
ICES COOPERATIVE RESEARCH REPORT 

RAPPORT DES RECHERCHES COLLECTIVES 

NO. 191 

REPORTS OF THE WORKING GROUP ON 

METHODS OF FISH STOCK ASSESSMENTS 

Copenhagen, 9-16 June 1987 
Reykjavik, 6-12 July 1988 

Nantes, 10-17 November 1989 

International Council for the Exploration of the Sea 

Pal<egade 2-4, DK-1261 Copenhagen K 

DENMARK 

January 1993 

Recommended format for purposes of citation:
ICES 1993. Reports (3) of the working group on "Methods 
of fish stock assessment". Report No. 191. pp. 249. 
https://doi.org/10.17895/ices.pub.4607

ISSN 2707-7144
ISBN 978-87-7482-531-9





1 

2 

CONTENTS 

REPORT OF THE WORKING GROUP ON METHODS OF FISH STOCK ASSESSMENTS 

Copenhagen, 9-16 June 1987 

INTRODUCTION 1 
1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2 Terms of Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.3 Agenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

SURPLUS PRODUCTION MODELS ....................................... . 
2.1 Background ................................................... . 
2.2 Theoretical Framework ........................................... . 
2.3 Case Studies .................................................. . 

2.3.1 Generation of simulated data for production model comparison .............. . 
2.3.2 Estimation methods ......................................... . 
2.3.3 Results for traditional production models ............................ . 
2.3.4 The Deriso/Schnute model .................................... . 

1 
1 
2 
3 
3 
4 
4 
5 

2.3.5 Surplus production models - Shepherd's method . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.3.6 Attempts to fit halibut (1932-1986) catch/effort data with a model with uncatchable 

quantities of biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
2.3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

3 ESTIMATION OF RECRUITMENT THROUGH ABUNDANCE INDICES . . . . . . . . . . . . . . . . 8 

4 

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
3.2 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

3.2.1 Definition of an abundance index from a research survey . . . . . . . . . . . . . . . . . . 9 
3.2.2 Estimation of a year-class strength from abundance indices . . . . . . . . . . . . . . . . . 9 

3. 3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
3.3.1 Retrospective analysis ........................................ 11 
3.3.2 Comparison of 1985 estimates for North Sea cod recruitment . . . . . . . . . . . . . . . . 12 

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
3.4.1 Shepherd's and other techniques .................................. 12 
3.4.2 Retrospective analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
3.4.3 Preprocessing the survey stocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
3.4.4 Weightings ............................................... 13 
3.4.5 Admitting errors in VPA ...................................... 13 
3.4.6 Slopes/shrinking ............................................ 13 
3.4.7 Trends in catchability ........................................ 13 

INTEGRATED STATISTICAL ANALYSIS OF CATCH-AT-AGE AND AUXILIARY DATA 13 
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
4.2 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
4.3 Case Studies ................................................... 16 

4. 3.1 Test runs on Pacific halibut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
4.3.2 Test runs on North Sea cod ..................................... 17 
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

5 CONSEQUENCES OF REDUCED RELIABILITY IN FISHERIES STATISTICS ............. 19 
5. 1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
5.2 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

5.2.1 Approach taken by the Working Group .............................. 19 



5.3 

5.4 
5.5 

5.2.2 Data set used for sensitivity analysis and simulations . . . . . . . . . . . . . . . . . . . . . 19 
5.2.3 Types of misreportings and scenarios tested in simulations . . . . . . . . . . . . . . . . . . 20 
Results of Case Studies . . 21 
5.3.1 Sensitivity analysis ........................ . 
5.3.2 Simulation studies ......................... . 
Conclusions . . . . . . .... . 
Recommendations 

21 
21 
22 
22 

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
6.1 Immediate Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

6.2.1 Dissemination of the results ..................................... 24 
6.2.2 Special workshop ........................................... 24 
6.2.3 Next Working Group meeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

7 REFERENCES ...................................................... 25 

Tables 2.3.1- 5.3.5 ......................................................... 28 

Figures 2.3.1 - 5.3.6 ................................................. 45 

Appendix A: 
Appendix B: 
Appendix C: 
Appendix D: 
Appendix E: 
Appendix F: 

Working Papers . . 
Standard Notation . 

.......... 66 

.......... 69 
Summary of Topics . . . . . . . . . . . . . . . . . . . . . . . 71 
Software Routines and Packages used by Working Group ......................... 72 
Multicalibration through Maximum Likelihood ............................... 74 
Proposals for a Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

REPORT OF THE WORKSHOP ON METHODS OF FISH STOCK ASSESSMENTS 

Reykjavik, 6-12 July 1988 

PARTICIPANTS AND TERMS OF REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
1.1 
1.2 

Participants ........ . 
Terms of Reference 

. ............. 78 

.............. 78 

2 INTRODUCTION .................................................... 78 
2.1 Interpretation of "Stock Assessment" .................................... 78 
2.2 Requirements for Testing Methods of Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
2.3 Methods Tested ................................................. 79 

3 PROCEDURE FOR TESTING METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
3.1 Simulated Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
3. 2 Estimation of Parameters of the Last Data Year in Simulated Data Sets . . . . . . . . . . . . . . . 80 

3.2.1 Procedure for comparison of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 
3.2.2 Problems with the simplified procedure . . . . . . . . . . . . . . . . . . . . . 82 

3.3 Estimation of Historical Trends in Simulated Data Sets . . . . . . . . . . . . . . . . . 82 
3.4 Estimation of Parameters in Last Data Year for Real Data Sets ........... 82 

4 INTERPRETATION OF RESULTS .......................................... 82 
4.1 Estimates of Parameters in the Last Data Year of Simulated Data Sets . . . . . . . . . . . . 82 

4.1.1 Frequency distribution of percentage deviations from truth . 82 
4.1.2 Bias and precision indicators (MLR and RMS) 83 

4.2 Estimates of Historical Trends in Simulated Data Sets . . . . . . . . . . . . . . . . . . . . . . 84 
4.2.1 Data Set 4: Tuning methods (Figures 4.1-4.8) . . . . . . . ........... 84 
4.2.2 Data Set 4: Survivors and Extended Survivors (Figure 4.9) . . . . . . . . . . . . . . . . . 84 
4.2. 3 Data Set 4: Integrated methods (Figures 4.10-4.13) . . . . . . . . . . . . . . . . . . . . . . 84 
4.2.4 Data Set 4: Conventional and Separable VPA (Figures 4.14-4.15) . . . . . . . . . . . . . 84 



4.2.5 Data Set 6: Tuning methods (Figures 4.16-4.21) ........................ 84 
4.2.6 Data Set 6: Survivors and Extended Survivors (Figure 4.22) . . . . . . . . . . . . . . . . 85 
4.2. 7 Data Set 6: Integrated methods (Figure 4.23-4.25) . . . . . . . . . . . . . . . . . . . . . . . 85 
4.2.8 Data Set 6: Separable VPA (Figure 4.26) ............................ 85 

4.3 Applications to Real Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 
4.4 General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

5 FUTURE TESTING OF ASSESSMENT METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

Tables 2.1 - 4.15 ........................................... 89 

Figures 4.1 - 4.26 ........................................... 135 

Annex 1: Simulation of Data ................................................... 148 
Annex 2: Description of Methods ................................................ 154 

REPORT OF THE WORKING GROUP ON METHODS OF FISH STOCK ASSESSMENTS 

Nantes, France, 10-17 November 1989 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 

1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 
1.2 Terms of Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 
1. 3 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 

2 PRE-PROCESSING .................................................. 174 
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 

2 .1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 
2.1.2 General comments ........................................ 174 
2.1.3 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 

2.2 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 
2.2.2 Application to EGFS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 
2.2.3 Post-stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 
2.2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 

2.3 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 
2. 3.1 Introduction to general linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 
2.3.2 Application of the EGFS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 
2.3.3 Indices of abundance from commercial catch and effort data . . . . . . . . . . . . . . . 183 

2.4 Interpolating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 
2.4.2 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 
2.4.3 Empirical interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 
2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 

2.5 Sampling Scheme Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
2.5.1 Random and fixed survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
2.5.2 Systematic and simple random sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 
2.6.1 Pre-processing of data-conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 
2.6.2 Need for further studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 

3 STOCK ASSESSMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
3.1 Workshop in Reykjavik ........................................... 190 

3 .1.1 General comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
3.1.2 Comparisons of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
3.1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 



3.2 Directions in Further Development of Current Methods . . . . . . . . . . . . . . . . . . . . . . . 192 
3. 2.1 Further development of current methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 
3.2.2 Data sets for testing new methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
3.2.3 Future techniques for testing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 

3.3 Incorporation of Recruitment Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
3.4 Dangers of Tuning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
3.5 Logistic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 

4 IMPLICATIONS OF TIMING OF WORKING GROUP ADVICE AND CHANGE IN THE TAC 
YEAR ........................................................... 194 
4.1 Change in the TAC Year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 
4.2 Timing of Working Group Advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
4.3 Advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 

5 CONCLUSIONS .................................................... 195 
5.1 Advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 

5.2.1 Strategical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 
5.2.2 Operational considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 
5.2.3 Next meeting(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 

6. REFERENCES 197 

Tables 2.2.1 - 4.1 ........................................... . 199 

Figures 2.1.1 - 2.4. 7 ......................................... . 212 

Appendix A: List of Working Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 
Appendix B: Use of Diagnostics of ad hoc Tuning ..................................... 232 
Appendix C: North-East Arctic Cod Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 
Appendix D: Estimating the Proportion of a Stock in each Area (Region) when the Regional 

Catchabilities are unknown but the Stock redistributes in Space over Time: 
the Case where Mortality occurs, by J.M. Hoenig . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 



REPORT OF THE WORKING GROUP ON METHODS OF FISH STOCK ASSESSMENTS 

Copenhagen, 9-16 June 1987 

1 INTRODUCTION 
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D.W. Armstrong UK (Scotland) 
E. Aro Finland 
V.K. Babayan USSR 
F. Borges Portugal 
R. Chevalier France 
R.J. Conser USA 
W. Dekker Netherlands 
R. Deriso USA 
J. Efimov USSR 
M. Fogarty USA 
A. Fonteneau France 
G. Gudmundsson Iceland 
T. Jakobsen Nmway 
P. Kanneworff Denmark 
A. Kristiansen Faroe Islands 
F. Laloe France 
A. Laurec (Chairman) France 
J.J. Maguire Canada 
B. Mesnil France 
R.K. Mohn Canada 
O.K. Palsson Iceland 
J.G. Pope UK (England) 
D. Rivard Canada 
J.G. Shepherd UK (England) 
G. Stefansson Iceland 

Dr E.D. Anderson, ICES Statistician, attended part of 
the meeting. 

1.2 Tenns of Reference 

It was decided at the 74th Statutory Meeting 
(C.Res.1986/2:5: 17) that the Working Group on 
Methods of Fish Stock Assessments (Chairman: Mr A. 
Laurec) will meet at ICES Headquarters from 9-16June 
to consider: 

a) the development and applicability of 
stock-production models; 

b) the utilization of research survey data; 

c) the development and testing of statistical models for 
the joint analysis of catch-at-age and CPUE and/or 
survey data; 

d) the effect of reduced reliability of fishery statistics 
on stock assessments, and the implications for 
management advice. 

1.3 Agenda 

A total of 11 working papers are summarized in Appen­
dix A. They offered the basis for a discussion that took 
place during the first two days. 

Practical work then started on case studies corresponding 
to the various terms of reference. This work required the 
adaptation of a large number of computer programs, the 
main ones being listed in Appendix D. 

2 SURPLUS PRODUCTION MODELS 

2.1 Background 

Surplus production models have long been used in the 
assessment of exploited fish populations. These models 
are mathematically tractable and have minimal data 
requirements. In their most basic form, only a time 
series of catch and effort information is required to 
estimate the parameters of these non-age-structured 
models. In addition, surplus production models implicitly 
incorporate consideration of recruitment dynamics and, 
therefore, potentially can be used to evaluate the risk of 
recruitment overfishing. On the other hand, the models 
may be too simple and the underlying assumptions too 
restrictive to accurately represent the dynamics of fish 
populations. 

Surplus production models have not been widely used 
within the ICES area. In part, this reflects the availabil­
ity of relatively long time series of data on the age struc­
ture of many fish populations within this region that can 
be used in more complicated and presumably realistic 
models. The Working Group undertook an analysis to 
evaluate the performance of several surplus production 
models using simulated and real data sets. The ability of 
the models to recover the essential dynamics of the 
simulated population was used as the principal criterion 
for success. For the actual data sets, comparisons were 
made among the various models for a number of popula­
tion parameters. 

The net production of a population is defined as the 
difference between increases in biomass due to recruit­
ment and growth and losses due to natural and fishing 
mortality. For an unexploited population at equilibrium, 
recruitment and growth are balanced by natural mortal­
ity. Surplus production models are predicated on the 
assumption that the population is regulated by 
density-dependent factors. In theory, harvesting the 
population reduces intraspecific competition and 
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increases population production levels. This "surplus" 
production can be harvested without resulting in a 
change in population biomass levels. Additional assump­
tions underlying traditional surplus production models 
(Schaefer, 1954, 1957; Pella and Tomlinson, 1969; Fox, 
1971) include: 

1) Age-structure effects are assumed to be unim­
portant. It is implicitly assumed that the age 
structure of the population has a negligible 
effect on the factors affecting the production 
rate. 

2) The population is assumed to respond instan­
taneously to changes in density. Time delays in 
production processes are not considered in the 
traditional forms of surplus production models, 
and the progeny are assumed to age instan­
taneously to the adult population. 

3) The population is assumed to be closed or, 
alternatively, that immigration and emigration 
rates exactly balance. The population is assumed 
to be homogeneously distributed within the area. 
Extension of fishing areas to new or adjacent 
areas is not considered. 

4) We assume that the catchability rate is constant 
and that fishing effort has been standardized to 
be proportional to instantaneous fishing mortal­
ity. 

5) The fishing pattern has to remain constant. 
Changes in size limit regulations or gear regula­
tions (e.g., mesh size) may violate this assump­
tion. 

Clearly, these assumptions are too simplistic to accurate­
ly reflect the dynamics of real populations. Surplus 
production models must be considered to be a crude 
representation of actual stock dynamics. Nevertheless, 
the models do embody the essential elements of the 
principal hypotheses regarding fish population regula­
tion. Further, the traditional models can be modified to 
remove some restrictive and unrealistic features such as 
the assumption of no time delays, constant catchability, 
and spatially homogeneous populations (Fox, 1974; 
Freon, 1983). Laloe (WP 2) demonstrated a production 
model which considered environmental effects. Recent 
production models proposed by Deriso ( 1980) and gener­
alized by Schnute (1985) embody a "collapsed" age 
structure comprising recruits and post-recruits. These 
models also treat the individual elements of production 
(growth, recruitment, and mortality) explicitly and more 
realistically than the traditional models. 

The Working Group evaluated a sequence of increasing­
ly detailed production models ranging from the simple 
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traditional models of Schaefer and Pella and Tomlinson 
to the delay difference models of Deriso/Schnute and 
recent modifications due to Shepherd (WP 6). In addi­
tion, for the traditional models, the Working Group 
considered several approaches to parameter estimation 
ranging from simple methods which assume equilibrium 
conditions to more complicated methods which consider 
the non-equilibrium (transient) trajectory of the popula­
tion (Rivard and Bledsoe 1978). 

The principal distinction among the various models 
considered was the degree to which the individual com­
ponents of production are treated in aggregated form. 
We refer to the traditional models of Schaefer, Pella and 
Tomlinson, and Fox as aggregated or "lumped" models. 
These models do not distinguish among recruitment, 
growth, and natural mortality. Further, the parameters of 
these models cannot be related to specific biological 
processes or mechanisms of population regulation. Acco­
rdingly, the parameters cannot generally be estimated 
using auxiliary information based on biological studies. 
This point is important because it appears that the 
models are somewhat under-determined when only catch 
and effort data are used for estimation. The 
delay-differential models proposed by Walter (1973) and 
expanded by Marchesseault et al. (1976) and Fogarty 
and Murawski (1986) attempt to treat recruitment separ­
ately from growth and natural mortality; however, the 
functional forms used to represent recruitment processes 
are simplistic. Finally, the delay-difference models of 
Deriso (1980) and Schnute (1985) treat each of the 
components of production individually. Further, these 
models are expressed in terms of parameters with speci­
fic biological interpretations which can, in principal, be 
estimated independently of catch and effort data. 
Auxiliary information can, therefore, be used for estima­
tion. 

2.2 Theoretical Framework 

The dynamics of an exploited species may be expressed 
as: 

dB/dt = [R(B) + G(B) - M(B) - F(B) + n]B (2.2.1) 

where R(B), G(B), M(B), and F(B) are per capita rate 
functions of recruitment, individual growth, natural 
mortality, and fishing mortality and n represents a ran­
dom disturbance (Schaefer and Beverton, 1963). The 
traditional surplus production models of Schaefer (1954, 
1957), Pella and Tomlinson (1969), and Fox (1971) treat 
recruitment, growth, and natural mortality in aggregate 
using a compensatory population function. The model 
then takes the simple form: 

dB/dt = [rp(B) - F + n]B (2.2.2) 



where 'P (B) is the compensatory function [e.g., logistic 
(Schaefer 1954, 1957), Richards (Pella-Tomlinson, 
1969), or Gompertz (Fox, 1971) functions]. In practice, 
the stochastic differential equation model is often 
replaced by the corresponding deterministic form. The 
rate of change of yield is given by: 

dY/dt = F B (2.2.3) 

At equilibrium, for the deterministic model, we have: 

'P(B) = F B (2.2.4) 

which can readily be solved to find the maximum 
sustainable yield (sometimes referred to as the maximum 
equilibrium yield) and the level of fishing mortality or 
fishing effort at which yield is maximized. 

The non-equilibrium or transient yield can also be 
studied directly. The short-run yield is given by: 

Y(t) = J F(t) B(t) dt (2.2.5) 

Often, biomass estimates will not be directly available. 
In this case, catch per unit effort (CPUE) is assumed to 
be directly proportional to biomass. By definition, F = 

qE where q is the constant of proportionality between 
the instantaneous fishing mortality (the catchability coef­
ficient) and standardized fishing effort (E). Therefore 
we have: 

Y(t)/E(t) = qB(t) (2.2.6) 

where Y(t)/E(t) is the catch per unit effort. The assump­
tion of strict proportionality between F and E can be 
relaxed (e.g., Hilborn, 1979), although only at the 
expense of additional parameters and more complex 
fitting procedures. 

It is implicitly assumed in the traditional surplus produc­
tion models that there are no time delays between spaw­
ning and recruitment. Clearly, this cannot hold in gen­
eral. Walter (1973) proposed a modification of the 
Schaefer and Fox models which explicitly considered 
time delays. This model may be expressed in general 
form as: 

dB/dt = { f [B(t) ] + g [B (t-r)] - F} B (2.2.7) 

where g[B(t-r)] is a function representing the effect of 
spawning biomass on recruitment. This assumes that 
there is no significant error in taking production to be 
defined by exploitable rather than spawning biomass. 
Closed-form solutions are not generally possible for the 
time-delay production model. Approximate solutions are 
possible, however. Marchesseault et al. (1976) and 
Fogarty and Murawski (1986) give applications of other 
time-delay models of this general form. 

Deriso (1980) introduced an alternative approach in 
which each of the individual elements of production are 
treated separately. The general form of the model is: 

B(t+ 1) = (1 +g) s(t) B(t) + s(t) s (t-1) g [B(t-1)] + 
h[B (t + 1-r) ] (2.2. 8) 

where g is the Brody growth coefficient [exp(-K)], s is 
the survival fraction, and h[B(t + 1-r)] is the 
stock-recruitment function. The advantage of this formu­
lation relative to traditional surplus production models is 
that the model is expressed in terms of parameters which 
can be estimated independently from CPUE or biomass 
data. For example, the Brody growth coefficient may be 
estimated independently from age and growth studies and 
included in the model as a fixed parameter. Alternative­
ly, Bayesian methods can be used if prior estimates of 
some parameters and their variances are available. This 
general model formulation also allows specification of a 
more realistic recruitment function; traditional formula­
tions implicitly include recruitment but in somewhat 
implausible functional form. One difficulty with this 
general approach is that it is somewhat difficult to obtain 
reasonable estimates for all of the parameters from catch 
and effort or biomass data alone. Fogarty and Murawski 
(1986) proposed a simplified model in which the growth 
and natural mortality terms were not separable without 
additional information. Shepherd (WP 6) provided 
results for a model in which natural mortality was spec­
ified in advance and growth and recruitment were treated 
in aggregate. The Shepherd model is based on the rela­
tionship: 

B(t+ 1) = B(t) + P(t)- Y(t) (2.2.9) 

where P(t) is the net production to the exploited stock 
and all other terms are defined as before. The 
production-to-biomass ratio (P/B) is assumed to follow: 

PIB = a/(1 + B/K) - M (2.2.10) 

where a is the maximum rate of biomass increase, K is 
the biomass level at which density-dependent effects 
predominate, and M is the natural mortality rate. Natural 
mortality is assumed to be known. Further, Shepherd 
(WP 6) proposes that the parameter a, which is a 
measure of resilience, be estimated qualitatively based 
on known or inferred characteristics of the stock. 

2.3 Case Studies 

2.3.1 Generation of simulated data for production 
model comparison 

An age-structured surplus production program was mod­
ified to produce data for the comparison of production 
models. The modifications were the inclusion of a stock-
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recruit relationship and the option for adding either 
measurement or process noise. The standard program 
requires the specification of weight at age, natural and 
fishing mortalities, and selectivity. The stock-recruit 
modification requires fecundity at age (FEC) to generate 
potential recruitment (PREC): 

PREC = E N(a) FEC(a) 

The potential recruitment is deduced by a Shepherd-style 
density-dependent expression. The fecundity coefficients 
above are analogous to Shepherd's parameter a. The 
critical density and shape parameters (k and g) are 
unchanged from his formulation: 

REC = PREC/[1 + (B/k)g] 

Equilibrium values were obtained by finding stable age 
distributions over a range of fishing mortalities and then 
iteratively scaling the populations until recruitment was 
in equilibrium. The equilibrium yield versus fishing 
mortality and stock-recruitment curves are shown in 
Figures 2.3.1 and 2.3.2. The method of determining 
equilibrium yield is similar to Shepherd's (1982) method 
of combining yield-per-recruit and stock-recruitment 
relationships, except that the effective spawning biomass 
is not the same as the density-dependent biomass and 
both are functions of the age structure. A slightly domed 
stock-recruitment function was chosen which corre­
sponds to an MSY of approximately 1,500 at a biomass 
of 5,500. The recruitment is 908 at MSY and the fishing 
mortality is just over 0.5. 

After the parameters had been determined, a 20-year 
projection was run with the fishing effort increasing for 
ten years and then more slowly decreasing for ten years 
(see Table 2.3 .1). Two more projections were carried 
out, the first with the addition of measurement noise and 
the second with process noise. In either case, the noise 
was log normal with a log standard deviation of 0.2. 
Measurement noise was added to numbers and catch at 
age, as well as effort, after the simulation. It was not 
added to weight at age. Process noise was added to 
fishing mortality, fecundity, and the density-dependency 
parameters. (It should have been added to natural mor­
tality and weight at age, but was not.) The results of the 
simulations with measurement and process are in Table 
2.3.2. The simulated data sets had a larger dynamic 
range (F ranged from 0.3 to 1.25 in 20 years) and lower 
noise levels than are commonly seen in fisheries data. 
This means that the methods tested would have a rela­
tively easy task compared to the real data situation and 
were not severely tested by the simulated data. 

2.3.2 Estimation methods 

The Working Group considered several methods of 
fitting traditional surplus production models using both 
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equilibrium and non- equilibrium approaches. The Group 
employed a simple predictive regression of catch per unit 
effort on effort as the first method because this technique 
has been widely applied in fitting surplus production 
models. This method is problematical due to confound­
ing of the dependent and independent variables and 
because the transient behaviour of the system is not con­
sidered. The second method used the equilibrium appro­
ximation method suggested by Gulland ( 1961) based on 
averaging effort over k/2 years, where k is the number 
of significant year classes in the fishery. The third 
method employed the numerical integration method of 
Rivard and Bledsoe (1978) which directly takes into 
account the non- equilibrium (transient) stock dynamics. 
The Group also used the method of Schnute (1977) 
based on time-averaged regressors. This technique is 
also a non-equilibrium method. The final two methods 
were applied to models in which the individual compo­
nents of production are treated in greater detail. 

In the report, these four methods are referred to as: (1) 
equilibrium, (2) equilibrium approximation, (3) transi­
tional, and (4) time average, respectively. 

For methods in which an estimate of the catchability 
coefficient is produced, several additional population 
parameters were estimated in addition to the maximum 
sustainable yield (MSY) and effort level at MSY (Emsy). 
These were biomass at MSY (Bms), the maximum pro­
duction to biomass ratio (P/B), maximum biomass 
(Bmax), current biomass (B,), and current fishing mortal­
ity (F,). It was possible to estimate these parameters only 
for the transitional method of Rivard and Bledsoe (1978) 
and the method of Shepherd (WP 6). 

The Group considered the Deriso (1980) model as gener­
alized by Schnute (1985). This method allows two esti­
mation procedures: 1) a non-linear estimation procedure 
assuming process error only and 2) a simulation 
approach which assumes that the input data are subject 
to measurement error. The Working Group also applied 
the method of Shepherd (WP 6) as implemented in a 
computer algorithm provided for this meeting. This 
method fixes some parameters to reduce the estimation 
problem. A mapping of the sums of squares surface is 
used as a diagnostic tool in estimating the parameters. 
The Shepherd model was fitted for some stocks using 
two different functional forms for the recruitment-growth 
sub-model: I) Beverton-Holt type and 2) Schaefer type. 

2.3.3 Results for traditional production models 

Results of the test runs on simulated data were particu­
larly instructive. Comparisons among the various estima­
tion methods for simulated data are given in Tables 
2.3.3-2.3.8, and plots of the raw data and fitted equilib­
rium curves are provided in Figures 2.3.3-2.3.8. It 
should be noted that the transitional paths should also be 



considered and not simply the equilibrium curves as 
shown on these figures. 

Several common themes emerge from a consideration of 
the model using the traditional model forms. First, the 
use of the equilibrium fit to the Schaefer model consist­
ently resulted in overestimates of the maximum 
sustainable yield and the effort at MSY. An immediate 
consequence of this result is that the stock would be 
overexploited if the management strategy was based on 
results of the equilibrium fitting. The Schaefer model 
using the equilibrium approximation method also consist­
ently overestimated MSY and Emsy for the simulated 
data. MSY estimates for the Pella-Tomlinson model 
were generally more consistent with the actual stock 
dynamics using both the equilibrium and equilibrium 
approximation methods. The methods, therefore, appear 
to be more robust to the estimation method per se than 
to the specification of the model structure. The simulated 
stock was generated using an underlying stock dynamic 
which differed considerably from the logistic form impli­
cit in the Schaefer model. The greater flexibility 
afforded with the inclusion of a shape parameter in the 
Pella-Tomlinson model allows this model to mimic more 
complex stock dynamics. However, there are consider­
able estimation problems which result from the inclusion 
of the extra parameter due to the correlation among 
parameters, particularly m and q. One possible approach 
to reduce this problem would be to fix the shape para­
meter at a value consistent with known or assumed 
recruitment dynamics in much the same way that Shep­
herd (1982) suggested using ancillary information to fix 
the shape parameter of his 3-parameter stock-recruitment 
function. 

The time-average method of Schnute performed some­
what better than the equilibrium and equilibrium 
approximation methods in estimating the actual MSY 
level, despite the fact that this method is based on the 
Schaefer model; however, this method consistently 
overestimated the Emsy level. A principal advantage of 
the Rivard-Bledsoe approach is that the transitional 
behavior of the stock is treated explicitly and examin­
ation of the transitional path is very instructive. 

All methods gave reasonably consistent estimates of 
MSY and Emsy for the actual data sets regardless of the 
model form and the estimation procedure. The single 
exception to this pattern was the estimates for North Sea 
cod using Schnute's (1977) time-average method which 
appeared to provide unreasonable results. It is, of 
course, not possible to evaluate the reliability of any of 
the methods for the actual data sets since the true stock 
dynamics are not known. 

2.3.4 The Deriso/Schnute model 

The Working Group was fortunate to have available a 
microcomputer implementation of the Deriso/Schnute 
delay-difference method (Schnute, 1985) written by Carl 
Walters. Since it was intended for didactic rather than 
operational use, it was difficult to carry out the necess­
ary runs and extract the results. In addition, the software 
used was a preliminary version, not originally intended 
for the purpose for which it was here used, and the 
Working Group understands that important versions are 
under development. 

The method utilizes a biomass-production representation, 
with the Deriso (1980) auto-regressive model for growth 
in weight, and explicit representation of the 
stock-recruitment relationship using the Deriso (1980) 
versatile-functional form, which includes the Schaefer, 
Beverton-Holt, and Ricker forms as special cases. It is, 
therefore, a delay-difference GMR-explicit model of 
very general form. Many other models considered are, 
in fact, special cases of this form. The model is fitted by 
automatic numerical optimization on any subset of its 
seven main parameters (in principle). 

The results of these runs are, therefore, given in less 
detail than for the other methods, but are summarized in 
Tables 2.3.3-2.3.8. The Group's experience, which was 
confirmed by those members with previous experience 
with the method, was that, given good data and excellent 
starting values, the method could usually find a solution 
for any two of the three parameters q, A, and B. 
Attempts to solve for these three parameters simulta­
neously were usually unsuccessful. 

Sequentially varying the parameters to be fitted did not 
necessarily lead to a converging solution and, on real 
data, was more likely to lead to divergence to extreme 
parameter values, even when the starting values were 
near to the correct solutions (insofar as these are 
known). 

These results, therefore, confirm the general conclusion 
that it is not possible to determine more than one and a 
half parameters from stock-production data sets, and that 
there is a large class of possible alternative sets of para­
meter values which can fit the data, of which not all are 
reasonable or feasible. Automatic optimization of three 
parameters (or of two with user intervention) usually 
leads to solutions wandering in parameter space without 
noticeable benefit. It is, therefore, most important to 
explore the range of adequate solutions, which is 
time-consuming, using programs of this type. The diffi­
culties encountered are common to most methods involv­
ing automatic fitting of multi-parameter models (Walters 
and Ludwig, 1981). 
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The results on specific data sets were: 

a) Simulated data 

On the exact data, if (and only if) given good starting 
values, the method easily found solutions close to the 
true ones. Cycling the parameters fitted or fitting three 
parameters, led to solutions departing from the starting 
values, failure to converge, or overflow failure. Where 
converged solutions were obtained, the estimates of 
MSY, etc. were generally reasonable, but the interpreta­
tion in terms of q (and, therefore, current biomass) was 
not. 

Very similar results were obtained with the noisy data 
sets, except that failure was more common. It seemed 
that the options for allowing for measurement or process 
error worked better on data sets where the errors were 
of the opposite type, which is a bit strange. 

b) Pacific halibut 

Good starting assumptions were available for this data 
set, and the method had no difficulty returning to these 
if perturbed slightly. Other starting assumptions led to 
different results, depending on which parameters were 
optimized. The method generally failed to converge 
unless the starting assu~ptions were very well con­
sidered. Significantly different results were obtained 
using the measurement- and process-error options. 

c) North Sea cod 

Given reasonable starting assumptions, the method con­
verged to a solution which gives an unreasonable esti­
mate of MSY and biomass (by at least a factor of 10). 

d) Southern horse mackerel 

No converged solutions were obtained for this stock (the 
program usually stopped due to execution errors in the 
first few iterations). The true solution (and, therefore, 
good starting assumptions) is not known for this stock, 
and other methods (including eyeball analysis) indicate 
that the data are not consistent with a stock-production 
model because of secular changes. 

2.3.5 Surplus production models - Shepherd's 
method 

Shepherd's working paper "Towards improved stock­
production models" (WP 6) present a non-equilibrium 
production model which is described by the three essen­
tial parameters: catchability and two production terms. 
The production parameters are resilience a', and pris­
tine biomass Brnax. The product of resilience and natural 
mortality is the maximal P/B ratio at zero biomass. 
Natural mortality is not estimated in the procedure but 
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rather supplied by the user. Ranges of two other parame­
ters are selected to ensure that only "reasonable" values 
are used. The final parameter (only) is then determined 
by fitting to the data. In the simplest case, the fit is 
obtained simply by constraining the model to pass 
through the mean estimated production and biomass. A 
goodness-of-fit map is produced to aid the user in para­
meter estimations. 

The method is constructed in terms of net production, 
yield, and biomass rather than a catch and CPUE. The 
formulae and their derivations are not presented here 
except for the equation for MSY. It was noticed that the 
equation (Equation 6 in WP 6) did not produce the same 
values as the author's computer program, which in fact 
used a different equation. The MSY in the computer 
program is calculated from: 

1-B r;---:-
MSY = c/M B (~)/ y 1 + a 

msy B 
max 

where a' is the resilience and Bmax the virgin or pristine 
biomass. 

The same mapping and fitting procedure can also be 
used with other production models (including that of 
Schaefer). This is done either explicitly or by setting the 
natural mortality to a large number, say 1 ,000, and the 
resilience to a small number such that their product is 
the desired maximum estimated P/B ratio. An example 
of a Schaefer fit is shown in Figure 2.3.13. 

The procedure was reprogrammed into APL and run on 
a micro-computer. The standard six data sets were run 
by a user who was unacquainted with the stocks from 
which they came and had not previously used the model. 
Because the parameter estimation is interactive, better 
results would be expected from a user who is familiar 
with the stocks. Also, ancillary information would aid in 
the choice of appropriate parameter values. Natural 
mortality was taken as 0.2 for all runs and the terminal 
biomass was picked such that MSY would be in the 
vicinity of the largest catch in the catch history (though 
this is not a recommended procedure). Results are 
summarized in Table 2.3.2. Figures showing the fit 
production curve and scatter of data points are given in 
Figures 2.3.9-2.3.15. In the simulated data runs, both 
MSY and B were underestimated, the former by about msy 

20% and the latter by about 40%. The results were 
poorest for the measurement error scenario. When the 
measurement-error data were rerun using biomass in 
place of CPUE, the program performed much better. As 
these observations are based on a single stochastic run, 
it is impossible to make general conclusions from this 
observation. The underestimation is an expected bias, 
given the very crude fitting procedure used in the pres­
ent implementation, and probably not a fundamental 
feature. 



It was observed that the residual surface was a most 
useful output. The minimum of the surface was banana­
shaped. The sides of the minimum were steeper when 
the solution was constrained to a Schaefer fit. 

2.3.6 Attempts to fit halibut (1932-1986) 
catch/effort data with a model with uncatch­
able quantities of biomass 

The model (Working Paper 2) used is a Schaefer model 
where the "qfB" term is replaced by qf(B-aBrnax) and H 
is a function of a, the latter being the proportion of 
pristine biomass which is not accessible: 

H(a) = H0 (1-a) 

dB/dt = H[a(i)]B, (B,- BmaJ - qf (i)[B, - a(i)Brnaxl 

where i being the year from 1932 (i = 1) to 1986 (i 
55). a is fitted by 

a(i) = Ao + i (A/55) + i(iA2)/(55 x 55) 

The other parameters are: MSY (a = 0), Fm,y (a = 0), 
Bmax, and B

0 
(initial biomass). 

The criterium to be minimized is: 

55 

SC=L [(P;-P)IPJ 
i=l 

(The program makes adjustment m non-equilibrium 
conditions, using the sub-routine E04FDF of NAG 
Library.) 

Results are: 

MSY (a= 0) 88.8 

Fmsy (a = 0) 509 

Bmax 503 

Bo 236 (with SC = 0.22) 

Ao 0.34 

A, 0.36 

A2 -1.11 

The square root of SC/55 is 0.06, giving the relative 
mean difference between observed and fitted catches. 
The value of lOO(SCT-SC)/SCT, where 

55 

SC=L [(P;-P)IPF 
i~l 

is 94, which indicates a good fit. 

Table 2. 3. 9 gives the observed and fitted catches, 
biomass at the end of the years, catchabilities, values of 
the a coefficient, and the difference between observed 
and fitted catches. 

This good fit may be related to the high numbers of 
parameters incorporated in the model. External informa­
tion about the existence and importance of an 
unaccessible biomass may be necessary in practice to 
reduce linearity problems. In such a case, however, the 
suggested model may prove useful, to account for catch 
and effort relationships that would be difficult to explain. 

The principal feature JS the existence of two "stable" 
periods separated by a transition period (see Figure 
2.3.16). 

The first period was characterized with a values between 
0.2 and 0.3, high MSY effort, an MSY of about 60, and 
relative independence between catch and effort. In the 
1960s, increasing effort could lead to increasing catches 
by accessing to new resources, that is, quick decrease in 
a values. At the end of this transition period (1972), the 
fishery was in a large overexploitation situation in a 
Schaefer-type model. The decrease in effort led to the 
present MSY effort level. The fishery would be now on 
the way to reach MSY equilibrium, which could be of 
about 90. 

2.3. 7 Conclusions 

Several general conclusions can be made regarding the 
use of surplus production models. First, it is clear that 
the number of parameters that can be estimated from 
catch and effort data alone is limited. John Shepherd has 
in fact suggested that only one and a half parameters can 
actually be estimated. The Working Group suggests that 
the "one-and-a-half rule" be kept firmly in mind when 
attempting to fit surplus production models. More com­
plicated production models with more parameters are 
particularly difficult to reliably estimate without ancillary 
information. The models proposed by Deriso (1980) and 
Schnute (1985) are framed in terms of biologically 
meaningful parameters which can be estimated indepen­
dently of catch and effort data. It is clear that use of this 
auxiliary information is essential in estimating the para­
meters of these methods. This philosophy can be 
extended for any of the more traditional methods. For 
example, independent estimates of q can be made and 
used directly in fitting these production models. Similar­
ly, fixing the shape parameter in the Pella-Tomlinson 
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model to be consistent with known or inferred recruit­
ment dynamics appears to be desirable. 

Despite their apparent simplicity, the traditional surplus 
production models performed reasonably well on simu­
lated data, although Ernsy tended to be overestimated. The 
Pella-Tomlinson model appears to be sufficiently flexible 
to mimic complex stock dynamics. However, auxiliary 
information should be used in fitting this model. In 
principle, the delay-difference models which treat 
recruitment, growth, and mortality individually are 
preferable. However, they almost invariably will require 
the use of auxiliary information. 

The Working Group recommends that special care be 
given to consideration of the sums of squares or maxi­
mum likelihood surface when using any of the "auto­
matic" fitting techniques. Correlations among parameter 
estimates can lead to nonsensical results; again, the use 
of auxiliary information can be used to resolve some 
ambiguities indicated by an examination of the surface. 

A careful consideration of the underlying assumptions of 
the models should be made. For example, Laloe (WP 2) 
has clearly demonstrated the problems which result when 
an expansion of the fishing grounds has occurred. Simi­
lar! y, changes in fishery regulations during the time span 
under consideration will result in a violation of the 
assumption of constancy of exploitation patterns. 
Changes in catchability with changes in gear type or 
population density must also be considered. If least 
squares or other objective fitting criteria are employed 
for estimation, the assumptions of the method must also 
be considered. For example, are the residuals indepen­
dent? Autocorrelation in the residuals will affect infer­
ences on the reliability of the parameters. 

Rivard (1987a) suggests a general strategy for fitting 
surplus production models: choose a robust estimation 
procedure for initial estimation. The Gulland equilibrium 
approximation method appears more robust than other 
methods when the number of observations is small. If 
this method produces estimates of MSY and Em.,y which 
are within the range of the historical series, more com­
plicated procedures can be tried which directly account 
for the transient population dynamics. In fitting these 
non-linear models, several sets of starting values should 
be tried to guard against local minimum problems. Use 
independent estimates of the parameters where possible. 
Examine the parameter estimates and their standard 
errors. Are the coefficients conceptually acceptable with 
regard to sign and statistically significant? If not, the 
model should be discarded. Plot the results and analyze 
the transient path in relation to the equilibrium curve. 
Remember that the equilibrium curve and the actual 
(non-equilibrium) data may be quite different. Deviations 
from the equilibrium curve may be attributed to the 
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occurrence of dominant year classes or changes in fish­
ing patterns. 

Consideration of these issues should go a long way 
towards removing difficulties associated with the applica­
tion of surplus production models in the past. Despite 
the potential limitations of these models, they can be 
used to provide insight into the basic stock dynamics 
which are not considered in some analytical methods 
(e.g., yield per recruit). The ideal approach would 
appear to be the use of models with full age structure 
and explicit consideration of recruitment dynamics. The 
models of Deriso and Schnute provide an intermediate 
approach when comprehensive data on the age structure 
of the population are not available; these methods may 
be particularly useful when used in conjunction with 
ancillary information. 

3 ESTIMATION OF RECRUITMENT 
THROUGH ABUNDANCE INDICES 

3.1 Background 

Research survey sampling schemes have usually been 
based upon spatial strata. The sampling variances have 
been calculated (when they have been calculated) using 
the corresponding formulae. When the strata considered 
show a high within-stratum heterogeneity, high variances 
result for the abundance indices. Reducing the geo­
graphical extension of each stratum would reduce the 
variance, but it becomes increasingly difficult to obtain 
enough observations in every stratum. It appears that 
stratification methods tend to consider any spatial vari­
ation within a stratum as a perturbing noise, whilst it 
may really correspond to biological characteristics, 
which can be partially reproduced from year to year. 

After the construction of an abundance index from a 
survey, procedures must be derived for estimating the 
recruitment on the basis of past relationships between 
recruitment (generally estimated through VPA) and 
corresponding abundance indices. 

The calibration of a single series of research survey 
indices against VP A year-class strengths was dealt with 
at a previous meeting of this Working Group (Anon., 
1984). This has not eliminated all of the problems, and 
assessment working groups have had to face several 
difficulties when trying to estimate recruitment. 

The questions concern five main topics: 

1) Is it helpful to search for consistency between the 
past observed values for recruitment and the present 
estimates? 



2) How should the estimates coming from different 
sources be combined? 

3) Should the slopes of the regression lines be forced to 
be 1? 

4) Is it legitimate to consider the results from VP A as 
error free? 

5) Should possible trends in catchability be considered? 

3.2 Theoretical Considerations 

Although the following discussion will refer to the esti­
mation of recruitment, most of the remarks would be 
relevant for any estimation of abundance, i.e., for any 
individual age group, exploited or not. 

3.2.1 Definition of an abundance index from a 
research survey 

Such an abundance index is usually defined by using the 
estimation formulae corresponding to stratified sampling 
schemes. Other possibilities could be considered. The 
most promising ones are related to various mapping 
procedures. A simple trend-surface-analysis technique 
was discussed during the meeting (Houghton, pers. 
comm.). It makes it possible to take into account the 
geographical macroscale distribution of the fish. In 
addition to global abundance indices, it provides indica­
tions on the apparent distribution, which will help future 
interpretations. This will be especially interesting when 
several years are considered. It is possible to consider a 
response surface relating the apparent abundance to 
space and time. The existence of terms corresponding to 
space x year interactions will show changes in the spatial 
distribution which will have to be taken into account 
when estimating year-class strengths. 

Another related technique involves the fitting of a 
multiplicative model when, year after year, the hauls are 
set at the same locations. This creates a large number of 
parameters, since the space effects will be described by 
as many parameters as set locations. It would probably 
be preferable to reduce the dimensionality by assuming 
that the space effect can be described by some simple 
functions of latitude, longitude, and possibly depth. This 
is done by trend or response-surface techniques. 

Another possibility is afforded by kriging and related 
methods (Matheron, 1965). A connection can be estab­
lished with response-surface techniques by using 
so-called universal kriging. This technique considers that 
the existing estimated spatial distribution results from the 
combination of a trend, described by some simple func­
tion, and a random process, the structure of which can 
be characterized by a variogram (essentially the mean 
square difference as a function of the distance between 

points), which is closely related to a spatial autocorrela­
tion function. Response-surface fitting by least squares is 
directly related to universal kriging (when the variogram 
is limited to the so-called nugget effect, i.e., the random 
component is white noise). 

Whatever the technique used, it appears to be very 
important to map the results of research surveys in order 
to characterize the main features of the spatial distribu­
tion, the differences from species to species and possibly 
from year to year. 

3.2.2 Estimation of a year-class strength from 
abundance indices 

Whatever the technique used, a logarithmic transform­
ation will be considered. On the logarithmic plots, VPA 
estimates will be put on the x axis and research survey 
indices on the y axis. In this case, the calibration line 
corresponds to the regression line where y is predicted 
from x. Whenever considering the other regression line 
that will predict x from y, the method will be called a 
predictive one. This may not be the best convention (it 
differs from that used previously by the Working 
Group), but is used for consistency with background 
papers. 

Points I and 2 can be related. The past observed values 
bring by themselves, regardless of their use to calibrate 
the other abundance indices, information about the 
recruitment one is trying to estimate. When a single 
series of surveys is considered, two basic estimations 
can be considered: the historical average (or more pre­
cisely the geometrical mean of past values, since logar­
ithmic transformations should be performed) and the 
estimation suggested by the simple calibration (inverting 
the regression equation to predict survey indices from 
VPA). Working Paper 9 shows that this leads, when the 
series of recruitment estimates is considered as normal 
white noise, to the traditional predictive regression line. 
This in fact is equivalent to "shrinking" values that 
would be obtained through calibration towards the his­
torical geometrical mean considered as a pole. Such a 
shrinking can also be considered when several abun­
dance indices are simultaneously considered for calibra­
tion. Using the Kalman filter, as previously discussed by 
the Working Group (Anon., 1985a; Pope, 1986), corre­
sponds to another possibility to take advantage of the 
past series of recruitment estimates. The two points of 
view can be easily related. The key question is, in fact, 
to know whether or not it is useful to consider the past 
series, and especially its average value, as valuable first 
information. 
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It appears that the simplest combination can be offered 
by weighted averages. Any weighting should take into 
account the variance of the different estimators and the 
length of the corresponding series to avoid attraction by 
indices corresponding to short time series that will create 
good fittings which are likely to be unreliable. Working 
Paper 4 gives a very simple way for combining different 
indices. It considers, for each index, the empirical cali­
bration line and, for each past observed value of recruit­
ment, the error that would have been committed using 
this line to estimate recruitment from the abundance 
index. These errors are squared and then averaged. 
After correction by a multiplicative factor equal to 
(n-2)/n, if n is the number of points available for the 
calibration, this will give an estimate of the mean square 
error. Weights given to the different indices will be 
proportional to those estimates of mean square error. 
The length of each time series does not appear directly 
in the weighting, but the n-2/n correction factor should 
avoid biases in the estimation of variances. 

Working Paper 10 fits a multiplicative model to various 
abundance indices, separating year effects from fleet 
effects (each index being associated by convention to a 
"fleet"). It also tries simultaneously to estimate the 
unknown variances associated with the various fleets by 
using an iterative least-squares procedure. In this tech­
nique, the abundance index given for past years by VP A 
is considered as just another fleet index, the variance of 
which is also estimated (see following discussion of 
Point 4). 

The maximum likelihood approach can be generalized 
(see Appendix E) and provide estimates of the last year's 
recruitment through a "multicalibration" procedure that 
can also consider the historical geometrical mean, if 
required. The Kalman filter approach can also automati­
cally take into account the existence of several abun­
dance indices and the historical geometrical mean. 

The different variances associated with the various indi­
ces are not only useful for a possible weighting. If sev­
eral recruitment or abundance indices are to be used 
directly in VPA tuning (see Section 4), estimates of the 
respective variances may be required. On the other 
hand, it must also be kept in mind that estimating vari­
ances through short time series is statistically very diffi­
cult, if not dangerous. Extreme weightings, giving a 
very high influence to an individual index, should be 
avoided. The danger of getting, "by chance", a very low 
estimate for an individual variance becomes progressive­
ly higher when the number of indices increases, as will 
happen if highly disaggregated data are used. Another 
reason for avoiding the multiplication of disaggregated 
abundance indices is the fact that weighting by the recip­
rocal of variances is optimal only when covariances in 
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the errors from one index series to another one are 
negligible. This will not necessarily be true when several 
indices are obtained in a similar way (e.g., several 
vessels operating at the same time of the year in neigh­
bouring areas can be affected in a similar way by 
hydrographic events). Finally, it should be recalled that, 
due to the statistical difficulties of estimating variances, 
especially when other parameters such as regression 
coefficient are simultaneously estimated, any direct 
information will be highly valuable. 

The problems related to Point 3 (slope of the regression 
lines) can be viewed from various ways. Several reasons 
argue for slopes equal to 1. First of all, for the sake of 
simplicity, it appears reasonable to assume that CPUE is 
proportional to abundance, at least for research survey 
vessels. Assuming a slope equal to 1 will reduce the 
number of unknowns in the fitting procedures and 
consequently reduce the variability of the estimations. A 
number of simple statistical tools (e.g., basic linear 
models) can be more easily used, and the integration of 
abundance indices within VPA tuning procedures will 
become much easier (see, for instance, GUM, ANOV A, 
or CAGEAN in Section 4). On the other hand, on a 
number of experimental diagrams, plotting abundance 
indices against VPA results, "convincing" departures 
from a slope of 1 can be observed for the slopes of the 
regression lines. One must, however, avoid being con­
vinced too easily. Testing the statistical significance of 
an apparent departure from the simplest hypothesis will 
be helpful. It cannot also be excluded that a real depar­
ture could be due to errors in the VPA as an estimate of 
the true abundance. Misreading of the ages or 
density-dependent natural mortality could, for instance, 
create such phenomena. In such cases, the relationship 
with the true abundance could well show a slope equal to 
1 on the logarithmic diagram, even when that with VPA 
results does not. 

The problems will be especially severe if calibration 
lines have a slope less than 1. In such a context, extreme 
estimated values far from the historical average can be 
obtained for recruitment. This would make it dangerous 
to accept values different from 1 for the slope without 
shrinking the estimators towards the historical geometri­
cal mean. However, up to now in most examples, this 
has not been the case. This experience is confirmed by 
the case studies discussed in the following subsection 
and would suggest that the risks introduced by freely 
estimated slopes are not very severe. 

Point 4 has been touched upon several times in the 
previous paragraphs. VPA outputs obviously do not 
really give error-free estimates of abundance. Trying to 



estimate an extra unknown variance will, however, 
complicate a problem which is not especially simple. In 
fact, the only attempt to deal with this problem corre­
sponds to Working Paper 10. An intermediate way could 
correspond to techniques admitting an assumed level of 
variance on VPA estimates and then checking the sensi­
tivity of the results to the considered variance. In gen­
eral, it appears that the variance of VPA estimates of 
abundance, at least on the first ages, for past years will 
be small compared to the errors affecting the other 
indices of abundance. 

Trends in catchability have been dealt with in a more 
general context during a previous meeting. From a 
statistical point of view, it brings one back to the classi­
cal choice between reductions in biases and increases in 
variances. Denying a possible trend in catchability can 
introduce biases, since such changes can and must occur. 
On the other hand, including terms describing changes in 
catchability with time will increase the number of para­
meters, and so the variance problems, in a way which 
may be dangerous, especially when flexible functions, 
allowing for rapid changes, are considered. Working 
Paper 10 introduced a weighting procedure which, by 
reducing the influence of "old" data in the model fitting 
procedures, could reduce the problems created by trends 
in catchability. For very short time series, trends in 
catchability should not have much impact, and 
down-weighting should not be necessary. In other situ­
ations (e.g., beyond 10 years), it appears worthwhile to 
use such a weighting. This eliminates, in part, the worst 
consequences of changing catchability without 
destabilizing the estimation procedure. 

3.3 Case Studies 

The methods available have been tested and compared 
using three data sets: North Sea cod, North Sea had­
dock, and Irish Sea cod. The performances were com­
pared in two different utilizations: prediction of the 1985 
year class and step-through-time validations. 

The maximum likelihood calibration method imple­
mented during the meeting was explored more extensive­
ly with consideration of different options and combina­
tions thereof in each run: multi-calibration without addi­
tional constraint, concentration on the historical mean, 
Cleveland-type weighting to emphasize recent vs earlier 
observations W(y) = {1-[d(y)/max(d)PP where d(y) is 
the number of years of the yth data point from the most 
recent year (see Cook, WP 10), and forcing the 
surveys-to-VPA relationships to be linear (slope of the 
log-log fit forced to 1). Code numbers for these options 
are listed in Table 3. 3 .1. 

Shepherd's weighted calibration method (WP 5) has been 
used as well as a variant based on predictive regression 
lines instead of calibration lines. This in fact induces a 
shrinkage effect towards the historical geometric mean. 

GUM and Kalman filter results could not be compared 
since they were based on VPA estimates using constant 
natural mortality at age. 

Cook's method (WP 10) could only be compared m 
1985 year-class predictions. 

3.3.1 Retrospective analysis 

This consisted of using the methods on stepwise increas­
ing time series and predicting successively the strength 
of the incoming year class, with comparison against the 
estimate eventually obtained by VPA, as if they had 
been used by working groups over the years. 

Using North Sea cod data from the 1987 North Sea 
Roundfish Working Group report (Anon., 1987a), the 
various options of likelihood techniques were compared 
for the 1973-1984 year classes, and with Shepherd's 
estimates for the 1981-1984 year classes (Tables 3.3.2 
and 3.3.3), due to lack of time. 

For the maximum likelihood estimates, the lowest log 
residual is obtained when the historical mean is taken as 
a pole. Down-weighting the earliest survey points does 
not significantly change the residuals. It can be seen on 
Table 3.3.3 that all options systematically underestimate 
the strength of the 1977-1982 year classes. 

Both of Shepherd's estimates give a better fit of pre­
dicted year-class strength to VP A estimates, but their 
relative advantage is inverted when errors on logarithms 
or on straight estimates are considered. Each corre­
sponds to a different loss function (see Working Paper 
9). For North Sea haddock (results not shown), the best 
fit is obtained when the log index/log VPA relationship 
is forced to be linear; apparently, down-weighting the 
older observations gives higher residuals. For this stock, 
the likelihood methods seem to overestimate the recruit­
ment. 

A possible explanation of the problems encountered with 
the maximum likelihood calibrations on the North Sea 
stocks is the strong influence afforded by the IYFS, 
which is the longest series, but in which the catchability 
has significantly changed over the years. Shepherd's ad 
hoc technique seems more efficient in correcting the 
effects of such a trend. 

The Irish Sea cod data, taken from the 1987 Irish Sea 
and Bristol Channel Working Group report (Anon., 
1987b), were treated in two different ways with regard 
to the indices provided by the pre-recruit gadoid sur-
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veys: indices given for the eastern and western areas 
separately and also combined for the total stock. 

In Table 3.3.4, only the totals are considered for the 
survey series. Shepherd's estimates again give the lowest 
residuals and among the maximum likelihood estimators, 
those in which the historical mean is taken as a pole 
perform comparatively better, while those in which a 
linear relationship is forced give the largest residuals. 

When the separate indices for the eastern and western 
Irish Sea are considered instead of the totals, the relative 
performance of the estimators is not changed, but they 
all give larger residuals than when only the totals are 
considered. In cases when indices are split spatially, it 
seems preferable to aggregate them for the total stock 
area. 

3.3.2 Comparison of 1985 estimates for North Sea 
cod recruitment 

The results obtained by simple calibration over the vari­
ous individual survey indices, as well as those obtained 
by the different combined techniques, appear in Table 
3.3.5. 

The differences in the results suggested that the various 
combined methods may perform quite differently. The 
variability between the estimates given by individual 
fleet calibration does suggest in fact that the choice of 
the weighting factors will have important consequences. 
A comparison of the weighting factors is made possible 
by Table 3.3.6. In fact, these coefficients are not similar 
since Cook's technique operates in a different way. 
However, they do show that Shepherd's technique gives 
a much higher weight to Scottish groundfish surveys. 

Likelihood techniques give results in a range coherent 
with those of Shepherd's method at least when slopes are 
not forced to 1. The high estimates obtained with slopes 
forced to 1 can be related to the fact that other calibra­
tion lines have slopes less than 1 (VP A being on the x 
axis, survey indices on they axis). 

Cook's method provides a lower estimate than all other 
techniques. Taking into account the standard deviation 
provided by Cook's technique would lead to a 95% 
confidence interval ranging from 470 to 679. This inter­
val includes the other estimates, except for those corre­
sponding to a slope forced to 1. 

Finally, it must be pointed out that the retrospective 
analysis suggests that, at least for North Sea cod, useful 
recruitment estimates can be built from the survey 
indices (see Tables 3.3.2 and 3.3.3). Since one can 
expect a progressive increase in the standardization of 
operating procedures and improvement of the 
preprocessing techniques, it seems that research surveys 
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will in the future contribute efficiently in providing 
necessary auxiliary information to catch-at-age analyses. 

3.4 Discussion 

3.4.1 Shepherd's and other techniques 

The discrepancy between the results obtained by the 
various methods in the case studies suggests that choos­
ing between them is not a minor problem. Cook's 
method seems to be in a development stage and should 
be pursued. Maximum likelihood techniques appear to be 
developed on a firmer theoretical ground than 
Shepherd's ad hoc technique. However, they are based 
on a number of assumptions that could well be violated 
in practice. On the other hand, Shepherd's method, if 
not optimal in a precise meaning, does not appear to 
contain any m:Yor risk. 

It appears that this method should be used until more 
work has been conducted on the others. It could, how­
ever, be useful to implement within Shepherd's tech­
niques the possibility of forcing slopes to 1, as well as 
introducing weightings. 

3.4.2 Retrospective analysis 

Whatever method is used, retrospective analysis should 
be systematically conducted. If users agreed to consider 
several techniques, such a procedure would offer a basis 
for a choice. Simulation or resampling techniques could 
also be useful, but it will be difficult to reproduce the 
real complexity of the departures from the basic assump­
tions. 

3.4.3 Preprocessing the survey stocks 

The fitting of response surfaces and the use of mapping 
techniques should be developed. 

Calculating sampling variances from research surveys 
could be useful, but great care must be taken in inter­
preting them. When year after year the hauls occur at 
the same locations, a sampling variance calculated on the 
basis of a stratification scheme can well be an overesti­
mate of the variance of survey indices considered as 
estimates of annual relative abundance. On the other 
hand, this variance error will also contain other compo­
nents than those related to sampling (e. g., changes in 
catchability). A comparison of retrospective errors and 
sampling variances could be useful. 

When very high retrospective errors appear for a survey, 
it will be legitimate to reanalyze the basic data and the 
preprocessing techniques. Great care must, however, be 
taken to avoid reprocessing that would lead to dangerous 
practices, resulting in meaningless excellent correlations 
with VPA results, mainly due to the fact that the data 



had been reprocessed precisely to maximize this correla­
tion. 

When several survey indices are available, a balance 
must be found between the drawbacks of aggregation, 
which can destroy information, and the statistical risks 
related to high numbers of survey indices. Going, for 
instance, beyond ten indices should be avoided before 
more studies have been conducted. Spatially split indices 
should be combined. 

3.4.4 Weightings 

It may be wise, when estimated variances appear to be 
very high for some indices, to eliminate the correspon­
ding ones, while refining the weightings for the remain­
ing ones. Refining could consist in just taking equal 
weights, or at least rebalancing the coefficients. Simula­
tions would be useful to check this procedure. 

3.4.5 Admitting errors in VPA 

Fitting a multiplicative model, as suggested by Working 
Paper 10, appears to be the best way for allowing for 
variance in VPA results. The iterative procedure used is 
not, however, guaranteed to converge to an optimal 
solution and may "focus" inappropriately on one series 
or another. The attempt developed by Cook should be 
further developed, and may be linked to maximum likeli­
hood studies. It could be validated through retrospective 
and simulation procedures. 

The robustness of techniques which do not take into 
account errors in VP A to the existence of such errors 
should be checked. All techniques should also be tested 
in a context of errors in VPA corresponding to white 
noise but also to more complicated time series, including 
trends and autocorrelations. This is especially necessary 
when taking into account the most recent years for the 
calibration. 

3.4.6 Slopes/shrinking 

When time series are very short (e.g., less than 6 
points), their slope should be forced to 1. But in such a 
case, shrinking towards the geometrical mean should be 
simultaneously useful. Departures from slopes equal to 
1 must be considered. They do seem to reduce retro­
spective errors. However, statistical significance tests 
should not be neglected. 

3.4. 7 Trends in catchability 

It should be avoided, unless statistically demonstrated as 
being highly necessary, to allow for changes in 
catchability. It appears preferable to use a weighting, as 
suggested by Cook (WP 10), or maybe to break long 
series into shorter ones, considering that a new fleet, 

with a new catchability, is replacing the old one. Retro­
spective analysis of catchability by survey, as performed 
in the North Sea Roundfish Working Group, would help 
for such splitting. 

4 INTEGRATED STATISTICAL ANALYSIS 
OF CATCH-AT-AGE AND AUXILIARY 
DATA 

4.1 Introduction 

The need to carry out combined analyses of catch-at-age 
and auxiliary data has been recognized for many years. 
The auxiliary data in question are usually CPUE data 
from either commercial fisheries or research surveys (or 
both). 

The matter has been discussed in the previous reports of 
the ad hoc Working Group on the Use of Effort Data in 
Assessments (Anon., 1984) and in all previous reports of 
this Working Group (Anon., 1984, 1985a, 1986a). The 
Working Group recognized at the outset that it would be 
most desirable to use well-founded statistical models for 
this purpose and to ensure that proper fitting procedures 
were used (see Anon., 1984, particularly Appendix F). 

Unfortunately, although several workers have attempted 
to construct and fit such models, no practical procedure 
has yet emerged for routine use. The methods of Pope 
and Shepherd (1982), Gudmundsson (1986), and similar 
ones have all either had difficulty in locating satisfactory 
solutions or required inordinate amounts of computer 
time. The most practicable procedure to date is probably 
that of Doubleday ( 1981), but the statistical optimality is 
questionable. 

For this reason, the usual procedure within ICES work­
ing groups has been to use so-called ad hoc methods for 
tuning VPAs (see Anon., 1986 and references cited 
therein), which are capable of coping with the rather 
extensive data sets (more than 10 years, ages, and fleets) 
common in the North Sea and elsewhere in the ICES 
area. This is in spite of the known problems of such 
methods, notably: 

a) the absence of a firm statistical basis; 

b) doubts as to whether all parameters estimated are 
indeed estimable (i.e., whether the solutions are 
unique); 

c) their sensitivity to noise in the most recent data, 
particularly if CPUE for only one fleet or survey is 
available. 

These deficiencies have been reduced to some extent by 
the development of methods which take account of the 
historic precision of the various data sets (i.e., from a 
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weighted mean using variances) and which permit the 
down-weighting of old (and possibly no longer appropri­
ate) data. 

These modifications, however, do not strike at the 
essence of the problem, which is: 

a) to select a plausible family of prior models for the 
processes involved; 

b) to allow for the existence, size, and nature of errors 
in all the data sets available; 

c) to clarify the estimability of the parameters of the 
models and ensure uniqueness of the solutions; 

d) to find reasonably efficient fitting algorithms, so that 
the methods are capable of being used in a working 
group environment where many stocks must be 
examined in a few days. In practice, this means that 
a 10-age, 10-year, 10-fleet problem should be solv­
able in less than 1 hour on a microcomputer 
equipped with a floating point co-processor. 

More recently, there have been further developments in 
integrated statistical models which may provide a basis 
for progress. The CAGEAN method developed by 
Deriso is based on a model similar to that used by 
Gudmundsson (WP 7), and is also available as a reason­
ably well-tested portable computer program. Pope and 
Stokes (WP 3) have used a standard statistical package 
(GUM) for linearized (multiplicative) approximations of 
the process equations and have been particularly success­
ful in identifying aliasing (non-estimability in the para­
meters). Finally, Gudmundsson has proposed a random 
walk model which [unlike those of Deriso et a!. (1985) 
and Stokes (WP 3)] does not require the assumption that 
fishing mortality is separable. 

The principle questions which need to be addressed are, 
therefore: 

a) Is the assumption of separability necessary or desir­
able? 

b) Is it permissible or desirable to allow catchability to 
vary for some or all fleets/surveys? 

c) Can appropriate weightings be used to take account 
of the varying precision of the data? 

d) Can the estimation of recmitment from surveys be 
incorporated within the same statistical analysis as is 
applied to older age groups? 

e) Should one allow for non-linearity of the 
index/abundance relationships? 
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f) Are there any data relevant to determining selection 
on the oldest ages? If not, what effect do more-or­
less arbitrary assumptions about these parameters 
have on the results? 

The Working Group was not able to deal with all these 
points in the time available, but considerable effort was 
devoted to item (b) in particular and to investigating the 
applicability of CAGEAN to a typical ICES data set. 

4.2 Theoretical Considerations 

Earlier work on least squares fits to catch-at-age data 
(Doubleday, 1981; Pope and Shepherd, 1982) indicated 
that there was insufficient information in catch-at-age 
data alone to estimate all the mortality terms F(y) and 
S(a) of a separable VPA model. The problem was most 
succinctly posed by Shepherd and Nicholson (1986). 

They observe that In C(a,y) =::: YC(y-a) + Y(y) + 
A(a), where YC, Y, and A are year-class, year, and age 
factors and that there is a degeneracy in the design 
matrix for this problem such that any solution YC(y-a), 
Y(y), A(a) may be replaced equally well by an alterna­
tive solution: 

YC(y-a) + L(y-a) 
Y(y)- Ly 
A(a) + La 

where L is an arbitrary factor. 

The problem of estimating assessment parameters from 
catch-at-age data is thus to constrain the value of L (i.e., 
the trend in the year effect) by using suitable auxiliary 
data (CPUE, effort, survey) or by making additional 
assumptions about the parameters. This section discusses 
some developing approaches. 

General linear models 

Working Paper 3 contains details of four methods for the 
statistical fitting of catch-at-age data and auxiliary data. 
The use of the statistical package GUM for this purpose 
was a common theme. 

Method 1 was an extension of the simple year-age­
year-class ANOV A of catch-at-age data made by Shep­
herd and Nicholson (1986). The method simultaneously 
fitted In catch-at-age data by year-age-year-class factors 
and In English groundfish survey catch at age by 
age-age-year-class factors, where the age factors and 
year-class factors were common to both data sets and 
where age specified the difference between catch and 
survey selection. 

Results include relative year class, relative year effect 
(fishing mortality), and two age factors. This method 



produces quite sensible interpretations of North Sea cod, 
but, of course, does not produce the normal assessment 
parameters. 

Methods 2 and 3 need not concern us here. 

Method 4 was a multifleet separable effort tuning 
approach where the catch equation was rendered linear 
and interpretable by using evolved values of cum Z 
(cumulative mortality) as an offset in the fit to a linear 
model. 

It is known as the "if thy cum Z offendeth thee, cast it 
out" method (ITCOTCIO). Its error structure is essen­
tially similar to that of the CAGEAN model (Deriso et 
al., 1985), and it may prove a useful approach to think­
ing about multifleet tuning models. In its original form, 
it was slow to converge and convergence was rather 
brittle, but both problems are largely solved in Working 
Paper 4. 

Working Paper 4 

This paper was an update of some progress made with 
Method 1 and Method 4 of the previous paper. Method 
1 is extended to a multi-fleet separable form with effort 
tuning and the possibility of catchability change with 
time and perhaps also with age. The structure indicated 
that allowing catchability to change on all fleets resulted 
in a degeneracy in the structural matrix (cf. Shepherd 
and Nicholson, 1986). It thus gives working groups the 
very clear advice: WHEN TUNING VP As WITH CPUE 
OR EFFORT DATA, DO NOT ALLOW CATCHABI­
LITY TO VARY ON THE EFFORT DATA OR CPUE 
DATA OF ALL FLEETS. YOU MUST! MUST! 
MUST! SPECIFY AT LEAST ONE AGE OF ONE 
FLEET FOR WHICH THE CATCHABILITY DOES 
NOT CHANGE!!! The paper also shows updates of 
Method 3 which result in the same lesson. The results 
from an improved form of the ITCOTCIO model are 
shown which indicate the need for sensible restrictions 
on catchability change as noted above. Both models 
indicate the near linearity of catch-at-age data and hence 
the usefulness of the ANOV A analogy for giving insight 
into more complex tuning methods. Both papers seek to 
help provide insight into the problem rather than to 
provide practical algorithms. 

In particular, the ITCOTCIO model may provide a 
useful analogy to the CAGEAN model to which it is 
conceptually similar. 

Non-linear models 

Non-linearity occurs in log catch-at-age models usually 
through terms describing cumulative mortality. We can 
write logarithms of catch as: 

In C(a,y) ""' YC(y-a) + F(y) + S(a) - [Z(l) + ... + 
Z(a-1)] 

for a separable fishing mortality model 

F(a,y) = exp [F(y) + S(a)] 

Those exponential terms occur in Z and they induce the 
non-linearity in most catch-at-age models. 

Deriso et al. (1985) describe a model and accompanying 
software package CAGEAN which estimates parameters 
of non-linear catch-at-age models. Auxiliary information, 
such as fishing effort data, is used in the procedure to 
constrain the time trend of log F. A weighting factor A 
controls the magnitude of the constraint. The principal 
assumptions of CAGEAN are that (1) fishing mortality 
is separable and (2) fishing effort is proportional to true 
fishing mortality up to a log-normal random variation, as 
in the model of Fournier and Archibald (1982). 

Extensions of CAGEAN to multi-gear data are trivial in 
theory, but experience is only one realization. Two gear 
types seem to pose no practical difficulty, but more 
research is needed for higher numbers of gear types. 
The two-gear model can be used for an integrated stock 
assessment where one gear is chosen to be commercial 
catch-at-age data aggregated over commercial gear types 
and where the second gear is chosen to be a survey 
catch-at-age data set. The o~jective function to be mini­
mized for this problem can be described by the follow­
mg sum: 

Minimize RSQ (log commercial catch at age) 

+ Al x RSQ (log survey catch at age) 

+ A2 x RSQ (log commercial fishing effort) 

+ A3 x RSQ (log survey fishing effort) 

where RSQ denotes a residual sum of squares between 
predicted and observed quantities. Roughly speaking, A3 
controls the extent to which survey CPUE is made pro­
portional to survey catch per unit predicted survey fish­
ing mortality rate, while A1 controls the extent to which 
predicted abundance is forced to agree with predicted 
survey catch per unit survey fishing mortality rate. We 
set A2 to a value of zero in our applications described 
later. 

Coefficients for A must be supplied by the analyst. 
Deriso et al. (1985) describe the indeterminacy of A for 
maximum likelihood functions of the sort considered 
above. As a consequence, CAGEAN provides a set of 
hypotheses about abundance time trends where each 
hypothesis corresponds to a vector of assumed A coeffi­
cients. 
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Times-series models 

Statistical methods for fish stock assessment from 
catch-at-age data have defined fishing mortality rates 
uniquely by a number of parameters. Separability of age 
and year effect is usually assumed. In time-series models 
of fishing mortality rates (Gudmundsson, WP 7), all Fs 
are regarded as time series. Their statistical properties 
are determined by three parameters and assumptions 
about the correlation structure. 

There is no need to assume separability. But the model 
has both the option of strict separability and random 
variation of the Fs around a separable pattern. 

Given some initial values, the time-series models provide 
a prediction of the next values of F. These are used to 
predict the stocks and catches. The actual catches are 
compared to the predicted ones, and the stocks and 
fishing mortality rates are adjusted in accordance with 
the observed catch prediction error before the next 
values are predicted. The appropriate correction for a 
given set of catch prediction errors depends both on the 
properties of the time-series model and the magnitude of 
the measurement errors of the catches. The estimation 
procedure (maximum likelihood) seeks the model which 
produces the best retrospective catch predictions and will 
tend to find interpretations in which fishing mortality 
changes are as little as possible from year to year. 

This estimation can be carried out without any further 
information except the rate of natural mortality, but the 
method will underestimate recent fishing mortality 
changes unless auxiliary information is also used. The 
estimated standard deviations appear to give a fair 
assessment of the accuracy. For actual stocks that have 
been examined so far, the range of standard deviations 
for the terminal Fs have been in the range of 10% to 
over 30%. 

The accuracy can be increased by introducing further 
measurements related to the stocks and fishing mortality 
rates. Gudmundsson (WP 11) describes joint analysis of 
catch-at-age data and CPUE from separate fleets or 
research vessel surveys. The selection is estimated and 
supposed to be constant during the estimation period. 
Catchability may be defined as constant or modelled as 
a time series, but if variations are allowed, the unique­
ness of the solutions needs to be examined. Recruitment 
can be included in a similar way. 

The estimation of time-series models takes much longer 
time than for models of similar size where the pattern of 
Fs is fixed by the estimated parameters. 
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Residual analysis 

Least squares or maximum likelihood analysis of 
catch-at-age data assumes certain statistical properties of 
the residuals, usually that they are independent, normally 
distributed, and, possibly after appropriate weighting, 
with equal variances. We do not expect these assump­
tions to be strictly true, but it is important to detect 
major discrepancies. Application of these methods 
should, therefore, be accompanied by analysis of the 
observed residuals. 

In least squares analysis, abnormally large residuals for 
a particular age or fleet spoil the accuracy. This can 
often be remedied by weighting. 

Gross departure from normality expressed by large 
kurtosis may be the result of outliers which should be 
left out or modified. 

Correlations between residuals at different ages within 
the same year are taken into account in some methods. 
They may often be relatively harmless even if they are 
left unattended. 

Highly significant positive correlations with time or 
within cohorts strongly indicate that the estimated model 
is seriously misspecified. For further discussion of resid­
uals, see Gudmundsson (1986). 

4.3 Case Studies 

In the limited time available at the meeting, it was only 
possible to make limited studies of the performance of 
the various methods, and more detailed investigations 
will need to be conducted between meetings by inter­
ested members. Of the methods available, the multi-fleet 
ANOV A, the ITCOTCIO, GUM, and CAGEAN models 
were run during the Working Group meeting, and only 
limited comparisons of the results obtained from these 
were possible with the time series models (Working 
Paper 7, Working Paper 11) and with ad hoc tuning 
methods applied by the North Sea Roundfish Working 
Group. 

ANOV A model 

The ANOV A model was implemented on data for North 
Sea cod and Pacific halibut. For North Sea cod, the 
model was run on catch-at-age data at two different 
levels of aggregation. Run I used commercial data 
aggregated to total international level and research vessel 
data from the English groundfish survey. Run 2 used 
catch-at-age data for Scottish seiners, Scottish trawlers, 
Scottish light trawlers, and all other commercial fleets 
with research vessel data from the IYFS, English and 
Dutch groundfish surveys, and the Federal Republic of 
Germany shrimp trawl fishery (a total of eight "fleets"). 



The method can directly treat catch-at-age and catch-per­
unit-effort data as separate entities. The ANOV A model 
is limited in the size of implementation to about 175 
parameters. This means, for example, that results from 
only eight fleets, seven ages, and nine years could be 
comfortably integrated. Moreover, the GUM package is 
somewhat slow. This might be overcome by using a 
different ST ATs pack (SAS or SPSS). 

ITCOTCIO model 

The ITCOTCIO model, which also runs on GUM, 
suffers from similar limitations and is extremely slow for 
a large implementation due to the need to iterate 10-20 
times, which makes it 10-20 times as slow as the 
ANOVA. Moreover, the ITCOTCIO was unable, in its 
present implementation, to consider changes in selection. 

The ITCOTCIO model was run on data for Pacific 
halibut. 

SURVIVORS model 

The SURVIVORS model (Doubleday, 1981) was run 
using total international commercial catch-at-age data 
and research vessel data from the English groundfish 
survey. 

The results are shown in Figures 4.3.7 and 4.3.8. They 
indicate good agreement between the North Sea 
Roundfish Working Group parameter estimates. This 
was expected because of the convergence of the VP A 
and the high fishing mortalities on this stock. Neverthe­
less, the agreement was still good for recent years with 
the SURVIVORS estimates being slightly higher than the 
North Sea Roundfish Working Group estimates. 

CAGEAN model 

Considerable difficulty was encountered in implementing 
the CAGEAN model on the NORD computer. (It is 
thought that the program currently on the NORD is 
correct, but further testing is required.) Because of the 
loss of time caused by these difficulties, only a restricted 
series of implementations was carried out. In its current 
form, CAGEAN assumes a constant value of natural 
mortality rate for all ages and years, whereas it is 
becoming increasingly common in ICES assessment 
working groups to use age-specific natural mortality 
rates. 

Tests were carried out to assess the effect of varying the 
parameters A1 and A3. In addition, the age range was 
varied and, within any defined age range, the ages for 
which selectivities were fixed were also varied. 

4.3.1 Test runs on Pacific halibut 

Pacific halibut catch-at-age data were available for the 
years 1967-1982 with appropriate weight-at-age and 
fishing effort data. Parts of these data were analyzed by 
the ANOVA, ITCOTCIO, CAGEAN, and TSA 
methods. 

The ANOVA and ITCOTCIO methods were run on data 
from 1974-1982 because there was a change in selectiv­
ity at that time. CAGEAN was run for the full data set, 
while Working Paper 7 gives results from 1967-1977. 

Figure 4.3.1 compares the trends in fishing mortality 
estimated by the four methods from 1974-1982. 

The CAGEAN and ITCOTCIO models give very similar 
results, while the ANOV A and TSA have a less variable 
trend. 

Figure 4.3.2 compares the relative year-class strength 
estimates for the ANOV A, ITCOTCIO, and CAGEAN 
models. All three models show similar trends in year­
class strength. 

Figure 4.3.3 compares the exploitation pattern estimates 
for the ITCOTCIO and CAGEAN models. These show 
some divergence probably due to an inappropriate choice 
of terminal value in the ITCOTCIO model. The results 
of the three figures indicate a close correspondence 
between the results of the CAGEAN and ITCOTCIO 
models which might reasonably also be inferred from 
their similar structure and treatment of errors. The 
parallel nature of these two models should be explored 
since they could well prove complementary. The 
CAGEAN model is used to make practical estimates and 
the ITCOTCIO model to examine the near-linear struc­
ture of estimates. In the time available, it was not poss­
ible to consider status quo T AC estimates or other final 
outputs from the models. 

4.3.2 Test runs on North Sea cod 

Eight runs of the CAGEAN model were performed on 
data for North Sea cod. Each of these runs used total 
international catch-at-age data and English groundfish 
survey research vessel data. 
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Age(s) for which 
Highest 

Run >..1 >..3 selectivities 
fixed 

age 

1 2.0 0.5 9-10 10 

2 2.0 1000 9-10 10 

3 1.0 1000 9-10 10 

4 1.0 0.5 9-10 10 

5 0.25 0.5 9-10 10 

6 0.25 0.5 7 7 

7 0.25 1000 7 7 

8 2.0 1000 7 7 

The trials with large }..3 just correspond to usual tuning 
with survey indices (no error assumed in the survey 
effort), while other runs consider the possibility of poor 
standardization of the survey effort. 

Estimates of total biomass, mean fishing mortality, and 
recruits at age 1 obtained from these runs are shown in 
Tables 4.3.1-4.3.3 and Figures 4.3.4-4.3.6. Correspon­
ding estimates obtained by the North Sea Roundfish 
Working Group are also shown. 

Within this set of realizations, widely differing results 
were obtained in both the time trend and the magnitude 
of estimates of fishing mortality and biomass. Estimates 
of recruitment were less sensitive to variation in the 
input parameters. Comparison with the North Sea 
Roundfish Working Group results were complicated by 
the fact that these incorporate the assumption of age­
specific natural mortality rates of 0.2 or higher values. 

In addition, one run (Run 9) was made using commercial 
fishery catch-at-age data for Scottish trawlers, Scottish 
seiners, Scottish light trawlers, Scottish Nephrops 
trawlers, English trawlers, English seiners, and all other 
commercial gears; English groundfish survey data were 
also included. This implementation thus used 
disaggregated data for eight fleets. 

The main value in carrying out this run is that it demon­
strates that CAGEAN can be successfully implemented 
on highly disaggregated data. 

It should be stressed that the runs described above were 
carried out with the intention of gaining experience in 
running CAGEAN and obtaining some insight into the 
sensitivity of the model to changes in important parame­
ters. Much more experimentation will be required before 
any decision can be made on whether CAGEAN can be 
adopted as a working tool within ICES. 
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It is apparent, however, from the limited experience 
gained at this meeting that some modifications of the 
program are desirable. Preliminary suggestions for 
modifications are: 

i) Include a facility to allow input of age-specific 
values of natural mortality. 

ii) Compute spawning biomass in harmony with the 
ICES standard SSBs. This will require input of age­
specific maturity data. 

iii) Input and output of the program should be made 
compatible with the ICES standard formats and pro­
cedures. 

iv) Bivariate frequency table of observed catches vs 
estimated catches as well as analysis of correspon­
ding residuals. 

4.3.3 Discussion 

The activities of the Working Group were influenced 
rather more than had been anticipated by the introduction 
of new statistical models: multiplicative models for 
separable VPA (Working Papers 3 and 4), CAGEAN, 
and time-series models of fishing mortality rates (Work­
ing Papers 7 and 11). 

The multiplicative models and CAGEAN are based on 
the assumption of separability. This is a very restrictive 
assumption which may, however, be well founded for 
individual fleets. With these methods, it may, therefore, 
often be advisable to work with catches disaggregated by 
fleets. 

CAGEAN has facilities to split the time intervals into 
blocks if changes in selectivity are supposed to have 
occurred. The fishing mortality rates are supposed to be 
constant within each year above a certain age. Effort 
data are needed for at least one fleet. 

The estimation procedure in CAGEAN is least squares, 
and the weights of the data sets for catch at age and 
effort data are determined a priori. 

The logarithmic transformation has been widely applied 
in statistical fish stock assessment. Obviously the logar­
ithmic values will not be normally distributed at all 
levels of aggregation. Problems of non-normality and 
unequal variances probably increase with the disaggrega­
tion of catches between many fleets. 

The connection of the multiplicative methods to GUM 
can have valuable advantages, e.g., for examining the 
effects of different transformations. Unlike CAGEAN 
and the time-series methods, it imposes no constraints on 



the variation of fishing mortality rates with age. This 
could presumably easily be changed. 

The accuracy of the time-series method depends mainly 
on the accuracy of the catch-at-age data and, unless good 
CPUE data are available, the variability of the actual Fs 
from year to year. Separability is not required. Portable 
programs for the time-series analysis have not been 
produced, and the method is based on statistical concepts 
which are unfamiliar to many biologists. 

The value of statistical methods is greatly reduced if the 
statistical properties of the data differ drastically from 
the distributions that are assumed implicitly or explicitly 
in the estimation procedure. This applies also to sim­
plifying assumptions like constant catchability or separ­
ability; they increase the precision if they are a reason­
able approximation of the actual situation, but if not, 
they lead to serious errors. Analysis of residuals along 
the lines discussed in Section 4.2 should become a rou­
tine part of the statistical analysis of catch-at-age data 
and be reported together with the other results. The 
residuals represent a mixture of measurement errors and 
random variations in fishing mortality rates. In the 
time-series method, the variance of the measurement 
errors IS estimated separately from other random 
elements. 

CAGEAN is now available to working groups and others 
engaged in fish stock assessments. We recommend its 
use alongside with traditional methods. It is important to 
collect experience on how far its premises apply to 
various stocks. For this purpose, its use should be 
accompanied by analysis of residuals (see Section 4.2). 

We have nothing new to contribute on the subject of ad 
hoc VPA tuning except that, in future years, it would be 
interesting to have an ICES implementation of the SUR­
VIVORS method. It is essential that some constraints be 
put on estimated changes in catchability. These could be 
of the form of fixing them for at least one fleet. 

It is felt that it would be valuable if this Working Group 
carried out and presented fish stock assessments and 
compared the results of various methods. In fact, an 
attempt at this was made at this meeting, but setting up 
the programs on the available computers took too much 
time, so fewer results were obtained than had been 
expected and less time was available to examine them. 
We should try to organize this better before the next 
meeting so that we are able to analyze several data sets 
using several methods. Some effort is needed to ensure 
that these sets together represent the main problems 
encountered in practical work. The following aspects 
should be included: 

1) measurement errors in observed catches and effort; 

2) random variations of Fs around a separable pattern; 

3) changes in selectivity; 

4) changes in catchability. 

(Some aspects of simulation are considered in Examples 
1 and 2 in Working Paper 7.) 

5 CONSEQUENCES OF REDUCED RELIA­
BILITY IN FISHERIES STATISTICS 

5.1 Background 

In recent years, several stock assessments have been 
seriously hampered by the lack of reliable, official statis­
tics (ICES Statistician, 1986). However, many working 
groups have used confidential data supplied by their 
national representatives. In most cases, the impact of 
using data of unknown reliability could not be evaluated 
by the assessment working groups themselves. 

Thus, this Working Group studied the effect of reduced 
reliability of fisheries statistics on stock assessments in 
general. 

5.2 Theoretical Considerations 

5.2.1 Approach taken by the Working Group 

Although it is possible to predict the effect of changes in 
input data on the outcome of an assessment analytically, 
the Working Group preferred to assess the effect of 
reduced reliability by considering a case study. The 
basic approach taken was two-fold: 

i) The sensitivity of assessment results to reduced re­
liability of the input data was directly estimated by a 
sensitivity analysis. 

ii) A simulation of different scenanos of how data 
could have been corrupted by misreportings, and of 
how this would have misled the regular assessment 
procedures. 

These simulations were restricted to misreportings in 
landings data and did not address the problems associ­
ated with undersampling, which may also reduce the 
reliability of data used in assessments. 

5.2.2 Data set used for sensitivity analysis and 
simulations 

Sensitivities were calculated using data presented in the 
North Sea Flatfish Working Group report for 1985 and 
1986 (Anon., 1985b, 1986b). The method used is 
described in Rivard (1982). 

19 



Simulated data were generated from the 1972 population 
numbers and recruitment from the most recent VP A 
(Anon., 1985b). A constant natural mortality over age 
and time was used and the exploitation pattern over age 
was taken from the 1986 North Sea Flatfish Working 
Group report. The 1984 weights at age (from the 1986 
North Sea Flatfish Working Group report) were used for 
all years. Yearly fishing mortalities were set close to the 
highest of those for ages 3 and 4 in the most recent 
VPA. Effort data were generated from fishing mortal­
ities using q = 0.0001. 

The assessment procedures used were not identical to the 
procedures taken by the North Sea Flatfish Working 
Group; their technique contains some subjective expert 
decisions (fine tuning of the VPA on several CPUE 
series, with no a priori weight attached to the different 
series) which the present Working Group did not feel 
capable of reproducing effectively. Thus, the procedure 
given in Rivard (1983) was taken. Basically, this pro­
cedure consists of a cohort analysis, with fine tuning of 
the estimated biomass on CPUE data (linear regression 
through the origin). 

5.2.3 Types of misreportings and scenarios tested 
in simulations 

In this section, possible reasons for corruption of official 
statistics are briefly summarized, and major outlines for 
simulation runs are extracted from them. 

Within the ICES area, the most commonly used manage­
ment strategy to regulate a fishery is to confine the total 
catch volume to some level considered to lead towards a 
gradual improvement in the state of the stocks; no 
restrictions on effort or fishing capacity are advised. 
Thus, a structural overcapacity exists, leading to pro­
longed friction between allowed catch and realizable 
catch. 

In practice, some evidence might exist that the following 
types of misreporting do occur: 

a) Catch and/or effort of certain trips are (partly) not 
reported. 

b) Catch and/or effort of certain trips are reported to 
stem from a different area. 

c) Catch and/or effort of certain trips are reported to 
belong to a different species. 

d) Catch of the higher-valued market categories is 
selectively underreported. 

e) Incidental high catches due to strong year classes 
may be underreported to circumvent taxes. 
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Based on these types of misreportings, the Working 
Group devised a set of 11 scenarios thought to reveal the 
effect of misreportings as clearly as possible. It should 
be stressed that the simulated scenarios are not thought 
to be realistic, but instructive. 

The following scenarios were used (summarized in Table 
5.2.1): 

0) The basic data set as described in the previous 
paragraph. This data set was taken to represent the 
truth. 

1) A constant underreporting of catch and effort in all 
years of 20%, irrespective of the age composition 
(market category). Since this type of misreporting is 
very consistent, it was expected to have only minor 
effect on the assessment; it was included only for 
completeness. 

2) Correct reporting of catch and effort in all years, 
except for the last year, in which both catch and 
effort are underreported by 20% irrespective of age. 

3) Deteriorating reporting of catch and effort: starting 
6 years before the last data year, underreporting 
increased every year by 5%. Again, catch and 
effort are assumed to be misreported proportionally 
and irrespective of age. 

4) The ratio of reported to unreported catch and effort 
is assumed to be proportional to the ratio of offi­
cially reported to unreported catches as given in 
the 1985 North Sea Flatfish Working Group report 
(Anon., 1985b), i.e., this scenario explores what 
would have happened if the Working Group had 
used the official statistics. 

5) Age-specific underreporting of catches: it was noted 
that underreporting of higher valued market catego­
ries might be worthwhile to circumvent the catch 
restrictions as well as the income tax. The assumed 
percentages of underreporting (in numbers) are 
listed in Table 5.2.1. This age-specific 
underreporting is assumed to have taken place in all 
years. It should be kept in mind that the high per­
centage of underreporting in the older age groups 
affects only a small catch volume and thus would 
have been only a minor part of the total catch 
weight. Efforts are assumed to be correctly report­
ed. 

6) Same as 5, but the underreporting IS assumed to 
have occurred only in the last year. 



7) Same as 3, combined with 5, i.e., in the last 6 
years, there has been an increasing trend to misre­
port preferentially the older ages, up to 30% of the 
oldest age in the last year. Efforts are assumed to be 
correctly reported. 

To study the effect of differential misreporting of 
catch and effort, three scenarios were included in 
which catches were assumed to be correctly report­
ed, but efforts to be underreported. Although this 
may not be a very likely case, it might show the 
impact of differential misreporting straightforwardly. 
Furthermore, this scenario also covers possible 
changes in effort quality without problems in the 
reporting as such. 

8) The first case with differential misreporting of 
efforts took the correct catches, and 20% 
underreporting of efforts in all years. 

9) Alternatively to 8, efforts were assumed to be cor­
rectly reported in all years except for the last year, 
in which they were underreported by 20%. Again, 
reported catches were assumed to be correct. 

10) Finally, catches were assumed to be correctly 
reported, while there had been an increasing trend 
in underreporting of effort from 0 to 30% over the 
last 6 years. 

5.3 Results of Case Studies 

5.3.1 Sensitivity analysis 

The application of sensitivity analysis to North Sea sole 
provided insight into the convergence properties of 
cohort analysis under various conditions and on the 
potential sources of bias for the estimation of recruit­
ment, stock size, and fishing mortalities. It was found 
that recruitment estimates are very sensitive to the initial 
values of fishing mortalities in the last year (Figure 
5.3.1). This sensitivity decreases quickly as one goes 
back in time and as recruitment estimates become more 
sensitive to the initial estimate of natural mortality. The 
sensitivity of recruitment toM remained relatively small 
throughout the time period covered by the analysis. 

The sensitivities of calculated recruitment to individual 
catches are low, except for the current year of catch 
data. Thus, casual misreporting of catches prior to the 
current year is not an important source of error in the 
estimation of recruitment by cohort analysis. If it per­
sists from year to year, misreporting could influence 
considerably recruitment estimates. However, recruit­
ment figures calculated by cohort analysis would still 
provide, in that case, a good relative index of recruit­
ment. 

Finally, a change in the reporting practice for the current 
year may also generate spurious trends in recruitment. 
Thus, the accuracy of sampling estimates of catch in the 
current year, particularly for younger fish, as well as an 
analysis of possible changes regarding the reporting 
(and/or discarding) practice for the current year, should 
be given prime consideration in the interpretation of 
trends in the calculated recruitment. 

ln any assessment, the usefulness of cohort analysis must 
be evaluated in terms of its ability to produce estimates 
of stock size and year-class size having desirable statisti­
cal properties. Sensitivity analysis provides indications of 
the importance of a given error in input data for the 
calculation of recruitment, stock size, and fishing mor­
talities. 

It should be noted that the sensitivity coefficients calcu­
lated here for recruitment correspond to the sensitivity of 
absolute recruitment estimates. The sensitivity of relative 
changes in recruitment was not analyzed by the Working 
Group. 

5.3.2 Simulation studies 

The results of the simulation runs with data sets cor­
rupted by simulated misreportings are summarized in 
Tables 5.3.1-5 .3.5 and Figures 5.3.1-5.3.6. In interpret­
ing these tables, it should be kept in mind that, in an 
actual misreporting case, unlike the present simulations, 
one has no outside information on the truth, e.g., in 
Scenario 5, spawning stock biomass appears to be low 
compared to the "truth", but this has always been the 
case, so an assessment working group would have no 
way of knowing this. 

Scenarios 1 and 8 (constant underreporting of catch and 
effort and effort, respectively) appear to have almost no 
effect on the assessment at all: exploitation rates are 
estimated correctly and T ACs do predict catches as far 
as they will be reported. 

Increasing underreportings [either sudden (Scenario 2) or 
as a smooth trend (Scenario 3)] have a very small effect 
on estimates of F0_1 and F max' but current exploitation 
rate and status quo catch are underestimated. Note, 
however, that the errors in the estimates are smaller than 
the error in the catch and effort reportings. 

Age-dependent underreporting apparently transforms the 
long-lived species into a short-lived, heavily-exploited 
species (Scenario 5). 

If the misreporting starts abruptly (Scenarios 6 and 7), 
the working group may detect that from the changes in 
exploitation pattern in the converged part of the VPA, 
but generally not for the most recent years. 
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Surprisingly, F0.1 and F max are correctly estimated in all 
cases considered, indicating much greater effort reduc­
tions than are actually needed. However, this kind of 
misreporting would lead someone to believe that the 
stock is in worse shape or condition than it really is 
(especially in the case corresponding to Scenario 5). One 
may doubt the disadvantage for most of the stocks 
assessed. 

Finally, disproportional effort misreporting (or equival­
ently increasing effort quality) does not affect estimates 
of F0.1 or F max> but does seriously affect accompanying 
T ACs. Prolonged misreporting, however, converges to 
Scenario 8, in which all estimates are correct. 

5.4 Conclusions 

The sensitivity analysis indicates that cohort analysis 
(without calibration through the use of an independent 
index of abundance) provides reliable indices of recruit­
ment and fishing mortality for the "far past". However, 
these indices may show spurious trends in the recent 
years. Sensitivity analysis may be helpful in determining 
which period of a chosen time series is particularly 
sensitive to a given parameter. A routine examination of 
sensitivities is desirable and should be considered as an 
important source of information for the interpretation of 
trends in calculated quantities. 

From the simulation studies, it appears that the assess­
ment method used is rather robust to misreportings 
(errors in estimates are smaller than errors in 
misreportings, and convergence in time tends to correct 
estimates) unless the effort series used are not consistent 
with the catch reportings. 

There are, therefore, three responses which assessment 
working groups may need to take when data quality 
deteriorates: 

1) When there is substantial misreporting, it should be 
made clear that any forecasts based on assumed 
unallocated catches include a proportion of 
unallocated catches. Managers should be told the 
size of this proportion and advised to make an 
appropriate downward adjustment before setting 
T AC regulations, if the situation is likely to persist. 

2) Where it becomes difficult or impossible to deter­
mine a best estimate of an intermediate quantity 
(e.g., of current For stock size), it may be necess­
ary to explore a feasible range of values and base 
the advice on whichever value leads to the lowest 
forecast catches. 
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3) Where the confidence intervals of estimated quan­
tities, such as catch forecasts, become very wide 
(because of deteriorating sampling), it would be 
desirable to give upper and lower estimates (maybe 
corresponding approximately to upper and lower 
quartiles) as well as the central estimate, and to 
advise managers to select an option in the lower part 
of this range. 

All these responses would have the effect of implying 
lower allowable catches as the data quality deteriorates, 
without pre-empting the right of managers to decide on 
the acceptable level of risk. This would have the inci­
dental advantage of concentrating the minds of managers 
and fishermen on the need to maintain and improve the 
quality of the data. 

5.5 Recommendations 

1) A routine examination of sensitivities of cohort 
analysis is desirable and should be extended to 
include more elaborate outputs (e.g., standardized 
marginal yield and status quo T A C). 

2) Software to calculate sensitivities should be made 
available within ICES. 

3) Sensitivity studies should be enlarged to cover the 
full set of error analyses. 

4) As the effect of underreporting fishing effort is to 
increase forecast catches, reliable effort data are 
vital for a correct assessment. Consequently, effort 
and catch series used in an assessment should be 
consistent. 

5) Working groups should clearly state whether T ACs 
do or do not include a proportion of unallocated 
catch. 
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6.1 

* 

* 

CONCLUSIONS 

Immediate Recommendations 

Stock-production models are capable of giving useful 
preliminary analyses for stocks for which detailed 
data are not available. They usually give reasonable 
estimates of MSY, but the interpretation of the state 
of the stock is usually highly uncertain. 

Non-equilibrium models (especially those of the 
delay-difference type) are preferable in principle, but 
do not necessarily yield more reliable results in 
practice. Equilibrium models may give valid results 
on favourable data sets (i.e., those with low recruit­
ment variability and high contrast in effort and stock 
size), but may give unreliable or infeasible results on 



* 

* 

* 

* 

* 

* 
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less adequate data. The data usually employed for 
stock-production analysis are generally sufficient to 
determine only about one and a half parameters out 
of the minimum of three normally required for a 
non-equilibrium analysis (catchability and two for 
the production function). It is, therefore, important 
to acquire as much additional information as possible 
to constrain the solutions within the multiplicity of 
possible ones. Reparameterization of the models in 
terms which are easily understood or may be esti­
mated by analogy is helpful. 

The extent of the range of plausible solutions should 
be explored, and the mapping of goodness-of-fit 
criteria over feasible parameter ranges is strongly 
recommended in preference to automatic fitting 
procedures, which may yield highly variable, con­
fusing, and infeasible results. Fitting more than one 
or two parameters automatically is very dangerous, 
and results for ranges of other specified major para­
meters should be computed. 

Stock-production methods are not valid if exploita­
tion patterns change for the data sets used and 
should not be employed where this is believed to 
have occurred. 

Residuals should be examined! They may lead to 
important insights about the effects of secular (e.g., 
climatic) changes. 

More elaborate models do not necessarily perform 
better than simple ones, and the simplest non-equili­
brium delay-difference models are to be preferred. 

Plot the data, but be aware of catch/effort plots, 
since the data follow transient trajectories. 
Catch/CPUE plots are more closely related to what 
is fitted by non-equilibrium models. 

Response-surface techniques including both spatial 
and year effects should be applied to the construction 
of abundance estimates from research survey data 
and compared to automatic mapping methods. 

In the immediate future, Shepherd's ad hoc tech­
nique (Working Paper 5) should be recommended 
for use by assessment working groups for combining 
several abundance indices. 

Retrospective analyses should be systematically con­
ducted for recruitment estimates and VPA tuning as 
well. 

* 

* 

* 

* 

* 

* 

* 

Future development of statistically based methods 
for estimating recruitment is highly desirable. 
Special attention should be paid to the influence of 
possible errors on VP A estimates and the variance 
and biasses of the final estimate. 

The most available "constant catchability" data are 
almost certainly those from research surveys, and 
such data will become of increasing importance. 
Existing surveys should, therefore, be maintained as 
a high priority, and great care should be taken to 
ensure that their standardization is preserved. Survey 
indices for older ages should be routinely provided 
for all standard age groups. 

Working groups are warned that allowing 
catchability for all fleets to vary in VPA tuning 
methods or integrated analysis is likely to lead to 
incorrect or unstable results. Catchability should 
always be held constant for at least (one age group 
for) one fleet or survey. This requires a modification 
to the present ICES tuning module, which presently 
only permits either all or none of the catchabilities to 
vary, and this should be implemented as soon as 
possible. 

In addition, the F values on the oldest ages should 
not be set arbitrarily, as they may influence the 
results when the auxiliary data are not highly in­
formative (e.g., if catchability is allowed to vary). 
They should be set with care (e.g., to the average of 
those for several younger age groups in each year). 
This is an option in the ICES standard VPA suite. 

Integrated statistical models (of catch-at-age and 
auxiliary data) are free of some difficulties associ­
ated with ad hoc tuning methods and are in principle 
preferable to them. It is recommended that assess­
ments should be based on such techniques as soon as 
operational methods can be implemented and tested. 

The CAGEAN model is the most practicable pro­
cedure available at present, and it is recommended 
that (with the permission of the author) this should 
be integrated as an additional subroutine within the 
ICES VPA suite, in order to facilitate its use on 
standard data sets and permit the production of 
standard outputs and files. 

The methods based on general linear models are 
conceptually acceptable, and it should be possible to 
improve the efficiency of the calculations by fitting 
the same models directly using NAG subroutines 
rather than the GUM package. This should be inve­
stigated and, if successful, the procedures should 
also be implemented as subroutines in the ICES 
VPA suite. 
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ANSI FORTRAN 77 programs for the time-series 
models of fishing mortality rates would be appreci­
ated, as well as directions for users who are unfam­
iliar with GUM on how to apply the multiplicative 
methods. 

In the meantime, assessment working groups are 
advised to continue to use these ad hoc tuning 
methods which combine according to variances (and 
thus also permit the inclusion of survey data). Atten­
tion should be concentrated on using data for 
fleet/surveys for which catchability is believed not to 
have changed. The utility of data sets for which 
catchability must be allowed to vary is believed to 
be low (see above survey indices) and more attention 
should be paid to standardization of effort and 
CPUE data before they are analyzed. 

Sensitivities should be calculated and examined on a 
routine basis. These should concentrate on a sensi­
tivity analysis of the final product (i.e., the advice) 
to the various inputs. Software should be adapted to 
make it as easy as possible. 

When misreporting is suspected, the data sets should 
be adjusted and the assessment completed with the 
adjusted values. The robustness of the advice to the 
adjustment should be evaluated. 

Effort and catch data series used for assessment 
should be consistent with one another. 

Working groups should consider the effects of mis­
reporting and reduced precision of sampled data and 
make clear any necessary adjustments to their catch 
forecasts. The proportion of their estimates due to 
unallocated catches should be made clear, and an 
indication of the range of the estimates should be 
provided wherever possible. 

The work of the Group was greatly facilitated by the 
availability of the ICES microcomputer and its con­
nection to the NORD machine. The help of the 
ICES staff was highly appreciated in this connection. 
The work would, nevertheless, have been impossible 
without the additional IBM-compatible microcom­
puters brought to the meeting by Working Group 
members, and ICES is strongly recommended to 
acquire several more IBM -compatible machines as 
soon as funds can be made available. These could be 
of a lower specification than the existing machine. 

6.2 Future Work 

6.2.1 Dissemination of the results 

Among the Working Group's objectives is the develop­
ment of more efficient techniques, evaluation of the 
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various methods, and dissemination of its conclusions 
within assessment working groups. The Group strongly 
feels that priority must now be given to the last task. 
The Group noted the process of assimilation of its advice 
by assessment working groups and ACFM and recom­
mends that national institutes should be encouraged to 

a) send members of the Methods Working Group to 
regular assessment working group meetings; 

b) send appropriate members of assessment working 
groups to the Methods Working Group. 

Publication of the Working Group reports in the Cooper­
ative Research Report should also be continued. 

The Working Group notes that methods cannot be 
adopted in practice unless appropriate software is pro­
vided on appropriate machines, and encourages its mem­
bers (and others) to write portable software, contribute 
this to ICES, and collaborate with the ICES staff with its 
integration on the ICES system. The Secretariat will be 
requested to make available the services of its staff to 
assist in the implementation of new methods into the 
ICES VPA suite. 

6.2.2 Special workshop 

The Working Group foresees the need to return to the 
utilization of integrated statistical methods for the analy­
sis of catch-at-age and auxiliary data and to review the 
experience with their experimental use in the intervening 
time. In particular, the Working Group should address 
the question of the integration of the recruitment estima­
tion process. 

In order to avoid the problems due to undue time spent 
in adapting software and constructing and implementing 
data sets, the Working Group strongly recommends that 
a special Workshop be held before its next meeting. 

The details concerning the suggested organization are 
found in Appendix F. 

ACFM should consider this recommendation, and a 
decision should be taken as soon as possible. 

6.2.3 Next Working Group meeting 

The Working Group noted the need for improved 
methods for the construction of survey indices from raw 
station data, and also for the further development of 
CPUE estimates based on detailed analysis of 
disaggregated data (as opposed to simple aggregation). 
These problems are closely related, and the Working 
Group, therefore, proposes that the principal topic for 



consideration at its next meeting should be: "Construc­
tion of CPUE and survey indices by detailed analysis of 
spatially disaggregated data". 

As suggested in Appendix F for the special Workshop, 
it will be necessary to concentrate on previously-chosen 
methods, associated to an operational software, and to 
select data sets prior to the meeting. Such choices would 
take place by correspondence, under the responsibility of 
the Chairman. 
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Table 2.3.1 Parameter values used in data simulation. 

M = 0.21 Shepherd's K = 6000 1 g = 2. 

Age Selectivity Fecundity Weight 

1 0.01 0.00 0. 6 
2 0. 10 0. 18 0.9 
3 0. 50 0. 54 2.0 
4 1. 00 1.35 4.3 
5 1. 00 2.70 6.7 
6 1. 00 4.05 8.6 

MSGY = 155 tl B = 51670 1 F = 0.53 1 Rec = 900. msy msy msy 

Table 2.3.2 Results of simulations. 

No noise Measurement error Process error-20~. 
Year 

y E B R y E B R y E B R 

1980 1, 010 30 51943 908 1 1 153 17 61522 1 1021 11266 39 51943 908 
1981 11479 40 61574 908 1 1378 43 61465 837 11288 37 61285 923 
1982 1 1 791 50 61629 930 11892 35 51046 692 1 1 917 55 61558 885 
1983 11906 60 61258 935 11892 64 61980 1 1 011 11725 55 61041 864 
1984 11920 70 51787 923 11703 58 51380 848 21150 81 51828 11017 
1985 1 1 911 80 51362 897 21008 64 51257 947 11891 89 51 127 966 
1986 11878 90 41963 869 21078 86 51207 1 1010 11637 84 41686 776 
1987 11813 100 41568 840 21060 99 41490 11144 21287 139 41749 1 1003 
1988 1 1721 110 41178 807 21098 96 41595 900 11445 110 31777 813 
1989 11617 120 31812 768 11582 110 31408 769 11494 115 31810 866 
1990, ;.1 1447 125 31472 725 1 1317 117 31473 573 1 1 561 121 31660 634 
1991 1 1 314 120 31204 681 11227 125 21918 639 1 1 106 81 31300 554 
1992 11228 115 3,057 645 1 1 116 211 3 1 112 475 11244 81 31488 639 
1993 1 1 165 110 21959 629 11146 109 31099 699 11689 145 31394 684 
1994 1 1 108 105 21893 620 977 119 21823 468 1 1059 128 21786 893 
1995 1 1066 100 21865 614 891 124 21718 595 835 89 21751 564 
1996 11040 95 21877 613 898 76 21806 516 1 1244 104 31 177 559 
1997 1 1027 90 21921 617 1 1 140 100 21775 547 1 1 158 89 31 14 7 653 
1998 11020 85 2,995 628 1 1043 97 21658 580 11090 88 31099 678 
1999 11020 80 31096 642 1 1 19 6 80 31679 555 936 73 31 187 779 
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Table 2.3.3. Population parameters derived from various estimation methods for product­
ion models using simulated data with no measurement or process error. See 
text for description of estimation methods. MSY is the maximum sustain-
able yield, E is the effort level at MSY, F is the fishing mortality 
rate at MSY, ~sy is the biomass at MSY, (P/B)mlt the maximum production 
to biomass ratT3~ B is the maximum biomass, B is the current biomass, 
Ft is the current fT~fiing mortality, q is the ca~chability coefficient, 
and m is a shape parameter. 

Estimation 
method 

Equilibrium 

Equil. approx. 

Transitional 

MSY 

1704 
1535 

1644 
1489 

1629 
1415 

74.5 
68.8 

73.2 
53.9 

73.0 
62.0 

Time average 1575.8 66.0 

Deriso/Schnute P 1250 
M 1931 
M 1083 

Shepherd (B-H) 
(SCH) 

1282 
1778 

0. 15 
0. 20 
0. 15 

0.30 

1501.4 
3778.0 

8342 
9663 
7227 

3896 
5929 

P/B 

1. 2 
0.6 

3003 1101 
11305 

14202 
11857 

2000 
2000 

1 . 19 

0.51 

Actual 1551 53.0 0.53 5670 0.58 10312 3000 0.8 

P indicates process error model for Deriso/Schnute method. 
M indicates measurement error model for Deriso/Schnute method. 
B-H indicates that a Beverton-Holt model was used for the Shepherd model. 
SCH indicates that a Schaefer-type model was used for the Shepherd model. 

1 . 4 9 
0.60 

0.29 
0. 14 
0. 68 

0.60 

0.01 

m 

2 
1. 1 

2 
0.61 

2 
0.83 
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Table 2.3.4 Population parameters derived from various methods for production models for 
simulated data with process error noise added. See text for description of 
fitting methods. Definitions of population parameters identical to those in 
Table 2.3.3. 

Estimation 
method 

Equilibrium 

Equil. approx. 

Transitional 

Time average 

MSY 

1647 
1765 

1650.9 
1523 

1483.1 

1650.6 

Deriso/Schnute P 1200 

Shepherd (B-H) 
(SCH) 

Actual 

1303 
2155 

1551 

E msy 

86.4 
86.7 

75.0 
49.0 

60.0 

68.8 

0.2 

0.3 

53.0 0.53 

B msy 

3709.8 

6000 

3257 
7184 

5670 

P/B 

1 . 6 
0.6 

0. 58 

10240 2021 

13027 
14369 

2000 
2000 

10312 3000 

Deriso/Schnute measurement error model failed to converge. 

1 Fixed. 

0.49 0.67 

1. 001 

0.47 0.60 

0.80 0.01 

m 

2 
2.7 

2 
0.5 

0.97 

2 

Table 2.3.5 Population parameters derived from various estimation methods for production 
models for simulated data with measurement error. See text for description 
of fitting methods. Definitions of population parameters identical to those 
in Table 2.3.3. 

Estimation 
method 

Equilibrium 

Equil. approx. 

Transitional 

Time average 

MSY 

1993.5 
1531.1 

1837 
1630 

1657 

1588 

Deriso/Schnute P 2764 
p 1496 

Shepherd (B-H) 
(SCH) 

1203 
1703 

79.9 
56.8 

77. 1 
44.7 

71.0 

78.4 

F msy 

0.30 
0.20 

0.30 

2060 

9224 
7492 

2597 
5678 

P/B 

2.0 
0. 6 

4406 1179 

11212 
11356 

4000 
2000 

0.91 

0. 30 

Actual 1551 53.0 0.53 5760 0.58 10312 3000 0.8 

Deriso/Schnute method failed to converge for measurement error method. 
rwo different process error runs were made. 

Fixed. 

30 

1 . 14 

0.26 
1. 001 

0. 40 

0.01 

m 

2 
0.60 

2 
0.61 

1 . 69 

2 



Table 2.3.6 Population parameters derived from various estimation methods for pro­
duction models for North Sea cod. See text for description of esti­
mation methods. Definitions for population parameters are identical to 
in Table 2.3.3. 

Estimation MSY E F B P/8 8 8t Ft q 
method msy msy msy max x10- 3 

Equilibrium 242.5 742.6 0. 125 
253.4 764.2 

Equil. approx. 237.5 647.2 
244.2 692.6 

Transitional 250.4 5 71.0 351.2 707.7 184 1.14 0. 125 
247.9 616.0 322.0 567.2 184 1.14 

Time average 1090.0 340.7 

Deriso/Schnute 1560 0. 1 15609 5.000 

Shepherd 252 382.0 766.0 1 . 2 2793.0 200 1.06 

Table 2.3.7 Population parameters derived from various estimation methods for 
production models for horse mackerel. See text for description of 
estimation methods. Definitions of population parameters identical 
to those in Table 2.3.3. 

Estimation 
method 

Equilibrium 

Equil. approx. 

Time average 

MSY 

213 

176 

192 

Shepherd (8-H1) 138 
(8-H2) 210 
(SCH1) 146 
(SCH2) 145 

3.3 

3.2 

2.4 

0.46 
0.25 
0. 60 
0.40 

Transitional method did not run. 

298 2.0 
849 0.8 
243 1.2 
361 0.8 

1288 
2749 

485 
723 

130 0.55 
200 0. 36 
130 0.55 
200 0. 36 

q 

0. 54 
0.35 
0.54 
0.35 

m 

2 

2 

m 

2 

2 

2 

2 

Deriso/Schnute method failed to converge for process and measurement error methods. 
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I2.bl~ z.~.a Population parameters derived from various estimation methods for production 
models for Pacific halibut. Definitions of population parameters identical 
to those in Table 2.3.3. 

Estimation MSY E F B P/B B Bt Ft q m 
method msy msy msy max x10- 4 

Equilibrium 70.0 954 2 
70.4 921 2.4 

Equil. approx. 68.7 81.2 2 
68.6 815 1 . 9 

Transitional 70.3 652 415.4 830 540 0. 12 2.6 2 
75.0 370 845.8 3381 585 0. 11 2.4 0. 50 

Time average 74.3 605 2 

Deriso/Schnute 72.0 0.25 288.0 0.36 

Shepherd (B-H) 73.0 182.0 1 . 6 727 150 0.43 0.94 
(SCH) 74.0 0.37 198.0 0.8 395 200 
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Table 2.3.9 Description of the Pacific halibut fishery data set. 

Year tttort Ohserv~d FitterJ C3iomass Ciltt:hability Alpha Obs.-fit. 
c;:, t c h C1tch Catr.hPs 

1 I 52 1 0 3 1 • 4 9. 4 ~. 246. .flJ07fl9 • 3 '·6 1 • 
17.53 '58·~. 44 It 4 6. ?. ) I • • ouo 660 • 3 5 1 -2. 
1::}_54 146. '• 4 • 44. 2 70. .OOO?fJfl .356 () . 
19 55 (4.J,. 4 I. 4<5. 218. • 000669 • j 60 -2. 
1936 12 t •• 4 7. 5 f). 2 84. • 00066 3 .363 -~. 
1037 o24. P. 46. 294. .00011g .:J6) 2. 
1 9 5 .~ 6 92. 4Y. 53. 2Y6. • 000642 • 36 l -4. 
10.S9 624. !+ q. 49. 501. • 000 7 00 • 3 68 1 • 
1941 56'5. ~0. 4 (. 3 08. • 000 7.53 .368 .s • 
104 1 640. 5 1 • 54. 3U I. .000651 .368 -3. 
1'142 653. ~d. 5). .506. .000672 .366 -2. 
10 4 3 613. 5 2 • 52. 30 I. • 000693 .J65 o • 
19 44 )5Y. so. 49. .s 1 2 • .000708 .362 1 • 
10 4 ') 558. 54. 5 1 • 3 14. .000127 ..)58 .s. 
1;146 4 79. 53. 46. 3 21 • • r:JOO 800 .354 7 • 
1947 523. 5.3. 5.5. 522. • 000101 .349 1 • 
1'i48 5 96. 6 0. 6 o. 316. .0006Y5 • 344 o . 
1949 5 62. 56. 57. .515. • 000682 • .358 -1. 
1 9 5 () ) 56. j 6. 57. .s 1 4. .000677 • 33 0 -1 • 
1'? 51 57 6. 55. 60. 3 11. • 000639 .323 -5. 
1952 598. 57. 62. 306. .000637 .314 -5 • 
10 5.5 586. 56. 61. 304. • 000631 .305 -5. 
1'154 57 R. 6 2. 62. 302. .000698 .295 () . 
1 0 55 453. 60. 5 1 • 3 11. .000806 .284 ~-
19)6 542. 72. 65. 308. • 000 775 • 2 7 3 8 • 
1057 496. 59. 61. 309. .000674 • 261 -2. 
19 5 ~ )27. 69. 6 7. 3 06. .000711 .248 2 • 
1959 572. f>.3. 7 3. 298. .000596 • 234 -10. 
1960 s 61 • 6 7. 72. 294. • 0006 41 • 22 0 -5. 
10 61 5 99. I 5 • 17. 2 86. .000614 .205 -2. 
1962 6 31 • K1. R1. 2 76. • 0006 95 .189 o. 
10 63 673. 33. 85. 264. .000619 .172 -2. 
1964 l53 R. 91 • 1 n n. 239. • 0006.5 2 • 1 55 -9. 
10 65 0 60. 9 ~. 104. 2 11. • 000654 • 13 7 -6. 
1966 ~89. 9 o. R9. 1 )18. • 000702 • 11 8 1 • 
1 C) 6.7 1024. 11) 1. 97. 1/6. • 000/25 .099 5. 
196g 9 22. 92. 84. 165. • 000761") .078 8. 
1969 d43. 33. 78. 1 61 • .000138 .057 5 • 
1970 739. 76. 73. 162. • 000713 .036 2. 
1 Q 71 802. 85. 91. 14 6. • 000650 • 013 -6 • 
1972 ~96. 83. R6. 1 31 • • 000670 .ooo -3. 
1913 918. 11. 79. 118. .000714 • 000 2 • 
19 74 1 005. 81. 76. 1 02. • 000732 • ooo 4 • 
10/5 9Q4. 64. 66. 91. • 000674 • 000 -2 • 
19 76 ~88. ss. 55. ~8. • 000690 • 000 o. 
19 77 765. 48. 48. 92. .000701 • 000 1 • 
1973 955. 51 • 59. 85. • 000604 .ono -7. 
19 7 () 131. 44. 4). 92. • 0006.73 • 000 -1. 
1 9 80 665. 44. 45. 1 02. • 0006 88 .000 o. 
10 81 601. 4 9. 5 1 • 111 • .000667 • 000 -2. 
19 82 539. 50. 45. 1 3 0. • 00076 5 .000 5 • 
1 Q 83 4 2 5. 47. 4 j. 160. .000754 • 000 4 • 
19 84 411 • so. 50. 1 y 1 • • 0006 86 .ooo o. 
1Q 8 5 439. 59. 62. 2 15. • 000 6o4 .000 -3. 
19 86 460. 65. 71. 2 31. • 000629 • 000 -7 • 

33 



Table 3.3.1 Characteristics of the various likelihood 
methods. 

Shrinking to Cleveland Slopes forced 
Methods geom. mean weighting to 1 

1 
2 + 
3 + 
4 + 
5 + + 
6 + + 
7 + 
8 + + + 

Table 3.3.2 Compared performances of maximum likelihood and 
Shepherd's estimates of year-class strength in retro­
spective validation. 

Year classes 
Option 

1973-1984 1981-1984 

Number Name A B A B 

1 Basic max. likelihood calibration 0.391 0.298 0.285 0.320 
2 Concentration on GM 0. 197 0. 266 0. 155 0.263 
3 Cleveland weighting 0.399 0.314 0. 300 0.308 
4 Slopes forced to 1 0.338 0.346 0.483 0.339 
5 GM + weights 0.260 0.288 
6 Weight + slopes 1 0.352 0.333 
7 GM + slopes 1 0.305 0.311 0.443 0.327 
8 GM + weight + slopes 0.315 0.323 

Shepherd-calibration 0.075 0. 119 
Shepherd-prediction 0. 152 0.093 

A = Square root of mean square log error. 
B = Square root of mean square error divided by mean recruitment 

(straight values). 
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Table 3.3.3 North Sea cod. Comparison of year-class strengths 
obtained by different calibration methods (see 
Table 3. 3. 1 for option codes). 

Option 
Year 
class VPA 2 3 4 7 Shepherd's-C Shepherd's-P 

197.3 2.34 25.3 26.3 243 2 11 262 
1974 426 423 413 426 546 452 
1975 208 206 223 195 187 256 
1976 710 475 455 470 819 558 
1977 427 353 353 .3 1 1 .378 365 
1978 454 375 368 306 313 320 
1979 800 628 627 628 505 505 
1980 271 90 240 97 239 256 
1981 556 532 526 529 457 455 539 527 
1982 276 175 260 167 134 1 4 1 284 303 
198.3 552 764 743 750 729 721 638 600 
1984 93 84 90 84 54 58 93 122 

Table 3.3.4 Irish Sea cod. Compared performances 
of recruitment estimates for 1981-
1984 year classes (see Tables 3.3.1-
3.3.2 for option codes). 

Option A B 1981 1982 1983 1984 

1 0.345 0.397 2754 8006 5047 7835 
2 0.330 0.375 2902 7810 5060 7594 
3 0.317 0.355 2665 7511 5127 7903 
4 0.534 0.586 1921 9444 3810 8276 
5 0.294 0.325 2861 7230 5136 7655 
6 0.484 0.545 2066 9006 4194 8733 
7 0.261 0.247 2350 3 611 4414 6868 
8 0.241 0.227 2515 3347 4706 6891 

Shep-C 0. 182 0. 191 3347 4478 4870 7033 
Shep-P 0.238 0.214 4175 4461 4995 6512 
VPA 2922 4375 6819 6849 
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Table 3.3.5 Comparison of the various estimates for North Sea 
cod recruitment at age 1 (1985 year class). 

Method Log estimate Linear estimate 

Individual fleet 1 5.7680 
calibration 2 6.2580 

3 6.0180 
4 6.2287 
5 6.3621 
7 6.6352 

Shepherd calibration 6.4663 

Shepherd prediction 6.4452 

Cook method 6.3345 

Maximum likelihood 1 6.4345 
2 6.4003 
3 6.4394 
4 6.6720 
5 6.4036 
6 6.6771 
7 6.5944 
8 6.5985 

1 1 = English groundfish survey, age 0; 
2 = Demersal groundfish survey, age 0; 
3 = IYFS, age 1; 
4 =English groundfish survey, age 1; 
5 =Demersal groundfish survey, age 1; 
7 = Scottish groundfish survey, age 1. 

Table 3.3.6 Comparison of Shepherd's and 
Cook's weights (1985 year 
class). 

Survey 1 Shepherd Cook 

1 0.0384 0.0885 
2 0.2217 0.1767 
3 0.0204 0.0556 
4 0.0948 0. 1683 
5 0. 1046 0.2205 
7 0.5276 0.2905 

1 1 = English groundfish survey, age 0; 
2 = Demersal groundfish survey, age 0; 
3 = IYFS, age 1; 
4 =English groundfish survey, age 1; 
5 =Demersal groundfish survey, age 1; 
7 = Scottish groundfish survey, age 1. 

320 
522 
411 
507 
579 
761 

643 

630 

564 

623 
602 
626 
790 
604 
794 
731 
734 



Table 4.3.1 Estimates of recruitment at age 1. North Sea cod from CAGEAN 
runs (based on seven commercial gears and one survey) and 
from the 1987 report of the North Sea Roundfish Working 
Group. 

Run North Sea 
Parameter Round fish 

2 3 4 5 6 7 8 9 WG 1987 

'\ 2.0 2.0 1.0 1.0 0.25 0.25 0.25 2.0 0.25 
A 0.5 1000 1000 0.5 0.5 0.5 1000 1000 1000 
s~ 9-10 9-10 9-10 9-10 9-10 7 7 7 7 

Year 

1977 344 241 274 321 313 379 386 525 310 710 
1978 225 185 199 237 220 231 228 265 212 427 
1979 196 190 197 230 229 227 215 246 197 454 
1980 332 459 414 352 372 365 351 398 285 800 
1981 137 208 193 133 145 145 146 156 129 271 
1982 311 320 309 291 298 290 302 320 335 556 
1983 198 159 151 166 153 145 151 167 152 276 
1984 355 371 351 336 301 320 331 448 353 552 
1985 23 40 41 43 43 49 51 48 233 93 
1986 66 318 336 352 365 529 539 433 542 730 

Ig,bl~ 1.3.2 Estimates of mean fishing mortality for North Sea cod 
from CAGEAN runs (based on seven commercial gears and 
one survey) and from the 1987 report of the North Sea 
Roundfish Working Group. 

Run North Sea 
Parameter Round fish 

2 3 4 5 6 7 8 WG 1987 

A, 2. 0 2.0 1. 0 1. 0 0.25 0.25 0.25 2.0 

~R 
0.5 1000 1000 0.5 0.5 0. 5 1000 1000 

9-10 9-10 9-10 9-10 9-10 7 7 7 

Year 

1977 0.71 0. 74 0.73 0.71 0.71 0. 90 1 . 1 2 0.35 0. 72 
1978 1. 05 0. 80 0.87 0.85 0.78 1. 07 1 . 3 6 0.42 0.81 
1979 0. 72 0.53 0.63 0. 68 0. 66 0.96 1.21 0. 32 0. 70 
1980 0.60 0.41 0.52 0. 70 0.71 0.44 1 . 12 0. 28 0. 78 
1981 0. 70 0.65 0.63 0. 74 0. 75 0.47 1 . 1 5 0.31 0.77 
1982 0.89 1 . 3 1 1 . 22 0.81 0.87 1 . 1 6 1 . 38 0. 34 0. 90 
1983 0.82 0.80 0.88 0.81 0. 84 1. 09 1. 34 0.33 0.89 
1984 1 . 1 7 1. 02 0.90 0. 86 0. 88 1. 04 1 . 2 8 0.29 0. 88 
1985 1. 05 0. 86 0.94 0.81 0.87 0.91 1. 07 0.25 0.85 
1986 2.50 1. 00 1 . 01 0.85 0. 98 0.81 0.93 0.23 0.91 
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Table 1.3.3 Estimates of biomass ( '000 t) for North Sea cod from CAGEAN 
runs (based on seven commercial gears and one survey gear) 
and from the 1987 report of the North Sea Roundfish Working 
Group. 

Run North Sea 
Parameter Roundfish 

2 3 4 5 6 7 8 9 WG 1987 

"1 2.0 2.0 1 . 0 1. 0 0.25 0.25 0.25 2.0 0.25 
f.. 0. 5 1000 1000 0.5 0. 5 0.5 1000 1000 1000 
s~ 9-10 9-10 9-10 9-10 9-10 7 7 7 7 

Year 

1977 479 430 419 482 459 439 432 900 459 704 
1978 512 421 438 505 486 507 502 842 576 705 
1979 401 409 413 469 481 485 466 828 407 702 
1980 459 577 533 532 554 528 498 960 489 884 
1981 520 769 665 533 559 533 517 1042 392 739 
1982 521 764 691 498 519 497 502 1018 509 734 
1983 466 446 435 451 443 416 431 972 427 558 
1984 499 498 455 467 437 422 436 975 520 633 
1985 329 381 383 384 352 370 381 943 342 406 
1986 180 365 351 374 351 472 490 1000 667 632 
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Table 5. 2. 1 Scenarios used 1n testing the robustness of VPA to misreportings. 

Scenario Years Ages 

0 No misreporting 
1 Constant misreporting All All 
2 Pulse misreporting Last All 
3 Year trend in misreporting Trend All 
4 Observed misreporting All All 
5 Age trend in misreporting All Trend 
6 Pulse, age trend Last Trend 
7 Age and year trend in misreporting Trend Trend 
8 Constant effort misreporting All All 
9 Pulse effort misreporting Last All 

10 Trend effort misreporting Trend All 

In cases where misreportings varied with year, the 
following percentages of misreporting were used: 

Year 1978 1979 1980 1981 1982 1983 1984 

Misreporting 0 5 10 15 20 25 30 

In cases where misreportings varied with age, the 
following percentages of misreporting were used: 

Age 2 3 4 5 6+ 

Misreporting 10 20 30 60 80 99 

Catches Effort CPUE 

20% As catch 
20% As catch 

0-30% As catch 
Observed As catch 

0-99% Calculated 
0-99% Calculated 
0-99% Calculated 

20% -20% 
20% -20% 

0-30% 0-30% 
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Table 5.3.1 Exploitation patterns as estimated from the data of the various scenarios. 

Age 
-

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 No misreporting 0.01 0.34 1.00 1.00 0.89 0.80 0. 77 0. 77 0.76 0.66 0.58 0.51 0.51 0.51 
1 Constant misreporting 0.01 0. 34 1.00 1.00 0.89 0.79 0. 77 0. 75 0. 75 0. 70 0. 56 0.51 0.51 0.51 
2 Pulse misreporting 0.01 0.34 1.00 1.00 0. 90 0.81 0.79 0. 78 0. 78 0.74 0.59 0. 54 0.54 0. 54 
3 Year trend in misreporting 0.01 0. 34 1.00 1.00 0. 90 0.83 0.80 0.79 0.75 0.57 0. 55 0. 54 0.54 0. 55 
4 Observed misreporting 0.01 0. 34 1.00 1.00 0.93 0.83 0.82 0.82 0.82 0. 72 0.67 0.56 0.56 0.56 
5 Age trend in misreporting 0.01 0.43 1.00 1.00 0.91 0. 70 0.68 0. 67 0.62 0.57 0.45 0.45 0.45 0.45 
6 Pulse, age trend 0.01 0.31 0. 93 0.98 0.99 1.00 0. 97 0.96 0.96 0.83 0. 82 0.80 0. 80 0.80 
7 Age and year trend in misreporting 0.01 0. 34 1.00 1.00 0.92 0.80 0. 78 0. 78 0.73 0.67 0.53 0.53 0.53 0.53 
8 Constant effort misreporting 0.01 0.34 1.00 1.00 0.89 0.80 0. 77 0. 77 0.76 0. 66 0. 58 0.51 0.51 0.51 
9 Pulse effort misreporting 0.01 0.34 1.00 1.00 0.89 0.80 0. 77 0. 76 0.71 0.57 0. 52 0.51 0.51 0.51 

10 Trend effort misreporting 0.01 0.34 1.00 1.00 0.89 0.79 0. 77 0. 75 0.75 0. 70 0.56 0.51 0.51 0.51 



Table 5.3.2 Recruitment at age 1 (thousands) estimated from the data of the various scenarios. 

Scenario 1972 1973 1974 

0 No misreporting 77868 107136 111255 
1 Constant misreporting 62295 85710 89044 
2 Pulse misreporting 77818 107036 111175 
3 Year trend in misreporting 77387 106049 109538 
4 Observed misreporting 72873 94239 85348 
5 Age trend 41085 55784 56023 
6 Pulse, age trend 77213 105830 109565 
7 Age and year trend 77259 105794 109191 
8 Constant effort misreporting 77868 107136 111255 
9 

10 

4:::> 
f-" 

Pulse effort misreporting 78036 107470 111917 
Trend effort misreporting 78092 107581 111889 

Year 
--

1975 1976 1977 1978 1979 1980 1981 1982 1983 

42157 114383 140553 47536 12342 159268 155947 169222 199106 
33697 91541 112515 38052 9887 127402 124708 135279 159164 
42063 114122 140094 47313 12266 157266 152326 161911 193160 
41137 109126 129093 41672 10352 129531 126390 142483 176425 
27845 66221 89372 40440 11704 144503 128871 133735 160062 
21241 57302 71619 24208 6360 86370 82673 88448 75104 
41380 110411 133008 43753 10784 130592 112818 123917 155164 
40918 109131 131073 43293 11004 140105 135577 149235 177001 
42157 114383 140553 47536 12342 159268 155947 169222 199106 
42480 115640 142402 48461 12714 167012 170972 199561 251962 
42361 115703 142072 48770 12852 169658 175928 209568 269359 

1984 

56503 
45167 
53916 
49453 
44165 
19870 
48341 
51515 
56503 
73080 
78527 
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Table 5.3.3 Spawning stock biomass (t) estimated from the data of the various scenarios. 

Year 

Scenario 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 

0 No misreporting 41568 26792 24605 25361 27724 22953 25237 30080 24299 17300 25101 30280 36989 
1 Constant misreporting 33263 21440 19691 20295 22192 18372 20200 24087 19469 13876 20114 24251 29603 
2 Pulse misreporting 41414 26659 24460 25204 27548 22755 25048 29812 23973 16944 24408 28938 36697 
3 Year trend misreporting 41016 26301 24018 24599 26631 21595 23140 26450 20496 14204 20365 25282 33799 
4 Observed misreporting 38929 24253 21109 19616 18901 14314 15855 24113 22647 15403 20670 23441 29942 
5 Age trend 5411 2547 3222 4233 4746 2741 4479 5908 3159 1238 5674 7060 8907 
6 Pulse, age trend 40889 26182 23865 24408 26431 21427 23236 26684 19901 12246 14941 11252 15633 
7 Age and year trend 41034 26310 24005 24538 26502 21409 22929 26286 20081 13470 19620 23189 28858 
8 Constant effort misreporting 41568 26792 24605 25361 27724 22953 25237 30080 24299 17300 25101 30280 36989 
9 Pulse effort misreporting 41573 26806 24648 25465 27951 23266 25784 30993 25470 18640 27763 35651 48019 

10 Trend effort misreporting 41578 26814 24666 25504 27990 23289 25812 31131 25682 18899 28465 37247 51491 



Table 5.3.4 Fishing mortality averaged over the ages, estimated from the data of the var1ous scenar1os. 

Scenario 1972 

.!::> 
w 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

No misreporting 0. 607 
Constant misreporting 0. 607 
Pulse misreporting 0. 609 
Year trend in misreporting 0.613 
Observed misreporting 0.640 
Age trend 1. 385 
Pulse, age trend 0.614 
Age and year trend 0.613 
Constant effort misreporting 0.607 
Pulse effort misreporting 0.607 
Trend effort misreporting 0.607 

1973 1974 1975 

0.587 0.585 0.610 
0.587 0.585 0.610 
0.589 0.587 0.612 
0.596 0.596 0.625 
0.641 0.673 0.784 
1. 486 1. 429 1.425 
0.598 0.599 0.629 
0.596 0. 597 0.627 
0.587 0.585 0.610 
0.587 0.583 0. 607 
0.586 0.583 0. 606 

Year 

1976 1977 1978 1979 1980 1981 1982 

0.527 0.565 0. 524 0.619 0.534 0.537 0. 696 
0.527 0.565 0.524 0.618 0.534 0. 536. 0.695 
0.529 0.568 0. 527 0.623 0. 540 0.547 0. 713 
0.545 0.596 0.569 0.668 0.570 0.556 0.688 
0. 614 0. 665 0.300 0. 308 0.571 0.600 0.842 
1. 268 1.495 1.242 1. 414 1.394 1.630 1. 423 
0.547 0.597 0.563 0. 690 0.643 0. 744 1 . 114 
0. 548 0. 602 0.573 0.687 0.604 0. 611 0.799 
0.527 0.565 0.524 0.619 0.534 0.537 0. 696 
0.522 0.557 0.513 0.602 0. 511 0.501 0. 634 
0.521 0.557 0. 513 0.599 0.507 0.493 0. 617 

1983 1984 

0. 564 0. 568 
0.563 0.568 
0.589 0.456 
0.506 0.434 
0.544 0. 506 
1 . 151 1. 099 
1.499 0. 622 
0.642 0. 611 
0.564 0.568 
0.481 0.438 
0.459 0. 408 



Table 5.3.5 Projections estimated from the data of the various scenarios (TACs 
for 1986, SSB of 1984). 

F 0. 1 F F max last dY E 
-X-

Scenario F TAC F TAC F TAC dE y 

0 No misreporting 0.211 11577 0.348 16278 0. 58 20627 -17% 
1 Constant misreporting 0. 211 9294 0. 349 12984 0.58 16494 -17% 
2 Pulse misreporting 0.206 11672 0.340 16360 0.47 19301 -12% 
3 Year trend misreporting 0. 209 10923 0.346 15251 0.45 17424 -10% 
4 Observed misreporting 0.200 9318 0.332 13117 0.52 16341 -15% 
5 Age trend 0.225 3448 0.368 4794 1.10 6913 -22% 
6 Pulse, age trend 0.176 6883 0.295 10006 0.66 14760 -20% 
7 Age and year trend 0.210 9855 0. 347 13798 0.62 17945 -16% 
8 Constant effort misreporting 0.211 11577 0.348 16278 0.58 20627 -17% 
9 Pulse effort misreporting 0.215 15629 0.355 21703 0.45 24566 -10% 

10 Trend effort misreporting 0. 211 16699 0.349 23258 0.42 25646 -3% 
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Figure 2.3.1 Equilibrium Yield vs. F- Stimulated data 
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Appendix A 

WORKING PAPERS 

1. "Contribution a l'etude du modele global pour la dynamique des populations marines exploitees. 
Formulation, ajustement et sensibilite a certaines sources d 'erreurs" by F. Laloe. 

A description of different fitting methods is presented. 

A discussion on the precision of parameters estimators is made and the shape of the confidence region 
(MSY-fMS) is presented in a case study. 

An approach using minimization of catchability variation is discussed. 

An introduction of environmental effects is also presented. 

A simulation with some errors in data and parameters is made. 

2. "A simple production model with unaccessed quantity of biomass" by F. Laloe. 

A Schaefer model is presented in which it is assumed that an unmatchable proportion of the virgin biomass 
exists. 

This model leads to equilibrium catch-effort relationships which are analogous to those that can be obtained 
from a generalized (Pella and Tomlinson) model. 

Two examples are studied in which the unmatchable quantity of biomass has changed during the history of 
the fishery. 

This modelization may take into account change in stocks underlying dynamics during the history of the 
fishery. 

3. "The use of multiplicative models for separable VPA, integrated analysis and the general VPA tuning 
problem" by J.G. Pope and T.K. Stokes. 

Describes the methods of integrated analysis of catch-at-age data and CPUE or effort data. The use of the 
CCIM model was a central theme as was the development of models which help to promote insight into the 
tuning problem. 

4. "Understanding the structures of catch-at-age and effort data: the value of GLIM" by J. G. Pope and T .K. 
Stokes. 

Extended the work of the previous paper on ANOV A interpretations of multifleet separable data and/or 
linearized multi-fleet interpreted separable analysis. The important messages of this paper were: 

a) Catch-at-age data often have a nearly linear structure. 

b) Having data on a number of fleets does not alter the nature of the estimation. 

c) Permitting catchability to vary freely on all fleets means effort data will fail to specify terminal F 
uniquely. 
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5. "Combination of recruitment indices using weighted averages" by J.G. Shepherd. 

This Working Paper describes in more detail the method for combination of recruit indices using weighting 
averages which were briefly described in Anon. (1986a). This has now been implemented as a Fortran 
program (RCRIZNX) and has been used by some ICES working groups. The method uses a log-log 
calibration regression as recommended by the Working Group (Anon., 1984) and combines estimates in 
accordance with their estimated prediction errors. It gives very low weight to poorly correlated data sets in 
practice, and generally finds slopes less than 1 (VPA less extreme than index) even using the calibration 
method. 

6. "Towards improved stock-production models" by J .G. Shepherd. 

In Working Paper 6, Shepherd proposed a simple non-equilibrium stock-production model based on explicit 
representation of natural mortality and growth plus recruitment. The latter process is modelled with a 
functional form based on a Beverton-Holt stock-recruitment relationship. The model itself is, therefore, not 
novel, and is, indeed, one of the general class described by Schnute (1985). However, the fitting procedure 
proposed is novel, based on mapping goodness-of-fit over feasible ranges of two of the three parameters, 
giving a hopefully more robust and informative analysis. The same fitting procedure can be applied to other 
models, and has been implemented for the Shepherd and Schaefer models in a Fortran program SPM. 

7. "Time series models of fishing mortality rates" by G. Gudmundsson. 

Stochastic models of fishing mortality rates, based on concepts from time series analysis, are estimated from 
catch-at- age data. The rate of natural mortality is supposed to be known. These models can be estimated 
with tolerable accuracy from actual data for all years and ages without any further observations. Trends in 
fishing mortality rates and vari- ations in the pattern of selectivity, gradual or irregular, can be detected. 

The estimation is carried out by an approximation to the Kalman filter. Unknown parameters in the models 
are obtained from the likelihood function of catch prediction errors. 

Extension of this estimation procedure to a joint analysis with data from research vessel surveys is 
straightforward, but entails a substantial increase in computation. 

8. "Analysis of icelandic trawlers reports" by G. Stefansson. 

A preliminary analysis oficelandic trawler reports was presented along with a method for using the resulting 
CPUE indices for cod in an integrated analysis with catch-at-age data. 

The necessity of proper stratification and age disaggregation was emphasized. 

The data are recorded by the fishermen as weight by species in each tow. Further, towing time and location 
of the tow are recorded. It was, therefore, possible to compute CPUE indices separately for small squares 
and then average over squares within the region of interest. Within squares, the index was computed as an 
unweighted average of indices for each trawler, where a trawler's index was computed as the sum of its 
catches divided by total towing time. This method of index construction is intended to let all trawlers weight 
equally in the index for each square and to let all squares weight equally in the overall abundance index for 
the year. 

The need for age disaggregation was particularly obvious in that the aggregated indices do not indicate any 
relationship with usual biomass measures, but fairly high correlations are obtained between disaggregated 
indices and VPA biomass for the age groups of primary interest in the study (ages 4-6). Therefore, age 
composition by weight for the region was used to decompose the annual CPUE index into indices for each 
age group. 
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One way of estimating terminal F values is to first assume a fixed selection pattern, then try a particular 
terminal F value as input to a VPA run. This will yield biomass at age for each age group. For a fixed age 
group, a regression of log (CPUE) on log(B) can be performed to yield an error sum of squares, SSE (F,a). 
These can then be summed over relevant age groups to yield one sum of squares, SSE(F). The method 
proceeds by estimating F as the number which minimizes SSE (F) over F. 

This approach is particularly easy to use, since it only requires a VPA program and a simple linear 
regression program. It is also easily extended to include a time trend in catch ability. Further, confidence 
intervals for terminal F are easily obtained based on an F-test on the SSE values (cf. Halldorsson et al., 
1986). 

For the Icelandic cod data, ages 4-6, the preliminary results indicate fairly wide confidence intervals for the 
terminal F values. This would seem to point to the necessity for more accurate CPUE data, including more 
age groups. 

9. "Utilisation des IYFS pour estimer le recrutement-utilisation de Ia distribution a priori -prise en compte 
de fonctions de perte" by A. Laurec and A. Souplet. 

Considering that the unknown recruitment is coming from the same distribution as the previous ones, it is 
possible to build a maximum likelihood estimation that will offer a compromise between the historical 
geometric mean of recruitment and the estimation suggested by the usual calibration. When the recruitments 
are considered as corresponding to a log normal distribution, with no correlation from year to year, it is just 
equivalent to using the regression line, where VPA is predicted from survey indices. 

In a second part, this paper discusses the possible use of non-quadratic loss functions, which would make 
it possible to take into account that underestimating recruitment may be more or less important that 
overestimating it, that the same level of estimation errors may be more important when the real recruitment 
is low. This paper will be developed and presented to the 1987 ICES Statutory Meeting. 

10. "Multiplicative modelling of recruitment estimates" by R.M. Cook. 

The problem of combining multiple indices of abundance from research vessel surveys to obtain a single 
"best" estimate is addressed via a multiplicative model. The model embodies a fleet effect and a year effect 
and allows for log-linear relationships between year effect and index. Historically, distant data are 
down-weighted using a tri-cubic function and data from different surveys are weighted by the inverse of a 
residual variance associated with each survey. 

Trials of the model on simulated and real data are presented. 

ll."Joint analysis of catch at age and CPU observations" by G. Gudmundsson. 

Extends the models and estimation procedures of Working Paper 7 to also include observations of 
recruitment, groundfish surveys, or CPUE data from commercial fleets. 
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Appendix B 

STANDARD NOT A TION 

NOTE: This standard (and largely mnemonic) notation is followed so far as possible, but not slavishly. Other 
usages and variations may be defined in the text. Array elements are denoted by means of either indices or 
suffices, whichever is more convenient. The same character may be used as both an index or a variable, if 
no confusion is likely. 

Suffices and Indices 

y indicates year 
f " fleet 
a 
t 
g 
l 
k 
$ 
# 
@ 

* 

II 

II 

II 

II 

II 

II 

II 

age group 
last (terminal) year 
oldest (greatest) age group 
length 
year class 
summation over all possible values of index (usually fleets) 
summation over all fleets having effort data 
an average (usually over years) 
a reference value 

Quantities (all may have as many, and whatever, suffices are appropriate) 

C(y,f,a) 
E(y,f) 
F(y,f,a) 
F.(y,f) 
q 
y 

w 
Ws 
B 
p 
E 
u 
Cw 
N 
F 
z 
M 
s 
R 
f 
y 
d 
b 
h 
G 
L 
I 
loo 
K 
r 

Catch in number (including discards) 
Fishing effort 

Fishing mortality 
Separable estimate of overall fishing mortality 
Catchability coefficient (in F = qE) 
Yield in weight 
Weight of an individual fish in the catch 
Weight of an individual fish in the (spawning) stock 
Biomass 
Population number (also fishing power) 
Fishing effort 
Yield or landings per unit of effort 
Catch in weight of fish (including discards) 
Stock in numbers of fish 
Instantaneous fishing mortality rate 
Instantaneous total mortality rate 
Instantaneous natural mortality rate 
Selection coefficient defined as the relative fishing mortality (over age) 
Recruitment 
Relative F (e.g., F/F*) 
Relative yield (e.g., Y/Y*) 
Fraction discarded 
Fraction retained (b = 1 - d) 
Hang-over factor 
Instantaneous growth rate (in weight) 
Landings in number (excludes discards) 
Length 
Von Bertalanffy asymptotic length 
Von Bertalanffy "growth rate" 
Recruit index 
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MSY Maximum sustainable yield 
F msy Fishing mortality rate associated with MSY 
Emsy Fishing effort associated with MSY 
Bmax Pristine stock biomass 
m Shape parameter for various surplus production models 
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Appendix C 

SUMMARY OF TOPICS 

Topic 19811 1983 1984 1985 1987 19882 19893 

1. Application of separable VP A M r M m 

2. Simpler method of assessment M M 

3. Measures of overall fising mortality 

4. Use of effort data in assessments M M r r M M m 

5. Need for two-sex assessments 

6. Computation and use of yield per M m 
recruit 

7. Inclusion of discards in assessmemts M 

8. Methods for estimation of M r M 
recruitment 

9. Density-dependence (growth, 
mortality, etc.) 

10. Linear regression in assessments M m 

11. Effect of age-dependent natural M 
mortality 

12. Stock-production models M 

13. Utilization of research survey data M M 

14. Use of less reliable fishery statistics m m 

15. Construction of indices from M 
disaggregated data 

M = major topic. 
m = minor topic. 
r = reprise. 
i = incidentally considered. 

1Meeting of ICES ad hoc Working Group on Use of Effort Data in Assessments. 
2Special workshop suggested during this meeting. 
3Next Methods Working Group meeting. 
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Appendix D 

SOFTWARE ROUTINES AND PACKAGES USED BY THE WORKING GROUP 

Name Language Hardware Usage Further info. 

1. ANOVA GLIM Wide implementa- Analysis of variance J.G. Pope1/NAG 
tions 

2. CALIB Fortran 77 NORD Calibration of A. Laurec2 

recruitment using 
several survey 
indices 

3. CAGEAN Fortran 77 Cyper 7600 Catch-at-age Deriso et al. (1985) 
Prime 550 analysis with 
Burroughs NORD auxiliary 
IBM-PC information 

4. ITCOTCIO GLIM Wide implementa- Catch -at -age J.G. Pope and T.K. 
Macro tions analysis Stokes (WP 4) 

5. Non-linear Fortran NORD Fitting production F. Laloe3 

fitting Gens tat models with 
Marquadt 
algorithms 

6. PROD APL Mainframe Production models: S. Gavaris4 

transient forms 

7. PRODAFIT APL IBM-OC Production models: Rivard (1982) 
equilibrium 
approximations 

8. RCRTINY Fortran 77 MSDOSN Weighted average J. G. Shepherd5 

NORD combination of 
HP, etc. recruitment indices 

9. SHAEFER APL IBM-PC Production models: Rivard (1982) 
equilibrium 
approximations 

10. SCHNUTE APL IBM-PC Production models: R.K. Mohn6 

using Schnute 
(1977) linear form 

11. SPM Fortran 77 MSDOS Shepherd + J.G. Shepherd5 

NORD Schaefer stock 
HP, etc. production models 

12. Fortran 77 MORD Analysis of Gudmundsson 
residuals (1986) 

13. TSM Fortran 77 VAX Catch-at-age G. Gudmundsson 
analysis with or (WP 7) 
without auxiliary 
information 

72 



14. PRODFIT Fortran 77 MSDOS 

15. GENPROD Fortran 77 MSDOS 

1J.G. Pope, Fisheries Laboratory,Lowestoft, Suffull NR 33 OHT, UK. 

General production 
model fitting 
through 
approximated 
equilibriums 

General production 
model under 
transient situations 

2A. Laurec, IFREMER, rue de l'ile d'Yeu, B.P. 1049, 44037 Nantes Cedex, France. 
3F. Laloe, C.R.O.D.R/. BP 2241, Dakar, Senegal. 

Fox (1975) 

Pella and 
Tomlinson (1969) 

4S. Gavaris, St. Andrews Biological Station, Dept. of Fisheries & Oceans, St. Andrews, N.B. ElA 3EO, Canada. 
5J.G. Shepherd, Fisheries Laboratory, Lowestoft, Duffolk NR33 OHT, UK. 
6R.K. Mohn, Dept. of Fisheries & Oceans, P .. Box 550, Halifax, N.S., B3J 2S7, Canada. 
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APPENDIX E 

MULTICALIBRATION THROUGH MAXIMUM LIKELIHOOQ 

Notation/Assumptions 

A data set covering Ny past years and Nf fleets will be considered. The logar­
ithm of the abundance index for year y and fleet f is u f" When this datum is 
available, the Kronecker symbol 6y,f is equal to 1; oth~twise 6y,f = 0. 

The past recruitment for year y is Ry = exp(xy). This assumed ~o be known 
exactly (from VPA). 

In addition to the set of past data, estimation of the recruitment for the cur­
rent year will be based on the current abundance indices u f" The same o, 
convention applies to the Kronecker symbols 6 f" 

The sum 

Ny 
6 f + [ o, 

y=1 

o, 

6 y,f 

is denoted Tf. This is the total number of data points in the time series for 
fleet f. 

Log-linear relationships will be assumed so that 

uy,f = af xy + bf + £y,f 

so that curvature of the abundance/index relationships is permitted. 

The residuals £ f ~re assumed to come from a normal distribution with zero 
mean and varianc~'af . They are assumed to be independent from year to year and 
fleet to fleet. 

It will also be assumed in one case that the log recruitments themselve~ are 
drawn from a normal distribution, with a mean equal to x# and a variance ox 

Log-likelihood functions 

The basic multicalibration problem can be expressed in terms of the log-likeli­
hood functions: 

L = - ETf Log(af) - f[ryE(uy,f - afxy - bf)
2
6y,f + (uo,f - afx0 - bf)

2
6o,f] 

f 2a/ 

Maximizing this function is equivalent to minimizing some function 
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Differentiating L with respect to of, then putting these derivatives to zero 
leads to the equation 

2 2 
[(uy,f - afxy - bf) 5y,f + (uo,fafxo - bf) 5o,f 

Tf y 

( 1 ) 

This will lead to the concentrated likelihood function (Bard, 1974) by substi­
tuting a as given by equation (1) in the likelihood function- ~(fx0 ) if 

( 2) 4> = [T Log(af) 
f f 

For a given x , the conditional maximum likelihood estimation will lead, as can 
be easily vgrified, to the usual empirical regression coefficients calculated 
for each fleet over the available couples (u f' xf) and, if available, the 
final set (u f' x ) . This regression line r¥lates Eo u as explained by x. o, 0 

It is thus very easy for each value of x to calculate the conditional maximum 
likelihood estimations for the rarameter a~ and bf, and the corresponding maxi­
mum likellhood estlmates for of through equation (1). From this, one deduces 4> 1 

which can be written as a function of x , which can easily be maximized by an 
iterative procedure. 0 

The function 4> (x ) deserves careful consideration. The factor Tf leads to a 
weightipg that incre~ses the influence of long time series. On the other hand, 
the of deduced from equation (1) is biassed, as usual in maximum likelihood 
techniques. This bias may be considerable when Tf is not large compared to 2. 

This basic procedure can be extended to include the previously mentioned hypoth­
esis on the distribution of the recruitments. This will in fact add a term to 
the log-likelihood function, equal to: 

1 l 2 - (Ny+1) Log(a ) - -- [(X - X#) + (X -
x 

20 
2 y o 

X 

The same concentration of the likelihood function will be possible since differ­
entiating with respect to a will lead to: 

X 

( 3) a 
X 

2 

(Ny+1) 

The equivalent of the function 4> will become: 

For each given value of x , the Tf will be calculated as previously mentioned, 
while x# will be given by0 

(Ny+1) 
([X + X ) 
y y 0 

and ax by equation (3). 
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Finally, it 
situations 
5uming that 

could be verified that these calculations can be easily adopted to 
where the slopes af are forced fO 1, or to any weighting scheme as­
the variance of E f is (w f)of where w f is known. 

Y I y, 'f I 



Appendix F 

PROPOSALS FOR A WORKSHOP 

1. Purpose 

Such a workshop should be strictly devoted to the practical application of selected existing methods, 
performing statistical integrated analysis of catch-at-age and auxiliary information. 

It should arrive at some firm conclusions and recommend standard software that should be implemented in 
ICES as soon as possible after the workshop to become part of the standard assessment package. The 
Secretariat will be requested to make available the services of its staff and to invite an expert user to assist 
in the implementation of this software. 

2. Time and location 

It should take place in the second quarter of 1988 in a place where computer facilities are sufficient and 
correspond to standard procedures. Facilities should include the service of the necessary staff. 

3. Participation 

It should include members of the Methods Working Group, specialists of the stocks corresponding to the 
actual chosen data sets, and members of assessment working groups. 

4. Software 

The methods to be considered should strictly be selected by the Chairman of this workshop in consultation 
with the Chairman of the Methods Working Group and the Chairman of ACFM. 

Since these methods will be existing ones, the corresponding software should be fully operational before the 
beginning of the meeting on the computers to be used by the workshop. User guides should systematically 
be available. 

5. Data Sets 

The following procedure is suggested to produce the data sets: 

Aberdeen selects two sets of actual data. 

Lowestoft, Reykjavik, and Seattle each produce a set of simulated data and a description of their 
properties. 

All these data sets are sent to the Chairman who determines whether they cover all aspects which 
ought to be considered and recommends to the authors changes that are needed to achieve this. After 
thus vetting the proposed sets, the Chairman distributes them to members of the Group, including only 
such prior information which the practitioners ought to have (such as natural mortality). This should 
be finished 6 months before the meeting, giving people ample time to carry out the analysis on their 
own machines before the meeting. 
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REPORT OF THE WORKSHOP ON METHODS OF FISH STOCK ASSESSMENTS 

Reykjavik, 6-12 July 1988 

1 PARTICIPANTS AND TERMS OF REFER­
ENCE 

1.1 Participants 

David Armstrong (Chairman) UK (Scotland) 
Armando Astudillo Spain 
Vladimir Babayan USSR 
M. Fatima Borges Portugal 
Ghistain Choinard Canada 
Ray Conser USA 
Robin Cook UK (Scotland) 
Yury Efimov USSR 
Eduardo Ferrandis Spain 
Dominique Gascon Canada 
Stratis Gavaris Canada 
Asta Gudmundsd6ttir Iceland 
Gudmundur Gudmundsson Iceland 
Thorkell Helgason Iceland 
Vidar Helgason Iceland 
Mikael Hilden Finland 
Holger Hovgard Greenland 
Tore Jakobsen Norway 
Hans Lassen Greenland 
Alain Laurec France 
Peter Lewy Denmark 
Qun Liu UK (Wales) 
Robert Mohn Canada 
Steen Munch-Petersen Denmark 
Ransom A. Myers Canada 
Phillip R. Neal USA 
Gunnar Petersson Iceland 
John G. Pope UK (England) 
Terrance Quinn USA 
Denis Rivard Canada 
Andrew A. Rosenberg UK (England) 
John G. Shepherd UK (England) 
Arnauld Souplet France 
Gunnar Stefansson Iceland 
Bj0m Steinarsson Iceland 
Man Sun UK (England) 

1.2 Tenns of Reference 

At the 75th Statutory Meeting of ICES (1987) it was 
decided (C.Res.l987/2: 11) that: 

"As part of the preparatory process for the next meeting 
of the Working Group on Methods of Fish Stock Assess­
ments, a Workshop will be held in Reykjavik from 6-12 
July 1988 (Chairman: Mr A. Laurec) for the purpose of 
testing software methods which perform statistical inte­
grated analysis of catch-at-age data and auxiliary infor-
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mation, and constructing and implementing appropriate 
test data sets. Results of these methods will be con­
trasted with the output from equivalent ad hoc VP A 
tuning methods. Local arrangements for the Workshop 
will be coordinated by Dr G. Stefansson." 

Following this resolution, Mr Laurec found that, because 
of other commitments, he could not act as Chairman and 
it was decided at the November 1987 meeting of ACFM 
to offer the chairmanship to Mr D.W. Armstrong. 

2 INTRODUCTION 

2.1 Interpretation of "Stock Assessment" 

For the purpose of this report, the meaning of "fish 
stock assessment" is restricted to any procedure by 
which the historical and current state of a fish stock is 
estimated. This definition includes no reference to predic­
tion of possible future states of the stock and no attention 
was given to prediction in the course of this meeting. 

It should also be noted that, in real-life assessments, 
recruitment estimates for the most recent data years are 
often obtained by techniques additional to those used to 
analyze the catch-at-age and auxiliary data. No attention 
was given to such methods at this meeting. 

2.2 Requirements for Testing Methods of Assess­
ment 

Particularly during the past 4-5 years, considerable 
development of new methods for fish stock assessment 
has occurred. In many instances, the new methods have 
not been extensively tested and the first application of 
any of them has often taken place during stock assess­
ment working group meetings when the results are of 
material importance to non-scientists. In some instances, 
use of different methods to assess the same stock has 
produced considerably different results leading to con­
fusion. 

Furthermore, development of new techniques has taken 
rather different routes in Europe and North America. In 
North America, the focus has been on fitting formal 
mathematical models by standard statistical techniques 
(minimization of an objective function). In Europe, 
much more attention has been given to developing so­
called ad hoc "tuning" methods in which non-standard 
techniques are used to find a solution for the last data 
year which is consistent with historical parameter esti­
mates. 



Given this background, it was felt essential that the 
various methods should be tested at least to identify 
those which produce unacceptably poor results. Ulti­
mately, the aim of the testing procedure should be to 
identify an overall best method or a best method contin­
gent on the nature of the stock being assessed. 

2.3 Methods Tested 

The 18 methods listed below were tested. 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Name of Method 

Hybrid 

Laurec-Shepherd 

Armstrong-Cook 1 

Armstrong-Cook 2 

Armstrong-Cook 3 

Armstrong-Cook 4 

Alternative Estima-
tion of Fishing Mor-
tali ties 

Corrected Catch per 
Unit Effort 

Survivors 

Extended Survivor 
Analysis 

Catch at Age Analy-
SIS 

Adaptive Approach 

General Linear 
Model 

Collie-Sissenwine 

Time Series 1 

Time Series 2 

Separable VP A 

Conventional VPA 

Acronym 

HYBRID 

LS 

AC1 

AC2 

AC3 

AC4 

AEFM 

CCPUE 

SURVIV 

XSA 

CAGEAN 

ADAPT 

GLM 

COLSIS 

TSERl 

TSER2 

SVPA 

CONVEN 

A description of each of these methods together with 
details of the way in which they were applied, an 
account of the ease (or otherwise) of application, and 
references to further descriptions in the scientific litera­
ture are given n Annex 2. 

Methods 1-8 in the list above are ad hoc tuning 
methods. Methods 11-14 are the integrated methods. 

Methods 9 and 10 incorporate some features of both the 
ad hoc and the integrated approach. Methods 17 and 18, 
unlike the others, cannot make use of auxiliary data 
(CPUE) and were tested to indicate the improvement 
which may be obtainable by the appropriate use of such 
data. 

The methods are listed in the order in which they appear 
in the tabulations included in this report. The acronyms 
listed above are used to indicate the methods in these 
tables. 

The assumptions inherent in each of the methods are 
summarized in Table 2.1. It should be noted that the 
assumptions listed are those incorporated to produce the 
results presented in this report. Within many of the 
methods these assumptions can be modified. The various 
tuning methods can be regarded as the same method run 
under different assumptions. Similarly, the difference 
between the two Time Series methods is that TSERl 
analyzes only the total catch-at-age data, whereas TSER2 
also analyzes CPUE data from one of the research 
vessels. The adaptive approach is specifically designed 
to allow modification of assumptions and incorporation 
or exclusion of various data sets. 

3 PROCEDURE FOR TESTING METHODS 

3.1 Simulated Data Sets 

The basic approach adopted was to investigate how well 
each method estimated certain parameters employed in 
creating simulated data sets. Details of the simulation 
method and the input parameters for each simulation are 
provided in Annex 1. By appropriate choice of the 
values of the input parameters, it is possible to simulate 
different types of fisheries exploiting different types of 
stocks and hence, for each combination of fishery and 
stock, to produce data of the type commonly analyzed by 
stock assessment. 

The output from the simulation process consisted of 
estimates of catch at age for each of seven fleets, four of 
which were commercial fisheries (two trawler fleets, one 
liner fleet, and one fleet of fixed nets), and the other 
three were research vessels. Estimated fishing effort was 
provided for the research vessels, for liners, and for one 
of the trawler fleets. Catch-at-age data were provided for 
ages 3-12 for a period of 30 years for all fleets. 

Noise was added to the output data sets in the form of 
process error and measurement error as described in 
Annex 1. These errors were different for different age 
groups and fleets. 

Mean weight at age and proportion mature at age were 
assumed to be constant and known. Natural mortality 
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rate was assumed to be 0.2 for all ages and years and 
known. 

Six data sets were assessed the main features of which 
are described below (see Annex 1 for full details). 

Data Set 1: 

Data Set 2: 

Data Set 3: 

Data Set 4: 

No trends in catchability in any fleet. 
Total international F about 0.4 for the 
whole of the 30-year period. Process 
and measurement errors log-normal. 
Separable F at age for each fleet. 

No trends in catchability in any fleet. 
Total international F about 1.0 for the 
whole of the 30-year period. Process 
and measurement errors log-normal. 
Separable F at age for each fleet. 

Catchability trends in the two commer­
cial fleets for which effort data are 
available. No catchability trends in 
other commercial fleets or in research 
vessels. Total international F around 
0.4, but with steadily increasing trend. 
Process and measurement errors log­
normal. Separable F at age for each 
fleet. 

Catchability trends in all fleets for 
which effort data are available (includ­
ing research vessels). Total international 
F around 0.8 in year 1 increasing to 
about 1.2 in year 30. Process and 
measurement errors log-normal. Separ­
able F at age for each fleet. 

These four data sets were sent to the assessors in 
advance of the meeting. Having carried out their assess­
ments, all of the assessors considered that the data were 
too "clean". In particular and when the method of simu­
lation and the precise nature of these data sets was 
revealed, it was suggested that: 

i) the research vessel data should have higher vari­
ances, 

ii) separability assumptions for each fleet may be viol­
ated in reality, 

iii) errors in catch-at-age data may be gamma-distributed 
rather than log-normally distributed, 

iv) some methods assumed exponential trends in 
catchability and since this assumption is incorporated 
in those data sets where catchability is allowed to 
change, these methods would be in an advantageous 
position when assessing data of the type provided, 
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v) research vessel effort data varied considerably from 
year to year. 

Accordingly, during the meeting, two other data sets 
were prepared in an attempt to overcome these criti­
ctsms. 

Data Set 5: Same as Data Set 3 except that gamma­
distributed process noise used on F-at­
age and catch-at-age data (log-normal 
noise retained on fishing effort). Level 
of noise increased compared to Data 
Sets 1-4. 

Data Set 6: Noise treated in the same way as Data 
Set 5. F at age not separable for any 
fleet for the whole of the simulated time 
period. 

It should be stressed that, ideally, the assessors would 
have carried out extensive exploratory analysis of the 
data sets prior to producing their results. Many of the 
methods routinely produce diagnostic statistics 
(HYBRID, LS, CAGEAN, ADAPT, TSER) and some 
methods (especially ADAPT) actively encourage inter­
vention by the operators. However, in the time avail­
able, only cursory reference to diagnostics was possible. 
Because of this, the results from these methods presented 
in this report may not be the best attainable. 

These data sets are large, and it has been decided that 
they will not be tabulated in this report. Copies of them 
can be obtained on IBM-formatted disk from: 

or 

3.2 

D.W. Armstrong, 
DAFS Marine Laboratory, P.O.Box 101 
Torry, Aberdeen AB9 8DB, UK 

G. Stefansson 
Marine Research Institute 
P.O. Box 1390, Skulagata 4 
121 Reykjavik, Iceland 

Estimation of Parameters of the Last Data 
Year in Simulated Data Sets 

One of the most important results arising from a stock 
assessment is an appreciation of the state of the stock in 
the last data year since short-term conservation measures 
(TACs, effort and mesh regulations, etc.) are highly 
dependent on the current state of the stock. The current 
state of the stock is describable by estimating the para­
meters for the last data year of an appropriate fisheries 
model. 



3.2.1 Procedure for comparison of methods 

Because the simulation method incorporates stochastic 
processes, it is possible to produce many different realiz­
ations of the outputs for any constant set of input para­
meters. In principle, this property could have been used 
in a Monte Carlo test of each assessment method in 
which a large number of realizations of a data set could 
be analyzed to obtain the mean value (expectation) and 
variance of each parameter. These quantities could be 
used to compare the efficiency of the methods. 

In advance of or during the meeting, a single realization 
of each of the six data sets was supplied to a number of 
nominated stock assessors. Each stock assessor was 
requested to apply a method which he had originated or 
which he is accustomed to using to each of the data sets. 
The true input parameter values were not provided to the 
assessors at this stage. 

The assessors were asked to: 

i) apply their method to data for years 2-21 and esti­
mate parameter values for year 21 

ii) apply the method to years 3-22 and estimate para­
meters of year 22, 

iii) repeat for years 4-23, 5-24, ....... , 11-30. 

The assessors were asked to record their estimates of: 

i) number at age, 

ii) F at age and mean F for ages 5-9, 

iii) total and spawning biomass, 

iv) catchability at age for each fleet for which effort 
data were provided. 

(It should be noted that, in the time available, it was not 
possible to analyze estimates of catchability.) 

The estimates were then compared to the true values 
used in producing the data sets supplied to the assessors. 
(In this context, the true values are the "realized" values 
referred to in Annex 1.) Two comparisons were made: 

i) The percentage discrepancy between estimate and 
truth was calculated as: 

PD = 100 [(Estimate/Truth)-1] 

For each of the parameters listed above, ten discrep­
ancies can be calculated (e.g., for each data set, 
there are ten estimates ofF at age 4 to be compared 
with corresponding true values). The discrepancies 

are presented as frequency distributions in Tables 
3.1, et seq. 

It should be noted that in some of the frequency 
distributions of percentage discrepancies, the fre­
quencies do not add to 10. There are reasons for 
this: 

a) True values of N at age were truncated to the 
nearest million by the program producing the fre­
quency distributions. In simulations incorporating 
high mortality rates, the true number in the sea 
sometimes becomes less than 0.5 million at high 
age. In this case, the truncated value is zero and 
it is, therefore, not possible to calculate a percen­
tage discrepancy. 

b) Some of the assessment methods estimated values 
of zero or infinity for fishing mortality rates (and 
associated catchabilities). Such values were not 
included in the frequency distributions. 

c) In the case of the Collie-Sissenwine and Time 
Series methods, it was possible in the time avail­
able only to make estimates of parameters in one 
last data year. The frequency distributions in 
these cases, therefore, consist of only one fre­
quency of unity. 

Some assessors found it impossible in the time avail­
able to apply their allocated method to some of the 
data sets and in these cases the associated table of 
histograms is blank. Estimates which were ignored 
or non-computable for the reasons described above 
were also excluded when calculating mean logar­
ithmic ratios and associated root mean square devi­
ations referred to below. 

ii) Indicators of bias and precision of the estimates were 
calculated. 

The mean of the logarithms of the ratio of estimate to 
truth was calculated as a measure of bias in the esti­
mates. 

The logarithmic transformation was adopted to reduce 
the effect of estimates which departed widely from truth. 
Lower absolute values indicate less biassed results. 

MLR = 1/lOI: [ln(Estimate)- In (Truth)] 

The root mean square of the logarithms of the ratio of 
estimate to truth was calculated as an indicator of the 
precision of the estimates. Lower values indicate more 
precise results. 

1/2 
RMS = [1/IOI:[ln(Estimate)- ln(Truthf] 
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Values of lOOOMLR and lOORMS are presented m 
Tables 3.2, 3.3, et seq. 

In the time available, it was not possible to perform the 
above-mentioned analyses on estimates of catchability. 

To present the true values required to carry out the 
calculations indicated above would require a prohibitive­
ly large number of tables. Copies of the true values can 
be obtained on IBM-formatted disk from D.W. 
Armstrong or G. Stefansson at the addresses shown in 
Section 3 .1. 

3.2.2 Problems with the simplified procedure 

The procedure adopted is, from the statistical point of 
view, Jess satisfactory than the full Monte Carlo 
approach in that the successive data sets are not statisti­
cally independent even though they are analyzed separ­
ately and the number of estimates achieved (10) is too 
small for precise statistical conclusions to be drawn. 
However, since the important factor to be investigated is 
the relative performance of the methods, statistical inde­
pendence between trials is probably not a crucial point. 

3.3 Estimation of Historical Trends in Simulated 
Data Sets 

The description of the current state of the stock is a very 
important product of stock assessment techniques but the 
utility of this information is greatly enhanced by the 
perspective on the historical state of the stock which 
assessment methods also provide. If the current state of 
the stock can be observed in relation to previous states, 
conservation advice intended to rectify immediate and 
longer-term problems can be provided more readily. 

It is, of course, important to be confident that an assess­
ment is not providing an erroneous impression of histori­
cal states, i.e., assessment methods should be capable of 
detecting changes when they exist and should not suggest 
the existence of changes which have not occurred. This 
aspect is particularly important for results for years close 
to the last data year because of the greater influence 
which they will exert in deciding on changes required in 
the future in the state of the stock. 

To investigate this aspect of assessment methodology, 
the assessors were also requested to present an assess­
ment for the whole of the 30-year period of Data Sets 4 
and 6. From these outputs, time series for the last 10 
years of estimates of recruitment (N at age 3), spawning 
biomass, and F for ages 5-9 were plotted. True values of 
these quantities were plotted on the same graphs to allow 
comparison between estimates and truth. In addition, the 
estimate of each quantity obtained as a last-data-year 
value, as described in Section 3.2, was also plotted. 
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3.4 Estimation of Parameters in Last Data Year 
for Real Data Sets 

As stated in Section 2.2, application of different methods 
to the same data set has, on some occasions, produced 
rather different and confusing results. It was, therefore, 
decided to apply the methods implemented at this Work­
shop to real data sets to demonstrate the kind of differ­
ences which can arise. 

The assessors were provided with real data sets for 
North Sea cod and haddock comprising catch at age for 
commercial and research vessels, associated mean 
weight at age, fishing effort where available, and esti­
mates of natural mortality rate and proportion mature at 
age. 

The assessors were requested to carry out an assessment 
using each of these data sets and to record their esti­
mates for 1986 (the last data year) of Nat age, mean F 
at ages 5-9, spawning biomass and total biomass. 

A summary of the data available for each stock is given 
in the text table below. As with the simulated data, no 
tabulation of the data sets are included in this report. 
Copies may be obtained from D.W. Armstrong or G. 
Stefansson at the addresses indicated in Section 3.1. 

Fleet Cod Haddock 

England Seine * 
England Trawl * 
Scotland Seine * * 
Scotland Trawl * * 
Scotland Light Trawl * * 
Scotland Nephrops Trawl * * 
Other nations all gears * * 
Int. Young Fish Survey * * 
English Groundfish Survey * * 
Dutch Groundfish Survey * 
Scottish Groundfish Survey * * 

4 INTERPRETATION OF RESULTS 

Because it was necessary to analyze Data Sets 5 and 6 
during the meeting, relatively little time could be spent 
discussing the results of the analyses. The interpretation 
presented below is an attempt to reflect the points raised 
in discussion, but also includes other suggestions 
received by correspondence or which became apparent 
during the writing of the report. 



4.1 Estimates of Parameters in the Last Data 
Year of Simulated Data Sets 

4.1.1 Frequency distribution of percentage devi­
ations from truth 

Data Sets 1-4 

For Data Sets 1-4, most of the methods performed well. 
Most of the estimates of N at age and F at age are with­
in 30% and many of them are within 10% of the true 
values. This result is to be expected given the low vari­
ance of the data in these sets. In addition, many of the 
methods assume log-normal errors and/or changes in 
catchability following an exponential function, and both 
of these properties are included in these data sets. 

However, even on these excellent data, all of the 
methods can produce estimates which depart widely 
from truth, especially at the higher ages. Greater atten­
tion to any available diagnostics would probably have 
resulted in improved results, but careful handling of F 
and/or catchability at high age is clearly indicated. 

Results for the current version of Extended Survivor 
Analysis (XSA) demonstrate trends with age in Data 
Sets, 1, 2, and 4. A similar problem exists with results 
from the General Linear Model (GLM) for Data Sets 3 
and 4. Both of these methods are still under development 
and problems of this type may be resolved in the future. 

A note of caution should be given about the results of 
the CAGEAN analysis of Data Sets 1-3. As explained 
more fully in Annex 2, these results are possibly better 
than they should be since they are conditioned by prior 
knowledge obtained by running the method on the full 
30-year data set. The results presented for Data Set 4 
are perhaps more typical of possibilities which can 
occur. It appears that, in this case, CAGEAN was initi­
ated with levels of F far lower than the true values and 
subsequently failed to converge towards the true values. 

Conventional VPA and Separable VPA, neither of which 
employ auxiliary data, both performed poorly on Data 
Sets 1-4 and failed to track changes in fishing mortality 
rate or numbers at age as well as the other methods. 
This confirms the desirability of obtaining and using 
auxiliary data to allow improved estimation of mortality 
rate and stock size in the most recent years. 

However, the Time Series method applied only to total 
catch-at-age data and ignoring auxiliary information 
(TSERl) also perfom1ed well. Unfortunately, only one 
set of parameters was estimated by this method for these 
data sets, but the results suggest that this method may be 
worth considering if auxiliary data are not available. The 
performance of the Time Series method appears to be 

improved if auxiliary data are included in the analysis 
(TSER2). 

Estimates of total biomass, spawning biomass, and mean 
F tended to cluster closer around true values than did the 
estimates of N at age and F at age. This is probably 
because the biomass and mean F values are aggregates 
over age groups and errors at age tend to cancel. 

Data Sets 5 and 6 

Estimates of N at age and F at age are much less closely 
clustered around the true values as expected given 
imprecise data which do not comply with the assump­
tions of the analytical methods. 

Trends in the results for N and F at age are still evident 
for the Extended Survivors and General Linear Model 
methods (XSA and GLM). CAGEAN performed better 
on these data sets than on Set 4 perhaps because the 
initiating value of F used was reasonably close to the 
true value. 

Comparison of the results from the Armstrong-Cook 
methods indicates a possible advantage in using a logar­
ithmic transform in that ACl and AC2, which use log­
transformed data, performed better than AC3 and AC4 
which use untransformed data. 

4.1.2 Bias and precision indicators (MLR and 
RMS) 

Because of limited time, no interpretation was attempted 
at the meeting of MLR and RMS of theN- and F-at-age 
data, but subsequent inspection of these results revealed 
nothing that has not already been referred to in Section 
4.1. 

During the meeting, a preliminary attempt was made to 
rank the methods in order of performance. This pro­
cedure was confined to results from Data Sets 5 and 6 
since these were considered to be the most realistic sets. 
Within the results from each data set, the methods were 
ranked according to the values of bias and precision 
indicators calculated for mean F for ages 5-9 and for 
spawning biomass. The latter quantities were selected 
since they are formed by aggregating over age groups 
and thus may represent a more reasonable representation 
of the overall performance of the methods than analog­
ous rankings on an age-by-age basis. The rankings are 
shown in Table 4.1. 

Subsequent to the meeting, the ranking procedure was 
modified and extended to all data sets. A 2-way classifi­
cation is presented in which methods are assigned to 
intervals of both MLR and RMS. The results of the 
modified procedure are shown in Tables 4.2-4.13. 
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Methods listed in the top left-hand area of the tables 
exhibit better performance. 

For Data Sets 1-4, the 2-way tables confirm the gen­
erally poor performance of Separable and Conventional 
VPA, although for Data Set 3, both of these methods 
would be judged good performers according to the cri­
teria adopted. The problems mentioned above with 
extended Survivors Analysis, the General Linear Model, 
and CAGEAN are also reflected in these tables. 

For Data Sets 5 and 6, Extended Survivors Analysis and 
CAGEAN are among the highest ranked performers in 
estimating spawning stock biomass, but perform less 
well in estimating mean F. Overall, the Laurec-Shepherd 
method exhibits the least erratic high rankings for these 
data sets. 

It should be added that many of the participants 
expressed severe reservations over attempting to rank the 
methods in the manner indicated. It should be recalled 
that it was not possible to implement the full diagnostic 
features associated with many of the integrated methods 
and that these may, therefore, have performed less well 
than could otherwise be possible. In addition, it is by no 
means certain that the criteria for rankings are the most 
appropriate or valid. 

4.2 Estimates of Historical Trends in Simulated 
Data Sets 

4.2.1 Data Set 4: Tuning methods (Figures 4.1-
4.8) 

The advantage of using tuning methods when 
catchabilities are changing is obvious in these results. 
All tuning methods produced quite similar results as may 
be expected since the methods employed at this meeting 
are all variations on the same theme. 

HYBRID, ACl, and AC2 performed best because the 
trend in catchability assumed by HYBRID corresponds 
exactly to that used in the data simulation model, while 
the catchability trend assumed in ACl and AC2 is suffi­
ciently flexible to take a shape close to the true one. For 
AC3 and AC4, the assumed trend in catchability 
approximates less well to truth, and these methods 
exhibited a poorer performance. 

Techniques which assume local constancy in catchability 
also performed less efficiently on this data set. The 
Laurec-Shepherd method produced biassed results, in 
that it tended to underestimate fishing mortality and 
overestimate spawning biomass. Results from AEFM 
and CCPUE do not exhibit this consistent bias. 
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4.2.2 Data Set 4: Survivors and Extended Sur­
vivors (Figure 4.9) 

Survivors reproduced the major feature of the data set 
for early years, but underestimated fishing mortality and 
overestimated spawning biomass in later years. 

Extended Survivors Analysis, as applied to this data set, 
overestimated fishing mortality and underestimated 
spawning biomass in the later data years. 

4.2.3 Data Set 4: Integrated methods (Figures 4.10-
4.13) 

It was not possible to run the Time Series and Collie­
Sissenwine methods on the full 30-year data set during 
the meeting. 

All the other integrated techniques appear to have per­
formed less efficiently than the tuning methods. 
CAGEAN failed to reproduce both the historical trends 
and the last-data-year values which perhaps implies that 
considerable care should be taken in choosing the quan­
tities used to initiate this method. 

ADAPT produced better results when a trend in 
catchability was taken into account, but even in this 
case, the results were poorer than those produced by 
tuning methods. The GLM method reproduced the early 
years' historical trend reasonably well, but underesti­
mated mean F and overestimated spawning biomass in 
the later years. 

4.2.4 Data Set 4: Conventional and Separable VPA 
(Figures 4.14-4.15) 

In both cases, the effects of convergence of the VP A can 
be observed, in that the estimates correspond well to 
truth in the earlier data years, but less well in the later 
years. In fact, true catchabilities (and hence fishing 
mortalities) were increasing. These methods tended to 
underestimate the fishing mortality in the last data year 
and hence overestimated biomass. 

4.2.5 Data Set 6: Tuning methods (Figures 4.16-
4.21) 

None of the methods produced really satisfactory results. 
The main features of the time series are reproduced by 
ACl, LS, and, to a lesser extent, CCPUE, but these and 
all other tuning methods erroneously estimated a sharp 
reduction in F in the last data year. This was because, 
by chance, the CPUE estimates in the last data year for 
three of the fleets which had, until then, provided the 
most reliable data were subject to large positive 
measurement error which resulted in the underestimation 
of fishing mortality. Such a result would be very unfor-



tunate in a real assessment since it would indicate a 
better situation than that which actually exists. 

Techniques such as HYBRID, which permit catchability 
changes in a11 fleets will probably always perform poorly 
on data sets such as this where the level of noise is high 
and, consequently, the estimation of the parameters 
descriptive of trends is difficult. Difficulties are also 
encountered when the assumptions implicit in the analyti­
cal method (e. g., probability distribution of errors, 
functional form of catchability trends, assumption of 
separability) do not conform to truth. This is the case for 
a11 of the tuning methods applied to this data set. 

Probably the safest approach in these circumstances is to 
employ one of the more constrained techniques. If it is 
thought (or if diagnostics can indicate) that changes in 
catchability are not important for any fleet in recent 
years, methods such as LS seem appropriate. If recent 
years' catchability can be assumed constant only for 
some fleets, mixed methods such as ACl and AC2 may 
provide a reasonable approach. 

4.2.6 Data Set 6: Survivors and Extended Survivors 
(Figure 4.22) 

Survivors tended to overestimate fishing mortality and 
underestimate spawning biomass. (Reference to diagnos­
tics on the results obtained identified this problem and 
indicated that one of the research vessel surveys had 
produced data of very high variance which should be 
excluded from the analysis.) The Extended Survivors 
Analysis gave good results for this data set. 

4.2. 7 Data Set 6: Integrated methods (Figure 4.23-
4.25) 

It was not possible to apply the Collie-Sissenwine 
method to this data set and, of the time series methods, 
only TSERl (omitting the use of auxiliary data) could be 
implemented. 

TSERl performed efficiently on this data set and esti­
mated fishing mortality and biomass in the last data year 
with no important discrepancy from the true values. This 
is, at least partly, because TSERl does not use auxiliary 
data and was, therefore, not affected by the misleading 
CPUE values for the last data year which created prob­
lems for the tuning methods. A11 other integrated 
methods, which make use of auxiliary data, underesti­
mated fishing mortality in the last data year. 

4.2.8 Data Set 6: Separable VPA (Figure 4.26) 

This method produced satisfactory results purely because 
the arbitrarily chosen inputs to initiate the computations 
happened to approximate close to truth. 

4.3 Applications to Real Data Sets 

Estimates of numbers at age, F at age, total and spawn­
ing stock biomass, and mean F for 1986 for North Sea 
cod and haddock are given in Tables 4.3.1 and 4.3.2, 
respectively. (No estimates are available for seven of the 
methods tested at this meeting - see tables for details.) 

Estimates of these parameters made by the 1988 North 
Sea Roundfish Working Group are also included in the 
tables for comparison. The North Sea Roundfish Work­
ing Group's data base included data for 1987, and esti­
mates of F at age and associated N at age for that year 
were obtained for fish of ages greater than 1 by the 
Laurec-Shepherd method. The results shown in the 
tables for 1986 are derived by VPA from the estimates 
for 1987. 

The Co1lie-Sissenwine method produced implausible 
results. Estimates of F for cod were either very high 
(age 2) or very low (other ages) when compared with 
recent historical values obtained by the Roundfish Work­
ing Group. No estimate ofF was obtained for many age 
groups of haddock because this method estimates values 
of N at age less than the observed catch. 

Results for CAGEAN and Survivors were more plaus­
ible and it would be difficult to demonstrate that they 
were not correct. However, the results are in many 
cases, very different from those obtained by the 
Roundfish Working Group both for 1986 and for other 
recent years. This is particularly the case for the results 
from CAGEAN for haddock where the estimated values 
ofF are low and corresponding values for N are high. It 
is doubtful that the Roundfish Working Group would 
accept such estimates. 

The range of results from the ad hoc method exemplified 
the difficulties encountered by the Roundfish Working 
Group in deciding on final estimates of F and N at age 
in the last data year. In many cases, the estimates 
obtained are in reasonable agreement. However, occa­
sional "wild" values occur (e.g., high estimates ofF at 
age 3 and 4 for haddock when using AC2) and it is 
difficult to select the results of any one of these methods 
as being the best. 

Estimates of F and N at age are most variable for the 
youngest age groups (0 and 1 for haddock, 1 for cod). 
This indicates the continued requirement mentioned in 
Section 2.1 to use additional methods to estimate these 
values. 

4.4 General Commenl'i 

None of the variants of ad hoc tuning is obviously pre­
ferable in all circumstances to any of the others. This is 
not surprising since, as stated previously, a11 the variants 
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tested are closely related. The Laurec-Shepherd and 
Hybrid methods are the longest established of the tuning 
variants and diagnostic outputs are well developed for 
these methods. The Laurec-Shepherd method generally 
has lower prediction error (RMS) and higher bias 
(MLR) than the Hybrid method when there are strong 
changes in catchability for some fleets and generally 
appears to be more robust, in line with theoretical 
expectations. In practice, however, examination of diag­
nostics often leads to reformulation of the method. An 
example of this is referred to in the last paragraph of 
Section 1 of Annex 2 where an analysis was initiated 
using the Laurec-Shepherd method, but the final formu­
lation incorporated a mixture of that method and the 
Hybrid method allowing for trends in catchability in 
some fleets and constant catchability in others. Where 
such procedures are required, there would be consider­
able benefit from obtaining good standardized commer­
cial effort data or survey data so that catchability can 
unambiguously be held constant for as many fleets as 
possible in a mixed analysis. 

The integrated methods have a more respectable statisti­
cal basis than the ad hoc methods in that integrated 
methods utilize standard and generally accepted statisti­
cal methods for parameter estimation. The properties of 
these estimators are understood, at least asymptotically, 
and some approximations for their precision are avail­
able. Furthermore, most of the integrated methods pro­
duce copious diagnostic statistics and, especially in the 
case of the adaptive framework, users are encouraged to 
modify their model specification in the light of diagnos­
tic outputs. 

Judging by their performance at this meeting, the 
integrated methods seem to be intermediate in 
performance among the tuning variants and no major 
advantage in using integrated methods was demonstrated. 
However, as previously, in the time available, it was not 
possible to make full use of diagnostic features. In all 
cases, it was necessary to choose a model specification 
a priori and to produce results dependent on this specifi­
cation. For this reason, many of the applications of the 
integrated methods incorporated misspecified models 
(e.g., assuming constant catchability, separability, etc. 
for data sets where such assumptions were not valid). In 
these circumstances, it is perhaps surprising that inte­
grated methods did well at all. 

The integrated methods are computationally much more 
demanding than the VPA-based methods and lengthy run 
times may not be able to be accommodated in the ICES 
working group environment unless some means can be 
found for extending the time available to carry out the 
required assessments. The main difference between 
integrated and ad hoc methods is that the former are 
capable of allowing for errors in the total catch-at-age 
data. For stocks where these errors are smaller than the 
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errors in the commercial CPUE and survey series, the 
extra complexity and effort involved in implementing 
integrated methods may not be worthwhile in terms of 
parameter estimation. 

At present, therefore, there is no indication that any of 
the methods which use auxiliary data clearly and consist­
ently performs much better than any of the others. It has 
yet to be demonstrated that full implementation of inte­
grated methods produces enhanced results. Equally, it 
has not yet been demonstrated that, except on the 
grounds of computational speed, it is preferable to use 
ad hoc methods. Further testing of both types of method 
against realistic data sets (e.g., Data Sets 5 and 6) is 
clearly required before decisions can be made on which 
type of method is preferable. Finally, it was suggested 
that modifications of some of the integrated methods 
may be desirable. In particular, CAGEAN may perform 
better if initial parameter estimates are obtained using an 
ad hoc method. 

5 FUTURE TESTING OF ASSESSMENT 
METHODS 

Testing of methods, as performed at this meeting, was 
based on studying how estimation procedures behave on 
simulated data sets. This procedure could serve as the 
general approach to verifying new methods before they 
are applied for assessment of real fish stocks. 

The approach which has been taken when simulating 
data sets is: 

a) define a plausible underlying deterministic model to 
describe the fishery; 

b) stochastically perturb (some of) the parameter values 
incorporated in this model, i.e., add process error to 
the underling parameter values to produce re--alized 
parameter values; 

c) produce catch-at-age and effort data associated with 
the realized parameter values; 

d) add measurement error to catch-at-age and effort 
data. 

The realized parameter values are regarded as "truth". 
The efficiency of an assessment method is tested by how 
well it estimates a subset of the realized parameters. 

When applying an assessment method to a data set, it is 
believed, at least temporarily, that the underlying fish­
eries model is known and that the method is appropriate­
ly specified with respect to process and measurement 
error (or perhaps to the combination of both types of 
error). However, even if this is the case, increased 



errors will increase the difficulty in obtaining good para­
meter estimates. Futhermore, within an assessment 
method the specfication of the underlying fisheries model 
or of the probability density functions of the errors may 
be incorrect. If this is the case, the estimation of para­
meters may also be adversely affected. 

1 2 3 

Measurement error 

None * * 
Correct specification * 
Incorrect specification 

Underlying model 

Correct specification * * 
Incorrect specification * 
Process error absent * * * 
Process error present 

Such an approach is attractive, but it should be recog­
nized that it could be very labour-intensive since mul­
tiple runs would be required within those tests incorpor­
ating measurement or process error so that the effects of 
increasing level of error could be evaluated. In addition, 
since no method can be expected to perform well in all 
circumstances, it would probably be necessary to subject 
each method to the tests above for each of a number of 
types of fishery. 

Furthermore, with such an approach, it is difficult to 
define a single incorrectly specified underlying model. 
This is because the model for simulating the data and the 
model implicit in an assessment method are both com­
prised of various sub-models. The specification of any of 
these sub-models in the simulation and in the assessment 
may or may not differ. 

Similarly, it is also difficult to define an appropriate 
"incorrect" probability density function for measurement 
and/or process errors. (Most assessment methods assume 
that the measurement errors are normally or log-nor­
mally distributed, and it was suggested that the gamma 
distribution could be used as the incorrect specification.) 
Further thought needs to be given to these problems by 
the Methods Working Group. 

An alternative suggestion on the future testing of 
methods was that a number of standard data sets could 
be created against which new and existing methods could 
be tested so that a preliminary ranking of methods can 
be obtained. The Group recognized that Data Sets 1-4 
produced for this meeting are not suitable for this pur­
pose. Data Sets 5 and 6 offer a more stringent test and 
may serve in the immediate future as standard sets. 
However, more thought needs to be given to producing 

* 

* 
* 

One possibility for quantifying the effects of the factors 
referred to above is to test each method against a set of 
simulated data organized as a factorial design. One such 
design is indicated in the text table below. 

Test no. 

4 5 6 7 8 9 10 11 12 

* * 
* * 

* * * * 

* * * * 
* * * * 

* * 
* * * * * * 

appropriate data sets against which to test assessment 
methods. One possibility in this context is that the simu­
lated data might be based on the fishery for which the 
method is intended. Few, if any, fisheries have been 
modelled with respect to creating a realistic error struc­
ture in the observations (as compared to adding errors 
derived from some conventional probability density 
function). In particular, it might be advantageous to 
produce the estimated catch-at-age data by simulating the 
biological sampling procedures used on that fishery. This 
should add measurement error of more or less the 
correct statistical form. 

One of the major aspects of a good method is its ability 
to detect, by means of good diagnostics, when unreliable 
parameter estimates are being produced. Whatever 
method of testing is finally decided upon, the Group 
suggests that, wherever possible, the estimated variance­
covariance matrix of the parameter estimates should be 
presented as the basis for an efficient set of diagnostics. 
In addition, serial correlations in the differences between 
the observations and their fitted values should also be 
made available along with the variances of the residuals 
for each age group. (It is recognized that this may be 
difficult in the case of ad hoc methods.) Variances of 
residuals for each year and for each fleet should also be 
made available to provide the user with hints, e.g., of 
badly sampled fleets, the data for which can then be 
down-weighted. These outputs should be arranged as a 
year-by-year table for each fleet. 

In future testing, it would be useful to categorize 
methods according to their two components, i.e., estima­
tion procedure and model specification, and to test these 
separately. With respect to estimation procedure, the 
methods examined fall into two broad categories, i.e., 
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statistically-founded approaches and ad hoc approaches. 
It is possible that certain ad hoc estimation procedures 
correspond to realizations of statistically-founded pro­
cedures and clarification of this possibility is required. 
With respect to model specification, there is a varying 
degree of flexibility among the methods tested, and 
opinions ranged from advocating complete flexibility to 
specifying a single model. The success of a flexible 
approach hinges on the adequacy of diagnostics to define 
appropriate models, while a single model approach relies 
on the robustness of the specified model. Attempts 
should be made to determine whether, given the same 
underlying model, the statistically-founded approach 
works better or worse than the ad hoc approach and 
thereby discriminate between estimation procedure and 
model formulation. 
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The Group is also of the opinion that, since there is 
already a proliferation of new methods, authors should 
restrain themselves from publicizing new methods until 
they can demonstrate that some real advantage can be 
gained from their use. 

Finally, it should not be forgotten that the ability to 
estimate the current and historical state of the stock is 
only one part of the assessment process. The desired end 
product of an assessment is often advice on an 
appropriate total allowable catch and this requires 
methods to predict how changes in fisheries will affect 
stock size and yield. This aspect of assessment was not 
dealt with during the meeting. It is, however, of con­
siderable importance and should be the topic of future 
meetings of the Methods Working Group. 
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Tabie 2.1 Assumptions of the Methods 

-----------------------------------------------------------------------------------------------------------------------------------------------------------
Method !HYBRID! LS : ACl : AC2 : AC3 : AC4 : AEFM !CCPUE iSURUIVi XSA !CA6EANiADAPT : 6LM :COLSIS:TSERl :TSER2 : SVPA :CONVEN: 

:--------------------------:------:------:------:------:------:------ :------:------:------:------:------:-------:------:------:------:------:------; 
!Separable model for 
:fishing mortality 

No : Each : Some : Some : Some : Some : Each : Each 
I fleet ifleetsifleetsifleetsifleets I fleet I fleet 

Yes : Some : Each 
:fleets: fleet 

No : Each 
ifleet 

No No No :sum of: No 
:fleets: 

:--------------------------:------:------:------:------:------:------:------:------:------:------:------:------ :------:------1 ______ 1 ______ 1 ______ ;------: 

:Time trends - catchability: 
:Regress log(q) vs year : Yes 
:Regress log(q) vs log(yr) 
:Regress q vs year 
:Assumed absent Yes 

Yes Yes 
Yes Yes 

Yes Yes Yes Yes 

:step­
wise 

Yes 

:Markov:Markov: n.a. n.a. 

Yes Yes 
:--------------------------;------~------:------:------:------:------ :------:------:------:------:------:------ ;------:------:------:------:------:------: 
:Assumes existence of 
:process error : < -·------------ Not ex pl ic it ------------> :Not explicit No No 

:No but: Not 
No !can do :e>:plic: Yes Yes 

:Yes-added to 
Yes :catch error 

:--------------------------:------:------:------:------:------:------:------:------:------:------:------:------ :------~------:------:------:------:------: 
:Assumes no Error 
:in Catch-at-Age 

Yes Yes Yes Yes Yes Yes Yes Yes : log- : log- : log- : log- : log- : No : Jog- : log- : log- : Yes 
:normal:normal:normal:normal :normal: :normal:norffial:normal: 

:--------------------------:------:------:------:------:------~------ :------:------:------:-----~:------:------ :------:------:------;------;------:------; 
:weight for fleets 

1 I Var(q) 
1 i Var(N) 
1 I Uar(residuals) 

I Var(survivors) 
Externally specified 

Yes Yes Yes Yes Yes Yes 
' Yes 

No n. a, n.a. n, a. n.a. 

Yes Yes Yes 
' Yes 

Yes 
:--------------------------:------:------:------:------:------:------:------:------:------:------:------:------ :------:------:------:------;------:------: 
:F Constrained 
:tor Older Ages 

Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes No Yes Yes Yes Yes 

:--------------------------:------:------;------:------:------:------ :------:------:------:------:------:------ :------:------:------:------:------:------; 
:Can handle multiple 
:fleets CPUE data 

Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes No Yes n.a. n.a, 

:--------------------------:------:------:------:------:------:------:------:------:------:------:------:------ ;------:------:------;------~------:------: 

:Down-weights 
:early-years data 

Yes Yes Yes Yes Yes Yes Yes Yes n.a. Yes n.a. i n.a. No n.a. No ' No n.a. n.a. 

:--------------------------:------!------:------:------:------:------ :------:------:------:------:------:------:------:------:------:------:------~------: 
:Estimate of CPUE in last 
:data year assumed exact 

:Estimate of catch-at-age 
:in last data year assumed 
!exact. 

Yes Yes Yes Yes Yes Yes Yes Yes No No No No No No No No n.a. ~ n.a. 

:------:------:------:------;------:------ :------:------~------;------;------:------:------:------:------:------:------:------: 
Yes Yes Yes Yes Yes Yes Yes Yes :Yes 1n:Yes in: No Yes n. a. No No No :Yes ini Yes 

:VPA :VPA :!!PA 
:calcns:calcns: :calcns: 



T:~ble 3.~ : Simulate1j Data '3et 1 F•eauencv Distr1but1ons of P9rcentage 0eviation of Estimates of N at age from True Values 

:Methd: HYBRID LS AC1 AC2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------;------------------------------: 

> 70: 
70 
50 
30 

: <: 10: : 
-30 

-70 
:< -70\ 

.3 

8 10 10 10 q 9 8 3 
1 2 4 

2: 1 1: 
4: 10 10 10 10 10 10 10 8 8 6: 
~I 
·~' I 

~I 

)I 

1: 

j I 
~I 

8 10 10 10 10 10 9 8 8 5: 
1 2 4: 

8 10 10 10 tn 10 9 8 

: Methd: AC3 AC4 AEFM CCPUE 

; i 
ll 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 70: 
70 
:~o 

30 
i <: 10 ~ : 

-30 
-50 
-70 

:< -70: 

9 10 10 10 10 10 9 9 8 4: 
1 41 

.I 

9 10 10 10 10 10 8 8 
5 
4 9 9 9 8 9 8 

1 2 

:; 71 
i.. J l 

7 

·-' 9 10 10 10 10 10 8 8 
1 2 2 

: Methd: SURVIV XSA CAGEAN ADAPT 

1i 
·":•I 

" ._\; 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 il 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

70: 
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50 
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: <: 10: : 
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·1 
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·II 
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l Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 B 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 
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7 . .) 

4: 
i: 

1i 
1: 
1: 
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Table 2· 2 

Method 

HYBRID 
LS 
ACl 
AC2 
AC3 
AC4 
AEF!1 
CCPUE 
SUF:V IV 
XSA 
CAGE AN 
ADAPT 
GLM 
COLS!S 
TSER1 

I TSER2 
SI!PA 
CONVEN 

Table 3. 3 

1 Method 

HYBRID 
LS 
ACt 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURI.J!IJ 
XSA 
CA6EAN 
ADAPT 
6U1 
COL SIS 
TSER1 
TSER2 
SVPA 
CONVEN 

Simulated Data Set 

Age 

-1 

0 
i) 

2 

6 

3 
-13 

-1 
-1 

28 
29 

7 
.J Age 

-i 

0 
I) 

-3 

·1 
'-

-14 
-(l 

-1 

-12 
-31 
-11 

35 
37 

4 Age 

-1 

0 
0 
0 

2 
-2 

-17 
-0 

-1 
-241 
-11 

31 
28 

: Mean Log Ratio of Estimates of N at age to True Values 

Aqe 6 

-1 

0 

0 

-2 

-21 
-!) 

-1 
-!) 

-17 
-15 
-11 

28 
28 

Age 7 

-!) 

-0 
-i) 

I) 

-0 
-4 
-2 

-26 

'1 
-~. 
-1 

-16 
-6 

-12 
27 
25 

Age 

-1 
-i 
-1 

-i) 

-3 
-4 
2 

-32 
-2 

-0 
-13 
-14 
-14 

29 
26 

8 Age 

2 
i. 
7 . .) 

3 

-'1 
'-

4 
-40 

·j 
'-

-13 
-14 
-14 

28 
24 

9 Age 10 

-4 
7 

·-· 

-3 
-i) 

-1 
-10 
-8 

') 
'-

-54 
-3 
-3 
-1 
-7 

-17 
-17 

29 

Aqe 11 

-1 
4 
-, 
.:_, 

4 
6 
5 
4 

-~· 

~I 

-71 
-4 
-5 
10 

-19 
-13 
-13 
30 
18 

Simulated Data Set 1 : Root Mean Square Log Ratio of N at age to True Values 

Age 

8 
4 
6 
6 
6 
6 

12 
5 
9 

14 
4 
9 
9 

61 
89 

Age 

6 
7 
.J 

3 
7 
.J 

7 
.J 

3 

7 
.J 

5 
15 

·1 
'-

6 
5 

12 
31 
11 
49 
71 

4 Age 

6 ., 
f. 

2 

.j 

7 
.J 

5 
4 
4 

17 

6 
6 

241 
11 
5 

43 
63 

5 Age 6 

6 
7 
._1 

3 
3 
5 
4 
3 

21 
'1 
'-

4 
5 

17 
15 
11 
42 
63 

Age 

7 
3 
2 
•1 
.<. 

3 
8 
4 
3 

26 
3 
5 
5 

16 
6 

12 
39 
60 

7 Age 8 

7 
7 
.J 

3 
7 
._1 

4 
7 
._1 

7 

3 
33 
3 
7 
6 

13 
14 
14 
43 
62 

Age 9 

7 
4 
6 
6 
6 
7 
7 
6 
5 

40 
3 

11 
6 

13 
14 
14 
40 
60 

Age 10 

14 
9 
8 
B 
6 
8 

19 
11 
6 

55 
5 
7 

11 
7 

17 
17 
47 
66 

Age 11 

14 
11 
11 

12 
13 
18 
11 
8 

72 
7 

10 
13 
19 
13 
13 
49 
66 

Age 12 

-6 
-i 

-9 
-6 
-7 

-!) 

-87 
2 

-7 
-6 
0 

28 
18 

Age 12 

19 
15 
16 
16 
18 
17 
t;,.., 
i.i. 

19 
11 
89 
8 

20 
14 

!) 

40 
61 

91 



TablP 3.4 : Simulated Data Set 1 Frequency Dtstributtons of Percentage Dev1ation of Estimates of F at age f•om True )alues 

:Methd: HYBRID LS AC1 AC2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 i1 12: 3 4 5 6 7 8 9 10 1t 12: 3 4 5 6 7 8 'i 10 1i 12: 
:-----:------------------------------:------------------------------:------------------------------;------------------------------~ 

70: 
70 
50 
30 

-31) 
-50 
-70 

:< -70: 

:Methd: 

2 ~ 2 

AC3 

2 4 2 4: 
5 8 4 Jl 

-I 

2 
5 10 
3 

1 
8 10 10 9 8 
1 1 

AC4 

2 3i 
4 10 8 10 10 9 8 
7 
·-' 

AEf:M 

2 6: 
3: 4 10 

3 1: 3 
a 10 10 9 8 

CCPUE 

7< 
... ! 

' ' li 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 '1 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----;------------------------------:------------------------------:------------------------------:------------------------------; 

> 70: 
70 
50 : 
30 : 

: mo:: 
-31) 
-50 
-70 

: < -70: 

2 
6 10 8 10 10 10 8 7 
3 1 1 

5: 
10 8 10 10 9 

7 ')I 
··' J...l 3 1 

2 2 5 
6 5 3 

2 3 2 

ll 
')I 
Ll 

3 2 3 1 4 1 2 3 1: 
3 B 7 9 9 6 8 4 4 4: 
4 3 ., 

L1 

3 

2 
10 8 10 9 

2 2 2 ~ 
6 8 6 6 4: 

2 i: 
I I 
!I 

: Methd: SURVIV XSA CAGEAN ADAPT 
: Age : 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 'i 10 11 12: 
----- ------------------------------ ------------------------------:------------------------------:------------------------------~ 
> 70: 2 8 10 10: 

70 8 2 
50 : 
30 : 

: <: 10:: 
-31) 
-50 
-70 

:<: -70: 

2 
4 9 9 9 10 10 10 7 6 8 
4 1 3 2 

4 

1 2 9 
8 9 8 1 

: Methd: GLM COLSIS 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 

5 
1 9 9 9 10 10 7 
3 

3 2l 
5 a: 

2 2 2 4 
8 9 8 8 6 

3 

TSER1 TSER2 

1: 
1 2~ 

8 7: 

3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
l-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 70: 
70 
50 : 
30 : 3 1 2 3 3 3 2 2 4: 

: <:11):: 3 7 6 5 7 10 7 5 1 6: 
-30 3 2 2 2 3 7 

~ -~~o : 
: -70 : 
:< -70: 

1 1 1 1 
1 1 1: 

:Methd: SVPA CONVEN 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
l-----~------------------------------:------------------------------: 

> 70: 
70 
50 : 2 
30 : 

: <: 10:: 
-30 

: -50 : 
: -71) : 
:< -?Ol 
92 

1: 
2 2 3 2l 

2 2 2 1 ~I 
Ll 

1 6 6 6 5 
3 1 1 1 

5 6 3 5: 

·"1 
L 2 

2 1: 
t: 

2 2 1 1: 
2 3 3 3 3 2 4 3 2 3: 
2 4 3 3 3 2 3 3 2: 

1 1 1 1 1111111 



Table 3.5 Simulated Data Set 

Method Age 3 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SUR\! IV 
XSA 
CAGE AN 
ADAPT 
GLM 
COLSIS 
TSER1 
TSER2 
SVPA 
CONVEN 

-i 
i) 

-5 
1 

-1 

8 
7 

·-' 
7 

-26 
-28 

AnP .. ., -

0 

-0 
I) 

4 
3 

-1 
16 
-3 

-4 
17 
36 
22 

-37 
-38 

Age 

') 
L 

i) 

(! 

-0 
() 

'! 

3 
-1 
20 
-!) 

7 
·-' 
·"\ 
L 

11 

19 
-34 
-31 

Mean Log Ratio of Estimates of F at age to True Values 

Age 6 

'1 

0 
0 
0 

-1 
-0 

-2 

28 
21 
~i 
L.L 

-31 
-30 

Age 7 

7 
·-' 
!) 

!) 

!) 

-0 
0 
4 
.) 

30 
4 

26 
.. .,., 
.i..L 

18 
-29 
-27 

Age 8 

5 
4 
4 
7 
·-' 
2 
7 
·-' 

6 
8 
0 

40 
7 
.J 

5 

25 
20 
20 

-29 
-26 

Age 9 

4 
-1 
-1 
-1 

7 
·~i 

4 
3 

48 
5 
4 
4 

16 
6 

10 
-29 
-23 

Age 10 

6 
6 
6 
6 
7 
.J 

4 
14 
11 
-0 
66 
-3 

-.; 

6 
19 
19 

-31 
-23 

Age 11 

-4 
7 
.:_, 

-.3 
-6 
-5 
-.3 

·"') 
1.. 

-5 
83 
-1 

-12 
10 
33 
36 

-33 
-20 

Table -3.6 : Simulated Data Set 1 : Root Mean Square Log Ratio of F at age to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CAGE AN 
ADAPT 
13LM 
COLSIS 
TSER1 
TSER2 
S\iPA 
CONVEN 

Age 

18 
15 
17 
17 
16 
17 
15 
16 
20 
23 
21 
19 

57 
87 

7 
.J Age 

7 
4 
3 
7 

·-' 
4 
4 

4 

7 
5 
7 

17 
8 
9 

10 
17 
36 
22 
52 
74 

' Age 

11 
8 
7 
7 
8 
7 
9 
7 
6 

20 
8 
5 

12 
11 
23 
19 
51 
74 

Age 6 

4 
4 
4 
4 
4 
6 
5 
5 

25 
7 
7 

11 
28 
21 
21 
47 
71 

Age 

8 
3 
3 

3 
3 
9 
5 
4 

31 
6 
6 
8 

7 

26 
22 
18 
43 
66 

Age 

12 
7 
7 
7 
7 
7 
9 

10 
6 

41 
4 

11 

8 

6 
25 
20 
20 
45 
67 

Age 9 

9 
8 
9 
9 
8 
9 

11 
9 
6 

48 
8 

13 
9 

16 
6 

10 
42 
65 

Age 10 

17 
14 
13 
13 
12 
13 
25 
18 
9 

67 
13 
12 
12 
6 

19 
19 
47 
69 

Age 11 

12 
11 
13 
14 
14 
15 
16 
13 
11 
84 
14 
13 
21 
10 
33 
36 
52 
71 

Age 12 

8 

7 

6 ., 
L 

6 
7 

117 

9 
6 

-9 

-28 
-19 

Age 12 

21 
15 
13 
14 
12 
13 
31 
27 
12 

119 
7 

15 
10 
9 

38 
60 

93 



Table 3. 7 : Simulated Data Set 
Total Biomass from True Values 

Frequency Distributions of Percentage Deviations of Estimates of 

t Methd: HYBRI: LS :AC1 :AC2 iAC3 :AC4 IAEFH :CCPUEiSURVIIXSA :CAGEA:ADAPT:GLM :COLSI:TSER1:TSER2:SVPA :CONVEI 

70: 
70 
50 
30 

: uo:: 8 
-31) 
-51) 
-71) 

:< -70: 

') 
1-

11) 10 10 11) 

Table 3. 8 : Simulated Data Set 1 
Spawning Biomass from True Values 

10 iO 10 10 10 10 11) 
10 

Frequency Distributions of Percentage Deviations of Estimates of 

7 
·J 

7 
·J 

2 

4 

:Methd:HYBRI:LS :ACl :AC2 :AC3 :AC4 :AEFM :CCPUE:SURVI:XSA :CAGEA:ADAPT:GLM iCOLSIITSER11TSER2:SVPA ICDNVE: 

70: 
70 
50 
31) 

: < :10: : 9 
-30 1 
-51) 
-70 

:< -70: 

10 10 10 10 

Table). 9 : Simulated Data Set 1 
Mean F (Ages 5-9) from True Values 

:Met hd : HYBR I:LS :AC1 iAC2 iAC3 

701 
70 
~tl) 

30 4 1 
: <: 10: 5 9 9 9 9 

-30 
-~,!) 

-71) 
:< -71) 

94 

10 9 10 10 
7 
7 
·.l 

.., 
·-' 
'j 
1-

10 9 10 , 
i. 

Frequency Distributions of Percentage Deviations of Estimates of 

:AC4 :AEFM : CCPUE: SURV I: XSA :CAGEA:ADAPT:GLM :COLSI~TSER1:TSER2:SVPA 

8 
') 
1-

4 3 
, 
i. 

8 6 7 10 10 8 8 2 I 

2 2 
5 

3 
2 

:CONVE: 

2 
2 
7 

·-' 



Table 3.10: Simulated Data Set 1 : Mean Log Ratio of Estimates of Biomass and Mean F to True Values 

Method 

HYBRiD 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CAGEAN 
ADAPT 
GLM 
COLSIS 
TSERl 
TSER2 
SVPA 
CONVEN 

TSB 

-2 
(I 

-(I 

-!) 

1 
-1 
-2 

') 
L 

-27 
-1 
-3 
-I) 

30 
28 

SSB 

, 
-L 

-0 
-0 
-0 

_., 
~ 

-3 
'i 
L 

-36 
-2 
-3 
-0 

28 
24 

FBAR 

2 

-1 
I) 

6 
6 

56 

5 
-2 
17 
20 
21 

-31 
-24 

Table 3.11: Simulated Data Set 1 : Root Mean Square Log Ratio of Biomass and Mean F to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CASE AN 
ADAPT 
GL~ 

COLSIS 
TSER1 
TSER2 
SVPA 
CONVEN 

TSB 

7 
7 . .) 

3 
3 
4 
7 . .) 
4 
4 
7 . .) 

27 
2 
4 
5 

45 
66 

SSB 

8 
3 
3 
< v 

4 
4 
6 
5 
3 

37 
2 
5 
5 

41 
62 

FBAR 

10 
6 
6 
6 
6 
7 

10 
9 
3 

56 
4 
6 
8 

17 
20 
21 
45 
67 

95 



Table 3.12: Simulated Data Set 2 Freauency Distr1butions of Percentage Dev1at1on of Estimates of N at age from True Values 

:Methd: HYBRID LS AC1 AC2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 i2: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12! 
:-----:------------------------------:------------------------------:------------------------------~------------------------------~ 

70: 
70 
50 : 
30 : 

2 

! <; 10: : 10 10 10 9 10 8 5 
-30 2 1 
-50 
-70 

:< -70: 

2 i 
5: 7 10 10 10 10 9 

2 
2 

7 5: 6 10 10 10 
.. , 
L 

1 
9 4: 6 10 10 10 10 9 3 

I' _, 

: Methd: AC3 AC4 AEFM CCPUE 

., 
L 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
;-----:------------------------------:------------------------------:------------------------------~------------------------------: 

701 
70 
50 
30 2 1 1 2 1 

.. , 
L 

:<:to:: 810 910 9 sa 6 7 4: 
-30 
-50 i: 
-70 

:< -70: 

2 1 
8 10 10 10 10 9 8 

3 2 
2 

7 4: 6 8 '1 6 8 6 4: 6 8 9 9 9 10 
2 2 1 3 3 ·i ''\ 

L L 

1: 1: 

: Methd: SURVIV XSA CABEAN ADAPT 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 :, 6 7 8 q 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------;------------------------------; 

> 70\ 
70 
50 
30 

j <: 10:: 
-30 
-50 
-70 

:< -70l 

1 
1 

6 9 10 10 10 10 9 6 

1 
1 

5 8 6 8 8 7 7 7 6 5: 
4 2 4 2 2 3 1 

2 
2 2 1 

10 10 10 10 8 10 6 

3 'I 

1. 2 
2 1 

5: 6 8 9 8 2 3 3 4 ~~~ 

2 2 L 2 
2 

: Methd: GLM COLSIS TSER1 TSER2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12 i 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------; 

> 70: 
70 
50 
30 

: <110:: 
-30 
-50 
-70 

:< -70: 

5 7 
4 2 

1 
8 8 
2 1 

10 9 7 6 6 2: 
1 2 2 

2 t: 
1 1 

: Hethd: SVffl CONVEN 
: ~gt! : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-··---[------------------------------:------------------------------[ 

> 70: 
70 

6 2 3 3 
1 4 2 

., 
i. 

50 3 3 3 5 4 3 3 
30 2 2 3 2 4 4 

2 

:<:to:: 4 5 ~,: 

-31) 
-50 
-70 

:< -70: 
96 

2 6 
2 4 

3 3 3 1 4 
6 6 

1 
1 

2 6 4 6 4: 

1 1 



Table 3.13: Simulated Data Set 2 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CAGEAN 
ADAPT 
GLM 
COL SIS 
TSER! 
TSER2 
SVPA 
CONVEN 

Age 

-1 
-1 
-1 

-(i 

-1 

5 
-5 
-1 

I) 

-4 

54 
33 

7 
.J Age 

1 
3 

-4 
-5 

-5 
-i) 

-2 
'1 
J.. 

-14 
7 
4 

44 
27 

4 Age 

3 
i.. 

3 
7 

·-' 
c 
J 

3 
-3 
-3 

-5 

3 
I) 

-11 
13 
3 

45 
26 

c 
J 

Mean Log Ratio of Estimates of N at age to True Values 

Age 6 

'i 
,;.. 

-7 
-5 
-3 
-7 
-!) 

-1 
-1 

-24 
17 
7 

39 
22 

Age 

0 
-1 

i) 

4 
i) 

-6 
-4 
-1 
-6 
1 

12 
-4 

-25 
16 
4 

18 

' Age 8 

0 

7 
-~· 

3 
c 
.J 

-8 
-I) 

·i 
,;.. 

-6 
7 
.J 

13 
-4 

-40 
17 
5 

20 

4 
3 
8 
7 

-8 
-0 
5 

-4 
!) 

.,., 
i..i.. 

I) 

10 
0 

37 
18 

Age 10 

7 
7 
7 
7 

1!) 
7 

11 
'7 !-. .) 

4 
7 

10 

-9 

19 

Age 11 

-9 
~I 

c 
•' 

-4 
!) 

-17 

14 

Table 3.14: Simulated Data Set 2 : Root Mean Square Log Ratio of N at age to True Values 

Method 

HYBRID 
LS 
AC! 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CASEAN 
ADAPT 
6LM 
COLSIS 
TSER1 
TSER2 
SVPA 
CONVEN 

Age 3 

10 
9 

10 
9 
9 
9 

12 
13 
15 
14 
10 
12 
12 

65 
46 

Age 4 

6 
5 
5 
5 
6 
5 
9 
7 
8 
9 
6 
9 
9 

14 
7 
4 

46 
28 

Age 5 

5 
5 
5 
5 
6 
5 
6 
5 
5 
9 
4 

12 
7 

11 
13 
3 

49 
28 

Age 6 

4 
3 
3 
7 
.j 

5 
4 
9 
7 
4 

11 
3 
9 
7 

24 
17 
7 

42 
24 

Age 7 

5 
4 
4 
2 
5 
2 

11 
7 
5 
9 
2 

21) 
5 

25 
16 
4 

36 
21 

Age 8 

!) 

5 
6 
6 
8 
6 

16 
4 
4 

11) 
6 

33 
6 

41) 
17 
5 

35 
21 

Age 9 

15 
15 
15 
15 
15 
14 
23 
15 
13 
26 

(l 

56 
16 

I) 

10 
I) 

44 
31) 

Age 10 

19 
19 
19 
19 
18 
19 
20 
33 
17 
15 
18 
57 
17 

29 
(l 

32 
26 

Age 11 

25 
14 
14 
14 
14 
14 
32 
25 
14 
28 

I) 

54 
35 

29 
0 

38 
28 

! Aqe 12 

-14 
-14 
-14 
-14 
-14 
-14 

0 
0 
I) 

i) 

-23 

0 
-14 

Age 12 

0 
I) 

31 
31 
31 
31 
31 
31 

i) 

0 
I) 

0 
40 

0 
31 

97 



Table 3.15 : Simulated Data Set 2 : Frequency Distnbutions of Percentage Dev1ation of Estimates of F at age from True '):.dues 

:Methd: HYBRID LS ACl AC2 
: Age : 3 4 ~· 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------;------------------------------;------------------------------[------------------------------: 

70t 
70 
50 
30 

1: 

·1 ·1 ":"I 
'- L .) ! 

1: 
1 1 2 3 3 2 i: 1 2 2 2 2 2: ·• £. .) i 

i 6 9 10 
6 3 

8 8 
1 

4 4: 2 7 9 10 8 8 7 3 3: ~ 6 10 8 7 7 5 4 7: 2 
1 

q 10 8 
-30 ""'f i l 

.) .!. I 

-50 I' .. 
-70 

:< -70: 

:Methd: AC3 

6 f. 

AC4 

4: 6 
1: 

AEFM 

1: 6 2 .3 2 1: 

CCPUE 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 '1 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
i i I i I i 
,-----,--~---------------------------,------------------------------,------------------------------,------------------------------1 

70: 
70 
50 : 
30 : 

: <: 10: : 2 7 9 10 9 8 8 3 
-30 6 3 1 2 

: -50 : 
: -70 : 
:< -70: 

:Methd: SURVIV 

1 2 '') .-,I 
L i.J 

7' . I 2 1 9 10 8 s s 4 3 a: 
3 1: 6 2 4 2 4 

XSA 

4 2 
1 
5 

6 

CAGEAN 

., 
L 

1: 
ryo 
Ll 

6 4 3 .3: 
2 2 1: 4 
·j '} ·-II 
i. ~ .::,, 

1 7 

9 2 8 

ADAPT 

·1 
L 

1: 
2 2 3 3: 
3 3 41 

2 

: Age : 3 4 :. 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
~-----:------------------------------f------------------------------:------------------------------:------------------------------: 

i > 70: 
70 
50 : 
30 : 

: <: 10: : 
-30 
-50 
-71) 

:< -70: 

lMethdl 

1 3 4 
3 7 6 7 
5 2 
1 

GUI 

1: 
1: 

2 2 3 2 1: 
5 2: 

3 2 2 4: 
1: 

1 2 
2 3 3 2 3 4 1: 

4 7 5 5 5 6 4 2 4 3: 7 
4 1 2 3 2: 3 

3: 
1: 

COLSIS 

2 3: 
9 9 10 10 10 10 10 7 7: 

TSERl 

3 3 
2 

1 
2 2 2 3 

4 6 5 7 2 3 2 ") 2: 
4 2 2 1 4 2 2 6: 

•1 ry 
L L 

4 

TSER2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 70: 
70 
50 : 
30 : 

: <: 10 l : 
-30 
-50 : 
-70 : 

:< -70: 

lMethd: 

1 3 4 4 2 
6 5 
2 2 

SYPA 

2 6: 
6 1: 

1 2: 
2 3 7 2 1: 
6 6 2 
1 

1 : 

CONYEN 
: Age : 3 4 5 b 7 8 '1 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------: 

> ?Ol 
70 
50 : 
31) : 

: (: 10: : 
-30 

: -50 : 
: -70 : 
:< -70: 

98 

1: 
2 2 4 4 4 5 3 5 6 4: 

3 3 b 3 3 4: 4 5 3 
3 3 3 3 2 1 2 1: 

1: 
1 1 3 1: 

2 7 9 8 8 8 8 7 6 7: 
3 2 2 1 2 1l 

111111 
1 1 1 1 1 1 1 1 1 



Table 3.16: Simulated Data Set 2 : Mean Log Ratio of Estimates of F at age to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 

I AC3 
I AC4 

AEFM 
CCPUE 
SUF:'v'IV 
XSA 
CA6EAN 
ADAPT 
6LM 
COLS!S 
TSER1 
TSER2 
SVPA 
CONVEN 

Age 

-4 
-5 
-5 
-5 
-7 
-5 
-5 

-11 
-1 
-6 
-6 
-7 

-64 
-41 

7 

·-' Aqe 

-3 
-3 

-4 
-3 
4 
5 _., 
~ 

I) 

4 
-13 
-7 

-51 
7'1 -.JL 

4 Age 

4 
5 
4 

., 
L 

c 
·' 

13 
7 

16 
3 
6 
6 

31 
-13 
-2 

-47 

Aqe 

0 

14 
9 
7 

15 
-I) 

5 
2 

59 

6 

-15 
-4 

-47 
-27 

Age 

-3 
-3 
-3 
-3 
-7 
-3 
8 
5 

8 
-1 

7 

-18 

44 
-9 
0 

-46 
-27 

Age 8 

2 
I) 

-1 

-0 
13 
6 

10 
-1 

-14 
6 

75 
-15 
-4 

-45 
-25 

Age 

7 

4 
4 

3 
14 
16 

11 

-20 
-(I 
77 
. .).J 

'1 

-14 
-3 

-45 
-21 

Age 10 

-1 
-5 
-5 
-4 

-12 
-5 
-9 
-8 
-1 
3 
1 
6 

15 

-26 
-13 
-43 
-23 

Table 3.17: Simulated Data Set 2 : Root Mean Square Log Ratio of Fat age to True Values 

! Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CASE AN 
ADAPT 
GLM 
COLSIS 
TSERl 
TSER2 
SVPA 
CONVEN 

Age 3 

25 
25 
25 
25 
24 
25 
31 
27 
33 
32 
11 
26 
18 

69 
44 

Age 4 

10 
8 
9 
9 
8 
9 

11 
10 
12 
12 
6 

11 
12 
4 

13 
7 

55 
32 

Age 5 

7 
8 
7 
7 
6 
8 

16 
15 
13 
22 
6 

16 
13 
31 
13 ., 

L 

51 
26 

Age 6 

5 
5 
6 
6 

5 
21 
15 
12 
23 
6 

12 
11 
59 
15 
4 

52 
28 

Age 7 

9 
8 
8 
8 
8 
8 

19 
12 
10 
17 
4 

29 
12 
44 
9 
0 

51 
29 

Age 8 

8 
8 
8 
8 
8 
8 

21 
11 
8 

15 
5 

42 
15 
75 
15 
4 

49 
26 

Age 9 

13 
12 
13 
13 
9 

11 
29 
27 
18 
27 
5 

67 
10 
33 
14 
3 

49 
24 

Age 10 

21 
20 
20 
'1'1 
i..L 

16 
2(1 

26 
33 
21 
23 
4 

94 
17 

26 
13 
48 
25 

Age 11 

6 
8 
4 
5 , 
L 

-6 
6 
5 

-5 

10 
46 

-29 
-16 
-32 
-9 

Age 11 

28 
26 
25 
26 
2(1 

27 
33 
37 
26 
31 
8 

121 
48 

29 
16 
37 
16 

Age 12 

6 
-9 

5 
-1 
4 

-2 
10 
-5 

-31 
4 

-16 
54 
-6 

-42 
-18 

Age 12 

24 
21 
11 
11 
11 
11 
33 
34 
34 
43 
12 
24 
59 
6 

47 
23 
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Table 3.18: Simulated Data Set 2 
Total Biomass from True Values 

Frequency Distributions of Percentage Deviations of Estimates of 

:Methd:HYBRI:LS :AC1 :AC2 :AC3 :AC4 :AEFM lCCPUElSURVIlXSA :CAGEAlADAPTlGLM :COLS!lTSER1lTSER2:SYPA iCONVE: 

I > 70: 
70 
50 
30 

: < :10:: 
-30 
-50 
-70 

:< -70: 

10 10 10 I 10 

I 
I, 

10 

Table 3.19: Simulated Data Set 2 
Spawning Biomass from True Values 

iMethd:HYBRI:LS :AC1 :AC2 :AC3 

70: 
70 
50 
30 

: <: 10: : 10 10 10 10 9 
-30 
-50 
-70 

:< -70: 

Table 3. 20: Simulated Data Set 2 
Mean F (Ages 5-9) from True Values 

lMethd:HYBRI:LS :ACl :AC2 :AC3 

?O: 
70 
50 
30 3 " 2 i. 

: <: 10:: 7 8 9 8 9 
-30 1 
-50 
-70 

:< -70: 

lOO 

10 10 10 10 10 10 
1 
9 

4 
2 
< ·-' 

10 

Frequency Distributions of Percentage Deviations of Estimates of 

lAC4 :AEFM :CCPUE:SURVI:XSA :CAGEA:ADAPT:GLM :COLSI:TSER1:TSER2lSVPA 

2 
') 
'-

3 
1 3 

10 10 10 10 10 10 8 10 

Frequency Distributions of Percentage Deviations of Estimates of 

:AC4 :AEFM : CCPUE: SURV I: XSA :CASEA:ADAPT:GLM :COLSI:TSER1:TSER2:SVPA 

2 
1 

1 
2 6 7 1 1 '1 7 ·-' '-

8 7 6 8 8 10 4 '1 '-' J. 

1 1 5 
4 
1 

4 
6 

:CONVE: 

9 

lCONVE: 

' ~ 
7 



Table}.21 : Simulated Data Set 2 

Method TSB 

HYBRID ., 
L 

I ,-. 
:...J 2 
AC1 ' 'I 

·} .. 
AC2 ·• f.. 

AC3 4 
AC4 ., 

L 

AEFM 7 
·J 

CCPUE -4 
SURVIV 
XSA -4 
CAGEAN 
ADAPT ·• i. 

GLM -2 
COL SIS 
TSER1 
TSER2 
SVPA 45 
CONVEN 26 

SSB 

2 
2 
1 
·J 

5 
L 

7 
·J 

-3 

-4 
1 
8 

"' -L 

39 
."if1 
i..i.. 

FBAR 

4 
.-, 

":'• 

-5 

7 
8 

8 
-i) 

15 
3 

-19 
-7 

-42 
-21 

Mean Log Ratio af Estimates of Biomass and Mean F to True Values 

Table 3. 22: Simulated Data Set 2 : Root Mean Square Log Ratio of Biomass and Mean F to True lialues 

Method TSB SSB FBAR 

HYBRID 7 7 10 .J ··' 
LS 3 3 '1 
AC1 7 7 8 .J .J 

AC2 3 1' 8 •J 

AC3 5 6 7 
AC4 3 3 8 
AEFM 4 5 13 
CCPUE 5 4 14 
SURVIV 3 2 10 

I XSA 6 6 12 
CAGE AN " " 3 i. L 

ADAPT 5 12 38 
GLM 5 5 19 
COL SIS 3 
TSERl 19 
TSER2 7 
SVPA 47 42 47 
CONVEN 28 23 23 

----------------------------------------
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Table 3.23: Simulated Data Set 3 : Frequency Distributions of Percentage Deviation of Estimates of N at age from True Values 

: Methd: HYBRID LS AC1 AC2 
:Age: 3 4 56 7 8 9101112:3 4 56 7 8 9101112:3 4 56 7 B 9101112:3 4 56 7 8 9101112: 
:-----:------------------------------:------------------------------~------------------------------~------------------------------

> 70l 
70 
50 
30 .; 

L .3 2 3 2 2 .; 
f. 2 

: < l iO l ; 7 8 9 9 7 5 2 
2 4 4 

10 10 10 9 10 6 4 6: 7 10 10 10 10 10 9 
2 1: 1 

3: 7 10 10 10 10 10 9 4 31 
4 2: 

4: 
-30 
-50 

! -70 
i< -70: 

:Methd: 

., 
L 

8: 

AC3 AC4 

71 
·) 1 

AEFM 

4 2l 
'" -Ji 

CCPIJE 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------[------------------------------:------------------------------:------------------------------\ 

> 70: 
70 
50 : 
30 : ' 7 ·.} .j 41 11 133 4 1 1 2 

1: 
3 'i ., ".i ., 

J... L 1.. i.. 

3 1: 
1: 4 1 

6 10 9 9 8 8 2 4: 9 10 9 9 9 8 4 2 4: 4 9 10 9 10 6 7 3 4: 6 10 10 9 6 4 6 2 3 3: 
-30 3 
-50 
-70 

"II 
I.. I 

4: 
1 3 3 21 

3: 
1: 

2 3 2 4 3 1: 
3: 

1: 

1 23264 
4: 
1i 

: Methd: SIJRVIV XSA CASEAN ADAPT 
:Age: 3 4 56 7 8 9101112:3 4 56 7 8 9101112:3 4 56 7 8 9101112:3 4 56 7 8 9101112: 
;-----;------------------------------:------------------------------:------------------------------:------------------------------: 

> 70: 
70 
50 : 
30 : 

: < : 10: ~ 

-30 
: -50 : 
: -70 : 
:< -70: 

1: 
3 3: 

32 22344 
4 6 9 9 8 8 3 s: 
·j ·") 
f. /.. 

1: 

1 2 2 2 1 
8 8 8 B 8 9 5 3 

1 1 4 6 3: 
1 " II 

3 2 
7 B 10 10 10 10 10 B 7 8: 

2 2 
"II 
I. I 

1 
2 2 2 3 6 
5 7 8 6 3 
2 1 1 

2 2 5 2 1: 
3 1 

2 2 2 6: 
1 2 

3: 

: Methd: GLM COLSIS TSER1 TSER2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 B 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------~------------------------------:------------------------------: 

> 70: 
70 
50 : 
30 : 4 3 3 2 ·1 

/.. 

2 

:<:10:: 3 6 7 7 8 9 5 5 1 1: 
-30 3 3 1: 

: -50 : 
: -70 : 
:< -70: 

:Methd: SYPA 

6: 
2: 

CONVEN 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------; 

> 70: 2 
70 
50 : 
30 : 3 6 4 

;<:to:~ 2 3 
-3(1 
-50 
-70 

102 

3 
4 3 2 

1 
1 
2 
2 2 2 1 2 

6 7 10 8 5 3 2 2: 6 6 6 5 4 2: 
1 2 2 3 2: 2 1 1 1 5 4 3 2 2: 

51 2 2 6: 
1 

111111 11111111 
1 1 



Table 3.24: :3irnulated Data Set 3 : Mean Log Ratio of Estimates of N at age to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 

1 AC3 
AC4 
AEFM 
CCF'UE 
SURVIV 
XSA 
CAGEAN 

I ADAPT 
!JLM 
COLSIS 
TSER1 
TSER2 

SVPA 
CONVEN 

Age 

-0 
5 

8 
6 
5 
7 
·-' 

4 
11 

·i 
J.. 

15 

25 
; .; 
lL 

3 Aqe 4 

-3 
7 
·-' 

0 
0 

') 

-0 

10 
2 
·l 
J.. 

4 
7 

16 
c 
·-' 

Age 

7 
·J 

-0 
-0 

7 
.J 

4 
8 
1 
J.. 

'1 
i.. 

-1 
4 

10 

c 
J Age 

7 ._. 

4 

' ·J 

7 
.J 

7 
~' 

5 
7 

6 

12 
.; 
L 

6 Age 7 

-6 

-1 
-1 
-!) 

-0 
-0 

!) 

5 
4 

9 
3 

-6 
-4 
9 

-(l 

Age 8 

-9 
-i) 

-5 
-5 
-2 

-4 
; 
L 

0 
14 
-2 

I) 

0 
2 

-5 

Age 9 

-13 
4 

-3 
-3 
-0 

-3 
-1 

q 

-3 
-(I 

12 
-12 

-8 
0 

-2 
-7 

Age 10 

-18 
-1 

-13 
-13 
-4 
-4 
-6 

-12 
7 

-16 
-4 
20 
-5 

-7 
1 

-14 

Age 11 

l 
.. ; 

- .£. 

9 
8 

17 
-21 
-1 

28 
-24 

-29 
0 

-1 
-13 

Table 3. 25: Simulated Data Set 3 : Root Mean Square Log Ratio of N at age to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIY 
XSA 
CAGEAN 
ADAPT 
GLM 
COL SIS 
TSER1 
TSER2 
SVPA 
CONVEN 

Age 

10 
10 
10 
10 
11 
12 
i7 
J. . .J 

10 
15 
19 
10 
18 
.,fj 
i.L 

37 
32 

7 
.J Age 

c 
J 

5 
5 

6 
8 
5 
8 

13 
6 

11 
12 

4 
7 

19 
14 

4 Age 

6 
4 
4 
7 
~' 

6 
5 
4 
6 
7 

10 
4 
8 

10 

4 
15 
10 

Age 

7 
6 
4 
4 
7 
7 
7 
6 
6 
8 
4 

10 
9 

1 
2 

14 
6 

6 Age 7 

11 
6 
4 
4 
8 
8 
4 
9 
6 
8 
3 

14 
9 

6 
4 

12 
7 

Age 8 

10 
2 
6 
6 
6 
6 
9 

17 
7 
8 
3 

23 
6 

0 
0 
9 

10 

Age 

18 
11 
9 
9 

10 
11 
12 
14 
10 
9 
3 

27 
15 

8 
0 

13 
15 

9 Age 10 

21 
9 

16 
16 
16 
16 
21 
22 
12 
20 
7 

31 
15 

22 
7 

30 

Age 11 

23 
18 
18 
18 
25 
26 
25 
26 
21 
26 
8 

44 
42 

29 
0 

35 
43 

Age 12 

-52 
-18 
-34 
-41 
-27 
-34 
-28 
-29 

12 
-48 
-8 

-il 
-59 

-32 
-38 

Age 12 

55 
30 
44 
54 
38 
50 
53 
52 
28 
51 
18 
31 
66 

44 
45 
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Table 3. 26: Simulated Data Set 3 : Frequency Distributions of Percentage Deviation of Esti,nates of F at age from True Values 

: Methd: HYBRID LS AC1 AC2 
: Age : 3 4 5 6 7 8 9 1 0 11 12 : 3 4 5 . 6 7 8 9 1 0 11 12 : 3 4 5 6 7 8 9 1 0 1 i 12 : 3 4 5 6 7 8 9 1 (! 11 12 ; 
~-----:------------------------------:------------------------------:------------------------------:------------------------------

> 70: 
70 
~d) ; 

•1 

" 

30 : 2 
:<:10: j 

-30 
-50 
-70 

:< -70: 

:Methd: 

7 7 
8 '1 3 

AC3 

1: 
., ~ 'Z lj [ 
L ·J ·J J.. f 

4 i 2 1 1 
3 2: 3 6 9 8 8 8 

3 2 1 2 

AC4 

1: 3 
2 

6 7 6 4: 3 7 9 10 
2 2 5: ·1 

" 

3 
6 

AEFM 

,, 
L 

1: 
1: 
1: 

•! 4 5 4: 
2 

2 2: 3 
2 3 1: 2 

2 3 
8 iO 

CCPUE 

1: 
ii 

3 6 4: 
6 6 3 "; 

2 2 1 i 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 '7 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 70: 
70 
50 
30 

-30 
-51) 
-70 

:< -70: 

2 1 
3 8 
3 1 
1 

2: 
1: 2 

2 3 1 3 4 1 3: 
9 9 6 8 5 4 3 2: 3 7 9 

2: 3 1 1 2 4 
1 1 

:Methdi SURVIV 

3 1 3 3 
9 6 8 5 6 
1 1 3 

1 

XSA 

., I 
L1 

·11 
<.I 

1 1 3 2 
1 8 9 5 7 8 

2: 3 4 

CAGEAN 

1 
2 

3l 
5 2 4: 
3 4 

2 2l 

5 2 
1 10 6 
3 3 

ADAPT 

" .J I 

2 2 2 1: 
3 4 
5 1 

3 

2 1 ~ 
·i 7 I 
i. .) ! 

11 
-1 

2 1: 

: Age : 3 4 5 6 7 8 9 1 0 11 12 : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 70: 
70 
50 : 2 
30 : 2 2 1 2 

: <: 10l: 
-30 

3 7 7 7 8 7 4 6 
2 2 

1: 3 6 6 7 7 5 
2 3 3 1 3 4 3 5 4: 3 4 4 3 3 

-50 3 5: 
-70 

:< -70: 

1 2 

')I 
<.I 

3 4: 

2 2 2 2: 
5 
1 

4 3 
1 1: 

3 
6 7 8 10 8 
4 2 2 2 

:Methd: 6LM COLSIS TSER1 

2 

., I 
i.l 

4 3: 
5 2 4: 2 

1 
8 6 2 

4 1: 2 2 2 3 3 4 
~ .. 

TSER2 

2 1 ~ ., ~: .. 
2 2 4: 
3 2 1; 

4 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 70: 
70 
~tl) : 2 2 

2 1: 
3: 
2: 

30 : 1 4 6 3 3: 
: <: 10:: 4 4 8 8 3 2 3 3 1: 

-30 4 6 5 2 1 3 3 
: -50 : 2 2 
: -70 : 
:< -70: 

:Methd: SVPA CONVEN 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------: 

> 70: 
71) 

50 : 
31) : 

: <: 10: : 
-30 

: -50 : 
l -70 : 
:< -70: 

4 3 3 
5 6 6 

1 

1 
5 8 7 

2 2 

1: 
3 1: 1 

1 s: 2 2 2 5 
7 3 1: 4 8 7 9 8 6 4 
2 3 2: 3 2 

1 

1: 
2 t: 

1: 
4: 

3 2l 
1 1: 
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Table 3. 27: Simulated Data Set 3 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 

I AC4 
AEFM 
CCPUE 
SURVIY 
XSA 
CA6EAN 
ADAPT 
6LM 
COLSIS 
TSER1 
TSER2 
SVPA 
CONYEN 

Age .;. 

6 

4 
4 

-1 
i) 

•i 
i.. 

-5 
-11 

c 
,I 

-2(1 

-20 
-b 

Aqe 4 

4 

-1 
-0 
-3 

') 
L 

-1 
-8 
-.3 
-(I 

-13 

-9 
-17 
-15 

-4 

Age 

4 
-3 

(! 

I) 

-1 
-3 

-4 
-9 
-!) 

-3 
-8 

6 

-12 
-2 

Mean Log Ratio of Estimates of F at age to True Values 

Age 6 I Age 

3 
-4 

-2 
-3 
-4 
-5 
-3 
-6 
-8 
-6 
-6 
-8 

7 
.J 

0 
-13 

-·l 
L 

15 
7 
-~· 

8 
8 
7 

-, 
I 

7 
0 

1 
-4 

7 
1 

-4 
7 

Age 8 i Aqe 9 

12 

7 
7 
4 
4 
5 
4 

-6 
-1 

·i 
L 

-15 
2 

11 
6 

-2 
6 

21 

9 
9 
6 
6 
9 
7 

-4 
10 
4 

-8 
19 

5 
-1 
9 

14 

Age 10 

-1 
10 
10 
1 
1 
c 
._1 

i3 
-11 

14 
-11 

-9 

15 
10 
-4 
14 

Aqe 11 

i8 

-5 
9 
9 

-8 

-20 
·ji:, 
.i.'-' 

-6 
-29 

20 

39 
36 
2 

18 

Table 3.28: Siillulated Data Set 3 : Root Mean Square Lag Ratio of F at age to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFI1 
CCPUE 
SURVIV 
XSA 
CASE AN 
ADAPT 
6LI'I 
COL SIS 
TSER1 
TSER2 
SVPA 
CONVEN 

Age 

26 

25 
25 
22 
24 
25 
23 
25 
25 
15 
29 
25 

25 
18 

7 
•• 1 Age 

11 
8 
9 
9 
8 
9 
9 

11) 
10 
13 
11 
13 
17 

9 
17 
18 
10 

4 Age 

7 
7 
6 
6 
6 
6 
7 
6 
8 

11 
12 
7 

13 

6 
1 

16 
11 

c 
·-' Age 

7 
6 
4 
5 
7 
8 

10 
10 
9 

10 
9 

14 
12 

3 
0 

16 
7 

6 Age 

19 
8 

11 
11 
11 
12 
9 

14 
7 

10 
6 

17 
10 

7 
1 
B 
9 

7 Age 

16 
8 

10 
10 
10 
11 
10 
17 
9 

12 
9 

29 
13 

11 
6 

10 
9 

8 Age 

29 
17 
19 
19 
19 
20 
21 
23 
17 
22 
9 

31 
21 

5 
1 

13 
17 

9 Age 10 

27 
13 
20 
20 
14 
14 
20 
21) 

19 
26 
18 
40 
27 

15 
10 
16 
26 

I Age 11 

37 
23 
27 
28 
28 

38 
30 
38 
42 
21) 

71 
7., 
Ji.. 

39 
36 
22 
37 

Age 12 

30 

20 
i4 
14 
6 

16 

-11 
,.-1 
._\£. 

13 
22 

Age i2 

36 
19 
30 
31 
28 
29 
47 
48 
46 
43 
21 
25 
37 

33 
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Table 3. 29: Simulated Data Set 3 Frequency Distributions of Percentage Deviations of Estimates of 
Total Biomass from True Values 

;r1ethd:HYBRI:LS : AC 1 : AC2 i AC3 : AC4 : AEFM : CCPUE i SURV Ii XSA :CAGE A: A DAFT: GLM i COLS I :T'3ERL TSER2 i SVPA : CON'vE i 

70: 
70 
50 
30 

< ' 10: I 9 10 10 I I I 10 
-30 
-50 
-70 

I .( -70: I 

Table }. 30: Sitnulated Data Set 3 
Spawning Biomass from True Values 

2 
'1 iO 9 9 10 10 6 8 4 10 

Frequency Distributions of Percentage Deviations of Estimates of 

\Methd\HYBRI\LS : AC1 : AC2 i AC3 : AC4 : AEFM : CCPIJE: SUF:V I: XSA : CAGEA: ADAPT; GU1 : COLS I : TSER1iTSER2: SVPA :COWiE: 

70: 
70 
50 
30 

: <: 10: i 9 
-30 
-5(l 
-71) 

:< -70\ 

9 10 10 9 

Table 3. 31 : Simulated Data Set 3 
Mean F !Ages 5-9) from True Values 

., 10 i. 

9 iO 6 I 10 10 10 10 
2 

Frequency Distributions of Percentage Deviations of Estimates of 

9 9 
1 

:Methd\HYBRI\LS \AC1 \AC2 \AC3 \AC4 \AEFM \CCPUE\SURVI\XSA \CAGEA\ADAPT\GLM \COLSI\TSER1\TSER2\SVPA \CONVE: 

70: 
70 
50 7 •7 

·) .<. 

30 5 " 5 c 7 7 5 6 5 ·j 
i. ,I ·-' ·' 

: <: 10\ I 7 3 3 6 6 8 ') 6 3 10 c c '1 6 I L -1 .J 

-.3(1 1 1 ") 7 ·7 
.<. .J .<. 

-50 1. 

-70 
\ < -70: 

106 



Table3· 32 

Method 

HYBRID ! 

LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVI\1 
XSA 
CAGEAN 
ADAPT 
SLM 
COLSIS 
TSER1 
TSER2 
S\IPA 
CONVEN 

Simulated Data Set 3 

TSB SSB 

-5 -9 

·~· 
., 
i. 

-1 -3 
-1 -3 

-1 
-(l 

·• -(l i. 

0 -1 
6 ~ 

I 

5 
1 (l 

10 14 
4 -1 

11 5 
-3 

FBAR 

19 
1 

10 
10 
3 
4 
6 
8 

-6 
14 
-3 

-11 
7 

15 
10 
-!) 

12 

Mean Log Ratio of Estimates of Biomass and Mean F to True Values 

Table 3. 33: Simulated Data Set 3 : Root Mean Square Log Ratio of Biomass and Mean F to True Values 

Method 

HYBRID 
LS 
ACl 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CAGEAN 
ADAPT 
6LI1 
COLSIS 
TSER1 
TSER2 
SVPA 
CONVEN 

TSB 

8 
4 
2 
2 
5 
5 
4 
7 
7 
5 
3 

10 
~ 
! 

12 
4 

SSB 

11 
4 
4 
4 
6 
7 
3 

10 
B 
3 
2 

15 
5 

7 
6 

FBAR 

24 
10 
15 
15 
13 
14 
14 
17 
12 
20 
5 

29 
10 

15 
10 
8 

17 

107 



Table 3. 34: Simulated Data Set 4 : Frequency Distributions of Percentage Deviation of Estimates Df N at age from True !;alues 

: Methd: HYBRID LS AC1 AC2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 b 7 8 9 10 11 i2i 
:-----;------------------------------;------------------------------:------------------------------:------------------------------

> 70: 
70 
50 
30 

<: 10:: 8 10 10 10 
-30 1 
-50 
-70 

l< -70l 

:Methd: AC3 

·1 
L 

6 7 6 
1 

4 7 8 6 
1:5324 

2 2 
2 332 132 3 3 2 

3 4 5 5 1: 7 7 8 10 9 6 6 7 8 10 9 6 7 6 1' •' 

AC4 AEFM CCPUE 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 ''I 10 11 12: 
:-----l------------------------------:------------------------------1------------------------------:------------------------------: 

> 70: 
70 
50 
30 4 

-31) 
-50 
-70 

:< -70: 

1 2 2 
3 3 3 5 3 
7 7 7 4 5 1: 

5 6 3 1 3 2 
4 4 7 9 7 7 6 5 1: 

:Methd: SURVIV XSA 
: Age : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 

2 3 2 
2 2 3 1 2 2 
3 8 6 7 7 4 
5 2 2 

CAGEAN 

5 6 t: 

3 4 5 6 7 8 9 10 11 12: 

3 2 2 2 

•1 
L 

9 8 9 6 8 6 6 1: 

ADAPT 
3 4 5 6 7 8 9 10 11 12: 

\-----:------------------------------:------------------------------:------------------------------:------------------------------: 
> ?Ol 

70 
50 1 2 2 
30 4 3 4 6 3 

: <: 10:: 7 6 10 6 2 5 6 1: 
-30 

: -:,o : 
: -70 : 
l( -70: 

2 3 2 4 2 
4 3 1 4 3 4 3 

6 2 378674 3 
5 6 1 

22 323351: 4 1: 
6 7 3 2 2 1 
1 
1 

: Methd: GLM COL SIS TSER1 TSER2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------\ 

> 70: 
70 
50 
30 

-30 
-50 
-70 

:< -70: 

2 5 5 
4 3 8 5 
4 6 
2 1 

3 
5 2 
3 4 
1 

6 4 1: 

: Methd: SVPA CONVEN 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
;-----:------------------------------:------------------------------: 

> 70: 
70 
50 
30 

-30 
-50 
-70 

:< -70: 
108 

1 2 3 
4 2 

4 3 
3 

2 1 1 

3 3 1 2 
4 3 6 2 
3 4 2 3 4 1: 

·1 ·1 
L L 

2 2 2 
2 3 7 6 6 4 
4 3 3 4 4 
2 

3 4 1: 

1 1 



Table 3· 35 Simulated Data Set 4 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURViV 
XSA 
CAGEAN 
ADAPT 
GLM 
COLSIS 
TSER1 
TSER2 
SVPA 
CONVEN 

Age 

10 
8 
7 

13 
13 
-7 

11 
-26 

47 

-20 

13 
8 

7 
.J Age 4 

i3 
7 
~ 
i 

11 
10 
3 
4 
9 

-21 
37 

-16 

-14 
-14 

15 
13 

Age 

.) 

13 
6 
6 
9 
9 

9 
-8 
36 

4 

19 
7 
.:,1 

20 
12 

Mean Log Ratio of Estimates of N at age to True Values 

Age 

il 
4 
3 
8 
7 

-3 
3 
1 

-3 
38 

11 

3 
-6 
17 
13 

6 Age 

10 
4 
4 
7 

3 
., 
i. 

8 
4 

41 

9 

0 
-6 
14 
11 

Age 8 

7 
16 
9 
9 

12 
8 
7 
6 

16 
14 
48 

1' d 

16 
-8 
21 
15 

Age 9 

8 
21 
8 
8 

13 
10 
11 
6 

17 
27 
51 

21 

0 

Age 10 

-10 
12 
6 
6 

12 
6 

12 
6 

12 
31 
57 

-10 

0 
I) 

I) 

16 

' Age 11 

i) 

12 
12 

(I 

I) 

0 
12 

!) 

i) 

!) 

14 
14 

Table 3. 36 : Simulated Data Set 4 : Root Mean Square Log F:atio of N at age to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CAGE AN 
ADAPT 
GLM 
COL SIS 
TSER1 
TSER2 
SVPA 
CONVEN 

Age 3 

9 
14 
12 
12 
17 
17 
16 
11 
14 
37 
48 

26 

26 
24 

Age 4 

4 
i4 
8 
8 

12 
11 
8 
6 

10 
28 
37 

18 

14 
14 
23 
16 

Age 5 

4 
14 
7 
7 

10 
10 
12 
8 
9 

12 
37 

7 

19 
3 

23 
15 

Age 6 

3 
12 
5 
5 
9 
7 
8 
5 
3 

11 
38 

13 

3 
6 

22 
16 

Age 7 

6 
11 
6 
6 
9 
9 
9 
8 
9 

12 
41 

11 

I) 

6 
20 
12 

Age 8 

16 
20 
15 
15 
17 
15 
18 
16 
20 
21 
49 

19 

16 
8 

28 
20 

Age 9 

16 
30 
16 
16 
19 
18 
37 
13 
28 
35 
55 

30 

0 
22 
39 
36 

26 
.,,., 
L.t.. 

15 
15 
·";!"") 
.!.4 

15 

15 
22 
43 
59 

26 

0 
0 

37 
48 

Age 11 

i) 

I) 

I) 

I) 

28 
28 
0 
0 
0 

28 
40 

0 

I) 

0 
31 
31 

Age i2 

0 
0 
0 
(i 

0 
0 

0 

0 

Age 12 

0 
i) 

I) 

I) 

i) 

I) 

0 
!) 

(I 

(I 

I) 

i) 

I) 

i) 

109 



Table 3 • 37: 3l:~ulated Data Set 4 Frequency Distributions of Percentage Deviation of Estimates of F at age from True Values 

iMethd: HYBRID LS AC1 AC2 
I Age i 3 4 5 6 7 3 9 10 11 121 3 4 5 6 7 8 9 10 11 12! 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------; 

70: 
70 
50 
30 

-30 
: -50 : 
: -70 : 
~< -70\ 

7 

·-' 9 'i 10 i!) 
3 3 

L li 
2 4i 

.-,I 
i..: 

.J; 

j. 

3 
.j 7 
3 

3 21 
4 2 3 3 3: 

q 6 6 Ci 
)I 

3 2: 
3 7 10 8 6 9 3 4 4 8: 
4 3 1 

3 7 10 7 
4 3 2 

6 9 

: Methd: AC3 AC4 AEFH CCPUE 

3 s: 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 :, 6 7 8 9 10 11 12: 
~-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 70\ 
70 
50 
30 

-30 
-50 
-70 

: < -70: 

:Methd: 

4 
7 
·-' 

6 4 7 
4 6 3 

SURVIV 

3 
3 10: 
6 L 

3 4 8 5 7 3 3 
6 2 3 3 6 5 

3 1 

XSA 

'' J.' 

0' ,, 

., 
L 

3 7 3 7 2 

j' .. 

3 2 5 2 2 2 3 3 6 6l 
2 2 1 1l 

CAGE AN 

2 1 
3657784 

3 4 2 2 1 3 

ADAPT 

li 

1i 
3 3 ~ 
•") ·"')I 
i.. i..! 

1: 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 :. 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------1 

> 70: 
70 
50 
30 

<:1o:: 2 6 6 
-30 
-50 
-71) 

:< -70: 

2 

., 
L 

2 .3 1 2 
1: 2 4 2 

2 3 2 1: 3 3 3 2 2 3 
8 9 7 6: 3 2 7 3 1 

2 3 5 2 5: 
1 2 4: 

9 10 9 10 9 9 9 
1 

4 
6 9: 

1: 

:Methd: 6LM COLSIS TSER1 TSER2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 :. 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 71): 

70 
50 
30 2 3: 

: <:10:: 6 6 3 1 1 8 7: 
-30 2 4 4 7 9 9 8 9 
-50 
-70 

:< -70: 

lMethdl SVPA CONVEN 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------1 

> 70: 
70 
50 
30 

-31) 
: -50 l 
: -70 : 
:< -70: 

110 

•l ·"')/ 
i. ""' 

3 3 3 3 3 3 3 3 4 3: 2 3 
5 5 4 4 4 3 3 4 2: 8 7 

2 3 3 3 3 

4 
6 

1 
8 4: 

9 9 9 6: 

1 1 1 1 1 1 1 



Table3.38 

Method 

HYBRID 
LS 
ACl 
AC2 

AC4 
AEFM 
CCPUE 
SUR!!! V 
:\SA 
CAGEAN 
ADAPT 
GLM 
COLSIS 
TSER1 
TSER2 
SiJPA 
CON'.JEN 

Simulated Data Set 4 

Aqe 

-5 
-17 
-14 
-14 
-20 
-21) 

-8 
-18 

·if 
Li. 

C"7 
-.,.If 

-3 

7 

·-' 

-20 
-15 

Age 4 

-1 
-16 
-9 
-8 
'7 -L' 

-12 
-4 
-5 

-11 
27 
C·J -.JJ.. 

-5 

-63 
-48 
-18 
-15 

Age 

7 
·-' 

-12 
-~ 

!.. 

-i 
-6 
-5 

!) 

-1 
-5 
18 

-49 

-8 

-6 
4 

-20 
-10 

c 
J 

Mean Log Ratio of Estimates of F at age to True values 

Age 6 

'j 
L 

-13 
2 

-1 

-5 
9 

.-, 
L 

11 
-55 

-15 

-8 
9 

-20 
-15 

Age 7 

-3 
-17 
-8 
-8 

-i3 
-11 
-6 
-5 

-15 
-4 

-60 

-21 

-6 
10 

-23 
-21) 

Age 

-'1 
L 

8 

-15 

-5 
-10 
-7 
3 

-1 
-17 
-13 
-61 

-21 

-7 
9 

-25 
-18 

Age 9 

-4 
-16 
-8 

-13 
-10 

1 

-18 
-22 
-64 

-28 

-6 
10 

-20 
-19 

Age 10 

-3 
-14 

-7 
-12 
-1(1 
-10 
-5 

-17 
-37 
-72 

-19 

-4 
11 

-25 
-20 

Aqe 11 

13 
7 

!C 
.l,,._l 

16 

·i 
'-

-10 

-9 
-39 
-71 

-2 
13 
-9 
-0 

Table 3. 39: Simulated Data Set 4 : Root Mean Square Log Ratio of F at a·~e to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 

I CAGEAN 
ADAPT 
GLM 
COLSIS 
TSER1 
TSER2 
SYPA 
CONYEN 

Age 3 

21 
26 
24 
25 
27 
27 

19 
28 
35 
58 

9 

25 
16 

Age 4 

10 
18 
13 
13 
15 
15 
15 
12 
15 
39 
53 

'1 

63 
48 

17 

Age 5 

7 
14 

c 
J 

6 
9 

10 
19 
13 
10 
28 
50 

10 

6 
4 

24 
13 

Age 6 

7 
14 
7 
8 

10 
9 

19 
11 
8 

23 
56 

16 

8 
9 

26 
17 

Age 7 

5 
18 
10 
9 

14 
12 
12 
10 
16 
18 
61 

22 

6 
10 
30 
21 

Age 8 

5 
16 
7 
6 

11 
9 

17 
8 

17 
~') 
'-'-

61 

7 
9 

32 
19 

Age 9 

17 
23 
19 
19 
19 
20 
38 
24 
26 
37 
64 

29 

6 
10 
29 
21 

Age 10 

17 
21 
21 
')") 
LL 

19 
20 
29 
26 
27 
46 
72 

20 

4 
11 
33 

Age 11 

27 
24 
27 
30 
19 
25 
33 
49 
27 
51 
72 

10 

13 
21 
9 

Aqe 12 

3 
- i 

, 
·-' 

4 
-4 
-1 
-8 

-17 
-67 

-100 

6 

-11 

Age 12 

17 
17 
8 
9 
7 
7 

7'1 
.jj_ 

49 
23 
74 

101 

11 

25 
i3 

111 



Table 3.40 : Si:nulated Data Set 4 
Total Biomass from True Values 

Frequency Distributions of Percentage Deviations of Estimates of 

: Methd: HYBRI: LS lAC1 lAC2 IAC3 lAC4 lAEFM ICCPUEISURV!lXSA ICAGEAlADAPTIGLM lCOLS!lTSERl:TSER21SYPA :CONVEI 

70: 
70 
50 
30 

:uo:: 10 
-30 
-50 
-70 

:< -70: 

7 5 
3 9 9 5 

Table 3.41 : Simulated Data Set 4 
Spawning Biomass from True Values 

5 4 
9 9 6 

7 

5 
4 

8 
'i 
.<. 

Frequency Distributions of Percentage Deviations of Estimates of 

2 
1 
4 

lMethdlHYBR!lLS lAC1 lAC2 :AC3 :AC4 IAEFM lCCPUElSURV!lXSA lCAGEAlADAPTlGLM lCOLS!lTSER1lTSER2lSVPA lCONVE: 

70l 
70 
50 I 

30 8 3 
: {: 10: : 10 •l 10 10 7 .<. 

-30 
-~·0 

-70 
~< -70: 

Table 3.42: Simulated Data Set 4 
Mean F (Ages 5-9) from True Values 

: Methd: HYBRI: LS lACl :AC2 lAC3 

70: 
70 
50 
30 1 

: <: 10: : 9 6 8 8 6 
-30 4 1 1 4 
-50 
-70 

:< -70: 

112 

6 
4 l. 

2 
, 

4 3 7 
L 

8 10 10 8 4 7 1 .) ·.) 

'i 
L 

Frequency Distributions of Percentage Deviations of Estimates of 

lAC4 lAEFM lCCPUElSURVllXSA :CAGEAlADAPTlGLM lCOLSI:TSER1lTSER21SVPA :carNE: 

2 
'i 
L 

7 6 6 4 2 4 4 3 
3 'i 2 6 8 6 3 7 ;.. 

9 3 



Table3.43 : Simulated Data Set 4 

Method 

HYBRID 
LS 
ACl 
AC2 
AC3 

I AC4 
AEFM 
CCPUE 
SURYIV 
XSA 
CAGEAN 
ADAPT 
GLI'f 
COLSIS 
TSER1 
TSER2 
SYPA 
CONVEN 

T:38 

12 
6 
b 

10 
9 
1 
4 
8 

-10 
41 

-3 

15 
11 

SSB 

2 
i2 

c 
~' 

~~ 

9 
~ 
I 

"! 
L 

4 
8 
'i 
L 

41 

6 

16 
12 

FBAF: 

-11) 
-1 
-1 
-9 
-6 
-1 
2 

-14 
-21) 
-65 

-16 

-5 
10 

-20 
-15 

Table 3.44: Simulated Data Set 4 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CABEAN 
ADAPT 
GLM 
COLSIS 
TSER1 
TSER2 
SVPA 
CONVEN 

TSB 

3 
13 
7 
7 

11 
10 
7 
7 
9 

17 
41 

7 

20 
14 

SSB 

7 
.) 

12 
6 
5 
9 
8 
5 
5 
a 

10 
41 

a 

21 
14 

FBAR 

6 
11 
7 
8 

10 
9 

12 
15 
16 
23 
66 

18 

5 
10 
28 
17 

Mean Loa Rat1o of Est1mates of Biomass and Mean F to True Values 

Root Mean Square Log Ratio of Biomass and Mean F to True Values 
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Table 3.45 : '3!rnulated Data Set 5 : Frequency Distributions of Percentage De'ilation of EstLnates of N at 3ge from True '!alue~ 

iMethd: HYBRID LS AC1 AC2 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
;-----~------------------------------:------------------------------~------------------------------:------------------------------: 

70i 2 
70 

3 3 .3 
4 .. 2 3 

-30 4 2 
-50 
-70 

,.,,-. .., 
HL.J 

., ·~· .. .. 
3 L 

.3 

3 2 3l 
1: 

1 f. 

2 
2 3 ' l .. 

5 2 2 

AC4 

7 
·-· 

'; 
lr 

t: 

7 4: 
2 5 

3: 
t: 

3 
3 2 3 

·i .. 
4 

AEFH 

3 
t: 
t: 

4 4: 

7 

·-' 
3 2 
32334:1 

2 2 t: 2 3 2 4 
7 '}I 
._\ i...l 1 2 

1: 

CCPUE 

'' l: 

3 1: 
4 4 4: 
2 

4 2l 
1: 

:Methd: 
~ Age ~ 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------l------------------------------~------------------------------:------------------------------~ 

> 70 l 2 
70 
50 
3(1 

<: 10: ; 
-30 
-~r(l 

-71) 
:< -70: 

:Methd: 

1 ' 

4 

2 2 
2 3 4 4. 8 

2 3 2 

SURVIV 

·"1 
L 

2 

5: 

3 3: 4 3 
3 

1: 
1: 

2 2 

2 
2 3 4 
3 2 ., .. 

3 2 4 
2 

XSA 

·"1 
L 

·"1 
L 

3 
3 
1 

2 4 2: 5 6 3 2 2 
2 2 1: 

t: 
1: 

2 1 
2 2 

CAGE AN 

2 

7 
.J 

1: 
1: 

2 1: 3 

1 
2 1 3 

4 3 
3 2 3 2 2 

5 2 3 2 4 "1 4 

2 

ADAPT 

·11 ... 

3 1! 
2 2 4: 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----l------------------------------:------------------------------l------------------------------:------------------------------l 

70~ 2 
70 
~·0 

30 

-7(1 
:< -70: 

2 2 

3,..' 2227 
2 6 6 3 

2 2 2 1 1 

4 5: 
3 2l 
'1 ~ l 
,;_ ._lj 

2 2 3 2 1 4' ·' 
"' ·l f.. ;_ 2 3 4 4 3 4 3 5 2: 

4 3 6 6 8 6 4 3 
2 2 2 4 4 4 

.-,I 7 
i..r ... 1 

2 7: 

4 4 3 6 6 3 2 4: 
1 2 

:Methd: GLM COLSIS TSER1 TSER2 
: Age : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 
:-----:------------------------------:------------------------------:------------------------------~------------------------------~ 

> 701 
70 
50 : 
30 : 

: c to:: 
-30 
-50 
-71) 

:< -70: 

:Methdi 

2 3 2 
3 2 2 4 3 
2 4 4 4 6 1 

2 2 6 8 7: 

SVPA 

., .. 
71 
. .)I 

CONVEN 
: Age : 3 4 5 6 7 8 9 1 0 11 12 : 3 4 5 6 7 8 9 10 11 12 : 

> 70l 
70 
50 : 
30 : 

-30 
-50 
-70 

i< -70l 

114 

1 
1 1 

2 3 5 4 3 2 2 
24332 22 
2 3 4 3 4 



Table 3.46 Simulated Data Set 

Method 

HYBF:ID I 

LS 
1 AC1 

AC2 
AC3 
AC4 
AEFM 

I CCPUE 
SUF:VIV I 

XSA 
CAGE AN 
ADAPT 
IJLM 
COLS!S 
TSER1 
TSER2 
SYPA 
CONI! EN 

6 
6 

,...,., 
L.:.• 

2!) 
~,., 

i.L 

16 
26 
14 
15 

7 
.• 1 

Aqe 

-1 
8 

-1 
-1 
14 
17 
4 
c 
•• 1 

8 
9 

-4 

-10 

4 Age 

!) 

17 
20 
21 
')7 

13 
-1 
10 
8 

3 

-8 

Mean Log Ratio of Estimates of N at age to True Values 

Age 

-.J 

-4 
10 
10 

-10 

-13 
6 
7 

-6 

-6 

6 Age 

3 
17 
12 
15 
20 
.-,c 
L· . .l 

14 
-16 

3 
8 

-5 

-8 

7 1 Age 

-11 
2 

-8 
-8 
1 

-16 
1 

-20 
-4 

-22 

-13 

8 Age 9 

-5 
-.) 

-7 

-6 
-0 

-12 
-8 
11 

-21 

-16 

Age 10 

-19 
-~ 

-4 
8 

-18 

-4 
-14 

12 

-55 

Age 11 

-9 
-14 

-18 
18 
15 

-42 
-9 

-15 
-35 

14 

-27 

Table 3.47: Simulated Data Set 5 : Root Mean Square Log Ratio of N at age to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 

I AEFH 
CCPUE 
SURVIY 
XSA 
CAIJEAN 
ADAPT 
GLM 
COL SIS 
TSER1 
TSER2 
SVPA 
CONVEN 

Age 3 

42 
35 
35 
36 
37 
39 
61 
34 
42 
28 
29 

27 

Age 4 

31 
28 
38 
39 
28 
31 
30 
31) 

30 
19 
21 

29 

29 

Age 

24 
30 
29 
33 
28 
35 
30 
24 
36 
20 
18 

18 

24 

Age 6 

27 
11, 
f.. I.. 

27 
28 
20 
23 
40 
21 
27 
17 
17 

23 

18 

Age 7 

25 
29 
32 
31 
37 
38 

24 
16 
14 

21 

24 

Age 8 

25 
15 
17 
17 
21 
24 
41 

26 
13 
15 

26 

29 

Age 9 

26 
21 
25 
25 
29 
27 
46 
31 
17 
15 
16 

27 

34 

Age 10 

31 
21 
·1< 
i..·J 

21 
20 
46 
37 
21 
32 
19 

60 

40 

Age 11 

32 
23 
26 
28 
53 
57 
50 
48 
28 
54 
24 

63 

53 

Age 12 

-10 
-21 
-19 
-19 

8 
') 
L 

-44 
-16 
-24 

20 

-94 

Age 12 

65 
58 
47 
47 
42 
48 
62 
75 
36 
66 
28 

102 

115 



Table 3.48 : :3irnulated Data Set 5 : Frequency Distributions of Percentage De'llation of Estimates of F at age froffi True 'lalues 

:Methd: HYBRID LS AC1 AC2 
: Age : 3 4 ~. 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------~ 

> 70: 
70 
50 
30 .-, r; 

i.. f.. 

·"1 ;. 

2 2 3 7 
·-' 

·'i ·'i J 
i. f..J 

2 1: 2 2 

3 

3 
2 

1: 
~· i.J 

4: 2 ·"1 
L 

7 
.j 

.t; ,, 
: <: 10: : 2 2 2 3 2 3 2 3 3 2 3 3 3 2 2 1: 2 3 3 2 4 2 2 1: 

-30 
-50 
-70 

:< -70: 

4 2 3 
3 2 

2 2 2 3 2 4: 
1: 
1: . 

:Methd: AC3 
: Age : 3 4 5 6 7 8 9 10 11 12 : 

3 2 4 4 3 3 2 4i 2 
3 2 2 1 2 1: 2 2 3 

AC4 

2 2 2 2 2 
7 
.J 

AEFM 

3 

3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 

2 
2 2 3 7 . .) 

CCPUE 

L L 

3 

3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------; 

> 70: 
70 
50 
30 

: <: 101: 
-31) 
-50 
-70 

l< -70: 

:Methd: 

1 
3 2 3 3 

2 2 5 3 3 
4 4 2 2 2 
1 

2 
3 2: 

3 3 3 4 4: 
2 1 3: 

1: 
4 3 

1 3 
1 

SURVIV 

1 3 2 
3 4 3 4 3 

2 3 2 2 2 3 3 
3 3 

XSA 

1: 2 
'l' 
Ll 

3 
2 

1 2 2 2 
1 1 1 3 

·1 
'-

3 4 4: 

"'' L' 
1: 
1: 

3 1: 
1: 3: 

1: 
6 4 2 3 

1 2 2 2 2 3 
2 
1 

CASE AN 

;: 
·.J 

2 2 2 2 3 
3 4 .3 3 
4 3 

ADAPT 

4 

< ·.J 

3 4: 

.-, 1 

'-' 
2 3 1; 

1: 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------; 

> 70: 
70 
50 : 
30 : 

l < 110 ll 4 
-30 
-50 
-70 4 

:< -701 

2 1: 
3 4 2 3 1: 

1 3 1 2 2 21 

2 3 
7 3 
1 2 

2 3 3 3: 

2 

., 
~ 3 21 

3 3 2 
3 1: 

2 
1 4 

3 2 3 3 4 5 2 
6 4 4 4 3 2 

3 2 2 

: Hethd: GLM COL SIS 

3 4: 
2: 
1l 
., ' 
~. 

2 144211 
2 1: 3 3 6 8 7 8 6 

6 3 

TSERl 

3 1: 
4 6 s: 

1 1: 

: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
TSER2 

3 4 5 6 7 8 9 10 11 12: 
:-----:----------------~-------------:------------------------------:------------------------------:------------------------------: 

1 2 1 9: 
1 1 4 3 

2 3 2 2 2 

> 70: 
70 
50 : 
30 : 

l ( l10: l 2 
3 2 2 2 3 2 1 3 t: 

3 4 2 3 1 3 3 
-30 
-50 
-70 

:< -70: 

2 5 2 2 
1 3 2 

:Methd: SVPA 

1 

: Age : 3 4 5 6 7 8 9 10 11 12: 
CONVEN 

3 4 5 6 7 8 9 10 11 12: 
:-----1------------------------------l------------------------------l 

> 70: 
70 
50 : 
30 : 

-30 
: -50 : 
: -70 : 
: < -70: 

116 

3 

2 4 2 
3 4 4 3 
3 1 3 2 

2 2 
2 

2 3 
3 2 2 

3 3 
1 2 1 
1 1 2 



Table 3.49: Simulated Data Set 5 : Mean Log Ratio :Jf Estimates of F at age to True Values 

Method ' Age 

HYBRID I 

LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIY 
XSA 
CAGE AN 
ADAPT 
6LM 
COL SIS 
TSER1 
TSER2 
SVPA 
CONVEN 

-6 
-20 
-8 
-8 

-26 
-22 
-25 
-i8 
-29 
-16 

7"7 
-.)f 

-30 

7 
·) I Age 

-14 
i..·.' 

-14 
-14 
-30 
-33 
-19 
-21 
-16 
-24 
-24 

-10 

-4 

4 Age 

-5 
-30 
-24 
-27 
-'lR i.....! 

-35 
., 
I 

-19 
-4 

-16 
-16 

-5 

-1 

5 Age 

-10 
3 

-13 
-13 

12 
-3 
14 
-9 

-15 

f) 

., 
~ 

Age 

-4 
-20 
-14 
-17 
-24 
-29 
-11 
-17 

18 
-5 

-18 

8 

8 

Age 

9 

< 
J 

-6 
-6 
16 
-5 
19 
0 

-26 

19 

16 

8 Age 

6 

3 
8 
8 

-7 
-7 
8 
1 

14 
q 

-16 

17 

15 

Age 10 

-11 
-9 

-10 
-26 

14 
-15 
-10 

6 
-30 

40 

11 

Age 11 

O:i 
I 

16 
16 
; ~ 
l! 

-25 
-21 

54 
11 

-48 

30 

11 

Table 3.50: Simulated Data Set 5 : Root Mean Square Log Ratio of Fat age to True Values 

Method Age 3 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CAGE AN 
ADAPT 
GUt 
COLS!S 
TSER1 
TSER2 
SVPA 
CONVEN 

49 
47 
50 
50 
46 
54 
74 
49 
55 
41 
40 

36 

Age 4 

34 
36 
40 
42 
39 
43 
33 
36 
31 
28 
31 

28 

24 

Age 5 

30 
39 
35 
39 
35 
43 
34 
31 
39 
26 
21 

18 

25 

Age 6 

32 
29 
39 
41 
29 
34 
sa 
28 
36 
25 
17 

24 

18 

Age 7 

28 
30 
37 
42 
36 
44 
44 
41 
30 
21 
24 

23 

32 

Age 8 

27 
19 
21 
22 
29 
32 
52 
37 
27 
17 
31 

27 

39 

Age 9 

24 
19 
22 
24 
20 
24 
45 
27 
33 
36 
21 

30 

35 

Age 10 

31 

37 
40 
38 
45 
84 
53 
45 
57 
34 

45 

33 

Age 11 

44 
54 
55 
62 
69 
83 
71 
48 
55 
50 

35 

38 

Aoe 12 

4 
12 
12 
i2 
-9 
-6 
63 
19 
18 

79 

Age 12 

52 
44 

25 
20 
.,.,. 
i.·) 

92 
76 
32 
72 
56 

83 

117 



Table 3.51: Simulated Data Set 5 
Total Biomass from True Values 

Frequency Distributions of Percentaqe Deviations of Estimates of 

: ACi : AC2 : AC3 : AC4 : AEFM : CCPUE: SUF:V I: XSA : CAGEA: ADAPT: GLM : COLSI:TSER1: TSER2: SVPA : CONVE: 

70 ' I 
70 
50 

., 
~ 

30 .~i 
~ 7 7 .) ._\ 

i 10 I I ' 4 ., .,. 
I I ~ .) 

-30 3 7 ') ·1 
,\ '- .i. 

-50 
-70 

' < -7(1 I 
I 

Table 3.52: Simulated Data Set 5 
Spawning Biomass from True Values 

3 f. 

'1 7 3 ~ ·) i. 

3 ~ 5 9 7 i. 

2 ., 3 ., 
.i. L ~ 

Frequency Distributions of Percentage Deviations of Estimates of 

iMethd:HYBRI:LS iACl IAC2 :AC3 IAC4 IAEFM :CCPUE:SURVI:XSA :CAGEA:ADAPT:GLM ICOLSI :TSER1:TSER2:SVPA :CONVE: 

118 

70: 
70 
51) '1 

'-

30 7 4 
., .., 

4 ·) L ·) 

:<:to: I 6 5 ·i 
I ;.. 

-30 I 6 
., ') ~~ 
i. '- ~ 

I -50 
-70 

' < -70: ! 

Table 3.53: Simulated Data Set 5 
Mean F (Ages 5-9) from True Values 

: Methd: H'IBRI: LS :ACl :AC2 :AC3 

I > 70: 
70 
50 4 
30 ~ 4 6 6 2 l 

~< : 10: : 4 2 2 
-30 3 2 2 2 6 
-50 
-70 

I' 
II. -70: 

.,. ~ 

.) I. 

4 1 4 4 
4 '1 4 8 6 4 ~ 

1 1 3 6 2 5 '- '-

1 

Frequency Distributions of Percentage Deviations of Estimates of 

:AC4 :AEFM lCCPUE:SURVI:XSA :CAGEAlADAPTlGLM lCOLS!lTSERl:TSER2lSVPA lCONVEl 

4 
2 3 

'1 '1 ,_ '-
') 7 6 6 3 ~ 

2 ·j 2 
.., 

1 2 .. ·) 

5 2 9 1 
2 



Table 3.54: Simulated Data Set Mean Log Ratio of Estimates of Biomass and Mean F to True Values 

Method TSB SSB FBAR 

HYBF:ID -4 -5 9 
LS 9 6 
AC1 0 -0 7 

AC2 i i 7 
AC3 14 11 -14 
AC4 17 14 -11 
AEFM 7 35 -.) 

CCPUE c 4 0 "' 
SURVIV -10 -16 17 
XSA -4 i8 
CAGE AN 4 4 -27 
ADAPT 
GLM -10 -17 24 
COLSIS 
TSER1 12 
TSER2 
SVPA 
CONVEN 

Table 3.55: Simulated Data Set 5 : Root Mean Square Log Ratio of Biomass and Mean F to True Values 

Method TSB SSB FBAR 

HYBRID ·}~ 
1..'...1 20 ?' ~a 

LS 19 14 14 
AC1 20 13 19 
AC2 21 14 20 
AC3 21 20 22 
AC4 24 23 24 
AEFM 26 26 46 
CCPUE 26 28 37 
SURVIV 17 19 19 
XSA 1 7 22 I 

CA6EAN 11 9 28 
ADAPT 
6LM 19 2" i. 30 
COL SIS 
TSERl 34 
TSER2 
SVPA 
CONVEN 

----------------------------------------

119 



Table 3.56: Simulated Data Set 6 : Frequency Distributions of Percentage Deviation of Estimates of N at age from True Values 

HYBRID LS AC1 AC2 :Methd: 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 B 9 10 11 12: 3 4 5 6 7 8 9 10 II 12: 
~-----i------------------------------1------------------------------:------------------------------:------------------------------; 

> 70: 
70 
50 : 

.; 
L 

30 : 3 2 2 
3 

2 
2 1 

2 2 
2 

4 3 
-30 2 4 2 3 2 3 
-50 
-70 

:< -70: 

I I 
l.i 

2 4 9: 4 
.; 
i. 4 

2 1 2 
2 2 1 
5 3 .3 2 1: 
2 3 3 3 4 3 2 5: 

2 3 2 4 1: 

~ 1 3 3 
3 3 2 
3 5 
2 3 

1: 
2 .3 4 

3 3 2: 3 3 2 3 3 3 
3 2 4 2 5 

2 5: f. 3 3 f. I 
1: 

: Methd: AC3 AC4 AEFM CCPUE 

2 

6 

I; 
.!..I 

2 s: 

; ; 
li 

: Age : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 1 0 11 12 : 
;-----1------------------------------]------------------------------:------------------------------:------------------------------: 

> 70: 
70 
50 
30 

: <: 10:: 
-30 

6 2 2 3 2 3 3 4l 
2 2 

1 2 2 2: 
2 3 2 3 3 
1 3 3 3 4 2 4 3 3 1: 

1 3 2: 

4 3 2 3 2 3 3 3: 
2 2 1 1: 

1 3 1 3 2: 
3 1 3 2 2 3 

3 

2 

.; 
i. 

2 2 2 3 3 3 2 1: 4 2 3 3 
·j 
L 3 

.; 
t. 2 ·"'j I ·1 

1...1 L 

1: 
2 2 

3 3: 2 2 
3 1: 4 3 

2 2 
4 ) 2 
2 2 3 6 .3 

'' L1 

-50 1: .; 
L 

7 
._\ 2 2 2: 1 3 3 .) I 

-70 2 2 1: 
:< -70: 

: Methd: SURVIV XSA CAGEAN ADAPT 
: Age : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 1 0 11 12 : 
\-----:------------------------------:------------------------------:------------------------------:------------------------------~ 

) 70: 3 
70 
50 : 2 1 1 
30 : 3 2 1 2 3 4 3 2 2 

: <: 10:: 2 3 5 4 4 3 2 2 4: 3 3 6 
-30 2 3 4 3 2 2 5 3 4 2: 2 2 2 

1 
3 2 1i 
4 3 7: 
3 4 1: 

1 
3 

2 1 
324543 

5 6 5 

1 5: 
8 6 2: 

2 1: 

-50 1 3 4 4 1 4 2 3 : 1: 2 
-70 

:< -70: 

: Methd: GLM COLSIS TSERl TSER2 
: Age : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 b 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 70: 
70 
50 : 2 
30 : 1 1 

-30 
-50 
-70 

:< -70: 

1 3 7 4 2 2 2 2: 
5 4 1 3 6 4 6 4 6 t: 
1 1 2 1 2 6: 

1: 

: Methd: SVPA CONVEN 
: Age : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 
:-----:------------------------------:------------------------------: 

> 70: 
70 
50 : 
30 : 

: <: 10:: 
-30 

: -50 : 
: -70 : 
: < -70: 

120 

1 
1 2 4 1 2 
b 5 3 4 2 
2 2 2 5 2 4 

1 2 2 3 3 



Table ;?.57: Simulated Data Set 6 

Method Age 3 

HYBF:!D 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SUF:VIV 
XSA 

I CAGEAN 
ADAPT 
GLM 
COLSIS 
TSER1 
TSER2 
SVPA 
CONVEN 

11 
1 

-14 
-14 

62 
65 
.,.,. 
f...J 

_·j 
~ 

29 
11 
15 

-1 

Age 4 

15 
.;ry 
•'I 

-8 
-13 

39 
43 
-3 
19 
-7 
9 

13 

7 
.j 

2 

Age 

11 
21 ., 

< 
') 

36 
6 

-5 
-13 

11 
12 

4 

Table 3. 58: Simulated Data Set 6 

Method Age 3 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CA6EAN 
ADAPT 
6LM 
COLSIS 
TSER1 
TSER2 
SYPA 
CONVEN 

30 
16 
26 
27 
76 
78 
76 
29 
51 
28 
40 

37 

Age 4 

43 
33 
23 
30 
57 
62 
56 
40 
26 
20 
26 

30 

17 

Age 5 

29 
25 
18 
20 
49 
52 
37 
19 
19 
18 
18 

20 

16 

Mean Log Ratio of Estimates of N at age to True Values 

I Age 6 

8 
12 

-14 
-14 

36 
37 

-19 
-8 

8 
8 

-5 

-1 

Age 7 

4 
-12 
-13 

29 
29 

-31 
16 

-23 
4 
7 

-7 

-8 

Age 8 

-24 
-26 

31 
31 

-12 
-9 

-25 
4 

10 

-9 

-12 

Age 9 

6 
4 

-17 
-16 

31 

-23 
-17 
-18 

3 
15 

-5 

-19 

Aoe 10 

-6 
-14 
-15 

16 
16 
-5 

-2!) 

-!) 

16 

-49 

Root Mean Square Log Ratio of N at age to True Values 

Age 6 

37 
27 
33 
34 
47 
51 
41) 

34 
32 
15 
12 

28 

19 

Age 7 

30 
16 
20 
23 
45 
48 
57 
36 
30 
14 
12 

24 

16 

Age 8 

29 
22 

33 
53 
52 
75 
36 
33 
16 
18 

25 

23 

Age 9 

29 
18 
24 
24 
53 
49 
43 
25 
23 
16 
""' i.i. 

37 

31 

Age 10 

32 
22 
25 
25 
40 
37 

30 
32 
16 
17 

56 

37 

5 
-5 

-16 
-16 

·~·7 
.Lf 

.-,.,. 
J...:.• 

-32 
-33 

''1 

17 

-29 

-29 

AgE' 11 

31 
21 
31 
31 
74 
67 
31 
42 
45 
i9 
24 

35 

38 

Age 12 

11 
10 

-30 

-3 
-17 
-30 

25 

-54 

Age 12 

56 
70 
54 
59 
62 
72 
43 
19 

63 

121 



Table 3.59: Sltl!ulated Data Set 6 : Frequency Distributions of Percentage Deviation of Estimates of Fat age from True Values 

: Methd: HYBRID LS AC1 AC2 
:Age: 3 4 56 7 8 9101112:3 4 56 7 8 9101112:3 4 56 7 8 9101112:3 4 56 7 8 9101112: 
:-----:------------------------------:------------------------~-----:------------------------------:------------------------------: 

70l 
70 

30 ; 

-30 
-5(1 
-7(1 

:< -70: 

'i 
;_ 

2 

2 .; 
L 

i 
2 4 2 

·i ·i 
L i.. 

2 

2 3 
2 .3 

2 .i.. 
.; 

1.. £.. 

1: 

.-,I 
i.! 

1: 1 2 1: 
1 2 3 1 3 

4 2 2 2 4 2 2 1: 
3: 3 7 3 4 
1~ 

1: 2 
1: 

4 
3 2 
2 2 2 4 3l 

1: 

1 
2 2 2 
7 7 
·J ·~' 

7 
.) 

2 3 
2 

3 

7 
·J 

7 . .) 

2 5 

,, 
"' 

'1 ·i I 
i.. i.l 
..... ·1 
i. .... 

2 2 11 
1 3 3 2: 
3 2 3 2: 

3 3 1'1 ._:, 

4 ·j ·i i 
k i. I 

2 2 2 2 1 2 2 
3 2 4 2 2 1: 

7 

·-' 
2 

2 4 2 
1 

2 3 2: 
3 3 2: 

: Methd: AC3 AC4 AEFM CCPUE 
: Age : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

> 70: 
71) 

50 
30 

: <i 101 : 
-30 
-50 
-70 

:Methd: 

2 
2 
7 
.) 

. ., 
~ 

3 2 2 2 2 2 
3 2 2 2 2 
< ·J 

SURVIV 

1: 

1 1 2: 
.3 5 3: 
2 3: 

2 2 2 1: 

7 
._1 

1 
4 2 1 3 2 2 2: 
2 4 4 3 2 2 2 4: 

7 
·-· 2 1 

2 2 2 3 3 2 2 2 1[ 
4 

XSA 

2 2 5 3 4 2 2 

2 1 2 
2 2 3 
2 3 2 

2 

. ., 
~ 

2 4 
2 3 2 

CAGEAN 

1: 2 2 2 

1: 2 3 
2 3 2 2 
2 3 2 

4 1: 2 3 2 
3 4 

1 1 i: 
2 3 2 2 2: 

2 2 3 3 3 
2: 3 

ADAPT 

71 
.) ! 

: Aqe : 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 
:-----:------------------------------:------------------------------:------------------------------:------------------------------: 

70[ 
70 

30 
: <: 10; : 

-30 
-:.o 
-70 

:< -70: 

:Methd: 
: Aqe : 

3 
2 2 
2 

·1 

" 

7 
·) 

2 2 2 2 2 3: 
4 2 3 1 1: 

3 3 

.; 
£ 

6LM 

7 71 
..) .. )! 

2 2 t: 
2 2 3 t: 

1 3 t: 
2 2 

2 

2 2 2 2 2 
2 7 2 5 4 3 

6 2 4 3 2 

COL SIS 

1: 
3: 

3 4: 

3 4 5 6 7 8 9 10 11 12: 3 4 5 6 7 8 9 10 11 12: 

3 3 3 1 
7 6 6 

1 3 
5 7 4 

.,, 
kl 

5 2 
4 

3 3 2 3 s a: 
1 2 

TSER1 TSER2 
3 4 s 6 7 s 9 10 11 12: 3 4 5 6 7 a q 10 11 12: 

:------------------------------:------------------------------~------------------------------:------------------------------: 
;. 70: 

70 
50 
30 

: <.: 10:: 
-31) 
-50 
-70 

~ < .w 70: 

2 
2 

1 3 3 2 3 3 3 
1 4 5 3 3 3 2 
2 2 1 2 2 

ry 

" 

4: 

3: 
2 1: 
3 
4 t: 
1 1: 

:Met hd : SVPA CONVEN 
: Age : 3 4 5 6 7 8 9 10 11 12 : 3 4 5 6 7 8 9 10 11 12 : 
:-----:------------------------------:------------------------------: 

> 70: 
70 
50 : 
30 : 

<: 10: : 
-30 

-70 : 
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2 

7 6 7 
2 2 

1 
1 
1 

4 4 4 
3 3 3 
2 1 

2 

2 
5 

4 1 
1 



Table 3.60, Simulated Data Set 6 

Method 

HYBRID 
I t t" 

L·J 

AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 

I SURVliJ 
XSA 
CAGEAN 
ADAPT 
GLM 
COL SIS 
TSERl 
TSER2 
SVPA 
CONVEN 

Age ,, 

-39 
-30 
-15 
-15 
-93 
-93 
1' 

-27 
-58 
-39 
-62 

-39 

Age 4 

-10 
-24 

14 
20 

-37 
-41 

11 
-14 

14 

-18 

-9 

-4 

~ge 

-14 
-25 
-3 
-4 

-38 
-41 
-J 

4 
13 

-15 
-19 

-4 

7 
·-' 

Mean Log Ratio of Estimates of F at age to True Values 

Age 6 

-4 
-9 

23 
-36 
-36 

29 
15 
32 
-5 

-12 

-1 

8 

Age 7 

-2 
-5 
14 
16 

-33 
-33 

43 
-18 

28 
-6 

-27 

0 

9 

Age 8 

-3 
31 
33 

-34 
-35 

24 
13 
31 
-5 

-34 

6 

15 

Age 9 

-11 
-8 
17 
17 

-40 
-41 

.-,c 
L·) 

18 
19 
-8 _.,,. 
.1..·-' 

-7 

Age 10 

7 
8 

-29 
-28 
-1 
13 
21 

-12 
-24 

52 

18 

Age 11 

'i7 
1..·-' 

-17 
4 

-51 
-1 
24 
1 ~I 

-20 
-:,a 

-12 

Table3.61 : Simulated Data Set 6 : Root Mean Square Log Ratio of F at age to True Values 

Method 

HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CAGEAN 
ADAPT 
GLM 
COLSIS 
TSER1 
TSER2 
SVPA 
CONVEN 

Age 

51 
48 
58 
58 

102 
102 

86 
41 
89 
55 
67 

51 

7 
·) 

46 
33 
7~ 
.jf. 

39 
57 
6.3 
69 
38 
31 
21 
24 

25 

17 

Age 5 

36 
33 
28 
30 
53 
57 
46 
28 
23 
26 
22 

23 

14 

Age 

40 
29 
45 
48 
47 
52 
55 
46 
41 
20 
16 

28 

20 

6 Age 7 

35 
21 
28 
32 
50 
54 
75 
39 
42 
20 
31 

26 

18 

Age 8 

37 
31 
42 
44 
61 
60 

100 
50 
43 
24 
38 

30 

29 

Age 9 

24 
25 
36 
39 
53 
54 
46 
46 
43 
36 
27 

38 

28 

Age 10 

36 
25 
29 
29 
51 
50 
73 
36 
33 
26 
28 

64 

31 

Age 11 

63 

56 
57 
78 
74 
52 
71 
65 
58 
59 

25 

30 

Age 12 

-10 
-8 
25 
.-,"7 
f.. I 

-29 
-28 

26 
36 

-44 

35 

Age 12 

69 
51 
43 
46 
44 
42 
53 
76 
47 
30 
45 

56 
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Table3.62 : Simulated Data Set 6 
Total Biomass from True Values 

Frequency Distributions of Percentage Deviations of Estimates of 

IMethdlHYBRIILS lACl IAC2 IAC3 lAC4 IAEFM lCCPUElSURV!lXSA ICAGEAlADAPTIGLM ICOLS!lTSER1:TSER2:SVPA :CONVEI 

70: 4 
,,., 
l'-.1 

50 7 ., 
·.i k 

30 L 
r :' I to: I 7 2 7 7 "I i\ I I ._1 L 

-30 ·1 ·j 
f. L .<. 

-50 
-70 

I ,. -70: 
' 

Table3.63 : Simulated Data Set 6 
Spawning Biomass from True Values 

7 
._\ 

·-:· 

·l 
~ 

2 •l < 
.) 

·l 4 6 2 8 7 7 
.<. ._\ . .) 

1 7 
2 

Frequency Distributions of Percentage Deviations of Estimates of 

: Methd: HYBRI:LS :ACt iAC2 lAC3 iAC4 lAEFM lCCPUEiSURV!lXSA lCAGEAiADAPTlGLM :COLS!iTSER11TSER21SVPA :CONVE: 

70: 2 
70 
50 3 '1 

.<. 

30 5 3 
~ <: 10: l "' 4 5 5 ·1 

" .<. 

-30 4 4 
-~,1) 

-70 
I_. 
1\, -70: 

Table 3.64: Simulated Data Set 6 
Mean F (Ages 5-9) from True Values 

iMethd:HYBRI:LS :AC1 iAC2 iAC3 

70: 
70 '1 

J. 

50 ·1 1 2 L 

30 2 2 2 ·1 
L 

:< : 10: : 1 'l 4 4 L 

-30 3 4 3 
-50 '1 

L. 4 
-70 

l/ -70: f\ 

2 

·1 'l " '- .<. L 

3 2 4 
2 7 8 4 2 
4 " 9 6 L 

2 1 

Frequency Distributions of Percentage Deviations of Estimates of 

iAC4 iAEFM iCCPUEiSURYllXSA iCAGEAlADAPTi8LM iCOLSiiTSER1iTSER2lSYPA :CONYEl 

4 3 "' L 

2 ·i 
L 

1 i.. 

4 3 4 
2 5 3 5 ·1 4 J. 

4 4 7 
3 ~ . .) 



Table 3· 65: Simulated Data Set 6 Mean Log Ratio of Estimates of Biomass and Mean F to True Values 

Method TSB SSB FBAR 

HYBRID 11 8 -8 
LS ,.., 

8 -4 H 

AC1 -10 -13 19 
AC2 1" - i. -14 20 
AC3 41 33 -36 
AC4 43 34 -34 
AEFM ., -10 <·i L ·.H .. 

CCPUE 4 -1 18 ~ 

SURVIIJ -13 ,.., .,., 
~k f..! 

XSA 6 4 -6 
CAGEAN 15 15 77 -. .).~\ 

ADAPT 
GLM -2 -8 11 
COL SIS 
TSER1 17 
TSER2 
SIJPA 
CONIJEN 

Table 3.66: Simulated Data Set 6 Root Mean Square Log Ratio of Biomass and Mean F to True Values 

Method TSB SSB FBAR 

HYBRID 30 28 2'i 
LS 19 15 19 
AC1 18 18 30 
AC2 19 19 ~, 

.}~ 

AC3 52 47 51 
AC4 53 47 48 
AEFM 47 38 57 
CCPUE 17 16 39 
SURVIV 17 24 37 
XSA 12 7 22 
CAGE AN 20 18 34 
ADAPT 
6LM 24 23 29 
COLSIS 
TSERl 25 
TSER2 
SVPA 
CONVEN 
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Table 4.1: Ran king of Methods - Data Sets 5 and 6 

Ranking on MLR(Mean F) Ranking on MLR(SSB) 
Set c Set 6 Set 5 Set 6 "' 

Rank Method MLR Method MLR Rank Method MLR Method MLR 
1 CCPUE 0 LS -4 1 AC1 0 CCPUE -2 
·j LS XSA -6 ·i AC2 ;;, .... (\ 4 ~ ~ A;JH ., AC1 7 HYB -8 .) AEFM -3 LS 8 "' 
4 AC2 7 GLM 11 4 CCPUE 4 HYBRID 8 
5 HYBRID 9 TSER1 1 ~ _I 5 XSA -4 GLM 8 
6 AC4 -11 CCP!JE 18 6 CAGEAN 4 AEFM -10 
7 TSER1 12 ACl 19 7 HYBRID AC1 -13 
8 AC3 -14 AC2 20 8 LS 6 AC2 -14 
9 SURVIV 17 SURVIV 27 9 AC3 11 CAGE AN 15 

11) XSA 18 AEFM 7'"'1 10 AC4 14 SURYIY -22 Ji.. 

11 GLM 24 CA6EAN .,.., 
11 SURVIV -16 AC3 .33 .;,t.J 

12 CAGEAN -27 AC4 34 11 ~ GLM -17 AC4 34 
13 AEFM 35 AC3 36 ·) TSERl TSER1 

') ADAPT ADAPT i ·) ADAPT ADAPT 
? COL SIS COLS!S ') COLSIS COL SIS 
'J TSER2 TSER2 'j TSER2 TSER2 
'1 SVPA SVPA ·j SVPA S'·!PA 
? CONVEN CONYEN J CONVEN CONVEN 

Ranking on RMS(Mean F) Ranking on RMS(SSBi 
Set 5 Set 6 Set 5 Set 6 

Rank Method RMS Method RMS Rank Method RMS Method F:MS 
1 LS 14 LS 19 1 XSA 7 XSA 7 
'l SURVIV 19 XSA ·"";") '" CAGE AN 9 LS 15 ~ L~ i. 

3 AC1 19 TSER1 25 ~ AC1 13 CCPUE 16 ·-' 
4 AC2 20 HYBRID 29 4 LS 14 CASE AN 18 
5 AC3 22 GLM 29 5 AC2 14 AC1 18 
6 XSA ·j·j AC1 30 6 SURVIV 19 AC2 19 Li.. 

7 AC4 24 AC2 7•1 
·~''- 7 AC3 20 GLM '1"7 

L·) 

8 HYBRID 26 CAGEAN 34 8 HYBRID 20 SURYIV 24 
9 CAGE AN 28 SURVIV 37 9 GLM ·)·j HYBRID 28 i..L 

10 6LM 30 CCPUE 39 10 AC4 23 AEFM 38 
11 TSER1 34 AC4 48 11 AEFM 26 AC3 47 
12 CCPUE 37 AC3 51 12 CCPUE 28 AC4 47 
13 AEFM 46 AEFM 57 ·j TSERl TSER1 
? ADAPT 

* 
ADAPT ? ADAPT ADAPT 

? COL SIS • COLSIS •J COLSIS COLSIS 
? TSER2 

* 
TSER2 ·J TSER2 TSER2 

'i SVPA SVPA '! SYPA SVPA 
? CONVEN CONVEN ? CONVEN CONVEN 
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Table4. 2 Simulated Data Set 1 

MLR and RMS of Mean F for each Method 

100tMLR 

iOOiRMS: (1-o 10-19 : 20-29 : 30-39 : 40-49 : >50 
--------t--------:--------1--------:--------:--------:--------: 

i)-9 I l_S 

AC1 
AC2 
AC3 
AC4 
CCPUE 
SURVIV 
CAGEAN 

I ADAPT 
GLM 

:-------\--------\--------\--------:--------:--------:--------: 
10-19 HYBRID 

AEFM 
:-------:--------:--------:--------:--------:--------:--------: 
: 20-29 : 
:-------l--------:--------1--------:--------:--------:--------: 
: 30-39 : 
:-------:--------:--------:--------:--------:--------:--------: 
: 40-49 : : SVPA 
i-------:--------:--------1--------:--------:--------:--------: 
: >=50 : CONVEN : : XSA 

Not included : COLSJS : TSER1 : TSER2 

Table4.3 Simulated Data Set 1 

MLR and RMS of SSB for each Method 

100iRMS: 0-9 10-19 : 20-29 : 30-39 : 40-49 : )50 
--------:--------~--------:--------:--------:--------~--------: 

0-9 HYBRID 
LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
CASE AN 
ADAPT 
6LM 

:-------:--------:--------:--------:--------:--------:--------: 
: 10-19 : 
!-------:--------:--------:--------:--------:--------:--------: 
: 20-29 : 
:-------:--------:--------:--------:--------:--------:--------: 
: 30-39 : : XSA 
\-------~--------1--------~--------:--------:--------;--------! 

: 40-49 : : SVPA 
:-------:--------:--------:--------:--------:--------:--------: 

>=50 : : CDNVEN : 

Not included : COLSIS : TSER1 : TSER2 
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Table 4.4 Simulated Data Set 2 

MLR and RMS of Mean F for each Method 

lOOiRMS: 0-9 10-19 : 20-29 i 30-39 : 40-49 : >50 
--------l--------1--------:--------!--------:--------l--------: 

0-9 LS 
AC1 
AC2 
AC3 
AC4 
CA6EAN 

:-------:--------:--------:--------:--------:--------:--------: 
10-19 HYBRID 

AEFM 
CCPUE 
SURVIV 
XSA 

:-------:--------:--------:--------:--------:--------:--------: 
: 20-29 : : 6LM : CDNVEN : 
:-------:--------:--------:--------:--------:--------:--------: 
: 30-39 : : ADAPT 
:-------:--------:--------:--------:--------:--------:--------: 
: 40-49 : : SVPA 
:-------:--------:--------:--------:--------:--------:--------: 

>=50 : 

Not included : COLSIS : TSER1 : TSER2 

Table 4.5 Simulated Data Set 2 

MLR and RMS of SSB for each Method 

lOOiMLR 

lOOlRMS: 0-9 10-19 : 20-29 : 30-39 : 40-49 : .>50 
--------:~-------:--------:--------:--------:--------:----~---: 

0-9 HYBRID 
LS 
AC! 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
XSA 
CASE AN 
SLM ADAPT 

:-------:--------:--------:--------:--------:--------:--------: 
: 10-19 : 
:-------:--------:--------:--------:--------:--------:--------: 
: 20-29 : : CONVEN : 
:-------:--------:--------:--------:--------:--------:--------: 
: 30-39 : : SVPA 
l-------:--------1--------:--------:--------:--------l--------: 
: 40-49 : 
:-------:--------:--------:--------:--------:--------:--------: 

>=50 : 

Not included : COLSIS : TSER1 : TSER2 



Table 4.6 Simulated Data Set 

MLR and RMS of Mean F for each Method 

100JMLR 

1 O!HRMS: 0-9 10-19 : 20-29 : 30-39 : 40-49 : >50 
--------:--------:--------:--------:--------:--------~--------: 

0-9 CAGEAN 
SVPA 

:-------:--------:--------:--------:--------:--------~--------~ 
10-19 LS ACl 

AC3 AC2 
AC4 CONVEN 
AEFM 
CCF'UE 
SURVIV 
6LM 

:-------1--------:--------:--------:--------r--------:--------: 
20-29 HYBRID 

XSA 
ADAPT 

:-------~--------:--------:--------:--------:--------:--------: 
: 30-39 : 
:-------1--------:--------:--------:--------:--------:--------: 
: 40-49 : 
:-------:--------:--------:--------:--------:--------:--------: 

>=50 : 

Not included : COLSIS : TSERl : TSER2 

Table 4. 7 Simulated Data Set 3 

MLR and RMS of SSB for each Method 

10-19 : 20-29 : 30-39 : 40-49 : >50 
--------:--------:--------:--------:--------:--------:--------: 

0-9 LS 
AC1 
AC2 
AC3 
AC4 
AEFM 
SURVIV 
XSA 
CASEAN 
SLM 
SVPA 
CONVEN 

:-------:--------:--------:--------:--------:--------:--------: 
10-19 HYBRID 

CCPUE 
ADAPT 

:-------:--------:--------:--------:--------:--------:--------: 
: 20-29 : 
:-------:--------:--------:--------:--------:--------:--------: 
: 30-39 : 
:-------:--------:--------:--------:--------1--------i--------: 
: 40-49 : 
:-------:--------:--------:--------:--------:--------:--------: 

>=50 : 

Not inciuded : COLSIS : TSER1 : TSER2 
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Table 4.8 Simulated Data Set 4 

MLR and RMS of Mean F for each Method 

100ii1LR 

10-19 : 20-29 : 30-39 : 40-49 : >50 
--------:--------:--------:--------:--------:--------:--------: 

I 
, I 

0-9 I HYBRID 
ACl 

I AC2 
AC4 

:-------:--------:--------:--------:--------:--------:--------: 
10-19 AC3 LS 

AEFM SURVIV 
CCPUE GU1 

CONVEN 
:-------:--------:--------~--------:--------:--------:--------: 

20-29 XSA 
SVPA 

:-------:--------:--------:--------:--------:--------:--------: 
: 30-39 : 
:-------:--------:--------:--------:--------:--------:--------: 
: 40-49 : 
:-------:--------:--------:--------:--------i--------:--------: 

>=50 : : CAGEAN : 

Not included : COLSIS : TSERl : TSER2 

Table 4.9 Simulated Data Set 4 

MLR and RMS of SSB for each Method 

lOOiMLR 

10-19 : 20-29 : 30-39 : 40-49 : >50 
--------:--------:--------:--------:--------:--------:--------: 

1)-9 HYBRID 
AC1 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURVIV 
6LM 

:-------:--------:--------:--------:--------:-------- --------
10-19 XSA LS 

CONVEN 
:-------:--------:--------:--------:--------:-------- --------: 
: 20-29 : : SVPA 
:-------:--------l--------:--------:--------:--------1--------: 
: 30-39 : 
:-------:--·------:--------:--------:--------:--------:--------: 
: 40-49 : : CAGEAN : 
:-------:--------:--------:--------:--------:--------:--------: 

>=50 : 

Not included : COLSIS : TSERl : TSER2 



Table 4.10 Simulated Data Set 5 

MLR and RMS of Mean F for each Method 

100H1LR 

100!HMSl 0-9 10-19 : 20-29 : 30-39 : 40-49 : >50 
--------:--------:--------:--------:--------:--------:--------: 

(!-9 
:-------:--------:--------:--------:--------:--------:--------: 

10-19 LS SURVIV 
AC1 

:-------~--------:--------:--------:--------:--------:--------: 
20-29 HYBRID 

AC2 
AC3 
AC4 
XSA 

I CAGEAN 

:-------:--------:--------:--------:--------:--------;--------; 
l 30-39 : CCPUE : TSERl l 6LM 
:-------:--------:--------:--------:--------:--------~--------: 
: 40-49 : l AEFM 
:-------:--------:--------:--------:--------:--------:--------: 

>=50 : 

Not included : COLSIS : ADAPT : TSER2 : SVPA : CONVEN 

Table 4.11 Simulated Data Set 5 

MLR and RMS of SSB for each Method 

lOOiMLR 

100tRMS: 0-9 10-19 : 20-29 : 30-39 : 40-49 : 
--------:--------:--------:--------:--------:--------:--------; 

0-9 XSA 
CAGE AN 

:-------:--------:--------:--------:--------:--------:--------: 
10-19 LS 

ACl 
~C2 

SURVIV 
:-------:--------:--------:--------:--------:--------:--------: 

20-29 HYBRID 
AEFM 
CCPUE 

AC3 
AC4 
SLM 

:-------:--------:--------:--------:--------:--------:--------: 
: 30-39 : 
:-------:--------:--------:--------:--------:--------:--------: 
: 40-49 : 
:-------:--------:--------:--------:--------:--------:--------: 

>=50 : 

Not included : COLSIS : ADAPT : TSERl : TSER2 : SYPA : CONVEN 
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Table 4.12: Simulated Data Set 6 

MLR and RMS of Mean F for each Method 

lOOlMLR 

lOO~RMS: 0-9 10-19 : 20-29 : 30-39 : 40-49 : >50 
--------:--------:--------:--------:--------:--------:--------: 

0-9 
1 _______ 1 ________ 1 ________ , ________ , ________ 1 ________ ; ________ 1 
I I ' I ! l ' I 

: 10-19 : LS 
:-------:--------:--------:--------:--------:--------:--------: 

20-29 HYBRID 
XSA 
GLM 

~-------:--------:--------:--------~--------:--------:--------l 
30-39 AC1 

CCPUE 
TSER1 

AC2 CAGEAN 
SURVIV 

:-------:--------:--------:--------:--------:--------:--------: 
: 40-49 : : AC4 
:-------:--------:--------:--------:--------:----~---:--------1 

>=50 : : AEFM : AC3 

Not included : COLSIS : ADAPT : TSER2 : SVPA : CONVEN 

Table 4.l3: Simulated Data Set 6 

MLR and RMS of SSB for each Method 

lOOiMLR 

lOOiRMSI 0-9 10-19 I 20-29 : 30-39 I 40-49 : >50 
--------l--------l--------l--------:--------:--------:--------1 

0-9 : XSA 
:-------:--------:--------:--------:--------:--------:--------: 

10-19 LS 
CCPUE 

AC1 
AC2 
CAGE AN 

:-------:--------:--------:--------:--------:--------:--------: 
20-29 HYBRID 

I 6LM 
SURVIV 

:-------:--------1--------:--------:--------:--------:--------: 
: 30-39 : : AEFM 
:-------:--------:--------:--------:--------~--------:--------: 

40-49 AC3 
: AC4 

:-------:--------:--------:--------:--------:--------:--------: 
>=50 : 

Not included : COLSIS : ADAPT : TSER1 : TSER2 : SVPA : CONVEN 



Table 4.14: Reai Data Set : HADDOCK in North '3ea 

No estimates available for XSA, ADAPT! GLM, TSER1, TSER2, SVPA~ CONVEN 

Estimates of Number at Age in 1q86 

Age 
Method 2 3 4 5 6 

HYBR lD 
LS 
ACt 
AC2 
AC3 
AC4 
AEFM 
CCPUE 
SURV i'J 

411i95 3444 
40148 3602 
17638 3726 

4~3 525 
448 513 
391 46'1 

39 
40 
36 

17683 3733 380 4~5 33 
855t8 4346 
86'127 4346 
7660t 4874 
51HB2 3820 
5584 2290 

460 
452 
466 
432 
338 

524 
481 
514 
537 
405 

41 
39 
40 
38 

13 2 
15 
14 
14 3 
14 
14 
14 

19 

2 
·1 .. 
2 
2 
4 

4 
4 

4 
4 

3 

8 9 10 

0 
0 
0 

CAGEAN na 6989 739 777 50 18 J 6 na na na 
COLSIS na 1924 249 202 39 * * * * * * 

W6(88l 36956 2959 485 39 16 4 0 0 

Estimates of F at Age in 1986 

Age 
Method 0 2 4 5 6 7 8 9 10 

HYBRID 
LS 
ACt 
AC2 
AC3 
AC4 
AEFI'I 
CCPUE 
SURVIV 
CAGE AN 

3 99 
3 94 
8 91 
8 91 
2 78 
2 78 
2 69 
3 89 

24 151 
na 94 

735 1136 1457 1402 1055 757 428 496 
635 1184 1283 1105 887 734 503 748 
768 1408 1682 1187 740 765 300 553 
801 2013 2208 1219 597 753 257 557 
612 1139 1283 1181 920 681 353 242 
628 1341 1418 1256 1031 661 331 212 
602 1182 1331 1183 1057 993 960 865 
667 1090 1441 1365 1091 912 959 864 
959 2007 2529 757 411 1280 1280 1280 
456 998 529 527 526 526 na na 

COLSIS na 181 1710 * 1425 * * 

485 
871 
534 
522 
425 
402 
865 
864 

1280 
na 

* 
WGl88) 4 115 1033 1305 1493 1053 820 722 767 971 971 

* indicates that catch bigger than estimated number in sea 

Estimates of Total and Spawning Biomass and !'lean F (ages 2-6) in 1986 

Method TSB SSB Mean F 

HYBRID 1803 223 1156 
LS 1808 226 849 
AC1 787 208 1157 
AC2 758 188 1368 
AC3 905 232 1027 
AC4 885 218 1134 
AEFM 964 227 1071 
CCPUE 1047 228 1131 
SURVIV 570 184 1160 
CAGEAN 1410 337 607 
COLSIS 402 99 na 

W6(88l 682 207 1141 
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1able 4.15: Real ~ata Set : CDD in North Sea 

No estimates available fer XSA, ADAPT, GLM, TSERI, TSER2, SVPA, CONVEN 

Estimates of Number at Age 1n 1986 

Method 
Age 

2 3 4 5 6 8 '1 10 11 

HYBRID 732 JJ 48 6 4 ~ ~ ~ 0 
1 .-. 

c.:J 

AC1 
H\.,L 

AC3 
AC4 
AEFM 
CCPUE 
'3UWil\J 

736 35 54 
666 31 50 8 
657 30 52 7 
924 36 50 7 

i~10 37 52 7 
1029 38 55 7 
6i5 33 53 
595 28 58 

6 
7 

r: 
J 

5 

5 

3 
CAGEAN 1271 50 54 6 4 
COL SIS na 23 121 18 15 

WG(88i 581 37 52 8 5 

6 

i 
1 

5 

~. ~ ~ 0 

0 0 0 0 
0 0 ~ 0 
~ 0 0 0 
a a ~ ~ 

~ 0 0 0 
~ ii ~ ii 
0 \1 0 0 

na na na na 
3 3 

Estimates of F at Age + 1100 in 1986 

Method 

HYBRID 
LS 
AC! 
AC2 
AC3 
AC4 
AEFM 

., 
'- 3 4 

167 1184 1098 1176 
154 1165 894 !025 
184 1325 1014 739 
188 !496 967 848 
130 1063 1030 851 
\ 1 Q 
11U 990 

966 
971 
881 

888 
933 

Age 
5 6 7 8 9 10 11 

1003 1353 1926 1801 1222 1409 3672 
850 1132 1840 1341 930 938 1066 
800 777 873 804 819 790 1009 

1541 1084 2746 1368 1147 1417 1571 
823 903 883 1024 970 1039 2035 
902 m5 1161 
821 1107 881 

1154 1026 
937 869 

1165 2347 
613 609 

CCPUE 201 1192 930 1042 841 1217 1481 1081 714 611 606 
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CCPUE METHOD, DATA 4 
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Figure 4.9 
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CONVENTIONAL VPA, DATA 4 
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Figure 4.17 
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AC3 TUNING METHOD, DATA 6 
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Figure 4.21 

CCPUE TUNING METHOD, DATA 6 
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Final extended survivor estimate (XSA) was not computed. 
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SEPARABLE VPA, DATA 6 
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ANNEX 1 

Six data sets were produced either before or during the meeting, 
and a description of the type of data generated is provided in 
Section 3.1. Assessment methods were applied to these data to 
estimate the "true'' values of the parameters used to generate the 
data. Comparison of estimate with truth was used to judge the 
viability of the methods. 

Because of the very large number of tables involved, reproduction 
of the true values in this report is not possible. Copies of the 
true parameter values can be obtained on IBM-formatted disk from 
D.W. Armstrong or G. Stefansson at the addresses cited in Section 
3. 1 . 

2 UNDERLYIN_g__(_N_ON-STOCHASTlli._ MODEL 

The underlying model is the conventional fisheries model. If 
there were no errors involved, the following equations would hold 
t.rue: 

Let a = age (3-12) 
y = year (30 years: 1953-1982) 
f = fleet ( 7 fleets: 2 trawlers, 1 liner, 1 fixed net, and 

3 research vessels) 
c = catch in numbers 
F = fishing mortalit.y rate 
M = natural mortality rate 
N = stock size in numbers 

Catches 

F(a,y,f){1-exp[Z(a,y)]}[N(a,y)] 
C(a,y,f) = 

Z(a,y) 

where F(a,y,f) is the mortality induced by fleet f and 

Z(a,y) = total mortality rate = [F(a,y,f) + M(a) 
f 

N(a+1,y+1) = N(a,y)exp[-Z(a,y)] 

The fishing mort.ali t.y .rate for each fleet is assumed t.o fol1 ow 
the separable model, so that 
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F(a,y,f) = F(A,y,f)S(a,f) 

for some overall level of F(A,y,f). For convenience, we take se­
lection to be 1 at the maximum, or equivalently, 

F(A,y,f) =max F(a,y,f) 

(For Data Set 6, we violated the assumption of separability for 
the commercial fleets. A detailed descriptJon of how this was 
done is provided in Section 3.1.) 

The effort data for each fleet are related to fishing mortality 
in some simple fashion. 

To simulate fleets in which catchability changes, we write 

lnE(y,f) = c(f) + d(f)y + ln[F(A,y,f)] 

To simulate a fleet which exhibits no change in catchability, we 
set d(f)y = 0 and hence 

lnE(y,f) - c(f) + ln[F(A,y,f)] 

(For Data Set 6, we altered the model relating effort and fishing 
mortality to the follwing form: 

E(y,f) = F(A,y,f)[c(f) + d(f)y] 

This corresponds to a trend in catchability described by the 
function 

1/[c(f) + d(f)] 

the convexity of which is opposite to the exponential funtion as­
sumed in all other data sets.) 

We refer to the above as the UNDERLYING model and, in particular, 
we refer to values of F(a,y,f) as the underlying (nonstochastic) 
fishing mortalities. 

This underlying model is assumed for all fleets inclttding re­
search vessels. 

3 gTOhHbSTIC bDDITION~ 

£recess error of fishing mo.rt.ali ty r_£! t~~_;real ized. values of f-1... 
N, and C 

We introduce errors directly into the fishing mortalities. 

lnF' (a,y,f) = lnF(a,y,f) + e(1,a,y,f) 

This is equivalent t.o saying t.hat a fleet has "decided" to induce 
a given level of fishing effort, but the target value has not 
been achieved due to random variations in weather and other 
factors. 
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For convPnience, we have taken the errors e(1,a,y 1 f) from a 
mal. distribution (with different variances for different 
sets and fleets). These errors are termed the PROCESS ERROR 
variance v(1,a,f). 

nor-­
data 
with 

The values F 1 (a 1 y,f) are those which the fleet actually induces 
and are termed the REALIZED fishing mortalities. 

The realized total mortality rate is, therefore 

Z 1 (a,y) = l:F' (f,a,y) + M(a) 
f 

The corresponding reali~ed stock sizes are given by 

N 1 (a+1 1 y+1) = N 1 (a,y)exp[--Z 1 (a 1 y)] 

The associated realized catches are given by 

F 1 (a I y I f) { 1 -- exp [ -· Z 1 (a, y) ] } N' (a 1 y) 
c 1 (a f y I f) ·- ··--------------------·-----

Z 1 (a 1 y) 

Note that an assessment method attempts to estimate the realized 
values (or some subset of them). It is the realized values that 
are, ·therefore 1 referred ·to as "truth" in t.he main body of this 
rc;port. 

The realized catches C 1 (a,y 1 f) are the quantities which are actu­
ally landed. These catches are sampled to produce ESTIMATED 
catches which incorporate MEASUREMENT ERRORS. 

lnC(Ca,y) = lnCI (f 1 aly) + e(2 1 a 1 y 1 f) 

The measurement error e(2 1 a,y,f) is assumed to follow a normal 
distribution with variance v(2,a,f) for Data Sets 1-4. For Data 
Sets 5 and 6 1 a gamma distributi.on parameterized to have a mean 
of 1 and a coefficient of variation between 0 and 1 was used to 
generate measurement errors in catch at age and process errors in 
the fishing mortalities. 

r·t J.::> 

wi11 be~ 
thJ.!C) I 

effor·t: 

unlikely, i.n reality, that effort data are exact. Errors 
1ncorporated as effort data are collected. To simulate 

a ::;tocha~31~i.c element i;.5 added to thr:! .relationship bet:ween 
and overall. fishing mortality to produce the ESTIMATED 

etfort data .. 

lnE(y 1 f) ~ c(f) + d(f)y + lnF(A,y,f) + e(3 1 y 1 f) 

For all data sets, the effort errors e(3 1 y,f) are drawn from a 
normal distribution with variance v(3,f) and are different for 
each fleet. This procedure was applied to all of the data sets. 



(i) Random number generation was carried out using the 
Tausworthe shift-register generator. 

( i.i.) Normal errors were generated using the Box--Muf.~ller trans­
form. 

(iii) Gamma-distributed errors were generated by encoding an al­
gorithm due to Knuth. 

(iv) The program for simulating data sets can optionally gener­
ate log-normal or gamma-distributed errors and can include 
linear or exponential trends in effort. 

5 GENERAL NOTES_ 

(i) Changes in catchability are modelled by introducing a bias 
in the fishing effort data. 

(ii) The estimated effort data are generated from the underly­
ing fishing mortalities not from the realized fishing mor­
·t.ali ties. 

(iii) After analysis of Data Sets 1-4, it was found that the 
variances v(1,a,f) and v(2,a,f) included in the simula­
tions were far too small for the research vessels. Caution 
is, therefore, required in interpreting the results from 
these data sets since many of the methods will perform 
better than they would on more realistic data. 

(iv) For simulated Data Sets 1-4, the variance v(3,f) for re­
search vessels was set at zero. Some higher value should 
have been used to allow simulation of the fact that re­
search vessel catchabilities vary considerably from year 
to year. 

(v) The model described above is used for all fleets including 
the research vessels. Differences between fleets are cre­
ated by the choice of underlying fishing mortality rate, 
variances associated with the error terms, and the choice 
of changes in catchabilities reflected in c(f) and d(f)y. 
Stock numbers at the youngest age and for each age in the 
first simulated year were based on data for Icelandic cod 
and were not generated by a simulation process. 

6 QVERVIEW OF THE CHARACTERISTICS OF D.,ATA SET_s_j_--6 

.PrQcetJ .. :'2. error and mea~mrement error - general comments 

An analysis of variance of log-catch data for North Sea and Ice­
landic cod indicated that the effects of process errors and mea­
surement errors are almost additive into log-catch. However, no 
information is available on the degree to which the variance in 
log-catch is divisible between the two types of error. For this 
reason, the relative dimension of process and measurement error 
in each data set is arbitrary. 
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Process and measurement errors were given the highest values for 
the youngest and the oldest age groups. 

No bias in effort data [i.e., no trends in catchability, d(f)=O]. 
The level of the underlying fishing mortality rates for all 
fleets combined is about 0.4. Process error equal to measurement 
error. No effort error for research vessels. 

No bias in effort data for any fleet. Overall level of underly­
ing fishing mortality is about 1 .0. Process error = 0.5 x mea­
surement error. No effort error for research vessels. 

Bias in effort data for two 
level of underlying fishing 
steadily increasing trend. 

of the commercial fleets. 
mortality about 0.4, but 

Overall 
with a 

Bias in effort data for all fleets. Overall level of underlying F 
about 0.8 in early years to about 1.2 in the last data year. No 
measurement error, only process error. 

Same underlying structure as Data Set 3, but process error on 
fishing mortalities and measurement error on catch at age derived 
from gamma distribution rather than log-normal distribution. Log­
normal distribution retained for effort errors. Higher levels of 
noise used than in Data Sets 1-4. Catch measurement error coef­
ficients of variation range from 14-70%, with higher values on 
the youngest and oldest age groups and on the research vessels' 
data. Process error coefficient of variation of 20% on all ages 
and fleets. Strong year class recruited in year 24 (1977) of 
abundance (1 .2 billion) about an order of magnitude greater than 
the weakest year class. 

Based on Data Set 5, but some aspects of the underlying model al­
tered. Changes to funtional form for trends of catchability with 
time explained in Section 2. 

In addition, separability in commercial fleets no longer valid. 
For one of the commercial fleets, catchability increases on the 
two youngest age groups between years 14 and 20. Beyond year 21, 
catchability increases further on the young age grotJps and de­
creases on ages 9-12. This procedure simulates a progressive 
shift by this fleet towards fishing of younger fish. 



For another of the commercial fleets, a shift towards fishing on 
older fish from year 18 onward~ was simulated. This was acl1ieved 
by increasing realized fishing mortality on ages 7-12 by the 
quantity 1+[0.2(age 6)]. 

Finally, it was assumed that all commercial fleets increased 
their catchability on a very large 1972 year class. The realized 
fishing mortalities at the appropriate years and ages were multi­
plied by 1.2 to simulate this effect. 
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ANNEX 2 

M.LlJ.QC TUNING OF ~.P..A 

The basic g,fl hoc tuning algorithm is out.lined in t.he pseudocode 
below. 

Guess F in last data year 
Do VPA 
Calculate catchability for each age and fleet 

For each aq-e 
For each fleet 

Fit model to catchabilities 
Estimate terminal catchability and associated variance 
Calculate terminal F 

Next fleet 
Combine estimates of terminal F as weighted average value 

Next age 
Iterate 

The methods iterate to find a solution consistent with historical 
parameter estimates and do not seek to minimize any statistical 
objective function. For this reason, these methods are not re­
garded as being based on a formal statistical model. 

The methods estimate catchablities for each age group and fleet 
separately. Some plausible model is then fitted to these esti­
mates to allow estimation of catchability in the last data year. 
This value is then used in conjunction with the appropriate CPUE 
value to estimate population size. The population size is then 
used in conjunction with total catch-at-age data to estimate 
fishing mortality. The CPUE data and the total catch-at-age data 
are treated as exact. Errors in CPUE, therefore, affect both the 
population and F estimates while errors in the total catch-at-age 
data affect only the F estimates. 

,8.d hgs;. met.hods are simple to implement, comput.ationally fast (run 
times of 1-2 minutes are typical) and rarely crash or give infea­
:3 .ible results. 
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Some of t.he .9-d boc. methods analyze ·the logarithm of catchabili ty. 
In these cases, it makes no difference whether one analyzes the 
relationship between CPUE and abundance or that between fishing 
mortality and fishing effort (Laurec and Shepherd, 1983). Use of 
a logarithmic tranformation is also consistent with the non-nega­
tive, but: highly skewed dist.r ibut.ions of catch-a t·-age and CPUE­
;:t t -·aqe data. 

Tlwre is a family of _g._g ho~ methods generated by choice among the 
following options: 

(a) Use log-transform or not. 

(b) Assume constant catchability or fit a regression (usually 
against time, but could also be against stock abundance, 
etc.) . 



(c) Combine estimates of terminal F using inverse variance 
weighting (usual procedure in recent years) or some other 
rule (becoming less popular). 

(d) In addition, further variants may be generated by use of 
various procedures for down-weighting data for distant years 
and for shrinking estimates of terminal F (or N) towards 
some historical prior value. 

The following eight methods were tested at this meeting: 

(i) Laurec-Shepher~ (Laurec and Shepherd, 1983; Pope and Shep­
herd, 1985). This uses a logarithmic transformation, ap­
plies a 20-year tricubic taper to down-weight historical 
data, assumes no linear trends in the log-catchabilities 
(locally constant catchability) and F on the oldest age 
group was iteratively reset to the average over the five 
next youngest ages. 

(ii) fiYprid (Pope and Shepherd, 1985). This is identical to the 
Laurec-Shepherd method except that a linear time trend is 
fitted to the (down-weighted) log-catchabilities. 

(iii) Armstrong-Cook methods. These are basically a mixture of 
the Laurec-Shepherd and Hybrid methods. Catchability is 
regressed against time for commercial fleets, but is as­
sumed constant for research vessels. A 20-year tricubic 
taper with maximum weight applied 3 years before the last 
data year is used to down-weight. Estimates of terminal F 
are combined by inverse variance weighting. An additional 
option of shrinking estimates of terminal F towards the 
historic mean from VPA is also available. 

Four variants of this method were tested: 

AC1: Log-transformed catchabilities, shrink towards his­
torical F 

AC2: Log-transformed catchabilities, no shrinkage towards 
historical F 

AC3: Untransformed catchabilities, shrink towards histor­
ical F 

AC4: Untransformed catchabilities, no shrinkage towards 
historical F 

(iv) Lewy's (1988) methods. These methods estimate stock num­
bers in the last data year by regressing numbers on cor­
rected CPUE (CCPUE). No transformation of the data is 
used and catchability is assumed constant for the last 10 
data years. Fishing mortality on the oldest age group is 
set equal to the average for the three next youngest age 
groups. 

The CCPUE method combines predicted N values using inverse vari­
ance of the predicted Ns. 
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The AEFM method uses a different weighting procedure. Fitted val­
ues of fishing mortality and stock numbers are obtained for the 
last 10 years. These are used, via the conventional catch equa­
tion, to produce corresponding estimates of "fitted" catch. The 
inverse variance of the fitted and observed catches is used to 
weight the last data year estimates of N. 

All. the ad noc tuning methods were run with no major problems on 
all six simulated data sets and the two real data sets for both 
the multiple realizations and the 30-year analysis. All of the 
methods recovered the main features of the data sets, especially 
in the case of Data Sets 1-4. The only computational difficulty 
encountered was that the AEFM method does not converge if the 
period when catchability is assumed constant includes the last 
data year. This method converges rapidly if the last two data 
years are excluded from the above-mentioned period. 

The software developed to run the Armstrong-Cook methods was in­
tended to run automatically without user intervention. If these 
methods are to be further developed, more attention needs to be 
given to diagnostic output. In the case of Data Set 6, examina­
tion of the slopes of the regressions through commercial catch­
ablity estimates indicated that many of them did not appear sig­
nificant. 

The more highly-developed diagnostic features of the Laurec­
Shepherd and Hybrid methods were particularly useful in analyzing 
Data Set 6. Large standard errors and significant conflicting 
trends in catchability were indicated and the Hybrid method indi­
cated highly significant trends in catchability at all ages for 
all commercial fleets except one of the trawlers. A mixed analy­
sis was, therefore, carried out by specifying catchability on 
this fleet. This indicated strong and highly consistent commer­
cial catchability trends for almost all ages, especially for 
Fleet 3 and relatively weak but sometimes significant trends for 
the survey fleets. It was considered likely that it was the com­
mercial rather than the survey fleets which exhibited real 
trends. A second mixed analysis was then run with fixed q for 
Surveys 1 and 2 (since the diagnostics for Survey 3 had indicated 
rather variable trends). This analysis revealed a weak but sta­
tistically significant negative trend for Survey 3, no signifi­
cant trend for Commercial Fleet 1 and strongly significant posi­
tive trends for Commercial Fleet 3. This analysis was accepted 
even though it is probable that a mixed analysis with fixed q on 
all fleets except Commercial Fleet 3 would be preferable. (This 
level of confusion and inconsistency of results is considered by 
the assessor to be fairly typical of real life!) 

2 SURVIVORS AND EXTENDEQ SQRVIVORS 

Survivor analysis 

Survivor analysis combines catch-at-age information and a re­
search vessel abundance index at age to produce estimates of 
stock size for each age at the end of the current year (i.e., 
survivors). The method is described by Doubleday (1981), and a 
computer implementation is provided by Rivard (1982). 



Underlying assumptions specify that 

(a) catch is taken uniformly throughout the year, 

(b) the research vessel abundance index is a mid-year estimate 
of numerical stock abundance, 

(c) t.he natural mortality rate is a "known" constant applicable 
to all years and age groups represented in the catch-at-age 
data. 

The research vessel abundance index is calibrated against VPA 
population numbers by defining calibration constants [say k(i)] 
within a pre-defined calibration block which correspond to the 
ages and years for which the VPA has converged. Within that 
block, the survey index at age [say A(i+0.5,t+0.5), where i+0.5, 
t+0.5 is used to identify the mid-year] is related to mid-year 
population abundance [say N(i+0.5,t+0.5)) as follows: 

N(i+0.5,t+0.5) = k(i)A(i+0.5,t+0.5)e 

The calibration constant can thus be estimated as 

ln[k(i)] 

t1 
rlnN(i+0.5,t+0.5) - lnA(i+0.5,t+0.5) 

t=tO 

t 1 - tO + 1 

( 1 ) 

( 2) 

where tO and t1 are the first year and the last year in the cali­
bration block, respectively. 

The mid-year population abundance is obtained from a generalized 
method of sequential population analysis in which the survivors 
appear explicitly as input parameters. This formulation allows 
estimation of the variance of the survivors, which is input to 
the catch projections, i.e. 

N(i+0.5,t+0.5) = fS[i,t(f)] ( 3) 

Consequently, from an initial estimate of survivors for the last 
year and for the oldest age-groups, we can estimate 

N(i+0.5,t+0.5) 1 from equation (3) 

and the calibration constants k(i) 1 are calculated from equation 
(2), where the superscript 1 identifies the first step of the 
iteration process. Then j independent estimates of the survivors 
in the final year, for age groups i, can be obtained from each 
survey index which provides an independent measure of stock size 
along a cohort, i.e. 

s [ i I t (f) I j J 1 
:::: { k ( j ) 

1 
A [ j +0. 5 I t (f) -· i + j +0 . '5 J 

- f[C(i,t)]}exp(-M(i-j+0.5) ( 4) 
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The j independent estimates of the survivors along a cohort are 
then averaged as follows: 

s [ i 1 t (f) ] 1 
- LW [ i 1 t (f) 1 j] 1 S [ i 1 t (f) 1 j] 1 ( 5 ) 

j 

where w[i,t(f),j] 1s a function of the variance of the estimated 
survivors. 

S[i,t(f)] 1 becomes a new starting value for (3) and the calcula­
tions represented by (2), (4), and (5) are repeated in an itera­
tive manner until the relative difference between the successive 
estimates of survivors is small (say <0.001). 

This iterative process provides estimates of the survivors for 
the oldest age group in each cohort in the catch matrix together 
with corresponding variance estimates. 

In practice, the method works well when the calibration block is 
extended to all years available. For the analysis of the simula­
ted data sets, the calibration block was defined to include all 
years except the last data year and ages 3-9. Separate calibra­
tion constants were obtained for ages 3, 4, and 5, and a common 
calibration constant was estimated for ages 6-9. No attempt was 
made to evaluate the effect of the number of calibration con­
stants on the results. 

The Survivors Analysis was initially designed to accommodate the 
situation where no auxiliary information is available except that 
from a single survey estimate of abundance. The application of 
the methops to the simulated data (which provided the results of 
three independent surveys) required some pre- or post-processing. 

(i) The commercial catch rate data were not utilized. 

(ii) For Data Sets 1-3, where the survey data exhibited similar 
trends, the three survey indices were standardized and 
averaged to produce a single data set. 

(iii) For Data Set 4, divergent trends were observed in the re­
search vessel data. The analysis was applied using each 
data. set and the results were averaqed g._ lli:.:?St.~.r.iori. 
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(iv) For Data Sets .5 and 6, fl QQ,§.J;!::.ri,Q,Ii avera9in9 of results 
derived by usinq each survey series separately was also 
used. Diagnostics revealed that the assumption of log­
normality of errors was incorrect for these data sets 
(large number of outliers in residuals and larqe propor­
tion of residuals of the same si9n in results obtained us­
ing Surveys 2 and 3, estimates of fishing mortality less 
variable than expected). For Data Set .5, the coefficients 
of variation (CVs) for survivor estimates for ages 4-7 
were ca.lcu.l.ated. 



Survey number cv (%) 
--------------------------------

1 30-40 
2 55-75 
3 90-150 

These estimates are inflated since they assume (actually non­
existent) log-normality. 

Survivor Analysis was also applied to the full 30-year data ser­
ies for Data Sets 4 and 6. 

For Data Set 4, comparison of stock abundance estimates and sur­
vey indices indicated an increasing catchability trend in Surveys 

and 3 and a decreasing trend in Survey 2, and the survey indi­
ces were not tracking the trends in stock size. Also, in order to 
assess the effect of the changes that took place for the second 
research vessel in the 27th year, an analysis of catchability at 
age was made for that vessel. This led to the estimation of a 
conversion factor of 1.2 for the last four years of that series. 
Finally, a retrospective analysis (Rivard and Fay, 1987) was ap­
plied to the last 10 years of the time series. That analysis in­
dicated that combining the three survey estimates led to a syste­
matic overestimation of stock size. In view of these observa­
tions, Survivor Analysis was applied using Survey 2, multiplied 
by 1 .2, for the last 4 years to account for the change in vessel 
efficiency, and Survey 1. Combining Surveys 1 and 2 had the same 
effect as removing the trend in catchability for each series. The 
retrospective analysis was applied again and indicated that a 
systematic overestimation of stock size was still present, but 
was reduced compared to the previous analysis. 

For the analysis of the 30-year series of Data Set 6, the three 
survey series and stock abundance estimates were normalized and 
plotted against time. No obvious trends in catchability in any 
of the surveys were apparent. A retrospective analysis applied to 
the last 10 years of data indicated that combining the three sur­
veys led to a systematic underestimation of stock biomass for 
older fish of 15-20%. Also, the coefficients of variation of Sur­
vivors for ages 6 and older estimated using Survey 3 were extrem­
ely high (120-180%). The logical step following from these obser­
vations would have been to re-analyze the data with surveys 1 and 
2 only and to apply diagnostic tools again to the new results. 
Lack of time prevented this, and the results referred to in Sec­
tion 4.2 correspond to the application of the Survivor Analysis 
for the last 20 years by combining all three surveys. Thus, these 
results contain a bias of 15-20% which could have been eliminated 
by further analysis. 

For the real data sets (North Sea cod and haddock), only one sur­
vey provided estimates for a sufficient range of ages and years 
under present implementation. The other sets could not be util­
ized. 
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Exj:_t_:!nged Survivor Analysis 

Work in progress by Sun (pers. comm.) suggests that a major 
source of error in assessment calculations is sensitivity to er­
rors in the data for the final year. Many of the assessment meth­
ods treat these data as being exact, but this is not necessary 
except in the VPA calculations of VPA-based techniques. The Sur­
vivors method of Doubleday (1981) allows estimates of terminal 
populations based on all data for each cohort to be used, which 
should reduce the sensitivity to final-year errors. The original 
method, however, allows auxiliary data for only one fleet to be 
analyzed and uses an estimation procedure for Survivors which is 
inconsistent with that used for catchability. In addition, the 
algorithm frequently produces negative estimates of survivors 
which are censored and replaced by zeroes. 

Shepherd and Sun (pers. comm.) have recently developed an extend­
ed version of the same general procedure. This allows use of aux­
iliary data from multiple fleets and employs an exponential de­
cline algorithm (rather than the original subtractive algorithm) 
which is consistent with the use of logarithmic mean catchability 
and avoids negative estimates. 

A preliminary implementation of this method was available, al­
though this did not include certain desirable features such as 
inverse variance weighting. By mistake, the method was run on 
Data Sets 1-3 with no constraint on catchability at the oldest 
ages, which leaves the solution ill-determined. For data sets 4-
6, catchability was assumed to be constant on ages 10-12. 

3 CAGEAN_- CATCH-AT-AGE ANALYSIS 

A well-documented description of CAGEAN can be found in Deriso et. 
_.:tl. ( 1988) and references therein. 

Some problems were identified in the approach taken to the esti­
mation of last-data-year parameters for the period 1973-1972 (as 
specified in Section 3.2.1) for Data Sets 1-3. This work was 
carried out prior to the meeting. Essentially, the assessors con­
ditioned the analysis of each 20-year data set by prior knowledge 
obtained from detailed analysis of the corresponding 30-year data 
sets. The final results from analysis of any 20-year data set was 
accepted only if estimated biomass agreed fairly closely with 
that obtained by analyzing the full 30 years data. 

The original intention had been to perform an independent assess­
ment on each 20-year data series. Because of lack of time, the 
assessors could not recompute the results for Data Sets 1-3, but 
Data Sets 4-6 were analyzed. The analysis was, in many ways, less 
rigorous than that which would be carried out given more time. It 
was only possible to analyze 10-year data sets. Some up-to-date 
software was not available at the meeting, and not enough time 
could be spent examining diagnostics and hence appropriately 
modifying the analyses. The comments in Section 4.1 .1 on the ap­
parent performance of CAGEAN should be read with these qualifica­
tions in mind. 



Overall, it appears that the relative weighting given to each 
type of data and also the values used to initiate the computa­
tions need to be handled with considerable care. Different weigh­
tings can lead to substantially different results and careful 
consideration of diagnostics is required to obtain an acceptable 
assessment. 

4 ADAPTIVE FRAMEWORK 

Model 

The basic framework is simply a mathematical expression for the 
application of a common statistical technique, least squares, to 
examine the discrepancy between observations of variables and the 
values of those variables estimated as functions of a population 
matrix, in order to determine the most appropriate estimate of 
that population matrix. That is, we require to find 

where 

min [{W(i)[O(i) - f(P,G)]} 2 

i 

W(i) = weight for observed variable set i 
O(i) = observed variable set i 

P = population matrix 
G = matrix of any other required parameters 

( 6 ) 

Note that O(i) and W(i) may be matrices of vectors (series). The 
W(i) are needed to accommodate differences in the reliability of 
the elements within an observed variable set as well as any dif­
ferences in reliability between variable sets. Lacking such mea­
sures, transformations may be employed in attempting to stabilize 
variance. The summation is taken over all sets (i) as well as 
within each set. 

The framework is adaptive in the sense that any observed variable 
which is a function of the population matrix can be accommodated 
by equation (6). Furthermore, various formulations of the struc­
tural relationships and statistical error models which link these 
observed variables with the population matrix may be invoked. 
This flexibility is considered essential given the wide range of 
situations encountered in stock assessment. Common statistical 
diagnostics, e.g., residual plots, standard errors, and correla­
tion matrices of the parameters estimated, are used to select 
from among the formulations those which are most suitable for the 
particular conditions experienced. To elucidate the basic frame­
work and to demonstrate the flexibility in the types of relation­
ships which may be employed, two hypothetical scenarios are des­
cribed. 

Scenario A 

The commercial catch has been sampled using a double sampling de­
sign and the estimated catch at age C(a,y) is available with the 
associated standard error CS(a,y). It is known that age determi­
nation for older ages is variable; therefore, ages 1-5 are treat­
ed individually, while ages 6 and older are aggregated. There are 
no reliable data on effort from the commercial fishery. A re­
search vessel survey index of abundance at age, I(a,y), is avail­
able. The survey was conducted at the beginning of the year using 
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a stratltled random design, and the appropriate standard error 
for the index, IS(a,y), has been derived. There are no other rel­
evant observed variables. 

The expression to be minimized is: 

6+ 20 [ 1 
[ r: -~-=----[ C ( a , y) 

a=1 y=1 CS(a,y) 

i:.l .. _ index for age 
b ~--· index for year 

2 6+ 
- C(a,y)]J + [ 

a==1 

2 ~ [·-·-
1
--[I(a,y) - I(a,y)]f 

y=1 IS(a,y) 

(20 years of data) 

( 7) 

Note that results from the beginning-of-the-year survey are 
available at the time the assessment is done. 

In order to ensure that population size decreases along cohorts 
with time, the parameter set P is replaced by R, an estimate of 
the year-class size for each cohort, and F, the fishing mortality 
mat:rix. 

The associated population matrix can then be calculated using the 
relationship: 

Q(a,y) = Q(a+1,y+1)exp[F(a+1,y+1) + M] ( 8) 

where natural mortality rate, M, is assumed constant for all ages 
and years. The appropriate cohort year-class size, R, is substi­
tuted into Q as required. 

The predicted catch can then be obtained using the conventional 
C<l tcb equa t:ion: 

-C(a,y) = F(a,y)Q{a,y){1-exp[-F(a,y) - M]}/[F(a,y) + M] (9) 

A linear relationship through the origin can be assumed between 
the abundance index and population size. Therefore, the predicted 
index i~:; obt<=tined from: 

I(a,y) - k(a)P(a,y) ( 1 0) 

where k(a) = calibration coefficient for age a. The parameter set 
G consists of only k(a) in this scenario. Equations 7-10 can be 
used to solve for the least squares estimates of R, F, arui k. 

The commercial catch has been sampled, as in Scenario A above; 
however, the errors in the estimates of catch at age are consid­
ered negligjble. A combined catch rate series, U(y), has been 
derived with a multjpl.icative model, and its associated standard 
error is US(y). There are two research survey abundance indices, 
I(1) and I(2), and their standard errors, IS(1) and IS(2), were 
computed on the basis of the respective survey designs. Survey 
I(?) i::;; c~on:3.i.dered a :recru.i.t.mc-::~nt index ~ntit:able for t.he first two 
ages only and is only available for the most recent 6 years. 
Both 3urvcys are related to the beginning of year population. 



The expression to be minimized is: 

2 
10 21 [ 1 - J 

[ [ -----[I ( 1 1 a 1 y) --- I ( 1 , a, y) ] + 
a~1 y=1 IS(1 1 a,y) 

2 
[ 

a=1 

2 1 1 
2 

[ [-------[I(2,aly) -- I(2,a,y)Jl + 
y=16 IS(2,a,y) 

21 [ 1 
2 

[ -- [ u ( y ) ·- u ( y ) J J 
y=1 US(y) 

( 1 1 ) 

Since errors in the catch at age are considered negligible, the 
parameter set P is reduced to R, the year-class size of each co­
hort. The last year and the oldest age are used as the designate 
age for the year-class size. The population matrix can then be 
de.rived using: 

Q(a,y) = C(a,y)exp(M/2) + Q(a+1,y+1)exp(M) ( 1 2) 

where the appropriate cohort year-class size is substituted into 
Q as required. 

Linear relationships are assumed for both survey indices. How­
ever, intercepts are accepted for survey index I(2) even though 
the mechanism to generate such a relationship has not been estab­
lished. Therefore: 

-I(1,a,y) -- k(1,a)q(a,y) ( 1 3) 

and 

-I(2,a,y) - k' (2,a) + k(2,a)Q(a,y) ( 14) 

A fishing mortality matrix is calculated from: 

F(a,y) = ln[Q(a,y)/Q(a+1,y+1)] - M ( 1 5 ) 

The partial fishing mortality rate matrix for the otter trawl 
fleet was obtained as: 

F(T,a,y) - F(a,y)C(T,a,y)/C(a,y) ( 1 6) 

The annual fully-recruited fishing mortality for all trawlers was 
derived from: 

10 10 
F' (T,y) = l::Q(a,y)F(T,a,y)/[Q(a,y) ( 17) 

a=5 a=5 

The annual partial recruitment for the trawler fleet is then ob­
tained: 

PR(T,y) = F(T,a,y)/F' (T,y) ( 1 8) 
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and used to calculate the average annual. exploitable biomass: 

B' (T,y) = W(a,y) (Q(a,y){1-exp[-F(a,y) ·- M]}/[F(a,y) + M]PR(T,y) 
(H) 

A linear relationship through the origin is hypothesized for the 
otter trawl catch rate and the exploitable biomass: 

U(y) = k(3)B' (Y,y) (20) 

We now have the quantities required for minimization of expres­
sion (11). 

1\PPlication of simulated data. 

Errors in the catch-at-age data were assumed negligible. The 
three survey indices were used for individual ages 3, 4, and 5 
and aggregated for ages 6 and older. The two commercial fleets 
for which effort data were available were employed by deriving a 
total catch rate in numbers for each fleet, i.e. 

10 
U(T,y) = [C(T,a,y)/E(T,y) 

a=1 
( 2 1 ) 

No standard errors were provided 
transformation of the survey indices 
applied. 

and, 
and 

therefore, logarithmic 
commercial CPUE was 

The expression minimized was: 

3 6+ 20 2 20 2 
[ [ [[ln I(i,a,y) - ln I(i,a,y)] 2 + [ [[ln U(T,y) - ln U(T,y)] (22) 

i=1 a=3 y=1 T=1 y=1 

The population matrix was calculated using equation (12). How­
ever, because older ages appeared fully recruited, the population 
size for the oldest age was not included in the parameters R. 
Instead, the population was derived using catch equation (9), and 
a fully-recruited fishing mortality calculated as the weighted 
average for ages 6-9 inclusive. 

With the population matrix available, relationships of the form 
of equation (13) were used to obtain predicted survey indices. 
The predicted catch rate indices were computed as for Scenario B 
[omitting the weights in equation (19) since the catch rates are 
in numbers]. 

A total of 23 parameters require to be estimated (9 year-class 
strengths at the end of year 20, catchability coefficients for 
ages 3, 4, 5, and 6+ for each of the three survey series, and 
catchability coefficients for each of the two commercial catcl1 
rate series. 



The number of residuals calculated was 80 for each survey (4 age 
groups, 20 years), and 20 for each catch rate (20 years), giving 
a total of 280 residuals. 

Convergence was rapid in all runs and no obvious problems were 
detected from analysis of residuals. Coefficients of variation 
for population size in the final year were of the order of 5-10%. 

pata Set 2 

The same formulation was used as for Data Set 1 except that the 
fully-recruited fishing mortality was calculated as the weighted 
averages of ages 7-10. Parameter estimation was difficult in the 
last few blocks of 20 years and in fact no suitable convergence 
criteria were obtained. 

Coefficients of variation for the population size in the final 
year were 20-40% for the younger ages and higher for the older 
ages. The residuals revealed disturbing patterns suggesting that 
at least one of the indices did not conform to the model equa­
tions. Furthermore, the assumption of flat-topped exploitation 
pattern was questionable, especially in the later years. In con­
clusion, refinement of the model equations was indicated if the 
analysis of this data set was to be extended. 

Data Set 3 

The same model formulation as that for Data Set 1 was used with 
fully-recruited fishing mortality calculated as the average for 
ages 6-9. Convergence was not as rapid as for Data Set 1 (usual­
ly 7 iterations being required as compared to 3 for Data Set 1), 
but no basic problems in convergence were encountered. 

Correlation between parameters was low, in the 
Coefficients of variation for population size in 
year were 9-15% for ages 4-9 and higher for older 
were not examined for trends. 

P.ata Set 4 

range 0.01-0.1. 
the last data 
ages. Residuals 

Only the analysis of the full 30-year data set was carried out. 
Initially, the same model formulation as that used for Data Set 2 
was employed. Analysis of residuals revealed very strong patterns 
with time. Surveys 1 and 3 exhibited increasing catchability, 
while catchability in Survey 2 decreased. The model was modified 
to include a linear trend for catchability. 

The coefficients of variation for the final year population esti­
mates were lower (about 10% for younger ages and 20% for others) 
under the revised model. The slopes for the linear trends were 
highly correlated with the associated intercepts, but their coef­
ficients of variation were only about 20%. There still remained, 
however, a significant trend in the residuals for the linear 
catch rates indicating that increases in catchability in some 
commercial gears may not have been adequately accounted for. 
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This is a new method still in a state of development and testing. 
The method fits the General Linear Model (GLM): 

ln C(a,y,f) = A(a,f) + Y(y,f) + I(a,y) + e(a,y,f) (23) 

ln E(y,f) = Y(y,f) + n(y,f) (24) 

where a, y, f are age, year, and fleet indices, respectively, A, 
Y, I are age X fleet, year X fleet, and age X year effects, and 
e(a,y,f), n(a,y,f) are error terms. 

In the current implementation, the fit is done in the GLIM pack­
kage of Baker and Nelder (1978) which allows the error structure 
to be any member of the exponential family of distributions 
(Normal, Poisson, Gamma, or Binomial). At present, the model is 
fitted assuming log-normality, but this could be easily modified. 
The parameter estimates obtained by the GLM described in equa­
tions (23) and (24) are adapted so that the fit to the data is 
unaffected, but the terms are reinterpreted in relation to the 
conventional fisheries catch and stock equations. 

ln C(a,y,f) == ln q(a,f) + ln E' (y,f) + ln N(a,y) (25) 

ln E(y,f) == ln E' (y,f) (26) 

where q, E', and N are catchability, effort, and average popula­
tion terms, respectively. 

This is done using factors d(a) and p(y) such that: 

ln q(a,f) = A(a,y) + d(a) 

ln E'(y,f) = Y(y,f) + p(y) 

ln N(a,y) = I(a,y) - d(a) - p(y) 

( 27) 

( 28) 

( 29) 

Ihe values of d(a) and p(y) are chosen :::uch that a GLM of ln 
N(a,y) 

ln N(a,y) - Year-class Effect(y-a) + Age Effect(a) + 

Year Effect(y) - k x CUMZ(a,y) + error(a,y) (30) 

has k = 1 and the age and year effects equal to zero. The age 
effects are fitted to ages up to 3 less than the oldest age in 
order to preserve constant values of q(a,f) on the last four ages 
of the last fleet. This fleet should, therefore, be chosen as one 
using a gear likely to have an exploitation pattern which is flat 
over these ages. 

where 

1 ··· exp [- Z (a, Y) ] 
CUMZ(a,y) = [ Z(i,y-a+i) + ln­

i<a Z(a,y) 

Z(a,y) ""~1(a) + r: q(a,f)E' (y,f) 
all f 

( 31 ) 



suitable values of d(a) and p(y) are estimated by progressive it­
erations based on the GLIM fit. At each step j, we have: 

d' (a,j) = 0.6k x Age effect(a) 

p' (y,j) = 0.6 x Year effect(y) 

(32) 

( 33) 

where d(a,j) and p(y,j) sum to d(a) and p(y), respectively. 

Preliminary runs of the model have been made giving 
weighting to each component of Data Sets 1-4. The method 
therefore, probably give better results using appropriate 
ings based upon the prior information provided and that 
from a study of the residuals. 

uniform 
would, 

weight­
gleaned 

Implementation time is about 20 minutes on an HP 9000-318 with 
10 ages, 10 years, and 7 fleets included in the data sets. 

The diagnostics which can be applied to the model results poten­
tially comprise anything that can be done within the GLIM package 
and are, therefore, open-ended. The method routinely outputs 
tables, plots, and histograms of residuals with estimates of re­
sidual variation by fleets, ages, and years. 

Most attention was given to the diagnostics when analyzing Data 
Set 6, which was one of the most difficult prepared for this 
meeting. Considerable departures from the assumed within-fleet 
separability were indicated, raising questions about the applica­
bility of this manifestation of the method for analyzing this 
data set. 

Work carried out for this meeting indicated that the present im­
plementation could be improved in three important ways: 

(i) Make into a tidy package. 

(ii) Make fleet and age weighting automatic. 

(iii) The means by which selection is fixed on the older ages 
could be arranged better. 

Until these points are put into effect, it would be inappropriate 
to use this method to carry out a real assessment. 

6 COLLIE-SISSENWINE METHOD 

Collie and Sissenwine (1983) developed a modified DeLury method 
(DeLury, 1947; Allen, 1966) for estimating fish population size 
using a single relative abundance index and total catch data from 
the fishery. The method estimates a catchability coefficient for 
the index of abundance using non-linear regression techniques. In 
addition, it accounts for measurement error in the index by 
estimating an index of abundance for each year and age. Two mod­
els were proposed. One requires data on the age structure of the 
catch, while the other is a non-age-structured model. The age­
structured model is of interest here. 
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Collie and Sissenwine fit the age-structured model to data 
haddock populations (Georges Bank and NAFO Division 4X). The 
timated population size at age agreed closely with results 
VPA analyses. Despite these results, the method has not 
widely used in practice. 

from 
es­

from 
been 

One major reason for the lack of application is the assumptions 
and restrictions imposed by the model. In particular, the model 
assumes that the catchability (q) is constant over time and age, 
that natural mortality is constant for all ages, and allows only 
one index of abundance. Only minor modifications are required to 
account for age-specific natural mortality, but incorporating 
age- and/or year-specific qs and multiple indices of abundance 
requires fundamental changes to the model's structure. 

In each of the real and simulated data sets considered at this 
meeting, multiple indices of abundance were available, catchabil­
ity was thought to vary with age and/or time, and for the real 
data sets, natural mortality rates are age-specific. To examine 
the utility of the Collie-Sissenwine model structure, the method 
was extended to incorporate all of the above-mentioned aspects. 

In extending the model, the Collie-Sissenwine concept of separa­
ting the process (or equation) error from the measurement error 
was maintained. The Collie-Sissenwine process error was general­
ized to incorporate age-specific qs and age-specific natural 
mortality. The measurement error term, a measure of the variabil­
ity within an index of abundance, is essentially the same as that 
of the Collie-Sissenwine model except that log-normally distribu­
ted error was not assumed. This change allowed all terms in the 
objective function to be in the same units. A new consistency 
error term was developed which provides a measure of the varia­
bility between indices of abundance. Retention of the basic 
DeLury model, in which catch is assumed to be taken instantane­
ously at the start of the year, may induce bias in the estimates 
of Nand F. 

As with the Collie-Sissenwine model, parameters were estimated 
using a Levenberg-Marquadt algorithm an finite-difference Jacob­
ian. An option to constrain all parameter estimates to be posi­
tive was also incorporated. All calculations were carried out 
using high-precision arithmetic. 

The model estimates age-specific qs for each index and predicted 
indices for each year and age. The quotient of these estimates 
provides stock size numbers at age for each year. Using the mean 
stock size numbers, N(y,a), the catch, C(y,a), and the natural 
mortality rate, M(a), fishing mortality, F(y,a), is calculated 
from the conventional catch equation via a Newton-Raphson itera­
tion. Total and spawning biomass are also calculated using N(y,a) 
in conjunction with input data on mean weight and proportion ma­
ture at age. 

Implementation of the new model requires the estimation of a 
large number of parameters, and computer run time becomes a con­
straining factor (9 hours CPU time on a VAX 8800 is typical), but 
the use of some minimization method other than that of Levenberg­
Marquadt may overcome this problem. 



A single run was made on Data Set 1 using all ages and 20 years 
of data. Auxiliary data from the three research vessel surveys 
were used in fitting the model (commercial CPUE was ignored). 
Catchability was assumed constant with time, but age-specific 
estimates were made for ages 3, 4, 5, and 6+. All indices of 
abundance were given equal weight as were the three error types 
(measurement, process, and consistency errors). Measurement and 
process error residuals appeared to be well behaved and estimated 
q at age appeared to be similar for the three survey fleets. 

A single run was made on Data Set 2 using all ages, 10 years of 
data, and three with the same assumptions on catchability as 
made for Data Set 1 . The second research vessel index was given 
twice the weight applied to the others on the basis of ''anecdot­
al" information supplied with the data set. Systematic patterns 
in the measurement and process error residuals indicated that 
this specification of the model may have been inappropriate. 

Runs similar to those on Data Sets 1 and 2 were attempted on Data 
Sets 3 and 4, but no solution was obtained after extensive run 
t.imes. 

The model was applied to data on North Sea cod for the period 
1971-1986 and for ages 1-8+. Four research vessel indices were 
used. For the first three indices, a single q was estimated for 
all ages for which data were available. For the last index, age­
specific qs were estimated for ages 1, 2, and 3+. Run time was 
about 20 minutes. 

Application to North Sea haddock data used data for years 1971-
1986 and ages 0-8+. Three research vessel indices were used. 
Age-specific qs were estimated for ages 0, 1, and 2+. The Mar­
quadt algorithm was constrained to providing only positive esti­
mates by the implementation of a penalty function. Run time was 
about 20 minutes. 

7 TIME SERIES METHOD 

Full details of the estimation and application of this model are 
given in Gudmundsson (1987). 

The main feature of this methods is that fishing mortality rates 
are modelled as time series, as follows: 

log F(a,y) = U(a,y) + V(a,y) + n1 (a,y) (35) 

where U(a,y) = U (a, y-- 1 ) + n2(a,y) ( 3 6) 

V(y) = V(y-1) + T1 + n3(y) ( 3 7) 

[ U(a,y) - constant ( 3 8) 
all a 

The residuals n1, n2, n3 are assumed to be serially uncorrelated 
and normally distributed with mean zero and covariances var1 x 
Q1, var2 x Q2, and var3, where Q1 and Q2 are given matrices. 
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The residuals n1 represent transient random variations. Equation 
(36) is associated with changes in selectivity, and equation (37) 
describes equal proportional changes in Fat all ages. 

Recruitment is represented by the equation: 

N(1,y) =NO+ T2(recruitment index) + n4(y) (39) 

(or NO alone if no suitable recruitment index is available). The 
residuals have variance var4. 

The measurement errors of catch-at-age observations are assumed 
to be serially uncorrelated with covariances s1 x H1, where H1 is 
a given matrix. 

Initial values of the fishing mortality rates are represented by 
a function of three parameters, and the first year's observations 
are used to calculate corresponding stock estimates. The next 
year's Ns and Fs are predicted by means of the equations above 
and used to calculate catch predictions. The latter are compared 
to the actual catches, and the predictions of N and F updated by 
means of the Kalman filter before proceeding to predict the third 
year's values, etc. 

Apart from the initial values, the unknown parameters in this mo­
del are var1, var2, var3, var4, T1, T2, and NO. These are estima­
ted by maximizing the likelihood function of the catch prediction 
errors. Extensive diagnosis of residuals is performed. 

Given the natural mortality rate, the estimation can be carried 
out with no further observations. 

However, observed catch per unit effort can also be included in 
the estimation. Catch per effort is given as: 

CPUE(a,y) = S(a)Cb(y)f[F(a,y)] + e2(a,y) (40) 

f[F(a,y)] is a given function which depends on whether CPUE is 
obtained from a research vessel survey or a commercial fleet. 
S(a) describes variation of catchability with age, and is assumed 
constant. The residuals in this equation [e2(a,y)] represent 
measurement errors and irregular variations of CPUE. The residu­
als are assumed to be N(O,s2 x H2), where H2 is a given matrix. 

Variations in catchability affecting all ages are modelled as 

Cb(y) = W(y) + n5(y) ( 4 1 ) 

W(y) = W(y-1) + n6(y) (42) 

The residuals are assumed normally distributed, serially uncorre­
lated with zero mean and variances var5 and var6, respectively. 
In equation (41), the residuals represent transient variation, 
whereas each of the values of n6(y) affects all subsequent values 
of Cb(t). 



With the present programs, estimation of the parameters for 10 
years of data and 8 ages and ignoring CPUE data takes about 20 
minutes on a VAX 8250. With 4 ages of CPUE data as well as total 
catches, the computational time increases to more than 1 hour. 

The model was run on 10 years of data for ages 4-11 on Data Sets 
1-4. Two runs were made on each data set, one run including and 
the other run excluding research vessel CPUE data. Only one set 
of CPUE data, selected by the assessor as the "best" set on the 
basis of trial runs, was used. For Data Sets 5 and 6, no CPUE 
data were included. In the latter case, it was found that much 
of the error in the last-year estimates was produced by T1, which 
is estimated with a high standard error. Addition of CPUE data 
should improve this situation. 

8 CONVENTIONAL AND SEPARABLE VPA 

The main purpose of the Workshop was to test the performance of 
various methods which utilize both total catch-at-age data and 
auxiliary (catch-per-effort) data. Conventional and separable VPA 
do not make use of auxiliary data, but were applied to Data Sets 
1-4 mainly to demonstrate how they would perform in comparison to 
other methods as a basis for estimating the improvement which may 
be gained by the appropriate use of auxiliary data. Furthermore, 
work in progress (Man Sun, pers. comm.) shows that results from 
conventional and separable VPA can form the basis for reasonably 
accurate short-term catch predictions, and this might naively be 
taken to imply that there is no need to collect auxiliary data. 
However, conventional and separable VPA have no basis for estima­
tion of true fishing mortality rates and stock size in recent 
years, and these quantities are important when formulating advice 
on conservation measures. 

The conventional VPA was applied by iteratively replacing F in 
the last data year by average F computed for the previous 5 years 
and F at the highest age by average F computed for the 5 younger 
age groups. (This method is referred to as the JAM method; the 
acronym is variously expanded as the Judicious Averaging Method 
or Just Another Method.) 

The separable VPA (Pope and Shepherd, 1982) was also applied by 
iteratively replacing F in the last data year by that obtained 
for four years previously. Terminal S was set equal to that ob­
tained at age 7 (with unit selection at age 5). 

In considering the results from these methods, it should be re­
membered that they are not tuning methods and should not be 
judged by the same criteria. 
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1.2 Terms of Reference 

At the 76th Statutory Meeting of ICES (1988), it was 
decided (C.Res.1988/2:4: 16) that the Working Group on 
Methods of Fish Stock Assessment (Chairman: Dr A. 
Laurec) should meet in Nantes from 10-17 November 
1989 to: 

a. 

b. 

Consider the construction of CPUE and survey 
indices by detailed analysis of spatially disaggre­
gated data. 

Advise on the implications of the timing of 
Working Group advice on the precision ofT ACs 
and on what implications a change in the T AC 
year to 1 April - 31 March would have on the 
precision of advice. 

c. Consider the report of the July 1988 Workshop 
in Reykjavik and any matter arising on methods 
of VP A tuning. 

1.3 Structure of the Report 

Preliminary work had been conducted on a variety of 
subjects, as reflected in the list of Working Papers given 
in Appendix A. Some of these papers are unpublished 
(interested readers should contact the authors directly). 
The most important findings have nevertheless been 
taken into account in the report. 

During the meeting, most of the work has been concen­
trated on item a, further calculations being conducted on 
three data sets (EGFS data for cod age 1 and 2, Icelandic 
cod survey data and Icelandic commercial data). The 
discussions are reported in Section 2. 

Concerning item c, it was decided not to try new calcula­
tions, but to reconsider the details of the results obtained 
in Reylgavik, taking account of the various remarks 
about the existing report. The results of these reconsider­
ations are given in Section 3. It also appeared useful to 
give further details for users of the Lowestoft tuning 
package. These are given in Appendix B. 

Prior to the meeting, the General Secretary of ICES 
submitted a request to the Chairman of the Group, 
concerning the assessment of North East Arctic cod. It 
appeared useful to discuss this issue since it gives an 
illustration of potential problems when using tuning 
techniques and is thus relevant to previous work of this 
Working Group. The conclusions are given in Appendix 
c. 

Section 4 is devoted to item b. The general conclusions 
and recommendations are given in Section 5. 
In addition to Appendices B and C mentioned above, five 
appendices have been included. Some correspond to 
theoretical considerations and potential methods that can 
be developed but cannot be recommended at present 
(Appendices D and E). They just suggest possible paths 
for future works. 

Three other appendices have been written for readers not 
familiar with basic issues such as the various meanings 
of randomness (Appendix F), the use of estimators other 
than a simple arithmetic mean for estimating a spatial 
mean (Appendix G), or the consideration of interactions 
in multiple-factor models (Appendix H). 
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2 PRE-PROCESSING 

2.1 Introduction 

2.1.1 Background 

The quality of the results given by all tuning techniques 
depends directly on the quality of the relationships 
between fishing mortalities and fishing effort, or (and 
often equivalently) between stock abundance and CPUE 
or survey indices. It is thus crucial to use a satisfactory 
definition of the fishing effort and the best possible 
indices of abundance. Such attempts are a necessary 
complement to the efforts developed throughout the years 
to get the most efficient tuning techniques. 

It is difficult within a Working Group to deal with the 
large amount of disaggregated data necessary for an 
efficient comparison of the possible pre-processing 
methods. Such data correspond to logbook items or 
landing results by trip. Most of the work during the 
meeting has been concentrated on survey data. As stated 
by Shepherd (Anon., 1986): 

"The long-standing problem of estimating abundance 
from research surveys is essentially the same as estimat­
ing the quantity of coal in a heap. One needs to integrate 
under the surface and this may be done from either 
regularly- or irregularly-spaced observations of the 
height of the surface. The individual observations are 
subject to sampling error and, therefore, follow some 
probability distribution (may be log-normal, Poisson or 
negative binomial for samples of fish or plankton). 

The distribution of the ensemble of observations is, 
however, determined by the location of the observations 
and the shape of the heap. There is no reason whatsoever 
to expect them to conform to any recognizable probability 
distribution, and any resemblance must be regarded as 
fortuitous and unpredictable. For example, the distribu­
tion would change if the location of the observations 
were changed. The spatial distribution is, in fact often 
quite systematic and repeatable from year to year, and 
adjacent observations are highly correlated. 

This high spatial autocorrelation is a further reason for 
not regarding the observations as drawn randomly from 
a population, but may be utilized in analyzing the data 
using appropriate methods. Techniques which make use 
of spatial autocorrelation are commonly used in geostat­
istics (Kriging), meteorology and physical oceanography 
(objective analysis), and in algorithms for contouring. 
Developments of these for use in analysis of marine 
survey data are probably feasible. 

There are essentially two valid approaches to the analysis 
of survey data, namely integration under the swface 
(possibly using the techniques noted above, but presently 
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usually by constructing appropriate summations over the 
observations), and multiplicative modelling. The latter 
technique relies on systematic repeatability of the spatial 
pattern from year to year (whilst the former does not), 
but it is better able to cope with incomplete and error­
prone data. Which method has the better performance 
must depend on the extent to which the spatial pattern is 
indeed repeatable from survey to survey, and this needs 
to be further investigated." 

In complement to this summary, it must be pointed out 
that beyond strictly multiplicative models, which can be 
linearized by a logarithmic transformation, more compli­
cated ones may be fitted, taking into account interactions 
between years and other factors. The use of such models 
may, however, be dangerous. This question was dis­
cussed during the meeting. The only possible way for 
models to include interactions with years, appears to be 
to use the fitted values for interpolating at any place 
before integrating the corresponding estimated densities 
over space. This will, in fact, correspond to a very 
intensive smoothing procedure while direct interpolations 
may lead to much less smooth interpolated spatial pat­
terns. 

Stratified sampling schemes have also been commonly 
used for constructing abundance indices. They have been 
considered by the Working Group. They may, in fact, be 
connected with the previous discussion about the various 
levels of smoothing intensities. The construction of a 
total index of abundance requires the estimation of the 
average density within each stratum. Spatial variations 
within a stratum are absorbed by the averaging. With 
spatially large strata, this corresponds to a very intense 
smoothing. The smoothing intensity is, in fact, related to 
the siz.e of the strata. 

2.1.2 General comments 

A - For a clearly defined purpose 

Research surveys can be used for several purposes. Two 
of them will be considered here: 

the estimation of annual changes in total abun­
dance (year effect), 

the mapping of an average (over years) spatial 
distribution (space effect). 

The results of a series of surveys conducted over several 
years, at the same period, will depend on the combina­
tion of these two effects, and to interaction terms, 
corresponding to changes in the spatial distribution from 
year to year. 

The main purpose considered here will be the estimation 
of changes in abundance from year to year. Some com-



ments on this issue will be presented. The differences 
with studies aiming at the mapping of resources will be 
stressed. 

B - Absolute abundance/relative abundance 

Constant absolute and relative biases 

The estimation of annual changes does not require 
unbiassed estimates of the total abundance for each year. 
It just requires a constant bias from year to year. More 
precisely, if absolute differences were looked at, the 
absolute (additive) bias would have to be constant. In 
most circumstances, however, relative changes will be 
the most important feature. This appears to be the case 
in tuning, when logarithms of abundance are required. 
Statistically this corresponds approximately to a constant 
relative bias on absolute numbers. So, when looking for 
unbiassed estimates of changes in abundance, one should 
keep in mind that three points of view can be considered: 
constant additive bias on the abundance, constant 
multiplicative bias on the abundance, constant additive 
bias on the logarithm of the abundance. 

Catchability 

It is just as well that an estimate of the absolute abun­
dance is not necessary, because it is also impossible. The 
local catchability, sometimes called vulnerability (and 
corresponding to the efficiency of the trawl) is generally 
unknown. This does not make it impossible to get usable 
estimates of relative abundance, as long as the efficiency 
is constant. It has to be constant from year to year, but 
also from place to place. More precisely, if the spatial 
distribution of the fish is persistent from year to year, its 
vulnerability may vary over space. But it is much more 
difficult, if not at present impossible, to deal with 
situations combining a high level of spatial variation in 
vulnerability with strong changes from year to year in 
the spatial distribution of the stock. 

Here lies the fundamental limitation. If for one year fish 
concentrate in an area where they are highly vulnerable, 
it will be difficult to compare the corresponding apparent 
density with another year where the stock is mainly 
located in an area where the gear has a poor efficiency. 

C - Statistical inferences 

Assumptions 

Biases have been mentioned several times. Apart from 
biases, it will be essential to provide at least a rough 
estimate of the reliability of the estimated relative 
abundances, and preferably estimates of the correspon­
ding variances. As well as for the estimation of possible 
biases, this will require a number of assumptions, 
corresponding to a more or less precisely constrained 

model. The development of resampling techniques 
(Jackknife, bootstrap, cross-validation) makes it possible 
to try making inferences without assumptions on the 
statistical distribution of the residuals. They do not 
cancel the problems associated with correlations between 
residuals obtained after a model has been fitted. Once 
more such a dependence will generally be associated with 
the space/year interaction questions. This emphasizes the 
need for a careful examination of the residuals. 

From a more general point of view, the various hypo­
theses should be systematically checked. This includes 
the identity of the stock and may include a possible 
spatial pattern of vulnerability, interfering with a change 
in the spatial distribution. If a full correction seems 
impossible, indications can be available on changes in the 
gear efficiency associated with various factors (e.g., 
depth). In such a case, if for a given year the relative 
abundance appears much higher in deeper or shallower 
waters, biases are likely to occur. 

The most constraining hypothesis is that of constant 
catchability from year to year. Changes will be very 
difficult to detect in real time. However, the correlations 
between apparent abundance and various environmental 
factors can be studied possibly within a year over the 
various stations, and (preferably) over years, for past 
years where the existence of VP A estimates makes it 
possible to calculate annual catchabilities. Any anomaly 
in the relevant factors for the current year would suggest 
a necessary correction in the apparent abundance. 

The various variances 

Estimating the variance of the estimation of the inte­
grated abundance and of the year effect may require 
sophisticated treatments, but when a stratified sampling 
scheme is being applied, simple formulas are used. The 
intrastratum variance, due to space effects within a 
stratum, will affect the arithmetic average over the 
samples as an estimate of the mean density. If one is 
interested in the difference from year to year in this 
mean density, the calculation of variance can be mislead­
ing. If the spatial structure within a stratum is stable 
from year to year, the real uncertainty can be smaller 
than suggested by the sum of the annual within-stratum 
variances, as usually calculated, provided fixed stations 
are used. 

What has been said here for stratified sampling is true 
for various techniques providing variance estimates, such 
as Kriging. Most existing formulas to estimate the 
variance of an abundance index, for a given year, refer 
to the discrepancy between this index and the real 
abundance. When, from year to year, the spatial pattern 
is totally or partially persistent when the sampling design 
is totally or partially constant, the error in year-to-year 
changes will be different from what is calculated by 
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usual procedures, which refer to spatial changes within 
a year. Generally speaking, when the catchability is 
strictly constant, year-to-year variances will be overesti­
mated by "spatial" variances, the overestimation being 
bigger when the spatial distribution is markedly persistent 
from year to year. 

The comparison of the constructed indices and VP A 
estimates for past years has been mentioned. A logarith­
mic transformation is often useful for various reasons, 
including the statistical distribution of the real recruit­
ments and the consistency with the tuning techniques. 

A regression of the recruitment (survey) indices on VPA 
results makes it possible to calculate residuals and their 
variance. If VPA results can be considered as error-free, 
this variance corresponds to the "real" uncertainty to be 
taken into account when considering the index as an 
estimate of a year-class strength. Such a variance 
includes several components: 

Changes in catchability from year to year which 
do not depend on the sample sizes within each 
year. 

Spatial heterogeneity in fish abundance which 
creates a "sampling error" due to the fact that 
only a finite number of locations will be 
sampled. 

It has been said previously that the formulas for estima­
ting annual variances in the case of Kriging or stratifica­
tion can be misleading and would tend to overestimate 
the real sampling variances. On the other hand, they do 
not take into account the component associated with the 
catchability. They can be, in fact, very difficult to use in 
practice. The same can be said about variances calculated 
for year effects when fitting a multi-year model since the 
assumptions about the residuals required by the simple 
formulas have little chance of being fulfilled. 

D - Structure of year-to-year changes in the spatial 
pattern 

If the spatial distribution were stable from year to year, 
it would be very simple to monitor year-to-year changes. 
A single haul per year at the same location would be 
sufficient. If this simple scheme was just perturbated by 
a white noise, replicates would be efficient. 

Since, in most cases, changes in the spatial distribution 
from year to year would occur, showing some consist­
ency in the sense that changes in neighbouring places are 
correlated, more sophisticated sampling designs are 
required. 

The changes in the spatial distribution can occur at 
various spatial scales. Macrostructures can be affected, 
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which implies that year after year the sampling design 
should cover the whole area occupied by the stock. 
Changes can also affect microstructures at a scale from 
a few (latitude) degrees to tens of miles (very small 
structures can just be considered as creating extra white 
noise). 

Changes in macrostructures can be associated with 
various phenomena. It may happen that, within what is 
considered to be a single stock, various sub-stocks exist 
associated with different geographical areas. In such a 
case, if the abundance varies in a different way for each 
sub-stock from year to year, the relative abundance in 
the various areas will change from year to year. This 
does not necessarily affect the spatial distribution for a 
given sub-stock in its specific area: macrostructure can 
be affected but not necessarily the smaller scales. 

Since space/year interactions create most of the diffi­
culties, they should be studied carefully, and could imply 
important changes in the procedures of assessment and 
management of the stocks. 

When the major phenomenon corresponds to the "sub­
stocks model", it can be envisaged to apply a 
multiplicative model to each sub-area rather than to the 
whole area covered by the surveys. 

Changes in spatial pattern can also be related to changes 
in stock size (Myers and Stokes, 1989). For example, as 
a stock increases in biomass, it may fill the best habitat 
available. This may lead to density increasing relatively 
more in selected areas. 

Local inconsistencies seem more difficult to correct for 
simply. 

E - Distributional form 

Knowledge of the sampling distribution of catch per tow 
from research vessel surveys is essential to selecting the 
correct model to use. For each stratum in each year of 
the English and Iceland groundfish surveys, we calcu­
lated the sample mean and variance. In general, the log 
variance increased approximately linearly with the log 
mean with a slope of 1. 8 to 2. There was a slight 
tendency for the log variance to be a convex function of 
the log mean [Figures 2.1.(3), 2.1.(4) and 2.1.(7)]. This 
type of relationship is consistent with a negative binomial 
sampling distribution with the k parameter approximately 
equal to one, because the variance of a negative binomial 
distribution is the mean (1 + mean/k). 

Thus a reasonable model to use for the error structure is 
the negative binomial in which the variance is the square 
of the predicted mean. Such models can be fitted using 
the user-defined model in the GUM statistical package. 
If there were not too many zeroes, e.g., less than 10%, 



a log transform with a constant added to the numbers per 
tow may also be acceptable. The Poisson distribution, or 
an extra Poisson distribution in which the variance 
increased in proportion to the mean, would not be good 
models for these data. 

The choice of the constant added before the log trans­
form is quite important. The smallest encountered non 
null value is commonly referred to, but it may be divided 
by a factor ranging from 1 to ten provided the required 
added constant. The variance stabilization is illustrated 
by Figure 2.1.(5). 

F - Other approaches 

Five additional approaches to constructing an index of 
abundance can be considered. These are: 

1 - Principal component analysis 

2 - Regression of difference estimation 

3 - Bayesian estimation 

4 - Empirical Bayes estimation 

5 - Time-series analysis 

Time-series analysis requires a long series of observa­
tions to be available, especially if the dynamics of the 
system being modelled are complex. The use of time­
series analysis in fisheries research has been explored in 
a number of studies and consequently will not be con­
sidered further here. 

Some comments on the remaining four approaches are 
given below. 

Principal component analysis 

The results from a series of surveys can be grouped into 
a matrix form, each year corresponding to a column, 
each station to a row. A principal component analysis 
can be performed on such a matrix using the covariance 
(or correlation) matrix between stations. A first factor 
associated with a year effect is expected. 

A transformation will generally be necessary beforehand. 
When a logarithmic transformation is performed, the 
expected underlying model corresponds to the 
multiplicative model. The common factor is associated 
with the year effect. In the simplest situation, no extra 
significant factor should be found, the residuals being 
uncorrelated from station to station. A more complex 
situation can, however, be exhibited in which extra 
factors group "similar stations". It may even happen that 
instead of a clear first common axis, the examination of 

the eigen values result in identifying several factors 
grouping, for instance stations, associated with possible 
sub-stocks. 

PCA can be useful. It should, however, be used only as 
an exploratory tool rather than as a technique which 
provides directly an annual index of abundance. It can 
even be combined with the fitting of a multiplicative 
model, the correlations being calculated on the residuals. 

Regression or difference estimation 

Difference and regression estimation require that there is 
an auxiliary variable Xi availale which: 

a-

b-

c -

is correlated with the variable of interest Yi 
(Yi = CPUE at station i) 

is known for every observation (haul) i 

has a known mean Ux. 

The trick is to find such an auxiliary variable. One way 
to do this is to fit some sort of model to previous survey 
data. A prediction can then be made for each haul 
location (i) in the current survey. The mean of the 
predictions, Ux, is obtained by integrating or summing 
over all explanatory variables in the model, e.g., by 
integrating over space. The reduction in variance 
achieved by using the auxiliary variable can be shown to 
be equal to the correlation (r) between X andY. 

The estimation formula is given by: 

Y* = Y + C (Ux - X) 

where Y* is the estimated mean CPUE, Y is the mean of 
the current year's observations on CPUE, X is the mean 
of the model predictions corresponding to the locations 
sampled to obtain Y. This estimator, in effect, says that 
if X is below its mean Ux, then Y is probably below the 
true mean CPUE. Further, the amount of correction to 
be applied depends on C: C is the change in Y per unit 
change in X. 

If C is fixed in advance, the result is a difference 
estimator which is unbiassed. The bias will be zero even 
if the model used to obtain the auxiliary variable (predic­
tions) has lack of fit problems. For example, ignoring 
interaction terms in the development of the model will 
not cause bias (but will reduce the gain in precision 
achieved by using the difference estimator). 

C can also be estimated. The optimal value of C is the 
coefficient of regression of Y on X. Note that if C is 
estimated from the data, the estimator is known as a re­
gression estimator and has a statistical bias of order N -1 
(where N is the number of hauls). 
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Bayesian and empirical Bayes estimator 

Bayesian estimation attempts to combine the current 
information from the trawl survey, with "prior" informa­
tion. The prior information can be based on past obser­
vations, intuition, etc. The user must specify a prior 
distribution (form, mean, variance). These pieces of 
information are then combined in an optimal manner 
using Baye's rule. 

However, since the specification of the prior distribution 
is subjective, different people will get different answers. 
The results are, therefore, likely to be highly controver­
sial unless a group consensus (on the nature of the prior 
distribution) can be achieved, or unless the results can be 
shown to be insensitive to the choice of the prior dis­
tribution. 

Empirical Bayes estimation circumvents the problem of 
subjectivity by considering past survey results as a 
representative sample from the prior distribution. The 
estimator turns out to be a weighted mean of the current 
survey results and the results from prior years. Those 
years with low estimated variance of the index will 
receive higher weights than those with high variance (all 
other things being equal); also, those years that agree 
well with the current survey results will receive higher 
weights than those that agree less well. 

Empirical Bayes estimators are biassed but they can be 
shown to reduce the mean squared error under very 
general conditions (Cassella, 1985). 

The assumption that the past survey results provide a 
representative sample of the prior distribution will not be 
met if there is a trend over time. However, it turns out 
that the method is robust to this failure of assumption. 
Intuitively, it can be seen that, since the weighting 
depends on how well the observations agree with the 
current results, observations further back in time will (in 
this case) receive low weights and thus not affect the 
estimation very much. 

This question has been indirectly addressed in a working 
document to the previous meeting of the Working Group 
(Laurec and Souplet, 1987), and is taken into account by 
the RCRTINX2 package. 

2.1.3 Data sets 

Three basic data sets have been considered to exemplify 
the methods: the indices for ages 1 and 2 of cod from the 
English groundfish surveys, the indices for age 1 cod in 
Icelandic surveys, and commercial CPUE for Icelandic 
trawlers. 
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A - English Groundfish survey data 

The English Groundfish survey (EGFS) of the North Sea 
has been described in a working paper to the Roundfish 
Working Group (Harding and Macer, 1986). The survey 
has run since 1977 and was originally planned with a 
stratified random design (stratified by depth and bottom 
type). Since 1977, stations have been fixed on the 
original design but with numerous changes and deletions. 
There are now 46 "primary" stations and 30 "secondary" 
stations which are targetted each year. 

For this Working Group, all years' CPUE data for l­
and 2-year-old cod, together with trawling latitude and 
longitude, have been made available. Additionally, data 
from 1977 to 1988, during which time replicate trawls 
were made at each station, have also been provided with 
a set of redefined stations (clusters). These clusters have 
been defined, using the CLUS procedure available in the 
SAS statistical package, so as to provide a set of unique, 
non-overlapping areas that divide the 570 trawls into 50 
strata each covering a circular area of 450 nm2

• The 
mean log (CPUE + 0.1) for ages 1 and 2, by cluster, 
are shown in Figures 2.1 (1) and 2.1 (2). 

The 1- and 2-year-old cod data from EGFS have previ­
ously been considered by Houghton (1987) who 
attempted to characterize the nature of different fish 
distributions in terms of their simplicity/complexity and 
persistence/changeability. He characterized the young 
cod distributions as complex and changeable, i.e., the 
distributions could not be represented by a simple surface 
and showed no annual consistency. Myers and Stokes 
(1989) have also considered EGFS data; they attempted 
to characterize how space is used as fish populations 
expand or contract. For young cod, they showed that 
there is no simple, overall response and that no habitat 
saturation occurs but rather, that some areas respond 
more than others to changes in overall population (i.e., 
that the distribution of young cod is changeable rather 
than persistent). 

B - Icelandic survey data 

An Icelandic research survey is carried out every year. 
The stations in this survey are fixed and number 580 per 
year. The survey grid is shown in Figure 2.1.(6). At the 
meeting, the Working Group had at its disposal the 
number of 1-group cod at each fully recorded station of 
the survey. Some missing values had been encountered 
during a previous analysis of the data (e.g., depth or 
temperature) and those stations have been dismissed for 
the purpose of the analysis. The number of 1-group cod 
at each station have been computed by analyzing the total 
length at age for each year, finding an accurate cut-off 
point for the 1-group and using that for each station. 



C - Icelandic commercial data 

This data set from commercial vessels has been previous­
ly analyzed by Stefansson (1988). The raw data are 
recorded by trawler captains and comprise catch esti­
mated by species for each tow, position (in terms of 
statistical square) and towing time. For the purpose of 
analysis, the basic data are aggregated to the level of 
trawler, month, square, i.e., catch and towing time are 
recorded only as a total for all tows that a trawler takes 
within a statistical square in each month. 

It should be noted that there is a different stock composi­
tion in the Northern and Southern regions, due partly to 
seasonal migration. Thus, analysis of Icelandic cod data 
is normally done separately for the time periods January 
- May and June - December, as well as for the North­
em/Eastern and Southern/Western regions. Only the 
northern area was considered [Figure 2.1.(8)]. 

2.2 Stratification 

2.2.1 Introduction 

Decreasing the size of the strata will decrease the intra­
stratum variances. This suggests a potential decrease of 
the final calculated within-year sampling variances. On 
the other hand, creating more strata while holding the 
number of hauls constant implies smaller sample sizes 
within (at least some) strata. If the set of smaller strata 
is more homogeneous than the set of larger strata, then 
a variance reduction will result. 

Otherwise, creating more strata can result in an increase 
in variance (Cochran, 1977). This is due to the smaller 
sample sizes for each stratum (the variance of the mean 
is s2/n) and also to the fact that, if each stratum is 
allocated a minimum of two hauls, then there may be 
few hauls left to allocate optimally. As an example, 
Gavaris and Smith (1988) found that precision could be 
improved in the Scotian Shelf (Canada) groundfish 
survey by reducing the number of strata (i.e., combining 
strata). 

This is the reason why on the EGFS data for age 1 cod, 
a series of stratification schemes using progressively 
smaller strata, has been tried. Since transformations are 
commonly used, this influence has also been checked. 
The corresponding results appear in Section 2.2.2. 
Section 2.2.3 gives a summary of the discussion which 
took place on post-stratification. Section 2.2.4 offers 
some concluding remarks. 

2.2.2 Application to EGFS data 

A - Description of the various schemes 

The North Sea has been simplified to 12 squares as 
indicated in Figure 2.2.(1). 

The first scheme treats the whole North Sea as a single 
stratum. The second one distinguishes three strata, 
associated, respectively, with Divisions IVa, IVb and 
IV c. 

The third scheme considers a sub-division of Divisions 
IVa and IVb between three sub-areas, creating eight 
strata. The "eight strata" scheme groups blocks are indi­
cated here between brackets: (3, 4, 5), (6, 7, 8), (9, 10), 
(11, 12), (13, 14). Blocks 1, 2 and 15 remain isolated. 
The fourth scheme takes into account fifteen strata using 
a further sub-division of the strata considered in the 
previous scheme. These fifteen blocks are numbered in 
Figure 2.2.(1). 

The sampled locations are always considered as if they 
had been randomly chosen within a stratum although this 
is not strictly the case. 

B - The estimators 

For each stratification scheme, various options have been 
tried for deriving the overall survey index, depending on 
the stage at which a transformation (if any) was applied 
to the data. In all cases, the stratified mean is constructed 
by weighting the estimated stratum mean in proportion to 
the stratum area (i.e., by the number of rectangles) and 
eventually log-transforming for comparison with the log 
VP A estimates. 

The simplest estimator makes use of the raw data, the 
stratum mean being the arithmetic average of results in 
each haul (untransformed estimates). The stratum mean 
can also be the approximate geometric mean of individ­
ual observations, in which case these are first trans­
formed as y = log (x + 0.1) and the average back­
transformed as x = &' - 0.1 before integrating over the 
surface (transformed estimates). 

Since the simple back-transformation may introduce a 
bias, a correction factor can be applied beforehand (see 
Appendix F). 

Here the term s ( n -l ) where n is the number of hauls 
n 

and s the estimated variance within the stratum, has been 
added to the mean of the logged data before back­
transforming to yield the stratum mean (corrected 
transformed estimates). 
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C - The results 

The various estimated series appear in Table 2.2.(1) as 
well as the corresponding logarithms of VP A results. 
The correlation (r) with VP A results is given for each 
estimator. It must first be pointed out that if the results 
obtained without preliminary transformation are quite 
consistent from one sampling scheme to another, impor­
tant changes appear when logarithmic transformations are 
used. Regardless of the + .1 additive constant, this 
corresponds to the classical differences between geomet­
ric and arithmetic means, the later one being systemati­
cally larger. The higher the dispersion of the individual 
values, the higher the discrepancies are. 

When a single stratum is considered, this discrepancy is 
very high. When small strata are used, the between-strata 
variations being eliminated, the discrepancies will tend to 
decrease. 

The overall estimated abundance obtained after trans­
formations will tend towards more consistent values than 
those obtained through "non transforming" procedures. 
It can also be noticed that the r values obtained for 
transformed uncorrected estimators are higher when 
more disaggregated sampling schemes are used. How­
ever, they remain less efficient, in terms of r2

, than those 
based on raw data. The latter are not very sensitive to 
the sampling schemes. A single stratum even appears to 
be a "good" solution. It must, however, be recalled that 
the considered sampling scheme is not a Simple Random 
Sampling one, and that it assumes that a satisfactory 
coverage of the whole North Sea at a macroscopic scale 
is provided. Otherwise stratifications would be likely to 
be necessary. 

Coming finally to the corrected transformed estimators, 
it can be noticed that if a single stratum is considered, 
the correction seems to be useful. It can be related to the 
fact that within the whole North Sea, the statistical 
dispersion of the numbers per haul is high. When a 
detailed stratification is being used, correction factors 
become less necessary, at least when constant biases are 
accepted. The correction can even become dangerous, as 
suggested by the fifteen strata scheme, where the cor­
rected series gives a poorer correlation than the uncor­
rected one. This may be related to the fact that, due to 
the limited number of hauls within a stratum, the s2 

values appearing in the correction factors are poorly 
estimated. They tend to introduce an additional noise. 
More sophisticated bias correction techniques can be 
used, including resampling techniques. The possibility of 
introducing extra noise through the correction could 
nevertheless remain. 
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2.2.3 Post-stratification 

There are a number of reasons for considering strata, 
including statistical efficiency, logistic/administrative 
convenience and interest in the strata per se (e.g., a 
stratum may correspond to a political or administrative 
zone for which estimates are needed). 

Sometimes it is not possible to delineate the desired 
strata beforehand. For example, one may wish to stratify 
by surface water temperature but a map of surface 
temperatures may not be available until after the survey. 
Also, different species may have different spatial dis­
tributions so that the sampling requirements for one 
species may conflict with those for another. 

In these cases, one may wish to use simple random 
sampling or proportional allocation and then post-stratify 
into strata that are believed to provide greater precision. 
Post-stratification must be on the basis of auxiliary 
information not on the basis of the observed variable of 
interest (CPUE). Otherwise, the estimated variance can 
be made arbitrarily small and is meaningless. 

In certain circumstances, post-stratification can be 
extremely effective. Note, however, that it uses prior 
information only to improve stratification but not in the 
estimation itself. Some techniques described in Section 
2.1.1 explicitly use prior observations in the estimation 
of the current index. 

2.2.4 Concluding remarks 

The previous discussion does not cover all the problems 
related to the choice of a stratification scheme. The 
possibility of using, for a given year, the results from the 
previous ones has been explored by the Working Group 
on the EGFS data set. However, it did not give interest­
ing improvements, due partially to the limited number of 
years for which this was possible. 

The possibility of defining optimal clusters has been 
mentioned in Section 2.1.2, which indicates that the 
statistical packages such as SAS can offer this possibility. 
A comparison of the r values obtained from such a 
scheme with those obtained as described in Section 
2.2.2, using the same data, indicates that the gain would 
be small. But again, this may be due to the specificities 
of the data set. 

If transformations are to be used due to the lack of 
robustness of formulas based upon log-normality assump­
tions, resampling techniques would be useful for simulta­
neously correcting biases and estimating variances. 

When fixed stations exist, it would also be useful to 
consider year-to-year changes for each one, since it 
appears that considering the variances of these differ-



ences would make it possible to build a sampling vari­
ance really referring to the estimation of year effects. 

When some stations are fixed, and others are random­
nized every year, it would be very useful to compare the 
efficiency of the corresponding estimators for a given 
number of hauls. Resampling techniques would also be 
useful in this respect. 

Although further investigations on this topic are war­
ranted, a clear conclusion is: if preliminary transform­
ations are to be used, it will be very dangerous to change 
the stratification scheme from year to year. 

2.3 Generali:r..ed Linear Models 

2.3.1 Introduction to general linear models 

A GLM (General Linear Model) can be characterized as 
a model where each measured value has, after a specified 
transformation, if necessary, a mean which is a function 
of a linear combination of independent variables, with a 
specificed error structure. More specific definitions can 
be found in the GUM manual. A good source reference 
is McCullagh and Neider (1983). Such models have been 
found useful when computing indices of stock abundance 
(cf. Myers and Pepin, 1986). 

They can also be used for mapping, although this has not 
been commonly done. One of the greatest virtues of the 
GLM models is the possibility of including variables 
which affect catchability (such as wind speed and 
direction, depth, etc.) when the higher level interaction 
does not exist. Missing strata in a given year can be 
estimated. Some relevant examples will be given in what 
follows. 

When a GLM model is fitted, it is necessary to specify 
the structure of the underlying mean. This is usually 
done by either defining factors describing areas, or a 
combination of factors and regressors. 

1 - Log-transforms 

One of the simplest linear models for commercial or 
research vessel catch-per-unit effort data is obtained by 
using logarithmic transforms. In the following general 
model description, Y will refer to a catch measurement 
and X will refer to an auxiliary parameter (which may be 
multi-dimensional and the effect bx may also be a factor 
level). A basic model of the form: 

Y = exp (a + bx) exp (E) 

(where E is an error term) becomes 

ln(Y) = a + bx + E 

after the simplest logarithmic transformation. If the latter 
model is fitted using least squares, it is implicitly 
assumed that the errors, E, have a common distribution, 
with a constant variance. Such a model fit will give 
optimal estimates of the parameters a and b if E is 
normally distributed, i.e., if the errors E in the original 
model are normally distributed and not autocorrelated. 

All aspects of the model are optimal on a log scale as 
long as the assumptions of log-normality hold, but 
several problems appear when log-transforms are used, 
including potentially large biases on the untransformed 
scale unless corrected for the exact variance. When the 
variance correction uses a variance estimate, it should be 
noted that the corrected back-transformed estimate may 
be highly inaccurate (see Section 2.2.2). What has been 
said previously about the lack of robustness of variance­
correction formulas for bias correction is also true for 
GLM. 

The behaviour of the log-transform also depends quite 
heavily on which additive constant, c, is chosen. When 
a log-transform is used, different constant values should 
be tested. 

The item of interest, namely biomass, is obtained by 
integrating the biomass surface. The analysis of the fitted 
values requires integrating the exponentiated fitted values 
in a log-transformed model. When a geometric mean is 
used, it is not at all clear how this corresponds to the 
intergration of transformed values. It is, therefore, 
strongly suggested that integration (or averaging or 
summation over stations/strata) be performed on the 
original scale. 

2- Models 

Packages such as GUM allow formal modelling of the 
mean and distribution, which is then used for fitting. It 
is thus possible to define that the expected CPUE at a 
given time and location is of the form exp(linear effect), 
with some variance (which may depend on the mean) and 
some parametric sampling distribution (e.g., Poisson or 
negative binomial distributions). 

The linear effect may be of any of the following forms: 

list of factors describing areas 

simple representation of the CPUE surface (e.g., 
quadratic) 

additional variables such as time of the year or 
depth strata. 

The distribution used can be taken as normal after a 
transformation or as other members of the exponential 
family, e.g., Poisson. 
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The Poisson distribution assumes that the mean is 
proportional to the variance. This is usually not tme for 
CPUE data, as they tend to be overdispersed compared 
with the Poisson. The GLIM package allows the user to 
overcome this problem by defining different variance-to­
mean relationships. Testing such models was not possible 
during the meeting, but the Working Group notes that 
defining appropriate models may have some benefits in 
terms of obtaining more accurate estimates. 

Spatial and temporal interactions with year effects are 
often present in CPUE data., When linear models are 
fitted assuming no interactions, a potential problem can 
exist, e.g., density-dependent habitat utilization (Myers 
and Stokes, 1989). If the interactions are an important 
source of variation, it is essential to include them in the 
model, and to use integration over the fitted values (or 
summation over strata) to obtain an annual biomass 
index. It should be noted that when the model includes 
interactions, the year effects as estimated by linear 
models do not have any clear interpretation (see Appen­
dix H). When the interactions are of little importance, it 
may not be of great consequence to omit them from the 
model, but the effects of this are not clear. 

2.3.2 Application of the EGFS data 

Indices for 1- and 2-year-old North Sea cod have been 
calculated using a variety of generalized linear models. 
The standard index (arithmetic mean weighted by 
roundfish area) exists for the years 1977 to 1988. A 
geometric mean index has also been calculated for all of 
these years. This index has been calculated as mean 
(log[CPUE+0.1]) where 0.1 is the minimum, non-zero 
CPUE in the data set. This index has been calculated 
from the clustered data (see Section 2.1.1) and uses only 
those 37 clusters that are common to all years. All other 
indices are calculated from the data set with replicates 
and, therefore, only cover the period 1977 to 1981. 

The cod distributions have previously (Houghton, 1987) 
been characterized as complex and changeable. The ideas 
of complexity/simplicity and changeability/persistence 
may be formulated in a series of linear models. 

Mi + 0y + Iiy complex, changeable 

complex, persistent 

Q(i) + 0y + IQ(i)y .......... simple, changeable 

Q(i) + 0y simple, persistent 

where: 

index rectangles 

y indexes years 
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Q(i) 

0y 

rectangle (spatial effect) 

parameterized functional form for spatial vari­
ation 

year effect 

rectangle year interaction 

IQ(i)y space year interaction (interannual variation of 
parameters of Q) 

Houghton (1987), for example, chose a quadratic for 
Q(i). 

We have created indices for a complex, changeable 
model using both log(CPUE + 0.1) transformed data and 
a normal error stmcture, and untransformed data using 
a Poisson error stmcture and a log-link function (see 
Section 2.1.1). Additionally, a series of (easier to fit) 
complex, persistent models have been used to create 
indices. This set of models was mn to test the effects of 
transforming data. An untransformed data set was fitted 
using a Poisson error stmcture, and four log-transformed 
data sets (with constants 0.1, 0.25, 0.5 or 1.0) were 
fitted using a normal error stmcture. 

Indices created using all methods are presented in 
logarithmic form in Table 2. 3 .1. Also shown are the r 
values and the residual standard errors for the 
regressions of each series on the VP A series. The VPA 
numbers at age have been taken from the 1989 Roundfish 
Working Group report. 

Considering the 1-year-old cod indices first, all methods 
produce excellent results. For this species, especially at 
this age, even a simple (or weighted) arithmetic mean 
captures 97 to 99% of the variance and has a low 
residual standard error. It must, however, be recalled 
that the fitted series is very short (six points). The 
complex persistent models used to test the effects of the 
various data transformations and error stmctures, all 
perform well in terms of variance explained, even though 
the model is inappropriate. The residual standard errors 
from the regressions of these indices (or the geometric 
mean) on the VPA numbers are, however, relatively 
high. 

By comparison, the complex, persistent model fitted with 
a Poisson error structure performs very well both in 
terms of variance explained and reduction in residual 
standard error. Concerning transformations, it is diffi­
cult, from the models applied to this data set, to make 
firm conclusions. What can be said is that if data are log­
transformed, then care is needed in choosing the trans­
form constant. When the underlying error stmcture is 
known it is so far safer (and better) to fit models that 
take acount of this. 



The indices for the 2-year-old cod all perform less well 
than those for the 1-year-old fish. The most striking 
difference in their performance is not in that they 
consistently explain less variance when regressed on the 
VPA, but that the residual standard errors are always 
high. As with the 1-year-old indices, it is difficult to 
draw firm conclusions from the comparisons. 

2.3.3 Indices of abundance from commercial catch 
and effort data 

This topic was addressed during the first meeting of the 
Methods Working Group (Anon., 1984). In particular, 
the multiplicative model (Fonteneau and Laurec, 1987; 
Gavaris, 1980) was examined and found to be a useful 
tool for developing indices of abundance from commer­
cial catch and effort data. In principle, this model is the 
same as the general linear models (GLM) discussed in 
the previous sections for developing indices of abundance 
from research survey data. The primary difference lies 
in the use of year interaction terms, which were incor­
porated in the GLMs for survey indices (Section 2.3.1), 
but have not been employed generally in developing 
indices from catch-effort data. The utility of these terms 
and the practical problems associated with their use were 
not explored fully during the 1984 Methods Working 
Group meeting. 

Catch and effort data from Icelandic trawler reports 
(Stefansson, 1988) were used to examine the effect of 
incorporating year interaction terms into the GLM. These 
data are described in Section 2.1.2. Stefansson (1988) 
partitioned the Icelandic cod data from these trawler 
reports into four components, reflecting two areas (North 
and South) and two seasons (Spring and Fall). The 
North-Spring component was examined by the Working 
Group. These data were available by statistical rectangles 
(one by one-half degree) and by month. The statistical 
rectangles were aggregated into four larger areas based 
on biological and distributional information as well as 
historical fishing patterns (Figure 2.1.(8)). 

Following Stefansson (1988), only records in which the 
cod catch (in weight) exceeded 50% of the total catch 
were used in the analysis. A ten-year subset of the 
available data, 1974-1983, was selected to facilitate 
comparison with the converged portion of the Icelandic 
cod VPA. The resulting data contained 7,611 catch­
effort observations distributed over 10 years, 4 areas and 
5 months. The number of observations from year-area­
month-stratum is given in Table 2.3.(2A) and (2B). 

Three GLMs were fitted to the Icelandic cod data. The 
multiplicative models incorporated year (Y), area (A), 
and month (M), main effects and varying degrees of 
interaction effects to predict catch-per-unit effort (U). 

1 

2 

U = (K) (Y) (A) (M) (E) matn effects 
only 

U = (K) (Y) (A) (M) (AxM) (YxA) (E) mam 
effects, area-month and year-area 
interactions 

3 U = (K) (Y) (A) (M) (AxM) (YxA) (YxM) (E) 
main effects, area-month, year-area, 
year-month interactions 

where K is a constant and E is the lognormal error term. 

Following Stefansson (1988), a curvilinear relationship 
between effort and fishing mortality was incorporated. 
Specifically, catch per effort was computed as: 

U = C I (T**1.29) 

where C is the catch (in weight), T is trawling time (in 
minutes) and 1.29 is the estimated exponent for the 
North-Spring component of the stock. 

The GLMs were fitted and using the estimated coeffi­
cients for the various effects, the predicted CPUE for 
each stratum (relative to that in area 101 during January 
1974) was calculated as: 

UHAT (y,a,m) = exp [b(y) + b(a) + b(m) + 
X(y,a,am)] 

where b(y), b(a) and b(m) are the estimated parameters 
for the main effects and Cis the sum of the b's for all of 
the interaction effects, as appropriate for the stratum and 
type of GLM used. The UHATs for all strata are pro­
vided in Tables 2.3 (3A, 3B and 3C) for GLMs (1), (2) 
and (3), respectively. The UHATs were then integrated 
over area using the arithmetic mean to calculate predicted 
CPUE by year and month [Tables 2.3 (4A, 4B and 
4C)]. 

These UHATs can be regarded as indices of abundance. 
When no interactions are incorporated [GLM1 - Table 
2.3 (4A)], the year effect, b(y), shows the same trend as 
that in any given month [(Figure 2.3.(1)]. When AxM 
and YxA interactions are included [GLM2 - Table 2.3. 
(4B)], the monthly indices show the same trend, but this 
trend is not the same as that obtained by simply using the 
year effect from the GLM without interaction terms 
[Figure 2.3.(2)]. 

When AxM, YxA and YxM interactions are included 
[GLM3- Table 2.3.3.(4C)], the monthly indices become 
more variable, but still exhibit differences in trend from 
the simple year effect index obtained from the GLM 
without interaction terms [Figure 2.3.(3)]. An alternative 
presentation of these same data by month is provided in 
Tables 2.3.4a-c. Parameter estimates for all of the main 
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effects and interaction terms are provided in Tables 
2.3.3a-2.3.3c for GLMs (1), (2) and (3), respectively. 

Age-size keys from Stefansson (1988) were used to 
estimate an index of abundance for age 4 stock size (in 
number) from the exploited stock biomass index 
described above. This index has been compared with the 
Icelandic cod VPA results. Coefficients of variation were 
computed in two ways: (1) VPA stock numbers vs. age 
4 index, and (2) log (VPA numbers) vs. log (age 4 
index). (r2) values are higher for the linear model and are 
generally higher for the GLMs with interaction terms. 

These results indicate that the incorporation of year 
interaction terms can affect the trend in the estimated 
index of abundance from the GLM approach. However, 
when year interactions are incorporated, it is important 
not to use the year effect from such a GLM as the index 
of abundance, as it may have no relation to stock 
abundance. The procedure outlined here for the Icelandic 
cod GLM provides a mechanism for incorporating year 
interactions and extracting meaningful indices of abun­
dance from the fitted model parameters. 

In many cases, a single annual index may be preferred to 
various monthly indices. While it is straightforward 
procedurally to integrate over months in a fashion similar 
to integration over area (i.e., by using the arithmetic 
mean), this is particularly true for stocks with high 
fishing mortality rates, where the stock size is changing 
appreciably from month to month. In such cases, it may 
be more appropriate to select an appropriate month based 
on biological and sampling considerations. If the index is 
to be used for VPA tuning, it may be appropriate to 
select a month at the beginning of the year (if tuning is 
carried out using Jan. 1 stock sizes) or in the middle of 
the year (if mean stock sizes over the year are used in 
the tuning). The various indices can also be used individ­
ually for the tuning. 

Care should also be taken in integrating over area. 
Generally, the integration should be done using an 
arithmetic mean, weighted by the surface area of each 
sub-area. While this is fairly straightforward in the case 
of research surveys, it can be more complicated when 
dealing with commercial fisheries that may not fish the 
entire sub-area each year. 

It may be noted that if all possible interactions are 
included in a GLM, then a resulting index will be no 
different than a stratified arithmetic mean. This would 
have been the case, for example, if a three-way interac­
tion (YxAxM) had been added to the GLM (3) model, 
above. In practice, however, it is seldom possible to 
include all interactions in a GLM because of the lack of 
observations in one or more strata. 
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In all applications of GLM, the correction for the log 
bias that result from estimating the parameters on the log 
scale and then transforming back to the original scale 
should be considered. The robustness question has not, 
however, been addressed. The correction would have 
little effect on the Icelandic cod GLM because the mean 
squared error was much larger than the variance of any 
of the individual parameters. However, this may not be 
the case generally and the bias correction could affect the 
estimated trend. 

When year interactions are employed, the type of 
normalization used to implement the GLM may affect the 
parameter estimates (e.g., use of the row and column 
means, choice of standard cells, etc.). In practice, the 
magnitude of this effect should be examined as an 
integral part of GLM analysis. 

In developing indices of abundance (whether by GLM or 
other methods) for the purpose of VPA tuning, every 
attempt should be made to estimate age-specific indices 
(in number of fish rather than weight). However, if from 
logbooks it is possible to obtain area-disaggregated 
results, in most cases, only landings integrated over a 
whole trip can be sampled to obtain length- or age­
disaggregated results. 

Following the methods suggested by Laurec and Perodou 
(1987), it is theoretically possible to build and to fit 
models providing area and age (or length) specific 
parameters. The technique suggested for commercial 
categories disaggregation can, in fact, be easily extrapo­
lated. Other models than the one they suggest can be 
imagined adapted to the available data. It is likely that 
they would not be considered as GLMs but other statisti­
cally and numerically efficient techniques now exist. 

2.4 Interpolating 

2.4.1 Introduction 

It is assumed that the quantity being estimated by a 
survey (e.g., the abundance of age 1 cod in the North 
Sea) really exists (i.e., is not itself a random variable), 
but that it can be observed only approximately by the 
survey process. We observe the catch Z at location (~, 
y) where x and y are the positions on a plane. Assuming 
that catchability is constant spatially, as seems to be 
essential for any present available method (see Appendix 
D for an attempt to overcome this difficulty), survey 
results may be regarded as point estimates of the density 
of fish. An abundance index may be obtained by integrat­
ing under the surface so defined (see Shepherd, 1986). 

For equally spaced and equally precise observations, 
such an integration is well-approximated by a simple 
arithmetic summation over the survey data (multiplied by 
a constant for the area occupied by a "typical" station). 



However, this is not true if the stations are not uniformly 
distributed, or have varying precisions. Both these 
complications normally arise in practice. They may be 
overcome by forming an appropriate average over 
stations within a stratum, and multiplying by the stratum 
area before summation. The estimation of an "appropri­
ate" average is, however, not trivial or obvious: the 
precision of individual observations, their location and 
intercorrelation are all relevant. Furthermore, if the 
strata are large, there may be systematic spatial variation 
within strata which are not properly treated by this 
process. 

An alternative procedure is to use numerical integration 
under some representation of the surface described by the 
data. This can be done through trend surface analysis. 
Such an approach will be optimum where the random 
component added to the trend which, in practice, has to 
be simple (described as a model with few parameters), is 
a white nose (no spatial autocorrelation). If this is not the 
case, a direct interpolation technique can be more 
efficient. 

Visual representations of such surfaces are routinely 
presented by contouring and 3-D surface plotting pack­
ages. They generally rely on an interpolation of the data 
onto a regular rectangular grid, although some techniques 
may avoid this step (Watson and Philips, 1985). A 
simple summation of these interpolated values is a 
suitable procedure for the integration required (ignoring 
the numerical constant relation to the rectangular size and 
some small edge effects). 

Various algorithms may be used for the interpolation 
onto the regular grid. Two techniques have been investi­
gated. The first one called Kriging can be based on a 
firm statistical background and provides, in addition to 
estimators of interpolated densities, an estimation of the 
corresponding variances. For both concerns (optimality 
and variance estimations), this requires statistical 
assumptions which may be far from being satisfied in 
practice. In such a case, it just becomes a special case of 
the weighted mean estimators and may remain reasonable 
even though it may not be optimal. The second inter­
polation method, due to Shepherd and Nicholson (1986), 
is an intuitive, empirical one, which appeared especially 
interesting to compare with Kriging since it is not a 
weighted mean technique. 

Mapping surfaces over a region can have many uses. 
Here we limit the discussion to the utility of these 
approaches for generating an aggregate measure of 
biomass indices over the entire region of interest. 

For further discussions about the mapping problem, one 
should refer to the relevant ICES Working Group 
(Anon., 1989). However, as pointed out in Section 2.1.2, 

mapping should always be recommended as a first stage 
in the analysis of data. 

2.4.2 Kriging 

The value of Z at any point (X;, y;) on the surface can be 
thought of as being composed of 2 parts, the mean 
(trend) and the error (random component) (see Appendix 
F for a discussion of the "randomness" concept). 

The mean component generates the trend surface. 
Though there is a technique referred to as "universal 
kriging" which accounts for both the trend and the error 
structure, we did not evaluate it. In practice, simple 
kriging can be applied to the residuals after some 
procedure has been used to remove the trend, or it must 
be assumed that there is no trend in the data. De-trended 
data can be used to determine the correlation in the value 
between spatially adjacent points at various distances. 
Although direction can also be considered, this added 
complication was not examined The correlation is 
summarized by a semi-variogram which is a plot of the 
expected suarred differences against spatial distance: 

is plotted against 

The mathematical expectation E (Z(x;,y;) = Z (xi,yy not 
being known, the observed values (Z (x;,y;) are plotted 
[see examples on Figure 2.4.(1)1. 

Such plots for the English groundfish surveys were 
examined. Log-transformed data were used. Semi­
variograms of raw data displayed more scatter. The 
effects of interpolating grid points on the log scale, then 
transforming to the arithmetic scale for integration are 
not known precisely but it is hoped that any bias will be 
a multiplicative factor, constant from year to year. 

Construction of "smooth" semi -variograms by averaging 
the value differences [Figure 2.4.(2)] over coarse spatial 
intervals gave results which indicated some pattern, 
whereas semi-variograms of individual observations 
display a large amount of scatter [Figure 2.4.(1)]. 

Examination of semi-variograms for 1977-1981 clearly 
shows a group of points with lower value differences at 
a small spatial distance (near origin). These are likely 
due to "replicate hauls". The average value difference for 
these is often referred to as the "nugget" effect and 
reflects replicate variance. In all semi-variograms, 1977-
1988, value differences appeared to asymptote at a 
distance of about 40 nautical miles. Some semi-vario-
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grams appeared horizontal beyond 40 nautical miles 
while others displayed some increase over the entire 
range. Most showed greater increase beyond 200 nautical 
miles. 

The increase in value difference is symptomatic of a 
trend and further work should have been preceded 
perhaps by some de-trending process. From these 
observations a single semi-variogram "model" was 
chosen to apply to all years. Using different variograms 
from to year would imply varying smoothing intensities 
from year to year, which could introduce varying biases 
from year to year. The selected model included a 
"nugget" effect and had an asymptote starting at 40 
nautical miles. This can be interpreted to mean that 
errors are not correlated for pairs of points further than 
40 nautical miles. Subsequent to 1981, almost all stations 
were further than 40 nautical miles. apart, and it can be 
anticipated that the "krigged" results would not be much 
different from arithmetic means. 

We proceeded nevertheless to interpolate the grid points 
using the selected variogram. The grid-point values are 
a weighted average of surrounding points with weights 
being determined as a function of the selected semi­
variogram. Beyond a distance of 200 miles from grid 
point, observed values are not taken into account. This 
choice reduces the possible consequences of existing and 
neglected large-scale spatial trends. The aggregate 
measure was obtained by retransforming the grid points 
back to the arithmetic scale and integrating for the 
region. Most kriging partages, including the one we used 
(MAGIK), provide not only an interpolated value on 
each grid point, but also an estimation of the correspon­
ding error variance. This makes it possible to attempt 
some correction for bias. The two approaches used to 
retransform were: 

a) [exp(z)] + 0.1 
and 
b) [exp(z - o-2/2)] + 0.1 

Two series of abundance indices were generated from the 
kriging results and these were compared with VP A and 
stratified means. 

We also examined the semi-variogram for the Icelandic 
ground fish survey. A strong increasing trend was evident 
to about 300 nautical miles and a rapid decline thereafter, 
possibly due to the geometry of the ground surveyed, 
i.e., toroidal [see Figure 2.4.(3)]. De-trending would be 
necessary before proceeding. The conclusions are as 
follows: 
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1 Careful examination of the spatial structure 
should be completed (e.g., semi-variogram) 
before proceeding. Frequently, these studies will 
guide subsequent steps or even determine 
whether it is worth proceeding further. 

2 If these studies show little structure other than a 
nugget effect and a trend, then it can be antici­
pated that integration of interpolated results will 
not do better than simple techniques. 

3 For age 1 cod from the English groundfish 
surveys, the standard index (arithmetic mean) 
could not be improved upon by the interpola­
tion/integration methods. 

2.4.3 Empirical interpolation 

2.4.3.1 The method 

The method is in fact a method of reverse interpolation: 
it determines those values on a rectangular grid which, 
when subsequently used as a basis for interpolation by a 
local bicubic spline, give estimates at the survey loca­
tions which are as close as possible (in a weighted least 
squares sense) to the observed value at those locations. 
This is a good method for contouring because it involves 
little or no non-essential smoothing of the data, so that 
individual observations maintain correct positions relative 
to the contour lines to the maximum possible extent. 
Other common algorithms (e.g., that of McLain, 1974) 
may involve more or less arbitrary smoothing, which is 
usually undesirable for contouring (though not necessar­
ily for the present application). 

Some minimal smoothing is always required, however, 
because the interpolating spline used here is strictly local, 
so that the effects of spurious or incorrect observations 
are localized in space, and without smoothing the values 
on the grid would be undefined in unsampled regions, 
where one usually wishes to simply interpolate in some 
smooth fashion. By increasing the value of a smoothing 
parameter (a weight attached to the sum of squares of 
deviations between adjacent grid-point values), progres­
sively smoother and smoother representations of the data 
can be constructed if so desired. 

By working with either logarithmically-transformed or 
untransformed data, one can allow for the presence of 
log-normally distributed (multiplicative, constant cv) or 
normally-distributed (additive, constant variance) errors. 
The former is usually more appropriate, and also ensures 
that negative values are not computed for what are 
usually non-negative quantities. Since a least squares 
calculation is carried out, it would in fact be very easy 
to carry out a weighted least squares calculation, and 
thereby allow for other error structures (e.g., that 
proposed by Shepherd and Nicholson, 1986), but this has 



not been implemented so far. For integration, the results 
are in any case dominated by the large estimates (it does 
not matter if small numbers are badly estimated), and for 
these the constant cv assumption implicit in the log 
transformation is, in any case, the most appropriate, and 
down-weighting the influence of small observations 
would have little effect. 

Once the gridded values have been obtained, a simple 
weighted summation of them provides an index of 
abundance. The weights allow for the partial rectangles 
adjacent to the coast, and are zero for those on land! 
Note that retransformation (without a bias correction) is 
required before summation, since integration is funda­
mentally an additive process. The size/spacing of the 
rectangular grid is a matter of choice: it is usual to have 
roughly the same number of grid points as actual sample 
locations. If fewer grid points are used, some smoothing 
(on the scales of the grid size) will result automatically. 
Points which are very close together (relative to the grid 
spacing) will be averaged together in any case. 

The method was applied, using a log transformation, to: 

a) the EGFS age-l cod data for 1977 to 1988, with 
smoothing parameter values of 0.01 (minimal), 
0.1, 0.3 and 1.0, and to the age-2 data with a 
smoothing parameter of 0 .1. 

Contour plots may of course be obtained as a 
bonus when a contouring package is used for the 
calculation, although this is not an essential part 
of the procedure. The results for the years 1978, 
1982, 1983 and 1985 are displayed in Figures 
2.4.(4), 2.4.(5) and 2.4.(6), and they clearly 
show the varying degree of smoothing applied. 
With minimal smoothing, and the 1 degree by 1 
degree grid used here, the surfaces are highly 
structured and appear to be reflecting consider­
able sampling noise (though this is a subjective 
judgement only). 

b) the Icelandic cod survey data. 

2.4.3.2 Results 

a - English Groundfish Survey 

The index series obtained are listed (together with the 
VP A estimates and the standard index values )in Table 
2.4.(1) and plotted in Figure 2.4.(7). A regression 
analysis of these results (using the usual RCRTINX2 
program) is given in Table 2.4.(2). It can be seen that 
the "rough" (minimally smoothed) estimate is clearly 
unsatisfactory, having a very low correlation with VPA. 
This seems to be due to occasional rough values in the 
gridded estimates, almost certainly because the problem 

is ill-conditioned. This estimate is not, therefore, plotted 
or considered further. 

The other three estimates ("bumpy", "medium" and 
"smooth") are highly correlated with one another and 
with VPA. The medium and smooth estimates are 
progressively and systematically smaller than the bumpy 
estimate, reflecting a gradual progression towards the 
weighted geometric mean of the data as the smoothing is 
increased. 

Interesting! y, and rather surprising] y, the least smoothed 
(bumpy) estimate has the highest correlation with VPA. 
Figure 2.4.(7) shows clearly that the reason for this is 
that the low values in the time series are exaggerated, 
giving these series a higher dynamic range than the 
VPA, and, therefore, a lower slope in the calibration 
regression analysis. This may be due to excessive weight 
being given to the small observations, which have not 
been downweighted, but this requires further investiga­
tion. 

The best performance by the "bumpy" estimate is, 
however, only marginally better than that of the conven­
tional stratified mean estimate. The RMS residual error 
is 0.155 for the full series of 11 data points compared 
with 0.184 for the standard estimate. This indicates that 
such a method can perform better than conventional 
methods, but the improvement may not be worth the 
extra effort. It remains to be seen whether greater 
improvements are achievable on less well-behaved data 
sets, or by improving the method by downweighting 
small observations. 

The danger of a change in the smoothing intensity, when 
a transformation is used, appears very clearly in Table 
2.4.(1) and Figure 2.4.(7). 

For age 2, the method was applied using the low level of 
smoothing (0.1) only. The method performs well (r = 
0.89, residual standard error = 0.21), but is not better 
than the standard index which is equally good. 

b - Icelandic Cod Survey Data 

The data were interpolated using a smoothing parameter 
of 0.1 onto a 19 x 11 grid spanning the space 63° to 
68°N latitude, and 10° to 28°W longitude. The results 
yield an index series of 1118, 607, 98, 76, 64 for the 
years 1985 to 1989. This can only be compared with the 
multiplicative model estimates of Stefansson (1988), i.e., 
1000, 1218, 453, 404, 467. The overall picture is clearly 
similar (two good years followed by three poor ones) but 
the estimates are not directly comparable, and no further 
conclusion can yet be drawn. 
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2.4.4 Discussion 

The method described is of interest because it is firmly 
based on the concept of integration under an imperfectly 
observed surface, representing a spatial pattern. The 
cause of the spatial pattern is not considered (i.e., the 
influence of depth or other causal factors is ignored). 
The pattern is simply taken for granted as observed. 

The advantages of this method (and others of the same 
type) are: 

a) It can be applied to almost any data, regardless 
of whether the station positions are uniform or 
not, or whether they are fixed or re-randomized. 

b) It allows appropriately for non-uniform station 
locations. 

c) It involves the fitting of a model surface so 
transformations and/ or weighting procedures can 
be applied to allow for the error structure of the 
data, and it can cope gracefully with missing 
data. 

d) An explicit smoothing procedure can be used to 
trade off bias and variance in the estimate 
obtained, ultimately (presumably) in some 
optimal way. 

e) No (possibly incorrect) assumptions about 
systematic pattern in the surface fitted (compare 
with the multiplicative model) or the complica­
tion of parametric form of the surface (compare 
with simple trend surface fitting). 

For these reasons, it seems quite possible that this 
procedure could be useful operationally, even though its 
basis tends to the heuristic rather than the rigorous. It 
should certainly go some way towards reducing the 
sensitivity of the indices derived to isolated high 
observed values, and towards averaging out the noise in 
the data in a sensible way. 

2.5 Sampling Scheme Design 

2.5.1 Random and fixed survey 

Ideally, survey data would be collected according to a 
pre-specified design with known statistical properties. In 
practice, this ideal may be compromised. 

Data from surveys may often be used for more than one 
purpose. Estimates of overall catch per unit of effort 
(CPUE) or of abundance may be required for several 
species. The spatial distribution of these species may also 
be of interest. This may make it difficult to optimise the 
survey design for a single objective. Also, surveys may 
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have evolved from some preliminary survey, with parti­
cular features maintained for historical continuity. There 
will also be practical constraints such as the limits of the 
cruise program and bad weather. Some parts of the area 
may also be inaccessible, for example where gear 
damage is likely, or where fishing is denied, e.g., in the 
vicinity of pipelines. 

A working paper presented to the meeting (Working 
paper number 1) showed that obtaining unbiassed 
estimates of differences in year effects depends upon the 
interaction between simplicity and persistence and the 
survey design. A persistent spatial pattern always leads 
to unbiassed trend estimates, regardless of the use of 
randomized or fixed station survey design. A simple 
spatial pattern may be fitted annually and extrapolated 
over the total area to yield unbiassed year-to-year 
estimates. In the case of a changeable and complex 
spatial pattern, a fixed stations design will lead to biassed 
estimates except in exceptional and unlikely circum­
stances. A randomized design results in unbiassed 
estimates even in this case. 

Clearly, given the advantages of a randomized design in 
extracting unbiassed trends, such a design is desirable. In 
practice, however, a strictly randomized design is 
generally not a workable option. The exigencies of cruise 
timing and the weather, together with out-of-bounds 
areas, mitigate against randomization in favour of a fixed 
station design. But if a fixed design is used, the analysis 
may be more complicated. If problems can appear under 
very specific conditions (Hoenig, pers.comm.), the 
experience of this Working Group suggests that a fixed 
station design does not lead to difficulties in analysis, 
provided that appropriate analytical techniques are 
utilized. 

2.5.2 Systematic and simple random sampling 

It can be shown that a systematic grid will generally lead 
to more accurate estimations of the total numbers over an 
area than a Simple Random Sampling (SRS) scheme. 
This is due to the fact that within SRS schemes, large 
sub-areas may be unsampled, the corresponding local 
density being difficult to estimate from observations 
located too far away. On the other hand, some sampled 
points may appear quite close to each other so that they 
bring partially redundant information. This can be 
interpreted in terms of autocorrelation functions or 
equivalently through variograms. If no spatial pattern 
appears (no autocorrelation for distances different from 
zero, or variogram just limited to a nugget effect) the 
sampling design has no influence. Within such a "white 
noise" context only the sample size matters. 

On the other hand, if strong spatial patterns exist, SRS 
will be much less efficient than systematic sampling. 



In the fisheries survey context, macroscale patterns (scale 
= hundreds of miles) are quite common. It thus appears 
dangerous to implement a sampling scheme where large 
sub-areas remain unsampled. This leads to some 
systematic division into blocks, based upon some a priori 
knowledge about the fish distribution, taking, for 
instance, depth into account. If, within each "block", a 
SRS scheme is applied, this corresponds to the basic 
stratification scheme. 

Within a block, a scheme other than SRS can also be 
applied, for instance a more or less systematic one. 
However, the importance of such choices can often be 
limited. At a scale of a few tens of miles, the nugget 
effect will often be markedly dominating. In such a 
context, the redundancy associated with neighbouring 
stations is limited, even if it still exists. 

It must be pointed out that sampling variances are easily 
calculated within a stratified scheme. More sophisticated 
calculations, technically possible, are required in other 
schemes. However, in the present context, this has not a 
m~or importance, since the sampling variances calcu­
lated through the usual formulas are not pertinent with 
respect to year-to-year changes (see Section 2.1.2 C). 

2.6 Discussion 

The correlations between the North Sea cod, age 1, log 
abundance indices given by the various methods, and the 
corresponding VPA results are given in Table 2.6.(1). 

2.6.1 Pre-processing of data-conclusions 

1 -None of the methods tested yields significantly better 
results than the standard arithmetic mean index for the 
North Sea cod data set (although several methods 
perform slightly better). Interpolation and GLM methods 
should be more robust to missing data (using fixed 
stations), to variable precision of the observations, and 
to non-uniform distributions of the stations and they 
warrant further investigation. 

2 - No advantage was obtained when using statistically 
optimal interpolation methods (Kriging). Complex 
interpolation methods are required primarily for mapping 
purposes and may not be essential for the estimation of 
integrated indices. 

3 - Interpolation methods (including Kriging) should be 
used with care on commercial CPUE data, since fisher­
men may congregate on high abundances, and an 
inappropriately large choice of scale parameter for the 
interpolation may spuriously extend this high abundance 
over too large an area. 

4 - The GLM models appear particularly useful if 
auxiliary information is to be included or if missing data 
are to be filled in. 

5 - The GLM and other models are very useful for 
understanding factors affecting the distribution and 
population dynamics of fish, e.g., density-dependent 
habitat utilization. 

6 - The results of the GLM models depend upon the 
transformation and distributional assumptions. The results 
of the interpolation and Kriging methods also depend 
upon these factors. 

7 - Interaction terms in GLMs should be estimated and 
examined. If the year effect is to be taken as an index of 
abundance, no interactions terms with year should be 
included in the model. It is preferable to calculate fitted 
values when interactions are included, and construct the 
index from these by interpolation and integration. 

8 - When an interpolation technique on a stratified 
scheme is combined with a transformation, the procedure 
should be kept strictly constant from year to year. 

9 - Applicability of methods 

Fixed stations Random stations 

Stratified mean + (biassed?) 
GLM + 
Interpolation + 

+ (increased variance?) 
stratum effects 

+ 

2.6.2 Need for further studies 

Theoretical studies 

Special attention should be paid within interpolation 
techniques to the fact that series of yearly surveys are 
available. This could help the estimation of possible 
spatial trends but it is also a specific development of 
variance estimation techniques. The cooperation of 
qualified statisticians would be necessary. 

Numerical calculation 

It seems almost certain that the performance of the 
various methods depends considerably on the nature of 
the data, and the Working Group was able to carry out 
reasonable comparative tests on only one data set, which 
is of relatively good quality, and most likely untypical in 
other respects. 

The Working Group, therefore, recommends that more 
thorough comparative testing of the four main methods 
[stratified averages, simple interpolation, Kriging and 
GLM (multiplicative) models] should be carried out on 
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a set of about four contrasting real data sets for which 
VP A calibration data exist. 

These should probably include a random stratified data 
set (from the NW Atlantic, perhaps), at least one data set 
known to be troublesome (e.g., IYFS age 1 cod), one 
with a simple persistent structure (e.g., EGFS age 2 
haddock) and one for a pelagic stock (IYFS I-ring 
herring, perhaps). 

These analyses could be carried out in national institutes, 
but it would be desirable if the results could be discussed 
and evaluated by the assessors and other interested 
parties, perhaps at a small, ad hoc working party meet­
ing, with the aim of producing a report for consideration 
at the next full meeting of the Working Group in 1991. 

3 STOCK ASSESSMENT 

3.1 Workshop in Reykjavik 

3.1.1 General comments 

Results of the 1988 Workshop on Methods of Fish Stock 
Assessments (Anon., 1988) were presented by G. 
Stefansson and discussed by the Working Group. 

It was felt that, although the Workshop was successful, 
it was not possible to recommend a single assessment 
method for universal application. On the basis of the 
limited simulations, however, certain methods do seem 
more promising for future application and research. 
These are discussed below. 

It was further noted that the objectives of the Reykjavik 
meeting, namely to compare methods for the assessment 
of fishing mortality and population size, are only a part 
of the more general problem of comparing estimation and 
prediction methods. It would also be more useful to 
include the prediction models in the calculations so as to 
evaluate the impact of uncertainties in short- and long­
term yield, population trends and catch trends under 
different management strategies. 

3.1.2 Comparisons of methods 

The Working Group noted that comparisons based on 
mean square errors could lead to different conclusions, 
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depending on which tables were used. In fact, the tables 
giving ranks to methods (based on average Fat ages 5-9) 
are at first sight inconsistent with tables giving individual 
sum of squares for each age group. This is primarily 
because the summary tables emphasize certain features of 
the results, but also because of the bias inherent in 
computation of averages of lognormally- distributed 
quantities and the cancellation of biases averaging. 

It was, therefore, suggested that the histograms in the 
report should also be used for comparing the methods. 
The histograms of primary interest are given in Tables 
3.45, 3.48 and 3.56 and 3.59 in the Reykjavik report. 
The Working Group acknowledges that these histograms 
should be treated with care and they do not give absolute 
reasons for accepting or rejecting methods, but they are 
felt to give strong indications as to which methods are 
worthy of further study. It should be noted that the 
ADAPT and TSER2 methods of analysis are quite prom­
ising, but histograms are not available for all data sets 
for these methods. Further, the time series method 
TSERI did not use ages 3 or 12. 

Based on the above tables, it is obvious that all methods 
tend to fail quite badly several times during the 10 runs 
performed. "Quite badly" can be defined as yielding an 
F-at-age which over- or under-estimates the true F-at-age 
by more than 50%. One interpretation of this result is 
that when advice is given on 10 stocks in a given year, 
one can expect to get quite wild results for at least one 
age group in one of the stocks. It was pointed out, how­
ever, that most current methods of prediction (Status quo 
T AC, constant or fixed percentage increase in biomass, 
etc.) are quite robust to such errors, as positive errors in 
F-at-age are often accompanied by corresponding nega­
tive errors in stock size, so the errors will cancel to 
some extent when prediction is performed. 

A "minimax" index for analyzing these histograms was 
calculated as follows: a simple count of how often a 
method yields estimates more than 50% away from the 
true (counted across a relevant age range) is an indicator 
of the "badness" of a method and gives a simple non­
parametric ranking, which is not affected by the biases 
involved in averaging. Since the most important age 
groups in the catches are ages 4-7, these are used in the 
following text table. The table thus gives the number of 
estimates which are 50% or more above or below the 
true values. 



Method 

Hybrid 

LS 

ACl 

AC2 

AC3 

AC4 

AEFM 

CCPUE 

SURVIV 

XSA 

CAGEAN 

GLM 

TSERl 

Data set 5 

N 

8 

13 

17 

18 

14 

17 

16 

10 

12 

6 

5 

7 

8 

F 

15 

15 

15 

16 

14 

18 

17 

13 

18 

8 

4 

7 

8 

Data set 6 

N 

15 

12 

6 

9 

20 

20 

20 

11 

10 

5 

4 

7 

3 

F 

16 

8 

16 

20 

16 

16 

22 

13 

16 

5 

5 

8 

6 

The actual computation of this index depends somewhat 
on the age classes and percentages used. The following 
table is based on the same data sets, but shows the num­
ber of occurrences of estimates that deviate more than 
70% from the true values, summed over the full age 
range, 3-12. 

Method 

Hybrid 

LS 

AC1 

AC2 

AC3 

AC4 

AEFM 

CCPUE 

SURVIV 

XSA 

CAGEAN 

GLM 

TSER1 

Data set 5 

N F 

10 17 

11 8 

9 15 

11 16 

13 9 

15 13 

16 32 

11 

3 

5 

2 

10 

24 

25 

19 

3 

23 

Data set 6 

N F 

16 18 

6 7 

3 21 

3 25 

36 24 

34 29 

23 40 

14 

5 

3 

8 

10 

21 

28 

6 

7 

16 

3.1.3 Conclusions 

From the above tables one may conclude that some of 
the methods would give unreliable results for stocks 
similar in structure to the ones in data sets 5 and 6. It is 
further observed that four methods emerge as data sets 5 
and 6. It is further observed that four methods emerge as 
having the greatest potential in this setting, for estimating 
ages 4-7, which are the most prominent ages in the 
catch, namely XSA, CAGEAN, GLM and TTSER1. In­
tegrated methods dominate this group. Further studies 
are needed to firmly establish the range of circumstances 
in which each method performs satisfactorily. 

It should, however, be noted that the TSERl variant of 
the Time Series method cannot strictly be regarded as a 
tuning or integrated method, since it makes no use of 
abundance indices, and, therefore, has no chance of de­
tecting a sharp change of fishing mortality in the last 
year, which is a principal goal of tuning procedures. It 
is in fact likely to underestimate changes, including 
trends, in fishing mortality, unless a trend parameter is 
estimated, in which case the solution is likely to be ill­
determined (Gudmundsson 1987a, p. 17, and 1987b 
pp.13 and 21). 

Conversely, the inclusion of a prior assumption of mod­
est changes of fishing mortality has the potential to 
improve the stability of the estimates considerably, and 
may well be desirable when auxiliary information is 
included as in the TSER2 variant. 

When all age-groups are considered, the minimax index 
(based on 70% error) suggests that some methods work 
better for estimating F while others work better for N. 
Some methods worked well with one data set but not as 
well with the other. While CAGEAN did reasonably well 
in data sets 5 and 6, it showed a systematic bias in data 
set 4 with most estimates of N and F showing a system­
atic percentage deviation greater than 50% from the true 
values. No analysis of the simulation results has indicated 
that a single method outperforms the others for estimat­
ing F or N on all data sets studied. 

While the Reykjavik meeting did not indicate a single 
method, there are a number of general observations that 
can be made from the results of the simulation. 

1. Quality of data 

The "quality" of the data is an important element in any 
assessment. As each method relates catch rates to 
biomass in some way, the stock size or fishing mortality 
estimates will be poor if the relationship cannot be 
measured with precision. 
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All methods are sensitive to errors in the data, but to 
varying extents. In particular, VPA-based techniques 
(i.e., ad hoc tuning, XSA and Survivors) treat catch-at­
age data as exact and would be expected to work well 
only when the errors in it are small compared with those 
of CPUE data. In addition, ad hoc tuning methods are 
particularly sensitive to errors in CPUE in the final year, 
and if the CPUE data are of poor quality, an integrated 
method should be preferred. The position may be sum­
marized in the table below, which indicates which class 
of method is appropriate in various situations. 

CATCH DATA 

good quality poor quality 

CPUE data good quality any integrated 

poor quality 
Survivors or 

None 
Integrated 

In particular, it should be noted that successful applica­
tion of ad hoc tuning methods requires the availability of 
good quality catch-at-age data, and at least one good 
quality CPUE index series. Even integrated methods 
would be degraded unless adequate catch and effort data 
are available. 

2. Convergence 

All methods depend upon the convergence of Virtual 
Population Analysis. The lower the fishing mortality in 
recent years, the weaker this convergence. Typically, 
weaker convergence of the VP A will translate into larger 
variances of stock size estimates for the last years. Very 
weak convergence of the VPA generally leads to a situ­
ation where the catchability (q) and terminal fishing 
mortality (or survivors) cannot be estimated simulta­
neously. In some integrated methods, this will translate 
into very high correlations between parameter estimates 
and the correlation matrix of parameters can be used to 
detect that such a problem exists. Ad hoc methods will 
tend to take more iterations to provide an answer and the 
resulting estimates may be ill-determined. 

It should also be stressed that all available methods 
require some restrictive assumption about either fishing 
mortality or catchability (or selection pattern) on at least 
one fleet/survey for the oldest age group(s). This usually 
takes the form of assumed constancy of either the catch­
ability or the total exploitation pattern on the oldest ages, 
but this assumption cannot usually be tested or verified. 
Such an assumption is, however, essential. It is, further­
more, dangerous to assume low F or reduced catchability 
on the oldest ages, since this may allow the method of 
analysis to converge to the ever-present trivial solution of 
the problem, with zero (or very small) fishing mortalities 
everywhere. 
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3. Parsimony in model specification and robustness 

The methods which appear to perform reasonably well 
over most data sets are methods for which the number of 
parameters is limited. Parsimonious systems leave less 
possibility for the parameters to become aliased (struc­
turally). The Working Group noted, however, that the 
observed robustness of certain models may be related to 
the structure or complexity of the data set studied. For 
instance, a method like Laurec-Shepherd performed 
reasonably well because all the data sets were based on 
a "multiple fleets" scenario where a relatively high 
number of indices is available. When the number of 
indices is reduced to one or two (as is often the case for 
stocks in the NW Atlantic or elsewhere), estimates from 
ad hoc tuning methods will tend to be strongly influenced 
by the uncertainties associated with the actual "realiz­
ation" of the index in the last year. 

Other methods, such as SURVIVORS, XSA, CAGEAN 
or ADAPT, provide estimates which are less dependent 
upon the realization of the index in the last year and 
would be expected to be more robust, particularly when 
the number of indices is limited. In short, while there 
may be little benefit to move beyond an ad hoc approach 
when several indices of good quality are available, the 
use of an integrated approach is very desirable in a 
situation where only one or two indices of moderate 
quality are available. 

This explains, in essence, the difference between the 
approach used in the North East Atlantic (where multiple 
indices are often available) and that used in the NW 
Atlantic (where only one or a few indices of abundance 
are available). When only a single index is available, it 
is preferable to move to an integrated approach which 
treats the data more efficiently (by using information 
from all years), especially if its precision is less than 
excellent. In any case, it is desirable to use a method 
which provides diagnostic tools to evaluate the "quality" 
of the estimates or the degrees of deviation from under­
lying assumptions. 

3.2 Directions in Further Development of Current 
Methods 

3.2.1 Further development of current methods 

As the Reykjavik Workshop indicated, it is felt that the 
more complex methods cannot realistically be used in 
their current version within the ICES assessment Work­
ing Group framework. Some statistical expertise is 
required and extensive analysis of residuals is needed to 
ascertain the specific models to be fitted. 

The Working Group, therefore, suggests that these 
methods be augmented by adding program modules 
which guide the user in selecting initial parameter values 



and in specifying the underlying model. In some cases it 
may be possible to (partially) automate the model selec­
tion, although it is realized that an automatic model 
selection is usually inferior to one based on a careful 
scrutiny of output, including model residuals. However, 
automatic model selection is certainly preferable to the 
situation where a user chooses an incorrect model and 
does not realize this. 

It is noted that the addition of such program modules is 
a step in the direction of expert systems, where as much 
information as possible is included in the programs, yet 
allowing the users to intervene at any stage. 

3.2.2 Data sets for testing new methods 

Data sets 5 and 6, as described in the Reykjavik report, 
are available on diskettes. The Working Group strongly 
recommends that new methods of fish stock assessments 
be initially tested on these data sets, using the same 
procedures as used by the Reykjavik Workshop. 

It should be noted that in these two data sets, noise added 
to the data was such that it had mean zero on an untrans­
formed scale (in data sets 1-4, however, no variance 
correction was used when adding noise, resulting in 
generated values which were unbiased on a log-scale). 

Given the high variance of the estimates for individual 
ages noted above, however, it is not surprising that this 
is not noticeable in the table of residuals. As pointed out 
by Laurec and Perodou (1987), when the variance is high 
enough for the bias correction to be significant, the total 
prediction error is dominated by the variance rather than 
the bias. 

3.2.3 Future techniques for testing methods 

A given method may perform quite poorly in terms of 
estimating stock size, but still provide a good estimate of 
status quo T AC. A natural next step in testing methods 
is, therefore, to add the T AC computations to each 
method tested. Such computations must include some of 
the common management strategies, such as status quo 
T AC, T AC based on a target level of fishing mortality 
and a target spawning biomass. 

Within such a framework, more methods can be tested, 
including stock production models. 

A further development is to consider the longer-term 
trends in catches and stock sizes, given a particular 
management strategy and a particular T AC estimation 
method. Thus, for example, it is quite feasible to exam­
ine how a management strategy based on status quo T AC 
computed from the LS method will perform in a 15-year 
period. Items of interest include the total catches in the 
period, year-to-year variation of catches, minimum stock 

size in the period and terminal stock size. It should be 
noted, however, that the only methods which are testable 
in this framework are those which can be made fully 
automatic, since user intervention is not possible when a 
large number of simulations is performed. 

3.3 Incorporation of Recruitment Information 

Some of the methods will allow inclusion of recruitment 
indices. These can be very valuable information, espec­
ially when the level of fishing mortality is high. The 
Working Group noted that recruitment estimation in 
some cases involves somewhat more complex procedures 
such as shrinkage toward the mean and estimations of 
non-linear relationships. These features are usually not 
incorporated in the stock estimation methods and must, 
therefore, be used outside the models. 

However, in some cases where such anomalies do not 
seem to occur, it is the recommendation of the Working 
Group that tuning programs or integrated methods be 
used to incorporate this information, as this will provide 
consistency in the overall estimation procedure. For most 
of the methods, it would in any case be feasible to 
include these additional features in the tuning procedures 
and this would be desirable. 

3.4 Dangers of Tuning Methods 

Each method may fail if there are violations of the 
model's assumptions or if the user is inexperienced. 
Table 3.4.(1) gives a brief summary of the dangers of 
each of the methods described in the 1988 Methods 
Workshop Report under the available implementation. 
The methods are divided into the categories that are 
largely self-explanatory. The intermediate grouping 
describes the survivors and extended survivors methods, 
which are viewed as intermediate between the ad hoc and 
fully integrated methods. 

This table should be read in conjunction with the report 
of the Reykjavik meeting. 

3.5 Logistic Considerations 

The Working Group has identified a need to move 
towards implementing more sophisticated methods when 
the available data are of poor quality, which is regrettab­
ly a common situation. In addition, it is apparent that 
many Working Groups already have difficulty in using 
existing relatively straightforward techniques. 

The process of transmitting the necessary expertise to 
several members of all assessment Working Groups is 
already proving to be slow, expensive and inefficient. 
The Working Group considers that it would be highly 
desirable and appropriate for the ICES Secretariat to 
provide much more statistical guidance and assistance to 
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assessment working groups and to ACFM than is poss­
ible at present. 

This could probably be achieved by providing the ICES 
Statistician with (say) two additional staff with appropri­
ate qualifications and experience, to provide a sustained 
source of expert advice, and to oversee the continuing 
development and improvement of the assessment tools 
available at ICES and the Working Group recommends 
that this be considered. It is not a major financial issue 
in the light of the great importance and central role of 
ICES in providing assessment advice, the existing staff­
ing levels devoted to other activities, or the total invest­
ment in manpower and other costs to the assessment 
process. 

4 IMPLICATIONS OF TIMING OF WORK­
ING GROUP ADVICE AND CHANGE IN 
THETAC YEAR 

The timing of assessment working group meetings is 
closely linked to the timing of the ACFM meetings. Both 
managers and scientists want the most recent information 
from surveys and commercial fisheries to be included in 
the assessments before advice on T AC is given. How­
ever, this has the disadvantage that ACFM is given short 
time to consider some of the working group reports and 
the managers are given short time to consider the advice 
and carry out the framework of negotiations needed 
before the final T AC can be agreed. 

The terms of reference to this Working Group reflect 
two possible solutions to this problem. One is to change 
the TAC year. The other is to ignore the more recent 
information, which might allow both working groups and 
ACFM to meet earlier in the year. 

The Working Group observed that for a number of 
assessments, the data base only allows predictions to be 
made on a yearly basis and that a change in this pro­
cedure would require several years of notice. A change 
of TAC year, therefore, means that the TAC advice will 
be applied to a different period than that for which the 
calculations were made. It is also assumed that the TAC 
year must be the same for all stocks. 

4.1 Change in the TAC Year 

TAC years beginning during the first half of a year 
would be based on final advice given by ACFM in 
November with an appropriate lag. T AC years beginning 
in the second half of a year would be based on final 
advice given by ACFM in May. For example, advice 
given by ACFM in November 1990 for 1991 would be 
implemented in February or April 1991 while advice 
given by ACFM in May 1990 would be implemented in 
either July or September 1990. 
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The following scenarios for a T AC year were con­
sidered: 

TAC year ACFM Working Groups 
meetings 

a Jan-31 Dec May, Nov As present 
b Feb-31 Jan May, Nov As present 
c Apr-31 Mar May, Dec As present 
d Jul-30 Jun Nov, May Some moved to spring 
e Sep-31 Aug Nov, May Some moved to spring 

The implications for the different scenarios are: 

a. The present situation; 

b. One month more for negotiations. T AC implemented 
one month later. Minor consequences for manage­
ment; 

c. One month more for ACFM. TAC implemented 
three months later, which means a corresponding 
time-lag in correcting for new advice next year; 

d. More time for ACFM, as present for negotiations. 
Lower precision in advice for some stocks may be 
balanced by implementing the T AC six months 
earlier; 

e. More time for ACFM, two months more for negoti­
ations. Lower precision in advice for some stocks to 
some extent balanced by implementing the T AC four 
months earlier. Little new information available for 
most stocks between May and September. 

It should be noted that a change in the T AC year may 
create problems for management of stocks with seasonal 
fisheries, especially if these coincide with the period 
when the T AC year starts. 

It should also be noted that if the T AC year is changed, 
there will be a transitional period which may cause some 
practical problems. 

A working paper (Working doc. No.11) was presented, 
estimating the precision of the advice for North Sea cod, 
haddock and whiting for TAC years starting at the 
beginning of each quarter. The exercise is based on 
quarterly data and assumes that the TAC advice given 
corresponds to the T AC year. It is also assumed that the 
most recent information is used in each case. It should be 
noted that the exercise is not considering all aspects of 
the problem. The calculated coefficients of variance are 
given in Table 4.(1). The results indicate that the most 
precise advice is given for the present T AC year for cod 
and haddock, whereas the T AC year 1 July - 30 June 
might be best for whiting. The differences between T AC 
years are, however, small. The results also show that the 
advice for cod in general is more precise than for 
haddock and whiting. 



4.2 Timing of Working Group Advice 

In principle, the working group assessments should be 
the basis for the advice given by ACFM. If there is a 
considerable lag between the assessment and the imple­
mentation of the advice, the most recent information will 
not be used in framing the advice. The Working Group 
could not assess the effect on the reliability of advice for 
all the different stocks, but in some cases, especially 
when recruitment indices are important, increasing the 
time between the advice and its implementation could 
severely impact the reliability of the advice. Even in the 
cases where the cost to precision may be tolerable, it will 
in practice be very difficult to avoid pressure to take into 
account new information if it is thought that this may 
significantly change the basis for the advice. 

4.3 Advice 

Apart from a possible improvement in the working 
conditions for ACFM and managers, there appears to be 
no argument for changing the T AC year. Because of the 
demand for using the most recent information, it is also 
unlikely that working conditions will be much improved. 
A change in the T AC year may create a Jot of confusion 
and it is not known how management of the different 
stocks will be affected. The Working Group, therefore, 
does not advise a change in the T AC year. If a change is 
seriously considered, a thorough investigation of the 
implications for the different stocks is needed. 

As long as there is a demand for using the most recent 
information, moving working groups to earlier periods 
means that ACFM more often will have to carry out 
revised assessments. Also moving ACFM to an earlier 
time will create a situation where there is no one to give 
advice on the basis of new information. The Working 
Group considers that the present situation is preferable 
and advises that the need for precision in the advice be 
the most important factor in deciding the timing of 
working group meetings. 

The importance of the most recent information to a large 
extent reflects the fact that many stocks are heavily 
exploited and the catches are accordingly highly depend­
ent on recruiting year classes. A reduction in fishing 
mortality will reduce this dependence and, therefore, the 
need for using the most recent recruitment indices. It will 
also improve the precision of the advice and give more 
stable yields. 

5 CONCLUSIONS 

5.1 Advice 

Careful analysis of the basic data, including 
mapping and the examination of residuals, 

should be conducted systematically when a 
yearly index of abundance is constructed. 

Whenever a transformation is used for construct­
ing a yearly abundance index, the stratified 
sampling scheme in the interpolation procedure 
must be kept strictly constant from year to year. 

When a multiplicative model is used, if any 
interaction involving the years is included, the 
year effect should not be used as an estimate of 
yearly abundance. The fitted model should be 
used as an interpolating method, preceding an 
integration over space. 

Simple techniques may be almost as efficient as 
sophisticated ones, which will never create 
information which does not exist in the basic 
data, and can be misleading for unexperienced 
users. 

Comparisons of the various techniques used for 
constructing indices of abundance should be 
developed on real data, these indices being 
checked whenever it is possible against VP A 
output. 

Special attention should be paid to the develop­
ment of processing techniques adapted to com­
mercial disaggregated data, especially those from 
logbooks. 

No single tuning technique can be universally 
recommended at present. All methods require 
hypotheses that must be systematically checked. 
When the catch-at-age and the CPUE data are 
poor, no method can be really efficient. When 
both are of good quality the standard ad hoc 
tuning method (Laurec/Shepherd) performs 
satisfactorily. When all the CPUE data are of 
poor quality, integrated techniques may be 
necessary. They, however, require considerable 
statistical expertise and are not necessarily 
accessible at ICES. 

The Working Group therefore recommends that 
the ICES Statistician be provided with two 
additional staff with appropriate qualifications 
and experience to provide a sustained source of 
expert advice and to oversee the development 
and improvement of assessment tools available 
at ICES. 

The Group does not recommend at present any 
change in the TAC year. 

195 



5.2 Future Works 

5.2.1 Strategical considerations 

The Working Group considers that methodological 
research must be developed along various directions: 

Assessment techniques still need to be improved. 
The tuning problems still need more research so 
that the integrated techniques, potentially more 
powerful than ad hoc methods, are brought to a 
stage where the conditions for safe use are 
clearly guaranteed. This implies the development 
of diagnostics about the validity of the underly­
ing hypothesis. 

Among the basic assumptions common to all techniques, 
the dynamic pool hypothesis, neglecting spatial structure 
and migrations is a crucial one which would deserve 
special attention. The differences between sexes should 
also be taken into account. If integrated techniques are to 
be developed, in order to be used within assessment 
working groups, it appears that the existing software, 
which is highly interactive, should be replaced as many 
procedures as possible automated. An expert system 
approach may be fruitful and should be explored. 

The methodological work should not be limited to 
assessment techniques deriving fishing mortalities and 
numbers-at-age estimates from given catch-at-age 
matrices, effort and apparent abundance series. The pre­
processing question addressed during this meeting is still 
open. It is even necessary to go further backwards to the 
first step of the data collection. Sampling for ages, 
lengths and sexes requires a comprehensive examination 
due to the labour cost implied, and to influence on the 
accuracy of the derived catch-at-age matrices. The 
design, in space and time, of research cruises also needs 
to be optimized. 

It is necessary to go beyond the estimation of numbers 
and fishing mortalities, in order to consider these 
estimation questions as part of a much wider problem. 
The analysis of the results obtained at the Workshop in 
Reykjavik shows the difficulties of building comprehen­
sive measurements of the performance of the various 
tuning methods. Ideally, they should be considered as 
parts of a decision-making procedure in the context of 
decision under uncertainty. For a given fishery manage­
ment strategy, considering well identified biological, 
economical (or political) targets, it would theoretically be 
possible to judge the relative performances of the various 
methods. 
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Consideration of all questions, from sampling 
optimization and research surveys design, to 
management strategies is theoretically conceiv­
able, but it corresponds to a very broad field. 

The Working Group considers that it should contribute to 
its exploration in a realistic way, avoiding a dilution of 
its activity within too large a domain. It appears desirable 
to go one step further than fishing mortalities and 
numbers at age in order to evaluate the reliability of the 
various forecasts based on them, with special attention 
being paid to prognosis associated with classical manage­
ment strategies (F max• Fs= quo' .. ). 

Finally, since simulated data sets appear to play a 
very important part in the comparison of the various 
techniques, special attention should be paid to their 
construction. 

5.2.2 Operational considerations 

The previously-mentioned methodological developments 
cannot be covered by the members of the Working 
Group during their meetings. 

A topic such as biological sampling does not appear 
mature enough yet to allow useful discussions within the 
Working Group. A symposium could be organized by the 
Statistics Committee in 1991, promoting scientific 
research in this field. From this symposium a limited 
number of key questions could appear that could be 
usefully addressed later on by the Methods Working 
Group. 

It also appears important to take into account the work 
conducted outside ICES, to promote exchanges with 
these external organisations, and to take into account 
their plans. A special NAFO meeting in September 1990 
will deal with "Management Under Uncertainty" 
covering simultaneously tuning techniques and manage­
ment strategies. Several members of the Methods 
Working Group are going to participate. The conclusions 
of this meeting will be available before the terms of 
reference for the next meeting of the Methods Working 
Group are determined. They should be taken into 
account. 

The number of items that the Working Group must deal 
with during a meeting is also very important. Too many 
items make it difficult to conduct calculations that may 
be necessary and can lead to the creation of various sub­
groups meeting simultaneously in a way which may be 
difficult to coordinate. On the other hand, a single 
prt".-eise topic can make it difficult to gather scientists 
from various countries within a forum in a way the 
Working Group has successfully managed to do up to 
now. For this latter reason, it appears necessary to have 
several topics for the future meetings. It also appears, 
once a precise question has been identified requiring a 
large amount of computer work, that a special workshop 
such as the Reykjavik one is extremely useful. In fact, 
the sequence of the Working Group meeting, identifying 
the need for a workshop, making intensive calculations 



during this workshop, and then reconsidering the work­
shop results after some months, appears very efficient. 
For the future, the combination of "plenary" meetings of 
the Working Group covering various items, and special 
workshops each devoted to a single technical problem, 
should be considered. The attention of potential partici­
pants to the special workshop should, however, be drawn 
to the fact that their participation will be useful, for both 
themselves and the workshop, if they are prepared to 
participate actively in the calculations. 

5.2.3 Next meeting(s) 

The Methods Working Group should meet m 1991 
preferably before the Statutory Meeting and consider 
basically three items: 

a) the influence of spatial structures, including migra­
tions, on tuning techniques; 

b) the accuracy of the prognosis derived from assess­
ments based upon tuning techniques and correspon­
ding to the classical management options (it should 
be evaluated on simulated and real data sets); 

c) the validation or otherwise of the hypotheses upon 
which the various tuning techniques are based (use of 
diagnostics, etc.). 

Depending on the conclusions of the NAFO 1990 Special 
Meeting, item b) could be modified. 

It is hoped that prior to the next meeting of the Working 
Group, work will continue on the preprocessing of real 
survey and commercial data sets, including, if possible, 
an ad hoc working party (see Section 2.6.2). A dis­
cussion of the preliminary conclusions of such a work­
shop should be considered as a possible extra item for 
the next meeting of the Methods Working Group. 
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Table 2.2.1 Results obtained from the various stratification schemes and correlation (r2 ) with VPA results. 

Trans formed 
Untransformed Transformed, no correction correction included 

No. of strata 1 3 8 15 1 3 8 15 1 3 8 

n 8.94 8.?5 8.90 9. 15 2.32 5.03 5.83 6.48 5. 14 6.2? 7.67 
78 7.9B 8.02 8.00 7.99 2. 01+ 3.25 4.35 5. /+5 3.86 4.61 5.60 
79 8.1 0 n. 1 5 B. 10 B.21 1. 66 3.00 4. 14 5.37 4. 1.2 5.03 6.22 
80 8.B7 8.97 8.97 8.98 2. 21+ 4. 1 8 5.55 6.45 5.43 5.41 6.16 
81 7.33 7.45 7.32 7.56 .02 1 . 11 2.32 3.44 2.42 3.76 5.09 
82 8.33 8.3B 8.41 8. /.6 2. 10 3.32 4.42 5.75 4.39 5.17 6.28 
83 7.50 7.56 7.54 7.56 1 . 01 2. 10 3.33 4. 61 3.B8 It. 58 5.62 
fl/+ 9.01 0.97 8.97 8.97 3.14 4.34 5.49 6. 1+2 5. 18 5.85 6.91 
85 6.33 6.35 6.29 6.26 -.51 .45 1. 50 2.89 1 . 64 2.50 3.56 
86 B.39 8.39 8.42 8. /+ 1 1 . 6 7 3.22 4.63 5.52 4.88 5.48 6.53 
87 7. 51 7. /.8 7. 1.8 7. 4/f 1 . 1.5 2.42 3.52 !+.54 3.26 3. 91 5.06 
88 7.00 6.95 6. 9ft 6. 8(, .65 2.20 3.36 3.94 2. 61+ 4. 51 4.97 

r2. .93 .95 .95 .96 . 72 .78 8' • L .87 .89 .78 . 81 

VPA -
15 

7.99 6.59 
6.3? 6.05 
6.54 6. 11 
6.73 6.68 
6.42 5.61 
7. 39 6.32 
6.34 5.60 
7.96 6.29 
4.43 4.65 
8.54 6. 36 
5.79 5.49 
5.79 5.06 

. 71 
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Table 2.3.1 Summary of LN(indices) and r 2 values of index vs. VPA 
estimates. 

A) 1 YEAR OLDS 

YEAR \IPA GM AR Sl r;cp CCL CPP CPL '"! l·l" CPL CPL 
(0.1) (0. 1) ("1 '?C) '. •·'· (0.5) (!. 0) 

1977 G.59 2.33 U4 4.14 7.91 7. 77 l.J2 . 51 "" ,.!f 1. OJ 1.29 
1978 6.05 1.90 3.10 3.13 6.93 5.79 ')0 .18 4[ .58 .96 '~·I I,,_! 

1979 6.11 LG5 3.16 3.19 6.91 5' 79 ,41:, -,17 .15 .4S ,78 
19~(1 6.68 2.45 3.96 3.93 7.81 7,74 1.32 .53 .80 1 '04 1.34 
1881 5.51 .23 2.41 2.43 5.25 5, 72 -.26 -1.43 -.97 -.57 -' 11 
1922 f" r,o; 

D,.Ji. 1.90 3.48 
1383 5 .GO ,30 2.73 
1 58~ 5.29 2.43 U1 
1985 us -1.59 1.46 
1985 5.36 1.86 3.5't 
1987 5 '~9 1.01 2.f.5 
1988 s '06 -.03 2.13 

R-SQUAR[S OH UPA SF.RIES 

1977 TO 1981 .93 .99 .98 .99 .99 J. 00 .91 .22 .33 '94 

B) 2 YEAR OI.DS 

YEAR lJPA GM AR SI CCP CCL CPP CPL CPL CPL CPL 
(0' l) (0, j) (0.25) (0,5) (1. 0) 

1977 4.44 .1G 1.63 1.50 5 Cl 
'"' 5' 13 -2' 1f4 -2.35 -1.59 -' 94 -.2G 

1978 5.66 1.30 2.36 2.53 6.18 5.98 -1.75 -1.17 -.56 -.06 ,48 
1979 5.16 .69 1.75 1.76 5.44 5.25 -2.35 -1.87 -1.17 -.59 .02 
1980 5.19 .64 2.04 1.90 5.86 5.64 -2.03 -1.86 -1.15 -.57 .05 
1981 5,77 .93 2.53 2.63 6.33 6.h -1.53 -1.54 -.BG -.30 .30 
1982 4.69 -.93 1.06 
1983 5 .31f -.54 2.40 
1984 4.66 -.27 1.55 
1985 5.30 .06 2.48 
1986 3. 74 -1.59 .18 
1987 5.32 .02 2.37 
1988 4.55 -.61 1.41 

R-SQUARES ON VPA SERIES 

1977 TO 1981 .32 .8~ .94 .84 .89 .90 .92 '93 Q~ .94 '"" 

IJPA : VPA 
GM : GEOMETRIC <CLUSTERED) MEAN 
Sl : STANDARD INDEX (WEIGHTED ARITHMETIC MEAN) 
AR : ARITHMETIC MEAN 
CC : COMPLEX CHANGEABLE - L INDICATES LOGCCPUE+Xl TRANSFORM 

- WIIERE X IS SHOWN IN BRACKETS 
CP : COMPLEX PERSISTENT - P INDICATES POISSON ERROR STRUCTURE 



Table 2.3.2a Icelandic COD catch and effort data - Northern Area 1 

Spring. lfumber of trawler-month observations by year, 
area, and month. 

YEAR AREA JAN FEB MAR APR HAY TOTAL 

1974 101 77 53 89 15 43 277 
102 84 8 4 22 24 142 
103 6 16 3 2 7 34 
104 18 54 24 10 21 127 

1975 10 1 180 173 105 20 66 544 
102 22 37 26 35 24 144 
103 1 2 0 7 0 10 
104 5 41 34 3 7 90 

1976 101 164 57 93 7 40 361 
102 17 10 58 12 6 103 
103 10 3 1 5 11 21 ... 
104 29 33 6 8 17 93 

1977 101 159 91 116 125 67 558 
102 40 29 30 73 14 186 
103 9 36 11 9 39 104 
104 6 90 41 21 so 208 

1978 101 180 34 14 40 79 347 
102 12 19 30 20 17 98 
103 34 22 20 22 11 109 
104 32 59 60 48 22 221 

1979 101 127 98 86 41 65 417 
102 39 21 39 14 1 114 
103 12 24 7 13 6 62 
104 24 70 17 36 20 167 

1980 101 197 203 152 22 26 600 
102 16 43 23 4 1 87 
103 9 12 7 20 11 59 
104 29 38 22 36 35 160 

1981 101 126 8 87 68 51 340 
102 29 40 20 5 18 112 
103 42 22 15 2 6 87 
104 8 24 53 72 74 231 

1982 101 28 20 37 10 21 116 
102 3 10 15 10 2 40 
103 15 32 14 38 1 100 
104 91 105 86 52 8 342 

1983 101 48 28 36 42 39 193 
102 43 30 17 55 19 164 
103 98 30 29 14 9 180 
104 57 48 66 so 42 263 

TOTAL 2126 1773 1593 1108 1011 7611 
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Table 2.3.2b Icelandic COD catch and effort data -
Northern Area, Spring.Number of trawler­
month observations by year and month. 

YEAR JAN FEB MAR APR MAY TOTAL 

1974 185 131 120 49 95 580 
1975 208 253 165 65 97 788 
1976 220 103 158 32 65 578 
1977 214 246 198 228 170 1056 
1978 258 134 124 130 129 775 
1979 202 213 149 104 92 760 
1980 251 296 204 82 73 906 
1981 205 94 175 147 149 770 
1982 137 167 152 110 32 598 
1983 246 136 148 161 109 800 



Table 2.3.3a Predicted Icelandic trawler catch rates 
relative to year 1974, January, and area 
101 from the general linear model analysis 
which included effects for year, area, and 
month. For comparison, the year effect 
(prediction for the standard month and 
area) is shown. 

REL~.TI1JE CATCH RATES 
Y+M+A nO DEL YE!''IR 

\rt:!-':R ,;RE."'. FEB MAR fo,FR r1AY EFFECT 

1 '315 1 0 ~~ . :3'34 1 . 0f3'3 1.065 0. :3~2 1.004 
103 . :348 L . 0 13 1 JJ15 0.873 
104 '8:32 0. '358 0.:355 0.827 

1 '3(;::; 10 2 (I. 8:31 0 . ~358 0. ~3SS (). 827 0.:300 
103 n . 8tt:3 0.'31:3 o.::!lo (1. 788 
104 0. 7~3~3 !) • 85:3 0.855 0.741 

1 ·::-7 
J.. ·-' ( I 102 0.984 1.057 1.054 0. :313 0.:3:34 

103 0.337 1.008 1.004 0.870 
104 0.882 0.:348 I). :345 0.818 

1378 102 I). :356 1.027 1. 024 0.887 (I. :365 
103 0.911 0. :37'3 0. 37E:; 0.845 
104 0.857 I). :321 0.318 I). 7:35 

1378 102 1. 096 1.178 1. 174 1. 017 1. 107 
103 1.045 1.123 1. 11:3 0. 363 
104 (i ':383 1.057 1. 053 0.912 

1 '380 102 1. 210 1. 300 1. 236 1. 122 1. 222 
103 1' 153 1. 233 1. 235 1. 070 
104 1.085 1.166 1.162 1.006 

1:381 102 1. 432 1. 604 1.538 1.384 1. 507 
103 1.422 1. 528 1. 523 1. 31:3 
104 1.338 1. 438 1.433 1. 241 

1:382 102 1.134 1.283 1. 279 1. 108 1.206 
103 1. 138 1.223 1. 213 1.056 
104 1. 071 1. 151 1. 147 0. :3'33 

1983 102 0.381 1.055 1 . OS 1 0.:310 0.831 
103 0.335 1.005 1. 002 0.868 
104 0.880 0.:346 I). :3i!-2 0.816 
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Table 2.3.3b Predicted Icelandic trawler catch rates 
relative to year 1974, January, and area 
101 from the general linear model analysis 
which included effects for year, area, 
month, year*area, and area*month. For 
comparison, the year effects from the 
analysis without interactions are shown. 

RELATIVE CATCH Rf',TES YR EFFECT 
Y+M+A+YA+AM MODEL Y+A+i'1 

''t:;'AP 
{ J....o> oll.. ARE,t>, FEB Mt\R t\PR MAY t·IODEL 

1375 102 0.852 1.007 1.083 0.347 1.004 
103 0.483 0.357 0.517 I) .402 
1 Olt 0. 85:3 0.820 0.884 0.810 

1'3?6 102 0.820 0.969 1.042 !) • 311 I). :300 
103 0.790 0.584 0.846 o. t::5s 
104 0.538 0.514 0.554 0.508 

1 '377 102 0. 81::8 1.026 1' 103 I). '3<::5 0 . '3'3!+ 
103 1.090 0.805 1.168 I). '307 
104 1.003 0.358 1.032 I). :346 

1:378 t02 0.834 0.985 1.060 0 ':327 1). :365 
103 1.181 0.872 1.264 0.:382 
104 0.912 0.871 0.939 0.861 

1 :37'3 102 1.074 1. 26:3 1.366 1.1:34 1.107 
103 1 . 10 1 0.814 1.180 1). :316 
104 I). :302 0.861 0.328 0.851 

1880 102 1. 086 1.283 1. 381 1.208 1 0':-"' 
103 1.166 0.862 1. 24:3 0.:370 
104 1.081 1.032 1. 112 1. 019 

1 '381 102 1. 370 1.619 1.742 1. 524 1. 507 
103 1.648 1.218 1. 765 1. 371 
104 1 ':357 1.870 2.014 1. 846 

1:382 102 I)' 99:3 1. 181 1.270 1. 111 1. 206 
103 1. 2:36 0.:358 1.388 1. 1)7:3 
104 1. 231 1.176 1.267 1. 161 

1 '383 102 1 . 041 1. 230 1. 323 1.157 0. 9'31 
103 1.232 0.910 1. 31:3 1.025 
104 0. '31 7 0.876 I). :343 0.865 



Table 2.3.3c Predicted Icelandic trawler catch rates 
relative to year 1974, January, and area 

,, ........ 0 
I!:.hL .t,REi\ 

1375 1 0 ~. 
1U3 
104 

1 '37t· 102 
1(13 
104 

1'37? 102 
103 
104 

1 '378 102 
103 
104 

197'3 102 
103 
104 

1380 102 
103 
104 

1:381 102 
103 
104 

1:382 102 
103 
104 

1983 102 
103 
104 

101 from the general linear model analysis 
which included effects for year, area, 
month, year*area, year*month and area*month. 
For comparison, the year effects from the 
analysis without interactions are shown. 

REL.t.TIVE C/-.TCH R~.TE8 YE EFFECT 
Y+~1+r\+ Yi\+ YM+Ai'1 MODE:L Y+?.+M 

FEB 1'1AR APR Mf..Y t1CJDEL 

1 . 023 0.635 0.301 0 . 7~31 1 .004 
r). 581 r). 244 0.440 0.:306 
l.U4U 0.586 0. 71 !., 0. f:;SLf 

O.SLLS (I. ~340 I). '360 0.775 r:1. 31)1) 
0.537 n.S?4 0.813 0.521 
0.414 I). 5:33 I). 55'3 0.480 

0.773 1 .008 1 .168 l . () 1 ':?. I). :334 
(I. :337 0.806 1 . 2:35 0.883 
0.833 0.:366 1.051 0.'351 

0.665 0.324 1 . 0~37 I). :383 0. 965 
0.:383 0.848 1. 396 I). ~33? 
0.762 0.880 0.:381 0. '322 

1 .064 1 .409 1.376 1 140 1. 107 
1 . (I :3:3 0.:302 1. 222 0.801 
I). ~3 I) 2 0.931 0.:30:3 0.786 

1. 0:30 1 nne 1.138 1. 172 1 n00 . ~~·...../ • .:....::...J...... 

1. 256 0.875 1 . 128 o.:3EJ 
1.170 1 . 0::31 0.352 1.023 

1.173 1 .647 2.142 1 .594 1 .507 
1 .4'32 1. 2'33 2.332 1. 374 
1. 52f:; 1 .770 2. 163 1. 67'3 

1.000 1 156 1. 012 0. 721 1 .206 
1. 275 0.:315 1. 110 0. E;2.6 
1. 149 1. 103 0.907 0.674 

0.321 0.:328 1 .320 1 . 118 0. ~3:31 
1.147 0.717 1. 414 0 . 94~3 
0.879 (!. ?8S 0. i:JQI) (I. 8f,':J _,- _) 
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Table 2.3.4a Arithmetic mean of area specific, 
predicted Icelandic trawler catch 

YE.~.R 

1 ~:?75 
l37S 
j tJ '7..., 
... --''' 
t ~j7 ,s 
l ~~17'3 
1. 'jSO 
l :381 
1~3;32 
1:383 

FEB 

rates relative to year 1974, January, 
and area 101 from the general linear 
model analysis which included effects 
for year, area, and month. The year 
effect (the prediction for the standard 
month and area) is also shown. 

~EL1\TI\JE CATCH RATE2 
Y+M+f\ MODEL YE.t.R 
MAR APR t1AY EFFECT 

0. 945 1 015 1 .01:2 0.87S 1 004 
I) .847 0 . ::no (!' '307 f) 785 I) ,Cj()(J 
(I . :334 1 (1(14 1 , (I 0 1 0.867 (I • :j•j! .. ~ 

(l . :308 I) .::n6 I). :372 1) 842 (I . :355 
l .041 1 11 '3 1 116 I) .%E; 1 107 
1 1!+:3 1 .~35 1 .231 1 or:.s 1 (j (/•f 

1 .417 
. ..:....~ ..... 

1 .523 1 .518 1 .315 1 . 5CJ7 
1 134 1 . 21:3 1 .215 l 052 1 .206 ~ 

0.:332 1 002 0.%8 0.865 0 . 3'31 

Table 2.3.4b Arithmetic mean of area specific, 
predicted Icelandic trawler catch 
rates relative to year 1974, January, 
and area 101 from the general linear 
model analysis which included effects 
for year, area, month, year*area and 
area*month. For comparison, the year 
effects from the analysis without 
interactions are shown. 

REL,.~·.T I VE CATCH RATES YR EFFECT Y-!-f'J+,LI,+YMM-1 fiiJDEL Y+A+M YEAR FEB 11AR APR t1AY f11JDEL 

1 '375 n. 731 0.728 0.828 0.720 1.004 1 '37S 0.71f3 O.SS3 0.814 0.632 0. '301) l :3 '7 7 n.987 0.:330 1 1 0 1 0. :33'3 0.:3:34 1::373 (J. ·:~7t: o. ::no 1.088 0.323 0.365 1 '3?'~1 1. 0 2E 0 . ~38 ~ 1 158 0. '387 1 . 107 1 :3;3(1 1 111 1 . 05:3 1 .247 1 .066 1 I") I") I") l.. 

l :::181 1 .658 1 . 5E;:3 
. ...... :: .. ~ 

1 1 .840 1. 580 1 .507 1382 1. 176 l . 105 1.308 1. 117 1. 206 1 :=· () '} 1 .06:3 1 .005 1 1:35 1.016 0. '3'31 _I\ .. )' .. .:' 



Table 2.3.4c Arithmetic mean of area specific, 
predicted Icelandic trawler catch 
rates relative to year 1974, January, 
and area 101 from the general linear 
model analysis which included effects 
for year, area, month, year*area, 
year*month and area*month. For 
comparison, the year effects from the 
analysis without interactions are 
shown. 

EE:L/'.TI VE C(\TCH RATES YR EFFECT 
Y+ ~HAt Y c".+ Yt1+f.,M MODEL \'-t,L . ..~-M 

YEAR FEB i1AR ,t.,PR t1AY t10DEL 

1 ~:ns 0.881 0.508 o. t=.ss 0.584 l. .:.. 
1'376 (l I 4~39 0.702 0.781 (). S'3~ 0. () 

1':377 0.887 0. :3:::r:. 1 .171 (I. :351 0. 6. 

1'378 0.803 0.884 1 . 153 (1, 36~3 0. --
1'37'3 1 .021 1 " 1 0 1 1 16:3 !) • 309 1. 7 
EJ80 1. 172 1.063 1. 1)73 1.038 i n 

l • .:_, 

E381 1 . 3~3'3 1 .570 :2.212 1. 54:3 1 7 

1'382 1.141 1.058 1.009 (!. 673 1. c: 
'--' 

1::383 0.::182 0.794 1 . 23:3 0. :37'3 0. 

Table 2.4.1 EGFS Cod age 1 integrated indices. 

Yearclass Rough Bumpy Medium Smooth Standard VPA 

1976 84810 3623 1945 1290 627 726 
1977 456100 1222 824 639 228 426 
1978 22620 1442 947 656 242 449 
1979 13110 3463 2549 1862 508 800 
1980 14610 561 203 99 114 272 
1981 57630 1621 1038 766 324 557 
1982 6980 651 394 262 154 271 
1983 16170 3386 2442 1942 612 528 
1984 340400 156 95 62 43 105 
1985 5911 1649 1154 768 344 576 
1986 1799 626 468 352 142 250 
1987 483 219 164 135 84 -11 
1988 -11 -11 -11 -11 228 -11 
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Table.2.4.2 

Analysis by RCRTINX2 of data from file integrat.dat 
EGFS Cod age 1 : integrated indices 

Data for 5 surveys over 13 years 
REGRESSION TYPE = C 
TAPERED TIME WEIGHTING APPLIED 
POWER = 3 OVER 20 YEARS 
PRIOR WEIGHTING NOT APPLIED 
FINAL ESTIMATES SHRUNK TOWARDS MEAN 
ESTIMATES WITH S.E.'S GREATER THAN THAT OF MEAN INCLUDED 
MINIMUM S.E. FOR ANY SURVEY TAKEN AS .10 
MINIMUM OF 5 POINTS USED FOR REGRESSION 

Yearclass == 1984 

Survey/ Index Slope Inter- Rsquare No. Predicted Sigma Standard Weight 
Series Value cept Pts Value Error 
rough 12.7379 1.133 -5.562 .0710 8 8.8722 1.57962 2.00586 .00439 
bumpy 5.0562 .577 1.895 .8845 8 4.8135 .15772 .25335 .27546 
medium 4. 5643 .487 2.803 .8444 8 5.0271 .18740 .27203 .23893 
smooth 4.1431 .441 3.288 .8001 8 5.1139 • 21819 .30219 .19362 
standa 3.7842 .696 2.190 .8259 8 4.8231 . 200112 .31464 .17859 

MEAN 6.1499 .40273 . 40273 .10901 

Yearclass = 1985 

Survey/ Index Slope Inter- Rsquare No. Predicted Sigma Standard Weight 
Series Value cept Pts Value Error 
rough 8.6847 -1.354 20.326 .0982 9 8.5671 2.05592 2.37714 .00206 
bumpy 7.4085 .617 1.592 .9466 9 6.1654 .16120 .17127 .39642 
medium 7.0519 .578 2.160 .8987 9 6.2370 .22781 .24302 .19690 
smooth 6.6451 .54 7 2.573 .8541 9 6.2086 .28041 .29847 .13053 
stand a 5.8435 .748 1.886 .9172 9 6.2563 .20391 .21788 .24496 

MEAN 5. 9729 .63189 .63189 .02912 

Yearclass 1986 

Survey/ Index Slope Inter- Rsquare No. Predicted Sigma Standard Weight 
Series Value cept Pts Value Error 
rough 7.4955 -1.061 17.021 .1413 10 9.0707 1.60658 1. 99136 .00296 
bumpy 6.4409 .631 1.512 .9367 10 5.5785 .16942 .18272 .35208 
medium 6.1506 .586 2.117 .8964 10 5.7237 .22160 .23566 .21166 
smooth 5.8665 .557 2.527 .8505 10 5.7934 .27332 .28929 .14046 
stand a 4.9628 .757 1.845 .9161 10 5.6024 .19724 . 21207 .26137 

MEAN 6.0067 .61123 .61123 .03146 

Yearclass = 1987 

Survey/ Index Slope Inter- Rsquare No. Predicted Sigma Standard Weight 
Series Value cept Pts Value Error 
rough 6.1821 -1.861 24.707 .0356 11 13.2007 3.31622 4.29806 ,00071 
bumpy 5.3936 .637 1.469 .9384 11 4.9031 .16328 .191!51 .34 774 
medium 5.1059 .603 1. 989 .8885 11 5.0662 .22577 .25896 .19619 
smooth 4.9127 .578 2.369 .8352 11 5.2071 .28315 .31573 .13198 
stand a 4.4'•27 .765 1. 791 . 9181 11 5.1914 .1904/l • 21413 .28693 

208 
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Table 2.6.1 North Sea COD- Age 1. 
Squared correlation coefficient of indices YR.. VPA estimates. 

Metod 

Stratification 

Interpolation 

GL~ 
(r for 1977-1981) 

Options 

Untransformed - 1 str. 
3 str. 
8 str. 

15 str. 

Transformed, uncorrected -· 1 str. 
3 str. 
8 st.r. 

15 str. 

Transformed, corrected- 1 str. 
3 str. 
8 str. 

- 15 str. 

Rough 
Bumpy 
Medium 
Smooth 

Kriging- uncorrected 
- corrected 

Geometric mean 
Arithmetic mean 
Standard index 
Changeable - complex - poisson 
Complex - changeable - log 
Complex - persistent - poisson 

log + 0. 1 
log + 0.25 
log+ 0.5 
log + 1. 0 

1977-1981 

2 r s. e. 

o.oo 30.61 
0.)9 0.05 
0.96 0.10 
0.92 0.15 

1977-1988 

2 
r 

0. 93 
0. 95 
0.95 
0.95 

0. 72 
0.78 
0.82 
0.87 

0.89 
0.78 
0.81 
0.71 

0.02 
0. 94 
0.89 
0.84 

0. 92 
0.91 

s.e. 

4.22 
0. 15 
0.22 
0.27 

0. 90 
0. 99 
0.96 
0.98 
0. 98 
0.98 
0.90 
0. 90 
0.91 
0. 92 

0.17 0.89 0.22 
0.06 
0.10 0.92 0.18 
0.08 
0.07 
0.08 
0.17 ----n/a---
0. 17 
0. 16 
0. 15 
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Table 3_,_1 ... 1 Dangers of current implementations of the various methods. 

ad-hoc intermediate integrated non-tune 
Method 

Hybrid LS AC-1 AEFM CCPUE SURVIV XSA CAGEAN ADAPT GLM TSER2 TSER1 SVPA COVEN 

Time trend 
in q ** * ** * * * * * * * N.A. N.A. N.A. 

No time 
trend in q ** ** N.A. N.A. N.A. 

Time trend 
in F ** ** ** 

Single CPUE ** * ** * * N.A. N.A. N.A. 

Inexperi-
enced user * ** ** * * * * * 

Test of fit 
provided yes yes no no no yes yes yes lots yes yes yes few no 

Danger level: ** = very dangerous 
* = dangerous 
+ = somewhat dangerous 

= little danger 
N.A. = Not applicable 
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Table 4.1 Coefficient of variation of the TAG for the average and worst case 
for North Sea cod, haddock and whiting for different TAG years. 

cod haddock whiting 

:TAC year : average . worst . average . worst : average . worst . . . . 
-----------------------------------------------------------------------

Jan-Dec 5.45 5.54 8.72 13.80 10.11 15.98 

Apr-Mar 5.65 6.19 11.33 17.27 11.31 17.11 

Jul-Jun 6.50 8.07 9.38 12.36 9.55 11.70 

Oct-Sep 7.27 9.44 11.51 15.29 10.41 12.63 
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Figure 2.1.1 Mean log (CPUE + 0.1), age 2 COD, by station. 
1977-1981 combined. 
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Figure 2.1.2 Mean log (CPUE + 0.1), age 1 COD, by station. 
1977-1981 combined. 
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Figure 2.1.4 English groundfish surveys, age 2 COD. 
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Figure 2.4.4 COD, age 1. Mapping of the interpolated log densities for years 
1978, 1982, 1983, 1985. Parameter value 0.1. 
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Figure 2.4.5 Same as Figure 2.4.4, but for parameter value equal to 0.3. 
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APPENDIX B 

Use of diagnostics of ad-hoc Tuning 

The Lowestoft + ICES VPA programs both produce an output file of diagnostic 
information, which should always be studied with care. The following notes 
may assist in the use of this information. The numbered points refer to the 
example output in Table B1. Note that the current version (2.1, 
May 1988) has a few minor peculiarities in the output labelling, which will 
be corrected in due course, but are explained so far as possible below : 

1 - at 1a and 1b information on the options selected is printed. Note that 

a - the program prints 'Hybrid" if explanatory variate "Time" is chosen, 
but this may be modified by the decision to fix catchability on certain 
fleets. Thus, (as in this example) a "Mixed" method may be used, and the 
label "Hybrid" is misleading. 

b - Conversely, the choice of no explanatory variate over-rides that to 
allow trends on some fleets. Thus the Laurec-Shepherd method is obtained 
(as indicated) and the "Terminal q estimated from trend" labels are 
misleading in this case. 

c - This imperfection in the logic and labelling can be confusing. The 
definitive check is to examine the "Slope" column in the detailed Tables. 
If this is zero, no trend has been used; if it is non zero then a trend has 
been used. 
d - The output "Fleets combined by variance" actually means that the 
inverse variance is used as the weighting factor. 

2 - The VPA Table printed here is not the final VPA, but the last but one. 
If it is given to permit a quick evaluation of the results (e.g. stupid 
results indicating that something has gone wrong). It also permits a check 
on the convergence of the iterative procedure, since the values given for 
the final year can be checked against the final overall mean estimates 
(Fbar) in the detailed Tables, which are the ones passed to the final VPA 
output tabulation module. 

Any significant difference (more than 0.01, say) indicates a probable 
failure to converge, so that the results are dubious. 

3 - For each age, a complete set of log catchability estimates are printed, 
in a format designed to permit easy plotting. These should be examined 
carefully before accepting the results, preferably by plotting and any 
outliers or apparent trends should be examined. 
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This tabulation will probably be repaced by a Table of residuals in the 
future (this should be easier to understand). Note that it is possible (and 
desirable) to analyse these for time trends, even if no trend has been 
fitted, so that one may consider deliberately whether or not there is any 
evidence that the constant catchability assumption is untenable (c.f. 
methods used by the Irish Sea WG). The constant catchability assumption 
should, of course, be maintained for as many fleets as possible unless 
there is strong evidence against it. 

Note also that it is possible (and desirable) to plot catchability against 
age : this may indicate whether or not the choice of the ratio determining 
the value of F on the oldest age is satisfactory or not (a strong trend 
with age on all fleets may be a counter-indication, but the question is 
difficult to decide). 

4 - The final overall weighted mean estimate of F (Fbar) is printed 
together with two estimates of its log standard error (which is a good 
approximation to the fractional coefficient of variation). The SIGMA 
(overall) value is the final estimate of the precision of the analysis. If 
this standard error is large (say greater than 0.3, corresponding to a 30% 
coefficient of variation) for important age groups, then the results may be 
inadequate and the assessment should be considered dubious. 

The other two estimates are the internal estimate SIGMA (int) and the 
external estimate SIGMA (ext). SIGMA (overall) is just whichever the larger 
of these. These quantities seem not to be well-known, but are well 
described by Topping (1962) pages 91-93. 

The internal s.e. is based solely on the previous estimates of the standard 
errors i of the n individual estimates. 

11 q/2 (int) = z.. 11 ,-f.J_ 
L 

It corresponds to the "Within samples" variance in a one-way ANOVA. The 
external s.e. 

v2 (ext) =(L (Fi - Fbar) 2 I '1'2i ) I ( (n - 1) Z 11 JJ. ) 
~ L 

takes account of the actual scatter of the individual estimates Fi of log F 
about the weighted mean and corresponds to the between samples variance. 

If these estimates differ very much, this indicates a discrepancy between 
the individual estimates (failure of the error bars to overlap). The 
variance ratio~ (ext) 1\~ (int) is output and may be tested as an F­
statistic with n and n - 1 degrees of freedom. Values exceeding about 3 
imply that the different series give conflicting results. Values less than 
0.3 imply a suspicious degree of concordance (this may happen if trends are 
allowed for too many fleets). 
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5 - The individual estimates of total international F derived from each 
fleet (which are combined to give the final estimate) are given in the 
Table. Discrepant estimates may thus be identified . The log catchability 
estimate used (Pred.q) is also given. This is just the mean if catchability 
has been held constant. Its log standard error (SE(q)) is also given, and 
is the basic indicator of the quality and utility of the individual data 
series. Values greater than about 0.3 indicate substantial errors and 
values greater than 0.5 are seriously imprecise. 

6 - When a trend has been fitted, the slope and its standard error are 
output. Only slopes which have the same sign and exceed (say) twice the 
standard error consistently on most age groups should be considered 
significant. 

It is not suggested that the diagnostic output presently provided is ideal 
or complete, but it is sufficient for most serious problems to be 
identified and it should always be examined carefully. 
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N.SEA CDD,!NDEX FILE,UNSEXED,PLUSGROUP, fl.C.LANDINGS 
• ~ith ~pue data from file cod~zefs.dat 

~.1S.ir;GREGATED Qs 
Table 81 

LC] TRANSFORMATION 
E;planatory variate TIME 
f'leet 1 ,SGOGFS 
Fleet 2 ,SCOTRL 

has terminal q estimated ~s the mean 
, ha3 terminal q estimated from trend 

Fleet 3 ,SCOSEI , h.'J'j termin.Jl q estimated from trend 
Fleet 4 ,SCOLTR , has terminal q e5timated from trend 
Fleet 5 ,SCONTR , haj terminal q estimated from trend 
Fleet 6 ,ENGTRL , h.os terminal q estimated from trend 
Fleet 7 ,ENGSEI , h.Js terminal q estimated from trend 
Fleet 8 ,INTGFS , has terminal q estimated as the mean 
Fleet 9 ,NETGFS , li.Js terminal q estimated as the 11\ean 
Fleet 10 ,ENGGFS , h.>s terminal q estim.3ted .35 the mean 
FLEETS COMBINED BY ,. VARIANCE w• 

Terminal Fs estimated using Hybrid method @ Regression weights 
'0.100, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700, 0.800, 0.900, 1.000 

Oldest age F : l.OOO•.werage of S younger .3ges. Fleets combined by var·iance of predictions 
Fi5hing mortalities 

Age, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987 

1, 0.093, 0.113, 0.113, 0.115, 0.184, 0.134, 0.185, 0.133, 0.206, 0.149 ~ 
2, 1.022, 0.844. 0.990, 1.007' 1.009, 1.106, 1.036, 1.025, 0.900, 0. 793 
3, 0.849, 0.965, 0.964, 0.979, 1.240, 1.144. 0.998, 1.034, 0.980, 1.486 
4, 0.750. 0.604. 0.723, 0.712, 0.812. 0.860, 0.793, 0.756, 0.859, 0.865 
5, 0.879. 0.732, 0.600, 0.687, 0.804, 0.778, 0.749, 0.683, 0.757, 0.862 
6, 0.696, O.So7, 0.657, 0.646, 0.899, 0.807, 0.795, 0.667, 0.830, 0.731 
7, 0.712, O.G27, 0,767, 0.810, 0.732, 0.758, 0.759, 0.706, 0.771, 0.954 
8, 0.683, 0.570, 0.790, 0.623, 0.872, 0.748, 0.849, 0.786, 0.864, 0.767 
9, 0.744, 0.620, 0.707, 0.696, 0.824, 0.790, 0.789, 0.719, 0.816, 0.836 

Log catchability estimates 

Age 1 
Fleet, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987 

______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ , _____ _ 
1 ' ,-17.87,-17.82,-17.54,-18.28,-17.68,-17.98 
2 ,-18.65,-18.61,-19.06,-18.38,-17.30,-17.69,-17.43,-16.97,-17.56,-16.47 
3 ,-17.80,-17.43,-18.80,-17.92,-17.07,-17.60,-17.12,-17.53,-17.21,-17.59 
4 ,-17.21,-17.58,-18.37,-17.99,-16.76,-17.31,-17.21,-17.41,-17.07,-17.01 
s ,-19.43,-19.73,-20.58,-19.25,-18.86,-18.53,-19.13,-17.85,-19.07,-19.00 
6 ,-18.17,-18.63,-18.63,-18.63,-17.43,-18.40,-17.37,-17.20,-16.31,-18.24 
7 ,-17.97,-17.29,-17.73,-18.38,-17.60,-l7.83,-17.65,-18.11,-17.88,-17.99 
8 ,-16.90,-17.22,-17.26,-17.93,-17.46,-17.64,-16.92,-17.99,-16.93,-16.59 
9 , ,-14.98,-15.15,-15.27,-15.91,-14.84,-16.60,-lS.OS,-15.04 

10 ,-16.33,-16.32,-16.14,-16.57,-16.21,-16.26,-15.53,-16.42,-16.22,-16.12 

SUMMARY STATISTICS 
Fleet , Pred. , SECq),Partial,Raised, 

® 
SLOPE SE ,INTRCPT, SE 

q F 
' 

F Slope , ,Intrcpt 
_______ , ________ , ______ , _______ , ______ , ___________ , ___________ , _______ , _______ 

,-17.87 ' 0.252,0.0000 ,0.1668, O.OOOE+OO, O.OOOE+00,-17.871, 0.107 
2 ,-16.72 , 0.376,0.0015 ,0.1160, 0.244E+OO, O.S42E-01,-22.816, 1.201 
3 ,-17.32 ' 0.367,0.0126 ,0.1959, 0.618E-Ol, O.S30E-01,-18.861, 1.174 
4 ,-17.01 ' 0.321,0.0144 ,0.1490, 0.914E-01, 0.463E-01,-19.292, 1.026 

® 5 ,-18.61 , 0.557,0.0015 ,0.2201, 0.108E+OO, 0.804E-01,-21.304, 1.780 
6 ,-17.22 • 0.701,0.0087 ,0.4108, 0.14BE+OO, 0.101E+00,-20.922, 2.241 
7 ,-17.97 , 0.228,0.0019 ,0.1522, -0.283E-Ol, 0.330E-Ol,-17.260, 0.729 
8 ,-17.25 ' 0.421,0.0000 ,0.0776, O.OOOE+OO, O.OOOE+00,-17.246, 0.165 
9 ,-15.38 , 0.562,0.0000 ,0.1060, O.OOOE+OO, O.OOOE+00,-15.383, 0.226 

10 ,-16.17 , 0.235,0.0000 ,0.1411, O.OOOE+OO, O.OOOE+00,-16.173, 0.092 

Q Fb.Jr SIGMACint.) SIGMA(ext.) SlGMACovera1D V.Jriance ratio 
0.14-9 ().105 0.997£-01 0 .1()5 0.735 
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APPENDIX C 

North-east arctic cod assessment 

A problem referred to the Working Group by the General Secretary relating 
to the recent assessment of the North-East Arctic cod stock and the 
revision to the assessment by ACFM was considered by a small sub-group. 

The problem concerns the applicability of conventional methods for the 
tuning of VPA when a stock migrates between areas, and these are not fully 
covered by surveys and/or the commercial fisheries. 

If the pattern of migration were consistent from year to year, and the 
tuning of surveys and fisheries were likewise consistent, there would be no 
difficulty and normal tuning methods may be applied. 

If however the migration pattern changes from year to year, the survey / 
CPUE indices will not correlate so well with VPA, and substantial errors in 
the estimates for the final year may occur, particularly if an abnormal 
migration pattern occurs. This is clearly an extreme case of the space / 
time interaction problem discussed in section 2 which also affects the 
quality of the correlation between indices and VPA. 

In this case, however, the Arctic Fisheries Working Group had attempted to 
overcome the problem by constructing a combined CPUE index. In principle, 
if such a combination can be carried out correctly, i.e. with proper 
standardisation before combination, and use of an integration-type method, 
this could overcome the problem. 

However, the choice of proper standardisation is itself a difficult 
problem, particularly for commercial CPUE, and an inappropriate method may 
fail to give any improvement, or even make matters worse. 

In general, therefore, continued use of separate data series in the tuning 
procedure is probably safer than ad hoc combination procedures, 
particularly since if the population shifts from one area to another in the 
final year, the errors in the conflicting survey results will partially 
cancel in the final weighted average estimates. The higher retrospective 
errors will also tend to result in more equal weights being given to the 
different index series, and not to excessive concentration on any one 
dataset. 

The Working Group did not have all the necessary data available nor 
sufficient time to consider this particular problem in more detail, but in 
general considers that the procedure adopted by ACFM is preferable. The 
Arctic Fisheries Working Group should undertake a critical analysis of the 
tuning diagnostics, seeking in particular high variance ratios {indicating 
discrepant results from different data series), anti-correlated residuals 
and the performance (residual and prediction standard errors) obtained for 
various relative weightings in a combined index (compared with that 
obtained by the standard method}, before deciding which procedure to use in 
future. 

A first attempt at extending the theory to permit the determination of the 
differing catchabilities in different areas is described in Appendix D, but 
no operational method based on these ideas is yet available. 
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APPENDIX D 

Estimating the proportion of a stock in each area (region) when the 
regional catchabili ties are unknown but the stock redistributes in space 
over time : the case where mortality occurs. 

J.M. HOENIG 

INTRODUCTION 

Suppose a stock is distributed over two regions and the gear efficiencies 
in the two regions are unknown but presumably different. Then 
interpretation of CPUE values is difficult. This is because the proportion 
of the stock in each region is unknown; hence, it is not known to how much 
of the stock an observed proportional change in CPUE applies. 

If the population redistributes itself over space from time to time (i.e. 
if there is net movement between the regions), then it is theoretically 
possible to estimate the proportion of the population in each region at 
each time and also to estimate the ratio of gear efficiencies or 
catchabilities. The theory was developed by Heimbuch and Hoenig (1989) for 
the case where no mortality occurs between sampling times. In what follows 
I derive estimators for the case where mortality occurs between sampling 
times. 

THE MODEL 

We assume that the expected catch per tow is proportional to the population 
size in the region. Let Yii be the expected catch per unit of effort in 
region i at time j. Yi,j is assumed given by : 

Where qi = region - specific catchability 

Pi,j = proportion of population at time j which is 
present in region i 

Nj = population size at time j 

(1) 

We note that P2,j = 1 - Pl,j so that 
P1 1 and P1 2 will be kept and noted . ' 

two parameters can be eliminated; only 
respectively P1 and P2 for simplicity. 

Also, N2 can be written as : 

( 2) 

Where N is the initial population size and S is the survival rate 
{proportion) between sampling times. 

We also need to assume that between sampling dates the proportion in each 
region changes. 
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DEVELOPMENT OF THE ESTIMATORS 

Let C1 be the proportional change in CPUE in region 1 between times 1 and 
2. Then c1 is : 

From (1) and (2), C1 can be seen to be 

q1 PzNS - q1P1N 

q1P1N 

c1 =------

Similarly, C2 is 

y22 - y21 
Cz = = 

Y21 

(1-Pz)S 
Cz = - 1 

1 - p1 

q2 {1-P2)NS - q2(1-P1)N 

qz(1-P1 )N 

(3) 

( 4) 

Hence, assuming S is known, we can solve (3) and (4) for P1 and Pz 

s - Cz - 1 
p1 = 

c1 - Cz 

p1 c1 + p1 
Pz = 

s 

The ratio of catchabilities can be found by 

y11 = q1 P1 N 
Definition of Y11 and Y21 

Y21 = qz (1-P1) N 

Hence 

y11 q1 P1 N 
= 

Y21 qz {1-P1)N 

q1 y11 {1-P1) {5) 
= 

qz Y21 P1 



A combined index of abundance, expressed in terms of the unknown but fixed 
catchability in region i, is given by : 

y .. 
11 

=----

This index gives the catch rate that would be expected in region i if the 
entire population were in region i. Note that if P1 (the proportion in 
region 1) does not vary from year to year, then there is no need to adjust 
the observed catch rates by dividing by Pi. 

DISCUSSION 

If the externally obtained estimate of survival S is of maximum likelihood, 
then it can be shown that under quite general conditions the estimates of 
P1, P2 and q1/q2 are maximum likelihood estimates. 

Preliminary results by Heimbuch and Hoenig (1989) suggest that the method 
is not sensitive to errors in S when the change in proportion in a region 
between times is large. 

Further work on this methodological approach is under way. 
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APPENDIX E 

COMBINING VARIOUS ESTIMATORS 
OF THE SAME QUANTITY 

INTRODUCTION 

Tuning methods often create situations where various estimators of the 
same quantity have to be combined. This is, for instance, the case with 
the ad-hoc tuning methods, when various fleets offer, for each of them, an 
estimate of the terminal F. 

At present time, the combination is performed using a weighted mean, the 
weights being reciprocal to the estimated variances. Such a procedure is 
fully satisfactory when the estimation errors associated with the various 
fleets are not correlated. 

When non negligible correlations between the estimation errors exists, 
other combinations may be more efficient. If some indices are highly 
correlated, they correspond to partially redundant information. Neglecting 
this fact will lead to an excessive weight being given to those indices. 
This is the question addressed in this Appendix. 

I - NOTATIONS 

N unbiased estimators ~i i = l, .. N) of the same quantity x will be 

considered. 

The variance-covariance matrix of the estimation errors 

x) is known and called C. ci i is thus the variance of the estimator 
' 

D is the inverse matrix of C : D=c-1. 

II - MAXIMUM LIKELIHOOD APPROACH 

The (~i) vector will be considered as associated with a multivariate 

normal distribution, the variance-covariance matrix C being known. The log 

likelihood function of the vector {xi) is equivalent to : 

0 = Z (~rx) di, j C~rx) = Z. ~i~jdi, j - x Z: d.; . {x. +~.) .... ,J ~ J 
i,j i,j i,j 

+ x2 ..Z:. 
i, j 

d· . 
~.J 



Differentiating 0 with respect to x leads to 

d0 
-= 2x ~ 
dx i, j 

-- ,.._ A ) d· ·- .~~ d· · (x·+x· l,J _, 1,J l J 
i,j 

since d· . l,J 
i,j 

d0 
setting-= 0 

dx 

z.. d· . """' +Z. X Xi l, J 
i,j i 

d· 
I'- z .,..... l, 
X = x·-l 

i d 

is equivalent to 

(Z d. . ) 0 = l,J 
j 

=2 if d· d· . l. l,J 
j 

III - MINIMUM VARIANCE ESTIMATOR 

so that 

and d = .... .:::.. d· l. 
~ 

A 
Among the estimators defined as weighted means of the xi, the minimum 

variance one will be defined as 

-~ ~ -~ ' ~ ~i xi with~ ~i = 1, the~i being the weighting coefficients. 
i i 

- \ \ 
The corresponding variance is trivially equal to : 0 = L. A i r\ j ci, j 

i,j 

In order to take into account the constraintjf Ai- 1 = 0 a Lagrange 
i 

multiplier L will be introduced so that one will minimize : 

=0-L~~i-1) 
i 

which is a function of the N (Ai) and L 

dpf 
= 2 c· ·A· 1.,1. 1. 

and 
dL i 

c· · - L l,J (for i = 1 to N) 

Putting the N first derivatives equal to zero leads to the system 

B.U = A expressed with matrices where bi,j = ci,j for i = j and 

bi,i = 2 ci,i while ui = Ai and ai = L 

The solution is given by v = B-1 A 

If E = a-1 this leads to v = E A 

Ai = L.Z e· . = L e· if e· =Z e· . 
1.. J l. 1.. 1.' J 

j j 
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- .. , \. ei. 
Because of the constraint2 i" i = 1, finally/-'~ i = ---

i e .. 
..,..,J ei. 

The optimum weighted mean will be given by x =~---- xi 
i e 

It can be noticed that this estimator will generally be different from the 

maximum likelihood one. However, they will coincide when no covariance 

exists, leading to the classical weighting by _1 __ _ 
ci,i 

IV - POTENTIAL USE 

The suggested estimators have not been used for any real calculation. 
Since, in practice, the error variance covariance matrix C will be 
generally unknown, it will have to be estimated. With the adhoc tuning 
techniques, this could be possible, using the empirical covariance between 
residuals, just in the same way as variances are presently being 
estimated. This should be tested for both estimation procedures (maximum 
likelihood and minimum variance), priority being given to the second one. 

It would be dangerous, however, to recommend to replace the usual 
weighting procedures. The estimators suggested here are not likely anyway 
to permit major improvements unless important correlations exist. The 
residuals used for calculating the error covariance matrix correspond to a 
fitted model. If this model is unsatisfactory, the results of using the 
more complex weighting procedures are unpredictable. A careful examination 
of the residuals will always be necessary before a weighted procedure is 
used. 
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APPENDIX F 

COMMENTS ABOUT RANDOMNESS 

Within an area the real unknown fish density is a lu ftion J' of x and 
y. The total number of fish over the area S is A = 0 (x,y} dx dy. 

~ 
Setting aside discussion about catchability, the basic problem is the 
estimation of A from some observed values 0 (x0 , y0 } (o = 1, ... No}. All 
estimates are generally associated with an error. Many confusions arise 
from the fact that this error can be considered as random, without a clear 
view of what "random" means. 

For a given density function ~(x,y}, if the location of the sample is 
chosen with some level of randomness, all observed values 00 = 0 (x0 , y0 } 

have a random component. 

If all locations within area S have equal "chances" to be sampled, the 
probability distribution of the random variable 00 just corresponds to the 
distribution of the existing (deterministic} densities. In other words, 
within a spatial discrete world, the histogram (descriptive statistics} of 
the density values over the area S would just coincide with the frequency 
distribution (probabilities statistics} of the random variable associated 
with an individual observation, in a location taken at random. 

If some regions within the area S have a higher probability of being 
sampled than others, this implies that the random distribution associated 
with an individual observation will correspond to another probabililty 
density (or histogram) than the previously mentioned one. 

If the stations are uniformly taken at random, but if the densities are not 
exactly measured, some errors being added, this will create another 
discrepancy between the distribution of the 0 (x,y) and the probability 
density of the observed values. This will appear for instance if some 
subsampling is taking place in a survey, so that the exact number of fish 
caught in a haul for a given species (and maybe a given length or age) is 
not exactly known, but estimated through a sampling of the catches. A new 
random component will appear, adding a new variance, and distorting the 
probability density. Whenever one speaks of the random component, he should 
know exactly what he is refering to. This is also true for the associated 
variances. 
Many formulas exist for calculating variances. If the user does not realize 
to which random component they refer, severe mistakes can be made. 
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The more difficult aspect concerning the various sources of randomness 
corresponds, may be, to the concept of underlying stochastic process 
referred to by kriging and other techniques. If for a given moment the fish 
density is a given deterministic function of latitude and longitude, these 
methods will consider an underlying stochastic process ~ (x,y). In 
other words the existing spatial pattern corresponds to a situation (a 
realization of the stochastic process) which is just one among others that 
could have occured. At a given location (x,y) there exists an underlying 
stochastic variable, the whole set of the random variables associated with 
the various locations defining the previously-mentioned stochastic process. 
These techniques are constantly shifting from the random distributions at a 
given location over random events, to the distribution of the existing 
values over space. This is related with what statisticians call ergodicity. 
Some interesting relationships may exist between the two distributions and 
if, for a given realization, the location of an observation is taken at 
random (which corresponds to a special component of randomness), the two 
probability densities may even coincide (this corresponds also to what 
statisticians call strict stationarity). Such results are very important, 
delightful for theorists, but may disturb the users when they do not accept 
the fact that the word "random" may correspond to various phenomena, and 
often to combinations of them. 



APPENDIX G 

CONDITIONS OFFERING STATISTICAL OPTIMALITY 
TO THE ARITHMETIC MEAN. 

Within an area S the fish density is a function 0 of x and y. Since it is 
impossible to measure this density at any place, a sample of stations 
{(xo,yo)}(O = 1, ... No) will be taken, from which an estimation of 

__/};, 0 (x,y) dx dy will be built. The word "estimation" has so far no 
precise probabilistic meaning. It just implies that some error may be, and 
generally will be made. 

Instead of estimating the integral over the area S, if the total surface 
of S is known, one can try to estimate the average density 0. 

If sample locations are taken according to a Simple Random Sampling (SRS) 
scheme this implies that all locations have equal probabilities of 
appearing in the sample, and that they are taken independently from one 
another. This case leads to a classical statistical problem the 
estimation of the statistical mean (over random events) which corresponds 
to the average over space (see Appendix F if necessary). 

The arithmetic mean over the observed values is the "best" possible 
estimation in various statistical meanings when : 

-the distribution of the densitiesd(x,y) is normal, 
I 

- no measurement errors (~~e appendix F) interfere, 

- sampling is by a S.R.S. scheme. 

If this is not the case, other estimators than the arithmetic mean can 
show advantages. 

NORMALITY 

If the distribution is not normal, but corresponds to another (known) type 
of distribution, statistical methods can provide other estimators than the 
simple arithmetic mean. They can imply the use of some transformation of 
the observed apparent densities. However, due to the nature of the 
practical problems, it is always the arithmetic mean of the untransformed 
values which is being estimated. 

For instance log normal distributions associated with transformations from 
0 (x,y) to ~ (x,y) = log 0 (x,y) are commonly refered to. The average 
theoretical value of 0 and ~ are 0 and i. 
If a SRS scheme is kept, the probabilistic distribution of an observed 
value ~(xo,yo) will be normal. The associated mathematical expectation 
is well known as different from log(0). In fact the variance of ~(xo,yo) 
being ~2, it can be shown that 
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2 
0 = exp ( ::' + ....:1:. 

;:; -
Over a set of N observations, within a SRS scheme, an arithmetic empirical 
average 2 can be calculated, the variance of which 

..A.. 2 
is equal to _sL_ 

N 
so that the expectation of exp (f) is equal to 

2 
exp (1' ~r ~ 

2N 

An unbiassed estimator of 0 is given by 

.A. 2 2 ...... 2 N - 1 
(l' a- cr- (:J.' cr 

) ) exp - -+ = exp +-( 
2 N 2 N 2 N 

Over a S.R.S. whencr2 is not known, an estimator .62 can be built based on 
the usual formulas, leading to the estimator 

A 2 N - 1 
exp ( 5f + .,..._:;A.:;;;..,_-1 ----- ) ) 

2 N 

The correction factor for the bias takes into account the estimated 
variance. It is sometimes called the variance correction, sometimes the 
bias correction (unfortunately!). Before using the above correction 
formula, one should consider three points : 

2 
1 - When .J 

2 
is an unbiassed estimator of c::;·, exp 

2 N - 1 
(.A_ (--) ) 

2 N 

2 

will be a biassed estimator of exp (~ 
2 

N - 1 
) ) 

N 

This can be however be corrected through some mathematical calculations 
(Laurent, 1963). 

2 - The correction formulas, including the improved ones, hold only if the 
distribution of is really normal. Robustness problems will often occur in 
practice (Myers and Pepin, 1987). This question is much more important than 
the previous one. 

3 - The estimation of the variance requires a high enough sample size. This 
corresponds to a well known statistical problem making any quantities 
refering to squared values more difficult to estimate that means. It is 
also related with the robustjless problem mentioned above, since what 
matters is the distribution of~ , which due to the central limit theorem, 
may be close to normality when N is large enough. 



ADDED (MEASUREMENT) ERRORS 

Such errors arise from other sources of uncertainty than spatial 
variability. They may correspond to varying variances from one observation 
to another one. In such a case a weighting can improve the final estimator. 
However, these weighting factors must consider the overall variances 
(sampling+ measurements), which can be difficult to evaluate, and ideally 
be independent from local densities. To illustrate this second question one 
may consider situations where high catches will be subsampled, while 
smaller ones will be exhaustively numbered. In such a case the measurement 
( = subsampling here) errors will be higher for higher densities. Down 
weighting the corresponding values will introduce biases. This does not 
imply that the benefits obtained in terms of reduced variance by the 
weighting should be neglected. But a great care is required. A fully 
satisfactory statistical treatment requires in fact a complete knowledge of 
the underlying stochastic model. 

SAMPLED LOCATIONS 

These locations will not be necessarily chosen according to a SRS scheme. 
In fact, in practice SRS will often be impossible. If the probability of 
any location being sampled is known a priori, a correction is possible. It 
may not be necessary if, within the area, the density does not show a 
strong pattern (if it is almost a white noise). 

A departure from the SRS hypothesis will also occur when the haul locations 
are not chosen independently from one another. They can be either 
clustered, or systematically separated from each other. If the spatial 
distribution of the samples is really far from S.R.S., interpolating (see 
section 2. 4) leads to better estimation than the sample mean. When using 
the simple arithmetic mean, it can be misleading to use the simple formulas 
for variances. 

Applying the variance formulas corresponding to SRS will generally lead and 
to an underestimation in the first case and to an overestimation in the 
second one. Sampling variances are anyhow difficult to use in the context 
of monitoring year to year changes. It should be recalled, however, that if 
transformations are being used, realistic estimates of the variances may be 
necessary, if a bias correction is attempted, 
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APPENDIX H 

Normalisation of the interaction 

Consider data at three stations for 3 years giving differing results. 

: station : 

1 

2 

3 

Station 1 shows a rising trend 
Station 3 shows a falling trend 
Station 2 shows a constant trend 

1 

1 

2 

3 

year 

2 3 

2 3 

2 2 

2 1 

Consider now linear modelling of these data, with station effects, year 
effects •and the station/year interaction. Many normalisations are 
possible. Three common ones are : 

1 - Normalisation to the mean (ANOVA) 

Take row and Column Means 

year means 

: station : 1 2 3 

1 1 2 3 2 

2 2 2 2 2 

3 3 2 1 2 

means 2 2 2 2 

The model fitted is : constant = Grand Mean ::; 2 
year effect = 0, 0, 0 
Station effect = 0, 0, 0 
Interaction = -1, 0, 1 

0, 0, 0 
1, 0, -1 



2- Normalisation to first effects (GLIM}. 

The first level effects are set to zero in both main effects and the 
interaction. 

The model fitted is constant = 1 
year effect = 0, 1, 2 
station effect = 0, 1, 2 
interaction = 0, 0, 0 

0, -1, -2 
0, -2, -4 

3 - Normalisation to last effects (SAS ?) 

The last level effects are set to zero in both main effects and the 
interaction. 

The model fitted is constant = 1 
year effect = 3. 2, 1 
station effect = 3. 2, 1 
interaction = -4, -2, 0 

-2, -1, 0 
0, 0, 0 

note that 

a - The year effects are different in each case i.e 

Model (1} 
Model (2) 
Model (3) 

0, 0, 0 
0, 1, 2 
2, 1, 0 

In the case of models 2 and 3, these correspond simply to the 
observed year effects at the first and last stations. All the rest 
of the data are thrown into the interaction term. 

b The interactions and station effects estimated are also 
different. Model 1 corresponds to the lowest mean square in the 
interaction term {this may be desirable). 

c - If the interaction is supposed to be due to redistribution, the 
sum {integral} over space (stations) of the interaction should be 
constant (after retransformation if a transformation was used}. This 
implies model {1) should be used. 

In conclusion, if a spacetime interaction is to be fitted, the 
choice of normalisation of the interaction term is absolutely 
crucial and may lead to totally different results for the year 
effect estimated. 

Therefore, one should either use minimum mean square interactions or 
space integral normalisation,· or use the fitted model to estimate 
distributions for subsequent interpolation/integration. 

The same applies to commercial CPUE data, when interactions of year 
with anything else have been included in the model. 
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