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Foreword 

The course in Fontainebleau was a great experience which provided helpful technical 
support for my work on the variation of spatial distributions of fish and increased my 
repertoire of methods. In particular, I am now able to deal with a huge amount of trawl 
survey station data, analyse the structure in their spatial and temporal variability, and 
derive maps from sample datapoints. In addition, I also see how useful it can be for 
other hot topics such as plastics in the ocean or impacts of oil rigs, especially during a 
time when environmental issues receive increasing public attention. During the course, 
I was also able to socialize and meet a variety of interesting, smart, and friendly scien-
tists from all over the world. Courses such as the one in Fontainebleau are like the 
cherry on a scientist’s cake. It is about working together, which is more important in 
science than in every other business, and it is about long nights in a Scottish pub in the 
heart of France with German beer, English gin, and Chilean jokes.   

Karl-Michael Werner 

University of Bergen student and participant in the 2014 ICES training course on geo-
statistics 
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1 Introduction 

Fisheries surveys to estimate the abundance of populations have become a pillar in 
providing fishery-independent data to determine the status of fish stocks and monitor 
ecosystems. Since the early 1990s, geostatistics has been used for designing sampling 
at sea and estimating the precision of estimates of global population biomass or abun-
dance (ICES, 1993; Rivoirard et al., 2000). Now, the ecosystem approach to fisheries 
management calls for methods that deal explicitly with spatial issues. In effect, the spa-
tial management of human activities and/or the conservation of particular habitats re-
quire precise distribution maps of resources at various stages in their life cycle. Geo-
statistics offers a range of solutions for mapping and characterizing different aspects 
of spatial distributions. On more ecological grounds, geostatistics is also useful for 
modeling habitats and understanding the ecology of spatial distributions.  

The varied range of geostatistical methods is largely based on the theory of random 
functions and random fields. The cornerstone of the geostatistical approach to apply-
ing this statistical framework for mapping lies in the so-called structural analysis, 
where the spatial (or spatio-temporal) correlation structure in the data is analyzed and 
modeled by a so-called variogram. Model types (e.g. power, exponential, spherical) are 
chosen based on their underlying physical and mathematical properties relative to the 
spatial process to be modelled (Matheron, 1989). Once the model type is chosen, it is 
best fitted to the data using standard statistical fitting procedures. The model is then 
used for interpolating the data on a grid, which results in a map of the variable studied 
(local and global estimation) and a map of the estimation error (precision of the esti-
mation). It is worth noting that being model-based, the estimation variance calculated 
by geostatistics applies to any sampling design and particularly to regular designs, in 
which sample point locations are spatially correlated. This frees the practicioner from 
using random designs only to compute design-based statistics, as random designs may 
provide lower precision than regular designs. Further, geostatistics and classical statis-
tics correspond to different approaches when using the same statistical framework of 
random functions (Matheron, 1989). In particular, geostatistics estimates regional 
quantities (mean value of the process over a domain) while classical statistics focusses 
on estimating the process mean. In addition, classical statistics computes the variance 
of the estimate, while geostatistics also develops the variance of the estimation error 
(ICES, 1993; Petitgas, 2001). Depending on the spatial model, sampling intensity, and 
size of the domain, the estimates may or may not differ, which justifies differentiating 
between the two approaches (Matheron, 1989). The objective of this handbook is to 
summarize and explain the basic notions on the wide range of geostatistical methods 
(linear, multivariate, non-linear, simulations) that are useful for mapping in the context 
of the ecosystem approach and offer to the reader illustrative case studies with code in 
R language.  

Global estimation of population abundance (or biomass) with its precision for different 
survey designs (even systematic design) is a key issue in fisheries science for which 
geostatistics provides solutions given a variogram model (Petitgas, 2001; Bez, 2002). 
This is explained in chapters 4 and 5 on variography and variances. This latter chapter 
discusses the relationship between structure and scale. Further, when the variable to 
estimate is a non-linear combination of primary parameters that are those sampled, 
simulations may be required, as is explained in Chapter 9 on simulations.  
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Variation in spatial distributions with population abundance and/or environmental 
factors is another key issue. The many aspects of spatial distributions can be character-
ized by spatial indicators and monitored over time (Bez and Rivoirard, 2001; Woillez 
et al., 2007, 2009a). Chapter 3 is dedicated to spatial indicators.  

Mapping resources and habitats is clearly paramount. The geostatistical solution to 
mapping is kriging, which constructs local unbiased estimates of minimum variance. 
For that, one assumes an underlying random function and its variogram model. The 
various types of kriging and interpolation settings (Chilès and Delfiner, 2012) are pre-
sented in Chapter 6.  

Mapping habitats may be more complex than kriging fish concentrations. One may be 
interested in thresholding the data to consider the prevalence in species occurrence or 
hotspots. Or one may be interested in incorporating in the mapping particular relation-
ships with environmental parameters, some of which may be qualitative variables. 
Thus, multivariate kriging and non-linear approaches using thresholds (Rivoirard, 
1994; Chilès and Delfiner, 2012) are developed in chapters 7 and 8.  

The applications of a wide range of geostatistical tools are expected to increase with 
the development of the package RGeostats (Renard et al., 2016), which is now freely 
available for the R language environment. This handbook is intended to summarize 
the principles of geostatistics and provide to the reader the capability to apply the 
methods using demonstration scripts in the R language. It compiles the materials of 
the 2013 and 2014 ICES training courses held by the authors in Fontainebleau. The 
handbook is constructed from lecture notes presenting the theoretical background with 
illustrative fisheries survey data studies. The annexes detail the practice in applying 
the methods. The R package RGeostats is presented in Annex 1. Example data sets used 
throughout the document are presented in Annex 2. Demonstration Rscripts are pro-
vided in Annex 3. Each script allows the user to perform a particular geostatistical 
study on an example dataset. Each script can be copy/pasted in the R environment for 
demonstration. The examples illustrating the theory are taken from the Rscripts pro-
vided in Annex 3.   
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2  Basic notions 

Geostatistics is a set of models and methods that are designed to study variables which 
are distributed in space (or possibly space-time). Such variables possess both a struc-
tured and a random aspect and cannot be simply described by a regular function of the 
coordinates. Such a variable was coined a regionalized variable denoted as z(x); that is, 
the variable z at location x (considered as punctual or quasi-punctual, x being a short 
notation for the 2D (x,y) or 3D (x,y,z) coordinates).  

Examples of such regionalized variables are: (i) bottom depth at 2D point, (ii) fish den-
sity in 2D, or (iii) concentration in 3D (number or weight of fish per unit 2D area or 3D 
volume). Occasionally, x can represent a point in 1D, e.g. the transect biomass obtained 
by summing fish densities along transects with a given direction. In most cases 
throughout this handbook, the target variable will be the 2D fish density of a spatial 
population, reflecting the majority of sampling tools that are used in fisheries surveys 
(e.g. echosounders, trawls, images, video). Then, the abundance Q over a region V is 
the sum of the fish density over this region: 

𝑄𝑄 = � 𝑧𝑧(𝑥𝑥)d𝑥𝑥
𝑉𝑉

 

and the mean fish density over this region is: 

𝑧𝑧(𝑉𝑉) =
𝑄𝑄
𝑉𝑉

=
1
𝑉𝑉
� 𝑧𝑧(𝑥𝑥)d𝑥𝑥
𝑉𝑉

 

Such variables are usually not known everywhere in space. Data may be available at 
isolated datapoints (e.g. sampling stations for trawl surveys), along transects (e.g. 
acoustic or video surveys), or, for example, over a gridded map (satellite data). 

New variables obtained by transforming original ones can also be considered. For ex-
ample, the indicator of presence of fish: regionalized variable equal to 0 where the fish 
density is 0 and equal to 1 otherwise. Or the logarithm of a non-zero concentration to 
better describe a histogram and reduce the influence of the largest values (care should 
be taken, however, when using such non-linear transformations: back-transforming 
statistics are not straightforward, for example, the antilog of the mean of the logarithm 
is not the mean of the variable). 

Basic statistics and visualization are very helpful at the beginning of a data analysis, 
particularly to make the distinction between different statistical populations or to de-
tect outliers or extreme values. Appropriate tools include the histogram of a variable, 
the scatter plot between two variables, and basemaps overlaid with bubbles of 
area/size proportional to the value of a third variable. Relevant statistics are:  

• the arithmetic mean of values: 
1

1 n

im z
n

= ∑ ;  

• their variance: 2 2 2 2

1 1

1 1( )
n n

i iz m z m
n n

σ = − = −∑ ∑ , which measures the dis-

persion around the mean, in squared units (when the mean is 0, the vari-
ance is the mean of the squared values); 

• the standard deviation σ (square root of variance 2σ σ= ), measuring the 

dispersion around the mean (in the unit of the variable); 
• for a positive (and possibly null) variable, the coefficient of variation CV = 

σ/m, measuring the relative dispersion around the mean; 
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• the correlation coefficient between two variables: 12

1 2

Cρ
σ σ

=  

where 
12 1 1 2 2

1

1 ( )( )
n

i iC z m z m
n

= − −∑  is the covariance between the two varia-

bles, which lies between –1 and +1 and measures the linear dependence 
between the two variables. 

In many software packages (including R), variances (and covariances) are computed 
by dividing by n – 1, not n. Division by n corresponds to the variance with respect to 
the observed mean (empirical variance). Division by n – 1 corresponds to the estima-
tion of the variance of a theoretical probability distribution with unknown mean, when 
supposing that the data are independent outcomes of this distribution. Because of spa-
tial correlations among the samples, division by n – 1 is not appropriate in geostatistics. 

2.1 Support and additivity 

The variables may be measured or considered at punctual or quasi-punctual locations 
(e.g. trawl stations), but also on user-defined segments along a line (e.g. acoustic tran-
sects), on blocks (e.g. ICES rectangles), or on any kind of geographical domains. This 
corresponds to the support on which the variable is considered. The same variable, 
considered at different supports, will have different statistics, notably in terms of var-
iability (see the example of acoustic "pings" in Rivoirard et al., 2000).  

A variable is “additive” if its mean over a set of points (e.g. a block) equals its arithmetic 
mean (what are considered as points being in reality small and equal units). For exam-
ple, a bottom depth or a fish density are additive. On the contrary, the mean length of 
fish (e.g. measured at trawl stations) is not additive; the mean length over several sta-
tions is not the arithmetic mean of the mean length, as it has to be weighted by the 
number of individuals (supposed to be counted using the same trawled area). The 
same can be said for proportions at age.   

2.2 Referencing   

To compute distances, longitude and latitude have to be converted into 2D coordinates 
of absolute distance (km or nautical miles). For short distances at medium–low lati-
tudes, a simple projection x = 60 × longitude × cos(average latitude): y = 60 × latitude 
can be used to convert to nautical miles, which is often used in marine applications 
because of the fact that 1 nautical mile is equivalent to 1° of latitude anywhere in the 
world (see Application 2.1). This simple projection presents the advantage of trans-
forming a regularly gridded set of points into another gridded set of points.   

 

Application 2.1. Change of reference system 

A bottom-trawl survey is represented with red circles proportional to trawled hake 
(Merluccius merluccius) densitites in Figure 2.1. The axes are labeled in longitude and 
latitude. 

# pre-requisite 
projec.toggle(0) 
rg.load(filename="Demo.hake.bob.db.data",objname="db.data") 
 
# Display in Longitute/Latitude system (left) 
plot(db.data,title="",xlab="Longitude",ylab="Latitude",asp=1/cos(45*p
i/180)) 
map("worldHires",add=T,fill=T,col=8)  
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# Display in transformed reference (Right) 
projec.define(projection="mean",db=db.data) 
plot(db.data,title="",xlab="Nautical mile",ylab="Nautical mile",asp=1
) 

 
Figure 2.1. Example of cosine coordinate transformation. Left: geographical space; right: after 
transformation (Hake bottom-trawl survey, Ifremer, France). 

 

If the latitude is too high or varies too much, a more complex projection may be  
preferable and can be found in dedicated R libraries. Points that are regularly spaced 
in the geographical space will not be so after projection, and vice versa; this may be 
important when computing and representing map values. 

Sometimes a natural coordinate system may be used to better follow natural spatial 
continuities (e.g. distance along and off shelf edge). One possible way of doing this 
consists of an ad hoc transformation, projecting points on a reference line either prede-
fined (e.g. coastline) or user defined (see Application 2.2). 

 

Application 2.2. Change of reference system 

An acoustic survey track is represented in black in Figure 2.2. The reference line is de-
fined by a set of ordered points and the segments with directions Ui (i = 1, 2, ...) that 
join them (in red). Each datapoint is projected on one segment of the reference line. 

# pre-requisite 
projec.toggle(0) 
rg.load(filename="Demo.Nansen.db.data", objname="db.data") 
rg.load(filename="Demo.Nansen.polyline", objname="polyline") 
 
# Display in Longitute/Latitude system (left) 
plot(db.data,pch=20,col="black",name.post=1,cex=0.1,asp=1, 
     title="",xlab="Longitude",ylab="Latitude") 
lines(polyline,col="red",pch=2) 
map("worldHires",add=T,fill=T,col=8) 
 
# Display in transformed reference (Right) 
db.data = db.unfold.polyline(db.data,polyline$x,polyline$y) 
plot(db.data,pch=20,col="black",cex=0.1,title="") 
abline(v=0,col="red") 



  

 

Handbook of Geostatistics in R for Fisheries and Marine Ecology |  7 

 

 
Figure 2.2. Example of ad hoc coordinate transformation. Left: geographical space; right: after trans-
formation (Nansen acoustic survey datapoints). 

 
2.3 Domain  

The question of the area or “domain” to be considered is important because many sta-
tistical results will depend on this. In many cases, there is no problem in defining the 
domain to be considered. For a fish spatial population, the domain may be the domain 
of presence of fish, with fixed boundaries [e.g. Norwegian herring (Clupea harengus) in 
fjords in winter]. Often, a species may occupy part of the sampled domain and present 
diffuse limits, such that it may not be easy to delineate the limits. In such a case, it may 
be difficult to decide which datapoints corresponding to the numerous zero values 
should be included in the analysis.  

There is another point related to this issue. While many statistical tools depend on the 
domain considered, some other methods do not depend on the delineation of such do-
mains and on the inclusion or not of zero fish density values when studying spatial 
populations. The basic statistics seen above (mean, variance, and so on) clearly depend 
on the domain and on the possible zeros in it. In geostatistics, the current intrinsic ap-
proach with the variogram (see Chapter 4 on variography) also depends on the do-
main. The domain is considered as a window, within which we study the behavior of 
the regionalized variable which could be thought to extend outside. Another geostatis-
tical approach, the transitive one, does not require the delineation of a domain for a 
spatial population providing that sampling extends beyond its limits. The contribution 
of zero fish density values is zero, just like for global abundance. In the next chapter, 
several spatial indices are presented that have the same advantage and allow following 
spatial populations in time. 
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3 Indices of spatial distributions 

3.1 Context 

Survey data obtained from monitoring exploited populations provides opportunities 
for ecological investigations of relationships between spatial pattern and population 
dynamics (MacCall, 1990). Spatial indicators (not to be confused with indicator varia-
bles) are statistics that aim to describe and summarize the spatial distribution of pop-
ulations (in terms of fish density, location, or possibly environmental variables such as 
depth). They are useful for investigating such relationships and making fishery-inde-
pendent diagnostics by an indicator-based approach. They can be helpful in identify-
ing how spatial distributions of fish populations vary with density-dependence or cli-
mate, as highlighted by Petitgas (1998). 

3.2 Theoretical framework 

The spatial indicators selected here are statistics typically made on fish density values, 
and care was taken to select statistics that would depend not on the inclusion or exclu-
sion of zero values (see "Domain" in Chapter 2 on "Basic Notions").  

A list of several spatial indicators (Table 3.1) characterizes the location (centre of grav-
ity and spatial patches), occupation of space (inertia, isotropy, positive area, spreading 
area, and equivalent area), fine-scale structure (microstructure), and overlap between 
populations (global index of collocation). The list does not, of course, intend to be either 
fixed or exhaustive. 

Table 3.1. List of spatial indicators documented and population characteristics to which they are 
related. 

Indicator Abbrev. Units or range Population characteristics 

Centre of 
gravity 

CG Geographical 
coordinates 

Mean geographic location of population 

Inertia I Nautical 
miles2 

Dispersion of population around its centre of 
gravity 

Anisotropy An ≥1 Elongation of spatial distribution of population 

Isotropy Is [0, 1] Elongation of spatial distribution of population 

Global index of 
collocation 

GIC [0, 1] Overlap of two spatial populations 

Local index of 
collocation 

LIC [0, 1] Collocated occurence of two spatial populations 

Number of 
spatial patches 

NP >0 Patchiness 

Positive area PA Nautical 
miles2 

Area of presence occupied by stock, even with a 
low density 

Spreading area SA Nautical 
miles2 

Measure of area occupied by stock that takes 
into account variations in fish density. 

Equivalent area EA Nautical 
miles2 

An individual-based measure of area occupied 
by stock 
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Microstructure 
index 

M [0, 1] Fine-scale variability of fish density surface 

3.3 Preliminary: total abundance 

Let 𝑥𝑥 be a point in two-dimensional space [short for the usual two-dimension notation 
(𝑥𝑥,𝑦𝑦)] and 𝑧𝑧(𝑥𝑥) be the population density at location 𝑥𝑥 within a region V. As mentioned 
earlier, the total abundance of the population in this region is: 

𝑄𝑄 = � 𝑧𝑧(𝑥𝑥)d𝑥𝑥
𝑉𝑉

 

Note that the number of individuals at location 𝑥𝑥 is proportional to z(x), so that the 
probability density function of the location 𝑥𝑥 of a random individual is 𝑧𝑧(𝑥𝑥)/𝑄𝑄. 

In practice, Q can be estimated from the data through a discrete summation over sam-
ple locations 𝑥𝑥𝑖𝑖  (𝑖𝑖 = 1, … ,𝑁𝑁). In the case of irregular sampling, areas of influence 
around samples (determined in the projected space) can be used as weighting factors. 
Thus, from sample values 𝑧𝑧𝑖𝑖 = 𝑧𝑧(𝑥𝑥𝑖𝑖) with areas of influence 𝑠𝑠𝑖𝑖, we have the following 
estimate: 

� 𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖
𝑁𝑁

𝑖𝑖=1
 

This corresponds to the mean fish density 𝑧𝑧(𝑉𝑉) = 𝑄𝑄/𝑉𝑉 over this region being estimated 

as ∑ 𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖
𝑁𝑁
𝑖𝑖=1
∑ 𝑠𝑠𝑖𝑖𝑁𝑁
𝑖𝑖=1

. 

 

Application 3.1. Areas of influence, total abundance, and mean fish density 

Area of influence of a sample location is defined as the area made up of the points in 
space that are closer to this sample than to others. It can be evaluated by overlying a 
very fine regular grid and counting grid points closer to the sample. Known or sup-
posed boundaries (e.g. land, a limit distance of influence from a sample location) of the 
sampled population may be used.  

The following R code computes and plots these areas of influence using the function 
infl() (Figure 3.1). They are computed from the sample locations of a bottom-trawl sur-
vey carried out in the Bay of Biscay for a given year. The function is run after a projec-
tion has been defined.  

# pre-requisite 
rg.load(filename="Demo.hake.bob.db.data",objname="db.data") 
rg.load(filename="Demo.hake.bob.poly.data",objname="poly.data") 
projec.define(projection="mean",db=db.data) 
 
# Compute areas of influence of survey samples 
db.data <- db.delete(db=db.data,names=6) 
db.data <- infl(db.data,nodes=c(400,400),origin=c(-11,43),extend=c(11
,7),  
                dmax=100,polygon=poly.data,plot=T,asp=1)  
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Figure 3.1. Map of areas of influence from the sample locations of a bottom-trawl survey in the Bay 
of Biscay. Areas of influence are coloured according to their values, using a colour palette ranging 
from black (small) to red (large). Red circles proportional to areas of influence are also represented 
at the trawl stations.  

The areas of influence can then be used as weighting factors when computing total 
abundance, spatial indices, and mean fish density over the survey domain. This is il-
lustrated using the age 0 hake density data that were monitored during this bottom-
trawl survey. The following R code details the computation of the total abundance ex-
tracting the areas of influence and age 0 hake densities from the database. Total abun-
dance can also be obtained directly using the function SI.stats(), as well as some areas 
indices (see next chapter). The computation of the mean age 0 hake density over the 
survey domain is then acheivable, as well as the distribution and the mean of a spatially 
distributed population parameter (not illustrated). Indeed, one can be interested in 
computing, for example, the depth distribution occupied by the population or any 
other parameters (e.g. temperature, sediment type. 

# Extract areas of influence and age 0 hake densities 
si <- db.extract(db.data,"Influence.Surface") # in nautical mile² 
zi <- db.extract(db.data,"A0")                # in nb/nautical mile² 
 
# Compute total abundance (i.e. number of individuals) in two ways 
sum(zi*si)  
## [1] 69868442 

SI.stats(db.data)  
## $totab 
## [1] 69868442 
##  
## $parea 
## [1] 22915.34 
##  
## $eqarea 
## [1] 4775.287 
##  
## $sparea 
## [1] 5671.599 



  

 

Handbook of Geostatistics in R for Fisheries and Marine Ecology |  11 

 

 
# Compute the mean hake density over the survey domain 
sum(zi*si)/sum(si)  
## [1] 2026.287 

 

3.4 Positive area, equivalent area, and spreading area 

The positive area (𝑃𝑃𝑃𝑃) is the measure, in nautical miles2, of the space occupied by fish 
densities strictly above zero (Woillez et al., 2007, 2009a). It is estimated from data as the 
sum of the areas of influence around samples where there are positive fish densities 
(Figure 3.2): 

𝑃𝑃𝑃𝑃 = � 𝑠𝑠𝑖𝑖1𝑧𝑧𝑖𝑖>0
𝑁𝑁

𝑖𝑖=1
 

 

 
Figure 3.2. Bubbleplot of the sample values (a) and corresponding positive area (b) shaded in light 
grey (with a limit to the area of influence of each sample). The projection used multiple longitudes 
by 60 × cosine of the mean latitude (here 0°) and latitudes by 60. 

 

The equivalent area represents the area, in nautical miles2, that would be covered by 
the population if all individuals had the same density, equal to the mean density per 
individual (Bez and Rivoirard, 2001; Woillez et al., 2009a):  

𝐸𝐸𝑃𝑃 =
𝑄𝑄

∫ 𝑧𝑧(𝑥𝑥) 𝑧𝑧(𝑥𝑥)
𝑄𝑄 𝑑𝑑𝑥𝑥

=
𝑄𝑄2

∫ 𝑧𝑧(𝑥𝑥)2𝑑𝑑𝑥𝑥
 

Practically, in the discrete case with sample values 𝑧𝑧𝑖𝑖 and areas of influence 𝑠𝑠𝑖𝑖, this can 
be written as:  

𝐸𝐸𝑃𝑃 =
(∑ 𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖𝑁𝑁

𝑖𝑖=1 )2

∑ 𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖2𝑁𝑁
𝑖𝑖=1

 

The 𝐸𝐸𝑃𝑃 ranges from 0 to the positive area. It would be equal to the positive area if all 
strictly positive values of density were the same. The equivalent area can be related to 
the area occupied by the positive fish density values PA and their coefficient of varia-
tion 𝐶𝐶𝑉𝑉0 through 𝑃𝑃𝑃𝑃

𝐸𝐸𝑃𝑃
= 1 + 𝐶𝐶𝑉𝑉02 (Woillez et al., 2007, 2009a). 
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The spreading area (𝑆𝑆𝑃𝑃) is a measure, in nautical miles2, of how the population is dis-
tributed in space, taking into account the variations in fish density (Woillez et al., 2007, 
2009a). Let 𝑇𝑇 be the cumulative area occupied by the density values, ranked in decreas-
ing order, 𝑄𝑄(𝑇𝑇) be the corresponding cumulative abundance, and 𝑄𝑄 be the overall 
abundance. The 𝑆𝑆𝑃𝑃 (expressed in nautical miles2) is then simply defined as twice the 
area below the curve expressing (𝑄𝑄–𝑄𝑄(𝑇𝑇))/𝑄𝑄 as a function of 𝑇𝑇 (Figure 3.3): 

𝑆𝑆𝑃𝑃 = 2�
𝑄𝑄 − 𝑄𝑄(𝑇𝑇)

𝑄𝑄
𝑑𝑑𝑇𝑇 

As [𝑄𝑄–  𝑄𝑄(𝑇𝑇)]/𝑄𝑄 decreases from 1 to 0 and is convex, 𝑆𝑆𝑃𝑃 is smaller than the positive 
area. It equals the positive area when the population is evenly spread with a constant 
density. The curve in Figure 3.3 is a derivation of the Lorenz curve (Gini, 1921) repre-
senting the histogram of fish density values, but it has the advantage of receiving no 
contribution from zero density values. The spreading area can be related to the area 
occupied by the positive fish density values 𝑃𝑃𝑃𝑃 and their Gini index of dispersion 𝐺𝐺0 
through 𝑆𝑆𝑃𝑃

𝑃𝑃𝑃𝑃
+ 𝐺𝐺0 = 1 (Woillez et al., 2007, 2009a). 

 

Application 3.2. Area indices of hake 

The following R code (full script in Annex 3) computes total abundance, positive area, 
equivalent area, and spreading area of age 0 hake densities spatial distributions. The 
option "flag.plot" in the function SI.stats() permits illustrating graphically the value of 
the spreading area, which is simply defined as twice the area below the curve. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.hake.bob.db.data","db.data") 
projec.define(projection="mean",db=db.data)  
 
# The next lines calculate total abundance, positive area, equivalent 
area, and spreading area 
par(xaxs="i",yaxs="i") 
SI.stats(db.data,flag.plot=TRUE) 

## $totab 
## [1] 69915222 
##  
## $parea 
## [1] 22895.45 
##  
## $eqarea 
## [1] 4771.684 
##  
## $sparea 
## [1] 5664.107 
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Figure 3.3. Age 0 hake densities in the Bay of Biscay. The curve represents the part of the abundance 
which is left when excluding the area T occupied by the highest fish densities. The spreading area 
(𝑺𝑺𝑺𝑺) is defined as twice the area below this curve. 

 

3.5 Centre of gravity, inertia, and isotropy 

The centre of gravity (𝐶𝐶𝐺𝐺) is the mean location of the population, that is, the mean of 
the location of the individuals that compose it (Bez and Rivoirard, 2001; Woillez et al., 
2009a). As the probability density function of the location 𝑥𝑥 of a random individual is 
𝑧𝑧(𝑥𝑥)/𝑄𝑄, the centre of gravity (CG) is: 

𝐶𝐶𝐺𝐺 = 𝐸𝐸(𝑥𝑥) = �𝑥𝑥
𝑧𝑧(𝑥𝑥)
𝑄𝑄

d𝑥𝑥 

Similar to the abundance, this statistic is estimated from the data through a discrete 
summation over sample locations. From sample values 𝑧𝑧𝑖𝑖 at locations 𝑥𝑥𝑖𝑖, with areas of 
influence 𝑠𝑠𝑖𝑖, we have, for example: 

𝐶𝐶𝐺𝐺 =
∑ 𝑥𝑥𝑖𝑖𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

The inertia is the variance of the location of individuals in the population, that is, the 
mean square distance between an individual fish and the centre of gravity of the pop-
ulation. 

Inertia describes the dispersion of the population around its centre of gravity. With the 
notations used for CG, the inertia (I) is: 

𝐼𝐼 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) =
∫(𝑥𝑥 − 𝐶𝐶𝐺𝐺)2𝑧𝑧(𝑥𝑥)d𝑥𝑥

∫ 𝑧𝑧(𝑥𝑥)d𝑥𝑥
 

and is estimated as: 
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𝐼𝐼 =
∑ (𝑥𝑥𝑖𝑖 − 𝐶𝐶𝐺𝐺)2𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

When the dispersion of the population around its centre of gravity is the same along 
every direction, the spatial distribution is said to be isotropic. In general, if the disper-
sion of a population around its centre of gravity is not identical in every spatial direc-
tion, there is an anisotropy.  

In two dimensions, the total inertia of a population can be decomposed into its two 
principal axes, orthogonal to each other, explaining the maximum and the minimum 
of the inertia, respectively. These two principal axes and their inertia can be obtained 
as the eigen vectors and values of a principal component analysis of the coordinates of 
individuals in the population (i.e. the coordinates of the samples weighted by fish den-
sities). The square root of the inertia along a given axis (or root mean square distance 
to CG) gives the standard deviation of the projection of the location of the population 
along that axis. These can be represented conveniently on a map with a cross depicting 
the two principal directions, or with an ellipse (with area proportional to the total in-
ertia). The anisotropy index (≥1) is the square root ratio between the maximum and the 
minimum of the inertia. Similarly, an index of isotropy can be defined as the inverse of 
anisotropy, ranging more conveniently from 0 to 1: 

Isotropy = �𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚
𝐼𝐼𝑚𝑚𝑉𝑉𝑥𝑥

 and Anisotropy = �𝐼𝐼𝑚𝑚𝑉𝑉𝑥𝑥𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚
 

Variations through years of an index such as the CG may be due to variations in the 
sampling pattern (bad weather…) and may not be significant. In such cases, the varia-
tions in the index computed with fish density values can be compared to the variations 
in the same index computed on the sampling itself (unweighted, i.e. using a variable 
equal to 1 at each datapoint) for significance. 

 

Application 3.3. Centre of gravity, inertia, and isotropy of hake 

Here, the mean location, the dispersion around the mean location, and geometry of a 
fish spatial distribution is captured using the centre of gravity, the inertia, and the isot-
ropy. This example is taken from trawl samples of the age 0 hake population in the Bay 
of Biscay for a given year (Woillez et al., 2007). The following R code (full script in 
Annex 3, data details in Annex 2) computes and plots these spatial indices using the 
function SI.cgi() (Figure 3.4). The function is run after a projection has been defined 
and areas of influence have been computed to be used as weighting factors.   

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.hake.bob.db.data","db.data") 
rg.load("Demo.hake.bob.poly.data","poly.data") 
projec.define(projection="mean",db=db.data)  
 
# Compute and plot the inertia, the total abundance, the isotropy,  
# the center of gravity, and the coordinates of the axes of inertia.  
# Note that intermediate results of the PCA decomposition are provide
d  
# (the eigen values and the eigen vectors).  
plot(db.data,title="Centre of gravity and inertia of densities and sa
mples",asp=1, 
     xlim=c(-300,150),ylim=c(-200,150),inches=5, 
     xlab="Nautical mile",ylab="Nautical mile") 
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plot(poly.data,col=8,add=T) 
SI.cgi(db.data,flag.plot=TRUE,flag.inertia=TRUE,col=2) 

## $inertia 
## [1] 2773.656 
##  
## $weight 
## [1] 69915222 
##  
## $iso 
## [1] 0.38866 
##  
## $center 
## [1] -1.897112 40.254660 
##  
## $mvalue 
## [1] 2409.6609  363.9952 
##  
## $mvector 
##            [,1]      [,2] 
## [1,] -0.6220663 0.7829646 
## [2,]  0.7829646 0.6220663 
##  
## $axes 
##           [,1]      [,2] 
## [1,] -32.43329 78.689058 
## [2,]  28.63906  1.820262 
## [3,]  13.04080 52.122850 
## [4,] -16.83502 28.386471 

 

The previous computation is performed in the projected space. However, the projected 
space may not be informative for the centre of gravity. Thus, the following R code con-
verts the projected coordinates of the centre of gravity back to the geographical space 
(i.e. in degrees). 

# Get the coordinates of the centre of gravity in degrees 
projec.invert(SI.cgi(db.data,flag.plot=F)$center[1], 
              SI.cgi(db.data,flag.plot=F)$center[2]) 

## $x 
## [1] -3.780402 
##  
## $y 
## [1] 47.09953 

 

The following R code computes the centre of gravity and the axes of inertia of the sam-
ples, not weighted by the fish densities. This shows that these are distinct from the 
mean and variance location of the age 0 hake population (Figure 3.4). This can be used, 
for example, to check if changes of the centre of gravity of a population are not due to 
a change in the distribution of the samples. 

# Compute and plot the inertia, the total abundance, the isotropy,  
# the centre of gravity, and the coordinates of the axes of inertia  
# and the isotropy of the samples 
plot(db.add(db.data,S=1),add=TRUE,col=1,inches=5,pch="+") 
SI.cgi(db.add(db.data,S=A0>=0),flag.plot=T,flag.inertia=T,col=1) 
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## $inertia 
## [1] 12474.91 
##  
## $weight 
## [1] 33663.73 
##  
## $iso 
## [1] 0.3059678 
##  
## $center 
## [1] -14.74390  18.96255 
##  
## $mvalue 
## [1] 11407.027  1067.883 
##  
## $mvector 
##            [,1]      [,2] 
## [1,]  0.7415709 0.6708746 
## [2,] -0.6708746 0.7415709 
##  
## $axes 
##            [,1]       [,2] 
## [1,]  64.458596 -52.689323 
## [2,] -93.946405  90.614427 
## [3,]   7.179259  43.195963 
## [4,] -36.667068  -5.270859 

 
Figure 3.4. Map of the Bay of Biscay with a bubbleplot of hake densities with their centre of gravity 
and inertia (in red). Note the difference with the centre of gravity and inertia (black axes) of the 
samples (represented with a black cross).   

 



  

 

Handbook of Geostatistics in R for Fisheries and Marine Ecology |  17 

 

3.6 Global index of collocation 

The global index of collocation looks at the extent to which two populations are geo-
graphically distinct by comparing the distance between their CGs and the mean dis-
tance between individual fish taken at random and independently from each popula-
tion (Bez and Rivoirard, 2001; Woillez et al., 2009a). 

Let us consider two populations with densities 𝑧𝑧1(𝑥𝑥) and 𝑧𝑧2(𝑥𝑥) at point 𝑥𝑥, with ∆𝐶𝐶𝐺𝐺 
being the distance between their centres of gravity and 𝐼𝐼1 and 𝐼𝐼2 their respective iner-
tias. The mean square distance between individuals taken at random and inde-
pendently from each population is ∆𝐶𝐶𝐺𝐺2 + 𝐼𝐼1 + 𝐼𝐼2, and the global index of collocation 
(𝐺𝐺𝐼𝐼𝐶𝐶) is: 

𝐺𝐺𝐼𝐼𝐶𝐶 = 1 −
∆𝐶𝐶𝐺𝐺2

∆𝐶𝐶𝐺𝐺2 + 𝐼𝐼1 + 𝐼𝐼2
 

or 1 if ∆𝐶𝐶𝐺𝐺2 = 𝐼𝐼1 = 𝐼𝐼2 = 0. The 𝐺𝐺𝐼𝐼𝐶𝐶 indicator ranges between 0, in the extreme case 
where each population is concentrated on its own single point at different locations 
(inertia = 0, ∆𝐶𝐶𝐺𝐺2 > 0), and 1, where the two 𝐶𝐶𝐺𝐺s coincide. That the mean locations of 
the two populations coincide does not mean that their individuals are present at the 
same locations; populations may occupy the same region while not being observed at 
the same places within this region (then the local index of collocation to be seen next 
will be zero).  

 

Application 3.4. Global index of collocation of hake 

The following R script lines (see full script in Annex 3) compute the global index of 
collocation between age 0 (in red) and age 1 (in blue) hake densities and display the 
spatial distributions of both ages (Figure 3.5).  

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.hake.bob.db.data","db.data") 
rg.load("Demo.hake.bob.poly.data","poly.data") 
projec.define(projection="mean",db=db.data)  
 
# Compute the global index of collocation between age 0 and age 1 
SI.gic(db1=db.data,db2=db.data,name1="A0",name2="A1", 
       flag.plot=T,flag.inertia=T,asp=1,inches=5, 
       xlab="Nautical mile",ylab="Nautical mile", 
       col1="red",col2="blue",) 

## [1] 0.898 

plot(poly.data,col=8,add=T) 
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Figure 3.5. Map of the Bay of Biscay with a bubbleplot of age 0 and age 1 hake densities and their 
centres of gravity and inertia (in red and blue, respectively). Note that the centres of gravity are 
close with respect to the inertia, as illustrated by a high value of global index of collocation (= 0.898). 

 

3.7 Local index of collocation 

The local index of collocation measures the occurrence of two populations at the same 
locations, e.g. at the same stations (Bez and Rivoirard, 2000). Noting 𝑧𝑧1(𝑥𝑥) and 𝑧𝑧2(𝑥𝑥) as 
the densities of populations 1 and 2 at location 𝑥𝑥. The local index of collocation is: 

𝐿𝐿𝐼𝐼𝐶𝐶 =
∫ 𝑧𝑧1(𝑥𝑥)𝑧𝑧2(𝑥𝑥)𝑑𝑑𝑥𝑥

�∫𝑧𝑧1(𝑥𝑥)2𝑑𝑑𝑥𝑥 × ∫ 𝑧𝑧2(𝑥𝑥)2𝑑𝑑𝑥𝑥
 

and is estimated as:  

∑ 𝑠𝑠𝑖𝑖𝑧𝑧1𝑖𝑖𝑧𝑧2𝑖𝑖𝑁𝑁
𝑖𝑖=1

�∑ 𝑠𝑠𝑖𝑖𝑧𝑧1𝑖𝑖2𝑁𝑁
𝑖𝑖=1 �∑ 𝑠𝑠𝑖𝑖𝑧𝑧2𝑖𝑖2𝑁𝑁

𝑖𝑖=1  
 

It varies from 0, when the two populations are never observed in the same place, to 1 
when the spatial distributions of the two populations coincide [𝑧𝑧2(𝑥𝑥) proportional to 
𝑧𝑧1(𝑥𝑥)]. The LIC is more demanding and so is expected to have a lower value than the 
GIC. Note that the LIC can be close to zero even if the two populations are in the same 
region and have a high GIC.  

 

Application 3.5. Local index of collocation of hake ages 0 and 1  

The following R code (full script in Annex 3) computes the local index of collocation 
between the age 0 and age 1 hake densities spatial distributions (Figure 3.6).  

# Pre-requisite 
projec.toggle(0) 
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rg.load("Demo.hake.bob.db.data","db.data") 
rg.load("Demo.hake.bob.poly.data","poly.data") 
projec.define(projection="mean",db=db.data)  
 
# Compute the local index of collocation between two collocated spati
al distributions 
SI.lic(db.data,name1="A0",name2="A1") 

## [1] 0.6774079 

# Display 
plot(db.locate(db.data,"A0",loctype="z"),title="",col=2,asp=1, 
     xlim=c(-300,150),ylim=c(-200,150),inches=5, 
     xlab="Nautical mile",ylab="Nautical mile") 
plot(db.locate(db.data,"A1",loctype="z"),title="",col=4,add=TRUE,inch
es=5) 
plot(poly.data,col=8,add=TRUE) 

 
Figure 3.6. Map of the Bay of Biscay showing the proportional representation of the age 0 (in red) 
and age 1 (in blue) hake densities. Note that the collocated occurrence of both ages spatial distri-
bution is high as quantified by the value of the local index of collocation (= 0.69). 

 

3.8 Microstructure index 

The microstructure index of a spatial population (Woillez et al., 2007, 2009a) measures 
the relative importance of structural components that have a scale smaller than the 
sample lag (including random noise). 

The microstructure index (𝑀𝑀𝐼𝐼) is taken as the relative decrease in the transitive covari-
ogram (see chapter on variography) between distance zero and a distance ℎ0 chosen to 
represent the mean lag between samples (Figure 3.7): 

𝑀𝑀𝐼𝐼 =
𝑔𝑔(0) − 𝑔𝑔(ℎ0)

𝑔𝑔(0)
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It lies between 0 and 1. Values close to 0 correspond to a very regular, well-structured 
density surface, and values close to 1 correspond to a highly irregular, poorly struc-
tured density surface. 

 
Figure 3.7. Experimental and modelled covariogram with the representation of the microstructure 
index (MI). The covariogram values for distances 0 and h0 are represented with arrows. 

 

Application 3.6. Microstructure index of hake  

The following R code (full script in Annex 3) computes the microstructure index of age 
0 hake densities spatial distributions. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.hake.bob.db.data","db.data") 
rg.load("Demo.hake.bob.poly.data","poly.data") 
projec.define(projection="mean",db=db.data)  
 
# Compute the microstructure index  
SI.micro(db.data,h0=10,pol=poly.data,dlim=50,ndisc=400)  
## [1] 0.4044576 

 

3.9 Number of spatial patches 

A population of fish may be distributed into several spatial patches much larger in size 
than a fish school. An algorithm has been written to identify patches (Woillez et al., 
2007, 2009a) by attributing each sample to the nearest patch, with respect to a maximal 
threshold distance to its 𝐶𝐶𝐺𝐺. 

The algorithm starts from the sample value displaying the maximum density 𝑧𝑧(𝑥𝑥) and 
considers every other sample in decreasing order of density. The maximum value ini-
tiates the first patch (Figure 3.8). Then, the current sample value is attributed to the 
nearest patch if the distance to its 𝐶𝐶𝐺𝐺 is smaller than a threshold distance Dmin. Other-
wise, the current sample value defines a new patch. So, the threshold distance Dmin 
represents the limit of attraction of a patch and has to be chosen approximately as the 
maximal expected radius of a patch. Spatial patches whose abundance is >Amin, say 10% 
of overall abundance are retained. The summary index is then the number of spatial 
patches (Figure 3.8). 
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Figure 3.8. Main steps of the algorithm used to determine the number of spatial patches of a popu-
lation, where the current sample value is attributed to the nearest patch, if the distance to its 𝑪𝑪𝑪𝑪 is 
smaller than the threshold distance Dlim (which corresponds to Dmin). 

 

Application 3.7. Number of spatial patches of hake  

The following R code (full script in Annex 3) computes the number of spatial patches 
index from the age 0 hake densities spatial distributions. The parameters Dmin and Amin 
need to be defined to run the algorithm. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.hake.bob.db.data","db.data") 
rg.load("Demo.hake.bob.poly.data","poly.data") 
projec.define(projection="mean",db=db.data) 
 
# The next line calculates the number of spatial patches 
SI.patches(db.data,D.min=100,A.min=10) 

## Total nb of patches:  4  
## Nb of patches with abundance >  10 % :  1  
## Percent abundance in these patches:  0.9105  
## Percent area in these patches:  0.352 

## $n 
##   [1] 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 
1 1 1 1 1 
##  [36] 1 1 1 1 1 3 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 
4 4 4 4 4 
##  [71] 2 2 4 4 4 2 2 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 
1 2 2 2 1 
## [106] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 
##  
## $mat 
##   n        xg       yg pabun      parea 
## 1 1 -3.887606 47.23635 91.05 0.35199389 
## 2 2 -2.388963 45.54781  8.09 0.25069519 
## 3 3 -6.259419 47.71692  0.72 0.29848739 
## 4 4 -1.640410 44.54609  0.14 0.09882353 
##  
## $nsp 
## [1] 1 
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projec.toggle(0) 
plot(poly.data,col=8,add=T) 
title("Spatial patches") 

 
Figure 3.9. Map of the Bay of Biscay showing spatial patches of the age 0 hake population. Four 
patches were identified using a threshold distance Dmin = 100 nautical miles. Only the patch in red 
represents more than Amin = 10% of the total abundance. It contains 91% of the abundance and oc-
cupies 35% of the area. 
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4 Structural analysis and variography 

The goal of the structural analysis in the geostatistical sense is to capture, describe, and 
model the way a regionalized variable is spatially structured. For this, geostatistics 
proposes "structural tools". The best known is the variogram (Figure 4.1), which 
measures the mean variability between any two points as a function of the distance 
vector between these points (Matheron, 1971; Chilès and Delfiner, 2012). Indeed, this 
variability may be expected to vary with this distance between points. First, we will 
see how to compute the variogram experimentally; then, we will see how to fit the 
variogram and model the regionalized variable. At the end of this chapter, we will see 
a variant structural tool, the transitive covariogram. 

 
Figure 4.1. Typical variogram representing the mean variability between two points as a function 
of the distance between these. The bullets represent the experimental variogram computed from 
data. In this example, they show first a jump from the origin, then an increase in the  variability 
when the separating distance increases, and finally a stabilization at larger distances. This is fitted 
by a variogram model (continuous line). The dashed line represents the variance of data values. 

 

4.1 Computing the variogram 

4.1.1 Regular sampling on a line 

Consider N datapoints regularly spaced on a line with mesh size a, starting from an 
origin x0, with values 

0 0 0( ), ( ),..., ( ( 1) )z x z x a z x N a+ + − (Figure 4.2). The variogram 

( )hγ  is a function of the distance h (often termed the “lag”) between any two points. 
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Figure 4.2. Datapoints regularly spaced on a line with mesh size a. Pairs of points separated by a, 
and by 2a are highlighted. 

 

For the distance h = a, there are (N–1) pairs of datapoints with values: 

[ ] [ ] [ ]0 0 0 0 0 0( ), ( ) , ( ), ( 2 ) ,..., ( ( 2) ), ( ( 1) )z x z x a z x a z x a z x N a z x N a+ + + + − + −  

This corresponds to (N–1) increments:  

[ ] [ ] [ ]0 0 0 0 0 0( ) ( ) , ( 2 ) ( ) ,..., ( ( 1) ) ( ( 2) )z x a z x z x a z x a z x N a z x N a+ − + − + + − − + −   

The variogram at distance a is defined by half the mean of the squared increments and 
measures the mean variability between two points distant by a: 

( )) ( )( ( )) ( ) ( )( ) ( )( )2 2 2
0 0 0 0 0 02  ... 1 2 ]1( )

2 ( 1)
z x a z x z x a z x a z x N a z x N a

a
N

γ
 + − + + − + + + + − − + −      =
−

 

Similarly, there are (N–2) pairs of datapoints at distance h = 2a, with values:  

[ ] [ ]0 0 0 0( ), ( 2 ) , ( ), ( 3 ) ,...z x z x a z x a z x a+ + +  

and (N–k) pairs at distance h = ka (k integer). The variogram at distance h = ka is defined 
by considering the N(h) = (N–k) pairs of points ( , )i jx x  distant by h through the general 

formula: 
2( ( ) ( ))

1( )
2 ( )

i j

i j
x x h

z x z x
h

N h
γ − =

−

=
∑

 

The larger the distance, the smaller the number of pairs on the line, and the less such 
an experimental variogram is representative of the variability of the sampled regional-
ized variable. Generally, an experimental variogram is computed for distances that do 
not exceed half of the largest dimension in the domain. 

4.1.2 Regular sampling on parallel lines 

Suppose we have several parallel lines sampled regularly every a along lines, but with 
a number of samples that can vary with lines. This corresponds typically to an acoustic 
survey where the EDSU (elementary distance sampling unit) = a.  The variogram at 
distance h = ka along lines, i.e. in the direction of the transects, will be computed from 
all pairs of points separated by h on any line. If all lines have the same number of sam-
ples, the variogram at distance h = ka along lines will coincide with the average of the 
variograms at distance h along each line. However, in the case of lines having a  
different number of samples, a line with fewer samples will give fewer pairs. The vari-
ogram at distance h = ka along lines will then coincide with the average of the vario-
gram at distance h along each line, weighted by the number of corresponding pairs on 
this line.  

4.1.3 Regular sampling in 2D (square or rectangular grid cell) 

As the spatial variability may depend on the direction, the experimental variogram can 
be computed in different directions, e.g. the principal and the diagonal directions of 
the sampling grid. If the cell of the sampling grid is rectangular, say ( )1 2,a a , the vario-

gram will be computed at distances multiple of 1a  along the first axis, and 
2a  along the 

second one. When the spatial variability revealed by the variogram does not depend 
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on the direction, an omnidirectional variogram can be computed from pairs in all di-
rections (see further).  

4.1.4 Irregular sampling 

Variograms can be directional or omnidirectional. Note that an omnidirectional vario-
gram may be more robust as it is computed from more pairs, but it cannot bring out a 
dependance of the spatial variability with the direction. The omnidirectional vario-
gram will be computed from pairs in all directions. Then, a tolerance will be applied 
on the distance. Typically the variogram with "lag" a   with ±a/2 tolerance, so that each 
pair of points is allocated to a "bin" ( )2, 2ka a ka a− + . The first bin will be made from 

pairs at distance between 0 and a/2, if any (very often this first) point of the variogram 
is computed from few pairs and is not significant. 

Each directional variogram will be computed similarly, but using only pairs along the 
direction considered, with a tolerance on the direction; for example, 2D directions at (if 
starting from 0° corresponding to the east by mathematical conventions) 0°, 45°, 90°, 
135°, with tolerance ±22.5° so that any pair of points corresponds to one of these direc-
tions (Figure 4.3). In 2D, it is advised to compute the variogram in four directions (or 
more) rather than two, and not necessarily from 0°, in order to detect the directions 
presenting the highest spatial continuity. Weighted variograms may be used to take 
into account the area of influence (si) of each datapoint in irregular sampling: 

 
2

~

~

[ ( ) ( )]
1( )
2

i j

i j

i j i j
x x h

i j
x x h

s s z x z x
h

s s
γ −

−

−

=
∑

∑
 

 
Figure 4.3. Computing variogram with tolerances on distance and direction: each pair of datapoints 
is allocated to a distance and direction "bin" taking into account the tolerances. 

4.1.5 Representation of variograms 

Variograms, whether directional or omnidirectional, are usually depicted as a function 
of distance. Outputs are expected to be robust to the choice of the computation param-
eters (distance lag, direction). Other representations, less important, can be mentioned. 
The variogram map is a radial and colored representation of a variogram in all direc-
tions. Finally, the variogram cloud represents all individual half-squared increments 
between datapoints before they are binned and averaged by distance. This sometimes 
allows identifying high variability pairs and possibly identifying data outliers. 
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When plotting an experimental variogram, it is helpful to add a line that gives the sta-
tistical variance of data values. This is a reference level for the variogram. Indeed, it 
will be seen in Chapter 5 that this variance coincides with the average of the experi-
mental variogram values for all possible classes of distance, weighted by the number 
of pairs. This makes the link between statistical variability (variance) and spatial vari-
ability (variogram). If, for example, the variogram computed for small or medium dis-
tances is lower than the variance, this means that the variogram is necessarily higher 
than the variance for some larger distances. 

 

Application 4.1. Omnidirectional variogram on demersal survey trawl data  

The following R code estimates a distance lag and computes omnidirectional vario-
grams. This application uses data of the MEDITS demersal survey series (data details 
in Annex 2).  Demersal surveys are the typical case of sampling schemes without pref-
erential directions. They usually follow a stratified random sampling protocol so that 
samples are uniformally distributed in each large stratum. We use here the hake den-
sities expressed in number of individuals per km². 

# pre-requisite 
projec.toggle(0) 
rg.load(filename="Demo.hake.med.db.data", objname="db.data") 
 
# Data presentation 
plot(db.sel(db.data,YEAR==1996),zmin=0.001,pch.low=3,cex.low=0.25,las
=1,pch=21,col=1,inches=5,title="Hake - 1996",asp=1)  
map("worldHires",add=T)  

 

Figure 4.4. Map of the Mediterranean Sea showing bubbleplot of hake densities. Zero densities, 
represented by crosses, can be found on the edge as well as within the sampled area. 

The geographical distribution of the sample data for the 1996 survey indicates that zero 
observations are rare and not homogeneously distributed at the edge of the sampling 
area. So, the whole sampled area will be considered, that is, all samples will be used.  

The two main parameters for variogram computation are the value of distance lag and 
the maximum lag to compute to, which, in this case, is designated by the number of 
lags. The distance lag corresponds to the average distance between a sample and its 
nearest neighbour. This can be fully computed from sample location by looking, for 
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example, at the mean distance to the nearest neighbor or estimated from the map using 
the function dist.digit(). Beware that the map must be plotted in the projected space to 
get a distance measurement. 

# Evaluate the distance lag (in projected units i.e. nautical miles)  
# and the number of lags by clicking on points  
projec.define("mean",db=db.data) 
plot(db.sel(db.data,YEAR==1996),zmin=0.001,pch.low=3,cex.low=0.25,las
=1,pch=21,col=1, 
     inches=5,title="Hake - 1996",asp=1)  
     worldHires <- map("worldHires",plot=F,xlim=c(3,5),ylim=c(42,44))  
lines(projec.operate(worldHires $x,worldHires $y))  
 
lag <- dist.digit() 

# click on the graph at two adjacent sample locations 
Designate the two points  
Distance =  5.1  
  
It is recommended to compute variograms not exceeding half the diameter of the  
field. We can also estimate the largest dimension of the sampled area using the  
function dist.digit(). 

diagonal <- dist.digit() 

 
# click on the graph at two sample locations separated by the greates
t distance 
Designate the two points  
Distance =  92.19 
 

 

Figure 4.5. The distance between neighbouring samples is about 5 nautical miles (short black line), 
while the largest dimension of the field is about 90 nautical miles (long black line). 

  

Half the largest dimension equals 45 nautical miles. It is thus covered by nine legs of 5 
nautical miles. 



 

 

28  | ICES Cooperative Research Report No. 338 
 
 

# Compute and represent omnidirectional variogram  
vg.data <- vario.calc(db.sel(db.data,YEAR==1996), lag=5,nlag=9)  
 
# Edit the results 
vg.data 
 
Variogram characteristics 
========================= 
Number of variable(s)  = 1 
Number of direction(s) = 1 
Space dimension        = 2 
 
Direction 1 
----------- 
Number of lags              = 10  
Direction coefficients      = (     1.000     0.000)  
Direction angles (degrees)  = (     0.000)  
Tolerance on direction      = 90.000000 (deg)  
Calculation lag             = 5.1 
Tolerance on distance       = 50.000000% (of the Lag value)  
 
For variable 1 
Referenced value (variance,...) = 12378070.3 
      Rank              Npairs            Distance               Valu
e 
         1              54.000               5.505          7307421.2
1 
         2             105.000               9.876          10529137.
4 
         3             178.000              14.934          9075330.9
0 
         4             180.000              20.247          9419314.9
1 
         5             191.000              25.119          10681845.
0 
         6             177.000              30.075          10736612.
7 
         7             169.000              34.972          10407282.
7 
         8             153.000              39.845          9003176.2
7 
         9             129.000              44.734          12692429.
5 

 
# Plot the results 
plot(vg.data,las=1,xlab="Distance (n.mi.)") 
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Figure 4.6. Omnidirectional variogram of hake density, up to a distance equal to one-half the  
diameter of the field. 

 plot(vg.data,npairdw=T,inches=0.1,las=1,xlab="Distance (n.mi.)") 
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Figure 4.7. Omnidirectional variogram of hake density. The number of pairs is proportional to the 
size of the black dot (so the first variogram point is less significant). The spatial variability is high 
and increases only slightly with the distance.  

The number of pairs of points can also be represented by a symbol whose size is pro-
portional to this number (Figure 4.7). The variogram value at 0 distance is trivially 
equal to 0 and is generally not represented. The variogram value at the first distance 
lag is made of the average over 54 pairs of sample data. The rest of the variogram is 
supported by at least twice more number of pairs of points and will thus be heavier in 
the model choice. No graphical connection is done between the origin and the first 
point to avoid overoptimistic interpretation of the variogram at short distance. The 
horizontal line represents the variance of the data. As said before, this is the reference 
level for the variogram values as the mean of the variogram values for all possible dis-
tances (weighted by the number of pairs) is equal to the variance. Here, since all vari-
ogram values are below the variance up to a distance of 40 nautical miles, some vario-
gram values larger than the variance must occur at larger distances. 

4.1.6 Mean variogram 

We have seen above that the mean variogram along lines was, for each distance, the 
average of the individual variograms of each line, weighted by the number of pairs. 
Similarly computing a "mean variogram" from several variograms can use a weighting 
by the numbers of pairs. This is typically useful when looking at a time-series of sur-
veys (Fernandes and Rivoirard, 1999). Individual variograms can be made for each sur-
vey, but the mean variogram per survey can be a more robust description of the spatial 
structure. It is also possible to compute variograms from pairs made of two points com-
ing from different surveys (e.g. interyear spatial variability). 

As mentioned before, the variance of data gives the average level of the variogram. 
This level may be very different for the variograms of different datasets, so that vario-
grams may be "normalized" or "standardized" (each variogram being divided by its 
variance, or equivalently each dataset being standardized by its standard deviation) 
before computing a mean variogram. 
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Application 4.2. Comparing and averaging omnidirectional variograms in demersal 
survey 

The following R code (full script in Annex 3) compares omnidirectional (normalized) 
variograms and computes their average (Morfin et al., 2012). The approach is applied 
on the MEDITS demersal survey data (data details in Annex 2).  

# pre-requisite 
projec.toggle(0) 
rg.load(filename="Demo.hake.med.data", objname="db.data") 
projec.define(projection="mean",db=db.data)  
 
# Compute annual variograms and superimpose them   
for(i in unique(db.data[,"YEAR"])){  
  vg.data <- vario.calc(db.sel(db.data,YEAR==i), lag=5, nlag=9)  
  plot(vg.data,npairdw=T,inches=0.05,col=rgb(0,0,0,0.25),add=!(i==199
6),  
las=1,xlab="Distance (n.mi.)",ylim=c(0,1e+08)) 
} 
 

 

Figure 4.8. Multiple annual omnidirectional variograms of hake density. The variation in the an-
nual variance makes it impossible to evidence a common spatial structure. 

Interpretation of the series of annual variograms is made impossible by the differences 
between the annual variances. Density-dependent mechanisms are known to be pre-
sent in most ecosystems. They lead to relationships between mean and variance of fish 
densities, the two increasing together, though not necessarily linearly. It is, however, 
expected that, within a reasonable range of biomass, aggregative behaviors are the 
same, leading to the same spatial structures relative to the average biomass and thus 
to its variance. We will see further that kriging estimates (contrary to the kriging esti-
mation variances) are only dependent on the shape of the variogram and not on the 
level of the variogram. A standardized mean variogram can help idendify recurrent 
spatial structure. Standardizing individual variograms can be done by previously 
standardizing individual samples by their standard deviation or by dividing the vari-
ogram values by the variance using the argument flag.norm=T.  
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# superimpose several omnidirectional standardized variograms   
for(i in unique(db.data[,"YEAR"])){ 
  vg.data <- vario.calc(db.sel(db.data,YEAR==i), lag=5, nlag=9)  
  plot(vg.data,npairdw=T,inches=0.1,col=rgb(0,0,0,0.25),add=!(i==1996
),  
       flag.norm=T,las=1,xlab="Distance (n.mi.)",ylim=c(0,2))  
} 
 

 

Figure 4.9. Multiple standardized annual omnidirectional variograms of hake density. A common 
spatial structure emerges, though with statistical fluctuations. 

One can see that, for one survey, some sample points were less 2.5 nautical miles apart. 
In this case, a first point appears in the experimental variogram at short distance cor-
responding, however, to a very small number of pairs of points with small explanatory 
power.  

Using all data together can be misleading as spatial and temporal variabilities would 
be mixed up. In particular, the variability depicted at short distance would  
correspond mainly to temporal variability; the same samples being performed at the  
same location survey after survey. In RGeostats, computing the mean variogram can  
be made directly by using a variable coding for the survey or the year (locator “code”) 
and by looking at pairs of points for which the difference in the coding variable is  
null. Prior to doing this, sample data must be standardized survey by survey by divid
ing sample values by the standard deviation of the survey. 

# Standardize the density by the annual standard deviation and create 
a new file. 
# Note that 1/n is used for variance calculation and not 1/(n–1)  
# YEAR has locator “code” for selecting pairs of points from the same 
year  
db.data.std <- db.data 
for(i in unique(db.data[,"YEAR"])){  
  sel <- db.data.std[,"YEAR"]==i 
  sd.year <- sqrt(mean(db.data.std[,"MERLMER"][sel]^2) - 
                  mean(db.data.std[,"MERLMER"][sel])^2) 
  db.data.std[,"MERLMER"][sel] <- db.data.std[,"MERLMER"][sel]/sd.yea
r  
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} 
db.data.std <- db.locate(db.data.std,"YEAR","code") 

# Compute annual variograms (which are normalized because of the stan
dardization of  
the density values)   
for(i in unique(db.data[,"YEAR"])){  
  vg.data <- vario.calc(db.sel(db.data.std,YEAR==i), lag=5, nlag=9)  
  plot(vg.data,npairdw=T,inches=0.1,col=rgb(0,0,0,0.25),add=!(i==1996
),  
       las=1,xlab="Distance (n.mi.)",ylim=c(0,2))  
} 

 
# Compute the mean annual variogram: Pairs are retained if their code
s are the same  
# i.e. if their difference is equal to 0  
vg.data.std <- vario.calc(db.data.std, lag=5, nlag=9,opt.code=1,tolco
de=0)  
plot(vg.data.std,npairdw=T,inches=0.1,las=1,add=T,col=2,lwd=2)  
 

 

Figure 4.10. The mean annual variogram estimates the spatial structure common to all observations 

 

4.2 Intrinsic model 

The variogram is central for what is called the intrinsic approach in geostatistics, which 
aims at describing the behavior of the variable (e.g. fish density) within a given spatial 
domain. Because of its variability, the regionalized variable ( )z x  is conveniently rep-
resented by a random function (or random process) model ( )Z x  (note capitalization). 
The inference of the model is made possible by a hypothesis of stationarity (invariance 
under translation) on the variable or its increments. In the following, we will first con-
sider the intrinsic approach and then the transitive one. 

Note that the expectation or expected value of a variable Z, considered as random, 
corresponds to its mean, and is denoted as E[Z]. The variance is the expectation of the 
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squared variable centered by its mean: var Z = E{(Z – E[Z])2}. When the mean is 0, the 
variance is the expectation of the squared variable var Z = E[Z2]. 

In the intrinsic approach, common models are the intrinsic and the stationary random 
function models (Matheron, 1971; Chilès and Delfiner, 2012). In the intrinsic model, the 
increments Z(x + h) – Z(x) between two points separated by distance vector h are (order 
2) stationary: 

• their expectation is 0: E[Z(x + h) – Z(x)] = 0 which means that there is no drift 
(no systematic variation); 

• their variance depend on h (not on x). The variogram is the function of h de-
fined as half this variance:  

[ ]{ }21( ) ( ) ( )
2

h E Z x h Z xγ = + −  

It satisfies ( ) ( )h hγ γ− =  and is positive, except for (0) 0γ = .  

This structural tool characterizes the intrinsic random function model. The intrinsic 
model allows computing the variance of any linear combination ( )i iZ xλ∑ with weights 

summing to 0 (the expectation of such a linear combination is 0): 

var ( ) ( ) with 0i i i j i j i
i i j i

Z x x xλ λ λ γ λ  = − − =  
∑ ∑ ∑          

Only such linear combinations are defined and so authorized in this model (the sim-
plest ones being the increments). The variogram cannot be any mathematical function 
as it must ensure the positivity of the variance of such linear combinations. In the next 
chapters, the intrinsic random function model with its variogram model will be used 
to computed variances and perform kriging. 

In the stationary model, Z(x) is (order 2) stationary, with a constant mean m = E[Z(x)] 
and a covariance depending on h: 

[ ] ( )( ) [ ] 2( ) Cov ( ), ( ) ( ) ( ) ( ) ( )C h Z x Z x h E Z x m Z x h m E Z x Z x h m= + = − + − = + −    

which satisfies C(–h) = C(h).  

This model allows computing the variance of any linear combination ( )i iZ xλ∑ : 

var ( ) ( )i i i j i j
i i j

Z x C x xλ λ λ  = −  
∑ ∑  

C(0) represents the variance of Z(x) in the model, and we have ( ) (0)C h C≤ .The ratio C(h) 

/ C(0) gives the autocorrelation function or correlogram ( )hρ .  

If Z(x) is stationary, it is also intrinsic (and then the variogram ( ) (0) ( )h C C hγ = −  is 
bounded). The reverse is false, and the variogram is a more general structural tool than 
the covariance. The stationary model is regulated around its constant mean (Figure 
4.11). This is not necessarily the case with the intrinsic model, which has more flexibil-
ity, although it does not include any drift or trend. The case of a trend will be consid-
ered further in the multivariate chapter. 

In practice, variograms are computed and fitted for distances that do not exceed half 
the domain, often less. This means that the stationarity (of the variable or of its incre-
ments) may be local only.  
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Figure 4.11. A stationary process is regulated around its constant mean. An intrinsic process can be 
more flexible. 

 

4.3 Variogram properties and variogram fitting 

The behavior of the variogram at the origin characterizes the more or less important 
spatial continuity of the variable. The variogram may stabilize at a "sill", from a dis-
tance called the range [in this case, the variogram can be related to a covariance C(h), 
with its sill equal to C(0)]. There is anisotropy if the behavior of the variogram depends 
on the direction of h, isotropy otherwise. Clearly, directional variograms are required 
to make evidence of an anisotropy. 

In practice, an experimental variogram is computed on data as seen above. Then, it 
must be fitted by an appropriate model. This is done (manually or automatically) using 
a mathematically authorized function. This is usually obtained with a simple single 
structure (e.g. nugget, spherical, exponential, linear) or a sum of such structural com-
ponents (nested structures) (see, for example, Chilès and Delfiner, 2012 or Rivoirard et 
al., 2000). 

The nugget effect corresponds to a discontinuity at the origin. It may correspond to a 
small-scale component which is not resolved by the sampling design. Random errors 
when measuring a variable are also responsible for a nugget component. A "pure" nug-
get effect, i.e. a nugget effect without any additional structure, corresponds to the var-
iance. 

The exponential and spherical models have a linear behavior at the origin, correspond-
ing to more continuity than the nugget effect. They stabilize on a sill at a separation 
distance (lag) termed the “range”. So, they are bounded and can be associated with a 
stationary covariance.  

The linear variogram is unbounded. It corresponds to an intrinsic random function, 
but not a stationary one. In 1D, the Brownian motion is an example of a process with 
linear variogram. 

In the case of anisotropy, the different directional variograms must be fitted using a 
unique variogram model that includes the anisotropy. Anisotropy is often modeled 
through a "geometrical" anisotropy. This is equivalent to a linear transformation of the 
coordinates. For example, a spherical model with the largest range along the north–
south direction and the shortest range in the east–west direction would correspond to 
an isotropic structure if appropriately reducing the north–south distances or increasing 
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the east–west distances in the geographical space. In the case of a "zonal" anisotropy, 
there is a structural component in the variogram which only acts in some direction(s), 
e.g. along the vertical in 3D. This can be detected from the variogram by a sill which 
depends on the direction (e.g. smaller along horizontal planes if the zonal component 
is vertical).  

 

Application 4.3. Directional variograms on acoustic data  

In acoustic surveys, the sampling has high-resolution data along transects and tran-
sects separated by tens of nautical miles. The following R code (full script in Annex 3) 
computes the variogram along and across transects with different lag distances to 
check for structural anisotropy in the fish distribution. The example dataset is that of 
anchovy (Engraulis encrasicolus) in the Bay of Biscay (Annex 2).  

Before computing the variogram, we load the data, define a projection, and check for 
duplicated locations in the sample points.   

# pre-requisite 
projec.toggle(0) 
rg.load(filename="Demo.anchovy.bob.2d.db.data", objname="db.data") 
rg.load(filename="Demo.anchovy.bob.2d.poly.data",objname="poly.data") 
projec.define(projection="mean")  
db.data <- duplicate(db.data) 
 
# Calculate directional variogram 
vg2 <- vario.calc(db.data,lag=c(2,15),dirvect=c(35,145), nlag=c(40,7)
) 
plot(vg2,npairpt=0,npairdw=TRUE,title="",inches=.05) 

 

Figure 4.12. Calculation of experimental variograms, with lag depending of the direction (in black 
along transects, in red accross transects). 

The variogram is calculated with function vario.calc() in the direction 35° (along tran-
sects) counted with a lag distance of 2 nautical miles (black colour) and in the direction 
145° (across transects) with a lag distance of 15 nautical miles (red colour). Directions 
are counted trigonometrically. The variogram in the across-transect direction attains 
the sill at its first lag. The variogram structure is assumed isotropic as no structural 
difference is evident from the directional variograms. 
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The variogram is then reestimated in omnidirection mode and fitted automatically 
with a nugget effect and a spherical model using the function model.auto(). The vario-
gram range is close to the intertransect distance.  

# omnidirectional variogram 
vg <- vario.calc(db=db.data,lag=2, nlag=40) 
 
# fit isotropic variogram  
vg.mod <- model.auto(vario=vg,struct=melem.name(c(1,3,3)),npairpt=0,n
pairdw=TRUE,  
                     title="",inches=.05) 

 
Figure 4.13. Automatic fit of an isotropic variogram model with function model.auto().  

 

4.4 Transitive covariogram 

An alternative approach to the intrinsic one exists in geostatistics, which is the transitive 
approach (Matheron, 1971; Bez and Rivoirard, 2001; Chilès and Delfiner, 2012). In this 
approach, the spatial distribution of a population is studied as a whole, not distinguish-
ing the frontiers from its core. In particular, the delimitation of a domain is not re-
quired, and one does not have the problem of whether to include the 0 fish density 
values. It is based on another structural tool (the transitive covariogram, Figure 4.17). 
The transitive approach requires fewer hypotheses than the often used intrinsic ap-
proach (in particular, there is no reference to a random function model). It is more ro-
bust, but less powerful. In particular, it is unable to capture what could be the inner 
behavior of a regionalized variable within its domain (intrinsic behavior). 

In the transitive approach, the structure of the regionalized variable is described by the 
transitive covariogram, function of the distance vector h: 

( ) ( ) ( )g h z x z x h dx= +∫  

This satisfies ( ) ( )g h g h− =  and ( ) (0)g h g≤ . It is positive or null if ( ) 0z x ≥ . It satisfies 
2( )g h dh Q=∫  where ( )Q z x dx= ∫  [Q is the abundance if ( )z x  is a fish density]. At large 

distances, the transitive covariogram stabilizes at 0 from a distance which is the range, 
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usually depending on the direction. This corresponds to the size (diameter) of the area 
of presence of the population along this direction. The transitive covariogram has some 
similarities with a covariance or a variogram. However, it is not an expectation or a 
mean, but a sum. This makes the transitive covariogram more robust, particularly to 
outliers. In the case of a regular grid with cell a, it can be estimated for distances h k a=  
multiple of the cell by: 

( ) | | ( ) ( )
i

i i
x

g k a a z x z x k a= +∑  

In 2D, with 2D notations ( )1 2,a a a= , the covariogram at distances 1 1h k a=  (
1k  integer) 

along 
1a  direction is, for example: 

1 1 1 2 1 1( ) | || | ( ) ( )
i

i i
x

g k a a a z x z x k a= +∑  

When the sample grid is not regular, the experimental computation of the covariogram 
must be weighted by the area of influence of each datapoint (Bez, 1997): 

~ ~

~ ~

( ) ( )
1( ) ( ) ( )
2

i j i j

i i

i j i j

j j j j
x x h x x h

i i i i
x xj j

x x h x x h

s z x s z x
g h s z x s z x

s s
− − −

− − −

 
 

= + 
 
 

∑ ∑
∑ ∑∑ ∑

 

Otherwise, the computation is similar to that of the variogram. The mathematical mod-
els to be fitted are similar to the stationary covariance models. 

 

Application 4.4. Transitive covariogram of cephalopod concentrations 

The following R code (full script in Annex 3) is an example of transitive covariogram 
computation in 2D. The data used here correspond to a regular stratified sampling 
where one sample is taken at random in each square of a 11 x 11 nautical mile regular 
grid. They correspond to the cephalopod survey carried by INRH (Institut National de 
Recherche Halieutique) – Casablanca – Morocco (Faraj and Bez, 2007). See Annex 2 for 
data details. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.octopus.morocco.db.data","db.data") 
rg.load("Demo.octopus.morocco.poly.data","poly.data") 
worldHires <- map("worldHires",plot=F,add=T) 
projec.define(projection="mean",db=db.data) 
 
# Data presentation 
plot(db.data, zmin=0.01, pch.low=3, cex.low=0.25, las=1, pch=21, col=
1, inches=5, title="Octopus", xlab="Longitude (°)", ylab="Latitude (°
)", asp=1, flag.proj=FALSE) 
plot(poly.data,add=T, flag.proj=FALSE) 
map("worldHires",add=T) 
legend.proportion(db.data[,7], position="bottomright", zmin=0.01, zrm
in=0.01, zamin=0.01, zamax=max(db.data[,7]), zrmax=max(db.data[,7]), 
pch.low=3, cex.low=0.25, pch=21, col=1, bg=2, cex0=0.1, cex1=1, inche
s=5) 
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Figure 4.14. Map showing a bubbleplot of the octopus (Octopus vulgaris) densities. Many null den-
sities are observed around the heart of the distribution showing that the entire habitat has been 
surveyed. Large densities are clumped near the coast. 

This is a case where there is a relationship between the geometry of the domain and 
the regionalized variable and where it is not possible to assume that the sampled area 
is a window of observation which allows having access to statistics that are intrinsic to 
the phenomenon and relevant anywhere in the field. Stationarity, either of the variable 
or of its increments, is clearly questionable and transitive geostatistics a relevant ap-
proach. 

To compute the transitive covariogram, one must first estimate the surfaces of influ-
ence of each sample using the function infl(). To be consistent, this must be done in the 
projected geographical system. The polygon allows restricting the surface of influence 
of samples that are at the edge of the sampling area. 

 
db.data <- infl(db.data, nodes=400, extend=c(6,6), origin=c(-18,20.5)
,  
polygon=poly.data, plot=T, asp=1, xlab="Longitude (n.mi.)", ylab="Lat
itude (n.mi.)") 
lines(projec.operate(worldHires $x,worldHires $y)) 
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Figure 4.15. Tesselation of the sampling area to estimate the surface of influence of each sample 
restricted to the study polygon. Bubbles are proportional to the surface area. Colours range from 
red and yellow for the largest surface areas to blue and dark for the smallest ones. 

Lag parameter is equal to the size of the regular strata, i.e. lag = 11 nautical miles. The 
number of lags must insure that the entire area of presence is covered. The two directi
ons of computation follow the main axes of the polygon, i.e. 50° and 140°. The same  
function is used to compute a variogram or a covariogram. The argument “calcul” sel
ects the type of computation that is performed. 

covario.data <- vario.calc(db.data, breaks=seq(5.5,250,by=11), calcul
="covg", tolang=45, dirvect=c(50,140)) 
 

plot(covario.data,npairdw=1,xlim=c(0,250),inches=0.075,pos.legend=7, 
xlab="Distance (n.mi.)") 
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Figure 4.16. Transitive covariogram in directions 50° (black) and 140° (red). The dashed line corre-
sponds to the value of the covariogram at distance zero. As is often the case, the empirical covario-
gram is strongly anisotropic. This comes from the geometrical anisotropy of the area of presence 
which impacts the covariogram. Ranges, i.e. diameters of the area of presence in the direction of 
computation, are approximately equal to 30 and 150 nautical miles, respectively, in the directions 
140° and 50°. 

We considered adjusting the empirical covariogram with a combination of nugget  
effect and exponential functions. For the model to remain positive, one must use the  
argument constraints = covario.data@vars in the function model.auto(). 

# Superimpose the model to the empirical covariogram. 
model.covario <- model.auto(covario.data,struct=c(1,3,3),constraints=
covario.data@vars,draw=F) 
plot(covario.data,npairdw=1,xlim=c(0,250),inches=0.075,pos.legend=7, 
xlab="Distance (n.mi.)") 
plot(model.covario, vario=covario.data,lwd=2,add=T)  
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Figure 4.17. Transitive covariogram model superimposed to the empirical one.  
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5 Dispersion and estimation variances 

5.1 Dispersion variance  

Geostatistics makes the distinction between two types of variances: dispersion vari-
ances and estimation variances (Matheron, 1971; Chilès and Delfiner, 2012). The dis-
persion variances focus on the dispersion of values taken by the regionalized variable. 
The estimation variances focus on the errors which are made when estimating the var-
iable at target locations.  

Outside of any model, the dispersion variance corresponds to the classical statistical var-
iance of values (see Chapter 2). Consider a domain V divided into N equal blocks iv  
corresponding to the support v . The regionalized variable is supposed additive, so 
that the value z(V) is the arithmetic mean of the ( )iz v :  

1( ) ( )i
i

z V z v
N

= ∑ . 

The "dispersion variance of v within V" is nothing but the variance of the ( )iz v  within 

V: 

( )2 21s v | V  [ ( ) ( )]i
i

z v z V
N

= −∑  

Similarly z(V) is the average of point values z(x) within V, and the "dispersion variance 
of a point within V" is the variance of the z(x) within V denoted as: 

[ ]22 1( | ) ( ) ( )
V

s o V z x z V dx
V

= −∫  

The dispersion variance of a point within each iv  can be defined similarly, and their 

average represents the "dispersion variance of a point within v" 2 ( | )s o v . Interestingly, 
all such variances are related by an additivity relationship: 

2 2 2( | ) ( | ) ( | )s o V s o v s v V= +  

More generally, whatever the domain V partitioned into equal vs, the dispersion vari-
ance of v in V depends on the support v (in general, it decreases when v increases), and 
on the domain V. Finally, it can be shown that the variance of data values (that is, the 
dispersion variance of points within the set of datapoints) is the average of the experi-
mental variogram values, weighted by the number of pairs. This makes the link be-
tween the statistical variability (variance) and the spatial variability (variogram). 

Let us now introduce the model. One interest of the intrinsic random function model 
represented by a variogram model ( )hγ , is its ability to compute and predict the theo-
retical version (expectation) of dispersion variances. For example, the expected disper-
sion variance of a point within a set of N points is equal to ( , )N Nγ , mean value of the 
variogram ( )y xγ −  when the points x and y describe independently the N points: 

2 2
2

,

1( / ) ( / ) ( , ) ( )i j
i j

D o N E S o N N N x x
N

γ γ = = = −  ∑ . 

If the N points ix  represent the sample points, this corresponds, in the model, to the 
variance of the values at sample points. 
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The dispersion variance of a point in V is equal to ( , )V Vγ , mean value of the vario-
gram ( )y xγ −  when the points x and y independently describe V:  

2 2
2

1( / ) ( / ) ( , ) ( )
| | V V

D o V E S o V V V x y dx dy
V

γ γ = = = −  ∫ ∫ .  

The dispersion variance of v in V is equal to 2 ( / ) ( , ) ( , )D v V V V v vγ γ= − , difference be-
tween the dispersion variance of a point within V and the dispersion variance of a point 
within v. 

The dispersion variance of a point within (all datapoints of) the sampled domain V, 
representing the variance of data, equals ( , )V Vγ . If there is a sill C(0) and if the do-
main is large compared to the range, this variance equals C(0). So, it is desirable that 
the fitted variogram model ensures that ( , )V Vγ  or C(0) match with the variance of 
data. However, in practice, it may not be so, because the variogram is not computed 
on largest distances, and its model does not represent the reality at large distances (sta-
tionarity is only local).  

When the support changes, the statistical variability changes (dispersion variance) as 
does the geostatistical variability (see examples in Rivoirard et al., 2000). When its sup-
port increases, the variable is generally more regular. If Z(x) has a variogram ( )hγ , its 
regularized value Z(v) over support v has the regularized variogram: 

( ) ( , ) ( , )v hh v v v vγ γ γ= −  

and the regularized covariance is 

( ) ( , )v hC h C v v=  

 where hv  is v translated by h. 

 

5.2 Estimation variance from the variogram  

The estimation variance corresponds to the variance of an estimation error. So, it gives 
the precision of the estimation and can be predicted by the model. Consider the esti-
mation of Z(V) by Z(v), whatever V or v. The error is Z(V) – Z(v). Within an intrinsic 
random function model, the expectation of this error is zero (no bias), and the variance 
of this error (the "estimation variance") is equal to: 

( ) ( ) ( ) ( )2 Var ( ) ( ) 2 , , ,E Z V Z v V v V V v vσ γ γ γ= − = − −  

or in the stationary case: 

( ) ( ) ( ), , 2 ,C V V C v v C V v+ −  

In such formula, ( ),V vγ , for example, represents the mean value of the variogram 

( )y xγ −  between a point X describing V and a point y describing V. We can see that 

the estimation variance depends on the geometry of v and V and on the variogram. 
Note that v or V can be a set of isolated points. 

The estimation variance when estimating Z(v) by a punctual value Z(x) equals: 

( ) ( )2 , , 0v x v vγ γ− −  
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Additionally, if the point x is randomly uniform within v (i.e. it can be anywhere with 
no preference), it reduces to the dispersion variance of a point in V: ( ),v vγ  

In the case of N sample points random uniform within V and independent, the estima-
tion variance is ( ),v v Nγ . 

In the general formula above, V can be a set of isolated points:  
2

2
2

1 1 1( ) ( ) 2 ( , ) ( , ) ( , )E i i i j
i i i j

E Z V Z x x V x x V V
N N N

σ γ γ γ = − = − −  
∑ ∑ ∑   

This formula can be used to compute the estimation variance when estimating Z over 
a domain by the arithmetic mean of values over a set of points. It makes it possible to 
predict the estimation variance using a given sampling design (particularly for the 
global estimation of a domain). A variant of the previous equation allows giving dif-
ferent weights to the points and is used in ordinary kriging (next chapter): 

2
2 ( ) ( ) 2 ( , ) ( , ) ( , ) with 1E i i i i i j i j i

i i i j i
E Z V Z x x V x x V Vσ λ λ γ λ λ γ γ λ = − = − − =  

∑ ∑ ∑ ∑  

The global estimation variance of a domain can also often be obtained by combining 
the estimation variances of subdomains dividing the domain. This is so when each 
subdomain is estimated by inner samples and when the estimation errors of the sub-
domains are not correlated or when their correlation can be neglected. Random strati-
fied sampling is a good example of this (e.g. IBTS surveys); the domain is divided into 
blocks, and sample points are taken independently and random uniform within blocks. 
Because of this, there is no correlation between the errors. Such a principle of compo-
sition of variances is also valid with a regular sampling design and usual variogram 
models. The domain V is divided into equal blocks or cells v, with one sample at the 
center of each block. The global estimation variance can then be approximated by 

2
2 (
( )

)E
E

v
V

N

σ
σ = . This also applies in 1D with a regular sampling on a segment (e.g. when 

working in 1D on accumulations). A similar composition can also be applied when 
dividing a 2D domain into slices centred on sampled transects (here the transects, and 
so the slices, can have different length). 

Finally, note that global estimation variances depend on the variogram. Knowing this 
allows predicting the variances for different envisaged survey designs and, therefore, 
allows optimizing the sampling design. As it depends on the variogram model, this 
geostatistical approach can be qualified as model-based, compared with the classical 
sampling techniques (Cochran, 1977). The latter do not use such a variogram model, 
but require the locations of samples to be randomized. Typically, variances can be com-
puted for each stratum (providing it contains a minimum of two points), and variances 
can be combined over a domain divided into strata (having possibly different geome-
tries). The calculation of variances is straightforward, but requires a simple or stratified 
random sampling design. A model-based approach such as the geostatistical one is 
necessary in the case of regular sampling designs, which can be more precise due to a 
more even distribution of sample points. 

In practice, the estimation variance attached to an estimate of abundance is more com-
fortably interpreted through a coefficient of variation (CV), square root of the relative 
estimation variance, see Chapter 2. Then, under a Gaussian hypothesis, for example, 
the probability to deviate by more than r (e.g. r = 15%) can be deduced by p = 2G(–r/CV), 
where G is the standard Gaussian cumulative distribution function. 
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Application 5.1. Global estimation with a variogram 

The estimation variance of the mean over domain V can be computed using the func-
tion global(). The following R code (full script in Annex 3) performs the global estima-
tion of herring (Clupea harengus) eggs over a spawning bed. The survey design (Annex 
2) is made of dredge hauls dispersed more or less evenly over the spawning bed. It is 
considered that there is no error on the delineation of the limits of the domain V, which 
are defined by a polygon.    

Before performing the global estimation, we must read the data and polygon, select the 
data inside the polygon, and calculate and model the variogram. The variogram model 
is isotropic and made of a nugget effect and an exponential model. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herreggs.scot.db.data","db.data") 
rg.load("Demo.herreggs.scot.poly.data","poly.data") 
rg.load("Demo.herreggs.scot.vario.data","vg") 
rg.load("Demo.herreggs.scot.model.vario","vg.fit") 
 
# Data Presentation (left figure) 
x1lim<-25.9; x2lim<-26.5; y1lim<-17.0; y2lim<-17.58 
plot(db.data,name.prop="eggs",xlab="",ylab="",title="Eggs", 
xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim)) 
plot(poly.data,add=T,lty=1,density=0) 
 

# Variogram and Model Presentation (right figure 
plot(vg,xlab="Distance (km)",ylab="Variogram") 
plot(vg.fit,add=T) 

 
Figure 5.1. Left: proportional representation of herring egg data on a spawning bed delineated by 
a polygon (data supplied by Marine Scotland Science at the Marine Laboratory, Aberdeen). Right: 
variogram and its fitted model.  

Now, we estimate the zone mean over polygon V and its estimation variance. The esti-
mator considered is the simple data average. The estimation variance has three terms, 
two of which involve integrals of the variogram, γ(V,V) and γ(V,v), where v denotes the 
set of datapoint locations. To compute these terms, a fine grid discretizing polygon V 
is necessary.  
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# Define the discretization grid 
gnx <- 100; gny <- 100 
gd.disc <- db.grid.init(obj=poly.data,nodes=c(gnx,gny)) 
gd.disc <- db.polygon(gd.disc,poly.data) 

# Display discretization grid 
plot(gd.disc,pch=3,col=1,title="") 
plot(db.data,add=T,pch=21) 
plot(poly.data,add=T) 

 

 
Figure 5.2. Map of a herring spawning bed with a bubbleplot of herring egg density (in red) over a 
spawning ground. Discretization grid (black) inside the polygon. 

 

# Global estimate = arithmetic mean 
global.ma <- global(dbin=db.data, dbout=gd.disc, model = vg.fit, uc=c
("1"),  
polygon = poly.data, calcul = "arith", verbose=0) 
cat("simple mean: ", global.ma$zest," CV.geo: ", global.ma$cv,"\n") 

## simple mean:  963.26  CV.geo:  0.08 

 

Alternative regular design 

Given new data locations, the estimation variance for an alternative sampling design 
can be calculated using the function global(). For that, a new database is defined that 
consists of a regular design. Note that we add a dummy variable (zm: data mean), 
which is not used in the variance calculation, into the new database. 

# Regular grid design: create 

x0 <- 25.9; y0 <- 17.0 
dx <- 0.06; dy <- 0.06 
nx <- 13;   ny <- 12 
db.nw <- db.create(x0=c(x0,y0),dx=c(dx,dy),nx=c(nx,ny))  
db.nw <- db.add(db.nw,loctype="z") 
db.nw <- db.locate(db.nw,2:3,loctype="x") 
db.nw <- db.add(db.nw,z1=rep(0,db.nw$nech)) # dummy 
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db.nw <- db.locate(db.nw,4,loctype="z") 
db.nw <- db.polygon(db.nw,poly.data) 

# Regular grid design: display 
plot(db.nw,pch=3,xlab="km",ylab="km",flag.aspoint=TRUE,name.post=1, 
     xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim),title="") 
plot(poly.data,add=T,lty=1,density=0) 

 

 
Figure 5.3. Global estimation of herring eggs over a spawning ground. Alternative regular grid de-
sign (red crosses).  

 

# Regular grid design: global estimation 
global.syst <- global(dbin=db.nw, dbout=gd.disc, model = vg.fit, uc=c
("1"),  
polygon = poly.data, calcul = "arith", verbose=0) 
 
# Summary of results  

tab2 <- rbind(c(global.ma$zest,global.ma$cv,sum(db.data[,5])), 
              c(zm,global.syst$sse/zm,sum(db.nw[,5])), 
              c(zm,sqrt(zv/sum(db.data[,5]))/zm,sum(db.data[,5])) ) 
dimnames(tab2) <- list(c("Data","Regular","Random"),c("Mean","CV","NB
")) 
print(round(tab2,3)) 

##            Mean    CV NB 
## Data    963.261 0.080 46 
## Regular 963.261 0.074 34 
## Random  963.261 0.092 46 

 

The alternative regular grid design has 34 stations within the polygon and is more pre-
cise (CV = 0.074) than the current survey design with 46 stations (CV = 0.080). A design 
made of 46 randomly positioned stations would have the lowest precision (CV = 0.092). 
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5.3 Estimation variance in transitive geostatistics  

Transitive geostatistics (Matheron, 1971; Chilès and Delfiner, 2012) can be used to com-
pute the global estimation variance of an abundance ( )Q z x dx= ∫ , when the domain 

is not delineated (e.g. because of diffuse limits), assuming a regular grid (or a random 
stratified sampling in regular blocks). The grid is supposed to extend beyond the limits 
and to have a random origin. Transitive geostatistics can be used in 2D (Bez, 2002), but 
also in 1D (e.g. parallel transects projected on an orthogonal line; Petitgas, 1993a).  

The formula of the estimation variance for a regular grid with cell a is, in 1D or using 
"short" notations: 

2 ( ) ( )Q a g ka g h dhσ = −∑ ∫  

 

where g(h) is the transitive covariogram, k are integers, and ka describe the distances 
between grid points. This formula can be expanded in 2D with 2D notations as follows, 
the cell being ( )1 2,a a :  

( ) ( )2
1 2 1 1 2 2 1 2 1 2, ,Q a a g k a k a g h h dh dhσ = −∑∑ ∫ ∫  

 

The formula of the estimation variance for a random stratified sampling in regular 
blocks with cell a  is: 

2 (0) ( )Q a g g aσ  = −    

 

with   1( ) ( )
| | a a

g a g y x dx dy
a

= −∫ ∫ ,  

 
or with 2D notations: 

( )2
1 2 1 2|| (0) ( , )Q a a g g a aσ  = −   

 

Application 5.2. Global estimation of cephalopod abundance with transitive method 

The following R lines (full script in Annex 3) show an example of transitive global es-
timation. The data used here correspond to a regular stratified sampling where one 
sample is taken at random in each square of a 11 x 11 nautical mile regular grid. They 
correspond to the cephalopod survey carried by INRH (Institut National de Recherche 
Halieutique) - Casablanca – Morocco (Faraj and Bez, 2007). See Annex 2 for data details. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.octopus.morocco.db.data","db.data") 
rg.load("Demo.octopus.morocco.poly.data","poly.data") 
projec.define(projection="mean",db=db.data) 

 
# Compute and fit the covariogram (see sections above for details) 
db.data <- infl(db.data, nodes=400, extend=c(6,6), origin=c(-18,20.5)
,  
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                polygon=poly.data, plot=F, asp=1,  
                xlab="Longitude (n.mi.)", ylab="Latitude (n.mi.)") 

lag <- 11 ; nlag <- 20 ; dirvect = 50+c(0,90) 
covario.data <- vario.calc(db.data, lag=lag, nlag=nlag, calcul="covg"
, tolang=45,  
dirvect=dirvect) 
iad0 = covario.data[1]$npas + 1 
covario.data[1,1]$sw[iad0] <- 0 
covario.data[2,1]$sw[iad0] <- 0 
model.covario <- model.auto(covario.data,struct=c(1,2),constraints=co
vario.data@vars,draw=F) 
 
# Global estimate 
Q <- sum(db.data[,7]*db.data[,9]) 
 
# Estimation variance and coefficient of variation  
# Turn OFF the projection not to project the strata dimensions provid
ed in projected units (here nautical miles) 
projec.toggle(0)   
var.est <- 11 * 11 * (model.eval(model.covario, h=0, as.cov=T) -  
           model.cvv(v.mesh=11, model=model.covario, seed=110366, ndi
sc=20)) 
CV <- round(sqrt(var.est)*100/Q,2) 
cat("CV = ",CV,"%\n") 

## CV = 18.63% 

The estimation variance is highly sensitive to the amount of nugget effect. As a matter 
of fact, the estimation variance is the difference between the value of the covariogram 
at 0 distance and an average of it over a grid mesh, i.e. using the values of the covario-
gram model without the nugget effet. A very good approximation of the estimation 
variance can thus be obtained by using only the nugget effect, provided it is large. Par-
ticular care is thus recommended when fitting/choosing the model to not be optimistic 
in terms of nugget effect and thus in terms of estimation variance; too small a nugget 
effect leads to an estimation variance that is too small. 

 

5.4 Case of an indicator: the geometric error 

The transitive method can be used in the particular case of the indicator of presence 
1𝑧𝑧(𝑥𝑥)>0 . In 2D, the sum of this indicator corresponds to the area of presence 𝑃𝑃 =
∫ 1𝑧𝑧(𝑥𝑥)>0 𝑑𝑑𝑥𝑥. Using regular sampling with mesh size (a1,a2), this area can be estimated 
by the number N of sample points hitting the area A* = N a1 a2  (Figure 5.4).  
 
 
 
 

 
Figure 5.4. Estimating the area of presence from a regular sampling pattern. The sample points in 
red hit the area, those in black do not. The estimation (in nautical miles) of the area of presence is 
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the same as the area corresponding to the "positive" cells, i.e. tenfold the area of a cell. The CV of 
this estimation, computed by transitive geostatistics, is 11%. 

 
This estimation is accompanied with an error, due to the real limits of the geometry 
being unknown between the sample points. In this case the transitive estimation vari-
ance can be developed and gives the following relative variance (Matheron, 1971; 
Chilès and Delfiner, 2012): 
 

2 2
1
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1 2 1 2
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In the particular case of Figure 5.4, this gives: 
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The method can also be applied in 1D. For example, in the case of parallel transects 
projected on an orthogonal line, the sum of densities along each transect gives the tran-
sect abundance, and the 1D indicator on the orthogonal line says if the transect has a 
positive abundance or not (Figure 5.5). Summing the indicator along the line gives the 
1D extension of the abundance on the line. This can be estimated by the number of 
positive transects A* = N a. The exact location of the two extremities of the extension is 
unknown. The resulting estimation variance of this geometric error is equal to 

2
2

6A
aσ =   

(Matheron, 1971; Petitgas, 1993a), giving 1
6

A
ACV

A N
σ

= =    

 
 

 

 
Figure 5.5. 1D example for parallel transects with inter-transect distance a.  
 
Each point represents a transect projected on this orthogonal line. Each red point cor-
responds to a transect having a positive abundance, and each black point is a transect 
without abundance. The 1D extension of the abundance on the line can be estimated 
by the number of positive transects. The transitive method can give the variance of this 
estimation, due to the fact that the exact location of the two extremities of this 1D ex-
tension is unknown. 
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5.5 On the different methods for global estimation variances 

The transitive approach allows one to compute the global estimation variance of a sam-
pled abundance ( )Q z x dx= ∫ from a regular sampling design. It does not require the 

delineation of a domain, but assumes that the population has been sampled to its outer 
limits. 

On the other hand, the intrinsic approach based on the variogram allows to compute 
the global estimation variance 2

Eσ  of the average regionalized variable Z(V) (density in 
2D, transect biomass in 1D) within a given domain V. Since the corresponding abun-
dance is Q = V Z(V), the estimation variance of Q is simply V2 2

Eσ , and the estimation 
CV of Q and Z(V) are the same. 

The intrinsic approach assumes that the variogram describes the inner behavior of the 
variable within the domain. However, this approach does not take into account the 
possible uncertainty on the domain. This is relevant when the domain has to be esti-
mated from the samples. There are cases where the domain over which the abundance 
is estimated is known in advance, e.g. an ICES statistical square or a management area 
in which case no uncertainty has to be considered for the domain.  

This uncertainty can be assessed by the relative variance of the geometric error of the 
domain 2

2
V

V
σ  which can be computed from the transitive approach in the case of a regu-

lar sampling design (see Section 6.4). It can be used first to complement the estimation 
variance of Z(V) which becomes 

2
2 2

2( / ) V
E D o V

V
σσ + , where D2(o/V)  is the dispersion 

variance of the variable within V, represented by its sample variance (Matheron, 1971; 
Journel and Huijbregts, 1978). The relative estimation variance of Z(V) becomes 

22 2

2 2 2

( / )
( ) ( )

VE D o V
Z V Z V V

σσ
+ .  

Secondly, if there is an uncertainty on the domain V, the CV of Z(V) and of Q are not 
the same. The relative estimation variance of Q = Z(V)V can be approximated by the 
sum of the relative estimation variances of Z(V) and of V: 

2 2 2 22 22 2

2 2 2 2 2 2 2 2

( / ) ( / )1
( ) ( ) ( ) ( )

Q V V VE ED o V D o V
Q Z V Z V V V Z V V Z V
σ σ σ σσ σ  

= + + = + + 
 

 

 

Application 5.3. Global estimation in 1D for acoustic surveys  

In acoustic surveys, acoustic data are recorded continuously along the ship’s sailing 
track. When the survey design is made of parallel, regularly spaced transects, the 
(global) estimation of population abundance can be performed in one dimension. It 
suffices to sum fish concentrations along the transect lines and work on the one-dimen-
sional dataset made of fish biomass per transect (Petitgas, 1993a). Here are the main 
elements for performing the 1D global estimation of an acoustic survey on anchovy. 
The full demonstration Rscript is in Annex 3, and the data details are in Annex 2.  

Before performing the global estimation, the 1D data are read (28 values) and their 
variogram is computed and modelled. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.anchovy.bob.1d.db.data","db.data")  
rg.load("Demo.anchovy.bob.1d.vario.data","vg") 
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rg.load("Demo.anchovy.bob.1d.model.vario","vgmod") 
 
# Data Presentation (left figure) 
nrad  <- db.data$nsamples                 # Nb of transects 
aa <- 1                                   # Inter-transect (arbi-
trary) distance 
 
#  Transform db.data into regular grid 
db.datagrid <- db.grid.init(db.data,nodes=nrad,flag.regular=T) 
db.datagrid <- migrate(db.data,db.datagrid,flag.fill=2,name="Tr.bio-
mass") 
 
# Display information 
plot(db.data,pch=20,type="b",title="Biomass", 
     xlab="S <---- Transects ----> N", ylab="Biomass per transect") 
plot(db.datagrid,add=TRUE,col="red") 
 
# Display Variogram and Model (right figure) 
plot(vg,xlab="Distance",ylab="Variogram") 
plot(vgmod,add=T,col="red") 

 
Figure 5.6. Bay of Biscay anchovy global estimation in 1D for an acoustic survey made of regularly 
spaced parallel transects. Left: fish concentration is summed along east–west transect lines result-
ing in a 1D dataset of regularly aligned biomass per transect values. Right: variogram and its fitted 
model (red) for the 1D data. Distance is expressed as a multiplier of the intertransect distance. 

 

The global mean estimate is the simple 1D data average. The 1D domain for the esti-
mation is the 1D segment made of the 27 intertransect distances to which we add one-
half a transect-distance away from each extremity. The estimation variance within the 
1D domain is computed using the function global(), and the discretization grid is made 
of 100 points. But the limits of the 1D domain are unknown. Therefore, we calculate a 
geometric error variance term, considering that the limits are uniformly located within 
a transect distance away from each extremity (see above). The geometric error variance 
term adds to the estimation variance within the domain. Here, the geometric error var-
iance represented 4% of the total estimation variance. The total estimation CV is 0.107. 

# Estimation variance 1D  
gloa <- global(dbin=db.datagrid, calcul="arith", model=vgmod, ndisc=1
00, verbose=0) 

# Geometric error variance: nrad= nb.transect, aa= inter-transect dis
t-ance 
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s2 <- var(db.data[,"Tr.biomass"],na.rm=T)*(nrad-1)/nrad   
d2geom <- s2*(aa^2/6)/(aa*nrad)^2         
# Total estimation CV 
cv.tot  <- sqrt(gloa$sse^2+d2geom)/gloa$zest  # Total error CV 
cat("Mean=",round(gloa$zest,3), "CVest=",round(cv.tot,3),"\n") 

## Mean= 371.735 CVest= 0.126 

Alternative sampling efforts  

The intertransect distance is now varied to evaluate how survey precision changes. For 
each new intertransect distance, a 1D line grid is defined over the 1D domain, and the 
estimation variance is computed using the function global(). Note that for each inter-
transect distance, the geometric error variance term is also computed. The total estima-
tion CV increases linearly with intertransect distance. If a survey precision of 0.15 was 
acceptable, the intertransect distance could be increased.  

nk <- 9 

# Loop on alternative interTransect distances 
sse <- numeric(nk) 
for (k in 1:nk) { 
  ak <- k*0.25*aa                      # new intertransect distance 
  nrk <- round(nrad*aa/ak,0)           # new nb transects 
  d2geom <- s2*(ak^2/6)/(ak*nrk)^2     # geometric error variance 

  # variance of estimation error 
  db.datagrid <- db.grid.init(db.data,nodes=nrk,flag.regular=T) 
  db.datagrid <- migrate(db.data,db.datagrid,flag.fill=2,name="Tr.bi-
omass") 
  d2estim <- global(dbin=db.datagrid,calcul="arith", 
                    model=vgmod,ndisc=100,verbose=0)$sse^2    
  sse[k] <- sqrt(d2estim+d2geom) 
} 
plot(0.25*aa*(1:nk),sse/gloa$zest,type="b",  
          xlab="Multiplier of Intertransect Distance",ylab="Estimation 
CV") 
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Figure 5.7. Bay of Biscay anchovy global estimation in 1D for an acoustic survey made of regularly 
spaced parallel transects. Estimation of CV as a function of intertransect distance. The current sur-
vey corresponds to a multiplier equal to 1. 
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6 Kriging  

Kriging is the best linear unbiased estimator and can be used to estimate the value of a 
regionalized variable at a target point, the average value of a block, the values at the 
nodes of a regular grid (for mapping), or the average value over a domain (e.g. a poly-
gon). In particular, kriging can be used for global estimation when data values are to 
be weighted due to irregular sampling design (the data must not be too numerous). 

As a point estimator, kriging is an interpolator obtained as a linear combination of the 
values measured at sample points. Several other linear interpolation techniques exist 
which are deterministic approaches to interpolating, for example: 

• Moving average: average of the sample values within a neighborhood of the 
target point; 

• Inverse distance: neighbouring sample values are weighted proportionally to 
the inverse distance (or distance squared) to target point. 

Rather than adopting a conventional weighting of the sample data, kriging will choose 
the weights that make it unbiased and with minimum estimation variance (optimal) 
given the structural model. Kriging is a probabilistic approach to interpolating between 
sample points (Matheron, 1971; Chilès and Delfiner, 2012).  

Let 0Z  be the target to be estimated (value at a point, or block value, etc). There are 
different types of kriging, depending on the hypotheses of the model. However, in each 
case, kriging is a linear combination of data values ( )Z xα : 

*
0 0( )Z Z xα αλ λ= +∑  

where the index α is that of the sample points, 0λ  can be 0 or not, and the weights λα 
must be chosen so that the error has a zero expectation (no bias) and a minimum vari-
ance (optimality). The data may be selected within a neighborhood of the target loca-
tion (see further).  

6.1 Simple kriging 

"Simple kriging" corresponds to the stationary case with known mean E[Z(x)] = m. This 
mean is the mean of the process, which is also the mean over a very large domain com-
pared to the range. Here, it is supposed to be known through many data over such a 
domain. If the sampled domain is not large, or if data are not sufficient, such a mean is 
not known.  

Writing that the expectation of the error is 0: 

( )0 0 0 00 1KE Z Z m m mα α
α α

λ λ λ λ − = − − = ⇒ = − 
 

∑ ∑  

allows for the determination of the constant term 0λ . We can then see that the estimator 
is a weighted average of the data and of the process mean m (which receives the com-
plementary weight 1m α

α

λ λ= −∑ ): 

0 0( ) ( ) 1KZ Z x Z x mα α α α αλ λ λ λ = + = + −  
∑ ∑ ∑  

The variance of the error follows from: 
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var ( ) ( ) with 0i i i j i j i
i i j i

Z x x xλ λ λ γ λ  = − − =  
∑ ∑ ∑  

as: 

0 0 00 02Var Z Z C C Cα α α α α β αβ
α α α β

λ λ λ λ λ − − = − +  
∑ ∑ ∑∑  

where, for example, 0 0cov( ( ), )C Z x Zα α=  is either the covariance between datapoint xα  

and a punctual target 0( )C x xα− , or the mean covariance between the datapoint and a 

discretized target v, in the case of a block or domain 
0

1 ( )
v

C x x dx
v

−∫ . The indices α and 

β are that of the sample points, as β is used in the double summation over sample 
points. 

Kriging weights are solutions of the linear system obtained by minimizing this vari-
ance: 

0C Cβ αβ α
β

λ α= ∀∑  

When minimized, the estimation variance can be written: 
2

00 0K C Cα α
α

σ λ= −∑  

This is called "kriging variance". Note that this is the variance of the error and should 
not to be confused with the dispersion variance of the kriging estimator. 

Because of the linearity of the kriging weight with respect to the right-hand term, 
kriging directly a set of points (e.g. block, domain) is equivalent to averaging the 
kriging of the points (when using the same set of data). This only holds for the esti-
mated value. This does not hold for the estimation variance; the kriging variance of the 
mean density over a spatial domain is not the mean of the kriging variances of the 
points in this domain.  

Some points are to be noted that are also valid for the other types of kriging: 

• Kriging is an exact interpolation; it honors the data values at datapoints;  
• Kriging is a smoothing interpolator;  
• Kriging weights do not depend on data values; 
• Multiplying the structure by a constant does not change the estimation, but 

changes proportionally the estimation variance. 

6.2 Ordinary kriging 

“Ordinary kriging” corresponds to the case where the mean is unknown or to the in-
trinsic model. The sum of weights 

αλ∑  is constrained to be 100% and 0 0λ = . This en-

sures that the error has a mean of 0 whatever the unknown mean, or that the error is 
defined in the intrinsic random function model characterized by the variogram. Mini-
mizing the variance under the constraint on the sum of the weights gives the following 
linear system to be solved for the kriging weights: 

0

1

C Cβ αβ α
β

β
β

λ µ α

λ

 + = ∀



=


∑

∑
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where μ is a Lagrange parameter introduced for the constraint (the system can be writ-
ten in terms of variogram instead of covariance, replacing μ  by –μ). The indices α and 
β are those of the sample points. 

The kriging variance can be written as: 
2

00 0K C Cα α
α

σ λ µ= − −∑  

Ordinary kriging can, in particular, be used in global estimation to estimate the mean 
over a domain. 

 

Application 6.1. Global estimation with a variogram, kriging the global mean over a 
polygon 

We come back to the demonstration Rscript in Annex 3, which performs the global 
estimation of herring eggs over a spawning bed. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herreggs.scot.db.data","db.data") 
rg.load("Demo.herreggs.scot.grid.disc","gd.disc") 
rg.load("Demo.herreggs.scot.poly.data","poly.data") 
rg.load("Demo.herreggs.scot.vario.data","vg") 
rg.load("Demo.herreggs.scot.model.vario","vg.fit") 
 
# Data Presentation (left figure) 
x1lim<-25.9; x2lim<-26.5; y1lim<-17.0; y2lim<-17.58 
plot(db.data,name.prop="eggs",xlab="",ylab="",title="Eggs", 
xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim)) 
plot(poly.data,add=T,lty=1,density=0) 
 

# Variogram and Model Presentation (right figure 
plot(vg,xlab="Distance (km)",ylab="Variogram") 
plot(vg.fit,add=T) 
 

 
Figure 6.1. Left: proportional representation of herring egg data on a spawning bed delineated by 
a polygon (data supplied by Marine Scotland Science at the Marine Laboratory, Aberdeen). Right: 
variogram and its fitted model. 

The mean over the bed in the polygon (regional mean) is now estimated by ordinary 
kriging. This is done using the function global() with appropriate input parameters. 
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We use the same discretization grid of the domain as previously. The kriging weights 
are saved and added into the data base for spatial representation. 

# Global estimate = kriged mean 
global.mk <- global(dbin=db.data, dbout=gd.disc, model = vg.fit, uc=c
("1"), 
                    polygon = poly.data, calcul = "krige", flag.wgt=T
RUE, 
                    verbose=0) 
# Display kriging weights 
db.data <- db.add(db.data,global.mk$wgt,loctype="w") 
plot(db.data,name.prop="w",title="Global Kriging weights") 
plot(poly.data,add=T) 

 

 
Figure 6.2. Herring eggs over a spawning ground. In red, the kriging weights when kriging the 
global mean over the delineated domain. 

 

Kriging weights depend on the location of samples and also on the variographic struc-
ture between samples. Here, they are smaller where sample points are closer and larger 
in areas where there are less data. This results in slightly down-weighting large values, 
and thus the kriged mean is a bit lower than the simple data average. The kriging var-
iance is also lower than the estimation variance when estimating the global mean by 
the data average. 

cat("Kriged zone mean: ", global.mk$zest," CV.geo: ", global.mk$cv,"\
n") 
Kriged zone mean:  946.6976  CV.geo:  0.07502062 

 

6.3 Comparing simple kriging and ordinary kriging 

Simple kriging is a weighted average of the data values and of the process mean m = 
E[Z] of the random function. The possible sparseness of data, if any, is compensated 
by a weight given to the mean. The linear regression of 0Z  on its kriging 

0
SKZ  is equal to 
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0
SKZ (line with slope 1 going through the origin). If the true regression [conditional ex-

pectation 0 0( | )SKE Z Z ] is linear, this guarantees, for example, that areas considered as 
"rich" (e.g. high kriged fish density) are, on average, as rich as predicted (absence of 
conditional bias: ( ) | ( ) ( )K KE Z x Z x Z x  =  ). 

When the mean of the stationary random function is unknown, it can be estimated 
optimally by kriging as a weighted average of data values, similarly to ordinary 
kriging. This is the kriging of the mean mK, with its kriging variance Var(mK). It can be 
shown that ordinary kriging is nothing but simple kriging in which the process mean 
is replaced by its kriged mean mK: 

0 ( ) 1OK SK SK KZ Z x mα α αλ λ = + −  
∑ ∑  

 

If the weight of the mean in SK 1 SK
m α

α

λ λ= −∑  is close to 0, there is no difference between 

simple and ordinary krigings, as the mean (either known in simple kriging or kriged 
in ordinary kriging) is not used. When the weight of the mean in simple kriging is not 
close to 0, the slope of the regression of 

0Z  on its kriging 0
OKZ , which can be written as: 

( )
( ) ( )

0 0

0 0

, ( )1
OK K

mOK OK

Cov Z Z Var ma
Var Z Var Z

λ= = −  

will be different from 1, and generally less than 1. This means that areas considered as 
rich after their kriging are, on average, less rich than predicted, while areas considered 
as poor are less poor. Kriging does not smooth enough, and there is conditional bias: 

( ) | ( ) ( )K KE Z x Z x Z x  ≠  . 

In practice, stationarity is often only local, so that ordinary kriging ("kriging with un-
known mean") based on neighbouring data values is frequently preferred. However, it 
is recommended to use a large enough neighbourhood to make a sufficient smoothing 
and avoid, as much as possible, conditional bias.  

6.4 Choosing the neighbourhood  

Kriging can be performed using all data ("unique neighbourhood") or only the data in 
the neighbourhood of the target location (moving neighbourhood for a kriged map). 
Theoretically, it is better to use all data, but this is not always possible when data are 
numerous and not desirable when stationarity (of the variable or its increments) is only 
local. Then data must be selected from a neighbourhood of the target location. The 
choice of the neighbourhood in kriging may not be easy. Selecting the most appropriate 
subset of neighbouring samples can be done by their number, by the maximal distance 
from target, by angular sector from target, or by a mixture of criteria. The use of angular 
sectors ensures that data in different directions from the target are selected; this is par-
ticularly useful when datapoints are densely located along lines, e.g. acoustic transects. 
The presence of a "screen effect" (datapoints having 0 weights because they are 
screened by datapoints closer to the target location) can help choosing a neighbour-
hood without loss of information, but a nugget effect tends to suppress such screen 
effects. Looking at the weights of data away from the target, or at their influence on the 
kriging variance, may help choosing a sufficient neighbourhood. In ordinary kriging, 
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when the simple kriging weight of the mean is not low, a slope of regression of Z con-
ditional on Z* close to 1 should be preferred to avoid conditional bias. 

6.5 Cross-validation  

Cross-validation may help choosing a method (e.g. type of kriging), a variogram model 
or a neighbourhood. Its principle is the following. At each datapoint, remove the sam-
ple value and estimate its value from the other samples. Then, compare real to esti-
mated values using statistics on the errors: 

*( ) ( )Z x Z xα α αε = −  

and on the normalized errors:  
*( ) ( )R Z x Z xα α

α
α

ε
σ
−

= . 

In principle, the best choice in terms of prediction of values corresponds to the lowest 
mean squared error:  

22 *1 1 ( ) ( )Z x Z x
n nα α αε  = − ∑ ∑ . 

Furthermore, the best choice in terms of prediction of variance corresponds to the mean 
squared normalized error:  

( )
2*

2

2

( ) ( )1 1R
Z x Z x

n n
α α

α
α

ε
σ

 − =∑ ∑  

which is the closest to 1. Remember that multiplying a variogram model by a constant 
does not change the kriging weights and also the estimation of the values, whereas it 
directly impacts the prediction of the variance. 

 

Application 6.2. Kriging herring eggs on a spawning bed, neighbourhood, cross-vali-
dation and mapping 

We come back to the herring egg data over a spawning bed (full Rscript in Annex 3; 
data details in Annex 2), on which we performed global estimation previously. Now 
we consider kriging for mapping, and for that, different neighbourhoods are analyzed. 
Two criteria are used: the weight of the mean, and the decrease in kriging weights with 
distance from the target point to be kriged. The data comprise 46 egg counts at dredged 
locations (db.data) and a polygon (poly.data) delineating the spawning bed. The vari-
ogram model (vg.fit) has been calculated previously. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herreggs.scot.db.data","db.data") 
rg.load("Demo.herreggs.scot.grid.disc","gd.disc") 
rg.load("Demo.herreggs.scot.poly.data","poly.data") 
rg.load("Demo.herreggs.scot.vario.data","vg") 
rg.load("Demo.herreggs.scot.model.vario","vg.fit") 
 
# Data Presentation (left figure) 
x1lim<-25.9; x2lim<-26.5; y1lim<-17.0; y2lim<-17.58 
plot(db.data,name.prop="eggs",xlab="",ylab="",title="Eggs", 
     xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim)) 
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plot(poly.data,add=T,lty=1,density=0) 
 

# Variogram and Model Presentation (right figure 
plot(vg,xlab="Distance (km)",ylab="Variogram") 
plot(vg.fit,add=T) 

  
Figure 6.3. Left: proportional representation of herring egg data on a spawning bed delineated by 
a polygon (data supplied by Marine Scotland Science at the Marine Laboratory, Aberdeen). Right: 
variogram and its fitted model. 

 

First, we define the grid on which to perform kriging and select its nodes inside the 
polygon. 

# Grid on which to perform kriging 
x0 <- 25.9; y0 <- 17.0; dx <- 0.05; dy <- 0.05; nx <- 13; ny <-13 
db.grid <- db.create(flag.grid=T,x0=c(x0,y0),dx=c(dx,dy),nx=c(nx,ny)) 
db.grid <- db.polygon(db.grid,poly.data) 
 
# Display grid, polygon and data 
plot(db.grid, title="", xlim=c(x1lim, x2lim), ylim=c(y1lim, y2lim), 
pch=3) 
plot(poly.data,add=T,lty=1,density=0) 
plot(db.data,pch=18,add=T,col="black",inches=1.5) 
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Figure 6.4. Mapping by kriging herring eggs on a spawning ground. Kriging discretized grid (red 
crosses) with proportional representation of the data (black diamonds) inside the polygon. The 
blue circles denote the grid points selected for testing different kriging neighbourhoods.  

 

We choose two target points to test different kriging neighbourhoods; one is well sur-
rounded by datapoints (grid point 30 in the southwest), thus well informed for kriging; 
the other is less well informed (grid point 87 in the northeast).  

The process mean is estimated by kriging using function global(). 

mt <- global(dbin=db.data, dbout=gd.disc, model = vg.fit, uc=c("1"), 
             polygon = poly.data, calcul = "mean", verbose=0) 

 

Two different kriging neighbourhoods are considered: a unique neighbourhood (nei1) 
involving all datapoints and a moving neighbourhood (nei2) involving 2–8 points 
within a disc of radius 0.5 km from the target point. 

nei1 <- neigh.create(ndim=2,type=0)                            # 
unique  
nei2 <- neigh.create(ndim=2,type=2,nmini=2,nmaxi=8,radius=0.5) # mov-
ing  

 

The function krigetest() provides all details on the kriging system for a given target 
point. For target point 30 and neighbourhood nei1, the following code allows for the 
estimation of the weight of the process mean and to access the kriging weights of the 
samples within nei1. 

# Kriging parameters for neighbourhood nei1 at grid point 30 

# simple kriging 
kts <- krigtest(dbin=db.data, dbout=db.grid, model=vg.fit, 
neigh=nei1, uc=NA, 
                mean=mt$zest, calcul="point", iech0=30, target=NA) 

# ordinary kriging 
iech0 = 30 
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nei_rank = 1 
kto <- krigtest(dbin=db.data, dbout=db.grid, model=vg.fit,neigh=nei1, 
uc=c("1"), 
                calcul="point", iech0=iech0, target=NA) 

# weight of process mean in neighbourhood 
wgt <- kto$wgt[1: kto$nech] 
lm  <- 1-sum(wgt)   

# nb samples in neighbourhood 
ns <- length(wgt) 

# Display Kriging parameters 
plot(db.data, name.post=1, xlab="", ylab="", 
     title=paste("Point",iech0,"Neigh",nei_rank)) 
points(kto$xyz) 
text(x=26.4, y=17.5, paste("Wgt.mean:",round(lm,3)), cex=1) 
text(x=26.4, y=17.45, paste("Nb.obs :",ns), cex=1) 
plot(poly.data, add=T, lty=1, density=0) 
points(x=kto$target[1], y=kto$target[2], pch=3, col="blue") 
text(kto$xyz,label=round(wgt,2),cex=1,adj=c(0.5,1.5))  

 

Inserting this code into a double loop on the two selected target points (30, 87) and the 
two neighbourhoods (nei1, nei2) gives the following results. For the well-informed tar-
get (point 30), the kriging weights become nil when datapoints are away from the tar-
get. For the less well-informed target (point 87), kriging weights decrease with distance 
to the target, but some distant data are given non-nil kriging weights. The weight of 
the process mean is larger for the less well-informed target (point 87: 0.27–0.29), while 
it is lower for the well-informed target (point 30: 0.03).  
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Figure 6.5. Weight of the process mean and ordinary kriging weights for a unique neighbourhood 
around target points (blue cross) 30 (top) and 87 (bottom). 
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Figure 6.6. Weight of the process mean and ordinary kriging weights for a moving neighbourhood 
with eight datapoints maximum around target points (blue cross) 30 (top) and 87 (bottom). 

The kriging weights of the data close to the target points are similar in unique and 
moving neighbourhoods and so are the weights of the mean.  

Another test of the neighbourhood is cross-validating the data by kriging with that 
neighbourhood.  For that, we use the function xvalid().  

# Cross-validation 
db.data.xv <- xvalid(db=db.data, model=vg.fit, neigh=nei2, uc=c("1"), 
mean=NA) 

# Mean error (should be close to 0) in percent of zone mean 
mean(db.extract(db.data.xv, "Xvalid.eggs.esterr")) / 963.26 
## 0.0453 

# Mean standardized squared error (should be close to 1)  
mean(db.extract(db.data.xv, "Xvalid.eggs.stderr")^2)  
## 1.2591 

 

Mapping by kriging is now performed with function krige(). We use ordinary point 
kriging in moving neighbourhood with neighbourhood nei2. The global mean in the 
map is close to the simple data average. The kriging variance expresses how the sample 
locations inform the kriging grid.  

# Ordinary point kriging in moving neighbourhood 
kres <- kriging(dbin=db.data, dbout=db.grid, model=vg.fit, 
neigh=nei2, uc=c("1"), mean=NA, calcul="point")  

# Plot kriged estimates: K.estim 
plot(kres,name.image=5,title="K.estim",col=topo.colors(20),xlab="", 
     ylab="",xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim),pos.legend=5) 
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plot(db.data,pch=18,add=T,col="black",inches=1.5) 
plot(poly.data,add=T) 

# Plot kriging errors: K.std 
plot(kres,name.image=6,title="K.std",col=rev(gray((0:100)/100)), 
     xlab="",ylab="", xlim=c(x1lim,x2lim), 
ylim=c(y1lim,y2lim),pos.legend=5) 
plot(db.data,pch=18,add=T,col="black",inches=1.5) 
plot(poly.data,add=T) 

 
Figure 6.7. Map of herring eggs over a spawning ground obtained by ordinary point kriging with 
moving neighbourhood (left) and map of the corresponding kriging standard deviation (right).  

 

6.6 Transitive kriging 

Although not frequently used, kriging can also be performed in the transitive approach 
(with 

0 0λ = ). Kriging weights are obtained by minimizing the sum of squared errors, 
supposing that the target is translated over space with the same relative configuration 
of data. The sum of kriging weights αλ  can be set to 1, so that the sum of the estimates 
equals the sum of the true values (non bias). Kriging weights are obtained as the solu-
tion of a linear system similar to ordinary kriging, but replacing the variogram or co-
variance by the transitive covariogram. 

 

Application 6.3.  Mapping cephalopod concentrations by transitive kriging 

The following R code (full script in Annex 3) is for an example of transitive kriging 
(Faraj and Bez, 2007). The data used here correspond to a random stratified sampling 
where one sample is taken at random in each square of a 11 x 11 nautical mile regular 
grid (see Annex 2). They correspond to the cephalopod survey carried out by INRH 
(Institut National de Recherche Halieutique) - Casablanca - Morocco. Before perform-
ing the kriging estimation, we must calculate and model the covariogram and define a 
kriging grid and a kriging neighbourhood. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.octopus.morocco.db.data","db.data") 
rg.load("Demo.octopus.morocco.poly.data","poly.data") 
projec.define(projection="mean",db=db.data) 
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# Compute and fit the covariogram  
db.data <- infl(db.data, nodes=400, extend=c(6,6), origin=c(-18,20.5)
,  
                polygon=poly.data, plot=F, asp=1,  
                xlab="Longitude (n.mi.)", ylab="Latitude (n.mi.)") 
dirvect = c(50,140) 
covario.data <- vario.calc(db.data, breaks=seq(5.5,250,by=11), calcul
="covg", tolang=45,dirvect=dirvect) 
 
model.covario <- model.auto(covario.data,struct=c(1,3,3),constraints=
covario.data@vars,draw=F) 
 

The kriging grid is defined in the geographical space. The function db.grid.init()  
allows covering the data with a regular grid with a given number of discretized  
points. Then, a selection with the function db.polygon() allows for the selection of gri
d points that are in the polygon to avoid spending time kriging outside the polygon. T
he grid points will be projected into a set of points to perform transitive kriging in the 
projected space with a consistent covariogram model. The final output will thus be re
presented in the geographical system. 

projec.toggle(0)  
grid.kri <- db.grid.init(db.data,nodes=400,extend=c(6,6),origin=c(-18
,20.5)) 
grid.kri <- db.polygon(grid.kri,poly.data) 
projec.toggle(1)  
 

The function neigh.create() allows defining the neighbourhood. Here, we chose to use 
a moving neighbourhood (type = 2). A minimum of 10 points are required in the neig
hbourhood to perform kriging (nmini = 10) and a maximum of 30 is enough (nmaxi = 
30). To honour the anisotropy present in the spatial structure and in the covariogram 
model, we used an anisotropic neighbourhood, i.e. an ellipse. The long axis is radius = 
150 nautical miles in direction 50° and the other is 50 nautical miles in the orthogonal 
direction. 

# Define rotation matrix consistent with main directions used  
rotmat <- matrix(c(cosd(dirvect[1]),sind(dirvect[1]), 
                  -sind(dirvect[1]),cosd(dirvect[1])),ncol=2) 
neigh.kri <- neigh.create(ndim = 2,type = 2,flag.aniso = T, flag.rota
tion = T,  
             nmini = 10, nmaxi = 30, radius = c(150,50), rotmat=rotma
t) 
 
# Transitive kriging 
res <- kriging(db.data,grid.kri,model.covario,neigh.kri) 
 
# Threshold possible negative estimates 
res[,5][res[,5]<0] <- 0 
 
# Map of the result 
projec.toggle(0) 
plot(res,col=rainbow(6,start=0.2,end=1),las=1,title="Octopus density 
- 1999",asp=0.8) 
plot(poly.data,las=1,add=T); map("worldHires", fill=T,col=grey(0.8),a
dd=T) 
plot(db.data,las=1,add=T,col=1) 
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legend.image(range(db.extract(res,"Kriging.JUV.estim"),na.rm=T),posit
ion="bottomright",col=rainbow(6,start=0.2,end=1),ntdec=0,cex=0.75) 

 
Figure 6.8. Distribution map of octopus density obtained by transitive kriging. Local heterogenei-
ties are smoothed given the amount of nugget effect present in the model. Anisotropy is generated 
according to the model. 
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7 Multivariate geostatistics 

7.1 Multivariate structural tools 

Relations often exist between different regionalized variables in the same domain. For 
example, fish densities at different ages are often related, or fish attributes (e.g. its 
length) may be linked to bottom depth, etc.  

Basic tools such as scatterplots between two variables are excellent ways to illustrate 
the relations that can exist between variables. They can be completed by linear regres-
sions, non-linear regressions, conditional distributions, and extended to the case of sev-
eral variables. However, very often these statistical tools describe the relationships be-
tween variables measured at the same location. For example, in a scatter diagram, each 
fish length value will be plotted against the corresponding bottom depth value at the 
same location (Figure 7.1).  

 

Application 7.1. Correlating two variables: herring mean length and bottom depth 

Multivariate geostatistics makes use of relationships between different regionalized 
variables. Here is an example on herring mean length and bottom depth collected at 
the same (trawl) stations around the Shetland (full Rscript in Annex 3, data details in 
Annex 2). The correlation between herring mean length and bottom depth at trawl sta-
tions is measured and displayed using the function correlation(). The (Pearson) corre-
lation coefficient is 0.62. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herring.len.scot.db.data","db.data") 
rg.load("Demo.herring.len.scot.poly.data","poly.data") 
projec.define(projection="mean",db=db.data) 
 
# Figure: correlation 
correlation(db.data,name1="depth",name2="m.length") 
## [1] 0.6190425 

 
Figure 7.1. Scatterplot between mean length and bottom depth at trawl stations. 
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The tools of multivariate geostatistics aim at highlighting the structural relations be-
tween variables, which includes the relations that may exist between different points. 
They can be used to improve the estimation or the mapping of one variable using an 
auxiliary variable, either sampled at the same locations  (“isotopic” case, not to be con-
fused with "isotropic") or not (“heterotopic” case). They can also be used to estimate or 
simulate consistently a set of variables. In particular, these tools will be very useful to 
estimate consistently the indicators above different thresholds corresponding to a re-
gionalized variable in Chapter 8 (Thresholding and indicators).  

Multivariate linear models (intrinsic, stationary) generalize the univariate ones. Simple 
variograms or covariances are then complemented with their bivariate versions. In an 
order 2 stationary model, each variable is stationary and the link between, say, varia-
bles 1Z  and 2Z , with means 1m  and 2m , is depicted by the cross-covariance, supposed to 
be a function of h: 

[ ][ ]{ }12 1 1 2 2( ) ( ) ( )C h E Z x h m Z x m= + − −  

We have 12 21( ) ( )C h C h= − , but this is not necessarily equal to 12 21( ) ( )C h C h− = . In case 
of a "delay" in space (or time) between variables, the maximum of correlation may cor-
respond to a non-zero distance. Note also that two variables that are statistically un-
correlated ( 12 (0) 0C = ) may still be spatially correlated ( 12 ( )C h  non zero for some h. This 
happens particularly when making a statistical factorization of variables; by construc-
tion, the factors are uncorrelated only at the same point. 

In an intrinsic model, each variable is intrinsic and the link between 
1Z  and 2Z  is de-

scribed by the cross-variogram, supposed to be a function of h: 

[ ][ ]{ }12 1 1 2 2( ) 0.5 ( ) ( ) ( ) ( )h E Z x h Z x Z x h Z xγ = + − + −  

As the expectation of each increment is 0, the cross-variogram is also the covariance 
between the increments. The cross-variogram is symmetrical in h: 12 12( ) ( )h hγ γ= −  and 
cannot reveal a possible delay. It satisfies 12 (0) 0γ = , but unlike the variogram, it can 
present negative values (e.g. in case of substitution of one variable by the other, one 
decreases when the other increases). Note that the cross-variogram can only be estab-
lished from datapoints where both variables are known. 

7.2 Linear model of coregionalization 

Once experimental simple and cross covariances or variograms have been computed 
from data, they must be fitted with a consistent multivariate model in order to ensure 
the positivity of the variances of all linear combinations. The linear model of coregion-
alization is the natural extension of the nested model for one variable. All simple and 
cross-variograms are modeled using the same basic structural components ( )k hγ  (in-
dexed by k and corresponding, for example, to different ranges): 

( ) ( )k k
ij ij

k
h b hγ γ=∑  

For consistency, each matrix ( )k
ijb  must be definite positive. In particular, when consid-

ering a pair of variables, a component can be present in the simple structure of one or 
both variables and be absent from their cross-structure, but a component appearing in 
a cross-structure must necessarily be present in the two simple structures.  
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Application 7.2. Fitting a linear model of coregionalization on herring mean length and 
bottom depth 

Mapping with cokriging required a multivariate geostatistical model to be fitted to the 
simple and cross-variograms. The following R code (full script in Annex 3) illustrates 
how to fit a linear model of coregionalization on herring mean length data and bottom 
depth around Shetland (data details in Annex 2), these two variables being correlated.  

After a projection and a proper assignment of locators in the RGeostats database 
db.data, simple and cross-variograms are computed from data at stations and fitted 
using the function vario.calc() and model.auto().  

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herring.len.scot.db.data","db.data") 
rg.load("Demo.herring.len.scot.poly.data","poly.data") 
projec.define(projection="mean",db=db.data)  
db.data = db.locate(db.data,"depth","z",1) 
db.data = db.locate(db.data,"m.length","z",2) 
 
# Calculate experimental omni-directional variograms and fit a model  
vario.data <- vario.calc(db.data) 
model.vario <- model.auto(vario=vario.data,struc=c("Nugget Effect","S
pherical"), 
               wmode=2,flag.goulard=TRUE,npairpt=F,npairdw=T,inches=0
.08, 
               opt.varname=1) 

 
Figure 7.2. Fit of a linear model of coregionalization on bottom depth data and mean fish length. 
Simple variogams are displayed on the diagonal with the depth data at the top and mean length at 
the bottom. The cross-variogram is displayed at the bottom left (the oblique dashed lines represent 
an envelope where the cross-variogram model must lie, given the simple variogram models). 
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7.3 Cokriging 

Cokriging is the extension of kriging to the multivariate case. For example, consider 
two variables 1Z  and 2Z  informed on two sets of points 1S  and 2S  identical (isotopic 
case) or not (heterotopic case), and suppose we want to estimate 1 0( )Z x . Its cokriging is 
the best estimation by a linear combination of data: 

( )
1 2

*
1 0 1 1 2 2 0( ) ( )

S S
Z x Z x Z xα α α αλ λ λ= + +∑ ∑  

Different types of cokriging exist, but in any case, it is unbiased (the expectation of the 
error is zero) and optimal (the variance of the error is minimized). Simple cokriging 
corresponds to kriging in a stationary model where the means are known. Ordinary 
cokriging corresponds to the case where the means are supposedly unknown or to the 
intrinsic case, then 

0λ  is 0, the sum of weights of the target variable 1λ  is set to 1, while 
the sum of weights of the other variable 2λ  is set to 0. Other variants exist when the 
means are unknown, but related. In any case, the optimal cokriging weights are the 
solution of a linear cokriging system of equations. 

It is worth paying attention to the order of magnitude of the weights; the weights of 
1Z  

have no unit, but the weights of 
2Z  have the unit: 

1Z  unit / 2Z  unit. Moreover, in ordi-
nary cokriging, the weights of 2Z  data sum to 0, hence the presence of negative weights. 
When associated with large values of 

2Z , these can easily lead to a negative estimation 
for a positive variable 1Z . 

Cokriging ensures the consistency of estimates. For example, cokriging a difference 

2 1Z Z−  is the difference of the cokrigings of 2Z  and 1Z . In kriging, this is only ensured 
when the kriging weights are the same for all variables. There is a similar consistency 
for the cokriging of a sum of variables or of any linear combination of variables. 

 

Application 7.3. Mapping herring mean length by cokriging 

Once a linear model of coregionalization is fitted, maps can be produced using 
cokriging. Here, the following R lines show an example of cokriging using the herring 
mean length and bottom depth data at trawl stations around Shetland (full script in 
Annex 3, data details in Annex 2).    

Herring mean length and bottom depth are two correlated variables (see above). After 
a projection and a proper assignment of locators in the RGeostats database db.data, a 
multivariate variogram model was fitted (see above). Here, it is used for cokriging, and 
maps were produced (Figure 7.3). The kriging grid and a neighbourhood were defined 
prior to kriging. As different multivariate kriging methods will be considered later, a 
common scale was used for the mean length and standard deviation maps for compar-
ing methods results. Cokriging is performed using the function kriging(). Note that as 
there are multiple locators in the database and the variogram model being multivari-
ate, cokriging is performed automatically.  

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herring.len.scot.db.data","db.data") 
rg.load("Demo.herring.len.scot.grid.kriging","grid.kriging") 
rg.load("Demo.herring.len.scot.model.vario","model.vario") 
rg.load("Demo.herring.len.scot.neigh.krig","neigh.kriging") 
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rg.load("Demo.herring.len.scot.poly.data","poly.data") 
projec.define(projection="mean",db=db.data)  
 
db.data = db.locate(db.data,"depth","z",1) 
db.data = db.locate(db.data,"m.length","z",2) 
 
# Perform ordinary cokriging 
grid.kriging <- kriging(dbin=db.data,dbout=grid.kriging,model=model.v
ario,  
                        neigh=neigh.kriging,uc=c("1"),mean=NA,calcul=
"point", 
                        radix="CK") 
 
# Perform the various displays 
plot(grid.kriging,flag.proj=FALSE,xlim=c(-5,3),pos.legend=5, 
     name="CK.m.length.estim",zlim=c(19,40)) 
map("worldHires",add=T,fill=T,col=8)  
plot(db.data,add=T,pch=19,col="black",flag.proj=FALSE)  
plot(grid.kriging,flag.proj=FALSE,xlim=c(-5,3),pos.legend=5, 
     name="CK.m.length.stdev",zlim=c(0,5)) 
map("worldHires",add=T,fill=T,col=8)  
plot(db.data,add=T,pch=19,col="black",flag.proj=FALSE)  
plot(grid.kriging,flag.proj=FALSE,xlim=c(-5,3),pos.legend=5, 
     name="CK.depth.estim",zlim=c(80,200)) 
map("worldHires",add=T,fill=T,col=8)  
plot(db.data,add=T,pch=19,col="black",flag.proj=FALSE)  
plot(grid.kriging,flag.proj=FALSE,xlim=c(-5,3),pos.legend=5, 
     name="CK.depth.stdev",zlim=c(0,30)) 
map("worldHires",add=T,fill=T,col=8)  
plot(db.data,add=T,pch=19,col="black",flag.proj=FALSE) 
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Figure 7.3. Maps of mean length (top left) and bottom depth (bottom left) obtained by cokriging 
the data collected at the same trawl stations (isotopic multivariate case). Cokriging standard devia-
tion map for mean length (top right) and bottom depth (bottom right). 

 

7.4 Cokriging simplification 

Cokriging is more demanding than kriging in terms of calculations. This is particularly 
true when variables or datapoints are numerous. Then, it can be interesting to use mod-
els allowing simplifications, if they are compatible with the structure and data loca-
tions. 

A first case of simplification corresponds to the "intrinsic correlation" model, charac-
terized by all simple and cross-variograms being similar (proportional to each other). 
Then, when the variables are known at the same datapoints (isotopic case), cokriging 
is equivalent to kriging, and all variables have the same kriging weights. In this model, 
the correlation coefficient between 

1( )Z v  and 
2 ( )Z v  within V  can be shown to be 

constant. It does not depend on the support v  and domain V  and, therefore, is intrin-
sic (hence the name of the model). In this model, cokriging coincides with kriging in 
isotopic cases; hence, it will not do better. By contrast, in isotopic cases, cokriging can 
be expected to be more precise only when the structures of the different variables are 
contrasted. 
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Yet, another case of simplification corresponds to the absence of spatial correlation be-
tween variables. Then, cokriging each variable reduces to its kriging (unless the means 
of the variables are unknown, but related). Such a situation may be met after a geosta-
tistical factorization. The set of variables is transformed into a set of spatially uncorre-
lated factors, and cokriging can be obtained by kriging the factors. 

In particular, this is the case of the so-called model with residual, a hierarchical model 
where one variable is subordinated to another variable (in the case of two variables). 
Consider two variables Y(x) and Z(x), the linear regression of Z(x) on Y(x) at the same 
point X, and the residual R(x) of this regression, so that we have: 

( ) ( ) ( )Z x aY x b R x= + +  

By construction, this residual has a mean of 0 and is not correlated with Y(x) at the 
same point, but this is trivial. In the so-called model with residual, the residual R is 
spatially uncorrelated with Y (i.e. between any pair of points), which is a strong hy-
pothesis. Then Z is subordinated to Y through this additional residual. In practice, this 
model can be identified by a cross-structure between Y(x) and Z(x) being similar to the 
structure of Y(x): 

YZ Yaγ γ=  

The model can be factorized in Y and R = Z – aY – b: 

( ) ( ) ( )Z x aY x b R x= + +  

2
Z Y Raγ γ γ= +  

This leads to a simplified cokriging when Z is known only at datapoints where Y is 
known: 

 Y

CK K

CK K K

Y Y
Z a b R
 =


= + +
 

In the case where Y(x) is known everywhere (densely sampled), cokriging (simple or 
ordinary) is equivalent to the kriging of the residual: 

 YCK KZ a b R= + +  

The cokriging neighborhood is "collocated"; it uses Y only at the target and at the Z 
datapoints. 

Collocated cokriging (i.e. cokriging using such a collocated neighbourhood) is a gen-
eral way to simplify cokriging by restricting the neighbourhood. It is particularly help-
ful when taking into account an auxiliary variable which is practically known every-
where. Note, however, in general, there is a loss of information in using a collocated 
neighbourhood. Only in the model with residual is this cokriging optimal (but then it 
is equivalent to kriging the residuals). 
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Application 7.4. Mapping herring mean length by collocated cokriging 

The following R code shows an example of collocated cokriging for the herring mean 
length and bottom depth data around Shetland (full script in Annex 3, data details in 
Annex 2).  

We have seen that herring mean length and bottom depth are two correlated variables. 
We have seen previously how to perform cokriging for mapping using bottom depth 
at trawl stations where herring mean length was available. However, bottom depth is 
available at a higher resolution over the area. Here, it is used as an auxiliary variable 
known everywhere, particularly at the trawl stations and at all the grid nodes. Maps of 
herring mean length and its standard deviation are now produced by collocated 
cokriging after adequately assigning locators in the grid database. Collocated cokriging 
makes use of bottom depth at each target grid point so that the estimated mean length 
is now driven by bottom depth at every grid node (Figure 7.4). Standard deviation is 
lower than previously when bottom depth was used at datapoints only.  

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herring.len.scot.db.data","db.data") 
rg.load("Demo.herring.len.scot.grid.kriging","grid.kriging") 
rg.load("Demo.herring.len.scot.model.vario","model.vario") 
rg.load("Demo.herring.len.scot.neigh.krig","neigh.kriging") 
rg.load("Demo.herring.len.scot.poly.data","poly.data") 
projec.define(projection="mean",db=db.data)  
 
db.data = db.locate(db.data,"depth","z",1) 
db.data = db.locate(db.data,"m.length","z",2) 
 
# Grid management 
grid.kriging <- db.locerase(grid.kriging, loctype="z") 
grid.kriging <- db.locate(grid.kriging,"depth",loctype="z") 
 
# Perform collocated cokriging 
grid.kriging <- kriging(dbin=db.data,dbout=grid.kriging,model=model.v
ario,  
                        neigh=neigh.kriging,uc=c("1"),  
                        radix="CCK",rank.colcok=c("depth",NA)) 
 
# Perform the various displays 
plot(grid.kriging,flag.proj=FALSE,xlim=c(-5,3),pos.legend=5, 
     name="CCK.m.length.estim",zlim=c(19,40)) 
map("worldHires",add=T,fill=T,col=8)  
plot(db.data,add=T,pch=19,col="black",flag.proj=FALSE)  
plot(grid.kriging,flag.proj=FALSE,xlim=c(-5,3),pos.legend=5, 
     name="CCK.m.length.stdev",zlim=c(0,5)) 
map("worldHires",add=T,fill=T,col=8)  
plot(db.data,add=T,pch=19,col="black",flag.proj=FALSE) 
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Figure 7.4. Maps of herring mean length obtained by collocated cokriging using bottom depth at  
each grid node point (left) and the associated standard deviation (right). The map of the mean  
length is locally driven by the high-resolution bottom depth covariate. The standard deviation for 
collocated cokriging is lower than for ordinary cokriging due to bottom depth considered as being 
known exactly everywhere. 

 

7.5 External drift kriging and universal kriging 

Kriging of the residuals can be extended to the case where the mean of the variable is 
a known varying function of X: 

( ) ( ) ( )Z x m x R x= +  

and when the variability of the residual ( ) ( ) ( )R x Z x m x= −  is independent from the 
function m(x): 

( ) ( ) ( )K KZ x m x R x= +  

For example m(x) may be the result of a multiple regression of z(x) on a set of environ-
mental variables at the same location. More simply, m(x) may depend linearly on a 
known auxiliary variable f(x) or on coordinates:  

m(x,y) = a x + b y + c (with 2D notations) or m(x) = a f(x) + b. 

A popular variant of residual kriging in the case where: m(x) = a f(x) + b. This is external 
drift kriging (Chilès and Delfiner, 2012). This is not exactly cokriging, but has more 
flexibility than residual kriging, as it considers that the coefficients of the regression a 
and b are unknown (e.g. they could vary slowly in space). These are filtered out by 
setting appropriate conditions on the kriging weights: 

0

1  

( ) ( )f x f x

α
α

α α
α

λ

λ

=

=

∑

∑
 

In this external drift kriging, ( )Z x  is driven by ( )f x  through the drift  ( )a f x b+ .  

Universal kriging (Matheron, 1971) can be seen as a variant of external drift kriging 
when the drift depends linearly from the coordinates, e.g. with 2D notations: 

m(x,y) = a x + b y + c 
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Appropriate conditions are imposed on the kriging weights in order to filter out the 
coefficients a, b, and c, of the drift: 

0

0

1  

x x

y y

α
α

α α
α

α α
α

λ

λ

λ

=

=

=

∑

∑

∑

 

External drift kriging and universal kriging are common ways to handle a drift or trend 
in so-called non-stationary geostatistics. In particular, external drift kriging is capable 
of taking advantage of driving auxiliary variables that are known everywhere. Fisher-
ies applications of kriging with external drift include the use of a functional relation-
ship between fish mean length and bottom depth (Rivoirard et al., 2000) and fish con-
centration and time of day (Rivoirard and Wieland, 2001).  

 

Application 7.5. Mapping herring mean length by kriging with external drift 

The following R code shows an example of kriging herring mean length around Shet-
land using bottom depth as external drift (full script in Annex 3, data details in Annex 
2).  

First, a linear regression of mean length on bottom depth is performed using the func-
tion regression() (Figure 7.5). Then, a variogram model is fitted on the residuals (Figure 
7.6). 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herring.len.scot.db.data","db.data") 
rg.load("Demo.herring.len.scot.grid.kriging","grid.kriging") 
rg.load("Demo.herring.len.scot.model.vario","model.vario") 
rg.load("Demo.herring.len.scot.neigh.krig","neigh.kriging") 
rg.load("Demo.herring.len.scot.poly.data","poly.data") 
projec.define(projection="mean",db=db.data)  
 
db.data = db.locerase(db.data,"z") 
db.data = db.locate(db.data,"depth","z",1) 
 
# Regression 
correlation(db.data,"depth","m.length",flag.regr=T, 
            title="Regression",ylab="Mean length",xlab="Depth") 
## [1] 0.6190425 
 
db.data <- regression(db.data, name1="m.length",names="depth", flag.d
raw=F) 
vario.data <- vario.calc(db.data) 
model.vario <- model.auto(vario.data,str=c(1,3),npairdw=T,inches=0.08
) 
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Figure 7.5. Linear regression of mean length on bottom depth and variogram model of the residual. 

Then, locators need to be set adequately. In the database, herring mean length is the 
variable under study with locator “z”, while bottom depth is the drift with locator “f”. 
In the kriging grid database, bottom depth is valued at every node and has locator “f” 
also. Then, kriging with external drift is performed using the function kriging(), and 
maps of herring mean length and its standard deviation are produced (Figure 7.6). 
Note that the parameterization of the universality conditions,  uc=c("1","f1"), in 
function kriging(), is compatible with the external drift being a linear regression. In 
comparison to collocated cokriging, the external drift technique allows the parameters 
of the regression to vary over space. It produces a map of herring mean length that is 
spatially driven by a functional relationship with the covariate (here a linear regres-
sion), rather than just by the values of the covariate, as in collocated cokriging. How-
ever, the disadvantage is a higher standard deviation map, due to more flexibility and 
parameters in the model. 

# Data management 
db.data <- db.locate(db.data,7,loctype=NA) 
db.data <- db.locate(db.data,6,loctype="z") 
db.data <- db.locate(db.data,5,loctype="f") 
 
# Grid management 
grid.kriging <- db.locerase(grid.kriging,"z") 
grid.kriging <- db.locate(grid.kriging,"depth","f") 
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# Perform kriging with external drift 
grid.kriging <- kriging(dbin=db.data,dbout=grid.kriging,model=model.v
ario,  
                        neigh=neigh.kriging,uc=c("1","f1"),mean=NA,ca
lcul="point", 
                        radix="KED") 
 
# Perform the various displays 
plot(grid.kriging,flag.proj=FALSE,xlim=c(-5,3),pos.legend=5, 
     name="KED.m.length.estim",zlim=c(19,40)) 
map("worldHires",add=T,fill=T,col=8)  
plot(db.data,add=T,pch=19,col="black",flag.proj=FALSE)  
plot(grid.kriging,flag.proj=FALSE,xlim=c(-5,3),pos.legend=5, 
     name="KED.m.length.stdev",zlim=c(0,5)) 
map("worldHires",add=T,fill=T,col=8)  
plot(db.data,add=T,pch=19,col="black",flag.proj=FALSE) 

 
Figure 7.6. Map of mean fish length (left) and standard deviation (right) obtained by kriging with 
a linear external drift on bottom depth. In comparison to collocated cokriging, the map of the mean 
length is spatially driven by its regression on the bottom depth at the cost of only a small deterio-
ration in standard deviation. 
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8 Thresholding and indicators 

The geostatistical tools presented in the previous chapters (variogram, kriging, etc) cor-
respond to what is called "linear geostatistics". In particular, estimates of a regionalized 
variable Z are linear estimates obtained by linear combinations of data. This linear ap-
proach may be insufficient in some cases. For example, when we want an estimator 
which is not linear in Z (e.g. because of high values) or when we want to estimate a 
non-linear function of Z (e.g. a 0/1 indicator of presence ( ) 01Z x > or the exceedance over a 

threshold Z, that is ( )1Z x z> ). In this chapter, we will consider the indicator approach for 

such non-linear issues. The transformed Gaussian model, which is another approach 
particularly suited for simulations, will be developed in Chapter 9 on geostatistical 
simulations. 

8.1 Indicator of a set 

The indicator of a geometric set A (e.g. presence of fish or a rocky seabed) is a variable 
equal to 1 (presence) or 0 (absence) at a point. Its average over an area gives the pro-
portion of the set A in this area (e.g. proportion of block occupied by fish).  

This indicator variable can be modeled by a 0/1 random function 1 ( )A x , indicator of the 
random set A (set whose shape and location are considered as random). The expecta-
tion of 1 ( )A x  corresponds to the probability that x belongs to A. In the stationary case 
that will be considered here, this probability Ap  does not depend on x and is the same 
everywhere. We have: 

non-centered covariance: 

( ) [1 ( )1 ( )] ( , )A A AK h E x x h P x A x h A= + = ∈ + ∈  

centred covariance: 

( )2( ) cov[1 ( ),1 ( )] ( )A A A A AC h x x h K h p= + = −  

variogram: 

21( ) ([1 ( ) 1 ( )] ) (one point , the other )
2A A Ah E x h x P A Aγ = + − = ∈ ∉  

In particular, the non-centered covariance gives the probability that two points sepa-
rated by h belong to A, and the cross-variogram gives the probability that one point 
belongs to A, but not the other one. 

The estimator of an indicator at a target point from datapoints has the meaning of a 
conditional probability of being in the set, even if it is not always really a probability. 
For example, the kriging of an indicator can take values lower than 0 or larger than 1. 

8.2 Indicators of several sets  

It is important to make the distinction between: 

• independent sets (being independent, they can overlap); 
• disjoint sets (they cannot overlap and, therefore, cannot be independent); 
• nested sets (one is included in the other). 

Geometric sets can be defined from a continuous variable Z(x), such as a concentration, 
fish density, and so on. For example, one can consider the set made by the values ex-
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ceeding a given cutoff or the set of values between two cutoffs. More generally, discre-
tizing such a variable into disjoint classes 1 1 2 2 3[0, [,[ , [,[ , [,...,[ , [nz z z z z z ∞ provides an example 
of spatial sets that are disjoint (each set corresponding to the points belonging to a 
class). Considering cumulated classes 1 2[0, [,[ , [,[ , [,...,[ , [nz z z∞ ∞ ∞ ∞ gives sets that are 
nested. 

In the case of disjoint sets (A,B,C,..), the cross-variograms are negative, and if 
( ) [1 ( )1 ( )] ( , )AB A BK h E x x h P x A x h B= + = ∈ + ∈ is symmetrical in h, then the opposite of 

the cross-variogram: 

1( ) [1 ( ) 1 ( )][1 ( ) 1 ( )]
2AB A A B Bh E x h x x h xγ = + − + −  

is the probability that one point belongs to A and the other to B. The opposite of the 
ratio between the cross-variogram ABγ  and the variogram Aγ  is the conditional proba-
bility of "meeting B when leaving A" (Rivoirard, 1994): 

( ) ( | , )
( )

AB

A

h P x h B x A x h A
h

γ
γ
−

= + ∈ ∈ + ∉  

When this probability does not depend on h and, therefore, is constant, the chances of 
meeting B when leaving A are the same everywhere outside A; we say that there is no 
edge effect in the distribution of B outside A. On the contrary, the set B tends to be 
positioned close to the borders of the set A if the probability decreases with h, and away 
from the borders of the set A if the probability increases with h. Now consider nested 
sets, e.g. 2 1 0A A A⊂ ⊂ . If 

1 2
( )A AK h  is symmetrical, the cross-variogram 

1 2
( )A A hγ  is the 

probability that one point is inside 2A  and the other outside 1A . The ratio between the 

cross-variogram 
1 2

( )A A hγ  and the variogram 
1
( )A hγ  is the conditional probability of meet-

ing 2A when entering 1A : 

1 2

1

2 1 1

( )
( | , )

( )
A A

A

h
P x h A x A x h A

h
γ
γ

= + ∈ ∉ + ∈  

When this probability does not depend on h and, therefore, is constant, the chances to 
meet 2A  when entering in 1A  are the same everywhere in 1A ; there is no edge effect in 
the distribution of 2A  within 1A . On the contrary, the set 2A  tends to be positioned close 

to the borders of the set 1A  if the probability decreases with h, and is away from the 
borders of the set 1A  if the probability increases with h.  

Hence, such ratios between cross-variogram and simple variogram for disjoint or 
nested sets can be used to describe the joint arrangement of different sets. 

When sets correspond to a discretized concentration (e.g. the disjoint classes corre-
sponding to low, medium, or high values, or equivalently their cumulated nested clas-
ses), different types of arrangements can be distinguished. 

When there is no edge effect at all, the structures of all indicators are the same. The 
probability to meet a given class when leaving another one does not depend on the 
distance h. This corresponds to a mosaic model with independent valuations; in this 
model, the domain is partitioned into tiles and each tile is given a value according to 
the same probability distribution and independently of the other tiles. 
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If there is no edge effect upward, the probability to meet a high value when leaving 
low values does not depend on the distance h. This corresponds to a hierarchical model 
from low to high values. First comes the spatial distinction between low values and all 
other values; then, where values are not low, the high values can be anywhere. Note 
that edge effects downward exist in this model; when leaving high values, medium 
values are preferentially met. In this model, there is a destructuring of high values 
(more spatial variability than the union of medium and high values), as often observed 
for skewed distribution concentrations. From this point of view, this model with no 
edge effect upward is more realistic than the reverse model with no edge effect down-
wards. 

Edge effects upward and downward is typical of diffusion-type models (e.g. Gaussian 
model), where medium values are met when going from low to high or from high to 
low values. 

 

Application 8.1. Exploring border effects upward among a range of indicator sets  

In survey data, a few high values often represent a large percentage of the total abun-
dance. The indicator approach is helpful to understand the spatial arrangement of 
these values among other medium and low values. Hence, the use of ratios between 
cross-variogram and simple variogram for indicator sets to describe the joint arrange-
ment of different sets. Here, we show how the approach can be implemented on data. 
The full demonstration Rscript is in Annex 3. The data are the acoustic survey data on 
anchovy in the Bay of Biscay (Annex 2). 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.anchovy.bob.2d.db.data","db.data") 
rg.load("Demo.anchovy.bob.2d.poly.data","poly.data")  
 
# Data display (left figure) 
y1lim <- 43.3; y2lim <- 47; x1lim <- -4.5; x2lim <- -1 
plot(db.data,name="ENGR.ENC",pch=1,asp=1.2,inches=5,col="black", 
      xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim),ti-
tle="",flag.proj=FALSE) 
plot(poly.data, add=T, lty=1, density=0) 
map("worldHires",add=T,fill=T,col=8) 
 
# Histogram (right figure) 
hist(db.data[,"ENGR.ENC"],breaks=100,col="grey", 
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     xlab="Biomass of anchovy (tonns/n.mi.^2)",main="") 

 
Figure 8.1. Anchovy concentrations (“ENGR.ENC” tonnes nautical mile–2) in the Bay of Biscay. How 
are the high values positioned relative to medium and low values? Left: proportional representa-
tion of the data showing spatial arrangement of high values relative to other values. Right: skewed 
histogram of the data  

 

We first start by discretizing the data and defining cumulated nested classes. Based on 
data percentiles, six classes are defined. The first threshold defines the set of strictly 
positive values. The last class is defined by a top threshold.  

# Create indicator variables into the RGeostats database 
zi <- 150 # top threshold 
zcut <- c(quantile(db.data[,"ENGR.ENC"][db.data[,"ENGR.ENC"]!=0], 
          seq(0,0.8,0.2)),zi) 
my.limits <- limits.create(zcut=zcut,flag.zcut.int=F) 
 

my.limits 

## Number of classes =  6  
## Class  1  : [ 0.0005610691 ,+Inf[ 
## Class  2  : [ 0.1 ,+Inf[ 
## Class  3  : [ 1.692 ,+Inf[ 
## Class  4  : [ 7.706 ,+Inf[ 
## Class  5  : [ 22.734 ,+Inf[ 
## Class  6  : [ 150 ,+Inf[ 

 

The six class indicators are added into the database db.data with multiple locators from 
“z1” to “z6”. 

db.data <- db.indicator(db.data, limits=my.limits) 

 

After projecting the data, we now compute variograms and cross-variograms of the 
indicators using the function vario.calc(). Note that as there are multiple locators (“z1” 
to “z6”) in db.data, variograms and cross-variograms are calculated automatically.  

# Define the projection  
projec.define(projection="mean",db=db.data) 
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# Compute simple and cross variograms of indicator variables 
lag <- 5; nlag <- 20; dirvect <- 0 
vg <- vario.calc(db.data,lag=lag,nlag=nlag,dirvect=dirvect) 

 

To explore for border effects upward, we compute the ratios for each cross-variogram 
γi,(i+1) divided by the variogram of the lower cutoff γi,i. This is done with the function 
vario.transfo().  

# Compute variogram ratios: cross variogram / first simple variogram 
vgr <- vario.transfo("v1", vario1=vg, oper="g12/g1") 

 

The result is a matrix of cross-variogram/variogram ratios. We are interested in visual-
izing the first subdiagonal line under the diagonal. The variogram ratios are standard-
ized (sills equal to one). 

# Visualization of normed cross-variogram/variogram ratios 
for (i in 1:(length(zcut)-1)) { 
   x11() 
   j <- i+1 
   plot(vgr, varcols=i, varcols2=j, inches=0.05, flag.norm=T, 
npairdw=T, npairpt=F, 
        col=grey(seq(0,1,.1))[j], ylim=c(0,2), 
        main=paste("normed ratio cross-vario I",i,"xI",j,"/ vario I", 
i,sep="")) 
} 

A flat ratio indicates that the set Ai defined by the higher cutoff is positioned at random 
within the set of the lower cutoff (no border effect). In contrast, when the ratio increases 
to reach a sill, the set defined by the higher cutoff tends to be positioned away from the 
borders of the set of the lower cutoff, meaning  that spatial transitions in values are 
progressive (border effect). The figure shows that the sets A3 within the sets A2, A3 
within A4, and A5 within A4 are spatially arranged with border effects that are smaller 
and smaller upward, from 25 to 10 nautical miles. In contrast, sets A6 seem to be posi-
tioned within A5, with virtually no border effect. Such spatial arrangements are com-
patible with a progressive spatial destructuring of higher values. Sets A2 within A1 
also show no border effects, compatible with an independence between field limits and 
random function non-zero values.  
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Figure 8.2. Ratios of cross-variograms/variograms exploring the spatial arrangement between 
nested indicator sets.  
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8.3 Indicator cokriging 

From a theoretical point of view, it is equivalent to discretize a variable into disjoint 
classes or cumulated nested classes, but the second option is preferable in practice 
(structures are more visible). Indicator cokriging (also known as disjunctive kriging: 
Rivoirard, 1994) requires the modeling of simple and cross structures. This may be 
done using a linear model of coregionalization. However, such a linear model may not 
be adapted (e.g. when the continuity at the origin of the cross-structures is higher than 
that of the simple ones). Moreover, as: 

( )[1 ] [ ( ) ]Y x iE P Y x i≥ = ≥  

( ) ( )[1 ,1 ] [ ( ) , ( ) ] [ ( ) ] [ ( ) ]Y x i Y x h jCov P Y x i Y x h j P Y x i P Y x h j≥ + ≥ = ≥ + ≥ − ≥ + ≥  

modeling simple and cross structures is theoretically equivalent to modeling the biva-
riate distributions ( )( ), ( )  Z x Z x h h+ ∀ . However, linear models of coregionalization of 

indicators are not necessarily consistent with bivariate distributions (e.g. they could 
give probabilities to be above a threshold that increases when the threshold increases). 
Hence, the current use of more appropriate models. Note, however, that, just like indi-
cator kriging, indicator cokriging can provide estimated indicators that fall outside [0, 
1]. 

In the case of the mosaic model with independent valuations, since all structures are 
the same, cokriging reduces to kriging. 

When there is no edge effect upward, the indicators can be factorized into "indicator 
residuals", and cokriging is obtained by kriging these factors (see applications to pe-
lagic acoustic survey data in Petitgas, 1993b; Petitgas et al., 2016). Let ( )1 2 3, , ,..., nz z z z be 

the discretizing thresholds, ( )1 2 3, , ,..., nzm zm zm zm be the mean values of Z(x) within the 

classes 1 1 2 2 3[0, [,[ , [,[ , [,...,[ , [nz z z z z z ∞  and jA  be the geometrical set corresponding to 

( ) jZ x z≥ . Each residual is obtained as: 

1
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where 1 ( ) [ ( ) ]
i iA A ip E x P Z x z = = ≥  except for the most important one in the hierar-

chy, the first one, deduced from the first indicator: 
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Each indicator can be obtained from the previous indicators through: 
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This can be used to obtain, successively, the cokriging of each indicator from indicator 
residuals kriging. The indicators for disjoint classes can be deduced from: 
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1 1( ) ( ) ( )1 1 1
i i i iz Z x z Z x z Z x z+ +≤ < ≥ ≥= −  

 
and 

1( )1
i ii z Z x zzm

+≤ <∑ gives the corresponding estimate of Z(x). 

The indicator residual model is an example of a so-called isofactorial model, where 
indicator cokriging, i.e. disjunctive kriging, is obtained by kriging factors. Other isofac-
torial models exist in non-linear geostatistics corresponding to diffusion-type models 
(discrete diffusion, gauss, gamma, etc). All of these models correspond to models for 
bivariate distributions. Indicator cokriging has the meaning of a conditional probabil-
ity, but the estimated probability can fall outside [0, 1]. The case of the Gaussian model 
is, however, particular, as it can give access directly to consistent conditional probabil-
ities, as will be seen in the next chapter. 

 

Application 8.2. Multivariate analysis of the indicators of pelagic fish densities 

The following R code (full script in Annex 3, data details in Annex 2) shows an example 
of multivariate structural analysis of indicators (Bez and Braham, 2014). These are built 
by discretizing acoustic densities (acoustic backscatter of all pelagic fish). The survey 
was carried by IMROP (Institut Mauritanien de Recherche en Océanographie et des 
Pêche) - Nouadhibou – Mauritania. 

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.acoustic.maur.db.data","db.data") 
rg.load("Demo.acoustic.maur.poly.data","poly.data") 
projec.define(projection="mean",db=db.data) 
 

Indicator variables corresponding to fish density exceeding cutoffs are defined using 
the function limits.create(). In this function, the argument flag.zcut.int allows choosing 
either indicators of intervals (flag.zcut.int = TRUE) or of exceeding particular values 
(flag.zcut.int = FALSE)). The cutoffs considered correspond to the quartiles of the his-
togram of the positive densities, thus to four sets of small, medium small, medium 
large, and large values.  

zcut <- as.numeric(quantile(db.data [,5][db.data[,5] >0])) 
my.limits <- limits.create(zcut=zcut[-5],flag.zcut.int = F) 
db.data <- db.indicator(db.data ,my.limits) 

# Variography in two directions (along and across acoustic transects) 
projec.toggle(1) 
lag <- c(5,10) ; nlag=15 ; dirvect <- c(0,90) 

# Mean annual variogram 

vario.data <- vario.calc(db.data, lag=lag, nlag=nlag, 
dirvect=dirvect,  
              opt.code=1, tolcode=0) 
 
# Fit a Linear Model of Coregionalization. 
# Use of functions that are linear at the origin e.g. spherical or 
exponential 
model.vario <- model.auto(vario.data, struct = c(1,3,3,2,2), wmode=2, 
draw=F) 
plot(vario.data,opt.varname=1,cex.varname=0.8) 
plot(model.vario, vario=vario.data, add=T) 
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Figure 8.3. Empirical variograms and cross-variograms of indicators and corresponding linear 
model of coregionalization. Anisotropy in the computation is driven by the orientation of the 
acoustic transects (along transect in black and across transect in red). Simple variograms are on the 
diagonal (from the first indicator top left to the fourth one bottom right). The cross-variogram in 
row i and column j describes the spatial structure common to indicator i and indicator j.  

 

One can see that the percentage of nugget effect increases with the rank of the indicator 
variable. This is part of the standard phenomenon of destructuring of the high grades; 
the sets corresponding to the very large fish densities being more erratic than the sets 
made of the densities above the median or the first quartile. Cross-structures show 
clear cross-correlations between indicators, justifying the recourse to multivariate geo-
statistics. These are very much driven by simple structures, which could lead to one of 
the possible simplifications of cokriging mentioned in the text (not done here). Cross-
structures show no or very little nugget effects. This means that short scale structures 
are not correlated between density levels.  

# Co-Kriging: definition of a kriging grid and a neighbourhood 
# Co-Kriging is perfomed for the data of the first year. 
projec.toggle(0) 
grid.kri <- db.grid.init(poly.data,margin=10,nodes=150) 

grid.kri <- db.polygon(grid.kri,poly.data) 
neigh.kri <- neigh.create(type=2,ndim=2,nmini=10,nmaxi=50,radius=60) 
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# Performs kriging (might take 1-2 minutes) 
projec.toggle(1) 
kri.1 <- kriging(db.sel(db.data,an==1), grid.kri, model.vario, 
neigh.kri) 

 
# truncation of estimations to [0,1] 
for(i in 1:model.vario$nvar){ 
    rank = db.ident(kri.1,paste0("*Indicator*",i,"*estim")) 
    kri.1[,rank][kri.1[,rank] < 0] <- 0 
    kri.1[,rank][kri.1[,rank] > 1] <- 1 
} 
 
# Mapping the results for the first and the fourth indicator varia-
bles 
plot(kri.1,asp=1,zlim=c(0,1),col=rain-
bow(4,start=0.2,end=1),flag.proj=FALSE, 
     xlab="Longitude (°)",ylab="Latitude (°)") 
plot(poly.data,add=T) 
map("worldHires",add=T) 
legend.image(c(0,1),position="bottomleft",col=rain-
bow(4,start=0.2,end=1), 
             ntdec=2,cex=0.75) 

 
Figure 8.4. Cokriged estimate of the first indicator, i.e. estimation of the probability for the acoustic 
energy to be positive. The area of presence is clearly next to the coastline, with some excursions to 
the shelf edge.  

plot(kri.1,name.image=8,asp=1,zlim=c(0,1),col=rainbow(4,start=0.2,end
=1), 
     xlab="Longitude (°)",ylab="Latitude (°)",flag.proj=FALSE) 
plot(poly.data,add=T) 
map("worldHires",add=T) 
legend.image(c(0,1),position="bottomleft",col=rainbow(4,start=0.2,end
=1), 
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             ntdec=2,cex=0.75) 

 

Figure 8.5. Cokriged estimate of the fourth indicator, i.e. estimation of the probability for the acous-
tic energy to above the 75% quantile. The geometrical sets associated with the largest cutoff are 
clumped and near the coast. The westward excursions of the habitat in the northern part of the 
distribution correspond to an area of dense fish distribution.  

 

8.4 Topcut model 

Much less sophisticated than the previous non-linear models, the topcut model pro-
vides a valuable substitute to linear kriging in the case of a skewed distribution with a 
few high values.   

Very often, the histogram of a concentration (e.g. fish density) is skewed, and in some 
cases, there are a small number of high values that can make statistics not robust. Struc-
tural analysis and mapping of the variable Z may be improved using the topcut model 
at a threshold z (Rivoirard et al., 2013):  

( ) [ ] ( )min , ( )  1Z x zZ Z z m z z R>= + − +  

In this formula, m(z) is the mean of data values above threshold z. Compared to the 
sole use of min(Z,z), which would result in a reduction of Z, the addition of the indica-
tor term avoids a bias and allows distributing the average excess of concentrations 
above z where it is the most probable. The threshold z is chosen so that the residual R, 
with mean 0 by construction, takes into account the high nugget variability of Z. The 
estimation of Z(x) depends on the estimation of min(Z,z) and ( )1Z x z>  (which is robust) 

and on the estimation of the residual, taken as 0, for example (then data values higher 
than z are only represented by their mean m(z) and are not present individually in the 
estimation). 
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Application 8.3. Mapping anchovy with a topcut model 

Acoustic survey data of schooling pelagic stocks often show high concentration values, 
which seem to appear randomly on a background of medium values. Here, we map 
anchovy in the Bay of Biscay using a topcut model and compare the results with ordi-
nary kriging. The full demonstration Rscript is in Annex 3 and the data are presented 
in Annex 2.  

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.anchovy.bob.2d.db.data","db.data") 
rg.load("Demo.anchovy.bob.2d.poly.data","poly.data") 
 
# Data display (left figure) 
y1lim <- 43.3; y2lim <- 47; x1lim <- -4.5; x2lim <- -1 
plot(db.data,name="ENGR.ENC",pch=1,asp=1.2,inches=5,col="black", 
      xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim),ti-
tle="",flag.proj=FALSE) 
plot(poly.data, add=T, lty=1, density=0) 
map("worldHires",add=T,fill=T,col=8) 
 

 
Figure 8.6. Proportional representation of anchovy concentrations (“ENGR.ENC” tonnes nautical 
mile–2) in the Bay of Biscay. A few high concentration values appear on top of low to medium val-
ues.  

 

After the variographic analysis of a range indicator, the topcut threshold chosen was 
150 tonnes nautical mile–2. New variables are constructed, which are added in the da-
tabase; indicator I of values above 150, truncated variable z1, mean excess z2 above 
truncation, and residual z3 around the mean excess. Note that the mean excess is close 
to an indicator variable; it equals zero where the data are below the cutoff and a con-
stant (mean above cutoff) where they are above.  

# Topcut threshold 
zi <- 150 

# Mean above threshold 
mi <- mean(db.data[db.data[,"ENGR.ENC"]>=zi,"ENGR.ENC"]) 
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# Topcut indicator (I) 
db.data <- db.add(db.data,I=(ENGR.ENC >= zi) * 1) 

# Truncated variable (z1) 
db.data <- db.add(db.data,z1=ifelse(ENGR.ENC>=zi,zi,ENGR.ENC), 
                   type.locate=FALSE) 

# Mean excess (z2) 

db.data <- db.add(db.data,z2=(mi-zi)*I,type.locate=FALSE) 

# Residual around mean excess (z3) 

db.data <- db.add(db.data,z3=(ENGR.ENC-mi)*I,type.locate=FALSE) 

 

The variograms and cross-variograms of z1, z2, and z3 are computed using the function 
vario.calc(). This shows that z3 has no structure (pure nugget effect) and no spatial 
cross-correlation with z1 or z2. The analysis thus proceeds with z1 and z2 only. 

# Inactivate variable z3 
db.data <- db.locate(db.data,names="z3",loctype=NA)  

 

The variograms and cross-variogram of z1 and z2 are estimated using function 
vario.calc() and modelled using functions model.create() and vario.fit(). Note that as 
there are multiple locators (“z1” and “z2”) in db.data, these functions perform calcula-
tions in the multivariate case automatically. The truncated variable (z1) has two nested 
structures with ranges 8 and 25 nautical miles. The mean excess (z2) shows the smallest 
structure, which is common to both variables and thus present on the cross-variogram.  

# Projection 
projec.define(projection="mean") 
# Look for duplicates (points too close) 
db.data <- duplicate(db.data) 
# Omni-directional variogram 
vg <- vario.calc(db.data,lag=2,dirvect=NA, nlag=40) 
plot(vg,npairpt=0,npairdw=F,title="",inches=.05) 

# Fit variogram model: nugget + 2 spherical models 
vg.init <- model.create(vartype="Nugget Effect",ndim=2,nvar=2) 
vg.init <- model.create(vartype="Spherical",range=8,model=vg.init) 
vg.init <- model.create(vartype="Spherical",range=25,model=vg.init) 
# Autimatic fit of sills 
vg.mod  <- model.fit(vg, vg.init, niter=100, wmode=3, draw=F) 
# Overlay models and variograms 
plot(vg,npairdw=F,xlab="Distance (km)",ylab="Variogram") 
plot(vg.mod,vario=vg,lwd=2,add=T) 
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Figure 8.7. Multivariate variogram structure of the topcut model for anchovy in the Bay of Biscay. 
Top: variogram of the truncated variable. Bottom right: variogram of the mean excess variable. Bot-
tom left: cross-variogram between mean excess and truncated variables.  

 

Kriging with the topcut model now amounts to cokriging variables z1 and z2 and add-
ing the cokriged values. For that, we use function krige(). Note that as the variogram 
model is multivariate and as there are multiple “z” locators in the data.db, function 
krige() performs cokriging automatically. Prior to that, a grid and a neighborhood are 
defined.  

# Define the Estimation Grid 
x0 <- -4; y0 <- 43.4; dx <- 0.1;dy <- 0.1; nx <- 30; ny <- 37  
db.grid <- db.create(flag.grid=T,x0=c(x0,y0),dx=c(dx,dy),nx=c(nx,ny))  

# Select grid points inside polygon  
db.grid <- db.polygon(db.grid,poly.data) 

# Define a Moving Neighbourhood 
neimov <- neigh.create (ndim=2,type=2,nmini=3,nmaxi=10,radius=25) 

# Co-kriging (point) 
kres2 <- kriging(dbin=db.data,dbout=db.grid,model=vg.mod, 
neigh=neimov, 
                 radix="K") 

# Add co-kriged z1 and z2 estimates 
kres2 <- db.add(kres2,K.topcut.estim=K.z1.estim+K.z2.estim) 

 

The map obtained by using the topcut model is compared to that obtained by ordinary 
kriging on the same grid and with the same neighbourhood. The Rscript for mapping 
the anchovy by ordinary kriging is provided in Annex 3. The topcut model constrains 
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the estimation of the high values in areas where the probability is high for these to 
occur because of cokriging. In contrast, in ordinary kriging, where this constraint is not 
considered, the rich data values influence the estimate around them. The topcut model 
result is a lower local estimate in southern areas, where the probability is lower for 
high values to occur.  

 

 
Figure 8.8. Mapping the anchovy in the Bay of Biscay by kriging using a (non-linear) topcut model 
(left) and ordinary kriging (right). 
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9 Geostatistical simulations 

9.1 General principles 

The aim of geostatistical simulations is to reproduce the spatial variability of the re-
gionalized variable. To do so, the variable is represented by an appropriate random 
function model. Geostatistical simulations are simulations of the random function 
model, reproducing the variability expected from the model, notably in terms of histo-
gram and variogram. It is possible to build many realizations from the same model; 
each realization will be different, but will have common features so that they "look" the 
same (Figure 9.1). 

Geostatistical simulations are thus helpful when estimating the uncertainty associated 
with the combination of different sources of variability. In fishery science, such com-
plex situations occur for acoustic surveys, where different data (acoustic backscatter, 
fish length, and fish age) must be combined to estimate fish abundance and its associ-
ated full uncertainty (Woillez et al., 2009b; 2016). In the following sections, we will see 
how to simulate herring mean length and acoustic backscatter. These two variables are 
of different kinds as one shows many zero values (acoustic backscatter) and the other 
does not. Geostatistical simulations are also particularly helpful in characterizing the 
uncertainty for decision and risk analysis. They can be used to derive probability maps 
of exceeding a certain threshold for a variable of interest that could be a pollutant or 
an anthropic pressure.  

 

Application 9.1. Performing a non-conditional simulation 

The following R code performs a non-conditional simulation from a spherical model 
with range of 0.15 and a sill of 1, visualizing two realizations. To do so, a grid over 
which values are simulated and a model need to be defined first. 

# Generate 2 realizations of a non conditional simulation 
projec.toggle(0) 
data.db <- db.create(data.frame(x1=c(0,0,1,1),x2=c(0,1,1,0))) 
grid.db <- db.grid.init(data.db,nodes=c(100,100)) 
mod <- model.create("Spherical",range=0.15,sill=1) 
sim <- simtub(model=mod,dbout=grid.db,nbsim=2,nbtuba=1000) 
 
# Generate figure 
plot(sim,name="Simu.V1.S1",pos.legend=1,zlim=c(-4,4)) 
plot(sim,name="Simu.V1.S2",pos.legend=1,zlim=c(-4,4)) 
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Figure 9.1. Two realizations of a non-conditional simulation with a spherical model of range 0.15 
and sill 1. Both maps are different (differences in the location of highs and lows), but they "look" 
the same as the underlying model is the same. 

Geostatistical simulations can be either non-conditional or conditional. Both are simu-
lations of the model. However, non-conditional simulations will ignore the datapoints, 
while conditional simulations honor the data values at the datapoints; they go through 
the data. Hence, the highs and lows that can be identified from data will be honoured 
by conditional simulations. Non-conditional simulations can be helpful to build syn-
thetic examples on which different sampling or exploitation scenarios, for example, can 
be tested. As it will be seen, non-conditional simulations will also be useful in building 
conditional simulations. On the other hand, repeated conditional simulations give ac-
cess, in reality, to the spatial uncertainty of any quantity depending on the simulated 
variable, e.g. the confidence interval on total abundance in the case of a fish density.  

Building simulations requires a full random function model, that is, a model that gives 
access to the multivariate distribution of the values over any set of points. The Gaussian 
random function model to be seen now is particularly adapted to simulations. Very 
often, however, the variable under study cannot be directly modeled by a Gaussian 
random function, and a transformation (the Gaussian anamorphosis) is necessary to 
make the link between the variable and its associated Gaussian transformed, as will be 
seen later.  

9.2 Gaussian random functions 

The Gaussian model is particularly appropriate for simulations. First, because of the 
central limit theorem, normality results from the addition of many independent varia-
bles, as done when constructing non-conditional simulations (a classical way to make 
these is the turning bands method, see next section). Secondly, because of its proper-
ties, the Gaussian model is easy to condition at datapoints.  

The bell-shaped probability density function of a Gaussian random variable t is: 

𝑔𝑔(𝑡𝑡) =
1

√2𝜋𝜋
𝑒𝑒−

𝑡𝑡2
2  

This is well known, but a Gaussian random function model is more general.  

Theoretically a random function Y(x) is Gaussian if the distribution of any vector 𝑌𝑌(𝑥𝑥1),
𝑌𝑌(𝑥𝑥2), … ,𝑌𝑌(𝑥𝑥𝑁𝑁) is multivariate Gaussian (i.e. every linear combination is Gaussian), 
having the famous bell-shaped probability density function. In the stationary case, this 
means that the histogram (marginal distribution) of Y(x) is bell-shaped, but also pairs, 
triplets, and so on are Gaussian. In particular, the bivariate distributions of pairs [scat-
terplots between 𝑌𝑌(𝑥𝑥) and 𝑌𝑌(𝑥𝑥 + ℎ) at any distance ℎ] have an elliptical shape corre-
sponding to the bivariate probability distribution function [here, for standard Gaussian 
with correlation coefficient = 𝜌𝜌(ℎ)]: 

𝑔𝑔𝜌𝜌(𝑡𝑡,𝑢𝑢) =
1

2𝜋𝜋�1 − 𝜌𝜌2
𝑒𝑒
−𝑡𝑡

2−2𝜌𝜌𝑡𝑡𝜌𝜌+𝜌𝜌2
2(1−𝜌𝜌2)  

The full distribution is entirely determined by the mean, the variance, and the covari-
ance function. For a standard Gaussian (mean 0, variance 1) as considered further, the 
distribution is determined by the covariance 𝐶𝐶(ℎ) or correlogram 𝜌𝜌(ℎ). 
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9.3 Non conditional simulation with the turning bands method 

The turning bands method is a rapid way to build a non-conditional simulation of a 
random function model with a desired covariance (Lantuéjoul, 2002; Chilès and 
Delfiner, 2012). It allows for the simulation of a random function in R2 or R3 from inde-
pendent simulations in R, performed along lines having random directions. For each 
such line, a 1-D simulation is performed and then expanded to the whole space giving 
"bands" informing every point in space (Figure 9.2). The final simulation at every point 
in space is obtained as an average of the values coming from the 1-D simulations in all 
random directions. Because of the mixing of many independent 1-D simulations, this 
gives Gaussian random functions.  

The 1-D simulations to be made do not obey the same covariance as the desired final 
covariance, but there is a relationship linking these. For example, to reproduce the co-
variance 𝐶𝐶3(ℎ) in R3, the 1-D covariance 𝐶𝐶1(ℎ) is obtained by: 

𝐶𝐶1(ℎ) =
𝑑𝑑
𝑑𝑑ℎ

[ℎ𝐶𝐶3(ℎ)]𝑑𝑑ℎ 

Ad hoc processes are designed to simulate the 1-D covariances corresponding to the 
usual desired covariances. 

Application 9.2. Non-conditional simulation by turning bands 

The following R code performs a non-conditional simulation of an exponential model 
(range = 0.15 and sill = 1) using the turning bands method. Four realizations are pro-
duced with a number of bands corresponding to 1, 10, 100, and 1000.  

# Generate 4 realizations of non conditional simulation  
# with a varying number of bands 
projec.toggle(0) 
data.db <- db.create(data.frame(x1=c(0,0,1,1),x2=c(0,1,1,0))) 
grid.db <- db.grid.init(data.db,nodes=c(100,100)) 
mod <- model.create("Exponential",range=.15,sill=1) 
sim1<- simtub(model=mod,dbout=grid.db,nbsim=1,nbtuba=1) 
sim2<- simtub(model=mod,dbout=grid.db,nbsim=1,nbtuba=10) 
sim3<- simtub(model=mod,dbout=grid.db,nbsim=1,nbtuba=100) 
sim4<- simtub(model=mod,dbout=grid.db,nbsim=1,nbtuba=1000) 
 
# Generate figures 
plot(sim1,name="Simu.V1.S1",pos.legend=1,zlim=c(-4,4))  
plot(sim2,name="Simu.V1.S1",pos.legend=1,zlim=c(-4,4))  
plot(sim3,name="Simu.V1.S1",pos.legend=1,zlim=c(-4,4))  
plot(sim4,name="Simu.V1.S1",pos.legend=1,zlim=c(-4,4)) 
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Figure 9.2. Non conditional simulation of an exponential model (range = 0.15 and sill = 1) using 
turning bands (1, 10, 100, 1000 bands). See how the number of bands impacts the simulated field. 
At least, 1000 bands are needed to produce a simulated field not impacted by the number of bands. 

 

9.4 Conditioning to the data 

Performing conditional simulations is, in general, very difficult, but it is much easier 
in the Gaussian model. Although a bit technical, this section explains how conditioning 
to data is treated in this model. 

The Gaussian model has useful properties:  

• Conditional distributions (e.g. distribution at a target point conditional on 
data) are still Gaussian. 

• The mean of a conditional distribution (the "conditional expectation") is linear 
(kriging) 

• The variance of a conditional distribution is equal to kriging variance and does 
not depend on the conditioning values (no heterosedasticity). 

• No correlation is equivalent to independence. 

At a given target point, the distribution of 𝑌𝑌(𝑥𝑥) conditional on the data is Gaussian, 
with mean equal to its kriging value and with variance equal to the kriging variance. 
It can be written as 𝑌𝑌𝐾𝐾(𝑥𝑥) + 𝜎𝜎𝐾𝐾𝑅𝑅 where 𝑅𝑅 is a standard Gaussian residual. This allows 
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simulating 𝑌𝑌(𝑥𝑥) at a point by simulating 𝑅𝑅 (but this is not sufficient to simulate 𝑌𝑌 at all 
target points).  

In non-linear geostatistics, such conditional distributions can be used to estimate any 
function 𝑓𝑓 of 𝑌𝑌(𝑥𝑥) at target points: 

𝐸𝐸[𝑓𝑓(𝑌𝑌(𝑥𝑥))|𝑑𝑑𝑉𝑉𝑡𝑡𝑉𝑉] = �𝑓𝑓(𝑌𝑌(𝑥𝑥)𝐾𝐾 + 𝜎𝜎𝐾𝐾𝑡𝑡)𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡 

(note that this is not simply the function of the estimate 𝑓𝑓(𝑌𝑌(𝑥𝑥)𝐾𝐾), which would be 
biased). 

In particular, the conditional probability of exceeding some threshold 𝑦𝑦 is: 

𝑃𝑃(𝑌𝑌(𝑥𝑥) ≥ 𝑦𝑦|𝑑𝑑𝑉𝑉𝑡𝑡𝑉𝑉) = 𝐸𝐸�1𝑌𝑌(𝑥𝑥)≥𝑦𝑦|𝑑𝑑𝑉𝑉𝑡𝑡𝑉𝑉� = 1 − 𝐺𝐺 �
𝑦𝑦 − 𝑌𝑌(𝑥𝑥)𝐾𝐾

𝜎𝜎𝐾𝐾
� 

where 𝐺𝐺(𝑦𝑦) = 𝑃𝑃(𝑌𝑌 < 𝑦𝑦) = ∫ 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡𝑦𝑦  is the cumulative density function of a standard 
Gaussian. 

In simulations, the properties of the Gaussian model make conditioning easy, as ex-
plained now (Lantuéjoul, 2002; Chilès and Delfiner, 2012).   

The difference between the kriged map and the unknown reality is the error map 𝜀𝜀𝑌𝑌(𝑥𝑥): 

𝑌𝑌(𝑥𝑥) = 𝑌𝑌𝐾𝐾(𝑥𝑥) + 𝜀𝜀𝑌𝑌(𝑥𝑥) 

In the Gaussian case, this error map is stochastically independent from the kriged map. 
Then, the idea is to substitute the actual error map by an independently simulated one. 
First, a non-conditional simulation is performed at all target points and datapoints, 
then kriged at all target points from datapoints, so that the simulated error is available 
at all target points: 

𝑌𝑌𝑁𝑁𝑁𝑁𝑆𝑆(𝑥𝑥) = 𝑌𝑌𝑁𝑁𝑁𝑁𝑆𝑆𝐾𝐾 (𝑥𝑥) + 𝜀𝜀𝑁𝑁𝑁𝑁𝑆𝑆𝑌𝑌 (𝑥𝑥) 

Then, this simulated error map is added to the original kriging map, giving the condi-
tional simulation: 

𝑌𝑌𝑁𝑁𝑆𝑆(𝑥𝑥) = 𝑌𝑌𝐾𝐾(𝑥𝑥) + 𝜀𝜀𝑁𝑁𝑁𝑁𝑆𝑆𝑌𝑌 (𝑥𝑥) 

Indeed, at datapoints, the kriged value equals the actual value and the error is zero, so 
that the finally simulated value coincides with the actual value. 

In summary, a conditional simulation of a Gaussian random function can be obtained, 
requiring only a non-conditional simulation and a kriging process (Figure 9.3): 

𝑌𝑌𝑁𝑁𝑆𝑆(𝑥𝑥) = (𝑌𝑌(𝑥𝑥) − 𝑌𝑌𝑁𝑁𝑁𝑁𝑆𝑆(𝑥𝑥))𝐾𝐾 + 𝑌𝑌𝑁𝑁𝑁𝑁𝑆𝑆(𝑥𝑥) 

 

Application 9.3. Principle of a conditional simulation 

The following R code performs a conditional simulation from a sampled, simulated 
field with a nested model with two components; the first component is a nugget with 
a sill of 0.01, and the second component is spherical with a range of 0.25 and a sill of 
0.99. Four figures are produced. The first figure is a realization of a non-conditional 
simulation, which represents the [unknown] reality. The second figure represents sam-
ples taken from this simulated field. The third figure is the kriged map of these sam-
ples, which is the best linear unbiased interpolation, and is smoother than the reality. 
The fourth figure is a realization of a conditional simulation, which honours the values 
at the sample locations and reproduces the spatial variability of the regionalized vari-
able. 
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# Create the simulation grid 
projec.toggle(0) 
grid.db <- db.grid.init(db.create(data.frame(x1=c(0,0,1,1),x2=c(0,1,1
,0))),  
                        nodes=c(101,101)) 
 
# Create a variogram model 
a1 <- model.create(vartype=1,sill=0.01) 
mod <- model.create(vartype=3,sill=0.99,range=0.25,model=a1) 
 
# Generate the truth 
real <- simtub(model=mod,dbout=grid.db,nbsim=1,nbtuba=1000) 
 
# Sample the true field at random  
data.df <- data.frame(x1=round(runif(100,0,1),2),x2=round(runif(100,0
,1),2)) 
data.df <- merge(data.df,real[,2:4],by=c("x1","x2"));names(data.df)[3
]<-"z1" 
data.db <- db.create(data.df) 
 
# Perform an ordinary kriging in unique neighbourhood  
kri <- kriging(dbin=data.db,dbout=grid.db,model=mod,  
               neigh=neigh.create(type=0,ndim=2),uc=NA,mean=0)  
 
# Perform a conditional simulation 
sc <- simtub(dbin=data.db,dbout=grid.db,model=mod,  
             neigh= neigh.create(type=0,ndim=2),uc=NA,mean=0,  
             nbsim=1,nbtuba=1000,seed=232132) 
 
# Generate figures 
plot(real,name="Simu.V1.S1",title="Reality",pos.legend=1,zlim=c(-4,4)
)  
plot(data.db,title="Sample data") 
plot(kri,name="Kriging.z1.estim",title="Kriging",pos.legend=1,zlim=c(
-4,4))  
plot(sc,name="Simu.z1.S1",title="Conditional simulation", 
     pos.legend=1,zlim=c(-4,4)) 



 

 

104  | ICES Cooperative Research Report No. 338 
 
 

 
Figure 9.3. Principle of a conditional simulation: non-conditional simulation (top left), data (top 
right), kriging the data (bottom left), conditional simulation (bottom right). Note how kriging pro-
duces a smooth field, while conditional simulation produces a heterogeneous field that "looks" like 
the reality. 

 

9.5 Gaussian anamorphosis 

In many cases, the variable under study cannot be modeled directly with a Gaussian 
random function. Typical of concentrations like a fish density, it may be stationary, but 
has a skewed histogram (the case of numerous zeroes will be treated in the next sec-
tion). Then, a transformation into normal scores must be applied before using a Gauss-
ian random function model. The different steps for simulations are: 

• transform the variable into normal scores; data values give Gaussian data val-
ues with bell shaped histogram; 

• preferably check that the Gaussian random function model is admissible [e.g. 
the scatterplots (𝑌𝑌(𝑥𝑥),𝑌𝑌(𝑥𝑥 + ℎ)) must present an elliptical shape]; 

• infer the Gaussian random function model (e.g. its covariance); 
• perform the simulations of the Gaussian transformed in the Gaussian field; 
• transform these simulations back to the original scale. 

To go into more details, the transformation between the original variable represented 
by 𝑍𝑍(𝑥𝑥) and the Gaussian variable 𝑌𝑌(𝑥𝑥) is called the Gaussian anamorphosis. It is a 
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non-decreasing function denoted Φ with 𝑍𝑍 = Φ(𝑌𝑌) (not the reverse – we will see why 
later), so that the variable is seen as deriving from a Gaussian field. When going from 
𝑍𝑍 to 𝑌𝑌 (supposedly standard), the histogram is reshaped into the bell-shaped Gaussian 
histogram. Let 𝐹𝐹 be the cumulative distribution function of 𝑍𝑍 and 𝐺𝐺 the cumulative 
density function of the standard Gaussian. Each data value 𝑧𝑧 and its normal score 𝑦𝑦 
correspond to the same cumulated probability: 𝐹𝐹(𝑧𝑧) = 𝐺𝐺(𝑦𝑦) so that 𝑧𝑧 = 𝐹𝐹−1[𝐺𝐺(𝑦𝑦)] and 
Φ = 𝐹𝐹−1[𝐺𝐺].  

The anamorphosis function Φ represents the distribution (histogram) of values over 
the domain and is inferred from data. When data are not regularly spaced, they should 
be declustered (e.g. each datapoint being weighted by its surface of influence). The 
knowledge of the distribution may, however, be poor when data are not numerous and 
is generally poor in the tails of the distribution. An anamorphosis model is then used 
to fit and smooth the empirical anamorphosis of the data.  

One classical way to do this consists of fitting a polynomial function. Rather than using 
monomials, this makes use of so-called Hermite polynomials that are particularly 
adapted to the Gaussian context (Rivoirard, 1994; Chilès and Delfiner, 2012). The user 
just has to choose the number of Hermite polynomials, since this will correspond to the 
degree of the polynomial expansion of the anamorphosis.  

Another way to model the anamorphosis consists of dispersing each data value, i.e. 
replacing each data value 𝑧𝑧 by a distribution with mean 𝑧𝑧 and some variance. Thus, the 
overall mean is unchanged, and the overall variance is slightly increased (by a quantity 
which should represent the global estimation variance). Typically for a skewed distri-
bution such as fish density, each data value 𝑧𝑧 is dispersed by a lognormal distribution, 
having 𝑧𝑧 as mean and a common logarithmic variance, and so a variance proportional 
to 𝑧𝑧2 (the highest 𝑧𝑧 values of the tail are getting more dispersed). The logarithmic var-
iance is adjusted on the desired overall increase of variance. 

 

Application 9.4. Conditional simulation of herring mean length 

The following R lines show an example of conditional simulation without the presence 
of zeros (full demonstration Rscript in Annex 3, data detail in Annex 2). The data used 
here correspond to herring mean length. They were collected during trawl stations that 
were performed to assist the scrutinization of the acoustic backscatter.  

First, the data are loaded and a projection is set. Then, a RGeostats model of anamor-
phosis is defined using the function anam.fit(). The "Hermitian anamorphosis" model 
is used when the type is set to "gaus". It requires defining the number of Hermite pol-
ynomials to be used, here 10. The herring mean length data are then transformed into 
normal scores using the function anam.z2y() (Figure 9.4).  

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herring.len.scot.db.data","db.data") 
rg.load("Demo.herring.len.scot.poly.data","poly.data") 
rg.load("Demo.herring.len.scot.grid.simu","grid.simu") 
projec.define(db=db.data) 
 
# Histogram of the Mean Length variable (left figure) 
hist(db.data[,"m.length"],breaks=20,col="grey",main="",xlab="m.length
") 
 
# Define the anamorphosis model (right figure) 
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model.anam <- anam.fit(db.data,type="gaus",nbpoly=10,draw=T)  
 
# Transform the data into Gaussian 
db.data <- anam.z2y(db.data,anam=model.anam) 

 
Figure 9.4. Left: histogram of Scottish herring mean length data at stations. Right: Gaussian ana-
morphosis (the empirical staircase anamorphosis is modeled by a polynomial function). 

 

Before performing the simulations in the Gaussian field, the variogram model is fitted 
on the Gaussian transformed herring mean length. Then, the conditional simulations 
are performed using the function simtub(). The model of anamorphosis was stored and 
is used to convert conditional simulations in the Gaussian space back to the original 
space using the function anam.y2z() (Figure 9.4). 

# Transform the data into Gaussian 
db.data <- anam.z2y(db.data,anam=model.anam) 
 
# Build the model 
vario.data <- vario.calc(db.data) 
model.vario <- model.auto(vario=vario.data)  
 
# Cond. simulation of gaussian variable 
grid.simu <- simtub(dbin=db.data, dbout=grid.simu, model=model.vario, 
                    neigh=neigh.create(type=0,ndim=2), uc = "", mean 
= 0,                seed = 29091978, 
                    nbsimu = 1, nbtuba = 1000, radix = "Simu", 
                    modify.target = TRUE) 
 
# Transform gaussian cond simulation into raw conditional simulation 
grid.simu <- anam.y2z(grid.simu,name="Simu.Gaussian.m.length.S1",anam
=model.anam) 
 
# Display 
plot(grid.simu,name="Simu.Gaussian.m.length.S1", 
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180), 
     title="Conditional Simulation of Gaussian Variable", 
     pos.legend=5,flag.proj=F) 
plot(poly.data,col=0,flag.proj=F,add=T) 
map("worldHires",add=T,fill=T,col=8)  
 
plot(grid.simu,name="Raw.Simu.Gaussian.m.length.S1", 
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     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180), 
     title="Conditional Simulation of Raw Variable", 
     pos.legend=5,flag.proj=F) 
plot(poly.data,col=0,flag.proj=F,add=T) 
map("worldHires",add=T,fill=T,col=8);box() 

 
Figure 9.5. Scottish herring mean length: conditional simulation in the Gaussian space (left), back-
transformed into mean length arithmetic scale (right). 

 

9.6 Case of zero effects 

In the above simulation method, simulations are performed in the Gaussian space. Sim-
ulations are conditional on the Gaussian data values. This supposes that original data 
values have been inverted into Gaussian values. This is generally not a problem when 
the distribution of 𝑍𝑍 is continuous, but what if a non-negative variable 𝑍𝑍 has a contin-
uous distribution except for the presence of 50% of zeroes? There is no problem with 
inverting the positive values of 𝑍𝑍, but what about the zeroes? In this case, the anamor-
phosis function Φ is identically equal to 0 for all the 50% of the negative values of the 
Gaussian variable. If the proportion of zeros is 𝑝𝑝0, Φ will be 0 for all Gaussian values 
less than the Gaussian threshold 𝑦𝑦 corresponding to the cumulated probability 𝑝𝑝0 =
𝐺𝐺(𝑦𝑦). 𝑍𝑍 is supposed to derive from a Gaussian field 𝑌𝑌 by 𝑍𝑍 = Φ(𝑌𝑌), but the inverse of 
Φ does not exist (this is the reason why Φ goes from 𝑌𝑌 to 𝑍𝑍, not the reverse), and we do 
not know which value of 𝑌𝑌 corresponds to a 0 value for 𝑍𝑍. In addition, since the values 
of 𝑌𝑌 are unknown where 𝑍𝑍 is 0, the variogram or covariance of 𝑌𝑌 is not directly acces-
sible. 

In such a case, two preliminary steps must be performed. The first consists of deter-
mining the covariance of 𝑌𝑌. In the Gaussian random function model, pairs 
[(𝑌𝑌(𝑥𝑥),𝑌𝑌(𝑥𝑥 + ℎ)]) for a given distance ℎ have a bivariate Gaussian density, depending 
only on the correlation 𝜌𝜌 = 𝜌𝜌(ℎ) at this distance. It follows that the covariance of any 
function of 𝑌𝑌, say 𝑓𝑓(𝑌𝑌), can be written as: 

𝐶𝐶𝑓𝑓(ℎ) = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑓𝑓�𝑌𝑌(𝑥𝑥)�, 𝑓𝑓(𝑌𝑌(𝑥𝑥 + ℎ))� = 𝐸𝐸�𝑓𝑓�𝑌𝑌(𝑥𝑥)�𝑓𝑓(𝑌𝑌(𝑥𝑥 + ℎ))� − (𝐸𝐸[𝑓𝑓(𝑌𝑌)])2

= �𝑓𝑓(𝑡𝑡)𝑓𝑓(𝑢𝑢)𝑔𝑔𝜌𝜌(ℎ)(𝑡𝑡,𝑢𝑢)𝑑𝑑𝑡𝑡 𝑑𝑑𝑢𝑢 − (𝐸𝐸[𝑓𝑓(𝑌𝑌)])2 

Hence, the covariance of 𝑓𝑓(𝑌𝑌) at distance ℎ depends on the covariance of 𝑌𝑌 at this dis-
tance (it can be shown to increase when 𝜌𝜌 increases from 0 to 1).  
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In practice, the function 𝑓𝑓(𝑌𝑌) is to be chosen to be closely linked to 𝑌𝑌 while determined 
at all datapoints, for example 𝑌𝑌+ equal to 𝑌𝑌 when 𝑍𝑍 > 0 and to the threshold 𝑦𝑦 when 
𝑍𝑍 = 0 (𝑌𝑌 unknown, but smaller than 𝑦𝑦). 

Then, the covariance model 𝜌𝜌(ℎ) of 𝑌𝑌 can be chosen so that the above transformation 
fits the observed structure of 𝑓𝑓(𝑌𝑌). This presents the disadvantage to be indirect. An-
other solution is to invert each value from the observed 𝐶𝐶𝑓𝑓(ℎ) according to the above 
formula in order to exhibit a pseudo-experimental structure 𝜌𝜌(ℎ) for 𝑌𝑌 to be modeled 
[some limitations to the inversion may, however, appear with negative values of 𝜌𝜌(ℎ)]. 

Once the structure of 𝑌𝑌 is determined, the second additional step consists of simulating 
the values of 𝑌𝑌 at the datapoints where 𝑍𝑍 is zero (at the datapoints where 𝑍𝑍 is positive, 
𝑌𝑌 is directly determined by inversion). This must be conditional on their being less than 
the threshold 𝑦𝑦, and conditional on the values of 𝑌𝑌 where 𝑍𝑍 is positive, while honouring 
the Gaussian structure. This is classically done by a Gibbs sampler, iteratively over the 
𝑍𝑍 = 0 datapoints as follows: 

• Initialize the 𝑌𝑌(𝑥𝑥) < 𝑦𝑦 at the 𝑍𝑍 = 0 datapoints; 
• Iteratively at each such point simulate 𝑌𝑌(𝑥𝑥) < 𝑦𝑦, conditional on 𝑌𝑌 values at all 

other datapoints (the conditional distribution at this point is Gaussian, and we 
have seen earlier how to simulate it with a residual);  

• Repeat until convergence of the variogram of 𝑌𝑌 at datapoints. 

At the end, 𝑌𝑌 is known or simulated at all datapoints and can be used for the classical 
conditional simulation seen above. 

 

Application 9.5. Conditional simulation of herring acoustic backscatter in the presence 
of zeros  

The following R lines (full script in Annex 3) show an example of conditional simula-
tion with the presence of zeros. The data used here correspond to herring acoustic 
backscattering (Annex 2) collected along survey transects. 

First, the data are loaded, a projection is set, and areas of influence are computed to 
compensate for the irregularity of the sampling (variable intertransect distance). Then, 
a model of anamorphosis is defined using the function anam.fit(). The chosen RGeo-
stats model of anamorphosis is the "empirical anamorphosis" with a logarithmic dis-
persion. The herring acoustic backscatter data are then transformed into normal scores 
using the function anam.z2y() (Figure 9.6). However, because of the many zeros, the 
transformation is not a bijection function, and all the zeros end up receiving the same 
Gaussian values ycut derived from the proportion of zeros.  

# Pre-requisite 
projec.toggle(0) 
rg.load("Demo.herring.sa.scot.db.data","db.data") 
rg.load("Demo.herring.sa.scot.poly.data","poly.data") 
rg.load("Demo.herring.sa.scot.grid.simu","grid.simu") 
projec.define(db=db.data) 
 
# Display the histogram 
hist(db.data[,"sa"],breaks=100,col="grey",main="",xlab="sa") 
 
# Define the anamorphosis model (Right figure) 
model.anam <- anam.fit(db.data,type="emp",ndisc=db.data$nech,  
                       sigma2e=800,draw=TRUE,title="") 
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Figure 9.6. Acoustic backscatter attributed to Scottish herring. Left: histogram showing a spike of 
zero values. Right: model of anamorphosis. 

 

# Transform the data into Gaussian 
db.data <- anam.z2y(db.data,anam=model.anam) 
print(db.data,flag.stats=TRUE,names="Gaussian.sa") 
db.data <- db.rename(db.data,name="Gaussian.sa",newname="Yp") 
ycut <- round(qnorm(sum(db.extract(db.data,"sa") == 0) / db.data$nech
),5) 
Y <- db.extract(db.data,"Yp") 
Y[Y < ycut] <- ycut 
db.data <- db.replace(db.data,"Yp",Y) 
print(db.data,flag.stats=TRUE,names="Yp") 

Then, we look for the variogram model of the Gaussian. It is modeled from the vario-
gram of the truncated Gaussian 𝑌𝑌+. To do so, the variogram of the truncated Gaussian 
𝑌𝑌+ is transformed using the function vario.trans.cut() and the function model.auto() is 
applied. vario.trans.cut() allows for the inversion of each value from the observed vari-
ogram of the truncated Gaussian 𝑌𝑌+ in order to exhibit a pseudo-experimental vario-
gram of the Gaussian 𝑌𝑌 to be modeled (see formula above). The variogram model of 
the Gaussian 𝑌𝑌 exhibits 3 components: a nugget, an exponential and a spherical model 
(Figure 9.7).  

# Modeling Gaussian variable Y 
n.H <- 50 
vario.Yp <- vario.calc(db.data,lag=2.5,nlag=50) 
vario.Y  <- vario.trans.cut(vario.Yp,ycut,n.H) 
model.vario.Y <- model.auto(vario.Y,struc=melem.name(c(1,2,3)),draw=F
) 
plot(vario.Yp,npairdw=T,inches=0.05,col="black",ylim=c(0,1.2)) 
plot(vario.Y,npairdw=T,inches=0.05,col="red",add=TRUE) 
plot(model.vario.Y,add=T,col="red") 
legend(x="bottomright",legend=c("Variogram of Yp","Variogram of Y"), 
       lty=c(1,1),col=c("black","red")) 
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Figure 9.7. Modeling the variogram of the Gaussian 𝒀𝒀 from the variogram of the truncated Gaussian 
𝒀𝒀+. 

 

Then, the values of Y at the datapoints where 𝑍𝑍 is zero are simulated using a Gibbs 
sampling. The simulation intervals and locator are defined. Then, the Gibbs sampling 
is performed with the function gibbs(). Figure 9.8 illustrates the histogram before and 
after the gibbs sampling and compares the experimental variogram and the model of 
Y after the Gibbs sampling.  

# Define interval limits for the Gibbs 
Ymax <- db.extract(db.data,name="Yp",flag.compress=FALSE) 
Ymin <- db.extract(db.data,name="Yp",flag.compress=FALSE) 
Ymin[Ymin <= ycut] <- -10 
db.data<-db.add(db.data,Ymax) 
db.data<-db.locate(db.data,db.data$natt,"upper") 
db.data<-db.add(db.data,Ymin) 
db.data<-db.locate(db.data,db.data$natt,"lower") 
 
# A Gibbs sampler  
db.data <-gibbs(db = db.data, model = model.vario.Y, seed = 232132,  
                nboot = 10, niter = 100, flag.norm=FALSE, percent=0, 
toleps = 1, 
                radix = "Gibbs", modify.target = TRUE) 
db.data<-db.rename(db.data,"Gibbs.G1","Y") 
print(db.data,flag.stats=TRUE,names="Y") 
 
# Histograms 
hist(db.data[,"Yp"],breaks=100,xlim=c(-4,4),ylim=c(0,300),main="",xla
b="Yp") 
hist(db.data[,"Y"],breaks=100,xlim=c(-4,4),ylim=c(0,300),main="",xlab
="Y") 
vario.Yg <- vario.calc(db.data,lag=2.5,nlag=50) 
plot(vario.Yg,npairdw=TRUE,inches=0.05) 
plot(model.vario.Y,add=TRUE,col="red") 
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Figure 9.8. Gibbs sampling for a truncated Gaussian variable 𝒀𝒀+. Histogram before (left) and after 
(middle) the Gibbs sampling. Comparison of the experimental variogram and the model of 𝒀𝒀 after 
the Gibbs sampling (right). 

 

The last steps are the conditional simulation on the Gaussian variable using its vario-
gram model, and the back-transformation of the conditional simulation to the original 
scale (Figure 9.9).  

# Conditional simulation of the Gaussian variable 
grid.simu <- simtub(dbin=db.data, dbout=grid.simu, model=model.vario.
Y, 
                    neigh=neigh.create(type=0,ndim=2), uc = "", mean 
= 0,                seed = 232132, 
                    nbsimu = 1, nbtuba = 1000, 
                    radix = "Simu", modify.target = TRUE) 
grid.simu <- db.rename(grid.simu,"Simu.Y.S1","Simu.Y") 
print(grid.simu,flag.stats=TRUE,names="Simu.Y") 
 
# Display 
plot(grid.simu,name="Simu.Y", 
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180), 
     pos.legend=5,flag.proj=F,title="") 
map("worldHires",add=T,fill=T,col=8)  
 
# Transform gaussian conditional simulation into raw scale 
grid.simu <- anam.y2z(grid.simu,name="Simu.Y",anam=model.anam) 
 
# Display 
plot(grid.simu,name="Raw.Simu.Y", 
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180), 
     pos.legend=5,flag.proj=F,title="",zlim=c(10,18000))  
map("worldHires",add=T,fill=T,col=8) 



 

 

112  | ICES Cooperative Research Report No. 338 
 
 

 

Figure 9.9. Scottish herring acoustic backscatter: conditional simulation in the Gaussian space (left), 
back-transformed into acoustic backscatter (right). 

 

Note that in acoustic surveys, fish abundance is estimated by combining the acoustic 
backscatter and the fish length data. Here, conditional simulations offer the unique op-
portunity to combine uncertainties of each simulated field that we performed in this 
section, i.e. the simulated mean length and the simulated acoustic backscatter, into a 
final abundance estimate (see Woillez et al., 2009b for more details). 
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10 Conclusion 

In the 1990s, the need to estimate variance for acoustic surveys with regularly spaced 
transects led to the recognition of geostatistics in fisheries science as a useful frame-
work providing a set of coherent tools to take into account explicitly the autocorrela-
tion in the data (e.g. Rivoirard et al., 2000). Now, the need for mapping has broadened 
with the ecosystem approach. Thus, in addition to variography and kriging, this hand-
book offers an introduction to a wide range of geostatistical methods, including multi-
variate, non-linear, and simulation procedures for this wider ecosystem context for 
which fisheries survey data are now also used. The package RGeostats (Renard et al., 
2016), freely available for the R environment, will allow the user to apply the many 
geostatistical tools. The R code provided in this handbook was designed to serve as a 
teaser for the reader to develop his/her own code for his/her case studies. Spatio-tem-
poral modelling was not considered here (yet, multiyears could be analyzed using a 
multivariate approach), and this topic is certainly an upcoming challenge for the anal-
ysis of multiple surveys.  
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Annex 1:  RGeostats package 

A1.1 Introduction 

Since 2001, the package RGeostats for the R environment has been developed at MINES 
ParisTech compiling Rscripts which call functions written in C/C++. The main charac-
teristic of the package RGeostats is to perform geostatistical operations with no limita-
tion on the dimension of the space and on the number of variables treated simultane-
ously (in the case of multivariate geostatistics).  

A dedicated website, rgeostats.free.fr, has also been initiated where the user can down-
load the latest version of the package for the relevant operating system, learn some 
tricks reading the numerous tutorials, get some valuable information in the section for 
“Frequently Asked Questions”, and finally ask on the forum for some help from the 
RGeostats community for their own issues. It also offers the possibility to download 
the latest version of RGeostats for one of the following supported operating systems: 
Windows, Linux (32 or 64), and MacOS. This download is free of charge. The user is 
supposed to be familiar with R. The scripts shown in this document were developed 
with RGeostats version 11.0.2. With different versions of RGeostats, the functions de-
scribed here and used in this document may change. Please see the help on-line and 
refer to the forum on rgeostats.free.fr in that case. 

A1.2 Getting started with RGeostats 

The user can download the latest version of RGeostats for their favorite operating sys-
tem from the site http://cg.ensmp.fr/rgeostats.  

When producing results or publishing papers using RGeostats, the following reference 

should be cited:  

Renard, D., Bez, N., Desassis, N., Beucher, H., Ors, F. and Laporte, F. [year of ver-

sion]. RGeostats, The Geostatistical package [version number]. MINES ParisTech. 

Free download from: http://cg.ensmp.fr/rgeostats 

After RGeostats has been downloaded and installed on your computer, simply open 
the R session and load the library by typing: 

library(RGeostats) 

The previous command will have to be entered each time you enter into a new R ses-
sion, unless you register it, once for all, in the .First file. 

The RGeostats package needs the Rcpp package to be installed beforehand. Moreover, 
most of the applications described in this manual will suggest the installation projec-
tion and map representation packages such as maps, mapproj, and mapdata. It is, 
therefore, recommended to install them too. 

A1.3 Description of the package 

A1.3.1 General syntax 

RGeostats gives access to a set of more than 400 functions. All functions obey the fol-
lowing standard syntax: 

a <- function(b, c=1) 

http://cg.ensmp.fr/rgeostats
http://cg.ensmp.fr/rgeostats
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where b and c are the arguments and a is the returned value (this term is generic and 
does not characterize its type). The order of the arguments (b then c) is important as the 
function can be called without explicitly naming the arguments. Some arguments are 
optional (such as c) and have a default value (here 1) when omitted. 

A1.3.2 Documentation 

Each method of RGeostats package is described within a help file that can be triggered 
by typing: 

?method_name 

In this help document, each argument of the method is described, together with its 
default value. The value of the object resulting from this method is also described. Fi-
nally, most methods are illustrated through brief and demonstrative examples.  

A1.3.3 Classes and methods 

When using RGeostats, users will quickly fill their working environment with numer-
ous objects which all belong to classes according to the S4 mechanism (this is described 
within the method package which is systematically loaded with R). Similarly, the pack-
age offers a large variety of functions (or methods) which are specific to a class. A mne-
monic convention is used for naming a method using the class name as prefix.  

A1.3.3.1 Classes 

The information relative to all objects belonging to a given class is obtained in specific 
documentation that can be obtained by typing: 

class?class_name 

The various scripts or examples provided in this manual will manipulate objects be-
longing to most of the classes available in RGeostats. The different classes are not de-
scribed in this chapter as they rely on geostatistical concepts which will be explained 
in the lecture notes. The following is a non-exhaustive list of the main class names and 
contents:  

• db:  database containing the input data and/or the output results;  

• vario:  experimental spatial characteristics calculated from data, such as exper-
imental variograms, covariances, generalized variograms;  

• model:  model describing the spatial characteristics, such as the variogram, the 
covariance, or the generalized covariance model;  

• neigh: set of parameters describing the selection of samples used for processing 
a target point, called neighbourhood;  

• anam: set of parameters used to transform a sampled variable from its initial 
distribution to a standard Gaussian distribution, and vice versa;  

• rule:  the lithotype rule used to convert one or two Gaussian random functions 
into a categorical variable (facies) through thresholds;  

• thresh: a set of intervals used to convert a variable into a categorical variable or 
a set of indicators;  

• polygon: a set of one or several polysets. Each polyset is a closed broken line 
defined in 2-D.  

The db class will be described in details in this section. 
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A class is an object which stands as a container, potentially with a large number of ele-
ments. The user may wish to question or to set the value of one of these elements. Some 
assessors are defined to access these elements quickly. Their syntax is as follows: 

object$assessor 

where object belongs to a given class and assessor is the name provided to the element 
of interest. The assessors of the db class will be described in the specific section. 

Some classes contain a (single) list of elements or subclasses (e.g. the model contains a 
list of basic structures; the variogram contains a list of calculation directions). A specific 
assessor has been designed in order to reach directly one of the items of the list (without 
having to know the contents of the list explicitely): 

object[item]$assessor 

where item is the (integer) rank of the element of the list (starting from 1). An example 
will be provided in the chapter concerning the db class. If the name of the assessor is 
misspelled, the list of all available assessor names is listed. This can also be obtained 
by typing: 

object$all 

Finally, to discover the class to which an object belongs, it suffices to use the following 
command: 

class(object) 

A1.3.3.2 Methods 

Any object belonging to a class has a set of generic methods attached according to the 
S4 mechanism. To get more information on these generic methods, use the command:  

method?method_name 

where method_name corresponds to the name of the generic function.  

Some generic functions are available in the RGeostats package. These functions use 
their first argument as a signature in order to decide on the exact function that will be 
triggered. This signature consists of an object of a given RGeostats class. These func-
tions are: 

• show:  prints the contents of an object belonging to a class;  

• print:  prints the contents of an object belonging to a class; 

• summary:  same as print, but with a shorter format; 

• plot:  displays graphically the contents of an object belonging to a class;  

• ascii.write:  dumps the contents of an object belonging to a class in a text file 
according to a specific format (ASCII refers to the coding of information which 
makes it readable); 

• digitize:  digitize an object from a graphic plot. 

The advantage of such a generic function is its syntax. As a manner of fact, if db.data 
designates an object belonging to the db class, the following commands will give the 
same result: 

plot(db.data) 

db.plot(db.data) 
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The drawback is that the documentation that can be reached on the generic function 
plot is useless; only the documentation on .plot will provide relevant information. 

A1.3.4 Mnemonic techniques 

In order to navigate among more than 400 functions, the user can rely on the mnemonic 
habit where the name of a function is built using: 

• the class of the object to which it applies as a prefix; 

• the verb describing the action performed by this method (if generic) as a suffix. 

The following is a non-exhaustive list of the possible suffixes: 

• digit:  to digitize the information from a graphic window; 

• input:  to define the contents of the object using a dialogue (rather than reading 
the values from the arguments); 

• create:  to initialize an object using the information provided by the arguments; 

• read:  to read the contents of an object from an ASCII file (organized in a man-
ner specific to the type of the object); 

• write:  to write an object in an ASCII file. 

 

A1.4 First steps in RGeostats 

This paragraph describes the batch of few command lines which are necessary to load 
your data set inside RGeostats and to carry out a small study aiming at performing a 
quick estimation (using inverse squared distance interpolator) on the nodes of a regu-
lar grid, restrained within a polygon. 

In this sectionr, the highlight will be placed on objects belonging to the db class which 
contain the database where the information is stored; such an object will be called a db 
(for short). The information can consist of the measurement data that the user wishes 
to use. Note that the results of an estimation procedure will also be stored in another 
database which belongs to the same class. A special case is when the data are organized 
as a regular grid. This refers to a grid database. Otherwise, we consider that the infor-
mation is provided on a set of isolated points. 

The database corresponds to a set of columns (also called fields) defined on a set of 
samples. The variables are numeric only and stored as real values (even if they can be 
printed in integer format).  

 

A1.5 Loading data in R 

Before describing the database manipulation within the RGeostats package, let us re-
view how to load the users's data. The next paragraph is not specific to RGeostats, but 
it has been written in order to help the user getting started from the most general for-
mat, a text file. 

A1.5.1 Loading data from a text file 

The most general application is to consider that the data are coded in a text file. The 
easier representation consists of values contained in a file according to the representa-
tion as in the spreadsheet of the Excel Microsoft package: data is presented as a table 
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with one sample per row and one variable per column. The table is always a full table, 
which means that a variable which would not be measured must still be present and 
coded using a specific pattern meaning "absence of data". Rather than organizing in-
formation in a set of fixed offset columns, a more flexible format consists of writing all 
variables of a sample consecutively and separating them with a specific character (such 
as the comma, referred to the comma-separated variable or *.CSV format; or tab, usu-
ally in a text or *.txt format . Finally, it is convenient to dedicate the first line of this text 
file to define the names of all the variables.  

Let us imagine that the data are provided as a structured table of values (46 lines and 
5 columns) contained in the file called data.ascii, where the first line contains the names 
assigned to each column. 

year long lat depth m.length 

2003 –2.0164 59.0528 76 22.2530 
2003 –0.1361 59.0513 132 24.8226 
2003 –0.0875 59.0511 144 24.5158 
2003 0.5348 59.3009 132 25.4600 
2003 –0.5817 59.3008 126 23.7842 
2003 –1.4711 59.2977 99 22.8952 
2003 –1.2037 59.5516 105 24.0028 
…/ … 
2003 –3.0689 60.0504 130 23.5723 
2003 –1.6758 59.8011 115 25.1120 
2003 –3.6691 59.9163 146 27.1296 
2003 –3.4115 59.6800 145 26.5100 
2003 –3.9003 59.5503 164 27.9387 

The next command is used to read the data from the text file into R, inside an object 
which belongs to the data.frame class. The user must specify the character used as a 
column separator (here the tabulation character or “\t”).  A *.CSV file would have 
sep=”,”. 

daf <- read.csv(“data.ascii”, header=TRUE, sep=”\t”) 

A1.5.2 Loading data from a demonstration set 

To facilitate the illustrations of the methods or to illustrate the concepts described in 
this manual, numerous demonstration datasets are embedded in the RGeostats pack-
age. The specific command rg.load() enables the user to load a demonstration set (in R 
format directly) and to choose its name in the user's working environment. The term 
“demonstration dataset” has been used as its contents can be any type of RGeostats 
object. 

The user can replace the load from a text file described in the previous paragraph by 
downloading the embedded demonstration set called Demo_CRR.data.frame and stor-
ing it in a data.frame called daf. 

rg.load("Demo.CRR.data.frame","daf") 

Note that the names must be specified within quotes. If you misspell the first argument, 
the function will return the list of all demonstration sets available within RGeostats. 



  

 

Handbook of Geostatistics in R for Fisheries and Marine Ecology |  121 

 

A1.5.3 Data frame object 

The resulting object (here called daf) belongs to a specific class of R called a data.frame. 
An object of this class can be considered as a matrix where each column can be ad-
dressed using its name. This particular data.frame contains 5 columns and 45 rows. 

The following command gives the list of names of the data frame columns: 

names(daf) 

[1] "year"     "long"     "lat"      "depth"    "m.length" 

 

A1.6 Creating the db from a data frame 

The contents of the data frame daf must now be converted into an object of the db class 
called db.data: 

db.data = db.create(daf) 

Note that, as we mentioned beforehand, the name of the previous function indicates 
that this is a method dedicated to the db class. 

We can check the contents of the db.data by typing any of the following commands: 

db.print(db.data) 

print(db.data) 

db.data 

The first syntax uses the method dedicated to the db class for printing its contents. The 
second syntax uses the generic print method (which triggers the use of db.plot for an 
object belonging to the db class). Finally, the third syntax uses the implicit generic 
method which launches the print (or actually summary generic method) when a com-
mand simply refers to the object name. Note that this function has no returning value. 

 

 

Data Base Characteristics 
========================= 
 

Data Base Summary 
----------------- 
File is organized as a set of isolated points 
Space dimension              = 0 
Number of fields             = 6 
Maximum Number of attributes = 6 
Total number of samples      = 45 
 

Variables 
--------- 
Field =  1 - Name    =  rank - Locator =  rank  
Field =  2 - Name    =  year - Locator =  NA  
Field =  3 - Name    =  long - Locator =  NA  
Field =  4 - Name    =  lat - Locator =  NA  
Field =  5 - Name    =  depth - Locator =  NA  
Field =  6 - Name    =  m.length - Locator =  NA  
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Note that at this stage, db.data refers to a database, organized as a set of isolated points, 
containing 45 samples for a space of dimension 0. It contains 6 fields (or attributes); 
their names have been inherited from the names of the columns of the data frame daf.  
Note that the new field rank has been added automatically; this corresponds to the rank 
of the sample. 

A large set of functions dedicated to objects of the db class is available. As an example, 
let us mention the one which provides basic statistics on a (set of) variable(s) (ranks 6). 

db.print(db.data,flag.stats=T,names=6) 

The result demonstrates that the attribute called m.length varies from 18.5 cm to 30.5 
cm: 

Data Base Characteristics 
========================= 

 

Data Base Summary 
----------------- 
File is organized as a set of isolated points 
Space dimension              = 2 
Number of fields             = 6 
Maximum Number of attributes = 6 
Total number of samples      = 45 
 

Data Base Statistics 
-------------------- 
6 - Locator Variable z1 (Name=m.length)  
 Nb of data          =         45 
 Nb of active values =         45 
 Minimum value       =     18.448 
 Maximum value       =     30.544 
 Mean value          =     26.763 
 Standard Deviation  =      2.084 
 Variance            =      4.344 

 

Another essential function consists of adding one attribute to an already existing data-
base, say for calculating the log of the (positive) attribute called m.length and storing it 
into the new attribute called log.m.length: 

db.data = db.add(db.data,log.m.length=log(m.length)) 

The method that can be demonstrated now provides some statistics graphically. This 
is the correlation feature which represents the scatterplot between two variables (the 
average length and the depth), calculates and draws the regression line, and produces 
the correlation coefficient (equal to 0.54): 

correlation(db.data,5,6,ndisc=50,flag.regr=T) 
[1] 0.5424279 
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Figure A1.1. Correlation between average fish length and bottom depth. 

 

A1.7 Locators 

The concept of locator is specific to RGeostats; it allows the user to define the role at-
tributed to each attribute (we use the term attribute rather than variable in this para-
graph to avoid confusion). Note that the RGeostats concept of locator is not to be con-
fused with the R function locator(). For example, it is necessary to define the attributes 
which will serve as coordinates; this is the case of the attribute called long which will 
correspond to the first (x1) coordinate and the attribute called lat to the second (x2) 
coordinate. 

Note that, as RGeostats is not limited in the space dimension, coordinates are referred 
to as x1,x2,x3... This is obtained by defining the locator attached to these attributes, by 
typing: 

db.data = db.locate(db.data,"long","x",1) 

db.data = db.locate(db.data,"lat","x",2) 

Note that the attribute is referenced by using its name (between quotes), but you could 
also use the following command, where the attribute(s) are specified by their rank(s) 
(or range of ranks in the next example): 

db.data = db.locate(db.data,3:4,"x") 

In the same manner, the user wishes to designate the attribute called m.length (field 6) 
as the variable of interest. This corresponds to the locator z. Once more, there is no 
limitation in the number of attributes that can be attached to this locator: 

db.data = db.locate(db.data,6,"z") 

The resulting contents of db.data  is now as follows: 

 

Data Base Characteristics 
========================= 
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Data Base Summary 
----------------- 
File is organized as a set of isolated points 
Space dimension              = 2 
Number of fields             = 7 
Maximum Number of attributes = 7 
Total number of samples      = 45 
 

Variables 
--------- 
Field =  1 - Name    =  rank - Locator =  rank  
Field =  2 - Name    =  year - Locator =  NA 
Field =  3 - Name    =  long - Locator =  x1  
Field =  4 - Name    =  lat - Locator =  x2 
Field =  5 - Name    =  depth - Locator =  NA  
Field =  6 - Name    =  m.length - Locator =  z1 
Field =  7 - Name    =  log.m.length - Locator = NA   

Note the crucial importance of the locators. We can now check that the space dimension 
is now equal to 2, due to the presence of the locators x1 and x2. This will be important 
in the next operations, e.g. to doublecheck that a geostatistical model is consistent with 
the dimension of the space of the db. The operations that will be performed from now 
on will concern one target variable (called m.length) due to the presence of the locator 
z1. If we want to switch to a bivariate procedure involving two variables (namely depth 
and m.length), we must set the locator z1 to the attribute depth and the locator z2 to the 
variable m.length. Some attributes are left with no locator assigned; they have no spe-
cific role. 

An important point is that, for a given locator type, their numbers are always consec-
utive and start from 1. This is the reason why, if one wishes to set the attribute depth as 
the new variable of interest (with locator z), it suffices to set: 

db.data = db.locate(db.data,”depth”,"z") 

The previous command automatically set the locator of the attribute m.length back to 
NA. 

 

Finally, it is worth noticing that we can cancel the locator of a given attribute (say depth) 
by typing: 

db.data = db.locate(db.data,”depth”) 

and even more cancel all the locators of a given type (say z) by typing: 

db.data = db.erase(db.data,”z”) 

Finally, let us set the attribute m.length as the target variable for the rest of the paper: 

db.data = db.locate(db.data,”m.length”,”z”) 

 

A1.8 Slots 

The db contains a series of information such as: 

• the dimension of the space where the information is defined;  

• the number of samples; 

• the number of variables. 
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In the case of a grid db, it also contains: 

• a vector giving the number of grid cells;  

• a vector giving the cell dimensions; 

• a vector giving the origin of the grid; 

• the rotation angles or rotation matrix. 

All the previous vectors have a dimension equal to the space dimension. 

It is worth adding that the origin of the grid is the node which has the lowest coordinate 
along each space dimension (before rotation). If a rotation is defined, the grid origin is 
left invariant by this rotation. 

To illustrate the use of the assessors, let us mention the following possibilities for in-
quiring the db about the number of samples or the dimension of the space. This possi-
bility is often used when writing your own scripts: 

db.data$nsamples 

[1] 45 

db.data$ndim 

[1] 2 

Finally, an additional slot corresponds to the data frame which contains the numerical 
data. Its syntax mimics the one of a matrix. Hence, the following command which gives 
the value of a variable (column 6) for a given sample (row 4): 

db.data[4,6] 

[1] 23.9058 

Another usage is to ask for the whole set of variables for a given sample (row 12): 

db.data[12,] 

   rank year    long     lat depth m.length 

12   12 2002 -0.4738 59.1686   142   24.224 

It can also be used to give the whole set of values registered for a given variable (say 
m.length): 

db.data[,"m.length"] 

[1] 25.5298 26.3873 25.4096 23.9058 25.6667 26.6263 27.0818 25.3521 
18.4484 

[10] 23.1362 24.1552 24.2240 26.1699 25.4391 25.9813 24.1502 25.9334 
26.9289 

[19] 26.4592 26.2269 25.8260 26.1136 26.3938 27.2800 27.2773 27.0710 
26.5305 

[28] 27.2862 28.1919 28.4917 27.9436 28.2380 28.8767 28.6661 28.3694 
29.4091 

[37] 29.7603 30.5435 29.3181 28.0311 28.0211 27.1142 28.7624 28.4525 
29.1500 

Note that, although the command asks for printing the contents of a column, the result 
is provided as a series of values printed in line. 
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A1.9 Graphic representation 

The db can now be considered as a geographical database where the 45 samples are 
located using their longitude–latitude coordinates. The samples are represented graph-
ically (using a specific pattern with a blue color); the area of the pattern is proportional 
to the (absolute) value of the target variable (the one which is associated with the loca-
tor z1). We can also overlay the coastline using the mapdata library; note the use of flag 
add=T to indicate the overlay. 

 

plot(db.data,pch=19,col="blue")  
map("worldHires",add=T,fill=T,col=8) 

 

Figure A1.2. Dataset and coastline overlaid 

 

A1.10 Projections 

The samples are specified using decimalized longitude–latitude coordinates. In some 
cases, it is essential to convert these spherical coordinates into orthonormal ones. This 
is obtained through a projection system. RGeostats is connected with the projection 
package called mapproj which handles a complete set of complex projections. However, 
a basic projection (called mean) is provided which is valid for low or medium latitudes 
and short distances; the parameters of this projection are calibrated on the mean coor-
dinates of the dataset. The projection definition only requires the name of the db. Then, 
this projection will apply to all graphic representation of spatial objects (belonging to 
the class db or polygon for example). 

 

projec.define(projection=”mean”,db=db.data) 
plot(db.data,pch=19,col="blue") 
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Figure A1.3. Dataset displayed in the projected coordinates 

 

The projection will impact all the subsequent operations such as the calculation of the 
variogram or the estimation using kriging, where the distances will be established in 
the projected system. 

The projection system remains valid until it is cancelled. This is even true when leaving 
and re-entering a session. A projection is never deleted, but it can be turned off (we are 
then back to the natural system) by typing: 

projec.toggle(0) 

If the previous command is entered again, the projection is active again, with the same 
parameters as the ones defined initially. 

It is important to note that some packages such as maps do not cope with the projections 
defined in RGeostats. This is the reason why the overlay of figures produced with RGe-
ostats and maps should be performed only in the natural system. 

 

A1.11 Selections 

We wish to discard temporarily (but not remove from the database) some samples, e.g. 
the ones where the mean length (attribute m.length) is smaller than 25. The correspond-
ing command is: 

db.data = db.sel(db.data,m.length > 25) 

In the previous command, note that the attribute is specified by its name (without 
quotes for better efficiency); using it by number would be confusing.  

The modified db is printed as follows: 

 

Data Base Characteristics 
========================= 



 

 

128  | ICES Cooperative Research Report No. 338 
 
 

 

Data Base Summary 
----------------- 
File is organized as a set of isolated points 
Space dimension              = 2 
Number of fields             = 8 
Maximum Number of attributes = 8 
Total number of samples      = 45 
Number of active samples     = 39 
 

Variables 
--------- 
Field =  1 - Name    =  rank - Locator =  rank  
Field =  2 - Name    =  year - Locator =  NA  
Field =  3 - Name    =  long - Locator =  x1  
Field =  4 - Name    =  lat - Locator =  x2  
Field =  5 - Name    =  depth - Locator =  NA  
Field =  6 - Name    =  m.length - Locator =  z1  
Field =  7 - Name    =  log.m.length - Locator =  NA  
Field =  8 - Name    =  sel - Locator =  sel  

 

Note that the selection corresponds to the new variable (Field 8) which is assigned to 
the locator called sel. From the total number of samples (45), 39 are considered as active. 

The principle is that all subsequent calculations will be performed based on the active 
samples as soon as a variable is attached to the sel locator or on the whole dataset when 
no variable is assigned the sel locator. There can only be one sel locator defined at a 
time. 

 

A1.12 Defining a polygon 

The next operation consists of defining a polygon which will restrain the area of inter-
est. The polygon is comprised of a number of polysets; each polyset is a 2-D polygonal 
closed shape. This polygon belongs to the polygon class. It can either be imported from 
a text file, loaded from an embedded dataset, or directly digitized from the previous 
plot. 

A1.12.1 Digitizing a polygon from a graphic plot 

When digitized from an already existing plot, the corresponding command is: 

poly.data = polygon.digit() 

where the user must pick the vertices of the polyset, close it, and possibly resume with 
a second polyset. The operation is repeated until the whole polygon is defined. 

The result file (called poly.data) is directly an object which belongs to the polygon class. 

A1.12.2 Loading a polygon from a text file 

When reading it from the text file, the polygon is limited to a single polyset. The file 
format contains two columns as described below:  

"lon" "lat" 
-3.5 58 
-3.5 58.20265 
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-3.48146 58.2115 
-3.46421 58.2262 
-3.45236 58.2498 
-3.41261 58.2643 
-3.37841 58.2818 
-3.34151 58.2948 
…/… 
-1 61.75 
2 61.75 
2 58 
-3.5 58 
 

The text file is loaded in R as a data.frame using the same command as before: 

polydaf <- read.csv(“poly.dat”,header=T,sep=” “) 

The next command creates an object belonging to the polygon class of RGeostats: 

poly.data <- polygon.create(polydaf) 

A1.12.3 Loading a polygon from a demonstration set 

For convenience, a dedicated polygon can be loaded directly from the embedded 
demonstration sets using the command: 

rg.load(“CRR.demo.poly.data”,”poly.data”) 

 

A1.13 Selection using the polygon 

The polygon created previously can be represented on top of the data. The active data 
are represented by a point and the value of the variable m.length: 

 

plot(db.data,col="blue",name.literal=”m.length”,name.post=1) 

plot(poly.data,add=T,col=”red”,pch=4) 
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Figure A1.4. Dataset and polygons overlaid. 

 

At this point, the samples which are represented correspond to the selection currently 
active (i.e. the ones where the attribute m.length > 25). 

We can now use the polygon in order to select the only samples which are included 
within the polygon.  

db.data = db.polygon(db.data,poly.data) 

This new selection does not consider the previous active selection (unless asked 
through the arguments). It simply creates another selection called polygon which is now 
active; the previous selection has been deactivated. When plotting the data again 
(masked by the previous polygon) together with the polygon, we now obtain the fol-
lowing figure where we can check the presence of samples where m.length is smaller 
than 25. 

 

 

 

 

 

 

 

plot(db.data,col="blue",name.literal=”m.length”,name.post=1) 
plot(poly.data,add=T,col=”red”,pch=4) 
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Figure A1.5. Dataset contained inside the polygon. 

 

A1.14 Creating the interpolation grid 

The estimation grid (called grid.data) must now be defined. This can be done automat-
ically for a grid covering the dataset with 100 × 100 nodes: 

db.grid = db.grid.init(db.data,nodes=100) 

The polygon poly.data is used again, this time to mask off the nodes located outside the 
polygon. This selection will be taken into account in any subsequent calculation, which 
avoids performing calculations over the discarded cells. When printing the resulting 
db.grid, we can read that the number of active grid nodes is 7471 (out of the initial 10 
000). 

db.grid = db.polygon(db.grid,poly.data) 

It is now time to perform the estimation of the target variable, starting from the 39 
samples where it has been measured, down to the nodes of the grid (the ones included 
in the polygon). 

db.grid <- invdist(db.data, db.grid) 

The final plot represents the interpolated variable, together with the initial information 
and the polygon.  

 

 

plot(db.grid, pos.legend=3) 
plot(db.data,pch=21,col=”yellow”,bg=”black”,add=T) 
plot(poly.dat,add=T) 
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Figure A1.6. Estimation by inverse squared distance method and dataset. 

  

A1.15 Main functions 

In this paragraph, we describe in detail a small set of essential functions which will be 
used throughout almost any of the applications provided in this manual: 

• vario.calc: Calculation of the experimental spatial structure (i.e. covariance, 
variogram, or transitive covariogram) from a set of isolated datapoints. This 
operation requires a db in input and produces a vario in output. 

• model.auto: Procedure used to automatically fit a geostatistical model on the 
experimental variogram calculated for one or several variables in one or sev-
eral directions. This operation requires a vario in input and produces a model in 
output. 

• global: Procedure used to calculate the global variance of estimation over an 
area, starting from a dataset and a geostatistical model. This procedure re-
quires a db (for the conditioning information), a model (for the geostatistical 
model), and a polygon (to delineate the domain) in input. It produces the global 
estimate and variance of estimation in output. 

• kriging: Procedure used to perform the estimation of one or several variables 
using kriging at a set of target points (usually located on the nodes of a grid). 
This procedure requires an input db (for conditioning information), an output 
db (for the set of target sites), a model (for the geostatistical model), and a neigh 
(for the conditioning neighbourhood) in input. It produces the output db con-
taining the new attributes: the estimation and the standard deviation of the 
estimation in output. 

• krigtest: Procedure used to perform the kriging procedure on a single target 
and produce all the intermediate calculations. It uses the same input as the 
kriging procedure. 
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• anam.fit: Procedure used to calculate the gaussian anamorphosis fitted on a set 
of samples. This procedure requires a db (for the data information) in input and 
produces an anam (for the modeled anamorphosis) in output. 

• simtub: Procedure used to perform conditional or non-conditional simulations 
of one or several variables at a set of target points. This procedure requires an 
input db (only in the case of conditional simulations), an output db (for the set 
of target sites), a model (for the geostatistical model), and a neigh (for the con-
ditioning neighbourhood) in input. It produces the output db containing the 
simulated outcomes as new attributes. 
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Annex 2:  Data  

The data used throughout the document in the demonstration Rscripts and applica-
tions are provided below in detail, together with their corresponding survey design: 

• Hake in the Bay of Biscay, demersal trawl survey 

• Hake in the Gulf of Lion, demersal trawl survey 

• Octopus in Marocco, demersal trawl survey 

• Herring eggs in a spawning bed in Scotland, dredge survey 

• Anchovy in the Bay of Biscay, acoustic survey 

• Herring in the northern North Sea, acoustic and trawl survey 

• Acoustic backscatter of pelagic fish in Mauritania, acoustic survey 

A2.1 Bay of Biscay hake (trawl survey) 

The case study comes from the French groundfish survey EVHOE series (1987–2015) 
carried out by Ifremer on the eastern continental shelf of the Bay of Biscay and the 
Celtic Sea (ICES, 2015). Sampling was randomly stratified according to latitude and 
depth, with strata depth ranging from 15 to 600 m. The number of hauls per survey 
varied depending mostly on weather conditions. A 36/47 Grande Ouverture Verticale 
(GOV) trawl was used, with a codend liner of 20-mm mesh. Haul duration was 30 min 
at a towing speed of 4 knots, mainly in daylight. Catch weights and numbers were 
recorded for all species, mostly demersal. For some species, such as the European hake 
(Merlucius merlucius L.), sex and total length were recorded, and otoliths were extracted 
and examined in the laboratory to build age–length keys (ALKs) by sex. These keys 
were used to transform the length frequencies observed at each trawl station into age 
frequencies. Here, we considered the survey data for hake in 1987 over a study area 
between 48°30′N and 43°30′N. Age 0 and age 1 hake densities were considered for the 
case study. They were converted from numbers of fish caught per hour trawled to 
numbers of fish caught per nautical mile2, assuming that the area swept in 30 min of 
trawling was 0.02 nautical mile2. These data are used to illustrate the chapter on spatial 
distribution indices. A more extensive analysis of this dat set using spatial indices can 
be found in Woillez et al. (2007). 

Within the RGeostats library, two RGeostats objects are available for this case study 
and can be loaded using the function rg.load(). First, there is a two-dimensional RGe-
ostats database named “Demo.hake.bob.db.data”, which contains the following six 
fields: 

• "rank" is the rank of the sample; 
• "long" is the longitude of the trawl sampling location in decimal degrees; 
• "lat" is the latitude of the trawl sampling location in decimal degrees; 
• "A0" is the density of age 0 hake in the trawl sampling location (no. nautical 

mile–2); 
• "A1" is the density of age 1 hake in the trawl sampling location (no. nautical 

mile–2). 

Then, there is a RGeostats polygon named "Demo.hake.bob.poly.data", which contains 
the coordinates of the polygon vertices in decimal degree for the EVHOE survey series. 
This polygon has been defined to encompass the survey area according to depth iso-
baths, coastline, and latitude. It is used to limit the extension of the area of influence 
computation for the samples that are at the edge of the survey area. 



  

 

Handbook of Geostatistics in R for Fisheries and Marine Ecology |  135 

 

 
Figure A2.1. Proportional representation of (a) the age 0 and (b) age 1 hake 1987 data. Number of 
data: n = 127; mean: mA0 = 2191, and mA1 = 491; coefficient of variation: CVA0 = 2.39 and CVA1 = 1.62; 
frequency of zeroes: f0A0 = 0.338 and f0A1 = 0.378; maximum value: maxA0 = 32 850 and maxA1 = 4450. 
The polygon used to delineate the survey area is represented in light grey on both figures 

 

A2.2 Gulf of Lion hake (trawl survey) 

This dataset was provided by Angélique Jadaud at Ifremer, Sète, France. The data come 
from the "International Bottom Trawl Survey in the Mediterranean Sea" (MEDITS) pro-
ject, conducted every year since 1994 in May–June. In the Gulf of Lion, 66 stations are 
defined according to a stratified random sampling desgn based on five depth strata 
(10–50 m, 50–100 m, 100–200 m, 200–500 m, and 500–800 m) divided into east–west 
substrata by 4°E longitude. Hauls have been performed according to the same protocol 
since 1994. The hauls are 30 min for shelf stations (10–200 m) and 60 min on the upper 
slope (>200 m, to compensate for a lower catchability on irregular grounds). Georefer-
enced position, speed, and distance covered by the trawl are systematically recorded. 
The experimental net (GOC 73) used for sampling has a 20-mm-diamond-stretched 
mesh in the codend. An underwater Scanmar system is used to control the trawl ge-
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ometry and eliminate the analysis for tows not properly sampled. Horizontal and ver-
tical openings of the gear are ca. 18 and 2 m, respectively. The catch is sorted, counted, 
and weighed by species. The survey provides the density of individuals for each spe-
cies by dividing the observed counts by the trawled surface. It is an indicator of local 
abundance relative to trawl catchability, which is assumed to be constant.  

Since the onset of the MEDITS survey, 300 different species have been identified in the 
Gulf of Lion, but many display low abundance or are rare. Here, we decided to use 
European hake (Merluccius merluccius) densities as an example to compute varirogams. 

Within the RGeostats library, one RGeostats object is available for this case study and 
can be loaded using the function rg.load(). This is a two-dimensional RGeostats data-
base named “Demo.hake.med.db.data”, which contains the following fields: 

• "rank" is the rank of the sample;  
• "STATION_NAME" is the name of the trawl station; 
• "YEAR" is the survey year; 
• "Lat" is the latitude of the trawl station in decimal degrees; 
• "Long" is the longitude of the trawl station in decimal degrees; 
• "Prof" is the bottom depth at the trawl station; 
• "DISTANCE" is the distance over which the trawl has been towed; 
• "WING_OPENING" is the wing opening of the trawl; 
• "AREA" is the number of the geographical subarea (GSA); 
• "HAUL_DURATION" is the haul duration; 
• "MERLMER" is the hake density in number of individuals km–². 

 
Figure A2.2. European hake (Merluccius merluccius) densities recorded during the 1996 MEDITS 
survey. Crosses represent zero densities. Circle sizes are proportional to the values of the positive 
densities. Number of data: n = 61;  mean: m = 2120; coefficient of variation: CV = 1.65; frequency of 
zeroes: f0 = 0.08; maximum value: max = 19 353.89. 

 

A2.3 Octopus off Morocco (trawl survey) 

This dataset was provided by Abdelmalek Faraj at the Institut National de Recherches 
Halieutiques (INRH), Casablanca, Morocco. The data are derived from the Moroccan 
monitoring trawl surveys carried out since 1980 by the INRH. Since 1998, two surveys 
have been carried out each year covering the continental shelf between 20°50’N and 
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26°00N from the coast to a depth of 100 m. The autumn surveys allow estimating re-
cruitment and depicting its geographical patterns and extension. A stratified random 
sampling design is performed, with each sample being located randomly inside a cell 
of 11 × 11 nautical miles and independently from the other cells. In 1999, the survey 
comprised 107 sampling stations. Swept areas were computed on the basis of horizon-
tal trawl opening, which is monitored continuously, and towing speed. Haul duration 
is standardized. In 1999, haul duration was 12 min, leading to an average swept area 
of 30 000 m². Octopus (Octopus vulgaris) yields were divided by swept area and expressed 
in terms of density, i.e. number of octopus per nautical mile².  

The catch from each tow is weighed and measured, and the sex and stage of maturity 
are noted. The study variable is thus the density of juveniles expressed as the number 
of juveniles per nautical mile². Juveniles correspond to the small commercial size cate-
gories, i.e. categories Tako 8 and Tako 9, according to Japanese classification. Landing 
these categories is prohibited by Moroccan fishery legislation. 

Within the RGeostats library, two RGeostats objects are available for this case study 
and can be loaded using the function rg.load(). First, there is a two-dimensional RGe-
ostats data base named “Demo.octopus.morocco.db.data”, which contains the follow-
ing fields: 

• "rank" is the sample rank;  
• "SURVEYS" is the survey code (CI1099CF); 
• "lat" is the latitude of the trawl sampling location in decimal degrees; 
• "long" is the longitude of the trawl sampling location in decimal degrees; 
• "DEPTH" is the bottom depth at the trawl station; 
• "AIRE" is the area trawled; 
• "JUV" is the density of juvenile in no. nautical mile–²; 
• "NBTOT" is the number of individuals. 

Then, there is a RGeostats polygon named “Demo.octopus.morocco.poly.data”, which 
has been defined to encompass the survey area. It is used to limit the extension of the 
surface of influence computation for the samples that are at the edge of the survey area 
and to select relevant grid nodes for the kriging map. 

 
Figure A2.3. Octopus densities (1999) in number of juveniles per nautical mile2. Black crosses rep-
resent null densities. Red circle areas are proportional to positive values. The polygon delineates 
the area to be mapped. Number of data: n = 107; mean: m = 107 910; coefficient of variation: CV = 
2.39; frequency of zeroes: f0 = 0.48; maximum value: max = 1 617 791.42. 
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A2.4 Herring eggs west of Scotland (dredge survey) 

This case study data was provided by Marine Scotland Science at the Marine Labora-
tory, Aberdeen, UK. Herring eggs are benthic and are laid on well-identified gravel 
beds. Thus, the precise survey of a spawning bed can be undertaken using a dredge. 
The dataset results from a survey conducted over one herring spawning bed in the 
Firth of Clyde, west of Scotland. The survey design is pseudoregular. Egg counts are 
located at stations where dredge tows have been made. This case study is used to illus-
trate kriging (mapping) and global estimation in 2 D and particularly to understand 
the benefits of kriging, i.e. weighting the sample points optimally depending on the 
variogram structure.  

Within the RGeostats library, two RGeostats objects are available for this case study 
and can be loaded using the function rg.load(). First, there is a two-dimensional RGe-
ostats data base named “Demo.herreggs.scot.db.data”, which contains the following 
five fields: 

• "rank" is the sample rank; 
• "x" is the x-coordinate of the dredge station in projected space; 
• "y" is the y-coordinate of the dredge station in projected space; 
• "eggs" is the egg count at the dredge station;  
• "sel" is the relevant dredge station contained in the survey area (i.e. the poly-

gon). 

Then, there is a RGeostats polygon named “Demo.herreggs.scot.poly.data”, which de-
fines the geographical limits of the study areas. 

Note that the coordinates from the database and the polygon are already transformed 
in km allowing the user to compute distances directly (no projection needed). 

 

Figure A2.4. Proportional representation of the Marine Laboratory egg data. Number of data: n = 46;  
mean: m = 963.26; coefficient of variation: CV = 0.62; frequency of zeroes: f0 = 0.20; maximum value: 
max = 2064. 
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A2.5 Bay of Biscay anchovy (acoustic survey) in 2D and 1D 

These case study data were provided by Ifremer. Small pelagic fish resources, i.e. an-
chovy, sardine (Sardina pilchardus), sprat (Sprattus sprattus), mackerel (Scomber 
scombrus), and horse mackerel (Trachurus trachurus), are assessed yearly over the 
French shelf of the Bay of Biscay by the acoustic survey PELGAS undertaken by 
Ifremer. This survey is coordinated with Spanish and Portuguese surveys by the ICES 
Working Group on Acoustic and Egg Surveys (WGACEGG). The survey consists of 28 
regularly spaced transects 12 nautical miles apart (perpendicular to the isobaths) from 
the coast (20 m bottom depth) to the shelfbreak. Fish acoustic backscatter at 38 kHz 
(and also at other frequencies) are recorded continuously along the transects, and val-
ues are integrated vertically and horizontally (sA in m2 nautical mile–2) in bins or 
ESDUs (elementary sampling distance units) of 1 nautical mile along the ship’s sailing 
track. Opportunistic trawl hauls are undertaken to determine echo-traces to species as 
well as estimate fish length and age. Trawl data and acoustic sA data are combined 
using standard methodology to derive an estimate of biomass (t nautical mile–2) by 
species every nautical mile along the survey track (Simmonds and McLennan, 2005; 
Doray et al., 2010). Here, we considered the survey data for anchovy in 2002, which 
provide a typical example of acoustic data with a high proportion of zeroes and a 
heavy-tailed histogram skewed to the right and a short correlation range (5–10 nautical 
miles) along the transects.  

Within the RGeostats library, two datasets are provided. The first dataset illustrates the 
chapter involving indicators (the border effects, the topcut model). There is a two-di-
mensional RGeostats database named “Demo.anchovy.bob.2d.db.data”, which con-
tains the 16 southern-most transects corresponding to the main area of anchovy pres-
ence (south of the Isle of Yeu) and the following four fields: 

• "rank" is the sample rank; 
• "LAT" is the latitude of the ESDUs in decimal degrees; 
• "Long" is the longitude of the ESDUs in decimal degrees; 
• "ENGR.ENC" is the biomass of anchovy in the ESDUs (t nautical mile–2). 

A RGeostats polygon named “Demo.anchovy.bob.2d.poly.data” is associated with this 
2D dataset and contains the coordinates of the polygon vertices in decimal degree. 
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Figure A2.5. Proportional representation of the 2D anchovy 2002 data. Number of data: n = 822; 
mean: m = 12.83; coefficient of variation: CV = 3.75; frequency of zeroes: f0 = 0.434; maximum value: 
max = 701. 

The second dataset illustrates the chapter about global estimation variance using the 
transitive approach. It uses a one-dimensional dataset formed by summing values 
along the continuously sampled 28 transects over the entire Bay of Biscay (Petitgas, 
1993a). For this dataset, there is one RGeostats object available within the RGeostats 
library that can be loaded using the function rg.load(). This is a one-dimensional RGe-
ostats database named “Demo.anchovy.bob.1d.db.data”, which contains the following 
fields: 

• "rank" is the sample rank; 
• "x1" is the sample rank starting from 0 instead of 1; 
• "Transect" is the transect code; 
• "Tr.length" is the transect length (in nautical miles); 
• "Tr.biomass" is the summed anchovy biomass along each transect (t nautical 

mile–2). 

 
Figure A2.6. One-dimensional representation of anchovy in 2002; biomass summed along the tran-
sects. Number of transects: n = 28; mean: m = 371.74; coefficient of variation: CV = 1.57; inter-transect 
distance: 12 nautical miles. 

 

A2.6 Scottish North Sea herring (acoustic–trawl survey) 

Thess case study data were provided by Marine Scotland Science at the Marine Labor-
atory, Aberdeen, UK. Acoustic–trawl surveys have been conducted in the northern 
North Sea (northwestern half of ICES Division IVa) in midsummer of each year since 
1979 on the prespawning concentration of autumn-spawning Atlantic herring (Clupea 
harengus). These surveys are part of the larger international survey for North Sea her-
ring. The result of the larger survey is used to tune the assessment, which ultimately 
aims to determine biomass estimates of the North Sea herring stock (e.g. ICES, 2006).  
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The Scottish survey design consists of longitudinal transect lines covering a domain 
surveyed by the research vessel RV “Scotia” around Orkney and Shetland. Transects 
are laid down in a systematic manner with a random start point, and the transect spac-
ing is chosen according to historical levels of abundance at 30, 15, or 7.5 nautical miles. 
The surveyed domains are defined by the ICES Planning Group for Herring Surveys 
(ICES, 2006). Calibrated acoustic-backscatter data were recorded using a Simrad EK500 
echosounder operating at 38 kHz and scrutinized to estimate nautical-area-scattering 
coefficients attributed to herring for 15 min (2.5 nautical miles) equivalent distance 
sampling units (EDSU). Trawl hauls were taken regularly to assist in the scrutiny pro-
cess and to collect biological data, such as fish length and fish age, following Simmonds 
and MacLennan (2005). Here, we considered the acoustic backscatter (sA in m2 nautical 
mile–2) and the mean length (cm) data recorded in 2003. The use of the mean length 
was justified because of a small variation in length at each trawl station. These data are 
used to illustrate the chapter about the multivariate geostatistics and the geostatistical 
simulation (more details in Woillez et al., 2009b). 

Two datasets are available for this case study. The first dataset concerns the acoustic 
backscatter attributed to herring recorded along transects. Within the RGeostats li-
brary, there is a two-dimensional database named “Demo.herring.sa.scot.db.data”, 
which can be loaded using the function rg.load(). It contains the following five fields: 

• "rank" is the sample rank; 
• "year" is the survey year; 
• "lon" is the longitude of the ESDUs in decimal degrees; 
• "lat" is the latitude of the ESDUs in decimal degrees; 
• "sa" is the acoustic backscatter (in m2 nautical mile–2) attributed to herring. 

The second dataset concerns the mean length data of herring computed from the trawl 
locations. A two-dimensional database named “Demo.herring.len.scot.db.data” can be 
loaded using the function rg.load() from the RGeostats library. It contains the following 
six fields: 

• "rank" is the sample rank; 
• "year" is the survey year; 
• "lon" is the longitude of the trawl station in decimal degrees; 
• "lat" is the latitude of the trawl station in decimal degrees; 
• "depth" is the bottom depth measured at the trawl station; 
• "m.length" is the mean length (in cm) of herring. 

Then, for both datasets, the following two RGeostats polygons are available:  
“Demo.herring.sa.scot.poly.data” and “Demo.herring.len.scot.poly.data”. Both con-
tain the coordinates of the polygon vertices in decimal degree for the survey in 2003. 
They have been defined to encompass the survey area according to the ICES Planning 
Group for Herring Survey (PGHERS) (ICES, 2006). They are used to limit the extension 
of the areas of influence computation for the samples that are at the edge of the survey 
area and to select relevant grid nodes for kriging or simulated map.  

A depth grid is also provided to complement the mean length dataset when used as a 
auxiliary variable in the chapter of the multivariate geostatistics. The RGeostats grid is 
named “Demo.herring.len.scot.grid.kriging” and contains the following four fields: 

• "lon" is the longitude of the grid nodes in decimal degrees; 
• "lat" is the latitude of the grid nodes in decimal degrees; 
• "depth" is the bottom depth (in m) estimated at the grid nodes; 
• "sel" is the relevant grid nodes contained within the survey area (i.e. the poly-

gon). 
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Figure A2.7. Left: proportional representation of the acoustic backscatter data attributed to herring. 
Number of data: n = 1108; mean: m = 334.75; coefficient of variation: CV = 2.79; frequency of zeroes: 
f0 = 0.239; maximum value: max = 15 852. Right: proportional representation of the mean length of 
herring at stations. Number of data: n = 39; mean: m = 26.195; coefficient of variation: CV = 0.079; 
maximum value: max = 30.07. The polygon used to delineate the area to be mapped is represented 
in blue on both figures, while the grid depth, which will be used as auxiliary variable, is repre-
sented with contour lines on the right figure only. 

 

A2.7 Mauritanian pelagic fish (acoustic survey) 

This dataset was provided by Cheikh-Baye Braham at the Institut Mauritanien de Re-
cherches Océanographiques et des Pêches (IMROP), Nouadhibou, Mauritania. The 
acoustic data were collected day and night during four Mauritanian national surveys 
carried out by the RV “Al-Awam” (2007–2010) during –December of each year. The 
sampling scheme followed transects oriented perpendicular to the coast from depths 
greater than 10 m and up to 500 m. Radials were 10 nautical miles apart. Details on the 
“Al-Awam” surveys can be found in the IMROP reports (webmaster@imrop.mr). Sur-
veys were conducted using the Simrad EK-500, dual-frequency 38 and 120 kHz, thresh-
old for filtering the echoes of −70 dB, calibrated by the standard sphere method (Foote 
et al., 1987) and the same elementary sampling distance unit (ESDU) was equal to 5 
nautical miles. During these surveys, the objective was to identify acoustic echoes at 
the species level whenever possible (MacLennan and Simmonds, 1992; Reid, 2000) us-
ing the Bergen integrator (Knudsen, 1990). Where such detail was not achievable, the 
energy was allocated to a wider group based on a combination of a visual scrutiny of 
the behavior pattern, as deduced from echo diagrams, and the catch compositions. The 
present study was focused on the entire pelagic community. Following MacLennan et 
al. (2002), we used the acoustic energy (i.e., the nautical area scattering coefficient 
(NASC)), usually denoted (sA). 

Within the RGeostats library, two RGeostats objects are available for this case study 
and can be loaded using the function rg.load(). First, there is a two-dimensional RGe-
ostats database named “Demo.acoustic.maur.db.data”, which contains the following 
five fields: 

• "rank" is the sample rank; 
• "an" is the surveyed year; 
• "lat" is the latitude of the ESDUs in decimal degrees; 
• "long" is the longitude of the ESDUs in decimal degrees; 
• "Total" is the total acoustic backscatter attributed to pelagic fish (sA in m² nau-

tical mile–²). 

mailto:webmaster@imrop.mr
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Then, there is a RGeostats polygon named “Demo.acoustic.maur.poly.data”, which 
contains the coordinates of the polygon vertices in decimal degree. It has been defined 
to encompass the survey area and is used to limit the extension of the areas of influence 
computation for the samples that are at the edge of the survey area and to select rele-
vant grid nodes for kriging map.  

 
Figure A2.8. Proportional representation of the acoustic backscatter data attributed to pelagic fish 
along the Mauritian coast. Number of data: n = 651; mean: m = 1034.47; coefficient of variation: CV 
= 2.53; frequency of zeroes: f0 = 0.437; maximum value: max = 25 090. 
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Annex 3:  Demonstrat ion Rscr ipts  

 

Demonstration Rscripts that provide the capacity to undertake a geostatistical compu-
tation are presented here. They use case studies described in Annex 2, can be copy 
pasted in the R environment, and are ready to use. The reader is encouraged to under-
stand the different steps of the computations and to customize the R scripts to his/her 
own data case studies. The table below contains a list of what can be achieved with the 
demonstration Rscripts available in the present annex. 

 

Table A3.1. List of the demonstration Rscripts and related case studies available in this annex. 

Demonstration Rscripts Case studies 

Computing spatial indices from survey data Bay of Biscay hake (trawl data) 

Computing variograms for a series of surveys Gulf of Lion hake (trawl data) 

Mapping by kriging with a variogram Bay of Biscay anchovy (acoustic 2D 
data) 

Global estimation and mapping by kriging with a 
transitive covariogram 

Moroccan octopus (trawl data) 

Global estimation with a variogram Scottish herring egg (dredge data) 

Global estimation in 1D for acoustic surveys Bay of Biscay anchovy (acoustic 1D 
data) 

Mapping by ordinary kriging, cokriging, colocated 
cokriging, and by kriging with an external drift 

Scottish herring mean length (acoustic–
trawl data) 

Mapping by cokriging indicators with a linear 
model of coregionalization 

Mauritian pelagic (acoustic data) 

Exploring border effects among spatial sets of 
multiple indicators 

Bay of Biscay anchovy (acoustic 2D 
data) 

Mapping with the topcut (non-linear) model Bay of Biscay anchovy (acoustic 2D 
data) 

Conditional simulations Scottish herring mean length (acoustic–
trawl data) 

Conditional simulations with the presence of zeros Scottish herring acoustic backscatter 
(acoustic–trawl data) 

 

A3.1 Computing spatial indices from survey data 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code computes spatial indices on hake densities from trawl su
rvey data 
## in the bay of Biscay, France 
## The data were supplied by Ifremer 
## 
## Author: M.Woillez, Ifremer 
################# 
 
# Load libraries 
library(RGeostats) 
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library(mapdata) 
 
# Load data 
rg.load(filename="Demo.hake.bob.db.data",objname="db.data") 
rg.load(filename="Demo.hake.bob.poly.data",objname="poly.data") 
 
# Data management 
db.data <- db.locate(db=db.data,names=1,loctype="rank") 
db.data <- db.locate(db=db.data,names=2:3,loctype="x") 
db.data <- db.locate(db=db.data,names=4,loctype="z") 
db.data 
 
# Visualizing the data set (proportional representation) 
plot(db.data,title="Fish density samples",xlim=c(-11,0),ylim=c(43,49)
, 
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180),inches
=4, 
     pos.legend=3,zmin=0,zmax=c(db.stat(db.data,"maxi")),include.boun
ds=FALSE) 
plot(poly.data,col=8,add=T) 
map("worldHires",add=T,fill=T,col=8); box() 
 
# Use the following lines to draw and save a new polygon 
#poly.data <- digitize(x="polygon") 
#n 
#polygon.write(polygon=poly.data,filename="poly.data.txt") 
#poly.data <- polygon.read(filename="poly.data.txt") 
 
# Define a simple projection based on the cosine of the mean latitude 
projec.define(projection="mean", db=db.data)  
 
# Compute areas of influence of survey samples 
db.data <- db.delete(db=db.data,names=6) 
db.data <- infl(db.data,nodes=c(400,400),origin=c(-11,43),extend=c(11
,6),  
                dmax=100,polygon=poly.data,plot=T,asp=1)  
db.data 
 
# Compute and plot the inertia, the total abundance, the isotropy,  
# the center of gravity and the coordinates of the axes of inertia  
# and the isotropy.  
# Note that intermediate results of the PCA decomposition are provide
d  
# (the eigen values and the eigen vectors).  
plot(db.data,title="Center of gravity and inertia of densities and sa
mples",asp=1, 
     xlim=c(-300,150),ylim=c(-200,150),inches=5) 
plot(poly.data,col=8,add=T) 
SI.cgi(db.data,flag.plot=T,flag.inertia=T,col=2)  
 
# Get the coordinates of the center of gravity in degrees 
projec.invert(SI.cgi(db.data,flag.plot=F)$center[1], 
              SI.cgi(db.data,flag.plot=F)$center[2])  
 
# Compute and plot the inertia, the total abundance, the isotropy,  
# the center of gravity and the coordinates of the axes of inertia  
# and the isotropy of the samples 
plot(db.add(db.data,S=1),add=TRUE,col=1,inches=5,pch="+") 
SI.cgi(db.add(db.data,S=A0>=0),flag.plot=T,flag.inertia=T,col=1)  
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# Compute the global index of collocation between age 0 and age 1 
SI.gic(db1=db.data,db2=db.data,name1="A0",name2="A1", col1="red",col2
="blue", 
       flag.plot=T,flag.inertia=T,asp=1,inches=5,title="A0 and A1") 
plot(poly.data,col=8,add=T)  
 
# Compute the local index of collocation between age 0 and age 1 
SI.lic(db.data,name1="A0",name2="A1") 
 
# compute the microstructure index 
SI.micro(db.data,h0=10,pol=poly.data,dlim=50,ndisc=400)  
 
# compute abundance, positive area, equivalent area and spreading are
a 
SI.stats(db.data,flag.plot=T)  
 
# compute the number of spatial patches 
SI.patches(db.data, D.min = 100, A.min = 10)  
projec.toggle(0) 
plot(poly.data,col=8,add=T) 
title("Spatial patches") 

 

A3.2 Computing variograms for a series of surveys 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code computes variograms on hake densities for a series of tr
awl surveys  
## in the gulf of Lion, France. The data were supplied by Ifremer 
## 
## Author: N.Bez, IRD 
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE)) 
 
# Load libraries 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0) 
 
# Load data 
rg.load(filename="Demo.hake.med.db.data", objname="db.data") 
 
# Data presentation 
plot(db.sel(db.data,YEAR==1996),zmin=0.001,pch.low=3,cex.low=0.25,las
=1,pch=21,col=1,     inches=5,title="Hake - 1996",asp=1)  
map("worldHires",add=T)  
 
# Define a simple projection based on the cosine of the mean latitude 
projec.define(projection="mean",db=db.data)  
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# Evaluate the distance lag (in projected units i.e. n.mi.)  
# and the number of lags by clicking on points  
plot(db.sel(db.data,YEAR==1996),zmin=0.001,pch.low=3,cex.low=0.25,las
=1,pch=21,col=1,inches=5,title="Hake - 1996",asp=1)  
worldHires <- map("worldHires",plot=F,xlim=c(3,5),ylim=c(42,44))  
lines(projec.operate(worldHires $x,worldHires $y))  
 
# distance lag 
lag <- dist.digit() 
lag <- signif(lag,2)  
lag 
 
# number of lag 
diagonal <- dist.digit() 
nlag <- ceiling((diagonal/2)/lag)  
nlag 
 
# Compute and represent omnidirectional variogram  
vg.data <- vario.calc(db.sel(db.data,YEAR==1996), lag=lag,nlag=nlag)  
 
# Edit the results 
vg.data 
 
# Plot the results 
plot(vg.data,las=1,xlab="Distance (n.mi.)")  
plot(vg.data,npairdw=T,inches=0.1,las=1,xlab="Distance (n.mi.)")  
 
# Compute annual variograms and superimpose them   
for(i in unique(db.data[,"YEAR"])){  
  vg.data <- vario.calc(db.sel(db.data,YEAR==i), lag=lag,nlag=nlag)  
  plot(vg.data,npairdw=T,inches=0.05,col=rgb(0,0,0,0.25),add=!(i==199
6),  
       las=1,xlab="Distance (n.mi.)",ylim=c(0,1e+08)) 
} 
 
# superimpose several omnidirectional standardized variograms   
for(i in unique(db.data[,"YEAR"])){  
  vg.data <- vario.calc(db.sel(db.data,YEAR==i), lag=lag,nlag=nlag)  
  plot(vg.data,npairdw=T,inches=0.1,col=rgb(0,0,0,0.25),add=!(i==1996
),  
       flag.norm=T,las=1,xlab="Distance (n.mi.)",ylim=c(0,2))  
} 
 
# Same computations but for the log-transformation of the hake densit
y 
# This transformation can reduce the fluctuations and facilitate the 
capture of  
# a structure, however it does not allow to go from the structure of 
the log to  
# the structure of the raw variable. 
for(i in unique(db.data[,"YEAR"])){  
  vg.data <- vario.calc(db.sel(db.add(db.data,z1=log(1+MERLMER)),YEAR
==i),  
                        lag=lag,nlag=nlag)  
  plot(vg.data,npairdw=T,inches=0.1,col=rgb(0,0,0,0.25),add=!(i==1996
),  
       flag.norm=T,las=1,xlab="Distance (n.mi.)",ylim=c(0,2))  
} 
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# Standardized the density by the annual standard deviation and creat
e a new file. 
# This should not be done with R function var() or sd() which compute
s  
# the variance in (n-1)  
# The YEAR is then attributed the locator "code" for selecting pairs 
of points of  
# similar years from the same year  
db.data.std <- db.data 
for(i in unique(db.data[,"YEAR"])){  
  sel <- db.data.std[,3]==i 
  sd.year <- sqrt(mean(db.data.std[,11][sel]^2) - mean(db.data.std[,1
1][sel])^2) 
  db.data.std[,11][sel] <- db.data.std[,11][sel]/sd.year  
} 
db.data.std <- db.locate(db.data.std,3,"code") 
 
# Compute annual variograms (which are normalized because of the stan
dardization of  
# the density values)   
for(i in unique(db.data[,"YEAR"])){  
  vg.data <- vario.calc(db.sel(db.data.std,YEAR==i),lag=lag,nlag=nlag
)  
  plot(vg.data,npairdw=T,inches=0.1,col=rgb(0,0,0,0.25),add=!(i==1996
),  
       las=1,xlab="Distance (n.mi.)",ylim=c(0,2))  
} 
 
# Compute the mean annual variogram  
# Pairs are retained if their codes are the same i.e. if their differ
ence is smaller # or equal than 0  
vg.data.std <- vario.calc(db.data.std, lag=5,nlag=15,opt.code=1,tolco
de=0)  
plot(vg.data.std,npairdw=T,inches=0.1,las=1,add=T,col=2,lwd=2)  

 

A3.3 Mapping by kriging with a variogram 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code performs variography and mapping by kriging for a fisher
ies 
## acoustic survey on anchovy in the bay of Biscay, France 
## The data were supplied by Ifremer 
## 
## Author: P.Petitgas, Ifremer  
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE)) 
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
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projec.toggle(0)  
 
# Load data 
rg.load(filename="Demo.anchovy.bob.2d.db.data",objname="db.data") 
rg.load(filename="Demo.anchovy.bob.2d.poly.data",objname="poly.data") 
 
# Area limits 
y1lim <- 43.3; y2lim <- 47; x1lim <- -4.5; x2lim <- -1 
 
# Plot data 
plot(db.data,name="ENGR.ENC",pch=1,asp=1.2,inches=5,col="black", 
     xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim)) 
plot(poly.data, add=T, lty=1, density=0) 
map("worldHires",add=T,fill=T,col=8)  
 
####### 
## Variography  
####### 
 
# Define projection 
projec.define(projection="mean") 
 
# Mask duplicates (points too close) 
db.data <- duplicate(db.data)  
 
# Calculate directional variogram 
vg2 <- vario.calc(db.data,lag=c(2,15),dirvect=c(35,145), nlag=c(40,7)
) 
plot(vg2,npairpt=0,npairdw=TRUE,title="",inches=.05)  
 
# omni-directional variogram 
vg <- vario.calc(db.data,lag=2,dirvect=NA, nlag=40) 
plot(vg,npairpt=0,npairdw=TRUE,title="",inches=.05)  
 
# fit isotropic variogram  
vg.mod <- model.auto(vario=vg,struct=melem.name(c(1,3,3)))  
 
####### 
## Kriging 
####### 
 
# Grid for Kriging 
x0 <- -4; y0 <- 43.4; dx <- 0.1;dy <- 0.1; nx <- 30; ny <- 37  
db.grid <- db.create(x0=c(x0,y0),dx=c(dx,dy),nx=c(nx,ny))  
 
# Select grid points inside polygon 
db.grid <- db.polygon(db.grid,poly.data)  
 
# plot data, grid and polygon 
plot(db.grid, xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim),pch=3, col="red
",asp=1.2, 
     flag.proj=FALSE) 
plot(db.data,pch=20,add=T,col="black",inches=3, flag.proj=FALSE) 
map("worldHires",add=T,fill=T,col=8); box() 
 
# neighbourhood 
neimov <- neigh.create(ndim=2,type=2,nmini=3,nmaxi=10,radius=25)  
 
# Kriging 
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kres <- kriging(dbin=db.data,dbout=db.grid, model=vg.mod, neigh=neimo
v)  
 
# plot kriging results: K.estim 
plot(kres,name.image="z1",title="K.estim",col=topo.colors(20), asp=1.
2,  
     xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim),pos.legend=5,flag.proj=F
ALSE) 
plot(db.data,pch=20,add=T,col="red",inches=3,flag.proj=FALSE) 
map("worldHires",add=T,fill=T,col=8)  
 
# plot kriging results: K.std 
plot(kres,name.image="z2",title="K.std",col=topo.colors(20), asp=1.2, 
     xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim),pos.legend=5,flag.proj=F
ALSE) 
plot(db.data,pch=20,add=T,col="black",inches=1.5,flag.proj=FALSE) 
map("worldHires",add=T,fill=T,col=8)  
 
# ratio of means kriged.map/data 
mean(kres[db.grid[,"sel"],"z1"])/mean(db.data[,"z1"]) 

 

A3.4 Global estimation and mapping by kriging with a transitive covariogram 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code performs global and local estimation using transitive ge
ostatistics 
## on octopus data from trawl survey off Morocco. The data are suppli
ed  
## by Abdelmalek Faraj, Institut National de Recherche Halieutique  
## (http://www.inrh.ma/), Casablanca, Morocco.  
## 
## Author: N. Bez, IRD  
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE)) 
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0)  
 
# Load data 
rg.load("Demo.octopus.morocco.db.data","db.data") 
rg.load("Demo.octopus.morocco.poly.data","poly.data") 
 
# Dimension of a regular strata in n.mi. 
strata = 11 
 
# Defining a projection 
projec.define("mean",db=db.data)  
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# Surface of influence for inner data 
# in square nautical miles  
db.data <- infl(db.data,nodes=400,extend=c(6,6),origin=c(-18,20.5), 
                polygon=poly.data,plot=T,asp=0.8, 
                title = "Influence Polygons") 
 
# Covariogram computation 
# Lag = Regular strata  
lag     <- strata 
nlag    <- 20 
dirvect <- 50 + c(0,90) 
covario.data <- vario.calc(db.data,breaks=seq(strata/2,nlag*strata,by
=strata),calcul="covg",tolang=45,dirvect=dirvect)  
 
# Calculate relative g(h) scaled by 
# Q (total abundance) 
Q <- sum(db.data[,"JUV"]*db.data[,"Influence.Surface"]) 
covario.data = vario.transfo("v1/Q^2",covario.data) 
variance = covario.data$vars 
 
# Ajust the empirical covariogram with 
# variance constraints 
model.covario <- model.auto(covario.data,struct=c(1,3,3),constraints=
variance, 
                            npairdw=1,las=1,inches=0.05,lwd=2,xlim=c(
0,250), 
                            title = "Relative Geometrical Covariogram
") 
 
# Estimation variance  
projec.toggle(0,verbose=FALSE)   
CVtrue <- sqrt(strata^2*(variance -  
                           model.cvv(v.mesh=strata,model=model.covari
o, 
                                     seed=110366,ndisc=20))) 
cat(paste("Abundance estimate = ",round(Q/10^6,0)," e+06",sep=""),"\n
") 
cat(paste("Estimation Coefficient of Variation = ",  
          round(100*CVtrue,1),"%",sep=""),"\n") 
 
# Grid definition in geographical space 
projec.toggle(0,verbose=FALSE)  
grid.kri <- db.grid.init(db.data,nodes=400,extend=c(6,6),origin=c(-18
,20.5)) 
grid.kri <- db.polygon(grid.kri,poly.data) 
projec.toggle(1,verbose=FALSE)  
 
# Neighborhood definition 
neigh.kri <- neigh.create(ndim=2,type=2,flag.aniso=TRUE,flag.rotation
=TRUE, 
                        nmini=10,nmaxi=30,radius=c(150,50), 
                        rotmat=util.ang2mat(ndim=2,angles=50))  
 
# Transitive kriging 
res <- kriging(db.data,grid.kri,model.covario,neigh.kri)  
 
# Threshold negative estimates 
res[,"Kriging.JUV.estim"][res[,"Kriging.JUV.estim"]<0] <- 0 
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# Map of the result 
plot(res,col=rainbow(6,start=0.2,end=1),las=1, 
     title="Octopus density - 1999",asp=0.8,flag.proj=FALSE) 
plot(poly.data,las=1,add=T,flag.proj=FALSE) 
map("worldHires", fill=T,col=grey(0.8),add=T) 
plot(db.data,las=1,add=T,col=1) 
legend.image(range(db.extract(res,"Kriging.JUV.estim"),na.rm=T), 
             position="bottomright",col=rainbow(6,start=0.2,end=1), 
             ntdec=0,cex=0.75) 

 

A3.5 Global estimation with a variogram and precision of alternative survey designs 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code performs Global estimation over a domain (polygon)  

## It computes also the survey precision for alternative survey desig
ns 
## It uses herring eggs densitites from a dredge survey.  
## The data were supplied by Marine Scotland Science  
## at the Marine Laboratory, Aberdeen, UK. 
## 
## Author: P.Petitgas, Ifremer 
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE))  
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0)  
 
# Load data 
rg.load("Demo.herreggs.scot.db.data","db.data") 
rg.load("Demo.herreggs.scot.poly.data","poly.data") 
 
# limits of study area : limits of plots 
x1lim<-25.9; x2lim<-26.5; y1lim<-17.0; y2lim<-17.58 
 
# select points inside polygon 
db.data <- db.polygon(db.data,poly.data,verbose=TRUE)  
 
# plot data and polygon 
plot(db.data,name.prop="z1",xlab="",ylab="", 
     xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim)) 
plot(poly.data,add=T,lty=1,density=0)  
 
# Data mean and variance inside polygon 
zm <- mean(db.data[,4][db.data[,5]])  
zv <- var(db.data[,4][db.data[,5]])*(sum(db.data[,5])-1)/sum(db.data[
,5]) 
cat("Data\n") 
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cat("mean: ",zm,"    std: ",sqrt(zv),"   cv: ",sqrt(zv)/zm,"\n") 
 
###### 
### Calculate experimental Variogram 
###### 
 
cat("Defining the model...\n") 
 
# Calculate experimental variogram 
Lag <- 0.05; Nlag <- 9   
vg <- vario.calc(db.data,dirvect=0,lag=Lag,toldis=0.5, nlag=Nlag, bre
aks = NA,  
                 calcul="vg",by.sample=FALSE,opt.code=0, tolcode=0, m
eans=NA)  
 
# Plot experimental variogram 
vario.plot(vg,npairdw=F,xlab="Distance (km)",ylab="Variogram") 
 
# Fit a variogram model  
vg.init <- model.create("Nugget Effect",sill=50000,ndim=2) 
vg.init <- model.create("Exponential",range=0.15,sill=370000,model=vg
.init) 
vg.fit  <- model.fit(vg, vg.init, niter=100, wmode=3, draw=T, 
                     npairdw=F,xlab="Distance (km)",ylab="Variogram") 
 
####### 
### Global estimation variance 2D 
### Estimate = zone mean (over polygon) 
####### 
 
# Define the discretization grid and select those points inside the p
olygon 
gnx <- 100; gny <- 100; 
gd.disc <- db.grid.init(obj=poly.data,nodes=c(gnx,gny)) 
gd.disc <- db.polygon(gd.disc,poly.data) 
plot(gd.disc,pch=3,col=1);plot(db.data,add=T,pch=21) 
plot(poly.data,add=T)  
 
# Global estimate = arithmetic mean 
cat("Estimating the Global estimate by arithmetic mean...\n") 
global.ma <- global(dbin=db.data, dbout=gd.disc, model = vg.fit, uc=c
("1"), 
                    polygon = poly.data, calcul = "arith", verbose=0)  
 
# Global estimate = kriged mean 
cat("Estimating the Global Estimate by Kriging...\n") 
global.mk <- global(dbin=db.data, dbout=gd.disc, model = vg.fit, uc=c
("1"), 
                    polygon = poly.data, calcul = "krige", flag.wgt=T
RUE, 
                    verbose=0)  
 
# Display kriging weights 
db.data <- db.add(db.data,global.mk$wgt,loctype="w") 
plot(db.data,name.prop="w"); 
plot(poly.data,add=T)  
 
# Theoretical process mean 
cat("Estimating the Process Mean...\n") 
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global.mt <- global(dbin=db.data, dbout=gd.disc, model = vg.fit, uc=c
("1"), 
                    polygon = poly.data, calcul = "mean", flag.wgt=TR
UE, 
                    verbose=0)  
 
# Summary of results 
cat("\nGlobal estimation over the Polygon\n") 
tab1 <- rbind(c(global.ma$zest,global.ma$cv), 
              c(global.mk$zest,global.mk$cv), 
              c(global.mt$zest,global.mt$cv) ) 
dimnames(tab1) <- list(c("arith mean","kriged zone mean","kriged proc
ess mean"), 
                       c("Estimate","CV")) 
print(round(tab1,3))  
 
####### 
###  Testing alternative sampling designs: regular and purely random 
####### 
 
# Regular grid design : create 
x0 <- 25.9; y0 <- 17.0 
dx <- 0.06; dy <- 0.06 
nx <- 13;   ny <- 12 
db.nw <- db.create(x0=c(x0,y0),dx=c(dx,dy),nx=c(nx,ny))  
db.nw <- db.add(db.nw,loctype="z") 
db.nw <- db.locate(db.nw,2:3,loctype="x") 
db.nw <- db.add(db.nw,z1=rep(zm,db.nw$nech)) 
db.nw <- db.locate(db.nw,4,loctype="z"); 
db.nw <- db.polygon(db.nw,poly.data)  
 
# Regular grid design : display 
plot(db.nw,pch=3,xlab="km",ylab="km",flag.aspoint=TRUE,name.post=1, 
     xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim)) 
plot(poly.data,add=T,lty=1,density=0)  
 
# Regular grid design : global estimation 
cat("Testing the Regular Design...\n") 
global.syst <-global(dbin=db.nw, dbout=gd.disc, model = vg.fit, uc=c(
"1"), 
                     polygon = poly.data, calcul = "arith", verbose=0
)  
 
# Summary of results 
cat("\nTesting alternative sampling designs:\n") 
tab2 <- rbind(c(global.ma$zest,global.ma$cv,sum(db.data[,5])), 
              c(zm,global.syst$sse/zm,sum(db.nw[,5])), 
              c(zm,sqrt(zv/sum(db.data[,5]))/zm,sum(db.data[,5])) ) 
dimnames(tab2) <- list(c("Data","Regular","Random"),c("Mean","CV","NB
")) 
print(round(tab2,3)) 

 

A3.6 Global estimation in 1D for acoustic surveys and precision for different sam-
pling efforts 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
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cology 
## 
## This code performs global estimation in 1D using acoustic transect 
sums 
## The approach applies to acoustic surveys with regularly spaced par
allel 
## transects 
## The code uses the 1-d data files where fish biomass per transect  
## was obtained by summing the densities along the transects. This fi
le was  
## constructed from the 2-d data set corresponding to an acoustic sur
vey in the bay  
## of Biscay. Data are supplied by Ifremer. 
## 
## Author: P.Petitgas, Ifremer 
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE))  
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0)  
 
# Load data 
rg.load("Demo.anchovy.bob.1d.db.data","db.data") 
nrad <-db.data$nsamples                 # Nb of transects 
aa <- 1                                 # Inter-transect (arbitrary) 
distance 
 
# Transform db.data into regular grid 
db.datagrid <- db.grid.init(db.data,nodes=nrad,flag.regular=T) 
db.datagrid <- migrate(db.data,db.datagrid,flag.fill=2,name="Tr.bioma
ss") 
 
# Display information 
plot(db.data,pch=20,type="b",title="Biomass", 
     xlab="S <---- Transects ----> N", ylab="Biomass per transect") 
plot(db.datagrid,add=TRUE,col="red") 
 
####### 
## Estimation globale 1d : intrinsic method + geometric error 
####### 
 
# Experimental variogram 1D 
vg <- vario.calc(db.data,calcul="vg") 
 
# Semi-automatic fit (sills only) 
vg.init <- model.create(vartype="Nugget Effect",sill=1.5E+05,ndim=1) 
vg.init <- model.create(vartype="Spherical",range=4.5, 
                        model=vg.init) 
vg.fit  <- model.fit(vg, vg.init, niter=100, wmode=3,draw=FALSE)  
 
# Automatic fit 
vg.auto <- model.auto(vg,struc=c("Nugget Effect","Spherical"), 
                      xlab="Distance", ylab="variogram",draw=FALSE)  
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# Variogram and model representations 
plot(vg,npairpt=0,npairdw=T,xlab="Distance", ylab="variogram",inches=
.025) 
plot(vg.fit ,add=TRUE,col="blue") 
plot(vg.auto,add=TRUE,col="red") 
 
# Choose model 
vgmod <- vg.auto 
perc  <- vgmod[1]$sill/(vgmod[1]$sill + vgmod[2]$sill) 
cat("Percent of nugget in total sill =",perc,"\n") 
 
# Estimation variance 1D  
gloa    <- global(db.datagrid,calcul="arith",model=vgmod,ndisc=100,ve
rbose=0) 
s2      <- var(db.data[,"Tr.biomass"],na.rm=T)*(nrad-1)/nrad 
d2geom  <- s2*(aa^2/6)/(aa*nrad)^2 
cv.geom <- sqrt(d2geom)/gloa$zest            # Geometric error (limit
s of 1D) 
cv.tot  <- sqrt(gloa$sse^2+d2geom)/gloa$zest # Total error CV 
 
cat("Mean=",round(gloa$zest,3), "CVest=",round(gloa$sse/gloa$zest,3),
"\n") 
cat("CV.est=",round(gloa$cv,3)," CV.geom=",round(cv.geom,3),"\n") 
cat("Qtot=",gloa$zest*nrad*aa,"   CV=",round(cv.tot,3),"\n") 
 
####### 
## Alternative sampling effort: 
## Estimation variance for other ('nk') inter-transect distances 
## (geometric error neglected) 
####### 
 
nk <- 9 
 
# Loop on alternative inter-transect distances 
sse <- numeric(nk) 
for (k in 1:nk) { 
  ak  <- k*0.25*aa                      # new inter-transect distance 
  nrk <- round(nrad*aa/ak,0)            # new nb of transects 
  d2geom <- s2*(ak^2/6)/(ak*nrk)^2      # variance geometric error 
   
  # variance estimation error 
  db.datagrid <- db.grid.init(db.data,nodes=nrk,flag.regular=T) 
  db.datagrid <- migrate(db.data,db.datagrid,flag.fill=2,name="Tr.bio
mass") 
  d2estim     <- global(db.datagrid,calcul="arith",model=vgmod,ndisc=
100, 
                        verbose=0)$sse^2 
  sse[k] <- sqrt(d2estim+d2geom) 
} 
 
plot(0.25*aa*(1:nk),sse/gloa$zest,type="b", 
     xlab="Multiplyer of Inter-transect Distance",ylab="Estimation CV
") 
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A3.7 Mapping by ordinary kriging, by cokriging, by collocated cokriging, and by 
kriging with an external drift 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code performs ordinary kriging, co-kriging, co-located co-kri
ging  
## and kriging with external drift using herring mean length and bott
om 
## depth data from an acoustic-trawl survey around the Shetland. 
## The data were supplied by Marine Scotland Science  
## at the Marine Laboratory, Aberdeen, UK. 
## 
## Author: M.Woillez, Ifremer 
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE)) 
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0) 
 
# Load data 
rg.load(filename="Demo.herring.len.scot.db.data",objname="db.data") 
rg.load(filename="Demo.herring.len.scot.poly.data",objname="poly.data
") 
rg.load(filename="Demo.herring.len.scot.grid.kriging",objname="grid.k
riging") 
 
# Select points inside polygon 
db.data <- db.polygon(db.data,poly.data,verbose=TRUE) 
 
# Visualizing the data set 
plot(poly.data,col=4,asp=1/cos(mean(db.extract(db=db.data,names="x2")
)*pi/180)) 
plot(grid.kriging,name.contour="depth",levels=seq(100,1500,100),col=8
,add=T) 
plot(db.data,inches=4,pos.legend=5,add=T) 
title(main="mean length") 
map("worldHires",add=T,fill=T,col=8); box() 
 
# Define the projection 
projec.define(projection="mean", db=db.data) 
 
###### 
### Ordinary kriging 
###### 
 
# Basic statistics  
print(db.data,flag.stats=TRUE,names="m.length") 
hist(db.extract(db.data,"z1"),xlab="m.length",main="",col=8);box() 
 
# Calculate experimental omni-directional variogram 
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vario.data <- vario.calc(db.data) 
plot(vario.data,npairpt=F,npairdw=T,inches=0.08)  
 
# Model it with model.auto(): automatic fitting procedure for range a
nd sill 
model.vario <- model.auto(vario=vario.data,struc=c("Nugget Effect","G
aussian"), 
                          wmode=2)  
 
# Define the neighborhood 
neigh.kriging <- neigh.create(ndim=2,type=0) 
neigh.kriging 
 
# View grid  
plot(grid.kriging,col=1,title="",pch="+",asp=1) 
plot(db.data,col=2,pch=19,add=T)  
plot(poly.data,col=4,add=T)  
 
# Perform ordinary kriging 
grid.kriging <- kriging(dbin=db.data,dbout=grid.kriging,model=model.v
ario,  
                        neigh=neigh.kriging,uc=c("1"),mean=NA,  
                        calcul="point",radix="OK") 
 
# View ordinary kriging 
# local estimation 
plot(grid.kriging,name.image="z1",pos.legend=5,flag.proj=F, 
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
plot(db.data,name.prop="z1",col=1,pch=20,add=T,flag.proj=F) 
map("worldHires",add=T,fill=T,col=8); box() 
 
# Kriging variance 
plot(grid.kriging,name.image="z2",pos.legend=5,flag.proj=F,  
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
map("worldHires",add=T,fill=T,col=8); box() 
 
###### 
### Co-kriging 
###### 
 
# Data management 
db.data <- db.locate(db.data,5:6,loctype="z") 
db.data 
 
# Basic statistics  
print(db.data,flag.stats=TRUE,names=c("depth","m.length")) 
hist(db.extract(db.data,"z1"),xlab="depth",main="",col=8);box() 
hist(db.extract(db.data,"z2"),xlab="m.length",main="",col=8);box() 
correlation(db.data,name1="depth",name2="m.length") 
 
# Calculate experimental omni-directional variogram 
vario.data <- vario.calc(db.data) 
plot(vario.data,npairpt=F,npairdw=T,inches=0.08)  
 
# Model it with model.auto(): automatic fitting procedure for range, 
and sill 
model.vario <- model.auto(vario=vario.data,wmode=2,flag.goulard=TRUE,  
                          struc=c("Nugget Effect","Gaussian","Gaussia
n")) 



  

 

Handbook of Geostatistics in R for Fisheries and Marine Ecology |  159 

 

model.vario 
 
# Define grid 
grid.kriging <- db.locate(grid.kriging,6:7,loctype=NA) 
grid.kriging 
 
# View grid  
plot(grid.kriging,col=1,title="",pch="+",asp=1) 
plot(db.data,col=2,pch=19,add=T)  
plot(poly.data,col=4,add=T)  
 
# Perform ordinary cokriging 
grid.kriging <- kriging(dbin=db.data,dbout=grid.kriging,model=model.v
ario,  
                        neigh=neigh.kriging,uc=c("1"),mean=NA,calcul=
"point", 
                        radix="CK") 
 
# View cokriging 
# Local estimation 
plot(grid.kriging,name.image="z1",pos.legend=5,flag.proj=F,  
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
plot(db.data,name.prop="z1",col=1,pch=20,add=T,flag.proj=F) 
map("worldHires",add=T,fill=T,col=8); box() 
 
# Local estimation 
plot(grid.kriging,name.image="z2",pos.legend=5,flag.proj=F,  
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
plot(db.data,name.prop="z2",col=1,pch=20,add=T,flag.proj=F) 
map("worldHires",add=T,fill=T,col=8); box() 
 
# Kriging variance 
plot(grid.kriging,name.image="z3",pos.legend=5,flag.proj=F,  
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
map("worldHires",add=T,fill=T,col=8); box() 
 
# Kriging variance 
plot(grid.kriging,name.image="z4",pos.legend=5,flag.proj=F,  
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
map("worldHires",add=T,fill=T,col=8); box() 
 
###### 
### Collocated co-kriging 
###### 
 
# Define grid 
grid.kriging <- db.locate(grid.kriging,8:11,loctype=NA) 
grid.kriging <- db.locate(grid.kriging,4,loctype="z") 
grid.kriging 
 
# View grid  
plot(grid.kriging,name.prop="z1",col=1,title="",pch="+",asp=1) 
plot(db.data,col=2,pch=19,add=T)  
plot(poly.data,col=4,add=T)  
 
# Perform colocated cokriging 
grid.kriging <- kriging(dbin=db.data,dbout=grid.kriging,model=model.v
ario,  
                        neigh=neigh.kriging,uc=c("1"),mean=NA,calcul=
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"point", 
                        radix="CCK",rank.colcok=c(4,NA)) 
 
# View colocated cokriging 
# Local estimation 
plot(grid.kriging,name.image="z2",pos.legend=5,flag.proj=F,  
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
plot(db.data,name.prop="z2",col=1,pch=20,add=T,flag.proj=F) 
map("worldHires",add=T,fill=T,col=8); box() 
 
# Kriging variance 
plot(grid.kriging,name.image="z4",pos.legend=5,flag.proj=F,  
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
map("worldHires",add=T,fill=T,col=8); box() 
 
###### 
### Kriging with external drift 
###### 
 
# Regression 
plot(db.extract(db.data,"depth"),db.extract(db.data,"m.length"),main=
"regression", 
     pch=19,xlim=c(50,250),ylim=c(15,35),xlab="depth",ylab="mean leng
th") 
db.data <- regression(db.data,names="depth",name1=6,flag.draw=T)  
 
# Data management 
db.data <- db.locate(db.data,6,loctype=NA) 
db.data 
 
# Calculate multivariate experimental omni-directional variogram 
vario.data <- vario.calc(db.data) 
plot(vario.data,npairpt=F,npairdw=T,inches=0.08)  
 
# Model it with model.auto(): automatic fitting procedure for range a
nd sill 
model.vario <- model.auto(vario=vario.data,struc=c("Nugget Effect","G
aussian"), 
                          wmode=2)  
model.vario 
 
# Data management 
db.data <- db.locate(db.data,8,loctype=NA) 
db.data <- db.locate(db.data,6,loctype="z") 
db.data <- db.locate(db.data,5,loctype="f") 
db.data 
 
# Define grid 
grid.kriging <- db.locate(grid.kriging,12:15,NA) 
grid.kriging <- db.locate(grid.kriging,"depth","f") 
grid.kriging 
 
# View grid  
plot(grid.kriging,col=1,title="",pch="+",asp=1) 
plot(db.data,col=2,pch=19,add=T)  
plot(poly.data,col=4,add=T)  
 
# View drift  
plot(grid.kriging,name.image="depth",title="",asp=1) 
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plot(poly.data,col=4,add=T)  
 
# Perform kriging with external drift 
grid.kriging <- kriging(dbin=db.data,dbout=grid.kriging,model=model.v
ario,  
                        neigh=neigh.kriging,uc=c("1","f1"),mean=NA,  
                        calcul="point",radix="KED") 
grid.kriging 
 
# View kriging with external drift 
# Local estimation 
plot(grid.kriging,name.image="z1",pos.legend=5,flag.proj=F,  
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
plot(db.data,name.prop="z1",col=1,pch=20,add=T,flag.proj=F) 
map("worldHires",add=T,fill=T,col=8); box() 
 
# Kriging variance 
plot(grid.kriging,name.image="z2",pos.legend=5,flag.proj=F,  
     asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180)) 
map("worldHires",add=T,fill=T,col=8); box() 

 

A3.8 Mapping by cokriging indicators with a linear model of coregionalization 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code performs indicator co-kriging using acoustic data 
## The data are supplied by Cheikh-Baye Braham,  
## Institut Mauritanien de Recherche Oceanographique et des Peches (I
MROP), 
## Nouadhibou, Mauritania 
## http://www.imrop.mr/ 
## 
## Author: N.Bez, Ifremer 
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE)) 
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0) 
 
# Load data 
rg.load("Demo.acoustic.maur.db.data","db.data") 
rg.load("Demo.acoustic.maur.poly.data","poly.data") 
 
# Create grid 
grid.kri <- db.grid.init(poly.data,margin=10,nodes=150) 
grid.kri <- db.polygon(grid.kri,poly.data) 
 
# Define a projection 
projec.define("mean",db=db.data) 
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# Display the data 
plot(db.data,asp=1,flag.proj=FALSE) 
plot(poly.data,add=T,flag.proj=FALSE) 
map("worldHires",add=T)  
 
# Define cutoffs and build indicators 
zcut <- as.numeric(quantile(db.data [,5][db.data[,5] >0])) 
my.limits <- limits.create(zcut=zcut[-5],flag.zcut.int = F) 
db.data <- db.indicator(db.data ,my.limits) 
 
# Variograhy 
lag     <- c(5,10) 
nlag    <- 15 
dirvect <- c(0,90) 
 
# Annual variograms 
for(i in 1:4){ 
  plot(vario.calc(db.sel(db.data,an==i),lag=lag, 
                  nlag=nlag,dirvect=dirvect), 
       flag.norm=T,add=(i!= 1)) 
} 
 
# Mean annual variogram 
vario.data <- vario.calc(db.data,lag=lag,nlag=nlag,dirvect=dirvect, 
                         opt.code=1,tolcode=0) 
 
# Model using structures that are linear 
# at origin (spherical or exponential) 
model.vario <- model.auto(vario.data,struct=c(1,3,3,2,2), 
                          wmode=2,npairdw=1)  
 
# Co-Kriging 
neigh.kri <- neigh.create(type=2,ndim=2,nmini=10,nmaxi=50,radius=60) 
kri.1 <- kriging(db.sel(db.data,an==1),grid.kri,model.vario,neigh.kri
) 
 
# Truncating estimations within [0,1] 
ranks = db.ident(kri.1,names="Kriging.Indicator*") 
for(i in ranks){ 
  kri.1[,i][kri.1[,i] < 0] <- 0 
  kri.1[,i][kri.1[,i] > 1] <- 1 
} 
 
# Mapping the results  
plot(kri.1,asp=1,zlim=c(0,1),col=rainbow(4,start=0.2,end=1),flag.proj
=FALSE, 
     name="Kriging.Indicator.Total.1.estim",title="First Indicator") 
legend.image(c(0,1),position="bottomleft",col=rainbow(4,start=0.2,end
=1), 
             ntdec=2,cex=0.75) 
map("worldHires",add=T) 
plot(db.data,col="black",cex1=0.1,add=T,flag.proj=FALSE)  
 
plot(kri.1,asp=1,zlim=c(0,1),col=rainbow(4,start=0.2,end=1),flag.proj
=FALSE, 
     name="Kriging.Indicator.Total.4.estim",title="Fourth Indicator") 
legend.image(c(0,1),position="bottomleft",col=rainbow(4,start=0.2,end
=1), 
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             ntdec=2,cex=0.75) 
map("worldHires",add=T) 
plot(db.data,col="black",cex1=0.1,add=T,flag.proj=FALSE)  
 
# Building indicators for intervals  
res <- kri.1 
natt.first = res$natt + 1 
res <- db.add(res, zero   = (1-res[,ranks[1]])) 
res <- db.add(res, low    = (res[,ranks[1]]-res[,ranks[2]])) 
res <- db.add(res, medium = (res[,ranks[2]]-res[,ranks[3]])) 
res <- db.add(res, large  = (res[,ranks[3]]-res[,ranks[4]])) 
res <- db.add(res, extrem = (res[,ranks[4]])) 
 
# Getting rank of most probable interval 
res <- db.compare(res,fun="maxi",names=natt.first:res$natt) 
res <- db.add(res, class=rep(NA,res@nx[1]*res@nx[2])) 
for(i in 1:5) 
  res[,"class"][res[,natt.first+i-1]==res[,"maxi"]] <- i 
 
plot(res,asp=1,col=rainbow(5,start=0.2,end=1),flag.proj=FALSE) 
legend.image(c(1,5),position="bottomleft",col=rainbow(5,start=0.2,end
=1), 
             ntdec=0,cex=0.75) 
map("worldHires",add=T) 
plot(db.data,col="black",cex1=0.1,add=T,flag.proj=FALSE) 

 

A3.9 Exploring border effects among spatial sets of multiple indicators  

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code explores border effects among spatial nested sets define
d by indicators 
## The methodology is applied to a fisheries acoustic survey on ancho
vy in 
## the bay of Biscay, France 
## The data were supplied by Ifremer 
## 
## Author: M.Woillez, Ifremer 
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE)) 
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0) 
 
# Load data 
rg.load("Demo.anchovy.bob.2d.db.data","db.data") 
rg.load("Demo.anchovy.bob.2d.poly.data","poly.data") 
 
# Select points inside polygon 
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db.data <- db.polygon(db.data,poly.data,verbose=TRUE)  
 
# Check if duplicates (points too close) 
db.data <- duplicate(db.data) 
 
# Basic statistics   
print(db.data,flag.stats=TRUE,name="ENGR.ENC") 
 
# Histogram 
hist(db.extract(db.data,"ENGR.ENC"),col=8,main="",nclass=100, 
     xlab="biomass of anchovy (tonnes/n.mi.²)");box() 
 
# Visualization  
plot(poly.data,asp=1/cos(mean(db.extract(db.data,"x2"))*pi/180),col=4
) 
plot(db.data,inches=5,add=T,pos.legend=5,zmin=0,zmax=c(db.stat(db.dat
a,"maxi")), 
     include.bounds=FALSE) 
plot(poly.data,col=4,add=T) 
map("worldHires",add=T,fill=T,col=8);box() 
 
# Define a simple projection  
projec.define(projection="mean",db=db.data) 
 
# Create indicator variables into the RGeostats database 
zi <- 150 # Topcut value 
zcut <- c(quantile(db.data[,"ENGR.ENC"][db.data[,"ENGR.ENC"]!=0],seq(
0,0.8,0.2)),zi) 
my.limits <- limits.create(zcut=zcut,flag.zcut.int = F) 
db.data <- db.indicator(db.data ,my.limits) 
 
# Visualization 
for(i in 1:length(zcut)){ 
  plot(db.locate(db.data,paste("Indicator.ENGR.ENC.",i,sep=""),"z"), 
       asp=1/cos(mean(db.extract(db=db.data,names="x2"))*pi/180), 
       inches=1,bg=2,pch=21,flag.proj=F) 
  plot(poly.data,col=4,flag.proj=F,add=T) 
  map("worldHires",add=T,fill=T,col=8);box() 
} 
 
# Statistics 
rbind("zcut"=zcut,"P(Z>=zcut)"=round(apply(db.data[,7:db.data$natt],2
,mean),3))  
 
# Compute simple and cross variograms of indicator variables 
lag <- 5; nlag <- 20; dirvect <- 0 
vg <- vario.calc(db.data,lag=lag,nlag=nlag,dirvect=dirvect) 
 
# Visualization of simple variograms 
flag <- F 
for(i in 1:length(zcut)){ 
  plot(vg,varcols=i,inches=.05,flag.norm=T,npairdw=T,npairpt=F, 
       col=grey(seq(0,1,.1))[i],ylim=c(0,2), 
       main="normed indicator variograms", 
       xlab="Distance (n.mi.)",add=flag) 
  flag <- T 
} 
 
# Visualization of simple and cross variograms 
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plot(vg,maxnvar=length(zcut),inches=.03,flag.norm=T,npairdw=T, 
     npairpt=F,ylim=c(0,2))  
 
# Compute variogram ratio: cross variogram / first simple variogram 
vgr <- vario.transfo("v1",vario1=vg,oper="g12/g1") 
 
# Visualization of normed variogram ratios 
plot(vgr,maxnvar=length(zcut),inches=0.03,flag.norm=T, 
     npairdw=T,npairpt=F,ylim=c(0,2))  
 
# Visualization of normed variogram ratios  
# grouped relatively to the first simple variograms used in the ratio 
for(i in 1:(length(zcut)-1)){ 
  flag <- F 
  for(j in i+1:length(zcut)){ 
    plot(vgr,varcols=i,varcols2=j,inches=0.05,flag.norm=T, 
         npairdw=T,npairpt=F,col=grey(seq(0,1,.1))[j],ylim=c(0,2), 
         main=paste("normed variograms ratio relative to I",i,sep="")
, 
         add=flag) 
    flag <- T 
  } 
} 

 

A3.10 Mapping with the topcut (non-linear) model 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code fits a topcut model and performs kriging with it 
## Here the Topcut model reduces to co-kriging the truncated variable 
with 
## the indicator of the topcut cutoff 
## The interest in the methodology is twofold:  
##  1/ because of the indicator approach, variography is more robust 
##     with respect to high values  
##  2/ because of co-kriging, high values are estimated where the pro
bability 
##     is high for them to occur 
## The methodology is applied to a fisheries acoustic survey on ancho
vy in 
## the bay of Biscay, France 
## The data were supplied by Ifremer 
## 
## Author: P.Petitgas, Ifremer 
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE)) 
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0) 
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# Load data 
rg.load("Demo.anchovy.bob.2d.db.data","db.data") 
rg.load("Demo.anchovy.bob.2d.poly.data","poly.data") 
 
# Area limits 
y1lim <- 43.3; y2lim <- 47; x1lim <- -4.5; x2lim <- -1 
 
# Plot data  
plot(db.data,name="ENGR.ENC",pch=1,asp=1.2,inches=5,col="black", 
     xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim)) 
plot(poly.data, add=T, lty=1, density=0) 
map("worldHires",add=T,fill=T,col=8) 

# Topcut value: it has been chosen after structural analysis of bor-
der effects 
zi=150 
 
# new variables in db.data: topcut indicator (I) 
#                           truncated variable (z1), excess variables 
(z2)  
#                           residuals around mean excess (z3) 
# note: Z3 shows : no spatial structure (nugget variogram) ;  
#                  no spatial cross-correlation with z1 nor z2 
 
# Topcut indicator (I) 
db.data <- db.add(db.data,I=(ENGR.ENC >= zi) * 1) 
p <- mean(db.data[,"I"]) 
v <- p * (1-p) 
 
# Truncated variable (z1) 
db.data <- db.add(db.data,z1=ifelse(ENGR.ENC>=zi,zi,ENGR.ENC), 
                  type.locate=FALSE) 
mi <- mean(db.data[db.data[,"ENGR.ENC"]>=zi,"ENGR.ENC"])   
 
# Mean excess (z2) 
db.data <- db.add(db.data,z2=(mi-zi)*I,type.locate=FALSE) 
 
# Residual around mean excess (z3) 
db.data <- db.add(db.data,z3=(ENGR.ENC-mi)*I,type.locate=FALSE) 
 
# Note: Residual is not considered in the structural analysis 
# as its structure is a pure nugget effect 
db.data <- db.locate(db.data,db.data$natt) 
 
cat("Truncation at",zi,"\n") 
cat("Indicator: mean=",round(p,4),"variance=",round(v,4),"\n") 
cat("Mean above truncation=",mi,"\n") 
 
####### 
## Variography  
####### 
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# Projection 
projec.define(projection="mean") 
 
# Look for duplicates (points too close) 
db.data <- duplicate(db.data) 
 
# Omni-directional variogram 
vg <- vario.calc(db.data,lag=2,dirvect=NA, nlag=40) 
plot(vg,npairpt=0,npairdw=F,title="",inches=.05)  
 
# Fit variogram model 
vg.init <- model.create(vartype="Nugget Effect",ndim=2,nvar=2) 
vg.init <- model.create(vartype="Spherical",range=8,model=vg.init) 
vg.init <- model.create(vartype="Spherical",range=25,model=vg.init) 
 
# Autimatic fit of sills only 
vg.fit  <- model.fit(vg, vg.init, niter=100, wmode=3, draw=F) 
 
# Automatic fit of ranges and sills 
vg.auto <- model.auto(vario=vg,struct=melem.name(c(1,3,3)),draw=F) 
 
# Overlay models and variogram 
plot(vg,npairdw=F,npairpt=F) 
plot(vg.fit,vario=vg,lwd=2,add=T) 
plot(vg.auto,vario=vg,lwd=2,add=T,col="blue") 
 
# Choose a model 
vg.mod <- vg.fit 
 
####### 
## Co-Kriging z1,z2 
####### 
 
# Define the Estimation Grid 
x0 <- -4; y0 <- 43.4; dx <- 0.1;dy <- 0.1; nx <- 30; ny <- 37  
db.grid <- db.create(flag.grid=T,x0=c(x0,y0),dx=c(dx,dy),nx=c(nx,ny))  
 
# Select grid points inside polygon  
db.grid <- db.polygon(db.grid,poly.data) 
 
# Define a Moving Neighbourhood 
neimov <- neigh.create(ndim=2,type=2,nmini=3,nmaxi=10,radius=25) 
 
# Co-kriging (point) 
kres2 <- kriging(dbin=db.data,dbout=db.grid,model=vg.mod, 
neigh=neimov, 
                 radix="K") 
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# Add co-kriged z1 and z2 estimates 
kres2 <- db.add(kres2,K.topcut.estim=K.z1.estim+K.z2.estim) 
 
# Display estimated Topcut 
plot(kres2,name="K.topcut.estim",title="Estimated Topcut", 
     col=topo.colors(20), asp=1.2, 
xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim), 
     pos.legend=5,flag.proj=FALSE) 
plot(db.data,name.prop="ENGR.ENC",pch=20,add=T,col="red",inches=3) 
map("worldHires",add=T,fill=T,col=8)  
 
####### 
## Ordinary kriging of original variable (for comparison) 
####### 
 
# Change locators in db.data 
db.data <- db.locerase(db.data,"z") 
db.data <- db.locate(db.data,names="ENGR.ENC",loctype="z") 
 
# Omni-directional variogram 
vg1 <- vario.calc(db.data,lag=2,dirvect=NA, nlag=40) 
vg1.mod <- 
model.auto(vg1,struct=melem.name(c(1,3)),npairdw=TRUE,inches=0.05)  
 
# Kriging (point) 
kres1 <- 
kriging(dbin=db.data,dbout=db.grid,model=vg1.mod,neigh=neimov, 
                 radix="K") 
 
# Display Ordinary Kriging results 
plot(kres1,name.image="K.ENGR.ENC.estim",title="Ordinary Kriging re-
sult", 
     col=topo.colors(20), asp=1.2,  
     xlim=c(x1lim,x2lim),ylim=c(y1lim,y2lim),pos.leg-
end=5,flag.proj=FALSE) 
plot(db.data,name.prop="ENGR.ENC",pch=20,add=T,col="red",inches=3) 
map("worldHires",add=T,fill=T,col=8)  
 
# Compare topcut & ok; circles (z2) 
cat("Topcut: Mean(estimated) / Mean(data)\n") 
ratio = mean(db.extract(kres2,"K.topcut.estim")) / 
mean(db.data[,"ENGR.ENC"]) 
cat("Topcut  = ",ratio,"\n") 
ratio = mean(db.extract(kres1,"K.ENGR.ENC.estim")) / 
mean(db.data[,"ENGR.ENC"]) 
cat("Kriging = ",ratio,"\n") 
 
correlation(kres2,"K.topcut.estim","K.ENGR.ENC.estim",kres1, 
            name.size="K.z2.estim", flag.aspoint=TRUE, inches=0.15, 
            xlab="Ordinary kriging",ylab="Topcut co-
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kriging",mini1=0,mini2=0, 
            flag.same=TRUE, flag.iso=TRUE, flag.diag=TRUE)  
 
# conclusion: 
# - with Ordinary Kriging high values are spread around the data 
# - with the Topcut model high values are estimated only where the 
indicator is high 
#   because of co-kriging 

 

A3.11 Conditional simulations 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code performs conditional simulation on herring mean length  
## collected at trawl stations from an acoustic-trawl survey around t
he Shetland. 
## The data were supplied by Marine Scotland Science  
## at the Marine Laboratory, Aberdeen, UK. 
## 
## Author: M.Woillez, Ifremer 
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE)) 
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0) 
 
# Load data 
rg.load(filename="Demo.herring.len.scot.db.data",objname="db.data") 
rg.load(filename="Demo.herring.len.scot.poly.data",objname="poly.data
") 
 
# Select points inside polygon 
db.data <- db.polygon(db.data,poly.data,verbose=TRUE)  
 
# Print statistics and histogram 
print(db.data,flag.stats=TRUE,names="m.length") 
hist(db.extract(db.data,"m.length"),col=8,xlab="m.length",main="") 
 
# Display data  
plot(db.data,inches=5,asp=1/cos(mean(db.extract(db.data,"x2"))*pi/180
), 
     pos.legend=5,zmax=c(db.stat(db.data,"maxi")),include.bounds=FALS
E) 
plot(poly.data,col=4,add=T) 
map("worldHires",add=T,fill=T,col=8)  
 
# Define the projection  
projec.define(projection="mean", db=db.data) 
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# Define the anamorphosis model 
model.anam <- anam.fit(db.data,type="gaus",nbpoly=10,draw=T)  
 
# Transform the data into Gaussian 
db.data <- anam.z2y(db.data,anam=model.anam) 
 
# Modeling the Gaussian variable Y 
vario.data <- vario.calc(db.data) 
model.vario <- model.auto(vario.data,struc=melem.name(c(1,3,12)),wmod
e=2,draw=F) 
plot(vario.data ,npairdw=T,npairpt=F,inches=0.08,col="black") 
plot(model.vario,add=T,col="black") 
 
# Define simulation grid  
gnx <- 144  
gny <- 90 
grid.simu <- db.grid.init(poly.data,nodes=c(gnx,gny)) 
grid.simu <- db.polygon(grid.simu,poly.data) 
 
# Display of the grid 
plot(grid.simu,col=1,title="",pch="+",asp=1) 
plot(db.data,inches=3,col=2,pch=19,add=T)  
plot(poly.data,col=4,add=T)  
 
# Define the neighborhood 
neigh.simu <- neigh.create(ndim=2,type=0) 
 
# Conditional simulation of Y 
grid.simu <- simtub(dbin=db.data, dbout=grid.simu, model=model.vario,  
                    neigh=neigh.simu, uc = "", mean = 0, seed = 29091
978,  
                    nbsimu = 1, nbtuba = 1000, radix = "Simu",modify.
target = TRUE) 
print(grid.simu,flag.stats=TRUE,names="Simu.Gaussian.m.length.S1") 
 
# Transform gaussian conditional simulation into raw conditional simu
lation 
grid.simu <- anam.y2z(grid.simu,name="Simu.Gaussian.m.length.S1",anam
=model.anam) 
print(grid.simu,flag.stats=TRUE,names="Raw.Simu.Gaussian.m.length.S1"
) 
 
# Display conditional simulation of Y 
plot(poly.data,col=0,asp=1/cos(mean(db.extract(db=db.data,names="x2")
)*pi/180),  
     flag.proj=F) 
plot(grid.simu,name="Simu.Gaussian.m.length.S1",pos.legend=5,flag.pro
j=F,add=T) 
map("worldHires",add=T,fill=T,col=8);box() 
 
# Display conditional simulation of Z  
plot(poly.data,col=0,asp=1/cos(mean(db.extract(db=db.data,names="x2")
)*pi/180),  
     flag.proj=F) 
plot(grid.simu,name="Raw.Simu.Gaussian.m.length.S1",pos.legend=5,flag
.proj=F,add=T) 
map("worldHires",add=T,fill=T,col=8);box() 
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A3.12 Conditional simulations with the presence of zeros 

################# 
## ICES CRR Handbook of geostatistics in R for fisheries and marine e
cology 
## 
## This code performs conditional simulation on herring acoustic back
scatter  
## collected along transects from an acoustic-trawl survey around the 
Shetland. 
## Acoustic data are characterized by a high proportion of zeros. Con
dition 
## simulation are based on transformed simulation and gibbs sampler t
o 
## handle the zeros. The data were supplied by Marine Scotland Scienc
e  
## at the Marine Laboratory, Aberdeen, UK. 
## 
## Author: M.Woillez, Ifremer 
################# 
 
# Clean workspace 
rm(list=ls(all=TRUE)) 
 
# Load geostatistical package and others 
library(RGeostats)  
library(mapdata)  
 
# Inactivate any previous projection  
projec.toggle(0) 
 
# Load data 
rg.load(filename="Demo.herring.sa.scot.db.data",objname="db.data") 
rg.load(filename="Demo.herring.sa.scot.poly.data",objname="poly.data"
) 
 
# Select points inside polygon 
db.data <- db.polygon(db.data,poly.data,verbose=TRUE)  
 
# Print statistics and histogram 
print(db.data,flag.stats=TRUE,names="sa") 
hist(db.extract(db.data,"sa"),col=8,xlab="sa",main="",nclass=100);box
() 
 
# Visualization  
plot(db.data,inches=5,asp=1/cos(mean(db.extract(db.data,"x2"))*pi/180
), 
     pos.legend=5,zmin=0,zmax=c(db.stat(db.data,"maxi")),include.boun
ds=FALSE) 
plot(poly.data,col=4,add=T) 
map("worldHires",add=T,fill=T,col=8)  
 
# Define a simple projection  
projec.define(projection="mean", db=db.data) 
 
# Compute areas of influence (weights) 
db.data <- infl(db.data,nodes=c(300,300),origin=c(-4,57.5), 
                extend=c(6.5,4.5),dmax=12.5, 
                polygon=poly.data,plot=T,asp=1) 
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plot(poly.data,col=4,add=T)  
 
# Define the anamorphosis model 
model.anam <- anam.fit(db.data,type="emp",ndisc=db.data$nech,sigma2e=
800,draw=T)  
 
# Transform the data into Gaussian 
db.data <- anam.z2y(db.data,anam=model.anam) 
db.data <- db.rename(db.data,name="Gaussian.sa",newname="Yp") 
 
# check minimum values 
print(db.data,flag.stats=TRUE,names="Yp") 
ycut <- qnorm(sum(db.extract(db.data,"sa") == 0) / db.data$nech) 
Y <- db.extract(db.data,"Yp") 
Y[Y == -10] <- ycut 
db.data <- db.replace(db.data,"Yp",Y) 
print(db.data,flag.stats=TRUE,names="Yp") 
 
# Modeling Gaussian variable Y 
n.H <- 50 
vario.Yp <- vario.calc(db.data,lag=2.5,nlag=50) 
vario.Y  <- vario.trans.cut(vario.Yp,ycut,n.H) 
model.vario.Y <- model.auto(vario.Y,struc=melem.name(c(1,2,3)),draw=F
) 
plot(vario.Y ,npairdw=T,npairpt=F,inches=0.08,col="red",xlab="Distanc
e (n.mi.)") 
plot(vario.Yp,npairdw=T,npairpt=F,inches=0.08,col="black",add=T) 
plot(model.vario.Y,add=T,col="red") 
 
# Define simulation grid  
gnx <- 144  
gny <- 90 
grid.simu <- db.grid.init(poly.data,nodes=c(gnx,gny)) 
grid.simu <- db.polygon(grid.simu,poly.data) 
 
# Display of the grid 
plot(grid.simu,col=1,title="",pch="+",asp=1) 
plot(db.data,inches=3,col=2,pch=19,add=T)  
plot(poly.data,col=4,add=T)  
 
# Define the neighborhood 
neigh.simu <- neigh.create(ndim=2,type=2,nmini=5,nmaxi=100,radius=60) 
 
# Define interval limits for the gibbs 
Ymax <- db.extract(db.data,name="Yp",flag.compress=F) 
Ymin <- db.extract(db.data,name="Yp",flag.compress=F) 
Ymin[Ymin <= ycut] <- -10 
 
# Add those limits into database 
db.data<-db.add(db.data,Ymax) 
db.data<-db.locate(db.data,db.data$natt,"upper") 
db.data<-db.add(db.data,Ymin) 
db.data<-db.locate(db.data,db.data$natt,"lower") 
 
# Simulating gaussian values below ycut at datapoints where raw data 
value is 0 
# while honouring the gaussian variable model and conditional on the 
other 
# gaussian data values: 
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# A Gibbs sampler simulates a gaussian value at each point between it
s 
# boundaries ymin and ymax (here -10 and ycut where raw data is 0; 
# ymin = ymax = y where y is known) 
db.data <-gibbs(db = db.data, model = model.vario.Y, seed = 232132,  
                nboot = 10, niter = 100, flag.norm=FALSE, percent=0, 
toleps = 1, 
                radix = "Gibbs", modify.target = TRUE) 
db.data<-db.rename(db.data,"Gibbs.G1","Y") 
print(db.data,flag.stats=TRUE,names="Y") 
 
# For each simulation, gaussian values are now defined at all datapoi
nts 
# They will be used for classical gaussian simulation 
 
# Conditional simulation of gaussian variable 
grid.simu <- simtub(dbin=db.data, dbout=grid.simu, model=model.vario.
Y,  
                    neigh=neigh.simu, uc = "", mean = 0, seed = 23213
2, nbsimu = 1,  
                    nbtuba = 1000, radix = "Simu",modify.target = TRU
E) 
grid.simu <- db.rename(grid.simu,"Simu.Y.S1","Simu.Y") 
print(grid.simu,flag.stats=TRUE,names="Simu.Y") 
 
# Transform gaussian conditional simulation 
# into raw conditional simulation 
grid.simu <- anam.y2z(grid.simu,name="Simu.Y",anam=model.anam) 
print(grid.simu,flag.stats=TRUE,names="Raw.Simu.Y") 
 
# Visualization Gibbs sampling step 
histYp<-hist(db.extract(db.data,name="Yp"),plot=F,breaks=seq(-4,4,.1)
) 
hist(db.extract(db.data,name="Yp"),proba=T,breaks=seq(-4,4,.1), 
     xlab="Y+",col=8,main="", 
     xlim=c(-4,4),ylim=c(0,ceiling(max(histYp$density))))  
 
hist(db.extract(db.data,name="Y"),proba=T,breaks=seq(-4,4,.1), 
     xlab="Y",main="",col=8, 
     xlim=c(-4,4),ylim=c(0,ceiling(max(histYp$density)))) 
lines(seq(-4,4,0.1),dnorm(seq(-4,4,0.1),0,1),col=2)  
 
plot(vario.calc(db.data,lag=2.5,nlag=50),npairdw=T,npairpt=F, 
     ylab=expression(gamma),main="",xlab="Distance (n.mi.)",inches=0.
08) 
plot(model.vario.Y,add=T,col=2)  
 
# Display conditional simulation of Y 
plot(poly.data,col=4,asp=1/cos(mean(db.extract(db.data,"x2"))*pi/180)
,flag.proj=F) 
plot(grid.simu,name="Simu.Y",pos.legend=5,flag.proj=F,add=T) 
map("worldHires",add=T,fill=T,col=8);box() 
 
# Display conditional simulation of Z  
pal2 <- colorRampPalette(c("cyan", "yellow", "red", "black"), bias=4) 
plot(poly.data,col=4,asp=1/cos(mean(db.extract(db.data,"x2"))*pi/180)
,flag.proj=F) 
plot(grid.simu,name="Raw.Simu.Y",col=pal2(100),pos.legend=5,flag.proj
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=F,add=T) 
map("worldHires",add=T,fill=T,col=8);box() 
 
# Display conditional simulation of Z>0 
Raw.Simu.Y.sup0 <- grid.simu@items$Raw.Simu.Y 
Raw.Simu.Y.sup0[round(Raw.Simu.Y.sup0,2)==0.00] <- NA 
grid.simu <- db.add(grid.simu,Raw.Simu.Y.sup0) 
plot(poly.data,col=4,asp=1/cos(mean(db.extract(db.data,"x2"))*pi/180)
,flag.proj=F) 
plot(grid.simu,name="Raw.Simu.Y.sup0",col=pal2(100),pos.legend=5,flag
.proj=F,add=T) 
map("worldHires",add=T,fill=T,col=8);box() 
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Annex 4:  List  of  applicat ions i l lustrat ing the theory 

 

The applications presented in the document that illustrate the theory of geostatistics in 
fisheries and marine ecology are listed below according to the chapter in which they 
are presented. 

 

Chapter 2 Basic notions 

Application 2.1. Change of reference system 

Application 2.2. Change of reference system 

 

Chapter 3 Indices of spatial distributions 

Application 3.1. Center of gravity, inertia, and isotropy of hake 

Application 3.2. Global index of collocation of hake 

Application 3.3. Local index of collocation of hake ages 0 and 1  

Application 3.4. Microstructure index of hake  

Application 3.5. Area indices of hake 

Application 3.6. Number of spatial patches of hake  

 

Chapter 4 Structural analysis and variography 

Application 4.1. Omnidirectional variogram on demersal survey data 

Application 4.2. Comparing and averaging omnidirectional variograms in demersal 
survey 

Application 4.3. Directional variograms on acoustic data  

Application 4.4. Transitive covariogram of cephalopod concentrations 

 

Chapter 5 Dispersion and estimation variances 

Application 5.1. Global estimation with a variogram 

Application 5.2. Global estimation of cephalopod with transitive method 

Application 5.3. Global estimation in 1D for acoustic surveys  

 

Chapter 6 Kriging  

Application 6.1. Global estimation with a variogram, kriging the global mean over a 
polygon 

Application 6.2. Kriging herring eggs on a spawning bed, neighbourhood, cross-vali-
dation, and mapping 

Application 6.3.  Mapping cephalopod concentrations by transitive kriging 
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Chapter 7 Multivariate geostatistics 

Application 7.1. Correlating two variables: herring mean length and bottom depth 

Application 7.2. Fitting a linear model of coregionalization on herring mean length 
and bottom depth 

Application 7.3. Mapping herring mean length by cokriging 

Application 7.4. Mapping herring mean length by collocated cokriging 

Application 7.5. Mapping herring mean length by kriging with external drift 

 

Chapter 8 Thresholding and indicators 

Application 8.1. Exploring border effects upwards among a range of indicator sets  

Application 8.2. Multivariate analysis of the indicators of pelagic fish densities  

Application 8.3. Mapping anchovy with a topcut model 

 

Chapter 9 Geostatistical simulations 

Application 9.1. Performing a non-conditional simulation 

Application 9.2. Non-conditional simulation by turning bands 

Application 9.3. Principle of a conditional simulation 

Application 9.4. Conditional simulation of herring mean length 

Application 9.5. Conditional simulation of herring acoustic backscatter in the pres-
ence of zeros  
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