Stock Annex: Norway lobster (Nephrops norvegicus) in divisions 7.g and 7.f, Functional Unit 22 (Celtic Sea, Bristol Channel)

Stock specific documentation of standard assessment procedures used by ICES.

Stock:	Norway lobster
Working Group:	Working Group for Celtic Seas Ecoregion (WGCSE)
Created:	June 2007
Authors:	
Last updated:	
Last updated by:	May 2009

A. General

A.1. Stock definition

The management area for this stock is delimited in area 7.f,g,h (FU 20-22; Fig. 1). The management unit is pertinent because of the sedentary feature of Nephrops. However, the sources of recruits are much more poorly defined. There is no evidence that the whole exploited area belongs to the same stock or that there are several patches linked in meta-population sense.

A.2. Fishery

Nephrops present particular ground features and in the FU 20-22 are known to occur in several areas of muddy sediment and the stock structure is uncertain. The Nephrops fisheries target different areas and have very different size structures in Nephrops catches and landings. These fisheries also have differences in non-Nephrops by-catch composition.

As for all crustaceans, Nephrops grow by successive moults which are to a large extent tied to reproduction. For this species moult occurs twice a year, in spring and autumn until sexual maturity. Once males are sexually mature, they continue to moult twice a year while females moult only once a year in the latter spring/summer right after the hatching of their eggs. In previous references (1970-80's), it is pointed out that maturation of females happens at a median size of 31 mm CL (10 cm of total length) which corresponds to 3.5 years old individuals. There is no specific reference for the sexual maturation of males in the FU 20-22, but biological references on close areas with similar hydrological conditions (FU 15; Western Irish Sea) indicate a first size of functional maturity of 29-31 mm CL.

As reported by the WGNEPH 2004 and the WGSSDS 2005 and 2006, Nephrops in FU 20-22 is mainly exploited by trawlers from France, Republic of Ireland and UK although the contribution of other countries is lower. The spatial distribution of landings by statistical rectangles are provided below (Fig. 2-5). It indicates heterogeneous spatial behaviour of the main fleets.

France

No major changes have taken place in the fishery for more than fifteen years apart from the implementation of a new mesh regulation in 2000 which increased the minimum codend mesh size from 80 to 100 mm (in fact, the regulation involves to 90 mm mesh size, but 100 mm meshes are adopted aiming to avoid problems with bycatch composition). The 100 mm mesh size also allows them to switch to finfish (cod, whiting, haddock) when Nephrops catch rates are low (e.g. because of diurnal and seasonal variations of catchability for this species or during periods of bad weather). The MLS applied by the French Producers' Organisations is fixed at 11.5 cm total length (i.e. $35 \mathrm{~mm} C L$). The total number of vessels from the harbours of the South Brittany remains stable (more than 90 declared Nephrops catches from the Celtic Sea in recent years, but around 70 are actually targeting this species). A part of these units (15-20) switch to other Nephrops stocks (FU 16; Porcupine bank; Fig. 1) mainly in $2^{\text {nd }}$ and $3^{\text {rd }}$ quarters when the meteorological conditions are favorable. At the opposite, many trawlers (20-30) move towards the FU19 Nephrops (SE and SW Irish coast) mainly in autumn and winter according to difficulties due to weather.

Analytical investigations were carried out on the data collected in 2006 and 2007 involving in the French trawlers. Global indices for fishing effort and LPUE provided by this fleet (97 trawlers composed by 73 exclusive in Celtic Sea, 15 switching to Porcupine Bank i.e. FU 16 and 8 also targeting Nephrops in the Bay of Biscay i.e. FU 2324) seem to be pertinent: 99% of vessels* months registered for sales at auction can also be found in logbooks (94% of French landings in 2007). In 2006, almost 50% of French landings occurred in two ICES rectangles (29E2, 30E2; the rectangle 30E2 during the $2^{\text {nd }}$ quarter concentrated 21% of yearly landings). In 2007, the contribution of the two rectangles 29E1 and 30E2 was 41% of yearly landings. In 2008, the rectangles 28E1 and 30 E 2 were represented by 44% of yearly landings. The peak of production is observed during the $2^{\text {nd }}$ quarter of the year (Fig. 4): in 2006, the maximum landings are obtained in June whereas a shift occurred in 2007 (maximum value in May which may be caused by bad meteorological conditions in June). In 2008, the shape of French landings vs. month was bi-modal (May and July were the mostly represented months).

The historical review of French landings shows that the contribution of the rectangle 31 E 3 (concentrating the major part of Irish landings) declined over the last 10 years: from 41% of total French landings registered in 1999 this contribution is currently less than 10% (Fig. 3). During the last 10 years, the most productive rectangle for French trawlers was 30E2 mainly during the late 2000's: the average annual contribution of this rectangle was around 15% in the early 2000 's, but this proportion reached more than 30% during the recent years. It seems that the French fleet moved gradually from 31 E 3 to 30E2 under the steeply increasing concentration of Irish trawlers on the "traditional" Nephrops grounds (Smalls, Labadie).

Republic of Ireland

More than 60 Irish vessels target Nephrops in the Celtic Sea. In 2007, 95 Irish trawlers were registered as landing Nephrops, but 63 of them exceeded threshold of 10 t (Fig. 6). In 2008, 99 Irish vessels reported landings from this area whereas 67 of them landed more than 10 t . The fishery presents a more typical seasonal profile than the French vessels and most of the landings are made between March and July. These vessels are mid-size multi-purpose trawlers, with a length of 18-23 m and engine power between 250 and 350 kW . Many of the vessels switch between FU 15 and FU 20-22, depending on the tides in the Irish Sea. Other vessels switch from targeting finfish in the winter
to Nephrops in the spring and early summer. The mesh size used by Irish vessels is 80 mm , and increasingly these vessels are using twin trawls. The MLS applied by Irish trawlers is the European one fixed at 8.5 cm total length (i.e. 25 mm CL).

The Irish landings seem to be more concentrated spatially than the French. During the period 2003-2006, 63-67\% of the Irish nominal landings were provided by one ICES rectangle (31E3). The Irish fishing effort is located more northerly than the French one.

UK

The UK fishery in the Celtic Sea has generally remained unchanged. Since the early 2000's, the number of UK Nephrops directed vessels has increased from around 10 to 15, but their contributions in total landings remains minor (usually less than 50 t of landings). The maximum historical value of UK landings is reported in 2008 (242 t).

A.3. Ecosystem aspects

Nephrops occur in discrete patches where the sediment is suitable for them to construct their burrows. There is a larval phase of long duration where there may be some mixing with Nephrops from other areas depending on the oceanographic conditions, but the mechanisms for this in the Celtic Sea are not currently known.

Cod has been identified as a predator of Nephrops in some areas, and the generally low level of the cod stock is likely to have resulted in reduced predation on Nephrops.

B. Data

B.1. Commercial Catch

Landings are reported mainly by France and the Republic of Ireland. French landings fluctuated between 2000 and 3800 t . Irish landings rose from around 500 to more than 2000 t in the last 15 years. The highest value of Irish landings is observed in 2007 (more than 3200 t). A part of this trend is due to greater accuracy of reporting mainly after the end of the late 90's. The contribution of French landings has gradually decreased from $80-90 \%$ at the end of 80 's to $50-60 \%$ at the beginning of 2000's. Between 2004 and 2005, French landings remained stable whilst Irish landings steeply increased and the total harvested quantity was the highest during the last decade. For the first time, in 2007, the Irish ladings exceeded the French ones (3230 t against 2080 t). This may be caused by constraints linked to the international context affecting fuel prices for fishing vessels. The overall fishing profile remains typically seasonal with a dominance of the $2^{\text {nd }}$ and $3^{\text {rd }}$ quarters ($60-70 \%$; the other quarters are less productive because of meteorological conditions and of less accessibility of females due to burrowing).

During the recent years, the evolution of the French fishing effort and LPUE was sometimes considerably different from the evolution of the same indicators for the Irish fleet (e.g. between 2004 and 2005: -5% of fishing effort and $+2 \%$ of LPUE for French trawlers against $+50 \%$ of fishing effort and $+25 \%$ of LPUE for Irish trawlers). In 2007, an increase occurred for LPUE values of both main fleets: a slight upwards trend of French trawlers ($+13 \%$ associated to a strong reduction of the fishing effort: 25% whereas the total number of vessels remained almost stable) and a steep one for the Irish fleet $(+36 \%$ coinciding with $+31 \%$ of the fishing effort which was displayed by an increasing number of trawlers operating in the Celtic Sea: $+19 \%$ between 2006 and 2007). This underlines the divergence of features of the targeting vessels for each country and indicates the great heterogeneity of the area. A direct comparison
between both countries cannot be undertaken because the fishing effort is not available in the same unit (France: otter trawlers getting at least 10% of their total landings by targeting this species; Ireland: otter trawl vessels where $>30 \%$ of monthly landings in live weight were Nephrops). Furthermore, the actual fishing areas are different and the Irish fleet is more restricted spatially as already reported by WGSSDS 2005-2008.

B.2. Biological

Natural mortality and maturity at age.
A natural mortality of 0.3 is applied to all Nephrops males whereas the mortality of females changes at the size of first maturity (occurring at $31 \mathrm{~mm} C L$ as explained previously): a value of 0.2 is usually applied on mature individuals.

The L2AGE slicing program usually applied on Nephrops stocks allocates length classes into age groups by assuming Von Bertalanffy model of individual growth. This slicing is applied to length distributions by sex. All parameters, $\mathrm{L} \infty$ and K by sex, calculated mean sizes by age for each sex, natural mortality and maturity by sex (assumed to be knife-edged for males and s-shaped for females) and combined are given below.

Table 1. Nephrops FU20-22 (Celtic Sea). Individual growth, natural mortality, maturity parameters by sex.

MaLes and immature females: $L \infty=68, \mathrm{~K}=0.17$; MATURE FEmALES: $\mathrm{L} \infty=49, \mathrm{~K}=0.10$									
age		1	2	3	4	5	6	7	8+
Size (CL mm) mm	males				34	39	44	47	51
	females			27	32	33	35	36	37
M	males			0.3	0.3	0.3	0.3	0.3	0.3
	males		0.3	0.3	0.2	0.2	0.2	0.2	0.2
	ombine		0.3	0.3	0.25	0.25	0.25	0.25	0.25
Maturity	males		0	1	1	1	1	1	1
	females	0	0	0	0.5	1	1	1	1
	combined	0	0	0.5	0.75	1	1	1	1

Biological sampling

Landings: The total French landings have been available since 1983 (on quarterly basis since 1987) whereas the Irish series began in 1987 (on quarterly basis since 1995).

LPUE and fishing effort: LPUE series are provided since 1987 in France whilst Irish data are available over 1996. It has to be noted that the French and Irish method of calculation of the fishing effort are not carried out by the same way (threshold of 10% in weight for Nephrops on total landings applied for French trawlers whereas 30% is the threshold used for Irish fleet), thus a direct comparison of those indices is not appropriate.

DLF of landings: French sampling plan at auction started in 1983, but only after 1986 the data can be used on quarterly basis. The Irish plan as written previously began in 2002 (in fact, solely 2003 has been entirely sampled in the FU 20-22 area; 2002's data involving the whole Management Area M: see processing by WGSSDS 2006; two quarters were not sampled in 2004 and 2005: see processing by WGSSDS 2006). For

French landings, the increasing proportion of tailed individuals (see below) and the inappropriate method of sampling before the end of 2007 provided

DLF of discards: French estimation of discards occurred only in three separate years (1985, 1991 and 1997), but only the data collected in 1997 can be included in analytical investigations. The available dataset is given for only one year of discard sampling (1997) because of unavailable quarterly data for landings for the first year of discard sampling (1985) whereas data collected in 1991 were considered as unreliable (samples sorted by fishermen). Irish sampling has been undertaken since 2002 (lack of information for two quarters in 2004; see processing by WGSSDS 2006).

Length compositions of the landings by sex are provided for the two main fleets, but the time series are different. Sampling of French landings since 1984 has provided length frequencies by sex on a monthly basis. Due to uncertainty of the older data sets, the data for 1984-86 were omitted from further analysis. The Irish sampling program was launched in 2002 under the EU DCR and gave length frequencies for the period 2002-2006 (after simulation undertaken for some missing information in 2004 as explained during WGSSDS 2006).

French estimation of discards occurred only in several separate years (1985, 1991 and 1997; in 2005, samples for two quarters, $3^{\text {rd }}$ and $4^{\text {th }}$, were also provided), but only the data collected in 1997 can be included in analytical investigations because of unavailable quarterly data on landings for the first year of discard sampling (1985) whereas data collected in 1991 were considered as unreliable (samples sorted by fishermen not representative of the discarding behaviour of the whole fleet). The 1997 French plan onboard showed high spatial and temporal variability of discard sizecomposition vs. that of landings (CV>30\%). The Irish sampling launched under DCR gave results as presented by Table 2.

The heterogeneity of the dataset in addition to that of the harvested area by each country affects the discard rate by fleet: it was higher for French vessels: 65\% in 1997 against 37% for Irish in 2003 (the only one year with sampling, but only 11% during the quarters 2 and 3in 2004) and by sex (stronger in the case of females growing less quickly).

Table 2. FU 20-22 Irish Sampling Summary

Year	Quarter	Number of samples			Numbers Measured		
		Catch	Discards	Landings	Catch	Discards	Landings
2003	1	1	1		186	417	
	2	5	5		4057	3016	
	3	3	3		2535	3638	
	4	2	1		996	528	
2004	1	0	0		0	0	
	2	3	2		1634	2781	
	3	7	6		4284	7171	
	4	0	0		0	0	
2005	1	1	1		1330	2271	
	2	2	2		2208	3238	
	3	2	0		1634	0	
	4	2	0		1627	0	
2006	1	2	1	2	1891	1152	2252

	2	10	2	2	7241	1049	363
	3	5	1	0	3178	1101	0
	4	9	0	0	8266	0	0
2007	1	1	3	0	767	770	0
	2	12	0	0	9648	0	0
	3	15	4	2	7784	1862	411
4	6	5	0	1959	1417	0	
2008	1	2	5		680	1758	
	10	13		3409	5333		
	3	2		878	546		
4	4	4		1356	1573		

Extrapolations

Landings: DLF of tailed Nephrops
The WGCSE 2009 pointed out a significantly increasing proportion of tailed individuals in French landings whereas this proportion was already high for Irish trawlers. In 2008, 20\% of total French landings involved in tailed Nephrops (19% in $2007,15 \%$ in 2006 and 11% in 2005; less than 5% until the beginning of 2000's). The overall upwards trend is illustrated by the Figure 7 presenting also monthly tailed fractions (after conversion of weight of tails to total one).

The seasonal variability of tailed Nephrops-may be explained by biological features of the species (two peaks appear by year corresponding to the two moulting periods, spring and winter) and by the particular conditions of trips (12-15 days) compromising the conservation of Nephrops. As regards to the annual increasing proportion of tails (96% explained by using an exponential function), industry explained it by the economic difficulties of the vessels because of the rapidly increasing fuel prices. Tailed individuals are intended to compensate this loss for the crew participation at the total investment by trip. As the European MLS for FU20-22 Nephrops is fixed at 8.5 cm of total length (25 mm CL) and the MLS retained by the French Producers' Organizations is equal to $11.5 \mathrm{~cm}(35 \mathrm{~mm} \mathrm{CL})$, it was expected that tailed individuals should be comprised between these two sizes.

Before the end of 2007, the tailed Nephrops could not be sampled at auction and, as the sampling onboard remains difficult to apply routinely (long trip duration for French trawlers), the problem was partially tackled by apportioning tailed individuals to the smallest category of landings at auction. Since the end of 2007, new biometric relationships established during the EVHOE survey have been used: they allow to fit CL vs. $2^{\text {nd }}$ abdominal segment of tail by sex (Fig. 8). The DLF of French landings for 2008 were estimated by two ways: one using the extrapolations from tails to CL, the other apportioning tails to the small category as for previous years. The resulting difference appears relevant (Fig. 9): in 2008, 46 million Nephrops were provided by the previous method whereas 58 million were estimated by including tails (+28\%). Almost 30\% of landed individuals were below the French Producers' Organization MLS, but no Nephrops was undersized compared with European MLS. Moreover, the sex ratio seems to be affected by the tailing practice: 13% of Nephrops (7.4 million) were females although this percentage would be 7% (3.2 million) under the previous method. The mean size of French landings for 2008 decreases at around 2.5-5 mm CL by sex when tails are involved by sampling. However, the mean CL for 2008 remains larger than the Irish one.

Table 3. Nephrops in 7.f,g,h. Mean sizes (CL in mm) of French and Irish landings for 2008. French values are calculated (1) including the samples involving in tailed individuals and (2) using the previous method (no sampling of tails; the total tailed proportion was apportioned in the smallest category of entire Nephrops at auction).

French sampling		Irish sampling			
Males	Females	Total	Males	Females	Total
37.6	34.7	37.2	32.0	29.7	31.1
40.1	39.6	40.1			

This result emphasizes the WGSSDS 2008 conclusion that the size composition may be overestimated when raised to the composition of entire individuals.

Discards: years with no sampling onboard

Generalities

As the sampling plan for both countries was not routinely undertaken, the whole time series of landings by quarter either for the French fleet (years 1987-2007) or for the Irish one (years 1995-2007, years 1987-1994 are only represented by annual landings) misses information. Therefore, a methodology of extrapolation from sampled data to years or quarters with no information was developed (see WD 1; WGSSDS 2007).
The main concepts of the derivation (back-calculation) are summarized as:
(1) The first step involves applying hand-sorting selection of retained catches which is explained by s-shaped (logistic) function vs. size. As statistically tested by fleet, the hand-sorting function is stable within-quarter for given parameters of the exploitation pattern (if mesh size and MLS remain constant within period).
(2) The second step consists in removing undersized individuals unusual in landings which can generate unreliably extreme values of discards due to sampling problems (very high CV of landings for the extreme size classes). Hence, size classes less than a tested threshold (e.g. 1 or 5% of cumulative landings) were eliminated.
(3) The third step allows the generation of missing size classes by applying a probability density function which can be symmetrical or not. The whole calculation is based on multiple maximum likelihood function according to the number of missing years. Relationship as between mean sizes of landings and of discards tested on the FU 23-24 Nephrops (Bay of Biscay; WGHMM) can also be included in the final fitting.

Particularities for FU 20-22 Nephrops stock

The approach summarized above was already developed on the FU 23-24 Nephrops stock (Bay of Biscay) and its validation was investigated during the WGHMM 2007 (Fig. 10-14). The WGSSDS 2007 examined statistical formulation and validation of this method on French (years 1987-2006) and Irish (years 2002-2006, investigation by quarter) discards for FU 20-22. There are some differences from the calculation applied on the Bay of Biscay as:
(1) The available French dataset is given for only one year of discard sampling (1997). It means that the hand-sorting s-shaped curves by quarter are calculated on only one year ${ }^{1}$ instead of six in the case of the Bay of Biscay stock.
(2) The cumulative percentage level for removing of undersized generated discards (see above: $2^{\text {nd }}$ stage) is fixed at 5\% for French data and 1% for Irish data (also 1% for the Bay of Biscay Nephrops stock). In the case of the French fishery in Celtic Sea, this can be justified by the high variability of landing samples between trips (higher coefficients of variation at auction because of higher heterogeneity of the fished area and of long duration of trips i.e. 12-15 days and, hence, less availability of samples at auction).
(3) For the French discards, with only one year of discard sampling, the initial value of the parameter Lm can not be assumed to be equal to any expected mean size of discards vs . mean size of landings (see above $3^{\text {rd }}$ stage). Furthermore, the interval in which Lm should be contained is not statistically calculable. Hence, Lm is initially introduced as the size corresponding to the maximum number of discarded individuals as provided by the $2^{\text {nd }}$ stage of calculation (i.e. after removing extremely high values of discards obtained after the $1^{\text {st }}$ stage: handsorting logistic function). Its interval is built by using an a priori coefficient of variation around the initial Lm (CV of 0.10 and 0.20 were tested). For the Irish data, no constraint on relationship between mean sizes of discards and landings was set because of lack of any information on that due to the short time series.
(4) The large mesh size of the French vessels in the FU 20-22 area indicates that the distribution of length frequencies of discards is probably no symmetrical because of selectivity effects which should be more significant than for the FU 23-24 stock or for the Irish trawlers in the FU 20-22.
(4) For French discards, the absence of reference about any relationship between mean sizes of landings and discards at the opposite of the Bay of Biscay, implies that the final fitting aims to provide the more linear as possible relationship (after $\log -l o g$ transformation) with only one reference point (year 1997). Hence, the optimisation is more based on geometric concept than on statistical one.

1 st stage: the s-shaped hand-sorting curve
Let j be a year with no dataset on discards. By quarter k, the number of discarded individuals by sex (m or f) and by size $\mathrm{L}, \mathrm{ND}_{\mathrm{jklm}}$ (or $\mathrm{ND}_{\mathrm{jklf}}$), is not calculated on data provided from other years, but from the number of landed individuals NLiklm (or NLiklf) during the same year, quarter k, sex (m or f) and size L :

$$
N D_{j k l m}=N L j k l m . \exp \left(-\alpha_{k} .\left(L-L 50_{k}\right)\right) \quad \text { or } \quad N D_{j k l f}=N L j k l f \cdot \exp \left(-\alpha_{k} .\left(L-L 50_{k}\right)\right)
$$

[1]
α_{k} and $\mathrm{L} 50_{\mathrm{k}}$ are the parameters of the s-shaped curve (logistic model) fitted by quarter k describing the commercial Nephrops hand-sorting onboard. For this fitting, both sexes are combined and the dependent variable is expressed by the number of landed individuals for size L and the independent one is the total number of catches by size L for the years with discard sampling onboard.

The estimates α_{k} and L50k were calculated by assuming the stability of hand-sorting process onboard if mesh size and MLS remain unchanged. The short Irish time series 2002-2006 was considered as a common dataset, but, for the French trawlers, the overall time series was divided into three periods:
(1) Years 1987-1990: The results of sampling carried out in 1985 are not available on computing support. Thus, there is no formal information if the handsorting onboard could be approximated by the more recent parameters of 90's. α and L50 were not got fixed, but their values were estimated by the multiple likelihood function as for the parameters of the probability density by year (see below).
(2) Years 1991-1999: The hand-sorting was fitted on data from 1997 (1991's data were not representative of the whole fleet). The missing data of years 1991-96 and 1998-99 were therefore estimated.
(3) Years 2000-2006: Because of the mesh size change, the hand-sorting should be different from 1997's sampling data. However, there is no new information for the $1^{\text {st }}$ and $2^{\text {nd }}$ quarters (the 2005 's sampling plan provided relevant results only for the $3^{\text {rd }}$ and $4^{\text {th }}$ quarters). Hence, α and L50 for the first two quarters were fixed equal to 1997's parameters, but the simulation for the other two quarters is based on 2005's data.

$2^{\text {nd }}$ stage: removing of unreliable size classes of discards

This derivation approach reduces interdependence between yearly datasets which may induce lack of contrast in recruitment time series. In spite of that, some inconveniencies of the new approach have to be taken into account: (1) the handsorting onboard s-shaped curve implies that, for a given size class, no calculation of discards is possible while there is no landed individuals and (2) the exponential expression gives extremely unreliable high values of discards when undersized individuals are sampled in landings (mainly because of hand-sorting deviation due to sampling rate not representative for extreme size classes).
(1) Undersized individuals unusual in landings. As written previously, undersized Nephrops sampled in landings should produce unreliable high discarded amounts by size because of the exponential calculation. All size classes representing less than a minimum cumulative percentage level in landings by year were removed (5% for French landings, 1% for Irish landings).
(2) Discarded individuals by size exceeding observed mean ratios discards/landings. Generated discarded numbers were removed when the calculated ratio discards/landings by size (decreasing function vs. size) exceeded observed mean ratios by size ${ }^{2}$. Almost all size classes involved by (2) were already removed by (1). This operation was added at the aim of elimination of not normally high ratios discards/landings for large sizes (which has a little impact on total discarded number due to the s-shaped function of handsorting).

This calculation process retains only a part of the initial hand-sorting generated distributions of discards mainly the decreasing part of discarded individuals.

3rd stage: simulation of densities of probability of discarded individuals (yearly distribution for French and quarterly for Irish discards)

Finally, the assumed distribution of discards for the whole range of sizes was calculated from the descending part. This process needs to input the probability density of discards given by:
$\varphi(L)=\frac{\alpha}{1+\exp (\beta .(L-L m)}$
[2]
where $\alpha, \beta, \mathrm{Lm}$ are coefficients of the distribution $(\varphi(\mathrm{L})=\alpha / 2$ when $\mathrm{L}=\mathrm{Lm})$.
Because of the assumed skewness for the French discard distribution, as explained above, the whole function of the probability density is approximated by:
$\varphi(L)=\frac{\alpha}{1+\exp (-\gamma \beta .(L-L m)}$
for $\quad L \leq L m$
$\varphi(L)=\frac{\alpha}{1+\exp (\beta \cdot(L-L m)}$
[3]
with a complementary coefficient γ : if $\gamma=1$ the whole probability density is symmetrical, if $\gamma<1$ the skewness of the distribution is positive if $\gamma>1$ the skewness is negative ($\gamma=1$ for Irish discards, $\gamma \neq 1$ for French discards).

The fitting of $\varphi(\mathrm{L})$ is processed on two stages:

- Lm and α are fixed: α is initially fixed at $2^{*} \varphi \max$ which is the maximum frequency retained after the $2^{\text {nd }}$ stage of calculation (see above), Lm is fixed at the size corresponding to the maximum number of discarded individuals as provided by the $2^{\text {nd }}$ stage of calculation (see previously) and, hence, β is given by:

(Lmin= first size represented by not null individuals and $\mathrm{n}=$ number of total size classes with discards different from zero).

All parameters are estimated: α, β, Lm got obtained by the $1^{\text {st }}$ stage are input for the final calculation using Newton cancellation of gradient and assuming stochastic approach for Lm . Lm is assumed to be included in the interval defined accordingly to an a priori CV of Lm (see above) ${ }^{3}$.

Otherwise, the final run includes constraints as:

- The sum of frequencies for descending part of distribution is equal to that calculated by the model i.e. the retained values of the $2^{\text {nd }}$ stage of calculation described previously are assumed to be reliable.
- $\mathrm{Lm} \geq \mathrm{Lmin} \quad\left[\mathrm{Lmin}=\left(1-\mathrm{Z}_{\left.1-\alpha / 2 . \mathrm{CV})^{*} \mathrm{Lm}\right] \quad \text { (usually: }}\right.\right.$ $\alpha=0.05=>Z_{1-\alpha / 2}=1.96$)
- $\quad \mathrm{Lm} \leq \mathrm{Lmax} \quad\left[\mathrm{Lmax}=\left(1+\mathrm{Z}_{1-\alpha / 2 . \mathrm{CV}}\right)^{*} \mathrm{Lm}\right]$
- For French discards, the coefficient of determination of the relationship between the mean sizes of landings and the mean sizes of discards for missing years has to be as close as possible to 1 (with no possibility of statistical test because of only one year dataset).
- Statistical formulation and validation

Calculation of variances

Matrix of variances-covariances of model parameters

The Generalized Reduced Gradient and the Complex method do not give an estimate of the matrix of variances-covariances of the four (three for Irish) parameters. In this case, it is usually recommended to apply non-parametric techniques such as the Bootstrap method. The calculation can also be carried out according to parametric procedure (Lin, 1987; Fifas and Berthou, 1999; Fifas et al., 2004) using Jacobian matrix (i.e. matrix of partial derivatives of the objective).

The matrix of variances-covariances is obtained by the following relationship:
$[\mathrm{M}]=\mathrm{s}^{2} .[\mathrm{II}]^{-1}$
[5]
with:
$[M]=$ matrix of variances-covariances; $[T]^{-1}=$ inverse of matrix of information; $\mathrm{s}^{2}=$ sum of mean residual squares of the fitted function $\left(s^{2}=S C E / D D L^{4}\right)$:

$$
S C E=-\sum_{i=1}^{L_{j j L m}}\left[\varphi\left(L_{i}\right)-\frac{\alpha}{1+\exp \left(-\gamma \beta \cdot\left(L_{i}-L m\right)\right.}\right]^{2}+\sum_{i=j+1}^{L j>=L m}\left[\varphi\left(L_{i}\right)-\frac{\alpha}{1+\exp \left(\beta \cdot\left(L_{i}-L m\right)\right.}\right]^{2}
$$

The matrix of information is obtained by:
$[\mathrm{I}]=[J]^{\prime} \cdot[J]$
[7]
[J] is the Jacobian matrix (nc rows and 4 columns for French data, 3 for Irish):
$[J]\left[\begin{array}{ccc}\frac{\partial \varphi\left(L_{1}\right)}{\partial \alpha} \frac{\partial \varphi\left(L_{1}\right)}{\partial \beta} & \frac{\partial \varphi\left(L_{1}\right)}{\partial \gamma} & \frac{\partial \varphi\left(L_{1}\right)}{\partial L m} \\ \frac{\partial \varphi\left(L_{2}\right)}{\partial \alpha} & \frac{\partial \varphi\left(L_{2}\right)}{\partial \beta} & \frac{\partial \varphi\left(L_{2}\right)}{\partial \gamma} \\ \frac{\partial \varphi\left(L_{2}\right)}{\partial L m} \\ \frac{\partial \varphi\left(L_{n c}\right)}{\partial \alpha} & \partial \dot{\varphi}\left(L_{n c}\right) & \partial \dot{\varphi} \dot{\left(L_{n c}\right)} \\ \partial \gamma & \frac{\partial \varphi\left(L_{n c}\right)}{\partial L m}\end{array}\right]$
[8]
[J]' is the transpose of [J], the partial derivatives of the equation [8], also defined as absolute coefficients of sensitivity of order 1 written as $\mathrm{a}(\alpha), \mathrm{a}(\beta), \mathrm{a}(\gamma), \mathrm{a}(\mathrm{Lm})$ are given below:
$\frac{\partial \varphi(L)}{\partial \alpha}=\frac{\varphi(L)}{\alpha}$
[9]

[10a]

[11a]
$\frac{\partial \varphi(L)}{\partial \gamma}=0$
[11b]

[12a]

[12b]

Uncertainty of simulated discards

The matrix of variances-covariances of the four (three for Irish) parameters of the model and the use of partial derivatives of order 1 provide an approximate calculation of the variance of the ariable $\Psi(\mathrm{L})$ corresponding to simulated discards vs. size L . This procedure is based onllimited developments of order 1 in Taylor's series (called Delta methods: Laurec, 1986; Laurec and Mesnil, 1987; Chevaillier, 1990; Chevaillier and Laurec, 1990; Fifas and Berthou, 1999; Fifas et al., 2004).
By using Taylor's polynomial on a function Φ against parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{k}}$ it is possible to present the variance of Φ by:
$V[\Phi] \approx \sum_{i=1}^{k}\left(\frac{\partial \Phi}{\partial \theta_{i}}\right)^{2} \cdot V\left[\theta_{i}\right]+2 \cdot \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \frac{\partial \Phi}{\partial i} \cdot \frac{\partial \Phi}{\partial \theta j} \operatorname{Cov}\left[\theta_{i}, \theta_{j}\right]$
[13]
Then, the variance of simulated discards vs. size, $\mathrm{V}[\Psi(\mathrm{L})]$, is written as:
$V[\Psi(L)] \approx a(\alpha)^{2} . V[\alpha]+a(\beta)^{2} \cdot V[\beta]+a(\gamma)^{2} \cdot V[\gamma]+a(L m)^{2} \cdot V[L m]+2 \cdot a(\alpha) \cdot a(\beta) \cdot \operatorname{Cov}[\alpha, \beta]+$
$2 \cdot a(\alpha) \cdot a(\gamma) \cdot \operatorname{Cov}[\alpha, \gamma]+2 \cdot a(\alpha) \cdot a(\operatorname{Lm}) \cdot \operatorname{Cov}[\alpha, L m]+2 \cdot a(\beta) \cdot a(\gamma) \cdot \operatorname{Cov}[\beta, \gamma]+2 \cdot a(\beta) \cdot a(\operatorname{Lm}) \cdot \operatorname{Cov}[\beta, L m]$
$2 . a(\gamma) \cdot a(L m) \cdot \operatorname{Cov}[\gamma, L m]$
[14]
where the absolute coefficients of sensitivity of order 1 (partial derivatives) are defined above (equations [9] to [12])

Validation

The generated by simulation values are tested against discard estimated by sampling. This procedure is undertaken on French data of 1997 and also on available Irish set (all quarters of 2003, 2004-Q2, 2004-Q3, 2005-Q1, 2005-Q2, 2006 apart from Q4 i.e. 11 quarters). As performed for the Bay of Biscay Nephrops stock, this validation involves in three main stages (Fig. 10-14): (1) Examination of the total amount of discards calculated by simulation that should not be significantly different from that obtained by sampling. (2) Test by linear regression performed on simulated numbers vs. size as dependent variable against sampled numbers as independent one. The slope of this relationship should not be significantly different from 1 (bisecting line) and the intercept should not be significantly different from 0 . (3) Test of cumulative frequencies of the sets, sampled and simulated, using non parametric approaches such as Kolmogorov-Smirnov.

Results

Hand-sorting s-shaped curves
The French and Irish hand-sorting logistic curves estimated by sampling are provided by Figure 15. In the Table 4, are also presented the French parameters involving in years 1987-1990 (simulated by the multiple likelihood function applied for probability density of discards; see above).

	TABLE 4. Summary		OF PARAMETERS OF S-SHAPED HAND-SORTING CURVES.			
quarter	FR (years 1987-1990)	FR (year 1997)	IRL (years 2003-2005)			
	α	L50	α	L50	α	L50
Q1	0.797	32.685	1.006	32.776	0.480	25.876
Q2	0.494	35.573	0.718	36.019	0.426	26.016
Q3	0.331	32.227	0.851	33.654	0.559	25.785
Q4	0.697	31.138	0.815	32.381	0.412	24.886

These values indicate the high heterogeneity between the two fleets which accentuates the a priori high spatial heterogeneity of the targeted resource. Some weak differences are observed between the simulated values α and L50 of the first French period (19871990) and the sampling of 1997. Nevertheless, these parameters are given by deterministic way, therefore, there is no possibility of further statistical comparison.

Estimates of French discards

Estimates of French discards (1987-2006), total number of discarded individuals, parameters α, β, γ and Lm and corresponding coefficients of variation (CV, in \%), are given below (Table 5). The Table 6 and Figure 16 present discard rates by sex and combined for the overall time series.

Table 5. French Nephrops trawlers, Celtic Sea (FU 20-22). Estimates of discards, coefficients of model and coefficients of variation of parameters.

year	disc	$\mathrm{CV}($ disc $)$		Lm	$\mathrm{CV}(\mathrm{Lm}) \alpha$		$\mathrm{CV}(\alpha)$	β	$\mathrm{CV}(\beta)$	γ
1987	125752	4.62	30.278	3.25	25773	13.79	0.293	32.11	0.768	44.61
1988	425396	4.88	28.917	5.28	59518	16.97	0.260	39.24	0.534	56.57

1989	99536	4.02	31.061	4.36	14417	13.86	0.221	33.01	0.740	45.69
1990	81530	8.74	30.579	8.28	12219	28.86	0.221	61.77	0.866	92.51
1991	389726	5.69	29.479	5.70	57932	18.85	0.218	40.78	0.868	60.75
1992	377075	18.48	30.752	14.57	61039	58.97	0.314	142.51	0.534	193.98
1993	118210	199.42	31.299	147.10	20679	612.24	0.258	1356.53	0.879	1956.90
1994	93687	7.62	31.438	6.77	14384	24.84	0.232	54.91	0.830	79.80
1995	131541	136.57	31.808	95.39	25096	418.52	0.273	880.20	0.808	1323.18
1996	82811	6.05	32.357	5.61	12121	20.20	0.255	49.20	0.637	66.91
1997	96612	6.21	32.403	2.11	18050	15.36	0.673	46.01	0.397	55.62
1998	30494	7.62	31.393	10.98	3453	28.85	0.161	61.94	0.893	94.65
1999	36900	12.14	31.827	10.67	5618	40.01	0.236	84.90	0.791	127.28
2000	22234	46.41	33.790	56.24	2655	171.90	0.175	359.92	0.863	552.62
2001	98962	5.59	31.766	7.43	11594	20.94	0.191	46.64	0.682	69.25
2002	34283	18.42	33.466	21.52	4223	66.86	0.193	150.64	0.762	217.87
2003	59692	4.73	34.452	3.48	9659	15.04	0.285	36.31	0.638	49.26
2004	29493	9.36	33.546	9.20	4050	32.24	0.202	69.23	0.874	103.22
2005	15097	18.92	34.739	17.57	2098	65.03	0.205	136.51	0.873	206.98
2006	17286	6.86	36.327	7.29	2350	24.93	0.238	64.77	0.530	85.17

Note: the sampled year 1997 is given in bold and italic fonts whereas in coloured fonts are presented the years for which the model based on the probability density seems to be inappropriate (years 1993, 1995, 2000; extremely high CV of parameters and discarded numbers). The total discarded number cited for 1997 is the value obtained by sampling.

Table 6. French Nephrops trawlers, Celtic Sea (FU 20-22). Discard rate (\%) by year.

As presented above, the model based on probability density with skewness gives generally adequate results (see parameters' CV) except for three years on twenty of the overall time series. Nevertheless, the provided CV are estimated by the model and do not necessarily reflect the actual uncertainty because of complex organization of samples (sub-sampling stratified plan applied onboard). This is illustrated by the sampled year 1997 which showed high spatial and temporal variability of discard size-composition vs. that of landings (CV of samples $>30 \%$) although the estimated by the model CV seems unlikely (weak value of 6.21%). Moreover, the generated by the model total number of discarded Nephrops for 1997 was under-estimated (66 millions i.e. 68% of the total number estimated by sampling: 97 millions). The use of the coefficient γ in the model was justified by the expected skewness of discard distributions due to the selectivity effect: in fact, all values of γ do not exceed 1. However, using the simulated model for the year 1997 with assumed symmetrical distribution of discards and with no constraint on relationship between mean sizes in discards and in landings provided more satisfactory results (Fig. 17). The symmetrical simulation gave un estimate of 83 millions of discards i.e. 86% of the 97 millions calculated by sampling closer than the value generated with skewness. Moreover, the CV of parameters α, Lm and mainly β are less strong.

There is no current statistical evidence for choosing symmetrical or not distribution for simulations and there is no possibility to validate any relationship between mean sizes in discards and landings while the actual sampling is limited to only one complete year.

However, as underlined in the Stock Annex, the generated by model CPUE (including discards calculated by the probabilistic simulation with skewness) show a good agreement with EVHOE groundfish survey indices for the period 1997-2005 ($\mathrm{R}^{2}=0.65$) whilst the relationship between LPUE and EVHOE indices seems more sparse $\left(\mathrm{R}^{2}=0.36\right)$. As also reported by WGSSDS 2007, throughout the overall time series, some high (years 1988, 2001) or low (year 1990) values of simulated discard rates coincide with increase or decrease of LPUE for 1-2 years later (increase in 1989-1990 and 20022003, decrease in 1991-1992). It is noticeable that no constraint was set for backcalculations on the relationship between discard rate (year i) and LPUE (years $i+1 / i+2$).

Estimates of Irish discards

Estimates of Irish discards by quarter (since 2002), total numbers of discarded individuals, parameters α, β and Lm and corresponding coefficients of variation (CV, in \%), are provided below (Table 7).

A first examination of results shows an overall better statistical adequacy than for French discards. Except for one sampled quarter (coloured fonts; 2005-Q2), the coefficients of determination are strong and the CV of model parameters remain relatively low. Despite this initial overview, the adequacy of the probabilistic approach will be tested as regards the procedure developed for the Bay of Biscay stock.

The Table 8 and Figure 18 present quarterly discard rates by sex and combined for the overall time series. Discard rates by sampling and by simulation can be directly compared for 11 quarters (Table 8): it seems that the average simulated discard percentage is slightly lower than the sampled one (26.0% against 27.3%), but for 8 quarters on 11, the simulated values are under-estimated.
The Table 9 and Figure 19 give comparisons between sampled and simulated discarded numbers. Two sampled years (2003 and 2005) for the $1^{\text {st }}$ quarter give low correlations between sampled and simulated discards. Despite more good correlation levels (9 on 11), the overall conclusion is that the null hypothesis (slope=1) is refused apart from one example ($2004-\mathrm{Q} 2$) which although provides biased results of simulated discards (very high ratio Nexp/Nobs). It is worth noting that the descending part of simulated DLF of discards seems to be more coherent with the sampled DLF than the ascending one (except for one case on 11, 2005-Q2 which is denoted by the less good statistical consistency of simulation in regards with the low value of ϱ^{2} : Table 7). Introduction of some constraint between mean sizes in discards and in landings as for the French example may give different results for the ascending DLF.

Table 7. Irish Nephrops trawlers, Celtic Sea (FU 20-22). Estimates of discards, coefficients of model and coefficients of variation of parameters (bold characters=sampled quarters).

year	Q	disc	Lm	CV(Lm)	α	$\mathrm{CV}(\alpha)$	β	$\mathrm{CV}(\beta)$	Q^{2}
2002	Q1	2664	26.039	0.95	1282	13.89	0.674	18.09	0.990
2003	Q1	6318	20.994	1.97	1476	11.52	0.319	15.53	0.855
2004	Q1	2208	24.743	1.34	998	18.48	0.625	24.42	0.960
2005	Q1	7613	25.929	0.88	3764	13.27	0.691	17.29	0.994

2006	Q1	11279	25.218	0.68	4594	8.56	0.564	11.32	0.929
2002	Q2	1670	27.891	1.10	666	14.69	0.555	19.37	0.950
2003	Q2	10236	25.119	0.72	4204	8.98	0.571	11.84	0.980
2004	Q2	4953	24.685	1.05	1003	6.39	0.278	8.59	0.951
2005	Q2	23437	25.139	1.42	3701	6.79	0.214	9.27	0.608
2006	Q2	15977	26.854	0.35	7902	5.61	0.688	7.35	0.987
2002	Q3	729	27.444	0.77	363	13.40	0.686	17.73	0.982
2003	Q3	15985	22.042	0.43	5780	4.04	0.504	5.33	0.940
2004	Q3	1291	28.143	0.26	571	3.90	0.615	5.13	0.969
2005	Q3	4795	24.751	0.64	2562	10.55	0.739	13.85	0.960
2006	Q3	2518	25.484	0.44	1144	6.48	0.626	8.60	0.927
2002	Q4	11343	24.442	0.56	5197	7.89	0.631	10.46	0.990
2003	Q4	2166	24.284	0.83	630	7.23	0.402	9.64	0.967
2004	Q4	1561	27.543	0.93	713	14.91	0.630	19.77	0.992
2005	Q4	9249	24.318	0.67	4603	10.22	0.687	13.49	0.992
2006	Q4	10394	25.289	0.67	5666	11.50	0.753	15.11	0.990

Table 8. Irish Nephrops trawlers, Celtic Sea (FU 20-22). Discard rate (\%) by quarter and year (for the sampled quarters: the cited percentages in bold correspond to the sampling results; those in brackets are obtained by the simulation).

year	2002	2003	2004	2005	2006	2002	2003	2004	005	2006	2002	2003	2004	2005	2006	2002	2003	2004	2005	2006
quarter	Q1	Q1	Q1	Q1	Q1	Q2	Q2	Q2	Q2	Q2	Q3	Q3	Q3	Q3	Q3	Q4	Q4	Q4	Q4	Q4
total	7.3	26.9	15.4	35.3	41.1	2.6	37.6	11.5	21.4	29.5	1.2	41.2	10.1	11.1	19.5	9.9	26.4	2.3	54.3	7.2
		(41.6)		(24.5)	(32.4)		29.9	(16.5)	(28.8)	(24.1)		(40.6)	(9.0)		(15.6)		(22.9)			
males	6.6	22.1	13.7	37.9	34.5		4.0		19.3	22.9	1.3	42.2	9.3	5.2	17.0	10.9	20.7	4.3	47.0	8.0
females	8.9	75.1	18.7	34.0	56.8	. 7	40.5	11.7	22.7	32.7	1.2	40.6	11.4	40.0	20.9	6.5	59.1	0.2	71.2	3.8

It would also be interesting to re-examine the comparisons after assuming skewness of discards distributions (use of coefficient $\gamma \neq 1$ as for the French fleet). It is noticeable that for 5 quarters on 11 (Fig. 19) the DLF of samples deviates from the assumed symmetry of simulations, then small sized individuals are under-estimated (however, the overestimation of the small Nephrops by the simulation occurs less often, but provides extremely divergent results). Although, there is no current basis for further analysis of this point because there is no evidence of any particular effect of some biological feature affecting the symmetry of distributions i.e. moulting which occurs in spring and autumn (example examined in the French fishery of the Bay of Biscay). The short time series and the low sampling rate do not allow to generalise this first overview.

Table 9. Irish Nephrops trawlers, Celtic Sea (FU 20-22). Relationships between discarded numbers by sampling (Nobs) and by simulation (Nexp).

YEAR/QUARTER		NEXP $=\Psi$ (NOBS)	$\mathrm{P}^{\mathbf{2}}$	P(SLOPE)	Nexp/Nobs
2003	Q1	Nexp $=0.87 *$ Nobs +84.99	0.44	0.41	194\%
2005	Q1	Nexp $=0.60$ Nobs-2.72	0.72	0.00*	60\%
2006	Q1	Nexp=0.72*Nobs-12.49	0.89	0.00*	69\%
2003	Q2	Nexp=0.72*Nobs-3.87	0.84	0.00*	71\%
2004	Q2	Nexp $=0.94 *$ Nobs +45.90	0.85	0.38	152\%

2005	Q2	Nexp=0.78*Nobs+267.45	0.85	0.00^{*}	148%
2006	Q2	Nexp=0.83*Nobs-39.77	0.94	0.00^{*}	76%
2003	Q3	Nexp=0.89*Nobs +32.24	0.94	0.00^{*}	97%
2004	Q3	Nexp=0.86*Nobs+0.92	0.97	0.00^{*}	88%
2006	Q3	Nexp=0.80*Nobs-2.90	0.91	0.00^{*}	77%
2003	Q4	Nexp=0.74*Nobs+5.79	0.88	0.00^{*}	83%

Note: *=significant result (1- $\alpha=0.95$)

Conclusion

The biological sampling onboard for Nephrops FU 20-22 stock remains poor for both main fleets. The duration of trips for French trawlers (12-15 days) restricts possibilities of regular participation of observers. Moreover, in agreement with results of sampling design applied in 1997, the long duration of trips implies a high spatial variability of harvested areas by trip and a low total number of trips sampled by quarter. Thus, the CV of discarded numbers estimated by sampling remain high. By the way, the simulations developed on French discards are hampered by the sampling of only one year throughout a long time series. The discard practices during the whole period may change, but there is no current possibility to test the effect of such a modification on the hand-sorting onboard. In spite of that, some discard rates by year agree overall with independent indices as EVHOE groundfish survey indices (as pointed by last year's WG) and with the most notable changes in terms of LPUE during the whole time series.

The Irish dataset takes more promising because of a shorter duration of trips. Hence, conceptual problems of sampling design inherent to the French fleet should not affect the Irish data. As the Irish fleet seems to be more recruitment directed, the indices provided by the sampling onboard should improve the diagnostic accuracy. In the meantime, the simulation based on the probabilistic approach indicated an overall consistent reconstitution of discards for more sampled quarters. Many further investigations have to be carried out in the order to validate extrapolations from French catches to Irish for the period before 2002.

B.3. Surveys

Direct Nephrops assessment by trawling are inappropriate because of notable diurnal variations of availability which is higher during dawn and dusk. The most adapted way is based on transect with video and TV runs of burrows (combined with hauls on area and geo-statistical analysis of catches with the aim of separating burrows of Nephrops from those of squat lobster), but it needs heavy preliminary arrangements because the spatial heterogeneity of resource requires to well define the survey area and the sampling plan in order to avoid biased results. The current situation will be improved in the future once a data time series has been collected by the Irish specifically designed survey program launched in 2006. However, the Irish and French exploited areas are different. On FU 20-22 the French groundfish survey EVHOE while not focusing on Nephrops does provide an indication of the length distributions and the strength of recruitment (Fig. 20). An Irish groundfish survey giving size composition of Nephrops catches has also been carried out since 2003. Moreover, a UK bottom trawl survey had occurred on the same area between 1984 and 2004, but only two sampling stations were within FU 20-22 area.

A comparative analysis conducted between LPUE and CPUE of French and Irish vessels with EVHOE indices shows a good agreement between commercial French CPUE and EVHOE series for the period 1997-2005 $\left(R^{2}=0.65\right)$ whilst the relationship is more sparse $\left(\mathrm{R}^{2}=0.36\right)$ when the commercial French LPUE are used (Fig. 21). The Irish data are not significantly linked to the French dataset probably due to the difference of harvested area and the short time-series.

The results of the UWTV survey initiated by Republic of Ireland in 2006 involving in the three first years, 2006-2008, are shown by Figures 20-25 and Tables 10-11. It is noticeable that the strongest values of this short time series (2006) coincide with the highest level on "Smalls" as reported by Irish industry in 2007. In a timeframe of around 2-4 years, this survey should provide valuable information to tune data for the FU20-22 Nephrops stock especially on the "Smalls" ground where are located more than the $2 / 3$ of the total Irish yearly production. Nevertheless, the historical longer series of French landings in the Celtic Sea is less involved by the area covered by UWTV (the contribution of the rectangle 31E3 in the total French production fell from 41\% in 1999 at less than 10% in 2008). This implies the necessity to tune data for the whole area.

B.4. Commercial CPUE

Between 2006 and 2007, the French fishing effort declined notably by -25% and the LPUE increased $(+13 \%)$ although the evolution of the same indicators for the Irish fleet was different ($+31 \%$ of fishing effort and $+36 \%$ of LPUE). It is noticeable that the decrease of the French fishing effort was caused by the reduction of the number of trips by vessel whereas the total number of vessels remained almost stable. The evolution of the Irish fishing effort involves either in increase of the fishing vessels (95 Irish trawlers were listed in 2007 against 80 for 2006) or in increase of the number of trips by vessel.

Between 2007 and 2008, the effort of the French trawlers decreased slightly i.e. 99789 h against 101980 h for 2007 whereas the Irish fishing effort remained stable (59727 h against 59899 h in 2007). LPUE of both fleets increased mainly for French trawlers $(+22 \%: 22.6 \mathrm{~kg} / \mathrm{h}$ against $18.5 \mathrm{~kg} / \mathrm{h}$ for 2007) and, to a lesser degree, for Irish (+11\%: $55.2 \mathrm{~kg} / \mathrm{h}$ against 49.4 in 2007).

C. Historical Stock Development

There is no currently specific development for analytical assessment of the stock. By the WGNEPH 2003, the FU20-22 Nephrops stock was analytically assessed by XSA (software VPA; Darby and Flatman, 1994). Because of the lack of long and consistent Irish series (before DCR), the analysis was limited on the male component involved by French trawlers (see input parameters: Table 1).

D. Short-Term Projection

No short-term projection is performed for this stock.

E. Medium-Term Projections

No medium-term projection is performed for this stock.

F. Long-Term Projections

No long-term projection is performed for this stock.

G. Biological Reference Points

There is no biological reference point for this stock.

H. Other Issues

References

Chevaillier P., 1990. Méthodes d'étude de la dynamique des espèces récifales exploitées par une pêcherie artisanale tropicale : le cas de la Martinique. Thèse Docteur-Ingénieur, EN.S.A. Rennes. 367 p.
Chevaillier P., Laurec A., 1990. Logiciels pour l'évaluation des stocks de poisson. ANALEN : Logiciel d'analyse des données de capture par classes de taille et de simulation des pêcheries multi-engins avec analyse de sensibilité. F.A.O., Document Technique sur les Pêches, 101, suppl. 4.124 p.

Fifas S., Berthou P., 1999. An efficiency model of a scallop (Pecten maximus, L.) experimental dredge: Sensitivity study. ICES Journal of Marine Science, 56:489-499.

Fifas S., Vigneau J., Lart W., 2004. Some aspects of modelling scallop (Pecten maximus, L.) dredge efficiency and special reference to dredges with depressor plate (English Channel, France). J. Shell. Res., Aug. 2004; 23 (2): 611-620.
Laurec A., 1986. Les méthodes delta en halieutique. Evaluation des sensibilités, approximation des biais et variances à l'aide des développements timités. Rapp. int. IFREMER, DRV 86.002, RH/Nantes. 64 p.

Laurec A., Mesnil B., 1987. Analytical Investigations of Errors in Mortality Rates Estimated From Length Distribution of Catches. In Pauly D. and Morgan G.R. (Rédacteurs), 1987. Length based methods in Fisheries Research - ICLARM Conf. Proc. 13, Manila, Philippines and Kuwait Institute for Scientific Research: 239-282.

Lin X.-Q., 1987. Etude de la biologie de la plie (Pleuronectes platessa, Linné) de la baie de Douarnenez: Croissance, Régime alimentaire, Reproduction. Thèse Univ. Bordeaux I. 181 p.

Figure 1. Functional units 20-22 (Nephrops grounds in Celtic Sea).

Figure 2. Nephrops FU 20-22 (Celtic Sea). Spatial distribution of landings of the main fleets (average value of the period 1996-1999).

Figure 3. Nephrops FU 20-22 (Celtic Sea). Above: Spatial and by year distribution of Irish landings. Below: Contribution of the rectangle 31E3 (concentrating more than $2 / 3$ of the total Irish production) in the total French landings. Years 1999-2008.

Figure 4. Nephrops FU 20-22 (Celtic Sea). Spatial and monthly distribution of French landings.

MC4 2008 Landings of Nephrops Norvegicus

Figure 5. Nephrops FU 20-22 (Celtic Sea). Spatial distribution of French landings in 2007.

Figure 6. Nephrops FU 20-22 (Celtic Sea). Number of Irish trawlers involving Nephrops landings.

Figure 7. Nephrops FU 20-22 (Celtic Sea). Tailed proportion (in converted weight) in landings by month (left) and by year (right).

Figure 8. Nephrops of the Celtic Sea (7.f,g,h, FU20-22). Biometric relationships (CL vs. $2^{\text {nd }}$ abdominal segment by sex). Data harvested during the survey EVHOE 2007.

Figure 9. Nephrops of the Celtic Sea (7.f,g,h, FU20-22). French landings for 2008. Length distributions (1) including the data on tails and (2) using the previous method (no sampling of tails; the total tailed proportion was apportioned in the smallest category of entire Nephrops at auction).

Figure 10. Nephrops of FU 23-24 (Bay of Biscay). Final results of logistic derivation of discards. Relationship between mean sizes of landings and discards. The triangular fonts represent the results of the status quo (proportional derivation) method. The underlined years correspond to the available datasets of sampling onboard. The rhombus fonts correspond to the logistic derivation. The dark curve is provided by the final fitting on the whole time series. The bright curve is the result of the fitting on the years with available data.

Figure 11. Nephrops of FU 23-24 (Bay of Biscay). Comparison between discard rates obtained by previous (proportional) derivation and by logistic derivation. Combined sexes and whole year datasets.

Figure 12. Nephrops of FU 23-24 (Bay of Biscay). Comparison between distributions of length frequencies (carapace length, CL in mm) of discards obtained by sampling and by simulation (broken lines).

Figure 13. Nephrops of FU 23-24 (Bay of Biscay). Comparison between discarded numbers of individuals obtained by simulation (Y axis) and by sampling (X axis). Statistical tests on linear regressions of Y vs. X by year.

year	Da	Dobs	$\%$
2005	0.113	0.101	85
2004	0.127	0.048	107
2003	0.135	0.031	100
1998	0.154	0.049	106
1991	0.157	0.044	97
1987	0.115	0.052	108

Figure 14. Nephrops of FU 23-24 (Bay of Biscay). Statistical test (Kolmogorov-Smirnov) between cumulated frequencies of sampled and simulated discards by year.

Figure 15. Nephrops FU 20-22 (Celtic Sea). Different hand-sorting logistic curves by quarter, country and dataset. In 2005 no sample was collected in France during the $1^{\text {st }}$ quarter and the $2^{\text {nd }}$ quarter provided inconsistent results.

Figure 16. Nephrops of FU 20-22 (Celtic Sea). Comparison between discard rates obtained by previous (proportional) derivation (used by WGNEPH until 2004) and by logistic derivation. Combined sexes and whole year datasets.

Nexp $=0.84^{*}$ Nobs $+54.76 p^{2}=0.85 p($ slope $)=0.01[86 \%]$

Figure 17. Nephrops of FU 20-22 (Celtic Sea). French fleet. Results of the discard simulation on theyear 1997. The distribution is assumed symmetrical and no constraint was set on relationship between mean sizes in discards and landings. Simulated number (Nexp) illustrated by broken line are compared to sampled one (Nobs).

Figure 18. Nephrops of FU 20-22 (Celtic Sea). Discard rate (\%) of Irish trawlers by year and quarter.

Figure 19. Nephrops FU 20-22 (Celtic Sea). Irish trawlers. DLF of sampled (continuous line) and simulated (broken line) discarded numbers.

Figure 20. Nephrops FU 20-22. Indices of the French groundfish survey EVHOE.

Figure 21. Nephrops FU 20-22. Comparison of indices EVHOE and of commercial LPUE and CPUE for French and Irish trawlers.

Figure 22. Omnidriectional mean variograms for the Celtic Sea FU20-22 by year from 2006-2008

Figure 23. Cross validation plots for the Celtic Sea FU20-22 by year from 2006-2008

Figure 24. Contour plots of the krigged density estimates for the Celtic Sea FU20-22 by year from 2006-2008.

FU20-22 Burrow density (no/m2)

Figure 25. Burrow density distributions for the Celtic Sea FU20-22 by year from 2006-2008.

Table 10. Summary geostatistics for the Nephrops UWTV surveys of the Celtic Sea from 2006-2008.

			Number Number Nof boundary points	Mean Density (No./M2)	Standard Deviation	CVgeo (\%)	Var	Domain Area (m2)	Raised abundance estimate (million burrows)
Smalls	2006	100	50	0.62	0.50	80%	0.25	2847	1914
Smalls	2007	107	63	0.46	0.44	96%	0.19	2915	1402
Smalls	2008	76	31	0.47	0.40	85%	0.16	2698	1448

Table 11. Summary statistics for the Nephrops UWTV survey indicator stations of the Labadie and Nymphe Bank and Seven Heads Grounds from 2006-2008.

Ground	Year	Number of stations	Mean Density (No./M2)	Area Surveyed (M2)	Burrow count	Standard Deviation	95\%CI	CV
	2006	9	0.42	1,322	760	0.37	0.28	29%
Labadie Bank	2007	-	-	-	-	-	-	-
	2008	-	-	-	-	-	-	-
Nymphe Bank	2006	2	0.27	195	89	0.39	3.47	100%
	-	-	-	-	-	-	-	
Seven Heads	2007	-	-	-	-	-	-	-
	2006	7	0.23	995	293	0.25	0.23	41%

*random stratified estimates are given for the Labadie Bank, Nymphe Bank and Seven Heads grot Area not surveyed in 2007 to 2008 due to weather

Table 7.7.3. Nephrops in 7.f,g,h. Length distribution of landings by country in 2002. Quarterly and total values (10^{3}). The reported size is the carapace length (CL). Conversion of CL to TS (total size) is done by multiplication by 3.3.

- The French data are presented by 2 ways: (1) Previous method (tails not sampled and systematically apportioned in the smallest category of entire Nephrops at auction). (2) Tails are included (simulation of hand-sorting s-shaped curve vs. CL: see Stock Annex).
- The Irish data reported from the whole MA M (See Stock Annex).

$\frac{\mathrm{CL}}{(\mathrm{~mm})}$	Q1			Q2			Q3			Q4			Year		
			IRL	F			F		IRL	F		IRL	F		IRL
	no tails			no tails			no tails			no tails			no tails	tails	
17											1			1	
18											1			1	
19			4			5					2	24		2	33
20			13			6								3	145
21			37			4						172		5	213
22		1	72			17								8	653
23		1	124		1	85					12	1124		13	1340
24		2	236		1	136						1804	81	81	2243
25		3	421		2	216			75		30	1533		35	2245
26		5	538		4	245					47	1495		57	2459
27		10	778		7	326			202		75	1110		94	2417
28		17	760	83	71	577		5	607		120	1516	83	213	3459
29	21	48	639		22	76			470		289	1220	21	369	3104
30	41	88	510		39	741		23	1125	242	613	1107	283	763	3483
31	47	339	589			1075		51	1685	242	667	1284	289	1125	4632
32	132	399			25	1199		110	1558	242	626	1002	375	1260	4325
33	140	433			283	1624	37	266	1551	404	694	995	664	1676	4624
34	236	1	19	122	801	1654	165	791	1455	404	718	753	927	2822	4281
35	366	12	326	540	1436	1654	401	1427	1152	678	857	782	1985	4332	3913
36	503	693	256	995	2001	1376	1125	1745	599	601	777	512	3223	5217	2742
37	648	767	221	1541	2247	1361	706	1359	711	823	914	412	3718	5288	2705
38	797	832	198	1603	2131	1156	1603	1761	580	1146	1096	526	5150	5821	2460
39	847	827	198	2230	2404	820	1463	1504	341	824	849	270	5364	5584	1628
40	1078	963	116	2901	2690	907	1466	1320	313	1618	1388	270	7063	6361	1606
41	817	730	47	2757	2381	380	1028	896	249	1377	1156	171	5978	5163	847
42	1114	926	140	2365	1929	322	1186	958	207	669	578	156	5334	4391	825
43	509	434	12	2070	1598	249	781	629	129	836	671	85	4196	3332	474
44	604	493	47	1003	794	234	1076	837	129	771	625	28	3454	2749	438
45	352	288	23	1157	882	132	605	476	74	612	527	71	2727	2174	300
46	144	122		467	371	132	893	692	37	306	281	14	1811	1466	183
47	179	150		345	302	15	470	371	97	247	238	14	1241	1061	126
48	78	68	23	472	390	102	422	331	55	175	161	14	1147	949	195
49	87	74	12	133	124	59	202	164	37	55	59	14	477	420	121
50	73	62		242	207	15	158	129		87	91	14	560	490	29
51	48	41		166	142		126	106	18	95	83		435	371	18

52	32	29	72	73	120	100	18	94	74	318	276	18
53	30	28	76	77	45	43		24	25	175	172	
54	31	29	57	57	65	54	18	23	24	176	165	18
55	24	24	53	53	99	80	18	17	17	192	175	18
56	18	18	40	41	19	18		8	9	85	85	
57	11	11	42	42	9	9	18	15	15	77	78	18
58	11	11	23	23	8	8	18			42	42	18
59	10	10	12	12	2	2		1	1	25	26	
60	12	13	14	14	7	6	18	1	1	34	34	18
61	3	3	18	18	7	7		1	1	28	28	
62	4	4	20	21	1	1		1	1	26	26	
63	2	2			1	1		8	8	11	11	
64	2	2						1	1	2	2	
65	2	2			1	1				3	3	
66												
67												
68	1	1			1	1				2	2	
69												
70												
71												
72												
73												
74												
75												
Tot	90	101	217	238	1429	1629	138	127	145	5778	6482	583

Table 7.7.4. Nephrops in 7.f,g,h. Length distribution of landings by country in 2003. Quarterly and total values $\left(10^{3}\right)$. The reported size is the carapace length (CL). Conversion of CL to TS (total size) is done by multiplication by 3.3.

The French data are presented by 2 ways: (1) Previous method (tails not sampled and systematically apportioned in the smallest category of entire Nephrops at auction). (2) Tails are included (simulation of hand-sorting s-shaped curve vs. CL: see Stock Annex).

CL	Q1		Q2			Q3			Q4			Year		
(mm)	F	IRL	F		IRL									
	$\begin{aligned} & \text { no tails } \\ & \text { tails } \end{aligned}$		no tails	tails		no tails	tails		no tails			no tails	tails	
17														
18					2									2
19					10									10
20		124			26			71			49			270
21		556			72			271		1	172		1	1071
22		567			169			399		1	198		1	1333
23		1452			319			596		1	211		2	2578
24		446		1	848		1	608		2	239		4	2141
25		150		1	1110		1	737		3	477		6	2474

72
73
74
75

Total 8424890712492229772536623767229782597722516858194389258629596968868034

Table 7.7.5. Nephrops in 7.f,g,h. Length distribution of landings by country in 2004. Quarterly and total values (10^{3}). The reported size is the carapace length (CL). Conversion of CL to TS (total size) is done by multiplication by 3.3.

- The French data are presented by 2 ways: (1) Previous method (tails not sampled and systematically apportioned in the smallest category of entire Nephrops at auction). (2) Tails are included (simulation of hand-sorting s-shaped curve vs. CL: see Stock Annex).
- The missing Irish data of the $1^{\text {st }}$ and $4^{\text {th }}$ quarters were calculated by likelihood function as explained (Stock Annex).

CL		Q1			Q2			Q3			Q4		Year		
(mm)	F		IRL	F		IRL	F		IRL	F		R	F		IRL
	no tails	tails		no tails	tails		no tails			tai	tails		no tails	tails	
17												1			1
18			3									2			6
19			16									4		1	20
20			30			1			1			8		1	40
21			46						1			19		2	77
22		1	69					2			1	57		3	134
23		1	108			25		3	4		1	107		6	245
24		2				100		6	13		2	207		11	480
25		4	13			189		12	37		3	368		19	807
26			98			446		22	107		4	565		35	1416
27		1	390		3	578		42	286		7	799		64	2053
28			443		6	705		80	699		12	1091		117	2938
29		34	538		10	1013		152	1126		20	1360		215	4037
30		59	681		16	1402		290	1652		32	1521		397	5255
31		102	737		27	1965	73	880	1798		53	1563	73	1063	6063
32	80	402	783	64	88	2493	254	1227	1606		88	1542	398	1805	6424
33	321	669	800	64	119	2870	363	1114	1403		145	1386	748	2047	6459
34	351	797	746		350	3038	327	983	1336	161	312	1144	838	2442	6264
35	728	978	634	191	592	2299	689	1193	988	183	589	908	1792	3352	4829
36	618	823	553	318	1177	1906	1161	1336	708	688	1078	738	2785	4414	3905
37	763	825	444	1080	1723	1702	871	978	449	1009	1224	544	3723	4749	3138
38	827	786	373	1080	1745	1302	1161	999	353	596	817	397	3664	4346	2426
39	537	514	298	1652	1741	799	798	674	224	688	700	297	3675	3628	1618
40	695	584	216	826	1027	499	980	747	134	573	558	223	3074	2916	1072
41	486	412	150	1525	1348	448	1161	841	135	573	508	162	3745	3109	894
42	612	487	105	1789	1421	249	762	547	82	688	543	118	3852	2998	554
43	516	409	68	837	699	162	726	509	57	575	437	79	2653	2054	366
44	461	369	41	1218	895	74	635	449	59	392	296	59	2706	2009	234

Total 89381002990481538117020244341235415106134097892885015412445655100562303

Table 7.7.6. Nephrops in 7.f,g,h. Length distribution of landings by country in 2005. Quarterly and total values (10^{3}). The reported size is the carapace length (CL). Conversion of CL to TS (total size) is done by multiplication by 3.3.

The French data are presented by 2 ways: (1) Previous method (tails not sampled and systematically apportioned in the smallest category of entire Nephrops at auction). (2) Tails are included (simulation of hand-sorting s-shaped curve vs. CL: see Stock Annex).

65	2	2	1	2	2	3
66	2	2	1	2	3	4
67			1	2	1	2
68		1	2	1	2	
69		1	2			
70				1	2	
71			1	1	1	
72		1	3		1	
73			1	1	3	
74				1	1	
75					1	

Total 951910828180721130714310653347474927610511919010123184093749144537112326

Table 7.7.7. Nephrops in 7.f,g,h. Length distribution of landings by country in 2006. Quarterly and total values (10^{3}). The reported size is the carapace length (CL). Conversion of CL to TS (total size) is done by multiplication by 3.3.

The French data are presented by 2 ways: (1) Previous method (tails not sampled and systematically apportioned in the smallest category of entire Nephrops at auction). (2) Tails are included (simulation of hand-sorting s-shaped curve vs. CL: see Stock Annex).

CL		Q1			Q2		-	Q3		Q4			Year		
(mm)	F		IRL												
	no tails			no tails	tails										
17															
18									4						4
19						7			8						15
20			80			21			11			123			235
21			93			57			12			335		1	497
22						195		1	70		1	582		1	1113
23		,	559			488		1	123		1	1141		3	2312
24			1543		1	852		2	429		2	1705		5	4529
25		1	2000		1	1501		4	692		3	2210		8	6403
26		1	2946		2	3065		8	1333		5	2705		15	10050
27		2	3263		3	4601		15	1722		8	2869		28	12454
28		4	3245		6	5701	10	35	2049	6	17	2354	15	62	13349
29		7	2825		12	6459		58	1689		22	1442		99	12415
30		14	1951	13	30	6443	10	119	1437	11	43	1119	34	205	10950
31		25	1740		41	4632	20	234	1012		60	731	20	359	8115
32	18	58	990	26	91	4577	68	715	706	34	109	577	146	972	6849
33	53	319	673	13	148	3302	78	904	647	85	291	431	229	1662	5053
34	152	524	398	208	840	2438	205	907	573	312	538	346	877	2809	3755
35	286	676	412	312	1404	1679	254	982	269	431	729	332	1283	3791	2693
36	397	783	178	845	2036	1190	488	1055	274	738	915	265	2468	4789	1907
37	642	880	123	1430	2520	826	714	1160	144	772	880	248	3558	5440	1343
38	648	808	96	1963	2519	518	1143	1235	110	755	752	173	4509	5314	897

39	788	799	82	1769	2052	355	1133	1025	92	590	560	140	4281	4435	668
40	735	680	14	2015	1839	276	918	745	19	568	483	96	4237	3747	405
41	636	552	14	1755	1449	261	1026	709	51	540	420	67	3957	3130	393
42	722	577		1496	1121	126	791	525	11	319	250	52	3329	2474	189
43	674	518	14	1257	879	98	815	507	7	315	227	32	3061	2131	151
44	486	370		965	652	85	519	322	11	211	151	38	2181	1495	133
45	429	321		897	585	56	335	208	7	119	89	17	1781	1202	80
46	346	262		696	462	14	468	284	4	119	85	14	1629	1093	32
47	297	231	27	529	365	28	287	183		86	65	14	1198	844	69
48	262	209		465	333	7	138	107		48	38	12	913	687	19
49	168	145		248	203	14	138	98		66	51	3	619	497	17
50	87	84		216	185		117	89		23	22	6	443	381	6
51	71	72		100	98		115	92		27	25		313	286	
52	68	68		156	127	14	70	63		19	18		313	276	14
53	62	64		114	101		46	52			11		231	228	
54	42	44		72	69		42	39		9	10		166	161	
55	34	35		63	59		27	28		10	10		134	133	
56	33	35		39	41		23	24			9		105	108	
57	29	30		38	39		13	14		5			85	87	
58	17	18		38	39		12	12		5	5		71	74	
59	11	11	14	26	27			9		3	4		49	50	14
60	7	7		15	15		12	12		2	2		36	37	
61	4	4		10	11			6		1	1		21	22	
62	3	3		3	3		4	4		1	1		10	11	
63	1	1			-			1		1	1		3	3	
64	2	2		-			2	2					7	7	
65				1			1	1					2	2	
66															
67															
68															
69														1	
70															
71															
72															
73															
74															
75															
Total 82099244235451779620408498871006012597135156249691820179423154916710712															

Table 7.7.8. Nephrops in 7.f,g,h. Length distribution of landings by country in 2007. Quarterly and total values (10^{3}). The reported size is the carapace length (CL). Conversion of CL to TS (total size) is done by multiplication by 3.3.

The French data are presented by 2 ways: (1) Previous method (tails not sampled and systematically apportioned in the smallest category of entire Nephrops at auction). (2) Tails are included (simulation of hand-sorting s-shaped curve vs. CL: see Stock Annex).

CL		Q1		Q2			Q3			Q4			Year		
(mm)	F		IRL												
	no tails	tails		no tails	tails		no tails	tails		no tails	tails		no tails	tails	
17															
18															
19						29									29
20			105			148			10			204			468
21			211			354			36						601
22			495			1048			167			650		1	2360
23			916		1	2897			539			3669		1	8021
24			2757		1	3975			1307		1	5096		2	13135
25		1	4218		2	5684			2576		1	5667		4	18144
26		2	5320		4	8822			2946		2	5620		7	22708
27		3	6276	21	18	9507		1	3386			3055	21	25	22225
28		6	5458	21	25	11331		2	4067		5	3630	22	37	24486
29		10	4525		25	11794		5	4174	5	10	352	5	50	24021
30	5	21	1767	42	69	10040		10	3040		13	4662	47	113	19509
31	5	36	916		87	6477		22	2013			3376	10	170	12783
32	15	72	357	64	195	4084	22	60	1192	25	51	3386	125	378	9018
33	81	373	105	127	861	2757	54	504	1007	45	248	2526	307	1986	6395
34	161	490		255	1541	1430	194	917	383	121	407	2196	731	3354	4009
35	218	538	105	806	2141	1118	517	1286	288	226	544	1797	1768	4509	3309
36	328	563		1125	2539	707	862	1543	168	301	640	1697	2616	5286	2573
37	385	581		1804	2644	441	1412	1562	69	453	738	1248	4053	5525	1757
38	603	648		1973	2313	352	1121	1111	49	592	811	1073	4290	4883	1474
39	522	520		1783	1860	293	1013	812	32	744	801	823	4063	3993	1148
40	461	407		2295	1768	322	884	624	39	597	630	548	4238	3429	909
41	410	331		1490	1134	233	766	492	27	646	556	678	3312	2513	938
42	363	277	-	1429	946	72	540	332		515	413	374	2848	1967	447
43	334	245		1399	854	116	423	250	16	353	272	349	2510	1620	481
44	317	226		866	539	87	267	159	6	335	232	50	1784	1156	143
45	233	167		973	575	73	278	167		293	198	75	1777	1107	148
46	264	184		569	370	57	196	122	6	253	168	75	1282	844	138
47	116	88		328	242	14	98	72		205	135	50	747	537	64
48	136	100		391	281		72	60		176	115	50	774	555	50
49	91	71		158	147	14	46	44		126	89	75	421	350	89
50	68	56		160	125		38	35		86	60		352	275	
51	44	40		73	77		35	32		44	32		196	181	
52	34	31		70	62		19	20		20	19		142	132	
53	22	21		39	41		11	12		25	19	24	98	93	24
54	18	17		21	22		9	9		27	19		76	67	
55	19	18		17	18		8	8		6	6		50	50	
56	9	9		18	19		5	5		19	12		51	46	
57	7	7		7	7		2	2		8	6		24	22	
58	11	10		6	6	14	2	2		2	2		21	20	14

59	4	4	5	5			1	1	10	10	
60	5	5	6	6	1	1	2	2	13	13	
61	2	2	5	5	1	1	1	1	8	9	
62	2	2	3	4	1	1			7	7	
63	1	1	2	2					3	4	
64			1	1					2	2	
65									1	1	
66											
67											
68											
69											
70											
71											
72											
73											
74											
75											
Tot	52	61	8	21	88	10		72	388	4533	201614

Table 7.7.9. Nephrops in 7.f,g,h. Length distribution of landings by country in 2008. Quarterly and total values (10^{3}). The reported size is the carapace length (CL). Conversion of CL to TS (total size) is done by multiplication by 3.3.

The French data are presented by 2 ways: (1) Previous method (tails not sampled and systematically apportioned in the smallest category of entire Nephrops at auction). (2) Tails are included (as performed since WGCSE 2009).

33	89	752	1319	280	1527	4916	30	1372	3063	146	488	1520	544	4140	10817
34	247	1058	1123	536	1789	4829	181	1629	2363	273	721	1698	1236	5198	10013
35	438	977	1462	925	1818	4573	441	1720	1221	450	817	1939	2253	5332	9194
36	554	1167	1123	1448	1993	3000	941	2116	1383	753	979	1219	3697	6254	6725
37	668	920	677	1692	1596	2042	1422	1589	718	863	897	900	4645	5001	4337
38	647	751	659	1814	1383	1224	1682	1525	666	1087	1032	999	5231	4690	3548
39	669	567	356	1583	1242	915	2063	1434	244	844	828	780	5159	4071	2294
40	597	444	339	1558	1148	562	1462	965	213	911	750	600	4528	3306	1713
41	654	465	267	1418	946	378	1382	856	282	772	619	679	4226	2886	1606
42	560	383	178	1027	671	393	1052	595	182	744	566	439	3383	2215	1192
43	576	367	89	1044	607	267	703	368	91	521	378	280	2845	1720	726
44	511	316	89	812	471	321	782	414		374	291	60	2480	1493	470
45	598	371	53	568	342	84	455	245		255	233	160	1876	1190	297
46	345	225		405	259	84	277	180		198		40	1225	835	123
47	290	206		219	151		184	112		118		40	812	593	40
48	209	144		201	173	41	105	76		84		40	600	456	81
49	102	74		128	97	167	100	76					395	298	207
50	117	84		93	81	125	55	45			36.	40	308	247	165
51	49	39		56	56	41	74	60		50	37	20	229	192	61
52	28	25		47	40	41	30	30		17	14		120	109	41
53	36	29		28	28		23	23		14	12		102	92	
54	11	11		21	21			16		6	16		55	65	
55	13	11		17	17		12	12		3	3		46	43	
56	8	8		12	12		7	7		1	1		28	28	
57	12	10			7			5		2	2		27	24	
58		12					1	1		1	1		20	17	
59	4	4					1	1					8	8	
60	1	1			3		1	1					4	4	
61		-)		1								2	2	
62			5		1								1	1	
63				1	1								1	1	
64															
65															
66															
67															
68															
69															
70															
71															
72															
73															
74															
75															
Total 8117103872191416039208367308613516173802690086769763340564634858365155956															

Table 7.7.10. Nephrops in 7.f,g,h. Length distribution of landings by country in 2009. Quarterly and total values (10^{3}). The reported size is the carapace length (CL). Conversion of CL to TS (total size) is done by multiplication by 3.3.

The French data are presented by 2 ways: (1) Previous method (tails not sampled and systematically apportioned in the smallest category of entire Nephrops at auction). (2) Tails are included (as performed since WGCSE 2009).

Table 7.7.11. Nephrops in 7.f.g.h. Length distribution of landings by country in 2010. Quarterly and total values (10^{3}). The reported size is the carapace length (CL). Conversion of CL to TS (total size) is done by multiplication by 3.3 .

The French data are presented by 2 ways: (1) Previous method (tails not sampled and systematically apportioned in the smallest category of entire Nephrops at auction). (2) Tails are included (as performed since WGCSE 2009).

CL	Q1			Q2			Q3			Q4			Year		
(mm)	F		IRL												
	no tails			no tails			no tails			no tails			no tails	tails	
17															
18															
19															
20															
21						43			34			92			169
22			181			97			59			228			564
23			699			301			207			319			1526
24			1032			691			481			360			2564
25			3177			1381			949			839			6346
26			5951		17	2344			1623		7	1128		24	11047
27		13	7952		17	3558		4	2014		2	1663		36	15188

28		9	5362		41	5352		8	1984		11	2048	
29		13	5254		70	6136		8	2736		45	1811	
30		28	3887		169	6558		76	2385		77	2570	
31		57	2667		256	6066		136	1915	2	141	1706	2
		5950	15399										
32		94	2222		484	5360		236	1706	8	149	1586	8

| 74 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 75 | 1 | 1 | 1 | 1 |

Total 48535498528396120803357994530363921945021452647173841842022571147667

