## Capelin (Mallotus villosus) in subareas 1 and 2 (Northeast Arctic), excluding Division 2.a west of $5^{\circ} \mathrm{W}$ (Barents Sea capelin)

## ICES advice on fishing opportunities

ICES advises that when the management plan of the Joint Norwegian-Russian Fisheries Commission (JNRFC) is applied, there should be zero catch in 2021.

Note: This advice sheet is abbreviated due to the COVID-19 disruption. The previous advice issued for 2020 is attached as Annex 1.

## Stock development over time



Figure 1 Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Summary of the stock assessment. Catch in million tonnes, recruitment abundance in billions of fish, and spawning-stock biomass (SSB) in thousand tonnes. Recruitment values are estimates from the acoustic survey in September. The recruitment plot is shown only from 1981 onwards, since earlier estimates of age 1 capelin are based on incomplete survey-area coverage. Stock-size estimates (SSB; vertical shading in the last four years is the $90 \%$ confidence interval) are shown only from 1989 onwards, because a different model was used previously.

## Stock and exploitation status

Table $1 \quad$ Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. State of the stock and the fishery relative to reference points. Stock-size status is based on population size calculated for 1 April.

${ }^{*}$ The $B_{m g t}$ used in the harvest control rule corresponds to $95 \%$ probability of the spawning stock being above $\mathrm{B}_{\text {lim }}$ on 1 April.

## Catch scenarios

Calculations of catch scenarios are based on a forward projection from the autumn acoustic survey. An SSB estimate for April 2021 is calculated by taking into account predation by immature cod and other natural mortality, while assuming zero fishing mortality between 1 October 2020 and 1 April 2021.

Table 2 Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Assumptions made for the interim year and in the forecast. Biomass values are in tonnes.

| Variable | Value | Notes |
| :--- | :---: | :--- |
| Maturing stock biomass 2020 | 545106 | Biomass of fish above the length-at-maturity (14.0 cm), estimated based on <br> the autumn acoustic survey 1 October 2020. These fish will be spawning in <br> April 2021. |
| Predation by immature cod in <br> January-March 2021 - from the <br> predation model | 241010 | Based on the prediction of cod abundance in 2021 (ICES, 2020) from the 2020 <br> cod stock assessment. The predation model is based on cod stomach content <br> data. |

Table 3 Capelin in subareas 1 and 2 , excluding Division 2 .a west of $5^{\circ} \mathrm{W}$. Annual catch scenarios. $\mathrm{P}=$ probability. All weights are in tonnes.

| Basis | Total catch (2021) | $\begin{gathered} \text { SSB } \\ (2021) \end{gathered}$ | $\begin{aligned} & \mathrm{P}\left(\mathrm{SSB}_{2021}>200000 \mathrm{t}\right) \\ & \text { in } \% \end{aligned}$ | \% TAC change * | \% advice change ** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ICES advice basis |  |  |  |  |  |
| MP harvest control rule, P (SSB > 200000 t$)=95 \%$ | 0 | 156376 | 27 | 0 | 0 |

* TAC (2021) vs. TAC (2020).
** Advice value 2021 relative to the advice value 2020.
The maturing stock has increased from 2019 to 2020; however, it remains below the limit of the harvest control rule (HCR) that would allow a fishery. Therefore, there is no change in the advice compared to 2020.


Figure 2 Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Probabilistic prognosis of SSB for the Barents Sea capelin maturing stock from 1 October 2020 to 1 April 2021, based on the acoustic survey estimates from autumn 2020, and assuming zero catch. Biomass in thousand tonnes. The median and the 5th , 25th, 75 th, and 95 th percentiles of the distribution are shown.

## Quality of the assessment

The survey coverage in autumn 2020 was incomplete and it is considered likely that the SSB is underestimated. However, though the coverage of the immature stock was incomplete, this does not affect the advice because the immature stock does not contribute to the fishable biomass in 2021. Based on the distribution of the maturing stock in previous years (Figure 3), the acoustic estimates were nevertheless considered adequate to provide the basis for the advice.


Figure 3 Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Geographical distribution of capelin from autumn 2017 to 2020, as observed in the acoustic survey. An approximate border between the Russian and Norwegian coverage areas for 2020 is shown as a blue dashed line.

## Issues relevant for the advice

The survey coverage was incomplete and the biomass of the maturing stock from the acoustic survey is therefore likely to be underestimated. The areas missed in the 2020 survey accounted for no more than $20 \%$ of the survey biomass estimates in 2017 to 2019. Even assuming that the 2020 survey biomass is $20 \%$ higher than the estimated biomass from the partial coverage, this would result in $44 \%$ probability that the SSB is above 200000 tonnes. According to the JNRFC management plan, this would still lead to a zero catch advice.

## History of the advice, catch, and management

Table 4 Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. ICES advice, agreed TAC, and catch. All weights are in tonnes.

| Year | ICES advice | Catch corresponding to advice | Agreed TAC | ICES catch |
| :---: | :---: | :---: | :---: | :---: |
| 1987 | Catches at the lowest practical level | 0 | 0 | 0 |
| 1988 | No catch | 0 | 0 | 0 |
| 1989 | No catch | 0 | 0 | 0 |
| 1990 | No catch | 0 | 0 | 0 |
| 1991 | TAC | 1000000 | 900000 | 933000 |
| 1992 | SSB > 400 000-500 000 t | 834000 | 1100000 | 1123000 |
| 1993 | A cautious approach, SSB > 400 000-500 000 t | 600000 | 630000 | 586000 |
| 1994 | No fishing | 0 | 0 | 0 |
| 1995 | No fishing | 0 | 0 | 0 |
| 1996 | No fishing | 0 | 0 | 0 |
| 1997 | No fishing | 0 | 0 | 1000 |
| 1998 | No fishing | 0 | 0 | 3000 |
| 1999 | SSB > 500000 t | 79000 | 80000 | 101000 |
| 2000 | 5\% probability of SSB < 200000 t | 435000 | 435000 | 414000 |
| 2001 | 5\% probability of SSB < 200000 t | 630000 | 630000 | 568000 |
| 2002 | $5 \%$ probability of SSB < 200000 t | 650000 | 650000 | 651000 |
| 2003 | 5\% probability of SSB < 200000 t | 310000 | 310000 | 282000 |
| 2004 | No fishing | 0 | 0 | 0 |
| 2005 | No fishing | 0 | 0 | 1000 * |
| 2006 | No fishing | 0 | 0 | 0 |
| 2007 | No fishing | 0 | 0 | 4000 * |
| 2008 | No fishing | 0 | 0 | 12000 * |
| 2009 | 5\% probability of SSB < 200000 t | 390000 | 390000 | 307000 |
| 2010 | $5 \%$ probability of SSB < 200000 t | 360000 | 360000 | 323000 |
| 2011 | $5 \%$ probability of SSB < 200000 t | 380000 | 380000 | 360000 |
| 2012 | $5 \%$ probability of SSB < 200000 t | 320000 | 320000 | 296000 |
| 2013 | $5 \%$ probability of SSB < 200000 t | 200000 | 200000 | 177000 |
| 2014 | 5\% probability of SSB < 200000 t | 65000 | 65000 | 66000 |
| 2015 | 5\% probability of SSB < 200000 t | 6000 | 120000 | 115000 |
| 2016 | Zero catch | 0 | 0 | 0 |
| 2017 | Zero catch | 0 | 0 | 0 |
| 2018 | 5\% probability of SSB < 200000 t | 205000 | 205000 | 194520 |
| 2019 | Zero catch | 0 | 0 † | 53* |
| 2020 | Management plan | 0 | 0 + | 31* |
| 2021 | Management plan | 0 |  |  |

[^0]
## Summary of the assessment

Table 5
Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Assessment summary. Weights are in tonnes, recruitment in thousands. Recruitment and stock biomass in 1985 and earlier are survey estimates, back-calculated to 1 August (before the autumn fishing season); from 1986 and later, these values are based on the survey estimates with no back-calculation. Maturing biomass is the survey estimate of fish above the length-at-maturity ( 14.0 cm ). Predicted SSB is the modelled stochastic spawning-stock biomass (after the winter fishery).

| Year | Predicted SSB assuming catch = ICES advised catch, 1 April |  |  | Recruitment from autumn acoustic survey, 1 October | Stock biomass from autumn acoustic survey, 1 October |  | Catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Median | 5th percentile | $\begin{gathered} \text { 95th } \\ \text { percentile } \end{gathered}$ |  | Immatures | Maturing biomass |  |
|  | tonnes |  |  | Age 1, thousands | tonnes |  |  |
| 1972 |  |  |  |  | 3873000 | 2727000 | 1591000 |
| 1973 |  |  |  |  | 3794000 | 1350000 | 1337000 |
| 1974 |  |  |  |  | 4826000 | 907000 | 1148000 |
| 1975 |  |  |  |  | 4890000 | 2916000 | 1441000 |
| 1976 |  |  |  |  | 3217000 | 3200000 | 2587000 |
| 1977 |  |  |  |  | 2120000 | 2676000 | 2986000 |
| 1978 |  |  |  |  | 2845000 | 1402000 | 1916000 |
| 1979 |  |  |  |  | 2935000 | 1227000 | 1782000 |
| 1980 |  |  |  |  | 2802000 | 3913000 | 1648000 |
| 1981 |  |  |  | 402600000 | 2344000 | 1551000 | 1986000 |
| 1982 |  |  |  | 528300000 | 2188000 | 1591000 | 1760000 |
| 1983 |  |  |  | 514900000 | 2901000 | 1329000 | 2357000 |
| 1984 |  |  |  | 154800000 | 1756000 | 1208000 | 1477000 |
| 1985 |  |  |  | 38700000 | 575000 | 285000 | 868000 |
| 1986 |  |  |  | 6000000 | 55000 | 65000 | 123000 |
| 1987 |  |  |  | 37600000 | 84000 | 17000 | 0 |
| 1988 |  |  |  | 21000000 | 228000 | 200000 | 0 |
| 1989 | 84000 |  |  | 189200000 | 689000 | 175000 | 0 |
| 1990 | 92000 |  |  | 700400000 | 3214000 | 2617000 | 0 |
| 1991 | 643000 |  |  | 402100000 | 5039000 | 2248000 | 933000 |
| 1992 | 302000 |  |  | 351300000 | 2922000 | 2228000 | 1123000 |
| 1993 | 293000 |  |  | 2200000 | 466000 | 330000 | 586000 |
| 1994 | 139000 |  |  | 19800000 | 106000 | 94000 | 0 |
| 1995 | 60000 |  |  | 7100000 | 75000 | 118000 | 0 |
| 1996 | 60000 |  |  | 81900000 | 255000 | 248000 | 0 |
| 1997 | 85000 |  |  | 98900000 | 597000 | 312000 | 1000 |
| 1998 | 94000 |  |  | 179000000 | 1124000 | 932000 | 3000 |
| 1999 | 382000 |  |  | 156000000 | 1057000 | 1718000 | 105000 |
| 2000 | 599000 |  |  | 449200000 | 2175000 | 2098000 | 410000 |
| 2001 | 626000 |  |  | 113600000 | 1611000 | 2019000 | 578000 |
| 2002 | 496000 |  |  | 59700000 | 919000 | 1291000 | 659000 |
| 2003 | 427000 |  |  | 82400000 | 253000 | 280000 | 282000 |
| 2004 | 94000 |  |  | 51200000 | 334000 | 294000 | 0 |
| 2005 | 122000 |  |  | 26900000 | 150000 | 174000 | 1000 |
| 2006 | 72000 |  |  | 60100000 | 350000 | 437000 | 0 |
| 2007 | 189000 |  |  | 221700000 | 1275000 | 844000 | 4000 |
| 2008 | 330000 |  |  | 313000000 | 1960000 | 2468000 | 12000 |
| 2009 | 517000 |  |  | 124000000 | 1442000 | 2323000 | 307000 |
| 2010 | 504000 |  |  | 248200000 | 1449000 | 2051000 | 323000 |


| Year | Predicted SSB assuming catch = ICES advised catch, 1 April |  |  | Recruitment from autumn acoustic survey, 1 October | Stock biomass from autumn acoustic survey, 1 October |  | Catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Median | 5th percentile | 95th percentile |  | Immatures | Maturing biomass |  |
|  | tonnes |  |  | Age 1, thousands | tonnes |  |  |
| 2011 | 487000 |  |  | 209600000 | 1592000 | 2115000 | 360000 |
| 2012 | 504000 |  |  | 145900000 | 1589000 | 1997000 | 296000 |
| 2013 | 479000 |  |  | 324500000 | 2485000 | 1471000 | 177000 |
| 2014 | 399000 |  |  | 105100000 | 1076000 | 873000 | 66000 |
| 2015 | 504000 |  |  | 39500000 | 467000 | 375000 | 115000 |
| 2016 | 82000 |  |  | 31600000 | 147000 | 181000 | 0 |
| 2017 | 37000 |  |  | 86400000 | 783000 | 1723000 | 0 |
| 2018 | 462000 | 200000 | 930000 | 58600000 | 541000 | 1056000 | 194520 |
| 2019 | 317000 | 168282 | 613733 | 17455060 | 109533 | 301615 | 53 |
| 2020 | 85110 | 38830 | 171850 | 292262000 | 1174676 | 545106 | 31 |
| 2021 | 156376 | 75197 | 314559 |  |  |  |  |

## Sources and references

ICES. 2020. Arctic Fisheries Working Group (AFWG). ICES Scientific Reports, 2:52. 577 pp. http://doi.org/10.17895/ices.pub. 6050.

Recommended citation: ICES. 2020. Capelin (Mallotus villosus) in subareas 1 and 2 (Northeast Arctic), excluding Division 2.a west of $5^{\circ} \mathrm{W}$ (Barents Sea capelin). In Report of the ICES Advisory Committee, 2020. ICES Advice 2020, cap.27.1-2, https://doi.org/10.17895/ices.advice.5889.

## Annex 1

## Capelin (Mallotus villosus) in subareas 1 and 2 (Northeast Arctic), excluding Division 2.a west of $5^{\circ} \mathrm{W}$ (Barents Sea capelin)

## ICES advice on fishing opportunities

ICES advises that when the management plan of the Joint Norwegian-Russian Fisheries Commission INRF ) applied, there should be zero catch in 2020.

## Stock development over time

The spawning-stock biomass (SSB) has been declining since 2018. The estimate of recruitm it ( $\mathrm{a}_{5}$ 1) has been low since 2014, and below the time-series average. The recruitment in 2019 is the lowest estimated sil e 1995


Figure 1 Capelin in subareas 1 and 2, exci ling Division 2.a west of $5^{\circ} \mathrm{W}$. Summary of the stock assessment. Catch in millions of tonnes, spawning-stoc ( ${ }^{\prime}$ ass (SSB) in millions of tonnes, and recruitment abundance in billions of fish. Recruitment values are imates from the acoustic survey in September. The recruitment plot is shown only from 1981 onwards, since earlie, nates of age 1 capelin are based on incomplete survey area coverage. Stock size estimates (SSB; vertical shading ine he $90 \%$ confidence interval) are shown only from 1989 onwards because a different model was used $p$

## Stock and exploitation status

ICES assesses that the me ian es mate of spawning stock was above $\mathrm{Blim}_{\text {in }} 2019$ and is projected to be below Blim by 1 April 2020. No referenc oons fishing pressure have been defined for this stock.

Table 1 Capelin n subureas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. State of the stock and fishery relative to reference pc St k size status is based on population size calculated for 1 April.


* The $\mathrm{B}_{\mathrm{mgt}}$ used in the harvest control rule corresponds to $95 \%$ probability of the spawning stock being above $\mathrm{B}_{\text {lim }}$ on 1 April (see Basis of the advice).


## Catch scenarios

Calculations of catch scenarios are based on a forward projection from the autumn acoustic survey. An SSB estimate for April 2020 is calculated by taking into account predation by immature cod and other natural mortality, while assuming zero fishing mortality between 1 October 2019 and 1 April 2020.

Table 2 Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Assumptions made for the inter ear nd in the forecast.

| Variable | Value | Notes |
| :---: | :---: | :---: |
| Maturing stock biomass 2019 | 301615 tonnes | Biomass of fish above the length at mat $\quad 14.0 \mathrm{~cm}$ on average), estimated based on the autumn acous c survey October 2019. These fish will be spawning in April 2020. |
| Predation by immature cod in January-March 2020 from the predation model | 136904 tonnes | Based on the prediction of cod a anda ce in $\angle \boxed{Z O}$ (ICES, 2019) from the 2019 cod stock assessment. T e pre atic model is based on cod stomach content data. |

Table 3
Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Annual c cri enarios. All weights are in tonnes.

| Basis | Total catch (2020) | $\begin{gathered} \hline \text { SSB } \\ (2020) \end{gathered}$ | P (SSP | \% TAC change | \% Advice change |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ICES advice basis |  |  |  |  |  |
| MP harvest control rule, P (SSB > 200000 t ) = 95\% | 0 | 85110 | 2.2 | 0 | 0 |

* TAC (2020) vs. TAC (2019).
** Advice value 2020 relative to the advice value 2019.
The maturing stock has decreased from 2018 to 2019, and re ins whe the limit in the harvest control rule (HCR) that would allow a fishery. There is, therefore, no change in the dvice ampared to 2019.


Figure 2
Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Probabilistic prognosis 1 October 2019-1 April 2020 for the Barents Sea capelin maturing stock, with no catch. Biomass in thousand tonnes. The median and the 5th, 25th, 75th, and 95th percentiles of the distribution are shown.

## Basis of the advice

Table 4 Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. The basis of the advice.

| Advice basis | Management plan. |
| :---: | :---: |
| Management plan | In 2002, the Joint Norwegian-Russian Fisheries Commission (JNRFC) adopted the control rule (HCR) for Barents Sea capelin: 'The TAC for the following year should be probability, at least 200000 tonnes of capelin (Blim) will be allowed to spawn'. as well as alternative HCRs suggested by JNRFC in 2016 (ICES, 2016), and only th existing vas found to be precautionary. Following ICES evaluation, the JNRFC decided to ma ita the existing HCR (JNRFC, 2016) but decided that the harvest control rule should be evaluated again in 20 |

## Quality of the assessment

The assessment is based on an annual acoustic survey. The survey coverage in 2019 wa gooc and is considered to include almost the entire distribution of the stock. A small area of the most northeastern part of th
st ck area was not covered by the survey. The areas immediately south did not have any capelin and no significant capel concentrations have been recorded in the un-surveyed area since 2013.

## Issues relevant for the advice

There is no information to present for this stock.

## Reference points

Table 5 Capelin in subareas 1 and 2, excluding Division 2.a wes of 5 Reference points, values, and their technical basis.

| Framework | Reference point | Value | $\cdots$ cal basis | Source |
| :---: | :---: | :---: | :---: | :---: |
| MSY approach | MSY $\mathrm{B}_{\text {trigger }}$ |  |  |  |
|  | $\mathrm{F}_{\mathrm{MSY}}$ |  | - |  |
| Precautionary approach | $\mathrm{Blim}_{\text {lim }}$ | 200000 t | Above ${ }^{-} \mathrm{B}_{198}$, the lowest SSB that has produced a good year class SSB estimated on April 1. | ICES (2001) |
|  | $\mathrm{B}_{\mathrm{pa}}$ |  | $\longrightarrow$ |  |
|  | $\mathrm{F}_{\text {lim }}$ |  | - |  |
|  | $\mathrm{F}_{\mathrm{pa}}$ |  |  |  |
| Management plan | $\mathrm{B}_{\text {mgt }}$ | No specific value | ust in the harvest control rule corresponds o a $95 \%$ probability of the SSB being above $\mathrm{B}_{\text {lim }}$ 00000 t ). | JNRFC (2016) |
|  | $\mathrm{F}_{\mathrm{mgt}}$ |  |  |  |

## Basis of the assessment

Table 6 Capelin in subart $s$ anc 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Basis of the assessment and advice.

| ICES stock data category | 1 ES, |
| :---: | :---: |
| Assessment type | hodel ased on acoustic survey and forecast six months ahead to calculate spawning biomass. Target ient strategy used. |
| Input data | Vorwegian-Russian acoustic survey in September (Eco-NoRu-Q3 (Aco)). Model estimates of maturation based on survey data. Natural mortalities from multispecies model (predation by immature cod on prespawning capelin) and based on historical survey estimates. |
| Discards an | All catches are assumed to be landed. The amount of bycaught capelin in other fisheries is unknown, but assumed to be low. |
| Indicators | None. |
| Othe | The latest benchmark was in 2015 (ICES, 2015). |
| Workin $\mathrm{grr}^{\text {ap }}$ | Arctic Fisheries Working Group (AFWG). |

## Informatio. from stakeholders

There is no additional available information.

## History of the advice, catch, and management

Table 7 Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. ICES advice and catch. All weights are in tonnes.

| Year | ICES advice | Catch corresponding to advice | Agreed TAC | - catch |
| :---: | :---: | :---: | :---: | :---: |
| 1987 | Catches at the lowest practical level | 0 | 0 | 0 |
| 1988 | No catch | 0 | 0 | 0 |
| 1989 | No catch | 0 | 0 | 0 |
| 1990 | No catch | 0 | 0 | 0 |
| 1991 | TAC | 1000000 | 90000 | 933000 |
| 1992 | SSB > 400 000-500 000 t | 834000 | $11 \bigcirc 000$ | 1123000 |
| 1993 | A cautious approach, SSB > 400 000500000 t | 600000 | 60000 | 586000 |
| 1994 | No fishing | 0 | J | 0 |
| 1995 | No fishing | 0 | 0 | 0 |
| 1996 | No fishing | 0 | 0 | 0 |
| 1997 | No fishing | 0 | 0 | 1000 |
| 1998 | No fishing | 0 | 0 | 3000 |
| 1999 | SSB > 500000 t | 79000 | 80000 | 101000 |
| 2000 | 5\% probability of SSB < 200000 t | 4.-000 | 435000 | 414000 |
| 2001 | $5 \%$ probability of SSB < 200000 t | 3000 | 630000 | 568000 |
| 2002 | $5 \%$ probability of SSB < 200000 t | - 0000 | 650000 | 651000 |
| 2003 | 5\% probability of SSB < 200000 t | -10000 | 310000 | 282000 |
| 2004 | No fishing | 0 | 0 | 0 |
| 2005 | No fishing | 0 | 0 | 1000* |
| 2006 | No fishing | 0 | 0 | 0 |
| 2007 | No fishing | 0 | 0 | 4000* |
| 2008 | No fishing | 0 | 0 | 12000* |
| 2009 | 5\% probability of SSB < 200000 t | 390000 | 390000 | 307000 |
| 2010 | $5 \%$ probability of SSB < 200000 t | $\cdots 360000$ | 360000 | 323000 |
| 2011 | $5 \%$ probability of SSB < 200000 t | 380000 | 380000 | 360000 |
| 2012 | $5 \%$ probability of SSB < 200000 t | 320000 | 320000 | 296000 |
| 2013 | $5 \%$ probability of SSB < 200000 t | 200000 | 200000 | 177000 |
| 2014 | $5 \%$ probability of SSB $<200000$ | 65000 | 65000 | 66000 |
| 2015 | $5 \%$ probability of SSB<200 010 t | 6000 | 120000 | 115000 |
| 2016 | Zero catch | 0 | 0 | 0 |
| 2017 | Zero catch | 0 | 0 | 0 |
| 2018 | $5 \%$ probability of SSP $<2 v 000 \mathrm{t}$ | 205000 | 205000 | 194520 |
| 2019 | Zero catch | 0 | 0+ | 5* |
| 2020 | Management $\mathrm{p}^{\prime} \mathrm{n}^{\text {- }}$ | 0 |  |  |

* Research catch.
+ Up to 500 t was allowed re ch survey catches.


## History of the catch anc 'andings

Table 8
Cap 'in in subareas 1 and 2, excluding Division 2 .a west of $5^{\circ} \mathrm{W}$. Catch distribution by fleet in 2019 as estimated by ICES. Iscards are research catches.

| -atch (2019) | Landings | Discards |
| :---: | :---: | :---: |
| 5 tonnes | 0 tonnes | 5 tonnes |

Table 9 Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. The history of official catches is presented for each country participating in the fishery. All weights are in tonnes.

| Year | Winter |  |  |  | Summer-Autumn |  |  | Year total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Norway | Russia | Others | Total | Norway | Russia | Total |  |
| 1965 | 217000 | 7000 | 0 | 224000 | 0 | 0 |  | 224000 |
| 1966 | 380000 | 9000 | 0 | 389000 | 0 | 0 |  | 389000 |
| 1967 | 403000 | 6000 | 0 | 409000 | 0 | 0 |  | 409000 |
| 1968 | 460000 | 15000 | 0 | 475000 | 62000 | 0 | 62000 | 537000 |
| 1969 | 436000 | 1000 | 0 | 437000 | 243000 | 0 | 22000 | 680000 |
| 1970 | 955000 | 8000 | 0 | 963000 | 346000 | 5000 | 351000 | 1314000 |
| 1971 | 1300000 | 14000 | 0 | 1314000 | 71000 | 000 | 78000 | 1392000 |
| 1972 | 1208000 | 24000 | 0 | 1232000 | 347000 | 13.70 | 660000 | 1591000 |
| 1973 | 1078000 | 34000 | 0 | 1112000 | 213000 | , 000 | 225000 | 1337000 |
| 1974 | 749000 | 63000 | 0 | 812000 | 237000 | 9. 300 | 336000 | 1148000 |
| 1975 | 559000 | 301000 | 43000 | 903000 | 407000 | 1310 | 538000 | 1441000 |
| 1976 | 1252000 | 228000 | 0 | 1480000 | 739000 | 368, 0 | 1107000 | 2587000 |
| 1977 | 1441000 | 317000 | 2000 | 1760000 | 7220 | 504000 | 1226000 | 2986000 |
| 1978 | 784000 | 429000 | 25000 | 1238000 | 36^1 00 | 318000 | 678000 | 1916000 |
| 1979 | 539000 | 342000 | 5000 | 886000 | 57000 | 326000 | 896000 | 1782000 |
| 1980 | 539000 | 253000 | 9000 | 801000 | $45: 90$ | 388000 | 847000 | 1648000 |
| 1981 | 784000 | 429000 | 28000 | 124106 | 454000 | 292000 | 746000 | 1986000 |
| 1982 | 568000 | 260000 | 5000 | 833000 | 591000 | 336000 | 927000 | 1760000 |
| 1983 | 751000 | 373000 | 36000 | 116000 | -8000 | 439000 | 1197000 | 2357000 |
| 1984 | 330000 | 257000 | 42000 | 629000 | +81000 | 368000 | 849000 | 1477000 |
| 1985 | 340000 | 234000 | 17000 | 910 | 113000 | 164000 | 277000 | 868000 |
| 1986 | 72000 | 51000 | 0 | 12000 | 0 | 0 | 0 | 123000 |
| 1987 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1988 | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 |
| 1989 | 0 | 0 | a | 0 | 0 | 0 | 0 | 0 |
| 1990 | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 |
| 1991 | 528000 | 159000 | 20000 | 707000 | 31000 | 195000 | 226000 | 933000 |
| 1992 | 620000 | 247000 | 2400 | 891000 | 73000 | 159000 | 232000 | 1123000 |
| 1993 | 402000 | 170000 | 1., 20 | 586000 | 0 | 0 | 0 | 586000 |
| 1994 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1995 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1996 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1997 | 0 | 0 | 0 | 0 | 0 | 1000 | 1000 | 1000 |
| 1998 | 0 | 3 70 | 0 | 2000 | 0 | 1000 | 1000 | 3000 |
| 1999 | 50000 | 33000 | 0 | 83000 | 0 | 22000 | 22000 | 105000 |
| 2000 | 279000 | 94000 | 8000 | 381000 | 0 | 29000 | 29000 | 410000 |
| 2001 | 376000 | - 30000 | 8000 | 564000 | 0 | 14000 | 14000 | 578000 |
| 2002 | 398000 | 228100 | 17000 | 643000 | 0 | 16000 | 16000 | 659000 |
| 2003 | $18000{ }^{\circ}$ | $\bigcirc 3000$ | 9000 | 282000 | 0 | 0 | 0 | 282000 |
| 2004 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2005 | $\bigcirc \bigcirc$ | 0 | 0 | 1000 | 0 | 0 | 0 | 1000 |
| 2006 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2007 | 200 | 2000 | 0 | 4000 | 0 | 0 | 0 | 4000 |
| 2008 | $\square$ | 5000 | 0 | 10000 | 0 | 2000 | 2000 | 12000 |
| 2009 | 333000 | 73000 | 0 | 306000 | 0 | 1000 | 1000 | 307000 |
| 2010 | 46000 | 77000 | 0 | 323000 | 0 | 0 | 0 | 323000 |
| 291 | $\square_{273000}$ | 87000 | 0 | 360000 | 0 | 0 | 0 | 360000 |
| 20. | - 228000 | 68000 | 0 | 296000 | 0 | 0 | 0 | 296000 |
| 2013 | 116000 | 60000 | 0 | 177000 | 0 | 0 | 0 | 177000 |
| 2014 | 40000 | 26000 | 0 | 66000 | 0 | 0 | 0 | 66000 |
| 2015 | 71000 | 44000 | 0 | 115000 | 0 | 0 | 0 | 115000 |
| 2016 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2017 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


| Year | Winter |  |  |  | Summer-Autumn |  |  | Year total |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Norway | Russia | Others | Total | Norway | Russia | Total |  |
| 2018 | 128520 | 66000 | 0 | 194520 | 0 | 0 | 0 | 194520 |
| 2019 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |

## Summary of the assessment

Table $10 \quad$ Capelin in subareas 1 and 2, excluding Division 2.a west of $5^{\circ} \mathrm{W}$. Assessment summary /eights are in tonnes. Recruitment and stock biomass in 1985 and earlier are survey estimates, back-calculate to 1 ugust (before the autumn fishing season); from 1986 and later these values are based on the survey esti- tos with no vack-calculation. Maturing biomass is the survey estimate of fish above the length at maturity (14.0 c 1). Preu ted SSB is the modelled stochastic spawning-stock biomass (after the winter fishery).

| Year | Predicted SSB assuming catch = ICES advised catch, 1 April |  |  | Recruitment from autumn acoustic survey, 1 October | Stock bio ass om anurnn acoustic urve) 1 Ortober |  | Catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Median | 5th percentile | 95th percentile |  | Immatures | biomass |  |
|  | Tonnes |  |  | Age 1, thousands | Tonnes |  |  |
| 1972 |  |  |  |  | -30 2000 | 2727000 | 1591000 |
| 1973 |  |  |  |  | 79400 | 1350000 | 1337000 |
| 1974 |  |  |  |  | 482,000 | 907000 | 1148000 |
| 1975 |  |  |  |  | 4890000 | 2916000 | 1441000 |
| 1976 |  |  |  |  | 3217000 | 3200000 | 2587000 |
| 1977 |  |  |  |  | 2120000 | 2676000 | 2986000 |
| 1978 |  |  |  |  | 2845000 | 1402000 | 1916000 |
| 1979 |  |  |  |  | 2935000 | 1227000 | 1782000 |
| 1980 |  |  |  |  | 2802000 | 3913000 | 1648000 |
| 1981 |  |  |  | 402u 0000 | 2344000 | 1551000 | 1986000 |
| 1982 |  |  |  | 52830000 | 2188000 | 1591000 | 1760000 |
| 1983 |  |  |  | 514900000 | 2901000 | 1329000 | 2357000 |
| 1984 |  |  |  | - 54800000 | 1756000 | 1208000 | 1477000 |
| 1985 |  |  | - | 38700000 | 575000 | 285000 | 868000 |
| 1986 |  |  |  | 6000000 | 55000 | 65000 | 123000 |
| 1987 |  |  |  | 37600000 | 84000 | 17000 | 0 |
| 1988 |  |  |  | 21000000 | 228000 | 200000 | 0 |
| 1989 | 84000 |  |  | 189200000 | 689000 | 175000 | 0 |
| 1990 | 92000 |  |  | 700400000 | 3214000 | 2617000 | 0 |
| 1991 | 643000 |  |  | 402100000 | 5039000 | 2248000 | 933000 |
| 1992 | 302000 |  |  | 351300000 | 2922000 | 2228000 | 1123000 |
| 1993 | 293000 |  |  | 2200000 | 466000 | 330000 | 586000 |
| 1994 | 139000 |  |  | 19800000 | 106000 | 94000 | 0 |
| 1995 | 60000 |  |  | 7100000 | 75000 | 118000 | 0 |
| 1996 | 60000 |  |  | 81900000 | 255000 | 248000 | 0 |
| 1997 | 85000 |  |  | 98900000 | 597000 | 312000 | 1000 |
| 1998 | 91000 |  |  | 179000000 | 1124000 | 932000 | 3000 |
| 1999 | 38200 |  |  | 156000000 | 1057000 | 1718000 | 105000 |
| 2000 | 59970 |  |  | 449200000 | 2175000 | 2098000 | 410000 |
| 2001 | 62600 |  |  | 113600000 | 1611000 | 2019000 | 578000 |
| 2002 | 90 |  |  | 59700000 | 919000 | 1291000 | 659000 |
| 2003 | - 77000 |  |  | 82400000 | 253000 | 280000 | 282000 |
| 2004 | 9.50 |  |  | 51200000 | 334000 | 294000 | 0 |
| 2005 | - 2000 |  |  | 26900000 | 150000 | 174000 | 1000 |
| 204 | - 72000 |  |  | 60100000 | 350000 | 437000 | 0 |
| 2007 | 189000 |  |  | 221700000 | 1275000 | 844000 | 4000 |
| 2008 | 330000 |  |  | 313000000 | 1960000 | 2468000 | 12000 |
| 2009 | 517000 |  |  | 124000000 | 1442000 | 2323000 | 307000 |
| 2010 | 504000 |  |  | 248200000 | 1449000 | 2051000 | 323000 |
| 2011 | 487000 |  |  | 209600000 | 1592000 | 2115000 | 360000 |


| Year | Predicted SSB assuming catch = ICES advised catch, 1 April |  |  | Recruitment from autumn acoustic survey, 1 October | Stock biomass from autumn acoustic survey, 1 October |  | Catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Median | 5th percentile | 95th percentile |  | Immatures | Maturing biomass |  |
|  | Tonnes |  |  | Age 1, thousands | Tonnes $\square$ |  |  |
| 2012 | 504000 |  |  | 145900000 | 1589000 | 199, 00 | 296000 |
| 2013 | 479000 |  |  | 324500000 | 2485000 | ${ }^{1} 471000$ | 177000 |
| 2014 | 399000 |  |  | 105100000 | 1076000 | 8. 900 | 66000 |
| 2015 | 504000 |  |  | 39500000 | 467000 | 37500 | 115000 |
| 2016 | 82000 |  |  | 31600000 | 147000 | 181000 | 0 |
| 2017 | 37000 |  |  | 86400000 | 783000 | 1) 3000 | 0 |
| 2018 | 462000 | 200000 | 930000 | 58600000 | 541000 | +10,6000 | 194520 |
| 2019 | 317000 | 168282 | 613733 | 17455060 | 1095 | 301615 | 5 |
| 2020 | 85110 | 38830 | 171850 |  |  |  |  |

ICES. 2001. Barents Sea capelin (Subareas I and II, excluding Division Ila weswof 5 , In Report of the Advisory Committee on Fishery Management, 2001, Part 1, Section 3.1.8, pp. 65-70. ICES Coope tive Research Report No. 246. 921 pp. https://doi.org/10.17895/ices.pub. 5383.

ICES. 2015. Report of the Benchmark Workshop on Arctic Stocks (WKA CT) 6-30 January 2015, Copenhagen, Denmark. ICES CM 2015/ACOM:31. 126 pp. https://doi.org/10.17895/ices.pub. 52.
ICES. 2016. Report of the second Workshop on Management Pla rEy suation on Northeast Arctic cod and haddock and Barents Sea capelin, 25-28 January 2016, Ki"ene Nc way. ICES CM 2016/ACOM:47. 76 pp. https://doi.org/10.17895/ices.pub. 5296.

ICES. 2018. Advice basis. In Report of the ICES AdVisory Comm ttee, 2018. ICES Advice 2018, Book 1, Section 1.2. https://doi.org/10.17895/ices.pub. 4503.

ICES. 2019. Barents Sea Capelin. In Arctic Fisheries V orking Group (AFWG). ICES Scientific Reports, 1:30. 934 pp. http://doi.org/10.17895/ices.pub. 5292.
JNRFC. 2016. Protocol of the 46th Session of $t$ e Join Norwegian-Russian Fisheries Commission, Annex 12. Translated from Norwegian to English. For an accurat in orn tation, please consult the text in the official languages of the Commission (Norwegian and Russian) â https://www.jointfish.com/content/download/501/6352/file/46-norsk.pdf (Norwegian) and https://www.jointfish. rus, ontent/download/502/6357/file/46-russisk.pdf (Russian).

Recommerded citation: ICES. 2019. Capelin (Mallotus villosus) in subareas 1 and 2 (Northeast Arctic), excluding Division 2.a west of $5^{\circ} \mathrm{W}$ (Barents Sea capelin). In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, cap.27.1-2, https://doi.org/10.17895/ices.advice.4709.


[^0]:    * Research catch and bycatches in other fisheries; values are preliminary.
    † Up to 500 tonnes was allowed for research survey catches.

