$$
\text { https://doi.org/10.17895/ices.pub. } 7645
$$

REPORTS OF THE ICES ADVISORY COMMITTEE ON FISHERY MANAGEMENT
Copenhagen, 10-19 May 1983
Copenhagen, 26 0ctober - 2 November 1983

International Council for the Exploration of the Sea Palægade 2-4, 1261 Copenhagen K Denmark

March, 1984
ISSN 2707-714 $\overline{4}$
ISBN 978-87-7482-498-5

TABLE OF CONTENTS

Page
PREFACE 1
Members of the Advisory Committee on Fishery Management,1982/83.. 2
REPORTS OF THE ICES ADVISORY COMMITTEEE ON FISHERY MANAGEMENT, May and October/November 1983 3
INTRODUCTION 3
A. REVIEW OF NOMINAL CATCHES IN NEAFC AREA, 1972-82 4
B. NEAFC REGION 1 STOCKS 5
B. 1 North-East Arctic Cod and Haddock 5
B.1.1 North-East Arctic cod 5
B.l. 2 North-East Arctic haddock 9
B.1.3 Distribution of cod in and around the "Mentella box" 13
B. 2 Redfish in Sub-areas I and II 14
B.2.1 Recent catches and TACs 14
B.2.2 Sebastes marinus in Sub-areas I and II 14
B.2.3 Sebastes mentella in Sub-areas I and II 14
B.2.4 Mesh size and "Mentella box" problem 16
B. 3 Greenland Halibut in Sub-areas I and II 16
B. 4 Redfish in Sub-areas V and XIV 17
B. 5 Greenland Halibut in Sub-areas V and XIV 19
B. 6 Stocks off East Greenland 20
B.6.1 Cod at East Greenland 20
B.6.2 Shrimp (Pandalus borealis) at East Greenland 25
B. 7 Atlanto-Scandian Herring 25
B.7.1 The Icelandic spring- and summer-spawning herring 25
B.7.2 Norwegian spring spawners 27
B. 8 Capelin Stocks 29
B.8.1 Barents Sea capelin 29
B.8.2 Capelin in the Iceland-East Greenland-Jan Mayen area 31
C. SAITHE IN NEAFC REGIONS 1 AND 2 AND FAROE COD AND HADDOCK 33
C.1 Saithe in the NEArctic and the North Sea 34
C.I.1 Interrelationship between Division IIa and Sub-area IV 34
C.1.2 North-East Arctic saithe (Sub-areas I and II) 34
C.1.3 North Sea saithe (Sub-area IV and Division IIIa) 36
C. 2 Icelandic Saithe (Division Va) 37
C. 3 West of Scotland Saithe (Sub-area VI) 38
C. 4 Faroe Saithe, Cod and Haddock 39
C.4.1 Faroe saithe (Division Vb) 39
C.4.2 Faroe Plateau cod (Sub-division Vb 1) 39
C.4.3 Faroe Bank cod (Sub-division Vb_{2}) 40
C.4.4 Faroe haddock (Division Vb) 40
D. NEAFC REGION 2 STOCKS 42
D.1 Herring Stocks South of $62^{\circ} \mathrm{N}$ 42
D.1.1 North Sea herring 42
D.1.2 Division IIIa herring 47
D.1.3 Herring in the Celtic Sea and Division VIIj 51
D.l.4 West of Scotland herring 53
D.1.5 Irish Sea herring (Division VIIa) 57
D. 2 Industrial Fisheries in the North Sea and Adjacent Areas 60
D.2.1 Aspects of management 60
D.2.2 Norway pout 61
D.2.3 Sandeel 63
D.2.4 Sprat 65
D.2.5 Data requirements to improve assessments of the stocks exploited by industrial fleets 68
D. 3 Stocks in Division IIIa 68
D.3.1 Cod 69
D.3.2 Haddock 69
D.3.3 Whiting 69
D.3.4 Plaice 70
D. 4 By-Catches in the Industrial Fisheries 70
D.4.1 Herring by-catches in the North Sea, 1981 and 1982 70
D.4.2 Herring by-catches in Division IIIa 71
D.4.3 By-catches of other species 71
D. 5 Cod, Haddock and Whiting Stocks in the North Sea, Sub-area IV 71
D.5.1 Cod in the North Sea 72
D.5.2 Haddock in the North Sea 73
D.5.3 Whiting in the North Sea 74
D.5.4 Possibilities for improving the exploita- tion patterns other than by mesh regulation 75
D.5.5 Minimum trawl cod-end mesh sizes in Sub- areas IV and VI 75
D. 6 Cod, Haddock and Whiting in Sub-area VI 76
D.6.1 Cod in Division VIa 76
D.6.2 Cod in Division VIb 77
D.6.3 Haddock in Division VIa 77
D.6.4 Haddock in Division VIb 78
D.6.5 Whiting in Division VIa 79
D.6.6 Cod, haddock and whiting in Divisions VIIIb,c,d,e 80
D. 7 Irish Sea and Bristol Channel Demersal Stocks 80
D.7.1 Irish Sea cod 80
D.7.2 Irish Sea whiting 81
D.7.3 Irish Sea plaice 81
D.7.4 Irish Sea sole 82
D.7.5 Celtic Sea sole 82
D.7.6 Celtic Sea cod 83
D.7.7 Celtic Sea whiting 84
D.7.8 Celtic Sea plaice 84
D. 8 Plaice and Sole Stocks in the North Sea and English Channel 84
D.8.1 North Sea sole 84
D.8.2 North Sea plaice 86
D.8.3 Sole in Division VIId 87
D.8.4 Sole in Division VIIe 88
D.8.5 Plaice in Divisions VIId and VIIe 89
D.8.6 Exemption from the proposed increase in minimum mesh size to 90 mm for boats less than 300 BHP 89
D. 9 Shrimp Stocks in the Skagerrak-Kattegat and the North Sea 89
E. STOCKS IN NEAFC REGIONS 2 AND 3 90
E. 1 Hake in Sub-areas IV and VI-IX 90
E.1.1 Northern stock 90
E.l.2 Southern stock 90
E.1.3 Possible effects on hake of increased fishing on Southern Blue Whiting 91
F. STOCKS IN NEAFC REGION 3 91
F. 1 Sea Bream, Monkfish and Flatfish 91
F. 2 Horse Mackerel 92
F. 3 Sardine in Divisions VIIIc and IXa 92
G. STOCKS in NEAFC REGIONS 1, 2 AND 3 94
G. 1 Mackerel
G.1.1 The North Sea stock 94
G.1.2 The Western stock 96
G.1. 3 Closed area in the Celtic Sea 98
G.l.4 Closed area for mackerel in Division VIa. 98
G.1.5 Mackerel in Sub-area IX 98
G.l.6 Other deficiencies in data 98
G. 2 Blue Whiting 99
G.2.1 Blue whiting in the northern area 99
G.2.2 Blue whiting in the southern area 101
Table of Contents (ctd) Page
Table Section 102-191Figure Section192-251
Chart of ICES Fishing Areas 252
Chart of ICES Former Divisions 253
REPORT TO THE INTERNATIONAI BAITIC SEA FISHERY COMMISSION 254
A. REVIEW OF NOMINAL CATCHES IN THE BAITIC AREA, 1972-82 254
B. THE BAITIC PELAGIC FISHERIES 254
B. 1 Herring Stocks 254
B.l.1 General 254
B.l.2 State of the stocks and management advice 256
B.1. 3 Assessment of short- and long-term effects resulting from changes in the mesh sizes in the herring fishery in the western Baltic 261
B. 2 Sprat Stocks 261
B.2.1 General 261
B.2.2 State of the stocks and management advice 262
C. THE BALTIC DEMERSAL FISHERIES 262
C. 1 Cod in Sub-divisions 22 and 24 262
C. 2 Cod in Sub-divisions 25-32 264
C. 3 Changes in Minimum Mesh size 266
D. BALTIC SALMON STOCKS 267
D. 1 Sub-divisions 24-31 267
D. 2 Sub-division 32 (Gulf of Finland) 268
D. 3 Additional Data and Sampling Programmes necessary to Increase the Accuracy of the Assessments 269
D. 4 The Effect of a Change of the Hooks with a Gap of 19 mm to Hooks with a Gap of 16 mm 269
D. 5 The Origin of Salmon (Wild or Reared) in the Catches 270
D. 6 The Distribution of the Baltic Salmon Stocks and Fishing Effort between and Within National Fishing Zones 270
F. ESTIMATION OF DISTRIBUTION OF STOCKS AND THE DISTRIBUTION OF FISHING EFFORT WITHIN AND BEPTWEEN THE FISHING ZONES OF THE MENBER COUNTRIES 270
G. DEFICIENCIES IN THE DATA REQUIRED FOR ASSESSMENTS 270
Table Section 271-284
Figure Section 285-293
Chart of the Baltic Fishing Area 294

PREFACE
ニニニニニッニニニニッニッニ

This volume of the Cooperative Research Report contains the reports of the Advisory Committee on Fishery Management in 1983.

ACFM held two meetings in 1983，10－19 May and 26 October－ 2 November at ICES headquarters．

From the first meeting were issued the complete report to the International Baltic Sea Fishery Commission and Part I of the report to the North－East Atlantic Fisheries Commission． The second part of the report to the North－East Atlantic Fisheries Commission was issued from the October－November meeting．In order to make the advice reach managers as fast as possible，the report was issued in chapters and sections and distributed immediately after the chapters had been finalised．

This volume contains the two reports to NEAFC together．They have been edited into one report，bringing the stocks in logical sequence and all advice on each stock into one place．

The report to NEAFC is followed by the report to IBSFC． The summary sheets，included for the benefit of managers in the reports issued immediately after the meetings，have not been included in this volume．

Copenhagen，December 1983
Kjartan Hoydal Secretary to ACFM

Mr D de G Griffith
Mr A C Burd M A Maucorps
Dr 0 Rechlin

Chairman
Chairman，Demersal Fish Committee
Chairman，Pelagic Fish Committee
Chairman，Baltic Fish Committee

Dr V C Anthony／Alternate Dr R L Edwards
＊M E Cadima／Alternate Ms A M Caramelo＊＊
Dr R De Clerck／Alternate Dr F Redant
Dr J Guéguen／Alternate Dr J Dardignac兴羍米Dr W G Doubleday／Alternate Dr R G Halliday＊＊
${ }^{*}{ }_{\mathrm{Mr}}$ J Jakobsson／Alternate Dr S A Schopka＊＊
Mr J Molloy
Mr N A Nielsen／Mr K Popp Madsen ＊＊＊Dr V Nikolaev／Alternate Dr J Efimovisk＊ M J A Pereiro／Alternate M J Fernández ＊＊＊Prof．J Popiel／Alternate Dr J Netzel＊＊＊＊ Mr K H Postuma／Alternate Dr R Boddeke Mr A Saville／Alternate Mr D J Garrod Prof．A Schumacher／Alternate Mr H P Cornus Prof．V Sjöblom／Alternate Mr R Parmanne Mr B Sjöstrand／Alternate Mr J Modin Mr Ø Ulltang／Alternate Mr O Nakken Mr B Vaske

Mr K Hoydal，ICES Statistician；Secretary to ACFM

[^0]
INTRODUCTION

Last year it was decided to change the time-table for the ACFM meetings. Instead of having one main meeting in July, dealing with most of the stocks, with an additional minor one in November, taking care of a few stocks, the work has now been more equally divided between two meetings, one in early May and one in late October/early November.

The time-table of the Assessment Working Groups had to be changed accordingly, and the advice on the different stocks has been distributed between the two meetings, taking into account various factors like the deadines set by the management authorities for receiving advice, timing of surveys and collection of other scientific data etc.

Basis of the Biological Advice Provided
There has been no change in the last two years in the basic criteria on which ACFM bases its advice. The ACFM still considers that the biological advice provided should not be seen in isolation from economic considerations, and would welcome a continuing dialogue with the other parties in the management process, in order to tailor the biological advice to best suit the needs of the subsequent stages in the process of creating viable management.

As described in earlier reports, the stocks are grouped for the purpose of providing management advice into

1. Stocks which are rapidly depleted and suffering from recruitment failure. In these cases, ACFM shall not calculate options but shall recommend a single figure.
2. Stocks which are fished at levels largely in excess of the levels indicated by biological reference points. In these cases, ACFM shall give options inside safe biological limits, and shall recommend one of these options, according to the general principles of aiming at more stable levels of stock and catch.
3. Stocks which are fished at levels not very different from the biological reference points. In these cases, ACFM shall give options inside safe biological limits, but shall not recommend any particular one of these. It shall only indicate a preference, which is in line with the general principles mentioned above.
4. Stocks where at present it is not possible to carry out any analytical assessment with an acceptable reliability. In these cases, ACFM shall indicate precautionary TACs to reduce the danger of excessive effort being exerted on these stocks.
5. In cases where fisheries on a stock are not subject to TAC regulation, there may be a danger of catches taken from stocks of the same species in adjacent areas being misreported as having been taken in areas of unregulated fisheries. To reduce the risk of this happening, ACFM, on occasion at the request of management bodies, has advised an implementation of TACs, and their levels
6. (ctd) on this basis. Since in the majority of cases, the data on these stocks are inadequate for analytical assessment, they too will generally be recommended as precautionary TACs based on historic catch levels.

In order to allow more flexibility to the management authorities, the type of recommendation given for a Category 2 stock is that fishing mortality should be reduced to one of the biological reference points (F0.1 or $\mathrm{F}_{\mathrm{max}}$) as quickly as possible, or (in some cases) towards one of these points.

A. REVIEW OF NOMINAL CATCHES IN NEAFC AREA, 1972-82

In the assessments, the Working Groups try to estimate discards, landings which are not officially reported, and the composition of the industrial by-catches. These amounts of different species, which have to be included in the estimates of what has been taken from a given stock, if assessments are to be correct, thus appear in the tables and Figures produced by the Working Groups. These levels of discards, unreported. landings and industrial by-catches vary very much between different stocks and fisheries, being in some cases negligible, in others constituting important parts of the total removal from a stock.
The catch data used in the assessments are given in the table section. In all cases, where there might be doubt, it has been indicated if discards, by-catches and eventual estimates of unreported landings are included in the assessments, and how they come out in the predictions. Generally it can be said that, wherever the data allow it, discards are included in the assessments, but are not included in the catch options, which are the basis of the TAGs. Estimates of catches landed as by-catches, especially from the industrial fisheries, are included, wherever data allow it, in the assessments and are included in the catch options.

It should be noted that, as a general rule, catches of protected species above the minimum landing size, which are sorted out and landed for human consumption, are included in the estimates of human consumption landings, both in the catch input data and in the projected catch options. Estimates of industrial by-catches cover in most cases that part of the by-catch which is used for reduction purposes.

B. NEAFC REGION 1 STOCKS

B. 1 North-East Arctic Cod and Haddock

The Arctic Fisheries Working Group met at ICES headquarters from 15-22 September 1983 to assess catch options for 1984 for cod and haddock in Sub-areas I and II and to advise on the distribution of cod in and around the ${ }^{1}$ Mentella box'.

B.1.1 North-East Arctic cod

Recent catches and TACs, in thousand tonnes:

1980			1981		1982		1983	
Rec. TAC	Total quota	Actual catch	Total quota	Actual catch	Total quota	Actual catch*	Total quota	Estim. catch*
390	390	380	300	399	300	365	300	308

*Preliminary

B.1.1.1 Trends in catch and effort

Revised figures for cod landings in 1981 amounted to 399037 tonnes (Tables B.1.1.1 and B.1.1.2). The provisional catch figure for 1982 of 364869 tonnes indicates a decrease of about 9% compared to the previous year. Catches in Sub-area I continued to decline and reached a level of 97012 tonnes in 1982 compared to 538231 tonnes in 1977.
Since 1974 an increasing proportion of the total catch has been taken in Division IIa, reaching a level of 65% in 1982 compared to 11% in 1974. This is the result of the combined effect of a more westward distribution of fish since 1978 due to hydrographical changes, poor year classes among the younger age groups and as a consequence reduced fishing effort in Sub-area I.
Expected total landings for 1983 were estimated to be 308000 tonnes.
In Sub-area I the catch per unit effort for the trawler fleets: continued to decline in the period 1980-83. In Division IIa the preliminary figure of catch per unit effort indicates an increase in availability from 1982 to 1983.

For long-line and hand-line fishing in Division IIa, catch per unit effort more than doubled in the period 1980-82 and decreased by about 50% from 1982 to 1983.
Gillmet catch per unit effort fluctuated in the same period. However, the reduced cpue from 1981 to 1982 is considerable compared with other types of gears. This was mainly caused by the high rate of maturation of the relatively, strong 1975 and 1976 year classes in 1982. The fish were too small to be caught by gill nets with the normal mesh size, but they were highly vulnerable to the long-line and hand-line fisheries. In 1983, these year classes were readily available to gill nets, which resulted in an increased catch per unit effort compared to 1982.

B.1.l.2 State of the stock

Fishing mortalities for 1983 were estimated on the basis of information from Norwegian surveys and checked against effort data from Norwegian trawlers in Sub-area I and Division IIa. Resulting fishing mortalities for age groups 6 and 7 were considerably higher than indicated by the effort figures and were, therefore, reduced by 23% and 25%, respectively, giving the two sources of information equal weight. The calculated F-values from the surveys for the older (10+) age groups are unusually low/and of the same order as the fishing mortality generated (mainly in Division IIa) by gears other than trawls alone. In view of the likely overestimate of older fish in the surveys, fishing mortalities on age groups 10 and older were raised to the level, which was estimated from the survey for the 9 year old fish, i.e., 0.43. This adjustment has only marginal effects on the assessment, since these age groups make up less than 2% of the catch in numbers.
Mean fishing mortality on age groups 5 to 10 increased to a level of 0.83 and 0.92 for the years 1977 and 1978, respectively, from a relatively stable level of about 0.6 in the preceding years. In the 1979-81 period, the mean $F(5-10)$ fluctuated around a level of 0.68 and decreased to 0.46 and 0.44 in 1982 and 1983, respectively.

Estimated total recruited biomass (age 3+) declined continuously since 1974 (3.1 million tonnes), when the strong 1970 year class was fully recruited to the fishery. The expected level at the beginning of 1984 (0.8 million tonnes) is the lowest ever recorded in the history of this stock.

The results of the assessment are illustrated in Figure B.1.1.1 A-C. Compared to the present assessment, the 1982 assessment overestimates the total biomass in 1982 by about 20%. This overestimate is related to the year classes 1975, 1978 and 1979. The size of the 1975 year class was overestimated in the Norwegian surveys in 1982 due to some double-counting by the acoustic method. The size of the 1978 and 1979 year classes was underestimated in the surveys in 1982. However, the corrections which were made, based on information from the USSR youngfish survey as well as from the Norwegian bottom trawl survey, overestimated the size of these year classes and hence underestimated fishing mortality on the respective age groups.
For the estimation of the spawning stock size it is important to know the proportion of mature individuals in each age group. In previous assessments the mature part. of the stock was assumed to be all fish of age 8 and older. However, it would be more realistic to use a maturity ogive as recommended by ACF'M, and, therefore, maturity ogives were constructed based on historic data (ALTERNATIVE 2, already used in the 1982 assessment) as well as on more recent information (ALTERNATIVE 1).
ALIERNATIVE 2 was based on summarised data from trawl sampling in Sub-areas I and II in the period November to February, when the fish migrate to wintering and spawning areas. The long-time series indicates a slight trend of decreasing age at first maturity.
ALTERNATIVE 1 is based on more recent observations obtained from the Norwegian surveys in 1982 and 1983 referring to the total stock. This approach gives more weight to adequate sampling but has to ignore possible trends in time at present.

The resulting estimates of spawning stock biomass for both these alternatives show large differences, and no conclusions can be drawn from the historic time series up to 1979. However, the trends since 1979 are almost identical. In 1981 and 1982, spawning stock biomass increased from the very low level in 1980 as a result of the early maturation of the 1975 and 1976 year classes. Spawning stock biomass at the beginning of 1984 is expected to decrease from the 1982-83 level.

For the estimate of spawning stock biomass in 1983 and in the projections AITERNATIVE 1 was used, since it is based on the most recent data.
In view of the difficulties in estimating historical spawning stock biomasses, no conclusions can be drawn from either of the two stock/recruitment curves calculated by the Working Group, until a more refined evaluation of the historic data series can be undertaken.

B.1.1.3 Recruitment

The size of the 1980 and 1981 year classes at age 3 is indicated to be very poor by both the USSR youngfish survey and the Norwegian surveys. The Working Group used the estimate from the acoustic survey of 30 million cod at age 3 for these two year classes.

The estimate of the strength of the 1982 year class of 400 million cod at age 3, which are expected to recruit to the fishery in 1985, was derived from the international 0-group fish survey. Observations reported from the 1982 USSR egg- and larval survey, as well as indications of improved environmental conditions, also suggest that the 1982 year class might be stronger than the preceding ones.
For the 1983 year class the index from the 0 -group survey is about 3 times higher than that for the 1982 year class. Its size is estimated to be about 900 miliion 3 year old cod.
The estimates of the 1982 and 1983 year classes do not affect the projection for 1984, and only marginally the medium-term projection of the spawning stock biomass for 1987 and 1988.

B.1.1.4 Short-term projection

The results of the catch projection are given in Figure B.I.I.2. In the text table below, management options for 1984 related to the reference points on the Y / R curve (see Figure B.1.1.2) and to certain levels of catch in 1984 are given.

Species: NE Arctic COD
Area: Sub-areas I and II

1983				Management option for 1984	1984				1985	
Stock biom. (3+)	Spawn. stock biom.	$\bar{F}_{(5-10)}$	$\begin{gathered} \text { Catch } \\ (3+) \end{gathered}$		Stock biom. (3+)	Spawn. stock biom.	$F^{F}(5-10)$	Catch $(3+)$	Stock biom (3+)	Spawn. stock biom.
963	533	. 44	308	$F_{0.1}$	763	480	. 15	94	1000	557
				$F_{\text {max }}$. 27	157	920	494
				$\mathrm{F}_{84}=\mathrm{F}_{83}$. 44	236	830	415
				$\begin{aligned} & \text { TAC } 1984= \\ & 300 \end{aligned}$. 60	300.	760	352
				$\begin{aligned} & \text { TAC } 1984= \\ & 200 \end{aligned}$. 36	200	870	451
				$\begin{aligned} & \text { TAC } 1984= \\ & 150 \end{aligned}$. 26	150	930	501

Weights in thousand tonnes.
*Expected catch estimated by the Working Group.

Medium-term projection
Calculated spawning stock biomass (SSB) in 1984-88(87) at the beginning of the year and calculated catch 1984-86 for different management strategies associated with constant fishing mortalities and constant catch levels are shown below. Catch figures for 1987 and 1988 are dependent on recruiting year classes beyond 1983 and are therefore not given in the text table below. (Weights in 1000 tonnes.)

Management strategy	$\bar{F}_{0.1}=0.15$	$\bar{F}_{\text {max }}=0.27$	$\bar{F}=\bar{F}_{1983}$ $=0.44$	TAC 200	TAC 250	TAC 300					
Year	SSB	Catch	SSB	Catch	SSB	Catch	SSB	F	SSB	F	SSB
1984	480	94	480	157	480	236	480	0.36	480	0.47	480
1985	557	97	494	145	415	187	451	0.44	401	0.67	352
1986	615	104	492	145	360	169	387	0.50	282	0.95	180
1987	660		494		337		337		201		106
1988	760		558		384						

B.1.1.5 Management advice

The early maturation of the relatively grood 1975 year class observed in 1981 and 1982 has increased the spawning stock biomass at the beginning of 1981 and 1982 from the very low 1980 level. This increase is levelling off in 1983 and 1984.

It has to be noted that the 1975 year class is followed by a series of six poor year classes. As a consequence, the level of spawning stock biomass estimated for 1984 can only be maintained if the level of exploitation does not exceed $F_{\text {max }}$. This strategy is associated with catches in the order of 150,000 tonnes. If management aims at increasing the level of spawning stock biomass during the 1984-87 period, then fishing at less than $\mathrm{F}_{\max }$ is required, which would result in catch levels around 100000 tonnes.
Management strategies based on stable catch levels at and above 200000 tonnes in the period 1984-87 are all associated with levels of fishing mortality in excess of $F_{\text {max }}$ and increasing with time. Spawning stock biomass is estimated to decline rapidly under this type of management.
No substantial increase in spawning stock biomass can be expected before 1988, when the 1982 and 1983 year classes, which are expected to be strong, start to enter the spawning stock.

ACFM is concerned about the mortality of young cod from the 0-group stage to their recruitment to the fishery due to large by-catches of young cod in the growing shrimp fishery. ACFM has insufficient information at present to provide any specific advice on the matter.
In view of the considerations above and since the fishing mortality estimated for 1983 of 0.44 is still considerably above the $F_{\max }$ value (0.27), ACFM recommends that fishing mortality should be reduced to Fmax and that a TAC of 150000 tonnes should be set for 1984.
B.1. 2 North-East Arctic haddock

Recent catches and TACs, in thousand tonnes:

1980		1981		1982		1983	
Total quota	Actual catch	Total quota	Actual catch	Total quota	Actual catch*	Total quota	Estim. catch*
75	87	110	77	$?$	47	$?$	27

* Preliminary

B.1.2.1 Trends in catch and effort

Final figures for haddock landings in 1981 amounted to 77153 tonnes (Tables B.1.2.1 and B.1.2.2). The preliminary figure for 1982 of 47252 tonnes shows a considerable decrease of about 39%. Expected total catches of haddock in 1983 are estimated at 27000 tonnes.
In 1981, the catch of haddock in Division IIa was higher than in Sub-area I for the first time in the period for which data are available. As expected, the same situation occurred in 1982, when
the catch in Division IIa exceeded that in Sub-area I by about 38%. This might be due to the more westerly distribution of the fish as well as to the fact that a great proportion of the haddock stock consists of spawning fish exploited mainly in Division IIa.

An upward trend in catch per unit effort of Norwegian trawlers in Sub-area I was observed from 1977 to 1981. However, the cpue declined by about 20% from 1981 to 1982 and by about 50% from 1982 to 1983. The reason is that a great proportion of the stock has reached the age of maturity in 1981-82, particularly the good 1975 and 1976 year classes. These fish migrate to the spawning areas in Division IIa, and the increase in catch per unit effort up to 1982 in that area might be explained by this migration. In 1983, catch per unit effort in Division IIa declined considerably. Although the 1983 figure is preliminary, this indicates that the year classes now recruiting to the spawning stock are poor.

B.1.2.2 State of the stock

The results of the Norwegian surveys for haddock are not very conclusive and could not be used to estimate stock size and fishing mortalities for that species.
Fishing mortality for 1983 was, therefore, estimated under the assumption that the major part of the trawl catch of haddock is taken as by-catch in the trawl fishery for cod, and the haddock stock is exposed virtually to the same trawl effort as cod. Therefore, comparison between fishing mortality, catch per unit effort and biomass of these two species is thought to allow conclusions to be drawn for haddock from the cod assessment.
The exploitation pattern for 1983 was taken to be close to the one selected for 1982 in last year's assessment. On this basis, an average F of 0.24 on the 4-7 year olds in 1983 gave a reasonable value of the average fishing mortality on the 5-7 year old haddock in 1983 versus the average fishing mortality on the 6-7 year old cod, both averages referring to Norwegian trawlers in Division IIa. The resulting biomass of haddock also compared reasonably well with the total biomass of cod when related to the ratio of these two species in the 1983 trawl catch.
There are indications that the basic assumption for this approach to estimate fishing mortality is not completely valid. Some directed trawl fishing for haddock occurs and, therefore, the assessment of this stock may not be very precise. However, ACFM considers the trends indicated by the assessment as real and based its conclusions on it.

In the earlier assessments the Working Group has taken the mature part of the stock to be all fish of age 6 and older. In order to obtain a more realistic estimate of the mäture part of the stock, a maturity ogive for the estimate of the spawning stock biomass was introduced in the 1982 assessment.

Spawning stock biomass decreased continuously from the very high level in 1975-76 of above 300000 tonnes to the lowest on record in 1980 of 84000 tonnes, followed by an increase up to 1982 to about 118000 tonnes as a result of the contribution to the spawning stock by the good 1975 and 1976 year classes. However, the estimate for 1983 indicates a slight reduction in spawning stock biomass to 113000 tonnes due to poor year classes entering the spawning stock.

Total recruited biomass (age $3+$) decreased almost continuously from the high level of 1 million tonnes in 1972-73 to about 158000 tonnes at the beginning of 1983, which is the lowest level on record.

B.1.2.3 Recruitment

Recruitment of the 1980 and 1981 year classes are both indicated by the JSSR youngfish survey and the 0-group survey to be poor. Since the preceding year classes 1977-79. are also very poor, a series of five poor year classes is expected to determine the size of the stock in the coming years. The 1982 year class, which is expected to recruit to the fishery in 1985, is estimated by the surveys to be stronger than the preceding ones, and the 0 mroup survey indicates that the 1983 year class is of even greater strength.

Historic trends in total biomass, catch, fishing mortality and recruitment are given in Figure B.l.2.1, A-C.

B.l.2.4 Short-term prediction

The results of the catch projection are given in Figure B.1.2.2. In the text table below, three management options are listed, which are related to reference points on the Y / R curve (Figure B.1.2.2) as well as to the level of fishing mortality in 1983.

Species: HADDOCK
Area: ICES Sub-areas I and II

1983				Management option for 1984	1984				1985	
Stock biom. (3+)	Spawn. stock biom.	$\bar{F}_{(4-7)}$	Catch $(3+)$		Stock biom. $(3+)$	Spawn. stock biom.	$\stackrel{F}{F}(4-7)$	Catch (3+)	Stock biom $(3+)$	Spawn. stock biom.
158	112	. 24	27	$\mathrm{F}_{0.1}$	143	100	. 17	18	235	91
				$F_{84}=F_{83}$. 24	25	227	85
				$F_{\text {max }}$. 36	35	216	76

Weights in thousand tonnes.

* Expected catch.

Medium-term projection

Calculated spawning stock biomass (SSB) in 1984-88 at the beginning of the year and calculated catch 1984-86 for different management strategies associated with constant fishing mortalities and constant catch levels.
Catch figures for 1987 and 1988 are dependent on recruiting year classes beyond 1983 and are therefore not given in the text table below.
Recruitment: Year class $1982 \quad 165$ million haddock at age 3
(from 0-group survey)

Management strategy	$\bar{F}_{0.1}=0.17$		$\overline{\mathrm{F}}_{\text {max }}=0.36$		$\begin{aligned} \bar{F} & =\bar{F}_{1983} \\ & =0.24 \end{aligned}$		$\begin{gathered} T A C \\ 5 \end{gathered}$		$\begin{array}{r} \text { TAC } \\ 10 \end{array}$		$\begin{array}{r} \text { TAC } \\ 15 \end{array}$		$\begin{array}{r} \text { TAC } \\ 20 \end{array}$		$\begin{array}{r} \text { TAC } \\ 25 \end{array}$	
Year	SSB	Catch	SSB	Catch	SSB	Catch	SSB	F	SSB	F	SSB	F	SSB	F	SSB	F
1984	100	18	100	35	100	25	100	0.04	100	0.09	100	0.14	100	0.19	100	0.24
1985	91	19	76	33	85	25	103	0.04	99	0.08	94	0.13	90	0.18	85	0.24
1986	95	35	69	59	85	45	120	0.02	111	0.04	102	0.07	93	0.10	85	0.13
1987	135		94		117		180		167		154		142		129	
1988	226		153		194		335		297		279		261		243	

Weights in thousand tonnes

B.1.2.5 Management advice

From the very low 1979-80 level, the spawning stock in 1982 has increased slightly to about 118000 tonnes, due to the contribution by the good 1975 and 1976 year classes. However, this development ceased in 1983, and no substantial increase in spawning stock biomass can be expected before 1987, since all the year classes recruiting to the spawning stock during this period are poor. If management aims at maintaining a reasonable spawning stock size over a longer period, a cautious approach in the longterm policy is advisable.

Fishing at Fo.l would result in a catch of 20000 tonnes in 1984. Maintaining this level of catch beyond 1984 would result in only a slight reduction in spawning stock biomass from the 1984 level up to 1986. From 1987 onwards an increase in spawning stock biomass is expected, reaching the long-term average by 1988 as a result of the contribution of the 1982 and 1983 year classes to the spawning stock.
ACFM recommends that fishing mortality on this stock should be reduced to FO.1 and that a TAC of 20000 tonnes should be set for 1984.

In setting the TAC for haddock, it has to be remembered that a considerable part of the haddock catch is taken as by-catch in the fisheries for other species (mainly cod) in Sub-areas I and II. The ratio of cod and haddock in the trawl catches indicates that, at present biomass levels, the amount of haddock taken as by-catch in the trawl fishery for cod in 1984 is expected to be about $1 / 7$ of the cod catches.
B.1.3 Distribution of cod in and around the "Mentella box"

The available material consisted of distribution maps from the Norwegian bottom trawl surveys in the Barents Sea in the months January to March 1981-83 for cod greater than 41 cm and for cod less than 42 cm (Figures 18 to 23 of the Working Group report) and the paper by L M Shestova and E G Lukmanov (1983) on "Biological substantiation of redfish fishery in the Barents Sea" (Doc. C.M.1983/G:34, pp.1-21, ICES).
On the basis of this limited material, no firm advice on the distribution of cod in and around the "Mentella box" can be given at present.

The ICES Redfish Working Group will be asked to consider this matter further.

B. 2	Redfish in Sub-areas I and II
B.2.1 Recent catches and TACs, in ' 000 tonnes:	

	1979		1980		1981		1982		1983
	$\begin{aligned} & \text { Rec } \\ & \text { TAC } \end{aligned}$	Actual catch	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \\ & \hline \end{aligned}$	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual $\text { catch } 1 \text {) }$	Rec. TAC
Golden redfish (S.marinus)	22	26	19	23	19	20	14	15	153)
Beaked redfish (S.mentella	135	87	81	79	70	81	70	115	702)
Total	157	113	100	102	89	101	84	130	85

1) Preliminary
2) Catch level preferred by ACFM
3) Precautionary TAC

A considerable increase in total redfish catches in the North-East Arctic region was recorded in 1982. The preliminary catch figure in 1982 is 130000 tonnes compared to 101000 tonnes in 1981.
In Sub-area I the total catch increased from 1800 tonnes in 1981 to 2600 tonnes in 1982. In Division IIa, the total catch increased from 73000 tonnes in 1981 to 78000 tonnes in 1982, and in Division IIb the catch in 1982 was 50000 tonnes in comparison with 27000 tonnes in 1981.

Compared to 1981, the total landings in 1982 of S. marinus decreased from 20000 tonnes to 15000 tonnes, and those of S mentella increased from 81000 tonnes to 115000 tonnes. Thus the catch of 15000 tonnes of S . marinus was close to the catch level of 14000 tonnes recommended by ACFM, while for S. mentella the ACFM recommendation of 70000 tonnes was exceeded by 64%.

B.2.2 Sebastes marinus in Sub-areas I and II

In the absence of any effort data or fishery-independent data it was not possible to estimate the terminal fishing mortality in the VPA. An attempt was made to calculate a maximum sustainable yield for this stock from a general production model which could be fitted without effort data, but this method gave no reliable results. ACF'M therefore concluded that an analytical assessment of the present state of the stock is not possible with the data available. ACFM, therefore, can only recommend that the precautionary TAC of 15000 tonnes set for 1983 should be retained in 1984.
B.2.3 Sebastes mentella in Sub-areas I and II

The terminal fishing mortality in the VPA was estimated on the basis of total effort values, which were calculated from catch per unit effort data observed in the USSR fishery.

According to VPA results the mean fishing mortality on age groups 8-19 was low in the period 1965-74, fluctuating around 0.08. An increase to an average level of 0.49 was recorded for the period 1975-77, with a peak of 0.54 in 1976.
From 1978 to 1981 the fishing mortality remained fairly stable at a level of 0.24 . An increase to 0.34 was observed in 1982.
The total stock biomass increased steadily from about 300000 tonnes in 1965 to about 1000000 tonnes in 1975. By 1979 it decreased to about 550000 tonnes and remained fairly stable up to 1982. The spawning stock biomass shows similar trends up to 1978. Since 1978 an increase from 130000 tonnes to 175000 tonnes in 1982 was recorded.
The present assessment gives estimates of total stock biomass and spawning stock biomass for 1982, which are somewhat below those estimated in last year's report.

For catch projections it was assumed that a catch of 100000 tonnes will be. taken in 1983. This catch level corresponds to the TAC established by countries responsible for the management of S. mentella in Sub-areas I and II. The fishing mortality required to achieve this catch is $F(8-19)=0.32$. Furthermore, the average recruitment of 412×10^{6} at age 6 was applied in the projections for 1983-85.
Based on these assumptions, several management strategies have been considered. The results of catch predictions for selected reference fishing mortalities in 1984 are given in the text table below.

Sebastes mentella
Sub-areas I and II

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\bar{F}_{(8-19)}$	Catch		Stock biom.	Spawning stock biomass	${ }^{F}(8-19)$	Catch	Stock biom.	Spawning stock biomass
529	168	. 32	100	$\mathrm{F}_{0.1}$	523	156	. 14	45	575	176
				$F_{\text {max }}$. 24	71	546	159
				$\overline{\mathrm{F}}_{84}=\overline{\mathrm{F}}_{82}$. 34	97	518	143
				$\overline{\mathrm{F}}_{84}=\overline{\mathrm{F}}_{83}$. 32	94	521	145
				TAC 100000 t			. 35	100	514	141

Weight in ' 000 tonnes.
Stock biomass: fish at age 6 to 24 .
Spawning stock biomass from maturation ogive.

In considering management options, ACFM recommends that the TAC level of 70000 tonnes preferred by ACFM for 1983 should be retained in 1984. This corresponds to the $\mathrm{F}_{\max }$ level of exploitation.
B.2.4 Mesh size and "mentella box" problem

For two reasons this problem could not be considered at the Working Group meeting. Firstly, no representatives from the JSSR were present; secondly, the data provided by the USSR did not arrive until the second last day of the meeting.

The problem should be in the terms of reference for next year's meeting of the Working Group.
B. 3 Greenland Halibut in Sub-areas I and İ
B.3.1 Recent catches and recommended TACs, in ' 000 tonnes:

1979		1980		1981		1982		1983
Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch	$\begin{aligned} & \operatorname{Rec} \\ & \left.\mathrm{TAC}^{2}\right) \end{aligned}$	Actual catch 1)	$\begin{aligned} & \operatorname{Rec} \cdot 2) \\ & \text { TAC } 2) \end{aligned}$
25	17	14	13	12	15	12	16	17

1) Preliminary
2) Catch level preferred by ACFM

The total catch in 1981 was 15000 tonnes, i.e., 25% above the TAC of 12000 tonnes for that year. In 1982 the total catch was 16000 tonnes, or 36% above the 12000 tonnes catch level preferred by ACFM.

B.3.2 State of the stock

For 1982 only the age composition of the Norwegian catches was available. Since the Norwegian catches only make up 20% of the total catch, and since the age composition of the Norwegian trawl catches has in the past differed considerably from the age compositions of other trawl fisheries, it was decided that it was not practicable to establish an age composition for the total fishery in 1982. The VPA was, therefore, done for the same period (1970-81) as last year. For all age groups except the 5-year olds in 1981 the input fishing mortalities were the same as those adopted last year. The F on age group 5 was adjusted to give about average recruitment at age 3 in 1979.
The average fishing mortality on age groups 7-11 was at a level of 0.14 in 1981. For comparison the $\mathrm{F}_{0} .1$ and $\mathrm{F}_{\max }$ values are 0.12 and 0.20, respectively.

The VPA results show that the biomass of the total stack and the spawning stock decreased continuously from 1970 to 1978. Since 1978 an increasing trend seems to have occurred.
B.3.3 Catch projections

The stock composition at the beginning of 1984 was estimated using the average exploitation pattern for 1977-78 for the years 1982-84, an average recruitment of 36.6×10^{6} at age 3 ; the recorded catch of about 16000 tonnes in 1982 and the TAC of 17000 tonnes in 1983. The catch in 1984 for selected values of fishing mortality, together with the resulting stock biomass and spawning stock biomass in 1985, are given in the text table below.

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\|\overline{\bar{T}}(7-11)\|$	Catch		Stock biom.	Spawning stock biomass	$\sqrt{F}(7-11)$	Catch	Stock biom.	Spawning stock biomass
164	62	. 139	17	$\overline{\mathrm{F}}_{84} \overline{\mathrm{~F}}^{\text {F }}$ 82	175	77	. 145	19.2	184	85
				$\overline{\mathrm{F}}_{84}=\overline{\mathrm{F}}_{83}$. 139	18.5	185	85
				${ }^{\mathrm{F}} 0.1$. 115	15.5	188	88
				$F_{\text {max }}$. 196	25.1	177	80
				$\begin{aligned} & \text { Catch }= \\ & \text { TAC } 1983 \end{aligned}$. 127	17.0	186	86

Weight in ' 000 tonnes.
Stock biomass: fish at age 3 to 16 .
Spawning stock biomass: fish at age 9 to 16.

Keeping the TAC at a level of 17000 tonnes would bring the fishing mortality close to Fo.l Thus, 17000 tonnes is the level preferred by ACFM for the TAC in 1984.
B. 4 Redfish in Sub-areas V and XIV
B.4.1 Recent catches and TACs in ' 000 tonnes:

	1979	1980		1981		1982		1983
	Actual catch	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \\ & \hline \end{aligned}$	Actual catch	Rec. TAC	Actual catch	$\begin{aligned} & \mathrm{Rec} \\ & \text { TAC } \\ & \hline \end{aligned}$	$\left.\begin{array}{\|c} \text { Actual } \\ \text { Catch } \end{array}\right)$	Rec. TAC
Golden redfish 58 (s.marinus)	75	58	88	60	101	60^{2})	122	60^{2})
$\begin{aligned} & \text { Beaked } \quad 12 \\ & \text { redfish } \\ & \text { (S.mentella) } \end{aligned}$	23	7	27	25	44 ,	123)	47	123)
Total 70	98	65	115	85	145	72	169	72

1) Preliminary.
2) Catch level preferred by ACFM.
3) Precautionary TAC.

The total catch from the Irminger Sea redfish stock complex increased from about 146000 tonnes in 1981 to about 169000 tonnes in 1982 , i.e., by about 16%.
In Division $V a$ the total catch increased further from 96000 tonnes in 1981 to 115000 tonnes in 1982 as a result of increased effort in the redfish fishery. In Division $V b$ the total catch went up from 7100 tonnes
to 9600 tonnes. Catches in Sub-area XIV increased slightly from 43000 tonnes in 1981 to 44000 tonnes in 1982.

B.4.2 Sebastes marinus in Sub-areas V and XIV

Catch per unit effort data from the Icelandic fishery for the period 1978-82 have been used to calculate total effort in the redfish fishery in Sub-areas V and XIV. Based on the proportion of S. marinus and S.mentella in the catches the effort data have been allocated to different species. The fishing mortality for 1982 in the VPA was estimated iteratively from the effort data derived for S. marinus, According to this procedure the average F in 1982 over age groups 14 to 23 was at a level of 0.33 , which is the highest on record. Compared with last year's assessment the exploitation pattern from age 2 onwards was revised according to the mean fishing mortality per age group in 1977-79. The exploitation pattern for age groups 7 to 10 was adjusted to give about average recruitment at age 7 for the years 1979 to 1982.

The results of the VPA show that total biomass was relatively stable in the period 1976-82 at about 1000000 tonnes. Spawning stock biomass increased from about 350000 tonnes in 1976 to 450000 tonnes in 1982, but the 1982 assessment showed a decline in the spawning stock biomass from 300000 tonnes to 260000 tonnes in the same period. The VPA results should therefore be considered with caution, because of uncertainties in the estimated terminal F and the exploitation pattern, but nevertheless ACFM considers the assessment as the best one which can be made at present.
F'or catch projections, average recruitment of 282×10^{6} at age 7 was used for the years 1983-85. The following text table gives the results for selected reference fishing mortalities in 1984.

For the management of this stock in 1984, it seems appropriate to reduce the present high fishing mortality to the 1979-81 level, i.e., $F=0.2$. ACFM, therefore, recommends that the TAC in 1984 should not exceed 80000 tonnes.

Note on the option table
The options in the following text table refer to a catch level in 1983 of 120000 tonnes. The weights given in the table can be corrected by adding (if the 1983 catch is below 120000 tonnes) or subtracting (if the 1983 catch is higher than 120000 tonnes) the following percentages for each 5000 tonnes deviation:

| Catch | 1.167% |
| :--- | :--- | :--- |
| Spawning stock biomass. . | 0.781% |
| Total biomass (7+) | 0.389% |

Redfish (Sebastes marinus)
Sub-areas V and XIV

1983				Management option for 1984	1984				1985	
$\begin{aligned} & \text { Stock } \\ & \text { biom. } \end{aligned}$	Spawning stock biomass	$\mid \bar{F}$	Catch		Stock biom.	Spawning stock biomass	F	Catch	Stock biom.	Spawning stock biomass
1056	435	0.316	120	$\begin{aligned} & \text { Maintainin } \\ & 1983 S_{S B} \end{aligned}$. 245	93	1015	435
				$\overline{\mathrm{F}}_{84}=\overline{\mathrm{F}}_{79-81}$. 20	78	1030	450
				$\begin{array}{\|c\|} \hline \text { Maintaininn } \\ 1982 \text { level } \\ \text { of exploit } \end{array}$. 33	120	990	410

Weight in 1000 tonnes.
Stock biomass: fish at age 7 to 30.
Spawning stock biomass from maturation ogive.
B.4.3 Sebastes mentella in Sub-areas V and XIV

No effort data and no fishery-independent data were available from which a realistic estimate of the fishing mortality in 1982 could be made. ACFM was therefore in the same position as last year and could neither compute a VPA nor the subsequent catch projection in a situation where none of the parameters could be estimated with sufficient reliability. In view of the increase in catches during the last three years, a cautious approach seems to be advisable in the management of this stock. ACFM, therefore, recommends a precautionary TAC of 25000 tonnes in 1984, which is based on the average catch level during the period 1977-80.
B. 5 Greenland Halibut in Sub-areas V and XIV
B.5.1 Recent catches and recommended TACs in 1000 tonnes:

1979		1980		1981		1982		1983
Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch I)	Rec. TAC
15	24	15	31	15	20	19^{2}	32	24^{2}

I) Preliminary
2) Catch level preferred by ACFM

Total catches of Greenland halibut in Sub-areas V and XIV increased considerably from 20000 tonnes in 1981 to about 32000 tonnes in 1982. The total catch in 1982 was thus 60% above the catch level preferred by ACFM.

B.5.2 State of the stock

Catch per unit effort values were available from the Icelandic fishery for the years 1978-82. Using these data, the terminal fishing mortality in 1982 in the VPA was calculated iteratively from a linear relationship between fishing mortality and total effort. This method produced an F of 0.22 on age groups 8 to 1.3 in 1982.
According to the VPA total stock biomass increased from 185000 tonnes in 1975 to 286000 tonnes in 1982. The spawning stock biomass increased from 59000 tonnes in 1975 to about 120000 tonnes in 1980 and remained stable at this level up to 1982.

B.5.3 Catch projection

For catch projections it was assumed that the total removals in 1983 will be 20000 tonnes, i.e. a reduction compared to the 1982 catches. This catch corresponds to an average fishing mortality of 0.13 . The results of catch projections for selected reference fishing mortalities in 1984 are given in the text table below.

Greenland Halibut
Sub-areas V and XIV

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\bar{F}_{(8-13}$	Catch		Stock biom.	Spawning stock biomass	$F(8-13)$	Catch	Stock biom.	$\left\{\begin{array}{l} \text { Spawning } \\ \text { stock } \\ \text { biomass } \end{array}\right.$
289	121	0.13	20	${ }^{1} 0.1$	304	132	0.15	23	316	142
				$\overline{\mathrm{F}}_{84}=\overline{\mathrm{F}} 82$			0.22	34	304	132
				$\bar{F}_{84}=\bar{F}_{83}$			0.13	20	320	145

Weights in 1000 tonnes.
Stock biomass: fish at age 4 to 18.
SSB from maturity ogive.

The TAC preferred by ACFM for 1984 is 23000 tonnes, which corresponds to the $F_{0.1}$ level of fishing mortality.
B. 6 Stocks off East Greenland
B.6.1 Cod at East Greenland
B.6.1.1 Recent trends in the fishery

The major part of the cod catch from East Greenland waters is obtained by trawlers either from a directed cod fishery or as a by-catch in the redfish fishery. This fishery takes place on the offshore banks. Landings declined from 32000 tonnes in 1971 to 6000 tonnes in 1975. This decline was mainly due to small recruiting year classes resulting
in a very low abundance of the fishable stock. From 1977 to 1980 no directed cod fishing at East Greenland was allowed, except for a small quantity to be taken by Greenland vessels. From 1981, vessels other than Greenlandic were again allowed to catch cod in a directed fishery.
The nominal landings from Sub-area XIV, as reported to ICES, have continued to decline during the period 1977-82 but the reported catches seem to be only a small part of the total catch in the Subarea. Table B.6.1.1 includes estimates of the unreported ląndings for the years 1977-79, landings reported for Sub-area XII from the years 1980-82, and for 1982 also some landings reported from Division Vb , which are thought to have been caught in Sub-area XIV. Table B.6.l.l also includes estimates of marketable cod taken in the redfish fishery but discarded as a result of the by-catch regulations, which allows only 10% cod in the catch of redfish. In 1982 this regulation was in force only for the first months.
Since 1977 the estimated total catch of cod in East Greenland waters has fluctuated between 12000 tonnes and 34000 tonnes. The 1982 catch figure used in the assessment was 27000 tonnes.

B.6.1.2 Groundfish biomass survey results

Under the present conditions the information available from the commercial fishery still does not adequately reflect the situation in the development of the East and West Greenland cod stock and hence does not allow valid assessments to be based on fisheries data. Groundfish survey programs were therefore introduced by the Federal Republic of Germany off East Greenland in 1980. The existing program off West Greenland was intensified in 1982 in order to obtain reasonable estimates of the trawlable biomass of cod in both areas.
Estimates of the trawlable biomass of cod as obtained from the 1980 to 1982 surveys off East Greenland showed an increase of the trawlable biomass from 63000 tonnes in 1980 to 88000 tonnes in 1981, followed by a drastic decline to only 20000 tonnes in 1982. The decline observed in 1982 may have been caused by heavy fishing and/or emigration out of the area. The high figure of the trawlable biomass off East Greenland in 1981 may partly have been due to further immigration of older cod (namely of the strong 1973 year class) from West Greenland, but also by an overestimate of the trawlable biomass caused by the comparatively late date of the survey in 1981 which may have encountered pre-spawning concentrations.

In a situation without considerable immigration and emigration, the survey stock can be used directly as the starting population at the beginning of the following year, together with recruitment estimates, for the purpose of calculating catch and stock size levels for different fishing mortalities in that year.
In the East Greenland area the situation is quite different. There is a larval drift with currents from Iceland via East Greenland waters to the West Greenland banks. The magnitude of this drift and the survival rate of the larvae seem to vary much from year to year. In some years the drift seems negligible, while in other years, e.g., in 1963 and 1973, considerable numbers of larvae seem to have drifted from Iceland to East Greenland and to the southern part of West Greenland.

Considerable and variable migration takes place in the area (see Figure B.6.1.2). Tagging experiments carried opt at Greenland and Iceland show that mature cod at West Greenland migrate to Fast Greenland and some of them further to Iceland. Results of tagging experiments carried out in East Greenland waters also show that only mature cod from that area migrate to Iceland. On the other hand, in some years immature cod migrate from East Greenland to West Greenland. At Iceland, tagging experiments show that migration of cod from Icelandic to Greenland waters hardly occurs and, therefore, the migrations from Greenland waters to Iceland can be regarded as a one-way emigration.
The estimated proportion of mature cod migrating from the combined West and East Greenland stocks to Iceland is 25%, and 45% from the East Greenland stock alone. On this basis the emigration to Iceland during 1982 is estimated to about 5.9 million fish corresponding to 33000 tonnes. Consequently, for the East Greenland cod population the survey estimate cannot be used directly for projection purposes.
In order to arrive at an estimate of population size, which could serve as the initial population for a projection, the basic idea was. to use the proportion of the stock calculated for the beginning of a year from the survey results in autumn of the same year to the survey results of the preceding autumn. In this way a factor for each age group could be developed, which would allow the autumn 'survey stock' to be raised to account for partial recruitment from East Greenland and immigration from West Greenland in the following year.

B.6.1.3 Management advice for 1983

The total biomass, as estimated for the beginning of the year by this method, decreased from the 1981 level of about 67000 tonnes to about 57000 tonnes in 1982 and about 31000 tonnes in 1983.
Spawning stock biomass shows a similar trend over the three years, but the reduction in spawning stock biomass was more pronounced in 1981, when the fishery concentrated on the strong 1973 year class. In 1983 this year class will have contributed only about 18% to the spawning stock biomass. No further significant contribution can be expected from it in 1984.
Depending on the fishing mortality generated in 1983, the corresponding catches and resulting spawning stock biomass estimates in 1984 compared to 1982 are shown in the text table below.
COD
East Greenland

1982			Management option for 1983	1983			1984
Spawn. Stock biomass	${ }^{\bar{F}}(5-10)$	$\begin{aligned} & \text { Catch } \\ & (4+) \end{aligned}$		Spawn. stock biomass	$\overline{\mathrm{F}}_{(5-10)}$	$\begin{aligned} & \text { Catch } \\ & (4+) \end{aligned}$	Spawning stock biomass x)
36.4	0.85	27		26.5			
			$F_{83}=0.5 \mathrm{xF}_{82}$		0.425	9.0	17.0
			$\mathrm{F}_{83}=\mathrm{F}_{81}$		0.22	5.1	20.8
			intaining 82 evel of explo		0.85	15.1	11.0

Weights in 1000 tonnes.
x) Immigrants in 1984 not included (see section below).

In interpreting the projected spawning stock biomass figures, it must be kept in mind that the estimates for 1984 do not include estimates of immigrants from West Greenland. A rough guess of the number of immigrants in 1984 has an upper limit equal to the immigration estimated for 1983, corresponding to about 8000 tonnes. This figure should be added to the projected biomass figures if comparison with previous levels is intended.

By maintaining the 1982 exploitation level in 1983, the spawning stock biomass will be at a very low level in 1984. In relation to management objectives, the maintenance of a viable spawning stock is therefore the most important one.
The cod fishery at East Greenland takes place mainly during the first half of the year. In 1982, 62% of the total cod catch was taken during the period January-May (Table B.6.1.2); By assuming the same fishing mortality in 1983 as in 1982 at the end of May 1983, the estimated catch may have reached 9000 tonnes. If the timing of this advice still allows any consequent management action to be taken, then ACFM recommends that directed cod fishery should be stopped immediately for the remainder of 1983.

B.6.1.4 Management advice for 1984

At its November 1983 meeting ACFM decided that it would be possible to advise on a preliminary TAC for 1984 for this stock. This should be based on preliminary results of the 1983 autumn groundfish survey by the research vessel "Walther Herwig!". The preliminary results are:

The catch of the Federal Republic of Germany fleet in 1983 is estimated at 13000 tonnes. Catches taken by Greenlandic vessels are of the order of about 200 to 300 tonnes.
Stock size in numbers at the beginning of 1984 was estimated in the following way (details of the calculation are given in Table B.6.1.2):

Fishing mortality which is associated with a catch of 13000 tonnes in 1983, i.e., 0.68 , was applied to the stock size at the beginning of 1983 from the previous assessment. The resulting age composition of the stock at the end of 1983 was applied to the estimated population numbers from the survey to give the numbers per age group in October 1983.
The calculated biomass, using mean weights at age from the previous assessments deviates from the estimated survey biomass by -7.5%. This indicates that the approach taken, to use the age composition from the previous assessment, might be justified. The estimated age composition also compared reasonably well with the length compositions obtained from the survey catches (Figure B.6.1.I).
(ii) In order to account for fishing, natural mortality and emigration in November and December, $1 / 6$ of the 1983 fishing mortality and of the natural mortality (including the emigration rate from age 7 onwards) was applied to give the Sub-area XIV population at 1 January 1984.
(iii) From the NAFO assessment of the West Greenland cod stock, the number of emigrants to East Greenland was estimated, based on the emigration coefficient of 0.05 . The resulting number of immigrants was then added to the respective age groups of the East Greenland stock estimated for January 1984. This stock was used to project catches in 1984 for different levels of fishing mortality.
(iv) Recruitment of the 1980 year class at age 4 in 1984 was estimated from the ratio of the 1980/79 year class in the West Greenland assessment, which was applied to the estimated number of 4 year olds in the previous East Greenland assessment.

Summarised results of the previous assessments, together with management options for 1984 from the preliminary assessment, are given in the text table below. Resulting spawning stock biomass figures for 1985 are not given since they do not include immigrants in 1985 and are, therefore, not comparable with those given for 1981-84.
It should be noted that in this preliminary assessment no survey correction factor was used to account for partial recruitment.

1981				1982				1983				1984			
Total biom.	Spawn. stock biom.	\bar{F}	Catch	Total biom:	Spawn. stock biom.	$\overline{\mathrm{F}}$	Catch	Total biom.	Spawn. stock biom.	\bar{F}	Catch	Total biom.	Spawn. stock biom.	- $\quad \stackrel{F}{\mathrm{~F}}$	Catch
67	59	0.22	16*	57	36	0.85	27*	31	27	0.68	13	27	23	$\mathrm{F}_{84}=0.5_{83}=0.34$	6
														$\mathrm{F}_{84}=0.8 \mathrm{~F}_{83}=0.55$	9
														$\mathrm{F}_{84}=\mathrm{F}_{83}=0.68$	11

Heights in thousands of tonnes
*incl. discards
This preliminary analysis of the 1983 survey indicates that the stock is reduced, and consequently the 1984 TAC will be low. ACFM therefore recommends a preliminary 1984 TAC of 6000 tonnes, subject to review early in 1984, when the full assessment will be available to ACFM.
B.6.1.5 Interaction between cod and redfish fisheries at East Greenland

A detailed knowledge of the interaction between the two fisheries (cod and redfish) seems to be necessary background information in order to ensure proper conservation of both stocks. ACFM therefore recommends that detailed studies be conducted to determine the degree of interaction between the fisheries for cod and redfish, including their seasonal and geographical distribution as well as the 'mixed' fishery in Sub-area XIV.
B.6.2 Shrimp (Pandalus borealis) at East Greenland
Recent catches (in tonnes):
1978
1979

* Provisional.

This stock has been assessed by the Scientific Council of NAFO, and management advice on the management of the fishery in 1983 has been passed on to managing bodies in the January 1983 Provisional Report of that Council (NAFO SCS Doc. 83/1/1).
The main fishing season is during April-May and June.
Based on continuing declines in commercial catch rates, particularly in the spring which may reflect a sharp decline in spawning biomass of females from 1980 to 1982, and based also on some new biological information, the Scientific Council of NAFO advised that the overall TAC for 1983 should not exceed the level of 4200 tonnes previously advised for 1982.
ACFM notes and draws attention to the concern expressed by NAFO that this stock may be very sensitive to possible overexploitation and that the advised TAC might even be considered too high. Although no reliable estimates of the stock in Süb-area XIV are available, ACFM expresses concern at the evidence (as described in the NAFO Report referred to above) that this stock may be at a dangerously low level, and points out that maintaining the 1982 TAC could therefore result in increased fishing mortality.
ACFM supports the NAFO recommendation for further research work on this stock.

B. 7 Atlanto-Scandian Herring

B.7.1 The Icelandic spring-and summer-spawning herring
B.7.1.1 No signs of recovery of the Icelandic spring-spawning herring were observed and the fishery in 1982 was entirely based (99.8%) on Icelandic summer spawners.
The landings of summer-spawning herring from 1973-82 are given in Table B.7.1.I. The 1982 landings were about 53900 tonnes. Of these about 14500 tonnes were taken by drift-nets, 1900 tonnes by set-nets, and 37500 tonnes by purse-seines. The fishery took place during the last four months of the year. The text table below gives the catches, the set TACs and the recommended TACs during the last four years for this fishery.

Landings and TACs (in tonnes $\times 10^{-3}$) of Icelandic
summer-spawning herring $1979-82$

Year	Landings		TACs
1979	45.1		Rec.TACs
1980	53.3	35.0	35.0
1981	39.5	50.0	45.0
1.982	53.9	42.5	40.0
		50.0	50.0

B.7.1.2 During the period 1975-77 the catches were dominated by one year class, i.e., the 1971 year class. In 1979 two new strong year classes had recruited to the fishery, that is the 1974 and the 1975 year classes. These year classes dominated in the catches until 1981. However, the catches in 1982 are based on a much wider range of age groups, especially those belonging to the 1979-1974 year classes. Out of the 210 million herring caught in 1982, 20.6 million were immature or just about 10% by numbers.
B.7.1. 3 The state of the Icelandic summer-spawning herring has been monitored by acoustic abundance surveys since 1973. It has been shown (Jakobsson, 1982) that the acoustic estimates are correlated with the subsequent VPA outputs.
As discussed in the report of the Atlanto-Scandian Herring and Capelin Working Group 1982 (Anon., 1982), the summer-spawning herring assembled at the beginning of 1982 on new wintering grounds near southwest Iceland. During January 1982 acoustic abundance estimates were obtained under excellent weather conditions. Despite a considerable effort in December 1982 and in January 1983 a new acoustic estimate of the adult stock could not be obtained, either because the herring were too close to the coast, or because long spells of very bad weather, especially in January 1983, prevented the work at sea. However, the 3-ringers, i.e., the 1979 year class, had assembled in January 1983 in one fjord at the east coast and two almost identical acoustic estimates were obtained. In the absence of a new acoustic estimate for the adult stock it was decided to use the results of the January 1982 acoustic survey and the catches taken in 1982 to calculate the fishing mortality for the adult herring (4-ringers and older). On this basis, the fishing mortality was $\mathbb{F}_{4+}=0.25$. The fishing mortality for 3 -ringers was taken to be about half of the adult F. This is a conservative estimate since an acoustic estimate of the year class as l-ringers would have resulted in F on 3 -ringers of only about 25% of the adult F. The fishing mortality for 2-ringers in 1982 of $\mathrm{F}_{2}=0.05$ was calculated from the new acoustic estimate of the 1979 year class in 1983 and the catches taken in 1982.
B.7.1.4 Jsing catch at age data and input fishing mortalities derived as described above, a VPA was run. The results were similar to those given in the 1982 report of the Atlanto-Scandian Herring and Capelin Working Group (Anon., 1982). The fishery for this stock was re-opened in 1975, and according to this assessment, the fishing mortality for 4 -ringers and older herring was about 0.15 during the first three years of exploitation. During the period 1977-82 the fishing mortality has been around, or just above, 0.2.
The spawning stock biomass increased from about 11000 tonnes in 1972 to about 200000 tonnes in 1978. During the four-year period 1979-82 the spawning stock biomass has been about 250000 tonnes.
B.7.1.5 According to the present assessment, the spawning stock biomass has remained stable at a level of about 250000 tonnes during the last four years. In 1983 it is expected to increase somewhat. This level of stock abundance is within the range of spawning stock biomass during the 1954-63 period of high and steady recruitment. Catches have been calculated, over a range of Fs , for 1983 using a 1983 starting population as derived from the VPA except for the 1- and 2-ringers in 1983 which are assumed to be 400 million as l-ringers. These age groups are a very small proportion of the catch. The exploitation pattern has been assumed to be the same as in 1982. The resulting catches and
spawning stock biomasses over a range of Fs are illustrated in Figure B.7.l.1, which also shows the yield per recruit and spawning stock biomass per recruit.
Projections of stock abundance and catches in 1000 tonnes for some selected F values are given in the text table below.

1982		1983			1984
Catch	Fr_{4+}	Spawn. stock at 1 July	F_{4+}	Catch	Spawning stock at I July
54	0.25	265	$\begin{aligned} & 0.1 \\ & 0.22\left(F_{0.1}\right) \\ & 0.3 \end{aligned}$	$\begin{aligned} & 24 \\ & 50 \\ & 66 \end{aligned}$	$\begin{aligned} & 303 \\ & 277 \\ & 261 \end{aligned}$

In 1000 tonnes.
During the last five years (1977-82) the fishing mortality in the adult component of this stock has been about, or just above, 0.2 . Since the stock abundance has also been at a steady level and its abundance is within the target range of spawning biomass (200 0000-300 000 tonnes) which during the period 1954-63 gave high and steady recruitment, it would seem appropriate that the exploitation of this stock should be continued at about the $F=0.2$ level.

ACFM therefore prefers a catch level of 50000 tonnes in 1983.

B.7.2 Norwegian spring spawners

Recommended TACs, quotas and catches in recent years are given below in thousand tonnes:

1980			1981			1982		
Rec	Nat. quota	$\mathrm{Catch}^{\text {1) }}$	Rec. TAC	Nat. quota	Catch ${ }^{2}$	Rec. TAC	Nat. quota	Catch ${ }^{2}$
0	9.3	17.6	0	9.3	12.8	0	12.0	16.7

1) Including unreported catches of approximately 10000 tonnes.
2) Including unreported catches of approximately 5000 tonnes.

Trends in the fishery

In addition to the national quotas, the fishermen were allowed to fish herring with gill nets for bait and their own consumption throughout the year. These catches are estimated to have been about 5000 tonnes in 1982.

The commercial fishing season was restricted to 30 August 1982 15 February 1983. A minimum landing size of 25 cm , with allowance of 15% undersized fish (in weight) was in force. Certain areas with dense herring concentrations were closed for fishing. The reported catch in the autumn fishery in 1982 was 10447 tonnes consisting predominantly of 3 year old herring (1979 year class).
By-catches of 0-group herring in the sprat fishery occur frequently. The by-catches have increased in 1982 compared to the two previous years. This is associated with the strength of the year classes, the 1982 year class being relatively strong. Catches containing up to 50% of 0 -group herring can be landed. in the sprat fishery.

State of the stock

Based on tagging data the total spawning stock biomass in 1983 is estimated to be 635000 tonnes. This is an increase of about 150000 tonnes compared to 1982. This increase in stock size is mainly due to the relatively strong 1979 year class. The increase in spawning stock biomass has also been reflected in the larval production, which was much higher in 1983 than in any previous year since the larval survey series started in 1976.

Based on these stock estimates and catch data, the fishing mortality in 1982 for the 3-12 year olds was 0.02 .

The 0-group surveys indicate that the year classes 1980 and 1981 are poor, but the 1982 year class seems to be of similar strength as the 1979 year class. However, the results of the 1983 international 0 -group survey in the Barents Sea and various other sources provide evidence to conclude that the 1983 year class is extraordinarily abundant as 0 -group herring and not comparable to any other 0-group index observed since the international 0-group surveys in this area started in 1965.

Management advice for 1984
Management options for 1984 are given in the text table below (in thousand tonnes):

1983				Management option 1984	1984			1985		
Stock biom.	Spawn. stock biom.	$\overline{\mathrm{F}}_{3+}$	Catch		Stock biom.	Spawn. stock biom.	Catch	Stock biom.	Spawn. stock biom.	Catch
925	635	0.03	20	$\begin{aligned} & \overline{\mathrm{F}}=0 \\ & \overline{\mathrm{~F}}=0.03 \\ & \overline{\mathrm{~F}}=0.05 \\ & \overline{\mathrm{~F}}=0.10 \\ & \overline{\mathrm{~F}}=0.15 \end{aligned}$	1145	$\begin{aligned} & 740 \\ & 740 \\ & 740 \\ & 740 \\ & 740 \end{aligned}$	$\begin{array}{r} 0 \\ 23 \\ 38 \\ 74 \\ 109 \end{array}$	$\begin{array}{ll} 1 & 545 \\ 1 & 521 \\ 1 & 504 \\ 1 & 404 \\ 1 & 425 \end{array}$	$\begin{aligned} & 810 \\ & 780 \\ & 770 \\ & 730 \\ & 700 \end{aligned}$	$\begin{array}{r} 0 \\ 26 \\ 42 \\ 79 \\ 110 \end{array}$

The table shows that the spawning stock will not increase to any appreciable degree from 1984 to 1985 under any management option. This is due to the poor year classes of 1980 and 1981 recruiting to the spawning stock in 1984 and 1985.

However, in 1986-87 the 1983 year class will start to recruit to the spawning stock. It is reasonable to believe that the 1983 year class is very much stronger than the relatively good 1979 year class, resulting in greatly improved prospects for the rebuilding of the spawning stock. A fishing mortality on the adult component of the stock of the order of $F=0.05$ will have very little effect on the long-term development of the spawning stock.
In view of the rebuilding of the spawning stock biomass which has already taken place and its anticipated continuation, ACFM recommends a cautious re-opening of the fishery at a level of F not exceeding 0.05. Any higher level of exploitation will reverse the rebuilding of the stock. ACFM therefore recommends a TAC in 1984 of 38000 tonnes to include all catches from the stock and not just the directed fishery.

Additional conservation measures

The collapse of the Atlanto-Scandian herring in the late 1960s was by far the largest loss of fishable biomass recorded in the Northeast Atlantic. Although there has been some increase in stock size in recent years, it is still at a low level compared with the period before the collapse. However, if the 1983 year class turns out to be as strong as indicated by the 0-group survey, and if it is not fished as juveniles, the spawning stock could be rebuilt rapidly in 1986-88.

In order to achieve this, ACFM recommends that a minimum landing size of 27 cm be introduced for herring in ICES Sub-areas I, II, V and XIV. This would protect the 1983 year class until the end of 1985 .
B. 8 Capelin Stocks
B.8.1 Barents Sea capelin

The Barents Sea capelin fishery has been regulated by bilateral fishery management agreements between the USSR and Norway since 1979. TACs and catches (in thousand tonnes) are given in the text table below:

1979			1980			1981			1982		
Rec. TAC	TAC	Catch	$\begin{aligned} & \text { Rec } \\ & \text { TAC } \end{aligned}$	TAC	Catch	Rec. TAC	TAC	Catch	Rec. TAC	TAC	Catch
1800	1800	1783	1600	1600	1649	1900	1900	1987	1600	1700	1759

For the years 1982 and 1983 recommended TACs were in the range of 1.4-1.6 million tonnes and $2.0-2.2$ million tonnes, respectively. USSR and Norway agreed to limit their total catch in 1983 to 2.3 million tonnes.

B.8.1.1 State of the stock

The TAC assessment of the Barents Sea capelin is based on acoustic surveys carried out jointly between USSR and Norway in SeptemberOctober each year. The 1983 survey gave the following abundance estimate by year classes:

Year class	Number $\times 10^{-9}$	Mean weight (g)	Biomass (tonnes $\left.\times 10^{-6}\right)$
$1982(1981)$	$515(496)$	$3.1(2.4)$	$1.61(1.19)$
$1981(1980)$	$200(311)$	$9.5(9.0)$	$1.89(2.80)$
$1980(1979)$	$38(63)$	$18.9(20.9)$	$0.72(1.32)$
$1979(1978)$	$+(2)$	$19.4(24.9)$	$0.01(0.05)$

The 1982 estimates of the corresponding age groups are shown in parantheses. The 1982 year class is abundant and of similar strength as the 1981 year class measured as 1 year olds. The 1981 year class is considerably lower than than the 2 year olds measured in 1982, and weak compared to what was expected from the 1981 year class measured as 1 year olds, the biomass being nearly 30% lower than the biomass of the 2 year olds measured in 1982. The 1980 year class is about 40% lower in number than the 3 year olds in 1982, and nearly 50% lower in weight. The 1979 year class has more or less disappeared. The total stock biomass was estimated to be 4.2 million tonnes compared to 5.4 million tonnes in 1982. Although an underestimate in 1983 cannot be ruled out, the Working Group agreed to base the TAC calculation for 1984 on the results of the 1983 survey. The stock in number by age at 1 January 1984 was calculated from the acoustic estimate in September 1983, reduced by the remaining catch quota after 1 October. By using a maturing length of 14.0 cm and a natural mortality of 0.05 month ${ }^{-1}$ as in previous years, one arrives at the catch/spawning stock biomass relation as shown in the text table below (in thousand tonnes):

Catch	750	630	520	410	300	195
Spawning stock biomass	100	200	300	400	500	600

The catches refer to the period I January - 30 April 1984 .
B.8.1.2 Management advice for the winter fishery in 1984 (Jan-Apr 1984)

A spawning biomass of 500000 tonnes has been used as a guideline for the management of Barents Sea capelin. However, recent studies (Hamre and Tjelmeland, 1982) show that the yield curve has its peak value at a spawning stock level of about 400000 tonnes. A general safe-guarding limit of 500000 tonnes for the spawning stock biomass should be used more strictly in situations of weak juvenile year classes. This year's survey indicated that both the 1982 and 1983* year classes are good.

[^1]Therefore, the Working Group feels that a catch bringing the spawning stock biomass in 1984 somewhat below 500000 tonnes could be allowed. The spawning stock biomass in 1974, 1975, 1979 and 1980 was 200000 - 400000 tonnes, yielding about average recruitment measured as 2 year old fish. On this basis ACFM recommends that a TAC for the winter of 1984 should not exceed 500000 tonnes.
B.8.1.3 Management advice for the autumn fishery in 1984 (15 Aug - 31 Dec) The autumn catch in 1984 is expected to consist mainly of the 1981 and 1982 year classes. It is expected that the 1980 year class would be depleted as 4 year old fish due to the present low number of fish and the fast maturation resulting from the present high growth rate.
By projecting the immature stock, i.e., capelin below 14 cm one year ahead using $M=0.05$ per month and a growth rate as in 1982 and a strength of the 2 year olds of 270×109 in 1984, a total catch of 1.4 million tonnes taken in the $1984 / 85$ seasons is calculated to reduce the potential spawning stock in 1985 to a level of 500000 tonnes. In previous years equal catches in autumn and winter have been assumed. However, the consequence of the failure of one or more of the assumptions underlying the $1 \frac{1}{2}$ year forecast calculation can be made less severe by allocating a smaller fraction of the catch on the autumn fishery. A wrong prognosis may then have a smaller effect on the autumn stock. Therefore, an autumn catch of 600000 tonnes is recommended.
B.8.2 Capelin in the Iceland - East Greenland - Jan Mayen area

For the last four years, Iceland and Norway have bilaterally agreed to limit their catches in order to preserve the spawning stock, and since the 1982 winter season a complete fishing ban has been in forse (Table B.8.2). Recent agreed TACs and catches for the capelin in the Iceland - East Greenland - Jan Mayen area are given in the text table below (in thousand tonnes):

1979/80			1980/81			1981/82			1982/83	
Prel. TAC	Agreed TAC	Catch	Prel. TAC	Agreed TAC	Catch	Prel. TAC	Agreed TAC	Catch	Prel. TAC	Agreed TAC
650	850	962	775	450	680	700	-	626	-	0

Preliminary TACs have been set prior to the fishing season and have been based, mainly, on the indices of abundance derived from the 0-group surveys. The agreed TACs have been based on acoustic abundance estimates obtained in October and January each year.
B.8.2.1 Preliminary advice for autumn 1983

At the November 1982 meeting of ACFM, the Committee was not in a position to give any final advice for the autumn 1983 - winter 1984 fishery for capelin in the Iceland - East Greenland - Jan Mayen area. This was due to the uncertainty about the acoustic estimate of juvenile capelin. A new estimate was expected from a survey carried out in January-February 1983.

The results of this survey were evaluated by correspondence by the Atlanto-Scandian Herring and Capelin Working Group, and in a note to ACFM the Chairman of that Working Group gives the conclusions.

In the aṛeas surveyed, juvenile capelin was of very low abundance. However, the main distribution area of these fish was covered by ice.

At its May 1983 Meeting ACFM, therefore, had no other option than recommending that the complete fishing ban in force at at present be continued for the autumn (August-December) 1983.
State_of the stock October_1983
The present TAC assessment for the autumn fishery 1983 and the winter fishery 1984 is based on an acoustic survey carried out jointly by Iceland and Norway in October 1983. The results from this survey, together with comparable values from the 1981 and 1982 surveys (in brackets) are shown in the following text table:

Year class	Number $\times 10^{-9}$	Mean weight (g)	Biomass (tonnes $\left.\times 10^{-3}\right)$	
$1982(1981)(1980)$	$44.1(68.0)(24.0)$	$5.1(3.8)(3.8)$	$225(260)(90)$	
$1981(1980)(1979)$	$75.8(16.6)(23.8)$	$15.1(15.7)(17.6)$	$1142(262)(420)$	
$1980(1979)(1978)$	$5.6(1.6)(0.6)$	$22.5(24.1)(25.0)$	$127(39)(15)$	

This year there was no interference by drift-ice and the coverage of the distribution area of the capelin as well as general working conditions appeared to be satisfactory.

B.8.2.2 Management advice for the fishery autumn 1983-winter 1984

Approximately 970000 tonnes, comprising all the 1980 year class and the majority of the 1981 year class, will spawn in 1984.

Taking the mid-0ctober estimate of maturing capelin, assuming a monthly natural mortality of 0.04 until 31 December and a monthly natural mortality of 0.08 during January-March, allows 400000 tonnes to spawn in 1984, if 375000 tonnes are caught. ACFM, therefore, recommends a TAC of 375000 tonnes to be divided about equally between the autumn 1983 and winter 1984 seasons.
B.8.2.3 Preliminary management advice for the fishery Aug. 1984-March 1985

The 0-group index, obtained annually since l972, shows a downward trend since 1976 coinciding with the large increase in fishing effort and catches. The 1982 O-group index is the lowest on record with a slight improvement in 1983.
The main contributor to the 1985 spawning stock will be the 1982 year class. On the basis of the October 1983 survey results it is, however, estimated that a proportion of the 1981 year class will not spawn in 1984, but will recruit to the 1985 spawning stock.
B.8.2.4 Preliminary advice for autumn 1984

Using data from the October 1983 survey on the abundance of juvenile capelin from the 1982 and 1981 year classes and reducing them with a monthly natural mortality of 0.04 , it is calculated that
the biomass of maturing capelin will be about 650000 tonnes on 1 August 1984. Allowing 400000 tonnes to spawn in 1985 would correspond to a TAC of about 100000 tonnes in the period August 1984 - March 1985.

In view of the low abundance of the Icelandic capelin stock in recent years as well as the extremely low 0-group index in 1982, ACFM recommends that a preliminary TAC of 50000 tonnes be set for the autumn fishery in 1984. This TAC should be re-assessed and adjusted, if necessary, when a new stock abundance estimate becomes available.

C. SAITHE IN NEAFC REGIONS I AND 2 AND FAROE COD AND HADDOCK

Recent catches and recommended TACs, in thousand tonnes, are given in the text table below. (SA = Sub-area.)

Species	Stock	1980		1981		1982		1983
		$\begin{aligned} & \text { Rec } \\ & \text { TAC } \end{aligned}$	Actual catch	Rec. TAC	Actual catch	$\begin{aligned} & \text { Rec, Ac } \\ & \text { TAC } \mathrm{ca} \end{aligned}$	$\begin{aligned} & \operatorname{ctual} \\ & \operatorname{atch} \dot{x}) \end{aligned}$	$\begin{aligned} & \hline \text { Rec } \\ & \text { TAC } \end{aligned}$
Saithe	NE Arctic (SA I \& II)	122	145	123	175	130 ${ }^{\text {1) }}$	175	1303)
Saithe	North Sea (SA IV and Div.IIIa)	129	123	127	127	$100^{1)}$	154	$97^{3)}$
Saithe	Iceland (Div. Va)	54	58	72	59	$62^{1)}$	69	$66^{\text {I) }}$
Saithe	W. ofScotland (SA VI)	31	20	27	22	$25^{2)}$	22	$23^{1)}$
Saithe	$\begin{aligned} & \text { Faroe } \\ & \text { (Div. Vb) } \end{aligned}$	34	25	29	30	$29^{1)}$	31	$26^{\text {I) }}$
Cod	Faroe Plateau (Sub-div, Vb_{1})	22	21	14	23	201)	22	23^{3}
Cod	Faroe Bank (Sub-div. Vb_{2})	3.3	1.2	2.0	1.2	$2.0{ }^{2}$) 2.2	$2.0{ }^{2}$
Haddock	$\begin{aligned} & \text { Faroe } \\ & \text { (Div. Vb) } \end{aligned}$	20	15	15	12	14 ${ }^{\text {1) }}$	12	$10^{1)}$

x) Preliminary.

1) Catch level preferred by ACFM.
2) Precautionary TAC.
3) Level corresponding to $\mathrm{F}_{\text {max }}$. Reduction to this level as quickly as possible recommended.
C.l Saithe in the North-East Arctic and the North Sea

Interrelationship between DivisioñIIa and Sub-area IV
Tagging experiments have demonstrated a substantial migration of young saithe from the southern part of Division IIa to the North Sea. The data from tagging experiments on the Norwegian coast 1971-77 have been analysed on an estimated age basis. The numbers of recaptures in the North-East Arctic and the North Sea were taken as indices of the number of tagged fish of age groups $2-5$ present in the two areas. The young saithe in the coastal area from which significant migration to the North Sea takes place were estimated on the basis of purseseine catches to represent 29% of the total North-East Arctic stock of young saithe. On this basis, and applying equations given by Ulltang (1977), emigration rates were calculated: $\mathrm{E}_{2}=0.01$, $\mathrm{E}_{3}=0.05, \mathrm{E}_{4}=0.17$. To roughly estimate the effect of migration to the North Sea, immigration rates (equal to the emigration rates) were used.

If migration takes place at these rates, fishing mortalities in the North-East Arctic have been overestimated by $5 \%-10 \%$ for age 4 and by $10 \%-20 \%$ for age 3 and age 2 . The number of recruits at age 1 have been underestimated by about 10%. The changes in the North Sea have been of the same order, but fishing mortalities have been underestimated and recruits overestimated. Prediction made on this basis shows results which are not significantly different from those of the traditional assessments. They indicate that fishing of young saithe between 62° and $66^{\circ} \mathrm{N}$ is of importance also for the North Sea, but is likely to be less significant than previously indicated. However, the estimates of migration rates are based on assumptions for which little supporting evidence has been available, and the accuracy of the estimates is therefore open to doubt.
C.I.2 North-East Arctic saithe (Sub-areas I and II)

Fishery trends

Fishing continues to be conducted at a level clearly in excess of $F_{\text {max }}$. Fishing by non-coastal states in 1982 was restricted by quotas, and landings by these countries made up 5% of the total. The Norwegian fisheries for saithe have not been restricted by quotas. The provisional estimate of the 1982 landings is about 175000 tonnes.

A comprehensive revision of the catch in number data, provided by the Bergen Laboratory, was accepted by ACFM (see below). This revision, based on projected age composition data from 1981 to 1982; was necessary to correct sampling deficiencies in 1982 of gill-net and part of the trawl catches as mentioned in the Working Group report. The catch of immature fish (below age 6) has fluctuated at a high level, between 89% and 94% since 1976 (92% in 1982). Thus, there has been no improvement in the exploitation pattern.
C.1.2.2 The 1983 assessment

Norwegian data on trawl effort and catch per unit effort were available, but gave no basis for estimating the current level of fishing mortality. Since 1980, Norwegian stern trawlers have directed more of their effort towards saithe and the total international trawl catches in 1982 were at the same level as the average for 1977-79. For other gears, there are no indications of changes in effort and the assessment was made on the basis that fishing mortalities in 1982 were equal to the 1977-79 average.

Inputs and results of this new assessment differ to some extent from those reported by the Working Group as a consequence of the revision of the data base. The current level of fishing mortality is higher than in last year's assessment, but appears more reliable.

Fishing on saithe in this area is carried out at a level far in excess of $F_{\max }\left({ }_{8}{ }_{82}\right.$ for age groups $3-8$ being 0.49 and $\bar{F}_{\max }=0.27$). The continuous decline of the spawning stock biomass (Figure C.l.2.1) which began in the early 1970s seems to have been halted but its actual level is only about $1 / 4$ of what it was at that time.
The yield per recruit curve (Figure C.I.2.2) has also been redrawn to take into account the revision agreed by ACFM, and the predictions are made on this basis. In management of this saithe stock, both the drastic decline of the spawning stock biomass and the high level of catch of immature fish have to be considered. Reduction of the latter would inevitably have a major influence on the yield per recruit. With an improved fishing pattern $F_{\max }$ will be at a higher level than at present and the necessary reduction of F (and effort) under the present regime of exploitation would be minimised.

The need to improve the exploitation pattern by reducing the landings of young saithe has repeatedly been stressed by ACFM (see July 1980 ACFM Report, para. 83, p.39). A major reduction in saithe fishing by purse seiners would be the most effective way of improving the exploitation pattern.

C.1.2.3 Management options

North-East Arctic SAITHE
Sub-areas I and II

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	F (3-8)	Catch		Stock biom.	Spawning stock biomass	$F(3-8)$	Catch	Stock biom.	Spawning stock biomass
642	142	0.49	167	${ }^{F} 0.1$	656	183	0.16	65	820	194
				$\mathrm{F}_{\text {max }}$			0.27	103	769	179
				$\bar{F}_{84}=\bar{F}_{82}$			0.49	172	678	149

Weights in 1000 tonnes.

ACFM recommends that the exploitation level should be reduced to F
as quickly as possible.

C.1.3 North Sea saithe (Sub-area IV and Division IIIa)
 C.l.3.1 Fishery trends

Landings increased from a level of 125000 tonnes in 1980-81 to 154000 tonnes in 1982. This is 29000 tonnes more than the agreed TAC. The Working Group estimate of industrial by-catches was 5000 tonnes, which were included in the assessment. There seems to have been little change in fishing effort in the most recent years.
Thereis an increased proportion of immature fish (below age 5) in the catches which reached 75% in 1982 against 72% in 1981 and 63% in 1980 .

C.1.3.2 The 1983 assessment

Data on effort and catch per unit of effort were available for French and Norwegian trawlers, but the Norwegian time-series was too short to be useful in the assessment. Total effort in French units calculated from monthly cpue for the period 1974-82 was used to estimate the level of fishing mortality in 1982. Using the 1977-79 exploitation pattern for 1982, this gave a satisfactory relationship both for fishing mortality against fishing effort and stock number (age groups 3-6) against French cpue. It must be pointed out that, as compared to last year's assessment, fishing mortalities are significantly lower over all age groups but more markedly for the younger ones. On the basis of this year's assessment, the current level of fishing mortality $\left(\bar{F}_{82}=0.30\right)$ is close to $F_{\max }=0.27$.
The high spawning stock built up by the 1966, 1967, 1968 and 1973 year classes has declined since the mid-1970s but has apparently stabilized at a level between 250000 tonnes and 300000 tonnes.

C.1.3.3 Management option

A reduction of F to 0.22 would be needed to keep landings at the level of the agreed TAC ($=131000$ tonnes), whereas $F_{83}=F_{82}=0.30$ gives predicted landings in 1983 of 170000 tonnes. Considering that quota allocations between member countries of EEC are not yet agreed (May 1983), and that a major part of the fishing has already taken place, the latter alternative is considered to be the most realistic assumption and has been taken as a basis for the catch and stock prediction.

North Sea SAITHE
Sub-area IV and Division IIIa

1983				Management option for 1984	1984				1985	
Stock biom.	$\left\|\begin{array}{c} \text { Spawning } \\ \text { stock } \\ \text { biomass } \end{array}\right\|$	F ${ }^{(3-6)}$	Catch		Stock biom.	Spawning stock biomass	$\bar{F}(3-6)$	Catch	Stock biom.	Spawning stock biomass
833	378	$\begin{aligned} & .30 \\ & =F_{82} \end{aligned}$	170	${ }^{\text {F }} 0.1$	846	430	. 15	97	938	556
				$\mathrm{F}_{\text {max }}$. 27	159	860	491
				$F_{84}=F_{82}$. 30	178	831	474

Weights in 1000 tonnes.

The TAC preferred by ACFM for 1984 is 160000 tonnes corresponding to the $F_{\text {max }}$ level of fishing mortality.

Considering the inappropriate fishing pattern in terms of yield per recruit, and in order to prevent any further escalation of catches of immature fish, ACFM recommends an increase of the minimum landing size, which is at present 30 cm . ACFM is unable to recommend a specific figure at present, and the question will be referred to the 1984 meeting of the Working Group.
C. 2 Icelandic saithe (Division Va)
C.2.1 Fishery trends

Landings in 1982 increased by 10000 tonnes to 69000 tonnes, which is 7000 tonnes more than the catch level preferred by ACFM. There is no evidence of large changes in fishing effort in recent years.
C.2.2 The 1983 assessment

Catch per unit effort were available for 1978-82 for those Icelandic trawlers whose catches consisted predominantly of saithe. From plots of \bar{F}_{4-8} versus effort and of cpue versus biomass (age 4-8) it could only be concluded that there had been little change in mortality rates in recent years. It was therefore assumed that fishing mortality and exploitation pattern in 1982 were the same as in 1977-74.
Although the 1980 year class appears to be above the recent average, the level of recruitment is still clearly below that of the year classes prior to 1968: Spawning stock biomass appears to have stabilized after a declining trend from 1969 to 1978. The current level of fishing mortality is 0.29 . The yield per recruit curve is flat-topped. The catch in 1983 is assumed to be 72000 tonnes. Management options are given in the text table below.

C.2.3 Management options

Icelandic SAITHE
Division Va

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\bar{F}_{(4-9)}$	Catch		Stock biom.	Spawning stock biomass	$F(4-9)$	Catch	Stock biom.	Spawning stock biomass
381	205	.29	72	${ }^{\mathrm{F}} 0.1$	372	194	. 14	37	397	215
				$\mathrm{F}_{84}=\mathrm{F}_{82}$. 29	69	362	184

Weight in 1000 tonnes.

ACFM considers that fishing effort should not be increased and prefers a catch not exceeding 70000 tonnes as a TAC in 1984.

C. 3 West of Scotland Saithe (Sub-area VI)

C.3.3 Management options

SAITHE
WEST OF SCOTLAND

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\overline{\mathrm{F}}(3-6)$	Catch		Stock biom.	Spawning stock biomass	$(3-6)$	Catch	Stock biom.	Spawning stock biomass
272	202	. 16^{-}	20	${ }^{1} 0.1$	271	206	. 22	27	261	193
				$F_{84}=F_{82}$. 16	20	269	200

Weights in 1000 tonnes.

ACFM considers that fishing effort should not increase above a level corresponding to FO.I; a catch not exceeding 27000 tonnes is the preferred level for a TAC in 1984.

C.4	Faroe Saithe, Cod and Haddock
C.4.1	Faroe saithe (Division Vb)
C.4.1.1 Fishery trends	

Landings in 1982 increased by 900 tonnes to 31000 tonnes. The catch level preferred by ACFM was 30000 tonnes. More than 99% of the landings were by Faroese vessels. More effort seems to have been directed towards saithe in 1982 than in earlier years, but the increase may have been restricted by bad weather in the latter half of the year.

C.4.1.2 The 1983 assessment

The catch data indicate that in 1982 greater effort may have been directed towards the younger age groups. The exploitation pattern was changed to approximate to the assumed shift in effort, but no effort data have been used for estimating the 1982 level of fishing mortalities.

ACFM considered that the analytical assessment made by the Working Group did not take sufficient account of the rapid increase of the fishing effort of the Faroese fleet in the most recent years. A comprehensive analysis of effort data has to be carried out to evaluate the actual level of fishing mortality. Even if the precise levels of recruitment and spawning stock biomass are not defined, there is no doubt about their generally decreasing trends since the early I970s.

C.4.1.3 Management - Faroe saithe

ACFM therefore recommends a precautionary TAC in Division Vb of about $20000-25000$ tonnes, in order to prevent any further escalation of the fishing effort which could endanger the future of the saithe stock.
0.4.2 Faroe Plateau cod (Sub-division Vb_{1})
C.4.2.1 Fishery trends

Landings in 1982 decreased by 1200 tonnes to 21700 tonnes, where the catch level preferred by ACFM was 20000 tonnes. More than 99% of the landings were by Faroese vessels. There was probably little change in fishing effort compared to 1981.
C.4.2.2 The 1983 assessment

An analytical assessment was carried out by the Working Group on the assumption of fishing mortalities in 1982 being at the same level as in 1981.

The number of 5-year olds from the VPA was plotted against cpue of the same age group from smaller long-liners 1974-82. The number of 5-year olds in 1982 was not inconsistent with the trend indicated.
The spawning stock biomass was declining from 1977 to 1980 but seems to have stabilized at a level of about 60000 tonnes. The year classes 1978 and probably 1980 appear to be above average. The current
level of fishing mortality is 0.31, which is close to
the $F_{\text {max }}$ level. Predicted landings in 1983 for $F_{83}=F_{82}$ are 24000 tonnes. Predictions for 1984 are given in the text table below.

C.4.2.3 Management options

Faroe Plateau COD Sub-division Vb_{1}

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\bar{F}(3-6)$	Catch		Stock biom.	Spawning stock biomass	$F_{(3-6)}$	Catch	Stock biom.	Spawning stock biomass
130	67	. 31	24	$\mathrm{F}_{0.1}$	132	78	. 15	14	146	92
				$\mathrm{F}_{\text {max }}$.33	27	131.	77
				$F_{84}=F_{82}$.31	25	132	78

Weights in '000 tonnes

C.4.3 Faroe Bank cod (Sub-division Vb_{2})

Landings of Faroe Bank cod increased by 80% in 1982 to 2200 tonnes. The precautionary TAC recommended by ACFM was 2000 tonnes. Data were not adequate for an analytical assessment. Based on historical catches, a precautionary TAC of 2000 tomes is indicated.
C.4.4 Faroe haddock (Division Vb)
C.4.4.1 Fishery trends

Landings in 1982 declined to 11900 tonnes which is the lowest recorded since 1960 and below the catch level of 14000 tonnes preferred by ACFM. There may have been some increase in fishing effort on hadack although most of the additional fishing capacity in 1982 has been directed towards deeper water species such as saithe, redfish and blue ling.
C.4.4.2 The 1983 assessment

Input Fs chosen for the VPA were consistent with an increase in fishing effort compared to the period 1979-81. The stock numbers of age 4 and 5 from the VPA were plotted against cpue from smaller long-liners for these age groups. The stock numbers at age 4 and 5 in 1.982 were consistent with these relationships.
Spawaing stock biomass in 1982 is 60000 tonnes and the declining trend from 1.977 appears to have stopped. Recent year classes have generally been poor, but the 1980 year class seems to be at the same level as the strong 1972-74 year classes. Current fishing mortality is 0.26 compared to $F_{01}=0.17$. Predictions for landings in 1983 for $F_{83}=F_{82}$ are 12000 tonnes. Management options for 1984 are given in the 82 text table below.

C.4.4.3 Management options

Faroe HADDOCK Division Vb

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\bar{F}(4-6)$	Catch		Stock biom.	Spawning stock biomass	F	Catch	Stock biom.	Spawning stock biomass
110	81	. 26	12	$\mathrm{F}_{0.1}$	117	88	.18	11	125	96
				$F_{84}=F_{82}$. 26	14	120	92

Weights in 1000 tonnes

The present level of exploitation is in the region between FO 0 I and $\mathrm{F}_{\text {max }}$. ACFM prefers that the fishery is stabilized at the present level of fishing mortality.

D. 1 Herring Stocks South of $62^{\circ} \mathrm{N}$

Minimum landing size in herring fisheries in Sub-areas IV, VI and VII

In its 1983 report, the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ drew ACFM's attention to the problem of considerable catches of juvenile herring being landed, which are above the current minimum landing size of 20 cm but below the size at first spawning. Such herring are frequently not marketable but it is profitable for fishermen to catch them because of EEC intervention'marketing arrangemen'ts.

These herring will be predominantly l-group and to gauge the extent of this problem ACFM has examined the proportion of landings of herring of this age group by the directed herring fisheries in different areas. In the years prior to the closure of the fisheries in Divisions IVa and IVb, in some years, l-group herring contributed about $40-50 \%$ of the catch in numbers, in Division IVc about 15%, in the Celtic Sea up to 40%. They are known to be a considerable element in some national catches in Division VIa, although the data necessary to estimate the proportion there were not available to AGFM.

Catching these juvenile herring is undesirable both from total yield and spawning stock biomass consideration. To illustrate these effects, ACFM estimates that with the average exploitation rate and pattern in the Celtic Sea over the period 1972-79; the yield would be increased by about 10%, and the spawning stock biomass by about 20%, if catches of 1-group fish could be eliminated. The effects in other fisheries would be in the same direction, but would vary in size depending on the incidence of catches of l-group, and the growth rates of the herring.
ACFM considers that the most straightforward way of reducing these catches of juvenile herring would be to increase the minimum landing size for herring to a length corresponding to the size at first maturity which is at least 23 cm in Sub-areas IV, VI and VII. The effect of increasing the minimum landing size would be to discourage fishermen from fishing in areas and at time periods when the herring are predominantly below the minimum size. A minimum landing size of 23 cm , if properly enforced, would largely eliminate catches of juvenile fish in all the stocks in the Sub-areas in question. ACFM therefore recommends that the minimum landing size of herring should be increased from 20 cm to 23 cm in $\mathrm{Sub}-$ areas IV, VI and VII.
It would be appropriate to also increase the minimum mesh size for herring trawls in NEAFC Region 2 to 40 mm from the present 16 mm . ACFM notes that for that part of Region 2 which is within the jurisdiction of the European Community, the European Commission has already made such a proposal.
D.1.1 North Sea herring
D.1.1.1 In 1982, a ban on directed herring fishing was in principle in force in the northern and central North Sea (Division IVa and IVb). Legal fishing for herring was restricted to the southern North Sea and was regulated by TAC and seasonal closure. A TAC of 72000 tonnes was set for the period 1 October 1982-25 February 1983, whereas ACFM in May 1982 suggested that the fishing mortality should not increase above the $\mathrm{F}_{0.1}$ level, which would have resulted in an overall catch of 60000 tonnes.

The total North Sea catch in 1982 is estimated at almost 172000 tonnes, of which about 55000 tonnes were not officially reported (Table D.I.I). ACFM reiterates its warning on the vital need to have accurate catch statistics for meaningful analysis of the situation and for assessments of the various stocks.
D.1.1.2 Despite the ban on directed herring fishing in Divisions IVa and IVb, fishing took place in both Divisions, with a total of about 5000 tonnes of adult herring.
The main event in Division IVb was the dramatic increase in juvenile catches which reached over 89000 tonnes in the first 3 quarters of 1982. This drastic increase must be considered in relation to previous years: about 15000 tonnes in 1979 and 1980 and 78000 tonnes (revised figure) for 1981. Catches at the level of the last 2 years (1981 and 1982) cannot be considered as by-catches in a sprat fishery but rather as the result of a directed fishery on 0-group herring.
In Divisions IVc and VIId, the overall estimated catch is about 72000 tonnes. The opeming of the fishery in that area gave the opportunity to misreport catches taken in other areas. From information supplied by Working Group members, some misreporting has been corrected for in the above-mentioned figures.
D.1.1.3 In 1978, the lowest catch in number of juvenile fish was recorded since the beginning of industrial fishing for herring. Since then, there has been a rapid escalation of these catches, which reached 7900 and 8300 million of 0 -ringed fish in 1981 and 1982, respectively, the latter value being the catch of only the first 3 quarters of the year. The 1981 juvenile catch figures have been comprehensively revised.

The contribution of 0 - and l-ringed fish, as a percentage of the total catch in number, reached the extreme levels of 92% and 94% of the overall catch of North Sea herring for the last two years.
D.1.1.4 The final estimate of the 1980 year class from the IYFS is 3.8×10^{9} l-ringers, which is the highest estimate obtained since the 1973 year class. The 1981 year class has been estimated as 5.7×10^{9} l-ringers from IYFS and seems, therefore, to be even stronger than the 1980 year class. Taking into account the large 0-group catches of these year classes in 1981 and 1982, it is concluded that as 0-group they must have been at or above the mean level during the 1950s and 1960s.
D.1.1.5 In Division IVa, both the larval surveys and acoustic surveys gave a spawning stock estimate of about 200000 tonnes in 1982 , indicating no significant change from 1981. Age compositions collected during the surveys indicated, however, a strong contribution by the recruiting 1979 year class in 1982, and this is therefore in conflict with the stable stock size estimates. Assuming that the age composition data were not heavily biassed, the most likely explanation is one, or a combination of the following three explanations:
a) Stock size was underestimated in 1982.
b) Larval surveys in previous years have overestimated the stock.
c) Catches from the Division IVa stock have been underestimated in 1981-82.
D.1.1.6 Larval and acoustic surveys in Division IVb in 1982 gave spawning stock size estimates of about 70000 tonnes. For reasons explained in the Working Group report, both of these are considered to be underestimates, and it was concluded that the spawning stock probably reached a level of about 100000 tonnes in 1982. Age composition data showed a strong contribution by the recruiting 1979 year class. It is thus clear that a substantial recovery of this stock took place in 1982.
D.I.I. 7 The acoustic survey carried out in February 1982 in Divisions IVc-VIId is considered to give the best estimate of spawning stock in that area, because of its superior coverage compared with the other acoustic surveys. Based on the results of that survey, the spawning, stock biomass at the end of 1981 was calculated to have been about 150000 tonnes. From catch and age composition data, the spawning stock at the end of 1982 was calculated to be at about the same level. The actual spawning stock biomass at spawning time must have been somewhat higher, taking into account catches made during December 1981 and December 1982. Thus, the further large increase in the spawning stock expected in last year's report did not occur. It seems clear that a larger part than expected of the 1979 year class recruited to Divisions IVa and IVb instead of to Divisions IVc-VIId.
D.1.1.8 If the 1980 year class is not fished as 2-ringers prior to the spawning season, it is expected to contribute about 400000 tonnes to the spawning stocks in 1983. Based on the IYFS, the 1981 year class seems to have been even stronger than the 1980 year class as I-group. If not fished to any significant extent as l-ringexs and 2 -ringers before it recruits to the spawning stocks, this year class could contribute, about 600000 tonnes to the total North Sea spawning stock in 1984. It is thus clear that a significant rebuilding of the total North Sea spawning stocks is taking place despite the fact that the rebuilding is being seriously delayed by the illegal directed young herring fisheries, which have taken place in 1981 and 1982 as mentioned above.
D.1.1.9 In order to make stock projections for 1983 the Working Group attempted to estimate what proportion of the 1980 year class would recruit to the spawning stocks in the three divisions of the North Sea. For this purpose, they used length frequencies obtained from the IYFs in Sub-area IV in 1982. Two methods were used to separate the Downs component both of which gave estimates of about 60%. The Working Group, however, decided to reduce this proportion and assign 50% of the recruitment estimate to the Downs stock in view of the occurrence of North Sea recruits in the Skagerrak. The Working Group could not estimate how the remaining 50% should be divided between Divisions IVa and IVb.

ACFM, in the light of new estimates by a completely independent method of the Downs component made available to it, had some problems in accepting the technique used by the Working Group in splitting the recruiting year class into a Downs component and a residual which will recruit to the other two stocks. It therefore suggested that this problem needs further consideration than could be given during the ACFM meeting.
As an interim measure ACFM has split the total North Sea recruitment into stock components in the same proportions as the späwning stock biomasses in 1982. Although this approach may appear to have little logical justification, it is likely to be a more conservative approach than any other alternative, and is one which can be more readily corrected in subsequent years, when better data are available on the stock affinities of the 1980 year class.
D.l.l. 10 At its July 1979 meeting, ACFM recommended that before re-opening the fisheries on North Sea herring certain criteria should be met: that there should be evidence that the spawning stock would recover to about 800000 tonnes even under a limited fishery, and that there should also be evidence of improved recruitment. If the 1980 year class is not fished further before it recruits to the spawning stock in 1983, the total North Sea spawning stock will probably reach the target of 800000 tonnes in that year. As discussed above, there is also firm evidence of improved recruitment. It is concluded that the criteria will probably be met in 1983, if one considers the total North Sea stock as one unit. It must be kept in mind, however, that the three main components of the population have recovered at different rates.
D.1.1.11

ACFM would stress the need for continued protection of all three spawning stocks in the North Sea herring population, as all of them are still at a relatively low level compared with earlier years. This is particularly true of the stocks in Divisions IVa and IVb. Moreover, these two stocks have not been subjected to legal directed fisheries ince 1977 and, as a result, the available data on stock size and its age composition are less reliable. Accordingly, if re-opening of the adult herring fisheries in these two Divisions in 1983 is permitted, only very moderate fishing mortalities should be allowed. They should also only be permitted within area TACs, and with time restrictions, to prevent unduly high fishing effort being applied to any of the component spawning stocks.

For the Division IVa and Division IVb stocks, ACFM would suggest that, in the light of the uncertainties regarding the stock sizes in 1982 and the recruitment to them in 1983, both stocks should be fished below the F0.l level. Accordingly, for these stocks TACs have been estimated at fishing mortalities in 1983 of 0.10. In Divisions IVc and VIId, the TAC for 1983 has been estimated at fishing mortality rates $0.1,0.125$ and 0.27 (the level of exploitation in 1982). It should be noted that for this stock $F_{0.1}$ is 0.125 . For the herring in Divisions IVa and IVb, $F_{0.1}$ is 0.15 because the growth rates are different.

In Division IVb, the speed of build-up of the spawning concentrations of virtually the entire Division IVb adult stock, and the way in which the spawning herring are densely aggregated over small areas, makes the IVb spawning stock highly vulnerable to fishing at this time. Furthermore, the precise time of the onset of these aggregations, and their exact location, varies from year to year but they occur within the period mid-August to the end of September and west of 3° E.
In Division $I V b$, therefore, $A C F M$ recommends that the TAC should be taken west of $3^{\circ} \mathrm{E}$ and that the fishery should be closed from 15 August to 30 September. The area restriction will avoid an unduly high proportion of juvenile herring in the catches, and the time restriction will prevent concentration of the fishery on herring on the spawning grounds during the spawning season.
Catches taken in Division IVb will contain a component of Downs herring. In the period before the total North Sea closure in 1977, the Downs component taken in Division IVb before the onset of spawning was about 20% of the total annual catch of Downs adult herring. Accordingly, to the Division IVb TAC 7000 tonnes of Downs herring have been added to give the total TAC to be taken in Division IVb west of $3^{\circ} \mathrm{E}$ outside the recommended closed season.
D.1.1.12 The resulting management options for each area are given below.

Species: HERRING, Division IVa

1982				Management option for 1983	1983		
Stock biom. $(2+)$	Spawn. stock biom. $(2+)$	F_{2-8}	Catch		Stock biom. $(2+)$	Spawn. stock biom. (2+)	Catch
205	188	0.04	6	$F=0.10$	391	342	35

Weights in 1000 tonnes.

ACFM recommends that the Division IVa TAC in 1983 should not exceed 35000 tonnes.

Species: HERRING, Division IVb

1982				Management option for 1983	1983		
Stock biom. $(2+)$	Spawn. stock biom. $(2+)$	\vec{F}_{2-8}	Catch		Stock biom. $(2+)$	Spawn. stock biom. $(2+)$	Catch
124	99	0.03	5	$F=0.10$	221	179	20(27)

Weights in ${ }^{\prime} 000$ tonnes

The catch figure for 1983 of 20000 tonnes is stock TAC option. The figure in brackets is the corresponding area TAC derived by making allowance for the presence of Downs herring in Division IVb as described in a previous section. ACFM recommends that the Division IVb TAC in 1983 should not exceed 27000 tonnes, to be taken in Division IVb west of $3^{\circ} \mathrm{E}$ outside the period 15 August to 30 September.

Species: HERRING, Divisions IVc + VIId

1982				Management option for 1983	1983		
Stock biom. $(2+)$	Spawn. stock biom. $(2+)$	\bar{F}_{2-8}	Catch		Stock biom. (2+)	Spawn. stock biom. (2+)	Catch
237	146	0.27	72	$F=0.10$	295	234	$35(28)$
				$\begin{aligned} & F=0.125 \\ & =F_{0.1} \end{aligned}$	295	227	$43(36)$
				$\begin{gathered} F_{83}=F_{82} \\ =0.27 \end{gathered}$	295	187	84(77)

Weights in 1000 tonnes.
Spawning stock biomass a.t 31. December.

The TACs for Divisions IVc and VIId in brackets are the remainder of the Downs TAC after deducting the 20% allocated to the Division IVb TAC. ACFM recommends that the Divisions IVc + VIId TAC for 1983 should not exceed 36000 tonnes, to be implemented as a seasonal TAC during the period 1 October 1983 to 31 March 1984.
D.1.1.13 For several years recruitment to the North Sea stock was at a low level probably due to stock-recruitment failure. This is no longer the case. The North Sea herring have recently (1980-81) produced at least two strong year classes, which could have brought the North Sea hering stock to its former state of a highly productive resource. The 0-group fishery, which took place in Division IVb in 1981 and 1982, has, however, seriously reduced their potential recruitment to the spawning stock. In this context it must be noted that a large 0-group fishery also takes place in Division IIIa. This fishery is mainly based on $0-g r o u p$ fish of North Sea origin. It is, therefore, concluded not only that the young herring industrial catches in Divisions IVb and IIIa are a serious threat to the recruitment of the North Sea herring and are also contrary to any rational exploitation of this potentially largest fish resource in the North Sea.
D.1.1.14 Concerning the fishing of 0-group herring along the Danish coast, ACFM at its April meeting in 1982 recommended a closure of the sprat fishing in ICES statistical squares $42 F 7$ and $41 F 7$ from I July to 31 October. The fishing in 1981 and 1982 indicates that this area should be extended southwards and include ICES statistical squares $40 F 7$ as well as the fishery taking place very close to the shore.

ACFM therefore recommends that no herring or sprat fishery should be allowed in the area from the shoreline of the Danish coast to $7^{\circ} \mathrm{E}$ longitude, and between $55^{\circ} 30^{\prime} \mathrm{N}$ and $57^{\circ} \mathrm{N}$ latitude during the period I July to 31 October.
ACFM is concerned about the failure to implement the already existing regulations to prevent or reduce by-catches of young herring in sprat fisheries, closure of areas where by-catches of herring are a major problem, and minimum size limits for herring.

D.1. 2 Division IIIa Herring

D.1.2.l The landings of herring during the last decade are given in Table D.I.2. Preliminary figures for 1982, partly based upon official figures, amounted to about 111500 tonnes, which is slightly less than the revised figure for 1981. An increase of 6% in the Skagerrak was counterbalanced by an 11% decrease in the Kattegat. In last year's report, Denmark was not able to produce reliable data for the second half of 1981, and an indirect method was applied in order to estimate the likely level of this part of the landings. At the present meeting, figures based on a restricted number of samples were presented to the Working Group, and Table D.I. 2 was revised accordingly. The main change occurs in the unallocated landings, which increased by 11000 tonnes to 57000 tonnes. In 1982, this part of the landings declined to about 35300 tonnes. The total estimated landings thus show a decline from about 171000 tonnes in 1981 to about 147000 tonnes in 1982.
Catch in numbers at age data were available for the major fisheries in 1982 and for those landings in 1981, for which no data were available in last year's report. In both 1981 and 1982 , the figures indicate the largest catches of 0-group herring on record in Division IIIa, and amount to over 60% of the total catch in number.
D.1.2.2 In January 1983, a Workshop on Stock Components undertook a trial of separating Division IIIa herring into spring- and autumn-spawned components, using length distributions and meristic characters. The Workshop found that more than three components could be separated in Division IIIa on the basis of length frequency distributions. Of these, at least one could be referred to autumn spawners and one or more to spring spawners. Kattegat spring spawners, Skagerrak spring spawners, and North Sea autumn spawners have different pure stock characters and can be identified by these means. The Workshop was unable, however, to separate the Kattegat spring spawners from those in the western Baltic and the Belt Seas.

For the time being, the broad outlines indicate that the major proportion in the catches of 0-groups in July-December and of l-groups in January-March are referable to North Sea autumn spawners. l-groups in July-December seem to be dominated by spring spawners, which are almost the sole component amongst $2-r i n g e r s$ and older fish.
D.1.2.3 The catch of 0-group herring reached the highest level on record in 1981-82. The Workshop on Stock Components concluded that these young herring are from the northern and central North Sea. These catches undoubtedly reduce the recruitment to herring stocks mainly in the North Sea. Together with the 0-group catches in the North Sea itself, the total may equal the major part of a North Sea average year class.

ACFM has already proposed a number of restrictions which, if enforced, would effectively cut 0-group catches, and it is difficult to imagine what further restrictions could be suggested. The real problem in Division IIIa thus appears to be the lack of enforcement of existing regulations and the failure to accept the additional proposals recommended by ACFM in November 1982. No improvement can be expected from any additional restrictions without effective enforcement.
D.1.2.4 An acoustic survey carried out in Division IIIa in August-September 1982 gave a total herring biomass estimate of about 340000 tonnes. About 87% of the estimated stock in number consisted of 0 - and 1-group.
D.1.2.5 For the adult part of the catch a VPA, based on 9 years' catch at age data, allowed comparisons with year class fluctuations in adjacent areas. A strong correlation was found between the numbers of 2-group calculated by this VPA for Division IIIa, and those calculated by VPA in Sub-divisions 22 and 24 (C.M.1982/Assess:16). A strong correlation between the catch of 3-ringers in Baltic Sub-divisions 22 and 24 in one year, and the catch of 2-ringers in Division IIIa in the year before, was also established. Further, an apparent conformity between year class strength measured as 0 - and l-group during acoustic surveys in Subdivisions 22-24 and as 2-group during acoustic surveys in Division IIIa could be demonstrated, although the time series is too short to permit firm conclusions.
D.1.2.6 The borderline between Division IIIa and Sub-divisions 22 and 23 cuts through a more or less continuous series of spawning sites which extends also along the west Baltic coast in Sub-division 24. The close relationship found above is therefore not surprising, but indicates that most of the adult herring caught in Division IIIa at present are spring spawners originating from these spawning sites. The situation may, however, be more complex in future as it should be borne in mind that North Sea adult herring were fished in winter in Division IIIa in the years prior to 1967 and there was also a fishery on adult autumn spawning Kobbergrund herring during that period.
D.1.2.7 With no reliable indication of the 2 group strength in 1983 and with some doubts about the strength of the 3 group, no reliable prognosis could be made at the May 1983 Meeting, even for 1983.
D.1.2.8 Evaluation of the August-September 1983 acoustic survey in Div. IIIa

In November 1983 ACFM was presented with a report on a Danish-Swedish acoustic survey carried out in Division IIIa in August September 1983. The total biomass of herring was estimated to be 325000 tonnes compared to about 340000 tonnes in 1982.

The estimates of herring in numbers at age are given in the text table below.

Winter rings	Numbers at age (millions)				
	1979	1980	1981	1982	1983
0	577	482	1840	6171	1605
1	611	477	698	2349	3559
2	1065	434	1260	999	1125
3	93	473	44	221	400
4	13	84	22	31	79
5	4	28	2	8	6
6	-	3	0.6	0.8	
7	-	-	-	0.1	

D.1.2.9 Management considerations

Herring catches in Division IIIa for the period 1973-82 are given in Table D.1.2.
In its report of November 1982 (page 12) and May 19831) ACFM gave a detailed account of problems in assessing the Division IIIa herring fisheries. They are summarised below:
(1) The major part of the 0-group herring and a substantial part of the l-group present and exploited in Division IIIa belong to the North Sea autumn spawners.
(2) Large numbers of juveniles are caught despite existing regulations aimed at preserving these potential recruits to stocks both inside and outside Division IIIa. This may have been a major factor in delaying the recovery of the herring stocks in Divisions. IVa and IVb.
(3) The absence of sufficient biological data to identify the racial origin of the herring in Division IIIa prevents any estimate being made of recruitment to the indigenous stock.
(4) The (indigenous) adult stock appears to be small and subject to a fishing pressure, which in other areas had resulted in a collapse of stocks.
I) This volume, page 48.

Rügen spring spawners are known to migrate from the Western Baltic to Division IIIa where they remain from June to February-March.

The sprat biomass was estimated to be about 13000 tonnes, which is about half the 1982 estimate. It should be remembered, however, that these surveys did not cover either the shallower western parts of the Kattegat or the coastal areas of Division IIIa. This is likely to underestimate the sprat biomass.
The two acoustic surveys, 1982 and 1983, have estimated the sprat stock to be at a very low level and declining. The IYFS in 1983 resulted in a low index of sprat recruitment (2 809 in 1981, l 841 in 1982 and 1173 in 1983).

D.1.2.10 Management advice

Based on considerations for both the sprat and herring stocks, ACFM reiterates its recommendation that fishing and landing of sprat and herring in Division IIIa should be prohibited, when using trawls having a mesh size below 40 mm .
ACFM used the 1983 survey estimate to indicate a TAC for the adult fishery. A range of fishing mortalities applied on herring 2 years old and older on 1 September 1983 gave predicted catches as shown in the text table below.

F	Catches $1 / 983-31 / 884$
0.15	32000 tonnes
0.20	41000 tonnes
0.30	58000 tonnes
0.40	74000 tonnes

In this calculation, the l-group recruiting to the fishery as 2-group in 1984 are not taken into account, since an unknown proportion of them are North Sea herring. On the other hand, an unknown proportion of the adults are Baltic herring migrants. The fishery exploits a mixture of stocks and it is consequently difficult to precisely define appropriate biological reference points. However, it is clear that fishing mortality is far above such reference points, and a significant reduction needs to be made.
The Fo.I value for Division IIIa herring is 0.13 , assuming $M=0.1$. The corresponding catch level would be 27000 tonnes, when applying this fishing mortality to the acoustic stock estimate as at I September 1983.
Taking the uncertainty with regard to the present stock composition into account, ACEM recommends a TAC of $30000-40000$ tonnes for the period 1 September 1983 to 31 August 1984.
D.l.3 Herring in the Celtic Sea and Division VIIj
D.1.3.1 The herring stocks in the Celtic Sea and in Division VIIj were assessed separately by the 1982 Working Group. However, the Working Group examined the biological data of the stocks in both areas and the location of the fisheries, and concluded that consideration should be given to managing both areas as one unit. Accordingly, a combined assessment was carried out and presented to the July meeting of ACFM. ACFM considered this assessment and recommended that no catches should be allowed during 1982/83 from the combined areas. A modified version of this assessment was subsequently used by the November 1982 meeting of ACFM in making predictions about the effects of various catch levels on the stock size. Catches of 8100 tonnes were permitted by the EEC from the area for the period October 1982 to March 1983.
D.1.3.2 The total catch taken during the whole of the 1982/83 season amounted to approximately 13000 tonnes which was over 4000 tonnes less than that taken in 1981/82 (TableD.1.3). The catches were again taken almost exclusively by Irish pelagic trawlers and drifters. Over 70% of the total catch was taken in the third and fourth quarters of the season by boats fishing during the main spawning season. Quantities of herring were discarded at sea by boats whose catch had exceeded their nightly quota. It was not possible, however, to quantify the amounts discarded in this way. The catches throughout the season were dominated by the 1979 year class which during the third and fourth quarters constituted approximately 60% of the total. This year class had been noticeably abundant during 1981/82 as l-winter-ring fish.
D.1.3.3 Larval surveys were conducted for the fifth successive season. The total index for abundance of small-sized larvae showed a further increase compared to previous seasons.
D.1.3.4 It has not been possible to calculate F for the $1982 / 83$ season from catch per unit effort data because, as in the last few years, boats were working to nightly quotas. There is, however, indirect evidence that F was substantially lower than in the previous season. In 1982/83, market demand was lower resulting in lower nightly quotas than in the previous season. For a period of about six weeks in October/November 1982, there was virtually no fishing because of a protest by fishermen and severe weather. Because of the poor demand several vessels left the fishery before the end of the season.
Trial VPAs showed that the increase in spawning stock biomass best matching the increase in the larval index over the last four seasons was derived from $F 82 / 83=0.4$, and this was taken as the appropriate F for 1982/83. This implies a decrease in F from 1981/82 to 1982/83 of about 40%, but it is still about three times the level of 0.15 recommended by ACFM.
D.1.3.5 The VPA with input $F=0.4$ for $1982 / 83$ showed that the spawning stock biomass has slowly increased in recent years from its lowest level of 23500 tonnes in 1976 to about 39000 tonnes at spawning time in 1982. Fishing mortality decreased from high levels in the early 1970s ($F=0.70$) to about 0.45 during the years $1975-79$ and has since increased slightly to about 0.50 from 1980-82. Recruitment of l-winter ring fish from 1974 to 1980 averaged about 65 million, with the lowest level about 49 million. The 1979 year class (173 million) appears to
be the strongest since that of 1969. Assuming F on l-ringers to be equal to 40% of that of an adult, the estimated strength of the 1980/81 year class is about 109 million fish at 1 April 1982. This is higher than the average level of 65 million fish during the 1974-80 period when the stock was at a very low level. The estimated strength of the 1980/81 year class must, however, be regarded as very preliminary since no independent recruitment estimates exist.
It should be pointed out that the results obtained from VPA, assuming $F^{\prime}=0.4$ in $1982 / 83$ give estimates of spawning stock and recruitment in 1982 and F values in 1981/82, which confirm the assessment carried out by ACFM in November 1982.
D.1.3.6 The Working Group examined the question of an appropriate target spawning stock biomass for the area. Based on VPA-estimated stock sizes back to 1958 , two aspects were examined:

1) Stock/recruitment relationship
2) Yield/biomass ratio.

During the period 1958-80, considerable changes in stock composition took place from mainly winter spawners up to about 1970 to autumn spawners in later years. There does not appear to be any clear relationship between stock and recruitment over the whole time period, but the points fall into two well-defined groups each of which corresponds to different phases of the fishery. There is a period from 1973-80, when, with the exception of the 1979 year class, recruitment was low and stock was low. Recruitment during this period averaged 89 million fish. A second period from 1958-72 contained fluctuating stock sizes, which produced several good year classes averaging 162 million fish. The probability that the present spawning stock biomass will produce very strong year classes is considered to be small.

The relationship between yield and spawning stock biomass was also examined for 1958-80 to determine a desired stock level. Four periods can be defined as shown below and in Figure D.1.3.1:

1) 1958-64 - Stable stock - mainly winter spawners
2) 1965-69 - High stock - mainly winter spawners
3) 1970-76 - Declining stock - mixed autumn and winter spawners
4) 1977-82 - Low stock - mainly autumn spawners.

The average yield in each period has been expressed as a percentage of the spawning stock biomass and is $20 \%, 28 \%$, 48% and 40%, respectively. The stock, therefore, was able to expand after the 1958-64 period during which yields were about 20% of the spawning stock biomass. During the period 1965-69, the yields increased to 28% of the biomass. The stock declined rapidly when yields averaged 48% during the period 1970-76. In the latest period, from 1977-82, the yield is approximately 40% of the biomass and the stock cannot produce sufficiently good year classes to effect a rapid recovery.
Therefore, to ensure rebuilding of the stock, the yield should not exceed 20% of the spawning stock biomass. It seems that if the yields are consistently allowed to exceed about 30% of the biomass then the stock will be in danger of collapsing.
D.l.3.7 Stock predictions were made with an assumed recruitment of 50 million fish (roughly the minimum value since 1958). Recruitment in 1984-85 was also taken as 50 million l-ringers. The results are given in figure D.1.3.2 and in the text table below.

1982/83			1983/84			1984/85		
SSB	$\overline{\mathbf{F}}_{2-9+}$	Catch	SSB	$\overline{\mathrm{F}}_{2-9+}$	Catch	SSB	$\stackrel{\rightharpoonup}{F}_{2-9+}$	Catch
39	0.4	13	42	0	0	50	0	0
			41	$0.16\left(=\mathrm{F}_{0.1}\right)$	6	42 .	$0.16\left(=F_{0.1}\right)$	6
			39	$0.4\left(=F_{82 / 83}\right)$	14	33	$0.4\left(=F_{82 / 83}\right)$	12
			40	0.21	8	40	0.22	8

Weights in 1000 tonnes
Spawning stock biomass refers to spawning time (1 October), when 20% of the fishing mortality has already occurred.
D.1.3.8 In the present situation, a catch/spawning stock biomass ratio of 0.2 (a catch of 8000 tonnes in 1983/84) will not rebuild the stock. Even a catch of 6000 tonnes (corresponding to the $F_{0.1}$) value will not allow any significant increase in spawning stockel biomass and will achieve no more than a maintenance of the spawning stock size at about the present level of 40000 tonnes. A continuation of recent catches will reverse the increasing trend in spawning stock biomass indicated by the assessment (see Figure D.1.3.2).
D.1.3.9 ACFM recommends that the TAC for $1983 / 84$ should not exceed 6000 tonnes.

Any improvement in recruitment above the 50 million fish assumed in the forecast should not be used to boost the catches, but should be allowed to further rebuild the stock. However, it must be repeated that the present spawning stock biomass is not likely to produce very strong year classes.
D.1.4 West of Scotland herring

D.1.4.1 Herring in Division VIa (North)

D.1.4.1.1 The catches reported by each country from this area in 1973-81 and the preliminary estimates of the catches in 1982 are given in Table D.1.4.1 (Clyde excl).The preliminary total catch of 49100 tonnes in 1981, given in the previous report, has been increased by about 2000 tonnes in the revised figure for that year. The preliminary total catch for 1982 is about 92000 tonnes. This is considerably in excess of the catch in that year (70000 tonnes) given as the preferred level by ACFM in its advice on management of this stock in April 1982.
The age composition of the catch in numbers in 1982 is in general agreement with the prediction made last year, with 2-ringers (1979 year class) being the predominant age group.
D.1.4.1.2 Larval surveys were carried out in this area throughout September and. October 1982. The 1982 index of abundance for the smallest size category of herring larvae was only slightly higher than in 1981. Using the 1982 larval index in the regression equation of larval abundance and spawning stock biomass gave an estimate of spawning stock biomass in 1982 of about 380000 tonnes. This value was used to initiate a VPA.
D.1.4.1.3 From the VPA outputs obtained in 1982 it appeared that the exploitation pattern on this stock was full recruitment to the fishery of fish older than 2-group and 0.8 on 2-group. This, however, was based on the results from the fishing pattern prior to the closure of the fishery and might not be applicable to the: changed situation since the fishery was re-opened in 1981. It is not possible, with so few data points subsequent to the re-opening of the fishery, to resolve this problem reliably. But the preliminary VPA run,based on the assumption of the exploitation pattern. used in last year's prediction, suggested that $2-g r o u p$ fish were fully recruited to the fishery in 1981. A new input F for 1982 was, therefore, estimated from the spawning stock biomass on the assumption that the recruitment to the fishery was complete at 2 -rings. The final VPA was run on this basis.
As would be expected from the high level of catch taken in 1982, the fishing mortality in that year was about 30% above the preferred level of 0.15 advised by ACFM. The size of the 1979 year class at l January 1982 is in close agreement with that predicted in last year's report. The numbers of all other age groups, however, are somewhat lower than predicted due to the somewhat higher fishing mortality rate in 1981 than was estimated last year.
D.1.4.1.4 In last year's report on this stock, recruitment as 2-group in 1982 was estimated based on Scottish research vessel surveys carried out in February-March 1981-82. In these years the indices of abundance were of comparable size and the method used appears, from the 1982 catch data, to have given a rather good estimate of recruitment in that year. A similar survey was carried out in February-March 1983, and the results would suggest that the 1980 year class is much weaker than both the 1978 and 1979 year classes. However, with only three data points from these surveys, it would be very dangerous to assume that the relationship between index of abundance and stock size is a linear one over a very wide range of indices. Under these circumstances all that can be inferred from the 1983 survey is that the 1980 year class is a weak one. For prediction purposes this year class has been set at 205 x 106 fish , which is the lowest value at this age given in the VPA over the period since 1970.
D.1.4.1.5 The results of the assessments outlined above were used to predict yields and spawning stock biomasses in 1983 and 1984. The outputs of the predictions over a range of fishing mortality rates are shown in Figure D.l.4.l. Yield per recruit and spawning stock biomass per recruit curve are also shown in Figure D.I.4.1. The Y / R curve has no maximum. The yields at F_{01} and some adjacent values in 1983 and 1984 are given in the text table below. The assumption made throughout these predictions are a) that the same fishing mortality rate will be maintained in both years, and b) that recruitment will be at the same level in both years.
D.1.4.I. 6 There are inconsistencies between the spawning stock biomasses since 1976 as derived from the larval surveys and those from the VPA, and this reduces the confidence which ACFM places in this assessment. While the reasons for these discrepancies are not clear, it is possible that unreported catches of herring were made in Division VIa and these could explain the conflict between the two sets of figures.
D.1.4.1.7 The assessment indicates the present level of exploitation as $F=0.2$. The text table below indicates catches and spawning stock biomasses corresponding to various levels of fishing mortality in 1983 and 1984.

HERRING, Division VIa (North)

1982			$\begin{aligned} & \text { Management } \\ & \text { option } \\ & \text { for } 1983 \end{aligned}$	1983			1984	
SSB	$\overline{\mathrm{F}}_{(2-7)}$	Catch		SSB	${ }^{\mathrm{F}}(2-7)$	Catch	SSB	Catch
380	. 20	92	F	371	0.1	38	355	37
			$\mathrm{F}_{0.1}$	358	0.15	58	325	53
				347	0.20	73	302	64

Weights in 1000 tonnes.

$$
F_{1984}=F_{1983}
$$

The predicted catches in 1983 are somewhat lower than those predicted last year at the same F values, This is principally due to the lower recruitment value assumed in the prediction than was assumed for 1983 in the previous one.
D.1.4.1.8 The catch level preferred by ACFM is that corresponding to $F_{0.1}=0.15$, that is 58000 tonnes in 1983 and 53000 tonnes in 1984.
D.1.4.2 Clyde Herring
D.1.4.2.1 Landings in the years 1973-82 are given in Table D.1.4.2.The landings in 1982 of 2506 t was almost exactly the recommended TAC for the year, but sampling suggests that approximately 10% more may have been landed due to overweight boxes. In addition, there were reports of discarding of immature fish and also reports of illegal landings from this fishery. Although no data are available to quantify this aspect, the quantities are not believed to be large. Reports of the fishery indicated that fishermen experienced difficulty achieving their quotas both at the beginning of the season in May and June and also at the end of August but quotas were more readily achieved during July and early August.
In 1982, 2-ringed herring made up approximately 50% of the total landed with $3-5$ ringed herring making up another 30%.
D.1.4.2.2 Based on recapture data from a tagging experiment in the Clyde in 1980 , it was concluded in last year's report that most of the fishing mortality on the Clyde population appears to be generated in the Clyde. The 1982 recaptures supported this conclusion. On this basis, a VPA was carried out to estimate recent changes in F.
D.l.4.2.3 No independent information is available to indicate the most likely value of F in 1982. If one assumes that fishing mortality has neither increased nor decreased over the period 1980-82, an input F of 0.3 is appropriate.
A VPA analysis based on this F in 1982 indicates that fishing mortality was reduced when a TAC regulation was introduced in 1979. Estimation of the fishing mortality in 1982 is impossible without some independent evidence, but in the absence of any indications of changes in fishing effort, it is likely to be around 0.3. If this is correct, and if recruitment remains at approximately the same level as in the past few years, then the TAC of 2500 tonnes advised by ACFM for 1983 will result in a slight decrease in fishing mortality rate to about 0.27 . As stated in the previous report, it is likely that a continuation of this level of TAC will result in a stable level of fishing mortality. Moreover, this population is a very complex one. Accordingly, ACFM can only recommend a precautionary TAC of 2500 tonnes for 1984.
D.1.4.3 Herring in Divisions VIa (South) and VIIb, c
D.1.4.3.1 The catches of each country fishing in this area in the years 1973-81, and the preliminary estimates of catches in 1982 are given in TableD.l.4.3. The revision to the preliminary 1981 catches given in the 1982 report amounted to a reduction of about 1000 tonnes. The preliminary total catch figure for 1982 is 18000 tonnes, very predominantly taken by Ireland. This is the lowest catch taken from this area since 1971, partly reflecting the reduced stock size commented on in last year's report, and partly some reduction in fishing effort in 1982. The largest contribution to the catch in 1982 was made by the 1977 year class, reflecting the rather moderate recruitment to this stock in recent years. The catch of l-ringers in 1982 was again very low, relative to earlier years.
D.1.4.3.2 Although the larval surveys in 1982 again extended south to Galway Bay and over a longer time period, the time series of comparable data on this basis is as yet too short to be used in predicting stock size. Accordingly, the index of larval abundance in 1982 has been estimated on the same basis as in the past.
The larval index for 1982 is somewhat higher than for 1981 but is again low relative to earlier years.
D.1.4.3.3 The spawning stock biomasses used in the 1982 report were calculated with the wrong mean weight at age. To initiate a VPA, it was, therefore, necessary to recalculate the spawning stock biomasses derived from last year's VPA, and a new regression equation between spawning stock biomass and larval abundance. This was then used to estimate the input F-value for 1982 to start the VPA. In this stock, recruitment to the fishery is complete at age 2 and an F of 0.208 gave a satisfactory fit to the larval data. The VPA with this input F would suggest a reduction of about 20% in F in 1982 compared with 1981 and a slight reduction in spawning stock biomass in 1982, compared with 1981, due to the reduced recruitment to the population in the last two years.
D.1.4.3.4 In this area, there are no satisfactory data available to give a fishery-independent index of recruitment to the stock in 1983. Young herring surveys designed to identify nursery grounds in this area, and to provide indices of recruitment, were carried out in 1981 and 1982 and will be continued in subsequent years. The surveys carried out to date indicate Galway and Donegal Bays as nursery areas. The time series of data is as yet too short to measure year class strengths quantitatively.
The only data which can give any indication of this are the catches of l-ringers in 1982. As mentioned in para.D.1.4.3.1 these were very low in that year. If one takes the ratio of the F on l-group to the mean F on fully recruited age groups in the years $197 y-81$ and takes the mean of these ratios as applying to 1982, one would get an estimate of F on l-ringers in 1982 of 0.018 . This, however, would estimate this year class as only 44×10^{6} fish at 1 January 1982 . This would be by far the poorest year class ever recorded in this stock. The Scottish recruit survey in Division VIa does not sample this area very well but the results of it would indicate that this 1980 year class in 1983 is only slightly less abundant than the 1978 year class was in 1981. On this basis, an F of 0.010 would seem an appropriate compromise, resulting in an estinate of 2-ringers in 1983 of 70×10^{6}.
D.1.4.3.5 The results of the assessments outlined above were used to predict yields in 1983 and 1984. The outputs of the predictions over a range of fishing mortality rates, in terms of yields and spawning stock biomasses, are shown in Fig.D.I.4.3. Yield/recruit and spawning stock biomass
per recruit curves for this stock are also shown in Figure D.1.4.3. Y/R curve is flat-topped and, therefore, Fmax is not relevant. The yields, at FO.1 and some adjacent values, in 1983 and 1984,are given in the text table below.

HERRING, Divisions VIa (South) and VIIb,c

1982			Management option for 1983	1983			1984	
SSB	$\bar{F}_{(2-7)}$	Catch		SSB	${ }^{\mathrm{F}}(2-7)$	Catch	SSB	Catch
77	. 208	18		75	0.10	8	75	8
			$\mathrm{F}_{0.1}$	73	0.15	12	69	11
				71	0.20	15	64	14
Weights in 1000 tonnes $\quad . \quad F_{1984}=F_{1983}$								

These predictions for 1983 are reasonably consistent with those given for that year in the 1982 report.
TACs of 12000 tonnes in 1983 and 11000 tonnes in 1984 are the levels preferred by ACFM.
D.1.5 Irish Sea Herring (Division VIIa)
D.1.5.1 The TAC for the North Irish Sea for 1982 was set at 3800 tonnes, the same as in 1981. The reported catch from the North Irish Sea was 4855 tonnes (Table D.1.5.1). Actual catches were probably greater than this because many small fish were dumped at sea, boxes were often overweight, and some catches may not have been reported. 3097 tonnes were allocated to Manx stock and 1758 tonnes to Mourne stock (Table D, 1.5.2). The two stocks are considered separately below, and general recommendations for the Irish Sea are also given.
D.1.5.2 The fishing pattern in the Isle of Man fishery was similar to that in 1981. Effort data are not available, but reports and observations suggest the effort was similar to that in 1981.
Most of the fishing took place to the west of the Isle of Man, and most of the fish were caught before September; it is likely that the fishing mortality on the 2-ringed fish was higher than on the older fish which tend to appear in quantity late in the season. The TAC was taken by 2 September without difficulty by a relatively small fleet.

Some fishing took place after the TAC was taken. There were persistent reports of discarding at sea of small herring; these reports were supported by the difference in length frequency distribution between samples of sorted and unsorted boxes of herring landed, but it was not possible to quantify the amount of young fish discarded.
D.1.5.3 There is no independent evidence on which to base a choice of input F for 1982. In view of the similarities between the fisheries of 1981 and 1982, the Working Group used the same reasoning to choose an input F in 1982 as was used for 1981 in last year's report.
D.1.5.4 Fig.D.1.5.l shows that the decline in spawning stock biomass associated with high F started in 1971 and continued until 1979. This trend is independent of input F.
VPA estimates of stock sizes in 1980, 1981 and 1982 must be treated with caution, but the VPA suggests that the decline in spawning stock biomass may have been halted and a recovery may have started. Continuing recovery will be dependent on recruitment (which is likely
to be low since the spawning stock is relatively low) and a very moderate catch. The text table below gives projections based on an assumed recruitment of 30×10^{6} l-ringed fish in 1983 and 1984 , with F on l-ringed fish at 0.07, and fishing mortality on fish 2-ringed and more equal at all ages and equal in 1983 and 1984. At F values less than 0.4 no further reduction in spawning stock biomass from the 1979 level is indicated.

Stock projection, Manx herring

1982					1983			
Stock biomass	Sp. stock biomass at sp.time	Age	F	Catch	Option $(F \text { age } 2-8)$	Stock biomass 1 Jan.	Sp. stock biomass at sp,time	Catch
16.3	8.4	$\begin{array}{r} 1 \\ 2 \\ >2 \end{array}$	$\begin{aligned} & 0.07 \\ & 0.4 \\ & 0.3 \end{aligned}$	3.1	$\begin{aligned} & F \\ & 0.1= \\ & F=0.15 \end{aligned}$	17.2	10.9	1.8
	.				$\begin{aligned} & 0 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 17.2 \\ & 17.2 \\ & 17.2 \\ & 17.2 \\ & 17.2 \end{aligned}$	$\begin{array}{r} 12.7 \\ 11.5 \\ 10.4 \\ 9.4 \\ 8.5 \end{array}$	$\begin{aligned} & 0 \\ & 1.2 \\ & 2.3 \\ & 3.3 \\ & 4.2 \end{aligned}$

Catch and biomass in 1000 tonnes.
D.1.5.5 The total nominal catch of the Mourne stock in 1982 was 1758 tonnes, made up of 490 tonnes selectively fished by gill nets over the Mourne spawning grounds and I 260 tonnes taken as a component of the Isle of Man fishery outside the 12 mile Irish coast limit. The comparable data for 1981 were 1146 tonnes in the mixed fishery and 295 tonnes selectively fished over the spawning grounds. There was, therefore, an increase of about 22% in the catch in 1982.
The catch is heavily dependent on 1- and 2-group fish; 2-ringers made up 46% of the catch in 1982 and 43% in 1981 .
D.1.5.6 The Working Group had little evidence on which to select the most appropriate value of input F in 1982 for a VPA. However, given that there was no increase in the number of boats participating in the fishery in 1982, only a moderate demand for herring and the low TAC, it was assumed that the fishing mortality rate in 1982 was probably lower than that in 1981.

The results of the VPA show that the spawning stock biomass reached a minimum in 1977 and some increase took place up to 1979. Further increase is indicated if the chosen levels of input F are realistic.
D.1.5.7 The yield per recruit and spawning stock biomass per recruit curves dependent on the 1982 exploitation pattern are shown in Figure D.1.5.2. In making a prediction; recruitment in 1983 was taken to be 32 million l-group fish.
Stocks and yields indicated by the projections are given in the text table below.

The resulting catches and spawning stock biomasses over a full range of Fs are illustrated in Figure D.l.5.2.

Mourne HERRING. Projection for management options. Division VIIa, North Irish Sea.

1982 (from VPA)				1983		
Stock biomass	Spawn. stock biomass	F	Catch	Management Stock option for biomass 1983	Spawn. stock biomass	Catch
9.1	5.1	$\begin{aligned} & \text { Age 1 } \\ & 0.13 \\ & \text { Age } 2-9+ \\ & 0.3 \end{aligned}$	1.7	$\begin{aligned} & F=0.1 \\ & F=0.15=F_{0} \\ & F=0.11 .8 \\ & F=0.30 \end{aligned}$	$\begin{array}{r} 8.1 \\ .7 .8 \\ 7.4 \\ 6.8 \end{array}$	$\begin{aligned} & 0.9 \\ & 1.3 \\ & 1.7 \\ & 2.4 \end{aligned}$
			F_{19} Uni	$33=F_{1984}$		

It must be noted, that the stock in both years is heavily dependent on assumed value of initial strength for year classes 1980, 1981 and 1982. Thus, the predictions for 1984 must be considered as somewhat uncertain.
D.1.5.8 The fishery in the North Irish Sea exploits a mixture of Manx and Mourne herring in the area west and southwest of the Isle of Man for a large part of the fishing season. Catches in this area cannot be allocated to stock until all relevant biological and statistical data are available after the end of the fishing season. ACFM therefore recommends that a single TAC be set for herring in the North Irish Sea, rather than separate TACs for Manx and Mourne stocks.

The impact on each stock will depend an the seasonal and spatial distribution of the fishing effort; it is important that the effort applied to take the TAC should not be concentrated on either the Mourne stock or the Manx stock.

If the fishing was concentrated on the early part of the season it would exploit the Manx stock and the Mourne stock with more or less equal F. If a major part of the TAC was taken late in the season the impact on Manx fish would be greater, and that on Mourne fish less.
ACFM considers that the progress on the recovery of the spawning stock biomass should be maintained. Present fishing mortality is certainly in excess of FO.l, which would be the preferred level of fishing for the stock. Although ACFM recognized that some reduction in effort is likely to have taken place in 1982, ACFM cannot assess whether the estimated level
of reduction in F from that of 1979 is appropriate. The current F values may well be higher. In view of this, ACFM recommends the TAC for herring in Division VIIa should be set at 3000 tonnes in 1983.
Because of the major uncertainties surrounding these assessments, ACFM considers it inappropriate to advise on TACs for 1984 at present. If, however, it is essential to make a provisional recommendation, it is considered that the IAC for 1984 should be the same as that for 1983. In each year, the part of the TAC allocated to the selective directed herring fishery over the Mourne spawning ground should not exceed 600 tonnes.

Management of the North Irish Sea fishery in the past has included measures to reduce fishing mortality on the spawning stock by closure of the fishery from the Saturday nearest to 21 September until the Monday nearest to 16 November, except for a small directed gill-net fishery on the Mourne spawning ground, prohibition of directed herring fishery in nursery areas, and a minimum size regulation. These measures should be continued in 1983 and 1984.

D. 2 Industrial Fisheries in the North Sea and Adjacent Areas
 D.2.1
 Aspects of management
 Management considerations were discussed in Sections 109 and 110 of the July 1982 report of ACFM.

D.2.1.1 A definition of industrial fisheries:

The usual definition of industrial fisheries is that these are fisheries for reduction purposes using small-meshed gear. Recommendation 2 of NEAFC lists the species, which can be fished by small-meshed trawl gear. This list includes the species usually taken for reduction purposes, e.g., Norway pout, sprat, blue whiting and sandeel, but also herring and mackerel, Which were subject to important directed fisheries for reduction purposes at the time when the NEAFC Recommendation was first drafted.

Economically, the fisheries depend on catches of certain species of trash fish, and a by-catch. This by-catch consists of species, which are usually taken for human consumption. The by-catch can be split into two compartments, one consisting of undersized non-marketable specimens of the human consumption species, and one of marketable size groups, which are sorted out and landed for human consumption.
The term 'trash fish' includes those species for which - at least up to now - it has not been possible to find any profitable outlet for human consumption, e.g., Norway pout and sandeel. Others might be used for human consumption, but the markets are not always able to accommodate large amounts of the species, so with high catch rates and landings, a major part may go for reduction purposes. Sprat is an example here, and in some periods, herring and mackerel.
When switching from species to fishing fleets, the definition of industrial fisheries becomes easier. The Working Group report describes a number of fleets which, as their main operation, fish and supply raw material to fishmeal plants. Denmark, Faroes and Norway have full-time industrial fleets totalling between them 750 vessels, ranging in size up to 300 GRT. Other vessels from Denmark and Norway, and also from the United Kingdom, change their fishing in an opportunistic fashion between industrial and other fisheries.
Information concerning the landing capacity and other details of the fishmeal plants in Denmark, Faroes, Norway and the United Kingdom are given in the Working Group report.
D.2.1.2 The interrelation of fishing intensity on the three target species of the industrial fisheries
As summarized below, the three main target species of the industrial fisheries in the North Sea are exploited in rather definite seasons. Basically, the sandeel is caught during the second and third quarters of the year, while the Norway pout is exploited throughout the year, but most heavily in the third and fourth quarters. The sprat is most heavily exploited in the first, third and fourth quarters. The possibility for a complete transfer of effort, for example from sprat to sandeel, does not, therefore, exist, but some substitution of effort does seem to occur.

D.2.1.3 Description of the industrial fisheries

During the past ten years, total industrial landings from the North Sea have fluctuated between 1.0 million and 1.8 million tonnes (Table D.2.1). Following a sharp increase from 1973 to 1974, the annual landings remained at a fairly stable level up to 1980 , but then decreased to 1.3 million tonnes in 1981. Preliminary data covering the first three quarters of 1982 are on the same level as the total for 1981.
The total landings of the target industrial species (Norway pout, sandeel and sprat), which determine the annual fluctuations, show the same trend as above, ranging from 0.9 million to 1.6 million tonnes over the years. It should be noted that despite comparatively large annual variations in landings of each species from 1974 to 1980 (Norway pout 200 000-700 000 tonnes, sandeel 400 000-700 000 tonnes, and sprat $300000-600000$ tonnes), the total landings of target species remained fairly constant. This may suggest some flexibility of fishing effort diverting from one fishery to another, as the abundance and availability of the main stocks may change by time. Whereas the annual landings of Norway pout and sandeel tend to vary irregularly, mainly due to changes in recruitment, those of sprat dropped from 600.000 tonnes to 300000 tonnes from 1976 to 1977. A further sharp decrease to 100000 tonnes has taken place from 1980 to 1982 , because of a decline in sprat abundance.

Total annual landings of by-catches for reduction purposes have fluctuated between 150000 tonnes and 280000 tonnes. Landings of blue whiting have mainly varied according to the abundance of young immature fish in the Norwegian Deeps, ranging from 36000 tonnes to 100000 tonnes over the years. Annual landings of Recommendation 4 or protected species (haddock, whiting and saithe) were at a comparatively high level up to 1977, ranging from 130000 tonnes to 220000 tonnes, but decreased to 67000 tonnes in 1978, mainly as a result of by-catch regulations, and have remained at this level. Herring by-catches, since first reported in 1976, were kept at a rather low level (7000-15000 tonnes) up to 1980. In 1981, they increased sharply to 84000 tonnes and have been recorded at 92000 tonnes up to the third quarter of 1982.
Fish caught during the course of the industrial fisheries and sold for human consumption are not included in these figures but should be regarded as a facet of the industrial fisheries.

D.2.2 Norway pout

D.2.2.1 Norway pout in Division IIIa

Landings of Norway pout in Division IIIa, which have been made predominantly by Denmark, are given in Table D.2.2.l. With the exception of 1974, when the catch was about 11000 tonnes, and 1976 when it rose to 42000 tonnes, catches remained relatively stable at an
average level of about 24000 tonnes in the 1971-81 period. In 1982, however, preliminary catch figures indicate an increase to about 52000 tonnes, i.e., by over 100% of the long-term average. This large increase in the Norway pout catch might be associated with the considerable reduction in sprat catches in Division IIIa during 1982. No data on age composition are available from this fishery and no assessment was possible.
D.2.2.2 Norway pout in the North Sea
D.2.2.2.l Fishery trends

Landings of Norway pout for the years ly 73 m 82 are given in Table D.2.2.2. Information on Danish landings in 1982 were only available for the first three quarters of the year. The 1981 catch was only half that of the previous year probably because of the weak 1.980 year class. The preliminary and incomplete figures for 1982 indicate a higher catch level compared to 1981; it may reach a level of about 370000 tonnes.
Catch in number at age data from 1974 onwards are available. For 1982, data on age compositions are provided by Norway and by Denmark for the first three quarters only. In the period 1974-80 the average relative contribution to the total catch (in numbers) of the different age groups was: 0-group 14%, l-group $73 \%, 2-$ group 12% and $3-g r o u p$ 1%. Thus, under normal recruitment conditions the l-group is the main contributor to the total catch. However, in 1981 the situation was quite different since as much as 80% of the total catch in numbers consisted of 0-group fish mainly taken in the fourth quarter. The contribution of l-group fish was only 12% due to the poor 1980 year class.

The incomplete data for 1982, however, suggest that the age composition of the catch has reverted to the normal pattern in that year.

D.2.2.2.2 Assessments

The International Young Fish Survey (IYFS) provides independent estimates of the annual abundance of both adult stock and recruitment. From the Norwegian fishery for Norway pout, cpue data (tonnes per number of fishing days per GRT) are available by quarters from 1972-82. A fairly good relationship between these data and the IYFS indices indicates that the IYFS indices provide useful estimates of the expected yield of the Norway pout fishery during the same year as the survey is made. The Faroese series ($\mathrm{kg} /$ trawling hour) for the period 1978-82 is in very good agreement with the Norwegian data and shows the same high cpue level for the last half of 1982. Further analysis of cpue data, which should include data from the main fishing country on this stock, and IYFS data could be even more productive with regard to stock assessment.

For the years since 1975, when the IYFS has efficiently covered the major part of Division IVa, a close correlation exists between the annual catches of Norway pout and the combined abundance of 1- and 2-group in the IYFS. From this relationship and based on a preliminary 1983 index of 3119 l-group and 2-group fish, it may be supposed that the 1983 total catch could be in the order of 300000 tonnes, provided fishing mortality does not change dramatically.

In view of the uncertainties and lack of clear evidence, ACFM cannot comment on the present level of exploitation. Since fluctuation in recruitment. largely determines the level of catch, 0-group estimates would improve the quality of farecasts.

D.2.2.3 Norway pout in Division VIa

A small fishery for Norway pout has existed in Division VIa for some years (Table D.2.2.3). Scottish vessels fish for this species almost entirely in the North Minch, while vessels from other nations fish south and west of the Outer Hebrides. Catches in the order of 20000 tonnes were taken in 1976 and 1978-80. Landings decreased in 1981 to about 8000 tonnes.
The preliminary and incomplete figures for 1982 indicate a further decrease to a likely total of about 2000 tonnes.
No assessment was possible. ACFM recommends that data are collected so that the stock size changes can be monitored.
No data are available on the by-catches of human consumption species taken in the Norway pout fishery, and this may have implications for the assessment of other Division VIa stocks.

D.2.3 Sandeel

D.2.3.1 Sandeel in Divisions IIIa and VIa
Sandeel landings from Division IIIa, almost exclusively taken by Denmark, increased continuously from the 1977 level of 16000 tonnes to over 40000 tonnes in 1981. Preliminary figures indicate a drop in landings to about 22000 tonnes in 1982.
In Division VIa, the new Scottish fishery in the Minch yielded about 6000 tonnes in 1981 and about 11000 tonnes in 1982.
No assessment could be made on the sandeel stocks in these areas.
D.2.3.2 Sandeel in the North Sea (Sub-area IV)
D.2.3.2.I Fishery trends
Total landings of sandeel from the North Sea for the period 1971-82 are given in Table D.2.3.2. From the high level of 730000 tonnes in 1980 the catch decreased to about 570000 tonnes in 1981 followed by an increase to 611000 tonnes in 1982 for the three main countries.
The proportion of landings taken in the second half of the year decreased to 15% compared to the average level of about 30% in the three preceding years. This was due to a closure of the Norwegian sandeel fishery in the second half of the year and reduced landings by Denmark during that time to 13% of the annual landings. The Shetland fishery maintained its previous seasonal pattern, i.e., about 50% of their annual catch was taken from July to December.

D.2.3.2.2 Assessments

Three separate population units have been considered in the North Sea: one in the Shetland area, a second in the remainder of the northern North Sea (north of $56^{\circ} 30^{\prime} N$), and a third in the southern part of the North Sea. The boundaries of these sandeel fisheries are shown in Figure D.2.3.1.Catch in number at age data were available up to 1982. The annual landings of sandeels from this assessment area are given in Table D.2.3.3 for the period 1973-82.
In the southern area there was a major increase in the catch of o-group in 1981 to 58% (in numbers) of the total catch in that area. This was due to the good 1981 year class (as indicated by survey results) and the increase in landings in the second half of the year, particularly in area 2 A .

In 1982, catches of 0-group reverted to a low level (7% in numbers), and l-group made up the largest age component. In the northern area, catches during the second half of 1982 were almost entirely 0-group sandeels making up 51% of the total catch in numbers. At Shetland, the 0-group continued to make the largest contribution to the catches (69%).
The VPAs carried out for each area must be treated with considerable reservation because of lack of reliable estimates of natural mortality and of independent evidence of stock size or mortality rates. They nevertheless indicate little evidence of interdependence between the areas. For the Shetland area, the VPAs indicate that the sandeel stock may be increasing while for the offshore areas of the northeastern North Sea a significant decrease in the size of the sandeel stock is indicated. This is also indicated by the trend in the catches in recent years (Table D.2.3.3).

Fishing effort data including recent years were available only for the Shetland area but the correlation with fishing mortality is rather weak.

In the absence of reliable estimates of recruitment to any of the North. Sea sandeel assessment areas, and in view of the considerable reservations on the VPA estimate of stock size at the beginning of 1983, projections of catch in 1983 at different levels of fishing mortality would be misleading.

D.2.3.2.3 Management advice

In all fishing regions large quantities of 0 -group sandeels have been caught in the second half of the year (see text table below).

0-group catch in the second half of the year as \% of the total catch in numbers

Fishing area

Year	Southern	Northern	Shetland
	Sher	28	8
1978	33	43	59
1979	4	89	46
1980	1	25	33
1981	58	45	80
1982	6	51	75

High catches of 0-group sandeel in the second part of the year (particularly in July-August) appear to be a regular feature in the northern and Shetland regions. In the southern region high catches in the second half of the year might be associated with strong year classes.

Furthermore, in all three regions large quantities of l-group sandeels of the same year class are caught in the following spring. Thus, a considerable part of a year class, in some cases up to and over 50%, is fished out during its first year of life.

Considerable gains in yield per recruit could be obtained by avoiding the exploitation of 0-group sandeels, particularly in the northern area.

In the 1982 report of ACFM it was pointed out that on biological grounds "the high catches of 0 - and l-group would reduce yield per recruit and increase the risks of stock depletion, and ACFM strongly recommends that action should be taken in order to reduce juvenile catches". The situation has not changed in 1982, although some action has been taken by Norway.

Also on biological grounds, the most effectlve way of reducing the catch of young fish would be a seasonal restriction. On these considerations, therefore, ACFM advises that if the fishery were to be confined to May and June it would effectively avoid the catch of 0 -group fish and would also reduce the high level of exploitation of l-group fish in March-April.

Even assuming that fishing effort cannot be moved to the months of such an open season from other months, in which fishing at present occurs, there would be no loss in annual yield in any of the three areas. In the northern area, significant gains can be expected.

D.2.4 Sprat

D.2.4.1 Sprat in Division IIIa

In November 1982 ACFM recommended that fishing and landing of sprat and herring should be prohibited in Division IIIa when using trawls with a mesh size below 40 mm . This recommendation was made both to protect the declining sprat stock and in order to prevent catches of 0 - and l-group herring. Although this recommendation has not yet been enforced, the reported landings of sprat from Division IIIa decreased in 1982 to about 50000 tonnes, compared with about 105000 tonnes in 1980 and 87000 tonnes in 1981. (Table D.2.4.1.)
The acoustic survey, which has been carried out every year since 1979, although directed mainly on herring and not carried out in the shallow waters of the Kattegat, gives a stock biomass estimate of about 25000 tonnes at 1 September 1982. Although this is an underestimate, a clear decline is seen within the survey area since 1979.

The indices of l-group sprat from the 1983 IYFS were examined to see if an estimate of the likely 1983 catch could be obtained. Although a declining trend in the indices was seen (2 809 in 1981, 1841 in 1982, and 173 in 1983); it was concluded, however, that the correlation with the reported catch figures was not sufficiently strong to enable any valid conclusions to be reached.

ACFM therefore decided to re-affirm the recommendation made in November 1982 that fishing and landing of sprat and herring in Division IIIa should be prohibited when using trawls having a mesh size less than 40 mm .
D.2.4.2 Sprat, North Sea

In 1982 ACFM recommended that fishing for sprat in the North Sea should be restricted to 150000 tonnes because of the declining stock.
D.2.4.2.1 Landings 1981-82

Landings from 1973-82 are given in Table D.2.4.2. (In all cases except Denmark catches include by-catch.). Since 1980, landings have decreased from 323000 tonnes to approximately 130000 tonnes in 1982. The maximum catch during the period 1972-82 was 640000 tonnes taken in 1975. Between $40-50 \%$ of the total landings come from Division TVb east during the period July-October.
The catch statistics appear to reflect both the apparent decline in the stock in the North Sea and the change in its distribution.

D.2.4.2.2 Environmental effects and interactions with other species

The Working Group discussed the possibility that the present decline in the sprat population may have been caused by factors other than the fishery. It might be possible that some environmental factors such as hydrographic conditions, food supply or predation may be responsible for the decline and also the change in the distribution of the population. It is important that more quantitative data should be collected to solve this problem, but in the present circumstances, sprat recruitment may remain low for a period to come. If the present decline is in fact the result of a combination of changing hydrographic conditions and high fishing rates it may be difficult to reverse the trend in stock biomass.

D.2.4.2.3 Assessments

Results from VPA carried out show that the total stock has declined from over $700 \quad 000$ tonnes in 1975 to about 100000 tonnes in 1982. The adult stock in 1982 was estimated to be around 75000 tonnes.
The results from the acoustic surveys carried out by the United Kingdom in January 1983 indicated a sprat biomass of about 70 000. 80000 tonnes in the western part of the North Sea. Similar surveys carried out in 1981 and 1982 indicated sprat biomasses of 195000 tonnes and 167000 tonnes, respectively.

D.2.4.2.4 Catch prognosis

ACFM has examined the results from the 1983 IYFS and the international sprat acoustic surveys which are carried out in January and February to see if it was possible to make a realistic prognosis of likely catch levels.
The 1983 IYFS index of I-group sprat from Division IVb is 285 fish per hour, which indicates a low level of recruitment.
Despite some technical reservations concerning the results of the international sprat acoustic surveys, it can be said that there has been a declining trend in the biomass of l-group sprat in those areas where the surveys have been consistently carried out since their inception in 1978 (see text table below).

Year	Divisions IVa west and IVb west
1978	47.0
1979	40.9
1980	26.8
1981	37.0
1982	28.3
1983	19.0
Units: 1000 tonnes	

In 1983 no acoustic survey was carried out in Division IVb east. The IYFS in 1983 showed the highest densities of sprat from this area, thus indicating that a substantial part of the total sprat biomass was not covered by the acoustic survey in 1983. This survey cannot therefore be used to estimate the exploitable biomass or to make a prognosis of probable yields.
The available evidence indicates that the sprat stock in the North Sea is at a very low level, but it is not possible to give an accurate estimate. ACFM is thus unable to make a valid estimate of the likely 1983 catch, but a continuation of the declining trend is expected.

The present state of the North Sea sprat stock is such that any catches will speed up its decline. ACFM advises, that if the management objective is to halt this downward trend in the stock, then catches should be reduced to as low a level as practicable.

D.2.4.3 Channel Sprat (Divisions VIId-e)

No recommendations have previously been made about management measures for the sprat stock in Divisions VIId-e, because no assessments have been carried out. The Working Group, therefore, decided to review the available data for this purpose. No data are available to establish the relationship of the sprat populations in this area but as almost all the catches are taken in Division VIIe, it was decided to base the assessment on this area alone.

D.2.4.3.1 Landings

Landings for Divisions VIId-e are shown in TableD.2.4.3. The
landings show an increase in recent years to 17000 tonnes in 1980. Complete figures are not available for 1981 and 1982, but the total catch is not expected to exceed 20000 tonnes.
D.2.4.3.2 Effort

Although accurate figures are available for the United Kingdom fleet working in the area, it has not been possible to calculate a standard measure of effort which could be used to give an indication of changes in stock size. However, it is believed that there has been a substantial increase in fishing effort in recent years.

D.2.4.3.3 Assessments

Biological data which can be used for assessment purposes are only available from the United Kingdom, which until 1978 took over 80% of the total catch. This shows that the exploited population in the area is considerably different from that on which the fisheries in the North Sea are based. The population contains a higher proportion of older fish, which have different growth parameters and a different recruitment mechanism.

An acoustic survey carried out by the United Kingdom in December 1981 indicated a minimum stock biomass of approximately 20000 tonnes in the Lyme Bay area at that time. Tentative conclusions based on egg surveys in Division VIIe and fecundity data suggest a spawning stock biomass of 114000 tonnes for the whole western Channel area, which must be considered as a minimum estimate.

ACFM would therefore advise a precautionary TAC of 20000 tonnes for Division VIIe until a more accurate estimate of the spawning population can be carried out. The figure of 20000 tonnes is about the level of catches in recent years and would stabilize the fishery at its present level.

D.2.5 Data requirements to improve assessments of the stocks exploited by industrial fleets

If the Working Group is to fulfill its terms of reference, data are required in a disaggregated form. In summary, these are:

1) Catch and effort data by statistical rectangle and month, sub-divided by different fleet components. (This is impossible for some countries to produce without logbooks, which still require implementation.)
2) Catch in number at age by Sub-area and month.
3) Original survey data, not only published mean values etc.
4) Weight at age data by month and Sub-area.

Since many of the data required exist, priority should be given to making them available, perhaps by provision of a computerized data base. Only when what already exists is available, will it be possible to assess the need for new types of data.

Furthermore, our poor knowledge of the value of natural mortality on these fish stocks makes it difficult to interpret data from the three target species. Investigations into what the natural mortality is, how it comes about, and whether it varies with time would be very beneficial.
A general lack of knowledge appears to exist concerning the importance, structure and fishing strategy of the industrial fisheries. ACFM consequently recommends that each nation undertaking such a fishery produce a detailed description including statistics on vessel categories, operational structure (target species, areas, periods), shore installations and other pertinent features for the next meeting of the Working Group.

The Working Group needs the following items of information urgently:
I) The results of the current year's IYFS.
2) A means for predicting sprat catches in the next season. In practice, this must be a reliable estimate of l-group sprat abundance by the spring.
3) Some method to enable predictions of landings to be made for the next season, based on previous years' catches of 0 - and l-group fish, presumably based on fishing effort data.

D. 3 Stocks in Division IIIa

The Working Group on Demersal Stocks in Division IIIa did not meet in 1983. It worked by correspondence and the Danish members prepared a short report for consideration by ACFM.
Attempts at an analytical assessment could only be made in case of cod and plaice in the Kattegat. A data base for cod, haddock and plaice in the Skagerrak is building up but covers too short a period (1978-82) to be of use in this context. A serious obstacle to the assessment work in Division IIIa is the lack of effort data. the situation may improve in 1983, when logbooks are supposed to be obligatory, but the present lack of longer-time series cannot be remedied.

Recent nominal catches, and recommended TACs, in '000 tonnes:

$\begin{gathered} \text { Stocks } \\ \text { in } \\ \text { Div.IIIa } \end{gathered}$	1979		1980		1981		1982		1983
	Rec. TAC	Actual catch	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \end{aligned}$	Actual catch	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \end{aligned}$	Actual catch	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \end{aligned}$	Actual catch ${ }^{1}$)	tac
Cod	26	32	30	41	34	47	32.6	42.3	312)
Had.ock	6.6	4.8	6.6	7.9	4.5	10	7	10.7	$7^{2)}$
Whiting	22	18	22	23	22	25	22	31.	222)
Plaice	-	22	25	15	22	12	11	10	11 ${ }^{2}$

1) Preliminary.
2) Precautionary TAC.
D. 3.1
D.3.1.1
D.3.1.2
D. 3.2

Haddock

The landings in 1982 reached 10700 tonnes, which was a slight increase from the 9900 tonnes in 1981. There is still no basis for an analytical assessment, and abundance indices from IYFS cover a very short period only, Consequently, ACFM can only recommend a
precautionary TAC for Division IIIa of 7000 tonnes, corresponding to a level of average catches in the period 1975-80.

D.3.3 Whiting

Landings in 1982 increased to 31200 tonnes from 24500 tonnes in 1981.

There is no data base for an analytical assessment, and ACFM can only recommend that the precautionary TAC of 22000 tonnes set for the last 5 years should be retained in 1984.

D.3.4	Plaice
D.3.4.1	Plaice in the Kattegat
	The declining trend in landings since 1978 continued in 1982 with a total nominal catch of only 2900 tonnes compared with 4000 tonnes in 1981. This development is due to poor recruitment of all year classes since and including that of 1976, and l-group surveys indicate that no improvement can be expected from the 1981 year class.
	The consequent reduction in spawning stock biomass gives cause for concern, and ACFM recommends a precautionary TAC of 1500 tonnes for 1984°
D.3.4.2	Plaice in the Skagerrak
	Landings in 1982 reached 7900 tonnes being a slight decline from 8200 tonnes in 1981. The decline may be explained by the bad weather conditions in the last quarter of 1982.
	Without any basis for an analytical assessment, ACFM can only recommend that the precautionary TAC of 7000 tonnes set for 1983 should be retained in 1984.
D.3.5	If ACFM is expected to give any advice on these stocks in future, more data must be made available. As explained in the opening paragraph of Section D.3, the data series are, for most of the stocks, too short for an analytical assessment. However, to make full use of the data series in future, data on fishing effort and fishery-independent data on recruitment are urgently needed.

D.4	By-Catches in The Industrial Fisheries
D.4.1	Herring by-catches in the North Sea, 1981 and 1982

Revised estimates of herring by-catch taken in 1981 show a dramatic increase on the level in recent years. The new figure of approximately 75000 tonnes was taken almost exclusively in Divisiorr IVb, with the main fishery in the third quarter of the year. The catch consisted mainly of 0 -group herring.
Preliminary catch figures for the first three quarters of 1982 show a continuation of this very high catch level of 0 -group herring in Division IVb. A more intensive sampling programme than in 1981 indicates 1982 catches to be about 89000 tonnes. In practice, these catches must be considered the result of a directed fishery on 0 group herring rather than by-catches in an industrial fishery.
The catches are shown for Divisions (tonnes and numbers per age class) in Tables D.4.1.1, D.4.1,2, D.4.1.3.
D.4.1.1 Seasonal and geographical distribution of herring by-catches in the North Sea
In 1981 and 1982 over 90% of all herring taken came from the surner fishery carried out in the eastern part of Division IVb. This fishery took place along the Danish coast and extended from the border of the Federal Republic of Germany, up to the west coast of Jutland and into the Skagerrak. It started in July, reached a peak in

August and declined in September. During September 1982, Denmark closed this fishery in the 15 mile coastal zone between Hivide Sande and Hanstholm, but this measure was taken too late to prevent large catches of 0-group herring.
D.4.2 Hexring by-catches in Division IIIa

Figure are not available about herring by-catches from the Danish and Swedish fisheries from this area. There were, however, reports that large numbers of 0-group herring were taken in the third quarter of 1982 from along the north coast of Jutland and around Skagen.
By-catches of undersized herring ($<18 \mathrm{~cm}$) are also taken in the Kattegat in the directed fishery for human consumption, which takes place in the final quarter of the year.

By-catches of other species
The Working Group on Industrial Fisheries was asked to examine the available data on by-catch of other species to see if they could be used by othex Working Groups in their assessments. In the North Sea, the main 'target' species in the industrial fisheries are sprat, Norway pout, sandeel and blue whiting. Considerable data were available on the composition of the by-catch from Norwegian and Faroese Norway pout and sandeel landings. Whiting and haddock appear to be the most important of the protected species used for reduction purposes. Prior to 1977 saithe also formed a major component, while cod form an insignificant proportion. In recent years, the by-catch of protected species used for reduction declined because of by-catch regulations, but the by-catch of protected species used for human consumption has probably increased. At present, however, it is not possible to estimate the quantity of protected species which go for human consumption from the industrial fisheries.
D. 5 Cod, Haddock and Whiting Stocks in the North Sea, Sub-area IV
The North Sea Roundfish Working Group meeting preceded the meeting
of the International Young Gadoid Survey Working Group and there-
fore advice on recruit estimation from the latter Group was not
available. This year, however, the problems associated with
estimating year class strength were minimised because the survey
indices for the 1982 year classes for all three stocks were low.
Recent landings and TACs (l000 tonnes)

Year	1979		1980		1981		1982		1983
Species	TAC	Actual landings	Rec. TAC	Ac tual landings	TAC	Actual landings	TAC	Ac tual landings*	TAC
Cod	247	231	200	249	220	290	235	251	240
Haddock	83	87	90	104	140	133	180	181	181
Whiting	111	141	150	109	150	96	170	103	170

* Provisional

D.5.1 Cod in the North Sea (Sub-area IV)

As in the previous year the assessment is based on landings from the human consumption fishery and excludes discards and industrial by-catches. Landings in recent years increased to 290000 tonnes in 1981 helped by the very abundant year classes of 1976 and 1979. Subsequent recruitment has been at a lower level and landings declined to 251000 tonnes in 1982 exceeding the TAC of 235000 tonnes. Latest estimates of recent year class strengths at age 1 (millions) are: 1980: 131; 1981: 290 and 1982: 110. For prediotion purposes the 1983 year class has been assumed to be of average abundance at 202 million. The level of fishing mortality in 1982 was $\bar{F}(3-8)=0.73$, and it has remained at about this level for about 10 years. In recent years the highest fishing mortality rates have been on age groups 2 and 3. For this stock $\mathrm{F}_{\max }=0.18$.

Spawning stock biomass reached its lowest level in 1978 but subsequently recovered when the 1976 year class recruited to the spawning stock. However, since the 1979 Jear class reached maturity in 1982 a declining trend in spawning stock biomass began and is expected to continue up to at least 1985 unless fishing mortality rates are reduced.

A catch in 1983 equal to the agreed TAC of 240000 tonnes corresponds to an increase in average F to 0.82. Catch and biomass predintions for a range of options for 1984 are given in the text table below and illustrated in Figure D.5.1.

North Sea COD. Landings in $1983=240000$ tonnes $=T A C$.

1983				1984					1985	
SB	SSB	$\begin{aligned} & \bar{F}_{(3-8)} \\ & \text { H.C. } \end{aligned}$	Total landings	Management option for 1984	SB	SSB	$\begin{gathered} \overline{\mathrm{F}}(3-8) \\ \mathrm{H} . \mathrm{C} . \end{gathered}$	H.C. landings	SB	SSB
465	255	. 82	$\begin{aligned} & 240 \\ & (=\mathbb{T A C}) \end{aligned}$	$\overline{\mathrm{F}}_{0.1}$	390	233	. 12	37	611	378
				$\overline{\mathrm{F}}_{84}=0.2 \overline{\mathrm{~F}}_{83}$. 16	49	592	360
				$\overline{\mathrm{F}}_{\text {max }}$. 18	55	581	350
				$\overline{\mathrm{F}}_{84}=0.5 \overline{\mathrm{~F}}_{83}$. 41	110	491	268
				$\overline{\mathrm{F}}_{84}=0.8 \overline{\mathrm{~F}}_{83}$. 66	155	410	190
				$\overline{\bar{F}}_{84}=\overline{\mathrm{F}}_{83}$. 82	182	376	165

Weights in thousands of tonnes.
Stock biomass = ages 1+.
Spawning stock biomass $=$ ages $3+$.

If the same level of fishing mortality is maintained into 1984, the spawning stock biomass is expected to fall to 165000 tonnes in 1985, which would be below the lowest recorded level. The stock is overexploited in terms of yield per recruit, and ACFM recommends a reduction in fishing mortality towards $\mathrm{F}_{\text {max }}$.

Haddock in the Nonth Sea (Sub-area IV)
Landings of haddock froin tine North Sea reached a low level of less than 90000 tonnes in 1978 and 1979 but have subsequently recovered and in 1982 were 131000 tonnes (provisional) of which 21000 tonnes were landed as by-catches in the industrial fisheries. In addition, 41000 tonnes were estimated to have been discarded in 1982.
Of recent year classes only that of 1979 has been of above average strength. The following year class strengths at age 0 have been lsed in catch predictions:

Year class	Abundance (millions) at age 0	Source of estimate
1979	3533	VPA
1980	840	VPA
1981	2278	IYFS
1982	1329	TYFS
1983	2695	Average

The overall level of fishing mortality has remained relatively constant for several years at about the 1982 level of $\bar{F}(2-6)=1.03$ (total fishery). Spawning stock biomass reached a low level of less than 180000 tonnes in 1978 but has since recovered with the recruitment of the strong 1979 year class to the spawning stock, and in 1983 this was about 350000 tonnes. The prognosis up to 1985 is for a spawning stock fluctuating about 300000 tonnes.

Catch predictions were made on the assumption that fishing mortality caused by industrial fisheries will remain constant and that the exploitation pattern in the human consumption fishery will be equal to the average for 1977-82. Catch predictions for 1984 are given for a range of values of fishing mortality in the human consumption fishery. If the fishing mortality in the human consumption fishery (landings and discards) in 1983 remains at the 1982 level, the expected landings will be equal to the agreed TAC. For 1984 the catch and biomass predictions are given in the text table below and are presented graphically in Figure D.5.2.

NORTH SEA HADDOCK - MANAGEMENT OPTIONS FOR 1984

1983				1984								1985	
Total Stock Blom.	Spawning stock blomase	$\begin{aligned} & \overline{\bar{F}} \\ & (2-6) \\ & \text { H.C. } \end{aligned}$	Total land- ings	Management Option for 1984	Total Stock Biom.	Spawning stock biomass	$\begin{aligned} & \bar{F} \\ & (2-6) \\ & \text { H. } \mathrm{C} \end{aligned}$	Total land- ings	$\begin{aligned} & \text { H.C. } \\ & \text { land- } \\ & \text { Ings } \end{aligned}$	Induat. landIngs	Discaxds	Total Stock Blom.	Spawning atock biom.
455	345	$\begin{gathered} .97 \\ \left(=\overline{\mathrm{F}}_{82}\right) \end{gathered}$	182	$\stackrel{7}{F}_{84}=0.2 \bar{F}_{83}$	450	259	. 19	70	36	34	20	683	490
				$\bar{F}_{84}=F_{\text {max }}$. 26	80	47	34	26	663	471
				$\bar{F}_{84}=0.5 \bar{F}_{83}$. 48	111	79	32	47	605	414
				$\bar{F}_{84}=0.8 \bar{F}_{83}$.77	143	113	30	70	544	355
				$\bar{F}_{84}=1.0 \bar{F}_{83}$. 97	160	131	29	85	509	318

[^2]Spawning stock biomass ages $2+$

In terms of yield per recruit this stock could be managed more rationally by reducing the overall level of fishing mortality, and ACFM recommends a reduction in fishing mortality towards Fmax. In addition, the exploitation pattern could be improved through an increase in the minimum mesh size as was recommended in 1981, or a reduction in the industrial by-catch (see para. D.5.5). The former would help to reduce the level of discarding (see Table D.5.2).

D. 5.3 Whiting in the North Sea (Sub-area IV)

The provisional estimate of landings in 1982 is 103000 tonnes (including 33000 tonnes as industrial by-catch) which was well below the agreed TAC of 170000 tonnes. In addition to landings, 29000 tonnes were estimated to have been discarded. Recruitment in recent years was at an average level for year classes 1976-78, but the indications are that subsequent year classes are all below average abundance. There has been little change in the level of fishing mortality in the last three years; the value of F calculated for 1982 was $\overline{\mathrm{F}}_{2-6}=1.18$ for the total fishery. Spawning stock biomass in 1982 was estimated to be 211000 tonnes but this is expected to decline to 127 . 000 tonnes by 1984 , which would be lower than any previously recorded value. The recovery indicated for 1985 is entirely dependent on the assumption that the 1983 year class is of average (or greater) abundance. No information on the strength of this year class will be available until March 1984.

For 1983, total landings are expected to be 93000 tonnes on the assumption that fishing mortality remains at the 1982 level. These predicted landings are well below the agreed TAC of 170000 tonnes. This TAC is at such an unealistic level that no catch predictions for 1984 have been made on the assumption that the TAC would be taken.

Catch and biomass predictions for 1984 are given in the text table below and in Figure D.5.3. These are based on the assumption that F in 1983 will remain at the 1982 level, that the exploitation pattern in the human consumption fishery will be the average observed in 1977-82, and that fishing mortality in the industrial fisheries will remain constant.
north sea whiting - management options for 1984

1983				1984								1985	
Total Stock Biom.	Spawning stock biomass	$\begin{aligned} & \bar{F} \\ & (2-6) \\ & \text { H.C. } \end{aligned}$	Total land- 1nga	Management Option for 1984	Total Stock Biom.	Spawnine atock biomase	$\begin{aligned} & \overline{\mathrm{F}} \\ & (2-6) \\ & \mathrm{H.C.} \end{aligned}$	Total landings	$\begin{aligned} & \text { H.C. } \\ & \text { land- } \\ & \text { inge } \end{aligned}$	Indust. land- ings	Discards	Totel Stock Biom.	Spawning stock blom.
285	176	. 97	93		303	127							
		$\left(=\overline{\mathrm{F}}_{82}\right)$		$\bar{F}_{84}=0.2 \bar{F}_{83}$. 19	58	12	46	9	448	273
				$\bar{F}_{84}=F_{\text {max }}$. 41	67	6	1:4	17	-	249
				$\bar{F}_{84}=0.5 \bar{F}_{83}$. 48	71	27	4.4	20	419	242
				$\bar{F}_{84}=0.8 \bar{F}_{83}$. 77	81	39	42	31	390	212
				$\bar{F}_{84}=\bar{F}_{83}$. 97		45	41	36	380	204

[^3]Spawning stock biomass eges $2+$

In view of the decline in spawning stock biomass, which is expected to occur (reducing it to levels at or close to the lowest on record) and the declining trend in recruitment since 1978, ACFM recommends that fishing mortality should be reduced towards $F_{\max }$. The advantages to be obtained from an improvement in the exploitation pattern through a mesh increase, or a reduction in the industrial by-catch, are also applicable to the whiting stock.

Possibilities for improving the exploitation patterns other than by mesh regulation

For North Sea cod there have been suggestions that some fleets have been concentrating in areas or seasons where young fish predominate and are consequently taking a high proportion of young cod in their catches. One area that has been mentioned in this context is the Helgoland Bight. Figure D. 5.4 shows the main areas of distribution of $0-$, I- and II-group cod in the southern North Sea. These research vessel survey data show that young cod are concentrated in the German Bight at certain times of the year.

No data were available at the Working Group giving an area breakdown of quantities caught together with the associated age compositions. Consequently, it was not possible to estimate what proportion of young fish was taken in any particular area. Detailed data of this kind would be required for any quantitative assessment for cod. In addition, it would also be essential to have estimates of discards by area. Furthermore, any conservation measures which might be contemplated would also have implications for fisheries for other species, e.g., plaice and sole, which take place in the same area.

For haddock and whiting in the North Sea, the two major factors influencing the exploitation pattern are the catches of undersized fish taken with current human consumption fishery mesh sizes and subsequently discarded and the by-catches in the industrial fisheries. The first of these problems is probably best resolved by mesh regulation. The second problem is more a question of policy and economics relating to the co-existence of industrial and human consumption fisheries.
D.5.5 Minimum trawl cod-end mesh sizes in Sub-areas IV and VI

Attention is drawn to Tables D.5.1-3 which show numbers and weights of cod, haddock and whiting estimated to have been discarded or taken as by-catches in the industrial fisheries in the North Sea. In view of the serious loss in yield associated with the numbers of fish being discarded, ACFM reiterates its 1981 advice for the need to increase the minimum mesh size in the North Sea as soon as possible. In addition, in the North Sea the exploitation patterns for haddock and whiting could be improved by reducing the by-catches taken in the industrial fisheries.
For Division VIa the advice of ACFM is unchanged from that given in 1981. In 1982 about 10000 tonnes of haddock were discarded in Division VIa, which supports the argument in favour of a mesh size increase.
D. 6 Cod, Haddock and Whiting in Sub-area VI
Recent landings and TACs (thousands of tonnes)

Year	1979		1980		1981		1982	
Stock	$\begin{aligned} & \text { Rec } \\ & \text { TAC } \end{aligned}$	Actual landings	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \end{aligned}$	Actual landジngs	$\begin{aligned} & \text { Rec } \\ & \text { TAC } \end{aligned}$	Actual landings	$\begin{aligned} & \text { Rec } \\ & \text { TAC } \end{aligned}$	Actual landings*
Cod VI	10.4	16.9	12.1	18.6	20.0	24.7	17.5	21.9
Haddock VIa	8.5	14.8	13.0	13.0	15.5	18.4	15.5	28.9
Haddock VIb	2.5	2.2	2.5	7.3	6.0	9.0	6.0	7.8
Whiting VI	12.0	17.4	13.0	14.7	16.4	18.5	13.0	13.5

* Provisional.

D.6.1 Cod in Division VIa

Landings followed an increasing trend from 1977 to 1981 when they reached 25000 tonnes. Provisional landings for 1982 indicate a reduction to 22000 tonnes. The increase in landings up to 1981 has been due largely to a succession of above average year classes but in addition there has been an increase in fishing mortality in the last four years.
In $1982 \overline{\mathrm{~F}}_{3-4}=0.84 ; \overline{\mathrm{F}}_{\max }$ for this stock is 0.31. Spawning stock biomass has been increasing since 1978, as the more abundant year classes have recruited to the adult stock. The spawning stock biomass is expected to remain at about 30000 tonnes up to 1985.

Catch predictions have been made for 1983 and 1984, using an exploitation pattern equal to the average for 1977-82. The strength of the 1981 year class is estimated to be 21.3 million from the application of average fishing mortality to the 1982 catch of 1 year olds. This is the largest year class on record, but the estimate is supported by cpue data from the Scottish fishery.

Although recruitment has shown a clear upward trend, this trend has not been extrapolated. For the predictions, the 1982 and 1983 year classes have been assumed to be equal to the 1967-79 average. Fishing mortality in 1983 has been assumed to remain unchanged at the 1982 level, and a catch of 22600 tonnes is expected. Catch and stock biomass predictions for 1984 are given in the text table below and in Figure D.6.l.

COD in Division VIa - Management options for 1984

Weights in thousands of tonnes
Stock biomass $=$ ages 1_{+}
Spawning stock biomass = ages $3+$

Although this stock is not in a critical state, the level of fishing mortality is far above $F_{\text {max }}$. ACFM therefore recommends that fishing mortality should be reduced towards $\mathrm{F}_{\max }$.

D.6.2 Cod in Division VIb

Only small quantities of cod are normally taken in Division VIb. The TAC adopted on the basis of the assessment for Division VIa should be increased by 500 tonnes, to allow for Division VIb cod, and applied for the whole of Sub-area VI.

D.6.3 Haddock in Division VIa

Landings increased from 18400 tonnes in 1981 to 28900 tonnes in 1983 with the abundant 1979 year class making an important contribution to the catch.

Discard data have been reprocessed and were incorporated into the Working Group assessment for the first time. Large numbers of the 1979 year class were estimated to have been discarded as 2 year olds in 1981 and as 3 year olds in 1982. Predictions based on the assessment incorporating discard data gave a very high estimate for landings in 1983, which is considered unrealistic. ACFM accepted an alternative assessment, based on landings only.

Fishing mortality in 1982 was assumed to have remained at the average level for the period 1978-80. Recruitment of the 1981 year class in 1982 was estimated at 9.2 million on the basis of average F at age 1. The 1982 year class at age 1 was estimated at 20 million from the VIa/IV recruitment relationship. The 1983 year class was assumed to be equal to the long-term average (48 million).

Spawning stock biomass and recruitment have both been fluctuating without trend.

If fishing mortality in 1983 remains at the 1982 level, and assuming: the exploitation pattern will be the same as in 1977-82, landings in 1983 are expected to be 22800 tonnes. Predictions for landings and stock biomasses in 1984 are given in the text table below and in Figure D.6.3.
Fmax is half the present fishing mortality level and ACFM recommends that F be reduced towards this value.

West of Scotland HADDOCK. Management options for 1984.

Weight in thousande of tonnes
Recruitment 1984, $\mathrm{R}_{3}=48000$
Stock biomass $=$ fish at age 1 and older
Spawing stock biomasa $=$ age $2+$
Exploitation pattern 1983-84 based on 1977-82 average

D.6.4 Haddock in Division VIb

Landings in 1982 were 7800 tonnes after 9000 tonnes in 1981. No analytical assessment based on commercial catches has been possible because of the continuing practise of landing in countries other than those in which the vessels are registered, with the result that sampling of landings has not been possible.

English research ship surveys, comparable with that made in August 1981, were carried out in July 1982 and August 1983. The year classes of 1976, 1977, 1980 and 1981 are abundant, but other year classes are poor or virtual failures and make little contribution to the catches. No fish of the 1982 year class were taken on the 1982 survey and very few of the 1983 year class on the 1983 survey, and it seems likely that both these year classes are poor ones. Survey stock biomass estimates were 70000 tonnes in 1981, 93000 tonnes in 1982 and 70000 tonnes in 1983. A further survey by the Federal Republic of Germany, which extended to a greater depth than the English ones, gave a stock estimate of 108000 tonnes in January 1983.

On the basis of these surveys and the fact that both the 1982 and 1983 year classes appear poor ones, ACFM recommends that the TAC in 1984 should be set in the range $15000-20000$ tonnes, which would result in a fishing mortality at about the $\mathrm{F}_{0.1}$ level.

D.6.5 Whiting in Division VIa

Landings in 1981 were 17500 tonnes but fell in 1982 to 13500 tonnes, which is the lowest recorded in the last ten years. Poor recruitment appears to be the main contributory factor.
The level of fishing mortality in 1982 was $\bar{F}(2-4)=0.88$. The Y / R curve is flat-topped and $F_{m a x}$ was not determined; the value of $F_{0.1}$ is 0.22 .
Current estimates indicate that the year classes 1980, 1981 and 1982 are of low abundance; the 1983 year class was assumed to be of average size. If the 1982 level of fishing is maintained in 1983, landings are expected to fall again to 8200 tonnes. Predictions of landings and stock biomass in 1984 for a range of options are given in the text table below and are shown graphically in Figure D.6.5.

Whiting in Division VIa - Management options for 1984

1983				1984					1985	
Total Stock. Biomass	Spawning Stock Biomass	$\vec{\varepsilon}_{(2-4)}$	Total Landings	Managemmi Option for 198:	Total Stock Bjcmass	Spawning Stock Biomass	$\bar{F}_{(2-4)}$	Total Landings	Total Stock Biomass	Spawning Stock Biomass
17	13	$\left(\begin{array}{c} 0.88 \\ \left(=\bar{F}_{82}\right) \end{array}\right.$	8.2		25	8				
				$\bar{F}_{84}=0.2 \bar{F}_{83}$			0.18	1.9	40	23
				$\overline{\mathrm{F}}_{84}=\overrightarrow{\mathrm{F}}_{0.1}$			0.22	2.4	40	23
				$\bar{F}_{84}=0.4 \overline{\mathrm{~F}}_{83}$			0.35	3.6	38	21.
				$\bar{F}_{84}=0.6 \bar{F}_{83}$			0.53	5.1	37	20
				$\vec{F}_{84}=0.8 \mathrm{~F}_{83}$			0.70	6.4	35	18
				$\bar{F}_{84}=\bar{F}_{83}$			0.88	7.5	34	17

Weights in thousand tonnes
Spawning stock biomass ages $2+$

In view of the declining trends in spawning stock biomass and in recruitment, ACFM recommends that fishing mortality should be reduced towards ${ }_{0.1}$
Preliminary information on Scottish catch data for January-May 1983 suggested that catch rates have increased and that the final 1983 catch may be considerably higher than 8200 tonnes. It was not feasible for ACFM to evaluate the possible implications of this for the assessment of this stock.

Landings of whiting from Division VIb are insignificant, and the TAC determined for Division VIa could apply to the whole of Sub-area VI.

D.6.6 Cod, haddock and whiting in Divisions VIIb, c, d, e

Analytical data were available only for whiting, but these data are not considered a sufficiently reliable basis for catch prediction purposes. ACFM therefore recommends that precautionary TACs should be set. Catch figures on which these could be based are given in Tables D.6.6.1 - D.6.6.6.
D. 7 Irish Sea and Bristol Channel Demersal Stocks
D.7.1 Irish Sea cod

The 1982 catch fell by 8% to 13768 tonnes and was once again within 1% of the figure predicted by the Working Group, based on unchanged fishing mortality. Spawning stock biomass is estimated to have declined slightly from the record level of 1982 and is expected to decline to a level closer to the long-term average in 1984 and 1985, because recruitment of the 1981 year class is below average.

The maximum of the Y / R curve is at 43% of the present F. The present level of exploitation on this stock is 5% above the average level for the period 1970-81.
There is no evidence that the continuing exploitation above $\mathrm{F}_{\max }$ has reduced recruitment, but the exploitation pattern needs to be improved in order to obtain a higher yield from recruiting fish. Proper enforcement of the existing minimum size regulations would help towards this end. A reduction in fishing mortality would also give an increased cod biomass, catch rate and yield per recruit. If the management objective is to achieve these increases, then ACFM recommends that fishing mortality be reduced towards Fmax.

Management options are given in the text table below.

COD - IRISH SEA

1.983				Management option for1984	1984				1985	
Stock biom.	Spawning stock biomass	$\bar{F}_{(1-7)}$	Catch		Stock biom.	Spawning stock biomass	$(1-7)$	Catch	Stock biom.	Spawning stiock biomass
30100	12900	0.59	11600	$\mathrm{F}_{0.1}$	26700	12100	0.16	3400	36400	20100
				$\mathrm{F}_{\text {max }}$		11500	0.26	5300	33600	17000
				$\begin{gathered} F_{1984}= \\ 0.8 \text { x }_{1983} \end{gathered}$		10200	0.47	8800	28400	11900
				$\begin{aligned} & \mathrm{F}_{1984}= \\ & \mathrm{F}_{1983} \end{aligned}$		9500	0.59	10400	26000	9700

Weight in tonnes.

Irish Sea whiting

New data provided to ACFM from an inshore Groundfish Survey in October, and VPA estimates of 1 year old abundance are shown below and indicate that the 1981 and 1982 year classes are poor.

Year class	O-group index from survey
	6128
1977	560
1978	1322
1979	6418
1980	3387
1981	436
1982	
	329

In recent years $1-3$ year old whiting dominated the catches, so the 1984 catch will be reduced if the two recruiting year classes are low.

The assessment of this stock remains unsatisfactory because inconsistencies in the data base for past years have not been cleared up. Due to this the catch forecasts which were carried out were rejected as too unreliable to be used for setting TACs.

ACFN can therefore only recommend a precautionary TAC for this stock. Taking account of the evidence for recent poor recruitment, ACFM recommends a precautionary TAC of 10000 tonnes for 1984.
D.7.3 Irish Sea plaice

The catch in 1982 fell by 17% to 3237 tonnes and was considerably lower than either the TAC (4500 tonnes) or the predicted catch (4000 tomnes). The catch per unit effort also fell (-23% by Belgium, -26% by England).
The maximum of the Y / R curve is at 40% of the present F, and the level of exploitation has hardly changed since 1975, in spite of ACFM advice to reduce it. Spawning biomass is below the average for the period 1964-82 but is not expected to go below the lowest observed level.

Management options are given in the text table below.

PLAICE - IRISH SEA

1983				Management option for1984	1984				1985	
Stock biom.	Spawning stock biomass	$\left\|\begin{array}{l} \bar{F} \\ (3-13) \end{array}\right\|$	Catch		Stock biom.	Spawning stock biomass	$\bar{F}_{(3-13)}$	Catch	Stock biom.	Spawning stock biomass
10700	3800	. 54	2700	$\mathrm{F}_{0.1}$	11800	41.00	. 11	800	14800	6600
				$\mathrm{F}_{\text {max }}$		4000	. 22	1500	14100	5900
				$0.8 \mathrm{~F}_{82}$		3900	. 44	2600	12800	4800
				$\mathrm{F}_{84}=\mathrm{F}_{82}$		3900	. 54	3100	12300	4300

ACFM recommends that fishing mortality should be reduced towards $F_{\text {max }}$.

D.7.4 Irish Sea sole

The catch in 1982 fell by 22% to 1295 tonnes, partly due to a drop in fishing effort.

The present level of fishing mortality remains very close to $F_{\text {max }}$ and the level of exploitation on the stock has remained virtually unchanged since 1970, but the spawning biomass is currently at its lowest observed level and may remain low in 1984 and 1985 if recruitment is below average. Recent Belgian and English data indicate that the 1980 year class is poor, and the catch forecast has been adjusted to take account of this.

Management options are given in the text table below.

SOLE - IRISH SEA

1983				Management option for1984	1984				1985	
Stock biom.	Spawning stock biomass	$\|\bar{F}(3-10)\|$	Catch		Stock biom.	Spawning stock biomass	$\bar{F}(3-10)$	Catch	Stock biom.	Spawning stock biomass
4800	3800	. 29	1100	$0.1=.46 \mathrm{~F}_{82}$	4800	3900	. 13	500	5500	4500
			$\mathrm{F}_{84}=\mathrm{F}_{\text {max }}=1.0 \mathrm{~F}_{82}$		4800	3900	. 29	1000	5000	4000

ACFM recommends that fishing mortality on this stock should not be allowed to rise.

D.7.5 Celtic Sea sole

The 1982 catch of 1128 tonnes was 7% lower than in 1981. Belgian cpue remained unchanged and estimated total international effort fell by 4%.
The present level of F is 28% above $F \max$. The level of exploitation has been higher in 1980-82 than in the previous time period.
Spawning biomass has been declining since 1980 and is expected to reach a historically low level in 1985. For this stock the level of recruitment per unit biomass required to sustain the stock at the present level of fishing is higher than any observed in the data.
Management options are given in the text table below.

SOLE - CELTIC SEA

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\left\lvert\, \begin{aligned} & \overline{\mathrm{F}} \\ & (3-13) \end{aligned}\right.$	Catch		Stock biom.	Spawning stock biomass	$F(3-13)$	Catch	Stock biom.	Spawning stock biomass
4500	3400	. 29	1200	$F_{0.1}=.37 \mathrm{~F}_{82}$	4000	3400	. 11	450	4500	3800
				$F_{\text {max }}=.72 \mathrm{~F}_{82}$		3200	. 21	800	4100	3300
				$F_{84}=.8 \mathrm{~F}_{81}$		3200	. 23	900	4000	3200
				$\mathrm{F}_{84}=\mathrm{F}_{82}$		3150	. 29	1100	3800	3000

As with the Irish Sea sole, the forecast is very dependent on recruitments for which mean values have been assumed. The value of recruitment of the 1980 year class assumed in the assessment (i.e., the geometric mean) is supported by recent Belgian data.
In view of the low spawning stock biomass, ACFM recommends that fishing mortality on this stock should be reduced to Fmax.

D.7.6 Celtic Sea cod

The catch in 1982 (6553 tonnes) was 20% lower than in 1981. Catch per effort for France also fell by 17% and total international effort has remained steady over the last three years.
$F_{\max }$ occurs at 55% of the present level of F, and the level of exploitation has varied little over the past three years. The spawning biomass in 1982 is high, but poor recruitment, particularly the 1981 year class, could result in a marked decline in 1984 and 1985

COD - CELTIC SEA

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\bar{F}(1-7)$	Catch		Stock biom.	Spawning stock biomass	$F^{F}(1-7)$	Catch	Stock biom.	Spawning stock biomass
10500	7800	0.50	4400	$\mathrm{F}_{84}=\mathrm{F}_{83}$	8600	5400	0.50	3700	8209	5100
				$\mathrm{F}_{84}=0.8 \mathrm{~F}_{83}$		5600	0.40	3100	8900	5800
				$\mathrm{F}_{84}=\mathrm{F}_{\max }$		5700	0.28	2300	10000	6900

Stock biomass 1+

ACFM recommends that fishing mortality on this stock should not be allowed to rise.

D.7.7 Celtic Sea whiting

Uncertainties with age determinations mean that no analytical assessment could be carried out on this stock. Landings and catch per effort have fluctuated very little over the past ten years and were both above the mean level in 1982. A precautionary TAC should be set for this area or for ICES Sub-area VII.
ACFM therefore recommends a precautionary TAC for this area for 1984. Catch figures on which this could be based are given in Table D.7.7.
D.7.8 Celtic Sea plaice

This year the only data on age distribution for this stock were supplied by Belgium. The limited sampling of this stock in England and Wales in previous years has now stopped due to low landings and switching of the available sampling manpower onto other species. Since it is only the fourth most important flatfish species in this area, it is unlikely that it will be sampled adequately in the future, and the need for assessments of the stock should be reconsidered.
The catch in 1982 (1.274 tonnes) was 7.5% lower than in 1981, but this is still well above the mean for the period 1972-81.
ACFM therefore recommends a precautionary TAC for 1984. Catch figures on which this could be based are given in Table D.7.8.
$\begin{array}{ll}\text { D. } 8 & \text { Plaice and Sole Stocks in the North Sea and English Channel } \\ \text { D.8.1 North Sea sole } \\ & \text { Recent catches and TACs, in } 1000 \text { tonnes: }\end{array}$

1977	1978		1979		1980		1981		1982		
Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch
6.7	18.0	8.0	20.3	13.0	22.6	15.0	15.8	15.0	15.4	15.0	21.3

I) Preliminary

In 1982 the provisional total international catch was 21286 tonnes, which was slightly above the 1982 TAC of 20000 tonnes. About 24% of this catch consisted of the 1980 year class and 46% of the 1979 year class.
The catch per unit effort of Belgium and the Netherlands increased in 1982 by 22% and 40% respectively compared with 1981. The international effort in 1982 indicated a small reduction of 1.5 based on the Dutch cpue and an increase of 13% based on the Belgian cpue. The United Kingdom index indicating an increase of 140% was felt highly unrealistic and was therefore not considered further.

ACFM could not accept the result of the 'terminal populations ' version of the separable VPA in which the 1982 calculated fishing mortality was felt to be too low on 3 year olds. The pattern from the 'terminal F ' option of the separable VPA, as used by the Working Group for prediction, was taken for the new VPA run (see Table D.8.1).

Several methods were applied to obtain estimates of the present level of fishing mortality. Good correlations were obtained between indices of international effort based on Dutch data and unweighted mean fishing mortality for the most exploited age groups (2-8) for input values of 0.55 to 0.70 .
The fishing mortality on the age group subject to maximum exploitation was agreed to be 0.55 , corresponding to an $\overline{\mathrm{F}}(2-8)$ of 0.45 . The spawning stock biomass decreased from 110000 tonnes in 1957 to a minimum level of 26000 tonnes in 1981. The good 1979 year class caused an increase to 39000 tonnes in 1982. The VPA indicates a year class 1979 of 170 million recruits, which is about twice the geometric mean recruitment.
The unweighted mean fishing mortality over the most exploited age groups increased gradually since 1.957 from 0.099 to 0.450. However, during the last 10 years this fishing mortality remained fairly stable.
Assuming an unchanged fishing mortality, the expected catch for 1983 and 1984 will be respectively 21000 tonnes and 22000 tonnes. The spawning stock biomass in 1984 and 1985 will then be $45: 000$ tonnes and 43000 tonnes respectively.

North Sea SOLE

1982		1983				Management option for 1984	1984				1985	
Tot. land	$\overline{\mathrm{F}}_{(2-8)}$	SB	SSB	$\bar{F}_{(2-8)}$	Tot. land.		SB	SS. B	$\overline{\mathrm{F}}_{(2-8)}$	Tot. land.	SB	SSB
21	0.45	61	41	0.45	21	$\mathrm{F}_{0.1}$			0.15	8	70	55
						$\mathrm{F}_{\text {max }}$			0.27	14	65	51
						$\mathrm{F}_{84}=\mathrm{F}_{82}$	60	45	0.45	22	57	43

Weights in 1000 tonnes.
Tot.land.: total landings.
SB: stock biomass.
SSB: spawning stock biomass.
Although the Y / R curve (Figure D.8.1) is rather flat-topped, the present level of F is above any biological reference points. ACFM therefore recommends that the level of exploitation should be reduced to $\mathrm{F}_{\max }$ as quickly as possible.

As spawning stock biomass is presently very low in comparison to historical levels, the Working Group will be asked to consider and advise on optimum levels of spawning stock size which could be used as a guideline for management.
D.8.2 North Sea plaice

Recent catches and TACs, in $: 000$ tonnes:

1977		1978		1979		1980		1981		1982	
Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. TAC	Actual catch	Rec. . TAC	Actual catch 1$)$
71	119	115	114	120	145	112	140	105	140	-	153

I) Preliminary.

The yield in 1982 increased by nearly 10% to a record catch of 153000 tonnes, which again contained a high proportion (30\%) of unreported catches.

The cpue increased for all fleets. International effort indices slightly increased. The United Kingdom and Belgian estimates indicated a slight increase in the index of international fishing effort, but the Netherlands' data gave a slight decrease.

The separable VPA indicated an increase in F on the younger age groups and some decrease in F on the older age groups.
The 1979 year class was estimated as 909 million, which is about twice the geometric mean recruitment. The weighted mean of the pre-recruit survey indices was 351 million for the 1980 year class. The 1981 year class also seems to be very strong as shown by the estimate of the pre-recruit indices amounting to l. 000 million. The fishing mortality at age 1 was adjusted for the 1980 and 1981 year classes in order to achieve the value of pre-recruit estimates.

Assuming the same fishing mortality in 1984 as in 1982, the expected catch will further increase from 164000 tonnes in 1983 to 182000 tonnes in 1984. Also the spawning stock biomass will increase to 481000 tonnes in 1983, decrease slightly to 444000 tonnes in 1984 and increase to 468000 tonnes in 1985, at the same level of fishing mortality. These spawning stock biomasses are on the same high level as those at the end of the 1960s.
The record catches and high spawning stock are caused by the high level of recruitment since 1976.
A table of management options is given below.
North Sea PLAICE

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\overline{\mathrm{F}}(2-10)$	Catch		Stock biom.	Spawning stock biomass		Catch	Stock biom.	Spawning stock biomass
688	481	0.319	164	$F_{83}=F^{0.1}$			0.12	80		570
				$\mathrm{F}_{\text {max }}$			0.24	150		500
				$\mathrm{F}_{84}=\mathrm{F}_{82}$	649	444	0.319	182		468

Weights in 1000 tonnes.

Assuming constant fishing mortality at the level of 1982, the equilibrium yield and spawning stock biomass will be 125000 tonnes and 351000 tonnes respectively. These are lower than the shortterm predictions because of the above-average recruitment in recent years.

ACFM indicates a preference for fishing at $F_{\text {max }}$ which corresponds to a TAC for 1984 of 150000 tonnes.
D.8.3 Sole in Division VIId

Recent catches and TACs, in '000 tonnes:

1978		1979		1980		1981		1982
C	TAC	C	TAC	C	TAC	C	TAC	C
1.4	1.2	1.8	2.2	1.4	1.7	2.2	1.4	$2.7^{1)}$

1) Preliminary.

In 1982 the provisional total international catch reached 2673 tonnes which was the highest on record and 30% higher than the recommended TAC.
The Belgian cpue remained stable since the peak level of 1979. The United Kingdom data show an increase in 1982, mainly due to a high proportion of the 1979 year class in their catch.
ACFM could not accept the results of the 'terminal populations' version of the separable VPA, and therefore decided to re-run the VPA with the pattern from the 'terminal F' option of the separable VPA used by the Working Group for the predictions. (Table D.8.3.)
From the traditional VPA it appears that total stock biomass and spawning stock biomass were at a high level in 1982, mainly due to the strong 1979 year class.

The 1980 and 1981 year classes are above average, as indicated by the French pre-recruit surveys. The data series from these years, however, is not long enough to quantify the strength of these year classes with any accuracy.
The cpue data from the 1983 Belgian catches indicated a strength of about 6 million recruits of the 1980 year class (Figure D.8.3.). From the regression between the North Sea and Division VIId sole recruitments, the 1980 and 1981 year classes could be estimated as 13.5 and 15.0 million, respectively. As these high values could not be confirmed by the 1983 catch rates, ACFM decided to rely on the cpue estimate of about 6 million recruits for both these year classes.
ACFM points out that there are great similarities between the North Sea and eastern English Channel sole stocks in terms of growth rates and recruitment strengths. Therefore, management strategy should be similar for both stocks.

Spawning stock biomass has been relatively stable in the period up to 1980 , because of the fact that fishing mortality was below or close to $\mathrm{F}_{\max }$. Management options are given in the text table below.

ENGLISH CHANNE - SOLE - DIVISION VIId

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\begin{aligned} & \bar{F}(3-8) \\ & H . C . \end{aligned}$	$\begin{aligned} & \text { Fotal } \\ & \text { land } \\ & \text { ings } \end{aligned}$		Stock biom.	Spawning stock biomass	$\begin{aligned} & F(3-8) \\ & \text { H.C. } \end{aligned}$	$\begin{aligned} & \text { H.c. } \\ & \text { land } \\ & \text { ings } \end{aligned}$	Stock biom.	Spawning stock biomass
7.8	6.5	0.43	2.4	$\mathrm{F}_{0.1}$	6.7	5.1	0.15	0.6	7.3	5.7
				$\begin{aligned} & F_{\max }=0.7= \\ & F_{82} \end{aligned}$			0.30	1.4	6.7	5.1
				$\mathrm{F}_{84}=\mathrm{F}_{82}$			0.43	1.9	6.2	4.6

Although the Y / R curve is rather flat-topped, the present level of fishing mortality is above any biological reference points. ACFM therefore recommends that the level of exploitation should be reduced to $\mathrm{F}_{\text {max }}$.
D.8.4 Sole in Division VIIe

Recent catches and TACs, in 1000 tonnes:

1978		1979		1980		1981		1982		1983
C	TAC	C	TAC	C	TAC	C	TAC	C	TAC	TAC
0.9	0.4	1.2	0.5	1.3	0.8	1.2	1.0	1.4		400

1) Preliminary

Provisional figures for landings in 1982 were 1413 tonnes, which is the highest on record.

The effort by United Kingdom beam trawlers, which take the greatest proportion of the catch, increased substantially in 1982 but the catch per unit effort remained similar to the level of the previous years. The otter trawl catch per unit effort, however, increased in 1.982.

Due to doubts concerning the assessment, mainly in the estimate of the terminal. fishing mortality, ACFM recommends a precautionary TAC for 1984 of 900 tonnes, which is in the range of the 1975-82 catches.

D. 8.5	Plaice in Divisions VIId and VIIe
	The catches in 1982 wexe almost at the same high level (6309 tonnes) as in 1981, whereas in the ten years up to 1980 the catches fluctuated between 2600 tonnes and 4200 tonnes.
	From the combined age composition it seems that the 1979 year class accounts for 55% of the catch, indicating a situation similar to the one observed in the North Sea stock.
	The data base is, however, very poor, and consequently no analytical assessment was carried out.
	Therefore, ACFM can only advise a precautionary TAC of 3500 tonnes, which is the average catch of the ten years up to 1981.
D.8.6	Exemption from the proposed increase in minimum mesh size to 90 mm
	for boats less than 300 BHP
	ACFM was asked by the European Commission to provide scientific advice on the effects of a possible exemption from the proposed increase in minimum mesh size to 90 mm for boats of less than 300 BHP .
	The Commission's Scientific and Technical Committee for Fisheries (STCF) advised in their fifth (1982) report that on the basis of the
	latest available technical data, small boats would have, on theoretical grounds, to use wider meshes to get a catch of sole of the same length composition as boats with stronger engines.
	The STCF expressed the opinion that if the current derogation was allowed to persist, adverse conservation effects would probably be small since the proportion of the total sole catch taken by vessels of the type in question is believed to be correspondingly small.
	Since no definitive scientific advice was available on this topic, the Commission requested ICES to provide such advice.
	ACFM regrets that catch data by fleets are not available to it in sufficient detail of either species composition or of fishing area to enable it to give scientific advice on the problem.

D. 9 Shrimp Stocks in the Skagerrak-Kattegat and the North Sea

ACFM did not have any assessments available of the shrimp stocks in Division IIIa and Sub-area IV on which to base management advice.
The question has been referred to the Pandalus Assessment Working Group, which will meet in February 1984. ACFM will consider the findings of this Working Group at its May 1984 Meeting.

E. STOCKS IN NEAFC REGIONS 2 AND 3

E. 1 Hake in Sub-areas IV and VI-IX
E.1.1 Northern Stock (Sub-areas IV, VI, VII and Divisions VIIIa,b)

Recent catches and recommended precautionary TACs are shown below (in thousands of tonnes):

	1977	1978	1979	1980	1981	1982	1983
Prec. TAC	-	-	43	30	30	30	30
Actual catch	51	48	50	58	57	57^{*}	

* Preliminary.

ACFM welcomed the improvements which have been made in the data base for this stock. Before an analytical assessment can be made, however, the improvements in sampling level need to be maintained for some years more, and further advances are required in age reading and in the provision of age/length keys. The reliability of officially reported landing statistics continues to be poor.
ACFM noted that the mean age in the catches has been inoreasing since 1977 to approximately 3 years old, but that this is only about half the age of first maturity.
ACFM repeats its advice that the exploitation pattern needs to be improved and recommends that a minimum mesh size of 80 mm for all components of the fleet other than those with a directed fishery for Nephrops be introduced and effectively enforced.
Pending further ACFM advice on the appropriate minimum mesh size for Nephrops, the current legal minimum mesh size for Nephrops fisheries should be enforced.

In view of the unsatisfactory exploitation pattern, and in order to avoid possible increases in fishing effort which might occur if the industry attempts to compensate for losses due to effective enforcement of an 80 mm mesh size, ACFM recommends a precautionary TAC of
30000 tonnes.

E.I. 2 Southern Stock (Divisions VIIIc and IXa)

Recent catches and recommended precautionary TACs are shown below (in thousands of tonnes):

	1977	1978	1979	1980	1981	1982
Prec. TAC Actual catch	-	-	20	10	8.5	8.5

* Preliminary

It is still not possible to carry out an analytical assessment of this stock because of the lack of data. Some progress has been made in compiling age determinations, and while this is a welcome development it needs to be developed to a much wider extent. Sampling of landings and discards also need to be improved.

Although Portuguese groundfish surveys suggest that the level of hake abundance has been relatively stable during the period 1979-82, the year classes 1975, 1976, 1977 and 1979 are all poor ones. The first of these poor year classes recruited to the spawning stock in 1981, and a progressive reduction in spawning stock biomass is expected up to at least 1985.

The young fish in this stock are heavily exploited. The average age in the catch in recent years has been between 2 and 3, in contrast to the $8-9$ years of age at which maximum biomass occurs in a virgin stock.

Management advice

The overall level of fishing mortality is undoubtedly too high for the current exploitation pattern, which is a consequence of the continued use of excessively small mesh sizes in the trawls.

ACFM repeats its advice of earlier years and recommends that a minimum mesh size of 80 mm be introduced and effectively enforced in all trawl fisheries.

In order to reduce the overall level of fishing mortality and taking into account the expected decrease in spawning stock biomass, ACFM recoumends a TAC of 8500 tonnes in 1984.
ACFM further recommends that the closures of nursery grounds, which have already been introduced since 1981 in parts of the southern stock area should be maintained.
E.1.3 Possible effects on hake of increased fishing on Southern Blue Whiting

Blue whiting in the Southern area are caught partly in a directed fishery and partly in a mixed hake and blue whiting fishery. In the latter case, there are potential problems for the enforcement of minimum mesh-size regulations. The mesh size required for blue whiting is lower than either the current legal or the optimum mesh size for hake. It is possible that a small-mesh fishery for hake will take place on the pretext that it is a fishery for blue whiting. The main possibility for a substantial increase in the fishery for blue whiting would be 3 development of the directed fishery with the catch being utilized for reduction purposes. Such a fishery would tend to concentrate in the areas of highest abundance of blue whiting. Such areas tend to be in deeper waters where small hake are less abundant. No information is available on either the quantities or length compositions of hake taken as by-catches in the blue whiting fishery. Such information would be required to assess the effects on hake of an increased fishery for blue whiting.

F. STOCKS IN NEAFC REGION 3

F. 1 Sea Bream, Monkfish and Flatfish

As last year the data made available for these stocks do not allow any assessments of the state of the stocks, and ACFM is consequently unable to give any advice.

F. 2 Horse Mackere 1

F.2.1 For horse mackerel information is lacking about the relationship between Sub-areas VI, VII, VIII and IX. Results of otolith readings seem subject to caution, and fecundity needs more investigation.

No directed fishery exists in Sub-area VI, where the catch was about 5000 tonnes in 1982.

In Sub-area VII catches amounted to 33500 tonnes, which is about the same level as in 1982. In Sùb-area VIII there has been a decrease from 40100 tonnes in 1981 to 22700 tomnes in 1982 (Tables F.2.1-F.2.4). In both Sub-areas the relevant data are too limited to be used in an assessment. The situation is similar in Sub-area IX.
F. 3 Sardine in Divisions VIIIc and IXa

The text table below shows the catches in ' 000 tonnes, in Divisions VIIIc and IXa in the years 1976-82:

Years	1976	1977	1978	1979	1980	1981	1982
Portugal	80	80	84	80	90	113	97
Spain	62	46	56	62	85	101	103
Total	142	126	140	142	175	214	200

Since 1977 there has been an increase in catches, but in 1982 the catche decreased about 7%. The Spanish catch increased by about 3%, but the Portuguese catch decreased by about 14%. In both countries sardine is almost solely caught by purse-seiners and the highest catches are usually taken in the period July-November.
At ACFM's May 1983 Meeting no satisfactory data were available to give an index of recruitment to the stock. A joint acoustic survey was carried out for the first time by Portugal and Spain in AugustSeptember 1982. Although the survey was designed to provide indices of recruitment and stock abundance estimates off the Iberian coast, the coverage was not sufficient to give quantitative measurements of year class strength.

At the May 1983 meeting ACFM stressed that the 1983 TAC of 200000 tonnes may be too high because of the evidence concerning: poor recruitment.

F.3.1 Management advice for 1984

At its November meeting, ACFM had at its disposal the results of the August 1983 acoustic survey and catch in number for the period 1 January - 31 July 1983. The age distributions from these two sources were used to calculate the stocks as at 1 January 1983 as input for VPAs.

The 1983 survey gave an acoustic total biomass of about 1 million tonnes.

The results of the VPA based on this survey indicated a continuous increase in spawning stock biomass over the period 1976-82. However, a number of problems arise in relation to fishing mortalities obtained on 0- and 1-groups in 1982. In the VPA, the 1981 year class recruitment appears as average. This is in sharp contrast with its abundance in the January-July catches in 1983, where it is poorly represented. Catches of the 1981 year class in 1982 and during the first half of 1983 were very poor; in 1982, the catch of l-year olds was only 39% of the 1976-81 average. This year class gave the highest catch of any as 0-group in the period 197682 and exceeded the catch of the year class as l-group in 1982. In no other year class has this been observed. This implies that a change in exploitation pattern took place in 1981. The catch of the 1982 year class as 0-group is the lowest on record.
ACFM adopted an alternative VPA, which indicates the 1981 year class to be weak. This VPA was initiated by applying mean F values per age group from the period 1979-81 to the 1982 catch data. The spawning stock biomass under this scenario declines from 1981 to 1983.
On the basis of the catches between January and August for the years 1980-83, ACFM estimates that the total 1983 catch will be of the order of 150000 tonnes. If the average 1979-81
exploitation pattern is carried on into 1983, then the 1983
2-group will be the lowest in the series since 1976.
A management option table is given below.

SARDINE

1982		1983				Management option for 1984	1984				1985	
Total land- ings	${ }^{\text {F }}(2-4)$	Stock bioma日	Spawn. stock biom.	$\mathrm{F}_{(2-4)}$	Total landings		Stock biom.	Spawn. - tock biom.	$\vec{F}_{(2-4)}$	Total landings	$\begin{aligned} & \text { Stock } \\ & \text { biomass } \end{aligned}$	Spawn. atock biom.
200	.33	755	552	. 33	150	$\overline{\mathrm{F}}_{34}=0.4 \overline{\vec{F}}_{82}$	699	486	. 13	51	766	552
						$\overline{\vec{F}}_{84}=0.8 \overrightarrow{\mathrm{~F}}_{82}$. 27	97	725	512
						$\overline{\vec{F}}_{84}=\overline{\bar{F}}_{82}$. 33	118	706	493

Weight in 1000 tonnes

The biomass of 1 million tonnes estimated by the acoustic survey shows that the stock has remained fairly stable since 1979. The survey gives unreliable estimates of the relative strengths of different age groups, but the indications from the landings are that the 1981 and 1982 year classes are poor. The total annual catch is, therefore, expected to continue to decline below the 150000 tonnes expected for 1983 to around 120000 tonnes in 1984. This is at the lower end of the range of historic catches (120000-250 000 tonnes) seen since 1960 (Table F.3.1).
Taking this into account together with the high level of natural mortality, ACFM recommends that fishing mortality should not be allowed to increase. The 1984 TAC preferred by ACFM is therefore 120000 tonnes.

G. STOCKS IN NEAFC REGIONS 1, 2 AND 3

G. 1 Mackerel

Allocation of catches to stocks

ACFM did not accept the method used by the Working Group which was based on age composition data. This method assumes that the age distribution of migrating fish is the same as that of the whole stock. ACFM did not consider that this was a valid hypothesis, since the age distribution varies throughout the stock's geographical range. Furthermore, most of the mixing factors "x" (the fraction of North Sea fish in the catch) estimated by the Working Group for the North Rona fishery lie outside the permissible range of 0 to 1 .

Instead, ACFM agreed to use the evidence from the Norwegian tagging experiments. Although the number of recaptures from Division VIa was much lower in 1982 than in 1981, the proportions of recaptures from the North Sea and southwest Ireland releases were similar in both years, and in 1983. Catch numbers were re-allocated in the following percentages:

Winter fishery in the North Rona area
Division IIa \qquad
of Division VIa

1981: North Sea stock	10^{*}	34
Western stock	90	66
1982:	North Sea stock	10^{*}

[^4]For 1982, the percentages indicated for North Rona were applied to a total catch in that fishery of 39800 tonnes. The allocation of catches taken in the North Sea (Sub-area IV and Division IIIa) remained unchanged at 100% North Sea stock in both years.

As stated in the July 1982 ACFM report, the accuracy of the stock assessments is limited by a number of factors:
(a) Doubts about the total landing figures;
(b) lack of accurate data on the number of mackerel caught but subsequently discarded (in the Western area);
(c) lack of precise information about the rate of mixing between North Sea mackerel and Western mackerel in Divisions IIa, IVa and VIa.

G.1.1 The North Sea stock

The fishery in 1982
ACFM recommended a ban on mackerel fishing in Sub-area IV and Division IIIa in 1982 but a TAC of 25000 tonnes was agreed between EEC and Norway.

Catches from the North Sea, Skagerrak and Kattegat amounted to 33800 tonnes (Tables G.1.1 and G.1.2), and in the Norwegian Sea (Division IIa) catches reached the record level of 37420 tonnes.

After allocating part of the catches in Divisions IIa and VIa to the North Sea stock, the total catch of the North Sea stock in 1982 was estimated at 46400 tonnes.

State of the North Sea stock

In 1982 egg surveys were carried out by Norway, the Netherlands and Scotland. Using Norwegian and Dutch data the total egg production was estimated at 110×10^{12} eggs which is more than twice that estimated for 1981.

The spawning stock size corresponding to the 1982 egg production is 165000 tonnes, and in carrying out the assessment the VPA was calibrated to this biomass level. It may be seen that fishing mortality has been around 0.3 for the years 1980-82.

This VPA indicates that total biomass and spawning stock biomass in 1982 were both at their lowest level since 1975 and have decreased by 16% and 24% respectively from the 1981 level.

This decrease is contradicted by the results of the egg survey in 1981 and 1982, but it should be noted that the coverage in the 1982 survey was better than the previous one.

Although dependent on the choice of the input F in the VPA, the recruitments of the 1980 and 1981 year classes seem to be somewhat higher than in the four preceding years, but they are still insufficient to rebuild the stock substantially.

No information was available on the strength of the 1982 year class. This was set at $20 \mathrm{x} \cdot 10^{6}$ fish. The level of catches in 1983 was estimated to be 50000 tonnes.

Management advice

Management options are given below and in Figure G.1.1.
NORTH SEA MACKEREL

1983				Management option for 1984	1984				1985	
Stock biom.	Spawn. stock biom. Sp.time	$\overline{\mathrm{F}}(3-13)$	Total land- ings		Stock biom.	Spawn. stock biom. Sp.time	$\overline{\mathrm{F}}$ (3-13)	Total land- ings	Stock. biom.	Spawn. stock biom. Sp.time
168	147	0.38	50	$\bar{F}_{84}=0$	117	104	0	0	113	100
				$\bar{F}_{84}=F_{0.1}$			0.15	14	99	86
				$\bar{F}_{84}=F_{82}$		101	0.30	27	87	73
				$\overline{\mathrm{F}}_{84}=\mathrm{F}_{83}$		100	0.38	33	81	67
				Stable CATCH		98	0.66	50	64	43

Even with no fishing in 1984 the spawning stock biomass is forecast to decrease further by 1985, and ACFM therefore recommends that fishing on the North Sea stock should be closed.

G.1.2 The Western stock

The fishery in 1982
Catches in Sub-areas VI, VII and VIII amounted to 595000 tonnes (Tables G. 1.4 and G.1.5).

The TAC recommended by ACFM for the Western stock in 1982 was 270000 tonnes but the likely catch was estimated to have beén 631000 tonnes.

As in 1981 about 20% of the catches in Sub-areas VI and VII could not be allocated to any particular country, and ACFM expressed their concern about the continuing deterioration of the official data.
80% of the catches were taken by the United Kingdom, the Netherlands, and Ireland, and 57% of the total catch were taken in Division VIa mainly in the fourth quarter.

State of the Western stock
Egg surveys were carried out in 1983 by England, the Federal Republic of Germany, France, the Netherlands and Scotland covering the entire spawning season and spawning area from east of the Cantabrian coast to northwest of Ireland at $54^{\circ} \mathrm{N}$. Preliminary results of these surveys were available to the Working Group, and from these the annual egg production in 1983 was estimated to be 1.44×10^{15} eggs. Although these results were preliminary, it is not expected that the final figure will be markedly different when it becomes available to the next meeting of the Working Group. The coverage of the spawning area and spawning season by the 1983 survey is considered to be the most comprehensive since the series began in 1977.

This estimate of egg production for 1983 is about the same as that derived from the 1980 survey, which has been used previously to assess the size and exploitation rate of this mackerel stock.

The biomass estimate from the 1983 egg survey conflicts with ACFM's previous advice that the Western mackerel stock was declining rapidly, and that it would continue to do so if catches were maintained at the levels which have been taken. There are several possible explanations of this conflict:
(a) The 1980 egg survey could have underestimated the spawning stock biomass in that year by more than 25%. One factor which probably played a major part in this underestimate was the very poor sampling coverage in the May survey in that year. This resulted in a very low estimate of egg production in that month, relative to adjacent surveys and the normal monthly pattern of egg production. The effect of this underestimation of spawning stock biomass in 1980 was that the fishing mortality rate was seriously overestimated from 1980 onwards. The stock, and the recruitment to it, were accordingly underestimated and the effects of future catches were overestimated.
(b) It is certainly true that the confidence limits on these egg production estimates are wide, and these will be reflected in the accuracy of the stock estimates. Because, however, no other data are currently available to estimate stock size for this population, the results of the 1983 survey have been accepted for the assessment.
(c) ACFM discussed the possibility that the apparent minor decline between the 1980 and 1983 spawning stock estimates was an artefact which resulted from the assumption that fecundity had remained at a constant level between the two years. It is possible that fecundity could have increased from 1980 to 1983 if the stock had in fact declined to the extent that was calculated by previous assessments. No evidence is available, however, to support this hypothesis.

ACFM reassessment

Using the same exploitation pattern as the Working Group but applied to the re-allocated catch numbers, ACFM ran a new VPA calibrated to the 1983 egg survey spawning stock of 7200×10^{6} fish. Using a terminal $\mathrm{F}_{3-8}=0.18$ in 1982 and 1983 gave a spawning stock at spawning time in 1983 of 7363×10^{6} fish. This fishing mortality was therefore adopted.

The spawning stock at spawning time in 1980 derived from this VPA is 8200×10^{6} fish which is 32% above the egg survey estimate of that year. Fishing mortality rose to 0.21 in 1979 and 1980. The spawning stock biomass has declined from 3.7 million tonnes in the early 1970 s to the egg survey estimate of 2.2 million tonnes in 1983.

No estimate of the strength of the 1982 year class in 1983 was available but it does not appear to be a strong, one. The 1982, 1983 and 1984 year classes were assumed to be 1000×10^{6} fish. Although this may appear to be over-cautious, the strength of the 1983 and 1984 year classes has a negligible influence on the forecast of spawning stock biomass in 1985. The Working Group will be asked to review the appropriate recruitment levels to use in forecasts for this stock.

From the information already available on the fishery in 1983 and in the absence of effective management the 1983 catch was estimated at 650000 tonnes.

Under the assumptions made, the spawning stock will continue to decrease in 1984 and 1985 at any level of F and the need for effective management is stressed.

Management advice

Management options are given below.

	1083			1984					1985	
	Spawning stock Bionass Sp.time	\bar{F}_{3-8}	Total Landings	Management Option for 1984	Stock Biomass	Spawning Stotk Bi.juadss Sp.time	${ }^{7} 3-8$	H.C. Landings	Stock Biomass	Spawning Stock Biomass Sp.time
3149	2347	0.19	650	$\bar{F}_{84}=0$	2556	2205	0	0	2684	2281
				$\bar{F}_{84}=F_{0.1}$		2059	0.17	494	2287	1801
				$\bar{F}_{84}=\bar{F}_{83}$		2049	0.19	541	2249	1 757
				Stable catch		2010	0.23	650	2162	1618

ACFM recommends that the stock should not be exploited above the Fo. 1 level, corresponding to a TAC in 1984 of 500000 tonnes. The $\mathrm{F}_{0.1}$ value of fishing mortality is 0.17 and not 0.15 as in earlier assessments. This is a consequence of the change in average weight at age made in 1982.

Catches in Division $I I a$ and Sub-division V_{b} should be counted against the Western stock TAC.

G. 1.3 Closed area in the Celtic Sea

Information on the composition of catches taken west of $7^{\circ} \mathrm{W}$ is still too limited to support the suggestion of a westward extension of the closed area (Figure G. 1.3). Data from around Cornwall show that fish below 30 cm were still predominant in the area in 1982 and early 1983 and efforts to minimise catches of juvenile fish should therefore continue. On mackerel criteria alone ACFM recommends that the eastern boundary of the closed area should be maintained at its present position of $2^{\circ} \mathrm{W}$.
G.1.4 Closed area for mackerel in Division VIa

ACFM confirms its advice from November 1982 and the closure in Division VIa north of $58^{\circ} \mathrm{N}$ should be continued in 1984.

G.1.5 Mackerel in Sub-area IX

From the limited information available it is evident that immature fish were still predominant in the catches in 1982.

This is a cause for concern and more biological data should be obtained in order that ACFM may provide appropriate advice.
G.1.6 other deficiencies in data

The amount and quality of biological data are still far from satisfactory. For mackerel, information is urgently required about:

- stock separation in Divisions IIa, IVa and VIa;
- estimates of F in the most recent year;
- recruitment indices.

G. 2 Blue Whiting

Recent catches and TACs in thousand tonnes are given in the text table below.

Stock	1978 Catch	1979 Catch	1980 Catch	1981 Catch	1982 Catch ${ }^{1}$ TAC 2	1983 Rec. TAC
Northern area Southern area	574	1146	1093	871	5401000	$570-780$

${ }^{1}$ Preliminary
${ }^{2}$ Precautionary

As in the two previous years, ACFM recognised the possibility of at least two separate blue whiting stocks - one in in the northern and one in the southern area.
G.2.1 Blue Whiting in the Northern Area
(ICES areas: I, II, IIIa, IVa-c, V, VIa,b, VIIb, c, XIV)
Total landings of blue whiting from the northern area decreased significantly in 1982 compared to 81. (Table G.2.1). This is the second year in succession in which landings have declined. The major part of the decrease is again accounted for by a reduction in the USSR landings from the Norwegian Sea, although all countries fishing for blue whiting in the Norwegian Sea had lower catches in 1982 compared to 1981. The landings from the spawning and post-spawning fishery increased, as did the landings from the mixed industrial fishery in the Nor th Sea.

Trends in Catch and Effort
Changes in the total stock biomass are likely to be best reflected in catch per effort indices from the Norwegian Sea fishery during the period July to September. In the text table below, the catch by the USSR vessels (GRT-class 2000 - 3 999.9), which provide the most representative time series, is presented for the period 1979-82 together with the catch rates of the German Democratic Republic vessels of the same class.

[^5]Catch per unit effort (tonnes/hour) in the Blue Whiting fishery in Division
IIa by USSR and German Democratic Republic vessels (GRT-class 2000 - 3 999.9)
July - September 1979-1982*

	1979	1980	1981	1982
USSR	2.57	3.31	2.18	1.22
German Democratic Republic	3.03	3.58	2.36	1.47

*Total catch / total effort.

The marked decrease in the catch rates observed in 1982 compared to 1981 was seen in almost every month and most probably indicates a reduction in the stock, although some of the decrease in availability might be explained by changes in the hydrography in the Norwegian Sea (Schevchenko and Isaev, 1983).

Acoustic Surveys

A Norwegian survey in the spawning areas west of the British Isles in April 1983 estimated the stock to be 4.7 million tonnes, of which 4.4 million tonnes were adult fish (26 cm and larger) . A USSR survey in the same area from mid-April to mid-May gave an estimate of the spawning stock of 3.6 million tonnes.

In August 1983 the second ICES-coordinated survey was carried out in the Norwegian Sea and adjacent waters by 8 vessels. The survey gave a total biomass estimate of 2.8 million tonnes, of which 0.2 million tonnes were 0 -group fish (1983 year class), 1.5 million tonnes l-group fish (1982 year class) and 1.1 million tonnes of the older year classes (27 cm and larger).

Surveys in the spawning area and in the Norwegian Sea in 1981 and 1982 gave fairly consistent values with each other taking into account that the whole area was not covered on some of the surveys. The estimates of the adult stock obtained during the August survey in 1983 (1.1 million tonnes), however, is very different from the estimates of the spawning stock obtained in April-May 1983 (3.6-4.4 million tonnes), and it is difficult to account for the discrepancy of 2.5 million tonnes. Some sources of error which might have introduced biases into the estimates were discussed. ACFM, however, was unable to conclude anything from the acoustic surveys other than that the size of the spawning stock is probably somewhere in between the estimates obtained from the spawning surveys and the August survey. It is too early to conclude anything about the 1983 year class, whereas the 1982 year class obviously is strong.

Management Advice

Due to conflicting evidence on abundance derived from the acoustic surveys in 1983, ACFM was not in a position to advice on a TAC for 1984. However, in view of the failure of the oceanic fishery on the adult stock to develop in 1983 caution is strongly advocated until further information becomes available.

G.2.2 Blue Whiting in the Southern Area

(ICES areas: Divisions VIId, e + VIIg-k, Sub-areas VIII, IX)
The total landings of biue whiting from the southern area decreased by 13% in 1982 compared to 1981.

Catch and effort data indicate slightly lower catch rates in the Spanish fishery. The catch per unit effort in the Portuguese fishery increased from 1980 to 1981 as the industry developed an interest in the blue whiting resource. This catch rate fell by 50% in 1982 , but this is believed to reflect a shift in effort away from the blue whiting and not a real reduction in abundance.

Catch at age data were available only for the Spanish landings in 1982. Length distributions were provided for the catches of Spain for the years 1977-82, and by Portugal for the years 1980-82.

Until more reliable information is available, especially concerning age composition data, it is not possible to attempt an analytical, or any other type of assessment.

ACFM is therefore not in a position to give any advice on this stock at present.

Table A. 1 Nominal catch (in ' 000 tonnes) by Sub-areas and main species in NEAFC Region 1, 1972-1981

*Including non-teleost fish, unsorted and unidentified species.

+ less than 500 tonnes.

Table A. 2 Nominal catch (in '000 tonnes) by Sub-area and main species in NEAFC Region 2, 1972-1981

	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
Total Nominal Catch in Region 2*	4043	4330	4901	5062	5086	3937	4058	3910	4149	3940
Sub-area IV (North Sea) and Div. IIIa (Skagerrak and Kattegat) Pelagic Fish Herring Mackerel Sprat Horse Mackerel Others	715 188 97 8 3	$\begin{array}{r} 740 \\ 327 \\ 270 \\ 42 \\ 3 \end{array}$	427 298 376 31 6	416 263 758 10 6	255 306 670 9 4	1.57 259 385 4 4	108 153 477 5 3	79 155 478 2 3	91 88 509 2 6	153 66 419 7 3
Total Pelagic Fish	1011	1382	1138	1453	1244	809	746	717	696	648
Demersal Fish										
Cod	368	258	238	219	252	227	306	263	288	334
Haddock	216	199	198	180	21.4	160	96	91	112	143
Whiting	123	165	217	160	210	139	152	159	132	120
Norway Pout ${ }^{1)}$	510	461	833	662	575	455	347	390	549	334
Saithe	240	219	270	268	307	190	140	115	123	126
Sandeels	366	307	532	445	517	803	810	637	768	647
Plaice	144	144	128	124	132	144	124	132	118	110
Sole	21	20	18	19	15	15	11	12	16	15
Other Flatfish	24	27	28	28	26	29	30	33	31	31
Others	36	45	39	42	37	63	138	141	103	117
Total Demersal Fish	2048	1842	2501	2146	2285	2225	2154	1973	2240	1977
Total Catch of all Species	3059	3224	3639	3599	3529	3034	2900	2690	2936	2625
Sub-areas VI and VII (West and South of U.K. and Ireland) Pelagic Fish										
Herring	290	324	277	226	279	91	66	45	54	102
Mackerel	134	184	249	431	419	307	488	528	503	482
Sprat	13	19	19	16	21	21	32	21	34	24
Horse Mackerel	102	121	119	121	181	30	26	51	54	86
Others	13	9	7	14	16	21	21	22	17	14
Total Pelagic Fish	552 !	657	671	808	816	470	633	667	662	708
Demersal Fish										
Cod	33 ;	29	33	33	39	31	36	38	42	56
Haddock	58 :	44	78	72	67	26	24	20	24	32
Whiting	30	38	45	53	59	46	43	46	49	59
Hake	18	21	45	44	41	17	17	20	17	20
Flatfish	35	34	37	40	43	33	33	32	41	45
Others	106	134	177	193	233	162	226	266	262	244
Total Demersal Fish	280	300	415	435	482	315	379	422	435	456
Total Catch of all. Species	832	957	1086	1243	1298	785	1012	1089	1097	1164

*Including non-teleost fish, unsorted and unidentified species.
${ }^{1)}$ From 1974-1976 includes by-catches of several other species taken by Norway.

Table A. 3 Nominal catch (in '000 tonnes) by main species in NEAFC Region 3, 1972-1981

	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
in Region 3^{*}	891	869	625	641	681	723	638	597	582	555
Pelagic Fish										
Pilchard	173	170	127	164	146	130	162	145	198	224
Mackerel ${ }^{\text {l }}$	42	77	78	52	61	34	29	28	20	21
Horse Mackerel	156	190	130	134	181	191	114	91	80	62
Others	141	94	92	124	117	158	136	119	83	58
Total Pelagic Fish	512	531	427	474	505	513	441	383	381	365
Demersal Fish										
Hake	71	86	48	54	47	46	29	42	42	39
Others	142	88	57	77	94	135	138	105	137	126
Total Demersal Fish	213	174	105	131	141	181	167	147	179	165
Total Catch of all species	735	705	532	605	646	694	608	530	560	530

*Including non-teleost, unsorted and unidentified species
${ }^{1)}$ Catches of Chub ($=$ Spanish) mackerel included in figures for 1972-1976.

Table B.I.I. 1 COD. Total nominal catch (tonnes) by fishing areas (landings of Norwegian coastal cod not included).

Year	Sub-area I	Division IIb	Division IIa	Total catch
1973	492716	88207	211762	792685
1974	723489	254730	124214	1102433
1975	561701	147400	120276	829377
1976	526685	103533	237245	867463
1977	538231	109997	257073	905301
1978	418265	17293	263157	698715
1979	195166	9923	235449	440538
1980	168671	12450	199313	380434
1981	137033	16837	245167	399037
1982*	97012	31029	236828	364869

* Provisional figures.

EXPECMED CATCHES

1983	84000	21000	203000	308000

Table B.1.1.2 North-East Arctic COD.
Nominal catch (tonnes, whole weight) by countries (landings of Norwegian coastal cod not included). (Sub-area I and Divisions IIa and IIb combined). Data provided by Working Group members

Year	Faroe Islands	France	German Dem. Rep.	Germany, Fed. Rep.	Norway	Poland	United Kingdom	USSR	Others	Total all countries
1973	1916	17028	4684	16751	285184	843	78808	387196	276	792686
1974	5717	46028	4860	78507	287276	9898	90894	$540801^{1)}$	38453	1102434
1975	11309	28734	9981	30037	277099	7435	101834	$343580^{1)}$	19368	829377
1976	11511	20941	8946	24369	344502	6986	89061	$343057^{1)}$	18090	867463
1977	9167	15414	3463	12.763	388982	1084	86781	$369876^{1)}$	17771	905301
1978	9092	9394	3029	5434	363088	566	35449	267 138 ${ }^{1)}$	5525	698715
1979	6320	3046	547	2513	294821	15	17991	105846	9439	440538
1980	9981	1705	233	1921	232242	3	10366	115. 194	8789	380434
1981	12825	3106	298	2228	277818	-	52.62	83000	14.500	399037
1982*	11998	1900	302	1717	287525	-	6601	40311	14.515	364869

*)Provisional figures

1) Murman cod included

Table B.I.2.I North-East Arctic HADDOCK. Total nominal catch (tonnes) by fishing areas. (Data provided by Working Group members.)

Year	Sub-area I	Division IIb	Division IIa	Total
1973	283728	12989	23348	320065
1974	159037	15068	47033	221138
1975	121686	9726	44330	175742
1976	94064	5649	37566	137279
1977	72159	9547	28452	110158
1978	63965	979	30478	95422
1979	63841	615	39167	103623
1980	54205	68	33616	87889
1981	36851	455	39864	77153
1982^{*}	17869	2	29381	47252

* Provisional figures.

EXPECTED CATCHES

1983	13000	-	14000	27000

Table B.I.2.2 North-East Arctic HADDOCK. Nominal catches (tonnes) by countries. (Sub-area I and Divisions IIa and IIb combined.) (Data provided by Working Group members.)

Year	Faroe Isls.	France	German Dem.Rep.	Germany, Fed.Rep.	Norway	Poland	U.K.	USSR	Others	Total
1973	1212	3214	22	9534	86767	434	32408	186534	2501	322626
1974	925	3601	454	23409	66164	3045	37663	78 548)	7348	221157
1975	299	5191	437	15930	55966	1080	28677	$65015^{1)}$	3163	175758
1976	537	4459	348	16660	49492	986	16940	42 4851)	5358	137265
1977	213	1510	144	4798	40118	-	10878	52 2101)	287	110158
1978	466	1411	369	1521	39955	1	5766	45 895 ${ }^{1}$	38	95422
1979	343	1198	10	1948	66849	2	6454	26365	454	103623
1980	497	226	15	1365	61886	-	2948	20706	246	87889
1981	381	414	22	2398	58856	-	1682	13400	-	77153
1982*	496	350	-	1258	41421	-	827	2900	-	47252

* Provisional figures.

1) Murman haddock included.

Table B.2.1 Nominal catch of REDFISH (in tonnes) by countries (Sub-area I, Divisions IIa and IIb combined). (As reported officially to ICES)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982^{*})
Belgium	-	30	28	2	1	-	-	-	-	
Faroe Isl.	32	6	67	137	8	1	-	-	206	
France	-	1116	-	-	660	3608	1142	1297	537	13
German Dem. Rep.	11756	28275	28020	22636	17614	16165	16162	8448	4614	4463
Germany, Fed. Rep.	3479	6597	5182	7894	7231	11483	11913	7992	4683	3039
Netherlands	-	-	-	127	-	-	-	-		
Norway	7714	7055	4966	7305	7381	7802	9025	8472	9249	9989
Poland	215	1269	4711	4137	175	2957	261	87	26	
Portugal	-	-	331	3463	1480	378	1100	271	-	
Spain	-	-	1194	3398	-	-	1375	1965		
U.K.	4791	3509	2746	4961	6330	3390	1756	1307	470	365
USSR	31829	48787	230950	263546	144993	78092	70451	72802	81652	112545
Total	59816	96644	278195	317606	185873	$124172^{* *)}$	$113620 * *)$	$102765^{* *)}$	101442	$130414^{* *)}$

*) Provisional figures
**) The total figure used by the Working Group for assessments (including catches by non-members).

Table B.2.2 Nominal catch of Sebastes marinus and Sebastes mentella in Sub-area I and Divisions IIa and IIb combined (in tonnes).

Year	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
S. marinus	21436	27272	39125	48584	39508	31695	26475	23411	20206	15477
S.mentella	38380	69372	239070	269022	146365	92477	87145	79354	81236	114937
Total	59816	96644	278195	317606	185873	124172	113620	102765	101442	130414

* Provisional figures.

Table B. 3.1 GREENLAND HALIBUT. Nominal catch (tonnes) in Sub-areas I and II, $1973-82$.
(Data for 1973-81 from Bulletin Statistique)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Faroe IsI.	-	-	-	2	21	-	24	-	8	-
German Dem.Rep.	3954	5914	8472	8955	8176	4611	3488	2080	1358	1153
Germany,Fed. Rep.	59	88	94	31	148	321	481	303	128	17
Norway:										
trawl catch	10217	4656	1686	4030	2564	2302	921	I 559	2949	1812
long-line catch and gill net	3772	4135	3172	1975	1653	1780	1992	1598	1252	2. 387
Poland	21.40	5146	3645	3566	224	544	106	-	- -	-
U.K. (England and Wales)	1235	866	731	935	1059	407	59	26	9	
USSR	8561	16958	20372	16580	15045	14651	10311	7670	9276	11900
Others	-	-	-	-	-	1	5	48	38	
Total	29938	37763	38.172	36074	28890	24617	17312	13284	15018	16269

* Provisional figures.

Table B.4.1 Nominal catch (in tonnes) of REDFISH in Sub-area XIV, Divisions Va and Vb , by species for Sub-area XIV and Sub-area V combined.
(As reported officially to ICES.)

Year	Division Va	Division Vb	Sub-area XIV	Total	S. marinus	S. mentella
1973	69.650	9696	7899	87245	41856	45389
1974	69129	7765	13978	90.872	49845	41027
1975	70734	8591	25329	104654	60980	43674
1976	69864	5364	113656	188884	93605	95279
1977	61525	7402	14433	83360	52752	30.608
1978	35202	9806	208801)	65888	47791	18097
1979	64310	12674	20 9181)	97902	75056	22846
1980	72249	10039	32609^{1})	114897	88085	26812
1981	95517	7145	42 9991)	145661	101285	44376
1982*	115198	95912)	44 171)	168960	122386	46 5743)

* Provisional figures.

1) Catches updated for Sub-area XII included.
2) Catches updated for sub-area VI included.
3) Including 598 tonnes from the oceanic stock not included in the assessments.

Table B. 4.2 Nominal catch of REDFISH (1 000 tonnes) in Division Va by countries. Separation into the species components according to the method used by the Redfish Working Group.

Div. Va Year	Belgium	Faroe Islands	German Dem. Republic	Germany, Fed.Rep.	Iceland	Norway	Poland	United Kingdom	USSR	Total
1973 Total $\begin{gathered}\text { S.mar } \\ \text { S.ment. }\end{gathered}$	1.6 .1 .6 .	$\begin{gathered} 0.2 \\ 0.2 \\ - \end{gathered}$	-	$\begin{array}{r} 38.4 \\ 3.1 \\ 35.3 \end{array}$	$\begin{array}{r} 26.5 \\ 25.7 \\ 0.8 \end{array}$	+	-	3.0 3.0 -	+	69.7 33.6 36.1
1974 Total ${ }^{\text {S.mar }}$.	2.1 2.1	0.3 0.3 .	+	$\begin{array}{r} 36.4 \\ 4.3 \\ 32.1 \end{array}$	27.8 27.0 0.8	+	+	2.5 2.5 -	-	69.1 36.2 32.9
$1975 \begin{gathered}\text { Total } \\ \text { S.mar } \\ \text { S.ment. }\end{gathered}$	1.9 1.9 .	0.1	-	$\begin{array}{r} 33.6 \\ 4.3 \\ 29.3 \end{array}$	32.7 31.3 1.4	+	-	2.4 2.4 .	-	$\begin{aligned} & 70.7 \\ & 40.0 \\ & 30.7 \end{aligned}$
1976Total S.mar S.ment	1.5 1.5 .	0.2 0.2 .	-	$\begin{array}{r} 32.9 \\ 4.3 \\ 28.6 \end{array}$	34.0 33.3 0.7	+	-	$\begin{array}{r}1.1 \\ 1.1 \\ \hline\end{array}$	-	$\begin{aligned} & 69.7 \\ & 40.4 \\ & 29.3 \end{aligned}$
$1977 \begin{gathered}\text { Total } \\ \text { S.mar. } \\ \text { S.ment. }\end{gathered}$	1.4 1.4	$\begin{gathered} 0.3 \\ 0.3 \\ \hline \end{gathered}$	-	$\begin{array}{r} 31.6 \\ 9.2 \\ 22.4 \end{array}$	$\begin{array}{r} 28.1 \\ 27.5 \\ 0.6 \end{array}$	$\begin{gathered} 0.1 \\ 0.1 \\ = \end{gathered}$	-	+	-	61.5 38.5 23.0
1978 Total $\begin{gathered}\text { S.mar } \\ \text { S.ment. } \\ \text { S.m. }\end{gathered}$	1.5 1.5 -	0.2 0.2 .	*	-	33.3 29.4 3.9	0.1 0.1 -	-	-	-	35.1 31.2 3.9
1979 Total ${ }^{\text {S.mar }}$ (${ }^{\text {S.ment }}$.	1.4 1.4 .	0.6 0.6 .	-	-	62.3 54.6 7.7	$\begin{gathered} 0.1 \\ 0.1 \\ - \end{gathered}$	-	-	-	$\begin{array}{r} 64.4 \\ 56.7 \\ 7.7 \end{array}$
$1980 \begin{aligned} & \text { Total } \\ & \text { S.mar } \\ & \\ & \\ & \text { S.ment. } \\ & \text { S. }\end{aligned}$	1.4 1.4 .	1.1 1.1	-	-	$\begin{aligned} & 69.8 \\ & 59.6 \\ & 10.2 \end{aligned}$	+	-	-	-	$\begin{aligned} & 72.3 \\ & 62.1 \\ & 10.2 \end{aligned}$
$1981 \text { Total } \quad \begin{aligned} & \text { S.mar. } \\ & \text { S.ment. } \end{aligned}$.9 .9	1.2 1.2	-	-	93.4 73.7 19.7	+	-	-	-	$\begin{aligned} & 95.5 \\ & 75.8 \\ & 19.7 \end{aligned}$
1982	.3 .3 .	-	-	-	$\begin{array}{r} 114.9 \\ 96.4 \\ 18.5 \end{array}$	$+$	-	-	-	$\begin{array}{r} 115.2 \\ 96.7 \\ 18.5 \end{array}$

${ }^{x}$ Provisional figures

Table B. 4.3 Nominal catch (1000 tonnes) of REDFISH in Division Vb by countries. Separation into the species components according to the method used by the Redfish Working Group.

Div. Vb Year	Faroe Islands	France	German Dem. Republic	Germany, Fed.Rep.	Netherlands	Norway	United Kingdom	Total
$1973 \begin{aligned} & \text { Total } \\ & \text { S.mar } \\ & \text { S.ment }\end{aligned}$	0.1 0.1 .	,	-	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	-	$\cdots{ }^{-}$	$\begin{gathered} 0.1 \\ 0.1 \\ .1 \end{gathered}$	9.7 0.2 9.5
$1974 \begin{aligned} & \text { Total } \\ & \text { S.mar } \\ & \text { S.ment. }\end{aligned}$	+	0.3 0.3 .	+	$\begin{gathered} 7.3 \\ -7.3 \end{gathered}$	-	-	0.1 0.1	$\begin{aligned} & 7.7 \\ & 0.4 \\ & 7.3 \end{aligned}$
$1975 \begin{aligned} & \text { Total } \\ & \text { S.mar } \\ & \text { S.ment. }\end{aligned}$	+	0.8 0.8 .	+	$\begin{aligned} & 7.6 \\ & 7.6 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.1 \\ - \end{gathered}$	+	+	$\begin{aligned} & 8.5 \\ & 0.9 \\ & 7.6 \end{aligned}$
$1976 \frac{\text { Total }}{\text { S.mar }} \text { S.ment }$	+	-	-	$\begin{gathered} 5.3 \\ 5.3 \end{gathered}$. ${ }^{-}$	+	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 0.1 \\ & 5.3 \end{aligned}$
$1977 \begin{aligned} & \text { Total } \\ & \text { S.mar } \\ & \text { S.ment }\end{aligned}$	$\begin{gathered} 0.1 \\ 0.1 \\ - \end{gathered}$	$\begin{aligned} & 1.4 \\ & 0.6 \\ & 0.8 \end{aligned}$	-	$\begin{gathered} 5.9 \\ 5.9 \end{gathered}$	-	+	$\begin{gathered} 0.1 \\ 0.1 \\ - \end{gathered}$	$\begin{aligned} & 7.5 \\ & 0.8 \\ & 6.7 \end{aligned}$
1978 Total $\begin{gathered}\text { S.mar } \\ \text { S.ment }\end{gathered}$	1.5 1.5 .	$\begin{gathered} 0.4 \\ 0.4 \\ - \end{gathered}$	-	$\begin{aligned} & 7.8 \\ & - \\ & 7.8 \end{aligned}$	-	+	$\begin{gathered} 0.1 \\ 0.1 \end{gathered}$	$\begin{aligned} & 9.8 \\ & 2.0 \\ & 6.7 \end{aligned}$
$1979 \begin{aligned} & \text { Total } \\ & \text { S.mar } \\ & \text { S.ment. }\end{aligned}$	$\begin{aligned} & 5.7 \\ & 4.8 \\ & 0.9 \end{aligned}$	$\begin{gathered} 0.9 \\ 0.9 \end{gathered}$	-	$\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$	-	+	-	$\begin{array}{r} 12.7 \\ 4.8 \\ 7.9 \end{array}$
$1980 \begin{aligned} & \text { Total } \\ & \text { S.mar } \\ & \text { S.ment }\end{aligned}$	5.5 4.9 0.6	$\begin{gathered} 0.6 \\ 0.6 \end{gathered}$	-	$\begin{array}{r} 3.9 \\ -9.9 \\ \hline \end{array}$	-	+ + +	-	$\begin{array}{r} 10.0 \\ 4.9 \\ 5.1 \\ \hline \end{array}$
1981 Total $\begin{aligned} & \text { Totar } \\ & \\ & \\ & \\ & \text { S.mar. } \\ & \text { S.ment. }\end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.5 \\ & 0.7 \end{aligned}$	+ + +	-	$\begin{gathered} 3.9 \\ -9 \end{gathered}$	-	+ + -	-	$\begin{aligned} & 7.1 \\ & 2.5 \\ & 4.6 \end{aligned}$
$\begin{array}{r} 1982^{\mathrm{X}} \text { Total } \\ \frac{\text { S.mar. }}{\text { S.ment. }} \end{array}$	4.0 1.7 2.3	0.2 0.2 +	-	$\begin{gathered} 5.4 \\ - \\ 5.4 \end{gathered}$	\sim	+ + +	-	$\begin{aligned} & 9.6 \\ & 1.9 \\ & 7.7 \end{aligned}$

[^6]Table B. 4.4 Nominal catch (1000 tonnes) of REDFISY in Sub-area XIV by countries. Separation into the species components according to the method used by the Redfish Working Group.

Sub-area XIV Year	Canada	Denmark (G).	Faroe Islands	German Dem. Republic	Germany FedRep.	Iceland	Norway	Poland	United Kingdom	USSR	Total
1973 Total $\frac{\text { Smar }}{\text { Sment. }}$	-	-	+	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0 \end{aligned}$	4.5 4.5 -	$\begin{gathered} 2.1 \\ 2.1 \\ - \end{gathered}$	-	0.3 0.3 -	$\begin{gathered} 0.1 \\ 0.1 \\ - \end{gathered}$	$\begin{gathered} 0.1 \\ 0.1 \\ - \end{gathered}$	7.9 7.9 -
$1974 \begin{aligned} & \text { Total } \\ & \text { S.mar } \\ & \text { S.ment }\end{aligned}$	-	-	+	1.3 1.3	2.6 2.6 .	$\begin{aligned} & 9.8 \\ & 9.8 \end{aligned}$	-	+	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.1 \end{gathered}$	13.9 13.9 .
$1975 \begin{gathered}\text { Total } \\ \text { S.mar } \\ \text { S.ment. }\end{gathered}$	-	-	+	$\begin{gathered} 4.5 \\ 4.5 \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ 5.0 \\ - \end{gathered}$	$\begin{gathered} 5.6 \\ 5.6 \end{gathered}$	$\begin{array}{r} 0.1 \\ 0.1 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 5.4 \\ & 4.4 \end{aligned}$	$\begin{array}{r} 25.4 \\ 21.0 \\ 4.4 \end{array}$
$1976 \begin{gathered}\text { Total } \\ \text { S.mar } \\ \text { S.ment. } \\ \text { S.m. }\end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{array}{r}0.1 \\ 0.1 \\ \hline\end{array}$	+	-	$\begin{aligned} & 4.4 \\ & 4.4 \end{aligned}$	7.4 7.4 .	+	-	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	101.0 41.3 59.7	$\begin{array}{r} 113.6 \\ 53.9 \\ 59.7 \end{array}$
1977Total S.mar S.ment.	-	+	+	-	13.3 13.3 -	0.1 0.1 -	0.1 0.1	-	$\begin{gathered} 0.6 \\ 0.6 \end{gathered}$	$\begin{gathered} 0.3 \\ 0.3 \\ - \end{gathered}$	14.4 14.4
$1978 \frac{\text { Total }}{\text { S.mar. }} \begin{aligned} & \text { S.ment. } \end{aligned}$	-	+	-	-	20.7 15.3 5.4	0.2 0.2 -	+	-	+	-	20.9 15.5 5.4
$1979 \begin{aligned} & \text { Total } \\ & \frac{\text { S.mar }}{\text { S.ment }} \end{aligned}$	\cdots	-	+	-	21.1 15.8 5.3	-	-	-	-	-	21.1 15.8 5.3
$1980 \begin{gathered} \text { Total } \\ \text { S.mar } \\ \text { S.ment } \end{gathered}$	-	-	-	-	32.5 22.1 10.4	0.1 0.1 .	-	-	-	-	$\begin{aligned} & 32.6 \\ & 22.2 \\ & 10.4 \end{aligned}$
$1981 \begin{aligned} & \text { Total } \\ & \text { S.mar } \\ & \text { S.ment. } \\ & \text { S.men }\end{aligned}$	-	-	+	-	$\begin{aligned} & 43.0 \\ & 23.6 \\ & 19.4 \end{aligned}$	-	-	-	-	-	$\begin{aligned} & 43.0 \\ & 23.6 \\ & 19.4 \end{aligned}$
$\begin{array}{r} 1982^{\mathrm{X}} \text { Total. } \\ \frac{\text { S.mar. }}{\text { S.ment. }} \end{array}$	-	-	-	-	43.6 23.9 19.7	+	-	$\begin{gathered} 0.6^{1} \\ -.6 \end{gathered}$	-	?	$\begin{aligned} & 44.2 \\ & 23.9 \\ & 20.3 \end{aligned}$

x) Provisional

1) Catches from the oceanic stock not included in the assessments-

Table B.5.1 GREENEAND HALIBUT. Nominal catch (tonnes) in Sub-areas V and XIV, 1973-82.
(Data for 1973-81 from Bulletin Statistique)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Faroe Isl.	188	48.	8	375	1251	258	150	1042	767	863
France	-	-	-	-	-	12	70	51	8	-
German Dem. Rep.	9126	25801	16963	-	-	-	-	-	-	-
Germany Fed.Rep.	1120	I 949	1388	2219	5207	2726	6461	2318	3007	2532
Greenland	4	2	1	1	4	6	-	-	+	9
Iceland	2118	2843	1212	1689	10090	11319	16934	27838	15455	28322
Norway	-	-	7	7	7	19	1	3	2	-
Poland	3131	1542	1072	-	-	-	-	-	-	-
$\begin{aligned} & \text { U.K. (Engl. } \\ & \text { and Wales) } \end{aligned}$	3710	2323	1209	1680	19	9	-	-	-	-
USSR	1066	1772	1634	74	-	-	-	-	-	-
Total	20463	36280	23494	6045	16578	14349	23616	31252	19239	31726

* Provisional figures.

Table B.6.1.1 Nominal catches (in tonnes) of COD in Sub-area XIV, 1973-82.
(Data for 1973-81 broken down by countries are from Bulletin Statistique)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981 c)	1982*
Canada	-	-	-	2	-	-	-	-	-	
Faroe Isl.	167	652	581	440	1407	6	-	-	103	
German Dem. Rep.	8	15	326	-	-	-	-	-	-	-
Germany, Fed. Rep.	9262	2309	1552	7075	3564	3936	1062	$9447^{\text {d }}$)	$9246^{\text {a,d) }}$	8964
: Greenland	191	68	224	372	1833	1347	2755	1367	1442	892
Iceland	1446	3009	785	3133	25	13	3	9	\sim	-
Norway	-	-	1864	364	537	17	-	-	-	-
Poland	17	1	18	-	-	-	-	-	-	-
$\begin{aligned} & \text { U.K. (Engl. } \\ & \text { and Wales) } \end{aligned}$	661	499	575	1514	1393	41	-	-	-	-
U.K.(Scotl.)	-	-	-	-	-	2	-	-	-	-
USSR	-	-	-	127	16	-	-	-	-	-
Total	11752	6553	5925	13027	8775	5362	3820	10823	H0 791	9856
Working Group Total including estimates of unreported catches					18000	26000	34000	$12000{ }^{\text {b }}$	(6000 ${ }^{\text {b }} \mathrm{d}$)	$27000^{\text {b }}$) d$)$

* Provisional figures.
a) August to December catch estimates based on information from fishing vessels.
b) Including estimated discards.
c) From Data Form 5.
d) Including catches reported from ICES Sub-area XII and Division Vb .

Table B. 6.1.2 Monthly COD catches (tonnes) by the Federal Republic of Germany in 1982 in areas XIV, XII and Vb.

x) Assumed by the Working Group as taken in Sub-area XIV.

Table B.7.1.1 Landings of Icelandic summer-spawning HERRING 1973-82 in tonnes $\times 10^{-3}$.

1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
0.2	1.2	12.8	17.8	28.7	37.3	45.1	53.3	39.5	53.8

Table B.7.2.1
Catches north of $62^{\circ} \mathrm{N}$ of Norwegian spring-spawning HERRING (tonnes) since 1972.

Year	Catches of adult herring in winterl)	Mixed herring fishery in autumn ${ }^{2}$)	By-catches of $0-$ and 1-group herring in the sprat fishery	Total
1972	0	9895	32663)	13161
1973	139.	6602	276	7017
1974	906	6093	620	7619
1975	53	3372	288	3713
1976	0	247	189	436
1977	374	11834	498	12706
1978	484	9151	189	9824
1979	691	1866	307	2864
1980	878	7634	65	8577
1981	844	7814	78	8736
1982	983	10447	225	11655
1983	33704 *			3370

1) Mostly experimental fishing.
2) Includes also by-catches of adult herring in other fisheries.
3) In 1972 there was also a directed herring 0-group fishery.
4) Preliminary I January - 30 June 1983.

Table B.8.1 International catch of Barents Sea capelin (in 1000 tonnes) in the years 73-82.

Year	Norway	USSR	Other	Total
1973	1291	45		1336
1974	987	162		1149
1975	943	431	43	1417
1976	1949	596		2545
1977	2116	822	2	2940
1978	1122	747	25	1894
1979	1109	669	5	1783
1980	999	641	9	1649
1981	1238	721	28	1987
1982	1158	596	5	1759

Table B.8.2 The total annual and seasonal catch of capelin in the Iceland, E-Greenland, Jan Mayen area.

| Year | Winter season | | | Summer and autumn seas on | | | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Iceland | Faroes | Iceland | Norway | Faroes | EEC | |
| 1973 | 440.9 | | | | | | 440.9 |
| 1974 | 461.9 | | | | | | 461.9 |
| 1975 | 457.6 | | 3.1 | | | | 460.7 |
| 1976 | 338.7 | | 114.4 | | | | 453.1 |
| 1977 | 549.2 | 25.0 | 259.7 | | | | 833.9 |
| 1978 | 468.4 | 38.4 | 497.5 | 154.1 | | | 1158.4 |
| 1979 | 521.7 | 17.5 | 441.9 | 126.0 | 2.5 | | 1109.6 |
| 1980 | 392.0 | | 367.2 | 118.6 | 24.4 | 14.3 | 916.5 |
| 1981 | 156.0 | | 484.6 | 91.4 | 16.2 | 20.8 | 769.0 |
| 1982 | 13.0 | | | | | | 13.0 |
| 1983 | 0.0 | | | | | | |
| | | | | | | | |

Table C.1.2.1 Nominal catch (tonnes) of SAITHE in Sub-area I and Divisions IIa and IIb, $1973-82$. (Data for 1973-1981 from Bulletin Statistique)

*) Preliminary

Table C.1.3.1 Nominal catch (tonnes) of SAITHE in Sub-area IV and Division IIIa, 1973-1982.
(Data for 1973-1981 from Bulletin Statistique)

Country	1973		1974		1975		1976		1977		1978		1979		1980		1981		1.982*)	
Belgium		55		33		81		127		107		44		14		13		12		1
Denmark	10	100	8	- 388	10	149	15	111	17	334	10	-372	10	461		370	6	454	10	052
Faroe Islands		552		581		287		425		318		213		407		1020		614		143
France	32	961	28	619	24	396	32	552	41	022	38	8122	40	983	37	306		649	49	548
German Dem. Rep.	7	668		516	5	882		2088		430		2404		504		925		-		-
Germany, Fed.Rep.	12	003	20	589	18	622	38	698	26	860	25	982	18	780		1095		246		520
Iceland		23		5		1		-		-		-		-		-		-		-
Ireland		-		-		-		119		126		88		-		-		*		
Netherlands	9	232	14	504	8	917	6	6101	7	270		5135		466		245		123		$100^{\text {c }}$
Norway ${ }^{\text {b }}$	15	219		246	12	483	17	856		949	17	7627		575		7959		882		
Poland	7	512	22	203	35	304	35	819	12	378		5661		104		2. 404		698		793
Spain		108		308		249		-		-		-		-		-		-		-
Sweden	1	876		187		913		271		275		990		211		342		156		320
UK (Engi. \& Wales)	3	378		4353	3	472		6300		822		8382		256		4879		309	5	029
UK"(Scotland)	10	834	10	956	8	898	13	3034	11	366		4330		257		6525		529	8	149
USSR	83	333	104	400	110	. 743	83	369	46	385	10	161		2015		-		--		-
Sub-total	194	854	231	1288	240	397	253	170	188	642	139	511	114	033	123	3083	125	672	148	655

*) preliminary
a) Data from national laboratories
b) In 1973 and 1974 estimates of industrial by-catches were included in the Norwegian catches reported to ICES. These estimates have later been revised and the sum of industrial by-catch and human consumption landings therefore deviate somewhat from the Bulletin Statistique figures.
c) Working Group estimate

Table C.2.1 Nominal catch (tonnes) of SAITHE in Division Va, 1973-1982. (Data for 1973 to 1981 from Bulletin Statistique)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*)
Belgiun	2131	2371	1638	1. 615	1448	1092	980	980	532	203
Faroe Islands	1467	1712	1366	3267	3013	4250	5457	4930	3545	3685
France	-	94	32.	51	-	-	-	-	-	-
Germany, Fed. Rep.	38565	18627	13820	13785	10575	-	-	-	-	-
Iceland	56567	65169	61. 430	56811	46973	44327	57066	52436	54880	64908
Norway	-	-	6	5	4	3	1	1	3	1.
U.K. (England \& Wales)	11874	8845	8643	6024	13	-	-	-	-	-
U.K. (Scotland)	509	731	1021	443	-	-	-	-	-	-
Total	111113	97549	87956	82001	62026	49672	63504	58347	58960	68797

*) Preliminary

Table C. 3.1 Nominal catch (tonnes) of SAITHE IN Sub-area VI, 1973-1982.
(Data for 1973-1981 from Bulletin Statistique)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*)
Belgium	191	209	21	95	-	-	1	2	2	-
Denmark	-	-	-	3	-	-	-	-	-	4)
Faroe Islands	4	6	6	7	11	-	14	4	3	4
France	18970	22802	19946	29216	19686	21519	15662	15427	16654	16833
Germen Dem. Rep.	-	-	8	3	-	-	-	-	-	-
Germany, Fed.Rep.	52.	16	481	511	254	604	131	49	581	566
Ireland	-	-	-	375	240	266	246	295	250	$250^{1)}$
Iceland	+	-	+	-	-	-	-	-	-	-
Netherlands	67	124	702	547	531	623	256	91	-	-
Norway	2	22	10	17	91	122	20	62	25	15
Poland	394	125	164	91	-	-	-	-	-	-
Spain	1980	1862	1882	1012	346	-	-	-	- -	-
UK (Engl, \& Wales)	2138	1333	1571	1560	2758	3193	1765	1594	1361	1970
UK (N. Ireland)	14	3	12	13	9	27	11	9	10	$10^{1)}$
UK (Scotland)	11330	9527	6131	5807	4628	51.81	3602	2902	3117	2064
USSR	670	269	15	2. 550	-	-	-	-	-	-
TOTAL	35812	36298	30949	41807	28554	31535	21708	20435	22.003	21716

*) Preiiminary.

1) W.G. Estimate

Table C.4.1 Nominal catch (tonnes) of SAITHE in Division Vb, 1973-1982. (Data for 1973 to 1981 from Bulletin Statistique)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	$\left.1982^{*}\right)$			
Belgium		-	-	-		6		-		-	-	-	-
Farce Islands	2973	3	726	2	517	2	560	5	153	15	892	22	003
France	22	676	20	457	23	980	15	367	17	038	8	128	2

*) Preliminary

Table C.4.2 Faroe Plateau COD. Nominal catches by countries, 1973-1982 (tonnes). (Data for 1973-1981 from Rulletin Statistique).

| Year | Faroe
 Islands | France | Germany
 Fed. Rep. | Norway | Poland | UK
 England | UK
 Scotland | Others Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

*) Vb_{2} included
**) Preliminary
***) Working Group data

Table C.4.3 Faroe Bank COD. Nominal catches by countries, 1973-1982 (tonnes). (Data for 1973-1981 from Bulletin Statistique).

Year	$\begin{aligned} & \text { Faroe } \\ & \text { Is?ands } \end{aligned}$	France	Germany Fed. Rep.	Norway	Poland	$\begin{gathered} \text { UK } \\ \text { England } \end{gathered}$	$\begin{aligned} & \text { UK } \\ & \text { Scotland } \end{aligned}$	Others	Total
1973	2842	*	-	-	*	1.144	1081	34	5101
1974	696	*	-	-	-	829	503	40	2068
1975	378	81	50	-	-	749	804	55	2117
1976	457	72	+	1	-	877	912	11	2330
1977	851	219	-	99	-	9	780	-	1958
1978	4194	*	-	183	-	2	1071	.	5450
1979	1273	*	-	33	-	-	677	-	1983
1980	724	*	-	54	-	85.	340	-	1203
1981	975	-	-	12.0	-	-	134	-	1229
1982**)	2184	-	-	*	-	-	54	-	2184

* Catches included in Vb_{1}
**) Preliminary

Table C.4.4 Faroe Plateau HADDOCK. Nominal catches by countries, 1973-1982 (tonnes). (Data for 1973-1981 from Bulletin Statistique).

Year	Faroe Islands	France	Germany Fed.Rep.	Norway	Poland	$\begin{gathered} \text { UK } \\ \text { England } \end{gathered}$	$\begin{gathered} \text { UK } \\ \text { Scotland } \end{gathered}$	Others	Total.
1973	4931	$3535 *)$	46	-	1190^{*})	1510	3665	-	14887
1974	4538	$1461{ }^{*}$)	70	5	685	1044	5572	30	13405
1975	8625	2173	120	56	544	1505	4896	383	18302
1976	12. 670	2472	22	20	448	1551	6671	181	24035
1977	19806	623	49	46	5	707	3278	26	24540
1978	15539	71*)	8	91	-	48	367	-	16124
1979	11259	50*)	2	39	-	35	212	-	11597
1980	13633	31^{*})	4	9	-	6	434	6	14123
1981	10891	113	$+$	20	-	-	85	-	11109
$1982^{* *}$)	10314		1^{*})	13*)	-	-	36	-	30364

*) Catches including Vb_{2}
**) Preliminary

Table C.4.5 Farce Bank HADDOCK. Nominal catches by countries, 1973-1982 (tonnes). (Data for 1973-1981 from Bulletin Statistique).

Year	Faroe Islands	France	Germariy Fed.Rep.	Norway	Poland	UK England	$\begin{aligned} & \text { UK } \\ & \text { Scotland } \end{aligned}$	Others	Total.
1973	1087	*	-	-	*	916	1123	22	3148
1974	273	*	-	-	-	573	500	22	1368
1975	132	125	53	-	-	921	1182	-	2413
1976	44	70	+	-	-	733	1329	-	2176
1977	273	77	-	11	-	4	650	-	1015
1978	2643	*	-	39	-	-	394	-	3076
1979	716	*	-	-	-	-	105	-	821
1980	690	*	-	8	-	152	43	-	893
1981	1103	*	-	7	-	-	14	-	1124
1982**)	1553	-	*	*	-	-	16	-	1569

*. Catches included in Vb_{1}
**) Preliminary

Table D.I.I HERRING. Catch in tonnes 1973-1982 North Sea (Sub-area IV and Division VIId) by country
(National catches 1973-81 officially reported to ICES. Unallocated catches provided by Working Group members).

Year Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	$1982^{\text {\# }}$
Belgium		603 728	2451	2451 34841	57 12769	4359		431	21.46	10306
Denmark	$174.254{ }^{\text {a }}$ b)	61728 b)	115616	34841	12769	4359	10546	4431	21146	72116
Faroe Islands	54935	$26161{ }^{\text {b }}$	25854	14378	8070	40	10	-		-
Finland		-	-	1034	-	-	-	-	-	-
France	22235	12.548	20391	14468	1613	2119	2560	5527	15099	15616
German Dem. Rep.	1728 c)	3268	2689	2624	2		-			
Germany, Fed. Rep.	$10634{ }^{\text {c }}$ ()	12470	6953	1654	221	24	10	. 147	$2300^{\text {c }}$	$343^{\text {c }}$
Iceland.	23742)	29017	16286	9412	-	-	-	- -	-	-
Netherlands	34070	35106	38416	20146	4134	18	-	509	7700	11967
Norway	99739	40975	34183	27386	4065	1189	3617	2165	70	680
Poland	5738 e)	9850	7069	7072	2	-	-	-	-	-
Sweden	$4222{ }^{\text {e }}$	3561	6858	4777	3616			- 7	-	-
U.K. (England) f)	2268	5699	6475	9662	3224	2843	2253	77	303	3730
U.K. (Scotland) ${ }^{\text {I }}$	16012	15034	8904	15015	8159	437	-	610	45	1780
USSR	30735	18096	20653	10935	78	4	262	-	-	-
Total North Sea	484012	275116	312798	174834	46010	11033	19158	13466	46663	116544
		Total including unallocated catches					25148	60994	140972	171481

*)Preliminary
a) Total includes 2107 t for human consumption unspecified to area
b) Supplied by Fiskirannsóknarstovan
c) From Federal Republic of Germany national statistics compiled by Federal Research Board for Fisheries, Hamburg
d) Excludes 15938 t caught on Skagerrak border and allocated to that area on the basis of age analysis
e) Swedish catches in Danish ports reported by area (North Sea, Skagerrak) used for area allocation of Swedish landings reported as Skagerrak and North Sea in Swedish Statistics
f) Catches from Moray Firth not included

Table D.1. 2 HERRING in Division IIIa. Landings in tonnes, 1973-82. (Data mainly provided by Working Group members.)

	Country/Year	1973	1974	1975	1976	1977	1978	1979	1980	1981 ${ }^{\text {x }}$	$1982^{2 x}$)
	Denmark Faroe Islands Germany, Fed.Rep. Iceland Norway (Open Sea) Norway (Fjords) Sweden	$\begin{array}{r} 42098 \\ 5265 \\ - \\ 15938 \\ 836 \\ 1680 \\ 20429 \end{array}$	$\begin{array}{rr} 35 & 732 \\ 7 & 132 \\ & 36 \\ & 231 \\ & 698 \\ 1 & 720 \\ 11683 \end{array}$		$\begin{array}{ll} 7 & 326 \\ 1 & 553 \\ & 6 \\ & 123 \\ \text { - } \\ 2 & 304 \\ 6 & 505 \end{array}$	$$	$$	$\begin{array}{r} 5153 \\ 817 \\ 181 \\ - \\ 2460 \\ 2259 \\ 8104 \end{array}$	$\begin{gathered} 5180 \\ 526 \\ - \\ - \\ 1350 \\ 2795 \\ 10701 \end{gathered}$	$\begin{gathered} 18001 \\ 990 \\ 199 \\ - \\ 6330 \\ 950 \\ 30274 \end{gathered}$	$\begin{array}{r} 22881 \\ 715 \\ 43 \\ -\quad \\ 10 \quad 140 \\ 1860 \\ 24859 \end{array}$
	Total	86246	57232	53370	17817	39931	23176	28974	20552	56744	60198
$\begin{aligned} & \text { 䍖 } \\ & \text { 鼠 } \end{aligned}$	Denmark Sweden	$\begin{array}{ll} 78 & 125 \\ 40 & 418 \end{array}$	$\begin{aligned} & 54540 \\ & 39779 \end{aligned}$	$\begin{aligned} & 48974 \\ & 23769 \end{aligned}$	$\begin{array}{ll} 41 & 749 \\ 30 & 263 \end{array}$	$\begin{array}{ll} 38 & 205 \\ 37 & 160 \end{array}$	$\begin{aligned} & 29241 \\ & 35 \quad 193 \end{aligned}$	$\begin{aligned} & 21337 \\ & 25 \quad 272 \end{aligned}$	$\begin{aligned} & 25380 \\ & 18 \quad 260 \end{aligned}$	$\begin{array}{ll} 18 & 721 \\ 38 & 871 \end{array}$	12366 38892
	Total	118543	94319	72743	72012	75365	64434	46609	43640	57592	51258
Diviaion IIIa Total		204789	151551	126113	89829	115296	87610	65583	64192	114336	111456
Unallocated								8117	20053	57000	35344
GRAND TOTAL								73700	84245	171336	146800

x) Revised
xx) Preliminary

Table D.1.3. Celtic Sea and Division VIIj HERRING by season (1 April to 31 March).
(Data provided by Working Group members.)

Season	France	German Dem.Rep.	Germany Fed. Rep.	Ireland	Netherlands	Poland	United Kingdom	USSR	Unallocated	Total
1973/74	4143	7	294	15185	5834	1139	-	334	-	$26936^{\text {a }}$
1974/75	2150	-	435	13939	2462	954	-	-	-	19940
1975/76	2451	-	399	8640	2441	579	24	1054	-	15588
1976/77	1317	147	36	5864	1324	257	-	826	-	9771
1977/78	95	-	96	6264	1378	-	-	-	-	7833
1978/79	8	-	220	8239	1002	-	-	-	-	7559
1979/80	584	-	20	7932	850	-	-	-	935	10321
1980/81	9	-	2	9024	292	-	-	-	3803	13130
1981/82	123	-	-	15830	1150	-	-	-	-	17103
1982/83*)	+	-	-	13042	-	-	-	-	-	13042

*) Provisional
a) Including 123 tonnes for Bulgaria.

Table D. I.4. . HERRING. Catch in weight. Division VIa (North) 1973-1982

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Denmark	932	-	374	249	626	128	-	-	1580	-
Faroes	10003	5371	3895	4017	3564	-	-		-	-
France	2441	411	1244	1481	1548	1435	3	2	1243	2084
G.D.R.	251	200	600	279	-	-	-	-	-	-
Germany, Fed.Rep.	9663	8687	5582	4084	-	26	-	256	3029	8569
Ireland	2532	9. 566	2633	3273	-	-	-	-	-	-
$\begin{aligned} & \text { Nether- } \\ & \text { lands } \end{aligned}$	27892	17461	12024	16573	8705	5874	-		5602	30275
Norway	32557	26218	509	5183	1098	4462	-		3850	13018
Poland	2062	334	376	390	-	-	-		-	-
Sweden	-	-	-	2206	261	-	-		-	-
UK. (Engl)	-	45	125	20	301	134	54	33	1094	90
UK (Scot)	120800	107475	85395	53351	25238	10097	3	15	30389	38381
USSR	1137	2392	1244.	2536	-	-	-	-	-	-
Unallo cated	-	-	-	-	-	-	-	-	4633	-
TOTAL	208270	278164	114001	93642	41341	22176	60	306	51420	92417

\# Preliminary

Table D.1.4.2 Monthly landings (tonnes) of HERRING from the Firth of Clyde (all fishing methods combined). (Data provided by the Working Group)

Month	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
January	*	*	*	*	*	4**	4*	6*	15*	2*
February	71*	91*	68*	7*	*	6*	8*	3*	15*	16*
March	36*	168*	85	69*	*	$7 *$	13*	8*	14*	1*
April	316	398	369	57.1	530	2.46	12*	4**	32*	?*
May	385	280	283	436	544	245	4**	$2 *$	25*	615
June	468	607	2.03	281	640	238	336	114	42.9	850
July	688	690	354	337	494	376	466	656	082	757
August	593	54.3	210	473	601	587	450	645	511	262
September	668	310	515	541	559	581	374	559	106	-*
October	711	451	811	598	556	653	263	79	-*	-*
November	464	245	571	595	560	647	1*	3*	2*	-*
December	248	91	120	2.36	32.8	272	-*	2*	1**	1*
Not known	67	189	44	50	35					
Total	4715	4053	3663	$1+1.39$	4847	3862.	1951	2081	2135	2. 506

- Subject to closure of directed fishery

Table D.I.4.3 HERRING. Estimated catches in weight in DivisionsVIa (south) and VIIb, c, $1973-82$.

Country	1973.	1974	1975	1976	1977	1978	1979	1980	1981	1982 ${ }^{\text {\%) }}$
Belgium	-	-	-	12	-	-	-	-	-	-
France	-	145	68	47	-	-	-	-	-	353
German Dem.Rep.	2256	1833	1 394	890	-	-	-	-	-	-
Germany , Fed.Rep.	7785	5667	4431	924	221	100	5	-	2687	265
Ireland.	16912	16395	12465	10895	15916	19128	18910	27499	19443	15726
Netherlands	5228	2225	15208	16546	4423	481	1939	1514	2790	1735
Poland	3623	6034	2558	2778	6	-	-	-	-	-
$\begin{aligned} & \text { J.K. } \\ & \text { (N.Ireland) } \end{aligned}$	-	28	6	1	1	6	2	1	2	-
USSR	915	4262	2634	674	-	-	-	-	-	-
Unspecified	-	-	-	-	-	-	1752	1110	-	-
Total	36719	36589	38764	32767	20567	19715	22608	30124	24922	18079

*) Provisional data.

Table D.1.5.1 HERRING.

Total catches (tonnes) in North Irish Sea (Division VIIa), 1973-82 (includes industrial catch).

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982^{*}
France	254	3194	813	651	85	174	$\left.455^{2}\right)$	1	-	-
Ireland	3614	5894	4790	3205	3331	2371	1805	1340	283	300
Netherlands	143	1116	630	989	500	98	-	-	-	-
U.K.	18587	27489	18244	16401	11498	8432^{2}	10078^{3}	9272	4094	3375
USSR	-	945	26	-	-	-	-	-	-	$180^{4)}$
Total	22598	38638	24503	21246	25414	11075	12338	10613	4377	4855

*Preliminary. ${ }^{1)}$ Includes 68.5 tonnes of spring-spawned herring. ${ }^{2)}$ No data basis for allocation to stock.
${ }^{3)}$ Additional unrecorded catch of 106 tonnes estimated. ${ }^{4)}$ Unallocated.

Table D.1.5.2. HERRING.
Total catch in North Irish Sea, 1973-1982

Country	1973		1974		1975		1976		1977		1978		1979		1980		1981		1982*	
	1	2	1.	2	1	2	1	2	2	2	1	2	1	2	1	2	1	2	1	2
France	254	-	3194	-	813	-	651	-	85	-	87	87	-	-	1	-	-	-	-	-
Ireland	-	3614	1783	4111	2406	2384	1816	1389	2009	1322	610	1761	748	1054	762	578	100	183	198	102
Netherlands	-	143	1116	-	630	-	989	-	500	-	98	-	-	-	-	-	-	-	-	-
U.K.	13071	5516	23639	3850	15408	2836	12831	3570	9837	2661	7663	700	9382	696	7897	1375	2837	1257	2120	1255
Unallocated	\cdots	-	-	-	-	-	-	-	-	-	-	-	-	-	*	-	-	-	779	401
Total Manx	13325		29732		19257		16287		12431		8458		10130		8660		2937		3097	
Total Mourne	9273		7961		5220		4959		2983		2548		1750		1953		1440		1758	

1 - Manx stock, $2=$ Mourne stock, *Preliminary.

Table D.2.1. Total industrial landings (tonnes $\times 10^{-3}$) from the North Sea, 1973-1982.

Year	Target industrial species				By-catch for reduction ${ }^{6}$)				Total ${ }^{41}$
	Norway pout	Sandeel	Sprat	Subm total	$\begin{aligned} & \text { Blue } \\ & \text { Whiting } \end{aligned}$	Protected Species	Herring ${ }^{3)}$	Subtotal	
1973	345.9	296.9	262.3	905.1	56.8	131.8		188.6	1093.7
1974	735.8	524.8	313.6	1574.2	62.2	220.4		282.6	1856.8
1975	559.7	428.2	641.2	1629.1	42.0	127.8		169.8	1798.9
1976	437.4	487.6	621.5	1546.5	36.0	198.0	12.0	246.0	1792.5
1977	389.9	785.6	304.0	1479.5	38.4	147.3	9.5	195.2	1674.7
1978	270.1	786.8	378.3	1435.2	99.9	67.6	7.8	275.3	1610.5
1979	319.8	577.8	379.6	1272.2	63.3	78.0	1.5.3	156.6	1433.8
1980	470.4	728.5	323.4	1522.3	75.1	71.3	7.3	153.7	1676.0
1981	273.9	588.9	209.1	1071.9	80.2	89.4	84.2	235.8.	1307.7
1982^{51}	289.8	610.9	113.1	1014.0	54.0	56.8	92.2	203.0	1217.0

1) C.M.1983/Assess:3
2) C.M.J.982/Assess:8 and 9 (Haddock, whiting, saithe)
3) C.M.1982/Assess:7
4) Does not include other species which on an average range between 20000 and 40000 tonnes
5) Incomplete
6) By-catches do not include fish landed for human consumption

Table D.2.2.1 NORWAY POUT. Annual landings (tonnes) in Division IIIa (For 1973-81 data officially reported to ICES)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	$1982^{3)}$
Denmark	23	152	10669	15	666	40	144	20	694	23

*) Including by-catch.

1) Included in the North Sea.
2) Includes North Sea.
3) Preliminary.
4) Landings in foreigm ports July-December not included.
5) Data from Data Form 5 .

Table D.2.2.2 NORWAY POUT. Annual landings (in thousand tonnes) by countries. North Sea, 1973-82.

Year	Denmark	Faroes	Norway	Sweden	$\begin{gathered} \text { UK } \\ \text { (Scotland) } \end{gathered}$	Others	Total
1973	215.2	51.2	63.0	2.9	13.0	0.6	345.9
1974	464.5	85.0	154.2	2.1	26.7	3.3	735.8
1975	251.2	63.6	218.9	2.3	22.7	1.0	559.7
1976	244.9	64.6	108.9	+	17.3	1.7	437.4
1977	232.2	50.9	98.3	2.9	4.6	1.0	389.9
1978	163.4	19.7	80.8	0.7	5.5	-	270.1
1979	219.9	21.9	75.0		3.0		319.8
1980	366.2	34.1	69.5		0.6		470.4
1981	206.0	16.6	51.3		$+$		273.9
19821)	187.12)) 15.4	87.3		0		-
1) Preliminary							
2) January-September only							

Table D.2.2.3 NORWAY POUT. Annual landings (tonnes) in Division VIa. (Data from 1973-81 as officially reported to ICES)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982 ${ }^{\text {F }}$
Belgium	-	-	-	-	-	-	-	-	-	-
Denmark	42	-	193	-	-	4443	15609	13070	2877	$751{ }^{4)}$
Faroes	1743	1581	1524	6203	2177	18484	4772	3530	3540	
Germany, Fed.R	-	179	-	8	-	-	-	-	-	-
Netherlands	-	-	322	147	230	21	98	68	182	
Norway	-	1443)	-	82^{3}	-	-	-	-	-	-
Poland	-	75	-	-	-	-	-	-	-	-
UK(Scotland) ${ }^{\text {2 }}$	9282	4702	6614	6346	2799	302	23	1202	1158	586
USSR	-	40	2	7147	-	-	-	-	-	-
Total	11067	6721	8655	19933	5206	23250	20502	17870	7757	

1) Included in the North Sea.
2) Amended using national data.
3) Including by-catch.
4) Landings in foreigm ports July-December not included.
¥) Preliminary.

Table D.2.3.2 Landings of SANDEEL from the North Sea, 1971-82 (in thousand tonnes).

Year	Denmark	Germany, Fed.Rep.	Faroes	Netherlands	Norway	Sweden	U.K.	Total
1971	371.6	0.1	0	0	2.1	0	8.3	382.1
1972	329.0	+	0	0	18.6	8.8	2.1	358.5
1973	273.0	0	1.4	0	17.2	1.1	4.2	296.9
1974	424.1	0	6.4	0	78.6	0.2	15.5	524.8
1975	355.6	0	4.9	0	54.0	0.1	13.6	428.2
1976	424.7	0	-	0	44.2	-	38.7	487.6
1977	664.3	0	11.4	0	78.7	5.7	25.5	785.6
1978	647.5	0	12.1	0	93.5	1.2	32.5	786.8
1979	449.8	0	13.2	0	101.4	0	13.4	577.8
1980	542.2	0	7.2	0	144.8	0	34.3	728.5
1981	482.9	0	4.9	0	52.6	0	46.7	587.2
1982	506.9	0	4.9	0	46.5	0.4	52.2	610.9

- No information
+ Less than half unit

Table D.2.3.3 Annual landings of SANDFWS by Assessment areas of the North Sea (Denmark, Norway, United Kingdom/Scotland) (in 1000 tonnes)

Year	Shetland Area	Northern Area	Southern Area	Total
1973	0			
1974	7.4	107.6	132.4	290.0
1975	12.9	386.6	117.7	511.1
1976	20.2	253.7	135.0	350.6
1977	21.5	348.4	392.3	485.8
1978	28.1	163.0	577.2	762.2
1979	13.4	203.4	355.9	768.3
1980	25.4	292.0	401.2	572.7
1981	46.7	138.0	74.4	378.9
1982	52.0		479.2	718.6
				663.6

Table D.2.4.1 Landings of SPRAT in Division IIIa and in Norwegian fjords in Division IVa (10-3 tonnes).
(Data provided by Working Group members)

Year	SKAGERRAK				KATTEGAT			IIIa TOTAL	Fjords of Western Norway (IVa E)	$\begin{aligned} & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$
	Denmark	Sweden	Norway	Total	Denmark	Sweden	Total			
1973	19.4	2.5	3.2	25.1	19.3	16.2	35.5	60.6	8.8	69.4
1974	17.3	2.0	1.2	20.5	31.6	18.6	50.2	70.7	3.3	74.0
1975	14.9	2.1	1.9	18.9	69.7	20.9	90.6	109.5	2.9	112.4
1976	12.8	2.6	2.0	17.4	30.4	13.5	43.9	61.3	0.6	61.9
1977	7.2	2.2	1.2	10.6	53.3	9.8	63.1	73.7	5.4	79.1
1978	23.1	2.2	2.7	28.0	36.1	9.4	45.5	73.5	5.2	78.7
1979*	17.3	8.1	1.8	27.2	45.8	6.4	52.2	79.4	5.0	84.4
1980*	43.1	-	3.4	46.5	35.8	-	35.8	102.4	2.9	105.3
1^{1981} **	26.4	13.4	4.6	44.4	23.8	15.8	39.6	84.0	3.1	87,1
$1982^{* *}$	9.6	6.7	1.8	18.1	13.8	4.8	18.6	36.7	6.0	42.7

* Sweden: 20124 tonnes in Div. IIIa. Included in total but allocation to Skagerrak and Kattegat not possible.
\#\# Preliminary figures. Danish landings in October-December not included.

Table D.2.4.2 SPRAT catches in the North Sea (1000 tonnes), 1973-82. (Data provided by Working Group members)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982^{21}
Belgium	0.2	${ }_{165}{ }^{+}$	3262	${ }_{306}{ }^{+}$	${ }_{179}^{+}$	$\stackrel{+}{+}$	${ }_{268}^{+}$	${ }^{+}{ }^{+}$	188.2	
Denmark	140.9	165.6	326.2	306.6	179.9	205.1	268.3	232.2	188.2	$77 \cdot 2^{\text {x }}$
Faroe Islands	-	4.2	42.9	45.4	2.2	-	2.8	2.8	-	-
France	+	0.3	0.1	-	+	-	-	-	-	-
German Dem.Rep.	-	1.7	4.9	6.5	1.4	-	-	-	-	-
Germany, Fed.Rep.	11.0	17.5	0.5	1.7	5.3	-	3.8	6.2	4.8	1.5
Netherlands	3.4	95	0.2	$1{ }^{+}$	$2{ }^{+}$	87.6	78.6	68.6	,	- 5
Norway	3.4	9.5	147.2	109.9	22.2	87.6	78.6	68.6	0.4	19.5
Poland	$+$	2	9.4	10.5	${ }_{1}^{+}$	-	-	0.6	-	-
Sweden	1.0	2.2	11.0	7.9	1.5	53	14.3	0.6	1	14
UK (England)	35.6	28.9	35.4	50.4	52.1		14.3	6.7	14.0	14.9
UK (Scotland) USSR	52.3 17.9	49.8 33.9	14.3 49.1	30.8 51.8	37.8 1.6	31.7	11.8	6.3	1.7	0.2
Total	262.3	313.6	641.2	621.5	304.0.	378.3	379.6	323.4	209.1	113.3

1
$\stackrel{\leftarrow}{\perp}$
\vdots
a) Preliminary figures as reported.
x) First 9 months only.

Table D.2.4.3 Nominal catch (tonnes) of SPRAT in Divisions VIId,e (data for 1973-81 as officially reported to ICES).

Country	1973	2974	1975	1976	1977	1978	1979	1980	1981	1982*)
Belgium	13	-	-	-	-	-	-	-	-	-
Denmark	-	-	-	447	74	1796	9981	7483	2545	$286{ }^{\text {a }}$
Faroe Islands	-	-	-	6	-	-	-	-	-	-
France	1269	520	147	115	220	225	2373	1867	146	-
German Dem.Rep.	37	-	-	-	-	-	-	-	-	-
Germany, Fed.Rep.	4	-	-	-	-	34	6	52	1	-
Netherlands	11	16	109	49	115	826	441	1401	1015	1000
Norway	-	-	-	-	-	-	-	65	-	-
Poland	-	1	-	-	-	-	-	-	-	-
J.K. (Eng. \& Wales)	1990	3256	1315	3107	2928	2118	2032	6864	10183	4500
Total	3324	3793	1571	3724	3237	4999	14833	17732	13890	

\#) Preliminary
a) Landings in foreign ports Jul-Dec not included.

Table D.3.1.I COD landings from the Kattegat 1973-82 (tonnes).

Year	Denmark	Sweden	Federal Republic of Germany $)$	Total
1973	14913	3850	74	18837
1974	17043	4717	120	21880
1975	11749	3642	94	15485
1976	12986	3242	47	16275
1977	16668	3400	51	20119
1978	10293	2893	204	13390
1979	11045	3763	22	14830
1980	10096	4206	38	14302
1981	11469	4380	284	16133
1982	9897	3087	58	13042

1) Landing statistics incompletely split on the Kattegat and the Skagerrak. The figures are estimated by the Working Group.

Table D.3.1.2 COD landings from the Skagerrak 1973-82 (tonnes)

Year	Denmark	Sweden	Norway ${ }^{\text {Fi }}$	Others	Total
1973	6673	1690	I 253	27	9643
1974	6694	1380	1197	92	9363
1975	14171	917	1190	52	16330
1976	18847	873	1241	466	21427
1977	18618	560	979	675	20832
1978	23614	592	1442	260	25908
1979	14007	1279	1745	213	17244
1980	22729	1712	1982	341	26764
1981	26120	2835	2073	294	31322
1982	25122	2378	1730	41	29271

F) Mainly landings from Norwegian fjords.

Table D.3.1.3 COD landings from Division IIIa - the Kattegat and the Skagerrak.
(Danish and Swedish landings from national sources, other countries from Bulletin Statistique)

Year	Denmark	Norway	Sweden	Others	Total
1973	21586	1253	5540	101	28480
1974	23737	1197	6097	212	31243
1975	25920	1190	4559	146	31815
1976	31833	1241	4115	513	37702
1977	35286	979	3960	726	40951
1978	33907	1442	3485	464	39298
1979	25052	1745	5042	235	32074
1980	32825	1982	5918	379	41104
1981	37589	2073	7215	378	47255
1982	35019	1730	5465	58	42272

¥) Mainly landings from Norwegian fjords.

Table D.3.4.1 Plaice landings from the Kattegat (tonnes)

Year	Denmark	Sweden	Total
1973	10021	231	10252
1974	11401	255	11656
1975	10158	369	10527
1976	9487	271	9758
1977	11611	300	11911
1978	12685	368	13053
1979	9721	281	10002
1980	5582	289	5871
1981	3803	232	4035
1982	2717	201	2918

Table D.3.4.2 Plaice landings from the Skagerrak (tonnes)

Year	Denmark	Sweden	Total
1973	3871	80	3951
1974	3429	70	3499
1975	4888	77	4965
1976	9251	81	9332
1977	12855	142	12997
1978	13383	94	13477
1979	11045	105	11150
1980	9514	92	9606
1981	8115	123	8238
1982	7789	140	7929

Table D.3.4.3 PLAICE Iandings in Division IIIa. The Kattegat and Skagerrak combined. (Data produced by Working Group members).

Year	Denmark	Sweden	Other Countries	Total
1973	13892	311	55	14258
1974	14830	325	58	15213
1975	15046	446	199	15691
1976	18738	352	756	19846
1977	24466	442	884	25792
1978	26068	462	480	27010
1979	20766	386	810	21962
1980	15096	381	56	15533
1981	11918	355	316	12589
1982^{x}		10506	345	8 xx

x) Preliminary
xx) Federal Republic of Germany

Table D.4.I.I HERRING by-catch in tonnes by year and Division

Division	1976	1977	1978	1979	1980	1981	1982*
Div.IVa West	4105	502	27	443	705	7933	301
Div.IVa East	-	186	-	2	48	-	500
Div. IVb	7847	8790	7545	14882	6008	75533	89764
Div.IVc and VIId	-	-	223	1	494	702	1675
Total	11952	9478	7795	15328	7255	84168	92240

* Preliminary

Table D.4.1.2 HERRING by-catch in numbers at age (millions) for 1981

Winter-rings 0			1	2	3	4	5	6	7	$8+$
$\begin{array}{lcr}\text { Div.IVa W Moray F. } \\ \text { " } & \text { l } \\ \text { rest } & 20\end{array}$			20	5	-	-	-	-	-	-
			4	-	6	4	9	6	2	2
Div. IV E Div. IVb Div.IVc, VIId			-	-	-	1	1	1	-	-
			392	40	8	1	-	-	-	-
				Not	ci	ge		bl		

Table D.4.1. 3 HERRING by-catch in numbers at age (millions) for 1982

Table D.5.1 COD. North Sea. Numbers (1000) and weight (tonnes) in each category.

Year	Human consumption		Discards		Total	
	Number	Weight	Number	Weight	Number	Weight
1973	125133	227787	46620	8196	171753	235983
1974	102367	202269	4588	950	106955	203219
1975	109863	184974	35390	6045	145253	191019
1976	128536	209914	8201	2050	136737	211964
1977	140359	181121	99474	16573	239833	197694
1978	212729	260890	100786	27874	313515	288764
1979	170706	248051	236295	67490	407001	315541
1980	192691	250766	660066	170675	852757	421441
1981	249276	310599	164776	47132	41.4 .052	357731
1982*)	183263	255934	**)	**)		

*) Preliminary.
シ̈) Insufficient data.

Table D.5.2 HADDOCK. North Sea. Numbers (1000) and weight (tonnes in each category).

Year	Industrial		Human consumption		Discards		Total	
	Number	Weight	Number	Weight	Number	Weight	Number	Weight
- 1973	170412	11267	449107	178610	659515	114719	1279034	304596
1974	936218	47777	357011	149617	1000667	166782	2383896	364176
1975	734412	41380	362239	146616	1862031	260427	2958681	448423
1976	446767	48204	397743	165624	788037	154289	1632547	368117
1977	350521	34993	319991	137372	225974	44369	896486	216734
1978	425714	9659	192021	85981	422631	77681	1040366	173321
1979	1 099865	17414	190.414	83249	286968	41834	1577247	142497
1980	768645	25154	218392	98860	541779	94910	1528816	218924
1981	815192	17615	244100	130009	299417	60290	1388709	207914
1982*	577653	20988	309824	165475	191907	41308	1079384	227771

*) Preliminary

Table D.5.3 WHITING. North Sea. Numbers (1000) and weight (tonnes) in each category.

Year	Industrial		Human consumption		Discards		Total	
	Number	Weight	Number	Weight	Number	Weight	Number	Weight
1973	1273007	89614	234405	66479	658852	110128	2166264	266221
1974	1841153	130293	254114	74561	477271	84753	2572538	289607
1975	1019586	86376	251761	78722	698963	134698	I 970310	299796
1976	1395318	149759	243201	74231	633359	134176	2271878	358166
1977	1657167	106104	267023	74374	555515	107186	2479705	287664
1978	1163125	55274	322834	88475	241. 670	35442	1727629	179191
1979	887889	59021	351613	99321	651877	78371	1891379	236713
1980	644159	45747	313565	92534	547726	86940	1505450	225221
1981	932530	66595	258430	80018	293714	45560	1484674	192173
1982*)	333574	32990	240768	72881	189004	29004	763346	134375

[^7]Table D.5.4 Nominal catch (in tonnes) of COD in Sub-area IV, 1973-82 (data for 1973-81 as officially reported to ICES).

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	11741	10253	7566	7483	10346	17473	12576	9630	8744	6604
Denmark	47950	54207	46344	53277	42582	41858	48509	56404	68252	63975
Faroe Islands	803	416	732	448	260	56	113	150	38	45
France	13247	7275	8667	8079	7511	11944	12559	10910	11369	8846
German Dem.Rep.	343	132	223	69	21	75	84	63	-	-
Germany, Fed.Rep.	21410	17089	16457	24445	22663	37040	20411	26.343	29741	19045
Ireland	-	-	-	98	136	174	1	-	-	-
Ne therlanda	25758	24029	23263	21835	29903	48.817	34752	45400	51281	36179
Norway ${ }^{\text {a) }}$	454	324	1528	1877	1449	2.747	3575	4506	6766	6902
Poland	1551	4750	2991	2961	381	115	142	28	7	62
Spain	90	80	63	14	-	-	-	-	-	-
Sweden	2534	2071	900	597	36	... b)	298	293	321	438
UK(Engl. \& Wales)	47327	39857	33615	46475	35424	59127	54923	49.951	59856	53556
UK(Scotland)	48844	39887	37308	39597	34406	41984	42811	45044	53921	55619
USSR	2.497	2667	6796	6187	-	17	17		-	-
Total IV	224549	203037	186453	213442	185118	261427	230771	248722	290296	251361
Total IVa	59.640	64152	58343	68352	55623	43357	41118	48467	55109	53267
Total IVb	134953	114087	107227	126218	100191	164388	147313	161767	197567	187834
Total IVC	29956	24798	20883	18872	29304	53682	42340	38488	37620	10260

*) provisional figures
${ }^{\text {a) }}$ Figures from Norway do not include cod caughtin Rec. 2 fisheries
b) Included in IIIa

Table D.5.5 Nominal catch (in tonnes) of HADDOCK in Sub-area IV, 1973-82 (data for 1973-81 as officially reported to ICES).

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	2385	1137	2209	2166	2293	1295	732	1414	1217	966
Denmark	13118	44342	32930	46899	20069	8093	8248	12928	13198	32159
Faroe Islanda	1198	435	267	283	385	12	7	27	46	15
France	4695	4020	4646	5500	6914	5122	7208	7407	12344	15989
German Dem.Rep.	22	8	44	20	8	37	12	36	-	-
Germany, Fed.Rep.	4587	3478	2396	3433	3744	2589	2549	2354	3387	4861
Ireland	-	-	-	31	53	101	-	-	-	-
Netherlands	3185	3035	1901	1728	1598	857	955	1557	2279	1121
Norway ${ }^{\text {a) }}$	454	324	331	367	374	609	968	1191	2283	1782
Poland	2553	3001	1485	1155	485	62	106	59	31	317
Spain	101	210	-	-	- -	-	-	-	-	-
Sweden	4550	3098	2083	2455	113	_ d)	907	1165	1301	1856
UK(England+Wales)	16586	10798	11499	17238	17167	12200	10774	12195	14570	16108
UK(Scotland)	88132	71679	64686	80576	89465	58406	54119	64058	82798	105875
USSR	49356	42234	49686	42852	8010	54	18	-	-	-
Total IV	190922	187799	174163	204603	150678	89437	86603	104391	133454	181049
Total IVa	126662	122977	110848	138591	116577	57886	51741	64886	33374	106154
Total IVb	62288	63695	62761	65594	34030	31457	34361	39072	49197	74738
Total IVC	1972	1127.	554	418	71	94	501	433	833	157
WG total catch ${ }^{\text {c) }}$	287099	307689	401053	334888	219953	170804	140635	218924	207914	227771

*) Provisional.
a) Figures from Norway do not include haddock caught in Rec. 2 fisheries. For 1973-74 Rec. 2 fisheries were officially reported but have been deducted in the figures given here to make a consistent data series.
b) 1973-74 includes Div. IIIa.
c) Includes discards.
d) Included in Division IIIa.

Table D.5.6 Nominal catch (in tonnes) or WHETING in Sub-area IV, 1973-82. (Data for $1973-81$ as officially reported to ICES.)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	$1982^{\text {x }}$
Belgium	3387	3156	3279	2640	3275	3304	3941	3153	2623	2277
Denmark	73928	109654	61941	116973	46479	15741	41965	17916	16430	31103
Faroe Islands	1. 453	1126	764	1262	472	42	581	21.	12	9
France	20353	19825	20079	19557	17592	22525	27590	23626	24744	24261
German Dem. Rep.	5	-	3	18	-	22	5	-	-	-
Germany, Fed. Rep.	403	454	446	302	461	348	1280	1267	601	228
Ireland	\cdots	-	\cdots	4	9	38	-	-	-	-
Netherlands	8811	12057	14078	12274	9406	11030	13417	14389	14600	11220
Norway ${ }^{\text {a }}$	39	58	55	71	33	64	49	27	27	15
Poland	7	1002	888	509	445	8	3	1	-	-
Spain	119	110	65	18	-	-	-	-	-	-
Sweden ${ }^{\text {b }}$	2328	2440	255	153	341	\ldots	31	16	9	11
UK(England \& Wales)	4592	5519	5246	5112	6285	7542	7581	6778	5964	4723
UK (Scotiand)	20756	25274	27969	26167	33017	42779	44841	42218	31399	28796
USSR	3522	2.978	5098	5612	2413	-	-	-	-	-
Total Sub-Area IV	139703	183653	140166	190672	120128	103443	141284	109412	96409	102638
Total Div. IVa	29616	76761	75444	100001	61499	42837	48554	42529	33799	35015
Total Div. IVb	96678	87842	41930	69908	42911	40943	68775	41156	40145	55791
Total Div. IVc	13409	29050	22792	20763	15718	19663	23955	25727	22465	11832
WG total catch ${ }^{\text {c }}$)	364740	351266	290589	345951	294635	178773	234947	225221	192. 173	134375

x) Provisional figures.
a) Figures from Norway do not include whiting caught in Rec. 2 fisheries. For 1973 and 1974 Rec. 2 fisheries were officially reported, but have been deducted from the figures given here to make a consistent time series.
b) 1973-74 include Div. IIIa, 1978 included in Div. IIIa.
c) Include discards.

Table D.6.1 Nominal catch (in tonnes) of COD in Division VIa, 1973-1982. (Data for 1973 - 1981 as officially reported to ICES)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	75	174	49	71	-	-	4.	57	30	35
Denmark	-	-	7	-	-	-	-	$27^{\text {a) }}$	-	3
Faroe Islands	7	13	3	39	43	-	40	3	-	-
France	3445	3678	3546	5611	3583	4499	4590	5495	7601	7237
German Dem. Rep.	-	-	2	-	-	-	-	-	-	-
Germany, Fed. Rep.	15	6	12	1	3	31	40	1	21	b)
Ireland	583	883	1141	1341	984	1214	2237	2331	2725	3527
Netherlands	4	5	5	11	5	3	20	1	-	-
Norway	13	14	17	22	29	40	32	48	40	183
Poland	184	175	68	28	-	-	-	-	-	-
Spain	208	137	180	15	$20^{\text {a }}$) 108a)	-	-	-	-
Sweden	-	-	-	-	- 1	-	-	-	-	1
U.K. (England+Wales)	2074	2467	2217	2742	2434	2082	2348	, 2302	3187	2784
U.K. (Scotiand)	5645	6084	5806.	7475	5513	5539	6929	7603	10339	7741
U.K. (N. Ireland)	3	3	3	23		5	2	2	7	33
USSR	7	13	107	46	-	-	-	-	-	-
Total VIa	12263	13652	13163	17405	12619	13521	16242	17870	23950	21544

*) Provisional.
a) Includes Division VIb.
b) Included in Division VIb.

Table D. 6. 2 Nominal catch (in tonnes) of COD in Division VIb, 1973-1982. (Data for 1973-1981 as officially reported to ICES).

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	-	-	-	1	-	-	-	-	-	-
Denmark								. ${ }^{\text {a) }}$	-	-
Faroe Islands	-	5	3	22	40	10	92	75	2	77
France	320	1128	4	4	3	1	2	1	4	27
Germany, Fed.Rep.	-	-	-	-	-	-	111	136	443	13)
Irei and	-	-	-	-	-	3	-	-	-	-
Norway	-	3	-	8	3	69	138	80	134	40
Poland	8	-	-	-	-	-	-	-	-	-
Spain	-	-	-	-	, a)	. ${ }^{\text {a) }}$	-	33	-	
U.K. (Engl.\&Wales)	1	-	28	77	89	285	129	1	67	3
U.K. (Scotland)	128	39	98	61	33	384	198	370	143	257
USSR	26	-	110	1398	-	-	-			
Total	483	1175	243	1571	168	752	670	696	793	317

æ) Provisional
a) Included in Division VIa

Table D.6.3 Nominal catch (in tonnes) of HADDOCK in Division VIa, 1973-1982 (Data for 1973 - 1981 as officially reported to ICES).

COUNTRY	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	45	98	23	45	-	-	2	3	1	2
Denmark	-	-	-	13	-	-	37	-	-	-
Faroe Islands	2	1	-	-	-	-	2	-	-	-
France	5141	3979	2328	3026	3401	4255	4786	2808	3403	3789
German Dem.Rep.	-	-	9	-	-	-	-	-	-	-
Germany, Fed. Rep.	15	18	3	30	+	20	2	3	7	$75^{\text {a) }}$
Ireland	2631	1715	599	1115	616	441	877	726	1891	4402
Netherlands	169	63	19	30	28	13	2	2	3	-
Norway	-	-	-	3	7	13	9	16	29	38
Poland	402	97	20	-	-	-	-	-	-	-
Spain	497	540	-	-	-	-	-	-	-	-
UK (Fngl. and Wales)	2187	1512	1214	1971	3827	2805	1654	1279	1052	2035
UK (Scotland)	17631	9583	8973	11992	11422	9629	7459	8198	12051	18541
UK (N. Ireland)	-	-	-	-	-	-	-	+	-	1
USSR	110	364	495	533	-	-	-	-	-	-
Total VIa	28830	17970	13683	18758	19301	17176	14830	13035	18437	28883
WG Total incl. discards	40198	33342	46635	34071	23657	19510	27147	17470	33278	39318

*) Provisional
a) Includes VIb

Table D.6.4 Nominal catch (in tonnes) of HADDOCK in Division VIb, 1973-1982.
(Data for 1973-1981 as officially reported to ICES)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	-	-	-	33	-	-	-	-	-	-
Faroe Islands	-	2	1	8	3	11	20	5	1	21
France	600	353	21.	4	4	3	4	1	10	39
Germany, Fed. Rep.	-	-	-	-	-	-	-	27	-	. a)
Ireland	-	-	-	-	-	61	-	-	-	-
Norway	-	-	-	-	+	- 4	16	2	10	3
Poland	54	-	-	-	-	-	-	-	-	-
Spain	-	-	-	-	-	-	-	6	-	-
U.K. (Engl.\&Wales)	1	-	5	2111	2694	2365	1654	6261	9005	7692
U.K. (Scotland)	72	22	71	640	297	2060	548	1051	27	5
U.S.S.R.	3291	48911	49830	40474	-	-	-	-	-	-
Total VIb	4018	49288	49928	43243	2998	4504	2242	7343	9053	7760

*) Provisional.
a) Included in Division VIa.

Table D.6.5 Nominal catch (in tonnes) of WHITING in Division VIa, 1973-1982.
(Data for 1973-1981 as officially reported to ICES)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium Denmark	5 121	10	1	14	-	119	92	+ $32^{\text {a }}$	-	2
Faroe Isl.	5	1	30	2	-	-	770	-	-	-
France	2777	2983	2763	3655	3395	3610	2779	2609	1637	1803
German Dem.Rep.	-	-	-	31	-	-	-	-	-	-
Germany Fed.Rep.	127	80	62	1	1	2	4	1	49	$100^{\text {a) }}$
Ireland	2117	2431	2429	3255	2752	2080	2791	4407	8148	3040
Netherlands	57	23	85	255	78	23	17	2	6	-
Norway	-	-	-	1	-	-	-	-	-	-
Poland	10	9	-	-	-	-	-	-	-	-
Spain	1540	1479	1871	821	$763^{\text {a }}$	-	-	-	-	-
$\begin{aligned} & \text { UK(Engl; } \\ & \text { \& Wales) } \end{aligned}$	91	112	132	244	520	669	320	227	118	166
UK(Scotland)	9796	9929	12668	16658	9873	8174	10613	7386	8519	8422
UK (N. Ireland)	-	-	-	-	-	-	-	-	-	7
Total VIa	.6646	17057	20041	24937	17382	14677	17386	14664	18477	13540

*) Provisional.
a) Includes Division VIb.

Table D.6.6.1 Nominal catch (in tonnes) of COD in Division VIIb, c and VIIg-k, 1973-1.982 (Data for 1973-1981 as officially reported to ICES)

Country	1973	1974	1975	1976	2977	1978	1979	1980	1981	1982*
Belgium	323	167	116	159	85	52	51	110	198	97
Denmark	-	-	-	-	-	-	28	.b)	-	-
Faroe Italande	256	-	-	-	-	-	-	-		
France	2791	2302	2877	3196	1972	2192	2918	4475	5947	5782
Germany,Fed. Rep.	1	-	-	-	-	$3^{\text {a) }}$	-	7		
Ireland	568	283	474	506	315	323	552	1028	1542	1780
Ne therlands	14	9	54	46	291	279	-	5	-	-
Norway	-	-	1	-	+	-	-	-	-	-
Poland	75	39	19	40	6	-	2	-	-	-
Spain	301	232	588	1140	51	11	-	17		
UK(England+Wales).	60	26	73	44	33	28	33	83	230	306
UK(Scotland)	-	-	-	-	-	2	1	12	+	-
USSR	10	72	234	203	- .	-	-	-		
Total VIIb, c, g-k	4399	3130	4336	5234	2753	2890	3575	5737	7917	7965

*) Provisional.
a) Catch in Division VIIg only.
b) Included in Division VIIe.

Table D.6.6.2 Nominal catch (in tonnes) of COD in Divisions VIId and VIIe, 1973-82. (Data for 1973-81 as officially reported to ICES)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	93	67	59	65	53	435	699	163	363	293
Denmark	-	-	2718	1506	1120	2160	2052	$660^{\text {a }}$	-	-
France	1425	3099	2143	1646	5185	8044	4848	4001	4480	3234
Netherlands	2	4	+	2	1	+	-	-	4	-
Poland	13	6	-	-	-	-	-	-	-	-
U.K. (England \& Wales)	499	260	159	142	581	654	485	365	422	564
U.K. (Scotland)	-	-	-	-	-	-	+	-		
U.S.S.R.	45	-	3	4	-	-	-	-		
Total VIId, e	2077	3436	5082	3365	6940	11293	8084	5189	5270	4091

*) Provisional.
a) Includes Divs. VIIb,c.

Table D.6.6.3 Nominal catch (in tonnes) of HADDOCK in Divisions VIIb, c and VIIg-k, 1973-82. (Data for 1973-81 as officially reported to ICBS)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	65	35	33	19	13	5	2	2	3	3
Denmark	-	-	-	-	-	-	1	-	-	-
Faroe Isl.	3	-	-	-	-	-	-	-	-	-
France	5524	6057	4583	3726	2244	1479	1931	2219	2070	1271
Germany, Fed.Rep.	1	-	+	3	-	-	-	-	-	-
Ireland	1348	829	507	287	153	111	155	274	679	853
Netherlands	12	2	4	14	1	-	16	-	-	-
Poland	62	143	-	-	-	-	-	-	-	-
Spain	890	1100	-	-	294	-	-	5	-	-
$\begin{aligned} & \text { UK(England } \\ & \text { \& Wales) } \end{aligned}$	24	39	46	24	18	13	19	50	92	122
UK(Scotland)	-	-	-	-	-	8	22	56	4	-
USSR	24	456	1290	183	-	-	-	-	-	-
$\begin{aligned} & \text { Total } \\ & \text { VIIb, } c \text { and } \\ & \text { VIIg-k } \end{aligned}$	7953	8661	6463	4256	2273	1616	2146	2606	2848	2249

[^8]Table D.6.6.4 Nominal catch (in tonnes) of HADDOCK in Divisions VIId and VIIe, 1973-1982. (Data for 1973-1981 as officially reported to ICES)

country	1973	1974	1975	1976	1977	2978	1979	1980	1981	1982*
Belgium	1	+	+	+	1	-	1	+	2	1
Denmark	-	-	-	-	2	22	21	15	-	-
France	208	487	868	405	438	356	333	298	420	365
Germany , Fed.Rep.	-	-	+	-	-	-	-	-	-	-
Ireland	-	-	-	-	4	-	-	$+$	-	-
Netherlands	1	-	1	-	-	-	-	-	-	-
Poland	12	-	-	-	-	\sim	-	-	-	-
$\begin{aligned} & \text { UK(England } \\ & \& \text { Wales) } \end{aligned}$	135	213	99	45	29	22	51	59	119	60
USSR	2	33	3	-	-	-	-	-	-	-
Total VIId,e	359	633	971	450	474	400	406	372	541	426

*) Provisional

Table D.6.6.5. Nominal catch (in tonnes) of WHITING in Divisions VIIb, c and VIIg-k in 1973-82. (Data for 1973-1981 as officially reported to ICES.)

Country	1973	1974	2975	1976	1977	1978	1979	1980	1981	1982 ${ }^{\text {\% }}$
Belgium	124	75	83	97	60	37	26	31	61	28
France	4035	4331	3637	4731	3962	3868	4127	5603	5442	4673
Germany, Fed.Rep.	$+$	-	2	-	1	45	-	$+$	-	-
Ireland	1894	1641	2562	1980	1201	1172	2674	3710	3612	4076
Netherlands	2080	915	66	112	86	63	3	4	21	-
Poland	14	-	-	-	-	-	-	-	-	-
Spain	1121	1367	2974	2772	-	-	-	-	-	-
U.K. (Eng. \& Wales)	21	15	61	21	26	38	23	60	217	146
$\begin{aligned} & \mathrm{U} . \mathrm{K} . \\ & \text { (Scotland) } \end{aligned}$	-	-	-	-	2	1	1	80	1	-
USSR	16	-	64	2	-	-	-	-	-	-
Total VIIb, c and $\mathrm{g}-\mathrm{k}$	9305	8344	9449	9715	5338	5224	6854	9488	9354	8923

\#) Provisional

Table D.6.6.6 Nominal catch (in tonnes) of WHITING in Division VIId and VIIe in 1973-1982 (Data for 1973-1981 as officially reported to ICES)

Country	1973	1974	2975	1976	1977	1978	1979	1980	1981	1982*
Belgium	38	39	70	103	36	85	92	85	102	101
Denmark	-	-	-	18	-	1	2585	6	2	-
France	5050	7917	10060	8390	8886	8010	5352	7690	8842	7317
Germany , Fed.Rep.	-	25	1	-	-	-	-	-	-	-
Ireland	-	-	-	-	11	12	-	13	-	-
Netherlands	42	12	14	5	1	2	1	2	2	-
UK (EngI. \& Wales)	498	579	2255	1504	1342	1038	930	839	1136	1222
USSR	19	-	-	-	-	-	-	-	-	-
Total VIId,e	5647	8572	11400	10020	10276	9148	8960	8635	10084	8640

*) Provisional

Table D.7.1 Nominal catch (tonnes) of COD in Division VIIa, 1973-1981 as officially reported to ICES, 1982 preliminary figures

Country	1973	1974	1975	1976	1977	2978	1979	1980	1981	1982
Belgium	276	409	282	257	135	144	174	246	395	269
Denmark	-	-	-	-	-	-	-	-	6	-
France	2507	2601	2623	1938	1370	2022	1125	1009	1278	1117
Ireland	4224	3276	3477	4815	3862	3128	3755	4421	6552	4537
Netherlands	35	113	53	87	32	15	11	36	94	48
UK (Eng. + Wales)	3158	2463	2132	1815	1186	875	980	1918	2712	2761
UK (Isle of Man)	-	-	-	-	-	-	297	232	221	161
UK (N. Ireland)	1537	1279	1153	1175	1409	1064	1898	2591	3360	3852
UK (Scotland)	50	49	70	91	60	79	118	286	376	573
Total	11787	10190	9790	10178	8054	6328	8358	10739	14894	13318
Total figures used by Working Group for stock assessment	11819	10251	9863	10247	8054	6271	8371	10776	14907	13768

Table D.7.2. Nominal catch (tonnes) of WHITING in Division VIIa, 1973-1982.
(Data for 1973-81, human consumption, as officially reported to ICES)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	$1982^{\text {AII }}$
Belgium	102	94	99	68	63	51	42	45	85	45
France	3101	2700	2784	2985	1952	2098	1897	1616	1254	1375
Ireland	3414	4184	3946	5055	4821	4562	3847	5546	5362	4207
Netherlands	12	52	52	56	24	12	11	10	12	14
UK (England + Wales)	1224	685	617	635	1008	1105	842	1000	816	1195
UK (N. Ireland)	2437	2045	2280	3290	2692	3089	2946	3954	9052	10306
UK (Scotland)	47	52	54	104	161	152	154	251	102	189
UK (Isle of Man)	. .	-••	-••	-••	-••	...	372	243	346	268
USSR	-	7	-	-	-	-	-	-	-	-
Total human consumption	10337	9819	9832	12193	10721	11069	10111	12665	17029	17599
Total human consumption figures used by the Working Group for stock assessment	9972	9364	9275	11651	10204	10404	9892	12665	17029	17599
Estimated industrial catches (Ireland only)	744	283	353	425	760	927	-	-	-	-
Estimated discards from Nephrops fishery	3400	2020	3348	1823	4082	1917	2019	3302	3577	893

Table D.7.3. Nominal catch (tonnes) of PLAICE in Division VIIa, 1973-1982. (Data for 1973-1981 as officially reported to ICES.)

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*)
Belgium	221	247	248	136	110	109	151	21.4	231	130
France	500	132	134	126	242	110	152	104	51	49
Ireland	1079	891	884	1032	953	1205	1032	1086	1243	923
Netherlands	42	47	75	73	24	15	18	60	40	38
U.K. (England \& Wales)	3002	2240	2544	1945	1422	1792	1817	2139	2117	1875
U.K. (Isle of Man)	\cdots	...	\ldots	\ldots	\ldots	\ldots	52	20	27	13
U.K. (N. Ireland)	242	104	125	120	165	173	161	139	132	161
U.K. (Scotland)	73	54	53	52	89	89	106	141	64	48
USSR	-	1	-	-	-	-	-	-	1	-
Total	5060	3716	4063	3484	2904	3313	3489	3903	3906	3237
Total figures used by Working Group for stock assessment	5060	3715	4063	3473	2904	3231	3428	3903	3906	3237

\#) Preliminary

Table D.7.4 Irish Sea SOLE. Nominal catches (tonnes) 1973-82. (Data for. 1973-81 as officially reported to ICES)

COUNTRY	1973	1974	1975	1976	1977	1978	1979	1980	1981	$1982^{\text {\# }}$
Belgium	793	664	805	674	566	453	779	1002	892	669
Denmark	-	-	-	-	-	-	-	-	15	-
France	12	54	59	72	39	65	48	41	13	14
Ireland	27	28	24	74	84	127	134	229	151	114
Netherlands	281	320	234	381	227	177	247	176	186	136
UK (Fngl. and Wales)	258	218	281	195	160	189	290	367	3.11	277
UK (N.Ireland)	46	23	24	49	49	57	47	44	41	31
UK (Scotland)	21	. \cdot	15	18	21	30	42	68	45	44
UK (Isle of Man)	-••	-••	\cdots	-••	-••	-••	30	18	7	10
Total	1428	1307	1442	1463	1146	1098	1617	1945	1661	1295

ョ) Preliminary

Table D.7.5 Celtic Sea SOLE (Divisions VIIf and VIIg). Nominal catch (tonnes) 1973-1982 by country.

COUNTRY	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982^{*}
Belgium	822	914	663	1054	779	506	693	985	941	819
France	435	75	133	181	80	160	153	141	91	100
Ireland	2	2	5	10	2	2	7	14	8	3
Netherlands	4	15	2	7	7	-	-	-	-	-
UK (Fng1.	128	99	116	99	93	112	101	178	175	206
and Wales)										

\#) Preliminary

Table D.7.6 Nominal catch (tonnes) of COD in Divisions VIIf and VIIg, 1973-82.

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	$1982^{\text {K }}$
Belgium	524	197	377	226	107	88	110	172	285	168
France	2229	1770	2472	3351	2088	2567	3244	5036	7473	5942
Germany, Fed.Rep. Ireland	-64	24	15	13	17	30	-72	78	$\overline{7}$	- 141
Netherlands	-	-	-	-	-	-	-	-	-	302
UK (Eng1. \& Wales)	196	153	127	92	59	67	81	199	299	302
USSR	30		30	1	-	-	-	-		
Total	3043	2144	3021	3683	2271	2752	3507	5660	8165	6553

* Preliminary

Table D.7.7 Nominal catch (tonnes)of whiting in Divisions VIIf and VIIg (1973-1982)

VIIg	1973	1974	1975	1976	1977	1978	1979	1980	1981	$1982{ }^{\text {a }}$
Belgium	91	60	60	65	52	37	26	31	61	28
Ireland	17	9	23	27	10	12	85	211	62	38
France	3449	3060	3033	4226	3626	3449	3683	4947	5406	4416
Netherlands	2080	914	54	21	61	63	2	3	0	0
U.K. (England and Wales)	21	13	57	21	25	38	23	60	190	104
Total VIIg	5658	4056	3227	4360	3774	3599	3819	5252	5719	4586
VIIf ${ }^{\text {b }}$										
Belgium	99	12	156	97	45	29	74	41	41	42
France	1065	1491	1488	1655	2111	3171	1983	2986	2587	2727
Netherlands	0	0	1	4	4	1	2	0	0	0
U.K. (England and Wales)	187	121	107	109	141	143	124	14.1	119	72
Total VIIf	1351	1624	1752	1865	2301	3344	2183	3168	2747	2842
Total $\text { VIIf }+g$	7009	5680	4979	6225	6075	6943	6002	8420	8466	7427

a) preliminary
b) data for 1974-1981 as officially reported to ICES

Table D.7.8 PLAICE in Divisions VIIf and VIIg. Nominal catches (tonnes) 1973-1982

COUNTRY	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982^{74}
Belgium	309	270	195	307	214	196	171	372	365	341
France	185	218	413	360	365	527	467	706	697	539
Ireland	39	20	50	49	28		49	61	64	198
Netherlands	16	-	2	-	-	-	-	-	-	-
UK (Fngland and Wales)	398	214	227	153	150	152	176	227	251	196
Spain	-	-	-	-	-	-	-	7	-	-
U.s.S.R.	4	-	1	-	-	-	-	-	-	-
Total										

\# Preliminary

DIVISION	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982^{3}
VIIg	408	358	420	555	424	483	478	769	798	757
VIIf	543	364	468	314	333	392	385	604	579	517
VIIf $+g$	951	722	888	869	757	875	863	1373	1377	1274

* Preliminary

Table D.8.1 Nominal catch (tonnes) of SOLE in Sub-area IV.

Country	1973	1974	1975	1976	1977	1978	1979	1980	1.981	1982**
Belgium	1483 *	1130	$1392 *$	1456	1671^{*}	1727^{*}	2044^{*}	1378	1363	1927.4
Denmark	957	705	682	574	348	465	313^{*}	$710^{\text {\% }}$	720	521.6
France	250	195	297	598	308	346	309 *	$232^{3 *}$	144	395.0
Germany, Fed.Rep.	336	173	233	192	310	467	242^{*}	338*	346	289.5
Netherlands	15883	15434^{*}	15242	11044	10873	6749	7646 \%	12 695*	12400	17748.8
United Kingdom (Engl.+Wales)	386 \%	340	426	455	491*	$625^{\text {\% }}$	849	452^{*}	381	402.0
Other countries	14	12	-	7	2	1	40	2	-	2
Total	19309	17989								
Unreported landings			2500	3000	4000	9900	11354			
Grand Total			20772	17326	18003	$20 \quad 281$	22597	15807	15405	21285.3

*Figures revised by ad hoc Flatfish Working Group 1982, otherwise from Bulletin Statistique
**Provisional Working Group estimates

Table D.8.2 North Sea PLAICE. Nominal catch (tonnes) in Sub-area IV. * = figure revised by ad hoc Flatfish Working Group 1982, otherwise from Bulletin Statistique.

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	19821)
Belgium	$6111 *$	6198%	$6162 *$	5 286*	$7321 *$	$6231 *$	7687^{*}	7 005*	$6346 *$	6. 755
Denmark	23266	19814	22731	25612	20900	21285	27497	27057	22026	23948
Faroe IsI.	1	-	1	-	1	-	-	-	-	-
France	1355	519	536	497	598	750	856	711*	586*	558
Federal Republic of Germany	$5734 *$	3 231*	4 041*	$3649 *$	$5414 *$	4 595*	$4315 *$	$4319 *$	3449	3408
Ireland	-	-	-	-	-	-	19	-	$+$	-
Netherlands	57948	54438	51293	46457	42307	28219	38295	39.782	40049	50000
Norway	15	13	13	20	16	13	13	15	18	13
Poland	1	-	153	40	-	-	-	-	-	-
Sweden	432	431	35	28	-	-	7	7	3	5
UK(EngI.\&Wales)	30 354*	23 855*	20 291*	23 772*	27 625*	27862	25825	18 687\%	17 129*	16385
UK (Scotland)	4815	4002	3230	3310	3622	3877	4126	4345	4390	4259
USSR	397	39	50	-	-	-	-	-	-	-
Total	130429	112540	108536	108671	107804	92832	108640	101928	93996	105331
Unreported catches	-	-	-	4999	11384	21152	36707	38023	45751	47827
GRAND TOTAL	130429	112540	108536	113670	119188	113984	145347	139951	139747	153159

1) Preliminary

Table D. 8.3 English Channel SOLF. Nominal catch (in tonnes) in Divisions VIId and VIIe, 1973-82

Year	Belgium		Denmark	France		Netherl.	Ireland	U. K .		Total	
	VIId	VIIe	VIIe	VIId	VIIo	VIId, e	VIIe	VIIQ,	VIIe	VIId	VIIe
1973	126	2	-	775		-	-	360	194	(1000)	(459)
1974	159	6	-	706		3	-	309	181	(940)	(427)
1975	132	3	-	464	271	1	-	244	217	841	491
1976	203	4	-	599	352	-	-	404	260	1206	616
1977	225	3	-	737	331	-	-	315	272	1277.	606
1978	241	4	20	782	384	-	-	366	453	1389	861
1979	311	1	-	1129	515	-	-	402	665	1842	1181
1980	302	45	-	1075	447	-	13	2792)	764	1656	1269
2981	491.	16		$1513^{1)}$	415^{17}	-	-	210 ${ }^{\text {2) }}$	784	$2214^{1 \text {) }}$	$1215^{1 .}$
1982	526	97		1839	303			$308{ }^{2}$)	1013	2673	1413

Figures for 1982 supplied by Working Group members are provisional.

1) Revised from Bulletin Statistique
2) Official figure and unreported landings 1980: 120 tonnes

1981: 50 tonnes
1982: 62 tonnes

Table D.8.5 English Channel PLAICE. Nominal catch (in tonnes) in Divisions VIId and VIIe, 1973-82.

Year	Belgium		Dermark		France		Netherlands	$\begin{gathered} \text { U.K. } \\ \text { (Ensland \& Wales) } \end{gathered}$		Total	
	VIId	VIIe	VIId	VIIe	VIId	VIIe	VIId, VIIe	VIId	VIIe	VIId	VIIe
1973	139	5	-	-	1735		-	889	367		
1974	148	4	-	-	2180		13	564	248		
1975	153	8	-	-	1802	288	-	293	279	2248	575
1976	147	5	12)	-	1439	323	-	376	312	1963	640
1977	149	3	812)	-	1714	336	-	302	363	2246	702
1978	162	3	-	1563)	1810	314	-	349	467	2320	940
1979	217	2	28	-	2094	458	-	278	515	2617	975
1980	435	22	-	-	2346	440	-	${ }^{*} 517$		3298	1.068
1981	850818		-	-	3968			2643		. 6461	
1982					3841			1 650\%		6309	

[^9]Table E.I.I Nominal HAKE landings (in thousand tonnes) as reported to ICES for statistical areas combined,
I973-82.

Years	Catch
1973	109.4
1974	98.3
1975	102.9
1976	91.7
1977	66.7
1978	49.6
1979	66.4
1980	63.6
1981	62.9
$\left.198 \mathbf{1}^{1}\right) 2$	-

1) Spanish landings not reported.
2) Preliminary; not reported to ICES.

Table E.I. 2 Nominal HAKE landings (in thousand tonnes) as reported to ICES by country and area, 1973-82.

YEARS	TOTAL	FRANCE					$\frac{\text { PORTUGAL }}{I X}$	SPAIN					U.K.			OTHERS		
		TOTAL	IV+VI	VII	VIII	IX		TOTAL	IV +VI	VII	VIII	IX	TOTAL	IV+VI	VII	TOTAL	IV+VI	VII
1973	108.6	24.2	2.2	10.7	11.3	-	15.3	63.0	0.5	4.7	37.0	20.8	2.8	2.2	0.6	3.3	2.9	0.4
1974	96.5	21.7	2.5	11.8	7.3	0.1	7.8	61.7	7.1	21.9	18.5	14.1	2.7	2.1	0.6	2.6	2.3	0.3
1975	101.4	22.2	3.2	11.0	7.9	0.1	9.4	63.9	6.4	20.5	18.0	19.0	2.6	2.3	0.3	3.3	2.4	0.9
1976	90.7	19.1	3.8	10.4	4.8	0.1	7.9	58.8 .	4.1	20.8	20.2	13.7	2.3	1.7	0.6	2.6	1.8	0.8
1977	64.9	15.3	2.6	6.1	6.6	-	5.5	41.0	1.6	5.3	16.6	17.5	1.9	1.6	0.3	1.2	0.8	0.3
1978	49.6	18.4	2.2	7.3	8.8	-	4.4	21.7	1.3	5.0	6.6	8.8	2.0	1.6	0.3	3.1	-	-
1979	62.8	22.4	2.5	9.2	10.7	-	5.3	32.0	1.1	6.1	16.7	8.1	1.7	1.5	0.2	1.4	1.0	0.4
1980	61.6	24.1	2.8	8.5	12.8	-	6.3	26.6	0.9	2.8	15.1	7.8	2.53	1.9	0.6	2.1	1.2	0.9
1981	62.9	24.3	2.2	9.2	12.9	-	5.4	25.2	0.7	2.6	16.3	5.6	5.63	2.6	2.6	2.4	1.3	1.1
198217		22.8	1.6	9.3	11.9	-	6.8						4.6	1.8	2.8	2.2	1.1	1.1

1) Preliminary.
2) Spanish landings not reported.
3) IncIudes Sub-area VIII $=0.4$

Table F.2.1 Landings of HORSE MACKEREL in Sub-area IV, by country (in tonnes)

Country	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	34	23	15	14°	15	9	8	34	7
Denmark	-	-	-	63	2543	496	199	3576	1616
Faroe Islands	772	156	116	130.	3	-	260	-	2327
France	582	140	147	325	182	221	292	2	570
German Dem. Rep.	-	-	4	-	-	-	-	-	-
Germany Fed.Rep.	686	696	162	2	1993	376	+	139	30
Iceland	203	-	-	-	-	-	-	-	-
Ireland	-	-	-	-	-	-	1161	41.2	-
Netherlands	576	173	82	223	106	88	101	355	550
Norway	20713	2174	4842	450	1037	199	119	2292	7
Poland	62	-	11	6	-	-	-	-	-
Spain	-	-	-	-	-	-	-	\sim	-
Sweden	$2^{\text {a) }}$	+	-	-		+	-	-	-
U.K. (Engl.\&Wales	5	3	11	22	36	23	11	15	\leqslant
U.K. (Scotland)	1222	2	+	4	5	+	-	-	-
U.S.S.R.	5894	. 6566	3278	87	-	-	-	-	-
total	30751	9933	8668	1326	4920	1412	2151	6825	5122

*) Preliminary
a) Inciudes IIIa
b) Included in IIIa

Table F.2.2 Landings of HORSE MACKEREH in Sub-area VI, by country (in tonnes)

Country	1974	1975	1976	1977	1978	2979	1980	2981	1982*
Belgium	-	-	+	-	-	-	-	-	-
Denmark	-	-	-	-	-	443	734	341	2785
Faroe Islands	342	2	2	-	-	-	-	-	-
France	-	-	293	113	91	151	45	454	4
Ireland	-	-	-	-	59	-	-	-	-
Germany , Fed. Rep.	209	263	5	-	-	255	5550	10212	2114
Netherlands	-	106	69	19	114	6910	2385	200 ${ }^{\text {a }}$	$50^{\text {a }}$
Norway	627	869	90	-	-	-	-	5	-
Poland	1067	479	48	-	-	-	-	-	-
Spain	400	150	175	147	91	20	-	-	-
U.K. (Engl.\& Wales)	14	6	37	40	44	73	y	5	+
U.K. (Scotland)	41	187	85	105	9	39	1	17	83
U.S.S.R.	780	1210	3390	246	-	-	-	-	-
TOTAL	3521	3379	4299	670	408	7791	8724	11134	5036

\# Provisional
a) Estimated from biological sampling

Table F.2.3 Landings of HORSE MACKFRET in Sub-area VII, by country (in tonnes)

Country	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	3	4	2	1	1	3	+	1	1
Denmark	-	\cdots	-	-	2104	4287	5045	3099	877
France	2466	2443	3.800	2448.	3564	4407	1983	2800	2314
German Dem. Rep.	8	-	92	45	-	-	-	-	-
Germany, Fed.Rep.	825	521	3	308	2923	5333	2289	1079	12
Ireland	-	-	-	1133	3388	-	-	16	-
Netherlands	-	41	280	2088	10556	25174	23002	$25000^{\text {a }}$	27500^{2})
Norway	16	-	-	-	29	959	394	-	-
Poland	4.643	1869	2967	640	61.	-	-	-	-
Spain	12315	10890	17124	483	516	676	50	234	104
U.K. (Engl. \&Wales)	675	438	2014	1343	2918	2686	12933	2520	2670
U.K. (Scotland	-	-	-	-	-	-	1	-	-
U..S.S.R.	95650	101393	150728	20366	-	-	-	-	-
TOTAL	116601	117599	177010	28855	26060	43525	45697	34746	33478

F Provisional
a) Estimated from biological sampling

Table F.2.4 Landings of HORSE MACKEREL in Sub-areas VIII and IX, by country (in tonnes)

Country	1974	1975	1976	1977	1978	1979	1980	1981	1982* ${ }^{\text {\% }}$
Sub-area VIII									
Denmark	-	-	-	-	-	127		-	-
France	2477	2386	3380	4881	3643	4240	3361	3711	3073
German Dem.Rep.	-	-	14	-	-	-	-	-	-
Netherlands	-	-	-	-	19	-	-	-	-
Spain	62836	72916	95401	104812	80139	42766	34134	36362	19610
U.K.(Engl. \&Wales)	-	-	-	-	-	22	-	+	1
U.S.S.R	925	11436	30763	15213	3	-	-	-	-
Total	66238	86738	129558	124906	83804	47155	37445	40073	22684
Sub-area IX									
Poland	-	-	-	168	-	-	-	-	-
Portugal	48071	43491	49041	51341	32043	26977	25132	26032.	29494
Spain	2954	1882	3339	981	14.787	12880	11679	12120	8840
U.S.S.R.	-	422	644	14898	381	250	-		
TOTAL	51025	45795	53024	67388	47211	40107	36811	38152	38334

**)Provisional

Table F. 3.I Nominal catch (tonnes) of SARDINE in Divisions VIIIc and IXa, 1973-82.
(Data provided by Working Group members)
UNIT: tonnes

YEARS	PORTUGAL.	SPAIN			
	$\begin{aligned} & \text { Div. } \\ & \text { IXa } \end{aligned}$	$\begin{aligned} & \text { Div. } \\ & \text { VIIIc } \end{aligned}$	$\begin{aligned} & \text { Div. } \\ & \text { IXa } \end{aligned}$	TOTAL	```Total VIIIc and IXa```
1973	100825	44768	18523	63291	164116
74	75071	34536	13894	48430	123501
75	95877	50260	12236	62496	158373
76	79649	51901	10140	62041	141690
77	79819	36149	9782	45932	125750
78	83553	43522	12915	$\begin{array}{ll}56 & 437\end{array}$	139990
79	79806	18271	43876	62247	141953
$\bigcirc 980$	90094	35787	49593	85380	175474
81	113338	35550	65330	100860	214218
82	$96 \quad 535$	31756	71889	10364.5	200180

(-) unknown data

Table G.1.1 Nominal catch (tonnes) of MACKFRFil in the North Sea, Skagerrak and Kattegat (IV and IIIa) 1973-1982 (Data for 1973-1976 as officially reported to ICES. Data from 1977 onwards were submitted by Working Group members).

Year	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	78	- 245	134	292	49	10	10	5	55	102
- Denmark	7459	3890	9836	27988	21833	18068	19171	13234	9982	2027
Faroe Islands	11202	18625	23.424	63476	42836	33911	28118	14770	-	-
France	636	2254	2749	2607	2529	3452	3620	2238	3755	2420
Germany, Dem.Rep.	214	234	141	259	41	233	-	-	-	-
Germany, Fed.Rep.	563	270	276	284	-	284	211	56	59	73
Iceland	3079	4689	198	302	-	-	-	-	-	-
Ireland							-	738	733	-
Netherlands	2339	3259	2390	2163	2673	1065	1009	853	1706	390
Norway	277304	248314	206871	197351	180800	82959	90720	44781	28341	27612
Poland	561	4520	2313	2020	298	-	-	-	-	-
Sweden	2960	3579	4789	6448	4012	4501	3935	1666	2446	654
UK (England \& Wales)	31	61	33	89	105	142	95	76	6520	16
UK (Scotiand)	2943	390	578	1199	1590	3704	5272	9514	10575	44
USSR	17150	8161	9330	1231	2765	488	162	-	-	
Unallocated							500		3216	450
Total	326516	298391	263062	305709	259531	148817	152823	87931	67388	33788

\#) Preliminary
Note: In contrast to the corresponding tables in Working Group reports for years prior to 1982 , the catches do not include catches taken in Sub-area IIa.

Table G.1.2. Nominal catches (tonnes) of MACKEREL in the Norwegian Sea
(Division IIa), 1973-1982.

Year Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982 3)
Denmark ${ }^{2}$								-	801	1008
Faroe Isl. ${ }^{1}$)	-	-	-	-	-	283	6	270	-	-
France ${ }^{2}$)	-	-	7	8	-	2	-	-	6	-
$\begin{aligned} & \text { German, Dem. } \\ & \text { Rep. } \end{aligned}$	-	11	-	-	-	-	-	-	51	-
$\begin{aligned} & \text { Germany, } \\ & \text { F.R. } \end{aligned}$	-	-	-	-	-	53	174	2	-	-
Netherland ${ }^{2}$)	-	-	-	2	-	-	-	-	-	-
Norway 1)	21573	6818	34662	10516	1400	3867	6887	6618	12941	34540
Poland	-	-	-	-	-	-	-	-	-	231
$\begin{aligned} & \text { UK(Engit } \\ & \text { Wales) } \end{aligned}$	-	+	+	+	+	1	-	-	255	-
UK(Scotland ${ }^{\text {a }}$)				-	-	-	-	296	968	-
USSR 3)	-	-	-	-	-	-	5	1450	3640	1641
Total	21573	6829	34669	10526	3400	4206	7.072	8340	18662	37420

1) Data provided by WG members.
2) Data reported to ICES.
3) Preliminary.

Table G.l.4 Nominal catch (tonnes) of MACKEREL in the western area (VI, VII and VIII).
(Data for 1973-77 as officially reported to ICES)

Year Country	1973	1974	1975	1976	1977	1978**	1979**	1980**	$\begin{gathered} 1981 \\ \text { * } \text {) } \end{gathered}$	1982^{3} (
Belgium	3	7	27	10	1	1	3	-	-	+
Denmark	-	-	-	3	698	8677	8535	14932	13464	15100
Faroe Islands	635	8659	1760	5539	3978	15076	10609	15234	9070	11100
France	41664	37824	25818	33556	35702	34860	31510	23907	14829	9500
Germany, Dem.Rep.	1733	2885	9693	4509	431	-	-	-	-	-
Germany, Fed.Rep.	559	. 993	1941	391	446	28873	21493	21088	29221	11500
Iceland	52	-	21	10	-	-	-	-	-	-
Ireland	8314	8525	11567	14395	23022	27508	24217	40791	92.271	109.700
Netherlands	7785	7315	13263	15007	35766	50815	62396	91081	88117	67200
Norway	34600	32597	2907	4252	362	1900	25414	25500	21610	19000
Poland	10536	22405	21573	21375	2240	-	92	-	1	-
Spain ${ }^{+}$	25677	30177	23408	18480	21853	19142	15556	15000	11469	15600
Sweden	-	-	-	38	-	-	-	150-	-	-
UK (England \& Wales)	13081	21132	31546	57311	132320	213344	244293	150598	75722	82900
UK (N. Ireland)	93	75	30	95	97	46	25	- ${ }^{-}$	4153	9600
UX (Scotland)	5170	8466	16174	28399	52662	103671	103160	108372	109153	130000
USSR	65.202	103435	309666	262.384	16,396	-	-	-	-	-
Unallocated							54000	98258	140322	114700
Total, ICES members	215104	284496	468384	465754	325974	503913	601303	604761	609402	595900
Bulgaria Rumania	4341	13558	20830 2166	$\begin{array}{ll}28 & 195 \\ 13 & 222\end{array}$	-	-	-	-	-	-
Grand Total	219445	298054	491380	507178	325974	503913	601303	604761	609402	595900

[^10]Table G.1. 5 Nominal catch (tonnes) of MACKEREL in Sub-area IX - 1973-1982

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	$1982^{\text {FF }}$
Portugal	1635	2329	2224	2595	$1743^{\text {Fex }}$	$1555^{\text {307 }}$	1071	$1921^{\text {\#\# }}$	3108	3600
Spain	2334	3264	3345	2520	2935	6221	6280	2719	$2111^{\text {HaF }}$	796
France	-	-	1	-	-	-	-	-	-	-
Poland	-	-	-	-	8	-	-	-	-	-
USSR	-	-	44	466	2879	189	111	-	-	-
Total	3969	5593	5614	5581	7565	7965	7462	4640	5219	4396

* Preliminary

Working Group estimate

TableG.2.1 Landings (tonnes) of BLUE WHITING from the main fisheries 1973-82.

Area	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Norwegian Sea Fishery (Sub-areas I + II and Divisions Va, XIVa + XIVb)	878	146	6746	3336	56999	235226	741074	766858	520738	111001
Spawning Fishery (Divisions $\mathrm{Vb}, \mathrm{VIa}$, VIb and VIIb, c)	15027	15207	30335	81362	136787	229228	284547	250693	288316	322772
Icelandic Industrial Fishery (Division Va)	2833	4230	1294	8220	5838	9484	2500	-	-	-
Industrial Mixed Fishery (Divisions IVa-c, IIIa)	56826	62197	41955	36024	38389	99874	63333	75129	61754	106560
```Southern Fishery (Sub-areas VIII + IX, Divisions VIId,e + VIIg-k)```	27452	25733	31715	35035	30723	33898	27176	29944	38749	33796
Total	103016	107.513	112045	163977	268736	607710	1118630	1122624	909557	574129

*Preliminary
Figure B.1.1.1 NORTHEASADOTHECOD






- 195 -


Figure B.2.2 Sebastes mentella in Divisions IIa and IIb. Yield and spawning stock biomass per 6-year old recruit curves for the present exploitation pattern $(M=0.1)$




## Figure B.3.2 Greenland HALIBUT in Sub-areas I and II. Yield per recruit and spawning stock biomass per recruit.

0.7
(1)


Figure B.4.1
(
( 0 औ
Figure B.4.2
尼
 , , \#



ler



## Figuxe B.6.1. COD, Fast Greenland. Catch 1983 and spawning stock biomass at beginning

## of 1984 (immigrants 1984 not included) for different levels of fishing mortality in 1983.



Figure B.6.I. 2 Main spawning grounds, migrations of mature fish and larval drift of the cod stocks at West Greenland, East Greenland and Iceland.


A Trends in Yield and fishing mortality ( $\bar{F}$ )


C Long-term yield and spawning stock biomass
(indicate biological reference points)


B Trends in spawning stock biomass (SSB) and recruitment.


Recruitment year class, SSB year

D Short-term yield and spawning stock biomass (indicate biological reference points)



 (stock)


C Recruits at age 1



D Fishing mortality
$\bar{F}_{3}$




A Landings


C Recruits at age $I$
Millions

－ 218 －
（1）W．


 W，－ 3 —－鹿鹿

 U佰







C Recruits at age 1


D Fishing mortality








B
$\because$,
,

—————
,


A Landings


C Recruits at age 1


B Spawning stock biomass（age groups 3－10＋）


D Fishing mortality

ler








 ， 3
 ，
尼
 ， ，促 (stock)

A Trends in Yield and fishing mortality ( $\bar{F}$ )


C Long-term yield and spawning stock biomass (indicate biological reference points)


B Trends in spawning stock biomass (SSB) and recruitment.


Recruitment year class, SSB year

D Short-term yield and spawning stock biomass
(indicate biological reference points)

. Herring. in Diy.VIs. (North) . . (stock)

A Trends in Yield and fishing mortality ( $\overline{\mathrm{F}}$ )


C Irong-term yield and spawning stock biomass (indicate biological reference points)


B Trends in spawning stock biomass (SSB) and recruitment.


D Short-term yield and spawning stock biomass
(indicate biological reference points)
$\begin{array}{lccc}0 & 0.2 & 0.4 & 0.6 \\ \text { Average } & \text { fishing mortality } \bar{F}(2-94)\end{array}$ (stock)

A Trends in Yield and fishing mortality (F)


C Iong-term yield and spawning stock biomass (indicate biological reference points)


Average fishing mortality $\overline{\mathrm{F}}(2-9+)$
$B$ Trends in spawning stock biomass (SSB) and recruitment.


D Short-term yield and spawning stock biomass (indicate biological reference points)


Average fishing mortality, $\bar{F}_{(2-9+)^{\text {in }} 1983 / 4}$

A Trends in Yield and fishing mortality ( $\bar{F}$ )


C Long-term yield and spawning stock biomass (indicate biological reference points)



D Short-term yield and spawning stock biomass (indicate biological reference points)


A Trends in Yield and fishing mortality ( $\bar{F}$ )


C Long-term yield and spawning stock biomass (indicate biological reference points)


B Trends in spawning stock biomass (SSB) and recruitment.

D Short-term yield and spawning stock biomass
(indicate biological reference points)


Average fishing mortality, $\bar{F}$

Figure D.2.3.1 Danish SANDEEL areas.


A Trends in Yield and fishing mortality（ $\bar{F}$ ）


B Trends in spawning stock biomass（SSB）and recruitment．


D Short－term yield and spawning stock biomass
（indicate biological reference points）


A Trends in Yield and fishing mortality（ $\bar{F}$ ）


C Long－term yield and spawning stock biomass
（indicate biological reference points）


B Trends in spawning stock biomass（SSB）and recruitment．


D Short－term yield and spawning stock biomass （indicate biological reference points）


A Trends in Yield and fishing mortality ( $\bar{F}$ )


C Long-term yield and spawning stock biomass
(indicate biological reference points)
M

B Trends in spawning stock biomass (SSB) and recruitment.


D Short-term yield and spawning stock biomass (indicate biological reference points)




A Trends in Yield and fishing mortality ( $\bar{F}$ )


C Long-term yield and spawning stock biomass (indicate biological reference points)


B Trends in spawning stock biomass (SSB) and recruitment.


D Short--term yield and spawning stock biomass
(indicate biological reference points)


## Figure D.6.3

A Trends in yield and fishing mortality ( $\vec{F}$ ) B Trends in spawning stock biomass (SSB)and recruitment (R)


C Long-term yield and spawning stock biomass
Yield
$t \times 10^{-3}$ (indicate biological reference points)


Average fishing mortality $\overline{\mathrm{F}}(2-6)$
t $\times 10^{-3}$


Average fishing mortality, $\overline{\mathrm{F}}(2-6)$ in 1984

A Trends in Yield and fishing mortality ( $\bar{F}$ )


C Long-term yield and spawming stock biomass
(indicate biological reference points)



D Short-texm yield and spawning stock bjomass




Trends in spawning stock biomass (SSB) and recruitment ( $R$ ) (from 1983 VPA)


C Iong-term yield and spawning stock biomass (indicate biological reference points)

SSB/R
in kg .



## A Trerids in yield and fishing mortality ( $\bar{F}$ )

$\left(\begin{array}{l}\text { Yield } \\ \left(t \times 10^{-3}\right)\end{array}\right.$


$$
\begin{aligned}
& \operatorname{SSB} \\
& \mathrm{t} \times 10^{3}
\end{aligned}
$$

R


C Long-term yield and spawning stock biomass
(indicate biological reference points)
$Y / R$
$(\mathrm{~kg})$
SSB/R






Average fishing mortality, $\overline{\mathrm{F}}(3-13)$ in 1984
0
0.5
1.5

Figure D.7.4 FISH STOCK SUMMARY

A Trends in yield and fishing mortality ( $\bar{F}$ )



$t \times 10^{-3}$
(Stock) Irish Sea SOLE
3 Trends in spawning stook biomass (SSB) and recruitment ( $R$ )


Yield D Short-term yield and spawning stock biomass SSB in 1984 (indicate biological reference points) in 1985


## Figure D. 7.5

FISH STOCK SUMMARY
(Stock) Celtic Sea Sole

A Trenids in yield and fishing mortality ( $\bar{F}$ )


C Long-term yield and spawning stock biomass (indicate biological reference points)
$\mathrm{F}_{\max } \quad \overline{\mathrm{F}}_{82}$


Trends in spawning stock biomass (SSB) and recruitment ( $R$ )


Yield $D$ Short-term yield and spawning stock biomass SSB in 1984 (indicate biological reference points) in 1984 tonnes
$t \times 10^{-3}$


## Figure D. 7.6

FISH STOCK SUMMARY
(Stock) Celtic Sea.COD
A Trends in yield and fishing mortality ( $\bar{F}_{\mathrm{p}}$ )
$B$ Trends in spawning stock biomass (SSB) and recruitment ( $R$ )



C Long-term yield and spawning stock biomass (indicate biological reference points)

Yield $D$ Short-term yield and spawning stock biomass SSB
in 1984 (indicate biological reference points) in 1985


$B$ Trends in spawning stock biomass (SSB) and recruitment (R)





North Sea PLAICE
．．．．．．．．．．．． （stock）

A Trends in Yield and fishing mortality（ $\bar{F}$ ）


> C Long-term yield and spawning stock biomass (indicate biological reference points)


B Trends in spawning stock biomass（SSB）and recruitment．


D Short－texm yield and spawning stock biomass （indicate biological reference points）


Figure D.8.3 FISH STOCK S UMMARY (Stock) SOLE in Division VIId

## A Trends in yield and fishing mortality ( $\overline{\mathrm{F}}$ ) B Trends in spawning stock biomass (SSB)and recruitment (R)

Yield


$$
\frac{\bar{F}}{(3-8)} \operatorname{SSB}_{t \times 10^{-3}}
$$

1973 Recruitment year class, SSB year

## ield Short-temm yield and spawning stock biomass SSB

 1Yield
ong-term yield and spawning stock biomass $t \times 10^{-2} \quad t \times 10^{-3}$ t $\times 10$

(Stock) Mackerel North Sea Stock

(kg) (indicate biological reference points)
(kg)

Yield $D$ Short-term yield and spawning stock biomass SSB N N


## Figure G. 1.2

FISH STOCK SUMMARY
(Stock) Mackerel western
A Trends in yield and fishing mortality ( $\widetilde{F}$ )
Trends in spawning stock biomass (SSB) and recruitment ( R ) Yield

$\operatorname{SSB} \times 10^{-6}$
R


## C Long-term yield and spawning stock biomass Yield/R (indicate biological reference

(kg)
Yield $D$ Short-term yield and spawning stock biomass SSB

$$
\begin{aligned}
& \text { in } 198 \text { (indicate biological reference points) } \\
& t \times 10
\end{aligned}
$$


$t \times 10^{-3}$


FigureG.1. 3 The percentage frequency of MACKBREL less than 30 cm total length in the Celtic Sea fisheries January 1982 -February 1982. The small digits in the corner of each statistical rectangle give the number of samples taken in the rectangle.





Figure G.1. 3 conta. The percentage frequency of MACKFRFH less than 30 om September 1982-December 2982. The small digits in the corner of each statistical rectangle give the number of samples taken in the rectangle.





Figure G. 1.3 contd. The percentage frequency of MACKFREL less than 30 cm January - April 1983. The small digits in the cormer of each statistical rectangle give the number of samples taken in the rectangle.






察
ICES FISHING AREAS


CHART OF FORNER ICES DIVISIONS
A. REVIEW OF NOMINAL CATCHES IN THE BALTIC AREA, 1972-82

1. A general review of officially reported catches in the Baltic from 1972-81 is given in Tables A.I - A.5. These are the catches officially reported to ICES by national statistical offices for publication in ICES "Bulletin Statistique".
2. In the assessments, the Working Groups try to estimate discards, landings which are not officially reported, and the composition of by-catches. These amounts of different species, which have to be included in the estimates of what has been taken from a given stock, if assessments are to be correct, thus appear in the tables and figures produced by the Working Groups. These estimates vary very much between different stocks and fisheries, being in some cases negligible, in others constituting important parts of the total removals from the stock. Further, the catches used by the Working Groups are broken down into Sub-divisions, where the officially reported figures are reported by the larger Divisions IIIb, $c$ and $d$.
3. The trends in Tables A.1 - A. 5 may not, therefore, correspond with those on which the assessments have been based, and are presented for information to managers only, without any comment from ACFM.
4. The catch data used in the assessments are given in the table section on pages 276-283.

## B. THE BALTIC PELAGIC FISHERIES

## Assessment of Herring and Sprat Stocks

ACFM made some use of the 1982 acoustic survey carried out in October 1982 by R/V "Argos" and R/V "Dana". The results of this survey will be fully reported to the 1983 ICES Statutory Meeting.
B. 1 Herring Stocks
B.1.1 General

Data on herring landings presented to the Working Group for 1981 and 1982 include landings from mixed fisheries and exclude landings of sprat in the directed herring fisheries.
Compared with the maximum catches obtained in 1980, the landings in 1981 were about 32000 tonnes less. However, the preliminary catch figures indicate a new increase to about 459000 tonnes in 1982. In 1982 in most Sub-divisions the catches were higher than in previous years or remained on that level; only in the central and southeastern Baltic (Sub-divisions 26, 27 and 28) did they decrease.
Both in 1981 and 1982, the catches considerably exceeded the TACs recommended by ICES, and they were also higher than the TACs agreed by IBSFC.

Due to the low percentage of autumn-spawning herring in the stocks, its catches have been added to the spring herring and treated together with them.

Assessment of herring stocks has been carried out by the following units: Sub-divisions 22-24, Sub-divisions $25+26+27$, Sub-division 28 (excluding Gulf of Riga) +29s, Gulf of Riga, the eastern parts of Subdivisions $29 N+30$, the eastern part of Sub-division 31 , the western part of Sub-divisions $29 N+30+31$, Sub-division 32. The Working Group has prepared data necessary for separate assessment of coastal herring of Sub-divisions 25 and 26, and the open sea herring of Sub-division 27 (partly caught in Sub-divisions 25 and 26).
The natural mortality coefficients (M) of herring units in 1982 were taken as being equal to the values in the previous year: in Sub-divisions $22+24 \mathrm{M}=0.3$; in Sub-divisions $25+26+27 \mathrm{M}=0.2$; in Sub-divisions 28 +295 (excluding Gulf of Riga) $M=0.3$; in the Gulf of Riga $M=0.25$; in the eastern part of Sub-divisions $29 N+30 \mathrm{M}=0.2$; in the eastern part of Sub-division $31 \mathrm{M}=0.15$, and in Sub-division $32 \mathrm{M}=0.2$.
For VPA maturity ogives of stocks were applied (excluding Sub-divisions $25+26+27$, where a knife-edge maturity at the age of 3 years was assumed:).

Recent catches ${ }^{1)}$ of herring and TACs in thousand tonnes:

Year	1977			1978			1979			1980		
$\begin{aligned} & \text { sub } \\ & \text { divs } \end{aligned}$	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \end{aligned}$	$\begin{aligned} & \text { IBSFC } \\ & \text { TAAC } \end{aligned}$	Actual Catch	Rec. TAC	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$	Actual Catch	Rec.   TAC	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$	Actual Catch	Rec. TAC	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$	Actual Catch
$\begin{aligned} & 22-24 \\ & 25,26 \\ & 27,283), 29 \mathrm{~s} \\ & \text { Guif of Riga } \\ & 29 \mathrm{~N}, 30,31 \\ & 32 \end{aligned}$			$\begin{array}{r} 75 \\ 152 \\ 68 \\ 24 \\ 65 \\ 50 \end{array}$	$\left\{\begin{array}{l} 290 \\ 74 \\ 33 \end{array}\right.$		$\begin{array}{r} 78 \\ 142 \\ 73 \\ 17 \\ 73 \\ 53 \end{array}$	$\begin{array}{r} 68 \\ 115 \\ 65 \\ 16 \\ 78 \\ 44 \end{array}$		$\begin{array}{r} 94 \\ 168 \\ 63 \\ 17 \\ 70 \\ 46 \end{array}$	$\begin{array}{r} 68 \\ 118 \\ 61 \\ 15 \\ 73 \\ 40 \end{array}$		$\begin{gathered} 109^{4} \\ 145^{4} \\ 71 \\ 15 \\ 77 \\ 43 \end{gathered}$
Total	400	422	434	397	444	436	386	405	458	374	420.2	460


	1981			1982		
$\begin{aligned} & \text { Sub } \\ & \text { divs } \end{aligned}$	Rec.   TAC	$\left.\right\|_{\text {TAS }} ^{\text {IBSF }}$	Actual Catch	Rec. TAC	$\left.\right\|_{\text {TAC }} ^{\text {IBSC }}$	$\begin{aligned} & \text { Actual } \\ & \text { Catch } \left.^{2}\right) \end{aligned}$
22-24	71		1004)	$70^{6}$		112
25,26,27	115		1654)	1307		176
283), 295	28		35	287)		44
Gulf of Ris	15		17	128)		13
29N, 30(E)			49	637)		55
31(E)	\} 62		8	637		9
29N, 30, 31(w)			8	847)		8
32	50		45	547)		44
Total	341 ${ }^{5}$	418.6	427	356	445.1	461

1) Working Group data.
2) Preliminary
3) Excluding Gulf of Riga
4) Danish catches in Subdivisions 24-25 are included in Sub-div. 25
5) Without the areas $29 \mathrm{~N}, 30,31(\mathrm{~W})$
6) Precautionary TAC
7) Catch level preferred by ACFM
8) Recomended TAC

## B.1.2 State of the stocks and management advice

## B.1.2.1 Sub-divisions 22,23 and 24

In 1982, the total catch amounted to 112000 tonnes. This is more than in 1972-81. The increase from 100000 tonnes in 1981 is partly due to the fact that the Danish catches from Sub-division 24 (which have previously been combined with the catches in Sub-division 25) have been reported separately. The VPA has been calculated on the basis of the age composition of the catches in Sub-division 22 and 24. The size of the 1982 year class ( $2179 \times 10^{6}$ fish) was estimated from the Young Fish Survey made by the German Democratic Republic. The input $F$ in 1982 for ages 0-4 was chosen to give the best fit between the VPA stock size as 0-group and the indices from the Young Fish Survey for these year classes. The average input for ages 4-9 was assumed to be the same as that used in last year's assessment, i.e. 0.7. The 1983-84 year classes were taken at the 1977-82 average value (3 $417 \times 10^{6}$ fish).

At present, the herring spawning stock is on a high level. The very strong 1979 year class has made up an important part of the catches and is still contributing a considerable amount to the catches in 1983. This influence, however, will cease in 1984. The year classes 1980-82 are below average. The $F$ values are far beyond the Fo.l point on the yi.eld curve. Taking the stock structure and the high exploitation level into account, ACFM recommends that the fishing mortality on this stock is reduced towards the FO.1 Ievel.
The assessment given does not include the Sound (Sub-division 23). An additional catch for this area should be included when setting the TAC for the western Baltic herring stock. The present catch level in the Sound is around 10000 tonnes.

As is shown by the results of tagging experiments, the infestation rate by Anisakis etc., 2 year old and older herring migrate from the western Baltic in Division IIIa. Assessing the herring in Division IIIa and the western Baltic separately might involve double counting some part of the stocks. ACFM will request the Working Group on Pelagic Stocks in the Baltic and the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ to examine this problem.

HERRING				Sub-divisions 22+24						
1983				Management option for$1984$	1984				1985	
Stock   biom.	Spawning   stock   biomass	$\mid \overline{\bar{F}}(3-9)$	Catch		Stock biom.	Spawning   stock   biomass	$\text { F }(3-9)$	Catch	Stock biom.	$\text { Spawning } \begin{aligned} & \text { stock } \\ & \text { biomass } \end{aligned}$
329	163	0.7	101	$\mathrm{F}_{0.1}$	306	135	0.31	41	361	162
				$\begin{array}{r} \bar{F}_{84}=0.8 \mathrm{x} \\ \overline{\mathrm{~F}}_{82} \end{array}$			0.56	74	322	132
				$\overline{\mathrm{F}}_{84}=\overline{\mathrm{F}}_{82}$			0.70	88	305	120

B.1.2.2 Sub-divisions 25, 26 and 27

The reported landings for 1982 were 176000 tonnes, which is $7 \%$ more than in 1981. The abundance of the 1981 ( $2914 \times 10^{6}$ fish) and of the 1982
(2 $756 \times 10^{6}$ fish)year classes was calculated on the basis of the
Polish young herring abundance estimates. The 1983 year class was
assumed to be of long-term (1972-81) average strength ( $6235 \times 10^{6}$ fish).
The input $F$ values were re-calculated by ACFM on the basis of catch in numbers and the stock size estimates found in the acoustic survey in October 1982.

Taking into account the TAC set for 1982 by IBSFC and the traditional distribution of catches between countries and Sub-divisions, the most likely catch for 1983 was assumed to be about 176000 tonnes (equal to the 1982 catch figure).

The acoustic survey points to a level off of the stock size during the last 3 years, and the new VPA confirms this.

As the problems with separating catches and the acoustic stock estimate into coastal and open sea stock are not fully solved at present, ACFM advises that a cautious approach should be adopted concerning this stock complex. ACFM therefore recommends a reduction of the catch level to not more than 150000 tonnes, in 1984.
Further material is needed by the Working Group in order to be able to make the assessments on a stock basis at their next meeting.
B.1.2.3 Sub-divisions 28 and 29 S

Open sea_stock
Catches increased from 35000 tonnes in 1981 to 44000 tonnes in 1982. This was presumably due to an increased exploitation rate. Also, in connection with the decrease of abundance of the rich 1975 year class, there was an obvious shift to the exploitation of younger age groups. Therefore, in 1982 the $F$ values were increased by roughly $20 \%$ as compared to the 1981 and 1972-80 mean values. The 1982 year class ( $2704 \times 10^{6}$ fish) was taken on the level of the medium 1972 and 1973 year classes. The 1983 and 1984 year classes were put on the long-term average level ( $2666 \times 10^{6}$ fish).

For that stock ACFM preferred the level of TAC not to exceed 32000 tonnes in 1983. Assuming that in 1983 the distribution of the herring fishery in the Baltic Sea will be similar to the 1982 pattern ( $11 \%$ of herring catches of the Baltic proper and the Gulf of Finland was taken from the sea herring stock in Sub-divisions 28 and 29S), and that the IBSFC TAC of 385900 tonnes for the Baltic Sea (without the Gulf of Bothnia) will be realised, the 1983 catch from that stock will be about 43500 tonnes.
To take that catch in 1983, the $F$ values will be about $93 \%$ of the corresponding values in 1982.
Owing to the year classes hatched in 1979-81, the abundance of the sea herring has increased. At present the stock is exploited above the $\mathrm{F}_{0.1}$ level.

HERRING
Sub-divisions 28 and 29S

1983				Management option for$1984$	1984				1985	
Stock biom.	Spawning stock biomass	$\overline{\bar{F}}(4-7)$	Catch		Stock biom.	Spawning stock biomass	$F(4-7)$	Catch	Stock biom.	Spawning   stock   biomass
263	165	0.35	44	$\left(\begin{array}{l} \overline{\mathrm{F}} 84=\overline{\mathrm{F}}_{82} \\ \left(\mathrm{abt} \cdot \overline{\mathrm{~F}}_{0.1}\right) \end{array}\right.$	252	161	0.375	45	238	150
				$\begin{gathered} \overline{\mathrm{F}}_{84}=0.8 . x \\ \overline{\mathrm{~F}}_{82} \end{gathered}$			0.30	37	247	1.58
				$\vec{F}_{84}=1 \cdot 2 x \overline{\mathrm{~F}}_{82}$			0.45	53	230	143
										,

For all three years in which the acoustic surveys have been performed, a very different picture has been given of the biomass of this stock. ACFM used the catches for 1982, together with the 1982 acoustic stock estimate, to estimate fishing mortalities for 1982. These were used as input Fs in a VPA. (Figure B.1.2.3.1.)

The traditional VPA has been based on catches, most of which are taken in the eastern half of Sub-division 28 and 29. The acoustic survey, which covers the whole area, shows that the stock is rather more abundant in the western part, at least in October (when the survey was made).
ACFM has no possibility at present to decide which of the two assessments is the most realistic, and therefore advises a precautionary TAC for 1984 of 40000 tonnes, which is close to the catch level of recent years.

## Gulf of Riganerring

The catches of the Gulf of Riga herring decreased from 16800 tonnes in 1981 to about 12800 tonnes in 1982. The fishing mortality in 1982 was taken to be at the 1981 level. The 1982-84 year classes were assumed to be equal to the average year class for the period of 1976-80 ( $964 \times 10^{6} \mathrm{fish}$ ). At present, the F value for the Gulf of Riga herring is far beyond the $\mathbb{F}_{0.1}$ level and the biomass has been declining.

HERRING

1983				Management option for 1984	1984				1985	
Stock   biom.	Spawning atock biomass	$\overline{\mathrm{F}}(4-7)$	Catch		Stock biom.	Spawning stock biomass	F(4-7)	Catch	Stock biom.	$\begin{aligned} & \text { Spawning } \\ & \text { stock } \\ & \text { biomass } \end{aligned}$
45	29	0.7	12	$\overline{\bar{W}^{3}} 84=\overline{\mathrm{F}}_{0.1}$	46	28	0.26	5	55	37
				$\bar{F}_{84}=\overline{\vec{F}}_{\max }$			1.03	15	43	25
				$\overline{\mathrm{F}}_{84}=\overline{\mathrm{F}}_{82}$			0.7	12	47	30

ACFM recommends that the fishing mortality is reduced as far as possible towards the $F_{0.1}$ level.

## B.1.2.4 Sub-divisions 29N and 30(East)

The catch in 1982 was about 55000 tonnes. Catches have been at the level of $48000-59000$ tonnes since 1976. An estimate of the size of the 1982 year class, based on abundance indices of numbers per size group of herring larvae and on abundance indices of larval food organisms (plankton), resulted in $4010 \times 10^{6}$ fish, which is $80 \%$ of the average year class strength for 1973-81. The 1983 and 1984 year classes were both assumed to be of average strength ( $5013 \times 10^{6}$ fish). The fishing mortality in 1982 was assumed to be the same as in 1981. A continuation of the 1982 exploitation rate would give a catch of about 55000 tonnes. in 1983.
The spawning stock biomass appears to be fairly stable according to this assessment, and an increase in the exploitation level towards the $\mathrm{F}_{\mathrm{O}} .1$ level would be justified.

HERRING
Sub-divisions 29N and 30(E)

1983				Management option for 1984	1984				1985	
Stock biom.	Spawning stock biomass	$\overline{\bar{F}^{\prime}}(3-7)$	Catch		Stock biom.	Spawning   stock   biomass	$\text { F }(3-7)$	Catch	Stock biom.	Spawning   stock   biomass
522	363	0.15	55	$\mathrm{F}_{0.1}$	521	367	0.19	67	508	347
				$\overline{\mathrm{F}} 84=\overline{\mathrm{F}} 82$			0.15	56	520	359

ACFM therefore advises that this stock should be managed close to the Fo.l level, which in 1984 would be the level preferred by ACFM.

The acoustic survey which was carried out in 1982 resulted in a stock estimate of about 120000 tonnes for the whole of Sub-divisions 29 N and 30. ACFM, however, considered this to be an underestimate and accepted the explanation offered that most of the herring stock was distributed in the coastal waters, skerries in the upper 10 m water layer, and was therefore not available for acoustic estimation.
B.1.2.5 Sub-division 31 (East)

In 1978-81 the catches amounted to 8000 - 10000 tonnes. On the basis of the abundance of larvae and their food organisms, the 1982 year class was assumed to be $518 \times 10^{6}$ or $80 \%$ of the average for 1973-81. The 1983 and 1984 year classes were taken as long-term average ( $648 \times 10^{6}$ fish). Due to the relatively high abundance of the 1979 year class, in 1982 the spawning stock biomass has increased. The landings and fishing mortality have been rather stable in 1978-82. However, the catch per trap-net on the spawning grounds has decreased. The stock is fished slightly above the $\mathrm{F}_{0.1}$ level.

HERRING

1983				Management option for$1984$	1984				1985	
Stock biom.	Spawning stock biomass	$\bar{F}(3-7)$	Catch		Stock biom.	$\begin{aligned} & \text { Spawning } \\ & \text { stock } \\ & \text { biomass } \end{aligned}$	$\bar{F}(3-7)$	Catch	Stock biom.	$\left\lvert\, \begin{aligned} & \text { Spawning } \\ & \text { stock } \\ & \text { biomass } \end{aligned}\right.$
72	52	0.22	10	$\mathrm{F}_{0.1}$	72	51	0.19	9	73	50
				$\bar{F}_{84}=\bar{F}_{82}$			0.22	10	71	49
				$\begin{array}{ll} \overline{\mathrm{F}}_{84} & = \\ 1.2 \times \overline{\mathrm{F}}_{82} \end{array}$			0.27	12	69	47
				$\left\lvert\, \begin{array}{ll} F_{84} & = \\ 1.8 \times \bar{F}_{82} \end{array}\right.$			0.40	17	64	41

ACFM advises that a continued management of the stock close to the $\mathrm{F}_{0.1}$ level in 1984 would be the level preferred.

## B.1.2.6 Sub-divisions 29N, 30 and 31 (W)

The landings in 1982 amounted to 7500 tonnes. In 1974-82 the catches have fluctuated between 6500 tonnes and 9400 tonnes.
On that stock, catch in numbers data have been presented only for 1978-82. A catch curve analysis shows that the herring is not fully recruited to the fishery until the age of about 6 years. The total mortality for age groups 6-1.0 was estimated to be 0.37 and the mean F $0.20-0.25$.

The short time-series of catch at age data and the late presentation of the results of the 1982 acoustic survey precluded ACFM from undertaking an analytical assessment of the stock. In order to prevent misreporting from this area, ACFM reiterates its earlier advice and recommends a precautionary TAC of 8000 tonnes for 1984.

## B.1.2.7 Sub-division 32

In 1970-82 the fluctuation of catches shows no obvious trend and from 1979 onwards they have been practically constant. In recent years, pelagic trawls have become more important in the fishery, and this has increased the exploitation of the younger age groups.
Based on the results of Finnish and USSR investigations of larval abundance, the 1982 year class was taken to be $75 \%$ of the average year class strength over the 1970-81 period.
Since no evidence was presented to allow the 1982 level of fishing mortality to be determined, ACFM has reservations about the validity of the VPA on this stock. Taking into account the apparent change in the exploitation pattern towards the younger age groups, ACFM recommends a precautionary $T A C$ of 40000 tonnes, which is below the level of recent annual catches.
B.1.3 Assessment of short- and long-term effects resulting from changes in the mesh sizes in the herring fishery in the western Baltic

The assessment was carried out on the basis of trawl herring length compositions supplied by the German Democratic Republic and the Federal Republic of Germany, The method presented by Hoydal et al. (1982) was used. The effects from increasing the legal mesh size in the trawl fisheries from 32 mm to 40 mm were calculated as the ratios between the expected catch and spawning stock biomass respectively, using 40 mm and 32 mm mesh, assuming unchanged exploitation level and stock composition by the end of 1982, and average recruitment thereafter. The results given in the text table below indicate that the increase in mesh size from 32 mm to 40 mm will result in a gain in yield beginning with the fourth year (the long-term gain is $7 \%$ ) and a gain in spawning stock biomass beginning with the second year after the increase in mesh size (the long-term gain is $16 \%$ ). Meshing was not taken into account in this analysis, but was considered to be of negligible importance in observations on German Democratic Republic commercial vessels using 40 mm legal mesh.

Year	1	2	3	4	5	6	$\infty$
Change in yield (\%)	-5	-6	-2	+3	+5	+6	+7
Change in SSB (\%)	0	+2	+7	+12	+14	+15	+16

B. 2 Sprat Stocks
B.2.1 General

In both 1981 and 1982 the total landings of sprat were at a level of 49000 tonnes. Compared with 1981, the 1982 distribution of sprat catches in the Baltic Sea changed somewhat. Landings increased in Subdivisions $23,24,25,26$ and 27, whereas in Sub-divisions 22, 28, 29 and 32 they decreased.

Recent catches ${ }^{1)}$ of sprat and TACs in thousand tonnes:

Year	1977			1978			1979		
Subdivisions	Rec.   TAC	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$	Actual catch	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \end{aligned}$	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$	Actual catch	$\begin{aligned} & \text { Rec } \\ & \text { TAC } \end{aligned}$	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$	Actual catch
22, 24, 25			36			22	34		17
26, 28			85			73	80		32
27,29-32			60			38	41		31
Total	240	275	181	210	184.3	133	155	161	80


Year	1980			1981			1982			1983	
Sub-   divisions	$\begin{aligned} & \text { Rec } \\ & \text { TAC } \end{aligned}$	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$	Actual catch	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \end{aligned}$	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$	Actual catch	$\begin{aligned} & \text { Rec } \\ & \text { TAC } \end{aligned}$	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$	Ac tual catch	$\begin{aligned} & \text { Rec. } \\ & \text { TAC } \end{aligned}$	$\begin{aligned} & \text { IBSFC } \\ & \text { TAC } \end{aligned}$
$\begin{aligned} & 22,24,25 \\ & 26,28 \\ & 27,29-32 \end{aligned}$	$\begin{aligned} & 17 \\ & 46 \\ & 14 \end{aligned}$		$\begin{aligned} & 13 \\ & 26 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 31 \\ & 14 \end{aligned}$		$\begin{aligned} & 14 \\ & 18 \\ & 17 \end{aligned}$			$\begin{aligned} & 14 \\ & 24 \\ & 11 \end{aligned}$		
Total	77	80.5	59	60	60	49	0	47.9	49	0	47.9

1) Working Group data.

## B.2.2 State of the stocks and management advice

The acoustic estimates of sprat biomass indicates that the stock is still on a very reduced level: 1980: 198 000 tonnes, 1981: 230000 tonnes, and in 1982: 276000 tonnes for Sub-divisions 24-29N. Until there is evidence of a more substantial increase of the stock biomass, ACFM would advise a cautious approach in the management of Baltic sprat and recommends that the catch level in 1984 is not increased above the 1981-82 level of 50000 tonnes.

## C. THE BALTIC DEMMERSAL FISHERIES

C.1 Cod in Sub-divisions 22 and 24
C.1.1 Stock identity

Cod populations in Sub-divisions 22 and 24 are intermixed, as was explained by ACFM in its July 1.982 report to IBSFC, and they were therefore treated as a stock unit in the assessment.
C.I. 2 Recent catches ${ }^{1)}$ and recommended TACs in thousand tonnes

Sub-   div.	1979		1980		1981		1982	
	Rec.   TAC	Actual   catch						
22	29	26	19	23	17	26	17	22
24	10	16	14	15	10	25	$123)$	

I) Working Group data.
2) Preliminary .
3) Precautionary TAC (including 2000 tonnes for Sub-div.23).

The 1982 landings of cod at 49000 tonnes (including 2000 tonnes in Sub-division 23) were only slightly below the 1981 level and 20000 tonnes higher than the recommended TACs (Table C.1.3). These high landings, and particularly those taken in Sub-division 24 , seem to have been influenced by immigration of cod from Sub-division 25 due to poor oxygen conditions in all deep-water layers east of Bornholm, which slightly improved only late in the year.

All countries fishing for cod in Sub-division 22 provided age composition data. No such data have been provided by Denmark, however, for catches taken in the northern part of the Sub-division and neither by Denmark nor Sweden for catches taken in Sub-division 24.
Investigation of discarding practices continued in 1982. Estimates were derived for Denmark by a sampling procedure and for the Federal Republic of Germany from logbook entries and samples. The estimated quantities of cod discarded in Submivision 22 are given in Table C.I. 4 . However, in view of doubts about the accuracy of these data, as explained in the July 1982 ACFM report to IBSFC, and the very short relevant time-series (of source data), it was concluded that any current assessments of the Baltic cod stocks should be based on human consumption landings alone, not including the discard figures, as was previously the case. The findings on discarding practices, nevertheless, have been useful for the mesh assessments, referred to in Section C.3.

## C.1.3 The 1983 assessment

Effort and cpue data were available from the German Democratic Republic amd Sweden, accounting for about $40 \%$ of the landings. According to the data, the average effort seems to have increased by about $20 \%$ with a nearly constant catch per hour. However, as the effort in the fleets of Denmark and the Federal Republic of Germany in Sub-division 22 seems to have been reduced, the Working Group assumed that the total effort was unchanged compared to 1981.
Recruitment estimates for $0-g r o u p$ cod in Sub-division 22 were provided by the German Democratic Republic and the Federal Republic of Germany. The German Democratic Republic recruitment estimates for l-group cod in Sub-division 24 were also available. All indices indicated the 1979 year class to be strong. 0-group indices indicated the 1978 year class to be poor, and the 1981 year class only marginally more abundant, whereas the 1980 year class appeared to be an abundant one.

The Working Group tried a VPA based on the above assumptions. However, because of some inconsistencies in the VPA and the lack of information on the methods by which the strength of incoming year classes was derived, ACFM considered that the results of the analytical assessment of this cod stock were inconclusive.

## C.l.4 Management advice

Since there is evidence that the stock is exploited far above the levels indicated by the biological reference points, ACFM recommends that fishing mortality on this stock ought to be reduced.
ACFM also feels obliged to draw attention to the unsatisfactory current exploitation pattern with higher mortality levels on the younger age groups and to indicate that in order to improve the state of the stock the fishing mortality levels on the younger age groups should be brought down. As has been stated in previous reports to the Commission, one of the ways to achieve this objective would be to increase the minimum mesh size in the cod fisheries in the Baltic. The short- and long-term effects resulting from increasing minimum mesh size are illustrated in Section C. 3 .
C.2 Cod in Sub-divisions 25-32
C.2.1 Recent catches ${ }^{1)}$ and recommended TACs in thousand tonnes

Sub-   div.	1979		I980		1981		1982	
	Rec.   TAC	Actual   catch						
$25-32$	136	224	179	346	170	329		315

1) Working Group data.
2) Preliminary.

The total landings from Sub-divisions 25-32 (Table C.2.1 and Figure C.2.l) decreased by $4 \%$ from 328877 tonnes in 1981 to 314896 tonnes in 1982. This decrease was mainly due to a marked drop in the Polish landings in Sub-divisions 25 and 26 in 1982 compared to 1981.

The landings of Denmark, the Federal Republic of Germany and Finland increased by $11 \%, 97 \%$ and $15 \%$, respectively, while the landings of Sweden, USSR and the German Democratic Repubiic were at about the same level as in 1981.
Data on discards in 1982 were presented by Denmark (bottom trawl: January $120.6 \%$ and May $16.2 \%$ of landings, pelagic trawl: January $2.6 \%$ and March $0.5 \%$ of landings) and by the Federal Republic of Germany (annual $0.7 \%$ ).
In January the Danish discards were dominated by the 1980 year class ( $72 \%$ ), in May by the 1979 year class ( $66 \%$ ). In the pelagic trawl catches the 1979 year class was dominant ( $61 \%$ ).

## C.2.2 The 1983 assessment

Cpue data for recent years, including 1982, were submitted by the Federal Republic of Germany, the German Democratic Republic, Sweden and the USSR. Finland and Poland presented effort index and cpue figures up to 1981. Catch per unit effort data were used to calculate national effort corresponding to total landings per year. Furthermore, the ratio of effort in 1982 to that in 1981 was calculated. The Finnish, Danish and Polish members estimated the increased effort of 1982 to 1981 to be in the order of $1.1,1.2$, and 0.93 for the respective fleets.
All nations except Poland and the German Democratic Republic experienced an increase in effort (representing $70 \%$ in 1982 and $62 \%$ in 1981 of the total landings). The mean ratio increase of effort 1982/81 weighted by fleet landings in 1982 was estimated to be l.18.

Data on recruitment were obtained from trawl surveys by Denmark, Poland and USSR. Relative abundance of year classes recruiting to the fishery, according to samples taken from by-catches in herring trawls, was submitted by Finland.
The Danish survey carried out in March 1983 showed that year class 1980 was dominant in Sub-divisions 25, 26, 28 and 29 , being particularly strong in Sub-divisions 29S, 28 and 25. The 1981 year class was found to be poor. A Polish Young Fish Survey in January 1983 in the Gdaísk Bay (Sub-division 26) yielded similar results, but Soviet surveys in Sub-division 28 showed the 1981 year class to be well above average, and indicated the 1982 year class to be poor. The Finnish data indicated the 1980 year class to be strong and the 1981 year class to be poor.

On the basis of a regression of the USSR recruitment indices (average numbers of l- and 2-groups from a year class) against numbers of 2-groups from VPA for the 1968-79 year classes, the following year class strengths were predicted:

$$
\begin{array}{ll}
1980 \text { year class } & 634 \times 10^{6} \text { at age } 2 \\
1981 \text { year class } & 589 \times 10^{6} \text { at age } 2 .
\end{array}
$$

Average number of 2-groups from VPA for the $1968-79$ year classes was $502 \times 10^{6}$ fish.

For VPA, therefore, $F$ on l-group fish was calibrated to produce $589 \times 10^{6}$ 2-group fish in 1983 , and $F$ on 2-group fish was calibrated to produce a stock number of $634 \times 10^{6}$ in 1982. Fishing mortalities on ages $3-9$ in 1982 were calibrated to produce an $\bar{F}_{82} / \mathrm{F}_{81}$ ratio about 1.18, corresponding to the effort ratio estimated.
Projections of catches in 1984, total biomass and the spawning stock biomass for 1984 and 1985 were calculated on the assumption that fishing mortality in 1983 will remain at the 1982 level and the exploitation pattern will not be changed.
C.2.3 Management advice


Under no option is the spawning stock biomass expected to be reduced below 400000 tonnes, which was regarded by ACFM as a safe level in its 1981 report. If, however, assumptions used in the analytical assessment about the strength of the 1980-82 year classes proved to be overoptimistic and all these year classes turned out to be actually poor, that level of spawning stock biomass could have been reached at the beginning of 1985 at the current fishing mortality level. Furthermore, in recent years the stock was fished at levels largely in excess of those indicated by biological reference points and this would normally call for a recommendation on an option based on the reference points of the yield per recruit curve.

However, due to possible interactions of cod with pelagic species, ACFM considers that the choice of management option for this stock should be left to the managers, since this would involve socio-economic factors beyond the scope of ACFM competence.

## C. 3 Changes in Minimum Mesh Size

Fffects of an increase in a minimum mesh size in the cod fisheries in the Baltic were assessed by the method developed by Hoydal et al., which has been successfully employed by ICES for similar assessments for other stocks and areas. The assessment involves two steps:

1) estimation of effective mesh sizes for each of the fleets exploiting the stock, and 2) estimation of effects of an increase in these effective mesh sizes.
Assessments for Sub-division 22 (applicable also to Sub-division 24) were carried out on the basis of the average length composition of the trawl catches for 1977-82 of Denmark, the Federal Republic of Germany and the German Democratic Republic. Since the estimated effective mesh sizes ranged from 90 mm to 97 mm , effects of an increase in these sizes to $100 \mathrm{~mm}, 110 \mathrm{~mm}$ and 120 mm were estimated. Effective mesh sizes estimated for Sub-divisions 25-32 on the basis of length composition data on the catches by trawlers of Denmark, the Federal Republic of Germany, Poland and USSR ranged from $100-105 \mathrm{~mm}$. For these Sub-divisions, therefore, the effects of an increase in the effective mesh sizes were calculated for the values of 110 mm and 120 mm only. Reported data on national discarding practices were used in these assessments, but because these were incomplete, certain assumptions had to be made as well.

Summarized results of these assessments are given in the text table below.

Long-term changes   from an increase   to:	Sub-division 22		Sub-divisions 25-32	
	Landings	Discards	Landings	Discards
100 mm	$+9 \%$	$-24 \%$	-	-
110 mm	$+21 \%$	$-50 \%$	$+8 \%$	$-21 \%$
120 mm	$+31 \%$	$-78 \%$	$+18 \%$	$-54 \%$
Short-term changes ${ }^{1}$				
from an increase				
to:				
100 mm	$-2 \%$	$-17 \%$	$-15 \%$	$-48 \%$
110 mm	$-8 \%$	$-14 \%$	$-50 \%$	$-30 \%$
120 mm				$-67 \%$

1) 

The first year after a change

The results of the assessment indicate that although all fleets are estimated to experience short-term losses in landings the first year after the introduction of an increase in minimum mesh sizes, the longterm gains will be substantial. There is another advantage in the minimum mesh increase, i.e., that any mesh increase is estimated to greatly reduce the number of discarded cod. The numbers entered into the 'discards' columns in the above text table indicate the estimated reduction in the weight of discarded catches for the given range of mesh increases in comparison with the situation, when trawling for cod is carried out by gear with unchanged minimum mesh sizes. Since discards are made up of small-sized cod of the younger age groups, any mesh increase will contribute to reducing the fishing mortality on these young age groups, thus improving the current exploitation pattern and the state of the stocks.

## D. BALTIC SALMON STOCKS

D.I Sub-divisions 24-31

Catches are reported in tonnes as follows:

Year	Tonnes
1971	1920
1972	2024
1973	2466
1974	2817
1975	2931
1976	2966
1977	2561
1978	1965
1979	2067
1980	2437
$1981 x$	
1982	2578
	2118

x) Preliminary

The decrease in 1982 is mainly caused by the decrease of the Danish catch in the Main Basin ( 838 tonnes in 1981, 583 tonnes in 1982), and the decrease of the Swedish catch in the Gulf of Bothnia ( 268 tonnes in 1981, 136 tonnes in 1982). While the Danish cpue increased in the fishing season 1981/82, the decreased catch was mainly caused by decreased effort.
The recruitment in 1982 was 4215000 artificial smolt units (a.s.u.). Hatchery-reared fish have been released as follows (1 000 a.s.u.) :

1979	2720
1980	2930
1981	2667
$1982 x)$	2957
1983	2988

x) Estimated

Wild production from 25-30 rivers in 1983 is estimated to be about 600000 smolts ( 1.2 million a.s.u.). Investigations carried out in 9 rivers in 1982 revealed a decrease of parr densities in 6 rivers compared to 1981, and an increase in 2 rivers. In River Mørrum, the parr densities were at the same level as in 1981.

Fishing for breeding fish in Swedish rivers shows no clear trend in recent years. In Rivers Lule, Indal and Dalälven, the catch of females has increased. In Rivers Ume, Skellefte and Angermanälven a decrease has taken place.
D.l.l State of the stocks and management advice

ACFM's reference point for stocks in Sub-divisions 24-3l is to secure maximal wild production. In the 1980 report of ACFM, the desired escapement (i.e., the level of survival from smolt to spawners) for these stocks was calculated to be $2.4 \%$. This estimate is based on an evaluation of the River Torne, which has the highest total wild production and the lowest recorded production per spawner of all rivers left for salmon spawning. When managing a stock complex like this as one unit, the least productive river sets the target of desired escapements, as the major part of the fishing is non-discriminating between the stocks. Although maximal production in some single rivers may be reached at an early stage, the figure of $2.4 \%$ is still accepted by ACFM as being the only estimate available of the necessary escapement for filling the available spawning sites.
The biological justification for this objective is to maximize the genetic variability in the wild stock. An escapement of $2.4 \%$ in 1984 would be achieved by restricting the catch in Sub-divisions 24-31 to 353400 salmon, equal to 1550 tonnes.

A catch of 2450 tonnes in 1984, which is about the level of recent annual yield, will give an escapement of only $1 \%$. Although the calculations indicate that catches of about 2450 tonnes could be maintained in the long term at this level of escapement and present stocking levels, the biological objective outlined above would not be achieved and the genetic variability of the stock may become impaired.

Catch options and corresponding escapement percentages are given in the text table below.

Yield 1984 $\qquad$   (tonnes)	Escapement 1985 $\qquad$   (\%)	Long-term yield $\qquad$   (tonnes)	Long-term escapements (\%)
1544	2.5	2006	3.1
1940	2.0	2389	2.3
2329	1.3	2444	1.4
2450	1.0	2450	1.0

If the management objective is to maximize genetic variability, then ACFM recommends that catches be reduced in order to increase the present escapement.

## D. 2 Sub-division 32 (Gulf of Finland)

The salmon stock in the Gulf of Finland is well separated from the stocks in the Gulf of Bothnia and the Main Basin (Sub-divisions 24-31), and is, therefore, assessed as a separate stock unit.
The reported landings from Sub-division 32 are given below (in tonnes):

Year	Tonnes
1975	74
1976	95
1977	88
1978	75
1979	70
1980	69
1981	73
$\left.1982^{x}\right)$	65

x)Preliminary

There is very little natural production in the Gulf of Finland and the catch is almost entirely dependent on artificial stocking. Hatcheryreared fish have been released as follows (I 400 a.s.u.):

1978	203
1979	241
1980	150
1981	212
1982	265
$\left.1983^{x}\right)$	350

x) Estimated

As stated in last year's report, if the stocking is kept above 270000 a.s.u., a catch of 135 tonnes may be taken with the present exploitation level (escapement about $1 \%$ ), without endangering the stock.
D. 3 Additional Data and Sampling Programmes Necessary to Increase the Accuracy of the Assessments

- cpue data should be collected and prepared uniformly to enable comparison of the national sets of data.
- results from electro-fishing rivers with natural salmon and sea trout reproductions should be collected for a number of years to enable more precise estimates of natural smolt production.
- the sampling of scales from salmon in the catches from the whole Baltic area should continue in order to increase the knowledge about the proportions of wild/hatchery-reared salmon and possible differences in their behaviour.
- data on A.O+ salmon from (for example) taggings and catch statistics (discards) should be collected to increase knowledge about their behaviour and growth. This would increase the possibility of giving advice on how to minimize the discards.
- the abundance of sea trout and rainbow trout in the salmon catches should be investigated.
- the possible difference in efficiency between monofilament and multifilament nets and their proportional use in the salmon fishery should be investigated, since the new multifilament nets are claimed to be much more efficient and this would affect the cpue data.
- the effect of using different lengths of gangings in the long-line fishery on the size of salmon caught and on the by-catches of cod should be investigated.
D. 4 The Effect of a Change of the Hooks with a Gap of 19 mm to Hooks with a Gap of 16 mm

The experiments made with hooks having gaps of $13.5 \mathrm{~mm}, 15 \mathrm{~mm}$ and 19 mm did not show statistically significant differences as to selectivity of the hooked salmon below the minimum size, about $45 \%$ were already dead when hauled onboard, probably regardless of the hook size in question. The annual total number of undersized salmon in the long-line fishery in 1974-78 is estimated to have been 9000 individuals, and in 1979-81 about 13000 (2.4\%).

No information is available on the dependence of the size of salmon hooks on by-catches of cod. Information on catchability of cod hooks in relation to hook size cannot be expected to be relevant in this connection since the hooks in salmon and cod long-lining are operated differently. Statistical data on the abundance of cod as by-catches in the salmon long-line fishery have not been available.
D. 5 The Origin of Salmon (Wild or Reared) in the Catches

Samples from Sub-divisions 29-32 indicate that the proportions of salmon of wild origin in the offshore fishery was below $20 \%$. In the Finnish coastal fishery $66 \%$ (Sub-division 31 ) and $40 \%$ (Sub-division 30) were of wild origin. On the Swedish side of Sub-division 30 only $16 \%$ were of wild origin. This may be explained by higher numbers of reared smolts released on the Swedish side. Also in the Gulf of Finland, where stocks are mainly based on rearing, the proportion of wild salmon in the Finnish coastal catches was higher than offshore. On the Finnish side of the Gulf of Finland there is no natural smolt production. Spawning migration routes to the USSR spawning sites thus seem to follow the Finnish side of the Gulf.
Feeding fish are a mixture of all stocks, both wild and reared. The data presented, however, do not cover the entire Baltic. No assessment could thus be presented on the basis of proportions of salmon of wild and reared origin.
D. 6 The Distribution of the Baltic Salmon Stocks and Fishing Effort between and within National Fishing Zones
The distribution cannot be evaluated due to lack of information. Cpue data should be collected and prepared uniformly to emable comparison of the national sets of data.

## F. ESTIMATION OF DISTRIBUTION OF STOCKS AND THE DISTRIBUTION OF FISHING EFFORT WITHIN AND BETWEEN THE FISHING ZONES OF

## THF MEMBER COUNTRIES

The data presented to the Working Groups are not sufficient for detailed analysis of distribution of stocks and fishing effort in the Baltic. Sporadic data from 1980-82 show that only a few areas are reasonably covered as to Sub-division and country. The material presented shows large differences between the areas in trawling effort and catch per trap-net. For a proper analysis, detailed data for all fisheries should be presented to the Working Group.

## G. DEFICIENCIES IN THE DATA REQUIRED FOR ASSESSMENTS

(i) Effort and catch per unit effort data should be presented for all fisheries.
(ii) Better data for the evaluation of recruitment abundance in the herring and sprat assessment units should be presented to the Working Group.

## Reference

Hoydal, K, Rørvik $C$ J and P Sparre. Estimation of effective mesh sizes and their utilisation in assessment. Dana, Vol.2, 1982.

Table A.1. Nominal fish catches in the Baltic from 1972-81 (in 1000 tonnes). (Data as officially reported to ICES.)

Species	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
Cod	186	189	189	234	255	213	196	273	392	383
Herring	345	404	407	415	393	413	420	459	465	432
Sprat	207	213	242	201	195	211	132	78	58	47
Flatfishes										
Salmon	20	18	21	24	19	22	23	24	19	17
Freshwater   species	20	23	21	2.9	2.9	3.1	2.4	2.0	2.3	2.5
Others	47	55	54	60	46	42	44	47	29	20

Footnote: Anadromous species, except salmon, not included.

Table A.2. Nominal catch (tonnes) of HERRING in Divisions IIIb, $\mathrm{c}, \mathrm{d}, 1963$-81.
(Data as officially reported to ICES.)

Year	Denmark	Finland	$\begin{aligned} & \text { German } \\ & \text { Dem.Rep. } \end{aligned}$	Germany,   Fed.Rep.	Poland	Sweden	USSR	Total
1963	14991	48632	10900	16588	28370	27691	$78580^{\text {a }}$	225.752
1964	29329	34904	7600	16355	19160	31297	84956	223601
1965	20058	44916	11300	14971	20724	$31082^{\text {b }}$.	83265	226216
1966	22950	41241	18600	18252	27743	30511	92112	251309
1967	23550	42931	42900	23546	32143	36900	108154	310124
1968	21516	58700	39300	16367	41186	53256	124627	354952
1969	18508	56252	19100	15116	37085	30167	118974	295202
1970	16682	51205	38000	18392	46018	31757	110040	312094
1971	23087	57188	41800	16509	43022	32351	120728	334685
1972	16081	53758	58100	10793	45343	41721	118860	344656
1973	24834	67071	65605	8779	51213	59546	127124	404172
1974	19509	73066	70855	9446	55957	60352	117896	407081
1975	18295	69581	71726	10147	68533	62791	113684	414757
1976	23087	75581	58077	6573	63850	41841	124479	393488
1977	25467	78051	62450	7660	60212	52871	126000	412711
1978	26620	89792	46261	7808	63850	54629	130642	419602
1979	33761	83130	50241	7786	79168	86078	118655	458819
1980	29350	87240	59187	9873	68614	92923	118074	465261
1981	28424	78049	56643	9124	64005	84500	110782	431527

a) Including Division IIIa.
b) Large quantity of herring used for industrial purposes is included with "Unsorted and Unidentified Fishes".

Table A.2. Nominal catch (tonnes) of SPRAT in Divisions IIIb, c, d, 1963-81. (Data as officially reported to ICES.)

Year	Denmark	Finland	German   Dem.Rep.	Germany,   Fed.Rep.	Poland	Sweden	USSR	Total	
1963	2525	1399	8000	507	10693	101	$45820^{\text {al }}$	69045	
1964	3890	2111	14700	1575	17431	58	55753	95518	
1965	1805	1637	11200	518	16863	46	52829	84898	
1966	1816	2048	21200	366	13579	38	52407	91454	
1967	3614	1896	11100	2930	12410	55	40582	72587	
1968	3108	$\ldots$	10200	1054	14741	112	55050	84265	
1969	1917	1118	7500	377	17308	134	90525	118879	
1970	2948	1265	8000	161	20171	31	120478	153054	
1971	1833	994	16100	113	31855	69	133850	184814	
1972	1602	972	14000	297	38861	102	151460	207294	
1973	4128	1854	13001	1250	49835	6310	136510	212788	
1974	10246	1035	12506	864	61969	5497	149535	241652	
1975	9076	2854	11840	580	62445	31	114608	201434	
1976	13046	3778	7493	449	56079	713	113217	194775	
1977	16933	3213	17241	713	50502	433	121700	210735	
1978	10797	2373	13710	570	28574	807	75529	132360	
1979	8897	3125	4019	489	13868	240	45727	78365	
1980	4714	2311	151	706	16033	2388	31359	57662	
1981	8415	1847	78	505	11205	1510	23881	47441	

a) Including Division IIIa.

Table A.4. Nominal catch (tonnes) of COD in Divisions IIIb, c, d, 1963-81. (Data as officially reported to ICES.)

Year	Denmark	Finland	$\begin{aligned} & \text { German } \\ & \text { Dem.Rep. } \end{aligned}$	Germany,   Fed.Rep.	Poland	Sweden	USSR	Total
1963	35851	12	7800	10077	47514	22827	$30550{ }^{\text {a }}$	154.631
1964	34539	16	5200	13105	39735	16222	24494	133211
1965	35990	23	5300	12682	41498	15736	22420	133649
1966	37.693	26	6000	10534	56007	16182	38269	164711
1967	39844	27	12800	11173	56003	17784	42975	180606
1968	45024	70	18700	13573	63245	18508	43611	202731
1969	45164	58	21500	14849	60749	16656	41582	200558
1970	43443	70	17000	17621	68440	13664	32248	192486
1971	47563	3	9800	14333	54151	12945	20906	159701
1972	60331	8	11500	13814	56746	13762	30140	186301
1973	66846	95	11268	25081	49790	16134	20083	189297
1974	58659	160	9013	20101	48650	14184	38131	188898
1975	63.860	298	14740	21483	69318	15168	49289	234156
1976	77570	278	8548	24096	70466	22802	51516	255276
1977	74495	310	10967	31560	47703	18327	29680	213042
1978	50907	1446	9345	16918	64113	15996	37200	195925
1979	60071	2938	8997	18083	79697	24003	78730	272519
1980	76015	5962	7406	16363	123486	34089	124359	$391831{ }^{\text {b }}$ )
1981	93155	5681	12.938	15082	120.942	44300	87746	$382609^{\text {c }}$

a) Including Division IIIa.
b) Includes catches by the Faroe Islands of 1250 tonnes and United Kingdom (England and Wales) of 2901 tonnes.
c) Includes catches by the Faroe Islands of 2765 tonnes.

Table A. 2. Nominal catches (tonnes) of FLATFISEES in Divisions IIIb,c, d, 1963-81. (Data as officially reported to ICES.)

Year	Denmark	Finland	$\begin{aligned} & \text { German } \\ & \text { Dem.Rep. } \end{aligned}$	Germany, Fed.Rep.	Poland	Sweden	USSR.	Total
. 1963	9888	-	3900	79.4	2794	1026	$1460^{\text {a) }}$	19862
1964	9592	-	4600	905	1582	2147	4420	22246
1965	8877	-	2. 300	899	2418	1140	5471	21105
1966	7590	-	2900	647	3817	1113	5328	21395
1967	8773	-	3400	786	2675	1077	4259	20970
1968	9047	-	3600	769	4048	1047	4653	23164
1969	8693	-	2800	681	3545	953	4167	20839
1970	7937	-	2200	606	3962	464	3731	18900
1971	7212	-	2500	553	4093.	415	4088	18861
1972	6817	-	3200	542	4940	412	3950	19861
1973	6181	-	3419	655	4278	724	2550	17807
1974	9686	$55^{\text {b) }}$	2390	62.8	4668	653	2515	20595
1975	8257	100	2172	937	5139	658	6455	23718
1976	7572	194	2801	836	4394	582	3018	19397
1977	7239	203	3378	960	4879	484	4754	21897
1978	9184	390	4034	1106	5418	396	2500	23028
1979	10376	399	4396	665	5137	450	2670	24093
1980	8276	4.28	3286	460	3429	427	2305	18611
1981	6674	418	3031	704	2958	434	2323	16542

a) Including Division IIIa.
b) Excluding subsistence fisheries.

## Table B.l. 1 HERRING catches in the Baltic Sea by countries and Sub-divisions, 1981 and 1982 (tonnes) By-catch of sprat in directed herring fisheries excluded and by-catch of herring in sprat fisheries included.

Country and Year	Total Catch	Sub-Divisions											
		22	23	24	25	26	27	28	29S	29N	30	31	32
$\frac{1981}{\text { Denmark }}$	27997	5806	8098		$14093{ }^{2 \prime}$								
Finland	74049	-	-	-	-	-	-		30	33774	14701	8352	17192
German Dem, Rep.	56645	1799	-	52702	1133	1001	10	-	-	*	$\cdots$	-	-
Germany, Fed. Rep.	9274	6675	-	1625	974	-	-	-	-	-	-	-	-
Poland	64520		2000	13366	37654	13500	33450	-					
Sweden	84400			7600	26980	160	962	5350	940	6000	1290	620	-
USSR	110782			586	4334	30337		28448	17125	971			28019
Total	427667	14280	10098	75879	85168	44998	34432	33798	18095	40745	15991	8972	45211
1982													
Denmark	40157	11603	5778	11070	11706								
Finland ${ }^{1)}$	84000	-	-	-	-	-	-	-	-	38800	16200	8800	20200
German Dem.Rep. ${ }^{\text {1) }}$	50838	2205	-	47627	1006	-	-	-	-	-	$\cdots$	-	-
Germany, Fed. Rep.	9462	6576	-	1566	1320	-	-	-	-	-	-	-	-
Poland	77872			14869	42374	20629							
Sweden ${ }^{1)}$	97070	-	2460	8420	39550	340	32150	7380	570	3800	1730	670	
USSR ${ }^{1)}$	99175				8958	18006	-	21435	27187				23589
Total	458574	20384	8238	8355	104914	38975	32150	28815	27.757	42600	17930	9470	43789

[^11]Table B.2.1 SPRAT catches in the Baltic Sea by countries and Sub-divisions, 1981 and 1982 (tonnes). By-catoh of HERRTNG in directed SPRAT fisheries excluded and by-catch of SPRAT in HERRING fishery included.

Country and Year	Total catch	Sub-divisions										
		22	23	24	25	26	27	28	29	30	31	32
1981												
Denmaxk	8359	8359										
Finland	5850	-	-	-	-	-	-	-	3799	-	-	2051
German Dem.Rep.	78	-	-	78	-	-	-	-	-	-	-	-
Germany,Fed.Rep.	564	564	-	-	-	-	-	-	-	-	-	-
Poland	8891				4300	4591						
Sweden	1550		76	245	426		637	87	79			
USSR	23881				2	8495		4597	4916			5871
Total	49173	8923	76	323	4728	13086	637	4684	8794	-	-	7922
1982												
Denmark	6662	2969	899		$2794{ }^{2}$							
$\text { Finland }{ }^{1)}$	5000		-	-	-	-	-	-	3200	-	-	1800
German Dem.Rep. ${ }^{1}$	1022	-	-	1022	-	-	-	-	-	-	-	-
Germany, Fed.Rep.	632	628	-	4	-	-	-	-	-	-	-	-
Poland ${ }^{\text {l }}$	14209	-	-	50	4389	9770	-	-	-	-	-	-
Sweden ${ }^{\text {I) }}$	2750	-	-	280	1180	5	1105	115	65	-	-	
USSS ${ }^{\text {1) }}$	18866				3	12032		2586	2377			2868
Total	49141	3597	899	I 356	8366	21807	1105	1701	5642			4668

1) Preliminary 2) Includes catches from Sub-divisions $24-25$

Table C.1.1 Total catch of COD by countries, Sub-divisions 22-32, 1973-82.

Country	Denmark	Finland	German Dem.Rep.	$\begin{aligned} & \text { Germany, } \\ & \text { Fed.Rep. } \\ & \text { of } \end{aligned}$	Poland	Sweden	USSR	Total
1973	66050	95	14408	28706	49790	18389	20083	197521
1974	57810	160	10970	22224	48650	16435	38131	194386
1975	62524	298	14742	24880	69318	17965	49289	239016
1976	77570	287	8552	26626	70466	20188	49047	252736
1977	73505	310	10967	30706	47702	18127	29680	210997
1978	50611	1437	9345	15122	64113	16793	37200	194621
1979	59714	2938	8997	19375	79754	23093	75034	268905
1980	75529	5962	7406	17637	123486	33201	124350	387571
1981	92648	5681	12936	18281	120901	44330	87746	382523
1982*	98154	6510	11368	21860	92541	46548	86906	363887

* Provisional data.

	DENMARK				FINLAND				FEDERAL REPUBLIC OF GERMANY					german democratic ripublic						
$\underset{\text { Year }}{\text { Area }}$	22	23	2.	25-28	29	30**	31	32	22	24	25	26	28	22	24	25	26	27	28	29
1973	21400		9195	35455		95			12833	900	9100	5200	673	4004	4370	4065	1912		57	
2974	18300		7482	32028		160			9998	395	5242	5769	820	3028	5431	1469	996		52	
1975	15981		7500	39043	270	8		20	12415	497	8809	1975	1184	3471	2571	3320	5250	50	60	20
1976	19764	712	9682	47412	81	24		182	22312	581	7526	4490	1717	1292	3290	800	3150	10	10	
1977	37726	1166	10213	44400	85	26		199	10807	879	3649	23803	1668	977	2471	324	5996	73	1129	7
1978	12641	1177	6527	30266	249	323	6	859	9972	880	2178	2793	299	1629	5466	414	1714	1	231	-
1979	26093	2029	? 232	34350	787	518	16	1.697	- 910	688	7616	2149	12	1024	6570	54	1301	1	46	1
1980	16033	2425	7367	49704	2163	880	45	2874	5968	689	10985	673	92	880	4700	5	1818	-	3	
1981	15502	1473	? 152	68521	3036	684	11	1950	9095	2165	7021	-	-	1743	9916	2	1275	-		-
1982*	12856	1822	7565	75911	3913	817	15	1765	7394	666	13069	662	69	1787	8828	-	728	-	25	-


$\left[\begin{array}{l} \text { Area } \\ \text { Year } \end{array}\right.$	POLAND		SWEDEN									USSR						TOTAL
	25	26	23	24	25	26	$27^{* * * *}$	28	29	30	31	$25^{\circ}$	26	27	28	29	32	
1973	29010	20780		1655	15224		971	485		54		-	8768	2	12250	50	14	197521
1974	25222	23429		1937	11950		1682	825		41		811	18633		17677	1010	-	194386
1975	35373	33945		1932	12511		2052	1367	103	-		946	27884	3	28677	1735	44	239016
1976	26082	44384	-	1800	14109		1979	2180	115	5		8855	25302	126	14645	106	13	252736
1977	18172	29530	550	1516	21 775		2584	1560	120	22		390	17880	4	11304	91	11	210997
1978	31161	32952	600	1730	9017	26	3207	1740	417	55	1	12	18010	78	18623	166	311	194621
1979	40146	39608	700	1800	13628	50	3458	2665	641	245	6	13	30776	-	39875	1575	2795	268905
1980	50832	72654	1300	2610	18694	88	6014	3285	790	516	4	7	45734	-	59892	4575	14142	388341
1981	50698	70203	900	5700	24600	260	7200	4450	712	500	8	2	44254	-	32195	3733	7562	382523
1982*	41830	50711	140	7933	20429	2279	4109	9264	687	1669	38	5	33221	-	$40 \quad 876$	3308	9496	$363887^{* * * *}$

* Proviaional
sef Finland 1973-1974 Sub-divisions 29-32 combined
wer Sweden 1973-1974 Sub-divisions 27 and 29 combined

Table C.1. 3 Total catch of $C O D$ in Sub-divisions 22, 23 and 24, 1973-82.

Year	DEANMARK			$\begin{aligned} & \text { GERMANT } \\ & \text { DEM.REP. } \end{aligned}$		$\begin{aligned} & \text { GERNANY } \\ & \text { FED.REP. } \end{aligned}$		SWEDEN		TOTAL		
	22	23	24	22	24	22	24	23	24	22	23	24
1973	21400		9195	4004	4370	12833	900		1655	38237		16120
1974	18300		7482	3028	5431	9998	395		1937	31326		15245
1975	15981		7500	3471	2571	12415	497		1932	31867		12500
1976	19764	712	9682	1292	3290	12312	581		1800	33368	712	15353
1977	17726	1166	10213	977	2471	10807	879	550	1516	29504	1716	15079
1978	12641	1177	6527	1619	5466	9972	880	600	1730	24232	1777	14603
1979	16093	2029	7232	1024	6570	8910	688	700	1800	26027	2729	16290
1980	16033	2425	7367	880	4700	5968	684	1300	2610	22881	3725	15361
1981	15502	1473	7152	1743	9916	9095	2165	900	5700	26340	2373	24933
1982**	12856	1822	7565	1787	8828	7394	666	140	7933	22037	1 962	24992

* Provisional data.

Year	Estimated weight ( $t$ )	$\%$ of total landings	Age distribution (number $\times 10^{-6}$				
			1	2	3	4	Total
1978	3000	12.6	$12.2{ }^{*}$				12.2
1979	1000	3.9	4.2 \#				4.2
1980	1900	8.3	3.0	2.6	0.6		6.2
1981	4700	18.3	1.1	10.3	0.7		12.1
1982	2750	12.0	3.3	3.8	1.2	0.3	8.6

\# Discards in 1978 and 1979 are assumed to consist of age group 1 only

Table C.2.I Total catch of COD in Sub-divisions 25-32.

Year	DENMARK	FINLAND	$\begin{aligned} & \text { GERMAN } \\ & \text { DEM. REP. } \end{aligned}$	$\begin{aligned} & \text { GERMANY } \\ & \text { HED.REP. } \end{aligned}$	POLAND	SWEDEN	USSR	TOTAL
	25-32	25-32	25-32	25-32	25-32	25-32	25-32	25-32
1973	35455	95	6034	14973	49790	16734	20083	143164
1974	32028	160	2517	11831	48650	14498	38131	147815
1975	39043	298	8700	11968	69318	16033	49289	194649
1976	47412	287	3970	13733	70466	18388	49047	203303
1977	44400	310	7519	19020	47702	16061	29680	164692
1978	30266	-1437	2260	4270	69319	14463	37200	154009
1979	34360	2938	1403	9777	79754	20593	75034	223859
1980	49704	5962	1826	10985	123486	29291	124350	345604
1981	68521	5681	1277	7021	120901	37730	87746	328877
1982*	75911	6510	753	13800	92541	38475	86906	314896

?

* Provisional data.

Table D. 1 Annual nominal oatches in tonnes of Baltic SALMON in 1973-1982. $\mathrm{S}=\mathrm{Sea}, \mathrm{C}=$ Coastal, $\mathrm{R}=$ River

x) Preliminary data: total catches of USSR stated as 300 tonnes. 6-7\% of the Swediah catches stated for the Baltic Main Basin have been taken in Sub-division 30.
(See notes on next page).

Notes to Table D.I
Data from Denmark, Federal Republic of Germany, Poland and Sweden have been converted from gutted to ungutted weight by the factor l.l, an approximation to the equation W ungutted $=1.0972 \mathrm{~W}$ gutted estimated by Thurow (1965).
Data from Denmark, Federal Republic of Germany, Finland and the USSR include sea trout of an order of $3 \%, 7 \%, 10 \%$ and $3 \%$ respectively.
The catches in the Main Basin consist almost exclusively of feeding salmon fished offshore by drifting gear.
About $50 \%$ of the Swedish and, since 1971, about $20 \%$ of the Finnish catches in the Gulf of Bothnia are fished in the northern part of the Gulf, generally on the coast and exclusively with fixed gear. Of the Finnish catches in the southern part about $2 / 3$ are taken by drifting gear, the remaining part in fixed gear.
In the Gulf of Finland the Finnish catches are practically without exception obtained by drifting gear, while the USSR catches are exclusively coastal.
The main part of the coastal river catches of Baltic salmon by the USSR are made in the Gulf of Riga by fixed gear in the estuaries and river mouths, only $6-10 \%$ enter the proper river fishery.
The Finnish landings from the Gulf of Botnia and the Main Basin include $6 \%$ non commercial catches. In the Gulf of Finland such catches comprise about $50 \%$ of the total yield.

A Trends in Yield and fishing mortality ( $\bar{F}$ )


C Long-texm yield and spawning stock biomass
(indicate biological reference points)


B Trends in spawning stock biomass (SSB) and recruitment.


D Short-term yield and spawning stock biomass
(indicate biological reference points)


HसRRING in Sub-divisions 28, 29 S
(excl. Gulf of Riga). Spawning stock biomass at 1 January, according to the traditional VPA and to the acoustic stock estimate.


Herring in the Gulf of Riga (stock)

A Trends in Yield and fishing mortality ( $\bar{F}$ )


C Long-term yield and spawning stock biomass (indicate biological reference points)


B Trends in spawning stock biomass (SSB) and recruitment.


D Short-term yield and spawning stock biomass


A Trends in Yield and fishing mortality ( $\overline{\mathrm{F}}$ )


0 Long-term yield and spawning stock biomass (indicate biological reference points)


B Trends in spawning stock biomass (SSB) and recruitment.


Recruitment year class, SSB year

> D Short-tern yield and spawning stock biomass (indicate biological reference points)
 (stock)

A Trends in Yield and fishing mortality (F)


C Long-term yield and spawning stock biomass (indicate biological reference points)


B Trends in spawning stock biomass (SSB) and recruitment.


Recruitment year class, SSB year

D Short-term yield and spawning stock biomass (indicate biological reference points)


A Trends in Yield and fishing mortality ( $\bar{F}$ )


B Trends in spawning stock biomass (SSB) and recruitment.



D Short-term yield and spawning stock biomass
(indicate biological reference points)




Recruitment year class, SSB year

TH W
 14.






(ッ)



ICES 27.3.03.00 (Baltic)


[^0]:    ＊Unable to attend the May 1983 Meeting．
    ＊＊Participated in the May 1983 Meeting．
    ＊＊＊Unable to attend the October／November 1983 Meeting．
    ＊＊＊＊Participated in the October／November 1983 Meeting．
     October／November 1983 Meeting．

[^1]:    * Based on the Barents Sea International 0-Group Survey in 1983.

[^2]:    Weights in thousands of tonnes

[^3]:    Weights in thousends of tonnes

[^4]:    * Rounded
    ** No change from Working Group figures; close to proportions indicated by tagging results.

[^5]:    \# Throughout the Blue Whiting section of this report, the term Norwegian Sea means Sub-areas I and II, Divisions Vc, XIVa and XIVb.

[^6]:    ${ }^{x}$ Provisional

[^7]:    * Preliminary

[^8]:    *) Provisional

[^9]:    *Raised for under-reporting

    1) Figure from Révue des Travaux de l'Institut des Pêches maritimes raised to round fresh weight
    2) Includes VIIe
    3) Includes VIId

    NOTE: All figures up to 1979 are from Builetin Statistique
    All others from national statistics

[^10]:    \# Preliminary
    FIF Working Group estimate

    + Includes S. japonicus

[^11]:    ${ }^{1)}$ Prelirainary
    2) Includes catches in Sub-divisions 24-25

