Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic)

ICES advice on fishing opportunities

ICES advises that when the MSY approach is applied, there should be zero catch in 2021.
This advice applies to the catch of western Baltic spring-spawning herring (WBSS) in subdivisions 20-24 and the eastern part of Subarea 4.

Note: This advice sheet is abbreviated due to the Covid 19 disruption. Last year's advice is attached as Annex 1.

Stock development over time

Figure 1 Herring in subdivisions 20-24, spring spawners. Commercial catches, recruitment, fishing mortality (F), and spawningstock biomass (SSB) from the summary of the stock assessment; 95\% confidence intervals are shown for SSB, F, and recruitment. Unshaded value of the recruitment is the average value of 2014-2018, and the grey diamond in the SSB plot is a predicted number for 2020.

Stock and exploitation status

Table 1 Herring in subdivisions 20-24, spring spawners. State of the stock and fishery relative to reference points.

Catch scenarios

The ICES MSY approach stipulates that F is reduced proportionally to SSB when the spawning stock size falls below MSY $B_{\text {trigger }}$. When SSB is below Blim, measures should be taken so that SSB can be brought above Blim in the short term. All catch scenarios, including zero catch, result in SSB remaining below $\mathrm{Blim}_{\text {lim }} 2022$.

Table 2 Herring in subdivisions 20-24, spring spawners. The basis for the catch scenarios. All weights are in tonnes and recruitment (R) is in thousands.

Variable	Value	Notes
$\mathrm{F}_{\text {ages 3-6 }}$ (2020)	0.170	Based on catch in 2020.
SSB (2020)	57124	Based on catch in 2020.
$\mathrm{R}_{\text {age o }}$ (2020)	964361	Average 2014-2018.
$\mathrm{R}_{\text {age } 0}(2021)$	964361	Average 2014-2018.
Total catch (2020)	15391	- A-fleet: 3184 t (average catch 2017-2019) - C-fleet: 8933 t including an assumed 50% transfer of the catch to the North Sea and 72.84% of WBSS in the catch (average split 2017-2019) D-fleet: 123 t assuming 5.47% utilization of the 2020 TAC (average utilization 2017-2019) and 33.81% of WBSS in the catch (average split 2017-2019) F-fleet: 3150 t (2020 TAC)

Table 3 Herring in subdivisions 20-24, spring spawners. Annual catch scenarios. All weights are in tonnes. All scenarios, except the catch for bycatch fleets only, assume the F-fleet catches 50\% of the total WBSS herring catch.

Basis	Total catch (2021)	$\mathrm{F}_{3-6}(2021)$	SSB* (2021)	SSB* (2022)	\% SSB change **	\% advice change ***
ICES advice basis						
MSY approach: zero catch	0	0	66824	87890	32	0
Other scenarios						
$\mathrm{MAP}^{\wedge}: \mathrm{F}=\mathrm{F}_{\mathrm{MSY}} \times$ SSB $_{2020} /$ MSY B $_{\text {trigger }}$	10273	0.118	65973	77674	18	
$\begin{aligned} & \text { MAP^: F = } \mathrm{F}_{\text {MSY lower }} \times \\ & \left(\text { SSB }_{2020} / \mathrm{MSY}_{\text {trigger }}\right. \text {) } \end{aligned}$	7291	0.082	66230	80610	22	
$\begin{aligned} & \text { MAP^: F = F } \text { MSY upper } \times \\ & \left(\text { SSB }_{2020} / \text { MSY B }_{\text {trigger }}\right) \\ & \hline \end{aligned}$	12393	0.144	65786	75602	15	
$\mathrm{F}=\mathrm{F}_{\mathrm{MSY}}$	24535	0.31	64618	64275	-1	
$\mathrm{F}=\mathrm{F}_{\mathrm{pa}}$	27179	0.35	64340	61819	-4	
$\mathrm{F}=\mathrm{F}_{\text {lim }}$	33356	0.45	63650	56155	-12	
SSB (2022) $=\mathrm{B}_{\mathrm{lim}}{ }^{\wedge \wedge}$						
SSB (2022) = $\mathrm{B}_{\mathrm{pa}} \wedge \wedge$						
SSB (2022) $=$ MSY $\mathrm{B}_{\text {trigger }}{ }^{\wedge \wedge}$						
$\mathrm{F}=\mathrm{F}_{2020}$	14410	0.170	65603	73849	13	
Catch for bycatch fleets only ^^^	3308	0.026	66574	85251	28	

* For spring-spawning stocks, the SSB is determined at spawning time and is influenced by fisheries and natural mortality between

1 January and spawning time (April).
** SSB (2022) relative to SSB (2021).
*** The advised catch in 2020 was 0 tonnes.
${ }^{\wedge}$ As $S S B_{2020}$ is below MSY $B_{\text {trigger, }}$, the $F_{M S Y}, F_{M S Y}$ lower, and $F_{M S Y}$ upper values in the MAP are adjusted by the $S S B_{2020} /$ MSY $B_{\text {trigger }}$ ratio.
\wedge^{\wedge} The $B_{l i m}$ and $B_{p a}$ cannot be achieved in 2022, even with zero catch advice.
$\wedge \wedge \wedge$ Only the A-fleet that targets North Sea autumn-spawning (NSAS) herring and the D-fleet that targets sprat are allowed to fish, assuming the same catch as in the intermediate year 2020 (C- and F-fleets have zero catch).

Table 4 Herring in subdivisions 20-24, spring spawners. Medium-term catch scenarios. Different low F scenarios are provided, where $F_{2022}=F_{2021}$. All weights are in tonnes. All scenarios, except the constant catch 2020-2022 scenario, assume the F-fleet catches 50% of the total WBSS herring catch.

Basis	Total catch (2021)	$\begin{aligned} & \text { Total catch } \\ & (2022) \end{aligned}$	F_{3-6} (2021)	SSB* (2021)	SSB* (2022)	$\begin{aligned} & \text { SSB* } \\ & (2023) \end{aligned}$	\% SSB change (20212022)	$\begin{gathered} \hline \% \text { SSB } \\ \text { change } \\ (2022- \\ 2023) \\ \hline \end{gathered}$
Medium-term catch scenarios								
$\mathrm{F}=0$	0	0	0	66824	87890	111745	32	27
$\mathrm{F}=0.05$	4506	5726	0.05	66462	83450	102017	26	22
$\mathrm{F}=0.1$	8783	10659	0.1	66103	79277	93335	20	18
$\mathrm{F}=0.15$	12843	14905	0.15	65746	75353	85569	15	14
Constant catch 20202022 **	15391	15391	0.150	65726	74580	85273	13	14

* For spring-spawning stocks, the SSB is determined at spawning time and is influenced by fisheries and natural mortality between 1 January and spawning time (April).
** It is assumed that the fleets' 2020 catches (as defined in Table 2) are kept constant for 2021-2022.

Quality of the assessment

Figure 2 Herring in subdivisions 20-24, spring spawners. Historical assessment results; orange lines represent the most recent assessment (2020) following the benchmark in 2018. Final-year recruitment and SSB estimates are included.

Issues relevant to the advice

This stock is caught across three different management units and recovery will be impaired if catches of this stock are not minimized in all units. Without additional area and/or time restriction on the herring fishery in the North Sea in 2020, a catch of WBSS in the North Sea will be inevitable (it is estimated that 21% of the 2020 total catches from the stock are taken in Division 4.a). For the other two areas, catch shares in 2020 are estimated to be 59\% for subdivisions 20-21 and 20% for subdivisions 22-24.

History of the advice, catch, and management

Table 5 Herring in subdivisions 20-24, spring spawners. ICES advice, TACs, and ICES estimated catch. All weights are in tonnes.

Year	ICES advice	Predicted catch corresp. to advice	Agreed TAC Division3.a***	Agreed TAC subdivisions 22-24	ICES estimated catch ${ }^{\wedge}$			
					Subdiv. $22-24$	Division 3.a	Subarea 4	Total
1987	Reduction in F	224000	218000		102000	59000	14000	175000
1988	No increase in F	196000	218000		99000	129000	23000	251000
1989	TAC	174000	218000		95000	71000	20000	186000
1990	TAC	131000	185000		78000	118000	8000	204000
1991	TAC	180000	155000		70000	112000	10000	192000
1992	TAC	180000	174000		85000	101000	9000	195000
1993	Increased yield from reduction in F; reduction in juvenile catches	188000	210000		81000	95000	10000	186000
1994	TAC	$\begin{array}{r} 130000- \\ 180000 \end{array}$	191000		66000	92000	14000	172000
1995	If required, TAC not exceeding recent catches	$\begin{array}{r} 168000- \\ 192000 \end{array}$	183000		74000	80000	10000	164000
1996	If required, TAC not exceeding recent catches	$\begin{array}{r} 164000- \\ 171000 \\ \hline \end{array}$	163000		58000	71000	1000	130000
1997	3.a: managed together with autumn spawners 2224: if required, TAC not exceeding recent catches	$\begin{aligned} & \text { 66000- } \\ & 85000^{*} \end{aligned}$	100000		68000	55000	1000	124000
1998	Should be managed in accordance with NSAS	-	97000		51000	53000	8000	112000
1999	3.a: managed together with autumn spawners 2224: if required, TAC not exceeding recent catches	-	99000		50000	43000	5000	98000
2000	3.a: managed together with autumn spawners 2224: if required, TAC not exceeding recent catches	$\begin{array}{r} \sim 60000 \\ \text { for } \\ \text { SDs } 22- \\ 24 \\ \hline \end{array}$	101000		54000	57000	7000	118000
2001	3.a: managed together with autumn spawners 2224: if required, TAC not exceeding recent catches	$\begin{array}{r} \hline \text { 50000 } \\ \text { for } \\ \text { SDs } 22- \\ 24 \\ \hline \end{array}$	101000		64000	42000	6000	112000
2002	3.a: managed together with autumn spawners 2224: if required, TAC not exceeding recent catches	$\begin{array}{r} \sim 50000 \\ \text { for } \\ \text { SDs } 22- \\ 24 \\ \hline \end{array}$	101000		53000	47000	7000	107000
2003	Reduce F	<80000	101000		40000	36000	2000	78000
2004	Separate management regime. Reduce F	< 92000	91000		42000	28000	7000	77000
2005	Separate management regime. Status quo F	95000	120000		44000	38000	7000	89000
2006	Separate management regime. Status quo F	95000	102000	47500	42000	36000	11000	89000
2007	Separate management regime. Status quo F	99000	69000	49500	40000	28000	1000	69000
2008	Separate management regime. Reduce F 20\% towards F0.1	71000	51700	45000	44000	25000	0	69000
2009	Separate management regime. Reduce F to $\mathrm{F}=$ 0.25	< 32800	37700	27200	31000	32000	4000	67000

Year	ICES advice	Predicted catch corresp. to advice	Agreed TAC Division 3.a***	Agreed TAC subdivisions$22-24$	ICES estimated catch ${ }^{\wedge}$			
					Subdiv. $22-24$	Division 3.a	Subarea 4	Total
2010	Separate management regime. Reduce F to F = 0.25	< 39800	33900	22700	18000	24000	1000	42000
2011	MSY transition in 1-5 years and no increase in catches of WBSS herring in the North Sea	$\begin{array}{r} 26500- \\ 53600 \end{array}$	30000	15800	16000	12000	300	28000
2012	$\mathrm{F}_{\mathrm{MSY}}=0.25$ and no increase in catches of WBSS herring in the North Sea	< 42700	45000	20900	21000	15000	2000	39000
2013	$\mathrm{F}_{\text {MSY }}=0.25$ and no optional transfer of catch scenarios to the North Sea	< 51900	55000	25800	26000	17000	500	44000
2014	Transition to MSY approach	< 41602	46800	19800	18000	16000	3000	37000
2015	MSY approach ($\mathrm{F}_{\mathrm{MSY}}=$ $0.28)^{* *}$	< 44439	43600	22200	22000	13000	2000	37000
2016	MSY approach ($\mathrm{F}_{\text {MSY }}=0.32$)	< 52547	51048	26274	25000	24000	2000	51000
2017	MSY approach ($\mathrm{F}_{\mathrm{MSY}}=0.32$)	< 56802	50740	28401	26513	19195	632	46340
2018	MSY approach ($\mathrm{F}=0.295$)	< 34618	48427	17309	18992	19902	2164	41058
2019	MSY approach	0	29326	9001	9831	8832	6757	25420
2020	MSY approach	0	24528	3150				
2021	MSY approach	0						

* Catch in subdivisions 22-24.
** Advice for 2015 was for wanted catch.
*** Including mixed clupeid TAC and a bycatch ceiling in the small-meshed fisheries until 2005, and for 2007. For 2006, and from 2008, human consumption only, not including industrial bycatch or mixed clupeids, but including North Sea autumn-spawners catch in fleet C , with an optional 50\% transfer from Division 3.a to Subarea 4 since 2011.
\wedge WBSS only.

Summary of the assessment

Table 6 Herring in subdivisions 20-24, spring spawners. Assessment summary. Weights are in tonnes. High and low refer to the 95% confidence intervals.

Year	Recruitment			Spawning-stock biomass			Catches	Fishing mortality		
	Recruitment (age 0, wr 0)	High	Low	SSB*	High	Low		$\begin{gathered} F \\ \text { (ages 3-6) } \end{gathered}$	High	Low
	thousands			tonnes			tonnes			
1991	4799683	6388484	3606013	296049	369171	237411	191573	0.48	0.63	0.37
1992	3569967	4568909	2789432	291869	356702	238821	194408	0.52	0.63	0.42
1993	3044671	3986913	2325112	276270	336154	227054	185010	0.56	0.68	0.46
1994	4380591	5679237	3378901	222218	268708	183770	172439	0.59	0.71	0.49
1995	4168930	5336279	3256947	192232	232838	158708	150820	0.61	0.74	0.51
1996	4186855	5348598	3277449	131342	157342	109638	121260	0.63	0.76	0.52
1997	3534281	4589058	2721940	147484	176615	123158	115585	0.62	0.75	0.52
1998	4460258	5716166	3480288	120118	143464	100572	107033	0.61	0.72	0.51
1999	4735476	6077482	3689806	120658	144174	100978	97234	0.57	0.68	0.47
2000	2955711	3773413	2315206	121179	144256	101793	109913	0.57	0.68	0.48
2001	2733279	3433623	2175782	133819	158469	113004	105806	0.56	0.68	0.47
2002	2658828	3341592	2115568	161101	190813	136016	106195	0.52	0.62	0.43
2003	2851159	3619824	2245718	126813	150380	106940	78310	0.49	0.60	0.40
2004	2043286	2587651	1613439	127885	151672	107828	76813	0.50	0.60	0.41
2005	1737092	2191867	1376675	116818	138476	98547	88404	0.51	0.61	0.43

Year	Recruitment			Spawning-stock biomass			Catches	Fishing mortality		
	Recruitment (age 0, wr 0)	High	Low	SSB*	High	Low		$\begin{gathered} F \\ \text { (ages 3-6) } \end{gathered}$	High	Low
	thousands			tonnes			tonnes			
2006	1361046	1729357	1071176	130128	154564	109556	90548	0.51	0.61	0.43
2007	1409637	1784154	1113736	104089	124219	87222	68179	0.53	0.64	0.45
2008	1171340	1481026	926411	85831	101668	72462	69489	0.54	0.66	0.45
2009	1156949	1464675	913876	78832	93135	66726	67259	0.51	0.63	0.42
2010	1470035	1858553	1162734	74002	87386	62667	42214	0.43	0.53	0.35
2011	1367582	1722663	1085691	67657	79994	57224	27771	0.37	0.47	0.29
2012	1169338	1482927	922063	68569	81150	57939	38646	0.38	0.46	0.31
2013	1581113	2117143	1180798	78598	93123	66338	43827	0.38	0.47	0.31
2014	1161332	1492675	903540	82818	98985	69291	37358	0.38	0.47	0.31
2015	937438	1225917	716843	81485	97964	67778	37490	0.42	0.51	0.35
2016	939669	1251061	705783	77854	93691	64693	51299	0.48	0.60	0.37
2017	1000047	1397529	715616	71908	87907	58822	46340	0.50	0.68	0.37
2018	783319	1204860	509261	60944	79539	46696	41058	0.47	0.66	0.34
2019	778899	1431060	423940	56621	79611	40271	25420	0.38	0.58	0.25
2020	964361**			57124***						

* SSB at spawning time (April).
** Recruitment is the average of 2014-2018.
*** SSB is predicted.

Sources and references

ICES 2020. Herring in Division 3.a and subdivisions 22-24, spring spawners (Update Assessment). In Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG), Section 3. In prep. Section 3 is available separately at the HAWG website.

Recommended citation: ICES. 2020. Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic). In Report of the ICES Advisory Committee, 2020. ICES Advice 2020, her.27.20-24, https://doi.org/10.17895/ices.advice.5928.

Annex 1

ICES Advice on fishing opportunities, catch, and effort
Baltic Sea and Greater North Sea Ecoregions
Published 29 May 2019
ICES
International Council for
the Exploration of the Sea
CIEM
Consell intermational po IExploration de la Mer

Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic)

ICES advice on fishing opportunities

ICES advises that when the MSY approach is applied, there should be zero catch in 2020.
This advice applies to the catch of western Baltic spring spawning herring (WBSS) in subdivisions 24 ana me eastern part of Subarea 4.

Stock development over time

The spawning-stock biomass (SSB) has been below Blim since 2007. After a decrease i the rst half of the 2010s, fishing mortality (F) has increased since 2014 and remains well above Fmsr. Recruitment has been lo / si/ce the mid-2000s.

Figure 1 Herring in subdivisions 20- spring spawners. Commercial catches, recruitment, fishing mortality (F), and spawning-stock biomass (SSB) fron the summary of the stock assessment; 95% confidence intervals are shown for SSB, F, and recr itm it Unshaded value of the recruitment is the average value of 2013-2017 and 2019 SSB (grey diamond) is , redi ted number.

Stock and exploitatirn sta us

ICES assesses that fis ing pessure on the stock is above $\mathrm{F}_{\text {MSY }}$ and F_{pa}, and below Flim; spawning-stock size is below MSY Btriger, B_{p}, and $\mathrm{B}_{\text {lim. }}$.

Table 1 Her σ in subdivisions 20-24, spring spawners. State of the stock and fishery relative to reference points.

[^0]
Catch scenarios

The ICES MSY approach stipulates that F is reduced proportionally to SSB when the spawning stock size falls below MSY $B_{\text {trigger }}$. When SSB is below $B_{l i m}$, measures should be taken so that SSB can be brought above $B_{\text {lim }}$ in the short term. All catch scenarios, including zero catch, result in SSB remaining below $\mathrm{B}_{\text {lim }}$ in 2021.

Table 2 Herring in subdivisions 20-24, spring spawners. The basis for the catch scenarios. All weights are in t nnes and recruitment is in thousands.

Variable	Value	Notes
$\mathrm{F}_{\text {ages }}$ 3-6 (2019)	0.238	Based on catch in 2019.
SSB (2019)	69743	Based on catch in 2019.
Rage 0 (2019)	1223484	Average 2013-2017.
$\mathrm{R}_{\text {age }} 0$ (2020)	1223484	Average 2013-2017.
Total catch (2019)	23367	- A-fleet: 1545 t (average catch 2016-2018) - C-fleet: 12352 t including an assumed 48% transfer (given by elagic Advisory Council) of the catch to the North Sea and 81% (average split 2016-201.) of WBSS in the catch - D-fleet: 469 t assuming 16% utilization of the TAC avo utilization 2016-2018) and 44\% of WBSS in the catch (average split 2016-2018) - F-fleet: 9001 t(TAC)

Table 3 Herring in subdivisions 20-24, spring spawners. Annual catch narios. All weights are in tonnes.

Basis	Total catch (2020)	F_{3-6} (2020)	SSB* (2020)	(2021)	\% SSB change **	\% advice change
ICES advice basis						
MSY approach: zero catch	0	0	76.73	101269	33\%	0\%
Other scenarios						
$\begin{aligned} & \mathrm{MAP}^{\wedge}: \mathrm{F}=\mathrm{F}_{\mathrm{MSY}} \times \\ & \mathrm{SSB}_{\mathrm{y}-1} / \mathrm{MSY} \mathrm{~B}_{\text {trigger }} \end{aligned}$	14619	0.144	5138	87270	16\%	
$\begin{aligned} & \text { MAP^: F = F } \text { MSY lower } \times \\ & \left(\text { SSB }_{y-1} / \text { MSY B }_{\text {trigger }}\right) \\ & \hline \end{aligned}$	10359		-15483	91298	21\%	
MAP^: $F=F_{\text {MSY upper }} \times$ (SSB ${ }_{y-1} /$ MSY $_{\text {trigger }}$)	17609		74889	84458	13\%	
$\mathrm{F}_{\mathrm{MSY}}$	29215	0. 1	73852	73874	0.03\%	
$\mathrm{F}=\mathrm{F}_{\mathrm{pa}}$	32413	- 0,5	73546	70975	-3\%	
$\mathrm{F}=\mathrm{F}_{\text {lim }}$	39 91/	0.45	72786	64257	-12\%	
$\operatorname{SSB}(2021)=\mathrm{B}_{\mathrm{lim}}{ }^{\wedge \wedge}$		0	76273	101269	33\%	
SSB (2021) = $\mathrm{B}_{\mathrm{pa}} \wedge \wedge$	0	0	76273	101269	33\%	
SSB (2021) $=$ MSY $\mathrm{B}_{\text {trigger }}{ }^{\wedge}$ ^		0	76273	101269	33\%	
$\mathrm{F}=\mathrm{F}_{2019}$	23157	0.238	74407	79426	7\%	

* For spring-spawning stocks, the $\mathcal{S B}$ determined at spawning time and is influenced by fisheries and natural mortality between

1 January and spawning time (Apri
** SSB (2021) relative to SSB (~~0).
*** The advised catch in 201 was 0 onnes.
\wedge Revised Baltic MAP ($2 \mathcal{J} 19$) w ich rs ers to using the most recent reference points. As SSB ${ }_{2019}$ is below MSY B Brigger, the $F_{\text {lower }}$ and $F_{\text {upper }}$ values in the MAP are gdu +ed by the $\mathrm{SSB}_{\mathrm{y}-1} / \mathrm{MSY}_{\mathrm{B}_{\text {trigger }}}$ ratio.
$\wedge \wedge$ The $B_{l i m}$ and $B_{p a}$ canno be acileved in 2021 even with zero catch advice.

Table 4 Herring in subdivisions 20-24, spring spawners. Medium-term catch scenarios. Different low F scenarios are provided, where $F_{2021}=F_{2020}$. All weights are in tonnes.

Basis	Total catch (2020)	$\begin{aligned} & \text { Total catch } \\ & (2021) \end{aligned}$	F_{3-6} (2020)	SSB* (2020)	SSB* (2021)	SSB* (2022)	$\begin{gathered} \hline \% \text { SSB } \\ \text { change } \\ (2020-2021) \end{gathered}$	$\begin{gathered} \hline \% \text { SSB } \\ \text { change } \\ (2021-2022) \\ \hline \end{gathered}$
Medium-term catch scenarios								
$\mathrm{F}=0$	0	0	0	76273	101269	132063	,	30\%
$\mathrm{F}=0.05$	5301	6665	0.05	75877	96189	120704	27\%	25\%
$\mathrm{F}=0.1$	10359	12500	0.1	75483	91383	110440	21\%	21\%
$\mathrm{F}=0.15$	15186	17594	0.15	75092	86838	101160	1 \%	16\%
Constant catch 20192021 \#	23367	23367	0.222	74532	80342	898	8\%	12\%

* For spring-spawning stocks, the SSB is determined at spawning time and is influenced by fi eerie and natural mortality between 1 January and spawning time (April).
\# Assumptions for 2019 catches kept constant for 2020-2021 (as defined in Table 2).
The stock is estimated to be below Blim. There are no catch scenarios that will re ar the stock above Blim by 2021. ICES continues to advise zero catch.

Basis of the advice

Table 5 Herring in subdivisions 20-24, spring spawners. The basis of reaa e.

Advice basis	MSY approach
Management plan	An EU Baltic Sea Multiannual Plan (MAP; EU, 2° (yas matablished in 2016 and updated in 2019 (MAP; EC, 2019). It applies to herring in subdivisions $: 2-4$, hich is part of the distribution area of the WBSS stock. This plan is not adopted by Norwa, and, us ot used as basis of the advice for this shared stock.

Quality of the assessment

This stock was benchmarked in 2018 (ICES, 2018a), wh h leuto a change in perception for the entire time series. The 2019 assessment (ICES, 2019) shows a downward in the SSB (e.g., 19\% smaller for 2017) and upwards revision in F (e.g., 27\% higher for 2017) estimates in rece ears compared to the 2018 assessment. This revision is within the uncertainty bounds of last year's assessment.

Figure 2 Herrı in subdivisions 20-24, spring spawners. Historical assessment results; orange lines represent the most recent ssec

The herring assessed in subdivisions $20-24$ is a complex mixture of populations predominantly spawning in spring, but with local components also spawning in autumn and winter. The population dynamics and the relative contribution of these components is presently unknown, but are likely to affect the precision of the assessment. Moreover, mixing between WBSS and central Baltic herring in subdivisions 22-24 may contribute to uncertainty in the assessment.

There is inter-annual variability in the herring migration patterns and in the distribution of the fish ies (i) ding the optional transfer of quotas between divisions 3.a and 4). Since these cannot be predicted, recent averuoe pr portions between stocks are assumed in projections. This is an added source of uncertainty in the catch fore

Issues relevant for advice

Recruitment has been low since the mid-2000s and at an historic low for the last four rs. en y the closure of the fishery in 2020 it will not be possible to increase SSB above $\mathrm{Blim}_{\text {lim }}$ in the short-term (2021

According to the forecasts, the implemented TAC in 2019 is expected to lead to a significant auction in F , but will result in only a small increase in SSB by 2020.

To explore the potential development of the stock, projections until 022 th different low F scenarios (where $\mathrm{F}_{2021}=\mathrm{F}_{2020}$) are provided in Table 4. Spawning-stock biomass is expected to rentuin below Blim even with a fishing mortality of zero in 2021. The highest fishing mortality that brings SS above Blim 2022 will be $\mathrm{F}=0.05$ with a yield of 5301 tonnes in 2020. This will carry a higher risk of not achieving Blin 2020 and 2021 compared to the zero catch scenario. ICES recommends that a rebuilding plan for this stock is deve oped.

The EU-Norway TAC-setting procedure used for herring in Divis on a (EU-Norway, 2013) calculates the TAC for the combined stocks in the C-fleet as 41% of the ICES MSY advi for $/$,SS us 5.7% of the TAC for the A-fleet. According to a safety clause in the EU-Norway TAC-setting procedure fr orring in Division 3.a, the method should not apply to calculate the advised catch for the C-fleet as there are sel ous co werns about the status of the WBSS stock. The ICES advice for zero WBSS catch also implies that the herring torn Division 3.a should be as close to zero as possible in 2020.

WBSS herring are also caught in the herring fisheries Irras eastern part of Division 4.a. The catch of WBSS in the North Sea was 2164 t in 2018. Without additional area and/ time restriction on the herring fishery in the North Sea in 2020, a catch of WBSS in the North Sea will be inevitabl

Reference points

Table 6 Herring in subdivisions 20-24, spring spawners. Reference points, values, and their technical basis. Weights in tonnes.

Framework	Reference point	Value	Technical basis	Source
MSY approach	MSY $\mathrm{B}_{\text {trigger }}$	150000	B_{pa} equal to the upper 95% confidence limit of $\mathrm{B}_{\text {lim }}$.	S (2018a)
	$\mathrm{F}_{\mathrm{MSY}}$	0.31	Stochastic simulations (EqSim) with Beverton-Holt, Ricker, and segmented regression stock-recruitment curve $f \quad \eta$ the full time-series (1991-2016).	LS (2018a)
Precautionary approach	Blim	120000	Chosen as the mean of the two lowest SSB (1999 1999) values with above average recruitment.	ICES (2018a)
	B_{pa}	150000	Upper 95% confidence limit of $B_{\text {lim }}$ with $\sigma \approx 0.1$ using $t e$ CV from the final-year SSB estimate in th ass ssmm	ICES (2018a)
	$\mathrm{F}_{\text {lim }}$	0.45	$\mathrm{F}_{\mathrm{P} 50 \%}$ leading to 50% probability of SSB ; $\mathrm{B}_{\text {lim }} \mathrm{u}$ der stochastic simulations with Beverton-Holt, Ricker, and se mf ced stock-recruitment from the full time-series (19 -2016).	ICES (2018a)
	F_{pa}	0.35	$\mathrm{F}_{\mathrm{pa}}=\mathrm{F}_{\text {lim }} \times \exp (-1.645 \times \sigma)$ with $\sigma \approx 0145$, based on the $C V$ from the terminal assessment yea	ICES (2018a)
Management plan (2018)	MAP (2018) MSY $B_{\text {trigger }}$	150000	$B_{p a}$ equal to the upper 95% confider limit of $\mathrm{B}_{\text {lim }}$.	ICES (2018a)
	MAP (2018) $\mathrm{Bl}_{\text {lim }}$	120000	Chosen as the mean of the two low + SSB $(1998,1999)$ values with above averac recruitment.	ICES (2018a)
	MAP (2018) $\mathrm{F}_{\text {MSY }}$	0.31	Stochastic simulations EqSin with Beverton-Holt, Ricker, and segmented regres ion sto k -recruitment curve from the full time-series (1901 -20	ICES (2018a)
	MAP (2018) target range $F_{\text {lower }}$	0.216-0.310	Consistent with he r ng s, resulting in no more than 5% reduction long im y eld compared with MSY.	ICES (2018a)
	MAP (2018) target range $F_{\text {upper }}$	0.310-0.379	$\begin{aligned} & \text { Consistent the ranges, resulting in no more than } 5 \% \\ & \text { reduction long- m yield compared with MS. } \end{aligned}$	ICES (2018a)

Basis of the assessment

Table 7 Herring in subdivisions 20-24, spring spawners asis of assessment and advice.

ICES stock data category	1 (ICES, 2018b).
Assessment type	Age-based analytical asse ment, nulti-fleet SAM (ICES, 2019) that uses catches by fleet in the model and in the forecast.
Input data	Two acoustic, two traw and one larval survey indices (HERAS, GerAS (BIAS), IBTS/BITS Q1, IBTS/BITS Q3-4, and N20); catch atrs and corrections for historical area misreporting; otolith microstructure and morphometric ethods o calculate the proportion of NSAS in the catches.
Discards and bycatch	Discarding is consiu to be negligible. The amount of slippage in Division 3.a is unknown.
Indicators	None.
Other information	Last be chrr irked in 2018 (ICES, 2018a).
Working group	Herring A.ess ent Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG).

Information from strkehc ders

The 48\% TAC transfer om yision 3.a to the North Sea in 2019, assumed for the human consumption fishery on herring in the catch forecact wa based on information provided by the Pelagic Advisory Council (AC).

History of the advice, catch, and management

Table 8 Herring in subdivisions 20-24, spring spawners. ICES advice, TACs, and ICES estimated catch. All weights are in tonnes.

	ICES advice	Predicted catch corresp. to advice	Agreed TAC Division3.a***	Agreed TAC subdivisions22-24	ICES estimate ${ }^{++h}{ }^{\wedge}$			
Year					Subdiv. 22-24	Division 3.a		Total
1987	Reduction in F	224000	218000		102000	59() 0	14000	175000
1988	No increase in F	196000	218000		99000	29000	23000	251000
1989	TAC	174000	218000		95000	710	20000	186000
1990	TAC	131000	185000		78000	18000	8000	204000
1991	TAC	180000	155000		7000	112000	10000	192000
1992	TAC	180000	174000		85000	15.000	9000	195000
1993	Increased yield from reduction in F; reduction in juvenile catches	188000	210000		81000	95000	10000	186000
1994	TAC	$\begin{array}{r} 130000- \\ 180000 \\ \hline \end{array}$	191000		- 70	92000	14000	172000
1995	If required, TAC not exceeding recent catches	$\begin{array}{r} 168000- \\ 192000 \end{array}$	183000		74000	80000	10000	164000
1996	If required, TAC not exceeding recent catches	$\begin{array}{r} 164000- \\ 171000 \\ \hline \end{array}$	163000		58000	71000	1000	130000
1997	3.a: managed together with autumn spawners 22-24: if required, TAC not exceeding recent catches	$\begin{aligned} & \text { 66000- } \\ & 85000^{*} \end{aligned}$	100000		68000	55000	1000	124000
1998	Should be managed in accordance with NSAS	-	970		51000	53000	8000	112000
1999	3.a: managed together with autumn spawners 22-24: if required, TAC not exceeding recent catches	-	$\text { > } 000$		50000	43000	5000	98000
2000	3.a: managed together with autumn spawners 22-24: if required, TAC not exceeding recent catches	$\begin{aligned} & \sim 60000 \text { fo } \\ & \text { SDs } 2-24 \end{aligned}$	101000		54000	57000	7000	118000
2001	3.a: managed together with autumn spawners 22-24: if required, TAC not exceeding recent catches	$\begin{array}{r} r 0000 \\ \text { SDs }-24 \end{array}$	101000		64000	42000	6000	112000
2002	3.a: managed together wit ${ }^{\dagger}$ autumn spawners 22-24: required, TAC not exce ing recent catches	50000 for SDs 22-24	101000		53000	47000	7000	107000
2003	Reduce F	< 80000	101000		40000	36000	2000	78000
2004	Separate manag me regime. Reduce F	<92000	91000		42000	28000	7000	77000
2005	Separa marruon, t regime. ${ }^{\text {s+ }}$ \qquad quo F	95000	120000		44000	38000	7000	89000
2006	Separat mana ment regime. tus uo F	95000	102000	47500	42000	36000	11000	89000
2007	or io management vim . Stacus quo F	99000	69000	49500	40000	28000	1000	69000
2008	Se_{F}, rate management regin . Reduce F 20\% towards F0.1	71000	51700	45000	44000	25000	0	69000
2009	Separate management regime. Reduce F to F = 0.25	< 32800	37700	27200	31000	32000	4000	67000

	ICES advice	Predicted catch corresp. to advice	Agreed TAC Division3.a***	Agreed TAC subdivisions 22-24	ICES estimated catch ${ }^{\wedge}$			
Year					Subdiv. $22-24$	Division 3.a	Subarea 4	Total
2010	Separate management regime. Reduce F to $\mathrm{F}=0.25$	< 39800	33900	22700	18000	24000	- 1000	42000
2011	MSY transition in 1-5 years and no increase in catches of WBSS herring in the North Sea	$\begin{array}{r} 26500- \\ 53600 \end{array}$	30000	15800	16000	12		28000
2012	FMSY $=0.25$ and no increase in catches of WBSS herring in the North Sea	<42700	45000	20900	21000	1500	2000	39000
2013	FMSY $=0.25$ and no optional transfer of catch scenarios to the North Sea	<51900	55000	25800	2600	17000	500	44000
2014	Transition to MSY approach	< 41602	46800	19800	18000	16000	3000	37000
2015	MSY approach (FMSY = 0.28)**	<44439	43600	22200	200	13000	2000	37000
2016	MSY approach (FMSY = 0.32)	< 52547	51048	26214	- 900	24000	2000	51000
2017	MSY approach (FMSY = 0.32)	< 56802	50740	28401	265.3	19195	632	46340
2018	MSY approach ($\mathrm{F}=0.295$)	< 34618	48427	- 17309	10.92	19902	2164	41058
2019	MSY approach	0	29326	$\bigcirc \bigcirc 1$				
2020	MSY approach	0						

* Catch in subdivisions 22-24.
** Advice for 2015 was for wanted catch.
*** Including mixed clupeid TAC and a bycatch ceiling in the small neshe sher es until 2005, and for 2007. For 2006, and from 2008, human consumption only, not including industrial bycatch or mixed reias, wat including North Sea autumn-spawner catch in fleet C , with an optional 50\% transfer from Division 3.a to Subarea 4 since 011.
\wedge WBSS only.

History of the catch and landings

Table 9 Herring in subdivisions 20-24, sprin eners. Catch distribution, by stock and by fleet, of WBSS and NSAS herring in 2018 as estimated by ICES.

Area where WBSS are caught	Fleet	Fisheries	$\begin{gathered} \text { WBSS } 2018 \\ \text { catch (t) } \end{gathered}$	NSAS 2018 catch (t)
Division 3.a	C	Dir ${ }^{\text {a }}$ d m ring fisheries with purse-seiners and trawlers	19751	3163
	D	B catch of herring caught in the small-meshed fisheries	151	209
Subdivisions 22-24	F	Ain 'errir s fisheries in subdivisions 22-24.	18992	0
Subarea 4	A	Direct herring fisheries with purse-seiners and trawlers	2164	-
Total area	C,D,F,A	All	41058	3372

Table 10 Herring in subdiy ns 7 , 24 , spring spawners. Catch distribution of WBSS in 2018 as estimated by ICES.

| Total catch (2018) | Landings | Discards |
| :---: | :---: | :---: | :---: |
| 41058 tonnes | Negligible | |

* Sprat fishery closed ea in 2,8 by agreement with fishers, due to whiting by-catch in the sprat fishery.

Table 11	Herring in subdivisions 20-24. History of commercial catch as estimated by ICES, by area and country for all herr ntorks caught within the management area for subdivisions 20-24. Values prior to 2002 are rounded. Weights are in tonnes.													
Year	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Skagerrak														
Denmark	47400	62300	58700	64700	87800	44900	43700	28700	-	10300	10100	16000	16200	25968
Norway	1600	5600	8100	13900	24200	17700	16700	9400	8800	8000	7400	9700	0	0
Sweden	47900	56500	54700	88000	56400	66400	48500	32700	32.00	46900	36400	45800	30800	26354
Total	96900	124400	121500	166600	168400	129000	108900	70800	6000	65200	53900	71500	47000	52322
Kattegat														
Denmark	57100	32200	29700	33500	28700	23600	16900	17200	88	23700	17900	18900	18800	18609
Sweden	37900	45200	36700	26400	16700	15400	30800	27000	1.000	29900	14600	17300	16200	7246
Total	95000	77400	66400	59900	45400	39000	47700	4420	26800	53600	32500	36200	35000	25855
Subdivisions 22 and 24														
Denmark	21700	13600	25200	26900	38000	39500	36800	2400	30500	30100	32500	32600	28300	13066
Germany	56400	45500	15800	15600	11100	11400	13400	730	12800	9000	9800	9300	11400	22400
Poland	8500	9700	5600	15500	11800	6300	7300	6000	6900	6500	5300	6600	9300	0
Sweden	6300	8100	19300	22300	16200	7400	15800	9000	14500	4300	2600	4800	13900	10717
Total	92900	76900	65900	80300	77100	64600	73300	700	64700	49900	50200	53300	62900	46184
Subdivision 23														
Denmark	1500	1100	1700	2900	3300	1500		700	2200	400	500	900	600	4572
Sweden	100	100	2300	1700	700	300	\square	300	100	300	100	100	200	0
Total	1600	1200	4000	4600	4000	1800	1100	1000	2300	700	600	1000	800	4572
Grand total	286400	279900	257800	311400	294900	234400	2310	172700	149800	169400	137200	162000	145700	128932
Year	2003	2004	2005	2006**	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Skagerrak														
Denmark	15477	11782	14768	5156	3595	380	12720	5309	3577	3244	4886	6449	4137	3554
Faroe Islands	0	0	440	0	0	?	552	447	0	0	0	0	480	318
Netherlands	725	484	751	600	454	1566	255	145	54	629	194	84	128	125
Germany	0	0	0	0	0	\cdots	0	395	0	0	0	0	0	0
Lithuania	0	0	0	0	0	0	0	0	0	0	0	0	30	0
Norway	0	0	0	0	346	4024	3295	3281	116	446	3019	2048	2475	3924
Sweden	25830	21806	32545	26000	194.	16501	12869	17445	9458	16210	16677	12594	12857	13321
Total	42032	34073	48504	31756	26937	25958	29691	27023	13205	20530	24776	21175	20107	21242
Kattegat														
Denmark	15952	7563	11109	8617	${ }^{181}$	7020	4896	7567	5155	6326	3877	4266	3976	2448
Sweden	10236	9626	9986	10800	11. 3	5213	3612	2693	1661	800	2586	3412	3752	6206
Germany	0	0	0		0	0	631	0	0	0	0	0	0	0
Total	26188	17189	21095	1941	20334	12234	9140	10260	6800	7126	6464	7678	7728	8653
Subdivisions 22 and 24														
Denmark	6143	7305	5311	140	2839	3073	2146	762	3089	4105	5060	4283	4487	5714
Germany	18776	18493	21040	2. 70	24583	22823	15981	12239	8187	11170	14591	10241	13289	14427
Poland	4398	5512	6292	-5. 1	2945	5535	5232	1799	1803	2394	3110	2381	2648	2918
Sweden	9379	9865	9171	9604	7220	7024	4050	2034	2179	2706	2067	1078	1497	1659
Total	38696	41175	41814	, 388	37587	38456	27409	16833	15258	20400	24800	17983	21922	24718
Subdivision 23														
Denmark	2315	94	$1 / \pi$	1827	2871	5324	2817	1***	26	38	44	47	30	26
Sweden	243	317	${ }^{38}$	652	0	327	807	934	544	681	632	319	192	332
Total	2558	411	2. 3	2479	2871	5651	3623	1000	600	700	700	366	222	359
Grand total	109473	92848	11357	93035	87729	82298	69863	55200	35863	48755	56740	47202	49978	54972

her.27.20-24

Year	2017	2018*
Skagerrak		
Denmark	2699	858
Faroe Islands	400	149
Netherlands		
Germany	85	205
Lithuania		
Norway	3337	3411
Sweden	11936	11332
Total	18458	15956
Kattegat		
Denmark	912	1258
Sweden	7426	6044
Germany		0
Total	8338	7302
Subdivisions 22 and 24		
Denmark	5586	4487
Finland		1
Germany	14694	11304
Poland	3330	1773
Sweden	2287	943
Total	25898	18507
Subdivision 23		
Denmark	260	69
Sweden	356	416
Total	616	485
Grand total	53309	42250

* Preliminary data
** 2000 t of Danish catches are missing (ICES, 2007).
*** 3103 t officially reported catches (ICES, 2011).

Summary of the assessment

Table 12 Herring in subdivisions 20-24, spring spawners. Assessment summary. Weights are in tonnes. High and low refer to the 95% confidence intervals.
$\left.\begin{array}{|c|r|r|r|r|r|r|r|r|r|}\hline \text { Year } & \begin{array}{c}\text { Recruitment } \\ \text { (age 0) }\end{array} & \begin{array}{c}\text { Recruitment } \\ \text { High }\end{array} & \begin{array}{c}\text { Recruitment } \\ \text { Low }\end{array} & \text { SSB* } & \text { SSB High } & \text { SSB Low } & \text { Catches } & \begin{array}{c}\text { F } \\ \text { (ages }\end{array} \text {-6) }\end{array}\right)$

* SSB measured at spawning time (April).
** Recruitment is the average of 2013-2017.
*** SSB is predicted.

Sources and references

EU-Norway. 2013. Report from the Working Group on Management Measures for Herring in ICES Division IIla (Skagerrak and Kattegat). Bergen, 19-20 June 2013. 10 pp.
EC. 2019. Regulation (EU) 2019/472 of the European Parliament and of the Council of 19 Ma ch e blishing a multiannual plan for stocks fished in the Western Waters and adjacent waters, and for fisheries explo ind ho e stocks, amending Regulations (EU) 2016/1139 and (EU) 2018/973, and repealing Council Regulations (EC) º 811/2~ 4 , (EC) No 2166/2005, (EC) No 388/2006, (EC) No 509/2007 and (EC) No 1300/2008. Official Journal of the Uro ean Union, L 83, 25.3.2019. http://data.europa.eu/eli/reg/2019/472/oj

EU. 2016. Regulation (EU) 2016/1139 of the European Parliament and of the Council c 6 July 016 establishing a multiannual plan for the stocks of cod, herring and sprat in the Baltic Sea and the prit oxn sting those stocks, amending Council Regulation (EC) No 2187/2005 and repealing Council Regulation (E (No 098/2007. Official Journal of the European Union, L 191, 15.7.2016. http://data.europa.eu/eli/reg/2016/1139/oj

ICES. 2007. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (NAWG), 13-22 March 2007, ICES Headquarters, Copenhagen, Denmark. ICES CM 2007/ACFM:11. 538 pp.

ICES. 2011. Report of the Herring Assessment Working Group for the Are Sout of $62^{\circ} \mathrm{N}$ (HAWG), 16-24 March 2011, ICES Headquarters, Copenhagen, Denmark. ICES CM 2011/ACOM:06 . 749 pp.
ICES. 2017. Herring (Clupea harengus) in Subarea 4 and divisions 3.a a d 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel). In Report of the ICES Advisory (omm tee, 2017. ICES Advice 2017, her.27.3a47d. ICES. 2018a. Report of the Benchmark Workshop on Pelagic Stocks NMD LA 2018), 12-16 February 2018, ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:32. 313 pp.
ICES. 2018b. Advice basis. In Report of the ICES Advisory ${ }^{+\infty}$, 2018. ICES Advice 2018, Book 1, Section 1.2. https://doi.org/10.17895/ices.pub. 4503
ICES. 2019. Herring in Division 3.a and subdivisions 2neng spawners. Section 3. In Report of the Herring Assessment Working Group for the Area South of 62 eg (HAWG). ICES Scientific Reports. VOL 1:ISS 2. Section 3 is available separately at the HAWG website.

[^1]
[^0]: ICES Advice 2019 - her.27.20-24- https://doi.org/10.17895/ices.advice. 4715
 ICES advice, as adopted by its advisory committee (ACOM), is developed upon request by ICES clients (European Union, NASCO, NEAFC, and Norway)

[^1]: Recommerrded citation: ICES. 2019. Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic). In Report of the ICES Advisory Committee, 2019, her.27.20-24, https://doi.org/10.17895/ices.advice. 4715

