Published 31 May 2017 DOI: 10.17895/ices.pub.3127

Herring (Clupea harengus) in subdivisions 25–29 and 32, excluding the Gulf of Riga (central Baltic Sea)

ICES stock advice

ICES advises that when the EU multiannual plan (MAP) is applied, catches in 2018 that correspond to the F ranges in the plan are between 200 236 tonnes and 331 510 tonnes. According to the MAP, catches higher than those corresponding to F_{MSY} (267 745 tonnes) can only be taken under conditions specified in the MAP. This advice applies to all catches from the stock, including those taken in Subdivision 28.1.

Stock development over time

Spawning-stock biomass (SSB) decreased until 2001 and then increased, and it has been above MSY B_{trigger} since 2006. Fishing mortality (F) increased until 2000 and then decreased, remaining below F_{MSY} since 2004. Recruitment in 2015 is estimated to be the highest of the whole time-series.

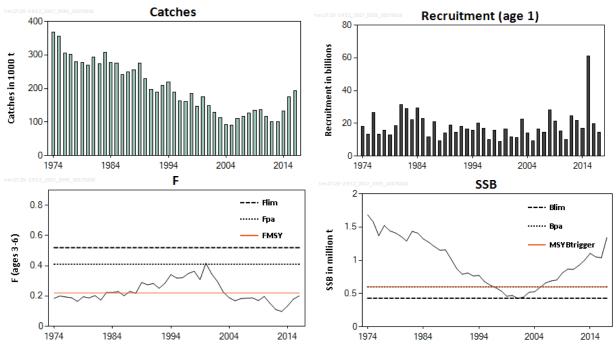


Figure 1 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. Summary of the stock assessment. (SSB in 2017 is predicted).

Stock and exploitation status

Table 1 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. State of the stock and fishery relative to reference points.

		Fishing pressure				Stock size			
		2014	2015	2016			2015	2016	2017
Maximum sustainable yield	F _{MSY}		\bigcirc		Below	MSY B _{trigger}			Above trigger
Precautionary approach	F_{pa} , F_{lim}			\bigcirc	Harvested sustainably	B _{pa} , B _{lim}			Full reproductive capacity
Management plan	F_{ranges}	\bigcirc			Within range	$MSY\ B_{trigger}$			Above trigger

ICES Advice 2017

Catch options

Table 2 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. The basis for the catch options.

Variable	Value	Source	Notes
F ages 3-6 (2017)	0.195	ICES (2017)	TAC constraint*
SSB (2017)	1341625	ICES (2017)	In tonnes
R _{age1} (2017)	14587000	ICES (2017)	RCT3 estimate (in thousands)
R _{age1} (2018)	16114962	ICES (2017)	Geometric mean 1988–2015 (in thousands)
Total catch (2017)	224989	ICES (2017)	TAC constraint* (in tonnes)
Discards (2017)	0	ICES (2017)	

^{*} TAC constraint in 2017: EU share 191 129 t + Russian quota 29 500 t + central Baltic herring stock caught in Gulf of Riga 4 580 t (mean 2011–2015) – Gulf of Riga herring stock caught in central Baltic Sea 220 t (mean 2011–2015) = 224 989 t.

Table 3 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. Annual catch options. All weights are in tonnes.

able 3 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. Annual catch options. All weights are in tonnes.								
Basis	Total catch (2018)	F _{total} (2018)	SSB (2018)	SSB (2019)	% SSB change *	% Advice change **		
ICES advice basis								
EU MAP^: F _{MSY}	267745	0.22	1283487	1113149	-13%	24%		
EU MAP: F _{lower}	200236	0.160	1309914	1194895	-9%	-7%		
EU MAP: F _{upper}	331510	0.28	1257629	1037734	-17%	53%		
Other options								
ICES MSY approach: F _{MSY}	267745	0.22	1283487	1113149	-13%	24%		
F = 0	0	0	1383265	1448388	5%	-100%		
F _{pa}	457890	0.41	1203489	893608	-26%	112%		
F _{lim}	553453	0.52	1159630	789549	-32%	156%		
SSB (2019) = B _{lim}	924535	1.10	955800	429915	-55%	328%		
SSB (2019) = B _{pa}	739660	0.77	1065542	599790	-44%	242%		
SSB (2019) = MSY B _{trigger}	739660	0.77	1065195	599790	-44%	242%		
F = F ₂₀₁₇	239413	0.195	1294692	1147220	-11%	11%		
F = MAP F _{MSY lower}	200236	0.16	1309914	1194895	-9%	-7%		
F = MAP F _{MSY lower} + 0.01	211757	0.17	1305469	1180807	-10%	-2%		
F = MAP F _{MSY lower} + 0.02	223170	0.18	1301041	1166908	-10%	3%		
F = MAP F _{MSY lower} + 0.03	234473	0.19	1296629	1153196	-11%	8%		
F = MAP F _{MSY lower} + 0.04	245670	0.20	1292232	1139667	-12%	14%		
F = MAP F _{MSY lower} + 0.05	256760	0.21	1287852	1126319	-13%	19%		
F = MAP F _{MSY lower} + 0.06	267745	0.22	1283487	1113149	-13%	24%		
F = MAP F _{MSY lower} + 0.07	278626	0.23	1279138	1100155	-14%	29%		
F = MAP F _{MSY lower} + 0.08	289405	0.24	1274805	1087334	-15%	34%		
F = MAP F _{MSY lower} + 0.09	300081	0.25	1270488	1074684	-15%	39%		
F = MAP F _{MSY lower} + 0.10	310657	0.26	1266186	1062202	-16%	44%		
F = MAP F _{MSY lower} + 0.11	321133	0.27	1261900	1049886	-17%	49%		
F = MAP F _{MSY upper}	331510	0.28	1257629	1037734	-17%	53%		

^{*} SSB 2019 relative to SSB 2018.

Basis of the advice

Table 4 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. The basis of the advice.

Advice basis	EU Baltic multiannual plan				
Managamant plan	The EU multiannual plan (MAP) in place for stocks in the Baltic Sea includes herring (EU, 2016). The advice				
Management plan	s based on the provisions of the plan and is considered precautionary.				

^{**} Catch in 2018 relative to Advice for 2017 (216 000 t).

[^] MAP multiannual plan (EU, 2016).

Quality of the assessment

Preliminary investigations indicate that the stocks of western Baltic spring-spawning herring (Division 3.a and subdivisions 22–24) and central Baltic herring (subdivisions 25–29 and 32, excluding Gulf of Riga herring) are mixing in subdivisions 24–26 (Gröhsler *et al.*, 2013). This is not taken into account in the current assessment but should be investigated further. Species misreporting of herring has occurred in the past (Hentati-Sundberg *et al.*, 2014) and there are again indications that it is a problem in some nations.

Historical assessments have generally shown an overall upwards revision in SSB and a downwards revision in fishing mortality.

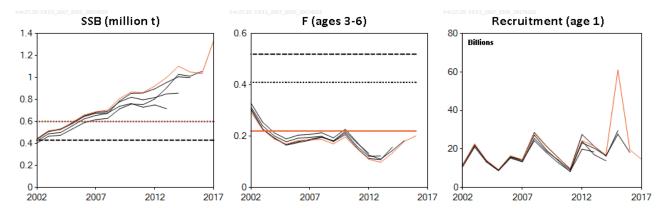


Figure 2 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. Historical assessment results (final-year recruitment estimates included).

Issues relevant for the advice

The F_{MSY} ranges in the EU Baltic Sea Multiannual Plan (MAP; EU, 2016) are consistent with the ranges provided by ICES (2015); these were evaluated to result in no more than 5% reduction in long-term yield compared with MSY. The ICES advice according to the MAP is based on the provisions of the plan and is considered precautionary. The ICES advice rule is used, i.e. F is adjusted by the factor SSB/MSY B_{trigger} when SSB is below MSY B_{trigger}. For this stock, the SSB in 2018 is above MSY B_{trigger}. In such a situation, catch options applicable under the MAP correspond to fishing mortalities between F_{lower} and F_{upper}. However, according to the MAP, catches corresponding to F higher than F_{MSY} (i.e. Column B of Annex I in the MAP) can only be taken under conditions specified in the MAP.

Under the EU landing obligation, which entered into force in 2015, up to 9% interspecies quota transfers are allowed for stocks that are considered to be within safe biological limits (EU, 2013 – Article 15). Quota transfers were not considered in this catch advice. To achieve F_{MSY} exploitation, any transfer under this regulation should be accounted for in setting the TAC.

A mixture of central Baltic herring (subdivisions 25–27, 28.2, 29, and 32) and the Gulf of Riga (Subdivision 28.1) herring is caught in the central Baltic Sea. In the assessment and the advice the central Baltic herring stock is considered to be caught both in and outside the central Baltic Sea. The TAC (sum of the EU and the Russian autonomous quotas) is set for herring caught in the central Baltic management area, which includes also a small amount of Gulf of Riga herring caught in the central Baltic Sea but excludes central Baltic herring caught outside the central Baltic Sea.

The TAC value proposed for the central Baltic area is based on the advised catch for the central Baltic herring stock, plus the assumed catch of the Gulf of Riga herring taken in the central Baltic, minus the assumed catch of herring from the central Baltic stock taken in the Gulf of Riga. The values of the two latter are given by the average over the last five years.

• Central Baltic herring assumed to be taken in the Gulf of Riga in 2018 (Subdivision 28.1) is 4340 t (average 2012–2016);

Gulf of Riga herring assumed to be taken in Subdivision 28.2 in 2018 is 260 t (average 2012–2016).

As an example, following the ICES MSY approach (here identical to the MAP F_{MSY}), catches from the central Baltic herring stock in 2018 should be no more than 267 745 t. The corresponding TAC in the central Baltic management area for 2018 would be calculated as 267 745 t + 260 t - 4340 t = 263 665 t.

Activities that have a negative impact on the spawning habitat of herring should not occur, unless the effects of these activities have been assessed and shown not to be detrimental (ICES, 2003, 2014).

Reference points

Table 5 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. Reference points, values, and their technical basis.

i abie 5		ons 25-25 and 32,	, excluding the duil of riga. Reference points, values, and t	ien technical basis.
Framework	Reference Value point		Technical basis	Source
	MSY B _{trigger}	600 000 t	B _{pa}	ICES (2013)
MSY approach	F _{MSY} 0.22		Stochastic simulations with Beverton, Ricker, and segmented regression stock–recruitment curve from the full time-series (1974–2013).	ICES (2015)
	B_{lim}	430 000 t	B _{loss}	ICES (2013)
Precautionary	B_pa	600 000 t	1.4 × B _{lim}	ICES (2013)
approach	F _{lim}	0.52	Consistent with B _{lim}	ICES (2013)
	F_{pa}	0.41	Consistent with B _{pa}	ICES (2013)
	MAP MSY B _{trigger}	600 000 t	MSY B _{trigger}	EU (2016 – Annex II column A)
	MAP B _{lim}	430 000 t	B _{lim}	EU (2016 – Annex II column B
Management	MAP F _{MSY} 0.22		F _{MSY}	EU (2016 – Annex I columns A and B)
plan	MAP target range F _{lower} 0.16–0.22		Consistent with the ranges provided by ICES (2015), resulting in no more than 5% reduction in long-term yield compared with MSY.	ICES (2015) and EU (2016 – Annex I column A)
	MAP target range F _{upper}	0.22-0.28	Consistent with the ranges provided by ICES (2015), resulting in no more than 5% reduction in long-term yield compared with MSY.	ICES (2015) and EU (2016 – Annex I column B)

Basis of the assessment

Table 6 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. Basis of assessment and advice.

ICES stock data category	1 (<u>ICES, 2016</u>).
Assessment type	Age-based analytical assessment, XSA (ICES, 2017) that uses catches in the model and in the forecast.
	Commercial catches (international landings, age and length frequencies from catch sampling); one survey
Input data	acoustic index (BIAS); natural mortalities from multispecies model (SMS) until 2011, for 2012–2016 natural
	mortalities are based on regression of M against eastern Baltic cod SSB; fixed maturity ogive.
Discards and bycatch	Not included; considered negligible.
Indicators	None.
Other information	Last benchmarked in 2013 (ICES, 2013).
Working group	Baltic Fisheries Assessment Working Group (<u>WGBFAS</u>)

Information from stakeholders

There is no available information.

History of the advice, catch, and management

Table 7 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. ICES advice and official landings. All weights are in tonnes.

Table /	Herring in subdivisions 25–29 and 32, ex	cluding the Guif of Riga. ICES advice ar	ia official landin	gs. All weights are in tonnes.
Year	ICES advice	Predicted catch corresp. to advice	Agreed TAC*	ICES catch SDs 25–29+32
1988**		204000	399000	286000
1989**		176000	399000	290000
1990**		112000	399000	244000
1991**	TAC for entire area	293000	402000	213000
1992**	F near present level	343000	402000	210000
1993**	Increase in yield at higher F	371000	560000	231000
1994**	Increase in yield at higher F	317000-463000	560000	242000
1995**	TAC	394000	560000	221000
1996**	TAC	394000	560000	195000
1997**	No advice	-	560000	208000
1998**	No advice	-	560000	212000
1999**	Proposed F _{pa} = (0.17)	117000	476000	178000
2000**	Proposed $F_{pa} = (0.17)$	95000	405000	208000
2001**	Proposed $F_{pa} = (0.17)$	60000	300000	188000
2002**	F < F _{pa}	< 73000	Not agreed	168000
2003**	F < F _{pa}	< 72000	143000	154000
2004	F < F _{pa}	< 80000	171000	93000^^^
2005	F < F _{pa} (single-stock exploitation boundaries)	< 130000	130000***	92000^^^
2006	F < F _{pa} (single-stock exploitation boundaries)	< 120000	128000***	110000^^^
2007	F < F _{pa} (single-stock exploitation boundaries)	< 164000	133000^	116000^^^
2008	F < F _{pa} (single-stock exploitation boundaries)	< 194000	153000^	126154^^^
2009	F < F _{pa} (single-stock exploitation boundaries)	< 147000	143609^	134126^^^
2010	F < F _{pa} (single-stock exploitation boundaries)	< 103000	139776^^	136706^^^
2011	MSY Framework (F = 0.19)	< 95000	120020^^	116785^^^
2012	MSY transition (F = F_{pa} = 0.19)	< 92000	93317^^	100893^^^
2013	MSY transition (F = F_{pa} = 0.19)	< 117000	101480^^	100954^^^
2014	MSY approach	< 164000	132225^^	132700^^^
2015	MSY approach (F _{MSY} = 0.26)	< 193000	186351^^	174433^^^
2016	MSY approach (F _{MSY} = 0.22)	≤ 201000	206605^^	192056^^^
2017	MSY approach (F _{MSY} = 0.22)	≤ 216000	220629^^	
	MAP target F ranges: F _{lower} to F _{upper} (F = 0.16–	200236–331510, but catch higher		
2018	0.28), but F higher than $F_{MSY} = 0.22$ only under	than 267745 only under conditions		
	conditions specified in MAP	specified in MAP		
* = 4 0 0	r subdivisions 22, 200 and 22	·		

^{*} TAC for subdivisions 22–29S and 32.

^{** 1987–2003} incl. Gulf of Riga herring.

^{***} TAC for subdivisions 25–28(2), 29, and 32.

[^] EU TAC for subdivisions 25–28(2), 29, and 32.

^{^^} TAC is calculated as EU (subdivisions 25–28(2), 29, and 32) + Russian autonomous quotas.

^{^^^} Excl. the Gulf of Riga (Subdivision 28.1) herring stock.

History of the catch and landings

Table 8 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. Catch distribution by fleet in 2016 as estimated by ICES.

Total herring catch in the central Baltic management area (2016)	Total catch of stock (2016)	Landings	Discards
188 029 t	192 056 t	Mainly pelagic trawls	Discarding is considered to be
188 029 (192 036 (192 056 t	negligible.

Table 9 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. History of commercial catch and landings; both the official and ICES estimated values are presented by area for each country participating in the fishery. All weights are in tonnes.

.,						cn country pa				
Year	Denmark	Estonia	Finland	Germany	Latvia	Lithuania	Poland	Russia**	Sweden	Total
1977	11900		33 700				57200	112814	48700	264314
1978	13900		38 300	100			61300	113872	55400	282872
1979	19400		40 400				70400	100958	71300	302458
1980	10600		44000				58300	103002	72500	288402
1981	14100		42500	1000			51200	93431	72900	275131
1982	15300		47500	1300			63000	86423	83800	297323
1983	10500		59100	1000			67100	69059	78600	285359
1984	6500		54100				65800	89757	56900	273057
1985	7600		54200				72800	95225	42500	272325
1986	3900		49400				67800	98773	29700	249573
1987	4200		50400				55500	100916	25400	236416
1988	10800		58100				57200	106009	33400	265509
1989	7300		50000				51800	105017	55400	269517
1990	4600		26900				52300	101269	44200	229269
1991	6800	27036	18100		20709	6500	47100	31900	36500	194645
1992	8100	22264	30000		12533	4600	39200	29500	43000	189197
1993	8900	25420	32300		9576	3000	41100	21600	66400	208296
1994	11300	26345	38200	3700	9797	4900	46100	16700	61600	218641
1995	11400	30681	31400		9328	3600	38700	17000	47200	189309
1996	12148	35943	31502		11569	4243	30712	14626	25909	166652
1997	9397	42585	23749		10140	3324	26229	12526	44078	172028
1998	13876	34005	24777		9972	2368	19344	10520	70997	185860
1999	6185	35437	17850		8292	1312	18121	12676	48866	148739
2000	15786	30135	23330		6718	1070	23066	14814	60161	175080
2001	15786	27425	26103		5217	1639	28358	15797	29832	150156
2002	4557	21010	25724	291	3917	1537	28510	14168	29423	129137
2003	5339	13300	14698	3860	3132	2060	26311	13363	31785	113848
2004	175	10912	14468	4323	2655	1778	22834	6526	29336	93006
2005	3053	10783	6410	3713	1951	748	18476	7007	39426	91600
2006	100	13400	9600	3200	3000	1200	16800	7600	55300	110400
2007	1352	13979	13890	1672	3212	3474	19802	8772	49879	116030
2008	1250	21581	19134	3358	3520	1749	13331	8551	53681	126154
2009	1463	19937	23329	1252	4108	3576	18441	11800	50208	134127
2010	5367	17915	21602	2235	3903	1492	25028	9126	50037	136706
2011	1848	14924	19229	2730	3432	1997	27998	8471	36156	116785
2012	1415	11380	18049	896	2637	1847	25472	13044	26153	101000
2013	3419	12601	18175	1415	3548	1724	20568	10046	29458	100954
2014	2723	15334	27905	1731	4853	2096	27316	15854	34888	132700
2015	332	18782	31571	2917	5657	4694	39024	20889	50568	174433
*2016	4040	20097	28852	4340	8362	5184	40990	24179	56011	192056

^{*} Preliminary.

^{**} In 1977–1990 sum of catches for Estonia, Latvia, Lithuania, and Russia.

Table 10 Herring in subdivisions 25–29 and 32 (excluding Gulf of Riga herring). Catches (in tonnes) from the central Baltic management area and of the central Baltic stock.

Central Baltic herring stock Gulf of Riga herring stock Total caught in Gulf of Riga B	stock catches Fotal catch of central Baltic herring stock 264300 282900 302500 288400 275100 297300 285400
Central Baltic herring stock Gulf of Riga herring stock Total caught in Gulf of Riga B	264300 282900 302500 288400 275100 297300
1977 261900 - 261900 2400 1978 276600 - 276600 6300 1979 297800 - 297800 4700 1980 282700 - 282700 5700	264300 282900 302500 288400 275100 297300
1978 276600 - 276600 6300 1979 297800 - 297800 4700 1980 282700 - 282700 5700	282900 302500 288400 275100 297300
1979 297800 - 297800 4700 1980 282700 - 282700 5700	302500 288400 275100 297300
1980 282700 - 282700 5700	288400 275100 297300
	275100 297300
1001 260200 5000	297300
1982 292600 - 292600 4700	285400
1983 280600 - 280600 4800	
1984 269300 - 269300 3800	273100
1985 267700 - 267700 4600	272300
1986 248300 - 248300 1300	249600
1987 231600 - 231600 4800	236400
1988 262500 - 262500 3000	265500
1989 263600 - 263600 5900	269500
1990 223300 - 223300 6000	229300
1991 188500 - 188500 6100	194600
1992 185700 1300 187000 3500	189200
1993 204000 1200 205200 4300	208300
1994 213600 2100 215700 5000	218600
1995 183200 2400 185600 6100	189300
1996 162300 4300 166600 4400	166700
1997 167700 2900 170600 4300	172000
1998 181800 2800 184600 4100	185900
1999 144400 1900 146300 4300	148700
2000 170500 1900 172400 4600	175100
2001 147300 1200 148500 2900	150200
2002 125600 400 126000 3500	129100
2003 109500 400 109900 4300	113800
2004 89700 200 89900 3300	93000
2005 89300 500 89800 2300	91600
2006 107200 400 107600 3200	110400
2007 114500 100 114600 1500	116000
2008 120100 100 120200 6100	126154
2009 129200 100 129300 4900	134126
2010 131500 400 131900 5200	136706
2011 111300 100 111400 5500	116785
2012 97200 200 97400 3800	100893
2013 96900 300 97200 4100	100954
2014 128200 200 128400 4500	132700
2015 169465 316 169781 4968	174433
2016 187741 289 188029 4315	192056

Summary of the assessment

Table 11 Herring in subdivisions 25–29 and 32, excluding the Gulf of Riga. Assessment summary. Weights are in tonnes.

Table 11 Herring i	n subdivisions 25–29 and 32, exc	cluding the Guif of Riga. Asso	are in tonnes.	
	Recruitment	SSB*	Catches	F
Year	Age 1	tonnes	tonnes	Ages 3–6
	thousands			
1974	18115116	1683342	368652	0.184
1975	13329768	1577408	354851	0.20
1976	26360651	1368886	305420	0.193
1977	13400270	1521998	301952	0.189
1978	15702005	1441824	278966	0.164
1979	12856079	1410091	278182	0.195
1980	18714285	1359022	270282	0.187
1981	31191975	1288491	293615	0.20
1982	29099041	1434355	273134	0.174
1983	22131126	1408071	307601	0.22
1984	29453591	1321236	277926	0.22
1985	22882573	1270356	275760	0.23
1986	11529532	1205417	240516	0.20
1987	21003876	1150388	248653	0.23
1988	9414139	1154698	255734	0.22
1989	14219555	1017851	275501	0.29
1990	19057155	875410	228572	0.27
1991	14679230	788409	197676 189781	0.28
1992	17932210	809946		0.25
1993	16521728	762903	209094	0.28
1994	15800551	773069	218260	0.34
1995 1996	20081061 16842346	679845 626540	188181 162578	0.32
1997	10049377	588136	160002	0.35
1998	15724393	540088	185780	0.36
1999	8724032	459795	145922	0.31
2000	16372756	470975	175646	0.42
2001	11726445	427121	148404	0.35
2002	11224354	446227	129222	0.30
2003	22562502	517700	113584	0.23
2004	14162085	525969	93006	0.189
2005	9381523	593317	91592	0.169
2006	16534868	659796	110372	0.183
2007	14457857	689864	116030	0.186
2008	28194423	703641	126155	0.188
2009	21372087	808877	134127	0.170
2010	15382382	868744	136706	0.197
2011	9954930	863526	116785	0.151
2012	24392292	923727	100893	0.110
2013	21540883	1001657	100954	0.098
2014	16964240	1103797	132700	0.134
2015	61114865	1050468	174433	0.179
2016	19584250	1036926	192056	0.20
2017	14587000**	1341625***		
				L

^{*} At spawning time.

^{**} Output from survey data (RCT3 analysis).

^{***} Predicted.

Sources and references

EU. 2013. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32013R1380.

EU. 2016. Regulation (EU) 2016/1139 of the European Parliament and of the Council of 6 July 2016 establishing a multiannual plan for the stocks of cod, herring and sprat in the Baltic Sea and the fisheries exploiting those stocks, amending Council Regulation (EC) No 2187/2005 and repealing Council Regulation (EC) No 1098/2007. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R1139&from=EN.

Gröhsler, T., Oeberst, R., Schaber, M., Larson, N., and Kornilovs, G. 2013. Discrimination of western Baltic spring-spawning and central Baltic herring (*Clupea harengus* L.) based on growth vs. natural tag information. ICES Journal of Marine Science, 70(6): 1108–1117. doi: https://doi.org/10.1093/icesjms/fst064.

Hentati-Sundberg, J., Hjelm, J., and Österblom, H. 2014. Does fisheries management incentivize non-compliance? Estimated misreporting in the Swedish Baltic Sea pelagic fishery based on commercial fishing effort. ICES Journal of Marine Science, 71(7): 1846–1853. doi: https://doi.org/10.1093/icesjms/fsu036.

ICES. 2003. Report of the Herring Assessment Working Group for the Area South of 62°N (HAWG), 11–20 March 2003, ICES HQ, Copenhagen, Denmark. ICES CM 2003/ACFM:17. 449 pp.

ICES. 2013. Report of the Benchmark Workshop on Baltic Multispecies Assessments (WKBALT 2013), 4–8 February 2013, Copenhagen, Denmark. ICES CM 2013/ACOM:43. 399 pp.

ICES. 2014. Second Interim Report of the Working Group on Maritime Systems (WGMARS), 2–5 December 2014, Copenhagen, Denmark. ICES CM 2014/SSGSUE:08. 35 pp.

ICES 2015. EU request to ICES to provide F_{MSY} ranges for selected North Sea and Baltic Sea stocks. *In* Report of the ICES Advisory Committee, 20125. ICES Advice 20125, Book 6, Section 6.2.3.1. http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2015/Special Requests/EU FMSY ranges for selected NS a nd BS stocks.pdf.

ICES. 2016. Advice basis. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 1, Section 1.2.

ICES. 2017. Report of the Baltic Fisheries Assessment Working Group (WGBFAS), 19–26 April 2017, ICES Headquarters, Copenhagen, Denmark. ICES CM 2017/ACOM:11.