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REPORT OF THE WORKING GROUP ON METHODS OF FISH STOCK ASSESSMENTS 

INTRODUCTION 

Participants 

E Aro 
D W Armstrong 
FA v. Beek 
H Caswell 
R Chevalier 
HP Cornus 
G Gudmundsson 
T Helgason 
MP Hild6n 
T Jakobsen 
P Kanneworff 
A Kristiansen 
A Lauree 
J-P Lussiaa-Berdou 
J J Maguire 
J Modin 
R Mohn 
SA Murawski 
JG Pope 
D Rivard 

Finland 
U .K. (Scotland) 
Netherlands 
USA 
France 
Federal Republic of Germany 
Iceland 
Iceland 
Finland 
Norway 
Denmark 
Denmark (Faroes) 
France 
Canada 
Canada 
Sweden 
Canada 
USA 
U.K. (England & Wales) 
Canada 
Iceland SA Schopka 

JG Shepherd (Chairman) U.K. (England & Wales) 

Mr K Haydal, ICES Statistician, also participated in the meeting. 

1.2 Terms of Reference 

1.3 

At the Statutory Meeting in 1983 it was decided (C.Res.1983/2:8:16) 
that the Working Group on Methods of Fish Stock Assessments (Chairman: 
Dr JG Shepherd) should meet at ICES headquarters from 11-15 June 1984 
to: 

(i) 

(ii) 

(iii) 

(iv) 

propose methods for estimating recruitment in the short term, 

propose simple methods for computing TACs, 

evaluate and make recommendations on the use of regressions 
in fish stock assessments, 

reconsider ways to calculate biological reference points. 

Working Papers 

Working papers were available on topics (i) to (iii), and these are listed 
in Appendix A. Where the material has not been published elsewhere, 
the content of these has, where appropriate, been summarised in this 
report. The reports of the ad hoc Working Group on the Use of Effort 
Data in Assessments (1981) and the Working Group on Methods of Fish 
Stock Assessments (1983) have now been reprinted in the ICES •Cooperative 
Research Report 1 series (Anon., 1984a). 

1.4 Notation 

The Working Group adhered as far as possible to the standard notation 
used pr·eviously; an updated summary is given in Appendix B. 
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1.5 Work carried out 

The Working Group was able to consider topics (i) to (iii) in some detail, 
and the results of this work are reported in Sections 4, 2 and 3 of the 
report. No written comments had been received on the question of · 
biological reference points (topic (iv)), although a verbal account of 
the discussion which took place at the 1983 Statutory Meeting was given. 
Thie indica ted that some participants had not been entirely convinced of 
the utility of the reference points Fhi~h and F1ow proposed in 1983, and 
that there had perhaps been some confusion concerning the manner in which 
these should be used, and what function they could reasonably be 
expected to perform. A brief recapitulation of the purpose and method 
of use is therefore included in Section 5.3 of this report, which also 
contains a short account of recent work in the USA extending the use 
of these concepts. 

Reports of further work on the other topics considered in 1983 were 
also received and are reported in Section 5.1 and 5.2. 

2. SIMPLER METHODS FOR CATCH FORECASTING 

2.1 Eackground 

It has been clear for some years that the full analytical assessment 
procedure (usually VPA plus a catch forecast) for short-term predictions 
is a rather circular procedure. 

VPA is really little more than a transformation of a fairly large 
and expensive data set (many years of catch-at-age data) into an 
alternative representation (fishing mortalities and population numbers). 
The process of catch forecasting recombines these derived quantities, and 
sums over ages. This process is time-consuming and occasionally 
contentious, and various efforts have been made to lay bare the essentials 
of the procedure, and see if and how it may be simplified. 

The work of Pope (1983) on ANOVA TACs (discussed in a little detail 
in Section 2.2 below) was a considerable advance, since he was able to 
construct an alternative method for the analysis and use of catch-at-age 
data, which does not depend on any assumption concerning natural mor­
tality, and is only weakly dependent on the estimated level of terminal 
fishing mortality. 

Approaching the problem from the other end, various people have 
experimented with empirical methods based on time-series analysis 
(Mendelsohn, 1981; Stocker and Hilborn, 1981). Work aimed at bridging 
the gap between age-structured and stock/production models (see e.g., 
Deriso, 1980) is also relevant, although the assumption of deterministic 
recruitment is usually inadequate unless recruitment is very stable or 
exploitation rates are low. 

More recently Shepherd (1984) has shown how a catch forecast may be 
constructed from time series of catch and recruitment data only, provided 
certain rather crude approximations are made. This formalises explicitly 
the rather obvious fact that a forecast catch is composed of a con­
tribution from the survivors of the old stock, and a contribution from 
new recruits. It therefore provided a biologically-based framework for 
the construction of time-series based methods. 

The justification for, and performance of some of these simpler methods 
are discussed below. Further discussion and test results may be found 
in the Working Paper No.2 (Pope, 1984). 

Most of the simpler methods aim to estimate catch if fishing mortality 
is maintained at its most recent level, the status quo catch (SQC) as 
defined by Pope (1983). Shepherd (1984) discusses how SQC estimates may 
be used to derive TACs for vari ous management objectives. It is 
essential to stress that the calculation of an SQC does not imply that 
a TAC should be set at that level. The SQC is merely thecentral 
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ingredient of any catch forecast. Terms such as "short-cut TACs" some­
times applied to these methods are merely convenient but loose 
terminology, and should not deter managers from setting T.ACs well 
above or below the SQC when they have adequate justification. 

2.2 The ANOVA Method 

The VPA prognosis technique of predicting future catch levels has two 
steps. The first is fitting the data to a model, a descriptive step. 
The second is estimating the future catch, a predictive step. The 
usual approach to the descriptive phase is done by tuning a VPA, 
a process which may be fairly subjective. The technique called ANOVA 
TAC (!n,alysis Qf Y.ariance, !otal !llowable Qatch) allows one to estimate 
a future catch in an objective fashion from basically the same data 
as are currently used (i.e., catch-at-age, recruitment indices and 
effort data). ANOVA TAC is comewhat a misnomer as its output is not a 
TAC but rather an anticipated catch level and the method is not strictly 
ANOVA. The method is described in Pope (1983), which is based upon 
some of the results in Pope and Shepherd (1982). 
Catch-at-age data may be simply described as being the resultant of 
three effects. First, an effect which is a function of age and is 
usually associated with selectivity, S(a). Secondly, an effect over 
time, generally years, which is a fishing mortality, F(y). Finally, 
an effect working diagonally in age and time due to the cohort size. 
By taking the log of the ratio of successive catches down a cohort, 
the year class strength effect is removed leaving age and year terms as 
the principle determinants of the transformed data. 

D(y,a) = Jln~(y+l,a+l) /c·(y,a~ 

The remaining year effects a(y) and age effects ~(a) may be thought 
of as analogs to the marginal description in a 2-way analysis of 
variance. 

D ( y , a) = a ( y) + f3 ( a ) + µ+ e: 2.2.2 

without explicit expression of the interaction term. (For a simple 
separable fishery this will be small but will be larger if selection 
has changed with time (Anon., 1984, Part II)). 
Thea's are then related to effort data in order to predict future 
year effects. A linear regression is performed between the a 1 s and 
the expression 

Jl/1 lE(y+l) ½ /E(y) ½} 
leading to a relationship of the form 

a(y) =a+ 1/2 Jln/~E(y + 1)/E(yif 
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Because the a's must sum to zero a can be determined by summing 2.2.4 and 
the predicted year effects become 

a(t+l) = a(t) = a - 9,nLF,(t}J 

with the assumption that F(y+2) = F(y+l) = F(y), i.e., the status quo 
assumption. Because it has been assumed that effort and fishing mor­
tality are proportional, this is equivalent to assuming a constant 
effort level over the period of prediction. 

The other parameters from the ANOVA model, the age effect$ which 
results from partial recruitment effects, andµ may be combined to 
predict catches from catch-at-age data for the terminal year. 

C(t+l,j+l) = C(t,y) exp (a.(t) +S(j) + µ+ai2121 2.2.6 

where 012 is the correction for the log-transformation of the data 
and o is estimated from the mean square error from the ANOVA. The 
division by 2 is an approximation and would better be replaced by the 
correction given by Pennington (1983). 

In order to obtain estimates for the recruitment to the exploited stock 
for years t and t+l, a relationship is established between indices of 
recruitment, probably from survey data, R(y,a) and catch and effort 
data. The pro~osed method for doing this is to assume a proportionality 
coefficient r(a) which relates the cateh at age to the effort applied 
to the incoming recruits. The actual form chosen by Pope (1983) for 
estimating this coefficient is 

~tfll 11/ t 1 2 
r(a) ={._y=l C(y,a)JE(y) R(y,a) - exp 02 /2 2.2.7 

where 022/2 is a correction similar to 012/2 in Equation 2.2.6 and 
is estimated from Var (c(y,a)/E(y) R(y,aJ). 

We may now write the estimated catch for the recruits to the year t+2 
as 

C(t+2,a) = E(t) R (t+2,a) r (a) a= 1 to 3 

Recalling that the older age classes' contributions are found by 2.2.6, 
the entire catch for the year t+2 is predicted. The ca.tches at age 
may be multiplied by weight at age to give the anticipated yield. 

The ANOVA TAC may be thought of as being closely related to Separable 
VPA, but instead of estimating fishing mortality and population from 
the catch data, the descriptiv.e phase mentioned above, it is used to 
directly estimate a future catch. The prediction requires effort and 
recruitment information. The AN.OVA TAC is a simplification of the 
usual VPA approach in that it is less subject'ive and does not reg_uire 
tuning, although it has the same data reg_uirements. The reason for 
its development was to investigate the relationship between data 
quality and the quality of predicted catch levels; it could, however, 
be regarded as a short-cut method. The short-cut TACa described below 
require much le.es data (normally catch at age is not required). There­
fore, the ANOVA TAC is in some sense intermediate between the short-cut 
and the usual VPA approach (Pope, 1984). To date it has not been tested 
on a complete real data set . Pope (1983) tests it with real catch-at-age 
and recruitment data, but with fishing effort derived from fishing mor­
tality from separable VPA which would assure a good relationship between 
F and E. 
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2.3 The SHOT Method (fhepherd 1 s gang .Qver !AC) 

Shepherd (1984) proposed a simple method for making estimates of catch 
forecasts when. few data other than annual catches are available. Th 
method calculates the expected catch level under the assumption that no 
change in fishing mortality will occur in the year(s) covered by the 
forecast (i.e., status quo is maintained). Variants of the method allow 
one to incorporate information on recruitment and stock size (e.g., catch 
rate index), if such information is available. 

The exploited biomass at the beginning of yearn+ 1 is given by the 
previous biomass, as modified by catches, stock production due to 
recruitment during the year P(n), and the effects of growth and natural 
mortality 

B(n + 1) = B(n) - Y(n) + P(n) + (G - M) B (n) (1) 
Shepherd (1984) argues that (G - M) is a small fraction of one and 
suggests that the last term of Equation (1) can be neglected. Effectively, 
thls assumes that growth in weight of exploited fish roughly cancels 
losses due to natural mortality; we note that this may not in fact be 
a good approximation if fishing mortality varies over a wide range. 
When 'F(n+l) = 1'(n) = F, Equation (1) can be used to show that the catch 
in yearn+ 1 is given by 

Y(n + 1) = (1 - F) Y(n) + F P(n) (2) 
..., 

where Fis used to denote a yield/biomass ratio. 

In other words, the status quo catch is just a weighted average of last 
year 1s catch and the production due to new recruits. While Equation (2) 
provides an estimate of catch only one year ahead, the formula can be 
repeatedly applied to provide estimates further ahead if required. Such 
an extension of the forecasting horizon will require additional 
assumptions about Y and Fin the intervening year(s) . 

The estimation of P(n) may be carried out in many possible ways, depending 
upon the type of data available. Specifically, Shepherd (1984) considers 
the following cases: 

A. If only catch information is available, the status quo catch 
can be defined in its simplest form as 

Y (n + 1) = Ysq = (1 - F) Y(n) +FY (3) 

where Y is the average catch over a number of years. This result 
relies on the assumption that recruitment is near average. It will 
therefore fail to give sufficiently conservative results for a 
declining stock. The relative weights F and (1 - F) depend on the 
level of fishing morj,ality, but the dependence of the e s timated 
status quo catch on Fis qu!te weak because the result must l ie 
somewhere between Y(n) and Y. Equation (3) is closely r ela·ted to an 
autoregressive model. However, Equation (3) arises from explicit 
assumptions regarding stock dynamics and target fishing mor talities 
(i.e., status quo) and, consequently, we know under which con­
ditions the model is likely to apply. A purely empirical auto­
regressive model (i.e., one derived solely from the inspection of 
autocorrelations) would have provided no information on these con­
ditions. Finally, it is noted that as one forecasts further and 
further into the future, the estimated status quo catch reduces 
to using the average catch. 
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B. If an index of recruitment r(n) is available, then the status quo 
catch can be defined as 

,.✓. .....,. p 
Y (n +l) = Ysq = (1 - F) Y(n) + F-=- r(n) 

r 
(4) 

where r is the mean index of recruitment. If Fis assumed 
constant over a number of years, the coefficients of Equation (4) 
can be found by regression of Y (n + 1) on Y(n) and r(n). A zero 
intercept is indicated by the model, but may not give a predictor 
with optimal properties. 

C. If both an index of recruitment and an index of stock size are 
available, Shepherd (1984) shows that the status quo catch can be 
defined as 

(l ~) ( ) r_(n) l"'F y- + Y(n) Ysq = - F Y n + 
r 

(5) 

where R is the ratio between the initial and the final stock size 
(in practice, R can be calculated from the stock size index). 
Equation (5) relies on the assumption that the index of recruitment 
l r(n)) is directly pr<>portional to the production due to recruits 
[P(n)\ • Clearly, if recruitment in yearn is near average and if 
stock size is near average, Equation (5) reduces to Equation (3). 

To use these models, some estimate of F(n) is required, which estimate 
is often hard to acquire. Simply guessing a value (or a range of values) 
may be tolerable in desperate cases. However, Brander (pers.comm.) has 
pointed out that when F has remained reasonably constant for a number of 
years, the regression of Y(n + 1) on Y(n) can be used to obtain an 
estimate of F. As suggested by Equation (3), the slope of the regression is 
just (1 - }f), and the intercept is related to average yield and production. 

The DROP and DOPE Methods 

Deriso (1980) sug,gested an equilibrium model which forecasts relative 
yields from biomass estimates in previous years and a stock/recruitment 
relation. The approach was examined further by Roff (1983), who · 
tested its usefulness as a short-term predictor. Pope (1984) extended 
the approach to include recruitment field data (DROP method, after 
Qeriso, Roff, _!:ope) and also provided a variant which uses catch in 
numbers as additional input (DOPE method after Qeris£, fop~). 

Deriso 1 s method is appealing since it approximates the behaviour of an 
age-structured model of a more complicated structure. This is achieved 
by the inclusion of the Brody growth coefficient as well as survival 
fractions. The original approach assumed constant annual mortalities. 
However, the DROP and DOPE versions allow for fractional adjustments 
of fishing mortalities, i.e., a status quo catch can be defined. 

The Deriso, DROP and DOPE family can be derived from a Brody growth 
equation formulated as Ford-Walford relations, i.e., 

w(a + 1) = (1 + P) w(a) - P w(a-1) = P w(a) + (1-P) w., 2.4.3 

It should be noted that the Brody equation lacks an inflection point and 
therefore strictly only applies to older fish when applied to weight 
data. For several stocks, age at recruitment is not sufficiently high 
to meet this c.ri terion. 
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Modif?ing Deriso' s Equation 2, one may describe _the exploitable biomass 
B(y+lJ during year y+l as 

B(y+l) = B(y) (l+p) exp(-z) - B(y-1) p exp (-2Z) + R(y+l) 

where R(y+l) is the recruiting biomass, 

p is the Brody growth weight coefficient 

exp(-z) is the survival proportion. 

Thus, the forecast B(y+l) is determined by the growth weighted average 
of surviving biomasses in the two preceding years and by the recruitment 
biomass. Adult survival is assumed constant from year to year. The 
first term on the right hand side of the above equation shows that if 
B(y) was high, then B(y+l) should be higher. This is adjusted by a 
'hangover• effect in the second term, which allows for a high growth 
rate of the adults provided B(y) was high due to recruitment rather 
than a large stock size. Similarly, a high p results in a high growth 
potential, i.e., there is a relatively large proportion of fast growing 
adults. 

The DROP method is based on Equation 2.4.1 and can be further transformed 
into a yield -function. Since the catch is Y(y)=F(y) B(y), then 

Y(y+l) = Y(y) (l+P) exp(-z) F¼t;,) 

- Y(y-1) P exp (-2Z) ~f;~i~ + R(y+l) F(y+l) 

If a stat us 1uo situation for the year y+l is desired, then set 
F(y+l ) = pF (y and the DROP equation will reduce to -

Y(t+l) = p Y(t) (l+P) exp(-z) - p Y(t-1) a P exp(-2Z) 

+ p R( t+l) F( t) 

Equation 2.4.1 and hence Equation 2.4.2 could be parameterised by using 
biological data to estimate p exp(-z) and F(t). Alternatively, 
plausible guesses might be made or the parameters could be fitted by 
making a multiple regression of Y(y) on Y(y-1), Y(y-2) and R(y). 

In practice, some composite methods might prove most satisfactory such 
as estimating or guessing P and exp (-z) and then regressing 

Y(y) - Y(y-1) (l+P) exp(-z) + Y(y-2) P exp(-2Z) 

against the recruitment index for year y. 

The DOPE method can be derived from the right-hand expression in 
Equation 2.4.3 (seep. 6). In short, stock in numbers at age and year 
is multiplied into the expression,and ages beyond recruitment are summed 
up. The exploitable biomass (i.e., including recruitment) then becomes 

B(y+l) = B(y) p exp(-z) + I~ N(a,y)l (1-p)w~ exp(-z) + R(y+l) 
La>r 'J 

Since~ N(a,y) = B(y)/W(y) where W(y) is the average weight of 
a>r 

catchable fish in year y, the equation will be: 
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and the dependence of B(y+l) on the average weight of fish in year y 
is made more apparent. 

A yield function describing a status quo situation can be obtained in a 
similar way as for Equation 2.4.2. As the catch in numbers C(y) = 
Y(y)/W(y), the following formula is derived: 

Y(y+l) = PY(y) p exp(-z) + PC(y) (1-P) w~ exp(-z)+P F(y) R(y+l) 2.4.5, 

Equation 2.4.5 might be fitted as a multiple regression or by biological 
e·stimation of the various constants. It should be stressed that the 
possibility to independently estimate constants within a model enhances 
the probability of a good approximation. 

The DOPE method has a possible advantage over the DROP method, since (if 
size compositions are available), catch in numbers or mean weight is 
easier to estimate than a ratio of catch rates. 

Both approaches would probably benefit if selection effects S(a) could 
be included, e.g., S(a+l) W(a+l) = p s(a) W(a) + constant. This is 
the case in real life. 

2.5 The Use of Time-Series Methods 

Several recent papers have considered the applicability of time-series 
analysis methods for the forecasting of trends in various fisheries 
data (Boudreault tl al., 1977; Saila et al., 1980; Mendelssohn, 1981; 
Kirk~ey tl al., 1982; Fo~arty, 1984 (MS;). Specifically, these papers 
have employed the ARIMA (!uto~egressive-Integrated ~oving Average) models 
developed principally by Box and Jen.kins (1976). In general, .ARIMA models 
are a flexible and powerful class of linear stochastic difference 
equation predictors • .ARIMA models are generally based on predicting a 
value in a time-series based on a linear combination of its own past 
values, past errors (called shocks or interventions), and past 
values of other time series that may explain the objective (in the 
multivariate case). 

With respect to the problem of catch prediction (forecasting), .ARIMA 
models may be applied based on~ univariate time series (simply a time 
history of yield to the fishery). Alternatively, multivariate time­
series models (called transfer function models) may be employed. The 
multivariate models employ some influential variable in the forecasting 
procedure (such as using explanatory environmental variables in recruit­
ment forecasts). In this case the most likely candidate is data on 
an index of recruitment. 

The general •rule-of-thumb• for time-series analyses under .ARIMA 
procedures is that the number of observations should be more than about 
30 and less than 2 000. With thousands the method requires much 
computer time and memory. With fewer than 30 observations the parameters 
are generally not estimated very well, although the number required 
depends crucially on the noise (unexplained variability), which is 
usually high in this context. 

Time series in fisheries data of greatest length are generally historical 
catch (landings) statistics, fishing effort, and environmental obser­
vations (e.g., temperature data). Unfortunately, time series of recruitment 
sampling are generally too short to be considered reliable for use in 
such models. 
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A recent paper by Fogarty (1984 (MS)) illustrates the use of univariate 
and transfer function (multivariate) time-series procedures for 
forecasting American lobster landings. The time series of landings 
data available for analysis was 1928-1981 (1982 data were reserved for 
comparison with predicted landings). The univariate time-series models 
resulted in predicted 1982 yields that were within 4% of the observed 
catch (Figure 2.5.1). A transfer function (multivariate) time-series 
model was fitted with lagged sea water temperature as an independent 
variable. A significant temperature effect at a time lag of 6 years 
(approximately the length of time f r om spawning to recruitment to the 
fi shery) resulted in a reduction in residual variance of approximately 
13% relative to the corresponding univariate model (Figure 2.5.2). 

Other catch projections that have been made successfully with ARIMA 
procedures are those that predict monthly changes that typically follow 
some harmonic trend (Mendelssohn, 1981; Fogarty, 1984 (MS)). 

The Performance of the Simpler Methods 

In the time available to the Working Group it was not possible to 
fully test the various short-cut methods. Nevertheless, a start was 
made on testing in order to focus on what further work would be needed. 
Two approaches were adopted. These were: 

(a) Tests of prediction methods in simulated data sets. 

(b) Tests of predictions on real stocks. 

Tests on simulated data sets 

The performance of the SHOT, DROP and DOPE methods was tested on 
data from 3 simulated stocks. 

Stocks were simulated based upon the recent structure of the North Sea 
haddock. As pointed out (Pope, 1984), the choice of this fish should 
tend to favour the DROP and DOPE methods over the SHOT method. 

Data were generated for a period of 26 years for various assumptions 
on range of recruitment and variation in fishing effort from year to 
year as follows. 

Conventional predictive regressions were used, since minimal variability 
is a practically desirable property of TAC estimates. 

Stock 1: High recruitment variation 
Low fishing effort variation 

Stock 2: Moderate recruitment variation 
Low fishing effort variation 

Stock 3: Low recruitment variation 
High fishing effort variation. 

Implementation of the various methods consisted of carrying out the 
following multiple regressions for each stock: 

Stock 1: 

SHOT: Y(t+1) on y ( t), R(1, t+1) 

DROP: Y(t+1) on Y(t), Y(t-1), R(2, t+1) 

DOPE: Y(t+1) on Y(t), C(t), R(2, t+1) 
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Stock 2: 

SHOT: Y(t+1) on Y(t), R(2,t+1) 

DROP: Y(t+1) on Y(t), Y(t-1), R(2,t+1) 

DOPE: Y ( t+ 1 ) on y ( t), C (t) , R(2,t+1) 

Stock 3: 

SHOT: Y(t+1) on y ( t), R(2, t+1) 

DROP: Y(t+1) on Y(t), Y(t-1 ), R(2,t+1) 

DOPE: Y(t+1) on Y(t), C(t), R(2,t+1) 

To be as fair as possible to each method, three recruitment series were 
adopted. (The numbers of recruits in year t+l at ages O, 1 and 2.) For 
each method and stock the fit to the full data set was made and the 
recruitment series which effectively minimised the residual variation 
chosen (minor deviations from this rule were allowed to give consistency). 
In practice, the 2 year olds were used for all but the SHOT method on 
Stock 1. 

Having made this choice, the data from the first 16 years were fitted 
and used to forecast the status quo catch in the 17th year. The data 
from the first 17 years were then fitted and used to predict the status 
quo catch in year 18 and so on. This is an approach used by Stocker 
and Hilborn (1981). The predictions from the three methods for the 
three simulated stocks are shown in Tables 2.6.1, 2.6.2 and 2.6.3. Also 
shown are the mean squared deviations of the projected results (D) from 
the true values and the statistics l-D/o2 , which Stocker and Hilborn 
suggest as similar to a coefficient of determination. 

For Stock 1 with extremely variable recruitment (the largest recruitment 
was 500 times the smallest) and steadily declining effort, the SHOT 
method did not perform very well (1-D/ o2 "' .35). The DROP and DOPE 
methods, however, performed more creditably with l-D/o2 being .59 and 
.78, respectively. The DOPE method thus predicted 78% of the variation 
in yield over the 10 prediction years. This is in line with the 
theoretical arguments of Pope (1984). Predictions for all the methods 
appear to improve for the later years, and this may be a function of the 
number of years for which fitting data were available. This might 
possibly argue for the choice of biologically sensible coefficient 
values rather than multiple regression generated coefficient values 
when time series are short. This is a point which might be addressed 
by further simulations. 

For Stock 2 with less variable recruitment and steadily declining effort, 
the methods all performed quite well with l-D/o2 of .67, .78 and .76, 
respectively, thus supporting the argument that very variable recruitment 
would have a more serious effect on the SHOT than the DROP and DOPE 
methods. 

For Stock 3 with still less variable recruitment but with erratic but 
largely trendless effort data, the SHOT method performed better than the 
other two methods. The reason that it should be better than the DROP 
method is presumably that the latter method ignores an effort correction 
to the second term. The reason for the improvement over the DOPE 
method is, however, less clear. 
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From the above work the following tentative conclusions emerge: 

(1) All methods reduced the variation compared to using just 
the mean catch, on three quite exacting stocks. 

(2) If the variability of recruitment is very high, the DOPE 
and DROP methods are likely to perform better than the 
SHOT method. 

(3) If most of the variation in yield is due to short-term 
fluctuation in effort, then the SHOT method seems to be 
preferable to the DOPE or DROP. 

Clearly, these conclusions need to be examined much more exhaustively 
on real and simulated data. Equally clearly we need to consider how 
best to construct predictors. This might be done on biological grounds 
or by multiple regression techniques. 

Short-out methods applied to real stocks 

Georges_Bank_scalloE_data 

Yield data are available for this data set from 1953 to 1983. Catch at 
age data and hence VPA recruitment estimates are available from 1972. 

Using the yield data set only, two models were fitted: 

Y(t+l) a+ b Y(t) 

and Y(t+l) =a+ b Y(t) + c Y(t-1) 

Figure 2.6.1 shows the plot of Y(t+l) on Y(t). 

The results of the fishing on years 1953-82 were used to predict the 
yield in 1983, and the results of the fishing on years 1953-81 were 
used to predict the yield in 1982. Results are shown in Table 2.6.4. 

The second data set was more detailed in that it contained recruitment 
and catch in number from a cohort analysis for the period 1972-83. 
Tab le 2.6.4 summarises the results. It was found that R(3,t) performed 
much better t han R(2,t). This observation is consistent with the low 
partial recruitment observed for the youngest age class in the fishery. 

The results suggest that given an appropriate and reliable recruitment 
index the SHOT, DROP and DOPE methods should greatly improve predictions 
over a simpled lagged correlation. This is not surprising for a 
recruitment-dominated fishery such as this. The results also suggest 
that the R2 of regressions is not useful in discriminating amongst 
methods. 

~~!!!.~-~~:'.!'.!.!!~-~~~~ 
The SHOT, DROP and DOPE methods were used on the Baltic herring of 
area 29NE. The data series available was short (8 years), but when the 
models were fitted to the first 7 years of data with multiple 
regression , all the methods produced catch forecasts not differing more 
than ±10% of the observed value. However, the regression coefficient 
obtained from the multiple regression could not be given any meaningful 
interpretation , since the regression coefficients of recruitment con­
sistently come out negative. 

The age at which recruitment is assumed to occur (i.e., the lag used 
for the recrui tment series) needs to be selected with great care, and 
further tests may b e necessary for these data . 
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It is difficult, therefore, to draw any consistent conclusions from this 
data set. For short ti.me series it would seem sensible in future to fit 
biologically sensible coefficients based on an appreciation of population 
characteristics. 

The ICES Industrial Fisheries Working Group (Anon., 1984b) has used 
this method with some success. 

General conclusions 

The short-cut methods (SHOT, DROP and DOPE) appear to be useful in 
forecasting catch levels where other methods are unavailable. Their use 
would seem reasonable, therefore, where data are sparse. Clearly, much 
more exhaustive tests on simulated and real data are indicated before 
the most appropriate method for a stock can be defined and before the 
most appropriate method of coefficient estimation can be identified. It 
would, therefore, be premature to recommend that such methods should be 
used very widely, but the preliminary results are promising, and the 
Working Group looks forward to examining the results of further tests 
in the future. 

THE APPLICATION OF LINEAR REGRESSION 

Introduction 

Background 

Linear regression is widely used in fisheries research (and elsewhere) both 
to examine and test for the existence of relationships,for the appropriate­
ness of various models,and as the basis for making predictions. 

If high quality data on a well-defined relationship are available, there 
is usually little difficulty in deciding upon suitable parameters for the 
relationship. However, when the data are.(as is usual) subj ect to 
appreciable variability, the determination of the most appropriate 
representation of the relationship becomes a little more difficult. This 
happens because various factors need to be taken into account, including: 

1) The purpose for which the relationship is required (prediction, 
estimation of parameters per~, test of dependence, etc.); 

2) 

3) 

The source and nature of the variability (measurement error, 
structural variability, form of probability distribution etc.); 

The origin of past and future observations (whether drawn 
randomly from a probability distribution, or controlled in 
some way). 

There is a variety of methods and formulae appropriate to various 
circumstances. The statistical methodology is described and discussed 
in a comprehensible way in the book by Sprent (1969), and the various 
standard forms are summarised by Pope and Shanks (1982) and also by 
Seim and Saether (1983) amongst many others. Ricker (1973) recommended 
the use of geometric mean functional regression, but see the comments 
of Pope and Shanks (1982), and further comments below. 

The results obtained from the different methods and formulae 
generally differ appreciably only when the evidence for a linear 
relationship is weak (small correlation coefficient), or the method 
used is seriously inappropriate, or a prediction is made well outside 
the range of the data. Given care and common sense, the results from 
the various methods usually agree as well as can be expected, parti­
cularly when one takes account of their confidence limits, which will 
almost always be wide when discrepancies occur. 
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Thus, estimates obtained from the optimal strictly method for a 
particular situation may not differ significantly from those obtained 
from other methods, which, whilst not optimal or statistically 
justifiable, may nevertheless be reasonable and fairly robust. This 
includes both non-parametric methods (e.g., use of median slope for 
regression through the origin), which the Working Group did not have 
time to discuss in detail, or the results which might be obtained by 
a reasonable man with a ruler. 

However, the Working Group recognised that even quite minor discrepancies 
can cause doubt, confusion and argument, and that there is a need for 
established and objective methods whose results can be checked and 
reproduced exactly if necessary. This report, therefore, contains a 
brief discussion of the main points which need to be considered before 
attempting to analyse a given set of data, and a guide to the 
appropriateness of various methods. The number of possible combinations 
of circumstances is enormous, and it was not possible to construct a 
complete guide. We hope, however, that people following our recommen­
dations may be steered away from serious error. 

Where the purpose of the analysis and the nature of the data are quite 
clear, one should naturally use the appropriate method. The Working 
Group recognised, however, that there may still be cases where there 
is doubt, and therefore proposed the use of a particular method 
in such cases which is to some extent central and robust, and unlikely 
to lead to serious error. 

This proposal is to some extent conditioned by the philosophy that 
all methods of analysis and prediction are thinkable, that what is 
required is an understanding of their properties, and that it is not 
always necessary to seek and use an optimal method, if a satisfactory 
one will suffice. 

The remainder of Section 3 of this report, therefore, contains a brief 
survey of considerations affecting the use of linear regression 
methods, and what to do about them; this is followed by an account of 
recent work on methods for deriving confidence limits for the cali­
bration problem (which is quite a common application in fisheries 
resea~chJ, and a description of further work to be undertaken to obtain 
a more complete solution. The results of analysis, by various methods 
of example data sets, are described, and finally some practical recommen­
dations are made. 

3.1.2 The purpose of linear regression 

3.1.2.1 Prediction ·· 

A re~ession may be required simply in order to make a prediction of 
one (dependent) variable from a given value of another (independent) one; 
this may be based on some assumption or belief in a causal relation-
ship (hence the nomenclature) or it may simply be empirical. 

Various predictors are possible, and their properties may be described 
(inter~) by such quantities as bias, variance, mean square · 
prediction error etc. The parameters of a line fitted and designed 
to be used for prediction usually differ from those of a line fitted 
in order to describe an underlying relationship (see below), because 
amongst other things it may make use of prior information about the 
probability distribution of the observations. 

The classical result in the regression problem, in which the slope of 
the line is estimated as 

g = s Is 
xy' xx 

is the solution of several problems, including that of making an 
unbiased estimate of the expected value of y for a given value of x, 
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taking account of such information as is contained in the data about 
the probability distribution from which the observations are drawn, 
under certain assumptions (normality, homoscedasticity, etc.). It is 
also (coincidentally) the solution to the problem of making an 
unbiassed estimate of the expected value of y, if the independent 
variable (x) is measured without error, whether or not the observations 
are from a random sample (under similar conditions). It is, there­
fore, a very useful predictor, and widely used as such. It is, 
however, not necessarily optimal, since this depends on the precise 
objective of the prediction, and thus on the loss function, which is 
taken to apply. 

A loss function is a construct which defines precisely the desirability 
of various properties of a predictor, including bias, variance, and 
other factors which derive from economic, social or any other con­
siderations. The minimum of a loss function therefore defines 
precisely what is meant by optimal, and this depends entirely on the 
application. 

Such functions are rather difficult to construct in practice, and 
finding optimal predictors for them may be even more difficult. 
However, it is known that for a particular loss function, mean square 
prediction error (the sum of variance and the square of bias) which 
is a useful measure of the final accuracy of a prediction, the optimal 
predictor differs from the classical one. This matter is discussed 
by Harding (Working Paper No.7), and at some length by Copas (1983). 

For the present purpose it suffices to note that prediction is a 
particular use of linear modelling, and that the methods required 
for prediction may differ quite considerably from those for other 
purposes, and also according to the exigencies of the task in hand. 

Calibration 

A special case of the prediction problem arises when one has past 
data on the relationship between a precise and imprecise measurement 
of (hopefully) the same thing, and wishes to use a future imprecise 
observation to predict the true (precise) value. This is known as 
the calibration problem, and has generated controversy among stati­
sticians. A detailed account of the problem, and some new results 
for its resolution, both by Harding, were available to the Working 
Group (Working Paper No.7). 

Many problems in fisheries research fall almost into this category -
the estimation of year class strength from a survey index, based on 
the 1calibration 1 against VPA estimates of past year class strengths, 
is an example. This is not quite the classical case, because the 
VPA results cannot be considered to be measured with negligible error 
(variability) since they are essentially just summations of catch­
at-age data, which are certainly subject to appreciable sampling er~or. 

In order to evaluate the methods available for the treatment of such 
data, the Working Group assumed that VPA results could be treated as 
precise, so that a few example calculations could be performed. 

Functional_re~ression 

Regression may also be used to determine the parameters of a model 
relationship, either because these are of intrinsic interest, or as 
a basis for prediction in some circumstances. Maximum likelihood 
techniques are often used for this purpose (although other methods 
are also applicable). 
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The theory is well developed for the common case, where there exists 
a strictly deterministic underlying relationship, but where both 
variables are subject to independen t errors (Lindley (1947) see also 
Pope and Shanks, 1982 and Davies and Goldsmith, 1976). Provided that 
some information can be provided about the •error' variance of one 
variable, or their ratio, explicit maximum likelihood solutions can be 
obtained. 

Assume the (exact) functional relationship 

fl=a+S~ 

The variables T1 and ~ are measured with some error: 

= 17. + 
1 

o. 
1 

e:. 
1 

It is assumed that o and e: are normally distributed, independent with 

zero mean and variances: 
2 var ( o ) ax , var ( e:) 2 = 0 y 

Now we assume that the ratio: 

2/ 2 a a y X 

is known. An estimate g of the slope 13 is constructed as follows: 

Let 

p = (s - >- s )/2s yy xx xy 

Then 

g = p + Vi + A •••• • •• •• •• •• 
where 

s E (x .. -i) (y. -y) xy 
i 

J. l 

s = E (x.-x) 2 
xx 

i 
l 

s E (Y. -y)2 
YY 

i 
l 

An estimate h of the intercept ex is then: 

h = y -- gx 

If A is infinite (•error' variance associated with xis negligible), 
this reduces to the classical result for regression of yon x 

g,,.. - s Is • • • • • • • • • • • • • 3 • 2 
- xy' xx 

whilst if A is zero (ierror 1 variance associated with y is 
negligible), this reduces to the classical result for regression 
of x on y ............. 
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Note that a little care is needed in taking the limit 11.~ oo, and that 
here and elsewhere we always have gas a measure .Q.f the_slQ,Pe dy/dx, 
not vic.e versa, so that g has the dimensions of L yJ/ L x_j. 

All other results for intermediate (and of course inherently positive) 
values of 11. give results for g intermediate between the limits set by 
the two classical values given above. 

The family of results expressed by Equation 3.1 above, regarding A as 
a parameter, is very useful because most of the classical results 
are members of the family, as follows: 

Value of 11. Standard result 

00 

1 

s /s yy xx 

0 

Classical yon x 

Major axis method 

Reduced major axis method 
( ge ometric mean functional 
regression) 

Classical x on y 

(See also Seim and Saether, 1983, and Pope and Shanks, 1983). 

With an appropriate choice of 11. (which must be specified and cannot be 
determined from the data (see Copas, 1972)), equation 3.1, therefore, 
supplies the solution to a variety of problems of both the predictive 
and functional type. (In general, of course, A should be specified 
by examining the estimated error variances, and not simply as a 
conventional value). 

This is a remarkable result, which may perhaps be exploited in cases 
where there is doubt about the exact nature of the problem, since the 
results of all the standard methods lie between the limits set by 
Equations 3.2 and 3.3, and except when t he correlation coefficient is 
small (in which case any predictor will have wide confidence limits), 
the result is not very sensitive to the choice of A. 

This is illustrated in Fi gure 3.1, which shows (in non-dimensional 
units) the estimates produced by Equation 3.1 for a range of values 
of A and several values of the correlation coefficient. It is clear 
that the major part of the variation of g occurs over a range of 
values of A within about a factor of ten either way of the value 
A= (Syy/Sxx)• Thus, even an approximate estimate of A may be 
sufficient to lead to an acceptably precise estimate of g. 

Equation 3.1 of course provides only a point estimate of the 
gradient. Some information on the confidence region of an estimate 
is also needed. The theory for this case is not yet fully worked 
out, so far as we know, but work is in progress, and some preliminary 
results are available. It is believed that the method of mapping of 
the likelihood function used by Harding can be generalised to the 
case A Jo, and this would provide a thorough and practically 
useful presentation of the information (it should be possible to con­
struct plots similar to that of Figure 3.1 for any data set). Work 
along these lines is in progress (E F Harding, pars.comm.) (see also 
Section 3.3). 

Meanwhile, the results of Lindley andEl-Sayad (1968) suggest that 
the distribution of g is approximately log-normal, with a 
logarithmic standard deviation (approximately a coefficient of 
variation) given by: 
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( 2 2 ) ½ 
((1 - r )/n r ) ...................... 

Con£idence limits have also been estimated by Creasy (1956) (see 
also Davies and Goldsmith, 1976) but involve more complicated cal­
culations. Since in the near future likelihood mapping should provide 
a better solution, the Working Group suggests that substitution of 
Equation 3.4 in standard formula for the standard error of a 
prediction should provide an adequate interim estimate for estimation 
of the confidence region. 

It should be noted that the results given above all generalise 
immediately to allow for 

(a) heteroscedasticity (but not non-normality), by calculating 
weighted sums of products with weights given by the inverse 
variances for each data point; 

(b) forcing the regression through the origin by computing 
the sums of products of deviatiorsfrom the origin, rather 
than the mean. 

It is also of interest that the result from Equation 3.1 conforms 
with two of the practical criteria set out by Ricker (1975), and 
recently re-stated by ·sohnute (1984), namely, that it is invariant 
under the exchange of x and y (it is of course necessary to use the 
reciprocal of the dimensional quantity A, and the result is the 
reciprocal of the original estimate as required), and also invariant 
under a change of scale or units (provided of course that the con­
sequential change to A is also made). 

The properties of the predictor obtained by using Equation 3.1 as 
an estimate of the slope are not well known, but almost certainly 
intermediate between those of the classical predictor and calibration 
methods. The likelihood surface will provide adequate information 
in due course, and estimates of bias and variance would not be par­
ticularly useful unless one knew the loss function for the problem 
(especially since the variance may not be well defined, and the 
distribution not normal). Thus, such a predictor cannot be regarded 
as optimal for any known problem, but it may be adequate for many. 

Likelihood Methods and Confidence Limits 

A working paper in four sections by E F Harding "Considerations con­
cerning linear regression" was made available to the Working Group. 
The final version of this will be published in due course. Mean­
while a brief summary of the contents is given here. 

The first two sections dealt with the "Calibration problem": two 
variables, X and Y, are connected by a linear relationship. Y is 
observed with great accuracy, but X with substantial measurement 
errors. Given a new observation of X we want to predict Y. This 
is different from ordinary linear regression, where the errors are 
associated with the dependent variable. A solution to this problem 
is presented in Harding's second seotion with numerical examples of 
its application. This solution is appropriate in cases where the 
observations of the quantity which we want to predict are much more 
accurate than the observations used f or the prediction. An· 
example of the use of this method of likelihood mapping is given 
below (Section 3.4). 
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The third paper is concerned with "Prediction and shrinkage", and 
contains, among other things, comments on a paper on the subject by 
Copas (1983). Generally, the most straightforward predictor of the 
dependent variable where a linear regression relationship exists is not 
the "best". What the 11best 11 predictor is depends on the purpose for 
which the predictor is needed. A formal solution of this can be 
obtained by specifying a loss function. Commonly, little effort is 
spent on this, and a sensible criterion in many cases is the 
prediction mean square error,~ (Y - Y) 2 , where Y is the variable 
which we want to predict, ~nd Y is the predictor. This predicor is 
usually biassed, i.e., E (Y - 1') ,fi O. The bias, however, will not be 
large compared with the magnitude of the prediction errors. Unbiassed 
predictors usually have larger variances than the minimum MSE predictor. 
In the absence of detailed information about the loss associated with 
prediction errors, the mean square error criterion strikes a sensible 
balance between bias and variance. 

The fourth paper presents a general discussion of the problem of pre­
dicting Y given an observation of X, when both X and Y are random 
variables. For this purpose a likelihood function approach is adopted, 
and information about accuracy could be presented by graphs of the 
partial likelihood function. Various complications which are likely 
to arise in practice and can be treated objectively· are discussed. 
These include non-linearity, non-normality, and the case where variances 
are not constant. Some of these problems can be analysed by use of 
statistical packages (such as GLIM), and some suggestions about this 
are provided. The paper concludes with a section on post-fit 
diagnostics where advice is given on the examination of residuals and 
treatment of outliers. 

The Working Group considers the analysis of E F Harding of this 
important class of problems of great value and hopes that this fruitful 
contact between fisheries research scientists and academic research in 
statistical methodology will be maintained. 

3.3 Future Work 

G Gudmundsson described first attempts at the Department of Applied 
Mathematics at the University of Iceland to estimate a model of two 
random variables such as indices from 0-group surveys and recruitment 
assessment on the following lines: 

Use the transformations suggested by Box and Cox (1964) to transform 
both variables to approximately normal diei;ributions. Assume that the 
transformed variables constitute a bivariable normal distribution. 
Attempts to estimate the necessary parameters by maximum likelihood 
methods were unsuccessful; the model is too general for the small 
number of observations available. 

Using a more restricted model (such as that for the functional 
regression problem),it should be possible to extend the method 
used by Harding to the more general problems, and thus compute con­
fidence regions for the solutions to a wide range of problems. 

The Department of .A:pplied Mathematics is prepared to continue this work 
in collaboration with the Marine Research Institute, taking into 
account the suggestions of Harding's working paper. The plan is to 
work :bhrough a couple of actual examples and make programs developed 
for this purpose available to the members of the Working Group. 
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3.4 Results of Worked Numerical Examples 

The above formulae (3.1 to . 3.3) were· used to evaluate the relationship 
between 0-group indices and VPA recruitment values. Data were taken from 
Working Paper No.8, Figures 7 and 8. The data are given in Table 3.4.1, 
and the correlation coefficient is 0.87. 

In the first data set, the ~-variable corresponds to USA spring survey 
catch per tow at age 2 of mackerel, and the 11-variable gives the stock 
size at the same age determined from cohort analysis. Visual inspection 
shows that a power curve fits the data better than a linear curve. So 
actually, the model used is of the type: 

11 = (X ~~ 

Now A corresponds to the ratio of the variances of the log-transformed 
variables. Therefore scaling of the variables is irrelevant. The following 
estimates of the power~ and the factor a were obtained: 

The ratio A 
VPA values, 
Presumably, 
VPA values. 

A Power Factor 

0 0.42 740 
0.1 0.35 840 
1.0 0.30 930 

10.0 0.29 945 
00 0.28 950 

= 0, as said before, corresponds to assuming no error in the 
whereas for A= oo we assume the survey indices to be exact. 
the variation in the survey index is larger than that in the 
Hence A= 0.1 seems closer to reality than A= 10. 

The second experiment relates USA autumn survey catch per tow at age 0 
for Gulf of Maine silver hake ( ~-variable) with year class size at age 
1 from VPA (11-variable). Following the study quoted, a linear relationship 
was assumed, and scaling matters. So, in the following table A is 
replaced by 

).* = ). • ( ~ )2 

y 

In this example, the calculated values are: 

A* Slope Interce;et 

0 33 55 
0.1 30 64 
1.0 25 85 

10.0 23 92 
00 22 94 

* Again, A= 0.1 might be closest to reality. 

Due to computational limitations, no standard deviations or test-indicators 
were evaluated. 

The original model 

11=a+~( 

was assumed to have no (structural) error, which may be unrealistic for 
some applications. If there is such an error, the problem is changed, and 
other methods of solution might be required, although Pope and Shanks 
(1982) suggest that the solution to the problem of bivariate structural 
relationship is the same as that given above. 
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The results of the calculations on the Northwest Atlantic mackerel 
stock given above are illustrated in Figure 3.4.1, together with 
the contours of equal likelihood for the calibration problem computed 
using a program supplied by E F Harding. It is clear that the likelihood 
contours are centred on the result for A= O, as they should, and that 
within the range of the observed data, all three lines shown fall within 
the range for a likelihood ratio greater than o.s. This corresponds 
approximately to the 50% confidence region, so it is clear that 
predictions from any of these lines would not differ significantly, even 
at the 50% level. 

General Advice and Recommendations 

Since there exist a number of approaches for fitting a straight line to 
observations, the Working Group suggested the following practical 
guidelines, which can be applied to any model: 

1. Plot the observations 

A scattergram of the observations provides an indication of the 
degree of linearity of the data and of the distribution of 
variability. Carefully examine the extreme observations (apply 
the 'thumb' technique) as these will be 'influential' in the 
estimation of the model; determine which sub-set of the obser­
vations are to be utilised. If this inspection leads to the 
rejection of some observations, apply the same •rejection criteria' 
to all observations remaining in the sub-set. If data look 
useless, do not proceed further (e.g., the presence of a single 
extreme point which is known (expected) to be erroneous would 
be influential and may lead to spurious results). 

2. Transformations 

Homoscedasticity is a desirable property: the methods discussed 
here/above assume homoscedasticity. If the scattergram shows 
evidence of heteroscedasticity, then consider transforming them 
so as to make the distribution of observations homoscedastic. 
The log-log transformation often provides satisfactory results 
and stablises the variance of measurement errors. However, a 
trans:formation may destroy other desirable features. An alter­
native is to calculate weighted sums of products, using weights 
proportional to the reciprocal of the estimated variance of the 
data points. 

3. Choice of the model 

A number of candidates may exist, at least theoretically, e.g., 
straight lines (possibly forced throu~h the origin), curvilinear 
models (power laws, polynomials, etc.), multiple regression, etc. 
If a linear model seems .desirable, identify which type of 
regression line is required (predictive regression, calibration, 
or functional regression). If a functional regression ie chosen, 
the ratio of error variances A should be estimated from what­
ever knowledge is available on the nature and source of the data. 

It should be noted that the geometric mean functional regression 
is a maximum likelihood solution only when A is known to be 
Sy/Sxx - which is not likely to be very often. However, A is in 



- 21 -

general a dimensional quantity, so that it is wrong to assume 
A= l unless both x and y are similar quantities, having 
similar errors, measured in similar units. If no information is 
available, the choice A= S y/Sxx may be the best last resort of 
the desperate, since it at least uses a natural scaling and leads 
to a central estimate. Such a last resort should,however, be 
avoided if at all possible, and no further justification can be 
given for it than expedience. It is of course a •central• estimate, 
and therefore unlikely to be far wrong. 

4. Acceptability of the model 

In practice, acceptability may be defined in terms of "plausibility" 
of the model and in terms of statistical significance (do the data 
support the model?). For example, a negative slope may not 
correspond to a "plausible" model and thus could be rejected even 
if statistically significant. "Statistical" acceptability is 
cast in terms of deviations from underlying assumptions (e.g., 
regarding the error structure) and in terms of precision of the 
estiltlates. For instance , we should always: -

- examine the significance of the regression coefficients; in 
defining the model, prefer parsimony (for example, if intercept 
is not significant, use a regression through origin); use 
non-significant coefficients with caution; 

inspect the distribution of the residuals (histogram); test 
for normality of the residuals, including skewness and 
kurtosis, if there is a sufficient number of observations 
(Cox and Hinkley, 1974); identify outliers; 

test for lack-of-fit (Draper and Smith, 1966) or systematic 
trends in the residuals; such test may suggest that another 
form of the model would be more appropriate; 

calculate the confidence intervals of the predictions. 

5. Extrapolation 

Results and predictions from regressions are supported by data 
(evidence) only within the range covered by the data observed. 
Extrapolation outside this range may be valid if the model chosen 
i s correct. Such an extrapolation, however, is based l argely on 
faith in the model, and statistical methods can provide no justi­
fication for it. 

6. Retransformation 

Note tliat when a transformation has been applied, a correction will 
normally be required if unbiassed estimates of the original quan­
tities are required (this is well-known for the logarithmic trans­
formation, see e.g., Granger and Newbold (1977))~ . This will not 
usually be necessary unless an unbiassed predictor is required. 
No correction ·is required for quantiles (such as the median). 

FORECASTING OF RECRUITMENT 

Background 

Recruitment forecasting represents a key element in stock assessment 
and prediction. In analytical stock assessments, recruitment estimates 
are combined with retrospective (e.g., VPA) analyses to derive starting 
conditions for predicting the impacts of various management options 
for the forthcoming fishing season. If a significant proportion of 
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a species is likely to be composed of new recruits (e.g., North Sea cod), 
accurate predictions of recruitment strength are critical to the develop­
ment of proper management measures. 

The consequences resulting from overestimating recruitment would be 
excessive fishing mortality rates. The consequences of underestimating 
recruitment would be less serious, since in practice the management 
option could essentially self-correct in year N + 1 by increasing the 
fishing rate, once the true character of the year class recruiting in 
year N has been verified. The consequences of "bad" recruitment fore­
casts (either low or high) could in theory be modelled by a "loss 
function" (penalty function) incorporating the potential trade-offs due 
to yield per recruit considerations, the dependence of fishing mortality 
rate on the difference between projected and actual recruitment, and 
socio-economics (e.g., are recruits proportionally more valuable if 
harvested in year N + 1 than in year N?). However, this is difficult 
to do and is rarely feasible in practice. 

In general, recruitment forecasts for assessment purposes are made in 
one of two circumstances: 

(a) 

(b) 

when reliable field sampling data are not available (i.e., 
for correlation type estimates), 

when field sampling (particularly young fish surveys)~ 
available. 

In the former circumstance, various methods that have been or could be 
used to generate working estimate include (amongst others): 

(1) 

(2) 

(3) 

(4) 

( 5) 

use of the previous year's recruitment value from VPA (analogy 
to 1 the best forecast of tomorrow's weather is today 1 s 1 ), 

geometric mean or some quantile of the recruitment series, 

mean of the last N years recruitment data, 

use of spawner/recruit relationships, 

Delphi (group consensus) methods by those responsible for 
recruitment forecasts. 

When field sampling data are available, recruitment forecasts have 
generally been based on results of young fish surveys (0-group, 1-group) 
correlated with VPA, appropriately time-lagged. Results of egg- and 
larval surveys have generally been of little use for recruitment pre­
diction probably due to the substantial variability in survival rate 
between these surveys and the recruitment age, and the high measurement 
errors sometimes associated with these surveys. 

The Working Group considered various methods for recruitment prediction, 
both from correlation type analyses and based on various assumptions 
based on previous recruitment patterns. Statistical models and potential 
errors associated with regression analyses of suxvey/vPA were also 
evaluated (see also Section 3.4). 

4.2 The Use of Quantiles 

When little information on an incoming year class is available, 
prediction may be based on the properties of the series of estimates 
in previous years. Predictions ba sed on quantiles can be justified. 
on the basis of the expected frequency with which the prediction will be 
too high or too low (e.g., using the median, or 50th percentile, as a 
prediction should overestimate recruitment as often as it underestimates 
it). 
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Some additional insight into the use of the median, and into the dangers 
of using the expected value, follows from the typically log-normal 
distribution of recruitment series (Hennemuth tl &, 1980; Garrod, 1983). 
For the log-normal distribution, the median is equal to the geometric 
mean, which is given approximately by 

2 
a 

GM(x) = x - -2-~-- ........ . 
(This relationship also gives an approximation to the geometric-arithmetic 
mean relationship in any distribution.) 

Thus, the median of a log-normal distribution is lower than the mean by an 
amount which is proportional to the variance and inversely proportional 
to the mean. Using the arithmetic mean as a prediction of recruitment 
lends excess weight to rare large values; it will overestimate recruitment 
most of the time. This danger is greatest for stocks with a high 
variance in recruitment. 

In some cases a more conservative prediction (i.e., a lower quantile) may 
be appr opriate: if it appears that recruitment is likely to be lower 
than usual (see Section 4.8 . l), or if one is especially concerned to 
avoid overestimation of recruitment. From Equation (4.2.1) it is apparent 
that a lower quantile, corresponding to a figure even further below the 
arithmetic mean than is the median, can be thought of as arising from a 
formula like (4.2.1) but with extra weight assigned to the variance term. 
This is typical of decisions made under uncertainty (Keeney and Raiffa, 
1976), in which the loss functions involve the expected outcome discounted 
by the variance in that outcome. A Working Group attempting to decide on 
a quantile for the prediction of recruitment might wish to consider the 
mean-variance trade-off explicitly. 

4.3 The Use of Stock/Recruitment Relationships 

Stock/recruitment relationships can in principle be used for forecasting 
recrui tment , but the variability of the data i s usually too great to 
produce use f ul estimat es of recruitment (Cushing , 1973). However, in 
a stock f or which some form of a stock/recr ui t ment relationship has been 
demonstrated (or is suspected), it could be used not only to make a 
prediction, but also to obtain a suggestion of which quantile (see 
Section 4.2) should be used. This is effectively a semi-quantitative 
method (see Section 4.8), which might be particularly useful, if the stock 
is low and there are reasons to suspect that a recruitment failure is 
possible. Such a procedure would motivate the use of lower quantiles 
rather than the median for the recruitment forecast. 

One way i n whi ch even rather variable stock-recruitment data can be used 
to obtain working estimates has been suggested by Getz and Swartzman (1981) 
and Swartzman~ a l. (1983). The idea. is basically to divide the observed 
stock sizes and the corresponding recruitment into intervals of stock 
sizes. The number of intervals is dependent on the nature of the stock­
recruitment data and their grouping in the stock recruit plane. Each 
interval corresponds to different levels of recruitment with a given 
probability. 

The probabilities can be regarded as elements, which represent a Markov­
type stock-recruitment transition matrix (Getz and Sw.artzman, 1981). 
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The Use of Survey Indices 

Pre-recruit survey indices generally provide the most useful method 
for forecasting recruitment - indeed, this is usually the only 
technique providing useful forecasting ability. (Commercial cpue of 
young fish is regarded as survey data for present purposes.) 

Pre-recruit indices are usually rather imprecise, with large, often 
highly skewed sampling variability, of approximately log-normal form, 
and a coefficient of variation rarely less than 30%. 

Estimates of past recruitment from VPA are usually relatively precise, 
but since they are essentially just the sum of several years• catch-at­
age data for a cohort, they are clearly not entirely free of sampling 
error. VPA estimates are probably biassed, because of incorrect 
assumptions about natural mortality on the younger ages, and perhaps 
also if catches are under-reported and discarding is substantial, but 
this should not be particularly serious, since such biasses will be 
reversed when the recruitment estimates are fed into a catch forecast, 
provided this is done consistently. 

It is often noted that extreme high and low values of survey indices 
are not followed by equally extreme values of recruitment when these 
are subsequently determined. This would be a natural consequence of 
high variability in the survey index, but there are also biological 
and practical reasons to suspect that such an effect could also be 
systematic. Among these are the possibility of density-dependent mor­
tality subsequent to the determination of the index, changes of 
vulnerability and/or distribution of the young fish at different levels 
of abundance. It is, therefore, quite plausible that a non-linear 
model may be required to adequately describe the relationship (a power 
law is an obvious candidate), although the most plausible null 
hypothesis probably remains strict proportionality (i.e., a linear 
relationship through the origin, corresponding to a power law with an 
exponent of one). 

Since recruitment also tends to be log-normally distributed, one has 
the happy situation where a logarithmic transformation of both 
variables is likely to lead to several desirable properties at once, 
namely approximate normality and homoscedasticity of the variability 
(including errors), normality of the distribution of the observations, 
and a plausible linear relationship. In most cases this should 
normally be a satisfactory treatment of the data. If the slope (power) 
determined is not significantly different to one, however, the use of 
the simpler model with the power forced to be one is probably 
preferable. This implies a straight line through the origin for the 
untransformed data, having a slope given by the geometric mean ratio 
y/x in the data. 

If VPA results can be considered as good estimates of recruitment in 
the sense that the error they introduce is limited compared to that 
associated with research survey indices, estimating a forthcoming 
recruitment from a survey index can be identified as a calibration problem 
as described by Harding (Work.pap.No.o/).This would imply the use of 
the regression line of survey index on VPA recruitment using maximum 
likelihood estimators. The main advantage of such an approach is 
related to the construction of confidence intervals, which can even 
be considered to apply if other estimators than the maximum likelihood 
estimators are finally chosen to get the point estimation. 

Maximum likelihood estimator (M.L.E) is in fact far from being the 
only conceivable estimator. Whatever estimator is used, its statistical 
properties and the practical implications in terms of management 
decisions must be known. From this second point of view it is 
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especially relevant to note that the different regression lines lead to 
more or less optimistic estimates of recruitment. If risk-adverse 
management strategies are to be preferred(which is not a general recommen­
dation), it would be appropriate to choose between the considered 
estimators the more pessimistic one. In general, this would imply using 
different estimators when recruitment is above or below the average. 

From a statistical point of view it must be recalled that M.L.E. are not 
generally unbiassed. It must also be remembered that they do not take 
into account the~ priori likelihood of the different possible levels 
of recruitment, as described by the observed (and usually skewed) distri­
bution of past recruitments. Paying attention to this distribution 
would give an argument to use the regression line of VPA recruitment on 
survey indices. This line would give recruitment indices systematically 
closer to the observed mean recruitments, being more pessimistic for large 
recruitments and more optimistic for poor ones than the previous 
regression line, derived from the calibration problem. It could, there­
fore, exacerbate the problems of managing a stock where recruitment is 
in decline, and for this reason would probably not be a generally 
acceptable procedure. When the likely errors in the VPA recruitment are 
not negligible, the problem is not the pure calibration case, and the 
theory is not well-established. Bearing in mind the results reported in 
Section 3.4, however, it seems likely that the differences between 
alternative estimators will be small compared with their confidence inter­
vals. The functional regression (with A specified) seems the most 
plausible, and provides a sensible central estimate. 

Pre-recruit index data can be badly affected by changes in survey 
strategy (or fishing pattern, if commercial data are used). Data free of 
such problems should be used if possible. It must be stressed that even 
the most careful statistical treatment cannot compensate for bad data. 
The confidence intervals of any prediction made should be carefully 
assessed, and if very wide would indicate using a robust estimate, 
abandoning the attempt at prediction, or using the result simply_ as an 
indication for a semi-quantitative method (see Section 4.8). 

Some technical points concerning the construction and precision of survey 
indices in general (see Section 4.7) are of course relevant to this 
problem. 

It could be tempting to try to improve the predictive power of this 
method by including explanatory variables (such as temperature, salinity, 
oxygen content, etc.) along with the survey index in a multiple 
regression analysis. This should be done with great caution and only when 
the use of environmental variables is justified by a causative model. 
When predictions are made, the relative importance of the survey vs 
the environmental variables should be assessed. If the environmental 
factors are dominant the prediction should be used with great care, 
since such relationships often break down at unpredictable intervals. 
This is discussed in Section·4•5 below. 

4.5 The Use of Other Explanatory Variables 

Striking coincidences are often noted between outstandingly good or 
poor year classes and environmental conditions. In the absence of 
suitable survey indices, it may, therefore, be tempting to attempt to 
use environmental data as a basis for prediction. 

This usually involves the use of a multiple linear regression model. 
Considerable care is needed in such analyses because many such attempts 
have explained past data quite well, but failed to give useful predictions. 
There are many possible reasons for this. The relationship may not 
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be linear (there may be an optimum temperature, for example), or the 
biological effects of environmental factors may be different under 
different conditions (e.g., different stock sizes). Since there are 
usually many possibl~ explanatory variables to choose from, the model 
may have insufficient degrees of freedom if too many are included 
(in this case the considerations discussed by Copas become 
relevant). 

In general, therefore, the application of multiple regression techniques 
to what are usually short and noisy time series must be regarded with 
considerable scepticism, particularly since the explanatory value of 
such models is usually quite low, and their predictive value even 
leas. In favourable circumstances, however, they may be of use, and 
might be a useful input to the semi-quantitative methods discussed 
in Section 4.8. 

The Use of Time-Series Analysis Methods for Recruitment Forecasting 

Comments on the application of time-series analysis models, given in 
Section 2.5, are generally applicable to the case of recruitment fore­
casting. In particular, the utility of multivariate (transfer 
function) models to predict recruitment levels from young fish surveys 
appears low due to the short time series generally available and the 
high level of variability. Alternatively, the use of univariate 
time-series models, combined with certain intervention terms (known 
as shocks to the time series) appears promising, particularly where 
the VPA time series is greater than about 25 years. Recent preliminary 
application of the technique to the Georges Bank (USA) haddock stock 
(time series 40+ years long) has shown promise, particularly when 
intervention terms have been used to account for changing fishing 
patterns over the time period (initial equilibrium, followed by an 
extremely large year class, and subsequent recruitment overfishing). 

Further work on application of these techniques to the recruitment 
estimation problem is warranted, particularly where recruitment time 
series are relatively long. 

4,7 The Construction of Survey Indices 

The general level of within stratum variance of logarithmic trans­
formed catch data found within groundfish survey results appears to 
favour a logarithmic raising approach as advocated in Pennington 
(1983), It was, however, reported that recent studies at Lowestoft 
(Hunton, 1984) suggest that where hauls have been repeated at the 
same positions over time (and only in this case) much of the 
within-strata varia.tion (about½) can be ascribed to systematic 
station effects. This serves to reduce the log variance and thus makes 
the argument for raising, using re-transformed log means, somewhat 
less compelling. In some tests there seemed little to choose 
between the logarithmic and linear raising of catches. 

If station effects are systematic, the multiplicative models provide 
an alternative method for estimatio·n of the time (year) effects. 
However, these are sensitive to changes of distribution whilst linear 
raising is not. 

These results suggest that when station positions are fixed, the 
statistical properties of linear raising estimates (efficiency, etc.) 
may be less poor than previously thought, and the method has the 
considerable virtue of simplicity. 
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The Use of Semi-Quantitative Methods 

Combination methods 

Quantitative data may often be available from field sampling programmes, 
but the data may be considered unreliable for the purposes of making 
recruitment projections directly. Such data sets may include egg-, 
larval- or 0-group surveys, where sampling variability is quite high, 
or survival rate between the field observations and recruitment to the 
fishery is highly variable (i.e., the strength of the incoming year class 
may not yet be determined). In such cases, it may be advisable to 
combine these 1 anedoctal 1 observations of the potential recruitment 
strength with the quantile approach. For example, an 0-group survey 
index may not be useful for recruitment projections, but the index 
itself may be designated as 1 lowt, •medium• or 'high 1 , based on some 
objective or subjective criteria. Recruitment projections could be 
based on an association between the category designated from the sampling 
data, and the quantile distribution of the recruitment time series: 

0-Group Index 
1 Low 1 

1 Medium 1 

1High 1 

Recruitment Estimate 

Lower quartile 

Median 

Upper quartile 

This procedure allows the use of some observational data that may 
be evidence for relative recruitment strength, but which is unreliable 
for forecasting directly. 

Decision analysis technique 

Various operation research techniques have been developed to support 
the decision-making process given uncertain, imperfect, or non­
quantifiable data (Moder and Elmaghraby, 1978). In particular, the 
Delphi technique (Zuboy, 1981) has been employed to arrive at group 
consensus regarding the level of some quantitative (but unknown) 
variable or to prioritise alternative actions. The Delphi technique 
was developed during World War II (as was much of the field of ope­
rations research) as a tool for such decision analysis problems. The 
process of achieving group consensus based on Delphi follows a formal 
structure involving initial anonymous estimates by the various 1 experts 1 

assembled. Those giving extreme values about the median are asked to 
support their positions (usually by written comment), followed by 
another round of balloting. The process may continue until some 
stopping criterion has been reached. Such a formal procedure may not 
be practical for the Working Group environment of ~cES (e.g., to estimate 
recruitment level, given unreliable or non-existant sampling data). 
Nevertheless, a form of the Delphi procedure does in fact operate in 
order to arrive at a reasonable and appropriate recruitment level. The 
use of more systematic methods for this application may be helpful 
with regard to documenting the process by which a group consensus was 
reached. 

OTHER TOPICS 

Separable VPA 

New version of separable VPA 

A new version of the separable VPA method has been produced at the 
Fisheries Laboratory, Lowestoft, and is described by Stevens (1984). 
This permits the user to apply weighting factors (which may either be 
specified or determined automatically) to the residuals for each pair of 
age groups, and also to apply specified weights to the residuals for 
each pair of years. 
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This removes the need to eliminate data for poorly sampled age 
groups or years from the data set, allows for appropriate account 
to be taken of relatively precise and noisy data, and removes the 
need for the ad hoc extension procedures used previously. 

The new method is, therefore, somewhat more versatile and easier 
to apply than the previous version, and gives very similar results 
on equivalent problems. 

Statistical tests of collllllon restrictions in fish stock assessment 

A working paper was presented on the subject by Gudmundsson (19'84). 
The main contention of the paper is that fish stock assessment 
should aim to comply with good statistical practice, which is 
is widely accepted in other fields of research. A succinct and 
authoritative description of such methodology is given in the 
introduction to 1Theoretical Statistics• by Cox and Hinkley (1974). 
Commonly applied restrictions and simplifications can to some 
extent be tested by comparison with estimates based on more general 
specifications. This includes the assumption of separable age 
and year effects, no variation with age above full recruitment, 
proportionality with a given index of fishing effort and no 
immigration. In least squares estimation it is necessary to avoid 
that most of the residual variance is confined to a particular 
age, year or year class. Serial correlation may indicate that a 
model is mis-specified. 

Numerical examples of the application of some specification tests 
and residual diagnostics are presented with data on cod, haddock 
and whiting from the North Sea and cod from the Northeast Arctic 
and Iceland. The hypothesis that residuals are normally distributed 
tends to be rejected by Kurtosis tests, when models are fitted to 
logarithms of catch ratios. This is avoided by using untrans­
formed observations, weighted according to age and year class. The 
hypothesis of separability was accepted for some stocks and 
rejected for others. The hypothesis of constant fishing mortality 
from the age of full recruitment is accepted, but the hypothesis 
of proportionality with a given effort index is rejected in all 
cases which were investigated. 

It may happen that an assumption in a model (a hypothesis) can be 
rejected on grounds of statistical significance, but its 
inadequacy may nevertheless be of little practical significance. 
A penetrating and useful discussion of this question is given 
by Cox (1977f. 

5.2 Analysis of Catch-at-Age and Groundfish Survey CPUE Data 
A method for the joint analysis of catch at age and cpue or 
groundfish survey indices was presented by Pope and Shephe:rid (1984). 
This is based on a plausible model which does not depend on VPA, and 
is a development of the method of Collie and Sissenwine (1982). 
Such methods are closely relat~d to the •Survivors• method of 
Doubleday (1981) and Rivard ( 1980), and utilise the same data. 

Preliminary results are promising, but validity of the assumptions 
made by the method has not yet been subjected to statistical tests. 
Comparative analysis of the same data using the •Survivors' method 
suggests that this may give more stable results, and a description 
of the most recent version of this method would be useful. 

The method described by Pope and Shepherd (1984) does not assume 
separability of the fishing mortality pattern, although the work 
reported by Gudmundsson (above) and by the Working Group last 
year (Anon.,1984a)suggests that this may often be acceptable • . 
Such an additional assumption would be likely to stabilise the 
results of such methods appreciably. 
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The Calculation of Biological Refer ence Points 

General 

The Working Group confirmed its previous conclusion that long-term 
goals for fishery management cannot be deduced from Y/R analyses alone, 
sime such goals involve social and economic factors in addition to 
purely biological considerations. Furthermore, the Y/R analysis 
takes no account of the possibility of stock collapse under high fishing 
mortality. 

Analysis of yield and biomass per recruit may, however, be used to 
determine •biological reference points•, which may assist in understanding 
the consequences of various management strategies, since they may serve 
as navigational markers or signposts. Among these are Fmax and Fo.1, 
and also the quantities F1 , F d and Fh. h introduced in 1983 (Anon., 
1984a). ow me ig 

Purpose of F1 , F d and Fh. h ow me ig 

These new biological reference points were introduced because fishing 
at various intensities not only causes variations of Y/R, but also of 
biomass per recruit. Indeed, increased fishing mortality invariably 
causes a monotonic decrease of biomass per recruit. 

To persist at any level of fishing mortality, a stock must on average 
produce recruitment per unit biomass equal to the reciprocal of the 
biomass per recruit at that level of F. 

Examination of stock and recruitment data, as described in Section 5.3 
of Anon., 1984a{Pt II), enables levels of recruitment per unit biomass, 
which have been often, regularly, or rarely exceeded by a stock, to be 
determined. The corresponding levels of fishing mortality are designated 
F1 0 w, Fmed and Fhigh• The meaning of these quantities is, therefore, 
that: 

(i) At levels of F below F1ow there is plenty of evidence that 
the stock can produce sufficient recruitment per unit 
biomass to sustain itself. 

(ii) At levels of Fin the vicinity of Fmed the evidence that 
the stock can produce sufficient recruitment per unit 
biomass to sustain itself is equivocal. 

(iii) At levels of F above Fhigh there is little evidence that 
the stock can produce sufficient recruitment per unit 
biomass to sustain itself. 

Levels of F above Fhigh, therefore, correspond to unknown territory 
in which the prudent would venture with great caution. With luck, of 
course, it may turn out that the stock is capable of producing higher 
recruitment per unit biomass than anything observed before. There is, 
however, no guarantee that this will be so. 

Thus, the quantity of Fhigh is not an estimate of a fishing mortality 
at which a stock will collapse. It is, however, an estimate of a 
level of F above which the risk of collapse should be taken seriously. 

Finally, it must be remembered that recruitment may well be affected 
systematically by environmental and ecological factors (including 
multispecies interactions). Thus, maintaining F below Fhigh or Fmed 
provides no guarantee of persistence. It does, however, mean 
that a collapse could not reasonably be attributed to mis-management 
(overf i shing) - whereas if Fis allowe d to rise above Fhigh t here would 
be a prima facie case that overfishi ng was at least a contri buting 
factor. 
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Use of F1 0 w, Fmed and Fhigh 

The Working Group received a verbal account of a comment t}:lat "the North 
Sea herring stock had collapsed whilst remaining between the limits set 
by Flow and ~igh"• This comment is difficult to understand, because 
the analysis presented in Anon. 1984a(Pt II, Section 5.3 and Figu.re 
5.3.4) indicates that Fhigh is about 0.86, and the fishing mortality on 
this stock exceeded that level for 8 out of the 9 years between 1967 
and 1975 (ICES, Doc. C.M.1983/Assess:9). 

The data points for stock and recruitment naturally and inevitably 
fall mostly between the lines drawn to correspond to Fhig11-and F1ow 
(Anon., 1984a,Pt II, Figure 5.3.4.B), simply because that is the way 
the lines ~re determined in the first place. Thia, therefore, constitutes 
no test of the method. The purpose is to determine levels· of fishing 
mortality which relate approximately to different levels of risk, and 
the transfer from estimates of biomass and recruitment to estimates of 
fishing mortality (via biomass per recruit) is an essential part of the 
process. It may therefore be that the comment reported above is due 
to a misunderstanding of the way in which the method is intended to be 
applied. 

The use of Fo.1 

The Working Group was informed that its recommendations concerning the 
the use of F0 •1 had been found to a little ambiguous, and would benefit 
from clarification. The Working Group, therefore, emphasises that: 

(a) 

(b) 

(c) 

Fo,..1 is a measure of fishing mortality at which "high 
yields may ~robably be taken without unnecessary expenditure 
of effort" lAnon., 19B4a,Pt II, Section 5.4). It~ derivation 
has nothing to do with stock collapse, and there is no reason 
to assume that exploitation at or below F0 •1 will safeguard 
against a collapse of a stock. 

As stated in the Editor's Note on p.88 of Anon. 1984a in 
the statement that "if Fo 1 is to be adopted at all as a 
biological reference point, it should be used always and not 
only when Fmax does not exist", the word "always" is intended 
to mean regularly, for stocks for which it is considered to 
be a suitable reference point - not for all stocks. The 
recommendation is intended to discourage switching from Fo.1 
to Fmax, simply because this causes confusion, and perhaps 
unnecessary variability in the scientific advice about the 
consequences of various management measures. 

The (relatively) favourable comments about Fo.l made in 
Anon. 1984afPt II) refer only to its use as an alternative 
to Fmax and'should not be constructed as advocating the use 
of Fo.1 as the principal biological reference point, or as 
endorsing the use of biological reference points as targets 
for management. 

At low values of F the yield per recruit curve is sensitive to the 
value of natural mortality assumed. The position of Fo.l and Fmax on 
the curve, therefore, might in some cases depend to a great extent on 
the choice of M by the Working Group. In those cases, and when there 
is no or little biological justification for the chosen value of M, 
biological reference points such as Fo.1 and Fmax should be considered 
with great caution. 

The Working Group therefore examined the sensitivity of Fmax and Fo.l 
to the choice of M, for two standard data sets used by North Sea 
Assessment Working Groups. The resul t s are given in the text table below. 
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SOLE North Sea x Input from 1983 report 

M FO.l F 
~ 

.05 .205 .362 

.10 .310 .573 

.15 .395 .921 

.20 -493 not found 

.30 .722 not found 

COD North Sea * Input from pred.table 
1983 report 

M FO.l F 
max 

.10 .107 .168 

.15 .137 .210 

.20 .164 .252 

.30 .220 .344 

.50 -354 .632 

.70 .542 not found 

These results are plotted in Figure 5.3.3. It is notable that both Fo.1 
and Fmax ar~ more sensitive to M than M itself and that Fo,1 is (as would 
be expected) less sensitive to variations of M than is Fmax• 
The use of Mas a biological reference point 

There has been some discussion in connection with the management of the 
Western mackerel stock about the relative merits of using Fa.I or M 
as a target £.'or management. The Working Group draws attention to the 
statement in Section 5.3.4 (c) above. The discussion has, however, 
implicitly related to the possibility of collapse through stock and recruit­
ment failure. It has been claimed that general production models tend 
to indicate that collapse is likely when F becomes more than a few times M 
(see e.g., Shepherd, 1982) or twice Fmsy (Schaefer, 1954), but such 
conclusions are based largely on implicit treatment of the stock and 
recruitment relationship which may not bear a close examination. Seve.ral 
stocks have been exploited for many years at several times M without 
collapsing, and the critical level of fishing mortality clearly depends 
on several aspects of the life history and the nature of the fishery. 

The only biological reference points designed to relate directly to the 
probability of recruitment failure known to the Working Group are the 
F10 w, Fmed and Fhigh measures introduced in 1983 (Anon., 1984) and 
further discussed above. Fhigh should naturally be treated as a level 
to be avoided, rather than as a target of management. 

Recent extensions of the biomass per recruit approach 

The biological reference points of Fhigh, Flow and Fmed imply certain 
levels of spawning stock biomass per recruit relative to the virgin 
population. The objective of maintaining SSB/R as a proportion of that 
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for the unexploited population can be addressed not only by manipu­
lation of the fishing mortality rate, but also by the fishing pattern 
(age at first capture). Fig. 5,3.1 is a plot of the isopleths of the 
percentage of virgin SSB/R at various combinations of age at first 
capture and fishing mortality rates for Georges Bank haddock.Clearly, 
some fixed objective of the SSB/R level could be achieved by combined 
manipulation of the two variables.In Fig. 5.3.2 stock/recruitment 
data for the stock are plotted along with three lines relating to 
the percentage of virgin SSB/R under fishing patterns previously 
exhibited in the fishery (age at first capture of 2). The 10% level 
(relating to F = 0,9) appears excessive, sine~ virtually all points 
in the lower left-hand corner of the graph lie below the line. The 
slope of this line (R/B) is an index of survival. If most points of 
very low spawning stock are below· the line, then the chances of 
stock recovery will be lower than if a line with lower slope (higher 
survival and thus greater SSB/R) was followed. In this example, 
the 10% line appears roughly equivalent to Fhigh• Fmed is achieved 
at a level of about 25% of virgin SSB/R. 

By developing these types of analyses for a variety of species, we may 
be in the position of developing general guidelines for target SSB/R 
percentages to be maintained for stocks when no spawner-recruit data 
are available. 

CONCLUSIONS AND RECOMMENDATIONS 

Simpler Methods for Catch Forecasting 

1) Simpler methods for making catch forecasts can be constructed and, if 
chosen with care, are capable of estimating status quo catches with 
useful precision, and modest data requirements. 

2) Where catch-at-age data are available, the ANOVA method may be 
useful. Otherwise even simpler methods (e.g., SHOT, DROP, DOPE) are 
necessary, and the following conclusions relate to these. 

3) Such forecasts normally require time series of both catch data and a 
reliable index of recruitment (where new recruits are a significant 
fraction of the catch). Lack of recruitment data results in a 
serious loss of precision except for stocks subject to a low total 
mortality or relatively constant recruitment. The predictive value 
in the absence of recruitment data is likely to be low enough to make 
such methods unattractive exce~t in desperate cases (e.g., as an 
alternative to average catches). 

4) The methods presently available may all be regarded as particular 
choices of Autoregressive Moving Average (.A.RIMA) models, with the 
number and choice of terms, and the acceptable values of the 
coefficients, heavily constrained by the biological models. 

5) Of the methods tested, the SHOT method usually performs significantly 
better than even simpler methods. Slightly more complex models such 
as the DROP and DOPE methods generally perform only a little better, 
except on stocks with highly variable recruitment where the improve­
ment may be appreciable. 

6) All the methods are based on simple dynamic models for exploited 
biomass, and the forecast for status quo catch may be viewed as 
forecasts of biomass, and thus also catch rate (in stocks where cpue 
is related to stock size). 
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The incorporation of cpue or other stock size index data into the 
framework of these simpler models needs to be explored. At present, 
this can only be done at the expense of considerable elaboration, 
and with only modest success. 

The methods chosen focus on status quo catches simply because these 
can be estimated most easily and precisely. There is no implication 
that the maintenance of the status quo is desirable on biological 
grounds. The SQC estimate may be increased or decreased by any 
desired amount if the management goals indicate that such increases 
or decreases are desirable. 

The simple methods provide little information on the state of the 
stock or the adequacy of the recruitment index. They may be useful 
for short-term forecasting, when more complete data are lacking, 
but are of little use in evaluating long-term consequences of 
management, for which more complete data are required. In no 
circumstances should they be used to justify abandonment of existing 
sampling programmes. 

More research on the properties of these and similar methods is 
required before their use can be wholeheartedly endorsed. 

The consequences of successful management at or near status quo 
levels for the utility of these methods should be examined. 

Linear Regression 

Various methods for carrying out linear regression are available, and 
most of the well-known ones can be shown to be maximum likelihood 
methods under appropriate assumptions. 

The results obtained from the various methods differ appreciably 
only when the data are rather poor (i.e., the :predictive value of 
the regression is rather low anyway). 

Which of the methods is most appropriate (optimal) in a particular 
case depends on a variety of factors, notably: 

(a) the purpose of the calculation (prediction, determination 
of relationship, calibration), 

(b) the nature of the data (nature and magnitude of varia­
bility in both dependent and independent variables; 
whether or not the data were obtained by random sampling 
or in a controlled fashion), 

(c) the type of model (whether or not a finite intercept is 
~ priori plausible, whether a curvilinear model is 
required). 

The choice of an optimal model for prediction is particularly 
difficult, because it depends strongly on the precise nature 
and purpose of the prediction required (perhaps summarised by 
a loss function). 

When it is quite clear that a predictive or functional regression 
is required, the appropriate method should be used. In cases of 
doubt, a method based on fitting the relationship (functional 
regression) is unlikely to lead to serious error, and may provide 
an acceptable (though not optimal) prediction if required. 
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The confidence region of any prediction made should be assessed. 
Likelihood mapping techniques are available and programs will soon 
be available, and these provide an excellent method of doing this. 
Conventional formulae for standard errors of a prediction provide 
a simple approximate alternative. 

Appropriate treatment of the data and choice of appropriate models 
are more important than agonising over estimation procedures. All 
data should be plotted and examined for outliers. The evidence 
for and likelihood of heteroscedasticity (non-constancy of error 
variance) should be considered, and an appropriate transformation or 
weighted calculation should be carried out. The ~lausibility of 
various models (finite intercept, power law, etc.) should be con­
sidered. Residuals should be examined and tested. Where a com­
puted intercept is not significantly different from zero, and a 
zero intercept is plausible, a regression through the origin will 
probably be more robust. More specific recommendations are given 
in Section 3.5. 

Extrapolation outside the range of the data is likely to be 
erroneous unless the model is correct. If extrapolation is done, 
the result is largely based on faith in the model, and statistical 
methods provide no justification. 

If a 'conservative' prediction (deviating less from the mean than 
other methods) is required for any reason, the classical regression 
of the quantity to be predicted on the other variate may be used. 
Such a prediction may not however be 'conservative' in other senses 
(e.g., so far as the fish stock is concerned), sinoe it would for 
example be likely to overestimate recruitment when it is poor. 

Forecasting of Recruitment 

When no explanatory or predictive information is available, the 
median of past values is a more robust estimate of a typical value 
than the mean. If the data are log-normally distributed, the 
geometric mean is an approximation to the median. 

If there is any reason to suppose that recruitment may be poor, or 
if one wishes to err on the side of caution, the lower quartile 
is a reasonably robust estimate of a typical low value. 

There is no objection to forecasting recruitment from stock/recruitment 
data, but the predictive value is likely to be low. In the absence 
of other information, this procedure would be more cautious than 
using a typical value (e.g., the median) if the stock is low and 
there is any reason to suspect that recruitment failure is possible. 

The only technique for forecasting recruitment with useful 
predictive value is usually the use of pre-recruit indices (though 
there are some exceptions to this rule). The quality of such 
indices is usually better if they are based on 1- or 2-group 
fish than on 0-group fish. 
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The data on both recruitment and recruit index are likely to be 
subject to variability which is approximately log-normal. A 
logarithmic transformation of both variables may therefore be useful. 
There may be various reasons to suspect that a non-linear relation­
ship (possibly of power law form) might be appropriate. The slope 
of the regression should be forced to be one if it is not signi­
ficantly different from one (implying a straight line through the 
origin whose slope is the geometric mean ratio of the data). 

The usual considerations concerning linear regression apply. This 
case is (approximately) an example of the calibration problem, so 
the most appropriate method is to use the regression of survey index 
on VPA recruitment. If the variability of the recruitment estimates 
is substantial, the choice of the best method is not certain,but the 
use of maximum likelihood functional regression is likely to provide 
an acceptable solution. The appropriate value of A should be chosen 
with care (see Section 3.2). · 

Multiple regression methods for forecasting recruitment are likely 
to be misleading if applied uncritically, and may have little 
predictive ability. No explanatory variables should be used for which 
a plausible mechanism cannot be constructed. The number of 
explanatory variables should be much less than the number of data 
points. The plausibility of a multiple linear model should be care­
fully considered before such methods are used - an alternative, more 
complex, model may be much more appropriate. 

Time-series methods for forecasting recruitment have not usually been 
very successful, because the series are too short to give good 
results on data with high variability. If time-series models are 
fitted, they should be parsimonious (use few parameters), and they 
should be tested for predicti ve ability. Recruitment series often 
appear to be serially correlated, but statistical tests usually fail 
to reject the null hypothesis of no correlation. 

Examination of survey data when positions are fixed usually shows a 
very s trong posit i onal effect, which may be misinterpreted as 
variability (and will appear as variability if survey station positions 
are not fixed). Multiplicative models generally explain much of the 
variance and can be used to set an upper limit on the variab i lity 
of the survey data. Indexes constructed by simple summation are 
robust against a change of spatial distribution (whilst those from 
multiplicative models are not) and they place most weight on the 
most abundant catches. The statistical properties (efficiency, etc.) 
of such indices seem to be less poor than previously assumed. 

Ot her Topi cs 

Tests of various common models used in the interpretation of catch and 
age data show that they can often be rejected on statistical grounds. 
In particular, the assumption that fishing mortality is proportional 
to effort can be tested, and may not be consistent with the data. 
The practical consequences of any such imperfections in the models, 
however, need to be examined. 

Least squares methods for the joint analysis of catch at age and 
survey on cpue data continue to give promising results, but a fully 
operational version is not yet available for the ICES area. It appears 
that the inclusion of additional constraints such as a separate 
model for fishing mortality would lead to a more robust method, but 
the computational consequences have not yet been determined. 
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32) Biological ref'erence points such as F1ow, Fmed and Fhigh have been 
found useful in some investigations, and it has also been noted 
that the ~ishing mortality on North Sea herring exceeded Fnigh for 
8 out of 9 years preceding the collapse of the stock. 

33) The use of biological reference points such as Fmax and Fo.1 as 
target~ of management ignores some importan~ social and economic 
factors. Biological reference points should be used as signposts 
and navigational markers, not necessarily as targets in their own 
right. 

General 

34) The reports of the Working Group should continue to be distributed 
to all members of Assessment Working Groups, and published in the 
Cooperative Research Report series, to make them accessible to a 
wider readership. 

35) The Working Group considers that suitable topics for consideration 
at its next meeting would be: 

1) 

2) 

3) 

Sensitivity of assessment techniques to assumptions 
concerning natural mortality. 

Effect of discarding on assessment calculations, 
especially mesh assessments. 

Advances in simpler methods of assessment (especially those 
based on the use of size composition). 

36) The interval of one year between Working Group meetings has been 
found to be a little short to permit necessary research to be 
carried out, and the Working Group suggests that its next meeting 
should be held in November 1905. 
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Table 2.6.1 Estimates of Status Quo Catch for Simulated Data from Stock 1 

Estimates using 

True Status Quo Catch SHOT DROP DOPE 

1 234 397 2 084 1 858 

2 274 3 245 1 390 2 346 

1 990 1 420 2 318 1 566 

1 017 1 214 1 194 822 

630 721 355 497 

742 804 533 655 

961 835 974 955 

1 221 1 396 1 151 1 141 

930 823 995 722 

527 666 593 421 

209 652 133 460 69 856 

.35 .59 ,78 

49% (cv) 40% 32% 23% 

I 

.p. 
I-' 
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18 
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Table 2,6,2 Estimates of Status Quo Catch for Simulated Catch from Stock 2 

Estimates using 

True Status Quo Catch SHOT DROP DOPE -

99 72 74 108 

129 134 134 125 

107 91 103 84 

71 74 76 67 

65 67 62 66 

80 75 74 78 

98 85 87 92 

104 99 102 97 

92 87 91 79 

73 70 72 66 

127.6 86.3 95.0 

.67 ,78 ,76 

21% (cv) 12% 10"/o 11% 

~ 
I\) 



Table 2.6.3 Estimates of Status Quo Catch for Simulated Data from Stock 3 

Estimates using 

Year True Status Quo Catch SHOT DROP DOPE ----

17 99 81 87 64 

18 154 150 120 147 

19 127 105 100 102 

20 106 119 107 122 

21 88 102 116 103 

22 81 96 97 99 

23 90 93 94 91 

24 112 112 103 112 

25 89 102 100 102 

26 80 91 95 90 

D 171.3 282.0 273.1 

1-D/ 2 .68 .48 .50 
0 

r.m.s 23% (cv) 13% 16% 16% 
pred.erro 

~ 
\.),I 
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Table 2.6.4 Prediction of Georges Bank Scallop 

Y(t+l) Y(t+l) r 2 from Years fitted 
true predicted regression 

1 041 1 570 .35 27 

1 702 .33 27 

625 1 041 .40 28 

959 .40 28 

---------- ------------ -----------·------~-----------------
1 041 1 620 .40 10 

1 245 .25 10 

1 279 .25 10 

1 382 .24 10 

625 1 108 .51 11 

544 .26 11 

553 .26 11 

518 .26 11 

1 141 .51 11 

Independent Variables 

Y(t) 

Y ( t) , Y ( t-1 ) 

Y(t) 

Y ( t) , Y ( t-1) 

~----------------------------
Y(t) 

Y(t), R(3,t) 

Y ( t) , Y ( t-1) , R ( 3, t) 

Y(t), C(t), R(3,t) 

Y(t) 

Y(t), R(3,t) 

Y(t), Y(t-1), R(3,t) 

Y(t), C(t), R(3,t) 

Y(t), C(t), R(2,t) 

Name 

1---------------------

SHOT 

DROP 

DOPE 

SHOT 

DROP 

DOPE 

DOPE 

I 

~ 
~ 
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Table 3.4.1 Data for worked example. 

VPA Recruits 

800 

1500 

1550 
1200 

1300 

2300 

2200 

2300 

Read from Fig. 7 of Clark (1979) (NW Atlantic 
Mackerel). 

Surve;y: Index Log VPA Eecruits Log Surve;y: Index 

1 6.68461 0 

1.5 7.31322 4.05465E-0l 

5 7.34601 1.60944 

6 7.09008 1.79176 

7 7.17012 1.94591 

12.5 7.74066 2.52573 

13.5 7.69621 2.60269 

22 7.74066 3.09104 
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Figure 2.5.1 Comparison of the observed(--) and 
fitted(-----) lobster yield series for the 
peried 1928-81. Data fitted by univariate 
ARIMA method (Fogarty, 1984, MS). 
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Comparison of the observed(--) fitted 
univariate (-·----) and fitted transfer 
function (---)series for the period 
1945-81, for American lobster (Fogarty, 
1984, MS). 
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Figure 5.3.2 Stock/recruitment plot for Georges Bank 
HADDOCK, with •replacement lines• for 
various proportions of virgin ~pa.wn!ng 
stock biomass/recruit. 
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APPENDIX A: Working Papers for 1984 Meeting 

Simpler Me thods for Catch Forecasts 

1) JG Pope. Short-cut and status quo TACs: an overview (Unpubl.MS). 

The peforma.nce of short-cut methods for catch forecasts. 
ICES, Doc. C.M.1984/D:3. 

2) J G Pope. 

3) J G Shepherd. Status quo catch estimation and its use in fisheries 
management. ICES, Doc. C.M.1984/G:5. 

4) JG Pope. Analogies to the status quo TACs: their nature and variance. 
Can. Spec. Publ. Fish Aquat. Sci., 66: 99-113 (1983). 

5) JG Shepherd. A time-dependent stock production model for fish stock 
assessment and short-term forecasts. (Unpubl.MS). 

Linear Regression 
I 

6) JG Shepherd. Undated letter sent to WG members, Autumn 1983. 

7) 

10) 

E F Harding. Considerations concerning the application of linear 
regression (Unpubl.MS). 

J A Pope and AM Shanks. Fitting relationships in fishery research. 
ICES Doc. C.M.1982/D:9. 

Methods for Forecasting Recruitment 

8) SA Murawski. Methods for forecasting recruitment (Unpubl.MS). 

Other Topics 

9) 

11) 

JG Pope and JG Shepherd. On the integrated analysis of catch-at-age 
and groundfish survey or cpue data~ ICE:> Doc. C.M.1984/G:16. 

G Gudmundsson. Statistical tests of common restrictions in fish stock 
assessment (Unpubl.MS). 
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APPENDIX B: STANDARD NOTATION 

(Note: Other minor usages a.re defined in the text) 

Sui'fices and Indices 

y indicates 

f II 

a II 

t II 

g II 

~ II 

t, II 

@ II 

* II 

Quantities 

C (y,f,a) 

E (y,f) 

F (y,f ,a) 

FS (y,f) 
q 

y 

w 
B 

p 

E 

u 
C 

N 

F 

z 
M 

s 

R 

yea:r 

fleet 

age group 

last (terminal) yea:r 

oldest (greatest) age group 

summation over all possible values of index (usually fleets) 

summation over all fleets having effort 

an average (usually over yea:rs) 

a reference value 

Catch in number 

Fishing effort 

Fishing mortality 

data 

Separable estimate of overall fishing mortality 

Catchability coefficient (in P = qE) 

Yield in weight 

Weight of an individual fish 

Biomass 

Population number (also fishing power) 

Fishing effort 

Yield or landings per unit of effort 

Catch in numbers of fish (including disca:rds) 

Stock in numbers of fish 

Instantaneous fishing mortality rate 

Instantaneous total mortality rate 

Instantaneous natural mortality rate 

Selection coefficient defined as the relative fishing 
mortality (over age) 

Recruitment 



APPENDIC C: 

ICES WORKING GROUP ON MErHODS OF FISH STOCK ASSESSMENT 

S1JMMARY OF TOPICS 

1991* ~ 1984 19§2. 

1. Application of Separable VPA M r 

2. Simpler methods for TACs M p 

3. Measures of overall fishing mortality 

4. Use of Effort data in assessments M M r 

5. Need for two-sex assessments 

6. Computation and use of yield-per-recruit M m V1 

°' 7. Inclusion of discards in assessments p 

8. Methods for estimation of recruitment M 

9. Density dependence (growth, mortality etc.) 

10. Linear regression in assessments M 

11. Effect of age-dependent natural mortality p 

M = Major topic, m = minor topic, r = reprise, p = proposed 

* Meeting of ICES Working Group on Use of Effort Data in Assessments 
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