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i Executive summary 

The UNGA Resolution 61/105 and Regulation EU 2016/2336 require Regional Fisheries 

Management Organisations (RFMOs) and EU Member States to prevent significant adverse 
impacts on vulnerable marine ecosystems (VMEs) by deep-sea fisheries by identifying areas 

where VMEs occur or are likely to occur. In recent years, ICES experts have suggested the use 

of predictive habitat models (PHM) to identify areas where VME are likely to occur in the 

absence of documented observations. The ICES workshop WKPHM was therefore tasked with 

developing standards for data and modeling approaches that could be accepted for use in 
providing ICES advice. In addition, the WKPHM was requested to provide some desired 

criteria for models, both in terms of application and presentation that would be useful in 

communicating ICES advice WKPHM reviewed published standards for PHM from the peer-

reviewed literature and utilised expert opinion from workshop participants to develop a list 

of recommended criteria that focused on a few key themes in PHM. These themes included 
transparency in the decisions made about the data and models used, for PHM and the 

assumptions that were inherent in the treatment of these data and models. Furthermore, they 

included the need for reproducibility of results and clear reporting of key components of the 

modeling, such as independent variables utilized for predictions. Standards were also 
suggested for communication of model results and uncertainty, so that managers could have a 

basis for evaluating the information to support decision making. Finally, suggestions on the 
best methods to evaluate models, including using independent data sets collected for that 

purpose, were generated.  

Future steps suggested by WKPHM included the development of a systematic approach to 

generating new models, following the guidelines set out in this report, and a process for 
evaluating existing PHM against these guidelines, so that they could also be considered for 

supporting ICES advice. These guidelines will not only formalize a process for incorporating 

new information, but it will allow ICES to move forward with new and improved techniques 

as better data and models become available 
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1 Background and introduction 

  

1.1 Introduction to current VME process in ICES and aims of the 
workshop 

In 2006 the UN General Assembly resolution 61/105 adopted language to prevent significant adverse im-

pacts on vulnerable marine ecosystems (VMEs) by deep-sea fisheries “consistent with the precautionary 

approach and ecosystem approaches” through, amongst other things, identifying areas where VMEs are 

known or likely to occur. The FAO Guidelines (FAO, 2009) establish criteria for identifying areas where 

VMEs are known or likely to occur and outline the types of information required to conduct assessments 

of the potential impacts of deep-sea bottom fisheries (FAO Guidelines, para 42 and 47). These include using 

the ‘best available scientific and technical information on the current state of fishery resources and baseline 

information on the ecosystems, habitats and communities in the fishing area, against which future changes 

are to be compared, including through identification, description and mapping of VMEs known or likely 

to occur in the fishing area.’  

The provisions of the UNGA resolutions and the FAO Guidelines related to identifying areas where VMEs 

are known or likely to occur have been incorporated into the bottom fisheries regulations adopted by the 

North East Atlantic Fisheries Commission (NEAFC) and the Northwest Atlantic Fisheries Organization 

(NAFO).  The EU regulation for the management of deep-sea fisheries in EU waters (EU Regulation 

2016/2336) also requires that measures adopted for the management of deep-sea fisheries in the areas cov-

ered by the regulation are consistent with the UNGA resolutions and that these measures should be sup-

ported by the “best available scientific and technical information…to identify where VMEs are known to 

occur or are likely to occur.” The regulations encourage the use of “different types of marine scientific 

research, such as, inter alia, seabed mapping, mapping of VMEs based on information from the fishing 

fleet, on-site camera observations from remote vehicles, benthic ecosystem modelling, comparative benthic 

studies and predictive modelling to identify areas where vulnerable marine ecosystems are known or are 

likely to occur and in the adoption of conservation and management measures to prevent significant ad-

verse impacts on such ecosystems, including the closure of areas to bottom fishing …”  

ICES has provided scientific advice on where VMEs are known or likely to occur within the Northeast 

Atlantic following requests from NEAFC and the EU (e.g. ICES, 2019a, 2021). Current ICES advice is based 

on records of VME indicator taxa (species or taxonomic groups that may indicate the presence of a VME) 

contained within the ICES VME database, which is subject to quality control standards via the ICES Data 

Centre and the Working Group on Deep-water Ecology (WGDEC). Data submitted to the ICES VME data-

base either confirms the actual presence of a VME on the sea floor from dedicated deep-sea surveys (e.g. a 

cold-water coral reef), or provides records that suggest the presence of a VME with varying degrees of 

uncertainty, e.g., bycatch of a VME indicator taxa, such as gorgonians (sea fans), from a fishing vessel (see 

section 1.2 for further information on the VME database).  

Over the last ten years, ICES experts have advocated for the potential use of Species Distribution Models 

(SDM) and Habitat Suitability Models (HSM), referred to as ‘Predictive Habitat Models’ (PHM) herein, as 
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a tool to identify areas where VMEs are likely to occur. In 2014, WGDEC reviewed existing ‘terrain-based 

models’ for predicting VME indicator taxa distribution and concluded that published (peer reviewed) mod-

els should be taken into consideration for management decisions on deep-sea ecosystems (ICES, 2014). In 

2018, the Review Group on Vulnerable Marine Ecosystems (RGVME) also recommended that statistical 

modelling techniques that produce predicted probability surfaces for VME indicator taxa should be further 

investigated, for the provision of new information on where VMEs are likely to occur and their spatial 

extent, to support ICES advice to the EU and NEAFC.  

Following the recommendations of RGVME, the 2019 WGDEC meeting was jointly held with the Working 

Group on Marine Habitat Mapping (WGMHM), who explored the use of PHM for mapping VME indicator 

taxa distribution in the North Atlantic. Through this work, WGDEC identified the availability of existing 

models with differing taxonomic resolutions, spatial extents and spatial resolutions and proposed next 

steps for model use (ICES, 2019b), whilst WGMHM developed a ‘roadmap’ setting out the proposed steps 

to facilitate the adoption of PHM in ICES advice (ICES, 2019c). The ‘roadmap’ clarified the need to generate 

a standard set of model outputs, to identify aspects such as which habitats/species to model, the spatial 

extent of the model, the minimum mapping resolution and how often the model should be revisited (e.g. 

re-running models when new data becomes available). In addition, WGMHM recommended a trial run for 

a subset of VME indicator taxa, to optimize the model approaches, with the final methods to be published 

as part of the ICES ‘Transparent Assessment Framework’.  

In support of these developments in the application of predictive habitat models for advice, ICES included 

four types of VME geophysical elements (i.e. seamounts, banks, coral mounds, and mud volcanoes), based 

in part on geomorphological maps, in their latest advice to identify areas that potentially support VMEs in 

EU waters (ICES, 2021). Nonetheless, to date, ICES advice has not used PHM to provide an evaluation of 

whether a VME or VME indicator is `likely to occur′ in an area.  

Together with the ‘roadmap’ developed by WGMHM, it was also proposed that a set of criteria needed to 

be derived, against which new and existing models could be reviewed, to determine appropriate standards 

for their use for scientific advice (ICES, 2020). These criteria could form the backbone of a ‘benchmarking’ 

approach to assess PHMs, ensuring that only models which meet specific quality criteria are used within 

ICES advice. Benchmarking1 is a system commonly used for fish stock assessments which aims to gather 

consensus agreement on a method that is to be used in future update assessments. This sets the ‘benchmark 

level’ for assessment, equating to the ‘best available’ method that ICES advice can be based on. If new data 

or methods become available that might improve the assessment, proposals can be made for a renewed 

benchmark. 

The overall aim for the Workshop on the Use of Predictive Habitat Models in ICES Advice (WKPHM) was 

to develop benchmark standards for the use of PHM in ICES advice related to the distribution of VMEs. 

The ‘roadmap’ developed by WGMHM and the need for benchmarking criteria formed the basis for the 

Terms of Reference (see Section 1.3).  

                                                           

1 http://www.ices.dk/community/documents/advice/introduction%20to%20bench-

marks%20at%20ices.pdf 
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1.2 Data and models available for VME in ICES regions 

PHM have been widely used for terrestrial and marine habitats to predict the occurrence of suitable habitat, 

the presence of a taxon or habitat, or the abundance of a taxon or taxonomic group. All PHM link environ-

mental predictor variables (independent variables; for VME PHM these are typically variables describing 

the physical characteristics of the environment such as bathymetry, geomorphology and oceanographic 

conditions) and response variables (dependent variables which tend to be biological in nature) in a statis-

tical or machine learning framework to predict a continuous or categorical output that can be geo-located 

or mapped. 

The dependent data or response variables (e.g. presence, presence-absence, or abundance) available in the 

ICES regions can be found in the ICES VME database or from other directed studies or databases (e.g. OBIS; 

PANGAEA). The ICES VME database stores records of VMEs, VME indicators and the locations of where 

neither of these have been observed (absence data), as described by a VME database schema2.  

Data from the ICES VME database are collated during an annual VME data call and are accessible via the 

VME data portal3. Much of the data are openly available to download, with a small number of restricted-

access records.  

Independent data or environmental predictor variables of VME distribution are generally available for the 

ICES regions on a global or basin scale. For broad-scale models, environmental predictors that are them-

selves the outputs of models, are typically used. They tend to make use of global bathymetry models 

(Becker et al., 2009; Weatherall et al., 2015) for deriving depth and topographic variables such as slope, 

rugosity, and bathymetric position index; and until recently (Tozer et al.,2018), this has limited the resolu-

tion of model outputs to 30 arc seconds (~ 1’s of km). Oceanographic data used in these basin-scale models 

are generally only available from models at coarser resolution than the bathymetry models (e.g. 10’s of km). 

A number of global and basin scale models for VME distribution have already been published using these 

methods (e.g. Davies et al., 2008; Tittensor et al., 2009; Davies and Guinotte 2011; Yesson et al., 2012; Howell 

et al., 2016).  

For fine-scale models, there may be finer and more informative predictor variables available that can be 

used in generating higher resolution models of VME indicator taxa distribution. However the spatial cov-

erage of the fine-scale model predictions is usually limited by the spatial extent and coverage of the pre-

dictor variables. These higher resolution regional and national models tend to make use of bathymetry 

(and possible backscatter) data collected by multibeam sonar to derive terrain variables, but may also uti-

lize a much wider range of potential environmental variables relevant for species distributions, and there-

fore tend to produce more accurate models (e.g. Ross et al., 2015). Although these models have limited 

spatial coverage, they are particularly useful for spatially constrained areas where there is a need to under-

stand and define VME distribution more precisely (e.g. individual nation’s EEZs or individual seafloor 

features such as seamounts). The resolution of published fine-scale models is varied but tends to be in the 

order of a < 200 m grid cell size. As a result of the smaller grid cell size in these models versus basin-scale / 

global models, the estimates of area of predicted suitable habitat for VME and VME indicator species de-

rived from such models tends to be much smaller, and this may be an important consideration when as-

sessing spatial closures. 

                                                           

2 http://www.ices.dk/data/Documents/VME/VME_Reporting_Format.zip  

3 http://vme.ices.dk/map.aspx 
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Within ICES management areas there are a number of existing models in the published literature that vary 

in spatial coverage, species considered, output variables and overall objectives. For example, there are pub-

lished models of small-scale (both in terms of spatial resolution and spatial extent) regional predictions of 

the probability of suitable habitat for individual species such as Lophelia, Desmophyllum pertusum, (e.g. 

Dolan et al., 2008; Rengstorf et al., 2013) and basin-wide predictions of the impacts of climate change on the 

probability of VME presence under future climate scenarios (e.g. Morato et al., 2020). Some of these existing 

models may be useful in delineating probable VME locations that can be considered for spatial manage-

ment and implementing closures in the context of providing ICES advice.  

There are also opportunities to improve and build on the models available in the ICES region by utilizing 

the data from the ICES VME database or other marine biodiversity databases, new and higher resolution 

environmental variables as they become available (e.g. GEBCO or World Ocean Atlas updates) and new, 

different or improved modelling techniques (such as joint species distribution models; e.g. Thorson et al., 

2015). New models developed specifically to address ICES management issues, using data available in the 

ICES regions can improve the information available for providing ICES advice.  

1.3 Need and terms of reference 

In order for ICES to utilize PHM to provide an evaluation of whether a VME is `likely to occur′, an agreed 

set of modelling standards is required. To develop these standards, the workshop had four terms of refer-

ence:  

a) Based on existing approaches, identify the methods for modelling vulnerable marine ecosystems 

(VMEs) that would be most appropriate for use within ICES advice, detailing ‘required’ and ‘desir-

able’ criteria, with emphasis on the deep-sea environment greater than 200 m (considering bias of 

preferential sampling), PHM techniques (including spatial display of uncertainty) and required 

validation steps for the modelled outputs); 

b) Develop clear standards for recording the caveats and assumptions inherent in the modelling 

method, for future use; 

c) Conduct a trial run for a small number of existing models to ensure that both the approach and 

outputs are fit-for-purpose; 

d) Review and recommend a set of criteria, similar to the existing ICES benchmarking system for re-

gional fish stock assessments, under which new and existing predictive habitat models can be used 

for ICES scientific advice related to the distribution of VMEs. 

1.4 Structure of the workshop and report  

The workshop was conducted virtually over five consecutive days (February 1-5, 2021). The work was 

organized around plenary sessions and breakout groups. Both plenary and breakout group sessions were 

held daily except on a single day that was dedicated to conducting trial modelling work using provided 

data sets. There were three breakout groups covering the main foci of the terms of reference. The three 

breakout groups covered 1) independent and dependent data used for modelling, 2) modelling methods, 

uncertainty and model validation, and 3) required and desired criteria for modelling to be used in provid-

ing ICES advice. Each breakout group developed sets of assumptions regarding the topic of PHM and 

minimal and desired characteristics for PHM.  
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In the plenary sessions these products were then summarized and more fully developed into a set of stand-

ards that could be used to evaluate PHM to be used to provide ICES advice, as well as recommendations 

to ICES on the use of PHM and future directions in VME benchmarking.  

The structure of this report follows the general structure of the workshop, with a summary from each of 

the major breakout group topics and a general summary with some recommendations and future direc-

tions. Finally, a set of standards for PHM and a required set of components to be reported for each PHM to 

be considered for providing ICES advice are presented in Annexes 2 and 3. These contain the minimal 

(required) criteria that PHM input data, methods and outputs must meet to be considered for use in ICES 

advice as well as a template for reporting the necessary characteristics of the PHM (an example is provided 

in Annex 4).  
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2 Considerations for dependent and independent data 

2.1 General introduction to data issues 

Implementation of PHM to inform management advice and conservation of VMEs requires careful consid-

eration of the input data. It is important to bear in mind that while data and associated modelling needs 

should be driven by specific management objectives, the data sets can often accommodate multiple man-

agement objectives. Most important to consider is that data availability and level of detail will drive which 

PHM are possible and associated management objectives will determine which PHM to consider and im-

plement. It is important therefore to consider the relationship between the data and the management ob-

jective, for instance the question of how VMEs are defined by the management objective (e.g. a single oc-

currence of as single indicator species or a dense aggregation of multiple taxa) will determine the type and 

amount of data required for PHM. 

Both dependent and independent data sources are required to implement PHM. Dependent data are ob-

servations of taxon distribution with requisite geospatial and temporal information (e.g., coral observations 

with sample locations across the spatial-temporal domain of the model; Winship et al., 2020). Presence data 

is sometimes the only available data for VME indicator taxa and can be derived from multiple sources and 

combined for certain PHM methods. Pseudo-absences or background points selected from within the 

model domain are used to parameterize some presence-only PHM. Absence data, either true or inferred, 

can be applied more broadly across PHM methods. Inferred absences can be generated from sampled lo-

cations where other species were recorded as present during the same survey. These inferred absences can 

have additional uncertainty associated with them if there was unknown consistency in the observations or 

survey methods, but they can be useful in facilitating the application of a presence-absence PHM, which is 

preferred over a presence-only method (Winship et al., 2020).  Abundance data is often rare for VME taxa, 

but allows for predictions of habitat-related numerical abundance, density, or biomass. Independent data 

are those that define the seascape setting in which the taxa are distributed and can be based on direct ob-

servation (e.g., bathymetry, temperature), derived from observations (e.g., seafloor slope, rugosity), or 

modelled (e.g., regional biophysical oceanographic modelling systems). Multiple dimensions of data qual-

ity exist on a continuum (Figure 2.1.1). In practice, it has been impossible to maximize data quality along 

all dimensions, as this would take unlimited resources. There are always trade-offs in data quality that 

must be assessed. For example, one of the most common trade-offs is between spatial extent and spatial 

resolution, as it is difficult to have a large spatial extent of data collected at a high resolution. The following 

sections address data caveats and assumptions and data standards for VME PHM. Our advice on VME 

PHM data is not restricted by current VME data limitations. Data collection and PHM methods may ad-

vance in time to get closer to our recommended good practices detailed below (e.g., a perfect dataset for 

building PHMs with the most accurate predictions will come from a randomly stratified survey inclusive 

of strata parsed by known environmental gradients and human activities). In the absence of such comple-

mentary data sets, or when those available data sets have high uncertainty (e.g., due to under sampling, 

spatial and temporal resolution), there may be simpler approaches that can be used to infer aggregations 

of VMEs (e.g., kernel-density analysis; Kenchington et al., 2016). VME indicator taxa and their distributions 

can also be delimited using limited observations or inference of taxon distributions and other environmen-

tal parameters using qualitative methods, such as habitat suitability indices (Nephin et al., 2020). We expect 

that data collection and modelling methods will continue to advance, offering many solutions to address 

information needs with respect to conservation and management of VMEs. However, careful preparation 
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and consideration of the input data, in terms of the quality, type and quantity need to achieve PHM objec-

tives, is the most critical step in improving the performance of all models, regardless of choice of method. 

 

 

Figure 2.1.1: Dimensions of data quality. Type of data (y-axis); spatial scale (resolution and extent) (x-axis); temporal scale (resolution 
and extent) (z-axis). Other dimensions, such as taxonomic resolution and other sources of uncertainty, are not displayed and should 
also be considered. In this context, resolution refers to the relative spacing of data in time (e.g. data from monthly collections) and 
space (e.g. data from a 100 m by 100 m grid), while extent refers to the data coverage in time (e.g. data collected in 2015-2019) and 
space (e.g. data collected over the entire North Atlantic). 

2.2 Caveats and assumptions to be reported for data used in PHM 

PHM models rely on a series of assumptions about the link between the distribution of taxa and the spatial-

temporal distribution of environmental conditions (Zurell et al., 2020). It is important to remember that 

even the highest quality datasets and models will inevitably fail to fully meet these assumptions (Jarnevich 

et al., 2015). Failure to fully meet these assumptions leads to error and uncertainty in the predictions of the 

model. Thus, the degree to which models can provide accurate predictions and useful inference depends 

on how closely these assumptions are met. Therefore, it is critical that these assumptions, and the degree 

to which they are met by the data, are clearly communicated when interpreting the results of the model. 

Critical assumptions include those about the ecology of the species or taxonomic group and the quality of 

the dependent and independent data (Table 2.2.1). The two key ecological assumptions focus on the link 

between the species distribution and the environmental gradient. The assumptions about the dependent 

data focus on whether the observations of the species/taxon are representative of the true distribution of 

the species in space and time. The assumptions about the independent data focus on whether the environ-

mental variables included in the model are accurate representations of the environmental gradients that 

structure the distribution of the species in space and time. The assumptions about the model focus on how 

the dependent and independent data are linked statistically in the model that is used. Finally, it is important 

to remember that the predictions made by the model are hypotheses about the distribution of the 
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species/taxon and that these hypotheses require independent validation (Jarnevich et al., 2015). A concep-

tual illustration is provided of how the assumptions outlined in Table 2.2.1 relate to the ecological processes 

that determine species distributions, the independent and dependent data, the model, the predictions, and 

interpretation and inference (Figure 2.2.1). 

Uncertainty that results from failure to fully meet the assumptions of the model should be reported clearly 

as a series of caveats (Jarnevich et al., 2015). These provide guidance for end users of the model outputs for 

how to interpret the model predictions, given the limitations of the data or model. For example, if part of 

the study region was less comprehensively sampled, it should be communicated that the model predictions 

are less certain in that area. Areas that were well sampled and thus model predictions may be more certain 

should also be clearly reported. In combination, clear assumptions and caveats provide a framework for 

acknowledging and communicating sources of uncertainty and error so that they can be taken into account 

by managers and decision makers. 

Table 2.2.1: Assumptions of dependent and independent data in VME PHM. 

 Assumption Description 

Ecological The species/taxon is at equilibrium 

with respect to the environment 

Assumes no historical contingency (e.g., historical disturbances, fishing, environ-

mental change, colonization history, interactions between species) 

 Niche conservatism Species/taxon responses to environmental conditions are consistent across the 

entire study extent/range 

Dependent 
data 

Presences or absences are true Data are free from observational bias, or differences in observations have been 
accounted for in the model 

When randomly chosen pseudo absences are used they are representative of the 
distribution and prevalence of true absences 

 Observations are independent Spatial and temporal autocorrelation have been adequately addressed 

Individuals are only reported once  

 Data are representative of the study 
extent 

The full environmental gradient present in the study extent has been representa-
tively sampled 

 Data units meaningfully represent the 
species distribution 

Sampling was adequate across region or feature of interest (e.g. North Atlantic, 
seamount, bank), with respect to the life history characteristics of the species in 

question.  

Independent 
data 

Independent data capture key factors 
structuring species distribution 

Predictor variables are assumed to influence species distributions and key varia-
bles are not missing 

 Predictor variables are independent 
and uncorrelated 

Collinearity among predictors has a negligible impact on the results of the model 
and the model predictions 

 Independent data are accurate repre-

sentations of the true values 

Measurement, interpolation, or modelling error has negligible influence on the 

modelling results 

 Spatial and temporal scales of the 

data are appropriate for goals of the 
study 

Resolution is appropriate to capture the relevant ecological processes 

Model based 

assumptions 

Data meet the assumptions of the 

model 

Data are appropriate for the model 
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Figure 2.2.1: 
Conceptual illustration of how the assumptions provided in Table 2.2.1 relate to the ecological processes that determine species dis-
tributions, the independent and dependent data, the model, the predictions, and interpretation and inference. The arrows illustrate 
the logical flow between these different components with indications of where each of the assumptions is relevant. The smaller text 
associated with the arrows provides examples of why the assumptions may not be met. The red text indicates the corresponding 
assumption number listed in the Assumptions list. 

2.3 Minimum standards for data used in PHM 

Several good practice protocols for reporting data considerations used in PHM have been developed in the 

wider ecology, evolution, and conservation science communities (Araújo et al., 2019; Winship et al., 2020; 

Zurell et al., 2020). The general goal with applying such recommended protocols is to maximize transpar-

ency and reproducibility of the models while outlining data assumptions and considerations that might 

influence how predictions could be interpreted should they be applied in management decisions. We sug-

gest reporting on relevant metadata and information that applies to how data were collected, accuracy and 

precision (resolution) of the data, processing methods applied to the data, and model assumptions or fac-

tors that may introduce uncertainty into the model results (Table 2.3.1). Gaps or missing variables with 

known effects should be acknowledged and assumptions regarding the data used should be clearly out-

lined. 

Dependent data Table 2.3.1 outlines commonly agreed upon standards for describing dependent data used 

in the development of PHM in relation to VMEs. The type of dependent data should be clearly stated. For 

example, as absence or abundance data are rarely available for VMEs, clear assumptions and caveats asso-

ciated with those data should be outlined if they are used in the model (e.g., true or inferred absences used 

in presence-absence models). Any processing of the dependent data prior to inclusion in the development 

of PHM must also be documented. For example, for some presence-only models, the probability of presence 

of suitable habitat may not be easily distinguished from clustering (Boria et al., 2014) or spatial bias in sam-

pling (Fithian et al, 2015). In these cases, techniques such as spatial thinning or bias correction of the obser-

vations may be used, but should be documented in the meta-data associated with the observations used in 

developing the PHM.  
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Dependent data for use in PHM may come from existing biodiversity databases (e.g. OBIS), the ICES VME 

database or new research cruises. The group agreed on an overarching criterion that data sources should 

not be limited to the ICES VME database, and should be all the available data. However datasets must be 

quality controlled, and should, at least, meet the minimum quality control (QC) standards of the VME 

database found in ICES (2020). These QC standards include basic data checks, such as all the required data 

fields are populated, the positional data does not occur on land or outside the ICES region, codes for habitat 

type are consistent with the database, etc. The ‘required’ criteria for use in PHM are therefore that the best 

available data are used, but also that data used must have been quality assured (QA) using national or 

international best practice guidelines.  Metadata/data should also be reported on following the reporting 

standard in Annex 3. If multiple sources of dependent data are combined for modelling, documentation of 

any methods used to prepare or combine the data must also be provided. There is no specific QA standard 

set for new data submissions to the VME database, however there is an expectation that all data suppliers 

follow national or international best practice guidelines in the QA of their data, for example, Batley (1999); 

Rumohr (2009); Howell et al. (2014); Turner et al. (2016) (ICES 2020). Examples of these standards include 

the use of high definition cameras in the collection of image data and the identification of VME indicator 

taxa by trained observers using a common and regionally specific identification guide (Howell et al. (2014). 

In addition, the VME database uses a standardised data submission template which details mandatory, 

conditional and optional data fields for all new VME data submissions. These data fields therefore form 

the metadata requirements of the VME database records and would enable completion of the reporting 

standard proposed in Annex 3.  

Consideration was also made of the taxonomic resolution of data. Confidence in the prediction of different 

taxonomic or functional groups increases if predictions are based on the highest possible taxonomic reso-

lution (Jansen et al., 2018). According to Winship et al. (2020) models developed using data with low taxo-

nomic resolution may mix species with different life-histories and environmental requirements, potentially 

resulting in inaccurate (broad) predicted distributions and increased model uncertainty. However, models 

of functional groups, or otherwise reduced taxonomic resolution, may be sufficient to address some man-

agement applications, but insufficient for others such as particular species of concern (e.g., endangered 

species) (Winship et al., 2020). The lists of VME indicator taxa used for different RFMOs generally include 

the Class as the lowest taxonomic rank (Thompson et al., 2016). The ‘required’ criterion is therefore that the 

dependent data uses a taxonomic level from Class to species or a defined assemblage type (e.g. sea-fan type 

corals), based on quality controlled data and expert opinion, unless otherwise justified.  

Independent data.  The types of independent data e.g., how those were collected, derived, or modelled, 

should also be clearly reported. For independent (environmental) data, ICES do not have specific QA stand-

ards that are required to be followed when using these types of data within ICES work. However, as a 

minimum, it is expected that datasets are validated following best practice QC standards, for example those 

made available via the EMODnet Physics data portal4.   

The ‘required’ criteria for independent data are that the range of the environmental parameters used (e.g. 

depth limits) are informed by any known the biological tolerance limits for the specific VME indicator taxa 

being modelled, or at minimum, they are inferred from those evidenced and documented for ‘proxy’ taxa, 

with expert evaluation of their suitability for the taxa being modelled. Such inference from ‘proxy’ taxa will 

be unacceptable without this expert evaluation and description. In some cases, ‘proxy’ taxa may not be 

known or there may be incomplete overlap between the modelled species and the ‘proxy’ taxa (for example, 

where a species might extend to a deeper depth than its ‘proxy’ taxa). In these cases, the relationship 

                                                           

4 https://emodnet.eu/en/physics 
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between the range of predictions from a model and the environmental coverage of the data can be used to 

measure uncertainty in the inferred relationships and predictions (Stephenson et al., 2020). For the desired 

criterion, the tolerance limits for the VME indicator taxa must be known and documented (Table 2.3.1). In 

all cases, the environmental conditions in the location (or time) where predictions are made must be within 

a plausible range for extrapolation of response – predictor relationships. It is important to note that in many 

cases the experts on VME indicator taxa may be the modellers themselves, part of the modelling team or 

expertise cited from previously published research from the literature. Thus, the use of the term expert in 

the context of evaluation of independent data does not always imply an external review of the PHM by an 

outside expert, but integration of expertise that can speak to the ecological relevance and appropriate range 

of conditions of environmental variables for the taxa whose distribution is being modelled. 

PHM generally require that independent variables continuously cover the entire model domain. Most of 

the time, these variables are obtained by interpolating point estimates to a grid, generating gridded obser-

vations from a oceanographic model, or generating a grid from remotely sensed observations, such as sat-

ellite data. Depending on the spatial resolution of the model domain, this can result in either aggregation 

to a higher spatial resolution or downscaling to a smaller spatial resolution. The method for interpolating 

a variable to a different resolution and the original spatial scale of the observations should always be re-

ported (Table 2.3.1). Ideally, goodness-of-fit measures (such as correlation measures) between the interpo-

lated data and the original scale should be provided so that the variability introduced by changing data 

resolution can be assessed. Even when available, this uncertainty is usually not accounted for when they 

are used in PHM (Hijmans et al., 2005; Stoklosa et al., 2015), but at a minimum this issue should be consid-

ered explicitly in developing PHM for ICES management advice (Table 2.3.1). 

Collinearity in independent variables can also be a concern in PHM (Araújo et al., 2019, Zurell et al., 2020, 

Winship et al., 2020). Collinearity can make it impossible to clearly separate the confounded effects of re-

lated variables in PHM. If the relationship between the variables is non-stationary, this can result in poor 

predictive ability in areas where the collinear relationship changes. Ideally, only variables that are not cor-

related would be used in a PHM (Araújo et al., 2019), however, if collinear variables need to be used in a 

PHM, the extent of the correlation and its potential effects on the retention on the PHM and the robustness 

of the results should be demonstrated.  

Spatial and temporal scale.  Details of the spatial and temporal scales and resolution of model input data 

(dependent and independent) are considered mandatory in standard protocols for reporting models (Table 

2.3.1), to ensure reproducibility and transparency of the methods and to facilitate model reliability and 

relevance (Araújo et al., 2019, Zurell et al., 2020, Winship et al., 2020). The predictive accuracy of a model 

can be reduced if inappropriate spatial and temporal resolutions of dependent and independent data are 

chosen, which in turn, can mask the relationships between species and the environment (Araújo et al., 2019). 

The spatial and temporal scales for both dependent and independent data is also a required criteria for 

reporting in Annex 3. 
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Table 2.3.1: Minimum required and desirable criteria for PHM development to predict the distribution of VME in providing ICES advice.   

    UNACCEPTABLE REQUIRED DESIRED 

D
EP

EN
D

EN
T 

(B
IO

LO
G

IC
A

L)
 D

A
TA

 

D
at

a 
q

u
al

it
y 

Sampling design for data collection not described. 
 

All the available data that meet QC standards are used, with a 
clear description of sampling design(s) and data collection. 

Data are sampled via systematic sampling design (which are 
the same for biological and environmental data) and stand-
ardized methods are used for sample collection and pro-
cessing. A clear description of a robust sampling design is 
provided. 

Data have no quality control and/or associated 
metadata. When multiple data sources are com-
bined, there is no description or consideration of 
the differences. 

Quality control of data undertaken, based on metadata, 
meeting the minimum standards of ICES VME database (e.g., 
data QA follows national and/or international best practice 
guidelines and details of which guidelines followed provided). 
When multiple data sources are combined, the same quality 
control criteria are followed. 

Same as required criteria 

No metadata provided on data sources or the 
treatment of data. 

Metadata/data are reported, following the reporting standard 
in Annex 3, including a description of the data sources, sam-
pling effort, resolution and extent, and any pre-processing of 
the data, such as combining multiple data sources and possi-
ble spatial thinning or bias correction of data. 

Same as required criteria 

Presence-only data is used when absence data is 
available or the information exists to infer ab-
sence data at sampled locations 

Presence-only data available. Presence and absence data and/or abundance data availa-
ble. 

C
av

ea
ts

, b
ia

s 

an
d

 a
ss

u
m

p
-

ti
o

n
s 

Caveats, bias and assumptions in dependent data 
are not reported. 

Caveats, bias and assumptions independent data are clearly 
reported, acknowledging sources of uncertainty and error.  

Same as required criteria 

Ta
xo

n
o

m
y 

Response variable type is not clearly explained. Response variable type is clearly explained with any caveats 
on interpretation of outputs. 

Same as required criteria 

Taxonomic level is above Class or uses vernacular 
names. 

Taxonomic level is from Class, species or a defined assem-
blage type (e.g. sea-fan type corals), based on quality-con-
trolled data and expert opinion. 

Taxonomic level is species, based on expert identification. 
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    UNACCEPTABLE REQUIRED DESIRED 
IN
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Data have no quality control and/or associated 
metadata. 

Quality control of data undertaken, based on metadata of 
quality assured (QA) databases or reported survey design and 
methodology. 

Data are sampled via systematic sampling design (same for 
biological and environmental data) and standardized meth-
ods are used for sampling. Clear description of robust sam-
pling design is provided. 

Source(s) of independent data not provided. Independent data source(s) explained and reported following 
reporting standards in Annex 3. 

Same as required criteria 

Uncertainty is not considered in the environmen-
tal data. 

Uncertainty of environmental predictors is characterized and 
accounted for (e.g., use of different analyses and scenario 
testing). 

Uncertainty of environmental predictors is minimized (e.g., 
use of different analyses and scenario testing). 

V
ar

ia
b

le
 c

h
o

ic
e 

Large number of predictor variables included 
without a priori consideration of their ecological 
relevance evidence of the ecological relevance 
and/or relevance of the range of predictor varia-
bles used not evidenced or reported. 

Predictor variables have a demonstrable association with the 
response variable (observational, statistical or theoretical) at 
the spatial and temporal resolution of the model.   

Predictor variables are proximal variables with a confirmed 
ecologically relevant association with the response variable 
at the spatial resolution and extent of the model. 

Predictor variables and their ranges are informed 
by the biological tolerances inferred from other 
‘proxy’ taxa with no expert evaluation for their 
use. 

Predictor variables and their ranges are informed by any 
known biological tolerances of the VME indicator taxa being 
modelled, as documented in peer-reviewed studies; or are in-
ferred from those evidenced and documented for ‘proxy’ taxa 
with expert evaluation approval for their use. 

Predictor variables and their ranges used are defined by the 
biological tolerance limits of the VME indicator taxa being 
modelled, as documented in peer-reviewed studies. 

D
at

a 
p

ro
ce

ss
in

g 

Spatial accuracy and resolution are substantially 
inconsistent between biological and environmen-
tal data, e.g., m to hundreds km. 

Spatial accuracy and resolution may be inconsistent between 
biological and environmental data, but data selected are qual-
ity-controlled and based on ecological relevance. 

 Spatial accuracy and resolution of biological and environ-
mental data are the same, or consistent, and are ecologi-
cally relevant. 

Native spatial resolution and/or downscaling / ag-
gregation processing methods to match spatial ac-
curacy and resolution between biological and en-
vironmental data are not reported. 

Native spatial resolution and/or downscaling / aggregation 
processing methods to match spatial accuracy and resolution 
between biological and environmental data are fully re-
ported. 

Downscaling / aggregation and method used reported and 
goodness of fit measures for downscaling/aggregation 
method reported. The effects of variable downscaling/ag-
gregation on model output are tested. 

Derived variables and methods of calculation not 
described. 

Derived variables described and calculations and references 
provided. 

Same as required criteria 

C
o

lli
n

-

ea
ri

ty
 Collinearity has not been investigated or is simply 

acknowledged or uncorrected. 
Collinearity is addressed (e.g. correlation coefficient (r) and 
variance inflation factor (VIF)) and alleviated, or an ap-
proach/model insensitive or able to handle it is used. 

Lack of collinearity is demonstrated. 
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    UNACCEPTABLE REQUIRED DESIRED 
Collinearity has not been investigated or acknowl-
edged. 

Selection of variables to retain from collinear pairs is trans-
parent and has a logical basis. If collinear variables are re-
tained, robustness of the results to collinearity are demon-
strated. 

Selection of variables to retain from collinear pairs is trans-
parent and is based on significant contribution to model 
and ecologically relevant association. No collinear pairs of 
variables are retained in the model. 

SP
A

TI
A

L 
A

N
D

 

TE
M

P
O

R
A

L 

SC
A

LE
S 

Spatial and temporal extents, resolutions and lo-
cation of the study used are not justified. 

The spatial and temporal extents, resolutions and location of 
the study are justified as evidenced from peer-reviewed stud-
ies, data availability and/or quality-controlled databases. 

The full spatial and temporal, extent, resolution and distri-
bution of the VME indicator taxa are known and used, in-
cluding current and historical distribution of the VME/indi-
cator.  

Model includes outdated data from locations 
where natural or anthropogenic influences have 
changed the response – predictor dynamics.  

Model includes data that is relevant to current conditions (in-
cluding anthropogenic influences). 

Model is updated regularly with new data. 
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3 Approaches to modelling  

3.1 General introduction to PHM as applied to VME 

Predictive habitat modelling methods can generally be sorted into four main types. Kriging and other ge-

ostatistical methods utilize the correlation between observations in space to make inference about the dis-

tribution of a species (e.g. Kenchington et al., 2017). Standard statistical methods such as generalized linear 

models (e.g. Krigsman et al., 2012) and generalized additive models (e.g. Rooper et al., 2017) develop linear 

or non-linear relationships between dependent and independent data. Machine learning methods, such as 

random forests (e.g. Beazley et al., 2018) and boosted regression trees (e.g. Rowden et al., 2017) utilize com-

puter algorithms to determine the distribution of a species. More complex statistical methods such as point 

process models (e.g. Renner et al., 2015, Howell et al., 2016), multivariate mixture models (e.g. Dunston et 

al., 2011, Dunston et al., 2013, Foster et al., 2013), generalized linear and generalized additive mixed models 

(e.g. Thorson et al., 2016), and joint species distribution models (Ovaskainan et al., 2017) are more recent 

developments that can incorporate increased complexity or decreased data quality in PHM. Kenchington 

et al., (2019) recommend that statistical model-based approaches, which describe the error distribution and 

explain it with respect to described models should be prioritised when possible. Robinson et al., (2017) who 

reviewed the use of PHM in the marine environment and Norberg et al., (2019) who compared the predic-

tive performance of commonly used PHM methods recommend fitting multiple models and applying a 

cross-validation procedure to establish which is most suitable for the goal of the study, before selecting a 

modelling method. Finally, others have suggested fitting multiple models or model types and using en-

semble approach in order to take advantage of the relative strengths of individual models and reduce un-

certainty in the predicted distributions of VME indicator taxa (Rooper et al., 2016, Rowden et al., 2017). 

Ensemble approaches and combining models with differing spatial extents and resolutions to provide ICES 

advice will be a key area for work in the future in cases where there are multiple existing PHM for species 

(e.g. Lophelia). The challenges of combining PHM across differing scales and extents include defining how 

their predictions should be averaged (e.g. weighted or unweighted) or not, the ultimate resolution of the 

final prediction, or whether multiple models should even be used in providing ICES advice. The approach 

outlined during this workshop was to determine minimum criteria that could be used to judge individual 

models, but how information from multiple models should be combined was not directly addressed. 

The specific PHM methods currently being used in the fields of ecology and biogeography to predict the 

distributions of species, biological communities, habitats and habitat types encompass a large variety of 

modelling approaches. The number of methods is too large for a thorough review in this report, but Norb-

erg et al., (2019) provides a comprehensive list of method comparison studies published between 1995 and 

2019. Here we will discuss the main issues to consider when evaluating the appropriateness of a method 

for modelling the distribution of VMEs in the deep sea.  

3.2 Characteristics of different modelling methods 

Data requirements.  The data requirements (including data type, the number of records, the statistical 

distribution of data and requirement for balanced data from factor groups) vary between modelling meth-

ods. As a rule of thumb, increasing model complexity (higher number of terms and increased flexibility of 

fit) comes with an increased data requirement. Regression-based models and geostatistical models are the 

most data hungry, whilst machine learning methods can fit models to much smaller datasets. Modelled 
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data types range from presence only data to abundance or biomass of entire communities, depending on 

the method and aims of the study. Table 3.2.1 gives details of the data types accepted by the most commonly 

used modelling methods. 

Assumptions.  The statistical assumptions of PHM range from strict expectations of data fit to a specified 

statistical distribution and parametric responses to predictor variables seen in regression-based methods, 

to the relative absence of assumptions in data distribution for machine learning methods such as random 

forest (Cutler et al., 2007), boosted regression trees (Elith and Leathwick, 2008), or maximum entropy (Phil-

lips et al., 2006). In all cases the dependent data are assumed to be independent of one another. Geostatistical 

methods and Spatial Point Process Models (SPPM) also assume the existence of spatial autocorrelation and 

structure in the dependent (response) variable. Regression-based methods, including methods such as gen-

eral linear models, generalized additive models (Wood, 2006), mixture models (Dunstan et al., 2011, Foster 

et al., 2013) and joint species distribution models (Ovaskainen et al., 2017), which include regression fits, 

also assume normality of the residuals, error independence (no spatial autocorrelation in the residuals) and 

in the case of continuous response data no overdispersion. Universal kriging with covariate trends, in-

cludes the same assumptions, but autocorrelation in residuals is expected and utilized for fitting in kriging. 

Where statistical assumptions for regression cannot be met, the machine learning methods are a better 

choice. Whilst free of strict statistical assumptions, there are still assumptions regarding the input data with 

the machine learning methods. For example, random forest classification is sensitive to the class ratio, 

which is an important consideration for the very unbalanced datasets often available for deep-sea VME 

taxa. This imbalance can be offset by balanced subsampling inside the algorithm. Similarly, maximum en-

tropy (MaxEnt) assumes an equal likelihood of sampling over the environmental gradients (i.e., random or 

systematic sampling), which is rarely ever the case in deep-sea environments. The unequal likelihood of 

sampling can  be accounted for by targeted selection of background points from the environmental gradi-

ents.  

Spatial structure.  Spatial autocorrelation is present to some extent in all species and habitat distribution 

data. It is particularly relevant in data collected in the deep sea, which are often very clumped and collated 

from multiple sources. Whilst some methods such as universal kriging, kernel density estimation (KDE) 

and SPPM are primarily centred around utilizing the spatial structure in the dependent data, other model-

ling methods can incorporate it to differing extents. The simplest, but most incomplete way is through 

inclusion of x and y coordinates or their interaction surfaces in the model, which allows the location to 

influence predictions, but does not include the distance-based spatial correlation structure addressed by 

geostatistics. Mixed models, such as general linear mixed models (GLMM) and generalized additive mixed 

models (GAMM) can also incorporate various formulations of distance-based spatial correlation structure 

in data as random variable (e.g. Thorson et al., 2016). In fact, the boundary between a universal kriging 

approach, which includes a complex regression model of covariate trends, and a mixed model incorporat-

ing a geostatistical random variable becomes unclear.   

Ecological relevance.  The interpretability of relationships and ecological relevance of a model and its out-

puts is important for assessment of the feasibility of the modelled response of the species or habitat on the 

independent (predictor) variables. The mechanics of model fitting make the response curves of the regres-

sion-based models easier to interpret than those of many machine learning methods, such as random forest, 

where the curve is not fitted to the data, but is the result of predictions from the forest’s component trees. 

Models with curves that are fitted directly to the data are more useful for explaining responses, and also 

more generalised (when not overfitted), potentially making them more transferable to novel data sets or 

areas. It is also important to assess the response curves of model relationships and their importance in the 

context of expectations based on prior knowledge. For example, the absence of a strong explanatory rela-

tionship between substrate hardness and abundance of a gorgonian coral might indicate potential problems 
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with the model or variables that needs to be addressed. Predictor importance can be assessed using a num-

ber of methods that can be specific to the PHM used. For example, variable importance for random forest 

models can be determined by misclassification rates when variables are randomly permutated (Cutler et 

al., 2007), while for statistical models variable importance can be measured by removing terms sequentially 

from the best fitting model to determine the relative contribution to overall model fit. 

Outputs.  The type of output varies between modelling methods and modes of prediction. Whilst regres-

sion-based models of presence / absence output a probability estimate within the best fitting model when 

assumptions are being met, other methods approximate probability in other ways.  Random forest models, 

for example, outputs the proportion of trees predicting the presence, whereas the raw output from MaxEnt 

and SPPM is a relative occurrence rate (or intensity).  MaxEnt can also produce logistic, log-log and com-

plementary log-log (clog-log) transformed outputs, which are an unscaled approximation of a probability 

of presence. However, it is important to note that probability estimates from different methods are not 

directly comparable, due to the effect of the data distribution and probability estimation methods. Some 

models offer the option to output a presence/absence grid, but probability outputs that can be dichotomised 

afterwards using an appropriate calibrated threshold are preferable (e.g. Liu et al., 2013). Other output types 

include the most probable factor class and continuous outputs at the scale of the response variable (such as 

abundance or biomass). 

Spatial uncertainty.  A spatial representation of uncertainty enables advice and management bodies to 

assign confidence to decisions made in different areas of the predicted distribution. Some modelling meth-

ods intrinsically produce error surfaces, such as standard error or coefficient of variation. With other meth-

ods bootstrapping can be used to highlight areas where multiple model runs vary in their predictions, 

indicating locations where the model is not fitting consistently to combinations of environmental variables. 

Uncertainty in model outputs is addressed more fully in Section 4 of this report. 

Transferability.  The transferability of models into new places and times hinges on the ability of models to 

represent a generalised response of the species or habitat to the environmental conditions. Consequently, 

geostatistical models such as Kriging and KDE that have been fitted using local spatial data are not trans-

ferable in space or time. Although the predictor variables used play a large part, where predictors should 

have direct effects on the response (e.g., temperature) instead of acting as proxies that are valid only under 

local conditions (e.g., depth), the generality of the model fit has a big influence. Regression-based models, 

and other models that rely on a generalised fit to data, are best for predicting outside of the training spati-

otemporal envelope. Whilst these types of models can still overfit, tailoring the model fit to the specific 

conditions encountered in the training data, the fit is easier to control through model settings. MaxEnt can 

also be parameterised to provide a smoother fit, avoiding overfitting. Random forest and boosted regres-

sion trees, through their mechanisms of model fitting are the most prone to overfitting to local conditions. 
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Table 3.2.1. Characteristics of different model types. P/A = presence / absence of a species, classified assemblage group or habitat type. A Factor variable consists of multiple discrete 
classes, X and Y are longitude and latitude. A continuous dependent variable can be count, abundance, biomass etc. The relative usefulness ranking for PHM methods is scaled from 1 
(useful) to 4 (most useful). 

Model type Data requirements Assumptions Treatment of 
spatial structure in 
data 

Ecological 
relevance 

Type of output Spatial 
uncertainty 

Transferability Relative 
usefulness 
for VME 
PHM 

Universal kriging 
(AKA Regression 
Kriging and 
Kriging with 
external drift) 
(Bivand et al., 
2008),  

P/A or Continuous 
dependent variable 

Independent variables 
when co-variate trends 
included 

Even spatial spread of 
observations 

Spatial 
autocorrelation 

Normality (in residuals 
if co-variate trend 
model fitted) 

Variogram model 
fitted to represent 
spatial dependence 
among (residuals 
at) points 

Variogram 
depicting 
spatial relation 

Response 
curves for co-
variate trend 
functions 

P/A 

Abundance 

Kriging 
variances / 
standard 
errors 

Not 
transferable in 
space or time 

1 

Kernel Density 
Estimation (KDE) 
(Bivand et al., 
2008), 

Continuous variable 

Even spatial spread of 
observations 

Spatial 
autocorrelation 

Weighted density 
evaluated within 
defined spatial 
neighbourhood 

Kernal density 
estimate 

Weighted density 
raster 

Not estimated Not 
transferable in 
space or time 

2 

Generalized linear 
models and 
general additive 
models 
(GLM/GAM) 
(McCullagh and 
Nelder, 1989, 
Wood 2006) 

P/A or continuous 
dependent variable 

Independent variables 

Normality in residuals 

Appropriate link 
function for data 
distribution 

Error independence  

No overdispersion in 
abundance data 

X and Y and/or their 
interaction as 
independent 
variables 

Smooth 
response 
curves fitted to 
data 

Probability of P/A 

Continuous on 
scale of dependent 
variable 

Standard error Easy to 
generalise 

Good for 
transfer in 
time or space  

4 

Generalized linear 
mixed models and 
general additive 
mixed models 
(GLMM/GAMM) 
(Wood 2006, Zuur 
et al., 2009) 

P/A or continuous 
dependent variable 

Independent variables 

Normality in residuals 

Appropriate link 
function for data 
distribution 

Error independence  

No overdispersion in 
abundance data 

X and Y and/or their 
interaction as 
independent 
variables 

Various ways to 
include spatial 
random effects 

Smooth 
response 
curves fitted to 
data 

Probability of P/A 

Continuous on 
scale of dependent 
variable 

Standard error Easy to 
generalise 

Not 
transferable in 
time or space 

3 
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Model type Data requirements Assumptions Treatment of 
spatial structure in 
data 

Ecological 
relevance 

Type of output Spatial 
uncertainty 

Transferability Relative 
usefulness 
for VME 
PHM 

Boosted 
regression trees 
(Elith et al., 2008) 

P/A or continuous 
dependent variable 

Independent variables 

None X and Y as predictor 
variables 

Response 
curves 
produced by 
model 
prediction – 
not always 
interpretable 

Probability of P/A 
or Factor class 

Continuous on 
scale of dependent 
variable 

Bootstrap 
estimates of 
prediction 
variability 

Transferability 
questionable 

4 

Random forest 
(Cutler et al., 
2007) 

P/A, Factor or 
continuous dependent 
variable 

Environmental variables 

None X and Y as predictor 
variables 

Response 
curves 
produced by 
model 
prediction – 
not always 
interpretable 

Probability of P/A 
or Factor class – 
proportion of trees 
predicting presence 

Continuous on 
scale of dependent 
variable 

Bootstrap 
estimates of 
prediction 
variability 

Proportion of 
trees (factor 
classes) 

Standard error 
(continuous 
variables) 

Transferability 
questionable 

4 

Maximum 
entropy (Phillips 
et al., 2006) 

Presence only (possibly 
with user defined 
background points) 

Environmental variables 

Equal likelihood of 
sampling over 
background (random 
or constant sampling) 

Constant detectability 

No explicit spatial 
structure 

Representative 
response 
curves 
depending on 
the complexity 
allowed in the 
model 
responses 

Raw output is a 
relative occurrence 
rate 

Logistic, log-log or 
clog-log output 
approximates 
presence 
probability 

Bootstrap 
estimates of 
prediction 
variability 

Easy to 
generalise 

Good for 
transfer in 
time or space 

3 

Multivariate 
Mixture Models 
(e.g. species 
archetype 
models, regions of 
common profiles) 
(Dunston et al., 
2011) 

P/A or continuous 
dependent variable 

Independent variables 

Usually a community 
matrix 

Parametric species 
response to their 
environment 

No explicit spatial 
structure 

Plots to choose 
the number of 
species 
archetypes/RCP 

Archetype/RCP 
response to the 
covariate 

Predicted 
probability of each 
species archetype 
or RCP 

Archetype/RCP 
membership 
probabilities 

Standard error 

Confidence 
intervals 

Can be 
transferable in 
space and 
time 

3 



ICES | WKPHM   2021 | 23 

 

 

Model type Data requirements Assumptions Treatment of 
spatial structure in 
data 

Ecological 
relevance 

Type of output Spatial 
uncertainty 

Transferability Relative 
usefulness 
for VME 
PHM 

Spatial point 
process models 
(for presence only 
data – specifically) 
(Bivand et al., 
2008), 

Presence only 

Independent variables 

Different classes of 
PPM have different 
assumptions 

Points are 
independent 

The intensity of points 
varies spatially with 
the environment 

Yes. The object of 
primary interest in 
a PPM is the spatial 
location of the 
presence points 

Influence, 
leverage and 
partial residual 
plots 

Intensity of 
observations 

Raw output is a 
relative occurrence 
rate 

Logistic, log-log or 
clog-log ouput 
approximates 
presence 
probability 

Depends on 
software and 
class of PPM 
model used 

Can be 
transferable in 
space and 
time 

3 

Joint Species 
Distribution 
Models 
(Ovaskainen et al., 
2017) 

P/A or continuous 
dependent variable 

Usually community 
matrix 

Independent variables 

Can include species traits 
and phylogenetic data  

Spatial-temporal data 
can be included 

Parametric species 
response to their 
environment 

Yes. Spatially 
structured random 
effect which can 
capture species 
associations 
irrespective of 
independent data  

Variance 
partitioning 
plot 

Smooth 
response to 
covariates 

Species traits 
environmental 
responses 

Species residual 
associations 

Probability of P/A 

Species richness 

Community-
weighted mean 
traits 

Regions of common 
profile 

Standard 
error, credible 
intervals 

Transferable 
in space or 
time, but not 
if using 
random 
spatial effects 

3 
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3.3 Minimum standards for description and outputs from 
models used in PHM 

This section lays out the required standards and additional desirable best practices for reporting 

PHM outputs, including associated caveats and assumptions. All PHM are approximations of 

the real world and therefore require careful interpretation. The proper interpretation of models 

and assessment of the suitability of model outputs for management advice depends on the user 

being aware of the particulars of the model development, its assumptions and their implications. 

Numerous authors have described good practice for PHM over the years. Robinson et al. (2017), 

Araújo et al. (2019a,b), Feng et al. (2019), Sofaer et al. (2019) and Zurell et al. (2020) have all sug-

gested comprehensive assessments and checklists for evaluating such predictive models. Here 

we summarise the recommendations made by these authors adapting them to the specific re-

quirements of VMEs and the deep sea, augmented by the specific suggestions relating to model-

ling species and habitats in the deep sea by Kenchington et al. (2019) and Winship et al. (2020). 

Table 3.3.1. sets out the minimum requirements for models to be considered suitable for use in 

ICES advice and Annex 3 lists the information that needs to be reported with any PHM when 

providing ICES advice. The model requirements pertain to the technicalities of the modelling 

procedure from aims and objectives to model outputs, whilst input data and model validation 

requirements are addressed in Sections 2 and 4, respectively.  

A clear description of the model aims and objectives, along with the type of variable being pre-

dicted is essential for deciding whether or not a model’s outputs are suited for a specific purpose. 

Models built to (1) explain ecological linkages between the environment and species, (2) provide 

the most accurate prediction of current species distributions, and (3) project distributions outside 

the spatiotemporal setting of the training data all have a different emphasis on the requirements 

for model fitting and interpretation. Most PHM to be used in providing ICES advice are likely to 

be used for predictions of VME distributions. A transparent description of the modelling steps, 

including input data, software and tools used, provides information that both makes the study 

replicable and allows for an informed assessment of its applicability for any specific use. In their 

quantitative review of recent literature Feng et al., (2019) learned that methods sections often lack 

the details needed for reproducibility.  Zurell et al., (2020) found similar deficiencies and have 

produced an online tool which generates a checklist as an appendix for any modelling study 

(Overview/Conceptualisation, Data, Model fitting, Assessment and Prediction, ODMAP). The 

tool produces a model metadata record consistent with most of the reporting requirements set 

out in Annex 3. 

For PHM to be used in ICES advice, the choice of the modelling method should be explained, 

and be suitable for the modelling objective and input data. In an ideal situation, multiple alter-

natives would be evaluated before choosing the most appropriate method or ensemble of meth-

ods (Sofaer et al., 2019). Statistical assumptions for the selected method need to be recognized 

and considered. As a minimum, any violations of assumptions, and their consequences for in-

terpretation of the results should be discussed (Araújo et al., 2019b). Ideally, assumptions should 

be formally evaluated and lack of, or robustness to, violation demonstrated (Araújo et al., 2019; 

Sofaer et al., 2019). The modelling method should be well described and referenced with trans-

parent reporting of model-specific settings. The most comprehensive way to communicate the 

applied model settings is to provide both the data and well annotated code scripts used for the 

analysis (Sofaer et al., 2019). As a minimum, settings which influence the model fit, and hence 

predictions should be reported and discussed. The rationale used for decisions made on model 

settings and the associated model complexity (number of parameters, flexibility of the modelling 

approach, and the number of operations involved) should be made clear. Over-complex models 
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risk overfitting the data and reducing its predictive power. Araújo et al. (2019a) define their high 

standard (gold-level) for models as including a full exploration of the consequences of all choices 

in model building through result comparison via cross-validation or the use of independent data. 

However, these choices are most commonly decided using broadly agreed rules of thumb. 

Model results need to be reported in enough detail to convey the goodness and ecological rele-

vance of the model fit. Model method-specific term estimates or coefficients and goodness-of-fit 

statistics should be reported, where relevant (see Section 4). Variable importance, the relative 

contribution of each predictor variable to model fit, indicates which of the independent data 

layers are the most influential in determining the prediction output. Both the relative contribu-

tions of predictors, and the shape of response curves (for methods where possible) should be 

checked for plausibility based on expert judgement and compared to existing knowledge. Spatial 

autocorrelation in model residuals indicates that the model has been unable to adequately rep-

resent the distribution of the response variable, either due to missing environmental variables or 

the predominance of biological interactions. It is not always possible to remove all spatial auto-

correlation, but it should be investigated, reported and the implications of any remaining auto-

correlation on interpretation of results discussed. Map outputs should also be checked for plau-

sibility by comparison with known distributions and even expert opinions where experts can be 

identified. 

Understanding of the model output hinges on the prediction unit being clearly defined and ex-

plained. Predictions may be dichotomous presence/absence of a species or habitat type, a com-

bination of factor classes (such as multiple VME types), a probability of presence (0-1) of a species 

or habitat type, or a continuous variable such as density or biomass. Especially when the output 

is continuous or a probability, the meaning of the values and how this affects interpretation must 

be clearly explained. Probability outputs are driven by the prevalence of the input data (zero 

inflation in data leads to very low probabilities even at locations where taxa are observed) and 

are often not intuitively interpretable. The raw model predictions are sometimes transformed via 

different methods under different assumptions before mapping and such post-processing steps 

need to be clearly outlined (Feng et al., 2019). Threshold selection for dichotomising a continuous 

likelihood of presence output to presence / absence must be clearly described and appropriate 

for intended use. Ideally thresholds should be selected via model assessment with exploration 

of sensitivity (Sofaer et al., 2019). Liu et al. (2013) outlines the most commonly used thresholding 

methods and discusses their implications to the emphasis placed on false positives and nega-

tives.  

Finally, we must consider model transferability in geographical space and time. Transferring a 

model across space and/or time leads to potential over-extrapolation, where the projected envi-

ronments are outside of the environmental envelope of the training data. In the deep sea, where 

field observations are often sparse and clumped, with an uneven coverage of environmental gra-

dients, some level of extrapolation may also be required in local models. In both cases, the envi-

ronmental conditions in the location (or time) where predictions are made must be within a plau-

sible range for extrapolation of response – predictor relationships. Model extrapolation is statis-

tically challenging and different extrapolation strategies can lead to very different model predic-

tions. Therefore, the choice of extrapolation method should be clearly described (Feng et al., 

2019). Furthermore, a spatial representation of novel environments would help to communicate 

the uncertainties associated with predictions outside of training data range (e.g. Stephenson et 

al., 2020). For model results to remain current over time, environmental conditions and potential 

human impacts must remain relatively stable. When using older model outputs, consideration 

must be made for the vintage of both input data and model. In an ideal situation a model would 

be updated via targeted field sampling, incorporated into subsequent model iterations (Sofaer et 

al., 2019). 
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The main recommendations and criteria to be applied in use of PHM for ICES advice, require 

the entire modelling process to be transparent, and include sufficiently detailed explanations and 

justifications using plain language for all choices, along with any necessary material (e.g. 

selection criteria, code) to make it reproducible.  

The selection of the most suitable modelling technique for PHM will depend on the 

characteristics of the independent (e.g. collinearity) and dependent data (e.g. sampling bias) and 

the management needs or questions. The selection needs to be fully, accurately and clearly 

explained, including known advantages and disadvantages of the modelling technique. If more 

than one modelling technique is suitable, either multiple models should be explored or the 

prioritisation of one particular technique explained and justified. If an ensemble modeling 

approach is used, each model within the ensemble should meet the minimum criteria and the 

method of ensembling be fully explained and justified. Ideally model assumptions (e.g. 

stationarity, homocedasticity, normality, constant error; Dormann et al, 2012) should not be 

violated; or the robustness of the model predictions despite any violation should be addressed. 

The same criteria apply to the presence of collinearity among the predictor variables included in 

the models and the potential bias in any of the data (dependent or independent). Realiability and 

performace of the model need to be reported based on multiple metrics and criteria, which are 

described in detail in the following section.
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Table 3.3.1. Description of components of PHM to consider, evaluate and present when describing a model in support of scientific or management advice. Standards are also provided based 
on previous literature.  

  UNACCEPTABLE REQUIRED DESIRED 

O
b

je
ct

iv
e

 No objectives stated. Model objective (to explain, predict or pro-
ject) is stated. 

Model objective (to explain, predict or pro-
ject) is stated and hypotheses for model link-
ages are clearly stated. 

M
o

d
el

lin
g 

m
et

h
o

d
 

A priori model selection is made, without taking 
into account the available data characteristics. 

Transparent and clear communication of pros 
and cons of each model type is provided to 
inform selection of best possible model.  

Same as required criteria. 

No rationale given for choice of modelling 
method. 

Selection of the modelling method is appro-
priate for the study objective and available 
data types.  

Selection of the modelling method is aligned 
with objectives and appropriate for the input 
data type. Multiple models have been evalu-
ated at the model development stage. 

Method is not described. Method is thoroughly described and/or refer-
enced. 

Same as required criteria. 

Assumptions not described. Assumptions are recognized and their effects 
on model results are considered and ex-
plained. 

Assumptions formally evaluated in statistical 
analysis. 

Violation of assumptions is not reported. Robustness of model outcomes to violation 
of assumptions is demonstrated.  

Absence of violation of assumptions is 
demonstrated.   

M
o

d
el

 s
et

-

ti
n

gs
 

Description of settings used in model is incom-
plete. 

Model specific settings are reported.  Model specific settings, including default 
ones, should be reported. Model sensitivity 
to the choice of settings assessed and re-
ported.  
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  UNACCEPTABLE REQUIRED DESIRED 
M

o
d

el
 t

er
m

s/
co

ef
fi

ci
en

ts
 

No information or explanation provided on 
model terms. 

Method of extracting relevant method-spe-
cific term estimates or coefficients and how 
they were evaluated is reported.  

Same as required criteria 

Model complexity has not been considered or 
justified. 

Model complexity has been decided/opti-
mised using justified methods or broadly 
agreed rules of thumb. 

Model complexity has been optimised 
through comparison of multiple models and 
cross-validation.  

Model outputs have not been evaluated, or 
model output is not considered plausible. 

Model outputs have been evaluated and 
match common understanding of the re-
sponse taxon’s ecology or habitat require-
ments and the expected distribution. 

Model outputs have been evaluated and 
compared with independent data or estab-
lished references. 

The relative contribution of predictor variables 
has not been considered. 

Variable importance and how it was deter-
mined is reported. 

Same as required criteria 

M
o

d
el

 f
it

 Goodness-of-fit not considered. Goodness of fit statistics, and where appro-
priate residuals, have been checked and their 
implications to model interpretation are re-
ported. 

Goodness of fit statistics, and where appro-
priate residuals, have been checked and their 
implications to model interpretation are re-
ported. data and code are also provided. 

Model performance is not reported. Multiple measures of model performance are 
reported. 

Same as required criteria 



ICES | WKPHM   2021 | 29 

 

 

References 

Araújo, M. B., Anderson, R. P., Barbosa, A. M., Beale, C. M., Dormann, C. F., Early, R., et al. 2019. Supple-

mentary Materials for Standards for distribution models in biodiversity assessments. Sci. Adv. 5. 

Beazley L, Wang Z, Kenchington E, Yashayaev I, Rapp HT, et al. 2018. Predicted distribution of the glass 

sponge Vazella pourtalesi on the Scotian Shelf and its persistence in the face of climatic variability. PLOS 

ONE 13(10): e0205505. https://doi.org/10.1371/journal.pone.0205505. 

Bivand, R. S., Pebesma, E. J., and Gomez-Rubio, V. 2008. Applied Spatial Data Analysis with R. Springer 

Science+Business Media, LLC, New York, New York. 378 p. 

Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. 2007. Random 

forests for classification in ecology. Ecology, 88(11):2783–2792. https://doi.org/10.1890/07-0539.1. 

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. 2013. Collinearity: A review of 

methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.). 36. 

doi:10.1111/j.1600-0587.2012.07348.x. 

Dunstan, P.K., Foster, S.D., and Darnell, R. 2011. Model based grouping of species across envi-ronmental 

gradients. Ecological Modelling, 222: 955–963. 

Dunstan, P.K., Foster, S.D., Hui, F.K., and Warton, D.I. 2013. Finite mixture of regression mod-eling for 

high-dimensional count and biomass data in ecology. Journal of agricultural, biolog-ical, and environ-

mental statistics, 18: 357–375. 

Elith, J., Leathwick, J. R., & Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal 

Ecology, 77(4), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x. 

Feng, X., Park, D. S., Walker, C., Peterson, A. T., Merow, C., and Papeş, M. 2019. A checklist for maximizing 

reproducibility of ecological niche models. Nat. Ecol. Evol. 3. doi:10.1038/s41559-019-0972-5. 

Foster, S., Givens, G., Dornan, G., Dunstan, P., and Darnell, R. 2013. Modelling biological re-gions from 

multi-species and environmental data. Environmetrics, 24: 489–499. 

Howell, K. L., Piechaud, N., Downie, A. L., & Kenny, A. 2016. The distribution of deep-sea sponge aggre-

gations in the North Atlantic and implications for their effective spatial management. Deep-Sea Re-

search Part I: Oceanographic Research Papers, 115, 309–320. https://doi.org/10.1016/j.dsr.2016.07.005. 

Kenchington, E., Callery, O., Davidson, F., Grehan, A., Morato, T., Appiott, J., et al. 2019. Use of Species 

Distribution Modeling in the Deep Sea. 

Kenchington, E., Murillo, F.J., Lirette, C., Sacau, M., Koen-Alonso, M., Kenny, A., Ollerhead, N., Wareham, 

V. and Beazley, L. 2014. Kernel density surface modelling as a means to identify significant concentra-

tions of vulnerable marine ecosystem indicators. PLoS ONE 9(10): e109365. doi:10.1371/jour-

nal.pone.0109365. 

Krigsman, L. M., Yoklavich, M. M., Dick, E. J., & Cochrane, G. R. 2012. Models and maps: predicting the 

distribution of corals and other benthic macro-invertebrates in shelf habitats. Ecosphere, 3(1), art3. 

https://doi.org/10.1890/es11-00295.1. 

Liu, C., White, M., and Newell, G. 2013. Selecting thresholds for the prediction of species occurrence with 

presence-only data. J. Biogeogr. 40, 778–789. doi:10.1111/jbi.12058. 

McCullagh, P., and Nelder, J., 1989. Generalized Linear Models, 2nd ed. Chapman & Hall, New York. 

Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R., Anderson, B. J., Anttila, J., et al. 2019. A comprehensive 

evaluation of predictive performance of 33 species distribution models at species and community lev-

els. Ecol. Monogr. 89. doi:10.1002/ecm.1370. 

Ovaskainen, O., Tikhonov, A.G., Norberg, F.G., Blanchet, L., Duan, D.B., Dunson, T.R., and Abrego, N. 

2017. How to make more out of community data? A conceptual framework and its implementation as 

models and software. Ecology Letters, 2: 561–576. 

Phillips, S. J., Anderson, R. P., and Schapire, R. E. 2006. Maximum entropy modeling of species geographic 

distributions. Ecol. Modell. 190, 231–259. doi: 10.1016/j.ecolmodel.2005.03.026. 



30 | ICES Scientific Reports 3:67 | ICES 

 

 

Renner I.W., Elith J., Baddeley A., Fithian W., Hastie T., Phillips S.J., Popovic G., & Warton D.I. 2015 Point 

process models for presence-only analysis. Methods in Ecology and Evolution, 6, 366–379.  

Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E., and Lundquist, C. J. 2017. A systematic 

review of marine-based Species Distribution Models (SDMs) with recommendations for best practice. 

Front. Mar. Sci. 4. doi:10.3389/fmars.2017.00421. 

Rooper, C. N., Sigler, M. F., Goddard, P., Malecha, P., Towler, R., Williams, K., and Wilborn, R. et al. 2016. 

Validation and improvement of species distribution models for structure-forming in-vertebrates in the 

eastern Bering Sea with an independent survey. Marine Ecology Progress Series, 551: 117–130. 

Rowden, A. A., Anderson, O. F., Georgian, S. E., Bowden, D. A., Clark, M. R., Pallentin, A., & Miller, A. 

2017. High-resolution habitat suitability models for the conservation and man-agement of vulnerable 

marine ecosystems on the Louisville Seamount Chain, South Pacific Ocean. Frontiers in Marine Science, 

4(OCT). https://doi.org/10.3389/fmars.2017.00335 

Sofaer, H. R., Jarnevich, C. S., Pearse, I. S., Smyth, R. L., Auer, S., Cook, G. L., et al. (2019). De-velopment 

and Delivery of Species Distribution Models to Inform Decision-Making. Bioscience 69. doi:10.1093/bi-

osci/biz045. 

Stephenson, F., Goetz, K., Sharp, B. R., Mouton, T. L., Beets, F. L., Roberts, J., MacDiarmid, A. B., et al. 2020. 

Modelling the spatial distribution of cetaceans in New Zealand waters. Diversity and Distributions, 26: 

495-516. 

Thorson, J.T., Pinsky, M.L., Ward, E.J., 2016. Model-based inference for estimating shifts in species distri-

bution, area occupied, and center of gravity. Methods Ecol. Evol. 7(8), 990-1008. doi:10.1111/2041-

210X.12567.  

Winship, A. J., Thorson, J. T., Clarke, M. E., Coleman, H. M., Costa, B., Georgian, S. E., et al. 2020. Good 

Practices for Species Distribution Modeling of Deep-Sea Corals and Sponges for Resource Manage-

ment: Data Collection, Analysis, Validation, and Communication. Front. Mar. Sci. 7. 

doi:10.3389/fmars.2020.00303. 

Wood, S. N. 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC. 398 p. 

Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., et al. 2020. A standard protocol for 

reporting species distribution models. Ecography (Cop.). 43. doi:10.1111/ecog.04960. 

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev A. A., and Smith, G. M. 2009. Mixed Effects Models and 

Extensions in Ecology with R. Springer Science+Business Media, LLC. New York, New York. 579 p. 

  



ICES | WKPHM   2021 | 31 

 

 

4 Model validation and uncertainty 

4.1 Approaches used for model validation 

Model validation with an external independent dataset is considered the most robust type of 

evaluation (Araújo et al., 2005; Winship et al., 2020). Ideally, the new data should be collected 

after fitting the model, using the model output to inform the sampling design of the validation 

survey (Newbold et al., 2010; Williams and Brown, 2019). Simulations can contribute to the se-

lection of the best sampling design (Hirzel and Guisan, 2002). With consideration of the assump-

tions of data from differing sources, sampling methods, spatial scales, etc., it is also possible to 

use other independent datasets (e.g. using fisheries bycatch data to validate a model based on 

ROV observations). There are few examples of validations of models of VMEs using fully inde-

pendent data (Anderson et al., 2016a; Rooper et al., 2016, Rooper et al., 2018). In most cases this is 

not feasible, especially when VMEs are located in the deep sea (> 50 m depth), a rather remote 

and challenging environment and therefore expensive in terms of time and budget to survey 

(Serrano et al., 2017). 

More often, model validation is carried out through internal evaluation by resampling. In this 

approach, known as cross-validation, observations are divided into two groups, for fitting (train-

ing set), and evaluation (test set). Partitions can be done one single time (e.g. k-fold, leave-one-

out cross-validation), or multiple times (e.g. bootstrap). The model is fitted using the training set, 

and predictions are carried out for the test set. The predictive performance of the model is eval-

uated by comparing the predicted values to the test set itself using different statistical metrics. 

Cross-validation produces two useful outputs: a) cross-validated or bootstrapped predictions for 

all observations, and b) estimates of variation in model parameters that can be used to evaluate 

model stability (Arlot et al., 2010; Guisan et al., 2017).  Broadly, there are three main approaches 

for cross-validation in PHM: 

K-fold cross-validation.  A common approach to internal model validation is k-fold cross-vali-

dation. In this method the data is divided into k groups or folds (usually k = 5-10) of equal size. 

The model is fitted k times, using in turn k-1 folds as training data and the remaining fold as test 

data. K-fold validation has been used in many PHM (e.g. Edwards Jr et al., 2006; Dormann et al., 

2008). Usually the folds are selected at random, although as with all cross-validation methods, it 

is possible that partitions are selected in geographic space (Osborne and Suárez-Seoane, 2002). 

K-fold has the limitation that the number of replicate models is low, and that for datasets with 

low prevalence the number of observations in a particular model could be too low (Guisan et al., 

2017). Leave-one-out cross-validation where k is equal to the number of observations (Hastie et 

al., 2009) is a similar method in which each individual observation is used in turn as a test set. 

Leave-one-out cross-validation is useful when the number of observations is very low (Guisan 

et al., 2017). 

Repeated split sample cross-validation.  Also known as a validation set approach, repeated 

split-sample cross-validation is a method in which the observation dataset is split randomly in 

two partitions, typically 70% for model fitting, and 30% for model testing. This splitting is done 

multiple times, usually many more than in the case of k-fold cross-validation. The split cross-

validation approach can be more informative that the k-fold validation because it generates mul-

tiple estimates of model parameters and evaluation metrics from multiple data splits (Guisan et 

al., 2017). This can reduce the variance of the estimates due to the higher sample size and be used 

to more fully evaluate model stability.  
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Bootstrapping.  Bootstrapping is a method in which the original dataset is sampled multiple 

times with replacement, with each sample having the same size as the original data. The boot-

strap builds an empirical distribution function of the model parameters which provides an esti-

mate of the variance and the bias in model parameters (Guisan et al., 2017). However, it is difficult 

to accurately estimate prediction error using the bootstrapping method, as bootstrapped training 

and testing data sets can share observations resulting in positively biased performance for the 

model predictions. To alleviate this problem a  .632+ bootstrap (Efron and Tibshirani, 1997) can 

be used. The .632+ bootstrap mimics cross-validation by tracking predictions for observations 

only in the subset of bootstrap samples that do not contain that observation. The method gets is 

name because on average 63.2% of the original data is selected in each subset, so the remaining 

36.8% can be used for testing.. The bootstrap (and in particular the .632+ bootstrap) can be used 

as an alternative to k-fold cross-validation for producing less variable estimates of model param-

eters with potentially smaller and less biased prediction errors (Efron and Tibshirani, 1997).  

In spite of cross-validation being a popular and widely accepted technique, there are ongoing 

discussions about the best method for assessing the performance of PHM. In recent years the 

best way to allocate data to training and testing datasets and the potential consequences of each 

election in the validation results has been discussed in the literature (Valavi et al., 2018) and im-

portant concerns about the way how PHM models are evaluated have emerged (Fourcade et al., 

2018). One of the most important problems highlighted by Fourcade et al. (2018) is the lack of 

independence between training and test datasets, especially when these points are generated via 

conventional random cross-validation. A general strategy applied in PHM literature to avoid 

this problem (which especially affects the capacity of the approach to evaluate model transfera-

bility) is to use some type of spatial approach when the data are split between training and test-

ing datasets (Muscarella et al., 2014; Fourcade et al., 2018, Valavi et al., 2018). Recently at least 

two R packages ENMEval (Muscarella et al., 2014) and block cross-validation (Valavi et al., 2018) 

have been released that provide a wide set of different techniques to spatially (and not only ran-

domly) divide the data. Some of these strategies include spatial blocks, checkboard strategies, 

environmental profiling, or buffering and we strongly advise exploring at least one of them for 

a more appropriate cross-validation evaluation of the models (e.g. Anderson et al., 2016).  

4.2 Metrics used to evaluate models and model validation 

Evaluation metrics.  A number of different evaluation metrics can be used  to assess the perfor-

mance of species distribution models. Standard goodness-of-fit methods common to all models, 

such as deviance explained or correlation metrics are always reported. However, PHM that pre-

dict the presence or absence of a taxa also use a set of specialized metrics to evaluate their per-

formance.  In general, these can be threshold independent metrics or threshold dependent met-

rics which are derived from a confusion matrix (e.g. Table 4.2.1). 

Table 4.2.1. Confusion matrix showing the two type of possible errors in a presence/absence model; False positives (b) 
and false negatives (c). 

 Observed presence Observed absence 

Predicted presence a b 

Predicted absence c d 

 

The confusion matrix is a very simple table, obtained after converting continuous predictions of 

PHM into binary predictions of presence and absence using a threshold probability and is the 
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base for most of the metrics used in PHM literature (Fielding and Bell, 1997). Some of the most 

popular metrics in this field such as sensitivity, specificity, true skill statistic (TSS) or Kappa are 

just combinations of the 4 potential outputs of the confusion matrix. (see formulae in Table 4.2.2, 

Fielding and Bell, 1997, Allouche et al., 2006). The main limitation of evaluation metrics that use 

the confusion matrix is that they are calculated using a threshold (hence threshold dependent), 

and as such are sensitive to the choice of the threshold or method used to choose the threshold.  

To overcome this limitation, most studies use the Area Under the Curve Receiver Operating 

Characteristic (ROC) plots which is considered standard practice in the PHM literature (Lobo et 

al., 2008; Fourcade et al., 2018). The main advantage of this metric (usually called just AUC) is 

that it is threshold independent, since it is obtained by using a plot which is generated by using 

all possible thresholds to compute sensitivity (y axis) and 1-specificity (x axis). Using AUC, the 

performance of a model can also be classified into easily understood categories that describe its 

usefulness in predicting distributions (AUC ≤ 0.5 is no better than random performance, ≥ 0.7 is 

adequate, ≥ 0.8 is excellent; Hosmer et al., 2013). Unfortunately, AUC also has important limita-

tions that are not always sufficiently incorporated in the model evaluation, but which limit its 

capacity to accurately evaluate the model (Lobo et al., 2008; Jiménez-Valverde, 2012; Fourcade et 

al., 2018). These limitations are especially important when using pseudo-absence or background 

points because the weight of commission errors is much lower than that of omission errors or in 

the case of rare species where low prevalence is difficult to disentangle from model performance 

(Jiménez-Valverde, 2012). In spite of these well-known limitations, AUC is still the most common 

metric used in the PHM literature, probably because of the lack of an adequate alternative. The 

other metrics also have important limitations besides being threshold dependant. For instance, 

kappa is prevalence dependant which can seriously affect its performance under certain circum-

stances (Allouche et al., 2006). Fourcade et al. (2018) highlight the need to select biologically rele-

vant independent data, as models built without ecologically relevant environmental data (e.g., 

using representations of paintings) can produce models that perform well according to evalua-

tion metrics. Because of these limitations, we advise to always use more than one metric to cor-

rectly evaluate the performance of PHM, while always providing values of sensitivity and spec-

ificity to offer information about the discrimination capacity of the model. Finally, in addition to 

test metrics results, other evaluation process such as the plausibility of the response curves and 

their consistency with the ecological knowledge of the species are equally important (see Section 

3) and must be included in the evaluation process, especially in “presence-only” models (Warren 

et al., 2020). 

Table 4.2.2. Some of the most popular evaluation metrics obtained from the confusion matrix. Adapted from: Fielding 
and Bell (1997) and Allouche et al. (2006). The values of a,b,c and d are extracted from the confusion matrix. N is the 
number of data (a+b+c+d) 

MEASURE CALCULATION 

Prevalence (a+c)/N 

Overall diagnostic power (b+d)/N 

Correct classification rate (a+d)/N 

Sensitivity a/(a+c) 

Specificity d/(b+d) 

False positive rate b/(b+d 

False negative rate c/(a+c) 



34 | ICES Scientific Reports 3:67 | ICES 

 

 

MEASURE CALCULATION 

Kappa [(a + d) - (((a + c)(a + b) + (b + d) (c + d))/N)]/[N - (((a + c)(a + b) + (b + 
d)(c + d))/N)] 

True Skill Statistic (TSS) Sensitivity+Specificity-1 

 

Any model used to support ICES advice should be reliable, and robust in demonstrating its util-

ity and capabilities to predict the occurrence of the defined VME/indicator in unsampled and/or 

new locations and time periods. Table 4.2.3 outlines the minimum and desired criteria for model 

validation of PHM to be used to provide ICES advice. Models should ideally be validated against 

representative and statistically independent data of the defined VME/indicator. Such statistical 

independence implies that, at least, the validation data were not used to build the model. Ideally, 

datasets from different spatial, temporal and/or survey collections are desired for validation. A 

highly reliable model would be validated using data specifically collected in areas identified by 

the model as having high and low likelihoods of VME/indicator to be present (e.g. Anderson et 

al., 2016, Rooper et al., 2018). For this purpose, we suggest collaborations with projects that have 

dedicated ship time for exploration in the deep sea (e.g. EU Horizon projects) to incorporate such 

sampling and data collection in their plans for new surveys and expeditions. 

Table 4.2.3. Criteria for model validation requirements for PHM to be used when supporting ICES advice. 

UNACCEPTABLE REQUIRED DESIRED 
No validation method is 
provided. 

Internal cross-validation 
(subset of data, not used to 
build the model). 

Validation with truly independent (new 
collected) data. 

No consideration has been 
given to the assumptions in 
data structure when split-
ting data into training and 
test sets. 

Rationale and method of 
splitting data into training 
and test datasets is de-
scribed, and any caveats 
explained. 

Rationale and method of splitting data 
into training and test datasets is de-
scribed, and any caveats explained. 
Splitting rationale includes a spatial and 
temporal (if applicable) component. 

4.3 Description and characteristics of model uncertainty 

In ecological models, the term uncertainty refers to the unexplained statistical variation in the 

model output (Barry and Elith, 2006; Gould et al., 2014). The uncertainty in the output of PHM is 

not necessarily a problem for their use in management, as long as its effects on model predictions 

are not ignored. When model uncertainty is assessed, managers can make decisions that are ro-

bust to model uncertainty or take into account model uncertainty (Gould et al., 2014). For exam-

ple, Rowden et al. (2019) proposed VME closures giving higher conservation priority to areas 

with low prediction uncertainty. On the other hand, when model uncertainty is not acknowl-

edged, the model output can potentially be interpreted with unjustifiably high confidence which 

can be misleading (Beale and Lennon, 2012; Wenger et al., 2013), resulting in management deci-

sions that may have counterproductive effects (Robinson et al., 2017). Estimating prediction un-

certainty is essential to effectively inform management decisions (Jones-Farrand et al., 2011, Jones 

and Cheung, 2015). Unfortunately, many published PHM do not explicitly address uncertainty 

(Peterson et al., 2018; Araújo et al., 2019). In a recent review, Robinson et al. (2017) reported that 

94% of published PHM in marine environments failed to report the amount of uncertainty de-

rived from data deficiency and inappropriate model parameterization. The lack of effective 
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communication of model uncertainty is considered as one of the main barriers against the more 

frequent use of PHM output in environmental decision making (Rapacciuolo, 2019). Therefore, 

it is necessary that PHMs used for management purposes should always explain how uncertain-

ties in the model predictions were addressed.  In general, the three approaches for addressing 

uncertainty in PHM include a) reducing model uncertainty by increasing the ecological 

knowledge and improving the modelling process, b) assessing model uncertainty quantitatively 

or probabilistically, and c) applying management measures that are robust to model uncertainty 

(Gould et al., 2014). Models where uncertainty was not addressed should be interpreted with 

caution (Sofaer et al., 2019). 

Major sources and types of model uncertainty 

Uncertainty in PHM arise from different sources (Barry and Elith, 2006; Dormann et al., 2008; 

Link et al., 2012). One of the sources of uncertainty is natural variability, an inherent property of 

any natural system. PHM are attempts to summarise complex distributional patterns using the 

relationships between the distribution and a reduced set of environmental covariates (independ-

ent variables). Therefore, PHM inevitably will include some degree of uncertainty, because not 

all factors that determine the distribution of a species or habitat can be included in a model. 

Uncertainty arises also from the incorrect or incomplete specification of the ecological model, 

which refers to the relationship between the distribution patterns and independent variables. 

Some examples are the incomplete knowledge of the species’ habitat requirements (Pulliam, 

2000; Kearney, 2006), spatial or temporal mismatch between the input data and the ecology of 

the species (Dormann et al., 2007), and spatial or temporal variations in the ecology of the mod-

elled species of habitats. 

Data related uncertainty.   Uncertainty is also introduced by the limitations of the dependent 

and independent data used to fit the model (Barry and Elith, 2006; Dormann et al., 2008). Some 

of these include: 

• Positional errors associated to presence records (Moudr and Šıḿová, 2012), including 

variability arising from sampling methods operating at different spatial resolutions (e.g. 

bottom trawl vs. ROV sampling). 

• Small sample sizes, in particular when using presence-only data, and low prevalence 

(number of locations where the species of interest is present). 

• The use of presence-only data, which can lead to inaccurate identification of unsuitable 

sites (Barry and Elith, 2006) (Phillips et al., 2009). 

• Sampling bias in observation records (Fourcade et al., 2014; Merow et al., 2016). Most 

modelling approaches assume that the distribution of observations are representative of 

the spatial and environmental distributions of the species being modelled (Araújo et al., 

2019). In most cases though, the distribution of observations is also strongly influenced by 

sampling effort and by imperfect detectability. 

• Uncertainty in the gridded data used for deriving environmental layers (Elith et al., 2002; 

McInerny and Purves, 2011). PHM require predictor environmental variables with full-

coverage, which are obtained by interpolating discrete observations (e.g World Ocean 

Atlas, Locarnini et al., 2013), from physical models (e.g. Dolan et al., 2021), or derived from 

remote sensing observations (Lutz et al., 2002). In all cases full-coverage environmental 

variables are predicted with uncertainty, although available data products not always 
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include estimates of this uncertainty. Even when available, this uncertainty is usually not 

accounted for when they are used in PHM (Hijmans et al., 2005; Stoklosa et al., 2015). 

• Collinearity in the set of predictor variables (Beale et al., 2010). 

Topics related to uncertainty in the dependent and independent data are further explored in 

more detail in Section 2. At a minimum, PHM used for management purposes should 

characterise main sources of uncertainty and explore their potential effect in the interpretation 

of model results, considering that not all sources of uncertainty have the same effect in 

management decisions (Rapacciuolo, 2019). 

Spatial autocorrelation in residuals.  Spatial autocorrelation occurs when the value of variables 

sampled at nearby locations are not independent from each other (Dormann et al., 2007).  In 

PHM, spatial autocorrelation in the residuals can occur when biological processes (e.g. preda-

tion, larval dispersal) are distance-related and not included in the model, when non-linear rela-

tionships between environmental variables and the species are modelled erroneously, predictors 

are poorly scaled to the observation, and when important covariates are missing from the model 

(Dormann et al., 2007; Elith and Leathwick, 2009). In these situations, the models do not fully 

explain the species’ spatial distribution, resulting in model residuals showing spatial autocorre-

lation, which can affect statistical inference because it violates the assumption of independence 

among the data points (Legendre, 1993; Roberts et al., 2017).  PHM that do not account for spatial 

dependence in occurrence data, can potentially lead to misidentification of important predictors 

and overly optimistic error rates (Dormann et al., 2007; Record et al., 2013).  

Some modelling frameworks used for PHM allow for autocorrelated residuals. For example, 

Generalized Linear Mixed Models (GLMMs) and Generalized Additive Mixed Models 

(GAMMs) can include spatially correlated errors with different structures (Wood, 2006). Recent 

attempts to incorporate spatial structure in machine learning models include the random forest 

regression kriging (Hengl et al., 2015), and the random forest Spatial Interpolation (Sekulić et al., 

2020) approaches. 

In some cases, the autocorrelation in residuals can be minimized or removed by incorporating 

"space" as a predictor to model spatial patterns not explained by the environmental predictors 

(Dormann et al., 2007; Merow et al., 2014). For example, with Generalized Additive Models 

(GAMs) space can be modelled with a bivariate spline as a function of coordinates (Wood and 

Augustin, 2002). More generally, the residuals of a preliminary model can be used to obtain a 

residual auto-covariate (RAC) variable that can be used as a predictor in subsequent models 

(Hughes et al., 2011; Bardos et al., 2015; Georgian et al., 2019). Approaches like these should re-

move the problem of independence and aide model interpretation, although in practice specifi-

cation errors can lead to poor model performance (Roberts et al., 2017). In addition, these meth-

ods can cause structural overfitting, when the model explains the spatial structure of the obser-

vations with non-causal predictors which themselves have spatial autocorrelation (Roberts et al., 

2017). 

It is necessary to use robust non-parametric methods for model validation, selection and assess-

ment when using observation data with spatial autocorrelation. As a minimum, we recommend 

that model residuals are displayed as maps (e.g. Nephin et al., 2020).  A map of residuals can be 

used to identify areas where the model is over or under predicting (Rooper et al., 2018; Nephin 

et al., 2020). Spatial autocorrelation should also be considered when selecting cross-validation 

strategies. In particular, spatial blocking strategies where geostatisical approaches or relation-

ships are utilized in choosing training and testing data sets (Muscarella et al., 2014; Roberts et al., 

2017; Valavi et al., 2018) are recommended even when no spatial patterns are apparent in the 
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model residuals. Spatial blocks can account for the spatial dependency of the data and provide 

more realistic model performance metrics (see Section 4.1). 

Extrapolation of model predictions The extent of the area where PHM models are trained have 

a strong influence on the model result. Ideally, these areas should include current and historical 

distributions, and be based on the organisms movement patterns and ability and relevant envi-

ronmental variables (Araújo et al., 2019). Some degree of model transfer is necessary when char-

acterising the full geographic distribution of VMEs in the deep sea, because observations are not 

available in all areas. Furthermore, for some applications it is necessary to extrapolate PHM to 

new geographical areas or temporal ranges (i.e. model transfer) than where the data used to fit 

the model originated. An example could be anticipating the potential effect of climate change on 

the species’ distribution (Owens et al., 2013).  

In general, a well-behaved PHM fitted using spatial block cross-validation methods can be used 

for interpolation, that is for predicting distributions in the region of the training data (Nephin et 

al., 2020). On the other hand, areas where the model is extrapolating need to be evaluated with 

care, as the performance of the model in those areas is unknown (Elith and Graham, 2009; Fitz-

patrick and Hargrove, 2009). 

We recommend that model extrapolation is carefully considered and limited in predictor and 

geographic space (Austin, 2007; Merow et al., 2014). In all cases, areas where the model is extrap-

olating outside the geographic or environmental space of the occurrence data should be high-

lighted. Model extrapolation can occur in geographical and environmental space. In geograph-

ical space, convex hulls or spatial buffers can be used to delineate the geographical area around 

the observations. In environmental space, it is possible to identify areas where prediction occurs 

outside the range of influential predictor variables (e.g. variables accounting for 95% of the cu-

mulative relative influence of the model; Nephin et al., 2020). Tools like the Multivariate Envi-

ronmental Similarity Surface (MESS) (Elith et al., 2010), or the Mobility-Oriented Parity (Owens 

et al., 2013) can also be used to highlight areas of environmental extrapolation (e.g. Stephenson 

et al, 2020).  It is also necessary to verify that the model predictions are realistic and that they 

comply with ecological theory and prior knowledge of the species (Guisan and Thuiller, 2005; 

Austin, 2007). 

Uncertainty mapping.  Assessing variability and presenting visualizations of uncertainty is not 

a common practice (Peterson et al., 2018). Nevertheless, given that one of the main uses of PHM 

in the management of deep-sea habitats is to aid the delineation of spatial closures and other 

forms of spatial management, we consider that model output should include maps showing the 

distribution of uncertainty in the model predictions (Anderson et al., 2016b). Communicating the 

model uncertainty in a spatially explicit way can increase awareness of the potential impacts of 

uncertainty and reduce the risks that model outputs are misinterpreted (Elith et al., 2002; Wiens 

et al., 2009; Rocchini et al., 2011). 

Models fitted using statistical approaches like GLMs and GAMs, generate spatial predictions 

with standard errors, based on the posterior distribution of the model coefficients (Wood and 

Augustin, 2002). These can be used to construct confidence intervals that can be used to map the 

uncertainty of the model output. 

Uncertainty maps can also be obtained from the cross-validation runs produced during the 

model validation (Nephin et al., 2020). However, a more robust approach is the use of non-para-

metric bootstrapping. Bootstrapping provides a set of replicate model predictions from which 

different statistics can be calculated (mean, SD).  Bootstrap is a more robust alternative, because 

it provides a potentially higher number of alternative maps and therefore a better representation 

of the spatial uncertainty of the models. Two recent examples of PHM using non-parametric 

bootstrapping methods to estimate spatial uncertainty for VME indicator models are Anderson 
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et al. (2016b) and Georgian et al. (2019). In this approach a high (>100) number of models is fitted 

after sampling the presence/absence or presence/background points with replacement. The 

model uncertainty is estimated by the coefficient of variation calculated in each cell of the pre-

diction raster. The coefficient of variation can be used to compare relative uncertainty in the pre-

dictions from different models (Rooper et al., 2017; Georgian et al., 2019), while the standard de-

viation has been proposed to highlight areas with high suitability and high uncertainty (Nephin 

et al., 2020). 

Table 4.4.1 outlines the required and desired reporting criteria for PHM to be used in providing 

ICES advice. All sources of uncertainty need to be identified, characterized and quantified at 

every step of the modelling process, including uncertainty derived from the input data (depend-

ent or independent) or the selection of model algorithm/s and the parameterization (limitations) 

of such model/s. These uncertainties must be spatially quantified and mapped, acknowledging 

whether the data are not equally distributed or accurate across the spatial domain (Araújo et al., 

2019). Explanatory text should be included to clearly define the metrics or units used to quantify 

the uncertainty and to help interpret the possible effects on the predictive maps of the VME in-

dicator taxa, including reliability of the predictions and ecological meaning or plausibility. When 

multiple models are used, their uncertainties should be reported using a directly comparable 

metric when possible. Ideally, propagation error techniques should be used to produce final pre-

dictive maps of the defined VME/indicator that already account for and reflect all the different 

sources of uncertainty.  

Table 4.4.1. Reporting criteria for model uncertainty for PHM to be used for providing ICES advice. 

UNACCEPTABLE REQUIRED DESIRED 

Uncertainty is not reported. Major sources of uncertainties 
in the model and data are char-
acterized, quantified, accounted 
for, and discussed. If multiple 
models are used or ensembled, 
uncertainties are assessed and 
compared among models.    

Uncertainty, including uncertainty 
in the environmental predictors, is 
fully propagated through the 
modelling process and quantified, 
mapped, interpreted and dis-
cussed in the results. If multiple 
models are used or ensembled, all 
uncertainties are assessed and 
compared among models. 

No consideration for spatial 
autocorrelation in residuals. 

Spatial autocorrelation in resid-
uals has been assessed and, if 
needed, statistical inference ad-
justed accordingly.  

No spatial autocorrelation present 
in residuals. 

Bias is not considered, only 
acknowledged or remain 
uncorrected. 

Correction for major bias is 
made, testing performance by 
cross-validation. 

Absence of bias is demonstrated 
or bias is fully corrected. 
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5  Model outputs 

The use of PHM results within ICES advice, will be reliant on managers reviewing and assimi-

lating the model outputs, and interpreting them correctly to provide management advice. The 

group therefore also considered the required criteria for model outputs. The suggested outputs 

are shown in Table 5.1. It is important to note that many of the researchers and managers that 

will be utilizing information provided by the PHM may not be as familiar with the intricacies 

and details of each modelling method. Therefore, it is important to produce a summary set of 

descriptors (1-2 paragraphs) that describes at a high level the model goals, method and key re-

sults and uncertainty in lay terms. Although not prescribed in the table below, this simplified 

description is a required component in Annex 3.  

Easily understandably maps produced at the appropriate spatial scale, including relevant leg-

ends, scale, etc., are required from PHM to support ICES advice. Predictive maps of distribution 

of VME/indicator species should be accompanied by a map of the spatial uncertainty in model 

predictions. In addition, associated metadata and spatial layers should be provided, together 

with a clear explanatory text in a summary report. This summary can facilitate interpretation of 

model outcomes and avoid any misinterpretation of results by managers and decision makers. 

This text should include a concise summary of the dependent and independent data, the model 

approach, interpretation of the uncertainty metrics and overall confidence in model predictions. 

When multiple models are used and multiple outputs provided, the desired criteria are to in-

clude comparable metrics of performance and spatial uncertainty among the different types of 

model. Resulting maps from the PHM need to be evaluated for ecological plausibility before 

being used for ICES advice, i.e., a ‘sense check’ of the outputs. This evaluation should be based 

on expert opinion and ideally complemented with comparisons to other independent data or 

peer-reviewed references. 

Table 5.1 – Criteria for model outputs required to be produced for PHM when providing ICES advice.  

UNACCEPTABLE REQUIRED DESIRED 

Analysis is not reproduci-
ble. 

Full method description provided 
with software, algorithms and set-
tings applied are fully reported.  

All software and algorithms, in-
cluding versions, and settings 
are reported and the data and 
scripts used in the analyses are 
publicly available. 

Outputs are overly complex 
and uninterpretable. 

Outputs are simple to interpret, re-
gardless of the underlying model 
complexity or the use of multiple 
models.  

Same as required criteria. 

Explanatory text is not pro-
vided.  

Explanatory text is provided for the 
model outcomes and maps in a 
summary report, using ‘plain’ lan-
guage when possible without los-
ing accuracy. This includes a con-
cise summary of the response and 
predictor variables used and inter-
pretation of the uncertainty met-
rics. 

“Plain” language explanatory 
text is provided for the model 
outcomes, following a standard-
ized template (such as Zurell et 
al., 2020). This includes a con-
cise summary of the response 
and predictor variables used 
and interpretation of the uncer-
tainty metrics. 
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Ecological plausibility is not 
evaluated. 

Ecological plausibility is evaluated 
based on expert opinion.  

Ecological plausibility is evalu-
ated based on expert opinion 
and compared with independ-
ent data or references. 

Maps with unclear or inap-
propriate explanatory ele-
ments (e.g., no legend, mis-
match of colour scale, inap-
propriate coordinates 
used). 

Maps include appropriate legends, 
north arrow, scale, coordinate sys-
tem and detail of dependent and 
independent data units used. 

Same as required criteria. 

Spatial uncertainty is not 
quantified or not provided 
as a map output. 

Quantification and mapping of the 
spatial uncertainty and overall con-
fidence in the model is provided 
using standardized metrics. When 
multiple models are used, compa-
rable metrics among different 
types of model are provided if pos-
sible. 

Spatial uncertainty and overall 
confidence are quantified and 
mapped, with multiple models 
rather than a single one, using 
standardized and comparable 
metrics among different types 
of model. 

No metadata provided. Associated metadata and spatial 
layers (e.g., GIS layers and observa-
tion positions) are provided with 
model outputs. 

Same as required criteria. 

Spatial scale does not 
match the region to be as-
sessed. 

Maps are produced at an appropri-
ate spatial scale, relevant to the re-
gion being assessed.  

Same as required criteria. 

Model output lacks clear 
description of how to inter-
pret the given range of val-
ues and/or, post-processing 
of output values has been 
done without being clearly 
stated. 

Prediction unit is clearly explained 
with guidance on how to interpret 
the range of values and any steps 
taken to post-process output val-
ues, and their implications, are 
clearly stated 

Prediction unit fits the intended 
purpose ideally. 

A single default threshold 
(such as 0.5) has been used 
without consideration of 
response prevalence of in-
tended use. 

Threshold selection is based on an 
optimisation procedure (e.g., sensi-
tivity equals specificity) and its im-
plications are clearly described but 
not necessarily linked to intended 
use. 

Threshold has been selected 
based on intended use and de-
termined through model assess-
ment. 

The model extrapolates re-
sponses far outside the en-
vironmental domain of 
training data without expla-
nation of extrapolation 
method not described or a 
large part of predicted area 
is outside of the training 
domain. 

Model and predictions include a 
low degree of extrapolation out-
side the environmental domain of 
training data with a well described 
method and supporting evidence. 

Model does not extrapolate 
outside of the training environ-
mental domain. 
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6 Synthesis of Workshop Results 

6.1 Summary of the workshop 

During the five-day workshop, there were extensive discussions of existing approaches to PHM 

and its use in predicting the distribution of VMEs. Much of this discussion centred around the 

best utilization of observational data, the standards, pros and cons for considering presence, ab-

sence and abundance data. Independent data standards were also developed and in general, 

there was consistent agreement on the types of independent variables that were the most useful; 

those derived from bathymetry, environmental variables such as temperature, ocean chemistry, 

productivity and currents, and measures or proxies of substrate composition. The workshop par-

ticipants also highlighted the need to include historical fishing activity when conducting PHM, 

either through direct use as independent data or during model evaluation. Vulnerable marine 

ecosystem indicator taxa are generally long-lived with low population productivity rates. VME 

indicator taxa also tend to have patchy distributions, with a strong association to their preferred 

substrate type and areas where there is delivery of passively drifting food items. The relative 

stability of environmental conditions in the deep sea allows these VMEs to persist, but also 

makes them vulnerable to changing conditions due to climate effects and human activities (such 

as fishing or seabed mining). These attributes of VME indicator taxa make them good candidates 

for PHM, however, the paucity of observational data on their distribution and the absence of 

directly measured environmental predictions over management scales makes producing a PHM 

for VME indicator taxa difficult. 

There are a large number of existing modelling approaches that have been applied widely in the 

past (such as maximum entropy models) and some highly anticipated new methods that are just 

coming into use (such as joint species distribution modelling). There was general agreement that 

no single modelling approach is the best for all situations, but instead the modelling approach 

should be tailored to the objective and the available data. It was also agreed that multiple mod-

elling approaches are useful to attempt, since much of the difficult work in VME modelling is in 

acquiring and developing the underlying independent and dependent data.  

Two of the most important considerations decided by the group were the need for transparency 

in the choices and assumptions around the modelling (e.g. model settings and parameterization,, 

collinearity in independent variables, etc.) and presentation of uncertainty in a way that demon-

strates the model confidence to managers. These considerations are reflected in the recommen-

dations of the workshop, as well as the tables of required and desirable criteria found in the 

individual sections of the report. 

A clear reporting standard was developed (Annex 3) that includes specific items that must be 

communicated with each model being used to support ICES scientific advice. This standard in-

cludes caveats and assumptions inherent in the modelling method. The caveats and assumptions 

were also discussed in detail during the workshop and it was agreed that for most data that 

meets the data quality standards, an appropriate modelling method can be found that can be 

applied to the data. 

There was also discussion of broader use of PHM for questions beyond simply identifying the 

distribution of VMEs. It was noted that VME PHMs can be extended where appropriate and 

when possible to meet additional management information needs. For example in stock assess-

ment where model effects and ecological mechanisms identified by PHM can inform the ecology 

of managed stocks and assist in developing next-generation stock assessment models. Models of 
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VME distribution can also inform important fish habitat, habitat conservation goals (e.g., to as-

sess fishing impacts to habitat), predictions of future states under climate change, and ecosystem 

management (e.g., Ecosystem Based Management and Ecosystem Based Fisheries Manage-

ment)— model once and use many times. 

On day 3 of the workshop a number of trial runs of modelling methods and approaches were 

conducted. These trial runs used data made available through a GitHub repository 

(www.github.com/ices-eg/WKPHM), which also contains some minimal model code. The trial runs 

included a maximum entropy approach (J. Burgos), a point-process approach (D. Stirling), a gen-

eralized linear model (C. Rooper), a multivariate clustering approach (A. Downie) and a joint 

species distribution model (P. Thompson). Unfortunately, there was not enough time during the 

workshop to fully evaluate or complete the model runs and evaluation, but it was noted that in 

general the criteria set out in the WKPHM were applicable to these approaches. The generalized 

linear model is used to provide an example of the reporting criteria in Annex 4. It was also noted 

that the criteria set out in the WKPHM could likely be applied to some existing and published 

models developed in the ICES region as well.  

Based on the discussions, including tables of criteria and results generated at the workshop, a set 

of required criteria for inclusion in model reporting was recommended that is loosely based on 

the information requirements of existing ICES benchmarking for regional fish stock assessments. 

This required reporting criteria are presented in Annex 2 which incorporates the information 

from tables and text presented in the previous sections of this report.  

6.2 Recommendations  

There are specific recommendations with regard to the data used in modelling, the types of mod-

els to be incorporated, the process of presenting uncertainty in model results and the recom-

mended methods of model validation. Each of the components of model development and as-

sessment has a minimum ‘required’ standard and, in most cases, a recommended ‘ desired’ 

standard for models that can exceed the minimum. These specific recommendations are brought 

together in Table A.2.1 (Appendix 2). A few of the items stand out as important recommenda-

tions to highlight here, or are overarching recommendations that apply to all aspects of data and 

PHM development.  

• Transparency in data and methods 

The primary recommendation from this workshop is that models to be used in ICES advice 

should be transparent with respect to the data and methods they use. The standard reporting 

form set out in Annex 3 attempts to provide guidance on the various model components that 

should be included with reporting any model. However, it is critically important that documen-

tation of the choices made during the data preparation and model development are clearly pre-

sented. Transparent and visually consistent (e.g. similar spatial scale, units etc.) model outputs, 

with user-friendly overviews of input data and modelling methodologies, will contribute to en-

suring model credibility and to increasing the confidence in the use of models for management 

actions and decision-making (Araújo et al., 2019, Sofaer et al., 2019).  

• Clearly state the objective of the PHM to be developed 

A clearly stated objective of the PHM is a key aspect in providing transparency in model selection 

and development that will assist managers in evaluating whether the model is suitable for 

providing ICES advice for spatial management of VMEs. For example, a model with the objective 

of predicting the future distribution of VME under climate change scenarios will have a funda-

mentally different design parameters than a model that attempts to predict the presence of a 

VME indicator species in a particular ICES management block.  Managers can assist in this 
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process by providing scientists with clear guidelines on the questions to be addressed, so that 

scientists can provide model outputs that are appropriate for decision making. 

• Include all available data that meets criteria and standards for inclusion 

The data utilized in models developed for ICES advice should include not only data from the 

ICES VME database, but other data that can meet the criteria and standards for inclusion (see 

Section 2.4 for further detail on recommended data standards). There are many data points that 

are held nationally or in other international databases on the presence and abundance of VME 

taxa that will meet the criteria set out in Annex 2. In order to provide the best science-based 

advice to managers, it is important that all available data that is appropriate for use is included.  

• Collect independent data to validate model predictions 

One of the strongest recommendations from this workshop was to encourage the collection of 

independent data designed to validate model predictions by ICES and its members. This type of 

model validation is rarely done, but has been crucial to understanding and evaluating models 

that have been used for management advice. Scientists and managers will value and believe 

models that have been independently validated with greater confidence than those subject to 

cross-validation techniques alone (Anderson et al., 2016b, Winship et al., 2019). 

• Include existing and new models in developing ICES management advice  

Due to the varying scales at which previous modelling has been carried out and the potential for 

producing new models at different scales with different data sources that have corresponding 

variability in predictive power (e.g. small scale high resolution models may be more precise than 

global scale low resolution models), there should be enough flexibility to include nested models 

in ICES management advice to accommodate a range of intended uses. 

• Facilitate communication between science and management 

Clear, comprehensive, and constant communication between science and management will fa-

cilitate an informed choice of the most appropriate model to use to address the assessment ob-

jectives (Araújo et al., 2019, Kenchington et al., 2019). Summary set of descriptors (1-2 paragraphs) 

that describes at a high level the model goals, method and key results and uncertainty in lay 

terms are useful in communicating the basics facets of highly technical PHM to a wider audience 

with a diverse background in modelling. 

• Develop a systematic approach to PHM in ICES 

Finally, it was recommended that ICES develop a systematic approach to building and routinely 

updating models within ICES WGs, parallel to the types of benchmarking process that are cur-

rently used for stock assessment models. This systematic approach will not only formalize a pro-

cess for incorporating new information into model development, but it will allow ICES to move 

forward with new and improved techniques as better data and models become available. 

6.3 Next Steps  

The results of this workshop suggest that the next steps in the process of incorporating PHM into 

ICES advice would be two-fold. Firstly, a review of the existing VME models could be under-

taken to assess whether they could meet the standards for use in ICES advice. This step would 

involve a literature review to identify existing models, followed by a ranking against the criteria 

developed in Annex 2 to judge whether the models could be appropriately used. 

Secondly, new models to predict the distribution of VME using PHM should be developed where 

gaps in existing PHM are found. These new models should follow the guidelines provided in 
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this report and provide the level of transparency and reporting that will meet the standards in 

Annex 2. These models should be focused on providing the probability of the occurrence of VME 

taxa at a scale that will be useful for ICES advice.  

Workshop participants also highlighted that if new models were to be developed during ICES 

expert group meetings, using response (dependent) variable data from the ICES VME database, 

then prior intersessional work should be done to clean these data for use. Decisions should also 

be made in advance on the most appropriate environmental (independent) variable datasets for 

use. This type of exercise is common for stock assessment benchmarking where a data evaluation 

workshop is held to examine and peer review data for use in the analyses.   

A final step that will eventually need to be addressed is incorporating the existing and new mod-

els into a comprehensive map for VME indicator taxa. Since many of the existing models have 

been produced at a smaller scale (both in terms of their spatial extent and/or their grid size), 

some care will have to be taken if combining or even considering the results from different mod-

els. This exercise should also pay special attention to the uncertainty of model inputs and outputs 

including predictions and spatial residuals when considering the impacts of combining results 

across multiple model scales. 
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Annex 2: Required and Desired Criteria 

Table A.2.1. Summary of required and desired criteria for use in evaluating PHM for use in ICES advice. This table summarizes the criteria developed in the individual report sections and should 
be applied to new PHM. Existing PHM should also be reviewed for appropriate use in the context of these criteria.  

    UNACCEPTABLE REQUIRED DESIRED 

D
EP

EN
D

EN
T 

(B
IO

LO
G

IC
A

L)
 D

A
TA

 

D
at

a 
q

u
al

it
y 

Sampling design for data collection not de-
scribed. 

 

All the available data that meet QC standards are used, with 
a clear description of sampling design(s) and data collection. 

Data are sampled via systematic sampling design (which are 
the same for biological and environmental data) and stand-
ardized methods are used for sample collection and pro-
cessing. A clear description of a robust sampling design is 
provided. 

Data have no quality control and/or associated 
metadata. When multiple data sources are 
combined, there is no description or considera-
tion of the differences. 

Quality control of data undertaken, based on metadata, 
meeting the minimum standards of ICES VME database 
(e.g., data QA follows national and/or international best 
practice guidelines and details of which guidelines followed 
provided). When multiple data sources are combined, the 
same quality control criteria are followed. 

Same as required criteria 

No metadata provided on data sources or the 
treatment of data. 

Metadata/data are reported, following the reporting stand-
ard in Annex 3, including a description of the data sources, 
sampling effort, resolution and extent, and any pre-pro-
cessing of the data, such as combining multiple data sources 
and possible spatial thinning or bias correction of data. 

Same as required criteria 

Presence-only data is used when absence data 
is available or the information exists to infer ab-
sence data at sampled locations 

Presence-only data available. Presence and absence data and/or abundance data availa-
ble. 

C
av

ea
ts

, 
b

ia
s 

an
d

 a
s-

su
m

p
ti

o
n

s 

Caveats, bias and assumptions in dependent 
data are not reported. 

Caveats, bias and assumptions independent data are clearly 
reported, acknowledging sources of uncertainty and error.  

Same as required criteria 

Ta
xo

n
o

m
y 

Response variable type is not clearly explained. Response variable type is clearly explained with any caveats 
on interpretation of outputs. 

Same as required criteria 

Taxonomic level is above Class or uses vernacu-
lar names. 

Taxonomic level is from Class, species or a defined assem-
blage type (e.g. sea-fan type corals), based on quality-con-
trolled data and expert opinion. 

Taxonomic level is species, based on expert identification. 
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    UNACCEPTABLE REQUIRED DESIRED 
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Data have no quality control and/or associated 
metadata. 

Quality control of data undertaken, based on metadata of 
quality assured (QA) databases or reported survey design 
and methodology. 

Data are sampled via systematic sampling design (same for 
biological and environmental data) and standardized meth-
ods are used for sampling. Clear description of robust sam-
pling design is provided. 

Source(s) of independent data not provided. Independent data source(s) explained and reported follow-
ing reporting standards in Annex 3. 

Same as required criteria 

Uncertainty is not considered in the environ-
mental data. 

Uncertainty of environmental predictors is characterized 
and accounted for (e.g., use of different analyses and sce-
nario testing). 

Uncertainty of environmental predictors is minimized (e.g., 
use of different analyses and scenario testing). 

V
ar

ia
b

le
 c

h
o

ic
e 

Large number of predictor variables included 
without a priori consideration or evidence of 
their ecological relevance and/or relevance of 
the range of predictor variables used not evi-
denced or reported. 

Predictor variables have a demonstrable association with 
the response variable (observational, statistical or theoreti-
cal) at the spatial and temporal resolution of the model.   

Predictor variables are proximal variables with a confirmed 
ecologically relevant association with the response variable 
at the spatial resolution and extent of the model. 

Predictor variables and their ranges are in-
formed by the biological tolerances inferred 
from other ‘proxy’ taxa with no expert evalua-
tion for their use. 

Predictor variables and their ranges are informed by any 
known biological tolerances of the VME indicator taxa being 
modelled, as documented in peer-reviewed studies; or are 
inferred from those evidenced and documented for ‘proxy’ 
taxa with expert evaluation approval for their use. 

Predictor variables and their ranges used are defined by the 
biological tolerance limits of the VME indicator taxa being 
modelled, as documented in peer-reviewed studies. 

D
at

a 
p

ro
ce

ss
in

g 

Spatial accuracy and resolution are substantially 
inconsistent between biological and environ-
mental data, e.g., m to hundreds km. 

Spatial accuracy and resolution may be inconsistent be-
tween biological and environmental data, but data selected 
are quality-controlled and based on ecological relevance. 

 Spatial accuracy and resolution of biological and environ-
mental data are the same, or consistent, and are ecologically 
relevant. 

Native spatial resolution and/or downscaling / 
aggregation processing methods to match spa-
tial accuracy and resolution between biological 
and environmental data are not reported. 

Native spatial resolution and/or downscaling / aggregation 
processing methods to match spatial accuracy and resolu-
tion between biological and environmental data are fully re-
ported. 

Downscaling / aggregation and method used reported and 
goodness of fit measures for downscaling/aggregation 
method reported. The effects of variable downscaling/aggre-
gation on model output are tested. 

Derived variables and methods of calculation 
not described. 

Derived variables described and calculations and references 
provided. 

Same as required criteria 

C
o

lli
n

ea
ri

ty
 

Collinearity has not been investigated or is 
simply acknowledged or uncorrected. 

Collinearity is addressed (e.g. correlation coefficient (r) and 
variance inflation factor (VIF)) and alleviated, or an ap-
proach/model insensitive or able to handle it is used. 

Lack of collinearity is demonstrated. 

Collinearity has not been investigated or 
acknowledged. 

Selection of variables to retain from collinear pairs is trans-
parent and has a logical basis. If collinear variables are re-
tained, robustness of the results to collinearity are demon-
strated. 

Selection of variables to retain from collinear pairs is trans-
parent and is based on significant contribution to model and 
ecologically relevant association. No collinear pairs of varia-
bles are retained in the model. 
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    UNACCEPTABLE REQUIRED DESIRED 
SP
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SC
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S 
Spatial and temporal extents, resolutions and 
location of the study used are not justified. 

The spatial and temporal extents, resolutions and location 
of the study are justified as evidenced from peer-reviewed 
studies, data availability and/or quality-controlled data-
bases. 

The full spatial and temporal, extent, resolution and distribu-
tion of the VME indicator taxa are known and used, including 
current and historical distribution of the VME/indicator.  

Model includes outdated data from locations 
where natural or anthropogenic influences have 
changed the response – predictor dynamics.  

Model includes data that is relevant to current conditions 
(including anthropogenic influences). 

Model is updated regularly with new data. 

   UNACCEPTABLE REQUIRED DESIRED 

M
o

d
el

lin
g 

O
b

je
ct

iv
e

 No objectives stated. Model objective (to explain, predict or project) 
is stated. 

Model objective (to explain, predict or project) is 
stated and hypotheses for model linkages are 
clearly stated. 

M
o

d
el

lin
g 

m
et

h
o

d
 

A priori model selection is made, with-
out taking into account the available 
data characteristics. 

Transparent and clear communication of pros 
and cons of each model type is provided to in-
form selection of best possible model.  

Same as required criteria. 

No rationale given for choice of mod-
elling method. 

Selection of the modelling method is appropri-
ate for the study objective and available data 
types.  

Selection of the modelling method is aligned 
with objectives and appropriate for the input 
data. Multiple models evaluated during model 
development. 

Method is not described. Method is thoroughly described and/or refer-
enced. 

Same as required criteria. 

Assumptions not described. Assumptions are recognized and their effects 
on model results are considered and explained. 

Assumptions formally evaluated in statistical 
analysis. 

Violation of assumptions is not re-
ported. 

Robustness of model outcomes to violation of 
assumptions is demonstrated.  

Absence of violation of assumptions is demon-
strated.   

M
o

d
el

 

se
tt

in
gs

 Description of settings used in model 
is incomplete. 

Model specific settings are reported.  Model specific settings, including default ones, 
should be reported. Model sensitivity to the 
choice of settings assessed and reported.  
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    UNACCEPTABLE REQUIRED DESIRED 

M
o

d
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 t
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ef

fi
ci

en
ts

 

No information or explanation pro-
vided on model terms. 

Method of extracting relevant method-specific 
term estimates or coefficients and how they 
were evaluated is reported.  

Same as required criteria 

Model complexity has not been con-
sidered or justified. 

Model complexity has been decided/optimised 
using justified methods or agreed rules of 
thumb. 

Model complexity has been optimised through 
comparison of multiple models and cross-valida-
tion.  

Model outputs have not been evalu-
ated, or model output is not consid-
ered plausible. 

Model outputs have been evaluated and match 
understanding of the response taxon’s ecology 
or habitat requirements and the expected dis-
tribution. 

Model outputs have been evaluated and com-
pared with independent data or established ref-
erences. 

The relative contribution of predictor 
variables has not been considered. 

Variable importance and how it was deter-
mined is reported. 

Same as required criteria 

M
o

d
el

 f
it

 

Goodness-of-fit not considered. Goodness of fit statistics, and where appropri-
ate residuals, have been checked and their im-
plications to model interpretation are reported. 

Goodness of fit statistics and residuals, have 
been checked and their implications to model in-
terpretation are reported. Data and code are 
provided. 

Model performance is not reported. Multiple measures of model performance re-
ported. 

Same as required criteria 
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  UNACCEPTABLE REQUIRED DESIRED 

V
al

id
at
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n

 

No validation method is provided. Internal cross-validation (subset of data, not 
used to build the model). 

Validation with truly independent (new collected) 
data. 

No consideration has been given to the 
assumptions in data structure when split-
ting data into training and test sets. 

Rationale and method of splitting data into 
training and test datasets is described, and any 
caveats explained. 

Rationale and method of splitting data into train-
ing and test datasets is described, and any cave-
ats explained. Splitting rationale includes a spatial 
and temporal (if applicable) component. 

U
n

ce
rt

ai
n

ty
 

Uncertainty is not reported. Major sources of uncertainties in the model and 
data are characterized, quantified, accounted 
for, and discussed. If multiple models are used 
or ensembled, uncertainties are assessed and 
compared among models.    

Uncertainty, including uncertainty in the environ-
mental predictors, is fully propagated through the 
modelling process and quantified, mapped, inter-
preted and discussed in the results. If multiple 
models are used or ensembled, all uncertainties 
are assessed and compared among models. 

No consideration for spatial autocorrela-
tion in residuals. 

Spatial autocorrelation in residuals has been as-
sessed and, if needed, statistical inference ad-
justed accordingly.  

No spatial autocorrelation present in residuals. 

Bias is not considered, only acknowl-
edged or remain uncorrected. 

Correction for major bias is made, testing per-
formance by cross-validation. 

Absence of bias is demonstrated or bias is fully 
corrected. 

M
o

d
el

 O
u

t-
p

u
ts

 

Analysis is not reproducible. Full method description provided with software, 
algorithms and settings applied are fully re-
ported.  

All software and algorithms, including versions, 
and settings are reported and the data and scripts 
used in the analyses are publicly available. 

Outputs are overly complex and uninter-
pretable. 

Outputs are simple to interpret, regardless of 
the underlying model complexity or the use of 
multiple models.  

Same as required criteria. 
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  UNACCEPTABLE REQUIRED DESIRED 
Explanatory text is not provided.  Explanatory text is provided for the model out-

comes and maps in a summary report, using 
‘plain’ language when possible without losing 
accuracy. This includes a concise summary of 
the response and predictor variables used and 
interpretation of the uncertainty metrics. 

“Plain” language explanatory text is provided for 
the model outcomes, following a standardized 
template (such as Zurell et al., 2020). This in-
cludes a concise summary of the response and 
predictor variables used and interpretation of the 
uncertainty metrics. 

Ecological plausibility is not evaluated. Ecological plausibility is evaluated based on ex-
pert opinion.  

Ecological plausibility evaluated based on expert 
opinion and compared to independent data or 
references. 

Maps with unclear or inappropriate ex-
planatory elements (e.g., no legend, mis-
match of colour scale, inappropriate co-
ordinates used). 

Maps include appropriate legends, north arrow, 
scale, coordinate system and detail of depend-
ent and independent data units used. 

Same as required criteria. 

Spatial uncertainty is not quantified or 
not provided as a map output. 

Quantification and mapping of the spatial un-
certainty and overall confidence in the model is 
provided using standardized metrics. When 
multiple models are used, comparable metrics 
among different types of model are provided if 
possible. 

Spatial uncertainty and overall confidence are 
quantified and mapped, with multiple models ra-
ther than a single one, using standardized and 
comparable metrics among different types of 
model. 

No metadata provided. Associated metadata and spatial layers (e.g., GIS 
layers and observation positions) are provided 
with model outputs. 

Same as required criteria. 

Spatial scale does not match the region 
to be assessed. 

Maps are produced at an appropriate spatial 
scale, relevant to the region being assessed.  

Same as required criteria. 

Model output lacks clear description of 
how to interpret the given range of val-
ues and/or, post-processing of output 
values has been done without being 
clearly stated. 

Prediction unit is clearly explained with guid-
ance on how to interpret the range of values 
and any steps taken to post-process output val-
ues, and their implications, are clearly stated 

Prediction unit fits the intended purpose ideally. 

A single default threshold (such as 0.5) 
has been used without consideration of 
response prevalence of intended use. 

Threshold selection is based on an optimisation 
procedure (e.g., sensitivity equals specificity) 
and its implications are clearly described but 
not necessarily linked to intended use. 

Threshold has been selected based on intended 
use and determined through model assessment. 
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  UNACCEPTABLE REQUIRED DESIRED 
The model extrapolates responses far 
outside the environmental domain of 
training data without explanation of ex-
trapolation method described or a large 
part of predicted area is outside of the 
training data. 

Model and predictions include a low degree of 
extrapolation outside the environmental do-
main of training data with a well described 
method and supporting evidence. 

Model does not extrapolate outside of the train-
ing environmental domain. 
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Annex 3: Data Reporting Template 

VME Modelling template 

Authors 

Date model developed 

1. VME taxonomic group(s) modelled 

2.  

3. Regional Extent 

4.  

5. Provide a short summary set of descriptors (1-2 paragraphs) that describes at a high level the 

model goals, method and key results and uncertainty in lay terms. 

6.  

A. Study resolution 

A.1. Location of the study area (or management region) 

a. Spatial extent of the modelled area 

b. Spatial resolution of the model and independent variables 

c. Spatial precision (of observations and independent variables) 

d. Depth resolution/range/extent (of the observations and independent variables) 

A.2. Temporal extent of the data 

a. Dates of data extent 

b. Precision of date/time 

c. Data/time resolution 

d. Impacts over time to consider in the data set (e.g. historical fishing effort) 

 

B. Dependent data 

B.1. Data type (presence, absence, abundance) 

B.2. Data source (e.g. type of survey(s) combined) 

B.3. Measure of sampling effort (if known) 

B.4. Catchability or detectability (known or assumed) 

B.5. Taxonomic level 

B.6. Functional attributes (its ecology) 

B.7. Taxonomic confidence of species/assemblages 

B.8. Rationale for taxonomic/assemblage level modelled 

B.9. Source of absence data 

B.10. Other potential errors or biases in the data 

B.11. Data filtering steps 

B.12. Taxonomic aggregation steps 

B.13. Method for combining dependent data sources (if done outside the modelling) 

 

C. Independent data 

C.1. Independent data (environmental variables used) 

C.2. Independent data source (source of raw or derived data) 
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C.3. Native spatial and temporal resolution of the independent data 

C.4. Data processing and scaling (method for downscaling or aggregation) 

a. Goodness of fit for downscaled aggregated data 

b. Measurement errors and bias 

C.5. Derivation methods and calculations for derived variables 

C.6. Rationale for inclusion of independent variables clearly stated and ecologically rele-

vant 

D. Modelling approach 

D.1. Model steps are clearly described with enough detail to be independently reproduced 

a. Code for model provided 

b. Packages used are referenced  

c. Data is made available as supplementary material 

D.2. Biases (spatial, temporal and other) acknowledged and described 

D.3. Methods and approaches to collinearity in independent variables are given 

a. Collinearity in independent variables tested 

b. Criteria for variable/dimension reduction provided 

D.4. Choice of modelling method is explained and justified  

a. Modelling assumptions are clearly stated 

b. Potential violations of model assumptions are explored 

D.5. Model application is clearly detailed 

a. Model settings are comprehensively reported 

b. Model complexity is assessed 

D.6. Model response curves are generated (where appropriate) and compared to expecta-

tions 

a. Modelling method-specific term estimates or coefficients are reported (where 

relevant) 

b. Independent variable importance is reported 

E. Model uncertainty 

E.1. Model specific goodness of fit statistics have been checked and reported 

a. Multiple measures of goodness of fit have been examined 

E.2. Spatial autocorrelation in the residuals has been assessed and reported  

E.3. Residuals have been tested against assumed distribution (where appropriate) 

F. Model validation 

F.1. Training and testing data splitting method clearly described  

a. Potential spatial biases were accounted for in splitting the data 

b. A standard method used for cross-validation 

F.2. Truly independent data used for model validation if available 

G. Model outputs 

G.1. Maps of model predictions, model residuals and prediction error have been produced 

G.2. Areas of model extrapolation are clearly defined 

G.3. The prediction unit is clearly defined (and explained if necessary) 

G.4. Thresholding methods (for dichotomising probability into presence or absence) are 

clearly described and appropriate 

a. The sensitivity of model outcomes to threshold value chosen has been explored 
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Annex 4: WKPHM advice template  



WKPHM Advice Template

WKPHM

May 12, 2021

VME Taxonomic Group(s) modelled: The OrderAntipatharia
(Black Corals) including its Families (Table 1)

Regional Extent: North Atlantic Ocean (ICES management subar-
eas 6, 7, 8, 9, 10, 12)

Summary

The objective of this piece of code was to develop a relatively simple model for a species of coral that could
be used to demonstrate the pieces of the proposed ICES PHM advice template. The species chosen was
Antipatharia. It was chosen simply because it had a fairly large number of observations in the ICES VME
database (n = 421). This is not meant to be a realistic model of the distribution of Antipatharia, but is
instead used here to generate the components of an PHM (data, model, residuals) that can be used to
evaluate its predictions and utility. The modelling method used was a general linear model with a binomial
distribution. Maps of model predictions are provided in Figure 11. Maps of residuals in Figure 9. Maps of
prediction error in Figure 12. The model predicted that the highest probability of presence for Antipatharia
was in a band from 50-60 degrees North latitude and along areas of moderate slope.

A. Study resolution

A.1. Location of the study area (or management region)

This modelling was carried out for the North Atlantic Ocean.

a. Spatial extent of the modelled area

The specific management regions considered for this modelling exercise were ICES subareas 6, 7, 8, 9, 10, and
12 and comprised the spatial extent of the model (Figure 1).

b. Spatial resolution of the model and independent variables

The spatial resolution of the model and independent variables were 30 arc-second grid (~ 1 kmˆ2).

1



c. Spatial precision (of observations and independent variables)

The spatial precision of the original observations from the ICES database were unknown, but likely varied
from m to km. It was assumed that all observations were precisely located, but the spatial resolution (30 arc-
seconds) likely reflected a larger scale than the spatial uncertainty of the individual points. The independent
variables were compilations from global scale databases and had spatial resolutions of 15 arc-seconds or 0.5
degrees latitude and longitude.

d. Depth resolution/range/extent (of the observations and independent variables)

The depth range of the observations of Antipatharia (from the depth data in the VME database) was from
32.5 to 2123 m (mean = 513.7 m, SE = 481.23). The depth range of the modeled area (ICES subareas 6, 7, 8,
9, 10, and 12) was from 0 to 6481 m.

A.2. Temporal extent of the data

a. Dates of data extent

The dates observations were collected ranged from 1980-01-05 to 2018-09-28.

b. Precision of date/time

The precision of the date and the time of the data was assumed to be the closest day.

c. Data/time resolution

The resolution of the date and time was assumed to be the day.

d. Impacts over time to consider in the data set (e.g. historical fishing effort)

Fishing occurred over the entire time frame from which these data points were collected. We did not attempt
to account for historical fishing effort over this time. There may have been climate impacts occurring over
the time frame of the data observations as well, however, these were not accounted for in the analyses.

B. Dependent data

The dependent data are shown in Figure 1.

Table 1. Number of records for each taxonomic grouping in the order Antipatharia from the ICES VME
database.

Species Count
Stichopathes gravieri 385
Antipatharia 148
Stauropathes arctica 25
Parantipathes 14
Parantipathes hirondelle 6
Bathypathes 3
Tylopathes 2
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Species Count
Leiopathes 2
Stauropathes punctata 1

B.1. Data type (presence, absence, abundance)

The data used for modeling Antipatharia distribution were observed presences of the Order (n = 421) that
occurred in ICES subareas 6,7,8,9,10 and 12.

B.2. Data source (e.g. type of survey(s) combined)

The data were compiled from the ICES VME database (http://vme.ices.dk/map.aspx). As such, they came
from a variety of sources including surveys, fisheries observations, etc. No attempt was made to account for
the disperate sampling designs of the observations.

B.3. Measure of sampling effort (if known)

Sampling effort was unknown.

B.4. Catchability or detectability (known or assumed)

Neither catchability or detectability were known for this data We assumed the catchability and detectibility
were the same for the different types of observations used in the modelling.

B.5. Taxonomic level

The taxonomic level modelled here was the OrderAntipatharia (see Table 1 for individual components).

B.6. Functional attributes (its ecology)

Antipatharia are a diverse, long-lived and fragile species. They occur in deep-water and are habitat forming
structures important to many fishes, invertebrates other taxonomic groups.

B.7. Taxonomic confidence of species/assemblages

The taxonomic confidence of the assemblage was assumed to be good. Identification of Antipatharians to the
Order level should be attainable for non-experts.

B.8. Rationale for taxonomic/assemblage level modelled

Antipatharia are a group that shares common habitat requirements and depth distribution. They are closely
related and the order is globally distributed at deep depths. This Order has been previously modelled using
Maximum entropy methods on a global extent (Yesson et al., 2017).
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Figure 1: Figure 1. Locations of presence and absence observations for *Antipatharia* from the ICES
database
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B.9. Source of absence data

Absences were inferred from sample locations where observations for other species were made, but Antipatharia
were not recorded. In total there were 2745 absences in the ICES VME database.

B.10. Other potential errors or biases in the data

There are many potential sources of error in the data, including errors in positioning of the records, errors in
species identification (including both false positives and false negatives). Figure 1 shows that there are some
spatial biases in the data set as well.

B.11. Data filtering steps

The code to filter the data completed the following

1. Imported the dependent data from the open ICES data base
2. Subsetted the observations that occurred after 1980
3. Calculated a mean depth for each observation where an upper and lower depth were recorded
4. Compiled a data frame of the unique observation locations (by their recorded middle latitude and

longitude)
5. Subsetted all the records where members of Antipatharia was observed and assigned them a presence

and summed any counts that were recorded at the location (or provides count = 1 where no count was
provided, but presence was noted)

6. Merges those presence records with the entire database and assigns presence and counts = 0 to the
records with no presence observation

7. There were 165 duplicate record for this the taxonomic grups where the paired entries included different
numbers of counts (e.g. a count of Antipatharia = 1 and a count of Stichopathes gravieri = 3). The
counts were summed to 4 for the larger taxonomic group and the duplicate lines removed.

B.12. Taxonomic aggregation steps

The records for the Order Antipatharia were aggregated by unique locations (Table 1).

B.13. Method for combining dependent data sources (if done outside the mod-
elling)

No other dependent data sources were used in this modelling.

C. Independent data

C.1. Independent data (environmental variables used)

Four independent variables were used in building a model of Antipatharia distribution; bathymetry, topographic
position index, seafloor slope and Oxygen concentration (Figure 2).
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Figure 2: Map of bathymetry, slope, TPI and Oxygen used as explanatory variables in this analysis of ICES
VME data
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C.2. Independent data source (source of raw or derived data)

The bathymetry used here was downloaded from the GEBCO website (GEBCO_2020 grid; www.gebco.net/data_and_products/gridded_bathymetry_data).
It consists of gridded bathymetry from a wide varieity of sources on a 15 arc-second grid for the globe. The
details of the data sources can be found on the GEBCO website.
From the bathymetry two derived variables (slope and topographic position index) were calculated using the
raster package (Hijmans 2019). These variables were calculated on bathymetry aggregated (see below) to a
30 arc-second grid to save processing time.
Oxygen data were downloaded from the World Ocean Atlas 2018 database (https://www.nodc.noaa.gov/
OC5/woa18/). This data is a compilation of oxygen measurements averaged over time for as long as there are
measurments at standardized depth intervals and on a standard 0.5 degree longitude and latitude grid. These
data were clipped to the area of interest and interpolated to the 15 arc-second grid used by the bathymetry.
The four explanatory variables are shown in Figure 2.

C.3. Native spatial and temporal resolution of the independent data

The native spatial resolution of the GEBCO bathymetry was 15 arc-second grid. The native spatial resolution
for the Oxygen data was 0.5 degrees longitude and latitude. It should be noted that both these data
sources are conglomerations of data collected over varying spatial and temporal scales (e.g. the temporal
scale is since ~1900’s in the case of some bathymetry measurements). For complete documentation of the
spatial and temporal scale of the raw data the GEBCO and NODC respective websites should be consulted
(www.gebco.net/data_and_products/gridded_bathymetry_data and https://www.nodc.noaa.gov/OC5/
woa18/).
Based on the distribution of presences and absences in Figure 1 (and the desire for the code to run fairly fast),
a subset of the ICES subareas (SubAreas 6,7,8,9,10 and 12) were chosen for the modeling. All independent
data layers were trimmed to include only observations and explanatory variables from this region.

C.4. Data processing and scaling (method for downscaling or aggregation)

Both the bathymetry and oxygen layers were aggregated to a 30 arc-second grid in order to save processing
time. For bathymetry, the mean of the 15 arc-second grid cells were aggregated to the 30 arc-second grid.
For the Oxygen data, they were first projected and interpolated to the 15 arc-second grid of the GEBCO
bathymetry, then these data were aggregated to the 30 arc-second grid (again using the mean value of the
smaller grid cells).

a. Goodness of fit for downscaled aggregated data

The aggregated data at the dependent data sites for both Oxygen and bathymetry represented the higher
resolution very well (r > 0.9, Figure 3).

b. Measurement errors and bias

Measurement errors in the data or bias in the data were not accounted for beyond the processing conducted
on the raw measurements by GEBCO or NODC.

C.5. Derivation methods and calculations for derived variables

From the bathymetry two derived variables (slope and topographic position index) were calculated using the
raster package (Hijmans 2019). These variables were calculated on bathymetry aggregated (see below) to a
30 arc-second grid to save processing time.
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Figure 3: Higher resolution (15 arc-second) and aggregated data (30 arc-second) for Oxygen concentration
and bottom depth at the locations of the dependent data.
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C.6. Rationale for inclusion of independent variables clearly stated and ecologi-
cally relevant

These four variables (depth, slope, topographic position index and oxygen) have been found in previous
studies to influence the distribution of Antipatharia (Huff et al., 2013, Yesson et al., 2017, Etnoyer et al.,
2018).

D. Modelling approach

D.1. Model steps are clearly described with enough detail to be independently
reproduced

a. Code for model provided

The code and data used for this model are publically available at https://github.com/ices-eg/WKPHM. The
specific code to generate the models and this document are contained in the file “Annex_4_code.Rmd”.

b. Packages used are referenced

The packages used to develop this model are referenced in the above .Rmd file. The key packages used
were “sf”, “rnaturalearth”,“ggplot2”,“rgdal”,“rgeos”,“gstat”,“raster”,“dismo”, and “PresenceAbsence” and
are all available for download from CRAN. Additional functions are provided in two source scripts at
https://github.com/ices-eg/WKPHM. The R version used here was R version 3.6.0 (2019-04-26) – “Planting
of a Tree” (R Core Development Team 2019).

c. Data is made available as supplementary material

The independent variables are publically available from a google drive using the code provided in “An-
nex_4_code.Rmd” or by contacting Chris.Rooper@dfo-mpo.gc.ca. The dependent variables are available
from the ICES VME database (see above).

D.2. Biases (spatial, temporal and other) acknowledged and described

There were no inherent biases in the modeling method (although there were biases in the dependent and
independant data described above).

D.3. Methods and approaches to collinearity in independent variables are given

a. Collinearity in independent variables tested

The four explanatory variables were examined for collinearity using a pearson correlations (Figure 4). Variance
inflation inflation factors (Zuur et al. 2002) were also examined. In both cases the values were low, suggesting
that the variables were fairly independent of each other.

Table 2. Variance inflation factors for independent variables using in modeling.

Variable VIF
Bathymetry 1.399
Slope 1.548
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Variable VIF
TPI 1.018
Oxygen 1.124

Figure 4: Correlation among independent variables used in modeling.

b. Criteria for variable/dimension reduction provided

None of the variance inflation factors exceeded 3, indicating that dimension reduction was not warranted.

D.4. Choice of modelling method is explained and justified

The modelling method chosen was a general linear model (GLM). This model was primarily chosen for its
simplicity of assumptions (stated below), its usefulness in fitting binomial (presence-absence) data, and the
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many previous applications of this method to predicting species distributions.

a. Modelling assumptions are clearly stated

The basic GLM assumptions are; 1) Independence among data points, 2) The distribution of the residuals is
binomially distributed, 3) homogenous variance across the fitted values, and 4) a linear relationship (in this
case second order polynomial) between response and predictor.

b. Potential violations of model assumptions are explored

Diagnostic plots of Pearson residuals are shown in Figure 5. The residuals did not indicate any serious
violations of GLM assumptions.

Figure 5: Diagnostic plots for GLM model assumptions.
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D.5. Model application is clearly detailed

To build the model of Antipatharia a generalized linear model was constructed that contained four explanatory
variables (depth, slope, topographic position index and oxygen). Up to second order polynomials were
included and the dependent data was presence or absence of Antipatharia. The full model was

y = α+ β1depth+ β2slope+ β3TPI + β4O2 + β5depth
2 + β6slope

2 + β7TPI
2 + β8O

2
2 + σ

A binomial error distribution (σ) was used for the model fitting. A full model was fit initially containing all
the variables and polynomials. This model was reduced sequentially by removing the least significant term
and comparing the AIC for the resulting reduced model. This was repeated until there was no reduction in
AIC when removing a variable and all variables remaining in the model were significant.

a. Model settings are comprehensively reported

The default GLM settings in R were used (see Annex_4_code.Rmd). The only setting that was modified
was the specification of the binomial error distribution.

b. Model complexity is assessed

The results of the sequential variable reduction resulted in the retention of all four terms; Depth, Slope, TPI
and Oxygen (and the polynomials for these variables). The deviance explained by the model (D2) was 0.438.

The model complexity was assessed against simpler models with less terms during the sequential variable
reduction step and the most complex model (containing all terms) was found to be the most appropriate
(Table 3).

Table 3. Summary of GLM model predicting presence or absence ofAntipatharia.

Df Deviance Resid. Df Resid. Dev
NULL NA NA 3165 2482.168
bathy 1 626.057 3164 1856.112
slope 1 158.123 3163 1697.989
TPI 1 5.132 3162 1692.856
O2 1 36.189 3161 1656.667
I(bathyˆ2) 1 70.881 3160 1585.786
I(slopeˆ2) 1 14.735 3159 1571.051
I(TPIˆ2) 1 59.421 3158 1511.630
I(O2ˆ2) 1 115.978 3157 1395.652

D.6. Model response curves are generated (where appropriate) and compared
to expectations

Model response curves are shown in Figure 6. Probability of presence of Antipatharia was highest around
2000 m depth, at a relatively narrow range of Oxygen levels from 260 to 275 ml/L. at moderate slopes > 0.1
and at areas that were slightly elevated from its surrounding bathymetry (on hills). The partial response
curves showed a dome shaped response for all four of the significant variables. None of the results were
abnormal or unexpected.
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Figure 6: Correlation among independent variables used in modeling.
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a. Modelling method-specific term estimates or coefficients are reported (where relevant)

The model specific term estimates are provided in Table 4.

Table 4. Model coefficients, significance and standard error estimates for GLM predicting Antipatharia
probability of presence.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3264.214 414.094 -7.883 0.000
bathy 0.005 0.001 4.791 0.000
slope 18.800 4.498 4.180 0.000
TPI 0.030 0.004 7.944 0.000
O2 24.364 3.105 7.848 0.000
I(bathyˆ2) 0.000 0.000 -2.984 0.003
I(slopeˆ2) -47.744 17.172 -2.780 0.005
I(TPIˆ2) 0.000 0.000 -4.498 0.000
I(O2ˆ2) -0.046 0.006 -7.827 0.000

b. Independent variable importance is reported

The relative importance of variables in the model was measured by sequentially removing the individual
variables, fitting a new model and calculating the deviance explained. The deviance explained was then
scaled to the full model to determine the relative drop in model goodness-of-fit with removal of each variable.
The results showed that slope was the most important variable determining the probability of Antipatharia
presence, and Oxygen was the least important (Figure 7).

E. Model uncertainty

E.1. Model specific goodness of fit statistics have been checked and reported

The Antipatharia model AUC was 0.925, an excellent model according to the standards of Hosmer et al.,
(2013).

Using a threshold of 0.17 resulted in prediction of 358 of the 421 observed presences correctly, while predicting
about 86% of the absences correctly (sensitivity = 0.85 and specificity = 0.863)

Table 5. Confusion matrix of predicted and observed presence and absence of Antipatharia using a probability
threshold 0.17.

Observed
Predicted Absence Presence
Presence 358 377
Absence 63 2368

a. Multiple measures of goodness of fit have been examined

Commonly used goodness-of-fit measures for binomial models are provided in Table 5 for the GLM predicting
Antipatharia probability of presence. These include the True Skill Statistic (Allouche et al., 2006), the
root-mean-squared-error and the Spearman’s rank correlation. Other threshold dependent metrics can be
calculated from the confusion matrix (Table 4).
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Figure 7: Relative importance of variables included in the Antipatharia presence or absence GLM measured
by their contribution to deviance explained when sequentially removed from the model.
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Model diagnostics indicated some minor issues with the prediction of presence or absence (Figure 8).The
predicted occurence did not always include the 1:1 line (indicating that at some levels of probability the
observed occurrences were lower than expected). For example, the model predicted lower than expected
probability of presence at ~0.3-0.4 and higher than expected probability of occurrence at ~0.6-0.8.

Figure 8: Model diagnostic plots for Antipatharia presence or absence GLM.

E.2. Spatial autocorrelation in the residuals has been assessed and reported

There was significant spatial autocorrelation in the model residuals measured by Moran’s I (I = 3.7747583 ×
10−15). This was not unexpected given the clumping of observations in the study area.
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E.3. Residuals have been tested against assumed distribution (where appropri-
ate)

Not applicable for the binomial distribution. Figure 3 shows model residuals (on the logit scale are shown for
each data point used to model Antipatharia and diagnostics.

Spatial patterns in residuals

Model residuals are shown in Figure 9. This confirms the results of the Moran’s I, in that there is some
clustering of larger residuals in the areas sampled at higher densities.

F. Model validation

F.1. Training and testing data splitting method clearly described

An internal model validation method was chosen, since independent data were not available to use as a
validation data set. K-fold cross-validation was used here. Five (k) folds were chosen at random. To account
for the spatial bias in the data, the spatial block cross-validation package (Valvani et al., 2019) was used to
choose the folds.

a. Potential spatial biases were accounted for in splitting the data

The spatial blocking method (Valvani et al., 2019) was used to split the data.

b. A standard method used for cross-validation

k-fold cross-validation is a standard method. The data was divided into 5 equal portions and a model then fit
to 80% of the data and tested against the remaining 20% of the data. This was repeated for each subdivision
of the data. The same maps and diagnostics were produced for each model fit on the k-folds.

The data folds appeared to show the same patterns as the full model. Relatively high probabilities of presence
were apparent in a band from 40-50 North Latitude.

The model performance was similar for all the training data sets (the full model and the individual folds).
However the performance of the model on the testing folds was less impressive. For example, the True Skill
Statistic for model folds 2 and 5 was very poor, indicating some potential issues with model performance.

F.2. Truly independent data used for model validation if available

No truly independent data was available for model validation.

Table 6. Model goodness of fit measures for the full model and the individual model validation folds

Fold AIC threshold AUC_training AUC_testing TSS_training TSS_testing
Full model 1413.652 0.17 0.925 NA 0.713 NA
GLMFold_1 1202.636 0.09 0.906 0.906 0.697 0.659
GLMFold_2 1208.315 0.15 0.908 0.905 0.679 0.713
GLMFold_3 1202.317 0.19 0.905 0.914 0.694 0.688
GLMFold_4 1173.404 0.17 0.912 0.889 0.701 0.660
GLMFold_5 1222.253 0.11 0.905 0.916 0.690 0.682
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Fold Cor_training Cor_testing RMSE_training RMSE_testing
Full model 0.500 NA 0.256 NA
GLMFold_1 0.481 0.462 0.263 0.269
GLMFold_2 0.480 0.476 0.263 0.262
GLMFold_3 0.475 0.493 0.264 0.264
GLMFold_4 0.482 0.468 0.261 0.273
GLMFold_5 0.477 0.486 0.267 0.253

G. Model outputs

G.1. Maps of model predictions, model residuals and prediction error have been
produced

Maps of model predictions are provided in Figure 11. Maps of residuals in Figure 9. Maps of prediction error
in Figure 12. The model predicted that the highest probability of presence for Antipatharia was in a band
from 50-60 degrees North latitude and along areas of moderate slope.

G.2. Areas of model extrapolation are clearly defined

The model was not extrapolated outside ICES subareas 6, 7, 8, 9, 10, and 12, although within this region,
there were some areas with little or no sampling.

G.3. The prediction unit is clearly defined (and explained if necessary)

The prediction unit is the probability of presence or absence of Antipatharia.

G.4. Thresholding methods (for dichotomising probability into presence or ab-
sence) are clearly described and appropriate

No thresholding was done (beyond the thresholding for calculating goodness-of-fit measures).

a. The sensitivity of model outcomes to threshold value chosen has been explored

Sensitivity to threshold values was not explored, but in a formal analysis of the model could be completed
using the provided model outputs.
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Figure 9: Spatial patterns in model Pearson residuals for GLM predicting probability of *Antipatharia*.
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Figure 10: Figure 5. Maps of model predictions for 5 randomly selected folds of the data.
20



Figure 11: Predicted probability of presence for Antipatharia in SubAreas 6,7,8,9,10 and 12.
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Figure 12: Spatial patterns in model prediction error for GLM predicting probability of Antipatharia in
SubAreas 6,7,8,9,10 and 12.
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Review of report from the Workshop on the Use of Predictive Habitat Models 
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Terms of reference for the workshop 

(a) Based on existing approaches, identify the methods for modelling vulnerable marine 

ecosystems (VMEs) that would be most appropriate for use within ICES advice, detailing 

‘required’ and ‘desirable’ criteria, with emphasis on the deep-sea environment greater than 

200m (considering bias of preferential sampling), predictive habitat model (PHM) techniques 

(including spatial display of uncertainty) and required validation steps for the modelled 

outputs); 

(b) Develop clear standards for recording the caveats and assumptions inherent in the 

modelling method, for future use; 

(c) Conduct a trial run for a small number of existing models to ensure that both the approach 

and outputs are fit-for-purpose; 

(d) Review and recommend a set of criteria, similar to the existing ICES benchmarking system 

for regional fish stock assessments1, under which new and existing predictive habitat models 

can be used for ICES scientific advice related to the distribution of VMEs. 

 

The review task  

Extracted from email from Daniel Van Denderen, ICES (18/3/21) 

“Please comment on the completeness of the work and not on style or general editing. Your 

review should focus on whether the working group missed important points relevant to the 

Terms of References [see above], and if you disagree with the conclusions made. If you find 

that an aspect of the issue was overlooked entirely then please try to draft text to address 

the point in question, including references as required.” 



“Your review will be added as an annex to the WKPHM report before the publication of this 

report. As such, the review text should be a combined product, which, as much as possible, is 

based on consensus among you.” 

 

Review 

Overall, the WKPHM report represents a considerable amount of effort and thought by the 

workshop participants, and is a very useful synthesis of PHM with respect to the variations in 

approaches, the inherent issues in these approaches, the need for transparency in reporting, 

as well as standards. With the increasing use of PHMs to inform the management of impacts 

to VMEs within Regional Fisheries Management Organisations areas, the report is very timely 

and welcome. 

In terms of the completeness of the report, we consider Term of References (a) and (b) have 

been adequately addressed, but that (c) has not been addressed. We are uncertain about (d), 

because of our unfamiliarity with the existing ICES bench marking system for regional fish 

stock assessments.  However, ToR (d) simply requests a set of criteria be reviewed and 

recommended, which the report does, although we note below some further discussion and 

consideration of how the criteria will be used and applied in a potential benchmark process 

would be useful.   

While the report provides a thorough evaluation of the existing PHM approaches, provides 

tables of ‘required’ and ‘desirable’ criteria, and reporting standards for models of VMEs (i.e., 

TOR’s (a) and (b)), we believe that there are elements of the text/tables that can be expanded 

upon/clarified to enhance the usefulness of the report (including to widen the readership of 

the report). In summary these are: 

• Consider providing more information/descriptions about the PHM methods 

themselves – including some discussion of the advantages/disadvantages of each 

modelling method. 

• More attention should be given to the quality, types and quantity of data required to 

achieve the PHM objectives – i.e., carefully preparing the input data can go a long way 

to improving the performance of all models irrespective of model choice. 



• Include more text about the limitations of presence-only models, including further 

comment on the implications of using inferred absences (pseudo absences). 

• Include some more text on the important issue about not accounting for uncertainty 

in the independent environmental data. 

• The section on model validation approaches (4.1) should be revised to provide clearer 

descriptions of the methods for each approach. In particular, there needs to be a 

description of how the .632+bootstrap method works. It uses bootstrapping, but it is 

not simply bootstrapping. Also, in describing the advantages/disadvantages of each 

approach, the focus should be on the differences in bias and variance in the estimated 

performance measures.   

• Useful to include some text on the common use of AUC value thresholds to judge 

whether a model is good/useful or not.  

• For some of the required and desired criteria, there were statements that a specific 

issue needed to be addressed without enough information in the body of the report 

describing how one could/should adequately address each issue. For example, 

sampling bias in the dependent data (which is often an issue).  

• Include text on use of multiple model and ensemble model approaches (these have 

already been used for some RFMO areas).  

• Include some text in the main body of report on a point that is made in the Conclusion. 

That is, on the potential nesting of models made at different spatial scales.  

• Consider priority ranking of the criteria in Tables 2.3.1, 3.3.1, and 5.1 

• Attempt to minimise further the use of jargon and increase the use of plain language 

for some of the technical details, especially in Section 3. 

• Some of the text in the tables need some further elaboration to improve the clarity of 

meaning. 

 

With respect to the non-inclusion of a trial run for a small number of existing models to ensure 

that both the approach and outputs are fit-for-purpose (i.e., TOR (c)), we acknowledge that 

the report contains reference to attempts to undertake an evaluation of different models but 

that unfortunately time did not allow for its completion. We also acknowledge that the report 

notes that the examination of existing models is suggested as part of future ICES activities 



(this is also noted in the email from Daniel Van Denderen;  “…planning several steps… to 

identify existing PHMs that meet the standards proposed”). Nonetheless, we believe that, as 

originally envisioned by the TORs, the report should contain an assessment of whether any of 

the existing models for the area of ICES concern in the North Atlantic (i.e., the North Atlantic 

Fisheries Organisation and North East Atlantic Fisheries Commission Convention areas) 

currently match the standards developed by the workshop. Including such an evaluation in 

the report, we believe, would enhance its usefulness considerably. Therefore, we encourage 

the workshop participants to complete TOR (c) before the report is published in final form. 

This report has the potential to have high impact, especially in advancing the work around 

spatial fisheries management and MPAs more generally. Therefore, addressing the points 

above will ensure the report meets all of its intended objectives, whilst offering the greatest 

possible benefit to the reader. 

 

With respect to meeting the requirements of ToR (d), the list of essential criteria to be 

considered when evaluating PHMs as part of a suggested benchmark process is given in Annex 

3. The list is comprehensive, although we note some potential ambiguity in the use of 

terminology that should ideally be resolved.  In addition, it would be helpful if the report could 

include a worked example using the Annex 3 template, so as to guide the user in the types of 

specific information and detail required when undertaking a benchmark process (possibly to 

be done as part of completing ToR (c) above). In this respect, it would be helpful if there was 

further consideration and discussion in the main body of the report of the ICES benchmark 

process itself and how it could be applied to PHMs using the Annex 3 template.  For example, 

under what circumstances and how often should the PHMs be reviewed or up-dated and is 

there a requirement for multiple PHM approaches to be considered (where possible or 

available) to ensure the result is based on the ‘best available’ method in support of ICES 

advice.  

We attach to this review our detailed comments within the report (see attached). We believe 

that these comments will assist the authors of the report in addressing some of our concerns 

noted above. Despite the request to not provide comments on “style or general editing”, we 

felt compelled to add some of those also. There are typos, cases of inconsistent use of terms 

etc., that when addressed will improve the readability of the report. 
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Annex 6: Responses from WKPHM to the Re-
viewer reports 



 Review of report from the Workshop on the Use of Predictive Habitat Models 
(WKPHM) in ICES Advice.  
 
Reviewer comments below are in blue text, replies from workshop participants are in black text. 
 
Review 
In terms of the completeness of the report, we consider Term of References (a) and (b) have been adequately 
addressed, but that (c) has not been addressed. We are uncertain about (d), because of our unfamiliarity with the 
existing ICES bench marking system for regional fish stock assessments. However, ToR (d) simply requests a set of 
criteria be reviewed and recommended, which the report does, although we note below some further discussion 
and consideration of how the criteria will be used and applied in a potential benchmark process would be useful.  
 

We thank the reviewers for their kind words regarding the report and the completion of ToRs (a, b, and 
d). We agree that ToR (c) was not adequately addressed during the workshop and initial report (see 
explanation of revisions below). For ToR (d) we have provided some further comment on revisions 
included in the report below. 
 
We believe that there are elements of the text/tables that can be expanded upon/clarified to enhance the 
usefulness of the report (including to widen the readership of the report). these are:  
 
• Consider providing more information/descriptions about the PHM methods themselves – including some 
discussion of the advantages/disadvantages of each modelling method.  

Although we did not provide much more additional information/descriptions to the PHM 
methods in the revised report (beyond some modifications to Table 3.2.1), we did provide a 
relative usefulness ranking for the model types with regard to PHM in Table 3.2.1, as well as the 
primary reference describing the method. There were ~10 major model types listed in the table 
(with many subtypes). Describing each type of model was seen as slightly outside the purposes 
of this report (and better done by examining the references for the models provided). Each of 
these types of models has a number of data for which it may be better suited, but in honesty 
there was no consensus within the workshop on the best methods (and likewise this is still an 
active discussion occurring in the literature). It is likely that the data sets used, familiarity with 
the method and required outputs drives the decisions on which model researchers choose to 
use. 

• More attention should be given to the quality, types and quantity of data required to achieve the PHM objectives 
– i.e., carefully preparing the input data can go a long way to improving the performance of all models irrespective 
of model choice.  
 

This is a good point by the reviewer and in the revised report, we have reproduced it in Section 

2.1. In addition, we have added additional text throughout Section 2 to address this comment 

(and the individual comments within). We have attempted to focus more on the transparency of 

presenting the data quality, standards for judging its quality and measures of uncertainty (in 

particular for independent data).  

• Include more text about the limitations of presence-only models, including further comment on the implications 
of using inferred absences (pseudo absences).  

Additional text and explanation regarding the use of pseudo and inferred absences has been 
added to Section 2.1 and in Table 2.3.1. 



• Include some more text on the important issue about not accounting for uncertainty in the independent 
environmental data.  

A paragraph describing the issue of accounting for uncertainty and testing for goodness-of-fit in 

the environmental data and its interpolation methodology has been added to Section 2.3 (lines 

438-448) and the accompanying table. 

• The section on model validation approaches (4.1) should be revised to provide clearer descriptions of the 
methods for each approach. In particular, there needs to be a description of how the .632+bootstrap method 
works. It uses bootstrapping, but it is not simply bootstrapping. Also, in describing the advantages/disadvantages 
of each approach, the focus should be on the differences in bias and variance in the estimated performance 
measures.  

Additional details on the .632+bootstrap method and how it differs from both k-fold cross-
validation and the traditional bootstrap has been added to Section 4.1. In addition, some 
additional text has been added that describes the different bias and variance trade-offs for the 
two validation methods (bootstrapping and k-fold cross-validation.  

• Useful to include some text on the common use of AUC value thresholds to judge whether a model is 
good/useful or not.  

The traditional cutoffs for using AUC (random, adequate, excellent) have been added to Section 

4.2. 

• For some of the required and desired criteria, there were statements that a specific issue needed to be 
addressed without enough information in the body of the report describing how one could/should adequately 
address each issue. For example, sampling bias in the dependent data (which is often an issue).  

In particular, this issue was highlighted for Section 2 (the data section) where a number of items 
in the criteria table did not have associated text explanations. Here and throughout the report, 
we have added additional paragraphs and statements to clarify the criteria that are provided in 
the tables.  

• Include text on use of multiple model and ensemble model approaches (these have already been used for some 
RFMO areas).  

Multiple model and ensemble approaches have now been added in their appropriate locations 
(eight in total) where needed. For example, on lines 738-739 in Section 3.3 on minimum 
standards for outputs. 

• Include some text in the main body of report on a point that is made in the Conclusion. That is, on the potential 
nesting of models made at different spatial scales.  

Additional text was added in Section 3.1 to introduce this question. The nesting and ensembling 
of models will be an interesting and exciting issue to address, but was not directly talked about 
by this workshop, as we focused our efforts on defining criteria for individual models. Workshop 
participants envisioned the combining of results as a second step to be taken for models that 
met the minimum criteria.  

• Consider priority ranking of the criteria in Tables 2.3.1, 3.3.1, and 5.1  

No priority ranking of the criteria was formally discussed during the workshop. Although some 
criteria in these tables are likely more important than others for some applications, we 



attempted here to reach consensus on the minimum standards across a broad group of criteria 
that could be widely applied. For example, a description of the sources of dependent data may 
be more important than fully testing for collinearity in the independent variables when using a 
random forest model to conduct PHM. However, accounting for collinearity in independent 
variables is probably much more important when using a general linear model to conduct PHM. 
It was not feasible in the context of this report to rank the criteria across the multiple PHM 
scenarios in which they might be applied.   

• Attempt to minimise further the use of jargon and increase the use of plain language for some of the technical 
details, especially in Section 3.  

Throughout the report, with particular attention to Section 3 and other areas that were 
indicated by reviewers, we have revised the text to provide more explanation of terms and 
attempted to include more “plain” language explanations and additional examples where 
possible. 

• Some of the text in the tables need some further elaboration to improve the clarity of meaning.  

 
The revised tables (including in the body of the report and Annex 2) have been elaborated on as 
suggested to improve the clarity of the meaning. 

 
With respect to the non-inclusion of a trial run for a small number of existing models to ensure that both the 
approach and outputs are fit-for-purpose (i.e., TOR (c)), we acknowledge that the report contains reference to 
attempts to undertake an evaluation of different models but that unfortunately time did not allow for its 
completion. We also acknowledge that the report notes that the examination of existing models is suggested as 
part of future ICES activities (this is also noted in the email from Daniel Van Denderen; “…planning several steps… 
to identify existing PHMs that meet the standards proposed”). Nonetheless, we believe that, as originally 
envisioned by the TORs, the report should contain an assessment of whether any of the existing models for the 
area of ICES concern in the North Atlantic (i.e., the North Atlantic Fisheries Organisation and North East Atlantic 
Fisheries Commission Convention areas) currently match the standards developed by the workshop. Including such 
an evaluation in the report, we believe, would enhance its usefulness considerably. Therefore, we encourage the 
workshop participants to complete TOR (c) before the report is published in final form. This report has the 
potential to have high impact, especially in advancing the work around spatial fisheries management and MPAs 
more generally. Therefore, addressing the points above will ensure the report meets all of its intended objectives, 
whilst offering the greatest possible benefit to the reader.  

 
We agree with the reviewers that the failure to meet ToR(c) was unfortunate and that 
completion of this ToR would be very useful to the target audience for this report. During the 
next WGMHM meeting ToR(c) will be addressed and 2-3 existing models will be added as 
Annex’s to the WGMHM report. We did add a trial run for a model developed during the 
workshop as Annex 4 to this report.  

 
With respect to meeting the requirements of ToR (d), the list of essential criteria to be considered when evaluating 
PHMs as part of a suggested benchmark process is given in Annex 3. The list is comprehensive, although we note 
some potential ambiguity in the use of terminology that should ideally be resolved. In addition, it would be helpful 
if the report could include a worked example using the Annex 3 template, so as to guide the user in the types of 
specific information and detail required when undertaking a benchmark process (possibly to be done as part of 
completing ToR (c) above). In this respect, it would be helpful if there was further consideration and discussion in 
the main body of the report of the ICES benchmark process itself and how it could be applied to PHMs using the 
Annex 3 template. For example, under what circumstances and how often should the PHMs be reviewed or up-



dated and is there a requirement for multiple PHM approaches to be considered (where possible or available) to 
ensure the result is based on the ‘best available’ method in support of ICES advice.  

 
Annex 3 has been revised as suggested to eliminate ambiguity. Annex 4 provides a worked 
example of the Annex 3 template using one of the trial models completed during the workshop 
as the example. Although the WKPHM did address the criteria for developing species 
distribution models for VME, we were not tasked with developing the benchmarking process. It 
is anticipated that this will happen in subsequent workshops or through the efforts of existing 
ICES working groups, such as WGMHM and WGDEC.   

 
We attach to this review our detailed comments within the report (see attached). We believe that these comments 

will assist the authors of the report in addressing some of our concerns noted above. Despite the request to not 

provide comments on “style or general editing”, we felt compelled to add some of those also. There are typos, 

cases of inconsistent use of terms etc., that when addressed will improve the readability of the report. 

 

We appreciate the efforts of the reviewers to provide extensive detailed comments. They were 

very helpful in indicating weak areas of the report that could be strengthened with additional 

text and explanation. The detailed comments in particular helped identify specific confusing 

issues and inconsistent use of terms. All of these comments added considerable value to the 

report and we thank the reviewers whole-heartedly for their contributions. 
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