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i Executive summary 

The Workshop on the Development of Quantitative Assessment Methodologies based on Life-
history traits, exploitation characteristics, and other relevant parameters for data-limited stocks 
(WKLIFE) focuses on the provision of sound advice rules for data-limited stock (DLS) assess-
ments that are within the ICES MSY framework. This ninth workshop was convened to further 
address the challenges to the evidence base for the provision of ICES advice with specific refer-
ence to DLS. The reviewers’ report of WKLIFE VIII (ICES, 2018) was used as the basis to draft 
ICES technical guidance on advice rules for stocks in Categories 3 and 4 following the meeting 
in 2018. The draft document reflected the conclusions of the WKLIFE VIII meeting report but in 
order to provide a good guidance document to the ICES community, some of the text and steps 
identified required further elaboration. The intersessional work undertaken ahead of this 
WKLIFE IX meeting provided a basis to revise the draft and during this WKLIFE IX meeting, the 
draft technical guidance was revised and updated. The draft report of, and recommendations 
from, the ICES workshop on data-limited stocks of short-lived species (WKDLSSLS) was re-
viewed and additional simulation studies undertaken during WKLIFE IX, and the need for spe-
cific advice rules for these stocks examined. Annex 3 to this report contains the revised and 
agreed text by the participants at WKLIFE IX. Specifically, the draft ICES technical guidance was 
revised and amended based on the work presented at WKLIFE IX and its previous workshops 
with respect to short-term forecasts utilising a surplus production model (SPiCT – Stochastic 
Production model in Continuous Time), and harvest control rules for length-based approaches, 
for short-lived species, and for bycatch elasmobranch stocks. 
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1 Introduction 

1.1 Terms of Reference 

The Workshop on the Development of Quantitative Assessment Methodologies based on Life-
history traits, exploitation characteristics, and other relevant parameters for data-limited stocks 
(WKLIFE IX), chaired by Carl O'Brien (UK) and Manuela Azevedo (Portugal) met in Lisbon, 
Portugal, 30 September–4 October 2019, to further develop methods for stock assessment and 
catch advice for stocks in Categories 3–6, focusing on the provision of sound advice rules that 
are within the ICES MSY framework. 

Specifically, the workshop was tasked with addressing the following Terms of Reference (ToRs): 

a) Evaluate potential improvements to the performance of the WKMSYCat34 catch rule 
3.2.1 (ICES, 2017) as follows: 
1. Investigate the impact of relative weighting of the r, f and b components of the rule 

on the performance of the rule; 
2. Investigate more extensively the time-lag properties of the r component, including 

alternative formulations; 
3. Explore the setting of appropriate reference levels in the f and b component of the 

rules, and the extent to which this could be done with tuning that depends on life-
history traits and/or the nature of the time-series; 

4. Investigate the use of trends in an index without a reference level. 
b) Evaluate MSY-PA advice rules (WKLIFE VIII; ICES, 2018) for stock production models 

(e.g. SPiCT) and develop recommended guidelines for use in determining catch advice. 
c) Establish relationships between simple measures of the life-history (e.g. M, K, Lmat) and 

%SPR reference points to estimate data-limited proxies corresponding to FMSY and Flim. 
d) Review and further investigate modelling approaches that incorporate both data-rich 

and data-limited stocks within mixed fisheries/multi-species frameworks and their abil-
ity to provide sea area-based stock assessments and catch advice. 

e) Review the draft report of, and recommendations from, the ICES workshop on data-lim-
ited stocks of short-lived species (WKDLSSLS) and the need for specific advice rules for 
these stocks. 

WKLIFE IX will report to ACOM no later than 18 November 2019. 

1.2 Background 

ICES provides advice on more than 260 stocks on an annual basis and more than sixty percent of 
these stocks are in Categories 3–6. Further developments of the approaches used in providing 
advice on fishing opportunities for these stocks are needed. WKLIFE is the premier venue for 
method development and discussion of stock assessments and advice approaches for stocks in 
Categories 3–6. 

There is an increasing number of fish stocks in Categories 3 and 4 for which assessment of status 
relative to MSY proxy reference points is available but for which short-term forecasts and MSY-
based advice are not available.  As for last year‘s meeting of WKLIFE, ICES wishes to further 
address this issue. 
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The report of this workshop provides a description of advice rules developed by the Workshop 
on the Development of the ICES Approach to Providing MSY Advice for Category 3 and 4 stocks 
(WKMSYCat34-ICES, 2017),  and the Eighth and Ninth Workshop on the Development of Quan-
titative Assessment Methodologies based on Life-history traits, exploitation characteristics, and 
other relevant parameters for data-limited stocks (WKLIFE VIII-ICES, 2018), and the Workshop 
on Data-Limited Stocks of Short-Lived Species (WKDLSSLS-ICES, 2019). These are harvest con-
trol rules used by ICES for stocks in Categories 3 and 4, with additional specifications for short-
lived species and elasmobranch stocks in Categories 3 and 4. 

The objective of WKMSYCat34, and WKLIFE VIII and IX, and WKDLSSLS was to investigate the 
performance of harvest control rules across life-history types through simulation and manage-
ment strategy evaluation (MSE). This would identify the potential approaches that best meet the 
goals of management; i.e. maximizing long-term yield while minimizing the probability of stocks 
falling below biologically sustainable limits. 

1.3 Conduct of the meeting 

The list of participants and agenda for the workshop are presented in Annex 1 and Annex 2, 
respectively. 

No working documents were received prior to the meeting but presentations were made by the 
participants which subsequently, formed the basis of the workshop’s investigations during the 
week.  However, one working document was produced during the meeting and is presented in 
Annex 4 for ease of reference.  The working document presents a testing of length-based refer-
ence points for elasmobranchs; specifically, cuckoo ray and thornback ray. 

Much intersessional work had taken place ahead of the WKLIFE IX meeting by its participants, 
and this was presented during the first day, the afternoon of the second day and the morning of 
the third day of the workshop. The presentations were used to define the work programme for 
the remainder of the workshop and the identification of virtual subgroups; two of which were 
identified: 

• Subgroup 1 – focused on short-lived species; and 
• Subgroup 2 – focused on catch rules. 

Three participants worked by correspondence during the meeting and the facilities of WebEx 
were relied upon for their full contribution to the workshop’s plenary discussions. This worked 
well, and lively discussions resulted from this interaction; together with the development of the 
working document presented in Annex 4. 

Given ICES role as a knowledge provider, it is essential that experts contributing to ICES science 
and advice maintain scientific independence, integrity and impartiality. It is also essential that 
their behaviours and actions minimise any risk of actual, potential or perceived Conflicts of In-
terest (CoI). 

To ensure credibility, salience, legitimacy, transparency and accountability in ICES work, to 
avoid CoI and to safeguard the reputation of ICES as an impartial knowledge provider, all con-
tributors to ICES work are required to abide by the ICES Code of Conduct. The ICES Code of 
Conduct document dated January 2019 was brought to the attention of participants at the work-
shop and no CoI was reported. 
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1.4 Relevant on-going activities outside of ICES 

During WKLIFE IX, one project was briefly presented that is of relevance to the activities of ICES 
in the development of methods for data-limited stocks (DLS): 

• PROBYFISH (Protecting bycaught species in mixed fisheries) - One of the tasks of the 
project is to identify candidate indicators and appropriate trigger values for use in eval-
uating the status of data-limited stocks. Within this task, the project aims to test the per-
formance of reference points, indicators and trigger values as derived by various data-
poor stock assessment methods. An individual-based model (FLIBM) was presented dur-
ing this meeting of WKLIFE IX that is being used to generate various data types (length-
based, catch-only, catch plus index etcetera) for these analyses. 

1.5 Structure of the report 

The structure of the report is as follows: 

• Section 2 focuses on advice rules for harvest control rules for short-lived species (stock 
Categories 3 and 4) – ToR e); 

• Section 3 focuses on advice rules for harvest control rules for bycatch elasmobranch 
stocks – ToR c); 

• Section 4 focuses on advice rules for harvest control rules for length-based approaches – 
ToR a); 

• Section 5 focuses on advice rules for short-term forecasts utilizing a surplus production 
model – ToR b); 

• Section 6 focuses on the combined modelling of both data-rich and data-limited stocks – 
ToR d); and 

• Section 7 focuses on future directions of work for data-limited stocks (DLS). 

Instead of providing conclusions from the workshop at the end of the report as is customary with 
ICES reports, each of the Sections 2–6 provides a synthesis of the material presented within each 
Section in either a summary or future work Section. 

1.6 Recommendations of WKLIFE VIII and its review pro-
cess 

The reviewers’ report of WKLIFE VIII (ICES, 2018) was used as the basis to draft ICES technical 
guidance on advice rules for stocks in Categories 3 and 4 following the meeting in 2018.  The 
draft document reflected the conclusions of the WKLIFE VIII meeting report but in order to pro-
vide a good guidance document to the ICES community, some of the text and steps identified 
required further elaboration.  The intersessional work undertaken ahead of this WKLIFE IX 
meeting provided a basis to revise the draft and during this WKLIFE IX, the draft technical guid-
ance was revised and updated.  Annex 3 to this report contains the revised and agreed text by 
WKLIFE IX participants. 

1.7 Follow-up process within ICES 

The participants at WKLIFE IX agreed to provide text for the draft workshop report by Friday 
18th October 2019 and to then comment on the compiled draft report no later than 1st November 
2019; when the report can be finalised by the Chairs and formatted by the ICES Secretariat. 
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Recommendation: It is recommended by WKLIFE IX that there be a tenth meeting of WKLIFE in 
Lisbon, Portugal 21st–25thSeptember 2020, whose draft ToRs are proposed in this report for the 
consideration of ACOM. 

The work of WKDLSSLS is considered incomplete and the participants at WKLIFE IX support a 
second meeting of WKDLSSLS to further develop and refine advice rules for short-lived species. 

1.8 References 

ICES. 2017.  Report of the Workshop on the Development of the ICES approach to providing MSY advice 
for category 3 and 4 stocks (WKMSYCat34), 6–10 March 2017, Copenhagen, Denmark. ICES CM 2017/ 
ACOM:47. 53 pp. 

ICES. 2018.  Report of the Eighth Workshop on the Development of Quantitative Assessment Methodolo-
gies based on LIFE-history traits, exploitation characteristics, and other relevant parameters for data-
limited stocks (WKLIFE VIII), 8–12 October 2018, Lisbon, Portugal. ICES CM 2018/ACOM:40. 172 pp. 

ICES.2019. Workshop on Data-limited Stocks of Short-Lived Species(WKDLSSLS). ICES Scientific Reports. 
1:73. 166pp. http://doi.org/10.17895/ices.pub.5549. 

http://doi.org/10.17895/ices.pub.5549


ICES | WKLIFE IX2019 | 5 
 

 

2 Short-lived species 

2.1 Introduction 

This Section focuses on the need for specific advice rules for stocks of short-lived species; namely, 
ToR e).  The current advice rule for Category 3–6 is targeted at stocks of medium- to long-lived 
species and has proven difficult to apply for stocks of short-lived species.  WKLIFE IX reviewed 
the draft report of WKDLSSLS presented by one of its chairs, Andrés Uriarte, and revised the 
draft ICES technical guidance on advice rules for stocks in Categories 3 and 4 (Annex 3). 

Prior to WKLIFE IX in September 2019, the ICESWorkshop on Data-Limited Stocks of Short-
Lived Species (WKDLSSLS), chaired by Andres Uriarte, Spain and Mollie Brooks, Denmark was 
held in San Sebastian; aimed at finding alternatives to the current advice rules for data-limited 
stocks (Categories 3 and 4) used within ICES. 

A summary of the major findings from WKDLSSLS were presented in plenary at WKLIFE IX 
and the general conclusions of those discussions are presented in the remainder of this Section 2. 

2.2 Work on assessment methods for short-lived species 
and estimation of MSY proxies for Category 3–4 short-
lived species 

In relation to assessment methods for short-lived data-limited stocks and estimation of biological 
and MSY proxy reference points, the workshops did not explore other methods than SPiCT 
(Pedersen and Berg, 2016). 

Guidelines for the use of the stochastic production model in continuous time (SPiCT) 
ICES Category 3 stocks can be managed using the official advice rules based on the stochastic 
production model in continuous time (SPiCT; Pedersen and Berg, 2017; 3.1.1 and 3.1.2 in ICES, 
2018). These advice rules require the acceptance of a SPiCT assessment. A condensed summary 
with specific guidelines for the use of SPiCT has been developed within the frame of WKDLSSLS 
and WKLIFE. The document is a living document and part of the SPiCT package. It can be ac-
cessed through github and downloaded here (https://github.com/DTUAqua/spict). The 
WKDLSSLS endorsed the application of SPiCT provided the quality and properties of the data 
are good enough as to allow a successful model fit. 

In the last years, the SPiCT HCRs to manage stocks have been improved (WKLIFE VII and VII) 
by including either SPICT - fractile rule (to departure from median of the Biomass and F safe-
guards ratios in the recent past to a more precautionary fractiles) or by using SPICT - PA rules 
by including modification of normal advisable MSY SPiCT advice to accommodate to precau-
tionary levels of risks concerning the likelihood of biomass being above Blimin the management 
year. For the optimal SPiCT advice rule, users should refer to the update ICES guidelines follow-
ing after this WKLIFE IX. 

During the workshop,SPiCT assessments to Anchovy in 9a South, Anchovy 9a West and to Sprat 
in 7de were essayed, ending up with a satisfactory application to Anchovy in 9a South (Rincon 
et al. 2019, WD to WKDLSSLS). Results for Sprat 7de and Anchovy 9aWest were still too impre-
cise as to be acceptable. In addition, there were some presentations on applications of SPiCT to 
several cephalopod populations. 

https://github.com/DTUAqua/spict


6 | ICES SCIENTIFIC REPORTS 1:77 | ICES 
 

 

No alternative setting of Reference points for management were produced by WKDLSSLS, other 
than those already available from SPICT assessment. Length-based indicators of stock status are 
known to be generally not suitable for short-lived species where recruitment induce interannual 
major changes in the length distribution of catches (ICES reference points for stocks in Categories 
3 and 4). 

Perspective for future: Explore methods to assess initial stock status either from catch only trend 
or from the survey trends. The two-stage approaches need further work. A provisional applica-
tion was presented for Sprat in 7de (Rousa Ourens et al. WD), but results were still provisional. 

2.3 Work on testing the performance of harvest control 
rules through MSE for management 

During the Workshop the performance of 1-over-2 and 2-over-3 for normal timing of the advice 
(which is the ICES default advice for a January to December management calendar, including an 
interim year when the advice is produced) and for in-year advice were tested, both for symmet-
rical and asymmetrical uncertainty cap restrictions on interannual advices, and either supple-
mented or not with a Biomass indicator safeguard (case studies for anchovy and sardine/sprat 
like stocks,Uriarteet al., WD to WKDLSSLS and for sprat like stocks; Walker WD to WKDLSSLS 
and Brooks WD to WKDLSSLS). 

The main results are the following: 

• Regarding the coupling in time between assessment, advice and management: The 
shorter the lag between observations, advice and management, the bigger the catches 
and the smaller are the risks. This means that in-year advice should always be preferred 
over the normal calendar (with an interim) year advice. Results are very consistent across 
the different OM essayed. 

• Initialization of the advice in the first year of the management period either with the 
last year catch or with the mean of the last year catches corresponding with those in the 
denominator of the HCR did not produce relevant differences in the performance of the 
HCRs.  We suggest using the latter option to start with some mean harvest rate over a 
recent set of years to filter out some of the inherent noise coming from fluctuations in the 
interannual catchability of the fishery before the starting of management. 

• Regarding the trend-based HCRs: Globally, for all simulations (except the North Sea 
sprat), in the short, medium and long term 1-over-2 outperformed 2-over-3 (ICES default 
rule). For quite similar level of catches, 1-over-2 has a bit lower risk than 2-over-3, alt-
hough often above 0.05 (particularly for full or high harvest levels before the start of 
management). This is valid for all uncertainty caps tested (including no uncertainty cap). 

This is true for both the in-year advice and the normal calendar advice of ICES.  Figure 
2.3.1 shows an example tested for Sprat 7de, where applying 1-over-2 rule results in 
higher catches and lower risks, clearly seen in the medium and long term, while in the 
short term, there are some exceptions at high exploitation levels (FH2) where 2-over-3 
rule might be better than HCR(1/2).  This figure also serves to support again the better 
performance of the in-year versus the normal calendar advice procedure of ICES. This 
example shows that for Sprat 7de, the risks in the long term are more than twice as large 
with the 2-over-3 rule than with the 1-over-2. Notice therefore, that the current proce-
dure for providing advice for sprat in 7de (annual HCR(2/3) rule with 20% uncertainty 
cap) is not precautionary and resulted in high levels of risk and collapse. 
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Figure 2.3.1. Short-, medium- and long-term plots of yield against risk for the 1-over-2 (1o2) and 2-over-3 (2o3) rules 
following annual (an) and in-year (iy) advice schedules. From Walker WD in WKDLSSLS report (ICES, 2019). 

In the sardines/Sprat and anchovy like stocks benefits in the in-year advice of 1-over-2 rule com-
pared with the 2-over-3 rule were clear at all periods of projections and particularly in the short 
and medium term (i.e. at least for the ten years after starting the management).  Figure 2.3.2 
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allows comparing rules 1-over-2 with the 2-over-3 in terms of catches and risks for the same 
uncertainty cap levels (compare the empty symbols -1o2- with the same coloured symbols -2o3- 
in Figure 2.3.2 by periods and stocks), showing that for rather similar levels of catches (or slightly 
smaller) at a given uncertainty cap level, the former rule results in smaller levels of risks 

 

Figure 2.3.2. Median catch versus Risk3 of falling below Blim, in the short (upper graphs), medium (middle graphs) and 
long term (bottom graphs), by stocks (anchovy like -right panels- and sardine/sprat like -left panels) for each HCR com-
bined with various uncertainty cap levels (see right upper legend) and for historical fishing mortality F levels (Fhigh: 2*FMSY 
-blue-; Flow: 0.5*FMSY -red-; and Fopt: FMSY -green-). There are two repeated values with the same form and colour which 
correspond to alternative standard deviations for the recruitment (0.5 or 0.75). From Uriarte et al. WD in WKDLSSLS 
report (ICES, 2019). 

When rules are applied with some interannual Uncertainty Cap constraint, the former results 
hold on because for in-year advice and with the same Ucap level 1-over-2 overcomes 2-over-3 
rules producing similar or bigger catches with smaller risks (see Figure 2.3.2). 

• Application of some uncertainty caps to constraint the interannual variability in the ad-
vice leads to a reduction of catches and risks, but up to an intermediate uncertainty level 
beyond which risks start to increase again: 
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When the Uncertainty cap is applied symmetrically for upward and downward revision, a 20% 
uncertainty cap is the riskiest approach and differences with other uncertainty cap levels increase 
with time, with a few exceptions at low exploitations (Figure 2.3.2). Globally, in the short and 
medium term, 80% uncertainty cap overcomes the performance of any other uncertainty cap in 
terms of lesser risks for minor reductions of catches, whilst in the long term, 1-over-2 rule with 
no uncertainty cap produce higher catches than with the 80% uncertainty cap for similar levels 
of risks. Therefore, the benefits of applying the 80% Ucap are particularly noticeable in the short- 
and medium-term levels. Figure 2.3.2 allows verifying the previous comparisons between the 
various uncertainty cap levels for the 1-over-2 rule (by comparing for the 1o2 the empty circles -
1o2 with 80% uncertainty cap- with the other empty symbols of the same colours; i.e. for the 
same historical exploitation levelsby periods and stocks).And the same for 2-over-3 rule (by com-
paring the filled circles, 2o3 with 80% uncertainty cap with the other filled symbols of the same 
colours, with minor exceptions for this rule). 

Asymmetrical application of the Uncertainty Caps was tested for sprat like stocks (Walker WD 
to WKDLSSLS and Brooks WD to WKDLSSLS). The maximum upward revisions were fixed to 
1.2 times the former advice, but a maximum a different percentage of reductions (X%) from for-
mer advices were allowed. The analysis shows that for in-year advice allowing maximum reduc-
tions of 60% or higher levels of Uncertainty Caps results in smallest risks and very similar catch 
levels for the different historical exploitation trajectories before management in the long term 
(Figure 2.3.3). For normal (calendar) similar results were obtained but with optima at 70% Ucap 
or higher levels. 

 

Figure 2.3.3. Long-term yield against risk for the 1-over-2 rule on an in-year advice basis with asymmetric uncertainty 
caps levels (colours of the symbols indicating the maximum downward revisions of interannual advices, for maximum 
upward revisions of 20% Ucap) and for several historical exploitation trajectories (different symbols). (Case study of Sprat 
in 7de, taken from Walker WD in WKDLSSLS report (ICES, 2019)). 

• Role of historical fishing mortality prior to management: The greater the historical ex-
ploitation, the greater the risks (different symbols in Figure 2.3.4).  Actually, this is the 
major driver of risks associated to any harvest control rule. This implies that getting some 
initial assessment of the status of the stock regarding BRPs (before starting the manage-
ment) would allow deciding on the convenience of applying the 20% precautionary 
buffer. 
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Figure 2.3.4. Risk3 of falling below Blim versus median catch for alternative historical F levels (circle - Flow: 0.5*FMSY; triangle 
- Fopt: FMSY; and square - Fhigh: 2*FMSY), HCRs (red – 1o2: 1-over-2 without uncertainty cap; green – 1o2_cap(0.8,0.2): 1-
over-2 with lower and upper uncertainty caps of 80% and 20%, respectively; blue  – 1o2_cap(0.8,0.8): 1-over-2 with sym-
metric uncertainty cap of 80%; and purple  – 1o2_Imin: 1-over-2 with biomass safeguard), stock types (STK1: anchovy-
like; STK2: sardine-like), standard deviation for the recruitment (0.25 or 0.75) and timeframes (short: years 31–35; me-
dium: years 36–40; and long-term: years 51–60). 

• Regarding the application of the Rules with a biomass safeguard: 

For the Biomass safeguard, in the context of these Category 3-4 stocks, in the absence of Blim 
(WKLIFE VI and VII and WKMSY) a provisional approach to have a Biomass indicator for man-
agement (like but not equal to Blim or Bpa) has been used in WKDLSSLS. The harvest control rules 
included a biomass trigger point at the lowest of the available Index series prior to start the man-
agement (Ilim) (and for sprat in 7.de also at 1.4 this value - Itrigger) that acted as a biomass safe-
guard. 

For sprat like in 7.de, Figure 2.3.5 shows that applying a biomass safe guard to in-year advice 
(either on Ilim or Itrigger at 1.4*Ilim) to 1-over-2 rule without uncertainty Cap results in bigger 
catches and risks than 1-over-2 rule with asymmetrical uncertainty caps and in smaller catches 
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and risks than the 1-over-2 rule without uncertainty Cap. Between the two biomass safeguard 
options Ilim (threshold Indicator taken from the minimum previously observed index in the avail-
able series) leads to some bigger catches and risks than Itrigger. Care should be taken with a 
direct application of these rules, as the relationship between PELTIC index biomass and stock 
status is still uncertain. 

 

 

Figure 2.3.5. Short-, medium- and long-term plots of yield against risk for the 1-over-2 rule (1o2) and 1-over-2 rule with 
select mechanisms (Ilim = Ilim safeguard; Itrigger = Itrigger safeguard; 80 = 80% symmetric uncertainty cap; l80 = asym-
metric uncertainty cap with 20% upper bound and 80% lower bound) following an in-year advice schedule. 

For Anchovy and Sardine/Sprat like stocks the Figure 2.3.5 (above) shows for In-year advice that 
adding a biomass safe guard (on Ilim) to the 1-over-2 rule without any uncertainty cap, leads it to 
have an intermediate performance between that rule with 80% uncertainty cap (which would 
have smaller catches and risks) and the original rule without any uncertainty cap or biomass 
safeguard (which would have bigger catches and risks), at any time horizon. So for these Oper-
ating models Imin was a bit less risk averse than the analysis resulting for the Sprat 7.de. 

Another analysis with North Sea Sprat (Brooks WD to WKDLSSLS) shows that combining the 
biomass safeguards with any of the former HCR makes them more risk averse. 

In summary, that last two figures evidence for these operating models that for interim year ad-
vice 1-over-2 rule with asymmetrical uncertainty cap (0.8,0.2) leads to smallest risks, but also at 
the expense of allowing the smallest catches at any time frame and become almost equal to 0 t in 
the long term (i.e. fishery is almost closed). Opposite to this, the 1-over-2 without uncertainty 
cap results in the highest catches and risks, particularly in the short and medium term, while the 
risk would be reduced to precautionary levels in the longterm.Therefore, some rule showing an 
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intermediate behaviour might be put forward for management consideration. Intermediate rules 
in terms of balance between catches and risks are the 1-over-2 with symmetrical 80% uncertainty 
cap (1o2_cap(0.8,0.8)) and the 1-over-2 with biomass safeguard (1o2_Imin or Itrigger). Rule with 
the 80% uncertainty cap (1o2_cap(0.8,0.8)) results to be a bit more precautionary in the short and 
medium term, without major loses of catches compared to the other rule, though the drop in 
catches in the long term is a bit more pronounced. The 1-over-2 rule with symmetrical 80% un-
certainty cap might be preferred over the asymmetrical with 80% lower and 20% upper uncer-
tainty caps for a better compromise in terms of catches versus risks in the short and medium 
term. Although given the trade-off between risks and catches (for the short, medium and long 
term) this discussion should be partly passed to managers and stakeholders. 

• A management strategy of exploiting Sprat 7.de at a Constant Harvest rate of about 0.17 
of survey estimates leads to highest levels of catches compared with HCR(1/2) with bio-
mass safe guards resulting in risks below 0.05. Such result is conditioned to the assumed 
catchability of the survey, and the result applied only to in-year advice. Further research 
is required on the rules based on constant harvest rates. 

2.4 Main Conclusions (extract from WKDLSSLS report) 

• Short-lived ICES Category 3 stocks can be managed using the official advice rules based 
on the stochastic production model in continuous time (SPiCT) conditioned upon a suc-
cessful SPiCT fitting, according to the specific guidelines for the use of SPiCT developed 
within the frame of WKDLSSLS and WKLIFE. 

If not, go for trend-based HCRs: 

• The lag between abundance index, advice and management should be minimized, this 
leads to In-Year advice, even if this implies that the management year is not equal to the 
annual calendar. 

• The time-lag between abundance index, advice and management should be minimized, 
this leads to select in-year advice, implying that the management year (i.e. TAC year) 
generally differs from the calendar year. 

• Major drivers of risks are (in order of relevance): historical exploitation level (and trajec-
tory), and the harvest control rule (HCR) with uncertainty cap (Ucap). This emphasizes 
the relevance of trying an initial assessment of the relative status of the stock regarding 
optimal exploitation to judge if a precautionary buffer is required to start management. 

• Regarding the trend-based HCRs: For all simulations except the North Sea sprat, in the 
short, medium and long term 1-over-2 outperformed 2-over-3 (ICES default rule). For 
quite similar level of catches, 1-over-2 has a bit lower risk than 2-over-3. This is valid for 
all uncertainty caps tested (including no uncertainty cap). 

• Application of some uncertainty caps to constrain interannual variability in the advice 
led to a reduction of catches and risks, only up to an intermediate uncertainty cap beyond 
which risks start to increase again: 
• For symmetrical uncertainty caps: Best performance (least risks for minimum reduc-

tion of catches) was from 1-over-2 with symmetric 80% Ucap. The most risk prone 
performance was from a symmetric 20% uncertainty cap, both for 1-over-2 and 2-
over-3, and the performance worsens with time. 

• For asymmetrical uncertainty caps tested for rules with a maximum interannual up-
ward revision of 20%, optimal performance was achieved when allowing reductions 
of 60% or more from the previous advice for in-year advice, and of 70% or more for 
calendar-year advice. 
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• Biomass safeguards (based on the minimum historical abundance index -Ilim- or on the 
5th percentile of the historical index) show a rather good performance, generally reduc-
ing risk without too much reduction in catch, when applied to any HCR, possibly in 
combination with uncertainty caps. 

• The constant rate HCRs can be appropriate but require a good knowledge of the catcha-
bility/error/properties of the index. This should be studied in a case-by-case basis and 
deserves further simulations. 

• There is a strong trade off between risks and catches. The 1-over-2 rule with asymmetric 
Ucap (0.8,0.2) has the lowest risks through a progressive strong reduction of catches 
(maximum reduction in the long term). The 1-over-2 rule with no Ucap produce the high-
est catches with long-term risk being at precautionary levels for some operating models 
tested. Intermediate rules in terms of balancing catches and risks are: 1-over-2 with Ucap 
(0.8,0.8) and 1-over-2 with biomass safeguard (Imin). 

• While 1-over-2 with Ucap (0.8,0.2) is the lowest risk rule, in order to avoid excessive re-
ductions of catches, 1-over-2 with Ucap (0.8,0.8) might be preferred as a good compro-
mise between risk and catches. Application of the symmetric 80% Ucap can lead to major 
reduction of catches in the long term. So, its implementation should be temporary while 
aiming at achieving a better management of the stock in 8–10 years. 

• Given the trade off between competing rules, it seems that selection of a rule should be 
made in consultancy with managers and stake holders. 

• The work of WKDLSSLS is considered unfinished. Further research on the definition of 
optimal harvest control rules for data-limited short-lived stocks is ongoing. Therefore, 
the suggested rule (1-over-2 with symmetrical 80% Ucap) should be taken as an interim 
(provisional) proposal while guidelines are refined in 2020 for 2021. 

2.5 Future work (extract from WKDLSSLS report) 

Future work 
• Further work on assessment methods of initial stock status relative to MSY with simpler 

analysis of historical catches, the abundance indices or from expert knowledge is of rele-
vance. 

• Further research/suggestions on SPICT: 
• Borrowing parameters between SPiCT assessments (including prior sensitivity test-

ing). 
• Testing further the SPiCT advice rules for management for these short-lived species. 
• Include the SPiCT in an interactive tool similar to the one being developed in the 

EU’s Horizon 2020 research and innovation programme project FarFish, or develop 
a new one. 

• Testing properly the precautionary buffer role in terms of mitigating short-term risks but 
keeping long-term benefits for the different harvest control rules and historical exploita-
tion trajectories. 

• Further exploring the benefits of adding a biomass safeguard of minimum observed in-
dex or at a fractile of available index series to the rules either alone or in combination to 
uncertainty cap levels. 

• Further testing of asymmetric uncertainty caps with variable upper and lower bounds. 
• Testing the effect of shifting the uncertainty cap from 80% to no uncertainty cap in time 

(for instance after 8-10 years of application of the 80% uncertainty cap). 
• Constant or variant harvest rate strategies instead of the trend-based rules (aligned with 

HCR 3.2.2 Catch rule based on applying an Fproxy (WKMSYCat34)). Harvest rates and how 
they vary with assumed catchability. Further testing of harvest rates under a range of 
catchability, uncertainty and life history assumptions and across modelling platforms. 
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3 Bycatch elasmobranch stocks 

This section focuses on the ToRc) and the revision of the draft ICES technical guidance on advice 
rules for stocks in Categories 3 and 4 (Annex 3). 

3.1 Introduction 

Elasmobranchs are cartilaginous fish most of which are k-selected species with relatively slow 
growth, late maturity, large adult size, and few developed juveniles. The species most vulnerable 
to overexploitation tend to be larger sized, slow growing, latematuring and longlived (Smith et 
al., 1998; Dulvy et al., 2000). 

In particular, stocks with maturation occurring at relatively large size and slow growth, are vul-
nerable to recruitment failure as the size range of mature individuals become truncated and dec-
imated, size classes are slowly replenished due to long generation time. In contrast, small-bodied 
species tend to be more productive with a higher rebound potential (Stevens et al., 2000). Elas-
mobranchs recruitment is closely linked to the number of mature females, which leads to a fast 
reduction in recruitment with decreasing number of mature females in the populations, and lim-
its the recovery from overfishing when SSB is low and the potential of replenishment by large 
incoming cohorts is small (Cailliet et al., 2005). Instead of maximizing yield, the focus of manage-
ment for elasmobranch stocks should therefore be on the protection of the reproductive poten-
tial. 

Currently, harvest control rules suggested by WKLIFE use the length-based reference point LF=M. 
It has been shown that this reference point may not perform well in terms of providing risk-
adverse catch advice for stocks with late maturity and when Lc<Lmat(Jardim et al., 2015). For many 
elasmobranch stocks Lc is typically lower than Lmat(ICES, 2018b). Harvest control rules combin-
ing length-based indicators with a CPUE-based stock index and TAC constraints show an im-
proved performance (ICES, 2018a; Annex 4 WD). 

For the example of cuckoo ray, Leucoraja naevus, and thornback ray, Raja clavata, the length-based 
reference point LF=M is compared to SPR-based reference points, which take into account the re-
spective maturation schedule (Lmat). We compare the effect of different values of natural mortal-
ity and Lmat on the length-based reference points and F40%SPR. 

3.2 Methods 

The derivation of the reference point for L�, LF=M, requires the assumptions that the population is 
at equilibrium with individuals following deterministic von Bertalanffy growth, with constant 
recruitment, that natural mortality is independent of size and fishing mortality occurs with knife-
edged selectivity. An analytical expression for the calculation of the reference point LF=Mwas pre-
sented by Jardim et al. (2015), with θ = k

M
and γ = F

M
= 1: 

LF=γM,k=θM =
θL∞ + (γ + 1)Lc

θ + γ + 1
 

The reference point depends on Lc and stock-specific with life-history parameters L∞, M, and k. 

Alternatively, the expected mean length in the catch and mean length of the largest 5% in the 
catch can be calculated for a particular level of spawning potential ratio (SPR, 40%), based on 
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basic life-history characteristics under assumptions of equilibrium conditions and constant re-
cruitment (Miethe et al., 2019). In the paper by Miethe et al. (2019), a method is described to cal-
culate length-based reference points assuming a particular level of SPR. The respective fishing 
mortality at an SPR of 40% (F40%SPR) can be calculated and compared to the assumption of F=M. 
Life-history parameters for these two stocks are listed in Table 3.2.1. For reference point calcula-
tion, female (larger sex) life-history characteristics are used. The necessary level of SPR to ensure 
sustainable exploitation of stocks can differ depending on the spawning–stock-recruitment rela-
tionship. 

Table 3.2.1. Life-history parameters for cuckoo ray RJN, thornback ray RJC. 

Description parameter Value 

RJN 

Value 

RJC 

unit reference 

Von Bertalanffy growth  K (male) 

K (female) 

0.294 

0.197 

0.135 

0.093 

 Gallagher et al. (2005) 

Irish Sea 

L∞ (male) 

L∞ (female) 

746 

839 

1065 

1395 

mm 

mm 

Variability in L∞ CV(L∞) ≈ 0 ≈ 0   

Natural mortality M (male) 

M (female) 

0.406 

0.292 

0.205 

0.143 

 

 

Then et al. (2015) 

Length-weight relationship b (male) 

b (female) 

3.105 

3.147 

3.106 

3.162 

g cm-b 

g cm-b 

McCully et al. (2012) 

Celtic Sea 

Size at 50% maturity  Lmat (males) 

Lmat (females) 

569 

562 

657 

718 

mm 

mm 

Gallagher et al. (2005)  

3.3 Results 

In Figures 3.3.1 and 3.3.2, the reference points are illustrated for both stocks. Comparing LF=M and 
SPR 40% reference points (right panel), shows that for both stocks, we expect LF=M to deliver SPR 
ratios lower than 40% in the longterm if Lc is substantially below Lmat (red line below black line). 
On the other hand, the reference points are overly precautionary at large values of Lc, leading to 
SPR ratios larger than 40% (red line above black line). 
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Figure 3.3.1. Reference points (40% SPR in black, LF=M in red, expected values for nearly unexploited status in grey) for 
cuckoo ray. Mean length of the largest 5% in the catch on the left, mean length in the catch on the right. 

 

Figure 3.3.2. Reference points (40% SPR in black, LF=M in red, expected values for nearly unexploited status in grey) for 
thornback ray. Mean length of largest 5% in the catch on the left, mean length in the catch on the right. 

Using smaller or larger values of M leads to a change in LF=M reference points (Figure 3.3.3). This 
change is larger at smaller values of Lc, as stock length distribution are affected by a different 
level of M (change of M/k as k is constant). For F=M, the reduction in M is directly translated to 
a reduction in F lowering the exploitation across more targeted size classes if Lc is small. Simi-
larly, M affects SPR-based reference points (Figure 3.3.4). A lower value of M allows for a more 
extended length distribution and higher length-based reference points. A reduction M causes a 
stronger change in reference point level at low values of Lc. 
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Figure 3.3.3. Reference points LF=M for cuckoo ray (left) and thornback ray (right), and for alternative values of M. 

 

Figure 3.3.4. Reference points for SPR 40% using alternative values of M for cuckoo ray on the left and thornback ray on 
the right. 

In Figure 3.3.5, the respective values of F40%SPR (relating to Figure 3.3.4) are illustrated. For cuckoo 
ray (Figure 3.3.5, left panel) the relationship is similar across different values of M, with F=M at 
SPR of 40% as Lc is equal to Lmat. The F/M ratio decreases below 1 as Lcdecreases, and increases 
to infinity as the Lc increases beyond Lmat (majority of size classes protected allowing higher F 
while SPR is at or even above 40% SPR). 

In contrast for thornback ray the relationship appears to be less clear. The ratio F/M is equal to 1 
at 40% SPR only at Lc>Lmat , at varying value of Lc depending on M (Figure 3.3.5 right panel). For 
this species the value of M (alternative M2) is relatively low. 
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Figure 3.3.5. Reference points for SPR 40% using more alternative values of M for cuckoo ray on the left and thornback 
ray on the right. 

We can compare the reference points for more values of M (Figure 3.3.6). While the lines gener-
ally intersect for 40% SPR and F=M at around Lmat, it is illustrated in Figure 3.3.6 that for low 
values of M, 40%SPR is reached at Lc either slightly above or slightly below Lmat. The F/M ratio 
decreases down to value of 0.2 for low values of Lcand high values of M while ensuring an SPR 
of 40%. F/M tends to infinity as Lc increases and a substantial part of mature biomass is not tar-
geted by fishing (hence ensuring at least 40%SPR whatever the fishing intensity). 

 

Figure 3.3.6. Reference points for SPR 40% using more alternative values of M for cuckoo ray on the left and thornback 
ray on the right. 

Using alternative values of Lmat, the reference points change according to Figure 3.3.7. Reference 
points increase slightly with increasing Lmat. The respective values of F/M at 40% SPR are illus-
trated in Figure 3.3.8. At a particular level of Lc, if Lmatis lower the SSB is calculated over a wider 
range of size classes which allows higher values of fishing mortality (F/M). The pattern is con-
sistent in both ray stocks and across a wide range of values of Lmat (Figure 3.3.9). The change is 
stronger in cuckoo ray than in thornback ray. 
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Figure 3.3.7. Reference points for SPR 40% using alternative values of Lmat for cuckoo ray on the left and thornback ray 
on the right. 

 

Figure 3.3.8. F/M at 40% SPR using alternative values of Lmat for cuckoo ray on the left and thornback ray on the right, 
relating to Figure 3.3.7. 
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Figure 3.3.9. Reference points for SPR 40% using more alternative values of Lmat for cuckoo ray on the left and thornback 
ray on the right. Dashed line Lmat (baseline). 

3.4 Discussion 

It has been shown (also see working document in Annex 4), that the performance of LF=Mas a 
reference point is expected to vary depending on the life history, selectivity and spawning–stock 
recruitment relationship.The length-based indicator calculation is affected by recruitment dy-
namics, in particular for low values of Lc. The performance of harvest control rulescan be im-
proved by combining length-based indicators with a CPUE-based stock index. 

For elasmobranchs, Lcis typically below Lmat. This can lead to overexploitation of immature indi-
viduals and thereby diminishing the number of mature individuals in the stock needed for re-
production. The reference point LF=M does not depend on Lmat. It is therefore possible that for low 
values of Lc , LF=M, the expected mean length in the catch when F=M, is actually below Lmat. Ide-
ally, the mean length in the catch should be above Lmatto limit the risk of SSB to fall below biomass 
thresholds. To ensure and SPR of at least 40%, fishing mortality may need to be below M if Lc<Lmat 
(Figure 3.3.6). 

The mean length in the catch is strongly affected by selectivity of the fishery (Lc, Figure 3.3.2). 
Due to the “sampling effect” (Miethe et al.,2019) even at infinitesimally low level of fishing mor-
tality, changing Lc changes the expected mean length in the catch. With uncertainty in Lc, it is 
difficult to determine a precautionary reference point across various values of Lc. The option of 
choosing Lmat as the reference point for the mean in the catch, has been discussed in the work-
shop. While Lmat may bean (overly) precautionary reference point for low values of Lc, but it may 
not be precautionary for higher values of Lc. At some high values of Lc, the mean length in the 
catch expected even from a virtually unexploited stock may exceed Lmat. Further, work is neces-
sary to account for uncertainty in Lc when estimating a reference point for mean length. 

In comparison, Lmax5% the mean length of the largest 5% in the catch changes less with Lc (Figure 
3.3.2). For Lmax5%, it possible to define a precautionary reference point which can be applied even 
with high uncertainty in Lc. For example, the maximum value of the reference point across a 
wide range of different values of Lc, which ensure 40% SPR can be used (maximum of curve 
Lmax5%40%SPR in Figure 3.3.2a). 
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4 Length-based approach 

4.1 Introduction 

This section focuses on the ToRa) and the revision of the draft ICES technical guidance on advice 
rules for stocks in Categories 3 and 4 (Annex 3). 

4.2 Optimisation of WKMSYCat34 catch rule 3.2.1 

4.2.1 Management Strategy Evaluation 

The operating models were based on the work presented during WKLIFE VII (ICES, 2017a) and 
WKLIVE VIII (ICES, 2018) and the same life-history parameters were used to simulate them. The 
operating models were created using the FLR package FLife (https://github.com/flr/FLife) devel-
oped under the MyDas project. A total of 28 stocks were simulated. The previously highest 𝑘𝑘 
stock (sandeel with 𝑘𝑘 = 1) was not included because with the latest version of FLife, this stock 
appeared to be overly productive; i.e. could not be fished down sufficiently during the creation 
of the operating model. Simulations were conducted with FLR’s “mse” R package 
(https://github.com/flr/mse) with minor modifications so that it could be used in a data-limited 
context (https://github.com/shfischer/mse/tree/mseDL). Previously, two fishing histories (“one-
way” and “roller-coaster”) were used, both representing severely depleted stocks (one of which 
was starting to recover). For this workshop, a new fishing history was simulated, covering a wide 
range of depletion levels (Figure 4.2.1). 

The fishing mortality associated with each of the 500 replicates (𝑖𝑖) at the start of the projection 
period was drawn from a lognormal distribution centred around FMSY: 

𝐹𝐹𝑖𝑖,𝑦𝑦=0 = 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝜀𝜀𝑖𝑖 , where 𝜀𝜀𝑖𝑖~𝑁𝑁[0, 1](𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.1)  

Additionally, the fishing mortality was varied randomly over a period of 100 years (𝑦𝑦) for each 
replicate: 

𝐹𝐹𝑖𝑖,𝑦𝑦 = 𝐹𝐹𝑖𝑖,𝑦𝑦=0𝑒𝑒𝜀𝜀𝑦𝑦 , where 𝜀𝜀𝑦𝑦~𝑁𝑁[0, 0.25](𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.2)  

This fishing mortality pattern was then used for all simulated stocks to create the stock-specific 
fishing history. 

https://github.com/flr/FLife
https://github.com/flr/mse
https://github.com/shfischer/mse/tree/mseDL
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Figure 4.2.1. Fishing history for the operating models, as used for all simulated stocks. The left plot shows the targeted 
fishing mortality with the median of the 500 replicates in black, 50% and 90% confidence intervals and five individual 
replicates in colour (the same replicates are highlighted in subsequent figures). The right plot shows the density of the 
targeted fishing mortalities. 

The application of this fishing history meant that at the end of the fishing history approximately 
half of the stocks were below and half above BMSY. 

Recruitment was implemented as previously, with a CV of 0.3. 

The operating models were created with 500 replicates (“iterations” in FLR). The projection pe-
riod (duration for the application of the catch rule) was set to 50 years with a biennial TAC. 
Compared to previous WKLIFE simulation for this catch rule, the MSE design was simplified for 
computational efficiency. The biomass index was created with a selectivity corresponding to ma-
turity; therefore, the biomass index is effectively the SSB. For the observation error model, a 
lognormal noise term was introduced to the SSB to get the observed index value (𝐼𝐼𝑦𝑦): 

𝐼𝐼𝑦𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦𝑒𝑒𝜀𝜀𝑦𝑦 , where 𝜀𝜀𝑦𝑦~𝑁𝑁[0, 0.2](𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.3)  

For the generation of the mean length in the catch (𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) above 𝐿𝐿𝐶𝐶  (first length class at or above 
50% of modal abundance in the catch), catch length frequencies were first created by converting 
ages into lengths deterministically, and then  uncertainty was included the same way as for the 
index: 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑,𝑦𝑦 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑒𝑒𝜀𝜀𝑦𝑦 , where 𝜀𝜀𝑦𝑦~𝑁𝑁[0, 0.2](𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.4)  

Blim was defined, as previously (ICES, 2017b; 2018), as the SSB from the stock–recruitment func-
tion where recruitment is at 70% of virgin recruitment. 

4.2.2 Catch rule 

The subject of analysis was WKNSMSYCat34 catch rule 3.2.1 (ICES, 2017b): 

𝐶𝐶𝑦𝑦+1 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 𝑟𝑟 𝑓𝑓 𝑏𝑏 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.5)  

Where 𝐶𝐶𝑦𝑦+1 is the newly advised catch, 𝐶𝐶𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 is the recent catch, 𝑟𝑟 is the trend in the biomass 
index, 𝑓𝑓 is an exploitation proxy from catch length data and 𝑏𝑏 is a biomass safeguard. Previously, 
additional elements (catch constraints and a multiplier) were included but were not considered 
here. Different options for the components are available and previous testing during WKLIFE 
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narrowed it down to the following options: 𝐶𝐶𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 = 𝐶𝐶𝑦𝑦−1 (i.e. the last available catch), 𝑟𝑟 =
∑ 𝐼𝐼𝑖𝑖/2
𝑦𝑦−1
𝑖𝑖=𝑦𝑦−2

∑ 𝐼𝐼𝑖𝑖/3
𝑦𝑦−3
𝑖𝑖=𝑦𝑦−5

 (the “2 over 3” rule applied to an biomass index 𝐼𝐼), 𝑓𝑓 = 𝐿𝐿�𝑦𝑦−1/𝐿𝐿𝐹𝐹=𝑀𝑀 with 𝐿𝐿𝐹𝐹=𝑀𝑀 = 0.25𝐿𝐿𝑐𝑐 +

0.75𝐿𝐿∞ derived by assuming 𝑀𝑀/𝑘𝑘 = 1.5 and 𝑏𝑏 = 𝑚𝑚𝑖𝑖𝑒𝑒 �1, 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐼𝐼𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐

� with 𝐼𝐼𝑐𝑐𝑚𝑚𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚 = 1.4𝐼𝐼𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚, where 

𝐼𝐼𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 is the lowest observed index value in the 25 years prior to the start of the projection. To make 
the rule more flexible additional elements were introduced: 

𝐶𝐶𝑦𝑦+1 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑟𝑟𝑚𝑚𝑐𝑐𝑓𝑓𝑚𝑚𝑓𝑓𝑏𝑏𝑚𝑚𝑏𝑏(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.6)  

The newly introduced exponents 𝑒𝑒𝑚𝑚, 𝑒𝑒𝑓𝑓 and 𝑒𝑒𝑚𝑚 allow the weighting of the three components. 
Setting all to 1 corresponds the default catch rule (no weighting), setting 𝑒𝑒𝑥𝑥 < 1 reduces the 
weight of the component and makes it less reactive, with 𝑒𝑒𝑥𝑥 = 0 removing it altogether and set-
ting 𝑒𝑒𝑥𝑥 > 1 gives the component more weight by making it more reactive. The recent catch was 
modified so that it corresponded to an average of the 𝑁𝑁 previous years: 

𝐶𝐶𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 = �
𝐶𝐶𝑦𝑦−𝑚𝑚
𝑁𝑁

𝑁𝑁

𝑚𝑚=1

 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.7)  

The 𝑟𝑟 component was adapted so that it corresponded to an average of 𝑙𝑙1 divided by 𝑙𝑙2 years and 
the most recent year was defined as an offset 𝑠𝑠 to the intermediate (assessment) year 𝑦𝑦: 

𝑟𝑟 =
∑ 𝐼𝐼𝑖𝑖

𝑙𝑙1
𝑦𝑦−𝑚𝑚
𝑖𝑖=𝑦𝑦−𝑚𝑚−𝑙𝑙1+1

∑ 𝐼𝐼𝑖𝑖
𝑙𝑙2

𝑦𝑦−𝑚𝑚−𝑙𝑙1
𝑖𝑖=𝑦𝑦−𝑚𝑚−𝑙𝑙1−𝑙𝑙2+1

(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.8)  

The remaining components (𝑓𝑓, 𝑏𝑏) were not altered. 

4.2.3 Optimisation procedure 

The modifications of the catch rule made the rule very flexible but introduced seven more pa-
rameters, making it difficult optimise. A Genetic Algorithm (GA) was used as optimisation pro-
cedure, mimicking evolutionary principles (mutation, crossover, selection). The R package “GA” 
(Scrucca, 2013) was used for this, but slightly modified to allow for massive parallelisation on 
high performance computing (HPC) systems (https://github.com/shfischer/GA). This approach 
allowed to improve the performance of the catch rule efficiently. However, in a GA approach, 
the fitness function has to be designed such that the fitness of an individual (here one MSE sim-
ulation with one set of parameters) is evaluated. The catch rule is designed with a length target 
(𝐿𝐿𝐹𝐹=𝑀𝑀) approximating MSY, and so it is expected to lead to 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀; therefore, a first fitness function 
was defined as the deviation of the SSB from 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀during the MSE simulation, summed up over 
the replicate 𝑖𝑖 and year 𝑦𝑦 dimensions: 

𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 = −���𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦,𝑖𝑖 − 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀�
2

500

𝑖𝑖=1

50

𝑦𝑦=1

(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.9)  

A minus sign was added to the fitness function because the algorithm used maximises the fitness; 
i.e. the deviation is minimised. An additional fitness function was defined for the case when the 
catch rule was applied in a reduced form, without trigger or target reference values (𝐶𝐶𝑦𝑦+1 =
𝐶𝐶𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 𝑟𝑟). In this case, the fitness function measured the deviation of the SSB from the initial SSB 
at the beginning of the MSE simulation with the reasoning that the “2 over 3” rule was originally 
implemented as a means of keeping the stocks at status quo. Additionally, a penalty term was 
added, penalising the fitness (moving it away from 0) if the Blim risk increased during the simu-
lation compared to the beginning of the simulation. 

https://github.com/shfischer/GA
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𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 = −����𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦,𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦=0,𝑖𝑖�
2

500

𝑖𝑖=1

50

𝑦𝑦=1

� ×
𝑟𝑟𝑖𝑖𝑠𝑠𝑘𝑘𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚
𝑟𝑟𝑖𝑖𝑠𝑠𝑘𝑘𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐

(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 4.2.10)  

where𝑟𝑟𝑖𝑖𝑠𝑠𝑘𝑘𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐 is the risk of the stock being below Blim at the start of the simulation (year 0) and 
𝑟𝑟𝑖𝑖𝑠𝑠𝑘𝑘𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚  is the risk of the stock being below Blim during the entire projection (years 1–50). 

Setting parameters for a genetic algorithm optimisation procedure is a difficult task, and there is 
no obvious solution. Here, the settings were chosen based on computational limitations, because 
each fitness evaluation was a stochastic full feedback MSE projection and could, depending on 
the stock, take several CPU hours computing time. The initial population size (i.e. the number of 
MSE projections in one generation) was set to 40. The optimisation procedure was terminated if 
either (i) no improvement was reached within the last ten generations, (i.e. that the best perform-
ing individual per generation did not show any improvement), or (ii) 50 generations were 
reached (i.e. after a maximum of 40*50=200 scenarios). Please note that a genetic algorithm does 
not necessarily reach a global optimum; however, the result obtained is usually a substantial 
improvement. 

The parameters values optimised in the genetic algorithm can take any real number. However, 
to make it more realistic, constraints were applied. The parameters expressing years (𝑁𝑁, 𝑠𝑠, 𝑙𝑙1, 𝑙𝑙2, 
see equations 4.2.7 and 4.2.8) were rounded to the nearest full year (integer) and the exponents 
(𝑒𝑒𝑚𝑚, 𝑒𝑒𝑓𝑓, 𝑒𝑒𝑚𝑚, see equation 4.2.6) were rounded to one decimal digit for computational efficiency. 
Furthermore, the following limits were imposed: 

• catch range: 𝑁𝑁 = 1, 2, …, 5 
• biomass index: 𝑠𝑠 = 0, 1, 2, … 5; 𝑙𝑙1, 𝑙𝑙2 = 1, 2, …, 5 
• exponents: 𝑒𝑒𝑚𝑚, 𝑒𝑒𝑓𝑓, 𝑒𝑒𝑚𝑚 = 0, 0.1, 0.2, …, 2 

With these possible values, there are around seven million possible combinations (per stock). 

Despite the modifications to make the simulations computationally more efficient, they are still 
computationally expensive. For most stocks, one optimisation procedure run took a few hundred 
CPU hours, but the run time could be reduced to a few hours by making use of massive paral-
lelisation on HPC systems. 

4.2.4 Results 

Catch rule without observation error 
Firstly, the genetic algorithm (GA) was used to optimise the catch rule assuming perfect obser-
vations; i.e. the biomass index corresponded to the SSB from the operating model, the mean catch 
length (above length of first capture 𝐿𝐿𝑐𝑐) was known without error (𝜀𝜀𝑦𝑦 = 0 in equations 4.2.3–
4.2.4) and the Itrigger value used in the biomass safeguard component of the catch rule (𝑏𝑏) was set 
to Blim, taken from the operating model. The reference length used in the 𝑓𝑓 component was nev-
ertheless set to 𝐿𝐿𝐹𝐹=𝑀𝑀. Figure 4.2.2 shows the GA progress for one example stock (pollack), for 
which the GA terminated after 25 generations. Figure 4.2.3 shows pollack when subjected to the 
catch rule with default parameters (i.e. catch of the last 𝑁𝑁 = 1 years, the index trend is calculated 
with a time-lag𝑠𝑠 = 1, using the “2 over 3” rule 𝑙𝑙1 = 2, 𝑙𝑙2 = 3 and the exponents are all set to 𝑒𝑒𝑚𝑚 =
𝑒𝑒𝑓𝑓 = 𝑒𝑒𝑚𝑚 = 1), Figure 4.2.4 shows pollack when used with optimised parameters (𝑁𝑁 = 2, 𝑠𝑠 = 0, 
𝑙𝑙1 = 3, 𝑙𝑙2 = 2, 𝑒𝑒𝑚𝑚 = 1.4, 𝑒𝑒𝑓𝑓 = 1.8 and 𝑒𝑒𝑚𝑚 = 0.3). When the catch rule was implemented with default 
parameters, the SSB moved above BMSY after the implementation of the catch rule and maintained 
a large range of SSBs around the median. However, when subjected to the optimised catch rule, 
the individual replicates converged towards BMSY and the range of SSBs narrowed substantially 
over time. Figure 4.2.5 shows the SSBs for all simulated stocks with the default catch rule, and 
Figure 4.2.6 for the optimised (stock-specific) parameters. With default parameters, most 
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lower 𝑘𝑘stocks stayed around BMSY (but with high spread) whereas the higher 𝑘𝑘 stocks frequently 
moved away from BMSY. The optimised parameters resulted in SSB trajectories converging to-
wards BMSY in most cases. In general, for the higher 𝑘𝑘 stocks, a large range of SSB values is main-
tained throughout the simulated period and the SSB shows higher variability in individual rep-
licates, which is also observed in the median SSB. 

Table 4.2.1 shows a summary of the improvement (fitness function value and deviation from 
BMSY) through the optimisation procedure. The optimised parameters resulted in an improved of 
the fitness function for all stocks of between 30–87% and catch, F and SSB were generally closer 
to their MSY reference value (performance statistics not shown). However, Blim risk increased for 
25 out of the 28 stocks and inter-annual catch variability increased for 21 stocks (not shown). The 
optimised catch rule parameters are stock-specific, but some general trends were visible. The lag 
between the intermediate year and the most recent year used from the biomass index (𝑠𝑠), was 1 
for 5 stocks and 0 for the remaining 23; i.e. an index from the beginning of the intermediate year 
is used. The number of years used in the numerator (𝑙𝑙1) was between 1–4, dominated by two 
years for 18 of the stocks, and between 2–4 for the denominator (𝑙𝑙2) dominated by three years for 
19 stocks. Then number of years used to calculate the current catch (𝑁𝑁) was between 1–5, but 
most stocks (17) had two years. The exponent for component r (𝑒𝑒𝑚𝑚) was always 1 or higher with 
a mean of 1.5, 𝑒𝑒𝑓𝑓 ranged from 0.5–1.9 with mean 1.6 and 𝑒𝑒𝑚𝑚 was in the range 0.2–0.7 with mean 
0.3. 

 

Figure 4.2.2. Result of running the GA for pollack without uncertainty. Shown is the progress of the optimisation proce-
dure over generations. Please note that “Median” shows the spread between the maximum fitness (“Best”) and the 
median fitness; i.e. the bottom of the green area corresponds to the actual median value. 
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Figure 4.2.3. Results of the application of the catch rule to pollack with default parameters (not tuned). Shown are re-
cruitment, SSB, catch and fishing mortality. The vertical line indicates the start of the implementation of the catch rule, 
the dashed horizontal lines indicate MSY reference values. Shown are the median (black line), surrounded by 50% and 
90% intervals and five replicates (coloured). 

 

Figure 4.2.4. Results of the application of the catch rule to pollack with optimised parameters. See Figure 4.2.3 for more 
details. 

 



ICES | WKLIFE IX2019 | 29 
 

 

 

Figure 4.2.5. SSBs for the 28 simulated stocks when subject to the catch rule with default (not tuned) parameters. Shown 
are the medians (solid curve), surrounded by 50% and 90% intervals and five of the 500 replicates (coloured curves). The 
vertical solid line indicates the start of the implementation of the catch rule and the dashed horizontal line corresponds 
to BMSY. 

 

Figure 4.2.6. SSBs for the 28 simulated stocks when subject to the catch rule with optimised parameters. See Figure 4.2.5 
for more details. 
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Table 4.2.1. Improvement of the catch rule without observation error, with optimised parameters in comparison to default parameters. 
  

optimised catch rule parameters fitness deviation from BMSY 

k stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 𝑒𝑒𝑚𝑚 𝑒𝑒𝑓𝑓 𝑒𝑒𝑚𝑚 default optimised improvement [%] default optimised improvement [%] 

0.08 ang3 1 2 3 2 1.4 1.9 0.2 -7.42E+08 -4.62E+08 38 74 56 25 

0.09 rjc2 1 3 3 2 1.4 1.9 0.4 -7.83E+08 -5.14E+08 34 84 82 3 

0.11 smn 0 2 3 2 1.4 1.9 0.4 -1.18E+09 -7.83E+08 34 121 93 23 

0.11 wlf 1 3 4 2 1.4 1.6 0.5 -8.15E+08 -5.66E+08 30 106 102 5 

0.12 meg 0 4 3 2 1.4 1.8 0.4 -9.43E+08 -5.03E+08 47 73 59 18 

0.14 lin 1 2 3 2 1.4 1.9 0.4 -1.01E+09 -5.28E+08 48 84 66 21 

0.14 rjc 0 2 3 1 1.3 1.8 0.3 -9.31E+08 -4.48E+08 52 79 77 2 

0.15 syc 0 2 2 1 1.5 1.8 0.3 -1.38E+09 -6.74E+08 51 123 82 33 

0.15 sdv 1 2 3 2 1.4 1.9 0.3 -1.07E+09 -5.43E+08 49 90 70 21 

0.18 ang 0 2 3 2 1.4 1.9 0.4 -1.30E+09 -6.22E+08 52 108 71 35 

0.18 ang2 0 2 3 1 1.4 1.8 0.3 -9.87E+08 -4.34E+08 56 80 73 9 

0.19 pol 0 3 2 2 1.4 1.8 0.3 -1.25E+09 -5.73E+08 54 103 66 36 

0.2 had 0 2 3 2 1.6 1.3 0.2 -1.09E+09 -5.37E+08 51 102 95 7 

0.2 nep 0 3 3 2 1.3 1.7 0.2 -1.11E+09 -5.22E+08 53 89 65 27 

0.21 mut 0 2 3 2 1.7 1.7 0.2 -1.13E+09 -4.99E+08 56 96 62 36 

0.22 sbb 0 3 3 2 1.4 1.9 0.4 -1.69E+09 -7.78E+08 54 157 100 36 
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optimised catch rule parameters fitness deviation from BMSY 

k stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 𝑒𝑒𝑚𝑚 𝑒𝑒𝑓𝑓 𝑒𝑒𝑚𝑚 default optimised improvement [%] default optimised improvement [%] 

0.23 ple 0 2 3 2 1.4 1.8 0.2 -1.32E+09 -4.91E+08 63 107 63 41 

0.23 syc2 0 1 4 3 1.8 1.1 0.2 -2.13E+09 -1.07E+09 50 185 117 37 

0.23 arg 0 2 3 3 1.4 1.5 0.3 -2.09E+09 -1.09E+09 48 181 118 35 

0.32 tur 0 2 4 3 1.5 1.2 0.2 -3.43E+09 -7.29E+08 79 230 119 48 

0.32 gut 0 2 3 2 1.7 1.7 0.2 -2.16E+09 -7.20E+08 67 165 97 41 

0.38 whg 0 3 3 3 1.8 1.2 0.2 -3.76E+09 -1.03E+09 73 244 140 43 

0.38 bll 0 2 2 2 1.6 1.6 0.4 -2.82E+09 -7.75E+08 73 204 87 58 

0.42 lem 0 3 3 3 1.6 1.8 0.3 -3.30E+09 -7.00E+08 79 208 109 47 

0.44 ane 0 3 3 3 1.7 1.6 0.2 -3.69E+09 -7.86E+08 79 232 124 47 

0.47 jnd 0 2 2 5 1.9 0.5 0.4 -3.86E+09 -9.12E+08 76 313 107 66 

0.6 sar 0 2 2 4 1.9 1.5 0.7 -5.44E+09 -1.16E+09 79 360 166 54 

0.606 her 0 2 2 2 1.6 1.8 0.3 -5.48E+09 -7.26E+08 87 333 115 66 
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Catch rule with observation error 
In a second step, the optimisation procedure was repeated with an observation error. Observa-
tion uncertainty was implemented for the index (equation 4.2.3) and the mean length (equation 
4.2.4). Furthermore, 𝐼𝐼𝑐𝑐𝑚𝑚𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚  as used in the 𝑏𝑏 component of the catch rule, was set to 1.4𝐼𝐼𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚. The 
addition of observation error resulted in higher uncertainty after implementation of the default 
catch rule for pollack (Figure 4.2.7) and the optimisation procedure yielded a smaller reduction 
in the spread of trajectories (Figure 4.2.8). Figures 4.2.9 and 4.2.10 show the SSB trajectories for 
all simulated stock for the default and the optimised stock-specific parameters respectively. In 
general, when including observation error, the improvement in the catch rule performance is less 
pronounced compared to the runs without observation error. However, the default parameters 
frequently moved the stocks above BMSY during the simulated period, and this behaviour could 
be averted with the optimised parameters. However, for some of the higher 𝑘𝑘 stocks, the median 
SSB dropped markedly below BMSY. Tables 4.2.2–4.2.4 show a summary of the improvement ob-
tained with the optimisation procedure, and the summary statistics for the scenarios with default 
and optimised parameters. The optimised parameters resulted in an improved of the fitness 
function for all stocks of between 39–84% and catch, F and SSB were closer to their MSY reference 
value. However, Blim risk always increased and inter-annual catch variability increased for 26 out 
of the 28 stocks. The optimised catch rule parameters are stock-specific, but some general trends 
were visible, as before. The lag between the intermediate year and the most recent year used 
from the biomass index (𝑠𝑠), was 1 for three stocks and 0 for the remaining 25; i.e. an index from 
the beginning of the intermediate year is used. The number of years used in the numerator (𝑙𝑙1) 
was always 2 and between 1 and 4 for the denominator (𝑙𝑙2); however, for most stocks (17), this 
value was also 2. The number of years used to calculate the current catch (𝑁𝑁) was between 2–5, 
but most stocks were in the range 3–4 (14 and 12 respectively). The exponent for component r 
(𝑒𝑒𝑚𝑚) was always 1 or higher with a mean of 1.4, 𝑒𝑒𝑓𝑓 ranged from 0.5-1.9 with mean 1.4 and 𝑒𝑒𝑚𝑚 was 
in the range 0.1–0.4 with mean 0.25. 
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Figure 4.2.7. Results of the application of the catch rule to pollack with default parameters and observation uncertainty. 
See Figure 4.2.3 for more details. 

 

Figure 4.2.8. Results of the application of the catch rule to pollack with optimised parameters and observation uncer-
tainty. See Figure 4.2.3 for more details. 
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Figure 4.2.9. SSBs for the 28 simulated stocks when subject to the catch rule with default parameters and observation 
uncertainty. See Figure 4.2.5 for more details. 

 

Figure 4.2.10. SSBs for the 28 simulated stocks when subject to the catch rule with optimised parameters and observation 
uncertainty. See Figure 4.2.5 for more details. 



ICES | WKLIFE IX2019 | 35 
 

 

Table 4.2.2. Improvement of the catch rule with observation error and optimised parameters in comparison to default parameters. 
  

optimised catch rule parameters fitness deviation from BMSY 

k stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 𝑒𝑒𝑚𝑚 𝑒𝑒𝑓𝑓 𝑒𝑒𝑚𝑚 default optimised improvement [%] default optimised improvement [%] 

0.08 ang3 1 2 2 4 1 1.9 0.3 -1.26E+09 -7.29E+08 42 159 118 26 

0.09 rjc2 0 2 3 2 1.3 1.8 0.3 -1.26E+09 -7.70E+08 39 160 123 23 

0.11 smn 0 2 1 4 1.4 1.4 0.3 -1.89E+09 -1.03E+09 46 188 156 17 

0.11 wlf 0 2 3 3 1.2 1.6 0.4 -1.22E+09 -7.34E+08 40 159 116 27 

0.12 meg 0 2 2 3 1.7 1.6 0.3 -1.42E+09 -7.67E+08 46 173 115 33 

0.14 lin 1 2 2 4 1 1.6 0.3 -1.65E+09 -8.92E+08 46 182 134 27 

0.14 rjc 0 2 3 3 1.1 1.7 0.2 -1.58E+09 -7.86E+08 50 175 127 27 

0.15 syc 0 2 4 3 1 1.5 0.1 -2.05E+09 -1.05E+09 49 202 137 32 

0.15 sdv 1 2 3 3 1.4 1.6 0.2 -1.76E+09 -9.28E+08 47 189 136 28 

0.18 ang 0 2 4 4 1.3 1.6 0.3 -2.05E+09 -9.79E+08 52 201 139 31 

0.18 ang2 0 2 4 3 1.1 1.6 0.2 -1.85E+09 -7.44E+08 60 191 120 37 

0.19 pol 0 2 4 4 1.2 1.7 0.3 -2.11E+09 -9.44E+08 55 213 136 36 

0.2 had 0 2 2 3 1.4 1.1 0.2 -2.14E+09 -7.22E+08 66 217 113 48 

0.2 nep 0 2 2 3 1.5 1.4 0.2 -2.07E+09 -8.38E+08 60 217 123 43 

0.21 mut 0 2 2 3 1.7 1.3 0.3 -2.22E+09 -8.24E+08 63 224 119 47 

0.22 sbb 0 2 2 3 1.6 1.3 0.3 -3.09E+09 -1.05E+09 66 261 144 45 
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optimised catch rule parameters fitness deviation from BMSY 

k stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 𝑒𝑒𝑚𝑚 𝑒𝑒𝑓𝑓 𝑒𝑒𝑚𝑚 default optimised improvement [%] default optimised improvement [%] 

0.23 ple 0 2 2 3 1.6 1.4 0.2 -2.71E+09 -8.19E+08 70 238 128 46 

0.23 syc2 0 2 2 3 1.1 0.5 0.2 -3.24E+09 -1.29E+09 60 242 166 31 

0.23 arg 0 2 1 4 1.1 1.1 0.2 -3.15E+09 -1.25E+09 60 236 185 22 

0.32 tur 0 2 4 4 1.1 1.1 0.4 -4.05E+09 -8.34E+08 79 289 128 56 

0.32 gut 0 2 2 3 1.5 1.4 0.2 -3.91E+09 -1.03E+09 74 281 150 47 

0.38 whg 0 2 2 4 1.8 1.7 0.2 -4.76E+09 -9.22E+08 81 311 158 49 

0.38 bll 0 2 2 3 1.5 1.1 0.1 -4.68E+09 -9.81E+08 79 297 136 54 

0.42 lem 0 2 2 4 1.5 1.5 0.3 -4.04E+09 -8.17E+08 80 252 146 42 

0.44 ane 0 2 2 4 1.8 1.4 0.3 -4.52E+09 -8.73E+08 81 293 151 48 

0.47 jnd 0 2 2 5 1.8 0.7 0.3 -5.27E+09 -8.33E+08 84 381 106 72 

0.6 sar 0 2 2 4 1.7 1 0.2 -6.38E+09 -1.17E+09 82 420 173 59 

0.606 her 0 2 2 4 1.7 1.3 0.2 -5.82E+09 -9.73E+08 83 377 170 55 
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Table 4.2.3. Summary statistics for catch rule with observation errorand default parameters. 

  default catch rule parameters summary statistics 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 𝑒𝑒𝑚𝑚 𝑒𝑒𝑓𝑓 𝑒𝑒𝑚𝑚 fitness BMSY de-
viation 

Blim 
risk 

BMSY 
risk 

0.5BMSY 
risk 

collapse 
risk 

catch/MSY SSB/BMSY F/FMSY ICV 

0.08 ang3 1 2 3 1 1 1 1 -1.26E+09 159 0.20 0.36 0.11 0.019 0.67 1.29 0.58 0.23 

0.09 rjc2 1 2 3 1 1 1 1 -1.26E+09 160 0.21 0.39 0.12 0.029 0.69 1.23 0.63 0.24 

0.11 smn 1 2 3 1 1 1 1 -1.89E+09 188 0.19 0.28 0.10 0.007 0.56 1.60 0.35 0.25 

0.11 wlf 1 2 3 1 1 1 1 -1.22E+09 159 0.21 0.42 0.12 0.037 0.69 1.15 0.65 0.27 

0.12 meg 1 2 3 1 1 1 1 -1.42E+09 173 0.15 0.33 0.09 0.036 0.70 1.33 0.54 0.26 

0.14 lin 1 2 3 1 1 1 1 -1.65E+09 182 0.19 0.33 0.11 0.023 0.66 1.44 0.49 0.26 

0.14 rjc 1 2 3 1 1 1 1 -1.58E+09 175 0.21 0.35 0.11 0.026 0.67 1.38 0.52 0.27 

0.15 syc 1 2 3 1 1 1 1 -2.05E+09 202 0.17 0.27 0.10 0.017 0.62 1.61 0.40 0.26 

0.15 sdv 1 2 3 1 1 1 1 -1.76E+09 189 0.19 0.32 0.11 0.023 0.65 1.47 0.47 0.26 

0.18 ang 1 2 3 1 1 1 1 -2.05E+09 201 0.18 0.29 0.10 0.024 0.65 1.58 0.43 0.27 

0.18 ang2 1 2 3 1 1 1 1 -1.85E+09 191 0.20 0.33 0.11 0.031 0.65 1.43 0.49 0.31 

0.19 pol 1 2 3 1 1 1 1 -2.11E+09 213 0.17 0.29 0.10 0.031 0.65 1.55 0.45 0.28 

0.2 had 1 2 3 1 1 1 1 -2.14E+09 217 0.21 0.37 0.14 0.040 0.55 1.33 0.42 0.39 

0.2 nep 1 2 3 1 1 1 1 -2.07E+09 217 0.16 0.30 0.11 0.037 0.65 1.47 0.45 0.31 

0.21 mut 1 2 3 1 1 1 1 -2.22E+09 224 0.15 0.29 0.11 0.036 0.63 1.48 0.42 0.33 

0.22 sbb 1 2 3 1 1 1 1 -3.09E+09 261 0.15 0.24 0.11 0.035 0.58 1.81 0.33 0.31 
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  default catch rule parameters summary statistics 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 𝑒𝑒𝑚𝑚 𝑒𝑒𝑓𝑓 𝑒𝑒𝑚𝑚 fitness BMSY de-
viation 

Blim 
risk 

BMSY 
risk 

0.5BMSY 
risk 

collapse 
risk 

catch/MSY SSB/BMSY F/FMSY ICV 

0.23 ple 1 2 3 1 1 1 1 -2.71E+09 238 0.17 0.28 0.11 0.031 0.59 1.61 0.38 0.34 

0.23 syc2 1 2 3 1 1 1 1 -3.24E+09 242 0.15 0.20 0.09 0.010 0.50 2.05 0.24 0.28 

0.23 arg 1 2 3 1 1 1 1 -3.15E+09 236 0.15 0.21 0.09 0.011 0.53 2.01 0.26 0.29 

0.32 tur 1 2 3 1 1 1 1 -4.05E+09 289 0.22 0.34 0.16 0.033 0.22 1.61 0.18 0.55 

0.32 gut 1 2 3 1 1 1 1 -3.91E+09 281 0.16 0.25 0.11 0.036 0.50 1.88 0.27 0.34 

0.38 whg 1 2 3 1 1 1 1 -4.76E+09 311 0.17 0.21 0.11 0.027 0.46 2.34 0.21 0.36 

0.38 bll 1 2 3 1 1 1 1 -4.68E+09 297 0.14 0.22 0.10 0.024 0.42 1.98 0.22 0.38 

0.42 lem 1 2 3 1 1 1 1 -4.04E+09 252 0.19 0.26 0.12 0.022 0.50 2.03 0.26 0.40 

0.44 ane 1 2 3 1 1 1 1 -4.52E+09 293 0.17 0.23 0.11 0.021 0.48 2.20 0.23 0.38 

0.47 jnd 1 2 3 1 1 1 1 -5.27E+09 381 0.07 0.12 0.01 0.000 0.54 2.62 0.17 0.32 

0.6 sar 1 2 3 1 1 1 1 -6.38E+09 420 0.09 0.14 0.06 0.000 0.41 2.55 0.15 0.35 

0.606 her 1 2 3 1 1 1 1 -5.82E+09 377 0.12 0.18 0.08 0.003 0.42 2.40 0.17 0.41 
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Table 4.2.4. Summary statistics for catch rule with observation errorand optimised parameters. 

  optimised catch rule parameters summary statistics 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 𝑒𝑒𝑚𝑚 𝑒𝑒𝑓𝑓 𝑒𝑒𝑚𝑚 fitness BMSY de-
viation 

Blim 
risk 

BMSY 
risk 

0.5BMSY 
risk 

collapse 
risk 

catch/MSY SSB/BMSY F/FMSY ICV 

0.08 ang3 1 2 2 4 1 1.9 0.3 -7.29E+08 118 0.30 0.56 0.14 0.023 0.75 0.91 0.89 0.39 

0.09 rjc2 0 2 3 2 1.3 1.8 0.3 -7.70E+08 123 0.31 0.59 0.15 0.033 0.76 0.86 0.99 0.36 

0.11 smn 0 2 1 4 1.4 1.4 0.3 -1.03E+09 156 0.43 0.56 0.28 0.063 0.73 0.84 1.00 0.52 

0.11 wlf 0 2 3 3 1.2 1.6 0.4 -7.34E+08 116 0.26 0.60 0.12 0.038 0.80 0.86 1.00 0.36 

0.12 meg 0 2 2 3 1.7 1.6 0.3 -7.67E+08 115 0.20 0.52 0.10 0.039 0.79 0.97 0.86 0.45 

0.14 lin 1 2 2 4 1 1.6 0.3 -8.92E+08 134 0.31 0.51 0.16 0.035 0.78 0.97 0.85 0.37 

0.14 rjc 0 2 3 3 1.1 1.7 0.2 -7.86E+08 127 0.36 0.58 0.18 0.035 0.79 0.85 0.97 0.39 

0.15 syc 0 2 4 3 1 1.5 0.1 -1.05E+09 137 0.29 0.47 0.15 0.023 0.78 1.07 0.76 0.34 

0.15 sdv 1 2 3 3 1.4 1.6 0.2 -9.28E+08 136 0.32 0.53 0.17 0.035 0.76 0.94 0.81 0.42 

0.18 ang 0 2 4 4 1.3 1.6 0.3 -9.79E+08 139 0.32 0.50 0.18 0.034 0.77 0.99 0.78 0.45 

0.18 ang2 0 2 4 3 1.1 1.6 0.2 -7.44E+08 120 0.32 0.56 0.15 0.034 0.83 0.90 0.96 0.36 

0.19 pol 0 2 4 4 1.2 1.7 0.3 -9.44E+08 136 0.26 0.47 0.14 0.038 0.80 1.05 0.82 0.40 

0.2 had 0 2 2 3 1.4 1.1 0.2 -7.22E+08 113 0.26 0.61 0.12 0.039 0.87 0.85 1.04 0.38 

0.2 nep 0 2 2 3 1.5 1.4 0.2 -8.38E+08 123 0.20 0.50 0.11 0.038 0.82 1.00 0.86 0.41 

0.21 mut 0 2 2 3 1.7 1.3 0.3 -8.24E+08 119 0.17 0.47 0.09 0.038 0.83 1.04 0.82 0.45 

0.22 sbb 0 2 2 3 1.6 1.3 0.3 -1.05E+09 144 0.23 0.42 0.13 0.041 0.79 1.14 0.74 0.45 
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  optimised catch rule parameters summary statistics 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 𝑒𝑒𝑚𝑚 𝑒𝑒𝑓𝑓 𝑒𝑒𝑚𝑚 fitness BMSY de-
viation 

Blim 
risk 

BMSY 
risk 

0.5BMSY 
risk 

collapse 
risk 

catch/MSY SSB/BMSY F/FMSY ICV 

0.23 ple 0 2 2 3 1.6 1.4 0.2 -8.19E+08 128 0.29 0.54 0.15 0.036 0.81 0.93 0.90 0.47 

0.23 syc2 0 2 2 3 1.1 0.5 0.2 -1.29E+09 166 0.39 0.49 0.25 0.058 0.78 1.02 0.78 0.37 

0.23 arg 0 2 1 4 1.1 1.1 0.2 -1.25E+09 185 0.47 0.56 0.34 0.080 0.70 0.80 0.98 0.49 

0.32 tur 0 2 4 4 1.1 1.1 0.4 -8.34E+08 128 0.28 0.59 0.14 0.033 0.85 0.87 0.94 0.41 

0.32 gut 0 2 2 3 1.5 1.4 0.2 -1.03E+09 150 0.30 0.51 0.18 0.041 0.78 0.97 0.83 0.48 

0.38 whg 0 2 2 4 1.8 1.7 0.2 -9.22E+08 158 0.59 0.70 0.38 0.040 0.65 0.54 1.06 0.71 

0.38 bll 0 2 2 3 1.5 1.1 0.1 -9.81E+08 136 0.24 0.48 0.13 0.028 0.83 1.03 0.80 0.47 

0.42 lem 0 2 2 4 1.5 1.5 0.3 -8.17E+08 146 0.53 0.69 0.31 0.026 0.71 0.61 1.04 0.66 

0.44 ane 0 2 2 4 1.8 1.4 0.3 -8.73E+08 151 0.54 0.70 0.33 0.031 0.67 0.60 1.04 0.74 

0.47 jnd 0 2 2 5 1.8 0.7 0.3 -8.33E+08 106 0.33 0.52 0.05 0.000 0.85 0.97 0.89 0.66 

0.6 sar 0 2 2 4 1.7 1 0.2 -1.17E+09 173 0.47 0.64 0.27 0.000 0.72 0.67 0.98 0.72 

0.606 her 0 2 2 4 1.7 1.3 0.2 -9.73E+08 170 0.53 0.71 0.32 0.003 0.70 0.56 1.14 0.73 
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Catch rule without components f and b 
Figure 4.2.11 show the stocks trajectory for pollack when the catch rule is used with default pa-
rameters and observation error but without components 𝑓𝑓and 𝑏𝑏; i.e. the “2 over 3 rule” and Fig-
ure 4.2.12 the results for the same stock but with optimised parameters. Figure 4.2.13 shows the 
SSB trends for all simulated stocks with default parameters and Figure 4.2.14 with optimised 
parameters. With default parameters, most lower 𝑘𝑘 stocks remained, on average, around BMSY 
during the simulation; i.e. the initial SSB was maintained. However, some of the medium-to-
higher 𝑘𝑘 stocks moved away from BMSY, typically to higher levels, and the replicates exhibited 
high oscillations. The summary statistics for the scenarios with default and optimised parameters 
and a comparison is found in Tables 4.2.5–4.2.7. The fitness function value, accounting for devi-
ation of SSB to starting SSB and also for risk, was improved for all stocks and the improvement 
ranged from 53% to 82% with optimised parameters. However, the deviation of SSB to BMSY was 
not reduced in all cases because it was not part of the fitness function evaluation. The catch was 
increased for all stocks between 4% and 26%, F and SSB moved closer to their corresponding 
MSY reference point, inter-annual catch variability was reduced for 26 out of the 28 stocks. De-
spite including a risk penalty in the fitness function, Blim risk increased for all stocks between 5% 
and 91% because the fitness value was dominated by the deviation of the SSB, and the risk com-
ponent did not have enough influence. 
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Figure 4.2.11. Results of the application of the catch rule without component 𝒇𝒇 and 𝒃𝒃 to pollack with default parameters 
and observation error. See Figure 4.2.3 for more details. 

 

Figure 4.2.12. Results of the application of the catch rule without component 𝒇𝒇 and 𝒃𝒃 to pollack with default parameters 
and observation error. See Figure 4.2.3 for more details. 
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Figure 4.2.13. SSBs for the 28 simulated stocks when subject to the catch rule without components 𝒇𝒇and 𝒃𝒃, with default 
parameters and observation error. See Figure 4.2.5 for more details. 

 

Figure 4.2.14. SSBs for the 28 simulated stocks when subject to the catch rule without components 𝒇𝒇and 𝒃𝒃, with opti-
mised parameters and observation error. See Figure 4.2.5 for more details. 
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Table 4.2.5. Improvement of the catch rule without component 𝒇𝒇and 𝒃𝒃, with observation errorand with optimised parameters in comparison to default parameters. 

  optimised catch rule parameters fitness deviation from BMSY 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 default optimised improvement [%] default optimised improvement [%] 

0.08 ang3 0 4 5 3 -1.04E+08 -3.95E+07 62 182 177 3 

0.09 rjc2 1 4 4 4 -1.14E+08 -4.22E+07 63 192 189 2 

0.11 smn 0 2 3 4 -1.93E+08 -6.30E+07 67 153 161 -6 

0.11 wlf 0 4 4 4 -1.39E+08 -5.17E+07 63 205 197 4 

0.12 meg 1 4 4 4 -1.63E+08 -7.04E+07 57 208 206 1 

0.14 lin 0 4 4 3 -1.63E+08 -7.03E+07 57 172 177 -3 

0.14 rjc 0 4 4 4 -1.59E+08 -6.67E+07 58 173 178 -3 

0.15 syc 0 4 4 3 -2.47E+08 -9.55E+07 61 153 164 -8 

0.15 sdv 0 4 4 3 -1.74E+08 -7.69E+07 56 171 178 -4 

0.18 ang 0 4 5 4 -1.98E+08 -9.33E+07 53 166 176 -6 

0.18 ang2 0 4 4 4 -1.94E+08 -9.14E+07 53 184 186 -1 

0.19 pol 0 2 4 4 -2.12E+08 -9.90E+07 53 190 183 4 

0.2 had 0 2 4 4 -4.03E+08 -1.21E+08 70 206 194 6 

0.2 nep 0 2 4 3 -3.33E+08 -1.16E+08 65 205 195 5 

0.21 mut 0 2 4 4 -4.87E+08 -1.34E+08 72 212 198 7 

0.22 sbb 0 2 5 4 -4.50E+08 -1.44E+08 68 196 180 8 
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  optimised catch rule parameters fitness deviation from BMSY 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 default optimised improvement [%] default optimised improvement [%] 

0.23 ple 0 2 4 4 -3.87E+08 -1.41E+08 64 195 189 3 

0.23 syc2 5 2 4 4 -1.04E+09 -1.87E+08 82 182 163 11 

0.23 arg 4 2 4 4 -8.86E+08 -1.92E+08 78 176 164 7 

0.32 tur 0 2 4 3 -8.30E+08 -2.25E+08 73 226 191 16 

0.32 gut 0 2 4 4 -7.08E+08 -2.06E+08 71 214 200 7 

0.38 whg 0 2 4 3 -9.91E+08 -2.78E+08 72 194 155 20 

0.38 bll 0 2 4 3 -1.58E+09 -4.25E+08 73 249 175 30 

0.42 lem 0 2 4 3 -8.08E+08 -2.62E+08 68 190 161 16 

0.44 ane 0 2 4 3 -1.03E+09 -3.11E+08 70 198 157 21 

0.47 jnd 0 2 2 3 -2.11E+09 -4.89E+08 77 216 105 51 

0.6 sar 0 2 3 3 -3.02E+09 -6.20E+08 79 249 163 34 

0.606 her 0 2 3 3 -2.64E+09 -6.17E+08 77 243 162 33 
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Table 4.2.6. Summary statistics for catch rule without component 𝒇𝒇and 𝒃𝒃, with observation errorand default parameters. 

  default catch rule parameters summary statistics 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 fitness BMSY deviation Blim risk BMSY risk 0.5BMSY risk collapse risk catch/MSY SSB/BMSY F/FMSY ICV 

0.08 ang3 1 2 3 1 -1.04E+08 182 0.32 0.48 0.19 0.032 0.78 1.05 0.85 0.15 

0.09 rjc2 1 2 3 1 -1.14E+08 192 0.31 0.48 0.19 0.048 0.78 1.05 0.93 0.15 

0.11 smn 1 2 3 1 -1.93E+08 153 0.31 0.45 0.18 0.019 0.76 1.12 0.65 0.20 

0.11 wlf 1 2 3 1 -1.39E+08 205 0.29 0.48 0.19 0.065 0.77 1.05 0.90 0.15 

0.12 meg 1 2 3 1 -1.63E+08 208 0.28 0.48 0.18 0.075 0.77 1.06 0.80 0.16 

0.14 lin 1 2 3 1 -1.63E+08 172 0.31 0.48 0.17 0.031 0.78 1.07 0.78 0.18 

0.14 rjc 1 2 3 1 -1.59E+08 173 0.32 0.48 0.18 0.033 0.78 1.07 0.80 0.18 

0.15 syc 1 2 3 1 -2.47E+08 153 0.28 0.44 0.15 0.022 0.78 1.13 0.68 0.20 

0.15 sdv 1 2 3 1 -1.74E+08 171 0.31 0.47 0.17 0.031 0.78 1.07 0.77 0.19 

0.18 ang 1 2 3 1 -1.98E+08 166 0.32 0.47 0.17 0.032 0.78 1.08 0.76 0.20 

0.18 ang2 1 2 3 1 -1.94E+08 184 0.31 0.47 0.19 0.047 0.77 1.07 0.82 0.19 

0.19 pol 1 2 3 1 -2.12E+08 190 0.30 0.47 0.19 0.051 0.76 1.07 0.80 0.19 

0.2 had 1 2 3 1 -4.03E+08 206 0.25 0.44 0.19 0.080 0.74 1.16 0.60 0.21 

0.2 nep 1 2 3 1 -3.33E+08 205 0.26 0.45 0.19 0.073 0.74 1.12 0.64 0.20 

0.21 mut 1 2 3 1 -4.87E+08 212 0.24 0.43 0.19 0.082 0.73 1.18 0.58 0.21 

0.22 sbb 1 2 3 1 -4.50E+08 196 0.28 0.42 0.19 0.055 0.73 1.19 0.59 0.25 

0.23 ple 1 2 3 1 -3.87E+08 195 0.27 0.44 0.19 0.051 0.74 1.15 0.62 0.24 
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  default catch rule parameters summary statistics 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 fitness BMSY deviation Blim risk BMSY risk 0.5BMSY risk collapse risk catch/MSY SSB/BMSY F/FMSY ICV 

0.23 syc2 1 2 3 1 -1.04E+09 182 0.23 0.32 0.13 0.014 0.68 1.52 0.43 0.27 

0.23 arg 1 2 3 1 -8.86E+08 176 0.23 0.32 0.14 0.013 0.70 1.47 0.46 0.27 

0.32 tur 1 2 3 1 -8.30E+08 226 0.24 0.39 0.18 0.050 0.69 1.28 0.52 0.26 

0.32 gut 1 2 3 1 -7.08E+08 214 0.27 0.41 0.19 0.049 0.70 1.27 0.53 0.29 

0.38 whg 1 2 3 1 -9.91E+08 194 0.29 0.37 0.20 0.040 0.68 1.47 0.47 0.36 

0.38 bll 1 2 3 1 -1.58E+09 249 0.22 0.32 0.16 0.036 0.67 1.51 0.43 0.29 

0.42 lem 1 2 3 1 -8.08E+08 190 0.28 0.39 0.18 0.033 0.71 1.36 0.52 0.33 

0.44 ane 1 2 3 1 -1.03E+09 198 0.27 0.37 0.18 0.034 0.69 1.44 0.48 0.35 

0.47 jnd 1 2 3 1 -2.11E+09 216 0.13 0.22 0.02 0.000 0.75 1.92 0.34 0.32 

0.6 sar 1 2 3 1 -3.02E+09 249 0.17 0.25 0.11 0.000 0.65 1.88 0.32 0.36 

0.606 her 1 2 3 1 -2.64E+09 243 0.19 0.27 0.12 0.004 0.64 1.81 0.34 0.36 
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Table 4.2.7. Summary statistics for catch rule without component 𝒇𝒇and 𝒃𝒃, with observation errorand optimised parameters. 

  optimised catch rule parameters summary statistics 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 fitness BMSY deviation Blim risk BMSY risk 0.5BMSY risk collapse risk catch/MSY SSB/BMSY F/FMSY ICV 

0.08 ang3 0 4 5 3 -3.95E+07 177 0.34 0.49 0.20 0.040 0.82 1.03 0.94 0.11 

0.09 rjc2 1 4 4 4 -4.22E+07 189 0.32 0.50 0.21 0.058 0.83 1.01 1.02 0.11 

0.11 smn 0 2 3 4 -6.30E+07 161 0.39 0.50 0.23 0.046 0.83 0.99 0.97 0.22 

0.11 wlf 0 4 4 4 -5.17E+07 197 0.31 0.50 0.19 0.071 0.83 1.01 1.02 0.11 

0.12 meg 1 4 4 4 -7.04E+07 206 0.30 0.49 0.20 0.102 0.82 1.02 0.93 0.12 

0.14 lin 0 4 4 3 -7.03E+07 177 0.35 0.50 0.21 0.042 0.82 1.01 0.89 0.14 

0.14 rjc 0 4 4 4 -6.67E+07 178 0.35 0.50 0.22 0.047 0.83 1.00 0.93 0.14 

0.15 syc 0 4 4 3 -9.55E+07 164 0.36 0.50 0.21 0.035 0.82 1.01 0.80 0.16 

0.15 sdv 0 4 4 3 -7.69E+07 178 0.35 0.50 0.21 0.041 0.82 1.01 0.88 0.14 

0.18 ang 0 4 5 4 -9.33E+07 176 0.37 0.50 0.23 0.043 0.81 1.00 0.89 0.15 

0.18 ang2 0 4 4 4 -9.14E+07 186 0.35 0.51 0.23 0.065 0.81 0.98 1.01 0.14 

0.19 pol 0 2 4 4 -9.90E+07 183 0.33 0.50 0.20 0.061 0.82 1.00 1.00 0.21 

0.2 had 0 2 4 4 -1.21E+08 194 0.30 0.50 0.18 0.104 0.82 1.01 0.92 0.20 

0.2 nep 0 2 4 3 -1.16E+08 195 0.29 0.49 0.17 0.079 0.81 1.04 0.93 0.19 

0.21 mut 0 2 4 4 -1.34E+08 198 0.29 0.50 0.18 0.108 0.81 1.01 0.91 0.21 

0.22 sbb 0 2 5 4 -1.44E+08 180 0.32 0.49 0.19 0.072 0.81 1.03 0.90 0.21 

0.23 ple 0 2 4 4 -1.41E+08 189 0.33 0.50 0.21 0.092 0.81 0.99 0.98 0.22 



ICES | WKLIFE IX2019 | 49 
 

 

  optimised catch rule parameters summary statistics 

𝑘𝑘 stock 𝑠𝑠 𝑙𝑙1 𝑙𝑙2 𝑁𝑁 fitness BMSY deviation Blim risk BMSY risk 0.5BMSY risk collapse risk catch/MSY SSB/BMSY F/FMSY ICV 

0.23 syc2 5 2 4 4 -1.87E+08 163 0.40 0.51 0.25 0.026 0.81 0.98 0.81 0.24 

0.23 arg 4 2 4 4 -1.92E+08 164 0.39 0.50 0.25 0.025 0.81 1.00 0.79 0.24 

0.32 tur 0 2 4 3 -2.25E+08 191 0.27 0.48 0.17 0.060 0.80 1.05 0.84 0.22 

0.32 gut 0 2 4 4 -2.06E+08 200 0.35 0.51 0.24 0.109 0.78 0.97 0.96 0.25 

0.38 whg 0 2 4 3 -2.78E+08 155 0.36 0.48 0.20 0.038 0.80 1.06 0.80 0.28 

0.38 bll 0 2 4 3 -4.25E+08 175 0.24 0.43 0.14 0.039 0.81 1.14 0.73 0.25 

0.42 lem 0 2 4 3 -2.62E+08 161 0.34 0.48 0.19 0.032 0.80 1.04 0.84 0.26 

0.44 ane 0 2 4 3 -3.11E+08 157 0.34 0.48 0.18 0.030 0.80 1.06 0.80 0.27 

0.47 jnd 0 2 2 3 -4.89E+08 105 0.26 0.45 0.04 0.000 0.91 1.08 0.89 0.30 

0.6 sar 0 2 3 3 -6.20E+08 163 0.29 0.46 0.15 0.000 0.82 1.08 0.81 0.33 

0.606 her 0 2 3 3 -6.17E+08 162 0.28 0.46 0.15 0.005 0.81 1.10 0.80 0.31 
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4.2.5 Discussion 

The outcome of the catch rule with default parameters appears to be somewhat different in terms 
of terminal SSB compared to results presented previously (ICES, 2017a; 2018). This outcome is 
caused by different condition at the beginning of the implementation of the catch rule. Previ-
ously, highly depleted starting conditions have been used, while the current simulations are 
based on less depleted conditions. Previously, medium to high 𝑘𝑘 stocks collapsed early during 
the simulation period due their high variability and the feature of the catch rule that the newly 
advised catch is based on the previous catch. 

The optimisation of the catch rule parameters led to improvement for all stocks and simulated 
scenarios. However, the improvement is only as good as the definition of the fitness function, 
and the optimisation is purely based on evaluating this fitness function, ignoring any other fea-
ture. Therefore, the improvement was frequently only observed in the fitness function (i.e. devi-
ation of SSB to BMSY for the full catch rule), whereas other performance statistics such as risks and 
interannual catch variability increased. Nevertheless, stock characteristics such as F, SSB and 
catch, tended to move closer to their MSY reference levels. This trade-off between desirable and 
undesirable changes in summary statistics is a result of the definition of the fitness function, 
which only considered SSB and is aimed at moving it closer to BMSY, neglecting risks and stability 
in catch. 

Furthermore, it should be noted that the used optimisation procedure with a genetic algorithm 
did improve the performance, but the optimised solution does not necessarily correspond to a 
global optimum and could as well simply be a local optimum. Due to the high number of possible 
parameter combinations (around 7 million), it is computationally infeasible to run all of them. 
Allowing the genetic algorithm to iterate through more generations or increasing the population 
size could potentially improve the optimisation. However, running more simulations comes at 
a high computational cost and looking at the progress during the genetic algorithm (see e.g. Fig-
ure 4.2.2) indicated that the best solution per generation already showed a relatively flat curve. 

Catch rule including observation error 
For the full catch rule (including components 𝑟𝑟, 𝑓𝑓 and 𝑏𝑏 and their exponents), the optimised 
parameters were stock-specific without showing a clear pattern. For most stocks, the time-lag of 
the biomass index was reduced (i.e. including the intermediate year index value). The compo-
nents 𝑟𝑟 and 𝑓𝑓 of the catch rule were made more reactive and given a higher influence on the 
catch advice (exponents above 1 and on average 1.4 for both) whereas component 𝑏𝑏 (biomass 
safeguard) was always downweighed. This can be explained by the fact that the optimisation 
procedure included only an SSB target and ignored safety considerations, and therefore there 
was no reward for reducing the catch below 𝐼𝐼𝑐𝑐𝑚𝑚𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚 . In the scenarios were 𝐼𝐼𝑐𝑐𝑚𝑚𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚  was based on 
the lowest observed index value in the recent past, 𝑏𝑏 was downweighed even further because for 
many of the replicates, 𝐼𝐼𝑐𝑐𝑚𝑚𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚  was set to high (around half of the replicates were above BMSYdur-
ing the historical fishing period, and hence so was Itrigger) and would otherwise always tend to 
reduce catch. 

Catch rule without component 𝒇𝒇 and 𝒃𝒃 
The performance of the catch rule without components 𝑓𝑓 and 𝑏𝑏 could be substantially improved 
with regards to the fitness function, in particular for medium to higher 𝑘𝑘 stocks. Originally, the 
“2 over 3” rule was designed to keep a stock at status quo by adjusting the current catch with the 
trend from the biomass index (ICES, 2012). However, as shown previously by WKLIFE and again 
here, the default “2 over 3” rule frequently moves the SSB away from the initial SSB. By optimis-
ing the catch rule parameters, this behaviour can be avoided, and the stocks stay, on average, 
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where they started, but the optimised parameters are stock-specific. This also worked for the 
higher 𝑘𝑘 stocks, however, the individual replicates still exhibited large SSB oscillations which 
might not be a desired feature of a catch rule. 

In conclusion, it can be said that WKMSYCat34 catch rule 3.2.1, or parts of it, seem to perform 
satisfactorily for low to medium 𝑘𝑘 stocks. For higher 𝑘𝑘 stocks (either short-lived or other fast-
growing species) additional modifications are required, which can cause unwanted effects, and 
even then, the catch rule does not necessarily live up to its expectations in these cases. The opti-
misation procedure can improve the performance of the rule for all stocks, but the parameters 
become stock-specific. 

4.3 Receiver Operating Characteristic (ROC) curves used to 
explore the setting of appropriate reference levels in 
the f and b component of the catch rule 

This section addresses ToRa(iii) “Setting of appropriate reference levels in the f and b component 
of the rules, and the extent to which this could be done with tuning that depends on life-history 
traits and/or the nature of the time-series”. Appropriate reference levels for a range of indicators, 
reference points and reference levels were evaluated using tools developed under the MyDas 
project. The aim of MyDas is to develop and test a range of assessment models and methods to 
establish Maximum Sustainable Yield (MSY), or proxy MSY reference points across the spectrum 
of data-limited stocks. 

To tune a catch rule of the form Cy+1 = Ccurrentr f b, requires selecting time-series for use as indicators 
and reference points for the r and f components. Then to choose multipliers and thresholds to 
combine the components into the catch rule. Applying a generic rule across life-history types 
and fisheries, however, may result in increased risk of stock collapse for some stocks unless the 
rule is tuned to be conservative with a consequent loss of yield. The alternative is to conduct 
MSE on a stock-specific basis to tune rules. This can take considerable time, especially as a variety 
of indicators and reference points can be used. Therefore, a method for screening potential indi-
cators and reference levels was developed using Receiver Operating Characteristic or ROC 
curves (Green and Swets, 1966). An example is provided based on the f component. 

The f component is a proxy for the ratio of current exploitation to FMSY,and normally makes use 
of an indicator based on length samples. For example, Fischer et al. (submitted) used Lmean, the 
mean length of individuals>Lc, where Lc is the length at 50% of modal abundance in the catch, 
relative to the reference point LF=M=(0.75Lc + 0.25L∞). 

In the ICES Technical guidelines (16.4.3.2 ICES reference points for stocks in categories 3 and 4) 
if Lmean/LF=M< 1 then the stock is said to be undergoing overfishing. Indicators and reference 
points, however, are likely to be biased and/or have poor precision due to uncertainty about life-
history parameters, lags between exploitation levels and size distribution, variability in recruit-
ment, and resonant cohort effects that can produce long-term fluctuation (Botsfordet al., 2014; 
Bjørnstadet al., 2004). Therefore, the reference level (i.e. the discrimination threshold) that can 
best identify the system state is unlikely to be Lmean/LF=M but some multiple of it. Risks are also 
asymmetric, since the risk of indicating overfishing when the stock is actually being sustainably 
exploited is not the same as the risk of failing to identify overfishing. A ROC analysis addresses 
these problems by comparing the true positive rate (TPR) the false positive rate (FPR) for various 
reference levels; i.e. threshold settings. 

The ROC curve can be thought of as a plot of power as a function of the Type 1 Error of the 
decision rule. When the probability distributions for both detection and false alarm are known, 
the ROC curve is generated by plotting the cumulative distribution function (area under the 

https://github.com/laurieKell/Mydas/wiki
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probability distribution from to the discrimination threshold) of the detection probability in the 
y-axis versus the cumulative distribution function of the false-alarm probability on the x-axis. 
ROC analysis therefore provides a tool to select the best candidate indicators.  To construct the 
ROC curves, an Operating Model (OM) was conditioned on the life-history characteristics of 
pollack (Pollachius pollachius) and an Observation Error Model (OEM) used to simulate length 
samples (i.e. a sim–sam procedure). This allowed the cumulative true positive and false positive 
rates to be calculated. 

The base case OM conditioned on pollack life-history characteristics assumed the steepness of 
the Beverton and Holt stock–recruitment relationship equal to 0.9, natural mortality was mod-
elled by the Gislason functional form, and the fishery was conducted on spawners (i.e. the selec-
tion pattern was the same as maturity ogive). To evaluate robustness, five sensitivity OM scenar-
ios were developed, along with the Base: base case; namely h=0.7: steepness = 0.7; M: natural 
mortality constant at all ages and equal to M at L∞; Dome: reduced selectivity at older ages; Flat: 
selection pattern the same at for ages; and Sample Size: effective sample size used in the OEM 
of length samples halved. 

Six indicators were simulated; i.e. L95, L25, Lmax5, Pmega, Lmean and Lbar. Where L95 is the 95th percen-
tile of the length distribution, L25 the 25th percentile of the length distribution, Lmax5 the mean 
length of largest 5%, Pmega the proportion of individuals above Lopt+10%, Lmean the mean length of 
individuals >Lc where Lc is length at 50% of modal abundance, and Lbar is mean size. 

To assess stock status, various life-history parameters are used as reference points; i.e.Lmat 
(length-at-maturity), Lopt (2/3L∞) and LF=M (0.75Lc + 0.25L∞). In these examples the reference points 
were not used, instead the appropriate reference levels were estimated from the ROC curves and 
compared to the candidate reference points. 

Figure 4.3.1 shows the base case OM, and Figure 4.3.2 the corresponding simulated indicators. 
In the OM, fishing was initially low then increased to 2.5FMSY, following which a recovery plan 
was implemented in order to reduce F to FMSY. The coloured regions in Figure 4.3.2 indicate ex-
ploitation levels F≤FMSY (green), FMSY<F≤1.5FMSY (yellow), and F>1.5FMSY (red). 

ROC curves and discrimination thresholds for the overfishing phase (yellow to red) are plotted 
in Figures 4.3.3 and 4.3.4. The ROC curves distinguish between the period 80 to 90 when 
FMSY<F≤1.5FMSY) and 91 to 100 when F>1.5FMSY. Figures 4.3.5 and 4.3.6 are the corresponding fig-
ures for the recovery phase; i.e. to distinguish between the period 91 to 100 and 111 to 115 when 
fishing was at FMSY. 

Figures 4.3.3 and 4.3.5 can be used to evaluate the performance of the different indicators (lines) 
and their robustness for each OM scenario (panels). Comparison of lines within a panel allows 
the relative performance of the indicators to be evaluated, and comparison across panel allows 
the robustness of the indicators to uncertainty to be evaluated. For an indicator to be robust, the 
choice of the discrimination threshold should not vary across scenarios. The L95, Lmax5, LF=M and 
Lbar indicators exhibit good performance, with high TPR and low FPR; all scenarios other than 
the flat selection pattern perform well. There is a slight degradation in performance with a re-
duction in sample size. There is some difference between identification of recovery compared to 
overfishing, although relative performance of indicators is similar. 

Figures 4.3.4 and 4.3.6 compare the discrimination thresholds for each indicator (panel) by OM 
scenario. To help in specification of indicators and reference points ideally the discrimination 
threshold should align with a life history parameter. It should be noted, however, that life history 
parameters are not independent, because Pmega is set in the guidelines as a multiple of Lopt, which 
in turn is a multiple of L∞. For the overfishing phase (Figure 4.3.4) the discrimination thresholds 
for Lbar and LF=M approximate to Lmat. For the flat-topped selection pattern scenario, the discrimi-
nation threshold should be decreased, and for constant M and steepness=0.7 increased. For the 
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identification of recovery (Figure 4.3.6) M and steepness are less important for the choice of ref-
erence point than the form of selection pattern. 

For an indicator to be robust the threshold should not vary across scenarios, if they represent 
equally plausible hypotheses. The flat selection pattern shows the biggest divergence from the 
mean value, in practice this scenario could potentially be discounted by collection of more data. 
Other scenarios such as steepness will be difficult to discount, and so indicators should not de-
pend on the assumed value.  Due to the non-independence of reference points and difference in 
reference levels across scenarios, the problem resolves into finding discrimination threshold by 
tuning, where tuning is used to set the threshold at a level that best meets agreed management 
objectives.  The ROC analysis can assist by providing an objective function; i.e. a reward to be 
used in parameter selection using non-linear optimisation. 

Section 4.2 explored the benefits of implementing alternative control rules. Future steps should 
involve an evaluation of the relative value-of-information and the value-of-control. The former 
case involves demonstrating the benefit of obtaining better knowledge and data; i.e. to move a 
stock between categories, and the later involves considering alternative forms of indicators and 
control rules to develop robust advice. ROC curves are related in a direct and natural way to a 
cost/benefit analysis of diagnostic decision making; i.e. they can be used to identify the value of 
control and the value of information. For risks to be managed in a consistent way, given the 
range of uncertainties across the ICES stock categories (see Sections 5), requires OMs to be con-
ditioned on appropriate processes (see Section 1.4). 

 

Figure 4.3.1. Operating model for pollack; all values relative to MSY benchmarks, for recruitment this is the expected 
recruitment at MSY. 
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Figure 4.3.2. Indicators without reference levels. The coloured regions indicate exploitation levels; i.e. green F≤FMSY, yel-
low FMSY<F≤1.5FMSY, red F>1.5FMSY. 
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Figure 4.3.3. Receiver Operating Characteristic (ROC) curves for pollack for the overfishing phase, each panel represents 
a different indicator and curves are for the six scenarios. The black line is the Y=X line provided as a reference since this 
represents a model with no prediction skill (i.e. a coin toss) and the points represent the optimum discrimination where 
TPR*(1-FPR) is maximised. 

 

Figure 4.3.4. Discrimination thresholds for each indicator for the overfishing phase. Each panel represents a different 
indicator, colours are for the six scenarios, and lines are the potential life-history indicators. Pmega is not included as it 
uses proportion and not length. 

 



56 | ICES SCIENTIFIC REPORTS 1:77 | ICES 
 

 

 

Figure 4.3.5. Receiver Operating Characteristic curves for pollack for the recovery phase, each panel represents a differ-
ent indicator and curves are for the six scenarios. The black line is the Y=X line provided as a reference since this repre-
sents a model with no prediction skill (i.e. a coin toss) and the points represent the optimum discrimination where 
TPR*(1-FPR) is maximised. 

 

Figure 4.3.6. Discrimination thresholds for each indicator for the recovery phase. Each panel represents a different indi-
cator, colours are for the six scenarios, and lines are the potential life-history indicators. Pmega is not included as it uses 
proportion and not length. 
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4.4 The use of trends in an index without a reference level 

The use of trends in an index without a reference level (ToR iv) were explored using methods 
developed under the MyDas project. To do this, a Management Strategy Evaluation (MSE) was 
conducted to evaluate an empirical harvest control rule (HCR) based on a trend in an index of 
abundance. 

The Operating Model (OM) was conditioning on turbot life-history characteristics and the HCR 
was based on that used by the Commission for the Conservation of Southern Bluefin Tuna 
(CCSBT). The HCR has several parameters that require tuning (Hillary et al., 2016). When tuning 
an HCR the parameters are found by choosing values that best meet the objectives of asset and 
stakeholders; i.e. optimises the outcomes modelled as a reward function. 

The HCR was modelled as part of a Management Procedure (MP) where catches are increased 
when the trend in an index of abundance is positive, and decreased if the trend is negative, 
namely: 

𝑇𝑇𝑇𝑇𝐶𝐶𝑦𝑦+11 = 𝑇𝑇𝑇𝑇𝐶𝐶𝑦𝑦 × � 1 − 𝑘𝑘1|𝜆𝜆|𝛾𝛾for 𝜆𝜆 < 0
1 − 𝑘𝑘2𝜆𝜆         for 𝜆𝜆 ≥ 0 

where𝜆𝜆 is the slope in the regression of 𝑙𝑙𝑒𝑒𝐼𝐼𝑦𝑦  against year for the most recent n years and 𝑘𝑘1 and 
𝑘𝑘2 are the tuneable parameters and𝛾𝛾actions asymmetry so that decreases in the index do not 
result in the same relative change as an increase. 

When tuning an empirical MP, it is run for a range of control parameters values (i.e. for𝑘𝑘1,𝑘𝑘2and 
𝜆𝜆). These are then chosen based on the performance of the MP; i.e. maximising a reward function 
based on management objectives. It can be difficult, however, to specify a single reward function, 
due to trade-offs between multiple objectives. Deciding which is the “best” MP therefore requires 
an iterative process involving managers, asset holders, stakeholders and scientists. 

Once objectives are agreed the traditional way to find the control parameters is to perform a grid 
search; i.e. an exhaustive search through a manually specified set of control parameters. Even for 
a limited number of control parameters this can take a substantial amount of computing time. 
Tuning was performed using random search where control parameters are selected from all the 
potential combinations at random. Random search has proven to yield better results in compar-
ison to grid search. Drawbacks of random search are that it may yield high variance during com-
puting and since the selection of parameters is completely random no intelligence is used to 
sample the combinations and so luck plays its part. 

Trade-offs between multiple objectives were evaluated by identifying pareto-optimal solutions 
(Mishra et al., 2002) using support vector regression (SVR, Smola and Schölkopf, 2004). The best 
HCR parameters were then identified using a Genetic Algorithm (GA, Whitley, 1994). Both SVR 
and GAs are machine learning techniques. 

In optimisation studies with multi-objectives the focus is usually on finding a global optimum; 
i.e. the global Pareto-optimal frontier, representing the best possible objective values (Deb and 
Gupta, 2005). However, in fisheries there is usually high uncertainty about resource dynamics 
and solutions are therefore sensitive to the assumptions and environmental variability. There-
fore, rather than finding global solution it is more important to find robust solutions which are 
insensitive to uncertainty about processes. 

Figure 4.4.1 shows the trade-off between yield (Yield:MSY) and safety (the minimum expected 
recruitment relative to𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚𝑡𝑡𝑖𝑖𝑚𝑚). Individual MSE (blue) results are highly variable due to variablity 
in recruitment and the index of abundance used in the MP. The pareto frontier derived from SVR 
are shown (red) and an example of an optimal solution highlighted (large dot). 

https://github.com/laurieKell/Mydas/wiki
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Figure 4.4.2 shows the calibration curves, obtained using the GA for the control parameters 
𝑘𝑘1and 𝑘𝑘2. This was obtained from the pareto frontiers by finding the values that corresponded 
to the optimal solution. If the management objectives are agreed the corresponding control value 
can be read off from the Y-axes. The scatter of points reflects that the Pareto frontiers are hyper-
dimensional surfaces projected into two dimensions. 

Once the control parameters that best met the management objectives were found, the MSE was 
run for the control parameters for two scenarios corresponding to the index of abundance CV 
(10%, 20% and 30%) and the number of years (3, 5, and 7 column) used in the regression to esti-
mate the trend in the index; the summary statistics are shown in Figure 4.4.3. 

An objective of the approach was to develop a risk-based framework for conducting MSE, by 
allowing asset and stakeholders to more easily to evaluate the trade-offs between management 
objectives and the impact of uncertainty when conducting MSE. The framework also provides 
an efficient way of tuning Management Procedures so that case specific management strategies 
can more easily be developed. However, since random search was used the outcomes partly 
depend on chance, the next step is to add intelligence by using machine learning to choose the 
control parameters. 

The approached used demonstrates a potential stepwise procedure for conducting MSE namely: 

• First a single MSE is run using random search and the Pareto frontiers found. 
• Objectives can be elicited from asset and stakeholders, and the trade-offs between them 

evaluated. 
• Using the Pareto frontiers, the control parameters can be derived by calibration. 
• Next a set of robustness trials, can be developed for an agreed set of OMs that reflect the 

main uncertainties and the corresponding Pareto frontiers derived. 
• A final set of control parameters can then be agreed following dialogue with asset and 

stakeholders. 



ICES | WKLIFE IX2019 | 59 
 

 

 

Figure 4.4.1. The trade-off between yield (Yield:MSY) and the average SSB relative to 𝑺𝑺𝑺𝑺𝑩𝑩𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 are shown for the indi-
vidual management strategy evaluations (blue) along with the pareto frontier (red). 

 

Figure 4.4.2. Calibration regression values for the control parameters K1 and K2 for the pareto frontier for 𝑩𝑩𝒍𝒍𝒗𝒗𝒎𝒎, large 
point is for safety~0.7. 
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Figure 4.4.3. Summary statistics from MSE. 
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4.5 Conclusions 

This work builds on the evaluation of the catch rule presented in ICES (2018) to deal with ToRs 
a(i), a(ii) and a(iv), using the same MSE framework with some adjustments to the operating mod-
els, and makes use of Receiver Operating Characteristic (ROC) curves to explore ToR a(iii). 

Weighting of the individual components of the catch rule (ToRa(i)) was achieved by adding an 
exponent to each of the individual component (r, f and b). The time-lag properties of the r com-
ponent (ToRa(ii)) was explored by varying the number of years used for the r component (both 
the denominator and numerator), and the most recent year used in the r component. Further-
more, the number of years used for the current advised catch, to which the r, f and b components 
are applied, was also varied. This gave a total of seven parameters to tune the catch rule to 
achieve MSY; the objective function minimises the negative sum of squares between SSB and 
BMSY. A genetic algorithm (R package GA) was used to explore the 7-dimensional parameter 
space in order to find the combination of parameters that maximises the reward function (i.e. 
minimises the objective function). The main conclusions were: 

1. The performance of the catch rule in terms of achieving MSY can be substantially im-
proved on a case-by-case basis, both by weighting of the different components of the 
rule, and through changing the lags in the indices used in the rule, and in setting the 
catch. Further work should focus on: 
a) Exploring alternative reward functions that better capture management objectives 

and the trade-offs between them. Thus far, the genetic algorithms only dealt with 
achieving MSY, by minimising differences between SSB and BMSY, which resulted in 
better yields but also an increase in interannual catch variability and risk. Objectives 
could include a low probability of falling below Blim and F varying randomly around 
FMSY with no apparent trend. 

b) Exploration of rules with components that take into account the dynamics and life-
histories of stocks in order to maintain generality while improving performance. 

2. In cases where only the r component is used i.e. without the biomass safeguard and ref-
erence level, the rule could be improved with additional tuning (in this case, varying the 
lag components of the rule), but further work is needed in terms of achieving multiple 
objectives and maintaining generality (as in 1 above). 

3. The additional simulations confirmed (on the basis of operating models that included a 
wider range of catch histories than presented for ICES (2018)) that the catch rule should 
not be used for k>0.32, despite further tuning. Further work is needed to explore alterna-
tive rules for these cases. In the meantime, the current approach (“2 over 3” rule with the 
PA buffer and uncertainty cap) should be used for these cases, except for short-lived spe-
cies (see Section 2: Short-lived species). 

4. To ensure robustness, alternative operating models should be explored, e.g. variation in 
selection pattern relative to age-at-maturity. 

4.6 Future directions 

WKMSYCat34 catch rule 3.2.1 in its current form has been extensively tested during previous 
WKLIFE workshops. The work presented during WKLIFE IX showed that the performance of 
the rule can be improved on a case-specific basis. The simulations so far, however, were based 
on a selected set of life-history parameters and the operating models can be thought of as a ref-
erence set. In general, the catch rule seems to perform satisfactorily for stocks with low to me-
dium 𝑘𝑘 (𝑘𝑘 ≤ 0.32). Further research is required to understand the reasons for this behaviour and 
why higher 𝑘𝑘 stocks (𝑘𝑘 > 0.32) perform poorly with the catch rule. This will require investigating 
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the characteristics of the operating models. Importantly, future work should focus on stocks for 
which the current catch rule did not work (eight stocks in total with 𝑘𝑘 > 0.32) and evaluation of 
forms of rules based on trends, without reference levels that take into account resource dynamics 
(e.g. Botsford et al., 2014). 

When tuning catch rules, the options are evaluated in terms of summary statistics, e.g. maximis-
ing yield while maintaining acceptable risk levels and moving the stocks towards BMSY, or keep-
ing F fluctuating around FMSY with no trend. Such evaluations require the agreement of manage-
ment objectives from which a reward function can be derived and used in automated approaches 
based on Machine Learning or genetic algorithms. The key management objectives involve, for 
example, trade-offs between risk, interannual catch variability and yield, while aiming to fish 
around FMSY. 

The results and lessons learnt from the simulations so far show that the performance of simple 
catch rules depends on the operating models used to evaluate them. The operating models have 
been conditioned on a set of fixed parameters without considering uncertainty in processes, for 
example related to the form of compensation; Individual Based Models (c.f. FLIBM in Section 1.4 
of this report, PROBYFISH) could be used to condition OMs. Therefore, future operating models 
should explore the option of including variability in life-history information and how this affects 
the operating model characteristics (such as reference levels, productivity, and the time-series of 
observable states) and ultimately the performance of the catch rules. 

The analysis into the timing of data used (in particular, the information from the biomass index) 
to scale catch showed that the current formulation of the catch rule might be too restrictive. Al-
ternative formulations allowing wider options, such as asymmetric gain terms depending on the 
direction of the change (up/down) or using entirely different metrics from the biomass index to 
quantify changes in the stock which can be converted into corresponding changes in catch. 

Previously stated aspects to consider for data-limited catch rules should be further investigated 
as a next step, and these include: 

a) focusing on the nature of time-series and developing diagnostics that could help deter-
mine the rules that would work well under alternative characterisations of the nature of 
the time-series, and aspects such as quality of data used by the rules (and hence ability 
to detect signals), ability to set appropriate reference points, etc. 

b) Linking life-history traits and fishery characteristics (e.g. including fishery selectivity) to 
the nature of resulting time-series. 

c) Develop guidance for use of catch rules by linking the two previous points. 
d) Avoiding the shot-gun approach to simulation testinge.g. by making more extensive use 

of sensitivity (elasticity) analysis to highlight factors that are most important in determi-
ning the time-series behaviour of stocks. 

Finally, in practice, the application of simple empirical catch rule is simpler and less time con-
suming compared to model-based management procedures, particularly if operational effort is 
considered. Therefore, in the longterm, it might be useful to consider performing comparisons 
of the performance of catch rules under investigation with more complex model-based manage-
ment procedures that are used in a data-limited context as well as in more data-moderate or rich 
situations. Conversely, in data-limited situations, stocks are usually simulated based on limited 
number of parameters. Lessons could be learned by using data or assessment results from data-
rich stocks and their assessments. 
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5 Stochastic surplus production models 

This section of the report focuses on the ToR b) and the revision of the draft ICES technical guid-
ance on advice rules for stocks in Categories 3 and 4 (Annex 3).ICES Category 3 stocks can be 
managed using the official advice rules based on the stochastic production model in continuous 
time (SPiCT; Pedersen and Berg, 2017; Sections 3.1.1 and 3.1.2 in ICES, 2017). These advice rules 
require the acceptance of a SPiCT assessment. 

5.1 Introduction 

The stochastic production model in continuous time (SPiCT; Pedersen and Berg, 2017) is one of 
the official assessment methods for stocks in ICES category 3 stocks (hereafter referred to as data-
limited stocks; ICES, 2018a). SPiCT is a state–space re-parameterized version of the Pella-Tom-
linson surplus production model (Pella and Tomlinson, 1969); i.e. quantifies observation and 
process errors and estimates stock status and reference levels with associated confidence inter-
vals. 

The Workshop on the Development of the ICES approach to providing MSY advice for Category 
3 and 4 stocks (Section 3.1, WKMSYCat34; ICES, 2017) suggested equations 1 and 2 for manage-
ment advice based on SPiCT assessments (“median rule”): 

Equation 1 

𝑻𝑻𝑻𝑻𝑻𝑻𝒚𝒚+𝟏𝟏 = 𝒎𝒎𝒎𝒎𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗�𝑻𝑻𝒚𝒚+𝟏𝟏� 

Equation 2 

𝐹𝐹𝑦𝑦+1 = 𝐹𝐹𝑦𝑦
𝑚𝑚𝑖𝑖𝑒𝑒 �1,𝑚𝑚𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒𝑒𝑒 � 𝐵𝐵𝑦𝑦+1

𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐
��

𝑚𝑚𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒𝑒𝑒 � 𝐹𝐹𝑦𝑦
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

�
 

By means of simulation testing, WKLIFE VII and VIII found that the median rule does not meet 
the precautionary thresholds in a few scenarios, and thus introduced two modifications to the 
median rule that allow to account for the assessment uncertainty (ICES, 2018b; ICES, 2018c): (i) 
the precautionary rule (MSY-PA) allows to adjust the TAC dependent on the predicted risk 
(P(Bpred>Blim)); and (ii) the percentilerule (MSY-F) uses certain percentiles other than the median 
for the distributions Cpred, F/FMSY, and B/BMSY. Simulations confirmed that these rules are more 
precautionary than the median rule (ICES, 2018c). However, the performance of the MSY-PA 
rule fully depends on the definition of Blim. Within ICES, this biomass limit reference level is often 
defined as the break point of the hockey-stick stock–recruitment relationship or as 70% of the 
virgin biomass for data-limited situations, respectively (ICES, 2017). These definitions of Blim do 
not guarantee that the limit reference level is more precautionary than the target reference level 
(BMSY); i.e. in theory, Blim could be larger than BMSY (Mesnil and Rochet, 2010). A universal defini-
tion of Blim is needed which ensures that the limit reference levels are more precautionary than 
the target reference levels. By contrast, the percentile rule does not require any definition of Blim 
but uses the distributions of the target reference levels to scale the TAC. The MSY-percentilerule 
is defined as: 

Equation 3 

𝐶𝐶𝑦𝑦+1 = 𝑒𝑒𝐶𝐶(𝑝𝑝) 

Equation 4 
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𝐹𝐹𝑦𝑦+1 = 𝐹𝐹𝑦𝑦
𝑚𝑚𝑖𝑖𝑒𝑒�1, 𝑒𝑒𝐵𝐵(𝑝𝑝)�
𝑒𝑒𝐹𝐹(100 − 𝑝𝑝)  

where the advised catch (C) for forecast year y + 1 corresponds to the predicted catch given the 
fishing mortality trajectory in the forecast year, and where 𝐹𝐹𝑦𝑦 and 𝐹𝐹𝑦𝑦+1are the fishing mortalities 
at the beginning and the end of the forecast year, respectively. Components are defined as fol-
lows: 

Table 5.1.1. Description of the different components of equations 2 and 3. 

where the different quantities can be depicted on a timeline as follows: 

 

Figure 5.1.1. A timeline defining the continuous time quantities of SPiCT in relation to the discrete time of assessment 
and advice years in fisheries management. The small vertical bars represent the dtEulertime-steps (here: 16 per year). The 
green area depicts the projection period between the last observation (here: index observation) and the start of the 
management period. The blue area depicts the period for which the TAC is going to be calculated. 

In this report, we describe the work performed in preparation for and during WKLIFE IX, which 
aimed at providing guidelines on the use of SPiCT for stock assessment and fisheries manage-
ment. Due to above mentioned points regarding the MSY-PA rule, we focus the MSE simulations 
on the MSY percentilerule. 

Components Definition and purpose 

qC Function that takes a percentile and returns the corresponding predicted catch 𝑻𝑻𝒚𝒚+𝟏𝟏 given the fish-
ing mortality trajectory during the forecast year y+1; i.e.𝒒𝒒𝑻𝑻 = 𝜱𝜱�𝑻𝑻𝒑𝒑𝒗𝒗𝒎𝒎𝒎𝒎∨𝑭𝑭=𝑭𝑭𝒚𝒚...𝑭𝑭𝒚𝒚+𝟏𝟏�

−𝟏𝟏  

qB Function that takes a percentile and returns the corresponding predicted 
𝑩𝑩𝒚𝒚+𝟏𝟏

𝑴𝑴𝑺𝑺𝑴𝑴𝑩𝑩𝒕𝒕𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗
 at the beginning 

of the forecast year and 𝑴𝑴𝑺𝑺𝑴𝑴𝑩𝑩𝒕𝒕𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗 = 𝑩𝑩𝑴𝑴𝑺𝑺𝑴𝑴
𝟐𝟐

; i.e.𝒒𝒒𝑩𝑩 = 𝜱𝜱
�𝟐𝟐

𝑩𝑩𝒚𝒚+𝟏𝟏
𝑩𝑩𝑴𝑴𝑺𝑺𝑴𝑴

�
−𝟏𝟏  

qF Function that takes a percentile and returns the corresponding predicted 
𝑭𝑭𝒚𝒚
𝑭𝑭𝑴𝑴𝑺𝑺𝑴𝑴

 at the beginning of 

the forecast year y+1; i.e.𝒒𝒒𝑭𝑭 = 𝜱𝜱
�

𝑭𝑭𝒚𝒚
𝑭𝑭𝑴𝑴𝑺𝑺𝑴𝑴

�
−𝟏𝟏  

p Specific percentile of the respective distributions, e.g. 35 (this report). 
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5.2 Guidelines for the use of the stochastic production 
model in continuous time (SPiCT) 

Any advice rule for the management of an ICES Category 3 stock using SPiCT requires the ac-
ceptance of a SPiCT assessment. A condensed summary with specific guidelines for the use of 
SPiCT has been developed within the frame of WKDLSSLS (ICES, 2019) and WKLIFE IX. In par-
ticular, the guidelines document contains: 

• the main assumptions and data requirements of SPiCT, 
• a checklist for the acceptance of a SPiCT assessment, 
• options for assessment tuning, and 
• harvest control rules for SPiCT assessments. 

Target audience of this document are stock assessors and members of assessment groups who 
apply SPiCT and are responsible for deciding on accepting or rejecting a SPiCT assessment. The 
summary is a living document and may as such be subject to future changes. The document is 
part of the SPiCT package (vignette: “spict_guidelines”). It can be accessed and downloaded 
here (https://github.com/DTUAqua/spict/vignettes/spict_guidelines.pdf). 

5.3 Management strategy evaluation 

The relative and absolute performance of the different advice rules were evaluated within an 
MSE framework (Smith, 1994; Punt el al., 2016). The details of which are explained in the follow-
ing sections. 

5.3.1 Methods 

5.3.1.1 Operating model 
The age-structured population model with yearly time-steps from the DLMtool package was 
used as the underlying operating model within the MSE framework (Carruthers and Hordyk, 
2018a). This operating model differs substantially from the tested assessment model (biomass 
dynamic model without age structure). More details about the model assumptions and govern-
ing equations can be found in the supporting material of Carruthers and Hordyk (2018b). 

5.3.1.2 Stocks 
The MSE simulations were parameterised according to three stocks with various life-history 
strategies: (i) anchovy in Biscay-Iberia representing a fast-growing species, (ii) haddock in the 
Celtic Seas representing intermediate growing species, and (iii) widely distributed ling repre-
senting a slow growing species. The biological parameters were based on the data-limited stocks 
included in Jardim et al. (2015), however, most parameters were updated based on the most re-
cent analyses and/or expert knowledge. 
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Table 5.3.1.2.1. Updated population mean biological parameters for the three stocks used in the MSE simulations. The 
parameter labels correspond to the nomenclature of the DLMtool package (Carruthers and Hordyk, 2019). 

Parameter Anchovy Haddock Ling 

Max age 6 9 20 

Linf 18.69 45.5 160 

K 0.89 0.428 0.09 

t0 -0.02 -0.092 -0.1 

M 1.2, 0.8, 1.2, 1.2, 
1.2, 1.2 

2.44, 0.92, 0.62, 0.49, 0.42, 
0.38, 0.35, 0.33, 0.33 

2.95, 1.12, 0.64, 0.44, 0.33, 0.26, 0.22, 0.19, 0.17, 
0.15, 0.14, 0.13, 0.12, 0.11, 0.11, 0.10, 0.10, 0.09, 

0.09, 0.09 

a 3.13e-06 0.0065 0.0033 

b 3.278 3.108 3.1311 

h 0.62 0.74 0.79 

L50 12 31.5 75 

L50_95 0.3 3 25 

L5 0.3 1 50 

LFS 12 40 135 

It is important to note that the parameters in Table 5.3.1.2.1 represent population mean values. 
The operating model resamples all biological parameters from uniform distributions. If no in-
formative evidence about the variability of these parameters was available, a default range of 
±5% around the population mean values was assumed to define the uniform distributions. In 
other words, due to the parameter ranges, the operating model simulates “anchovy-like”, “had-
dock-like”, and “ling-like” stocks rather than specific stocks. Among the three stocks, not only 
the life-history strategies vary, but also the relation of the selectivity to the maturity ogive (Figure 
5.3.1.2.1). 
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Figure 5.3.1.2.1. Selectivity and maturity as a function of length for the three stocks. 

For all stocks, the Beverton and Holt stock–recruitment-relationship (Beverton and Holt, 1957) 
was assumed. The steepness parameters (h) were taken from Myers et al. (1999). 
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Figure 5.3.1.2.2. Production curves for the three stocks calculated from the operating model. 

5.3.1.3 Scenarios 
For the three stocks, we tested the performance of the different HCRs under perfect conditions 
(long time-series of 40 years with high contrast and low observation and process errors) and 
under data poor conditions (short time-series of 20 years with low contrast and high observation 
and process errors; S1–S2 and S5–S8 in Table 5.3.1.3.1, respectively). Additionally, we evaluated 
the performance of the rules when the haddock-like stocks are underexploited (S3 and S4). Sce-
narios S9 and S10 are additional, rather unrealistic scenarios that allow to test (i) the performance 
of the rules when approaching the limits of the data requirements for SPiCT and (ii) the perfor-
mance of the tighter Schaefer-like prior when the underlying stock has a right skewed produc-
tion curve (Figure 5.3.1.3.2), respectively. 
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Table 5.3.1.3.1. Scenario settings. The parameter ranges represent the lower and upper limits of the uniform distribu-
tions. The F pattern corresponds to the effort patterns during the historic years depicted in Figure 5.  For scenario 10, K 
is lowered to 0.1 to force a right-skewed production curve (Figure 5.3.1.3.1). 

Scenario 
number 

Species SigmaR SigmaC SigmaI Depletion 
level 

Number 
of years 

Autocorre-
lation in SR 

F pat-
tern 

S1 Haddock [0.01,0.05] [0.05,0.05] [0.05,0.05] [0.03,0.3] 40 [0.1,0.3] incr 

S2 Haddock [0.4,0.6] [0.25,0.25] [0.25,0.25] [0.03,0.3] 20 [0.1,0.3] incr 

S3 Haddock [0.01,0.05] [0.05,0.05] [0.05,0.05] [0.4,0.7] 40 [0.1,0.3] decr 

S4 Haddock [0.4,0.6] [0.25,0.25] [0.25,0.25] [0.4,0.7] 20 [0.1,0.3] decr 

S5 Anchovy [0.01,0.05] [0.05,0.05] [0.05,0.05] [0.03,0.3] 40 [0.1,0.3] incr 

S6 Anchovy [0.4,0.6] [0.25,0.25] [0.25,0.25] [0.03,0.3] 20 [0.1,0.3] incr 

S7 Ling [0.01,0.05] [0.05,0.05] [0.05,0.05] [0.03,0.3] 40 [0.1,0.3] incr 

S8 Ling [0.4,0.6] [0.25,0.25] [0.25,0.25] [0.03,0.3] 20 [0.1,0.3] incr 

S9 Haddock [0.6,0.8] [0.4,0.4] [0.8,0.8] [0.03,0.3] 20 [0.1,0.3] incr 

S10 Haddock [0.4,0.6] [0.25,0.25] [0.25,0.25] [0.03,0.3] 20 [0.1,0.3] incr 

Additional MSE settings were held constant across all scenarios: 

• Projection years = 20; 
• Number of simulations per scenario = 200; 
• Annual assessment and TAC calculation; 
• Intermediate (assessment) year between last observations and advice year (c.f. Figure 

5.3.1.2.1); 
• No observation biases; 
• No implementation errors/biases. 

 

Figure 5.3.1.3.1. Production curve for scenario 10 calculated from the operating model. 

Figure 5.3.1.3.2 depicts the effort time-series in the historic years used for simulation. The vertical 
dashed lines represent the part of the time-series available to the assessment models in the data 
poor scenarios (S2,S4,S6,S8,S9,S10). 
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Figure 5.3.1.3.2. Effort during the 40 historic years. Vertical lines show the start of the historic effort time-series available 
for the scenarios S2,S4,S6,S8,S9 andS10 that use short time-series of 20 years. 

5.3.1.4 Harvest control rules (HCRs) 
For each scenario, we compared the performance of 19 different harvest control rules (HCRs), 
which comprise the optimal harvesting strategy of the operating model, various variations of 
index-trend rules; i.e. 1/2 and 2/3 rules, and different MSY percentilerules based on a SPiCT as-
sessment. The 2/3 rule is based on the trend in the survey index by dividing the average of the 
last two observations in the index by the average of the preceding three observations. Compara-
tively, the 1/2 rule is based on the last observation in the index divided by the average of the 
preceding two observations. These index-trend rules are one of the factors (“r”) of the advice 
rule 3.2.2 in ICES (2017). The factors “f” and “b” of this rule were not tested here. However, the 
index-trend rules were tested with and without a ±20% uncertainty cap, which limits the change 
in the advice between 80% and 120% of the TAC in the preceding year. Furthermore, we tested 
the addition of a precautionary buffer, which lowers the TAC by 20% every three years (ICES, 
2017). The types of HCRs tested comprise (with labels in brackets): 

• FMSY of operating model (ref) 
• 2/3 rules 

• standard (2/3) 
• with uncertainty cap (2/3_uC) 
• with uncertainty cap and precautionary buffer (0.2 reduction every 3 years) 

(2/3_uC_PA3) 
• 1/ 2 rules 

• standard (1/2) 
• with uncertainty cap (1/2_uC) 
• with uncertainty cap and precautionary buffer (0.2 reduction every 3 years) 

(1/2_uC_PA3) 
• SPiCT percentile rules (50, 45, 35, 25 percentiles) 

• default settings (MSY50, MSY45, MSY35, MSY25) 
• default settings plus tighter prior on n 

• sdn = 0.5 (MSY50-S05, MSY45-S05, MSY35-S05, MSY25-S05) 
• sdn = 0.1 (MSY50-S01, MSY45-S01, MSY35-S01, MSY25-S01) 

All SPiCT based HCRs assume an Euler discretization time-step of 1/16 and can be calculated 
using the get.TAC() function within the SPiCT package. 
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5.3.1.5 Performance metrics 
The performance of the advice rules was compared among rules and between scenarios based 
on following performance metrics: 

• Risk 1: average probability that SSB is below Blim where the average (of the annual prob-
abilities) is taken across x number of years (ICES, 2013); 

• Mean relative yield; 
• Median inter-annual variability of yield (MIAVY); 
• Proportion of converged simulations. 

Where the true Blim for performance evaluation is defined as 30% of the true BMSY and the mean 
relative yield refers to the yield relative to the yield obtained by fishing according to the true FMSY 
(from the operating model) in the last five years (Carruthers and Hordyk, 2019). Simulations 
where any SPiCT based HCR did not converge, were excluded for the calculation of the perfor-
mance metrics for all HCRs (including index-trend based rules). All metrics are evaluated over 
the whole projection time-series (years 1–20). 

5.3.2 Results 

The results indicate that the absolute performance of the HCRs depends on the scenario and thus 
on the life-history parameters, data quality and quantity, process and observation errors, and the 
fishing effort pattern. Overall, the MSY percentilerules show a good performance with a high 
relative yield, a low risk level, and low median interannual variability of yield (Figures 5.3.2.1–
5.3.2.3). In contrast, the 2/3 and 1/2 rules show low average relative yield levels, higher risk levels, 
and higher variabilities of yield (Figures 5.3.2.1–5.3.2.3). The results indicate that overall the 
tested percentile rules outperform the tested 2/3 and 1/2 rules. 

 

Figure 5.3.2.1. Trade-off of relative yield, risk, and MIAVY for scenarios 1–4. Vertical line represents the reference level 
of a 5% risk. Lines connecting symbols represent HCRs of a similar type, e.g. only differing in the percentile. 
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Across all scenarios the percentilerules are more precautionary (lower risk) than the median rule. 
The difference in risk depends on the percentile. While the difference in risk between the median 
rule and the MSY-45 rule can be substantial (e.g. eight units for S4), the loss in relative yield with 
the 45th percentile is minor (highest for ling, see Figure 5.3.2.3). For the anchovy-like stocks, the 
relative yield of MSY-45 is even slightly larger than of the median rule (Figure 5.3.2.2). On the 
other hand, the difference in relative yield between the 25th and 35th percentile rule outweighs 
the difference in risk between these rules. These findings indicate that there might be an optimal 
percentile between the 25th and 45th percentile. The tested 35th percentile shows high relative 
yield and is below the reference risk level of 5% for all main scenarios (S1–S8). For most scenarios, 
higher percentiles than 35th show higher levels of risk while pertaining same levels of relative 
yield, while lower percentiles show a decrease in yield with little change in risk. The 35th per-
centile rule is thus the best performing percentilerule of all tested rules. 

 

Figure 5.3.2.2. Trade-off of relative yield, risk, and MIAVY for scenario 5 and 6. Vertical line represents the reference level 
of a 5% risk. Lines connecting symbols represent HCRs of a similar type, e.g. only differing in the percentile. 

Across all scenarios, the SPiCT HCRs with a tighter prior on the shape of the production curve 
(parameter “n”) are more precautionary than with default priors. Interestingly, even for scenario 
10 with a right-skewed production curve, the Schaefer like prior is more precautionary. 

 

Figure 5.3.2.3. Trade-off of relative yield, risk, and MIAVY for scenarios 7 and 8. Vertical line represents the reference 
level of a 5% risk. Lines connecting symbols represent HCRs of a similar type, e.g. only differing in the percentile. 
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The scenarios with the shorter time-series reveal that the 1/2 rule with uncertainty cap has a 
higher risk and lower yield than without the uncertainty cap (Figures 5.3.2.1–5.3.2.3). For had-
dock and ling-like stocks the 2/3 rule outperforms the 1/2 rule (Figures 5.3.2.1 and 5.3.2.3), while 
for the anchovy-like stock, the 1/2 rule outperforms the 2/3 rule (Figure 5.3.2.2). These finding 
confirm the results of the WKDLSSLS (ICES, 2019). 

 

Figure 5.3.2.4. Trade-off of relative yield, risk, and MIAVY for scenarios 9 and 10. Vertical dashed line represents the 
reference level of a 5% risk. The vertical dotted line represents the risk level of the optimal HCR. Lines connecting symbols 
represent HCRs of a similar type, e.g. only differing in the percentile. 

The additional scenario S9 shows that high observation errors of a CV of 0.4 and 0.8 for catch 
and index observations, respectively, a high process error of a CV of 0.6–0.8, together with a short 
time-series (20 years) decreases the convergence rate (Table 5.3.2.1), but converged simulations 
still show a good performance with low risk levels (Figure 5.3.2.4). Scenario S10 with a manually 
changed growth coefficient (K=0.1) shows large differences to the comparative scenario S2 (Fig-
ure 5.3.2.4 vs 5.3.2.1). The risk for all HCRs is much higher for S10 than for S2, so that even the 
35th percentile rule is not below the reference risk level of 5%. However, it is important to note 
that also the optimal harvest strategy informed by operating model (“ref”) is above 5% and MSY-
35 has a lower risk than the reference HCR (Figure 5.3.2.4). 
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Table 5.3.2.1. Percentage of non-converged simulations for each harvest control rule (HCR) and scenario. A simulation 
was categorised as non-converged if at least one assessment in the 20 years projection period did not converge. 

HCR S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

MSY50 14.5 37 8.5 29 11 30 1.5 23 67 33 

MSY45 10 42 7 28 11 28.5 5.5 33 69.5 35 

MSY35 10.5 33 6.5 23 6.5 18.5 5.5 27.5 64 31.5 

MSY25 8 27 7 16.5 7.5 14 5.5 28 59.5 30.5 

MSY50-S05 4 25.5 8 16.5 10 24.5 2 5.5 62.5 17 

MSY45-S05 4.5 24 5 12 9 20 3 12.5 59.5 22 

MSY35-S05 2 18 4.5 10 7.5 11 3.5 9.5 57.5 18 

MSY25-S05 2.5 11.5 2 3 6 4 3.5 10.5 51.5 12 

MSY50-S01 2.5 22.5 3 11 6.5 21.5 1.5 1 63.5 12.5 

MSY45-S01 5 22 2 11 5 22 1 9 61 18 

MSY35-S01 3.5 14.5 3.5 7.5 4 9.5 3.5 7.5 47.5 13 

MSY25-S01 2.5 10 1.5 3 7 3 2.5 7 49 10 

Table 5.3.2.1 shows the percentage of simulations, where SPiCT failed to converge in at least one 
year of the 20 projection years. The number of non-converged simulations is higher for the data-
poor scenarios in comparison to respective data moderate scenarios (c.f. e.g. S2 and S1) and for 
anchovy and haddock-like stock in comparison to ling stocks (Table 5.3.2.1). Overall, the number 
of iterations to convergence can be increased with a tighter prior on the shape of the production 
curve by up to a factor of 2. Increasing the observation and process errors to very high levels (S9) 
shows high numbers of non-converged simulations of up to 70%, which can be decreased with 
a tighter prior on n to 63%. The numbers for the stocks with a right-skewed production curve 
(S10) are similar to comparative scenario S2. 

5.3.3 Conclusion 

Within the context of WKLIFE IX, guidelines for the application of SPiCT for stock assessment 
and management have been developed. These guidelines offer specific criteria for the acceptance 
of a SPiCT assessment, tuning of assessments, as well as options for the estimation of the TAC. 
The guidelines are available as a living document maintained by the developers of SPiCT and 
part of the R package (Mildenberger et al., 2019). 

Furthermore, stochastic harvest control rules introduced and tested in WKLIFE VII and WKLIFE 
VIII, were further tested. By considering any percentilelarger than the median for the distribu-
tion of F/FMSY and smaller than the median for the distribution of B/BMSY and Cpred, the percen-
tilerules allow to account for the assessment uncertainty. While the trade-off between relative 
yield and risk aversion is dependent on the specific percentiles, the results indicate that the 35th 
percentile rule gives a high yield while meeting the risk aversion levels across all main scenarios. 
In theory, with increasing time-series lengths and decreasing observation error, the estimated 
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catch with the MSY-35th percentile rule approximates the median rule suggested by WKM-
SYCat34 while being more precautionary. The MSY-35 rule is defined as: 

Equation 5 

𝐶𝐶𝑦𝑦+1 = 𝑒𝑒𝐶𝐶(35) 

Equation 6 

𝐹𝐹𝑦𝑦+1 = 𝐹𝐹𝑦𝑦
𝑚𝑚𝑖𝑖𝑒𝑒�1, 𝑒𝑒𝐵𝐵(35)�

𝑒𝑒𝐹𝐹(65)  

where the components are explained in Table 5.1.1. Different options can be explored to stabilise 
SPiCT for data with low contrast or high observation errors. SPiCT allows the use of prior distri-
butions, for example on the shape of the production curve or the initial depletion level, which 
can help stabilise the optimisation procedure. However, using priors with lower standard devi-
ations affects the results (confidence intervals and parameter estimates). The SPiCT developers 
emphasise that stock-specific MSEs should be used for the comparison of precautionary levels 
of different advice rules. 

Caveats 

All results are subject to the assumptions of the operating model, which is in this case an age-
structured population model with a yearly time-step. 

The effect of a tighter Schaefer-like prior should be evaluated with a stock that has an even more 
right skewed production curve (c.f. Figure 5.3.1.3.2). 

The performance of the SPiCT-based rules might be better, when correcting the survey index by 
the exploitable part of the stock. In the results presented here, the total stock biomass is used. 
Furthermore, instead of extrapolating the F process in the assessment year, the catch should be 
set to last year’s advice (Cy = TACy-1). 

The performance of the index-trend based rules might in theory be slightly better if the other 
factors of the catch rule 3.2.2 are considered (“f” and “b”; ICES, 2017). In practice, however, these 
factors are rarely used for management advice. 

5.4 Future work 

The SPiCT-based advice rules should be implemented within another MSE framework. This 
would allow to compare the here presented results with an operating model based on different 
assumptions. The introduced individual-based operating model (FLIBM) within the FLR frame-
work poses a promising candidate for such simulation testing. This would also allow to simulate 
stocks with a finer temporal resolution such as quarterly or monthly time-steps. The impact of 
additional aspects and settings of the operating model, like fleet selectivity, implementation er-
ror, hyperstability/hyperdepletion of indices, the use of biannual indices, etc. should be explored. 
In particular, the effect of the relationship of selectivity to maturity functions on the productivity 
of the stocks, estimated reference levels and thus the performance of the HCRs should be ex-
plored further. 

The relationship between the performance of SPiCT-based advice rules and tightening the prior 
on the shape parameter of the production curve (’n’) has to be evaluated in more detail and with 
more right skewed production curves, which might be hard to find in nature despite for whales. 
As discussed earlier, this parameter is hard to estimate, but can be fixed or informed by a prior 
in data-limited cases. However, the prior affects the size of the confidence intervals of predicted 
stock status and thus the advice rules. 
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The results should be compared to fractile rules which assume the catch in the assess-
ment year equal to the TAC estimated in the previous year, instead of extrapolating the 
F process. Furthermore, the other components (f and b) of the index-trend rules should 
be tested. 
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6 Combined modelling of both data-rich and data-
limited stocks 

6.1 Introduction 

This section focuses on the ToR d); namely, a review and investigation of modelling approaches 
that incorporate both data-rich and data-limited stocks within mixed fisheries/multispecies 
frameworks and their ability to provide sea area-based stock assessments and catch advice.  Sea 
area is used in the sense that a mixed fisheries approach is being developed by ICES separately 
by sea area: e.g. for the North Sea and Celtic Sea. 

Currently within ICES, the focus is very much on the use of single species assessments to provide 
advice on a stock by stock basis. Three additional products, a) ecosystem overviews, b) multi-
species advice, and c) mixed fisheries advice, are generated, but are not produced for all ecosys-
tems, and their take up has been limited. The first product provides a broad overview, and tends 
to draw information from a wide variety of sources, and is useful for framing the big picture, but 
does not impact directly on advice. The second is typically provided for the Baltic and North 
Seas using the SMS model. The model outputs directly impact on the assessment process by 
providing boundary conditions on mortality for single species assessments, but the multispecies 
biomass projections are not used per se. The mixed fisheries advice is a useful item to inform 
negotiations but is again in general not used for issuing specific advice. 

In reality, stocks cannot be considered in isolation from the foodweb that they are part of, or the 
fisheries that harvest them, and it makes sense to treat stocks together in a mixed fisheries and 
multispecies framework. Not only is this biologically and economically more realistic than the 
fiction of a single species in isolation, but offers the potential benefits of a) maximising the utility 
of stock data by enabling data on one stock to be used in constraining the assessments of many, 
and b) providing a single self-consistent picture of the ecosystem and offering greater clarity for 
decision-makers on the trade-offs involved. 

In this section we present and discuss some work done in this direction, where we use an existing 
multispecies and mixed fisheries model of the North Sea to look at the impacts of managing data-
poor and data-rich stocks within a common framework. The North Sea is an appropriate case 
study region because it is relatively data rich (some ten stocks with full analytical assessments), 
whilst also having complex mixed fisheries, and a number of important data-limited stocks (in-
cluding ones such as grey gurnard that may have significant impacts on commercial stocks via 
the foodweb). 

6.2 Methods 

We used a length-structured multispecies model to consider the effects of managing data-rich 
and data-limited stocks together, using a management strategy evaluation framework. Because 
it would be impractical to embed >20 single species assessments models within the MSE frame-
work, we used a “short-cut” approach in which the assessment process is approximated by add-
ing process error to the modelled biomasses. In the study of Thorpe and De Oliveira(2019) this 
was done by adding white noise with a given variance, but here we follow Thorpe (2019) in using 
red noise with the statistical properties of the North Sea cod assessment, assuming that this is an 
unbiased estimator in the long term. We chose cod a priori because of its cultural value to the UK 
rather than for any impact such a choice might have had on the MSE. The statistical properties 
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of this assessment are then assumed to apply to all 21 stocks, data rich and data poor alike. The 
MSE is used to estimate the expected long-term outcomes of managing to different FMSY targets 
across the fish community. Three different types of targets were considered. In the first case, we 
looked at F estimates based on assessment products, using assessed Fs where available, and Fs 
emerging from mixed fisheries constraints for the data-poor stocks. In the second case, we cal-
culated a Nash Equilibrium (NE) and used that as the FMSY target. This depends only on the dy-
namics of the operating model, and so does not depend directly upon the availability of assess-
ments. And thirdly, we used a set of 238 ICES-style harvest control rules, which aim for a certain 
level of fishing (F-LIMIT), but scaling back from that if stock status deteriorates (B <B-TARGET, 
representingthe ICES reference point Btrigger, here a given fraction of the virgin biomass B0). Out-
comes were evaluated in terms of expected catch value, risk of stock depletion, income variabil-
ity, and notional profit (on the basis of the imputed mixed fishery). In this way we could compare 
the performance of the assessment-based targets with those that were more data poor. 

The method has five main components, a multispecies model, an MSE approach, definition of 
the target Fs, setting of the data-poor harvest control rules, and characterisation and comparison 
of the MSY outcomes. Each is considered in more detail in the following subsections. 

6.2.1 The multispecies model 

We use the LeMans multispecies model, which was originally designed by Hall et al., 2005 for 
the Georges Bank, adapted for the North Sea by Rochet et al. (2011) and further developed by 
Thorpe et al. (2015; 2016; 2017). The model is a fish community model structured by species and 
length. It is broadly similar to SMS, albeit structured by length rather than age, with some of the 
parameter choices being replaced by life-history invariants. This means that the model is less 
good at reproducing today’s stock status than SMS, but may be better at making future projec-
tions. In comparison, both SMS and LeMans are quite different from Ecopath, which covers the 
whole ecosystem, but does not explicitly represent size-structured processes (Figure 6.2.1.1). 

 

Figure 6.2.1.1. Schematic comparing LeMans with SMS and with Ecopath. 

6.2.2 The MSE approach 

We use an ensemble of 63 LeMans variants as the operating model. The 63 variants have the 
same model structure but different parameter settings, and represent the effect of uncertainty in 
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key processes such as recruitment, natural mortality, the preferred length ratio of predator and 
prey, life-history traits and growth efficiency. 

The parameters are chosen because of 78 125 combinations tried, they are best able to replicate 
observed abundance patterns between 1990 and 2010 to an acceptable degree (Thorpe et al., 2017; 
Figure 6.2.2.1) 

 

Figure 6.2.2.1. Schematic showing experimental set up; model parameter sets that match historic data for the period 
1990–2010 are used to drive an MSE evaluation of 5 multispecies MSY proxies and 238 data-limited harvest control rules. 

The evaluation is by way of an MSE (Figure 6.2.2.2), using averages for the last 50 years of 
100 simulations to represent the expected long-term outcomes, assuming a constant strategy and 
environment. Management is on the basis of a simple harvest control rule with a target F and 
limit biomass, below which fishing is scaled back linearly with abundance, such that zero F 
would be associated with zero observed biomass. Targets are set with a two-year lag, reflecting 
delays in the assessment process, so that the previous year’s biomass status provides the basis 
for the subsequent year’s catch. Assessment error has properties of variance and autocorrelation 
(~80%, consistent with Wiedenmannet al., 2015) associated with the North Sea cod assessment, 
assuming no long-term bias (Thorpe, 2019) and this is applied to all stocks. Implementation error 
is assumed to be unbiased white noise, with a coefficient of variance of 0.3. 
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Figure 6.2.2.2. Schematic of the MSE approach used. The LeMans model is the resource operating model, a short-cut 
assessment based on the cod assessment is the observation model, and harvest control rules with an effective two-year 
lag are then used to determine the harvesting strategy applied to the operating model. 

6.2.3 Defining the target Fs 

Three types of target Fs were considered; in decreasing order of data requirements they were i) 
assessment-based Fs in which assessed Fs were used where available, with other stocks being 
constrained through mixed fisheries interactions (Thorpe and De Oliveira, 2019; Table 6.2.3.1), 
ii) a stochastic Nash Equilibrium (Thorpe et al., 2017) being a representative of a true multispecies 
reference point, and iii) arbitrary target Fs that are common to all stocks, ranging from F=0.05 to 
F=2.5, and thus covering very light to very heavy fishing activity. 
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Table 6.2.3.1. Target fishing mortalities by species and scenario (from Thorpe and De Oliveira, 2019). 

 

6.2.4 Setting the harvest control rules (HCRs) 

Harvest control rules were assumed to be of the ICES hockey-stick type, with a proposed F, and 
a biomass reference point, below which fishing effort would be scaled back to prevent the stock 
becoming depleted (Figure 6.2.4.1). 

 

Figure 6.2.4.1. Schematic of the harvest control rule, showing the proposed fishing level, and how it is scaled back if the 
biomass falls below a certain threshold, expressed as a fraction of the unfished or virgin biomass. B-TARGET represents 
MSY Btrigger in the ICES framework. 

17 different F levels and 14 different biomass thresholds were independently considered, giving 
a total of 238 possible harvest control rules. These cover a wide variety of fishing approaches, 
including very high and very low levels of fishing, and high levels of fishing if stock status was 
healthy, and low if it was not. The spread of rules provides a wide range of possible outcomes 
against which to compare the results of fishing to specific Fs, either assessment-based, or using 
the model-based Nash equilibrium. 
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6.2.5 Characterisation of the MSY outcomes 

When comparing the results of the target Fs and harvest control rules, we need a way of thinking 
about what “MSY” means in a community sense so that we can sort the good outcomes from the 
less good. For a single species in isolation, MSY is that intermediate level of fishing that maxim-
ises total yield in the long term (Figure 6.2.5.1) but that’s more problematic for a community 
because not all stocks can simultaneously have their yield maximised; there are trade-offs that 
have to be made. 

 

Figure 6.2.5.1. Schematic illustrating MSY for a fish community; but whilst the concept is clear, implementation is difficult 
on account of the many trade-offs involved. 

We framed the outcomes in terms of community levels of risk and reward. Reward is simply the 
catch (or catch value) summed across all the stocks in the fish community. Risk, however, cannot 
simply be added up, because a 100% risk of depletion of one stock is not the same as a 10% risk 
against ten stocks, so we develop a fish community risk metric which is defined as follows: 

 

Where n is the number of stocks, Ri is the risk of depletion of stock i, where the stocks are ordered 
in terms of their risk; i.e. R1 > R2 > R3 > … Rn, and t is the measure of society’s willingness to 
tolerate concentration of risk against a few stocks. If t=0, the community risk will be the mean 
risk. As t infinity, the risk metric defaults to the worst risk. We used t=1, the largest value for 
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which the denominator is unbounded as n increases (i.e. each risk contributes at least something 
to the overall measure), i.e. the most risk averse setting consistent with every risk value making 
a contribution to the overall risk. 

The effect of this formula is shown in Table 6.2.5.1, taken from Thorpe and De Oliveira (2019). 

Table 6.2.5.1. Community risks as calculate for some idealised risk profiles in a 21-stock fish community. Green = precau-
tionary, orange and red = not precautionary. 

 

Having defined suitable risk and reward metrics, it is then easy to visualise whether a multi-
species MSY has been achieved by projecting outcomes into this space, as per Figure 6.2.5.2, 
where the purple region can be considered as producing outcomes consistent with multispecies 
MSY. 

 

Figure 6.2.5.2. Schematic diagram of the risk/reward space. Risk is defined using the community risk metric, and the 
purple zone represents outcomes consistent with multispecies MSY. 
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6.3 Results 

We compared long-term outcomes for the five MSY proxies, based upon a) 2012 assessments 
(black), b) upper “pretty good yield” (PGY) ranges (Hilborn, 2010; Rindorf et al., 2017) for 2017 
(magenta), c) mid PGY ranges for 2017 (cyan), d) lower PGY ranges for 2017 (green), and e) FMSY 
based on the model’s internal Nash equilibrium (gold). Figure 6.3.1 shows the outcomes for b)–
e) expressed relative to the 2012 assessments, which would appear at the origin. 

Outcomes in the lower right quadrant are higher yielding and lower risk, hence better; those in 
the top level are lower yielding and those in the other quadrants could be considered better or 
worse, depending upon the societal appetite for risk. 

 

Figure 6.3.1. Expected long-term risk vs reward outcomes for a) upper PGY ranges (magenta), b) central PGY ranges (blue), 
c) lower PGY ranges (green), and d) Nash equilibrium (gold), relative to the 2012 assessments (black, origin). 

We find that relative to the 2012 assessments, the central PGY ranges perform similarly (as ex-
pected), the upper part of the ranges is worse (consistent with Thorpe et al., 2017), and the lower 
part of the ranges safer. The outcomes for the Nash equilibrium were expected to be better, with 
both higher yield and lower risk. This is consistent with other studies on the utility of Nash 
Equilibria as multispecies reference points (Norrstrom et al., 2017; Farcas and Rossberg, 2016). 

We also compared all five outcomes with the 238 harvest control rules (Figure 6.3.2). The HCRs 
cover a wide range of outcomes but collectively draw out a frontier. The Nash results lie on or 
beyond the frontier, the other outcomes clearly inside it. The surprising finding is that the HCRs 
with a fixed F-target can be competitive with the tailored Fs based upon the assessment process, 
the implication being that losses associated with not taking into account multispecies dynamics 
can be as great as or greater than those caused by ignorance about the best F for each stock, if we 
assume that we know enough about the stock biomass status to be able to respond quickly 
enough if it deteriorates. 
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Figure 6.3.2. Expected risk/reward outcomes for the five community FMSYs (triangles) and the 238 
harvest control rules (orange dots). 

In general, we found that outcomes from the HCRs were very variable (consistent with the very 
different fishing strategies they cover). Catch yields and profits aligned reasonably well, but 
there were strong tensions with income variability and even stronger ones between risk and ef-
fort, with a small region providing good, profits, yield, and modest income variability, whilst 
being precautionary (Figure 6.3.3). 
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Figure 6.3.3. Expected management outcomes from the 238 harvest control rules. Yellow colours indicate good outcome, 
and dark blue, poor ones. The red hashed area is not precautionary. Effort can be thought of as a proxy for employment. 

Next, we compared the HCR outcomes from the five FMSY targets used. Individual HCR outcomes 
were deemed to be better if they had higher catch and higher profits, and lower income variabil-
ity, whilst remaining precautionary. The number of different HCRs that managed to beat the 
FMSY target was taken to be a measure of the optimality of the target, as the better it is, the harder 
it will be to beat, and the fewer HCRs that will do better. The results are shown in Figure 6.3.4. 
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Figure 6.3.4. Comparison of the FMSY targets with the HCR outcomes, the smaller the coloured space, the fewer HCRs are 
superior, and the better the FMSY is as a management target. 

We find a clear order of performance, U-PGY < L-PGY < F2012 (or central PGY) << NASH, with 
none of the HCRs being clearly better than the Nash Equilibrium. We can conclude from this that 
a genuine multispecies management target may be superior because it respects the multispecies 
dynamics. 

Finally, we looked at what this might mean for individual stocks (Figure 6.3.5). 
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Figure 6.3.5. Relative superiority of single species approach by stock compared with the Nash equilibrium multispecies 
reference points. Above the zero horizontalline, single species approaches are expected to do better, below it, to do 
worse. 

Most, but not all stocks gain from a multispecies approach, but some may lose, so if management 
does take this approach, there will need to be a mechanism to compensate the losers and ensure 
management “buy-in”. 

6.4 Summary 

We have conducted a management strategy evaluation using a multispecies fish community 
model of the North Sea, structured by species and size (length). We have compared F targets 
based on assessments (where available, and mixed fishery interactions where not) with one 
based on the operating model dynamics (a Nash Equilibrium) and 238 ICES-type harvest control 
rules, using pre-determined reference points that are common to all stocks. We have assumed 
that it is possible to estimate a virgin biomass that can be used to determine stock status when 
operating the rules. 

When characterising the outcomes in terms of risk (via a fish community risk metric) and reward, 
we find that the data-limited harvest control rules can be competitive, and that a small subset 
can sometimes do better than the assessment-based FMSY targets, though not the Nash Equilib-
rium, which is a true multispecies reference point. Our results suggest that it may be best to 
manage data-rich and data-limited stocks together as a single community, as there will be more 
winners than losers if we do this. 
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6.5 Future work 

The obvious next step is to use this approach to test other more data-limited rules in a multi-
species setting, particularly the variants of the 2/3 rule discussed at WKLIFE IX. In addition, this 
study leads to the following further questions: 

a) We used a short-cut assessment in the MSE, as running 21 stock assessment models wi-
thin the MSE might have been prohibitive. We assumed that the cod assessment was an 
unbiased estimator in the longterm and used the auto-correlation and variance proper-
ties associated with that assumption to model assessment error for all stocks. However, 
is there a better way of performing a short-cut approximation, in the absence of a full 
assessment? 

b) We used ICES-style harvest control rules with a single target F and biomass reference 
point, taken as a certain fraction of the virgin biomass, but is this realistic? 

c) We characterised income variability by way of a coefficient of variance, but this would 
not be the most resonant concept with the policy maker. Is the expected number of large 
income drops in say a 20-year period a better measure? 

d) How can we best take account of structural uncertainty (seee.g. Spence et al., 2018)? 
e) What doesit mean for a stock to be depleted in the absence of an assessment Blim? Can we 

use proxies based on virgin biomass estimates? 

We hope to address some of these issues in future work. 
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7 Future directions for data-limited stocks (DLS) 

7.1 Relationships between life-history parameters and 
%SPR reference points 

A method for estimating fishing mortality and exploitation status was presented to WKLIFE IX 
but requires further work and development. The method derives empirical estimates of: 

i. Fishing mortality from the area swept by towed gears, the efficiency of those gears and 
modelled species distributions; and 

ii. %SPR from life-history parameters (LB-SPR, Walker et al., 2019). 

The method may be useful to ICES when existing length-based approaches are hindered by poor 
or unrepresentative commercial length–frequency data and is also capable of community-wide 
comparative status assessment. However, further work is required to derive appropriate %SPR 
reference points and the method remains to be tested on stocks. 

With SPR methods, stock status is currently assessed by comparing %SPR with a fixed (often 
40%SPR) reference point adopted with the objective of obtaining a large fraction of MSY or a 
limit reference point (often 20%SPR). These reference points were based on data for commer-
cially important species with the typical demersal life-history. However, a fixed %SPR reference 
point does not account for links between lifehistories and parameters of spawner–recruit rela-
tionships and is likely not valid for species with slower lifehistory and lower slopes at the origin 
of the spawner–recruit relationship. Estimation of %SPR from a simple measure of life history 
will address its dependency on the spawner–recruit relationship and improve rigour of applica-
tion. 

Recommendation: It is recommended by WKLIFE IX that the exploratory studies undertaken 
with respect to ToR c) this year be further explored, if possible. 

7.2 Data-limited stocks in northwest African waters 

European fleets operate in northwest African waters under sustainable Partnership Fisheries 
Agreements between EU and African countries. In the region, black hakes are caught by the 
Spanish trawling fleet, other pelagic European fleets and local fleets. All target species of black 
hake, Merluccius polli and Merluccius senegalensis, are data-limited stocks not identified to species 
in declared catches and are assessed by CECAF as a single stock: i.e. Merluccius spp. Estimates 
of discards by these fleets are highly uncertain and are an important component of the total catch 
(retained and discarded). The Spanish trawling fleet is the only fleet with continuous monitoring 
since the eighties and the CPUE of this fleet is used to tune the assessment production model 
used (BIODYN). On-board observer data from commercial surveys from 2016 to 2018 provide a 
detailed source of scientific information about catches, discards, effort and technical factors in 
this fleet. From this information, two lines of modelling have been initiated: the first one, regard-
ing the quantification of discards in the fleet that accounts for around 40% of the catches; and the 
second one, regarding the improvement of biological knowledge about growth from microstruc-
ture of otoliths. Observer programmes are supported by the Data Collection Framework and 
should be reinforced to guarantee the continuity of these studies. Implementation of logbook 
improvements at geo-referenced level and provide information on retained and discarded data 
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is also needed. The participants at WKLIFE IX made the following suggestions to help in devel-
oping improved assessment methodologies and species identification through simulation tech-
niques. 

1. How to improve the assessment of Merluccius spp: Using SPiCT as the assessment 
method to develop an OM (Fischer et al., submitted) to pose alternative hypotheses about 
the nature of discarding (e.g. percentage of misreporting in hake discards) and then sim-
ulate datasets to evaluate the impact on estimates of stock status and reference points 
(e.g. Omori et al., 2016). 

2. Quality of observer datarequired: how good are the observer data to apply to the whole 
fleet for separating retained and discarded catches and for separating species Merluccius 
senegalensis and Merluccius polli in catches of the whole fleet? First, explore existing data 
to identify potential covariates related to species and fishing effort distribution (e.g. Oka-
moto, to appear). Develop a two species OM (hake - discards and Merlucciuspolli-Meluccius 
senegalensis) using FLife developed under the MyDas project to explore robustness of 
current production models assessment approach (e.g. Kell et al., 2009). 

3. Growth: It is not possible currently to provide growth curves by species as more otolith 
readings are needed to evidence different life strategies. Meanwhile, the first step is to 
try to estimate a robust model VBGM and provide age-length keys for Merluccius spp. 
Then separate data by ages to help conduct age-based assessments and develop length-
based indicators. 

7.3 Online App development for data-limited, data-moder-
ate and data-rich fisheries 

After the WKLIFE IX meeting, Tom Carruthers, Institute for the Oceans and Fisheries, Vancou-
ver, Canada contacted the UK chair of WKLIFE with details of MERA (Method Evaluation and 
Risk Assessment) an open-source tool for analysing risk, guiding fishery improvement projects, 
and evaluating management strategies for certification (www.merafish.org).  MERA links to 
DLMtool (previously, investigated at WKLIFE meetings) and MSEtool libraries to calculate pop-
ulation status and management performance.  The App has potential within the ICES community 
and would be worth exploring at future meetings of WKLIFE. 

Recommendation: WKLIFE chairs to liaise with Tom Carruthers and his colleagues to ensure 
their participation at the next meeting of WKLIFE X, if ACOM consider that online App devel-
opment is worth exploring further. 

7.4 Short-cut versus full-feedback MSE 

When combining modelling approaches incorporating data-rich, data-moderate and data-lim-
ited stocks, there may be a need for undertaking MSE using short-cut approaches rather than 
full-feedback evaluation, as in the modelling presented in Section 6.  Guidelines on the appro-
priateness of such an approach would greatly benefit future advisory work both within, and 
outside, ICES. 

7.5 ToRs for WKLIFE X 

Section 2 of this report focused on advice rules for harvest control rules for short-lived species.  
Short-lived ICES Category 3 stocks can be managed using the official advice rules based on the 
stochastic production model in continuous time (SPiCT) conditioned upon a successful SPiCT 
fitting, according to the specific guidelines for the use of SPiCT developed within the frame of 

http://www.merafish.org/
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WKDLSSLS and WKLIFE.  The work of WKDLSSLS is considered unfinished and a second work-
shop would be preferable.  Further research on the definition of optimal harvest control rules for 
data-limited short-lived stocks is ongoing and the following draft ToRs are proposed for the next 
meeting of WKLIFE X: 

• Continue the development of appropriate methods for the assessment and provision of 
fishing opportunities for data-limited short-lived species stocks. 

• Further review the application of harvest control methods exploring the implementation 
of additional precautionary measures where necessary such as an asymmetric precau-
tionary buffer and/or biomass safeguards; i.e. reducing advice when below reference 
point(s). 

Section 4 of this report focused on advice rules for harvest control rules for length-based ap-
proaches.  WKMSYCat34 catch rule 3.2.1 in its current form has been extensively tested during 
previous WKLIFE workshops. The work presented during WKLIFE IX showed that the perfor-
mance of the rule can be improved on a case specific basis. In general, the catch rule seems to 
perform satisfactorily for stocks with low to medium 𝑘𝑘 (𝑘𝑘 ≤ 0.32). Further research is required 
to understand the reasons for this behaviour and why higher 𝑘𝑘 stocks (𝑘𝑘 > 0.32) perform poorly 
with the catch rule. This will require investigating the characteristics of the operating models.  
With this in mind, the following draft ToRs are proposed for the next meeting WKLIFE X: 

• Evaluate further improvements to the performance of the WKMSYCat34 catch rule 3.2.1. 
Focus on improving the catch rule for stocks with von Bertalanffy growth parameter 
k>0.32, investigate more extensively the definition of the catch rule components and their 
impact on performance, and investigate the possibility of alternative catch rules. 

• Explore the operating model set-up for data-limited simulations, including sensitivity 
analyses based on the Jacobian; e.g. elasticity analysis, on how the different life-history 
and fishery parameters affect the simulated stock behaviour under exploitation, an anal-
ysis of the nature of time-series and trends of observable stock characteristics (such as 
fishery-dependent and -independent metrics) and how the knowledge gained can be 
used to further improve the performance of catch rules. 

Section 6 of this report focused on the combined modelling of both data-rich and data-limited 
stocks.  The obvious next step is to use this modelling approach to test data-limited rules in a 
multispecies setting, particularly the variants of the 2/3 rule discussed at WKLIFE IX, and the 
following ToR is proposed for the next meeting WKLIFE X: 

• Further explore and develop methods appropriate for data-limited, data-moderate and 
data-rich fisheries such as MERA, DLMtool and MSEtool libraries; together with emerg-
ing multispecies approaches both within and outside the ICES’ community. 

In Section 7.2 of this report, the participants at WKLIFE IX made suggestions to help in develop-
ing improved assessment methodologies with respect to black hake fisheries operating in north-
west African waters.  The following draft ToR is proposed for the next meeting WKLIFE X: 

• Evaluate the robustness of SPiCT based upon the development of Operating Models of 
African black hakes using FLife developed under the MyDas project and compare results 
from SPiCT to the age-based a4a assessment model. 
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stocksWKLIFE IX 

IPMA, Lisbon, 30th September-4th October 2019 

Draft Agenda 

Daily schedule (except 30 September, start at 09:30 and 4 October,finish at 13:00): 

  09:00 start 

11:00 Coffee-break 

13:00 Lunch 

16:00 Coffee-break 

18:00 end 

 

30 September (Monday) 
 
09:30–10:00 

- General meeting set-up, accessing WiFi, meeting facility orientation, introductions& 
meeting ToRs. 

10:00–13:00 
- Presentation & plenary discussion:  

Simon Fisher &JoséDe Oliveira – Linking the performance of a data-limited empir-
ical catch rule to life-history traits updates for WKLIFE IX: ToR a) 

Simon Fisher &JoséDe Oliveira – Performance of the WKMSYCat34 catch rule 3.2.1: 
ToR a) 

14:00–18:00 

- Presentation & plenary discussion: 
Laurie Kell – Establish relationships between life-history parameters and biological 
reference points in order to develop robust proxies MSY reference points: ToR c) 
Andres Uriarte–´Workshop on data limited stocks of short-lived species 
(WKDLSSLS)´: ToR e) 
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1 October (Tuesday) 
 
09:00–11:00 

- Subgroups work (WKDLSSLS). 

11:30–13:00 

- Subgroups work 

14:00–18:00 

- Presentation & plenary discussion: 
TobiasMildenberger –SPiCT and MSE testing of catch rules: ToR b) 
Robert Thorpe – Data-rich/data-limited and modelling approaches for multi-
species/mixed fisheries: ToR d) 
Marc Taylor– Evaluation of data-limited assessment performance using an individ-
ual-based operational model: ToR a) 

20:00   WKLIFE group dinner (Tasca do Manel, Rua da Barroca, 24, Bairro Alto) 
https://www.google.com/maps/place/Tasca+do+Manel/@38.7113782,-
9.1466396,17z/data=!4m5!3m4!1s0x0:0xe9fa3c35020ede26!8m2!3d38.7113456!4d-9.1444505 

 

2 October (Wednesday) 
 
09:00–11:00 

- Presentation & plenary discussion: 
María Soto – Discard estimation in DLS. 
NicolaWalker– Relationships between life-history parameters and %SPR reference 
points: ToR c) 
Tanja Miethe – Relationships between life-history parameters and %SPR reference 
points: ToR c) 

11:30–17:00 

- Subgroups work. 

17:00–18:00 

- Plenary session: subgroup work progress and discussion. 

 

3 October (Thursday) 
 
09:00–18:00 

- Subgroups work. 
- Report writing and collation. 

 

4 October (Friday) 

09:00–13:00 

- Plenary session: conclusions & report adoption. 

 

https://www.google.com/maps/place/Tasca+do+Manel/@38.7113782,-9.1466396,17z/data=!4m5!3m4!1s0x0:0xe9fa3c35020ede26!8m2!3d38.7113456!4d-9.1444505
https://www.google.com/maps/place/Tasca+do+Manel/@38.7113782,-9.1466396,17z/data=!4m5!3m4!1s0x0:0xe9fa3c35020ede26!8m2!3d38.7113456!4d-9.1444505
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Annex 3: ICES technical guidance on advice rules 
for stocks in Categories 3 and 4 

Introduction 

This document provides a description of advice rules developed by the Workshop on the Devel-
opment of the ICES Approach to Providing MSY Advice for Category 3 and 4 stocks (WKM-
SYCat34 – ICES, 2017a), the Eighth and Ninth Workshops on the Development of Quantitative 
Assessment Methodologies based on LIFE-history traits, exploitation characteristics, and other 
relevant parameters for data-limited stocks (WKLIFE VIII – ICES, 2018a; WKLIFE IX – ICES, 
2019a), and the Workshop on Data-Limited Stocks of Short-Lived Species (WKDLSSLS – ICES, 
2019b).These are harvest control rules used by ICES for stocks in categories 3 and 4, with addi-
tional specifications for short-lived species and elasmobranch stocks in categories 3 and 4. 

Background 

The objective of WKMSYCat34, WKLIFE VIII and IX, and WKDLSSLS was to investigate the 
performance of harvest control rules across life-history types through simulation and manage-
ment strategy evaluation (MSE). This would identify the potential approaches that best meet the 
goals of management; i.e. maximizing long-term yield while minimizing the probability of stocks 
falling below biologically sustainable limits. 

Advice rules for short-term forecasts utilizing a surplus production model (SPiCT) 

WKMSYCat34 developed an MSY harvest control rule (“median rule”) for assessments using the 
stochastic surplus production model in continuous time (SPiCT; Pedersen and Berg, 2017) (Sec-
tion 3.1, WKMSYCat34; ICES, 2017a). WKLIFE VIII and IX did simulation testing of multiple 
modifications to this harvest control rule that account for the assessment uncertainty; additional 
comparisons were performed with the currently used “2-over-3" rule (ICES DLS Method 3.2; 
ICES, 2012). 

For stocks that have an accepted SPiCT assessment, ICES recommends to use the MSY-35th per-
centile rule (MSY-35). In theory, with increasing time-series lengths and decreasing observation 
error, the estimated catch with the MSY-35th percentile rule approximates the median rule sug-
gested by WKMSYCat34 while being more precautionary. The technical criteria to accept a SPiCT 
assessment are given below; more detailed information and example code is included in the 
SPiCT technical guidelines (Mildenberger et al., 2019), which is a living document maintained by 
the developers of SPiCT. 

The MSY-35 rule is defined as: 
𝐶𝐶𝑦𝑦+1 = 𝑒𝑒𝐶𝐶(𝑝𝑝) 

𝐹𝐹𝑦𝑦+1 = 𝐹𝐹𝑦𝑦
min( 1, 𝑒𝑒𝐵𝐵(𝑝𝑝))
𝑒𝑒𝐹𝐹(100 −  𝑝𝑝)
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where the advised catch (C) for forecast year y + 1 corresponds to the predicted catch given the 
fishing mortality trajectory in the forecast year, and where 𝐹𝐹𝑦𝑦 and 𝐹𝐹𝑦𝑦+1are the fishing mortalities 
at the beginning and the end of the forecast year, respectively. Components are defined as fol-
lows: 

The above advised catch can be calculated using the get.TAC() function within the spict package 
in R. 

Technical criteria for accepting a SPiCT assessment 

When determining harvest limits using output from SPiCT, appropriate application first de-
pends on model performance. An accepted assessment using SPiCT has to fulfil all of the follow-
ing criteria: 

1. The assessment converged. 
2. All variance parameters of the model parameters are finite. 
3. No violation of model assumptions based on one-step-ahead residuals (bias, autocorre-

lation, normality). This means that p-values of the relevant statistical tests, implemented 
in SPiCT, are insignificant (p ≤ 0.05). Slight violations of these assumptions do not neces-
sarily invalidate model results. 

4. Consistent patterns in the retrospective analysis. This means that there is no tendency of 
consistent under- or overestimation of the relative fishing mortality (F/FMSY) and relative 
biomass (B/BMSY) in successive assessment. The retrospective trajectories of those two 
quantities should be inside the confidence intervals of the base run. 

5. Realistic production curve. The shape of the production curve should not be too skewed 
(BMSY/K, where K is the carrying capacity estimate, should be between 0.1 and 0.9). Low 
values of BMSY/K allow for an infinite population growth rate. 

6. The main variance parameters (i.e. of the biomass and fishing mortality processes, and 
the catch and index observations) should not be unrealistically high. Confidence inter-
vals for B/BMSY and F/FMSY should not span more than 1 order of magnitude. High assess-
ment uncertainty can indicate a lack of contrast in the input data or violation of the eco-
logical model assumptions. 

7. Initial values do not influence the parameter estimates. The optimisation should con-
verge to the same estimates when starting from different initial parameter values. 

Components Definition and purpose 

qC Function that takes a percentile and returns the corresponding predicted catch𝐶𝐶𝑦𝑦+1 given the fishing 
mortality trajectory during the forecast year y+1; i.e.𝑒𝑒𝐶𝐶 = Φ(𝐶𝐶𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝| 𝐹𝐹=𝐹𝐹𝑦𝑦 … 𝐹𝐹𝑦𝑦+1) 

−1  

qB Function that takes a percentile and returns the corresponding predicted 
𝐵𝐵𝑦𝑦+1

MSY Btrigger
 at the beginning of 

the forecast year and  MSY Btrigger = 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀
2

; i.e.𝑒𝑒𝐵𝐵 = Φ
(2

𝐵𝐵𝑦𝑦+1
𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀

) 
−1  

qF Function that takes a percentile and returns the corresponding predicted 
𝐹𝐹𝑦𝑦

𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀
 at the beginning of the 

forecast year y+1; i.e.𝑒𝑒𝐹𝐹 = Φ
(

𝐹𝐹𝑦𝑦
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

) 
−1  

p Specific percentile of the respective distributions, e.g. 35 (WKLIFE IX, ICES 2019a). 
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Caveats 

Different options can be explored to stabilise SPiCT for data with low contrast or high observa-
tion errors. SPiCT allows the use of prior distributions, for example on the shape of the produc-
tion curve or the initial depletion level, which can help stabilise the optimisation procedure. 
However, using priors with lower standard deviations affects the results (confidence intervals 
and parameter estimates). Several options to stabilise SPiCT assessments have been explored and 
tested within WKLIFE VIII and IX and are described in detail in the SPiCT technical guidelines 
(ICES 2019a; Mildenberger et al., 2019). 

The harvest control rule described above accounts for the assessment uncertainty in the MSY 
SPiCT median advice rule proposed by WKMSYCat34. This is done by using a percentile lower 
than 50 (i.e. median) for relative biomass and catch, and higher than 50 for relative fishing mor-
tality. In the simulation testing done during WKLIFE IX, the same percentile (p) was used for 
biomass and catch; for fishing mortality the percentile was equal to 100 - p. Management strategy 
evaluation simulations tested the harvest control rule for different quantiles of the distributions 
of fishing mortality, biomass, and catch. The results show that across all tested scenarios and 
harvest control rules, management with the MSY-35 rule leads to high levels of relative yield 
while retaining the risks at low levels. Higher percentiles than 35th show higher levels of risk 
while achieving similar levels of relative yield, while lower percentiles show a decrease in yield 
with small change in risk (WKLIFE IX, ICES 2019a).The SPiCT developers emphasise that stock-
specific MSEs should be used for the comparison of precautionary levels of different advice rules. 

Advice rules for harvest control rules for length-based approaches 

WKLIFE VIII developed a harvest control rule to provide MSY advice for category 3 and 4 stocks 
based on the “2-over-3 rule”, which compares the trend in stock index of the two most recent 
years to the preceding three years (WKMSYcat34; ICES, 2017a). The recommended harvest rule 
improves on 2-over-3 with the addition of multipliers based on the stock’s life-history character-
istics, the status of the stock in terms of relative biomass, and the status of the stock relative to a 
target reference length (Section 3, WKLIFE VIII; ICES, 2018). The catch rule is defined as: 

𝐶𝐶𝑦𝑦+1 = 𝑚𝑚 × 𝐶𝐶𝑦𝑦 × 𝑟𝑟 × 𝑓𝑓 × 𝑏𝑏 

where the advised catch (C) for next year y+1 (set on a biennial basis) is based on the most recent 
year’s advised catch 𝐶𝐶𝑦𝑦 adjusted by the following components: 
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Component Definition and use 

r The rate of change in the index, based on the average of the two most recent years of data (y−2to 
y−1)relative to the average of the three years prior to the most recent two (y−3 to y−5), and termed the 
“2-over-3” rule. 

f The ratio of the mean length in the observed catch that is above the length of first capture relative to the 
target reference length (mean length/target reference length). The target reference length is 𝐿𝐿𝐹𝐹=𝑀𝑀 =
0.75𝐿𝐿𝑐𝑐 + 0.25𝐿𝐿∞, where. 𝐿𝐿𝑐𝑐is defined as length at 50% of modal abundance (ICES, 2018b). 

b Adjustment to reduce catch when the most recent index data Iy−1 is less than 𝐼𝐼𝑐𝑐𝑚𝑚𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚 = 1.4𝐼𝐼𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 such that 
b is set equal to Iy-1/Itrigger. When the most recent index data Iy−1 is greater than Itrigger, b is set equal to 1. 
Iloss is generally defined as the lowest observed index value for that stock. 

m Multiplier applied to the harvest control rule to maintain the probability of the biomass declining below 
Blim to less than 5%. May range from 0 to 1.0. 

Stability 
clause 

Limits the amount the advised catch can change upwards or downwards between years. The recom-
mended values are +20% and −30%; i.e. the catch would be limited to a 20% increase or a 30% decrease 
relative to the previous year’s advised catch. 

Each component of the harvest control rule is combined (multiplied together), in order to deter-
mine next year’s catch advice by adjusting this year’s catch advice upwards or downwards. This 
is based on the trend in the index (i.e. whether the stock is going up or down, r), the observed 
mean length in the catch relative to the target mean length (f), and a factor to adjust catch down-
wards if the current stock falls below a threshold index value (b), defined as Itrigger= 1.4 × Iloss. Iloss 
is defined as the lowest observed index value for that stock. The multiplier (m) is then applied as 
a precautionary measure to ensure that the probability of the stock declining below Blimis less 
than or equal to 5%. 

The performance of the catch rule is driven largely by three factors: 

1. The life history of the species; 
2. The trend in the index being a good measure of the current status of the stock based on 

the life history; and 
3. The Itrigger value being defined at or near the true threshold level (e.g. 0.5 BMSY). 

Application of the length-based harvest control rule 

Incorporating a multiplier (m) less than 1 will decrease risk in harvest control rule performance 
(i.e. a reduced probability of the stock declining below Blim) by buffering against the uncertainty 
of each component of the harvest control rule sufficiently to reflect the true state of the stock and 
lead to the correct management action. The risk of the stock declining below Blim is related to the 
life-history dynamics of the stock. It is recommended that the application of the harvest control 
rule include a life history-based multiplier to reduce risk. 

For the harvest estimate for longer-lived stocks with low natural mortality and low growth rates 
(von Bertalanffyk < 0.19, e.g. redfish or ling), a multiplier should be applied to the harvest control 
rule of 0.85 by setting the estimated catch for the following year to 85% of the estimated yield, 
based on the harvest control rule (Cy+1 = 0.85 ×Cy × r × f × b). Medium-lived stocks with k between 
0.20 and 0.32 (e.g. plaice, red mullet) should apply a multiplier of 0.90 to next year’s estimated 
catch. If there is no reliable information about k, but k is considered to be no more than 0.32, then 
a multiplier of 0.80 should be used. 

The harvest control rule is not recommended for use for stocks with fast life-history dynamics 
(k > 0.32, e.g. brill or sardine). The 2-over-3 (r) component of the harvest control rule does not 
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adequately capture the trend in biomass for life-history dynamics with high interannual varia-
bility, because the trend in biomass over the last two years relative to the preceding three years 
may not be indicative of current stock conditions. The current PA approach for data-limited 
stocks in ICES is the application of the “2 over 3” rule in conjunction with a PA buffer and an 
uncertainty cap (ICES, 2012). It is recommended that this approach should be continued for 
stocks with k>0.32 but not characterised as short-lived stocks. For short-lived stocks see below. 

It is recommended to apply a stability clause of +20% and -30%, where the advised catch would 
be limited to increase by 20% or decrease by 30% relative to the previous year’s advised catch, in 
all applications of the harvest control rule. 

Caveats 

The performance (i.e. maintaining the stock near the target biomass and reducing the risk of the 
stock declining below Blim) of the harvest control rule varies based on life-history traits of the 
species, the nature of recruitment dynamics, and on the assumed reference level of b, the Itrigger 
component. 

The Itrigger= 1.4 Iloss component of the harvest control rule should be set to the breakpoint below 
which, the state of the stock in question would deteriorate to an undesirable level (i.e. a decline 
below Blim, resulting in reduced yield and an increased probability of stock collapse). That limit 
is often identified by fisheries management as 0.5 BMSY. The harvest control rule generally main-
tains a target or near-target biomass for slow and medium life-history stocks, when the Itrigger 
value is set equal to 0.5 BMSY. Setting Iloss equal to the lowest observed index value may not be 
appropriate if the stock has not been heavily exploited, or if the index period does not cover a 
period of low biomass levels in the stock. In these instances, the harvest control rule may be 
overly precautionary. The Itrigger component of the harvest control rule should reflect a true limit 
biomass level for the stock in question. Care should be taken when determining this value based 
on the stock productivity, as well as its susceptibility to the effects from fishery-specific activities. 

Advice rules for harvest control rules for short-lived species (stock categories 3 and 4) 

The risk of harvesting short-lived stocks that have high interannual variability of biomass is in-
herently higher than long-lived species, given their dynamics. This means that the harvest con-
trol rules applied to short-lived stocks need to be designed in a manner that incorporates the 
dynamics of these specific stocks. Guidance is provided for short-lived stock harvest control 
rules that determine next year’s catch based on the last advised catch. 

The harvest control rule is defined as: 

𝐶𝐶𝑦𝑦+1 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 0.2 𝐶𝐶𝑦𝑦

𝐼𝐼𝑦𝑦
∑ 𝐼𝐼𝑦𝑦 2⁄𝑦𝑦−2
𝑦𝑦−1

< 0.2

𝐶𝐶𝑦𝑦
𝐼𝐼𝑦𝑦

∑ 𝐼𝐼𝑦𝑦 2⁄𝑦𝑦−2
𝑦𝑦−1

0.2 ≤
𝐼𝐼𝑦𝑦

∑ 𝐼𝐼𝑦𝑦 2⁄𝑦𝑦−2
𝑦𝑦−1

< 1.8

1.8 𝐶𝐶𝑦𝑦
𝐼𝐼𝑦𝑦

∑ 𝐼𝐼𝑦𝑦 2⁄𝑦𝑦−2
𝑦𝑦−1

≥ 1.8

 

where𝐶𝐶𝑦𝑦  and 𝐼𝐼𝑦𝑦  represent the advised catch and the biomass indicator for year y, respectively. 
Note that 𝐼𝐼𝑦𝑦

∑ 𝐼𝐼𝑦𝑦 2⁄𝑦𝑦−2
𝑦𝑦−1

should be replaced by 𝐼𝐼𝑦𝑦+1
∑ 𝐼𝐼𝑦𝑦 2⁄𝑦𝑦−1
𝑦𝑦

in the formula above if the index is available at 

the beginning of the management year y+1, instead of being available at the end of the interim 
(management) year y. The first and third cases of the formula correspond to the application of 
an 80% symmetrical uncertainty cap. 
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The notation of these rules is for in-year advice where the advised catch for the current year is 
based on last year’s advised catch adjusted by the trend in the most recent abundance index, Iy, 
relative to the average of the index value in the previous two years. An uncertainty cap is applied 
to limit the change in the index trend, the Iy component of the harvest control rule, to ±80%, which 
allows the current years advised catch to increase or decrease up to 80% relative to the previous 
years advisedcatch. 

Application of the harvest control rule 

For some short-lived species, assessments are so sensitive to incoming recruitment that infor-
mation on the incoming year class is essential to assessment and management. Therefore for 
these species, the management year should be coupled as closely as possible to the time when 
the abundance index becomes available. For most of the stocks concerned such data are obtained 
just before the fishery starts (or during the fishing year). Therefore, the advice on fishing possi-
bilities is often given just prior to the start of the fishing season or after the fisheries have started, 
which corresponds with the two formulations provided above. In the case where the survey is 
at the beginning of the management year, the fishery would start with a provisional catch to be 
updated when the abundance index is available. 

The harvest control rule for short-lived stocks is composed of three components: the advised 
catch in the previous year, the trend in the index, and the uncertainty cap. The trend in the index 
performs best for short-lived stocks when the most recent years, including data from the current 
year, are applied. It is recommended to use the most recent year of data divided by the average 
of the index over the preceding two years, termed 1-over-2. The rule has greatest performance 
when a large fraction of the harvested population in the management year is covered by the 
index. 

The first time this rule is applied to a stock, the initial catch should be taken from the mean of 
the catch from the previous two years (WKDLSSLS ICES, 2019b). 

Short-lived stocks with high interannual variability of biomass can show large biomass fluctua-
tions from one year to the next. A symmetrical 80% uncertainty cap allows appropriate adjust-
ment of the harvest control rule accordingly from year to year. Large reductions in catch may be 
necessary between years to respond accordingly to reductions in the underlying stock biomass. 

Caveats 

For stocks heavily exploited in the past, the rule does not necessary lead to precautionary levels 
of risks in the short-term but gradually leads to sustainable exploitation in the long term. 

Application of the uncertainty cap can lead to major reduction of catches in the long term, and it 
is recommended that the harvest control rule be periodically re-evaluated. 

Advice rules for harvest control rules for bycaught elasmobranch stocks 

The catch for elasmobranch stocks taken as bycatch is defined as: 

𝐶𝐶𝑦𝑦+1 = 𝐶𝐶𝑦𝑦 × 𝑟𝑟 × 𝑓𝑓 

where the components are defined as: 
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Component Definition and use 

r The rate of change in the catch per unit of effort (CPUE), based on the average of the two most recent 
years of data (y−2to y−1) relative to the average of the five years prior to the most recent two (y−3to 
y−8), termed the “2-over-5” rule. 

f The ratio of the mean length in the observed catch that is above the length of first capture relative to the 
target reference length (mean length/target reference length).The target reference length is 𝐿𝐿𝐹𝐹=𝑀𝑀 =
0.75𝐿𝐿𝑐𝑐 + 0.25𝐿𝐿∞, where 𝐿𝐿𝑐𝑐 is defined as length at 50% of modal abundance (ICES 2018b)*. 

Stability 
clause 

Limits the amount the advised catch can change upwards or downwards between years. The recom-
mended values are +5% and -25%, where the catch would be limited to increase by 5% or decrease by 
25% relative to the previous year’s catch. 

* The equation for LF=M relies on the assumption of M/k=1.5 (natural mortality M, growth rate k) for data-limited 
stocks. 

Application of the harvest control rule 

The performance of the harvest control rule depends on the accuracy of the CPUE, and on how 
correctly the target reference length is determined. The CPUE is used to identify the trend in the 
biomass relative to previous years. Determining the trend in biomass based on the CPUE per-
forms well with the 2-over-5 rule. Elasmobranch species generally have lower natural mortality 
rates and low fecundity compared to fish species; in this case the 2-over-3 approach is therefore 
better at capturing the trend in biomass over a longer time period. Applying the longer term 
index rule also reduces risk when there is increased uncertainty in the CPUE data. 

The fishery should be managed in such a way that, if possible, the length of first capture is greater 
than the length of maturity for bycaught elasmobranch species. The f component of the harvest 
control rule adjusts the catch upwards or downwards, based on the average length of captured 
individuals relative to the target length which is, in turn, based on biology and life history. The 
harvest control rule will result in lower catch limits if the fishery is selecting a large proportion 
of immature individuals. 

Elasmobranch species are often slow growing and with low fecundity, making them slow to 
recover if overexploited. The harvest control rule should, when warranted, make it possible to 
apply larger reductions to the catch, based on the CPUE and length data relative to the amount 
allowed for increases in the catch. Therefore, it is recommended that an asymmetric stability 
clause governing the percentage of change allowed in the catch between years be applied. This 
clause should allow for reductions up to 25% downwards or an increase up to 5% in the catch 
for next year, relative to the current year’s catch. 

Caveats 

Several factors can affect the performance, in terms of risk to fall below SSB thresholds, of the 
harvest control rule for elasmobranch stocks. Elasmobranch species often have dimorphic 
growth between the sexes, and it is recommended that calculation of the target reference length 
is based on the biology of the larger-growing sex. Additionally, if the fishery mainly exploits 
immature individuals, the sustainable catch from the population will be lower, leading to a re-
duced catch based on the harvest control rule. 

For stocks where Lc<Lmat , values of reference point LF=M may be below Lmat, affecting the perfor-
mance of harvest control rules negatively. 
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As with species taken as bycatch, the performance of the harvest control rule for elasmobranch 
stocks depends on data from the target fisheries to adequately capture the dynamics of individ-
ual stocks. Uncertainty in the CPUE may result in such data being less informative regarding the 
trend in elasmobranch stocks. Furthermore, uncertainty in length measurements (i.e. observation 
error) and limited sample sizes may result in the harvest control rule being more reactive to non-
representative length samples, leading to unwarranted reductions or increases in the advised 
catch. 
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Annex 4: Working document 

Testing length-based reference points for two elasmobranchs: cuckoo 
ray (Leucoraja naevus) and thornback ray (Raja clavata) 

Tanja Miethe and Helen Dobby, Marine Scotland Science, Marine Laboratory, PO Box 101, Vic-
toria Road 375, AB11 9DB Aberdeen, UK, E-mail: t.miethe@marlab.ac.uk 

Introduction 
The maximum size of species of Rajidae was suggested as an indicator of resilience (Walker and 
Hislop, 1998; Frisk et al., 2001). In the North Sea, the abundance of the larger common skate and 
thornback ray declined since the 1960s-70s and a concomitant increase in smaller-bodied rays, 
starry and spotted ray (Chevolot et al., 2008; Sguotti et al., 2016). Rays, Rajidae, exhibit M/k similar 
to bony fish (Frisk et al., 2001). The ratio of natural mortality M and growth rate k determines the 
equilibrium size distribution in an unexploited stock. With truncation of population size distri-
butions and thereby catch size distributions, the effect of fishing mortality on populations may 
be determined from catch size distributions. 

A number of length-based indicators are available and some have been identified as potential 
suitable to summarize catch–length distributions with regard to exploitation of juveniles, large 
adults and optimal yield (ICES, 2015; Miethe and Dobby, 2015; Miethe et al., 2016; ICES, 2018b). 
The mean length in the catch with a reference point based on F=M proxy for MSY has been sug-
gested (Jardim et al., 2015). The reference point is derived accounting for Lcand M/k. However, it 
was found that L�and its respective reference point LF=M perform well only if the length at first 
capture Lc>Lmat (Jardim et al., 2015; Miethe and Dobby, 2016). For many elasmobranch stocks Lc 
is typically lower than Lmat (ICES, 2018c). As an alternative reference point the expected mean 
length at an spawning potential ratio (SPR) of 40% can be calculated, based on basic life-history 
characteristics under equilibrium conditions (Miethe et al., 2019). 

Cuckoo ray, Leucoraja naevus, with demersal habitat in the Northeast Atlantic, is wide-spread, 
small-bodied ray. Spawning can occur throughout the year, but was observed to be typically 
highest in the beginning of the year (Maia et al., 2012). Rays are often caught offshore as bycatch 
in mixed demersal fishery for roundfish and flatfish (ICES, 2017; ICES, 2018b). Stock structure in 
the Celtic Sea is uncertain. Currently, Cuckoo ray in the West of Scotland, Celtic Sea and Bay of 
Biscay are considered to form a single stock (ICES, 2018b). 

Thornback ray, Raja clavata, is one of the most important commercial species in the inshore fish-
ing grounds of the Celtic Seas (ICES, 2018b). Thornback ray are assessed as separate stocks in the 
West of Scotland and Celtic Sea. A low level of population differentiation was observed for R. 
clavata in southern North Sea, English Channel and Irish Sea (Chevolot et al., 2006). Life-history 
data for thornback ray and cuckoo ray in the Celtic and Irish Sea was used to parameterize the 
model (Table A.1). 

Estimates of natural mortality for these stocks are typically scarce. Values of around 0.3 for fe-
males and 0.4 for males of Cuckoo ray, and 0.14 for females and 0.2 for males of Thornback ray 
have been suggested (Pauly, 1980; Gallagher et al., 2005a; Then et al., 2015). 

With help of length-based population models and management strategy evaluation (MSE), we 
test the use of length-based indicator L�together with respective reference points in harvest con-
trol rules (HCRs) to recover an overexploited stock of Cuckoo ray and Thornback ray. We com-
pare the performance of the length-based reference point LF=M to SPR-based reference points for 
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both example stocks. Harvest control rules are based on length-based indicators and a CPUE-
based stock index. 

Methods 

Population model 
A length-based modelling approach allows for a direct implementation of length-dependent life-
history processes and length-dependent fishing mortality. The general population model oper-
ates in discrete time and can be written in matrix notation: 

Nt+1 = 𝐀𝐀𝐭𝐭Nt, 
(1) 

whereNt is a vector of the numbers-at-length at time t, including each sex separately. The transi-
tion matrix 𝐀𝐀𝐭𝐭 contains sex-specific survival, growth rates and fecundities. The population is 
subject to both fishing and natural mortality, which occur simultaneously and continuously 
through time. Growth occurs instantaneously at the end of each time-step and is irreversible. 

Discrete length-structured models often make use of size classes with constant bin width 
(Drouineau et al., 2008). However, in this model we construct bins with varying length bin width 
such that individuals grow into the next length class within a single time-step as described by 
Andrews et al. (2006), Gurney et al. (2007) and Speirs et al. (2010). This results in a parsimonious 
number of length classes for each sex. The use of very small time-steps or many narrow length 
classes can thereby be avoided, improving computational efficiency. In order to create the length 
bins, we first define for each sex a development index, q, which is a function of length (Speirs et 
al., 2010). At the minimum length at which recruits are assumed to enter the population, Lmin, q 
is zero. Following von Bertalanffy growth, q increases linearly with length. Since q tends to in-
finity as the individual length approachesL∞, we define a maximum length Lmax which is less 
than L∞ to ensure a finite qmax. The number of length classes J is calculated, for each sex sepa-
rately, as: 

J =
qmax
∆q

 (2) 

The maximum development index, qmax, at Lmax is defined as: 

qmax ≡ −ln �
L∞ − Lmax
L∞ − Lmin

�, (3) 

whereL∞ is the asymptotic length. Classes are of fixed q width (∆q) but varying length width: 
classes are wider (in length) early in life when the individual growth rate is high and decrease 
as growth slows later in life, when individuals approach asymptotic size. 

The increment ∆q is set according to the growth rate k of the von Bertalanffy growth equation, 
growth variability coefficient p and the time-step∆t of the model (Speirs et al., 2010): 

∆q = k∆t
p

, (4) 

To incorporate variability in growth into the model, we assume that only a fraction, p, of indi-
viduals in a length class grows to the next size class within any time-step and the remaining 
fraction, (1-p), of individuals stay at their current size for another time-step(Gurney et al., 2007; 
Speirs et al., 2010). 

The left-hand (lower) boundary of each length class j in terms of the development index is: 

Lj = L∞ − (L∞ − Lmin) e(−(j−1)∆q). (5) 
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The midpoint of each length class, li, is calculated as the mean length of the lower boundary 
(Equation 4) and the lower boundary of the next larger length class. For the maximum length 
class of each sex, the respective L∞ is used as the upper boundary to calculate the midpoint. We 
select a conservative value of p=0.9, allowing only 10 % of individuals to remain in their current 
length class after one time-step while keeping the general growth pattern close to the respective 
von Bertalanffy growth equation. 

Using Ni,t to denote the number of individuals in size class i at time t, we can express the popu-
lation model (equation 1) in difference equations for two sexes and n length classes, with n=nm+nf, 
the sum of the number of male and female length classes: 

Ni,t+1 = si,t(1 − p)Ni,t +
1
2

R if i = 1 or i = (nm + 1)  

Ni,t+1 = si−1,tpNi−1,t+si,t(1− p)Ni,t if 1 < 𝑖𝑖 < 𝑒𝑒m or (nm + 1) < 𝑖𝑖 < 𝑒𝑒 (6) 

Ni,t+1 = si−1,tpNi−1,t+si,tNi,t if i = nm or i = n  

Recruits are split equally between males and females (entering only the smallest length class). 
Individuals reaching the maximum modelled size class for each sex cannot grow larger and sur-
vivors remain in that class. 

Mortality 
The population is subject to both fishing and natural mortality, which occur simultaneously and 
continuously through time. Natural mortality is assumed to be constant over time, length and 
for both sexes. Natural mortality is estimated for each sex separately using the length-based up-
dated Pauly estimator recommended by Then et al. (2015): 

M = 4.118k0.73(L∞/10)−0.33 (L∞ in mm) (7) 

Fishing mortality at time t and length i, Fi,t, is assumed to be separable and can be written as the 
product of a length-dependent selectivity ogive (logistic curve) and a time-dependent compo-
nent, ft, related to the level of fishing effort in the fisheries: 

Fi,t = ft
1

1+e−v(li−L50%) eεi,t .  (8) 

where L50%, the length at 50% retention, is the inflection point and v is a constant describing the 
steepness of the selectivity ogive. The selectivity (L50%) of the fishery is held constant over time 
resulting in a constant Lc, calculated from the resampled catch–length distributions. 

A lognormal error is included to allow for some variability in fisheries selectivity, with εt,i being 
normally distributed with N(0, σF2) (Figure A.1). 

The use of sex-specific growth parameters results in different length bin widths and midpoints 
and hence different mortality curves for the male and female components of the population. 

Survival at length i and time t, si,t, is defined as: 

si,t = e−(Mi+Fi,t) . (9) 

Catch in numbers by length class at time t are calculated according to the Baranov catch equation: 
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Ci,t = Fi,t
Mi+Fi,t

�1 − si,t�Ni,t . (10) 

The yield should be equal to TAC, assuming that the TAC is fully used: 

TACt = �wi

n

i=1

Ci,t (11) 

 

Figure A.1. Selectivity for cuckoo ray (left) and thornback ray (right) using an L50 of 450 mm. 

Reproduction 
In this model, mature individuals produce offspring at the beginning of the time-step and only 
in the following time-step do recruits enter the smallest length class of the population. 

The maturity ogive is defined as a logistic function with an inflection point around the sex-spe-
cific length at 50% maturity, Lmat and calculated for the midpoint of each length class (Figure 
A.2): 

Mati =
1

1 + e−u(li−Lmat)
 (12) 

 

Figure A.2. Maturity ogives by sex for cuckoo ray (left) and thornback ray (right). 

Spawning–stock biomass is calculated as the sum of individual weights of all mature individuals 
in the stock: 
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SSBt = ∑ MatiNi,twi
n
i=1  , (13) 

The individual weights at length, wi, are estimated using sex-specific exponential length–weight 
relationships that are constant over time: 

wi = alib (14) 

Recruitment is related to the number of mature females in the previous year and is assumed to 
follow the Beverton–Holt stock–recruitment relationship with multiplicative lognormal error 
(Figure A.3): 

Rt+1 =
c∑ MatiNi,t

n𝑓𝑓
i=1

1 + d∑ MatiNi,t
n𝑓𝑓
i=1

e
�εt+1−

σR
2

2 � (15) 

The error ε𝑐𝑐+1 is normally distributed with N(0, 𝜎𝜎𝑅𝑅2) and has a bias correction term (Thorson and 
Kristensen, 2016). In the basic scenario, the spawning–stock recruitment relationship is parame-
terized to generate unexploited stable population equilibrium with a steepness that allows for a 
reduction of recruitment as SSB decreases (Figure A.3). The specific life-history parameters used 
in the model are listed in Table A.1. 

 

A.3.Spawner–recruitment relationship, cuckoo ray (left) and thornback ray (right). 
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Table A.1. Parameters L.naevus (RJN) and R.clavata(RJC), using life-history characteristics. 

Description parameter Value 

RJN 

Value 

RJC 

unit reference 

Von Bertalanffy growth K (male) 

K (female) 

0.294 

0.197 

0.135 

0.093 

 Gallagher et al. 
(2005b) 

Irish Sea 
L∞ (male) 

L∞ (female) 

746 

839 

1065 

1395 

mm 

mm 

Variability in L∞ CV(L∞) 0 0   

Maximum length to determine number of classes Lmax (male) 

Lmax (female) 

745.5 

838.5 

1064.5 

1394.5 

mm 

mm 

0.5mm below L∞ 

Minimum modelled length Lmin 100 100 mm  

Growth variability constant p 0.9 0.9   

Times-step ∆t 1 1   

Natural mortality M(male) 

M(female) 

0.406 

0.292 

0.205 

0.143 

 Then et al. (2015) 

Length at 50% retention L50% 450 450 mm  

Selectivity ogive constant v 0.07 0.07   

Standard deviation of ε𝑐𝑐,𝑖𝑖 (fishing mortality) 𝜎𝜎𝐹𝐹 0.1 0.1   

Length–weight relationship a (male) 

a (female) 

b (male) 

b (female) 

0.0041 

0.0036 

3.105 

3.147 

0.0042 

0.0036 

3.106 

3.162 

g cm-

b 

g cm-

b 

McCully et al. (2012) 

Celtic Sea 

to mm:  a’=a10-b 

Size at 50% maturity Lmat (males) 

Lmat (fe-
males) 

569 

562 

657 

718 

mm 

mm 

Gallagher et al. 
(2005b) 

 

Maturity ogive constant u 0.06 0.06   

Recruitment relationship 

 

c 

d 

6 

6*10-7 

4 

8*10-7 

  

Standard deviation of ε𝑐𝑐+1 (fecundity) 𝜎𝜎𝑅𝑅𝑚𝑚𝑐𝑐 0.08 0.08   
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Reference points 
The derivation of the reference point for L̅, LF=M, requires the assumptions that the population is 
at equilibrium with individuals following deterministic von Bertalanffy growth, constant recruit-
ment, natural mortality is independent of size, fishing mortality occurs with knife-edged selec-
tivity. An analytical expression for the calculation of the reference point LF=M was presented by 
Jardim et al. (2015), with θ = k

M
 and γ = F

M
= 1,: 

LF=γM,k=θM = θL∞+(γ+1)Lc
θ+γ+1

 (16) 

The reference point depends on Lc and stock-specific biological parameters of L∞, M, and k 
(larger sex females, Table A.1). The respective values of Lc are calculated from the ‘sampled’ 
catch-at-length data generated with the simulation model. From the catch–length distribution in 
each year and simulation run, 0.1% of catches are resampled. Alternative expected values for the 
mean length in the catch can be calculated for any given k/M. The reference point is independent 
of the maturation process. 

Alternative reference points can be calculated based on the spawning potential ratio (SPR). We 
can calculate reference points based on F40%SPR using analytical models (Miethe et al., 2019). Meth-
ods allow for the estimation of the expected catch–length distribution at a particular level of SPR, 
depending on Lc (size at first capture) and stock-specific biological parameters of L∞ (asymptotic 
size), Lmat (size at first maturation), M (natural mortality), k (growth) and b (length–weight rela-
tionship) for females. The respective mean length in the catch (total mean length, mean length of 
largest 5%). Assumptions are von Bertalanffy growth, equilibrium dynamics and constant re-
cruitment. Due to the set-up of the population model (limited by L∞) the coefficient of variation 
CVL∞ ≈ 0 for calculation of the reference points. 

Harvest control rules (HCRs) 
To evaluate the performance of indicator-based HCRs, we make use of an MSE framework and 
consider a number of different reference points. We run scenarios with an L50% of 450mm (i.e. 
smaller than Lmat) for two elasmobranch species. As length-based indicators, we calculate the 
mean length in the catch (larger than Lc) and the mean length of the largest 5% in the catch, 
Lmax5%(Probst et al., 2013). 

Each scenario is simulated 1000 times. The simulations are run for a total of 200 years. All simu-
lations are carried out in R (R Core Team, 2017). Each simulation is initiated with a stock at the 
unexploited equilibrium and with stochastic recruitment. After ten years without exploitation, 
the fishery is assumed to begin, initially with a constant catch (TAC) at a level which causes the 
stock to be overexploited (SPR<40% by year 40). Then after year 40, when a TAC management is 
implemented, catch is defined by an indicator-based HCR. 

Two alternative length-based HCRs, which update the TAC on a quadrennial basis, are tested 
within the MSE framework.In each HCR, the future TAC is assumed to be proportional to the 
current TAC (year t) and a time-dependent multiplier. In the first rule, the multiplier is calculated 
as the ratio of the average of the length-based indicator (LBI) to the respective reference point 
(Ref) in the in the previous four years: 

TACt+1 =
1
4∑ LBIt−1

k=t−4
1
4∑ Reft−1

k=t−4
× TACt       where t = 41, 45, 49,… (17) 

With this rule, the annual TAC change is limited to ±15 %. Truncation of the length distribution 
will first be visible in the larger sex (here females) if both sexes are exploited equally. Therefore 
the HCRs are based only on the indicators and reference points of females. Alternatively, we test 
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a combined HCR which uses the LBI ratio together with a stock index based on CPUE (2-over-5 
rule) to adjust catches: 

TACt+1 =
1
4∑ LBIt−1

k=t−4
1
4∑ Reft−1

k=t−4
× CPUE2

CPUE5
× TACt       where t = 40, 44, 48, … (18) 

CPUE is calculated as the ratio of catch weight (yield) and fishing mortality level (ft) from the 
model output. Observation error in the CPUE index is included using a lognormal error εcpue,t  
with N(0,σCPUE): 

CPUEt = Yieldt
ft×eεcpue,t (19) 

In a 2-over-5 rule the ratio of the mean CPUE in the most recent two years and the previous five 
years is calculated (ICES, 2018b). Following results from WKLIFE 2018 (ICES, 2018a), we use 
asymmetric annual constraints on TAC (-25%, 5%). 

For a given TAC, the annual fishing mortality multiplier, ft (equation 19), is derived by numeri-
cally solving equation 7–11. The value of ft is limited to a maximum of 2.0, to avoid infinite values 
of fishing mortality as the population declines to zero. The numerically derived ft is then used to 
calculate catch-at-length data and project the population for the next time-step. To account for 
observation error introduced through the sampling process, ‘sampled’ catch-at-length data are 
generated by randomly selecting 0.1 % of the total number of individuals in the catch from the 
model-simulated empirical catch–length distribution. 

Length-based indicators, Lmax5% and L ̅, are calculated from the ‘sampled’ catch-at-length data for 
use in the HCR. L ̅ is calculated as the mean length of individuals larger than Lc (the length at first 
capture), the length at which the frequency reaches 50 % of the mode on the left hand side of the 
distribution (Jennings et al., 2001; ICES, 2012). Lc of the ‘sampled’ catches is then equivalent to 
the L50%of the selectivity ogive, but it corresponds to length classes and midpoints of the analyt-
ical model for the respective species. 

We calculate the annual probability of being below 0.25 SSB0 (25% of unexploited spawning–
stock biomass) and 0.4 SSB0. The risk of falling below 0.25 SSB0 and 0.4 SSB0 after implementation 
of the HCR (year 40) is determined for each ten-year period as the maximum annual probability 
of being below the respective SSB threshold and for the final 50 years of the simulation. The time 
to recovery is measured in number of years until median SSB reaches 0.4 SSB0 with implementa-
tion of the HCRs. Median yield at the end of the simulation period (years 195–200) is calculated 
together with standard deviation (SD). 

Results 

Cuckoo ray results 
In the baseline scenario the simulated stock, cuckoo ray, collapses after a period of high constant 
catch taken annually at L50=450 (fishing below Lmat), with risk to fall below 0.25SSB0 at the end of 
the simulation period of 100% (Figure A.8). Using a simple indicator-based harvest control rule 
(LF=M) improves stock status in some of the simulations (Table A.2). However, the risk to fall 
below 0.25SSB0 at the end of the simulation period is above 70%. The simple HCR using L�SPR40% 
succeeds in recovering an overexploited stock with risks below 5% in the longterm. Simulation 
results of the scenarios are detailed in Figures A.8–A.12 for cuckoo ray. 

A combined HCR (LBI and CPUE, Equation 19) is better suited to recover overexploited stocks 
under non-equilibrium dynamics and with a spawner–recruitment relationship that allows for 
strong reduction recruitment as the number of spawners decrease (Table A.2). By taking into 
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account a CPUE index, the combined HCRs account for changes in stock size which is of partic-
ular importance when Lc<Lmat, and length-based indicator calculation is strongly influenced by 
recruitment variability (including trends in recruitment). For all combined HCRs, risks to fall 
below 0.25SSB0 remain below 5% for cuckoo ray. For cuckoo ray, the L�SPR40% indicator is best 
suited for use in a harvest control rule when Lc<Lmat (Table A.5, Figure A.4). Recovery duration 
is shortest when applying a HCR combining L�SPR40% indicator with a CPUE index but lower long-
term yield (Table A.6). 

If Lc is above Lmat (L50=600), the simple HCRs perform better in terms of risk and all tested HCRs 
succeed in recovering an overexploited stock. Here at higher value of Lc, recruitment variability 
has less effect on indicator calculation. The reference point LF=M is more precautionary when 
Lc>Lmat, as anticipated from analysis presented in Section 3. 

Median values of SSB/SSB0, recruitment and length-based indicators are summarized for differ-
ent HCRs in Figures A.4 and A.5. 

Table A.2. Cuckoo ray, risk3 (maximum annual probability to fall below 0.25SSB0) in years 151–200. 

LBI Simple HCR, L50=450 combined HCR 

L50=450 

Simple HCR, L50=600 combined HCR 

L50=600 

𝐋𝐋max5%SPR40% 100 1.1 0.2 0.2 

𝐋𝐋max5%SPR60% 71 0 0 0 

�̅�𝐋SPR40% 0.8 0 3.3 0 

LF=M 73 0 0 0 
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Figure A.4. Cuckoo ray, initial TAC 700t, L50=450 mm, simple (LBI) HCRs in the left panel, combined (LBI, CPUE) HCRs right 
panel. 

 

Figure A.5. Cuckoo ray, initial TAC 825t, L50=600mm, simple (LBI) HCRs in the left panel, combined (LBI, CPUE) HCRs right 
panel. 
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Thornback ray results 
In the baseline scenario the simulated stock, thornback ray, collapses after a period of high con-
stant catch taken annually with risk to fall below 0.25SSB0 at the end of the simulation period of 
100% (Figure A.13). Using a simple indicator-based harvest control rule with Lmax5%SPR60% or L�SPR40% 
at L50=450 (fishing below Lmat), improves stock status with risk to fall below 0.25SSB0 at 0% in the 
long-term. However, for this stock the risk to fall below 0.25SSB0 is above 90% when using a 
simple length-based indicator HCR with Lmax5%SPR40% and LF=M (Table A.3). Simulations of the sce-
narios are detailed in Figures A.13–A.15 for thornback ray. 

A combined HCR is better suited to recover overexploited stocks under non-equilibrium dynam-
ics and the respective spawner–recruitment relationship (Table A.3, Figures A.16–A.17). All com-
bined HCRs succeed in recovering an overexploited stock, with risks below 5%. The use of a 
combined HCR using LF=M as a reference point still results in a long-term risk of 4.1%. This value 
is relatively close to 5%, such that small changes in the simulation set up could lead to the risk 
being above 5%. In comparison to cuckoo ray, at L50=450 for thornback ray LF=M performs worse 
than other HCRs.  

At Lc>Lmat, all tested HCRs are successful in recovering an overexploited stock. For thornback 
ray, the indicators L�SPR40% and Lmax5%SPR60% are best suited for use in a harvest control rule for dif-
ferent levels of Lc. 

Table A.3. Thornback ray, Risk3 (maximum annual probability to fall below 0.25SSB0) in years 151–200. 

LBI Simple HCR, L50=450 CPUE based HCR 

L50=450 

Simple HCR, L50=800 CPUE based HCR 

L50=800 

𝐋𝐋max5%SPR40% 91 0 0 0 

𝐋𝐋max5%SPR60% 0 0 0 0 

�̅�𝐋SPR40% 0 0 0 0 

LF=M 100 4.1 0 0 
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Figure A.6. Thornback ray, initial TAC 2300t, L50=450mm, simple (LBI) HCRs in the left panel, combined (LBI, CPUE) HCRs 
right panel. 

 

Figure A.7. Thornback ray, initial TAC 3000t, L50=800mm, simple (LBI) HCRs in the left panel, combined (LBI, CPUE) HCRs 
right panel. 
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Figure A.8. Cuckoo ray, initial TAC 700t, L50=450mm, no HCR. 

 

Figure A.9. Cuckoo ray, initial TAC 700t, L50=450mm, HCR 𝐋𝐋𝐅𝐅=𝐌𝐌. 
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Figure A.10. Cuckoo ray, initial TAC 700t, L50=450mm, HCR �̅�𝐋 40%SPR. 

 

Figure A.11. Cuckoo ray, initial TAC 700t, L50=450mm, HCR 𝐋𝐋𝐅𝐅=𝐌𝐌 CPUE. 
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Figure A.12. Cuckoo ray, initial TAC 700t, L50=450mm, HCR �̅�𝐋 40%SPR CPUE. 

 

Figure A.13. Thornback ray, initial TAC 2300t, L50=450mm, no HCR. 
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Figure A.14. Thornback ray, initial TAC 2300t, L50=450mm, HCR 𝐋𝐋𝐅𝐅=𝐌𝐌. 

 

Figure A.15. Thornback ray, initial TAC 2300t, L50=450mm, HCR �̅�𝐋 40%SPR. 
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Figure A.16. Thornback ray, initial TAC 2300t, L50=450mm, HCR 𝐋𝐋𝐅𝐅=𝐌𝐌 CPUE. 

 

Figure A.17. Thornback ray, initial TAC 2300t, L50=450mm, HCR �̅�𝐋 40%SPR CPUE. 

Discussion 
The MSE simulations confirmed for two stocks with different life histories that a combined 
HCRs, making use of a CPUE index together with a length-based indicator, are best suited to 
manage overexploited elasmobranch stocks, in particular since Lc is often below Lmat. The reduc-
tion in recruitment with decreasing spawner numbers affects length-based indicators. A decreas-
ing number of small individuals in the catch can lead to higher length-based indicator values 
(larger mean length, larger mean length of the largest 5%) than expected under a constant re-
cruitment. The reference points are calculated with the assumption of constant recruitment and 
equilibrium dynamics. Under non-equilibrium dynamics, trends in stock abundance, indicated 
by a low CPUE index, can occur and should be taken into account, for example by using a com-
bined HCR. 

The reference point LF=M is expected to perform worse in terms of risk to fall below biomass 
thresholds when Lc<Lmat(Jardim et al., 2015). Here, it was found that LF=M performs worse for 
thornback ray than cuckoo ray, which should be due to differences in life history and exploitation 
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characteristics. In Table A.4, a number of relevant life-history ratios and reference points are 
compared. We find that while both stocks have a similar ratio of M/k, fishing with L50=450 mm 
relates differently to the respective Lmat. While in relative terms (relative to L∞) maturity occurs 
at smaller size in thornback ray, the absolute size at first maturation is larger than for cuckoo ray. 
So for the same L50, fisheries targets immature individuals in thornback rays at relatively lower 
size making the stock more vulnerable to overexploitation. SPR-based reference point take into 
account the maturity and fishing selectivity. The reference point LF=M does not depend on Lmat, 
such that for thornback ray the expected mean length at F=M (LF=M) is slightly below Lmat. In 
contrast, for cuckoo ray both LF=M and L�SPR40% as well as L�SPR40% for thornback ray are larger than 
the respective Lmat. Ideally, the mean length in the catch should not be below Lmat to ensure that 
a sufficient number of individuals survive to reach maturity and reproduce. 

Table A.4. Life-history ratios and reference points (L50=450, resulting in Lc=493 (RJN), Lc=492 (RJC)). 

 Cuckoo ray Thornback ray 

M/k (female) 1.48 1.54 

Lmat/L∞ (female) 0.67 0.52 

L50%/Lmat(female) 0.8 0.63 

Lmax5%40%SPR / L∞ 0.91 0.87 

Lmax5%60%SPR / L∞ 0.94 0.91 

LF=M/ L∞ 0.69 0.51 

L�SPR40%/ L∞ 0.71 0.54 

LF=M/ Lmat 1.03 0.99 

L�SPR40%/ Lmat 1.05 1.06 
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Additional tables and figures 

Table A.5. Risks, cuckoo ray, L50=450, initial TAC =700t. 
 

101–110 years 111–120 years 121–130 years 131–140 years 141–150 years 151–200 years HCR 

0.25 SSB 93.7 87.3 80.5 76.4 74.1 73.2 LF=M 

0.40 SSB 100 99.7 96.3 85.1 77.1 74.2 

 

0.25 SSB 2 1.4 1 0.9 0.8 0.8 L�SPR40 

0.40 SSB 11.9 2.3 1.4 0.9 0.9 0.8  

0.25 SSB 100 100 100 100 100 100 Lmax5% 40%SPR 

0.40 SSB 100 100 100 100 100 100  

0.25 SSB 91.9 83.6 77.1 73.7 71.2 70.8 Lmax5% 60%SPR 

0.40 SSB 99.9 99 92.7 79.8 74.1 71.2  

0.25 SSB 0.2 0 0 0 0 0 LF=M  

0.40 SSB 17.3 10.3 5.2 2.3 1.2 0.4 CPUE 

0.25 SSB 0 0 0 0 0 0 L�SPR40 

0.40 SSB 1.9 0.3 0.1 0 0 0 CPUE 

0.25 SSB 10.7 8.1 6.2 4.2 2.4 1.1 Lmax5% 40%SPR 

0.40 SSB 64.7 55 44.4 37.5 32.3 27.1 CPUE 

0.25 SSB 0.2 0 0 0 0 0 Lmax5% 60%SPR 

0.40 SSB 14.3 7.6 3.4 1.5 0.6 0.1 CPUE 
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Table A.6. Recovery, cuckoo ray, L50=450, initial quota 700t. 

HCR Duration recovery 

(median SSB>0.4SSB0) 

Median yield 

(195-200) 

SD in yield 

(195-200) 

LF=M NA 0 183 

�̅�𝐋SPR40 53 337 37.1 

Lmax5% 40%SPR NA 0 0 

Lmax5% 60%SPR NA 0 162 

LF=M CPUE 39 392 62.1 

�̅�𝐋SPR40 CPUE 28 298 58.5 

Lmax5% 40%SPR CPUE 75 487 57.5 

Lmax5% 60%SPR CPUE 38 360 66.1 

Table A.7. Risks thornback ray, L50=450, initial TAC =2300t. 
 

101–110 years 111–120 years 121–130 years 131–140 years 141–150 years 151–200 years HCR 

0.25 SSB 100 100 100 100 100 100 LF=M 

0.40 SSB 100 100 100 100 100 100 

 

0.25 SSB 0 0 0 0 0 0 L�SPR40 

0.40 SSB 0 0 0 0 0 0  

0.25 SSB 99.9 98.3 94.4 91.9 91.3 91 Lmax5% 40%SPR 

0.40 SSB 100 100 98.9 93.3 91.8 91.2  

0.25 SSB 0 0 0 0 0 0 Lmax5% 60%SPR 

0.40 SSB 0 0 0 0 0 0  

0.25 SSB 10.3 7.8 5 3.7 3.1 4.1 LF=M  

0.40 SSB 87.4 82.9 80.5 75.2 72.3 69.9 CPUE 

0.25 SSB 0 0 0 0 0 0 L�SPR40 

0.40 SSB 2.8 0.9 0.1 0 0.1 0.1 CPUE 

0.25 SSB 0.7 0.2 0 0 0 0 Lmax5% 40%SPR 

0.40 SSB 40.2 27.3 19.3 13.3 10 8.4 CPUE 

0.25 SSB 0 0 0 0 0 0 Lmax5% 60%SPR 

0.40 SSB 1.1 0.1 0 0 0 0 CPUE 
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Table A.8. Recovery, thornback ray, L50=450, initial TAC =2300t. 

HCR Duration 

recovery (SSB>0.4SSB0) 

Median yield 

(195–200) 

SD in yield 

LF=M NA 0 0 

�̅�𝐋SPR40 49 1641 53.9 

Lmax5% 40%SPR NA 0 380.7 

Lmax5% 60%SPR 48 1177 61.4 

LF=M CPUE NA 1755 161.6 

�̅�𝐋SPR40 CPUE 28 1305 180.2 

Lmax5% 40%SPR CPUE 55 1548 188.2 

Lmax5% 60%SPR CPUE 28 1019 193.2 
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Annex 5: Recommendations 

Recommendation For follow 
up by: 

It is recommended by WKLIFE IX that there be a tenth meeting of WKLIFE in Lisbon, Portugal 21st–25th 
September 2020, whose draft ToRs are proposed in this report for the consideration of ACOM. 

1. Continue the development of appropriate methods for the assessment and provision of fish-
ing opportunities for data-limited short-lived species stocks. 

2. Further review the application of harvest control methods exploring the implementation of 
additional precautionary measures where necessary such as an asymmetric precautionary 
buffer and/or biomass safeguards; i.e. reducing advice when below reference point(s). 

3. Further explore and develop methods appropriate for data-limited, data-moderate and data-
rich fisheries such as MERA, DLMtool and MSEtool libraries; together with emerging mul-
tispecies approaches both within and outside the ICES’ community. 

4. Evaluate the robustness of SPiCT based upon the development of Operating Models of Af-
rican black hakes using FLife developed under the MyDas project and compare results from 
SPiCT to the age-based a4a assessment model. 

5. Evaluate further improvements to the performance of the WKMSYCat34 catch rule 3.2.1. 
Focus on improving the catch rule for stocks with von Bertalanffy growth parameter k>0.32, 
investigate more extensively the definition of the catch rule components and their impact on 
performance, and investigate the possibility of alternative catch rules. 

6. Explore the operating model set-up for data-limited simulations, including sensitivity anal-
yses based on the Jacobian; e.g. elasticity analysis, on how the different life-history and fish-
ery parameters affect the simulated stock behaviour under exploitation, an analysis of the 
nature of time-series and trends of observable stock characteristics (such as fishery depend-
ent and independent metrics) and how the knowledge gained can be used to further im-
prove the performance of catch rules. 

ACOM 

The work of WKDLSSLS is considered incomplete and the participants at WKLIFE IX support a second meet-
ing of WKDLSSLS to further develop and refine advice rules for short-lived species. 

ACOM 

It is recommended by WKLIFE IX that the exploratory studies undertaken with respect to ToR c) this year 
be further explored, if possible. 

ACOM 

ICES should explore the on-line App developments for data-limited, data-moderate and data-rich fisheries; 
e.g. MERA (Method Evaluation and Risk Assessment) an open-source tool for analysing risk, guiding fishery 
improvement projects, and evaluating management strategies for certification which links to DLMtool 
(previously, investigated at WKLIFE meetings) and MSEtool libraries to calculate population status and 
management performance.  The App has potential within the ICES community and would be worth explor-
ing at future meetings of WKLIFE. 

ACOM 

When combining modelling approaches incorporating data-rich, data-moderate and data-limited stocks, 
there may be a need for undertaking MSE using short-cut approaches rather than full-feedback evalua-
tion, as in the modelling presented in Section 6.  Guidelines on the appropriateness of such an approach 
would greatly benefit future advisory work both within, and outside, ICES. 

ACOM 
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