

Cod (Gadus morhua) in ICES Subarea 14 and NAFO Division 1F (East Greenland, Southwest Greenland)

ICES advice on fishing opportunities

ICES advises that when the MSY approach is applied, catches in 2020 should be no more than 3409 tonnes.

Stock development over time

The spawning-stock biomass (SSB) increased to above MSY $B_{trigger}$ from 2005 and has decreased since 2014, but is still above MSY $B_{trigger}$. Fishing mortality (F) has been below F_{MSY} in the last 25 years, but has increased since 2009 and is approaching F_{MSY} . Recruitment (R) occasionally has large year classes, with the latest being in 2003.

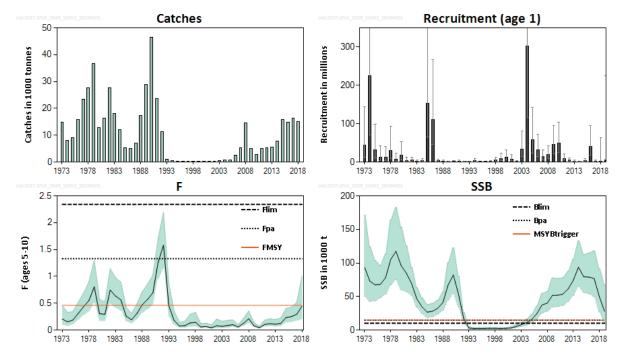


Figure 1 Cod in ICES Subarea 14 and NAFO Division 1F. Summary of the stock assessment with 95% confidence intervals.

Stock and exploitation status

ICES assesses that fishing pressure on the stock is below F_{MSY} , F_{pa} , and F_{lim} . The spawning stock size is above MSY $B_{trigger}$, B_{pa} , and B_{lim} .

Table 1 Cod in ICES Subarea 14 and NAFO Division 1F. State of the stock and fishery relative to reference points.

		Fishing pressure				Stock size						
		2016	16 2017 2018			2017 2018		2019				
Maximum sustainable yield	F _{MSY}	•	•	0	Below		MSY B _{trigger}	•	•	0	Above trigger	
Precautionary approach	F _{pa} ,F _{lim}	•	•	0	Harvested sustainably		B _{pa} ,B _{lim}	•	•	0	Full reproductive capacity	
Management plan	F _{MGT}	_	_	–	Not applicable		B _{MGT}	_	_	-	Not applicable	

Catch scenarios

Table 2 Cod in ICES Subarea 14 and NAFO Division 1F. Assumptions made for the interim year and in the forecast. SSB and catch are in tonnes, recruitment in thousands.

Variable	Value	Notes
F _{ages 5-10} (2019)	1.70	F _{ages 5-10} (2019) assuming Catch ₂₀₁₉ = 15 000 tonnes *
SSB (2020)	18 159	Calculated from assessment
Rage 1 (2020)	7255	Sampled from the full time-series
Total catch (2019)	15 000	Based on catches observed in 2018

^{*} Catches lower than the TAC are expected for 2019.

Table 3 Cod in ICES Subarea 14 and NAFO Division 1F. Annual catch scenarios. All weights are in tonnes.

Rationale	Catch (2020)	F (2020)	SSB (2021)	% SSB change *	% advice change **	% TAC change ***					
ICES advice basis	ICES advice basis										
MSY approach: F _{MSY}	3409	0.46	24 602	35	-36	-83					
Other scenarios	Other scenarios										
F = 0	0	0	28 757	58	-100	-100					
F _{pa}	7723	1.33	19 733	9	45	-64					
$F = F_{2019}$ (status quo)	9202	1.70	18 334	1	72	-54					
F _{lim}	11 252	2.34	15 461	-15	110	-44					
$SSB_{2021} = B_{lim}$	16 339	5.06	10 098	-44	205	-18					
$SSB_{2021} = B_{pa} = MSY B_{trigger}$	11 865	2.60	15 342	-16	121	-41					

^{*} SSB_{2021} relative to SSB_{2020} .

The advice change is caused by decreasing SSB and low recruitment.

Basis of the advice

Table 4Cod in ICES Subarea 14 and NAFO Division 1F. The basis of the advice.

Advice basis	MSY approach
Management plan	ICES is not aware of any agreed precautionary management plan for cod in this area.

Quality of the assessment

Data from tagging experiments show a considerable emigration from East Greenland to Iceland (Hedeholm, 2018). This is accounted for in the assessment. The level is not known exactly, and therefore adds uncertainty to the assessment.

No surveys were conducted in 2018, adding to the uncertainty of the assessment.

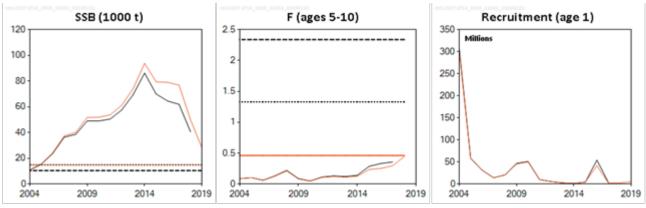


Figure 2 Cod in ICES Subarea 14 and NAFO Division 1F. Historical assessment results.

^{**} Advice value for 2020 relative to the advice value for 2019, from this updated assessment.

^{***} Advice value for 2020 relative to the TAC value for 2019, from this updated assessment.

Issues relevant for the advice

ICES provides advice for cod caught in this area, which may include more than one cod population. There are linkages between this stock and the Icelandic cod stock; some of the spawning stock migrates to Iceland and there is drift of eggs and larvae from Iceland (Therkildsen *et al.*, 2013; Wieland and Hovgård, 2002).

For the forecast calculations, a total catch of 15 000 tonnes in 2019 is assumed. The TAC set for 2019 is 20 000 tonnes, but given the recent history where the TAC was not obtained, a lower estimate is considered likely.

Reference points

Table 5 Cod in ICES Subarea 14 and NAFO Division 1F. Reference points, values, and their technical basis. All weights are in tonnes.

Framework	Reference value		Technical basis	Source
MSY	MSY B _{trigger}	14 803	Assumed at B _{pa.}	ICES (2018a)
approach	F _{MSY}	0.46	Stochastic simulations with a Type 1 stock–recruitment relationship.	ICES (2018a)
	B _{lim}	10 354	Breakpoint in segmented regression.	ICES (2018a)
Draggutionan	B _{pa}	14 803	$B_{lim} \times e^{1.645\sigma}$, $\sigma = 0.217$ *	ICES (2018a)
Precautionary approach	F _{lim}	2.34	Equilibrium F, which will maintain the stock above B_{lim} with a 50% probability and with stochastic recruitment.	ICES (2018a)
	F _{pa}	1.33	$F_{lim} \times e^{-1.645\sigma}$, $\sigma = 0.343$.	ICES (2018a)
Management	SSB _{mgt}	-	•	
plan	F _{mgt}	-	•	

^{*} The figures in the table are rounded. Calculations were done with unrounded inputs and computed values may not match exactly when calculated using the rounded figures in the table.

Basis of the assessment

Table 6 Cod in ICES Subarea 14 and NAFO Division 1F. Basis of the assessment and advice.

ICES stock data category	1 (<u>ICES, 2018b</u>).
Assessment type	Age-based analytical assessment (SAM; ICES, 2019) that uses catches in the model and in the forecast.
	Catch-at-age and age-disaggregated survey indices: Greenland (GRL-GFS, August, bottom trawl since
Input data	2008) and German (GER(GRL)-GFS-Q4, October, bottom trawl since 1982). Age-specific natural
	mortality incorporating emigration to Iceland (from age 5 onwards).
Discards and bycatch	Discarding is considered negligible.
Indicators	None.
Other information	Benchmarked in 2018 (ICES, 2018a).
Working group	North-Western Working Group (NWWG)

Information from stakeholders

There is no additional available information for this stock.

History of the advice, catch, and management

Table 7 Cod in ICES Subarea 14 and NAFO Division 1F. ICES advice and catch. All weights are in tonnes. Separate advice for this cod stock was provided for the first time in this area for 2016. The advice up to 2011 was included in the advice for inshore cod in NAFO Subarea 1 and offshore cod in NAFO divisions 1A–1E (ICES, 2011). The advice for 2012–2015 was combined advice and TAC with offshore cod in NAFO divisions 1A–1E (ICES, 2014).

Year	ICES advice	Catch corresponding to advice	Agreed TAC	ICES catch	
2004	Precautionary approach	0	5 000	775	
2005	Precautionary approach	0	5 000	890	
2006	Precautionary approach	0	5 000	2 456	
2007	Precautionary approach	0	5 000	5 205	
2008	Precautionary approach	0	15 000	14 628	
2009	Precautionary approach	0	10 000	4 965	
2010	Precautionary approach	0	5 000	2 669	
2011	Precautionary approach	0	5 000	5 113	
2012	Precautionary approach	0	5 500	5 411	
2013	Precautionary approach	0	6 500	5 509	
2014	Precautionary approach	0	10 000	7 893	
2015	Precautionary approach	0	18 104	15 755	
2016	Precautionary approach	7 577	16 000	14 818	
2017	Precautionary approach	≤ 7 930	16 000	16 300	
2018	MSY approach	≤ 12 151	16 500	15 068	
2019	MSY approach	≤ 5 363	20 000		
2020	MSY approach	≤ 3 409			

History of the catch and landings

Table 8 Cod in ICES Subarea 14 and NAFO Division 1F. Catch distribution by fleet in 2019 as estimated by ICES. All weights are in tonnes.

Catch (2018)	Landing	Discards	
15 068	Trawl 62%	Longline 38%	Discarding is considered
13 008	15 068	3	negligible

 Table 9
 Cod in ICES Subarea 14 and NAFO Division 1F. Historical catches, not included in the assessment, in tonnes.

Year	Catch	Year	Catch	Year	Catch	Year	Catch
1954	23759	1973	14725	1992	11349	2011	5113
1955	11567	1974	7950	1993	1135	2012	5411
1956	19189	1975	9091	1994	437	2013	5509
1957	30659	1976	15922	1995	284	2014	7893
1958	46972	1977	23455	1996	192	2015	15755
1959	35500	1978	27561	1997	355	2016	14818
1960	39219	1979	36775	1998	345	2017	16300
1961	40212	1980	12724	1999	116	2018	15068
1962	41874	1981	16255	2000	152		
1963	46626	1982	27720	2001	125		
1964	55451	1983	18054	2002	401		
1965	38063	1984	11997	2003	485		
1966	38956	1985	5187	2004	775		
1967	40738	1986	5074	2005	890		
1968	37844	1987	7093	2006	2456		
1969	31879	1988	17388	2007	5205		
1970	40023	1989	28917	2008	14628		
1971	59789	1990	46519	2009	4965		
1972	32188	1991	23538	2010	2669		

Summary of the assessment

Table 10 Cod in ICES Subarea 14 and NAFO Division 1F. All weights are in tonnes. Recruitment in thousands. The high and low values correspond to 95% confidence intervals.

values correspond to 95% confidence intervals.									1	
	Recruitment	Recruitment High	Recruitment					F	F	F
Year	(Age 1)		Low	SSB	SSB High	SSB Low	Catches	(Ages	High	Low
4072	42574	111110	12115	02276	474456	500.43	4.4705	5–10)	0.46	0.000
1973	43571	144418	13145	93376	171156	50942	14725	0.21	0.46	0.093
1974	224531	720330	69988	72934	123998	42899	7950	0.154	0.33	0.072
1975	31348	98959	9931	67381	103882	43705	9091	0.188	0.34	0.103
1976	13120	41509	4147	68116	96267	48198	15922	0.31	0.52	0.186
1977	12984	41019	4110	77884	112879	53739	23455	0.44	0.69	0.28
1978	29396	92890	9303	105301	164094	67572	27561	0.55	0.90	0.34
1979	7255	23307	2259	117364	182474	75486	36775	0.80	1.30	0.50
1980	18155	53341	6179	96146	153299	60301	12724	0.31	0.57	0.163
1981	4419	11908	1640	84812	125221	57443	16255	0.29	0.53	0.163
1982	4874	11969	1985	69515	93630	51611	27720	0.75	1.14	0.49
1983	2351	6183	894	46614	63238	34361	18054	0.63	0.97	0.41
1984	4144	9762	1759	34599	48037	24920	11997	0.56	0.89	0.36
1985	152499	356250	65280	26671	37969	18735	5187	0.26	0.43	0.157
1986	111518	266875	46600	28097	39669	19901	5074	0.194	0.31	0.122
1987	2987	7013	1272	32552	44385	23874	7093	0.31	0.48	0.196
1988	2438	5594	1063	40973	56684	29616	17388	0.47	0.71	0.31
1989	669	1551	288	67169	100484	44899	28917	0.57	0.86	0.38
1990	1270	3106	519	82084	122391	55052	46519	0.69	1.02	0.47
1991	2128	5228	866	53256	80394	35279	23538	1.26	1.70	0.94
1992	824	1930	352	16912	26183	10924	11349	1.58	2.2	1.14
1993	764	1841	317	3106	4741	2035	1135	0.46	0.86	0.24
1994	3243	8150	1290	2170	3640	1294	437	0.180	0.36	0.091
1995	227	602	85	2377	3924	1440	284	0.076	0.140	0.042
1996	299	862	104	2364	3816	1464	192	0.083	0.164	0.042
1997	1512	4241	539	2607	4131	1645	355	0.134	0.29	0.061
1998	4883	11848	2012	2498	3956	1578	345	0.146	0.33	0.064
1999	9408	23379	3786	2368	3821	1468	116	0.060	0.121	0.030
2000	12933	31376	5331	2494	3895	1597	152	0.067	0.132	0.034
2001	7961	19157	3308	3236	4826	2170	125	0.045	0.098	0.021
2002	1568	4203	585	5226	7650	3570	401	0.081	0.21	0.032
2003	33772	80241	14214	7963	11711	5415	485	0.070	0.165	0.030
2004	302197	788172	115867	11052	16245	7520	775	0.085	0.181	0.040
2005	57548	142232	23285	15616	22854	10670	890	0.102	0.191	0.055
2006	31219	72419	13458	24310	35708	16551	2456	0.058	0.102	0.033
2007	14108	31528	6313	37412	54620	25626	5205	0.125	0.102	0.033
2008	20367	42257	9817	40157	57256	28165	14628	0.123	0.36	0.124
2009	45190	95449	21395	51681	77793	34335	4965	0.080	0.30	0.124
2010	50014	103529	24161	51920	76727	35134	2669	0.080	0.137	0.047
2010	9749	20495	4637	53701	78075	36937	5113		0.075	0.026
	-							0.106		
2012	5382	11226	2580	61136	87310	42809	5411	0.119	0.21	0.068
2013	2403	5003	1154	74130	105678	52000	5509	0.110	0.199	0.061
2014	895	1938	413	93855	133154	66155	7893	0.125	0.22	0.069
2015	4576	9778	2142	79495	112434	56206	15755	0.23	0.40	0.135
2016	41335	94954	17994	78970	114845	54301	14818	0.25	0.43	0.148

Year	Recruitment (Age 1)	Recruitment High	Recruitment Low	SSB	SSB High	SSB Low	Catches	F (Ages 5–10)	F High	F Low
2017	2178	6267	757	76912	118067	50102	16300	0.30	0.52	0.170
2018	2178	64337	74	49836	91323	27197	15068	0.45	1.01	0.197
2019	5382	224531	299	27985	67592	11619				

Sources and references

Hedeholm, R. 2018. Analysis of 2003–2016 tagging data from Greenland waters as it relates to assessment of the East Greenland offshore stock and the West Greenland inshore stock. WD03 *in* Report of the InterBenchmark Protocol on Greenland Cod (IBPGCod), 8–9 January 2018, Copenhagen, Denmark. ICES CM 2018/ACOM:30, pp. 71–87. https://doi.org/10.17895/ices.pub.5266.

ICES. 2011. Cod in ICES Subarea XIV and NAFO Subarea 1 (Greenland cod). *In* Report of the ICES Advisory Committee, 2011. ICES Advice 2011, Book 2, Section 2.4.1. 8 pp. https://doi.org/10.17895/ices.advice.5260.

ICES. 2014. Cod in offshore waters of ICES Subarea XIV and NAFO Subarea 1 (Greenland cod). *In* Report of the ICES Advisory Committee, 2014. ICES Advice 2014, Book 2, Section 2.3.3. 2 pp. https://doi.org/10.17895/ices.advice.5259.

ICES. 2018a. Report of the InterBenchmark Protocol on Greenland Cod (IBPGCod), 8–9 January 2018. Copenhagen, Denmark. ICES CM 2018/ACOM:30. 205 pp. https://doi.org/10.17895/ices.pub.5266.

ICES. 2018b. Advice basis. *In* Report of the ICES Advisory Committee, 2018. ICES Advice 2018, Book 1, Section 1.2. https://doi.org/10.17895/ices.pub.4503.

ICES. 2019. North-Western Working Group. ICES Scientific Reports. 1:14. 605 pp. http://doi.org/10.17895/ices.pub.5298.

Therkildsen, N. O., Hemmer-Hansen, J., Hedeholm, R. B., Wisz, M. S., Pampoulie, C., Meldrup, D., Bonanomi S., *et al.* 2013. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod *Gadus morhua*. Evolutionary Applications, 6: 690–705. https://doi.org/10.1111/eva.12055.

Wieland, K., and Hovgård, H. 2002. Distribution and drift of Atlantic cod (*Gadus morhua*) eggs and larvae in Greenland offshore waters. Journal of Northwest Atlantic Fishery Science, 30: 61–76. https://journal.nafo.int/Volumes/Articles/ID/378/categoryId/38/Distribution-and-Drift-of-Atlantic-Cod-emGadus-morhuaem-Eggs-and-Larvae-in-Greenland-Offshore-Waters

Recommended citation: ICES. 2019. Cod (*Gadus morhua*) in ICES Subarea 14 and NAFO Division 1F (East Greenland, Southwest Greenland). *In* Report of the ICES Advisory Committee, 2019. ICES Advice 2019, cod.2127.1f14, https://doi.org/10.17895/ices.advice.4734