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Contaminants in marine organisms: Pooling strategies for monitoring mean
concentrations

1 INTRODUCTION

Samples of marine organisms collected for contaminant monitoring are often pooled before being
chemically analysed. The main reasons for pooling samples are:

1) to obtain a sufficient quantity of tissue to make the chemical analysis possible;

2) to reduce the overall cost of chemical analyses;

3) to improve the precision of the estimated mean contaminant concentration in a population
by increasing the sample size without increasing the number of chemical analyses.

However, there are several questions associated with pooling, including:

• what is an appropriate pooling strategy?

• how should data from pools be statistically analysed?

• how should results derived from pooled data be interpreted?

This document is an introduction to the statistical aspects of pooling. Unfortunately, it is not
possible to consider all the situations in which pooling might arise, nor to describe the many types
of statistical analysis that might be appropriate. The scope is too large, and we do not know all
the answers. Here consideration is given to the relatively simple case of estimating the mean
concentration of a contaminant in a population; it shows the typical problems encountered in
devising an appropriate pooling strategy and statistically analysing data from pools. In particular,
it shows how the choice of the number of pools and the number of individuals in each pool allows
a balance to be made of the precision of the estimated mean concentration against the sampling
and analytical costs incurred in obtaining that estimate.

Although the level of statistical sophistication increases through the text (notably between Sections
3 and 4), it is hoped that all readers will understand the basic ideas and be able to use this
document to develop sensible pooling strategies. Many readers will be able to develop the theory
for their own particular monitoring problems; others will no doubt correct our mistakes and direct
us to the literature we have missed.

Much of the following material was developed by the ICES Working Group on Statistical Aspects
of Trend Monitoring (ICES, 1987, 1988, 1989, 1990, 1991a, 1992), where pooling questions were
addressed as part of the analysis of data collected in the Cooperative ICES Monitoring Studies
Progranune (CMP) for contaminants in fish and shellfish.

The contents of this document are as follows:

• Section 2 discusses some practical and logistical problems associated with sample
collection and pre-treatment.
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• Section 3 develops the basic statistical theory of pooling for estimating the mean
concentration of a contaminant in a population. For simplicity, the individual sample
weights are assumed to be the same. It is shown how to formulate objective strategies for
choosing the number of pools and the number of individuals in each pool and apply the
results to a real example.

• Section 4 generalizes the theory to allow for varying individual sample weights.

• Section 5 provides a simple overview and summarizes important points that make the
statistical analysis of data from pools straightforward.

• Annexes I to 3 briefly describe extensions to the statistical theory.

2 PRACTICAL ASPECTS OF POOLING

Uthe and Chou (1987) discussed various practical problems that must be considered when pooling
organisms. Some problems arise during sample collection, for example, the difficulty of filling
sample quotas. Other problems arise after the samples have been collected, for example, sample
pre-treatment, tissue quantity, homogenization and chemical analysis. The main points are:

I) Appropriate guidelines for the collection and storage of each monitoring organism and/or
its tissue(s) should be specified and followed (cf. ICES, 1990, Annex 4).

2) Preparing pools in the field is not recommended due to the high risk of contamination by
external sources and the time required for autopsy and homogenization. Large samples
may cause problems if holding and freezer space are limited.

3) Pooling may increase overall costs. Dissection and preparation must generally be carried
out under conditions designed to reduce the risk of contamination. Although the number
of chemical analyses may be decreased when individuals are pooled, the number of
dissections may increase; this can greatly increase the preparation time, for example, when
dissecting muscle from fish.

4) Preparation time is also increased if individual tissues must be homogenized before taking
a portion for pool preparation. This procedure is generally necessary for tissues, such as
fish livers, where tissue weights may vary considerably between individuals. Further
problems arise if the total mass of tissue exceeds the capacity of the homogenizer.

5) Homogenizing different tissues from a single individual or the same tissue from different
individuals involves dealing with a wider range of concentrations than would occur when
homogenizing a single tissue from a single individual. Harris (1978) describes the
difficulties of achieving adequate mixing with materials showing large differences in
concentrations. In general, the extra component of mixing variance should be shown to
be acceptably small.

6) As the time required for sample preparation increases, so does the risk of contamination
by external sources, for example, by atmospheric fall-out. There is also the risk of
contamination from the homogenizer itself.
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3 BASIC STATISTICAL THEORY FOR POOLING

3.1 Introduction

This section develops the statistical framework for discussing pooling. Throughout, the assumed
objective is to estimate the mean concentration of a contaminant in some population of interest and
the precision of this estimate. To do this, a number of individuals are sampled at random from the
population. The individuals may consist of the whole organism, a particular tissue such as the
muscle, or a particular organ such as the liver.

We shall make two assumptions to simplify the theory:

1) The weights of all the individuals are the same. The case in which individual weights vary
is discussed in Section 4.

2) There is no analytical error, Le., all concentrations are measured exactly. This assumption
is clearly unrealistic and is relaxed in Section 3.8.

3.2 Individuals Analysed Separately

We begin by considering the simple case in which I individuals are sampled at random and are
each analysed separately. Let x; be the concentration of a contaminant in the ith individual. If /l
is the mean concentration in the population, then we can write

(1)

where 8; is the deviation of the ith concentration from /l. The 8; have zero mean and variance a";
a" is known as the population variance.

Since the I individuals are analysed separately, we obtain I observations Xl ... Xl . The mean
concentration of the contaminant in the population, /l, is estimated by the average of these
observations

-
X =

1 I

-.Ex;.
I ;-1

(2)

The mean and variance of xare found as follows. From equations (1) and (2),

1 I

X = - .Ex;
I i.1

1 I

= -.E (/l + E)
I ;.1

1 I

= /l + -.E E;.
I i .. j

The 8, have zero mean, so the mean of x is /l. Further, the I individuals are sampled at random,
so the deviations 8; are independent and the variance of their sum is given by the sum of their
variances, that is l
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I

= LVar[E,] ~ lei'.
j .. !

Hence, since

Var[kE,] = k'Var[E,] ~ k'ei',

where k is any constant, the variance of x is

Var[x]

3.3 Individnals Homogenized into One Pool

= Var [~tE']I j .. 1

-.!, Var [t E,]
I '-I
~Iei'
I'

ei'
T

Now suppose that the I individuals are homogenized into one pool, so we obtain one
observation-the pool concentration-denoted by X. If W is the weight of the individuals (assumed
constant), then

X=

I

LWx,
i .. 1

I

LW
i= I

1 I

-Lxi = x.
I j=}

By the same arguments as before, the mean of X is I-' and

ei'
Var[X] = j'

The important thing to note is that X = xand that Var[X] = Var[x]. Thus, we get the same
estimate of the mean concentration by analysing the individuals separately or by analysing them
in one big pool. Further, the variances of the two estimators are the same, even though the
estimators have been obtained in different ways,

3.4 Degrees of Freedom

If the variances ofx and X are the same, and fewer chemical analyses are needed to obtain X, then
why not routinely pool all individuals? The reason is that the population variance ei' is unknown
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and this too must be estimated from the data. If the individuals are homogenized into one pool,
then although it is possible to estimate the mean concentration, there is no information about the
scatter of concentrations around the mean, so no estimate of e? is possible. Statistically, there are
no degrees of freedom in the data to estimate e? Consequently, the variance of X cannot be
estimated and the confidence interval for J.!, the mean concentration of the population, is infinite.

However, if the individuals are analysed separately, there is information on the scatter of
concentrations. Specifically, there are I - 1 degrees of freedom in the data to estimate e? In fact,
e? is estimated to be

I

S' _1_L (X
i

- x?
I - 1 i.j

and the variance of xis estimated to be

Confidence intervals for J.! can now be constructed. For example, assuming the concentrations Xi

are normally distributed, a 95 % confidence interval for J.! is given by

~
x ± trx,l-l j7 '

where (a. I-I is the ex percentile of a (-distribution on I - 1 degrees of freedom and ex is given by

1 - 0.95ex ~ 1 - ~ 0.975,
2

(see, for example, Meyer, 1965).

3.5 A More General Pooling Strategy

Of course, the choice is not simply between individuals and one complete pool. We now consider
the more general situation in which the individuals are processed as P pools each consisting of I
homogenized individuals. Throughout, it is assumed that I is the same in each pool; this is a
sensible strategy, since the variance of each pool should be identical, allowing simple statistical
analyses. The situation in which there are unequal numbers of individuals in each pool is discussed
in Annex 2.

Let xpi be the contaminant concentration of the ith individual in the pth pool and write

Then Xp , the contaminant concentration of the pth pool, is given by

1 I

-LXpi'
I i.'
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As before,

so the mean of Xp is J.l and (assuming that individuals have been allocated randomly to pools) the
variance of Xp is

[
II ] ri'Var[X]~Var-I>· ~-.

P I i-l pi I

The mean contaminant concentration of the population is now estimated by the average
concentration of the pools

The mean value of X is J.l and

Var[X]

Here, there are P observations, so the population variance ri' can be estimated by

P

S2 ~ _I_L(X - X)2
P-I p - I p

on P - I degrees of freedom. The variance of X is then estimated to be S2 / PI and a 95 %
confidence interval for J.l is given by

X± ~
(0.975. P-I JN'

3.6 Choice of Number of Individuals in Each Pool and Number of Pools

An important problem is how to choose suitable values of P and I. Clearly, an important objective
is to make the confidence interval for J.l suitably small.

In general, for a given total number of individuals, the confidence interval for J.l gets wider as the
number of pools decreases. For example, the following table shows how the 95 % confidence
interval for J.l changes as 50 individuals are pooled with increasing severity (where the widths of
the confidence intervals are expressed relative to that when there is only one individual in each
pool). In particular, this table shows the sensitivity of confidence intervals when there are few
degrees offreedom. Reducing the number of pools from 50 to 10 produces only a 13 % increase
in the width of the confidence interval. A decrease by the same factor from 10 to 2 pools produces
a lOa x (6.32 - 1.13) / 1.13 = 460% increase.
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Number of Number in Relative
pools P each pool I confidence

interval

50 1 1.00

25 2 1.03

10 5 1.13

5 10 1.38

2 25 6.32

1 50 00

This table suggests that the best strategy is to have no pooling, or only a limited amount of
pooling. However, so far, no account has been taken of the relative costs of collecting samples
and conducting chemical analyses. For example, suppose that the cost of collection is 1 unit per
individual and of chemical analysis is 5 units per pool. Then the table above can be extended to
give

P I C.l. Cost

50 1 1.00 300

25 2 1.03 175

10 5 1.13 100

5 10 1.38 75

2 25 6.32 60

1 50 00 55

There is clearly a trade-off between small confidence intervals and low costs. The choice of P and
I therefore involves finding suitable values that balance these two criteria.

One solution is to set a target for the total costs, and then find the combination of I and P that
provides the narrowest confidence interval. Formally, the objective is to find values of I and P that
minimize

tr;;
o.P-1 JH

subject to the constraint

PIc
l

+ PCz ,,; C

where C1 and Cz are the costs of collecting (and dissecting) an individual and analysing a pool,
respectively, and c is the target total cost.

For example, the tables below are based on costs c1 = 1, Cz = 5 and a population variance
ci' = 1. The left-hand table shows the total cost of sampling and analysis for different
combinations of I and P; the right-hand table shows the corresponding 95 % confidence interval.
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I

1

2

3

4

5

6
7

8

Costs Confidence Interval

p p

2 3 4 5 6 7 2 3 4 5 6 7

12 18 24 30 36 42 8.98 2.48 1.59 1.24 1.05 0.92

14 21 28 35 42 49 6.35 1.76 1.12 0.88 0.74 0.65

16 24 32 40 48 56 5.19 1.43 0.92 0.72 0.61 0.53

18 27 36 45 54 63 4.49 1.24 0.80 0.62 0.52 0.46

20 30 40 50 60 70 4.02 1.11 0.71 0.56 0.47 0.41

22 33 44 55 66 77 3.67 1.01 0.65 0.51 0.43 0.38

24 36 48 60 72 84 3.40 0.94 0.60 0.47 0.40 0.35

26 39 52 65 78 91 3.18 0.88 0.56 0.44 0.37 0.33

Although this information would usually be presented graphically, it is presented here in tabular
form to make the choice of I and P easier to follow.

Suppose the total cost of sampling and analysis must be no more than 40 units. In the tables, the
values that satisfy this constraint are shown in boldface. The narrowest confidence interval lies at
the bottom of one of the bold columns. Here, given the 40 unit cost constraint, the narrowest
confidence interval is ± 0.71 and is achieved when I = 5 and P = 4.

A second way of choosing I and P is to set a target for the width of the confidence interval and
to meet this target as inexpensively as possible. Suppose, in the example above, we want the
confidence interval to be smaller than ± 1.0. Now we wish to minimize the costs

subject to

t0975.P_1 J~ ,; 1.0.

The tables of costs and confidence intervals are repeated below. In the confidence interval table,
each value less than 1.0 is shown in boldface; the corresponding costs are also shown in bold.
Thus, the least expensive way (32 units) of achieving a confidence interval less than ± 1.0 is to
take I = 3 and P = 4.
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Costs Confidence Interval

I P P

2 3 4 5 6 7 2 3 4 5 6 7

1 12 18 24 30 36 42 8.98 2.48 1.59 1.24 1.05 0.92

2 14 21 28 35 42 49 6.35 1.76 1.12 0.88 0.74 0.65

3 16 24 32 40 48 56 5.19 1.43 0.92 0.72 0.61 0.53

4 18 27 36 45 54 63 4.49 1.24 0.80 0.62 0.52 0.46

5 20 30 40 50 60 70 4.02 1.11 0.71 0.56 0.47 0.41

6 22 33 44 55 66 77 3.67 1.01 0.65 0.51 0.43 0.38

7 24 36 48 60 72 84 3.40 0.94 0.60 0.47 0.40 0.35

8 26 39 52 65 78 91 3.18 0.88 0.56 0.44 0.37 0.33

In summary, the two basic strategies for choosing the number of pools and the number of
individuals in each pool are:

• to obtain the narrowest confidence interval for a given cost, or

• to minimize the cost of obtaining a given width confidence interval.

However, this is not the end of the story. It is important to consider whether the narrowest
confidence interval that can be obtained for a given cost is narrow enough; if not, then either more
money is required, the objectives of the project should be changed, or the work should not be
done at all. Similar arguments apply if the cost of obtaining a given width confidence interval is
outside the budget of the project.

3.7 More Complicated Cost Functions

So far, it has been assumed that the costs of sampling and analysis are directly proportional to the
number of individuals collected and the number of analyses, respectively. In practice, this simple
rule may not always apply and more complicated cost functions might be required.

For example, collecting many individuals might require more than one field trip and analysing
many pools might require more laboratory facilities or analysts. Suppose that N_ is the maximum
number of individuals that can be collected on a single field trip and P_ is the maximum number
of analyses that can be made without having to increase the resources in a laboratory. Then, if C3

is the cost of a field trip and C4 is the cost of increasing resources, the cost function could be
extended to

[ PI-I] [P-l]PIc, + PC2 + Integer 1 + c3 + Integer -p--. c4 .

Nmax max

3.8 Analytical Error

In practice, contaminant concentrations are measured with analytical error and this affects both the
choice of suitable values of I and P and the estimation of the mean concentration of the population.
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Inevitably, the statistical theory is slightly more complicated.

The measured concentration of the pth pool can be written

where

is the true concentration of the pth pool and ap is the error contributed by the chemical analysis.
We shall assume that the analytical errors ap are normally distributed with zero mean (Le., the
analytical method is unbiased) and variance cr., known as the analytical variance.

Since

it follows that

Thus, the mean of Xp is Jl and the variance of Xp is

Var[X] = Var [Jl + !.EE + a ]
P I j,d pI P

= Var [!'EEPi ] + Var[ap ]

I i.'
d' 2

= 7 + Uao

The mean concentration of the population is again estimated by the average concentration of the
pools

- I P

X = -LX.
p p., p

-
The mean value of X is Jl and

Var[X] d'
PI

10

2
(J,

+ p.



In this case, neither the population variance d' nor the analytical variance a; can be estimated
separately, because it is not possible to determine how much of the scatter in the observations i§
due to population variability and how much to analytical variability. However, the variance of X
can still be estimated to be

P

I ~(X X)2
P(P - I)~ p ,

on P - I degrees of freedom, and a 95 % confidence interval for p. is

X± t [ 1O.975.P-! P(P_

Again, it is necessary to choose values of I and P that are optimum in some sense. Both the
methods of Section 3.6 can be generalized. For example, values of I and P that minimize the
width of the confidence interval around p. subject to some total cost constraint are found by
minimizing

~
d' (fat _ +_

a,P-! PI P

subject to

PIc! + PC2 ,,; c.

3.9 An Application

The above results will now be used to develop a pooling strategy for estimating the mean
concentration of zinc in mussels (Mytilus edulis) at a Swedish laboratory. The example and the
sources of the data are described in detail by van der Meer (1990).

The first thing to note is that estimates of the population and analytical variances are required to
choose optimum values of I and P. The best way of estimating these variances is by conducting
a pilot study, such as the one described in Section 3.10, below. However, variance estimates
obtained in previous studies are used here.

First, the analytical variance a; was estimated using data from three Swedish laboratories, some
of which were reported in an ICES intercalibration exercise (Berman and Boyko, 1986). Based
on six replicate analyses, the following estimates of a; were obtained:
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Laboratory Sample S2
a

1 a 26.7

1 b 25.5

2 a 21.4

2 b 80.0

3 a 110.0

Average 52.7

The analytical variance was estimated to be the average of these values

s; = 52.7.

TypicaIly, analytical variances might be expected to vary between laboratories, so averaging
variances across laboratories (as above) must be done with some caution. For example, if we were
trying to establish a pooling strategy for laboratory 1, then it would be sensible to use only
variance estimates from that laboratory. However, sometimes there are not adequate data to do
this, so averaging variances across laboratories is a reasonable way of obtaining a rough estimate
of the likely analytical variance.

The combined population and analytical variance ,;. + ~ was estimated from observed
concentrations in individual mussels coIlected by Sweden as part of the ICES CMP. The foIlowing
table shows estimates from several areas and years. Zinc concentrations were expressed on a dry
weight basis in mg kg-' . The number of observations on which each estimate is based is denoted
by n.

Year Area n S2 + S2a

1981 43G1 20 510
1981 46G1 20 1156
1982 43G1 20 5357
1982 46G1 13 3844
1983 43G1 25 871
1983 46G1 21 3326
1984 43G1 25 1778
1984 46G1 25 4545

1986 46G1 25 541
1987 43G1 25 442
1987 46G1 25 836
1988 43G1 25 483

1988 46G1 25 7316

Weighted average 2311.8

12



The combined population and analytical variances were estimated by the weighted average of these
values to be

SZ + s~ = 2311.8.

The average zinc concentrations were similar in the two data sets (l06 mg kg-' in the CMP data,
152 mg kg- ' in the intercalibration data) so it is plausible that the variance estimates from the two
studies can be combined. Thus, the population variance is estimated, by subtraction, to be

SZ = 2311.8 - 52.7 = 2259.1.

Cost estimates were based on a personal communication from N. Green of the Norwegian Institute
for Water Research, Oslo. The handling costs (sampling, dissection, etc.) were estimated to be
25 Norwegian Kroner per individual (i.e., Cl = 25). The chemical costs were estimated to be 1500
Norwegian Kroner per analysis (i.e., Cz = 1500).

The Norwegian pooling scheme usually consists of three pools each containing 50 mussels. The
total cost is therefore

50 x 3 x 25 + 3 x 1500 = 8250 Kr.

The Swedish scheme consists of 25 individual mussels, giving a total cost of

1 x 25 x 25 + 25 x 1500 = 38125 Kr.

However, 95 % confidence limits are given by

and

± 4.303 2259.1
150

52.7
+--

3
± 24.6 mg kg- '

± 2.064 2259.1
+

25
52.7
2S

± 19.8 mg kg-'

for Norway and Sweden, respectively. Thus, based on these figures, the Norwegian pooling
scheme is less precise than the Swedish scheme, although this precision is achieved at
approximately 20 % of the cost.

To find out whether there is an alternative to the Norwegian pooling scheme, giving smaller
confidence intervals without costing more, we need to minimize

subject to

PIc, + Pcz ,,;; C

where
,; = 2259.1,

13

a; = 52.7



and
CI = 25, c2 = 1500, C = 8250.

Table 1 shows costs and confidence limits for a range of values of P and I. The values for which
costs are below 8250 Kr are shown in bold. The smallest confidence limits for which the costs are
below 8250 Kr are ± 19.8 mg kg-I, achieved when 1= 22 and P = 4. Thus, by coincidence, it
is possible to recreate the confidence limits of the Swedish pooling scheme at the cost of the
Norwegian pooling scheme.

Table 1 Costs and confidence intervals associated with various levels of pooling.

Costs Confidence Intervals

P P

I 2 3 4 5 6 2 3 4 5 6

1 3050 4575 6100 7625 9150 432.0 119.4 76.5 59.7 50.5

2 3100 4650 6200 7750 9300 308.9 85.4 54.7 42.7 36.1

3 3150 4725 6300 7875 9450 255.0 70.5 45.2 35.2 29.8

4 3200 4800 6400 8000 9600 223.3 61.7 39.5 30.9 26.1

5 3250 4875 6500 8125 9750 210.8 55.8 35.7 27.9 23.6

6 3300 4950 6600 8250 9900 186.1 51.5 33.0 25.7 21.7

7 3350 5025 6700 8375 10050 174.1 48.1 30.8 24.1 20.3

8 3400 5100 6800 8500 10200 164.5 45.5 29.1 22.7 19.2

9 3450 5175 6900 8625 10350 156.6 43.3 27.7 21.6 18.3

10 3500 5250 7000 8750 10500 150.0 41.5 26.6 20.7 17.5

11 3550 5325 7100 8875 10650 144.3 39.9 25.6 19.9 16.9

12 3600 5400 7200 9000 10800 139.5 38.6 24.7 19.3 16.3

13 3650 5475 7300 9125 10950 135.2 37.4 23.9 18.7 15.8

14 3700 5550 7400 9250 11100 131.5 36.3 23.3 18.2 15.4

15 3750 5625 7500 9375 11250 128.1 35.4 22.7 17.7 15.0

16 3800 5700 7600 9500 11400 125.1 34.6 22.2 17.3 14.6

17 3850 5775 7700 9625 11550 122.4 33.8 21.7 16.9 14.3

18 3900 5850 7800 9750 11700 119.9 33.2 21.2 16.6 14.0

19 3950 5925 7900 9875 11850 117.7 32.5 20.8 16.3 13.7

20 4000 6000 8000 ooסס1 12000 115.6 32.0 20.5 16.0 13.5

21 4050 6075 8100 10125 12150 113.7 31.4 20.1 15.7 13.3

22 4100 6150 8200 10250 12300 112.0 31.0 19.8 15.5 13.1

23 4150 6225 8300 10375 12450 110.4 30.5 19.5 15.3 12.9

24 4200 6300 8400 10500 12600 108.9 30.1 19.3 15.0 12.7

25 4250 6375 8500 10625 12750 107.5 29.7 19.0 14.9 12.6

30 4500 6750 9000 11250 13500 101.7 28.1 18.0 14.0 11.9

35 4750 7125 9500 11875 14250 97.3 26.9 17.2 13.4 11.4

40 5000 7500 10000 12500 15000 93.9 26.0 16.6 13.0 11.0

45 5250 7875 10500 13125 15750 91.1 25.2 16.1 12.6 10.6

50 5500 8250 11000 13750 16500 88.9 24.6 15.7 12.3 10.4

55 5750 8625 11500 14375 17250 87.1 24.1 15.4 12.0 10.2
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3.10 Estimating the Popnlation and Analytical Variances

Estimates of the population and analytical variances are required to find suitable values of I and
P. The best way to estimate these variances is to conduct a pilot study. Other methods include
using variance estimates published elsewhere or estimates obtained in previous studies (cf. Section
3.9). However, there is no guarantee that these estimates will be appropriate to the current study.

A simple example of a pilot study is provided here. Suppose we take P pools with I individuals
in each. Suppose we then take R subsamples from each pool and measure the contaminant
concentration of each subsample. Let Xp, be the measured concentration of the rth subsample from
the pth pool, let

be the average of these measurements for the pth pool and let

be the average of all the measured concentrations.

The analytical variability ~ is estimated, from the scatter of replicate measurements made on each
pool, to be

The population variance a'- iSJ:stimated from the scatter of measurements made on different pools,
as follows. The variance of Xp can be shown to be a'- / I + ~ / R, which is estimated by

1 p - - 2-E(X -X).
P - 1p.1 P

Hence, a'- is estimated to be

p I 2
I (- -)2 SS2 = --E X - X _ _ a.

P - 1p-1 P R

Sometimes S2 is negative, in which case it is usual to replace it with zero.
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For example, suppose P = 20, I = 10, R = 2 and the measured concentrations ~, are given in
the following table:

r

p I 2

1 136.1 139.0

2 114.9 128.6

3 102.6 lOLl

4 102.8 91.5

5 120.6 99.7

6 79.9 81.8

7 106.3 107.4

8 137.0 122.8

9 102.1 104.4

10 100.4 103.3

11 115.2 127.2

12 96.4 110.5

13 91.4 97.1

14 104.6 97.8

15 104.5 100.2

16 71.9 87.3

17 104.1 99.8

18 94.7 80.8

19 113.8 121.4

20 105.0 105.1

Then, the variance estimates are s; = 48.2 and s' = 1.95 xla'.

It is not possible to recommend values of P, I and R appropriate for all pilot studies, although
generally, the larger the better. However, some rough guidelines are as follows. The values of I
and R are the least important. A suitable value of I should strike a balance between having to
collect too many individuals and not having enough material for the chemical analyses. R should
be at least 2, to ensure some replicate analyses. The value of P is the most important, because the
degrees of freedom for estimating a' and 0; are P - 1 and peR - 1), respectively. Thus, with a
'large' P, there will be sufficient degrees of freedom for estimating both variances whatever the
values of R and I. As a rough guide, P = 20 will estimate the quantities 0; and a' / I + 0; / R
to within approximately 0.5 and 1.75 times their true values. Usually, this will give the order of
magnitude of a' and 0;, which should be sufficient for the costing analysis. If the estimates of a'
and 0; are found to be unsatisfactory, the pilot study could be repeated with a larger P.

A disadvantage of the pilot study described above is that it implicitly assumes that the mixing of
the pools and the subsampling are perfect, Le., that the pooled individuals have really been
homogenized. This is probably not a realistic assumption. Mixing variances are discussed in more
detail in Annex 1.
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4 DIFFERENT WEIGHTS OF TISSUES IN POOLS

4.1 Introduction

So far, it has been assumed that the weights of all the individuals in a pool are identical,
presumably because a fixed weight of tissue has been taken from each individual for analysis. This
section develops the more complicated theory required if the individual weights vary. For
convenience, the weight of tissue taken from an individual is called the 'weight of the individual' .

Assume that individuals are allocated to pools at random and let Wpi be the weight of the ith
individual in the pth pool. The true contaminant concentration of the pth pool is then

and the measured concentration is

I

LWpi
i= 1

(3)

The important thing to note is that the pool concentration depends on the individual weights.
Consequently, the choice of pooling strategy and the statistical analysis of data from pools must
take account of these weights.

The statistical properties of the concentration of a contaminant in a pool when individual weights
vary are discussed in Section 4.2. The theory is quite difficult, and those daunted by long
statistical formulae can jump to Sections 4.3 to 4.5, below, that deal with the special (and simple)
case when concentration and weight are independent. Section 4.6 briefly considers whether
concentration and weight are independent in practice.

4.2 Statistical Properties

The mean and variance of Xp can be thought of in two ways:

1) The (unconditional) mean and variance apply before sampling when the individual weights
are unknown. They are generally used when choosing the number of pools and the number
of individuals per pool.

2) The conditional mean and variance apply after sampling when the individual weights are
known. The mean and variance are conditional on having observed these particular
weights and are generally used when estimating the mean concentration of the population.

The conditional mean and variance of Xp

First, consider the mean and variance of Xp conditional on a particular set of weights Wpi' To make
the conditioning explicit, these are denoted by E[Xp I wp,] and Var[Xp I wp,], respectively. By
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similar arguments to those in Section 3.2, above, from equation (3)

[

L wp,E[ 'p' Iwp,J
E[Xp Iwp,] = fJ- + -,.-'---:[----

LWp ,
1m 1

[

LW~Var[,p, IWp,J
1",1 2

+ UQ •

Simplification of these expressions requires that specific assumptions be made about the conditional
distribution of concentration given weight. In particular, if concentration and weight are
independent, then

so that

(4)

(5)

Thus, if concentration and weight are independent, the (conditional) mean of Xp is fJ-.

The unconditional mean and variance of Xp

Now consider the unconditional mean and variance of Xp • Here, all possible sets of weights wp'

are considered, so write

Wpj = P-w + 'rJpi '

where fJ-w is the mean weight in the population and 1Jp' is the deviation of wp' about fJ-w' assumed
to have zero mean and variance u;.
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Then, from equation (3)

,
L (flw + YJp,)(fl + cp,)
'-i=--'l_-C,______ + bp'

L (flw + YJp,)
i-I

For convenience, drop the suffix p and let all summations run from i = 1 to 1. Then

x =
p

Ignoring all error terms greater than order two,

x = !!:.[ I + L c, + L YJ, + L c,YJ'] [1 _L YJ, + (L YJY] + 0
P I fl flw flflw Iflw Pfl~ p

""!!:. [I + Lc, + LYJ, + Lc,YJ, _ LYJ, _ Lc,LYJ, _ (LYJY + (LYJ,f]
I fl flw fl flw flw I fl flw I fl~ I fl~

fl [ Lc LcYJ LCLYJ].::::: _ I + __I + I I _ I I + op.
I fl flflw Iflflw

The mean of Xp is given approximately by

lTxw lTxw lTxw [ 1 ]E[X] "" fl + - - - = fl + - 1 - - ,
p flw I flw flw I

where lTxw is the covariance between concentration and weight. Thus,

+0
P

• the mean of Xpdoes not equal fl (i.e., Xp is a biased estimator of fl) unless lTxw = 0 or I = 1,
that is, unless the weights are constant, or there is no correlation between concentration and
weight, or there is no pooling anyway;

• the bias in ~ increases from 0 to lTxw / flw as I increases from 1 to infinity.

A general approximation to the variance of Xp is more complicated and is not given here.
However, an approximate formula for the variance can be obtained when concentration and weight
are independent. From the expression

and equations (4) and (5),
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Dropping the suffix p as before,

= erE

+ a~ + VarlJt]

2
+ aa o

Hence,

Thus, the variance of Xp increases as the weights become more variable, i.e., as a;' increases. For
a fixed number of individuals per pool I, the variance of Xp is minimized when the weights are
constant, in which case

as before.

4.3 Estimating the Mean Concentration

Having taken individuals with weights wp; and measured pool concentrations Xp • the mean
concentration of the population is estimated by
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- 1 p

X=-LX,
P p.1 p

-
Provided that concentration and weight are independent, the mean of X is '" and

I

ci' p LW~' 2
(Ju

Var[X] -L j,,\
+

p 2
p-I

[twpT
P'

which is estimated by

p

1 ~(X X)2
P(P - 1) f-1 p

on P - 1 degrees of freedom.

4.4 Statistically Weighted Means

If the population and analytical variances are well known, then an improved estimator of the mean
concentration is obtained by taking a statistically weighted average of the pool concentrations,

where

-I

(Draper and Smith, 1981J Again, if concentration and weight are independent, the mean of X'
is '" and the variance of X' is

Var[X']

which is estimated to be
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p

~A(X -X'?L. p p
p,l

on P - 1 degrees of freedom.

-
The estimator X' is better than X in the sense that it generally has smaller vigiance. However, if
the population and analytical variances are not well known, the use of X' can cause more
problems than it solves.

4.5 Choosing the Number of Pools and the Number of Individuals per Pool

If concentration and weight are independent, the mean concentration of the population will be
estimated by

- 1 p

X = -LX,
P p_' p

(see Section 4.3). To choose an appropriate number of pools P and number ofindividuals per pool
I, it is necessary to know the variance of K. At this stage, the particular weights of individuals are
unknown and so we use the variance of X which considers all possible combinations of weights
(see Section 4.2), namely,

[

2 ] 2- u'- trw 1 ",Var[X] = _ 1+ _ [1 -_] + -.
PI ~~ I P

Both methods discussed in Section 3.6 can be used to choose suitable values of I and P. For
example, values of I and P that minimize the width of the confidence interval for ~ subject to
some total cost constraint are found by minimizing

subject to

PIc, + Pc, ,,; c.

4.6 What Happens in Practice

-
In practice, the relationship between concentration and weight must be considered, since X will
be a biased estimator of ~ unless concentration and weight are independent. This will generally
involve collecting additional data.
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Previous studies have suggested that concentration is related to weight in some instances and not
in others. For example, ICES (1991b), investigating contaminant levels in mussels, regressed log
contaminant burden on log shell weight for cadmium, copper, lead, mercury and zinc. The
regression coefficients tended to be close to unity, so that

log(contarninant burden) '" constant + log(shell weight).

Further, for data from twelve areas, shell weight was approximately proportional to tissue weight,
implying that

log(contaminant burden) '" constant + log(tissue weight)

and hence

. [ contaminant burden ]log (concentratIOn) '" log . . '" constant.
tissue weIght

Thus, in this study, there was no evidence of a relationship between concentration and weight.

Boyden (1974) found a tendency for contaminant concentrations in mussels to decrease with tissue
weight for copper, iron, lead and zinc, although not for cadmium or nickel. However, it may be
that this relationship only occurs at times of gametogenesis (Phillips, 1976), with the greater
number of gametes produced by larger individuals leading to greater dilution of the body burden
by the increased tissue weight. This problem can be avoided by taking care in the choice of
sampling period.

In a study of contaminants in fish liver, Nicholson et al. (1991) found that concentrations of
cadmium expressed on a tissue weight basis decreased with the weight of fat in the liver, but not
the liver weight. However, for PCBs, concentration depended on both fat and liver weight.

If concentration and weight !!ere related, then one approach is to take an equal weight of tissue from
each individual, since then X will be an unbiased estimator of fJ-. However, it must be recognised
that a relationship between concentration and weight is potentially very informative; weight is a
surrogate for age, so changing concentrations with weight might reflect the availability of the
contaminant over time.

5 DISCUSSION, OVERVIEW AND SUMMARY

Throughout Sections 3 and 4 it was assumed, for simplicity, that

• there are the same number of individuals in each pool,

• the population and analytical variability are normally distributed.

These assumptions will often be met in practice, at least approximately so in the case of normality.
If either is not satisfied, the statistical theory becomes more complicated, and sometimes
intractable. Annexes 2 and 3 discuss what happens if there are unequal numbers of individuals in
pools and if the population and analytical variability are lognormally distributed, respectively.
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Two methods for choosing the number of pools and the number of individuals per pool have been
considered:

1) to achieve the narrowest confidence interval for a given cost,

2) to achieve a specified confidence interval as inexpensively as possible.

Whichever method is used, it is important to ensure that the original objectives of the monitoring
programme are met. For example, suppose we want to compare the mean contaminant
concentration to an enviromnental standard. The confidence interval should then be sufficiently
narrow so that large violations of the standard are likely to be detected. What is meant by a 'large'
violation will vary, and should be carefully considered in the design of the programme. The
probability that a particular violation will be detected is measured by the power of the programme
(Cohen, 1977). This is not discussed further here, but see Nicholson and Fryer (1992) and Fryer
and Nicholson (1993) for more details.

Often we have objectives other than the estimation of the mean concentration of a contaminant in
a population. A different pooling scheme might then be required. For example, to detect changes
in contaminant levels from one time period to the next, the population sampled may be restricted
to animals within a certain size range. It will be necessary to recognize this in the pooling strategy.
See, for example, Nicholson and Portmann (1985) and ICES (1987, 1988, 1989, 1990, 1991a,
1992).

Complications also arise if we are interested in a number of contaminants and consequently analyse
more than one contaminant in the same individuals. These complications occur because

• the population and analytical variances are likely to vary between contaminants,

• the errors for the same individual are likely to be correlated, .

• the criteria for choosing the optimum number of pools and number of individuals per pool
will involve several confidence intervals.

Nevertheless, in conclusion, DO NOT WORRY! If you make sure that there are the same number
of individuals in each pool and there are many pools, most of the time your monitoring will
function as desired.
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ANNEX I

MIXING VARIANCE AND REPLICATE ANALYSES
OF INDIVIDUAL OR POOLED SAMPLES

In Section 3 of the main text, it is assumed that the whole individual or pool is chemically
analysed. In practice, subsamples may be taken, either because there is more tissue than required
or to provide replicate chemical analyses.

Replicate analyses may provide useful information on the analytical variance. Furthermore, if the
analytical method is subject to intermittent sources of error, replicate analyses may be a suitable
means of filtering out potentially erroneous results. However, this assumes that the individual or
pool is thoroughly mixed, and that the variability in concentration within the sample is either zero
or small relative to the analytical variance. In practice, this might not be the case.

Mixing variability can be introduced a§. follows. Let Xp, be the measured concentration of the rth
replicate analysis on the pth pool, let x.. be the average of the measurements on t~ pth pool and
let X be the average of the measurements on all the pools. Then, the variance of Xp becomes

2
u' (Ja 2

+ + Um,
I R

where R is the number of replicate analyses and (J~ is the mixing variance. This formula is a
simplification which assumes that the~ount of material in the subsamples is small relative to the
amount in the pool. The variance of X is then given by

2 2a2 (Ya am
Var[X] ~ - + - +

PI PR p'

which is estimated by

p

1 '" (X X)2
P(P - I)~ p ,

on P - 1 degrees of freedom.

The problem is nQw to choose values of P and I that, e.g., minimize the width of the confidence
intervals around X subject to some total cost constraint.

Unless the variability introduced by subsampling a pool is considered to be a problem which must
be incorporated into the pooling strategy, the practical consequences of mixing variability can be
avoided. If the subsampling procedure is pre-defined and constant from sample to sample, the
contribution from mixing variance will be the same for all samples, and can simply be
incorporated into the analytical variance, and thus ignored. If a more complicated analysis is
required, an estimate of (J~ will be required. Various methods are described by Kassmaul and
Anderson (1967), Brown and Fisher (1972) and Rohde (1976).
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ANNEX 2

UNEQUAL NUMBERS OF INDIVIDUALS IN POOLS

This Annex considers what happens when the number of individuals varies between pools. Let lp
be the number of individuals in the pth pool. The measured contaminant concentration of the pth
pool is

x = J1- +
p

which has mean J1- and variance

Thus, pools with a large number of individuals have smaller variance than pools with a small
number of individuals.

As in Section 4 of the main text, if the population and analytical variances are well known, the
population mean contaminant concentration can be estimated by a weighted average of the
concentrations Xp , where the statistical weights Ap are given by
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ANNEX 3

LOGNORMALITY

Sometimes the distribution of concentrations in the population is skewed and is better described
by a lognormal distribution than a normal distribution. If x is the contaminant concentration of an
individual picked at random from the population, this means that

Y = log(x)

has a normal distribution with mean v and variance r, for example. One approach is then to work
on a log-scale and estimate the mean log-concentration v. However, as shown below, the
interactions between pooling and data transformation may introduce more problems than they
solve. (An alternative approach is to assume that the concentrations have a gamma rather than a
lognormal distribution; see, e.g., McCullagh and Neider, 1989.)

First consider the situation in which there is no analytical variability. If there is no pooling, the
estimation of v is straightforward. Suppose, that 1 individuals have been picked at random from
the population. Let x; be the concentration of the ith individual and let

Y; = log(x).

The mean log-concentration is then estimated by

1 I

-Ey;·
1 ;.,

The mean of y is v, so it is an unbiased estimator. Further, y has variance r / 1, which is
estimated by

I
1 '" -,

1(1- l)£1(Y; - y)

on 1 - 1 degrees of freedom.

Now suppose that there are P pools with 1 individuals in each pool. As before, let xp; be the
contaminant concentration of the ith individual in the pth pool and let Xp be the contaminant
concentration of the pth pool. Let

be the log-concentration of the pth pool. Again v is estimated by

- 1 p

Y = -EY.
P pol P
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However, this estimator is now biased. The mean of Y is

v +
r(1 - I-I)

2

(Aitchison and Brown, 1957), so the bias is p.Qsitive and increases with the degree of pooling. As
I varies between I and infinity, the mean of Yvaries between u and 10g(It), where It is the mean
concentration on the original untransformed scale. The variance of Y is unaffected by the pooling
and is given by

which is estimated by

p

I ~(Y y)2
P(P - I).tf p

on P - I degrees of freedom.

If the analytical variability is also lognormally distributed and proportional to concentration, the
variance of Y becomes

Var[Y]

where r. is the analytical variability on a log-scale, and is again estimated to be

p

I ~(Y y)2
P(P - l).tf p

on P - I degrees of freedom.

Thus, if the concentrations are lognormally distributed, pooling introduces bias. As the degree of
pooling increases, so does the bias. In practice, the bias can be estimated given an estimate of the
population vari:l!ice r. Whether the bias is large enough to cause concern will depend on, e.g.,
the variance of Y, the magnitude of u, and the reason for estimating u in the first place.

If the numbers of individuals per pool or the weights of the individuals in a pool vary, then the
bias will vary from pool to pool and the estimation of the mean log-concentration becomes even
more complicated. Inconsistent pooling should be avoided, if possible.
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