Published 31 May 2017 DOI: 10.17895/ices.pub.3255

Sprat (Sprattus sprattus) in subdivisions 22–32 (Baltic Sea)

ICES stock advice

ICES advises that when the EU multiannual plan (MAP) is applied, catches in 2018 that correspond to the F ranges in the plan are between 219 152 tonnes and 301 722 tonnes. According to the MAP, catches higher than those corresponding to F_{MSY} (291 715 tonnes) can only be taken under conditions specified in the MAP.

ICES advises that a spatial management plan is considered for the fisheries that catch sprat.

Stock development over time

The spawning-stock biomass (SSB) is well above MSY $B_{trigger}$. The recent increase in SSB is attributable to the strong year class of 2014. The 2015 and 2016 year classes are estimated slightly below average. Fishing mortality (F) has declined in recent years and is now below F_{MSY} .

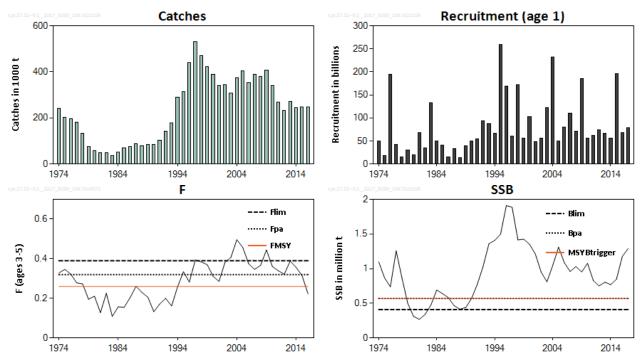


Figure 1 Sprat in subdivisions 22–32. Summary of the stock assessment. SSB at spawning time in 2017 is predicted.

Stock and exploitation status

Table 1 Sprat in subdivisions 22–32. State of the stock and fishery relative to reference points.

	Fishing pressure				Stock size					
		2014	2015		2016		2015	2016		2017
Maximum sustainable yield	F _{MSY}	8	8	②	Below	MSY B _{trigger}	\bigcirc	igoremsize	8	Above trigger
Precautionary approach	F _{pa} , F _{lim}	0		②	Harvested sustainably	B _{pa} , B _{lim}		lacksquare	\odot	Full reproductive capacity
Management plan	F_{ranges}	8	8	②	Within range	MSY B _{trigger}	•	②	②	Above trigger

ICES Advice 2017

Catch options

Table 2 Sprat in subdivisions 22–32. The basis for the catch options.

Variable	Value	Source	Notes
F ages 3–5 (2017)	0.26	ICES (2017)	Catch constraint*
SSB (2017)	1289000	ICES (2017)	Catch constraint (in tonnes)
R _{age1} (2017)	79182000	ICES (2017)	RCT 3 estimate (in thousands)
R _{age1} (2018)	88708000	ICES (2017)	Geometric mean 1991–2016 (in thousands)
R _{age1} (2019)	88708000	ICES (2017)	Geometric mean 1991–2016 (in thousands)
Total catch (2017)	303593	ICES (2017)	Catch constraint* (in tonnes)

^{*} Catch constraint of 303 593 t in 2017 (EU quota of 260 993 t and Russian quota of 42 600 t).

Table 3 Sprat in subdivisions 22–32. Annual catch options. All weights are in tonnes.

Basis	Total catch (2018)	F _{total} (2018)	SSB (2018)	SSB (2019)	% SSB change *	% TAC change **
ICES advice basis						
EU MAP^: F _{MSY}	291715	0.26	1225338	1220893	-0.4	-4.0
F = MAP F _{MSY lower}	219152	0.19	1255583	1308530	4.2	-27.9
F = MAP F _{MSY upper}	301722	0.27	1221156	1208985	-1.0	-0.7
Other options						
MSY approach = F _{MSY}	291715	0.26	1225338	1220893	-0.4	-4.0
F = 0	0	0.00	1341000	1587000	18.3	-100.0
F _{pa}	350992	0.32	1200243	1150369	-4.2	15.5
F _{lim}	415620	0.39	1171008	1075110	-8.2	36.7
SSB (2019) = B _{lim}	1093000	1.51	800000	410000	-48.8	259.5
SSB (2019) = B _{pa}	906242	1.09	919677	570016	-38.0	198.1
SSB (2019) = MSY B _{trigger}	906242	1.09	919677	570016	-38.0	198.1
F = F ₂₀₁₇	295000	0.26	1224000	1217000	-0.6	-3.0
F = MAP F _{MSY lower}	219152	0.19	1255583	1308530	4.2	-27.9
$F = MAP F_{MSY lower} + 0.01$	229758	0.2	1251417	1295652	3.5	-24.4
$F = MAP F_{MSY lower} + 0.02$	240364	0.21	1247250	1282773	2.8	-20.9
$F = MAP F_{MSY lower} + 0.03$	250650	0.22	1242711	1270205	2.2	-17.5
$F = MAP F_{MSY lower} + 0.04$	260916	0.23	1238148	1257658	1.6	-14.2
$F = MAP F_{MSY lower} + 0.05$	271183	0.24	1233703	1245228	0.9	-10.8
$F = MAP F_{MSY lower} + 0.06$	281449	0.25	1229521	1233061	0.3	-7.4
F = MAP F _{MSY lower} + 0.07	291715	0.26	1225338	1220894	-0.4	-4.0
F = MAP F _{MSY upper}	301722	0.27	1221156	1208985	-1.0	-0.7

^{*} SSB 2019 relative to SSB 2018.

Basis of the advice

Table 4Sprat in subdivisions 22–32. The basis of the advice.

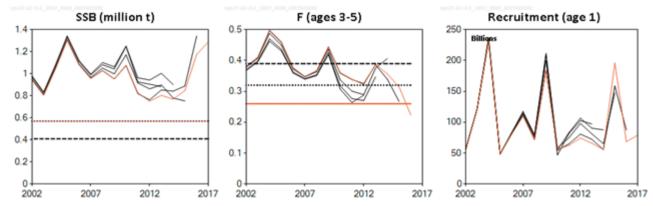
Advice basis	EU Baltic multiannual plan.
Managament plan	The EU multiannual plan (MAP) in place for stocks in the Baltic Sea includes sprat (EU, 2016). The advice is
Management plan	based on the provisions of the plan and is considered precautionary.

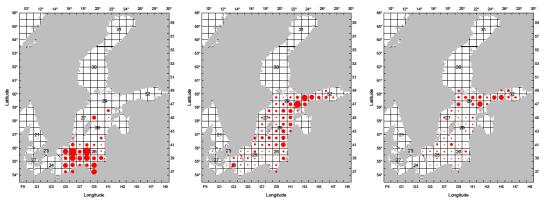
^{**} Catches in 2018 relative to sum of autonomous quotas in 2017 (303 593 t; EU quota of 260 993 t and Russian quota of 42 600 t).

[^] MAP multiannual plan (EU, 2016).

Quality of the assessment

The historical variations in the assessment are to some extent related to the revisions of predation mortalities from cod, used as input in the assessment model.




Figure 2 Sprat in subdivisions 22–32. Historical assessment results (final-year recruitment estimates included).

Issues relevant for the advice

The F_{MSY} ranges in the EU Baltic Sea Multiannual Plan (MAP) are consistent with the ranges provided by ICES (2015); these were evaluated to result in no more than 5% reduction in long-term yield compared with MSY. The ICES advice according to the MAP is based on the provisions of the plan and is considered precautionary. The ICES advice rule is used, i.e. F is adjusted by the factor SSB/MSY B_{trigger} when SSB is below MSY B_{trigger}. For this stock, the SSB in 2018 is above MSY B_{trigger}. In this situation, catch options applicable under the MAP correspond to fishing mortalities between F_{lower} and F_{upper}. However, according to the MAP, catches corresponding to F higher than F_{MSY} (i.e. Column B of Annex I in the MAP) can only be taken under conditions specified in the MAP.

ICES recommends that a spatial management plan is developed for the fisheries that catch sprat, with the aim to improve cod condition. The abundance of cod in subdivisions 25–26 is high compared to other areas in the Baltic and the cod condition is considered to be limited by food availability. Sprat and herring are important food items for cod (especially sprat), but the present high biomass of the two prey stocks is mainly distributed outside the distribution area for cod (Figure 3). Any fishery on the two prey species in the main cod distribution area (subdivisions 25–26) will potentially decrease the local sprat density, which may lead to increased food deprivation for cod (Casini *et al.*, 2016). The relative catch proportion of sprat in the main cod distribution area has since 2010 increased from 37% of the total catch to 47% in 2012–2016. Any increase in fishing pressure on sprat in the main cod distribution area may deteriorate the feeding condition for cod as prey availability decreases. Restrictions on sprat catches taken in the main cod area should be established.

Redistribution of the fishery to the northern areas (subdivisions 27–32) may also reduce the density-dependent effect, i.e. increase growth for the clupeids in the area.

Sprat in subdivisions 22–32. Distribution of eastern Baltic Sea cod from the bottom trawl survey (BITS, in number h⁻¹) in the 4th quarter 2016 (left panel); Baltic sprat from the acoustic survey (BIAS, in millions) in the 4th quarter 2016 (middle panel); and herring in subdivisions 25–29 and 32, excluding the Gulf of Riga, from the BIAS survey (BIAS, in millions) in the 4th quarter 2016 (right panel). The cod panel includes fish ≥ 30 cm, while the herring and sprat panels include ages between 0 and 8. Note that the figures are based on number of individuals and not on biomass.

Reference points

Table 5 Sprat in subdivisions 22–32. Reference points, values, and their technical basis.

Framework	Reference point	Value	Technical basis	Source
	MSY B _{trigger} 570 000 t		Assumed at B _{pa} .	ICES (2015)
MSY approach	F _{MSY} 0.26		Stochastic simulations with segmented regression and Ricker stock–recruitment curves from the 1992–2013 time-series.	ICES (2015)
Precautionary	B _{lim} 410 000 t		Stock—recruitment relationship (biomass which produces half of the maximal recruitment in a Beverton—Holt model).	ICES (2013)
approach	B_pa	570 000 t	B _{lim} × 1.4.	ICES (2013)
	F _{lim} 0.39		Consistent with B _{lim} .	ICES (2013)
	F _{pa}	0.32	Consistent with B _{pa} .	ICES (2013)
	MAP MSY B _{trigger}	570 000 t	MSY B _{trigger}	Annex II column A in EU (2016)
	MAP B _{lim}	410 000 t	B _{lim}	Annex II column B in EU (2016)
Management	MAP F _{MSY}	0.26	F _{MSY}	Annex I columns A and B in EU (2016)
plan	MAP target range F _{lower}	0.19–0.26	Consistent with the ranges provided by ICES (2015), resulting in no more than 5% reduction in long-term yield compared with MSY.	ICES (2015), and Annex I column A in EU (2016)
	MAP target range F _{upper}	0.26–0.27	Consistent with the ranges provided by ICES (2015), resulting in no more than 5% reduction in long-term yield compared with MSY.	ICES (2015), and Annex I column B in EU (2016)

Basis of the assessment

Table 6 Sprat in subdivisions 22–32. Basis of assessment and advice.

ICES stock data category	1 (<u>ICES, 2016</u>).
Assessment type	Age-based analytical assessment, XSA (ICES, 2017) that uses catches in the model and in the forecast.
Input data	Commercial catches (international landings, ages and length frequencies from catch sampling); two acoustic surveys (BASS; BIAS); natural mortalities from the multispecies model (SMS) and regression of M against eastern Baltic cod SSB.
Discards and bycatch	Not included, considered negligible.
Indicators	None.
Other information	This stock was last benchmarked in 2013 (WKBALT; ICES, 2013).
Working group	Baltic Fisheries Assessment Working Group (WGBFAS)

Information from stakeholders

There is no available information.

History of the advice, catch, and management

Table 7 Sprat in subdivisions 22–32. ICES advice, the agreed TAC, and ICES estimates of catch. All weights are in tonnes.

Гable 7	Sprat in subdivisions 22–32. ICES advice, the agreed TAC	AC, and ICES estimates of catch. All weights are in tonnes.				
Year	ICES advice	Predicted catch	Agreed TAC	ICES catch		
		corresponding to advice	0			
1987	Catch could be increased in subdivisions 22, 24 and 25		117200	88200		
	Status quo F for subdivisions 27, and 29-32					
1988	Catch could be increased in subdivisions 22–25	-	117200	80300		
1989	Catch could be increased for subdivisions 26 and 28	72000	142000	85800		
1990	Status quo F for subdivisions 27 and 29-32	72000	150000	85600		
1991	TAC	150000	163000	103200		
1992	Status quo F	143000	290000	142100		
1993	Increase in yield by increasing F	143000	415000	178100		
1994	Increase in yield by increasing F	_	700000	288800		
1995	TAC	205000	500000	312600		
1996	Little gain in long-term yield at higher F	279000	550000	441000		
1997	No advice	279000	550000	529400		
1998	Status quo F	343000	550000	470800		
1999	·	304000	467005	422600		
2000	Proposed F _{pa} Proposed F _{pa}	192000	400000	389100		
2000	Proposed F _{pa}	314000	355000	342200		
2001	Proposed F _{pa}	369000	380000	343200		
2002	Below proposed F _{pa} (TAC should be set on central Baltic	369000	380000	343200		
2003	herring considerations)	300000	310000	308300		
2004	Below proposed F _{pa} (TAC should be set on central Baltic herring considerations)	474000	420000	373700		
2005	TAC should be set on central Baltic herring considerations	< 614000	550000	405200		
2006	Agreed management plan	439000	468000	352100		
2007	< F _{pa}	< 477000	454000*	388900		
2008	< F _{pa}	< 432000	454000*	380500		
2009	< F _{pa}	< 291000	399000*	407100		
2010	< F _{pa}	< 306000	380000*	341500		
2011	< F _{pa}	< 242000	322700**	267900		
2012	MSY transition scheme	< 242000	255100**	235000		
2013	F< F _{MSY}	< 278000	278000**	272400		
2014	MSY approach	< 247000	267900**	243800		
2015	MSY approach	< 222000	240200**	247200		
2016	MSY approach (F = 0.26)	≤ 205000	243000**	246500		
2017	MSY approach (F = 0.26)	≤ 314000	303593**			
2018	MAP target F ranges: F_{lower} to F_{upper} (F = 0.19–0.27), but F higher than F_{MSY} = 0.26 only under conditions specified in MAP	219152–301722, but catch higher than 291715 only under conditions specified in MAP				
		conditions specified in MAP				

^{*} EU autonomous quota, not including Russian catches.

History of the catch and landings

Table 8Sprat in subdivisions 22–32. Catch distribution by fleet in 2016 as estimated by ICES.

Catch (2016)	Landings	Discards
246 500 tonnes	Most of the catch is taken by pelagic trawlers	Discarding is considered to
246 500 tollies	246 500 tonnes	be negligible.

^{**} TAC is calculated as EU + Russian autonomous quotas.

Table 9 Sprat in subdivisions 22–32. History of ICES catches presented by area for each country participating in the fishery. All weights are in tonnes.

	All Weig	gnis are in i	Ulliles.						1	
Year	Denmark	Finland	German Dem. Rep.	Germany Fed. Rep.	Poland	Sweden	USSR	Total		
1977	7200	6700	17200	800	38800	400	109700	180800		
1978	10800	6100	13700	800	24700	800	75500	132400		
1979	5500	7100	4000	700	12400	2200	45100	77100		
1980	4700	6200	100	500	12700	2800	31400	58100		
1981	8400	6000	100	600	8900	1600	23900	49300		
1982	6700	4500	1000	600	14200	2800	18900	48700		
1983	6200	3400	2700	600	7100	3600	13700	37300		
1984	3200	2400	2800	700	9300	8400	25900	52500		
1985	4100	3000	2000	900	18500	7100	34000	69500		
1986	6000	3200	2500	500	23700	3500	36500	75800		
1987	2600	2800	1300	1100	32000	3500	44900	88200		
1988	2000	3000	1200	300	22200	7300	44200	80300		
1989	5200	2800	1200	600	18600	3500	54000	85800		
1990	800	2700	500	800	13300	7500	60000	85600		
1991	10000	1600		700	22500	8700	59700*	103200		
Year	Denmark	Estonia	Finland	Germany	Latvia	Lithuania	Poland	Russia	Sweden	Total
1992	24300	4100	1800	600	17400	3300	28300	8100	54200	142100
1993	18400	5800	1700	600	12600	3300	31800	11200	92700	178100
1994	60600	9600	1900	300	20100	2300	41200	17600	135200	288800
1995	64100	13100	5200	200	24400	2900	44200	14800	143700	312600
1996	109100	21100	17400	200	34200	10200	72400	18200	158200	441000
1997	137400	38900	24400	400	49300	4800	99900	22400	151900	529400
1998	91800	32300	25700	4600	44900	4500	55100	20900	191100	470800
1999	90200	33200	18900	200	42800	2300	66300	31500	137300	422600
2000	51500	39400	20200	0	46200	1700	79200	30400	120600	389100
2001	39700	37500	15400	800	42800	3000	85800	32000	85400	342200
2002	42000	41300	17200	1000	47500	2800	81200	32900	77300	343200
2003	32000	29200	9000	18000	41700	2200	84100	28700	63400	308300
2004	44300	30200	16600	28500	52400	1600	96700	25100	78300	373700
2005	46500	49800	17900	29000	64700	8600	71400	29700	87800	405200
2006	42100	46800	19000	30800	54600	7500	54300	28200	68700	352100
2007	37600	51000	24600	30800	60500	20300	58700	24800	80700	388900
2008	45900	48600	24300	30400	57200	18700	53300	21000	81100	380500
2009	59700	47300	23100	26300	49500	18800	81900	25200	75300	407100
2010	43600	47900	24400	17800	45900	9200	56700	25600	70400	341500
2011	31400	35000	15800	11400	33400	9900	55300	19500	56200	267900
2012	11400	27700	9000	11300	30700	11300	62100	25000	46500	235000
2013	25600	29800	11100	10300	33300	10400	79700	22600	49700	272400
2014	26600	28500	11700	10200	30800	9600	56900	23400	46000	243800
2015	22500	24000	12000	10300	30500	11000	62200	30700	44100	247200
2016	19100	23700	16900	10900	28100	11600	59300	34600	42400	246500

^{*} Sum of landings by Estonia, Latvia, Lithuania, and Russia.

Summary of the assessment

Table 10Sprat in subdivisions 22–32. Assessment summary. Weights are in tonnes.

Table 10 Sprat in subdivisions 22–32. Assessment summary. Weights are in tonnes.									
Year	Recruitment (age 1)	SSB*	Catches	F (ages 3–5)					
	thousands			(48633-3)					
1974	50439000	1097000	242000	0.329					
1975	18933000	867000	201000	0.346					
1976	194491000	738000	195000	0.322					
1977	42726000	1257000	180800	0.278					
1978	15221000	866000	132400	0.273					
1979	30534000	498000	77100	0.196					
1980	20034000	311000	58100	0.211					
1981	67761000	268000	49300	0.128					
1982	35164000	340000	48700	0.226					
1983	133282000	478000	37300	0.109					
1984	50388000	691000	52500	0.157					
1985	40541000	639000	69500	0.155					
1986	15178000	581000	75800	0.203					
1987	33942000	466000	88200	0.261					
1988	13469000	415000	80300	0.23					
1989	40010000	438000	85800	0.206					
1990	49578000	570000	85600	0.133					
1991	54515000	776000	103200	0.171					
1992	93807000	1034000	142100	0.2					
1993	87489000	1359000	178100	0.162					
1994	66666000	1407000	288800	0.258					
1995	259113000	1496000	312600	0.334					
1996	169590000	1910000	441000	0.282					
1997	59730000	1885000	529400	0.394					
1998	171199000	1414000	470800	0.384					
1999	56587000	1424000	422600	0.37					
2000	102305000	1352000	389100	0.312					
2001	49022000	1210000	342200	0.285					
2002	55337000	950000	343200	0.381					
2003	122138000	810000	308300	0.407					
2004	231693000	1045000	373700	0.496					
2005	49142000	1310000	405200	0.457					
2006	80627000	1086000	352100	0.374					
2007	110130000	959000	388900	0.346					
2008	71665000	1029000	380500	0.366					
2009	184869000	953000	407100	0.444					
2010	56163000	1077000	341500	0.361					
2011	62368000	827000	267900	0.339					
2012	74515000	751000	235000	0.322					
2013	65855000	804000	272400	0.388					
2014	55731000	769000	243800	0.357					
2015	196213000	848000	247200	0.315					
2016	68547000	1176000	246500	0.223					
2017	79182000**	1289000***							

^{*} At spawning time.

^{**} Output from survey data (RCT3 analysis).

^{***} Predicted.

Sources and references

Casini, M., Käll, F., Hansson, M., Plikshs, M., Baranova, T, Karlsson, O., *et al.* 2016. Hypoxic areas, density-dependence and food limitation drive the body condition of a heavily exploited marine fish predator. Royal Society Open Science, 3: 160416. 15 pp. doi: 10.1098/rsos.160416.

EU. 2016. Regulation (EU) 2016/1139 of the European Parliament and of the Council of 6 July 2016 establishing a multiannual plan for the stocks of cod, herring and sprat in the Baltic Sea and the fisheries exploiting those stocks, amending Council Regulation (EC) No. 2187/2005 and repealing Council Regulation (EC) No. 1098/2007. Official Journal of the European Union, L 191/1.

ICES. 2013. Report of the Benchmark Workshop on Baltic Multispecies Assessments (WKBALT 2013), 4–8 February 2013, Copenhagen, Denmark. ICES CM 2013/ACOM:43. 399 pp.

ICES. 2015. EU request to ICES to provide F_{MSY} ranges for selected North Sea and Baltic Sea stocks. *In* Report of the ICES Advisory Committee, 2015. ICES Advice 2015, Book 6, Section 6.2.3.1.

http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2015/Special Requests/EU FMSY ranges for selected NS a nd BS stocks.pdf.

ICES. 2016. Advice basis. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 1, Section 1.2.

ICES. 2017. Report of the Baltic Fisheries Assessment Working Group (WGBFAS), 19–26 April 2017, ICES Headquarters, Copenhagen, Denmark. ICES CM 2017/ACOM:11.