ASSESSMENT OF HERRING STOCKS SOUTH OF $62^{\circ} \mathrm{N}$ 1973 to 1975

*
*

s

Page

Introduction 1
Report of the North Sea Herring Assessment Working Group, Charlottenlund, 3-7 September 1973 2
Introduction 2
Terms of Reference 2
Participation 3
The Development of the Fishery in 1972 3
Spawning Potential 4
Fishing Mortality from Cohort Analysis and Catch per Unit Effort Data 5
Recent Recruitment Estimates 6
Stock/Recruitment Relationship 8
Prognosis 8
Total Allowable Catch 9
Additional Regulatory Measures 11
Discussion 12
References 13
Tables l-8 14
Explanatory Notes to Tables l-8 and to Appendix Tables 1-8 18
Tables 9-14 20
Figures l-4 25
Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$, Charlottenlund, 18-22 February 1974 29
Introduction and Participation 29
North Sea Herring 29
The fishery in 1973 29
Fishing mortality 30
Stock and recruitment 31
Prognosis and total allowable catch 32
Celtic Sea Herring 33
Catches 33
Stock and recruitment estimates 33
Fishing mortality 34
Conclusion 34
Herring in Division VIa 34
General biology of stocks in Division VIa 34
Stock structure of herring in Division VIa 35
Total catches and the fisheries in Division VIa 36
Catch in numbers in Division VIa 37
Mortality in 1973 37
Recruitment of the 1971 year class in Division VIa 38
Mortalities and stock size 38
Catch prognosis for 1974 39
Total allowable catch (TAC) 39
Discussion 39
References 41
Tables 2.1 to 2.10 43
Tables 3.1 to 3.6 49
Tables 4.1 to 4.11 51
Figures 5 to 8 60
Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$, Charlottenlund, 27 February - 7 March 1975 63
Introduction and Participation 63
The North Sea 64
The fishery in 1974 64
Input data for cohort analysis 65
Results from cohort analysis 66
Mean weight by age in catch 66
Total allowable catches (TACs) for 1975 and 1976 67
The effects of a closed season 68
Celtic Sea 69
Catch data 69
Stock and mortality estimates 69
Variability of recruitment and its effects 69
Estimates of fishing mortality 70
Total allowable catches (TACs) for 1975/76 and 1976/77 70
Herring in Division VIa 71
Interrelationship of herring caught in Divisions VIa and VIIb 71
Total catches and the fisheries in Division VIa 72
Catch in numbers in Division VIa 73
Stock and mortality estimates 73
Catch prognoses for 1975 and 1976 73
North Sea Sprat 75
General biology of sprat in the North Sea 75
Total catches and the fisheries 75
Fishing effort 76
Catch composition 76
Management of North Sea sprat 77
Trial Run of ICES FISHDAT System 79
Summary 79
References 80
Tables 2.1 to 2.10 81
Tables 3.1 to 3.6 86
Tables 4.1 to 4.6 88
Tables 5.1 to 5.3 93
Figures 9-15 96
Appendix Tables 1 - 11 103

INTRODUCTION

In this volume the report resulting from the meeting of "The North Sea Herring Assessment Working Group" in 1973 and those from the meetings in 1974 and 1975 of the new group set up to succeed it "The Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{North}$ are presented. The purpose of each of these meetings was to provide the Liaison Committee of ICES with advice, for transmission to the North-East Atlantic Fisheries Commission on the state of, and suggested management action for, pelagic stocks in the area south of $62^{\circ} \mathrm{N}$. The increase in the number of stocks which these Working Groups have been required to assess in succeeding years illustrates the expansion which has taken place in recent years in the exploitation of pelagic resources in the area within which NEAFC is responsible for fish stock management. The reader of these reports will be able to form his own judgment of how effectively that management function has been discharged.

In an earlier report of the North Sea Herring Assessment Working Group (C.M.1972/H:l3) cohort analysis was first applied to North Sea herring. Because of the major role which this technique plays in current assessments, and because the basic input data of catch and catch in numbers per age group have been revised for the most recent years at each succeeding assessment, the complete set of data, covering the period 1947-74, are given in Appendix Tables 1-9. These are the most accurate data for that period currently available. Those for 1973 and 1974 may require some revision in future, as new data become available; it is unlikely that any further revision will be possible in the data for the earlier years.

In Appendix Tables 10 and 11 the output from the cohort analysis, using the data of Tables l-9, of fishing mortalities on each age group, and the stock in numbers of each age group, in each year are given. These data are frequently referred to in the reports published here, and it was considered more convenient to append them as single tables rather than to produce them in full in each report. It is also hoped that these Appendix Tables will be a convenient source of data for anyone who wishes to apply a new approach to, or to extend, the assessments reported in this volume.

It should be noted that the "Explanatory Notes to Tables 1-8" given on pages l8-19 of the 1973 report apply equally to Appendix Tables 1-8.

Charlottenlund, 3-7 September 1973

1. Introduction
1.1 A description is given of the changes in the state of the North Sea herring stocks since the second World War in terms of total catch, stock size, fishing mortality, spawning potential and recruitment. It is concluded that the high fishing intensity exerted on the stock during the last decade has reduced the spawning potential at a rate of about 20% per year. The decrease in biomass has led to a decline in the total North Sea herring catch which at present is based upon a few young year classes.
1.2 Based on the assumption that future year classes will be of average strength, a prognosis of future catch and biomass is given for different combinations of fishing mortalities for juvenile and adult herring. Total allowable catch levels are deduced from this prognosis.
1.3 The existence of a stock/recruitment relationship for the total North Sea stock has not yet been demonstrated. The possibility that such a relation could arise by further reduction of the spawning potential is pointed out. This could lead to a rapid collapse of the stocks and the fisheries.
2. Terms of Reference
2.1 At its Eleventh Annual Meeting in May 1973, NEAFC agreed that an extraordinary meeting of the Commission should be held in December 1973 in order to recommend conservation measures - especially quota regulations - to improve the state of the herring stocks and fisheries. The Commission also agreed that a NEAFC Working Group of administrators and scientists should meet in London in late October in order to prepare basic material for this extraordinary meeting.
2.2 The terms of reference for the NEAFC Working Group were:-
"To assemble and evaluate for presentation to a Special Meeting of the Commission information on measures for regulating catch with relation to herring stocks in the North and Celtic Seas.
To consider and evaluate scientific data on the state of stocks of North Sea herring, including an assessment of the total allowable catch provided by the Liaison Committee of ICES.
To consider and report to the Special Meeting on what further measures of conservation, if any, other than regulation of catch may be required for North Sea and Celtic Sea herring".
2.3 The North Sea Herring Assessment Working Group consequently met at ICES headquarters, Charlottenlund, Denmark, in the period 3-7 September 1973. It had already met in February 1973 with two objectives: to revise its last report (Anon., 1972) for publication
in ICES Cooperative Research Reports series* and to report to the Liaison Committee on the preliminary data on the herring stocks and fisheries in 1972. A statement is included in the Liaison Committee's subsequent Report (Anon., 1973).

3. Participation

The following members of the Working Group took part in the meeting:

A C Burd	United Kingdom
A Corten	Netherlands
J Jakobsson	Iceland
H Lassen	Denmark
A Maucorps	France
K Popp Madsen	
(Chairman)	Denmark
K Postuma	Netherlands
A Saville	United Kingdom
A Schumacher	Federal Republic of Germany
\emptyset Jlltang	Norway
G Wagner	Federal Republic of Germany
O J Østvedt	Norway

The ICES Statistician, Mr D de G Griffith, also took part in the meeting. The absence of members from Poland, Sweden and U.S.S.R. was noted with regret.
4. The Development of the Fishery in 1972
4.1 A review of the development of the North Sea herring fishery in the period 1947-71 is given in the Report of the North Sea Herring Assessment Working Group (Anon., 1972).
4.2 The final figures for the catch taken in 1972 show a total of 491100 tons for the North Sea and 66900 tons for the Skagerrak. The overall total of 558000 tons is thus about the same as in 1971 (Table 1). As in 1971 a large part of the catch (40\%) was taken in the northwestern area (Table 5). The landings from the young herring fisheries in the central North Sea increased from 165200 tons in 1971 to 184900 tons in 1972 (Table 7) ${ }^{*} \%$
4.3 As in recent years the landings were mainly composed of 0,1 and 2-ringed fish as shown in the table below.

Millions of herring caught per age group (winter rings)

Year/Age	0	1	2	3	4	5 and older	Total
1968	839	2425	1795	1494	621	571	7746
1969	112	2503	1883	296	133	336	5246
1970	890	1196	2003	884	125	143	5249
1971	684	4378	1147	662	208	97	7177
1972	750	3341	1441	344	131	40	6047

[^0]4.4 Considering that about half of the catch of the 2 -ringed fish is taken before spawning about 80% of the total North Sea catch in numbers in l97l-72 consisted of juveniles and first time prespawners.

5. Spawning Potential

5.1 Using the estimates of each age group of the adult stock for the total North Sea derived from the Cohort Analysis (Appendix Tables 10 and 11) the spawning potential of the stock was calculated from fecundity data for northern North Sea herring (Figure 1):-

Fecundity per age group (From Baxter, 1959)

Rings	2	3	4	5	>5
No. of eggs $\left(x 10^{-3}\right)$	45	67	87	96	101

Spawning potential

(Number of adult females x Mean number of eggs per age group $x 10^{-12}$)

Year	Sp.pot.	Year	Sp.pot.	Year	Sp.pot.
1947	730	1955	459	1963	431
1948	622	1956	435	1964	481
1949	627	1957	405	1965	453
1950	585	1958	336	1966	338
1951	557	1959	520	1967	266
1952	500	1960	452	1968	197
1953	465	1961	434	1969	131
1954	460	1962	322	1970	146

5.2 The high spawning potential in 1947 is obviously a result of an accumulation during the war period of older fish having high fecundity.
5.3 From 1947 to 1958 the spawning potential declined in the course of 11 years by about 50%. This decline is associated with an increase in fishing mortality on adults from 0.24 in 1947 to 0.45 in 1958.
5.4 In the following period 1959 to 1965 the spawning potential fluctuated by about 25% around an average of 440×10^{12}. The fishing mortality during this period fluctuated in a similar way between values of 0.3 and 0.48 . Within this range a remarkable increase in spawning potential was observed in 1959 and in 1963-64 as a result of the recruitment to the spawning stock of the outstanding year classes 1956 and 1960.
5.5 In the course of the 5 year period after 1965 the spawning potential declined to 30% of the level of the preceding period. This decline is associated with a sharp increase in fishing mortality from the previous level of 0.45 up to a level of 1.0 and even higher.
5.6 As mentioned above and as shown in Figure 1 the two very good year classes 1956 and 1960 increased the spawning potential considerably and temporarily counteracted the rapid decline of the spawning potential caused by fishing (Figure 2). The good year class 1963, which was about 40% above the long-term average, did not lead to an increase in spawning potential. This was due to the increasing exploitation of the juvenile component, and leads to the conclusion that at the present high level of exploitation of juveniles, even a good year class can hardly contribute significantly to the spawning potential.
6. Fishing Mortality from Cohort Analyses and Catch per Unit Effort Data
6.1 Fishing mortality rates calculated for each age group, in each year, over the period 1947-70, are given in Appendix Tables 11 and 12 for the total North Sea stock.
6.2 For the adult stock the changes in the fishing mortality rates can most easily be followed from the value $\mathrm{F}_{\mathrm{w}} \geq 2$. This value which was about 0.2 prior to 1951, fluctuated between $0.31-0.48$, with a mean of 0.4, in the period 1952-64; and thereafter increased very much to a mean of 0.71 in 1965-67 and to 1.13 in 1968-70.
6.3 In the early 1950s when the Bløden fishery started, the calculated fishing mortalities for the l-ringers were low, at a value of 0.l. From 1954 to 1963 this mortality fluctuated without trend in the range 0.18-0.46, with a mean value of 0.3. In the period 1964-69 the fishing mortality rate was appreciably higher in the range $0.36-0.54$ with a mean of 0.5 .
6.4 The catch data indicate that subsequent to 1970 the fishing mortality in the young herring fishery has increased even further. For several alternative values of F on 2-ringers in 1972, the value of F on l-ringers in 1971 was calculated applying cohort analysis. The results indicate that at present the fishing mortality rate on l-ringers is at the same level or even higher than that of the adults i.e. about 0.7.
6.5 From the Bløden Herring Tagging Experiment estimates were made of the fishing mortality of the 1967 and 1968 year classes as lringed fish (Anon., 1975). The values derived are in close agreement with those obtained from the cohort analysis.
6.6 In the table below are given total mortality rates calculated from catch per unit effort and age composition data for the northwestern, central and southern North Sea adult stocks separately. As these are rather variable from year to year they are presented as mean values for 4-year periods. The values in this table up to 1969 are taken from Table 22 of Anon. (1971); those subsequent to 1969 have been calculated during this meeting (see table on page 6).
6.7 In the northwestern area the total mortality rates in the period to 1965 were in the range $0.4-0.6$ but subsequent to 1965 they increased to about 0.7. In the central North Sea these total mortality rates were at about the same level as in the northwestern area prior to 1961 and then rose more sharply. In the southern North Sea the total mortality rate was quite high at 0.8 even in the earliest period considered here, and increased progressively up to 1965 to a level of 1.5 .

Period	Northwestern North Sea1)	Central North Sea	Southern North Sea 3)
$1952-57$	0.39	0.44	0.81
$1957-61$	0.58	0.60	1.13
$1961-65$	0.42	0.83	1.55
$1965-69$	0.73	1.01	1.33
$1969-72$	0.67	0.89	1.22

1) Derived from Scottish drift net catch per unit effort in May-July.
2) Derived from Netherlands trawl catch per unit effort in August-September.
3) Derived from Netherlands trawl catch per unit effort in November-December.
6.8 The mortality rates from catch per unit effort data can only be compared with those derived from the cohort analysis by weighting these area estimates by the relative stock sizes in each area to get an overall mean. Data on the sizes of the adult stock in the three areas have been taken from Burd (1973). When this is done and 0.1 subtracted to get an F value, the resulting values are given in the text table below with the cohort analysis values for comparison.

Period	Fishing mortalities derived from:	
	Catch per unit effort	VPA
$1952-57$	0.41	0.38
$1957-61$	0.49	0.44
$1961-65$	0.44	0.49
$1965-69$	0.67	0.89
$1969-72$	0.64	$?$

6.9 The close agreement up to 1965 gives some confidence in the catch per unit effort estimates for the period 1969-72 when no efficient estimate of F can be obtained from the cohort analysis. The value of 0.64 for this period derived from catch per unit effort is very close to the value of 0.7 used in the prognosis for the input value of the adult stock.
7. Recent Recruitment Estimates
7.1 The magnitude of any regulatory measures to be taken in order to restore the North Sea spawning stocks is partly dependent upon the level of current recruitment to these stocks. The 1969 year class is the last one for which some estimate can be made from the adult North Sea fisheries. In the central North Sea fisheries the abundance was low as it also was in the spawning fishery in the Southern Bight. This year class made a major contribution to the fishery in the northwestern North Sea around the Orkneys and Shetlands, and in catches in Division VIa. The recent year class abundances for both areas from Scottish catch per unit effort at

Shetland and from cohort analysis for Division VIa are given below:

Scottish estimates of recruitment of recent year classes

Year class	Division IVa W tons/drifter landings July) as 2-ringers	Division VIa Stock in 109 as 0-group
1967	3.06	1.01
1968	1.68	1.53
1969	1.50	2.30
1970	1.41	1.58

This text table indicates that the 1969 year class was particularly strong in Division VIa while in Division IVa it was about the same strength as the 1968 and 1970 year classes, in contrast to the situation in other North Sea adult fisheries.
7.2 Estimates of the strength of these year classes were available as juvenile fish. The text table below gives the abundances in the English O-group surveys, the ICES Young Herring Surveys and the Danish industrial fishery.

Estimates of recruitment as juvenile fish

Year class	$\begin{aligned} & \text { English } \\ & \text { O-group } \end{aligned}$	ICES Young Herring Surveys ${ }^{2}$)		Danish industr.fishery ${ }^{3}$	
		I	II	I(spring)	II (autumn)
1967	1799	455	87	1082	318
1968	1259	442	73	305	173
1969	2793	1241	354	1006	455
1970	1245	844	57	1278	307
1971	907	411			

1) Numbers per hour per station.
2) Numbers per hour per rectangle.
3) Weighted average number per unit effort.

The 1969 year class is dominant in each series except in spring 1971 in the Danish fishery. The 1970 year class was also above average in the ICES Young Herring Surveys and the Danish fishery. The 1967 year class, which was much stronger in the northwestern North Sea than in Division VIa, also appears as above average strength in the juvenile estimates. From the few data available the 1971 year class as juvenile fish appears to be about average strength.
The interpretation of the juvenile abundance estimates in relation to the North Sea spawning stocks is problematic. While the 1969 year class appeared abundant from the juvenile assessments it
recruited poorly in the North Sea, except in the northwestern area. It was also abundant in Division VIa, and the possibility exists that a part of that year class of juvenile herring in the North Sea were recruits to the stock in Division VIa.
7.3 A number of returns from the Bløden Tagging Experiment can be ascribed to fishing position. These are mostly returns from Norwegian and Scottish meal plants. Figure 3 shows the returns reported from the July/August fishery in 1970 and 1973. It appears that some fish of the year classes 1967 and 1968 tagged on the Bløden south of $55^{\circ} 30^{\prime}$ migrated to the west of the Shetlands and Orkneys and even into the Minch.
7.4 The abundances of larvae in the North Sea surveys over the period 1946-72 are summarised in Table 13. This table is a complete revision of that previously reported (Anon., 1972). In recent years in the Downs area there has been some improvement from the very low levels in 1963-68. In the central North Sea the major production in recent years has been centred on the Yorkshire coast and Longstone spawning grounds, while on the Dogger there has been no appreciable production since 1966. In the Buchan area some larval production occurred in 1971 and 1972 after the low levels in 1967-70. The abundance of larvae in the Orkney/Shetland area seems to be very variable from year to year. If these larvae, or even older larvae from areas further west, are drifted into the North Sea and as juveniles eventually exploited in the young: herring fisheries, a component of variability is introduced which causes difficulty in making forecasts of recruitment from these.
7.5 In the prognosis the recruitment of the incoming 1971, 1972 and subsequent year classes has been put at average.
8. Stock/Recruitment Relationship

Although no stock/recruitment relationship for the herring stock of the North Sea has so far been established, a continuation of the steady decrease in spawning potential during the past years makes it likely that such a relationship could become effective. In that case the result would be that the protection measures discussed in the present report will be over-optimistic.

If very severe protection measures are not then taken immediately, a complete breakdown of the North Sea herring stock will be evident within a couple of years.

9. Prognosis

9.1 A new prognosis (Table 14) has been made for the catches in 1973 and changes in catch and biomass in subsequent years, using final catch figures for 1972. The assumptions used for the new prognosis differ in some respects from those used in the previous Report (Anon., 1972). Both sets of assumptions are given in paragraph 9.2 for comparison:

Assumptions used in:	This report	The previous report
Year class 1971	Average (7.9×10^{9})	Average (7.9×10^{9})
Year class 1972	Average (7.9 x 109)	Average (7.9×10^{9})
Natural mortality	0.1	0.1
Fishing mortality, O-group, 1972	$0.14 *$	$0.05^{* *}$
Fishing mortality, l-group, 1972	0.70	0.5
Fishing mortality, adults, 1972	0.70	1.0
$* F_{0-g r}=0.2 \times F_{1-g r}$	${ }^{* *} F_{0-g r}=0.1 \times F_{1-g r}$	

9.3 The estimated age composition of the stock as at 1 January 1973 is given below:

Age	0	1	2	3	4	5	6	7	8	Biomass in tons
Nos $\times 10^{-9}$	7.9	6.2	3.1	1.34	0.32	0.12	0.031	0.005	0	0.77×10^{6}

The changes in fishing mortalities for adult and juvenile herring were based on the catch in numbers for 1972. Assuming year classes 1969 and 1970 to be not far above average strength, the high numbers of these year classes caught as juveniles can only be explained by an increased fishing mortality on juvenile herring. The numbers of adult herring caught were lower than would have been expected at $F=1.0$. Therefore, the fishing mortality on adult herring has been reduced to 0.70 .

10. Total Allowable Catch

10.1 The objective of introducing a total allowable catch regulation is either to prevent a reduction of the current stock size, and hence of the future catch, or to allow an increase in stock size and future yields from it. With the size and age composition of the stock at their present levels the fishery is very largely dependent on the youngest age groups. A succession of poor year classes, whether naturally induced or due to a stock/recruitment relationship, would effectively eliminate the North Sea herring fisheries very quickly. The objective therefore must be to bring about an appreciable increase in stock size over a fairly short time period. Table 14 gives the forecast catches in 1973, and the increases expected by 1976 in catch and stock size, at various levels of fishing mortality on the juvenile and the adult components of the stock.
10.2 This prognosis is based on the catch figures of 1972 , assumed Fis on adults and l-ringers of 0.7 , and average recruitment. The provisional catch figures for 1973 (Table 9) suggest that the F values in that year are likely to remain at about the same level.

The prognosis shows that there is little change in stock biomass at these levels of F and therefore the values in Table 14 for 1973 can be taken as equally valid for 1974. Similarly the values for 1976 are valid for 1977. To illustrate the options which are available two levels of increase in stock size, of 100% and of 200\%, have been selected and the various strategies which will achieve these by 1977, given average recruitment, are shown in the text tables below.
10.3 If the objective is to increase the stock biomass by 100%, from the current level of 770000 tons to about 1.5 million tons, Table 14 shows that this can be achieved by any of seven combinations of adult and juvenile fishing mortalities. These are given in the text table below with their effects on total allowable catch in 1974, and with the maintenance of these F's in the ensuing years, on the catch in 1977.

100% increase in stock biomass by 1977 (in 1000 tons)

Juvenile F Adult F		0.0	0.1	0.2	0.3	0.4	0.6	0.8
		0.8	0.7	0.6	0.5	0.4	0.3	0.2
Allowable catch in 1974	Juveniles	-	30	60	80	110	150	180
	Adult	390	350	310	280	230	180	130
	Total	390	380	370	360	340	330	310
Allowable catch in 1977	Juveniles	-	30	60	80	110	150	180
	Adult	820	730	640	560	470	350	240
	Total	820	760	700	640	580	500	420

10.4 The smaller the juvenile F selected the higher will be the catch which can be taken in 1974; and the catch in 1977 will be very appreciably higher, increasing in the extreme case from 420000 to 820000 tons. If the greatest yield is the objective, then this would be achieved by completely stopping the juvenile fishery and retaining the exploitation rate of the adult fish at about the current level. The total allowable catch in 1974 would then be set at 390000 tons. Retention of these levels of F to 1977 would give a total allowable catch in that year of 820000 tons.
10.5 If the aim is to increase the stock size over the period 1974 to 1977 by 200% (to $2-3$ million tons) only four combinations of adult and juvenile F's listed in Table 14 will obtain the objective. These are shown on page ll, and they give a small range of $210000-240.000$ tons in the total allowable catch in 1974. With the retention of these F values the levels of catch which can be taken in 1977 are, however, very different, with a major increase in catch with decreasing F's in the juvenile fishery.

Juvenile F Adult F		0.0 0.4	0.2 0.3	$\begin{aligned} & 0.25^{*} \\ & 0.25 \end{aligned}$	0.3 0.2	0.6 0.1
Allowable catch in 1974	Juveniles	0	60	70	80	150
	Adult	230	180	160	130	70
	Total	230	240	230	210	220
Allowable catch in 1977	Juveniles	0	60	70	80	150
	Adult	700	510	410	380	170
	Total	700	570	480	460	320

* interpolated.
10.6 It must be stressed that if a total allowable catch is set without differentiating between adult and juvenile herring, the 1977 catch will be very much lower than that obtainable by a proportionally greater decrease in the juvenile than in the adult fishery.
With a stock size increase of 200% by 1977 the maximum sustainable yield thereafter would be taken by not exploiting the stock until the fish are 2 -ringers and applying a fishing mortality rate of 0.4. The annual yield, assuming stable recruitment, would then be about 825000 tons.

The expected long-term developments in catches and stock biomass are shown in Figure 4A and Figure 4B, respectively. It should be noted that the MSY for North Sea herring would be obtained at a fishing mortality rate of 0.4 for adults with no fishing for the 0 and 1 groups.
11. Additional Regulatory Measures
11.1 Minimum mesh size

The effectiveness of mesh size regulations in herring fisheries is very doubtful as fish which have escaped through the meshes may not be viable.
11.2 Minimum size

The introduction of a size limit in herring fisheries would have its effect through increased recruitment to the adult stock. Because of the difficulties in applying minimum mesh sizes, the direct effect would be to prohibit fishing on grounds where small herring are dominant. The length dividing the immature from the adult herring lies roughly between $20-23 \mathrm{~cm}$.
11.3 Area closures

Closure of certain areas can be used for protecting specific components of the stocks e.g. by closing spawning grounds or nursery areas.

11.4	Seasonal closures
	Because of the increase in weight of the herring from spring to summer and autumn, some increases in yield would be obtained by reducing the fishery in the first half of the year. A closed season from 1 February to 15 June increases the theoretical yield in the juvenile and adult fisheries by about 23% and 5% respectively, compared with the yield generated by the same annual fishing mortalities when there are no seasonal restrictions (Ulltang, 1972). The same quota in weight could thus theoretically be obtained with a reduced catch in number by seasonal restrictions.
11.5	Other conservation measures were discussed in the former reports of the Working Group (Anon., 1971 and 1972).
12.	Discussion
12.1	The data in Tables l-8 and in Appendix Tables l-8 refer solely to herring catches in the North Sea and Skagerrak, while in "Bulletin Statistique" no distinction is made between catches derived from the Skagerrak and Kattegat. It is also known that some of the "so-called" herring catches in "Bulletin Statistique" contain varying quantities of other species. The total annual catch figures given in the present report are about $30-40 \%$ less than the official figures in "Bulletin Statistique".
12.2	It is stressed that the total allowable catch levels for North Sea autumn spawners given in the present report are based on the catch data presented here, which are the better estimates of North Sea herring catches.
12.3	The final catch figures for 1972 differ little from the preliminary ones given in the Liaison Committee Report (Anon., 1973) and at 558000 tons the total catch is close to that in 1971. The catch composition, however, shows a further increase in the proportion of young fish.
12.4	The preliminary catch figures for the first seven months of 1973 already amount to 264000 tons despite the closure in force from 1 February to 15 June. This catch represents about half the expected annual catch if fishing mortalities had remained at the levels of 1972. The major part of this catch was taken after 15 June.
12.5	Prognoses of future catches have been made on the basis of the 1972 age composition and on certain assumptions, including that of average recruitment levels being maintained after the 1971 year class entered the stock.
12.6	The assumption of average recruitment would be invalid if a stock/recruitment relationship exists. Total North Sea estimates of recruitment have remained high despite a reduction of spawning potential of about 80% since 1947. The catches from the juvenile fisheries have remained high and have even increased. There is evidence to suggest that the apparent sustained abundance of juveniles in the North Sea may be supported by an increased influx of progeny from stocks north and west of Scotland. As these fish may not contribute to the adult North Sea stocks, they could be masking a decline in North Sea recruits, and the existence of a stock/recruitment relationship. Although the critical level to which spawning potential can be reduced before recruitment is effected is not known, any further reduction from the present level must be regarded with concern.

12.7 With maintenance of the present mortalities on juveniles and adults little change is expected by 1976 in biomass or catch if recruitment remains constant. However, because of the dependence of the fishery and of the stock biomass on the recruit brood the occurrence of a single poor year class would result in an immediate drop in total catch and a subsequent decline in spawning potential. For this reason alone it would be beneficial for the fisheries to be based on a stock of higher average age and biomass.
12.8 The stock biomass can only be increased by a reduction in fishing: mortality. In view of the errors inherent in the catch statistics on herring and on the assumption of future recruitment, it is necessary to aim at an increase of at least 100% over the 1972 biomass in the course of $3-4$ years.

13. References

ANON., 1971. Report of the North Sea Herring Assessment Working Group. Coop.Res.Rep., Ser.A, No. 26.
ANON, 1972. Report of the North Sea Herring Assessment Working Group Meeting, Charlottenlund Slot, 13-22 June 1972. ICES, Doc. C.M.1972/H:13 (mimeo.).
ANON, 1973. Report of the Liaison Committee to the North-East Atlantic Fisheries Commission 1973. Coop.Res. Rep., No. 36.
ANON, 1975. ICES Working Group Report on the Bløden Herring Tagging Experiment. Coop.Res.Rep., No.47.
BAXTER, I G, 1959. Fecundities of winter-spring and summer-autumn herring spawners. ICES, J.Cons.int.Explor.Mer, XXV(1):73-81.
BURD, A C, 1973. Recruitment to the North Sea herring stocks. ICES, Doc. C.M.1973/H:11 (mimeo.).

CUSHING, D H and BRIDGER, J P, 1966. The stock of herring in the North Sea and changes due to fishing. Fishery Invest., Lond., Ser.II, 25(1).
ULLTANG, Ø, 1972. Yield curves of North Sea herring. ICES, Doc. C.M.1972/H:8 (mimeo.).

Table 1. Herring. Catch in tons 1969-1972.
North Sea (Sub-area IV and Divisions VIId and e) by country.
Skagerrak and Kattegat (Division IIIa) total catch.

\qquad	1969	1970	1971	1972
Belgium	468	1200	681	1337
Denmark	180260	133331	185393	213738
England	6666	9702	4113	650
Faroe Isl.	40640	58405	25635	48444
France	15307	11482	11408	12901
Germany (F.R.)	12798	7150	3952	3065
Iceland	19997	22951	36992	31998
Netherlands	29769	49416	32479	24829
Norway	114938	177341	122570	110969
Poland	9221	5057	2031	2235
Scotland	22053	21885	25073	17227
Sweden	33109	34670	36880	7366
U.S.S.R.	61549	18078	9500	16386
Total N.Sea	546775	550668	496707	491145
Skagerrak	113279	70527	61411	66962
Kattegat	59300	74300	90200	107519
Grand Total	719354	695745	648318	665626
Non-member countries	?	250	?	?

Table 2. Herring. Total catch in thousands of tons in the North Sea and Skagerrak.

Year	Area							Total
	Northwest	Northeast	Central	South	Industr.fishery (IVb)	Total N.Sea	Skagerrak	
1969	213.1	148.1	40.0	24.3	121.2	546.7	113.3	660.0
1970	312.6	21.3	111.7	27.1	74.8	550.7	70.5	621.2
1971	279.0	17.5	26.6	21.5	165.2	496.7	64.2	560.9
1972	229.5	22.7	30.7	23.3	184.9	491.1	66.9	558.0

Table 3. Herring. Total catch in tons.
Skagerrak (Division IIIa excl. Kattegat).

Year	Denmark	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	$\begin{aligned} & \text { Germany } \\ & (\text { F.R.) } \end{aligned}$	Iceland	Netherlands	Norway	Poland	Sweden	U.S.S.R.	Total
1969	57965	-	-	-	-	13957	-	$\triangle 1357$	-	113279
1970	30107	-	-	6453	-	7037	-	26930	-	70527
1971	26985	5636	-	3066	-	5961	-	19763	-	61411
1972	34900	4115	-	7317	-	986	-	19644	-	66962

Table 4. Herring. Total catch in tons.
North Sea. Northeast (Division IVa east of $2^{\circ} \mathrm{E}$).

Year	Belgium	Denmark	England	Faroe Isls.	France	Germany $(\mathrm{F} \cdot \mathrm{R} \cdot)$	Iceland	Netherlands	Norway	Poland	Scotland	Sweden	USSR	Total
1969	32	55550	-	12805	278	16	6300	2084	15618	166	9785	26035	19392	148.061
1970	50	18.00	-	5898	48	10	1220	281	3331	123	1929	5560	1012	21262
1971	-	6219	-	239	-	-	-	167	10442	-	-	-	-	17067
1972		19711	-	979		9	1943	40	50				-	22732

Table 5. Herring. Total catch in tons. North Sea. Northwest (Division IVa west of $2^{\circ} \mathrm{E}$).

Year	Belgium	Denmark	England	$\begin{gathered} \hline \text { Faroe } \\ \text { Isls. } \\ \hline \end{gathered}$	France	$\begin{aligned} & \text { Germany } \\ & (\text { F.R. } \end{aligned}$	Iceland	$\begin{aligned} & \text { Nether- } \\ & \text { lands } \end{aligned}$	Norway	Poland	Scotland	Sweden	USSR	Total
1969	68	11360	-	27835	605	448	13697	474	99316	362	10051	6765	42157	213138
1970	750	61423	-	40884	818	177	20587	177	146397	2069	17767	4470	17066	312585
1971	-	44500	-	25142	514	389	36992	5755	112114	1288	24711	4954	9500	265580
1972	-	29711	74	37004	888	100	29721	1967	94825	1620	17227	-	16386	229523

Table 6. Herring. Total catch in tons.
North Sea, Central (Division IVb). Adult herring fisheries.

Year	Belgium	Denmark	England	Faroe Isls.	France	$\begin{aligned} & \text { Germany } \\ & (\text { F.R.) } \end{aligned}$	Iceland	Nether- lands	Norway	Poland	Scotland	Sweden	Total
1969	-	-	5964	-	3362	3528	-	16542	4	8077	2217	309	40003
1970	-	-	8731	11623	2433	6005	1144	28815	27613	2836	2189	24640	116029
1971	8	2488	4113	254	4734	-	179	10172	14	743	362	1926	24993
1972	-	1589	271	10460	2014	21	334	11372	-	615	-	4068	30744

Table 7. Herring. Total catch in tons.
North Sea, Central (Division IVb).
Young herring fisheries.

Year	Young herring fisheries					
	Denmark	$\begin{aligned} & \text { Germany } \\ & \left(F . R_{0}\right) \end{aligned}$	Sweden	Norway	Total	Total young and adult fisheries (Tables 6 and 7)
1969	113350	7900	0	-	121250	161253
1970	70108	400	0	-	70508	186537
1971	132161	3055	30000	-	165216	190209
1972	162671	2823	3298	16094	184886	215514

Table 8. Herring. Total catch in tons.
North Sea, South and English Channel, East and West (Divisions IVc and VIId and e).

Year	Belgium	Denmark	England	France	Germany $($ F.R. $)$	Nether- lands	Poland	Total
1969	367	-	702	11062	906	10669	616	24322
1970	400	-	971	8183	558	16945	29	27086
1971	673	25	-	6160	126	16385	-	23369
1972	1337	57	305	9999	112	11450	-	23260

Table 1

Data derived as listed below under each country. The Kattegat catches are according to Danish national statistics and information from the Swedish Laboratory at Lysekil.

Table 2

1947-54. Catches for northwest and northeast are derived from
Statistical News Letters llA and llB. The national distributions of catch by area in some cases refer to all catches and in others to a large sub-sample of the catches.
Catches for central and south are taken from Cushing and Bridger (1966), Appendix 4. The catches for the south refer to the seasonal winter fishery and not the calendar year.
Catches for the industrial fishery are derived from Coop.Res.Rep., Ser.B, 1965, Annex II, Table 12.
The catches for the Skagerrak for some countries also include Kattegat catches (Bull.Stat.). Taking the catches ascribed to areas for the North Sea, their total covers an average of 98% of the annual catches given in Table 1 for the period 1947-54.

1955-59. Catches for the northwest, northeast and central are based on data in Cushing and Bridger (1966). The Swedish catch from Division IVa (Bull.Stat.) was regarded as taken in the northeastern area.
Catches for the south and the industrial fisheries are derived from Coop.Res.Rep., Ser.B, 1965, Annex II, Tables 11 and 12.

1960-68. Data from Coop.Res.Rep., Ser.A, No. 26.
Industrial Fishery: These data refer only to the juvenile herring catches in Division IVb by Denmark and the Federal Republic of Germany, and also Norway and Sweden for 1971 and 1972. A separation into industrial and consumption catches was not possible for any other area.

Skagerrak: 1955-72 data from Danish national statistics and from the Fisheries Laboratory at Lysekil.

Belgium

All data derived from "Bulletin Statistique". Catches from Division IVa for 1960-68 are ascribed to Division IVa west of $2^{\circ} \mathrm{E}$.

Denmark

All data used in the tables are based upon Danish national statistics (Popp Madsen). Catches from Division IVa are ascribed to IVa east of $2^{\circ} \mathrm{E}$ for $1960-68$. Catches from Division IVb (Young Herring Fishery) have been reduced for content of other species (1960 to spring 1965 by 5%, auturn l965-1971 by estimates from individual years; Popp Madsen). Catches from the Kattegat for 1972 have been derived by subtracting the catch figure for the Skagerrak (supplied by Popp Madsen) from the total 1972 catch for Division IIIa (Kattegat + Skagerrak) given in Bulletin Statistique.

England

All data derived from "Bulletin Statistique". Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ according to national statistics.

Catches only from Division IVa according to "Bulletin Statistique". Ascribed to IVa west for 1960-68. From 1969-7l the distribution of catches to fishing areas are based on landings in Danish ports. Landings for 1972 have been supplied by the Faroese statistics reporting agency.

France

The data given have been supplied by the "Institut des Péches", Boulogne s/Mer.

Federal Republic of Germany

All data are according to German national statistics (Schumacher). They are compiled by "Bundesforschungsanstalt für Fischerei", Hamburg, according to log books.

Iceland

All data derived from "Bulletin Statistique". Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ are according to Icelandic statistics for 1960-69, 1971 and 2972, and according to landings in Danish ports for 1970.

Netherlands

All data derived from "Bulletin Statistique". Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ are according to Dutch national statistics.

Norway

The data are according to reports from "Noregs Sildesalslag". Catches in inshore waters are not included.

Poland

All data according to "Bulletin Statistique". Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ up to 1971 is according to Polish national statistics. The 1972 catch in Division IVa has been allocated to Division IVa west.

Scotland

All data are according to "Bulletin Statistique". Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ is according to Scottish national statistics. Catches from the Moray Firth are not included.

Sweden

Data according to Swedish national statistics (Ackefors). Division IIIa: Data obtained from proportion of Skagerrak catches in Swedish landings in Danish ports applied to total Swedish landings. Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ (up to 1971) according to Swedish national statistics, but is supposed to be rather unreliable. A greater part of the landings presumably comes from Division IVa, west of $\cdot 2^{\circ} \mathrm{E}$. Allocation by area for the North Sea catch for 1972 was not possible, and was separated only into industrial and consumption herring landed in Sweden and abroad. Total consumption catch was supplied for the North Sea as a whole, and constituted 9% of the consumption catch from all areas. This catch was allocated to the Central Division IVb, and by applying the proportion to the grand total of industrial and consumption herring landed in Sweden and abroad, the industrial and consumption catch from Division IVb was derived.

U.S.S.R.

All data according to "Bulletin Statistique". Separation of catches in Division IIIa Skagerrak, IVa east and IVa west of $2^{\circ} \mathrm{E}$ up to 1971 are according to Soviet national statistics. For 1972, the total IVa catch has been allocated to Division IVa west.

Table 9. Preliminary catch for 1973.

Country	Period	Total North Sea	$\begin{aligned} & \text { Div. } \\ & \text { IIIa } \end{aligned}$	North Sea + Skagerrak	$\begin{aligned} & \text { West of } \\ & 4^{\circ} \mathrm{W} \end{aligned}$
Belgium					
Denmark	$1 / 1-30 / 7$	92056	13077	105133	
Faroe Isl.*	$1 / 1-1 / 8$	16100	4185	20285	
France	$1 / 1-1 / 7$	355	-	355	
Germany ($F \cdot R$.)					
Iceland	$1 / 5-1 / 8$	13621	389	14010	
Ne therlands	$1 / 1-1 / 7$	4456		4456	
Norway**	$1 / 1-31 / 8$	85900		85900	44600
Poland					
Sweden*		2106	6336	8442	
UK England	$1 / 7-1 / 9$	1000		1000	
UK Scotland	$1 / 5-18 / 8$	8686			
J.S.S.R.					
Total		224280	23987	248267	

* Landed in Danish harbours.
** A national catch quota of about 66000 tons set on herring landed for industrial purposes is expected to be reached early September.

Table 10. North Sea catch in millions of fish by age.

Year	Area	Age in winter rings										
		0	1	2	3	4	5	6	7	8	>8	Total
1971	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc+VIId,e } \end{aligned}$	$\begin{array}{r} 136.7 \\ 14.0 \\ - \\ 533.0 \\ 0.3 \end{array}$	$\begin{array}{r} 818.3 \\ 95.4 \\ 2.1 \\ 3440.9 \\ 21.8 \end{array}$	$\begin{array}{r} 516.9 \\ 54.5 \\ 140.3 \\ 304.3 \\ 130.8 \end{array}$	$\begin{array}{r} 488.3 \\ 38.5 \\ 54.4 \\ 39.6 \\ 41.7 \end{array}$	$\begin{array}{r} 154.2 \\ 10.4 \\ 12.6 \\ - \\ 31.1 \end{array}$	$\begin{array}{r} 24.1 \\ 2.1 \\ - \\ - \\ 0.7 \end{array}$	$\begin{gathered} 28.8 \\ 1.4 \\ - \\ - \\ 0.3 \end{gathered}$	$\begin{array}{r} 25.1 \\ 1.1 \\ - \\ - \\ 0.6 \end{array}$		$\begin{gathered} 9.8 \\ 0.2 \\ 2.1 \\ - \\ 0.3 \end{gathered}$	$\begin{array}{rl} 2 & 202.2 \\ 217.6 \\ 211.5 \\ 4 & 317.8 \\ 227.6 \end{array}$
	Total NS	684.0	4378.5	1146.8	662.5	208.3	26.9	30.5	26.8	-	12.4	7176.7
1972	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVb YH IVc+VIId,e	$\begin{gathered} \text { - } \\ \text { - } \\ 750.4 \end{gathered}$	$\begin{array}{r} 338.9 \\ 75.1 \\ 25.2 \\ 2996.6 \\ 4.8 \end{array}$	$\begin{array}{r} 830.1 \\ 91.0 \\ 46.4 \\ 337.9 \\ 135.1 \end{array}$	$\begin{array}{r} 176.8 \\ 17.8 \\ 98.8 \\ 21.1 \\ 29.3 \end{array}$	$\begin{array}{r} 88.6 \\ 5.8 \\ 20.5 \\ 6.4 \\ 9.3 \end{array}$	$\begin{array}{r} 19.3 \\ 0.7 \\ 6.7 \\ 1.2 \\ 5.0 \end{array}$	$\begin{aligned} & 4.1 \\ & 0.1 \\ & 0.6 \\ & 0.2 \end{aligned}$	- 0.2	0.5 - 0.6 -	0.4 -	$\begin{array}{r} 1458.7 \\ 190.5 \\ \\ \\ 499.0 \\ 413.8 \\ \\ \\ \hline \end{array}$
	Total NS	750.4	3340.6	1440.5	343.8	130.6	32.9	5.0	0.2	1.1	0.4	6045.5

Table 11. Total North Sea: calculated stock in number x 10^{-9}

Yinter rings	1967	1968	1969	1970
0	7.64	7.83	5.57	7.66
1	4.44	6.30	6.29	4.93
2	3.27	2.43	3.40	3.32
3	2.54	1.85	0.51	1.30
4	0.64	1.01	0.27	0.18
5	0.56	0.23	0.33	0.12
6	0.68	0.22	0.06	0.12
7	0.11	0.24	0.12	0.01
8	0.25	0.04	0.02	0.07
Juvenile, 0+1	12.08	14.13	11.86	12.59
Adult, 2-8	8.05	6.02	4.71	5.12

Table 12. Total North Sea: calculated fishing mortality.

Year	1967	1968	1969	1970
0	0.09	0.12	0.02	0.13
1	0.50	0.52	0.54	0.29
2	0.47	1.45	0.86	0.99
3	0.82	1.81	0.92	1.23
4	0.92	1.02	0.71	1.22
5	0.81	1.21	0.92	0.56
6	0.93	1.12	1.74	0.76
8	1.01	1.23	1.11	1.74
8	0.40	0.50	0.60	1.00
$F_{\text {Winter ring }} \geq 2$	0.69	1.46	0.88	1.05

Table 13. Larval abundance in the North Sea.

$$
\begin{aligned}
\text { Number } \times 10^{-9} \quad & (-=\text { no observations }) \\
& \left(+=<0.5 \times 10^{-9}\right) .
\end{aligned}
$$

Year	Southern ${ }^{1)}$ North Sea	Central North Sea		Northwestern North Sea ${ }^{4}$)		
		Dogger ${ }^{2}$)	Total3)	Buchan	Orkney- Shetland	Total
1946	1193	-	-	-	-	-
1947	1134	-	-	-	-	-
1948	-	-	-	-	-	-
1949	-	-	-	-	-	-
1950	281	-	-	-	-	-
1951	686	-	-	2205	1029	3234
1952	-	-	-	2180	245	2425
1953	-	-	-	5170	2303	7473
1954	-	-	-	2132	1715	3847
1955	183	-	-	32	1715	1747
1956	165	-	-	-	-	-
1957	36	$23 ?$	-	735	-	-
1958	139	252	-	539	6860	7399
1959	12	97	-	735	2107	2842
1960	147	138	-	1078	1568	2646
1961	187	86	-	931	12103	13034
1962	>30	66	-	980	1764	2744
1963	22	-	-	1078	1421	2499
1964	9	52	>63	2254	2156	4410
1965	13	275	>490	172	5439	5611
1966	+	3	>142	25	1666	1691
1967	26	0	599	+	854	854
1968	16	0	137	0	222	222
1969	108	0	14	+	493	493
1970	126	0	387	2	230	232
1971	7	+	177	143	711	854
1972	67	+	112	25	2803	2828

1) Larval abundance (all size groups) in Downs area in December-January.
2) Abundance of larvae < 11 mm in October on western and southern slopes of Dogger Bank.
3) Abundance of larvae $<10 \mathrm{~mm}$ in September-0ctober in central area of the North Sea.
4) Abundance of larvae $<10 \mathrm{~mm}$ in September in the northwestern North Sea (north of $56^{\circ} \mathrm{N}$).

Table 14. Initial catch levels (1973) and percentage increase in catch and biomass 1973-76 at different combinations of mortalities for juvenile and adult North Sea autumn spawning herring.

Juvenile mortalities (0 - and l-ringers)

F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
0.0	$\begin{array}{r} 0.0 \\ 100.0 \\ 496.3 \end{array}$	$\begin{array}{r} 30.6 \\ 0 \\ 445.5 \end{array}$	$\begin{array}{r} 58.6 \\ 0 \\ 400.3 \end{array}$	$\begin{gathered} 84.1 \\ 0 \\ 359.9 \end{gathered}$	$\begin{gathered} 107.4 \\ 0 \\ 323.9 \end{gathered}$	$\begin{gathered} 128.7 \\ 0 \\ 291.8 \end{gathered}$	$\begin{gathered} 148.2 \\ 0 \\ 263.1 \end{gathered}$	$\begin{gathered} 166.1 \\ 0 \\ 237.5 \end{gathered}$	$\begin{gathered} 182.4 \\ 0 \\ 214.6 \end{gathered}$
0.1	$\begin{array}{r} 66.5 \\ 333.3 \\ 391.6 \end{array}$	$\begin{array}{r} 97.1 \\ 206.3 \\ 348.3 \end{array}$	$\begin{aligned} & 125.0 \\ & 144.1 \\ & 309.6 \end{aligned}$	$\begin{aligned} & 150.6 \\ & 107.1 \\ & 275.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 173.9 \\ 82.4 \\ 244.4 \\ \hline \end{array}$	$\begin{array}{r} 195.2 \\ 64.7 \\ 217.0 \\ \hline \end{array}$	$\begin{array}{r} 214.7 \\ 51.4 \\ 192.6 \end{array}$	$\begin{array}{r} 232.6 \\ 40.9 \\ 170.8 \end{array}$	$\begin{array}{r} 248.9 \\ 32.4 \\ 151.3 \\ \hline \end{array}$
0.2	$\begin{aligned} & 126.7 \\ & 279.4 \\ & 312.4 \end{aligned}$	$\begin{aligned} & 157.3 \\ & 199.8 \\ & 275.0 \end{aligned}$	$\begin{aligned} & 185.3 \\ & 150.0 \\ & 241.6 \end{aligned}$	$\begin{aligned} & 210.8 \\ & 115.9 \\ & 211.9 \\ & \hline \end{aligned}$	$\begin{array}{r} 234.1 \\ 91.1 \\ 185.4 \\ \hline \end{array}$	$\begin{array}{r} 255.4 \\ 72.3 \\ 161.8 \end{array}$	$\begin{array}{r} 274.9 \\ 57.6 \\ 140.8 \end{array}$	$\begin{array}{r} 292.8 \\ 45.7 \\ 122.0 \end{array}$	$\begin{array}{r} 309.2 \\ 36.0 \\ 105.2 \end{array}$
0.3	$\begin{aligned} & 181.3 \\ & 235.9 \\ & 251.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 212.0 \\ & 176.7 \\ & 219.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 239.9 \\ & 135.8 \\ & 190.1 \end{aligned}$	$\begin{aligned} & 265.4 \\ & 106.0 \\ & 164.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 288.7 \\ 83.4 \\ 141.1 \\ \hline \end{array}$	$\begin{array}{r} 310.1 \\ 65.7 \\ 120.6 \end{array}$	$\begin{array}{r} 329.6 \\ 51.5 \\ 102.2 \\ \hline \end{array}$	$\begin{array}{r} 347.4 \\ 39.9 \\ 85.9 \\ \hline \end{array}$	$\begin{array}{r} 363.8 \\ 30.3 \\ 71.3 \end{array}$
0.4	$\begin{array}{r} 230.8 \\ 200.6 \\ 204.7 \\ \hline \end{array}$	$\begin{aligned} & 261.5 \\ & 152.9 \\ & 176.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 289.4 \\ & 118.2 \\ & 150.5 \end{aligned}$	$\begin{array}{r} 314.9 \\ 92.1 \\ 127.7 \\ \hline \end{array}$	$\begin{array}{r} 338.3 \\ 71.6 \\ 107.5 \\ \hline \end{array}$	$\begin{array}{r} 359.6 \\ 55.3 \\ 89.4 \\ \hline \end{array}$	$\begin{array}{r} 379.1 \\ 42.1 \\ 73.3 \end{array}$	$\begin{array}{r} 396.9 \\ 31.1 \\ 58.9 \\ \hline \end{array}$	$\begin{array}{r} 413.3 \\ 21.9 \\ 46.1 \\ \hline \end{array}$
0.5	$\begin{aligned} & 275.7 \\ & 171.8 \\ & 168.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 306.4 \\ & 131.5 \\ & 142.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 334.3 \\ & 101.4 \\ & 119.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 359.8 \\ 78.0 \\ 99.6 \\ \hline \end{array}$	$\begin{array}{r} 383.1 \\ 59.5 \\ 81.6 \\ \hline \end{array}$	$\begin{array}{r} 404.5 \\ 44.5 \\ 65.5 \\ \hline \end{array}$	$\begin{array}{r} 424.0 \\ 32.2 \\ 51.2 \\ \hline \end{array}$	$\begin{array}{r} 441.8 \\ 22.0 \\ 38.5 \\ \hline \end{array}$	$\begin{array}{r} 458.2 \\ 13.3 \\ 27.1 \\ \hline \end{array}$
0.6	$\begin{array}{r} 316.4 \\ 148.1 \\ 138.9 \\ \hline \end{array}$	$\begin{aligned} & 347.1 \\ & 113.1 \\ & 116.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 375.0 \\ 86.3 \\ 95.7 \\ \hline \end{array}$	$\begin{array}{r} 400.5 \\ 65.3 \\ 77.6 \\ \hline \end{array}$	$\begin{array}{r} 423.9 \\ 48.4 \\ 61.4 \\ \hline \end{array}$	$\begin{array}{r} 445.2 \\ 34.5 \\ 47.1 \\ \hline \end{array}$	$\begin{array}{r} 464.7 \\ 23.1 \\ 34.3 \\ \hline \end{array}$	$\begin{array}{r} 482.5 \\ 13.5 \\ 22.8 \\ \hline \end{array}$	$\begin{array}{r} 498.9 \\ 5.4 \\ 12.6 \\ \hline \end{array}$
0.7	$\begin{aligned} & 353.4 \\ & 128.5 \\ & 115.6 \end{aligned}$	$\begin{array}{r} 384.0 \\ 97.4 \\ 95.0 \\ \hline \end{array}$	$\begin{array}{r} 411.9 \\ 73.3 \\ 76.6 \\ \hline \end{array}$	$\begin{array}{r} 437.5 \\ 54.0 \\ 60.2 \\ \hline \end{array}$	$\begin{array}{r} 460.8 \\ 38.5 \\ 45.6 \\ \hline \end{array}$	$\begin{array}{r} 482.1 \\ 25.7 \\ 3.6 \end{array}$	$\begin{array}{r} 501.6 \\ 15.0 \\ 21.0 \\ \hline \end{array}$	$\begin{array}{r} 519.4 \\ 6.0 \\ 10.7 \\ \hline \end{array}$	$\begin{array}{r} 535.8 \\ -1.6 \\ 1.5 \\ \hline \end{array}$
0.8	$\begin{array}{r} 386.8 \\ 112.1 \\ 96.8 \end{array}$	$\begin{array}{r} 417.5 \\ 84.1 \\ 78.0 \\ \hline \end{array}$	$\begin{array}{r} 445.4 \\ 62.1 \\ 61.2 \end{array}$	$\begin{array}{r} 470.9 \\ 44.4 \\ 46.3 \\ \hline \end{array}$	$\begin{array}{r} 494.3 \\ 29.9 \\ 33.0 \\ \hline \end{array}$	$\begin{array}{r} 515.6 \\ 18.0 \\ 21.1 \end{array}$	$\begin{array}{r} 535.1 \\ 8.0 \\ 10.5 \end{array}$	$\begin{array}{r} 552.9 \\ -0.5 \\ 1.1 \end{array}$	$\begin{array}{r} 569.3 \\ -7.7 \\ -7.3 \\ \hline \end{array}$
0.9	$\begin{array}{r} 417.2 \\ 98.5 \\ 81.5 \end{array}$	$\begin{array}{r} 447.8 \\ 72.8 \\ 64.2 \end{array}$	$\begin{array}{r} 475.8 \\ 52.5 \\ 48.8 \end{array}$	$\begin{array}{r} 501.3 \\ 36.1 \\ 35.0 \\ \hline \end{array}$	$\begin{array}{r} 524.6 \\ 22.6 \\ 22.8 \end{array}$	$\begin{array}{r} 545.9 \\ 11.4 \\ 11.9 \end{array}$	$\begin{array}{r} 565.4 \\ 2.0 \\ 2.2 \\ \hline \end{array}$	$\begin{array}{r} 583.3 \\ -6.0 \\ -6.5 \\ \hline \end{array}$	$\begin{aligned} & 599.7 \\ & -12.9 \\ & -14.2 \end{aligned}$
1.0	$\begin{array}{r} 444.8 \\ 87.0 \\ 68.9 \\ \hline \end{array}$	$\begin{array}{r} 475.4 \\ 63.3 \\ 52.8 \end{array}$	$\begin{array}{r} 503.3 \\ 44.3 \\ 38.5 \end{array}$	$\begin{array}{r} 528.9 \\ 28.9 \\ 25.8 \end{array}$	$\begin{array}{r} 552.2 \\ 16.3 \\ 14.5 \\ \hline \end{array}$	$\begin{array}{r} 573.5 \\ 5.7 \\ 4.4 \end{array}$	$\begin{array}{r} 593.0 \\ -3.2 \\ -4.6 \end{array}$	$\begin{array}{r} 610.8 \\ -10.8 \\ -12.6 \\ \hline \end{array}$	$\begin{aligned} & 627.2 \\ & -17.3 \\ & -19.8 \end{aligned}$

Upper figure:
Middle figure:

Lower figure:
catch in 1973 (1 000 tons)
increase in catch in 1976 as a percentage of that in 1973
increase in biomass as at the beginning of 1977 (\% in weight).

Figure 1. The spawning potential of the total North Sea herring stock 1947-1970 (full line) compared with the fishing mortality in the preceding year (hatched line).

Figure 2. The North Sea herring stock in numbers ($x 10^{-9}$).
Jpper curve: total stock
Middle curve: adults as 2-ringers and older Lower curve: adults as 4-ringers and older.

Figure 3. Number of recaptures with specified catch position.
ICES Bløden Herring Tagging Experiment 1969.
A. Norwegian recaptures in July-August 1970
B. Scottish recaptures in July-August 1970.
C. Norwegian recaptures in July 1973.

Figure 4. Forecast long-term development in catch (A) and total biomass (B) at three combinations of juvenile and adult fishing mortalities (juv./adult). Assumptions: see Section 9 (p.8).

1. Introduction and Participation
1.1 The International Council for the Exploration of the Sea, at its Statutory Meeting in September 1973, decided to disband the Celtic Sea Herring Assessment Working Group and the North Sea Herring Assessment Working Group. To replace these it established a new "Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ ". This Group was asked to meet in Charlottenlund on 18 February 1974 for five days to report to the Liaison Committee's mid-term meeting on herring stocks west of $4^{\circ} \mathrm{W}$ and, if necessary, on the North Sea and Celtic Sea stocks. The Group decided that although its major task should be to make an assessment of the herring stock in the area west of $4^{\circ} \mathrm{W}$, it was advisable to review the new data available on the North Sea and Celtic Sea stocks to examine whether these had introduced appreciable changes in the last assessments of these stocks.
1.2 Member countries were represented by the following scientists:

A C Burd	United Kingdom (England)
A Corten	Netherlands
J Jakobsson	Iceland
H Lassen	Denmark
A Lindquist	Sweden
K Popp Madsen	Denmark
A Maucorps	France
J Molloy	Ireland
E Nielsen (Mrs)	Denmark
A Saville Chairman)	United Kingdom (Scotland)
A Schumacher	Federal Republic of Germany
B Sjöstrand	Sweden
Ø Ulltang	Norway
O J Østvedt	Norway

Mr Corten and Mr Jakobsson were not present on the last two days of the meeting.
All meetings were attended by Mr D de G Griffith in his capacity of Secretary to the Liaison Committee and of Statistician to ICES.

The absence of representatives from Poland and U.S.S.R. was noted with regret.
1.3 The Working Group during this meeting also considered the output required, and the input data necessary to achieve this output, from the trial run of the ICES ADP system using North Sea herring data.

2. North Sea Herring

2.1 The fishery in 1973
2.1.1 In the last Report of the North Sea Herring Assessment Working Group (pp. 1-28 of this volume) a preliminary estimate of 264000 tons was given as the catch in the first seven months of 1973 , despite the closure in force from 1 February to 15 June. This catch
represents about half the expected annual catch if fishing mortalities had remained at the levels of 1972. The major part of this catch was taken after 15 June.
2.1.2 From preliminary catch data for the whole of 1973 the total North Sea catch, excluding Skagerrak, was estimated to be about 450000 tons. No information was available for one country and its catch has been estimated on the basis of those of previous years (Table 2.1).

In previous years the preliminary estimates have been increased by about 10% when the final catch data became available. It would seem, therefore, that the final annual catch will be rather similar to those of 1971 and 1972. The Skagerrak catch increased in 1973, but this increase is in part due to the inclusion of Icelandic catches taken in the border area. Biological samples indicated that these fish were spring spawners (Table 2.2).
2.1.3 Tables 2.3 to 2.7 give the catch data for the sub-divisions of the area used in the previous reports. In Division IVb the adult catch increased in 1973, while the IVc and VIId,e catch remained at about the level of the three previous years. In all other areas, including the Division IVb juvenile fishery, the catches declined.1)
2.1.4 The numbers of herring at each age in the catches in each area are given in Table 2.8 and those for the total North Sea are summarised below:

Millions of herring caught per age group (winter rings)

Year/Age	0	1	2	3	4	5 and older	Total
1968	839	2	425	1	795	1494	621
571	7	746					
1969	112	2	503	1	883	296	133
1970	890	1	196	2	003	884	125
1236	143	563					
1971	684	4	378	1	147	662	208
972	750	3	341	1	441	344	131
1973^{*}	289	2400	1	221	552	132	40

* Preliminary. (These figures were subsequently slightly amended. See Appendix Table 9).

There has been an apparent decrease in the catches of juvenile herring, while the catch of older fish has remained at the same level.
2.2 Fishing mortality
2.2.1 Using the 1973 preliminary catch in number, the fishing mortalities and stock sizes have been recalculated by cohort analysis. Tables 2.9 and 2.10 give the stock sizes and fishing mortality estimated for the period 1965-71. Those for earlier years are given in Appendix Tables 10 and 11.
2.2.2 In the previous Report some estimates of mortality from catch and effort data were presented (this volume, previous report, paragraphs 6.6-6.8). No further additions could be made to this

1) These conclusions have been somewhat amended in the light of the revised catch data for 1973 given in Appendix Tables 4-8.
series. From Table 2.9 and the previous report mean fishing mortalities based on 2-ringed fish and older for various periods are given as follows:

Fishing mortality from:

Catch per unit effort		Cohort analysis	
Period	F	Period	F
$1952-57$	0.41	$1952-57$	0.38
$1957-61$	0.49	$1957-61$	0.44
$1961-65$	0.44	$1961-65$	0.49
$1965-69$	0.67	$1965-69$	0.89
$1969-72$	0.64	$1969-71$	1.04

2.2.3 A considerable number of herring tagged during the Bløden Tagging Experiment have been recovered from the adult fisheries. The total number of tags returned during 1971 to 1973 which can be ascribed to a month of recapture are given below:

	1971	1972	1973
Total tags	1063	280	92

These data can be used to calculate total mortalities. For the period 1971-73 the annual total mortality was l.l. Assuming natural mortality to be 0.1 , then the fishing mortality is appreciably higher than the value chosen from other information for the calculation of the stock size in 1974.
2.2.4 The fishing mortalities of l-ringed fish, as estimated by cohort analysis for recent years are: 1970-0.46, 1971-0.91, 1972 - 0.81. The values for 1971 and 1972 are rather higher than those used in the prognosis for this age group; but their accuracy is not very high.
2.3 Stock and recruitment
2.3.1 The annual stock sizes given in Table 2.10 , using the 1973 catch as the starting point in the cohort analysis, give almost identical values to those in the previous report up to 1969 (this volume, Table 1I). The main change in the stock size in 1969 is caused by a lower estimated value for the 1968 year class (O-group). Table 2.10 shows that this year class was about half the long-term average strength.
2.3.2 The estimated stock size for 1970 shows that the 1969 year class was well above average strength, which is in conformity with the estimates from the Young Herring Surveys (text table, para. 2.3.4). The calculated stock size in numbers for 1971 shows that the year class 1970 was of about average strength.
2.3.3 In Table 2.10 the estimated total stock biomass is also given for the years 1965-7l. Over this period, the biomass declined from about 2300000 tons to 600000 tons. The low biomass in 1971 is largely due to the poor 1968 year class. The apparent
increase in the estimated biomass of the stock in 1973 and 1974 (paragraph 2.4.1) is partly due to the strong 1969 year class and partly to the assumption of average recruitment for subsequent year classes.
2.3.4 In the previous report it was suggested that the 1971 year class might be of about average strength. Some additional confirmatory evidence is now available from preliminary estimates of this year class from the Danish industrial fishery. These estimates are comparable to those for the 1967 year class, which proved to be of average strength.

Estimates of recruitment as juvenile fish

Year class	English O-Group	ICES Young Herring Survey2)		Danish industrial fishery	
	I-Group	II-Group	I (spring)	I (autumn)	
1967	1799	455	87	1082	318
1968	1259	442	73	305	173
1969	2793	1241	354	1006	455
1970	1245	844	57	1278	307
1971	907	411		9314)	321
1972	654				

1) Numbers per hour per station.
2) Numbers per hour per rectangle.
3) Weighted average number per unit effort (Feb-Mar).
4) Based only on January figures.
2.3.5 The estimate of recruitment of the 1971 year class is $6.2 \times 10^{9^{*}}$ which is about 20% lower than the long-term mean (7.9×109), but the 1971 year class estimate is rather suspect (see paragraph 2.2.4). Few data are yet available for the 1972 year class because the ICES Young Herring Survey was still underway at the time of the meeting. The only information is the estimate from English O-Group Surveys, which is well below average.
2.4 Prognosis and total allowable catch
2.4.1 From the data of Table 2.8 the age composition of the stock as at l January 1974 has been calculated. This is given below with the comparable figures calculated at 1 January 1973 for comparison.

Stock No. x 10^{-9}									Biomass in tons	
	0	1	2	3	4	5	6	7	8	
1973 estimate	7.9	6.2	3.1	1.34	0.32	0.12	.031	.005	0	$.77 \times 10^{6}$
1974 estimate	7.9	6.2	2.2	1.14	0.51	0.12	.047	.026	0	$.72 \times 10^{6}$

2.4.2 The assumptions used in calculating the age composition of the stock at 1 January 1974 are the same as those used in the previous report with respect to 1973. The difference in the age compositions between

[^1]the stocks in the two years is principally due to the lower estimate for 2-ringers in 1974 which is derived from the lower catches of the 1971 year class in 1973. This value is also dependent on the assumption that the F on l-ringers in 1973 remained at $C .7$. The estimates of F on this age group given in paragraph 2.2 .4 show a higher value of $0.8-0.9$. These however, are rather inaccurate estimates and it has been considered safer to retain the same value used in the previous prognosis. The total estimated biomass of the stock in 1974 is some 50000 tons less than that previously estimated.
2.4.3 Catches, and changes in biomass by 1977, have been calculated. The options of fishing mortalities on juveniles and adults which allow a 100% increase in biomass by 1 January 1978 are presented in the text table below:

	100\% increase in stock biomass by 1978							
	Juvenile F Adult F	$\begin{aligned} & 0.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$
Allowable catch in 1974	Juveniles Adults	340	$\begin{array}{r} 30 \\ 310 \\ \hline \end{array}$	$\begin{array}{r} 60 \\ 270 \\ \hline \end{array}$	$\begin{array}{r} 80 \\ 240 \\ \hline \end{array}$	$\begin{aligned} & 110 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 110 \\ & \hline \end{aligned}$
	Total	340	340	330	320	310	310	290
Allowable catch in 1977	Juveniles Adults	$8 \overline{10}$	$\begin{array}{r} 30 \\ 720 \end{array}$	$\begin{array}{r} 60 \\ 630 \end{array}$	80 550	$\begin{aligned} & 110 \\ & 460 \end{aligned}$	$\begin{aligned} & 150 \\ & 340 \end{aligned}$	$\begin{aligned} & 180 \\ & 230 \end{aligned}$
	Total	810	750	690	630	570	490	410

2.4.4 The allowable catches of adults in 1974 to achieve this objective are 30 - 40000 tons less than in the previous prognosis. By 1977 the allowable catch of adults is about 10000 tons less for all values of fishing mortalities. No differences occur in the juvenile catches because recruitment is assumed to be constant.

The recruitment level of the 1972 year class cannot yet be assessed. If this, or subsequent year classes are below average, then these estimates of allowable catches will be too high.
3. Celtic Sea Herring
3.1 Catches

The total catches from the Celtic Sea for the last five years are given in Table 3.1. The catch figures for 1972 have been revised and preliminary figures are given for 1973. The highest catches were recorded in 1969 and since then there has been a major decline, with the 1973 catch the lowest since 1965. The total catch by season is given in Table 3.2 .
3.2 Stock and recruitment estimates
3.2.1 The percentage age distributions of the Dutch and Irish catches are given in Table 3.3. The Dutch data refer to the fishery in May to December immediately preceeding the Irish fishery in November to February. The proportions of fish in each winter-ring group refer to the same year class. The two series show the same trends.
3.2.2 As mentioned in previous reports, because of the changes in fishing gear, fishing area and timing of the fishery, over the long term abundance indices from catches per unit effort may not be completely reliable. However, Irish pair-trawl abundance indices for the past 6 seasons have been used to indicate the relative strength of annual recruitment (Table 3.4). These data provide indices of recruitment for the 1969/70 and 1970/71 year classes, the first of which is not estimated efficiently by cohort analysis, the second of which cannot yet be estimated in this way. The 1968/69 and 1970/71 year classes are seen to be very poor.
3.2.3 In the previous report on the Celtic Sea herring (Anon., 1973) the levels of stock size and fishing mortalities were calculated by cohort analysis. This method can only give reliable estimates up to the $1970 / 71$ season. In order to get some indication of stock size and fishing mortality in the most recent years, the following procedure was followed:

If the stock composition at the beginning of a year is known and also the catch in numbers during that year, an average F (for all age groups) can be calculated which comes most closely to producing the actually observed catch. By applying this calculated F to the initial stock, the stock composition at the beginning of the next year can be calculated, except for the recruiting age group. This recruitment can be found by repeating the above procedure for the next year, and calculating the average F for all age groups. By applying this average F to the number of recruits caught, the number of recruits at the beginning of the year can be backcalculated. Starting from the stock composition as at l March 1969 (Anon., 1973), fishing mortalities and recruitment for subsequent years have been calculated in this way (Table 3.5). The dependence of catch on the size of the recruitment is seen.

A comparison of these recruit year class strengths with those from catch per unit effort data is shown in Table 3.4 .
3.3 Fishing mortality

In Table 3.6 fishing mortalities estimated from catch per unit effort and from cohort analyses are given. There is a considerable degree of agreement between the two series. In the two most recent years the value of F has exceeded that at which the maximum sustainable yield per recruit is obtained ($F=0.45$).

3.4 Conclusion

Total mortality rates for Celtic Sea herring have remained high in recent years, causing a depletion of older age groups and an increasing dependence of the fishery on the recruiting year class. This was demonstrated both in 1971 and 1973 when catches dropped to 27500 and 26000 tons respectively, due to the poor recruitment of year classes 1968/69 and 1970/71.
In order to stabilise the stock, the total mortality rate should be reduced. This can only be achieved in the present state of the stock by a temporary reduction of the catch below the 1973 level.
4. Herring in Division VIa
4.1 General biology of stocks in Division VIa
4.l.1 The spawning areas, and times of spawning, as shown by the distribution of small herring larvae on surveys carried out in 1965, 1971 and 1972 are shown in Figure 5. There would appear
to be two distinct major spawning areas, one to the north and west of the Outer Hebrides in late August - September and another approximately one month later to the northwest of Ireland. Within each of these major sub-divisions of the total spawning area there may also be two or more distinct spawning grounds.
4.1.2 The drift of the larvae from the spawning areas is not clearly established. However, there is some evidence that, particularly from the areas to the west and north of the Hebrides, the larvae are drifted along the north coast of Scotland and into the northern North Sea. These larvae are likely to be the main source of the recruits to Division VIa from the juvenile herring populations in the Moray Firth and in the central North Sea. Nothing is known of the drift of larvae from the spawning grounds off the northwest of Ireland, but these may be the main source of juvenile herring which are found in the coastal zone to the west of Scotland.
Juvenile herring are caught in a herring fishery, and as by-catch of a sprat fishery, by Scottish vessels in the Moray Firth. There is grood evidence from the growth characteristics and year class strength of these fish that they are predominantly recruits to the VIa stocks and not to any of the North Sea herring stocks (Saville, 1971). Returns from the fisheries in Division VIa of herring: tagged in the Bloden Experiment provide conclusive evidence that recruits to the VIa stock are also spread over a wide area of the central North Sea during their juvenile stages.
4.l.3 The exact timing of the return migration of these recruits to Division VIa is not known, but it would appear that the majority of them have returned by their third birthday, when most of the VIa population spawn for the first time.

The distribution of the adult component of the stock can be seen from Figure 6, which shows the distribution, in space and time, of the fisheries in Division VIa by different countries. From this it can be deduced that the adult stock, during the spring and summer fishing season, is distributed over a wide area extending from N.Rona, and perhaps even further east to the west coasts of Orkney and Shetland, along the west coast of the Hebrides and south to Donegal. Within this broad area there are major centres of abundance at N.Rona, St Kilda, Stanton Bank and around Tory Island. Figure 6 also shows that there would appear to be two over-wintering areas for this herring population, one in the Minch where the major Scottish fishery on the adult stock takes place in the period November-February and another in the Donegal Bay area in the same months.
4.2 Stock structure of herring in Division VIa
4.2.1 The age compositions of the catches from adjacent areas are compared with those in the various fishing regions of Division VIa in Tables 4.1 and 4.2. These data show that there is an increasing percentage of older fish from east of Shetland westwards to the Minch, and to the fishing area north of Ireland. In 1970 and 1971 the 1963 year class was particularly strong in the South Minch, west of the Hebrides, and northwest of Ireland. This could suggest that the main influx of older fish to the South Minch in the winter period comes from west of the Hebrides and northwest of Ireland. The age composition data given in Tables 4.1 and 4.2 also show that the Minch can be regarded as a nursery area for the western stocks.

The data given in Table 4.3 show fairly consistent differences in mean l_{l} values within year classes between the South Minch, the North Minch and the west of Shetland with a general tendency for the lowest values in the South Minch, intermediate ones in the North Minch and the highest values west of Shetland.
4.2.2 Norwegian and Scottish recaptures from the Bloden Tagging Experiment show that some of the young herring tagged in the Bløden area migrated to the area west of $4^{\circ} \mathrm{W}$ and to the Minch (Table 4.4).
4.2.3 To study the migrations and mixing of herring from east and west of $4^{\circ} \mathrm{W}$ tagging experiments have been carried out in 1972 and 1973 by Scotland and Iceland. So far only a few recaptures have been reported for which definite areas of capture are obtainable.
As however, the recaptures reported at Stornoway (Hebrides) and at Lerwick (Shetland) refer almost exclusively to catches taken in the Minch and Shetland areas respectively, these data give some indication of the mixing rate. In Table 4.5 recaptures at Stornoway and Lerwick are given from fish tagged west of $4^{\circ} \mathrm{W}$, west of Orkney, and at Foula (east of $4^{\circ} \mathrm{W}$) in 1972. The recaptures are given as number per 1000 fish tagged per ton processed.
Although the number of recaptures are few, the data indicate that fish tagged west of $4^{\circ} \mathrm{W}$ (Rona) and immediately east of $4^{\circ} \mathrm{W}$ (west of Orkney) were, in 1973, recaptured at the same rates between experiments in the Minch and at Shetland, but at a lower rate in the Shetland area than in the Minch. Recaptures from the tagging experiment immediately west of Shetland (Foula) were at a higher rate in the Shetland area than in the Minch.
4.2.4 The data at present available do not permit any firm statement about the stock structure in Division VIa. Data from tagging experiments show some migration of fish between the area west of Shetland (east of $4^{\circ} \mathrm{W}$) and the North Minch. The stability of the age composition and l_{1} data within these areas would suggest that the mixing between these areas is at a fairly constant rate from year to year.
Only age composition data are available to relate the population to the northwest of Ireland with those in the other areas. These might suggest some migration from the northwest of Ireland to the South Minch in the winter period.
4.3 Total catches and the fisheries in Division VIa
4.3.1 The total catch taken by each country in Division VIa for each of the years 1957-73 is given in Table 4.6, together with the estimated quantity of herring taken in each year in the Moray Firth young herring and sprat fisheries. The annual total catch taken in Division VIa in the period 1957-65 fluctuated, without trend, in the range 46000 to 69000 tons, increased sharply in 1966 to 92000 tons, and showed a fairly regular increase each year thereafter to attain over 220000 tons in 1971. In 1972 the total catch was appreciably lower than in 1971 at 174000 tons, but in 1973 increased again to somewhat above the 1971 level.

The large increase in total catch in 1973 compared to 1972 was due to an increase in the Scottish, Norwegian and German (F.R.) catches by about 13000 tons; the Dutch catches by about 7000 tons, and the Faroese fisheries by about 8000 tons.
4.3.2 Detailed information on the catch per month and area is given in Table 4.7. For many countries the information is less detailed but the main fishing areas could be identified.

The distribution of the catch according to areas was as follows:

	Tons	$\%$
W Shetland	47808	20.2
Hebrides	33755	14.2
N and NW Ireland	34684	14.6
N Minch	65969	27.8
S Minch	54827	23.1

4.3.3 The Scottish and Irish fisheries are carried out mainly during autumn and winter. The fisheries by other countries, on the more offshore grounds, mainly take place during summer and autumn.
4.4 Catch in numbers in Division VIa
4.4.1 Estimates of the number of autumn spawning herring per age group caught in Division VIa in each of the years 1957-73 are given in Table 4.8. The estimates for the period 1957-72 are taken from Saville and Morrison (1973).
4.4.2 Estimates of the number of herring per age group in 1973 were derived from German (F.R.), Netherlands, Scottish and Norwegian age composition data. The calculations were done on a monthly basis when possible, or for small groups of months when the catches were small.
4.4.3 4 year old fish of the 1969 year class were dominant in all areas in 1973 and accounted for about 60% of the numbers caught in Division VIa. In the absence of data on the age composition of the catches in the Moray Firth young herring fishery, the figures in 1973 for the 0,1 and 2-ringers given in Table 4.8 do not represent the total catch of these age groups in 1973. In 1972 the total catch of l-ringers amounted to $320 \mathrm{x} 10^{6}$ herring.
4.5 Mortality in 1973
4.5.1 The total mortality for the year 1973 has been estimated on the basis of catch per landing data for the years 1972 and 73 from the Scottish pair-trawling fishery in the North Minch during November and December. There are no wide fluctuations in the resulting values (see below) over the groups $2-5$ which made the major contribution to the catches. The average total mortality, weighted by year class abundance indices, for these age groups was 0.70 .

Age (winter rings)	2	3	4	5	6	7
Z	.78	.64	.68	1.07	.20	.62

4.6 Recruitment of the 1971 year class in Division VIa
4.6.1 During the winter season (November - February) a substantial part of the Division VIa herring population is aggregated in the Minch. Therefore, biological parameters obtained from Scottish pair-trawl fisheries in that area can be considered as representative of the VIa herring stock.

As no catch figures for January and February 1974 were available, the estimate of the recruitment of the 1971 year class was calculated only from the number per landing of l-ringers caught in November and December by the North Minch pair-trawl fishery.
4.6.2 A regression has been made between the number of l-ringers caught in this fishery in each year for the period when age composition data are available and the estimated number of l-ringers from cohort analysis for the corresponding year class (i.e. 1964-70), (Saville and Morrison, 1973).
4.6.3 The regression of the values obtained which is shown in Figure 7 is quite homogeneous and the regression is of the form:

$$
y=960.87+0.02 x
$$

The recruitment of the 1971 year class as l-ringers to the VIa stock is, in this way, estimated as 1000×10^{6} fish which is about 30% below the 10 year average. Applying the estimated F on l-ringers in 1973 of 0.25 this means that 705×10^{6} of this year class will survive to 1 January 1974.
4.7 Mortalities and stock size
4.7.1 Mean fishing mortality rates derived from cohort analysis for 2-ringed and older fish showed a fairly constant level up to and including 1969 (Table 4.9). There was a small increase in 1970 and a sharp one in 1971. The fishing mortality rates on these age groups can be summarised as follows:

* from catch per effort data.
4.7.2 The higher mortality rates after 1969 in all fully exploited year classes is probably caused by an increase in fishing effort. The generally higher mortality rates in the 0 and 1 group after 1965 coincides with the general development of the fishery in Division VIa and particularly with that of the Scottish sprat fishery in the Moray Firth.
4.7.3 The stock size in numbers at age 3 years and older remained on a fairly constant level of about 1.2×10^{9} in the period 1957-63. In 1964 there was a minor increase and in 1966 the figure was more than doubled at 3.6×109. Thereafter the stock numbers remained at a rather high level of $2.6-3.0 \times 10^{9}$, due to a sustained high level of recruitment (Table 4.10). The total stock biomass
was at a fairly constant level of about 200-250 000 tons in the period 1957-64. It rose sharply in 1965 to close on 500000 tons, with the recruitment of the strong 1963 year class, and has since remained in the 5-600 000 ton level due to a sustained high level of recruitment.
4.8 Catch prognosis for 1974
4.8.1 A prediction has been made of the catches which could be taken in 1974 at various levels of mortality on juveniles (1-ringers) and adults, and is given in Table 4.11.

The basic age composition at 1 January 1974 and the average weight per age group used in making this prognosis are given below:

Age (rings)	Numbers per age group $\times 10^{-9}$	Average weight per age group in grammes
1	$(1.4)^{*}$	112.7
2	0.705	148.1
3	0.312	186.2
4	1.119	226.7
5	0.176	234.2
6	0.075	243.4
7	0.077	257.7
9	0.029	261.7
>9	0.009	264.6

* Average recruitment as l-ringers 1960-70 year class from cohort analysis.

Longer tern prognosis for this stock would be liable to major errors because of the large variation in annual recruitment levels.
4.9 Total allowable catch (TAC)
4.9.1 The catch prediction (Table 4.11) shows that if the fishing mortality rates estimated for $1973(F=0.25$ for 2 year old herring and $F=0.60$ for adult herring) were maintained in 1974, the resulting catch would be 260000 metric tons, that is about lo\% higher than in 1973. The corresponding position on the yield per recruit curve (Figure 8) is beyond the F giving the maximum sustainable yield per recruit. The yield curve shows that at an age of first capture of 2 years old, the maximum sustainable yield per recruit would be obtained at $F=0.4$ and woidd result in a catch in 1974 of about 210000 metric tons. The yield curve implies that the 2 year old fish would also be exploited at an F of 0.4. If, however, the present pattern of fishing were maintained, the number of 2 year old fish removed from the sea would be less than anticipated in the catch prediction. If this difference in numbers was taken from the adult part of the stock, a higher catch in weight, up to about 230000 metric tons in 1974, might be allowed without departing from the maximum sustainable yield level.

5. Discussion

5.1 The most recent data on North Sea herring indicate a continuation of the undesirable features shown in previous reports of the

North Sea Herring Assessment Working Group of high levels of mortality on juveniles and adults.

The 1973 data incorporated in the present assessment of the North Sea stock have largely confirmed the previous assessment and the prognosis derived from it. The previous recommendation of a reduction in the fishing mortality rates on both juveniles and adults to the levels giving at least an increase of 100% on the 1972-73 biomass in the course of $3-4$ years, is still valid. Equally the warnings issued in that report of the serious effects of a single poor year class on the immediate catch, and the spawning potential of the stock, must be reiterated.
In the previous report attention was drawn to the recapture of fish
tagged on the Bløden Ground at Shetland, west of 4 ${ }^{\circ} \mathrm{W}$, and in the
Minch. The presence of juvenile herring in the North Sea, which
might have originated from spawning grounds outside the North Sea,
was discussed in a previous report by the North Sea Young Herring
Working Group (Anon., 1969). Evidence of the drift of larvae from
areas west of Shetland into the North Sea has been discussed by
Wood (1971), Schnack (1973), Zijlstra (1972), and Saville and
McKay (Coop.Res.Rep., No.4l, l974). Saville (1971) has suggested
that juveniles in the Moray Firth originate from Division VIa
spawning grounds. There is thus evidence of drift of larvae into the
North Sea, their presence there as juveniles and evidence of subsequent
emigration as adults.
5.3 From a cohort analysis on the herring catches in Division VIa, the average level of 0 -group abundance in 1957-70 was 1.28×10^{9} compared with 8.59×109 in the North Sea stock over the same period. Because of the disparity in the relative sizes of the recruitments, the effects of incursion of VIa recruits into the North Sea would not be expected to have a major effect on the estimation of North Sea recruitment or juvenile fishing mortality. On the other hand, the high level of fishing mortality on juveniles in the North Sea could considerably reduce recruitment to VIa. Any regulatory action taken to reduce the juvenile catch in the North Sea will also have a beneficial effect on the stock in VIa, provided action is also taken to control fishing effort in VIa to prevent a major diversion of fishing effort to that area.
5.4 The most recent data on Celtic Sea herring examined by the Working Group has reinforced the conclusions of the last meeting of the Celtic Sea Herring Assessment Working Group (C.M.1973/H:2). It had pointed out that exceptional levels of recruitment had occurred for a number of years and that these had supported the greatly increased catches since 1966. As a consequence of the increased recruitment the total catch corresponding to the fishing mortality rate giving the MSY per recruit ($F=0.45$) had also increased from about 20000 tons to 30000 tons.
5.5 It had been recommended that fishing mortality should be reduced, partly because the fishery has become highly dependent on the recruit year class. The occurrence of a poor recruit brood could cause an escalation in fishing mortality on the older fish if the present levels of fishing effort were to continue. In the absence of any indication of recruitment failure, NEAFC agreed a catch limit for the $1974-75$ season of 32000 tons. At the changed level of recruitment shown by more recent data available to this Working Group, it is recommended that this catch limit should be reduced to 25000 tons.

5.6	Previous reports of the North Sea Herring Assessment Working Group have drawn attention to the problems raised in assessment of this population by uncertainties regarding the stock affinities of the fish caught in certain areas of the North Sea. This applied in particular to the herring caught in the area to the west of Orkney and Shetland which in recent years has contributed a major part of the total adult catch from the North Sea (Anon., 1972). This problem has been further highlighted in the assessment of the VIa population where the major increase in catch in recent years has again been taken close to the $4^{\circ} \mathrm{W}$ boundary between Divisions VIa and IVa. Recent work to help clarify this problem, chiefly by tagging on either side of the $4^{\circ} \mathrm{W}$ boundary, has suggested that no sharp boundary can be drawn between the stocks in this area. The data available would point to this area containing a mixture of the North Sea and VIa populations with a tendency for the proportion of VIa fish to increase from east to west. The Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ accepted the $4^{\circ} \mathrm{W}$ boundary, as the catch statistics are available only on that basis. This problem must, however, be investigated further, particularly by more extensive and intensive tagging experiments. Future work of this Herring Assessment Working Group would be facilitated by more complete catch statistics and biological data on a statistical rectangle basis for this area.
5.7	The stock in Division VIa is in a relatively better state than that of the North Sea. However, since 1970 the fishing mortality rate on it has been somewhat above that giving the MSY per recruit and the current high levels of catch from VIa are dependent on the current high level of recruitment to this stock. The data suggest that in the past three years there has been a rapid increase in fishing effort on this stock and this is likely to escalate further, in the light of restrictions on herring fishing projected in neighbouring areas. It is recommended, therefore, that action should be taken to control fishing on this herring population at the value giving the MSY per recruit. This would mean in 1974 a TAC of 210000 tons. Longer term prognosis for this stock is not possible at this stage because of the major variations in year class strengths and the current lack of technique for earlier assessment of year class strengths.
5.	Prognoses of the TAC for any herring stock are dependent on a method of forecasting recruitment with an acceptable level of precision. In the case of the North Sea population the absence of precise recruitment forecasts is less serious because year class strengths have been relatively stable over the past decade. In the Celtic Sea and VIa populations recruitment has varied widely in recent years and prognoses of the TAC even one year in advance are liable to considerable inaccuracies for this reason. More facilities to investigate methods of forecasting recruitment in these areas are a major priority.
	References

ANON., 1969. Report of the North Sea Young Herring Working Group. ICES Coop.Res.Rep., Ser.A, No.14:l-27.
ANON., 1972. Report of the North Sea Herring Assessment Working Group. ICES, Doc. C.M.1972/H:13 (mimeo.).
ANON., 1973. Report of the Working Group on Celtic Sea Herring Assessment. ICES, C.M.1973/H:2 (mimeo.).

SAVILLE, A, 1971. The biology of young herring in the Moray Firth and their recruitment to the adult stocks. Rapp.p.-v. Réun. Cons.int.Explor.Mer, 160:184-193.

SAVILLE, A and MCKAY, D W, 1974. Report on the international surveys of herring larvae in the North Sea 1972/73. ICES Coop.Res.Rep., No.41:1-60.

SAVILLE, A and MORRISON, J A, 1973. A reassessment of the herring stocks to the west of Scotland. ICES, Doc. C.M.1973/H:24 (mimeo.).

SCHNACK, D, 1973. Report on the international surveys of herring larvae in the North Sea and adjacent waters, 1971-72. ICES Coop.Res.Rep., No.34:1-31.

WOOD, R J, 1971. Report on the international surveys of herring larvae in the North Sea and adjacent waters 1969/70. ICES Coop.Res.Rep., Ser.A, No.22:3-36.

ZIJLSTRA, J J, 1972. Report on the international surveys of herring larvae in the North Sea and adjacent waters in 1970/71. ICES Coop.Res.Rep., Ser.A, No.28:1-24.

Table 2.1 Herring.
Catch in tons 1970-72 and preliminary figures for 1973. North Sea (Sub-area IV and Divisions VIId and e) by country. Skagerrak and Kattegat (Division IIIa) Total catch. Estimated catches in brackets.

	1970	1971	1972	1973
Belgium	1200	681	1337	$(933)^{a}$
Denmark	133331	185393	213738	$174254^{\text {b }}$
Faroe Isl.	58365	$45524^{\text {c }}$	48444	54935°
Finland	-	-	-	1050
France	11482	11408	12901	21052
Germany (F.R.)	7150	3570	3065	$10606^{\text {d }}$
Iceland	22951	37171	31998	23742^{e}
Netherlands	46218	32479	24829	$30713^{\text {f }}$
Norway	193102	125842	117501	96985
Poland	5057	2031	2235	5700
Sweden	34670	36880	7366	42228
U.K. (England)	9702	4113	650	2785
U.K. (Scotland)	21885	25073	17227	$15529^{\text {h }}$
U.S.S.R.	18078	9500	16386	30100
Total North Sea	563191	519665	497677	472606
Skagerrak	71071	61570	67021	84566
Ka.ttegat	74300	90200	107519	
Grand Total	708562	671435	672217	
Non-member countries	250	481	?	?

a. Sub-area IV catch taken as 1970-72 mean.
b. Total includes 2107 tons for human consumption unspecified to area.
c. Figure supplied by Fiskiranns6knarstovan.
d. From Federal Republic of Germany national statistics compiled by Federal Research Board of Fisheries, Hamburg.
e. Includes 15938 tons caught on Skagerrak border and allocated to that area on the basis of age analysis.
f. Catch January-October raised to 12 months on basis of 1972 catch ratio.
g. Swedish catches in Danish ports reported by area (North Sea, Skagerrak) used for area allocation of Swedish landings reported as Skagerrak and North Sea in Swedish statistics.
h. Catches from Moray Firth not included.

Table 2.2 Herring.

Total catch in tons. Skagerrak (Division IIIa excluding Kattegat).

Year	Denmark	Faroe Isl.	$\begin{aligned} & \text { Germany } \\ & (\mathrm{F} . \mathrm{R} .) \end{aligned}$	Iceland	Netherlands	Norway	Poland	Sweden	USSR	Total
1970	30107	-	-	6453	-	7581	-	26930	-	71071
1971	26985	5636	-	3066	-	6120	-	19763	-	61570
1972	34900	4115	-	7317	-	1045	-	19644	-	67021
1973	42098	$5265^{\text {a }}$	-	$15938{ }^{\text {b }}$	-	836	-	$20429^{\text {b }}$	-	84566

a. Catches by Faroese vessels landed in Danish ports.
b. See Table 2.1 footnote under relevant country.

Table 2.3 Herring.
Total catch in tons. North Sea, northeast (Division IVa east of $2^{\circ} \mathrm{E}$).

Year	Belgium	Denmark	Faroe Isl.	France	$\begin{aligned} & \text { Germany } \\ & \text { (F.R.) } \end{aligned}$	Iceland	$\begin{gathered} \text { Ne ther- } \\ \text { lands } \end{gathered}$	Norway	Poland	$\begin{gathered} \text { U.K. } \\ (\text { Scotl. }) \end{gathered}$	Sweden	USSR	Total
1970	50	1800	5898	48	10	1220	281	3501	123	1929	5560	1012	21432
1971	-	6219	239	-	-	-	167	10720	-	-	-	-	17345
1972	-	19711	979	-	9	1943	40	50	-	-	-	-	22732
1973	-	686	$12776^{\text {a }}$	-	-	-	331	236	-	-	-	-	14029

a. Allocation based on landings in Denmark.

Table 2.4 Herring.

Total catch in tons. North Sea, northwest (Division IVa west of $2^{\circ} \mathrm{E}$).

Year	Belgium	Denmark	$\begin{gathered} \text { Faroe } \\ \text { Isl. } \end{gathered}$	$\begin{aligned} & \text { Fin- } \\ & \text { land } \end{aligned}$	France	$\begin{aligned} & \text { Germany } \\ & \left(F_{.} R_{\bullet}\right) \end{aligned}$	Iceland	Netherlands	Norway	Poland	U.K. (Engl)	$\begin{gathered} \text { U.K. } \\ (\mathrm{Scotl} \end{gathered}$	Sweden	USSR	Total
1970	750	61423	40884	-	818	177	20587	177	160784	2069	-	$17 \quad 767$	4470	17066	326932
1971	-	44500	45095	-	514	389	36992	5755	115108	1288	-	24711	4954	9500	288806
1972	-	29711	37004	-	888	100	29721	1967	100408	1620	74	17228	-	16386	235106
1973	-	41341	$42159{ }^{\text {a }}$	1050	209	2624	23742	5162	58747	4100	-	15202	4222	30100	228658

a. Allocation based on landings in Denmark.

Table 2.5 Herring.
Total catoh in tons. North Sea, central (Division IVb). Adult herring fisheries.

Year	Belgium	Denmark	Faroe Isl.	France	Iceland	$\begin{aligned} & \text { Germany } \\ & \left(F . R_{1}\right) \end{aligned}$	Netherlands	Norway	Poland	$\begin{gathered} \text { U.K. } \\ (\text { EngI。) } \end{gathered}$	$\begin{gathered} \text { U.K. } \\ (\text { Scotl. }) \end{gathered}$	Sweden	Total
1970	-	-	11623	2433	1144	6005	28815	28817	2836	8731	2189	24640	117233
1971	8	2488	429	4734	179	-	10172	14	743	4113	362	1926	25168
1972	-	1589	10460	2014	334	21	11372	$17043 \pm$	615	271	-	4068	47787
1973	-	-	-	8288	-	115	16917	38002	1600	2781	327	-	68030

a. Reallocated to Division IVb from IVb Young Herring (Table 7, previous report, this volume).

Table 2.6 Herring.
Total catch in tons. North Sea, central (Division IVb).

Year	$\begin{array}{c}\text { Young herring fisheries }\end{array}$						
	Denmark	$\begin{array}{c}\text { Germany } \\ \text { (F.R.) }\end{array}$	Sweden	Norway	Total young and adult		
fisheries						$\}$	(Tables 2.5 and 2.6)
:---:							

Table 2.7 Herring.
Total catch in tons. North Sea, South and English Channel, East and West (Divisions IVc, and VIId and e).

Year	Belgium	Denmark	France	Germany $($ F.R. $)$	Netherlands	Poland	U.K. (England)	Total
1970	400	-	8183	558	16945	29	971	27086
1971	673	25	6160	126	16385	-	-	23369
1972	1337	57	9999	112	11450	-	305	23260
1973	933	132	12555	2229	8303	-	4	24156

Year	Area	Age in winter rings										Total
		0	1	2	3	4	5	6	7	8	>8	
1971	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVb YH IVc+VIId,e	$\begin{array}{r} 136.7 \\ 14.0 \\ - \\ 533.0 \\ 0.3 \end{array}$	$\begin{array}{r} 818.3 \\ 95.4 \\ 2.1 \\ 3440.9 \\ 21.8 \end{array}$	$\begin{array}{r} 516.9 \\ 54.5 \\ 140.3 \\ 304.3 \\ 130.8 \end{array}$	$\begin{array}{r} 488.3 \\ 38.5 \\ 54.4 \\ 39.6 \\ 41.7 \end{array}$	$\begin{array}{r} 154.2 \\ 10.5 \\ 12.6 \\ - \\ 31.1 \end{array}$	$\begin{array}{r} 24.1 \\ 2.1 \\ - \\ - \\ 0.7 \end{array}$	$\begin{gathered} 28.8 \\ 1.4 \\ - \\ - \\ 0.3 \end{gathered}$	$\begin{gathered} 25.1 \\ 1.1 \\ - \\ - \\ 0.6 \end{gathered}$		$\begin{gathered} 9.8 \\ 0.2 \\ 2.1 \\ - \\ 0.3 \end{gathered}$	$\begin{array}{rr} 2 & 202.2 \\ 217.6 \\ 211.5 \\ 4 & 317.8 \\ 227.6 \end{array}$
	Total NS	684.0	4378.5	1146.8	662.5	208.3	26.9	30.5	26.8	-	12.4	7176.7
1972	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVb YH IVc+VIId,e	$\begin{gathered} - \\ - \\ \overline{-} \\ \hline \end{gathered}$	$\begin{array}{r} 338.9 \\ 75.1 \\ 25.2 \\ 2896.6 \\ 4.8 \end{array}$	$\begin{array}{r} 830.1 \\ 91.0 \\ 46.4 \\ 337.9 \\ 135.1 \end{array}$	$\begin{array}{r} 176.8 \\ 17.8 \\ 98.8 \\ 21.1 \\ 29.3 \end{array}$	$\begin{array}{r} 88.6 \\ 5.8 \\ 20.5 \\ 6.4 \\ 9.3 \end{array}$	$\begin{array}{r} 19.3 \\ 0.7 \\ 6.7 \\ 1.2 \\ 5.0 \end{array}$	$\begin{aligned} & 4.1 \\ & 0.1 \\ & 0.6 \\ & 0.2 \end{aligned}$	$\begin{gathered} - \\ - \\ 0.2 \\ - \end{gathered}$	$\begin{gathered} 0.5 \\ 0.6 \\ - \end{gathered}$	$\begin{gathered} 0.4 \\ - \\ - \\ - \end{gathered}$	$\begin{array}{r} 1458.7 \\ 190.5 \\ 199.0 \\ 4013.8 \\ \\ 183.5 \end{array}$
	Total NS	750.4	3340.6	1440.5	343.8	130.6	32.9	5.0	0.2	1.1	0.4	6045.5
1973*	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVb YH IVc+VIIa,e	$8.89 .4$	$\begin{array}{r} 42.1 \\ 0.3 \\ 285.5 \\ 2070.5 \\ 1.7 \end{array}$	$\begin{array}{r} 596.0 \\ 16.2 \\ 212.1 \\ 362.5 \\ 34.0 \end{array}$	$\begin{array}{r} 363.1 \\ 23.1 \\ 45.9 \\ 29.4 \\ 90.3 \end{array}$	$\begin{array}{r} 45.5 \\ 6.3 \\ 33.3 \\ 2.6 \\ 43.2 \end{array}$	$\begin{array}{r} 31.7 \\ 7.2 \\ 5.6 \\ 0.5 \\ 5.8 \end{array}$	$\begin{array}{r} 16.3 \\ 1.0 \\ 8.5 \\ 0.2 \\ 1.5 \end{array}$	$\begin{gathered} 2.1 \\ 0.3 \\ - \\ 0.3 \\ 0.4 \end{gathered}$	$\begin{gathered} 0.4 \\ 0.8 \\ - \\ - \\ 0.1 \end{gathered}$	$\begin{gathered} 0.5 \\ - \\ - \\ - \\ 0.0 \end{gathered}$	$\begin{array}{r} 1098.7 \\ 55.2 \\ 590.9 \\ 2 \quad 755.4 \\ \\ \\ 177.0 \end{array}$
	Total NS	289.4	2400.1	1220.8	551.8	131.9	50.8	27.5	3.1	1.3	0.5	4677.2

[^2]Table 2.9 Total North Sea. Calculated fishing mortality.

Winter rings	Years						
	1965	1966	1967	1968	1969	1970	1971
0	0.03	0.08	0.09	0.12	0.03	0.11	0.07
1	0.44	0.34	0.50	0.52	0.56	0.46	0.91
2	0.86	0.68	0.48	1.47	0.87	1.08	0.97
3	0.77	0.71	0.84	1.92	0.95	1.27	1.24
4	0.77	0.57	0.84	1.07	0.87	1.34	1.10
5	0.63	0.83	0.81	0.96	1.05	0.86	1.12
6	0.56	0.36	0.99	1.12	0.83	1.07	2.30
7	0.44	0.44	1.29	1.50	1.11	0.26	2.48
8	0.67	0.69	1.40	0.88	1.05	1.00	0.70
$\overline{\mathrm{~F}}_{\mathrm{w}} \geq 2$	0.77	0.69	0.70	1.50	0.90	1.13	1.09

Table 2.10 Total North Sea. Calculated stock in number ($\mathrm{x} 10^{-9}$), and stock biomass.

Winter rings	Years						
	1965	1966	1967	1968	1969	1970	1971
0	5.71	5.29	7.61	7.63	3.86	9.37	7.46
1	9.40	5.02	4.43	6.27	6.11	3.38	7.63
2	4.00	5.46	3.23	2.42	3.38	3.16	1.93
3	2.59	1.53	2.51	1.81	0.50	1.28	0.97
4	3.95	1.09	0.68	0.99	0.24	0.18	0.33
5	0.32	1.65	0.56	0.27	0.31	0.09	0.04
6	0.37	0.16	0.65	0.22	0.09	0.10	0.04
7	0.34	0.19	0.10	0.22	0.07	0.04	0.03
8	0.88	0.20	0.11	0.02	0.04	0.02	0.03
Juveniles $\Sigma_{0}+1$	15.11	10.31	12.04	13.9	9.97	12.75	15.09
Adult Σ_{2-8}	12.45	10.28	7.84	5.95	4.63	4.87	3.37
Biomass							
1 000 tons)	2295	1549	1286	1046	666	651	614

Table 3.1 Annual herring catches in the Celtic Sea (metric tons).

Year	France	Germany (F.R.)	Ireland	Nether- lands	Foland	England	USSR	Total
1969	7038	5906	18712	16256	252	-	-	48164
1970	3627	1481	24702	7015	191	220	-	38236
1971	3393	974	12602	9672	881	65	-	27587
1972	7327	393	20109	6758	751	-	618	35956
1973^{*}	6173	294	13105	5834	1000	-	500	26906

* Preliminary figures for 1973.

Table 3.2 Total catch by seasons in the Celtic Sea (metric tons).

Season	Mar/May	Jun/Aug	Sep/Nov	Dec/Feb	Total metric tons
$1969 / 70$	1136	9783	13818	16263	41000
$1970 / 71$	1703	3789	8879	18348	32719
$1971 / 72$	1755	4742	7240	19625	33362
$1972 / 73$	2039	2936	7668	17720	30363
$1973 / 74^{*}$	3123	3463	5942	12817	25345

*Preliminary figures for 1973.

Table 3.3 Percentage age distributions of Celtic Sea catches.

Year class	1970	1969	1968	1967	1966	1965	1964	1963 and older
Dutch 1971	1.3	15.7	28.1	27.9	10.9	6.7	1.7	7.7
Irish 1971/72	9.8	18.0	21.3	26.2	10.7	6.6	3.3	4.1
Dutch 1972	4.0	62.3	7.9	8.6	10.7	2.9	1.9	2.0
Irish 1972/73	3.8	68.7	9.8	7.4	6.1	1.8	1.2	1.2
Dutch 1973	31.5	19.7	31.7	3.7	6.3	4.0	1.7	1.5

Dutch trawl fishery - May to December
Irish pair-trawl fishery - November to February.

Table 3.4 Estimates of recruit strength as 2 winter-ring fish.

Year class	Irish c.p.u.e. Tons/Pr. trawler landing	VPA $\times 10^{-6}$
$1965-66$	7.1	234.30
$1966-67$	9.4	212.40
$1967-68$	7.4	149.22
$1968-69$	2.2	51.32
$1969-70$	11.2	210.65
$1970-71$	2.6^{*}	

* Preliminary estimate.

Table 3.5 Calculated stock size in millions. Celtic Sea.

Rings	1968-69		1969-70		1970-71		1971-72		1972-73		$\frac{1973-74}{\text { Stock }}$
	Stock	Catch									
1	346.7	13.46	173.37	7.35		0.70		11.54		5.30	
2	234.3	61.02	212.40	86.87	149.22	34.55	51.32	25.25	210.65	94.16	
3	146.8	44.21	143.54	51.44	116.57	53.35	86.09	38.68	22.60	17.64	101.51
4	54.7	12.90	89.93	30.52	78.78	28.41	67.26	45.60	37.92	14.15	10.89
5	73.3	25.65	33.51	11.22	49.35	20.01	45.45	20.75	29.62	12.10	18.27
6	17.4	5.22	44.91	16.30	18.39	7.77	28.47	11.03	20.02	4.32	14.27
7	10.7	4.56	10.66	4.36	24.68	6.30	10.61	4.25	12.54	2.47	9.65
8	3.8	1.44	6.56	2.01	5.85	2.11	14.24	5.45	4.67	2.15	6.04
>8		5.30	2.33	3.23	4.88	3.50	6.20	2.41	9.00	0.96	2.25
$\begin{aligned} & \text { Calcu- } \\ & \text { lated F } \end{aligned}$		0.39		0.50		0.45		0.72		0.63	

Table 3.6 Total mortality rates of Celtic Sea herring from c.p.u.e. and from cohort analysis.

Year	Irish* pelagic trawl	Cohort analysis estimates
$1968 / 69-69 / 70$	0.66	0.60
$1969 / 70-70 / 71$	0.39	0.55
$1970 / 71-71 / 72$	0.79	0.82
$1971 / 72-72 / 73$	0.89	0.73
$1972 / 73-73 / 74$		

* November-February.

Table 4.1 Percentage age composition in different areas of Division VIa in l970/7I.

		Year classes									
		1968	1967	1966	1965	1764	1963	1962	1961	1960+	n
$\begin{gathered} 1970 \\ \text { Apr-Aug } \end{gathered}$	East of Orkney and Shetland	-	79.9	15.5	2.0	0.4	1.0	0.5	0.4	0.5	2017
	$4^{\circ} \mathrm{W}$ - West of Orkney-Shetland	-	54.2	31.2	5.0	1.1	3.4	0.7	0.8	0.7	760
	West of $4^{\circ} \mathrm{W}$	-	41.2	43.3	$4 \cdot 3$	3.5	6.0	0.6	1.0	0.2	840
$\begin{array}{r} \text { 1970/1 } \\ \text { oct-Mar } \end{array}$	North Minch	31.8	20.5	17.8	7.9	2.3	16.1	0.9	1.5	1.0	755
	South Minch	25.0	12.5	23.6	9.6	3.5	19.4	1.8	2.7	1.6	2927
$\begin{array}{r} 1970 \\ \text { Nov } \end{array}$	Hebrides	-	10.3	35.8	12.8	6.9	29.0	2.1	1.0	2.1	290
$\begin{gathered} 1970 \\ \text { Aug-Nov } \end{gathered}$	Northwest Ireland	-	27.0	22.3	10.7	2.4	35.6	1.0	-	0.9	-

Table 4.2 Percentage age composition in different areas of Division VIa in 1971/72.

		Year classes									
		1969	1968	1967	1966	1965	1964	1963	1962	1961+	n
$\begin{gathered} 1971 \\ \text { Apr-Aug } \end{gathered}$	East of Orkney and Shetland $4^{\circ} \mathrm{W}$ - West of Orkney-Shetland West of $4^{\circ} \mathrm{W}$	$\begin{gathered} 10.4 \\ - \\ 0.3 \end{gathered}$	$\begin{aligned} & 36.1 \\ & 12.1 \\ & 15.6 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 45.2 \\ & 49.9 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 29.0 \\ & 22.7 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 6.1 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 2.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.8 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 1709 \\ 1018 \\ \\ 956 \end{array}$
$\begin{aligned} & \text { 1971/72 } \\ & \text { Oct-Mar } \end{aligned}$	North Minch South Minch	$\begin{aligned} & 42.2 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 32.8 \\ & 24.8 \end{aligned}$	$\begin{aligned} & 9.4 \\ & 8.7 \end{aligned}$	$\begin{array}{r} 7.4 \\ 16.7 \end{array}$	$\begin{aligned} & 2.5 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.7 \end{aligned}$	$\begin{array}{r} 3.3 \\ 15.1 \end{array}$	$\begin{aligned} & 0.3 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.4 \end{aligned}$	$\begin{array}{ll} 2 & 759 \\ 1 & 664 \end{array}$
$\begin{array}{r} 1971 \\ \text { Nov } \\ \hline \end{array}$	Hebrides	-	9.0	19.1	24.1	10.7	4.3	24.1	1.0	$7 \cdot 7$	299
$\begin{aligned} & 1971 \\ & \text { Aug-Nov } \end{aligned}$	Northwest Ireland	1.1	19.9	17.3	19.1	11.2	2.2	22.7	1.6	4.9	-

Table 4.3 Mean l_{1} for different year classes in South Minch, North Minch and Shetland east of $4^{\circ} \mathrm{W}$.

Year class	Age (winter rings)		
	2	3	4
1961		$\begin{array}{ll} 12.8 & (177) \\ 13.9 & (279) \end{array}$	$\begin{array}{ll} 13.1 & (160) \\ 13.6 & (280 \\ 13.7 & (25) \end{array}$
1962		$\left.\left.\begin{array}{l} 12.2 \\ 13.1 \\ 12.3 \end{array}\right\} \begin{array}{r} 27 \\ 151 \\ 49 \end{array}\right\}$	13.6 13.0 13.3 $\left\{\begin{array}{l}15 \\ 82 \\ 19\end{array}\right\}$
1963	$\begin{aligned} & 14.4 \\ & 15.4 \\ & 15.9 \end{aligned} \quad\left(\begin{array}{r} 557 \\ 391 \\ 94 \end{array}\right)$	$\begin{array}{lr} 14.0 \\ 15.2 & \left(\begin{array}{r} 413 \\ 440 \end{array}\right. \\ 14.0 & (94) \end{array}$	$\begin{array}{r} 14.5 \\ 14.9 \\ 14.5 \end{array} \quad\left(\begin{array}{r} 570 \\ 124 \\ 62 \end{array}\right\}$
1964	$\left.\left.\begin{array}{l} 13.6 \\ 12.9 \\ 15.1 \end{array}\right\} \begin{array}{l} 15) \\ 57 \\ 47 \end{array}\right\}$	$\left.\left.\begin{array}{l}13.5 \\ 13.9 \\ 15.9\end{array}\right\} \begin{array}{l}69 \\ 24 \\ 23\end{array}\right)$	$\begin{aligned} & 13.3 \\ & 14.0 \end{aligned}\binom{50}{45}$
1965	$\left.\left.\begin{array}{l} 13.5 \\ 14.0 \\ 15.5 \end{array}\right\} \begin{array}{r} 193) \\ 69 \\ 22 \end{array}\right)$	$\begin{array}{ll} 13.3 & (174) \\ 13.1 & (160) \end{array}$	13.3 13.7 14.3 $\quad\left\{\begin{array}{r}222 \\ 71 \\ 11\end{array}\right\}$
1966	$\begin{array}{ll} 14.3 & (243) \\ 14.5 & (356) \end{array}$	$\begin{array}{ll} 14.9 & (491) \\ 15.2 & (161 \\ 15.9 & (84) \\ \hline \end{array}$	14.6 (759) 14.7 (185) 17.0 (17)
1967	$\left.\left.\begin{array}{l}14.3 \\ 16.1 \\ 17.6\end{array}\right\} \begin{array}{r}169 \\ 70 \\ 151\end{array}\right)$		

Upper figure: South Minch.
Middle figure: North Minch.
Lower figure: West of Shetland.
In brackets:
Number of observations.

Table 4.4 Recaptures by Scotland and Norway from the Bløden Tagging Experiment.

	Area of recapture	1970	1971	1972	1973
Scotland	Shetland	19	28	19	9
	1	0	1	1	
	5	3	0	0	

Table 4.5 Returns by factories from Scottish and Icelandic tagging experiments 1972 east and west of $4^{\circ} \mathrm{W}$.

					captures at fa	tories	
					noway		wick
$\begin{aligned} & \text { Year } \\ & \text { of } \\ & \text { tagging } \end{aligned}$	Area	$\begin{gathered} \text { No. } \\ \text { tagged } \end{gathered}$	Year	No. of recaptures	No. per 1000 fish tagged per ton processed	No. of recaptures	No. per 1000 fish tagged per ton processed
1972	West of $4^{\circ} \mathrm{W}$ (Rona)	3000	$\begin{aligned} & 1972 \\ & 1973 \end{aligned}$	$\begin{array}{r} 7 \\ 23 \end{array}$	$\begin{aligned} & 0.21 \\ & 0.44 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.16 \end{aligned}$
	West of Orkney	810	$\begin{aligned} & 1972 \\ & 1973 \end{aligned}$	1 5	0.36	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.20 \end{aligned}$
	Foula	600	$\begin{aligned} & 1972 \\ & 1973 \end{aligned}$	0 1	0.10	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.27 \end{aligned}$

Table 4.6 Total catches of herring (metric tons) in Division VIa, and in Scottish juvenile herring and sprat fisheries in the Moray Firth 1957-1973.

	1957	1958	1959	1960	19.61	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973*
Belgium	-	192	24			-	1		-		-	-	-	-	-	-	-
England	99	201	16	36	52	85	58	26	28	1	-	3	-	-	-	-	340
Faroes ${ }^{\text {a }}$)	-	-	-	-	-	-	-	-	-	-	-	-	-	15100	8100	8094	15800
France	-	-	-	154	353	489	1121	I 023	610	1	379	1124	966	1293	2055	680	2417
Germany (F.R.)	-	8592	2509	5311	1816	11279	4739	5387	5066	14634	17318	14874	15805	16548	7700	4108	17754
Netherlands	-	-	-	-	-	-	-	68	330	251	4576	2957	1514	1102	9252	23370	30328
Iceland	-	-	-	-	-	-	-	-	-	-	-	-	-	5595	5416	2066	3545
Ireland	5069	4049	4449	3768	5637	4015	3633	4540	6440	7759	12290	13390	11895	11716	12161	17308	13452
N. Ireland		6	-	-	-	-	3		-	-	-	4	3	1	-	-	-
Norway	-	-	-	-	-	-	-	-	-	-	-	-	-	20199	76720	17400	30557
Poland	-	-	-	-	-	-	-	-	-	-	727	2791	3188	3709	-	-	2500
Scotland	41636	52250	60986	58921	44083	47831	44394	58673	53909	69363	67404	65180	90222	103530	99537	107638	120800
U.S.S.R.	-	-	-	-	-	-	-	-	-	-	-	-	-	3	-	?	2500
Total	46805	65290	67984	$68 \quad 230$	51941	63699	53949	69718	66383	392032	102694	100323	123593	178796	220941	173938	239993
Scottish juvenile herring and sprat fisheries in Moray Firth	1703	1164	2451	906	585	1842	118	. 660	10278	20734	6507	4985	3100	1385	5666	10242	7219

* Preliminary figures.
a) Figures supplied by

Fiskirannsoknarstovan

Table 4.7 Catches of herring in Division VIa in 1973 by countries, fishing grounds and months (preliminary figures).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Country} \& \multirow[b]{2}{*}{Area} \& \multicolumn{13}{|c|}{Months} \\
\hline \& \& Jan \& Feb \& Mar \& Apr \& May \& Jun \& Jul \& Aug \& Sep \& Oct \& Nov \& Dec \& Total \\
\hline \multirow[t]{2}{*}{Netherlands} \& \begin{tabular}{l}
06 NW Ireland \\
Ol Hebrides \\
02 W.Shetland
\end{tabular} \& \& \& - \& \& 110 \& 1980 \& \(\begin{array}{ll}1 \& 708 \\ 5 \& 947 \\ \& 726\end{array}\) \& \[
\begin{array}{ll}
2 \& 195 \\
3 \& 528
\end{array}
\] \& \[
\begin{aligned}
\& 2992 \\
\& 4691
\end{aligned}
\] \& \[
\left|\begin{array}{ll}
1 \& 662 \\
4 \& 789
\end{array}\right|
\] \& \& \& 10647
18955

726

\hline \& Total \& \& \& \& \& 110 \& 1980 \& 8381 \& 5723 \& 7683 \& 6451 \& \& \& 30328

\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Germany } \\
& (\text { F.R.)* }
\end{aligned}
$$} \& VIa_{1} N.Ireland VIa_{2} Hebrides \& \& \& \& \& \& \[

$$
\begin{array}{r}
58 \\
470
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
471 \\
2874
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 117 \\
& 949
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
361 \\
1788
\end{array}
$$

\] \& \[

\left|$$
\begin{array}{ll}
4 & 244 \\
2 & 671
\end{array}
$$\right|

\] \& \[

$$
\begin{array}{ll}
2 & 577 \\
1 & 048
\end{array}
$$

\] \& \& \[

$$
\begin{array}{ll}
7 & 828 \\
9 & 800
\end{array}
$$
\]

\hline \& Total \& \& \& \& \& \& 528 \& 3345 \& 1066 \& 2149 \& 6915 \& 3625 \& \& 17628

\hline \multirow[t]{2}{*}{Scotland} \& N.Minch \& 12878 \& 13488 \& 8156 \& 849 \& \& 4 \& 570 \& 1136 \& 1601 \& 8825 \& 12277 \& 6185 \& 65969

\hline \& S.Minch \& 12928 \& 9982 \& 5095 \& 1923 \& 704 \& 756 \& 981 \& 1834 \& 1221 \& 2568 \& 9297 \& 7541 \& 54827

\hline | England |
| :--- |
| Faroes |
| France |
| Iceland |
| Ireland |
| Norway |
| Poland |
| U.S.S.R. | \& | NW. Ireland |
| :--- |
| W. Shetland |
| NW.Ireland |
| W.Shetland |
| NW. Ireland |
| W.Shetland |
| Hebrides |
| Hebrides | \& \& \& \& \& \& $\begin{array}{r}803 \\ 16 \\ \hline 163\end{array}$ \& \[

\left|$$
\begin{array}{cc}
1 & 852 \\
13 & 076
\end{array}
$$\right|

\] \& 623 \& 95 \& 890 \& \& \& \[

$$
\begin{array}{rr}
340 \\
15 & 800 \\
2 & 417 \\
3 & 545 \\
13 & 452 \\
30 & 557 \\
2 & 500 \\
2 & 500
\end{array}
$$
\]

\hline \multicolumn{2}{|c|}{GRAND TOTAL} \& \& \& \& \& \& \& \& \& \& \& \& \& 239862

\hline
\end{tabular}

[^3]Table 4.8 Herring autumn spawners.
Catch in number x 10^{-3}, Division VIa + Moray Firth.

Year	Age	1	2	3	4	5	6	7	8	9	10	11	$11+$
	Rings	0	1	2	3	4	5	6	7	8	9	10	10+
1957		-	6496	80817	66094	26882	38989	21541	9643	1658	2606	578	1633
1958		-	15695	33616	152801	43895	28108	32025	19986	10795	3725	2592	2570
1959		-	54063	74615	38547	124307	27898	18942	18833	8158	4629	2971	1764
1960		21	3940	115501	65703	25388	50558	12196	11096	6770	3029	1558	269
1961		-	14473	50809	72914	38321	24455	14296	5791	5370	1741	767	379
1962		-	55278	99167	27189	76706	49002	22707	27787	7614	5676	2097	662
1963		-	11890	82849	57688	13310	42796	28698	10171	14585	3915	3239	731
1964		2781	26609	87652	74309	29583	8857	27075	21347	10109	11956	4028	1671
1965		46891	299701	23351	72085	67768	24525	7001	28806	21475	7500	11609	4406
1966		11639	211675	517616	45317	70793	38471	22691	12656	20790	17005	7418	8752
1967		86598	207947	28648	273723	49755	48320	36143	15226	10397	15068	10962	7937
1968		71425	220870	105348	26031	243304	19679	28436	17699	7275	4493	5326	4570
1969		92368	39160	107189	84565	27604	264558	25795	45908	27932	11003	5197	13058
1970		16299	238431	108872	272693	124498	42623	185380	24821	29920	14276	5156	6903
1971		09598	169780	286148	346206	261891	94206	25876	166165	16425	16286	8038	5578
1972		24941	321539	753355	210243	72885	83361	37428	13445	94577	8154	5855	5377
1973*		-	17654	270715	971883	152713	65131	66469	25494	7882	52 081*		

* Catches from Moray Firth not included.

参 Age 10 and older.

Table 4.9 Calculated fishing mortalities by age and year in Division VIa population.

	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.19	0.11	0.07	0.13	0.00	0.07
1	0.02	0.03	0.09	0.02	0.04	0.10	0.02	0.07	0.11	0.58	0.26	0.17	0.05	0.21	0.05
2	0.13	0.14	0.17	0.25	0.30	0.33	0.18	0.17	0.08	0.24	0.13	0.18	0.11	0.16	0.38
3	0.37	0.36	0.21	0.21	0.22	0.24	0.29	0.22	0.19	0.19	0.17	0.15	0.19	0.38	0.86
4	0.24	0.41	0.48	0.18	0.16	0.33	0.16	0.21	0.28	0.25	0.30	0.20	0.20	0.43	0.67
5	0.41	0.38	0.43	0.33	0.24	0.28	0.28	0.13	0.24	0.23	0.25	0.16	0.31	0.48	0.59
6	0.44	0.61	0.42	0.30	0.13	0.33	0.23	0.25	0.13	0.33	0.31	0.20	0.30	0.34	0.53
7	0.36	0.85	0.78	0.41	0.21	0.35	0.21	0.24	0.41	0.33	0.35	0.22	0.50	0.46	0.51
8	0.13	0.77	0.92	0.64	0.32	0.41	0.28	0.31	0.37	0.51	0.44	0.25	0.56	0.63	0.55
9	0.34	0.41	0.79	0.96	0.29	0.49	0.33	0.35	0.35	0.49	0.77	0.30	0.63	0.59	0.76
$\overline{\mathrm{F}}_{\mathrm{W}} \geq 2$	0.23	0.35	0.32	0.25	0.21	0.32	0.23	0.21	0.27	0.25	0.20	0.19	0.23	0.33	0.59

Table 4.10 Calculated stock size in numbers ($\mathrm{x} \mathrm{10}^{-6}$) by age and year.

	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971
0	614.4	741.0	252.9	467.3	706.8	721.9	429.2	3476.4	603.6	1277.0	1809.6	1074.9	1636.6	4072.7	937.3
1	309.2	555.9	670.5	228.9	422.8	639.6	653.2	388.3	3142.9	501.6	954.5	1460.1	904.8	1298.2	3669.6
2	675.5	273.6	488.1	555.3	203.3	368.8	526.2	579.8	326.1	2559.1	253.6	666.4	1111.5	781.4	948.3
3	221.5	534.5	215.6	370.8	392.8	135.8	239.7	397.5	441.4	272.9	1824.4	202.3	503.0	903.8	603.7
4	131.5	137.7	338.8	158.5	273.2	286.3	97.1	162.2	289.1	330.9	203.9	1390.9	158.3	374.8	559.4
5	122.1	93.5	83.0	188.8	119.3	210.8	186.3	75.2	118.6	197.3	232.3	137.3	1027.6	117.0	221.2
6	62.9	73.6	57.9	48.7	122.9	84.8	144.2	128.0	59.6	84.1	142.0	164.3	105.5	678.9	65.5
7	33.3	36.5	36.3	34.5	32.5	97.6	55.2	103.3	90.1	47.3	54.6	94.2	121.7	71.0	438.5
8	14.5	21.0	14.2	15.0	20.7	23.9	62.0	40.3	73.2	54.2	30.8	34.9	68.5	66.6	40.8
≥ 9	10.7	17.5	15.7	8.7	9.0	18.5	21.9	51.6	53.8	63.1	54.8	30.4	36.8	47.5	50.6
Σ Adult $2>8$	1272.0	1187.9	1249.6	1380.4	1173.7	1226.4	1332.6	1537.7	1451.9	3608.9	2796.4	2720.7	3132.8	3041.2	2928.0
Stock biomass	192746	213975	223696	204359	209061	234679	238167	279556	461198	484773	480963	523143	524268	577730	709178

Table 4.11 Prognosis of catch in Division VIa in 1974 at various levels of juvenile and adult fishing mortalities (thousand ton units).

Adults	F juvenile (1 ringers)						
	0.0	0.1	0.2	0.3	0.4	0.5	0.6
0.1	47.4	61.8	74.7	86.4	97.1	106.7	115.5
0.2	90.2	104.6	117.5	129.2	139.9	149.5	158.3
0.3	129.3	143.7	156.6	168.3	179.0	188.6	197.4
0.4	163.8	178.2	191.1	202.8	213.5	223.1	231.9
0.5	196.1	210.5	223.4	235.1	245.8	255.4	264.2
0.6	224.8	239.2	252.1	263.8	274.5	284.1	292.9
0.7	251.3	265.7	278.6	290.3	301.0	310.6	319.4
0.8	274.8	289.2	302.1	313.8	324.5	334.1	342.9
0.9	297.7	312.1	325.0	336.7	347.4	357.0	365.8
1.0	316.0	330.4	343.3	355.0	365.7	375.3	384.1

- 69

Figure 7. Estimation of number of l-ringers of the 1971 year class.

Figure 8. The yield per recruit curve for the Division VIa herring population.

1. Introduction and Participation
2. 1 The Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ met at Charlottenlund over the period 27 February - 7 March 1975 to report to the Liaison Committee's mid-term meeting on the following subjects:
(a) the appropriate levels of TAC for the North Sea and Skagerrak herring in 1975 and in 1976;
(b) the appropriate level of TAC for Division VIa herring in 1976;
(c) the TAC level for Celtic Sea herring in the period 1 March - 28 February 1977;
(d) the state of the North Sea sprat population and what regulatory measures are desirable, including a TAC level if this is considered appropriate.
1.2 Member countries were represented by the following scientists:

E Bakken	Norway
R S Bailey	United Kingdom (Scotland)
A C Burd	United Kingdom (England)
A Corten	Netherlands
J Jakobsson	Iceland
K Popp Madsen	Denmark
A Maucorps	France
J Molloy	Ireland
E Nielsen (Ms)	Denmark
G Rauck	Federal Republic of Germany
A Saville (Chairman)	United Kingdom (Scotland)
H Schultz	German Democratic Republic
A Schumacher	Federal Republic of Germany
B Sjöstrand	Sweden
G Speiser	Federal Republic of Germany
$\emptyset ~ J l l t a n g ~$	Norway
O J Østvedt	Norway

All meetings were attended by $M r$ D de G Griffith in his capacity of Secretary to the Liaison Committee and of Statistician to ICES.
The absence of representatives from Poland and U.S.S.R. was noted with regret.
1.3 The members of the Working Group felt that inadequate notice had been given of the requirement for advice on sprat. With less than a month's forewarning of this requirement, at a time when they were fully occupied assembling national data for the herring objectives, the collation of national sprat data could not be given the attention which was desirable.
2. The North Sea
2.1 The fishery in 1974
2.1.1 In Table 2.1 catch data for the years 1970-74 are given (preliminary for 1974). In contrast with 1973, information on total national catches for 1974 was received from all countries. The total North Sea catch in 1974, excluding Skagerrak, amounted to 252690 tons which is 245000 tons less than in 1973 and the second lowest on record (Figure 9). It is only slightly above the 1941 catch of 251000 tons, but it is below any of the other catches taken during World War II and any of those taken during the years 1914-18.
2.1.2 In previous years the preliminary estimates have increased by about 10% when the final catch data became available. Even with such an increase, the final catch for 1974 will be well below 300000 tons, the lowest for the North Sea with the exception of 1915-17 and 1941-42. The Skagerrak catch decreased from 84566 tons in 1973 to 54835 tons in 1974 (Table 2.2).
2.1.3 Tables 2.3 to 2.7 give the catch data for the sub-divisions of the area used in the previous reports. In Division IVa E the catch in 1974 remained on the same level as in 1973, while there was a sharp decrease in all other areas. It should, however, be noted that in Division IVb the catches taken in the adult fisheries continued to increase, whereas the catches in weight in the young herring fisheries showed a further decline.
2.1.4 The numbers of herring at each age in the catches in each area are given in Table 2.8 and those for the total North Sea are summarised below:

Millions of herring caught per age group (winter rings)

Year	Age						Hotal
	0	1	2	3	4	5 and older	
1968	839	2425	1795	1494	621	571	7746
1969	112	2503	1883	296	133	336	5246
1970	890	1196	2003	884	125	143	5249
1971	684	4378	1147	662	208	97	7177
1972	750	3341	1441	344	131	40	6047
1973	289	2368	1344	659	150	96	4906
1974	992	838	718	327	114	79	3069

2.1.5 The catches of 0-group herring have increased beyond the level of the previous 3-4 years and are in fact one of the highest on record, while there has been a sharp decrease of the catch of all other age groups, especially l-4 ringers.
2.1.6 The catch in number for 1974 was also calculated for the Skagerrak as shown in Table 2.9. In this area, 0-group fish also made up a high proportion of the total number of fish caught, but the figures may not be very precise because of the difficulties in separating catches made on the boundary of the Skagerrak and Kattegat.
2.1.7 The Working Group recommends that consideration be given at the next Council Meeting to the alteration of the present IIIa/IVa boundaries.
2.2 Input data for cohort analysis
2.2.1 Catch composition in numbers per age for the years 1971 to 1974 aregiven in Table 2.8. The composition of the 1974 catch was cal-culated during the meeting and that of 1973 given in the previousreport (this volume) was raised in accordance with revised catchdata.
2.2.2 The fishing mortality on adult herring (2-ringers and older) wastaken as l.0, based on the estimate given in the previous reportaveraged over the years 1967-71.
2.2.3 New abundance indices of I-group herring (1972 year class) in the Danish industrial fishery have been calculated, taking into account the increased fishing power in this fishery. The new abundance indices show a good correlation with stock sizes calculated from cohort analysis. Using this regression, the stock size in numbers of l-ringers in 1974 is estimated as 2.7×109 and using the actual catch in numbers in 1974 the fishing mortality on this age group is estimated at 0.50 .
2.2.4 Two other sources of information on the 1972 year class are available: the catches as 0 - and l-ringers, and the estimate from the International Young Herring Surveys (YHS). The YHS in 1974 estimated the year class to be 5.6×109 as l-ringers (83% of average). Comparing this estimate with the catch of 838×10^{6} in 1974 , fishing mortality in this year would have been only 0.17 which is obviously much too low. Therefore this estimate from the YHS must be an overestimate.
2.2.5 However, if one assumes a fishing mortality of 0.70 on l-ringers in 1974 the stock size as l-ringers would have been only 1.739×109 (28% of average). This is probably an underestimate, since some of the effort usually directed to young herring was, in 1974, directed at sprat. The Working Group decided to use the estimate of $F=0.5$ derived above.
2.2.6 Fishing mortality of 0 -group (year class 1973) was taken as 0.20. This estimate was based both on an estimate from the YHS in 1975 and on effort data from the Danish industrial fishery.
2.2.7 Preliminary data from the YHS in 1975 indicate an average abundance of 1383 for the standard area of 53 squares defined in Cooperative Research Report, No.52, p. 65.
2.2.8 Jsing the regression equation given in that report the stock of l-ringers is estimated at 5.9×10^{9} at lst January 1975. However, the strengths of the year classes 1971 and probably 1972 have been seriously overestimated by using this regression, and because the regression line has a large intercept on the Y-axis, small year classes are likely to be overestimated.
2.2.9 Considering that there may have been a gradual increase from 1960 onwards in efficiency during the YHSs the correlation between cohort analysis values and YHS-estimates was calculated for the five most recent years only. A significant correlation was obtained and the intercept of the regression line on the Y-axis was considerably reduced. Using this regression equation, the stock size of l-ringers (1973 year class) is estimated at 4.5×10^{9}. This figure seems to be the best estimate for this year class available at present. With a catch of 993 x 1060 -ringers in 1974, fishing mortality on this age group would be around 0.20. On this basis the strength of this year class as 0-ringers is estimated at 6.0×10^{9}, or 75% of the strength of an average year class. The same figure for the fishery mortality on this age group of 0.20 was also obtained from independent estimates of fishing effort in
the Danish industrial fishery (paragraph 2.2.6). Abundance indices from this fishery indicate that the year class 1973 is of comparable strength to the year classes 1970 and 1971 , or somewhat below average.

2.3	Results from cohort analysis
2.3.1	Calculated fishing mortalities and stock sizes for the period 1965-72 are given in Tables 2.10 and 2.11. It should be noted that estimates for the years 1971 and 1972 are to some extent dependent on the choice of the input for 1974.
2.3 .2	Fishing mortality on l-ringers in 1971 and 1972 is estimated at 0.98 and 0.95 respectively. These figures represent a considerable increase compared with the period 1965-70 (approx. 0.50).
$2 \cdot 3 \cdot 3$	Fishing mortality on adult fish in 1972 was slightly below the level of the previous two years, but at 0.89 it was still approximately twice the level required to give the maximum yield per recruit.
2.3 .4	The estimated fishing mortalities for all age groups in 1971 and 1970 are slightly higher than those given in the previous report (this volume), due to a higher input F for adult fish in 1974 than in 1973. Minor changes in F in older age groups in preceding years are caused by a different input F on 8 -ringers in 1967, 1969 and 1970.
2.3 .5	Calculated stock sizes and biomasses for 1971 and preceding years have been slightly reduced compared to the figures given in the previous report, due to the high input F on adult fish in 1974. Year classes 1970 and 1971 are now estimated at 9.03×109 and 7.00×10^{9} as $0-r i n g e r s$ respectively.
2.3 .6	Year class 1972 has now been estimated for the first time from cohort analysis. The figure of 4.96×10^{9} still depends to some degree on the input F in 1974, but it indicates that the 1972 year class is approximately 30% below the long-term mean. The continued decline in stock biomass should be noted. In 1972 it was rather less than one quarter of the 1965 level.
2.3 .7	Figure 10 shows the weighted fishing mortalities of adults (≥ 2-ringers) since 1974, based on the cohort analysis (Table 2.10). Additional points for 1973 and 1974 have been added, derived from the Working Group's best estimate of the likely fishing mortality rate in these years. These values demonstrate a very sharp increase in fishing mortalities since 1963 resulting in a sharp decline in catches and biomass since 1965 (Figures 9 and 11).

2.4 Mean weight by age in catch

The Working Group decided to reconsider the mean weights at age which have been used in the catch prognosis in previous reports. For this purpose data from the period 1971-74 were used. For each area an annual mean weight by age in catch was calculated from monthly mean weights, assuming a seasonal distribution of the catch of the different age groups similar to that in 1970-71. The annual mean weights for the different areas were then combined to give an annual mean weight in catch for the whole North Sea, using as weighting factor the catch in number by age in the different areas in 1970-71. These results are compared with the previous ones (Doc.C.M.1972/H:13) in the table below. The difference between the two sets of data is negligible except for the 5-year old and older herring which have a somewhat higher
weight using the data from recent years. Most of the older herring have been caught in Division IVaW in these years and the weight at age in this area is higher than in other parts of the North Sea. It was decided to use the new set of mean weights in the catch prognosis.

Age Winter rings	Biomass 1 January*	Mean weight in catch*	
	M		
0	0	15	(17)
1	25	(25)	50
2	75	(75)	126
3	(125)	176	(182)
4	as in	211	(207)
5	catch	243	(226)
6		251	(240)
7		267	(249)
8	271	(256)	

* Previous figures in brackets.

2	Total allowable catches (TACs) for 1975 and 1976
2.5.1	The TAC for the season 1974/75 adopted by NEAFC was 488000 tons, covering catches from both the North Sea and Skagerrak. In addition, if countries had observed the ban on fishing in the spring of 1974, they were allowed to take additional quotas which depended on the size categories of herring in the catches. The effective TAC could thus rise to about 500000 tons.
2.5 .2	The catches taken from 1 July 1974, when the quota year commenced, up to 31 December amounted to about 240000 tons (including Skagerrak). Thus in the remaining period to l July 1975 there is the possibility that catches of up to 250000 tons could be taken within the TAC agreed.
2.5	The TAC agreed by NEAFC was $90000-132000$ tons greater than that proposed by the Liaison Committee for the North Sea alone. With the data now available, it is clear that the Liaison Committee's recommendation was a serious overestimate of the desirable TAC level. This largely arose from an overestimate of the strength of the 1972 year class. The resulting discrepancy illustrates the dangers of catch prediction in the situation where a major part of the yield is taken from very young fish, for which prediction of year class strength has very wide confidence limits.
2.5 .4	The estimated age composition at 1 January 1975 is given below:

Age in rings

	0	1	2	3	4	5	6	7	8
No. $\times 109$	6.6	4.26	1.22	0.44	0.20	0.069	0.031	0.013	0.003

This represents a stock biomass of 346000 tons, of which the adult stock comprises 241000 tons. The recruit year class has been set at 6.6×109 which is the mean recruitment over the period 1963-74. In previous reports the long-term mean of 7.9 has been used, but in the past 12 years this value has been exceeded only three times, and in the 3 most recent years has averaged 4.5.

2	On the basis of this age composition the Working Group has made a calculation of the catch in 1975 corresponding to that obtainable at the fishing mortality on adults giving the MSY per recruit and allowing for a catch of l-ringed fish. These levels are $F=0.40$ for adults and $F=0.20$ for l-ringers. The fishing mortality on 0 -ringers has been set at 0.04 . This implies a TAC for the whole of 1975 of not more than 140000 tons for the North Sea and Skagerrak, of which the total catch of juvenile herring should not be greater than 40000 tons (including the by-catch which will be inevitable in the industrial fisheries for other species).
2.5 .6	The age composition of the Skagerrak catches in 1974 (Table 2.9) indicates that most of these were juvenile herring. These catches may well have the effect of further reducing the recruitment to the North Sea stocks and delaying the recovery of the spawning stock. In the absence of suitable data for assessing the effect of the fishery in the Skagerrak it is recommended that no increase in the TAC should be made to take account of that area.
2.5 .7	In view of the present extremely low level of adult stock, the Working Group considered that this level of TAC (140 000 tons) should be continued for 1976. There are indications of reduced recruitment in recent years and with the low level of spawning stock the danger of recruitment failure has undoubtedly increased. The present spawning stock size is only of the order of 200000 tons and it should be the aim of the regulation to return it to a level of about 2000000 tons as quickly as possible (Figure ll). This was the level of the stock during the period 1955-60 when it was exploited at adult MSY levels of fishing mortality, with total annual catches of the order of 700000 tons.
2.5 .8	Any excess catch in 1975 over the recommended TAC of 140000 tons must be deducted from the 140000 tons recommended as the TAC for 1976. In view of the remaining quantity of the 1974/75 TAC (about 250000 tons), the necessity of closing the fishery in the latter half of 1975 and operating with an extremely low TAC in 1976 is a distinct possibility.

2.6 The effects of a closed season
2.6.1 In the report from the North Sea Herring Assessment Working Group in September 1973 (this volume), the increase in yield resulting from a closed season 1 February - 15 June was said to be 5% and 23% in the adult and juvenile fisheries respectively, compared with the yield generated by the same annual fishing mortalities when there is no seasonal restriction.
2.6.2 The 0-group herring are caught only in autumn. Taking the total juvenile TAC in the autumn will thus result in a proportional increase in O-group mortality when compared with an equivalent juvenile TAC spread over the whole year.
2.6.3 The Working Group therefore concluded that there is no justification for allowing an increase in quotas when the catch is taken only during the second half of the year.

3	Celtic Sea
3.1	Catch data
	The herring catches for the period 1969-74 from the Celtic Sea are given in Table 3.1. The figures for 1974 are provisional. The catches for each season are given in Table 3.2. The 1973 figures which were estimated in the previous report were examined but no change was found necessary. The total annual catch has continued to decline since 1969 and is now down to 19738 tons. This decline was particularly apparent in the 1974 catches of the Netherlands and French fleets, but this may have been due to a decreased effort in the area by these fleets.
3.2	Stock and mortality estimates
3.2 .1	The age composition of the total catch in 1974/75 was calculated from Irish and Dutch age data (I 000 and 200 otoliths respectively). No changes had to be made in the catch composition for previous seasons.
3.2 .2	Stock sizes and fishing mortalities for previous seasons were calculated by cohort analysis. For the oldest age groups fishing mortality of 0.70 was assumed. For the fishing season 1974/75, however, a fishing mortality of 0.55 on adults and 0.06 on l-ringers was estimated based on mortality estimates from Irish catch per unit effort data. The relatively low proportion of French and Dutch catches in the overall catch also indicates a reduced effort by trawlers of these countries during the 1974/75 season. Results of the cohort analysis are given in Tables 3.4 and 3.5.
3.2 .3	The estimated stock size at 1 March 1974 is very low, which is mainly due to a succession of poor year classes and a continuing high level of fishing mortality. Recruitment of 2-ringers (year class 1971/72) is below average, and from the little information available at present the year class 1972/73 seems to be even poorer.
3.3	Variability of recruitment and its effect on catch prediction
3.3 .1	Advice on TACs has been based on the establishment of the fishing mortality corresponding to the maximum of the yield per recruit curve ($0.45-0.50$), and an estimate of recruitment. The variation in annual recruitment is shown in Figure 12, where it is seen that, at the extreme, recruitment can vary over 10 times, while it commonly varies by 3 times. The table below gives the levels of
	Levels of MSY for different mean recruitment levels, as
	l-ringed fish

Years	Recruitment (x 10-6;	MSY (tons)
$1957-1962$	125.5	$12-15000$
$1957-1968$	161.8	22000
$1965 / 66-1969 / 70$	240.2	30000

3.3.2 The ICES Working Group on Celtic Sea Herring Assessment (C.M.1973/H:2) reviewed the data available to 1973 and concluded that with levels of fishing mortality between 0.3 and 0.4 , the maintenance of the catch levels then current (35000 tons) depended on continuation of the level of recruitment of the $1965-69$ period. The NEAFC ad hoc Working Group proposed a TAC for 1974/75 of 25000 tons on the basis that recruitment could not be forecast and there was the possibility that it would fall to a lower level. With two poor year classes entering the fishery as l-ringed fish in 1973/74 and 1974/75 and a reduced adult stock consequent upon the higher fishing mortalities of 1971-73, the actual catch in the season 1974/75 only reached about 18000 tons.
3.3.3 The Liaison Committee has recommended a TAC of 19000 tons for the 1975/76 season, In arriving at this TAC recruitment was assumed to be 166×10^{6} fish which was the mean over the period 1957/58 to 1972/73. The Working Group has reconsidered the problem of estimation of possible recruitment and has revised the stock estimates made by the Working Group in October 1974 (C.M.1975/H:5).
3.3.4 For forecasting future recruitment, it is necessary to rely on the historic record to estimate the most probable level of recruitment. This is best estimated by the modal value, not by the mean. In the case of a species with widely fluctuating recruitment the mean and mode may differ considerably. In the case of the Celtic Sea herring the modal value of recruitment is about 100×10^{6} compared with the mean for the same period of 166×106.

3.5 Total allowable catches (TACs) for 1975/76 and 1976/77
3.5.1 With the new data available the age composition of the stock at 1 March 1974 has been revised. In addition, the data on mean weight for age have also been re-examined. The revised data are given in the text table below. The weight data are derived from the Irish catches which comprise a major part of the total catch.

Mean weights at age and calculated stock sizes at 1 March ($\mathrm{x} 10^{-6}$)

Age	$\begin{aligned} & \text { Mean } \\ & \text { weight (g) } \end{aligned}$	1974	1975	1976	
				$\mathrm{F}_{75 / 76}=1.1$	$\mathrm{F}_{75 / 76}=0.7$
1	128.4	68.82	100.0*	100.00*	100.00*
2	170.4	98.22	58.06	79.45	83.53
3	210.6	39.58	53.37	17.45	26.09
4	238.9	50.97	21.51	16.07	23.98
5	257.4	9.72	27.69	6.48	9.67
6	267.0	8.49	5.28	8.34	12.44
7	269.7	6.84	4.61	1.59	2.37
8	277.8	2.07	3.72	1.39	2.07
>8	277.8	1.91	2.16	1.77	2.64
Biomass in tons		54000	50500	39000	46000

3.5.2 A TAC of 25000 tons for 1975/76 has been adopted by NEAFC. This would imply a sharp increase in fishing mortality from 0.51 in 1974/75 to 1.1 in 1975/76. Using this value the stock size at 1 March 1976 has been calculated. This is also given in the table above. With the trend of reduced recruitment in recent years, it may be unrealistic to assume that this TAC could be taken. However, some increased effort can be expected in the Celtic Sea; an F of 0.7, which is close to the recent mean, has been used as a likely alternative value in 1975/76. The stock size at l March 1976 calculated on this basis is also given in the table above.
3.5.3 Under the present TAC agreement it is likely that the fishing mortality in 1975/76 will exceed that giving the MSY. The Working Group calculated the TACs for $1976 / 77$ on the basis of a return to the level of fishing mortality at the MSY per recruit. The various TACs proposed and adopted are:

Levels of TACs proposed (tons)

	$1974 / 75$	$1975 / 76$	$1976 / 77$	
		$F_{75 / 76}=1.1$	$F_{75 / 76}=0.7$	
Original advice	25000	19000		
NEAFC agreement	32000	25000		12000
TAC at F O 0.45 Actual catch	16000	13800	10000	12

3.5.4 The TACs of $10-12000$ tons suggested for $1976 / 77$ are small and vary inversely with the catch which will be taken in 1975/76. If NEAFC were to reconsider its TAC for $1975 / 76$ and set it at the level corresponding to the F giving the MSY per recruit it would be possible to have a higher TAC in 1976/77. The TACs for $1975 / 76$ and $1976 / 77$ would then be 13800 and 14000 tons respectively. This would increase the biomass at l March 1976 to 51700 tons.
4. Herring in Division VIa
4.1 Interrelationship of herring caught in Divisions VIa and VIIb
4.1.1 In this report and in previous reports dealing with the herring population in Division VIa, the catch statistics given and the resulting tables of numbers of fish caught per age group and stock in numbers per age group have included catches and age data from the Irish fishery in Donegal Bay. The fishery in this area takes place almost entirely in statistical Division VIIb, although the catch statistics are reported in "Bulletin Statistique" as from Division VIa because they are landed at a port lying within the southern boundary of Division VIa.
4.1.2 Doubts have been expressed as to whether the population fished in Division VIIb should be treated as part of the same stock management unit as the population in Division VIa, or whether it should be considered as a separate management unit. The Working Group did not have time to make a detailed analysis of the data relevant to this subject. The mortality rates of the Donegal Bay population have been calculated from the catch per unit effort and age compositions of the Irish fishery. A comparison was made between the mortality data derived from the Irish data and those from cohort analysis over the period 1968/73. There was little similarity between the yearly values, and the Irish data showed no increasing trend in the recent seasons. However; the means of the values over the period were virtually identical at 0.47 for Irish data and 0.50 for the VPA data (Table 4.1). In recent years there have certainly been differences in the year class strengths of recruits to the two fisheries. Although the 1963 year class was a very strong one in both areas, the 1969 year class which was also very strong in Division VIa has not played any appreciable part in the Irish catches. The 1970 year class however shows some evidence of being stronger in Division VIIb than in Division VIa. A preliminary examination of length at age data suggests that the Donegal Bay fish are somewhat larger in all age groups than those taken entirely within Division VIa.
4.1.3 In the light of the inconclusiveness of the evidence the Working Group decided that in 1975 its assessment should continue to be done treating as one unit the herring taken in Division VIa and those taken in Division VIIb but reported from Division VIa. It would stress, however, the importance of obtaining more conclusive evidence on the inter-relations of the populations in the two areas and would suggest tagging experiments as the most profitable approach to solving the problem. More extensive sampling of catches taken by fleets fishing in the southern parts of Division VIa would also be of value in this context.
4.2 Total catches and the fisheries in Division VIa

The total catch taken by each country in Division VIa, for each of the years 1968-73 is given in Table 4.2 together with preliminary estimates of the catches taken in 1974. Estimates of the weight of herring taken in each year in the Moray Firth young herring and sprat fisheries are also given. The final figure of total catch in Division VIa in 1973 shows an increase of about 7000 tons over the preliminary figure for that year in the last report of the Working Group. The preliminary total for 1974 (205 000 tons) may well be an appreciable underestimate as the Norwegian and Netherlands catches have had to be estimated for the last four months of the year. This preliminary 1974 figure shows a decrease of about 42000 tons compared with the final 1973 figure. Even if the total for 1974 given in Table 4.2 is not revised upwards, it is still at a very high level, having been exceeded only twice in the recorded history of the fishery. The major changes in national catches in 1974 were a decrease to about half the 1973 level in that taken by the Faroes, to about 20% of the 1973 level for the French catch and to about 65% of the 1973 level for the Netherlands catch. The Icelandic catch in contrast increased by almost four times, and Poland also showed some increase over their 1973 catch level.

	Catch in numbers in Division
4.3 .1	Estimates of the numbers per age group of autumn spawning herring caught in Division VIa in each of the years 1957-74 are given in Table 4.3, and in the Moray Firth in Table 4.4. The estimates for the period 1957-72 are taken from Saville and Morrison (1973), and from unpublished Scottish data on the catch in number in the Moray Firth fishery.
4.3 .2	Estimates of the numbers of autumn spawning herring caught in 1973 have been corrected according to the revised catch figures. The numbers per age group for 1974 are compiled from national reports. Catches in numbers per age group of the Faroes, Federal Republic of Germany, and Polish fisheries, for which no age composition data were available, have been estimated by using age data from the Icelandic and Dutch fisheries. This raising was done taking into account the different gears and the different seasonality of the fisheries.
4.3 .3	As in 1973, the 1969 year class provided a substantial component of the fishery in 1974, accounting for about 40% of the numbers caught in Division VIa. By contrast, in the Irish fishery in Donegal Bay the 1971 year class dominated in 1974, with the 1970 year class second in importance.
4.3 .4	In previous reports on the herring population in Division VIa, the catch in numbers per age group in each year has been given in a single table in which the catches taken in Division VIa have been combined with those taken in the Scottish winter fishery in the Moray Firth. The Working Group decided that this procedure could be misleading and accordingly in this report the catches in number per age group for the two areas are given separately in Tables 4.3 and 4.4. The estimates of the catches in numbers per age group in the Moray Firth in 1973 and 1974 must be treated with some reserve.
4	Stock and mortality estimates
4.4 .1	The estimated fishing mortalities, and stock in numbers, per age group in the period 1965-1973 calculated by cohort analysis are given in Tables 4.5 and 4.6. The new values of the weighted mean fishing mortality rate on the fully recruited age groups in 1971 and 1972 are rather higher than those given in the previous report (this volume). The new value of the mean mortality rate in 1973 is 0.59 which is appreciably above the value giving the maximum sustainable yield per recruit for the stock.
4.4 .2	The stock in number data would suggest that the recruitment of the 1970 year class as l-ringers in 1971 was appreciably higher than given in the previous report. The 1971 year class, however, is very much weaker than the 1970 year class. In older age groups there are only minor differences in numbers between the previous estimate of the stock in 1971 and that given here. The total adult stock in numbers increased by about 50% between 1971 and 1972, because of the recruitment of the strong 1969 year class to the adult stock in 1972.
. 5	Catch prognosis for 1975 and 1976
4.5 .1	A prediction has been made of the catch which could be taken in 1976 at a level of fishing mortality corresponding to that giving the MSY per recruit. The basic age composition at 1 January 1975 was calculated from the catch in numbers per age

group in 1974, by using an $F=0.7$ on the fully recruited age groups in 1974. The average weight per age group used in making this prognosis is given in the text table below together with the estimated stock in number at 1 January 1975.

$\begin{gathered} \text { Age } \\ \text { (rings }) \end{gathered}$	Numbers per age group (x 10^{-6}) at 1 January 1975	Average weight per age group (grammes)
1	650.0	88
2	831.2	124
3	142.9	163
4	189.4	171
5	507.7	190
6	83.6	212
7	41.8	218
8	39.5	220
9	17.5	220
≥ 10	36.9	220

4.5.2 There have been changes in the basic parameters used to predict future catches. The average weight per age group has been revised on the basis of new data from the 1974 fishery. The assumptions about recruitment have also been changed. In contrast to the previous practice of assuming average recruitment (1400×10^{6}) the Working Group decided to use the most frequent recruitment (modal recruitment) level in the catch prediction $\left(650 \times 10^{6}\right)$. This will decrease the probability of overestimating the stock size at the beginning of a year. If the changes made in this report had been made for the TAC recommended by the Liaison Committee for 1975, the predicted catch would have been reduced from 156000 tons to 120000 tons.
4.5.3 Predicted catch figures together with the corresponding values for F and the biomass of the adult component of the stock are given in the table below:

1974	1975			1976			1977
Biomass	Biomass	F	Catch	Biomass	F	Catch	Biomass
402	303	1.0	205	159	0.45	66	158

4.5.4 The prediction has been made on the assumption that the TAC agreed for 1975 (205 000 tons) will be taken. This implies a fishing mortality of 1.0 in that year. In that case, the remaining adult stock will be reduced by 60% from the level at the beginning of 1974.
4.5.5 If in 1976 the fishery is managed in such a way that the fishing mortality is reduced to that giving the MSY per recruit ($F=0.45$) then the decline in stock size would be arrested, but the stock size would not be increased.
At the MSY level the TAC in 1976 would be not more than 66000 tons.
4.5.6 In recent years there has been an increase in effort in Division VIa, attracted by an increased stock between 1966 and 1973, resulting from a period of high recruitment. There are indications, however, that the year classes 1970-72 are well below average size.

Therefore even with fishing on the MSY level the stock size will decline to the level of the period 1965 and earlier (see Figure 14). The comparatively low TAC recommended for 1976 is partly due to this decline in expected recruitment, and partly due to the increased exploitation rate in recent years.

The information was subsequently received from U.S.S.R. after the meeting of the Working Group (see Table 5.l, footnote b).

5.2 .2	Division IVa_-west of $2^{\circ} \mathrm{E}$
	Landings from this area were almost entirely from the Scottish winter coastal fisheries, which began in 1964-65. Catches have since fluctuated considerably being higher than average in 1973 and 1974.
5.2 .3	Division IVa_eastof $2^{\circ} \mathrm{E}$
	Landings in this area are entirely from the Norwegian summer fjord fishery, and are probably dependent for recruitment on the stock spawning in the Skagerrak and Kattegat. The landings from this fishery have shown only minor fluctuations over the last ten years.
5.2 .4	Division IVb_-_west of $3^{\circ} \mathrm{E}$
	Landings from this area by the Scottish and English winter coastal fisheries fluctuated around a fairly low level until 1971. In that year the landings from the fishery off northeast England increased due to increased effort. Landings from this area rose by a factor of two in 1973 to over 100000 tons, largely due to the entry of other countries into the fishery and appear to have increased again in 1974. Part of this increase was undoubtedly due to a diversion of effort resulting from the closure of the North Sea herring fisheries from February to May 1973 and 1974.
5.2 .5	Division IVb - east of $3^{\circ} \mathrm{E}$
	Landings were fairly constant until 1973 when there was a large increase. The increase in the Danish catch did not appear to be accompanied by a commensurate increase in effort directed at clupeoid fish.
5.2 .6	Division IVc
	The winter coastal fisheries in this area have shown a general decline in all parts of the area, although there is some evidence from echo-surveys that the stock size has not fallen to the same extent.
5.3	Fishing effort
5.3.1	The Danish industrial fishery exploits sprat over all areas of Division IVb. The catches per unit effort from this fishery are the only data which can be used to give any impression of the total effort exerted on the sprat. Table 5.2 gives these effort estimates as thousands of hours fishing by pair trawl. They have been corrected by a power factor taking 1963 as the base year. The corrected effort shows an increase of 2 to 3 times since 1965 with, in the most recent years, an increased catch per unit effort.
5.3 .2	This increased catch per unit effort is partly due to a direction of effort on to the dense winter concentrations off North Shields but may also reflect an increase in stock in the central North Sea as a whole. As the Working Group did not have time to allocate the catch and effort data between Division IVb east and Division IVb west, the relative changes between the two areas could not be compared.
5.4	Catch composition
5.4.1	Using data on age and length of sprat samples from the fisheries, the Working Group estimated the annual age composition of the landings in some sub-divisions of the North Sea. The results from Division IVb east and IVb west are given in Table 5.3.

5.4.2 There is an indication of a recent change in the mean age of the
stock in Division IVb Up to 1972 , fish two years of age and
older contributed at least $60-70 \%$ of the catch in the eastern area,
and in most years more than 20% in the west. In the east, this
percentage dropped to 16% in 1973 and to 8% in 1974 , while in the
western area it dropped to 2% over the $1973-74$ season. Without
data from at least one subsequent year the Working Group could not
determine whether these changes were due to an increase in
exploitation, or to an increase in recruitment in l973 and 1974.
5.4.3 Although the Working Group could not make accurate estimates of
mortalities, a preliminary estimate can be obtained from the
average age composition over the past seven years (Figure l5).
This suggests that in Division IVb west the total annual mortality
rate, averaged over the last seven years, may lie between 6o\% and
70\% (z =l.0). By this technique one cannot estimate the current
total mortality rate in this area, but in view of the increased
effort in the last two years it is likely to have been somewhat
higher.

5.5 Management of North Sea sprat

5.5.1 Because of the high level of natural mortality the sprat is a short lived species, in which a year class only contributes effectively to the commercial fishery over two or three years. Few fish over five years old are found. Because of this feature the stock biomass is very dependent on the strength of recruiting year classes. The successes and failures of the fisheries in some areas have been almost entirely dependent on the occurrence of strong or weak year classes.
5.5.2 In the absence of a reliable estimate of the natural mortality rate it is not possible to apportion the estimate of total mortality given in paragraph 5.4 .3 between the components due to natural causes and to fishing. Using the likely range of natural mortality rate, however, it is clear that the yield per recruit is unlikely to decline with increasing fishing effort. Therefore the objective of management should be to maintain the spawning stock at a level which will permit, on average, the maximum recruitment. At present little is known, for sprat, about the relationship between spawning stock biomass and recruitment level, and no estimates are available of the absolute level of recruitment. However, unlimited increase of fishing effort must eventually reduce the spawning stock to a level at which recruitment declines. Because sprat recruit to the fishery within their first year of life, and contribute an appreciable part of the spawning potential at 2 years of age, the decline in recruitment, and in total stock size, would proceed very rapidly with little prospect of it being possible to take management action quickly enough to rectify the situation.
5.5.3 Because of these features of the population dynamics of sprat, and the inadequacies of the available data, the Working Group is not in a position to define a total allowable catch on any precise basis. Although the available age, catch, and catch per unit effort data have been examined for a number of fisheries it has not been possible to determine whether the high levels of catch in 1973 and 1974 were due to increased stock size, increased fishing effort, or greater availability of the stock to the fishery.
5.5.4 However, because a further rapid increase of catch and fishing effort might have the effect of reducing recruitment and bringing about a collapse of the fisheries before this could be identifier and appropriate conservation action taken, it would be prudent
to introduce a precautionary total allowable catch regulation. In 1976 this should not be set higher than 300000 tons for the total North Sea excluding the Norwegian fjords. This is approximately the level of catch taken in 1974, and would prevent further escalation.
5.5.5 As shown in Table 5.3, in recent years 0-group sprat have contributed a rather high proportion of the catch in Division IVb. Some protection of the recruiting year class could be achieved by introducing a minimum mesh size for clupeoid fisheries. The text table below shows that there is only a small overlap of the length distribution of the youngest age group and that of older sprat. The table also shows that the number of the youngest age group caught would be reduced very markedly by avoiding capture of fish below $7-8 \mathrm{~cm}$ in length.

Percentage length distribution by age and number per kg by length groups. North Shields, November-December 1973

	0	1	2	3	Nos. per kg
14			7.4	38.9	40
13		0.4	55.6	16.7	51
12		7.0	37.0	44.4	68
11		32.5			93
10		41.9			129
9	0.4	17.7			187
8	7.7	0.6			270
7	19.5				405
6	31.9				675
5	35.8				1060
4	4.6				1085
Nos. measured	1877	1261	54	18	-

5.5.6 Unpublished Danish selection experiments on small sprat and herring indicate that meshing is unlikely to be a problem as long as the selection range is below $12-13 \mathrm{~cm}$.
The same experiments gave the following selection factors for sprat:

	Summer	Winter
NEAFC Gauge	4.2	4.7
ICES Gauge	3.5	3.9

5.5.7 An appropriate 50% retention length would appear to be about 9 cm for sprat, corresponding to a mesh size of 20 mm for trawls.

6. Trial Run of ICES FISHDAT System

6.1 The Working Group had before it the report of the January 1975 meeting of the ADP Working Group (C.M.1975/D:2), including an analysis of the output of the trial run based on 1972 North Sea herring material.
6.2 The Working Group felt that the results of this trial run showed considerable promise, considering the poor quality of some of the input data. Even with material of this quality, the system gives access to data not previously available in that extent of detail.
6.3 The Working Group expressed the hope that the 1975 North Sea herring data would be made available in the same format as in the trial run for any assessment that has to be made early in 1976. To achieve this, it will be necessary for member countries to report their monthly biological and statistical data before the end of the second month after that to which the data apply. The Working Group urged that all countries participating in the North Sea herring fishery should comply with this request, in order to ensure maximum utilisation of the system.

7. Summary

7.1 The most recent data on North Sea herring show a further serious decline in the size of the adult stock, and in the catch for 1974, particularly in the northwestern North Sea. The Working Group has concluded that if the adult stock is to be increased to a level where it is in less danger of extinction due to recruitment failure, the level of catch to be taken in each of the calendar years 1975 and 1976 should not exceed 140000 tons. If more than 140000 tons are taken in the remainder of the 1974-75 quota year, it will be necessary to close the fishery in the latter part of 1975 , and to make the appropriate adjustment to the 1976 TAC .
7.2 It is recommended that the North Sea TACs for 1975 and 1976 should not be increased to take account of the Skagerrak catches.
7.3 There is no justification for allowing an increase in quotas when the catch is taken only during the second half of the year.
7.4 The TAC set by NEAFC for $1975 / 76$ for the Celtic Sea herring stock is almost twice that corresponding to the MSY per recruit. If the appropriate level of 13800 tons were applied in 1975/76, this would allow a TAC of 14000 tons in 1976/77. If the full TAC presently agreed for $1975 / 76$ is taken, the TAC in $1976 / 77$ will be at a considerably lower level.
7.5 In Division VIa the stock biomass is declining due to reduced recruitment and the higher exploitation rates in recent years. As a result, if the TAC adopted by NEAFC for 1975 is taken, the TAC for 1976 at the MSY per recruit point will be only 66000 tons.
7.6 Because of the nature of the sprat fisheries and the population dynamics of sprat, the Working Group was not able to make any precise assessment of the state of the sprat stock in the North Sea. In view of the very rapid increase in sprat catches in 1972 and 1973 and the maintenance of this high level of catch in 1974, the Group recommends that, as a precautionary measure, a TAC of 300000 tons should be set for 1976.
7.7 In view of the large numbers of small sprat taken in the last two years, it is also recommended that a minimum mesh size of 20 mm should be introduced for towed gears used in clupeoid fisheries.
7.8 The Working Group recommends that consideration be given to the alteration of the present boundary between Divisions IIIa and IVa.
7.9 The results of the trial run of the ICES FISHDAT system showed considerable promise, and the Working Group recommends that steps be taken to make 1975 monthly data available in similar format, for possible use in 1976.

8. References

ANON., 1972. Report of the North Sea Herring Assessment Working Group Meeting, Charlottenlund Slot, 13-22 June 1972". Doc. C.M.1972/H:13 (mimeo.).

ANON., 1975. I. Report of a Meeting to Consider Young Fish Surveys, Bergen, 6-9 May 1974; II. Report of the Working Group on North Sea Young Herring Surveys, IJmuiden, 19 April - 3 May 1974. ICES, Coop.Res.Rep., No. 52.

SAVILLE, A and MORRISON, J A, 1973. A re-assessment of the herring stocks to the west of Scotland. ICES, Doc. C.M.1973/H:24 (mimeo.).

Table 2.1 Herring.
Catch in tons 1970-73 and preliminary figures for 1974. North Sea (Sub-Area IV and Divisions VIId and e) by country, and annual totals for Skagerrak.

Country	Year				
	1970	1971	1972	1973	1974
Belgium	1200	681	1337	2160	603
Denmark	133331	185393	213738	174 254 ${ }^{\text {a }}$)	61728
Faroe Isl.	58365	45524	48444	54 935 ${ }^{\text {b }}$	26 161b)
Finland		-	-	1540	-
France	11482	11408	12901	22235	13157
German Dem.Rep.	290	475	127	1728	
Germany (F.R.)	7150	3570	3065	$10634^{\text {c }}$)	12 306 ${ }^{\text {c }}$
Iceland	22951	37171	31998	23 742 ${ }^{\text {d }}$)	29017
Netherlands	46218	32479	24829	34070	28900 e)
Norway	193102	125842	117501	99739	40100
Poland	5057	2031	2235	5738	7401
Sweden	34670	36880	7366	4 222f)	3561
U.K. (England)	9702	4113	650	2893	5755
U.K.(Scotland) $)^{\text {) }}$	21885	25073	17227	16012	14978
U.S.S.R.	18078	9500	16386	30735	5755
Total North Sea	563481	520140	497804	484637	252690
Skagerrak	71071	61570	67021	84566	54835
Grand Total	634552	581710	564825	569203	307525

Footnotes:

a) Total includes 2107 tons for human consumption unspecified to area.
b) Supplied by Fiskiranns δ knarstovan.
c) From Federal Republic of Germany national statistics compiled by the Federal Research Board of Fisheries, Hamburg.
d) Excludes 15938 tons caught on Skagerrak border and allocated to that area on the basis of age analysis.
e) Supplied by Dutch Ministry of Agriculture and Fisheries.
f) Swedish catches in Danish ports reported by area (North Sea, Skagerrak) used for area allocation of Swedish landings reported as Skagerrak and North Sea in Swedish statistics.
g) Catches from Moray Firth not included.

Table 2.2 Herring.
Total catch in tons. Skagerrak (Division IIIa excluding Kattegat).

Year	Denmark	Faroe Islands	German Dem. Rep.	Iceland	Norway	Sweden	Total
1970	30107	-	-	6453	7581	26930	71
1971	26985	5636	-	3066	6120	19763	61570
1972	34900	4115	-	7317	1045	19644	67021
1973	42098	5265	-	15938	836	20429	84566
1974	35732	7132	36	231	21	11683	54835

Table 2.3 Herring.
Total catch in tons. North Sea, northeast (Division IVa east of $2^{\circ} \mathrm{E}$).

Year	Belgium	Denmark	Faroe Isl.	France	German Dem.Rep.	Germany (F.R.)	Iceland	Ne ther- lands	Norway	Poland	J. K. Scotland	Sweden	J.S.S.R.	Total
1970	50	1800	5898	48	-	10	1220	281	3501	123	1929	5560	1012	21432
1971	-	6219	239	-	-	-	-	167	10720	-	-	-	-	17345
1972	-	19711	979	-	-	9	1943	40	50	-	-	-	-	22732
1973	-	686	$12776^{\text {a }}$	-	637	-	-	331	236	-	-	-	-	14666
1974	-	12284	532	-	55	-	2460	21	-	-	-	-	-	15352

a) See Table 2.1 footnote under relevant country.

Table 2.4 Herring.
Herring.
Total catch in tons. North Sea, northwest (Division IVa west of $2^{\circ} \mathrm{E}$).

Year	Denmark	Faroe Isl.	Finland	France	German Dem.Rep.	$\begin{aligned} & \text { Germany } \\ & (F . R .) \end{aligned}$	Iceland	Nether- lands	Norway	Poland	$\begin{aligned} & \text { U.K. } \\ & \text { England } \end{aligned}$	$\begin{gathered} \text { U.K. } \\ \text { Scotland } \end{gathered}$	Sweden	U.S.S.R.	Total
1970	61423	40884	-	818	-	177	20587	177	160784	2069	-	17767	4470	17066	$326932^{\text {a) }}$
1971	44500	45095	-	514	-	389	36992	5755	115108	1288	-	24711	4954	9500	288806
1972	29711	37004	-	888	-	100	29721	I 967	100408	1620	74	17227	-	16386	235106
1973	41341	42 159 b)	1540	209	1057	2624	23742	4615	70476	5547	-	15430	4222	30735	247697
1974	3475	16676	-	415	40	1292	22421	2285°)	15604	7030 d)	-	10459	-	-	79697

Table $2.5 \begin{aligned} & \text { Herring. } \\ & \text { Total cat }\end{aligned}$
Herring.
Total catch in tons. North Sea, central (Division IVb). Adult herring fisheries.

Year	Belgium	Denmark	Faroe Isl.	France	$\begin{aligned} & \text { German } \\ & \text { Dem.Rep. } \end{aligned}$	$\begin{aligned} & \text { Germany } \\ & \left(F . R_{0}\right) \end{aligned}$	Iceland	Netherlands	Norway	Poland	$\begin{gathered} \text { J.K. } \\ \text { Eng'land } \end{gathered}$	J.K. Scotland	Sweden	Total
1970	-	-	11623	2433	-	6005	1144	28815	28817	2836	8731	2189	24640	117233
1971	8	2488	429	4734	-	-	179	10172	14	743	4113	362	1926	25168
1972	-	1589	10460	2014	-	21	334	11372	17 043a)	615	271	-	4068	47787
1973	-	-	-	8259	34	115	-	27370	29027	191	2175	582	-	57753
1974	-	2067	8953	8457	3173	3825	4136	31 090a)	24496	370	5502	4519	2416	99004

a) Estimated from biological statistics.

Table 2.6 Herring.
Total catch in tons. North Sea, central (Division IVb).

Year	Young Herring Fisheries				Total young and adult fisheries (Tables 2.5 and 2.6)
	Denmark	Germany (F.R.)	Sweden	Total	
1970	70108	400	-	70508	187741
1971	132161	3055	30000	165216	190209
1972	162671	2823	3298	168792	216579
1973	129988	5638	-	135626	193379
1974	43866	6760	1145	51771	150775

Table 2.7 Herring.
Total catch in tons. North Sea, south and English Channel, east and west (Divisions IVc and VIId and e).

Year	Belgium	Denmark	France	Germany (F.R.)	Netherlands	Poland	UK (England)	Total
1970	400	-	8183	558	16945	29	971	27086
1971	673	25	6160	126	16385	-	-	23369
1972	1337	57	9999	112	11450	-	305	23260
1973	2160	132	13767	2257	11754	-	718	30788
1974	603	36	4285	429	$1706 a)$	253	7313	

a) Estimated from biological statistics.

Year	Area	Age in winter rings										Total
		0	1	2	3	4	5	6	7	8	>8	
1971	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVbYH IVc+VIId,e	$\begin{array}{r} 136.7 \\ 14.0 \\ -. \\ 533.0 \\ 0.3 \end{array}$	$\begin{array}{r} 818.3 \\ 95.4 \\ 2.1 \\ 3440.9 \\ 21.8 \\ \hline \end{array}$	$\begin{array}{r} 516.9 \\ 54.5 \\ 140.3 \\ 304.3 \\ 130.8 \\ \hline \end{array}$	$\begin{array}{r} 488.3 \\ 38.5 \\ 54.4 \\ 39.6 \\ 41.7 \end{array}$	$\begin{array}{r} 154.2 \\ 10.5 \\ 12.6 \\ - \\ 31.1 \end{array}$	$\begin{array}{r} 24.1 \\ 2.1 \\ - \\ 0.7 \end{array}$	$\begin{gathered} 28.8 \\ 1.4 \\ - \\ - \\ 0.3 \end{gathered}$	$\begin{gathered} 25.1 \\ 1.1 \\ - \\ - \\ 0.6 \end{gathered}$		$\begin{aligned} & 98 \\ & 0.2 \\ & 2.1 \\ & - \\ & 0.3 \end{aligned}$	$\begin{array}{r} 2202.2 \\ 217.6 \\ 211.5 \\ 4317.8 \\ 227.6 \\ \hline \end{array}$
	Total NS	684.0	4378.5	1146.8	662.5	208.3	26.9	30.5	26.8	-	12.4	7176.7
1972	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVbYH IVc + VIId, e	$\begin{gathered} - \\ - \\ 750.4 \\ \hline \end{gathered}$	$\begin{array}{r} 338.9 \\ 75.1 \\ 25.2 \\ 2896.6 \\ 4.8 \\ \hline \end{array}$	$\begin{array}{r} 830.1 \\ 91.0 \\ 46.4 \\ 337.9 \\ 135.1 \\ \hline \end{array}$	$\begin{array}{r} 176.8 \\ 17.8 \\ 98.8 \\ 21.1 \\ 29.3 \\ \hline \end{array}$	$\begin{array}{r} 88.6 \\ 5.8 \\ 20.5 \\ 6.4 \\ 9.3 \\ \hline \end{array}$	$\begin{array}{r} 19.3 \\ 0.7 \\ 6.7 \\ 1.2 \\ 5.0 \end{array}$	$\begin{aligned} & 4.1 \\ & 0.1 \\ & 0.6 \\ & 0.2 \end{aligned}$	0.2	$\begin{aligned} & 0.5 \\ & - \\ & 0.6 \end{aligned}$	0.4 - -	$\begin{array}{r} 1458.7 \\ 190.5 \\ 199.0 \\ 4013.8 \\ 183.5 \\ \hline \end{array}$
	Total N'S	750.4	3340.6	I 440.5	343.8	130.6	32.9	5.0	0.2	1.1	0.4	6045.5
1973	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVbYH IVc+VIId,e	$\begin{gathered} - \\ \text { - } \\ 289.4 \\ - \end{gathered}$	$\begin{array}{r} 52.5 \\ 0.3 \\ 242.5 \\ 2070.5 \\ 2.2 \\ \hline \end{array}$	$\begin{array}{r} 742.1 \\ 16.2 \\ 180.1 \\ 362.5 \\ 43.3 \\ \hline \end{array}$	$\begin{array}{r} 452.6 \\ 23.1 \\ 39.0 \\ 29.4 \\ 115.1 \\ \hline \end{array}$	$\begin{array}{r} 58.0 \\ 6.3 \\ 28.3 \\ 2.6 \\ 55.0 \\ \hline \end{array}$	$\begin{array}{r} 39.5 \\ 7.2 \\ 4.7 \\ 0.5 \\ 7.4 \\ \hline \end{array}$	$\begin{array}{r} 20.3 \\ 1.0 \\ 7.2 \\ 0.2 \\ 1.9 \\ \hline \end{array}$	$\begin{aligned} & 2.6 \\ & 0.3 \\ & - \\ & 0.3 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ 0.8 \\ - \\ - \\ 0.1 \end{gathered}$	$\begin{gathered} 0.6 \\ - \\ - \\ - \\ 0.0 \\ \hline \end{gathered}$	$\begin{array}{r} 1368.7 \\ 55.2 \\ 501.8 \\ 2755.4 \\ 225.5 \\ \hline \end{array}$
	Total NS	289.4	2368.0	1344.2	659.2	150.2	59.3	30.6	3.7	1.4	0.6	4906.6
1974	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVbYH IVc+VIId,e unspecified I)	$\begin{array}{r} 61.8 \\ 5.7 \\ 925.1 \end{array}$	$\begin{array}{r} 154.2 \\ 131.6 \\ 51.9 \\ 493.5 \\ 3.8 \\ 2.9 \end{array}$	$\begin{array}{r} 93.3 \\ 24.1 \\ 421.0 \\ 132.1 \\ 23.8 \\ 23.7 \end{array}$	$\begin{array}{r} 106.9 \\ 10.8 \\ 173.7 \\ 5.7 \\ 20.1 \\ 9.8 \end{array}$	$\begin{array}{r} 91.9 \\ 1.0 \\ 12.1 \\ - \\ 8.3 \\ 0.7 \end{array}$	$\begin{gathered} 34.1 \\ - \\ 15.2 \\ - \\ 1.2 \\ 0.8 \end{gathered}$	$\begin{array}{r} 17.6 \\ - \\ 3.0 \\ - \\ 0.1 \\ 0.2 \end{array}$	$\begin{gathered} 4.3 \\ - \\ 0.2 \\ - \\ 0.2 \end{gathered}$	1.4 0.1 0.2 -	$\begin{gathered} 1.0 \\ -.1 \\ 0.1 \end{gathered}$	$\begin{array}{r} 566.5 \\ 173.3 \\ 677.4 \\ 1556.4 \\ 57.5 \\ \\ 38.1 \end{array}$
	Total NS	992.6	837.9	718.0	327.0	114.0	51.3	20.9	4.7	1.7	1.1	3069.2

[^4]Table 2.2 Skagerrak catches in millions of fish by age.

Age in winter rings	0	1	2	3	4	5	6	7	8	>8	Total
1974	624.5	288.7	91.0	45.8	14.3	5.7	1.1	0.8	-	-	1071.9

Table 2.10 Total North Sea. Calculated fishing mortalities.

Winter rings	Years								
	1965	1966	1967	1968	1969	1970	1971	1972	
1	0.03	0.08	0.09	0.12	0.03	0.11	0.11	0.17	
2	0.44	0.34	0.50	0.52	0.56	0.47	0.98	0.95	
3	0.76	0.68	0.48	1.47	0.88	1.09	0.99	0.93	
4	0.77	0.71	0.84	1.92	0.95	1.32	1.26	0.83	
5	0.63	0.82	0.84	1.07	0.86	1.33	1.25	0.80	
6	0.49	0.37	0.80	0.96	1.05	0.85	1.09	0.57	
7	0.44	0.36	1.30	1.06	0.83	1.07	2.23	0.52	
8	0.67	0.69	0.90	1.31	0.96	0.26	2.48	0.06	
	0.77	0.68	0.70	1.49	0.90	1.14	1.12	0.89	
$\bar{F}_{\mathrm{w}} \geq 2$	0.77								

Table 2.11 Total North Sea. Calculated stock in numbers ($\mathrm{x} 10^{-9}$) and stock biomass at 1 January.

Winter rings	Years							
	1965	1966	1967	1968	1969	1970	1971	1972
0	5.71	5.29	7.58	7.62	3.82	9.03	7.00	4.96
1	9.40	5.02	4.43	6.24	6.10	3.35	7.31	5.69
2	4.00	5.46	3.23	2.42	3.35	3.15	1.90	2.49
3	2.60	1.53	2.51	1.81	0.50	1.26	0.96	0.64
4	3.97	1.10	0.68	0.99	0.24	0.18	0.30	0.25
5	0.32	1.67	0.57	0.27	0.31	0.09	0.04	0.08
6	0.41	0.16	0.67	0.23	0.09	0.10	0.04	0.01
7	0.34	0.23	0.10	0.23	0.07	0.04	0.03	0.00
8	0.88	0.20	0.14	0.02	0.06	0.03	0.03	0.00
Σ Juveniles $0+1$	15.11	10.31	12.01	13.86	9.92	12.38	14.31	10.65
\sum Adults $2-8$	12.52	10.35	7.90	5.97	4.62	4.85	3.30	3.47
$\begin{aligned} & \text { Biomass } \\ & \text { tons } x 10^{-3} \text {) } \end{aligned}$	2340	1598	1310	1055	675	646	593	516

Table 3.1 Herring catches in the Celtic Sea (metric tons).

Year	France	$\begin{aligned} & \text { Germany } \\ & \text { (F.R.) } \end{aligned}$	Ireland	Netherlands	Poland	England	U.S.S.R.	Total
1969	7038	5906	18712	16256	252	-	-	48164
1970	3629	1481	24702	7015	1191	220	-	38236
1971	3393	974	12602	9672	881	65	-	27587
1972	7327	393	20109	6758	751	-	618	35956
1973	5553	294	13105	5834	1125	-	334	26245
1974*	1523	433	14154	2128	954	-	-	19192

* Preliminary.

Table 3.2 Total catch by seasons in the Celtic Sea (metric tons).

Season	Mar/May	Jun/Aug	Sep/Nov	Dec/Feb	Total
$1969 / 70$	1136	9783	13818	16263	41000
$1970 / 71$	1703	3789	8879	18348	32719
$1971 / 72$	1755	4742	7240	19625	33362
$1972 / 73$	2039	2936	7668	17720	30363
$1973 / 74$	3581	2326	5571	12111	23589
$1974 / 75^{*}$	515	1296	8204	7273	17318

* Preliminary.

Table 3.3 Catch in numbers per age group $\left(x 10^{-3}\right)$.

Season	1	2	3	4	5	6	7	8	>8	Total
1968/69	13463	61022	44213	12897	25646	5223	4563	1440	5303	173770
1969/70	7353	86869	51438	30517	11219	16303	4355	2011	3228	213293
1970/71	701	34546	53348	28409	20011	7771	6299	2108	3498	156691
1971/72	11543	25254	38675	45597	20753	11032	4251	5451	2411	164967
1972/73	6352	108514	14767	12057	11932	3779	2316	1835	654	161206
1973/74	22670	34890	46178	6410	8437	4760	3282	2010	730	129367
1974/75*	4423	37498	15110	19456	3704	3243	2613	789	727	87563

[^5]Table 3.4 Calculated stock size in numbers $\left(x 10^{-6}\right)$ ($M=0.1$) at 1 March.

Winter rings	Year					
	1968	1969	1970	1971	1972	1973
1	287.0	141.1	71.8	262.4	92.8	126.3
2	205.0	133.1	127.9	120.7	64.3	226.5
3	48.0	78.4	14.8	66.4	76.3	34.2
4	63.8	31.1	46.6	32.3	101.7	
5	20.0	33.3	17.9	33.1	26.0	17.9
6	16.0	13.1	14.6	18.9	10.2	12.1
7	8.9	10.1	7.7	8.5	6.6	5.6
8	-	6.7	7.3	7.2	3.6	3.8
>8				5.0	1.4	1.5
Total adult	494.8	547.1	416.9	289.9	340.8	237.3
stock in						
numbers						

Table 3.5 Fishing mortalities from cohort analysis and weighted mean values of F.

Winter rings	Seasons					
	$1968 / 69$	$1969 / 70$	$1970 / 71$	$1971 / 72$	$1972 / 73$	$1973 / 74$
1	0.05	0.06	0.01	0.05	0.07	0.20
2	0.46	0.38	0.36	0.53	0.70	0.64
3	0.43	0.55	0.51	0.76	0.61	0.65
4	0.33	0.53	0.60	0.98	0.50	0.51
5	0.55	0.48	0.70	1.08	0.66	0.69
6	0.32	0.72	0.63	0.95	0.50	0.53
7	0.36	0.43	0.60	0.75	0.46	0.96
8	0.19	0.23	0.34	1.57	0.77	0.82
Weighted F	0.44	0.47	0.50	0.83	0.66	0.64
(adults)						

Table 3.6 Values of F derived from cohort analysis and from Irish catch per unit effort data.

Season	From cohort analysis	From Irish cpue
$1968-69$	0.44	0.32
$1969-70$	0.47	0.50
$1970-71$	0.50	0.34
$1971-72$	0.84	0.82
$1972-73$	0.66	0.65
$1973-74$	0.64	0.82
$1974-75$		0.44

Table 4.1 Mortality rates in Donegal Bay and in Division VIa.

Year	Total mortality from Irish catch/effort ≥ 3 years	Total mortality in VIa from cohort analysis ≥ 3 years
1968	0.41	0.29
1969	0.97	0.33
1970	+	0.43
1971	0.09	0.69
1972	0.89	0.45
1973	0.43	0.80
Mean 1968-73	0.47	0.50

Table 4.2 Total catches of herring (metric tons) in Division VIa, 1966-1974, and in Scottish juvenile herring and sprat fisheries in the Moray Firth.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974*
Belgium	23	-	- 3	-	-	-	-	-	-
England,	1	-	3	_	-	-	-	-	45
Faroes ${ }^{\text {a }}$	-	-	-	-	15100	8100	8094	10003	5371
France	1	379	1124	966	1293	2055	680	2441	547
German Dem.Rep.	412	177	3	416	207	330	935	2507	2037
Germany (F.R.)	14634	17318	14805	15805	16548	7700	4108	17443	13686 b)
Netherlands	251	4576	2957	1514	1102	9252	23370	32715	$21000{ }^{\text {b }}$
Iceland	-	-	-	-	5595	5416	2066	2532	9566
Ireland ${ }^{\text {c }}$	7759	12290	13390	11895	11716	12161	17308	14668	12381
N. Ireland	\%	-		3	1	-	,	-	
Norway	-	-	-	-	20199	76720	17400	36302	$27000{ }^{\text {b }}$
Poland	-	727	2791	3188	3709	-	-	5685	6368
Scotland	69363	67404	65180	90222	103530	99537	107638	120800	107357
U.S.S.R.	-	-	-	-	3	-	?	2052	-
Total	92444	102871	100326	124009	179003	221271	174873	247148	205358
Scottish juvenile herring and sprat fisheries in Moray Firth	20734	6507	4985	3100	1385	5666	10242	7219	

* Preliminary figures.
a) Figures supplied by Fiskiranns 8 knarstovan.
b) September to December estimated.
c) Catches taken mainly in Division VIIb and landed in Division VIa.

Table 4.3 Herring autumn spawners. Catch in number $\times 10^{-3}$, Division VIa.

Year	Age	1	2	3	4	5	6	7	8	9	10	11	$11+$
	Rings	0	1	2	3	4	5	6	7	8	9	10	10+
1957		-	-	60802	64533	26882	38989	21541	9643	1658	2606	578	1633
1958		-	11187	32973	152781	43895	28108	32025	19986	10795	3725	2592	2570
1959		-	53216	74568	38547	124307	27898	18942	18833	8158	4629	2971	1764
1960		-	2135	101389	65462	25340	50558	12196	11096	6770	3029	1558	269
1961		-	4041	50602	72896	38321	24455	14296	5791	5370	1741	767	379
1962		-	20738	99061	27189	76706	49002	22707	27787	7614	5676	2097	662
1963		-	10005	82643	57688	13310	42796	28698	10171	14585	3915	3239	731
1964		-	3633	81919	74309	29583	8857	27075	21347	10109	11956	4028	1671
1965		-	31886	19675	71511	67768	24525	7001	28806	21475	7500	11609	4406
1966		-	6299	251086	33526	70449	38471	22691	12656	20790	17005	7418	8752
1967		-	30944	22374	263880	49150	48320	36143	15226	10397	15068	10962	7937
1968		-	58215	90027	26031	243304	19679	28436	17699	7275	4493	5326	4570
1969		-	14077	106022	84565	27604	264558	25795	45908	27932	11003	5197	13058
1970		-	158085	107037	272693	124498	42623	185380	24821	29920	14276	5156	6903
1971		-	53113	283962	346206	261891	94206	25876	166165	16425	16286	8038	5578
1972		147	35047	647919	208367	72885	83361	37428	13445	94577	8154	5855	5377
1973		-	17654	271166	990183	155828	66476	68522	26512	8037	53767	-	-
1974		-	57769	142068	203356	544547	89818	45026	42367	18747	43644	-	-

Table 4.4 Catch in numbers x 10^{-3}, Moray Firth.

Year	Age in rings								
		0		1				3	4
1957				496		015		561	
1958	12	931		508		643		20	
1959	39	729		847		47		-	
1960		21		805		112		241	48
1961		-		432		207		18	
1962		-	34			106		-	
1963		-		885		206		-	
1964		781		976		733		-	
1965	46	891	26	815		676		574	
1966	211	639	205	376	266	530		791	344
1967	186	598	177	003		274		843	605
1968	71	425	162	655		321		-	
1969	192	368	25			167		-	
1970		299		346		835		-	
1971	209	598	116			186		-	
1972		794	286	492	105	436		876	
1973	267	872		083		617			
1974	385	826	250	736		191			

Table 4.5 Herring in Division VIa (Moray Firth included). Fishing mortalities by year and age.

Age (rings)	Year								
	1965	1966	1967	1968	1969	1970	1971	1972	
0	0.08	0.19	0.11	0.07	0.13	0.00	0.16	0.04	
1	0.11	0.58	0.26	0.17	0.04	0.21	0.05	0.34	
2	0.08	0.24	0.13	0.18	0.10	0.15	0.36	0.27	
3	0.19	0.19	0.17	0.14	0.19	0.37	0.80	0.43	
4	0.29	0.26	0.29	0.20	0.20	0.42	0.64	0.34	
5	0.25	0.23	0.25	0.16	0.32	0.47	0.57	0.38	
6	0.14	0.34	0.32	0.20	0.29	0.34	0.52	0.41	
7	0.42	0.34	0.36	0.23	0.51	0.45	0.51	0.50	
8	0.39	0.53	0.47	0.26	0.58	0.66	0.53	0.54	
9	0.38	0.54	0.83	0.33	0.68	0.59	0.82	0.48	
Mean $F_{\text {w }} \geq 2$	0.26	0.28	0.22	0.20	0.30	0.39	0.65	0.43	

Table 4.6 Herring in Division VIa (Moray Firth included). Stock in numbers at beginning of year ($\mathrm{x} 10^{-3}$)

$\begin{gathered} \text { Age } \\ \text { (rings) } \end{gathered}$	Year							
	1965	1966	1967	1968	1969	1970	1971	1972
0	606167	1288640	1835130	1146800	1692140	4262500	1512030	679100
1	3138400	503928	965096	1483240	969794	1348390	3841370	1169110
2	328045	2555020	255667	675953	1132380	840285	993757	3314450
3	438492	274639	1820690	204126	511608	922787	656928	627920
4	285547	328331	205483	1387540	159979	382642	576483	267385
5	116572	194090	229917	138735	1024550	118552	228261	273930
6	57744	82208	139112	162189	106846	676157	66901	117383
7	88333	45600	52871	91598	119762	72211	436042	36036
8	69943	52632	29261	33405	66084	64899	41826	237217
9	24871	42934	27943	16629	23324	33365	30429	22296
10	24093	15395	22750	11054	10786	10701	16682	12151

Country	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974 ${ }^{\text {a }}$
IVa West										
Denmark	-	-	-	-	-	-	-	-	-	8.6
France	-	-	+	-	-	-	-	-	-	-
Germany, Federal	-	-	+	-	-	-	-	-	+	-
Republic of	-	-	+	-	-	-	-	-	+	-
Netherlands	+	-	-	+	+	+	+	+	+	+
Norway	-	-	-	-	-	-	0.9	2.2	-	-
Poland	+	-	+	-	-	-	-	-	+	-
Sweden	-	-	-	-	-	-	-	-	1.0	-
U.K. (England)	+	+	-	-	-	-	+	-	0.2	-
U.K. (Scotland)	26.4	65.1	19.1	13.0	12.4	3.8	15.0	29.8	49.4	37.7
Total	26.4	65.1	19.1	13.0	12.4	3.8	15.9	32.0	50.6	46.3
IVa East (Norwegian west coast f.jords)										
Norway	7.6	10.7	10.2	6.3	11.8	6.4	4.4	6.9	8.8	$4 \cdot 7$
IVb West										
Denmark	.	. \cdot	-	\cdots	\cdots	8.6	9.9	14.4	47.0	55.4
Faroe Islande	-	-	-	-	-	-	-	-	-	4.0
France	-	-	-	1.0	-	-	-	-	-	-
German Democratic	-	+	+	-	-	-	-	-	-	1.7
Republic	0.1	$+$	$+$	$+$	2.0	$+$	+	+		
Ne therlands Norwey	-	+	+	+	2.0	+	+	$\stackrel{+}{4.1}$	3.4	$\overline{9.8}$
Poland	0.1	+	+	+	-	-	-	$+$	3.4	9
U.K. (England)	+	0.9	11.9	2.6	3.3	11.2	25.5	21.8	34.6	23.2
U.K. (Scotland)	20.2	6.0	7.4	13.4	22.0	9.5	7.2	3.6	2.9	11.7
U.S.S.R.	-	-	-	-	-	-	1.2	0.8	17.9	25.0b)
Total	20.4	6.9	19.3	17.0	27.3	29.3	43.8	44.7	105.8	130.8
IVb East										
Denmark	17.6	24.5	17.4	18.1	18.5	16.2	19.9	28.8	93.9	103.3
Germany, Federal Republic of	6.0	8.5	11.5	16.7	6.3	7.6	5.1	1.7	11.0	11.1
Total	23.6	33.0	28.9	34.8	24.8	23.8	25.0	30.5	104.9	114.4
IVc										
Belgium	1.2	1.4	0.4	0.4	0.4	0.6	0.1	0.1	0.2	+
Denmark	-	-	-	-	-	-	-	-	-	0.9
France	+	+	-	+	0.1	+	+	-	+	+
Germany, Federal										
Republic of	-	-	-	-	-	+	-	+	-	-
Netherlands	3.3	1.5	0.2	1.0	1.6	1.5	1.0	0.4	+	+
U.K. (England)	8.1	5.7	3.2	6.2	4.2	3.9	0.2	+	0.8	0.1
Total	12.6	8.6	3.8	7.6	6.3	6.0	1.3	0.5	1.0	1.0
Total North Sea										
Belgium	1.2	1.4	0.4	0.4	0.4	0.6	0.1	0.1	0.2	+
Denmark	17.6	24.5	17.4	18.1	18.5	24.8	29.8	43.2	140.9	168.2
Faroe Islands	-	-	-	-	-	-	-	-	-	4.0
France	+	+	+	1.0	0.1	+	+	-	+	+
German Democratic	-	+	+	-	-	-	-	-	-	1.7
Germany, Federal										
Republic of	6.0	8.5	11.5	16.7	6.3	7.6	5.1	1.7	11.0	11.1
Ne therlands	3.4	1.5	0.2	1.0	3.6	1.5	1.0	0.4	+	+
Norway	7.6	10.7	10.2	6.3	11.8	6.4	5.3	13.2	12.2	14.5
Poland	0.1	+	+	+	-	-	-	+	+	-
Sweden	-	-	-	-	-	-	-	-	1.0	-
U.K. (England)	8.1	6.6	15.1	8.8	7.5	15.1	25.7	21.8	35.6	23.3
U.K. (Scotland)	46.6	71.1	26.5	26.4	34.4	13.3	22.2	33.4	52.3	49.4 ${ }^{\text {b }}$
U.S.S.R.		-	-	-	-		1.2	0.8	17.9	$25.0^{\text {b }}$
Total	90.6	124.3	81.3	78.7	82.6	69.3	90.4	114.6	271.1	297.2

+ = Less than 0.1
... = No data available
- = Magnitude known to be nil
a) Preliminary figures as reported
b) Estimated by the Working Group. A telegram received from Moscow on 12 March 1975 gave the USSR sprat catch in the North Sea in 1974 as 30612 tons.

Table 5.2 Catch and effort for the Danish industrial fishery in the North Sea (Clupeoid catches).

Year	(1000 hours, pair trawl)		```Uncorrected effort (total)```	Fishing power correction	```Corrected effort (1000 hours, pair trawl)```	$\begin{aligned} & \text { Danish } \\ & \text { catch of } \\ & \text { sprat } \\ & \text { (1000 tons) } \end{aligned}$	$\mathrm{kg} / \mathrm{hr}$
	Spring	Autumn					
1965	17.57	41.05	58.62	1.25	73.3	17.6	240
1966	7.72	25.52	33.24	1.37	45.5	24.5	539
1967	25.86	20.61	46.47	1.50	69.7	17.4	250
1968	20.65	35.85	56.50	1.62	91.5	18.1	198
1969	42.44	29.04	71.48	1.75	125.1	18.5	148
1970	17.60	23.83	41.43	1.87	77.5	25.8	333
1971	36.75	28.58	65.33	2.00	130.7	29.8	228
1972	34.14	57.18	91.32	2.12	193.6	43.2	223
1973	37.57	42.67	80.24	2.25	180.5	140.9	781
1974	. 14.90	73.59	87.80	2.37	208.1	167.1	803

Table 5.3 Percentage age compositions of landings 1967-1974. Area IVb - west of $3^{\circ} \mathrm{E}$

Fishing season	Age group					
	0	1	2	3	4	5
1967-68	17.1	53.8	16.9	11.1	1.2	
1968-69	3.0	37.5	43.1	11.7	4.3	0.3
1969-70	89.5	$4 \cdot 9$	2.2	2.9	0.5	0.1
1970-71	40.9	25.3	22.8	8.3	2.8	
1971-72	8.8	77.9	8.6	4.2	0.4	
1972-73	33.7	44.2	17.9	2.9	1.1	0.2
1973-74	58.5	39.3	1.7	0.6		

Area IVb - east of $3^{\circ} \mathrm{E}$

Fishing season	Age group					
	0	1	2	3	>3	
1967		10	76	14		
1968		9	57	27	5	
1969		1	41	39	20	
1970	0.3	33	33	22	12	
1971		23	40	20	17	
1972	4	1	76	16	2	
1973	15	69	11	4	1	
1974	0.3	91.5	8	0.2	+	

Figure 9: Annual batch of North Sea herring ('000 tons), 1903-1974.
1903 - 1946 - Bulletin Statistique Vols. 1-31 (1903 - 1931 "North Sea"; 1932-1946 IV + VIId,e)

Figure 10. Fishing mortalities for adults (≥ 2-ringers) since 1947 in the North Sea (value for 1974 assumed).

Figure ll. North Sea hering. Adult stock biomass (2-8 ringers) at 1 January.

Figure 13. Values of F derived from cohort analysis and from Irish catch per unit effort data.

Figure 14. Stock size and fishing mortality in Division VIa herring.
loge mean percentage age composition (excluding 0-group)

Figure 15. North Sea sprat mortality rate from catch curve for Division IVb west.

Appendix Table 1 a *

Herring. Catch in '000 tons 1947-59
North Sea (Sub-area IV \& Divisions VIId and e) by country. Skagerrak \& Kattegat (Division IIIa) total catch

Country	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959
Belgium	36	23	17	10	8	13	16	18	16	6	2	2	3
Denmark	9	7	5	8	34	33	50	58	66	83	88	134	145
England	101	114	71	75	73	66	71	61	39	36	32	22	21
Faroe Islands	-	-	-	-	-	-	-	-	-	-	-	-	-
France	77	77	60	61	125	65	76	54	59	45	34	34	35
Germany (F.R.)	110	117	107	117	177	158	297	263	268	217	237	200	147
Iceland	-	-	-	-	-	-	-	-	-	-	-	-	-
Netherlands	155	163	131	133	149	158	186	174	148	136	129	127	118
Norway	4	6	3	4	1	2	2	3	5	5	8	8	17
Poland	-	-	-	-	-	-	-	-	39	46	49	56	71
Scotland	81	90	53	37	42	77	82	59	69	43	41	30	48
Sweden	25	26	25	27	31	37	37	39	47	38	49	50	57
U.S.S.R.	-	-	-	-	-	-	-	-	2	28	37	29	40
Total North Sea	598	623	472	472	640	609	817	729	758	683	706	692	702
Total Skagerrak and Kattegat	53	81	79	91	104	139	137	99	113	123	158	216	205
Grand total	651	704	551	563	744	748	954	828	871	806	864	908	907

* The explanatory notes to Tables 1-8 (this volume, p.18) also refer to Appendix Tables 1-8.

Appendix Table 1b

Herring. Catch in tons 1960-74
North Sea, (Sub area IV \& Divisions VIId and e) by country. Skagerrak \& Kattegat (Division IIIa) total catch

Year Country	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974*
Belgium	3642	3146	1117	1843	1607	776	391	410	134	468	1200	681	1337	2160	60
Denmark	119400	138800	126000	117600	141600	158700	105900	135000	163100	180260	133331	185393	213738	174254	61728
England	16354	17849	11994	22.821	16533	11494	10716	8215	5128	6666	9702	4113	650	2893	5755
Faroe Islands			-		973	3111	1491	35993	49995	40640	58365	45524	48444	54935	26161
France	11137	23042	12271	18062	23295	16480	10711	11478	12852	15307	11482	11408	12901	22235	13157
German D.R.											290	475	127	1728	3268
Germany (F.R.)	148388	100944	89056	93815	86586	77032	54157	32312	21216	12798	7150	3570	3065	10634	12306
Iceland	-	-	-		-	1757	1047	5684	44489	19997	22951	37171	31998	23742	29017
Netherlands	125713	129841	87521	126487	116226	80320	56668	37270	22306	29769	46218	32479	24829	34070	28900
Norway	13893	10440	7461	21448	103752	520890	424462	240032	211904	114938	193102	125842	117501	99739	40100
Poland	77304	78082	59331	72462	89691	98130	74071	37816	11954	9221	5057	2031	2235	5738	7401
Scotland	29006	23038	22416	34571	21125	20569	17557	18138	16477	22053	21885	25073	17227	16012	14978
Sweden	89289	103744	110353	140012	130132	132182	121970	121591	88061	33109	34670	36880	7366	4222	3561
U.S.S.R.	63105	67722	100265	75965	139637	47322	16442	11660	70029	61549	18078	9500	16386	30735	5755
Total North Sea	696.231	696648	627785	725086	871157	1168763	895583	695599	717645	546775	563481	520140	497804	484637	252690
Skage			104	16	309	256742	144	79744	280036	113279	71071	61570	67021	84566	54835
Kattegat	31000	41100	51600	64200	79300	81400	75300	72000	108900	59300	74300	90200			
Grand total	803051	823039	783631	952514	1260261	1506905	1115538	1047343	1106581	719354	708562	671435			
Non-member countries	36000	?	?	?	?	67700	30600	27700	?	$?$?	?			

* Preliminary data

Herring. Total catch in 1000 tons 1947-74. North Sea and Skagerrak.

Year	Area							Total
	Northwest	Northeast	Central	South	$\begin{aligned} & \text { Industrial } \\ & \text { fishery } \\ & \text { (IVb) } \end{aligned}$	Total North Sea	Skagerrak	
1947	211.3	0.3	214.4	160.6	-	586.6	40.9*	627.5*
1948	169.4	1.9	168.0	162.5	0.3	502.1	54.9*	557.0*
1949	134.2	2.0	178.8	193.3	0.2	508.5	52.4*	560.9*
1950	125.1	1.6	181.3	178.3	5.4	491.7	51.3*	543.0*
1951	123.0	1.2	266.0	165.6	44.6	600.4	46.7*	647.1*
1952	168.4	6.6	203.1	236.1	50.2	664.4	61.1*	725.5*
1953	178.8	7.5	224.6	209.2	78.4	698.5	47.9*	746.4*
1954	168.0	4.3	218.4	276.9	95.3	762.9	99.1*	862.0*
1955	287.8	67.4	170.3	168.4	112.5	806.4	89.0	895.4
1956	194.5	79.1	163.9	134.0	103.7	675.2	82.0	757.2
1957	209.0	97.3	150.7	122.7	103.2	682.9	90.5	773.4
1958	164.7	98.2	156.1	92.6	158.9	670.5	131.0	801.5
1959	259.6	144.2	147.1	77.2	156.4	784.5	139.0	923.5
1960	101.1	264.0	166.3	64.9	99.9	696.2	75.8	772.0
1961	61.0	274.8	168.9	98.2	93.8	696.7	85.3	782.0
1962	37.6	291.8	143.3	54.7	100.4	627.8	104.2	732.0
1963	73.1	301.3	228.2	45.7	67.7	716.0	163.2	879.2
1964	66.1	444.0	187.9	56.6	116.6	871.2	309.8	1181.0
1965	298.3	580.8	132.9	21.8	135.0	1168.8	256.7	1425.5
1966	278.6	424.0	114.1	11.6	67.2	895.5	144.7	1040.2
1967	117.3	373.7	107.9	11.4	85.2	695.5	279.7	975.2
1968	286.7	256.8	57.8	9.6	106.9	717.8	280.0	997.8
1969	213.1	148.1	40.0	24.3	121.2	546.7	113.3	660.0
1970	326.9	21.4	117.2	27.1	70.5	563.1	71.1	634.2
1971	288.8	17.3	25.2	23.4	165.2	519.9	61.6	581.5
1972	235.1	22.7	47.8	23.3	168.8	497.7	67.0	564.7
1973	247.7	14.7	57.8	30.8	135.6	486.6	84.6	571.2
1974 1)	79.7	15.4	99.0	7.3	51.8	253.2	54.8	308.0

* Data include some Kattegat catches

1) Preliminary data

Herring. Total catch in tons
Skagerrak (Division IIIa excl. Kattegat)

Year	Denmark	Faroe Islands	$\begin{aligned} & \text { Germany } \\ & \text { (F.R.) } \end{aligned}$	Iceland	Netherlands	Norway	Poland	S weden	U.S.S.R.	Total
1960	43200	-	42	-	-	2578	-	30000	-	75820
1961	56700	-	7	-	-	4584	-	24000	-	85291
1962	70600	-	3	-	-	5049	594	28000	-	104246
1963	105100	-	828	-	-	10971	329	46000	-	163228
1964	129500	-	6064	-	-	85916	4324	84000	-	309804
1965	95300	-	4248	-	-	83864	4330	68000	-	256742
1966	75200	-	432	-	74	30438	511	38000	-	144655
1967	100400	-	466	2151	-	95039	127	66000	15561	279744
1968	143600	-	2	695	36	71865	42	45000	18796	280036
1969	57965	-	-	-	-	13957	-	41357	-	113279
1970	30107	-	-	6453	-	7581	-	26930	-	71071
1971	26985	5636	-	3066	-	6120	-	19763	-	61570
1972	34900	4115	-	7317	-	1045	-	19644	-	67021
1973	42098	$5265^{\text {a) }}$	-	15 938a)	-	836	-	$20429^{\text {a }}$	-	84566
19741)	35732	7132	36)	231	-	21	-	11683	-	54835

1) Preliminary data
a) See footnote to relevant country in Table 2.2 of 1974 Report (p.44)
b) German Democratic Republic in 1974

Appendix Table 4

Herring. Total catch in tons

North Sea, Northeast (Division IVa east of 2° E)

Year	Belgium	Denmark	England	Faroe Islands	France	German Dem.Rep.	$\begin{aligned} & \text { Germany } \\ & (\mathrm{F} \cdot \mathrm{R} . \end{aligned}$	Iceland	Netherlands	Norway	Poland	Scotland	Sweden	U.S.S.R.	Total
1960	-	41800	-	-	-	-	29455	-	15442	9005	15749	1598	87825	63105	263979
1961	-	61500	-	-	-	-	14043	-	6318	7630	11020	3877	102676	67722	274786
1962	-	49600	3	-	-	-	8913	-	6990	5793	5036	4899	110287	100265	291786
1963	-	58900	4	-	-	-	10069	-	8448	18255	3335	-	135350	75965	301326
1974	-	53100	-	-	-	-	9972	-	9313	91006	12949	627	127425	139637	444029
1965	-	49700	-	-	-	-	23428	1757	6912	323361	16200	-	132182	27227	580767
1966	-	51400	6	-	-	-	12329	1047	4555	205239	11690	186	121141	16442	424035
1967	-	51600	-	-	-	-	2558	5684	1709	176628	2986	-	120838	11660	373663
1968	-	57100	-	-	-	-	2487	9355	1022	66046	1880	-	88061	30799	356750
1969	32	55550	-	12805	278	-	16	6300	2084	15618	166	9785	26035	19392	148061
1970	50	1800	-	5898	48	-	10	1220	281	3501	123	1929	5560	1012	21262
1971	-	6219	-	239	-	-	-	-	167	10720	-	-	-	-	17067
1972	-	19711	-	979	-	-	9	1943	40	50	-	-	-	-	22732
1973	-	686	-	12776	-	637	-	-	331	236	-	-	-	-	14666
$1974^{\text {1 }}$)	12284	-	532	-	55	-	2460	21	-	-	-	-	-	15352

1) Preliminary data

Appendix Table 5

Herring. Total catch in tons

North Sea, Northwest (Division IVa west of $2^{\circ} \mathrm{E}$)

Year	Belgium	Denmark	England	Faroe Islands	France	German Dem.Rep.	Germany $\left(F_{1} K_{0}\right)$	Iceland	Netherlands	Norway	Poland	Scotland	Sweden	U.S.S.R.	Total
1960	122	-	163	-	1151	-	45746	-	19863	3343	7000	22292	1464	-	101144
1961	120	-	8	-	5796	-	19146	-	8414	2173	7271	16954	1068	-	60950
1962	125	-	11	-	3757	-	7125	-	4659	837	3807	17191	66	-	37578
1963	343	-	13	-	5121	-	11377	-	9495	2641	12511	26945	4662	-	73108
1964	155	-	8	973	6405	-	7319	-	11420	4350	15962	16753	2707	-	66052
1965	227	-	-	3111	7303	-	4489	-	11515	196488	35878	19239	-	20095	298345
1966	178	-	34	1491	2628	-	7069	-	3414	219233	27199	16548	829	-	278613
1967	200	-	15	35993	1515	-	7941	-	3418	41664	8454	17359	753	-	117312
1968	23	-	-	49995	1349	-	7150	35134	3072	131598	2806	16324	-	39230	286681
1969	68	11360	-	27835	605	-	448	13697	474	99316	362	10051	6765	42157°	213318
1970	750	61423	-	40884	818	-	177	20587	177	160784	2069	17767	4470	17066	$326932^{\text {a }}$
1971	-	44500	-	45095	514	-	389	36992	5755	115108	1288	24711	4954	9500	288806
1972	-	29711	74	37004	888	-	100	29721	1967	100408	1620	17227	-	16386	235106
1973	-	41341	-	$42150^{\text {b }}$	209	1057	2624	23742	4615	70476	5547	15430	4222	30735	247697
1974	-	3475	-	16676	415	40	1292	22421	$2285{ }^{\text {c }}$	15604	$7030^{\text {d) }}$	10459	-	-	79697

1) Preliminary data
a) Total including 750 tons from Belgium
b) See footnote to relevant country in Table 2.4 of 1974 Report (p. 45)
c) estimated from biological statistics
d) total catch from IVa allocated to IVa W

Herring. Total catch in tons North Sea, Central (Division IVb)

Adult Herring Fisheries

Year	Belgium	Denmark	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	England	Iceland	France	Germany $(F, R .)$	Netherlands	Norway	Poland	Scotland	Sweden	Total
1960	115	-	-	9816	-	369	39326	61540	1545	48479	5116	-	166306
1961	121	-	-	8579	-	2535	35402	70336	637	49064	2207	-	168881
1962	124	-	-	6076	-	2886	40772	47255	831	45030	326	-	143300
1963	558	-	-	14465	-	8296	60818	81524	552	54370	7626	-	228209
1964	351	-	-	9235	-	7750	36361	63314	8396	58726	3745	-	187878
1965	47	-	-	8524	-	7037	22520	47551	1041	44815	1330	-	132865
1966	69	-	-	9646	-	6261	21183	42008	-	34085	823	-	114075
1967	5	-	-	6809	-	6540	18917	26769	21740	26370	779	-	107929
1968	13	-	-	4170	-	8196	10439	13285	14260	7241	153	-	57757
1969	-	-	-	5964	-	3362	3528	16542	4	8077	2217	309	40003
1970	-	-	11623	8731	1144	2433	6005	28815	28817	2836	2189	24640	117233
1971	8	2488	254	4113	179	4734	-	10172	14	743	362	1926	25168
1972	-	1589	10460	271	334	2014	21	11372	$17043^{\text {a) }}$	615	-	4068	47787
1973	-	-	-	2175	-	8259	115	17370	29027	191	582	-	57753
$1974{ }^{\text {l }}$	-	2067	8953	5502	4136	8457	3825	31090	24496	370	4519	2416	99004

1) Preliminary data
a) estimated from biological statistics

Appendi:: Table 7

Herring. Total catch in tons North Sea, Central (Division IVb)

Year	Young Herring Fisheries										
	Denmark							Germany (F.R.)	Sweden	Total	Total young and adult fisheries (Tables 6 and 7)
	77600	22322	-	99922	266228						
1961	77300	16549	-	93849	262730						
1962	76400	23975	-	100375	243675						
1963	58700	9017	-	67717	295926						
1964	88500	28126	-	116626	304504						
1965	109000	26009	-	135009	267874						
1966	54500	12737	-	67237	181312						
1967	83400	1849	0	85249	193178						
1968	106000	847	0	106847	164604						
1969	113350	7900	0	121250	161253						
1970	70108	400	0	70508	187741						
1971	132161	3055	30000	165216	190209						
1972	162671	2823	3298	168792	216579						
1973	129988	5638	-	135626	193379						
$19741)$	43866	6760	1145	51771	150775						

1) Preliminary data

Appendix Table 8

Herring. Total catch in tons
North Sea, South and English Channel, East and West
(Divisions IVc and VIId and e)

Year	Belgium	Denmark	England	France	Germany (F.R.)	Netherlands	Poland	Total
1960	3405	-	6375	9617	11539	28868	5076	64880
1961	2905	-	9262	14711	15804	44773	10727	98182
1962	868	-	5904	5628	8271	28617	5458	54746
1963	942	-	8339	4645	2534	27020	2246	45726
1964	1101	-	7290	9140	4808	32179	2054	56572
1965	502	-	2970	2140	586	14342	1237	21777
1966	144	-	1030	1822	839	6691	1097	11623
1967	205	-	1391	3423	1047	5374	6	11446
9168	98	-	958	3307	293	4927	27	9610
1969	367	-	702	11062	906	10669	616	24322
1970	400	-	971	8183	558	16945	29	27086
1971	673	25	-	6160	126	16385	-	23369
1972	1337	57	305	9999	112	11450	-	23260
1973	2160	132	718	13767	2257	11754	-	30788
1974 ${ }^{\text {1 }}$	603	36	253	4285	429	$1706^{\text {a }}$	1	7313

1) Preliminary data
a) estimated from biological statistics

North Sea catch in millions of fish by age

Year	Area	Age in winter rings										
		0	1	2	3	4	5	6	7	8	>8	Total
1947	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc + VIId,e } \end{aligned}$	- - -		$\begin{array}{r} 233.9 \\ 0.1 \\ 80.1 \\ -\quad \\ 179.9 \\ \hline \end{array}$	$\begin{array}{r} 182.7 \\ 0.1 \\ 94.4 \\ -48.3 \\ 138.3 \end{array}$	$\begin{array}{r} 216.7 \\ 0.1 \\ 190.9 \\ -929.9 \\ \hline \end{array}$	$\begin{array}{r} 175.1 \\ 0.2 \\ 234.4 \\ 11 \overline{6} .4 \\ \hline \end{array}$	$\begin{array}{r} 217.8 \\ 0.3 \\ 431.0 \\ 10 \overline{6} .7 \end{array}$	$\begin{array}{r} 121.2 \\ 0.2 \\ 259.3 \\ - \\ 50.4 \\ \hline \end{array}$	$\begin{array}{r} 112.8 \\ 0.2 \\ 273.3 \\ -\quad \\ 240.3 \\ \hline \end{array}$	$\begin{array}{r} 107.3 \\ 0.2 \\ 244.9 \\ - \\ 331.7 \end{array}$	$\begin{array}{r} 1367.5 \\ 1.4 \\ 1808.3 \\ 1393.6 \\ \hline \end{array}$
	Total North Sea	-	-	494.0	415.5	637.6	526.1	755.8	431.1	626.6	684.1	4570.8
1948	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb YE } \\ & \text { IVb YH } \\ & \text { IVe + VIId,e } \end{aligned}$		$\begin{gathered} - \\ - \\ - \\ 3.4 \end{gathered}$	$\begin{array}{r} 93.2 \\ 0.0 \\ 27.0 \\ 12 \overline{6} .5 \\ \hline \end{array}$	$\begin{array}{r} 256.4 \\ 1.7 \\ 229.1 \\ -184.9 \\ \hline \end{array}$	$\begin{array}{r} 126.1 \\ 1.1 \\ 104.4 \\ 96.3 \\ \hline \end{array}$	$\begin{array}{r} 202.6 \\ 1.8 \\ 155.7 \\ 240.9 \\ \hline \end{array}$	$\begin{array}{r} 131.2 \\ 182.3 \\ -4 \\ 172.0 \end{array}$	$\begin{array}{r} 104.6 \\ 1.3 \\ 148.7 \\ - \\ 145.8 \\ \hline \end{array}$	$\begin{array}{r} 72.5 \\ 1.0 \\ 87.4 \\ \overline{90} .7 \end{array}$	$\begin{array}{r} 93.6 \\ 1.3 \\ 186.3 \\ 38 \overline{3} .7 \end{array}$	$\begin{array}{rr} 1 & 080.2 \\ & 9.5 \\ 1 & 121.0 \\ 1 & - \\ 1 & 44.4 .2 \\ \hline \end{array}$
	Total North Sea	-	3.4	246.7	672.1	327.9	601.0	486.9	400.4	251.6	664.9	3654.9
1949	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc + VIId,e } \end{aligned}$		-	$\begin{array}{r} 120.5 \\ 0.1 \\ 77.8 \\ 280.0 \\ \hline \end{array}$	$\begin{array}{r} 97.6 \\ 0.3 \\ 149.0 \\ 397.0 \\ \hline \end{array}$	$\begin{array}{r} 98.1 \\ 1.1 \\ 165.5 \\ -131.3 \\ \hline \end{array}$	$\begin{array}{r} 89.2 \\ 1.2 \\ 106.1 \\ 90.2 \\ \hline 90.2 \end{array}$	$\begin{array}{r} 121.3 \\ 1.0 \\ 256.7 \\ -\quad .7 \\ 272.0 \\ \hline \end{array}$	$\begin{array}{r} 123.8 \\ 2.0 \\ 112.7 \\ -\overline{7} .1 \\ 223.1 \\ \hline \end{array}$	$\begin{array}{r} 111.9 \\ 1.9 \\ 169.0 \\ 131.2 \end{array}$	$\begin{array}{r} 74.8 \\ 1.3 \\ 162.9 \\ 384.3 \\ \hline \end{array}$	$\begin{array}{r} 837.2 \\ 9.7 \\ 1199.7 \\ 19909.1 \\ \hline \end{array}$
	Total North Sea	-	-	478.4	643.9	396.0	286.7	651.8	461.6	414.0	623.3	3955.7
1950	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc + VIId,e } \end{aligned}$			$\begin{array}{r} 121.8 \\ 1.4 \\ 138.2 \\ - \\ 273.6 \\ \hline \end{array}$	$\begin{array}{r} 301.4 \\ 2.9 \\ 370.7 \\ -\quad \\ 363.5 \end{array}$	$\begin{array}{r} 96.8 \\ 0.7 \\ 222.0 \\ \hline-7.1 \\ \hline \end{array}$	$\begin{array}{r} 63.3 \\ 0.6 \\ 90.7 \\ -.7 \\ 135.4 \\ \hline \end{array}$	$\begin{array}{r} 60.9 \\ 0.7 \\ 82.5 \\ -9 \\ 209.5 \\ \hline \end{array}$	$\begin{array}{r} 100.1 \\ 1.3 \\ 63.9 \\ - \\ 165.3 \\ \hline \end{array}$	$\begin{array}{r} 51.8 \\ 0.6 \\ 51.4 \\ - \\ 91.2 \end{array}$	$\begin{array}{r} 49.9 \\ 0.6 \\ 166.3 \\ -\quad \\ 184.9 \\ \hline \end{array}$	$\begin{array}{r} 846.0 \\ 8.8 \\ 1185.7 \\ 1620.5 \\ \hline \end{array}$
	Total North Sea	-	-	535.0	1038.5	616.6	290.0	253.6	330.6	195.0	401.7	3661.0
1951	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc + VIId,e } \end{aligned}$		$\begin{array}{r} - \\ - \\ 452.8 \\ 8.8 \\ \hline \end{array}$	$\begin{array}{r} 43.8 \\ 0.2 \\ 73.3 \\ 240.6 \\ 302.4 \\ \hline \end{array}$	$\begin{array}{r} 131.6 \\ 0.7 \\ 362.9 \\ 49.5 \\ 413.8 \\ \hline \end{array}$	$\begin{array}{r} 217.7 \\ 1.4 \\ 685.7 \\ -7 \\ 350.2 \\ \hline \end{array}$	$\begin{array}{r} 124.6 \\ 1.0 \\ 280.6 \\ -\overline{6} .8 \\ \hline 223.8 \\ \hline \end{array}$	$\begin{array}{r} 78.7 \\ 0.6 \\ 79.5 \\ - \\ 103.3 \\ \hline \end{array}$	$\begin{array}{r} 50.0 \\ 0.4 \\ 49.2 \\ \overline{42} .5 \end{array}$	$\begin{array}{r} 42.7 \\ 0.3 \\ 108.2 \\ -7 \\ 54.4 \\ \hline \end{array}$	$\begin{array}{r} 79.6 \\ 0.7 \\ 132.3 \\ 2 \overline{6} .8 \\ \hline \end{array}$	$\begin{array}{r} 768.7 \\ 5.3 \\ 1771.7 \\ 742.9 \\ 1526.0 \\ \hline \end{array}$
	Total North Sea	-	461.6	660.3	958.5	1255.0	630.0	262.1	142.1	205.6	239.4	4814.6
1952	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc + VIId,e } \end{aligned}$		$\begin{gathered} - \\ - \\ 699.3 \\ 22.5 \\ \hline \end{gathered}$	$\begin{array}{r} 189.3 \\ 0.6 \\ 212.8 \\ 189.7 \\ 753.3 \\ \hline \end{array}$	$\begin{array}{r} 125.1 \\ 1.7 \\ 188.2 \\ 12.5 \\ 248.8 \\ \hline \end{array}$	$\begin{array}{r} 118.0 \\ 1.5 \\ 191.5 \\ \overline{-5} .1 \\ \hline \end{array}$	$\begin{array}{r} 157.5 \\ 4.4 \\ 248.3 \\ - \\ 24 \overline{1.7} \\ \hline \end{array}$	$\begin{array}{r} 90.4 \\ 3.2 \\ 178.7 \\ -191.8 \\ \hline \end{array}$	$\begin{array}{r} 78.2 \\ 3.6 \\ 61.2 \\ - \\ 93.2 \end{array}$	$\begin{array}{r} 55.5 \\ 2.7 \\ 58.5 \\ \overline{4} .8 \end{array}$	$\begin{array}{r} 149.3 \\ 7.8 \\ 122.9 \\ 108.3 \\ \hline \end{array}$	$\begin{array}{r} 963.3 \\ 25.5 \\ 1262.1 \\ 901.5 \\ 2007.5 \\ \hline \end{array}$
	Total North Sea	-	721.8	1345.7	576.3	610.1	651.9	464.1	236.2	165.5	388.3	5159.9
1953	```IVaW of 2}\mp@subsup{2}{}{\circ}\textrm{E IVaE of 2oE IVb IVb YH IVc + VIId,e```	$\begin{gathered} - \\ - \\ \overline{-} \\ 150.0 \\ \hline \end{gathered}$		$\begin{array}{r} 262.3 \\ 5.3 \\ 307.2 \\ 236.2 \\ 511.4 \\ \hline \end{array}$	$\begin{array}{r} 255.6 \\ 7.1 \\ 311.3 \\ 38.3 \\ 391.0 \\ \hline \end{array}$	$\begin{array}{r} 109.4 \\ 3.6 \\ 160.5 \\ -\quad \\ 200.2 \\ \hline \end{array}$	$\begin{array}{r} 95.1 \\ 3.3 \\ 109.0 \\ -\quad \\ 178.6 \\ \hline \end{array}$	$\begin{array}{r} 100.8 \\ 3.7 \\ 183.6 \\ -7 \\ 184.6 \\ \hline \end{array}$	$\begin{array}{r} 44.7 \\ 1.6 \\ 97.1 \\ -7 \\ 134.5 \end{array}$	$\begin{array}{r} 50.3 \\ 2.2 \\ 30.0 \\ \overline{35.3} \end{array}$	$\begin{array}{r} 88.5 \\ 4.0 \\ 127.2 \\ -74 \\ 54.9 \\ \hline \end{array}$	$\begin{array}{rr} 1 & 006.7 \\ & 30.8 \\ 1 & 335.3 \\ 1 & 433.2 \\ 1 & 695.6 \\ \hline \end{array}$
	Total North Sea	150.0	1023.2	1322.4	1003.3	473.7	386.0	472.7	277.9	117.8	274.6	5501.6

Appendix Table 9 (ctd.)

Year	Area	Age in winter rings										
		0	1	2	3	4	5	6	7	8	> 8	Total
1954	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc + VIId,e } \end{aligned}$	$\begin{gathered} - \\ 21 \overline{8} .5 \end{gathered}$	$\begin{array}{r} 26.5 \\ 0.9 \\ 20.2 \\ 1387.8 \\ 15.3 \\ \hline \end{array}$	$\begin{array}{r} 415.5 \\ 4.7 \\ 185.9 \\ 180.9 \\ 706.3 \\ \hline \end{array}$	$\begin{array}{r} 238.2 \\ 5.3 \\ 344.7 \\ 23.9 \\ 499.1 \end{array}$	$\begin{array}{r} 111.6 \\ 23.6 \\ 223.2 \\ 25 \overline{3} .7 \\ \hline \end{array}$	$\begin{array}{r} 52.8 \\ 1.3 \\ 119.5 \\ -7.5 \\ 187.5 \end{array}$	$\begin{array}{r} 62.2 \\ 1.7 \\ 91.9 \\ -9 \\ 173.7 \\ \hline \end{array}$	$\begin{array}{r} 52.7 \\ 1.5 \\ 130.2 \\ -8 \\ 194.1 \\ \hline \end{array}$	$\begin{array}{r} 33.6 \\ 1.0 \\ 51.8 \\ -8 \\ 108.0 \\ \hline \end{array}$	$\begin{array}{r} 37.6 \\ 1.0 \\ 172.9 \\ \hline-5.4 \\ \hline \end{array}$	$\begin{array}{rr} 1 & 030.7 \\ & 20.0 \\ 1 & 340.3 \\ 1 & 811.1 \\ 2 & 243.1 \\ \hline \end{array}$
	Total North Sea	218.5	1450.7	1493.3	1111.2	591.1	361.1	329.5	378.5	194.4	316.9	6445.2
1955	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc } \end{aligned}$	$\begin{gathered} \overline{0} .1 \\ 16 \overline{4} .2 \\ - \end{gathered}$	$\begin{array}{r} 4.2 \\ 20.2 \\ 87.1 \\ 1960.6 \\ \hline \end{array}$	$\begin{aligned} & 697.6 \\ & 125.3 \\ & 610.8 \\ & 162.2 \\ & 335.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 385.8 \\ 82.4 \\ 216.5 \\ 25.5 \\ 321.5 \\ \hline \end{array}$	$\begin{array}{r} 144.9 \\ 54.6 \\ 108.8 \\ 17 \overline{0.8} \\ \hline \end{array}$	$\begin{array}{r} 149.0 \\ 20.1 \\ 84.7 \\ -. \\ 82.8 \\ \hline \end{array}$	$\begin{array}{r} 138.6 \\ 16.0 \\ 39.9 \\ 37.1 \\ \hline \end{array}$	$\begin{aligned} & 28.1 \\ & 23.2 \\ & 30.2 \\ & 38.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.4 \\ & 12.6 \\ & 16.9 \\ & \overline{37.1} \end{aligned}$	$\begin{aligned} & 41.1 \\ & 14.2 \\ & 10.9 \\ & - \\ & 39.3 \end{aligned}$	$\begin{array}{ll} 1 & 631.7 \\ & 368.7 \\ 1 & 205.8 \\ 2 & 312.5 \\ 1 & 062.1 \\ \hline \end{array}$
	Total North Sea	164.3	2072.1	1931.2	1031.7	479.1	336.6	231.6	119.7	109.0	105.5	6580.8
1956	```IVaW of 2'E IVaE of 20} IVb IVb YH IVc```	$\begin{gathered} - \\ \overline{-} \\ 95.9 \\ - \end{gathered}$	$\begin{array}{r} 0.6 \\ 22.5 \\ 1667.7 \\ 6.0 \\ \hline \end{array}$	$\begin{array}{r} 248.7 \\ 15.6 \\ 607.9 \\ 432.5 \\ 555.3 \end{array}$	$\begin{array}{r} 543.5 \\ 148.9 \\ 341.7 \\ 33.4 \\ 153.7 \end{array}$	$\begin{array}{r} 214.2 \\ 98.7 \\ 92.7 \\ -10.1 \\ \hline 10.1 \end{array}$	$\begin{aligned} & 89.9 \\ & 45.2 \\ & 33.1 \\ & - \\ & 80.3 \end{aligned}$	$\begin{aligned} & 62.8 \\ & 55.1 \\ & 39.7 \\ & 3 \overline{6} .7 \end{aligned}$	$\begin{aligned} & 42.3 \\ & 11.9 \\ & 29.1 \\ & \overline{-} .8 \end{aligned}$	$\begin{array}{r} 30.6 \\ 8.6 \\ 49.0 \\ - \\ 15.9 \end{array}$	$\begin{array}{r} 41.0 \\ 27.6 \\ 106.0 \\ -\quad 0 \\ 12.9 \\ \hline \end{array}$	$\begin{aligned} & 11273.6 \\ & 1411.6 \\ & 1321.7 \\ & 2229.5 \\ & 991.7 \\ & \hline \end{aligned}$
	Total North Sea	95.9	1696.8	1860.0	1221.2	515.7	248.5	194.3	104.1	104.1	187.5	6228.1
1957	```IVaW of \(2^{\circ}\) E IVaE of \(2^{\circ}\) E IVb IVb YH IVc + VIId,e```	$\begin{gathered} \overline{-} \\ \overline{-} \\ 278.7 \end{gathered}$	$\begin{array}{rr} & - \\ 14.1 \\ & 461.1 \\ & 7.4 \\ \hline \end{array}$	$\begin{array}{r} 216.5 \\ 19.6 \\ 421.9 \\ 400.6 \\ 585.3 \\ \hline \end{array}$	$\begin{array}{r} 287.5 \\ 37.4 \\ 143.3 \\ 37.0 \\ 231.0 \\ \hline \end{array}$	$\begin{array}{r} 261.4 \\ 124.8 \\ 219.0 \\ 38.7 \\ \hline \end{array}$	$\begin{array}{r} 195.7 \\ 51.0 \\ 70.7 \\ 2 \overline{6} .7 \\ \hline \end{array}$	$\begin{aligned} & 84.4 \\ & 70.8 \\ & 37.3 \\ & - \\ & 14.7 \end{aligned}$	$\begin{array}{r} 43.8 \\ 63.8 \\ 30.3 \\ - \\ 9.2 \end{array}$	$\begin{array}{r} 39.0 \\ 37.5 \\ 20.2 \\ - \\ 2.8 \end{array}$	$\begin{array}{r} 69.6 \\ 24.8 \\ 53.5 \\ \hline 5.5 \\ \hline \end{array}$	$\begin{array}{r} 1197.9 \\ 429.7 \\ 921.3 \\ 2177.4 \\ 1010.3 \\ \hline \end{array}$
	Total North Sea	278.7	1482.6	1643.9	736.2	643.9	344.1	207.2	147.1	99.5	153.4	5736.6
1958	```IVaW of \(2^{\circ} \mathrm{E}\) IVaE of \(2^{\circ} \mathrm{E}\) IVb IVb YH IVc + VIId,e```	$\begin{gathered} - \\ - \\ 97.1 \end{gathered}$	$\begin{array}{r} 29.9 \\ -9.5 \\ 4028.7 \\ 40.7 \\ \hline \end{array}$	$\begin{array}{r} 41.8 \\ 43.5 \\ 413.0 \\ 265.0 \\ 266.1 \\ \hline \end{array}$	$\begin{array}{r} 326.8 \\ 247.8 \\ 207.6 \\ 26.5 \\ 190.6 \\ \hline \end{array}$	$\begin{array}{r} 139.7 \\ 64.3 \\ 59.0 \\ -78 \\ 58.2 \end{array}$	$\begin{array}{r} 233.3 \\ 85.5 \\ 125.6 \\ 1 \overline{6} .7 \\ \hline \end{array}$	$\begin{aligned} & 81.4 \\ & 28.5 \\ & 25.1 \\ & -11.7 \end{aligned}$	$\begin{array}{r} 41.9 \\ 17.1 \\ 7.6 \\ - \\ 6.7 \end{array}$	$\begin{array}{r} 27.1 \\ 9.3 \\ 7.6 \\ - \\ 1.7 \end{array}$	$\begin{array}{r} 19.3 \\ 22.9 \\ 28.4 \\ - \\ 1.7 \end{array}$	$\begin{array}{r} 941.2 \\ 518.9 \\ 1092.4 \\ 4417.3 \\ 4555.8 \\ \hline \end{array}$
	Total North Sea	97.1	4278.8	1029.4	999.3	321.9	461.1	146.7	73.3	45.7	72.3	7525.6
1959	```IVaW of 20 IVaE of 20 IVb IVb YH IVc + VIId,e```		$\begin{array}{r} 13.5 \\ - \\ 85.1 \\ 1500.2 \\ 10.6 \\ \hline \end{array}$	$\begin{array}{r} 1488.9 \\ 182.5 \\ 929.5 \\ 1847.9 \\ 485.1 \\ \hline \end{array}$	$\begin{array}{r} 128.1 \\ 78.7 \\ 140.1 \\ 61.4 \\ 79.2 \\ \hline \end{array}$	$\begin{array}{r} 173.6 \\ 210.0 \\ 60.2 \\ \overline{53.5} \\ \hline \end{array}$	$\begin{array}{r} 74.8 \\ 115.9 \\ 24.9 \\ - \\ 17.8 \\ \hline \end{array}$	$\begin{array}{r} 99.8 \\ 111.2 \\ 34.0 \\ - \\ 4.0 \\ \hline \end{array}$	$\begin{array}{r} 46.5 \\ 60.5 \\ 9.2 \\ \overline{3.3} \end{array}$	$\begin{array}{r} 23.0 \\ 52.1 \\ 5.2 \\ 7 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 26.0 \\ 163.1 \\ 24.9 \\ - \\ 4.6 \\ \hline \end{array}$	$\begin{array}{r} 2074.2 \\ \\ \\ 1 \\ \hline 974.0 \\ 3 \\ 3 \\ 409.5 \\ \\ 660.1 \\ \hline \end{array}$
	Total North Sea	-	1609.4	4933.9	487.5	497.3	233.4	249.0	119.5	82.3	218.6	8430.9
1960	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc + VIId, } \end{aligned}$	$\begin{gathered} \overline{-} \\ \overline{194.6} \\ \hline \end{gathered}$	$\begin{array}{r} 7 \overline{8} .8 \\ 25.1 \\ 2275.3 \\ 13.5 \\ \hline \end{array}$	$\begin{aligned} & 174.3 \\ & 179.9 \\ & 238.8 \\ & 260.2 \\ & 289.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 339.3 \\ 854.1 \\ 604.1 \\ 27.8 \\ 141.4 \\ \hline \end{array}$	$\begin{aligned} & 17.6 \\ & 84.9 \\ & 47.1 \\ & 1 \overline{6} .3 \end{aligned}$	$\begin{array}{r} 35.4 \\ 91.5 \\ 35.2 \\ \hline 5.6 \\ \hline \end{array}$	$\begin{array}{r} 22.5 \\ 77.4 \\ 12.1 \\ -\quad \\ 0.9 \end{array}$	18.0 76.7 31.1 - -	$\begin{array}{r} 8.5 \\ 110.1 \\ 10.0 \\ - \\ \hline \end{array}$	$\begin{array}{r} 6.8 \\ 131.1 \\ 4.1 \\ - \\ - \\ \hline \end{array}$	$\begin{array}{r} 622.4 \\ 1 \\ 1684.5 \\ 1007.6 \\ 2757.9 \\ \\ \hline \end{array} 466.8 \text { }$
	Total North Sea	194.6	2392.7	1142.3	1966.7	165.9	167.7	112.9	125.8	128.6	142.0	6539.2

Appendix Table 2 (ctd.)

Year	Area	Age in winter rings										
		0	1	2	3	4	5	6	7	8	>8	Total
1961	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc + VIIa, e } \end{aligned}$	$\begin{array}{rr} 1.2 \\ \\ & 268.0 \\ & - \\ \hline \end{array}$	$\begin{array}{r} 2.0 \\ 68.6 \\ 29.4 \\ 235.3 \\ 0.7 \\ \hline \end{array}$	$\begin{array}{r} 21.8 \\ 96.3 \\ 560.0 \\ 625.6 \\ 585.7 \end{array}$	$\begin{array}{r} 66.0 \\ 227.6 \\ 96.1 \\ 10.8 \\ 79.4 \\ \hline \end{array}$	$\begin{array}{r} 188.0 \\ 942.2 \\ 287.4 \\ - \\ 38.3 \\ \hline \end{array}$	$\begin{array}{r} 12.4 \\ 97.8 \\ 8.8 \\ \overline{5.0} \\ \hline \end{array}$	$\begin{gathered} 18.8 \\ 139.1 \\ - \\ - \\ \hline \end{gathered}$	$\begin{gathered} 5.9 \\ 55.5 \\ - \\ - \\ - \\ \hline \end{gathered}$	$\begin{gathered} 11.5 \\ 44.5 \\ - \\ - \end{gathered}$	$\begin{gathered} 5.7 \\ 81.8 \\ - \\ - \\ \hline \end{gathered}$	$\begin{array}{r} 332.1 \\ 1754.6 \\ 981.7 \\ 2139.7 \\ 709.1 \\ \hline \end{array}$
	Total North Sea	1269.2	336.0	1889.4	479.9	1435.9	124.0	157.9	61.4	56.0	87.5	5917.2
1962	```IVaW of 2'E IVaE of 2}\mp@subsup{2}{}{\circ}\textrm{E IVb IVb YH IVe + VIId,e```	$\begin{array}{r} - \\ - \\ 141.8 \\ \hline \end{array}$	$\begin{array}{r} 0.6 \\ 127.9 \\ 48.9 \\ 1958.2 \\ 11.3 \\ \hline \end{array}$	$\begin{array}{r} 22.3 \\ 136.8 \\ 66.6 \\ 2.8 \\ 41.1 \\ \hline \end{array}$	$\begin{array}{r} 14.9 \\ 171.8 \\ 358.4 \\ 15.1 \\ 237.2 \\ \hline \end{array}$	$\begin{array}{r} 29.5 \\ 208.3 \\ 68.8 \\ -8 . \\ 28.5 \\ \hline \end{array}$	$\begin{array}{r} 114.2 \\ 802.8 \\ 151.9 \\ - \\ 12.9 \\ \hline \end{array}$	$\begin{array}{r} 6.8 \\ 105.7 \\ 13.7 \\ \hline 0.7 \\ \hline \end{array}$	$\begin{array}{r} 15.6 \\ 124.2 \\ 5.0 \\ \hline 0.3 \\ \hline \end{array}$	$\begin{gathered} 7.2 \\ 74.9 \\ 4.2 \\ - \\ \hline \end{gathered}$	$\begin{array}{r} 10.1 \\ 74.6 \\ 2.1 \end{array}$	$\begin{array}{r} 221.2 \\ 1827.0 \\ 719.6 \\ 2117.9 \\ 332.0 \\ \hline \end{array}$
	Total North Sea	141.8	2146.9	269.6	797.4	335.1	1081.8	126.9	145.1	86.3	86.8	5217.7
1963	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVb YH IVc + VIId,e	$\begin{array}{r} - \\ - \\ - \\ 442.8 \\ \hline \end{array}$	$\begin{array}{r} 0.6 \\ 69.6 \\ 36.3 \\ 1154.1 \\ 2.2 \\ \hline \end{array}$	$\begin{array}{r} 135.7 \\ 1414.6 \\ \mathrm{l} 080.5 \\ 55.4 \\ 275.0 \\ \hline \end{array}$	$\begin{array}{r} 3.0 \\ 101.1 \\ 62.5 \\ \overline{-} .6 \\ \hline \end{array}$	$\begin{array}{r} 4.5 \\ 75.9 \\ 55.0 \\ 22.9 \end{array}$	$\begin{gathered} 3.7 \\ 74.4 \\ - \\ - \\ 2.5 \\ \hline \end{gathered}$	$\begin{gathered} 17.1 \\ 212.3 \\ - \\ \overline{0.3} \end{gathered}$	0.9 21.5 - -	$\begin{gathered} 4.2 \\ 37.8 \\ - \\ - \\ \hline \end{gathered}$	$\begin{array}{r} 2.2 \\ 48.8 \end{array}$	$\begin{array}{rr} 171.9 \\ 2 & 055.4 \\ 1 & 234.3 \\ 1 & 652.3 \\ & 313.5 \\ \hline \end{array}$
	Total North Sea	442.8	1262.2	2961.2	177.2	158.3	80.6	229.7	22.4	42.0	51.0	5427.4
1964	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc }+ \text { VIId, e } \end{aligned}$	$\begin{array}{r} - \\ 4.6 \\ - \\ 492.3 \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ 28.6 \\ 42.6 \\ 2878.4 \\ 21.3 \\ \hline \end{array}$	$\begin{array}{r} 107.7 \\ 830.3 \\ 395.0 \\ 192.2 \\ 22.3 \\ \hline \end{array}$	$\begin{array}{r} 182.2 \\ 1581.5 \\ 39.0 \\ 5.9 \\ 78.5 \\ \hline \end{array}$	$\begin{array}{r} 6.7 \\ 128.4 \\ 12.6 \\ -\quad .7 \\ \hline \end{array}$	$\begin{array}{r} 6.9 \\ 109.0 \\ 27.2 \\ - \\ 5.9 \\ \hline \end{array}$	$\begin{array}{r} 7.2 \\ 79.6 \\ 8.2 \end{array}$	$\begin{array}{r} 40.1 \\ 190.0 \\ 26.2 \end{array}$	$\begin{array}{r} 2.5 \\ 23.8 \end{array}$	$\begin{gathered} 6.6 \\ 51.1 \\ - \\ - \end{gathered}$	$\begin{array}{r} 360.7 \\ 3026.9 \\ 906.8 \\ 3568.8 \\ 3128.7 \\ \hline \end{array}$
	Total North Sea	496.9	2971.7	1547.5	2243.1	148.4	149.0	95.0	256.3	26.3	57.7	7991.9
1965	```IVaW of 2}\mp@subsup{2}{}{\circ}\textrm{E IVaE of 2}\mp@subsup{2}{}{\circ}\textrm{E IVb IVb YH IVc + VIId,e```	$\begin{array}{r} - \\ 2.6 \\ - \\ 154.5 \\ \hline \end{array}$	$\begin{array}{r} 52.9 \\ 456.4 \\ 55.3 \\ 2644.3 \\ 0.4 \\ \hline \end{array}$	$\begin{array}{r} 613.2 \\ 542.9 \\ 432.2 \\ 603.8 \\ 25.5 \\ \hline \end{array}$	$\begin{array}{r} 367.2 \\ 771.9 \\ 84.9 \\ 40.1 \\ 60.5 \\ \hline \end{array}$	$\begin{array}{r} 571.7 \\ 1336.8 \\ 98.3 \\ 32.6 \\ \hline \end{array}$	$\begin{array}{r} 21.9 \\ 112.5 \\ 8.6 \\ \hline- \\ 2.1 \\ \hline \end{array}$	$\begin{array}{r} 23.2 \\ 118.4 \\ 7.9 \\ \hline 2.4 \\ \hline \end{array}$	$\begin{array}{r} 28.6 \\ 84.9 \\ 3.6 \\ - \\ 0.5 \\ \hline \end{array}$	$\begin{array}{r} 108.2 \\ 277.5 \\ 27.3 \end{array}$ $\begin{aligned} & - \\ & \hline \end{aligned}$	$\begin{gathered} 24.9 \\ 34.1 \\ 18.1 \\ -\quad \\ 0.03 \\ \hline \end{gathered}$	$\begin{array}{ll} 1 & 811.8 \\ 3 & 738.0 \\ & 736.2 \\ 3 & 442.7 \\ & 125.3 \\ \hline \end{array}$
	Total North Sea	157.1	3209.3	2217.6	1324.6	2039.4	145.1	151.9	117.6	413.0	78.4	9854.0
1966	IVaW of $2^{\circ} \mathrm{E}$ IVa E of $2^{\circ} \mathrm{E}$ IVb IVb YH IVc + VIId, e	$\begin{array}{r} - \\ 2.7 \\ 371.8 \\ \hline \end{array}$	$\begin{array}{r} 12.2 \\ 357.1 \\ 1.3 \\ 1008.9 \\ 3.6 \\ \hline \end{array}$	$\begin{array}{r} 693.5 \\ 1102.9 \\ 539.4 \\ 179.1 \\ 54.8 \\ \hline \end{array}$	$\begin{array}{r} 249.2 \\ 383.7 \\ 91.6 \\ 6.8 \\ 9.9 \\ \hline \end{array}$	$\begin{array}{r} 156.8 \\ 276.2 \\ 15.9 \\ -1.2 \\ \hline \end{array}$	$\begin{array}{r} 328.5 \\ 534.7 \\ 23.5 \\ \overline{3} .1 \end{array}$	$\begin{gathered} 8.7 \\ 36.6 \\ - \\ - \end{gathered}$	$\begin{gathered} 9.1 \\ 54.4 \\ 1.3 \\ - \\ - \\ \hline \end{gathered}$	$\begin{array}{r} 32.2 \\ 60.6 \\ 2.7 \\ - \\ - \end{array}$	$\begin{gathered} 93.2 \\ 141.8 \\ 1.3 \\ - \\ \hline \end{gathered}$	$\begin{array}{r} 1583.4 \\ 2950.7 \\ 677.0 \\ 1566.6 \\ 72.6 \\ \hline \end{array}$
	Total North Sea	374.5	1383.1	2569.7	741.2	450.1	889.8	45.3	64.8	95.5	236.3	6850.3
1967	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc }+ \text { VIId, } \end{aligned}$	$\begin{gathered} - \\ 0.7 \\ -7 \\ 644.7 \\ \hline \end{gathered}$	$\begin{array}{r} 12.2 \\ 402.6 \\ 24.3 \\ 1231.6 \\ 3.6 \\ \hline \end{array}$	$\begin{array}{r} 119.1 \\ 444.6 \\ 209.4 \\ 356.0 \\ 42.4 \\ \hline \end{array}$	$\begin{array}{r} 315.6 \\ 741.0 \\ 257.4 \\ 35.3 \\ 15.4 \\ \hline \end{array}$	$\begin{array}{r} 67.7 \\ 245.8 \\ 53.1 \\ -.8 \\ 4.9 \\ \hline \end{array}$	$\begin{array}{r} 51.5 \\ 237.3 \\ 6.8 \\ - \\ 2.2 \\ \hline \end{array}$	$\begin{array}{r} 71.4 \\ 307.5 \\ 14.1 \\ - \\ 0.1 \\ \hline \end{array}$	4.7 63.2 - - -	4.1 77.5 - $=$	$\begin{gathered} 33.8 \\ 139.0 \\ - \\ - \end{gathered}$	$\begin{array}{r} 680.1 \\ 2659.2 \\ 565.1 \\ 2267.6 \\ 68.6 \\ \hline \end{array}$
	Total North Sea	645.4	1674.3	1171.5	1364.7	371.5	297.8	393.1	67.9	81.6	172.8	6240.6

Year	Area	Age, in winter rings										
		0	1	2	3	4	5	6	7	8	>8	Total
1968	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVb YH IVc + VIId,e	839.3	$\begin{array}{r} 83.1 \\ 579.7 \\ 9.0 \\ 1 \quad 747.2 \\ 6.0 \\ \hline \end{array}$	$\begin{array}{r} 577.7 \\ 781.7 \\ 166.8 \\ 246.1 \\ 22.9 \\ \hline \end{array}$	$\begin{array}{r} 231.5 \\ 1201.0 \\ 40.6 \\ 1.3 \\ 19.9 \\ \hline \end{array}$	$\begin{array}{r} 372.1 \\ 179.7 \\ 59.9 \\ -9.7 \\ \hline \end{array}$	$\begin{array}{r} 83.5 \\ 59.5 \\ 12.6 \\ \overline{1.5} \end{array}$	$\begin{array}{r} 86.8 \\ 51.6 \\ 3.6 \\ 3.0 \\ \hline \end{array}$	$\begin{array}{r} 89.9 \\ 67.6 \\ 5.4 \\ -0.6 \\ \hline \end{array}$	$\begin{gathered} 10.6 \\ 3.1 \\ - \\ - \\ \hline \end{gathered}$	$\begin{gathered} 63.5 \\ 28.3 \\ - \\ - \end{gathered}$	$\begin{array}{r} 1598.6 \\ 2952.2 \\ 297.9 \\ 2833.9 \\ 63.6 \\ \hline \end{array}$
	Total North Sea	839.3	2425.0	1795.2	1494.3	621.4	157.1	145.0	163.4	13.7	91.8	7746.2
1969	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc }+ \text { VIId, e } \end{aligned}$	$\begin{gathered} \overline{-} \\ \overline{-} \\ 112.0 \\ \hline \end{gathered}$	$\begin{array}{r} 101.1 \\ 128.2 \\ 44.8 \\ 2223.7 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 736.2 \\ & 559.3 \\ & 154.6 \\ & 271.1 \\ & 161.8 \end{aligned}$	$\begin{array}{r} 109.4 \\ 136.0 \\ 29.1 \\ 13.0 \\ 8.8 \\ \hline \end{array}$	$\begin{array}{r} 52.4 \\ 61.9 \\ 13.5 \\ - \\ 5.3 \end{array}$	$\begin{array}{r} 103.9 \\ 66.9 \\ 18.1 \\ -. \\ 1.9 \\ \hline \end{array}$	$\begin{array}{r} 17.2 \\ 29.3 \\ 3.0 \\ - \\ 0.4 \end{array}$	$\begin{array}{r} 14.7 \\ 27.4 \\ 0.2 \\ - \\ 0.4 \end{array}$	$\begin{array}{r} 10.3 \\ 16.9 \\ 0.2 \\ - \\ \hline \end{array}$	$\begin{gathered} 4.5 \\ 20.4 \\ - \\ - \\ 0.02 \\ \hline \end{gathered}$	$\begin{array}{rr} 1 & 149.7 \\ 1 & 046.3 \\ 263.5 \\ 2 & 619.8 \\ 184.3 \\ \hline \end{array}$
	Total North Sea	112.0	2503.3	1883.0	296.3	133.1	190.8	49.9	42.7	27.4	25.1	5263.6
1970	```IVaW of \(2^{\circ} \mathrm{E}\) IVaE of \(2^{\circ} \mathrm{E}\) IVb IVb YH IVc + VIId,e```	898.1	$\begin{array}{r} 13.0 \\ 32.6 \\ 27.7 \\ 1118.7 \\ 4.2 \\ \hline \end{array}$	$\begin{array}{r} 930.9 \\ 68.7 \\ 203.5 \\ 718.1 \\ 81.6 \\ \hline \end{array}$	$\begin{array}{r} 695.3 \\ 23.5 \\ 63.4 \\ 17.6 \\ 83.8 \\ \hline \end{array}$	$\begin{array}{r} 98.7 \\ 9.6 \\ 9.3 \\ 2.2 \\ 5.4 \\ \hline \end{array}$	$\begin{array}{r} 39.4 \\ 5.4 \\ 3.3 \\ 0.6 \\ 1.6 \\ \hline \end{array}$	$\begin{array}{r} 49.3 \\ 4.1 \\ 6.6 \\ - \\ 1.0 \\ \hline \end{array}$	$\begin{aligned} & 5.7 \\ & 1.2 \\ & 0.9 \\ & \hline 0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 1.2 \\ 0.4 \\ - \\ 0.4 \\ \hline \end{array}$	$\begin{aligned} & 4.0 \\ & 8.1 \\ & - \\ & - \\ & 0.1 \end{aligned}$	$\begin{array}{r} 1846.3 \\ 154.4 \\ 315.1 \\ 2755.3 \\ 178.2 \\ \hline \end{array}$
	Total North Sea	898.1	1196.2	2002.8	883.6	125.2	50.3	61.0	7.9	12.0	12.2	5249.3
1971	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVb YH IVc +VIId,e	$\begin{array}{r} 136.7 \\ 14.0 \\ 533.0 \\ 0.3 \\ \hline \end{array}$	$\begin{array}{r} 818.3 \\ 95.4 \\ 2.1 \\ 3440.9 \\ 21.8 \\ \hline \end{array}$	$\begin{array}{r} 516.9 \\ 54.5 \\ 140.3 \\ 304.3 \\ 130.8 \end{array}$	$\begin{array}{r} 488.3 \\ 38.5 \\ 54.4 \\ 39.6 \\ 41.7 \\ \hline \end{array}$	$\begin{array}{r} 154.2 \\ 10.5 \\ 12.6 \\ 3 \overline{1} .1 \\ \hline \end{array}$	$\begin{gathered} 24.1 \\ 2.1 \\ - \\ \overline{0.7} \\ \hline \end{gathered}$	$\begin{array}{r} 28.8 \\ 1.4 \\ - \\ - \\ 0.3 \\ \hline \end{array}$	$\begin{gathered} 25.1 \\ 1.1 \\ - \\ - \\ \hline 0.6 \\ \hline \end{gathered}$		$\begin{aligned} & 9.8 \\ & 0.2 \\ & 2.1 \\ & \hline-\quad .3 \\ & 0.3 \end{aligned}$	$\begin{array}{r} 2202.2 \\ 217.6 \\ 211.5 \\ 4317.8 \\ 227.6 \\ \hline \end{array}$
	Total North Sea	684.0	4378.5	1146.8	662.5	208.3	26.9	30.5	26.8	-	12.4	7176.7
1972	$\begin{aligned} & \text { IVaW of } 2^{\circ} \mathrm{E} \\ & \text { IVaE of } 2^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { IVb YH } \\ & \text { IVc + VIId,e } \end{aligned}$	750.4	$\begin{array}{r} 338.9 \\ 75.1 \\ 25.2 \\ 2896.6 \\ 4.8 \\ \hline \end{array}$	$\begin{array}{r} 830.1 \\ 91.0 \\ 46.4 \\ 337.9 \\ 135.1 \end{array}$	$\begin{array}{r} 176.8 \\ 17.8 \\ 98.8 \\ 21.1 \\ 29.3 \\ \hline \end{array}$	$\begin{array}{r} 88.6 \\ 5.8 \\ 20.5 \\ 6.4 \\ 9.3 \\ \hline \end{array}$	$\begin{array}{r} 19.3 \\ 0.7 \\ 6.7 \\ 1.2 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 4.1 \\ & 0.1 \\ & 0.6 \\ & 0.2 \\ & \hline \end{aligned}$	$\overline{\overline{0} .2}$	$\begin{aligned} & 0.5 \\ & -0.6 \\ & - \\ & \hline \end{aligned}$	0.4	$\begin{array}{r} 1458.7 \\ 190.5 \\ 199.0 \\ 4013.8 \\ 183.5 \\ \hline \end{array}$
	Total North Sea	750.4	3340.6	1440.5	343.8	130.6	32.9	5.0	0.2	1.1	0.4	6045.5
1973	```IVaW of \(2^{\circ} \mathrm{E}\) IVaE of \(2^{\circ} \mathrm{E}\) IVb IVb YH IVc + VIId.e```	$\begin{gathered} - \\ - \\ 289.4 \\ \hline \end{gathered}$	$\begin{array}{r} 52.5 \\ 0.3 \\ 242.5 \\ 2070.5 \\ 2.2 \\ \hline \end{array}$	$\begin{array}{r} 742.1 \\ 16.2 \\ 180.1 \\ 36.5 \\ 43.3 \\ \hline \end{array}$	$\begin{array}{r} 452.6 \\ 23.1 \\ 39.0 \\ 29.4 \\ 115.1 \\ \hline \end{array}$	$\begin{array}{r} 58.0 \\ 6.3 \\ 28.3 \\ 2.6 \\ 55.0 \\ \hline \end{array}$	$\begin{array}{r} 39.5 \\ 7.2 \\ 4.7 \\ 0.5 \\ 9.4 \end{array}$	$\begin{array}{r} 20.3 \\ 1.0 \\ 7.2 \\ 0.2 \\ 1.9 \\ \hline \end{array}$	$\begin{aligned} & 2.6 \\ & 0.3 \\ & \hline- \\ & 0.3 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & - \\ & 0.1 \end{aligned}$	0.6	$\begin{array}{r} 1368.7 \\ 55.2 \\ 501.8 \\ 2755.4 \\ 225.5 \\ \hline \end{array}$
	Total North Sea	280.4	2368.0	1344.2	659.2	150.2	59.3	30.6	3.7	1.4	0.6	4906.6
1974	IVaW of $2^{\circ} \mathrm{E}$ IVaE of $2^{\circ} \mathrm{E}$ IVb IVb YH IVc+VIId,e Unspecified ${ }^{\text {I }}$	$\begin{array}{r} 61.8 \\ 5.7 \\ 925.1 \end{array}$	$\begin{array}{r} 154.2 \\ 131.6 \\ 51.9 \\ 493.5 \\ 3.8 \\ 2.9 \\ \hline \end{array}$	$\begin{array}{r} 93.3 \\ 24.1 \\ 421.0 \\ 132.1 \\ 23.8 \\ 23.7 \\ \hline \end{array}$	$\begin{array}{r} 106.9 \\ 10.8 \\ 173.7 \\ 5.7 \\ 20.1 \\ 9.8 \\ \hline \end{array}$	$\begin{array}{r} 91.9 \\ 1.0 \\ 12.1 \\ -8.3 \\ 0.3 \\ \hline \end{array}$	$\begin{gathered} 34.1 \\ \overline{15.2} \\ \overline{1.2} \\ 0.8 \end{gathered}$	$\begin{gathered} 17.6 \\ - \\ 3.0 \\ \hline 0.1 \\ 0.2 \\ \hline \end{gathered}$	$\begin{aligned} & 4.3 \\ & 0.2 \\ & -\overline{0.2} \\ & -\quad \end{aligned}$	$\begin{aligned} & 1.4 \\ & 0.1 \\ & 0.2 \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & \overline{0.1} \end{aligned}$	$\begin{array}{r} 566.5 \\ 173.3 \\ 67.4 \\ 1556.4 \\ 57.5 \\ 38.1 \\ \hline \end{array}$
	Total North Sea	992.6	837.9	718.0	327.0	114.0	51.3	20.9	4.7	1.7	1.1	3069.2

1) Soviet catches split according to age composition of adults in Division IVb.

Total North Sea: Calculated stock in number $x 10^{-9}$

Winter rings	Year	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959
0	7.26	4.72	4.10	5.68	6.90	7.69	9.10	8.07	7.70	4.76	21.37	5.64	7.82	
1	5.22	6.57	4.27	3.71	5.14	6.24	6.96	8.09	7.10	6.81	4.22	19.07	5.01	
2	3.80	4.73	5.99	3.86	3.34	4.22	3.98	5.32	5.93	4.46	4.56	2.41	13.19	
3	2.85	3.05	3.96	4.97	3.04	2.53	2.76	3.03	3.37	3.53	2.27	2.57	1.21	
4	3.56	2.10	2.07	2.87	3.50	1.99	1.74	1.64	1.66	2.07	2.04	1.36	1.38	
5	2.13	2.57	1.55	1.41	2.03	2.06	1.29	1.21	0.96	1.04	1.39	1.24	0.93	
6	2.67	1.43	1.78	1.12	1.00	1.30	1.22	0.90	0.85	0.55	0.71	0.93	0.68	
7	1.35	1.69	0.86	1.11	0.81	0.68	0.78	0.74	0.59	0.55	0.31	0.44	0.70	
8	1.76	0.81	1.22	0.52	0.77	0.60	0.43	0.52	0.44	0.42	0.40	0.15	0.33	
Juvenile, 0+1	12.48	11.29	8.37	9.39	12.04	13.93	16.06	16.16	14.80	11.57	25.59	24.71	12.83	
Adult, 2-8	18.12	16.38	17.43	15.86	14.49	13.38	13.20	13.36	13.80	12.62	11.68	9.10	18.42	

Winter rings	1960	1961	1962	1963	1964	1965	1966	1967	1968	1968	1970	1971	1972
0	1.98	16.72	7.33	8.73	10.95	5.71	5.29	7.58	7.62	3.82	9.03	7.00	4.96
1	7.07	1.63	13.92	6.50	7.48	9.40	5.02	4.43	6.24	6.10	3.35	7.31	5.69
2	3.01	4.13	1.14	10.56	4.68	4.00	5.46	3.23	2.42	3.35	3.15	1.90	2.49
3	7.27	1.64	1.95	0.77	6.75	2.60	1.58	2.51	1.81	0.50	1.26	0.96	0.64
4	0.63	4.71	1.03	1.01	0.53	3.97	1.10	0.68	0.99	0.24	0.18	0.30	0.25
5	0.77	0.41	2.88	0.61	0.77	0.32	1.67	0.57	0.27	0.31	0.09	0.04	0.08
6	0.62	0.54	0.26	1.58	0.48	0.41	0.16	0.67	0.23	0.09	0.10	0.04	0.01
$?$	0.38	0.45	0.34	0.11	1.22	0.34	0.23	0.10	0.23	0.07	0.04	0.03	0.00
8	0.52	0.23	0.35	0.17	0.08	0.88	0.20	0.14	0.02	0.06	0.03	0.03	0.00
Juvenile, $0+1$	9.05	18.35	21.25	15.23	18.43	15.11	10.31	12.01	13.86	9.92	12.38	14.31	10.65
Adult, $2-8$	13.20	12.11	7.95	14.81	14.51	12.52	10.35	7.90	5.97	4.62	4.85	3.30	3.47

Appendix Table 11

Total North Sea: Calculated fishing mortality

nt	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959
0							0.02	0.03	0.02	0.02	0.01	0.02	
1					0.09	0.13	0.17	0.21	0.37	0.30	0.46	0.27	0.41
2	0.12	0.08	0.08	0.14	0.18	0.32	0.40	0.36	0.42	0.57	0.47	0.59	0.50
3	0.20	0.29	0.22	0.25	0.32	0.27	0.42	0.50	0.39	0.45	0.41	0.52	0.55
4	0.22	0.20	0.28	0.25	0.43	0.33	0.26	0.44	0.36	0.30	0.40	0.29	0.48
5	0.29	0.27	0.23	0.24	0.35	0.43	0.27	0.25	0.46	0.29	0.30	0.49	0.31
6	0.36	0.41	0.37	0.22	0.28	0.41	0.39	0.31	0.33	0.46	0.37	0.18	0.48
$?$	0.41	0.22	0.40	0.26	0.20	0.35	0.29	0.42	0.24	0.22	0.67	0.19	0.20
8	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.40	0.30
$\mathrm{F}_{\mathrm{W}} \geq 2$	0.24	0.21	0.20	0.22	0.31	0.34	0.36	0.39	0.39	0.44	0.42	0.45	0.48

Year Winter rings	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	19'/2
0	0.11	0.08	0.02	0.06	0.05	0.03	0.08	0.09	0.12	0.03	0.11	0.11	0.17
1	0.43	0.25	0.18	0.23	0.54	0.44	0.34	0.50	0.52	0.56	0.47	0.98	0.95
2	0.51	0.65	0.29	0.35	0.49	0.86	0.68	0.48	1.47	0.88	1.09	0.99	0.93
3	0.33	0.37	0.56	0.28	0.43	0.76	0.71	0.84	1.92	0.95	1.32	1.26	0.83
4	0.32	0.39	0.42	0.18	0.35	0.77	0.56	0.84	1.07	0.86	1.33	1.25	0.80
5	0.26	0.38	0.49	0.15	0.23	0.63	0.82	0.80	0.96	1.05	0.85	1.09	0.57
6	0.21	0.37	0.73	0.16	0.23	0.49	0.37	0.90	1.06	0.83	1.07	2.23	0.52
7	0.42	0.15	0.59	0.23	0.25	0.44	0.36	1.30	1.31	0.96	0.26	2.48	0.06
8	0.30	0.30	0.30	0.30	0.40	0.67	0.69	0.90	0.90	0.70	0.70	0.70	0.70
$F_{w} \geq 2$	0.36	0.47	0.48	0.30	0.41	0.77	0.68	0.70	1.49	0.90	1.14	1.12	0.89

4

[^0]: * The report has not been published in that series.
 ** These preliminary catch figures for 1972 were subsequently amended at later meetings of the Working Group, see Appendix Table 2.

[^1]: * Subsequent data suggest that the 1971 year class is considerably weaker than this initial estimate, see Appendix Table 10.

[^2]: * Preliminary.

[^3]: * Excluding 126 tons from the German lugger fishery.

[^4]: 1) Soviet catches split according to age composition of adults in IVb
[^5]: * Preliminary

