Stock Annex: Salmon (Salmo salar) in Northeast Atlantic

Stock-specific documentation of standard assessment procedures used by ICES.
Stock Atlantic salmon; sal.27.neac_SA
Working Group Working Group on North Atlantic Salmon (WGNAS)
Created 28 March 2014
Last updated
April 2021
Last updated by WGNAS meeting, 2019

1 General

1.1 Stock definition

1.1.1 Background

Atlantic salmon, Salmo salar L., have a wide range of life-history strategies. Most forms are anadromous, however, with a juvenile phase in freshwater followed by a period at sea feeding and growing, during which the fish undergo extensive migrations in the open ocean, before they migrate back to freshwater to breed. Most Atlantic salmon return to their river of origin to spawn. This precise homing behaviour has resulted in groups of fish originating in different rivers or tributaries becoming genetically distinct as they adapt to the particular conditions that they face in their home river and along their migration routes. As a result, fish from one river or tributary can differ from fish originating in other rivers/ tributaries which have become adapted to a different set of conditions. These subgroups comprise genetically distinct 'populations' and these are regarded as the basic biological units of the Atlantic salmon species.

Large rivers and their tributaries can support several, genetically distinct populations, each with separate spawning areas within the main-stem of the river or its tributaries. In most instances, however, it is not possible to demarcate clear population boundaries within a river, and managing stocks and fisheries at this level of detail would be very complex. Thus, while there is a need to protect the sustainability of these units, the primary management unit (e.g. for reporting catch statistics and regulating fishing) is generally taken to be the river stock, comprising all fish originating in eggs laid within the river.

Atlantic salmon are native to the temperate and subarctic regions of the North Atlantic Ocean and there are over 2000 rivers draining into the North Atlantic that support the fish, about 1500 of which discharge into the Northeast Atlantic. In this area, salmon distribution extends from northern Portugal to northern Russia and Iceland, while in the Northwest Atlantic, the species ranges from northeastern USA (Connecticut) to northern Canada (Ungava Bay).

Ideally, the management of all individual river stocks, and the fisheries that exploit them, might be based upon the status of each individual population. This is not always
practical, however, particularly where decisions relate to the management of distant water salmon fisheries, which exploit large numbers of stocks originating in broad geographic areas. WGNAS has therefore had to consider how populations or river stocks should be grouped in providing management advice. For this purpose, groups have been established which fall within the meaning of a stock as 'an exploited or managed unit' (Royce, 1984) and that are consistent with the ICES (1996) definition of salmon 'stocks' as 'units of a size (encompassing one or more populations) which provide a practical basis for the fishery manager'. The issues around the grouping of Atlantic salmon stocks for the provision of management advice are reviewed in detail in Crozier et al. (2003). Such stock groupings have typically been referred to as stock complexes.

Salmon mature at various sea ages, typically returning to freshwater to spawn after one to three years at sea, but also sometimes at older sea ages; this varies widely between populations. Those salmon that return after one year at sea are referred to as one-sea-winter (1SW) salmon, or grilse, with older fish categorised as 2SW, 3SW, etc. In practice, however, for management purposes these older sea age fish are typically aggregated and collectively referred to as multi-sea-winter (MSW) salmon. The sea age when salmon become sexually mature depends on genetics as well as growing conditions in the sea, and possibly freshwater, although the precise proximate factors initiating homeward migration are unknown (Hansen and Quinn, 1998). The sea age of Atlantic salmon is important in the context of stock definition since these different groups of fish have different migration routes, return at different times and are differentially exploited in fisheries. Thus, for example, it is only potential MSW salmon that are exploited in the distant water salmon fishery that operates off the west coast of Greenland.

1.1.2 Management framework for salmon in the North Atlantic

The advice generated by ICES is in response to Terms of Reference posed by the North Atlantic Salmon Conservation Organisation (NASCO), pursuant to its role in international management of salmon. NASCO was set up in 1984 by international convention (the Convention for the Conservation of Salmon in the North Atlantic Ocean), with a responsibility for the conservation, restoration, enhancement, and rational management of wild salmon in the North Atlantic. NASCO now has six Parties that are signatories to the Convention, Canada, Denmark (in respect of Faroe Islands and Greenland), the EU (which represents its Member States), Norway, Russia and the USA. While sovereign states retain their role in the regulation of salmon fisheries for salmon originating in their own rivers, fisheries within the jurisdiction of one Party that exploit salmon originating in the rivers of another Party may be regulated by NASCO under the terms of the Convention. This is currently the case for the distant water salmon fisheries at Greenland and Faroes.

NASCO discharges these responsibilities via three Commission areas shown below:

While homewater fisheries are not regulated directly by NASCO, national/ regional jurisdictions seek to comply with NASCO agreements and guidelines in exercising their responsibilities. In particular, NASCO's Agreement on the Adoption of a Precautionary Approach states that an objective for the management of salmon fisheries is to maintain the diversity and abundance of salmon stocks, and NASCO's Standing Committee on the Precautionary Approach interpreted this as being "to maintain both the productive capacity and diversity of salmon stocks" (NASCO, 1998).

NASCO's Action Plan for Application of the Precautionary Approach (NASCO, 1999) provides an interpretation of how this is to be achieved:

- "Management measures should be aimed at maintaining all stocks above their conservation limits by the use of management targets".
- "Socio-economic factors could be taken into account in applying the precautionary approach to fisheries management issues".
- "The precautionary approach is an integrated approach that requires, inter alia, that stock rebuilding programmes (including as appropriate, habitat improvements, stock enhancement, and fishery management actions) be developed for stocks that are below conservation limits".

In requesting scientific advice from ICES, NASCO asks for an annual review of events in the salmon fisheries and of the status of salmon stocks around the North Atlantic; NASCO also requests management advice for stocks in each of the Commission Areas. In fulfilling these requirements, three specific purposes have been identified for which stock groupings may be required (Crozier et al., 2003):

- providing descriptions of the status of stocks;
- developing models to estimate and/or forecast pre-fishery abundance (PFA); and
- developing management advice for the distant water fisheries.

Crozier et al. (2003) further noted that there is no reason to assume that the same stock groupings should be used for all these purposes, indeed both the criteria used (e.g. geographical or biological features) and the resulting groups are likely to differ.

1.1.3 Stock groupings used by WGNAS in providing management advice

As noted above, Atlantic salmon would, ideally, be assessed and managed on the basis of river-specific stock units. In reality, $<25 \%$ of the rivers with salmon populations in the North Atlantic are so assessed (Chaput, 2012; ICES, 2013). Consequently, stock status is often, of necessity, assessed at broader regional, national and subcontinental scales. While there might be merit in grouping stocks according to biological criteria (which could cross jurisdictional boundaries), it has generally been considered that the difficulties of collecting data in a similar format in different jurisdictions is likely to outweigh the benefits of using such groups (Crozier et al., 2003). It is also recognised that compilations of data on stocks within each jurisdiction are of importance to regional / national managers. As such, regional / national stock groups are typically used by ICES in providing advice on the status of stocks, with additional information compiled on biological groups (e.g. sea ages) as required.

ICES has previously provided information on the status of stocks in the Northeast Atlantic Commission (NEAC) area by region or by country (as well as sea age). For the North American Commission (NAC) area similar information is provided for the USA and the five main provincial regions in eastern Canada: Labrador, Newfoundland, Québec, Gulf and Scotia-Fundy.

In providing management advice for the mixed-stock distant-water fisheries, broader scale stock groupings have been considered appropriate. For the NAC area this is based on the six geographic regions of North America detailed above. For the NEAC area, the following national groupings have been used in recent years to provide NASCO with catch advice or alternative management advice for the distant-water fisheries at West Greenland and Faroes.

Southern NEAC countries	Northern NEAC countries
France	Russia
Ireland	Finland
UK (Northern Ireland)	Norway
UK (England \& Wales)	Sweden
UK (Scotland)	Iceland (north/east regions) ${ }^{1}$
Iceland (south/west regions) ${ }^{1}$	

${ }^{1}$ The Iceland stock complex was split into two groups for stock assessment purposes in 2005 (ICES, 2005), largely on the basis of tag-recapture information. Prior to 2005, all regions of Iceland were considered part of the Northern NEAC stock complex.

These groups were deemed appropriate by WGNAS as they fulfilled an agreed set of criteria for defining stock groups for the provision of management advice that were considered in detail at the 2002 WGNAS meeting (ICES, 2002) and re-evaluated at the 2005 WGNAS meeting (ICES, 2005). ICES subsequently noted, however, that provision of catch advice for NEAC stocks in the distant water fisheries should preferably be
based on a larger number of smaller management units, similar to those used in the NAC area (ICES, 2010a; 2011). Such an approach was developed at the 2013 WGNAS meeting (ICES, 2013) and indicative catch advice was provided at the country level as well as the Southern and Northern NEAC stock complexes. ICES (2017) is awaiting feedback from NASCO on the choice of management units.

Salmon from most NEAC stocks mix in the Norwegian Sea in autumn and winter, and were exploited by the fishery at Faroes (the Faroes fishery has not taken salmon since 2000). While there is evidence that some salmon from NAC rivers have been caught in the Norwegian Sea, they are currently not considered in the NEAC assessments, although this is now under review. Recent genetic information suggests that more North American fish than previously thought were exploited in the fishery at Faroes. Further details on the results of these investigations are provided in Section 3.3.3 of this report and potential options tor accounting for these fish in future catch advice is provided in Section 3.6. To date, consideration of the level of exploitation of national stocks in the Faroes fishery (ICES, 2005) resulted in the proposal that catch advice for the fishery should be based upon all NEAC area stocks and both 1SW and MSW fish.

In contrast, the fishery to the west of Greenland operates in an area where salmon from all North America and some Northeast Atlantic stocks mix in their second summer at sea. Catch advice for this fishery is thus based on non-maturing (potential MSW) fish from all regions of North America, while consideration of the level of exploitation of national stocks in the fishery from NEAC, resulted in catch advice being based upon only Southern NEAC non-maturing 1SW (potential MSW) fish (ICES, 2005).

1.2 Fisheries

Most exploitation of Atlantic salmon is restricted to fisheries close to or within the rivers of origin of the stocks; these homewater fisheries take adult fish that are mainly returning to these rivers to spawn. As noted above, these fisheries are not directly regulated by NASCO since the Parties retain responsibility for the regulation of fisheries for salmon originating in their own rivers. However, NASCO can regulate fisheries undertaken by a Party that take salmon originating in another Party's rivers, such as is the case for the distant-water fisheries at Greenland and Faroes. These fisheries take salmon originating in a large number of rivers over a wide geographical range.

1.2.1 The Northern Norwegian Sea Fishery

A longline fishery for salmon in parts of the Norwegian Sea, north of latitude $67^{\circ} \mathrm{N}$, commenced in the early 1960s. Several countries participated in this fishery and the pattern of fishing, area of operation and catches changed markedly over the years. At its peak in 1970 this fishery harvested almost 1000 tonnes of salmon.

The Convention for the Conservation of Salmon in the North Atlantic Ocean, which resulted in the formation of NASCO, came into force in October 1983. The Convention created a large protected zone, free of targeted fisheries for Atlantic salmon in most areas beyond 12 nautical miles from the coast. An immediate effect was the cessation of the salmon fishery in the Northern Norwegian Sea outside the Faroes EEZ, with the last catches in this area reported in 1984 (ICES, 2013).

In the late 1980s and early 1990s, NASCO acted through diplomatic initiatives to address fishing for salmon in international waters by vessels registered to non-NASCO Parties. There have been no reports of such activities since this period.

1.2.2 The Faroes fishery

The fishery in the Faroes area commenced in 1968 with a small number of vessels fishing up to 70 miles north of the Faroes; initially catches increased slowly up to 40 tonnes in 1977. Danish vessels participated in the fishery between 1978 and 1982 and, at the same time, catches started to increase rapidly, peaking at 1025 tonnes in 1981. Several factors contributed to this increase: the season was extended, more vessels entered the fishery, and the fishery shifted northwards.

From 1982, the Faroese Government agreed to a voluntary quota system, involving a total catch of 750 tonnes in 1982 and 625 tonnes in 1983 (255 boats allowed 25 tonnes each). Since NASCO's establishment, regulatory measures or decisions have been agreed by the Northeast Atlantic Commission in most years (Table 1.2.2.1). These have resulted in greatly reduced allowable catches in the Faroese fishery, reflecting declining abundance of the salmon stocks. There has been no commercial salmon fishery targeting salmon around the Faroes since the early 1990s. Catches in the fishery are presented in Figure 1.2.2.1.

Figure 1.2.2.1. Nominal catch of salmon (tonnes, round fresh weight) in the Faroese longline fishery, 19602016.

Table 1.2.2.1. Summary of Regulatory Measures agreed by NASCO for the Faroese Salmon Fishery (courtesy of NASCO).

Year	Allowable catch (tonnes)	Comments/other details in the measures/decisions
1984-1985	625	
1986	-	
1987-1989	1790	Catch in any year not to exceed annual average (597t) by more than 5\%.
1990-91	1100	Catch in any year not to exceed annual average (550t) by more than 15\%.
1992	550	
1993	550	
1994	550	
1995	550	
1996	470	No more than 390 tonnes of the quota to be allocated if fishing licences issued.
1997	425	No more than 360 tonnes of the quota to be allocated if fishing licences issued.
1998	380	No more than 330 tonnes of the quota to be allocated if fishing licences issued.
1999	330	No more than 290 tonnes of the quota to be allocated if fishing licences issued.
2000	300	No more than 260 tonnes of the quota to be allocated if fishing licences issued.
2001-2003	No quota set	It is the intention of the Faroese authorities to manage the fishery in a precautionary manner with a view to sustainability, and to make management decisions with due consideration to the advice from ICES concerning status of stocks contributing to the fishery.
2004-2006	No quota set	It is the intention of the Faroese authorities to manage the fishery on the basis of the advice from ICES concerning status of stocks contributing to the fishery in a precautionary manner with a view to sustainability and taking into account relevant factors such as socio-economic needs and other fisheries on mixed stocks.
2007	No quota set	It is the intention of the Faroese authorities to manage any salmon fishery on the basis of the advice from ICES regarding the stocks contributing to the Faroese salmon fishery in a precautionary manner and with a view to sustainability, taking into account relevant factors such as socio-economic needs.
2008	No quota set	It is the intention of the Faroese authorities to manage any salmon fishery on the basis of the advice from ICES regarding the stocks contributing to the Faroese salmon fishery in a precautionary manner and with a view to sustainability, taking into account relevant factors such as socio-economic needs.

$\left.\begin{array}{|l|l|l|}\hline \text { Year } & \begin{array}{l}\text { Allowable } \\ \text { catch (tonnes) }\end{array} & \begin{array}{l}\text { Comments/other details in the measures/decisions }\end{array} \\ \hline 2009 & \text { No quota set } & \begin{array}{l}\text { It is the intention of the Faroese authorities to manage any } \\ \text { salmon fishery on the basis of the advice from ICES regarding the } \\ \text { stocks contributing to the Faroese salmon fishery in a } \\ \text { precautionary manner and with a view to sustainability, taking } \\ \text { into account relevant factors such as socio-economic needs. }\end{array} \\ \hline 2010 & \text { No quota set } & \begin{array}{l}\text { It is the intention of the Faroese authorities to manage any } \\ \text { salmon fishery on the basis of the advice from ICES regarding the } \\ \text { stocks contributing to the Faroese salmon fishery in a } \\ \text { precautionary manner and with a view to sustainability, taking } \\ \text { into account relevant factors such as socio-economic needs. }\end{array} \\ \hline 2011 & \text { No quota set } & \begin{array}{l}\text { It is the intention of the Faroese authorities to manage any } \\ \text { salmon fishery on the basis of the advice from ICES regarding the } \\ \text { stocks contributing to the Faroese salmon fishery in a } \\ \text { precautionary manner and with a view to sustainability, taking } \\ \text { into account relevant factors such as socio-economic needs. }\end{array} \\ \hline 2018 / 2019- & \text { No quota set } & \begin{array}{l}\text { No quota set } \\ 2020 / 2021 \\ \text { It is the intention of the Faroese authorities to manage any } \\ \text { salmon fishery on the basis of the advice from ICES regarding the } \\ \text { stocks contributing to the Faroese salmon fishery in a } \\ \text { precautionary manner and with a view to sustainability, taking } \\ \text { into account relevant factors such as socio-economic needs. }\end{array} \\ \hline 2013-2015 & \begin{array}{l}\text { It is the intention of the Faroese authorities to manage any } \\ \text { salmon fishery on the basis of the advice from ICES regarding the } \\ \text { stocks contributing to the Faroese salmon fishery in a } \\ \text { precautionary manner and with a view to sustainability, taking } \\ \text { into account relevant factors such as socio-economic needs. }\end{array} \\ \hline 2017 / 2018 & \text { No quota set } & \begin{array}{l}\text { It is the intention of the Faroese authorities to manage any } \\ \text { salmon fishery on the basis of the advice from ICES regarding the } \\ \text { stocks contributing to the Faroese salmon fishery in a } \\ \text { precautionary manner and with a view to sustainability, taking } \\ \text { into account relevant factors such as socio-economic needs. }\end{array} \\ \text { It is the intention of the Faroese authorities to manage any } \\ \text { into account relevant factors such as socio-economic needs. } \\ \text { salmon fishery on the basis of the advice from ICES regarding the } \\ \text { stocks contributing to the Faroese salmon fishery in a } \\ \text { precautionary manner and with a view to sustainability, taking }\end{array}\right\}$

Note: The quotas for the Faroe Islands detailed above for the period 1984-2000 were agreed as part of effort limitation programmes (limiting the number of licences, season length and maximum number of boat fishing days) together with measures to minimise the capture of fish less than 60 cm in length. The measure for 1984/85 did not set limits on the number of licences or the number of boat fishing days.

The Faroes salmon fishery operated from November through to May. The salmon caught in the fishery originated almost entirely from European countries with salmon from many countries being present in the area (Jacobsen et al., 2001). Small numbers of tagged fish originating in North America were also recaptured in the fishery (e.g. ICES, 1991), but excluded from catch advice. Genetic investigations, based on salmon scales removed from fish caught in the fishery in the 1980s and 1990s, suggested North American fish may make a larger contribution to the Faroes fishery than originally indicated (ICES, 2015). There was no consistent seasonal trend in the estimated proportion of North American fish in the catches at Faroes and so the overall percentages for 1SW (5.7\%) and MSW (20.5\%) salmon have been used in
subsequent analyses. (ICES, 2015). WGNAS has been asked to consider the implications of the findings in providing future catch advice to NASCO.

The fishery exploited mainly 2SW fish, although some 1SW and 3SW fish were also caught. Small salmon (<60 cm total length) in their first winter at sea were required to be discarded. Large numbers of farmed salmon were also observed at Faroes and there is evidence that farmed salmon escaping from net pens in Norway entered this area (Hansen et al., 1987; Hansen and Jacobsen, 2003). Such farmed fish accounted for a significant proportion of the catch; in the early 1990s, the proportion of farmed fish in this area was estimated at between 25 and 40\% (Hansen et al., 1999).

Tagging studies (of adult fish caught in the fishery) have indicated that some fish caught at Faroes were apparently on their way westwards, as they were reported from West Greenland later the same year (Jákupsstovu, 1988). However, salmon tagged at West Greenland were also reported in the area north of the Faroes the following year (ICES, 1984). Thus, salmon of European origin are believed to move through the Faroese area on their way to the feeding areas in the West Atlantic as well as on their return to homewaters.

1.2.3 The Greenland fishery

Limited fishing at West Greenland is reported as far back as the early 1900s, although the present fishery dates from 1959 when local fishermen began setting fixed gillnets from small boats in certain fjords around Maniitsoq (Shearer, 1992). Rapid expansion along the coast followed and from the mid-1960s Faroese and Norwegian fishermen introduced offshore driftnets, followed soon by fishermen from Greenland and Denmark. At around the same time improvements in gear (the introduction of light monofilament nets) enabled fishing in daylight and improved the efficiency of the gear. As a consequence, catches rose quickly reaching a peak of almost 2700 tonnes in 1971. Fishing by non-Greenlandic vessels was phased out in 1972-1975. However, the total catch remained at around 2000 tonnes until 1976 when a TAC of 1190 tonnes was set; the fishery has been regulated since this time. Small catches of salmon are also made on the east coast of Greenland although these are sporadic and restricted by the small number of communities in this area and by drifting polar ice.

Regulatory measures have been agreed by the West Greenland Commission for most of the years since NASCO's establishment (Table 1.2.3.1). These have resulted in greatly reduced allowable catches in the West Greenland fishery, reflecting declining abundance of the contributing salmon stocks. In all but two years since 1998, the fishery has been restricted to an internal-use fishery and commercial export of salmon is not permitted. Catches in the Greenland fishery are presented in Figure 1.2.3.1.

Figure 1.2.3.1. Nominal catch of salmon (tonnes, round fresh weight) in the Greenland salmon fishery, 1960-2018.

The Greenland salmon fishery operates in summer, with a fairly large proportion of the catch commonly being taken in the weeks after the opening of the season in August. Both drift and fixed gillnets continue to operate. The salmon caught in the fishery to the west of Greenland originate in both North America and the Northeast Atlantic. Data on continent of origin in the catch indicate a reasonably even split between fish from North America and Europe in the early 1990s (ICES, 2013). However, the proportion of North American fish in the catch has increased steadily since this time with North American fish comprising 80-90\% of the fish caught in recent years.

The salmon caught at West Greenland are almost exclusively fish in their second summer at sea, however, these are non-maturing 1SW salmon destined to return to homewaters as 2 SW , or older, fish. Fish from all parts of North America are taken in the fishery, while it is primarily only potential MSW salmon from southern countries in Europe (UK, Ireland and France) that are exploited here. Very few salmon of farmed origin appear in the catches at Greenland, and these are not taken into account in assessments.

Table 1.2.3.1. Summary of Regulatory Measures agreed by NASCO for the West Greenland Salmon Fishery (courtesy of NASCO).

Year	Allowable catch (tonnes)	Comments/other details in the measures
1984	870	
1985	-	Greenlandic authorities unilaterally established quota of 852 t .
1986	850	Catch limit adjusted for season commencing after 1 August.
1987	850	Catch limit adjusted for season commencing after 1 August.
$\begin{aligned} & \hline 1988- \\ & 1990 \end{aligned}$	2520	Annual catch in any year not to exceed annual average (840t) by more than 10\%. Catch limit adjusted for season commencing after 1 August.
1991	-	Greenlandic authorities unilaterally established quota of 840 t .
1992	-	No TAC imposed by Greenlandic authorities but if the catch in first 14 days of the season had been higher compared to the previous year a TAC would have been imposed.
1993	213	An agreement detailing a mechanism for establishing annual quota in each of the years 1993 to 1997 was adopted by the Commission.
1994	159	
1995	77	
1996	-	Greenlandic authorities unilaterally established a quota of 174 t .
1997	57	An addendum to the 1993 Agreement was agreed by the Commission.
1998	Internal consumption fishery only	Amount for internal consumption in Greenland has been estimated in the past to be 20 t .
1999	Internal consumption fishery only	Amount for internal consumption in Greenland has been estimated in the past to be 20 t .
2000	Internal consumption fishery only	Amount for internal consumption in Greenland has been estimated in the past to be 20 t . A Resolution Regarding the Fishing of Salmon at West Greenland was agreed by the Commission.
2001	28-200	Under an ad hoc management programme the allowable catch will be determined on the basis of CPUE data obtained during the fishery.
2002	20-55	Under an ad hoc management programme the allowable catch will be determined on the basis of CPUE data obtained during the fishery.
$\begin{aligned} & 2003- \\ & 2008 \end{aligned}$	Internal consumption fishery only	Amount for internal consumption in Greenland has been estimated in the past to be 20 t .
$\begin{aligned} & 2009- \\ & 2011 \end{aligned}$	Internal consumption fishery only	Amount for internal consumption in Greenland has been estimated in the past to be 20 t .

Year	Allowable catch (tonnes)	Comments/other details in the measures
$\begin{aligned} & 2012- \\ & 2014 \end{aligned}$	Internal consumption fishery only	Amount for internal consumption in Greenland has been estimated in the past to be 20 t .
$\begin{aligned} & 2015- \\ & 2017 \end{aligned}$	Internal consumption fishery only. Greenland unilaterally committed to limit the total annual catch for all components of the fishery to 45 t in 2015, 2016 and 2017.	The fishery will open no earlier than 1 August and close no later than 31 October each year. Any overharvest in one year will result in an equal reduction in the catch limit the following year. Efforts will be made to identify and implement temporal or spatial harvest restrictions that would provide increased protection for weaker stocks Greenland will further improve the monitoring, management control and surveillance of its salmon fishery in accordance with the Plan for Implementation and Control Measures in the Salmon Fishery at West Greenland with the objective of achieving full catch accountability. All Members of the Commission will implement the six tenets. Greenland will inform NASCO, in a timely manner, of any modifications to the management of the West Greenland salmon fishery, of the outcome of the 2015, 2016 and 2017 fisheries and of progress with the implementation and effectiveness of its Plan for Implementation of Monitoring and Control Measures in the Salmon Fishery at West Greenland. States of origin will explore opportunities to share experiences with Greenland on monitoring, management control and surveillance in the salmon fishery. A quota of 32 tonnes was set for 2016 fishery. The Commission agreed to review the measure prior to the 2017 fishery.

Year	Allowable catch (tonnes)	Comments/other details in the measures
$\begin{aligned} & \hline 2018- \\ & 2020 \end{aligned}$	Internal consumption fishery only. Greenland committed to limit the total annual catch for all components of the fishery to 30 t in 2018, 2019 and 2020.	Greenland agreed to prohibit the export of wild salmon or salmon products from Greenland and to prohibit landings and sales to fish processing factories. The fishery will open no earlier than 15 August and close no later than 31 October each year. An annual quota of $30 t$ was set for all components of the fishery. Any overharvest in one year will result in an equal reduction in the catch limit the following year with no carry forward for any underharvest into a future year. Greenland will inform NASCO annually of any modifications to the management fishery and will report on progress with the implementation and effectiveness of its Plan for Implementation of Monitoring and Control Measures for the fishery. States of origin agree to share experiences on monitoring, management, control and surveillance in the salmon fishery through knowledge-sharing exchange programmes. Greenland will annually collect and verify catch data for all licensed fishers. All fishers for Atlantic salmon will have a licence to fish. Fishing for Atlantic salmon without a license will be prohibited. Only licensed full-time hunters and fishers will be allowed to sell Atlantic salmon at open air markets. All licensed fishers must provide a full accounting of fishing activity and harvest. Fishers who do not provided a full accounting of their catches, including reports of zero catches, within one month of the end of the fishing season at the latest will be prohibited from acquiring a licence for the following season until the required reporting is received. The regulatory measure will also apply to the 2019 and 2020 fisheries unless any member of the West Greenland Commission of NASCO requests its reconsideration or the Framework of Indicators indicates that there has been a significant change to the indicators and, therefore, a reassessment is warranted.

1.3 Ecosystem aspects

Over the past 20 to 30 years, there has been a marked decline in the abundance of Atlantic salmon across the species' distributional range. Wild Atlantic salmon populations are declining across most of their home range and, in some cases, disappearing (ICES, 2008). Generally, populations on the southern edge of the distribution seem to have suffered the greatest decline (Parrish et al., 1998; Jonsson and Jonsson, 2009; Vøllestad et al., 2009), which may be linked to climatic factors. The decline in salmon abundance has coincided with a variety of environmental changes linked to an increase in greenhouse gases and a corresponding increase in temperatures (IPCC, 2001), which is most likely to have manifest effects at the edge of the species range. However, these areas are often also the ones with higher human population densities and therefore, typically, where potential impacts on the freshwater environment may also be greater. A range of factors in freshwater are known to affect stocks including, for example, contaminants, river obstructions, and
changing river flows and temperatures (ICES, 2009b; 2010b; Russell et al., 2012). Such factors have potential implications for the survival of juvenile salmon and their resulting fitness when they migrate to sea as smolts (e.g. Fairchild et al., 2002).

Atlantic salmon occupy three aquatic habitats during their life cycle: freshwater, estuarine and marine. Similar factors contribute to mortality in each of these habitats - competition, predation and environmental factors - but despite occurring in different habitats, these are not independent. Conditions experienced within the freshwater environment can affect the survival of emigrating smolts and marine conditions may subsequently modify the spawning success of fish in freshwater.

The decline in salmon populations has occurred despite significant reductions in exploitation, although this does not preclude possible fishery effects. An underlying cause has been a marked increase in the natural mortality of salmon at sea; the proportion of fish surviving between the smolts' seaward migration and their return to freshwater as adult fish (e.g. Peyronnet et al., 2008; Chaput, 2012). For many stocks, return rates are now at the lowest levels in the time-series, even after the closure of marine fisheries. This reduced survival is thought to reflect climatic factors and broad-scale changes in ocean ecosystems as well as factors in freshwater. The exact processes controlling marine survival are relatively poorly understood (Friedland, 1998), although there is growing support for the hypotheses that survival and recruitment is mediated by growth during the post-smolt year, for European stocks at least (Friedland et al., 2009).

Although their habitats are widely separated geographically, there is strong coherence in recruitment patterns between North American and European stock complexes (Olmos et al. 2019). Recent research suggests recruitment is correlated with ocean temperature variation associated with the Atlantic Multidecadal Oscillation (AMO) (Friedland et al., 2013). It further appears that there are differences in the mechanisms affecting stocks in the Northwest and Northeast Atlantic, with ocean climate variability during the first spring months of post-smolt life most important to the survival of North American stocks, while summer climate variation appears to be more important to adult recruitment variation for European stocks (Friedland et al., 2013). It has been speculated that this may be related to the varying roles of predation pressure and size-related mortality on the two continental stock complexes.

In addition to changes in climate and potential issues operating in both freshwater and marine environments, various other factors have been postulated as possibly contributing to the decline in stock abundance, including predation, aquaculture impacts and the effects of fisheries. Huge increases in aquaculture production of Atlantic salmon over recent decades (see Section 2.2.1 of the WGNAS report) have created some concerns for wild populations. The main potential impacts include: (i) genetic impacts on wild fish; (ii) discharge of organic material and other wastes; (iii) transmission of diseases and parasites (particularly sea lice) to wild populations; and (iv) concerns about obtaining adequate feed resources from an already heavily exploited marine ecosystem. For example, recent investigations in Norway have demonstrated that gene pools of wild salmon populations in a number of rivers have been gradually changed through introgression of genetic material from escaped farmed salmon (Glover et al., 2012; Glover et al., 2013). Sea lice also continue to be
regarded as a serious problem for wild salmonids (Skilbrei et al., 2013; Krkošek et al., 2013) affecting their survival and perhaps also their life-history characteristics (Vollset et al., 2014).

As well as declines in abundance, changes in salmon life histories are also widely reported throughout the geographic range of the species, affecting factors such as sea age composition, size at age, age-at-maturity, condition, sex ratio and growth rates (e.g. Nicieza and Braña, 1993; Hutchings and Jones, 1998; Niemelä et al., 2006; Peyronnet et al., 2007; Aprahamian et al., 2008; Todd et al., 2008). Changes are also manifest in freshwater stages, affecting factors such as the size and growth of parr and the age of smolting (e.g. Davidson and Hazelwood, 2005; Jutila et al., 2006) and run timing (Kennedy and Crozier, 2010; Otero et al., 2013).

2
 Data

2.1 Introduction

Assessment of Atlantic salmon differs from the approaches commonly adopted for other species, for example in respect of the need for at sea surveys and collection of commercial catch per unit of effort (CPUE) data. Instead, the assessment of salmon is based mainly on data collected on individual river stocks (e.g. catches and counts of returning fish), which are raised and aggregated to provide estimates of the number of fish returning to homewaters for different stock groupings. These estimates are used, in turn, to estimate abundance at earlier points in the life cycle of the fish and to inform the development of catch advice.

The provision of management advice for the mixed-stock fisheries at Faroes and West Greenland is based on assessments of the status of stocks at broad geographic scales. The North American Commission (NAC) area is divided into six management units, and the Northeast Atlantic (NEAC) Commission area is divided into 19 regions. Assessment of the status of the stocks in these areas is based on estimates of the total abundance - the pre-fishery abundance (PFA) - of different cohorts of salmon at a stage before the distant water fisheries operate. PFA is defined as the cohorts of salmon maturing as 1SW and MSW fish that are alive prior to all the marine fisheries for 1SW salmon (Rago et al., 1993a). The catch advice for the NEAC area is then provided for the northern (N-NEAC) and southern (S-NEAC) stock complexes and for countries.

The models to estimate the PFA of salmon from different areas are typically based on the catch in numbers of one-sea-winter (1SW) and multi-sea-winter (MSW) salmon in each country or region, which are then raised to take account of estimates of nonreported catches and exploitation rates on the two age groups. In some cases, particularly in the NAC area, returns to homewater are estimated by alternative methods, such as counts at fishways and counting fences, or from mark and recapture studies. The estimates of fish numbers returning to homewaters are then raised to take account of the natural mortality (M) between the date that the fish are deemed to recruit to the particular fishery of interest and the midpoint of the timing of the respective national fisheries. A value of 0.03 per month is assumed for M (Section 3.2.3). The date of recruitment of NAC stocks (and thus the PFA date) is taken as 1 August in the second summer at sea because these fish are first exploited in the distant water fishery at West Greenland. However, NEAC stocks recruit to the Faroes
fishery during their first sea winter and so PFA is calculated at 1 January (i.e. seven months earlier) for these stocks.

2.2 Input data for assessments-NEAC area

PFA for NEAC stocks is estimated using the run-reconstruction approach described by Potter et al. (2004). The model estimates the PFA of both maturing and non-maturing 1SW salmon because both stock components may be caught in the Faroes fishery (when operating), and data for both the Faroes and West Greenland fisheries are incorporated into the model.

In order to run the NEAC PFA model, most countries provide time-series (beginning in 1971) of catch in numbers, non-reporting rates and exploitation rates for 1 SW and MSW salmon. Best estimates and a measure of the uncertainty or error are provided for the non-reporting and exploitation rate data in order to obtain a measure of the uncertainty in the PFA estimates, since these data are commonly derived from expert opinion. In UK (N. Ireland), the PFA model now uses estimates of the numbers of returning adults, split by sea-age. These data are derived from monitored rivers. The latest data input variables used in running the NEAC assessment are listed at Appendix 3.

In some instances, the above information has been supplied in two or more regional blocks per country. In these instances, the model outputs are provided for these regional blocks and also combined to provide one set of output data for the country as a whole.

The input data for Finland consists solely of catches from the River Tana/Teno. These comprise both Finnish and Norwegian net and rod catches, as the river marks the border between these countries. The Norwegian catches from the river are not included in the input data for Norway.

Where possible, when the input data are themselves derived from other data sources, the raw data are included in the model. This allows the uncertainty in these analyses to be incorporated into the modelling approach. Thus, the catch and sample data used to estimate the catches of Scottish fish in the northeast English coastal fishery are incorporated into the assessments for both UK (England and Wales) and UK (Scotland). For Greenland, catch data are input in the form of harvests (reported and unreported) in weight, along with data from the West Greenland sampling programme.

Descriptions of how the model input data have been derived are presented below for different countries (updated from Crozier et al., 2003; ICES, 2002). The methods used to derive the PFA input data for NEAC countries and options for improving the data are also discussed in Crozier et al. (2003).

2.2.1 Median dates of return to homewater fisheries

NEAC stocks recruit to the Faroes fishery during their first sea winter and so the date of recruitment (and thus the PFA date) is calculated at January 1st. In deriving PFA from the estimates of fish numbers returning to homewaters, it is necessary to take account of natural mortality between the date that the fish recruit to the particular
fishery of interest and the midpoint of the timing of the respective national fisheries. The median return date for 1SW and MSW fish for each country/region are provided in the table below. Thus, there is about a six to nine month period between the PFA date and the median time of return to homewaters for maturing 1SW fish and 17 to 20 months for non-maturing fish.

Table 2.2.1.1. Midpoint of recruitment to homewater fisheries for NEAC countries/regions.

NEAC Country/ region	1SW	MSW
Northern NEAC		
Russia - Pechora River	8	8
Russia - Archangel / Karelia	7.5	8.5
Russia - Kola / White Sea	7	7.5
Russia - Kola / Barents Sea	6.5	6.5
Finland	7	6
Iceland - north \& east	8	6
Norway	8.5	5
Sweden	7	6.5
Southern NEAC	8	6
Iceland - south \& west	8	5
UK (Scotland - east)	7	7
UK (Scotland - west)	6.5	5.5
UK (N. Ireland - Loughs Agency area)	8	6
UK (N. Ireland - DAERA area)	8	5
Ireland	8.5	5
UK (England \& Wales)	8.5	
France	7	6
		8

2.2.2 Data inputs for Northern NEAC countries

2.2.2.1 Finland

Catch: The catch input to the model of Finland represents an estimate based on catch enquiries and the total number of licences issued. The Norwegian catch from the River Teno has been included in the Finnish catch, which results in a set of input data that effectively represents a single river system. Catch composition is estimated based on catch samples and corresponding scale analyses.

Level of unreported catch: Unreported catch is estimated by extrapolating the catches of the fishermen that failed to report their catches, as reporting is not mandatory.

Exploitation rates: Exploitation rates in the river fisheries are derived from radio tagging studies in 1992-1993 and 1995, when 70-100 adult fish (1SW and MSW) were tagged yearly in the estuary. Most of the important river fisheries were covered by these experiments.

2.2.2.2 Norway

Area split: Salmon catches in Norway are split into four regions on the basis of climatic and oceanographic differences among the areas. The regions are: (1) southeast Norway from the Swedish border to the border between Rogaland and Hordaland counties, (2) southwest Norway from the border between Rogaland and Hordaland counties to Stad (3) mid Norway from Stad to Lofoten, and (4) north Norway from Lofoten to the border with Russia.

Catch: Nominal catches of salmon in the four regions are used. In recent years there have been improvements in declaring catches. From 1979 there was a weight split 1SW/MSW (<3 kg/>3 kg). From 1993 the split was changed to 1SW/2SW/3SW ($<3 \mathrm{~kg} / 3-7 \mathrm{~kg} />7 \mathrm{~kg}$). Mean weight was provided for most groups and used to estimate numbers in the early part of the time-series, but in recent years the reported nominal catch (reported number of killed salmon in river and sea fisheries summed) is being used. In the input to the PFA model, salmon smaller than 3 kg are regarded as 1 SW fish, whereas salmon larger than 3 kg are regarded as MSW fish. The two largest size groups are thus summed into MSW salmon. In the PFA model input the Norwegian catch data for the River Teno have been removed from the Norwegian catches and incorporated in the Finnish catches.

Unreported catch: No systematic method is used to estimate unreported catches. Inputs are guesstimates based on occasional reports from test fishing, surveillance reports, and questionnaires. There is no evidence that the level of unreported catches differs between the four regions. These estimates are provided by the management authorities.

Exploitation rates: The rates for the national model are guesstimates. For parts of southeast and southwest Norway they are derived from estimated marine exploitation rates from the River Imsa and the River Drammen, respectively. In recent years (from 2009 onwards) exploitation rates for many rivers (>50) have been taken into consideration. These exploitation rates have been obtained using a multitude of methods, mainly from drift counts of spawners or results from counting facilities combined with reported catches in the rivers. The exploitation rates have been adjusted in relation to reduced fishing effort. At present different exploitation levels are used for the different regions, reflecting different harvest regimes in the regions.

For Norway, only data from 1983 onwards have been used for assessment purposes.

2.2.2.3 Russia

Area split: The Atlantic salmon rivers of northwest Russia are split into the following four regions: Kola Peninsula - Barents Sea basin; Kola Peninsula - White Sea basin; Archangelsk Region and the Karelia; and the Pechora River region. The split is based on four regions with separate catch statistics and different biological characteristics of the stocks. For example, the difference in age composition and relative abundance of summer and autumn salmon evident among these four regions has influenced the split.

Catch: The declared catch data, in numbers, is available for the full time period (1971 onwards) for all four regions. Catches were allocated to 1SW or MSW age groups on the basis of commercial and scientific catch sampling programmes.

Level of unreported catch: Unreported catches in legal fisheries are estimated from logbooks and catch statistics, by comparing catch survey results with reported catch. Illegal catch is guesstimated and based on local knowledge of fisheries. The major component of the illegal catch in the Barents Sea basin (Kola Peninsula and Pechora River) comes from in-river fisheries and a considerable part of the illegal catch in the White Sea basin (Kola Peninsula and Archangelsk region) comes from coastal areas and this contributes the greatest uncertainties. There is a particular problem with illegal catches on the Pechora River where scientific sampling programmes suggest that the illegal catch on this river is very high. The level of non-reporting increased considerably in the early 1990s due to the economic changes in Russia and temporary reduction of control and enforcement. Since the late 2000s the higher level of nonreporting occurred in recreational fisheries due to unclear legislation for reporting. All these factors have been considered in deriving the level of unreported catch for the PFA model.

Exploitation rates: Information on exploitation rates is derived from several fisheries in the Kola Peninsula where counting fences are operated and from mark-recapture exercises on the rivers with recreational fisheries. Exploitation rates in Archangelsk and Pechora are guesstimated. These are the basis of the inputs to the model, regional sea age differences being adjusted on the basis of local knowledge from estimated stock levels.

2.2.2.4 Sweden

Catch: The catch input to the model is based on annual reported commercial salmon catch on the Swedish west coast, and on voluntary reporting from sport fishing in rivers. This reporting is detailed and considered accurate and is handled by the government agency "Swedish Agency for Marine and Water Management" (commercial catches) and the Swedish University of Agricultural Sciences (noncommercial catches). Unfortunately, reporting of catches from non-commercial fishing for salmon with gillnets or rod and line on the coast is lacking. However, due to fishing regulations these catches are small (permits required for trapnets, ban on gillnets in deeper waters, restrictions on the use of gillnets in shallow waters, limited fishing season, large marine protected areas, ban on selling fish, etc.).

There is a large proportion (mean 64\% for 2002-2018) of reared fish in catches and stocks as a result of compensatory releases of reared smolts (ranching). As all ranched salmon are finclipped the catches of reared fish can be treated separately in the catch statistics. In the reporting from the commercial fishing the catch is not separated into wild and reared fish. The proportion of wild salmon is instead estimated from catch statistics in nearby rivers. Stocking of reared salmon is done in three rivers; two of these also have wild stocks in tributaries.

Catch and release is practised in most rivers (only rod and line fishing allowed in rivers) but the extent of C\&R is not always known. In most rivers a proportion of the fish is released back alive but any subsequent mortality is not accounted for.

Level of unreported catch: Unreported catch, i.e. non-commercial catch of salmon in the coastal area with gillnets and rod and line, is estimated from guesstimates based on expert judgement from regional fishery officers and the Swedish University of

Agricultural Sciences. These estimates are supported with catch inventories carried out in 1999 (Thörnqvist, unpublished), 2004 (Swedish Agency for Marine and Water Management), 2008 (Thörnqvist, unpubl.). Generally, the unreported catch is estimated to be 5-10\% of the reported catch.

Exploitation rates: Few fish counters are present and tagging data exist mainly for reared stocks, where the fishing pressure is higher than for wild stocks. Input for the PFA model is based on guesstimates. In the index River Ätran, data on size and composition of the spawning run and estimates of exploitation are being developed. Since 2000, a fish ladder with an automatic counter has provided data on the spawning run in this river. Counter data in combination with results from small-scale tagging in this river are used to provide estimates of exploitation rates. One problem is that exploitation rates differ considerably between rivers. During the period 20002014 the average exploitation rates for the Swedish stock as a whole have been estimated at 34% for 1SW and 39\% for MSW. The exploitation rate increased in 20112014 due to increased gillnet fishing on the coast. This fishery has since been closed and exploitation is expected to decrease in future.

2.2.2.5 Iceland

Area split: The input data for the PFA model is divided into two areas. Rivers in the west and south of Iceland are combined into one area and rivers in the north and east into another. This is done on the basis of historic tag recoveries in ocean fisheries (which occurred in different areas) and different climate and oceanic conditions affecting the salmon life cycle, e.g. run-timing, smolt age, and sea age. The southern and western parts of Iceland fall within the NEAC southern area, while the northern and eastern parts of Iceland fall within the NEAC northern area.

Catch: Age-class information is available from individual catch records from logbooks used in the rod fishery. The division into sea age classes is based on a bimodal weight distribution. The 1 SW females are $<3.5 \mathrm{~kg}$ and 2 SW females $>3.5 \mathrm{~kg}$, while 1 SW males are $<4 \mathrm{~kg}$ and $2 \mathrm{SW}>4 \mathrm{~kg}$. Scale analyses have shown that the presence of salmon having spent more than two winters at sea and of previous spawners is uncommon and that the categorisation into 1 SW and 2SW age classes by weight is as fairly accurate. The net catches are recorded on a daily basis. The age split in the net fishery is derived from the weight distribution in the rod fishery from the same river system or from rivers in the same area.

In the River Ranga in southern Iceland substantial smolt releases have occurred since the early 1990s and have now reached a level of 300000 to 500000 smolts annually. Originally, the River Ranga had a small salmon stock with an annual catch of 10 to 90 fish until 1990. The river has very limited habitat for salmon production, but these 'ranched' fish now support a substantial rod fishery. The catch in the River Ranga comprised 23% (18-27\%) of the total reported salmon rod catch in Iceland between 2009 and 2013. Since these fish are expected to have very low spawning success in the river they are excluded from the PFA catch input data.

Level of unreported catch: The fishing rights in Icelandic salmon rivers belong to landowners who must, by law, form a fishery association to manage the fishing right. The rod fishing rights are leased to the highest bidder. No ocean or estuary fisheries
are allowed. The unreported catch was originally believed to be low with a guesstimate value of 2% applied. With increased use of midwater trawls in pelagic fisheries off the coast of Iceland, new information was provided which suggested an increased level of salmon bycatch. Based on a questionnaire survey, the value of unreported catch was therefore revised after 1995 to a value of 10% of the declared salmon catch. However, more recent analyses of DNA, as well as scale analyses, from salmon sampled as bycatch by Icelandic fishing vessels, indicates a low percentage of Icelandic salmon. Based on this, and other available information, a new estimate of unreported catch is now applied for Iceland at 4\% of the declared catch for 1SW and MSW salmon since 1995.

Exploitation rates: Rates of rod exploitation are based on rivers with fish counters and catch records from logbooks. The estimates of exploitation are 40-50\% for 1SW salmon and 50% to over 70% for 2 SW salmon. The exploitation estimate for an in-river gillnet fishery is 39% to 52%, with a higher exploitation rate on larger fish. Information on the number of fish subject to catch and release in rod fisheries is also available from logbooks. The proportion of released fish has been increasing since 1996. The reduced exploitation due to catch and release is taken into account in the annual estimate of exploitation for both 1SW and 2SW stock components in the PFA model inputs.

Median return date of 1SW and MSW: Run timing can vary both between years and between areas. The median return date of 1 SW and 2 SW salmon in south and west Iceland is mid-June and early June respectively. The median date of return is later in the north and east of Iceland, mid-June for MSW and early July for 1SW salmon.

2.2.2.6 Denmark

The Working Group collects and routinely reports the annual catch of salmon taken in Denmark. However, the small Danish catches are not included in the assessment process used in developing catch advice for the distant water fisheries.

Catch: The catch input is based on continuously collected reports of salmon taken in the recreational fishery in Danish west coast streams (from Internet sources), which all hold populations of wild salmon. In four of these, where salmon populations have always been found, there is a large proportion of reared (finclipped) salmon in the catch, but these are all F1 (second generation) offspring from the original populations. In the one catchment in eastern Denmark (Gudenå), where the salmon population is not genetically native to the stream, the annual catch is guesstimated.

Level of unreported catch: Unreported catch is expected to be negligible in the western streams because the fishing is closely regulated and controlled by the anglers. In the eastern stream (Gudenå) unreported catch is guesstimated.

Exploitation rates: Exploitation rates may be derived from the total catch related to estimates of the total run (calculated by mark-recapture surveys on a three-year cycle in the four streams with original populations on the west coast).

2.2.3 Data inputs for Southern NEAC countries

2.2.3.1 France

Catch: The estimation of salmon catch in France comes from two main sources: (1) mandatory declaration of rod and line catches and from the Adour nets operating in the lower river (scales are sampled from each fish caught) to the Centre national d'interprétation des captures de salmonidés migrateurs (CNICS) under Agence Française pour la Biodiversité (AFB); and (2) mandatory declaration of catches made by professional net fishermen to Affaires Maritimes, under the Ministère de la Mer, who since 2008 have delegated responsibility for collection and first processing of catch data to the Regional Boards for Sea Fisheries and Aquaculture Catch. At the same time, catches at sea are declared to the Institut Français de Recherches pour l'Exploitation de la Mer (Ifremer), who are responsible for archiving and scientific processing of all fisheries data. Salmon catches have not been reliably collated and made available until recently. Since 1985, the 1SW/MSW split has been based on scale interpretation of the in-river catch (based on scale reading) and on a categorisation based on length thresholds for catches in estuaries and at sea. The figures prior to 1985 are not considered as reliable as the later ones.

Level of unreported catch: Unreported legal catch for the rod and line fishery has been estimated by catch inquiries made by environmental inspectors of AFB on each river. These procedures are still operating in some areas, but estimates are considered less reliable in recent years. The estimation of the professional net fishery catch (Adour Basin) is thought to be reliable and no unreported legal catch is considered to apply.

For most years, the unreported illegal catch is not assessed and a minimal value is provided on a precautionary basis. This unreported illegal catch has been assessed in some years by ad hoc inquiries in the estuary of a number of rivers in Brittany (e.g. in 2001) and on the coast (e.g. Baie of Mont Saint-Michel in 2000). The "unreported catch" is included in the nominal catch. No estimates of unreported catch are available for the early part of the time-series (prior to 2001). Thus, the rates input to the model for 1SW and MSW for the early period are near zero and range from 0 to 0.00001 . Higher values in the range 20% to 40% for 1 SW and 15% to 30% for MSW fish are applied more recently.

Exploitation rates: Exploitation rates are derived from the index River Scorff in Brittany. This is an in-river rate, by rods only, where there are no, or very few, fish thought to be caught on the estuary or coast. Rates are also derived for the Adour river system, where a rough estimation is provided by using the lower values of adult run estimates through facilities in the three rivers flowing to Adour, and the declared catches on the coast, estuary and river, respectively by nets and rods. Some caution is necessary regarding these rates from the Adour given the uncertainties in the different estimates. The rod catch on the index River Nivelle is very small and the probable net exploitation in the estuary and coast is unknown, so exploitation rates are not used for this system. Some data on exploitation rates are also collected by AFB on the index River Bresle, but sea trout are the dominant angled species in this river.

2.2.3.2 Ireland

Catch: The data are derived from annual declared catches within fisheries districts, management units implemented by Regional Fisheries Boards. Since 2007 river and estuarine specific angling and commercial catch data have been complied. The Fisheries Boards were amalgamated into a single body, Inland Fisheries Ireland, in 2010 which currently takes responsibility for compiling catch statistics. Catches are split by age on the basis of a reported age distribution from 1980 to 1988. In the absence of any other information the mean proportion of 2 SW salmon in the series (7.5\%) has been used since 1988 and a mean of 10% has been used prior to 1980. Since the introduction of a carcass tagging and logbook scheme for angling and commercial fisheries in Ireland in 2002, sea age classes in the time-series since 2007 have been determined based upon catch dates and weights in accordance with national river stock assessments. The catch is not corrected for returns from releases of smolts for ranching or enhancement but these are not a major component of the catch.

Level of unreported catch: The values are guesstimated from local reports and knowledge achieved during catch sampling and fisheries protection activities.

Exploitation rates: A coded-wire tagging (CWT) programme has been operated in several rivers in Ireland since 1980. Up to 300000 hatchery smolts and up to 5000 wild smolts are tagged and released annually. There is also a substantial dataset on wild salmon from the monitored River Burrishoole, providing a further index of wild returns and exploitation rates. Overall, there are estimates of exploitation rates available for three wild stocks and seven hatchery stocks for both 1SW and 2SW salmon. Up to the closure of the marine mixed-stock fishery in 2006, the annual mean of the 1SW wild exploitation index is used as the input data for the lower range of exploitation in the PFA model while the mean of the 1SW hatchery index is used as the upper range. The annual mean of the 2SW wild and hatchery exploitation index was used as the input data for the upper and lower range of exploitation in the PFA model depending on which is higher or lower in that year. Since 2006 the main exploitation input has been from the rod catch which is estimated from CWT estimates for some rivers and also rivers with counters.

2.2.3.3 UK (England \& Wales)

Catch: Nominal catches for UK (England \& Wales) have been derived from the catch returns submitted by anglers and netsmen. Returns from anglers have been, and continue to be available annually, but returns from netsmen were substantially reduced in 2019, and absent in 2020. This follows the introduction of new fishing byelaws that restricted and eventually closed net fisheries for salmon in UK (England \& Wales). The redcrease in reported net catches reduced confidence in the ability to derive reliable abundance estimates from the Run Reconstruction model using the historic net-driven method. Consequently, catches reported to WGNAS were corrected for reduced and absent net catches in 2019 and 2020, respectively. Specifically, the reported rod and net catch in 2019 was raised by a correction estimated as the linear relationship between age-specific returns and their rod and net catches (standardised by effort) between 1999 and 2018 weighted by uncertainty in their annual rod catches. In 2020, the reported rod catch (there was no declared
net catch) was raised by a correction estimated as the linear relationship between age-specific returns and their rod catches (standardised by effort) between 1999 and 2018 weighted by uncertainty in their annual rod catches.

Nominal (retained and reported) catches are split into 1SW and MSW categories using two different methods. Since 1992, monthly age-weight keys derived from salmon caught in the River Dee trap (an index river) have been used to estimate the age of all rod-caught fish where a weight and date of capture have been provided. Since 2020, monthly age-weight keys derived from salmon caught in the River Dee and Tamar traps have been used to estimate the age composition of rod catches. This has then been scaled up to the total catch (rods and nets combined) on a pro-rata basis. In earlier years (1971-1991), the age composition of the total catch has been estimated using the mean weight of the fish caught and the mean weight of 1SW and MSW salmon recovered in tagging programmes.

As the contribution of farmed and ranched salmon to the national UK (England \& Wales) catch is negligible, the occurrence of such fish is ignored in the assessments of the status of national stocks. However, a large proportion of the fish taken in the northeast coast fishery are destined for Scottish rivers, and these are deducted from the returning stock estimate for UK (England \& Wales) and added to the data for UK (Scotland) in the ICES assessment. This proportion is estimated to have declined from 95% of the northeast net catch in the early part of the time-series to 75% in the late 1990s and to around 65% since 2003 . This reflects both the steady improvement in the status of the stocks in northeast England and the phase out of the English driftnet fishery since 2003. Since 2019, the northeast coast fishery for salmon has been closed in line with the new fishing byelaws.

Level of unreported catch: All licence holders are required to provide the Environment Agency with details of their catch of salmon and the number of days fished on each river or, for nets, each fishery at the end of the season. Catch returns are received from all net licence holders and from a high proportion of full season anglers, and the latter account for the majority of fish caught in a catchment, typically $96-98 \%$. The main correction for underreporting is therefore currently made in respect of perceived inaccuracies in the returns, although more substantial corrections have applied in the past.

There are few independent measures of underreporting in the rod fishery, but these indicate that the level is currently small. A value of 10% is applied for correction purposes based on the method of Small (1991). Historically, underreporting was a much more serious problem. As a result of changes in the licensing and associated catch return system covering UK (England \& Wales) in the early 1990s, the percentage of underreporting in the rod catch was estimated to have decreased from $\sim 50 \%$ to ${ }^{\sim} 20 \%$. Since the mid-1990s, awareness campaigns and enhanced catch reminder systems have further reduced underreporting to the levels currently estimated. An online reporting system and the introduction of 365 -day licences (valid from time of purchase) created some reporting difficulties and additional corrections were required to account for underreporting between 2015 and 2018. Shortcomings in the online catch reporting system have been resolved and therefore the additional corrections have not been applied since 2019.

For the net fishery, a figure of 8% was used from the late 1990 s to 2008 to adjust for the level of underreporting, based on the outcome of surveillance operations. The level may have been substantially higher in the past in certain fisheries, possibly as much as 50%. However, following the successful introduction of logbooks and a carcass tagging scheme in 2009, there is now considered to be minimal underreporting in net fisheries. A figure of 2% has been assumed since 2009.

An earlier questionnaire survey of Environment Agency enforcement staff suggested illegal catches were around 12% of the declared net and rod catch. However, since the introduction of a carcass tagging scheme and a ban on the sale of rod caught fish in 2009, it has been substantially more difficult to dispose of illegally caught fish. Since this time, illegal catches have been estimated to have been reduced to 6% of the declared catch.

Exploitation rates: Exploitation rates for a number of monitored fisheries in UK (England \& Wales) are derived annually. National exploitation rates have then been estimated by deriving time-series of 'standard fishing units' employed in the salmon fisheries for the period 1971 to the present. For the period 1971 to 1997, these are calculated from the numbers of licences issued weighted by their relative catching power, which is estimated from historic CPUE data; and for the period 1998 to the present, they are calculated from the numbers of days fished by different net categories weighted in the same way. The annual exploitation rates are then estimated by referencing the number of 'standard fishing units' employed over the two periods relative to average age-specific exploitation estimates derived for the 1997 and 1998 seasons.

Additional information: Further details on the derivation of estimates within UK (England \& Wales) are available in the annual stock status reports (e.g. Cefas, Environment Agency and Natural Resources Wales, 2020), available at:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attac hment_data/file/907284/SalmonReport-2019-summary.pdf

2.2.3.4 UK (Northern Ireland)

Area split: Originally, a single assessment was carried out for UK (Northern Ireland). However, the data used were derived from two fishery management areas (Loughs Agency and DAERA areas), which publish separate catch statistics and have differing fishing regulations. On the basis that stock status in the two areas may differ (Crozier et $a l ., 2003$) the two areas were assessed separately from 2001.

Catch: As no commercial fishing has been conducted in the Loughs Agency area since 2010 nor in the DAERA area since 2012 the Northern Ireland catch statistics currently (since 2014) rely solely on rod catches. Overall UK (Northern Ireland) rod catch estimates are available since the introduction of a carcass-tagging scheme in 2001. These catch statistics are used as an input in the model. Estimates of sea age composition of the catch for the time-series are based on 1SW/MSW data from adults returning to the River Bush (an index river).

Level of unreported catch: Estimates of unreported catch, as a result of illegal fishing, are based on intelligence reports from DAERA and Loughs Agency fishery officers. These are guesstimates only, with no verification possible. Annual adjustments in unreported catches have been used since tagging programmes started in the mid1980s. Prior to that, a constant under reporting figure is used, as no annual data are available. The introduction of the carcass tagging scheme in 2001 has led to a reduction in unreported catches.

Exploitation rates: Estimates of exploitation rates were historically based on the River Bush microtagging programme. Exploitation from this monitored river (which is in the DAERA fishery area) was used as an input figure for all UK (Northern Ireland) fisheries (Loughs Agency and DAERA areas). However, as currently no commercial fishery for salmon exists in the DAERA and Loughs Agency areas, exploitation rates are based on rod exploitation in the DAERA and Loughs Agency alone.

Adult counts: In the DAERA area, counts of adult returns to the rivers Bush and Bann are used as input data for the run-reconstruction model from 2000 onwards. These values are scaled up to the estimated total run using a factor of $1 /(0.67 \pm 0.05)$ for 1SW fish and $1 /(0.61 \pm 0.05)$ for MSW fish, based on more detailed run estimates for 2015. Adult counts are used because these data were more informative about the number of returning adults than very low nominal catches.

Possible improvements: A possible improvement would be to have better data available on sea age composition of all Northern Irish fish. The River Bush and Bann estimates are based on annual scale analysis of a subsample of the adult returners. Since the closure of the Foyle commercial fishery no sea age data are available on Loughs Agency area returning adults and thus this is currently based on estimates from historical data.

In addition, a higher return rate for the carcass tagging scheme would result in more reliable estimates of exploitation rates. Recently the carcass tagging return rate in UK (Northern Ireland) has varied between 14% and 55%.

2.2.3.5 UK (Scotland)

Area split: The country is divided into eleven statistical regions for the purposes of collating and publishing salmon fishery statistics (Marine Scotland Science, 2012). Within the PFA run-reconstruction model, UK (Scotland) is divided into two broad areas (east and west), the split being influenced by the contrasts in topography, river size and the potential migratory routes of post-smolts. The east grouping comprises the East, Northeast, Moray Firth, and North statistical regions, the remaining statistical regions comprise the West grouping in the run-reconstruction model.

Catch: Annual declared catches are collated according to the area split defined above. Reported retained and released catches of wild salmon, taken by net and rod fisheries, are provided separately for two age classes, one sea-winter and multi sea-winter fish. Catch sampling programmes have shown that there is a variable (by region, year, and fishery) proportion of 1SW salmon mis-categorised as MSW salmon in the reported rod catches. The methods used to align abundance estimates at ICES with those used in domestic assessments (see exploitation rates below), also correct for these reporting biases.

Level of unreported catch: Previously the unreported catch ranges used in the national model were based on guesstimates made by local managers in some eastern areas of the country (MAFF, 1991). The differences in the ranges used for the east and west groupings were based on a subjective view that unreported catches in the west area were likely to be greater than in the east area due to the geographic differences between the regions. However, in the absence of empirical evidence with which to support these differences, the current unreported catch rate of 10% was applied throughout the series in both the east and west areas. Error around this value is a subjective estimate of $+/-5 \%$ (uniform distribution).

Exploitation rates: Abundance is estimated from total rod catch (retained \& released) raised using a correction factor to align abundance estimates of home water returns from the run-reconstruction model with those derived in domestic assessment models. Exploitation rates are estimated as all methods retained catch expressed as a proportion of home water returns for both 1SW and MSW salmon.

Additional information: Estimates of spawner abundance take into account estimates of catch and release and natural in-river mortality. Little direct evidence of either source of mortality is available for Scotland. Based on limited information from radiotracking studies, the model assumes catch \& release mortality of 10\% (Webb, 1998; Smith, Middlemas, and MacLean, 2014) and an additional in-river mortality of 9% to account for other factors such as predation and disease (Milner et al., 2000). Fecundity estimates were also revised to align with domestic assessment methods (Marine Scotland Science, 2017). Time series of mean annual eggs per female for both 1SW and MSW salmon were used together with a constant point estimate of sex ratio to estimate egg deposition within the run-reconstruction model. The analysis thus accounts for shifts in fecundity related to observed changes in the lengths of returning fish.

2.2.3.6 Spain

The Working Group collects and routinely reports the annual catch of salmon taken in the recreational rod fisheries in Spain (mainly Asturias). However, the small Spanish catches are not included in the assessment process used in developing catch advice for the distant water fisheries.

2.2.4 Data inputs for Faroes and West Greenland fisheries

2.2.4.1 Faroes

Reported catch: The Faroes fishery has not operated since 2000. When the fishery was being prosecuted, catch data were derived from the landings of salmon caught in the commercial and research fisheries that operated in the Faroes EEZ and the northern Norwegian Sea. Catches for each season (i.e. November in year n to May in year $n+1$) are assigned to the second year (i.e. year $n+1$). These fish are classified into 1SW and MSW age groups according to their age (or potential age) on January 1st during the fishery (i.e. a post-smolt caught in November is classified as 1SW).

Unreported catch: All fish less than 63 cm total length have been discarded in this fishery and so an unreporting rate of 10-15\% (with an error of $+/-5 \%$) has been used for 1SW fish; there is thought to have been negligible non-reporting of MSW fish.

Catch composition: Estimates of the proportion of farmed fish in the catch for the period 1981 to 1995 have been derived from scale reading (ICES, 1996; Hansen et al., 1997); prior to 1981 all fish are assumed to have been wild, and since 1997 a value of 0.8 has been used.

Tagged fish originating in North America have been recaptured in the fishery (e.g. ICES, 1991), but excluded from catch advice.

The country of origin of the catch had been estimated based on tagging studies undertaken in the early 1990s (Hansen et al., 1999). These were subsequently replaced by estimates based on genetic analysis.

Genetic investigations, based on salmon scales removed from fish caught in the fishery in the 1980s and 1990s provided an estimated proportion of North American fish in the catches at Faroes. Estimates of 5.7% (1SW) and 20.5% (MSW) have been used in subsequent analyses (ICES, 2015).

The composition of the European component was investigated using individual genetic assignments and gave an overall 1SW stock composition of 84.2% Southern European, 9.0\% Northern Europe, 1.2\% Icelandic and 5.7\% North American (ICES, 2015). The overall composition of the MSW catch was determined as 20.9% Southern European, 58.0\% Northern Europe, 0.6% Icelandic and 20.5\% North American (ICES, 2015).

It was not possible to use the genetic assignments to estimate the composition of the catches to country/regional level, but they suggested that the composition within the stock complexes was broadly similar to the relative proportions of the PFA estimates and so the breakdown of catches at this level can be made by applying the relative proportions of PFA (ICES, 2015). Sources of uncertainty in these estimates are described in ICES (2015).

2.2.4.2 West Greenland

Catch: The total nominal catch (i.e. tonnes round fresh weight) in the West Greenland fishery is reported and converted to numbers using a mean weight obtained from the sampling programme.

Unreported catch: Estimates of unreported catch were not provided for the period from 1993 to 1999; an annual estimate of non-reported catch, varying from 5 to 20 tonnes was provided by the Greenland representative. Since 2000 a nominal figure of 10 t per year has been provided.

Efforts have been made to provide further information on the level of unreported catch at West Greenland. Since 2002, some assessment of the unreported catch, primarily for commercial landings, has been provided by comparing the weight of salmon seen by samplers involved in the international sampling programme and the corresponding community-specific reported landings. However, since sampling only occurs during a portion of the fishing season, these are considered to be minimum estimates for unreported catch. In addition, there is currently no quantitative approach for estimating the unreported catch for the private fishery. A telephone survey of fishers was carried out following the 2014 to 2016 seasons and provisional findings were provided to WGNAS in 2015 to 2017. These are discussed further in

Section 5.1 of the Working Group report (see above); such investigations may provide a basis for revising estimates of unreported catch in future.

Continent of origin: The catch at West Greenland was divided into NAC and NEAC components using scale characteristics until around 2000 and since that time genetic analysis has been used. For the period when scale characteristics were used, the input data to the model are the minimum and maximum estimates of the proportion of NAC fish (from which minimum and maximum proportions of NEAC fish are calculated). For the subsequent period, the inputs are the numbers of NAC and NEAC fish identified in the samples.

2.2.5 Improvements to NEAC input data

NEAC countries have made ongoing efforts to improve the input data used in assessments. Modifications to input variables are reported by WGNAS in the year in which they are first implemented.

Over recent years, efforts have been made to reduce the level of unreported catch in a number of countries (e.g. through improved reporting procedures and the introduction of carcass tagging and logbook schemes). However, the methods used to derive estimates of unreported catch vary markedly between countries. For example, some countries include only illegally caught fish in the unreported catch, while other countries include estimates of unreported catch by legal gear as well as illegal catches in their estimates.

Descriptions of the national approaches used for evaluating unreported catches have been reported at various WGNAS meetings (e.g. ICES, 1996; 2000; 2002; 2010a). In addition, detailed reports describing national procedures for evaluating illegal and unreported catch, and efforts to minimise this, were submitted by parties to NASCO in 2007 in support of a special theme session on this issue. Full details are available at: http://www.nasco.int/pdf/2007\ papers/CNL(07)26.pdf.

Input data commonly rely on rod catches and the practice of catch and release has become increasingly important in recent years to reduce levels of exploitation on stocks. In the NEAC areas, catch and release estimates from the rod fisheries are not available from all countries and, when they are, corrections for catch and release mortality are commonly not applied. As the practice of catch and release is increasing, WGNAS have previously recommended (ICES, 2010a) that consideration should be given to incorporating mortality associated with this practice in river-specific, regional and national assessments.

The procedures currently used to incorporate catch and release and unreported catches into regional, national and international assessments are summarised in Appendix 1 (from ICES, 2010a).

One weakness of the NEAC model is that it is heavily dependent upon catch data and estimates of exploitation rate. In most salmon fisheries in the NEAC area, more than half the catch is reported, and in many cases it approaches 100%. However, as stocks have declined, exploitation rates have been reduced to very low levels, and estimates of abundance are therefore becoming increasingly sensitive to this parameter. This inevitably means that uncertainty in the estimates is increasing, and it therefore
strengthens the need to make use of alternate sources of information on stock abundance, such as adult counts.

2.3 Input data for assessments-NAC area

The run-reconstruction model for NAC developed by Rago et al. (1993a) is used to estimate the PFA of non-maturing 1SW salmon of North American origin (beginning in 1971). Only the West Greenland fishery is of relevance in the context of distant water exploitation of NAC stocks. This fishery exploits predominantly (>95\%) 1SW non-maturing salmon (destined to return primarily as 2 SW salmon) and hence it is only necessary to estimate the abundance of this age group prior to the fishery at Greenland. The other fish taken in the fishery represent 2SW and older non-maturing salmon and previous spawners (ICES, 2003). However, PFA estimates for maturing 1SW salmon as well as large salmon (containing all MSW age groups of salmon including repeat spawners) are derived from the run-reconstruction model.

The starting point for the reconstruction requires estimation of the returns of 2 SW salmon, small salmon and large salmon to the six regions in eastern North America: Labrador, Newfoundland, Québec, Gulf, Scotia-Fundy, and USA. With the progressive closure of commercial fisheries (1984 for the Gulf and Scotia-Fundy regions; 1992 for Newfoundland; and 1998-2000 for Labrador and Québec) abundance estimates have relied less on harvests and increasingly on estimated returns to rivers raised to production areas. The returns for each region are estimated with the uncertainty defined by a range of minimum and maximum values based on the best information available for each region (Chaput et al., 2005).

The annual pre-fishery abundance of non-maturing 1SW fish for year i, destined to be 2SW returns (excluding 3SW and previous spawners), represents the estimated number of salmon at West Greenland prior to the start of the fishery on August 1st. Definitions of the input variables used in the model are given in Table 2.3.1. The PFA estimate is constructed by summing 2 SW returns in year $\mathrm{i}+1$ [NR2(i+1)], 2SW salmon catches in commercial and indigenous peoples' food fisheries in Canada [NC2(i+1)], and catches in year i from fisheries on non-maturing 1SW salmon in Canada [NC1(i)] and Greenland [NG1(i)].

Table 2.3.1. Definitions of key variables used in continental run-reconstruction models for North American salmon.

i	Index for PFA year corresponding to the year of the fishery on 1SW salmon in Greenland and Canada
M	Natural mortality rate (0.03 per month)
t1	Time between the midpoint of the Canadian fishery and return to river $=1$ month
S1	Survival of 1SW salmon between the homewater fishery and return to river \{exp-M * t1\}
H_s(i)	Number of "Small" salmon caught in Canada in year i; fish <2.7 kg
H_l(i)	Number of "Large" salmon caught in Canada in year i; fish >=2.7 kg
AH_s	Indigenous and resident food harvests of small salmon in northern Labrador
AH_1	Indigenous and resident food harvest of large salmon in northern Labrador

f_imm	Fraction of 1SW salmon that are immature, i.e. non-maturing: range $=0.1$ to 0.2
af_imm	Fraction of 1SW salmon that are immature in indigenous and resident food fisheries in northern Labrador
q	Fraction of 1SW salmon present in the large size market category; range = 0.1 to 0.3
MC1(i)	Harvest of maturing 1SW salmon in Newfoundland and Labrador in year i
i+1	Year of fishery on 2SW salmon in Canada
MR1(i)	Pre-fishery abundance (PFA) of non-maturing 1SW + maturing 2SW salmon in year i
NN1(i)	Return estimates of non-maturing + maturing 2SW salmon in year i
NR(i)	Return estimates of maturing 2SW salmon in Canada
NR2(i+1)	Harvest of maturing 2SW salmon in Canada
NC1(i)	Time between the start of the fishery at West Greenland (August 1) and return to the coast of North America = 10 months
NC2(i+1)	Survival of 2SW salmon between August 1 (at West Greenland) and return to the coast of North America \{exp-M * t2 $\}$
NG(i)	Pre-fishery abundance of maturing 1SW salmon in year i
T2	

2.3.1 Data inputs for NAC

The latest data input variables used in running the NAC assessment are listed at Appendix 4. More detailed descriptions of how the model input data have been derived for each region of North America are presented below.

2.3.1.1 Labrador

For Labrador stocks, it was thought to be inappropriate to develop total recruits from angling catches and exploitation rates similar to techniques used for rivers in insular Newfoundland. The problem with using angling catches to derive returns for Labrador is, that until 1994, there were no estimates of exploitation rates available other than for the salmon population of Sand Hill River and these were 20 years out of date. Also, because Labrador coastal rivers are isolated, the exploitation rates are low and highly variable depending on the presence of an angling camp and its success in attracting guests as well as the nearness of local communities. Thus, exploitation rates would depend, and vary from one year to the next, on the success of angling camps in attracting anglers and may not be applicable to other Labrador rivers. Thus, all estimates of returns and spawners until 1998 were based on commercial catches as the only source of usable continuous time-series of data.

Before 1998

The general approach is to use exploitation rates to convert commercial catches of small and large salmon in Labrador to total population prior to the commercial fishery. River returns and spawners were estimated by subtracting the commercial catch from these populations, and accounting for non-Labrador interceptions. The estimated number of Labrador origin large returns is calculated as:
$\mathrm{LR}=(\mathrm{CC} * \mathrm{PL}) / \mathrm{u}$
where,
$\mathrm{LR}=$ Labrador returns, $\mathrm{PL}=$ proportion Labrador origin, $\mathrm{CC}=$ commercial catch, and $\mathrm{u}=$ exploitation rate

The estimated number of Labrador origin small returns is determined from equation (1) but using commercial catches of small salmon.

Parameter values for sea age and the proportion of salmon of Labrador origin comes from the sampling program in the commercial fishery, 1974-1991. In 1997, commercial sampling resumed with samples being collected throughout the fishery at Makkovik and Rigolet in SFA 1 and Cartwright and St Lewis/Fox Harbour in SFA 2.

River age distribution of commercial samples of small and large salmon from Labrador have been found to consist, on average, of about 75-80\% river age 4 and older in SFAs 1 \& 2. The commercial samples came from commercial catches sampled in Labrador at several sites along the Labrador coast including Square Islands (SFA 2) and at Nain (SFA 1) (Anon, 1993b). In total, 46320 salmon were sampled for scales and aged. Labrador salmon stocks are thought to contribute about 70\% of the total production of four year, and older, river age salmon, with the other 30% coming from northern Québec. Thus, when non-Labrador salmon are factored in at 30% applied to the river age distribution, then $60-80 \%$ of the harvest of small and large salmon (PL) in Labrador are of Labrador origin (Anon, 1993b). In 1997, in SFA 1, the percentage of the commercial catch that was of Labrador origin was for large salmon 68% ($95 \% \mathrm{C}$. I. 64.3-72.5\%); whereas for small salmon it was 39% (95% C.I. $35.6 \%-41.6 \%$). In 1997, in SFA 2, the percentage of the commercial catch that was Labrador origin was for large salmon 92% (95% C. I. $88.4-95.2 \%$); whereas for small salmon it was 80% (95% C.I. 74.8\%-85.0\%).

Exploitation rates (u) were calculated from the smolt tagging study in 1969-1973 on Sand Hill River (Reddin, 1981; Reddin and Dempson, 1989). Exploitation rates of 0.28 to 0.51 for small salmon and 0.83 to 0.97 for large salmon from the tagging study were changed to base exploitation rates of 0.3 to 0.5 on small salmon and 0.7 to 0.9 on large salmon and were assumed to apply to all of the salmon populations in SFAs 1, 2, and 14B for the period of 1969-1991 (Anon., 1993b). After 1991, due to the Management Plans for the commercial fishery in Labrador and Newfoundland, several changes occurred that would reduce exploitation of Labrador origin salmon. These changes include: (1) reductions in effort as commercial salmon fishermen chose to sell their licences from a buy-out agreement begun in 1992, (2) a moratorium on commercial fishing in Newfoundland that would increase the number of Labrador salmon in Labrador coastal waters, and (3) season reductions due to the varying opening dates and early closures from the quotas applied in 1995 and 1996. The effects of these changes were quantified in the exploitation model as follows:

$$
\begin{equation*}
\mathrm{u}=1-\mathrm{e}^{-\mathrm{aF}} \tag{2}
\end{equation*}
$$

where: $a=$ fraction of the 1991 licensed effort remaining in 1992-1996.
In 1994-1996, the licensed effort for all of Labrador was 37% of the 1991 level of 570 licences, in 1993 it was 55\%, and in 1992 it was 87%. In any given year, it was assumed
that 90% of licensed fishermen were active. Fishermen reported during public consultations that in 1995 and 1996 many licensed salmon fishermen did not fish for salmon but fished for crab instead. This was verified by Fisheries Officers who reported that of the 218 licensed salmon fishermen only 132 were active in 1996. Another method of obtaining actual effort information is also available since, beginning in 1993 commercial fishing vessel (CFV) numbers have been recorded on sales receipts issued to fishermen by fish plants. Enumeration of licensed salmon fishermen actively fishing was made by determining the number of CFVs in the Statistics Branch catch records. Active effort in 1991 and 1992 was assumed to be 90\% as it was in 1993 and 1994 from the CFV file. Thus, the exploitation rates (u) were modified due to effort reductions in equation (2) using estimated active licences from 1991 as a base and the number of active licences in 1995, 1996 and 1997. The modified exploitation rates (ue) for 1992-1997 used the licensed effort in equation (2).

The tagging study on Sand Hill River, 1969-1973 showed that Labrador small and large salmon were not only caught in Labrador, but also in the commercial fisheries along the northeast coast of Newfoundland (both small and large) and at West Greenland (large only) (Anderson, 1985). For small salmon, out of a total of 100 (1SW) tag returns there were 24 from Newfoundland. For large salmon, out of a total of 137 (2SW) tag returns there were 41 from Newfoundland.

For 1992-1997: the moratorium on commercial fishing in Newfoundland would have released small and large salmon to Labrador. The effect of salmon released from Newfoundland in 1992-1996 was evaluated against the exploitation rates as follows:

$$
\begin{align*}
& \text { un }=\left(1-\left(\left(24^{*}(1-\mathrm{ue})\right) / 100\right)\right)^{*} \text { ue, for small salmon, and } \\
& \text { un }=\left(1-\left(\left(41^{*}(1-\mathrm{ue})\right) / 137\right)\right)^{*} \text { ue, for large salmon } \tag{3}
\end{align*}
$$

The new estimates of fishing mortality (un) in 1992-1994 included adjustments for the closure of the commercial fishery in Newfoundland based on the results of the Sand Hill River tagging study. Season reductions due to the varying opening dates and early closures from the quotas applied in 1995 and 1996. In 1995, adjustments were made to account for the new opening date for the commercial fishery in Labrador of July 3 changed from June 20 the previous year. For 1995, the accumulative effect of these, weighted to SFA catches, was to reduce the catch so that for small salmon the current catch represents 86.0% of small salmon and 62.7% of large salmon. In 1996, the opening date reverted to June 20 but the quota levels resulted in early closures in SFA 2 of 2A - July 10, 2B - July 8, and 2C - July 2 while SFA 1 and 14B did not close. For 1996, the accumulative effect of these weighted to SFA catches was to reduce the catch so that for small salmon the current catch represents 53% of small salmon and 61% of large salmon. In 1997, the opening date remained at June 20 but the quota levels resulted in early closures in SFA 2 of 2A -July 12, 2B - July 15, and 2C - July 13 while SFA 1 closed on October 15 as the quota was not caught. For 1997, the accumulative effect of these early closures was to reduce the catch so that for small salmon the current catch represents 47% of small salmon and 64% of large salmon. The season changes reduce catches and hence lower exploitation rates. The effect of shorter seasons in 1995, 1996 and 1997 was evaluated against the exploitation rates in section B as follows:
$\mathrm{US}=\mathrm{UN} * \mathrm{SC}$, for small salmon, where SC is season change, and
$\mathrm{US}=\mathrm{UN} * \mathrm{SC}$, for large salmon

The new estimates of fishing mortality including effort reductions, adjustments for the closure of the commercial fishery in Newfoundland, and shorter seasons due to opening dates and quotas results in the following exploitation rates which were applied to catches. The cumulative effect of factors A, B, and C is to reduce exploitation on Labrador origin salmon.

Labrador origin 2SW returns (LR2SW) were derived from eq. 1 by:
LR2SW = LR * P2SW
where: P2SW = proportion of the large salmon that is 2 SW salmon.
The SR1SW were calculated as in equation (5) but using P1SW which is the proportion of the catch that is 1-sea winter in age and maturing to enter freshwater and spawning in the year of capture. The parameter values for P1SW of 0.1 to 0.2 come from Anon. (1991).

The 2SW component was estimated separately for salmon caught in SFA 1, 2 and 14B. In SFA 1, commercial sampling at Nain of large salmon showed the proportion of 2SW was on average about 84% ($n=6542$), 1977-1991. Thus, a range of $0.7-0.9$ was used for SFA 1. In SFA 2, commercial sampling of large salmon averaged 69\% ($n=4793$) 2SW salmon, 1977-1991. There were no commercial samples available for SFA 14B. Thus, for SFAs 2 \& 14B a range of $0.6-0.8$ was used. For the 1SW component, commercial samples at Nain in SFA 1 of small salmon showed the proportion of 1 SW salmon were on average about 94\% ($n=4757$). In SFA 2 the 1SW component was on average about 97% ($n=8872$) of small salmon. There were no samples from commercial sampling in SFA 14B. In 1997, aged commercial samples indicated that the previous range was acceptable.

Total river returns of 2 SW salmon (TRR) were calculated as follows:
TRR = LR2SW / (1-us)

The total river returns of small salmon are also calculated by equation 6 but from SR.
Spawning escapement (SE) or spawners was calculated according to the formula:
SE = TRR - AC,
where:
AC = angling catch which includes retained catch plus 10% of catch \& released mortality for released salmon.

A couple of modifications were made to the estimation procedure for Labrador in 1997. First, determination of exploitation rates was calculated separately for SFA 1, 2 and 14B using the active effort individually for each SFA. For SFA 1, the active number of licences declined from 141 in 1991 to 39 in 1997. For SFA 2, the active number of licences declined from 320 in 1991 to 99 in 1997. For SFA 14B, active licences declined
from 52 in 1991 to 0 in 1997 when the fishery was closed. Exploitation rates determined as in equations 2, 3 and 4 were: SFA 1 - small was 0.0735 to 0.1399 and large was 0.2221 to 0.3959 ; and SFA 2 - small was 0.0384 to 0.0728 and - large was 0.1589 to 0.2799 .

Numbers of small and large salmon for SFAs $1 \& 2$ were estimated from the exploitation model while for SFA 14B the results of assessments on Forteau Brook and Pinware River were expanded to include all the watersheds in SFA 14B. Returns to SFA 14B were 663 to 1545 small salmon and 146 to 327 large salmon.

Total mortalities of small and large salmon were accounted for by summing commercial catches of small salmon in Labrador and Newfoundland, large salmon in Labrador, Newfoundland, and Greenland, angling catches in Labrador of small and large salmon including 10% of the caught and released salmon, and small and large spawners. All of the above mortality estimates except catches of Labrador salmon in Newfoundland, 1969-1991 and Greenland could be obtained from equations 1 to 7. Catches in Newfoundland and Greenland were assessed as follows:

Greenland: for 1969-1992 and 1995-2004, removals of Labrador salmon by the Greenland fishery were assessed from data based on the sampling program in commercial fish plants at West Greenland (Anon, 1996). The Greenland fishery catches salmon that would have returned to homewaters as large salmon in the year following the Greenland fishery. Numbers of Labrador salmon were determined by converting catches in kg to numbers of salmon of 1SW North American origin that were of river age 4 and older. The number of Labrador salmon was estimated by assuming that 70% of the production of 4 -year and older river age salmon are from Labrador (Anon, 1993b).

Newfoundland: for 1969-1991, catches of Labrador small and large salmon in Newfoundland were included in total mortalities as the product of the ratio of tags caught in Newfoundland to Labrador and the catch in Labrador. For small salmon the ratio was $(24 /(100-24))=0.32$ and for large salmon it was $(41 /(137-41)=0.43$.

1998-2001
For the years, 1998-2001 when only one or two counting projects took place in Labrador, the raising factors of 1.04 to 1.49 for small salmon and 1.05 to 1.27 for large salmon were used to estimate returns and spawners for Labrador from the overall PFA minus catches in Greenland, as was the case in previous years. However, in this case returns to rivers were derived for Labrador by subtracting landings in food fisheries. Also, catches in 1994-2006 were updated to reflect changes made to catch statistics in Labrador from the Licence Stub Return System. Procedures for the collection and compilation of commercial and angling fishery data are described in Ash and O'Connell (1987) for fishery years 1974-1996. For years 1969-1974, commercial catch data came from Anon. (1978). In 1997, the angling catch statistics were converted to a Licence Stub System (O'Connell et al., 1998) which continues to the present day.

2002-present

Counting projects occur on three to four Labrador rivers; out of about 100 extant salmon rivers. Because they occur on the same rivers each year, it is possible to extrapolate from abundance for small and large salmon per accessible drainage areas in these monitored rivers to unsurveyed ones in the remainder of Labrador. The accessible drainage areas were $9267 \mathrm{~km}^{2}$ for Lake Melville (SFA 1A), $25485 \mathrm{~km}^{2}$ for Northern Labrador (SFA 1B), $28160 \mathrm{~km}^{2}$ for Southern Labrador (SFA 2), and 2651 km² for the Straits Area (SFA 14B). Accessible drainage area in the counting facility rivers was $1878 \mathrm{~km}^{2}$ resulting in an expansion factor of 35 to one. Not all rivers in Lake Melville were included due to a lack of information on presence of salmon populations in rivers in this region of Labrador. Lake Melville rivers whose drainage areas were included are Sebaskachu, Cape Caribou, Goose, MacKenzie, Kenamu, Caroline and Traverspine.

Abstract

Abundances for SFAs 1A and 1B were derived from English River returns with maximum and minimum values developed using the observed variability of relative abundances in SFA 2. Total returns and spawners for Labrador are estimated by Monte Carlo simulation based on 10000 random draws from the range of values assuming abundances per km^{2} of accessible drainage were uniformly distributed. The relative abundances (per km^{2}) for each SFA were then multiplied by the total accessible drainage area to derive total returns of small and large salmon. Ranges of values were developed to convert numbers of small and large salmon to numbers of 1SW and 2SW salmon from scale age information collected from counting fences and angling fisheries in Labrador. A bootstrap procedure was used to develop estimates of the proportions of sea age 1 salmon in estimates of small salmon returns and spawners, proportions of sea age 2 salmon in estimates of large salmon returns and spawners and proportions of sea age 1 salmon in the estimates of large salmon returns.

Sea age correction factors were:
Small to 1SW - 96 to 100%
Large to 2 SW - 60 to 71%
Small overlap in large - 12 to 21%

Spawners of 1SW and 2SW salmon were derived by subtraction of angling catches including an estimate of catch and release mortalities (10\%) from the returns.

2.3.1.2 Newfoundland

Inputs for the run-reconstruction model for Newfoundland include estimates of small, large and 2SW returns and spawners to rivers (minimum and maximum). The methods used to estimate returns and spawners to the rivers in Newfoundland are described by Reddin and Veinott (2010). In brief, returns and spawner estimates were derived from recreational fishery exploitation rates of retained small salmon for rivers with enumeration facilities; and ratios of large to small salmon were utilized to estimate large salmon. Exploitation rates were then applied to all rivers with reported angling catches. A non-parametric bootstrap technique was used, whereby exploitation rates and ratios of large to small salmon from rivers with enumeration facilities were chosen at random with replacement. The 95th confidence interval from 500 iterations of the
weighted exploitation rate and ratio of large to small salmon was applied to angling catches on a Salmon Fishing Area (SFA) basis. The midpoint of the 95th confidence interval was used as the minimum and maximum estimate returns of large and small salmon in each SFA. Estimates of 2 SW returns are based on the expected proportion of 2SW in the large salmon category ($\geq 63 \mathrm{~cm}$). Commercial and recreational angling catches were derived as described for Labrador (2.3.1.1). Spawners in all years were determined as the returns to rivers minus angling catches including an adjustment for catch and release mortality.

2.3.1.3 Québec

Each Atlantic salmon river is classified into one of six categories reflecting th information available to estimate salmon returns (according to the method of Caron and Fontaine, 1999), with C1 being the most reliable evaluation and C6 the least. C1 corresponds to a river where the evaluation of the returns is based on a counting method, either from a fence or from a visual count through snorkelling or from a canoe. C2 uses the same evaluation, but without knowing the number of small and large salmon, which is then estimated from proportions reported in the sport fishing landings and, if necessary, the catch and release. Salmon returns on C3 rivers are determined based on multiple correlation factors, using catch number, fishing effort, season duration and river accessibility distance (Guillouët, 1993)

When estimation of the returns using a C1-C3 category is not possible, and when data of returns from previous years are available, the C4 category is used. C4 assumes that interannual variations in salmon returns in the targeted river are approximately the same as variations observed in the other rivers of the corresponding region. Category C5 is for rivers where only landings data are available. In these rivers the salmon run is estimated from the average regional exploitation rate. Finally, a few small rivers have essentially no available data. C6 then assumes that the run is related to the available river salmon habitat and is estimated with respect to rivers of the same area for which run estimates and salmon habitat area are known. Estimated numbers of returns from C4 to C6 cannot be used to assess relative to attainment of conservation limits. However, they provide at least approximate numbers to estimate returns and spawners for salmon rivers in Québec.

The evaluation of the uncertainty associated with return estimates depends on the river category. For C1 and C2 rivers, the correction factor for the minimum and maximum number of returns is $+5 \%$ and $+10 \%$ for all rivers with a fish ladder and for all others in zones Q1 to Q3 and Q10. The correction factor for rivers with darker water from zones Q5, Q6 and Q7 is $+10 \%$ and $+30 \%$. For the other categories, an uncertainty of $\pm 25 \%$ is associated with salmon return estimates, except for category C3 where calculation depends on the method of Guillouët (1993).

The number of spawners is obtained using the return estimate minus all river catches, which include landings and other types of removal. In most cases, river catches include landings from sport fishing only, which may be conducted by indigenous people such as that on the Betsiamites River. The other types of removal are of limited number and include mainly natural mortality, salmon captured for hatchery use and subsistence fishing when practised in river.

Atlantic salmon rivers are part of one of 10 management zones (Q1-Q3,Q5-Q11), estimates of returns in each river were summed over management zones. From 1984 to 2020, overall return estimates for all Québec rivers are obtained by adding management zones returns, commercial fishing (when operated), indigenous people subsistence fishing when practised in estuaries and an estimate of non-reported landings. However, little scientific data are available on non-reported landings and thus, estimates are based on good judgment, following consultations with regional biologists.

For the earlier part of the time-series (1970-1983), no river specific information is available and estimates of returns and spawners are provided for Quebec as a whole.

2.3.1.4 Gulf

Estimation of returns and spawners are developed for the four salmon fishing areas of Gulf Region (SFAs 15 to 18).

SFA 15

The major river in this area is the Restigouche River. The returns and spawners are estimated for the Restigouche River exclusive of returns to the Matapedia River, which are included in Québec zone Q1. The Restigouche River stock assessment is based on angling catch with assumed exploitation rates between 30% and 50% with estuary catches added back after the estimates of returns. Return and spawner estimates for SFA 15 are based on Restigouche River data, scaled up for SFA 15 using angling data. The return and spawner estimates for SFA 15 are derived from the return and spawner estimates for Restigouche (New Brunswick). From 1972 to 2013, the minimum and maximum return and spawner estimates are derived from the minimum and maximum ratios of angling catch in all of SFA15 relative to angling catch in Restigouche (New Brunswick) (min = 1.117; max $=1.465$). Harvests represent retained angling catch plus 6% catch and release mortality for released fish. The proportion of 2 SW in large salmon numbers is based on aged scale samples from angling, trapnets, and broodstock. In the years when no scale samples analysis is available, a mean value of 0.65 is used.

From 2014 to 2020, the estimation of returns and spawners in the Restigouche an in extenso SFA 15 relies on snorkel counts. During this time period, these counts are considered more reliable than the angling catches. Snorkel counts are assumed to be an estimate of the minimum number of spawners in the Restigouche. The higher bound of the spawners estimates is obtained by adding 20% to the snorkel counts (value somehow arbitrary but based on ocal technicians and biologist opinions).

Spawners for SFA15 are calculated by scaling up the Restigouche snorkel counts to the ratio of habitat available (Restigouche habitat $=0.72$ SFA 15 habitat)

Returns estimates for SFA 15 are obtained by accounting for catch and release mortality (6\%) and assuming and exploitation rate h ranging from 0.3 to 0.5 and adding the First nations harvest.

$$
\text { Returns SFA15 }=\frac{\text { Spawners SFA15 }}{(1-h+h * 0.94)}+\text { First NAtion harvest }
$$

SFA 16

The most important Atlantic salmon river in SFA 16 is the Miramichi River. The Miramichi makes up 91\% of total rearing area of SFA 16 and returns to the river are assessed annually. For 1971 to 1991, minimum and maximum values are based on capture efficiencies of the Millbank estuary trapnet representing a lower Cl of -20% of the estimate and upper Cl of 33% of the estimate. For 1992 to 1997 , minimum and maximum are lower and upper Cl and based on estimate bounds of -18.5% to $+18.5 \%$. Since 1998 to the present, minimum and maximum are 5th and 95th percentile range from a Bayesian hierarchical model used in the assessment. Returns to SFA 16 are Miramichi returns (Minimum, Maximum) / 0.91. Proportion 1SW in small salmon is from scale ageing; proportions have varied from 0.97 to 1.0. Proportion 2SW in the large salmon category is obtained from scale ageing. Spawners are returns minus harvests. For 1998 to 2018, the harvest of large salmon is estimated as the sum of the indigenous fisheries harvests for large salmon and 1\% of the large salmon catch (30\% exploitation rate, 3% catch and release mortality). Prior to 1995 , the harvest of small salmon is estimated as 30% of the small salmon return plus the harvest from the indigenous fisheries. During 2015 to 2018, when mandatory catch and release management measures were in effect, the fisheries related losses (harvests) of small salmon were estimated as the sum of the indigenous fisheries harvests for small salmon and 1% of the small salmon catch (30% exploitation rate, 3% catch and release mortality).

SFA 17

For 1970-1994, small returns are estimated from retained small salmon catch in the Morell River divided by the river-specific exploitation rate. Salmon catch in the Morell River was estimated in 1970-1990 by DFO Fisheries Officers; and in 1991, 1992, and 1994 by angler mail-out surveys. The number of small retained salmon in 1993 was not recorded, so the number used is the mean for 1986-1992. For 1970-1993, exploitation rate was taken as the mean of exploitation rates estimated for 1994, 1995 , and 1996 (0.317). For 1994, exploitation rate was 0.34 . The min and max of small returns are calculated using exploitation +/- 0.1; e.g. $0.34+/-0.1$ gives 0.24 and 0.44. Large returns $=$ (number of small returns/proportion small) - number of small returns. For 1970-1980, proportion small is calculated from numbers of small and large salmon in the angling catch of each year. For 1981-1994, proportion small is taken from counts at the Leards Pond trap on the Morell River. Small spawners = number of small recruits - number of small retained. Large spawners = number of large recruits - number of large retained. In 2012, the Province of Prince Edward Island discontinued the sale of recreational fishing licences for Atlantic salmon. Instead, anglers who purchased a trout licence are authorized to also fish for Atlantic salmon. Since it was no longer possible to assemble a list of salmon anglers, the salmon angler survey was discontinued from 2012. In the absence of salmon angling data for 2012 and subsequently, catch statistics estimated for 2011 are used for 2012 and subsequent years.

Spawner estimates for 1995 to the present are derived from redd counts in 23 rivers. For years and rivers in which redd counts are unavailable, redd numbers are estimated by linear interpolation from the preceding and succeeding count year. Redd numbers in years prior to the first count are taken as the first count. Redd numbers in years after the last count are taken as the last count. Female spawners are estimated from the ratio of 3.357 redds/female spawner, measured in the West River in 1990. Total spawners are estimated from size-specific sex ratios derived from counts at Leards and Mooneys Ponds, Morell River, in 1986-2001. The proportion of large salmon is assumed to be 0.5 in the Cains, Carruthers, Trout (Coleman), Morell, Cardigan, West, and Dunk Rivers, and 0.9 in all other rivers. Spawners are presented as Min (estimated spawners -20%) and Max (estimated spawners $+20 \%$). Returns are spawners + total estimated fishing mortality, including angler catches, catch and release mortality, and indigenous harvests. Angler catches and catch and release mortality are estimated from angler card surveys. Returns are presented as Min (estimated returns -20\%) and Max (estimated returns + 20\%). It is assumed that large salmon and 2SW salmon are equivalent.

SFA 18

Returns and spawners to SFA 18 are derived from estimates of returns and spawners to the Margaree River, adjusted for the ratio of the SFA 18 angling catch to the Margaree River catch. For small salmon, the ration of SFA 18 catch to Margaree catch varies between 1.15 and 2.71 for years 1984 to 2004 . For large salmon, the ratio of SFA 18 catch to Margaree catch varies between 1.08 and 2.32 for years 1984 to 2004. Returns to Margaree River are estimated using various techniques.

- 1970 to 1983 angling catch divided by range of exploitation rates with maximum exploitation rate of 0.37 and minimum exploitation rate of 0.215 ;
- 1984 to 1986 based on annual assessments;
- 1987 to present angling catch and effort data from logbooks and provincial licence stubs are used to derive the returns. The catchability coefficient per rod day is estimated from angling catch and effort data for the years 1988 to 1996 when mark and recapture programmes were used to estimate returns, independently from angling data.

Spawners for 1970-1983 equal returns minus removals. Spawners for 1984 to the present equal returns minus catch for small salmon and returns minus catch, corrected for 5% mortality, for large salmon. 2SW salmon represent between 0.77 and 0.87 of large salmon returns and spawners.

2.3.1.5 Scotia-Fundy

Salmon originating in rivers of the Atlantic coast of Nova Scotia and southwest New Brunswick in Salmon Fishing Areas (SFAs) 19-21 and the portion of SFA 23 outside the inner Bay of Fundy comprise the Scotia-Fundy stocks. With the exception of at least one stock in SFA 19, they have a large salmon component that migrates to the North Atlantic/Labrador Sea (Amiro et al., 2008). Estimates of returns and spawning escapement for the Scotia-Fundy stocks are provided as inputs to the runreconstruction model. Inner Bay of Fundy Atlantic Salmon (SFA 22 and part of SFA 23) have been federally listed as endangered under the Canadian Species at Risk Act and
are not included as inputs into the run-reconstruction model. With the exception of one population, inner Bay of Fundy stocks have a localized migration strategy while at sea and an incidence of maturity after one winter at sea.

Consistent with the requirements of the model, a range (minimum to maximum) of returns and spawning escapement for the Scotia-Fundy stocks is provided for the runreconstruction model. The methods used to estimate total returns and spawners are described by Amiro et al. (2008). In brief, for SFAs 19-21, the escapement is based on the count of small and large salmon at the Morgan Falls fish-way on the LaHave River from 1970 to the present year, scaled up to the region using the relationship between this count and the recreational catch data for rivers in SFA 19 to 21 from 1970 to 1997 and a catch rate for the LaHave River from 1970 to 1997. Estimates of the returns also include estimates of landings in the commercial salmon fisheries in SFA 19-21 from 1970 to 1983. The model is fitted using maximum likelihood, and the 90% confidence limits are carried forward as the minimum and maximum values. In SFA 23 from 1970 until 1992, estimates of total 1SW and large wild-origin salmon returns are based on the estimated number of returns destined for tributaries above Mactaquac Dam on the Saint John River; this includes in-river and outer-Fundy commercial landings (1970-1971 and 1981-1983), in-river indigenous harvests (since 1974), and counts at Mactaquac Dam. These estimates are raised by the proportion of the total accessible productive habitat in SFA 23 that is upstream of Mactaquac Dam (0.4-0.6). Hatcheryorigin returns were attributed to above Mactaquac Dam only and no hatchery 1SW and MSW returns were estimated for other rivers within SFA 23 (outer Fundy). Since 1993 the estimates of 1SW and MSW returns to the Nashwaak River have been used to estimate the wild production from tributaries of the Saint John River below Mactaquac Dam. The estimated 1SW and MSW returns to the Nashwaak River (above Counting Fence), is raised by the proportion of the total production area accounted for below Mactaquac (0.21-0.3) and then added to the above Mactaquac totals.

2.3.1.6 USA

Total salmon returns and spawners for USA rivers are based on trap and weir catches and for the small rivers in Maine that do not have fish counting facilities, estimates of spawners were based on redd counts.

2.3.2 Improvements to NAC input data

Modifications to input variables used in assessments for the NAC area are reported by WGNAS in the year in which they are first implemented.

Over recent years, efforts have been made to reduce the level of unreported catch in a number of countries (e.g. through improved reporting procedures and the introduction of carcass tagging and logbook schemes). However, the methods used to derive estimates of unreported catch vary markedly between countries. For example, some countries include only illegally caught fish in the unreported catch, while other countries include estimates of unreported catch by legal gear as well as illegal catches in their estimates.

Descriptions of the national approaches used for evaluating unreported catches have been reported at various WGNAS meetings (e.g. ICES, 1996; 2000; 2002; 2010a). In addition, detailed reports describing national procedures for evaluating illegal and
unreported catch, and efforts to minimise this, were submitted by parties to NASCO in 2007 in support of a special theme session on this issue. Full details are available at: http://www.nasco.int/pdf/2007\ papers/CNL(07)26.pdf

Input data commonly rely on rod catches and the practice of catch and release has become increasingly important in recent years to reduce levels of exploitation on stocks. As the practice is increasing, WGNAS have previously recommended (ICES, 2010a) that consideration should be given to incorporating mortality associated with this practice in river-specific, regional and national assessments.

The procedures currently used to incorporate catch and release and unreported catches into regional, national and international assessments are summarised at Appendix 1 (from ICES, 2010a).

2.4 Biological and other data requirements

As noted previously, many of the 'conventional' data requirements (e.g. marine survey data and commercial CPUE) used in the assessment of other commercially important fish species are inappropriate to salmon. A range of biological, catch and exploitation rates and other data pertinent to appropriate stock assessments are however, collected and made available to WGNAS to help inform assessments and to aid in responding to the various questions posed by NASCO.

Appendix 2 of this Stock Annex provides an overview of current and possible future data requirements for Atlantic salmon assessment/ scientific advice. This was compiled at a recent meeting of WGNAS (ICES, 2013) in relation to monitoring requirements under the European Data Collection Framework (DCF) and following a more detailed review of the data requirements under DCF (ICES, 2012c). This table illustrates the type of information collected/available, but is provided for illustrative purposes only. It should be noted that many Atlantic salmon producing countries fall outside the DCF provisions, which only relate to countries within the European Union. Further, Sovereign states are responsible for the regulation of salmon fisheries within their areas of jurisdiction. Formal ICES catch advice is only required for the distant water salmon fisheries, which take salmon originating in rivers of another party.

3 Assessment methods

In managing Atlantic salmon fisheries, NASCO has adopted a fixed escapement strategy (Potter, 2001), in recognition of the importance of the spawning stock to subsequent recruitment. Therefore, in managing the distant water fisheries at Faroes and West Greenland, the spawning requirements of the rivers contributing to these fisheries must be defined. Management advice, expressed as allowable harvest (tonnes), is then predicated on a forecast of salmon abundance prior to the fishery such that the spawning requirements of the contributing stocks can be achieved. The provision of catch advice thus proceeds through a number of steps:

The definition of spawning objectives;
The development of a measure of abundance prior to the fishery; i.e. the prefishery abundance or PFA;

A measure of the spawning stock contributing to the PFA;
A model to forecast the PFA;
The development of a risk analysis framework for the catch advice.

These steps are described in detail in the following sections, subdivided as necessary for the different distant water fisheries and the various stock complexes which contribute to the two fisheries (Greenland and Faroes).

3.1 Definition of spawning objectives

3.1.1 Management objectives and reference points

Conservation limits (CLs) for North Atlantic salmon have been defined by ICES as the stock level that will achieve long-term average maximum sustainable yield (MSY). NASCO has adopted the following definition of CLs (NASCO, 1998): 'The CL is a limit reference point; having populations fall below these limits should be avoided with high probability.'

Atlantic salmon has characteristics of short-lived fish stocks; mature abundance is sensitive to annual recruitment because there are only a few age groups in the adult spawning stock. Incoming recruitment is often the main component of the fishable stock. For such fish stocks, the ICES MSY approach is aimed at achieving a target escapement (MSY Bescapement, the amount of biomass left to spawn). No catch should be allowed unless there is a high probabaility that this escapement can be achieved. The escapement level should be set so there is a low risk of future recruitment being impaired, similar to the basis for estimating $B_{p a}$ in the precautionary approach. In short-lived stocks, where most of the annual surplus production is from recruitment (not growth), MSY $B_{\text {escapement }}$ and $B_{p a}$ might be expected to be similar.

It should be noted that this is equivalent to the ICES precautionary target reference points ($S_{\text {pa }}$). Therefore, stocks are regarded by ICES as being at full reproductive capacity only if they are above the precautionary target reference point. This approach parallels the use of precautionary reference points used for the provision of catch advice for other fish stocks in the ICES area.

For the assessment of the status of stocks and advice on management of national components and geographical groupings of the stock complexes, where there are no specific management objectives:

- ICES requires that the lower bound of the 90% confidence interval of the current estimate of spawners is above the CL for the stock to be considered at full reproductive capacity (equivalent to a probability of at least 95% of meeting the CL).
- When the lower bound of the confidence limit is below the CL, but the midpoint is above, then ICES considers the stock to be at risk of suffering reduced reproductive capacity.
- Finally, when the midpoint is below the CL, ICES considers the stock to be suffering reduced reproductive capacity.

Ideally, Atlantic salmon should be assessed and managed on the basis of river-specific stock units, the scale corresponding best to the spawner to recruitment dynamic (Chaput, 2012). In reality, this is not the case for the majority of rivers, although efforts are continuing to develop river-specific CLs and assessment protocols and developments are reported annually to WGNAS (e.g. ICES, 2013).

The risk assessment frameworks applied by WGNAS directly evaluate the risk of meeting or exceeding the stock complex objectives. Managers can choose the risk level which they consider appropriate. ICES considers however that to be consistent with the MSY and the precautionary approach, and given that the CLs are considered to be limit reference points and to be avoided with a high probability, then managers should choose a risk level that results in a low chance of failing to meet the CLs. ICES recommends that the probability of meeting or exceeding CLs for individual stocks should be greater than 95\% (ICES, 2012b).

3.1.2 Reference points in the NEAC area

River-specific CLs have been derived for salmon stocks in some countries in the NEAC area (France, Ireland, UK (England \& Wales), Norway and Sweden). An interim approach has been developed for estimating national CLs for countries that cannot provide one based upon river-specific estimates. This approach is based on the establishment of pseudo stock-recruitment relationships for national salmon stocks (Potter et al., 2004).

The NEAC-PFA run reconstruction model (see below) provides a means of relating estimates of the numbers of recruits to the numbers of spawners. The numbers of 1SW and MSW spawners are converted into numbers of eggs deposited using the proportion of female fish in each age class and the average number of eggs produced per female. The egg deposition in year ' n ' is assumed to contribute to the recruitment in years " $n+3$ " to " $n+8$ " in proportion to the numbers of smolts produced of ages 1 to 6 years respectively. These proportions are then used to estimate the 'lagged egg deposition' contributing to the recruitment of maturing and non-maturing 1SW fish in the appropriate years. The plots of lagged eggs (stock) against the 1SW adults in the sea (recruits) are presented as 'pseudo stock-recruitment' relationships for each homewater country or region that is unable to provide river-specific CLs. In countries where with more than one region, the analysis is carried out for each region separately and the resulting estimates are summed to provide a national figure.

As noted previously, ICES currently define the CL for salmon as the stock size that will result in the maximum sustainable yield (MSY) in the long term. However, it is not straightforward to estimate this point on the stock-recruitment relationships established by the national PFA run-reconstruction models, as the replacement line (i.e. the line on which 'stock' equals 'recruits') is not known for these relationships. This is because the stock is expressed as eggs, while the recruits are expressed as adult salmon. To address this, WGNAS has developed a method for setting biological reference points from the national/ regional pseudo stock-recruitment datasets (ICES, 2001). This model assumes that there is a critical spawning stock level below which recruitment decreases linearly towards zero and above which recruitment remains constant. The position of this critical stock level is determined by searching for the stock value that provides the line of best fit for the stock and recruitment data
provided by the PFA run-reconstruction model as determined by the residual sum of squares. This point is a proxy for $\mathrm{S}_{\text {lim }}$ and is therefore defined as the CL for the stock, and is indicated by the inflection point in the hockey-stick relationship (e.g. see example at Figure 3.1.2.1)

Figure 3.1.2.1. Pseudo stock-recruitment relationship for UK (Scotland) eastern region (from ICES, 2013).

Where river-specific estimates of CLs have been derived for all the rivers in a country or region, these are aggregated to provide national estimates. For countries where the development of river-specific CLs has not been completed, the method described above has been used (see example in Table 3.1.2.1, from ICES, 2013). The estimated national CLs are then summed to provide aggregate CLs for the northern and southern NEAC stock complexes (Table 3.1.2.1).

The CLs have also been used to estimate the spawning escapement reserves (SERs). These represent the CLs increased to take account of natural mortality between the recruitment date, 1st January, and the return to homewaters for maturing and nonmaturing 1SW salmon from the northern NEAC and southern NEAC stock complexes (Table 3.1.2.1).

Table 3.1.2.1. Conservation limits (CLs) for NEAC countries and stock complexes estimated from river-specific values, where available, or the national PFA run-reconstruction model. Spawner escapement reserves (SERs) are also included for each stock complex (ICES 2016).

Table 3.2.2.1. Conservation limit options for NEAC stock groups

Northern Europe	National Model CLs		River Specific CLs		Conservation limit used		SER	
	1SW	MSW	1SW	MSW	1SW	MSW	1SW	MSW
Finland			14,271	9,562	14,271	9,562	17,336	16,386
Icland (north \& east)	5,854	1,678			5,854	1,678	7,218	2,876
Norway			60,614	72,747	60,614	72,747	77,009	120,991
Russia	62,752	34,506			62,752	34,506	79,785	61,997
Sweden			2,099	2,583	2,099	2,583	2,707	4,492

Southern Europe	National Model CLs		River Specific CLs		Conservation limit used		SER	
	1SW	MSW	1SW	MSW	1SW	MSW	1SW	MSW
France	17,790	1,171	17,400	5,100	17,400	5,100	22,440	9,419
Icland (south \& west)					17,790	1,171	21,935	2,006
Ireland			211,471	46,943	211,471	46,943	268,672	78,075
UK (E \& W)			53,988	29,918	53,988	29,918	68,591	51,271
UK (NI)			19,911	3,280	19,911	3,280	24,365	5,504
UK (Sco)	256,548	182,741			256,548	182,741	325,942	310,205
			ck Comp		577,107	269,153	731,946	456,480

WGNAS considers the current CL and SER levels may be less appropriate to evaluating the historical status of stocks (e.g. pre-1985), that in many cases have been estimated with less precision.

3.1.3 Reference points in the NAC area

In many regions of North America, the CLs are calculated as the number of spawners required to fully seed the wetted area of the river. The methods and values used to derive the egg and spawner conservation requirements for Atlantic Canada are documented in O'Connell et al. (1997). CLs have generally been derived using freshwater production dynamics translated to adult returns to estimate the spawning stock for maximum sustainable yield (MSY). Data were available for a limited number of stocks and these values were transported to the remaining rivers using information on habitat area and the age composition of the spawners. A similar procedure was used to determine the CLs for rivers in the USA (ICES, 1995). In Québec, adult-to-adult stock-recruitment relationships for six rivers were used to define the CLs for the other rivers (Caron et al., 1999). The definition of conservation in Canada varies by region and in some areas, historically the values used were equivalent to maximizing /optimizing freshwater production. These are used in Canada as limit reference points and they do not correspond to MSY values. Reference points for Atlantic salmon that conform to the Precautionary Approach have been recently reviewed in eastern Canada (DFO 2015).

Fisheries and Oceans Canada (DFO) undertook a revision of reference points for Atlantic salmon in Canada that conform to the Precautionary Approach (ICES, 2016). The Limit Reference Points in all cases are defined in terms of total eggs from all sizes and sea ages of salmon. DFO Newfoundland Region retained the current conservation requirement based on 240 eggs per $100 \mathrm{~m}^{2}$ of fluvial rearing habitat, and in addition for insular Newfoundland 368 eggs per ha of lacustrine habitat (or 150 eggs per ha for stocks on the northern peninsula of Newfoundland), as equivalent to their Limit Reference Point and have defined the Upper Stock Reference as 150% of the Limit Reference Point (DFO, 2017). DFO Maritimes Region
(Scotia-Fundy) has retained the current conservation requirement based on 240 eggs per $100 \mathrm{~m}^{2}$ as the Limit Reference Point (DFO, 2012; Gibson and Claytor, 2013). DFO Gulf Region revised and defined the Limit Reference Point in that region of Canada using the proportion of eggs from MSW salmon as a covariate in the Bayesian Hierarchical Model (DFO, 2018). The Province of Quebec revised the Limit Reference point and Upper Stock Reference point using a Bayesian hierarchical analysis of stock-recruitment data (Dionne et al., 2015; MFFP, 2016; ICES, 2017). For Quebec, the management plan for recreational fishery provides river-specific Upper Stock Reference points, expressed in number of eggs, to regulate large salmon retention (MFFP, 2016). This Upper Stock Reference point is also used to establish the 2SW spawner requirement for advice on the management of the 1SW nonmaturing fisheries at Greenland.

The NAC conservation requirements for 2 SW salmon (only these are required in developing catch options for the West Greenland fishery) are summarised in Table 3.1.3.1 (from ICES, 2020). These are calculated from the adult age structure within the different regions and total 114295 2SW salmon for Canada and 29199 2SW salmon for the USA, for a combined total of 143494.

Table 3.1.3.1. 2SW Conservation limits (CLs) for the six regions in the NAC area estimated from river-specific values.

Country and Commission Area	Stock Area	2SW spawner requirement number of fish	2SW Management Objective (number of fish)
Canada	Labrador (LAB)	34746	
Canada	Quebec (QC)	4022	
Canada	Southern Gulf of St Lawrence	32085	10976
(GULF)	18737		
Canada	Scotia-Fundy (SF)	24705	4549
Canada Total		114295	
USA	29199		
North America Total		143494	

3.2 Estimating PFA

Estimates of PFA are derived by run-reconstruction methods. These work back in time from estimates of abundance in homewaters to earlier periods of the salmon's life cycle by adding in catches at appropriate times and adjusting for survival. The runreconstruction approach was first presented at ICES in 1992 and was subsequently adopted for stocks on both sides of the Atlantic (Rago et al., 1993a; Potter and Dunkley, 1993; Potter et al., 1998; 2004). The main advantage of backwards-running, run-reconstruction models over alternative forward-running approaches is that more extensive data are available on adult returns (e.g. traps, counters and catch data) than on freshwater production of juveniles. In addition, rates of natural mortality (M) were
thought to be lower and more stable for large salmon after their first winter in the sea than during the post-smolt phase (Potter et al., 2003).

The models used to estimate PFA take the generalised form:

$$
P F A=N h * \exp \left(M t_{h}\right)+\sum_{i} C_{i} * \exp \left(M t_{i}\right)
$$

Where: Nh is the number of adult fish returning to homewaters, C_{i} the catch of fish from the stock in each interception fishery i (operating before the fish return to homewaters), M the monthly instantaneous rate of natural mortality of salmon in the sea after the first sea-winter, t_{i} the time in months between the PFA date and the midpoint of fishery i, and t_{h} is the time in months between the PFA date and the midpoint of the return of fish to homewaters. Coastal catches are also added to the estimate where appropriate.

3.2.1 NEAC area run reconstruction model

The original model used to estimate the PFA of salmon from countries in the NEAC area was described by Potter et al. (2004); modifications have been described in subsequent WGNAS reports. PFA in the NEAC area is defined as the number of 1SW recruits on January 1st in the first sea winter. As there are relatively few fish of sea age three or more in most stocks, the model caters for two age groups, 1SW and MSW, the latter including all fish of sea age two or more that are treated as a single cohort. The model is therefore based on the annual catch in numbers of 1SW and MSW salmon in each country. These are raised to take account of minimum and maximum estimates of non-reported catches and exploitation rates of these two sea-age groups.

Thus, for each country (or region) c in year y, the total number of fish of sea age a caught in homewater fisheries $\left(\mathrm{Ch}_{\mathrm{a}, \mathrm{y}, \mathrm{c}}\right)$ is calculated by dividing the declared catch $\left(\mathrm{Cd}_{a, y, c}\right)$ by the non-reporting rate (1- $\left.\mathrm{U}_{\mathrm{a}, \mathrm{y}, \mathrm{c}}\right)$:

$$
\mathrm{Ch}_{\mathrm{a}, \mathrm{y}, \mathrm{c}}=\mathrm{Cd}_{\mathrm{a}, \mathrm{y}, \mathrm{c}} /\left(1-\mathrm{U}_{\mathrm{a}, \mathrm{y}, \mathrm{c}}\right)
$$

where: $U_{a, y, c}$ is the estimated proportion of the total catch that is unreported or discarded. The number of fish returning to homewaters $\left(\mathrm{Nh}_{\mathrm{a}, \mathrm{y}, \mathrm{c}}\right)$ is estimated by dividing the total homewater catch by the exploitation rate $\left(\mathrm{H}_{\mathrm{a}, \mathrm{y}, \mathrm{c}}\right)$:

$$
N h_{a, y, c}=C h_{a, y, c} / H_{a, y, c}
$$

As the model provides estimates of total returns and total catch (including non-catch fishing mortality), it is then also possible to estimate the spawner escapement ($\mathrm{Ns}_{\mathrm{a}, \mathrm{y}, \mathrm{c})}$:

$$
N s_{a, y, c}=N h_{a, y, c}-C h_{a, y, c}
$$

Total catches in the Faroese $\left(\mathrm{Cf}_{\mathrm{a}, \mathrm{y}}\right)$ and West Greenland $\left(\mathrm{Cg}_{\mathrm{a}, \mathrm{y}}\right)$ fisheries are similarly calculated by correcting the declared catches for non-reporting, but they are not raised for the exploitation rate, because the uncaught fish are accounted for from the returns to homewaters. The West Greenland fishery only exploits salmon that would otherwise mature as MSW fish, although the majority are 1SW fish in the summer that they are caught; for the purpose of the model, all are classed as 1SW. The Faroese
fishery exploits predominantly MSW salmon, but also a small number of 1SW fish, 78% of which have been estimated to be maturing (ICES, 1994). The Faroese fishery has not taken salmon since 2000, but over the two decades previous to that, a substantial proportion of the fish caught in the Faroese fishery were escapees from salmon farms, and these are discounted from the assessment of wild stocks on the basis of data from Hansen et al. (1999). The incidence of farm escapees in the West Greenland catch is thought to be $<1.5 \%$ (Hansen et al., 1997), so this portion is ignored in the model. The total estimated catches of wild fish in both distant-water fisheries are assigned to the PFA for different countries on the basis of historic tagging studies (Potter, 1996).

The returns to homewaters and catches in the distant-water fisheries of 1SW and MSW salmon are then raised to take account of the marine mortality between January 1st in the first sea winter (the PFA date) and the mid-point of the period over which the respective national fisheries operate. WGNAS determined a natural mortality value of 0.03 per month to be the most appropriate (ICES, 2002) and a range 0.02 to 0.04 is applied within the model in a Monte Carlo simulation. Thus, the PFA of maturing 1SW fish (PFAm), survivors of which will return to homewaters as 1SW adults, is:

$$
\operatorname{PFAm}_{y, c}=\mathrm{Nh}_{1, y, \mathrm{c}} * \exp \left(\mathrm{Mth}_{\mathrm{h}, 1, \mathrm{c}}\right)+0.78 * \mathrm{Cf}_{1, \mathrm{y}} * \mathrm{w}_{\mathrm{y}} *{ }^{*} \mathrm{pf}_{1, \mathrm{c}}{ }^{*} \exp \left(\mathrm{Mtf}_{\mathrm{f}, 1, \mathrm{c}}\right)
$$

and the PFA of non-maturing 1SW fish (PFAn), survivors of which will return to homewaters as MSW adults, is:

```
PFAn \({ }_{y, c}=\mathrm{Nh}_{2, \mathrm{y}+1, \mathrm{c}}{ }^{*} \exp \left(\mathrm{Mth}_{\mathrm{h}, 2, \mathrm{c}}\right)+\mathrm{Cg}_{1, \mathrm{y}}{ }^{*} \mathrm{pg}_{1, \mathrm{c}}{ }^{*} \exp \left(\mathrm{Mtg}_{\mathrm{g}, \mathrm{c}, \mathrm{c}}\right)\)
\(+0.22{ }^{*} \mathrm{Cf}_{1, y}{ }^{*} \mathrm{w}_{\mathrm{y}}{ }^{*} \mathrm{pf}_{1, \mathrm{c}}{ }^{*} \exp \left(\mathrm{Mtf}_{\mathrm{f}, 1, \mathrm{c}}\right)+\mathrm{Cf}_{2, \mathrm{y}+1}{ }^{*} \mathrm{w}_{\mathrm{y}+1}{ }^{*} \mathrm{pf}_{2, \mathrm{c}}{ }^{*} \exp (\mathrm{Mt} \mathrm{f} 2, \mathrm{c})\)
```

where indices y and c represent year and country/region, indices 1 and 2 the 1SW and MSW sea age groups, w is the proportion of the Faroese catch that is of wild origin, pf and pg are the proportion of the catches in the Faroese and West Greenland fisheries originating in each country (as indexed), and t_{h}, t_{f} and t_{g} are the times in months between the PFA date and the midpoints of the homewater fisheries, the Faroese fishery, and the West Greenland fishery, respectively, for the year classes and country/region as indexed.

Total 1SW recruitment for the NEAC area in year y is therefore the sum of the maturing 1SW and non-maturing 1SW recruitments for that year for all countries:

$$
P F A_{y}=\sum_{c} P F A m_{y, c}+\sum_{c} P F A n_{y, c}
$$

The non-reporting rates, exploitation rates, natural mortality, and migration times in the above equations cannot be estimated precisely, so national experts provide minimum and maximum values based upon best available knowledge that are considered likely to be centred on the true values (ICES, 2003). A Monte Carlo simulation (MSC: 12000 trials) is used to estimate confidence intervals on the stock estimates.

Where appropriate to the provision of management advice, the national outputs from the model are combined into stock complexes, such as those for southern and northern NEAC (ICES, 2002). The confidence limits for these combined estimates are derived from the sum of the national variances obtained from the MCS (the covariances are assumed to be small). This model has provided time-series of PFA estimates for NEAC salmon stocks from 1971 to the present.

The model was initially run using ‘Crystal Ball’ (CB) in Excel (Decisioneering, 1996). However, an updated version of the model which runs in the ' R ' programming language (R Development Core Team, 2007) was developed in 2011 (ICES, 2011). This provided a more flexible platform for the further development of the model and to allow its integration with the Bayesian forecast model for the development of catch options (see below). In 2012, the outputs of the CB and ' R ' models were compared to examine the approaches taken and to validate the outputs (ICES, 2012a). Since 2013, the run-reconstruction analysis has been completed by WGNAS using the ' R ' programme (ICES, 2013). This has also enabled additional sources of uncertainty to be incorporated into the modelling approach (ICES, 2013).

The full set of country-specific data inputs, as used in the most recent assessment (ICES, 2016) is provided at Appendix 3. The ' R ' code used for running the model and the additional data input file required to run the model, are available on the ICES WGNAS SharePoint site.

3.2.2 NAC area run reconstruction model

The run-reconstruction model developed by Rago et al. (1993a) and described in previous WGNAS reports (ICES, 2008; 2009a) and in the primary literature (Chaput et al., 2005) is used to estimate returns and spawners by size (small salmon, large salmon) and sea age group (2SW salmon) to the six geographic regions of NAC from 1971 to the present. The model takes the form:

$$
\mathrm{PF} A_{y \operatorname{year}(\mathrm{i})}=\left[\mathrm{NR} 2_{\mathrm{year}(\mathrm{i}+1)}{ }^{*} \mathrm{e}^{\mathrm{MX} 1}+\mathrm{NC} 2_{\text {year }(\mathrm{i}+1)}\right]^{*} \mathrm{e}^{\mathrm{MX} 10}+\mathrm{NC} 1_{\text {year }(\mathrm{i})}+\mathrm{NG} 1_{\text {year }}(\mathrm{i})
$$

where: $N R 2_{\text {year }(i+1)}$ is the sum of 2 SW returns to six regions of North America in year i $+1, \mathrm{NC} 2_{\text {year }(i+1)}$ is the catch of 2 SW salmon in Newfoundland and Labrador commercial fisheries in year $\mathrm{i}+1, \mathrm{NC1}_{\text {year(i) }}$ is the catch of 1 SW non-maturing salmon in Newfoundland and Labrador commercial fisheries in year $i, N G 1_{\text {year }(i)}$ is the catch of 1SW non-maturing salmon of North American origin in the Greenland fishery in year i , and M is the monthly instantaneous natural mortality of 0.03 .

The reconstruction begins with the estimation of returns of 2SW salmon in year $\mathrm{i}+1$ to six regions in eastern North America: Labrador, Newfoundland, Québec, Gulf, Scotia-Fundy, and USA. For the four southern regions, the regional returns include the harvest in the coastal commercial fisheries but this is not the case for Newfoundland and Labrador. For Labrador, the returns to rivers are estimated from the commercial harvest factored by an exploitation rate. The harvest of 2 SW salmon in the Newfoundland and Labrador mixed-stock fisheries in year $\mathbf{i}+1$ is added to the sum of the returns to the six regions (prorated backward for one month of natural mortality - equates to 1st June of year $\mathrm{i}+1$) to produce the returns to North America. Finally, the harvests of North American origin salmon in the Greenland fisheries in year i and
the harvest of non-maturing 1 SW salmon in the Newfoundland and Labrador commercial fisheries in year i are added to the prorated returns to North America (ten months between abundance at Greenland on 1st August year i and North America on 1st June year $\mathrm{i}+1$) to produce the pre-fishery abundance of non-maturing 1SW salmon of North American origin. An instantaneous natural mortality rate of 0.03 per month is assumed for salmon in the second year at sea for all years (ICES, 2002). Adjustments to the input data resulting from reductions and subsequent closures of commercial fisheries in North America are summarized by Friedland et al. (2003)

Following earlier WGNAS recommendations (ICES, 2008), the run-reconstruction model since 2009 has been developed using Monte Carlo simulation (OpenBUGS; http://mathstat.helsinki.fi/openbugs/; Lunn et al., 2000). This is similar to the approach applied for the NEAC area.

The PFA of the non-maturing component of 1SW fish, destined to be 2SW returns (excluding 3SW and previous spawners) is the estimated number of salmon in the North Atlantic on August 1st of the second summer at sea. As this requires estimates of 2 SW returns to rivers, there is always a lag in providing this figure (PFA estimates for year n require $2 S W$ returns to rivers in North America in year $n+1$).

The full set of data inputs, as used in the most recent assessment (ICES, 2015) is provided at Appendix 4. The ' R ' code used for running the model is available on the WGNAS SharePoint site.

3.2.3 Instantaneous natural mortality rate (M)

The natural mortality rate for salmon after they recruit to the distant water fisheries has been the subject of much discussion. WGNAS originally used a value of 0.01 per month, based upon Doubleday et al. (1979), but this was modified to 0.03 per month following a detailed review as part of the EU SALMODEL project (Crozier et al., 2003; ICES, 2002) on the basis of inverse-weight and maturity-schedule models. The rate is assumed to have been constant over the time-series. While mortality may be expected to vary among years and may also be different for maturing and nonmaturing 1SW recruits, WGNAS has not had data on which to base the use of different values, or values that change over time. The assumption is, therefore, that the mortality of adult fish after the first winter at sea has not changed and that all the variability of marine mortality has occurred at the post-smolt stage. Efforts are continuing to explore levels of mortality and to better partition this between different stages of the life cycle. The issue was also subject to further investigation within the EU ECOKNOWS project and Bayesian modelling may provide alternative approaches in future.

3.3 PFA forecast models

3.3.1 Introduction

The provision of quantitative catch advice for the distant water fisheries requires estimates of abundance before the fisheries take place. While there has been some use of in-season surveys in the management of these fisheries (NASCO, 2001), such methods are considered too impractical and costly to implement on a widespread scale (Potter et al., 2004). Models have therefore been developed by WGNAS which
relate abundance estimates obtained at other life stages to the PFA. The objective has been to account for this relationship in terms of biological or environmental factors that affect natural mortality, and to use this to forecast future stock levels.

An initial PFA forecast model for North American stocks (Rago et al., 1993b) utilised indices of thermal habitat in relation to historically observed PFA (from the runreconstruction model) to predict future PFA. Similar approaches were explored by Crozier et al. (2003) for NEAC stocks. However, while statistically significant temperature indices could be constructed, the relationships were not always consistent or intuitively correct. Alternative approaches were therefore explored for NEAC; these are described by Potter et al. (2004). More recently work by the ICES Study Group on Salmon Stock Assessment and Forecasting (SGSSAFE) has, however, resulted in the development of Bayesian forecast models for both NAC and NEAC (ICES, 2009a; 2011; Chaput, 2012).

In the latest models, PFA dynamics by complex are modelled using the estimates of adult spawners, adjusted to the number of eggs per fish based on life-history characteristics of the age groups within each region of the stock complexes (ICES, 2011; Chaput, 2012). The spawner to PFA dynamic is modelled as:

$$
P F A_{y}=e^{\alpha_{y}} L E_{y} e^{\varepsilon}
$$

where: α_{y} is the productivity parameter from eggs ($\times 1000$) to PFA (number of fish) for PFA year y (on a log-scale), LE E_{y} the estimated lagged eggs ($\times 1000$) corresponding to the PFA cohort in year y, and the progress of α_{y} is modelled as $a_{y+1}=a_{y}+\varepsilon$, with ε $\sim N\left(0, \sigma^{2}\right)$.

Productivity is modelled as an integration of survival in freshwater and during the first year at sea. An important assumption is the absence of heritability of age at maturity, i.e. all eggs are considered equivalent regardless of the age of the spawners. Lagged eggs refer to the adjustment of the egg depositions to correspond to the expected age at smoltification. Spawners in year ' n ' contribute to recruitment in years ' $n+3$ ' to ' $n+8$ ' depending upon the relative proportions of one to six year-old smolts that they produce. For example, spawners in year ' n ' produce eggs that hatch in year ' $n+1$ ' and may produce one year-old smolts in year ' $n+2$ ', which would become 1SW recruits in year ' $n+3$ '. Any two year-old smolts from the same spawners would produce 1SW recruits in year ' $n+4$ ', etc.

At the stock complex level, lagged eggs are the sum of the eggs from the spawners in year $y-(s+2)$ weighted by the proportion of the smolts produced at age s in region k summed over regions in the complex. Two years are added to the smolt age, for the spawning year and smolt migration year, to lag the eggs to the corresponding year of PFA:

$$
L E_{y}=\sum_{k} \sum_{s} E g g s_{y-(s+2), k} * \operatorname{prop}_{\mathrm{s}, \mathrm{k}}
$$

3.3.2 NEAC PFA Forecast model

A forecast model to estimate PFA for all four NEAC stock complexes has been developed in a Bayesian framework by the Study Group on Salmon Stock Assessment
and Forecasting (SGSSAFE). The model was originally reported to WGNAS in 2009 (ICES, 2009a), but was subsequently refined and has been in use by WGNAS in its present form since 2011 (ICES, 2011). The models for the northern and southern NEAC stock complexes have exactly the same structure and are run independently. A Directed Acyclical Graph (DAG) for the models is provided in Figure 3.3.2.1. The model considers both the maturing PFA (denoted PFAm) and the non-maturing PFA (denoted PFAnm). The full code used for running the model is available on the WGNAS SharePoint site.

A disaggregated version of the Bayesian model has since been developed using the same structure to provide forecasts at a country level, for all countries in both southern and northern NEAC model implementations (ICES, 2013). In these, countries are linked hierarchically only through the variance on the productivity parameter "a". There is no modelling linkage between the northern and southern complexes.

Figure 3.3.2.1. Directed Acyclical Graph (DAG) of the structure of the combined sea age model for the southern NEAC and northern NEAC forecast models. Ellipses in grey are observations (or pseudoobservations) derived from sampling programmes or from submodels (run-reconstruction).

The PFA is modelled using the summation of lagged eggs from 1SW and MSW fish (LE) for each year t and an exponential productivity parameter (a).
$P F A t=L E t^{*} \exp (a t)$

The productivity parameter (a) is the proportionality coefficient between lagged eggs and PFA. This is forecasted one year at a time $\left(a_{t-1}\right)$ in an auto correlated random walk, using the previous year's value (a) as the mean value in a normal distribution, with a common variance for the time-series of a.

$$
a t+1=a t+\varepsilon ; \quad \varepsilon \sim N(0, a . \sigma 2)
$$

The maturing PFA (denoted PFAm) and the non-maturing PFA (denoted PFAnm) recruitment streams are subsequently calculated from the proportion of PFA maturing (p.PFAm) for each year t. p.PFAm is forecast as an autocorrelated value from a normal distribution based on a logit scale, using the previous year's value as the mean and a common variance across the time-series of p.PFAm.

```
logit.p.PFAmt+1 ~ N(logit.p.PFAmt , p.\sigma2)
logit.p.PFAmt = logit (p.PFAmt)
```

Uncertainties in the lagged eggs were accounted for by assuming that the lagged eggs of 1SW and MSW fish were normally distributed with means and standard deviations derived from the Monte-Carlo run-reconstruction at the scale of the stock complex. The uncertainties in the maturing and non-maturing PFA returns are derived in the Bayesian forecast models through the pseudo-observation method proposed by Michielsens et al. (2008), as used in the NAC model.

The natural mortality in the post-PFA time point was assumed constant among years, centred on an instantaneous rate value of 0.03 per month with a 95% confidence interval range of 0.02 to 0.04 .

Catches of salmon at sea in the West Greenland fishery (as 1SW non-maturing salmon) and at Faroes (as 1SW maturing and MSW salmon) were incorporated directly within the inference and forecast structure of the model, taking into account uncertainty in unreported catch at Faroes and the uncertainty in the allocation of catch at Greenland to NAC and NEAC based on sampling information. For southern NEAC, the data are available for a time-series of lagged eggs and returns commencing in 1978. Although the return estimates to southern NEAC begin in 1971, the lagged eggs are only available from 1978 due to the smolt age distributions (one to five years). For northern NEAC, data are available for a shorter time-series. Return and spawner estimates begin in 1983, but due to the smolt age distributions (one to six years), the lagged eggs are only available from 1991 onward. The models are fitted and forecasts derived in a consistent Bayesian framework.

The model provides forecasts for maturing and non-maturing stocks for both southern and northern NEAC complexes (and countries) for five years. Risks are defined each year as the posterior probability that the PFA would be greater than or equal to the age and stock complex/ country specific Spawner Escapement Reserves (SERs), under the scenario of no exploitation.

The country disaggregated version of the Bayesian NEAC inference and forecast model incorporates country specific catch proportions at Faroes, lagged eggs and returns of maturing and non-maturing components. Model structure and operation is as described above, incorporating country and year indexing. There is currently no hierarchical structuring of the countries within each stock complex. The evolution of
a (the proportionality coefficient between lagged eggs and PFA) and its variance is independent between countries. Similarly, the evolution of the proportion maturing (p.PFAm) is also independent for each country, as is its variance.

3.3.3 NAC PFA Forecast model

WGNAS (ICES, 2009; 2012; 2015) developed forecasts of the pre-fishery abundance for the non-maturing 1SW salmon (PFA) using a Bayesian framework that incorporates the estimates of lagged spawners and works through the fisheries at sea to determine the corresponding returns of 2 SW salmon, conditioned by fisheries removals and natural mortality at sea. This model considers regionally-disaggregated lagged spawners and returns of 2SW salmon for the six regions of North America. The model is summarised in the Directed Acyclical Graph in Figure 3.3.1.1. The year is identified by the i index. The full code used for running the model is available on the WGNAS SharePoint site.

Figure 3.3.1.1. Directed Acyclical Graph (DAG) of the structure of the region disaggregated forecast model for 2SW salmon of North American origin. Ellipses in grey are observations (or pseudo-observations) derived from sampling programmes or from submodels (run-reconstruction).

Lagged spawners $L S_{i, k}$ represent the sum of smolt age adjusted annual spawners by region (k) that would be expected to contribute to the recruitment at sea prior to the fisheries (PFA) for year i . $L S_{i, k}$ are not directly observed but are estimated from the run-reconstruction submodel used to estimates returns and spawners to each of the six regions.

The probability distributions of LS (and returns of 2 SW) by region are used as likelihood functions expressing comparative degrees of belief given the data and a probability model not explicitly specified in the current model. The probability distributions were drawn from the Monte Carlo simulations and assumed to be
normal with known mean (LS.m) and precision (1/variance) (tau.LS). The use of this distribution as a likelihood function is equivalent to assuming a pseudo-observation equal to LS.m issuing from a sampling distribution with mean and precision equal to LS and tau.LS (Michielsens et al., 2008).

$$
\text { LS. }_{\mathrm{i}, \mathrm{k}} \sim \mathrm{~N}\left(\mathrm{LS}_{\mathrm{i}, \mathrm{k},} \text { tau. } \mathrm{LS}_{\mathrm{i}, \mathrm{k}}\right)
$$

The $L S . m_{i,}, k$ (mean) and tau. $L S_{i, k}$ (precision) were derived assuming the lagged spawner values issued from a normal distribution characterized by the 95% confidence interval range statistics retained from the Monte Carlo simulations of returns.

Similarly, the returns of 2 SW salmon to the six regions ($\mathrm{NR} 2_{i, k}$) are not directly observed, but estimated from the run-reconstruction model. The probability distributions were assumed to be normal with known mean NR2.m and variance tau.NR2. As with the LS variable, the NR2 were treated as pseudo-observations equal to NR2.m issuing from normal sampling distributions with means and variances equal to NR2 and tau.NR2.

$$
\text { NR2. } \mathrm{m}_{\mathrm{i}, \mathrm{k}} \sim \mathrm{~N}\left(\mathrm{NR} 2_{\mathrm{i}, \mathrm{k}}, \text { tau.NR2 } 2_{\mathrm{i}, \mathrm{k}}\right)
$$

In between the lagged spawners and returns as 2 SW salmon, the catches in the various sea fisheries and conditioning for natural mortality as the fish move from the time of the PFA to homewaters, are incorporated (Figure 3.3.1.1). The catches in the commercial fisheries of West Greenland and the Newfoundland and Labrador commercial and coastal fisheries (NG1.tot, NC1.tot and NC2.tot) are not directly observed, but estimated with error. The catches are converted to numbers of fish of 1SW non-maturing and 2SW fish based on the characteristics of the fish in the catch. Their (prior) probability distributions are obtained from catch statistics according to a formal structure included in the model.

Catches of large salmon (assumed to be 2SW salmon) from the St Pierre and Miquelon fisheries (SPMC) are also included in the model as point estimates.

The natural mortality in the post-PFA time point was assumed constant between years, centred on an instantaneous rate value of 0.03 per month (95% confidence interval range of 0.02 to 0.04).

For the NAC 2SW component, the model is fitted to an historical dataseries of lagged eggs starting from 1978. Although the return and spawner estimates for NAC begin in 1971, the lagged eggs are only available from 1978 due to the smolt age distributions (one to six years).

The years are modelled independently conditional on the lagged spawners and yearly productivity parameters. The lagged spawners to PFA ratios (productivity) are modelled dynamically, i.e. assuming they are sequentially dependent within a region and attempts to take into account the most significant sources of uncertainty. The DAG for the model is shown in Figure 2.

PFA is assumed to be proportional to lagged-spawners (LS), with i.i.d. lognormal errors, and is modelled separately for each region (su=6). The first year in the timeseries (y) is 1978 for lagged spawners (due to the range of smolt ages 1 to 6 for NAC
and the start of the spawner time-series in 1970) and the last year of lagged spawner data is for the 2023 PFA year (ICES 2021). The PFA can be modelled for 1978 to 2019 (the last PFA year for which returns of 2SW salmon have been estimated back to rivers in 2020).

$$
\begin{gathered}
\boldsymbol{P F} \boldsymbol{A}_{s u, y} \sim \boldsymbol{f}\left(\boldsymbol{L} \boldsymbol{S}_{s u, y}, \boldsymbol{\alpha}_{s u, y}\right) \\
P F A_{s u, y} \sim \log N\left(\log \cdot \mu . p f a_{s u, y}, \sigma \cdot p f a_{s u}^{2}\right) \\
\log \cdot \mu . p f a_{s u, y}=\log (\operatorname{Lag} s p)_{s u, y}+\alpha_{s u, y}
\end{gathered}
$$

A non-informative prior is assumed for $\sigma . p f a_{s u}^{2}\left(\frac{1}{\sigma . P F A_{s u}^{2}} \sim d \operatorname{Gamma}(0.01,0.01)\right)$

The total PFA is calculated as the sum of the regional PFA's $(s u=6)$. The proportion of the total PFA in each region is calculated directly as:

$$
p \cdot P F A_{s u, y}=P F A_{s u, y} / \text { PFA. tot }{ }_{y}
$$

The proportionality coefficient (log) $\alpha_{s u, y}$ between $\boldsymbol{L} \boldsymbol{S}_{\boldsymbol{s u}, \boldsymbol{y}}$ and $\boldsymbol{P F} \boldsymbol{A}_{\boldsymbol{s u}, \boldsymbol{y}}$ for each region is modelled dynamically as a random walk with a year and region residual variation ($\delta_{s u, y}$) assumed multivariate normal (MVN). The variance covariance matrix (Σ) allows for correlations among regional productivity values reflecting that the fish share a common marine environment during part of their life cycle and that there are regional specificities in the evolution of the freshwater or the marine coastal environment.

$$
\begin{gathered}
\alpha_{s u, y+1}=\alpha_{s u, y}+\delta_{s u, y} \\
\delta_{s u, y} \sim M V N\left(0, \sum s u: s u\right)
\end{gathered}
$$

The common yearly evolution of $\bar{\alpha}_{y}$ is the mean of annual $\alpha_{s u, y}$ across regions:

$$
\bar{\alpha}_{y}=\operatorname{mean}\left(\alpha_{s u, y}\right)
$$

The correlation matrix of a among the regions is calculated from the covariance matrix:

1) the precision matrix is inverted to produce the covariance matrix;

2) the covariance matrix is transformed to the correlation matrix.

The positive-definite matrix (T , the precision matrix) is inverted:

```
correlation matrix <- cov2cor(b)
```

The dynamic component of the model requires initialization for the first year $(y=$ 1978) and an uninformative prior is assumed:

$$
\alpha_{s u, 1} \sim N(0,100)
$$

The models are fitted and forecasts derived in a consistent Bayesian framework under the OpenBUGS 3.0.3 software (http://mathstat.helsinki.fi/openbugs/; Lunn et al., 2000).

3.3.4 Summary of NAC and NEAC forecast models

The data inputs and models currently used by WGNAS for forecasting and provision of catch advice differ between the Commission areas; outline details are summarised in the text table below.

FORECAST MODELS

3.4 The development of a risk analysis framework for catch advice

3.4.1 Introduction

The provision of catch advice in a risk framework involves incorporating the uncertainty in all the factors used to develop the catch options (ICES, 2002). The ranges in the uncertainties of all the factors will result in assessments of differing levels of precision. The analysis of risk involves four steps:

1) identifying the sources of uncertainty;
2) describing the precision or imprecision of the assessment;
3) defining a management strategy; and
4) evaluating the probability of an event (either desirable or undesirable) resulting from the fishery action.

The uncertainties have been identified and quantified in the assessment of PFA for salmon stocks in both the NAC and NEAC areas. NASCO's strategy for the management of salmon fisheries is based upon the principle of ensuring that stocks are above CLs (defined in terms of spawner escapement or egg deposition) with a high probability. The undesirable event to be avoided is that the spawning escapement after the fisheries will be below the CLs.

3.4.2 Catch advice and risk analysis framework for the West Greenland fishery

A risk framework for the provision of catch advice for the West Greenland fishery has been applied since 2003 (ICES, 2003) and has been subject to a number of subsequent updates. The current procedure is outlined below. This involves estimating the uncertainty in meeting defined management objectives at different levels of catch (catch options). The risk framework has been formally accepted by NASCO

Two stock complexes are of relevance to the management of the West Greenland fishery; non-maturing 1SW fish from North America and non-maturing 1SW fish from southern NEAC. The risk assessments for the two stock complexes are developed in parallel and then combined at the end of the process into a single summary plot or catch options table. The risk analysis proceeds as illustrated in the flowchart in Figure 3.4.2.1).

The primary inputs to the risk analysis for the complex at West Greenland are:

- PFA forecast for the year of the fishery; PFAna and PFAneac;
- Harvest level being considered (t of salmon);
- Conservation spawning limits or alternate management objectives; and
- The post-fishery returns to each region.

The risk analysis of catch options incorporates the following input parameter uncertainties: (i) the uncertainty of the pre-fishery abundance forecast, (ii) the uncertainty in the biological parameters used to translate catches (weight) into numbers of salmon, and (iii) the uncertainty in attaining the conservation requirements simultaneously in different regions.

The uncertainty in the PFA PA $_{\text {A }}$ and PFA ${ }_{\text {NEAC }}$ is accounted for in the forecast approach described above. The number of 1SW non-maturing fish of North American and European origin in a given catch (t) is conditioned by the continent of origin of the fish ($\operatorname{prop}_{\mathrm{NA}}, \operatorname{prop}_{\mathrm{E}}$), by the average weight of the fish in the fishery $\left(\mathrm{Wt}_{\text {Allages }}\right)$, and by the proportion 1SW non-maturing fish in the respective continent of origin catches. These parameters define how many fish originating in North America and Europe are expected in the fishery harvests. For a level of fishery under consideration, the weight of the catch is converted to number of fish of each continent of origin using the following equation:

$$
C 1 S W_{c}=\frac{t X \text { propC }}{A C F *\left(\text { propNAX Wt1SW }_{N A}+\operatorname{propE} X W t 1 S W_{E}\right)}
$$

where: C1SW $_{c}$ is the catch (number of fish) of 1 SW salmon originating in continent C (either North America or Europe), t is the fishery harvest at West Greenland in kg , propC is the proportion of the 1SW salmon harvest which originates from continent $C, W t 1 S W_{N A}$ and $W t 1 S W_{E}$ are the average weight (kg) in the fishery of a 1 SW salmon of North American and European origin, respectively, and ACF is the age correction factor by weight for salmon in the fishery which are not at age 1SW.

Since these parameters are not known for the forecast years of interest, they are estimated from previous values. Thus, prop $_{\text {NA }}$ (and prop ${ }_{\text {NEAC }}$ as 1 - prop ${ }_{\text {NA }}$) are drawn randomly from observed values of the past five years taking account of uncertainty due to sample sizes. For the other parameters, it is assumed that the parameters for $\mathrm{Wt}_{\text {Allages }}$ and the proportion non-maturing 1 SW in the catch by continent of origin could vary uniformly within the values observed in the past five years.

For a level of fishery under consideration, the weight of the catch is converted to fish of each continent of origin and subtracted from one of the simulated forecast values of PFA $A_{\text {NA }}$ and PFA ${ }_{\text {NEAC }}$. The fish that escape the Greenland fishery are immediately discounted by the fixed sharing fraction ($F_{\text {na }}$) historically used in the negotiations of the West Greenland fishery. The sharing fraction chosen is the $40 \%: 60 \%$ West Greenland:North America split. The same sharing arrangement has been used for NEAC stocks (ICES, 2003). Any sharing fraction could be considered and incorporated at this stage of the risk assessment.

After the fishery, fish returning to homewaters are discounted for natural mortality from the time they leave West Greenland to the time they return to rivers. For North America this is a total of eleven months at a rate of $M=0.03$ (equates to 28.1% mortality). For southern NEAC stocks this is a total of eight months at a rate of $\mathrm{M}=$ 0.03 (equates to 21% mortality). The fish that survive to North American homewaters are then distributed among the regions based on the regional proportions of lagged spawners for the last five years when estimates of spawners were available. The uncertainty in the regional proportions is characterised by drawing at random from a uniform distribution defined by the minimum and maximum regional ranges from the five years and calculating the average proportion for each of the six regions in North America.

Figure 3.4.2.1. Flow chart summarising risk analysis for catch options at West Greenland using the PFANA and the PFANEAC predictions for the year of the fishery. Inputs with solid borders are considered known without error. Estimated inputs with observation error that is incorporated in the analysis have dashed borders. Solid arrows are functions that introduce or transfer without error whereas dashed arrows transfer errors through the components.

The final step in the risk analysis of the catch options involves combining the conservation requirement or alternate management objectives with the probability distribution of the returns to North America for different catch options. Estimated 2SW returns to each region are compared to the conservation objectives of Labrador, Newfoundland, Québec, and Gulf. Estimated returns for Scotia-Fundy are compared to the objective of achieving an increase of 25% relative to average returns of the base period, 1992-1996. For the USA, the management objective was revised in 2014 (ICES, 2014). Estimated returns for the USA are now compared to the objective of achieving 2SW adult returns of 4549 or greater. The advice to fisheries managers is presented as a probability plot (or table) of meeting or exceeding the objectives relative to increasing harvest levels at West Greenland.

ICES has adopted, a risk level of 75% of simultaneous attainment of seven management objectives (ICES, 2003) as part of an agreed management plan for the West Greenland fishery. The same level of risk aversion is applied for catch advice for homewater fisheries on the North American stock complex.

The catch advice for the West Greenland fishery is currently tabulated to show the probability of each management unit achieving its CL (or alternative reference level) individually and the probability of this being achieved by all management units simultaneously (i.e. in the same given year) (e.g. ICES, 2012a). This allows managers to evaluate both individual and simultaneous attainment levels in making their management decisions. Table 3.4.2.1 provides an example of catch options for West

Greenland for the years 2012 to 2014 (ICES, 2012a). An updated catch options table for 2021 to 2023 is provided in Section 5 of the 2021 Working Group report.

The models currently used by WGNAS in developing catch advice are considered to provide consistent characterisation of the status and expectations for Atlantic salmon in the North Atlantic. Compared to previous models used by WGNAS prior to 2009, the Bayesian models provide more flexibility, are consistent with the emerging emphasis on such approaches in natural resource assessment, and can provide management advice consistent with the probability of achieving management objectives.

Table 3.4.2.1. Example of catch options tables for mixed-stock fishery at West Greenland by year of PFA, 2015 to 2017.

2015 Catch option (t)	Probability of meeting or exceeding region-specific management objectives							
	LAB	NFLD	QC	GULF	SF	USA	S-NEAC	ALL
0	0.45	0.86	0.71	0.50	0.15	0.89	0.98	0.06
10	0.42	0.84	0.67	0.48	0.14	0.88	0.98	0.05
20	0.40	0.83	0.63	0.45	0.13	0.87	0.98	0.05
30	0.38	0.81	0.59	0.42	0.12	0.85	0.98	0.04
40	0.36	0.78	0.54	0.40	0.12	0.83	0.98	0.04
50	0.34	0.76	0.50	0.38	0.11	0.81	0.98	0.03
60	0.32	0.73	0.46	0.36	0.10	0.79	0.98	0.03
70	0.30	0.70	0.42	0.33	0.09	0.77	0.98	0.03
80	0.28	0.67	0.39	0.31	0.08	0.74	0.98	0.03
90	0.26	0.64	0.35	0.29	0.08	0.72	0.97	0.02
100	0.24	0.60	0.32	0.27	0.07	0.68	0.97	0.02

2016 Catch Probability of meeting or exceeding region-specific management objectives

Option (t)	LAB	NFLD	QC	GULF	SF	USA	S-NEAC	ALL
0	0.48	0.78	0.73	0.50	0.25	0.75	0.95	0.08
10	0.46	0.76	0.70	0.48	0.24	0.73	0.95	0.07
20	0.44	0.75	0.67	0.46	0.23	0.72	0.95	0.06
30	0.42	0.73	0.63	0.44	0.22	0.70	0.95	0.06
40	0.41	0.70	0.60	0.42	0.21	0.68	0.95	0.06
50	0.39	0.68	0.56	0.40	0.20	0.66	0.94	0.05
60	0.37	0.65	0.53	0.38	0.19	0.64	0.94	0.05
70	0.35	0.63	0.50	0.36	0.18	0.62	0.94	0.05
80	0.33	0.60	0.47	0.34	0.17	0.59	0.94	0.04
90	0.31	0.57	0.44	0.32	0.16	0.57	0.94	0.04
100	0.30	0.54	0.41	0.31	0.15	0.55	0.94	0.04
2017 Catch	Probability of meeting or exceeding region-specific management objectives							
Option (t)	LAB	NFLD	QC	GULF	SF	USA	S-NEAC	ALL
0	0.56	0.78	0.75	0.55	0.20	0.86	0.94	0.08
10	0.55	0.77	0.73	0.53	0.20	0.85	0.94	0.08
20	0.53	0.75	0.70	0.51	0.19	0.84	0.94	0.07
30	0.52	0.73	0.67	0.49	0.18	0.83	0.94	0.07
40	0.50	0.71	0.64	0.47	0.17	0.82	0.94	0.06

2015	Probability of meeting or exceeding region-specific management objectives							
Catch option (t)	LAB	NFLD	QC	GULF	SF	USA	S-NEAC	ALL
50	0.48	0.69	0.62	0.46	0.17	0.81	0.94	0.06
60	0.46	0.67	0.59	0.44	0.16	0.79	0.94	0.06
70	0.45	0.65	0.56	0.42	0.16	0.77	0.94	0.05
80	0.43	0.63	0.54	0.41	0.15	0.76	0.94	0.05
90	0.42	0.61	0.51	0.39	0.14	0.74	0.94	0.05
100	0.40	0.59	0.49	0.38	0.14	0.72	0.94	0.05

3.4.3 Catch advice and risk analysis framework for the Faroes fishery

3.4.3.1 Outline of the risk framework and management decisions required

There is currently no agreed framework for the provision of catch advice for the Faroes fishery adopted by NASCO. However, NASCO has asked ICES, for a number of years, to provide catch options or alternative management advice with an assessment of risks relative to the objective of exceeding stock conservation limits for salmon in the NEAC area. An initial risk framework that could be used to provide and evaluate catch options for the Faroes fishery was outlined by WGNAS in 2010 (ICES, 2010a). This was based on the method currently used to provide catch advice for the West Greenland fishery, which involves estimating the uncertainty in meeting defined management objectives at different catch levels (TAC options). The Faroes risk framework was developed further at subsequent WGNAS meetings (ICES, 2011; 2012a) and the current proposed procedure is outlined below.

A number of decisions are required by managers before full catch advice could be provided (ICES, 2011; 2012a). Specifically, ICES has indicated that NASCO would need to agree upon the following issues before the risk framework could be finalised:

- season (January to December or October to May) to which any TAC should apply;
- share arrangement for the Faroes fishery;
- choice of management units for NEAC stocks; and
- specification of management objectives.

In developing an indicative risk framework, WGNAS has made pragmatic choices regarding these issues:

Faroes fishing season: A decision is required on the period to which any TAC for the Faroes fishery would apply. The Faroes fishery has historically operated between October/November and May/June, but the historical TACs applied to a calendar year. This means that two different cohorts of salmon of each age class (e.g. two cohorts of 1SW salmon, etc.) were exploited under each TAC. ICES (2011) recommended that NASCO manage any fishery on the basis of fishing seasons operating from October to June, and catch advice should be provided on this basis.

Sharing agreement: The 'sharing agreement' establishes the proportion of any harvestable surplus within the NEAC area that could be made available to the Faroes fishery through the TAC. In effect, for any TAC option being evaluated for the Faroes,
it is assumed that the total harvest would be the TAC divided by the Faroes share. WGNAS has proposed using a share allocation derived using the same approach and baseline period (1986-1990) as for West Greenland (ICES, 2010a). This gave a potential share allocation of 7.5% to Faroes. Following discussion within NASCO, one Party proposed an alternative baseline period of 1984-1988, which would give a share allocation of 8.4% to Faroes. In the absence of further advice from NASCO, WGNAS has applied a value of 8.4%.

Choice of management units: ICES (2010a) noted that the stock complexes currently used for the provision of NEAC catch advice (southern NEAC and northern NEAC) are significantly larger than each of the six management units used for North American salmon (2SW only) in the catch advice for the West Greenland fishery. Basing an assessment of stock status on these large units greatly increases the risks to individual NEAC river stocks or groups of stocks that are already in a more depleted state than the average.

For the provision of catch advice on the West Greenland fishery, the total CL for NAC (2SW salmon only) of about 143494 fish is assessed in six management units, which means that each unit has an average CL of about 25000 salmon. In contrast, the total CLs for each of the NEAC stock complexes are updated at each assessment (for those based on run reconstruction and the hockey stick model) vary by year and in 2021 were estimated to be (ICES 2021):

Northern NEAC 1SW-	137763
Northern NEAC MSW-	121669
Southern NEAC 1SW-	435094
Southern NEAC MSW-	175420

The NEAC stock complexes are therefore between eight and 25 times the size of the average NAC ones. There is also wide variation in the size and status of stocks both within and among the NEAC national stock groups. WGNAS recommended (ICES, 2012a) that the NEAC catch advice should be based on more management units than are used at present, but also noted that there are practical limitations on the extent to which the assessments can be disaggregated, since the availability of information on the composition of the catch at Faroes constrained the selection of management units. In 2013, WGNAS (ICES, 2013) proposed a method to estimate the stock composition of the Faroes catch at a national level based on tag returns and the PFA estimates, but did not consider it appropriate to extend this to stock complexes smaller than this. Genetic stock assignment studies are underway to analyse scale samples collected at Faroes, but these are not expected to facilitate disaggregation below this level. In addition, other parameter values used in the assessment are currently only available for the total fishery and not smaller stock complexes.

In providing indicative catch advice with the new framework, WGNAS considered that it would be informative to managers to provide catch options tables for the ten NEAC countries as well as for the four stock complexes and has therefore run the risk framework using management units based on countries.

Management objectives: The management objectives provide the basis for determining the risks to stocks in each management unit associated with different catch options. The NASCO agreement on the adoption of a Precautionary Approach (NASCO, 1998) calls for the 'formulation of pre-agreed management actions in the form of procedures to be applied over a range of stock conditions', indicating that the management objectives (e.g. the required probability of exceeding the CL) should be agreed in advance of specific management proposals being considered.

At the request of NASCO, WGNAS considered the implications of applying probabilities of achieving CLs to separate management units vs. the use of simultaneous probabilities; this issue was outlined in detail in ICES (2013).

The probability of simultaneous attainment of management objectives in a number of separate management units is roughly equal to the product of the probabilities of individual attainment for each management unit. The probability threshold for each individual management unit might reasonably be set at a fixed level unless there are specific reasons for adopting an alternative (e.g. for stock rebuilding). ICES (2012) recommended that an appropriate probability level for individual stock complexes would be 95%. This individual probability level can be applied to each management unit regardless of the number of units used; however, this is less obvious for the probability of simultaneous attainment, as explained next.

Management decisions for the West Greenland fishery have been based on a 75\% probability of simultaneous attainment of CLs. For a given probability of achieving individual stock CLs, the probability of simultaneous attainment decreases rapidly as the number of management units considered increases. For the example of 20 management units (e.g. two age groups from each of ten countries), the use of the simultaneous probability level applied for West Greenland (75\%) would correspond to the probability of individual stocks meeting the CLs being 98.6% or higher, assuming the same individual probability for all stocks. The use of a 95% probability level for meeting the CLs individually in the 20 management unit example, implies a simultaneous attainment probability of about 36%, i.e. there would be a 64% chance that at least one stock failed to meet its CL in any given year. On the other hand, the use of a 75% probability of simultaneous attainment could result in a fishery being advised when the individual probability of one management unit is as low as 75% if all the other management units have a 100% chance of meeting the CL (as in that case, the probability of simultaneous attainment would still be 75\%). This may not be an acceptable risk for managing multiple river stocks.

WGNAS considered that the probability of simultaneous attainment can provide useful information to managers of the risk of failing to meet CLs in at least one stock in the MSF. However, as the management units being considered by NASCO for managing the MSF at Faroes are still very large and each unit encompasses a large number of individual river stocks, choosing a high probability level (such as 95\%) of attaining CLs in individual units would be less risky to individual stocks than the use of a simultaneous attainment objective set at the value used for the West Greenland fishery

On the basis of these considerations, WGNAS provided both individual probabilities and the probability of simultaneous attainment of the management units in the catch
options tables (ICES, 2013). ICES recommends that management decisions should be based principally on a 95% probability of attainment of CLs in each stock complex individually. The simultaneous attainment probability may also be used as a guide, but managers should be aware that this will generally be quite low when large numbers of management units are used (as illustrated above, in the example with 20 management units).

3.4.3.2 Modelling approach for the catch options risk framework

The basic model for assessing each catch option within the risk framework is the same for both stock complexes and at a country level (ICES, 2013). The PFA forecasts derived in the Winbugs model are transferred to the risk framework model run in ' R '. The estimates and distributions of the PFA estimates used in the risk framework are derived by taking the first 50000 values from the Winbugs posterior forecast simulations. Parameters in the following description that are marked with an '*' in the equations have uncertainty around them generated by means of 50000 random draws from the annual values observed from the sampling programmes conducted in the Faroes between the 1983/1984 and 1990/1991 fishing seasons. They therefore contribute to the estimation of the probability density function around the potential total harvest arising from each TAC option. When the assessment is run at a national level, the number of draws has to be limited to 25000 because of memory limitations in ' R '.

The modelling procedure involves:

- estimating the total number of 1SW and MSW salmon that could be killed as a result of any TAC at Faroes, including catches in homewaters;
- adjusting these to their equivalent numbers at the time of recruitment to the Faroes fishery;
- subtracting these from the PFA estimates for maturing and non-maturing 1SW salmon in the appropriate years;
- assessing the results against the SERs (i.e. the CLs adjusted to the time of recruitment to the Faroes fishery).

The TAC option (T) is first divided by the mean weight ($\mathrm{Wt} \mathrm{t}^{*}$) of salmon caught in the Faroes fishery to give the number of fish that would be caught, and this value is converted to numbers of wild fish (Nw) by multiplying by one minus the proportion of fish-farm escapees in samples taken from the Faroes catch (pE^{*}) observed in historical sampling programmes. A correction factor $(C=0.63)$ is applied to the proportion of fish-farm escapees to take account of reductions in the numbers of farm escapees over the past 20 years based on observations in Norwegian coastal waters:

$$
\mathrm{Nw}=\mathrm{T} / \mathrm{Wt}^{*} \mathrm{x}\left(1-\left(\mathrm{pE}^{*} \times \mathrm{C}\right)\right)
$$

This value is split into numbers by sea age classes (1SW and MSW) according to the proportion of each age group (pAi^{*}, where ' i ' is 1 SW or MSW) observed in historical catch sampling programmes at Faroes. In the past, there has also been a requirement to discard any fish less than 60 cm total length caught in the Faroes fishery, and 80\% of these fish were estimated to die, so these mortalities are also added to the 1SW catch. Thus:

```
Nw1SW \(=\) Nwtotal \(\times\) pA1SW* \(+\left(\right.\) Nwtotal \(\left.\times \mathrm{pD}^{*} /\left(1-\mathrm{pD}^{*}\right) \times 0.8\right)\)
```

and

NwMSW = Nwtotal \times pAMSW*
where: pD^{*} is the proportion of the total catch that is discarded (i.e. fish $<60 \mathrm{~cm}$ total length).

Further corrections are made to the 1SW and MSW numbers to reduce the 1SW total to take account of the proportion that will not mature as 1SW fish and to add the survivors from this group to the MSW fish in the following year. For the first catch advice year the number added to the MSW total is adjusted to the TAC of the current season (i.e. zero in 2012/2013). Thus:
Nw1SW = Nw1SW x pK *
and
NwMSW = NwMSW + Nw1SW x (1-pK*)
where ' $p K$ ' is the proportion of 1 SW salmon that are expected to mature in the same year (0.78) derived from experimental studies conducted in the 1980s (Youngson and Webb, 1993).

The numbers in each age group are then divided among the management units by multiplying by the appropriate proportions (pUij), where ' i ' denotes the age groups and ' j ' denotes the management units, and each of these values is raised by the Faroes share allocation (S) to give the total potential harvest (Hij) of fish from each management unit and sea age group:
Nwij = (Nwi x pUij) / S

Finally, these values are adjusted for natural mortality so that they can be compared with the PFA forecasts and SER values from the mid-date of the fishery to the recruitment date by using an instantaneous monthly rate of mortality of 0.03.

These harvests are then subtracted from the stock forecasts (PFAij) for the management units and sea age groups and compared with the Spawner Escapement Reserves (SERij) to evaluate attainment of the management objective. In practice, the attainment of the management objective is assessed by determining the probability that PFAij - Hij - SERij is greater than zero. The SER is the number of fish that need to be alive at the time of the Faroes fishery to meet the CL when the fish return to homewaters; this equals the CL raised by the mortality over the intervening time. CLs and SERs are currently estimated without uncertainty.

3.4.3.3 Input data for the risk framework

The analysis estimates probability of each management unit achieving its SER (the overall abundance objective) for different catch options in the Faroes fishery (from 0 to 200 t). The analysis assumes:

- no fishery operated for the most recent season;
- the TAC allocated to Faroes is the same in each year and is taken in full;
- homewater fisheries also take their catch allocation in full.

The analysis requires the following input data for the catch that would occur at the Faroes if a TAC was allocated (full details are provided in ICES, 2013):

- mean weights;
- proportion by sea age;
- discard rates (fish less than 60 cm total length);
- proportion of fish-farm escapees;
- composition of catches by management unit;
- proportion of 1 SW fish not maturing.

3.4.3.4 Indicative catch advice

Table 3.4.3.4.1 provides an example of catch options for the Faroes fishery for the seasons 2013/2014 to 2015/2016 (ICES, 2013). Equivalent tables were provided for both 1SW and MSW salmon for all NEAC countries, and WGNAS also estimates the exploitation rates that these TAC options would impose on each stock complex or national stock (ICES, 2013). Updated catch options tables for the seasons 2015/2016 to 2017/2018 are provided in Section 3.5 of the 2015 Working Group report (see above).

Table 3.4.3.4.1. Probability of northern and southern NEAC - 1SW and MSW stock complexes achieving their SERs independently and simultaneously for different catch options for the Faroes fishery in the 2013/2014 to 2015/2016 fishing seasons.

Catch options for 2013/14 season:	TAC option (t)	$\begin{gathered} \text { NEAC-N- } \\ \text { 1SW } \end{gathered}$	NEAC-NMSW	$\begin{gathered} \text { NEAC-S- } \\ \text { 1SW } \end{gathered}$	$\begin{aligned} & \text { NEAC-S- } \\ & \text { MSW } \end{aligned}$	All complexes
	0	96.2\%	99.8\%	74.3\%	75.6\%	56.8\%
	20	96.2\%	99.2\%	74.2\%	69.8\%	52.7\%
	40	96.2\%	98.2\%	74.2\%	63.9\%	48.2\%
	60	96.1\%	96.3\%	74.1\%	57.9\%	43.3\%
	80	96.1\%	93.4\%	74.1\%	52.1\%	38.1\%
	100	96.1\%	89.3\%	74.0\%	46.6\%	32.9\%
	120	96.0\%	84.3\%	74.0\%	41.7\%	28.1\%
	140	96.0\%	78.4\%	73.9\%	36.8\%	23.4\%
	160	95.9\%	71.6\%	73.9\%	32.5\%	19.2\%
	180	95.9\%	64.6\%	73.8\%	28.5\%	15.4\%
	200	95.8\%	57.6\%	73.8\%	25.0\%	12.2\%
Catch options for 2014/15 season:	TAC option (t)	$\begin{gathered} \text { NEAC-N- } \\ \text { 1SW } \end{gathered}$	$\begin{aligned} & \text { NEAC-N- } \\ & \text { MSW } \end{aligned}$	$\begin{gathered} \text { NEAC-S- } \\ \text { 1SW } \end{gathered}$	$\begin{gathered} \text { NEAC-S- } \\ \text { MSW } \end{gathered}$	$\begin{gathered} \text { All } \\ \text { complexes } \end{gathered}$
	0	94.6\%	99.2\%	75.4\%	79.6\%	59.0\%
	20	94.6\%	98.2\%	75.3\%	75.3\%	55.8\%
	40	94.6\%	96.6\%	75.3\%	70.8\%	52.0\%
	60	94.5\%	94.2\%	75.2\%	66.4\%	48.0\%
	80	94.4\%	90.9\%	75.2\%	61.8\%	43.6\%
	100	94.4\%	86.8\%	75.1\%	57.3\%	38.9\%
	120	94.3\%	82.1\%	75.1\%	53.1\%	34.4\%
	140	94.3\%	76.8\%	75.0\%	49.0\%	30.1\%
	160	94.3\%	71.2\%	75.0\%	45.0\%	25.9\%
	180	94.2\%	65.5\%	74.9\%	41.5\%	22.1\%
	200	94.2\%	59.6\%	74.9\%	38.0\%	18.6\%
Catch options for 2015/16 season:	TAC option (t)	$\begin{gathered} \text { NEAC-N- } \\ \text { 1SW } \end{gathered}$	$\begin{aligned} & \text { NEAC-N- } \\ & \text { MSW } \end{aligned}$	$\begin{gathered} \text { NEAC-S- } \\ \text { 1SW } \end{gathered}$	$\begin{aligned} & \text { NEAC-S- } \\ & \text { MSW } \end{aligned}$	All complexes
	0	94.6\%	98.5\%	70.1\%	79.7\%	55.2\%
	20	94.6\%	97.2\%	70.1\%	76.0\%	52.4\%
	40	94.5\%	95.1\%	70.0\%	72.2\%	49.2\%
	60	94.5\%	92.3\%	70.0\%	68.4\%	45.6\%
	80	94.5\%	89.0\%	69.9\%	64.6\%	41.9\%
	100	94.4\%	85.0\%	69.9\%	60.7\%	38.0\%
	120	94.4\%	80.6\%	69.8\%	57.1\%	34.2\%
	140	94.3\%	75.7\%	69.8\%	53.5\%	30.4\%
	160	94.3\%	70.6\%	69.7\%	50.0\%	26.7\%
	180	94.2\%	65.4\%	69.7\%	46.8\%	23.4\%
	200	94.2\%	60.4\%	69.7\%	43.7\%	20.4\%

3.5 Development of indicator frameworks to identify significant changes in previously provided multiannual management advice

3.5.1 Background

In support of the multiannual management advice that is provided for all three NASCO Commission Areas, NASCO asked ICES to provide an assessment of the minimal information needed to signal an unforeseen change in productivity for stocks
contributing to fisheries within each Commission area. A particular concern was that an increase in productivity may alter the reliability of the previously provided multiyear catch options and could result in unrealised harvest within various mixedstock fisheries. Initial progress on this issue was presented to WGNAS in 2006 (ICES, 2006) and further developments were made by the Study Group on Establishing a Framework of Indicators of Salmon Stock Abundance [SGEFISSA] which met in November 2006 (ICES, 2007b) and reported to WGNAS in 2007 (ICES, 2007a). This resulted in the development of a suggested framework (Framework of Indicators FWI) which could be used to indicate if any significant change in the status of stocks had occurred and thus confirm whether the previously provided multi-annual management advice was still appropriate.

The initial FWI was developed with both the Greenland and Faroes fisheries in mind, although the methodology only proved suitable for the West Greenland fishery and an alternative approach was subsequently developed for the NEAC area (ICES, 2011; 2012a; 2013). Thus, FWIs are now routinely applied in the interim (non-assessment) years of multiyear agreements for both NAC and NEAC to facilitate the management of the West Greenland and Faroes fisheries respectively. Both operate according to the timeline outlined in Figure 3.5.1.1. Outline descriptions of the two different schemes are provided below.

Figure 3.5.1.1. Timeline for employment of the Framework of Indicators (FWI). In Year i, ICES provides an updated FWI which re-evaluates the updated datasets and is summarized in an Excel worksheet. In January of Year $i+1$ the FWI is applied and two options are available depending on the results. If no significant change is detected, no re-assessment is necessary and the cycle continues to Year $\mathbf{i + 2}$. If no significant change is detected in Year $\mathrm{i}+2$, the cycle continues to Year $\mathrm{i}+3$. If a significant change is detected in any year, then reassessment is recommended. In that case, ICES would provide an updated FWI the following May. ICES would also provide an updated FWI if year equals 4 . [MACO = multi-annual catch options].

3.5.2 Framework of Indicators (FWI) for the West Greenland Fishery

The process for developing and applying the FWI for the Greenland fishery consists of six general steps:

- Definition of a significant change - Define measurable criteria for what the statement "a significant change in the previously provided multi-annual management advice" represents.
- Evaluating historical relationships between indicators and variables of interest - Define and evaluate the historical relationships between numerous indicators and the variable of interest for individual rivers across all stock complexes.
- Establishing threshold values - Define the threshold level (i.e. variable of interest level) that will satisfy the management objectives for each stock complex.
- Decision rule determinations - Define and apply a standardised approach for determining the appropriate decision rule value. The decision rule should provide a signal if the variable of interest will be greater than or less than the threshold level with high precision.
- Combining Indicators within the Framework - Define and apply a standardised approach for combining indicator datasets within and across stock complexes for future comparison against contemporary indicator values.
- Applying the FWI - Define and apply a standard approach to input contemporary indicator values into the FWI to determine if there is likely to be a significant change in the previously provided management advice.

Each of these is considered in turn; full details are available in ICES (2007b).

3.5.2.1 Definition of a significant change

A significant change in the previously provided multiannual management advice is regarded as an unforeseen change in stock status that would alter the previously provided advice based on analysis of current population data obtained from various monitored populations across the North Atlantic. This would be indicated by a situation where stock abundance has increased to a level where a fishery could be recommended when no catch had previously been advised, or a decrease in stock abundance when catch options had been chosen.

For the fishery at West Greenland, ICES would recommend that a harvestable surplus exists within the West Greenland stock complex if there was a high probability (75\%) that the following three objectives could be met simultaneously:

The conservation limits of the four northern regions of North America (Labrador, Newfoundland, Québec, and Gulf) were achieved.

There was a 25% increase in returns to the Scotia-Fundy region relative to the mean returns for the 1992-1996 period. For the USA, the management objective was revised in 2014 to correspond to recover objectives defined in the recovery plan for endangered Atlantic salmon stocks in the USA (ICES, 2014), this now requires that estimated 2SW adult returns are 4549 or greater.

The conservation limit for the Southern NEAC MSW complex was achieved.

3.5.2.2 Evaluating historical relationships between indicators and variable of interest

A number of variables were considered for inclusion as indicators in the FWI, but only two were considered sufficiently informative to be carried forward into the framework: adult returns (returns, catch or estimated PFA) and return rates (i.e. smolt survival rates, marine survival). These are available, by sea age class, for a number of monitored rivers throughout the North Atlantic and can be directly related to the management objectives for the fishery.

3.5.2.3 Establishing threshold values

In keeping with the 75% probability of meeting or exceeding the objectives for the West Greenland catch options (see above), the 25th percentile of the return estimates of the six areas in North America are compared to the corresponding 2SW conservation limits of the four northern areas of North America, to the 25% increase objective for the Scotia- Fundy area, and to management objective of achieving 4549 or greater 2SW adult returns for the USA. For the southern NEAC non-maturing component, the 25th percentile of the PFA estimate of the southern NEAC nonmaturing complex is compared to the spawning escapement reserve (SER) for the southern NEAC non-maturing complex.

3.5.2.4 Decision rule determinations

The procedure for analysing the relationships between the indicators and the returns of 2SW salmon or the PFA estimates was originally suggested by ICES (2006). The individual river catches, returns or return rates are lagged to correspond to the same smolt cohort for the 2SW returns to North America or to the PFA estimates for NEAC complexes. Bivariate plots of each indicator dataset relative to the 2 SW returns or the PFA estimates are prepared. Upper and lower halves are defined by the management objective value for the corresponding geographic area in North America or the NEAC stock complexes as outlined above. Estimates of returns of 2SW or PFA estimates in the upper half correspond to years when the returns or PFA exceed the management objectives. Points in the lower half correspond to years when the returns or PFA are less than the management objective.

Left and right halves are defined by a sliding rule along the indicator range. An objective function that maximises the number of correct assignments (true highs and true lows) is used to define the indicator decision rule. The objective function also minimises the number of incorrect assignments (false highs and false lows, Figure 3.5.2.4.1).

Figure 3.5.2.4.1. Example of Indicator/Variable of Interest exploratory graph identifying the threshold value, decision rule, penalty function and the four states (true high, true low, false high and false low).

The value of the indicator variable that minimises the sum of the penalty scores (i.e. minimises the number of incorrect assignments) is assigned as the decision rule for that dataset. Equal penalty weights are assigned to false highs (lower right quadrant) and false lows (upper left quadrant). Correct assignments are scored as zero. In the case when multiple minima occurred, the lowest indicator value among the low minima values is chosen.

Indicators are retained in the framework when they are evaluated as being informative of the magnitude of returns or PFA relative to the management objectives. These informative indicator datasets also have to meet the following two criteria to be retained:

- Expectation that the indicator variable would be available in future (in January), and
- A minimum of five observations are present in each of the correct quadrats (true low; true high).

3.5.2.5 Combining Indicators within the Framework

The probabilities of correct assignments are calculated for each of the true low and true high states for each of the indicator datasets retained. The respective probabilities correspond to the ratio of the correct assignment to all observations within the respective low and high indicator halves:

```
P(State low | Indicator low) (i.e. true low) = N(State low | Indicatorlow) / N
Indicatorlow
P(State high | Indicator high) (i.e. true high) = N(State high | Indicator high) / N
Indicatornigh
```

Indicator datasets are then pooled according to management objective/stock complex groupings. Each NAC stock complex ($\mathrm{n}=6$) and the southern NEC nonmaturing stock complex are pooled separately as these stock complexes relate to the management objectives for the West Greenland fishery.

3.5.2.6 Applying the FWI

To apply the FWI, the most recent year's indicator value for each of the retained indicator datasets is compared to the decision rule as determined from the historical datasets. If the contemporary indicator value is low relative to the decision rule, it is assigned a value of -1 . If the value is high, it is assigned a score of +1 . Multiple indicators within the stock complex groupings are then combined by arithmetic average of the product of the indicator value $(-1,+1)$ and the probability of a correct assignment corresponding to the true low or true high states. An average geographic area or stock complex score equal to or greater than zero suggests there is a likelihood of meeting the management objective for that grouping based on the historic relation between the variable of interest (adults returns or PFA) and the indicators evaluated.

If the scores for all the groupings within a fishery complex are greater than zero, then there is a likelihood that all the management objectives for that fishery will be met. Under that scenario, the multiyear management advice should be reassessed. When the score(s) for one or more of the groupings is less than zero, there is unlikely to be a significant change in the management advice and there would be no need for a reassessment.

SGEFISSA (ICES, 2007b) developed a spreadsheet template FWI (see example at Figure 3.5.2.6.1) in which the underlying variable of interest/ indicator dataset relationships and decision rules are summarised and collated according to the specific management objectives for each fishery. This provides one of two conclusions for the user:

1) No significant change identified by the indicators;
2) Reassess.

Figure 3.5.2.6.1. Framework of indicators spreadsheet for the West Greenland fishery, updated in April 2018 and applied in January 2019.

If no significant change has been identified by the indicators, then the multiyear catch advice for the year of interest could be retained. If a significant change is signalled by the indicators, the response is to reassess.

The framework spreadsheet is designed to capture both fishing and non-fishing scenarios:

- Multiyear advice provides no catch options greater than zero but indicators are suggesting that the management objectives may be met (conclusion: Reassess);
- Multiyear advice provides catch options greater than zero but the indicators suggest the management objectives may not be met (conclusion: Reassess).
There are two steps required by the user to run the framework. The first step in the framework evaluation is to enter the catch advice option (i.e. tonnes of catch) for the

West Greenland fishery. This feature provides the two way evaluation of whether a change in management advice may be expected and a reassessment would be required. The second step is to enter the values for the indicator variables in the framework for the year of interest. The spreadsheet evaluation update is automated and the conclusion is shown in the row underneath "Overall Recommendation".

The conclusions from the framework evaluation are based on whether there is simultaneous achievement of the management objectives in the six stock areas of North America and the southern NEAC 1SW non-maturing complex. If there are no indicator variables for a geographic area, the attainment of the management objectives is evaluated as unknown and that area or complex is not used in the decision structure of the framework.

Within the geographic areas for which indicator variables are retained, all the available indicators are used to assess the indicator score. If an update value for an indicator variable is not available for the year of interest, the indicator variable is not used to quantify the indicator score for that area.

The West Greenland FWI was updated during the 2021 WGNAS meeting and an updated spreadsheet produced. Details are provided in Section 5.9 of the 2021 Working Group report (see above).

3.5.3 Framework of Indicators (FWI) for the Faroes Fishery

3.5.3.1 Background

The original FWI applied to the West Greenland fishery (ICES, 2007b) was not applicable for the Faroese fishery for a number of different reasons. Among these were the lack of quantitative catch advice, the absence of specific management objectives and a sharing agreement for this fishery and the fact that none of the available indicator datasets met the criteria for inclusion in the FWI.

In 2011, WGNAS re-evaluated the approach for developing a FWI for the Faroese fishery (ICES, 2011). Since over the available time-series the PFA estimates for the NEAC stock complexes have predominately remained above the SER, the Working Group suggested a different set of decision rules for this FWI. It was suggested that the status of stocks should be re-evaluated if the FWI suggests that the PFA estimates are deviating substantially from the median values from the forecast.

3.5.3.2 Description of the FWI

It was initially suggested that the 95% confidence interval range for the mean of the indicator prediction, relative to the median forecast value, be used to compute the decision thresholds for whether the indicator suggests a reassessment or not (ICES, 2011). The limits should be computed at the median values of the PFA forecasts in each of the years in multiyear advice. However, the 95% criterion was subsequently re-examined (ICES, 2012a) and it was recommended that the upper and lower 75% confidence limits of the individual predictions be used for comparison (Figure 3.5.3.2.1). WGNAS recognised that this was a relaxation of the decision rule suggested in 2011, and will lead to a larger interval, and thus a lower chance of a reassessment than the approach suggested in 2011. However, this was considered to be a more
realistic confidence level given the relatively wide variability of the indicator datasets, and was also consistent with the approach adopted by NAC.

Figure 3.5.3.2.1. Example of how the reassessment intervals for the indicators are computed. The values of an indicator (counts) are plotted against the PFA. The regression line is shown in black and 75\% confidence limits for the individual estimates are shown in red. From the forecasted PFA in the year in question the values of the indicator corresponding to the upper and lower 75% confidence interval are estimated. If the indicator value falls outside these limits a reassessment is recommended by this particular indicator.

When the stocks are divided into smaller management units, potential indicators for each management unit become relatively scarce. Therefore, the Working Group recommended that the FWI be regressed against the stock complexes that they belong to. For example, MSW indicators from Norway should be regressed against PFA MSW for northern NEAC.

In 2012, the FWI was applied as a two-tailed test (ICES, 2012a). However, it was subsequently agreed that, in the event of a closed fishery, the indicators should only be compared to the upper 75% confidence limit (i.e. a one-tailed test). This means that for a closed fishery, a reassessment is only triggered where the forecast appeared to be an underestimate and there may be a possibility of a harvest being denied. In the case of an open fishery they should be compared to both the upper and lower 75% confidence limits. In this case, if the FWIs suggest that the forecasted PFA is either an underestimation or an overestimation of the realised PFA in any of the four stock complexes, then this should trigger a reassessment

ICES further advised (ICES, 2015) that, in the case of closed fisheries, the FWI should only be applied to those stock complexes which had previously signalled zero catch options at Faroes. This was agreed by NASCO (NEA(16)11) and applied in January 2017.

WGNAS developed a FWI spreadsheet (ICES, 2011) to provide an automatic evaluation of the need for a reassessment once the new indicator values are available in January; this has been updated in subsequent years (ICES, 2012a; 2013, 2015). An example spreadsheet is provided at Figure 3.5.3.2.2.

The following summarizes the main steps performed by the spreadsheet following updating of the relevant data for the variable of interest by adding the latest year's number:

- Regression analysis with the dataset x to determine its power to predict PFA in the forecasted years.
- Calculation of the 75% confidence intervals of individual predictions of the regression for dataset x. An indicator value below the 75% individual confidence interval (CI) is interpreted as indicative of an overestimation of the PFA, while a point above the 75% individual confidence interval is interpreted as indicative of an underestimation of PFA.
- A dataset is considered informative and should be kept as an indicator in the FWI if the following conditions are met: sample size $(n) \geq 10 ; r^{2} \geq 0.2$; dataset updated annually and new value available by January 15. Datasets that do not meet these criteria are discarded.
- Apply a binary score to each indicator value. Thus, for dataset x, if the current year's indicator value is outside the 75% individual regression point estimate Cl (below or above) then that indicator receives a score of 1 . If the indicator is within the $75 \% \mathrm{Cl}$, then the indicator receives a score of -1 . In the absence of an indicator datapoint for any year, a score of zero is applied. Whether the indicator value is above or below the upper and lower Cl values is checked separately in two spreadsheet columns and a decision whether the indicator value is within the Cl is assessed by combining the information in the two columns.
- Separate columns are used to sum the scores for all the indicator datasets within each stock complex. This is done separately for points that fall above the Cl and those that fall below. In the case of a two-sided approach (open fishery), if the sum of these columns is ≥ 0, then the spreadsheet signals "REASSESS"; if the sum is <0, then it signals "No significant OVERestimation of PFA identified by indicators, do not reassess" for indicator values that fall below the Cl , and "No significant UNDERestimation of PFA identified by indicators, do not reassess" for indicator values that are above the Cl . In case of a one-sided approach (closed fishery), only underestimation will signal a "REASSESS".
- FWI results are generated for each stock complex (northern NEAC maturing and non-maturing, and southern NEAC maturing and non-maturing). A score of ≥ 0 for any of these stock complexes would signal a reassessment.

WGNAS reassessed the effects of applying stricter criteria than $r^{2} \geq 0.2$ for inclusion of indicators in the FWI. As stricter criteria are used, the number of indicators included reduces rapidly. It was therefore concluded to keep the criterion of $r^{2} \geq 0.2$ in order to obtain a sufficient number of indicators to be able to use the FWI even in the event of one or more indicators being unavailable by the time the FWI is applied each year. The r^{2} value of 0.2 corresponds to a value slightly lower than what is considered to be a "large" effect size ($r=0.5, r^{2}=0.25$) by Cohen (1988). Although a criterion of $r^{2} \geq 0.2$ gives each indicator little predictive power alone (Prairie, 1996), the approach of using a suite of indicators is more similar to meta-analysis (Rosenthal, 1984) meaning that
the outcome of the FWI is not dependent on the result of one indicator in isolation, but rather on the combined performance of the indicator set.

The Faroes FWI was updated during the 2015 WGNAS meeting and an updated spreadsheet produced. Details are provided in Section 3.7 of the Working Group report (see above). In evaluating all the time-series, it was noted that the lower 12.5 $\% \mathrm{CL}$, which is used to determine which indicator values are outside the $75 \% \mathrm{Cl}$ on the lower side, was negative for some regression relationships for predicted PFA values in 2015 and 2016. Since this would invalidate the use of such indicators (they would not indicate that predicted PFA values are overestimates regardless of how small they are), an additional (fourth) criterion was established as a requirement for including time-series in the FWI. This requires that the lower 12.5\% confidence limit for an indicator time-series should be positive for any values of PFA included in the FWI.

The Working Group made further changes to the FWI in 2016 and 2018 (ICES, 2016, 2018). This followed the use of the FWI in January 2016 when the FWI signalled that the PFA of the Northern NEAC MSW stock complex was higher than forecast by the Working Group in 2015 and that a reassessment was necessary. However, in the catch advice provided in 2015 (ICES, 2015), it was the status of the Southern NEAC stock complexes which had resulted in a zero catch option for Faroes. As there was no indication from the FWI analysis that the forecast PFAs for these stocks had been underestimated, a change in the status of the Northern NEAC MSW stock complex alone would not have led to a change in the previous advice. To address this issue, an alternative FWI was developed, where only stock complexes that would be appropriate to changing the multi-year advice were included in the framework in the years between the provision of full catch advice. This revised FWI was adopted by NASCO in 2016 and again in 2018

As future catch advice could be determined by the status of stocks in any of the four stock complexes, it will be necessary to retain indicators for each of these in the FWI. However, in any year, it will only be necessary to apply the indicators from those stock complexes that could result in a change in the multi-year advice following a reassessment.

Figure 3.5.3.2.2. Output of the spreadsheet for the test of FWIs for NEAC for 2018 to 2022 based on the values of the indicators from 2018. The results of the NEAC FWI assessment in 2019 (based on indicator values for 2018) do not suggest that the PFA forecast for 2018 has been under-estimated. Therefore, the FWI Working Group concludes that no re-assessment of the existing management advice for the Faroes fishery is required from ICES in 2019.

Amiro, P., Hubley, B., Gibson, J. and Jones, R. 2008. Estimates of returns and escapements of Atlantic salmon to Salmon Fishing Areas 19, 20 and 21, Nova Scotia, and update of returns and escapements to SFA 23, southern New Brunswick, 1970 to 2007. ICES North Atlantic Salmon Working Group, Working Paper 2008/014.
Anderson, T.C. 1985. The Rivers of Labrador. Can. Spec. Publ. Fish. Aquat. Sci. 81: 389p.
Aprahamian, M.W., Davidson, I.C. and Cove, R.J. 2008. Life history changes in Atlantic salmon from the river Dee, Wales. Hydrobiologia 602: 61-78.
Ash, E.G.M. and O'Connell, M.F. 1987. Atlantic salmon fishery in Newfoundland and Labrador, commercial and recreational, 1985. Can. Data Rep. Fish. Aquat. Sci. 672: v+284 p.
Caron, F., Fontaine, P-M. and Picard, S-E. 1999. Seuil de conservation et cible de gestion pour les rivières à saumon (Salmon salar) du Québec. Faune et parcs Québec, Direction de la faune et des habitats. ISBN: 2-550-35636-5, 48 pp.
Cefas and Environment Agency. 2013. Annual assessment of salmon stocks and fisheries in England and Wales, 2012. ISBN: 978090754574 3, 138pp.
Chaput, G., Legault, C.M., Reddin, D.G., Caron, F. and Amiro, P.G. 2005. Provision of catch advice taking account of non-stationarity in productivity of Atlantic salmon (Salmo salar L.) in the Northwest Atlantic. ICES Journal of Marine Science 62: 131-143.
Chaput, G. 2012. Overview of the status of Atlantic salmon (Salmo salar L.) in the North Atlantic and trends in marine mortality. ICES Journal of Marine Science 69: 1538-1548.
Cohen, J. 1988. Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Publishers, Hillsdale, New Jersey.
Crozier, W.W., Potter, E.C.E., Prevost, E., Schon, P.J., and O'Maoiléidigh, N. 2003. A co-ordinated approach towards development of a scientific basis for management of wild Atlantic salmon in the North-East Atlantic (SALMODEL). An EU Concerted Action - Quality of Life and Management of Living Resources Key Action 5: Sustainable agriculture, fisheries and forestry, and integrated development of rural areas including mountain areas. Contract No. QLK5-CT1999-01546, 431 pp.
Davidson, I.C. and Hazelwood, M.S. 2005. Effects of climate change on salmon fisheries. Science Report W2-047/SR, Environment Agency, Bristol, 52 pp.
Decisioneering. 1996. Crystal Ball-Forecasting and risk analysis for spreadsheet users (Version 4.0). 286 pp.
DFO 2012. Reference points consistent with the precautionary approach for a variety of stocks in the Maritimes Region. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2012/035.
DFO. 2015. Development of reference points for Atlantic salmon (Salmo salar) that conform to the Precautionary Approach. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2015/058.
DFO. 2017. Stock Assessment of Newfoundland and Labrador Atlantic Salmon - 2016. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2017/035.
DFO. 2018. Limit Reference Points for Atlantic Salmon Rivers in DFO Gulf Region. DFO Can. Sci. Advis. Sec. Sci. Resp. 2018/015.
Dionne, M., Dauphin, G., Chaput, G., et Prévost, É. 2015. Actualisation du modèle stock-recrutement pour la conservation et la gestion des populations de saumon atlantique du Québec, ministère des Forêts, de la Faune et des Parcs du Québec, Direction générale de la gestion de la faune et des habitats, Direction l'expertise sur la faune aquatique, 66 p .
Doubleday, W.G., Rivard, D.R., Ritter, J.A., and Vickers, K.U. 1979. Natural mortality rate estimates for North Atlantic salmon in the sea. International Council for the Exploration of the Sea CM 1979/M: 26, 15 pp.
Fairchild, W.L., Brown, S.B. and Moore, A. 2002. Effects of freshwater contaminants on marine survival in Atlantic salmon. NPAFC: 30-32.
Friedland, K.D. 1998. Ocean climate influences on critical Atlantic salmon (Salmo salar) life history events. Canadian Journal of Fisheries and Aquatic Sciences 55 (Suppl. 1): 119-130.
Friedland, K.D., Reddin, D.G. and Castonguay, M. 2003. Ocean thermal conditions in the post-smolt nursery of North American Atlantic salmon. ICES Journal of Marine Science 60: 343-355.
Friedland, K.D., MacLean, J.C., Hansen, L.P., Peyronnet, A.J., Karlsson, L., Reddin, D.G., Ó Maoiléidigh, N. and McCarthy, J.L. 2009. The recruitment of Atlantic salmon in Europe. ICES Journal of Marine Science 66: 289-304.

Friedland, K.D., Shank, B.V., Todd, C.D., McGinnity, P. and Nye, J.A. 2013. Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation. Journal of Marine Systems (2013), http://dx.doi.org/10.1016/j.jmarsys.2013.03.003.
Gibson, A.J.F., and Claytor, R.R. 2013. What is 2.4? Placing Atlantic Salmon Conservation Requirements in the Context of the Precautionary Approach to Fisheries Management in the Maritimes Region. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/043. iv + 21 p.
Glover, K.A., Quintela, M., Wennevik, V., Besnier, F., Sorvik, A.G.E. and Skaala, O. 2012. Three Decades of Farmed Escapees in the Wild: A spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. Plos One 7(8): e43129. doi:10.1371/journal.pone.0043129.
Glover, K.A., Pertoldi, C., Besnier, F., Wennevik, V., Kent, M. and Skaala, O. 2013. Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genetics 14: 74. doi: 10.1186/1471-2156-14-74.
Hansen, L.P., Døving, K.B. and Jonsson, B. 1987. Migration of farmed adult Atlantic salmon with and without olfactory sense, released on the Norwegian coast. Journal of Fish Biology 30: 713-721.
Hansen, L.P., Jacobsen, J.A. and Lund, R.A. 1997. The incidence of reared Atlantic salmon (Salmo salar L.) of fish farm origin at West Greenland. ICES Journal of Marine Science 54: 152-155.

Hansen, L.P. and Quinn, T.P. 1998. The marine phase of Atlantic salmon (Salmo salar) life cycle, with comparison to Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences 55 (Suppl. 1): 104-118.
Hansen, L.P., Jacobsen, J.A. and Lund, R.A. 1999. The incidence of escaped farmed Atlantic salmon, Salmo salar, in the Faroese fishery and estimates of catches of wild salmon. ICES Journal of Marine Science 56: 200-206.
Hansen, L.P. and Jacobsen, J.A. 2003. Origin, migration and growth of wild and escaped farmed Atlantic salmon, Salmo salar L., in oceanic areas north of the Faroe Islands. ICES Journal of Marine Science 60: 110-119.
Hutchings, J.A. and Jones, M.E.B. 1998. Life history variation and growth rate thresholds for maturity in Atlantic salmon, Salmo salar. Canadian Journal of Fisheries and Aquatic Sciences 55 (Suppl. 1): 2247.

ICES. 1984. Report of the Working Group on North Atlantic Salmon. ICES CM 1984/Assess: 16, 54 pp.
ICES. 1991. Report of the Working Group on North Atlantic Salmon. Copenhagen, 14-21 March 1991. ICES, CM 1991/Assess: 12, 157 pp.
ICES. 1993a. Report of the North Atlantic Salmon Working Group. Copenhagen, 5-12 March 1993. ICES, CM 1993/Assess: 10.
ICES. 1993b. Report of the Study Group on North American Salmon Fisheries. Woods Hole, Mass., 1519 February 1993. ICES, CM 1993/Assess: 9.
ICES. 1994. Report of the Working Group on North Atlantic Salmon. Reykjavik, 6-15 April 1994. ICES, Doc. CM 1994/Assess: 16, Ref. M, 182 pp.
ICES. 1995. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 312 April 1995. ICES, Doc. CM 1995/Assess: 14, Ref. M, 191 pp.
ICES. 1996. Report of the Working Group on North Atlantic salmon, Moncton, Canada, 10-19 April 1996. ICES CM 1996/Assess: 11, Ref: M, 228 pp.

ICES. 1998. Report of the Working Group on North Atlantic Salmon. Copenhagen, 14-23 April 1998. ICES, CM 1998/ACFM: 15.
ICES. 1999. Report of the Working Group on North Atlantic Salmon. Copenhagen, 12-22 April 1999. ICES, CM 1999/ACFM: 14.
ICES. 2000. Report of the Working Group on the North Atlantic Salmon. ICES Headquarters, Copenhagen, April 3-13, ICES CM 2000/ACFM: 13, 301 pp.
ICES. 2001. Report of the Working Group on North Atlantic Salmon. Aberdeen, 2-11 April 2001. ICES CM 2001/ACFM: 15, 290 pp.
ICES. 2002. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 313 April 2002. ICES CM 2002/ACFM: 14, 299 pp.
ICES. 2003. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 31 March-10 April 2003. ICES CM 2003/ACFM: 19, 297 pp.
ICES. 2005. Report of the Working Group on North Atlantic Salmon. Nuuk, Greenland 4-14 April. ICES CM 2005/ACFM: 17, 290 pp.
ICES. 2006. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 413 April. ICES CM 2006/ACFM: 23, 254 pp.

ICES. 2007a. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 11-20 April. ICES CM 2007/ACFM: 13, 253 pp.
ICES. 2007b. Study Group on Establishing a Framework of Indicators of Salmon Stock Abundance (SGEFISSA). ICES CM 2007/DFC: 01, 71 pp.
ICES. 2008. Report of the Working Group on North Atlantic Salmon. Galway, Ireland 1-10 April. ICES CM 2008/ACOM: 18, 235 pp.
ICES. 2009a. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 30 March-8 April 2009. ICES CM 2009/ACFM: 06, 283 pp.
ICES. 2009b. Report of the Study Group on Biological Characteristics as Predictors of Salmon Abundance (SGBICEPS). ICES CM 2009/DFC: 02, 119 pp.
ICES. 2010a. Report of the Working Group on North Atlantic Salmon (WGNAS), 22-31 March 2010 Copenhagen, Denmark. ICES CM 2010/ACOM: 09, 302 pp.
ICES. 2010b. Report of the Study Group on Biological Characteristics as Predictors of Salmon Abundance (SGBICEPS), 24-26 November 2009, ICES Headquarters, Copenhagen, Denmark. ICES CM 2010/SSGEF: 03, 158 pp.
ICES. 2011. Report of the Working Group on North Atlantic Salmon (WGNAS), 22-31 March 2011 Copenhagen, Denmark. ICES CM 2011/ACOM: 09, 286 pp.
ICES. 2012a. Report of the Working Group on North Atlantic Salmon (WGNAS), 26 March-4 April 2012, Copenhagen, Denmark. ICES CM 2012/ACOM: 09, 322 pp.
ICES. 2012b. ICES Advice 2012, Book 10, 99 pp.
ICES. 2012c. Report of the Workshop on Eel and Salmon DCF Data (WKESDCF). 3-6 July 2012, Copenhagen, Denmark. ICES CM / ACOM: 62, 67 pp.
ICES. 2013. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 312 April 2013. ICES CM 2013/ACOM: 09. 379 pp.
ICES. 2014. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 19-28 March 2014. ICES CM 2014/ACOM: 09. 431 pp.
ICES. 2015. Report of the Working Group on North Atlantic Salmon. Moncton, Canada, 17-26 March 2015. ICES CM 2015/ACOM: 09. 462 pp.

ICES. 2016. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 30 March-8 April 2016. ICES CM 2016/ACOM: 10. 321 pp.
IPCC. 2001. IPCC third assessment report: climate change 2001. Synthesis report (ed. R.T. Watson and the Core Writing Team). IPPC, Geneva, Switzerland, 184 pp.
Jákupsstovu, S.H.í. 1988. Exploitation and migration of salmon in Faroese waters. In Atlantic Salmon: Planning for the Future, pp. 458-482. Ed. by D. Mills and D. Piggins. Croom Helm, London. 587 pp.
Jacobsen, J.A., Lund, R.A., Hansen, L.P. and O'Maoiléidigh, N. 2001. Seasonal differences in the origin of Atlantic salmon (Salmo salar L.) in the Norwegian Sea based on estimates from age structures and tag recaptures. Fisheries Research 52: 169-177.
Jonsson, B. and Jonsson, N. 2009. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. Journal of Fish Biology 75: 2381-2447.
Jutila, E., Jokikokko, E. and Julkunen, M. 2006. Long-term changes in the smolt size and age of Atlantic salmon, Salmo salar L., in a northern Baltic river related to parr density, growth opportunity and post-smolt survival. Ecology of Freshwater Fish 15: 321-330.
Kennedy, R.J. and Crozier, W.W. 2010. Evidence of changing migratory patterns of wild Atlantic salmon Salmo salar smolts in the River Bush, Northern Ireland, and possible associations with climate change. Journal of Fish Biology 76, 1786-1805.
Krkošek, M., Revie, C.W., Gargan, P.G., Skilbrei, O.T., Finstad, B., and Todd, C.D. 2013. Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean. Proceedings of the Royal Society B: Biological Sciences 280: 20122359. http://dx.doi.org/10.1098/rspb.2012.2359
Lunn, D.J., Thomas, A., Best, N. and Spiegelhalter, D. 2000. WinBUGS-A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 10: 325-337.
MAFF. 1991. Salmon Net Fisheries: Report of a review of salmon net fishing in the areas of the Yorkshire and Northumbria regions of the National Rivers Authority and the salmon fishery districts from the River Tweed to the River Ugie. Pub. HMSO, London.
Marine Scotland Science. 2010. The North Esk: Scotland's Monitored Salmon River. Topic Sheet 39. URL http://www.scotland.gov.uk/Resource/Doc/295194/0099740.pdf.
Marine Scotland Science. 2012. Collecting the Marine Scotland salmon and sea trout fishery statistics. Topic Sheet 67. URL http://www.scotland.gov.uk/Resource/0040/00402132.pdf.

Marine Scotland Science. 2013. Salmon Fishery Statistics. 2012 Season. Topic Sheet 68. URL http://www.scotland.gov.uk/Resource/0043/00434129.pdf.
Marine Scotland Science. 2017. Assessing conservation status of salmon in Scotland, 28 pp. http://www.gov.scot/Resource/0052/00524735.pdf
Michielsens, C.G.J., McAllister, M.K., Kuikka, S., Mäntyniemi, S., Romakkaniemi, A., Pakarinen, T., Karlsson, L. and Uusitalo, L. 2008. Combining multiple Bayesian data analyses in a sequential framework for quantitative fisheries stock assessment. Canadian Journal of Fisheries and Aquatic Sciences 65, 962-974.
Milner, N. J., Davidson, I.C., Wyatt, R.J., and Aprahamain, M. 2000. The use of spawning targets for salmon fishery management in England and Wales. In: Management and Ecology of River Fisheries, edited by I.G. Cowx, 361-372. Oxford, UK: Blackwell Science.
Ministère des Forêts, de la Faune et des Parcs. 2016. Plan de gestion du saumon atlantique 2016-2026. Ministère des Forêts, de la Faune et des Parcs, Direction générale de l'expertise sur la faune et ses habitats, Direction de la faune aquatique, Québec, 40 p .
NASCO. 1994. Explanatory note on the 1994 West Greenland Quota Calculation. NASCO WGC(94), 4 pp.
NASCO. 1998. North Atlantic Salmon Conservation Organisation. Agreement on the adoption of a precautionary approach. Report of the 15th annual meeting of the Council. CNL(98)46, 4 pp .
NASCO. 1999. North Atlantic Salmon Conservation Organisation. Action plan for the application of the precautionary approach. CNL(99)48. 14 pp.
NASCO. 2001. Report of the eighteenth annual meeting of the Commissions, Annex 14. NASCO, Edinburgh. pp. 183-191.
Nicieza, A.G. and Braña, F. 1993. Relationships among smolt size, marine growth, and sea age at maturity of Atlantic salmon (Salmo salar) in northern Spain. Canadian Journal of Fisheries and Aquatic Sciences 50: 1632-1640.
Niemelä, E., Erkinaro, J., Julkunen, M., Hassinen, E., Länsman, M. and Brørs, S. 2006. Temporal variation in abundance, return rate and life histories of previously spawned Atlantic salmon in a large Subarctic river. Journal of Fish Biology 68: 1222-1240.
O'Connell, M.F., Reddin, D.G., Amiro, P.G., Marshall, T.L., Chaput, G., Mullins, C.C., Locke, A., O’Neil, S.F. and Cairns, D.K. 1997. Estimates of conservation spawner requirements for Atlantic salmon (Salmo salar L.) for Canada. Department of Fisheries and Oceans Canadian Stock Assessment Secretariat Research Document 97/100, 58 pp.
O'Connell, M.F., Cochrane, N.M., Ash, E.G.M. and Mullins, C.C. 1998. An analysis of the License Stub Return System in the Newfoundland Region, 1994-1997. DFO, CSAS Res. Doc. 98/111, 67 p.
Olmos, M., Massiot-Granier, F., Prévost, E., Chaput, G., Bradbury, I.R., Nevoux, M., Rivot, E. 2019. Evidence for spatial coherence in time trends of marine life history traits of Atlantic salmon in the North Atlantic. Fish and Fisheries 20: 322-342.
Otero, J., L’Abée-Lund, J.H., Castro-Santos, T., Leonardsson, K., Storvik, G.O., Jonsson, B., Dempson, J.B., Russell, I.C., Jensen, A.J., Baglinière, J-L., Dionne, M., Armstrong, J.D. Romakkaniemi, A., Letcher, B.H., Kocik, J.F., Erkinaro, J., Poole, R., Rogan, G., Lundqvist, H., Maclean, J.C., Jokikokko, E., Arnekliev, J.V., Kennedy, R.J., Niemelä, E., Caballero, P., Music, P.A., Antonsson, T., Gudjonsson, S., Veselov, A.E., Lamberg, A., Groom, S., Taylor, B.H., Taberner, M., Dillane, M., Arnason, F., Horton, G., Hvidsten, N.A., Jonsson, I.R., Jonsson, N., McKelvey, S., Næsje, T.F., Skaala, O., Smith, G.W., Sægrov, H., Stenseth, N.C. and Vøllestad, L.A. 2014. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Global Change Biology doi:10.1111/gcb. 12363.
Parrish, D.L., Behnke, R.J., Gephard, S.R., McCormick, S.D. and Reeves, G.H. 1998. Why aren't there more Atlantic salmon (Salmo salar)? Canadian Journal of Fisheries and Aquatic Sciences 55 (Suppl. 1): 281-287.

Peyronnet, A., Friedland, K.D., O’Maoiléidigh, N., Manning, M. and Poole, W.R. 2007. Links between patterns of marine growth and survival of Atlantic salmon Salmo salar, L. Journal of Fish Biology 71: 684-700.
Peyronnet, A., Friedland, K.D. and O'Maoiléidigh, N. 2008. Different ocean and climate factors control the marine survival of wild and hatchery Atlantic salmon Salmo salar in the north-east Atlantic Ocean. Journal of Fish Biology 73: 945-962.
Potter, E.C.E. and Dunkley, D.A. 1993. Evaluation of marine exploitation of salmon in Europe. In Salmon in the sea, and new enhancement strategies. Edited by D. Mills. Fishing News Books, Blackwell Science, Oxford. pp. 203-219.

Potter, E.C.E. 1996. Increases in the returns of salmon to homewaters following the reduction in fishing at Faroes and Greenland. In Enhancement of Spring Salmon. Edited by D. Mills. Proceedings of Atlantic Salmon Trust Conference, London, January 1996. Atlantic Salmon Trust, Pitlochry. pp. 6786.

Potter, E.C.E, Hansen, L.P., Gudbergsson, G., Crozier, W.W., Erkinaro, J., Insulander, C., MacLean, J., O'Maoileidigh, N. and Prusov, S. 1998. A method for estimating preliminary conservation limits for salmon stocks in the NASCO-NEAC area. International Council for the Exploration of the Sea CM 1998/T: 17. 11 pp.
Potter, E.C.E. 2001. Past and present use of reference points for Atlantic salmon. In: Stock, Recruitment and Reference Points: Assessment and Management of Atlantic Salmon, pp. 195-223. Ed. by E. Prévost and G. Chaput. INRA Editions, Paris.
Potter, E.C.E., and Hansen, L.P. 2001. Do Farm Escapees Distort Estimates Of Salmon Pre-Fishery Abundance And National Conservation Limits? ICES CM 2001/M:05.
Potter, E.C.E., O Maoiléidigh, N. and Chaput, G. 2003. Marine mortality of Atlantic salmon, Salmo salar L: methods and measures. DFO Can. Sci. Adv. Secr. Res. Doc. 2003/101.
Potter, E.C.E., Crozier, W.W., Schön, P.-J., Nicholson, M.D., Prévost, E., Erkinaro, J., Gudbergsson, G., Karlsson, L., Hansen, L.P., MacLean, J.C., Ó Maoiléidigh, N., and Prusov, S. 2004. Estimating and forecasting pre-fishery abundance of Atlantic salmon (Salmo salar L.) in the Northeast Atlantic for the management of mixed stock fisheries. ICES Journal of Marine Science 61: 1359-1369.
Prairie, Y.T. 1996. Evaluating the predictive power of regression models. Canadian Journal of Fisheries and Aquatic Sciences 53: 490-492.
R Development Core Team. 2007. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.org.
Rago, P.J., Meerburg, D.J., Reddin, D.G., Chaput, G.J., Marshal, T.L., Dempson, B., Caron, F., Porter, T.R., Friedland, K.D. and Baum, E.T. 1993a. A continental run reconstruction model for the nonmaturing component of North American Atlantic salmon: analysis of fisheries in Greenland and Newfoundland Labrador, 1974-1991. ICES CM 1993/M: 24, 21 pp.
Rago, P.J., Reddin, D.G., Porter, T.R., Meerburg, D.J., Friedland, K.D. and Potter, E.C.E. 1993b. Estimation and analysis of pre-fishery abundance of the two-sea-winter populations of North American Atlantic salmon (Salmo salar L.), 1974-1991. ICES CM 1993/M: 25, 33 pp.
Reddin, D.G. 2010. Atlantic salmon return and spawner estimates for Labrador. DFO Can. Sci. Advis. Section Res. Doc. 2009/045. iv +19 p.
Reddin, D.G. and Dempson, J.B. 1989. Harvest estimates of Sand Hill River Atlantic salmon. Canadian Atlantic Fisheries Scientific Advisory Committee Working Paper 89/104. 19 p.
Reddin, D.G. and Veinott, G.I. 2010. Atlantic salmon return and spawner estimates for Newfoundland. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/044. iv + 28 p.
Reddin, D.G., Short, P.B., O'Connell, M.F. and Walsh, A.D. 1996. Atlantic salmon stock status for Sand Hill River, Labrador, 1995. DFO, CSAS Res. Doc. 96/82. 32 p.
Reddin, D.G., Short, P.B. and Johnson, R.W. 1998. The stock status of Atlantic salmon (Salmo salar L.) of Big Brook (Michaels River), Labrador in 1997. DFO, CSAS Res. Doc. 98/119.
Reddin, D.G., Anthony, R., Watts, K., Nuna, R. and Luther, R.J. 2004. Environmental conditions and harvests in various fisheries for salmonids in Labrador, 2002. CSAS Res. Doc. 2004/003, 20 p.
Rosenthal, R. 1984. Meta-analytic procedures for social research. Sage Publications, London.
Royce, W.F. 1984. Introduction to the practice of fishery science. Academic Press, New York.
Russell, I.C., Aprahamian, M.W., Barry, J., Davidson, I.C., Fiske, P., Ibbotson, A.T., Kennedy, R.J., Maclean, J.C., Moore, A., Otero, J., Potter, E.C.E. and Todd, C.D. 2012. The influence of the freshwater environment and the biological characteristics of Atlantic salmon smolts on their subsequent marine survival. ICES Journal of Marine Science 69: 1563-1573.
Shearer, W.M. 1992. The Atlantic salmon-Natural History, Exploitation and Future Management. Fishing News Books, Oxford, 244 pp.
Skilbrei, O.T., Finstad, B., Urdal, K., Bakke, G., Kroglund, F. and Strand, R. 2013. Impact of early salmon louse, Lepeophtheirus salmonis, infestation and differences in survival and marine growth of searanched Atlantic salmon, Salmo salar L., smolts 1997-2009. Journal of Fish Diseases 36: 249-260. doi:10.1111/jfd.12052.
Smith, G.W., Middlemas, S.J., and MacLean, J.C. 2014. Assessing the status of Scottish Atlantic salmon (Salmo salar L.) stocks using reported catch data: a modelling approach to account for catch and release in the rod and line fishery. Scottish Marine and Freshwater Science 5 (11).

Todd, C.D., Hughes, S.L., Marshall, C.T., MacLean, J.C., Lonergan, M.E. and Biuw, E.M. 2008. Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmon. Global Change Biology 14: 958-970.
Vøllestad, L.A., Hirst, D., L'Abée-Lund, J.H., Armstrong, J.D., MacLean, J.C., Youngson, A.F. and Stenseth, N.C. 2009. Divergent trends in anadromous salmonid populations in Norwegian and Scottish rivers. Proceedings of the Royal Society B-Biological Sciences 276: 1021-1027.
Vollset, K.W., Barlaup, B.T., Skoglund, H., Normann, E.S. and Skilbrei, O.T. 2014. Salmon lice increase the age of returning Atlantic salmon. Biology Letters 10. DOI: 10.1098/rsbl.2013.0896.
Webb, J.H. 1998. Catch and release: the survival and behaviour of Atlantic salmon angled and returned to the Aberdeenshire Dee, in spring and early summer. Scottish Fisheries Research Report, 62: 116.

Youngson, A.F. and Webb, J.H. 1993. Thyroid hormone levels in Atlantic salmon (Salmo salar) during the return migration from the ocean to spawn. Journal of Fish Biology 42: 293-300.

Appendices to Stock Annex

Appendix 1 (a): Description of how catch and release mortality is incorporated in regional and national stock assessments

Commission Area	Country/Region	How it is used in regional and national assessments	Future developments / improvements
NAC	Canada-Quebec	$C \& R$ has become more popular in the region and C\&R only angling licenses are sold. C\&R data are incomplete as there is no requirement to report C\&R numbers. Generally, C\&R mortality is considered in the assessment but the majority of the assessments are conducted as spawner counts after the fisheries so any losses due to C\&R mortality are accounted for in the spawner estimates but not in the returns (which are the sum of known losses and spawning escapement).	New studies of the contribution of C\&R fish to spawning success have been initiated. C\&R monitoring is becoming more complete. Consideration will be given in the future to incorporating these losses in the returns and in the assessments based on angling catches, especially as reporting improves.
	CanadaNewfoundland \& Labrador	Catch and release mortality is included in estimates of spawners. Spawning escapement is reduced by $5-15 \%$ (mean 10%) of the released catch.	No plans for further development.
	Canada - Gulf	Assessments of spawners are adjusted by mortality rates of 3\% to 6% of the total C\&R estimates of small and large salmon. The rates vary by river according to angling seasons, and the occurence of other factors such as disease which can affect survival of salmon.	Catch and release mortality is known to be affected by the water temperatures when fish are angled. In some cases, angling fisheries are closed when water temperatures are high in the summer to reduce the losses of fish from C\&R. Methods to determine catch and release numbers vary by river and in some cases, the number of released fish is estimated from returns and historical creel survey data. As the practice of $C \& R$ becomes more popular, estimation methods for C\&R values will have to be revisited.
	Canada Scotia/Fundy	Assessments are currently adjusted by 4% of the C\&R fish to correct for C\&R mortality.	Numbers of C\&R fish are currently low (retention fisheries are closed). If C\&R catches increase, further research on the correction factor would be warranted.
	USA	No correction for mortality due to C\&R used in estimating spawner numbers. However, all fisheries have been closed and the number of fish caught relative to stock size is very small.	
NEAC	Russia	With increasing C\&R the retained catch for similar effort is	If C\&R information is incorporated into formal assessments
	Norway	, increase in C\&R in recent years is incorporated into	mortality should be incorporated into estimates of
	Sweden		
	Iceland	assessed qualitatively. No correction for increased C\&R mortality is applied when estimating the spawning	
	Ireland	No correction for mortality due to C\&R used in estimating spawner numbers or in the national run-reconstruction model.	Incorporation of formal method for estimating the effect of $C \& R$ on number of returning fish. Incorporation of C\&R mortality in estimates of spawning escapement
	UK(England \& Wales)	With increasing C\&R the retained catch for similar effort is reduced. Therefore the exploitation rate for retained fish is lower. The increase in C\&R in recent years is incorporated into the national run-reconstruction model by reducing the exploitation rate value used in the model input. This is assessed qualitatively. 20% mortality of C\&R fish used in assessing compliance with river-specific conservation limits.	If C\&R information is incorporated into formal assessments then multiple recaptures should be taken into account.
	UK(N. Ireland)	Returns are estimated by raising the reported net catch by exploitation rate. No correction for increased C\&R mortality is applied when estimating the spawning escapement.	If C\&R information is incorporated into formal assessments then multiple recaptures should be taken into account. C\&R mortality should be incorporated into estimates of spawning escapement.
	UK(Scotland)	Catch and release mortality is included in estimates of spawners. Spawning escapement is reduced by 10% ($\pm 5 \%$) of the released catch (Webb, 1998; Smith, Middlemas, and MacLean, 2014).	At rod exploitation rates likely to occur in UK (Scotland), the impact of multiple recaptures on abundance estimates is expected to be low (Smith, Middlemas, and MacLean, 2014).
	Denmark	C\&R rates recorded, but no national run-reconstruction assessment applied.	
	Finland	No record of C\&R	If C\&R information is collected, it should be incorporated into formal assessments and multiple recaptures should be
	France	No record of C\&R	taken into account. C\&R mortality should be incorporated into estimates of spawning escapement.
NEAC	Faroes	Not appl	icable
W. Greenland	W. Greenland	Not appl	icable

Appendix 1 (b): Description of how unreported catch is incorporated in regional, national and international stock assessments

| Commission
 Area | Country/Region | How it is used in regional and national assessments |
| :--- | :--- | :--- | :--- | :--- | How used in international assessments | Future developments / improvements |
| :--- |

Appendix 2: Overview of current DCF and future data needs for Atlantic salmon assessment/ scientific advice

Type of data	 Collected under	Available to WG	Reviewed and evaluated by WG	Used in current assessment models	Future plans

Type of data	Collected under DCF	Available to WG	Reviewed and evaluated by WG	Used in current assessment models	Future plans

Type of data	Collected under DCF	Available to WG	Reviewed and evaluated by WG	Used in current assessment models	Future plans	Notes
Adult census data (Counters, fish ladders, etc.)	Partially ** but not requested for Atlantic salmon in DCF	Yes	Partially	Yes	Include collection in DC-MAP	Counts required for \sim one river in 30 . Data required to provide exploitation rates for assessments
Index river data (Smolt \& adult trapping; tagging programmes; etc.)	Partially ** but not requested for Atlantic salmon in DCF	Yes	Partially	Yes	Include collection in DC-MAP	Index rivers are identified by ICES. Data used to develop reference points and inputs to assessment models
Genetic data (for mixed-stock analysis)	No **	Partially	Partially - for some mixed- stock fisheries	Not currently	Include collection in DC-MAP - sampling in mixed-stock fisheries every five years	Genetic analysis is now advised to provide more reliable stock composition in mixed-stock fisheries
Economic data	Not known **	No *	No	No - but data are of use to NASCO		Collection of economic data would be useful to managers
Aquaculture data	Not known **	Partially marine farm production collected	Yes	No - but information on farm production is requested by NASCO		Currently not required for freshwater

Add other data type to the cells with a light blue shading, if needed

*Not asked for by the ICES WGNAS.

${ }^{* *}$) Not mandatory for some or all areas/stocks/fisheries under the current DCF.

Appendix 3: Input data for NEAC Pre Fishery Abundance analysis using Monte Carlo simulation

Finland
Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \frac{1}{\pi} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$										
1971	8422	8538	35.0	10.0	35.0	10.0	50.0	10.0	55.0	15.0
1972	32789	8950	35.0	10.0	35.0	10.0	50.0	10.0	55.0	15.0
1973	15261	14402	35.0	10.0	35.0	10.0	50.0	10.0	55.0	15.0
1974	21057	24508	35.0	10.0	35.0	10.0	50.0	10.0	55.0	15.0
1975	25242	31347	35.0	10.0	35.0	10.0	50.0	10.0	55.0	15.0
1976	23000	24561	35.0	10.0	35.0	10.0	50.0	10.0	55.0	15.0
1977	12958	17035	35.0	10.0	35.0	10.0	50.0	10.0	55.0	15.0
1978	12338	8670	35.0	10.0	35.0	10.0	50.0	10.0	55.0	15.0
1979	11071	7078	35.0	10.0	35.0	10.0	50.0	10.0	45.0	15.0
1980	10097	7994	25.0	10.0	25.0	10.0	50.0	10.0	45.0	15.0
1981	9049	9476	25.0	10.0	25.0	10.0	50.0	10.0	45.0	15.0
1982	5379	12628	25.0	10.0	25.0	10.0	50.0	10.0	45.0	15.0
1983	13156	14013	25.0	10.0	25.0	10.0	50.0	10.0	45.0	15.0
1984	14371	11718	25.0	10.0	25.0	10.0	50.0	10.0	45.0	15.0
1985	19058	11299	25.0	10.0	25.0	10.0	50.0	10.0	45.0	15.0
1986	15005	9320	25.0	10.0	25.0	10.0	50.0	10.0	45.0	15.0
1987	18151	12208	25.0	10.0	25.0	10.0	50.0	10.0	45.0	15.0
1988	10676	8631	25.0	10.0	25.0	10.0	50.0	10.0	45.0	15.0
1989	27956	10337	25.0	10.0	25.0	10.0	60.0	10.0	55.0	15.0
1990	27955	11423	25.0	10.0	25.0	10.0	60.0	10.0	55.0	15.0
1991	27513	15287	25.0	10.0	25.0	10.0	60.0	10.0	55.0	15.0
1992	38843	14826	25.0	10.0	25.0	10.0	60.0	10.0	55.0	15.0
1993	26195	15517	25.0	10.0	25.0	10.0	60.0	10.0	55.0	15.0
1994	14555	14621	25.0	10.0	25.0	10.0	60.0	10.0	55.0	15.0
1995	14525	9625	25.0	10.0	25.0	10.0	60.0	10.0	55.0	15.0
1996	20466	8079	25.0	10.0	25.0	10.0	55.0	10.0	50.0	15.0
1997	18621	9764	25.0	10.0	25.0	10.0	55.0	10.0	50.0	15.0
1998	23336	9307	25.0	10.0	25.0	10.0	55.0	10.0	50.0	15.0
1999	37495	11071	25.0	10.0	25.0	10.0	60.0	10.0	50.0	10.0
2000	40730	21088	25.0	10.0	25.0	10.0	60.0	10.0	50.0	10.0
2001	29501	28112	25.0	10.0	25.0	10.0	60.0	10.0	55.0	10.0
2002	16721	24642	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2003	16497	17751	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2004	7002	8062	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2005	15366	6685	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2006	26916	10533	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2007	7862	15269	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2008	8481	15355	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2009	15042	6587	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2010	12085	10590	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2011	13727	8152	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2012	23764	9851	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2013	13724	9494	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2014	19495	10302	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2015	12127	9905	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2016	9470	10584	25.0	10.0	25.0	10.0	55.0	10.0	55.0	10.0
2017	4676	6645	25.0	10.0	25.0	10.0	50.0	10.0	50.0	10.0
2018	11808	4078	10.0	10.0	10.0	10.0	40.0	10.0	45.0	10.0
2019	3868	5738	10.0	10.0	10.0	10.0	40.0	10.0	45.0	10.0
2020	3347	3437	10.0	10.0	10.0	10.0	40.0	10.0	45.0	10.0

France
Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \grave{\pi} \\ & \end{aligned}$										
1971	1740	4060					3.5	1.5	37.5	12.5
1972	3480	8120					3.5	1.5	37.5	12.5
1973	2130	4970					3.5	1.5	37.5	12.5
1974	990	2310					3.5	1.5	37.5	12.5
1975	1980	4620					3.5	1.5	37.5	12.5
1976	1820	3380					3.5	1.5	37.5	12.5
1977	1400	2600					3.5	1.5	37.5	12.5
1978	1435	2665					3.5	1.5	37.5	12.5
1979	1645	3055					3.5	1.5	37.5	12.5
1980	3430	6370					3.5	1.5	37.5	12.5
1981	2720	4080					3.5	1.5	35.0	15.0
1982	1680	2520					3.5	1.5	35.0	15.0
1983	1800	2700					3.5	1.5	35.0	15.0
1984	2960	4440					3.5	1.5	35.0	15.0
1985	1100	3330					3.5	1.5	35.0	15.0
1986	3400	3400					7.0	5.0	35.0	15.0
1987	6013	1806					7.0	5.0	35.0	15.0
1988	2063	4964					7.0	5.0	35.0	15.0
1989	1124	2282					7.0	5.0	35.0	15.0
1990	1886	2332					7.0	5.0	35.0	15.0
1991	1362	2125					7.0	5.0	35.0	15.0
1992	2490	2671					7.0	5.0	35.0	15.0
1993	3581	1254					7.0	5.0	35.0	15.0
1994	2810	2290					7.0	5.0	30.0	10.0
1995	1669	1095					12.5	7.5	30.0	10.0
1996	2063	1943					12.5	7.5	30.0	10.0
1997	1060	1001					12.5	7.5	30.0	10.0
1998	2065	846					12.5	7.5	30.0	10.0
1999	690	1831					12.5	7.5	30.0	10.0
2000	1792	1277					12.5	7.5	30.0	10.0
2001	1544	1489					12.5	7.5	30.0	10.0
2002	2423	1065	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2003	1598	1540	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2004	1927	2880	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2005	1256	1771	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2006	1763	1785	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2007	1378	1685	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2008	1365	1865	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2009	389	863	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2010	1313	711	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2011	899	1998	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2012	974	1585	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2013	1371	1632	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2014	1217	2027	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2015	1124	2286	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2016	1017	972	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2017	1282	1110	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2018	1071	1678	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2019	1107	2660	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0
2020	891	1304	30.0	10.0	22.5	7.5	12.5	7.5	30.0	10.0

Iceland (South and West)

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \frac{1}{0} \\ & \stackrel{1}{\sim} \end{aligned}$										
1971	30618	16749	2	1	2	1	50	10	70	10
1972	24832	25733	2	1	2	1	50	10	70	10
1973	26624	23183	2	1	2	1	50	10	70	10
1974	18975	20017	2	1	2	1	50	10	70	10
1975	29428	21266	2	1	2	1	50	10	70	10
1976	23233	18379	2	1	2	1	50	10	70	10
1977	23802	17919	2	1	2	1	50	10	70	10
1978	31199	23182	2	1	2	1	50	10	70	10
1979	28790	14840	2	1	2	1	50	10	70	10
1980	13073	20855	2	1	2	1	50	10	70	10
1981	16890	13919	2	1	2	1	50	10	70	10
1982	17331	9826	2	1	2	1	50	10	70	10
1983	21923	16423	2	1	2	1	50	10	70	10
1984	13476	13923	2	1	2	1	50	10	70	10
1985	21822	10097	2	1	2	1	50	10	70	10
1986	35891	8423	2	1	2	1	50	10	70	10
1987	22302	7480	2	1	2	1	50	10	70	10
1988	40028	8523	2	1	2	1	50	10	70	10
1989	22377	7607	2	1	2	1	50	10	70	10
1990	20584	7548	2	1	2	1	50	10	70	10
1991	22711	7519	2	1	2	1	50	10	70	10
1992	26006	8479	2	1	2	1	50	10	70	10
1993	25479	4155	2	1	2	1	50	10	70	10
1994	20985	6736	2	1	2	1	50	10	70	10
1995	25371	6777	4	1	4	1	50	10	70	10
1996	21913	4364	4	1	4	1	50	10	70	10
1997	16007	4910	4	1	4	1	50	10	70	10
1998	21900	3037	4	1	4	1	50	10	70	10
1999	17448	5757	4	1	4	1	49	10	68	10
2000	15502	1519	4	1	4	1	49	10	66	10
2001	13586	2707	4	1	4	1	48	10	67	10
2002	16952	2845	4	1	4	1	48	10	65	10
2003	20271	4751	4	1	4	1	48	10	68	10
2004	20319	3784	4	1	4	1	48	10	67	10
2005	29969	3241	4	1	4	1	48	10	65	10
2006	21153	2689	4	1	4	1	48	10	65	10
2007	23728	1679	4	1	4	1	47	9	66	10
2008	28774	1659	4	1	4	1	47	10	57	10
2009	33190	2838	4	1	4	1	48	10	63	10
2010	33318	6061	4	1	4	1	47	10	65	10
2011	23436	2934	4	1	4	1	47	10	62	10
2012	13312	1429	4	1	4	1	47	10	53	10
2013	39637	4105	4	1	4	1	47	10	55	10
2014	9551	2281	4	1	4	1	46	10	50	10
2015	26082	2197	4	1	4	1	45	10	53	10
2016	15291	2784	4	1	4	1	45	10	47	10
2017	15926	2322	4	1	4	1	45	10	46	10
2018	13743	2750	4	1	4	1	45	10	51	10
2019	8917	2108	4	1	4	1	44	10	48	10
2020	11250	1525	4	1	4	1	42	10	36	7.5

Iceland (North and East)

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \text { io } \\ & \hline 10 \\ & \hline \end{aligned}$	Declared catch 1SW salmon									
1971	4610	6625	2	1	2	1	50	10	70	10
1972	4223	10337	2	1	2	1	50	10	70	10
1973	5060	9672	2	1	2	1	50	10	70	10
1974	5047	9176	2	1	2	1	50	10	70	10
1975	6152	10136	2	1	2	1	50	10	70	10
1976	6184	8350	2	1	2	1	50	10	70	10
1977	8597	11631	2	1	2	1	50	10	70	10
1978	8739	14998	2	1	2	1	50	10	70	10
1979	8363	9897	2	1	2	1	50	10	70	10
1980	1268	13784	2	1	2	1	50	10	70	10
1981	6528	4827	2	1	2	1	50	10	70	10
1982	3007	5539	2	1	2	1	50	10	70	10
1983	4437	4224	2	1	2	1	50	10	70	10
1984	1611	5447	2	1	2	1	50	10	70	10
1985	11116	3511	2	1	2	1	50	10	70	10
1986	13827	9569	2	1	2	1	50	10	70	10
1987	8145	9908	2	1	2	1	50	10	70	10
1988	11775	6381	2	1	2	1	50	10	70	10
1989	6342	5414	2	1	2	1	50	10	70	10
1990	4752	5709	2	1	2	1	50	10	70	10
1991	6900	3965	2	1	2	1	50	10	70	10
1992	12996	5903	2	1	2	1	50	10	70	10
1993	10689	6672	2	1	2	1	50	10	70	10
1994	3414	5656	2	1	2	1	50	10	70	10
1995	8776	3511	4	1	4	1	50	10	70	10
1996	4681	4605	4	1	4	1	50	10	70	10
1997	6406	2594	4	1	4	1	50	10	70	10
1998	10905	3780	4	1	4	1	50	10	70	10
1999	5326	4030	4	1	4	1	48	10	65	10
2000	5595	2324	4	1	4	1	48	10	64	10
2001	4976	2587	4	1	4	1	47	10	62	10
2002	8437	2366	4	1	4	1	46	10	60	10
2003	4478	2194	4	1	4	1	46	10	53	10
2004	11823	2239	4	1	4	1	45	10	55	10
2005	10297	2726	4	1	4	1	44	10	54	10
2006	11082	2179	4	1	4	1	45	10	45	10
2007	8046	1672	4	1	4	1	44	10	36	7.5
2008	7021	2693	4	1	4	1	42	10	45	10
2009	10779	1735	4	1	4	1	40	7.5	36	7.5
2010	8621	2602	4	1	4	1	40	7.5	38	7.5
2011	6759	2596	4	1	4	1	38	7.5	34	7.5
2012	3699	1419	4	1	4	1	40	7.5	33	7.5
2013	8375	1528	4	1	4	1	38	7.5	31	7.5
2014	3953	1778	4	1	4	1	38	7.5	30	7.5
2015	10209	1803	4	1	4	1	35	7.5	32	7.5
2016	4237	2298	4	1	4	1	34	7.5	29	7.5
2017	4002	984	4	1	4	1	33	7.5	22	7.5
2018	4265	1029	4	1	4	1	33	7.5	21	7.5
2019	2185	824	4	1	4	1	28	7.5	22	7.5
2020	2153	314	4	1	4	1	26	7.5	11	5

Ireland
Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \stackrel{亠}{\varpi} \\ & \underset{\sim}{0} \end{aligned}$																		sıəл!̣ı pəsojp u! uowןes MSW
1971	409965	46594	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1972	437089	49863	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1973	476131	54008	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1974	542124	60976	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1975	598524	68260	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1976	407018	47358	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1977	351745	41256	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1978	307569	35708	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1979	282700	32144	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1980	215116	35447	37.5	7.5	37.5	7.5	62.5	12.5	47.5	12.5								
1981	137366	26101	37.5	7.5	37.5	7.5	75.7	11.4	47.5	12.5								
1982	269847	11754	37.5	7.5	37.5	7.5	71.9	10.8	36.7	8.3								
1983	437751	26479	37.5	7.5	37.5	7.5	66.1	9.9	40.1	7.5								
1984	224872	20685	37.5	7.5	37.5	7.5	64.6	9.7	43.5	6.5								
1985	430315	18830	37.5	7.5	37.5	7.5	74.6	11.2	36.1	3.4								
1986	443701	27111	37.5	7.5	37.5	7.5	68.7	10.3	46.0	9.0								
1987	324709	26301	30.0	10.0	30.0	10.0	69.8	10.5	32.2	4.7								
1988	391475	22067	30.0	10.0	30.0	10.0	62.0	9.3	37.4	5.6								
1989	297797	25447	30.0	10.0	30.0	10.0	65.7	9.9	47.2	8.8								
1990	172098	15549	30.0	10.0	30.0	10.0	60.7	9.1	59.9	6.1								
1991	120408	10334	30.0	10.0	30.0	10.0	59.5	8.9	26.5	3.5								
1992	182255	15456	30.0	10.0	30.0	10.0	62.1	9.3	51.5	3.8								
1993	150274	13156	25.0	10.0	25.0	10.0	58.6	8.8	42.0	18.0								
1994	234126	20506	25.0	10.0	25.0	10.0	71.4	10.7	40.5	2.5								
1995	232480	20454	25.0	10.0	25.0	10.0	63.5	9.5	41.8	1.2								
1996	203920	18021	25.0	10.0	25.0	10.0	59.9	9.0	55.1	3.2								
1997	170774	14724	25.0	10.0	15.0	5.0	50.1	7.5	30.8	12.2								
1998	191868	17269	25.0	10.0	15.0	5.0	53.7	8.1	61.9	1.4								
1999	158818	14801	25.0	10.0	15.0	5.0	47.8	7.2	34.1	18.1								
2000	199827	16848	25.0	10.0	15.0	5.0	43.2	6.5	31.0	4.5								
2001	218715	18436	7.5	2.5	7.5	2.5	48.0	7.2	35.0	8.0								
2002	198719	16702	7.5	2.5	7.5	2.5	49.9	7.5	27.5	7.5								
2003	161270	13745	7.5	2.5	7.5	2.5	41.3	6.2	21.5	5.5								
2004	142251	12299	7.5	2.5	7.5	2.5	49.5	7.5	35.0	8.0								
2005	127371	10716	7.5	2.5	7.5	2.5	44.5	6.5	23.5	3.5								
2006	101938	9740	7.5	2.5	7.5	2.5	46.5	6.5	29.5	13.5								
2007	17863	2867	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	8177	666	12137	988	0	0	24433	158

$\stackrel{亠 幺}{\text { ® }}$																		
2008	31843	3935	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	8233	670	12071	1492	0	0	23259	213
2009	24268	4675	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	6248	509	9812	1610	0	0	30008	1873
2010	32981	4497	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	13093	1066	13325	1817	0	0	30605	616
2011	28105	4889	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	11071	902	11031	1657	0	0	28504	765
2012	29979	4197	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	9542	777	10429	1463	0	0	24517	1213
2013	24029	4831	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	13378	747	8821	1861	0	0	23836	1250
2014	13787	4063	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	9173	397	5107	1430	0	0	20110	1210
2015	20835	4272	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	7396	295	7810	1573	0	0	25834	1134
2016	21619	3918	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	5755	1162	9413	1522	0	0	23953	1657
2017	23940	3782	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	5892	791	10977	1586	0	0	22590	1033
2018	16307	3917	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	5134	421	7230	1499	0	0	22427	1184
2019	16533	3283	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	5354	369	7867	1382	0	0	14774	0
2020	24320	4730	7.5	2.5	7.5	2.5	15.5	8.4	23.9	9.1	5637	542	10483	1816	0	0	15016	0

Norway（Southeast）

Annual input data for NEAC PFA run－reconstruction \＆NCL models（uncertainty values define uniform distribution around estimates used in Monte Carlo simulation）．

	Year
的 \ddagger 	Declared catch 1SW salmon
 	Declared catch MSW salmon
	Estimated \％ unreported catch of 1SW salmon
	Uncertainty in \％ unreported catch of 1SW salmon
	Estimated \％ unreported catch of MSW salmon
	Uncertainty in \％ unreported catch of MSW salmon
	Estimated exploitation rate（\％）of 1SW salmon
官	Uncertainty in exploitation rate（\％）of 1SW salmon
	Estimated exploitation rate（\％）of MSW salmon
ャ $\stackrel{\rightharpoonup}{\circ}$ 。	Uncertainty in exploitation rate（\％）of MSW salmon

Norway (Southwest)

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \frac{1}{0} \\ & \cline { 1 - 1 } \\ & \hline \end{aligned}$	3 H I 工 U U O U I त 0 0 0 0									
1971										
1972										
1973										
1974										
1975										
1976										
1977										
1978										
1979										
1980										
1981										
1982										
1983	31845	28601	50	10	50	10	80	10	80	10
1984	23428	27641	50	10	50	10	80	10	80	10
1985	29857	25515	50	10	50	10	80	10	80	10
1986	29894	30769	50	10	50	10	80	10	80	10
1987	30005	26623	50	10	50	10	80	10	80	10
1988	36976	28255	50	10	50	10	80	10	80	10
1989	19183	13041	50	10	50	10	70	10	65	10
1990	18490	14423	50	10	50	10	70	10	65	10
1991	9759	8323	50	10	50	10	70	10	65	10
1992	6448	8832	50	10	50	10	70	10	65	10
1993	11433	10239	40	10	40	10	70	10	65	10
1994	18597	10961	40	10	40	10	70	10	65	10
1995	10863	13122	40	10	40	10	70	10	65	10
1996	7048	12546	40	10	40	10	70	10	65	10
1997	10279	7194	35	10	35	10	60	10	60	10
1998	5726	6583	35	10	35	10	60	10	60	10
1999	7357	3219	35	10	35	10	60	10	60	10
2000	11538	7961	35	10	35	10	60	10	60	10
2001	12109	10716	35	10	35	10	60	10	60	10
2002	6000	7145	35	10	35	10	60	10	60	10
2003	8269	7602	30	10	30	10	60	10	60	10
2004	7180	6420	30	10	30	10	60	10	60	10
2005	10370	7334	30	10	30	10	60	10	60	10
2006	5173	9381	30	10	30	10	60	10	60	10
2007	2630	6011	30	10	30	10	60	10	60	10
2008	3143	4807	30	10	30	10	55	10	50	10
2009	3069	3792	30	10	30	10	55	10	50	10
2010	3450	2447	30	10	30	10	50	10	35	10
2011	2888	4409	30	10	30	10	45	10	30	10
2012	4171	5733	30	10	30	10	45	10	30	10
2013	3111	3581	30	10	30	10	45	10	30	10
2014	3029	2717	30	10	30	10	40	10	25	10
2015	4721	3953	30	10	30	10	45	10	30	10
2016	3262	5671	30	10	30	10	45	10	30	10
2017	2009	4547	30	10	30	10	45	10	30	10
2018	2408	3357	30	10	30	10	35	10	25	10
2019	2905	3540	30	10	30	10	45	10	30	10
2020	3502	4199	30	10	30	10	45	10	30	10

Mid－Norway

Annual input data for NEAC PFA run－reconstruction \＆NCL models（uncertainty values define uniform distribution around estimates used in Monte Carlo simulation）．

	Year
 	Declared catch 1SW salmon
 	Declared catch MSW salmon
$\cdots{ }_{\text {¢ }}^{\sim}$	Estimated \％ unreported catch of 1SW salmon
	Uncertainty in \％ unreported catch of 1SW salmon
	Estimated \％ unreported catch of MSW salmon
	Uncertainty in \％ unreported catch of MSW salmon
	Estimated exploitation rate（\％）of 1SW salmon
守	Uncertainty in exploitation rate（\％）of 1SW salmon
	Estimated exploitation rate（\％）of MSW salmon
ャ $\stackrel{\rightharpoonup}{\circ}$ 。	Uncertainty in exploitation rate（\％）of MSW salmon

Norway North

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \frac{1}{0} \\ & \cline { 1 - 1 } \\ & \hline \end{aligned}$										
1971										
1972										
1973										
1974										
1975										
1976										
1977										
1978										
1979										
1980										
1981										
1982										
1983	104040	49413	50	10	50	10	80	10	80	10
1984	150372	58858	50	10	50	10	80	10	80	10
1985	118841	58956	50	10	50	10	80	10	80	10
1986	84150	63418	50	10	50	10	80	10	80	10
1987	72370	34232	50	10	50	10	80	10	80	10
1988	53880	32140	50	10	50	10	80	10	80	10
1989	42010	13934	50	10	50	10	70	10	70	10
1990	38216	17321	50	10	50	10	70	10	70	10
1991	42888	21789	50	10	50	10	70	10	70	10
1992	34593	19265	50	10	50	10	70	10	70	10
1993	51440	39014	40	10	40	10	70	10	70	10
1994	37489	33411	40	10	40	10	70	10	70	10
1995	36283	26037	40	10	40	10	70	10	70	10
1996	40792	36636	40	10	40	10	70	10	70	10
1997	39930	30115	35	10	35	10	70	10	70	10
1998	46645	34806	35	10	35	10	70	10	70	10
1999	46394	46744	35	10	35	10	70	10	70	10
2000	61854	51569	35	10	35	10	70	10	70	10
2001	46331	54023	35	10	35	10	70	10	70	10
2002	38101	43100	35	10	35	10	70	10	70	10
2003	44947	35972	30	10	30	10	70	10	70	10
2004	34640	28077	30	10	30	10	70	10	70	10
2005	45530	33334	30	10	30	10	70	10	70	10
2006	48688	39508	30	10	30	10	70	10	70	10
2007	28748	44550	30	10	30	10	70	10	70	10
2008	34338	40553	30	10	30	10	65	10	65	10
2009	22511	28241	30	10	30	10	65	10	65	10
2010	29836	28611	30	10	30	10	65	10	55	10
2011	26813	27233	30	10	30	10	65	10	55	10
2012	28289	28000	30	10	30	10	65	10	55	10
2013	20021	24689	30	10	30	10	65	10	55	10
2014	35171	23816	30	10	30	10	65	10	55	10
2015	25426	23890	30	10	30	10	65	10	55	10
2016	23589	33607	30	10	30	10	65	10	55	10
2017	29868	31040	30	10	30	10	65	10	55	10
2018	28959	26826	30	10	30	10	62	10	50	10
2019	24214	21331	30	10	30	10	65	10	55	10
2020	22920	19337	30	10	30	10	65	10	55	10

Russia (Archangelsk and Karelia)

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \grave{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$										
1971	134	16592	10	5	10	5	60	20	60	20
1972	116	14434	10	5	10	5	60	20	60	20
1973	169	20924	10	5	10	5	60	20	60	20
1974	170	21137	10	5	10	5	60	20	60	20
1975	140	17398	10	5	10	5	60	20	60	20
1976	111	13781	10	5	10	5	60	20	60	20
1977	78	9722	10	5	10	5	60	20	60	20
1978	82	10134	10	5	10	5	60	20	60	20
1979	112	13903	10	5	10	5	60	20	60	20
1980	156	19397	10	5	10	5	60	20	60	20
1981	68	8394	10	5	10	5	60	20	60	20
1982	71	8797	10	5	10	5	60	20	60	20
1983	48	11938	10	5	10	5	60	20	60	20
1984	21	10680	10	5	10	5	60	20	60	20
1985	454	11183	10	5	10	5	60	20	60	20
1986	12	12291	10	5	10	5	60	20	60	20
1987	647	8734	10	5	10	5	60	20	60	20
1988	224	9978	10	5	10	5	60	20	60	20
1989	989	10245	10	5	10	5	60	20	60	20
1990	1418	8429	15	5	15	5	60	20	60	20
1991	421	8725	20	5	20	5	60	20	60	20
1992	1031	3949	25	5	25	5	60	20	60	20
1993	196	4251	30	5	30	5	60	20	60	20
1994	334	5631	35	5	35	5	60	20	60	20
1995	386	5214	45	5	45	5	60	20	60	20
1996	231	3753	55	5	55	5	60	20	60	20
1997	721	3351	55	5	55	5	60	20	60	20
1998	585	4208	55	5	55	5	60	20	60	20
1999	299	3101	55	5	55	5	60	20	60	20
2000	514	3382	55	5	55	5	60	20	60	20
2001	363	2348	55	5	55	5	60	20	60	20
2002	1676	2439	55	5	55	5	60	20	60	20
2003	893	2041	55	5	55	5	60	20	60	20
2004	990	3761	55	5	55	5	60	20	60	20
2005	1349	4915	55	5	55	5	60	20	60	20
2006	2183	2841	55	5	55	5	60	20	60	20
2007	1618	2621	55	5	55	5	60	20	60	20
2008	332	2496	55	5	55	5	60	20	60	20
2009	252	2214	55	5	55	5	60	20	60	20
2010	397	3823	55	5	55	5	60	20	60	20
2011	313	2585	55	5	55	5	60	20	60	20
2012	1332	2446	55	5	55	5	60	20	60	20
2013	2296	3480	55	5	55	5	60	20	60	20
2014	2084	3463	55	5	55	5	60	20	60	20
2015	2071	3542	55	5	55	5	60	20	60	20
2016	3042	2221	55	5	55	5	60	20	60	20
2017	671	2963	55	5	55	5	60	20	60	20
2018	1385	5999	55	5	55	5	60	20	60	20
2019	905	2404	55	5	55	5	60	20	60	20
2020	3788	1315	55	5	55	5	60	20	60	20

Russia (Kola Peninsula: Barents Sea Basin)

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \text { io } \\ & \text { İ } \\ & \hline \end{aligned}$										
1971	4892	5979	15	5	15	5	45	5	45	5
1972	7978	9750	15	5	15	5	45	5	45	5
1973	9376	11460	15	5	15	5	40	5	40	5
1974	12794	15638	15	5	15	5	40	5	40	5
1975	13872	13872	15	5	15	5	45	5	45	5
1976	11493	14048	15	5	15	5	55	5	55	5
1977	7257	8253	15	5	15	5	50	5	50	5
1978	7106	7113	15	5	15	5	55	5	55	5
1979	6707	3141	15	5	15	5	40	5	40	5
1980	6621	5216	15	5	15	5	40	5	40	5
1981	4547	5973	15	5	15	5	40	5	40	5
1982	5159	4798	15	5	15	5	35	5	35	5
1983	8504	9943	15	5	15	5	35	5	35	5
1984	9453	12601	15	5	15	5	35	5	35	5
1985	6774	7877	15	5	15	5	35	5	35	5
1986	10147	5352	15	5	15	5	40	5	40	5
1987	8560	5149	15	5	15	5	40	5	40	5
1988	6644	3655	15	5	15	5	35	5	35	5
1989	13424	6787	15	5	15	5	40	5	40	5
1990	16038	8234	15	5	15	5	40	5	40	5
1991	4550	7568	15	5	15	5	30	5	30	5
1992	11394	7109	15	5	15	5	30	5	30	5
1993	8642	5690	15	5	15	5	30	5	30	5
1994	6101	4632	15	5	15	5	30	5	30	5
1995	6318	3693	15	5	15	5	30	5	30	5
1996	6815	1701	20	5	20	5	25	5	25	5
1997	3564	867	25	5	25	5	15	5	15	5
1998	1854	280	35	5	35	5	12.5	2.5	12.5	2.5
1999	1510	424	40	5	40	5	7.5	2.5	7.5	2.5
2000	805	323	50	5	50	5	6	2	6	2
2001	591	241	60	5	60	5	3.5	1.5	3.5	1.5
2002	1436	2478	50	10	50	10	10	5	20	5
2003	1938	1095	50	10	50	10	10	5	20	5
2004	1095	850	50	10	50	10	10	5	20	5
2005	859	426	60	10	60	10	10	5	20	5
2006	1372	844	60	10	60	10	10	5	20	5
2007	784	707	60	10	60	10	10	5	20	5
2008	1446	997	60	10	60	10	15	5	20	5
2009	2882	1080	60	10	60	10	15	5	20	5
2010	3884	1486	60	10	60	10	20	5	25	5
2011	3861	1407	60	10	60	10	20	5	25	5
2012	2708	1027	60	10	60	10	20	5	25	5
2013	939	904	60	10	60	10	20	5	25	5
2014	969	789	60	10	60	10	20	5	25	5
2015	727	494	60	10	60	10	20	5	25	5
2016	380	625	60	10	60	10	20	5	25	5
2017	265	503	60	10	60	10	20	5	25	5
2018	554	782	60	10	60	10	20	5	25	5
2019	816	764	60	10	60	10	20	5	25	5
2020	709	674	60	10	60	10	20	5	25	5

Russia (Kola Peninsula: White Sea Basin)

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \text { io } \\ & \stackrel{1}{2} \\ & \hline \end{aligned}$										
1971	67845	29077	0	0	3	2	3	2	50	10
1972	45837	19644	0	0	3	2	3	2	50	10
1973	68684	29436	0	0	3	2	3	2	50	10
1974	63892	27382	0	0	3	2	3	2	50	10
1975	109038	46730	0	0	3	2	3	2	50	10
1976	76281	41075	0	0	3	2	3	2	50	10
1977	47943	32392	0	0	3	2	3	2	50	10
1978	49291	17307	0	0	3	2	3	2	50	10
1979	69511	21369	0	0	3	2	3	2	50	10
1980	46037	23241	0	0	3	2	3	2	50	10
1981	40172	12747	0	0	3	2	3	2	50	10
1982	32619	14840	0	0	3	2	3	2	50	10
1983	54217	20840	0	0	3	2	3	2	50	10
1984	56786	16893	0	0	3	2	3	2	50	10
1985	87274	16876	0	0	3	2	3	2	50	10
1986	72102	17681	0	0	3	2	3	2	50	10
1987	79639	12501	0	0	3	2	3	2	50	10
1988	44813	18777	0	0	3	2	3	2	45	5
1989	53293	11448	0	0	7.5	2.5	7.5	2.5	45	5
1990	44409	11152	0	0	12.5	2.5	12.5	2.5	45	5
1991	31978	6263	0	0	17.5	2.5	17.5	2.5	35	5
1992	23827	3680	0	0	22.5	2.5	22.5	2.5	25	5
1993	20987	5552	0	0	25	5	25	5	25	5
1994	25178	3680	0	0	30	5	30	5	25	5
1995	19381	2847	0	0	35	5	35	5	25	5
1996	27097	2710	0	0	35	5	35	5	25	5
1997	27695	2085	0	0	35	5	35	5	25	5
1998	32693	1963	0	0	35	5	35	5	25	5
1999	22330	2841	0	0	35	5	35	5	25	5
2000	26376	4396	0	0	35	5	35	5	25	5
2001	20483	3959	0	0	35	5	35	5	15	5
2002	19174	3937	0	0	35	5	35	5	15	5
2003	15687	3734	0	0	35	5	25	5	15	5
2004	10947	1990	0	0	35	5	35	5	15	5
2005	13172	2388	1212	878	35	5	35	5	15	5
2006	15004	2071	3852	399	35	5	35	5	15	5
2007	7807	1404	2264	852	35	5	35	5	15	5
2008	8447	4711	3175	832	35	5	35	5	15	5
2009	5351	3105	5130	1710	35	5	35	5	15	5
2010	6731	4158	3684	1228	35	5	35	5	15	5
2011	7363	4325	3082	1027	35	5	35	5	15	5
2012	10398	1431	2267	756	35	5	35	5	15	5
2013	8986	1660	2203	734	35	5	35	5	15	5
2014	8593	1674	3307	1102	35	5	35	5	15	5
2015	9115	1179	2964	1217	35	5	35	5	15	5
2016	5969	848	1526	626	35	5	35	5	15	5
2017	1861	294	1294	531	35	5	35	5	15	5
2018	8028	750	1537	631	35	5	35	5	15	5
2019	5176	600	1506	266	35	5	35	5	15	5
2020	2248	231	1818	321	35	5	35	5	15	5

Russia (Pechora River)

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \frac{1}{0} \\ & \stackrel{1}{2} \\ & \hline \end{aligned}$										
1971	605	17728			20	10	20	10	65	15
1972	825	24175			20	10	20	10	65	15
1973	1705	49962			20	10	20	10	65	15
1974	1320	38680			20	10	20	10	65	15
1975	1298	38046			20	10	20	10	65	15
1976	991	34394			20	10	20	10	65	15
1977	589	20464			20	10	20	10	65	15
1978	759	26341			20	10	20	10	65	15
1979	421	14614			20	10	20	10	65	15
1980	1123	39001			20	10	20	10	65	15
1981	126	20874			20	10	20	10	65	15
1982	54	13546			20	10	20	10	65	15
1983	598	16002			20	10	20	10	65	15
1984	1833	15967			20	10	20	10	65	15
1985	2763	29738			20	10	20	10	65	15
1986	66	32734			20	10	20	10	65	15
1987	21	21179			20	10	20	10	65	15
1988	3184	12816			20	10	20	10	65	15
1989			24596	27404	10	5	10	5	65	15
1990			50	49950	10	5	10	5	65	15
1991			7975	47025	10	5	10	5	65	15
1992			550	54450	10	5	10	5	65	15
1993			68	67932	10	5	10	5	65	15
1994			3900	48100	10	5	10	5	65	15
1995			9280	70720	10	5	10	5	65	15
1996			8664	48336	10	5	10	5	65	15
1997			1440	38560	10	5	10	5	65	15
1998			780	59220	10	5	10	5	65	15
1999			2120	37880	10	5	10	5	65	15
2000			84	83916	10	5	10	5	65	15
2001			2244	41756	10	5	10	5	65	15
2002			405	44595	10	5	10	5	65	15
2003			1650	31350	10	5	10	5	65	15
2004			6075	20925	10	5	10	5	65	15
2005			2852	28148	10	5	10	5	65	15
2006			1472	30528	10	5	10	5	65	15
2007			817	42183	10	5	10	5	65	15
2008			300	49700	10	5	10	5	65	15
2009			1116	47384	10	5	10	5	65	15
2010			1096	53704	10	5	10	5	65	15
2011			2990	56810	10	5	10	5	65	15
2012			4424	27176	10	5	10	5	65	15
2013			4225	30983	10	5	10	5	65	15
2014			2251	31349	10	5	10	5	65	15
2015			4626	34574	10	5	10	5	65	15
2016			4261	31863	10	5	10	5	65	15
2017			4256	31827	10	5	10	5	65	15
2018			4032	30152	10	5	10	5	65	15
2019			3992	29853	10	5	10	5	65	15
2020			4128	30873	10	5	10	5	65	15

Sweden

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \dot{\pi} \\ & \cline { 1 - 1 } \\ & \hline \end{aligned}$										
1971	6220	254	30	15	30	15	52.5	12.5	57.5	12.5
1972	4943	201	30	15	30	15	52.5	12.5	57.5	12.5
1973	6124	895	30	15	30	15	52.5	12.5	57.5	12.5
1974	8870	563	30	15	30	15	52.5	12.5	57.5	12.5
1975	9620	160	30	15	30	15	52.5	12.5	57.5	12.5
1976	5420	480	30	15	30	15	52.5	12.5	57.5	12.5
1977	2453	206	30	15	30	15	52.5	12.5	57.5	12.5
1978	2903	254	30	15	30	15	52.5	12.5	57.5	12.5
1979	2988	661	30	15	30	15	52.5	12.5	57.5	12.5
1980	3842	1283	30	15	30	15	52.5	12.5	57.5	12.5
1981	7013	284	30	15	30	15	52.5	12.5	57.5	12.5
1982	6177	1381	30	15	30	15	52.5	12.5	57.5	12.5
1983	8222	903	30	15	30	15	52.5	12.5	57.5	12.5
1984	11584	1266	30	15	30	15	52.5	12.5	57.5	12.5
1985	13810	470	30	15	30	15	52.5	12.5	57.5	12.5
1986	14415	240	30	15	30	15	52.5	12.5	57.5	12.5
1987	11450	1084	30	15	30	15	52.5	12.5	57.5	12.5
1988	9604	1160	30	15	30	15	52.5	12.5	57.5	12.5
1989	2803	4044	30	15	30	15	52.5	12.5	57.5	12.5
1990	6839	2249	15	10	15	10	45	15	50	15
1991	8599	3033	15	10	15	10	45	15	50	15
1992	9550	4205	15	10	15	10	45	15	50	15
1993	9468	4762	15	10	15	10	45	15	50	15
1994	7347	3628	15	10	15	10	45	15	50	15
1995	8933	1528	15	10	15	10	37.5	12.5	42.5	12.5
1996	5318	2507	15	10	15	10	37.5	12.5	42.5	12.5
1997	2415	1809	15	10	15	10	37.5	12.5	42.5	12.5
1998	1953	1000	15	10	15	10	37.5	12.5	42.5	12.5
1999	3075	712	15	10	15	10	37.5	12.5	42.5	12.5
2000	5660	2546	15	10	15	10	37.5	12.5	42.5	12.5
2001	3504	3026	15	10	15	10	37.5	12.5	42.5	12.5
2002	3374	2075	15	10	15	10	37.5	12.5	42.5	12.5
2003	1833	496	15	10	15	10	37.5	12.5	42.5	12.5
2004	1537	1528	15	10	15	10	37.5	12.5	42.5	12.5
2005	1503	1027	15	10	15	10	37.5	12.5	42.5	12.5
2006	1676	1069	15	10	15	10	37.5	12.5	42.5	12.5
2007	521	1001	15	10	15	10	37.5	12.5	42.5	12.5
2008	615	1112	12.5	7.5	12.5	7.5	27.5	12.5	32.5	12.5
2009	651	979	12.5	7.5	12.5	7.5	27.5	12.5	32.5	12.5
2010	1111	1139	12.5	7.5	12.5	7.5	27.5	12.5	32.5	12.5
2011	1460	3100	17.5	7.5	17.5	7.5	35	15	40	15
2012	1336	3130	12.5	7.5	10	5	27.5	12.5	32.5	12.5
2013	874	1431	10	5	10	5	30	15	35	15
2014	2515	2981	12.5	7.5	12.5	7.5	30	12.5	35	12.5
2015	804	1743	12.5	7.5	12.5	7.5	30	12.5	30	12.5
2016	373	585	10	7.5	10	7.5	25	10	25	10
2017	999	2473	10	7.5	10	7.5	25	10	25	10
2018	1304	1626	10	7.5	10	7.5	20	10	25	10
2019	751	2638	10	7.5	10	7.5	20	10	20	10
2020	976	1920	10	7.5	10	7.5	17.5	7.5	17.5	7.5

UK (England and Wales)

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

1971	109861	0.55	60353			0.55	38.3	9.6	38.3	9.6	57.3	10.0	42.5	10.0	32.3	0.95			19869		89992			
1972	108074	0.42	51681			0.42	39.0	9.7	39.0	9.7	51.3	10.0	37.8	10.0	32.3	0.95			24889		83185			
1973	114786	0.53	62842			0.53	38.4	9.6	38.4	9.6	50.6	10.0	37.3	10.0	32.3	0.95			21020		93766			
1974	104325	0.65	52756			0.65	39.3	9.8	39.3	9.8	50.2	10.0	37.0	10.0	32.3	0.95			24197		80128			
1975	113062	0.59	53451			0.59	38.5	9.6	38.5	9.6	49.8	10.0	36.7	10.0	32.3	0.95			24300		88762			
1976	54294	0.64	15701			0.64	36.8	9.2	36.8	9.2	50.3	10.0	37.1	10.0	32.3	0.94			10779		43515			
1977	94282	0.62	52888			0.62	39.0	9.8	39.0	9.8	50.4	10.0	37.2	10.0	32.3	0.93			19219		75063			
1978	93125	0.69	51630			0.69	38.4	9.6	38.4	9.6	49.1	10.0	36.2	10.0	32.3	0.92			17605		75520			
1979	75386	0.81	43464			0.81	38.6	9.6	38.6	9.6	47.7	10.0	35.2	10.0	32.3	0.91			14108		61278			
1980	90218	0.55	45780			0.55	39.1	9.8	39.1	9.8	47.8	10.0	35.2	10.0	32.3	0.90			21145		69073			
1981	121039	0.48	69113			0.48	38.3	9.6	38.3	9.6	47.4	10.0	34.9	10.0	32.3	0.89			22190		98849			
1982	80289	0.67	50167			0.67	38.3	9.6	38.3	9.6	47.3	10.0	34.8	10.0	32.3	0.88			13524		66765			
1983	116995	0.72	77277			0.72	37.1	9.3	37.1	9.3	47.1	10.0	34.7	10.0	32.3	0.87			14815		102180			
1984	94271	0.74	59295			0.74	36.5	9.1	36.5	9.1	47.4	10.0	34.8	10.0	32.3	0.86			11022		83249			
1985	95531	0.66	57356			0.66	38.9	9.7	38.9	9.7	47.5	10.0	34.9	10.0	32.3	0.85			19601		75930			
1986	110794	0.62	63425			0.62	38.0	9.5	38.0	9.5	46.9	10.0	34.3	10.0	32.3	0.84			20347		90447			
1987	83439	0.68	36143			0.68	38.2	9.5	38.2	9.5	46.1	10.0	33.7	10.0	32.3	0.83			19711		63728			
1988	110163	0.69		47465	3384	0.69	39.7	9.9	39.7	9.9	45.5	10.0	33.5	10.0	32.3		0.82	0.50	32846		77317			
1989	83668	0.65		36236	5217	0.65	36.9	9.2	36.9	9.2	45.3	10.0	33.3	10.0	32.3		0.81	0.50	14728		68940			
1990	86676	0.52		48219	3311	0.52	36.7	9.2	36.7	9.2	45.3	10.0	33.2	10.0	31.3		0.80	0.50	14849		71827			
1991	51649	0.71		22463	2966	0.71	37.3	9.3	37.3	9.3	44.0	10.0	32.3	10.0	29.7		0.79	0.50	13974		37675			
1992	44586	0.77		17574	2570	0.77	39.8	10.0	39.8	10.0	43.5	10.0	31.8	10.0	28.0		0.78	0.50	10737		33849			
1993	69177	0.81		39224	2576	0.81	38.0	9.5	38.0	9.5	40.6	10.0	29.5	10.0	26.3		0.77	0.50	12611	1448	56566			
1994	88121	0.77		41298	5256	0.77	23.9	6.0	23.9	6.0	40.5	10.0	29.5	10.0	24.4		0.76	0.50	21664	3227	66457		292447	
1995	80478	0.72		48005	5205	0.72	22.3	5.6	22.3	5.6	37.6	10.0	27.1	10.0	22.5		0.75	0.50	12817	3189	67659		243288	
1996	46696	0.65		15172	3409	0.65	20.6	5.1	20.6	5.1	35.8	10.0	25.8	10.0	20.6		0.75	0.50	14016	3428	32680		231744	
1997	41374	0.73		19241	2681	0.73	18.8	4.7	18.8	4.7	33.4	10.0	23.9	10.0	18.5		0.75	0.50	9915	3132	31459		269705	
1998	36917	0.82		17328	937	0.82	18.9	4.7	18.9	4.7	31.4	10.0	22.4	10.0	18.5		0.75	0.50	11738	5371	25179		233401	
1999	41094	0.68		24812	2021	0.68	17.4	4.4	17.4	4.4	29.5	10.0	17.9	9.0	17.1		0.75	0.50	7046	5447	34049	118	187998	13687
2000	60953	0.79		40059	3295	0.79	14.9	3.7	14.9	3.7	29.7	10.0	15.0	7.5	13.1		0.75	0.50	10126	7470	50827	171	177532	13423
2001	51307	0.75		32374	3741	0.75	14.8	3.7	14.8	3.7	27.9	10.0	14.3	7.1	13.1		0.75	0.50	8240	6143	43067	176	134853	12855
2002	45669	0.76		27685	3295	0.76	15.3	3.8	15.3	3.8	27.8	10.0	14.1	7.0	13.9		0.75	0.50	7624	7658	38045	234	182828	12018
2003	22206	0.66		5511	4924	0.66	17.4	4.4	17.4	4.4	21.4	10.0	10.7	5.3	17.1		0.75	0.50	5094	6425	17112	107	172729	10048
2004	30559	0.81		5921	5096	0.81	17.7	4.4	17.7	4.4	22.1	10.0	10.6	5.3	17.1		0.75	0.50	14121	13211	16438	143	190514	9458
2005	26162	0.76		5607	3380	0.76	17.6	4.4	17.6	4.4	21.8	10.0	10.6	5.3	17.1		0.75	0.50	9435	11983	16727	84	186669	10191
2006	22056	0.78		4040	3526	0.78	17.6	4.4	17.6	4.4	19.5	9.8	9.1	4.6	17.1		0.75	0.50	8550	10959	13506	72	148115	9159
2007	19914	0.78		4894	2197	0.78	17.7	4.4	17.7	4.4	17.9	9.0	8.4	4.2	17.1		0.75	0.50	9062	10922	10852	70	164473	7130

$\begin{aligned} & \grave{\star} \\ & \stackrel{y}{\infty} \\ & \hline \end{aligned}$																								
2008	19036	0.76		3649	2592	0.76	17.8	4.4	17.8	4.4	17.6	8.8	8.2	4.1	17.1		0.75	0.50	10477	13035	8559	88	171012	6507
2009	13910	0.72		2590	2805	0.72	11.4	2.9	11.4	2.9	17.4	8.7	8.2	4.1	7.4		0.75	0.50	6467	9096	7443	62	183758	6084
2010	32695	0.78		12214	7768	0.78	10.8	2.7	10.8	2.7	17.5	8.8	8.0	4.0	7.4		0.75	0.50	10141	15012	22554	61	195056	6950
2011	34575	0.57		14915	9233	0.57	10.1	2.5	10.1	2.5	20.8	10.0	10.2	5.1	7.4		0.64	0.37	8793	14406	25782	411	196897	8856
2012	14926	0.50		3571	3705	0.50	11.2	2.8	11.2	2.8	16.8	8.4	8.0	4.0	7.4		0.62	0.37	6498	11952	8428	56	175413	6842
2013	22608	0.58		7964	8679	0.58	9.5	2.4	9.5	2.4	17.4	8.7	8.5	4.3	7.4		0.63	0.37	4462	10458	18146	30	167016	7828
2014	14219	0.54		6974	3826	0.54	9.3	2.3	9.3	2.3	15.8	7.9	8.0	4.0	7.4		0.64	0.37	2315	7992	11904	73	144955	7597
2015	19262	0.47		9233	6657	0.47	12.9	3.2	12.9	3.2	15.2	7.6	7.7	3.9	7.4		0.64	0.37	2150	8113	17112	209	141730	7299
2016	22494	0.42		10811	7956	0.42	12.0	3.0	12.0	3.0	14.8	7.4	7.5	3.7	7.4		0.63	0.37	2367	9700	20127	185	135356	7403
2017	12195	0.40		5095	3975	0.40	13.8	3.5	13.8	3.5	11.7	5.8	5.8	2.9	7.4		0.63	0.38	2315	11255	9880	253	141826	5335
2018	11707	0.45	NA	4059	5839	0.45	12.71	3.18	12.71	3.18	9.35	4.68	4.88	2.44	7.44	NA	0.63	0.37	930	6857	10777	363	105767	3985
2019	1139	0.44	NA	0	0	0.44	13.02	3.26	13.02	3.26	3.93	1.96	1.96	0.98	7.44	NA	0.00	0.00	992	8171	147	341	125251	1025
2020	768	0.44	NA	0	0	0.44	13.79	3.45	13.79	3.45	0.84	0.42	0.31	0.16	0.00	NA	0.00	0.00	768	10672	0	904	106221	0

UK (Northern Ireland)-Foyle Fisheries Area

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \grave{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$						$$				
1971	78037	5874			21.5	11.5	21.5	11.5	80.0	5.0
1972	64663	4867			21.5	11.5	21.5	11.5	80.0	5.0
1973	57469	4326			21.5	11.5	21.5	11.5	80.0	5.0
1974	72587	5464			21.5	11.5	21.5	11.5	80.0	5.0
1975	51061	3843			21.5	11.5	21.5	11.5	80.0	5.0
1976	36206	2725			21.5	11.5	21.5	11.5	80.0	5.0
1977	36510	2748			21.5	11.5	21.5	11.5	80.0	5.0
1978	44557	3354			21.5	11.5	21.5	11.5	80.0	5.0
1979	34413	2590			21.5	11.5	21.5	11.5	80.0	5.0
1980	45777	3446			21.5	11.5	21.5	11.5	80.0	5.0
1981	32346	2435			21.5	11.5	21.5	11.5	80.0	5.0
1982	55946	4211			21.5	11.5	21.5	11.5	80.0	5.0
1983	77424	5828			21.5	11.5	21.5	11.5	80.0	5.0
1984	27465	2067			21.5	11.5	21.5	11.5	80.0	5.0
1985	37685	2836			21.5	11.5	21.5	11.5	80.0	5.0
1986	43109	3245			21.5	11.5	21.5	11.5	80.0	5.0
1987	17189	1294			21.5	11.5	21.5	11.5	69.0	7.0
1988	43974	3310			21.5	11.5	21.5	11.5	64.5	6.5
1989	60288	4538			23.5	13.5	23.5	13.5	89.0	9.0
1990	39875	3001			13.5	3.5	13.5	3.5	62.0	6.0
1991	21709	1634			13.5	3.5	13.5	3.5	64.5	6.5
1992	39299	2958			16.5	6.5	16.5	6.5	56.0	6.0
1993	35366	2662			13.5	3.5	13.5	3.5	41.0	4.0
1994	36144	2720			19.0	9.0	19.0	9.0	70.0	7.0
1995	33398	2514			13.5	3.5	13.5	3.5	67.0	7.0
1996	28406	2138			15.0	5.0	15.0	5.0	57.0	10.0
1997	40886	3077			10.0	5.0	10.0	5.0	60.0	10.0
1998	37154	2797			10.0	5.0	10.0	5.0	25.0	5.0
1999	21660	1630			10.0	5.0	10.0	5.0	63.0	5.0
2000	30385	2287			10.0	5.0	10.0	5.0	58.0	5.0
2001	21368	1608			5.0	5.0	5.0	5.0	50.0	5.0
2002	37914	2854	9163	690	2.5	2.5	2.5	2.5	15.0	3.0
2003	30441	2291	4576	344	0.5	0.5	0.5	0.5	15.0	3.0
2004	20730	1560	4570	344	0.5	0.5	0.5	0.5	15.0	3.0
2005	23746	1787	7079	533	0.5	0.5	0.5	0.5	15.0	3.0
2006	11324	852	4886	368	0.5	0.5	0.5	0.5	15.0	3.0
2007	5050	322	9530	608	0.5	0.5	0.5	0.5	15.0	3.0
2008	3880	292	4755	304	0.5	0.5	0.5	0.5	15.0	3.0
2009	1743	194	3640	405	0.5	0.5	0.5	0.5	15.0	3.0
2010	0	0	3488	388	0.5	0.5	0.5	0.5	15.0	3.0
2011	0	0	2276	759	1.0	1.0	1.0	1.0	15.0	5.0
2012	0	0	4781	1594	1.0	1.0	1.0	1.0	10.0	5.0
2013	0	0	5030	498	1.0	1.0	1.0	1.0	10.0	5.0
2014	0	0	2029	225	1.0	1.0	1.0	1.0	10.0	5.0
2015	0	0	1998	250	1.0	1.0	1.0	1.0	10.0	5.0
2016	0	0	3192	355	1.0	1.0	1.0	1.0	10.0	5.0
2017	0	0	3511	347	1.0	1.0	1.0	1.0	10.0	5.0
2018	0	0	2878	324	1.0	1.0	1.0	1.0	10.0	5.0
2019	0	0	1416	179	1.0	1.0	1.0	1.0	10.0	5.0
2020	0	0	728	92	1.0	1.0	1.0	1.0	10.0	5.0

UK (Northern Ireland)-DAERA area

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \stackrel{\rightharpoonup}{\varpi} \\ & \stackrel{y y}{\sim} \\ & \hline \end{aligned}$																				
1971	35506	2673			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1972	34550	2601			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1973	29229	2200			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1974	22307	1679			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1975	26701	2010			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1976	17886	1346			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1977	16778	1263			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1978	24857	1871			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1979	14323	1078			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1980	15967	1202			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1981	15994	1204			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1982	14068	1059			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1983	20845	1569			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1984	11109	836			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1985	12369	931			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1986	13160	991			21.5	11.5	21.5	11.5	80	5	50	5	0	0	0	0				
1987	9240	695			21.5	11.5	21.5	11.5					2530	83	0	0	10.0	2.0	9.5	2.0
1988	14320	1078			21.5	11.5	21.5	11.5					2832	96	0	0	10.0	2.0	9.5	2.0
1989	15081	1135			23.5	13.5	23.5	13.5					1029	82	0	0	10.0	2.0	9.5	2.0
1990	9499	715			13.5	3.5	13.5	3.5					1850	87	0	0	10.0	2.0	9.5	2.0
1991	6987	526			13.5	3.5	13.5	3.5					2341	87	0	0	10.0	2.0	9.5	2.0
1992	9346	703			16.5	6.5	16.5	6.5					2546	84	0	0	10.0	2.0	9.5	2.0
1993	7906	595			13.5	3.5	13.5	3.5					3235	93	0	0	10.0	2.0	9.5	2.0
1994	11206	843			19.0	9.0	19.0	9.0					2010	88	0	0	10.0	2.0	9.5	2.0
1995	11637	876			13.5	3.5	13.5	3.5					1521	92	0	0	10.0	2.0	9.5	2.0
1996	10383	781			15.0	5.0	15.0	5.0					1097	87	0	0	10.0	2.0	9.5	2.0
1997	10479	789			10.0	5.0	10.0	5.0					1677	85	6541	85	67.0	5.0	61.0	5.0
1998	9375	706			10.0	5.0	10.0	5.0					2995	95	11462	95	67.0	5.0	61.0	5.0
1999	9011	678			10.0	5.0	10.0	5.0					977	90	3599	90	67.0	5.0	61.0	5.0
2000	10598	798			10.0	5.0	10.0	5.0					950	91	5979	91	67.0	5.0	61.0	5.0

$\begin{aligned} & \bar{\varpi} \\ & \\ & \hline \end{aligned}$																				
2001	8104	610			5.0	5.0	5.0	5.0					913	97	5771	97	67.0	5.0	61.0	5.0
2002	3315	249	2218	167	2.5	2.5	2.5	2.5					835	95	5037	95	67.0	5.0	61.0	5.0
2003	2236	168	1884	141	2.5	2.5	2.5	2.5					723	96	4147	96	67.0	5.0	61.0	5.0
2004	2411	181	3053	230	0.5	0.5	0.5	0.5					878	92	9050	92	67.0	5.0	61.0	5.0
2005	3012	227	1791	135	0.5	0.5	0.5	0.5					1151	91	6609	91	67.0	5.0	61.0	5.0
2006	2288	172	1289	97	0.5	0.5	0.5	0.5					1074	87	7410	87	67.0	5.0	61.0	5.0
2007	2533	162	2427	155	0.5	0.5	0.5	0.5					2584	94	7008	94	67.0	5.0	61.0	5.0
2008	1825	116	2444	156	0.5	0.5	0.5	0.5					1712	90	0	0	10.0	2.0	9.5	2.0
2009	1383	154	1457	162	0.5	0.5	0.5	0.5					726	83	3838	83	67.0	5.0	61.0	5.0
2010	1723	191	1327	147	0.5	0.5	0.5	0.5					1045	78	6426	70	67.0	5.0	61.0	5.0
2011	857	285	1132	378	1.0	1.0	1.0	1.0					649	73	6130	76	67.0	5.0	61.0	5.0
2012	15	5	263	87	1.0	1.0	1.0	1.0					926	74	5319	71	67.0	5.0	61.0	5.0
2013	9	1	46	5	1.0	1.0	1.0	1.0					1644	92	5866	91	67.0	5.0	61.0	5.0
2014	0	0	143	40	2.5	2.5	2.5	2.5					963	76	4335	91	67.0	5.0	61.0	5.0
2015	0	0	20	6	2.5	2.5	2.5	2.5					1005	83	6235	86	67.0	5.0	61.0	5.0
2016	0	0	112	12	2.5	2.5	2.5	2.5					2166	85	15936	86	67.0	5.0	61.0	5.0
2017	0	0	82	15	2.5	2.5	2.5	2.5					912	88	8433	81	67.0	5.0	61.0	5.0
2018	0	0	23	102	2.5	2.5	2.5	2.5					728	81	8853	83	67.0	5.0	61.0	5.0
2019	0	0	42	59	2.5	2.5	2.5	2.5					634	79	6160	83	67.0	5.0	61.0	5.0
2020	0	0	61	7	2.5	2.5	2.5	2.5					1019	96	18985	96	67.0	5.0	61.0	5.0

UK (Scotland)-East

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \grave{\pi} \\ & \stackrel{y}{0} \\ & \hline \end{aligned}$																
1971	4581	0	212292	0.1	0.05	34192	0	101338	0.1	0.05	4708	7115	-4.465729	0.130070	-1.998990	0.175942
1972	4672	0	215434	0.1	0.05	45211	0	138664	0.1	0.05	4803	7270	-4.577366	0.145673	-2.025888	0.174065
1973	5277	0	254496	0.1	0.05	49569	0	155257	0.1	0.05	4858	7391	-4.630022	0.145715	-1.945389	0.163489
1974	5971	0	239453	0.1	0.05	41764	0	117195	0.1	0.05	4860	7460	-4.434237	0.142397	-1.787409	0.154285
1975	4718	0	177222	0.1	0.05	54153	0	126675	0.1	0.05	4808	7473	-4.507064	0.155589	-1.867014	0.186945
1976	5287	0	144782	0.1	0.05	33770	0	58409	0.1	0.05	4709	7435	-4.143227	0.151543	-1.767368	0.205537
1977	6648	0	147658	0.1	0.05	49419	0	69226	0.1	0.05	4580	7362	-4.107618	0.171161	-1.694534	0.213625
1978	7913	0	150946	0.1	0.05	59080	0	80683	0.1	0.05	4439	7275	-3.952925	0.172111	-1.886206	0.229272
1979	10760	0	150036	0.1	0.05	58124	0	58435	0.1	0.05	4308	7198	-3.700832	0.174784	-1.687084	0.232903
1980	7336	0	94329	0.1	0.05	52184	0	103462	0.1	0.05	4203	7151	-3.620396	0.172127	-2.033221	0.214707
1981	8409	0	121281	0.1	0.05	42896	0	113787	0.1	0.05	4133	7143	-3.757357	0.174839	-2.014825	0.181130
1982	12417	0	162957	0.1	0.05	40398	0	72800	0.1	0.05	4105	7180	-3.497237	0.152772	-1.733710	0.188666
1983	9670	0	161173	0.1	0.05	43671	0	82433	0.1	0.05	4116	7255	-3.815255	0.162362	-1.710613	0.182671
1984	10557	0	165118	0.1	0.05	36321	0	54508	0.1	0.05	4159	7354	-3.663528	0.157098	-1.761244	0.212208
1985	12427	0	120744	0.1	0.05	47258	0	47811	0.1	0.05	4223	7458	-3.452222	0.176533	-1.533471	0.220834
1986	11519	0	168773	0.1	0.05	48519	0	80135	0.1	0.05	4294	7546	-3.704233	0.169464	-1.717588	0.199599
1987	13710	0	125549	0.1	0.05	44326	0	44205	0.1	0.05	4357	7599	-3.408153	0.181135	-1.519145	0.223043
1988	19262	0	99358	0.1	0.05	53778	0	37389	0.1	0.05	4399	7608	-3.191013	0.201394	-1.297353	0.231266
1989	21251	0	121812	0.1	0.05	46689	0	38710	0.1	0.05	4413	7572	-3.256401	0.206857	-1.440326	0.229931
1990	13946	0	49406	0.1	0.05	42634	0	31340	0.1	0.05	4396	7500	-3.227714	0.227082	-1.549514	0.244406
1991	12544	0	41317	0.1	0.05	37497	0	16196	0.1	0.05	4353	7408	-3.185586	0.227178	-1.507684	0.258563
1992	21544	0	58362	0.1	0.05	45154	0	22825	0.1	0.05	4291	7314	-2.954214	0.218488	-1.270181	0.239177
1993	22888	0	50525	0.1	0.05	43860	0	16638	0.1	0.05	4222	7234	-2.965773	0.236349	-1.325975	0.252432
1994	19418	1295	61011	0.1	0.05	45550	4634	27208	0.1	0.05	4155	7179	-3.093026	0.224260	-1.391061	0.242937
1995	18650	2217	54370	0.1	0.05	45935	8267	23120	0.1	0.05	4096	7151	-3.080890	0.222783	-1.476911	0.253992
1996	16869	1716	39758	0.1	0.05	34573	7402	15792	0.1	0.05	4047	7145	-3.002285	0.242283	-1.576310	0.266567
1997	14445	2228	23003	0.1	0.05	28128	7400	6722	0.1	0.05	4009	7150	-2.920189	0.241091	-1.423920	0.265814
1998	22797	4337	22155	0.1	0.05	27439	7721	4792	0.1	0.05	3978	7151	-2.556878	0.243192	-1.225971	0.266793
1999	10113	3020	10794	0.1	0.05	22140	10185	4871	0.1	0.05	3949	7132	-2.850697	0.241433	-1.440714	0.270719
2000	14143	5967	22728	0.1	0.05	22630	12306	8650	0.1	0.05	3916	7082	-2.847684	0.246267	-1.377352	0.266074
2001	14900	7235	21746	0.1	0.05	22571	16689	7899	0.1	0.05	3877	6999	-2.820308	0.248000	-1.565310	0.276432
2002	11315	6520	15301	0.1	0.05	16141	13830	5599	0.1	0.05	3829	6886	-2.696099	0.242728	-1.461739	0.269219
2003	6823	7651	19048	0.1	0.05	12827	18255	11443	0.1	0.05	3776	6758	-3.006720	0.252079	-1.644056	0.265074

| 113

$\begin{aligned} & \grave{\grave{\pi}} \\ & \stackrel{y}{㐅} \\ & \hline \end{aligned}$																
2004	14543	12722	17124	0.1	0.05	23284	27819	7489	0.1	0.05	3719	6630	-2.670893	0.239379	-1.457361	0.270250
2005	13437	12633	18160	0.1	0.05	17424	26039	6252	0.1	0.05	3665	6521	-2.676271	0.248220	-1.575433	0.269153
2006	15649	16344	15090	0.1	0.05	16298	25854	6656	0.1	0.05	3618	6445	-2.416546	0.247051	-1.825575	0.272072
2007	13699	18807	12316	0.1	0.05	14907	26975	4537	0.1	0.05	3580	6408	-2.367719	0.245942	-1.600670	0.268939
2008	10050	14458	8536	0.1	0.05	15557	31238	5200	0.1	0.05	3554	6412	-2.456749	0.246159	-1.785915	0.272082
2009	8302	13334	6561	0.1	0.05	10641	28757	4401	0.1	0.05	3537	6448	-2.330465	0.242114	-1.769120	0.265013
2010	12971	28380	15250	0.1	0.05	13485	41199	9397	0.1	0.05	3526	6502	-2.273280	0.241778	-1.709784	0.260042
2011	6260	11877	6281	0.1	0.05	12329	44169	12008	0.1	0.05	3515	6554	-2.447139	0.242002	-1.894844	0.261102
2012	7347	16755	8785	0.1	0.05	10124	37475	6100	0.1	0.05	3499	6583	-2.411907	0.250457	-1.838599	0.271605
2013	4274	12858	14126	0.1	0.05	6307	34519	8594	0.1	0.05	3473	6572	-2.564503	0.244441	-1.914358	0.269052
2014	2517	8077	8407	0.1	0.05	3810	24008	7988	0.1	0.05	3435	6511	-2.449581	0.231309	-1.897243	0.258777
2015	3858	14642	8365	0.1	0.05	3589	26394	4203	0.1	0.05	3383	6403	-2.418145	0.247455	-1.999802	0.271043
2016	2600	12844	1441	0.1	0.05	2649	29790	1370	0.1	0.05	3322	6255	-2.554419	0.263126	-2.021355	0.283051
2017	2009	11143	908	0.1	0.05	2503	27259	1210	0.1	0.05	3254	6086	-2.580405	0.257415	-1.983114	0.281441
2018	1312	10520	2316	0.1	0.05	940	19519	1387	0.1	0.05	3184	5909	-2.671203	0.252143	-1.801026	0.274644
2019	1917	13308	188	0.1	0.05	1358	23563	174	0.1	0.05	3184	5909	-2.440216	0.262369	-1.842546	0.278399
2020	1411	13036	446	0.1	0.05	1154	21119	292	0.1	0.05	3184	5909	-2.785935	0.281415	-2.132876	0.300166

UK (Scotland)-West

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

1971	3497	0	41790	0.1	0.05	7255	0	18816	0.1	0.05	4708	7115	-3.52940	0.18299	-1.63263	0.14601
1972	2078	0	29280	0.1	0.05	7684	0	26464	0.1	0.05	4803	7270	-3.86656	0.20055	-1.82321	0.13191
1973	2495	0	30822	0.1	0.05	8965	0	24129	0.1	0.05	4858	7391	-3.85982	0.20895	-1.52830	0.12440
1974	3605	0	40387	0.1	0.05	8551	0	20818	0.1	0.05	4860	7460	-3.56034	0.19004	-1.41037	0.12059
1975	2510	0	37707	0.1	0.05	6862	0	20198	0.1	0.05	4808	7473	-3.65425	0.16835	-1.64703	0.12821
1976	2518	0	35736	0.1	0.05	7049	0	15243	0.1	0.05	4709	7435	-3.70862	0.18150	-1.39656	0.13520
1977	2130	0	37609	0.1	0.05	6357	0	13929	0.1	0.05	4580	7362	-3.81312	0.17103	-1.50239	0.14946
1978	3357	0	41985	0.1	0.05	7007	0	16078	0.1	0.05	4439	7275	-3.50537	0.17326	-1.54290	0.14746
1979	4484	0	21800	0.1	0.05	7797	0	8126	0.1	0.05	4308	7198	-3.05332	0.21150	-1.28588	0.20394
1980	3831	0	15823	0.1	0.05	7153	0	9729	0.1	0.05	4203	7151	-2.92537	0.21175	-1.58724	0.20535
1981	3863	0	16779	0.1	0.05	8093	0	9803	0.1	0.05	4133	7143	-3.09490	0.22365	-1.63871	0.22104
1982	4422	0	27930	0.1	0.05	7517	0	7488	0.1	0.05	4105	7180	-3.16334	0.20187	-1.19861	0.20181
1983	4439	0	33967	0.1	0.05	8290	0	11488	0.1	0.05	4116	7255	-3.22440	0.18930	-1.15850	0.15866
1984	4968	0	32294	0.1	0.05	6769	0	9552	0.1	0.05	4159	7354	-3.20400	0.21622	-1.48627	0.20893
1985	5222	0	19374	0.1	0.05	11183	0	8313	0.1	0.05	4223	7458	-2.95626	0.21277	-0.88061	0.19460
1986	4200	0	18283	0.1	0.05	10723	0	8784	0.1	0.05	4294	7546	-3.30436	0.23443	-1.18983	0.21649
1987	4350	0	21038	0.1	0.05	8740	0	6706	0.1	0.05	4357	7599	-3.09926	0.21022	-0.80788	0.18613
1988	8547	0	21765	0.1	0.05	14901	0	6071	0.1	0.05	4399	7608	-2.84487	0.22451	-0.34613	0.19977
1989	8418	0	23370	0.1	0.05	11649	0	6825	0.1	0.05	4413	7572	-2.89585	0.23081	-0.64352	0.19858
1990	5420	0	12309	0.1	0.05	9646	0	4296	0.1	0.05	4396	7500	-2.85995	0.22970	-0.63328	0.21403
1991	4770	0	14957	0.1	0.05	7639	0	3861	0.1	0.05	4353	7408	-2.90342	0.22255	-0.75583	0.21449
1992	6327	0	15443	0.1	0.05	9872	0	4990	0.1	0.05	4291	7314	-2.80948	0.22588	-0.55154	0.19507
1993	5288	0	15816	0.1	0.05	7441	0	3787	0.1	0.05	4222	7234	-2.89992	0.22775	-0.72907	0.21343
1994	4309	238	13925	0.1	0.05	7713	428	4591	0.1	0.05	4155	7179	-3.01389	0.23090	-0.68971	0.19991
1995	4203	1086	12581	0.1	0.05	5305	581	3828	0.1	0.05	4096	7151	-2.70937	0.22579	-0.83843	0.20241
1996	2909	566	6628	0.1	0.05	4905	729	2558	0.1	0.05	4047	7145	-2.83471	0.23797	-0.67725	0.21763
1997	3319	581	5740	0.1	0.05	3907	735	1597	0.1	0.05	4009	7150	-2.68137	0.24223	-0.72603	0.23516
1998	4525	596	3844	0.1	0.05	5202	810	948	0.1	0.05	3978	7151	-2.50477	0.24971	-0.49372	0.25158
1999	2556	834	1591	0.1	0.05	2881	810	707	0.1	0.05	3949	7132	-2.49133	0.25634	-0.73094	0.25376
2000	3590	1409	3384	0.1	0.05	4397	1390	904	0.1	0.05	3916	7082	-2.54020	0.25015	-0.28916	0.24318
2001	3673	2151	1930	0.1	0.05	3492	1649	699	0.1	0.05	3877	6999	-2.48077	0.26271	-0.65411	0.26468

2002	2747	1728	1944	0.1	0.05	3732	1980	816	0.1	0.05	3829	6886	-2.59602	0.25780	-0.41347	0.24730
2003	1626	1566	1910	0.1	0.05	2215	1698	846	0.1	0.05	3776	6758	-2.64255	0.25948	-0.64303	0.24841
2004	3574	2485	2262	0.1	0.05	5299	3253	725	0.1	0.05	3719	6630	-2.44863	0.24694	-0.38131	0.25274
2005	3791	4392	3637	0.1	0.05	3839	3101	1074	0.1	0.05	3665	6521	-2.38278	0.25559	-0.77780	0.25583
2006	3280	2604	2487	0.1	0.05	3627	2867	776	0.1	0.05	3618	6445	-2.38453	0.25234	-0.89121	0.25870
2007	3648	5899	2530	0.1	0.05	3954	3989	514	0.1	0.05	3580	6408	-2.19612	0.25400	-0.82216	0.25903
2008	3403	3325	1337	0.1	0.05	4266	4345	587	0.1	0.05	3554	6412	-2.24426	0.25081	-1.03143	0.25902
2009	2040	3024	1210	0.1	0.05	3412	3321	683	0.1	0.05	3537	6448	-2.26433	0.25190	-1.09728	0.25693
2010	3177	4422	1930	0.1	0.05	3313	4458	738	0.1	0.05	3526	6502	-2.30251	0.25754	-1.12129	0.26167
2011	2418	4088	788	0.1	0.05	3505	5196	741	0.1	0.05	3515	6554	-2.19285	0.25613	-1.39274	0.26119
2012	2511	4821	728	0.1	0.05	2775	4577	617	0.1	0.05	3499	6583	-2.35206	0.26793	-1.33576	0.26874
2013	1531	3197	811	0.1	0.05	1448	3429	839	0.1	0.05	3473	6572	-2.31780	0.26352	-1.41623	0.26324
2014	933	2683	720	0.1	0.05	857	2587	664	0.1	0.05	3435	6511	-2.22611	0.25929	-1.44184	0.26164
2015	826	2907	603	0.1	0.05	896	2894	439	0.1	0.05	3383	6403	-2.39424	0.27064	-1.63486	0.27898
2016	172	3903	2	0.1	0.05	100	3649	33	0.1	0.05	3322	6255	-2.35892	0.27326	-1.54683	0.28887
2017	368	3399	33	0.1	0.05	456	3851	79	0.1	0.05	3254	6086	-2.33234	0.27050	-1.49371	0.28521
2018	144	2494	62	0.1	0.05	124	2533	105	0.1	0.05	3184	5909	-2.42199	0.26840	-1.17777	0.27938
2019	252	4020	123	0.1	0.05	262	2934	96	0.1	0.05	3184	5909	-2.12654	0.26346	-1.35663	0.28292
2020	236	4174	31	0.1	0.05	217	4019	11	0.1	0.05	3184	5909	-2.52977	0.27773	-1.48182	0.29634

Faroes

Annual input data for NEAC PFA run-reconstruction \& NCL models (uncertainty values define uniform distribution around estimates used in Monte Carlo simulation).

$\begin{aligned} & \stackrel{1}{\varpi} \\ & \underset{\sim}{\infty} \end{aligned}$					$\begin{aligned} & \frac{0}{3} \\ & 3 \\ & 0 \end{aligned}$	
1971	2620	105796	10	5	1.0	0.03
1972	2754	111187	10	5	1.0	0.03
1973	3121	126012	10	5	1.0	0.03
1974	2186	88276	10	5	1.0	0.03
1975	2798	112984	10	5	1.0	0.03
1976	1830	73900	10	5	1.0	0.03
1977	1291	52112	10	5	1.0	0.03
1978	974	39309	10	5	1.0	0.03
1979	1736	70082	10	5	1.0	0.03
1980	4523	182616	10	5	1.0	0.03
1981	7443	300542	10	5	1.0	0.03
1982	6859	276957	10	5	1.0	0.03
1983	15861	215349	10	5	1.0	0.03
1984	5534	138227	10	5	1.0	0.03
1985	378	158103	10	5	0.9	0.03
1986	1979	180934	10	5	1.0	0.03
1987	90	166244	10	5	1.0	0.03
1988	8637	87629	10	5	0.9	0.03
1989	1788	121965	10	5	0.8	0.03
1990	1989	140054	10	5	0.5	0.03
1991	943	84935	10	5	0.5	0.03
1992	68	35700	10	5	0.6	0.03
1993	6	30023	10	5	0.7	0.03
1994	15	31672	10	5	0.7	0.03
1995	18	34662	10	5	0.8	0.03
1996	101	28381	10	5	0.8	0.03
1997	0	0	0	0	0.0	0.03
1998	339	1424	15	5	0.8	0.03
1999	0	0	0	0	0.0	0.03
2000	225	1765	15	5	0.8	0.03
2001	0	0	0	0	0.0	0.03
2002	0	0	0	0	0.0	0.03
2003	0	0	0	0	0.0	0.03
2004	0	0	0	0	0.0	0.03
2005	0	0	0	0	0.0	0.03
2006	0	0	0	0	0.0	0.03
2007	0	0	0	0	0.0	0.03
2008	0	0	0	0	0.0	0.03
2009	0	0	0	0	0.0	0.03
2010	0	0	0	0	0.0	0.03
2011	0	0	0	0	0.0	0.03
2012	0	0	0	0	0.0	0.03
2013	0	0	0	0	0.0	0.03
2014	0	0	0	0	0.0	0.03
2015	0	0	0	0	0.0	0.03
2016	0	0	0	0	0.0	0.03
2017	0	0	0	0	0.0	0.03
2018	0	0	0	0	0.0	0.03
2019	0	0	0	0	0.0	0.03
2020	0	0	0	0	0.0	0.03

West Greenland

Annual input data for NEAC PFA run－reconstruction \＆NCL models（uncertainty values define uniform distribution around estimates used in Monte Carlo simulation）．

				$\frac{Y}{Z}$	$\frac{y}{Z}$				छ	Stock composition	MSW
				${ }_{4}^{2}$	4			은	＋	France	0.027
		ت		ᄃ	ᄃ		$\overline{4}$	$\underset{\sim}{4}$	U	Finland	0.001
		0		$\frac{0}{i} \frac{\pi}{n}$	$\frac{\pi}{\vdots}$	$\underset{\sim}{4}$	U	$\frac{1}{z}$	$\underset{z}{\underset{z}{2}}$	Iceland	0.001
		ষ		0	0	$\frac{\pi}{2}$		z_{Ω}	先	Ireland	0.147
	\pm	$\frac{7}{0}$		은	을 둠	$. \subseteq$	$. \leq$	$\frac{0}{0}$		Norway	0.028
	든	$\stackrel{\varrho}{\mathrm{O}}$		$\begin{aligned} & \bar{\circ} 0 \\ & -\underline{0} \end{aligned}$	$\begin{aligned} & \text { O } \\ & -\times \underline{0} \end{aligned}$	3	$\overline{3}$	$\underset{i x}{0}$	¢	Russia	0.000
	$\begin{aligned} & \pm \\ & \hline 0 \end{aligned}$	$\frac{5}{5}$	\pm	$\cdot \frac{\overline{1}}{\mathbb{N}}$	$\stackrel{x}{\mathbb{N}}$	$\stackrel{\rightharpoonup}{\wedge}$	$\stackrel{\rightharpoonup}{n}$	$\underset{\sim}{x}$	$\stackrel{y}{c}$	Sweden	0.003
	0	0	.	E	E	ᄃ	$\stackrel{\rightharpoonup}{\square}$	응 둗	응	UK（England \＆Wales）	0.149
	ס্ভ	$\underset{\pi}{ \pm}$	$\stackrel{\otimes}{3}$	$\underset{\sim}{0}$	O	$\stackrel{\bar{O}}{\dagger}$	$\stackrel{\bar{O}}{\dagger}$	읃	읃 ㄷ	UK（Northern Ireland）	0.000
	$\frac{\stackrel{1}{0}}{0}$.	$\underset{\pi}{\text { ᄃ }}$	$\underset{\underline{E}}{4}$	$\underset{\underline{0}}{4}$	을	욤	高	華	UK（Scotland）	0.644
$\stackrel{\text { ® }}{\sim}$	\bigcirc	山	3	出	出	은	은				
1971	2689.0	0.0	3.14	0.28	0.40	0.945	0.964	0	0	Other	
1972	2113.0	0.0	3.44	0.34	0.37	0.945	0.964	0	0	Total	1000
1973	2341.0	0.0	4.18	0.39	0.59	0.945	0.964	0	0	Total	1.000
1974	1917.0	0.0	3.58	0.39	0.46	0.945	0.964	0	0		
1975	2030.0	0.0	3.12	0.40	0.48	0.945	0.964	0	0		
1976	1175.0	0.0	3.04	0.38	0.48	0.945	0.964	0	0		
1977	1420.0	0.0	3.21	0.38	0.57	0.945	0.964	0	0		
1978	984.0	0.0	3.35	0.47	0.57	0.945	0.964	0	0		
1979	1395.0	0.0	3.34	0.48	0.52	0.945	0.964	0	0		
1980	1194.0	0.0	3.22	0.45	0.51	0.945	0.964	0	0		
1981	1264.0	0.0	3.17	0.58	0.61	0.945	0.964	0	0		
1982	1077.0	0.0	3.11	0.60	0.64	0.945	0.964	0	0		
1983	310.0	0.0	3.10	0.38	0.41	0.945	0.964	0	0		
1984	297.0	0.0	3.11	0.47	0.53	0.945	0.964	0	0		
1985	864.0	0.0	2.87	0.46	0.53	0.925	0.950	0	0		
1986	960.0	0.0	3.03	0.48	0.66	0.951	0.975	0	0		
1987	966.0	0.0	3.16	0.54	0.63	0.963	0.980	0	0		
1988	893.0	0.0	3.18	0.38	0.49	0.967	0.981	0	0		
1989	337.0	0.0	2.87	0.52	0.60	0.923	0.955	0	0		
1990	274.0	0.0	2.69	0.70	0.79	0.957	0.963	0	0		
1991	472.0	0.0	2.65	0.61	0.69	0.956	0.934	0	0		
1992	237.0	0.0	2.81	0.50	0.57	0.919	0.975	0	0		
1993	0.0	12.0	2.73	0.50	0.76	0.950	0.960	0	0		
1994	0.0	12.0	2.73	0.50	0.76	0.950	0.960	0	0		
1995	83.0	20.0	2.56	0.65	0.72	0.968	0.973	0	0		
1996	92.0	20.0	2.88	0.71	0.76	0.941	0.961	0	0		
1997	58.0	5.0	2.71	0.75	0.84	0.982	0.993	0	0		
1998	11.0	11.0	2.78	0.73	0.84	0.968	0.994	0	0		
1999	19.0	12.5	3.08	0.84	0.97	0.968	1.000	0	0		
2000	21.0	10.0	2.57	0.00	0.00	0.974	1.000	344	146		
2001	43.0	10.0	3.00	0.67	0.71	0.982	0.978	1	1		
2002	9.8	10.0	2.90	0.00	0.00	0.973	1.000	338	163		
2003	12.3	10.0	3.04	0.00	0.00	0.967	0.989	1212	567		
2004	17.2	10.0	3.18	0.00	0.00	0.970	0.970	1192	447		
2005	17.3	10.0	3.31	0.00	0.00	0.924	0.967	585	182		
2006	23.0	10.0	3.24	0.00	0.00	0.930	0.988	857	326		
2007	24.8	10.0	2.98	0.00	0.00	0.965	0.956	917	206		
2008	28.6	10.0	3.08	0.00	0.00	0.974	0.988	1593	260		
2009	28.0	10.0	3.50	0.00	0.00	0.934	0.894	1483	138		
2010	43.1	10.0	3.42	0.00	0.00	0.982	0.975	991	249		
2011	27.4	10.0	3.40	0.00	0.00	0.939	0.831	888	72		
2012	34.6	10.0	3.44	0.00	1.00	0.932	0.980	1121	252		
2013	47.7	10.0	3.35	0.00	1.00	0.949	0.966	938	211		
2014	70.4	10.0	3.32	0.00	1.00	0.913	0.961	660	260		
2015	60.9	10.0	3.37	0.00	1.00	0.970	0.982	1337	337		
2016	30.2	10.0	3.18	0.00	1.00	0.935	0.955	864	438		
2017	28.0	10.0	3.49	0.00	1.00	0.925	0.931	734	252		
2018	39.0	10.0	2.97	0.00	1.00	0.974	0.974	814	165		
2019	28.3	10.0	2.96	0.00	1.00	0.959	0.979	766	305		
2020	30.9	10.0	3.19	0.00	1.00	0.953	0.964	60	20		

Appendix 4: Input data for Atlantic salmon used to do the runreconstruction and estimates of returns and spawners by size group and age group for North America

Appendix 4.i. Input data for the fishery at West Greenland used in the run reconstruction model.

Year	WGHarv	WGUnHa rv	WGMean Wt	WGSamp leNAC	WGSamp leNEAC	WGProp NACMin	WGProp NACMax	WGProp1 SWNAC	WGProp1 SWNEAC
1970	0	0	3	0	0	0.2	0.5	0.9	1
1971	2689	0	3.14	0	0	0.28	0.4	0.945	0.964
1972	2113	0	3.44	0	0	0.34	0.37	0.945	0.964
1973	2341	0	4.18	0	0	0.39	0.59	0.945	0.964
1974	1917	0	3.58	0	0	0.39	0.46	0.945	0.964
1975	2030	0	3.12	0	0	0.4	0.48	0.945	0.964
1976	1175	0	3.04	0	0	0.38	0.48	0.945	0.964
1977	1420	0	3.21	0	0	0.38	0.57	0.945	0.964
1978	984	0	3.35	0	0	0.47	0.57	0.945	0.964
1979	1395	0	3.34	0	0	0.48	0.52	0.945	0.964
1980	1194	0	3.22	0	0	0.45	0.51	0.945	0.964
1981	1264	0	3.17	0	0	0.58	0.61	0.945	0.964
1982	1077	0	3.11	0	0	0.6	0.64	0.945	0.964
1983	310	0	3.1	0	0	0.38	0.41	0.945	0.964
1984	297	0	3.11	0	0	0.47	0.53	0.945	0.964
1985	864	0	2.87	0	0	0.46	0.53	0.925	0.95
1986	960	0	3.03	0	0	0.48	0.66	0.951	0.975
1987	966	0	3.16	0	0	0.54	0.63	0.963	0.98
1988	893	0	3.18	0	0	0.38	0.49	0.967	0.981
1989	337	0	2.87	0	0	0.52	0.6	0.923	0.955
1990	274	0	2.69	0	0	0.7	0.79	0.957	0.963
1991	472	0	2.65	0	0	0.61	0.69	0.956	0.934
1992	237	0	2.81	0	0	0.5	0.57	0.919	0.975
1993	0	12	2.73	0	0	0.5	0.76	0.95	0.96
1994	0	12	2.73	0	0	0.5	0.76	0.95	0.96
1995	83	20	2.56	0	0	0.65	0.72	0.968	0.973
1996	92	20	2.88	0	0	0.71	0.76	0.941	0.961
1997	58	5	2.71	0	0	0.75	0.84	0.982	0.993
1998	11	11	2.78	0	0	0.73	0.84	0.968	0.994
1999	19	12.5	3.08	0	0	0.84	0.97	0.968	1
2000	21	10	2.57	344	146	0	0	0.974	1
2001	43	10	3	1	1	0.67	0.71	0.982	0.978
2002	9.8	10	2.9	338	163	0	0	0.973	1
2003	12.3	10	3.04	1212	567	0	0	0.967	0.989
2004	17.2	10	3.18	1192	447	0	0	0.97	0.97
2005	17.3	10	3.31	585	182	0	0	0.924	0.967
2006	23	10	3.24	857	326	0	0	0.93	0.988
2007	24.8	10	2.98	917	206	0	0	0.965	0.956
2008	28.6	10	3.08	1593	260	0	0	0.974	0.988
2009	28	10	3.5	1483	138	0	0	0.934	0.894
2010	43.1	10	3.42	991	249	0	0	0.982	0.975
2011	27.4	10	3.4	888	72	0	0	0.939	0.831
2012	34.6	10	3.44	1121	252	0	1	0.932	0.98
2013	47.7	10	3.35	938	211	0	1	0.949	0.966
2014	70.4	10	3.32	660	260	0	1	0.913	0.961
2015	60.9	10	3.37	1337	337	0	1	0.97	0.982
2016	30.2	10	3.18	864	438	0	1	0.935	0.955
2017	28	10	3.49	734	252	0	1	0.925	0.931
2018	39	10	2.97	814	165	0	1	0.974	0.974
2019	28.3	10	2.96	766	305	0	1	0.959	0.979
2020	30.9	10	3.19	60	20	0	1	0.953	0.964

Appendix 4.ii. Input data for sea fisheries on large salmon and small salmon from Newfoundland and Labrador used in the run reconstruction model. Labrador represents harvests from Labrador in indigenous fisheries for food, social and ceremonial purposes and the resident food fishery beginning in 1998.

Year	NLg_NF3to7	NLg_NF8to14a	NSm_NF3to7	NSm_NF8to14a	$\begin{aligned} & \text { LB_SFA1_Lg } \\ & \text { _Comm } \end{aligned}$	$\begin{aligned} & \text { LB_SFA2_Lg } \\ & \text { _Comm } \end{aligned}$	LB_SFA14B_ Lg_Comm	LB_SFA1_S m_Comm	LB_SFA2_Sm Comm	LB_SFA14B_ Sm_Comm	NLg_LBFSI	NSm_LBFSC
1970	0	0	-	0	17633	45479	9595	14666	29441	8605	0	0
1971	81152	0	111518	70936	25127	64806	13673	19109	38359	11212	0	0
1972	43041	42861	107770	111141	21599	55708	11753	14303	28711	8392	0	0
1973	85904	43627	180966	176907	30204	77902	16436	3130	6282	1836	0	0
1974	73961	85714	135874	153278	13866	93036	15863	9848	37145	9328	0	0
1975	100504	72814	190557	91935	28601	71168	14752	34937	57560	19294	0	0
1976	79318	95714	143557	118779	38555	77796	15189	17589	47468	13152	0	0
1977	114413	63449	150491	57472	28158	70158	18664	17796	40539	11267	0	0
1978	64073	37653	68747	38180	30824	48934	11715	17095	12535	4026	0	0
1979	29936	29122	140844	62622	21291	27073	3874	9712	28808	7194	0	0
1980	86941	54307	186648	94291	28750	87067	9138	22501	72485	8493	0	0
1981	98672	38663	174222	60668	36147	68581	7606	21596	86426	6658	0	0
1982	46076	35055	143445	77017	24192	53085	5966	18478	53592	7379	0	0
1983	48218	28215	116592	55683	19403	33320	7489	15964	30185	3292	0	0
1984	44540	15135	98184	52813	11726	25258	6218	11474	11695	2421	0	0
1985	36975	24383	131360	79275	13252	16789	3954	15400	24499	7460	0	0
1986	48996	22036	151275	91912	19152	34071	5342	17779	45321	8296	0	0
1987	67072	19241	192308	82401	18257	49799	11114	13714	64351	11389	0	0
1988	36449	14763	115375	74620	12621	32386	4591	19641	56381	7087	0	0
1989	37576	15577	116375	60884	16261	26836	4646	13233	34200	9053	0	0
1990	31847	11639	71761	46053	7313	17316	2858	8736	20699	3592	0	0
1991	25792	10259	62331	42721	1369	7679	4417	1410	20055	5303	0	0
1992	0	0	0	0	9981	19608	2752	9588	13336	1325	0	0
1993	0	0	0	0	3825	9651	3620	3893	12037	1144	0	0
1994	0	0	0	0	3464	11056	857	3303	4535	802	0	0
1995	0	0	0	0	2150	8714	312	3202	4561	217	0	0
1996	0	0	0	0	1375	5479	418	1676	5308	865	0	0
1997	0	0	0	0	1393	5550	263	1728	8025	332	0	0
1998	0	0	0	0	0	0	0	0	0	0	2269	2988
1999	0	0	0	0	0	0	0	0	0	0	1084	2739
2000	0	0	0	0	0	0	0	0	0	0	1352	5323
2001	0	0	0	0	0	0	0	0	0	0	1721	4789
2002	0	0	0	0	0	0	0	0	0	0	1389	5806
2003	0	0	0	0	0	0	0	0	0	0	2175	6477
2004	0	0	0	0	0	0	0	0	0	0	3696	8385
2005	0	0	0	0	0	0	0	0	0	0	2817	10436
2006	0	0	0	0	0	0	0	0	0	0	3090	10377
2007	0	0	0	0	0	0	0	0	0	0	2652	9208
2008	0	0	0	0	0	0	0	0	0	0	3909	9834
2009	0	0	0	0	0	0	0	0	0	0	3344	7988
2010	0	0	0	0	0	0	0	0	0	0	3725	9867
2011	0	0	0	0	0	0	0	0	0	0	4451	11138
2012	0	0	0	0	0	0	0	0	0	0	4228	9977
2013	0	0	0	0	0	0	0	0	0	0	6479	7185
2014	0	0	0	0	0	0	0	0	0	0	3994	8958
2015	0	0	0	0	0	0	0	0	0	0	6146	8923
2016	0	0	0	0	0	0	0	0	0	0	5598	7638
2017	0	0	0	0	0	0	0	0	0	0	6193	6868
2018	0	0	0	0	0	0	0	0	0	0	4078	8780
2019	0	0	0	0	0	0	0	0	0	0	5793	7061
2020	0	0	0	0	0	0	0	0	0	0	6155	7558

Appendix 4.iii. Input data for sea fisheries on large salmon and small salmon from St Pierre and Miquelon used in the run-reconstruction model.

Year of the fishery	$\begin{gathered} \text { Reported } \\ \text { harvest }(\mathrm{kg}) \end{gathered}$	Professional (kg)	$\begin{aligned} & \text { Recreational } \\ & (\mathrm{kg}) \end{aligned}$	Number of salmon (prof)	Number of salmon (recr)	Mean weight (prof)	Mean weight (recr)	Estimated number of salmon	$\begin{array}{r} \text { Estimated } \\ \text { number of } \\ \text { large salmon } \end{array}$	$\begin{array}{r}\begin{array}{r}\text { Estimated } \\ \text { number of small } \\ \text { salmon }\end{array} \\ \hline\end{array}$	Number small sampled	Number large sampled	Prop. small
1970	0							0		0			0.677
1971	0							0	0	0			0.677
1972	0							0	0	0			0.677
1973	0							0	0	0			0.677
1974	0							0	0	0			0.677
1975	0							0	0	0			0.677
1976	3000							1080	348	731			0.677
1977	0							0	0	0			0.677
1978	0							0	0	0			0.677
1979	0							0	0	0			0.677
1980	0							0	0	0			0.677
1981	0							0	0	0			0.677
1982	0							0	0	0			0.677
1983	3000							1080	348	731			0.677
1984	3000							1080	348	731			0.677
1985	3000							1080	348	731			0.677
1986	2500							900	290	609			0.677
1987	2000							720	232	487			0.677
1988	2000							720	232	487			0.677
1989	2000							720	232	487			0.677
1990	1880	1146	734					677	218	458			0.677
1991	1162	632	530					418	135	283			0.677
1992	2319	1295	1024					834	269	565			0.677
1993	2943	1902	1041					1059	342	717			0.677
1994	3423	2633	790					1232	398	834			0.677
1995	837	392	445					301	97	204			0.677
1996	1568	951	617					564	182	382			0.677
1997	1491	762	729					537	173	363			0.677
1998	2307	1039	1268					830	268	562			0.677
1999	2322	1182	1140					836	270	566			0.677
2000	2267	1134	1133					816	263	552			0.677
2001	2155	1544	611					775	250	525			0.677
2002	1952	1223	729					702	227	476			0.677
2003	2892	1620	1272	549	530	2.949	2.402	1079	348	731			0.677
2004	2784	1499	1285	553	535	2.711	2.402	1088	196	892	109	24	0.820
2005	3287	2243	1044	842	435	2.664	2.402	1277	351	926	214	81	0.725
2006	3555	1730	1825	635	819	2.724	2.228	1454	469	985			0.677
2007	2032	970	1062	207	470	4.696	2.260	677	218	458			0.677
2008	3450	1604	1846	435	933	3.687	1.979	1368	442	926			0.677
2009	3464	1864	1600	517	748	3.603	2.139	1265	408	857			0.677
2010	2782	1002	1780	305	768	3.289	2.318	1073	470	602	32	25	0.561
2011	3756	1764	1992	357	819	4.947	2.432	1176	1031	145	9	64	0.123
2012	1446	278	1168	77	405	3.603	2.884	482	156	327			0.677
2013	5300	2290	3010	561	1253	4.083	2.402	1814	1272	542	23	54	0.299
2014	3811	2250	1561	526	525°	4.278	2.973	1051	611	440	31	43	0.419
2015	3510	1210	2300	440	958	2.747	2.402	1398	410	988	77	32	0.706
2016	4728	979	3749	436	1246	2.245	3.009	1682	286	1396	122	25	0.830
2017	2816	593	2223	245	878	2.420	2.532	1123	78	1045	134	10	0.931
2018	1287	156	1131	80	516	1.950	2.192	596	214	382	52	4	0.929
2019	1286	72	1214	36	470	2.000	2.583	506	182	324	45	19	0.703
2020	1739	91	1648	42	554	2.155	2.975	596	214	382			
										Mean prop.s	mall from sa	amples	0.641

* whole weight is assumed to be gutted weight sampled X 1.15.

Appendix 4.iv. Input data for large salmon for Labrador used in the run-reconstruction.

Year	LB_SFA1_IL	B_SFA2_IL	ILB_SFA14IN	NLg_LBFS(pLB_SFA1	pLB_SFA1.	pLB_SFA2.	pLB_SFA2.	pLB_SFA1.p	pLB_SFA1.	ER_LB_Lg_	ER_LB_Lg.	p2SW_L	p2Sw_H	LB_Lg_L	LB_Lg_H	LB_Ang_L¢	LB_Ang_L
1970	17633	45479	9595	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	562	
1971	25127	64806	13673	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	486	
1972	21599	55708	11753	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	424	
1973	30204	77902	16436		0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	1009	
1974	13866	93036	15863	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	803	
1975	28601	71168	14752	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	327	
1976	38555	77796	15189	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	830	
1977	28158	70158	18664	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	1286	
1978	30824	48934	11715	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	767	
1979	21291	27073	3874	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	609	
1980	28750	87067	9138	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	889	
1981	36147	68581	7606	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	520	
1982	24192	53085	5966	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	621	
1983	19403	33320	7489	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	428	
1984	11726	25258	6218	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	510	
1985	13252	16789	3954	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	294	
1986	19152	34071	5342	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	467	
1987	18257	49799	11114	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	633	
1988	12621	32386	4591	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	710	
1989	16261	26836	4646	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	461	
1990	7313	17316	2858	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	357	
1991	1369	7679	4417	0	0.6	0.8	0.6	0.8	0.6	0.8	0.7	0.9	0.7	0.9	0	0	93	
1992	9981	19608	2752	0	0.6	0.8	0.6	0.8	0.6	0.8	0.58	0.83	0.7	0.9	0	0	781	
1993	3825	9651	3620	0	0.6	0.8	0.6	0.8	0.6	0.8	0.38	0.62	0.7	0.9	0	0	378	
1994	3464	11056	857	0	0.6	0.8	0.6	0.8	0.6	0.8	0.29	0.5	0.7	0.9	0	0	455	
1995	2150	8714	312	0	0.6	0.8	0.6	0.8	0.6	0.8	0.14	0.25	0.7	0.9	0	0	408	
1996	1375	5479	418	0	0.6	0.8	0.6	0.8	0.6	0.8	0.13	0.23	0.7	0.9	0	0	334	
1997	1393	5550	263	0	0.6433	0.7247	0.8839	0.9521	0.6	0.8	0.17	0.3	0.7	0.9	0	0	158	
1998	0	0	0	2269	1	1	1	1	1	1	0.17	0.3	0.6	0.71	7374	19486	231	-814
1999	0	0	,	1084	1	1	1	1	1	1	0.17	0.3	0.6	0.71	8827	23328	320	
2000	0	0	0	1352	1	1	1	1	1	- 1	0.17	0.3	0.6	0.71	12052	31850	262	
2001	0	0	0	1721	1	1	1	1	1	1	0.17	0.3	0.6	0.71	12744	33677	338	1468
2002	0	0	0	1389	1	- 1	1	1	1	1	0.17	0.3	0.6	0.71	9076	24769	207	
2003	0	0	0	2175	1	1	1	1	1	1	0.17	0.3	0.6	0.71	6676	21689	222	
2004	0	0	0	3696	1	1	1	1	1	- 1	0.17	0.3	0.6	0.71	10964	23092	259	1519
2005	0	0	0	2817	1	1	1	1	1	1	0.17	0.3	0.6	0.71	11159	30796	291	1290
2006	0		0	3090	1	1	1	1	1	1	0.17	0.3	0.6	. 0.71	12414	29783	227	
2007	0	0	0	2652	1	1	1	1	1	1	0.17	0.3	0.6	0.71	11887	31913	235	1222
2008	0	0	0	3909	1	1	1	1	1	1	0.17	0.3	0.6	0.71	14700	37677	200	1461
2009	0	0	0	3344	1	1	1	1	1	1	0.2	0.4	0.6	0.7	18643	60062	216	121
2010	0	0	0	3725	1	1	1	1	1	1	0.2	0.4	0.6	0.7	10764	26828	197	108
2011	0	0	0	4451	1	1	1	1	1	1	0.2	0.4	0.6	0.7	30198	85085	0	2233
2012	20	0	0	4228	1	1	1	1	1	1	0.2	0.4	0.6	0.7	19062	48538	0	1072
2013	0	0	0	6479	1	1	1	1	1	- 1	0.2	0.4	0.6	0.7	36859	91394	0	2433
2014	0	0	0	3994	1	1	1	1	1	1	0.2	0.4	0.6	0.7	36055	87989	0	1607
2015	0	0	0	6146	1	1	1	1	1	1	0.2	0.4	0.6	0.7	49662	127898	0	1367
2016	0	0	0	5598	1	1	1	1	1	- 1	0.2	0.4	0.6	0.7	36134	108273	0	3201
2017	0	0	0	6193	1	1	1	1	1	1	0.2	0.4	0.6	0.7	32055	121307	0	2532
2018	0	0	0	4078	1	1	1	1	1	1	0.2	0.4	0.6	0.7	23004	69330	0	
2019	0	0	0	5793	1	1	1	1	1	- 1	0.2	0.4	0.6	0.7	12726	41880	0	
2020	0		0	6155							0.2	0.4	0.6	0.7	44211	47457		

Appendix 4.v. Input data for small salmon for Labrador used in the run-reconstruction.

Year	LB_SFA1_'	B_SFA2_	A1	Sm_LBFS	LB_SFA1.p	pLB_SFA1.p	pLB_SFA2.	pLB_SFA2.p	pLB_SFA1.p	pLB_S	ER_LB	R_LB	B_Sm_L	LB_Sm_H	LB_Ang_S	Ang_Sr
1970	14666	29441	8605	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	4013	0
1971	19109	38359	11212	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	3934	0
1972	14303	28711	8392	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	2947	0
1973	3130	6282	1836	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	7492	0
1974	9848	37145	9328	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	2501	0
1975	34937	57560	19294	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	3972	0
1976	17589	47468	13152	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	5726	0
1977	17796	40539	11267	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	4594	0
1978	17095	12535	4026	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	2691	0
1979	9712	28808	7194	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	4118	0
1980	22501	72485	8493	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	3800	0
1981	21596	86426	6658	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	5191	0
1982	18478	53592	7379	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	4104	0
1983	15964	30185	3292	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	4372	0
1984	11474	11695	2421	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	2935	0
1985	15400	24499	7460	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	3101	0
1986	17779	45321	8296	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	3464	0
1987	13714	64351	11389	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	5366	0
1988	19641	56381	7087	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	5523	0
1989	13233	34200	9053	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	4684	0
1990	8736	20699	3592	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	3309	0
1991	1410	20055	5303	0	0.6	0.8	0.6	0.8	0.6	0.8	0.300	0.500	0	0	2323	0
1992	9588	13336	1325	0	0.6	0.8	0.6	0.8	0.6	0.8	0.219	0.393	0	0	2738	251
1993	3893	12037	1144	0	0.6	0.8	0.6	0.8	0.6	0.8	0.132	0.246	0	0	2508	1793
1994	3303	4535	802	0	0.6	0.8	0.6	0.8	0.6	0.8	0.099	0.186	0	0	2549	3681
1995	3202	4561	217	0	0.6	0.8	0.6	0.8	0.6	0.8	0.070	0.133	0	0	2493	3302
1996	1676	5308	865	0	0.6	0.8	0.6	0.8	0.6	0.8	0.035	0.068	0	0	2565	3776
1997	1728	8025	332	0	0.3557	0.4163	0.748	0.85	0.6	0.8	0.045	0.082	0	0	2365	2187
1998	0	0	0	2988	1	1	1	1	1	1	0.045	0.082	97408	205197	2131	3758
1999	0	0	0	2739	1	1	1	1	1	1	0.045	0.082	94894	199901	2076	4407
2000	0	0	0	5323	1	1	1	1	1	1	0.045	0.082	117063	246602	2561	7095
2001	0	0	0	4789	1	1	1	1	1	1	0.045	0.082	93660	197301	2049	4640
2002	0	0	0	5806	1	1	1	1	1	1	0.045	0.082	62321	142951	2071	5052
2003	0	0	0	6477	1	1	1	1	1	1	0.045	0.082	48256	122813	2112	4924
2004	0	0	0	8385	1	1	1	1	1	1	0.045	0.082	69808	120244	1808	5968
2005	0	0	0	10436	1	1	1	1	1	1	0.045	0.082	160038	281401	2007	7120
2006	0	0	0	10377	1	1	1	1	1	1	0.045	0.082	132205	294669	1656	5815
2007	0	0	0	9208	1	1	1	1	1	1	0.045	0.082	131895	257360	1762	4641
2008	0	0	0	9834	1	1	1	1	1	1	0.045	0.082	142851	264694	1936	5917
2009	0	0	0	7988	1	1	1	1	1	1	0.070	0.140	55307	149372	1355	3396
2010	0	0	0	9867	1	1	1	1	1	- 1	0.070	0.140	78560	165165	1477	4704
2011	0	0	0	11138	1	1	1	1	1	1	0.070	0.140	137465	356791	1628	5340
2012	0	0	0	9977	1	1	1	1	1	1	0.070	0.140	105443	241754	1376	3302
2013	0	0	0	7185	1	1	1	1	1	1	0.070	0.140	83556	227719	1389	4167
2014	0	0	0	8958	1	1	1	1	1	1	0.070	0.140	175938	359832	1529	4760
2015	0	0	0	8923	1	1	1	1	1	1	0.070	0.140	174788	339699	1394	3714
2016	0	0	0	7638	1	1	1	1	1	1	0.070	0.140	110373	300130	1669	3800
2017	0	0	0	6868	1	1	1	1	1	1	0.070	0.140	80484	246247	1455	3265
2018	0	0	0	8780	1	1	1	1	1	1	0.070	0.140	167707	405112	481	4292
2019	0	0	0	7061	1	1	1	1	1	1	0.070	0.140	62324	170743	947	4166
2020	0	0	0	7558	1	1	1	1	1	1	0.070	0.140	131409	263085	947	4166

Appendix 4.vi. Input data for returns of small salmon and large salmon for Salmon Fishing Areas $\mathbf{3}$ to 8 in Newfoundland used in the run-reconstruction

	salmon fishing area 3		large salmon		salmon fishing area 4		large salmon		salmon fishing area 5		large salmon		salmon fishing area 6		large salmon		salmon fishing area 7				salmon fishing area 8					
	Small salmon				Small salmon				Small salmon				Small salmon				Small salmon		large salmon		Small salmon		large salmon			
	Returns		Returns		Returns		Returns				$\begin{array}{\|l} \hline \text { Returns } \\ \hline \min \\ \hline \end{array}$	max	Returns min max		Returns \min max SFAGLg_L SFA6Lg_H		Returns min SFA7Sm_L SFA75m_H		Returns $\min ^{2}$ max SFA7Lg_L SFA7Lg_H				Returns min	max		
	min	max	min	max	min		min max		min	max																
Year	SFA3Sm_L S	SFA3Sm_H	SFA3LE_L	SFA3LE_H	SFA4Sm_L S	SFAASm_H	SFA4Lg_L S	SFA4Lg_H	SFA5Sm_L S	SFA5Sm_H	SFASLg_L S	SFASL__H	SFA6Sm_L S	SFA6Sm_H			SFA8LE_H									
1970	2613	5227	155	737	16163	32327	957	4559	7420	14840	439	2093	280	560	17	79			67	133	4	19	62	123	4	17
1971	2473	4947	146	698	12610	25220	746	3557	5600	11200	331	1579	183	367	11	52	133	267	8	- 38	83	167	5	24		
1972	1660	3320	98	468	11480	22960	679	3238	6317	12633	374	1782	397	793	23	112	203	407	12	- 57	93	187	6	26		
1973	3960	7920	234	1117	22367	44733	1324	6308	7040	14080	417	1986	833	1667	49	235	437	873	26	123	313	627	9	88		
1974	2797	5593	322	645	17910	35820	65	31	5457	10913	629	1258	1010	2020	116	233	443	887	51	102	0	340		39		
1975	3690	7380	520	1041	19810	39620	2794	5587	6627	13253	935	869	313	627	44	88	133	267	19	38	290	580	41	82		
1976	3157	313	380	760	2277	44553	2683	365	6327	12653	762	524	823	1647	99	198	100	200	12	24	267	533	32	64		
1977	100	10200	482	964	27987	5973	2645	290	15387	30773	1454	908	133	2673	126	253	260	520	25	49	270	540	26	51		
978	2527	553	150	299	9247	58493	1731	461	952	19053	564	1128	987	1973	58	117	330	660	20	39	147	293	9	17		
1979	800	13600	390	779	2753	3507	1533	306	4437	8873	254	509	813	1627	47	93	417	833	24	48	333	667	19	38		
1980	5810	11620	261	522	31380	62760	1410	2819	9007	18013	405	809	1067	2133	48	96	340	680	15	31	400	800	18	36		
1981	7860	15720	1045	2090	45120	90240	5998	11996	11627	23253	1546	3091	2017	4033	268	536	410	820	55	109	257	513	34	68		
1982	8780	17560	212	424	33243	66487	802	1604	8110	16220	196	391	960	1920	23	46	517	1033	12	25	283	567	7	14		
1983	5390	10780	247	495	29847	59693	1370	2740	7857	15713	361	721	987	1973	45	91	463	927	21	43	137	273	6	13		
1984	3532	7526	55	540	34933	74436	548	5337	9538	20323	150	1457	1101	2346	17	168	339	722	5	52	279	594	4	43		
1985	4772	9879	72	683	44408	91931	671	6352	12692	26275	192	1816	1563	3235	24	224	408	845	6	58	375	777	6	54		
1986	2826	5898	70	413	34015	70993	840	4977	14835	30963	366	2170	1629	3400	40	238	373	779	9	55	505	1054	12	74		
1987	2218	4458	57	318	21485	43175	556	3078	6556	13175	170	939	540	1085	14	77	110	222	3	16	169	340	4	24		
1988	6624	13644	159	956	37171	76566	892	5367	15715	32370	377	2269	1618	3333	39	234	483	995	12	70	298	614	7	43		
1989	3004	6114	90	461	15409	31367	461	2365	5767	11740	172	885	001	2038	30	154	269	547	8	41	403		12	62		
1990	6750	11816	236	920	22244	38934	776	3033	485	16602	331	1293	1312	2297	46	179	193	337	7	26	338		12	46		
1991	5650	9281	193	750	21005	34499	718	2788	8793	14443	301	1167	799	1312	27	106	155	254	5	21	47					
1992	11418	22836	416	409	386	77339	1408	13867	14189	28377	516	508	1681	3363	61	- 603	292	585	11	105	0		0	0		
1993	11793	2269	415	1614	45610	87791	1605	6242	16661	32071	586	2280	2574	4954	91	352	462	890	16	63	422	813	15	58		
1994	13082	28738	769	3268	29401	64585	1729	7343	9740	21395	573	2433	539	1183	32	135	64	141	4	- 16	111	243		28		
1995	10205	24587	609	2665	31439	75745	1877	8211	11108	26762	663	2901	386	931	23	101	233	560	14	61	185	446	11	48		
1996	19519	43650	1439	4273	52515	117438	3870	11497	17384	38875	1281	3806	643	1438	47	141	151	338	11	33	224	500	16	49		
1997	11763	21437	1226	3970	24074	43872	2509	8125	6468	11786	674	2183	235	429	25	79	60	110	6	20	60	110	6	20		
1998	19617	27571	1956	6992	52347	73573	5219	18658	11863	16673	1183	4228	538	756	54	192	249	350	25	89	161	227	16	58		
1999	13981	20350	1286	4196	62141	90450	5717	18651	10474	15245	964	3143	405	589	37	122	69	100	6	21	151	220	14	45		
2000	19313	26033	1466	3728	37551	50618	2850	7248	12414	16734	942	2396	1128	1520	86	218	159	214	12	- 31	106	143	8	20		
2001	11754	15383	907	2104	39901	52218	3080	7143	10007	13095	773	1791	296	387	23	53	53	69	4	9	20	26	2			
2002	10500	15736	684	2006	34310	51418	2234	6556	3870	5799	252	739	241	361	16	46	0		0	0	72	108	5	14		
2003	21615	26166	1092	3485	74615	90328	3768	12032	6583	7970	332	1062	458	555	23	74	104	126	5	17	52	63	3	3		
2004	7992	12452	396	1686	49598	77280	2455	10464	8385	13065	415	1769	180	281	9	38	0	0	0	0	41	64	2	9		
2005	6421	18899	487	2678	36753	108180	2790	15329	5309	15627	403	2214	114	336	9	48	0	0	0	0	26	76	2	11		
2006	10757	17194	1251	3239	42745	58322	4971	1287	8571	13700	997	258	69	110	8	21	0	0	0	0	172	275	20	52		
2007	10422	21117	1182	3828	36934	74834	4188	13567	8734	17696	990	3208	78	157	9	28	129	262	15	47	17	35	2	26		
2008	139	328	1062	3396	63476	106328	4851	15508	11459	19195	876	2800	330	552	25	81	84	141	6	21	196	329	15	48		
2009	13313	24903	787	5088	59555	111403	3518	22760	10610	19847	627	4055	485	908	29	185	0		,	0	135	252	8	52		
2010	21058	26262	1610	4596	79694	99392	6094	17393	23093	28801	1766	5040	997	1243	76	218	211	263	16	46	110	137	8	824		
2011	15720	26791	1308	6277	60515	103137	5033	24165	14418	24574	1199	5758	850	1448	71	339	100	170	8	40	272	464	23	109		
2012	23561	33459	1662	4417	72540	103017	5117	13600	16241	23065	1146	3045	827	1174	58	155	112	159	8	21	408	580	29	77		
2013	9283	13679	518	4063	53415	78712	2983	23377	17957	26461	1003	7859	860	1267	48	376	291	429	16	127	126	185	7	55		
2014	14456	21763	1132	2905	43129	64928	3378	8668	8913	13418	698	1791	547	823	43	110	138	208	11	28	108	163	8	22		
2015	20291	32593	1709	4892	80972	130060	6818	19522	16928	27191	1425	4081	979	1573	82	236	142	228	12	34	336	540	28	81		
2016	14606	25471	1320	4659	49320	86008	4457	15731	10340	18032	934	3298	524	913	47	167	184	320	17	59	232	405	21	74		
2017	6854	15396	547	1835	34949	78507	2788	9358	5559	12487	443	1488	103		8	28	55	123	4	15	103	231	8	28		
2018	5286	9799	228	867	30175	55939	1299	4951	8018	14864	345	1315	48		2	- 8	203	376	9	33	95	177	4	16		
2019	13661	38261	946	4867	54983	153990	3806	19588		22571	558		516		36		145	405	10	51	296	829	20	105		
2020	12526	23881	980	3338	48921	94905	3758	12970	9636	18094	734	2474	453	846	36	122	145	277	10	37	195	391	15	54		

Appendix 4.vi. (Continued). Input data for returns of small salmon and large salmon for Salmon Fishing Areas 9 to 14A in Newfoundland used in the run-reconstruction.

Appendix 4.vii. Input data for spawners of small salmon and large salmon for Salmon Fishing Areas $\mathbf{3}$ to $\mathbf{8}$ in Newfoundland used in the run-reconstruction.

Appendix 4.vii. (Continued). Input data for spawners of small salmon and large salmon for Salmon Fishing Areas 9 to 14A in Newfoundland used in the run-reconstruction.

Appendix 4.viii. Input data for 2SW salmon returns and spawners for Salmon Fishing Areas 3 to 8 in Newfoundland used in the run-reconstruction.

Appendix 4.viii. (Continued). Input data for 2SW salmon returns and spawners for Salmon Fishing Areas 9 to 14A in Newfoundland used in the run-reconstruction.

Appendix 4.ix. Input data for small salmon and large salmon returns and spawners to Québec by category of data used in the run-reconstruction, 1970 to 1983.

	Returns				Spawners			
Year	QCSm_L	QCSm_H	QCLg_L	QCLg_H	QCSSm_L	QCSSm_H	QCSLg_L	QCSLg_H
1970	18904	28356	82680	124020	11045	16568	31292	46937
1971	14969	22453	47354	71031	9338	14007	16194	24292
1972	12470	18704	61773	92660	8213	12320	31727	47590
1973	16585	24877	68171	102256	10987	16480	32279	48419
1974	16791	25186	91455	137182	10067	15100	39256	58884
1975	18071	27106	77664	116497	11606	17409	32627	48940
1976	19959	29938	77212	115818	12979	19469	31032	46548
1977	18190	27285	91017	136525	12004	18006	44660	66990
1978	16971	25456	81953	122930	11447	17170	40944	61416
1979	21683	32524	45197	67796	15863	23795	17543	26315
1980	29791	44686	107461	161192	20817	31226	48758	73137
1981	41667	62501	84428	126642	30952	46428	35798	53697
1982	23699	35549	74870	112305	16877	25316	36290	54435
1983	17987	26981	61488	92232	12030	18045	23710	35565

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q1	1984	1082	1134	5059	5305	689	741	3375	3621
Q1	1985	1461	1534	4505	4723	911	984	2720	2938
Q1	1986	2577	2703	7466	7829	1641	1767	4465	4828
Q1	1987	3521	3691	6508	6827	2352	2522	4043	4362
Q1	1988	4052	4248	8742	9166	2686	2882	5497	5921
Q1	1989	3308	3471	10208	10709	2391	2554	6862	7363
Q1	1990	4393	4607	8778	9205	3037	3251	5730	6157
Q1	1991	3575	3746	7985	8367	2451	2622	5375	5757
Q1	1992	4079	4272	8047	8432	2459	2652	4881	5266
Q1	1993	3919	4106	6413	6720	2258	2445	4038	4345
Q1	1994	4157	4355	8054	8439	2382	2580	4597	4982
Q1	1995	2360	2473	9825	10292	1740	1853	7022	7489
Q1	1996	3509	3680	9518	10031	2282	2453	6926	7439
Q1	1997	2696	2822	6960	7291	1625	1751	5118	5449
Q1	1998	3354	3568	5474	5758	1924	2138	4308	4592
Q1	1999	3955	4156	7830	8223	2499	2700	6352	6745
Q1	2000	3464	3648	7182	7559	1940	2124	5757	6134
Q1	2001	2629	2761	7593	7970	1547	1679	5888	6265
Q1	2002	5434	5760	5829	6122	2719	3045	5017	5310
Q1	2003	2707	2835	10181	10687	1538	1666	8306	8812
Q1	2004	4716	5000	7586	7966	2399	2683	6043	6423
Q1	2005	2386	2510	8738	9195	1431	1555	7049	7506
Q1	2006	3934	4143	7305	7687	2279	2488	6241	6623
Q1	2007	1765	1858	5808	6112	982	1075	4789	5093
Q1	2008	4600	4837	5235	5512	2367	2604	4607	4884
Q1	2009	2189	2304	7106	7478	1198	1313	6224	6596
Q1	2010	2601	2738	8212	8644	1253	1390	7361	7793
Q1	2011	4223	4443	11449	12057	2458	2678	10012	10620
Q1	2012	1793	1887	6821	7179	1011	1105	6086	6444
Q1	2013	1603	1687	8687	9145	898	981	7487	7945
Q1	2014	1869	1967	5485	5775	916	1014	4845	5135
Q1	2015	2733	2877	8311	8748	1301	1445	7396	7833
Q1	2016	1525	1602	5516	5810	819	896	5296	5590
Q1	2017	1329	1397	7343	7729	670	738	6910	7296
Q1	2018	2763	2906	7011	7382	1497	1640	6735	7106
Q1	2019	1402	1477	6977	7348	533	608	6792	7163
Q1	2020	1940	2043	10100	10631	1036	1139	9667	10198

 full dataset.

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q2	1984	377	396	3767	3953	326	345	2564	2750
Q2	1985	453	473	3225	3382	312	332	2067	2224
Q2	1986	675	708	3212	3372	445	478	2183	2343
Q2	1987	1840	1931	4725	4953	1594	1685	3728	3956
Q2	1988	1662	1744	7090	7436	1222	1304	5027	5373
Q2	1989	1165	1220	5914	6193	820	875	4000	4279
Q2	1990	2054	2189	4121	4398	1383	1518	3024	3301
Q2	1991	1619	1697	5380	5637	1178	1256	3717	3974
Q2	1992	2440	2557	6270	6572	1410	1527	4117	4419
Q2	1993	2265	2373	5383	5643	1120	1228	3360	3620
Q2	1994	1874	1964	5600	5865	1031	1121	3282	3547
Q2	1995	1017	1067	5026	5269	750	800	3592	3835
Q2	1996	1830	1919	4426	4640	1112	1201	2654	2868
Q2	1997	1428	1496	3669	3846	990	1058	2585	2762
Q2	1998	1668	1749	2473	2593	942	1023	1979	2099
Q2	1999	1278	1350	3991	4207	958	1030	3527	3743
Q2	2000	1845	1936	2358	2479	1356	1447	1956	2077
Q2	2001	1034	1121	3727	4018	782	869	3051	3342
Q2	2002	2404	2528	2975	3124	1605	1729	2722	2871
Q2	2003	1404	1476	5584	5864	1015	1087	5077	5357
Q2	2004	2257	2373	3611	3796	1580	1696	3213	3398
Q2	2005	1486	1561	4217	4432	1178	1253	3901	4116
Q2	2006	1779	1868	3471	3640	1238	1327	3191	3360
Q2	2007	1156	1213	3033	3185	795	852	2586	2738
Q2	2008	2466	2587	3311	3476	1578	1699	2975	3140
Q2	2009	1369	1436	3904	4094	867	934	3381	3571
Q2	2010	1837	1927	5025	5272	1058	1148	4367	4614
Q2	2011	2262	2373	4992	5235	1180	1291	4325	4568
Q2	2012	1180	1238	3257	3414	794	852	2879	3036
Q2	2013	1513	1588	4654	4882	1110	1185	4377	4605
Q2	2014	1447	1520	1749	1837	821	894	1599	1687
Q2	2015	3149	3301	4031	4229	2333	2485	3772	3970
Q2	2016	1320	1384	3574	3750	916	980	3231	3407
Q2	2017	995	1043	4228	4436	696	744	4062	4270
Q2	2018	1119	1176	2182	2310	785	842	2166	2294
Q2	2019	844	887	3138	3292	538	581	2988	3142
Q2	2020	1717	1799	4540	4764	1277	1359	4427	4651

 full dataset.

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q3	1984	1469	1498	4968	5036	1131	1160	4099	4167
Q3	1985	1438	1459	3956	4026	1153	1174	2979	3049
Q3	1986	3794	3858	5236	5338	3041	3105	4091	4193
Q3	1987	2988	3050	5273	5360	2397	2459	4317	4404
Q3	1988	3713	3775	4813	4913	2785	2847	3575	3675
Q3	1989	2929	3002	5885	6003	2511	2584	5001	5119
Q3	1990	4895	4982	7738	7867	4011	4098	6464	6593
Q3	1991	3913	3965	5314	5444	3118	3170	3996	4126
Q3	1992	4829	4940	5242	5349	3445	3556	3877	3984
Q3	1993	3976	4043	4128	4211	2562	2629	2956	3039
Q3	1994	3031	3082	4349	4437	1930	1981	2859	2947
Q3	1995	2798	2844	3261	3346	2146	2192	2537	2622
Q3	1996	4376	4445	4141	4201	3072	3141	2844	2904
Q3	1997	2861	2968	3138	3343	2100	2207	2092	2297
Q3	1998	2800	2958	2572	2716	1989	2147	1784	1928
Q3	1999	2753	3141	2849	2990	2189	2577	2270	2411
Q3	2000	3502	3860	2690	2891	2611	2969	2196	2397
Q3	2001	2301	2408	3271	3456	1478	1585	2615	2800
Q3	2002	3744	4009	1961	2105	2702	2967	1616	1760
Q3	2003	3666	4062	3232	3479	2748	3144	2674	2921
Q3	2004	4035	4101	3860	4107	2875	2941	3041	3288
Q3	2005	2647	2932	3900	4312	2061	2346	3336	3748
Q3	2006	3908	4318	2756	3016	2787	3197	2438	2698
Q3	2007	3010	3286	3701	4058	2076	2352	2912	3269
Q3	2008	5121	5649	3474	3791	3448	3976	3031	3348
Q3	2009	2651	2906	4077	4482	2022	2277	3517	3922
Q3	2010	2880	3095	4021	4314	1951	2166	3430	3723
Q3	2011	4975	5331	4937	5382	3324	3680	4293	4738
Q3	2012	2892	3074	3740	4032	1789	1971	3116	3408
Q3	2013	2139	2288	5286	5622	1411	1560	4566	4902
Q3	2014	1880	2013	2465	2626	1326	1459	2411	2572
Q3	2015	5034	5401	3475	3723	3232	3599	3282	3530
Q3	2016	5313	5675	4804	5137	3442	3804	4228	4561
Q3	2017	2423	2596	4211	4517	1533	1706	3863	4169
Q3	2018	2779	2917	2893	3039	2005	2143	2779	2925
Q3	2019	2407	2527	3672	3856	1689	1809	3445	3629
Q3	2020	3606	3785	5346	5613	2636	2815	4983	5250

 full dataset.

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q5	1984	150	154	40	56	117	121	28	44
Q5	1985	108	113	297	320	104	109	277	300
Q5	1986	79	95	250	262	59	75	233	245
Q5	1987	87	112	91	105	73	98	80	94
Q5	1988	95	158	147	212	60	123	111	176
Q5	1989	625	657	161	242	592	624	116	197
Q5	1990	520	563	862	946	450	493	781	865
Q5	1991	409	485	677	756	303	379	620	699
Q5	1992	294	334	532	645	206	246	434	547
Q5	1993	173	177	189	193	134	138	155	159
Q5	1994	549	583	218	317	418	452	163	262
Q5	1995	309	363	1018	1120	247	301	920	1022
Q5	1996	495	618	512	623	374	497	439	550
Q5	1997	519	549	674	809	481	511	499	634
Q5	1998	600	776	469	561	500	676	400	492
Q5	1999	978	1097	551	707	839	958	415	571
Q5	2000	459	538	631	792	357	436	557	718
Q5	2001	367	469	515	706	288	390	433	624
Q5	2002	336	423	257	334	279	366	252	329
Q5	2003	703	953	512	729	551	801	492	709
Q5	2004	540	560	399	418	409	429	362	381
Q5	2005	333	350	340	355	223	240	298	313
Q5	2006	437	526	311	392	355	444	291	372
Q5	2007	497	521	295	308	389	413	260	273
Q5	2008	1317	1507	666	811	1029	1219	632	777
Q5	2009	616	692	693	839	492	568	647	793
Q5	2010	731	765	764	800	582	616	719	755
Q5	2011	1077	1214	1003	1210	769	876	955	1162
Q5	2012	406	467	607	713	251	288	576	682
Q5	2013	298	333	770	910	220	240	753	893
Q5	2014	584	654	322	400	459	529	308	386
Q5	2015	1428	1598	627	796	1083	1250	592	761
Q5	2016	810	910	1166	1392	632	732	1120	1346
Q5	2017	465	515	741	889	370	416	717	865
Q5	2018	478	536	553	664	341	375	534	645
Q5	2019	646	677	814	853	502	533	777	816
Q5	2020	604	633	1224	1283	466	495	1179	1238

 full dataset.

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q6	1984	830	946	902	995	596	712	621	714
Q6	1985	291	314	1941	2202	228	251	1386	1647
Q6	1986	931	1013	1568	1808	595	677	965	1205
Q6	1987	1073	1192	1348	1493	788	907	943	1088
Q6	1988	984	1082	1133	1245	648	746	722	834
Q6	1989	1411	1505	1344	1503	1079	1173	990	1149
Q6	1990	1391	1496	2436	2636	1000	1105	1716	1916
Q6	1991	1400	1508	1604	1714	1088	1196	1202	1312
Q6	1992	1201	1341	1784	2010	816	956	1156	1382
Q6	1993	811	831	707	726	615	635	543	562
Q6	1994	1192	1285	715	814	860	953	495	594
Q6	1995	829	851	1686	1725	737	759	1499	1538
Q6	1996	1098	1635	913	1193	747	1284	633	913
Q6	1997	1062	1178	780	996	773	889	446	662
Q6	1998	862	1126	962	1248	673	937	808	1094
Q6	1999	1045	1227	1039	1293	775	957	890	1144
Q6	2000	923	1188	824	1056	643	908	685	917
Q6	2001	588	695	1106	1307	448	555	942	1143
Q6	2002	615	760	590	728	455	600	577	715
Q6	2003	826	1010	709	806	610	794	704	801
Q6	2004	460	631	1120	1318	349	520	1099	1297
Q6	2005	726	759	731	764	571	604	714	747
Q6	2006	503	554	754	819	302	353	709	774
Q6	2007	533	600	775	878	370	437	739	842
Q6	2008	1039	1308	966	1221	613	882	933	1188
Q6	2009	495	570	844	1010	399	474	831	997
Q6	2010	771	844	896	1001	585	658	877	982
Q6	2011	1114	1266	1882	2175	790	942	1871	2164
Q6	2012	328	378	1196	1368	256	306	1186	1358
Q6	2013	221	252	1012	1166	173	204	1008	1162
Q6	2014	333	381	453	525	265	313	448	520
Q6	2015	868	985	919	1074	622	739	898	1053
Q6	2016	559	648	1154	1340	415	504	1121	1307
Q6	2017	474	529	898	1007	395	450	847	956
Q6	2018	463	514	705	786	373	424	684	765
Q6	2019	305	338	803	873	261	294	782	852
Q6	2020	339	385	779	886	270	316	760	867

 full dataset.

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q7	1984	4660	5010	4094	4499	3955	4305	3500	3905
Q7	1985	2295	3172	4570	7339	1924	2801	3559	6328
Q7	1986	3653	4163	3468	4067	2639	3149	2543	3142
Q7	1987	3450	3973	3186	3908	2385	2908	2411	3133
Q7	1988	4065	4686	3422	4111	2915	3536	2758	3447
Q7	1989	4395	5020	2741	3391	3320	3945	2172	2822
Q7	1990	4650	5257	3179	3688	3235	3842	2420	2929
Q7	1991	3220	3575	3082	3580	2551	2906	2544	3042
Q7	1992	2351	2617	3144	3736	1805	2071	2459	3051
Q7	1993	1555	1758	1838	2187	1142	1345	1436	1785
Q7	1994	2067	2261	1872	2177	1561	1755	1496	1801
Q7	1995	1750	1964	3174	3656	1420	1634	2784	3266
Q7	1996	2242	2485	2419	2764	1685	1928	2078	2423
Q7	1997	1826	2106	2239	2652	1326	1601	1753	2165
Q7	1998	2119	2369	2181	2613	1689	1939	1692	2123
Q7	1999	2122	2600	1833	2146	1870	2348	1557	1870
Q7	2000	1408	1498	1556	1744	1130	1220	1291	1479
Q7	2001	787	908	1824	2101	567	689	1559	1836
Q7	2002	2115	2685	999	1196	1636	2206	847	1044
Q7	2003	1672	1946	1744	2144	1322	1596	1517	1917
Q7	2004	1626	1814	2146	2483	1264	1452	1977	2314
Q7	2005	1167	1338	1764	2088	915	1086	1558	1883
Q7	2006	2188	2549	2360	2873	1737	2098	2075	2588
Q7	2007	1836	2310	1950	2582	1446	1920	1734	2366
Q7	2008	2664	3178	2835	3586	2068	2582	2296	3047
Q7	2009	875	1031	2127	2509	696	852	1861	2243
Q7	2010	1994	2272	2110	2464	1628	1906	1883	2237
Q7	2011	2900	3272	2786	3212	2270	2642	2552	2978
Q7	2012	899	1026	2160	2401	711	838	2010	2251
Q7	2013	742	962	1501	2187	600	820	1400	2086
Q7	2014	773	1042	823	1316	616	885	754	1247
Q7	2015	2024	2918	1465	2327	1453	2347	1391	2253
Q7	2016	1718	2500	2091	3133	1306	2088	2008	3050
Q7	2017	825	1250	2057	3258	603	1028	1973	3174
Q7	2018	816	1248	1229	2089	604	1036	1169	2029
Q7	2019	638	959	1399	2408	458	779	1329	2338
Q7	2020	816	1213	1330	2298	677	1074	1272	2240

 full dataset.

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q8	1984	1330	2247	7852	14262	1223	2140	6283	12693
Q8	1985	3510	5633	8526	14783	3044	5167	6441	12698
Q8	1986	5512	8805	9337	15931	4704	7997	7095	13689
Q8	1987	4674	7398	7956	13812	3943	6667	5849	11705
Q8	1988	6108	9888	10098	18039	5126	8906	7234	15175
Q8	1989	5028	8550	9106	16569	4259	7781	6721	14184
Q8	1990	6449	11172	13193	24645	5281	10004	9173	20625
Q8	1991	3213	5503	9753	18442	2447	4737	6108	14797
Q8	1992	4988	8693	10127	19484	3942	7647	6549	15906
Q8	1993	2676	4752	9232	13752	1964	4035	6392	10909
Q8	1994	3702	6610	7893	12048	2727	5635	5428	9583
Q8	1995	2047	3384	10554	15189	1599	2936	8659	13294
Q8	1996	2943	5220	8671	13057	2122	4399	6320	10706
Q8	1997	2845	5048	7600	11546	2131	4334	5755	9701
Q8	1998	2427	4221	7226	11005	1828	3621	5867	9646
Q8	1999	2697	4714	6322	11010	2163	4180	5138	9826
Q8	2000	1994	7043	6233	11111	1562	6611	4982	9860
Q8	2001	1407	2510	5430	10197	1092	2192	4073	8836
Q8	2002	2755	4835	3321	6301	2131	4211	2724	5704
Q8	2003	1128	2050	5862	10793	899	1821	4775	9706
Q8	2004	1855	3229	5924	10945	1491	2865	4903	9924
Q8	2005	1210	2124	5416	9792	974	1888	4485	8861
Q8	2006	1551	2755	4974	9161	1236	2440	4194	8381
Q8	2007	963	1759	4544	8555	796	1592	3835	7846
Q8	2008	1870	3406	6589	12552	1552	3088	5688	11651
Q8	2009	820	1527	5164	9714	668	1375	4178	8728
Q8	2010	1675	3054	5131	9738	1321	2700	4258	8865
Q8	2011	3195	5704	6768	12584	2606	5115	5715	11531
Q8	2012	1802	3192	5201	9776	1435	2825	4316	8891
Q8	2013	1033	1844	5554	10226	864	1675	4552	9224
Q8	2014	1188	2113	2812	5186	913	1838	2300	4674
Q8	2015	2955	5164	5087	9195	2378	4587	4587	8695
Q8	2016	2446	4264	6781	12211	2089	3907	5943	11373
Q8	2017	2000	3576	6388	11728	1671	3247	5534	10874
Q8	2018	1574	2776	3597	6676	1254	2456	3199	6278
Q8	2019	1173	2110	4158	7534	1008	1945	3605	6981
Q8	2020	1649	2943	4771	8760	1292	2586	4530	8519

 full dataset.

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q9	1984	6867	12329	3013	5417	5901	11363	2573	4977
Q9	1985	6651	11788	2943	5344	5558	10695	2428	4829
Q9	1986	6140	10917	5262	9540	5138	9915	4394	8672
Q9	1987	8146	14651	3055	5486	6562	13067	2431	4862
Q9	1988	8216	14674	5054	9083	6752	13210	4133	8162
Q9	1989	6335	11174	3873	6910	5421	10260	3303	6340
Q9	1990	5216	9661	930	1678	3826	8271	662	1410
Q9	1991	6427	11672	668	1208	5175	10420	498	1038
Q9	1992	7399	13557	988	1828	5787	11945	723	1563
Q9	1993	7147	13025	1457	2695	5111	10989	923	2161
Q9	1994	4618	8563	1075	1983	3250	7195	702	1610
Q9	1995	4602	8517	998	1927	3335	7249	684	1613
Q9	1996	5130	8752	1832	3602	3811	7433	1172	2942
Q9	1997	4103	7342	747	1406	2974	6213	508	1167
Q9	1998	6249	10763	821	1461	4911	9425	617	1246
Q9	1999	5647	10233	2075	3865	4884	9470	1758	3548
Q9	2000	4746	8087	3194	6012	3689	7021	2721	5532
Q9	2001	3162	6064	3096	6018	2354	5256	2694	5616
Q9	2002	4069	7716	2710	5499	3202	6849	2581	5370
Q9	2003	4635	8566	3516	6870	3722	7653	3346	6700
Q9	2004	7940	15292	1828	3424	6961	14313	1690	3286
Q9	2005	5733	10772	1724	3275	4925	9964	1626	3177
Q9	2006	5195	9792	1437	2732	4653	9250	1359	2654
Q9	2007	5058	9601	1802	3344	4504	9047	1684	3226
Q9	2008	7380	13993	3114	5558	6654	13267	3020	5464
Q9	2009	4939	9374	2609	4620	4408	8843	2506	4517
Q9	2010	6703	11539	2383	4243	6248	11084	2232	4092
Q9	2011	6361	11290	2309	4140	5946	10875	2170	4001
Q9	2012	5548	9649	1594	2821	5046	9147	1545	2772
Q9	2013	4247	7716	1264	2278	3934	7403	1185	2199
Q9	2014	6406	10510	1131	2062	5719	9823	1059	1990
Q9	2015	6948	12383	2129	3892	6161	11596	1940	3703
Q9	2016	8926	15172	2245	3941	8040	14285	2212	3908
Q9	2017	6323	11017	1581	2698	5546	10240	1506	2623
Q9	2018	4792	8545	1304	2370	4268	8021	1266	2332
Q9	2019	5457	9449	963	1774	4973	8965	879	1690
Q9	2020	5929	11026	930	1741	5555	10652	924	1735

 full dataset.

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q10	1984	1510	2139	6290	8439	1222	1851	4982	7131
Q10	1985	2371	2987	5714	7153	1653	2269	4558	5997
Q10	1986	1962	2569	5854	7750	1539	2146	4663	6559
Q10	1987	1997	2844	3062	4100	1510	2357	2507	3545
Q10	1988	2748	3879	2953	4118	2138	3269	2361	3526
Q10	1989	1228	1522	3311	4108	1005	1299	2809	3606
Q10	1990	2362	3080	1819	2465	1892	2610	1437	2083
Q10	1991	1462	1861	2450	3152	1216	1615	1875	2577
Q10	1992	1556	2061	1977	2611	1205	1710	1624	2258
Q10	1993	2391	3189	1259	1694	1872	2670	1032	1467
Q10	1994	2380	3192	1719	2399	1868	2680	1464	2144
Q10	1995	1526	2001	2503	3407	1316	1791	2343	3247
Q10	1996	3339	4266	2667	3410	2670	3597	2267	3010
Q10	1997	1358	1786	1941	2539	1142	1570	1737	2335
Q10	1998	1379	2094	1388	2150	1077	1792	1186	1948
Q10	1999	1329	2011	1166	1737	1138	1820	1100	1671
Q10	2000	1807	2294	1205	1580	1499	1986	1077	1452
Q10	2001	1189	1599	1292	1682	921	1331	1227	1617
Q10	2002	1683	2236	423	559	1381	1934	409	545
Q10	2003	1870	2284	1003	1128	1605	2019	981	1106
Q10	2004	1091	1433	919	1231	940	1282	908	1220
Q10	2005	832	1094	570	766	665	927	563	759
Q10	2006	1887	2596	1379	1844	1577	2286	1365	1830
Q10	2007	1356	1940	1008	1402	1083	1667	1000	1394
Q10	2008	1540	2156	955	1325	1140	1756	935	1305
Q10	2009	1572	1862	1110	1299	1357	1647	1105	1294
Q10	2010	1889	2680	1740	2422	1470	2261	1725	2407
Q10	2011	1868	2500	1463	1764	1437	2069	1431	1732
Q10	2012	1524	1777	893	1034	1200	1453	891	1032
Q10	2013	1171	1593	1640	2029	882	1304	1611	2000
Q10	2014	1333	1909	623	829	996	1572	611	817
Q10	2015	3156	4044	1672	2291	2490	3378	1608	2227
Q10	2016	1682	2392	1877	2515	1352	2062	1835	2473
Q10	2017	1407	1799	1274	1559	1169	1561	1248	1533
Q10	2018	1804	2598	1313	1922	1381	2175	1293	1902
Q10	2019	758	1204	915	1370	579	1025	892	1347
Q10	2020	1318	1899	1089	1542	1090	1671	1080	1533

 full dataset.

		Returns				Spawners			
Zone	Year	sum_Sm_L	sum_Sm_H	sum_Lg_L	sum_Lg_H	sum_SSm_L	sum_SSm_H	sum_SLg_L	sum_SLg_H
Q11	1984	1701	2835	3337	5562	1313	2447	2552	4777
Q11	1985	1611	2684	3019	5032	1245	2318	2311	4324
Q11	1986	3279	5466	3090	5150	2508	4695	2365	4425
Q11	1987	5555	9256	4396	7326	4232	7933	3354	6284
Q11	1988	5706	9510	4412	7354	4346	8150	3366	6308
Q11	1989	4507	7511	2863	4772	3438	6442	2193	4102
Q11	1990	3329	5548	2611	4352	2542	4761	1997	3738
Q11	1991	2458	4099	1797	2993	1886	3527	1384	2580
Q11	1992	984	1639	774	1290	770	1425	611	1127
Q11	1993	1009	1681	901	1503	789	1461	707	1309
Q11	1994	943	1570	956	1592	739	1366	749	1385
Q11	1995	1458	2430	778	1296	1129	2101	613	1131
Q11	1996	1203	2004	617	1028	936	1737	492	903
Q11	1997	1519	2531	953	1586	1519	2531	953	1586
Q11	1998	1519	2531	953	1586	1519	2531	953	1586
Q11	1999	1710	2849	842	1403	1540	2679	585	1146
Q11	2000	1506	2509	844	1406	1169	2172	655	1217
Q11	2001	1607	2676	801	1333	1350	2419	474	1006
Q11	2002	1161	1934	574	958	986	1759	328	712
Q11	2003	1786	2976	872	1453	1468	2658	570	1151
Q11	2004	2641	4400	1118	1862	2213	3972	659	1403
Q11	2005	1598	2661	908	1513	1355	2418	532	1137
Q11	2006	1312	2186	686	1143	1138	2012	400	857
Q11	2007	667	1111	413	689	593	1037	250	526
Q11	2008	938	1561	626	1043	811	1434	463	880
Q11	2009	819	1364	410	683	760	1305	196	469
Q11	2010	1067	1777	609	1015	1067	1777	609	1015
Q11	2011	2235	3724	1395	2325	1964	3453	790	1720
Q11	2012	1782	2970	1095	1824	1535	2723	856	1585
Q11	2013	1476	2460	901	1501	1344	2328	555	1155
Q11	2014	1322	2203	756	1261	1217	2098	443	948
Q11	2015	1594	2657	1076	1792	1331	2394	759	1475
Q11	2016	1868	3113	1294	2156	1499	2744	906	1768
Q11	2017	2393	3990	1620	2700	1905	3502	1151	2231
Q11	2018	1949	3249	1336	2227	1685	2985	880	1771
Q11	2019	2350	3918	1475	2458	2144	3712	1118	2101
Q11	2020	2231	3719	1477	2462	2186	3674	1434	2419

Appendix 4.xi. Input data for commercial fisheries and First Nations harvest of small salmon and large salmon in Quebec from 1970 to 2020 used in the run-reconstruction.

	First Nations		Commercial	
Year	QCFnsm	QCFnLg	accmsm 0	accmlg
1970	0		0	
1971	0	0	0	0
1972	0	0	0	0
1973	0	0	0	0
1974	0	0	0	
1975	0	0	0	0
1976	0		0	
1977	0	0	0	0
1978	0	0	0	0
1979	0	0	0	0
1980	0	0	0	0
1981	0		0	
1982	0		0	
1983	0	0	0	0
1984	357	4530	794	13053
1985	273	3623	2093	16619
1986	372	4519	3707	20889
1987	366	4466	2992	22745
1988	397	4747	4760	19750
1989	196	2905	2615	18175
1990	108	2900	3425	16092
1991	265	4335	3282	16372
1992	120	4550	3849	15851
1993	7	3976	3627	11242
1994	161	4496	3861	10424
1995	353.076	6194	3915	10038
1996	72.075	6113	4532	7454
1997	35.426	4875	3531	7202
1998	35.426	4875	1068	1038
1999	709.666	3683	814	471
200	820.911	3818	0	0
2001	769.842	3574	0	0
2022	1672	3164	0	0
2003	971.9747	3541	0	0
2004	1158	3558	0	
2005	908.6873	3062	0	0
2006	1117	3512	0	0
2007	869	2932	0	0
2008	1171	2971	0	0
2009	1141	2752	0	0
2010	1057	2362	0	0
2011	1205	3216	0	0
2012	1239	3023	0	0
2013	1177	2895	0	
2014	1240	2908	0	0
2015	1246	2976	0	0
2016	1277	3323	0	0
2017	1191	2677	0	
2018	1243	2807	0	
2019	1117	2541	0	
2020	1255	2994	0	0

Year S	SF1																			兂_	_L	m_	-	185 m
1970	8243	10576	42901	45798	31	60	4744	6836	12681	16270	46462	49599	31	60	6161	7858	2834	6279	47779	67697	0	0	264	
1971	3587	4616	26038	30669	29	29	1891	2782	18	7102	28365	33409	29	29	2456	3198	2113	4681	38388	54120	0	0	65	
1972	4980	9756	29092	43510	402	402	4693	6024	8441	16536	30146	45087	402	402	6095	6924	2185	4699	48886	69270	0	0	131	
1973	6211	12009	26599	40492	206	206	4140	5481	8393	16229	27771	42276	206	206	5376	6299	3010	6668	47190	66835	5	9	516	
1974	7264	14570	39270	60090	386	386	5481	6928	9950	19959	43249	66179	386	386	7119	7963	2226	4895	78091	110470	0	0	187	
1975	353	7922	2588	325	345	345	3452	4340	5510	10028	29826	530	345	345	4483	4989	236	5298	69993	984	0	0	112	
1976	293	416	20448	30758	575	578	2755	3674	9596	18969	23943	36016	575	578	357	4223	8667	1469	9650	13610	14	28	299	1212
1977	174	18077	88	73330	606	606	3985	5463	11053	21779	52673	77434	606	606	5175	6280	6085	12084	30621	42689	0	0	215	
1978	5458	10749	19504	26041	0	0	4585	6265	7277	14332	22653	30245	0	0	5954	7201	4350	7749	29783	39927	0	0	78	
1979	1472	2535	6501	9306	459	463	1290	2014	2886	4971	9435	13507	459	463	1676	2315	4378	9495	50667	70714	2	5	1857	753
1980	7102	14045	5163	48457	2	5	3732	5177	8768	7340	37014	51008	2	5	4846	5951	7994	15278	41687	58839	12	23	520	
1981	4572	7357	11144	19268	40	77	2490	3769	9729	15652	16708	28887	40	77	3234	4332	9380	17119	63278	108226	259	498	2797	1138
1982	4314	13	21442	41643	16	31	4135	5901	7311	10700	26504	51475	16	31	5370	6783	6541	13383	78072	133171	175	336	2150	
1983	3453	5280	16349	28419	17	32	3733	5241	5852	8950	20309	35304	17	32	4848	6024	2723	4638	24585	41332	17	32	212	
1984	3329	6092	12216	31455	13	26	2391	3573	4214	7711	12941	33321	13	26	3105	4107	12003	15867	28714	49595	17	32	460	
1985	4805	9500	14614	37625	8	15	921	4481	7627	15080	16798	43247	8	15	1196	5150	7003	15516	53393	92224	113	217	730	
1986	7831	15403	21617	55640	5	11	2274	11479	10305	20267	25342	65228	5	11	2953	13195	10813	23926	103230	178295	566	1088	965	
1987	4836	9123	12524	32224	66	128	2446	10156	7556	14255	15734	40483	66	128	3177	11674	9630	21220	74885	128644	1141	2194	1541	
1988	7152	13998	14384	36938	96	185	2365	9851	9933	19441	17627	45267	96	185	3071	11322	13168	29092	107071	184904	1542	2963	1297	7353
1989	4390	8492	9113	23385	149	287	1970	8288	7701	14898	13955	35812	149	287	2558	9526	6357	13900	66069	114097	400	770	835	4843
1990	4326	8369	14269	36639	284	545	1778	7471	6362	12307	23164	59479	284	545	2309	8588	7880	17314	73020	126115	1842	3539	921	533
1991	2387	4668	14885	37736	188	361	2181	9282	4773	9335	24273	62373	188	361	2832	10669	4441	9828	53453	92327	1576	3028	1089	
1992	4002	7787	21381	30728	95	183	2229	9314	7411	14420	34573	49886	95	183	2895	10706	8853	19614	142416	204708	1873	3599	936	
1993	1395	2684	15579	60246	22	43	1266	5193	3487	6711	22602	87407	22	43	1644	5969	5783	12812	70090	175096	1277	2454	1085	
1994	3960	7745	13652	24887	169	310	1866	7909	6600	12908	18098	32992	169	310	2423	9090	9136	20208	41773	5988	210	385	626	
1995	2713	5333	25593	37215	384	576	1395	5959	4171	8199	30324	44094	384	576	1812	6850	2902	6429	44357	63453	658	987	509	
1996	3917	7754	11126	19117	394	591	2931	12652	6026	11929	16317	28035	394	591	3806	14542	6034	13370	32067	45995	710	1065	2241	
1997	2488	898	8545	14244	387	581	3174	13848	3828	7535	14711	24521	387	581	4122	15917	5797	12845	1437	24122	517	776	518	
199	1687	3260	6466	9987	- 385	577	21	97	595	5015	15628	24137	385	577	2494	9651	6288	13932	2306	3237	508	762	588	
1999	1780	3425	7341	10486	383	575	1457	6422	2738	5269	15085	21547	383	575	1892	7382	4936	10929	22062	28922	413	620	649	
2000	2270	4410	7857	11383	378	566	1336	6018	3493	6785	16576	24016	378	566	1735	6917	7459	16520	32491	41502	395	593	556	
2001	3677	7236	14734	18899	376	564	1558	6933	5657	11133	22821	29272	376	564	2023	7969	4807	10643	27786	36280	415	622	736	
2002	2234	4337	5771	8547	372	557	34	5138	3437	6673	11490	17019	372	557	1472	5905	11017	24402	41513	53868	390	585	757	
2003	3885	7653	11331	16197	371	557	2203	9899	5976	11774	19363	27679	371	557	2861	11378	3066	6787	27918	38646	515	773	703	
2004	2975	5826	10862	16931	367	550	2441	11019	4577	8963	19056	29704	367	550	3170	12665	11839	26225	45222	61570	330	495	988	633
2005	3394	6668	11681	19617	373	560	2039	8988	5222	10258	17565	29499	373	560	2649	10331	3623	8019	30023	46644	343	514	723	4472
2006	2626	5125	10199	16073	392	587	1955	8733	4040	7885	19613	30910	392	587	2539	10038	9007	19950	31877	48965	331	497	786	
2007	4211	8308	9773	14250	412	618	1345	6045	6478	12782	16564	24152	412	618	1747	6949	4304	9528	23299	40137	275	413	650	412
2008	2908	5691	6192	10531	429	644	2031	9294	4473	8755	11058	1880	429	644	2638	10883	13724	30400	26542	47645	298	447	1127	
2009	3926	7737	10876	16033	402	602	1522	7153	6041	11903	17543	25859	402	602	1977	8222	5177	11464	11490	20000	233	350	267	199
2010	2955	5785	7926	11250	439	658	2051	9512	4546	8901	15540	22059	439	658	2664	10933	7994	17706	49113	66212	258	387	783	
2011	7467	14851	22841	41320	653	980	3479	15787	11488	22848	26871	48612	653	980	4518	18146	10189	22567	42241	69067	291	436	1065	
2012	3143	6164	8633	14820	653	980	835	4083	4836	9484	12332	21172	653	980	1084	4693	4293	9505	7746	13641	291	436	184	
2013	5456	10810	7710	14930	719	1077	1848	8498	8393	16630	11774	21638	719	1077	2400	9768	4843	10724	10514	19044	274	410	394	
2014	3218	4502	6246	12188	491	735	1250	5924	4950	6926	8675	16928	491	735	1623	6809	4303	4603	6792	11593	222	332	253	191
2015	4185	6220	8545	14136	564	846	1752	8250	6438	9569	14882	23959	564	846	2276	9483	5942	7171	25484	34539	235	349	687	
2016	4684	6894	11263	22059	460	688	1640	7823	7206	10606	15643	30637	460	688	2130	8992	3905	4699	13163	23265	180	268	341	
2017	6619	9506	10187	18049	459	687	1183	5820	10183	14624	13060	23140	459	687	1537	6690	3613	4345	12173	19215	203	303	533	
2018	4544	6705	13130	25477	447	670	2061	9810	6991	10315	15631	30330	447	670	2677	11276	4625	5574	7635	12969	185	277	439	
2019	4089	6091	3580	8778	346	517	1917	9095	6291	9370	4904	12025	346	517	2490	10453	2685	3217	7741	13311	232	347	498	
2020	8895	12577	934	17700	455	682	2103	10546	13684	1935	1274	2401	455	682	2732	12122	64	7788	13239	206	207	309	334	

Year	SF1552_L	SF1552	F16S	SF16	175	F175	18	SF18	F15SLg_L	SLİ	6SLg_	6Lg	g		边			Sm_	16ssm	16ssm	Sm_	Sm	Sm	SSm_
1970	1156	3252	5346	8242	18	47	304	1587	1779	5003	5790	8926	18	47	395	1824	1417	4396	25958	45876	0	0	167	842
1	510	1434	6724	11354	0	0	133	694	785	2207	7324	12369	0	0	173	797	556	277	22463	8195	0	0	41	208
72	2367	6656	17031	31450	0	0	148	775	4011	11282	17648	32589	0	0	193	891	1034	3208	27639	48023	0	0	82	416
1973	2873	8081	19277	33170	0	0	165	863	3883	10920	20126	34632	0	0	215	992	1505	4668	31703	51349	3	7	325	1645
1974	3620	10183	31192	52012	0	0	151	790	4960	13949	34352	57282	0	0	196	908	1098	3405	57376	8975	0	0	118	595
5	1769	75	18536	31972	0	0	91	473	2239	6297	21355	36834	0	0	118	544	1195	3707	50438	78888	0	0	71	357
6	3530	8	2	2152	1	4	116	604	4644	13063	13867	25940	1	4	151	694	480	7692	64526	104130	8	22	188	951
777	12	12408	3	071	0	0	198	1033	5315	4949	32337	57097	0	0	257	1187	2467	7653	1327	25338	0	0	135	684
8	2622	7375	- 6998	13535	0	0	223	1166	96	9833	8128	5720	0	0	290	40	1398	4337	1468	4833	0	0	49	248
9	527	482	0	506	3	7	115	598	1033	2906	55	226	3	7	149	688	2104	6528	3182	876	1	4	11	591
1980	3440	9677	17667	30961	- 1	4	198	1033	4248	1194	1859	32590	1	4	257	1187	2996	9293	2779	943	7	18	327	165
1981	380	3880	92	10515	36	73	196	1027	2935	8256	3586	15765	36	73	255	1181	3183	874	35423	80370	151	390	1762	890
1982	991	2786	8418	28619	8	23	253	1322	1679	4723	10405	35376	8	23	329	1519	3038	9027	51324	106423	102	26	1354	684
1983	906	2547	5516	17586	15	30	210	1100	1535	4317	6852	21846	15	30	273	1264	820	2486	13298	30045	10	25	133	674
1984	2656	5402	11650	- 30889	13	26	259	1148	3362	6838	12341	32721	13	26	337	1320	1620	4971	7389	28271	10	25	177	1200
1985	4514	9180	14019	37030	-8	15	871	4359	7164	14571	16114	42563	8	15	1131	5010	3557	10936	32275	71106	66	170	145	178
1986	7279	14804	20606	54630	5	11	2164	11213	9577	19479	24157	64044	5	11	2811	12889	5589	16990	71918	146983	330	852	63	1729
1987	4122	8383	11414	31114	66	128	2370	9923	6441	13099	14340	39088	66	128	3078	11406	4867	14920	49971	104131	665	1718	422	439
1988	6582	13386	13801	36355	96	185	2283	9600	9141	18592	16913	44553	96	185	2965	11035	6664	20468	71967	149800	899	2320	260	3467
1989	3944	8021	8466	22739	149	287	1903	8085	6919	14072	12965	34822	149	287	2471	9293	3191	9741	37696	85724	233	603	174	2368
1990	3886	7903	13669	36039	284	545	1715	7279	5715	11623	22190	58504	284	545	2227	8367	3996	12190	46902	99996	1074	2771	167	2510
1991	2193	4460	14200	37251	188	361	2106	9053	4386	8920	23472	61572	188	361	2735	10406	2215	6872	39648	78522	919	2371	199	2933
1992	3639	7400	20770	30116	95	183	2146	9062	6738	13704	33583	48697	95	183	2787	10416	4426	13728	116657	178949	1092	2818	131	2320
1993	1239	2521	15239	59907	22	43	1220	5055	3099	6302	22109	86914	22	43	1585	5811	2891	8968	52050	157056	745	1922	200	2583
1994	3639	7401	13418	24653	166	307	1805	7722	6065	12334	17787	32682	166	307	2344	8876	4554	14125	25649	43764	118	292	135	1798
1995	2519	5124	25326	36949	380	576	1350	5821	3873	7877	30007	43778	380	576	1753	6691	1451	4501	34650	53746	250	375	114	1527
1996	3688	7502	10743	18662	388	591	2850	12407	5674	11541	15755	27367	388	591	3701	14261	3017	9359	19511	29260	258	387	815	8090
1997	2316	4710	8106	13754	385	581	3086	13582	3563	7247	13955	23677	385	581	4008	15611	2899	8991	8702	15524	256	384	160	1841
1998	1512	3076	6270	9760	382	577	1865	8227	2326	4732	15154	23587	382	577	2422	9457	3144	9752	14769	21283	255	382	183	2113
1999	1581	3217	6830	9947	379	575	1423	6320	2433	4948	14035	20439	379	575	1848	7264	2465	7646	12592	17394	253	380	291	2669
2000	2057	4184	7556	11050	376	566	1307	5930	3165	6437	15941	23314	376	566	1698	6816	3727	11560	19235	25543	252	378	254	2393
2001	3422	6959	14161	18288	374	564	1522	6825	5264	10707	21933	28326	374	564	1977	7845	2401	7446	16396	22552	250	376	317	3040
2002	2022	4112	5529	8281	371	557	1108	5060	3111	6327	11010	16490	371	557	1439	5817	5505	17077	26215	34863	249	373	340	3256
2003	3623	7369	10929	15752	368	557	2156	9755	5574	11336	18677	26918	368	557	2800	11212	1530	4747	16699	24208	248	371	327	3088
2004	2741	5574	10407	16422	365	550	2382	10841	4217	8576	18259	28811	365	550	3094	12460	5917	18353	28811	40255	246	369	391	4106
2005	3147	6401	11122	18987	371	560	1984	8819	4842	9848	16725	28551	371	560	2576	10137	1808	5609	18172	29807	246	368	242	2669
2006	2402	4886	9752	15574	390	587	1903	8574	3696	7517	18754	29949	390	587	2471	9855	4501	13961	20608	32569	247	370	276	3092
2007	3939	8012	9282	13719	409	618	1313	5946	6061	12326	15733	23252	409	618	1705	6834	2149	6666	14603	26389	248	372	260	2661
2008	2675	5441	5755	10054	429	644	1969	9104	4116	8372	10276	17954	429	644	2557	10465	6859	21276	16873	31645	249	373	273	4200
2009	3664	7451	10355	15465	401	602	1480	7024	5636	11463	16702	24944	401	602	1922	8074	2586	8020	6337	12294	233	350	69	1251
2010	2721	5535	7456	- 10750	438	658	1990	9324	4186	8515	14619	21079	438	658	2584	10718	3994	12390	31199	43168	256	384	192	3118
2011	7098	14437	22055	40368	652	980	3387	15507	10921	22211	25947	47492	652	980	4398	17825	5091	15793	27175	45953	290	435	365	4343
2012	2904	5907	8242	14374	652	980	819	4036	4468	9087	11774	20534	652	980	1064	4639	2144	6650	4040	8166	290	435	92	1156
2013	5154	10476	7123	14279	715	1074	1803	8362	7929	16117	10324	20694	715	1074	2342	9612	2419	7503	5646	11617	272	408	152	1837
2014	2999	3599	6150	12039	487	732	1228	5858	4613	5536	8542	16721	487	732	1595	6734	1680	2016	4127	7488	220	330	139	1488
2015	3949	5265	8393	13934	561	842	1727	8173	6075	8100	14226	23617	561	842	2242	9394	5792	6951	24248	33223	229	343	420	3730
2016	4439	5919	10997	- 21696	456	685	1615	7747	6829	9106	15273	30133	456	685	2097	8904	3794	4553	12281	22292	176	264	334	2520
2017	6339	8452	9954	- 17746	455	684	1162	5755	9752	13003	12762	22751	455	684	1509	6615	3508	4209	11334	18313	201	301	520	3674
2018	4301	5735	12920	25156	444	667	2020	9686	6618	8823	15382	29948	444	667	2624	11134	4501	5401	7367	12653	183	275	427	3160
2019	3854	5139	3533	8684	344	515	1888	9005	5930	7907	4840	11896	344	515	2452	10350	2595	3114	7484	13004	230	345	489	3482
020	8574	143	9159	17443	452	679	2082	10482	13190	17587	12497	23669	452	679	2704	12048	6291	754	12543	19897	204	306		

Year	19	19 21RiS	F23R2 L	SF23R2 H	921 LS	219 21 S	F23Lg_L	SF23L	SF19_21Sr	19215 S	35m L	35m +	2152	92152 S	2352_L S	2352_H	21SIS	21SL	235Lg Lis	SLg	215s	19 215s		23S5m_
1970	5600	7447	8540	12674	7273	9671	9691	13945	16177	24106	5306	7521	2388	4234	1536	4846	3101	5499	1451	5705	9429	17358	3886	6101
971	4120	5215	7155	10536	5350	6773	8056	11573	11911	18004	3248	4541	1418	2513	3612	6576	1841	3264	3888	7405	7246	13339	1216	2509
1972	5744	6993	7869	11368	7460	9082	8890	12536	11587	17992	1831	2506	1616	2865	6472	9806	2099	3721	7246	10892	7616	14021	0	1
1973	6922	8659	4205	6036	8049	10069	4760	6638	14169	22159	5474	7012	2246	3984	2752	4412	2612	4632	3050	4928	9502	17492	4037	5575
1974	13138	15363	10755	14988	13138	15363	12187	16444	25032	39058	10195	12901	2878	5103	8123	12046	2878	5103	9090	13347	16680	30706	8071	10777
1975	12261	13797	13107	18578	12261	13797	14829	20351	10860	15753	18022	23101	1987	3523	10987	16209	1987	3523	12335	17857	5819	10712	15363	20442
1976	8607	10104	14274	20281	8873	10416	16128	22175	21071	33009	22835	28864	1935	3432	10071	15583	1995	3538	11183	17230	14196	26134	17572	23601
1977	10872	12851	1686	2395	119	16690	19165	6183	24599	37314	13738	16671	2559	4539	12013	18568	3324	5895	13452	20470	15120	27835	9196	12129
1978	827	9779	8225	11294	10471	12378	9335	12342	7621	10023	6271	7695	1948	3455	5346	8076	246	437	5948	8955	285	5259	425	568
1979	3781	4879	516	7207	5180	6684	585	7903	24298	37514	15356	20517	1419	2517	3772	5650	1944	344	4217	6264	15716	28932	11640	16801
1980	14094	17318	19056	26865	88	37	21464	29480	377	250	5139	483	4170	7394	12023	19005	4849	598	13190	21206	18876	34749	19597	941
1981	8662	11471	11026	15267	11706	15501	12481	16743	31204	48945	16826	21803	3631	6439	3642	7014	4907	8702	3794	8056	21096	38837	7805	12782
1982	4458	5353	9782	13871	9485	11390	11147	15303	17619	27075	11811	15636	1158	2053	4475	7939	2464	4369	4903	9059	11244	20700	6532	10357
1983	4134	5356	9662	13836	6562	8501	10908	15235	9313	14068	9270	12592	1579	2800	468	3561	2506	4445	92	4419	5653	10408	5132	8454
1984	1758	2854	15706	22627	2408	3909	17706	24992	18382	29867	15556	21678	1416	2512	12280	18998	1940	3441	13675	20961	13658	25143	10290	16412
1985	6894	12124	16541	23828	8512	14968	18582	26289	24384	39541	13056	17928	6761	11990	11885	18624	8347	14803	13104	20811	18024	33181	8164	13036
1986	6755	11878	9891	14261	10722	18854	11142	15761	24369	39633	14274	20183	6624	11748	7224	11280	10515	18647	8004	12623	1818	33481	10725	16634
1987	3748	6591	6922	10043	5950	10462	7865	11116	27269	44266	13358	17662	3676	6519	5628	8597	5835	10347	6343	9594	20213	37210	10257	14561
1988	4393	7735	4716	6697	7321	12891	5360	7312	24509	39750	16381	23084	4322	7664	3420	5248	7203	12773	3835	578	18125	33366	1306	19764
1989	4808	8469	6560	9437	6969	12275	7393	10380	25602	41557	17579	24521	4735	8396	6310	9158	6862	12168	7099	10086	18973	34928	1312	20066
1990	3591	6320	5486	7918	6191	10897	6235	8710	29471	48039	13820	19176	3530	6260	4926	7292	6087	10793	5576	8051	22080	40648	10025	15381
1991	2960	5213	7337	10563	4112	7240	8312	11659	9762	15955	13041	17685	2912	5165	6080	9158	4045	7173	6833	10180	7363	13556	9495	14139
1992	2633	4634	6878	9809	3657	6437	7749	10726	13754	22269	13563	18404	2588	4589	5826	8633	3594	6374	6511	9488	10125	18640	9485	14326
1993	2542	4470	4345	4820	3218	5658	5260	5980	13297	21681	7610	8828	2493	4421	3291	3654	3156	5596	4026	4746	9970	18354	5762	6868
1994	1360	2396	3084	3495	1743	3071	3659	4155	3154	5393	5770	6610	1339	2375	2387	2680	1717	3045	2827	3273	2661	4900	4965	5738
1995	2253	3969	3439	3998	2532	4460	3728	4289	8397	13873	8265	9458	2218	3934	3126	3652	2492	442	3362	3923	651	11988	802	9218
1996	300	527	472	5397	3571	6283	5535	6365	13120	22293	12907	15256	2946	5224	4009	4585	3507	6219	4688	5497	10909	20082	11576	13892
1997	1163	2045	27	31	1550	2726	3210	3678	341	5863	4508	4979	1140	2022	2219	2565	1520	2696	2565	3028	2917	5370	3971	443
1998	924	1270	1372	1642	1359	1867	2032	2437	8833	11927	9203	10801	915	1261	1068	1302	1346	1854	1675	2074	8818	11912	8775	10348
1999	1419	1951	2375	2640	1709	2350	2734	3090	3971	5337	5508	6366	1409	1941	1934	2181	1697	2338	2251	2601	3895	5261	5196	6048
2000	1078	1483	988	1206	1315	1809	1189	1430	6155	8312	4796	5453	1072	1477	805	1004	1307	1801	975	1216	6148	8305	4455	5087
2001	1822	2506	1938	2279	1980	2724	2113	2501	2326	3138	2513	2862	1812	2497	1699	2008	1970	2714	1831	2210	2315	3127	2210	2530
2002	382	525	483	548	749	1029	639	752	5197	7015	3501	3991	378	521	317	356	741	1021	442	542	5180	6998	3232	3689
2003	1854	548	1056	1198	1952	2682	1128	1289	284	3837	2292	2716	1834	2528	878	998	1931	2661	919	1074	2829	3822	2069	2469
2004	1028	1413	1335	1605	1302	1789	1402	1698	3847	5192	3454	4297	1017	1401	1238	1492	1287	1774	1287	1574	3833	5178	3229	4039
2005	662	906	809	1012	860	1177	890	1121	2870	3871	3597	4640	646	890	726	914	839	1156	791	1012	2854	3855	3433	445
2006	1263	1734	922	1171	1559	2141	997	1276	5144	6940	3720	4743	1248	1720	796	1023	1541	2123	847	1113	5119	6915	3528	4501
2007	603	825	616	736	701	959	689	841	4198	5664	2466	3136	587	809	530	633	683	941	586	726	4176	5642	2305	2937
2008	1793	2465	812	1042	1928	2650	858	1105	7282	9831	5924	7691	1778	2450	736	953	1912	2634	767	1007	7252	9801	5729	7467
2009	827	1135	1485	1886	1034	1418	1678	2158	2066	2788	1603	2027	811	1118	1391	1774	1014	1398	1565	2034	2051	2773	1472	1864
2010	934	1277	829	992	1061	1451	1117	1398	3686	4975	9114	11994	910	1253	726	877	1034	1424	996	1275	3674	4963	9032	11901
2011	1489	2044	2486	3259	1504	2065	2598	3421	3615	4878	4466	5943	1467	2023	2430	3196	1482	2043	2532	3353	3601	4864	4391	586
2012	661	903	268	331	785	1072	335	422	350	470	178	219	641	883	238	298	761	1048	300	387	343	463	167	208
2013	2075	2852	420	543	2184	3002	503	660	922	1244	894	1151	2057	2834	405	526	2165	2983	486	643	919	1241	870	1127
2014	415	569	172	217	415	569	230	299	529	713	677	910	410	564	163	208	410	564	220	289	527	711	669	900
2015	338	463	248	314	377	517	257	326	1963	2650	1677	2131	332	457	244	309	371	511	252	321	1960	2647	1654	2108
2016	883	1214	415	515	883	1214	457	568	284	383	1922	2528	878	1209	399	496	878	1209	438	548	282	381	1892	2494
2017	494	679	487	620	514	706	517	660	2357	3182	1003	1293	488	672	472	601	507	699	499	638	2351	3176	995	1285
2018	1067	1465	162	203	1149	1577	168	213	458	617	748	875	1051	1448	160	201	1131	1559	166	211	453	612	743	870
2019	203	277	420	514	224	305	429	526	1741	2351	1300	1640	195	269	413	506	215	296	420	516	1739	2349	1295	1635
2020	597	820		433	629	864	366	459	1361	1837	1330	1693	589	811	338		620	855	355	447	1357	1833		

Appendix 4.xiv. Input data for 2 SW , large and small salmon returns and spawners to USA used in the run-reconstruction.

Year	USALg	USASm	USAR2	USASLg	UsASSm	USAS2							
1970	0	0	0	0	0		Year	USALg	USASm	USAR2	USASLg	USASSm	USAS2
1971	653	32	653	490	29	490	1970	USALE	USASm	USAR2	USALE	0	
1972	883	8	- 1383	1038		1038	1971	653	32	653	490	29	490
197	1427	- 23	- 1427	1100	- 13	1100	1972	1383	18	1383	1038	17	1038
1974	1394	- 55	1394	1147	40	1147	1973	1427	23	1427	1100	13	1100
1975	- 2331	-84	- 2331	- 1942	- 67	92	1974	1394	55	1394	1147	40	1147
1976	- 1317	186	- 1317	$\begin{array}{r}1126 \\ \hline 181\end{array}$	51	126	1975	2331	84	2331	1942	67	1942
7	1998	75	1998	643	54	643	1976	1317	186	1317	1126	151	1126
1978	4208	155	4208	3314	127	3314	1977	1998	75	1998	643	54	643
1979	1942	250	1942	1509	247	1509	1978	4208	155	420	3314	27	3314
1980	5796	818	5796	4263	722	4263	1979	1942	250	1942	1509	247	1509
1981	5601	1130	5601	4334	1009	4334	1980	5796	818	5796	4263	722	4263
1982	6056	334	6056	4643	290		1981	5601	1130	560	4334	1009	4334
1983	2155	295	2155	1769	255	1769	1982	6056	334	6056	- 4643	290	4643
1984	3222	598	3222 5529	2547 4884	540 363	2547 4884	1983	2155	295	2155	- 1769	255	17
1986	6176	758	6176	5570	660	5570	1984	3222	598	3222	254	540	254
1987	3081	1128	3081	2781	1087	2781	1985	5529	392	5529	488	36	4884
1988	3286	992	3286	3038	923	3038	1986	-6176	758	6176	557	660	70
1989	3197	1258	3197	2800	1080	2800	987	3081	1128	308	278	108	2781
1990	5051	687	5051	4356	617	4356	1988	3286	992	328	3038	923	3038
1991	2647	0	2647	2416	235	2416	1989	3197	1258	319	2800	1080	2800
1992	2459	1194	2459	2292	1124	2292	1990	5051	687	505	4356	617	4356
1993	2231	466	2231	2065	444	2065	1991	2647	310	264	241	235	2416
1994	1346	436	1346	1344	427	1344	1992	2459	1194	245	229	124	2292
1995	1748	213	1748	1748	213	1748	1993	2231	466	223	206	44	2065
1996	2407	651	2407	2407	651	2407	99	1346	436	134	134	427	1344
1997	1611	365	1611	1611	365	1611	1995	1748	213	174	1748	213	1748
1998	1526	403	1526	1526	403	1526	1996	2407	651	2407	240	651	2407
1999	1168	419	1168	1168	419	1168	1997	1611	365	1611	1611	365	1611
2000	533	270	533	1587	270	1587	1998	1526	403	1526	1526	403	1526
2001	797	266	788	1491	266	1491	1999	1168	419	1168	1168	419	1168
2002	526	450	504	511	450	511	2000	533	270	533	1587	270	1587
2003	1199	237	1192	1192	23	1192	2001	797	266	788	1491	266	1491
200	131	319	128	1283	- 319	1283	2002	526	450	504	511	450	511
2005	994	9	- 984	1088	- 319	1088	2003	1199	237	1192	1192	237	1192
2006	103	50	1023	1419	O) 1419	2004	1316	319	1283	1283	319	1283
2007	- 958	297	954	1189	- 297	118	2005	994	319	984	1088	319	1088
2008	1799	814	1764	2231	814	2809	2006	1030	450	1023	1419	450	1419
2009	2095	241	2069	2318	241	2292	2007	958	297	954	1189	297	1189
2010	1098	525	1078	1502	525	1482	2008	1799	814	1764	2231	814	2809
2011	3087	1080	3045	3914	1080	3872	2009	2095	241	2069	2318	241	2292
2012	913	26	879	2054	26	2020	2010	1098	525	1078	1502	525	1482
2013	533	78	525	5251	78	5243	2011	3087	1080	3045	3914	1080	3872
2014	340	110	334	572	110	566	2012	913	26	879	2054	26	2020
2015	771	150	761	1519	150	1509	2013	533	78	525	5251	78	5243
2016	392	232	389	881	232	878	2014	340	110	334	572	110	566
2017	678	363	663	1453	363	1438	2015	771	150	761	1519	150	1509
2018	545	324	542	889	324	886	2016	392	232	389	881	232	878
2019	1137	398	1131	1234	398	1228	2017	678	363	663	1453	363	1438
2020	1481	234	1452	1483	234	1454	2018	545	324	542	889	324	

Appendix 5: Model Walkthroughs

Summaries of the data preparation, model running and output processing were presented at a one-day workshop prior to the 2014 WGNAS meeting and provided step by step walkthroughs of the assessment processes. Where appropriate these have been updated in 2019.

NEAC pre-fishery abundance and national conservation limit model in R

[NB: Instructions apply to model version: "NEAC_PFA_CL_RR_model_2015varM_v12" as used in 2015]

1) Introduction

This program performs the run-reconstruction estimation of pre-fishery abundance (PFA) of maturing and non-maturing 1SW salmon for each country (and region) in the NASCO-NEAC area. PFA is estimated for January 1st in the first sea winter. The program also establishes the pseudo stock-recruitment (S-R) relationship between lagged egg deposition and Total 1SW PFA, and applies a hockey-stick S-R analysis to estimate the National/Regional Conservation Limit where river-specific CLs are not available. The original model is described by Potter et al. (2004); minor changes to the estimation approach used for different countries and regions have been reported in the annual reports of WGNAS.

The model also estimates the proportion (mean and SE) of the Faroes catch originating in different countries/regions based on the genetic analysis of scales collected in the fishery between 1993 and 1995 and the estimated PFA for each country/region since 2001, when no fishery has been operating at Faroes. This requires the model to be run once to provide the catch proportions and then run a second time to provide a full PFA assessment. The catch proportions are also used in the Catch Options model.

2) To get started
2.1) Load RStudio or R;
2.2) Set up a folder from which you will run the program;
2.3) Use folder and file names without spaces;
2.4) Put the program, the input files (annual and multiannual) and the summary data file (see 6f) in this folder.

3) Input Data
3.1) Annual data (filenames: Annual-data-XX-YY.txt)
3.1.1) There is a file for each country $(X X)$ and region ($Y Y$) which contains the $40+$ year time-series of data on catches, exploitation rates and non-reporting rates (plus additional data for some countries).
3.1.2) To read the .txt files, it is easiest to open them from within Excel. i.e.

- Open Excel;
- select the correct folder;
- click on 'Open'
- You will probably need to change the setting in the lower right corner of the open box from 'Excel files' to 'All files';
- Double-click on the file you want to open and it should open the 'Text Import Wizard';
- select 'finish' (If this doesn't work reopen the file, but select 'Delimited' at step 1, 'Tab' at step 2 and 'General' at step 3.)
3.1.3) Do not add any formatting to the file. If loading a new version of a file that has been saved in Excel (e.g. after addition of a new year's data), re-save the file by clicking 'Save As' and selecting 'Text (Tab delimited)' from the 'Save as type' list. This will remove the formatting and add the .txt extension.
3.1.4) Do not change the file name.
3.1.5) Close and save the file before running the programme. You will be prompted to confirm that you want to lose the formatting; click 'yes'.
3.2) Multiannual-data (file-name: 'Multiannual-data.txt' or similar)
3.2.1) This file contains most of the other parameters used in the model including: smolt age composition, fecundity and sex ratios by region, M , etc.
3.2.2) The second value listed is the 'lastdatayear' which needs to be updated to the latest year for which data are provided in the Annual-data-XX files.
3.2.3) The file is not formatted in columns so can be read easily in Notebook, which should be selected automatically if you click on the file to open it. (NB: If you open the file in Excel, don't save it because it will probably add " " marks to each line.
3.2.4 All blank lines and lines starting with '\#' are ignored in this file. Apart from these:
- The first line must start with 'list(
- The last line must be ' $)^{\prime}$
- All other lines must be 'variable name' <- number, followed by a comer (except for the last data line which has no comer).
3.2.5) If the module estimating the composition of the Faroes catch is run (see below) the new values must be inserted at the end of the multiannual data file in place of the current ones.
3.2.6) Save the file before running the model.

4) Model structure
4.1) Introductory section: contains working directory, source files and various parameters controlling the way the program runs (some of these will need to be changed for your laptop (see below).
4.2) Functions: functions are sections of code that the program calls up to repeat the same job. They have to be run before they are first called by the program; this is achieved by placing them at the beginning of the code. The main functions run the hockey-stick analysis for the NCL model and output certain figures and tables.
4.3) Faroes and Greenland sections: these sections calculate the harvest in the distant water fisheries.
4.4) NEAC country/regions sections: there is a section for each country (in alphabetic order) and region to calculate the main outputs of the R-R model.
4.5) Output summaries: this section creates NEAC summary figures and tables and the country/region data files for the Winbugs Forecast Model.
4.6) Faroes catch composition: The final section estimates the proportion (mean and SE) of the Faroes catch originating in different countries/regions. This requires the model to be run once to provide the catch proportions and then run a second time to provide a full PFA assessment.

5) Running the code from RStudio
5.1) Open R Studio
5.2) Select "File/Open File" and use the browser to select and open the code file; the code should open in the Top left panel. The code will have a name like "NEAC_PFA_CL_RR_model_2015_xxx"
5.3) If you have been using the code recently, you can select "File/Recent Files" and select the file from the drop-down list (if it is there); you can open several code files simultaneously and they appear as tabs above the Top Left panel.
5.4) To set up the code for your PC/laptop, R-click on the code and scroll down to:
line 40 -enter the full path name of the working directory (replace the text between the parentheses with the full pathname of the folder containing the code on your laptop (e.g. "D:/Modelling_NEAC/PFA_NCL_R/2014").
line 45 -ensure that the text between the parentheses shows the correct filename for the multi-annual data file.
lines 77-86 -select which countries you wish to run the assessment for by setting "run- XX ": $1=$ run country $\mathrm{XX} ; 0=$ do not run. The summaries will only be run if all countries are set to 1 .
line 82 -set "PrintFigs" equal to ' 1 ' to output the summary figures (or any other value not to output them); otherwise " 0 ".
line 89 -set "WinbugsFiles" equal to ' 1 ' to output the data files for the Bayesian forecast model (or any other value not to output them) ; otherwise " 0 "..
line 92 -set "PrintCountryTables" equal to ' 1 ' to output summary output data for each region that is run (or any other value not to output them) ; otherwise " 0 "..
line 98 -set "RunFaroeseCatchSplitEstimation" equal to "TRUE" to run the estimation of the Faroes catch composition; otherwise "FALSE".
5.5) You do not need to save your changes before you run the code. [If you wish to save any changes, use "File/Save" or "File/Save As" as
normal. It's a good idea to include the extension ".R". NB: You will be prompted to save the file before you close it.]
5.5.1) To clear the 'console' area (lower left panel) press "Ctrl-L"
5.5.2) To run the program press "Ctrl-Alt-R"
5.5.3) You will see when part of the code run in console area. Errors will show in red. The run is complete when the final line shows ">"

6) Running the program from R
6.1) Open R Studio
6.2) Select "File/Open script" and use the browser to select and open the code file; the code should open in a separate panel. The code is currently called "NEAC_PFA_CL_RR_model_2014"
6.3) To set up the code for your PC/laptop, R-click on the code and scroll down to:
\# SET WORKING DIRECTORY (wd): In line starting "wd <-" replace the text between the parentheses with the full pathname of the folder containing the code on your laptop (e.g. "D:/Modelling_NEAC/PFA_NCL_R/2014").
\# SET "run_XX": in the lines starting "run_XX <-" select which countries you wish to run the assessment for by setting "run-XX": 1 = run country XX; $0=$ do not run. The summaries will only be run if all countries are set to 1 .
\# SET 'PrintFigs': set "PrintFigs" equal to ' 1 ' to output the summary figures (or any other value not to output them).
\# SET 'WinbugsFiles: set "WinbugsFiles" equal to '1' to output the data files for the Bayesian forecast model (or any other value not to output them).
\# SET 'PrintCountryTables': set "PrintCountryTables" equal to '1' to output summary output data for each region that is run (or any other value not to output them).
\# SET 'RunFaroeseCatchSplitEstimation': set
"RunFaroeseCatchSplitEstimation" equal to "TRUE" to run the estimation of the Faroes catch composition; otherwise "FALSE" [SEE BELOW]
6.4) You do not need to save your changes before you run the code, but you may wish to save a version to be safe. To do this use "File/Save" or "File/Save As" as normal. It's a good idea to include the extension ". R". NB: You will be prompted to save the file before you close it.
6.5) To run the program select "Edit/run all"
6.6) You will see when the code runs in the 'R console' panel. Errors will show in red. The run is complete when the final line shows " "
7) Running the Faroes stock composition
7.1) The 'Multiannual-data' file contains the latest estimates of the composition of the Faroes catch by European country/regions based on the results of the genetics analysis reported in the 2015 WGNAS report and the 2001-14 PFA outputs. These estimates may be updated if new genetics data are provided or additional years of PFA estimates are to be included.
7.2) To run the estimation, ensure that all "Annual-data-XX" files have been updated.
7.3) SET 'RunFaroeseCatchSplitEstimation' to "TRUE" and run the model.
7.4) The new stock composition parameters will be output in the file "Faroes_split_estimate.txt"; these data should be copied into the end of the "Multiannual-data" file to replace the values already there. These data are also required for the Catch Options models.
7.5) Reset SET 'RunFaroeseCatchSplitEstimation' to "FALSE" and run the model again to produce full updates of the PFA estimates.
8) Output files
The program produces the following outputs (if requested):
8.1) National plots: (filenames "Figure- XX ")

PDF files showing the national plots currently used in the WG report. This includes: maturing and non-maturing 1SW PFA; returns and spawners for 1SW and MSW; homewater exploitation rates; and total catches (incl. nonreported) for each country (XX). It also shows the pseudo stockrecruitment hockey-stock plots for each region; these show the estimated CL, where this is used in the assessment.
8.2) Regional data: (filenames "Region_data_XX_YY")

Excel files showing PFA, returns, catch, exploitation rates and spawners for 1SW and MSW fish and total eggs and lagged egg estimates for each country (XX) and region (YY).
8.3) Input files for Forecast analysis: (filenames: "Winbugs_Data_XX_YY")
Excel files for each country/region containing mean and s.d. estimates for the simulations for lagged eggs, 1SW returns and MSW returns.

8.4) Summary tables by country:

- Median spawner numbers
- Conservation limits and SERs
- Maturing 1SW PFA
- 1 SW returns
- 1SW spawners
- Non-maturing 1SW PFA
- MSW returns
- MSW spawners
8.5) Summary plot for N-NEAC and S-NEAC
8.6) A formatted Excel workbook is set up to link to the output files and format the tables ready for use in the WGNAS report.

9) Common problems

9.1) The code will crash if an output file (Figure or Table) is left open. The error message (in red) may say:

- Error \qquad : cannot open file 'Fig-XX'
or
- Error in \qquad : cannot open file 'Region_data_XX.csv': Permission denied
9.2) It doesn't matter if an input file is open, but the program may not read the latest version if it has not been saved.
9.3) More problems to be added when they are found!

