clarke, M. 2018. The 2017 industryscience survey of herring in the Western British Isles (ICES div 6a, 7bc).
Molloy, J. 1980. The assessment and management of the Celtic Sea herring stock. Rapp. P.-V. Reun. Cons. Int. Explor. Mer, 177:159-165.

Molloy, J., and Corten, A. 1975. Young herring surveys in the Irish Sea. ICES CM H:11.
Molloy, J., Barnwall, E., \& Morrison, J. 1993. Herring tagging experiments around Ireland, 1991. Department of the Marine Fisheries Leaflet 154.8 pp.
N Bailey, DM Bailey, LC Bellini, PG Fernandes, C Fox, S Heymans, S Holmes, J Howe, S Hughes, S Magill, F McIntyre, D McKee, MR Ryan, IP Smith, G Tyldsely, R Watret and WR Turrell. 2011.: The west of Scotland marine ecosystem: a review of scientific knowledge. MSSR 09/11. 292pp.

O'Donnell, C., Mullins, E., Lynch D., Lyons, K., Keogh, N and O'Callaghan, S. (2018). Celtic Sea Herring Acoustic Survey Cruise Report 2018. FSS Survey Series: 2018/04
O'Dwyer, P., McKeogh, E. and Berrow, S. 2016. Results of an Independent Observer Study of the Celtic Sea Herring Fishery, 2016. IWDG Consulting, Merchants Quay, Kilrush, Co Clare. 15 pp.

O'Malley, M., Clarke, M., O'Donnell, C., Murphy, I. 2016. Atlantic Herring in 6aS/7b,c Industry Acoustic Survey Cruise Report. FEAS Survey Series: Industry Survey/01/2016

O'Donnell, C., O'Malley, M., Lynch, D., Lyons, K., Keogh, N. and O'Driscoll, D. (2017). Celtic Sea Herring Acoustic Survey Cruise Report 2017, 15-04 November 2017. FSS Survey Series: 2017/04. Marine Institute. http://hdl.handle.net/10793/1338

O'Dwyer, P and Berrow, S (2017). Results of an Independent Observer Study of the Celtic Sea Herring Fishery, 2017

O'Malley, M., Clarke, M., Smith, T. \& Mullins, E. (2018). Atlantic Herring and Horse Mackerel in 6aS/7b; Industry Acoustic Survey Cruise Report. FEAS Survey Series: Industry Acoustic Survey/01/2017. Marine Institute. http://hdl.handle.net/10793/1341

O'Sullivan, D, O'Keeffe, E., Berry, A., Tully, O. and Clarke, M (2013) An inventory of Irish Herring Spawning Grounds. Irish Fisheries Bulletin No 422013.

Prista, N., Fernandes, A., Pereira, J, Silva, C., Alpoim, R. and F. Borges. 2014. Discards of WGBIE species by the Portuguese bottom otter trawl operating in the ICES division 9.a (2004-2013). Working Document presented at WGBIE2014.

Pelagic Advisory Council. 2016. Minutes of the Focus Group meeting on herring in area VIa and VII b,c. 27 January 2016, The Hague, The Netherlands. http://www.pelagic-ac.org/media/pdf/Minutes\ VIa\ herring\ 27\ 01\ 2016.pdf

## Annex 1: List of participants

| Name | Institute | Country | Email |
| :---: | :---: | :---: | :---: |
| Afra Egan | Marine Institute | Ireland | afra.egan@marine.ie |
| Anna Rindorf | DTU Aqua -National Institute of Aquatic Resources | Denmark | ar@aqua.dtu.dk |
| Benoit Berges | Wageningen University \& Research | Netherlands | benoit.berges@wur.nl |
| Cecilie Kvamme | Institute of Marine Research | Norway | cecilie.kvamme@hi.no |
| Christophe Loots | Ifremer Boulogne-sur-Mer Centre | France | christophe.loots@ifremer.fr |
| Cindy van Damme | Wageningen University \& Research | Netherlands | cindy.vandamme@wur.nl |
| Claus Reedtz Sparrevohn | Danish Pelagic Producers' Organisation | Denmark | crs@pelagisk.dk |
| Dorte Bekkevold | DTU Aqua -National Institute of Aquatic Resources - Silkeborg | Denmark | db@aqua.dtu.dk |
| Espen Johnsen | Institute of Marine Research | Norway | espen.johnsen@hi.no |
| Florian Berg | University of Bergen | Norway | florian.berg@hi.no |
| Henrik Mosegaard | DTU Aqua -National Institute of Aquatic Resources | Denmark | hm@aqua.dtu.dk |
| Jan Arge Jacobsen (by correspondence) | Faroe Marine Research Institute | Faroe Islands | janarge@hav.fo |
| Kirsten Birch Håkansson | DTU Aqua -National Institute of Aquatic Resources | Denmark | kih@aqua.dtu.dk |
| Lisa Readdy | Lowestoft Laboratory Centre for Environment, Fisheries and Aquaculture Science | United Kingdom | lisa.readdy@cefas.co.uk |
| Mark Payne | DTU Aqua -National Institute of Aquatic Resources | Denmark | mpa@aqua.dtu.dk |
| Martin Pastoors | Pelagic Freezer-Trawler Association | Netherlands | mpastoors@pelagicfish.eu |
| Mathieu Lundy | Agri-food and Biosciences Institute (AFBI) | United Kingdom | mathieu.lundy@afbini.gov.uk |
| Matthias <br> Kloppmann | Thünen Institute Institute of Sea Fisheries | Germany | matthias.kloppmann@thuenen.de |
| Michaël Gras | Marine Institute | Ireland | Michael.Gras@Marine.ie |


| Name | Institute | Country | Email |
| :---: | :---: | :---: | :---: |
| Mikael van Deurs | DTU Aqua -National Institute of Aquatic Resources | Denmark | mvd@aqua.dtu.dk |
| Norbert Rohlf | Thünen Institute Institute of Sea Fisheries | Germany | norbert.rohlf@thuenen.de |
| Ole Henriksen | DTU Aqua -National Institute of Aquatic Resources | Denmark | ohen@aqua.dtu.dk |
| Richard Nash | Institute of Marine Research | Norway | Richard.Nash@hi.no |
| Sarah Millar | ICES Secretariat | Denmark | sarah-louise.millar@ices.dk |
| Steve Mackinson | Scottish Pelagic Fishermen's Association | United Kingdom | steve.mackinson@scottishpelagic.co.uk |
| Susan Mærsk <br> Lusseau (Co-Chair) | Marine Laboratory Marine Science Scotland | United Kingdom | s.lusseau@marlab.ac.uk |
| Tanja Baagoe Buch | Marine Laboratory Marine Science Scotland | United Kingdom | Tanja.Buch@gov.scot |
| Tomas Gröhsler | Thünen Institute Institute of Sea Fisheries | Germany | tomas.groehsler@thuenen.de |
| Valerio Bartolino (Co-Chair) | Swedish University of Agricultural Sciences Institute of Marine Research | Sweden | valerio.bartolino@slu.se |
| Vanessa Trijoulet | DTU Aqua -National Institute of Aquatic Resources | Denmark | vtri@aqua.dtu.dk |

## Annex 3: Resolutions for next meeting

HAWG - Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$
The Herring Assessment Working Group for the Area South of $\mathbf{6 2}{ }^{\mathbf{\circ}} \mathbf{N}$ (HAWG), chaired by Susan Lusseau, UK, and Valerio Bartolino, Sweden, will meet at ICES Headquarters:
XX-XX January 2020 to:
a ) Compile the catch data of sandeel in assessment areas $1 \mathrm{r}, 2 \mathrm{r}, 3 \mathrm{r}, 4,5 \mathrm{r}, 6$, and 7 r and address generic ToRs for Regional and Species Working Groups that are specific to sandeel stocks in the North Sea ecoregion;

17-25 March 2020 to:
b ) compile the catch data of North Sea and Western Baltic herring on 17-18 March;
c ) address generic ToRs for Regional and Species Working Groups 19-25 March for all other stocks assessed by HAWG.

The assessments will be carried out based on the Stock Annex. The assessments must be available for audit on the first day of the meeting.
Material and data relevant for the meeting must be available to the group on the dates specified in the 2020 ICES data call. HAWG will report by XX February and XX April 2020 for the attention of ACOM.

## Annex 4: List of Stock Annexes

The table below provides an overview of the NWWG Stock Annexes. Stock annexes for other stocks are available on the ICES website Library under the Publication Type "Stock Annexes". Use the search facility to find a particular Stock Annex, refining your search in the left-hand column to include the year, ecoregion, species, and acronym of the relevant ICES expert group.

| Stock ID | Stock name | Last updated | Link |
| :---: | :---: | :---: | :---: |
| her.27.20-24 | Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic) | March 2019 | her.27.20-24 SA |
| her.27.3a47d | Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel) | March 2018 | her.27.3a47d SA |
| her.27.6a7bc | Herring (Clupea harengus) in divisions 6.a and 7.b-c (West of Scotland, West of Ireland) | March 2019 | her.27.6a7bc SA |
| her.27.irls | Herring (Clupea harengus) in divisions 7.a South of $52^{\circ} 30^{\prime} \mathrm{N}$, 7.g-h, and 7.j-k (Irish Sea, Celtic Sea, and southwest of Ireland) | Feb 2015 | her.27.irls SA |
| her.27.nirs | Herring (Clupea harengus) in Division 7.a North of $52^{\circ} 30^{\prime} \mathrm{N}$ (Irish Sea) | June 2017 | her.27.nirs SA |
| san.sa.1r | Sandeel (Ammodytes spp.) in Divisions 4.b and 4.c, Sandeel Area 1r (central and southern North Sea, Dogger Bank) | Jan 2018 | san.sa.1r SA |
| san.sa. 2 r | Sandeel (Ammodytes spp.) in Divisions 4.b and 4.c, and Subdivision 20, Sandeel Area 2r (Skagerrak, central and southern North Sea) | Jan 2019 | san.sa.2r SA |
| san.sa.3r | Sandeel (Ammodytes spp.) in Divisions 4.a and 4.b, and Subdivision 20, Sandeel Area 3r (Skagerrak, northern and central North Sea) | Jan 2019 | san.sa.3r SA |
| san.sa. 4 | Sandeel (Ammodytes spp.) in divisions 4.a and 4.b, Sandeel Area 4 (northern and central North Sea) | Nov 2016 | san.sa. 4 SA |
| san.sa.5r | Sandeel (Ammodytes spp.) in Division 4.a, Sandeel Area $5 r$ (northern North Sea, Viking and Bergen banks) | Nov 2016 | san.sa.5r SA |
| san.sa. 6 | Sandeel (Ammodytes spp.) in subdivisions 20-22, Sandeel Area 6 (Kattegat) | Nov 2016 | san.sa.6r SA |
| san.sa.7r | Sandeel (Ammodytes spp.) in Division 4.a, Sandeel Area 7r (northern North Sea, Shetland) | Nov 2016 | san.sa.7r SA |
| spr.27.3a4 | Sprat (Sprattus sprattus) in Division 3.a and Subarea 4 (Skagerrak, Kattegat and North Sea) | March 2019 | spr.27.3a4 SA |
| spr.27.67a-cf-k | Sprat (Sprattus sprattus) in Subarea 6 and Divisions 7.a-c and 7.f-k (West of Scotland, southern Celtic Seas) | 2013 | spr.27.67a-cf-k SA |
| spr.27.7de | Sprat (Sprattus sprattus) in divisions 7.d and 7.e (English Channel) | Feb 2019 | spr.27.7de SA |

## Annex 5: Working documents

| Working documents HAWG 2019 |  |
| :--- | :--- |
| WD 01a | Marine Scotland Science sandeel dredge survey indices for SA4 |
| WD 01b | Survey index calculations for Western Baltic spring spawning herring from IBTS and BITS data |
| WD 02 | 2018 Western Baltic spring spawning herring recruitment monitored by the Rügen herring larvae survey |
| WD 03 | Fisheries \& Stock assessment data in the Western Baltic in 2018 |
| WD 04 | PFA self-sampling report for HAWG 2015-2018 |

# Marine Scotland Science sandeel dredge survey indices for SA4 

T. Régnier*, P. Boulcott \& P.J. Wright

corresponding author *T.Regnier@marlab.ac.uk

## Introduction

The Marine Scotland Science (MSS) sandeel survey of SA4, off the north east UK coast, was established in 2008 to complement the Danish dredge survey of areas 1 3. The survey is targeted at historically fished banks off the Firth of Forth and around Turbot bank and takes place in late November or early December to coincide with the Danish sampling. All the Firth of Forth banks sampled are within the North East UK sandeel closure, where fishing is currently limited to a monitoring TAC. This report presents the results from the survey for the years 2008-2018 and compares the Firth of Forth banks with data from the same stations sampled during research surveys conducted in October-November between 1999 and 2003.

## Methods

Dredge hauls encompassing the major Firth of Forth banks were taken at 8 stations in 1999 - 2003; 3 stations on the Wee Bankie, 3 on Marr Bank and 2 on Berwick Bank. In 2008 - 2018, additional stations were sampled over Berwick Bank and around the Wee Bankie grounds. During 2008 - 2013, and 2015 - 2017, Turbot Bank and/or nearby patches of sandeel habitat have also been dredged. The survey in 2018 sampled from 2 stations on Wee Bankie, 3 on Marr Bank and 3 on Berwick Bank. Where possible 5 tows of 10 minute duration were made per station, although time constraints has sometimes reduced this to 3 . Weather conditions were severe in 2018 so all 2018 stations were reduced to 3 tows due to time constraints and Turbot Bank was not sampled. All captured sandeels were measured and a length stratified sample was aged to produce average age-length keys for Firth of Forth grounds. Numbers caught were converted to numbers per area swept and then raised to numbers per hour based on the average area swept in one hour. Average CPUE for SA4 was calculated using the averaging method given by Christensen in Appendix A (WKSAN 2010).

## Results

The total numbers of hauls by sandeel bank are given in Table 1. Due to the different requirements of surveys, sample sizes were low prior to the establishment of a dedicated recruit survey in 2008. As only sandeels $\geq 8.5 \mathrm{~cm} \mathrm{TL}$ are fully selected by the gear and many 0 -group are typically below this length, age 1 catches are generally higher than age 0 for a given year-class, although this was not the case for the 2012, 2013, 2015, 2016 and 2018 cohorts. Nevertheless, catch rates at age 1 were significantly correlated with age 0 and likewise between catch rates of age 1 and 2 sandeels ( $\mathrm{P}<0.01$, Figure 1).

Incoming year-class abundance was much lower compared with last year, marking a break in the trend of increasing recruitment since 2015. This result is concerning as this year's abundance of Age 0 fish is the lowest observed throughout the time
series. Age 1 fish densities were elevated, across the Firth of Forth, with capture rates the third highest observed throughout the time series. In the southerly stations, frequency distributions were dominated by 1 -group fish of size 9 to 12 cm . This high age 1 abundance is consistent with last year results, seemingly as a consequence of large 0-group abundance in 2017 (Figure 2). This result suggests low recruitment to the Southern part of SA4.

Table 1. Scottish dredge survey. Number of hauls by sandeel bank and year.

| Bank | Year |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1999 | 2000 | 2001 | 2002 | 2003 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| Wee Bankie | 3 | 4 | 3 | 3 | 3 | 18 | 15 | 18 | 11 | 14 | 18 | 16 | 18 | 20 |
| Marr Bank | 4 | 5 | 3 | 3 | 3 | 8 | 8 | 9 | 7 | 7 | 13 | 10 | 6 | 11 |
| Berwick Bank | 2 | 5 | 0 | 2 | 2 | 6 | 8 | 8 | 6 | 6 | 17 | 14 | 20 | 16 |
| Turbot Bank | 0 | 0 | 0 | 0 | 0 | 3 | 15 | 16 | 17 | 20 | 6 | 0 | 16 | 35 |


| Bank | Year |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2017 | 2018 |  |  |  |  |  |  |  |  |  |  |  |  |
| Wee Bankie | 16 | 7 |  |  |  |  |  |  |  |  |  |  |  |  |
| Marr Bank | 9 | 9 |  |  |  |  |  |  |  |  |  |  |  |  |
| Berwick Bank | 9 | 9 |  |  |  |  |  |  |  |  |  |  |  |  |
| Turbot Bank | 24 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |

Table 2. Average CPUE by age for a) SA4 and b) Firth of Forth

| a) |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Age 0 | Age 1 | Age 2 | Age 0 | Age 1 | Age 2 |
| 1999 |  |  |  | 615 | 494 | 301 |
| 2000 |  |  |  | 586 | 3170 | 258 |
| 2001 |  |  |  | 48 | 2656 | 1561 |
| 2002 |  |  |  | 243 | 404 | 916 |
| 2003 |  |  |  | 580 |  |  |
| 2008 | 52 | 24 | 18 | 68 | 24 | 24 |
| 2009 | 832 | 87 | 38 | 1023 | 174 | 56 |
| 2010 | 147 | 1032 | 67 | 186 | 1244 | 78 |
| 2011 | 89 | 165 | 407 | 119 | 220 | 534 |
| 2012 | 95 | 135 | 23 | 122 | 178 | 30 |
| 2013 | 62 | 85 | 35 | 82 | 89 | 45 |
| 2014 | $445^{*}$ | $43^{*}$ | $12^{*}$ | 445 | 43 | 12 |
| 2015 | 136 | 1044 | 14 | 151 | 1126 | 13 |
| 2016 | 300 | 81 | 90 | 163 | 98 | 105 |
| 2017 | 346 | 223 | 40 | 438 | 235 | 50 |
| 2018 | $16^{*}$ | $461^{*}$ | $91^{*}$ | 16 | 461 | 91 |

*Adverse weather conditions in 2014 and 2018 precluded any sampling of SA4 stations outside the Firth of Forth region, hence CPUE estimates are identical.

Figure 1: Internal consistency plot. Average CPUE of consecutive ages from the same year-class for Firth of Forth samples. Symbols coloured in red indicate 2018 points.


Figure 2: Average catch per hour per age-class in the Southern (Firth of Forth) region compared to last year (2017). Whiskers indicate standard deviation around the mean.


WD 01b

# Survey Index Calculations for Western Baltic Spring Spawning Herring from IBTS and BITS data 

Casper W. Berg

March 14, 2019

## 1 Introduction

This document describes the calculation of standardized survey indices of abundance for Western Baltic Spring Spawning Herring using combined IBTS and BITS data and the methodology of [2]. There is however two extra modelling steps needed for this stock, which consist of splitting the survey length and age data by stock using subsamples of stock-identified individuals.

## 2 Data Exploration / Filtering

Only data from the year 2002 and onwards are considered, because the data-series for stock splitting from IBTS starts in 2002.

### 2.1 IBTS

All IBTS data in IIIa with "HaulVal" code "V" and "StdSpecRecCode" equal to 1 are used.

### 2.2 BITS

All data from areas 20-24, only hauls with "HaulVal" code "V", "A" and "C" are included in the analysis, and also only hauls with "StdSpecRecCode" equal to 1 or 3 . The "TVL" gear is excluded also since there are few hauls with this gear type in the area of interest.

## 3 Stock splitting

### 3.1 Lengths

Length distributions from IIIa (north of 56 degrees latitude) are split into spring-, autumn-, and winter spawners using split samples from IBTS, and only the spring spawners are used in the further analysis. Longitude and latitude coordinates were unfortunately not directly available in the data


Figure 1: All hauls used in the analysis colored by gear type
set used, but ICES rectangle was, so the midpoint of the ICES rectangle was used instead. Length distributions south of IIIa are assumed to be $100 \%$ spring spawners, because there were no split samples from the BITS survey available for the analysis. The probability of belonging to one of the three stock types is modelled as a smooth 4 D function of time, spatial coordinates, and length of the fish using a multinomial likelihood

$$
\text { stock } \sim f(\text { time, lon, lat, length })
$$

. The probabilities are calculated by haul and the length distributions are multiplied with the probability of being a spring spawner. In Q1 $44 \%$ of the total numbers-at-length are estimated to be spring-spawners. In Q3+Q4 it is $39 \%$. See appendix for some predictions from the model.

|  | 4 | 9 | 12 |
| ---: | ---: | ---: | ---: |
| 4 | 0.78 | 0.18 | 0.04 |
| 9 | 0.23 | 0.71 | 0.06 |
| 12 | 0.42 | 0.05 | 0.53 |

Table 1: Cross-classification table

### 3.2 Ages

The age-samples are also split by stock, using a similar model, although here the model utilizes age and cohort effects as well, since these additional variables are useful for classification, i.e.

$$
\text { stock } \sim \text { Age }+ \text { Year }+f(\text { time }, \text { lon, lat }, \text { length })+f(\text { cohort })+f(\text { Year }: \text { Age })
$$

where Age is truncated to age $5+$ to reduce the number of parameters. The first 4D smoother is a tensor product spline of continuous variables, whereas the last two are categorical variables such that a smooth implies Gaussian random effects with mean zero. Each age sample is weighted with the probability of being a spring spawner prior to estimation of ALKs and the age-conversion described in the following section.

|  | 4 | 9 | 12 |
| ---: | ---: | ---: | ---: |
| 4 | 0.86 | 0.10 | 0.04 |
| 9 | 0.13 | 0.81 | 0.06 |
| 12 | 0.41 | 0.09 | 0.50 |

Table 2: Cross-classification table, age specific model

## 4 ALKs

Smooth age length keys are estimated using the methodology described in [1] using an assumption of a spatially constant relationship, but estimated separately for each combination of year and quarters. The assumption of spatial homogeneity was made because age samples of herring are
only available in the IBTS data but not in the BITS data. This implies that the ALK must be extrapolated to the southern part of the assessment area which is only covered by BITS. Numbers-at-age are then calculated using the observed numbers-at-length and the estimated ALKs. The estimated ALKs are shown in the appendix.

## 5 Survey Indices

Survey indices by age and area are calculated using the methodology described in [2].
The following equation describes the model considered for both the presence/absence and positive parts of the Delta-Lognormal model:

$$
\begin{aligned}
g\left(\mu_{i}\right)= & \operatorname{Year}(\mathrm{i})+\operatorname{Gear}(\mathrm{i})+f_{1}\left(\operatorname{lon}_{i}, \operatorname{lat}_{i}\right) \\
& +f_{2}\left(\operatorname{Depth}_{i}\right)+f_{3}\left(\operatorname{time}_{i}\right)+\log \left(\operatorname{HaulDur}_{i}\right)
\end{aligned}
$$

where Gear(i) and Year(i) maps the $i$ th haul to categorical gear/year effects for each age group. An offset is used for the effect of haul duration (HaulDur), i.e. the coefficient is not estimated but taken to be $1 . f_{1}$ is a 2 D thin-plate spline for space, $f_{2}$ is a 1 -dimensional thin plate spline for the effect of bottom depth, and $f_{3}$ is a cyclic cubic regression spline on the time of day (i.e. with same start end end point).
The function $g$ is the link function, which is taken to be the logit function for the binomial model. Each combination of quarter age group are estimated separately. The fitted models are then used to sum the expected catches over a fine grid by year and age to obtain the survey index. Nuisance variable such as gear, time-of-day and haul duration are corrected for in this process.
The whole procedure consists of the following steps:

1. Fit a multinomial model to predict probability of WBSS given time, position, and length using individual samples of stock from IBTS.
2. Multiply observed length distributions by haul with predicted stock probabilities to filter out all but WBSS.
3. Fit a multinomial model to predict probability of WBSS given same data and predictors as in step 1, but also include age and cohort.
4. Fit ALK using aged individuals, but weight each age sample with probability of being WBSS using the model from step 3 .
5. Apply ALK to WBSS specific length distributions from step 2 and fit survey index standardization model for numbers-at-age by age and quarter
6. Select grid of haul positions
7. Predict abundance on grid by year (using reference vessel, time-of-day etc).
8. Sum of grid points $=$ index

Steps 1 and 2 splits the length distributions by haul into WBSS / non-WBSS. Step 3 and 4 splits the individual age samples into WBSS / non-WBSS. This is gives us the stock-specific ALK which we can use to convert the split length distributions from steps $1 \& 2$ into numbers-at-age by haul.

## 6 Results

The results show that the youngest (immature) age groups are distributed in Kattegat and the Danish Belts, whereas older herring are more predominant in the Sound (Øresund) and the Arcona Basin in the south-east. The distributions are similar in both quarters, although a slightly more north-eastern distribution in Q3 and Q4 compared to Q1. The internal and external consistencies (a measure between 0 and 1 of how well we can "follow the cohorts" within and between surveys under the assumption of constant mortality) are fairly good up to and including age 3, but poor hereafter. This is not surprising considering that the older age groups are mainly distributed in the area south of Kattegat where there are no age samples. I recommend that only indices for ages $0-3$ are used in the assessment. It could be considered to obtain commercial age (and split) samples from the areas not covered by the IBTS samples to supplement the ALK estimation. This could potentially improve the indices of the older herring.


Figure 2: Q1 scaled indices (divided by their mean) by age group (which is the same as age in Q1). Stratified mean method is shown in red.


Figure 3: Q3 + Q4 scaled indices (divided by their mean) by age group (which is age - 1 in Q3+Q4 because first age group is 0 ). Stratified mean method is shown in red.


Figure 4: Distribution maps by age group Q1.


Figure 5: Distribution maps by age group Q3+Q4 (note that age group 1 is age 0 ).

### 6.1 Internal and external consistencies

```
> cat("IC Q1:\n")
IC Q1:
> internalCons(SI$idx)
Age 1 vs 2 : 0.5742609
Age 2 vs 3:0.6571229
Age 3 vs 4 : 0.1727792
Age 4 vs 5 : -0.05646259
[1] 0.57426092 0.65712294 0.17277920 -0.05646259
> cat("IC Q3+Q4:\n")
IC Q3+Q4:
> internalCons(SIQ34$idx)
Age 1 vs 2 : 0.2144529
Age 2 vs 3 : 0.4708503
Age 3 vs 4 : 0.4816305
Age 4 vs 5 : 0.4195899
Age 5 vs 6 : 0.4817922
[1] 0.2144529 0.4708503 0.4816305 0.4195899 0.4817922
> cat("EC Q1 vs Q34 same age:\n")
EC Q1 vs Q34 same age:
> externalCons(SI$idx, SIQ34$idx[,-1])
Survey 1 Age 1 vs Survey 2 1 : 0.4312561
Survey 1 Age 2 vs Survey 2 2 : 0.7210529
Survey 1 Age 3 vs Survey 2 3 : 0.3088495
Survey 1 Age 4 vs Survey 2 4 : -0.152079
Survey 1 Age 5 vs Survey 2 5 : -0.1277546
[1] 0.4312561 0.7210529 0.3088495 -0.1520790 -0.1277546
> cat("EC Q34 vs Q1 a+1:\n")
EC Q34 vs Q1 a+1:
> externalCons(SIQ34$idx[-nrow(SIQ34$idx),1:5], SI$idx[-1,1:5])
Survey 1 Age 1 vs Survey 2 1 : 0.8028965
Survey 1 Age 2 vs Survey 2 2 : 0.7144539
Survey 1 Age 3 vs Survey 2 3 : 0.5950734
Survey 1 Age 3 vs Survey 2 3 : 0.5950734
Survey 1 Age 4 vs Survey 2 4 : 0.1321415
S1] 1 Age 5 vs Survey 2 5 : 0.2309258
> sink()
```


## 7 Appendix

### 7.1 Figures



Figure 6: Fitted stock proportions for a 21.5 cm herring (median) by ICES rectangle Q1. Colors denote hatch-month - green is spring-spawners.


Figure 7: Fitted stock proportions for a 21.5 cm herring (median) by ICES rectangle Q3 + Q4

## References

[1] Casper W Berg and Kasper Kristensen. Spatial age-length key modelling using continuation ratio logits. Fisheries Research, 129:119-126, 2012.
[2] Casper W Berg, Anders Nielsen, and Kasper Kristensen. Evaluation of alternative age-based methods for estimating relative abundance from survey data in relation to assessment models. Fisheries Research, 151:91-99, 2014.


Figure 8: Fitted ALK Q1


Figure 9: Fitted ALK Q3 + Q4


Figure 10: Estimated depth effects Q1


Figure 11: Estimated depth effects Q3+Q4


Figure 12: Estimated time of day effects Q1


Figure 13: Estimated time of day effects Q3+Q4



Figure 15: residuals Q3+Q4


Figure 16: fitted versus residuals Q1


Figure 17: fitted versus residuals Q3+Q4


Figure 18: residuals by year Q1


Figure 19: residuals by year Q3+Q4

Q1 Q3 + Q4


Figure 20: Comparison with last year's indices

WD 02

## 2018 Western Baltic spring spawning herring recruitment monitored by the Rügen Herring Larvae Survey

## P. Polte and T. Gröhsler

Thünen Institute of Baltic Sea Fisheries (TI-OF), Germany

The waters of Greifswald Bay (ICES area 24) are considered a major spawning area of Western Baltic spring spawning (WBSS) herring. The German Thünen Institute of Baltic Sea Fisheries (TI-OF), Rostock, and its predecessor monitors the density of herring larvae as a vector of recruitment success since 1977 within the framework of the Rügen Herring Larvae Survey (RHLS). It delivers a unique high-resolution dataset on the herring larvae ecology in the Western Baltic, both temporally and spatially. Onboard the research vessel "FFS Clupea" a sampling grid including 35 stations is sampled weekly using ichthyoplankton gear (Bongo-net, mesh sizes $335 \mu \mathrm{~m} ; 780 \mu \mathrm{~m}$ ) during the main reproduction period from March to June. The weekly assessment of the entire sampling area is conducted within two days (detailed description of the survey design can be found in Polte 2013 (WD in ICES CM 2013/ACOM: 4). The collected data provide an important baseline for detailed investigations of spawning and recruitment ecology of WBSS herring spawning components. As a fishery-independent indicator of stock development, the recruitment index is incorporated into the assessment of the ICES Herring Assessment Working Group.
The rationale for the $N 20$ recruitment index is based on regular and strong correlations between the amount of larvae reaching a length of $20 \mathrm{~mm}(\mathrm{TL})$ in Greifswald Bay and abundance data of juveniles (1wr and 2 wr fish) as determined by acoustic surveys in the Arkona and Belt Seas (GERAS).
Those recurring correlations (N20/GERAS, 1-wr; 1992-2018 $\mathrm{R}^{2}=0.74$ ) support the underlying hypotheses that i) major variability of natural mortality occurs at early life stages before larvae reach a total length of 20 mm and ii) larval herring production in Greifswald Bay is an adequate proxy for annual recruitment strength of the WBSS herring stock.
The N20 recruitment index is calculated every year based on data obtained from the RHLS. This is done by estimating weekly growth of larvae for seasonal temperature change and taking the sum of larvae reaching 20 mm by every survey week until the end of the investigation period. On the spatial scale, the 35 sampling stations are assigned to 5 strata and mean values of stations for each stratum are extrapolated to the strata area (for details see Oeberst et. al 2009). The sum of N2O larvae caught over the investigation period in the entire area results in the N2O recruitment index for those herring that enter the fishery as adults two to three years later.
Calculation procedures have been reviewed and re-established in 2007 and the recalculated index for the time series from 1992 onwards is used by HAWG since 2008 as 0-group recruitment index for the assessment of Western Baltic Spring Spawning herring.

## 2018 N20 index results:

With an estimated product of 1563 million larvae, the 2018 N2O recruitment index is in similar dimensions as the previous year and more than double as high as the record low of 2016 (Table 1, Figure 1). However, the value is only in the range of about $1 / 5$ of the time series mean thus not countering the decreasing trend of larval production observed in the system during the past two decades.

The spawning process in spring 2018 took place under a quite special winter regime. The course of winter-water temperatures remained quite mild (Figure 2) until mid- February. When the first cruise (RHLS-winter control) started on February 2nd, the first spawning fishes were observed in own gill net samples in Greifswald Bay. About a week later a severe cold period started and water temperatures quickly dropped to $2-0{ }^{\circ} \mathrm{C}$. This temperature is considered below the critical temperature for vital embryonic development (Peck et al. 2012). Since herring in full spawning condition remained in the aggregation area in Pommeranian Bay for the entire period Greifswald Bay was ice covered, many individuals with abnormal ovaries were found in scientific as well as commercial samples. When the spawning process in Greifswald Bay continued in March, steep spring
temperatures lead to rapid warming of the water and spawning ended early in the end of April (instead early May as usual). All these observations point on severe consequences of current phenology shifts on larval production and-survival. The trawl net fishery on pre-spawner aggregations in the Pommeranian Bay started on January $2^{\text {nd }}$. The gill net fishery on ripe fish on the spawning ground started on February $18^{\text {th }}$ but then stopped due to the cold period (ice cover) and took up fishery again on Mar $12^{\text {th }}$. This fishery ended on Apr. $23^{\text {rd }}$.

Due to extended ice cover the regular Rügen-herring larvae Survey started late on March 23nd (10 days later than 2017) and was conducted until June $26^{\text {th }}$, over a 15 weeks period. Additionally on two dates in February (start Feb. $2^{\text {nd }}$ ) and November (start Nov $5^{\text {th }}$ ) control surveys were conducted testing for winter and autumn larvae respectively. During both controls a limited number of postflexion larvae were observed in the system.


Figure 1 Validated RHLS time series with N20 index data presented as annual sum of 20 mm larvae in millions.

Table 1 N2O larval herring index for spring spawning herring of the Western Baltic Sea (WBSS), generated by RHLS data.

| Year | N20 (Millions) |
| :--- | ---: |
| 1992 | 1060 |
| 1993 | 3044 |
| 1994 | 12515 |
| 1995 | 7930 |
| 1996 | 21012 |
| 1997 | 4872 |
| 1998 | 16743 |
| 1999 | 20364 |
| 2000 | 3026 |
| 2001 | 4845 |
| 2002 | 11324 |
| 2003 | 5507 |
| 2004 | 5640 |
| 2005 | 3887 |
| 2006 | 3774 |
| 2007 | 1829 |
| 2008 | 1622 |
| 2009 | 6464 |
| 2010 | 7037 |
| 2011 | 4444 |
| 2012 | 1140 |
| 2013 | 3021 |
| 2014 | 539 |
| 2015 | 2478 |
| 2016 | 1247 |
| 2017 |  |
| 2018 |  |



Figure 2 Daily mean sea surface temperature (SST) slope (NASA Earth Observation project (http://neo.sci.gsfc.nasa.gov/) in central Greifswald Bay 2018. Red line indicates a $4^{\circ} \mathrm{C}$ threshold for initial spawning activity. On both positions where SST reached this line, spawning activity was observed. The blue line indicates the beginning of the spring temperature curve covering egg development, larval hatch and larval growth/survival.

## Revision of the relation between N2O and GERAS 1-wr herring after years with low larvae production

After the record low N20 in 2016 the relation with the 1-group juveniles as monitored by the German hydroacoustic survey (GERAS) after the one-year growth phase was re-evaluated to see if the recent years with extremely low larvae production results affect the former correlation with 1-wr juveniles on the scale of the western Baltic Sea. The results indicate no influence on the correlation between N20 and GERAS 1-wr juveniles. The low N20 years resulted in correspondingly low GERAS indices for the 1-wr juveniles (Fig. 3).


Figure 3 Correlation of N2O larvae index (1992-2017) with the 1-wr herring from GERAS (1993-2018). Note: The one-year lag phase between indices. E.g. the exceptionally low N20 year 2016 is represented by the GERAS 1wr index 2017.

## References

Oeberst, R. Klenz, B., Gröhsler, T. Dickey-Collas, M., Nash, R.M., Zimmermann, C. (2009). When is the year class strength determined in Western Baltic herring? ICES Journal of Marine Science, 66: 1667-1672.
Peck, M.A., Kanstinger, P., Holste, L., Martin, M. (2012).Thermal windows supporting survival of the earliest life stagesof Baltic herring (Clupea harengus). ICES Journal of Marine Science, 69: 529536.

Polte P. (2013). Ruegen herring larvae survey and N20 larval index. WD in: ICES 2013, Report of the Benchmark Workshop on Pelagic Stocks (WKPELA), 4-8 February 2013, Copenhagen, Denmark. ICES CM 2013/ACOM: 4, 449-456

## 1 German herring fisheries in 2018

### 1.1 Fisheries

In 2018 the total German herring landings from the Western Baltic Sea in Subdivisions (SD) 22 and 24 amounted to 11,304 , which represents a decrease of $23 \%$ compared to the landings in 2017 ( $14,694 \mathrm{t}$ ). This decrease was caused by a decrease of the TAC/quota (German quota for SDs 22 and 24 in 2018: 9,551 t + quota-transfer of 2,434 t). The German quota in 2018 was only used by $94 \%$ (2017: $88 \%, 2016$ : 98). The fishing activities in one of the main fishing areas, the Greifswald Bay (SD 24), which started already in mid-February, had to be suspended at the end of February until mid-March due due to a cold period with ice coverage. The main German fishery stopped their activities at the end of April.
As in previous years some herring was also caught in the Skagerrak/Kattegat area (Division IIIa):

| Year | Landings $(\mathbf{t})$ |
| :--- | :--- |
| $\mathbf{2 0 0 5}$ | 751 |
| $\mathbf{2 0 0 6}$ | 556 |
| $\mathbf{2 0 0 7}$ | 454 |
| $\mathbf{2 0 0 8}$ | $352+1,214$ misreported from area SD 23 |
| $\mathbf{2 0 0 9}$ | 887 |
| $\mathbf{2 0 1 0}$ | 146 |
| $\mathbf{2 0 1 1}$ | 54 |
| $\mathbf{2 0 1 2}$ | 629 |
| $\mathbf{2 0 1 3}$ | $195(=46 \%$ of GER quota $(>32 \mathrm{~mm})$ of 421 t |
| $\mathbf{2 0 1 4}$ | $84(=27 \%$ of GER quota $(>32 \mathrm{~mm})$ of 310 t |
| $\mathbf{2 0 1 5}$ | $128(=44 \%$ of GER quota $(>32 \mathrm{~mm})$ of 289 t |
| $\mathbf{2 0 1 6}$ | $125(=37 \%$ of GER quota $(>32 \mathrm{~mm})$ of 339 t |
| $\mathbf{2 0 1 7}$ | $85\left(=25 \%\right.$ of GER quota $(>32 \mathrm{~mm})$ of $339 \mathrm{t}^{*}$ |
| $\mathbf{2 0 1 8}$ | $.206\left(=43 \%\right.$ of GER quota $(>32 \mathrm{~mm})$ of $358 \mathrm{t}^{*}$ |

*Including a quota transfer of 1 t in 2017 and 34 t in 2018.
The landings (t by quarter and Sub-Division including information about the fraction of landings in foreign ports (given as minus values)) are shown in the table below:

| Quarter | Skag./Katteg. <br> (t) | Subdiv. 22 <br> (t) | Subdiv. 24 <br> (t) | TOTAL (t) | $\begin{array}{r} \text { TOTAL } \\ (\%) \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I |  | 114.932 | 7,521.311 | 7,636.243 | 66.3 |
|  |  |  | -0.950 | -0.950 | 0.0 |
| II |  | 13.538 | 2,471.531 | 2,485.069 | 21.6 |
|  |  |  | -1.500 | -1.500 | 0.0 |
| III | 104.347 | 0.477 | 0.145 | 104.969 | 0.9 |
|  | -104.347 |  |  | -104.347 | -0.9 |
| IV | 101.534 | 7.375 | 1,174.924 | 1,283.833 | 11.2 |
|  |  |  | -0.440 | -0.440 | 0.0 |
| TOTAL | 205.881 | 136.322 | 11,167.911 | 11,510.114 | 100.0 |
|  | -104.347 | 0.000 | -2.890 | -107.237 | -0.9 |
| Source: | Federal Centre for Agriculture and Food (BLE). Since 2008 the obligation to report via logbooks changed to vessels $>8 \mathrm{~m}$ (until 2007 for vessels $>10 \mathrm{~m}$ ) |  |  |  |  |
| Landings -Landings | $=$ Total landings <br> = Fraction lande | abroad |  |  |  |

Just as in former years the main fishing season was during the first and second quarter. About $88 \%$ of the herring in 2018 was caught between January and April (2017: $86 \%, 2016: 84 \%$, 2015: $84 \%$ ). As in last years, the main fishing area was located in Subdivision 24 (20162018: $97 \%$; 2015: $96 \%, 2014: 93 \%$ ). The overall fishing pattern during the last years was rather stable in the Baltic area of Subdivisions 22 and 24. Until 2000, the dominant part of herring was caught in the passive fishery by gillnets and trapnets around the Island of Rügen. Since 2001, the activities in the trawl fishery have increased. They reached the highest
contribution in 2018 of $72 \%$ (2017: $66 \%, 2017: 66 \%$ ). The trawl fishery was mostly carried out in Subdivision 24 (2016-2018: $98 \%$, 2015: $96 \%$, 2014: $91 \%$; 2013: 94). The change in fishing pattern since 2001 was caused by the perspective of a new fish processing factory on the Island of Rügen, which finally started the production in autumn 2003. This factory intends to process $50,000 \mathrm{t}$ fish annually. The figure below shows the share of the different gear types in the German herring fishery for the years 2002-2018 in Subdivisions 22 and 24.

| SD $22(t)$ | Trawl | Gillnet | Trapnet | Total | SD 22 (\%) | Trawl | Gillnet | Trapnet |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{2 0 0 2}$ | $3,871.716$ | 253.710 | 78.838 | $4,204.264$ | $\mathbf{2 0 0 2}$ | $92.1 \%$ | $6.0 \%$ | $1.9 \%$ |
| $\mathbf{2 0 0 3}$ | $3,147.054$ | 382.678 | 150.007 | $3,679.739$ | $\mathbf{2 0 0 3}$ | $85.5 \%$ | $10.4 \%$ | $4.1 \%$ |
| $\mathbf{2 0 0 4}$ | $2,282.844$ | 196.963 | 55.674 | $2,535.481$ | $\mathbf{2 0 0 4}$ | $90.0 \%$ | $7.8 \%$ | $2.2 \%$ |
| $\mathbf{2 0 0 5}$ | $1,700.627$ | 162.795 | 29.312 | $1,892.734$ | $\mathbf{2 0 0 5}$ | $89.9 \%$ | $8.6 \%$ | $1.5 \%$ |
| $\mathbf{2 0 0 6}$ | $2,977.731$ | 215.366 | 14.372 | $3,207.469$ | $\mathbf{2 0 0 6}$ | $92.8 \%$ | $6.7 \%$ | $0.4 \%$ |
| $\mathbf{2 0 0 7}$ | $1,922.914$ | 139.321 | 16.395 | $2,078.630$ | $\mathbf{2 0 0 7}$ | $92.5 \%$ | $6.7 \%$ | $0.8 \%$ |
| $\mathbf{2 0 0 8}$ | $2,086.175$ | 124.471 | 0.000 | $2,210.646$ | $\mathbf{2 0 0 8}$ | $94.4 \%$ | $5.6 \%$ | $0.0 \%$ |
| $\mathbf{2 0 0 9}$ | $1,436.082$ | 171.106 | 0.910 | $1,608.098$ | $\mathbf{2 0 0 9}$ | $89.3 \%$ | $10.6 \%$ | $0.1 \%$ |
| $\mathbf{2 0 1 0}$ | $1,565.826$ | 125.609 | 3.381 | $1,694.816$ | $\mathbf{2 0 1 0}$ | $92.4 \%$ | $7.4 \%$ | $0.2 \%$ |
| $\mathbf{2 0 1 1}$ | $1,040.724$ | 124.015 | 3.073 | $1,167.812$ | $\mathbf{2 0 1 1}$ | $89.1 \%$ | $10.6 \%$ | $0.3 \%$ |
| $\mathbf{2 0 1 2}$ | 729.236 | 109.950 | 3.315 | 842.501 | $\mathbf{2 0 1 2}$ | $86.6 \%$ | $13.1 \%$ | $0.4 \%$ |
| $\mathbf{2 0 1 3}$ | 610.485 | 99.970 | 2.708 | 713.163 | $\mathbf{2 0 1 3}$ | $85.6 \%$ | $14.0 \%$ | $0.4 \%$ |
| $\mathbf{2 0 1 4}$ | 572.074 | 80.422 | 2.660 | 655.156 | $\mathbf{2 0 1 4}$ | $87.3 \%$ | $12.3 \%$ | $0.4 \%$ |
| $\mathbf{2 0 1 5}$ | 404.439 | 70.548 | 2.382 | 477.369 | $\mathbf{2 0 1 5}$ | $84.7 \%$ | $14.8 \%$ | $0.5 \%$ |
| $\mathbf{2 0 1 6}$ | 193.125 | 48.061 | 4.593 | 245.779 | $\mathbf{2 0 1 6}$ | $78.6 \%$ | $19.6 \%$ | $1.9 \%$ |
| $\mathbf{2 0 1 7}$ | 190.689 | 117.481 | 0.004 | 308.174 | $\mathbf{2 0 1 7}$ | $61.9 \%$ | $38.1 \%$ | $0.0 \%$ |
| $\mathbf{2 0 1 8}$ | 103.078 | 32.903 | 0.341 | 136.322 | $\mathbf{2 0 1 8}$ | $75.6 \%$ | $24.1 \%$ | $0.3 \%$ |
|  |  |  |  |  |  |  |  |  |

SUBDIVISION 22


| SD 24 (t) | Trawl | Gillnet | Trapnet | Total | SD 24 (\%) | Trawl | Gillnet | Trapnet |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{2 0 0 2}$ | $7,155.192$ | $8,529.682$ | $2,480.824$ | $18,165.698$ | $\mathbf{2 0 0 2}$ | $39.4 \%$ | $47.0 \%$ | $13.7 \%$ |
| $\mathbf{2 0 0 3}$ | $8,425.517$ | $4,162.634$ | $2,508.141$ | $15,096.292$ | $\mathbf{2 0 0 3}$ | $55.8 \%$ | $27.6 \%$ | $16.6 \%$ |
| $\mathbf{2 0 0 4}$ | $6,912.896$ | $6,599.784$ | $1,960.868$ | $15,473.548$ | $\mathbf{2 0 0 4}$ | $44.7 \%$ | $42.7 \%$ | $12.7 \%$ |
| $\mathbf{2 0 0 5}$ | $9,863.481$ | $7,761.212$ | $1,522.218$ | $19,146.911$ | $\mathbf{2 0 0 5}$ | $51.5 \%$ | $40.5 \%$ | $8.0 \%$ |
| $\mathbf{2 0 0 6}$ | $11,393.038$ | $6,744.164$ | $1,525.095$ | $19,662.297$ | $\mathbf{2 0 0 6}$ | $57.9 \%$ | $34.3 \%$ | $7.8 \%$ |
| $\mathbf{2 0 0 7}$ | $14,449.006$ | $6,937.814$ | $1,117.411$ | $22,504.231$ | $\mathbf{2 0 0 7}$ | $64.2 \%$ | $30.8 \%$ | $5.0 \%$ |
| $\mathbf{2 0 0 8}$ | $11,196.706$ | $8,636.140$ | 789.005 | $20,621.851$ | $\mathbf{2 0 0 8}$ | $54.3 \%$ | $41.9 \%$ | $3.8 \%$ |
| $\mathbf{2 0 0 9}$ | $7,617.179$ | $6,232.206$ | 523.088 | $14,372.473$ | $\mathbf{2 0 0 9}$ | $53.0 \%$ | $43.4 \%$ | $3.6 \%$ |
| $\mathbf{2 0 1 0}$ | $5,415.716$ | $4,679.209$ | 448.801 | $10,543.726$ | $\mathbf{2 0 1 0}$ | $51.4 \%$ | $44.4 \%$ | $4.3 \%$ |
| $\mathbf{2 0 1 1}$ | $3,654.547$ | $3,177.875$ | 186.600 | $7,019.022$ | $\mathbf{2 0 1 1}$ | $52.1 \%$ | $45.3 \%$ | $2.7 \%$ |
| $\mathbf{2 0 1 2}$ | $5,865.995$ | $4,142.744$ | 318.993 | $10,327.732$ | $\mathbf{2 0 1 2}$ | $56.8 \%$ | $40.1 \%$ | $3.1 \%$ |
| $\mathbf{2 0 1 3}$ | $8,742.420$ | $4,833.203$ | 301.719 | $13,877.342$ | $\mathbf{2 0 1 3}$ | $63.0 \%$ | $34.8 \%$ | $2.2 \%$ |
| $\mathbf{2 0 1 4}$ | $5,656.314$ | $3,482.558$ | 447.064 | $9,585.936$ | $\mathbf{2 0 1 4}$ | $59.0 \%$ | $36.3 \%$ | $4.7 \%$ |
| $\mathbf{2 0 1 5}$ | $8,517.972$ | $4,112.581$ | 181.151 | $12,811.704$ | $\mathbf{2 0 1 5}$ | $66.5 \%$ | $32.1 \%$ | $1.4 \%$ |
| $\mathbf{2 0 1 6}$ | $9,301.364$ | $4,314.489$ | 564.965 | $14,180.818$ | $\mathbf{2 0 1 6}$ | $65.6 \%$ | $30.4 \%$ | $4.0 \%$ |
| $\mathbf{2 0 1 7}$ | $9,585.798$ | $4,781.359$ | 19.100 | $14,386.257$ | $\mathbf{2 0 1 7}$ | $66.6 \%$ | $33.2 \%$ | $0.1 \%$ |
| $\mathbf{2 0 1 8}$ | $8,082.664$ | $2,630.414$ | 454.833 | $11,167.911$ | $\mathbf{2 0 1 8}$ | $72.4 \%$ | $23.6 \%$ | $4.1 \%$ |

SUBDIVISION 24


### 1.2 Fishing fleet

The German fishing fleet in the Baltic Sea consists of two parts where all catches for herring are taken in a directed fishery:

- coastal fleet with undecked vessels (rowing/motor boats <=10 m, engine power <=100 HP)
- cutter fleet with decked vessels and total lengths between 12 m and 30 m .

In the years from 2011 until 2018 the following types of fishing vessels carried out the herring fishery in the Baltic (only referring to vessels, which are contributing to the overall total landings per year with more than $20 \%$ ):

| Type of gear |  | Vessel length (m) | No. of vessels | GRT | kW |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 클 | Fixed gears | <=12 | 473 | 1,566 | 15,020 |
|  | (gillnet and trapnet) | $>12$ | 10 | 185 | 1,215 |
|  | Trawls | $<=12$ | 12 | 171 | 1,666 |
|  |  | >12 | 43 | 3,710 | 9,325 |
|  | TOTAL |  | 538 | 5,632 | 27,226 |
| Ñ | Fixed gears | <=12 | 426 | 1,485 | 14,105 |
|  | (gillnet and trapnet) | $>12$ | 9 | 184 | 1,125 |
|  | Trawls | $<=12$ | 12 | 170 | 1,573 |
|  |  | >12 | 38 | 2,712 | 8,480 |
|  | TOTAL |  | 485 | 4,551 | 25,283 |
| $\stackrel{n}{\sim}$ | Fixed gears | $<=12$ | 421 | 1,459 | 14,289 |
|  | (gillnet and trapnet) | $>12$ | 9 | 186 | 1,005 |
|  | Trawls | $<=12$ | 14 | 173 | 1,557 |
|  |  | >12 | 35 | 2,638 | 7,960 |
|  | TOTAL |  | 479 | 4,456 | 24,811 |
| $\stackrel{ \pm}{\text { ® }}$ | Fixed gears (gillnet and trapnet) | <=12 | 421 | 1,443 | 14,351 |
|  |  | $>12$ | 8 | 149 | 970 |
|  | Trawls | $<=12$ | 13 | 170 | 1,502 |
|  |  | $>12$ | 31 | 2,469 | 7,205 |
|  | TOTAL |  | 473 | 4,231 | 24,028 |
| $\stackrel{\text { N }}{\text { N }}$ | Fixed gears (gillnet and trapnet) | <=12 | 375 | 1,341 | 13,163 |
|  |  | $>12$ | 7 | 133 | 802 |
|  | Trawls | $<=12$ | 9 | 122 | 991 |
|  |  | $>12$ | 31 | 2,503 | 7,148 |
|  | TOTAL |  | 422 | 4,099 | 22,104 |
| $\stackrel{\bullet}{\sim}$ | Fixed gears | <=12 | 371 | 1,341 | 13,532 |
|  | (gillnet and trapnet) | $>12$ | 5 | 103 | 699 |
|  | Trawls | $<=12$ | 8 | 137 | 997 |
|  |  | >12 | 30 | 2,599 | 8,205 |
|  | TOTAL |  | 414 | 4,180 | 23,433 |
| N | Fixed gears | <=12 | 362 | 1,237 | 12,158 |
|  | (gillnet and trapnet) | $>12$ | 6 | 148 | 874 |
|  | Trawls | <=12 | 8 | 113 | 872 |
|  |  | >12 | 27 | 2,910 | 7,816 |
|  | TOTAL |  | 403 | 2,910 | 21,720 |
| $\stackrel{\infty}{\underset{\sim}{1}}$ | Fixed gears | <=12 | 319 | 1,049 | 10,572 |
|  | (gillnet and trapnet) | >12 | 6 | 148 | 874 |
|  | Trawls | $<=12$ | 11 | 143 | 1,080 |
|  |  | >12 | 26 | 3,093 | 8,815 |
|  | TOTAL |  | 362 | 4,433 | 21,341 |




## 1．3 Species composition of landings

The catch composition from gillnet and trapnet consists of nearly $100 \%$ of herring．
The results from the species composition of German trawl catches，which were sampled in Subdivision 24 of quarter 1 and 4 in 2018，are given below：

| SD 24／Quarter I |  | Weight（kg） |  |  |  |  | Weight（\％） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sample No． | Herring | Sprat | Cod | Other | Total | Herring | Sprat | Cod | Other |
|  |  | 57.4 | 0.0 | 0.0 | 0.0 | 57.4 | 100.0 | 0.0 | 0.0 | 0.0 |
|  | 2 | 61.5 | 0.0 | 0.0 | 0.0 | 61.5 | 100.0 | 0.0 | 0.0 | 0.0 |
|  | 3 | 53.6 | 0.0 | 0.0 | 0.0 | 53.6 | 100.0 | 0.0 | 0.0 | 0.0 |
|  | Mean | 57.5 | 0.0 | 0.0 | 0.0 | 57.5 | 100.0 | 0.0 | 0.0 | 0.0 |
| $\begin{aligned} & \text { and } \\ & \text { 年 } \\ & 0 \end{aligned}$ | 1 | 69.7 | 0.0 | 0.0 | 0.0 | 69.7 | 100.0 | 0.0 | 0.0 | 0.0 |
|  | Mean | 69.7 | 0.0 | 0.0 | 0.0 | 69.7 | 100.0 | 0.0 | 0.0 | 0.0 |
| $\begin{aligned} & \text { ᄃ⿹\zh26灬 } \\ & \text { 들 } \end{aligned}$ | 1 | 43.7 | 0.0 | 0.0 | 0.0 | 43.8 | 100.0 | 0.0 | 0.0 | 0.0 |
|  | 2 | 50.2 | 0.0 | 0.0 | 0.0 | 50.2 | 100.0 | 0.0 | 0.0 | 0.0 |
|  | 3 | 56.9 | 0.1 | 0.0 | 0.0 | 56.9 | 99.9 | 0.1 | 0.0 | 0.0 |
|  | Mean | 50.3 | 0.0 | 0.0 | 0.0 | 50.3 | 100.0 | 0.0 | 0.0 | 0.0 |
| Q I | Mean | 59.2 | 0.0 | 0.0 | 0.0 | 59.2 | 100.0 | 0.0 | 0.0 | 0.0 |
| SD 24／Quarter IV |  | Weight（kg） |  |  |  |  | Weight（\％） |  |  |  |
| Sample No． |  | Herring | Sprat | Cod | Other | Total | Herring | Sprat | Cod | Other |
| $\begin{aligned} & \dot{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | 1 2 3 |  |  |  |  |  |  |  |  |  |
|  | Mean |  |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { B} \\ & \stackrel{0}{U} \\ & 0 \end{aligned}$ | Mean |  |  |  |  |  |  |  |  |  |
|  | 2 | 60.580 | 0.419 | 0.000 | 0.000 | 60.999 | 99.3 | 0.7 | 0.0 | 0.0 |
|  | Mean | 60.580 | 0.419 | 0.000 | 0.000 | 60.999 | 99.3 | 0.7 | 0.0 | 0.0 |
| Q IV | Mean | 60.580 | 0.419 | 0.000 | 0.000 | 60.999 | 99.3 | 0.7 | 0.0 | 0.0 |

The officially reported total trawl landings of herring in Subdivison 24 （see 2．1）in combination with the detected mean species composition in the samples（see above）results in the following differences：

| Subdiv． | Quarter | Trawl landings <br> $(\mathbf{t})$ | Mean Contribution of Herring <br> $(\%)$ | Total Herring corrected <br> $(\mathbf{t})$ | Difference <br> $(\mathbf{t})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 4}$ | I | $\mathbf{6 , 7 4 0}$ | 100.0 | 6,740 | 0 |
|  | $\mathbf{I V}$ | $\mathbf{1 , 1 2 2}$ | 99.3 | 1,115 | -8 |

The officially reported trawl landings in Subdivision 24 （see 2．1）and the referring assessment input data（see 2.2 and 2．3）were as in last years not corrected since the results would only result in overall small changes of the official statistics（total trawl landings in Subdivision 22 and 24 of $8186 t-8 t->0.1 \%$ difference）．

### 1.4 Logbook registered discards/BMS landings

No BMS landings (both new catch categories since 2015) of herring have been reported in the German herring fisheries in 2018 (no BMS landing have been reported since 2015). A total amount logbook registered discards of 14.507 t (quarter 1: 3.133 t ; quarter 2: 11.374) were recorded by the German fisherman (as predation by seals?) in the gillnet fisheries in SD 24 in 2018. Neither discards nor logbook registered discards have been reported before 2018.

### 1.5 Central Baltic herring

In the western Baltic, the distribution areas of two stocks, the Western Baltic Spring Spawning herring (WBSSH) and the Central Baltic herring (CBH) overlap. German autumn acoustic survey (GERAS) results indicated in the recent years that in SD 24, which is part of the WBSSH management area, a considerable fraction of CBH is present and correspondingly erroneously allocated to WBSSH stock indices (ICES, 2013). Accordingly, a stock separation function (SF) based on growth parameters in 2005 to 2010 has been developed to quantify the proportion of CBH and WBSSH in the area (Gröhsler et al., 2013, Gröhsler et al., 2016). The estimates of the growth parameters based on baseline samples of WBSSH and CBH support the applicability of SF in 2011-2018 (Oeberst et al., 2013, WD Oeberst et al., 2014, WD Oeberst et al., 2015; WD Oeberst et al., 2016; WD Oeberst et al., 2017; WD Gröhsler, T. and Schaber, M., 2018, WD Gröhsler, T. and Schaber, M., 2019). SF (slightly modified by commercial samples) was employed in the years 2005-2016 to identify the fraction of Central Baltic Herring in German commercial herring landings from SD 22 and 24 (WD Gröhsler et al., 2013; ICES, 2018). Results showed a rather low share of CBH in landings from all métiers but indicated that the actual degree of mixing might be underrepresented in commercial landings as German commercial fisheries target pre-spawning and spawning aggregations of WBSSH.

### 1.6 References

ICES 2013. Report of the Benchmark Workshop on Pelagic Stocks (WKPELA 2013). ICES Document CM 2013/ACOM:46.
ICES 2018. Report of the workshop on mixing of western and central Baltic herring stocks (WKMixHER 2018). ICES CM 2018/ACOM:63.
Gröhsler, T., Oeberst, R., Schaber, M., Larson, N. and Kornilovs, G. 2013. Discrimination of western Baltic spring-spawning and central Baltic herring (Clupea harengus L.) based on growth vs. natural tag information. ICES Journal of Marine Science, 70 (6): 11081117. doi:19.1093/icesjms/fst064.

Gröhsler, T., Schaber, M., Larson, N., Oeberst, R. 2016. Separating two herring stocks from growth data: long-term changes in survey indices for Western Baltic Spring Spawning Herring (Clupea harengus) after application of a stock separation function. J. Appl. Ichthyol. 32, 40-45; doi: 10.1111/jai. 12924
Gröhsler, T., Oeberst, R., Schaber, M. 2013. Implementation of the Stock Separation Function (SF) within German Commercial Landings. Herring working document (WD 3). In: Report of the Benchmark Workshop on Pelagic Stocks (WKPELA), 4-8 February 2013, Copenhagen. ICES CM 2013/ACOM:46: 379-386.
Oeberst, R., Gröhsler, T., Schaber, M. and Larsen, N. 2013. Applicability of the Separation Function (SF) in 2011 and 2012. WD 01 for HAWG. ICES Document CM 2013/ACOM06: Sec 14: 819-825 \& WD for WGBIFS. ICES Document CM 2013/SSGESST:08: Annex 9: 399-405.
Oeberst, R., Gröhsler, T. and Schaber, M. 2014. Applicability of the Separation Function (SF) in 2013. WD for WGIPS 2014.
Oeberst, R., Gröhsler, T. and Schaber, M. 2015. Applicability of the Separation Function (SF) in 2014. WD for WGIPS 2015.

Oeberst，R．，Gröhsler，T．and Schaber，M．2016．Applicability of the Separation Function（SF） in 2015．WD for WGBIFS 2016.
Oeberst，R．，Gröhsler，T．and Schaber，M．2017．Applicability of the Separation Function（SF） in 2016．WD for WGIPS 2017.
Gröhsler，T．and Schaber，M．2018．Applicability of the Separation Function（SF）in 2017. WD for WGBIFS 2018.
Gröhsler，T．and Schaber，M．2019．Applicability of the Separation Function（SF）in 2018. WD for WGBIFS 2019.

## 2 Stock assessment data in 2018

## 2．1 Landings（tons）and sampling effort

| ジ末゙ |  | SKAGERRAK（DIVISION IIIaN／SD 20） |  |  |  | KATTEGAT（DIVISION IIIaS／SD21） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Landings （tons） | $\begin{array}{r} \text { No. } \\ \text { samples } \\ \hline \end{array}$ | $\begin{array}{r} \text { No. } \\ \text { measured } \end{array}$ | $\begin{array}{r} \text { No. } \\ \text { aged } \end{array}$ | Landings （tons） | $\begin{array}{r} \text { No. } \\ \text { samples } \\ \hline \end{array}$ | $\begin{array}{r} \text { No. } \\ \text { measured } \end{array}$ | No． aged |
|  | $\begin{array}{ll} \hline Q & 1 \\ Q & 2 \\ Q & 3 \\ Q & 4 \\ \hline \end{array}$ | no landings no landings $\begin{array}{r} 104.347 \\ 101.534 \\ \hline \end{array}$ | 0 | 0 0 | 0 | no landings no landings no landings no landings | － | － | - <br> - <br> - |
|  | Total | 205.881 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 |
| $\begin{aligned} & \text { 気 } \\ & \text { 空 } \\ & \text { 霍 } \end{aligned}$ | $\begin{aligned} & \mathrm{Q} \\ & \hline \\ & \mathbf{Q} \end{aligned} \mathbf{1} \begin{aligned} & \mathrm{Q} \\ & \mathrm{Q} \\ & \mathrm{Q} \end{aligned}$ | no landings no landings no landings no landings | － | － | － | no landings no landings no landings no landings | － | － | － |
|  | Total | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 |
|  | Q 1 Q 2 Q 3 Q 4 | no landings no landings no landings no landings | － | － |  | no landings no landings no landings no landings | － | － | - - - - |
|  | Total | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 |
| $\stackrel{e}{6}$ | Q 1 <br> Q 2 <br> Q 3 <br> Q 4 | $\begin{array}{r} 0.000 \\ 0.000 \\ 104.347 \\ 101.534 \end{array}$ | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0.000 0.000 0.000 0.000 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 |
|  | Total | 205.881 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 |


| $\begin{aligned} & \text { H゙ず } \\ & \hline \end{aligned}$ |  | SUBDIVISION 22 |  |  |  | SUBDIVISION 24 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Landings （tons） | $\begin{array}{r\|} \hline \text { No. } \\ \text { samples } \end{array}$ | $\begin{array}{r} \text { No. } \\ \text { measured } \\ \hline \end{array}$ | No． <br> aged | Landings （tons） | $\begin{array}{r} \text { No. } \\ \text { samples } \end{array}$ | $\begin{array}{r} \text { No. } \\ \text { measured } \\ \hline \end{array}$ | $\begin{array}{r} \text { No. } \\ \text { aged } \end{array}$ |
| 会 | Q 1 | 102.877 | 0 | 0 | 0 | 6，739．938 | 7 | 2，924 | 726 |
|  | Q 2 | 0.201 | 0 | 0 | 0 | 220.305 | 0 | 0 | 0 |
|  | Q 3 | 0.000 |  |  |  | 0.000 |  |  |  |
|  | Q 4 | 0.000 |  |  |  | 1，122．421 | 1 | 349 | 119 |
|  | Total | 103.078 | 0 | 0 | 0 | 8，082．664 | 8 | 3，273 | 845 |
| $\begin{aligned} & \text { ⿹⿻弋一𧰨丶丶 } \\ & \text { 분 } \end{aligned}$ | Q 1 | 11.953 | 1 | 339 | 70 | 757.373 | 6 | 2，124 | 343 |
|  | Q 2 | 13.324 | 3 | 1，217 | 169 | 1，820．398 | 6 | 2，324 | 350 |
|  | Q 3 | 0.464 | 0 | 0 | 0 | 0.145 | 0 | 0 | 0 |
|  | Q 4 | 7.162 | 0 | 0 | 0 | 52.498 | 0 | 0 | 0 |
|  | Total | 32.903 | 4 | 1，556 | 239 | 2，630．414 | 12 | 4，448 | 693 |
| $\begin{aligned} & \sqrt[4]{7} \\ & \frac{1}{2} \\ & \frac{1}{4} \end{aligned}$ | Q1 | 0.102 | 0 | 0 | 0 | 24.000 | 0 | 0 | 0 |
|  | Q 2 | 0.013 | 1 | 321 | 49 | 430.828 | 2 | 798 | 198 |
|  | Q 3 | 0.013 | 0 | 0 | 0 | 0.000 |  |  |  |
|  | Q 4 | 0.213 | 0 | 0 | 0 | 0.005 | 0 | 0 | 0 |
|  | Total | 0.341 | 1 | 321 | 49 | 454.833 | 2 | 798 | 198 |
|  | Q1 | 114.932 | 1 | 339 | 70 | 7，521．311 | 13 | 5，048 | 1，069 |
|  | Q 2 | 13.538 | 4 | 1，538 | 218 | 2，471．531 | 8 | 3，122 | 548 |
|  | Q 3 | 0.477 | 0 | 0 | 0 | 0.145 | 0 | 0 | 0 |
|  | Q 4 | 7.375 | 0 | 0 | 0 | 1，174．924 | 1 | 349 | 119 |
|  | Total | 136.322 | 5 | 1，877 | 288 | 11，167．911 | 22 | 8，519 | 1，736 |


| ت゙ |  | TOTAL（DIV．III \＆SUBDIV．22＋24） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Landings （tons） | $\begin{array}{r} \text { No. } \\ \text { samples } \end{array}$ | $\begin{array}{r} \text { No. } \\ \text { measured } \end{array}$ | No. aged |
| 岂 | Q 1 | 6，842．815 | 7 | 2，924 | 726 |
|  | Q 2 | 220.506 | 0 | 0 | 0 |
|  | Q 3 | 104.347 | 0 | 0 | 0 |
|  | Q 4 | 1，223．955 | 1 | 349 | 119 |
|  | Total | 8，391．623 | 8 | 3，273 | 845 |
| $\begin{aligned} & \text { 伯 } \\ & \text { 雲 } \\ & \end{aligned}$ | Q 1 | 769.326 | 7 | 2，463 | 413 |
|  | Q 2 | 1，833．722 | 9 | 3，541 | 519 |
|  | Q 3 | 0.609 | 0 | 0 | 0 |
|  | Q 4 | 59.660 | 0 | 0 | 0 |
|  | Total | 2，663．317 | 16 | 6，004 | 932 |
| 至 | Q 1 | 24.102 | 0 | 0 | 0 |
|  | Q 2 | 430.841 | 3 | 1，119 | 247 |
|  | Q 3 | 0.013 | 0 | 0 | 0 |
|  | Q 4 | 0.218 | 0 | 0 | 0 |
|  | Total | 455.174 | 3 | 1，119 | 247 |
| $\frac{\underset{6}{6}}{6}$ | Q 1 | 7，636．243 | 14 | 5，387 | 1，139 |
|  | Q 2 | 2，485．069 | 12 | 4，660 | 766 |
|  | Q 3 | 104.969 | 0 | 0 | 0 |
|  | Q 4 | 1，283．833 | 1 | 349 | 119 |
|  | Total | 11，510．114 | 27 | 10，396 | 2，024 |

### 2.2 Catch in numbers (millions)



| SUBDIVISION 22 |  |  |  |  | SUBDIVISION 24 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Missing |  | Replacement by |  |  | Missing |  | Replacement by |  |  |
| Gear | Quart. | Area | Gear | Quart. | Gear | Quart. | Area | Gear | Quart. |
| Trawl | 1,2 | 24 | Trawl | 1 | Trawl | 2 | 24 | Trawl | 1 |
| Gillnet | 3, 4 | 22 | Gillnet | 2 | Gillnet | 3, 4 | 24 | Gillnet | 2 |
| Trapnet | 1,3,4 | 22 | Trapnet | 2 | Trapnet | 1,4 | 24 | Trapnet | 2 |

### 2.3 Mean weight (grammes) in the catch



REPLACEMENT OF MISSING SAMPLES:

| SUBDIVISION 22 |  | SUBDIVISION 24 |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| Missing |  |  |  |  |  |  |  |  |  |
| Gear | Quart. | Area | Gear | Quart. | Gear | Quart. | Area | Gear | Quart. |
| Trawl | 1,2 | 24 | Trawl | 1 | Trawl | 2 | 24 | Trawl | 1 |
| Gillnet | 3,4 | 22 | Gillnet | 2 | Gillnet | 3,4 | 24 | Gillnet | 2 |
| Trapnet | $1,3,4$ | 22 | Trapnet | 2 | Trapnet | 1,4 | 24 | Trapnet | 2 |

### 2.4 Mean length (cm) in the catch



REPLACEMENT OF MISSING SAMPLES:

| SUBDIVISION 22 |  | SUBDIVISION 24 |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Missing |  |  |  |  |  |  |  |  |  |
| Gear | Quart. | Area | Gear | Quart. | Gear | Quart. | Area | Gear | Quart. |
| Trawl | 1,2 | 24 | Trawl | 1 | Trawl | 2 | 24 | Trawl | 1 |
| Gillnet | 3,4 | 22 | Gillnet | 2 | Gillnet | 3,4 | 24 | Gillnet | 2 |
| Trapnet | $1,3,4$ | 22 | Trapnet | 2 | Trapnet | 1,4 | 24 | Trapnet | 2 |

2.5 Sampled length distributions by Subdivision, quarter and type of gear

 Total length (half cm below)

 Total length (half cm below)


## PFA self-sampling report for HAWG 2015-2018

Martin Pastoors, 20/03/2019 17:18:46

## 1 Introduction

The Pelagic Freezer-trawler Association (PFA) is an association that has ten member companies that together operate 19 (in 2017) freezer trawlers in six European countries (www.pelagicfish.eu). In 2015, the PFA has initiated a self-sampling programme that expands the ongoing monitoring programmes on board of pelagic freezer-trawlers by the specialized crew of the vessels. The primary objective of that monitoring programme is to assess the quality of fish. The expansion in the self-sampling programme consists of recording of haul information, recording the species compositions per haul and regularly taking random length-samples from the catch. The self-sampling is carried out by the vessel quality managers on board of the vessels, who have a long experience in assessing the quality of fish, and by the skippers/officers with respect to the haul information. The scientific coordination of the self-sampling programme is carried out by Martin Pastoors (PFA chief science officer) with support of Floor Quirijns (contractor).

## 2 Overview of self-sampling methodology

The self-sampling programme is designed in such a way that it follows as closely as possible the working practices on board of the different vessels and that it delivers the information needed for the SPRFMO Science Committee. The following main elements can be distinguished in the self-sampling protocol:

- haul information (date, time, position, weather conditions, environmental conditions, gear attributed, estimated catch, optionally: species composition)
- batch information (total catch per batch=production unit, including variables like species, average size, average weight, fat content, gonads $\mathrm{y} / \mathrm{n}$ and stomach fill)
- linking haul and batch information (how much of a batch is caught in which of the hauls) or estimating species proportion per haul
- length frequency measurements, either by batch or by haul

The self-sampling information is collected using standardized Excel worksheets. Each participating vessel will send in the information collected during a trip by the end of the trip. The data will be checked and added to the database by Floor Quirijns and/or Martin Pastoors, who will also generate standardized trip reports (using RMarkdown) which will be sent back to the vessel within one or two days. The compiled data for all vessels is being used for specific purposes, e.g. reporting to expert groups, addressing specific fishery or biological questions and supporting detailed biological studies. The PFA publishes an annual report on the self-sampling programme.

An important feature of the PFA self-sampling programme is that it is tuned to the capacity of the vessel-crew to collect certain kinds of data. Depending on the number of crew and the space available on the vessel, certain types of measurements can or cannot be carried out. That is why the programme is essentially tuned to each vessel separately. And that is also the reason that the totals presented in this report can be somewhat different dependent on which variable is used. For example the estimate of total catch is different from the sum of the catch per species because not all vessels have supplied data on the species composition of the catch on all trips.

Because the self-sampling programme has been under development over the years, different numbers of vessels have been participating in the programme over different years. Results should not be interpreted as a census of the PFA fleet, but rather as an indicator of relative distributions and samples of catch and catch compositions.

## 3 Results

### 3.1 Vessels, fisheries, trips and catch in all areas

An overview of all the self-sampling trips in 2015-2018 (and the beginning of 2019) and in which the total catch of herring and sprat was at least 250 tonnes, is shown in the table below. Overall, an expansion of the number of participating vessels in the self-sampling has lead to larger number of trips and higher catches being included in the sampling. The selected trips equated to $5.910^{\wedge}\{4\}$ tonnes of catch in 2015 and increased to 2.0610^\{5\} tonnes in 2018.

[^15]| 2015 | 4 | 19 | 338 | 837 | 58,892 | 57,559 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2016 | 9 | 38 | 549 | 1,426 | 135,098 | 50,445 |
| 2017 | 11 | 38 | 551 | 1,415 | 123,091 | 62,993 |
| 2018 | 16 | 68 | 1,040 | 2,537 | 205,579 | 102,750 |
| (all) | . | 163 | 2,478 | 6,215 | 522,660 | 273,747 |
| year | catch/trip | catch | day | catch/haul |  |  |
| 2015 | 3,099 |  | 174 | 70 |  |  |
| 2016 | 3,555 |  | 246 | 94 |  |  |
| 2017 | 3,239 |  | 223 | 86 |  |  |
| 2018 | 3,023 |  | 197 | 81 |  |  |
| (all) | . |  | . | . |  |  |

Table 1.1.1: PFA selfsampling summary of herring and sprat trips (>250 ton) with the number of days, hauls, trips, vessels, catch (tonnes), number of fish measured and average catch rates (ton/trip, ton/day, ton/haul). The asterisk indicates a partial year.

Species compositions in self-sampled fisheries.

| species | englishname | scientificname | 2015 | 2016 | 2017 | 2018 | all |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| her | herring | Clupea harengus | 36,143 | 80,535 | 79,790 | 157,485 | 353,953 |
| spr | sprat | Sprattus sprattus | 1,570 | 139 | 1,059 | 1,013 | 3,782 |
| oth | NA | NA | 13,747 | 17,559 | 14,234 | 40,477 | 86,017 |
| (all) | (all) | (all) | 51,461 | 98,233 | 95,084 | 198,975 | 443,753 |

Table 2.1.1: Total catch (tonnes) by species in PFA self-sampled fisheries. Target species and other species. The asterisk indicates a partial year

An overview of all self-sampled hauls during trips when a certain amount of herring and sprat were caught during a trip (>250 tonnes).


Haul positions in PFA self-sampled fisheries for herring and sprat.


Herring (Clupea harengus) in area 27

| year | nvessels | ntrips | ndays | nhauls | catch | nlength |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2015 | 4 | 18 | 195 | 478 | 38,834 | 39,223 |
| 2016 | 9 | 38 | 419 | 1,063 | 105,665 | 37,484 |
| 2017 | 11 | 38 | 422 | 1,106 | 99,624 | 48,885 |
| 2018 | 16 | 68 | 747 | 1,971 | 163,973 | 82,234 |
| (all) | . | 162 | 1,783 | 4,618 | 408,096 | 207,826 |

Herring catch by year


Herring catch/day by year


Herring length compositions by year


Herring length compositions by division and year


Herring length composition year and month for division 27.4.a in months 6, 7 and 8.


Herring length composition year and month for division 27.4.b in months 7, 8 and 9,


Herring length composition year and month for division 27.7.d in months 1, 11 and 12,


## Sprat (Sprattus sprattus) in area 27

| year | nvessels | ntrips | ndays | nhauls | catch | nlength |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2015 | 3 | 6 | 21 | 39 | 1,828 | 0 |
| 2016 | 3 | 6 | 15 | 30 | 978 | 156 |
| 2017 | 3 | 3 | 11 | 28 | 1,221 | 0 |
| 2018 | 4 | 5 | 11 | 29 | 1,011 | 2,318 |
| $($ all) | . | 20 | 58 | 126 | 5,038 | 2,474 |

Sprat catch by year


Sprat length compositions by year (limited length sampling available)


## 4 Discussion and conclusions

By the end of 2018, 16 vessels had been participating in the PFA self-sampling programme in the Northeast Atlantic in one way or another. This is about $89 \%$ of the freezer-trawler fleet. Although the programme does not consist of a random selection of vessels - because the instructions to the vessel benefit from a continued application of data collection on the participating vessels - the overall fishing pattern does appear to represent the fisheries of the PFA vessels.

The information in this report is only supplied for the fisheries that targetted herring or sprat, where the total catch of herring and sprat was at least 250 tonnes per trip.

In this year's report, the focus is more on the length compositions by year, area and month. Ideally, and for the future, one could expect that links will be generated between the age-length sampling that is part of the European data collection programme and the PFA self-sampling programme.

We believe that the direct communication of the results of the self-sampling programme with the participating crews and vessels is a key element of the programme. Maintaining engagement with the fishermen at sea is an essential requisite for the programme to work. Direct communication involves an almost instantaneous return of the trip report after finishing a trip.

Overall the self-sampling programme demonstrates the feasibility of self-documenting catches of this fleet and providing links between environmental parameters and catches.

## 5 Acknowledgements

The skippers, officers and the quality managers of many of the PFA vessels have put in a lot of effort to make the PFA the self-sampling work. Without their efforts, there would be no self-sampling.

## 6 More information

Please contact Martin Pastoors (mpastoors@pelagicfish.eu) if you would have any questions on the PFA self-sampling programme or the specific results presented here.

# Annex 6: Summaries of presentations from Stock ID mini symposium 

## A6.1 Genetic Stock Identification of 6a/7bc Herring

Ed Farrell (edward.d.farrell@gmail.com)<br>University College Dublin

Commercially important seasonal fisheries for Atlantic Herring (Clupea harengus) take place in many different areas around the coasts of Ireland and Britain. The definition of these western stocks has changed considerably over the last five decades (see ICES 2015) and the putative stocks are currently recognised as: 6aN; 6aS/7bc; Irish Sea; Celtic Sea \& 7j (ICES 2014). This separation is largely based on information from commercial fisheries and the recognition of temporal and spatial differences in spawning season and grounds (ICES, 2015); the 6aN and Irish Sea herring spawn in Autumn (Sept/Oct), the 6aS/7bc and Celtic Sea herring in winter (Nov-Jan) and there are small groups of herring ( 6 aN and the Clyde) that spawn in spring (Feb-May). However, herring from separate stocks are believed to form mixed aggregations on common feeding grounds (Hatfield et al., 2005). Potentially mixed stock fisheries and surveys operate in these areas and the inability to assign catches to their stock of origin prevents accurate assessment, and has hampered the development and implementation of effective management strategies.

In an effort to resolve this issue a genetic stock identification project was initiated in 2016 at University College Dublin, Ireland. The project was funded by a collaboration of the Irish, Scottish and Dutch industries and the Irish Marine Institute and Marine Scotland Science. In December 2018 the project partners secured funding from the European Commission's Executive Agency for Small and Medium Enterprises (EASME) to extend the project until December 2020 and to also include morphometric analyses. The primary objectives of the project are to assess the genetic population structure of herring stocks in ICES 6a/7bc and to develop genetic baselines of the 6 aN and $6 \mathrm{aS} / 7 \mathrm{bc}$ stocks, which can be used to discriminate mixed aggregations of nonspawning herring in area 6 a .


Figure 1. Baseline spawning samples analysed to date. The clustering of samples is indicated by the coloured circles.

To date, baseline spawning samples from 6 spawning seasons, comprising 56 samples and c.4,442 herring have been genotyped at 38 SNPs and 38 microsatellite markers (Figure 1). Results indicated that the 6 aN autumn spawners and $6 \mathrm{aS} / 7 \mathrm{bc}$ winter spawners represent at least 2 genetically distinct populations. No genetic differentiation has been found between the 6 aN autumn and North Sea autumn spawners and the samples from these areas indicated a high degree of temporal stability. The 6 aN spring spawning samples from the Minch and the Clyde areas were genetically distinct from the other 6a populations. The 6aS, Celtic Sea and Irish Sea samples all showed significant genetic differentiation between each other and were more significantly different to 6 aN samples than they were from each other. Though more similar to each other than to the surrounding populations, the 6 aS samples displayed a higher level of genetic variation among themselves than the other populations did. This is not unexpected as it has been well documented than the spawning time in 6 aS has changed from being dominated by spring spawning in the 1920's, to autumn spawning from 197-1994 and to winter spawning from 1995 onwards (ICES, 2015). This appears to be reflected in the genetic diversity of the herring in this area. In order to improve the baseline dataset and increase the accuracy of future assignment testing of mixed samples, an additional year of baseline samples were collected (Figure 2) and are currently being analysed with the same marker panel as the previous samples.


Figure 2. Baseline spawning samples analysed to date. The clustering of samples is indicated by the coloured circles.

In addition to the extra baseline samples, the marker panels being used to genotype the herring samples are also being further analysed. Collaborations are underway with DTU-Aqua and also the GENSINC project to determine if there are additional informative SNP markers that many be useful for discrimination the herring population west of Ireland and Britain from each other and from surrounding populations. Once the these analyses are completed and the additional baseline samples analysed the project aims to discriminate the samples collected during the Malin Shelf Herring Acoustic Survey (MSHAS) using both genetic methods, for samples 2014-2018 (Figure 3), and morphometric methods, for samples collected 2010-2018. The combined analyses will provide separate survey indices for the herring in 6 aN and $6 \mathrm{aS} / 7 \mathrm{bc}$, thus enabling separate assessments to be performed on these stocks.


Figure 3. The genetic samples collected on the MSHAS from 2014-2018.

## References

Hatfield, E.M.C., Zuur, A.F., Boyd, J., et al. (2005) WESTHER: a multidisciplinary approach to the identification of herring (Clupea harengus L.) stock components west of the British Isles using biological tags and genetic markers. ICES CM 2005/K:01.

ICES. 2014. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG), 11-20 March 2014, ICES HQ, Copenhagen, Denmark. ICES CM 2014/ACOM:06. 1257 pp.
ICES. 2015. Report of the Benchmark Workshop on West of Scotland herring (WKWEST 2015). 2-6 February 2015, Marine Institute, Dublin, Ireland.

# A6.2 Genetic stock determination in Atlantic herring: New possibilities for accurate stock discrimination 

Dorte Bekkevold (db@aqua.dtu.dk)

DTU Aqua

Genetic marker based methods to determine biologically coherent units of herring and to classify individuals in mixed samples have undergone a paradigm shift since the first genetic study by Andersson et al. (1981). Application of newly developed genomic resources for herring (e.g. Bekkevold et al. 2015; Lamichhaney et al. 2012; Barrio et al. 2016) has enabled a much improved understanding of the degree of reproductive separation among stocks and of the local selective pressures acting on them. Validation of improved accuracy marker panels to trace individuals in time and space is in development but for a number of stocks genetic methods are fully available for use within a routine monitoring framework. A Single Nucleotide Polymorphism (SNP) marker classification tool is thus applicable for distinguishing, at high statistical accuracy, among major stocks and sub-stocks mixing in areas SA4, SA3a and DIV22-25. Extended sample analyses are required to compare information from genetic markers with morphological traits.

## Cited literature:

Andersson et al. 1981. Genetic variability in Atlantic herring (Clupea harengus harengus): Description of protein loci and population data. Hereditas 95:69-78.

Barrio et al. 2016. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. eLife e12081

Bekkevold, D., Helyar, S.J., Limborg, M.T., Nielsen, E.E., Hemmer-Hansen, J., Clausen, L.A.W., Carvalho, G.R. 2015. Gene-associated markers can assign origin in a weakly structured fish, Atlantic herring. ICES Journal of Marine Science 72: 1790-1801.

Lamichhaney et al. 2012. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proceedings of the National Academy of Sciences of the United States of America 109:19345-19350.

# A6.3 Tools to split herring populations 

Florian Berg (florian.berg@uib.no)<br>University of Bergen

Discrimination and splitting of mixed stocks are essential for stock assessment and advice. Herring stocks assessed by HAWG are mainly separated based on a priori assumptions that fish stocks rigidly follow artificial geographical boundaries. Currently, splitting methods are only applied for the separation of North Sea autumn spawning herring (NSASH, her.27.3a47d) and western Baltic spring spawning herring (WBSSH, her.27.20-24). However, the splitting is limited to Danish and Swedish samples from commercial landings and scientific surveys in division 3.a, Norwegian samples from scientific surveys, and samples from commercial landings in the "transfer area" in subarea 4 . Further, applied splitting methods are not consistent between labs and countries.

One of the used splitting methods to separate NSASH and WBSSH is otolith shape analysis. In recent years, the use of otolith shape analysis to discriminate fish stocks increased rapidly. Openaccess packages like shapeR (Libungan and Pálsson, 2015) allow scientist to easily extract otolith outlines for further analysis. Otolith shape analysis of Atlantic herring reveal clear differences between populations in the north-eastern Atlantic (Libungan et al., 2015). Further, there is a clear genetic effect on the otolith shape of Atlantic herring (Berg et al., 2018). Using otolith shape analyses also allow to discriminate more than two stocks and assign individual fish to one of the discriminated stocks. In the greater North Sea ecoregion, there is evidence that Norwegian spring spawning herring (NSSH) might occur in this management area and can even migrate into the Skagerrak (Eggers et al., 2014, Berg et al., 2017). It is also debated if herring from division 6.a migrate into subarea 4 and mix with NSASH. Furthermore, comparisons of historical vertebral counts demonstrate that WBSSH occur outside of the "transfer area" (Berg et al., 2017).

In a preliminary analysis, a baseline was build-up including otoliths from herring collected at spawning grounds as well as herring of all three stocks (NSASH, WBSSH, and NSSH) and samples from spawning herring in division 6.a. Spawning herring representing NSASH were collected on spawning grounds near Shetland. NSSH were collected during the spawning survey along the western Norwegian coastline. Otoliths of WBSSH were sampled at the main spawning ground in Greifswalder Bodden. In addition, otoliths assigned as spring (WBSSH) and autumn (NSASH) spawning herring from the Skagerrak and Kattegat based on otolith microstructure were included. Ideally, this baseline should be updated by annual samples, instead of rebuilding it from year to year.

The otolith shape of herring was transformed into 64 wavelet coefficients for further testing. There were no differences between otoliths from NSASH and spawning herring in division 6.a. Therefore, these herring were merged for the following analyses. Monte-Carlo and k-fold crossvalidations, provided by the assignPOP package in R (Chen et al., 2018), were conducted on this baseline using support vector machine as classification method. In addition to the wavelet coefficient, length data was included as an extra variable in the analysis. Analyses were conducted on a cohort basis comparing only individual of similar age. In general, the overall assignment accuracy was relatively high ( $>80 \%$ ). The miss classifications occurred mainly between NSASH and WBSSH. These results indicate that our baseline is suitable for assignment of individuals from unknown catches.

Unknown catches were collected during the Norwegian part of the Herring Acoustic (HERAS) survey in the North Sea where the proportion of spring and autumn spawning herring is currently calculated based on vertebral counts. The benefit using the otolith shape is an individual
assignment, while only proportions are estimated on mean values using vertebral counts. Comparing the assignment of the same data demonstrate that both methods results in similar assignments.

Such an individual assignment will be also beneficial for the stock assessment since more reliable data as weight-at-age can be estimated than using only proportions. Another advantage is the incorporation of NSSH as a third component. Using the vertebral counts, only to groups can be separated. The most western station resulted e.g. in $100 \%$ NSASH that means the vertebral counts were higher than the overall mean for NSASH. The same stations also indicate the occurrence of some NSSH which could explain the high mean vertebral counts, because the overall mean of NSSH is even higher. Consequently, the use of otolith shape can provide a better and more accurate assignment of individual on the stock levels than using vertebral counts.

In addition to otolith shape and vertebral counts, genetic samples were collected for two station outside the "transfer area" during the HERAS 2018. The general trend for all the methods was, that the northern station consisted mainly of NSASH, while the southern station included mainly WBSSH. The individual assignment based on otolith shape and genetics allowed for more detailed comparison. Overall, $>70 \%$ of the herring were assigned to the identical stock using genetics and otolith shape (Table 1). The biggest discrepancy is that some herring were assigned as NSSH using otolith shape analysis. However, the genetics did not assign a single herring as NSSH. This discrepancy needs to be further investigated.

All in all, otolith shape analysis provide a useful tool to discriminate and assign unknown herring catches to a given stock. Further, the preliminary results indicate that the geographical boundaries, not only for stocks, but also for the "transfer area", should be discussed. Potential readjustments or the implementation of splitting several stocks might improve the assessment and advice of herring stocks in the greater North Sea ecoregion.

## References

Berg, F., A. Slotte, A. Johannessen, C. Kvamme, L. A. W. Clausen and R. D. M. Nash 2017. Comparative biology and population mixing among local, coastal and offshore Atlantic herring (Clupea harengus) in the North Sea, Skagerrak, Kattegat and western Baltic. PLoS ONE, 12: e0187374.

Berg, F., Almeland, O. W., Skadal, J., Slotte, A., Andersson, L., Folkvord, A. 2018. Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus). PLoS ONE, 13: e0190995.

Chen, K.-Y., Marschall, E.A., Sovic, M.G., Fries, A.C., Gibbs, H.L., Ludsin, S.A. 2018. assignPOP: An r package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods in Ecology and Evolution 9: 439-446.

Eggers, F., Slotte, A., Libungan, L. A., Johannessen, A., Kvamme, C., Moland, E., Olsen, E. M.,Nash, R.D.M. 2014. Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats. PLoS ONE, 9: e111985.

Libungan, L. A., Óskarsson, G. J., Slotte, A., Jacobsen, J. A., Pálsson, S. 2015. Otolith shape: a population marker for Atlantic herring Clupea harengus. Journal of Fish Biology, 86: 1377-1395.

Libungan, L. A., and Pálsson, S. 2015. ShapeR: An R package to study otolith shape variation among fish populations. PLoS ONE, 10: e0121102.

Table 1. Assignment results of individual herring to one of the three stocks (NSASH = North Sea autumn spawning herring, WBSSH = Western Baltic spring spawning herring, NSSH = Norwegian spring spawning herring) occurring in the greater North Sea ecoregion based on otolith shape analysis and genetic markers.

|  |  | Genetics |  |
| :--- | :--- | :--- | :--- |
| Otolith shape | NSASH | WBSSH |  |
|  | NSASH | $34.4 \%(n=52)$ | $14.6 \%(n=22)$ |
|  | NSSH | $6.6 \%(n=10)$ | $2.7 \%(n=4)$ |

# A6.4 Herring otolith microstructure - analysis and calibration 

Julie Coad Davies (joco@aqua.dtu.dk)
DTU Aqua

Herring otolith microstructure (OM) analysis is carried out at DTU Aqua (Denmark) and SLU (Sweden) on samples from commercial landings in ICES areas 4.a, 4.db, 3.aN, 3.aS, SD22, SD23 and SD24 and from scientific surveys in ICES areas 3.aN and 3.aS. The aim is to determine the spawning type or stock ID's of the fish; North Sea autumn spawners (NSAS or 9's), Downs winter spawners (Downs or 12's) and Western Baltic spring spawners (WBSS or 4's). The samples form the baseline for the otolith shape/stock ID analysis conducted on the combined commercial catches from Denmark and Sweden prior to the annual stock splitting of the WBSS component from the North Sea component in the 3.a and 4.a.E. and 4.b.E "transfer area" and the Danish HERAS samples. Calibration exercises have been ongoing since 1999 to ensure consistency in agreement between readers and laboratories and for training new readers.

The 2019 exchange utilised samples with genetically assigned stock ID. The genetic methods applied have a very high statistical power for stock assignment using SNP markers (> 95\% of fish classified correctly) with the added possibility to identify likely sub stocks (Rügen, Kattegat, Skagerrak, Central Baltic autumn and spring spawners). Readers results were compared against the genetically validated stock ID for each sample and the percentage agreement (PA) and a comparison matrix of each reader versus validated ID was calculated, DK01 and DK02 reached a PA of $87 \%$, SWE01 reached a PA of $84 \%$ and SWE02 reached a PA of $80 \%$. These results show a huge improvement from the 2016 workshop and the 2018 exchange where there were few samples where all 4 readers were in agreement. The correct identification of the Down winter spawning component was problematic is all recent calibration events. In the 2018 exchange, the inclusion of a subset of genetically validated samples provided the opportunity to calibrate against material with known stock ID. Following the exchange images were discussed with the readers and guidelines agreed upon based on these validated samples. This material has certainly contributed enormously to the improved 2019 results.

It is likely that there has been a change in increment width (IW) patterns observed in the otoliths of herring caught in this area overtime considering otolith microstructure is under the influence of growth, spawning time variation and environment. In addition, other sub stocks of herring (Rügen, Kattegat, Skagerrak, Central Baltic autumn and spring spawners) caught in this area are amongst the samples being analysed. An updated baseline set of samples is needed so that guidelines for IW measurements and an image library can be included in an updated OM reader protocol. This requires that samples from both spawning fish and 0 -group fish covering the three main stock ID's plus the sub stocks are collected for combined genetic, OM and otolith shape analysis. These samples can potentially be used in the future to test the validity of the various stock identification and splitting methods and be used for quality assurance exercises within and between national laboratories.

# A6.5 Herring otolith classification 

Jan Arge Jacobsen (janarge@hav.fo)<br>Faroe Marine Research Institute

## Background

The separation of different herring stock components is an issue in several of the surveys coordinated in WGIPS. Recently concerns have been raised by the survey groups for the International ecosystem surveys in the Nordic Seas (IESNS and IESSNS) on mixing issues between Norwegian spring-spawning herring (NSSH) and other herring stocks (e.g. Icelandic summer-spawning ISSH, Faroese autumn-spawning FASH and North Sea type autumn-spawning herring NASH) might have occurred in some of the fringe regions in the Norwegian Sea. Up to date fixed cut lines have been used to exclude herring of presumed other types than NSSH, however this simple procedure is thought to introduce some contamination of the stock indices of the target NSSH.

## Summary

Havstovan (the Faroe Marine Research Institute) uses a combination of maturation stage and otolith microstructure (nucleus or hatch type and otolith shape/growth pattern) to separate au-tumn-spawning herring from the Norwegian spring-spawning herring. The nucleus (hatch) type and the width of first winter ring/summer growth ( $\mathrm{L}_{1}$ ) combined with maturity stage (GSI) apparently gives a high degree of separation power if employed by experienced personnel.

## Method

Mixing of herring occurs in the Faroese area and neighbouring areas during the IESNS and IESSNS. The NSS herring is found feeding in the northern part of the Faroese EEZ, usually north of $62^{\circ} \mathrm{N}$. However, in this fringe area NSSH is found mixed with the local Faroese herring (FASH). Similarly east of the Faroes and into the northern part of the EU EEZ, herring of the autumn-spawning type is found mixed with NSSH to a varying degree. In the Faroe zone they are believed to be autumn-spawning herring of Faroese origin while further east they might originate from the northern North Sea (IVa or VIa north).

There are many ways to classify herring e.g. by
observing the spawning site
otolith microstructure, e.g. nucleus type (opaque or hyaline) or shape analysis, intercirculi spacing in otoliths (and scales)
morphological (fenotypical) differentiations of the herring such as gillraker spacing, vertebrae counts, maturity stage at time of capture
genetic methods (microsatellite or SNPs)
chemical and fatty acids analysis.
The current method used by the Faroese Marine Research Institute to split herring samples into NSSH and other herring types consists of two parts: otolith micro structures (nucleus type and annual growth patterns) together with gonad development indices.

The measurement is the growth in the first year ( L 1 radius from centre to first winter zone or diameter $\mathrm{D}_{1}$ ). The $\mathrm{L}_{1}$ measure has been reported in literature (Geffen 1982, Husebø et al. 2005). The observed smaller width of the first winter ring in the opaque type NSSH might be attributed to the nursery area in northern Norway/Barents Sea, i.e. in colder environment than the herring grown up on the Faroe Plateau of further south in the northern North Sea. Thus the hyaline types have a wider diameter to the first winter ring compared to the NSSH. A further indication is the hyaline nucleus in the autumn-spawning herring, where the transparent nucleus indicate that the larvae was spawned the autumn before (with poor growth as larvae during winter) prior to the first years growth. Geffen (1982) found a positive relationship between herring growth rate and daily ring deposition rate in herring. Husebø et al. (2005) also used otolith microstructure and gonad development indices to demonstrate spawning season fidelity in autumn- and springspawning herring in mixed overwintering aggregations.

Initially otoliths from herring of both types (NSSH and FASH) were photographed and measured $\left(\mathrm{L}_{1}\right)$ to determine their origin. This analysis showed a clear separation between the two types of herring. This method is time consuming and cumbersome, however, it appeared that it was relatively easy to distinguish the two otolith types by visual inspection only by trained personnel.

Visual discrimination:
Opaque (spring-spawning) type: shorter, shorter rostrum, wider appearance, more square winter zones, $\mathrm{L}_{1}$ (or $\mathrm{D}_{1}$ ) shorter than for hyaline otoliths

Hyaline (autumn-spawning) type: opposite to above.
The $\mathrm{L}_{1}$ measurements and nucleus type together with maturity stage transformed to gonosomatic index GSI (gonad weight in relation to body weight) apparently gives a very high degree of separation power if employed by experienced personnel.

Examples of $L_{1}$ measurements from a Faroese sample in May 2008 in the northernmost part of the EU zone (where mixed concentrations of herring was found). Most likely the opaque type herring were NSSH and the hyaline types with larger first summer growth were FASH or NASH: Hyaline type $\mathrm{L}_{1}=0.71 \mathrm{~mm}$ and Opaque type $\mathrm{L}_{1}=0.50 \mathrm{~mm}$ (small sample in the ppt presentation). The method has been tested by comparison of "known" samples of NSSH and FASH.

## References

Geffen, A. J. 1982. Otolith ring deposition in relation to growth rate in herring (Clupea harengus) and turbot (Scophthalmus maximus) larvae. Marine Biology, 71: 317-326.

Husebø, Å., Slotte, A., Clausen, L. A. W., and Mosegaard, H. 2005. Mixing of populations or year class twinning in Norwegian spring spawning herring? Marine and Freshwater Research, 56: 763-772.

# A6.6 Morphometric discrimination of herring in 6a,7bc 

Michaël Gras (Michael.Gras@Marine.ie)<br>Marine Institute, Ireland

Identifying stocks is one of the primary prerequisites to perform an assessment. In the divisions 6 a and 7 bc , ICES recognise that two stocks of herring are assessed as one. As both stocks are not the same size and have different dynamics, using one fishing mortality for both could lead to the overfishing of one stock. In December 2017, an EASME funded project led by University College Dublin with the Marine Institute and Marine Science Scotland as partners started. The objective of the project is first to develop tools that enable the identification of the herring stocks that occur in the ICES divisions 6 a and 7 bc and second to use the developed tools to identify the origin of fish sampled in a putative mix. The stock identification will be based on genetics, body morphometrics and otolith shape. The objective of the presentation is to give the HAWG an update about the work undertaken on body morphometrics and otolith shape. Regarding body morphometrics, 20 landmark points were digitised and enabled the derivation of 40 body morphometric measurements. Among these, 8 were excluded due to correlation with maturity stages. Regarding otolith shape, each otolith was photographed and the R package ShapeR (Libungan and Palsson, 2015) used to derive either the coordinates of the Fourrier ellipses or the wavelet coefficients. Both of them can describe the shape of an otolith and can be used to identify fish of different stocks. Baseline data collection started in 2003-2005 as part of the WESTHER project and further samples were collected in 2014 and 2016-2017. In total, 1900 fish were sampled for baseline morphometrics. Regarding mix samples, from 2010 to 2018, 9,700 fish were sampled on mix aggregations. Some preliminary cross validation tests using the R package AssignPOP (Chen et al., 2017) showed $87 \%$ success in allocation. Although morphometric data are more labour intensive than genetic data to collect, the work continues as the time series is longer (time series on the mix starts in 2010 for morphometrics vs 2014 for genetics). The data collection will carry on until the end of the project in 2020. Comparisons between morphometric and genetic tools will be made to choose the most efficient and less costly method that will be used on the long term to monitor the mix aggregations.

## References

Chen, K-Y, Marschall, EA, Sovic, MG, Fries, AC, Gibbs, HL, Ludsin, SA, 2017. assignPOP: An r package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods Ecol Evol. 2018; 9:439-446. https://doi.org/10.1111/2041-210X. 12897

Libungan, L.A., Pálsson, S., 2015. ShapeR: An R Package to Study Otolith Shape Variation among Fish Populations. PLoS ONE 10(3): e0121102.

# Annex 7: Special Request - Evaluation of a sentinel TAC for Celtic Sea Herring 

This annex was added to the report in October 2019.

## Evaluation report of the proposal for a monitoring TAC for the Celtic Sea Herring

## Background

The 2019 assessment of Celtic Sea herring estimated that the stock has decreased significantly since 2011 and has been below $B_{\text {lim }}$ since 2017 (ICES, 2019). ICES advised that there should be no catch on this stock in 2020. Given this context, ICES is requested to
$\rightarrow \quad$ provide advice on the minimum level of catches (tonnage) required in a sentinel TAC, which would provide sufficient data for ICES in order to continue providing scientific advice on the state of this stock.

Ireland is the main participant in the Celtic Sea herring fishery and has $86 \%$ of the TAC. The Irish Celtic Sea herring fleet is composed of two components; The "Sentinel fleet" defined as the fleet of vessels $<17 \mathrm{~m}$ LOA that operate in ICES Division 7.aS and receives an allocation of the Irish quota. In this document "sentinel TAC" was replaced by "monitoring TAC" to avoid any confusion with the Irish sentinel fleet.

## Methodology

The procedure adopted aims to determine the number of individual samples required to meet an acceptable level of precision within the resulting catch-at-age matrix (Campbell, 2016). To determine an appropriate level of precision Irish sampling data from 2013-2017 was examined. Ireland is the only country sampling Celtic Sea herring.
Sampling precision was calculated using a bootstrap technique:

1. Set $\mathrm{N}=$ total number of available age samples
2. Randomly sample with replacement the complete dataset. Quality is considered equivalent across samples and equivalent weight is attributed to all the samples
3. An ALK is constructed using the age data from the bootstrapped samples,
4. Numbers-at-age are generated by passing the whole dataset through the ALK
5. Steps 2-4 are repeated 1000 times
6. Calculate a weighted CV from the 1000 iterations
7. $\operatorname{Set} \mathrm{N}=\mathrm{N}-1$ and repeat steps $2-6$, continuing until $\mathrm{N}=2$

As background, the DCF reporting structure defines the level of precision for ageing as follows

| Level | CV (\%) |
| :---: | :---: |
| 0 | $20+$ |
| 1 | $12.5-20$ |
| 2 | $2.5-12.5$ |
| 3 | $0-2.5$ |

A precision level of 2 is the target for group 1 and group 2 species for landings data, from a stock such as Celtic Sea herring (Commission Decision 2010/93/EU).

## Data

Length frequency data from Irish port sampling is plotted in Figure 1. In 2013 smaller fish were sampled in 7.g but a similar mode can be seen in both areas. Lengths sampled were similar in both areas in 2015 and 2016. In 2014, two modes can be seen in 7.aS from the sentinel fleet that did not appear in the main fleet. In 2017, two clear modes are evident in the main fleet operating in 7.g. This is less defined in 7.aS.


Figure 1: Length frequency of samples collected from landings of the main fleet 7.g (grey) and the sentinel fleet 7.aS (black) 2013-2017.

## Results

## Sampling precision



Figure 2: Weighted CV vs number of samples collected per year from 2013 to 2017

The number of samples required to reach a sampling precision $<12.5 \%$ ranged from 14 to 17 samples in 2013, 2015 and 2016. The threshold was not reached for samples collected in 2014 and 2017 although 28 and 16 samples were aged respectively (Table 1).

Table 1: Number of samples collected per year and number of samples required to reach a sampling precision <12.5\%

| Year | N samples | N of samples required |
| :---: | :---: | :---: |
| 2013 | 28 | 14 |
| 2014 | 28 | $N A$ |
| 2015 | 19 | 15 |
| 2016 | 29 | 17 |

## Estimation of the Monitoring TAC

To estimate the level of catches which would provide a sufficient number of samples, the average haul size from each fleet, provided by the Irish Industry (Celtic Sea Herring Management Advisory committee) was used.

- Main fleet: Average size of a haul is 65 t .
- Sentinel fleet: Average size of a haul is 6 t .

An analysis of the 2013-2017 Irish sampling data was conducted. 2016 was chosen as the reference year because the fishery was not constrained by quota, the age structure included both strong and weak year classes, and there was good distribution of samples in both 7.aS and 7.g. The analysis was confined to quarter 4 because it is indicative of the winter fishery for which monitoring is required. In total, 29 samples were taken in 7.g and 7.aS combined, with an average of 186 fish measured and 50 fish aged per sample.

Based on sampling data in 2016, it is possible to attain a precision of $12.5 \%$ with 17 samples. The highest level of sampling should be in the main fishery ( 13 samples) where the majority of the quota is. The sentinel fishery should provide 4 samples. These proportions are based on the sampling levels that have been attained from this fishery in the past.

Table 2: Sampling of the main fishery

| Basis | CV\% | No of samples | Catch assuming 65 t hauls |
| :--- | :---: | :---: | :---: |
| DCF Level 2 | $2.5-12.5$ | 13 | 845 t |

Table 3: Sampling of the sentinel fishery

| Basis | CV\% | No of samples | Catch assuming $6 \mathbf{t}$ hauls |
| :--- | :---: | :---: | :---: |
| DCF Level 2 | $2.5-12.5$ | 4 | 24 t |

Total proposed monitoring TAC $=869 \mathrm{t}$
The Celtic Sea Herring TAC is shared between Germany, France, UK, the Netherlands and Ireland (Council Regulation (EU) 2019/124). The percentages are given in Table 4 with the greatest proportion of the TAC allocated to Ireland.

Table 4: Percentage of Celtic Sea Herring TAC by country and the proposed monitoring TAC.

| Country | Percentage | TAC ( $\mathbf{t}$ ) |
| :--- | :---: | :---: |
| Germany | $1.1 \%$ | 10 |
| France | $6.2 \%$ | 54 |
| UK | $0.1 \%$ | 1 |
| Ireland | $86.4 \%$ | 751 |
| Netherlands | $6.2 \%$ | 54 |
| Total |  | 869 |

## Evaluation of the impact of the proposed monitoring TAC on the recovery of the stock

To evaluate the impact of the monitoring TAC on the recovery of the stock, a shortcut Management Strategy Evaluation was run using SimpSim which is a version of EqSim, the ICES software to calculate reference points that works at non-equilibrium. SimpSim was used in the evaluation of the blue whiting management strategies (ICES, 2016).

## Operating Model (OM)

The Operating Model (OM) was based on the 2019 assessment (ICES, 2019). The stock-recruitment relationship is a segmented regression model with a breakpoint at $\mathrm{B}_{\lim }(34000 \mathrm{t})$. The 2019 catch was assumed to be 5320 t which is the same figure used by HAWG for the short term forecast (see Section 6 of this report).

## Implementation Model

Three scenarios were considered in the implementation model.

1. No Catch.
2. The proposed monitoring TAC (869 t).
3. The Irish proportion of the proposed monitoring TAC (751 t).

## Performance statistics

The second and third scenarios described above were compared to the zero catch scenario to highlight the impact of the proposed monitoring TAC on the recovery of the stock. The year of recovery was defined as the year when the risk to Blim falls below 5\%. For each scenario, the realised F, the year of recovery and the risk to Blim in 2023 and 2024 were tabulated (Table 5).

Table 5: Performance statistics (range of F over the years 2021-2026 derived from the Management Strategy Evaluation simulating 3 scenarios, i.e. no catch, proposed monitoring TAC fully caught, Irish portion of the proposed monitoring TAC only.

| Scenario | Range of Realised F | Recovery Year | Risk to B $_{\text {lim }}$ in $\mathbf{2 0 2 3}$ | Risk to Blim in 2024 |
| :--- | :---: | :---: | :---: | :---: |
| No catch | 0 | 2023 | $3.5 \%$ | $1.2 \%$ |
| Total TAC $=869 \mathrm{t}$ | $0.04-0.01$ | 2024 | $5.1 \%$ | $2.8 \%$ |
| Irish quota $=751 \mathrm{t}$ | $0.03-0.01$ | 2023 | $4.7 \%$ | $2.6 \%$ |

## Conclusions

Based on sampling data in 2016, it is possible to attain a precision level of $12.5 \%$ in the Celtic Sea herring fishery with approximately 17 samples and these could be obtained with a monitoring TAC of 869 t .

The length composition of catches from the main fleet and the sentinel fleet exhibited differences in some years. It is recommended to keep sampling both fleets to ensure any differences in length compositions are monitored.

The simulations show that with no fishing in 2020 recovery is expected in 2023. The proposed monitoring TAC of 869 t will delay this recovery by one year until 2024. If only the Irish portion of the TAC $(751 \mathrm{t})$ is taken the recovery year remains at 2023 .

## References

Campbell, A. 2016. Sampling Precision in the 6.a, 7.b, and 7.c Herring Fishery. ICES CM 2016/ACOM:51. 16 pp.

ICES. 2016. Report of the Workshop on Blue Whiting (Micromesistius poutassou) Long Term Management Strategy Evaluation (WKBWMS), 30 August 2016, ICES HQ, Copenhagen, Denmark. ICES CM 2016/ACOM:53. 104 pp.

# Review on the Evaluation report of the proposal for monitoring TAC for the Celtic Sea Herring. 

## Reviewer 1

ICES is requested advice on the minimum level of catches (tonnage) required in a sentinel TAC, which would provide sufficient data for ICES in order to continue providing scientific advice on the state of the stock. The expert report proposes a monitoring TAC of $869 \mathrm{t}(845 \mathrm{t}$ from the main fishery and 24 t from the sentinel fishery) based on sampling precision of $<12.5 \%$ and 2016 as reference year as the basis of the calculations.

The analysis conducted is appropriate for determining the number of samples required to reach a sampling precision of $<12.5 \%$ (following also Campbell, 2016). This level of precision for ageing is taken from the Commission Decision 2010/93/EU section B.B 2.4. Please see the document for comments in the text.

The major concern for this stock, as I see it, is to keep the mortality of the stock at a minimum level. The proposed monitoring TAC of 869 t will delay this recovery of the stock by one year until 2024 according to the shortcut Management Strategy evaluation that was run. So the proposed numbers for the sampling do not seem to be the best option. Instead of catching this much, would it not be a possibility to use the fishery independent acoustic samples?
Response: The short-cut MSE was run with 3 different scenarios, (i) no catch, (ii) full uptake of the monitoring TAC, (iii) only the Irish quota. In case (ii) the risk to Blim in 2023 is $5.1 \%$ and falls to $2.8 \%$ in 2024. The risk in 2023 is only marginally higher than $5 \%$. As other countries have quota but do not have a targeted fishery on this stock, their quota might not be fished. In this case, the risk to $B_{\lim }$ would fall below $5 \%$ in 2023 and the recovery year would be the same as in the no catch scenario. With the proposed monitoring TAC of 869 t ( $80 \%$ lower than the lowest TAC for that stock), the fishing mortality would be 0.04 in $2020(30 \%$ lower than the lowest fishing mortality in the time series).

Below, I list some of the issues that I think needs more clarification and thorough elaboration from the experts:

1. Using the Acoustic survey - There is a fishery independent acoustic survey that is also used in the assessment in years 2002-2018 (excluding years 2004 and 2017). Is it not possible to use the acoustic survey results to assess the state of the stock by using the existing correlation between the acoustic survey results and the correlated SSB found in the assessment? If possible, it would be enough in the rebuilding phase of the stock to only perform the acoustic survey and from that draw inferences about the SSB development. I would like the experts to elaborate if this is feasible or not.
2. In addition, the acoustic survey provides data on the size and length distribution of the fish. For instance, the acoustic survey in 2018 October provided 9788 t and 213491 individuals which were provided from 15 trawl hauls. 529 herring were aged and 1668 length measured and 807 length-weights recorded. Can the experts give reasons why the age/length information obtained from the acoustic survey is not sufficient to obtain the required information on the state of the stock?

Response: (1) and (2): The Celtic Sea Herring assessment is a full analytical category 1 assessment. Two data series are used in the age-disaggregated model, the catch-at-age matrix (fishery dependent) and the survey index (fishery independent) to tune the model. Using only the survey data in the assessment will increase the uncertainty on the SSB estimation. The survey is carried out over a three week period in October. The survey follows a parallel transect design standard across all acoustic surveys and in a pre-defined survey area for this stock. Sampling levels vary
on the acoustic survey and rely on the survey encountering herring marks along the survey track. When the stock is low estimates from acoustic surveys in general are uncertain. For instance, in 2018 the CV for the survey was $50 \%$ and could not be calculated on the 2017 survey due to the fact that only one biological sample was collected. The survey does not guarantee adequate biological or acoustic sampling at low stock sizes. Sufficient information on age structure may not be available to the assessment if the acoustic survey is the only data source. The monitoring fishery would cover a period 6 weeks and would provide a better sampling coverage of the fishing grounds
3. When the estimation for the monitoring TAC is made the experts indicate that the average haul size is 65 t for the main fleet. Is it possible to shorten the trawl time of the hauls thereby reducing the tonnage obtained in the catch? Can the experts show evidence why a reduced haul time/size is not sufficient to meet the requirements of precision for a representative age/length distribution.

Response (3): Herring is a pelagic schooling fish. Fish density in aggregations could be high. As opposed to demersal fishing, reducing the time of trawling does not necessarily reduce the catch. We are reducing the risk of not collecting enough samples by using average haul sizes provided by fishermen ( 65 t in the main fleet). The monitoring TAC would help to maintain a commercial catch-at-age matrix consistent with fleet behaviour in years when commercial TAC is available.
4. It looks as the sentinel fleet is catching the same size distribution as the main fleet, why not only use the data from the sentinel fleet? Can the experts provide arguments for not using only the sentinel fleet?

Response (4): In the CSH fishery, the sentinel fleet (vessels $<17 \mathrm{~m} \mathrm{LOA}$ ) is confined to $7 . \mathrm{aS}$ and fishes primarily inshore in two ICES rectangles. The main fleet (larger vessels) fishes primarily in $7 . g$ and cover a much larger area than the sentinel fleet. In Figure 1 of the report, length frequencies from 2013 to 2017 are presented. In 2013, 2014 and 2017, differences in catch composition appear. The 7.g component of the stock would not be sampled if only the sentinel fleet participates the fishery.
5. Are all the hauls going to be sampled or what is meaning of "the sampling level of 2016"? For example, is it every third haul or every third trip etc.? Maybe it is possible to reduce the total catch by increasing the intensity of the sampling. Can the experts elaborate on this?

Response (5): In this fishery, like in the 6.a, 7.b-c herring fishery, vessels that prosecute the fishery will be requested to take a 25 kg sample of unsorted catch at every haul directly from the net and arrange to deliver the samples to the Marine Institute. Upon availability, the vessel will be requested to carry an observer on board who will take and process the sample.

## Reviewer 2

This is a review of the report supporting the ICES response for a special request from the European Commission asking for advice on the minimum level of catches (tonnage) required in a monitoring TAC, which would provide sufficient data for ICES in order to continue providing scientific advice on the state of Herring in Division 7.a South of $52^{\circ} 30^{\prime} \mathrm{N}, 7 . \mathrm{g}-\mathrm{h}$ and 7.j-k.

The ICES response to this request provides a monitoring TAC, defined as the product of the number of samples that allows achieving a sampling precision $<12.5 \%$ and the average haul tonnage. It also provides a short-cut MSE to evaluate the impact of the proposed monitoring TAC on the recovery of the stock compared to a zero catch situation.

## Reviewer's Comments

The methodology conducted by Gras and Egan is appropriate to answer this request. They followed the approach described in Campbell (2016) to calculate sampling precision and monitoring TAC, and then an MSE was implemented. However, for the first part, the methodology differs in a technical issue that is of particular significance, and it is about the choice of the year selected as a baseline for the analysis.

While in Campbell (2016), the analysis just starts defining the baseline year, in the evaluation report, the analysis starts calculating the sampling precision for the yearly data available from 2013 to 2017, and after that, 2016 is decided as the baseline year. This sampling precision analysis developed for some years in the report provides important information related to other years different to 2016 and it is never used again in the posterior results.

This additional analysis shows that for the year 2014 there was almost the same number of samples as for the year 2016 but the desired sampling precision was not achieved. This also indicates that the sampling precision not only depends on the number of samples available. Thus, it is necessary to understand what the particular circumstances are that prevent the desired precision level from being obtained when there is a high number of samples available. This understanding should determine also additional constraints on the recommended monitoring TAC. In case it is not possible to diagnose the reasons for not achieving the sampling precision with almost the same aged samples available, I suggest to calculate the number of samples required for all the years analysed, even if that number is higher than the samples available, then, choose the two highest numbers of samples required to calculate the monitoring TAC and decide among them using the MSE short-cut approach.

In summary, the report should take into account the possibility of a monitoring TAC providing 17 samples but with similar sampling properties as the one in 2014.

On the other hand, it is assumed that it is necessary to have enough samples with a $<12.5 \%$ sampling precision level to provide scientific advice using an analytical assessment but that was not the case in years 2014 and 2017. Therefore, it would be helpful in terms of consistency if ICES could suggest to the HAWG to check the precision level of aged samples before the assessment and to analyse the consequences on the advice of not having the required precision level.

Some minor issues are also included as comments in the main document.

## Response of the authors

The year 2016 was chosen using the same criteria as Campbell (2016), i.e. the catch was not limited by the quota. For transparency purposes, other years were also presented.

The difference in 2014 is the appearance of a cohort <20 cm that was not observed in 2013, 2015 and 2016 in catch samples. That small cohort in 2014 might be at the origin of a higher value in precision level. In 2014, although the number of samples went up to 28, the threshold of $12.5 \%$ was not reached. When two distinct modes are present in the length frequency data, a very high
level of sampling would be required to reach the sampling precision level of $12.5 \%$. Increasing the number of samples to ensure the precision threshold is reached in any circumstances would imply increasing the level of catches and delay further the recovery of the stock. Collecting 17 samples would ensure that the precision level of $12.5 \%$ would be reached in non-exceptional circumstances and would ensure a low impact on the recovery of the stock as shown in the MSE.


[^0]:    ICES
    INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA
    CIEM COUNSEIL INTERNATIONAL POUR L'EXPLORATION DE LA MER

[^1]:    * From ICES guidelines https://community.ices.dk/ExpertGroups/HAWG/ layouts/15/WopiFrame.aspx?sourcedoc=\%2FExpert-Groups\%2FHAWG\%2F2018\%20Meeting\%20docs1\%2F03\%2E\%20Background\%20documents\%2FGuide\%5FMohnsRho\%5Fcalculation\%5FRetroBias\%2Edocx\&action=view

[^2]:    * From ICES guidelines https://community.ices.dk/ExpertGroups/HAWG/ layouts/15/WopiFrame.aspx?sourcedoc=\%2FExpert-Groups\%2FHAWG\%2F2018\%20Meeting\%20docs1\%2F03\%2E\%20Background\%20documents\%2FGuide\%5FMohnsRho\%5Fcalculation\%5FRetroBias\%2Edocx\&action=view

[^3]:    ${ }^{1}$ EU-Norway. 2018. Agreed record of consultations of long-term management strategies on joint stocks between Norway and the European Union, London, 7 June 2018. 5 pp.

[^4]:    ${ }^{2}$ EU-Norway. 2018. Agreed record of consultations of long-term management strategies on joint stocks between Norway and the European Union, London, 7 June 2018. 5 pp.

[^5]:    * Including any bycatches in the industrial fishery
    ** Negative unallocated catches due to misreporting into other areas.

[^6]:    71.52447530 .992347720 .418157220 .34911060 .25017840 .14571034
    81.52447530 .992347720 .418157220 .34911060 .25017840 .14571034
    year

    | age | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

    $\begin{array}{lllllllll}0 & 0.3790312 & 0.3481326 & 0.3653219 & 0.2037279 & 0.1053484 & 0.08186219 & 0.1487193\end{array}$
    10.19315390 .17294550 .19419940 .18302320 .27150180 .287360460 .3293834
    20.19776070 .17870280 .19393690 .21038350 .26077490 .278844970 .2804539
    30.20835090 .27048490 .23677940 .28453860 .38657920 .340734000 .3024146
    40.20641710 .20159850 .25597860 .35237070 .43693160 .371179730 .3621733
    $50.24360610 .15228240 .23341680 .35675320 .4107788 \quad 0.365003820 .3812674$
    60.21082980 .14169160 .25390850 .31883180 .42611750 .448214260 .4108958
    $\begin{array}{lllllllll}7 & 0.4516399 & 0.2099404 & 0.3700967 & 0.5149909 & 0.5321671 & 0.52786866 & 0.3889579\end{array}$
    80.45163990 .20994040 .37009670 .51499090 .53216710 .527868660 .3889579 year

    |  |  |  |  |  |  |  |  |
    | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
    | age | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
    | 0 | 0.1177234 | 0.1196483 | 0.07410944 | 0.1134739 | 0.2327973 | 0.2353767 | 0.1509562 |
    | 1 | 0.4573337 | 0.3472972 | 0.35247595 | 0.2654312 | 0.2835709 | 0.2728099 | 0.1432269 |
    | 2 | 0.2497685 | 0.2619148 | 0.24279484 | 0.3320650 | 0.3438465 | 0.3680766 | 0.3556057 |
    | 3 | 0.2728146 | 0.2657190 | 0.23226298 | 0.2674202 | 0.2935521 | 0.3699112 | 0.3886336 |
    | 4 | 0.3414287 | 0.3527375 | 0.27539778 | 0.2714939 | 0.3074742 | 0.3847875 | 0.5070142 |
    | 5 | 0.3830658 | 0.3499021 | 0.29828502 | 0.2702035 | 0.2994690 | 0.3190256 | 0.3016247 |
    | 6 | 0.3964282 | 0.3513449 | 0.25062582 | 0.2829347 | 0.3327166 | 0.3402880 | 0.3017511 |
    | 7 | 0.4061951 | 0.3614222 | 0.28427796 | 0.2206371 | 0.3164573 | 0.3689236 | 0.2840365 |
    | 8 | 0.4061951 | 0.3614222 | 0.28427796 | 0.2206371 | 0.3164573 | 0.3689236 | 0.2840365 |

    80.40619510 .36142220 .284277960 .22063710 .31645730 .36892360 .2840365 year

    | age | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

    00.16879470 .067255810 .019557150 .017268550 .028063900 .03049085
    10.13459960 .108596190 .042913200 .071148790 .044056230 .05132189
    20.25251950 .134678280 .118384220 .144723630 .122684530 .11924626
    30.35627530 .206904410 .173672960 .184225120 .220617050 .17439384
    40.34961130 .184038220 .194138550 .201144260 .193885310 .22269825
    50.36689840 .195069640 .182263330 .214497180 .201323770 .22482521
    60.28077150 .199739770 .169174640 .215247040 .186658260 .18953329
    70.25550280 .096864030 .129782000 .120033500 .107285030 .11317385
    80.25550280 .096864030 .129782000 .120033500 .107285030 .11317385 year
    $\begin{array}{llllll}\text { age } 2001 & 2002 & 2003 & 2004 & 2005\end{array}$
    00.027641590 .023664360 .022728970 .034845530 .051313870 .04971467
    10.042101660 .031232260 .043486250 .033763120 .062292660 .03520171
    20.079632100 .078827490 .071805310 .078630360 .095732690 .08221436
    30.155558680 .137303150 .128171110 .135533840 .136966180 .13740312
    40.182763190 .179098330 .193105170 .203622990 .225217750 .21782266
    $\begin{array}{llllllll}5 & 0.20155476 & 0.17488475 & 0.27534712 & 0.30189423 & 0.31292837 & 0.27925252\end{array}$
    60.189115550 .185160210 .220998240 .391306470 .429386670 .35082425
    70.123091500 .161949490 .186848130 .282450810 .521863810 .46723093
    $8 \quad 0.123091500 .16194949 \quad 0.186848130 .282450810 .521863810 .46723093$ year
    age 2007 2008 2009 2010 2012
    00.034669320 .039919670 .024000610 .025207250 .034626070 .03451844
    $10.035878720 .030835130 .02377248 \quad 0.022054770 .016886440 .03094793$
    20.068128240 .077939020 .056546850 .057813230 .059230260 .07427581
    $30.144276650 .08882657 \quad 0.048082830 .067772580 .085155770 .13639793$
    $4 \quad 0.194590890 .125289730 .076342600 .072403150 .099187100 .15838979$

[^7]:    *When SSB is greater $\mathrm{B}_{\text {trigger }}$ TAC inter annual variability limited to $25 \%$ up and $20 \%$ down from the intermediate TAC for the A fleet.
    ${ }^{* *}$ When SSB is greater $B_{\text {trigger }}$ TAC inter annual variability limited to $25 \%$ up and $20 \%$ down from the intermediate TAC for the A and B
    fleets.
    ${ }^{\wedge}$ No reference points satisfying long term risk criteria could be achieved for management plan option B+E.

[^8]:    * small revision during HAWG 2010

[^9]:    * Unraised discards.
    ** Revised at WKWEST 2015.

[^10]:    * Unraised discards.

[^11]:    * Added in 2014 after report of 1\% discarding.

[^12]:    * Added in 2014 after report of $\mathbf{1 \%}$ discarding.

[^13]:    * no information, but catch is likely to be negligible

[^14]:    *SSB in 2020 relative to SSB in 2019
    **TAC in 2019 relative to catches in 2018

[^15]:    year nvessels ntrips ndays nhauls catch nlength

