## 3 Northeast Atlantic boarfish (Capros aper)

The boarfish (Capros aper, Linnaeus) is a deep bodied, laterally compressed, pelagic shoaling species distributed from Norway to Senegal, including the Mediterranean, Azores, Canaries, Madeira and Great Meteor Seamount (Blanchard \& Vandermeirsch 2005).
Boarfish is targeted in a pelagic trawl fishery for fish meal, to the south and southwest of Ireland and Northern Biscay. The boarfish fishery is conducted in shelf waters with the first landings reported in 2001. Landings were at very low levels from 2001-2005. The main expansion period of the fishery took place between 2006 and2010 when unrestricted landings increased from 2772 t to 137503 t . A restrictive TAC of 33000 t was implemented in 2011. In 2011, ICES was asked by the European Commission to provide catch advice for 2012 for the first time.

An analysis of bottom trawl survey data suggests a continuity of distribution spanning ICES Subareas 27.4, 6, 7, 8 and 9 (Figure 3.1). Isolated occurrences appear in the North Sea (ICES Subarea 27.4) in some years indicating spill-over into this region. A hiatus in distribution was suggested between ICES Divisions 27.8.c and 9.a as boarfish were considered very rare in northern Portuguese waters but abundant further south (Cardador \& Chaves 2010). Results from a dedicated genetic study on the stock structure of boarfish within the Northeast Atlantic and Mediterranean Sea suggests that this hiatus represents a true stock separation (Farrell et al. (2016); see section 3.12). Based on these data, a single stock is considered to exist in ICES Subareas 27.4, 6, 7, 8 and the northern part of 9.a. This distribution is slightly broader than the current EC TAC area ( $27.6,7$ and 8 ) and for the purposes of assessment in 2021 only data from these areas were utilized.

### 3.1 The fishery

### 3.1.1 Advice and management applicable from 2011 to 2021

In 2011 a TAC was set for this species for the first time, covering ICES Subareas 6, 7 and 8 . This TAC was set at 33000 t . Before 2010, the fishery was unregulated. In October 2010, the European Commission notified national authorities that under the terms of Annex 1 of Regulation 850/1998, industrial fisheries for this species should not proceed with mesh sizes of less than 100 mm. In 2011, the European Parliament voted to change Regulation 850/1998 allowing the fishery to use mesh sizes ranging from 32 to 54 mm .

For 2012, ICES advised that catches of boarfish should not increase, based on precautionary considerations. As supporting information, ICES noted that it would be cautious that landings did not increase above 82000 t , the average over the period 2008-2010, during which the stock did not appear to be overexploited. In 2012 the TAC was set at 82000 t by the Council of the European Union.

For 2013, ICES advised that catches of boarfish should not be more than 82000 t . This was based on applying a harvest ratio of $12.2 \%$ (F0.1, as an FMSY proxy). For 2013, the TAC was set at 82000 $t$ by the Council of the European Union.
For 2014, ICES advised that, based on $\mathrm{F}_{\mathrm{MSY}}$ (0.23), catches of boarfish should not be more than 133 957 t , or 127509 t when the average discard rate of the previous ten years ( 6448 t ) is taken into account. For 2014 the TAC was set at 133957 t by the Council of the European Union. This advice was based on a Schaefer state space surplus production model (see section 3.6.3 for further details).

In 2014 there was concern about the use of the production model (see stock annex). ICES considered that the model was no longer suitable for providing category 1 advice and further model development was required. The model is still considered suitable for category 3 advice. The advised catch for 2015 of 53296 t was based on the data limited stock HCR and an index calculated (method 3.1; ICES, 2012) using the total stock biomass trends from the model. Further work has been undertaken in 2015 to address the issues with the surplus production model and this work has continued since.

For 2016, ICES advised based on the precautionary approach that catches should be no more than 42637 t .

For 2017, ICES advised based on the precautionary approach that catches should be no more than 27288 t . For the first time, the precautionary buffer was applied resulting in a $36 \%$ reduction compared to the year before. The acoustic survey suggested that the stock abundance was at an historic low. In 2017, the Advice Drafting Group decided the advice of 21830 proposed ( $20 \%$ reduction) would stand for 2 years. The update assessments in 2018 and 2019 confirmed that the biomass was rather stable and at a low level.

In 2019, advice of 19152 t was issued for each of 2020 and 2021 on the basis of the precautionary approach.

Since 2011, there has been a provision for bycatch of boarfish (also whiting, haddock and mackerel) to be taken from the Western and North Sea horse mackerel EC quotas. These provisions are shown in the table below. The effect of this is that a quantity not exceeding the value of these 4 species combined may be landed legally and subtracted from quotas for horse mackerel.

| Year | North Sea (t) | Western (t) |
| :---: | :---: | :---: |
| 2011 | 2031 | 7779 |
| 2012 | 2148 | 7829 |
| 2013 | 1702 | 7799 |
| 2014 | 1392 | 5736 |
| 2015 | 583 | 4202 |
| 2016 | 760 | 5443 |
| 2017 | 912 | 4191 |
| 2018 | 759 | 5053 |
| 2019 | 759 | 5956 |
| 2020 | 688 | 3531 |
| 2021 | 701 | 3513 |

In 2010, an interim management plan was proposed by Ireland, which included a number of measures to mitigate potential bycatch of other TAC species in the boarfish fishery. A closed season from the 15th March to 31st August was proposed, as anecdotal evidence suggests that mackerel and boarfish are caught in mixed aggregations during this period. A closed season was proposed in ICES Division 7.g from 1st September to 31st October, in order to prevent catches of Celtic Sea herring, which is known to form feeding aggregations in this region at these times.

Finally, if catches of a species covered by a TAC, other than boarfish, amount to more than $5 \%$ of the total catch by day by ICES statistical rectangle, then fishing must cease in that rectangle for 5 days.

In August 2012 the Pelagic RAC proposed a long term management plan for boarfish. The management plan was not fully evaluated by ICES; however, in 2013 ICES advised that Tier 1 of the plan could be considered precautionary if a Category 1 assessment was available.

A revised draft management strategy was proposed by the Pelagic AC in July 2015. This management strategy aimed to achieve exploitation of boarfish in line with the precautionary approach to fisheries management, FAO guidelines for new and developing fisheries, and the ICES form of advice. ICES evaluated the plan and considered it to be precautionary, in that it followed the rationale for TAC setting enshrined in the ICES advice, but with additional caution.

The closed season, in the interim and revised management plans, have been enacted in legislation in Ireland, but not in other countries.

### 3.1.2 The fishery in recent years

Before the development of the fishery, boarfish was a discarded bycatch in the pelagic mackerel fishery in ICES Subareas 7 and 8. A study by Borges et al. (2008) found that boarfish may have accounted for as much as $5 \%$ of the total catch of Dutch pelagic freezer trawlers. Boarfish was also discarded in whitefish fisheries, particularly by Spanish demersal trawlers (Table 3.1.2.2).

The first landings of boarfish were reported in 2001. Landings fluctuated between 100 and 700 t per year up to 2005 (Table 3.1.2.1). In 2006, the landings began to increase considerably as a target fishery developed. Cumulative landings since 2001 exceed 600000 t . The fishery targets dense shoals of boarfish from September to March. Catches are generally free from bycatch from September to February. From March onward a bycatch of mackerel can be found in the catches and the fishery generally ceases at this time. Information on the bycatch of other species in the boarfish fishery is sparse, though thought to be minimal. The fishery uses pelagic pair trawl nets with mesh sizes ranging from 32 to 54 mm . Preliminary information suggests that only the smallest boarfish escape this gear.

In 2014 and subsequent years, the full TAC has not been caught. This is thought to be partly due to a reduction in the availability of fishable aggregations, and partly due to economic and administrative reasons. Also, the Irish quota was allocated to individual boats, with non-specialist vessels receiving allocations that were not used. In 2015, Q3 and Q4 individual boat quotas were removed in Ireland, in an attempt to allow the specialist 6-7 vessels target the stock without (what the industry considers to be unnecessary) constraints. The same year, the Netherlands (375 $\mathrm{t})$, UK England ( 104 t ) and Germany ( 4 t ) reported boarfish landings for the first time. These landings were mainly bycatch from freezer trawlers.

In 2016 a total of 19315 t of boarfish were caught (Table 3.1.2.1). Ireland continued to be the main participant taking 17496 t but was below its 29464 t quota. Denmark took only 337 t , significantly under its national quota of 10463 t . Scotland reported no boarfish landings. Tables 3.1.2.5 and 3.1.2.7 shows that two thirds of the Irish landings were taken in ICES divisions 7.h and 8.a respectively. Thirty-two Irish registered fishing vessels reported catches with the majority made in Q1 (7 143 t ) and Q4 (8 711 t ).

In 2017 a total of 17388 t of boarfish were caught. Ireland continued to be the main participant landing 15484 t but was almost $20 \%$ below its 18858 quota. Denmark landed only 548 t , not even $10 \%$ of its national quota of 6696 t . UK reported almost null boarfish landings. Discards accounted for 1173 tonnes overall. About $90 \%$ of the Irish landings were taken in ICES divisions
7.h and 8.a (Tables 3.1.2.5 and 3.1.2.7). Thirty-five Irish registered fishing vessels reported catches with almost the entirety made in Q1 (8570 t) and Q4 (6 270 t ).

In 2018 a total of 11286 t of boarfish were caught. This represented $55 \%$ of the 2018 quota of 20 380 t . Ireland continued to be the main participant landing 9513 t ( $68 \%$ of its national quota). The Irish catch represented $85 \%$ of the total boarfish catch in 2018. Other countries reporting boarfish in 2018 were Denmark ( 94 t ), The Netherlands ( 172 t ), Spain (148t), UK England ( 0.085 t) and UK Scotland ( 0.229 t ). Discards accounted for 1359 t overall. Tables 3.1.2.5 and 3.1.2.7 shows that about $82 \%$ of the Irish landings were taken in ICES divisions 7.h and 8.a respectively.

A total of 11312 t of boarfish was caught in 2019 (Table 3.1.2.1). This represents $52 \%$ of the 2019 quota of 21830 t . The main participant in the fishery, Ireland, landed 9910 t ( $75 \%$ of its national quota). The Irish catch represents $88 \%$ of the total boarfish catch in 2019 . Other countries reporting boarfish catches in 2019 were Denmark ( 757 t), the Netherlands ( 317 t), England ( 19 t ) and Spain ( 2.5 t ). Discards accounted for 306 t overall. Tables 3.1.2.5 and 3.1.2.7 shows that about $87 \%$ of Irish landings were taken in ICES divisions 7.h and 8.a respectively.

### 3.1.3 The fishery in 2020

In 2020, the total catch was 15649 t which represented $82 \%$ of the quota (19 152 t ). Ireland was the main partaker in the fishery ( 14666 t ) and landed more than its national quota ( 13234 t ) for the first time since TAC and quota regulations were established. The Irish landings accounted for $94 \%$ of the total catch. The other countries reporting catches are Denmark ( 196 t ), the Netherlands ( 416 t ), England ( 62 t ), Poland ( 109 t ) and Spain ( 1 t ). The total discards for this year were 198 t . The majority of landings were taken in ICES divisions 7.b and 7.h (Tables 3.1.2.4 and 3.1.2.5).

### 3.1.4 Regulations and their effects

In 2010, the fishery finished early when the European Commission notified member states that mesh sizes of less than 100 mm were illegal. However, in 2011, the European Parliament voted to change Regulation 850/1998 to allow fishing for boarfish using mesh sizes ranging from 32 to 54 mm . The TAC ( 33000 t ) that was introduced in 2011 significantly reduced landings.

### 3.1.5 Changes in fishing technology and fishing patterns

The expansion of the fishery in the mid-2000s was associated with developments in the pumping and processing technology for boarfish catches. These changes made it easier to pump boarfish ashore. To date the majority of boarfish landings by Danish, Irish and Scottish vessels have been made into Skagen, Denmark and Fuglafjorour, Faroe Islands to be processed into fishmeal. A small number of Irish vessels have landed into Killybegs and Castletownbere, Ireland. These landings into Irish ports were expected to increase in the future with the development of a human consumption fishery but this development now seems unlikely. This is due to the species' small size and difficulty being processed on conventional equipment.

### 3.1.6 Discards

It is to be expected that discarding occurred before 2003, particularly in demersal fisheries, however it is difficult to predict what the levels may have been.

Since 2003, the major sources of discard estimates are the Dutch pelagic freezer trawlers and both the Irish and Spanish demersal fleets. More sporadic discards are observed in German pelagic
freezer trawlers and the UK demersal fleet. In 2016, Lithuania declared discards for the first time but hasn't since 2018. Discard estimates are not obtained from French freezer trawlers, though discard patterns in these fleets are likely to be similar to the Dutch fleet. Discard data from the Portuguese bottom otter trawl fleet in ICES Division 9.a are also available but are not included in the assessment as they are outside the TAC area. Table 3.1.2.2 show the total annual discards and estimates from the demersal and non-target fisheries respectively.

Discard data were included in the calculation of catch numbers at age. All discards were raised as a single metier using the same age length keys and sampling information as for the landed catches. In the absence of better sampling information on discards, this was considered the best approach. This placed the stock in Category A2 for the ICES Advice in October 2013: Discards 'topped up' onto landings calculations. With the introduction of the discard ban in 2015 this stock was placed in A4: Discards known, with discard ban in place in year +1 . As such the advice will be given for catch in ICES Advice October 2014 and onwards.

### 3.2 Biological composition of the catch

### 3.2.1 Catches in numbers-at-age

Catch numbers-at-age were prepared from Irish, Danish, Dutch, Spanish, Polish and English landings using the ALK in Table 3.2.1.1 together with available samples from the fishery (Table 3.2.1.2). This general ALK was constructed based on 814 aged fish from Irish, Danish and Scottish caught samples from 2012 (see the stock annex for a description of ALKs prior to 2012). In 2020, allocations to unsampled metiers were made according to Table 3.2.1.3. In total, 10 samples with the appropriate 0.5 cm length bin measurements were collected. (Table 3.2.1.4). These samples covered the most heavily fished areas (Table 3.2.1.5) and equated to one sample per 290 t landed. The samples comprised 534 fish measured for length frequency.
The results of the application of the ALK to commercial length-frequency data (available for the years 2007-2020) produced proxy catch numbers-at-age values which are available in Table 3.2.1.6. In the last couple of years, there has been the appearance of strong year classes in the catch numbers. A high number of 1-4 year olds were present in the 2020 data. The modal age from 2007-2011 was 6 and in 2012-2018 it was 7. It should be noted that in WGWIDE 2011 and 2012 the plus group for boarfish was 20+. This was reduced to 15+ in WGWIDE 2013 due to potential inaccuracy of the age readings of older fish. Ageing was based on the method that has been validated for ages $0-7$ by Hüssy et al. (2012a; b). The age range is similar to the published growth information presented by White et al. (2011).

### 3.2.2 Quality of catch and biological data

Table 3.2.1.3 shows allocations that were made to unsampled métiers in 2020. Length-frequencies of the international commercial landings by year are presented in Table 3.2.2.1.
Sampling in the early years of the fishery (2006-2009) was sparse as there was no dedicated sampling programme in place. The sampling programme was initiated in 2010 and good coverage of the landings has been achieved since then. Full details of the sampling programme in the earlier years are presented in the stock annex. Until 2017, boarfish was not included on the DCF list of species for sampling. Irish sampling comprises only samples from Irish registered vessels. Samples are collected on-board directly from the fish pump during fishing operations and are frozen until the vessel returns to port, which ensures high quality samples. Each sample consists of approximately 6 kg of boarfish. This equates to approximately 150 fish which, given the limited size range of boarfish, is sufficient for determining a representative length frequency. The
established sampling target is one sample per 1000 t of landings per ICES Division, which is also standard in other pelagic fisheries such as mackerel. Since 2017, all fish in each sample should be measured to the 0.5 cm below for length frequency. Following standard protocols 5 fish per 0.5 cm length class should be randomly selected from each sample for biological data collection i.e. otolith extraction, measurement to the 1 mm below and sex and maturity determination. There is no sampling programme in place for Scottish catches.

The current surplus production model used to assess boarfish is considered an interim measure prior to the development of an aged-based assessment. In 2017, boarfish was included in the list of species to be sampled by the Data Collection Multi Annual Programme (DCMAP) which should provide estimates of catch at age and facilitate the future development of an age-based stock assessment method.

### 3.3 Fishery Independent Information

### 3.3.1 Acoustic Surveys

The Boarfish Acoustic Survey (BFAS) was first conducted in July 2011. The 2021 survey was carried out by the RV Celtic Explorer and run in conjunction with the Malin Shelf herring survey as the WESPAS survey (Western European Shelf Pelagic Acoustic Survey). The survey was carried out over a 42-day period beginning on the 9 June in the south $\left(47^{\circ} 30 \mathrm{~N}\right)$ and working northwards to $59^{\circ} 30 \mathrm{~N}$ ending on 20 July.

## Calculation of acoustic abundance

The StoX software package (Johnsen et. al., 2019) was used to calculate acoustic abundance from survey data (StoX V2.7 and R-StoX V1.11) and aggregated survey data are available for download at the ICES acoustic database (https://www.ices.dk/data/data-portals/Pages/acoustic.aspx). Survey design and execution of the WESPAS survey adhere to guidelines laid out in the Manual for International Pelagic Surveys (ICES, 2015).

## Survey results 2021

The 2021 WESPAS survey provided continuous synoptic coverage from south to north over 42 days covering an area of over 50,552 $\mathrm{nmi}^{2}$ (boarfish strata) and a transect mileage of over 4,986 nautical miles. In total, 65 trawl stations were undertaken during the survey. 35 hauls contained boarfish and provided 5,724 individual length measurements, 2,651 length and weight measurements and 1,474 otoliths.

Acoustic echotraces attributed to boarfish in 2021 are shown in Figure 3.3.1.1. Individual points represent the mean NASC over a 1 nm transect distance. The 2021 estimate of total survey biomass of 444 kt represents a slight increase over that observed in 2020 ( 399 kt ). The majority of the estimate ( $53 \%$ ) is found in the Celtic Sea stratum with the Irish west coast contributing $33 \%$, similar to the situation in 2020 (Figure 3.3.1.2.).

The Celtic Sea/Northern Biscay area was found to contained a high abundance of immature boarfish extending further northwards than observed in 2020 or previously. Mature fish were also present but in lower abundances than in previously. Immature boarfish represented $61 \%$ of the total abundance observed across the combined survey area, an increase from $59 \%$ observed in 2020.

The full time series of survey estimates of boarfish biomass is presented in Table 3.3.1.1.

The ALK developed in 2012 (during investigations to development the knowledgebase around boarfish) was used to estimate the survey abundance at age (otoliths are collected during the survey but are not currently aged), (Figure 3.3.1.3.). A plus group of $15+$ is assumed and accounts for $23 \%$ of TSB and $6 \%$ of TSN. The contribution of 1-3 year olds represents over $33 \%$ of the TSB and $73 \%$ of TSN indicating strong recent recruitment. The previously observed strong year classes that are now 8-10-year-old fish are also present but in lower numbers than expected when compared to neighbouring year classes.

The 2021 stock estimate is dominated by the recently recruited year classes (2016-2020). The maturity ogive from the 2012 studies (see section 3.4) indicates that $79 \%$ of observed biomass in 2021 was mature ( $40 \%$ total abundance) compared to $90 \%$ biomass and $59 \%$ abundance in 2020 . This year-on-year increase in the contribution of immature fish to the total stock estimate started in 2018 and has continued into 2021, indicating a continued positive trend of growth for the stock. Preliminary results from the PELGAS survey undertaken in the area south of the WESPAS grid during May indicates increased biomass of boarfish in northern Biscay, also with a significant contribution from immature ages in agreement with observations during WESPAS in the Celtic Sea (M. Doray, pers comm.). The current southern boundary of the WESPAS survey therefore does not ensure full containment of the stock such that the WESPAS estimate should be considered to be an underestimate.

### 3.3.2 International bottom trawl survey (IBTS) Indices Investigation

The western IBTS data and CEFAS English Celtic Sea Groundfish Survey were investigated for their use as abundance indices for boarfish for the first time in 2012. An index of abundance was constructed from the following surveys:

- EVHOE, French Celtic Sea and Biscay Survey, (Q4) 1997 to 2011
- IGFS, Irish Groundfish Survey, (Q4) 2003 to 2011
- WCSGFS, West of Scotland, (Q1 and Q4) 1986 to 2009 (survey design changed in 2010)
- SPPGFS, Spanish Porcupine Bank Survey, (Q3) 2001 to 2011
- SPNGFS, Spanish North Coast Survey, (Q3/Q4) 1991 to 2011
- ECSGFS, CEFAS English Celtic Sea Groundfish Survey, (Q4) 1982 to 2003

From the IBTS data, CPUE was computed as the number of boarfish per 30 min haul. The abundance of boarfish per year per ICES statistical rectangle (used for visualisation only) was then calculated by summing the boarfish in a given rectangle and dividing by the total number of hauls in that rectangle. Length frequencies are presented in Table 3.3.2.1 for each survey. These surveys cover the majority of the observed range of boarfish in the ICES Area (Figure 3.1). Figure 3.3.2.1 shows the haul positions for each of the 6 surveys analysed.

A detailed analysis of the IBTS data was carried out in 2012 to investigate the main areas of abundance of boarfish in these surveys. This analysis included GAM modelling based on the probability of occurrence of boarfish. The full details of this work are presented in the stock annex. The IBTS appears to give a relative index of abundance, with good resolution between periods of high and low abundance. The main centres of abundance in the survey (Figure 3.3.2.2) correspond to main fishing grounds (Figure 3.1.2.1). Figures 3.3.2.3a and $b$ shows the signal in abundance and biomass, increasing gradually in the 1990s, slowly declining in the early 2000s, before increasing again with a strong increase in the most recent period. Much of this increase which is stronger in terms of abundance is due to increased recruitment since 2017. The low estimates for the 2017 survey are partly explained by issues with the execution of the EVHOE survey. Due to mechanical breakdown, the majority of the survey stations could not be completed. The missed stations would have covered the area in North Biscay typically associated with the highest catch rates of boarfish.

For subsequent surplus production modelling (see Section 3.6.3), biomass indices were extracted from each of the IBTS surveys using a delta-lognormal model (Stefánsson 1996). Many of the surveys exhibited a large proportion of zero tows with occasionally very large tows, hence the decision to explicitly model the probability of a non-zero tow and the mean of the positive tows. A delta-lognormal fit comprises fitting two generalized linear models (GLMs). The first model (binomial GLM) is used to obtain the proportion of non-zero tows and is fit to the data coded as 1 or 0 if the tow contained a positive or zero CPUE, respectively. The second model is fit to the positive only CPUE data using a lognormal GLM. Both GLMs were fit using ICES statistical rectangle and year as explanatory factor variables. Where the number of tows per rectangle was less than 5 over the entire series, they are grouped into an "others" rectangle. An index per rectangle and year is constructed, according to Stefánsson (1996), by the product of the estimated probability of a positive tow times the mean of the positive tows. The station indices are aggregated by taking the estimated average across all rectangles within a year. To propagate the uncertainty, all survey index analyses were conducted in a Bayesian framework using Markov chain Monte Carlo (MCMC) sampling (Kery 2010). The analyses were performed in WinBUGS from R with the R2WinBUGS package.

When the indices were recalculated in 2021, (following a refresh of the input data from DATRAS and national data submitters), the following issues were encountered

- An error with the coding of the EVHOE 2018 data in DATRAS was corrected, revising upwards the estimates from 2018 for this survey
- The truncated EVHOE 2017 dataset was removed from the analysis. In previous years, this data was retained but, because the available data only corresponds to a small fraction of the total survey area (where boarfish are not usually encountered in significant quantities) a very low survey estimate resulted. It was considered appropriate to remove this data from the analysis. In future, explicit modelling of spatial and temporal correlations may permit this data to be considered again.
- An error in the analysis was discovered whereby hauls with more than one catch category were underrepresented as only a single catch category was included during the model fitting. Multiple catch categories are usually the result of splitting the catch into adult and juvenile portions and using an appropriate subsampling strategy for each. This issue is particularly relevant for the IGFS which, over the most recent 4 years has 2 catch categories for boarfish recorded for approximately $20 \%$ of hauls. The outcome is an increase in CPUE for these hauls and a subsequent increase in the survey index for the IGFS in recent years (2016 onwards).


### 3.4 Mean weights- at-age, maturity-at-age and natural mortality

Mean weight-at-age was obtained from the ageing studies of Hüssy et al. (2012b). These mean weights are presented in the text table below. The variation in weight-at-age is due to the small sample size and the seasonal variation in weight and maturity stage.

| Age | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean <br> Weight (g) | 0.84 | 6.65 | 14.6 | 19.5 | 23.7 | 26.8 | 33.3 | 37.7 | 40 | 47.1 |


| Age | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean <br> Weight (g) | 50.2 | 51.2 | 62.8 | 56.4 | 62.2 | 68.9 | 50.5 | 86.7 | 77.9 | 64.6 |


| Age | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean Weight <br> (g) | 63.5 | 75 | 86 | 71 | 77 | 84.4 | 79.4 | - | 67.6 | 52.8 |

Maturity-at-age was obtained from the ageing studies of Hüssy et al. (2012a; b) and the reproductive study by Farrell et al. (2012).

| Age | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6 +}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Prop mature | 0 | 0 | 0.07 | 0.25 | 0.81 | 0.97 | 1 |

Natural mortality (M) was estimated over the life span of the stock using the method described by King (1995). This method assumed that M was the mortality that would reduce a population to $1 \%$ of its initial size over the lifespan of the stock. Based on a maximum age of $31, \mathrm{M}$ was calculated as follows

$$
M=-\ln (0.01) / 31
$$

Following this procedure, $M=0.16$ year ${ }^{-1}$ was considered a good estimate of natural mortality over the life span of the boarfish stock, as it was similar to the total mortality estimate from 2007, ( $Z=0.18$, see Section 3.6.5). Given that catches in 2007 were relatively low, this estimate of total mortality was considered a good estimate of natural mortality, assuming negligible fishing mortality in previous years.

Similarly, total mortality was estimated from age-structured IBTS data from 2003 to 2006 (years from which data was available for all areas). The total mortality was considered a good estimate of natural mortality as fishing mortality was assumed to be negligible during this period. Total mortality ranged from $0.09-0.2$ with a mean of 0.16 .

The special review in 2012 questioned the validity of a single estimate of M across the entire age range. If an age based assessment is possible in the future, age specific estimates of natural mortality will be required. However, the current estimate of $M$, which covers the whole age range, is considered appropriate in the context of the current situation where age data are used as an indicator approach, rather than as a full assessment method. Given that Z and F are also calculated over the entire (fully selected) range (Section 3.6.5) a single value of M was considered appropriate.

### 3.5 Recruitment

The common ALK (Table 3.2.1.1.) was applied to the IBTS number-at-length data. The lengthfrequency is presented in Table 3.3.2.1. and the age-structured index in Table 3.6.1.1. and Figure 3.6.1.1.

A cohort effect can be seen with those cohorts from the early 2000s appearing weak. This coincides with a decline in overall abundance in the early 2000s. From the mid-2000s onwards recruitment improved as observed in the abundance of 1-5 year olds in the EVHOE and Spanish northern shelf surveys (It should be noted however that the IBTS data is measured to the 1.0 cm
not the 0.5 cm until 2015. Therefore, application of the common ALK to this data must be viewed with caution).

The EVHOE, IGFS and SPNGFS surveys provide the best indices of recruitment as this is where the juveniles appear to be most abundant (Table 3.3.2.1). It appears that recruitment was high in the late 1990s in the EVHOE survey with 2010 and 2015 also indicating above average recruitment. Particularly strong recruitment has been noted in each of 2018-2020, especially for the EVHOE survey but also the IGFS in 2020.

### 3.6 Exploratory assessment

In 2012, a new stock assessment method for Boarfish was tested. In 2013 this Bayesian state space surplus production model (BSP; Meyer \& Millar (1999)) was further developed following reviewers' recommendations in 2012. Different applications of a Bayesian biomass dynamic model were run in 2013 incorporating combinations of catch data, abundance data from the groundfish surveys, and estimates of biomass (and associated uncertainty) from the acoustic surveys (see stock annex for more details of the sensitivity runs). The model and settings from the final accepted run in 2013 were used as the basis of ICES category 1 advice for catch in 2014. However, in 2014 there was concern about the use of the production model for a number of reasons and ICES considered this model as no longer suitable for providing category 1 advice. Since 2014, the assessment model has been used as a basis for trends for providing DLS advice (ICES category 3). ICES considers the current basis for the advice on this stock to be an interim measure prior to development of an age-based assessment.

### 3.6.1 IBTS data

Some of the IBTS CPUE indices displayed marked variability with a large proportion of zero tows and occasionally very large tows (e.g. West of Scotland survey, Figure B.4.7 stock annex). More southern surveys displayed a consistently higher proportion of positive tows. The variability of the data is reflected in the estimated mean CPUE indices (Figure 3.6.1.2). The West of Scotland survey index had been increasing between 2000 and 2009 but is uncertain, whereas the estimated indices from the other series are typically less variable. In 2014, four of the five current bottom trawl surveys experienced a sharp decline in CPUE, particularly the West of Scotland, the Spanish North Coast, the Spanish Porcupine and Irish Groundfish surveys. Both Spanish surveys remained low in 2015 whereas the latest IGFS and EVHOE surveys indicate an increase. In 2016, values were similar to those of the previous year for all surveys. In 2017, surveys suggest that the stock abundance increased compared to the year before although the EVHOE data is excluded from the analysis for this year. The CEFAS English Celtic Sea Groundfish Survey displays a steady increase from the mid-1980s to 2002 with a large but somewhat uncertain estimate in 2003. The spatial extent of each survey is shown in Figure 3.3.2.1.

Diagnostics from the positive component of the delta-lognormal fits indicate relatively good agreement with a normal distribution on the natural logarithmic scale (Figure 3.6.1.4). There is an indication of longer tails in some of the surveys (e.g. WCSGFS, SPPGFS).

Pair-wise correlation between the annual mean survey indices varied. The IGFS, EVHOE and SPNGFS displayed positive correlation (Figure 3.6.1.5). The updates described above with respect to data and analysis code corrections have resulted in increased correlation between the surveys most affected i.e. IGFS and EVHOE. The WCSGFS also displayed a negative correlation with the 2 Spanish surveys (SPPGFS and SPNGFS). The SPPGFS also displayed a negative correlation with EVHOE (Figure 3.6.1.5). Weighting the correlations by the sum of the pair-wise
variances resulted in a largely similar correlation structure, though the WCSGFS and SPPGFS were more strongly correlated with the ECSGFS (Figure 3.6.1.6). Note that though some surveys displayed weak or no correlation, no surveys were excluded a-priori from the assessment. Sensitivity tests were conducted in 2013, which led to the exclusion of the surveys mentioned previously (see the stock annex).

### 3.6.2 Biomass estimates from acoustic surveys

The Boarfish Acoustic Survey (BFAS) series was initiated in 2011 in partnership with industry. The 2011 survey collected data over 24 hours. In 2012, the protocol was changed to exclude the hours between 00:00 and 04:00 as aggregations break up during the hours of darkness. The 2011 data was reworked in 2015 to exclude the data between 00:00 and 04:00. An acoustic target strength model of (-66.2dB) was developed in 2013 (Fässler et al. (2013)) and is applied to all surveys in the time series (Figure 3.3.1.1). Over the time series of the survey total biomass has been estimated in the range 863 kt (in 2012) to 70 kt (2016) with CV estimates ranging 0.11 to 0.31 . Total biomass estimates declined sharply between 2012 and 2016 after which an increasing trend is seen. In the most recent surveys, the contribution of immature boarfish to the total estimate has been increasing such that the increase seen between 2020 and 2021 is largely due to juveniles. No substantial evidence exists for removing any of the survey points from the time series although 2016 may be considered an outlier (Table 3.3.1.1).

The PELACUS surveys is conducted annually in waters to the south of the boarfish (WESPAS) survey. In 2021 PELACUS recorded an increase in biomass on its most northerly transects (immediately south of the WESPAS southern limit) compared to 2019 (no survey was conducted in 2020), in broad agreement with increases noted on WESPAS. The PELACUS survey takes place approximately 1 month prior to the boarfish survey.

### 3.6.3 Biomass dynamic model

In 2012 an exploratory biomass dynamic model was developed for the assessment of boarfish. The model is a Bayesian state space surplus production model (Meyer \& Millar 1999), incorporating the catch data, IBTS data, and acoustic biomass data. Following the initial development of the model, the assessment was peer-reviewed by two independent experts on behalf of ICES. In 2013 a new assessment was provided, which was based on the previous year's work and the reviewers' comments and formed the basis of a category 1 assessment. Details of the review and the associated changes can be found in the stock annex.

In 2014 the Bayesian state space surplus production model was fit using the catch data, deltalognormal estimated IBTS survey indices, and the acoustic survey estimates. However, the inclusion of the low 2014 acoustic biomass estimate changed the perception on the stock, which raised concerns over the sensitivity and process error of the model and the stock assessment was moved from ICES category 1 to category 3 with the results of the surplus production model being used to calculate an index for the data limited stock approach.

Since 2014, the procedure used to run the model has not changed with annual updates to the input data only.

In the Bayesian state space surplus production model the biomass dynamics are given by a difference form of a Schaefer biomass dynamic model:

$$
B_{t}=B_{t-1}+r B_{t-1}\left(1-\frac{B_{t-1}}{K}\right)-C_{t-1}
$$

where $B_{t}$ is the biomass at time $\mathrm{t}, \mathrm{r}$ is the intrinsic rate of population growth, $K$ is the carrying capacity, and $C_{t}$ is the catch, assumed known exactly. To assist estimation, the biomass is scaled
by the carrying capacity, denoting the scaled biomass $P_{t}=B_{t} / K$. A lognormal error structure is assumed giving the scaled biomass dynamics (process) model:

$$
P_{t}=\left(P_{t-1}+r P_{t-1}\left(1-P_{t-1}\right)+\frac{C_{t-1}}{K}\right) e^{\mu_{t}}
$$

where the logarithm of process deviations are assumed normal $u_{t}=N\left(0, \sigma_{2}^{\mu}\right)$ with $\sigma_{2}^{\mu}$ the process error variance.

The starting year biomass is given by $a K$, where a is the proportion of the carrying capacity in the first year. The biomass dynamics process is related to the observations on the indices through the measurement error equation:

$$
I_{j, t}=q_{j} P_{t} K e^{\varepsilon_{j, t}}
$$

where $I_{j, t}$ is the value of abundance index $j$ in year $t, q_{j}$ is survey-specific catchability, $B_{t}=P_{t} K$, and the measurement errors are assumed log-normally distributed with $u_{t}=N\left(0, \varepsilon_{e, j, t}^{2}\right)$ where $\varepsilon_{e, j, t}^{2}$ is the index-specific measurement error variance. $\operatorname{Var}\left(I_{j, t}\right)$ is obtained from the delta-lognormal survey fits. That is, the variance of the mean annual estimate per survey is inputted directly from the delta-lognormal fits (Figure 3.6.1.2) as opposed to estimating a measurement error within the assessment. The measurement error is obtained from:

$$
\sigma_{e, j, t}^{2}=\ln \left(1+\frac{\operatorname{Var}\left(I_{j, t}\right)}{\left(I_{j, t}\right)^{2}}\right)
$$

For the acoustic survey, the CV of the survey was transformed into a lognormal variance via

$$
\sigma_{\varepsilon, \text { acoustic }, t}^{2}=\ln \left(C V_{\text {acoustic }, t}^{2}+1\right)
$$

Prior assumptions on the parameter distributions were:

- Intrinsic rate of population growth: $r \sim U(0.001,2)$
- Natural logarithm of the carrying capacity: $\ln (K) \sim U(\ln (\max (C), \ln (10 . \operatorname{sum}(C))=$ $U(\ln (144047), \ln (4450407))$
- Proportion of carrying capacity in first year of assessment: $a \sim U[0.001,1.0]$
- Natural logarithm of the survey-specific catchabilities $\ln \left(q_{i}\right) \sim U(-16,0)$ (for IBTS only). The acoustic survey prior is discussed below.
- Process error precision $\frac{1}{\sigma_{u}^{2}} \sim \operatorname{gamma}(0.001,0.001)$


## Specification

During the 2013 WGWIDE meeting a number of different iterations of the model were run to discern the best parameters for the assessment. After four initial runs and four sensitivity runs the settings for the final run (run 2.2) were chosen. These settings are shown below and were used for the assessment model since 2014. (More details of the trial runs in 2013 can be found in the stock annex).

The specifications for the final boarfish assessment model runs are:

## Acoustic survey

Years: 2011-2021
Index value (Iacousticy): 'total' in tonnes (i.e. Definitely Boarfish + Probably Boarfish + Boarfish in a Mix)

Catchability ( $q_{\text {acoustic }}$ ): A free, but strong prior (i.e. the acoustic survey is treated as a relative index but is strongly informed, this allows the survey to cover $<100 \%$ of the stock).

## IBTS surveys

6 delta log normal indices (WCSGFS, SPPGFS, IGFS, ECSGFS, SPNGFS, EVHOE)

First 5 and last 7 (since 2017, because of change in survey design) years omitted from WCSGFS
First 9 years omitted from ECSGFS
Following discussion of the sensitivity runs in 2013, it was decided that the final run be based on a run that includes all surveys with the omission of the first 5 years of the WCSGFS and first 9 years of the ECSGFS as it was unclear whether boarfish were consistently recorded in the early part of the ECSGFS. The WCSGFS is thought to be at the northern extreme of the distribution and may not be an appropriate index for the whole stock. The initial data year was set at 1991 when 3 groundfish survey indices are available (SPNGFS, ECSGFS and WCSGFS). The survey indices are weighted such that highly uncertain values receive lower weight in the fitting.

## Catches

2003-2020 time series

## Priors

The final run assumes a strong prior for the acoustic survey catchability with $\ln \left(q_{\text {acoustic }}\right) \sim N(1$, 1/4) (mean 1 , standard deviation 0.25 ), which has $95 \%$ of the density between 0.5 and 2 . Given the relatively short acoustic series it is not possible to estimate this parameter freely (i.e. using an uninformative prior). The prescription of a strong prior removes the assumption of an absolute index from the acoustic survey. This assumption will be continually updated as additional data accrue.

## Run convergence

Parameters for the 2021 model run converged with good mixing of the chains and Rhat values lower than 1.1 indicating convergence and acceptable autocorrelation (Figures 3.6.3.1-3).

Diagnostic plots are provided in Figure 3.6.3.4 showing residuals about the model fit. A fairly balanced residual pattern is evident. In some cases, outliers are apparent, for instance in the English survey in the final year (2003). However, these points are down weighted according to the inverse of their variance and hence do not contribute much to the model fit. The west of Scotland IBTS survey, located at the northern extreme of the stock distribution underestimates the stock in the early period (years) and overestimates it towards the end of the available time series. This could be indicative of stock expansion into this area at higher stock sizes and suggests that this index is perhaps not representative of the whole stock. Figure 3.6.3.5 shows the prior and posterior distributions of the parameters of the biomass dynamic model. The estimate of $q$ is less than 1.0 , leading to a higher estimate of final stock biomass than the acoustic survey result.

## Results

Trajectories of observed and expected indices are shown in Figure 3.6.3.6, along with the stock size over time and a harvest ratio (total catch divided by estimated biomass). Parameter estimates from the model run are summarized in Table 3.6.3.1. Biomass in 2021 is estimated to be 497 kt , continuing the increasing trend in stock size since 2016. The extremely low biomass estimate from the 2016 acoustic survey appears to be largely considered as an outlier by the model. This is also the case for the high survey estimate in 2012 although the drop in biomass between these points is seen in a number of the input data series. Retrospective plots of TSB and F, presented in Figure 3.6.3.7, show that the perception of the stock is stable over the most recent 5 years.

### 3.6.4 Pseudo-cohort analysis

Pseudo-cohort analysis is a procedure where mortality is calculated by means of catch curves derived from catch-at-age from a single year. This is in contrast to cohort analysis, which is the basis of VPA-type assessments. In cohort analysis, mortality is calculated across the ages of a
year class, not within a single year. Because only seven years of sampling data were available and owing to the large age range currently in the catches a cohort analysis would only yield information for a very limited age and year range. Therefore, pseudo-cohort analysis was performed to supplement the Bayesian state space model.

Pseudo-cohort $Z$ estimates increased with the rapid expansion of the fishery but decreased in 2011 due to the introduction of the first boarfish TAC (Table 3.6.4.1). By subtracting $M(=0.16)$, an estimate of $F$ was obtained for each year (ages 7-14). This series was revised to represent ages $7-14$, rather than 6-14 as in previous years, because in 2013 age 6 boarfish were not fully selected, i.e. age 7 had higher abundance at age.

It can be seen from the table below that $Z=M$ in 2007, the initial year of the expanded fishery, while $F$ is negligible. $F$ increased to a high of 0.29 in 2012, gradually reduced to 0.15 in 2015/16 before increasing in the recent period. The estimate for 2020 is low although the majority of the fishery was conducted on juveniles given the strong recent recruitment with less information available from the older ages.

| Year | Z (7-14) | F (Z-M) | Catch (t) |
| :---: | :---: | :---: | :---: |
| 2007 | 0.17 | 0.01 | 21576 |
| 2008 | 0.33 | 0.17 | 34751 |
| 2009 | 0.36 | 0.20 | 90370 |
| 2010 | 0.33 | 0.17 | 144047 |
| 2011 | 0.29 | 0.13 | 37096 |
| 2012 | 0.45 | 0.29 | 87355 |
| 2013 | 0.36 | 0.20 | 75409 |
| 2014 | 0.37 | 0.21 | 45231 |
| 2015 | 0.31 | 0.15 | 17766 |
| 2016 | 0.31 | 0.15 | 19315 |
| 2017 | 0.33 | 0.17 | 17388 |
| 2018 | 0.36 | 0.20 | 11286 |
| 2019 | 0.37 | 0.21 | 11313 |
| 2020 | 0.20 | 0.04 | 15649 |

### 3.6.5 State of the stock

The most recent year assessment indicates that total stock biomass increased from a low to average level from the early to mid-1990s (Figure 3.6.3.6). The stock fluctuated around this level until 2009, before increasing until 2012. A sharp decline is seen between 2013 and 2014. Since 2014, the abundance has increased although it remains below that from the previous high period. There was concern in 2014 that this decline was exaggerated by an unually low acoustic biomass estimate that led to a downward revision in stock trajectory. However, the 2014 survey is
considered satisfactory in terms of containment. The comparably low 2014 biomass estimate was supported by results of the 2015 survey. The 2016 biomass estimate, the lowest of the time series is considered likely an outlier and has little influence on stock abundance estimates. The $95 \%$ uncertainty bounds are relatively large reflecting the uncertainty in the survey indices, and short exploitation history of the stock and the treatment of the acoustic survey as a relative biomass index.

Catch data are available from 2001, the first year of commercial landings, and reasonably comprehensive discard data are available from 2003. Peak catches were recorded in 2010, when over 140000 t were taken. Elevated fishing mortality was observed, associated with the highest recorded catch in 2010. Fishing mortality, expressed as a harvest ratio (catch divided by total biomass), was first recorded in 2003. Before that time, it is to be expected that some discarding took place, and there were some commercial landings. Fishing mortality increased measurably from 2006, reaching a peak in 2009-2010. F declined in 2011 as catches became regulated by the precautionary TAC but increased year on year until 2015 when reduced catches resulted in a reduction. The considerable catches in recent years do not appear to have significantly truncated the size or age structure of the stock and $15+$ group fish are still abundant (Figure 3.2.1.1).

MSY reference points can be estimated from the production model assessment parameter values.
 the fishery, estimates of total biomass have remained above MSY B trigger. Fishing mortality (F) was briefly larger than the estimate of Fmsy between 2009 and 2010 and again in 2014, but has decreased since. In 2021, the stock is in the green area of the Kobe plot (Figure 3.6.6.1).

Estimates of recruitment are not available from the stock assessment. However, all available data sources (catch, acoustic survey and IBTS surveys) indicate above average recruitment since 2017. The 2021 acoustic survey recorded the largest proportion of juvenile biomass ( $<10 \mathrm{~cm}, 4 \mathrm{yo}$ ) in the time series and is comprised of a number of recent year classes.

### 3.7 Short Term Projections

As the assessment is exploratory, no short term projections were conducted.

### 3.8 Long term simulations

No long term simulations were conducted.

### 3.9 Candidate precautionary and yield based reference points

### 3.9.1 Yield per Recruit

A yield per recruit analysis was conducted in 2011 (Minto et al. 2011) and $F 0.1$ was estimated to be 0.13 whilst $F_{m a x}$ was estimated in the range 0.23 to 0.33 (Figure 3.9.1.1). F0.1 was considered to be well estimated (Figure 3.9.1.2). No new yield per recruit analyses were performed in subsequent years.

### 3.9.2 Precautionary reference points

No reference points have been defined for boarfish.

### 3.9.3 Other yield based reference points

Yield per recruit analysis, following the method of Beverton \& Holt (1957), found F0.1 to be robustly estimated at 0.13 (ICES 2011; Minto et al. 2011).

### 3.10 Quality of the assessment

ICES considers the current basis for the advice on this stock to be an interim measure prior to development of an age-based assessment. The acoustic survey has undergone several developments to improve its suitability with updates to methodology in 2012, a change in direction in 2017 and extension of transects at the boundaries to improve containment. The assessment was downgraded from Category 1 to Category 3 in 2014, and it has remained in this category since. The model is still considered suitable for category 3 advice, because it provides the best means of combining the available survey series. The assessment is sensitive to the acoustic series. In addition, a substantial part of the year to year variations in the stock abundance is linked to the process error. The use of some priors (like ratio to virgin biomass in the first year of the assessment) and survey (e.g. WCSGFS for instance) may require revision.

The bottom trawl survey data are considered to be a good index of abundance given that boarfish aggregate near the bottom at this time of year. The trawl surveys record high abundances of the species, but with many zero hauls. The delta-lognormal error structure used in the analyses is considered to be an appropriate means of dealing with such data. The biomass dynamic model used in the stock assessment is based on the assessment of megrim in Sub-divisions 4 and 6 with the model further developed by including acoustic survey biomass estimates. A drawback of the current assessment model is that it does not provide estimates of recruitment although estimates of recruitment strength are available from the Spanish and French bottom trawl surveys.

### 3.11 Management considerations

As this stock is placed in category 3, the advice is based on harvest control rules for data limited stocks (ICES 2017). Since the biomass estimate from the Bayesian model is considered reliable for trends based assessment, an index can be calculated according to Method 3.1 of ICES (2012). The advice is based on a comparison of the average of the two most recent index values with the average of the three preceding values multiplied by the most recent catch. Table 3.6.5.1 shows the biomass estimates from the model from which the index was calculated.

Although not currently accepted as the basis for an analytic assessment, the surplus production model still provides the best unified view of this stock (Figure 3.6.3.6).

### 3.12 Stock structure

A dedicated study on the stock structure of boarfish within the Northeast Atlantic and Mediterranean Sea commenced in October 2013 in order to resolve outstanding questions regarding the stock structure of boarfish and the suitability of assessment data. Results (Farrell et al. 2016) indicated strong population structure across the distribution range of boarfish with 7-8 genetic populations identified (Figure 3.12.1).

The eastern Mediterranean (MED) samples comprised a single population and were distinct from all other samples. Similarly, the Azorean (AZA), Western Saharan (MOR) and Alboran (ALM) samples were distinct from all others. Of particular relevance to the assessment and management of the boarfish fishery is the identification and delineation of the population structure between southern Portuguese waters (PTN2B-PTS) and waters to the geographic north. A
distinct and temporally stable mixing zone was evident in the waters around Cabo da Roca. The PTN2A sample appeared to be significantly different from all other samples however this sample was relatively small and was considered to represent a mixed sample rather than a true population.

No significant spatial or temporal population structure was found within the samples comprising the NEA population (Figure 3.12.1). A statistically significant but comparatively low level of genetic differentiation was found between this population and the northern Spanish shelf/northern Portuguese samples (NSA-PTN1). However, a high level of migration was revealed between these two populations and no barriers to gene flow were detected between them. Therefore, for the purposes of assessment and management these areas can be considered as one unit.

Analyses indicated a lack of significant immigration into this northeast Atlantic boarfish stock from populations to the south or from insular elements and the strong genetic differentiation among these regions indicate that the purported increases in abundance in the northeast Atlantic area are not the result of a recent influx from other regions. The increase in abundance is most likely the result of demographic processes within the northeast Atlantic stock (Blanchard \& Vandermeirsch 2005; Coad et al. 2014).

Whilst the current assessment and management area constitutes the majority of the most northern population it should be extended into Northern Portuguese waters and repeated genetic monitoring of the stock in this region should be conducted to ensure the validity of this delineation. Based on analyses of IBTS data the biomass in this area is suspected to be small relative to the overall biomass in the TAC area.

### 3.13 Ecosystem considerations

The ecological role and significance of boarfish in the NE Atlantic is largely unknown. However, in the southeast North Atlantic, in Portuguese waters, they are considered to have an important position in the marine food web (Lopes et al. 2006). The diet has been investigated in the eastern Mediterranean, Portuguese waters and at Great Meteor Seamount and consists primarily of copepods, specifically Calanus helgolandicus, with some mysid shrimp and euphausiids (Macpherson 1979; Fock et al. 2002; Lopes et al. 2006). This contrasted with the morphologically similar species, the slender snipefish, Macroramphosus gracilis and the longspine snipefish, M. scolopax, whose diet comprised Temora spp., copepods and mysid shrimps, respectively (Lopes et al. 2006). Despite the obvious potential for these species to feed on fish eggs and larvae, there was no evidence to support this conclusion in Portuguese waters and they were not considered predators of commercial fishes and thus their increase in abundance was unlikely to affect recruitment of commercial fish species. If the NE Atlantic population of boarfish is sufficiently large then there exists, the possibility of competition for food with other widely distributed planktivorous species.

Both seasonal and diurnal variations were observed in the diet of boarfish in all three regions. In the eastern Mediterranean and Portuguese waters, mysids become an important component of the diet in autumn, which correlates with their increased abundance in these regions at this time (Macpherson 1979; Lopes et al. 2006). Fock et al. (2002) found that boarfish at Great Meteor Seamount fed mainly on copepods and euphausiids diurnally and on decapods nocturnally, indicating habitat dependent resource utilization.

Boarfish appear an unlikely target of predation given their array of strong dorsal and anal fin spines and covering of ctenoid scales. However, there is evidence to suggest that they may be an important component of some species' diets. Most studies have focused in the Azores and few have mentioned the NE Atlantic, probably due to the relatively low abundance in the region until recent years. In the Azores, boarfish was found to be one of the most important prey items
for tope (Galeorhinus galeus), thornback ray (Raja clavata), conger eel (Conger conger), forkbeard (Phycis phycis), bigeye tuna (Thunnus obesus), yellowmouth barracuda (Sphyraena viridensis), swordfish (Xiphias gladius), blackspot seabream (Pagellus bogaraveo), axillary seabream (Pagellus acarne) and blacktail comber (Serranus atricauda) (Clarke et al. 1995; Morato et al. 1999, 2000, 2001, 2003; Arrizabalaga et al. 2008). Many of these species also occur in the NE Atlantic shelf waters although it is unknown whether boarfish represent a significant component of the diet in this region.

In the NE Atlantic boarfish have not previously been recorded in the diets of tope or thornback ray (Holden \& Tucker 1974; Ellis et al. 1996). However, this does not prove that they are currently not a prey item. A study of conger eel diet in Irish waters from 1998-1999 failed to find boarfish in the diet (O'Sullivan et al. 2004). However, in Portuguese waters a recent study has found boarfish to be the most numerous species in the diet of conger eels (Xavier et al. 2010). It has been suggested that boarfish are an important component of the diet of hake (Merluccius merluccius), as they are sometimes caught together. However, a recent study of the diet of hake in the Celtic Sea and Bay of Biscay did not report any boarfish in the stomachs of hake caught during the 2001 EVHOE survey (Mahe et al. 2007).

The conspicuous presence of boarfish in the diet of so many fish species in the Azores is perhaps more related to the lack of other available food sources than to the palatability of boarfish themselves. Given the large abundance in NE Atlantic shelf waters it is likely that they would have been recorded more frequently if they were a significant and important prey item.

Boarfish are also an important component of the diet a number of sea birds in the Azores, most notably the common tern (Sterna hirundo) (Granadeiro et al. 2002) and Cory's shearwater (Calonectris diomedea) (Granadeiro et al. 1998). This is surprising given that in the Mediterranean discarded boarfish were rejected by seabirds whereas in the Azores they were actively preyed on (Oro \& Ruiz 1997). Cory's shearwaters are capable of diving up to 15 m whilst the common tern is a plunge-diver and may only reach 2-3 m. It is therefore surprising that boarfish are such a significant component of their diet given that it is generally considered a deeper water fish. In the Azores boarfish shoals are sometimes driven to the surface by horse mackerel and barracuda where they are also attacked by diving sea birds (J. Hart, CW Azores, pers. comm.). Anecdotal reports from the Irish fishery indicate that boarfish are rarely found in waters shallower than 40 m . This may suggest that they are outside the range of shearwaters and gannets, the latter having a mean diving depth of $19.7 \pm 7.5 \mathrm{~m}$ (Brierley \& Fernandes 2001). However, the upper depth range of boarfish is within maximum diving depth recorded for auks $(50 \mathrm{~m})$ as recorded by Barrett \& Furness (1990). Given their frequency in the diets of marine and bird life in the Azores, boarfish appear to be an important component of the marine ecosystem in that region. There is currently insufficient evidence to draw similar conclusions in the NE Atlantic.

The length-frequency distribution of boarfish may be important to consider. IBTS data shows an increase in mean total length with latitude (Table 3.3.2.1) and perhaps the smaller boarfish in the southern regions are more easily preyed upon. Length data of boarfish from stomach contents studies of both fish and sea birds in the Azores indicate that the boarfish found are generally < 10 cm (Granadeiro et al. 1998, 2002).

### 3.14 Proposed management plan

In 2015 the Pelagic Advisory Council submitted a revised draft management strategy for Northeast Atlantic boarfish. The EU has requested ICES to evaluate the following management plan:

This management strategy aims to achieve sustainable exploitation of boarfish in line with the precautionary approach to fisheries management, FAO guidelines for new and developing fisheries, and the ICES form of advice.

1) The TAC shall be set in accordance with the following procedure, depending on the ICES advice
a) If category 1 advice (stocks with quantitative assessments) is given based on a benchmarked assessment, the TAC shall be set following that advice.
b) If category 1 or 2 (qualitative assessments and forecasts) advice is given based on a non-benchmarked assessment the TAC shall be set following this advice.
c) Categories 3-6 are described below as follows:
i) Category 3: stocks for which survey-based assessments indicate trends. This category includes stocks with quantitative assessments and forecasts which for a variety of reasons are considered indicative of trends in fishing mortality, recruitment, and biomass.
ii ) Category 4: stocks for which only reliable catch data are available. This category included stocks for which a time series of catch can be used to approximate MSY.
iii ) Category 5: landings only stocks. This category includes stocks for which only landings data are available.
iv ) Category 6: negligible landings stocks and stocks caught in minor amounts as bycatch.

2 ) Notwithstanding paragraph 1, if, in the opinion of ICES, the stock is at risk of recruitment impairment, a TAC may be set a lower level.
3 ) If the stock, estimated in either of the 2 years before the TAC is to be set, is at or below $B_{\lim }$ or any suitable proxy thereof, the TAC shall be set at 0 t .

4 ) The TAC shall not exceed $75,000 \mathrm{t}$ in any year.
5 ) The TAC shall not be allowed to increase by more than $25 \%$ per year. However, there shall be no limit on the decrease in TAC.

6 ) Closed seasons, closed areas, and moving on procedures shall apply to all directed boarfish fisheries as follows:
i) A closed season shall operate from $31^{\text {st }}$ March to $31^{\text {st }}$ August. This is because it is known that herring and mackerel are present in these areas and may be caught with boarfish.
ii) A closed area shall be implemented inside the Irish 12-miles limit south of $52^{\circ} 30$ from $12^{\text {th }}$ February to $31^{\text {st }}$ October, in order to prevent catches of Celtic Sea herring, known to form aggregations at these times.
iii ) If catches of other species covered by a TAC amount to more than $5 \%$ of the total catch by day by ICES statistical rectangle, then all fishing must cease in that rectangle for 5 consecutive days.

### 3.15 References

Arrizabalaga, H., Pereira, J.G., Royer, F., Galuardi, B., Goñi, N., Artetxe, I., Arregi, I. \& Lutcavage, M. 2008. Bigeye tuna (thunnus obesus) vertical movements in the Azores islands determined with pop-up satellite archival tags. Fisheries Oceanography, 17, 74-83.

Barrett, R.T. \& Furness, R.W. 1990. The prey and diving depths of seabirds on Hornøy, north Norway after a decrease in the Barents Sea capelin stocks. Ornis Scandinavica (Scandinavian Journal of Ornithology), 21, 179-186.

Beverton, R. \& Holt, S. 1957. On the dynamics of exploited fish populations, fishery investigations series II volume XIX, ministry of agriculture. Fisheries and Food, 22.

Blanchard, F. \& Vandermeirsch, F. 2005. Warming and exponential abundance increase of the subtropical fish Capros aper in the Bay of Biscay (1973-2002). Comptes Rendus Biologies, 328, 505-509.

Borges, L., Keeken, V., A, O., Helmond, V., M, A.T., Couperus, B. \& Dickey-Collas, M. 2008. What do pelagic freezer-trawlers discard? ICES Journal of Marine Science, 65, 605-611.

Brierley, A.S. \& Fernandes, P.G. 2001. Diving depths of northern gannets: Acoustic observations of sula bassana from an autonomous underwater vehicle. The $A u k, 118,529-534$.

Cardador, F. \& Chaves, C. 2010. Boarfish (capros aper) distribution and abundance in Portuguese continental waters (ICES div. IXa).
Clarke, M.R., Clarke, D.C., Martins, H.R. \& Silva, H.M. 1995. The diet of swordfish (xiphias gladius) in Azorean waters. ARQUIPÉLAGO. Life and Marine Sciences, 13, 53-69.

Coad, J.O., Hüssy, K., Farrell, E.D. \& Clarke, M.W. 2014. The recent population expansion of boarfish, capros aper (linnaeus, 1758): Interactions of climate, growth and recruitment. Journal of Applied Ichthyology, 30, 463-471.

Ellis, J.R., Pawson, M.G. \& Shackley, S.E. 1996. The comparative feeding ecology of six species of shark and four species of ray (elasmobranchii) in the north-east Atlantic. Journal of the Marine Biological Association of the United Kingdom, 76, 89-106.

Farrell, E.D., Carlsson, J.E.L. \& Carlsson, J. 2016. Next gen pop gen: Implementing a high-throughput approach to population genetics in boarfish (capros aper). Open Science, 3, 160651.

Farrell, E.D., Hüssy, K., Coad, J.O., Clausen, L.W. \& Clarke, M.W. 2012. Oocyte development and maturity classification of boarfish (capros aper) in the northeast Atlantic. ICES Journal of Marine Science, 69, 498507.

Fässler, S.M.M., O'Donnell, C. \& Jech, J.M. 2013. Boarfish (capros aper) target strength modelled from magnetic resonance imaging (MRI) scans of its swimbladder. ICES Journal of Marine Science, 70, 1451-1459.

Fock, H.O., Matthiessen, B., Zidowitz, H. \& Westernhagen, H. v. 2002. Diel and habitat-dependent resource utilisation by deep-sea fishes at the great meteor seamount: Niche overlap and support for the sound scattering layer interception hypothesis. Marine Ecology Progress Series, 244, 219-233.

Granadeiro, J.P., Monteiro, L.R. \& Furness, R.W. 1998. Diet and feeding ecology of cory's shearwater calonectris diomedea in the Azores, north-east Atlantic. Marine Ecology Progress Series, 166, 267-276

Granadeiro, J.P., Monteiro, L.R., Silva, M.C. \& Furness, R.W. 2002. Diet of common terns in the Azores, northeast Atlantic. Waterbirds: The International Journal of Waterbird Biology, 25, 149-155.
Holden, M.J. \& Tucker, R.N. 1974. The food of raja clavata linnaeus 1758, raja montagui fowler 1910, raja naevus müller and henle 1841 and raja brachyura lafont 1873 in British waters. ICES Journal of Marine Science, 35, 189-193.

Hüssy, K., Coad, J.O., Farrell, E.D., Clausen, L.A.W. \& Clarke, M.W. 2012a. Age verification of boarfish (capros aper) in the northeast Atlantic. ICES Journal of Marine Science, 69, 34-40.

Hüssy, K., Coad, J.O., Farrell, E.D., Clausen, L.W. \& Clarke, M.W. 2012b. Sexual dimorphism in size, age, maturation, and growth characteristics of boarfish (capros aper) in the northeast Atlantic. ICES Journal of Marine Science, 69, 1729-1735.

ICES. 2011. Report of the Working Group on Widely Distributed Stocks (WGWIDE). 23-29 August 2011, ICES HQ, Copenhagen, Denmark. ICES CM 2011/ACOM:15, 624 pp.
ICES. 2012. ICES Implementation of Advice for Data-limited Stocks in 2012 in its 2012 Advice. ICES CM 2012/ACOM 68. 42 pp.

ICES. 2015. Manual for International Pelagic Surveys (IPS). Series of ICES Survey Protocols SISP 9 - IPS. 92 pp.

Johnsen, E., Totland, A., Skålevik, Å., Holmin, A., Dingsør, G., Fuglebakk, E. \& Handegard, N. 2019. StoX: An open source software for marine survey analyses. Methods in Ecology and Evolution, 10, 1523-1528. https://doi .org/10.1111/2041-210X. 13250

Kery, M. 2010. Introduction to WinBUGS for ecologists: Bayesian approach to regression, ANOVA, mixed models and related analyses, 1 edition. Academic Press, Amsterdam.

King, M. 1995. Fisheries biology, assessment and management. Oxford.
Lopes, M., Murta, A.G. \& Cabral, H.N. 2006. The ecological significance of the zooplanktivores, snipefish macroramphosus spp. and boarfish capros aper, in the food web of the south-east north atlantic. Journal of Fish Biology, 69, 363-378.

Macpherson, E. 1979. Estudio sobre el régimen alimentario de algunos peces en el mediterráneo occidental. Miscellània Zoològica, 5, 93-107.

Mahe, K., Amara, R., Bryckaert, T., Kacher, M. \& Brylinski, J.M. 2007. Ontogenetic and spatial variation in the diet of hake (Merluccius merluccius) in the Bay of Biscay and the Celtic Sea. ICES Journal of Marine Science, 64, 1210-1219.

Meyer, R. \& Millar, R.B. 1999. BUGS in Bayesian stock assessments. Canadian Journal of Fisheries and Aquatic Sciences, 56, 1078-1087.

Minto, C., Clarke, M.W. \& Farrell, E.D. 2011. Investigation of the yield- and biomass-per-recruit of the boarfish capros aper. Working document to WGWIDE 2011.

Morato, T., Santos, R.S. \& Andrade, J.P. 2000. Feeding habits, seasonal and ontogenetic diet shift of blacktail comber, serranus atricauda (pisces: Serranidae), from the Azores, north-eastern Atlantic. Fisheries Research, 49, 51-59.

Morato, T., Solà, E., Grós, M.P. \& Menezes, G.M. 1999. Diets of forkbeard (phycis phycis) and conger eel (conger conger) off the Azores during spring of 1996 and 1997.

Morato, T., Solà, E., Grós, M.P. \& Menezes, G. 2003. Diets of thornback ray (raja clavata) and tope shark (galeorhinus galeus) in the bottom longline fishery of the Azores, northeastern Atlantic. Fishery Bulletin, 101, 590-602.

Morato, T., Solà, E., Grós, M.P. \& Menezes, G. 2001. Feeding habits of two congener species of seabreams, pagellus bogaraveo and pagellus acarne, off the Azores (Northeastern Atlantic) during spring of 1996 and 1997. Bulletin of Marine Science, 69, 1073-1087.

Oro, D. \& Ruiz, X. 1997. Exploitation of trawler discards by breeding seabirds in the north-western Mediterranean: differences between the Ebro Delta and the Balearic Islands areas. ICES Journal of Marine Science, 54, 695-707.

O'Sullivan, Moriarty, C. \& Davenport, J. 2004. Analysis of the stomach contents of the European conger eel Conger conger in Irish waters. Journal of the Marine Biological Association of the United Kingdom, 84, 823826.

Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. pp. 20-22.

Spiegelhalter, D., Thomas, A., Best, N. \& Lunn, D. 2003. WinBUGS user manual. Version 1.4.
Stefánsson, G. 1996. Analysis of groundfish survey abundance data: Combining the GLM and delta approaches. ICES Journal of Marine Science, 53, 577-588.

White, E., Minto, C., Nolan, C.P., King, E., Mullins, E. \& Clarke, M. 2011. First estimates of age, growth, and maturity of boarfish (Capros aper): A species newly exploited in the Northeast Atlantic. ICES Journal of Marine Science, 68, 61-66.

Xavier, J.C., Cherel, Y., Assis, C.A., Sendão, J. \& Borges, T.C. 2010. Feeding ecology of conger eels (Conger conger) in north-east Atlantic waters. Journal of the Marine Biological Association of the United Kingdom, 90, 493-501.

### 3.16 Tables

Table 3.1.2.1. Boarfish in ICES Subareas 27.6, 7, 8. Landings by country, total discards and TAC by year (t), 2001-2020. (Data provided by Working Group members)

| Den- <br> mark | Ger- <br> many | Ire- <br> land | Nether- <br> lands | Eng- <br> land | Po- <br> land | Scot- <br> land | Spain | Dis- <br> cards | Total |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | TAC

Table 3.1.2.2. Boarfish in ICES Subareas 27.6, 7, 8. Discards in demersal and non-target pelagic fisheries by year (data provided by Working Group members)

| Year | Denmark | Germany | Ireland | Netherlands | Spain | UK | Lithuania | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 |  |  | 119 | 1998 | 8812 |  |  | 10929 |
| 2004 |  |  | 60 | 837 | 3579 |  |  | 4476 |
| 2005 |  |  | 55 | 733 | 5007 |  |  | 10271 |
| 2006 |  |  | 22 | 411 | 3933 |  |  | 4366 |
| 2007 |  |  | 549 | 23 | 2617 |  |  | 3189 |
| 2008 |  |  | 920 | 738 | 8410 |  |  | 10068 |
| 2009 |  |  | 377 | 1258 | 5047 |  |  | 16750 |
| 2010 |  |  | 85 | 512 | 5947 |  |  | 6544 |
| 2011 |  | 49 | 107 | 185 | 5461 |  |  | 5802 |
| 2012 |  |  | 181 | 88 | 6365 |  |  | 6634 |
| 2013 |  | 22 | 47 | 11 | 5518 |  |  | 5598 |
| 2014 |  | 117 | 50 | 477 | 1119 | 50 |  | 1813 |
| 2015 |  |  | 7 |  | 921 | 1 |  | 929 |
| 2016 |  | 869 | 20 | 41 | 348 | 4 | 1 | 1283 |
| 2017 | 386 |  | 640 | 146 |  |  | 1 | 1173 |
| 2018 | 744 |  | 525 | 89 |  |  | 1 | 1359 |
| 2019 |  |  | 57 |  | 240 | 8 |  | 305 |


| Year | Denmark | Germany | Ireland | Netherlands | Spain | UK |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2020 |  | 64 | 133 | 1 | 198 |  |
| $0=<0.5 t$ |  |  |  |  |  |  |

Table 3.1.2.3. Landings of boarfish in ICES Subareas 27.6

| Country | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 37 | 67 | 172 | 10 |
| England |  |  |  |  |  |  |  |  |  |  |  |  | 9 |  |  |  | 9 | 7 |
| Ireland | 65 | 292 | 10 | 21 | 99* | 28 | 45 | 1356 | 26 | 125 | 538 | 182 | 116 | 377 | 907 | 269 | 568 | 1222** |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  |  | 128 | 45 | 34 | 78 | 79 | 108 |
| Scotland |  |  |  |  |  |  |  | 10 |  |  | 15 | 30 |  |  |  |  |  |  |
| *6t in 5b, $0=0-0.5 \mathrm{t}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ** 8 t in 4 a |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Table 3.1.2.4 Landings of boarfish in ICES Subareas 27.7bc

| Country | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark |  |  |  |  |  |  |  |  |  |  | 80 | 12 | 8 | 21 |  |  |  | 85 |
| England |  |  |  |  |  |  |  |  |  |  |  |  | 85 | 1 |  |  | 0 | 32 |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  | 4 | 5 |  |  |  |  |
| Ireland | 214 | 224 | 105 | 15 | 1259 | 3 | 74 | 2293 | 283 | 4609 | 10405 | 3262 | 2829 | 1198 | 124 | 163 | 241 | 6818 |


| Country 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  | $33 *$ | 35 | 138 | 10 | 150 | 212 |
| Scotland |  |  |  |  |  |  | 4 |  | 1745 | 100 |  |  |  |  |  |  |  |
| *Division 7, 0=0-0.5t |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 3.1.2.5 Landings of boarfish in ICES Divisions 7e-g

| Country | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark |  |  |  |  |  |  |  | 674 |  |  |  |  |  |  | 1 |  | 1 | 0 |
| England |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  | 6 |  |
| Ireland |  |  |  | 375 | 120 | 184 | 4912 | 3649 | 811 | 616 | 1808 | 135 | 547 |  | 1 | 2 |  | 1 |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 | 3 | 7 | 1 |
| Scotland |  |  |  |  |  |  |  |  |  |  | 883 |  |  |  |  |  |  |  |
| $0=0-0.5 \mathrm{t}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 3.1.2.6 Landings of boarfish in ICES Subareas 27.7h-k

| Country | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark |  |  |  |  |  |  |  | 39132 | 7779 | 18203 | 11828 | 8747 | 5 | 330 | 239 | 6 | 268 | 101 |
| England |  |  |  |  |  |  |  |  |  |  |  |  | 10 | 16 | 0 | 0 | 3 | 23 |
| Ireland | 179 | 122 | 12 | 2360 | 16131 | 21370 | 63597 | 81160 | 19565 | 50507 | 38358 | 30925 | 12152 | 8623 | 2994 | 3745 | 6222 | 6365 |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  |  |  | 90 | 9 | 68 | 80 | 79 |


| Country | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Poland |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 109 |
| Scotland |  |  |  |  | 772 |  |  | 9227 | 2813 | 3139 | 3381 | 8 |  |  |  | 0 |  |  |
| Spain |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 |

$0=0-0.5 \mathrm{t}$

Table 3.1.2.7 Landings of boarfish in ICES Subarea 8

| Country | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark |  |  |  |  |  |  |  |  | 18 |  | 1354 |  | 6 | 7 | 271 |  | 315 |  |
| England |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 |  |  |  |  |
| Ireland |  | 38 | 38 | 1 | 5 |  |  |  |  | 93 | 1140 | 119 | 682 | 7297 | 11458 | 5336 | 2876 | $283 * *$ |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  |  | 2014 |  |  | 14 | 0 | 17 |
| Spain |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 148* | 2 | 1 |
| *94t in 9a, 0= |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 3.2.1.1. Boarfish in ICES Subareas 27.6, 7, 8. General boarfish age length key produced from 2012 commercial samples. Figures highlighted in grey are estimated

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7.25 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7.75 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8.25 |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8.75 |  | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 9.25 |  | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 9.75 |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 10.25 |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 10.75 |  |  | 2 | 10 | 3 |  |  |  |  |  |  |  |  |  |  |
| 11.25 |  |  | 1 | 29 | 14 | 2 | 2 |  |  |  |  |  |  |  |  |
| 11.75 |  |  |  | 9 | 21 | 21 | 18 | 2 | 2 | 1 |  |  |  |  |  |
| 12.25 |  |  |  | 4 | 17 | 22 | 38 | 12 | 8 |  |  |  |  |  | 1 |
| 12.75 |  |  |  |  | 5 | 9 | 42 | 37 | 14 | 6 | 2 |  | 1 | 1 | 1 |
| 13.25 |  |  |  |  | 2 | 4 | 31 | 28 | 24 | 12 | 6 | 2 | 3 | 1 | 5 |
| 13.75 |  |  |  |  | 1 | 3 | 25 | 22 | 21 | 14 | 6 | 5 | 4 | 2 | 11 |
| 14.25 |  |  |  |  |  |  | 6 | 8 | 18 | 22 | 8 | 3 | 7 | 1 | 20 |
| 14.75 |  |  |  |  |  | 1 | 1 | 2 | 3 | 8 | 1 | 6 | 6 | 6 | 30 |
| 15.25 |  |  |  |  |  |  | 1 | 1 |  | 2 | 2 | 2 | 5 | 2 | 19 |
| 15.75 |  |  |  |  |  |  |  |  |  | 2 |  |  |  | 2 | 19 |
| 16.25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 8 |
| 16.75 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| 17.25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| 17.75 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| 18.25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| 18.75 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |

Table 3.2.1.2. Boarfish in ICES Subareas 27.6, 7, 8. Number of samples collected from the catch per year

| Year | Landings | Percent landings covered by sampling | No. samples | No. measured | No. aged |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 120 | 0 | 0 | 0 | 0 |
| 2002 | 91 | 0 | 0 | 0 | 0 |
| 2003 | 458 | 0 | 0 | 0 | 0 |
| 2004 | 675 | 0 | 0 | 0 | 0 |
| 2005 | 165 | 0 | 0 | 0 | 0 |
| 2006 | 2772 | 0 | 0 | 0 | 0 |
| 2007 | 18387 | NA | 3 | 217 | 0 |
| 2008 | 24683 | NA | 1 | 152 | 0 |
| 2009 | 83688 | NA | 9 | 1475 | 0 |
| 2010 | 137503 | NA | 95 | 10675 | 403* |
| 2011 | 31295 | NA | 27 | 4066 | 704 |
| 2012 | 80720 | NA | 80(68)*** | 9656(8565)*** | 814** |
| 2013 | 69812 | NA | 76 | 9392 | 0**** |
| 2014 | 43418 | NA | 54 | 7008 | 0**** |
| 2015 | 16837 | NA | 32 | 3356 | $0^{* * * *}$ |
| 2016 | 18031 | NA | 27 | 3861 | 0**** |
| 2017 | 16215 | NA | 18 | 1140 | 0**** |
| 2018 | 9927 | NA | 12 | 556 | 0**** |
| 2019 | 11006 | NA | 8 | 371 | $0^{* * * *}$ |
| 2020 | 15451 | NA | 10 | 534 | 0**** |

* A common ALK was developed from fish collected from both commercial and survey samples. This comprehensive ALK was used to produce catch numbers at age data for pseudo-cohort analyses.
** A common ALK was developed from fish collected from Danish, Irish and Scottish commercial landings. This comprehensive ALK was used for all métiers to produce catch numbers-at-age for the pseudo-cohort analysis.
Only aged fish measured to the 0.5 cm were included in the ALK.
*** Only Irish collected samples were used for the length frequency, see stock annex.
**** 2012 ALK was used.

Table 3.2.1.3. Boarfish in ICES Subareas 5, 27.6, 7, 8. The allocation of Age length keys to unsampled metiers in 2020

| Country | Area | Quarter | Landed | ALK |
| :---: | :---: | :---: | :---: | :---: |
| DK | 7.b | 4 | 18.693 | IE_7.b_Q4 |
| DK | $7 . \mathrm{e}$ | 4 | 0.001 | IE_7.h_Q4 |
| DK | 7.h | 4 | 68.013 | IE_7.h_Q4 |
| DK | 7.j | 1 | 22.409 | IE_8.a_Q1 |
| DK | 7.j | 4 | 10.377 | IE_7.j_Q4 |
| ES | 7.j | 2 | 0.012 | IE_7.b_Q4 IE_7.h_Q4 IE_7.j_Q4 |
| ES | 7.j | 3 | 0.028 | IE_7.j_Q4 |
| ES | 8.c | 4 | 1.021 | IE_7.h_Q4 IE_7.j_Q4 |
| IE | 6.a | 4 | 1,083.000 | IE_6.a_Q4 |
| IE | 7.b | 2 | 0.010 | IE_7.b_Q4 IE_7.j_Q4 |
| IE | 7.b | 4 | 6,676.000 | IE_7.b_Q4 |
| IE | 7.c | 4 | 2.364 | IE_7.b_Q4 |
| IE | 7.9 | 2 | 0.311 | IE_7.b_Q4 IE_7.h_Q4 IE_7.j_Q4 |
| IE | 7.9 | 3 | 0.119 | IE_7.b_Q4 IE_7.h_Q4 IE_7.j_Q4 |
| IE | 7.g | 4 | 0.162 | IE_7.b_Q4 IE_7.h_Q4 IE_7.j_Q4 |
| IE | 7.h | 1 | 189.000 | IE_8.a_Q1 |
| IE | 7.h | 4 | 4,954.000 | IE_7.h_Q4 |
| IE | 7.j | 1 | 41.710 | IE_8.a_Q1 |
| IE | 7.j | 2 | 0.825 | IE_7.b_Q4 IE_7.h_Q4 IE_7.j_Q4 |
| IE | 7.j | 3 | 56.670 | IE_7.j_Q4 |
| IE | 7.j | 4 | 1,123.000 | IE_7.j_Q4 |
| IE | 8.a | 1 | 268.600 | IE_8.a_Q1 |
| NL | 6.a | 3 | 1.690 | IE_6.a_Q4 |
| NL | 6.a | 4 | 73.440 | IE_6.a_Q4 |
| NL | 7.b | 2 | 2.240 | IE_7.b_Q4 IE_7.j_Q4 |
| NL | 7.b | 3 | 64.960 | IE_7.b_Q4 |
| NL | 7.b | 4 | 26.860 | IE_7.b_Q4 |
| NL | $7 . \mathrm{e}$ | 2 | 0.110 | IE_8.a_Q1 |


| Country | Area | Quarter | Landed | ALK |
| :---: | :---: | :---: | :---: | :---: |
| NL | 7.f | 4 | 0.390 | IE_7.h_Q4 IE_7.j_Q4 |
| NL | 7.9 | 4 | 0.060 | IE_7.b_Q4 IE_7.h_Q4 IE_7.j_Q4 |
| NL | 7.h | 1 | 0.700 | IE_8.a_Q1 |
| NL | 7.h | 3 | 12.920 | IE_7.h_Q4 |
| NL | 7.j | 1 | 17.630 | IE_8.a_Q1 |
| NL | 7.j | 2 | 34.240 | IE_7.b_Q4 IE_7.h_Q4 IE_7.j_Q4 |
| NL | 7.j | 3 | 13.020 | IE_7.j_Q4 |
| NL | 8.a | 2 | 2.960 | IE_8.a_Q1 |
| NL | 8.a | 3 | 13.660 | IE_7.h_Q4 |
| PL | 7.j | 3 | 109.460 | IE_7.j_Q4 |
| UKE | 7.d | 3 | 0.003 | IE_7.h_Q4 IE_7.j_Q4 |
| UKE | 7.j | 1 | 22.935 | IE_8.a_Q1 |

Table 3.2.1.4. Boarfish in ICES Subareas 27.6, 7, 8. Catch (landings and discards) per country and corresponding number of samples collected in 2020

| Official catch | Country | No. samples | No. measured | No. aged |
| :--- | :--- | :--- | :--- | :--- |
| 196 | DK | 0 | 0 | 0 |
| 134 | ES | 0 | 0 | 0 |
| 14738 | NL | 10 | 534 | 0 |
| 416 | PL | 0 | 0 | 0 |
| 109 | UKE | 0 | 0 | 0 |
| 1 | UKS | 0 | 0 | 0 |

Table 3.2.1.5. Boarfish in ICES Subareas 27.6, 7, 8. Catch per area and corresponding number of samples collected in 2020

| Area | Official catch | No. samples | No. measured | No. measured per 1000t |
| :--- | :--- | :--- | :--- | :--- |
| 27.3.a | 0.00 | 0 | 0 | 0.00 |
| 27.3.b | 0.00 | 0 | 0 | 0.00 |
| $27.3 . \mathrm{c}$ | 0.00 | 0 | 0 | 0.00 |
| $27.3 . \mathrm{d}$ | 0.00 | 0 | 0 | 0.00 |


| Area | Official catch | No. samples | No. measured | No. measured per 1000t |
| :---: | :---: | :---: | :---: | :---: |
| 27.4.a | 7.50 | 0 | 0 | 0.00 |
| 27.4.b | 0.00 | 0 | 0 | 0.00 |
| 27.6.a | 1,340.11 | 2 | 85 | 63.43 |
| 27.6.b | 3.25 | 0 | 0 | 0.00 |
| 27.7.b | 7,156.11 | 3 | 169 | 23.62 |
| 27.7.c | 15.16 | 0 | 0 | 0.00 |
| 27.7.d | 0.00 | 0 | 0 | 0.00 |
| 27.7.e | 0.34 | 0 | 0 | 0.00 |
| 27.7.f | 0.39 | 0 | 0 | 0.00 |
| 27.7.g | 0.99 | 0 | 0 | 0.00 |
| 27.7.h | 5,291.11 | 2 | 88 | 16.63 |
| 27.8.a | 285.22 | 2 | 151 | 529.42 |
| 27.8.b | 5.46 | 0 | 0 | 0.00 |
| 27.8.c | 27.58 | 0 | 0 | 0.00 |
| 27.7.j | 1,523.14 | 1 | 41 | 26.92 |
| 27.7.k | 0.00 | 0 | 0 | 0.00 |

Table 3.2.1.6. Boarfish in ICES Subareas 27.6, 7, 8. Proxy catch numbers-at-age of the international catches (raised numbers in ‘000s) for the years 2007-2020

| Age | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1575 | 2415 | 0 | 28 | 301 | 0 | 5556 | 218 | 1862 | 314 | 17427 | 40397 |
| 2 | 352 | 5488 | 15043 | 11229 | 2894 | 893 | 7148 | 695 | 116135 | 2385 | 4387 | 1736 | 37620 | 57719 |
| 3 | 2114 | 21140 | 65744 | 72709 | 41913 | 5467 | 156680 | 49503 | 32248 | 10737 | 8830 | 2628 | 9737 | 37192 |
| 4 | 40851 | 105575 | 338931 | 294382 | 28148 | 41278 | 58522 | 127520 | 16588 | 25114 | 34448 | 13610 | 9944 | 26433 |
| 5 | 48915 | 141300 | 475619 | 567689 | 30116 | 110272 | 59797 | 93705 | 24564 | 20263 | 27266 | 15570 | 12682 | 10162 |
| 6 | 62713 | 195339 | 543707 | 878363 | 175696 | 146582 | 68949 | 67275 | 26566 | 18025 | 21103 | 14731 | 12716 | 2583 |
| 7 | 26132 | 104031 | 307333 | 522703 | 143967 | 492078 | 302967 | 193061 | 74115 | 61229 | 55189 | 38686 | 29513 | 9113 |
| 8 | 29766 | 66570 | 172783 | 293719 | 107126 | 365840 | 250341 | 139124 | 52052 | 47573 | 38229 | 26821 | 18819 | 7487 |
| 9 | 56075 | 53159 | 155477 | 276672 | 77861 | 271916 | 212318 | 121042 | 44615 | 42478 | 32258 | 23670 | 15875 | 7897 |
| 10 | 44875 | 46893 | 130148 | 232122 | 60022 | 173486 | 160137 | 94225 | 34264 | 35150 | 25716 | 19395 | 11359 | 8164 |
| 11 | 14019 | 15289 | 42521 | 78588 | 46079 | 69396 | 63025 | 36078 | 12999 | 13297 | 9560 | 7148 | 4272 | 3049 |
| 12 | 32359 | 21178 | 61350 | 114600 | 40468 | 40968 | 41490 | 24895 | 9114 | 9132 | 7564 | 5846 | 2937 | 2786 |
| 13 | 4848 | 11854 | 39609 | 59932 | 24352 | 58888 | 59380 | 36309 | 13362 | 13774 | 10922 | 8183 | 4256 | 4152 |
| 14 | 16837 | 13570 | 31569 | 59060 | 19724 | 30277 | 30355 | 19064 | 7152 | 6682 | 5924 | 4554 | 2156 | 2333 |
| 15+ | 109481 | 112947 | 196967 | 349320 | 157707 | 217260 | 239366 | 150688 | 59139 | 49589 | 40797 | 32130 | 14864 | 17663 |

Table 3.2.2.1. Boarfish in ICES Subareas 27.6, 7, 8. Length-frequency distributions of the international catches (raised numbers in ‘000s) for the years 2007-2020

| Length | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.5 |  |  |  |  |  |  |  |  | 14 |  |  |  |  |  |
| 5.0 |  |  |  |  |  |  |  |  | 878 |  |  |  |  |  |
| 5.5 |  |  |  |  |  |  |  |  | 515 |  |  |  |  | 2746 |
| 6.0 |  |  |  | 156 |  |  |  |  | 810 |  | 765 |  | 15868 | 37073 |
| 6.5 |  |  |  | 439 |  |  |  |  | 14 |  | 4607 | 203 | 70362 | 150810 |
| 7.0 |  |  |  | 1090 | 522 | 56 | 52 |  | 513 | 417 | 5250 | 405 | 80160 | 233347 |
| 7.5 |  |  | 1354 | 1574 |  |  | 551 |  | 10598 | 1684 | 12616 | 2635 | 85420 | 147915 |
| 8.0 |  |  | 677 | 375 | 1345 | 185 | 1419 |  | 80716 | 8685 | 11473 | 4703 | 115154 | 38949 |
| 8.5 |  |  |  | 1082 |  | 555 | 3592 | 1064 | 49508 | 6412 | 10115 | 3559 | 67471 | 43556 |
| 9.0 |  |  | 677 | 5382 | 851 | 555 | 7263 | 327 | 10219 | 7104 | 3874 | 6554 | 16504 | 101918 |
| 9.5 |  | 7473 | 17367 | 7883 | 7012 | 641 | 47509 | 4916 | 213 | 23065 | 14047 | 6196 | 3147 | 115103 |
| 10.0 | 9609 | 11209 | 54130 | 29410 | 33243 | 2791 | 94702 | 31649 | 1211 | 46010 | 32346 | 5559 | 9173 | 100550 |
| 10.5 |  | 52308 | 174796 | 130889 | 15848 | 6132 | 59833 | 71344 | 3865 | 39071 | 36242 | 4450 | 10144 | 55049 |
| 11.0 | 84555 | 63517 | 343283 | 361774 | 70615 | 24571 | 18359 | 108261 | 12226 | 14181 | 32445 | 17658 | 5796 | 9475 |
| 11.5 |  | 59781 | 321637 | 655875 | 93487 | 81928 | 20938 | 82470 | 28142 | 18249 | 31589 | 22826 | 22722 | 3172 |
| 12.0 | 44199 | 119561 | 297737 | 739025 | 189434 | 264888 | 98564 | 84288 | 41613 | 30975 | 33618 | 24070 | 22353 | 2396 |
| 12.5 |  | 70990 | 207739 | 564347 | 114904 | 398772 | 204868 | 112826 | 42461 | 51110 | 41650 | 24514 | 17521 | 3251 |


| Length | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13.0 | 82633 | 52308 | 147965 | 353484 | 133539 | 419060 | 315063 | 172416 | 59990 | 57000 | 46495 | 30665 | 28815 | 9494 |
| 13.5 |  | 29890 | 149314 | 246146 | 51235 | 307533 | 285688 | 153742 | 52625 | 58696 | 43121 | 38698 | 16688 | 13707 |
| 14.0 | 117224 | 22418 | 105782 | 224611 | 50857 | 176710 | 210137 | 138549 | 50139 | 76872 | 45353 | 34080 | 20053 | 16381 |
| 14.5 |  | 14945 | 71273 | 127711 | 25309 | 89726 | 105571 | 74059 | 28771 | 37755 | 39524 | 29908 | 13809 | 14913 |
| 15.0 | 65338 | 33627 | 47816 | 125463 | 25569 | 52791 | 62175 | 43347 | 16087 | 23137 | 21854 | 15561 | 5710 | 12563 |
| 15.5 |  | 11209 | 13082 | 81386 | 5473 | 25065 | 31122 | 22629 | 8572 | 7841 | 4932 | 5778 | 1513 | 4304 |
| 16.0 | 13452 | 11209 | 19397 | 24256 | 4181 | 13149 | 14990 | 7672 | 4331 | 625 | 1020 | 1948 | 143 | 1041 |
| 16.5 |  | 3736 | 4061 | 6209 | 2280 | 2738 | 4918 | 2134 | 2081 | 128 |  | 54 | 143 | 353 |
| 17.0 |  | 3736 | 677 | 1913 | 456 | 827 | 1109 | 1361 | 289 |  |  |  |  |  |
| 17.5 |  |  |  |  |  |  | 407 |  | 23 |  |  |  |  | 353 |
| 18.0 |  |  |  | 283 |  |  | 296 |  |  |  |  |  |  |  |
| 18.5 |  |  |  |  |  |  |  |  | 592 |  |  |  |  |  |

Table 3.3.1.1. Boarfish in ICES Subareas 27.6. 7, 8. Acoustic survey abundance and biomass estimates

| Age | $\mathbf{2 0 1 1}$ | $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 3}$ | $\mathbf{2 0 1 4}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 8}$ | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 |  |  |  |  |  | 199 | 5 | 111 | 77 | 782 | 897 |
| 1 | 5 | 11 | 78 | 319 | 36 | 127 | 31 | 389 | 1157 | 359 |  |
| 2 | 174 | 1843 | 15 | 17 | 46 | 345 | 115 | 97 | 967 | 2955 |  |
| 3 | 58 | 187 |  |  |  |  |  |  |  |  |  |

Table 3.3.2.1. Boarfish in ICES Subareas 27.6, 7, 8. IBTS length-frequency data

## EVHOE

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1997 | 0 | 5 | 12 | 7 | 17 | 195 | 2645 | 5006 | 3691 | 3570 | 4422 | 12054 | 16633 | 7200 | 3472 | 503 | 18 | 1 | 0 | 0 |
| 1998 | 0 | 1 | 4 | 25 | 70 | 2083 | 18263 | 8566 | 6117 | 5961 | 7082 | 11828 | 14363 | 9600 | 5261 | 971 | 8 | 0 | 0 | 1 |
| 1999 | 0 | 0 | 13 | 52 | 33 | 245 | 10949 | 25911 | 23235 | 6484 | 2818 | 4632 | 7780 | 6151 | 1357 | 268 | 8 | 0 | 0 | 0 |
| 2000 | 0 | 17 | 79 | 120 | 8 | 1508 | 26901 | 17725 | 9864 | 22076 | 16424 | 29584 | 36849 | 16508 | 5399 | 988 | 76 | 0 | 0 | 0 |
| 2001 | 0 | 1 | 45 | 687 | 490 | 916 | 21328 | 37173 | 13322 | 28492 | 31640 | 18378 | 12315 | 6507 | 3193 | 1272 | 81 | 4 | 0 | 0 |
| 2002 | 0 | 2 | 18 | 23 | 11 | 547 | 9634 | 29844 | 17728 | 13175 | 9280 | 9513 | 9615 | 6185 | 2458 | 642 | 37 | 1 | 1 | 0 |
| 2003 | 0 | 0 | 17 | 47 | 17 | 57 | 426 | 1663 | 7155 | 20073 | 24977 | 21358 | 21939 | 15004 | 7355 | 1599 | 35 | 0 | 0 | 0 |
| 2004 | 0 | 0 | 33 | 534 | 397 | 123 | 1248 | 1420 | 1308 | 1083 | 3102 | 7308 | 7224 | 6353 | 7866 | 3630 | 241 | 5 | 0 | 0 |
| 2005 | 0 | 2 | 94 | 964 | 1264 | 146 | 1097 | 2302 | 1225 | 1551 | 3182 | 13394 | 15782 | 9879 | 6012 | 1658 | 117 | 70 | 0 | 0 |
| 2006 | 1 | 26 | 111 | 77 | 74 | 15506 | 37545 | 10729 | 3611 | 2128 | 1518 | 1960 | 4165 | 4024 | 2601 | 940 | 93 | 2 | 12 | 0 |
| 2007 | 0 | 7 | 188 | 473 | 234 | 1511 | 22812 | 127331 | 65589 | 6442 | 6823 | 5477 | 6110 | 6003 | 4268 | 1411 | 118 | 11 | 0 | 0 |
| 2008 | 0 | 3 | 432 | 2795 | 823 | 5487 | 54355 | 256210 | 169633 | 163128 | 69199 | 38406 | 18310 | 17213 | 9157 | 3486 | 745 | 6 | 1 | 0 |
| 2009 | 0 | 6 | 128 | 194 | 69 | 1482 | 19663 | 35649 | 5260 | 3906 | 9562 | 12271 | 9402 | 10835 | 6722 | 775 | 39 | 1 | 0 | 0 |
| 2010 | 0 | 21 | 529 | 116 | 154 | 5774 | 46490 | 74999 | 27177 | 12168 | 37971 | 59369 | 38501 | 37683 | 15699 | 1555 | 248 | 8 | 1 | 0 |
| 2011 | 0 | 61 | 95 | 214 | 5 | 536 | 2232 | 8210 | 14905 | 32671 | 29788 | 50316 | 56963 | 36588 | 11723 | 3058 | 572 | 159 | 47 | 0 |
| 2012 | 0 | 9 | 146 | 594 | 142 | 2913 | 28823 | 26800 | 6124 | 11739 | 13607 | 22370 | 37138 | 44084 | 19963 | 4893 | 127 | 1 | 0 | 0 |
| 2013 | 0 | 3 | 48 | 92 | 10 | 305 | 2187 | 2141 | 2558 | 13769 | 9938 | 15006 | 37563 | 40266 | 20130 | 6888 | 686 | 0 | 3 | 0 |
| 2014 | 0 | 2 | 693 | 1386 | 508 | 84 | 1440 | 885 | 3074 | 8732 | 28586 | 39397 | 74122 | 69736 | 26871 | 3908 | 59 | 433 | 0 | 0 |
| 2015 | 0 | 5 | 183 | 5898 | 4143 | 607 | 19075 | 179269 | 119004 | 15765 | 18014 | 61575 | 62024 | 59904 | 21525 | 5487 | 541 | 429 | 8 | 0 |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2016 | 5 | 31 | 379 | 846 | 115 | 733 | 10284 | 14280 | 17251 | 42132 | 25304 | 68583 | 130633 | 131220 | 48538 | 11611 | 1358 | 26 | 0 | 0 |
| 2018 | 0 | 14 | 4957 | 193861 | 173779 | 210 | 10910 | 76288 | 48343 | 29096 | 45773 | 85164 | 132174 | 157883 | 48603 | 14951 | 592 | 18 | 0 | 0 |
| 2019 | 2 | 997 | 6467 | 589 | 10688 | 531908 | 561517 | 329850 | 59733 | 4505 | 3418 | 8451 | 32547 | 61582 | 30031 | 7468 | 962 | 204 | 0 | 0 |
| 2020 | 3 | 283 | 1280 | 657 | 21381 | 408706 | 595107 | 142947 | 218153 | 421028 | 220190 | 54726 | 70612 | 97364 | 74415 | 30606 | 4736 | 1 | 0 | 0 |

IGFS

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 0 | 1 | 33 | 22 | 7 | 22 | 129 | 172 | 879 | 2942 | 2322 | 1325 | 3823 | 4629 | 2898 | 896 | 163 | 38 | 0 | 0 |
| 2004 | 0 | 23 | 63 | 34 | 8 | 117 | 628 | 1444 | 423 | 397 | 464 | 2276 | 4325 | 4709 | 3972 | 1019 | 90 | 5 | 1 | 0 |
| 2005 | 0 | 8 | 59 | 52 | 20 | 203 | 1024 | 585 | 288 | 636 | 341 | 3463 | 11457 | 11348 | 7955 | 1744 | 382 | 2 | 1 | 0 |
| 2006 | 5 | 60 | 68 | 48 | 35 | 212 | 969 | 621 | 2046 | 4190 | 8044 | 7946 | 24208 | 42119 | 32168 | 12296 | 2454 | 532 | 0 | 0 |
| 2007 | 1 | 6 | 44 | 18 | 31 | 501 | 923 | 1251 | 1638 | 1166 | 2510 | 3581 | 8275 | 10740 | 7093 | 1934 | 92 | 0 | 0 | 0 |
| 2008 | 0 | 0 | 26 | 18 | 23 | 127 | 672 | 531 | 2095 | 13780 | 17664 | 19268 | 16980 | 19484 | 15953 | 8789 | 1747 | 76 | 1 | 0 |
| 2009 | 0 | 3 | 80 | 76 | 25 | 94 | 228 | 486 | 1000 | 1139 | 9081 | 7749 | 5138 | 6921 | 5592 | 1084 | 68 | 1 | 0 | 0 |
| 2010 | 0 | 6 | 42 | 3 | 18 | 199 | 272 | 463 | 920 | 393 | 7914 | 34236 | 28611 | 16063 | 8161 | 1974 | 433 | 0 | 0 | 0 |
| 2011 | 0 | 7 | 17 | 5 | 4 | 189 | 772 | 592 | 556 | 669 | 2600 | 20246 | 22121 | 10851 | 5319 | 2218 | 269 | 9 | 6 | 0 |
| 2012 | 0 | 7 | 36 | 20 | 10 | 130 | 271 | 378 | 702 | 2143 | 1183 | 11104 | 34005 | 22731 | 10905 | 3901 | 525 | 4 | 0 | 0 |
| 2013 | 1 | 3 | 9 | 9 | 20 | 127 | 352 | 340 | 1320 | 2833 | 3971 | 15572 | 51637 | 52868 | 20485 | 6560 | 492 | 20 | 0 | 0 |
| 2014 | 0 | 10 | 68 | 54 | 4 | 18 | 13 | 25 | 60 | 130 | 1127 | 3251 | 19125 | 23016 | 10355 | 2988 | 284 | 18 | 0 | 0 |
| 2015 | 0 | 3 | 11 | 16 | 24 | 193 | 1008 | 3708 | 848 | 105 | 713 | 6315 | 29727 | 48220 | 33024 | 17350 | 1885 | 531 | 0 | 0 |
| 2016 | 4 | 31 | 121 | 63 | 7 | 67 | 187 | 1515 | 4057 | 2891 | 1349 | 4111 | 32753 | 57753 | 40907 | 15527 | 3670 | 85 | 0 | 0 |


| Year | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2017 | 0 | 0 | 37 | 131 | 48 | 132 | 460 | 652 | 11411 | 20321 | 5909 | 5520 | 16426 | 33117 | 29972 | 15815 | 3194 | 369 | 0 | 0 |
| 2018 | 4 | 51 | 247 | 139 | 32 | 45 | 286 | 585 | 1194 | 6107 | 17005 | 15168 | 48895 | 61833 | 36519 | 10722 | 2030 | 63 | 0 | 0 |
| 2019 | 4 | 19 | 117 | 47 | 52 | 262 | 583 | 173 | 106 | 487 | 2677 | 4967 | 6863 | 12080 | 10480 | 5125 | 772 | 71 | 4 | 0 |
| 2020 | 9 | 388 | 233 | 21 | 16 | 1772 | 2052 | 13941 | 65121 | 24505 | 7709 | 17859 | 12157 | 17223 | 9125 | 2499 | 110 | 2 | 0 | 0 |

SPNGFS

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 0 | 0 | 8 | 0 | 16 | 317 | 1817 | 2496 | 260 | 141 | 154 | 314 | 632 | 613 | 689 | 97 | 0 | 0 | 0 | 0 |
| 1991 | 0 | 1 | 0 | 0 | 31 | 690 | 1311 | 313 | 49 | 9 | 6 | 7 | 7 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |
| 1992 | 0 | 57 | 38 | 9 | 178 | 3290 | 2743 | 282 | 48 | 10 | 8 | 69 | 162 | 390 | 779 | 246 | 95 | 0 | 0 | 0 |
| 1993 | 0 | 57 | 1206 | 488 | 97 | 3730 | 3753 | 421 | 105 | 54 | 7 | 4 | 8 | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
| 1994 | 1 | 40 | 33 | 0 | 342 | 4789 | 10162 | 8920 | 3195 | 53 | 106 | 20 | 9 | 12 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1995 | 0 | 84 | 108 | 4 | 342 | 3063 | 2157 | 220 | 84 | 65 | 58 | 105 | 105 | 90 | 20 | 4 | 0 | 0 | 0 | 0 |
| 1996 | 0 | 218 | 537 | 143 | 245 | 4457 | 4449 | 267 | 820 | 722 | 82 | 145 | 126 | 219 | 96 | 39 | 2 | 0 | 0 | 0 |
| 1997 | 2 | 102 | 809 | 441 | 235 | 3458 | 6824 | 2189 | 1923 | 534 | 156 | 353 | 161 | 88 | 3 | 0 | 0 | 0 | 0 | 0 |
| 1998 | 3 | 2 | 7 | 4 | 49 | 1920 | 4685 | 2217 | 337 | 153 | 125 | 88 | 147 | 135 | 86 | 13 | 2 | 3 | 0 | 0 |
| 1999 | 0 | 6 | 59 | 13 | 134 | 2736 | 3010 | 193 | 106 | 83 | 109 | 143 | 390 | 645 | 402 | 69 | 0 | 0 | 0 | 0 |
| 2000 | 0 | 7 | 3729 | 2046 | 17 | 554 | 1947 | 489 | 277 | 486 | 756 | 1252 | 999 | 1021 | 199 | 34 | 13 | 0 | 0 | 0 |
| 2001 | 0 | 68 | 4 | 1 | 153 | 3241 | 5085 | 659 | 225 | 206 | 205 | 236 | 692 | 407 | 120 | 22 | 9 | 0 | 0 | 0 |
| 2002 | 0 | 4 | 20 | 0 | 133 | 2333 | 2013 | 284 | 50 | 58 | 54 | 60 | 231 | 314 | 72 | 9 | 0 | 0 | 0 | 0 |
| 2003 | 0 | 4 | 950 | 567 | 4 | 77 | 221 | 57 | 39 | 28 | 16 | 22 | 17 | 23 | 16 | 5 | 1 | 0 | 0 | 0 |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2004 | 0 | 6 | 22 | 4 | 43 | 2289 | 3808 | 443 | 110 | 83 | 58 | 219 | 931 | 776 | 303 | 2 | 1 | 0 | 0 | 0 |
| 2005 | 0 | 16 | 451 | 25 | 9 | 754 | 1007 | 207 | 85 | 102 | 30 | 54 | 257 | 218 | 90 | 44 | 2 | 0 | 0 | 0 |
| 2006 | 0 | 14 | 156 | 160 | 50 | 2238 | 8913 | 4507 | 175 | 94 | 9 | 36 | 229 | 419 | 169 | 9 | 2 | 0 | 0 | 0 |
| 2007 | 0 | 49 | 40 | 1 | 111 | 3025 | 6620 | 1099 | 129 | 260 | 81 | 7 | 93 | 215 | 89 | 21 | 3 | 0 | 0 | 0 |
| 2008 | 7 | 4 | 92 | 247 | 1 | 936 | 1561 | 1326 | 234 | 1483 | 304 | 537 | 11 | 833 | 201 | 186 | 11 | 0 | 0 | 0 |
| 2009 | 1 | 17 | 62 | 119 | 11 | 2587 | 3893 | 4070 | 119 | 250 | 45 | 142 | 59 | 819 | 120 | 17 | 1 | 1 | 0 | 0 |
| 2010 | 0 | 55 | 102 | 5 | 232 | 13090 | 22032 | 3169 | 1160 | 1056 | 89 | 82 | 179 | 1007 | 1981 | 518 | 9 | 0 | 0 | 0 |
| 2011 | 0 | 29 | 260 | 105 | 46 | 2805 | 5511 | 1278 | 148 | 340 | 145 | 100 | 144 | 591 | 724 | 134 | 3 | 1 | 0 | 0 |
| 2012 | 0 | 29 | 132 | 35 | 556 | 7550 | 7844 | 1364 | 88 | 53 | 59 | 170 | 1051 | 2394 | 1553 | 432 | 21 | 0 | 0 | 0 |
| 2013 | 0 | 0 | 2 | 11 | 126 | 2163 | 4664 | 854 | 302 | 609 | 251 | 61 | 113 | 134 | 156 | 81 | 8 | 0 | 0 | 0 |
| 2014 | 0 | 75 | 117 | 6 | 12 | 263 | 465 | 79 | 1083 | 1175 | 1174 | 1266 | 998 | 2444 | 3623 | 817 | 31 | 1 | 0 | 0 |
| 2015 | 0 | 13 | 67 | 3 | 58 | 1889 | 4248 | 534 | 75 | 465 | 750 | 970 | 695 | 1173 | 1473 | 453 | 70 | 1 | 0 | 0 |
| 2016 | 0 | 17 | 99 | 5 | 41 | 922 | 2423 | 473 | 925 | 746 | 346 | 548 | 452 | 561 | 169 | 22 | 4 | 0 | 0 | 0 |
| 2017 | 1 | 23 | 20 | 1 | 16 | 641 | 1947 | 755 | 134 | 165 | 285 | 405 | 579 | 967 | 936 | 177 | 13 | 3 | 0 | 0 |
| 2018 | 0 | 0 | 2 | 0 | 45 | 708 | 1635 | 258 | 43 | 99 | 230 | 605 | 1370 | 3324 | 3865 | 949 | 3 | 0 | 0 | 2 |
| 2019 | 0 | 12 | 2 | 1 | 259 | 4128 | 3887 | 379 | 18 | 83 | 273 | 329 | 717 | 4200 | 8402 | 2215 | 202 | 0 | 0 | 0 |
| 2020 | 0 | 8 | 33 | 2 | 33 | 1218 | 2123 | 525 | 387 | 314 | 75 | 225 | 705 | 2518 | 4751 | 1603 | 10 | 0 | 0 | 0 |

## SPPGFS

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 0 | 1 | 0 | 1 | 1 | 2 | 0 | 44 | 5 | 52 | 133 | 162 | 667 | 1129 | 230 | 40 | 0 | 0 | 0 | 0 |
| 2002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 90 | 212 | 791 | 843 | 313 | 60 | 0 | 0 | 0 | 0 |
| 2003 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 15 | 22 | 21 | 62 | 268 | 426 | 249 | 51 | 2 | 1 | 0 | 0 |
| 2004 | 0 | 1 | 0 | 0 | 0 | 6 | 3 | 0 | 5 | 6 | 23 | 124 | 385 | 592 | 390 | 52 | 1 | 0 | 0 | 0 |
| 2005 | 0 | 1 | 0 | 1 | 8 | 1 | 20 | 11 | 10 | 16 | 8 | 118 | 628 | 1118 | 833 | 272 | 23 | 0 | 0 | 0 |
| 2006 | 0 | 0 | 1 | 1 | 8 | 120 | 118 | 26 | 43 | 95 | 34 | 58 | 431 | 863 | 716 | 252 | 13 | 1 | 0 | 0 |
| 2007 | 0 | 0 | 0 | 0 | 4 | 5 | 12 | 20 | 16 | 12 | 37 | 34 | 96 | 202 | 191 | 34 | 5 | 0 | 0 | 0 |
| 2008 | 0 | 1 | 0 | 0 | 0 | 1 | 17 | 10 | 23 | 19 | 79 | 156 | 349 | 666 | 442 | 113 | 7 | 0 | 0 | 0 |
| 2009 | 0 | 8 | 7 | 0 | 3 | 10 | 11 | 1 | 0 | 2 | 220 | 457 | 1333 | 1746 | 1698 | 474 | 11 | 0 | 0 | 0 |
| 2010 | 2 | 0 | 0 | 1 | 6 | 17 | 4 | 1 | 6 | 3 | 43 | 390 | 710 | 976 | 620 | 164 | 13 | 0 | 0 | 0 |
| 2011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 20 | 22 | 6 | 180 | 815 | 960 | 522 | 151 | 17 | 0 | 2 | 0 |
| 2012 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 10 | 87 | 456 | 570 | 267 | 79 | 4 | 0 | 0 | 0 |
| 2013 | 0 | 0 | 0 | 1 | 0 | 8 | 24 | 7 | 10 | 0 | 1 | 48 | 500 | 1032 | 564 | 163 | 15 | 1 | 0 | 0 |
| 2014 | 0 | 10 | 9 | 0 | 1 | 0 | 3 | 17 | 62 | 11 | 6 | 85 | 2453 | 6703 | 3168 | 2115 | 162 | 82 | 0 | 0 |
| 2015 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 32 | 300 | 471 | 316 | 151 | 43 | 0 | 0 | 0 |
| 2016 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 13 | 7 | 0 | 9 | 157 | 336 | 220 | 84 | 19 | 0 | 0 | 0 |
| 2017 | 0 | 67 | 19 | 0 | 0 | 0 | 10 | 0 | 0 | 1 | 18 | 26 | 148 | 498 | 529 | 268 | 17 | 0 | 0 | 0 |
| 2018 | 0 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 37 | 1159 | 3574 | 2449 | 1131 | 159 | 0 | 0 | 0 |
| 2019 | 5 | 36 | 4 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 0 | 15 | 426 | 952 | 796 | 192 | 15 | 0 | 0 | 0 |
| 2020 | 0 | 5 | 1 | 0 | 0 | 4 | 1 | 1 | 2 | 4 | 0 | 26 | 250 | 616 | 851 | 661 | 111 | 0 | 0 | 1 |

WCSGFS

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1987 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1988 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1989 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1990 | 0 | 0 | 3 | 2 | 0 | 3 | 24 | 42 | 62 | 172 | 210 | 1286 | 856 | 450 | 52 | 17 | 0 | 0 | 0 | 0 |
| 1991 | 0 | 0 | 0 | 2 | 0 | 31 | 138 | 80 | 183 | 644 | 683 | 848 | 226 | 89 | 12 | 1 | 2 | 4 | 0 | 0 |
| 1992 | 0 | 0 | 0 | 1 | 0 | 8 | 12 | 14 | 44 | 478 | 1160 | 4028 | 1674 | 502 | 5 | 0 | 0 | 0 | 0 | 0 |
| 1993 | 0 | 0 | 0 | 0 | 0 | 1 | 109 | 2 | 670 | 2078 | 1074 | 4904 | 2753 | 2882 | 28 | 2 | 0 | 0 | 0 | 0 |
| 1994 | 0 | 0 | 2 | 0 | 0 | 0 | 15 | 30 | 30 | 205 | 283 | 312 | 454 | 388 | 147 | 0 | 0 | 0 | 0 | 0 |
| 1995 | 8 | 12 | 18 | 4 | 2 | 10 | 40 | 30 | 94 | 162 | 640 | 1485 | 1770 | 1139 | 318 | 14 | 2 | 4 | 6 | 0 |
| 1996 | 0 | 0 | 0 | 4 | 0 | 10 | 48 | 27 | 49 | 48 | 64 | 188 | 920 | 1888 | 416 | 18 | 1 | 0 | 0 | 0 |
| 1997 | 0 | 0 | 4 | 0 | 0 | 1 | 17 | 42 | 120 | 64 | 116 | 249 | 436 | 301 | 91 | 8 | 4 | 0 | 0 | 0 |
| 1998 | 0 | 0 | 0 | 1 | 0 | 1 | 7 | 6 | 7 | 16 | 47 | 69 | 105 | 171 | 78 | 8 | 2 | 0 | 0 | 0 |
| 1999 | 0 | 0 | 1 | 0 | 0 | 2 | 6 | 8 | 189 | 221 | 312 | 458 | 346 | 221 | 69 | 0 | 0 | 0 | 0 | 0 |
| 2000 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 42 | 118 | 230 | 303 | 206 | 108 | 54 | 8 | 0 | 0 | 0 | 0 |
| 2001 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 27 | 54 | 90 | 233 | 414 | 242 | 80 | 15 | 1 | 0 | 0 |
| 2002 | 0 | 0 | 0 | 0 | 0 | 1 | 8 | 2 | 1 | 82 | 759 | 3243 | 5711 | 5896 | 1558 | 189 | 1 | 0 | 0 | 0 |
| 2003 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 52 | 9 | 107 | 326 | 1536 | 3294 | 5409 | 3553 | 413 | 37 | 0 | 0 | 0 |
| 2004 | 0 | 0 | 0 | 1 | 0 | 0 | 6 | 2 | 45 | 83 | 744 | 4576 | 8611 | 9526 | 5698 | 954 | 84 | 0 | 0 | 0 |
| 2005 | 0 | 2 | 0 | 0 | 0 | 9 | 38 | 15 | 30 | 31 | 113 | 442 | 1115 | 1747 | 818 | 141 | 9 | 3 | 2 | 0 |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 0 | 1 | 2 | 1 | 0 | 2 | 9 | 4 | 22 | 256 | 311 | 508 | 1524 | 2964 | 2104 | 449 | 73 | 2 | 0 | 0 |
| 2007 | 0 | 0 | 3 | 2 | 0 | 8 | 14 | 65 | 118 | 182 | 795 | 2938 | 5220 | 6953 | 5332 | 1538 | 116 | 0 | 0 | 0 |
| 2008 | 0 | 1 | 3 | 0 | 0 | 16 | 37 | 38 | 200 | 482 | 1406 | 3218 | 9904 | 22777 | 18407 | 6293 | 575 | 71 | 0 | 0 |
| 2009 | 0 | 0 | 1 | 0 | 1 | 1 | 4 | 6 | 64 | 2460 | 2246 | 694 | 505 | 416 | 338 | 136 | 12 | 0 | 0 | 0 |
| 2010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 530 | 1443 | 1384 | 1357 | 828 | 149 | 29 | 0 | 0 | 0 |

Table 3.6.1.1. Boarfish in ICES Subareas 27.6, 7, 8. IBTS length-frequency data converted to age-structured indices by application of the 2012 common ALK rounded down to 1 cm length classes
EVHOE

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1997 | 1323 | 5891 | 4835 | 3829 | 3369 | 3053 | 9614 | 6955 | 5556 | 3779 | 1521 | 973 | 1456 | 828 | 6235 |
| 1998 | 9132 | 16881 | 8109 | 6147 | 4527 | 3452 | 9545 | 6632 | 5452 | 4058 | 1597 | 1312 | 1733 | 1022 | 8419 |
| 1999 | 5474 | 30494 | 25366 | 5015 | 2592 | 1427 | 4373 | 3215 | 2887 | 2276 | 855 | 564 | 888 | 491 | 3675 |
| 2000 | 13450 | 28555 | 16758 | 19454 | 12310 | 8420 | 23424 | 16159 | 12783 | 8538 | 3354 | 1885 | 3099 | 1722 | 12485 |
| 2001 | 10664 | 39887 | 26874 | 27998 | 16428 | 8946 | 15285 | 7816 | 5688 | 3538 | 1301 | 863 | 1271 | 750 | 6396 |
| 2002 | 4817 | 30622 | 24313 | 11299 | 6215 | 3393 | 7688 | 4838 | 3852 | 2716 | 1035 | 726 | 1060 | 611 | 4928 |
| 2003 | 213 | 3707 | 9293 | 20716 | 13365 | 8409 | 18107 | 11109 | 8937 | 6448 | 2467 | 1932 | 2635 | 1547 | 12700 |
| 2004 | 624 | 2006 | 1574 | 1777 | 1923 | 1842 | 5376 | 3816 | 3078 | 2541 | 1075 | 1423 | 1434 | 932 | 11369 |
| 2005 | 549 | 2492 | 1901 | 2205 | 2758 | 2983 | 9853 | 7261 | 5865 | 4310 | 1727 | 1437 | 1869 | 1110 | 9951 |
| 2006 | 18772 | 27129 | 6395 | 1838 | 1086 | 692 | 2217 | 1683 | 1593 | 1407 | 557 | 586 | 688 | 416 | 4256 |
| 2007 | 11406 | 118156 | 87434 | 6252 | 3796 | 2250 | 4968 | 3140 | 2686 | 2208 | 861 | 923 | 1067 | 657 | 6591 |
| 2008 | 27177 | 254528 | 229646 | 124210 | 54539 | 19047 | 30818 | 15021 | 10954 | 7348 | 2618 | 2251 | 2934 | 1795 | 16959 |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | 9832 | 35351 | 16200 | 5643 | 4832 | 3830 | 8969 | 5783 | 4721 | 3809 | 1459 | 1524 | 1806 | 1110 | 9216 |
| 2010 | 23245 | 82303 | 45710 | 20517 | 19648 | 16749 | 39369 | 25075 | 19324 | 14156 | 5280 | 4343 | 5906 | 3511 | 26732 |
| 2011 | 1116 | 11557 | 19043 | 30617 | 20479 | 14495 | 39161 | 26846 | 21792 | 15613 | 5980 | 3928 | 6016 | 3404 | 27139 |
| 2012 | 14412 | 34320 | 15329 | 11984 | 8843 | 6877 | 21882 | 16580 | 15805 | 14165 | 5382 | 5221 | 6581 | 3893 | 34397 |
| 2013 | 1093 | 3373 | 5082 | 11975 | 7436 | 5156 | 18526 | 14722 | 14572 | 13248 | 5121 | 5049 | 6254 | 3703 | 35819 |
| 2014 | 720 | 2334 | 4216 | 15081 | 14776 | 13252 | 40953 | 30549 | 28568 | 24182 | 9208 | 7776 | 10517 | 6071 | 49039 |
| 2015 | 9537 | 168718 | 142196 | 16589 | 15129 | 14025 | 43805 | 31952 | 26892 | 21239 | 8025 | 6461 | 8982 | 5218 | 43843 |
| 2016 | 5142 | 20412 | 24368 | 35467 | 23775 | 18507 | 68150 | 53795 | 50979 | 44038 | 16743 | 14289 | 19326 | 11149 | 95082 |
| 2018 | 5455 | 72428 | 63489 | 33998 | 28889 | 24760 | 79148 | 59901 | 56898 | 49999 | 18526 | 15688 | 21690 | 12453 | 106474 |
| 2019 | 280759 | 520569 | 150645 | 4035 | 3104 | 2844 | 14950 | 13581 | 15700 | 16891 | 6358 | 7404 | 8669 | 5219 | 49538 |
| 2020 | 297553 | 465569 | 273832 | 332726 | 148543 | 51435 | 79125 | 38909 | 36296 | 32676 | 12326 | 15407 | 16693 | 10460 | 118335 |

## IGFS

| Year | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2003 | 64 | 472 | 1214 | 2586 | 1401 | 743 | 2065 | 1523 | 1556 | 1484 | 578 | 653 | 750 | 456 | 4672 |
| 2004 | 314 | 1418 | 842 | 434 | 493 | 543 | 2252 | 1838 | 1732 | 1603 | 653 | 802 | 864 | 541 | 5422 |
| 2005 | 512 | 998 | 509 | 567 | 717 | 908 | 4790 | 4166 | 4162 | 3867 | 1557 | 1730 | 1973 | 1201 | 11568 |
| 2006 | 484 | 1580 | 2423 | 5269 | 4211 | 3388 | 12623 | 10487 | 11436 | 12263 | 4853 | 6606 | 6952 | 4368 | 50651 |
| 2007 | 462 | 1842 | 1748 | 1576 | 1408 | 1235 | 4362 | 3474 | 3496 | 3378 | 1326 | 1557 | 1754 | 1076 | 10509 |
| 2008 | 336 | 1388 | 4302 | 14466 | 9811 | 6581 | 15265 | 9859 | 8231 | 6912 | 2728 | 3247 | 3553 | 2238 | 28119 |
| 2009 | 114 | 772 | 1117 | 3682 | 3665 | 2967 | 5991 | 3553 | 2883 | 2398 | 928 | 1136 | 1233 | 783 | 7266 |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | 136 | 752 | 906 | 3336 | 6161 | 7220 | 21721 | 15262 | 11417 | 7656 | 3025 | 2151 | 3055 | 1795 | 14845 |
| 2011 | 386 | 966 | 715 | 1598 | 3198 | 4038 | 13856 | 10232 | 7932 | 5384 | 2159 | 1453 | 2121 | 1224 | 10962 |
| 2012 | 136 | 622 | 1006 | 1911 | 2306 | 2843 | 13844 | 11639 | 10956 | 8966 | 3576 | 2903 | 3900 | 2242 | 21003 |
| 2013 | 176 | 843 | 1557 | 3292 | 3917 | 4545 | 21801 | 18670 | 19029 | 17278 | 6613 | 5870 | 7777 | 4484 | 40599 |
| 2014 | 6 | 43 | 82 | 492 | 927 | 1262 | 7300 | 6613 | 7255 | 7083 | 2717 | 2714 | 3384 | 1986 | 18529 |
| 2015 | 504 | 3259 | 1827 | 403 | 1251 | 1945 | 12476 | 11625 | 13072 | 13999 | 5512 | 7082 | 7697 | 4765 | 58017 |
| 2016 | 93 | 2456 | 3763 | 2302 | 1775 | 1846 | 13082 | 12553 | 14753 | 16394 | 6464 | 8634 | 9226 | 5742 | 65723 |
| 2017 | 230 | 4468 | 11683 | 14642 | 6277 | 2402 | 9024 | 7578 | 8395 | 9474 | 3824 | 5785 | 5766 | 3703 | 49915 |
| 2018 | 143 | 930 | 2275 | 9391 | 8194 | 6861 | 23782 | 19030 | 19873 | 19320 | 7511 | 8412 | 9756 | 5903 | 59025 |
| 2019 | 292 | 442 | 242 | 1229 | 1449 | 1419 | 4664 | 3618 | 3540 | 3626 | 1453 | 2058 | 2107 | 1346 | 16899 |
| 2020 | 1026 | 32027 | 52719 | 18043 | 8761 | 4356 | 11714 | 8061 | 6664 | 5578 | 2105 | 2193 | 2649 | 1618 | 14790 |

SPNGFS

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 909 | 2660 | 1033 | 142 | 110 | 93 | 335 | 263 | 243 | 224 | 95 | 128 | 129 | 83 | 770 |
| 1991 | 656 | 880 | 138 | 8 | 4 | 2 | 6 | 3 | 3 | 2 | 1 | 0 | 1 | 0 | 8 |
| 1992 | 1371 | 1575 | 128 | 10 | 13 | 16 | 97 | 89 | 92 | 122 | 57 | 124 | 102 | 71 | 965 |
| 1993 | 1877 | 2192 | 220 | 36 | 13 | 2 | 5 | 3 | 2 | 2 | 1 | 0 | 1 | 0 | 3 |
| 1994 | 5081 | 12093 | 5114 | 66 | 43 | 23 | 28 | 9 | 7 | 5 | 1 | 1 | 1 | 1 | 5 |
| 1995 | 1079 | 1254 | 142 | 61 | 41 | 29 | 78 | 54 | 44 | 33 | 12 | 8 | 13 | 7 | 53 |
| 1996 | 2225 | 2676 | 772 | 479 | 175 | 40 | 109 | 77 | 70 | 65 | 24 | 25 | 31 | 18 | 181 |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1997 | 3412 | 5512 | 2113 | 389 | 183 | 84 | 198 | 123 | 82 | 47 | 17 | 6 | 14 | 8 | 43 |
| 1998 | 2343 | 3933 | 993 | 137 | 76 | 41 | 96 | 64 | 58 | 49 | 19 | 19 | 23 | 14 | 125 |
| 1999 | 1505 | 1669 | 151 | 88 | 66 | 53 | 202 | 168 | 181 | 188 | 73 | 89 | 100 | 61 | 556 |
| 2000 | 973 | 1392 | 445 | 562 | 447 | 351 | 877 | 582 | 475 | 359 | 130 | 88 | 138 | 78 | 577 |
| 2001 | 2542 | 3057 | 410 | 197 | 130 | 93 | 311 | 237 | 219 | 170 | 66 | 43 | 66 | 36 | 286 |
| 2002 | 1006 | 1212 | 139 | 54 | 35 | 26 | 103 | 87 | 95 | 92 | 33 | 28 | 40 | 22 | 172 |
| 2003 | 110 | 162 | 50 | 23 | 12 | 7 | 16 | 11 | 9 | 8 | 3 | 3 | 4 | 2 | 25 |
| 2004 | 1904 | 2236 | 237 | 74 | 66 | 71 | 359 | 310 | 313 | 273 | 106 | 88 | 120 | 68 | 508 |
| 2005 | 504 | 670 | 145 | 74 | 36 | 21 | 99 | 85 | 86 | 76 | 30 | 25 | 34 | 19 | 191 |
| 2006 | 4457 | 7519 | 1636 | 62 | 27 | 14 | 93 | 89 | 106 | 114 | 42 | 46 | 56 | 33 | 268 |
| 2007 | 3310 | 4086 | 502 | 187 | 74 | 19 | 50 | 39 | 50 | 56 | 20 | 24 | 28 | 17 | 155 |
| 2008 | 781 | 1743 | 878 | 1031 | 419 | 134 | 290 | 185 | 174 | 186 | 60 | 69 | 89 | 53 | 594 |
| 2009 | 1947 | 4700 | 1483 | 173 | 75 | 31 | 113 | 100 | 138 | 174 | 56 | 59 | 81 | 46 | 363 |
| 2010 | 11016 | 13516 | 2029 | 689 | 234 | 34 | 167 | 157 | 182 | 283 | 134 | 313 | 253 | 178 | 2099 |
| 2011 | 2756 | 3657 | 590 | 260 | 117 | 46 | 134 | 106 | 121 | 158 | 67 | 127 | 114 | 77 | 791 |
| 2012 | 3922 | 4860 | 523 | 54 | 58 | 68 | 465 | 450 | 551 | 640 | 247 | 337 | 361 | 225 | 2268 |
| 2013 | 2332 | 3002 | 602 | 460 | 194 | 59 | 100 | 54 | 51 | 48 | 19 | 28 | 28 | 18 | 238 |
| 2014 | 232 | 646 | 978 | 1123 | 697 | 431 | 1071 | 739 | 675 | 751 | 325 | 610 | 539 | 367 | 3971 |
| 2015 | 2124 | 2505 | 322 | 542 | 409 | 300 | 726 | 482 | 406 | 388 | 162 | 260 | 245 | 163 | 1874 |
| 2016 | 1211 | 1835 | 917 | 584 | 300 | 157 | 397 | 267 | 226 | 184 | 67 | 55 | 77 | 45 | 347 |
| 2017 | 974 | 1522 | 374 | 199 | 161 | 129 | 397 | 301 | 291 | 298 | 121 | 178 | 178 | 115 | 1130 |


| Year | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2018 | 817 | 1004 | 135 | 145 | 163 | 171 | 810 | 719 | 786 | 945 | 398 | 690 | 641 |  |  |
| 2019 | 1943 | 2202 | 156 | 143 | 137 | 120 | 669 | 645 | 749 | 1182 | 560 | 1325 | 1065 | 752 | 9058 |
| 2020 | 1062 | 1540 | 492 | 224 | 113 | 68 | 460 | 447 | 505 | 731 | 341 | 759 | 623 | 436 | 5435 |

SPPGFS

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 0 | 31 | 29 | 77 | 73 | 68 | 300 | 262 | 304 | 308 | 110 | 94 | 135 | 76 | 596 |
| 2002 | 0 | 0 | 2 | 34 | 58 | 71 | 330 | 283 | 294 | 270 | 103 | 92 | 122 | 70 | 584 |
| 2003 | 0 | 7 | 15 | 21 | 20 | 21 | 115 | 105 | 117 | 123 | 48 | 57 | 65 | 39 | 366 |
| 2004 | 1 | 3 | 5 | 13 | 25 | 34 | 177 | 158 | 169 | 175 | 69 | 85 | 94 | 58 | 515 |
| 2005 | 10 | 21 | 14 | 14 | 25 | 38 | 264 | 251 | 288 | 319 | 126 | 172 | 182 | 114 | 1218 |
| 2006 | 59 | 91 | 56 | 71 | 39 | 28 | 184 | 176 | 209 | 242 | 97 | 142 | 145 | 92 | 1021 |
| 2007 | 6 | 25 | 20 | 20 | 18 | 15 | 54 | 46 | 50 | 58 | 23 | 36 | 36 | 23 | 230 |
| 2008 | 8 | 23 | 23 | 40 | 47 | 48 | 193 | 163 | 176 | 188 | 73 | 95 | 104 | 64 | 636 |
| 2009 | 6 | 7 | 3 | 78 | 127 | 147 | 639 | 540 | 550 | 561 | 232 | 325 | 329 | 210 | 2203 |
| 2010 | 2 | 5 | 5 | 22 | 61 | 85 | 379 | 317 | 313 | 301 | 118 | 138 | 156 | 96 | 930 |
| 2011 | 0 | 9 | 19 | 19 | 35 | 52 | 320 | 290 | 310 | 301 | 118 | 125 | 149 | 89 | 861 |
| 2012 | 0 | 2 | 3 | 5 | 18 | 28 | 176 | 161 | 177 | 174 | 67 | 68 | 84 | 50 | 466 |
| 2013 | 12 | 20 | 9 | 1 | 12 | 22 | 197 | 197 | 244 | 277 | 105 | 132 | 148 | 90 | 899 |
| 2014 | 2 | 33 | 49 | 11 | 45 | 89 | 992 | 1044 | 1403 | 1685 | 624 | 783 | 898 | 543 | 6669 |
| 2015 | 0 | 1 | 1 | 1 | 7 | 14 | 112 | 109 | 126 | 137 | 54 | 68 | 75 | 46 | 564 |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2016 | 1 | 5 | 10 | 5 | 4 | 6 | 61 | 62 | 78 | 91 | 35 | 48 | 51 | 32 | 360 |
| 2017 | 5 | 5 | 0 | 7 | 10 | 12 | 80 | 80 | 100 | 132 | 54 | 96 | 90 | 59 | 786 |
| 2018 | 0 | 0 | 0 | 1 | 19 | 41 | 501 | 534 | 718 | 906 | 349 | 516 | 536 | 337 | 4050 |
| 2019 | 0 | 1 | 3 | 3 | 8 | 15 | 167 | 172 | 215 | 260 | 104 | 157 | 158 | 101 | 1040 |
| 2020 | 0 | 2 | 2 | 3 | 7 | 11 | 113 | 115 | 136 | 177 | 77 | 146 | 129 | 87 | 1519 |

## WCSGFS

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1987 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1988 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1989 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1990 | 12 | 61 | 90 | 197 | 233 | 248 | 736 | 509 | 363 | 224 | 85 | 38 | 74 | 41 | 261 |
| 1991 | 69 | 184 | 275 | 631 | 405 | 256 | 482 | 257 | 153 | 72 | 25 | 8 | 19 | 12 | 63 |
| 1992 | 6 | 30 | 133 | 733 | 849 | 840 | 2097 | 1321 | 823 | 409 | 155 | 41 | 112 | 63 | 301 |
| 1993 | 54 | 279 | 846 | 1723 | 1227 | 981 | 2777 | 1908 | 1446 | 1017 | 359 | 177 | 351 | 191 | 1165 |
| 1994 | 8 | 38 | 71 | 222 | 157 | 112 | 292 | 202 | 179 | 143 | 54 | 43 | 60 | 35 | 250 |
| 1995 | 20 | 71 | 109 | 328 | 387 | 385 | 1141 | 811 | 665 | 480 | 184 | 116 | 183 | 102 | 718 |
| 1996 | 24 | 59 | 51 | 53 | 58 | 67 | 398 | 375 | 458 | 490 | 174 | 160 | 222 | 126 | 953 |
| 1997 | 8 | 76 | 107 | 81 | 76 | 71 | 233 | 174 | 154 | 119 | 46 | 31 | 47 | 26 | 197 |
| 1998 | 4 | 10 | 10 | 26 | 25 | 22 | 68 | 52 | 52 | 50 | 19 | 20 | 24 | 15 | 121 |
| 1999 | 3 | 71 | 173 | 244 | 182 | 134 | 315 | 199 | 150 | 100 | 38 | 24 | 37 | 21 | 141 |


| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 2 | 18 | 53 | 151 | 122 | 93 | 205 | 125 | 90 | 56 | 22 | 14 | 21 | 12 | 92 |
| 2001 | 0 | 5 | 14 | 35 | 33 | 30 | 122 | 103 | 112 | 118 | 45 | 55 | 62 | 38 | 397 |
| 2002 | 4 | 6 | 23 | 347 | 634 | 778 | 3010 | 2402 | 2269 | 1942 | 725 | 559 | 813 | 459 | 3480 |
| 2003 | 2 | 39 | 46 | 196 | 311 | 380 | 1730 | 1482 | 1545 | 1585 | 619 | 774 | 853 | 528 | 4647 |
| 2004 | 3 | 19 | 52 | 367 | 802 | 1054 | 4442 | 3641 | 3470 | 3148 | 1237 | 1315 | 1553 | 939 | 8289 |
| 2005 | 19 | 39 | 32 | 63 | 97 | 118 | 547 | 472 | 504 | 506 | 191 | 207 | 250 | 149 | 1307 |
| 2006 | 4 | 15 | 67 | 266 | 208 | 177 | 781 | 680 | 760 | 834 | 326 | 442 | 470 | 294 | 2900 |
| 2007 | 7 | 90 | 141 | 415 | 626 | 727 | 2893 | 2356 | 2285 | 2205 | 881 | 1104 | 1195 | 746 | 7600 |
| 2008 | 18 | 110 | 248 | 798 | 948 | 1026 | 5180 | 4696 | 5396 | 6246 | 2479 | 3677 | 3739 | 2381 | 26466 |
| 2009 | 2 | 27 | 524 | 2249 | 1182 | 537 | 771 | 336 | 263 | 187 | 68 | 70 | 81 | 51 | 531 |
| 2010 | 0 | 0 | 4 | 191 | 315 | 347 | 1030 | 738 | 612 | 492 | 192 | 191 | 231 | 140 | 1236 |

Table 3.6.3.1. Boarfish in ICES Subareas 27.6, 7, 8. Key parameter estimates from the exploratory Schaeffer state space surplus production model. Posterior parameter distributions are provided in Figure 3.6.3.5

| Parameter | Mean | SD | 2.5 | 25 | 50 | 75 | 97.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r$ | 0.35 | 0.17 | 0.06 | 0.22 | 0.34 | 0.46 | 0.71 |
| K | 639684 | 405965 | 302300 | 429500 | 531200 | 697700 | 1742000 |
| $\mathrm{F}_{\text {MSY }}$ | 0.17 | 0.09 | 0.03 | 0.11 | 0.17 | 0.23 | 0.36 |
| $\mathrm{B}_{\text {MSY }}$ | 159921 | 101491 | 75575 | 107375 | 132800 | 174425 | 435500 |
| TSB | 552960 | 253596 | 257500 | 390100 | 496700 | 646900 | 1176000 |

Table 3.6.4.1. Boarfish in ICES Subareas 27.6, 7, 8. Pseudo-cohort derived estimates of fishing mortality ( $F$ ) and total mortality ( $Z$ ), in comparison with total catch per year. Pearson correlation coefficient of F vs. catch (tonnes) indicated.

| Age | Raised Numbers |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| 1 | 0 | 0 | 1575 | 2415 | 0 | 28 | 301 | 0 | 5556 | 218 | 1862 | 314 | 17427 | 40397 |
| 2 | 352 | 5488 | 15043 | 11229 | 2894 | 893 | 7148 | 695 | 116135 | 2385 | 4387 | 1736 | 37620 | 57719 |
| 3 | 2114 | 21140 | 65744 | 72709 | 41913 | 5467 | 156680 | 49503 | 32248 | 10737 | 8830 | 2628 | 9737 | 37192 |
| 4 | 40851 | 105575 | 338931 | 294382 | 28148 | 41278 | 58522 | 127520 | 16588 | 25114 | 34448 | 13610 | 9944 | 26433 |
| 5 | 48915 | 141300 | 475619 | 567689 | 30116 | 110272 | 59797 | 93705 | 24564 | 20263 | 27266 | 15570 | 12682 | 10162 |
| 6 | 62713 | 195339 | 543707 | 878363 | 175696 | 146582 | 68949 | 67275 | 26566 | 18025 | 21103 | 14731 | 12716 | 2583 |
| 7 | 26132 | 104031 | 307333 | 522703 | 143967 | 492078 | 302967 | 193061 | 74115 | 61229 | 55189 | 38686 | 29513 | 9113 |
| 8 | 29766 | 66570 | 172783 | 293719 | 107126 | 365840 | 250341 | 139124 | 52052 | 47573 | 38229 | 26821 | 18819 | 7487 |
| 9 | 56075 | 53159 | 155477 | 276672 | 77861 | 271916 | 212318 | 121042 | 44615 | 42478 | 32258 | 23670 | 15875 | 7897 |
| 10 | 44875 | 46893 | 130148 | 232122 | 60022 | 173486 | 160137 | 94225 | 34264 | 35150 | 25716 | 19395 | 11359 | 8164 |
| 11 | 14019 | 15289 | 42521 | 78588 | 46079 | 69396 | 63025 | 36078 | 12999 | 13297 | 9560 | 7148 | 4272 | 3049 |
| 12 | 32359 | 21178 | 61350 | 114600 | 40468 | 40968 | 41490 | 24895 | 9114 | 9132 | 7564 | 5846 | 2937 | 2786 |
| 13 | 4848 | 11854 | 39609 | 59932 | 24352 | 58888 | 59380 | 36309 | 13362 | 13774 | 10922 | 8183 | 4256 | 4152 |
| 14 | 16837 | 13570 | 31569 | 59060 | 19724 | 30277 | 30355 | 19064 | 7152 | 6682 | 5924 | 4554 | 2164 | 2333 |
| 15+ | 109481 | 112947 | 196967 | 349320 | 157707 | 217260 | 239366 | 150688 | 59139 | 49589 | 40797 | 32130 | 14864 | 17663 |


| Age | $\operatorname{In}$ (Raised Numbers) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| 1 | 0 | 0 | 7 | 8 | 0 | 3 | 6 | 0 | 9 | 5 | 8 | 6 | 10 | 11 |
| 2 | 6 | 9 | 10 | 9 | 8 | 7 | 9 | 7 | 12 | 8 | 8 | 7 | 11 | 11 |
| 3 | 8 | 10 | 11 | 11 | 11 | 9 | 12 | 11 | 10 | 9 | 9 | 8 | 9 | 11 |
| 4 | 11 | 12 | 13 | 13 | 10 | 11 | 11 | 12 | 10 | 10 | 10 | 10 | 9 | 10 |
| 5 | 11 | 12 | 13 | 13 | 10 | 12 | 11 | 11 | 10 | 10 | 10 | 10 | 9 | 9 |
| 6 | 11 | 12 | 13 | 14 | 12 | 12 | 11 | 11 | 10 | 10 | 10 | 10 | 9 | 8 |
| 7 | 10 | 12 | 13 | 13 | 12 | 13 | 13 | 12 | 11 | 11 | 11 | 11 | 10 | 9 |
| 8 | 10 | 11 | 12 | 13 | 12 | 13 | 12 | 12 | 11 | 11 | 11 | 10 | 10 | 9 |
| 9 | 11 | 11 | 12 | 13 | 11 | 13 | 12 | 12 | 11 | 11 | 10 | 10 | 10 | 9 |
| 10 | 11 | 11 | 12 | 12 | 11 | 12 | 12 | 11 | 10 | 10 | 10 | 10 | 9 | 9 |
| 11 | 10 | 10 | 11 | 11 | 11 | 11 | 11 | 10 | 9 | 9 | 9 | 9 | 8 | 8 |
| 12 | 10 | 10 | 11 | 12 | 11 | 11 | 11 | 10 | 9 | 9 | 9 | 9 | 8 | 8 |
| 13 | 8 | 9 | 11 | 11 | 10 | 11 | 11 | 10 | 10 | 10 | 9 | 9 | 8 | 8 |
| 14 | 10 | 10 | 10 | 11 | 10 | 10 | 10 | 10 | 9 | 9 | 9 | 8 | 8 | 8 |
| 15+ | 12 | 12 | 12 | 13 | 12 | 12 | 12 | 12 | 11 | 11 | 11 | 10 | 10 | 10 |
| Z (7-14) | 0.17 | 0.33 | 0.36 | 0.33 | 0.29 | 0.45 | 0.36 | 0.37 | 0.31 | 0.31 | 0.33 | 0.36 | 0.37 | 0.20 |
| F ( $\mathrm{M}=0.16$ ) | 0.01 | 0.17 | 0.2 | 0.17 | 0.13 | 0.29 | 0.2 | 0.21 | 0.15 | 0.15 | 0.17 | 0.2 | 0.21 | 0.04 |


| Age | $\ln$ (Raised Numbers) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| Catches ( t ) | 21576 | 34751 | 90370 | 144047 | 37096 | 87355 | 75409 | 45231 | 17766 | 19315 | 17388 | 11286 | 11313 | 15649 |

Corr coef
0.33
landings vs F

Table 3.6.5.1. Boarfish in ICES Subareas 27.6, 7, 8. Estimates of total stock biomass and $F$

| Year | TSB.2.5 | TSB. 50 | TSB.97.5 | F2.5 | F. 50 | F.97.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 95660 | 183200 | 435600 |  |  |  |
| 1992 | 156800 | 285100 | 659200 |  |  |  |
| 1993 | 190900 | 346400 | 800495 |  |  |  |
| 1994 | 225900 | 413300 | 961500 |  |  |  |
| 1995 | 194000 | 355800 | 824795 |  |  |  |
| 1996 | 196100 | 358200 | 836500 |  |  |  |
| 1997 | 168900 | 302300 | 699895 |  |  |  |
| 1998 | 224800 | 401000 | 925397 |  |  |  |
| 1999 | 167200 | 299600 | 688992 |  |  |  |
| 2000 | 144900 | 259700 | 599400 |  |  |  |
| 2001 | 161300 | 283200 | 648600 |  |  |  |
| 2002 | 138600 | 242600 | 555600 |  |  |  |
| 2003 | 126500 | 220800 | 503195 | 0.02 | 0.05 | 0.09 |
| 2004 | 177600 | 309700 | 702097 | 0.01 | 0.02 | 0.03 |
| 2005 | 171100 | 298300 | 680895 | 0.01 | 0.02 | 0.03 |
| 2006 | 216200 | 371500 | 843897 | 0.01 | 0.02 | 0.03 |
| 2007 | 194200 | 337000 | 765000 | 0.03 | 0.06 | 0.11 |
| 2008 | 236600 | 407400 | 918500 | 0.04 | 0.09 | 0.15 |
| 2009 | 242000 | 411700 | 917397 | 0.10 | 0.22 | 0.37 |
| 2010 | 361700 | 613100 | 1377975 | 0.10 | 0.23 | 0.40 |
| 2011 | 317600 | 540000 | 1225000 | 0.03 | 0.07 | 0.12 |
| 2012 | 457100 | 753200 | 1678000 | 0.05 | 0.12 | 0.19 |
| 2013 | 308000 | 519600 | 1170000 | 0.06 | 0.15 | 0.24 |
| 2014 | 144500 | 243400 | 548897 | 0.08 | 0.19 | 0.31 |
| 2015 | 173000 | 292500 | 660195 | 0.03 | 0.06 | 0.10 |
| 2016 | 127200 | 217500 | 493600 | 0.04 | 0.09 | 0.15 |
| 2017 | 225300 | 384400 | 868895 | 0.02 | 0.05 | 0.08 |
| 2018 | 241900 | 410500 | 927200 | 0.01 | 0.03 | 0.05 |


| Year | TSB.2.5 | TSB.50 | TSB.97.5 | F2.5 | F.50 | F.97.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2019 | 202502 | 345200 | 779700 | 0.01 | 0.03 | 0.06 |
| 2020 | 237100 | 408500 | 926100 | 0.02 | 0.04 | 0.07 |
| 2021 | 257500 | 496700 | 1176000 |  |  |  |

### 3.17 Figures



Figure 3.1. Boarfish in ICES Subareas 4, 27.6, 7, 8 and 9. Distribution of boarfish in the NE Atlantic area based on presence and absence in IBTS surveys (all years).


Figure 3.1.2.1. Boarfish in ICES Subareas 27.6, 7, 8. Combined Irish boarfish landings 2003-2020 by ICES rectangle (Right). Irish boarfish landings 2020 by ICES rectangle (Left).


Figure 3.2.1.1. Boarfish in ICES Subareas 27.6, 7, 8. Catch numbers-at-age standardised by yearly mean. 15+ is the plus group.


Figure 3.3.1.1. Boarfish in ICES Subareas 27.6, 7, 8. Boarfish acoustic survey track and haul positions 2021 (left), estimates of biomass at length by stratum (right).

Boarfish Biomass by Stratum, 2021


Figure 3.3.1.2. Boarfish in ICES Subareas 27.6, 7, 8. Boarfish acoustic survey biomass estimate by stratum, 2021.


Figure 3.3.1.3. Boarfish in ICES Subareas 27.6, 7, 8. Boarfish acoustic survey time series of acoustic estimates of abundance at age, 2011-2021.


Figure 3.3.2.1. Boarfish in ICES Subareas 27.6, 7, 8. The haul positions of bottom trawl surveys analysed as an index for boarfish abundance.


Figure 3.3.2.2. Boarfish in ICES Subareas 27.6, 7, 8. Distribution of boarfish in the NE Atlantic from the 6 IBTS surveys.


Figure 3.3.2.3a. Boarfish in ICES Subareas 27.6, 7, 8. CPUE in number per 30-minute haul of boarfish per rectangle in the western IBTS survey 1982 to 2020.


Figure 3.3.2.3b. Boarfish in ICES Subareas 27.6, 7, 8. CPUE in kg per 30-minute haul of boarfish per rectangle in the western IBTS survey 1982 to 2020.


Figure 3.6.1.1. Boarfish in ICES Subareas 27.6, 7, 8. Abundance-at-age in EVHOE, IGFS and SPNGFS surveys. Yearly mean standardised abundance -at-age.


Figure 3.6.1.2. Boarfish in ICES Subareas 27.6, 7, 8. Boarfish IBTS survey CPUE fitted delta-lognormal mean (solid line) and 95\% credible intervals (grey region).


Figure 3.6.1.4. Boarfish in ICES Subareas 27.6, 7, 8. Diagnostics from the positive component of the delta-lognormal fits


Figure 3.6.1.5. Boarfish in ICES Subareas 27.6, 7, 8. Pair-wise correlation between the annual mean survey indices.


Figure 3.6.1.6. Boarfish in ICES Subareas 27.6, 7, 8. Weighted correlation between the annual mean survey indices. Correlations are weighted by the sum of the pair-wise variances.


Figure 3.6.3.1. Boarfish in ICES Subareas 27.6, 7, 8. Parameters for final run converged with good mixing of the chains.


Figure 3.6.3.2. Boarfish in ICES Subareas 27.6, 7, 8. Rhat values lower than 1.01 indicating convergence.


Figure 3.6.3.3. Boarfish in ICES Subareas 27.6, 7, 8. MCMC chain autocorrelation for final run.


Figure 3.6.3.4. Boarfish in ICES Subareas 27.6, 7, 8. Residuals around the model fit for the final assessment run.


Figure 3.6.3.5. Boarfish in ICES Subareas 27.6, 7, 8. Prior (red) and posterior (black) distributions of the parameters of the biomass dynamic model.


Figure 3.6.3.6. Boarfish in ICES Subareas 27.6, 7, 8. Trajectories of observed and expected indices for the final assessment run. The stock size over time and a harvest ratio (total catch divided by estimated biomass) are also shown.


Figure 3.6.3.7. Boarfish in ICES Subareas 27.6, 7, 8. Retrospective plot of total stock biomass (above) and fishing mortality (below) from the surplus production model in 2013-2020.


Figure 3.6.6.1. Boarfish in ICES Subareas 27.6, 7, 8. Ratios ‘B / MSYBtrigger' and 'F / FMSY' through time and corresponding Kobe plot. Confidence intervals ( 50 and $95 \%$ ) are given for the first two panels, the third displays median estimates only with the pink point representing the first point of the time series and the purple point the last.


Figure 3.9.1.1. Boarfish in ICES Subareas 27.6, 7, 8. Results of exploratory yield per recruit analysis. Beverton and Holt model applied to various fits of the VBGF and for comparison with the VBGF parameters provided by White et al. 2011.


Figure 3.9.1.2. Boarfish in ICES Subareas 27.6, 7, 8. Sensitivity of estimation of F0.1.


Figure 3.12.1. Boarfish in ICES Subareas 27.6, 7, 8. Boarfish samples included in the genetic stock identification study are indicated in green. Population clusters identified by the STRUCTURE analyses are indicated by colour coded circles.

