No. 77

INPUT OF POLLUTANTS TO THE OSLO COMMISSION AREA

https://doi.org/10.17895/ices.pub.7701 ISBN <u>978-87-7482-561-6</u>

ISSN 2707-7144

International Council for the Exploration of the Sea Charlottenlund Slot, DK-2920 Charlottenlund Denmark

January, 1978

CONTENTS

Page

Introduction 2
Results 3
Inputs of Pollutants in Sewage 5
Inputs of Pollutants in Industrial Wastes
River Inputs to the Marine Environment 12
Inputs of Pollutants by Marine Dumping 13
Input of Pollutants via Atmospheric Deposition 14
Summary and Conclusions 15
References
Tables
Figures
ANNEX 1

- 0 - 0 -

*.

× .

PREFACE

The input study reported here was originally conceived as an integral part of the Oslo Commission baseline survey, for which results for the levels of pollutant residues in fish and shellfish have already been reported (Coop. Res.Rep., No.69 (1977)). The report of this study represents the most complete account so far available of the input to a maritime region involving the participation of several countries. The survey conducted has many deficiencies. A number of rough estimates have had to be made, often based on rather sweeping assumptions. Nevertheless, broad conclusions can be drawn and areas of weakness can be identified which need attention before more reliable estimates can be made. A major objective of a study of this kind must be to draw the attention of relevant national and international regulatory bodies to the need to strive for better quality information. No sensible conclusions can be drawn, or regulatory action taken, as to the need for controlling inputs of pollutants via particular input routes without a much better quantitative understanding of the relationship between input and level in particular situations. There are many gaps to be filled, and there can be no doubt that the quality of input information lags far behind that, for instance, available for selected pollutant levels in fish and shellfish. It is hoped that the timely production of this report will serve to highlight the need for greater effort in the production of accurate input data.

A. Preston

Chairman, ICES Working Group on Pollution Baseline and Monitoring Studies in the Oslo Commission and ICNAF Areas.

June, 1977.

INPUT OF POLLUTANTS TO THE OSLO COMMISSION AREA

Introduction

This report on the input of pollutants to the Oslo Commission Area represents a considerable extension in the geographical area for which pollutant inputs have been studied by the International Council for the Exploration of the Sea (ICES). The initial input study, compiled in 1968, sought to determine inputs of domestic sewage, industrial waste, pesticides and oil pollution to the North Sea by the surrounding countries. The data from this study represented an important first step in the study of pollution in the North Sea, but indicated also the need to intensify research regarding the types and quantities of pollutants discharged into the sea and their ecological effects. The results of this study are reported in Cooperative Research Report series A, No.13 (1969).

In 1971 a plan was drawn up for an International Study of the Pollution of the North Sea and its Effects on Living Resources and their Exploitation. This study included a baseline survey to determine the levels of pollutants in food fish and a more detailed assessment of the rates of input of the various pollutants to the North Sea. For this latter study, an Inputs Questionnaire was developed and sent to all countries which border the North Sea. Each country was asked to divide its coastline into zones and, for each zone, to provide data on the flows of domestic sewage and industrial effluents, giving details on the quantities of, e.g., nutrients, metals, organochlorine pesticides and PCBs. Also requested was information on dumping activities in the North Sea and programmes to monitor atmospheric inputs of pollutants to the sea. Data on discharges of pollutants via rivers and to estuaries were also sought.

The replies received provided data which were considerably more detailed than those available for the earlier report. However, few countries were able to provide adequate information on all the pollutants which were likely to be present in the discharges. In many cases, order-of-magnitude estimates were made for the input of a pollutant based on detailed data provided by several countries. The results of this study, along with the results of other projects conducted by the Working Group for the International Study of the Pollution of the North Sea, are published in Cooperative Research Report, No.39 (1974).

In 1974, the North Sea Working Group was superseded by the Working Group on Pollution Baseline and Monitoring Studies in the Oslo Commission and ICNAF Areas. This new Working Group was created in anticipation of the establishment of the Oslo Commission for the Prevention of Marine Pollution by Dumping from Ships and Aircraft and, additionally, to reflect the interest in extending the area of study to the entire North Atlantic.

The Working Group was specifically charged with compiling up-to-date pollutant input data which would represent an improvement on existing North Sea data and extend the information available to the entire area covered by the Oslo Commission as well as that of the International Commission for the Northwest Atlantic Fisheries (ICNAF).

In deciding to conduct a new input study, it was agreed that a new questionnaire was needed. Some countries had found the questionnaire utilised in the 1972-3 inputs study to be unclear in its definition of exactly what information was required, especially regarding the separation of sewage and industrial waste discharges and how data were to be provided for river inputs. Accordingly, a new questionnaire (Annex 1) was devised in which the intention was made clear that it sought order-of-magnitude data on the input of major categories of pollutants to the Oslo Commission area and parts of the ICNAF area via five pathways:

- a) direct inputs to the marine environment, estuaries and coastal waters (e.g., by pipeline discharges),
- b) river input to the marine environment,
- c) inputs via the atmosphere,
- d) dumping, and
- e) other sources (e.g., incineration at sea).

As with the previous inputs study, each country was asked to divide its coastline into appropriate sections and provide data for each section.

The Working Group recognised the difficulties involved in assessing what proportion of a pollutant entering an estuary reaches the open sea. It was, therefore, agreed that estuaries should be regarded as integral parts of the study area without distinction, but that note should be made accordingly if information were available on flux out of the estuary to the open sea. Additionally, each major estuary should count as a coastal area in its own right; in cases such as the Schelde Estuary, which is bordered by more than one country, the countries concerned were expected to collaborate and produce a joint response.

In the amended questionnaire, the list of pollutants to be featured in the replies was expanded in the light of the responses obtained from the earlier questionnaire and the increasing array of pollutants recognised as being of interest.

As in previous studies, radioactive substances were not included because this subject is already adequately covered by several speciality organisations, such as the International Atomic Energy Agency and the European Nuclear Energy Agency, and ICES policy is not to duplicate such efforts.

Results

All replies submitted were received by mid-1976; in most cases the data supplied covered the years 1974 or 1975. No data had been received from France, Spain, Portugal, the northern part of Scotland or the United States by the time this report was prepared. However, the United States have indicated that they intend to present a full report on their input of pollutants to the ICNAF area at the 1977 ICES Statutory Meeting. Canada has also indicated that it will present further input information at that time. These data, along with those from western Greenland, will be published in a later volume in this series covering inputs to the ICNAF area of the North Atlantic. Data from eastern Greenland have been included in the present report.

The data contained in the replies have been compiled into Tables 1-12 and Figures 1-3. Most countries provided data on the flows of rivers, domestic

- 3 -

sewage and some industrial wastes into the study area. Where full information was not available, either figures from Cooperative Research Report, No.39 were used or rough estimates were made. Such estimates were based either on other data provided by the country concerned or on averages of data provided by two or more other countries. In all cases where estimates or other data have been used, this is clearly indicated in the tables: data from Cooperative Research Report, No.39 are accompanied by an asterisk and figures estimated on the basis of other data are given in square brackets. Data indicated to be an estimate by the respondent country are given in parentheses.

It has not been possible to present the data in a way similar to that in Cooperative Research Report, No.39. The differences in the two questionnaires, especially the greater detail required by the more recent one, led to submission of data in a somewhat different format. Both the area covered by this study and the number of participating countries are greater. Additionally, several countries, including Norway, Denmark, Scotland and the Netherlands, changed the division of their coastline from that used in Cooperative Research Report, No.39, thus making comparison of the data more difficult.

As was reported in Cooperative Research Report, No.39, pollution concentrations in discharges vary from country to country, depending partially on the <u>per</u> <u>capita</u> water consumption and, particularly, on the degree of separation of domestic sewage from industrial effluents and on the amount and kind of treatment such discharges receive.

Several respondents indicated that inputs from rivers and estuaries had been difficult to estimate due to the uncertainty regarding the fate of materials discharged into an estuary or fjord. Nonetheless, because the Working Group had agreed that such inputs should be included in the report, even though only a proportion of the total pollutant input to an estuary reaches the sea proper, this information has been included in the tables on the assumption that in most instances most of this load reaches the sea. In the absence of evidence to the contrary, it is sensible to work on the worst possible estimate. Where no information regarding pollution load via rivers was given, estimates were made on the basis of the mean of data given for pollution loads from Dutch and English/Welsh rivers, the only countries providing detailed river data.

The estimates of inputs of pollutants via rivers show that this is a significant source of pollution in the North Atlantic area.

Most countries' replies indicated that information on the pollution content of industrial effluents is still rather limited. Norway, and to some extent England/Wales, provided fairly detailed information on the types of industry present, the amounts of their discharge and the amounts of nutrients, heavy metals and other substances contained therein. The Netherlands did not specify the industrial sources, but industrial waste discharges are included in the total river load to the sea, as most of the industries discharge into rivers. The data from other countries were less complete, and in some cases virtually no information on industrial discharges was provided. Due to the individual nature of industry placement and composition in the various countries, no attempt has been made to estimate inputs from industrial effluents.

It appears that relatively complete data were provided with regard to the amounts and general types of substances which were dumped into the sea. This should be the case, because dumping is regulated in the study area by the Oslo Convention which requires reporting of marine dumping activities. Although many of the countries which allow dumping were able to provide estimates of the amounts of harmful substances contained in the wastes, not all were able to do so.

A number of the countries provided reports on their investigations on the atmospheric input of pollutants to the sea. Although these investigations cover only the North Sea portion of the study area, they represent a significant increase in the amount of information available regarding atmospheric deposition of heavy metals than at the time of the earlier North Sea report and some work has now been done to provide preliminary estimates of fallout of organochlorines. This work is still in its early stages and little has yet been done to estimate input over the open Atlantic portions of the study area.

Although information had been requested on the input of organochlorine pesticides and other organohalogen compounds to the study area, very few data were able to be obtained. Three countries, however, (Denmark, Norway, and Ireland) provided information on the use of certain pesticides in the country as a whole. This information is contained in Table 12. There is presently no known way to relate pesticide usage on land with eventual input to the marine environment.

In the more-detailed discussion of the results which follows, the figures from the various tables have been rounded off in recognition of the fact that they are mainly order-of-magnitude estimates.

Inputs of Pollutants in Sewage

The replies to the questionnaire with regard to inputs due to sewage discharges are presented in Tables 3-6, which also include equivalent data on industrial and river inputs. Summary figures are given in Summary Tables 3-6. According to the information supplied, the total population contributing to sewage discharges to estuaries or the open sea in the study area is 37.3 million persons. This figure compares poorly with the population figure of 31 million quoted in the earlier North Sea Study. Because the more recent figure covers a far greater geographical area, different methods of calculating the population contributing to a particular catchment area must have been used in the data submitted for this report compared to that for the earlier report. For example, there is a decrease of nearly 6 million persons in the population figures quoted for the El2 region of England in this report compared to the earlier report. Similarly, an 0.6 million-person decrease is shown in the Norwegian population data and an 0.3 million-person decrease in the reported Swedish population. This decrease is probably accounted for by the inclusion of some sewage discharges in the river data rather than in the figures for direct discharge of domestic sewage.

The volume of sewage effluent entering the study area per year is $5.7 \times 10^9 \text{ m}^3/\text{year}$, of which $3.7 \times 10^9 \text{ m}^3/\text{year}$ enter the North Sea. This amount is significantly higher than the 1972 value of $2.7 \times 10^9 \text{ m}^3/\text{year}$, even though the population reported for the North Sea decreased by about 26% from that in the earlier report. Even allowing for the inclusion of river inputs, it is difficult to determine the cause of this apparent sharp increase, but, as many of the earlier figures were based on estimates and approximations, it is probable that the earlier figure was too conservative an estimate. The present figures are, for the most part, based on more solid data and can thus be taken to be more accurate.

This apparent increase in the volume of sewage discharges to the North Sea does not appear to be due to a significant increase in <u>per capita</u> water consumption levels. For example, the latest <u>per capita</u> water consumption figure for Sweden is 0.400 m^3/day , only slightly above the figure of 0.391 m^3/day quoted for the Scandinavian countries in the earlier report.

In the 1972 data, there was a significant difference between the <u>per capita</u> water consumption figures from the Scandinavian countries in the northern part of the North Sea and England in the southern portion. Although the new figures are incomplete, the difference among the reporting countries does not appear to be so great. For example, although no new water consumption values were received for England, Ireland reported a water consumption value of 0.200 - $0.400 \text{ m}^3/\text{day/person}$, clearly higher than the 1972 English value of $0.178 \text{ m}^3/\text{day/person}$ and in the same range as the Danish figure (0.360 m $^3/\text{day/person}$).

Although data regarding treatment of domestic sewage are incomplete, it appears that about one-half of the sewage discharged into the study area receives no treatment before discharge; approximately one-quarter receives primary treatment (settlement only), while the remainder receives secondary treatment (settlement and biological) or better. Detailed information was only available for Norway and England/Wales; where no details were provided, figures from the earlier North Sea report were used, if possible. Examination of the detailed figures shows that for England and Wales, 51% of the domestic sewage receives both settlement and biological treatment, 13% receives settlement treatment only, and 36% is discharged directly without treatment. A high proportion of the sewage receives both settlement and biological treatment in areas of heavy population, for example, the Thames River (88%, El2) and surrounding areas (96%, Ell) and in biologically sensitive areas, for example, the Wash (99%, E8). In these three areas, the proportion of sewage receiving secondary or better treatment appears to have increased significantly since the North Sea report was prepared. The Norwegian data show that, although most areas in Norway discharge more than 90% of their domestic sewage without any form of treatment, in the heavily populated area of Oslo, 48% of the sewage receives tertiary treatment and 31% receives primary treatment. In Ireland, 52% of the domestic sewage receives primary treatment, while in Northern Ireland 75% of the sewage receives such treatment.

The biochemical oxygen demand (BOD) figures for each country and area are found in Table 4. As can be seen, not all countries reported separate values for BOD due to domestic sewage and that due to industrial waste, consequently the BOD load which is shown attributed solely to domestic sewage, 4.5 x 10⁵ tonnes/year, is low. The expected value can be estimated to be about one and one-half times this figure based on the average of values reported by countries for domestic BOD loads. <u>Per capita</u> figures for BOD were reported by Sweden and Iceland as 70 grams/day/person and by Denmark as 60 grams/day/person. From Norwegian data, these values were calculated to be 58 grams/day/person and from English/Welsh data, 62 grams/day/person. Northern Ireland reported calculating biological oxygen demand using values of 500 grams/day/person for untreated sewage and 50 grams/day/person for treated sewage. These values appear to be one order of magnitude too high, when compared with the figures for the other countries. Thus, the values for Northern Ireland in the tables have been changed to reflect this.

Chemical oxygen demand (COD) values were reported by only a few countries, so no breakdown between domestic and industrial COD load was made in their presentation in Table 9. For those countries not reporting COD data, no estimates have been attempted due to the fact that the relationship between BOD and COD differs according to the nature of the organic matter which is decomposed. Thus, the composition of the discharge must be known in each case to be able to attempt to make any valid calculations. Because the necessary information was not available in this case, estimates of COD were impossible. As was pointed out in the earlier North Sea inputs study, although the oxygen demand may seem very large, the capacity of the sea water outside estuaries and fjords to maintain normal oxygen levels is very high. This is due to the relative ease of oxygen transfer between the atmosphere and the sea and the fact that each sea area of 1 km² to a depth of 10 metres (10⁷ m³ in volume) contains 70 tonnes of dissolved oxygen. Thus, there appears to be little danger of reduced oxygen levels in the open sea areas of the Northeast Atlantic due to the present BOD load. Moreover, in comparison with the natural BOD load in the sea, the BOD load reported here due to pollutants is only about 2% of the natural level. However, it should be recognised that the majority of the input is to coastal waters. Localised effects of reduced oxygen could occur in certain estuaries, fjords and other areas when the BOD load is heavy and, for example, free exchange with the open sea is poor.

The inputs of nutrient nitrogen and phosphorus as reported by the various countries appear in Table 4. As with the BOD figures, not all countries reported separate figures for domestic and industrial inputs of nitrogen or phosphorus. The input of nitrogen to the study area attributed to domestic sources is 1.1 x 10⁵ tonnes/year. Phosphorus inputs from domestic sewage amount to 3.0 x 104 tonnes/year. The per capita values for nitrogen reported by the different countries varied from country to country. The value reported by Iceland was 12 grams N/day/person and by Sweden, 11 grams N/day/person. For Sweden, this represents a 2 gram/day/person decrease from the per capita nitrogen value reported in 1972 of 13 grams/day/person. Per capita figures were calculated for Norway at 11.4 grams N/day/person and England/Wales at 10.1 grams N/day/person. For phosphorus, Iceland reported a per capita value of 4 grams/day/person. The Swedish figure of 3.2 grams/day/person represents an 0.8 gram/day/person decrease from the earlier data. Calculations for Norway gave a value of 2.8 grams P/day/person and for England/Wales 3.0 grams P/day/person, which latter figure is significantly above the previous English figure of 1.6 grams P/day/person used in the North Sea study.

Information regarding the content of suspended solids in domestic sewage was only provided by a few of the countries, as shown in Table 4. In the absence of reliable <u>per capita</u> figures, no estimates could be made for those countries lacking such data. From the partial data available from Norway, England/Wales, and Northern Ireland, at least 3.9×10^5 tonnes of suspended solids are discharged via sewage into the study area per year. This figure is obviously far below the actual level of inputs.

As was found in the North Sea study, few countries have details of the input of organochlorine pesticides in domestic sewage. In fact, the only relevant data available was the input of organohalogen compounds in general found in the domestic sewage from Norway (Table 9). It is clear that there has been little further work since this gap was revealed by the North Sea report; much more work is still needed.

Although there is still a lack of empirical data on the content of metals in sewage effluents, enough information was available from English/Welsh, Swedish, Norwegian and Danish returns to compute <u>per capita</u> values for many of the metals studied (Table 7). Because in most cases these values were in fairly good agreement with one another, averages of these <u>per capita</u> figures were used to compute estimated metal inputs from domestic sewage for those countries which had been unable to provide these data. Metal estimates and data are found in Tables 5 and 6.

Of the metals studied, the one discharged in the greatest quantity was iron. The only <u>per capita</u> value available, that for England/Wales, is 75 grams/year/person. This value was used to estimate iron discharges in sewage for Scotland, Northern Ireland and Ireland. It should be noted that in making these estimates, figures for Ireland in particular are likely to be somewhat higher than the actual values. However, it was judged better to present maximum values rather than no information whatsoever. This comment applies for all other similar estimates for Ireland. These values, plus data from Norway, give a total input from these countries of 5.0×10^3 tonnes of iron per year (see Table 5).

Only England/Wales provided data on manganese. Its <u>per capita</u> figure of 10 grams Mn/year/person was utilised to estimate input figures for Scotland, Northerm Ireland and Ireland. On this basis, it was estimated that the total discharge from these areas amounts to a minimum of 300 tonnes of manganese per year in domestic sewage.

England/Wales, Norway and Sweden provided data on the content of cadmium in sewage discharges. However, the <u>per capita</u> figure from England/Wales (1.5 grams/year/person) differed so greatly from that of Sweden (0.1 grams/year/person) that no overall average could be provided. Instead, as above, the <u>per capita</u> figure for England/Wales was used to produce cadmium input estimates for Scotland, Northern Ireland, and Ireland. The total from all available information shows an input of at least 43 tonnes Cd/year.

Per capita values for copper were calculated for England/Wales (23 grams/year/person), Norway (1.2 grams/year/person), Sweden (3.8 grams/year/person) and Denmark (2.9 grams/year/person). With the exception of the English/Welsh figure, the other national averages agree rather well and were used to calculate estimated discharges for all those countries lacking these data. Although the English/Welsh data show values significantly higher than those of the other countries, these values are reported to have been derived from actual measurements. A possible cause is a difference in plumbing practices: The UK uses copper piping for most domestic plumbing and individual house storage facilities. The total copper input to the study area from estimates for nearly all participating countries amounts to about 600 tonnes/year.

Chromium values on a <u>per capita</u> basis were determined for four countries: England/Wales (3.1 grams/year/person), Norway (8.1 grams/year/person), Sweden (1.7 grams/year/person) and Denmark (3.3 grams/year/person). As these values are in reasonable agreement, their mean was used to estimate figures for those countries lacking these data. On this basis, the total input of chromium via domestic sewage effluents to the study area is estimated to be approximately 180 tonnes/year. These figures are shown in Table 6.

Determinations of nickel discharges on a <u>per capita</u> basis were made for England/Wales (6 grams/year/person), Sweden (5.6 grams/year/person) and Denmark (6.3 grams/year/person). Due to the close agreement of these figures, their mean was used to find estimates of inputs of nickel from the other countries. The total figure obtained from the available data and estimates suggests an input of around 220 tonnes of nickel per year to the study area via sewage.

Lead discharge figures for domestic sewage were provided by four countries, with <u>per capita</u> values as follows: England/Wales, 4.6 grams/year/person; Norway, 3.5 grams/year/person; Sweden, 2.3 grams/year/person; and Denmark, 11.5 grams/year/person. Discarding the high value from Denmark (because it is nearly three times higher than the other figures), the mean of 3.5 grams/year/person was used to determine estimated inputs of lead by the other countries. This procedure produces a total estimated input of lead to the study area via domestic sewage of about 250 tonnes/year. Zinc input data were also provided by four countries, with resulting per <u>capita</u> values of 28.0 grams/year/person for England/Wales, 13.2 grams/year/ person for Norway, 25 grams/year/person for Sweden and 31 grams/year/person for Denmark. With the exception of the Norwegian figure, these values are not significantly different, so the average of the three comparable figures was used to estimate inputs for the other countries, yielding an estimated input of zinc to the study area of 1.3×10^3 tonnes per year via sewage effluents.

Only a very limited amount of data were available on mercury in sewage and the resulting <u>per capita</u> values were out of agreement by one order of magnitude. Thus, only estimates for Scotland, Northern Ireland and Ireland were made, utilising the English/Welsh <u>per capita</u> figure of 0.6 grams/year/person. The total mercury input, as determined from this small amount of data is about 17 tonnes/year. This figure is clearly lower than the true value.

Inputs of Pollutants in Industrial Wastes

The replies to the questionnaire on the inputs of industrial waste are summarised in Tables 3-6. All countries, except Denmark and the Federal Republic of Germany, provided estimates of quantities of industrial effluents discharged directly into the study area. For these two countries, some values from the earlier North Sea study have been included as the best available estimates, but it must be recognised that they are very incomplete. The industrial data from the Netherlands is not particularised, but is included with the river data, as the rivers are the recipients of most industrial waste. The reply from Greenland indicated that no industries are located in the eastern portion of the country, thus no industrial waste products are discharged from the east coast.

As in the North Sea study, Belgium stated that it had very few direct discharges of industrial effluents into the sea and Denmark made a similar statement regarding the west coast of Jutland (DK4). Consequently, where information on industrial effluents had been available, both countries had included the data in the sewage discharge sections of their replies.

In general, some respondents have reported industrial and sewage discharge data as one figure. Industrial effluent values include cooling water volumes primarily only where they have been mixed with wastes before discharge. For the most part, the industrial figures reported do not include simple cooling water discharges from, e.g., power plants, because the only input contained in such water is thermal energy. This was not considered to be a problem in the earlier North Sea study and, in the absence of any new evidence to the contrary, no special attention was paid to this subject in the current study.

According to the information available, a total flow of at least $3.4 \times 10^9 \text{ m}^3$ of industrial effluents is discharged to the study area per year. However, this figure is low due to the incomplete information from Denmark and the Federal Republic of Germany. A breakdown of the industrial discharges according to industry type and area of location was provided by only one country, Norway, consequently it was not considered appropriate to include it in the tables.

The quantity of industrial effluents entering the North Sea portion of the study area amounts to at least 2.4 x 10^9 tonnes/year. This figure is 30% greater than the 1.8 x 10^9 tonnes/year reported in the earlier North Sea study. However, that value was known to be an underestimate and the higher value now is merely a reflection of somewhat better information being available.

As in the earlier North Sea study, the level of discharge of industrial effluents appears to be lower than that of domestic sewage inputs of 5.7×10^9 tonnes/year. There are two reasons for this: (1) the fact that in many countries the domestic sewage input includes at least a portion of light industrial effluent, and (2) the acknowledged incomplete data from most countries on industrial effluents directly discharged to the sea. Taking both domestic and industrial wastes together, the total discharge into the study area amounts to about 9.4 x 10^9 tonnes/year.

The major industries listed by each country are shown in Table 8. Certain industries, such as chemicals, mining and metallurgy, and oil refineries, are found in most of the countries in the study area. Other industries are more localised, such as the large proportion of pulp and paper industries located in Norway and Sweden.

Each country was asked to provide information on the content of nitrogen, phosphorus, suspended solids, metals, organochlorine pesticides and PCBs, and the BOD or COD load of industrial effluents. However, few countries were able to give data for all their coastal zones and even where this had been attempted, the information provided was incomplete. Although many of the replies give pollutant inputs resulting solely from industrial sources, a significant amount of the data involves combined industrial/domestic inputs, without an indication of the proportional distribution between the two. In the following discussion, totals are given based on those figures provided for industrial effluents only. As these totals do not include mixed figures for domestic/industrial discharge, a second total is given for each substance which includes this mixed value as well as the quoted figures for separate industrial and domestic inputs, thus giving the total estimate for domestic and industrial input.

Most countries provided data on the biochemical oxygen demand due to industrial effluents, although in several cases separate figures were not provided for industrial and domestic wastes. The total of the separately reported figures for BOD attributed to industrial waste is approximately 3.8×10^5 tonnes/year. Taken together with the data for domestic sewage and the data for combined domestic/industrial BOD, the total biochemical oxygen demand resulting from input of domestic and industrial waste is about 1.1 $\times 10^6$ tonnes/year. As with the other figures in this report, this is undoubtedly a conservative estimate. These figures are shown in Table 4.

The available data on chemical oxygen demand are shown in Table 9. As indicated in the discussion on domestic sewage, these figures represent the composite COD from all sources reported by the various countries (industrial, domestic and in some cases rivers). The figures are, however, incomplete.

Inputs of nutrient nitrogen and phosphorus in industrial effluents were reported by most countries, however, as with BOD figures, not always as values excluding the contribution from domestic sewage. The total nitrogen input reported separately to be attributed to industrial effluents is estimated as 7.0×10^4 tonnes/year. When domestic and mixed domestic/industrial figures are included, the total nitrogen input to the study area due to these sources amounts to around 2.0 x 10^5 tonnes/year. The data for total phosphorus input via industrial wastes show, as a conservative estimate, 2.5×10^4 tonnes/year entering the study area. The combined figure for all domestic, industrial and mixed discharges is 5.6×10^4 tonnes/year. These values, it must be emphasised, are conservative estimates.

Only a few countries were able to provide information on the discharge of suspended solids. Figures primarily from Norway and England/Wales give a

very incomplete total of 9.4×10^6 tonnes/year. When added to the available data on domestic sewage and mixed domestic/industrial effluents, the total obtained is 9.9×10^6 tonnes/year. This is clearly far short of the actual value due to the very incomplete data base.

Only a few countries were able to provide data on the discharge of metals in industrial effluents (see Tables 5 and 6). Because it is impossible to produce estimates on metal discharge figures for countries lacking these data, the figures for these substances necessarily fall far short of the true value.

Some information on discharges of iron in industrial effluents were reported by Norway and England/Wales, giving a joint yearly input from these two countries of at least $1.6 \ge 10^4$ tonnes/year of iron in industrial wastes. Adding this figure to the data on iron in domestic sewage and the mixed figures for domestic/industrial iron input, a total of about 2.8 $\ge 10^4$ tonnes iron/year is obtained.

No data were reported on the content of manganese in industrial waste effluents.

Cadmium contents in at least some industrial waste discharges were reported by Norway, Ireland and England/Wales, which in total discharged around 38 tonnes Cd/year into the study area. Combined with estimates on cadmium in domestic sewage, the total figure for input of cadmium/year is estimated as 80 tonnes.

The quantities of copper contained in at least some industrial effluents were reported by four countries, indicating a total input of about 890 tonnes/year. Adding the data and estimates of the copper content in domestic sewage for all countries, a total domestic and industrial discharge value of approximately 1.5×10^3 tonnes/year is obtained.

Five countries were able to provide some data on chromium discharge in industrial wastes, suggesting that at least 170 tonnes of chromium were discharged per year via industrial effluents. This figure, added to mixed data and the estimates of chromium content in domestic sewage, produces a total annual input of chromium of about 380 tonnes/year. These data are found in Table 6.

A total of approximately 170 tonnes of nickel per year was reported by three countries to be discharged into the study area via industrial effluents. When added to the estimates of nickel content in domestic sewage, a total of around 390 tonnes of nickel is found to be discharged per year.

The total quantity of lead reported to be discharged by five of the respondent countries amounts to around 790 tonnes/year. Along with estimates for lead contents in domestic sewage and a mixed domestic/industrial input value from the Netherlands, a total of at least 1.7×10^3 tonnes of lead is discharged into the study area per year.

Zinc inputs via industrial waste were reported by a majority of the countries, amounting to a total of approximately l.l x 10^4 tonnes/year. This amount rises to l.4 x 10^4 tonnes/year when mixed domestic/industrial and domestic wastes are included.

In contrast, very little information was available on mercury inputs to the study area. Data from three countries suggest a total input of only 6.3 tonnes Hg/year due to industrial sources and, including figures from several other countries, about 23 tonnes/year due to both industrial and domestic sources. These figures are clearly underestimates.

Several countries provided information in their replies on the discharge of oil, phenol, syndets and other substances via industrial effluents. As this miscellaneous information varied from country to country, it was impossible to make any overall evaluations for any of these substances. These data are contained in Table 9.

River Inputs to the Marine Environment

For many pollutants, rivers appear to be important and perhaps main pathways of transfer from land to the marine environment. The pollutant load in rivers results not only from direct domestic sewage and industrial waste discharges, but also from agricultural and other uses of the land. Agriculture can, in fact, be the main source of some pollutants. For example, the use of nitrate fertilisers can lead to major inputs of nitrates to rivers in times of heavy rainfall. Similarly, land drainage and irrigation can significantly affect the suspended particle loading of rivers. Today, the increasing use of ammonia as a nitrogen fertiliser decreases the importance of this source. However, the use of ammonia gives rise to the airborne transport of nitrogen, which will eventually reach the rivers and the sea.

It must be recognised that a major uncertainty exists with regard to river sources of pollutants concerning the possible retention or delay of a pollutant in an estuary or fjord. To date, few studies have been conducted on the transport of pollutants through estuaries. Even for substances which have been brought directly into the open sea, there is an uncertainty regarding to what extent they remain in the dynamic environment. In the absence of data to indicate precisely how significant such effects are, it has been assumed here that the total input is to the marine environment in a broad sense. Thus, for data presented in terms of pollutant loads on a river, the total value has been utilised on the assumption that the entire load eventually reaches the open sea. This will probably lead to an overestimate of the contribution of river inputs of pollutants to the marine environment, but the magnitude of this error cannot be determined at present.

Data on the total flow of river water into the study area were provided by all countries, except Norway, Belgium and Iceland, with only partial data from Sweden (see Table 3). Greenland did not report river flow because there are no domestic or industrial waste discharges into rivers in that country. The total from the reporting countries shows an annual flow of river water of about $3.2 \times 10^{11} \text{ m}^3/\text{year}$ into the study area. Of this total, $2.2 \times 10^{11} \text{ m}^3/\text{year}$, or over two-thirds, flow into the North Sea.

Of the countries reporting river data, nearly all were able to provide at least some information regarding BOD, total nitrogen, total phosphorus and suspended solids loads from the rivers.

Data on metal inputs via rivers were provided by the Netherlands, England/ Wales and, to a certain extent, Sweden. Input concentrations (in mg/m^3) for each of the metals were determined for both Dutch and English/Welsh rivers and were found to be in good agreement (see Table 7). The averages of these two sets of input concentrations were used to estimate metal inputs for all other countries which had provided information on river flow. In this way, estimates were able to be obtained for the river input of most of the metals here studied.

Several countries provided data on the river input of "total metals". These figures were not utilised here because of the uncertainty of the exact composition and the fact that iron, when included in the figure, is usually the dominant component, thus obscuring the levels of toxic metals. In view of the uncertainty referred to above regarding the proportion of river input which actually reaches the sea, no detailed discussion of the inputs of the various pollutants is given. The apparent contributions by area are shown in Tables 4-6, with summary information provided in Summary Tables 4-6.

It is probable that rivers would represent an important source of input of pesticides, herbicides and other such contaminants to the marine environment. Little or no data on this were provided and it is not possible to formulate any estimates regarding the magnitude of this possible input.

Inputs of Pollutants by Marine Dumping

The intentional dumping of harmful and potentially harmful substances into the study area has been regulated by international law since the entry into force in April 1974 of the Oslo Convention for the Prevention of Marine Pollution by Dumping from Ships and Aircraft. Under this Convention, the dumping of certain substances, e.g., mercury, cadmium and their compounds and harmful organohalogen compounds (listed in Annex I to the Convention) is prohibited, unless they occur only as trace contaminants in waste to which they have not been added for the purpose of being dumped. Other substances (listed in Annex II), for example, arsenic, lead, copper, zinc and their compounds and pesticides not listed in Annex I, may be dumped only after an appropriate permit has been obtained. Member States must submit annual data on all permits granted and dumping activities to the Oslo Commission.

In the replies to the Inputs Questionnaire, nearly all countries reported marine dumping of harbour dredgings and most reported dumping of sewage sludge, although not all countries provided detailed data on these activities. Dumping of at least some industrial wastes was also reported by nearly all countries. Only one country, Sweden, indicated that it has a national ban on the dumping of industrial wastes into the sea, which it has enforced for several years. A summary of the dumping information contained in the replies, most of which covers the year 1975, is found in Table 10.

From this information, it appears that a total of 8.2 x 107 tonnes of waste is dumped into the Oslo Convention area per year. Of this amount, nearly 75%, or 6.0 x 107 tonnes/year, is harbour and river dredgings. Sewage sludge represents the next largest quantity of waste dumped, estimated at 9.6 x 10⁶ tonnes/year. Approximately 3.2×10^6 tonnes of industrial waste are dumped per year, of which about 9.3×10^5 tonnes are from titanium dioxide production. The origin of industrial wastes was not always indicated in the replies, but it appears that wastes from chemical industries are also a significant source.

Some of the countries were able to provide a breakdown of the amounts of heavy metals, organic compounds and other substances contained in these wastes. On the basis of this information, which is far from complete, partial totals may be estimated for the input of various substances.

Of the prohibited substances listed in Annex I to the Oslo Convention, an estimated 35 tonnes of mercury and 89 tonnes of cadmium per year reach the sea via dumped waste, primarily in harbour and river dredgings. Approximately 37 tonnes/year of chlorinated hydrocarbons are contained in dumped industrial waste and, to a smaller extent, dredgings. An additional unknown amount of chlorinated hydrocarbons are deposited as a result of incomplete combustion during incineration of wastes (see discussion below). Of the Annex II substances, approximately 4 250 tonnes lead/year, 2 430 tonnes copper/year and 9 130 tonnes zinc/year were contained in dumped wastes. Approximately 23 tonnes of arsenic were deposited in the sea, primarily via industrial wastes, but 3 tonnes were dumped in sealed containers. A total of 205 tonnes of cyanide was reported dumped by England/Wales in containers into deep water in the Atlantic Ocean. Non-regulated heavy metals reported to be found in wastes included chromium (2 710 tonnes/year) and nickel (530 tonnes/year).

Some of the replies indicated the amounts of organic matter and nutrients contained in the wastes. This partial data suggests that annually at least 15 100 tonnes of organic matter, 22 200 tonnes nitrogen and 13 050 tonnes phosphorus are deposited in the study area via dumpings. The Netherlands and Denmark reported on the COD load contained in dumped wastes, which totalled 21 000 tonnes/year for these two countries.

Only the Netherlands reported on the disposal of wastes via incineration at sea in special vessels. This information is found at the end of Table 10. In 1975, approximately 40 250 tonnes of waste were incinerated at sea, of which at least 82% were chlorinated hydrocarbons. The respondent assumed that the efficiency of combustion was $\geq 99.9\%$, so that the maximum input of chlorinated hydrocarbons as a result would be ≤ 40 tonnes. Studies have been undertaken by the Netherlands to determine more precisely the efficiency of incineration in different types of vessels.

Input of Pollutants via Atmospheric Deposition

Five countries, Sweden, Denmark, Ireland, England and Scotland, reported the results of programmes designed to measure the input of pollutants via atmospheric deposition. Summaries of the results of these investigations are contained in Table 11.

Sweden has a station network for air and precipitation chemistry which is part of the European Atmospheric Chemistry Network. Samples of air and precipitation have been collected monthly since 1967 at 38 stations. These samples are analysed for a number of common anions and cations, pH and conductivity. The results are used to estimate the airborne nitrogen $(NO_3 + NH_4)$ and acid transported to the sea.

Another Swedish programme, investigating airborne fallout of chlorinated hydrocarbons, shows that significant amounts of PCBs and DDT are transported by the air. Due to fluctuations in the observations, it was impossible to calculate total fallout, however a conservative estimate would be that 700 kg PCBs and 300 kg DDT are transported annually to the North Sea. Sites of measurement and corresponding levels of fallout can be found in Reference 8.

Two Danish programmes are concerned with the airborne fallout of heavy metals. One investigation, conducted in the Little Belt region, has been carried out using stations too near an industrial area to provide data useful to this input study. The other investigation, carried out by the University of Copenhagen, uses land-based stations situated far from all potential sources of pollution. Fourteen stations are located in Denmark, with one on the Faroe Islands and another on the west coast of Sweden. The results of analysis of rainwater samples for Pb, Cd, Cu, Zn, Na, Mg, Fe and Mn, as reported by the investigator in mg m⁻²yr⁻¹, are shown in Table 11. These results have been converted to concentrations of the metals in rainwater in $\mu g/l$ for comparison with the results of the English/Scottish investigation to be discussed next. Additionally, the total annual estimates of atmospheric fallout of these metals into the North Sea have been calculated based on the initial data.

An investigation of the atmospheric input of trace elements to the North Sea has also been jointly conducted by several laboratories in England and Scotland. Atmospheric inputs were studied in 1972-73 (reported in Reference 1) and from July 1974 - June 1976 (reported in Reference 2). Results from this second study are shown in Table 11. Seven sampling stations from Norway and down the western side of the North Sea to Holland were chosen, located as far as practicable from local sources of contamination and from the immediate influence of sea-spray. Analyses were done for 23 trace elements and heavy metals and annual mean values for their total and dissolved concentrations in rain water were determined. Values for the total content of Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb and Zn in the North Sea were obtained by direct measurement of the concentrations in sea water and integrated over the whole sea.

Results of this investigation show that, for the period mid-1974 to mid-1975, the estimated annual input by rain compared with the content of the sea was about 50% for iron and about 25% for lead. For zinc, the percentage annual atmospheric input was approximately 13%. The atmospheric input of mercury was about 1% of the amount present in the sea, while for cadmium (dissolved component) this value was about 10%. For copper and manganese, annual atmospheric input amounted to between 10% and 15% of the content of the sea and for nickel and cobalt it was about 5%.

A study of the deposition of heavy metals has been conducted by Scotland around the Firth of Forth, where six stations were set up. Monthly samples were collected from February to December 1975 and analysed for Na, Pb, Cu, Zn and Hg. A summary of the results is contained in Table 11, with the entire report in Reference 5. The results show that the deposition of Pb, Cu, and Zn is related to rainfall and may thus be collected through "wet" deposition. In contrast, the deposition of Hg seems to display a negative correlation with rainfall and, therefore, appears to result from a constant fallout, possibly through "dry" deposition.

Another Scottish programme has investigated the atmospheric input of organochlorines to the North Sea. Quarterly samples were collected from June 1975 to May 1976 at seven coastal stations from the Shetland Islands to southeast England. The samples were analysed for PCBs, the DDT group, dieldrin, ∞ -HCH, and $\overleftarrow{\Delta}$ -HCH. The preliminary results are reported in Reference 6; first-order estimates of the annual inputs to the North Sea are quoted in Table 11. The results indicate that only the deposition rate of ∞ -HCH seemed to be directly associated with rainfall. It appeared likely that, for the other substances, dry deposition is the primary means of fallout.

Ireland has provided some information on an air pollution monitoring programme measuring SO₂, smoke and dust at stations located near towns. This information has not, however, been related to the actual deposition of these substances into the sea.

The results of the studies reported here show that progress is clearly being made with respect to the estimation of atmospheric input of pollutants to the North Sea. Nonetheless, much work must still be done before estimates can be made for the open areas of the North Atlantic.

Summary and Conclusions

This study of the input of pollutants to the Oslo Commission Area has extended our knowledge in several important ways: (1) the sea area for which we have input estimates has been considerably expanded in the northern and western coastal areas of the Oslo Commission, (2) information has been collected for the first time on the input of pollutants via rivers to the area, and (3) further studies have produced better estimates of atmospheric deposition of pollutants.

In spite of the substantial advance which this input study represents, it must be recognised that there are serious limitations in the accuracy and comprehensiveness of much of the data presented. As was pointed out in the discussion, the data on dumping now appear to be complete and this no doubt reflects the need brought about by the Oslo Convention that the countries party to that Convention maintain accurate records of the amounts and composition of materials dumped and the positions of such dumpings.

The summary table of inputs (Table 1) provides a simple compilation of the known inputs to the study area. It should be recognised that the distribution of these known inputs is not equally dispersed throughout the area and the different limitations on the data summarised make it very difficult and probably dangerous to make comparisons of the different sources of inputs. Thus, although it is clear that atmospheric input is a significant source of several metals, it would be completely wrong to assume that the input of, e.g., zinc via the atmosphere is roughly the same as that from industrial sources or that the amount of nickel dumped at sea is roughly the same as the amount entering in domestic and industrial sewage. The completeness of the two sets of data is simply not equal. The industrial and sewage data are far from complete and in many cases industrial input data are either absent or lost in the sewage input data.

A further and perhaps particularly good example is afforded by mercury. The annual input of mercury to the world's oceans has been estimated to be about 10 000 tonnes/year, roughly equally distributed between man-influenced activities and natural sources. Of this, at least 1 000 tons must enter the study area and yet only about 100 tons can be accounted for. The dumping and atmospheric inputs (North Sea only) are probably fairly accurate but the industrial input is known to be far from complete and that from domestic and industrial sewage is based on very tenuous data.

With a careful reading of the preceding text, some of these deficiencies are obvious, others less so. A great deal of further work will be required in order to improve the present knowledge. In particular, much better information is needed on the pollutant content of sewage effluents. Far more complete data are required on industrial inputs, both in terms of quantity and in terms of the types and amounts of potentially harmful substances.

Input by atmospheric deposition is another area where more research is required to allow better estimates, not only for the North Sea, but for the North Atlantic. There has been enough progress in the North Sea that it might be possible to establish more international collaboration in air-fallout studies, which could certainly be beneficial to this assessment.

Finally, information is completely lacking from the southern portion of the Oslo Commission Area, namely inputs from France, Spain and Portugal. It is important that data be provided for these regions to allow a complete picture of inputs to the entire area.

As can be seen by the relatively complete data on dumping inputs, the stimulus provided by the relevant Commissions is very important to the advancement of work on the study of pollutants. It is hoped that this stimulus will result in more detailed input studies in the future.

Source	Total Flow (10 ⁶ m ³ /yr)							Inputs						
Source	(10° m ³ /yr)	Nitrogen	Phosphorus	Suspended Solids	BOD	Iron	Manganese	Cadmium	Copper	Chromium	Nickel	Lead	Zinc	Mercury
Domestic Sewage	5 664.4	109 999	29 759	388 000	452 000	4 958	310.4	[42.67	<u>[</u> 598. <u>2</u> 7	[175.]]	<u>/</u> 218. <u>7</u> 7	<u>[</u> 247.57	[1 279.]]	16.97
Industrial Waste	3 432.1	70 255	25 042	9 354 100	395 000	16 051	-	37.7	890.8	169.8	172.8	785	11 052.7	6.34
Domestic + Industrial	9 392.8	202 481	56 249	9 893 100	1 125 000	28 336	-	<u>[80.37</u>	1 492.0	<u> </u> 381.57	<u> </u>	1 726.5	13 719.4	23.33
River Water	316 514	973 010	94 794	5 188 000	938 000	246 588	<i>[</i> 30 2077	<u>[420.97</u>	<u>2 786.3</u>	[2 677.8]	2 417.57	[3 830. <u>7</u>]	19 275.17	36.43
Dumping Activities	-	22 202	13 048	-	-	-	-	89	2 426	2 712	527	4 248	9 131	35
Atmospheric Deposition	-	-	-	-	17	105 000+)	4 100 ⁺⁾	530 ⁺⁾	4 900 ⁺⁾	720 ⁺)	1 650+)	5 600 ⁺⁾	14 500 ⁺⁾	5.6+)
Total	325 906.8	1 197 693	164 091	15 081 100	2 063 000	379 924	34 617.4	1 120.2	11 604.3	6 491.3	4 986	15 405.2	56 625.5	100.36

Table 1. Summary of estimated inputs of pollutants (tonnes/year).

+) North Sea only.

NOTE: Figures given in square brackets are estimates made by the compiler of the data.

Furthermore, it must be recognised that this type of data is essential for the proper interpretation of monitoring data and that the scientific assessment of monitoring data by bodies such as ICES will be severely hampered until accurate data are available.

The report, as presented so far, essentially summarises the raw data. No attempt has yet been made to assess it in terms of relative distribution of pollutant input or in relation to levels of contamination in particular areas. This will be the next and perhaps more difficult stage, especially bearing in mind the incomplete nature of the data now available.

REFERENCES

- 1. CAMBRAY, R.S., D.F. JEFFERIES and G. TOPPING, 1974. An estimate of the input of atmospheric trace elements into the North Sea and Clyde Sea (1972-73), AERE-R7733.
- 2. CAMBRAY, R.S., D.F. JEFFERIES and G. TOPPING, 1976. The atmospheric input of trace elements to the North Sea. ICES Doc. C.M.1976/E:17 (mimeo).
- 3. CAWSE, P.A., 1974. A survey of atmospheric trace elements in the U.K. (1972-73), AERE-R7669.
- 4. PEIRSON, D.H., P.A. CAWSE, L. SALMON and R.S. CAMBRAY, 1973. Trace elements in the atmospheric environment. Nature 241: 252-256.
- 5. DAVIES, I.M., 1976. The atmospheric deposition of some heavy metals around the Firth of Forth. ICES Doc. C.M.1976/E:41 (mimeo).
- 6. HOLDEN, A.V., 1976. Input of organochlorines to the North Sea via atmospheric deposition. ICES Doc. C.M.1976/E:46 (mimeo).
- 7. SODERGREN, A., 1972. Nature 236: 95-97.
- 8. BENGTSON, S.-A. and A. SODERGREN, 1974. DDT and PCB residues in airborne fallout and animals in Iceland. Ambio 3(2), 84-86.
- 9. SODERGREN, A. Environmental quality and safety. Supp.3, Pesticides, 803-810.

Country	Code	Full description
NORWAY	Nl	Oest-fold
1.01.111	N2	Oslo/Akershus
	N3	Buskerud
2	N4	West-fold
	N5	Telemark
	N6	Aust-Agder
	N7	West-Agder
	N8	Rogaland
	N9	Hordaland
	NIO	Sogn and Fjordane
	Nll	Møre and Romsdal
	N1 2	Sør-Trøndelag
	N13	Nord-Trøndelag
	N14	Nordland
	N15	Troms
	N16	Finmark
SWEDEN	Sl	Mouth of River Enningsclalsälven - west of River Orekilsälven
	S 2	West of River Orekilsälven - north of River Nordre Alv
	S 3	North of Nordre Alv - south of River Göta Alv
	S4	South of River Göta Alv - north of River Atran
	S 5	North of River Atran - west of Halmstad
	S6	West of Halmstad-Kullen
DENMARK	DKl	From Gilbjerg Head to Gniben
	DK2	From Hassencere to Skagen
	DK3	The Limfjord
	DK4	West coast of Jutland from Skagen to German border, excluding the Limfjord
	DK5	Faroe Islands
GERMANY, FED.REP.	Gl	Niedersachsen (coast west of the River Elbe)
OF	G2	Schleswig-Holstein (coast north of the River Elbe)
	G3	Hanburg
	G4	Bremen
	G5	Bremerhaven
NETHERLANDS	NLL	Western Scelt Estuary
	NL2	Southern Delta Coast
	NL3	Northern Delta Coast
	NL4	Closed Holland Coast
	NL5	Wadden Coast
	NL6	Eems Dollard Estuary

Table 2. Key to area codes for each country.

/Cont'd.

Table 2 (Continued)

Country	Code	Full description
ENGLAND and WALES	El	Scotland/England border-River Tyne (North limit)
	E2	River Tyne Estuary
	E2a	River Tyne to River Wear
	E3	River Wear
	E4	River Wear to River Tees
	E5	River Tees Estuary
	E6	River Tees to Flamborough Head
	$\mathbf{E7}$	Flamborough Head to Spurn Head
	E7a	Humber Estuary
	E8	Humber to the Wash (Gibraltar Point)
	E9	The Wash (Gibraltar Point to Hunstanton)
	ElO	Gore Point to Colne Point
	Ell	Colne Point to Haven Point
	E12	River Thames (Haven Point to Long Rock Whitstable)
	El3	Whitstable to Hastings Pier
	E14	Hastings Pier to Selsey Bill
	E15	Hengistbury Head (Southern/Wessex Water Authority)
	E16	Pokers Pool (Lyme Regis)
	El7	Start Point
	E18	Lands End
	E19	Hartland Point
	E20	Foreland Point
	E21	Severn Beach (Wessex/Severn Trent Water Authority)
	E22	Beachley Point
	E23	Liverock Point
	E24	Worms Head
	E25	St. Davids Head
	E26	St. Davids Head to Braich y Pwll
	E27	Braich y Pwll to Dove Point Hoylake
	E28	Mersey Estuary
	E29	Marshside to Haverigg Point
	E30	Haverigg Point to Barnkirk Point (Scottish Border)
SCOTLAND	SCl	English border to Ballantrae
	SC2	Ballantrae to Sound of Mull
	SC3	From Inverness to Montrose
	SC4	Firth of Tay
	SC5	Firth of Forth
IRELAND	IRL	From UK border to Dungarvan
	IR2	From Dungarvan to River Shannon (Kerry Head)
	IR3	From Kerry Head to Bundoran
	IR4	Donegal
ICELAND	ICl	Faxa Bay
	IC2	Rest of Iceland
GREENLAND	GR1	East Greenland

					Waste Water	:			
Country and Area	Populațion	Domestic		Treat	ment (%)		Industrial	Domestic +	Biver Water x 10 ⁶ m ³ /yr
country and Arca	x 10 ³	Sewage x 10 ⁶ m ³ /yr	Untreated	Settlement	Settlement .+ Biological	Additional	Waste x 10 ⁶ m ³ /yr	Industrial x 10 ⁶ m ³ /yr	х 10° m9/уг
<u>NORWAY</u> N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N12 N13 N14 N15 N16	145 814 67 130 74 36.9 71 170 - 40.6 114.9 157.1 62 131.7 65.9 52.8	13 58 6 12 7 4 6 15 20 4 10 14 57 12 6 5	7 90 4 97 5 84 5 98 0 99 4 88 0 99 4 99 7 97 2 97 5 95		4+) 4+) 2+) 3+) 0 0 0 12+) 0.8 0.7 2 1 7 4	0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	184 15 329 13 318 4 238 167 71 12 38 34 44 154 2 2 42	197 73 335 25 325 8 244 182 91 16 48 48 101 166 8 47	
Total	2 132.9	249					1 665	1 914	
<u>SWEDEN</u> S1 S2 S3 S4 S5 S6	38 60 534 74.5 4.4 101.6	5.4 ¹) 8.4 96.0 10.1 0.9 11.5	29 [#]) 18 [#] 70 [#] 6 [#] 5 [#])	50 [%]) 24 [%] 6 [%] 5 [%] 47 [%] 14	21 ^x) 58 ^x 13 ^x 89 ^x 44 ^x 54	0 8 0 1 1 1 8 8	2.5 3.1 6.7 50.0 -	7.9 11.5 102.7 60.1 0.9 11.6	- 16 000 - -
Total	812.5	132.3					62.4	194.7	24 800
DENMARK DK1 DK2 DK3 DK4 DK5	10 165 500 212 39	1 ²⁾ 44 (65) (28) (5)	50 - -	50 	0 - - -	0 - - -	neg	1	1 430 2 200 2 000 -
Total	926	(143)					21 ^{#)}	61 ^{₩)}	5 630

Table 3. Contributing populations, waste water and river water flow.

+) Biological treatment only. 1) Where actual measurements were not conducted, respondent made estimates based on a <u>per capita</u> water consumption of 400 l/day/person.

Cont'd.

2) Where actual measurements were not conducted, respondent made estimates based on a per capita water consumption of 130 m³/yr/person.

*) Data from Coop.Res.Rep. No.39 (1974).

Table 3 (Continued)

					Waste Water	2			
Country and Area	Population x 10 ³	Domestic		Treat	ment (%)		Industrial	Domestic +	River Water
,	x 10 ⁹	Sewage x 10 ⁶ m ⁵ /yr	Untreated	Settlement	Settlement + Biological	Additional	Waste x 10 ⁶ m ³ /yr	r Industrial x 10 ⁶ m ³ /yr 1 278 41 132 ^w 13 ^w (1 737) (1 737) 96 174 ^w) 11 11 23 111 1 6 43 25 18 8 8 269 46	Water x 10 ⁶ m ³ /yr
GERMANY, FED.REP.									
G1 G2 G3 G4 G5	- 300 [*] 1 850 [*] 600 [*] 142 [*]	1 278 39 [*]) - 99 10 [*])	0*) 25* 10* 100*	-**) 43** 90** 0**	54#) 15#) 0#)	5#) 0#) 0#)	2 ³ *) 174 3**	1.74	2 200 27 400 9 100
Total	2 892 ^{*)}	(1 426)					179 ^{*)}	(1 737)	38 700
NLL NL2 NL3 NL4 NL5 NL6								96	4 407 1 577 67 840 25 893 16 670 1 034
Total	2 195 ^{*)}	113 ^{**)}	75 ^{*)}	25 ^{**)}	0 ^{≭)}	0 ^{**)}	61 ^{¥)}	174 ^{≭)}	117 421
BELGIUM	250	10	90	0	10	0	1	11	-
ENGLAND AND WALES E1 E2 E2 E3 E4 E5 E6 E7 E7 E7 E8 E9 E10 E11 E12 E13 E14 E15 E14 E15 E14 E15 E16 E17 E18 E19 E19 E20	280 944 18 190 281 385 - 144 889 153 185 685 313 6 576 935 948 337 489 472 204 194	23 108 1 43 25 18 8 170 46 39 71 53 1 027 38 64 93 31 40 47 11 9	79 100 100 66 100 92 90 100 64 0 16 31 0 2 84 77 47 33 62 67 89 91	11 0 0 0 1 0 0 11 1 17 6 4 10 0 6 3 0 8 3 0 7	10 0 34 0 7 10 0 25 99 67 63 96 88 16 17 51 67 30 30 11 2		- 3 neg. - - 99 - 4 5 3 537 10 0 275 3 2 12 1 1 neg.	111 1 43 25 18 8 269	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

*) Data from Coop.Res.Rep. No.39 (1974).

 Sections 1, 2, 3, 5 and 6 are river mouths, thus there are no domestic or industrial figures. England and Wales (Continued)

- 23 -

Table 3 (Continued) (England and Wales)

					Waste Water					
Country and Area	Population	Domestic		Treat	ment (%)		Industrial	Domestic +	River Water x 10 ⁶ m ³ /yr	
	x 10 ³	Sewage x 10 ⁶ m ³ /yr	Untreated	Settlement	Settlement + Biological	Additional	Waste x 10 ⁶ m ³ /yr	Industrial x 10 ⁶ m ³ /yr	x 10° m/yr	
ENGLAND AND WALES E21 E22 E23 E24 E25 E26 E26 E27 E28 E29 E30	269 642 - - 102 940 995 113	18 101 - 142 164 102 141 153 7	67 31 - 64 46 26 83 47 98	5 59 - 12 34 2 15 19 1	28 10 - 24 20 72 2 34 2		5 114 - 17 - 43 58 31 47	23 215 - 159 164 145 199 184 54	1 067 6 989 - 3 112 3 590 1 872 1 296 3 379 3 453	
Total	21 043	2 809				-	1 269	4 078	54 482	
SCOTLAND										
SC1 SC2 SC3 SC4 SC5	62 2 465 - 294 942	(7) - 160	27	- 3 -	- 70 - -	- - -	- - 107	11 285 - 39 267	5 530 15 510 4 300 3 770 3 200	
Total	3 763	167					111	602	32 310	
NORTHERN IRELAND	(160)	(255)	22	75	3	0	2	(257)	3 126	
IRELAND IRL IR2 IR3 IR4	1 605 439 760 174	/ <u>176</u> 74) 7_48_7 7_84_7 7_19_7						/ 176_7 / 48_7 / 84_7 / 19_7	9 855 7 450 15 440 7 300	
Total	2 978	<u>[</u> 327 <u>]</u>	46	52	1	0	56.7	<u>[</u> 383 .]]	40 045	
ICELAND ICL IC2	130 45	26 7	Ξ		-	-	-	-	-	
Total	175	33					4	37	-	
<u>GREENLAND</u> Gl	3	0.1	100	0	0	0	o	0.1	-0	

 Figures estimated on basis of average per capita water consumption of 0.3 m³/person/day. Cont'd.

- 24 -

Summary Table 3.

Country	Population x 10 ³	Domestic Sewage (x 10 ⁶ m ³ /yr)	Industrial Waste (x 10 ⁶ m ³ /yr)	Domestic + Industrial (x 10 ⁶ m ³ /yr)	River Water (x 10 ⁶ m ³ /yr)
NORWAY	2 132.9	249	1 665	1 914	-
SWEDEN	812.5	132.3	62.4	194.7	24 800
DENMARK	926	(143)	21 ^{#)}	61 ^{*)}	5 630
GERMANY, FED.REP. OF	2 892 ^{*)}	(1 426)	179 ^{*)}	(1 737)	38 700
NETHERLANDS	2 195 ^{*)}	113 ^{**)}	61 *)	174 ^{*)}	117 421
BELGIUM	250	10	1	11	-
ENGLAND/WALES	21 043	2 809	1 269	4 078	54 482
SCOTLAND	3 763	167	111	602	32 310
N. IRELAND	(160)	(255)	2	(257)	3 126
IRELAND	2 978	[327]	56.7	<u> </u>	40 045
ICELAND	175	33	4	37	_
GREENLAND	3	0.1	0	0.1	
TOTAL	37 330.4	5 664.4	3 432.1	9 449.5	316 514

*) Data from Coop.Res.Rep. No.39 (1974).

1 25

Country and Area	To	tal Nitrog	gen (tonnes	/yr)	То	tal Phosp	horus (tonn	es/yr)		Suspend (x 10 ³	ed Solids tonnes/yr)		Bi	ochemica (x 10	1 Oxygen I 3 tonnes/y)emand. /r)
	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industria
NORWAY																
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N10 N11 N12 N13 N14	1 628 2 996 453 1 484 9 693 259 546 3 953 2 104 861 3 110 1 560 1 670 4 038		577 2 313 267 523 300 148 311 707 972 165 469 676 265 561	1 051 683 186 961 9 593 111 235 3 246 1 132 696 2 641 884 1 405 3 477	209 365 79 274 65 89 702 1 039 90 350 214 124 937		142 286 66 129 74 36 72 162 223 41 120 167 67 140	67 79 13 200 29 17 540 816 49 230 47 57 797	130.86 4.86 21.81 4.59 26.02 1.51 3.73 14.31 88.32 2.35 9.70 73.50 1 104.85 2 603.54		1.16 2.43 0.46 1.06 0.29 0.57 1.46 2.03 0.31 0.92 1.66 0.54 1.18	129.7 2.43 21.35 3.53 25.41 1.22 3.16 12.85 86.29 2.04 8.78 71.84 1 104.31 2 602.36	72.35 8.73 61.79 4.90 17.90 2.37 7.67 12.49 9.99 4.26 16.80 9.00 8.10 8.13		3.12 5.76 1.35 2.67 1.55 0.78 1.57 3.03 4.78 0.79 12.88 3.92 1.57 3.20	69.23 2.97 60.44 2.23 16.35 1.59 6.10 9.46 5.21 3.47 3.92 5.08 6.53 4.93
N15 N16	841 942	-	276 230	565 712	124 132	-	69 57	55 75	6.12 3 303.26	-	0.85 0.46	5.27 3 302.80	4.81 5.64		1.58	3.23 4.42
Total	36 338	-	8 760	27 578	4 965	-	1 851	3 114	7 399.33	-	15.99	7 383.34	254.93	-	49.77	205.16
<u>SWEDEN</u> S2 S3 S4 S5 S6	454 756 11 806 4 140 3 011 5 850	300 710 10 000 3 800 3 000 5 600	130 ⁵) 43 1 800 180 11 250	24 3 6 160 -	78 75 1 153 384 162 431	22 55 700 300 160 410	53 ⁵⁾ 20 270 52 2 21	. 3 - 183 - 32 	0.07 0.01 - - -			0.07 0.01 - - -	2.02 2.43 41.21 8.41 0.02 1.32	0.87 2.20 38.0 - -	0.97 ⁶⁾ 0.23 3.20 1.01 0.02 1.20	0.18 0.01 7.4 0.12
Total	26 017	23 410	2 414	193	2 283	1 647	418	218	0.08	÷.	-	0.08	55.41	41.07	6.63	7.71
DENMARK DK1 DK2 DK3 DK4 DK5	200 11 400 10 800 (9 900) 200	156 9 120 6 696 (3 900)	1 824 ⁷) 3 564 (4 400)	456+) 540+) (1 600)	neg. 1 000 1 300 -	- 480 247 -	-4907) 910	- 30 143 -	neg.				0.4 19.7 20.4 (10.0) (0.8)	neg. 5.32 10.81 4.0	0.24 ⁸⁾ 3.74 7.96 6.0	0.16 10.64 1.63
Total	32 500	19 872	9 788	2 596	2 300	727	1 400	173					51.3	20.13	17.94	12.43

Table 4. Estimates of inputs of nutrients, suspended solids, and BOD.

+) Fish farms only. 5) Where actual measurements were not taken, respondent estimated total nitrogen and total phosphorus at: Total N 11 g/day/person; Total P 3.2 g/day/person, reduced by treatment as follows:

	Sedimentation	Biological	Chemical	Biological + Chemical
Total N	10%	35%	20%	40%
Total P	10%	25%	90%	90%

6) BOD is BOD7. Where actual measurements were not taken, respondent calculated values using BOD load as 70 g/day/person for untreated sewage, reduced by treatment as follows: sedimentation 30%, biological 80%, chemical 60%, and biological and chemical 90%.

7) Where actual measurements were not taken, respondent estimated total nitrogen and total phosphorus as follows (in kg/yr/person):

	Untreated	Sedimented	Biological
Total N	4.4	3.9	3
Total P	1.43	1.2	l

8) Where actual measurements were not taken, respondent calculated values using BOD load as 22 kg/yr/person for untreated sewage, 16 kg/yr/person with sedimentation treatment, and 2 kg/yr/person with biological treatment.

Table 4 (Continued)

Country and Amo	To	tal Nitrog	en (tonnes	/yr)	To	tal Phroph	orus (tonne	s/yr)			ed Solids tonnes/yr)		Bi	ochemica (x 10	1 Oxygen D 3 tonnes/y	
Country and Area	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial
GERMANY, FED.REP.			<u> </u>	·			·								·	
Gl	370		3	70	2	-	2		60	60	2	-	7	1.00	7	
G2 G3	137 000	137 000	-		5 500	5 500 20 000 ⁹)	-		800	- 800		1.	-			
G4 G5	5 000	5 000	-		20 000	20 00097	-	6 6	340 -	340 -	-	-	-43	-	43	
Total	142 370	142 000	3	70	25 502	25 500	2		1 200	1 200	-	-	50	-	50)
NETHERLANDS			-	~			<u> </u>	·				· · · · ·				~
NLL	48 230	48 230	-		6 770	6 770 440	-	6					48.6	48.6 >2.08	-	
NL2 NL3	4 730 414 950	4 730 414 950	-		440 39 610	39 610	-		1 865	1 865			355.22	355.22		
NL4 NL5	28 140 65 700	20 870 65 700	7 2	70	2 890 5 350	1 900 5 350	99		80 126	126	6	30	50.02 114.84	16.71	33	.31
NL6	18 510	18 510			2 590	2 590	-		-	neg.			46.75	46.75		
Total	580 260	572 990	7 2	:70	57 650	56 660	99	-	2 071	1 991	8	30	617.51	584.20	33	5.31
BELGIUM	1 600*	-	16	600 [*])	200*	-	20	0 ^{*)}	-				7.5		7	·•5
ENGLAND/WALES E1 E2 E2 E3 E4 E5 E6 E7 E7 E7 E7 E7 E1 E1 E12 E12 E12 E12 E12 E14 E15 E16 E16 E17 E18 E19 E20	4 672 4 270 73 1 934 1 032 19 600 1 614 402 52 852 622 18 505 6 851 3 468 59 896 3 322 5 219 8 395 9 818 6 534 7 702 1 862 3 322	3 614 876 1 168 10 ³ 1 752 694 41 537 438 16 936 3 686 3 686 2 190 31 280 1 424 2 117 3 394 8 541 4 818 5 950 1 278 2 847	1 058 3 394 - 766 1 022 1 423 920 402 6 387 184 1 496 3 139 1 278 24 820 1 862 3 102 3 577 1 241 1 716 1 752 584 475	- - - - - - - - - - - - - -	766 1 102 18 474 292 1 179 270 100 8 763 30 1 570 1 570 1 570 1 058 987 8 030 694 1 058 1 095 694 511 620 146 110	474 190 - 292 - 219 - 584 - 1 168 110 2992 110 ^a) 146 182 110 ^a) 146 182 36 ^a) -	292 912 - 182 292 412 270 110 1 719 30 402 912 695 7 920 548 876 1 022 292 475 620 146 110	- - 548 - - - 36 neg. - - - - - - -	39.23 28.25 0.4 12.30 6.46 112.68 19.76 2.63 1 100.58 0.30 71.61 29.38 7.62 326.87 20.87 80.74 49.06 51.94 112.85 94.13 170.48 102.75	33.03 11.79 77 13.07 14.38 123.37 	6.20 16.46 3.83 6.46 8.36 5.38 2.63 6.31 0.30 3.83 14.12 1.53 45.73 13.65 18.18 17.85 4.12 10.62 8.54 3.18	- - 91.25 - 970.90 - 7.45 0.44 0.18 92.38 0.40 25.59 17.78 0.44 21.75 2.99 55.00 neg.	14.6640.220.466.136.4710.586.212.6387.490.2718.8716.761.92103.5615.4020.027.379.2415.1113.254.236.75	7.88 2.63 0 1.46 0.01 2.19 0.84 - - 35.66 0.11 9.38 1.53 0.75 22.78 1.97 1.82 1.97 5.11 5.58 3.65 0.65 0.65 0.65	$\begin{array}{c} 6.78\\ 35.11\\ 0.46\\ 3.76\\ 6.46\\ 8.32\\ 5.37\\ 2.63\\ 8.14\\ 0.16\\ 5.77\\ 14.24\\ 1.10\\ 52.78\\ 12.19\\ 18.18\\ 17.30\\ 4.02\\ 9.53\\ 9.53\\ 3.61\\ 3.21 \end{array}$	- 2.48 0 0.91 - 0.07 - 3.72 0.99 0.07 28.00 1.24 36.5 8.14 0.11 neg. 0.07 neg. 0.01

9) Value for PO₄-P only.
*) Data from Coop.Res.Rep. No.39 (1974).

a) Incomplete data.

England and Wales (Cont'd)

Table 4	(Continued)) ((England	and	Wales))
---------	-------------	-----	----------	-----	--------	---

Country and Area	Τc	otal Nitrog	en (tonnes/	yr)	Tota	l Phospho	orus (tonne	s/yr)		Suspend (x 103	led Solids tonnes/yr)		Bi	Lochemica (x 10	1 Oxygen I 3 tonnes/y	Demand Tr)
	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industria
ENGLAND/WALES											14					
E21 E22	5 074 25 989	4 088 19 199	840 4 782	146 2 008	767 4 085	548 1 533	219 2 117	- 438	20.15 216.70	14.27 179.87	4.49 16.79	1.39 20.04	10.36 50.92	4.16 13.61	4.89 13.91	1.31 23.40
E23 E24 E25	6 643 3 328 ^a) 4 161	- 1 102 ^{a)} 2 993	2 226 ^a) 730	- 438	183 142 ^a) 394	- 51 ^a) 179	- ₉₁ a) 179	- 36	115.70 99.86 52.86	76.61 49.09	- 23.25 3.50	- 0.27	17.41 13.85	- 3.43 9.56	- 13.98 3.65	0.64
E26 E27 E28	3 603 4 173 23 561	2 884 1 716 14 856	719 2 201 5 785	- 256 2 920	288 543 3 362	84 73 1 314	204 470 1 829	- 219	33.69 74.09 217.36	30.37 62.67 95.56	3.32 7.70 81.58	3.72 40.22	8.54 14.97 112.02	5.26 3.69 18.10	3.28 7.56 67.49	3.72 26.43
E29 E30	15 659 4 312	6 826 2 993	3 869 407	4 964 912	2 055 14 393	927 485	1 128 111	13 797	112.38 718.33	76.69 113.52	22.26 2.56	13.43 602.25	53.69 15.66	10.29 8.61	25.55 2.56	17.85 4.49
Total	318 468	191 207	82 157	38 388	55 789	9 472	24 585	21 534	4 102.01	1 649.60	366.34	1 968.97	725.0	186.04	371.52	167.44
SCOTLAND ¹⁰⁾			ч	~		-		~			N	~				~ ·
SC1 SC2 SC3 SC4 SC5	5 176 23 031 4 683 1 478 2 150	4 964 12 008 4 683 1 058 818	11	212 023 - 420 _b) 332 ^b)	204 840 - -	204 _a) 584 ^a) -	25	6	20.75 210.21 27.67 12.13 76.31	19.71 170.02 22.48 8.52 55.42	40	04 .19 19 5.61 89 ^b)	15.90 92.31 21.17 9.06 48.20	11.32 25.00 7.96 5.04 6.76	4.58 67.31 13.21 4.02 ^a) 41.44	
Total	36 518	23 531	12		1 044	788	25	6	347.07	276.15	70	.92	186.64	56.08	130	.56
NORTHERN IRELAND	110	-	110	-	500	-	500	·	77.35	70.81	6.42	0.12	2.30	1.33	0.89	0.09
IRELAND IRL IR2 IR3 IR4						-	-	-		•			57.7 28.6 14.35 5.1	25.7 7.8 11.9 4.5	32.0 20.8 2.45 0.6	
Total	7 500	-	6 000	1 500 ^{b)}	753	-	750	3 ^b)	1.5	-	-	1.5°)	105.75	49.9	55	5.85
ICELAND ¹¹⁾ IC1 IC2	570 200	-	570 200	i.	190 65	-	190 65	-							3.3 1.1	1
Total	770	-	770	-	255	-	255	-	-	-	-	-	7.0	-	4.4	2.6

a) Incomplete data. b) Agriculture only. c) Mining only.

10) Phosphorus data for PO4 - P only. 11) BOD estimated by respondent using a per capita value of 70 g/day/person.

- 28 -

Cont'd.

Summary Table 4.

Country	Tota	l Nitroge	en (tonnes,	/yr)	Tota	l Phosph	orus (tonn	es/yr)	Suspended Solids (x 10 ³ tonnes/yr)					Biochemical Oxygen Demand (x 10 ³ tonnes/yr)			
obuilty	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industria	
NORWAY	36 338	-	8 760	27 578	4 965	-	1 851	3 114	7 399	-	16	7 383	255		50	205	
SWEDEN	26 017	23 410	2 414	193	2 283	1 647	418	218	-	-	-	-	55	41	7	8	
DENMARK	32 500	19 872	9 788	2 596	2 300	727	1 400	173	-	-	-		51	20	18	12	
GERMANY, FED.REP. OF	142 370	142 000		1 370	25 502	25 500		2	1 200	1 200	-	-	50	-	5	50	
NETHERLANDS	580 260	572 990	7	270	57 650	56 660	99	0	2 071	1 991	e	80	618	584	3	33	
BELGIUM	1 600	-	ı	600	200		20			-	-	-	8	-		8	
ENGLAND/WALES	318 468	191 207	82 157	38 388	55 789	9 472	24 585	21 534	4 102	1 650	366	1 969	725	186	372	167	
SCOTLAND	36 518	23 531	12	987	1 044	788	25	6	347	276	7	1	187	56	13	51	
N. IRELAND	110	-	110	8	500	-	500	-	77	71	6	0.1	2	l	1	neg.	
IRELAND	7 500	-	6 000	1 500	753	-	750	3	2	-	-	2	106	50	5	56	
ICELAND	770	×	770	-	255	-	255	-	-	-	-	-	7	-	4	3	
TOTAL			109 999 22	70 255 227			29 759 1	25 042 448			388	9 354.1			452	395 78	
	1 182 451	973 010	202	481	151 241	94 794	56	249	15 198	5 188	98	393.1	2 064	938	1	125	

- 29

Country and Area		Iron (tonnes/yr)			Manganese	e (tonnes/y	т)		Cadmium	(tonnes/yr)		Copper (tonnes/yr)	
country and Area	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industria
NORWAY																
N1 N2 N3 N4 N5	1 783 107 2.8 116 28		5 56 1.3 52 13	1 778 51 1.5 64 15					- 2.0 - -		1.5	0.5	0.4 20 /0.087 /0.467 20.327		$ \begin{array}{c} 0.4 \\ 12 \\ (0.08)^{12} \\ \underline{/0.16} \\ \underline{/0.09} \end{array} $	8 - 0.3 0.3
N6 N7 N8 N9	20.4 197 505 1 314		1.1 7 157 232	19.3 190 348 1 082					- - 8			- - 8	0.09 39.02 1.2 18.3 20.057	Ξ	0.04 0.02 0.2 0.3 20.057	0.05 39 1 18
N10 N11 N12 N13 N14 N15 N16	427 0.3 1 701.4 1.6 4 800 - 0.3		0.1 1.4 - -	427 0.2 1 700 1.6 4 800 - 0.3					- 1.4 0.1			- 1.4 0.1 -	20.057 0.04 400.1 7.1 (15.167 20.087 20.36		20.05/ 0.04 0.1 0.1 /0.167 /0.087 Z0.087	- 400 7 15 - 0.3
Total	11 003.8	-	525.9	10 477.9			-	:	11.5	-	1.5	10	502.837	-	/13.887	488.95
<u>SWEDEN</u> S1 S2 S3 S4 S5 S6	170 465 5 000 - -	170 465 5 000 - -			29 75 680 - -	29 75 680 - -			- 0.05 - 		(neg/13) (neg/ 0.05 /neg/ /neg/ (0.01/		/0.2377 /0.229/ /0.229/ /0.015/ /0.388/		/0.1447 ¹³ /0.22 <u>8</u> /0.2857 /0.0157 /0.388) 0.093 0.001 - 0.012 -
Total	5 635	5 635	-	~	784	784	4	-	0.06	-	0.06	-	<u>[</u> 3.16 <u>6</u> 7	-	<u>[3.060</u> 7	0.106
DENMARK DK1 DK2 DK3 DK4 DK5	/5787 78897 Z8087	/5787 /889/ /80 <u>8</u> /	4) - - - -		/144.47 /222.2/ /202.0/	/144.4/ /222.2/ /202.0/	(4) - - -		/2.67 /4.07 /3.67	/2.67 ¹⁴⁾ /4.0/ /3.9/			2.2 2.2 23.457 20.617 20.11	1.72 / <u>227</u> /20/	(0.037 ¹⁵⁾ 0.48 (1.457 (0.617 (0.117)	
Total	<u>[2</u> 27 <u>5</u> 7	Z 2757	-	-	<u>[568.67</u>	<u>[568.6</u>]	-	-	/ī0.27	/10.27	-	-20	<u>/46.407</u>	[43.7 <u>2</u> 7	2.687	-

Table 5.	Estimates	of	inputs	of	iron,	manganese,	cadmium,	and	copper.	
----------	-----------	----	--------	----	-------	------------	----------	-----	---------	--

12) Figures estimated on basis of Norwegian data on average metal discharge per capita (Table 7).

13) Figures estimated on basis of Swedish data on average metal discharges per capita (Table 7).

14) Figures estimated on basis of mean metal inputs via EW and NL rivers (Table 7).

15) Figures estimated on basis of Danish data on average metal discharges per capita (Table 7).

- 30

Cont'd.

Table 5	(Continued)	
---------	-------------	--

Country and Area		Iron (ton	nes/yr)			Manganese (t	connes/yr)			Cadmium (tonnes/yr)			Copper (ton	nes/yr)	
Country and Area	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial
<u>GERMANY, FED.REP</u> . <u>OF</u> G1 G2 G3 G4 G5	/9697 /11 0707 /4 316/	28897 ¹⁴⁾ 211 0707 23 6767		80 640	[222.2] [2 767.4] [919.1]	[222.2] ¹⁴⁾ [2 767.4] [919.1]			[4.07 [49.37 [16.4]	(4.07 ¹⁴⁾ (49.37 (16.47			/227 /0.787 /278.81/ /92.56/ /0.31/	[227 ¹⁴⁾ [2747 [917]	/0.787 ¹⁶³ /4.817 /1.567 /0.37/	e)
Total	<u>/</u> 16 35 <u>5</u> 7	<u>[15 635</u>]		720	<i>[</i> 3 908. <u>7</u> 7	J 908.77	-	-	69.77	69.17	-	-	<u>[</u> 394.5 <u>2</u> 7	<u>[387</u>]	L7.527	-
NETHERLANDS NL1 NL2 NL3 NL4 NL5 NL6	/1 7897 /640/ 40 586 8 191 2 883 48	2 7897 ¹⁷⁾ 2640 40 586 1 584 2 883 48	6	607	<u>/4727</u> /169/ 8 710 2 7707 440 4	$\begin{array}{c} \underline{/4727^{17}} \\ \underline{/1697} \\ \underline{/1697} \\ \underline{/2710} \\ \underline{/27707} \\ \underline{/440} \\ 4 \end{array}$			¹¹ ² 2 ⁸⁸ ⁴ ³ ² 1_7	$ \begin{bmatrix} 11 \\ 2 \\ 2 \\ 88 \\ 4 \\ -3 \\ -1 \\ 7 \end{bmatrix} $			104 /16/ 970 31 37 5	104 /167 970 28 37 5		3
Total	<i>[</i> 54 13 <u>7</u> 7	<u>47 530</u> 7	6	607	<u>/</u> 12 56 <u>5</u> 7	/12 5657	-		<u>/1097</u>	/1097	-		1 163	1 160		3
BELGIUM	-			-	-			•	-	194	-	-	<u>[0.65</u>]	-	4	5.6 <u>5</u> 7 ¹⁶ ₩)
ENGLAND/WALES El E2 E2a E3 E4 E5 E6 E7 E7 E7a E8 E9 E10 E11 E12 E10 E11 E12 E13 E14 E15 E14 E15 E16 E17 E18 E19 E20	720 898 2 289 7327 5 909 716 3 124 265 7566 73067 71167 22 2527 73067 71167 22 2527 7366 73187 73667 73187 73667 73667 73667 73607 73607 74607 7674	694 657 0 274_18) 402 694 0 124 100 [25] 548 [263] (1 957] [1 957] [247] [293] [247] [293] [247] [293] [247] [293] [247] [293] [247] [25] [247] [246] [24] [246] [26 146 2 5 25 32 22 3 165 1 18 43 27 315 44 71 73 19 37 44 71 11	95 5 475 	75.6 85.8 1.5.5 75.3.7 75.3.7 75.0.2 77.0.2 75.0.2 77.0.2 75.0.2 77.0.2 75.0.2 77.0.2	73.0 73.0 (73.0 (73.0)	2.6 12.8 1.5 1.8 2.2 2.9 1.8 0.2 17.5 0.4 10.6 6.9 6.6 85.8 4.4 6.9 9.5 2.9 4.0 5.1 1.5 1.1		29.20 19.40 19.20 19.20 19.40 19.20 19.20 19.20 19.40 19.20 10	(0.7 0.4 neg. 0.1 0.1 0.1 0.1 neg. 0.7 1.1 2.2 2.6 6.6 1.5 2.6 2.9 0.7 1.5 1.8 0.4 0.4	0.4	(41.67 57.34 57.34 257.57 22.55 212.55 212.55 212.55 212.55 22.55	(35.4/18) (10.9) (3.37) (3.37) (5.4/))))))))))))))))))))))))))))))))))))	6.2 33.6 0.4 3.6 5.8 7.3 5.1 0.7 40.5 0.4 5.5 1.7 14.6 28.5 10.6 17.2 18.6 5.1 9.1 11.3 3.3 2.6	12.8

14) Figures estimated on basis of mean metal inputs via EW and NL rivers (Table 7).

16) Figures estimated on basis of mean metal discharges per capita (Table 7).

17) Figures estimated on basis of mean metal inputs via Dutch rivers (Table 7).

18) Figures estimated on basis of mean metal inputs via English/Welsh rivers (Table 7). *) Population figures taken from Coop.Res.Rep. No. 39 (1974) used in estimate.

- 31 -

England/Wales (Cont'd.)

Country and Area		Iron (tor	mes/yr)			Manganese (1	tonnes/yr)			Cadmium ((tonnes/yr)	l		Copper (tonnes/yr)	
country and Area	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial
ENGLAND/WALES									1							
E21 E22 E23 E24 E25	/4467 /2 864 1 278 4 964 674	2 738 657	18 62 2 226 14	- - - 3	/103.27 Z671.3/ 	/101.47 Z664. <u>0</u> / Z295. <u>6</u> 7	1.8 7.3 1.5	-	/3.27 1.5 1.8 - 1.5	∑2.87 1.1 - 1.1	0.4 0.4 - 0.4		20.1 87.6 31.0	/10.97 1.5 36.5 27.7	4.4 18.6 - 51.1 3.3	-
E26 E27 E28 E29 E30	287 714 _6857 2 164 1 251	274 657 5207 1 971 1 241	13 57 165 193 10		74.5 64.7 /138.47 635.1 /328.77	73.0 54.8 (123.17 620.5 (328.07	1.5 9.9 15.3 14.6 0.7		1.4 5.67 22.4 2.0 216.77	0.7 [4.9] [3.4] 1.6 [9.0]	0.7 0.3 0.7 0.4 neg.	.0.4 18.3 7.7	14.3 74.1 /97.57 85.8 69.4	11.0 7.3 /13.27 30.3 36.5	3.3 15.7 39.4 31.4 2.2	51.1 44.9 24.1 30.7
Total	£155 78 <u>4</u> 7	/145 0197	3 914	5 573	<u>4</u> 998. <u>9</u> 7	LA 757.37	241.6	-	[179.27	<u>[120.57</u>	30.8	26.7	<u>[1 115.7</u>]	<u>[522.87</u>	411.1	181.8
SCOTLAND SC1 SC2 SC3 SC4 SC5	/2 2397 /6 4517 /1 7377 /1 5457 /1 364/	/2 2347 ¹⁹) /6 2667 /1 7377 /1 5237 /1 2937	(<u>57</u> 20) (1857 (<u>227</u> (71)		/559. <u>17</u> /1 591. <u>17</u> /434.37 /383.77 /332.67	/558.57 ¹⁹⁾ /1 566.57 /434.37 /380.87 /323.27	/0.67 ²⁰⁾ /24.67 /2.97 /9.47		Z10.17 Z7.32 Z7.77 Z7.27 Z7.27 Z7.27	(10.07 ¹⁹⁾ 2.6 (7.17 76.87 (5.8)	/ <u>0</u> .17 ²⁰⁾ / <u>3</u> .7/ / <u>0</u> .4/ /1.4/	-	/56.77 /129.77 /43.07 /44.57 /53.77	(55.37 ¹⁹⁾ 73.0 (43.07 (37.77 (32.07) (32.07)	/1.47 ²⁰⁾ /56.77 /6.87 /21.7/	
Total	<u>[13 336</u>]	<u>[13 0537</u>	<u>[283]</u>	-	<u>[</u> 3 300.87	<u>[</u> 3 263. <u>3</u> 7	137.57	-	[39.5]	[33.97	15.67	-	<u>[327.67</u>	<u>241.07</u>	<u>[86.6</u>]	
NORTHERN IRELAND	<u>[</u> 1 27 <u>5</u>]	<u>∠</u> 1 26 <u>3</u> 7 ¹⁹)	[12720)	-	<u>[</u> 317.37	(315·17 ¹⁹⁾	<i>[</i> 1.67 ²⁰)	-	15.87	[5.67 ¹⁹)	<u>∠0.2</u> 720)	-	<u>[35.07</u>	[31.3719)	[3.17 ²⁰)	3 4
IRELAND IR1 IR2 IR3 IR4	/4 10 <u>1</u> 7 /3 0437 /6 2957 /2 96 <u>2</u> /	/ <u>3</u> 9817 ¹⁹) / <u>3</u> 0107 / <u>6</u> 2 <u>38</u> / /2 94 <u>9</u> /	(1207 ²⁰⁾ /33/ /57/ /13/	1111	/1 011.47 /756.87 /1 567.07 /139.07	/ <u>5</u> 95.47 ¹⁹⁾ /752.4/ /1 559.4/ /137.3/	(16.07 ²⁰⁾ (4.47 (7.67 (1.17) (1.17)	1111	/20.17 /14.0/ /28.9/ /13.4	(17.17 ¹⁹⁾ (13.47 (27.8/ (13.17) (13.17)	12:4720) 10:07 11:17 10:37		2135.57 /84.67 /171.97 /77.97	/98.67 ¹⁹⁾ /74.57 /154.47 /13.07	(36.97 ²⁰⁾ 710.17 717.57 74.9	
Total	<u>∕</u> 16 40 <u>1</u> 7	<u>∕</u> 16 17 <u>8</u> 7	[2237	-	<u> 4 074.2</u> 7	<u>/</u> 4 044. <u>5</u> 7	<u>[29.77</u>	-	177.47	<u>[72.07</u>	14.47	1.0	<u>[689.07</u>	400.57	<u>[68.5</u> 7	220
ICELAND ICL IC2	-								-				<u>/0</u> .347 <u>/</u> 0.12/		<u>/0</u> .347 ²⁰⁾ /0.12/	-
Total	-		_		-								<u>[0.46</u> 7	-	<u>/</u> 0.4 <u>6</u> 7	-

Table 5 (Continued) (England and Wales).

19) Figures estimated on basis of mean metal concentrations in EW and NL rivers (Table 7).

20) Figures estimated on basis of English/Welsh data on average metal discharges per capita (Table 7).

- 32 -

Cont'd.

Summary Table 5.

Country		Iron (tonne	s/yr)		Man	ganese (tonn	es/yr)		Ca	udmium (to	onnes/yr)		Co	opper (tonne	es/yr)	
Country	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial
NORWAY	11 004		526	10 478	-	-	-		11.5	-	1.5	10	502.8		13.9	488.9
SWEDEN	5 635	5 635	-		784	784		-	0.1		0.1	-	<i>[</i> 3.17]	-	<i>[</i> 3.0 <u>6</u> 7	0.11
DENMARK	<u>/</u> 2 27 <u>5</u> 7	<u>[</u> 2 27 <u>5</u>]	-	-	<u>_</u> 568. <u>6</u> 7	<u> </u>	-		/10. <u>2</u> 7	/10.27	-	-	<u>/</u> 46.4 <u>0</u> 7	<u> </u>	<u>/</u> 2.6 <u>8</u> 7	-
GERMANY, FED.REP.	<u>∕</u> 16 35 <u>5</u> 7	<u>∕</u> 15 63 <u>5</u> 7		720	<u>/</u> 3 908. <u>7</u> 7	<u>/</u> 3 908. <u>7</u> 7	-	-	<u>[</u> 69.]7	<u>[69.7</u> 7	-	-	<u>[</u> 394.52]	<u>[</u> 38]7	<u>[7.52</u>]	
NETHERLANDS	<u>/</u> 54 13 <u>7</u> 7	<u>/</u> 47 53 <u>0</u> 7	6	607	<u>/</u> 12 56 <u>5</u> 7	<u>/</u> 12 56 <u>5</u> 7	-		/1097	<u>/109</u> 7	-	-	1 163	1 160		3
BELGIUM	-	3-	-	-	-	-	-	-	-	-	-	-	<u>/</u> 0.657		<u>∕</u> ō.6 <u>5</u> 7	1
ENGLAND/WALES	<u>155</u> 78 <u>4</u> 7	<u>/</u> 145 01 <u>9</u> 7	3 914	5 573	<u>/</u> 4 998. <u>9</u> 7	[4 757.3]	241.6	-	/179.27	/I20.57	30.8	26.7	<u>[</u> 1 115.]]	<u>[522.8</u> 7	411.1	181.8
SCOTLAND	<u>[</u> 13 33 <u>6</u> 7	<u>∕</u> ī3 05 <u>3</u> 7	<u>/</u> 28 <u>3</u> 7	-	<u>3</u> 300. <u>8</u> 7	[3 263.3]	137.57	-	[39.5]	<i>[</i> 33.97	15.67	-	<u>[327.6</u> 7	<u>/</u> 241.07	<u>/86.6</u> 7	-
N. IRELAND	<u>/</u> 1 27 <u>5</u> 7	<u>/</u> 1 26 <u>3</u> 7	<u>/12</u> 7	-	<u>[</u> 317.37	<i>[</i> 315.77	1.67	-	<i>[</i> 5.87	15.67	<u>[0.27</u>	-	<u>[35.07</u>	[31.37	<i>I</i> 3.77	-
IRELAND	<u>/</u> 16 40 <u>1</u> 7	<u>∕</u> 16 17 <u>8</u> 7	2237		<u>/</u> 4 074. <u>2</u> 7	<u>4 044.5</u> 7	[29.]7		[77.47	<u>[72.07</u>	<u> </u>	1.0	<u>/</u> 689. <u>0</u> 7	<u>400.5</u> 7	<u>/</u> 68. <u>5</u> 7	220
ICELAND	-	-	-	- 1	e l .	=	-	-	-	-	-		<u>∠</u> 0.4 <u>6</u> 7	-	<u>/</u> 0.4 <u>6</u> 7	7:
TOTAL	y.	А.,	4 958	16 051 327			×		X		[42.67	37 •7			<i>[</i> 598.1 <u>7</u> 7	890.81 3
	<u>∕</u> 276 20 <u>2</u> 7	<u>∕</u> 246 58 <u>8</u> 7	26	336	<i>[</i> 30 517.57	<u>∕</u> 30 207. <u>1</u> 7	310.4		<u>/</u> 503. <u>1</u> 7	[420.97	80	.3	4 278. <u>3</u> 7	<u>/</u> 2 786.3 <u>2</u> 7	1 49	1.98

- 33 -

Country and Area		Chromium	(tonnes/yr)			Nickel	(tonnes/yr)			Lead (t	tonnes/yr)			Zinc (tonnes/yr)			Mercu	ry (tonnes/	yr)
country and Area	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industria
NORWAY																	1			
Nl	26.3	-	2	24.3	-				0.6	-	0.3	0.3	120.6	9	2.3	118.3	1			1
N2	21 _0.97	•	13 [0.5] ¹²)	8						÷ .	5 -12)	3	44	-	26	18	-			-
N3 N4	Z0.9/	2	Z0.2//	0.4	-	0			10.2/		$2^{0.27^{12}}$		1.2	-	0.5	0.7	-	-	-	-
N4 N5	0.9	-	0.5	0.4	1				3.1 /1.17 0.01	1	1.4 20.37 0.01	1.7	6	-	2.8	3.2 3.6	0.4	1		0.4
N5 N6	0.39	2	0.29	0.1			1		4.4		20.2/	0.0	4.4	1	0.6	0.9	-		-	0.4
N7	18.3	-	0.3	18	146	-	-	146	18.03	2	0.03	18	6.4	-	0.4	6	1.2	-	2	-
NO	7	-	2	5	-			-1-	0 1	-	0.1	-	41	-	3.4	37.6	-	-	-	
N9	4_	-	4 -		-				596.1	-	0.1	596	1 064		11 -12)	1 053	0.2	-		0.2
NIO	Z0.97 0.37 0.37	1	4.37 Z0.97 0.3	-	-	. A			10.17	÷	10.17	-	1 064 <i>Z</i> 1 <i>7</i> 0.7	-	11 (0.5712)	0.5	-	-	-	
N11 N12	20.9/		10.9/	5	5			()	10.4/	1	10.4/		0.7	-	0.6	0.1	-		-	
N12 N13	0.5	1	0.3	0.3	0.4		0.4	12	41.2/		40.5/	0.7	1 100.6		0.6	1 100	-	:	-	
N14	12.17	1	15.17	1	0.4		0.4	100	40.47	1.2	40.27	0.6	120 77	1	17.77	37 88	1	2 1	5	
N15	70.57	-	70.57		2				70.27	-	70.27	-	16.97	-	76.97	-	-		1.2	1 2
NIÓ	0.4 /2.17 /0.57 /0.4	141	20.1 Z0.1 Z0.1 Z0.1 Z0.1 Z0.1 Z0.1 Z0.1 Z	-	-				596 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	-	011 0000000000000000000000000000000000	-	27.2 269.17 70.97 20.97 20.97		0.2 /1.17 /0.9/ /0.1/	0.2	-	-		-
Total	86.69	-	27.19	59.50	146.4		0.4	146	<u>[630.64</u>]		<u>/</u> 9.5 <u>4</u> 7	621.1	2 520.1	-	53.0	2 467.1	1.6	-		1.6
SWEDEN																				
Sl	10.0657	-	10.065713)		10.2217	-	/0.2137 ¹³⁾ /0.336/	0,008	/0.0677 /0.138/	-	/0.08 <u>77</u> 13) /0.138/		/15.017	14	/0.95713)	0.06	10.0027	1.2	/0.0027 ¹³⁾ /0.003/	-
S2	/0.0657 20.1667	-	70.107	0.066	/0.22 <u>17</u> /0.45 <u>1</u> /	2	70.3367	0.115	70.1387		70.1387		726.77	14 25 460	71.57	0.2	/0.00 <u>27</u> /0.00 <u>7</u> /	1.00	70.0037	0.004
\$3	0.9	-	0.9	-	2.9		2.9	-	1.2		1.2		473	460	13	-	0.02	-	0.02	
S4	20.165/	-	10.13/	0.035	10.52/_	14. I	10.42/_	0.1	/0.18/_		/0.173/	0.007	/2.02/	-	/1.88/	0.14	0.0047		10.0047	-
85 86		-	(0.065 ⁷¹³) 20.10 0.9 20.137 20.137 20.137 20.117	-	/0.527 /0.0227 /0.571/	- E	2.9 /0.427 /0.0227 /0.571/	-	1.2 /0.187 /0.0097 /0.235/		1.2 /0.1737 /0.0097 /0.2357	3 1	/15.017 /26.1 473 /2.027 /0.1 /2.557	-	/0.95/13) /1.5/ 13 /1.887 /0.17 /2.557	-	10.0057			5
				-		-													Caral A State State	
Total	<u>[1.4667</u>	-	<u>[1.365</u>]	0.10	[4.685]	-	[4.46 <u>2</u>]	0.223	<u>[1.849</u> 7	-	/1.84 <u>2</u> 7	0.007	<u>/</u> 519.3 <u>8</u> 7	499	<u>∕</u> 19.9 <u>8</u> 7	0.40	0.0387	-	<u>/0.034</u> 7	0.004
DENMARK			25)				(20)				25)				75)					
DKI	10.037	-	10.03715)	-	10.067		10.067151	<u></u>	<u>∕0.12</u> 7 6.8	-	<u>∕0.12</u> 7 ¹⁵⁾	-	10.317 42.6	121	(0.31715)					
DK2	2.2	0.97 141	0.55	0.68	13.627	/12.58/14)	71.047		6.8	1.7 -14)	1.9	3.2	42.6	_17.0_14)	5.1	20.5				
DK3 DK4	123.43/	0.97 /21.78/14) /19.60/	11.65/		122.51/	/12.58714) /19.367 /17.607	12.15/	5	/39.19/	$\begin{bmatrix} 1.7\\ /33.44\\ /30.4 \end{bmatrix}$	15.75/	-	/161.8/	17.0 /146. <u>37</u> 14) /133.0/	12.50/	-				
DK4 DK5	/0.037 2.2 /23.437 /20.5 /20.5 /0.137	Z19.60/	20.03715) 0.55 21.657 20.707 20.137	2	(0.067 (13.627) (13.627) (122.517) (217.60	/0.067 ¹⁵⁾ /1.047 /3.157 /1.347 /0.247	-	/ <u>39.197</u> / <u>32.84/</u> /0.45/	130.4/	1.9 /5.757 /2.44/ /0.45/	1	/161.87 Z139.517 [1.2]	L133.0/	∠0.317 ¹⁵⁾ 5.1 ∠15.507 ∠6.577 ∠1.21	-				
DK)		-							20.42/		Z0.4 <u>2</u> /	•				-				
/ Total	46.297	42.557	13.067	0.68	155.377	49.547	15.837		179.407	65.547	/10.667	3.2	2345.497	296.37	28.697	20.5				

Table 6. Estimates of inputs of chromium, nickel, lead, zinc, and mercury.

12) Figures estimated on basis of Norwegian data on average metal discharge per capita (Table 7).

13) Figures estimated on basis of Swedish data on average metal discharges per capita (Table 7).

14) Figures estimated on basis of mean metal inputs via EW and NL rivers (Table 7).

15) Figures estimated on basis of Danish data on average metal discharges per capita (Table 7).

- 34

Table 6 (Continued).

		Chromium (tonnes/yr)			Nickel (tonnes/yr)			Lead	(tonnes/yr)			Zinc (tor	nnes/yr)			Mercur	(tonnes/y	-)
Country and Area	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial
CERMANY, FED.REP. OF G1 G2	Z21.787	<u>/21.78</u> 7 ¹⁴⁾	Л. 20716×)	:	52.39	∠19.3 <u>6</u> 7 ¹⁴⁾	/1.8716K)	-	132.44Z	[33.44] ¹⁴⁾	/ī.057 ¹⁶ *)		[146.37 /8.47	<u>∕</u> 146.37 ¹⁴⁾	/8. 1716x)		0.008	:	0	.008
G3 G4 G5	21.787 71.207 2278.17 292.57 292.57	/271.37 /90.1	/1.20716#) /7:4/ /2:4/ /0.51/	Ę	(19.367 (1.8) (252.227 (83.68) (0.8)	/241.127 /80.08/	<u>/1.8716к)</u> /11.17 / <u>3.67</u> /0.8/	-	[33.44] /1.05/ /422.95/ /422.42/ /140.42/ /0.5/	/416.487 /138.32/	/1.05/16x) /6.48/ /2.1/ /0.5/	-	[146.37 /8.47 /1.873.97 /622.07 /4.97	/1 822.17 /605.2/	/б. <u>4</u> 716ж) /51.87 /16.87 /4.07	-	1			-
Total	[394.75]	<u>/</u> 383.1 <u>8</u> 7	/11.577		<u>[357.86</u> 7	<u>/</u> 340.5 <u>6</u> 7	<u>/</u> 17.307	-	<u>[598.37</u>]	<u>/</u> 588.2 <u>4</u> 7	/10.137	-	<u>2</u> 654.67	<u>[</u> 2 573.6]	/81.07		0.008	-	0.	800
NETHERLANDS NLL NL2 NL3 NL4 NL5 NL6	2 /157 916 55 /1587 /10/	2^{2} 157 ¹⁷) 916 19 2^{1587} 2^{10}	3	6	115 /12/ 672 35 40 2	$ \begin{array}{r} 115 \\ $	1 . L. A. A.	•	124 /23/ 1 119 347 55 3	124 /23 1 119 - 55 3		47	537_ /1207 7 825 1 512 273 8	537-17) 7 825 125 273 8	1	387	2 30 1 0.1	2 		
Total	1 156	1 120	3	6	689	876	[13] ^{16#)}	-	1 671	1 324	and the second se	47	10 275	6 888	1	387	33.1	33.1		(*.
BELGIUM	1.07		<u>∕</u> 1.07 ¹⁶ *)		/1.57	•	<u>∕</u> ī. <u>5</u> 7 ¹⁶ π)	1	10.97	14	<u>∕</u> ō.27 ¹⁶ *)	-	[r]		[] ^{16*)}	-		<u> 1</u>	-	
ENGLAND/WALES E1 E2 E2a E3 E4 E5 E6 E7 E7a E7a E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E19 E20	23.00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19) 19) 19)	2.56 1.10 0.01 0.14 0.22 0.26 0.18 2.92 0.73 39.42 0.73 39.42 0.73 0.73 2.19 0.36 0.73 0.73 0.73 0.73 0.73 0.73	19.34	שאפיריייסיאראי אייטידער איידער איי איידער איידער	18) 14) 14) 14) 14) 14) 14) 14) 14	0.73 3.28 0.04 0.36 0.73 0.36 0.73 0.36 0.73 0.36 0.73 1.50 91.25 1.10 1.82 2.19 0.73 1.10 1.29 2.19	11.32	677.1.10141014.1.12550041000.1.1717.1247.1250		1.1 6.2 0.1 0.7 1.5 1.1 1.5 1.5 2.9 3.6 32.1 2.2 3.6 32.1 2.2 3.3 4.0 1.1 1.8 2.2 0.7 0.4	86.5	6777477878888877878787878787878787878787	(197.1.18) (197.1.18) (198.1.17) (198.1.17) (199.1.17)	$\begin{array}{c} 6.9\\ 36.1\\ 0.4\\ 4.4\\ 6.2\\ 8.0\\ 5.5\\ 0.7\\ 46.7\\ 0.7\\ 7.3\\ 15.0\\ 16.8\\ 247.5\\ 11.7\\ 19.0\\ 21.9\\ 6.6\\ 12.8\\ 3.6\\ 2.9\end{array}$	36.3 3 358.0	0.04 0.22 neg. 0.04 0.04 0.04 0.07 0.29 0.36 0.04 0.07 0.04 0.07 1.82 0.11 0.15 0.04 0.73 0.73 2.19 1.46		0.04 0.22 meg. 0.04 0.04 0.07 0.29 0.36 0.04 0.07 0.04 1.82 0.75 0.11 0.15 0.04 0.73 0.73 0.73 2.19 1.46	

14) Figures estimated on basis of mean metal inputs via EW and NL rivers (Table 7). 16) Figures estimated on basis of mean metal discharges per capita (Table 7).

England/Wales (Cont'd.)

alge of the

17) Figures estimated on basis of average concentrations of metals in Dutch rivers (Table 7). 18) Figures estimated on basis of average metal concentrations in English/Welsh rivers (Table 7).

*) Population figures taken from Coop.Res.Rep. No.39 (1974) used in estimate.

35 .

Country and Area		Chromium	(tonnes/yr)			Nickel (t	connes/yr)			Lead (to	mes/yr)			Zinc (tonn	es/yr)			Mercur	y (tonnes/y	rr)
country and krea	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industria
ENGLAND/WALES																-				
E21 E22 E23 E24 E25 E26 E27	/12.817 1.83 18.25 53.65 27.74 /28.447 /22.517 /14.96	/10.997 1.10 12.41 26.28 /36.967 /19.287 /19.287	1.82 0.73 - 41.24 1.46 1.46 0.73	- - 2.56	/11.147 4.01 3.65 1.09 /36.627 /21.107 /17.41	/10.787 1.82 - - - - - - - - - - - - - - - - - - -	0.36 2.19 - 0.36 0.36 2.19		∠17.87 10.2 32.8 173.7 23.0 156.2 22.9	/17.17 5.5 - 94.9 22.3 155.5 0.7	0.7 4.7 78.8 0.7 0.7 4.0		265.57 27.0 82.8 368.7 16.4 226.3 4 022.0	2.9 2.9 109.5 12.4 222.3 242.4	4.7 24.1 259.2 4.0 4.0 20.1	- - - 3 759.5	0.36 1.82 		0.36 1.82 0.36 0.36 0.11	10 m - 10
E28 E29 E30	20.81 127.82	Z13.57 17.16 47.45	1.46 1.46 0.07	0.15 2.19 80.30	Z17.47 43.44 18.10	Z13.097 38.33 4.38	4.02 3.65 0.22	0.36 1.46 13.50	22.9 <u>/</u> 55.87 46.7 31.7	0.7 /20.7 38.3 18.2	7.7 6.9 0.4	27.4 1.5 13.1	4 022.0 /698.57 153.3 168.7	242.4 /73.97 114.6 69.4	44.2 37.6 2.6	580.4 1.1 97.6	4.30 0.26 2.97	2.19 04	0.29 0.26 0.01	1.82
Total	<u>/682.88</u> 7	Z450.797	109.30	104.54	<u>[651.06</u>]	[487.2 <u>2</u> 7	133.55	26.64	<u>∕</u> ī 175. <u>1</u> 7	<u>/8</u> 13. <u>4</u> 7	182.2	146.7	∕ī1 583. <u>2</u> 7	[2 774. <u>6</u>]	891.8	7 634.0	19.77	2.23	12.80	4.74
SCOTLAND SC1 SC2 SC3 SC4 SC5	54.97 (54.97 (54.27) (54.27) (54.27) (52) (54.27) (52) (52) (52) (52) (52) (52) (52) (52	254.17 ¹⁹⁾ 87.6 [42.67 [37.5] [31.1]	/0.27 ²⁰⁾ /7.6/ /0.97 /2.2/		/49.03/ /151.28/ /37.84/ /34.94/ /33.81/	(48.667 ¹⁹⁾ (136.497 (37.84/ /33.187 (28.16)	/0.37/20) /14.72/ /1.76/ /5.65/		/64.347 139.347 /65.657 /58.657 /52.927	/84.067 ¹⁹⁾ 128.0 /65.367 /57.307 /48.6 <u>4</u> /	(0.28) (11.34) (1.35) (1.35) (4.32)		/369.487 7/324.527 7/285.957 7/258.937 7/258.937 7/239.187	2567.747 ¹⁹⁾ 255.5 285.957 285.957 2250.77 2212.8	/1.74/20) _69.02/ _8.23/ _26.38/		/0.047 /2.58 /0.187 /0.55	1.1 	/0.047 ²⁰⁾ Z1.487 /0.187 Z0.567	A 60 1015
Total	[265.5]	[253.9]	<u>/</u> ī1. <u>6</u> 7	-	[306.90]	[284.33]	<u>[22.57</u>]	-	<u>[</u> 400.6 <u>6</u> 7	<u>[</u> 383.367	17.307		<u>∕</u> 1 478.067	<u>/</u> 1 372.6 <u>9</u> 7	/105.327		13.367	1.1	[2.26]	
NORTHERN IRELAND	/31.47	[30.97 ^{19]}	<u>∠0.5</u> 720)	-	<u>[28.47</u>]	[27.51719)	[0.967 ²⁰⁾		<u>[</u> 48.2 <u>6</u>]	[47.52] ¹⁹)	[0.74] ²⁰⁾	1	<u>/</u> 213.0 <u>6</u> 7	207.8 <u>8</u> 719)	<u>/</u> 4.4 <u>8</u> 7 ²⁰)	0.7	<u>/0.10</u> 7	-	[0.107 ^{20]}	-
IRELAND IR1 IR2 IR3 IR4	/102.67 /75.2/ /155.2/ /123.8/	/97.67 ¹⁹⁾ /73.8/ /152.8/ /72.3/	/5.07 ²⁰⁾ /1.4/ /2.4/ /0.5/		/96.357 /68.19/ /140.43/ /65.28/	/86.727 ¹⁹⁾ /65.56/ /135.87/ /64.24/	/9.63/20) /2.63/ /4.56/ /1.04/		/157.187 /115.267 /238.197 /111.76/	/149.807 ¹⁹⁾ /113.24/ /234.69/ /110.96/	/7.387 ²⁰⁾ /2.027 /3.507 Z0.807	() - ()	/100.307 /507.71/ /1 048.04/ /490.32/	/655.367 ¹⁹⁾ /495.42/ /1 026.76/ /485.45/	/44.94/ ²⁰⁾ /12.29/ /21.25/ /4.81/		/0.967 /0.257 /0.467 /0.107		/0.96/20) /0.26/ /0.46/ /0.10/	1.1.1
Total	<u>410.8</u> 7	[396. <u>5</u> 7	19.37	5.0		[352.39]	<u>/</u> 17.8 <u>6</u> 7		<u>[</u> 636.3 <u>9</u> 7	608.697	13.707	14.0	J 476.3]	<u>/</u> 2 662.9 <u>9</u> 7	<u>/83.38</u> 7	730-0	[1.7 <u>8</u> 7	4	/1.787	<1.0
ICELAND IC1 IC2	/0.527 Z0.18/	-	/0.527 ²⁰⁾ /0.18/	:	/0.787 Z0.27/		/0.78 ⁷²⁰⁾ /0.27/	2	/0.467 /0.167	2	/0.467 ²⁰⁾ /0.1 <u>6</u> /	:	/3.6 <u>47</u> /1.2 <u>6</u> /	. 1	/3.6 <u>4</u> 7 ²⁰⁾ /1.26/	•	2	2		:
Total	10.707	-	<u>[0.70</u>]	-	/1.057	-	1.057	-	10.627	-	[0.6 <u>2</u>]	-	[4.90]	-	[4.90]		-		-	

Table 6 (Continued) (England/Wales)

19) Figures estimated on basis of mean metal concentrations in EW and NL rivers (Table 7).

20) Figures estimated on basis of English/Welsh data on average metal discharges per capita (Table 7).

Cont'd.

- 36 -

Summary Table 6.

		Chromium (tonnes/yr)			Nickel (t	onnes/yr)			Lead (to	nnes/yr)			Zinc (ton	nes/yr)			Mercury	(tonnes/y	r)
Country	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Domestic	Industrial	Total	Rivers	Dogestic	Industria
NORWAY	86.7	-	27.2	59.5	146.4		0.4	146	<u>[630.6</u> 7	-	<u>/</u> 9.57	621.1	2 520.1		53	2 467.1	1.6	-		1.6
SWEDEN	<u>/</u> ī. <u>5</u> 7	-	<u>∕</u> ī.47	0,1	[4.]]		<i>[</i> 4.57	0.2	<u>[1.87</u>	-	∕1.87	neg.	<u>/</u> 519. <u>4</u> 7	499	<u>/20</u> 7	0.4	<u>∕</u> 0.0387	3	10.0347	0.004
DENMARK	<u>[</u> 46. <u>3</u> 7	[42.57	13-17	0.7	<u>[55-47</u>	<u>[</u> 49.57	<u>[5-87</u>		[79.4]	<u>[65.57</u>	/ī0.77	3.2	<u>[</u> 345. <u>5</u> 7	<u>[296.3</u> 7	<u>/</u> 28.77	20.5	-	18	~	-
GERMANY, FED.REF. OF	<u>/</u> 394. <u>8</u> 7	<u>[</u> 383, <u>2</u> 7	<u>∕</u> ī1. <u>6</u> 7		<i>[</i> 357.97	<u>/</u> 340. <u>6</u> 7	<u>[17.37</u>	-	<u>∕</u> 598. <u>4</u> 7	<u>/</u> 588. <u>2</u> 7	<u>∕</u> ī0. <u>1</u> 7	-	<u>[</u> 2 654. <u>6</u> 7	<u> </u> 2 573. <u>6</u> 7	<u>[81</u> 7		0.006		0.	008
NETHERLANDS	1 156	1 120		36	889	876	[137	-	1 671	1 324		347	10 275	8 888	1	. 387	33.1	33.1		-
BELGIUM	[1]	•	[1]	-	<u>[</u> 1.57		1.57		<u>[</u> 0.97		Zo.27	-	[r]	-	[7]	<u>م</u>	-	-	: - :-:	
ENGLAND/WALES	<u>/</u> 682. <u>9</u> 7	<u>[</u> 450. <u>8</u> 7	109.3	104.5	<u>[</u> 651. <u>1</u>]	[487. <u>2</u>]	133.6	26.6	<u>∕</u> ī 175. <u>1</u> 7	<u>[813.47</u>	102.2	146.7	<u>∕</u> ī1 583. <u>2</u> 7	[2 774. <u>6</u> 7	891.8	7 834	19.77	2.23	12.80	4.74
SCOTLAND	<u>[</u> 265. <u>5</u>]	<u>/</u> 253. <u>9</u> 7	711.67	-	<u>/</u> 306. <u>9</u> 7	[284. <u>3</u> 7	[22.6]		[400.]7	<u>[</u> 383.47	<u>[17.37</u>		<u>∕</u> 1 478. <u>1</u> 7	[1 372.]]	/105. <u>4</u> 7		[3.36]	1.1	<u>[</u> 2.2 <u>6</u> 7	
N. IRELAND	<i>[</i> 31.47	<u> /</u> 30. <u>9</u> 7	10.57	12	<u>[</u> 28. <u>5</u> 7	[27.5]	<u>∕</u> ī.₀7	-	<u>[48.37</u>	[47.57	<u>/</u> 0-17	-	<u>[</u> 213. <u>1</u> 7	[207. <u>9</u> 7	[4.57	0.7	10.17	-	10.17	-
IRELAND	<u>410.8</u> 7	Z396.57	19.37	5	[370.3]	[352.47	17.97	-	<u>[636.4</u> 7	<u>/608.1</u> 7	[13.]	14	B 476.47	<u>[</u> 2 663.0]	<u>[83.4</u> 7	730	<u>[1.78</u>]	•	<u>/</u> 1.7 <u>8</u> 7	
ICELAND	<u>/</u> 0.17		10.17	-	<u>[1.1</u> 7	570	<u>[1.17</u>		∠0.67	-	<u>∕</u> ō. <u>6</u> 7		<u>[</u> 4.27	-	<i>[</i> 4·27					-
TOTAL			<u>/</u> 175. <u>1</u> 7	169.8 36			<u>/218.17</u>	172.8			[247.5]	785 347			∠ī 279.77	11 052.7 387			16.97 0.	6.34 .008
	<u>[3 077.67</u>	[2 677. <u>8</u> 7	3	81.5	Z 812.87	[2 417.5]	3	391.5	15 243.27	[3 830.17	1	726.5	[33 077.37	<u>∕</u> 19 275. <u>1</u> 7	13	719.4	59.76	36.43	23.	33

Metal	(Country			Mean
He tar	England/Wales	Norway	Sweden	Denmark	· Mean
Iron	75	-	-	-	-
Manganese	10	-	-		-
Cadmium	1.5	-	0.1	-	-
Copper	23	1.2	3.8	2.9	2.6 (Ex:E/W)
Nickel	6	-	5.6	6.3	6.0
Lead	4.6	3.5	2.3	11.5	3.5 (Ex:DK)
Zinc	28.0	13.2	25	31	28 (Ex:N)
Mercury	0.6	-	0.05	-	
Chromium	3.1	8.1	1.7	3.3	4.0

Average	input	of	metals	in	domestic	sewage	(in	grams	person	(year)

Average input of metals from river waters (in mg/m^3)

Metal	C	ountry	Mean
Metar	Netherlands	England/Wales	Mean
Iron	406	401	404
Manganese	107	95	101
Cadmium	1	2.6	1.8
Copper	9.9	10.2	10.0
Chromium	9.5	10.3	9.9
Nickel	7.5	10.1	8.8
Lead	14.5	16	15.2
Zinc	76	57	66.5
Vanadium	19	-	-

Table 8. Major industries in each country and area.

plating. N9 Metallurgic industries; edible fats and fish oils; pulp and paper; oil refinery. N10 Metallurgic industry; fish industry. N11 Bulk chemicals; fish industries; textile industries. N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries; ore mining. N16 Ore mining; fish industries. S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - DENMARK DK1 DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing.	Country and Area	Major Industries
N2 N3 N4 N4 N4 N4 Pulp and paper; mineral industries. N5 Chemical industries; pulp and paper; metallurgic industry. N6 N4 N5 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6	NORWAY	
N2 N3 N4 N4 N4 N4 Pulp and paper; mineral industries. N5 Chemical industries; pulp and paper; metallurgic industry. N6 N4 N5 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6 N6	Nl	Pulp and paper; chemical industries; edible fats; metal plating.
 N4 Pulp and paper; edible fats; oil refineries. N5 Chemical industries; pulp and paper; metallurgic industry. N6 Pulp and paper; metallurgic industry; metal plating industry. N7 Metallurgic industries; pulp and paper. N8 Metallurgic industries; ore mining; fish oils; oil refineries; metal plating. N9 Metallurgic industries; edible fats and fish oils; pulp and paper; oil refinery. N10 Metallurgic industry; fish industry. N11 Bulk chemicals; fish industries; textile industries. N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries. SWEDEN S1 Oil refineries. S2 Chemical industries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production, distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. X4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. X4 Fish quere. X5 Fish processing. 	N2	-
N4 Pulp and paper; edible fats; oil refineries. N5 Chemical industries; pulp and paper; metal plating industry. N6 Pulp and paper; metallurgic industry; metal plating industry. N7 Metallurgic industries; pulp and paper. N8 Metallurgic industries; ore mining; fish oils; oil refineries; metal plating. N9 Metallurgic industries; edible fats and fish oils; pulp and paper; oil refinery. N10 Metallurgic industry; fish industry. N11 Bulk chemicals; fish industries; textile industries. N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining; metal refineries; fish industries. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N16 Ore mining; fish industries. SUMEDEN S1 S1 Oil refineries. S2 Chemicals. DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production, distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. EMANY, FED.REP. F All areas <td< td=""><td>N3</td><td>Pulp and paper: mineral industries.</td></td<>	N3	Pulp and paper: mineral industries.
<pre>N5 Chemical industries; pulp and paper; metallurgic industry. N6 Pulp and paper; metallurgic industry; metal plating industry. N7 Metallurgic industries; pulp and paper. N8 Metallurgic industries; ore mining; fish oils; pulp and paper; oil refinery. N1 Metallurgic industry; fish industry. N1 Metallurgic industry; fish industry. N1 Bulk chemicals; fish industry. N1 Pulp and paper; ore mining; fish industries. N1 Pulp and paper; ore mining. N1 Fulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries. N16 Ore mining; fish industries. SWEDEN S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. EMANY, FED.REP. E All areas *)Chemicals, oil refineries; food industries; iron smelting; papermill; ship yards.</pre>	and the second se	
<pre>N6 Pulp and paper; metallurgic industry; metal plating industry. N7 Metallurgic industries; pulp and paper. N8 Metallurgic industries; ore mining; fish oils; pulp and paper; oil refinery. N10 Metallurgic industry; fish industry. N11 Bulk chemicals; fish industry. N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries. S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish fraumg and processing; pesticide manufacture. DK5 Fish processing. N2 Fish processing; pesticide manufacture. DK5 Fish processing. All areas ⁺⁾ Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.</pre>		
<pre>N7 Metallurgic industries; pulp and paper. N8 Metallurgic industries; ore mining; fish oils; oil refineries; metal plating. N9 Metallurgic industries; edible fats and fish oils; pulp and paper; oil refinery. N10 Metallurgic industry; fish industry. N11 Bulk chemicals; fish industries, textile industries. N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries; ore mining. N16 Ore mining; fish industries. SWEDEN S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. EMANY, FED.REF. F All areas *)Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards.</pre>	-	
N8 Metallurgic industries; ore mining; fish oils; oil refineries; metal plating. N9 Metallurgic industries; edible fats and fish oils; pulp and paper; oil refinery. N10 Metallurgic industry; fish industry. N11 Bulk chemicals; fish industries; textile industries. N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries. N16 Ore mining; fish industries. SWEDEN S1 Oil refineries. S2 Chemical industries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish processing. MMANY, FED.REP. F All areas *) Chemicals; oil refineries; breweries; food industries; iron smelting; paper and pulp; oil refineries. k1 areas *) Chemicals; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.		
N9 Metallurgic industries; edible fats and fish oils; pulp and paper; oil refinery. N10 Metallurgic industry; fish industry. N11 Bulk chemicals; fish industries; textile industries. N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries; ore mining. N16 Ore mining; fish industries. SWEDEN S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish industries. MANY, FED.REP. F All areas *)Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards.	•	Metallurgic industries; ore mining; fish oils; oil refineries; metal
<pre>N11 Bulk chemicals; fish industries; textile industries. N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries; ore mining. Ore mining; fish industries. S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. Fish processing. EMANY, FED.REP. E All areas *)Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards.</pre>	N9	Metallurgic industries; edible fats and fish oils; pulp and paper;
<pre>N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries; ore mining. N16 Ore mining; fish industries. SWEDEN S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. EMMANY, FED.REP. Fahl areas *)Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards.</pre>	NIO	Metallurgic industry; fish industry.
<pre>N12 Pulp and paper; ore mining; fish industries. N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries; ore mining. N16 Ore mining; fish industries. SWEDEN S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. EMANY, FED.REP. F All areas *)Chemicals, oil refineries; breweries; food industries; iron smelting; papermill; ship yards.</pre>	Nll	
<pre>N13 Pulp and paper; ore mining. N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries; ore mining. N16 Ore mining; fish industries. S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing.</pre>		
<pre>N14 Iron and steel; bulk chemicals; ore mining; metal refineries; fish industries. N15 Fish industries; ore mining. N16 Ore mining; fish industries. SUREDEN S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DEENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK2 Food processing; pesticide manufacture. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing.</pre>		
<pre>N16 Ore mining; fish industries. <u>SWEDEN</u> S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. EMMANY, FED.REP. F All areas *)Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards. </pre>		Iron and steel; bulk chemicals; ore mining; metal refineries; fish
<pre>N16 Ore mining; fish industries. <u>SWEDEN</u> S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. EMMANY, FED.REP. F All areas *)Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards. </pre>	N15	Fish industries; ore mining.
S1 Oil refineries. S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. E All areas *) Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards. NETHERLANDS +) All areas +) Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.	-	· •
<pre>S2 Chemical industries. S3 Oil refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing.</pre>	SWEDEN	
 S3 0il refineries. S4 Paper and pulp. S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. RMANY, FED.REP. E All areas *) Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards. NETHERLANDS All areas 	Sl	Oil refineries.
S4 Paper and pulp. S5 - S6 - DENMARK DK1 DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. RMANY, FED.REP. * All areas * NETHERLANDS +) All areas +) Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.	S2	Chemical industries.
S4 Paper and pulp. S5 - S6 - DENMARK DK1 DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. RMANY, FED.REP. * All areas * NETHERLANDS +) All areas +) Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.	S3	Oil refineries.
 S5 - S6 - DENMARK DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. RMANY, FED.REP. F All areas *) Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards. NETHERLANDS All areas +) Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries. 		
S6 - DENMARK DK1 DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. RMANY, FED.REP. *) F All areas NETHERLANDS +) All areas +) Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.		-
DK1 Chemicals. DK2 Food processing; ammonia. DK3 Ships; fertilizer production; distilling; fish processing. DK4 Fish farming and processing; pesticide manufacture. DK5 Fish processing. RMANY, FED.REP. *) Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards. NETHERLANDS +) All areas +) Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.		-
DK2Food processing; ammonia.DK3Ships; fertilizer production; distilling; fish processing.DK4Fish farming and processing; pesticide manufacture.DK5Fish processing.RMANY, FED.REP.*)FAll areasNETHERLANDS+)All areas+)Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.	DENMARK	
DK2Food processing; ammonia.DK3Ships; fertilizer production; distilling; fish processing.DK4Fish farming and processing; pesticide manufacture.DK5Fish processing.RMANY, FED.REP.*)FAll areasMETHERLANDS+)All areas+)Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.	DK1	Chemicals.
DK3 DK4 DK5Ships; fertilizer production; distilling; fish processing.Fish farming and processing; pesticide manufacture. Fish processing.FMANY, FED.REP.FAll areasMETHERLANDS All areas+)Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.	DK2	Food processing: ammonia.
DK4 DK5Fish farming and processing; pesticide manufacture.DK5Fish processing.FMANY, FED.REP.*)FAll areas*)Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards.NETHERLANDS All areas+)Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.		
DK5 Fish processing. Fish processing. FAll areas *)Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards. <u>NETHERLANDS</u> All areas +)Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.		
F *)Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards. <u>NETHERLANDS</u> +)Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.		
All areas *'Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards. <u>NETHERLANDS</u> +)Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.	RMANY, FED.REP.	
<u>NETHERIANDS</u> All areas +) Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.	DF	x)
All areas ⁺⁾ Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.	All areas	"'Chemicals; oil refineries; breweries; food industries; iron smelting; papermill; ship yards.
paper and pulp; oil refineries.	NETHERLANDS	
BELGIUM *) Chemical industries; food industries.	All areas	+) Iron and steel; potato starch; petro-chemicals; bulk chemicals; paper and pulp; oil refineries.
	BELGIUM	*) Chemical industries; food industries.

*) From Coop.Res.Rep. No.39. +) Personal communication.

Table 8 (Continued)

Major Industries

ENGLAND/WALES	
El	Pharmaceutical/drug; aluminium smelter.
E2, E2a	Engineering; shipbuilding; chemicals.
	Engineering; shipbuilding; chemicals; steel.
E3	
E4	Extraction of magnesium from seawater.
E5	Plastics manufacture; chlorinated alkalis; fertilizers; oil
- 1	refineries; petrochemicals; steel; chemicals.
E6	Steel; malting; vegetable processing.
E7, E7a	Chemicals; distillery; fish processing.
E8	Chemicals, oil refineries; petrochemicals; titanium dioxide
	production; fish processing.
E9	Vegetable processing; chemicals; sugar beet (seasonal).
ElO	Chemicals; metal finishing; vegetable processing; sugar beet (seasonal).
Ell	Brewery and malting; vegetable processing; plastics.
E12	Oil refineries.
E13	Paper industries.
El4	None.
•	
E15	Refining; mixed industry; chemicals.
E16	Little mixed industry.
E17	
E18	Little light industry.
E19	Mining.
E20	Very little.
E21	Mixed industry; paper.
E22	Chemicals; paper making.
E23	Mixed industry; steelmaking.
E24	Mixed industry; steelmaking; coal mining.
E25	Refining.
E26	-
E27	Chemicals; steel; aluminium.
E28	Chemicals; refining; paper making; food; mixed industry.
E29	Chemicals; paper.
E30	Chemicals; paper; nuclear fuels; iron and steel.
	onomicals, paper, nuclear ruers, from and succi.
SCOTLAND	
SC1	Creameries; plastics factory.
SC2	
SC3	-
SC4	-
SC5	<pre>Cement; fertilizers; docks; brewing; paper mills; oil refining; petrochemicals; chemical and dye stuffs; distilling; coal mining.</pre>
NORTHERN IRELAND	-
IRELAND	
IRL	Mining; chemicals; power plants; textiles; agriculture; dairying; food processing.
IR2	Oil refinery; chemicals; power plants; textiles; agriculture; dairying; food processing.
IR3	Agriculture; dairying; food processing; chemicals; power plants; textiles.
IR4	Agriculture; dairying; food processing.
ICELAND	Fish processing.
GREENLAND	
Gl	No industry.

	$\begin{array}{c} \text{COD} \\ \text{x 10}^{3} \\ \text{tonnes/yr} \end{array}$)il tonnes/yr	Tar tonnes/yr	Taints tonnes/yr	Ind. Solvents Org. Halogens tonnes/yr	
NORWAY						
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N10 N11 N12 N13 N14 N15	167 10 130 5 35 4 9 15 13 6 23 17 16 14 34 9	1 811 1 134 1 200 722 914 495 936 2 148 2 240 349 1 060 1 270 800 755 565	1 265 0.1 10 345 9 63 88 420	1 520 16 1 0.5 219 16 171 51 2.5 15	1 655 1 845 541 646 1 300 130 201 903 1 006 64	
N16 Total	9 507	850 17 249	2 200	2 012	8 290	
	COD x 10 ³ tonnes/yr	0il tonnes/yr	Phenol tonnes/yr		Cooling_Water x 10 ⁶ m ³ /yr	
<u>SWEDEN</u> S1 S2 S3 S4 S5 S6	13 27 540 94 72 190	6.5 10.6 183 133	0.2 0.4 0.1 0.2		330 1 261	Vinylchloride 2.1 t/y Other C-Cl 0.8 t/y
Total	936	333	0.9		1 591	

TADIE 7. MISCELIAMEOUS MIPUU MILOIMAUL	Table 9.	Miscellaneous	input	information
--	----------	---------------	-------	-------------

41

12 87

DEINMARK	and a second second second							-
DK1 DK2 DK3 DK4	Organic so Perchloroe Cooling wa Cooling wa	lvents 20 thylene 0 ter 630 ter 54	0 t/y 0.15 t/y 0 x 10 ⁶ m ³ /y 0 x 10 ⁶ m ³ /y					_
	COD x 10 ³ tonnes/yr	CN tonnes/yr	Phenols tonnes/yr	Petrol waste tonnes/yr	e Hea x 10 ¹⁰ M	t cal/y		-
GERMANY, FED.REP.								
Gl G2	-	-	1.9	200 (Tar inc	.) -			
G2	-	-	10	-	-			
G3	- 26	240	- 220		4.	5		
G4	20	240	220	-	53			=
	$\begin{array}{c} \text{COD} \\ \text{x } 10^3 \\ \text{tonnes/yr} \end{array}$	CN tonnes/yr	Phenols tonnes/yr	Detergents tonnes/yr	Polycycl. aromates tonnes/yr	Petrol wast tonnes/yr	te	- 42 -
NETHERLANDS	6							
NLI	337	161	59	684	1 220	3 400		
NL2	>22		-	-		7 400		
NL3	3 553	-	538	3 193	8 209	54 560 Be 2 עו	26 t/y Sb 135 t/y Alcohols 450 t/y 293 t/y Benzene 1 t/y	
NL4	216	1 147	283	1 063		P-pher	nol-sulfonic acid 580 t/y	
NL5	1 067	-	68	1 686		10 120		
NL6	197	-						
Total	5 392	1 308	948	6 626		68 080		- C

/Cont'd.

Table 9	(Continued).

ENGLAND/WALES El		(tonnes/yr)	(tonnes/yr)	Cooling water (x 10 ³ m ³ /yr)	Miscellaneous
El					.1
	0.3				Coal wastes
E2	1.1				Coal wastes; Phenol 1 100 t/y
E2a	neg.				Coal wastes
E3	1.5				-
E4	0.2				Mine wastes
E5	-		0.3		CN 750 t/y; CNS 475 t/y
E6	2.1				-
E7	neg.				-
E7a	2.1		21	135	-
E8	3.3	85			-
E9	0.4	75 2		07	-
ElO	1.1			83	-
E l 1 El2	0.7	88	100.000	875	
			122 000		Phenol 1 460 t/y; BHC 6.7 kg/yr; DDT 12 kg/y; PCB 22 kg/
E13 E14	0.4 0.7				
E15	0.7		2 500		
E16	2.9		2 500		
E17	0.4				
El8	0.7				
El9	1.1				
E20	0.7				
E21	2.1				
E22	1.1	58			
E23	_	<u> </u>		1	
E24	-				
E25	1.5				
E26	1.5				
E27	1.1			38	
E28	1.5		3 6 5 0	38 962	
E29	1.5	243			Uranium 7 t/y; Mono-dichlorobenzene 47 t/y
E30	neg.	5 000			F 8 000 t/y; Cellulose 3 000 t/y
IORTHERN IRELAN	D Cooling w	ater 910 x 10	⁶ m ³ /y (Tempe	rature elevated	by 15°C)
RELAND	0il 430 t	y; cooling w	ater 1.6 x 10	$9 m^{3}/y$	

							TADIC .				-					
Country and Area (1)	Quantity in 10 ³ t/yr	<нg	Cđ	Cr	Cu	Ni (Quantity in Pb	n tonnes/yr Zn	As	PCB	N	Р	COD/BOD Organics	Type of waste and/or other information		
NORWAY N2 N4 N5 N15	40 200 7 40)))		,			- NO INFO	DRMATION -					> ,	Bark chips Dredgings Wood fibres Clay soil		
SWEDEN S1 S2 S3 S4 S5 S6	1 8 1 300 24 36 75))<))						ORMATION — potnote (2)		h			>	Dredgings		
DENMARK DK2 DK3 DK4	76 2 800 1 500	NEGL. 0.4 NEGL.	0.04 1.4 0.2	- 29.0 0.6	0.5 36.0 1.5	0.4 30.0 1.3	0.7 79.0 20.0	2.4 188.0 10.0	- 1.0 -					Dredgings		
Deep water (Bay Biscay)	10	<		FOR	DETAILS	OF COMPOS	SITION SEE	FINAL COLU	IMN AND	TYPE O	F WASTE -	>	900t COD	Waste from vitamin, barbiturate and sulfonamides manufacture. Contains 1900t inorganic salts mainly as Na_SOL, 600t organic acids/salts, 0.16t aniline, 85 t Solvents (mainly alcohol), <50kg perchloro- ethylene.		
GERMANY , FED.REP. of	328 403	}					- NO INFO	DRMATION -					>	Sewage sludge 4.3% solids. Waste from TiO ₂ manufacture. 8.8% H_2SO_4 14.2% FeSO ₄ + 23 x 10 ³ t insoluble solids.		
NETHERLANDS NL A	16 219	-	33	1 218	397	193	746	2 652						Dredgings Dieldrin 0.57t, HCB 0.40t, chlorinated		
NL B	2 155 9 <i>3</i> 0	-	(6)	(180)	(65)	(21)	(155)	(426)	10				1200t COD (0 ₂ /yr)	hydrocarbons 25t, oil 112t. Dredgings Dieldrin 0.03t, HCB 0.11t, chlorinated hydrocarbons 4.2t, oil 15t. Industrial wastes. 66% water, containing 322 x 10 ³ t inorganics and 678t organics - for details see Footnote (3).		
$\begin{array}{l} \text{BELGIUM} \\ 51^{\circ}50^{\circ}\text{N} &= 3^{\circ}10^{\circ}\text{E} \\ 51^{\circ}30^{\circ}\text{N} &= 3^{\circ}00^{\circ}\text{E} \\ 51^{\circ}26^{\circ}\text{N} &= 2^{\circ}58^{\circ}\text{E} \\ 51^{\circ}25^{\circ}\text{N} &= 2^{\circ}55^{\circ}\text{E} \end{array}$	300 200 7 17	}		FOR	DETAILS	OF COMPOS	SITION SEE	FINAL COLU	JMN AND	TYPE O	F WASTE -		>	Waste from TiO manufacture. 15% H SQ & 2-3% FeSO, """"27% H SQ & 6% FeSO, Resin manufacture containing 1.5% phenol. Enzyme manufacture 66% organic matter, 34% Liatom- aceous filter.		
FRANCE	940		8	4	5	5	10				5 950			Industrial wastes.		
ENGLAND													Organics	Dredgings Colliery Sewage Fly Indus- Spoil Sludge Ash trial		
E1 E2 E3 E4 E5	60 2 450 20 5 787 10	1		12 17	18 34	8	30 82	48 109			21	1 740 5	0.3t	100)Nature of ind244927100)& full detail33652100)dumping supp-100)lied to ICES.		

Table 10. Inputs by marine dumping.

Table 10 (Continued	

an 22		<				G	uantity i	n tonnes/y	r —				~~>				
Country and Area (1)	Quantity in 10 ³ t/yr	Нg	Cđ	Cr	Cu	Ni	Pb	Zn	As	PCB	N	P	COD/BOD Organics	Type of waste a	nd/or other	information	a
ENGLAND (contd) E5 E5/6	10 2 465	7	3	360	280	57	330	680			21	5	0.3	Dredgings Coll Spoi		Fly Indu Ash tria	al)
E7 E8 E10	10 1 624 331 8 482	0.2	1	170 5	290 7	11	500 10	- 20			669	167	15	100 74 100	21))All sewage)sludges and
E11 E13 E14 E15	8 482 674 136 320	1.3 0 0	5	14 2 1	111 2 1 3	50 0	115 5 3 2	466 10 4 6	19	0.1	11 029 368	2 836 77	100 6.3	38 95 100 31	62 69	5)industrial)wastes dumped)into the wake)of the vessel.
E16 E17 E18	1 046 73 500	-			2			2			134	34	1.7	100 87	13)Colliery spoil)and dredgings)bottom dumped
E20/25 E21/23 E22 E24	540 12 6 000 4 000	0 3	1 0 9	25 0	22 0 240	7 120	16 0 450	28 0 1 200		0	0	0	15	neg. 100 100	97	3 100)by hopper)barges.)
E26 E27 E28 E29	40 2 927 10 690 2 600	0 3 20	0 2 18	0 89 373 20	0 111 726 20	0 16	0 60 1 526 60	0 169 2 772 220		0 0.5 0.4	0 6 384	0 1 250	0.6 56.4	14 21 100 100	56	100 9	
Deep water	2 570								3					Deep water mean with Oslo requi total weight in Other main cons 1975 additional 1 t phenol disc	rements for cluding cont tituents 20 ly 1000 t li	depth etc. ainers and 5t CN and quid waste	Weight given is packaging. 1 t Sb. In
SCOTLAND SC2 SC3 SC5	1 400 40 300	0.3	1	120	48	6	43	126		0.3	2 940	540	Organics 50	Sewage sludge Industrial Colliery waste			
N. IRELAND	220	0.1	0.1	8.6	3		12	21			462	120	7	Sewage sludge			
IRELAND IR1 IR2	142 1 200		0	1.7	2.4 0.1	1.5	2.8	11.4 0.5			200	28		Sewage sludge			

FOOTNOTES

(1) Areas given in general refer to coastal zones as used in previous input tables; dumping is usually within about 25 miles of coast.

(2) Quantities quoted are means for 1967-72.

 (3) Composition of Netherlands industrial waste given as -H₂SO₄ 194,811t, H₂PO₄ 925t, HCl 491t, CH₂COOH 638t, Sodium Salts 3,916t, Cr₂(SO₄)₃ 235t, FeSO₄ 83,042t, other sulphates 36,908t, NaCH 758t, Alcohols 75t, Glycerine 8t, Polymerised Glycerine 45t, 3 tons 1,1,22,--tetrachloroethylene, 2,6 dichlorobenzonitrile and 2,6 dichlorobenzamide, Hydrazine and acetate compounds 77t, Albumins 470t.

Incineration

One country, Netherlands, reported that they had disposed of about 40,250 tonnes of industrial wastes by burning at sea on specially designed vessels. Of this quantity no more than 18% was not chlorinated hydrocarbons. Incineration efficiency is assumed to be at least 99.9% and the input of chlorinated hydrocarbons to the marine environment (unburnt) was therefore not more than 40 tons.

Detailed content of the wastes incinerated are as follows:-

Table 10 (Continued) (Incinerated wastes)

Tonnes

Trichloropropene Allyl-Chloride 1.1.2 Trichloroethane 1.2 Dichloroethane 6 Chlorocresol 4 Chlorocresol Phenol, Orthocresol, 4 Chlorophenol Other chlorinated Hydrocarbons Cl C N Br. Fe. Mn and/or Cr	2,776 534 4,788 479 32 24 4,309 8,685 257 257 3
Br, Fe, Mn and/or Cr	3

33,064 t

Table 11. Summary of programmes to determine atmospheric inputs.

SWEDEN

Since 1967, the Institute of Meteorology at the University of Stockholm has taken samples of air and rainfall at monthly intervals. This programme is part of the European Atmospheric Chemistry network. The samples are analysed for sulphate, carbon, nitrate, ammonia, sodium, potassium, magnesium and calcium, alkalinity/ acidity, pH and conductivity. Similar analyses are made on filtered and unfiltered air samples, which are taken in an endeavour to separate particulate sulphur from sulphur dioxide. Typical concentrations in precipitation were given for the station at Plöninge near Hamstad where precipitation averages 72.7 mm/month. These values were:

so4	52.1	µg mole/l	Na	47.2	µg mole/l	
Cl	59.1	н	K	9.5	11	
NO3	42.6	"	Mg	7.9	"	
NH4	51.5	"	Ca	10.0	"	
H^+	61.0	н	Cond	uctivit	y 10 ⁶ 1	cm ⁻¹
рH	4.2	calculated				

These values are uncorrected for sea salt contribution, which is estimated by relation of one element to sodium in rain water and sea water as 49.3μ mole/1 S, 8.5μ mole/1 K, 2.5μ mole/1 Mg and 9.0μ mole/1 Ca.

The Zoological Institute at the University of Lund has carried out a similar programme to assess the airborne fallout of PCB and DDT over Sweden. Samples were taken at about 20 sites using special sampling screens and collectors which are renewed at monthly intervals. Results of this and other related work have been published in the open literature (Refs. 7, 8, and 9). These results show some evidence of seasonal variations, with the highest concentrations in the earlier part of the year. PCB fallout is higher than that of DDT.

DENMARK

Two programmes to assess the atmospheric fallout of metals are conducted in Denmark. The Institute of Ecological Botany at the University of Copenhagen has a set of stations of which 14 are in Denmark, one in the Faroes and one on the Swedish coast. All stations are at least 10 km from the main roads. Most metals are measured at monthly intervals, but nickel, vanadium, strontium, Table 11 (Continued)

lithium and chromium only occasionally. Analysis is by atomic absorption spectrophotometry using a graphite cuvette. Typical values found are:

Rainfall			Qua	ntity				
mm/yr	Pb	Cđ	Cu	Zn	Na	Mg	Fe	Mn
505	7.1	0.2	1.44	14.8	1,770	260	85	13.9

If these values are used to calculate the input to the North Sea (assuming an area of $6 \times 10^{11} \text{ m}^2$ including Kattegat), the total inputs are:

Pb Cd Cu Zn Na Mg Fe Mn $x 10^{3}$ tonnes/yr 4.3 0.1 0.9 8.9 1,062 156 51 8.3

These generally are of the same order of magnitude as those obtained in the England and Wales programme (see below).

The second programme is run by the company Superfos Ltd. Lead, cadmium, chromium, vanadium, nickel, zinc and sodium are measured six times each year at three stations all within 10 km of Fredericia near the Little Belt. New stations are being set up on several small islands within 30 km of Fredericia. Results are available for 1975.

ENGLAND, WALES AND SCOTLAND

A programme to assess the inputs of heavy metals to the North Sea was carried out for several years by MAFF (Fisheries Department) and the Atomic Energy Research Establishment at Harwell using seven stations around the North Sea, one in Norway, one in the Netherlands and the rest on the UK coastline. All stations are selected as being well away from immediate local sources of land-based contamination and from sea spray. The results of this programme have been reported in the literature (Refs. 1, 2, 3 and 4) and only a brief summary is given here. Samples were taken of both wet and dry deposition at monthly intervals at all sites. Analysis was by neutron activation for most elements and by atomic absorption spectrophotometry in a few cases.

Table 11 (Continued)

Element	Input in to:	nnes/yr
	Total deposition	Dissolved deposition
Sodium	4.4×10^{6}	4.4×10^6
Aluminium	1.1 x 10 ⁵	1.1×10^4
Chromium	720	175
Manganese	4.1 x 10^3	3.1×10^3
Iron	1.05 x 10 ⁵	1.6×10^4
Cobalt	82	32
Nickel	1.65×10^3	1.1×10^3
Copper	4.9×10^3	3.0×10^3
Zinc	1.45×10^4	1.15 x 10 ⁴
Arsenic	420	<420
Cadmium	-	530
Mercury	5.6	-
Lead	5.6 x 10^3	3.9×10^3

Inputs to the North Sea of some of the metals measured are given below:

These estimates assume an area of $5.3 \times 10^5 \text{ km}^2$ and a mean annual rainfall of 438 mm. These inputs have been compared to the known concentrations of metals in sea water of the North Sea and its flushing time and it appears that some 50% of the Fe, 25-30% of the Pb and 13-20% of the Zn inventories of the North Sea are accounted for by atmospheric fallout.

A similar but smaller programme has been operated by DAFS, Aberdeen, around the Firth of Forth, using six stations away from the immediate influence of sea spray (see Ref. 5). Analysis of samples was mainly by atomic absorption spectrophotometry and anodic stripping voltammetry. This programme has allowed estimates of the annual deposition of metals over the Firth of Forth to be calculated as follows:

Pb	0.87	µg/cm²/yr			µg/cm²/yr
Cu	0.25	TT	Hg	2.7	ng/cm ² /yr

Additionally, a programme has been established to assess inputs of organochlorine compounds to the North Sea (Ref. 6). Seven stations are operated along the east coast of the UK, all being well away from obvious sources of contamination.

Table 11 (Continued)

Assuming the area of the North Sea to be $5.75 \times 10^5 \text{ km}^2$, the annual input to the North Sea of several organochlorine compounds has been computed as follows:

Substance	Annual input (kg/yr)
PCB	2.0×10^3
pp DDE	0.2×10^3
pp DDT	0.9×10^3
op DDT	0.1×10^3
Dieldrin	0.3×10^3
∝ -HCH	0.8×10^3
7 -нсн	1.1×10^3
Total DDT group	1.2×10^3

IRELAND

Sulphur dioxide, smoke and dust-fall are measured at nine stations in Ireland, although not all stations measure all three inputs. Additionally, estimates are made of the emission of these materials and of nitrogen (as oxide), lead, hydrocarbons and carbon monoxide.

Estimated emissions for 1972 have been given as:

Nitrogen (as oxides)	12,500	tonnes
Hydrocarbons	88,000	11
Lead	700	ti
Sulphur dioxide	254,000	11
Smoke	59,000	11
Particulates	634,000	11

<u>Table 12</u>. Use of pesticides in Denmark^{#)} (active compounds).

2 - 4 D	(2,4 - dichlorphenoxycetic acid)	203 t/y
dichlorprop	2-150 (2,4 - dichlorphenoxy) - propionic acid	1 304 t/y
MCPA	(4-chlor-2-methylphenoxyacetic acid)	626 t/y
TCA	(Sodium trichloroacetate)	592 t/y
DDT		0.8 t/y
Lindane		16.5 t/y
pentachlorphenol		1.5 t/y
thiram	tetramethyl-thiuramdisulfide	54 t/y
maneb	manganese-ethylen-1,2-bis-dithiocarbamate	144 t/y
DNOC	2-methyl-4,6 dinitrophenol	41 t/y
dinoseb	2-(1-methyl-n-propyl)-4,6-dinitrophenol	41 t/y 52 t/y 51 t/y
capstan	N-(trichlormethylthio)-cyclohex-4-en-1,2-dicarboxyimide	51 t/y
parathion		116 t/y
Petroleum		112 t/y
Hg		1.1 t/y
Cu		18 t/y
NaClOz	5	267 t/y
)		7 070 +/-
Other		1230 t/y
Total		1 000 0 t/m
TOUGT		4 829.9 t/y

Use of pesticides in Norway

Chlorinated fatty acids	548 t/y
DDT, Endosulfane, lindane, metoxychlor	6 t/y
Fenoxy compounds	417 t/y
petroleum	335 t/y
sodium chlorate, borates	468 t/y
Carbamates	54 t/y
Other	233 t/y
Total	2 061 t/y

*) Whole area

/Cont'd.

- 51

Table 12 (Continued)

Ireland

National usage of pesticides (metric tons of active ingredient per year):

User	DDT	Lindane	Aldrin	Dieldrin	Chlordane
Agriculture	5.7	9.8	0.5	1.9	0.5
Industry	0.1	2.0	-	3.7	-
Total	5.8	11.8	0.5	5.6	0.5

No Endrin, Heptachlor or Heptachlor-epoxide were used in 1974. Since then, there has been a general reduction in agricultural usage, but not in industry. In particular, the usage of Dieldrin by the carpet industry remains high. The figures for industrial usage are probably underestimated but those for agriculture are correct.

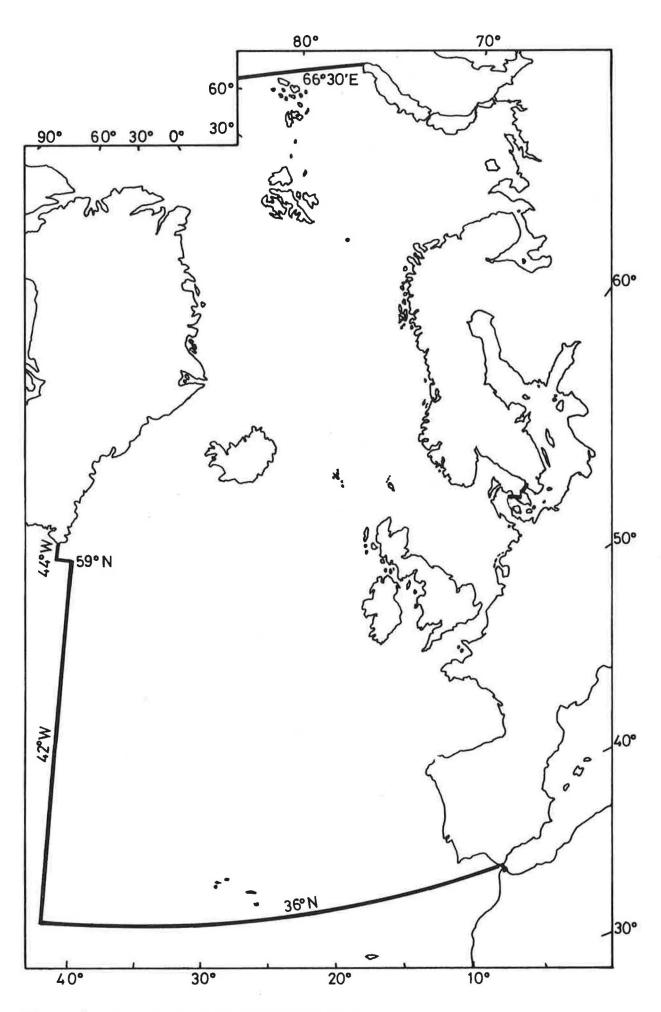
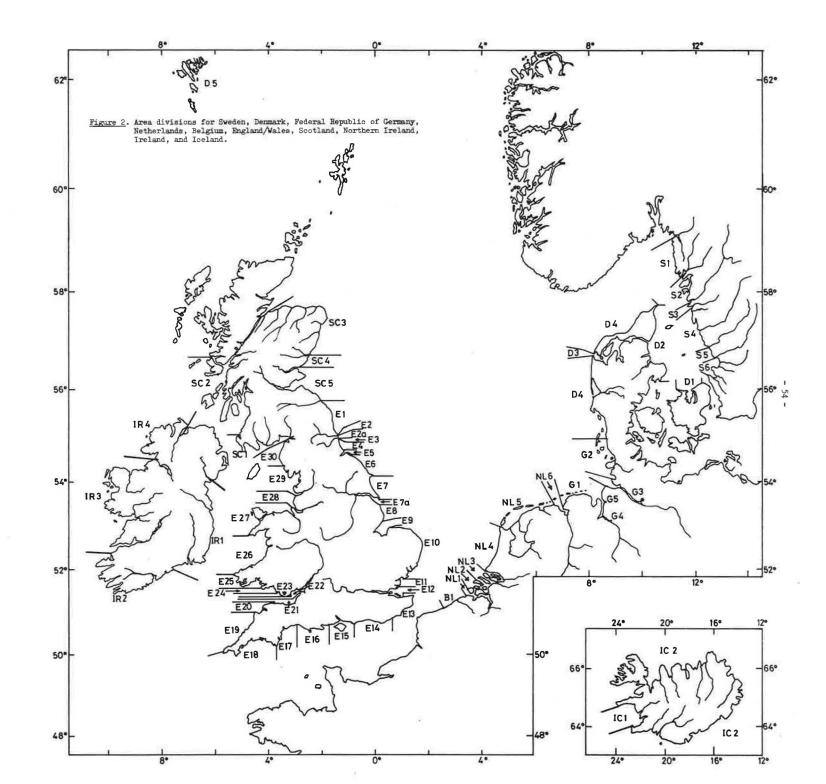
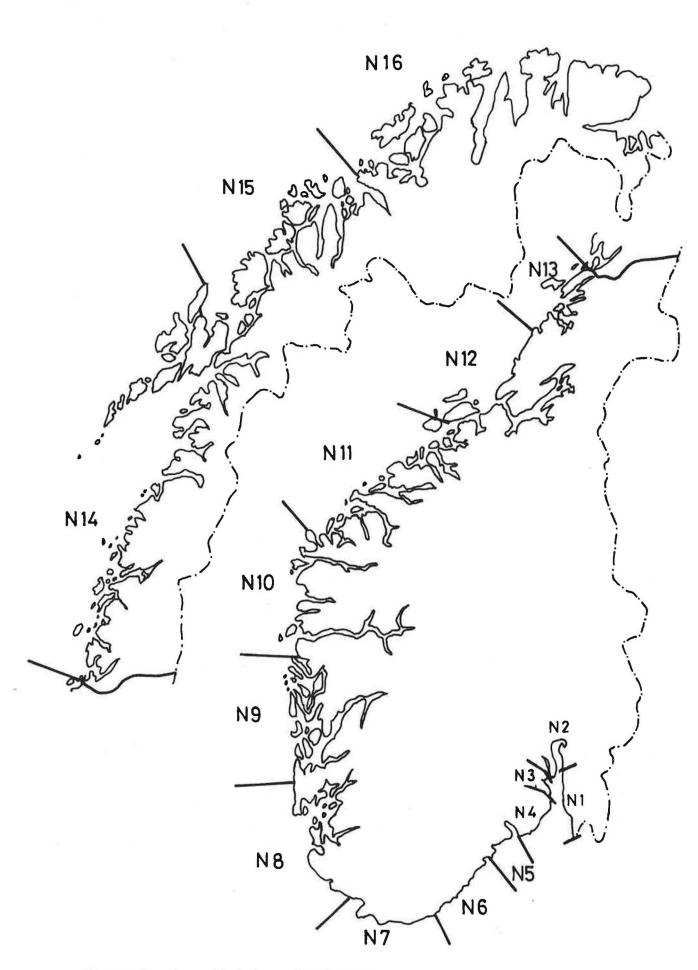




Figure 1. Map of the Oslo Commission area.

Figure 3. Area divisions for Norway.

INPUTS QUESTIONNAIRE

A. Explanatory Notes

- 1. Objectives: The purpose of the questionnaire is to provide a basis for an estimate (order of magnitude) of the input of major categories of pollutants to the marine environment in the North Sea, the Oslo Commission area and parts of the ICNAF region. For this purpose the marine environment will be taken to include river estuaries and fjords. Information is called for on all major pathways and on any individual sources which national authorities consider should be specified separately.
- 2. Inputs which are of concern are via the following pathways or routes.
 - (i) River input to the marine environment.
 - (ii) Input directly to the marine environment (as distinct from river, dumping or atmosphere), e.g., pipeline discharges, etc., to estuaries and coastal waters.
 - (iii) Atmospheric inputs.
 - (iv) Dumping.
 - (v) Other sources, e.g., incineration at sea.
- 3. It is suggested that coastlines be divided into sections of convenient size at the discretion of national authorities, so that input figures for the various individual pathways can be given for each section of the coast. However, major estuaries or fjord systems should be dealt with as discrete units.
- 4. Wherever possible in an estuarine or fjord situation, it is requested that an estimate be provided of the proportion of the input entering the estuary or fjord which actually enters the open sea.
- 5. It will be noted that in certain cases, e.g., as in the case of dredging of river estuaries, the dumping of such spoil in the open sea is not an input but a transfer and should be included in the estimates of estuarine pollution load reaching the open sea.
- 6. It will be noted that details of radioactive wastes, e.g., from nuclear power programmes, are not required as these are being dealt with under the auspices of other international bodies. However, details are required of the volume and temperature elevation of power station effluents, whether nuclear or not.
- B. <u>Categories of Pollutant and Waste</u> (to apply to pathways 1, 2, 4 and 5 above, whether of domestic, industrial or other origin).
 - 1. Quantities to be given in m³/day or metric tons per year. These should be average quantities over the most recent available 12-month period, which should be specified. Where there is evidence that the dates thus provided are significantly different to the most recent situation, a note should be provided to this effect.

Provide details of :-

Total flow Total population contributing to the flow <u>Per capita</u> water usage Suspended solids Total solids BOD COD Total nitrogen Total phosphorus Organochlorine compounds, especially pesticides and PCBs Petroleum waste and tar products Metals, i.e., lead, cadmium, mercury, zinc, copper, arsenic and chromium Other substances Heated effluents (flow and temperature elevation).

- 2. A map should be provided showing major estuaries and the way in which the coastline has been divided.
- 3. Information should be provided concerning the degree of treatment of sewage and industrial wastes, especially where data on individual pollutant concentrations and these quantities are not available.

C. Dumping

1. Include industrial wastes, sewage sludges, mining wastes, harbour dredging (see note above) household refuse, etc. Provide information on approved dumping activities over the most recently available twelvemonth period in terms of quantities, composition and origin. Details are also required of the position of dumping, whether or not the waste was in a container, and whether the waste is expected to disperse or remain in the immediate vicinity of the area of disposal.

D. Atmospheric Input

Give details of national programmes to determine atmospheric fallout including sampling sites. Wherever possible estimates should be given of the annual input for the individual pollutants specified above.

E. Other Sources

Data appropriate to incineration at sea should include quantities, composition, origin, temperature of incineration and location of vessel conducting incineration. Please include any other known source not already listed.

Replies to be in not later than 31 December 1975.

- 0 - 0 -

Indication of spine colours

Liaison Committee Reports	Red
Reports of Advisory Committee on Marine Pollution	Yellow
Fish Assessment Reports	Grey
Pollution Studies	Green
Others	Black

-0-0-0-0-

* 211 per