
 
 

 

ICES Techniques in Marine Environmental Sciences 

No. 36 
 

November 2004 
 
 

Biological effects of contaminants: 
Measurement of lysosomal membrane stability 

 

M.N. Moore and D. Lowe 
 

Plymouth Marine Laboratory, 
Prospect Place 

The Hoe 
Plymouth, PL1 3DH 

UK  
 

and 
 

A. Köhler 
 

Alfred Wegener Institute for Polar and Marine Research 
27570 Bremerhaven 

Germany 
 
 
 
 

International Council for the Exploration of the Sea 
Conseil International pour l’Exploration de la Mer 

 
 

H. C. Andersens Boulevard 44–46 · DK-1553 Copenhagen V · Denmark 
Telephone + 45 33 38 67 00 · Telefax +45 33 93 42 15 

www.ices.dk · info@ices.dk 



Recommended format for purposes of citation: 

ICES. 2004. Biological effects of contaminants: Measurement of lysosomal membrane stability. By M.N. 
Moore, D. Lowe, and A. Köhler. ICES Techniques in Marine Environmental Sciences, No. 36. 31 pp. 

For permission to reproduce material from this publication, please apply to the General Secretary. 

ISSN 0903-2606 
ISBN 87-7482-022-2 

https://doi.org/10.17895/ices.pub.5060

2707-6997
978-87-7482-286-8



Contents 

Section Page 

 

 i

1 INTRODUCTION AND RATIONALE ........................................................................................... 1 

2 LYSOSOMAL REACTIONS........................................................................................................... 2 

3 PREPARATION OF TISSUE SECTIONS FOR ENZYME CYTOCHEMISTRY.......................... 7 

4 LYSOSOMAL STABILITY IN TISSUE SECTIONS ..................................................................... 9 
4.1 Demonstration of Latent Activity of Lysosomal Hydrolases for Assessment of  

Lysosomal Stability ...............................................................................................................9 
4.2 Determination of Lysosomal Labilization Period (i.e., Permeabilization Time for Latent 

Hydrolase)............................................................................................................................10 
4.3 Problems in Assessment of Labilization Period...................................................................11 

5 IN VIVO CYTOCHEMISTRY: LYSOSOMAL NEUTRAL RED RETENTION.......................... 13 
5.1 Method for Lysosomal Neutral Red Retention in Mussel Blood Cells (Cellular Dye 

Retention) ............................................................................................................................14 
5.1.1 Haemolymph (blood) extraction ............................................................................15 
5.1.2 Neutral red incubation ...........................................................................................15 
5.1.3 Determination of neutral red retention endpoint ....................................................16 

5.2 Preparation of Stock Solutions.............................................................................................16 
5.2.1 Mussel physiological saline ...................................................................................16 
5.2.2 Neutral red stock solution ......................................................................................16 

5.3 Data Recording ....................................................................................................................17 

6 REFERENCES AND BIBLIOGRAPHY ....................................................................................... 18 

ANNEX 1 QUALITY ASSURANCE FOR LYSOSOMAL MEMBRANE STABILITY ........................ 27 





 

I 

ICES Techniques in Marine Environmental Sciences 

Biological effects of contaminants:  
Measurement of lysosomal membrane stability 

 

ICES. 2004. Biological effects of contaminants: Measurement of lysosomal membrane stability. By M.N. 
Moore, D. Lowe, and A. Köhler. ICES Techniques in Marine Environmental Sciences, No. 36. 31 pp. 
 
Abstract 
 
Lysosomes are ubiquitous cellular organelles that provide a waste disposal and macromolecular 
recycling system (autophagy) and also a membrane-bound compartment for intracellular 
digestion of food ingested by the cells. They accumulate many toxic metals and organic 
chemical contaminants, providing an evolutionarily primitive detoxication capacity, which if 
overloaded results in lysosomal damage leading to cell injury, tissue dysfunction, and reduction 
in animal “health status”. Major reactions of lysosomes to pollutants include loss of membrane 
integrity, enlargement associated with autophagy, and accumulation of lipid and lipofuscin (age-
pigment). These types of responses have been widely used to test for the effects of toxic 
contaminants in both experimental investigations and environmental impact assessments. 
Several methods are available to measure lysosomal functional status: these include 
measurement of lysosomal membrane stability in both frozen tissue sections and live cells. 
Protocols for the implementation of these methods are described here in practical detail for 
mussel/molluscan digestive gland or hepatopancreas and flatfish liver. Cytochemically 
determined latency of selected lysosomal marker enzymes is used as the measure of stability in 
frozen sections, and retention time of the chromogenic dye neutral red, as the measure of 
lysosomal integrity in live cells. Guidelines are included for sample handling, data analysis, and 
interpretation of results. 
 
© 2004 International Council for the Exploration of the Sea 

Keywords: lysosomes, metals, organic chemical contaminants, autophagy, lysosomal 
membrane stability, neutral red retention, lipofuscin, mussels, digestive gland, flatfish, liver. 
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1 INTRODUCTION AND RATIONALE 

Much of the waste generated by human activities finds its way into the oceans where some of 
it may present a threat to marine life and possibly to man as a consumer of seafood (Goldberg 
et al., 1978; Moore, 2002, Moore et al., 2004). An approach to the question of whether marine 
organisms and ecosystems are being endangered has involved the development and 
deployment of indices of biological effects as early warning systems of adverse environmental 
change (Moore, 1990, 2002; Moore et al., 1987). Such methods are being used in combination 
with analytical chemistry on a rapidly increasing basis and on a world-wide scale (Bayne et 
al., 1988). 

The organisms of choice for this type of environmental monitoring have frequently been 
sedentary filter-feeding molluscs such as mussels and oysters (Lowe and Fossato, 2000). 
These invertebrates accumulate chemical contaminants from the sea water, resuspended 
sediment, and particulate food material filtered from the water. The flatfish species, dab and 
flounder, are the main target species for monitoring purposes in the North Sea and adjacent 
areas including the Baltic Sea since these species are benthic and abundant. Because they are 
bottom-dwelling, these flatfish species accumulate chemicals from sediments via food, skin, 
and gills (Bucke et al., 1996).  

The tissue concentrations of many environmental xenobiotics can reach very high levels, thus 
making both animal groups useful tools for chemical monitoring. Mussels, in particular, 
appear to be relatively tolerant to many metals and organic xenobiotics. This tolerance, 
however, does not mean that the animals are unresponsive; in fact, there is considerable 
evidence for pathological reactions to even low concentrations of contaminants. Such 
pathological reactions have been described at all levels of biological organization, ranging 
from the molecular to the physiology of the whole animal (Livingstone, 1988; Moore, 1988a; 
Stegeman and Lech, 1991; Widdows and Johnson, 1988). In flatfish species, progressive toxic 
liver lesions and neoplastic changes have been reported. These include foci of altered 
hepatocytes, adenomas and carcinomas of hepatocellular, biliary, and endothelial origin based 
on histopathological diagnosis (Vethaak and Wester, 1996; Köhler et al., 1992, 2002; Wahl et 
al., 1995; Feist et al., 2004).  

At the cellular level, the lysosomal system has been identified as a particular target for the 
toxic effects of many contaminants. Pathological alterations in lysosomes have been especially 
useful in the identification of adverse environmental impact, as many of the tissues in molluscs 
are extremely rich in lysosomes. Lysosomal reactions fall into essentially three categories: 
changes in lysosomal contents, changes in fusion events, and changes in membrane 
permeability (Hawkins, 1980; Moore, 1988a, 1990). The major response to contaminant stress 
of both molluscan and fish lysosomes appears to involve enhanced autophagy and the current 
evidence suggests that this is an evolutionarily conserved response to environmental stress 
(Bursch, 2001; Klionsky and Emr, 2000; Kirchin et al., 1992; Köhler, 1989a, 1989b, 1991; 
Köhler et al., 1992; Lowe, 1988; Lowe and Fossato, 2000; Lowe et al., 1992, 1995a; Moore, 
1985, 1990; Winston et al., 1991, 1996). Normal tidal fluctuations in salinity, food, and 
oxygen do not induce a stress syndrome (Bayne et al., 1978, 1979; Moore, 1980; Moore et al., 
1979, 1982, 1987; Widdows et al., 1981, 1982). 

These autophagic changes involve an increase in the volume of the lysosomal compartment 
together with frequent swelling of the lysosomes and increases in hydrolase activities in 
mussels and fish (Köhler et al., 1992; Lowe, 1988; Lowe and Fossato, 2000; Moore et al., 
1986, 1996a, 1996b; Moore, 1988a; Nott and Moore, 1987). In addition to these autophagic 
changes, molluscan lysosomes often have a considerable propensity to sequester and 
accumulate metals and lipophilic xenobiotics, and this is particularly evident in the
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epithelial cells of the digestive gland (Moore et al., 1987). In the mussel, this organ serves as 
the major site of intracellular digestion in the animal and, as such, is the main interface 
between the organism and its environment (Moore, 1990). In fish, the liver is the main organ 
of food conversion, detoxification, and biotransformation of xenobiotics, as is the case in 
mammals (Köhler et al., 1992; Moore et al., 1994). In addition, yolk-precursor proteins are 
synthesized in fish liver and reduced reproductive success is a probable consequence in the 
case of toxic liver injury.  

2 LYSOSOMAL REACTIONS 

Cytochemistry and histochemistry have been used as the main tools in the study of 
environmentally induced alterations in lysosomes for several reasons (Moore, 1990; Moore 
and Simpson, 1992). Frequently, the tissue samples are very small and cytochemistry lends 
itself well to dealing with this problem. In addition, there is a requirement to be able to relate 
functional changes in the tissues and cells to alterations in their structure; once again, 
cytochemistry is highly appropriate in this context. The cytochemical tests used in these 
investigations involved procedures for lysosomal hydrolases, lipofuscin, and lipid (Moore, 
1988a; Figure 1). Another advantage of the cytochemical approach is that changes can be 
detected in particular target cells and lesion types, thus potentially increasing the sensitivity by 
many orders of magnitude as compared with the more disruptive analytical procedures 
involving homogenization and cell fractionation. 

When marine molluscs, such as mussels, are exposed to contaminant chemicals, the lysosomes 
in the digestive gland epithelial cells show fairly rapid and characteristic pathological 
alterations (Lowe, 1988; Moore, 1988a, 1990). These include swelling of the digestive cell 
lysosomes (Figures 1.1 and 1.2), increased fragility of the lysosomal membrane, excessive 
build-up of unsaturated neutral lipid (lipidosis) in the lysosomal compartment (Figures 1.3 and 
1.4), and accumulation of lipofuscin (lipofuscinosis) (Figures 1.5 and 1.6). These changes are 
accompanied by atrophy of the digestive epithelium, apparently involving augmented 
autophagic processes, although there is also evidence of increased cell deletion (analogous to 
apoptosis in mammals) and the relationship between the two processes, if any, is unclear 
(Lowe, 1988; Pipe and Moore, 1988). For instance, do the autophagic-type changes predispose 
the cells to deletion by programmed cell death? Programmed cell death (PCD) is divided into 
apoptosis (PCD Type I) and autophagy prominent cell death (PCD Type II): autophagic cell 
death appears to be a phylogenetically ancient phenomenon and occurs in both physiological 
and disease states (Bursch, 2001; Zhao et al., 2001). Lysosomal changes are involved in both 
types of cell death and they should not be considered as mutually exclusive processes (Bursch, 
2001).  

Linked biochemical and cytochemical investigations have demonstrated that increased 
fragility of the lysosomes, induced by phenanthrene, corresponds directly with increased 
catabolism of cytosolic proteins (Moore and Viarengo, 1987; Viarengo et al., 1992).  

Experimental studies have clearly demonstrated that the lysosomal alterations described above 
can be induced by single toxicants such as copper (not lipidosis) and polycyclic aromatic 
hydrocarbons (Nott et al., 1985; Viarengo et al., 1985).   

In fish liver, lysosomal changes comprise membrane fragility, enlargement, and accumulation 
of lipids (unsaturated neutral lipids, phospholipids) and lipofuscin. These changes are closely 
linked to toxico-pathological alterations of the liver and have clear prognostic value for cell 
death; they are also correlated to concentrations of lipophilic compounds and some heavy 
metals such as cadmium (Köhler et al., 2002). Interestingly, lysosomal membrane stability 
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Figure 1. Cryostat sections (10 µm) of unfixed hexane-quenched (−70 °C) digestive gland of the marine 
mussel sampled from clean and contaminated sites. 1) Normal appearance of the digestive tubules 
showing lysosomes reacted for N-acetyl-β-hexosaminidase in the digestive cells (clean site).  
2) Abnormally enlarged lysosomes reacted as in 1 (contaminated site). 3) Lipid droplets localized in 
digestive cells using oil red-O (clean site). 4) Unsaturated neutral lipid accumulation in pathologically 
enlarged lysosomes, together with a general increase in lipid droplets, reacted as in 3 (contaminated site). 
5) Lipofuscin in secondary and tertiary lysosomes localized using the Schmorl reaction (clean site).  
6) Enhanced lipofuscin content (contaminated site). Adapted from Moore (1988a). (Scale bar ≡ 20 µm). 
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breakdown coincides with induction of cytochrome P-450 (CYP1A1) (Köhler and Pluta, 
1995). It is likely that reactive free-radicals (oxygen species and xenobiotic derivatives) 
produced during biotransformation contribute to the damaging effects on the lysosomal 
membrane and build-up of lipofuscin (Kirchin et al., 1992; Winston et al., 1991, 1996). 
Lipofuscin is an end product of oxidative attack on lipids and proteins and is also an indicator 
of autophagy.  

At first glance, these findings are perhaps surprising given that many thousands of individual 
toxic chemicals are often present in a contaminated situation. Lysosomal destabilization is 
essentially very generalized and can also be induced by non-chemical stressors such as 
hypoxia, hyperthermia, osmotic shock, dietary depletion, and various combinations of these 
(Moore, 1985). Consequently, it would appear that many adverse conditions are capable of 
inducing autophagic-type changes, and that this non-specificity of the lysosomal reactions is 
only of value as a general indicator of deterioration in the health of the animal. However, 
differences in the lysosomal response can be used to identify the causative agency. 
Specifically, patterns of lysosomal change can be used to distinguish between the effects 
induced by lipophilic organic xenobiotics, metals, and non-chemical stressors. These include 
lysosomal swelling and lipid accumulation induced by lipophilic xenobiotics but not by 
metals, and accumulation of metallothionein in lysosomes induced by particular metals 
(Köhler et al., 2002; Moore, 1988a, 1990; Viarengo et al., 1985). Considered as a package, the 
use of cytochemical tests as subcellular pathological probes can provide relatively specific 
information (Moore, 1990). 

The types of cytochemical tests described above have been used in a range of environmental 
situations. The more widely used tests have been those for lysosomal membrane fragility; this 
has been applied to both molluscan and fish species and is based on either the demonstration 
of latency of lysosomal hydrolases or the retention of the amphiphilic cationic dyes such as 
neutral red and acridine orange (Fishelson et al., 1999; Lowe et al., 1992, 1995a, 1995b; 
Moore, 1990). Exposures to a variety of contaminant effluents such as sewage sludge, pulp-
mill waste, oil spillages, and mixed wastes from industry have all been found to increase the 
fragility of molluscan digestive cell lysosomes as well as of fish hepatocyte lysosomes 
(Cajaraville et al., 2000; Köhler, 1989a, 1989b, 1991; Köhler et al., 1992; Lowe et al., 1992, 
1995a; Moore, 1985, 1988a; von Landwüst et al., 1996; Wahl et al., 1995; Wedderburn et al., 
2000). In general, the reduction in lysosomal stability is accompanied by enlargement or 
swelling. Fatty change is also a frequent reaction to xenobiotics in the digestive cells and fish 
hepatocytes, leading to apparent autophagic uptake of the unsaturated neutral lipid into the 
often already enlarged lysosomes (Figures 1 and 2; Moore, 1988a; Köhler et al., 2002). 

In an assessment of pollutant effects organized under the auspices of the International Council 
for the Exploration of the Sea (ICES) and the UNESCO Intergovernmental Oceanographic 
Commission (UNESCO-IOC), the cytochemical approach was applied to mussels sampled 
from a contaminant gradient in a Norwegian fjord (Langesundefjord) together with other types 
of indicators of pollutant effects (Bayne et al., 1988; Moore, 1988b). The results of this 
international multidisciplinary workshop demonstrated a considerable degree of agreement 
between effects determined at different levels of biological organization (Bayne et al., 1988). 
For instance, cytochemical probes for lysosomal reactions to contaminant-induced cell injury 
showed clear evidence of enhanced catabolic activity apparently associated with autophagic-
type changes (Figure 1), and this could be conceptually linked with structural alterations in the 
digestive cells, which in turn could be related to observed tissue damage (Lowe, 1988; Moore, 
1988a; Widdows and Johnson, 1988). Similar effects occur in fish livers with regard to 
lysosomal stability, lesions, and neutral lipid (Figures 2–4; Köhler et al., 2002).   



 

ICES Techniques in Marine Environmental Sciences, No. 36 5

Figure 2. Electronmicroscopic photographs of characteristic morphological changes of lysosomes 
during the progression of toxicopathic lesions in flounder (Platichthys flesus) liver. A) Normal small 
lysosomes with homogeneous structure. B) Typical lysosomes in a reversibly altered liver with high 
induction of CYP1A1 activity (EROD), which also contains fibrillar elements, black lipofuscin 
granules, and fields of digested ribosomes (arrows). C) Lysosomes that have taken up a lipid droplet 
(arrows), which had accumulated in the cytoplasm. D) Uptake and accumulation of phospholipid whorls 
into a lysosome (arrow), which has given rise to eosinophilic granules in the cytoplasm as seen at the 
light microscopic level (compare Figure 1.4). LY = lysosomes, M = mitochondria, LIP = lipid droplets, 
PL = phospholipid whorls. (Scale bar ≡ 1 µm). 
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Figure 3. Early and progressive injury in flounder liver: quantitative cytochemical determination of 
morphological and functional responses of lysosomes in serial tissue sections. A) Unsaturated neutral 
lipids in hepatocytes as visualized by oil red O. B) Increase in size of lysosomes calculated as volume 
density. C) Number of lysosomes per unit area of liver parenchyma as numerical density (except 
macrophages). D) Membrane stability for N-acetyl-β-hexosaminidase measured as time intervals 
needed for acid labilization of the lysosomal membrane. Long intervals reflect high stability and short 
intervals reduced stability that is indicative of impaired membrane function. 

 
Biochemical analysis of the digestive gland demonstrated a clear increase in lipid, which was 
in agreement with the cytochemical demonstration of fatty change and lysosomal 
accumulation of unsaturated neutral lipid (Figures 1 and 2; Capuzzo and Leavitt, 1988; Moore, 
1988a; Köhler et al., 2002). Physiological determination of the energy available for growth 
and reproduction (scope for growth) also showed a decline in mussels from the contaminated 
sites and this could be related to a combination of reduced uptake of food and enhanced 
intracellular catabolism (Widdows and Johnson, 1988). More recent studies include an 
assessment of the health status of coastal mussels in the Black Sea (GEF International Waters 
Programme) supported by UNESCO-IOC (Moore et al., 1999). This survey used an in vivo 
cytochemical determination of lysosomal fragility, based on the retention of neutral red in the 
lysosomes of mussel blood cells (Figure 5; Moore et al., 1999). Viarengo et al. (2000) have 
implemented a laboratory intercalibration of a number of biomarkers, including lysosomal 
stability in tissue sections of mussels, for the UNEP Mediterranean Pollution Programme 
(Mediterranean Action Plan, MEDPOL).  

Clearly then, the cytochemical probes are providing data which are entirely consistent with 
data obtained using biochemical, histopathological, and physiological approaches. Such good 
agreement provides strong support for the validity of the cytochemical data, particularly as a 
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logical conceptual framework can be devised linking pathological changes at the molecular 
and subcellular levels of organization to impairment of the physiological performance of the 
whole animal (Bayne et al., 1988). The inference here is that lysosomal stability/fragility is a 
prognostic indicator or biomarker for putative pathologies and as such is an integrated patho-
physiological indicator of health status (Moore, 1990, 2002). 

The advantages of using cytochemical approaches in pollutant effects assessment are several. 
First, cytochemistry is capable of providing information that can shed light on the molecular 
and subcellular mechanisms of pathological alterations induced by the contaminants. Second, 
cytochemistry can be applied to very small tissue samples, and thus can be applied to sections 
obtained from a single tissue sample and these can be readily varied to meet the particular 
requirements of the situation. Finally, most of the cytochemical tests used in the studies 
described above can be readily quantified by microdensitometry, image analysis or categorical 
assessment using a ranked series of photomicrographs (Moore, 1988a; Chieco et al., 2001). 

Advances in cytochemistry, such as immuno-cytochemistry, hybrido-cytochemistry (in situ 
hybridization), and in vivo cytochemistry using chromogenic and fluorescent molecular probes 
(Figures 6 and 9) offer the potential for greatly expanding the application of the cytochemical 
approach to the assessment of contaminant-induced pathology, as well as greatly increasing 
the sensitivity of detection (Cajaraville et al., 2000; Grundy et al., 1996a, 1996b; Lowe et al., 
1992, 1995a; Moore, 1992a, 1992b; Ringwood et al., 1998a, 1998b, 1999). Given the 
increased awareness of environmental problems, particularly in a marine context, there is an 
urgent need for sensitive, accurate, and rapid tests for assessing evidence of biological 
deterioration, which will also provide direct evidence of causation. This latter point is very 
important given the considerable complexity of both marine ecosystems and environmental 
chemistry, as much of the evidence of pollution damage in the past has been circumstantial or 
anecdotal. It is necessary, therefore, to have the test capability to be able to give precise 
information about the probable cause(s) of biological damage in the future. The use of 
cytochemical tests in this context is by no means the complete answer; however, such tests 
have the potential to provide important components of a suite of tests for use in environmental 
monitoring. 

3 PREPARATION OF TISSUE SECTIONS FOR ENZYME CYTOCHEMISTRY 

For cytochemical examination, small pieces (5 mm × 5 mm × 5 mm) of freshly excised 
digestive gland tissues or fish livers (i.e., the mid-portion of the organ) from ten animals are 
placed on metal cryostat chucks (e.g., up to five pieces of tissue in a straight row across the 
centre). Each chuck is then placed for 1 minute in a small bath of n-hexane (aromatic 
hydrocarbon-free; boiling range 67–70 °C) that has been pre-cooled to −70 °C (using a 
surrounding bath of liquid nitrogen or a mixture of crushed solid CO2 and acetone). For fish 
liver, the tissue can also be deep-frozen directly in liquid nitrogen. The metal chuck plus the 
quenched (supercooled) solidified tissues are then sealed by double-wrapping in parafilm and 
stored at −30 °C or, preferably, at −70 °C until required for sectioning. Tissues may be stored 
for 6–12 months at −70 °C. By following this procedure there is no evident formation of large 
ice crystals and, hence, no structural damage to the subcellular components (Moore, 1976). 
Cryostat sections (10 µm) are cut in a cryostat (preferably with motorized cutting), with the 
cabinet temperature below −25 °C and with the haft of the knife cooled with crushed solid 
carbon dioxide (“dry ice”). The sections are transferred to “warm” slides (i.e., 20 °C, or room 
temperature), which effectively flash-dries them (Moore, 1976), and the slides can be stored in 
the cryostat for at least 4 hours before use. Cryostat sections that are required for concurrent 
structural or non-enzymatic cytochemistry (e.g., lipid and lipofuscin) can be fixed in Baker’s 
calcium formol or 10% neutral formalin (+2.5% NaCl w:v). 
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Figure 4. Examples of PCB and organochlorine concentrations in the liver of flounders tested 
histochemically for lysosomal membrane stability. Impaired membrane stability consistently coincided 
with high levels of the polychlorinated biphenyls CB118, CB138, and CB170, and the isomers of α-
HCH and β-HCH as well as the total lipid content of the liver. High stability of the lysosomal 
membrane (as indicated by high latency) is always associated with low concentrations of lipophilic 
compounds. Medium-range stability of lysosomes is related to highly variable concentrations of 
chemicals and lipid that are interpreted as being indicative of phenotypic differences in the individual 
capacity of fish livers to compensate for toxic injury. 
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Figure 5. Summary results of the UNESCO-IOC Biological Effects Mussel Watch Programme in the 
Black Sea. Lysosomal stability was determined using the neutral red retention method.  

 

4 LYSOSOMAL STABILITY IN TISSUE SECTIONS 

4.1 Demonstration of Latent Activity of Lysosomal Hydrolases for Assessment of Lysosomal 
Stability 

Latent lysosomal activity of the lysosomal enzymes N-acetyl-β-hexosaminidase and β-
glucuronidase can be demonstrated in the digestive cells of bivalve molluscs using naphthol 
AS-BI substrates and post-coupling with diazonium salts to prevent inhibition by the coupler. 
For fish liver, we recommend the use of N-acetyl-β-hexosaminidase, β-glucuronidase or acid 
phosphatase.  

Method for N-Acetyl-β-hexosaminidase 

Serial cryostat sections (in duplicate on the same slide), prepared as described above, are pre-
treated in a staining jar with 0.1M citrate buffer (pH 4.5) containing 2.5% NaCl (w:v) at 37 °C 
in order to labilize (controlled permeablization) the lysosomes (Moore, 1976). The pre-
treatment sequence commences at 30 minutes for molluscs down to 2 minutes (i.e., 30, 25, 20, 
15, 10, 5, and 2 minutes) and 50 minutes for fish down to 2 minutes (i.e., 50, 40, 30, 25, 20, 
15, 10, 5, and 2 minutes). Two minutes (molluscs) or three minutes (fish) are used as the 
minimal pre-treatment time since sections that have undergone zero pre-treatment may 
sometimes show stronger staining than short-term pre-treated sections (Moore, 1976). This 
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staining activity is believed to be largely due to non-membrane-bound acid hydrolase that can 
be lost by diffusion from the section when no polypeptide stabilizer is present. Such activity is 
frequently localized in large secondary lysosomes or digestive vacuoles that may be damaged 
in sectioning. Due to this complicating factor, the zero pre-incubation is usually omitted and 
the 2-minute pre-treatment is taken as representing the free lysosomal activity. 

Following this pre-treatment sequence, the slides are transferred to the substrate incubation 
medium; this contains 20 mg naphthol AS-BI N-acetyl-β-glucosaminide (Sigma) dissolved in 
2.5 ml 2-methoxyethanol, which is made up to 50 ml with 0.1M citrate buffer (pH 4.5) 
containing 2.5% NaCl (w:v) and 3.5 g of low viscosity polypeptide (Sigma, POLYPEP P5115) 
to act as a section stabilizer (Bitensky et al., 1973; Moore, 1976). Incubation time is 20 
minutes at 37 °C in a staining jar, preferably in a shaking water-bath. The slides are 
subsequently rinsed in 3.0% NaCl at 37 °C for 2 minutes before being transferred to 0.1M 
phosphate buffer (pH 7.4) containing a diazonium coupler (1 mg ml−1) at room temperature for 
10 minutes. Suitable diazonium salts are fast violet B (Sigma), fast red violet LB (Difco), fast 
garnet GBC (Sigma), fast blue BB (Sigma), and fast blue RR (Sigma). Our experience has 
been that fast violet B is the most suitable. The slides are then rinsed rapidly in running tap 
water, fixed for 10 minutes in Baker’s calcium formol containing 2.5% NaCl (w:v) at 4 °C, 
rinsed in distilled water, and mounted in aqueous mounting medium. 

Method for β-Glucuronidase  

The method for the demonstration of latent activity of lysosomal β-glucuronidase (Moore, 
1976) is essentially similar to the method described above, but with the following exceptions: 
the pre-treatment to labilize the lysosomal membranes is carried out using 0.1M acetate buffer 
(pH 4.5) containing 2.5% NaCl (w:v), and the substrate incubation uses 14 mg naphthol AS-BI 
β-D-glucuronide (Sigma) as substrate dissolved in 0.6 ml 50mM NaHCO3 which is made up to 
50 ml with 0.1M acetate buffer (pH 4.5) containing 2.5% NaCl (w:v) and 3.5 g of polypeptide 
(Sigma POLYPEP P5115) at 37 °C for 20 minutes. 

Rinsing and coupling solutions for β-glucuronidase are the same as those used for β-N-
hexosaminidase. 

4.2 Determination of Lysosomal Labilization Period (i.e., Permeabilization Time for Latent 
Hydrolase) 

The labilization period is the time of pre-treatment required to labilize the lysosomal 
membranes fully, resulting in maximal staining intensity for the enzyme being assayed 
(Figures 7 and 8).  

The staining intensity can be assessed visually using microscopic examination or else 
measured using a scanning integrating microdensitometer or image analyser to obtain an 
activity plot as shown in Figure 8 (Moore, 1976). If the animal is stressed, then the peak of 
activity will be moved towards the y-axis and the decreased labilization period can be 
determined from the x-axis (Figure 8). 

Our experience has shown that a microdensitometer is not necessary for accurate 
determination and that the labilization period can be effectively measured by microscopical 
assessment of the maximum staining intensity in the pre-treatment series (Figure 7). For this 
procedure, each tissue section should be divided into four roughly equal areas for assessment. 
This can be done by means of drawing a cross on the cover slide overlaying each section with 
a very fine marker pen, thus giving four quadrants. The position and orientation of the cross 
should be the same on all sections. 
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Figure 6. Mussel blood cells showing fluorescence (orange) for lysosomal accumulation of acridine 
orange (exposed to 1 µg l−1 for 15 minutes). Blue light (FITC) excitation; Scale Bar ≡ 10 µm. 
 

 
All assessments should be carried out on duplicate sections for each digestive gland or liver 
at each pre-treatment time. A mean or median value is obtained for each set of duplicate 
sections from the average of the assessments in each of the four sub-divisions (i.e., quadrant 1 
from all sections in the sequence, then 2, 3, and 4). The data can be statistically tested (i.e., test 
data compared with references or baseline data) using the non-parametric Mann-Whitney U-
test or Kruskal-Wallis test (Murdoch and Barnes, 1998). The Tukey t-test or analysis of 
variance can also be used with log-transformed data.  

4.3 Problems in Assessment of Labilization Period 

Determination of the labilization period is usually quite straightforward, but a complicating 
situation occasionally arises in which the pre-treatment series shows two peaks of staining 
intensity (Moore et al., 1978a, 1978b), possibly due to differential latent properties of the sub-
populations of lysosomes (Figure 8). In this situation, the first peak of activity is used to 
determine labilization period, as in our experience it has been the most responsive (Figure 8). 
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Figure 7. Serial cryostat sections of the digestive gland stained to show N-acetyl-β-hexosaminidase 
reactivity in the lysosomal vacuolar system of digestive cells in a digestive tubule of a mussel. 
Photographs 1–6: Sections pre-treated at pH 4.5 and 37 °C for 2–25 minutes (2, 5, 10, 15, 20, 25 
minutes, respectively). Section 5), pre-treated for 20 minutes, shows maximal lysosomal staining 
intensity: this time of pre-treatment represents the labilization period. Section 6), pre-treated for 25 
minutes, shows a decrease in staining intensity indicating a probable loss of enzyme by diffusion from 
fully labilized lysosomes. (Scale Bar ≡ 20 µm). 

 
 

 
 



 

ICES Techniques in Marine Environmental Sciences, No. 36 13

Figure 8. Microdensitometric determination of N-acetyl-β-hexosaminidase activity in sequentially pre-
treated (labilized) tissue sections of mussel digestive gland.  Healthy cells = open circles; unhealthy 
cells = filled circles.  Means + SE, n = 10. 

 
In fish liver, two peaks are also frequently observed, and the first peak of activity is strongly 
correlated with the degree of liver lesions. 

5 IN VIVO CYTOCHEMISTRY: LYSOSOMAL NEUTRAL RED RETENTION 

Lysosomes have a remarkable capability for accumulating a diverse range of toxic metals and 
organic chemicals (Figures 6 and 9; Moore, 1985, 1990). However, this concentration of toxic 
contaminants results in lysosomal damage and cell injury, and possible leakage of contaminants 
into the cytosol. The fact that lysosomes accumulate this very wide range of xenobiotics, dyes, 
and drugs has been used to advantage in the development of an in vivo cytochemical method for 
determining lysosomal membrane damage (Fishelson et al., 1999; Lowe et al., 1992, 1995a, 1995b). 

Babich and Borenfreund (1987) published a method in which alterations in the capacity of cells 
to take up the dye neutral red was used as an indicator of cell damage. The rationale here was 
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that healthy cells could take up and retain larger quantities of the dye than damaged cells. The 
method involved exposing cells with the test medium and then incubating them in a neutral red 
solution. Following incubation, the dye remaining in the cells was extracted and measured 
spectrophotometrically. Lowe et al. (1992) reasoned that if the dye could be measured with a 
spectrophotometer, it could also be visualized by using a microscope. Indeed, if the lysosomally 
accumulated dye could be visualized, then the progress of dye uptake into the cells and, in the 
case of damaged cells, leakage back into the cytosol could be determined and quantified using 
the lysosomal retention time as a sensitive measure of effect (Figure 9). The methods developed 
for fish hepatocytes, mussel digestive gland cells, and oyster digestive gland cells use 
microscopy to assess neutral red retention, and involve sacrificing the animals followed by 
enzymatic digestion of tissues (Lowe et al., 1992, 1995a, 1995b; Lowe and Pipe, 1994; 
Ringwood et al., 1998a, 1998b, 1999). These approaches are valuable for concurrent studies 
with other liver/digestive gland function studies, and when small animals are used. In contrast, 
blood cells, which are generally easy to obtain without harming the host, offer a sensitive but 
robust lysosome-rich cell type that can be studied using in vitro methods, and this provides the 
opportunity for further contaminant effect studies (Lowe et al., 1995a; Grundy et al., 1996a, 
1996b). In their role as components of the immune system, blood cell lysosomes can release 
acid hydrolases that are able to degrade circulating pathogens (Grundy et al., 1996a, 1996b). 
However, unscheduled or inappropriate release of acid hydrolases may have disastrous 
consequences for the functional integrity of the cell. 

Figure 9. Mussel blood cells (haemocytes) showing uptake of neutral red in lysosomes. 1) Healthy cell 
showing the retention of neutral red within the lysosomal compartment. 2) Stressed cell showing loss of 
neutral red into the cytosol. (Scale Bar ≡ 5 µm). 

 

5.1 Method for Lysosomal Neutral Red Retention in Mussel Blood Cells (Cellular Dye 
Retention) 

The neutral red retention technique for blood cell lysosomes is non-destructive; hence, if the 
animals under test are not unduly stressed during collection, they can be returned to their habitat 
following careful extraction of a blood sample. Mussel bays threads should be cut from the 
substrate, since pulling the animals from the rocks can result in damage to internal tissues. 
Extremes of temperature during transport are also to be avoided and the animals must be 
maintained in a moist environment during transport to the laboratory. 

1  2
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Stock solutions of physiological saline and neutral red should be prepared in advance and stored 
in a refrigerator. The neutral red stock solution will solidify in the refrigerator and should also 
be raised to room temperature for dilution to the working strength. 

5.1.1 Haemolymph (blood) extraction 

1) The mussel valves should be carefully prised apart along the ventral surface, using a solid 
scalpel, which should remain in position in order to keep the valves apart (see technical 
note 1). Allow any water retained within the shell cavity to drain out before attempting to 
withdraw any haemolymph.  

2) Withdraw 0.1 ml of haemolymph from the posterior adductor muscle by using a 1–2 ml 
hypodermic syringe fitted with a 25-gauge needle and containing 0.1 ml of physiological 
saline.  

3) Having now obtained a sample of haemolymph, remove the needle from the syringe and 
transfer the contents into a 1.5–2.0 ml siliconized microcentrifuge tube. Ideally, the cells 
should be kept in a refrigerator prior to use, but for no longer than 20 minutes. 

4) Gently invert the tubes in order to mix the contents and pipette 50 µl haemolymph and 
physiological saline mixture onto each slide, using a clean pipette tip for each sample. 

5) Place the slides in a light-proof humidity chamber and incubate for 15–20 minutes (see 
technical note 2). 

6) Drain off excess suspension and carefully wipe around the area containing adhered cells to 
remove any remaining excess fluid. 

Technical notes 

1) The blade width of a solid scalpel should be sufficient to hold the valves apart in order to 
insert a hypodermic needle.  

2) It is most important that the slide preparations are kept cool throughout the period of cell 
attachment and dye incubation. This can be achieved by having a thin layer of water ice in 
the light-proof humidity chamber. The slides must not be in direct contact with the ice and 
should be placed on racks allowing sufficient space (approximately 3 cm) for the chilled air 
to circulate. 

3) When applying the neutral red working solution, do not drop the solution onto the cells; 
touch the surface of the slide with the pipette tip and slowly eject the dye onto the cells. 

4) Neutral red is a photosensitizer; therefore, all slides should receive the same exposure to 
light under the microscope, and the light intensity should be kept as low as possible. 

5.1.2 Neutral red incubation 

1) Pipette 40 µl neutral red (NR) working solution onto the haemocytes; wait 15 minutes to 
allow neutral red to penetrate the cells (see technical notes 2 and 3). 

2) Gently apply a coverslip. Systematically examine the slides under a light microscope after 
15 minutes and then again after a further 15 minutes. Subsequent examinations should be 
made at intervals of 30 minutes up to 120 minutes. The final examination should be made 
after 180 minutes of incubation. If possible, the whole slide should be scanned and replaced 



 

ICES Techniques in Marine Environmental Sciences, No. 36  16

in the chamber as quickly as possible—ideally, 1 minute per slide maximum (see technical 
note 4). 

3) Cells should be examined for both structural abnormalities and NR probe retention time. 
Conditions should be recorded in a table at each time increment. The retention time of the 
NR probe by the lysosomes is recorded by estimating the proportion of cells displaying 
leakage from the lysosomes into the cytosol and/or exhibiting abnormalities in lysosomal 
size and colour. Cell shape may also change as a consequence of contaminant impact. 

5.1.3 Determination of neutral red retention endpoint 

The endpoint is when 50% or more of the cells, based on either a visual or a digital 
photographic determination (see below), exhibit lysosomal leakage or show abnormalities such 
as enlargement (Figure 9). A more objective approach, that would be appropriate for certain 
types of studies and which is used in some laboratories, is to photograph fields of view, using a 
digital camera, and then make detailed counts of cells exhibiting dye loss at a later point in time.  
However, this removes the capability for real-time results. 

In order to minimize the length of time the cells are exposed to light under the microscope, it is 
possible only to make a visual estimate of the condition of the lysosomes; as this approach is 
potentially open to bias, it is recommended that, whenever possible, samples are read “blind”. A 
typical blood sample of 50 µl generates approximately 20 fields of view of attached cells; by 
quickly rastor scanning the preparation under the microscope it should be possible, with 
practice, to obtain a visual estimate of the condition of the lysosomes for the entire sample in 
one minute or less. The number of blood cells in individual mussels is highly variable and a 
field of view, using a ×25 objective lens, may contain anything between 20 and 50 cells; 
therefore, the analysis assesses the lysosomal membrane status on between 400 and 1000 cells.   

5.2 Preparation of Stock Solutions 

5.2.1 Mussel physiological saline 

HEPES 4.77 g 

Sodium chloride 25.48 g 

Magnesium sulphate 13.06 g 

Potassium chloride 0.75 g 

Calcium chloride 1.47 g 

The above salts should be dissolved in approximately 800 ml of distilled water and then made 
up to one litre by the addition of more distilled water. The solution should be stored in a 
refrigerator, raised to room temperature prior to use, and the pH checked and adjusted to 7.36 
with 1M NaOH. 

5.2.2 Neutral red stock solution 

Prepare a 100 mM stock solution of neutral red by dissolving 28.8 mg of dye powder in 1 ml of 
DMSO and store in the refrigerator prior to use. The stock solution will last for about 2–3 weeks 
when stored in this way. However, the solution will solidify in the refrigerator and should be 
raised to room temperature for dilution to the working strength stock.  
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For a working solution, dilute 10 µl of stock neutral red in 5 ml of mussel physiological saline. 
The working solution will last about four hours before the dye begins to precipitate out. Neutral 
red dye powder is commercially available in a range of purities and strengths. If possible, the 
highest strength/purity dye should be used. However, what is most important is that only dye 
batches of similar quality and concentration are used when making comparisons between 
sites/treatments in an experiment or a monitoring exercise. Different grades of dye will have a 
different effect on the lysosomes depending on their purity and strength.  

5.3 Data Recording 

A table to record the results should be prepared as shown in Table 1. When more than 50% of 
the cells show a clear cytosol and there is no evidence of lysosomal abnormalities, then a plus 
sign should be recorded in the appropriate box. If there is evidence of dye loss and lysosomal 
abnormalities, then a negative sign should be recorded. 

The figure used for the calculation of the retention time corresponds to the last time period 
recorded when there was no evidence of dye loss or lysosomal abnormalities. Thus, for animal 
number 1 below, the last plus is at 60 minutes, while for animal number 4 the last plus is 
recorded at 15 minutes. Animal 7 exhibited dye loss at 15 minutes and, therefore, is scored as 
zero and animal number 9 exhibited no evidence of dye loss at 180 minutes and is scored as 180 
minutes. The test is truncated at 180 minutes, since for most healthy animals the neutral red 
itself becomes a toxic xenobiotic stress factor, regardless of the previous contaminant history of 
the mussels under study. Appropriate statistical tests should then be applied to the data (e.g., 
Tukey t-test on log-transformed data, Mann-Whitney U-test or Kruskal-Wallis test). 

Table 1. Specimen data sheet for the neutral red retention test. 
 

Lysosomal Neutral Red Retention Assay 

Study Number  

Treatment Group___________________________ 

 
Incubation Time 

Mussel 
number 15 mins 30 mins 60 mins 90 mins 120 mins 180 mins Retention 

time 
1 + + + - - -  60 
2 + + + - - -  60 
3 + + - - - -  30 
4 + - - - - -  15 
5 + + + - - -  60 
6 + + - - - -  30 
7 - - - - - -   0 
8 + + - - - -  30 
9 + + + + + + 180 

10 + + + + - -  90 
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ANNEX 1 

QUALITY ASSURANCE FOR LYSOSOMAL MEMBRANE STABILITY 

1  THE METHODS TO BE USED 

Cytochemical measurement of lysosomal membrane fragility and the cellular dye retention 
technique based on lysosomal uptake of Neutral Red (NR) in isolated cells (digestive gland of 
molluscs, liver of fish) or blood cells (as a non-destructive technique in molluscs) can be used as 
an alternative to the cytochemical method. However, this method, although very simple and 
easy to learn, requires more widespread use in other laboratories in order to fully assess its 
utility. Biochemical techniques are available for the measurement of membrane-linked latency 
of lysosomal enzymes, but these are not in general use in environmental monitoring. 

2  INTERCALIBRATION STANDARDS 

Frozen (quenched) tissues should be prepared for the intercalibration of the cytochemical 
lysosomal stability test (laboratory reference materials). The test will be performed in the lead 
laboratory and the frozen tissues will be sent to the participating laboratories in order for them 
to perform the test. All samples should be coded and the test performed and assessed as a 
double-blind exercise. This will involve the results being returned to a second laboratory for the 
compilation of the data. 

An intercalibration exercise has been carried out in the UNEP-MEDPOL programme using the 
cytochemical technique for tissue sections, and an exercise for neutral red retention has been 
conducted in the GEF Black Sea Programme. The results from these operations indicated that 
both techniques could be used in the participating laboratories in an effective manner with 
insignificant interlaboratory variability. 

The standards used in this intercalibration involved digestive glands from marine mussels 
prepared at the University of Genova (Italy). Comparisons of the cytochemical and the neutral 
red retention techniques have been performed in fish liver (ICES-IOC Bremerhaven Workshop, 
1990) and in mussels experimentally exposed to PAHs (Lowe et al., 1995). 

For intercalibration of the neutral red cellular dye retention test, which is performed on live cells 
in vitro, it will be necessary to hold an intercalibration workshop for the participating 
laboratories at a single site, since samples cannot be exchanged between laboratories. 

3 STANDARDS AND REAGENTS 

3.1  Cytochemical Method 

The standards and reagents for the cytochemical method are given in Moore (1988a). 

Equipment: 

1) High quality motorized cryostat microtome (e.g., Bright Instrument Company or Microm 
HM 500 OM); 

2) Good quality water bath (preferably shaking) up to 40 oC; 

3) Cleaned Hellendahl histological staining jars; 

4) Good quality cleaned but untreated microscope slides with frosted glass writing area; 
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5) Good quality bright-field binocular microscope with ×10, ×25, and ×40 objectives; 

6) Optional use of a 580 nm green filter to enhance contrast of the purple-red reaction 
product. 

Reagents: 

1) Naphthol AS-BI N-acetyl-β-glucosaminide (Sigma); 

2) Fast Violet B (Sigma); 

3) Collagen-derived polypeptide (POLYPEP, P5115, Sigma); 

4) Citrate buffer 0.1M, pH 4.5, containing 2.5% sodium chloride (w:v); 

5) Phosphate buffer 0.1M, pH 7.4; 

6) Aqueous mounting medium (Difco, Kaiser’s glycerol-gelatine, Sigma or other). 

3.2  Cellular Dye Retention Test 

Details of the method are described in Lowe et al. (1992, 1995). 

Equipment: 

1) Good quality bright-field binocular microscope with ×10, ×25 and ×40 objectives; 

2) Optional use of a 580 nm green filter to enhance contrast of the neutral red; 

3) Humidity chamber for incubation of the cells with neutral red. 

Reagents: 

1) Neutral red (Sigma, general purpose grade). 

4 SAMPLING REQUIREMENTS 

4.1  Mussels 

1) Samples should contain a minimum of ten animals; 

2) The mussels should be from a standardized size class in the area to be monitored, 
preferably the smallest available size class; 

3) Sampling should be avoided during the main spawning season; 

4) Mussels should be sampled from the sub-littoral part of the population, since this will 
minimize fluctuations due to air exposure at low tide; 

5) Transport to the laboratory should avoid rough handling and mussels should be packed in 
an insulated container containing tissue paper soaked in sea water; 

6) For transportation times of more than 4 hours, ice packs should be placed in the bottom of 
the insulated box. 



 

ICES Techniques in Marine Environmental Sciences, No. 36 29

4.2  Fish 

1) Flatfish are caught by 30-minute hauls with a technique appropriate for the species and are 
directly transferred into aerated flow-through seawater tanks in order to minimize catching 
and handling stress; 

2) The fish should be measured for total length, dissected, and the sex determined; 

3) The livers of a maximum of 25 fish of a single sex (males or females are used according to 
the requirements of the monitoring programme) should be removed; 

4) The length of the fish selected is dependent on the specific objectives of the monitoring 
programmes (e.g., early effects or liver cancer). 

5  SAMPLE PRESERVATION 

5.1  Cytochemical Method 

Mussels: 

1) Digestive glands from mussels should be cut transversely into three approximately equal 
portions and the mid portion (up to 5 mm × 5 mm × 5 mm) used for cytochemistry 
immediately after dissection; they should be put on a labelled, cooled, coded chuck at 
refrigerator temperature (4 oC); 

2) The remaining portions are available for histopathology; 

3) Tissues should be prepared and stored as described by Moore (1988b). 

Fish: 

1) Fish livers are cut into pieces of 5 mm × 5 mm × 5 mm immediately after dissection, and 
put on a labelled, cooled, coded chuck at refrigerator temperature (4 oC) (Figure 10); 

2) The tissue and chucks are then quenched (supercooled) in n-hexane cooled to −70 oC; 

3) The tissues are prepared and stored as described by Köhler et al. (1992). 

5.2  Cellular Dye Retention Method 

1) This method does not need any preservation because it is performed on live cells. 

6  TRAINING NEEDS 

Training material includes documents, micrographs, videos, and laboratory reference material 
(LRM). Training workshops are also recommended and can be readily coupled with those for 
other biological effects methods (e.g., pathologies, metallothionein, or EROD). Interlaboratory 
comparison exercises are being organized through BEQUALM and BEEP. 
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Figure 10. Sampling procedure for interdisciplinary analysis of liver according to Feist et al. (2004) as 
developed in the EU-BEEP programme. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

7 SPECIES AVAILABILITY 

The techniques can be applied to a broad range of bivalve and gastropod molluscs as well as 
teleost fish. The currently preferred species are mussels, dab, flounder, dragonets, and grey 
mullet. 

8  DEFINITION OF LIMITS 

It should be possible to establish standard Shewart control charts for measurement of lysosomal 
stability using LRMs. 

9  ACTION REQUIREMENTS WHEN LIMITS ARE EXCEEDED 

Repeated measurements from LRMs produced by a lead laboratory will be used to control 
differences of interpretation between analysts. 

10  GOOD LABORATORY PRACTICE 

All tests and determinations should be carried out by trained staff working to defined protocols. 
Any deviations from the protocols should be recorded and assessed by the laboratory manager 
for their potential to influence the results. 

Enzyme altered foci 
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