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Preface 
This issue contains the edited Report of a workshop held in Reykjavik in 1991 to consider the applicability 
of spatial statistical techniques to acoustic survey data. 

Some programs were rerun after the meeting yielding modifications to some of the tables in the report, and 
two appendices have been added. 

Following the suggestions in this report, a successful workshop was held at Fontainebleau, France in 
February, 1992, where participants from the fisheries sciences were introduced to geostatistics. 

Reykjavik, March 1992 





1. Introduction 

1.1 Participants 

Girard Y. Conan 
Marsha Daniel 
Eduardo Ferrandis 
Kenneth t i .  Foote 
Knut Korsbrekke 
Rainer Oeberst 
Lars-Erik PalmCn 
Pierre Petitgas 
Jacques Rivoirard 
John Simmonds 
Gunnar Stefinsson 
Pat Sullivan 
Gordon Swaraman 
W.G. Warren 

Canada 
Iceland 
Spain 
Norway 
Norway 
Germany 
Sweden 
France 
France 
U.K. (Scotland) 
Iceland 
U.S.A. 
U.S.A. 
Canada 

1.2 Terms of reference 

The terms of reference arc given in C. res. 
1990/2:11: 

A Workshop on the Applicability of Spatial 
Statistical Techniques to Acoustic Survey Data, 
with Dr. G. Stefinsson (Iceland) as Chairman and 
Dr. G. Y. Conan (Canada) as Vice-Chairman, will 
be  held in Reykjavik from 5-9 September 1991 at 
national expense to: 

a. present data analyses prepared in advance; 

b. present comparisons of methods prepared in 
advance; 

c. discuss analyses, methods, and comparisons 
of methods; 

d. prepare plans for an ICES Cooperative 
Research Report. 

1.3 Background 

The acoustic data under analysis consist 
mainly of the mean area backscattering 
coeffiient. The meaning of this is explained here. 

The iundamental quantity that is measured in 
echo integration surveys (MacLennan 1990) is the 
mean volume backscattering coefficient s,. This 

is the cumulative backscattering cross section in 
the sampled volume Vs (Stanton el al. 1987). For 
a single ping, or sounding, 

where oj, in this section only, is used to denote 
the backscattering cross section of the j-th 
scatterer of n in I/,. In the limit o t a  large number 
of scatterers or pings, 

where p is the number density of scatterers with 
respect to volume, and 5 is the mean 
backscattering cross section of a scatterer. 

While the dependence of s, on echo range or 
depth z can be quite useful for some applications, 
the data quantity is generally voluminous and 
unwieldy for ordinary surveying work. A much 
more useful quantity is the area or column 
backscattering coefficient so (Clay and Medwin 
1977). This is the integral of s,(z): 

where z l  and z 2  are the limits of integration. 
Strictly speaking, these define the inner and outer 
radii of a spherical shell centered at the 
imnsducer, for short pulses and in the transducer 
farfield. For the highly directional transducers 
that are almost universally employed in echo 
integration work, most echoes come from the 
central lobe of the beam patterns, hence echo 
range is tantamount to depth. 

The quantity s, is dimensionless, but is 
typically very small, say of the order of to 
10-'. It is more conveniently expressed with 
respect to 1 square nautical mile, or 1 NM 
(Knudsen 1990). This quantity, denoted sn, is 
derived from so thus : 

This is the basic quantity that is analyzed in echo 
integration surveys. Its units are square meters of 
backscattering cross sectional area per square 
nautical mile. 



The importance of s,, may be emphasized by analyses which were available for the meeling. 
substituting Eq. (1.2) in Eq. (1.3). and the result 
in Eq. (1.4) : 

2. Basic data analyses and survey 
s,,=p,E (1.5) design 

where p,, is the number density of fish with 
respect to an area of 1 NM '. If a measurement of Each survey needs to be  explored initially 
s,, is representative of a particular species and with data display tools before analysis begins. A 
size or age class of scatterer for which 5 is key to proper spatial analysis of survey data lies 
known, then computation of p, is immediate. in the graphical display and preliminary 

In the test data, s,, is assumed to be  
monospecific with respect to the fish scallerer. 
The various manipulations are performed mainly 
on s,,, without division by E, this last step being 
extraneous to the aim of the study. In one case, 
that of Data set 6, the division has been performed 
and the number further converted to mass density 
with respcct to area. 

1.4 Nomenclature 

The following convention is used throughout 
this work. Measurements made along transects 
are of density. This may bc acoustic density, s, 
or s,; number density with respect to volume, p; 
number dcnsity with respcct to area, p,,; or mass 
density with rcspcct to area. The result of 
integrating a density field defined over an area 
specifies the abundance of the animal. 

1.5 Working Papers 

Working papers were available on some of the 
topics. These are listed in Appendix A. 

1.6 Acknowledgements 

The work described in this report would not 
have been possible without the aid of several 
individuals not included in the participant list. In 
particular, A. Aglen, I. Rottingen, K. Sunnani, P. 
Reynisson, A. GuBmundsd6ttir and N. J. 
Williamson arc thanked for their contributions of 
acoustic data. Z. Kizner is thankcd for the 
contribution of simulated data. Finally, E. Wade, 
D. Stolyarenko and N. 1. Williamson prepared 

exploratory analysis of abundance and, where 
relevant, ancillary environmental data. Through 
the comparison of several surveys, general 
patterns may emerge that would suggest fruitful 
general approaches. Even after initial processing, 
an acoustic survey data set still provides much 
data, including the depth distribution of fish 
abundance and the depth of the water column, 
sometimes at the individual fish species level. 
The data are generally agglo~nerated furlher, as 
seen in the data sets analyzed here, to produce a 
lotal abundance estimate that applies throughout 
 he entire water column. In some cases, depth has 
been provided (although presumably it is 
available or easy to obtain in all cases). 

It is useful to present the survey tracks on a 
map of the area. A variety of means have been 
used to show the spatial distribution of abundance 
along the tracks including scaled histograms 
(Figure 2.1), scaled recrangles (Figure 2.2), and 
scaled circles (Figure 2.3). These figures present 
the data in an explicit spatial context, with 
abundance proportional to the size or length. 
Contour and gray-scale image plots were also 
used to display abundance data (Figure 2.4). 
While these permit more complete spatial 
coverage than the scaled uansect plots, they can 
introduce artifacts into the data resulting from the 
interpolation used to cover unsurveyed areas 
between the survey tracks, such as apparent 
smears or gradients of abundance. Careful 
attention should be p a d ,  in interpreting such 
plots, to where [he survey tracks actually are. 
Confidence in interpolated predictions is often 
low away from surveyed areas, especially if the 
data are extrapolated out oC the study area. This 
was not done here but it is done and it is often 
misleading. An example is in Figure 2.5, which 
shows a bilinear interpolation of the Iceherl 
survey as a 3-D plot. Here, regions of low 
acoustic density appear as four regularly spaced 
arcas at ihe bottom oC the surveyed area (front of 
the plot). Thcsc areas are intersected by the 



survey transects. Betwecn them are areas of 
purportedly higher density, which are higher 
solely because they are not on the survey tracks 
and so this interpolator produces spatial biases. 
The same observation can be made for thc high 
abundance areas near the top of the surveyed area 
(back of the plot). Color plots can be made 
analogously to the iransect, grayscale, contour 
and 3-D plots. 

The presence of ancillary information, such as 
depth, can be informative in the analysis of 
acoustic data. The gray scale and contour plots 
for abundance (shown in Figure 2.4) have been 
compared with depth gray-scales for the same 
arca, which can help to suggest possible 
relationships between these variables. For the 
Bering Sca therc appcars to be a strong 
relationship bctwecn depth and abundance. This 
suggests furthcr analysis using a spatial trend 
detection model such as GAM or GLM to 
correlate ancillary information with abundance. 
This is discussed further in section 7. 

A number of classical summary statistics may 
be used in an exploratory sense as well. The 
variogram, which is used in geostatistical 
estimation procedures, is a good example. In a 
rcstricted sensc it represents the correlation 
between sets of observations a distance h apart. 
Patterns in variograms fit to the data can indicate 
patterns in the data. Each of the the variograms 
obtained from untransformed test data sets 1-3 
(Figures 2.6, 2.7 and 2.8) represents a different 
covariance pattern. The first indicates covariance 
that continues to decrease with distance, possibly 
indicating some large-scale pattern of variation in 
the observations. The second indicates a pattern 
morc like a global nugget effect indicating no 

I 
pattern or covariance on any scale. The third 
shows a covariance that initially decreases with 
distance, only to increase later, indicating both 
small-scale as well as large-scale interactions. 
The variogram can also provide diagnostic 
information about the existence of correlation in a 
population at the spatial scale of the collected 
data. 

Fish depth profiles (showing the fish depth 
distribution) can give important clues to species 
and provide additional information to locate 
trends in fish distributions. As such, these data 
should not bc summarized by a single measure, 
such as column scatter strength or overall fish 
abundance, until preliminary display is made. 
The variogram and other simple statistics like 

scatterplots of abundance versus ancillary 
variables can help in preliminary data 
examination and suggest further direction. An 
important aspect of such preliminary analysis is to 
point out the potential relative importance of 
autocorrelation and trend (drilt) to fish spatial 
distribution and thereby suggest whether the 
analysis should ignore or include these tactors. 
Graphical display of model predictions and 
residuals can also be important after analysis to 
indicate whether model assumptions were met 
and the need for possible further analysis. 

2.1 Multivariate data 

In addition to density integrated through the 
water column, survey data usually provide 
information on the depth distribution of 
abundance as well, which may be useful in 
providing 1) a good indication of where an 
abundance pattern has changed (i.e, change in 
both the magnitude and depth distribution of 
abundance) and 2) relationships of species 
interactions and possibly help in species 
identification. An example of display of such 
data is given in Figure 2.9. 

Developing tools for multivariate spatial data 
analysis (as, for example, the Barent Sea data 
shown in Figure 2.9) remains a challenge. Few 
methods exist even for the display of such data, 
let alone tests of statistical significance or 
measures of trend. For example, how can the 
depth profile of fish abundance be related to 
covariates? The challenge is compounded if the 
data are not all collected simultaneously or in the 
same region, as, for example, using sea surface 
temperature or ocean color data collected from 
satellite images as covariates for fish abundance 
in a nonparametric regression. That such 
variables are important to fish distribution is 
attested to by the use of spatial cross-correlation 
between fish catch at satellite-collected sea 
surface temperature data to successfully predict 
areas of high catch. For at least two species 
(Shinomiya and Tameishi 1988) these 'hot spots' 
are on the edges of eddies of cold or warm water 
breaking off from major ocean currents. In this 
area, exploratory data analysis plays a central role 
in helping to choose variables of importance, to 
reduce the dimension of the problem to its bare 
essentials, to suggest analysis tools, to 
characterize an area, and to provide clues to 



possible univariate measures that can serve as 
surrogates for multivariate aggregates. 

2.2 Model evaluation 

Just as graphical display is important before 
analysis, so is it important after analysis. The 
model fit should always be graphically compared 
with the original data. For models involving 
transformations of the original data (e.g. GAM 
and GLM) this comparison should be  made both 
with the transformed and the natural data. 
Graphical displays of the residuals through, for 
example, two-sided rectangular histograms (e.g. 
right for a positive and left for a negative 
residual) along the transects just like Figure 2.3, 
but for residuals, can indicate lack of fit of the 
model or the possibility of having correlated 
residuals. A variogram on the residuals in a trend 
model can also indicate the need for further 
analysis if significant correlation is shown. Other 
statistical methods, such as cross-validation, can 
be used to evaluate the method applied. 

2.3 Survey Design 

This section is provided as a brief overview of 
the choice within the design of a survey and the 
track layout. It is mostly based on Simmonds et 
a[., 1991. Only the major elements in the choice 
of cruise track are considered. Other elements in 
the survey design such as biological sampling 
requirements and allocation or estimating overall 
sampling eifort are ignored. The survey design 
consists of a series of choices of strategy. There is 
no one single optimum strategy for all objectives. 
The choices that are appropriate are determined 
firstly by the objectives of the survey, secondly by 
any knowledge of the stock disuibution, and 
thirdly, the analytical method to be employed for 
data analysis. In all cases the use of appropriate a 
priori information will improve thc survey design 
and the subsequent estimates. However, care must 

Objectives 

There are a number of possible objectives, 
such as; an overall abundance estimate for a 
population or an m a ,  an estimate of precision for 
that abundance, a map of the spatial dislribution, 
or possibly the location of major exploimble 
concentrations. In addition, there may be 
subsidiary criteria that affect the choice of 
strategy, such as; the absence of bias in the 
estimate and minimum variance, minimization of 
mean square error, or that the estimates are 
obtained with the minimum number of 
assumptions. It is important to be  clear about 
both the objectives and their relative importance. 

Definition of survey area  a n d  Stratification of 
effort 

Selecting the boundaries of the survey area is 
important. Removal of areas that contain no fish 
has considerable benefit. For most stock 
distributions there appears to be a link between 
variance and mean density. Predicting in advance 
areas of high and low density and allocating 
sampling effort accordingly can give considerable 
gains in precision. Depth, hydrography, and a 
knowledge of the distribution from previous 
occasions are all possible stratification criteria. 

Adaptive / Predetermined Strategies 

Predetermined strategies require fewer 
assumptions about the stock distribution. More 
information is required to design an adaptive 
survey than to use predetermined designs. 
Adaptive strategies are particularly applicable 
when the stock is highly contagious in its spatial 
distribution but unpredictable in location. A 
number of adaptive methods have been used; 
scouting or outline surveys followed by intensive 
local surveys, adaptive transect lengths, and 
increased survey etfort in areas of high density. 
Each of these methods requires assumptions about 
the distribution of the stock. If these assumptions 
do not hold, the estimates will be biased. 
Adaptive strategies may preclude calculation of 
survey precision without making further 
important assumptions. 

always be taken to ensure that any survcy design 
'fiansect Direction 

is capable of ~ roduc in r  adeauate results if the fish - 
distribution or irs behavior diners from thc Choice of direction is controlled by a number 
expected. It is unlikely that a good survey design of factors. 
can be complelely free of assumptions, and the a. Minimization of bctween-transect variance. 
best results will be obtained by understanding the 

This is relevant for areas with anisotropic 
fish stock and its disuibution. 



distributions and requires transects to be 
placed in the direction with the greatest 
rates of change. 

b. Direction of migration. To minimize errors 
caused by systematic horizontal movement 
of a population the survey should be 
conducted with transects alternately with 
and against the direction of migration. If 
this is in conflict with criteria a) then an 
'interlaced' survey design should be 
considered. 

c. Minimization of inter-transect time. In the 
absence of other information the transects 
should be across the short axis of an area. 

d. Operational considerations such as weather 
may necessarily override these 
considerations, but may compromise the 
results. 

Systematic I Random track designs 

The choice of track design is strongly 
influenced by the objectives of the survey and the 
method chosen for data analysis. However, some 
basic guidelines can be given. If the overriding 
requirement is for an estimate of total abundance, 
in the absence of spatial periodicity, systematic 
sampling generally provides the best estimate. If 
the spatial correlation is is not exploited through a 
model-based approach, then random strategies 
should be employed to allow for calculating the 
variance. But if spatial information is modeled, 
random sampling is not required for the variance 
calculation and systematic sampling is believed to 
be more efficient. 

Parallel 1 Zigzag transects. 

For random designs independence of transects 
is essential. For this reason, parallel transects are 
useful. For adaptive designs, both the transect 
length and spacing will be changed by the use of 
zigzag transects. This requires additional 
assumptions that are difficult to justify and should 
be avoided. 

For systematic designs, the choice of transect 
design is not so clear. 

For parallel transects, a proportion of survey 
time will be unusable if inter-uansect data is 
excluded from the data analysis. In most cases 
where the boundaries of the survey area are 
determined by the stock disuibution, including 
coastlines, this must be the case. 

For zigzag uansects, there is increased 
correlation between data from the vertices. The 
raison &&re of systematic sampling is to ensure 
efficient coverage of the sampled area. 

For wide areas with long transects, and thus 
low proportions of unusable time, parallel 
strategies are preferred. For narrow areas, 
considerable survey time will be wasted if 
parallel transects are used. In these situations, the 
increase in survey effort will improve the estimate 
despite the loss of independence at the vertices. 
However, because of the high correlation at the 
vertices, it is important that they are not located 
preferentially and, where possible, they must he 
located outside the boundaries of the population. 

3. Test data sets 

3.1 Data sets 1-5 Norwegian fish 
stocks 

These data sets are derived from acoustic 
surveys of Norwegian fish stocks. The presented 
data are believed to be monospecific within each 
set. The gross characteristics of the data are 
summarized in Table 3.1. Further details, 
including statistical features, are given below. 
Maps showing transects and acoustic density 
values are presented in Figs. 3.1-5. 

I Table 3.1. Gross characteristics of test I 
data sets 1-5. 

Interval 

WM) 
Data Fish type Region Inte- Avc- No. ~. 
set gration raging data 

1 Pelagic Coast 5 5 664 . 
2 Pelagic Fjord 1 1 96 
3 Pelagic Coast 1 5 881 
4 Pelagic Coast 1 5 986 
5 Benthic Open 3-5 5 1712 

Sca 

Data set 1 This describes an unbounded fish 
aggregation with concentrations on the survey 
boundary. The observations are averaged over 5- 
NM intervals, the transects are spaced at intervals 
of about 15 NM. Data on longitude are relative. 
The data were contributed by A. Aglen. 

Data set 2 The distribution is bounded by 
fjord walls, but is extremely patchy. Cross-fjord 



samples are not available nor are more fine- 
grained data on one small but exceedingly dense 
concentration. The source of data is A. Aglen. 

Data set 3 The aggregation is mostly 
bounded by the survey. Data are provided at 1- 
NM intervals. The parallel transects are locally 
concentrated and strongly contrasted with low 
values including zeroes. The source of the data is 
I. Ratingen. 

Data set 4 This is the result of repeating the 
survey represented by Data set 3 after one year. 
The sampling interval and distance between 
parallel transects retain their previous survey 
values of 1 and 5 NM, respectively. The 
statistical characteristics are less extreme than in 
Data set 3, hut concentrations exist along 
boundaries. I. Rmtingen also contributed this 
data set. 

Data set 5 Two ships collected the data on 
this survey, and the survey grids overlap in space 
but not in time. The data are distinguished by 
survey grid. Considerable differences are 
observed with rcspcct to time and space. The 
source of data is K. Sunnana. 

NM. Bottom depth is given as an ancillary datum 
associated with each acoustic datum. P. 
Reynisson contributed the data which A. 
Gudmundsd6ttir prepared for distribution. 

3.4 Data sets 10-1 5 Simulated data 

Two fish aggregation density fields were 
simulated over a square 300 by 300 matrix. The 
first field was simulated by means of an algorithm 
devised by Z. Kizner and exercised on the basis of 
actual survey data for Myctophidae that were 
collected during a cruise of the Soviet vessel 
VOZROZHDENIE in the waters north of South 
Georgia, 27 September - 16 October 1988. The 
second field was derived from the first by a 
transformation. A smoothed version of the first 
field is shown in Figs. 3.8-9. 

On the basis of each simulated data field, 
three variants were derived: (1) without noise, (2) 
with normally distributed additive noise, with 
standard deviation of 20, and (3) with 
multiplicative, lognormally distributed noise, with 
standard deviation of 0.1. 

3.2 Data set 6 Bering Sea walleye Survey data are simulated by superimposing a 

pollock grid of ten equally spaced parallel transects on the 
two density fields in each of the three variants. 
The grid is indicated in Fig. 3.10. Data from the 
first simulated density field in its three variants 

The data were derived from the "Inmer are averaged over a series of three successive 
survey of the eastern Bering Sea shelf. The values. Each of these simulated surveys consists 
survey region showing the 27 parallel transects is of 994 data. Data from the second simulated 
shown in Fig. 3.6. Each data record consists of density field are averaged over series of five 
position, time, bottom depth, distance sailed, and successive values. Each of the resulting 
surface density. Bottom depths greater than 400 simulated surveys consists of 596 data. 
m are recorded as 400 m. The surface density 
expresses the fish density in terms of biomass per 
unit area. The units are kiloerams of fish mass Der - 
square meter. The source of the data is N. J. 4. analyses 
Williamson. 

3.3 Data sets 7-9 Icelandic herring 

A major part of the stock of Icelandic 
summer-spawning herring was surveyed 
repeatedly in the region indicated in Fig. 3.7 
under similar conditions on the night of 25-26 
November 1988. The three surveys reported here 
had the following starting and ending times: 
19:OO-2215, 2240-02:05, and 03:15-0700 local 
time. The horizontal resolution of the data is 0.1 

In the classical approach to survey data 
analysis, the data should be collected on a largely 
uniform grid of either systematic or stratified 
random design. The grid density need not be 
uniform over the whole survey area but if 
diflerent levels of survey effort are used then these 
areas must be treated separately. The survey grid 
is constrained so that at least one transect passes 
through each element of area used in the data 
analysis. The data are analyzed to give some 
geographical or spatial dishbution and an overall 



estimate of abundance. The area is broken up into 
sub areas or strata. These may be large parts of 
the area or small 'rectangular' strata based on 
latilong positions. These strata are not selected 
on the basis of the abundance values but rather on 
the spatial variability and should be determined 
prior to the survey. Typically, the strata 
dimensions have turned out to be between two to 
four times the limit of sample correlation. 

In what follows, the design-based (finite 
population) approach of Smith (1990) is, strictly 
speaking, not included in the 'klassical 
approaches". It should be noted, however, that 
this approach is numerically identical to assuming 
independent, (log-)normally dismbuted 
observations with a constant mean within each 
stratum. The latter is included in what is termcd a 
"classical approach". 

4.1 Method 

The data from each stratum are analyzed 
separately to give estimates for each stratum. At 
Ihe end of the analysis, the strata are combined to 
give a total abundance and associated variance. 
The data within each stratum are treated as 
independent and identically distributed. The strata 
are assumed to be independent. An arithmetic 
mean and variance may be calculated for each 
stratum. However, the amplitude distribution of 
data found in each stratum may not be normal, 
and a more efficient estimate of the stratum mean 
may be possible. The data are examined visually 
to check that the amplitude distribution is not 
multimodal. A Maximum Likelihood estimation 
procedure as described by Box and Cox (1964) is 
used to estimate a suitable power transform to the 
Gaussian distribution. This is combined with a 
delta function (Aitchison 1955) to remove the 
zero values. The Box-Cox mnsform is performed 
separately on all strata, but the results are 
combined to give significant results. If the results 
of this test give a maximum for the power 
transform between +0.5 and 0, a power transform 
of 112 113 114 116 or in is selected. For each 
stratum, the mean and variance of the transformed 
data are calculated. As the distribution is 
Gaussian, confidence limits may be calculated in 
the transform domain. The inverse transform is 
performed and the effects of ihe delta function 
removed (see MacLennan and MacKenzie 1988). 
An unbiased mean and variance are determined 
for each stratum. The abundance of each stratum 

is calculated using the area of each stratum, 
taking into account the proportions of land and 
sea as appropriate. The variance of the abundance 
is the variance of the mean scaled by the area 
squared. Finally, the total abundance and its 
variance is calculated assuming independence of 
strata. To check the process, the means calculated 
by the arithmetic and transformed methods are 
compared. 

4.2 Data Sets analyzed 

The choice of rectangular strata sizes and the 
selected power transform for the data sets that 
have been analyzed, are shown in table 4.1. 

fordata rcts 1-5. 

Strata Sizes 

Data Lntitude Longitude Power 
transform 

0.5 1 .o 
0.5 1.5 In 

The results of the data analysis are given in 
section 8.3. With the exception of data set 2, the 
survey designs and data distributions are suitable 
for this analysis technique. In all these cases, it 
was possible to select one power transform 
unambiguously and the differences between 
arithmetic and transformed means were 
negligible. However, it was not possible to select 
a unique transform for data set 2, since although 
the Box-Cox test indicated that the best transform 
was the logarithmic one, the confidence intervals 
included other transforms. It is also interesting to 
note that for data sets 1 and 4 the transform 
estimate exceeded the arithmetic mean, for data 
set 3 they were equal, and for data sets 2 and 4 the 
transform estimate was less than the arithmetic 
mean, indicating, at least from this small sample, 
that there is no evidence of bias in this technique. 

4.3 General Applicability 

This technique, when applied on a grid 
structure similar to those shown for data sets 1 



and 3 to 5, provides some geographical 
information, total abundance and variance 
estimates along with confidence limits. It works 
best with a systematic sampling strategy and 
uniform sampling intensity. It is most applicable 
to large ocean areas (data sets 1.3-6 and 10-15) 
with little spatial correlation and non-stationarity 
of the density distribution. It is relatively simple 
to use and requires no real operator skill with the 
exception of choice of area size. It is not suitable 
for estimates of single schools (data sets 7-9) or 
complex areas with highly aggregated 
disEibutions (data set 2). The assumptions are that 
the within stratum data are uncorrelated and the 
strata are independent. 

5. Kriging 

Spatial covariation can be used in the 
estimation of fish density locally at a point or 
globally over an area. A number of approaches 
have been developed for using spatial covariation 
in this way and the geostatistical literature is a 
particularly rich source of such applications 
(Matheron 1963 1965 1971, Journel and 
Huijbregts 1978, Cressie 1989). These techniques 
are now being applied in fisheries research 
(Crittenden 1989, Guillard et al. 1990, Sullivan 
1991, Conan 1985, Conan et a1 1988a 1988b, 
Conan and Wade 1989, Gohin 1985, Nicolajsen 
and Conan 1987). 

Estimates, such as that of fish abundance at a 
given location, may be derived as a weighted 
average of the observations taken near the point 
of interest. The observations are weighted in the 
estimate according to their correlation with other 
observations and with the point or area to be 
cstimated. The shape of the area of the estimate 
and the coverage of the survey will also affect the 
weights through the computed correlations. The 
correlation is generally given as a function of 
inter-point distance, and may be derived diicctly 
from another measure of interpoint variation 
known as the variogram (Matheron 1971, Journel 
and Huijbregts 1978). The variogram is often the 
measure of choice because of its generality, since 
it does not require stationarity in the mean. The 
variogram is defined as half the expected value of 
the squared differencc between two random 
variables that are located a distance 'h' apart. 

The estimation (or prediction) variance, oa2, 
is the expected squared deviation of the estimator 
from the random variable describing the density 
at a point, that is 

Note that this may differ from the variance of 
the estimator, 

Vai- [Z.'] =E [ [z~*-E(zv*)] '1, 
a statistic more commonly used in classical 
statistical approaches, but inappropriate here 
exceDt under the right conditions. In terms of the - 
covariances, the estimation variance may be 
computed as 

where V represents the total area of interest and v 
represents the area sampled. The average (noted 
by bar) will depend on the weighting used in 
computing the estimator. 

This formula contains the mean covariance 
between two arbitrary pwndependently 
describing the volume, C(V,V), the mean 
covariance between a sample o b s e r v a n t i d  an 
arbitrary point describing the volume, C(V,v) and 
the - mean covariation between sample points, 
C(.,v). 

Several alternative approaches for estimating 
global fish abundance using these principles are 
presented here. The general methods will be 
described first, followed by resulls and discussion. 
A comparison of the results from this spatial 
geostatistical approach, sometimes referred to as 
kriging, with other approaches discussed in this 
report is given in Section 8. 

Application 1: Point kriging with possible 
trend removal 

W. G. Warren applied point kriging (WP6-7), 
taking into account the following considerations: 

For the Icelandic herring data, a density 
surface was described by taking as coordinates 
the distance from the coastline and the distance 
parallel to the coastline from an arbitrary origin. 
The non-zero data exhibited noticeable positive 
skewness. The Box-Cox (1964) transformation 
was used to determine a transformation that 
would yield an approximate normal (Gaussian) 
distribution. The square-root transformation 



appeared suitable for all three cases. studied. The variogram may or may not be 
isotropic, i.e. identical in all directions. This 

A rectangular box with sides parallel and 
estimation variance is minimized by perpendicular to the coastline was then 
differentiating with respect to each of the weights 

consmcted about the patch separately for each and to a parameter, h, in order to survey. Each box was divided into rows and 
columns to form cells of approximately equal optimize the estimate of the weighted average and 

to avoid bias under the constrain Cw=l. 
area. The number of data points that fell into a 
cell varied and for some cells this number was 
zero. Trend removal was accomplished by an 
unbalanced analysis of variance (ANOVA), with 
rows and columns as factors. 

The ANOVA-estimated cell values were 
subtracted from the transformed data values at 
points falling within the appropriate cell. The 
residuals were then used to construct a 
conventional spherical variogram where isotropy 
was assumed. The global estimate is 
approximated by computing the point estimates 
over a grid on the area, multiplying by the mean 
area about each point, and then summing. The 
variance of the estimate is computed similarly 
using the correlation between grid point estimates 
that are derived from the spatial correlations. 
Derails relating to distance calculations, choice of 
variogram, and the global approximation are 
provided in Appendices D and E. 

The simulated data were similarly analyzed 
but no trend removal mechanism was aoplied. 
The Box-Cox approach on the non-zero data 
suggested that a logarithmic transformation would 
be appropriate. The variogram was estimated in 
two directions but no systematic difference was 
found, so a single conventional spherical 
variogram was computed by combining the two 
estimates. Furlher details are provided in 
Appendices D and E. 

Application 2: Global block kriging 

The estimate of the average density and 
associated estimation variance over a global area 
of interest is obtained from all points sampled, in 
a one step procedure as described in Matheron 
(1971). The information from the variogram, y, 
and from the reswctive distance between the 

The resulting optimized variance or kriging 
variance is: 

In the particular Gulkig  software application 
designed by Conan and Wade, the numerical 
calculations of an average variogram over an area 
V can be made over any irregular shape. If the 
global area over which the estimate is to be made 
is not predefined prior to calculations, it may be 
defined by first calculating contours of local 
estimation variances by point kriging and then 
chosing a contour beyond which it is felt that 
exuapolating would be unsatisfactory. 

The global kriging estimate can also be 
approximated by calculating a large number of 
point kriging estimates over a fine mesh grid, and 
then averaging. This procedure is useful when the 
number n of point observations is very large, 
since a matrix of n +1 x n +1 must be inverted in 
the direct estimate procedure. 

In working paper W10, E. Ferrandis proposed 
a simplified computational procedure for 
calculating the statistical weights. This procedure 
reduces the dimensions of the matrix to be 
inverted to n by n. 

Data sets 1 through 4, the Icelandic herring 
data sets, and the simulated data sets were all 
analyzed using the following methodology. No 
trend removal or variance transformation was 
applied to the data. Spherical isotropic variogram 
models were fit to each data set and a global 
estimate and its variance were derived by 
ordinary kriging applied within an irregular block 
defined by the variance contour around the area 
studied. 

points and to the area, and the shape of the area 
are used for calculating an estimation variance of The GullKrig software developed by G. 

the form: Conan and 6. Wade calculates global and local 
(either block or point) estimates of abundance and 

a n n their variances using the method of ordinary 
02=2,C w;%vi,V)-,C Z wiwj$vi,vj)-$V,V) (5.4) kriging. 

rzl ,=1,=1 

where w; are the statistical weights attributed to 
the n poidt samples vi, and V is the global area 



Application 3 

A third application by P. Petitgas and J. 
Rivoimd was presented in working paper W9 and 
is given as Appendix B. For the Icelandic herring 
data set, since the data are regularly located 
throughout the field, the abundance is estimated 
using a simple arithmetic mean. Furthermore, 
since the field is large compared with the range of 
the correlation, the mean covariance between two 
arbitrary points independently describing the area 
C(V,V) and the mean covariance between a 
sample observation - and an arbitrary point 
describing the area C (Kv) are found to be small. 
Thus, the estimation variance simplifies f i e  
mean covariation between sample points C (v,v) 
which may be computed from the mean variance 
among samples plus the mean covariance between 
samples. 

For data set 4 (Norwegian Herring) and for the 
Bering Sea walleye pollock data (data set 6) a 
different approach is taken. Assuming the 
trausects are parallel and that each transect 
traverses the entire width of the stock the 
integrated transect values may be taken as being 
one-dimensional observations on the stock. A 
variogram was then estimated in one dimension 
and geostatistical theory was applied to the 
overall abundance estimation and associated 
variance computation. Obselving that the field is 
small with respect to the range of covariation the 
estimation variance must now include the mean 
covariance between points and the mean 
covariance between points (in ID) and the sample 
points. But since the problem is one dimensional 
the computations are &aightforward. 

Two-dimensional computations were 
performed using Bluepack (1991), whereas one- 
dimensional computations required no software. 

6. Generalized linear models 

6.1 Description of method 

The basic GLM assumes that the structure of 
thc schools is of the form of a mean plus a random 
error, where the mean is a function of location 
(and potentially other variables), but the error 
contains no structure. The mean is parametrized 
as a function (the inverse link function) of some 

linear terms and the disbibution of the 
measurements is from the exponential family. 

Generalized linear models are described in 
several texts, including McCullagh (1983). 
McCullagh and Nelder (1989). and Nelder and 
Wedderburn (1972). A clear introduction to their 
use, using the GLIM package (Baker and Nelder, 
1978) is given in Aitkin et a1 (1989). GLMs can 
also be fitted within the Splus package (Becker et 
al. 1988, Anon. 1991). 

6.2 Application of method 

Only the three herring data sets were 
considered, since GLMs can only be expected to 
work well with this type of acoustic data, when 
there is a single aggregation of fish, within a 
limited area. In all other data sets considered 
(with the possible exception of walleye pollock), 
there tend to be aggregations with low values in 
between or around. Polynomials of reasonably 
low order cannot fit such data well. An analysis 
using GLMs on one of these data sets was 
introduced briefly in Anon. 1990. 

Assuming a gamma density and a log-link 
seems a reasonable assumption, but high-degree 
polynomials are needed to fit the data well. 
Workimg paper W2 found that polynomials of up 
to the 6th degree were needed for some of the 
data, and even in this case, (pseudo-) R2-values 
were only at the 0.5-level. 

However, since there seems to be one large 
"lump" in each aggregation, only the results from 
fitting a simple paraboloid as a function of 
location for each data set are presented in this 
report. 

The numbers obtained are given in section 8. 
The areas and gridpoints used were based on a 
grid of 0.2 NM by 0.2 NM cells, which were 
defined in such a fashion as to cover the survey 
tracks with a minimal amount of extrapolation, 
yet retaining a roughly convex region. 

6.3 Discussion 

The actual values obtained (80775, 76933 and 
81250) are quite close, the range of the three 
being only 5% of their average. This is in stark 
contrast to the 'konfidence bounds", based on 



integrating an estimated one standard error in 
each direction from the surface, all of which are 
over 13% in each direction from the 
corresponding estimate. It must he noted that 
these bounds are only approximate and further, 
they approximate the 68% confidence interval, 
corresponding to one standard error in each 
direction. They are used only to obtain an 
approximate "C.V." ratio (standard error/mean). 
The approximate 95% confidence interval will be 
correspondingly wider. 

It would seem, therefore, that although the 
log-polynomials do not fit very well, there is 
considerable smoothing involved in the 
integration and this is not appropriately reflected 
in the variance estimate behind the confidence 
bound. 

Some concerns were raised during the 
meeting that the reverse transform (exponential), 
required to evaluate the surface on a grid for 
integration, would introduce a bias. Although this 
may be the case, it is not obvious what the precise 
effect is, or how it should be corrected for, since 
the equations used for estimating the parameters 
in the GLM model are different from simply log- 
transforming the data before fitting a model. 
These equations are based on the differences 
between the actual (untransformed) observations 
and their means according to the model. 

Besides detecting trends in abundance over space, 
these changes can be related quantitatively not 
only to spatial location but to environmental 
factors such as depth and temperature. The 
existence of such quantitative relationships 
strengthens understanding of the factors that 
influence the explicit spatial distribution of fish 
species abundance and also gives a degree of 
explanation of this distribution that may serve to 
reduce the variance in abundance estimates by 
providing additional information about 
abundance distribution through covariates that are 
easy tomeasure. 

Generalized additive models relate the 
changes in abundance to spatial covariates, 
without restricting the functional form of the 
relations hi^ (Kaluznv. 1987: Hastie and 
~ibshirani- 1986, 1996). This 'method allows 
nonlinear trends and includes covariates which 
potentially determine the spatial patterns in the 
data. Bootstrap methods give information on the 
variability around the trends and permutation tests 
are used to determine the significance of trends. 
The use of generalized additive models for 
analyzing survey data is quite general in that the 
surface which is fitted to the data is only restricted 
to be a sum of smooth non-parametric functions. 
The form of the functions is not restricted to 
polynomials as in generalized linear models 
(GLM; McCullagh and Nelder, 1989). The 

In lieu of the results in working paper W6, the functions are instead determined by a smoothing 
residuals from the GLM are expected to be technique that reflects local spatial trends, while 
correlated, reducing the validity of the error allowing trends over the entire space to be 
estimates. observed (if they exist). 

A Generalized Additive Model (GAM) is a 
nonparametric generalization of multivariate 

7. Generalized additive models linear regression. Both methods relate the 
dependent variable to ~ossiblv im~ortant 

7.1 Introduction 

Generalized additive models are used here as 
methods for detection of spatial trends. They can 
be used as a tool in abundance estimation, but 
more importantly as an aid to demonstrating or 
quantifying relationships between the spatial 
distribution of abundance and environmental 
factors. In cases where the average value of a 
variable changes explicitly over space, this 
change is assumed to be a trend. A spatial wend 
is assumed to mean a change in the average 
density which is a function of the spatial location. 

coiariates. However, in GAM the covariaies are 
assumed to affect the dependent variable through 
additive, unspecified (not linear) functions. 
Scatterplot smooths (Chambers er al. 1983) in 
GAM replace least square fits in regression. In 
GAM, the data can come from any distribution in 
the exponential family (which includes the 
normal, Poisson and binomial distributions). 
Because of the flexibility of GAM in detecting 
and testing for trends in abundance, they are 
valuable in uncovering factors influencing fish 
distributions over several years. The theory and 
method for applying GAM, using the gam 
function in Splus (Chambers and Hastie 1991), is 
given in Appendix C. 



7.2 Application of GAM to data sets 

The primary focus in the GAM analysis of the 
data sets provided was on uncovering 
relationships between fish abundance and 
environmental factors. Only depth was provided 
as an ancillary variable (except for latitude and 
longitude of the sampling locations) and that only 
[or the Icelandic herring and Bering Sea surveys. 
Analysis was most fruitful for the Bering Sea 
survey, where a significant trend for abundance 
with depth was found. This analysis is presented 
in Appendix C. 

8. Comparisons across methods 

8.1 Introduction 

In the following sections, the results from 
applying different methods to each data set are 
compared in terms of the estimated abundance 
and the estimated error in that number. The 
density estimate and area used are also 
considered, since in some cases these severely 
affect the results. 

Within tables in the comparisons subsections 
(8.3-8.6), A denotes the arithmetic mean, B 
denotes the method based on the Box-Cox 
transform, G1-G3 will denote different 
geostatistical methods, S is used to denote the 
spline approximation method, L denotes the 
method based on generalized linear models and T 
denotes the approach of accumulating along a 
transect, followed by analyzing the sample using 
the ratio method (as described in Anon. 1990, p. 

8.2 Variance estimation 

When the results from the different 
computations are compared, several issues must 
be borne in mind. One of these is the definition of 
the quantity of interest. The term "total abundance 
estimate" can be - and has been - interpreted in 
dirferent mathematical ways, resulting in entirely 
different estimates of associated variances. 

The approaches which have here been called 
'klassical", including the GLM and GAM methods 
have as their underlying purpose the estimation of 
a "response surface'' which can be of the form of a 
step function, a polynomial in location or an 
abnndance-depth relationship. The surface 
estimates the expected value of the response at 
each location. The associated abundance estimate 
is the volume under that surface. 

The method of point kriging, however, fits a 
surface which estimates the unobserved 
individual responses at each location. The 
associated abundance estimate is also the volume 
"under the surface", albeit a different surface. 

A fundamental difference in approach is thus 
evident. This sometimes has drastic consequences 
for the variance estimate. 

Under the "classical" approaches, including 
GLM and GAMs, the existence of autocorrelation 
in residuals reflects a redundancy of information, 
which reduces the effective degrees of freedom, 
and increases the variance in the 
integravabundance estimate. However, the 
kriging school of thought is the exact opposite, 
essentially stating that since there is 
autocorrelation. there is better information to 
interpolate between data points, resulting in a 
better estimate of abundance. 

A simple example will suffice to illustrate the 
difference quite clearly. If the transects are 
parallel, they can be added up to reduce the 
problem to one dimension. Suppose that there is 
no trend in the data, so that the expectcd value is 
constant in the remaining dimension. The 
"classical" approach is to attempt to estimate this 
single mean. The kriging approach is to estimate 
the entire curve (which will not be a straight line 
due to the autocorrelations). 

If the item of primary interest is the expected 
value, an increase in the autocorrelation will 
obviously reduce the effective degrees of 
freedom. In fact, as the autocorrelation goes to 1, 
the information in the data set is reduced to just 
one observation, as far as the estimation of the 
expected value is concerned. 

If the item of primary interest is the curve 
itself along with the integral of that realization of 
the process, then an increased autocorrelation will 
lead to more information about the behavior 
between data points, thus reducing the variance. 
In the limiting case, as the autocorrelation goes to 
1, the curve will become perfectly known, as will 



the abundance. var P:-I.] =E [(1:-1,)~] (8.2) 
It must be noted that in cases when a grid is 

regular, both approaches may simply be using the where I: is an estimator of the integral of the 
arithmetic mean as an estimator, but the variance expected value of the process (the above 
estimates may be totally different, with one giving equations assume unbiasedness of the estimators). 
CVs as low as a few percent, the other yielding As explained above, these two variances may be 
CVs which commonly range from 20 to 50%. As totally dilferent, even if the estimgkors are both 
is described above, this simply stems from the equal to the sample mean: I:=Z:=Z . 
choice between estimating a mean surface and 
predicting an unobserved~surface. Whether the 
CVs are really as low or high as indicated is not 8.3 Data sets 1-5 

- 
known a  ~r io r i ,  but can be ascertained throueh - 
other methods, such as cross-validation. 

It is therefore essential to precisely define the 
quantity of interest: should it be the surface of 
expected values or the unobserved measurements 
between the transects ? This question can be at 
least partly answered by investigating the source 
of the autocorrelation. The acoustic 
measurements involve several levels of variation, 
which for convenience can be separated into 
"process error" autocorrelation (the structured 
variability of the resource) and "observation 
error" autocorrelation (the structured variation in 
the measurement instruments). If most of the 
autocorrelation stems from the observation error, 
then there is good reason to treat it as true error 
and consider its effects negative ones. 

Acoustic measurements are capable of 
detecting sharp changes in density, so most of the 
autocorrelation along and across transects will be 
due to contiguous behavior of the resource. This 
implies that when autocorrelations are observed 
along and across transects, they include important 
information about the resource itself and should 
be utilized as best possible for the estimation of 
the resource. 

This leads immediately to the use of the 

Tables 8.1-5 give, for data sets 1-5, the 
estimated densities (s,.,), the corresponding C.V. 
(defined here as 100 times the standard error of sa 
over sA), the area used and the total abundance. 
Analyses of these data sets were also given in 
Anon. (1990), but many of the values have been 
revised. 

Table 8.1. Summary of !he rerults of !he analyses of 
test data set 1. 

ID Method sA CV Area sALArea Analyst 

m 2 ~ "  % I ~ N M ~  /lo6 

A Arithmetic 75 
mean 

B BonICox 68 9 55 3.7 Shrnondr 
rranrf. 

GI  Kriging 85 43.5 54 4.6 Conan & 
Wade 

S Spline 77 NIA 53 4.0 Stolyarenko 

It is noted that in table 8.1, methods GI and S 
both give higher abundance estimates than 
method B, but the CV estimate in B is much lower 
than for GI. It must be borne in mind that these 
two CV-values are estimates of different 
quantities, as described in section 8.2. 

criteria and language used in kriging, specifically 
able 8 2 .  Summary of ihe results of rhe analyses of rerr dar 

with respect to the term "total abundance" which -, 7 -. -. 
is defined as the abundance that would have been Method s CV AreasA*ArraAnaiyst 
measured if the area had been completely covered 
-not the ex~ected value of that auantitv. m2/NM2 % NM' 110' 

Arithmetic mean 297 
In mathematical notation, the variance of 

primary interest is the prediction variance, BodCox vansf. 48 37 49 2.4 SLnmondr 

443 4 47 20.9 conan & 1Kd&g 

vnr [z:-&] =E [(z:-&)~] (8.1) S p h e  259 NIA 51 13.2 Stolyarenko 

In table 8.2, the CV of B is much larger than 
where Z, is the double integral of the process and that obtained in (although these two have 
Z: is an estimate. The variance used in lhe different interprerations). The actual abundance 
alternate ("classical") approach is estimates also vary widely, with the Box-Cox 



transform (B) giving the lowest, the spline over which the estimation errors are made is 
approximation (S) intermediate and global reduced. In the GI application, on the other hand, 
lcriging (GI) giving the largest estimate. It must a much larger surface was defined. Further, 
be pointed out that the areas used by the different estimation errors in areas were assumed, whereas 
analysts are different, but this does not fully no error was assumed in the G2 a~plication. 
explain the differences. The group noted that this 
dataset is particularly difficult to analyze and few The CV of T is very high in data sets 3 and 4. 

methods would be applicable to this kind of data It is believed that this stems from this method not 

(c.f. section 3 and Fig. 3.2). taking into account the inter-transect spatial 
correlation. 

Table 8.3. Summary af the results of the analyses of 
test data set 3. 

m2/NM2 % ~ O ~ N M ~  /lo6 

A Arithmetic 1793 

B BoxICox 1327 7 55 7.3 Simmonds 
transform 

G1 Kriging 1558 33.8 63 9.8 Conan & 
Wade 

G2 2089 14 90 18.8 Guillard & 
Gcrdaux 

G3 1911 22 83 15.9 Armstrong 

S Spline 7.8 Stolyarenko 

T Transecrr 3072 30 19 5.7 Williamson 
as 
strata 

Table 8.5. Summary of the results of the analyses of 
test data set 5. 

mZINMZ % 1o4hwz /lo4 

mean 

B BoxICox 9 8 13 110.0 Simmonds 
transform 

GI Kriging 14 18 19 265.0 Conan & 
Wade 

S Spline 87.5 Srolyarcnko 

Three methods were applied to this test data set. 
The resulting estimates varied widely. 

8.4 Data set 6 Walleye pollock 
In test data set 3, the CV estimates vary 

widely (table 8.3). The geostatistical methods 
(GI-G3) give abundance estimates which are up 
to two to three times the estimates obtained by the 
other methods. 

Tablc 8.4. Summary of the results of the analyses of test data 
set 4. 

BoxlCax transform 560 96100 3.4 Simmands 

1062 513W0 3.2 Conan & Wad 
1690 121975 3.3 Petitgas 

Spline 3.5 Stolyarenko 

Transects as strata 1512 312200 3.3 Williamson 

Two estimates of transect mean density were 
provided, as indicated in table 8.6. 

Tablc 8.6. Abundance estimates for waUeye 
pollock (data set 6) 

ID Method Abundance CV, 9% Analyst 
G1 See sect. 13.220 2.3 Petitgas & 

~ivo&rd 
G2 Seebelow 13.019 3.3 Warren 

The G2 estimate is based on the total of the 
mean densities over the number of elementary 
sampling units in each transect, I&, say. 
However, the lengths, l i ,  of the elementary 
sampling units vary slightly and the G1 estimate 
is based on C1;d;. . . 

In data set 4, the difference between the CV Although the original data set consist of 27 
results from the geostatistical methods GI and G2 a transmission glitch of some sort 
is considerable. The main explanation for this erased one transect from some of the diskettes 
probably lies in definition of the area over which sent to participants, This omission is unlikely to 
Ihe estimation was performed. The area is have affected the results to any noticable extent. 
sq. NM for G2 and 3000 sa. NM for GI. In the 
G2 approach, the zero values at the extremities of The G1 method is described in Section 5, 
the transects are intelpreted as zeros exterior to above. In G2, the transect was also taken as the 
the fish spatial extension. Therefore, the area sampling unit but the uansects were treated as a 



systematic sample with a random start. Variance The methods of area estimation differed from 
estimation was then accomplished by assuming a one method to the next: 
polynomial trend on the transect totals and 
applying the formula given in Cochran (1977) as 
extended by Kingsley and Smith (1980). A 
quartic was judged to be appropriate. Details are 
given in working paper W8. Essentially, it was 
assumed that the residuals, after removal of the 
fourth-order trend, would be independent. The 
slightly greater CV obtained in G2 relative to G1 
suggests that some residual serial correlation may 
have remained in the residuals. 

8.5 Data sets 7-9 Icelandic herring 

Five different analyses for each of the 3 
surveys were available for the meeting. The 
results are summarized in table 8.7. 

Table 8.7. Sumrnaty af results of analyses of Icelandic herring 

80.8 76.9 81.3 Stefhsson 

Mean Density 5.72 4.34 5.32 

cv. % 

Mean Density ".a. 

kriging 

Mean Densily 4.94 3.24 2.77 

25.8 36.3 40.8 
cv. % 

Point GZ 
kriging 

No estimate of area size or precision of mean 
density was provided with the application of S. 

Abund. 101.9 81.9 93.4 Warren 

MeanDensity 5.39 3.18 3.37 
Area 18.9 25.7 27.9 
CV, % 9.5 11.5 13.8 

Mean G3 
abund. 

. The boundaries for the GLM model 
application Q were chosen to include all 
locations of observations. 

Petitgas 
Rivoirard 

Mean Density 5.53 3.25 3.59 

Areas in the block kriging application (Gl) 
were defined as the outline of an variance 
contour line of an arbirrary level (value not 
specified). They correspond approximately to 
the outline of the sample points plus a corridor 
of width slightly smaller than the range of 
influence. 

The areas for the application of point kriging 
(G2) were determined as those locations for 
which the estimated density was non-zero. 

The area used in G3 was limited to the zone 
that was swept. It was taken as 15 sq. NM for 
all sets. An extension on each side of the 
survey was also considered, giving an area of 
33.5 sq. NM. 

Consequently, the areas, as used for the GLM 
model, were smaller than those used in point 
laiging, which, in turn, were smaller than those 
used in block Eging. 

The GLM estimates of CV, obtained in the L 
application, are not comparable in that they 
represent the pointwise integration of one- 
standard error confidence limits and should 
therefore only be considered approximations. 

Other choices of distribution, link function 
and degree of polynomial in L gave alternative 
abundance estimates ranging from 78225 to 
103734, from 67514 to 96185 and from 74195 to 
90543 for surveys 1, 2 and 3, respectively. With 
high-degree polynomials, slight changes in area 
definitions can drastically change the results. 

The estimates of mean density are, not 
surprisingly, inversely related to the estimates of 
area. The relationship is, however, not that of 
exact inverse proportionality so that the G1 
estimates of abundance turn out to be greater than 
those of G2 which, in tum, are greater than those 
of L. 

The mean density estimates in G3 (the sample 
means) are closest to those of G2 differing by 
0.1%. 8.1% and 7.7% for surveys 1, 2 and 3, 
respectively. 

The spline approximation (S) abundance 
estimates for surveys 1 and 3 are also closest to 
those in G2 differing by 6.7% and 12.0%, 



respectively. The S estimate for survey 2 is 
clearly unrealistically low, since the data are 
supposed to represent three surveys of the same 
aggregation. By the same token, the fixed areas 
assumed in G3 are also unrealistic since this 
would imply abundances for surveys 2 and 3 of 
approximately 60% that of survey 1. 

Since the data sets represent three surveys of 
the same aggregation, it was expected that the 
abundance estimates obtained by any one method 
would be consistent over the three surveys. Table 
8.8 expresses, for each analysis, the range of the 
three estimates of abundance as a percentage of 
their mean. The differences between the estimates 
are relatively small in relation to the estimated 
cvs .  

Table 8.8. Comparison of between-survey results 
for Icelandic herring. 

Application Range (of 3) M a n  (of 3) Range 1 
Mean 

% 
L 4317 79653 5.4 
S 54600 86567 63.1 
G1 14173 119505 11.9 
G2 19963 92389 21.6 

The estimate of CV in G2 (survey 1) seems 
comparable to that obtained in G3, and perhaps 
somewhat less than that obtained in GI. This is 
consistent with the conjecture that, in employing 
ordinary kriging, somewhat greater precision 
would be attained by removing any seemingly 
well defined trend. 

8.6 Data sets 10-1 5: Simulated data 

For ease of tabulation, all total abundance 
values have been scaled down by 100000. For all 
six surveys the true abundance is 87.67 and the 
mean density is 97.41. The population of survey 2 
is that of survey 1 rotated through 90 degrees. 

Three different analyses (or partial analyses) 
of data sets 10-15 were available for the meeting. 
The results are summarized as follows: 

Only estimates of abundance were provided 
with the S method (no measure of precision). 

The G2 abundance estimates presented during 
the meeting were preliminary. They were based 

Table 8.9. Comparisons of results from simulated 
data sets 10-15. 

l ~ a t a  set 10 11 12 13 14 15 

ID I 
Method I 
Analyst 
A 

A d .  
mean 

Simulated survey 1.1 1.2 1.3 2.1 2.2 2.3 

Statistic 

Mean 
density 95.8 95.9 95.8 91.9 92.6 92.3 
Abund. 86.20 86.30 86.20 82.70 83.10 83.00 
CV n.8. 
Din. 
from 
tme 1.7% 1.6% 1.7% 5.7% 5.2% 5.3% 

S 

2D-spline 

Stolyarenko 

Kriging ~bund .  85.06 84.96 84.96 85.23 86.13 83.43 
CV 12.2% 10.4% 10.2% 128% 10.8% 8.8% l a d e  IDiE 

Mean 
density 97.1 97.2 97.1 95.8 96.3 96.3 
Abund 
CV 
Din. 
from 
true 2.8% 3.0% 2.8% 1.5% 2.0% 2.0% 

from 
tme -3.0% -3.1% -3.1% -2.8% -1.8% -4.8% 

G2 I Mean 

G1 

density 113.5 101.9 117.2 IW.4 96.7 99.2 / Kriging iAbund. 102.18 91.73 105.43 90.36 87.92 89.31 
CV 2.4% 2.1% 2.5% 2.8% 2.9% 2.9% 

Mean 
Density 94.5 94.4 94.1 94.7 95.7 92.7 

on a smaller critical distance than intended; i.e. 
the distance of data points used from the 
interpolated locations. The tables in this report 
show the revised values. 

Warren 

The S estimates are all slightly above the true 
abundance by an average of approx. 2.4%. 
Conversely, the G1 estimates are all slightly 
below the true value, by an average of 3.1%. The 
G2 estimates are above the true value for all but 
one survey. 

Diff. 
from 
uuc 16.6% 4.6% 20.3% 3.1% 0.3% 1.9% 

W. Warren also presented estimates obtained 
by treating the major transects as a systematic 
sample (Kingsley and Smith 1980) with a single 
random start, although clearly, a random start was 
not employed. Not all the data were used, as the 
short transects linking the ends of the long 
transects were omitted. The results were as given 
in table 8.10, with details given in Appendices D 
and E. 

These results are interesting in that, as noted 
above, the underlying population for survey 2 was 
that for survey 1 rotated through 90 degrees. It 



a random sun. 

Data set 

SLnul.survey 1.1 1.2 1.3 2.1 2.2 2.3 

Abund. 94.36 94.51 94.32 75.75 75.13 74.97 
DiE from tlue 7.6% 7.8% 7.6% -14.7% -14.3% -14.5% 

6.9% 6.9% 6.9% 4.9% 4.9% 4.9% 

can be seen from Fig. 3.8 that the populations 
consists of a "mountain range" running through 
the center of the region and parallel to one pair of 
sides. Consequently, the transects of survey 1 cut 
across the "mountain range" thus giving transects 
totals that exhibit relatively moderate variability 
but with no clear trend. For survey 2, the transects 
run parallel to the "mountain range" so that the 
transect totals exhibit much greater variability but 
also an essentially quadratic trend. Since, for 
survey 2, a quadratic trend was assumed in the 
variance estimation, this accounts for the smaller 
CV estimates. The lower abundance estimates are 

Depending on the severity of the trend, it may 
need to be removed before applying covariance 
techniques, although Journel and Rossi (1989) 
have shown that equivalent results may, in some 
cases, be obtained by using appropriate data 
windows when applying techniques which do not 
assume the existence of trend. 

Spatial analysis can be viewed as a sequence 
of steps at each of which a choice must be made 
of the several options that are available (e.g. 
transform or not, if so which transform ? Trend 
removal or not, if so how? Should ancillary data 
be used ? Do the two-dimensional data lend 
themselves to being collapsed into one 
dimension?). There are as yet no well defined 
rules as to which choice would be best. While 
general guidelines can be given, each situation 
must be treated on its merits, and the viability of 
the results depends, to some extent, on the skill 
and ex~erience of the analvst. 

due, in part, to the omission of the short end 
Spatial analysis cannot be divorced from transects which cross the "mountain range". 

survey design. While in theory it is possible to 
analyze spatially any configuration, spatial 

8.7 Discussion analysis appears to be most effective under 
systematic designs. 

The above results are, perhaps, as notable for 
the consistencies as for the discrepancies, most of 
which can be exnlained. at least in  art. 9. C O ~ C ~ U S ~ O ~ S  and 

During discussion, the group considered the recommendations 

described fish stocks and a number of others. 
There was general agreement that some structure 
could be assumed in all cases considered. There 9.1 Applicability 
was evidence of large scale changes in mean 
density in most cases. In addition to these 
"trends," additional spatial autocorrelation was 
always expected to be present. 

Based on these conclusions, the group agreed 
that there was in many cases potentially great 
benefit involved in utilizing the spatial structure 
when estimating the abundance of the resource, 
and, in particular, there is potential gain when 
estimating the precision of that quantity. 

There is no doubt that spatial analysis can 
give a more realistic measure of precision of a 
survey than classical methods and, under certain 
circumstances, a better measure of abundance or 
mean density. It is not, however, a panacea. It 
would be a fallacy to assert that there exists a 
"black box" that can be used to process spatial 
data and that will yield viable results under all 
circumstances. 

The aim of the workshop was to examine the 
applicability of spatial statistical techniques to 
acoustic survey data, with particular attention to 
global abundance estimation, variance estimation, 
and mapping. This has been done with respect to 
so-called classical or traditional statistical 
techniques, generalized linear models (GLMs), 
generalized additive models (GAMs), and 
geostatistical or kriging techniques. 

In the course of comparing the several 
methods, workshop participants managed to 
clarify a matter of long-standing contention, 
namely that of variance estimation. This is 
described in detail in Section 8.2. In essence, a 
distinction should be made between viewing the 
fish stock as a "pure" random process 
(independent, identically distributed random - 
i.i.d. - variables) and viewing it as a process with 



structure. This affects the estimation of variance. 
If the distribution of the fish stock is a pure 
random process, the variance is that of the mean 
estimate. If the spatial distribution is structured, 
i.e. has autocorrelation, then the estimated 
variance is based on the difference between the 
process as observed, and as predicted making 
explicit use of autocorrelation. Insofar as fish 
stocks do have structure in space and this can be 
ascertained by sampling along mnsects crossing 
the aggregation, the second view must be the 
preferred one. Since the whole point of spatial 
statistical techniques is to exploit structure as 
observed, these must at least be recommended as 
useful techniques. 

In fact, the general discussion conducted on 
the basis of spccific data analyses supports a 
stronger recommendation. This is that spatial 
statistical techniques be regarded as integral in 
the analysis of acoustic survey data. In other 
words, 

Recommendation 1 Spatial statistical 
techniques are applicable to acoustic 
survey data and are recommended as 
suitable for the following: (1) 
estimating global abundance of 
acoustically surveyable fish stocks, (2) 
obtaining an associated estimate of 
precision, and (3) mapping the spatial 
distribution of the stock. 

The precision of the global estimate is 
defined here in terms of the mean-square 
diKerence between the observed distribution and 
that predicted on the basis of observed 
autocorrelation. 

9.2 Association of techniques with 
spatial features of the stock 

A number of dicferent kinds of fish 
distribution are recognized. These may be 
characterized a priori by the range of the 
autocorrelation with respect to ihe extent of the 
distribution or a posferiori by the scale of 
variation with respect to the inter-transect 
distance. 

The following general situation is considered 
first: a stably located fish disEibution is confined 
to a known geographical region, which is 
surveyed according to a grid of parallel, equally 
spaced transects. The statistical characteristics of 

the fish distribution can be categorized as follows: 

1. The scale of variation is large compared to 
inter-mansect distance. Exs. Test data sets 6 
(walleye pollock), 7-9 (Icelandic herring), 
10-15 (simulated data), 

2. The scale of variation is comparable to 
inter-transect distance. Ex. Test data set 4 
(Norwegian pelagic stock off coast), 

3. The scale of variation is small compared to 
inter-transect distance. Ex. Test data set 2 
(Norwegian pelagic stock in fjord). 

Geostatistical techniques of analysis can be 
applied in each of these situations. In the fust and 
second cases, they will be able to exploit the 
observed structure, as characterized by the 
autocorrelation. and the resulting variance 
estimate will be lower than the classical variance 
estimate. In the third case, the geostatistical and 
classical variance estimates could be similar. 

Strictly speaking, the choice of analysis 
should also be based on the scale of variation 
relative to the area sampled. 

A second general situation is illustrated by the 
Icelandic summer-spawning herring. The bulk of 
the stock exists at the autumn snrvey time in one 
or two dense aggregations of initially unknown 
location. These must be found in order to 
estimate the abundance. When an aggregation is 
found, it is usually possible to sample this very 
densely. An application of geostatistics to the 
Icelandic hening found that the range of 
covariation was too small to obtain the benefits 
associated with high spatial correlation. This 
resulted in an appropriate increase in the variance 
estimate as compared to an estimate assuming 
independence. 

A third general situation is that of migration, 
which requires special surveying tactics. These 
are described in Simmonds et al. (1991). This 
situation requires detailed examination, not 
undertaken at the workshop. 

An underlying assumption employed here is 
that the biology of the fish stock being surveyed is 
known, at least in its gross whereabouts at the 
time of the survey. Given this knowledge, the 
following recommendation can be made: 

Recommendation 2 Among spatial 
statistical techniques, geostatistics, i.e. 
analysis using the variogam, is 
specifically recommended for the 



analysis of acoustic survey data. In the analysis phase, generalized additive 
models (GAMs) may be useful for associating 

If the acoustic survey has been performed other variables with the fish distribution, 
over a grid composed of parallel transects 

Examples include those of bottom depth, as in test 
reaching the boundary, then the variance can be data set 6 (walleye pollock), and temperature, as 
estimated according to a quite simple procedure. considered by Shinomiya and Tameishi (1988), 
Each value of density is exact for the particular, among others, but not considered at the workshop. 
small interval of sailed distance. The total density These techniques are particularly valuable for 
along each transect is computed by simple facilitating interpolation of measurements of fish summation. The resulting set of numbers 

density between transects, hence aiding the 
constitutes a one-dimensional distribution. This process of mapping fish distribution, as discussed 
is necessarily less rough, or spatially more in Appendix C. Hence, correlated, than the underlying two-dimensional 
fish distriiution. ~llusnativk examples are found 
in the analyses of test data sets 4 (Norwegian 
pelagic stock off coast), 6 (walleye pollock), and 
10-15 (simulated data). In these particular 
examples, the range of spatial correlation of the 
one-dimensional data is large in comparison to 
the extent of the disnibution. Application of 
geostatistics here will give both a lower and more 
realistic estimate of variance than is obrainable by 
classical statistical analysis. 

It is noted that for the general acceptance of 
geostatistical techniques, some form of education 
and dissemination of information is required. 

When synoptic knowledge of the whereabouts 
of the fish stock is lacking, estimation of 
abundance is not generally possible. Knowledge 
of fish biology is a precondition for conducting a 
proper survey, thence analyzing resulting 
measurements of fish density in order to estimate 
abundance over a region. 

9.3 Analysis procedures 

The phases of an analysis of acoustic survey 
data are: 

1. Exploratory data display and analysis, to 
learn about the characteristics of the data, 
including possible connection with other 
variables, namely covariates, 

2. Diagnosis, or selection of the best analysis 
technique, 

3. Analysis, or exercise of the selected 
technique with the particular survey data, 

Recommendation 3 Generalized 
additive models should be considered 
for use in exploratory data analyses to 
aid in choosing the specific analysis 
technique, and in the analysis process 
itself, as to map the distribution. 

Association of the pattern of fish distribution 
with other variables can have major significance 
for the conduct of acoustic surveys. The potential 
to improve both the survey design and quality of 
analysis result is emphasized. 

4. Evaluation, including judgement of the 
quality of the analysis in the context of the 
degree of coverage of the stock by the 
survey grid and how well the analysis 
assumptions are met. 
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Figure 2.2 Acoustic survey tncks based on simulated data showing abundance along the track as a series 
of scaled rectangles. 



Figure 2 3  Acoustic survey back for Icelandic herring survey test data set Iceherl showing abundance 
along the track as a sequence of scaled circles. 
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Figure 2.4 Gray scale and conlour plots of acoustically dclcrrnined fish density (left side) 
for the Bcring Sea acoustic survcy [esl dala. 
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Figure 2.6 Variogram from h e  untransformed data in rest data set 1. 



Figure 2.7 Variogram from the untransformed data in  test data set 2. 



Figure 2.8 Var iogm from Lhe unbansformed dam in tmt data set 3. 



Figure 2.9 Display of the deprh distribution of fish abundance along the survey uack for an acoustic 
survey in the Barenu Sea conducted by the Institute of Marine Research, Bergen. Depth disnibution for 
abundance runs from rop to bottom in 50 rn depth incremenu. Profiles are drawn for 5 NM segments e v e v  
50 NM along the survey uack. 
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Figure 3.1 Acoustic,density of fish for resr dam sel 1. 





Figure 3 3  
Cruise track lines and region of positive density for test data set 3. 



Figure 3.4 
Cruise track lines and region of positive density for test data set 4. 



Figure 3.5 
Cruise track l i e s  and region of positive density for test data set 5. 



Figure 3.6 Transect lines surveyed during Summer 1988 echo integrationlmidwater trawl survey of adult 
walleye pol'lock on the eastern Bering Sea Ahelf and slope. Net type used at each haul position also 
indicated. 



Figure 3.7 Location of Icelandic herring during three surveys inNovember 1988. 



SMOOTHED SIMULATED FIELD 

a 

Figure 3.8 Simulated field used for data sets 10 - 15. 
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Figure 3.9 Contour map of simulated field used for data seu 10 - IS. 



Figure 3.10 Simulated cruise tracks used as a basis for data sets 10 - 15. 
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Appendix B: 

Global estimation : 
u 2 / n  and the geostatistical estimation variance 

by 
Pierre Petitgas and Jacques Rivoirard 

Acoustics can provide a lot of data over a given domain. Here we will look at the 
estimation of the mean acoustic density over this domain, and in particular at the 
estimation variance. 

First we wiil try to explain why this variance is not always u 2 / n  . Then we will give 

the formula using the variogram. And after that we wiil consider different case studies: 
"iceher" (herring, S-E Iceland, three surveys), "test04" (West of Norway). "kO'aV 
(Walleye Pollock, Bering Sea). 

1. WHY THE ESTIMATION VARIANCE IS NOT ALWAYS a 2 / n  

Let us first recall a well known result. Let 2,. ..., Z,, ..., Z, be nindependent 

random variables with same mean m and variance u 2 .  Then the estimate variance 

1 
when estimating m by the arithmetic average - 1 Z ;  is equal to a 2 / n .  This is the 

n  
case when we want to estimate the mean of a variable (for instance the fish density) 
over a domain V from n measurements located randomly and independently throughout 
V. Generally a spatial structure exists (two neighbourhing points are correlated) and it is 
because the locations are random that the data can be considered as independent. In 
the case of acoustic surveys, the data are taken along lines: their locations are not 
random, and the data are correlated. The spatial structure has to be taken into account 
to calculate the variance. 

Taking into account the location of data and the spatial structure has another 
consequence. The mean we want to estimate is the mean over a domain V, and in 
general wiil change for a different choice of V: this mean depends on V and will be 
denoted Zv . It is only in the case when V is large (compared to the spatial structure) 
that Zv can be considered as the mean of a great number of independent data and 
does not depend any more on V (Zv=m). The consequence of this remark is that the 

precision when estimating Zv by is given by the variance of the error 
n 

1 
Var (Zv - - 1 Zi) 

n 

1 
(the estimation variance in geostatistics) and not by the estimate variance Var - 1 Z ;  

n  
which does not depend on V (in the case Zv=m both variances become equal). 
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Let us now look at some simple examples. 

- line divided into segments 

I I 

A line is divided into n segments /,. We know the value Z, of each of these 

segments. Their variance isa2.  

Suppose we want to estimate the average value of the line L. 
1 1 

The estimate ZL = - 2 Z i  is equal to the exact value of the line ZL = - x Z i .  
n  n  

The estimation variance Var(ZL-zi) is zero, but is not u 2 / n  either1 

- thin block 

The last example was trivial, but suppose we want to estimate the mean value 
1 

over a thin block V set on the line L. We then would expect the estimate Z; = - x Z i  
n  

u2 
to be close to the real value ZV, with an estimation variance still smaller than -. 

n  

- large field 

The exact mean value Zv is now the average of many distant values. 

a  
If the data Z, were independent, classical statistics would give - as estimation 

n  
variance for Zv. 

In the case they are correlated, they count as if they were fewer but independent 

data. So the estimation variance will be larger than u 2 / n .  

Summarising all these cases, we can see that the estimation variance is not 

always a 2 / n  . It depends on the geometry of the field and of the data. 

2. VARIOGRAM AND ESTIMATION VARIANCE 

The variogram measures the mean variability between two points x and x+h as a 
function of their vectorial distance h: 



The symbol E (expectation) denotes the average on all pairs (x, x+h). 

The variance a2 of a point which describes a domain V (which is denoted as the 

dispersion variance of a point within V in geostatistics) is then equal to y w i.e, the 

mean variogram between two points describing V independently. 

Often the variogram reaches a sill at a distance called the range, and this range is 
small compared to the domain. In that case, there is a covariance function 
C(h) = C(0) - y(h) which represents the covariance between two values Z(x) and 

Z(x + h )  distant of h. The covariance C(0) for h=O is the variance a ', and for h larger 

than the range, there is no more correlation between Z(x) and Z(x + h )  . 

sill - - - - a - - 

nugget effect 

The variogram makes it possible to compute the variance when estimating the 
1 

average value on V by the average of n samples Z, : 2; = -2 2;. This can be written: 
n 

0 

a = Var (z"- z;) = - yw - yfj + zyiv (1) 

I 

or, in term of covariance: 

- CW + Cfj - 2civ UE - 

range h 

C w  is the mean covariance between two points describing V independently. 

C,V is the mean covariance between sample i and a point describing V. 

Cfj is the mean covariance between samples i and j ,  for ail n2 possible pairs (i,j): 

n pairs correspond to i with itself, the other n2-n correspond to i different from j: 



If the field is large, compared to the range, the terms Cw and C,v are zero. The 

estimation variance u i  is reduced to the term Cij, which is generally larger than 

C(0) u 2  -=-  
n n 

If the range is large compared to the field, we will see (on test04 and kO*a) that 

a;  can be less than u2/n  . 

3. ICEHER 

The 3 surveys cover nearly the same zone (figures 1 to 4 in nautical miles). 
Excepting the zeroes at the North East, there are about 10 acoustic values per nm. The 
length of the first survey is smaller (15.5 nm, 174 values) than the two others (23 nm, 
255 and 276 values). Large values are present in the first survey (max=26738), 
increasing its mean and variance. 

Survey no 

If the data of a given study were independent with the same law, the mean of this law 
would be estimated by the arithmetic average with a relative standard deviation of 

u/m m , here 7%. 

In fact the acoustic data are regionalised and neighbouring data are correlated. 
Variograms computed at a 0.1 nm lag show structures up to 1.2 nm (figures 5-6-7). 
The structure is shorter for the first survey. 

We will make the hypothesis that the variogram does not depend on the direction 
and describes the regionalisation of fish density throughout the field. We can then 
compute the estimation variance of the mean value over this field. This assumes that 
the field has been delimited. Two hypotheses have been made. 
- Either we limit approximativeiy the field to the zone which has been swept (for instance 
if we assume that the outside is close to zero). 
- Or we extend the field on each side of the survey, admitting that the extension is not 
systematically poorer than the survey. 
The surfaces are respectively 15 and 33.5 nm2. 



To compute the estimation variance according to the formula (I) ,  the field is 
discretised very finely. We obtain as relative standard deviation for the estimation 

1 Z; = - 1 Z; from each survey: 
n 

about 12 % for the smaller field; 
about 14 % for the larger one. 

These two values are close, but both are larger than u/m &7%. It is due to the fact 

that the field is large enough, and the data correlated: they count as fewer independent 
data. 

Other approaches: 

1) The data are not located regularly throughout the field. A weighted average, 
rather than the arithmetic one, may be used to estimated the field. Kriging corresponds 
to the optimal weighted average, the one which minimises the estimation variance. in 
our case kriging gives an increased weight to the data at the angles of broken lines. But 
it pra?tica!!;r docs not change the estimates and the variance (except fGr the estimation 
of the larger field from the third survey, where kriging gives about 3000 instead of 3600). 

2) Tables exist, which give the estimation variance of a rectangle knowing its 
median line, with a spherical variogram model (Matheron 1971). 
Let us take a rectangle close to the smaller field. If we replace the broken line survey by 
the median line (which is shorter and would contain less information), we get a relative 
standard deviation of about 14%. 
If we unfold the broken line to be the median line of a larger but thinner rectangle, we get 
a deviation of 9-10%. 
The reality lies between these two limits. 

3) Data are correlated, which is one main reason for the estimation variance 

u 2 / n  not to be correct. By averaging them over segments, we can build new values. 

Here we have regularised the data every 1 nm segment. These new values are less 
variable and little correlated to each other. 

Survey no 

The relative standard deviation is smaller for the first survey. This comes from the fact 
that the variability is shorter scaled, and has been destroyed more by the regularisation. 

The value of u/m is then 11% for the first survey, and 15% for the two others. 
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4. SURVEYS MADE OF PARALLEL REGULARLY SPACED TRANSECTS 

For such survey design we suggest a simple method to calculate the variance of 
the estimation. We shall see that it can be calculated on the transect cumulated data 

02 
using geostatistics but not using the variance - . 

n 

Each echo-integrated value is the exact mean value on each ESDU segment of 
the acoustic fish density. The variable q(j) defined by cumulating the data Z(i,j) along 
each transect j represents the acoustic fish quantity along each transect j: 

where i is the indice of the acoustic densities along the transects and j is the indice of 
the transects; and where a is the ESDU distance. 

Of course, the transect should sample the limits of the fish regionalisation, i.e, should 
reach the bordering zeroes at both extremeties. 

The cumulation transforms a 2D regionalisation into a 1 Done. Obviously the 2 are 
related. These relations are commonly used in stereology and geostatistics when the 
transect lengths are equal. The cumulation has 3 effects on the variogram. The sill 
(variance) is lowered, the nugget effect is filtered, the correlations are smoothed. Even 
though the transects are of different lengths the I D  data set is expected to be less rough 
and more regular than the 2D one. 

In ID, the estimation problem becomes the following. We want to estimate the 
mean acoustic quantity on a segment L when we know experimental values q(j) 
regularly spaced along L. The values q(j) may be regarded as punctual values because 
the width of the echo surveying cone is very small in comparison to the inter-transect 
distance. Let us call D the inter-transect distance. It is the distance between 2 
successive q(j) values. We have: L = n, D where n, is the number of q(j) values, i.e. 

the number of transects. 

1 
The estimate of the mean transect acoustic quantity is: qi = - 1 qG) 

"9 j 

The estimation variance writes after equation (1) in 1D as follows: 
2 - u~ - -YLL-Ek + 2 % ~  (2)  

where y(h) is the I D  variogram model of the q(j) values. 

When the inter-transect distance is smaller than the range of the spatial 

correlations, Matheron (1965,1971) has given theoretical prove for approximating (I; 

of equation (2): the errors of estimation in each segment D can be considered as 

uncorrelated. The variance c r ;  then writes: 



aie,,, is the variance of estimation when the segment D is estimated by the value of Its 

central point. Equation (2) rewrites, as y(0) = 0 :  

a :,em = - YDD + 2yiD 

As a2 = ~ L L  (variance of q(j) values) we can write the variance of estimation a; in 

the following way: 

The mean variogram ~ L L  involves distances larger than the mean variogram ~ D D ,  and 

~ D D  itself involves distances larger than the mean variogram yio because the point j is 

at the center of the segment D. We have the inequality: ~ L L  > ~ D D  > m. Thus we 

a2 
expect a;  to be smaller than -. 

n4 

We did the previous calculations on 2 data sets, the one named test04 
concerning herring off shore Norway and the one named KO'a concerning walleye 
pollock in the Berring Sea. In both cases the q(j) values are very regular and 2 values h 
apart stay correlated for distances h up to half of the total length L. In such situation the 
range of the correlations is large in comparison to the field over which the mean is 
estimated. The q(j) values cannot be considered as observations sampled out of an 

0 2 .  
infinite field. The parameter - wtll over-estimate the variance of estimation. 

n 

4.1 Herring off Norway, data set TEST04 (K.Foote) 

The survey design with a proportional representation of the data is given on figure 
8. We shall focus only on the regular part of the survey. The Northeastern irregular part 
represents only 3% of the arithmetical mean of the total data set. 

In order to calculate distances the longitudes and latitudes have been 
transformed followingly. Let y and b be the latitude and the longitude expressed in 
minutes and decimal fractions of minutes and let /at be the mean of y over the surveyed 
field. The transformed longitude is: x = b cos ( lat) .  The distances are expressed in 

nautical miles (n.m.). 

The values are cumulated along the parallel transects. We have 15 non zero q(j) 
data. A representation of the q(j) values is given on figure 9. We have: 



The I D  variogram of the q(j) values is given on figure 10. No nugget effect has 
been modelled. The variogram model is a sum of a spherical and a linear variogram. 

The variability between 2 values h apart is lower than S: until1 h is 30 n.m.. The 

geostatistical estimation variance ug is calculated using formula (3), We get: 

sq = 12.1% and - = 29.3% 
4L 4; 6 

4.2. Walleye pollock of the Berring Sea, data set KO*a ( N. W~lliamson) 

The survey is made of n,=27 parallel transects oriented approximatively NE-SW. 
The coordinates are transformed as previously (here lat=5a0). The mean inter-transect 

distance is: D = 20 n.m. . Along the transects the echo-integrated data Z(i,j) are 

expressed in kilograms of fish per meters. The q(j) transect cumulated values derived 

kg are expressed in: - n.m. 
m 

The survey design with a proportional representation of the data is given on figure 
11 and a representation of the q(j) values is given on figure 12. We have : 

The 9 Northwestern transects , i.e, the 9 Northwestern q(j) values which show the 

greater agregation of fish represent 63 % of 4;. Correcting the unities the estimated 

total quantity of pollock is: Q = 4;. D n, = 3.7 lo6 tons 

The I D  variogram of the q(j) values is given on figure 13. No nugget effect has 
been modelied. The variogram model is spherical. The q(j) values are very well 
correlated. The range of the spherical variogram is 340 n.m. which is the equivalent of 

17 inter-transect distances. The geostatistical estimation variance 0% is calculated 

using formula (3). We get: 

- = sq 2.3% and - = 14.6% 
4L 4;. 6 

REFERENCES : 

Matheron G., 1965, Les variables regionalis6es et leur estimation, Ed. Masson, Paris 

Matheron G., 1971, The theory of regionalized variables and their application, Les 
Cahiers du Centre de Morphologie Mathematique, Fascicule 5, Ecole des Mines de 
Paris, Bibliothhque de Fontainebleau (english version). 



Figure B.1: The three surveys with a 
proportional representation of the values 

and the two domains which have been estimated. 
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Figure B.8: Data set TEST04: 
The survey with a proportional representation of the values 

The zero values are represented by black disks. 
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Figure B.9: Data set TEST04: 
Representation of the cumulated echoes along the transects. 
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Figure B.lO: Data set TEST04: 
Experimental 1D variogram of the cumulated echoes and its model: 

ylD(I1) = splzcrical (sill = 0.21 lo'', range = 5 n.nz.) + linear model (slope = 0.3 lo8) 
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Figure B.ll: Data set KO*a: 
The survey with a proportional representation of the values. 

The zero values are represented by crosses. 



Figure B.12. Data set KOga: 
Representation of the cumulated echoes along the transects. 

Figure B.13: Data set KWa: 
Experimental 1D variogram of the cumulated echoes and its model: 



Appendix C: Generalized Additive Models 

G. Swartzman 

In a generalized additive model the expected 
value of a random variable Y is expressed as a 
sum of smooth functions of the covariates. Thus 

P 

E(Y 1x1 ,. . . ,x,) = xSj(xj), (c.1) 
j=1 

where Sj(xj) represent smooth functions of the 
covariates. In a generalized additive model a 
known function of the cxpected value, called the 
link function, is modeled as a sum of smooth 
functions of the covariates. This generalization of 
the model is easy to make for random variables in 
the exponential family. 

If, for example, the Poisson distribution is 
chosen as an underlying dishbution, a cenrral 
assumption in the generalized additive model for 
spatial data is that the observations are distributed 
according to a nonhomogeneous Poisson 
distribution. The arameter of the Poisson 
distribution is A = I' A(u)du where h(x) is the 

A. 
intensity of the underlying Poisson process and 
A, is the area of the observations. The expected 
value of the Poisson distribution is h(x) and the 
natural link function is the logarithm. Thus, the 
Poisson generalized additive model relates the 
expected counts to the covariates as: 

o 

(C.2) 

Or, if the additive predictor is q = x Sj(xj) then: 
j=l 

A = I J = ~ ~  

Since the functional form of the smooth 
functions, Sj(xj), j = 1, ..., p, is not specified, the 
usual estimation techniques such as maximum 
likelihood estimation cannot be used for 
generalized additive models. Instead, an 
algorithm that empirically maximizes the 
expected log-likelihood is used. The derivative of 
the expected log-likelihood is set to zero and the 
resulting equation is expanded in a Taylor series 
about an initial estimate of the additive predictor, 
qO. The equation can then be rearranged to give a 
new estimate for q based on the initial estimate 
qO. This update equation is used iteratively with 
the conditional expectation from the expected 
log-likelihood estimated by a scatterplot 

smoother. The resulting algorithm is similar to 
the adjusted dependent variable regression 
method of McCullagh and Nelder, 1989 for 
computing maximum likelihood estimates when 
the predictor, q, is a linear function of the 
covariates. The adjusted dependent variable for 
the Poisson generalized additive model at the m- 
th iteration is 

z m  =qm+ (v-e'") 
P q"' 

(C.3) 

The scatterplot smooth of z m  on x (when there is 
only a single covariate x) provides an updated 
estimate of the additive predictor, qmil. 

The measure of fit for the generalized additive 
models is the deviance, which is twice the log of 
the likelihood ratio between the saturated model 
and the current model. For the Poisson model this 
is calculated as 

The updating iterations are continued until the 
deviance fails to change 

C.l Backfitting algorithm 

The above discussion of the generalized 
additive model was for only one covariate, x. For 
the spatial models that will be considered, there 
will be at least two covariates, e.g. longitude and 
latitude. To fit multiple covariates, the backfitting 
algorithm is used. The algorithm computes the 
smooth function for each of covariates by holding 
the other covariate functions fixed. To do this for 
the j-th covariate, xj, the partial residual 
rj = z - So - xSk(xk) (C.5) 

k + j  

where z  is the adjusted dependent variable 
described in Eq. (C.3), is formed. An updated 
value of Sj is computed by smoothing rj on x,. 
The process is then repeated for each covariate. 

The initial estimates for the algorithm are zero 
for the smooth functions Sj and the log of the 
overall mean count for q. The algorithm is 
iterated until the deviance no longer decreases or 
for a maximum set number of iterations. 



C.2 Smoothers C.4 Test of trend significance 

The core of the generalized additive models 
(GAM) used is a running line smoother which is 
used to find the smooth functions Si of equation 
(C.2). A running line smoother fits a lime by least 
squares to the data points in a symmetric nearest 
neighborhood containing ni points around each xi. 
The advantage of a running line smoother over a 
running mean smoother is that it reduces bias near 
the endpoints without sacrificing much in 
calculation speed (Kaluzny, 1987, Friedman, 
1984). 

The span of the smoother (the fraction of the 
data set used in estimating a line at each point) is 
determined using cross-validation, i.e. the smooth 
value for the point xi is computed by omitting the 
i-th observation and the span is chosen so that the 
residual sum of squares is minimized. In the 
program used in this study the best span was 
found by tlying the spans 0.3,0.4,0.5,0.6,0.7 and 
1.0 and choosing the one which gave the smallest 
residual sum of squares. A span of 1.0 uses all the 
data to fit the least squares line and is equivalent 
to a simple linear regression line. 

C.3 Estimation of variability 

In moving from the parametric generalized 
linear models fit by maximum likelihood to the 
nonparametric generalized additive models, the 
likelihood theory for estimating variances is lost. 
However, the bootstrap methodology of Efron 
(1979, 1982) can be applied to the additive 
models to obtain estimates of variability. 

A bootstrap sample of size n is drawn from the 
observations (xlj,x2j, yj) with replacement. The 
Poisson generalized additive model is fit to this 
sample and the resulting smooth functions, S; and 
S; are saved. This is repeated N times. The spans 
for the running line smoothers used in the 
bootstrap fitting are fixed at the values chosen by 
cross-validation on the original data. If the span 
is allowed to vary for each bootstrap sample, 
essentially a new model would be fit when the 
intcrest lies in the variability of the model fit to 
thc original data. The upper and lower d 2  
empirical quantiles of the j$ at each xij gives an 
approximate (1-a)x100% prediction interval for 
S; at that value of x,. 

The bootstrap prediction intervals are one 
method to assess the significance of the smooth 
functions. The intervals indicate a range of 
possible values the function could have. If a 
horizontal line can be drawn within the prediction 
interval then there is an indication that the smooth 
function is not significant. A more formal 
approach is to do a permutation test. The null 
hypothesis that is considered by the test is: 

Ho: Si(xij) = m (a constant) for all j ,  

i.e. the smooth function for covariate xi does not 
depend on xi. Under this null hypothesis, any 
permutation of (xi, ,xi2. . . . .xin) should result in 
approximately the same overall fit. If the null 
hypothesis is false then permuting the values of xi 
should not result in as good a fit as that obtained 
from the original data. Here the term "good fit" is 
taken to mean a small deviance. To provide a 
familiar measure of model fit a pseudo r2  is 
computed as 1.0 minus the ratio of the deviance in 
the best fitting model to the deviance for the 
overall mean (the null or zero model). While not 
identical to the classical r2 this measure is 
bounded between 0 and 1 and is used as a 
surrogate for it. Since all possible permutations 
cannot be examined, only a sample of size N of 
the possible permutations is used. The deviance 
from the generalized additive fit to each of the N 
permutations of tRe covariate vector xi is recorded 
along with the other unpermuted covariates. To 
avoid changing the model being fit the same fixed 
span smoother is used for all the fits, with the span 
being chosen by cross-validation on the original 
data. If the deviance from the original data is the 
m-th smallest among the N + 1 deviances the null 
hypothesis is rejected at the m l (N + 1) level. 

C.5 Application of GAM to data sets 

The primary focus in the GAM analysis of the 
data see provided was on uncovering 
relationships between fish abundance and 
environmental factors. Only depth was provided 
as an ancillary variable (except for latitude and 
longitude of the sampling locations) and that only 
for the Icelandic herring and Bering Sea surveys. 
The simulated data set was therefore not 



addressed. Scatterplots of fish abundance against minimization process inherent in the GAM 
depth for each of the Icelandic surveys suggested algorithm. 
very little relationship between abundance and 
depth over the surveyed area (Fig. C.1). There is 
a drop in abundance below 80m, however, this 
depth range comprised only a tiny fraction of the 
overall survey. GAM with latitude and longitude 
as covariates might provide a marginally 
improved fit to the data relative to GLM (see 
section 6). However, this fit would not help to 
explain the spatial distribution, and other methods 
appear to provide better estimates than the GLM 
estimates. 

Contour and image plots of depth and 
abundance for the Bering Sea survey (Fig. 2.4) 
suggest that the spatial disuibution of pollock is 
strongly related to depth. These figures were 
based on spatial interpolations of the abundance 
and depth data provided for the survey (see 
section 2 for a discussion of the dangers of such 
interpolations). GAM was run on these data with 
depth, latitude and longitude as covariates. Due 
to the large number of data points the data were 
binned into a 40x40 grid. The average of all data 
points in each of the 1600 grid bins were raken as 
the value for that bin. Fig. C.2 shows the GAM 
smooth on depth along with the depth residuals 
(conditioned on the fits for latitude and longitude) 
and one standard error range (dashed lines). The 
span used for the smoother was 1/3 (i.e. 1/3 of the 
data distributed around each point used for 
estimating the value at that point). This figure 
indicates that almost all the high abundance 
points are between 100 and 130 m, just off the 
shelf break. 3-D plots of the raw abundance data 
and the GAM fitted mean are shown in Figs. C.3 
and C.4 respectively. These demonstrate the 
quality of GAM of flattening and spreading out 
peaks. Also, GAM has no protection against 
giving negative estimates at some points, 
although this is only a minor affect over the entire 
survey region. The GAM mean values could be 
converted to an overall abundance estimate using 
the same method as used for GLM. Although 
variance estimates are provided by the S+ version 
of GAM, these are approximate and the theory is 
not clear. Bootstrap resampling can be used to 
provide pointwise variance estimates. The spatial 
distribution of the residuals should be examined 
(this was not done here) as discussed in the data 
analysis section 2 of this report. If the residuals 
appear to be spatially autoconelated, further 
analysis with a variogram of the residuals suffers 
from bias of the residuals through the deviance 
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Figure C.1. Scatterplots of acoustic measurements versus depth for three Icelandic acoustic surveys of 
herring. 
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Figure C.2. GAM smooth and rcsiduals versus dcplh from acoustic dnla for Bcring Sca wallcye pollock. 



Figure C.3. Three-dimensional representation of acoustic abundance measurements. 



Figure C.4. Three-dimensional representation of fitted acoustic abundance using GAM. 



APPENDIX D 

Spatial Analysis of Acoustic Survey  D a t a  
Case  S tudies  1991 

William G. Warren 
Science Branch, Dept. of Fisheries and Oceans 

P.O. Box 5667, St. John's, NF Canada A1C 5x1 

In t roduc t ion  

The following represents spatial analyses of three sets of herring data provided by G. 
Stefinsson, Iceland, and six sets of simulated data provided by Z. Kizner, USSR. The objective is 
to  estimate the total abundance (or the average density) over the region of interest, along with an 
estimate of the standard error of the estimate. In the case of the herring data, it is also required to 
estimate the area occupied by the stock. The basic approach used is kriging but, rather than 
submit the data to  some general kriging software package, an attempt was made to  build, from 
first principles, an analysis that takes into account, or exploits, characteristics specific to the data 
sets. An alternative approach, based on the analysis of a systematic sample with a random start, is 
applied to a set of walleye pollock survey data provided by N. Williamson, Alaska, and to the 
simulated data. 

The N a t u r e  of the Data .  

1. Iceland Herring. 

The three data sets represent repeated surveys of a single aggregation of herring off the 
Icelandic coast. An examination of the data revealed that the aggregation formed a roughly 
elliptical ~ a t c h  with its major axis parallel to the coast which, for the extent of the patch, is 
essentially a straight line. It also appeared that, a t  each survey and within the patch, the density 
generally increased as one progressed from the edge to the centre of the patch. The survey itself 
consisted of somewhat irregular zig-zag transects terminating with zero values except towards the 
coast where shallow water prevented acoustic measurement. The patch shifted and enlarged 
between surveys but maintained the same general structure. 

It was felt advisable to take into account the density trend within the patch. Because of the 
irregular zig-zag pattern of the survey, the data did not lend themselves for trend removal by 
median polish. An attempt to track the density surface with a polynomial in latitude and longitude 
also appeared to  be unsatisfactory. A second-order polynomial (for which the cross sections are 
parabolic) seemed too restrictive but higher-order polynomials yielded unrealistic surfaces. 

For the purpose of describing the density surface, it was judged convenient to take coordinates 
as "distance" from the coastline (taken as the least-squares fitted straight line of the coastline 
coordinates that encompassed the range of the ~ a t c h )  and "distance" parallel to the coastline 
(from an arbitrary origin). (These "distances" were computed from untransformed latitude and 
longitude and are, thus, not actual distances but provide an alternative coordinate system for 
identifying any point in the region. A rectangular box with sides parallel and perpendicular to the 
coastline was then constructed about the patch separately for each survey. Each box was divided 
into rows and columns to form cells of approximately equal actual area. The number of data points 
that fell into a cell varied (and, for some cells, was zero). The data were then subjected to an 
(unbalanced) analysis of variance with rows and columns as factors. 

The non-zero data exhibited noticeable positive skewness. The Box-Cox (1964) transformation 



was used to determine a transformation that would yield an approximate normal (Gaussian) 
distribution. The square-root transformation appeared suitable for all three cases. The data were, 
therefore, so transformed before analysis. 

The analysis of variance results are as follows: 

Survev 1 
Source D.F. Sum of &ares Mean Square F 

Rowslcolumns 6 68928.42 11488.07 11.7 ~~~~ ~- 

C O I U A ~ ~ ~ R O W ~  8 125170.83 15646.35 16.0 
Interaction 21 33646.92 1602.23 1.63 
Cells 35 197876.90 
Residual 136 133395.93 980.85 
Total 171 331272.82 

Survey 2. 
Source D.F. Sum of Squares Mean Square F 

Rowslcolumns 7 97151.79 13878.83 17.9 
~ o l u m n s l ~ o w s  12 55374.22 4614.52 5.94 
Interaction 35 63297.52 1808.50 2.33 
Cells 54 188547.63 
Residual 200 155460.82 777.30 
Total 254 344008.45 

Survev 3. 
Source D.F. Sum of Squares Mean Square F 

Rowslcolumns 7 175136.99 25019.57 35.5 
ColumnslRows 13 88191.65 6783.97 9.61 
Interaction 33 41722.04 1264.30 1.79 
Cells 53 265368.87 
Residual 222 156647.02 705.62 
Total 275 422015.88 

The model (rows and columns) thus accounts for 49.5%, 36.4% and 52.8%, respectively, of the 
total sum of squares (adjusted about the overall mean) but 83.0%, 66.4% and 84.0%, respectively, 
of the sum of squares between cells (i.e. of the maximum possible for the cell structure selected). 
The estimates of the row and column effects are 

Survey 1 
Row r column c 

1 -23.24 1 26.24 



Survey 2. 
Row r Column c 

1 -4.10 1 17.83 
2 28.26 2 19.19 
3 24.44 3 28.53 
4 33.70 4 26.54 
5 17.50 5 17.06 
6 -21.71 6 4.31 
7 -39.53 7 -10.16 
8 -39.53 8 -22.30 
9 -38.57 9 -9.83 

10 -2.73 
11 0.73 
12 -25.36 
13 -43.82 

Survey 3. 
Row r Column c 

1 -21.40 1 5.13 
2 44.88 2 17.90 
3 21.17 3 34.83 
4 27.81 4 26.49 
5 32.82 5 26.41 
6 -28.54 6 25.13 
7 -37.95 7 13.46 
8 -38.80 8 -9.75 

9 -31.29 
10 -19.77 
11 -20.78 
12 0.67 
13 -26.35 
14 -42.07 

The model estimate of the value in a cell is obtained by adding the estimates of the 
appropriate row and column effects to the estimate of the general mean level, namely 30.68, 19.38 
and 20.90 for the three surveys, respectively. (Note that the row and column effects have been 
constrained t o  sum to  zero and, although estimated by analysis of variance, for the purpose of 
trend removal are treated as deterministic). Clearly, for some cells, the values so calculated will be 
negative. In general these fall in cells for which there were no data points because such areas were 
judged to fall outside the patch (due t o  enclosing an elliptical patch in a rectangular box). 
Negative model cell means were, therefore, taken as zero. 

The row effects reflect the trend in density parallel to the coast. These suggest that the 
aggregation has, essentially, been fully covered in this direction, although there is a suggestion that 
it may extend a little further south than surveyed (Row 1). On the other hand, it seems clear that, 
while the aggregation has been fully covered away from the coast, towards the coast (Column 1) it 
extends beyond the area surveyed. How much further is uncertain. The density is falling off but 
extrapolation on the basis of this trend would be difficult to justify. It is tempting to think that 
the cut-off point would be related to depth hut an examination of the data reveals no clear 
relationship. Accordingly, it was decided to estimate the population outside the boundary defined 
by the coastward side of the rectangle defined above. 

A couple of other features of the row and column estimates seem worthy of mention. The 
estimates of the row effects of all three surveys exhibit a small mid-range trough. Because of the 



commonality of this feature it is tempting to interpret it as reflecting a genuine feature of the 
population, for example as not a single aggregation but as northern and southern aggregations 
that overlap. Similarly, but even more so, the estimates of the column effects of the second and 
third surveys suggest two distinct clusters, one centred about column 4 and another centred about 
columns 11-12. This feature is absent from the estimates from the first survey but i t  should be 
remembered that the patch apparently expanded in width between the first and second surveys. It 
is as if a subgroup moved further offshore in that period. 

1. Simulated Data. 

The simulated region is represented by a 300 x 300 matrix; it is assumed that every element of 
the matrix is an average surface density of fish concentration in an elementary 1 x 1 square. Each 
survey consists of 10 parallel transects with 30 units of distance between transects. There are also 
data  obtained a t  right angles to these transects and joining the ends of alternative pairs, i.e. 
joining the right-hand ends of transects 1 and 2, 3 and 4, 5 and 6, 7 and 8, 9 and 10, and the 
left-hand ends of transects 2 and 3, 4 and 5, 6 and 7, 8 and 9. The averaging interval for the first 
three data sets (surveys 1.1, 1.2 and 1.3) is 3 units, with each observation coded by its centre 
location. For the remaining three data sets (surveys 2.1, 2.2. and 2.3) the averaging interval is 5 
units. The start and end locations are not the same for all transects, being 14.5 for transects 4 and 
5, 15.5 for transects 1, 2, 7, 8, and 10, and 16.5 for transects 3, 6 and 9. Thus all observations are 
not truly aligned in the direction perpendicular to the transects. 

An examination of the data reveals several regions with the density recorded as zero (no fish). 
One gets the impression that data were generated by something like a Neyman-Scott cluster 
process (Neyman and Scott 1952, Neyman 1955) (also referred to as the center-satellite process 
(Warren 1962, 1971)) with overlapping clusters, or a doubly stochastic Poisson process ( M a t h  
1971). In this sense the realizations would be regarded as stationary. At any rate, there appear to 
be no well defined trends that could be removed by simple tweway procedures, such as median 
polish or analysis of variance (without row-column interaction) or a low-order polynomial. 
Accordingly the data  were treated as stationary, i.e. no trend removal mechanism was applied. 

The non-zero data exhibited noticeable positive skewness. The Box-Cox (1964) transformation 
was used to determine a transformation that would yield an approximate normal (Gaussian) 
distribution. This analysis led t o  a Box-Cox parameter, A,  of, in effect, zero, i.e. the logarithmic 
transformation. The data were, therefore, so transformed for analysis. 

Var iogram Est imation.  

1. Iceland Herring. 

The model-estimated cell values were subtracted from the (transformed) data values at points 
falling within the appropriate cell. The residuals were then used to construct a variogram. The 
maximum distance between data points was determined and this distance divided by 100 to form 
distance classes. Note that actual distances were now used. Specifically, the distance between two 
points (21, yl) and (x2, yz), with x measured as degrees of latitude and y as degrees of longitude, 
was calculated as 

where c = (cl + c2)/2 and ci = cos(xi), i = 1,2. The actual distance between two data points and 
the quantity [z(xi, yi) - r(xj,  yj)]2 were calculated for all possible pairs of data points and 
averaged by distance class. 

The conventional spherical form 



=co+c, ,  h r r  

was fitted to these data  by weighted least squares (with the weights taken as the number of values 
per distance class). The first 30 distance classes were used for the data from the first and second 
surveys and the first 25 for data from the third survey. 

The variograms for the first two surveys were very similar. There was a very rapid rise from a 
relatively small nugget (co) t o  the sill (CO + c,). It  is conjectured that, had no attempt been made 
t o  account for the trend, the variograms would have risen more slowly (wider range) to a larger 
sill. The estimated variogram for the third survey was, however, somewhat different. The 
estimated range was approximately 3-4 times that of the first two surveys and the estimated 
nugget was relatively large. This latter is likely an overestimate but it does not seem possible to 
adequately track the variogram data with a function of this form and obtain a significantly smaller 
nugget estimate. Alternative functional forms for the variograms have not, as yet, been explored. 

2. Simulated Data. 

The variogram was calculated both along and perpendicular to the transects. Since tbe 
observations were at regular intervals, no grouping of distances was required. Estimated 
variograms in the direction perpendicular to the transects showed no systematic difference from 
those along the transects, although for the former there were relatively few distances less than 30 
units. Since there was, therefore, no evidence of anisotropy, for each survey, the variograms in 
these two directions were combined. Note that,  to avoid undue influence in the variogram of 
regions where no fish were recorded, zero-zero pairs were not included. 

The computed variograms showed an initial well-defined rise which flattened off at  an interval 
of 10-12 observations, i.e. distances of 30-36 units for surveys 1.1-1.3 and 50-60 units for surveys 
2.2-2.3. After this initial flattening the variograms exhibited various "waves" which, it is 
conjectured, relate to the clustered nature of the spatial dispersion. Again the conventional 
spherical form 

y(h) = eo + c,[3h/r - ( h / ~ ) ~ ] / 2 ,  0 < h 5 r 

was fitted by weighted least squares with the weights taken as the number of observations per 
distance. 

Es t imat ion .  

The metliodology used for estimating the abundance and its standard error is detailed in 
Appendix E. 

Resu l t s  

1. Iceland Herring. 

The summation (integration) was carried out over the rectangle constructed about each patch 
as described above. In determining 2(sp)  = Cy=l XpiZ(si) it is, of course, impractical and 
unnecessary to sum over all n sampled locations; the estimate at any point is largely determined 
by the sampled points closest to it. The values at sample points beyond a certain distance have a 
negligible effect. Accordingly, for each patch, two or three such "critical" distances, 6, (chosen in 
relation to the estimated range of the variogram) were used in estimating the abundance and its 
standard error. The results are as follows: 



Survey 1: Area of rectangle = 21.99 n.m.2 

Survey 2: Area of rectangle = 32.74 ~ . m . ~ .  

Survey 3: Area of rectangle = 38.18 n.m.2. 

where 
6 denotes the "critical" distance, 
G denotes the number of grid points used in the summation, 
Dl denotes the estimated density over the rectangular region, 
p denotes the estimated proportion of the rectangle occupied by the stock, 
Dz denotes the estimated density over the occupied region. 
0 denotes the estimated area of the occupied region, 
A denotes the estimated abundance, and 
E denotes the estimated standard error of the abundance estimate. 

It  will be noticed that the difference between the abundance estimates based on the 
intermediate and maximum numbers of grid points is, in essence, inconsequential for all three 
surveys. The difference between these and estimates based on the coarsest grid are somewhat 
greater hut, in general, less than 5%. The picture for the estimates of precision (E %)is similar; 
indeed, those for the intermediate and maximumnumbers of grid points differ by, at  most, 0.04. 

Accordingly, while no doubt the finer the grid the more accurate the estimates, there would 
appear to be little, if any, advantage in employing grids any finer than the finest here used, 
particularly since the finer the grid the greater the computational time required. Indeed, estimates 
based on Dhe intermediate-sized grid seem, for practical purposes, quite adequate. 



2. Simulated Data. 

As with the Iceland herring, estimates were obtained under different combinations of critical 
distance and grid density. In addition the variogram was estimated using one or more of the 
smallest 20 to 35 distances as well as all 92 and 54 distances available for surveys 1 and 2, 
respectively. The results are as follows: 

Survey 1.1 

Survey 1.2 

Survey 1.3 

Survey 2.1 

48 2.3796 101.4953 9,134,575 2.88 
60 2.3839 100.8805 9,079,244 2.94 

2500 48 2.3762 99.7013 8,973,116 2.85 
10000 48 2.3793 100.4012 9,036,112 2.84 

54 , l l  400 48 2.3821 101.9923 9,179,307 3.32 

Survey 2.2 

m,r G 6 L D A E (%) 
20,9 400 48 2.4042 94.4493 8,500,438 2.60 

60 2.4067 93.7632 8,438,690 2.68 
35,lO 400 48 2.4101 97.1810 8,746,291 2.81 

60 2.4169 96.5614 8,690,530 2.86 
2500 48 2.4090 96.2070 8,658,631 2.77 

35 , l l  2500 48 2.4109 96.6903 8,792,125 2.92 
54 , l l  400 48 2.4127 98.1187 8,830,683 3.08 

60 2.4208 98.3089 8,847,798 3.09 



Survey 2.3 

where 
m,r denote the number of distances (m) used in estimating the variogram and the estimated 

range (r) (in terms of the number of distances), 
G denotes the number of grid points used in the summation, 
6 denotes the "critical distance", 
L denotes the estimate of the average density, in terms of the transformed variates, 
D denotes the estimated average density, 
A denotes the estimated abundance, and 
E denotes the estimated standard error of the abundance (or density) estimate (%). 

If the abundance estimates for 6 = 60 are rescaled to 100 then the two estimates with 6 = 36 
are 107.23 and 102.31 whereas the estimates with 6 = 48 are 101.06, 100.61, 100.73, 100.64, 100.64, 
100.63 and 99.75 (excluding those for m=92 or 54). In other words, there seems little advantage in 
taking 6 > 48. (Note that computing time increases with 6). Unless stated to the contrary, other 
comparisons are made, therefore, a t  6 = 48. 

If we now rescale the abundance estimates for G = 2500 to 100 the estimates with G = 400 
become 102.83, 101.75, 101.35, 103.10, 103.00, 101.80, 101.01 and 101.68. Further, the estimate 
with G = 10000 becomes 100.70. Thus, there seems little advantage in taking more than 2500 
points in the grid and, indeed, although 400 points represent a rather coarse grid, the estimates are 
generally within 3% of those obtained with 2500 points. 

Next set G = 400 and 6 = 48 and rescale the abundance estimates for m = 20 (= 25 for survey 
1.2) to 100; thus 

Survey 1 

Survey 2. 
m 2.1 2.2 2.3 
20 100.00 100.00 100.00 
21 99.94 
25 100.94 
35 102.89 
54 100.49 103.89 101.08 



There is an impression that the estimates increase with m; a similar picture is given for the few 
comparisons available with 6 = 60. We will return to  this aspect in the Discussion Section that 
follows. 

Discussion 

1. Iceland Herring. 

The three surveys are assumed to cover the same stock. It seems reasonable to suppose that 
the estimates with the maximum values used for 6 and G would be the most accurate of those 
obtained; for ahundance these are 101862,81899 and 93407 for surveys 1, 2 and 3 respectively. 
Although these appear to differ, even the largest difference is not formally significant (5% level) 
once the estimated precision has been taken into account. In this sense, all three estimates would 
be consistent with an actual abundance of about 92000 and, indeed, the best pooled estimate is 
91970. 

A refinement that was considered, but not employed, was to smooth the estimates of the row 
and column effects. This would permit trend removal as a continuous function of latitude and 
longitude rather than the discrete adjustment by cell values used above. While this may help to 
better define the variogram it seems unlikely that the final results would be substantially altered. 

2. Simulated Data 

The ahundance for the simulated data (all sets) is known to be 8,767,317 (density 97.4146) 
although this information was ignored in the above estimation, as was the information that the 
survey 2 "populations" were the same as the survey 1 but rotated through 90 degrees. 

All abundance estimates, except most of those for survey 2.2, exceed the true value, i.e., in 
general, the estimates appear to be positively biased, and fairly substantially so in the case of 
surveys 1.1 and 1.3 which, taking the estimated precision into account, differ significantly (c. 0.1% 
level) from the true value. 

This raises the question of whether the precision has been overestimated (i.e. E values too 
small). Surveys 1 and 2 contained 994 and 596 data points, respectively. Thus, in the normal 
course of events one would expect the E values for survey 2 to  he approximately 30% greater than 
those of survey 1; the realized values are consistent with this. On the other hand, the Iceland 
herring surveys contain 172, 255 and 276 data points with realized E values of, roughly 10, 11.5 
and 14%, respectively. One might have expected that the more data points the greater the 
precision but, in this instance, the areas differ substantially and the surveys do not cover the area 
in anything like a uniform fashion. Overall we might say that we have an E of about 12% from 
something like 230 data points. An E of, say, 2.5% based on 994 points would relate to about 5.2% 
if based on 230 points, cf. the 12% realized, but this does not give the full story. First, the 
proportion of independent information contained in the data points no doubt varies between the 
Iceland herring and simulated data, i.e. the information ratio is almost certainly not 9941230. 
Second, interpolation and extrapolation from the very regular set of data points of the simulated 
data seemingly would have quite different characteristics than those of the irregular zig-zag 
transects of the Iceland herring survey. One can only conjecture as to what the effects might be 
but, given that such exist, the relatively high precision estimates for the simulated data abundance 
estimates may not be too unrealistic. It must he pointed out, however, that the precision estimates 
are based on a first-order Taylor series approximation of the variance. As noted in Appendix E, 
such first-order approximations will likely underestimate the variance, and probably more so for 
the logarithmic than the square root transformation. Unfortunat.ely the degree of underestimation 
cannot he readily assessed. 



Let us return to the question of bias. It will be noticed that the mean density of the 
(logarithmically) transfornled variables, with the exception of survey 2.2, range from, 2.3607 to 
2.3846 with and appear to cluster around 2.375. For survey 2.2 the means cluster around 2.41. 
Noteworthy is the fact that while the mean density of the transformed values is greatest for survey 
2.2, the abundance estimates are smallest; this must arise from the adjustment for bias in the back 
transformation. The following extracts some of the estimates with G = 2500 along with the 
corresponding estimates of the variogram sills. 

Survey m,r Sill L D 
1.1 20,12 2.4511 2.3741 113.5290 

Within a survey, we see a relationship between the sill and the estimated density which could he 
parallel between surveys (estimates for survey 1 being consistently greater than those of survey 2). 
Part of the apparent inflation in the estimates is, therefore, related to the sill and, since with these 
data the estimate of the sill increased with the number of distances used in fitting the variogram, 
this could explain in part, the increasing trend of the abundance estimates on number. However 
the sill is not the only quantity used in the backtransformation. The differences in the other 
quantities involved may stem from the different spacing of the sample points and orientation used 
in the two surveys, and the different noise structures imposed between surveys 1.1 1.2 and 1.3 (and 
2.1, 2.2 and 2.3). 

Notwithstanding, the above raises some question about the viability of the method of 
backtransformation. 

A n  Al te rna t ive  Approach.  

The following presents an analysis of transect lines surveyed during a summer 1988 echo 
integration/midwater trawl survey of adult walleye pollock on the eastern Bering Sea shelf and 
slope as provided by N. Williamson, Alaska. For reasons detailed below, spatial analysis methods 
such as kriging were not applied to these data, but an estimate of the mean density (with a 
measure of its precision) has been developed as if the data were generated by a systematic sample 
with a single random start. This approach is also applied to the simulated data described above, 
primarily for comparison with the results of the spatial analysis. 

Walleye Pollock Data 

There were intended to be 27 parallel equidistant transects of unequal length however, of the 
27 data files provided the writer, the first two were identical (apparently one file was accidentally 
overwritten); the writer thus received data from only 26 distinct transects. 

Examination of the data (latitudes and longitudes) shows that the transects are not strictly 
parallel. The coordinates of each reading were transformed into distances (in nautical miles) from 
54'N, and 180°W; the latter were then regressed on the former by ordinary least squares. The 
slopes so calculated ranged from 1.0561 to 1.3888. 

Since the transects are not parallel, the "distance between transects" needs definition. 
Consider the quadrilateral area formed by two transects. The end points of the transects are 
known; it is possible, therefore, to calculate the lengths of each side of the quadrilateral (as well as 
of its diagonals) and hence its area, A, say. Let a and b be the lengths of the sides along the 
transects. We define the "distance between transects" as 2A/(a + b ) .  This can be regarded as an 



average distance between the two transects. The distances so calculated, with the 0.8125 between 
transects 1 and 3 discounted, ranged from 0.3243 to 0.4295. 

The transects are of variable length. Nine of the 26 transects begin and end with zero 
observations; 13 have zero observations at one end and small (< 0.01) observations a t  the other. 
Of the remaining 4 transects, 2 have small observations at each end. The other 2 have zero 
observations a t  one end and, although the observation at the other end is greater than 0.01 the 
nearby observations are < 0.01. Accordingly, it would appear that the transects essentially cover 
the breadth of the stock. 

The first transect runs close to, and essentially parallel to, the Aleutian chain; this coupled 
with the rapid drop in transect total from transects 21-26 to transect 27 suggests that the length of 
the stock has also been covered. 

I t  is clear that one could construct variograms in the direction of the transects but it is not 
clear whether such would be of much help in developing a spatial analysis. Since the transects are 
essentially parallel one would have to assume isotropy and, with the transects approximately 20 
nautical miles apart, interpolation is potentially precarious. Under the circumstances it seems 
difficult to justify a sophisticated analysis, such as kriging, and a simpler, alternative approach is 
here examined. 

Although the transects are not strictly parallel and equally-spaced from the practical point of 
view the differences may not be all that great. Accordingly, the data will be treated as a 
realization of a systematic sample with a single random start, with the transect as the sample unit. 
Note that it is not necessary that the transects be of equal length. The transect total is the 
product of the density of the stock and transect length with the latter (with the zeros excluded) 
being a measure of the extent of the stock. Incorporating zero observations will reduce the density 
estimate but not the transect total. 

Methodology. 

Let yi denote the total of the iih transect and = C yi/n (here n=26). The stock total would 
then be estimated as Icy where I< is the appropriate scaling factor. 

As with all systematic sampling, the problem is to obtain a sample-based estimate of Var(y). 
In fact, it is not possible to obtain a valid estimate of Var(U) of a systematic sample with a single 
random start without making additional assumptions. 

Cocl~ran (1977) suggests the estimator 

under the assumption of "stratification effects only", i.e. pi = constant (rk + 1 < i  < rk + k), 
k = N/n, r = O,l, ... n- 1. For the case of a linear trend, pi = p + pi, this is extended to 

where, for n sufficiently large, n'/n2 % l /n .  For simplicity, we may take k = 1 and assume that 
( N  - n)/N w 1. 

The approach can be generalized to the assumption of a polynomial trend of any degree, 
namely 

pi = /L+ p l i+pz i2  + ...+ pdid 



and let, as in Kingsley and Smith (1980) 

n -d  d 
2 2d 

s i  = C I C ( - l ) ' ( j d ) y i + j l  / ( d  )n(n - d )  
i=1 j=o 

Then s t  corresponds to  Cochran's s:~,, s: corresponds to  Cochran's s:,, etc 
Specifically 

and 
"-4 

s i  = C ( y i  - + 6yi+2 - 4yi+3 + yi+4)'/70n(n - 4 )  
i=1 

What is the appropriate order of the polynomial? The data will be tracked perfectly by a 
polynomial of sufficiently high order and s: - 0.  Basically, the estimator will be conservative if 
the underlying polynomial (if such exists) has order greater than that assumed. If the order is less 
than that assumed then some of the random noise is being identified as systematic trend and the 
variance underestimated. 

Note that yi - 2yi+1 + yi+2 = yi - yi+l - yi+l - yi+2 = di - d i + ~ ,  say, = 6i, say. Thus 
x(l/i - 2yi+1+ ~ ; + 2 ) ~  = C 6 2  where the summation is over n - 2 terms &. Likewise 
yi - 3yi+1+ 3yi+z - yi+3 = di - 2di+1+ di+z = 6i - 6;+1 = A ; ,  say, and 
E ( y i  - 3yi+1 + 3yi+z - yi+3), = C A: where the sum is over n - 3 terms Ai, etc. 

Implementation. 

1. Walleye Pollock. 

As noted above, s i  decreases (+ 0 )  as d increases. However the number of "elements" in the 
summation (the d i ,  6i ,  Ai, etc. ) also decreases. Thus, as a criterion, we might use tn-d(cr)sd, 
where &(a) is the 100a% critical value of Student's t on v degrees of freedom. Letting d = 0 
correspond to  the case of stratification effects only, we obtain 

The minimum occurs at d = 6 however the decrease after d = 4 (or possibly d = 3)  would be of no 
practical importance. 

Alternatively, we may fit progressively higher order polynomials to the transect totals. At each 
stage we may compare the sum of squares (on 1 d.f.) due to including the term of degree d with 
the residual mean square. The results are 



d S.S. term d Res. M.S. 
1 866.71 65.72 

This suggests that a fifth order polynomial is both necessary and sufficient to account for a 
systematic trend. Examination of a plot of the data along with the fitted cubic, quartic and 
quintic polynomials gives the impression that the quintic is really an unnecessary refinement over 
the quartic, while the latter does show some significant differences from the cubic. 

To sum up, the assumption of a quartic trend seems justifiable although, if one wished to be 
slightly more conservative, one might prefer the estimate based on a cubic trend. The transect 
mean is then estimated as 13.0191 with a standard error of 0.4302 (or 3.3%) and 95% confidence 
limits o f f  0.8949 (or &6.9%) or, more conservatively, 0.4504 (or 3.5%) and 3~0.9343 (or *7.2%). 

2. Simulated Data Sets. 

The above approach was also applied to the simulated data. Only the major transects were 
used; the relatively small amount of data taken perpendicular and connecting the ends of these 
transects was ignored. Clearly the horizontal transects do not form a systematic sample with a 
random start since the distance between transects is 30 units and the first transect has been placed 
15 units from the region boundary. It is, however, one of the 30 possible realizations and it is of 
interest to examine what the above approach would yield if the data are treated as a systematic 
sample with a single random start. 

It turns out that the model (order of polynomial) appropriate for S1.l will also be appropriate 
for S1.2 and S1.3; likewise the model appropriate for S2.1 will also apply for S2.2 and 52.3. The 
results of fitting successively higher order polynomials are presented only for S1.l and S2.1. 

Sl .1  S2.1 
d S.S. Res. M.S. S.S. Res. MS.  
1 41869000 27844000 4433000 25410000 
2 41802000 25850000 131791000 10213000 
3 12099000 28142000 2318000 11529000 
4 56819000 22406000 32062000 7422000 
5 2350000 27420000 4580000 8133000 

The values of tn-d(O.05)~d are 

For Survey 1 there appears to  be no reason to assume anything above the stratification effects 
only model (d = 0). For Survey 2 the second- and fourth-degree terms contribute substantially to 
the fit. On the other hand, tn-d(0.05)~d is minimized with d = 3 although the gain over d = 2 
appears inconsequential. Plots of the transect totals along with the polynomial fits suggested that 



the quartic is an unnecessary refinement. The quadratic model appears justifiable and is slightly 
more conservative than the cubic. Survey 2 precision estimates were therefore based on the 
quadratic model. 

The data provided are densities per unit length but are obtained as integrals over lengths of 3 
and 5 units for Surveys 1 and 2, respectively. The 10 transects represent 1/30th of the total 
number of possible transects. To obtain an estimate of the total abundance the transect mean 
must therefore by multiplied by 90 or 150. Further, the transects do not extend to  the edge of the 
region and are of variable length (either 90 or 91 points for Survey 1, 54 or 55 points for Survey 2) 
For Survey 1 the transects cover 908/1000 of the length which would be obtained had they been 
extended to the edge of the region; for Survey 2 the proportion is 5441600. Accordingly, to obtain 
abundance estimates comparable to  those obtained via kriging, the estimates should be multiplied 
by 1000/908 and 6001544, respectively. The results are 

Survey Transect Mean S.E. % Abundance 
1.1 9519.4 1845.0 19.4 9.44 x lo6 

It is anticipated that, here, the results of a spatial analysis will be more accurate and, certainly, 
more precise. 

Discussion. 

The results for the Bering Sea pollock data seem reasonably realistic. The situation for the 
simulated data is less clear. The abundance estimates are less than those obtained by kriging. This 
might be accounted for by there being a dense aggregation close to  one of the boundaries of the 
region and which, therefore, is not proportionately sampled by the transects, although the 
transects pass through sufficient of the aggregation for it to  be reasonably extrapolated in the 
kriging analysis. The difference between the survey 1 and survey 2 abundance estimates is roughly 
the same as that obtained by kriging. This difference may be a consequence of the orientation. 
The simulated population, in effect, contains a "mountain range" running parallel to one pair of 
boundaries of the rectangular region. The major transects of survey 1 run across this mountain 
range while those of survey 2 run parallel to it. There is, therefore, the possibility of some 
anisotropy of which there is little chance of detection in any one data set, because the transects are 
dominantly in one direction, with much greater spacing between than along transects. 

Tentatively one might conclude that there are circumstances where analysiug the data as a 
systematic sample with a single random start, would be appropriate and adequate. One might also 
consider one-dimensional kriging on the transect totals (which would not require equal spacing) 
with, possibly, trend removal. 
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APPENDIX E 

Spat ial  Analysis of Acoustic Survey  Data 
Theoret ical  comments  

William G. Warren 
Science Branch, Dept. of Fisheries and Oceans 

P.O. Box 5667, St. John's, NF Canada A1C 5x1  

Cressie (1988) assumes that data {Z(s;) : i = 1, ..., n} are a realization of a partially sampled 
stochastic process {Z(s) : s E D} which satisfies the following decomposition 

where 
(i) p( . )  ' E[Z(.)] is the deterministic mean structure that will be called large scale variation. 
(ii) W(.) is a zerc-mean, Lz-continuous intrinsically stationary process whose variogram range (if it 
exists) is larger than min[ll si - sj 11: 1 5 i < j < n]; call W small-scale variation. 
(iii) q(.) is a zero-mean intrinsically stationary process independent of W, whose variogram range 
is smaller than min[ll s; - sj 11: 1 5 i < j 5 n]; call q micro-scale variation. 
(iv) E ( . )  is a zer*mean whitenoise process independent of W and q; call c measurement error or 
noise. 

For convenience, we shall omit the micrc~scale variation, 7. Thus, in an obvious notation, we 
have 

0: = u; + of 

where u: is the nugget. 

Following Cressie (1988), under the assumption that the variogram, y,(.) has a sill, a:, the 
covariance function, C,(.) of Z(.), satisfies 

Analogously 
~w (h) = C w  (0) - Cw(h) 

Now Cw(0) = u: and C,(O) = u: = o: + of and, clearly, y,(h) = yw(h) + of. It follows that 
C,(h) = Cw(h), h > 0 (or, more strictly, for h 2 min[ll si - sj 11: 1 < i < j < n]). 

Our interest is in  so) = Cy='=, AiZ(si) = or, more particularly, var[i(so)]. Clearly 

where C = [C,(hij)] with hij = I [  si - sj 11. 

Now C,(h;;) = C,(O) = a: + u: and C,(hij) = C,(O) - y,(h;j). Further r = [yz(hij)] with 
% ( h i )  = ~ ~ ( 0 )  = o:. Accordingly 

c = (u: +U:)J,,~,, - r + U;I, 

Thus, since C A; = 1, 
x'cx = U: - Xrx + U~A'A - 



Consider now Y(s) = exp[Z(s)]. Since Z is assumed Gaussian, Y is lognormal. For the time 
being assume p(s) = p, constant. Since E[Z(s)] = p and Var[Z(s)] = uz it follows that 

Consider next E[?(so)] = E[exp(C XiZ(si))] = exp(p + x C y 2 )  since C XiZ(si) is the sum of 
normal variables, (cf. Dowd, 1982) and CXi = 1. Thus E[Y(so)] # E[Y(so)]. An unbiased 
estimate can be obtained as ?(so) exp(ul/2 - A1CU2) = ?(so) exp[(AII'A- y,(O) C Af)/2]. 

Observe that if s o  = s l ,  say, then A' = [l 0 0 ... 0] so that \'rA = ~ ~ ( 0 ) .  Thus the bias 
adjustment factor is unity and the estimate of Y(s1) is the observed value at sl. Similarly for 
so = s i ,  1 S i s n .  

The Xi  are chosen so as to minimize E[(Z(so) - ~ ( s ~ ) ) ~ ] .  A is then obtained from 

where y = [y(si - so)]. It follows that the minimized value (the minimized mean square error) is 
given & 

uZ(s0) = A'y + m 

We also have 
X'rA + m = A'y - - 

so that the exponent in the bias adjustment factor can be written 

Observe that, in general,o:(so) # va r [~ ( so ) ] .  

Let the data be denoted by Y(si), i = 1,2,  ..., n. Since some of the Y(si) equal zero, let Z(si) 
= log(Y(si) + k), k > 0. For convenience we take k = 1. At any point sp, let Ci XpiZ(si) = z(sp)  
estimate Z(sp). Then, as an estimate of Y(sp) we take (exp[i(sP)] - l)$p where 
$p = exp[(oZ(sp) - 2mp - y,(0)AbAp)/2] and uz(sp) = Ahr+mp. Observe that this expression does 
not involve the Z(si). 

Suppose that ~ ( s , )  is obtained for a large number of equi-spaced locations, sp, in the region of 
interest; i.e. let the ?(sp) apply to  elemental areas of size a. Then the total abundance may be 
estimated as a Cp ?(sp) = a Cp $ p ( e ~ P [ ~ p ]  - 1) = (IA, say. 

Thus 
var[A] = x $ ~ ~ a r [ e x ~ ( ~ ~ )  - 11 + x x $ p $ q ~ o v [ e x p ( ~ p )  - l ,exp(zq)  - 11 

P P I~#P 

Focus initially on ~ a r [ e x ~ ( ~ ~ ) ]  = Var[exp(Ci XpiZi)] = Var[f(Z)], say, where for convenience 
Z(si) is denoted by Zi. 

Now as a first-order approximation 

2 af af af u& + --.z;zj V a d f  (Ell = x (z) 
i j#i azi az, 



with the partial differentials evaluated at  E(Zi) = p.  Thus 

Thus 

Similarly 
as as x x --aZiZi = e 2 " x x & i X p j C i j  

i j+i az, az, 
i j+i 

Bringing the two parts together we have 

= e2"[a: - &rAP + a:&Ap] 

Next consider Cov[exp(zp), exp(zq)] = Cou[exp(Ci XpiZi), e x p ( x i  AqiZi)] = Cov[f(z),  g(Z)], 
say. As a first-order approximation 

Now 

and 

Bringing these two parts together we have 

= eZP[a: - Air& + a:&&] 

Hence 

Let $ = &,Ap; then 

Likewise 
e2'o:[C $:&Ap + x Cp$pAiAql = e 2 " 4  x x 4' 4 -P-'1 

P P 9#P P 9 



Combining the above we have 

Observe that 

and 

Consider now Y(s) = (p, + Z(s))' where p(s) is assumed known (i.e. deterministic) and 
E[Z(s)] = 0. The above can be modified as follows. Firstly 

E[Y(s)] = p(s)' + 02 
Let ?(sp) = [p(sp) + xi XpiZ(si)lZ. Then 

E[?(s,)] = p(sp)2 +&I& 

An unbiased estimate is then given by 

b(sP) + i ( sP ) i2  + 02 --&EL 
Denote p(sp) + z(sp)  by xP; the above estimate can then be written 

where, as above, 
djP = d ( s p )  - 2m - y,(O)&h 

and, thus, does not involve the Z(si). 

Again take a~ = a '&(xi + &). Then 

With f ( z )  = X; we have 

a f - = 2,iPixp az, 
whence 

Likewise 
af af --uzizj = 4 x 2  C C X p i X p j E i j  

i j#i az, azj 
i j # i  

= 4 ~ :  x ( u 2  - yZ(hij)) 
i j#i 

so that 
- 2  2 

var[f(Z)I = 4Xp [u, - X'r& + u:&AP] 

Likewise 

cov[f (z ) ,  g ( z ) l =  4 x p x q [ ~ 2  - &rAq + U~A;AJ 



Let 4 = x ~ A ~ ;  it then follows that 
-P 

etc. 

The above approach is unconventional in that it attempts t o  obtain a global estimate through 
the integration of local estimates, i.e. by summing local estimates over a sufficiently fine grid. This 
is motivated, in part, by the nonlinear tranformations employed t o  obtain approximately Gaussian 
data. While the theory of lognormal kriging (without assuming the conservation of lognormality, 
untenable over large blocks) has been developed (e.g. Dowd 1982) it appears t o  be less tractable. 
Dowd also observes that there is then no simplified form for the resulting kriging variance. Similar 
concerns would apply to the square root and other power or nonlinear transformations. The 
first-order approximations to the variances and covariances developed above do, however, permit a 
variance estimate of the global estimate to be readily calculated. Such first-order approximations 
will generally lead to underestimation of the variance and probably more so in the case of the 
logarithmic than the square root transformation. The degree of underestimation will, however, 
depend on the particular situation and it is difficult to assess its magnitude in the present 
applications. 






