Greater North Sea Ecoregion
Published 29 May 2019

Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel)

ICES advice on fishing opportunities

ICES advises that when the MSY approach is applied, catches in 2020 should be no more than 431062 tonnes, which includes 418649 tonnes for the A-fleet.

Stock development over time

Spawning-stock biomass (SSB) fluctuated between 1.5 and 2.7 million tonnes between 1998 and 2018, and in all years it
 2002, with very low recruitment in 2015 and 2017.

Figure $1 \quad$ Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Summary of the stock assessment; 95\% confidence intervals are shown for SSB, F, and recruitment.

Stock and exploitation status

ICES assesses that fishing pressure on the stock is below $\mathrm{F}_{\mathrm{Ms}}, \mathrm{F}_{\mathrm{PA}}$, and Flim; and that the spawning stock size is above MSY Btriger, B_{pa}, and Blim.

Table 1 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. State of the stock and fishery relative to reference points.

	Fishing pressure					Stock size				
	20162017			2018		2016		2017	2018	
Maximum sustainable yield	$\mathrm{F}_{\text {MSY }}$		v		Appropriate	MSY $B_{\text {trigger }}$				Above trigger
Precautionary approach	$\mathrm{F}_{\mathrm{pa} \mathrm{a} \mathrm{F}_{\text {lim }} \text { }}$		(Harvested sustainably	$\mathrm{B}_{\mathrm{pa}{ }^{\prime} \mathrm{B}_{\text {lim }} \text { }}$	\checkmark	(Full reproductive capacity
Management plan	$\mathrm{F}_{\text {MGT }}$	-	-	-	Not applicable	$\mathrm{B}_{\text {MGT }}$	-	-		Not applicable

ICES Advice 2019 - her.27.3a47d - https://doi.org/10.17895/ices.advice. 4716
ICES advice, as adopted by its Advisory Committee (ACOM), is developed upon request by ICES clients (European Union, NASCO, NEAFC, and Norway).

Catch scenarios

Table 2 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. The basis for the catch scenarios. All weights are in tonnes and recruitment is in thousands.

Variable	Value	Notes
$\mathrm{F}_{\text {ages (wr) 2-6 }}(2019)$	0.194	Based on catch 2019
SSB (2019)	1528855	Calculated based on catch constraint (in tonnes)
$\mathrm{R}_{\text {age (wr) } 0 \text { (2019) }}$	26191234	Estimated by assessment model (in thousands)
$\mathrm{R}_{\text {age (wr) } 0 \text { (2020) }}$	33943979	Weighted mean over 2009-2018 (in thousands)
Total catch (2019)	412462	Agreed catches, including a 48\% transfer (14 076 t) of C-fleet TAC to the A-fleet in the North Sea (in tonnes)

Table 3 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. The intermediate year (2019) assumptions. Weights are in tonnes.

F by fleet and total						NSAS catches by fleet				$\begin{gathered} \text { SSB } \\ 2019 \end{gathered}$
$F_{\text {ages }}$ (wr) 2-6 A-fleet	$\begin{gathered} \hline \mathrm{F}_{\text {ages }} \\ \text { (wr) 0-1 } \\ \text { B-fleet } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Fages }^{\text {(wr) 0-1 }} \\ & \text { C-fleet } \end{aligned}$	$\begin{gathered} \mathrm{F}_{\text {ages }} \\ (\mathrm{wr}) 0-1 \\ \mathrm{D} \text {-fleet } \end{gathered}$	$\begin{aligned} & F_{\text {ages }} \\ & (\mathrm{wr}) \text { 2-6 } \end{aligned}$	$\begin{aligned} & F_{\text {ages }} \\ & (\mathrm{wr}) 0-1 \end{aligned}$	Catches A-fleet	Catches B-fleet	Catches C-fleet	Catches D-fleet	
0.193	0.046	0.002	0.002	0.194	0.052	397648	11324	2886	604	1528855

Table $4 \quad$ Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Annual catch scenarios. All weights are in tonnes.

Basis	F values by fleet and total						NSAS catches by fleet				Total stock catch	Biomass*				\% Advice change ^
							A-fleet	B-fleet	C-fleet ${ }^{\#}$	D-fleet ${ }^{\#}$		SSB 2020	$\underset{* *}{\text { SSB } 2021}$	\%SSB change ***		
MSY approach^^	0.24	0.046	0	0	0.24	0.048	418649	12413	0	0	431062	1286788	1167712	-15.8	8.7	38.4
Other scenarios																
$\mathrm{F}=\mathrm{F}_{\text {MSY }}$	0.26	0.046	0	0	0.26	0.048	448772	12412	0	0	461185	1266292	1135230	-17.2	16.6	48.0
$\mathrm{F}=0$	0	0	0	0	0	0	0	0	0	0	0	1558516	1699799	1.9	-100.0	-100.0
No change in A-fleet TAC	0.22	0.046	0	0	0.22	0.047	385008	12414	0	0	397422	1309518	1204811	-14.3	0.0	27.6
A-fleet TAC reduction of 15\%	0.179	0.046	0	0	0.179	0.047	327257	12415	0	0	339672	1348146	1270564	-11.8	-15.0	9.0
A-fleet TAC increase of 15\%	0.26	0.046	0	0	0.26	0.048	442759	12412	0	0	455172	1270395	1141659	-16.9	15.0	46.1
$\mathrm{F}=\mathrm{F}_{2019}$	0.194	0.046	0	0	0.194	0.047	351394	12415	0	0	363809	1332061	1242761	-12.9	-8.7	16.8
F_{pa}	0.30	0.046	0	0	0.30	0.048	503560	12411	0	0	515971	1228661	1077894	-19.6	30.8	65.6
$\mathrm{F}_{\text {lim }}$	0.34	0.046	0	0	0.34	0.048	555312	12409	0	0	567721	1192695	1025745	-22.0	44.2	82.2
$\mathrm{SSB}_{2020}=\mathrm{B}_{\mathrm{pa}}$	0.75	0.046	0	0	0.75	0.050	957157	12395	0	0	969552	899590	679381	-41.2	148.6	211.2
$\mathrm{SSB}_{2020}=\mathrm{B}_{\text {lim }}$	0.95	0.046	0	0	0.95	0.051	1087848	12388	0	0	1100237	799618	585305	-47.7	182.6	253.1
SSB $2020=$ MSY $\mathrm{B}_{\text {trigger }}$	0.131	0.046	0	0	0.132	0.047	249400	12417	0	0	261817	1399457	1363458	-8.5	-35.2	-16.0
MSY approach with Cand D-fleets catches and C-fleet TAC transfer"\#	0.25	0.046	0.002	0.002	0.25	0.052	429474	12392	2886	604	445357	1286867	1165739	-15.8	11.5	42.9
MSY approach with Cand D-fleets catches and no C-fleet TAC transfer"\#\#	0.24	0.046	0.003	0.002	0.24	0.053	415398	12388	5550	604	433940	1286942	1164080	-15.8	7.9	39.3

* For autumn-spawning stocks, the SSB is determined at spawning time and is influenced by fisheries between 1 January and spawning.
** Assuming same catch scenario in 2020 as in 2019.
** SSB (2020) relative to SSB (2019).
**** A-fleet catches (2020) relative to TAC 2019 for the A-fleet (385 008 tonnes).
${ }^{\wedge}$ Advice value 2020 relative to advice value 2019, using catches for all fleets.
$\wedge \wedge$ Following the MSY advice rule $\mathrm{F}_{\text {MSY }} \times$ SSB $_{2020} /$ MSY $B_{\text {trigger }}$ (ICES, 2016).
^^^ Status quo fishing mortality for the B-fleet for all catch options.
\# The catch for C - and D-fleets are set to zero because of the zero catch advice given for 2020 for the western Baltic spring-spawning herring stock.
\#\# Following the MSY advice rule $\mathrm{F}_{\text {MSY }} \times$ SSB $_{2020} /$ MSY $\mathrm{B}_{\text {trigger }}$ (ICES, 2016), assuming same catches as in 2019 for the C-and D-fleet and a 48% C-fleet TAC transfer to the A-fleet.
\#\#\# Following the MSY advice rule $\mathrm{F}_{\text {MSY }} \times$ SSB $_{2020} / \mathrm{MSY}_{\text {trigger }}$ (ICES, 2016), assuming same catches as in 2019 for the C- and D-fleet and no C-fleet TAC transfer to the A-fleet.

The advice has increased by 38.4% because the updated assessment revised the estimates of stock size upwards. The fishing pressure on this stock is calculated over ages $2-6$. In recent years, however, relative fishing pressure on older ages $(7+)$ is higher and the proportion of older fish in the catches is increased; this is expected to result in higher catches in 2020.

Basis of the advice

Table 5 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. The basis of the advice.

Advice basis	ICES MSY approach.
Management plan	ICES has provided advice on the long-term management strategies of North Sea herring based on a joint request from the European Union and Norway (ICES, 2019c). Until such time as one of the options is agreed by both parties, ICES will continue to provide advice based on the MSY approach.

Quality of the assessment

The SSB has been estimated to be at a higher level for a number of years compared to the previous assessment (e.g. 16% higher for 2017). The 2019 assessment was particularly sensitive to the inclusion of the 2018 data from the herring acoustic survey (HERAS). The quality of the survey was evaluated and considered appropriate. The observed revision in the assessment cannot be fully explained but will require further scientific investigation.

Figure 2 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Historical assessment results. Final-year recruitment estimates included.

Issues relevant for the advice

Although the advice for 2020 is for an increase in catch, a reduction in stock size is expected in the coming years. This is because there is a lack of strong incoming year classes, as well as a reduction in the contribution of the strong 2013 year class to the stock. The SSB in 2020 is expected to be below MSY Btrigger, as a consequence of fishing at $\mathrm{F}_{\text {MsY. }}$

The fishing mortality on the oldest ages (7, 8+), are outside the age range in the reference fishing mortality ($\mathrm{F}_{\text {ages }}(\mathrm{wr})$ 2-6). Fishing mortality on the older ages is estimated to be around 0.6 , and their contribution to the predicted catch is expected to increase from 13% in 2019 to 30% in 2020. As a result, the catch advice for 2020 is substantially higher (38.4\%) compared to the advice for 2019.

The recent management strategy evaluations (MSE) found that the ICES MSY advice rule with current $\mathrm{F}_{\text {MSY }}$ and MSY $\mathrm{B}_{\text {trigger }}$ was found not to be precautionary (probability of SSB < Blim higher than 5\%) under the assumptions of those simulations (ICES, 2019c). This can be explained by technical differences in the evaluation approach use for the MSE compared to the standard approach to estimate MSY reference points. Further investigation is now required to establish if the current reference points need to be re-defined. In the interim ICES will continue to use the current reference points for advice.

EU and Norway set the 2019 A-fleet TAC based on Fmsr. To date, no management strategy has been agreed upon and the A-fleet advice for 2020 is based on the ICES MSY approach. For the B-fleet, fishing mortality is assumed to be status quo (0.046). The C-fleet and D-fleet catches are set to zero, which is consistent with the zero catch advised for WBSS.

NSAS herring has several spawning components, including the Downs herring that spawns in divisions 4.c and 7.d. These components are fished on individual spawning grounds and in a mixed-component fishery in the central and northern North Sea. Only the Downs component is caught in the southern North Sea. To help protect these components, sub-TACs have been set for divisions 4.c and 7.d, as well as for the remainder of the area. Such measures should be continued, in order to give continued protection to the different components. To ensure the maximum productivity of the stock, all populations within the stock should be protected under a long-term management strategy.

Catch scenarios in Table 4 by stock and area for North Sea Autumn Spawners (NSAS) and Western Baltic Spring Spawners (WBSS; ICES, 2019a) are based on fleet-wise predictions for five fleets (A, B, C, D, and F). The catch scenarios for the five fleets are interlinked and are, therefore, calculated simultaneously. This is to ensure that options are consistent among stocks and areas. For technical details see ICES (2019a).

When addressing NSAS options, the catch of NSAS by the A-, B-, C-, and D-fleets in Subarea 4 and divisions 3.a and 7.d have to be considered all at once. For the $A-, C-$, and D-fleets it is expected that a yearly varying portion of the catch consists of NSAS. The A-fleet catches almost exclusively NSAS herring in Subarea 4 and Division 7.d. The B-, C- and D-fleets in Division 3.a catch a mixture of WBSS and NSAS. The ICES advice is zero catch for WBSS; this implies that if the TAC for Division 3.a is set to zero in 2020, the catches of NSAS by the C- and D-fleets would also be zero.

Setting any TAC in Division 3.a and allowing for a transfer of catches from Division 3.a into the North Sea will result in an increased catch and fishing mortality of NSAS herring.

Catches of WBSS are expected to occur in the herring fishery in the eastern part of Division 4.a. Without additional area and seasonal restrictions on the herring fishery in the North Sea in 2020, the catch of WBSS in the North Sea will likely be of a similar magnitude ($\sim 2164 \mathrm{t}$ in 2018).

According to a safety clause in the EU-Norway TAC-setting procedure for herring in Division 3.a, the method should not be applied to calculate the advised catch for the C-fleet as there are serious concerns about the status of the WBSS stock.

Activities that have a negative impact on the spawning habitat of herring should not occur, unless the effects of these activities have been assessed and shown not to be detrimental (ICES, 2003; 2015b).

Reference points

Table 6 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Reference points, values, and their technical basis. Weights in tonnes.

Framework ^	Reference point	Value	Technical basis	Source
MSY approach	MSY Btrigger	1400000	5th percentile of $\mathrm{B}_{\text {FMSY }}$	ICES (2018b)
	$\mathrm{F}_{\text {MSY }}$	0.26	Stochastic simulations with a segmented regression and Ricker stock-recruitment curve from the short time-series (2002-2016).	ICES (2018b)
Precautionary approach	Blim	800000	Breakpoint in the segmented regression of the stock-recruitment time-series (1947-2016).	ICES (2018b)
	B_{pa}	900000	$\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\lim } \times \exp (1.645 \times \sigma)$ with $\sigma \approx 0.10$, based on the average $C V$ from the terminal assessment year.	ICES (2018b)
	$\mathrm{F}_{\text {lim }}$	0.34	$\mathrm{F}_{\mathrm{P} 50 \%}$ leading to 50% probability of SSB $>\mathrm{B}_{\text {lim }}$ with a segmented regression and Ricker stock-recruitment curve (2002-2016).	ICES (2018b)
	F_{pa}	0.30	$\mathrm{F}_{\mathrm{pa}}=\mathrm{F}_{\text {lim }} \times \exp (-1.645 \times \sigma)$ with $\sigma \approx 0.08$, based on the average $C V$ from the terminal assessment year.	ICES (2018b)

Basis of the assessment

Table 7 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Basis of the assessment and advice.

ICES stock data category	1 (ICES, 2018c).
Assessment type	Age-based analytical assessment, SAM (ICES, 2019b) that uses catches in the model and in the forecast.
Input data	Commercial catches and five survey indices (IBTS Q1 1-ringer, IBTSO, LAI as SSB index, HERAS 1-8 ringers, IBTS Q3 0-5-ringers); annual maturity data from HERAS survey, natural mortalities from SMS North Sea multispecies model.
Discards	Discarding is considered to be negligible.
Indicators	None.
Other information	This stock was benchmarked in 2018 (ICES, 2018a). Reference points ($\mathrm{B}_{\text {lim }}, \mathrm{F}_{\text {lim, }}, \mathrm{F}_{\text {pa }}, \mathrm{F}_{\mathrm{MSY}}$, and were updated (ICES, 2018b).
Working group	Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}(\mathrm{HAWG})$

Information from stakeholders

The 48\% TAC transfer from Division 3.a to the North Sea in 2019, assumed for the human consumption fishery on herring in the catch forecast, was based on information provided by the Pelagic Advisory Council (AC).

History of the advice, catch, and management

Table 8 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. ICES advice, TACs, official landings and ICES catch estimates. All weights are in tonnes.

Year	ICES advice	Predicted catch corresponding to advice	Agreed TAC*	B-fleet ${ }^{\# \# \#}$	ICES landings in 4, 7.d ${ }^{\#}$	ICES catch in 4, 7. $\mathrm{d}^{\# \#}$	ICES catch of autumn spawners in 3.a, 4, 7.d
1987	TAC	610000	600000		625000	625000	792000
1988	TAC	515000	530000		710000	710000	888000
1989	TAC	514000	514000		669000	717000	787000
1990	TAC	403000	415000		523000	578000	646000
1991	TAC	423000	420000		537000	588000	657000
1992	TAC	406000	430000		518000	572000	716000
1993	No increase in yield at F > 0.3	340000	430000		495000	540000	671000
1994	No increase in yield at $\mathrm{F}>0.3$	346000	440000		463000	498000	571000
1995	Long-term gains expected at lower F	429000	440000		510000	516000	579000
1996	50% reduction of agreed TAC**	156000	156 000***	44000	207000	233000	275000
1997	$\mathrm{F}=0.2$	159000	159000	24000	175000	238000	264000
1998	$\begin{aligned} & F(\text { adult })=0.2, \\ & F(\text { juv })<0.1 \end{aligned}$	254000	254000	22000	268000	338000	392000
1999	$\begin{aligned} & F(\text { adult })=0.2, \\ & F(\text { juv })<0.1 \end{aligned}$	265000	265000	30000	290000	333000	363000
2000	$\begin{aligned} & F(\text { adult })=0.2, \\ & F(\text { juv })<0.1 \end{aligned}$	265000	265000	36000	284000	346000	388000
2001	$\begin{aligned} & F(\text { adult })=0.2, \\ & F(\text { juv })<0.1 \end{aligned}$	See scenarios	265000	36000	296000	323000	363000
2002	$\begin{aligned} & F(\text { adult })=0.2, \\ & F(\text { juv })<0.1 \end{aligned}$	See scenarios	265000	36000	304000	353000	372000
2003	$\begin{aligned} & \text { F(adult) }=0.25, F(\text { juv }) \\ & =0.12 \end{aligned}$	See scenarios	400000	52000	414000	450000	480000
2004	$\begin{aligned} & \text { F(adult) }=0.25, F(j u v) \\ & =0.1 \end{aligned}$	See scenarios	460000	38000	484000	550000	567000
2005	$\begin{aligned} & \text { F(adult) }=0.25, F(\text { juv }) \\ & =0.1 \end{aligned}$	See scenarios	535000	50000	568000	639000	664000

Year	ICES advice	Predicted catch corresponding to advice	Agreed TAC*	B-fleet ${ }^{\# \# \#}$	ICES landings in $4,7 . d^{\#}$	$\begin{gathered} \text { ICES catch in 4, } \\ 7 . \mathrm{d}^{\# \# \prime} \end{gathered}$	ICES catch of autumn spawners in 3.a, 4, 7.d
2006	$\begin{aligned} & \text { F(adult) }=0.25, F(j u v) \\ & =0.12 \end{aligned}$	See scenarios	455000	43000	490000	511000	515000
2007	Bring SSB above B_{pa} by 2008	See scenarios	341000	32000	361000	388000	407000
2008	$\begin{aligned} & F(\text { adult })=0.17, F(j u v) \\ & =0.08(M P) \end{aligned}$	See scenarios	201000	19000	228000	245000	258000
2009	Adopt one of the new proposed HCRs	See scenarios	171000	16000	167000	166000	168000
2010	$\begin{aligned} & \text { F(adult) }=0.15, F(j u v) \\ & =0.05(M P) \end{aligned}$	See scenarios	164000	14000	175000	175000	188000
2011	See scenarios	See scenarios	200000	16000	218000	218000	226000
2012	2008 Management plan	See scenarios	405000	18000	425000	425000	435000
2013	2008 Management plan	See scenarios	478000	14000	498000	498000	511000
2014	2008 Management plan	See scenarios	470000	13000	504000	508000	517000
2015	2008 Management plan	See scenarios	445000	16000	480000	482000	494000
2016	2014 Management strategy	555086	518000	13000	559700	559900	563600
2017	2014 Management strategy	458926	481608	11375	491693	491693	498662
2018	2014 Management strategy	517891	600588	9669	602328	602328	603536
2019	ICES MSY approach	311572	385008	13190			
2020	ICES MSY approach	431062					

* Catch in directed fishery in Subarea 4 and Division 7.d (A-fleet).
** Revision of advice given in 1995.
*** Revised in June 1996, down from 263000 tonnes.
\# Landings are provided by ICES and do not in all cases correspond to official statistics.
\#\# ICES catch includes unallocated and misreported landings, discards, and slipping. Includes catches for WBSS in the North Sea.
\#\#\# Bycatch ceiling up to 2012 and TAC from 2013.

History of the catch and landings

Table 9 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Catch distribution by fleet and area in 2018 as estimated by ICES.

Area where NSAS are caught	Fleet	Fishery	NSAS 2018 catches (tonnes)
North Sea fisheries (Subarea 4, Division 7.d)	A	Directed herring fisheries	591677
	B	Bycatches of herring	8477
Division 3.a	C	Directed herring fisheries	3163
	D	Bycatches of herring	209

Table 10 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Catch distribution in 2018 as estimated by ICES.

Catch (2018)	Landings		Discards
603536 tonnes	Directed fishery 98.6%	Bycatch 1.4\%	106 tonnes
	603430 tonnes		

Table 11 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. History of commercial catch and landings of all stocks of herring caught in the North Sea; official or ICES estimated values are presented by area for each country participating in the fishery. All weights are in tonnes. These figures do not in all cases correspond to the official statistics and cannot be used for legal purposes.

Country	2005	2006	2007	2008	2009	2010	2011
Belgium	6	3	1	-	-	-	4
Denmark *	128380	102322	84697	62864	46238	45869	58726
Faroe Islands	738	1785	2891	2014	1803	3014	-
France	38829	49475	24909	30347	18114	17745	16693
Germany	46555	40414	14893	8095	5368	7670	9427
Netherlands	81531	76315	66393	23122	24552	23872	34708
Norway	156802	135361	100050	59321	50445	46816	60705
Poland	458	-	-	-	-	90	-
Sweden	13464	10529	15448	13840	5299	4395	8086
USSR/Russia	99	-	-	-	-	-	-
UK (England)	25311	22198	15993	11717	652	10770	11468
UK (Scotland)	73227	48428	35115	16021	14006	14373	18564
UK (N. Ireland)	2912	3531	638	331	-	-	17
Unallocated landings	57788	18764	26641	17151	-726	-	-
Total landings	626101	509125	387669	244823	165751	174614	218398
Discards	12824	1492	93	224	91	13	-
Total catch	638925	510617	387762	245047	165842	174627	218398
Parts of the catches that have been allocated to spring-spawning stocks							
WBSS	7039	10954	1070	124	3941	774	308
Thames estuary **	74	65	2	7	48	85	2
Norw. spring spawners ***	417	626	685	2721	44560	56900	12178
Country	2012	2013	2014	2015	2016	2017	2018
Belgium	3	14	27	18	26	13	32
Denmark*	105707	117367	124423	113481	133962	110318	132231
Faroe Islands	-	-	118	981	833	442	497
France	23819	30122	29679	30269	35177	28801	31505
Germany	24515	46922	36767	44377	44231	43707	51636
Netherlands	72344	80462	74647	70076	98859	84914	111302
Norway	119253	143718	142002	134349	150183	134132	162594
Lithuania	-	-	9830	-	-	-	-
Sweden	14092	15615	15583	13184	16625	18518	19408
Ireland	-	221	68	183	127	868	515
UK (England)	25346	19079	19287	18897	20485	16997	19591
UK (Scotland)	34414	39243	45119	48332	59240	49514	66005
UK (N. Ireland)	4794	5738	6612	5948	-	3469	6916
Unallocated landings	321	-	3292	1516	8	0	0
Total landings	424608	498501	507454	481611	559756	491693	602232
Discards/BMS	-	-	31	-	170	-	96
Total catch	424608	498501	507485	481611	559926	491693	602328
Parts of the catches that have been allocated to spring-spawning stocks							
WBSS	2095	452	2953	2205	1839	632	2164
Thames estuary **	63	20	10	10	1	0	10
Norw. spring spawners ***	9619	3150	2307	2191	216	83	310

* Including any bycatches in the industrial fishery.
** Landings from the Thames estuary area are included in the North Sea catch figure for UK (England).
*** These catches (including some local fjord-type spring spawners) are taken by Norway under a separate quota south of $62^{\circ} \mathrm{N}$ and are not included in the Norwegian North Sea catch figure for this area.

Table 12 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. The "Wonderful Table", which shows herring TACs and catches by different fleets, areas, and stocks. Weights are in thousand tonnes.

Year

| 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Subarea 4 and Division 7.d: TAC

Bycatch ceiling in the small-mesh fish
CATCH (Subarea 4 and Division 7.d)

National catch divisions 4.a-b **	326.8	201.2	145.0	148.1	191.7	387.2	453.8	465.9	439	514.0	456.5	556.9	
Unallocated catch divisions 4.a-b	21.9	14.0	-1.1	0.0	0.0	-3.0	0.0	3.3	1.5	0.0	0.0	0.0	
Discard/slipping divisions 4.a-b ***	0.1	0.2	0.1	0.0	-	-	-	0.0	-	0.1	-	0.0	
Total catch divisions 4.a-b \#	348.8	215.4	143.9	148.1	191.7	384.2	453.9	469.2	440.5	514.1	456.5	556.9	
National catch divisions 4.c, 7.d **	34.3	26.5	21.5	26.5	26.7	37.1	44.7	38.2	41.1	45.8	35.2	45.4	
Unallocated catch divisions 4.c, 7.d	4.7	3.1	0.4	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	
Discard/slipping divisions 4.c, 7.d ${ }^{* * *}$	-	-	-	-	-	-	-	-	-	0.1	-	0.1	
Total catch divisions 4.c, 7.d	39.0	29.6	21.9	26.5	26.7	40.4	44.7	38.2	41.1	45.8	35.2	45.5	
Total catch Subarea 4 and Division 7.d as used by ICES \#	387.8	245.0	165.8	174.6	218.4	424.6	498.5	507.5	481.6	559.9	491.7	602.3	
CATCH BY FLEET/STOCK (Subarea 4 and Division 7.d) ${ }^{\# \#}$													
North Sea autumn spawners directed fisheries (A-fleet)	379.6	236.3	152.1	164.8	209.2	411.8	489.9	490.5	471.5	543.6	484.1	591.7	
North Sea autumn spawners industrial (B-fleet)	7.1	8.6	9.8	9.1	8.9	10.6	8.1	14.0	7.9	14.5	7.0	8.5	
North Sea autumn spawners in Subarea 4 and Division 7.d total	386.7	244.9	161.9	173.9	218.1	422.5	498.1	504.5	479.4	558.1	491.1	600.2	
Baltic-20-24-type spring spawners in Subarea 4	1.1	0.1	3.9	0.8	0.3	2.1	0.5	3.0	2.2	1.8	0.6	2.2	
Coastal-type spring spawners	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
Norw. spring spawners caught under a separate quota in Subarea 4 \#\#\#	0.7	2.7	44.6	56.9	12.2	9.6	3.2	2.3	2.2		0.1	0.3	
Division 3.a: TAC													
Agreed herring TAC	69.4	51.7	37.7	33.9	30.0	45.0	55.0	46.8	43.6	51.1	50.7	48.4	29.3
Bycatch ceiling in the small-mesh fishery	15.4	11.5	8.4	7.5	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7
CATCH (Division 3.a)													
National catch	47.3	38.2	38.8	37.3	20.0	27.7	31.2	28.9	27.8	29.9	26.8	23.3	
Catch as used by ICES	47.4	38.2	38.8	37.3	20.0	27.7	31.2	28.9	27.8	29.9	26.8	23.3	
CATCH BY FLEET/STOCK (Division 3.a) ${ }^{\text {\#\# }}$													
Autumn spawners human consumption (C-fleet)	16.4	9.2	5.1	12.0	6.6	7.8	11.8	9.5	10.2	4.1	7.4	3.2	
Autumn spawners mixed clupeoid (D-fleet)	3.4	3.7	1.5	1.8	1.8	4.4	1.6	3.3	4.4	1.4	0.2	0.2	
Autumn spawners in Division 3.a total	19.8	12.9	6.5	13.8	8.4	12.2	13.4	12.8	14.7	5.5	7.6	3.4	
Spring spawners human consumption (C-fleet)	25.3	23.0	29.4	23.0	10.8	14.5	16.6	15.4	11.3	23.3	19.0	19.7	
Spring spawners mixed clupeoid (D-fleet)	2.3	2.2	2.9	0.5	0.8	1.0	1.3	0.6	1.8	1.1	0.2	0.2	
Spring spawners in Division 3.a total	27.6	25.2	32.3	23.5	11.6	15.5	17.9	16.1	13.1	24.4	19.2	19.9	
North Sea autumn spawners: Total as used by ICES	406.5	257.9	168.4	187.6	226.5	434.6	511.4	517.3	494.1	563.6	498.7	603.5	

* Divisions 4 a-b and EC zon. of Division 2a ** ICES estimates. *** Incomplete, only some countries providing discard information. \# Includes spring spawners not included in assessment \#\# Based on sum-of-products (number \times mean weight-at-age). \#\#\# These catches (including local fjord-type spring spawners) are taken by Norway under a separate quota south of $62^{\circ} \mathrm{N}$ and are not included in the Norwegian North Sea catch figure.

Summary of the assessment

Table 13 Herring in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Assessment summary. Weights are in tonnes and numbers in thousands. High and low refer to the 95% confidence intervals.

Year	Recruitment (age wr 0)	Recruitment High	Recruitment Low	SSB*	SSB High	SSB Low	Total catch	$\begin{gathered} F \\ \text { (ages 2-6) } \end{gathered}$	F High	$\begin{gathered} \text { F } \\ \text { Low } \end{gathered}$
1947	56498800	104247000	30620600	5499130	7710600	3921930	581760	0.120	0.179	0.081
1948	56131100	98747300	31906700	4474570	6233520	3211960	502100	0.120	0.173	0.083
1949	50827000	88745200	29110200	4340320	5971340	3154810	508500	0.132	0.189	0.092
1950	69744900	119042000	40862600	4292960	5835030	3158430	491700	0.138	0.194	0.098
1951	62253800	104884000	36950800	4110430	5561700	3037860	600400	0.167	0.23	0.121
1952	59223700	98391500	35647800	4115720	5589640	3030460	664400	0.170	0.24	0.122
1953	59817800	96289100	37160700	3893050	5314800	2851630	698500	0.177	0.25	0.127
1954	57013600	90017000	36110400	3650060	5013480	2657420	762900	0.198	0.28	0.141
1955	48110300	75188900	30783800	3546300	4846750	2594780	806400	0.195	0.27	0.140
1956	35317100	54958400	22695300	3280040	4476450	2403400	675200	0.197	0.27	0.144
1957	85860000	134146000	54954500	2960960	4022050	2179800	682900	0.21	0.29	0.153
1958	32872400	50667000	21327400	2407650	3269200	1773150	670500	0.22	0.30	0.162
1959	37590200	59428600	23776800	3582880	4768970	2691780	784500	0.24	0.32	0.178
1960	15840000	24976400	10045700	2963110	3921680	2238850	696200	0.21	0.28	0.158
1961	70192800	109205000	45117300	2853720	3699280	2201420	696700	0.24	0.31	0.190
1962	31786100	48754400	20723400	1996940	2617690	1523400	627800	0.27	0.35	0.21
1963	42242300	63275900	28200500	2890980	3687540	2266490	716000	0.194	0.25	0.151
1964	44126900	65784400	29599500	2637470	3240220	2146850	871200	0.28	0.35	0.23
1965	21543000	32171000	14426100	2127520	2549280	1775530	1168800	0.47	0.57	0.39
1966	22437300	33033900	15239800	1627150	1936790	1367010	895500	0.48	0.57	0.41
1967	28707600	42082200	19583800	1030210	1211090	876347	695500	0.64	0.75	0.55
1968	29523400	43387400	20089600	572620	675423	485464	717800	0.98	1.14	0.83
1969	13917600	20847600	9291190	495461	610783	401913	546700	0.87	1.02	0.74
1970	29134200	42817000	19824000	476038	589260	384571	563100	0.94	1.08	0.81
1971	22495300	32548300	15547300	327242	400253	267550	520100	1.28	1.49	1.10
1972	15700700	22670500	10873700	332972	408217	271597	497500	0.66	0.78	0.56
1973	7943080	11566800	5454630	296816	359056	245365	484000	0.87	1.01	0.76
1974	14125100	20958600	9519630	199400	239069	166314	275100	0.87	1.02	0.75
1975	3234710	4934190	2120580	114031	139268	93368	312800	1.05	1.27	0.87
1976	4172730	6573140	2648910	152997	203679	114926	174800	0.81	1.06	0.63
1977	5007480	8108990	3092230	103059	141752	74928	46000	0.37	0.50	0.27
1978	5351560	8911430	3213760	136726	185942	100538	11000	0.27	0.37	0.191
1979	10154900	16296600	6327830	180923	237243	137973	25100	0.22	0.30	0.158
1980	15476300	22836900	10488100	198388	251510	156486	70764	0.192	0.24	0.151
1981	36915300	52651000	25882500	298043	378593	234631	174879	0.21	0.27	0.170
1982	58525600	82574500	41480600	416941	524289	331573	275079	0.189	0.24	0.151
1983	57946900	80371200	41779200	636454	796554	508532	387202	0.23	0.29	0.190
1984	55810000	78742600	39556200	1063320	1330060	850072	428631	0.30	0.37	0.25
1985	67271100	96545300	46873400	1161900	1429940	944100	613780	0.38	0.47	0.31
1986	81400100	117323000	56476300	1178760	1437020	966922	671488	0.36	0.44	0.29
1987	78363300	111785000	54934000	1401030	1709350	1148330	792058	0.35	0.42	0.29
1988	44888200	64182400	31394100	1834720	2234410	1506530	887686	0.33	0.40	0.27
1989	37759800	53864300	26470300	1875130	2222330	1582180	787899	0.32	0.38	0.26
1990	31642500	45621000	21947100	1977730	2334910	1675190	645229	0.26	0.31	0.22
1991	35056700	50146200	24507900	1749100	2059190	1485710	658008	0.28	0.34	0.24
1992	65995400	90180700	48296400	1367750	1616820	1157050	716799	0.32	0.38	0.26
1993	68551700	94922100	49507300	997149	1189430	835950	671397	0.36	0.43	0.30
1994	52883200	74387600	37595400	1062650	1269400	889581	568234	0.37	0.45	0.31
1995	61076500	85562400	43597800	1137470	1370830	943837	579371	0.32	0.39	0.26
1996	50221500	70175200	35941400	1257950	1511460	1046950	275098	0.184	0.23	0.146
1997	39918400	56237900	28334600	1422790	1702410	1189100	264313	0.168	0.21	0.136
1998	25190100	34931000	18165500	1667750	1976470	1407250	391628	0.192	0.23	0.157
1999	80033600	111046000	57682100	1714790	2031570	1447400	363163	0.185	0.22	0.152

Year	Recruitment (age wr 0)	Recruitment High	Recruitment Low	SSB*	SSB High	SSB Low	Total catch	F (ages 2-6)	F High	F Low
2000	54550900	75142200	39602300	1775680	2100910	1500790	388157	0.186	0.23	0.153
2001	101912000	143310000	72472200	2260930	2674460	1911340	374065	0.162	0.198	0.132
2002	49214200	68312700	35455200	2670350	3158820	2257420	394709	0.151	0.186	0.123
2003	27618600	38230200	19952400	2743140	3226430	2332250	482281	0.178	0.22	0.146
2004	32210600	44638800	23242600	2666900	3135620	2268250	587698	0.22	0.28	0.180
2005	29939000	41124700	21795800	2459490	2902650	2083990	663813	0.24	0.30	0.195
2006	27222200	37602000	19707700	2003190	2360540	1699930	514597	0.21	0.26	0.173
2007	31275800	43837900	22313500	1624270	1917500	1375890	406482	0.186	0.23	0.150
2008	29088800	40631700	20825100	1691050	1995140	1433300	257870	0.116	0.142	0.096
2009	47585200	66170000	34220200	1986850	2350940	1679150	168443	0.068	0.085	0.054
2010	38129800	52689600	27593300	2103980	2504080	1767810	187611	0.072	0.088	0.059
2011	34223700	47179100	24825800	2527300	2958370	2159040	226478	0.094	0.114	0.077
2012	32791200	45369800	23699900	2682520	3140050	2291650	434710	0.152	0.186	0.124
2013	40829500	57224100	29131900	2450180	2862150	2097510	511416	0.179	0.22	0.146
2014	65480100	92267700	46469600	2382260	2786850	2036400	517356	0.182	0.22	0.149
2015	17336500	24345300	12345500	2207600	2585800	1884710	494099	0.189	0.24	0.152
2016	32864600	45448700	23764800	2596510	3067070	2198150	563610	0.196	0.24	0.157
2017	20022400	28547600	14043100	2214970	2646910	1853510	498437	0.179	0.22	0.145
2018	36780600	54181100	24968400	1870360	2303110	1518930	603536	0.21	0.27	0.163
2019	26191200	47516200	14436800	1529000^{\wedge}						

* At spawning time (September).
\wedge Based on the assessment. The predicted 2019 SSB from the intermediate forecast, applying an exact biomass removed by each fleet, is 1529000 tonnes (see tables 2 and 3).

Sources and references

EU-Norway. 2013. Report from the Working Group on Management Measures for Herring in ICES Division IIla (Skagerrak and Kattegat). Bergen, 19-20 June 2013. 10 pp.

ICES. 2018a. Report of the Benchmark Workshop on Pelagic Stocks (WKPELA), 12-16 February 2018, Copenhagen, Danemark. ICES CM 2018/ACOM:32. 297 pp.

ICES. 2018b. Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Section 2 in Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG), 29-31 January 2018 and 12-20 March 2018, ICES Headquarters, Copenhagen, Denmark. ICES CM 2017/ACOM:07. 960 pp.

ICES. 2018c. Advice basis. In Report of the ICES Advisory Committee, 2018. ICES Advice 2018, Book 1, Section 1.2. https://doi.org/10.17895/ices.pub. 4503.
ICES. 2019a. Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic). In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, her.27.20-24. https://doi.org/10.17895/ices.advice.4715.

ICES. 2019b. Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners. Section 3. In Report of the Herring Assessment Working Group for the Area South of 62 deg N (HAWG). ICES Scientific Reports. VOL 1:ISS 2. Section 3 is available separately at the HAWG website.
ICES. 2019c. EU and Norway request concerning the long-term management strategy of cod, saithe, and whiting, and of North Sea autumn-spawning herring. In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, sr.2019.06, https://doi.org/10.17895/ices.advice.4895.

Recommended citation: ICES. 2019. Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel). In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, her.27.3a47d, https://doi.org/10.17895/ices.advice.4716.

