ICES IBTSWG 2018 REPORT

ECOSYSTEM OBSERVATION STEERING GROUP

ICES CM 2018/EOSG:01

REF ACOM AND SCICOM

Report of the International Bottom Trawl Survey Working Group (IBTSWG)

19 - 23 March 2018

Oranmore, Ireland

International Council for the Exploration of the Sea

Conseil International pour l'Exploration de la Mer

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk info@ices.dk

Recommended format for purposes of citation:

ICES. 2018. Report of the International Bottom Trawl Survey Working Group (IBTSWG), 19 - 23 March 2018, Oranmore, Ireland. ICES CM 2018/EOSG:01. 233 pp. https//doi.org/10.17895/ices.pub.8149

The material in this report may be reused using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary.

This document is the product of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council.

© 2018 International Council for the Exploration of the Sea

Exe	cutive	summary	2
1	Adm	inistrative details	4
2	Term	s of Reference (a-i)	5
3	Sum	nary of Work Plan	7
4	Sum	nary of Achievements of the WG during 3-year term	8
5	Coor	dination of North Sea and Northeast Atlantic surveys (ToR a)	9
	5.1	North Sea Q1	9
		5.1.1 General overview	9
		5.1.2 Issues and problems encountered	17
		5.1.3 Additional activities	17
		5.1.4 GOV	17
		5.1.5 MIK	21
		5.1.6 Planning and Coordination	
		5.1.7 Staff exchange	23
	5.2	North Sea Q3	24
		5.2.1 General overview	24
		5.2.2 Issues and problems	27
		5.2.3 Additional activities	27
		5.2.4 Gear geometry	28
		5.2.5 GOV standard indices and distribution of target species	31
		5.2.6 Planning and participation in 2018	
		5.2.7 Other issues	
		5.2.8 Staff exchange	37
	5.3	Northeast Atlantic	37
		5.3.1 General overview	38
		5.3.2 Survey summaries by country	40
		5.3.3 Results	40
		5.3.4 Additional activities	
		5.3.5 Participation planned for 2017	
		5.3.6 References	43
	5.4	Combined North Sea and Northeast Atlantic survey results	43
6	Surve	ey Manuals (ToR b)	47
	6.1	Manual for the North Sea IBTS	
	6.2	Manual for the Midwater Ring Net sampling during NS-IBTS Q1	47
	6.3	Manual for the Northeast Atlantic IBTS	47
7	DAT	RAS and related topics on data quality (ToR c)	48
	7.1	DATRAS progress and development	48

		7.1.1 Swept Area product	48
		7.1.2 Marine Litter data	48
		7.1.3 Archiving and Version compare	48
		7.1.4 Substitution of ALK and borrowing ALK for neighbouring	
		Round Fish Areas	
		7.1.5 Service base data submission	
		7.1.6 ROCKALL and SWC-WC indices development	
		7.1.7 DATRAS governance group tasks	
	7.2	Report on WKSEATEC	50
	7.3	New data registration system on Thalassa and other IFREMER vessels	53
8	Deve	elopment of a swept-area based index (ToR d)	55
9	Swee	ep length and other gear issues (ToR e)	56
	9.1	Effect of varying sweep length	56
	9.2	Use of Vonin flyers instead of Exocet kite	56
	9.3	Comparison of nylon and polyethylene GOV trawls	57
	9.4	New survey trawl	
10 11	(ToR	uate the present scheme of collection of age and other biological data f) ey design (ToR g)	
11			
	11.1	French MFSD: Request for fixed stations in the Eastern Channel	
	11.2	Uncertainty estimation of the North Sea IBTS abundance indices	66
	11.3	Towing times outside the nominal duration of standard tows	71
	11.4	Effect of tow duration on catch rates: Preliminary results from zero- minute tows	73
12		overviews (ToR h) and Data reporting guidelines and Input to SUREP (ToR i)	79
13	Coop	peration	80
14	Sum	mary of Working Group self-evaluation and conclusions	81
An	nex 1:	List of participants	82
An	nex 2:	Agenda adopted	85
An	nex 3:	Recommendations	90
An	nex 4:	Continuation of IBTSWG and ToRs for the next period	91
		Working Group self-evaluation	
An	nex 6:	Individual surveys summary reports	. 98

Annex 7: Maps of species distribution and length frequencies	121
Annex 8: List of working documents and presentations	183
Annex 9: Working documents	184

Francisco Velasco, Dave Stokes, Erik Olsen, Anne Sell, Francisco Baldo, Kai Wieland, Finlay Burns, Corina Chaves, Pia Schubert, Rob Kynoch, Natoya Jourdain (Note: Group photo taken on day 5, see Annex 1 for full list of participants)

Executive summary

The report summarizes the national contributions in 2017–2018 and planning for 2018–2019 for the surveys coordinated by the International Bottom Trawl Survey Working Group (IBTSWG). In the North Sea, the surveys are performed in quarters 1 and 3 while in the Northeast Atlantic the surveys are conducted in quarters 1, 3, and 4 with a suite of 14 national surveys covering shelf areas from north off Scotland to the Gulf of Cádiz. Results achieved during the 3 year cycle are briefly summarized or reference to previous reports is given.

North Sea Q1, 2018: Seven countries using six different vessels participated and performed 364 valid GOV hauls and 567 valid MIK hauls in the period between 17th January and 28th February. All rectangles were covered by at least 1 GOV haul. There were, however, a number of rectangles, which could not be sampled with the MIK due to technical problems with the Scottish and the German vessel. Consequently, 8 rectangles in the northwest of the survey area weren't sampled at all. This was managed despite poor weather conditions, and required some shifts in stations between countries. In particular, Norway and Denmark did some additional GOV and MIK in rectangles, which had originally been allocated to Germany. Denmark and Sweden used both "DANA" and France used "Tridens" for a few days because "Thalassa" was not available in the beginning of the survey. As usual, all countries used their own survey gear. Overall, most of the countries reported small to very small catches with the GOV.

North Sea Q3, 2017: Six countries using five different vessels participated and performed 337 valid GOV hauls in period 17 July to 2 September. Denmark and Sweden used both "DANA" but with their own survey gear. The total number of hauls was lower than in the two previous years since all counties resembled using 30 min standard tows only after the use of 15 min tows were abandoned. While some rectangles did not achieve coverage of two hauls, the number of rectangles with only one haul was less than in any year since 2010 due to some reallocation of rectangles to the different countries.

Northeast Atlantic 2017: Seven vessels from five countries performed 13 surveys in the North-eastern Atlantic IBTS area. A total of 950 valid hauls, out of the 1062 hauls planned, were accomplished within 277 days distributed between the first, third and fourth quarters. Besides, 110 hauls and 21 days were done by the RV Celtic Explorer during the mentioned IE-IAMS-Q1. The most remarkable event has been the breakage of the RV Thalassa during the FR-EVHOE survey, which was reduced to 25 valid hauls in northern part of the French shelf on the Biscay Bay. The Marine Institute of Ireland prolonged their groundfish survey on the subarea 7 to perform some extra 22 hauls on the Celtic Sea area to cover the gap left by the breakage.

General: The IBTSWG has produced three manuals, the manual for the North Sea IBTS (SISP10) and the Northeast Atlantic IBTS (SISP 15) as well as the manual for the MIK sampling during the North Sea IBTS (SISP 2). The NS-IBTS manual is currently being revised and will be submitted to ICES in their newest version until the end of 2018.

Staff exchange has been a routinely performed in IBTS surveys with great success and advantage to the surveys standardization. The group strongly recommends that this practice continues and involves more countries.

In 2017-2018 most of the IBTS participants recorded time to settle and time to haul, in addition to the times of the nominal standard tow duration and conducted so-called zero-minute tows (i.e. tows that are hauled as soon as the net settles on the bottom).

IBTSWG is willing to support the idea to establish a WG on Marine Litter that would improve on the guidelines, create a field guide, and checks the data provided to the database.

IBTSWG is planning to organize a workshop together with WGFTFB to identify a possible new standard survey gear for the IBTS.

1 Administrative details

Working Group name

International Bottom Trawl Survey Working Group (IBTSWG)

Year of Appointment within the current three-year cycle

2018

Reporting year concluding the current three-year cycle

3

Chair(s)

Kai Wieland, Denmark

Corina Chaves, Portugal

Meeting venue(s) and dates

4-8 April 2016, Sète, France, 21 participantes + 7 participants for MEDITS Seminar

27-31 March 2017, ICES Headquarters, Copenhagen, Denmark, 22 participants

19-23 March 2018, Oranmore, Ireland, 18 participants

2 Terms of Reference (a-i)

ToR	Description	Background	Science plan top- ics ad- dressed	Duration	Expected deliverables
a	Coordination and reporting of North Sea and northeastern Atlantic surveys, including appropriate field sampling in accordance to the EU Data Collection Framework	Intersessional planning of Q1- and Q3- surveys; communication of coordinator with cruise leaders; combing the results of individual nations into an overall survey summary.	30	Recurrent annual update	 Survey summary including collected data and description of alterations to the plan, to relevant assessment-WGs (WGHMM, WGCSE, WGNEW, WGNSSK, HAWG, WGDEEP, WGEF, WGEEL, WGCEPH, WGHANSA) and SCICOM. Indices for the relevant species to assessment WGs (see above) Planning of the upcoming surveys for the survey coordinators and cruise leaders.
b	Review IBTS SISP manuals and consider additional updates and improvements in survey design and standardization	Intersessional activity, ongoing in order to improve survey quality	31	Permanently ongoing	Updated version of survey manual, whenever substantial changes are made (intersessionally)
с	Address DATRAS- related topics in cooperation with DUAP: data quality checks and the progress in re- uploading corrected datasets, quality checks of indices calculated, and prioritizing further developments in DATRAS.	Issues with data handling, data requests or challenges with re-uploading of historical or corrected data to DATRAS have been identified and solutions are being developed	30	January of	Prioritized list of issues and suggestion for solutions and for quality checking routines, as well as definition of possible new DATRAS products, submitted to DATRAS group at ICES (Compare Action List in 2013 report). Once data quality control routines are estabished, annual check of recent survey data.
d	Produce a swept-area- based index (instead of haul time-based index) to be explored in collaboration with the WGISDAA	Swept-area is suggested as an alternative to haul time, because it would remove possible bias resulting from different riggings or gear specifications. In order to evaluate the effect changing to new indices, IBTSWG intends to liase with relevant stock coordinators or assessment groups at ICES.	28	1 year	Manuscript for paper or CRR, analysing the potential advantages of moving to swept-area-based standardization. To be presented to assessment groups for evaluation by 2016 (postponed to 2018).

ToR	Description	Background	Science plan top- ics ad- dressed	Duration	Expected deliverables
e	Analyse and report on the effect of variable sweep length, groundgears and GOV riggings between the participating countries	Some aspects of the gear applied in the surveys are not required to be standardized. The effect of these variations are to be evaluated. Partly, different standards for sweep lengths have been applied in Q1 vs. Q3 surveys, and different groundgears and riggings are applied. (For this ToR, the IBTS WG seeks support from gear technology experts and welcomes their contribution, in particular for advice on a potential change of the survey gear.)	28	2 years	Working document(s) by 2016, Manuscript or CRR by 2017
f	Evaluate the present scheme of collection of age and other biological data	Analysis of spatial distribution of sampling of age and other biological data, options to increase efficiency and minimum required sample sizes		2 years	Working document(s) by 2016, Manuscript by 2017
g	Evaluate the current survey design and explore modifications or alternative survey designs, identifying any potential benefits and drawbacks with respect to spatial distribution and frequency of sampling.	Specific issues to be addressed include: Effect of tow duration; Suitability of species-specific index areas; Stratification and optimal spatial distribution of effort.		3 years	Paper on tow duration experiment in NS-IBTS 3Q 2015 by 2016, Manuscript for paper or CRR by 2018.
h	Data overviews	ICES is building an overview of the different data products and how the information flows from survey to advice, and input is needed from the survey groups in this process.	25, 27	Sept 2016	Quality assure the data product overviews
i	Give input to WKSUREP on data reporting guidelines.	The information flow between data users and the data providers needs to be strengthened	31	Sept 2016	Comment on WKSUREP draft data reporting guidelines.

3 Summary of Work Plan

Year 1 (2016)	Evaluate the effect of changing to swept-area-based indices for additional examples/stocks, particularly linked to WGISDAA and benchmark process (ToR d). Evaluate the results of the tow duration experiment from the NS-IBTS 3Q 2015 survey.
Year 2	Continue analyses of different GOV configurations (ToR e).
(2017)	
Year 3 (2018)	Complete the evaluation of the current survey design and explore modifica- tions or alternative survey designs (ToR g), Update survey manuals if neces- sary (ToRs e, f, and g)
Recurrent annual activity	Updates for ToRs a, b, and c.

4 Summary of Achievements of the WG during 3-year term

2018:

- Description of survey products: Survey summaries of IBTS coordinated surveys for Q3/Q4 2017 and Q1 2018;
- Update of survey manual for the International Bottom Trawl Surveys in the North Sea has almost been completed and will soon be sent to the ICES secretariat for publication;
- Zero-minute tows have been conducted in NS-IBTS and NeAtl-IBTS. Results of preliminary analyses are given in this report and datasets have been prepared for a comprehensive analysis;
- Input data for NS-IBTS swept area estimates have been checked and are made available to the ICES Data Centre for the period back to 2004;
- Trials with modified GOV's have been conducted and analysed, and a roadmap for replacing the current standard survey trawl with a modern, more robust, cost efficient and easier to handle survey has been defined;
- The outline of a cooperative research report on the effect of tow duration on catch rates and species richness has been drafted.

2017:

- Description of survey products: Survey summaries of IBTS coordinated surveys for Q3/Q4 2016 and Q1 2017;
- Updates of the survey manuals for the International Bottom Trawl Surveys in the North Sea and the Northeast Atlantic areas as well as for the MIK sampling in the Q1 NS-IBTS. The manuals will be submitted to review by SGESST by July 2017;
- Tow duration experiment have been conducted in Q3 2016 NS-IBTS and analysed together with the data from Q3 2015 NS-IBTS;
- Input data and algorithms for NS-IBTS swept area estimates have been checked for almost all countries;
- First results from analyses on survey stratification based on fish communities and other ecological information have been presented for the NS-IBTS and the Western English Channel NeAtl-IBTS.

2016:

- Description of survey products: Survey summaries of IBTS-coordinated surveys for Q3/Q4 2015 and Q1 2016;
- Updates of survey manual for the International Bottom Trawl Surveys in the North Sea and in the northeastern Atlantic Areas. Northeastern Atlantic to be submitted to review by SGESST by June 2016;
- Review of WKPIMP outcome (Workshop to plan an integrated monitoring plan in the North Sea in the third quarter), initiated by WGISUR 2015, and held in February 2016;
- Tow duration experiment in Q3 2015 has been conducted and analysed;
- Initial analysis on the efficiency of the current sampling scheme of otoliths in the NS-IBTS has been performed;
- NS-IBTS data on net geometry since 2004 has been cleaned and a interpolation routines for missing values have been established;
- Swept-area based CPUE has been used in the analyses of the NS-IBTS 3Q 2015 tow duration experiment.

5 Coordination of North Sea and Northeast Atlantic surveys (ToR a)

5.1 North Sea Q1

(Coordinator: Ralf van Hal)

5.1.1 General overview

The North Sea IBTS Q1 survey aims to collect data on the distribution, relative abundance and biological information on a range of fish species in ICES area 3a, 4 and 7d. During daytime a bottom trawl, the GOV (Grand Ouverture Verticale), with groundgear A or B, was used. A CTD was deployed at most trawl stations to collect temperature and salinity profiles. During night-time herring larvae were sampled with a MIK-net (Methot Isaac Kitt). Age data were collected for the target species cod, haddock, whiting, saithe, Norway pout, herring, mackerel, and sprat, and a number of additional species.

The full quarter 1 2018 fleet consisted of six vessels: "Dana" (Sweden and Denmark), "GO Sars" (Norway), "Scotia" (Scotland), "Thalassa" (France), "Tridens II" (France and Netherlands) and "Walther Herwig III" (Germany). The survey covered the period 17 January to 28 February 2018 (Table 5.1.1.1).

A total of 372 GOV hauls (8 of which were invalid) (Table 5.1.1.2) and 567 MIK hauls (Table 5.1.1.3) were deployed. This means that all rectangles were covered by at least 1 GOV haul (Figure 5.1.1.1). There were, however, a number of rectangles, which couldn't be sampled with the MIK due to technical problems with the Scottish vessel. Consequently, 8 rectangles in the northwest of the survey area weren't sampled at all. This was managed despite the bad weather conditions, and required some shifts in stations between countries.

Biological data are collected from a number of species, for most of these species length, weight, gender and maturity and age material were collected (Table 5.1.1.4). An impression of the catches is given in Figure 5.1.1.2, by presenting the total fish catch in kilograms. Gear geometry plots are given in Figures 5.1.1.3a to 5.1.1.3d (lines represent theoretical values for the GOV from flume tank experiments, ICES 2015)

A specific comment is to be made on the French participation in 2018: Their first week of the survey was onboard the Dutch vessel Tridens 2. Due to storms encountered they only managed to do 4 GOV hauls on board of the Tridens. One of the issues encountered by the French, using the Dutch vessel, was that they have to obey the Dutch laws including the Law on Animal Experiments. This law requires a survey plan to be approved, taking 6-12 weeks, if the intention is to take tissue (otoliths) of animals. As this was not possible for the French they were not allowed to take otoliths on board of the Tridens.

Overall, most of the countries reported small to very small catches. In the Dutch case the total number of fish caught in 2018 is not even 80% of the number of sprat caught in 2017, and whilst completing an almost equivalent number of stations. This was not only the case for fish species but also the case for benthic species being recorded. The small catches are visualized in the biomass plot (Figure 5.1.1.2). Discussions have taken place during this meeting, if these small catches are related to the actual small biomass currently present in the North Sea or if it could be related to the storms affecting the catchability of the survey.

		Jar	านส	ry																							Fe	br	ua	ry																																
country	Vessel	11	12	13	14	1	5 1	5 1	7 1	18	19	20	21	1 2	2	23	24	4 2	25	26	27	2	8 2	29	30	31	1	2	2	3	4	5	e	5	7	8	9	1	0 1	11	12	1	3 1	4	15	16	5 1	.7	18	19	2	0	21	22	2 2	3	24	25	5 2	!6	27	/ 2
Sweden	Dana																																	Γ																												Γ
France	Thalassa II					Т	R2	E	Г						٦													Г																												Т						
Norway	GO Sars					Г	Т	Т	Т						Т			Т				Г	Т						Г	Т	٦							Г	Т								1															
Germany	Walther Herwig III																					Г																					Т	Т			Г	Т			Γ	Т			Т	Τ			Т	Т		Т
Scotland	Scotia III								Т						٦													Г	1																											Т						
Denmark	Dana								Т						T			Τ				Γ	Т																																	Т						
Netherlands	Tridens 2								T														1							Г	1								T	1						Г	Т	T							Ľ	T						

Table 5.1.1.1. Overview of the surveys performed during the North Sea IBTS Q1 survey in 2018.

Table 5.1.1.2. Overview of the GOV stations fish in the North Sea IBTS Q1 survey in 2018.

ICES Divisions	Country	Gear	Tows planned	Valid	Invalid	% stations fished
3a	SWE	GOV-A	43	43	1	102%
3a	DEN	GOV-A	0	3		
4	GFR	GOV-A	74	44		59%
	SWE	GOV-A	3	3		150%
	NO	GOV-A	41	55	3	134%
	FRA	GOV-A	43	51		116%
	DEN	GOV-A	40	46		115%
	NED	GOV-A	55	56		102%
	SCO	GOV-A	12	11		92%
	SCO	GOV-B	47	46	3	98%
7d	FRA	GOV-A	10	9	1	100%

Table 5.1.1.3. Overview of the MIK stations fish in the North Sea IBTS Q1 survey in 2018.

ICES Divisions	Country	Gear	Tows planned	Valid	% stations fished
3a	SWE	MIK	66	50	76%
	DEN	MIK	2	2	100%
4	GFR	MIK	148	106	72%
	SWE	MIK	6	6	100%
	NO	MIK	84	108	129%
	FRA	MIK	86	81	94%
	DEN	MIK	80	81	101%
	NED	MIK	110	95	86%
	SCO	MIK	116	22	19%
7d	FRA	MIK	20	16	80%
total			718	567	79%

Species	DEN	FRA	GFR	NED	NOR	SCO	SWE	Total
Clupea harengus	529	347	825	534	2558	636	1332	6761
Merlangius merlangus	625	655	339	493	781	829	836	4558
Sprattus sprattus	319	207	515	341		268	2074	3724
Melanogrammus aeglefinus	149	1	399	228	1024	1151	126	3078
Scomber scombrus	93		223	42	2344	173		2875
Pleuronectes platessa	457	435	157	294	55	168	495	2061
Trisopterus esmarkii	53		76	93	1098	382	232	1934
Gadus morhua	121	29	100	35	189	732	394	1600
Pollachius virens	19	1	4	1	387	319	88	819
Eutrigla gurnardus	207		465					672
Microstomus kitt	120	41	59			93		313
Merluccius merluccius	14		15			124	105	258
Limanda limanda	207							207
Solea solea		68					62	130
Trisopterus luscus		110						110
Squalus acanthias			13			97		110
Micromesistius poutassou					91			91
Glyptocephalus cynoglossus	18						54	72
Mullus surmuletus		68						68
Scyliorhinus canicula			50	8	9			67
Raja montagui				1	1	64		66
Lepidorhombus whiffiagonis						48		48
Leucoraja naevus			11		4	32		47
Mustelus asterias			17	9	1	12		39
Lophius piscatorius			2			30		32
Dicentrarchus labrax		30						30
Sardina pilchardus			27					27
Amblyraja radiata			3		15	5		23
Etmopterus spina x					20			20
Chelidonichthys cuculus		18						18
Dipturus intermedia						11		11
Trachurus trachurus					8			8
Raja clavata				5		3		8
Dipturus flossada						7		7
Engraulis encrasicolus			7					7
Scophthalmus maximus		2	2			3		7
Lithodes ma ja					4			4
Scophthalmus rhombus		2				2		4
Lophius budegassa			1					1
Hippoglossus hippoglossus				1				1
Galeus melastomus					1			1
Cancer pagurus					1			1
Nephrops norvegicus					1			1

Table 5.1.1.4. Overview of individual length, weight and/or maturity and/or age samples collected during the North Sea IBTS Q1 survey in 2018.

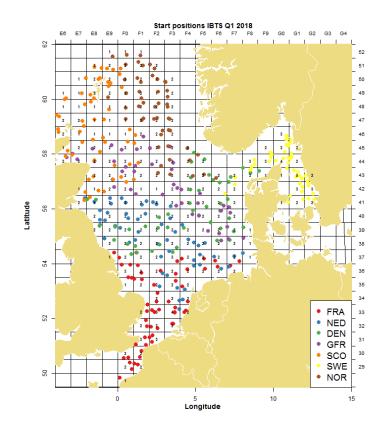


Figure 5.1.1.1 Number of hauls per ICES rectangle with GOV during the North Sea IBTS Q1 2018 and the start positions of the trawls by country.

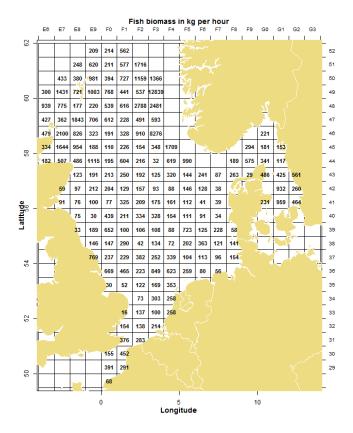


Figure 5.1.1.2 Distribution of fish biomass in IBTS hauls by rectangle in the North Sea, Q1 2018 (values standardized to kg per hour haul duration; mean per rectangle).

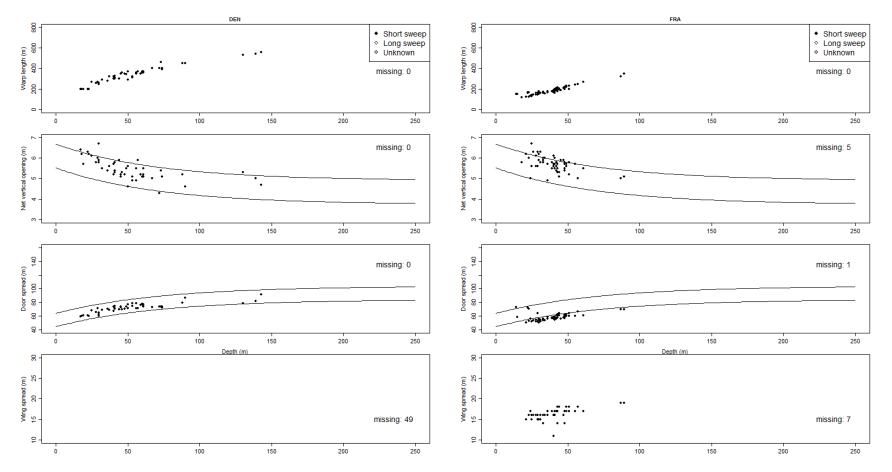


Figure 5.1.1.3a Danish and French warp length and gear geometry

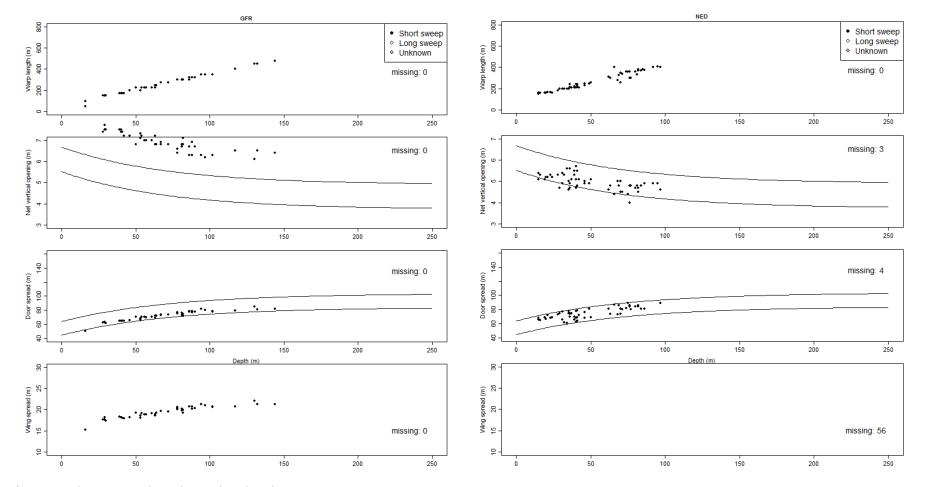


Figure 5.1.1.3b German and Dutch warp length and gear geometry.

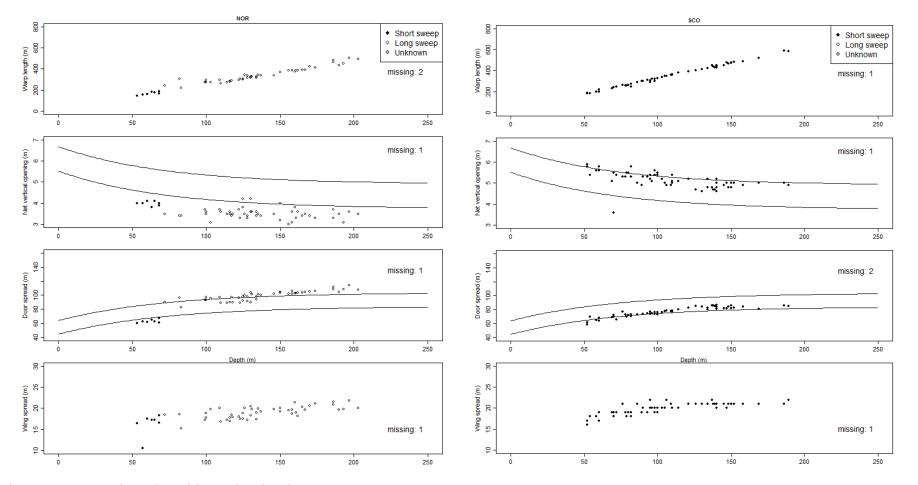


Figure 5.1.1.3c Norwegian and Scottish warp length and gear geometry.

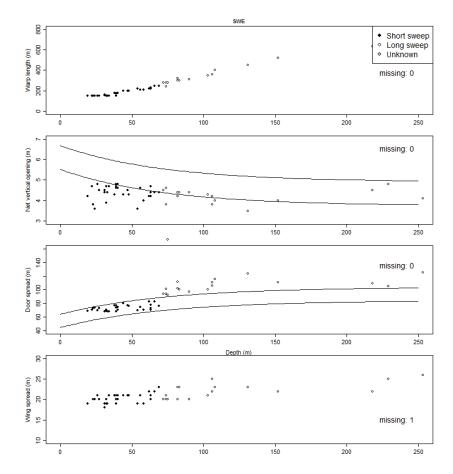


Figure 5.1.1.3d Swedish warp length and gear geometry.

5.1.2 Issues and problems encountered

Bad weather with strong winds affected sampling for most of the survey. The German vessel also encountered problems with the engine and had to return to its home port for repairs, which cost 3 full survey days in total. On the Scottish vessel the crane for deploying the MIK was taken out of action pending an ongoing internal review surrounding its appropriate use. This resulted in MIK sampling being curtailed after just 22 hauls. A number of rectangles therefore remained unsampled with respect to the MIK (see below).

As during last year's survey, the German participation was again affected by a large oil and gas development area in ICES rectangles 42F1 and 42F2 (see last year's report, ICES 2017). Trawling was also affected by enlarged protection areas around submarine installations, e.g. pipelines, cables, drilling sites) in the British EEZ.

5.1.3 Additional activities

Next to the GOV and MIK tows all countries have collected additional data. All countries collected sea floor litter from the GOV tows and collected CTD (temperature and salinity) at all GOV stations when possible. A complete list of additional activities is given in Table 5.1.3.1.

Activity	GF R	NO R	SC O	DE N	NE D	SW E	FR A
CTD(temperature-salinity)	x	x	x	x	x	x	x
Seafloor litter	x	x	x	x	x	x	x
Water sampler (Nutrients) Egg samples (Small fine-meshed ringnet;			x	x	x		x
CUFES)	x	х	х	х	х		х
By-caught benthic animals		х					х
Observer for mammals and/or birds							x
Additional biological data on fish		x	x	x		x	
Bentic samples (boxcore, video, dredge)							
Zoo and phytoplankton		x					
Jellyfish		x					x
Hydrological transects		x					x
Beam trawl (juvenile fish - age 0)		x					

Table 5.1.3.1 Overview of additional activities in the North Sea IBTS Q1 survey in 2018

5.1.4 GOV

The preliminary indices for the recruits of seven commercial species based on the 2018 quarter 1 survey are shown in Figure 5.1.4.1. According to these preliminary results, sprat is above the mean while all the other species are below the long-term mean.

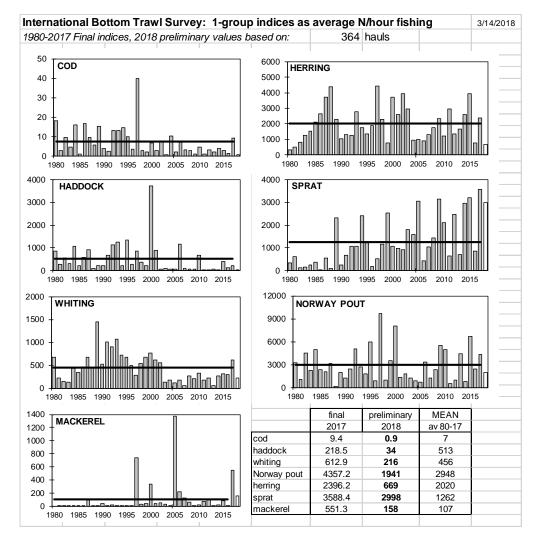


Figure 5.1.4.1. Time-series of indices for 1-group (1-ring) herring, sprat, haddock, cod, whiting, Norway pout, and mackerel caught during the quarter 1 IBTS survey in the North Sea, Skagerrak and Kattegat. Indices for the last year are preliminary, and based on a length split of the catches. Horizontal line is the mean 1980-2017.

Distribution maps of the 1-group of NS-IBTS target species with the limits of the species-specific stock assessment or index areas are given in Figures 5.1.4.2a to 5.1.4.2e.

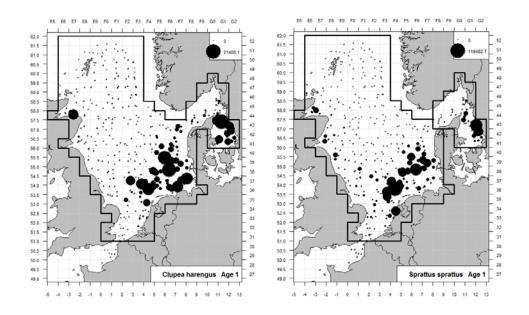


Figure 5.1.4.2a Distribution of herring and sprat age 1 in the quarter 1 IBTS 2018 (thick lines: index areas for sprat in Q1 but for herring in Q3).

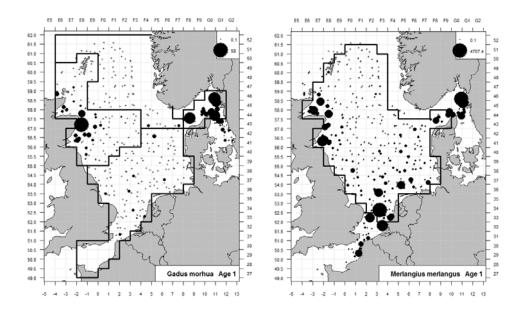


Figure 5.1.4.2b Distribution of cod and whiting age 1 in the quarter 1 IBTS 2018 (thick lines: Subpopulation separation for cod, index areas for whiting).

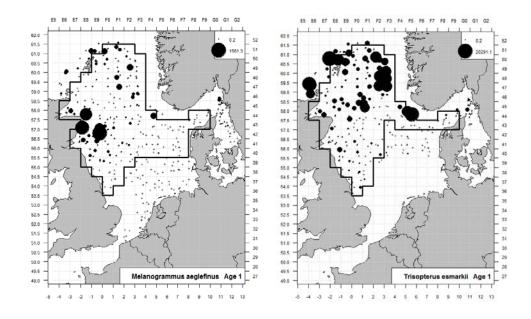


Figure 5.1.4.2c Distribution of haddock and Norway pout age 1 in the quarter 1 IBTS 2018 (thick lines: index areas).

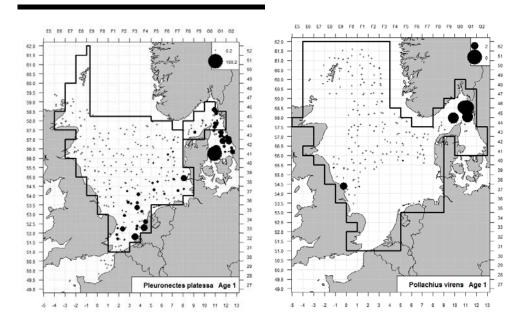


Figure 5.1.4.2d Distribution of plaice and saithe age 1 in the quarter 1 IBTS 2018 (thick line: old index areas).

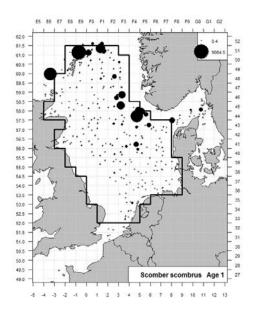


Figure 5.1.4.2e Distribution of mackerel age 1 in the quarter 1 IBTS 2018 (thick line: index area).

5.1.5 MIK

For the ICES Herring Assessment Working Group (HAWG), the IBTS survey provides recruitment indices and abundance estimates of adults of herring and sprat for the North Sea area South of 62°N. Sampling at night with fine-meshed nets (MIK; Midwater Ring Net) was implemented from 1977 onwards, and the catch of herring larvae has been used for the estimation of 0-ringer abundance in the survey area. The total abundance of 0-ringers in the survey area is used as a recruitment index for the stock. This year, 567 depth-integrated hauls were completed with the MIK-net. The coverage of the survey area was sufficient with at least 2 hauls in most of ICES rectangles in the North Sea as well as in Kattegat and Skagerrak. There were, however, a number of rectangles, which couldn't be sampled due to technical problems with the Scottish vessel. Consequently, 8 rectangles in the northwest of the survey area weren't sampled at all. Since herring larvae abundance in that area is low to very low, the consequences for the index are negligible.

Index values are calculated as described in detail in the Stock Annex except for the necessary exclusion of herring larvae of Downs origin. Following the recommendations/suggestions of WGISDAA, WKHERLARS and WKSIDAC a new exclusion rule to reliably remove the Downs herring larvae from the index calculation was introduced. The rules can be summarized as follows:

- 1. The herring larvae data of every station is used
- The exclusion rule is applied only in area that is potentially affected drift of Downs larvae, i.e. south of 54°N and west of 6°E and south of 57°N and east of 6° E
- **3.** In that area defined above, only larvae > 18 mm SL are included in the index calculation.

Larvae measured between 7 and 39 mm standard length (SL). Again and as in most years, the smallest larvae < 10 mm were the most numerous but were less abundant than in previous years. Larger larvae > 18 mm SL were rarer but were caught in higher

densities than last year. The smallest larvae were chiefly caught in 7d and in the Southern Bight. The large larvae appeared in moderate to high quantities in a wideband across the central and southern North Sea and showed 2 distinct cores of higher abundances: one occurring east of the northern English coast and another in the German Bight. In the Kattegat and Skagerrak area, herring larvae remained relatively rare.

The newly proposed rule was applied to the MIK herring larvae data time-series from 1992 onwards, where because of data quality issues all French data before 2008 were excluded. For most of the time-series the new algorithm produces comparable index values to the old algorithm. However, for some years the results differ substantially from each other. For those year classes, where it was apparent that increased drift of small Downs larvae influenced the index (2013 and 2015), the index decreased (from 164.8 to 113.8, and from 99.8 to 81.2, respectively). Last year's index was slightly increased by application of the new algorithm (27.8 instead of 22.8). The 2018 index is 101.4.

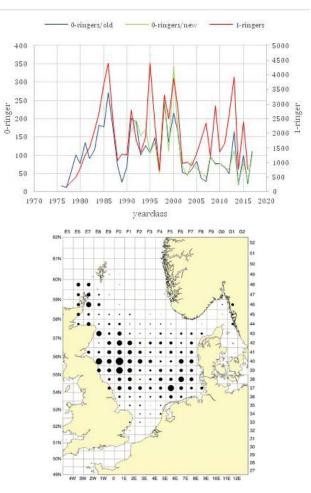


Figure 5.1.5.1 Distribution of MIK caught herring larvae during the IBTS Q1 2018 (right) and the time-series of 0- and 1-ringer abundance by year class since 1976 (left) The green line represents the 0-ringer index according to the new algorithm since 1991.

5.1.6 Planning and Coordination

Again Germany wasn't able to cover all their rectangles as has been the issue for a number of years now. Denmark and the Netherlands stepped up and offered to take over a small number of the German stations. Denmark is offering to take over 43F4,

42F4, 42F5, where the Netherlands is offering to take over the GOV stations in 41F0 and 41F1. This results in the new map, figure 5.1.6.1.

There has been a request to try to survey some deeper stations in Norwegian waters and the Skagerrak, these are deeper than the current depth limits currently stipulated in the manual. The idea behind this is that cod do occur in areas beyond the current North Sea IBTS depth limit. Sweden, and possibly Norway, will try to plan some deeper stations during Q1 2019.

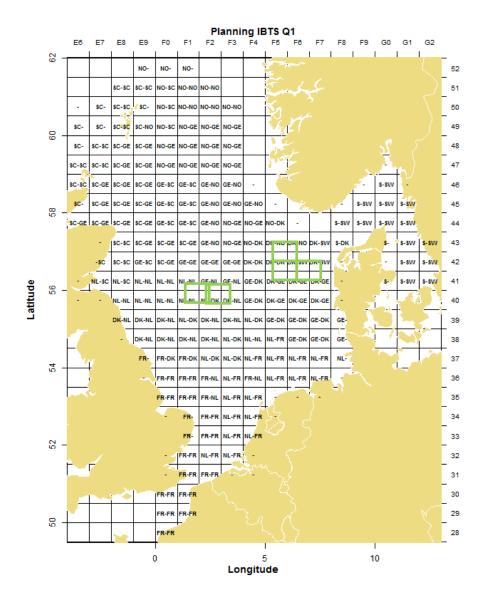


Figure 5.1.6.1 Allocation map for Q1 2019. In green the rectangles taken by Denmark and the Netherlands.

5.1.7 Staff exchange

France used the Dutch vessel Tridens for part of their Q1 North Sea survey in 2018. During that trip two members of staff from Wageningen Marine Research (WMR) joined the French team to assist them whilst on board. One was a technician with knowledge of the net geometry sensors and the procedures on the bridge. The other is experienced with the methods of sorting the fish on board of Tridens and with the way the MIK is deployed. The latter member from WMR also joined the French team on board the Thallassa and as such was therefore already familiar with the French survey

methods. Unfortunately, owing to the bad weather conditions only one day of fishing was possible making it difficult to discuss and compare each other's methods of working.

In exchange a French member of staff joined the Dutch IBTS for a week. Unfortunately, owing once again to the bad weather with conditions believed to be the worst seen in years, only 6 GOV and 4 MIK tows were completed and the vessel dodging for 2.5 days and waiting for the weather to abate. There have been interesting talks of how work is done on both vessels; however the experience was limited due to the weather.

5.2 North Sea Q3

(Coordinator: Jennifer Devine, Kai Wieland)

5.2.1 General overview

The North Sea IBTS Q3 survey aims to collect data on the distribution, relative abundance and biological information on a range of fish species in ICES Division 3a and Subarea 4. The bottom trawl, GOV (Grand Ouverture Verticale) with standard groundgear A for normal bottom conditions or groundgear B for rough ground is used during daytime. A CTD was deployed at most trawl stations to collect temperature and salinity profiles. Age data were collected for cod, haddock, whiting, saithe, Norway pout, plaice, herring, mackerel, and sprat, and a number of additional species.

Six nations (using five vessels) participated in the quarter 3 survey in 2017: Dana (Denmark and Sweden), Walther Herwig III (Germany), Kristine Bonnevie (Norway), Cefas Endeavour (England) and Scotia (Scotland). The overall survey period extended from 17 July to 2 September (Table 5.2.1.1).

Table 5.2.1.1. Overview of the surveys performed during the North Sea IBTS Q3 survey in2017.

	Ju	ly																	A	ugu	st																																Se	epte	eml	ber
Country	17	18	31	9 2	0	21	22	23	3 2	4	25	26	27	7 2	8 2	29	30	31	. :	1	2 3	3	4	5	6	7	8	: :	91	0 1	11	12	13	14	15	1	5 1	7 1	B 1	9 2	20 2	21	22	23	24	25	26	27	28	29	30	31	L :	1	2	3
Denmark																																																								
England			Γ											Γ								1																																	E	
Germany																																					Г		Τ																	
Norway																																																								
Scotland			Γ	Τ										Τ	Τ																																									
Sweden																																				Г																				

In total, 337 valid GOV hauls were made in the planned rectangles (Table 5.2.1.2). No tow duration experiment took place; all hauls were planned 30-min duration (Figure 5.2.1.1). While some rectangles did not achieve coverage of two hauls, the number of rectangles with only one haul was less than in any year since 2010 (Figs 5.2.1.1, 5.2.1.2). Of those with only one haul, most are rectangles that have a small amount of area at depths < 200 m, which is the maximum survey depth limit in the North Sea according to the current manual, are largely covered by land or other obstructions, or are not fishable with the GOV (Figure 5.2.1.1).

Biological data (weight, gender, maturation stage, and age material) were collected for many species (Tables 5.2.1.3 and 5.2.1.4); maturation stage can be difficult to determine outside the spawning period and was therefore not recorded as routinely as in quarter 1. For some species, otoliths have yet not been read and thus age information must be submitted to DATRAS at a later time.

ICES Di- vision	Country	Gear used	Number of tows proposed (Manual)	Number of pro- posed valid tows	Number of addi- tional valid tows	Proportion of achieved valid tows (%) *	Number of zero-minute hauls (non- standard **)
	SWE	GOV-A	45	45		100	7
3a	DEN	GOV-A	-	-	2	106	
			47	47	1	100	11
4a,b,c	ENG	GOV-A	76	78	2	102	22
	GER	GOV-A	29	32	3	121	3
4a,b	NOR	GOV-A	47	47	9	119	22
4a	SCO	GOV-B	44	43	0	86	
4b	300	GOV-A	40	33	0	00	3

Table 5.2.1.2. Overview of the GOV stations fished in the North Sea IBTS Q3 survey in 2017 (*: Relative to the number of tows proposed in the manual, **: not reported to DATRAS).

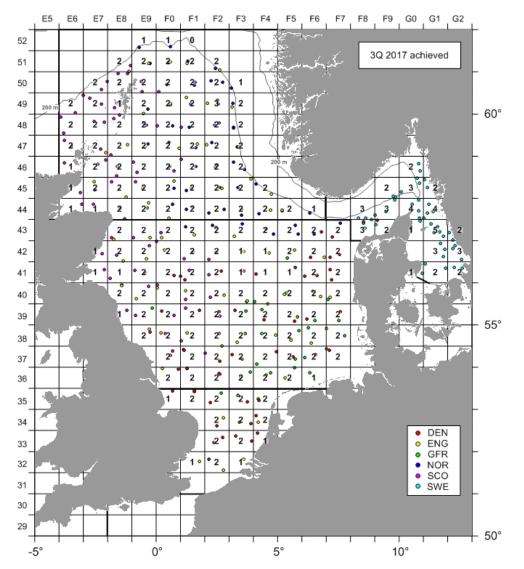


Figure 5.2.1.1. Number and start position of hauls per ICES statistical rectangle as taken with the GOV during the North Sea IBTS Q3 2017. Tows are separated into ICES Divisions in the North Sea (4a, 4b, and 4c), the Skagerrak/Kattegat (3a), and the English Channel (7d).

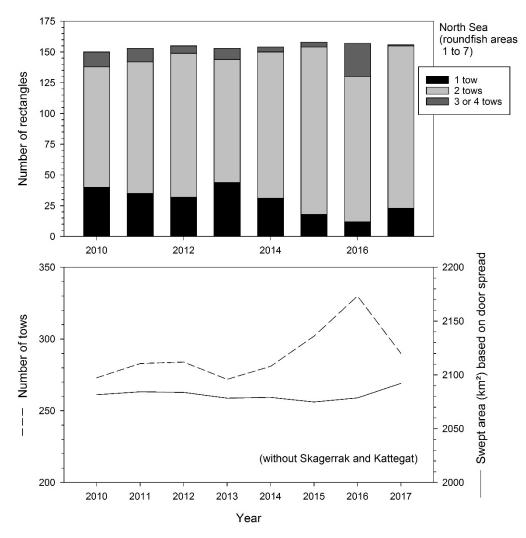


Figure 5.2.1.2. Changes in survey performance, 2010-2017, reported as number of tows achieved and total amount of swept area in the North Sea (based on door spread and towed distance by haul).

Table 5.2.1.3. Overview of age samples collected of NS-IBTS target species during the North Sea IBTS Q3 survey in 2017 (NOR and SCO collect but do currently not read place otoliths).

Species	DEN	ENG	GFR	NOR	SCO	SWE	Total
Clupea harengus	431	1272	196	568	853	1042	4362
Sprattus sprattus	297	0	152	0	87	333	869
Scomber scombrus	252	445	186	235	366	0	1484
Gadus morhua	108	731	28	395	495	462	2219
Merlangius merlangus	518	1766	258	471	1228	659	4900
Melanogrammus aeglefinus	92	1277	70	584	1160	171	3354
Pollachius virens	8	838	24	625	415	181	2091
Trisopterus esmarkii	21	460	12	240	335	176	1244
Pleuronectes platessa	760	1323	152			388	2623

Species	DEN	ENG	GER	NOR	SCO	SWE	Total
Ambluraia radiata		128	4	16	39		187
Chelidonichthys cuculus				1			1
Dipturus batis*							
Dipturus intermedia*					9		9
Enchelyopus cimbrius		112					112
Galeorhinus galeus		6	4				10
Galeus melastomus		11		1			12
Hippoglossus hippoglossus					3		3
Leucoraja circularis							
Leucoraja fullonica		2			1		3
Leucoraja naevus		47		3	55		105
Limanda limanda		237					237
Lophius piscatorius		82					82
Lophius budegassa		4					4
Merluccius merluccius	26	443	1		200	148	818
Microstomus kitt		273	76				349
Molva molva		47					47
Mullus surmuletus		33			2		35
Mustelus asterias		36	8				44
Raja brachyura					2		2
Raja clavata		11	8				19
Raja montagui		23	1		41		65
Scophthalmus maximus		15	2	1	2		20
Scophthalmus rhombus		5					5
Scyliorhinus canicula			14	4			18
Squalus acanthias		72		1	30		103
Zeus faber		17			2		19

Table 5.2.1.4. Overview of additional biological data collected in addition to the regular measurements specified in the manual during the North Sea IBTS Q3 survey in 2017.

* *Dipturus batis* and *D. intermedia* are currently under nomenclature review.

5.2.2 Issues and problems

There were no major issues and problems.

5.2.3 Additional activities

All countries are required to collect sea floor litter from the GOV tows and CTD data (temperature and salinity, oxygen for some countries) at all GOV stations when possible. A list of other additional activities is given in table 5.2.3.1.

Table 5.2.3.1. Overview of additional activities in the North Sea IBTS Q3 survey in 2017. Water samples for CTD calibration not explicitly listed, x: routinely, (x): ad hoc studies.

Activity	DEN	ENG	GER	NOR	SCO	SWE
CTD	х	х	х	х	х	х
Seafloor Litter	х	x	х	x		
Water sampler (Nutrients)					x	
Collection of fish tissue (genetics)						
Jellyfish from GOV catches		х		x		
Epibenthos (beam trawl)			х			
Sediment (VanVeen grab)			х			
Seabirds, Marine mammals						
Hydrological transect				x		
GOV intercalibrations		(x)		(x)		
Acoustics (Ichthyofauna)		x		x		

5.2.4 Gear geometry

The current manual does not specify a specific warp length to depth ratio as this may not fit to the different vessels. It has, however, been emphasized that each country carefully measure net geometry, i.e. door spread and headline height over bottom (vertical opening) and, if possible, also wing spread. Missing observations of these parameters are listed in table 5.2.4.1.

Table 5.2.4.1. Number of valid tows with missing gear parameters (No sensors for wing spread were available for Denmark and Norway).

Parameter	DEN	ENG	GFR	NOR	SCO	SWE
Door spread	0	3	0	0	0	0
Net opening	3	0	0	0	2	0
Wing spread	0	5	3	52	1	0

No country had serious problems in achieving the theoretical values for door spread (Figures 5.2.3 a-c). Most countries were within or near the theoretical values for net opening for almost all tows they made. Norway and Sweden had net opening that was consistently low, but the gear operated within the normal range for these countries (see manual, version IX).

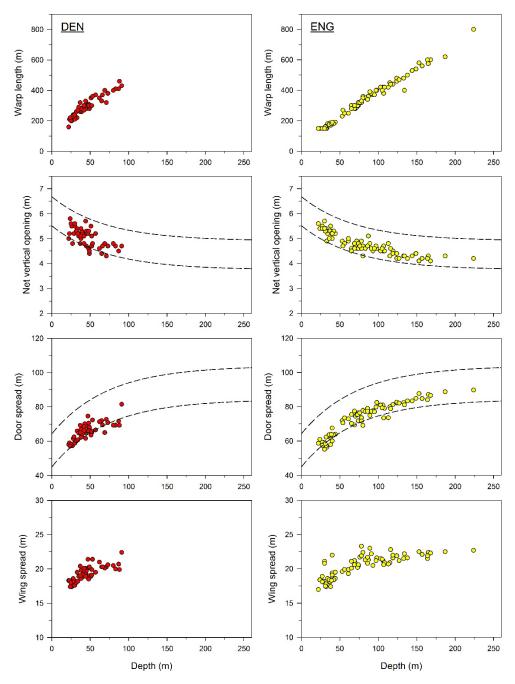


Figure 5.2.4.1a. Warp length and net geometry related to depth by country for the North Sea IBTS Q3 2017, Denmark and England. Dashed lines: theoretical lower and upper limits for the standard GOV 36/47 based on flume tank experiments, see manual.



Figure 5.2.4.1b. Warp length and net geometry related to depth by country for the North Sea IBTS Q3 2017, Germany and Norway. Dashed lines: theoretical lower and upper limits for the standard GOV 36/47 based on flume tank experiments, see manual.

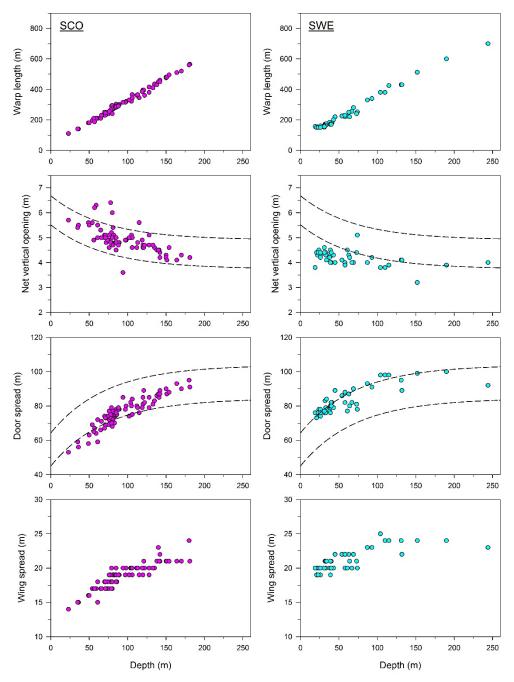
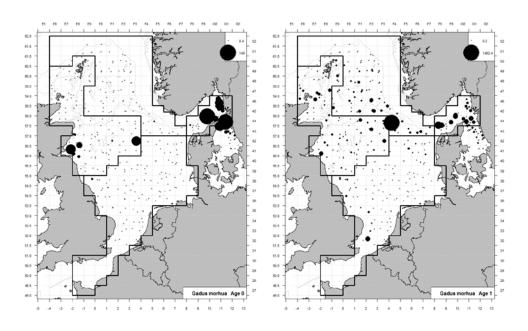



Figure 5.2.4.1c. Warp length and net geometry related to depth by country for the North Sea IBTS Q3 2017, Scotland and Sweden. Dashed lines: theoretical lower and upper limits for the standard GOV 36/47 based on flume tank experiments, see manual.

5.2.5 GOV standard indices and distribution of target species

Distribution plots for the recruits of the NS-IBTS standard species based on the 2017 quarter 3 survey are shown in Figure 5.2.5.1. For some target species, high densities were found outside the actual index areas. Cod and plaice index areas were revised during recent benchmarks, but for other species, this may warrant a revision of the species-specific areas on which the standard indices calculated in DATRAS are based. The DATRAS download of CPUE by age and haul does not include data for rectangles 45F5 and 44F6 although valid tows have been made there and it had been requested

repeatedly by IBTSWG since 2015 to include the two rectangles in the DATRAS products.

Figure 5.2.5.1a. Distribution of cod in the quarter 3 IBTS 2017 (thick line: NS cod population separation areas).

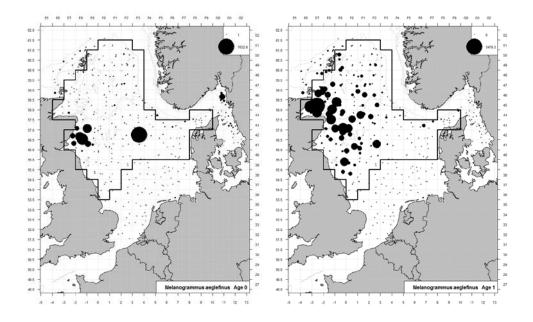


Figure 5.2.5.1b. Distribution of haddock in the quarter 3 IBTS 2017 (thick line: NS haddock index area).

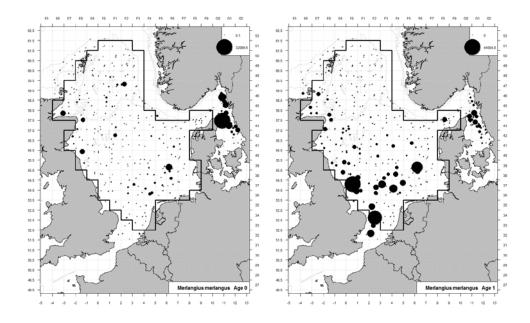


Figure 5.2.5.1c. Distribution of whiting in the quarter 3 IBTS 2017 (thick line: NS whiting index area).

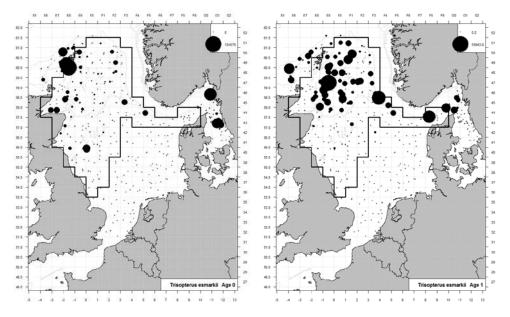


Figure 5.2.5.1d. Distribution of Norway pout in the quarter 3 IBTS 2017 (thick line: NS Norway pout index area).

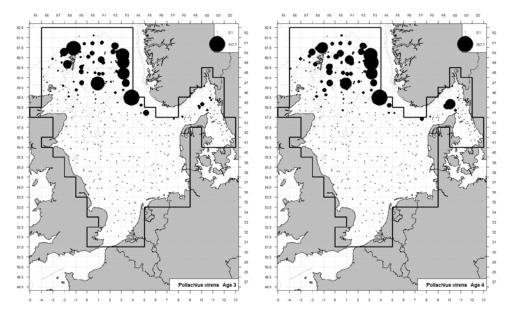


Figure 5.2.6e. Distribution of saithe in the quarter 3 IBTS 2017 (thick line: saithe index area).

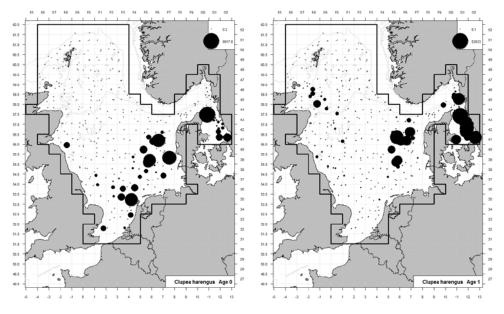


Figure 5.2.5.1f. Distribution of herring in the quarter 3 IBTS 2017 (thick line: NS herring index area in the 3rd quarter).

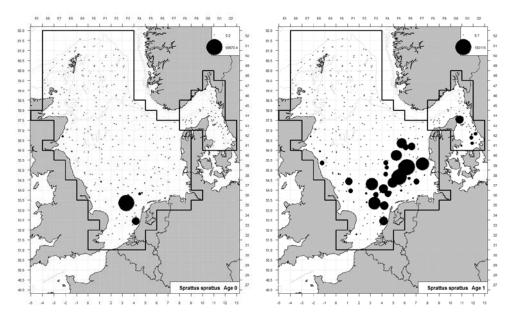


Figure 5.2.5.1g. Distribution of sprat in the quarter 3 IBTS 2017 (thick line: NS sprat index areas).

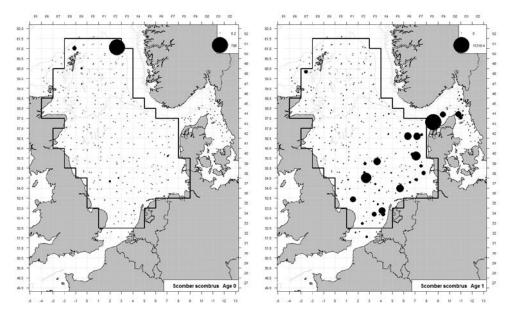


Figure 5.2.5.1h. Distribution of mackerel in the quarter 3 IBTS 2017 (thick line: NS mackerel index area).

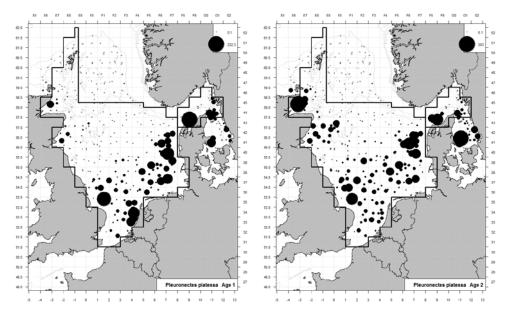


Figure 5.2.5.1i. Distribution of plaice in the quarter 3 IBTS 2017 (thick line: NS plaice index areas).

5.2.6 Planning and participation in 2018

All regularly contributing countries intend to participate in the quarter 3 2018 NS-IBTS survey program. Below is a table showing the expected program dates for each country for this year.

England	Cefas Endeavour	9 August to 9 September
Denmark	Dana	30 July to 17 August
Germany	Walther Herwig III	19 July to 15 August
Norway	Kristine Bonnevie	25 July to 16 August
Scotland	Scotia	28 July to 17 August
Sweden	Dana	20 August to 30 August

No major changes in the rectangle allocation scheme are planned and the actual rectangle allocation to the countries is show in Figure 5.2.6.1.

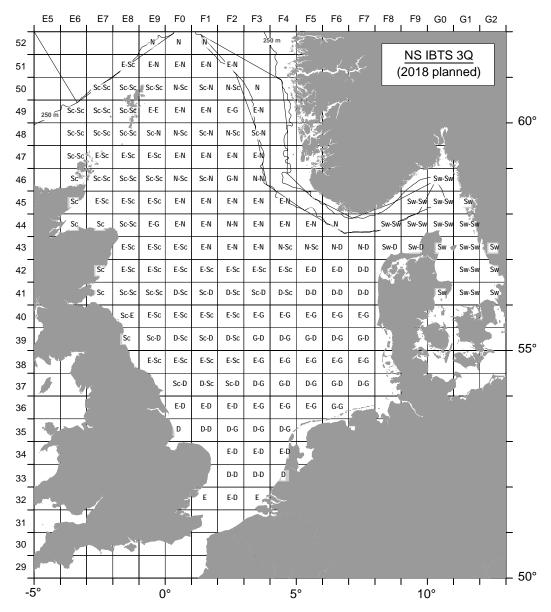


Figure 5.2.6.1. Rectangle allocation by country for the 3Q survey in 2018 (D: Denmark, E: England, G: Germany, N: Norway, Sc: Scotland, Sw: Sweden).

5.2.7 Other issues

5.2.8 Staff exchange

No staff exchange has occurred during the 2017 Q3 surveys, and no concrete plans are there yet to have an exchange in 2018. However, IBTSWG continues to encourage staff exchange.

5.2.8.1 Data exchange

It has been agreed that preliminary indices based on length splitting for the standard species will no longer exchanged during the Q3 survey since the final data for the NS-IBTS main target species (if not all species), including age information, are usually submitted to DATRAS within 2 to 3 weeks after completion of the survey.

5.3 Northeast Atlantic

(Coordinator: Francisco Velasco)

5.3.1 General overview

In 2017, seven vessels from five countries performed 13 surveys along the Northeastern Atlantic IBTS area. The most remarkable event has been the breakage of the RV *Thalassa* during the FR-EVHOE survey, which was reduced to 25 valid hauls in the northern part of the French shelf on the Biscay Bay. The Marine Institute of Ireland prolonged their groundfish survey on the subarea 7 to perform some extra 22 hauls on the Celtic Sea area to cover the gap left by the breakage.

The Irish Anglerfish and Megrim Survey (IE-IAMS-Q1) started two years ago and presented to be considered under the coordination by the IBTSWG was also performed in 2017. Although some problems with gear configuration were detected the results from 2018 and 2017 surveys are presented together with a standard summary similar to that from the NeAtl surveys, although it only will be considered as a IBTSWG coordinated survey when the abundance indices are used by the relevant assessment working groups (namely WGCSE and WGBIE). Information was also included as an annex on the new version of the Manual of the IBTS North Eastern Atlantic Surveys, SISP 15 (ICES, 2017) that replaced the Manual for the International Bottom Trawl Surveys in the Western and Southern Areas Revision III (ICES, 2010).

A total of 950 valid hauls, out of the 1062 hauls planned, were accomplished within 277 days distributed between the first, third and fourth quarters (See Figure 5.3.1.1, Table 5.3.1.1 and Table 5.3.1.2). Besides, 110 hauls and 21 days were done by the RV *Celtic Explorer* during the mentioned IE-IAMS-Q1.

In 2017 most surveys were performed including, as in previous years, three 1st quarter surveys (Scotland, Northern Ireland and Spanish survey on the Gulf of Cadiz), and also the usual 3rd quarter surveys (UK-ScoRoc and SP-Porc). But in the case of 4th quarter surveys, the French groundfish survey EVHOE was cancelled after 5 days and only 26 hauls, due to serious engine problems. 22 hauls were performed by the RV *Celtic Explorer* in EVHOE northern area, adjacent to the Irish Ground Fish Survey area. The decrease of hauls from last year is due to the fact that French EVHOE survey has completed only 25 of their planned 156 hauls.

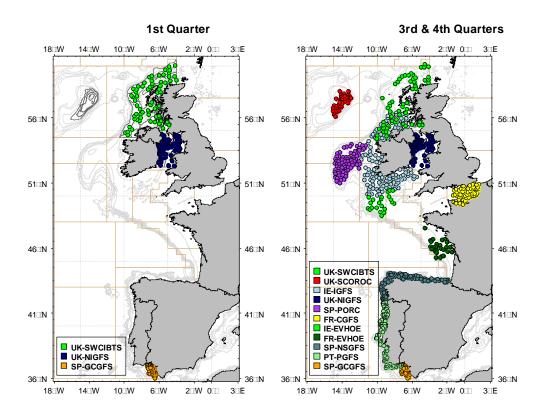
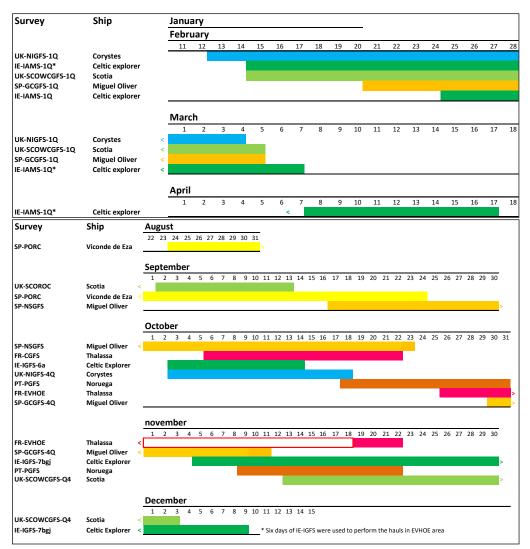


Figure 5.3.1. Hauls performed on the northeastern Atlantic IBTS in 2017. Left panel 1^{st} quarter, and right panel 3^{rd} and 4^{th} quarters.


Table 5.3.1. Summary of surveys, hauls and days at sea per country performed in the IBTS
Northeastern Atlantic area in 2017

COUNTRY	Survey		HAULS	5		DAYS
		PLANNED	VALID	NULL	TOTAL	
	UK-SCOWCGFS-Q1	60	62	3	65	16
UK-Scotland	UK-SCOROC-Q3	40	41	3	44	8
	UK-SCOWCGFS-Q4	60	55	3	58	26
UK-North Ireland	UK-NIGFS-Q1	60	62	1	63	20
UK-North Ireland	UK-NIGFS-Q4	60	58	4	62	16
Ireland	IE-IAMS-Q1**	110	110	1	109	21
	IE-IGFS-Q4	45+125	149	-	149	42
	FR-CGFS-Q4	74	66	5	71	15
France	FR-EVHOE-Q4	156	25	1	26	5
	IE-EVHOE-Q4 ***		22	-	22	6
	SP-PORC-Q3	80	80+4+10*	4	84	32
c ·	SP-NSGFS-Q4	116	112+15+8*	3	138	37
Spain	SP-GCGFS-Q1	45	45	3	48	13
	SP-GCGFS-Q4	45	44	6	50	13
Portugal	PT-PGFS-Q4	96	89+3*	2	94	28
Total		1062	950	38	974	277

* Zero minutes hauls.

** Not included in total numbers, not yet coordinated by IBTSWG

*** EVHOE area hauls performed by the RV *Celtic Explorer* due to the engine breakage of the RV *Tha-lassa*.

Table 5.3.1.Overview of the surveys performed during 1st, 3rd and 4th quarters on theNortheastern Atlantic IBTS area in 2017.

A summary of the biological sampling conducted within the IBTS NE Atlantic in 2017 is presented in Table 5.3.3.1.1

5.3.2 Survey summaries by country

In this year report an effort was made to reduce the information presented and referring to the new manual ICES SISP 2017 has been done, information on the survey design can be looked up in the manual with the individual summaries by country on annex 6, and maps of stations performed can be found in Figure 5.3.1.1 and Figure 5.3.6.2.1, together with the species distribution maps in annex 7.

5.3.3 Results

5.3.3.1 Biological samples

Table 5.3.3.1.1 summarizes the number of biological samples taken in all surveys, previously reported per country/survey within the North-eastern Atlantic area (in Section Annex 6 individual Survey reports).

		UK-SCO		UK-	NIRL	I	RL		FR		S	Р		РТ	
	WCGFS	ROC	WCGFS	NIGFS	NIGFS	IAMS	IGFS	CGFS	EVHOE	PORC	NSGFS	GCGFS	GCGFS	PGFS	
	Q1	Q3	Q4	Q1	Q4	Q1	Q4	Q4	Q4	Q3	Q4	Q1	Q4	Q4	
Target species															
Clupea harengus	606		296				184								
Gadus morhua	445	5	192**	202	50		102	8							
Lepidorhombus										314	509/92 †			82/102	
boscii															
L. whiffiagonis				5			1370		118	736	502/88 1				
Lophius budegassa							366	3		39	43			10	
L. piscatorius							415			184	33				
M. aeglefinus	1346	1838	1108**	1067	747		2154								
Merlangius	866	68	657**	1360	1090		1381	287	99						
merlangus			4.4044								0.04				
Merluccius	310		448**	9	30		707		373	998	881	312/754	294/959	1036/134	
merluccius										450*	4 5 4 %	1 5 0 %	050*	110%	
Nephrops norvegicus	250		0.0**				1.0444			473*	151*	152*	252*	110*	
Pollachius virens	359	5	88**				18***	+			5 (0)			100/044	
Scomber scombrus	297	13	168				592			27	568			130/244	
Sprattus sprattus	277		138**				100								
Trachurus trachurus							1007				572			538/1302	
Trisopterus esmarkii	317		214**					81							
Additional species															
Elasmobranchii					<u> </u>	<u> </u>									
Dipturus batis cf.	7*	58*	7*				30*								
flossada															
D. batis	77*		63*				70*								
cf.intermedia															
Dipturus		6*													
nidarosiensis															
Galeorhinus galeus	1*		5*				ļ								
Leucoraja fullonica		8*	1*										ļ		
Leucoraja naevus	77*		98*	19*	9*		256*								
Mustelus spp.	23*		9*				1***								
Raja brachyura	4*		6*	43*	6*		40*								
Raja clavata	115*	34*	83*	52*	4*		320*								
Raja montagui	96*		200*	78*	8*		637*								
Squalus acanthias	130*						759*								
Actinopterigii															
Chelidonichthys				84			153***	129**	66					69	
cuculus															
Chelidonichthys															
lucerna															
Conger conger				9	4		53***			17	220/220++				
Dicentrarchus labrax							12	237	1+++						
Diplodus vulgaris														197/271	
Engraulis											449			268/361	
encrasicolus															
Glyptocephalus	15		54*				199***								
cynoglossus															
Helicolenus										192	208			302/638	
dactylopterus					ļ	ļ									
Micromesistius							452				937/933			822/236	
poutassou							ļ			ļ					
Microstomus kitt				93			722		4						
Molva dypterygia															
Molva molva			76**		ļ	ļ	55			32					
Mullus surmuletus							ļ	139	17		139			27	
Pagellus acarne														238/419	
Phycis blennoides									30	192	111				
Pleuronectes platessa	243		209	393	218		910	343							
Pollachius pollachius	5*			1			203***								
Sardina pilchardus											100/97			348/434	
Scomber colias			[Ι	Ι	Ι	T	T	1	T	345/340		Ī	296/472	
Scophthalmus	7*		4*		[T	36	7		T					
maximus															
Scophthalmus	1*			27	18		27***	4							
rhombus															
Spondyliosoma							1		1	1				24	
cantharus															
Solea solea				1	1	1	167	91	17	1					
Trisopterus luscus		1		1	İ	t	1	1	1	1	284				
Zeus faber			72**	1	26	<u> </u>	331***	+	1	†	82/80++		t		

Table 5.3.3.1.1. Number of individuals sampled for maturity and/or age in 2017 surveys on NeAtlIBTS

		UK-SCO		UK-I	NIRL	IF	RL		FR		S	P		РТ
	WCGFS	ROC	WCGFS	NIGFS	NIGFS	IAMS	IGFS	CGFS	EVHOE	PORC	NSGFS	GCGFS	GCGFS	PGFS
	Q1	Q3	Q4	Q1	Q4	Q1	Q4	Q4	Q4	Q3	Q4	Q1	Q4	Q4
Crustacea														
Parapenaeus												1109*	2167*	495*
longirostris Mollusca														
Mollusca														
Illex coindeti													26*	92*
Loligo forbesi													17*	
Loligo vulgaris												184*	247*	327*
Octopus vulgaris												208*	139*	
Sepia officilis												81*	227*	
Todaropsis eblanae													3*	

* No age material collected

** No maturity data collected

*** Length and weight only

t Gonads

tt Vertebrae

ttt Scales

5.3.4 Additional activities

Table 5.3.4.1 gives an overview of the Additional activities performed in 2017 as reported per country/survey within the North-eastern Atlantic area (in annex 6).

Table 5.3.2	Additional activities performed in 2017 surveys on the northeastern atlantic IBTS
1 able 5.5.2	Authonal activities performed in 2017 surveys on the northeastern analite ib 15
	Surveys.

	Surv	eys.		-									
		UK-Sco	Э	UK-N	IIGFS	IRL		FR			SP		Рт
	Q1	Q3	Q4	Q1	Q4	IGFS	CGFS	EVHOE	Porc	NS	GC Q1	GC Q4	PGFS
CTD (Temp+salinity)	1	1	1	1	1	1	1	1	1	1	1	1	1
Seafloor Litter	1	1	1	1	1	1	1	1	1	1	1	1	1
Water sampler (Nutrients)							1	Х					
Egg samples (Small fine- meshed ringnet, CUFES)							1						
Non-commercial benthic invertebrates				1	1	1	1	1	1	1	1	1	1
Observers: mammals, birds							1	1	Х	1			
Additional biological data on fish	Х	Х	Х	X	Х		Х	Х	Х	Х		Х	Х
Fish stomach contents				Х	Х		Х	Х		1	Х	Х	Х
Benthic samples (boxcore, video, dredge)		1					Х	Х	Х	Х			
Zoo and phytoplankton							1	1					
Jellyfish				Х	Х	Х	1	Х	Х				1
Hydrological transect						1				Х	Х	Х	
Acoustic for fish species	Х		Х					Х	Х				Х
Multibeam: seabed map- ping								1	X				Х

1: Every year, 2: biannual, 3 every three years, X: occasional

5.3.5 Participation planned for 2017

Table 5.3.5.1 below, presents the expected dates for the northeastern Atlantic IBTS Surveys.

Survey	Code	Starting	Ending	Expected hauls	Planned Intercal.
UK-Scotland West (spring)	UK-SCOWCQ1	17-02-19	11/03/19	60	-
UK-Scotland Rockall	UK-SCROCQ3	19-09-18	01/10/18	40	-
UK-Scotland West (aut.)	UK -SCOWCQ4	12/11/18	08/12/18	60	-
UK-North Ireland (aut.)	UK-NIGFS Q4	02-10-18	23-10-18	60	-
UK-North Ireland (spring)	UK-NIGFS Q1	12-02-19	04-03-19	60	-
Ireland - Groundfish Survey 6a	IE-IGFS	29-10-18	08-11-18	45	-

Ireland - Groundfish Survey 7bgj	IE-IGFS	09-11-18	14-12-18	125	-
Ireland – IAMS leg 7bcjk*		19-02-18	19-03-18	70	-
Ireland – IAMS leg 6a*		10-04-18	21-04-18	45	-
France – EVHOE	FR-EVHOE	25-10-18	11-12-18	155	-
France - English Channel	FR-CGFS	13-09-18	14-10-18	74	-
Spain – Porcupine	SP-PORC	10-09-18	13-10-18	80	-
Spain - North Shelf	SP-NSGFS	17-09-18	23-10-18	116	-
Spain - Gulf of Cádiz (Spring)	SP-GCGFS Q1	19-02-18	04-03-18	45	-
Spain - Gulf of Cádiz (Aut.)	SP-GCGFS Q4	29-10-18	12-11-18	45	-
Portugal (Aut.)	PT-PGFS	02-09-18	31-10-18	96	-

Intercal: intercalibration between vessels

* New time-series being monitored, not yet in DATRAS with agreed code.

5.3.6 References

- ICES, 2010. Manual for the International Bottom Trawl Surveys in the Western and Southern Areas Revision III Agreed during the meeting of the International Bottom Trawl Survey Working Group 22–26 March 2010, Lisbon. Addendum 2: ICES CM 2010/SSGESST:06. 58 pp.
- ICES.2017. Manual of the IBTS North Eastern Atlantic Surveys. Series of ICES Survey Protocols SISP 15. 92 pp. http://doi.org/10.17895/ices.pub.3519.
- Reid, D.G., Allen, V.J., Bova, D.J., Jones, E.G., Kynoch, R.J., Peach, K.J., Fernandes, P.G., Turrell, W.R., 2007. Anglerfish catchability for swept-area abundance estimates in a new survey trawl. ICES Journal of Marine Science 64, 1503–1511. doi:10.1093/icesjms/fsm106

5.4 Combined North Sea and Northeast Atlantic survey results

(Franciso Baldo, Francisco Velasco)

Catches from latest bottom-trawl surveys (IBTS) in the North Sea and the north-eastern Atlantic areas covered by the IBTS (Table 5.4.1 and Figure 5.4.1) are mapped and presented in Annex 7. As in last year report, the plots presenting a summary of the length distributions per ICES divisions and survey, had been updated including their evolution between 2011 and 2017 (see an example in Figure 5.4.2), this year surveys and ICES divisions are ordered from north to south and division acronyms have been updated to the new numeric format instead of the roman numerals used before.

The distribution maps show results with the usual patterns from other years. Although the lack of an important part of the hauls on the French part of the Bay of Biscay, are a gap difficult to replace, especially for the species usually abundant on that area as it is the case of hake, horse mackerel, or blue whiting. In spite of this problem horse mackerel has been abundant in the hauls performed in EVHOE survey and presents the usual spots of higher abundances, especially considering recruits (< 15 cm). Compared to last year, cod recruits (<23 cm) seem again scarce out of the North Sea, although there was a haul with a remarkable catch on the Irish Sea.

Also in 2017 the recruitment of monkfish (*L. piscatorius*) appears to be relatively important in the surveys in division 7 out of the Irish Sea, while it is scarce on the Iberian coasts, with no information from the French part of the Bay of Biscay. On the other hand black anglerfish recruits are scarce in all the areas compared with 2016 surveys.

The rest of species present a distribution that follows the usual patterns from other years with small variations even in the spots where they appear.

Table 5.4.1. Species for which distribution maps have been produced, with length split for
prerecruit (0-group) and post-recruit (1+ group) where appropriate. The maps cover all the
area encompassed by surveys coordinated within the IBTSWG (North Sea and North-east-
ern Atlantic Areas)

Scientific name	Common name	Code	Figs No.	Length Split (<cm)< th=""></cm)<>	
Clupea harengus	Herring	HER	8-10	17.5	
Gadus morhua	Atlantic Cod	COD	2-4	23	
Galeorhinus galeus	Tope Shark	GAG	48		
Galeus melastomus	Blackmouthed dogfish	DBM	56		
Lepidorhombus boscii	Four-Spotted Megrim	LBI	23- 25	19	
Lepidorhombus whiffiagonis	Megrim	MEG	20- 22	21	
Leucoraja naevus	Cuckoo Ray	CUR	44- 45		
Lophius budegassa	Black-bellied Anglerfish	WAF	29- 31	20	
Lophius piscatorius	Anglerfish (Monk)	MON	26- 28	20	
Merlangus merlangius	Whiting	WHG	35- 37	20	
Melanogrammus aeglefinus	Haddock	HAD	5-7	20	
Merluccius merluccius	European hake	HKE	12- 13	20	
Micromesistius poutassou	Blue whiting	WHB	38- 40	19	
Mustelus spp.	Smooth Hounds	SDS	49		
Nephrops norvegicus	Norway Lobster	NEP	41		
Pleuronectes platessa	European Plaice	PLE	32- 34	12	
Raja clavata	Thornback ray (Roker)	THR	50- 51		
Raja microocellata	Painted/Small Eyed Ray	PTR	52		
Raja montagui	Spotted Ray	SDR	53		
Raja undulata	Undulate Ray	UNR	54		
Scomber scombrus	European Mackerel	MAC	17- 19	24	
Scyliorhinus canicula	Lesser Spotted Dogfish	LSD	42- 43		
Scyliorhnus stellaris	Nurse Hound	DGN	55		
Sprattus sprattus	European sprat	SPR	57- 58		
Squalus acanthias	Spurdog	DGS	46- 47		
Trachurus picturatus	Blue Jack Mackerel	JAA	60		

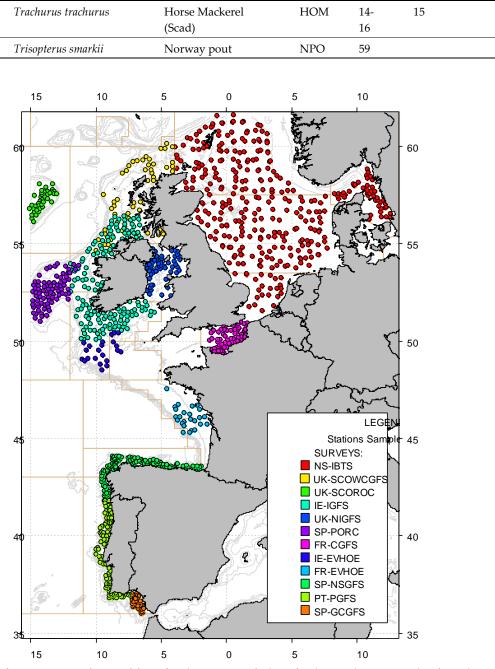


Figure 5.4.1. Station positions for the IBTS carried out in the northeastern Atlantic and North Sea area in summer/autumn of 2017.

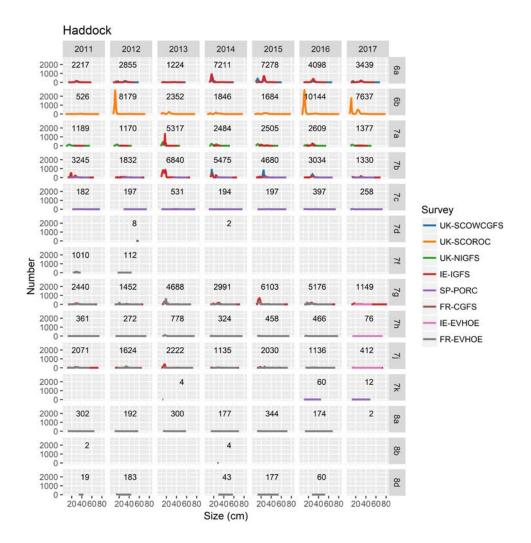


Figure 5.4.2. Example of the length distribution graphs per ICES Subareas and surveys presented in Annex 7: Length distributions of haddock, Melanogrammus aeglefinus, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last six years, each panel presents the surveys occur-ring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore, the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one-hour haul in the surveys carried out in that subdivision.

6 Survey Manuals (ToR b)

6.1 Manual for the North Sea IBTS

The revision of the current manual for the NS-IBTS (ICES 2015. Manual for the International Bottom Trawl Surveys. Series of ICES Survey Protocols SISP 10 - IBTS IX. 86 pp.) has almost been completed and a new version will be submitted in due course.

6.2 Manual for the Midwater Ring Net sampling during NS-IBTS Q1

The current version (ICES 2017. Manual for the Midwater Ring Net sampling during IBTS Q1. Series of ICES Survey Protocols SISP 2. 25 pp.) is still valid.

6.3 Manual for the Northeast Atlantic IBTS

The actual version has been complete last year (ICES 2017. Manual of the IBTS North Eastern Atlantic Surveys. Series of ICES Survey Protocols SISP 15. 92 pp) and so far just minor amendments were identified.

7 DATRAS and related topics on data quality (ToR c)

7.1 DATRAS progress and development

(Vaishav Soni)

7.1.1 Swept Area product

Swept Area base flex file is available on the DATRAS download page. All NS-IBTS countries doorspread and wingspread calculation algorithm has been adopted by DATRAS and implemented in the database. Calculation of Swept area base flex file calculated dynamically when exchange data are updated.

ICES Data centre needs to update the procedure document on Swept area calculation for missing observation (DATRAS Procedure Document 1.3 SweptArea-based calculations - 2017) with the most recent formulae for several countries (IBTSWG 2015 Report Annex 7) and to ensure that the data in the flexfile correspond.

CPUE per swept area and swept area based indices is the next task which need to develop, this product will be part of "CPUE per SweptArea" product.

7.1.2 Marine Litter data

Litter assessment output product which used by OSPAR, is developed and it is available on the DATRAS download page. This product is merged with SweptAreaKm2 by doorspread and wingspread fields, so Litter data product also exposing Sweptarea information.

7.1.3 Archiving and Version compare

Utility of archiving and version compare of submitted data are published on DATRAS data submission test page, for most recent years still there is null values and it need to update.

7.1.4 Substitution of ALK and borrowing ALK for neighbouring Round Fish Areas

Semi-automatic approach of NS-IBTS ALK (age length key) substitution procedure is developed in R and for 2018 third quarter this process is going to be done automatically with minimum manual intervention. Source code of ALK borrowing and lookup table going to publish under DATRAS

ICES GitHub. Documentation of the process steps and lookup table has been developed and it will publish under DATRAS document section.

7.1.5 Service base data submission

There is an ongoing project between ICES datacentre and IMARES, DATRAS project has developed service base data uploading utility. There is a request from DATRAS project to IBTS national submitter, if submitter willing to participate in the exercises of automatic service base upload then DATRAS team establish the test environment for that. This utility is very helpful to keep DATRAS database most up-to-date with national database. It also minimizes the time of browser base data submission. With this utility there is a possibility to multiple file submission without waiting checking error report.

WebMethod: UploadFileToDATRAS(FileName, SurveyName, UploadMessage, Username, Userpass, DATRASExchangeFile);

FIleName: NameoftheFile(e.g:surveyxx_Qx_Yearxxx_Shipxx.csv)

SurveyName: Name of survey (according to ICES vocabularies e.g.:NS-IBTS, BTS)

Upload message: Comment about the file

Username: ICES username

Userpass : ICES pass

DATRASExchangeFile: CSV file

7.1.6 ROCKALL and SWC-WC indices development

There was an indices calculation workshop at Marine Scotland in Week 29 July 2017, participated by Andrzej, Finlay and Vaishav. Outcomes are as below.

- Split SW-IBTS and ROCKALL in pre 2011 and post 2011 survey
- Separate screening rules applies for both pre and post 2011
- Reviewed and developed the indices calculation code align with DATRAS
- Will part of ICES DATRAS GitHub.

7.1.7 DATRAS governance group tasks

Year by year size of the data in DATRAS is growing rapidly and there are increasingly demand of additional requests comes to DATRAS team. To priorities and decide which tasks is more important and getting feedback in ICES community DATRAS governance group-DGG is established. There is a representation of each survey working group personal in DGG. It has been decided there is no physical meeting required for this group and most of the meeting will arrange on Skype. There are some major initial goals of this group are as below:

Related to goal 1:

- Discuss and fill in the DIG governance framework for DATRAS (trawl survey data as well as litter data);
- Provide suggestions to ICES Data Centre for implementation of the improvements.

Related to goal 2:

• Based on the compilation of recommendations from other expert groups and committees, with a focus on synergy and coherence of similar requests for products and services.

Related to goal 3:

- Align DATRAS input formats for the surveys where possible;
- Align QC and QA protocols between the surveys where possible;
- Align DATRAS CA input format with Acoustic data portal biological data format where possible;
- Align products for the DATRAS surveys where possible.

Related to goal 4:

• Seek and collate feedback from end-users of DATRAS via interaction in working groups and committees, targeted questions, through the ICES websites, or feedback given directly to the Data Centre.

Provide responses to the end-user feedback, and create recommendations to the relevant entities if a follow-up action is appropriate and practical.

7.2 Report on WKSEATEC

(Dave Stokes)

The Workshop on Technical Development to Support Fisheries Data Collection (WKSEATEC) was proposed by IBTSWG in 2015 to make recommendations on technical solutions for the collection and quality assurance of fisheries data at sea and in ports. The objectives can be summarized by two complimentary themes; i) in order to maximize the effectiveness of quality assurance checks in fisheries data collection the greatest efforts need to be focused on the start of the process, during sampling itself; ii) this can only reasonably be achieved once the data are in a digital format which requires improved uptake of electronic data capture methods.

This workshop was held at ICES headquarters, Copenhagen, from 12th – 14th September 2017. There were 16 attendees and 2 remote participants representing 12 countries from the Mediterranean, Baltic and Atlantic areas including the US.

To address the Terms of Reference the workshop was structured into 4 topic sections:

1. Overview – benefits and impediments to paperless sampling: The report highlights the difference between reactively screening data products in Quality Control (QC) compared to proactive Quality Assurance (QA) where information is fed back at source during the process of sampling itself. The ready availability of affordable powerful computing and the effectiveness of open source visual and statistical data checks in open source code such as R is widely known. However, there has been less than 50% uptake on IBTS surveys for example, so barriers to wider implementation of paperless sampling during the measuring process are discussed.

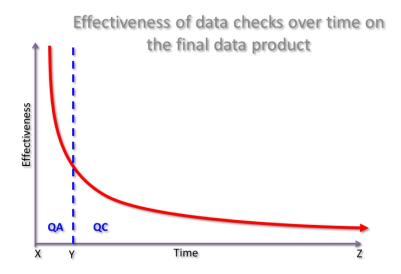


Figure 7.2.1. A generalized schematic showing the data quality management process over time, from sampling (X) to final data product (Z). The effectiveness of data checks to correct data and actively target the Quality Assurance (QA) process dissipates quickly once the sampling process is complete (Y). Thereafter Quality Control (QC) of the data takes over to screen out anything outside agreed standards and control the quality of the final data product.

2. Review of current approaches: Presentations from at the workshop illustrated that whether purchasing off-the-shelf or developing technology in-house significant time and resources can be expended. However, low cost, effective solutions are quite achievable and small-scale open source projects have been successful and are currently being field tested. Despite the financial and time investment in the projects and other areas of collaborative work being carried out by various Institutes, no collaboration development could be identified in this area.

Figure 7.2.2. One of the open source measuring board projects presented at WKSEATEC. openSMB measuring board using linear magnetorestriction sensor and linked to electronic marine scales.

- **3.** Data quality control and management: Approaches to error trapping and feedback to the board user was examined using 3 case studies presented during the workshop. The important measurement errors likely to occur as well as the efficiency of graphical data display to highlight and aid correcting potential errors was also illustrated. Once collected the ease with which data formats can be understood and exchanged is of great importance to how widely and efficiently they can be utilized to answer questions and guide management advice. Therefore guidance on a range on internationally available and maintained standard reference lists was also given.
- 4. Collaborative potential: Experience from developing the DATRAS and RDB data exchange formats highlight some general principles. Significant resources have been expended and experience gained by individual institutes addressing this issue and guidance is given in section 5 of the report on how best to collaborate and support increased engagement with paperless sampling.

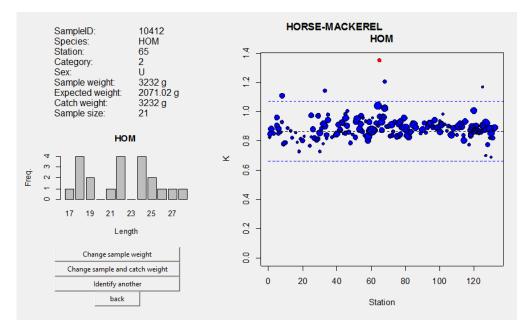


Figure 7.2.3. Fulton's condition factor (K) for length samples. The red point is an outlier; based on the mean value of K, the expected weight for this sample was 2071g while the recorded weight was 3232g.

WKEATEC discussed a broad spectrum of content from user perception and uptake to technical programming details. Two overarching conclusions were reached however:

i) No single factor seemed to impede a move to paperless sampling. However, no agreed standards mean uncertainty around what exactly to expect from a costly electronic data capture system can lead to inertia; ii) Significant progress in electronic data capture has been made in the Atlantic/Baltic area while progress in the Mediterranean has centred on implementation of a standardized data checking routine across surveys.

To maximize the benefits of these developments the group proposed an agile approach to development and technology exchange. The first is to broaden the regular static data exchange format approach into a more generic Fisheries Data Language (FDL). The second, more ambitious proposal is to combine this with an Application Program Interface (API). API's are proven in many other fields, but seen by the workshop as potential 'game changers' in supporting the integration of technology and open source "data tool boxes" for fisheries data collection. The end goal being that that technology and data tools would become 'plug and play'. Any piece of hardware then that could collect a length measurement would output that length data in format that would be understood by any application or data tools written to expect that standard, regardless of programming language or operating system where the API would translate between the data standard format and your application environment. It should operate in a similar way to a smartphone where you load your App and allow it access to your hardware (camera, GPS etc.) regardless of hardware manufacturer or operating system and the software will quickly provide the same functionality across a vast range of hardware/software combinations.

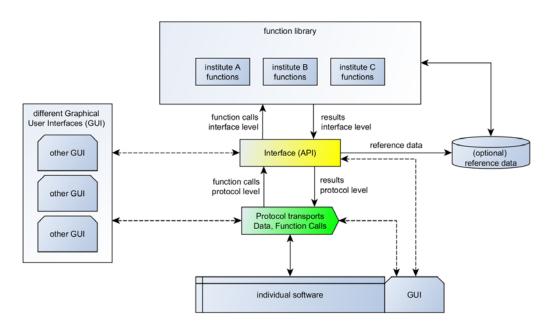


Figure 7.2.4. Schematic view of how an Application Program Interface (API) can sit between multiple independent applications managing the flow of function calls and responses as data and information flow in both directions.

The resolutions from WKSEATEC have been approved by and a second workshop is planned for Sept 2018 to develop the themes further. In particular to review alternative electronic data capture equipment such as digital calipers in particular. Also to progress the common FDL idea and scope the work required to prioritize and develop one or more API's in the first instance.

7.3 New data registration system on Thalassa and other IFREMER vessels

(Morgane Travers)

Allegro – Tutti Project, IFREMER

IFREMER carries out approximately 20 fisheries surveys per year on vessels from 20 m – 74 m staffed by teams of between 2-15 scientists. Since 2013 the development of a new software application, Allegro Campagne, has been undertaken as part of an overall project, Tutti. There were roughly 3 development phases performed over 3 years, and completed by some ergonomic improvements from times to times: i) initial basic version of the software, ii) implementation of the connection with electronic measuring boards, iii) addition of a sampling algorithm for otoliths.

Allegro is an **open source** Java based software, however some underlying tables (e.g. reference taxonomic species list) are specific to, and held by IFREMER. The application has been developed to import data from the Big Fin Scientific Data Collection System¹ measuring boards, Sylvac Evo electronic calipers and Marel scales (Figure 7.3.1). The application then takes over the management, storage, quality control and general reporting of the data thereafter.

¹ https://www.bigfinscientific.com/documentation/

Since 2017 autumn, the RV Thalassa has been fully equipped with electronic measuring boards and calipers, associated with the Allegro software. First experiences during bot-tom-trawl surveys FR-CGFS-Q4, FR-EVHOE-Q4 and FR-IBTS-Q1 were encouraging, and real-time data control have been implemented to improve data quality (preselection of a list species with possibility to add species during the survey, weight-length relationships, mapping...). As the software provides an exchange format containing raw data, it is possible to run any R-script on these data during the survey.

Figure 7.3.1. BigFin DCS board being used at sea with rugged Android tablet (on the left) or associated to slave screens managed by the Allegro software on RV Thalassa (on the right).

8 Development of a swept-area based index (ToR d)

Data checking and provision of interpolation routines for missing observations required for swept-area based CPUE products have been delayed again but is now almost completed. Using the new DATRAS products for the period 2004 to present, a comparison of swept area based abundance indices with haul time-based indices is now planned for the next 3-year term of IBTSWG.

9 Sweep length and other gear issues (ToR e)

9.1 Effect of varying sweep length

Analysis on the effect of variable sweeps lengths has been postpone to the next 3-year term of the IBTSWG due to the delay of DATRAS swept-area based CPUE products.

9.2 Use of Vonin flyers instead of Exocet kite

(Kai Wieland)

Denmark carried out GOV trials using Vonin flyers (Figure 9.2.1) instead of the Exocet kite during the 1Q NS-IBTS in 2018. The trials were done at 8 stations distributed throughout the survey area and covered depths ranging from 25 to 140 m. Except for one station at which only one flyer was used, vertical net opening was within the normal range, and in all cases door spread was well within the theoretical limits and the range observed when using the standard rigging with the Excocet kite (Figure 9.2.2). Hence, IBTSWG concluded that the use of Vonin flyers is a valid alternative to the kite and the survey manual will be amended accordingly.

Figure 9.2.1. Two Vonin flyers (<u>http://www.vonin.com/en/fishing/flyer/</u>) attached to the head-rope of the GOV.

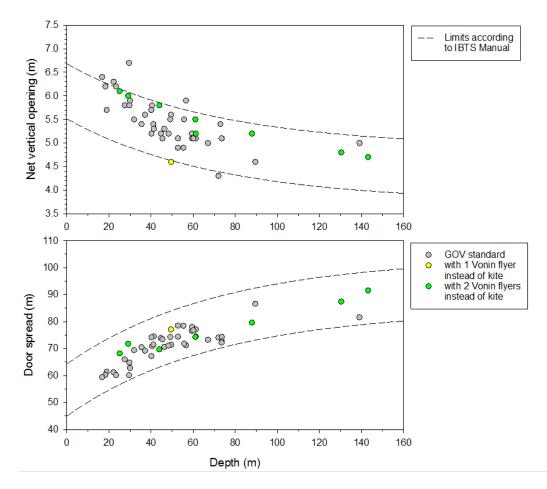


Figure 9.2.2. Vertical net opening and door spread during the Danish 1Q2018 NS-IBTS.

9.3 Comparison of nylon and polyethylene GOV trawls

(Erik Olsen)

Background

Norway is considering switching to polyethylene GOV trawls as the nylon GOVs are worn out. The background is that the polyethylene GOV is considered more durable and less prone to tearing than the nylon version. Before changing trawl material Norway wanted to evaluate the effects of trawl materials on the catch rates. A controlled inter-calibration experiment was therefore carried out during IBTS Q3 in 2017.

Methods

A total of 35 paired trawl hauls were carried out with the nylon and polyethylene trawls in the eastern and central North Sea in august 2017 (Figure 9.3.1).

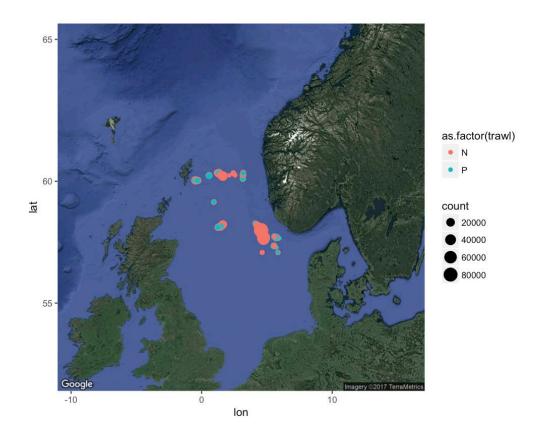
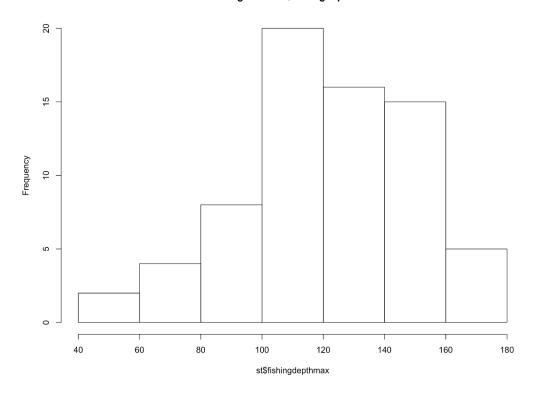



Figure 9.3.1. Location and catch rates (number fish caught) for the inter-calibration of nylon and polyethylene GOV trawls during the IBTS Q3 survey in 2017 (vessel: F/F Kristine Bonnevie).

Trawling was carried out aboard the Norwegian research vessel F/F 'Kristine Bonnevie' where both types of trawls were used interchangeably at each station. The order of trawling was chosen by random. A normal 30 minute IBTS bottom trawl hauls was conducted with each trawl at each location. The two paired hauls were placed with some distance so that they did not overlap, while sampling in the same area and depth. Histogram of st\$fishingdepthmax

Figure 9.3.2. Distribution of trawling stations by depth categories

The depth of the stations varied from 54 to 167m, with a mean depth of 122 (Figure 9.3.2). Bottom substrate also varied from hard to soft sediment.

Analysis

The catch rates were both compared overall, and by species, in relation to catch in weight and numbers as well as the length distribution of fish species. The analysis was done in R, through a 'Shiny' app that has been made available on the IBTS WG sharepoint site (and soon GitHub site).

Results

A linear model evaluating the effects of latitude, longitude, depth, netting type, vertical opening, door-spread and wire length on total catch rate in numbers only showed significant effects of depth and latitude – netting type had no significant effects.

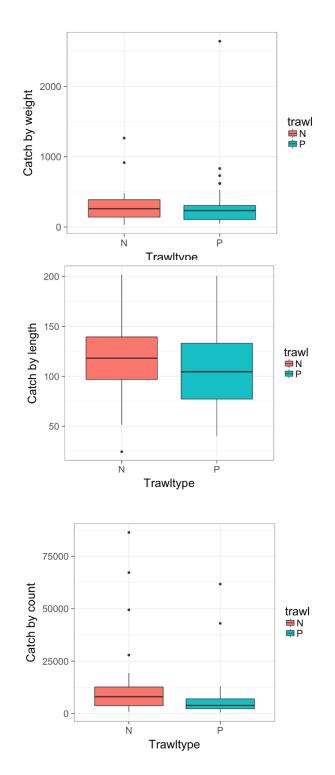


Figure 9.3.2. Catch rates of nylon (N) and polyethylene (P) trawls measured in terms of total catch weight, numbers caught and catch by length.

Total catch rates measured in numbers of fish caught or the total weight of the catch did not differ significantly between the two trawl types, but the length distribution was significantly different (Figure 9.3.3).

Looking in more detail at the species-specific catch rates (Table 9.3.1) showed that there were significant differences in the catches by length for 24% of the species, 8% by numbers and no significant difference by weight.

	Length	Weight	Count
Bluemouth			
Long rough dab	х		
Horse mackerel			
Whiting			
Haddock			
Thorny ray			
Pearlsides	х		
Ling			
Lemon sole			
Hake			Х
Mackerel			
Saithe	х		
Herring			
Hagfish			
Witch flounder	х		
Poor cod	Х		
Cod			
Argentine (A. silus)			
Norway pout			
Monkfish			
Eledonecirrhosa			
Wolffish			
Ilex coindetii			
Loligo			
Argentine (A. sphyraena)	х		Х
Blue whiting	х		
Pollack			
Dragonet			
Nephrops			
Grey gurnard			
Boarfish			
Plaice			
Gudgeon	х		
Silvery cod			Х
Crystal goby	х		
Sepiola			
Four-bearded rockling			
Megrim			
Pontophilus norvegicus			
Pontophilus spinosus			
Shrimp			
Lithodes maja			
% significant differences	24 %	0 %	8 %

Table 9.3.2. Evaluation of significant differences in catch rates between nylon and polyethylene trawls.

The significant difference were usually due to large differences in catches at a few stations as shown with the saithe catch rates below (Figure 9.3.4)

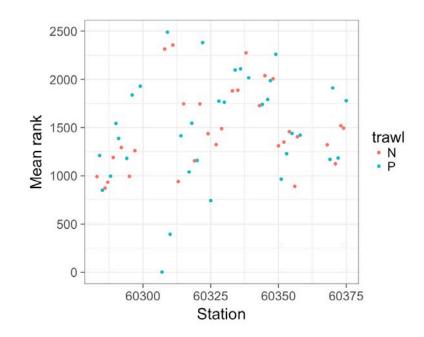


Figure 9.3.3. Mean rank of catch rates of saithe for the pairwise inter-calibration of nylon and polyethyelene trawls. This difference was statistically significant (t-test, p<0.05), but caused by three stations where the polyethylene trawl had a very different length distribution than the nylon trawl.

Conclusion

The overall results show no difference in catch rates by weight and number, and neither does the linear model analysis. The significant differences are found in the length distribution and are due to differences in length distribution at a few stations. The conclusion is therefore that there is no difference in the performance of the nylon vs the polyethylene GOV trawls and both types can be used interchangeably.

9.4 New survey trawl

(Robert Kynoch)

A presentation was made to the group outline potential steps as a way forward in designing a new IBTS survey trawl to replace the existing standard trawl gear (GOV). A previous study reported to IBTSWG (2015) highlighted the divergence in the GOV specification from the one given in the survey manual (ICES, 2015) due to historical drift and technical creep. Furthermore, the group recognized the fundamental design of the GOV causes net damage and is therefore not fit for purpose.

The 'road map' process defined by WGSTSG (2009) in designing new survey trawls was outlined for the group. Reviewed were catchability (groundgear contact, vertical/horizontal opening and herding effect), selectivity (mesh size and groundgear construction) and trawl construction (robustness, durability, stability and cost). Some basic gear design parameters were discussed and trawls from Ireland (design stage) and Scotland (constructed) were presented as examples. All GOV users were asked to contribute to the development process and provide feedback from relevant groups within their institute. Furthermore, to assist in guiding the process a join workshop during 2018 with FTFB participation was recommended. The group were also informed of catch comparison trials planned by Scotland to compare a Scottish GOV with the new (Scottish) trawl in October 2018. The presentation concluded with a discussion on the methodology of introducing a replacement for the GOV and continuation of the assessments and time-series. It was acknowledge this would need to be defined in parallel with the development of the new gear.

Actions

- 1. GOV users to contact relevant groups within their institute and provide feedback on design criteria/requirements with reference to the WGSTG 'Road may' by 29 June 2018.
- **2.** Establish a workshop with WGFTFB participation during 2018 to assist in developing the new trawl package and reported back to IBTSWG (2019).

References

- ICES. 2015. Report of the International Bottom Trawl Survey Working Group (IBTSWG), 23-27 March 2015, Bergen, Norway. ICES CM 2015/SSGIEOM:24. 278 pp.
- ICES. 2009. Report of the Study Group on Survey Trawl Standardisation (SGSTS), by correspondence. ICES CM 2009/FTC:09. 127 pp.
- ICES. 2015. Manual for the International Bottom Trawl Surveys. Series of ICES Survey Protocols SISP 10 - IBTS IX. 86 pp.

10 Evaluate the present scheme of collection of age and other biological data (ToR f)

Following analysis in 2016, the collection of otoliths in Q1 and Q3 surveys for the North Sea as well as in the NeAtl-IBTS has been made by tow instead by roundfish area or survey strata for all of the target species in the recent years. Further details are specified in the respective survey manuals.

11 Survey design (ToR g)

11.1 French MFSD: Request for fixed stations in the Eastern Channel

(Arnaud Auber)

During the 2018 meeting of the IBTSWG, a presentation was done by France in order to get advice from the group concerning a recent request from D1 and D5 coordinators of MSFD. The request consists to sample zooplankton, phytoplankton and to measure hydrological parameters (through the CTD) each year in fixed areas (see yellow rectangles in figure 11.1.1) during the French IBTSQ1.

Figure 11.1.1. Targeted areas for MSFD sampling during IBTSQ1.

Three cases can be identified:

- 1. If time permits: both IBTS and MSFD stations are performed (Figure 11.1.2).
- **2.** If time doesn't permit: <u>choice n°1</u> = Do we perform scheduled IBTS stations but any within MSFD areas (yellow polygon)?
- **3.** If time doesn't permit: <u>choice n°2</u> = Do we move scheduled IBTS stations to MSFD area (yellow polygon, see Figure 11.1.3)? In this case, the consequence is that the time doesn't permit every year, the sampling scheme could become relatively fixed through time (which is not the case since several decades in the IBTS protocol).

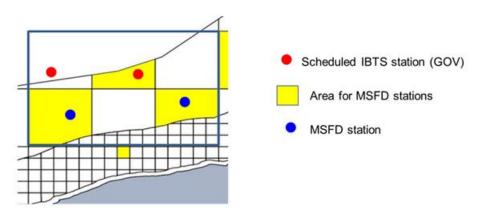


Figure 11.1.2. Example of stations position within the 29F0 ICES rectangle (IBTS stations are not necessarily in MSFD areas).

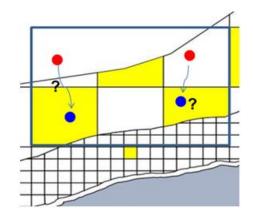


Figure 11.1.3. Example of scheduled IBTS stations moved into MSFD areas.

The main conclusion of the IBTSWG was that choice 1 was the most reasonable in case where time doesn't permit to perform all the work planned during the cruise. Of course, when IBTS and MSFD stations will not be in the same areas and where times will permit to do all of them, 100% of the stations will be performed.

11.2 Uncertainty estimation of the North Sea IBTS abundance indices

(Natoya Jourdain)

The North Sea International Bottom Trawl Survey (IBTS) was started by the International Centre for the Exploration of the Sea (ICES) in 1990. Seven research vessels using standardized fishing methods participate in the survey. The survey with these vessels, which allows fishing also on course bottom provides information on seasonal distribution of stocks, abundance, hydrography and the environment which is then used for stock assessments. Estimates of abundance indices based on age-length keys (ALK) are provided without any assessment of their accuracy. We present a model-based ALK estimator, and a stratified design-based ALK estimator for estimating abundance at age. Both estimators take into the spatial differences in age-length structures. These estimators are compared with the designed-based ALK estimator proposed by ICES for IBTS, which does not account for spatial differences in the age-length structure. As the proposed ALK estimator by ICES is a combination of age data over a large area, this can result in strongly biased estimates of numbers-at-age. An example of cod (Gadus morhua) in ICES Subareas 4a and 4b is used to illustrate spatial differences in the proportions of age-at-length, and estimates of uncertainty are presented using nonparametric bootstrapping. In general, the model-based ALK estimator provides a more accurate coverage probability compared with the other estimators.

ALK Estimators

1. DATRAS ALK Estimator

- a) Datras assumes that the age-length compositions are homogeneous over relatively large areas;
- b) The ALK is an aggregation of individual samples from a haul combined over a RFA. Violations of assumption will give bias results;
- c) A single ALK is produced for ICES round fish areas (RFA) in the North Sea.

There are no estimates of variance for the abundance indices of catch-at -age, but the bootstrap procedure is as follows.

Pool all hauls in a RFA and sample with replacement, placing hauls in the relevant statistical rectangle. For the new sample, a haul from a different statistical rectangle can be placed in a statistical from which it did not originate, hence, the location of the trawl hauls is not preserved. Hence, we propose a *stratified* **bootstrap** procedure:

Sample all hauls in each statistical rectangle in a RFA with replacement and the new sample is placed in the relevant statistical rectangle. This preserves both the location of the trawl and the age observations within each length class.

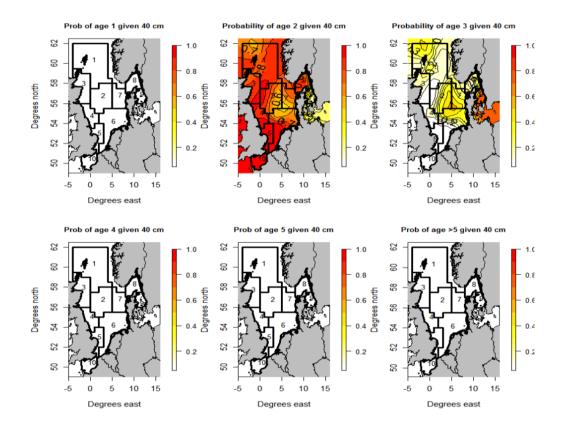


Figure 11.2.1: Estimated probability of age a 40-cm cod in the first quarter of year 2015. The probability that the fish is of age one, three or older is approximately zero. The polygons marked 1 to 10 are the round fish areas (RFAs) where the ALK is assumed to be constant in the currently used estimators of the official CPUEs.

2. Haul-based ALK

- a) Assumes variation in the age–length structures within a larger area, for example ICES RFA. The plot below shows clear variation in age–length structures for a cod of age 2 given that it is length 40 cm;
- b) An ALK is produced for each trawl, and the spatial variation in the data are accounted for.

The variance is estimated using nonparametric *stratified* bootstrapping approach described above.

3. Model-based ALK Estimator

Spatial model-based ALKs are widely used in fisheries (Berg and Kristensen, 2012; Gerritsen *et al.*, 2006). Statistical models

• create a distribution of age given length and possibly other covariates such haul location

- fill in of missing values in a more objective and robust manner,
- accounts for uncertainty arising due to sampling variability
- We consider Logits: a type pf model for categorical response data (e.g. age groups)
- Model

 $Pr(age \mid length, location, haul) = function(length_{age} + location_{age} + haul_{age})$

- o *location_a* : Will capture spatial variation in the ALK
- *haul*_{age}: Will capture trawl haul variation e.g. a haul made may "hit" a school of fish of a certain age
- Provides an ALK for each trawl haul

The variance is computed using the *stratified* bootstrap procedure described above. The uncertainty in the ALK is considered by the model (Logit) and the variance-covariance matrix is extracted from the estimated model in TMB. This preserves the positions of trawl hauls in statistical rectangles.

THE NORTH SEA COD DATA

Brief description of cod data in Q1 of 2015

Table 11.2.1: Summary of North Sea IBTS cod data for the first quarter of 2015.

Data	Description
Trawl hauls	Total of 387 trawl hauls (303 with age information of cod)
Age	The age of cod varied between 1 to 8 years.
Length	Length information in cm of each cod varied between 8 to 112 cm
Date	Date of catch varied between 13.01.2015 to 19.02.2015
Statistical rectangle	The stratum in which at least two trawl hauls are made
Coordinates	Geographic coordinates of each trawl haul in a statistical rectangle
Duration of haul	Mean duration is 25.9 minutes, with 15 to 30 minutes as 90% coverage interval.
Total count per age $(Total_{age})$	$3017_1, 2629_2, 1773_3, 1051_4, 460_5, 194_6, 58_7$
Total count for all ages	7605 cod in the first quarter of 2015.

Table 11.2.2 shows the fraction of trawl of trawl hauls with length recordings that also had age recordings from 2010-2017. In 2015, 89% of the trawl hauls with length observations also had an age observation. Conditioning on $l > 50 \, cm$ the percentage is higher. The probability generally increased over the years, almost 10% between 2010 - 2017.

Year		cod
	$\Pr(a \mid l)$	$\Pr(a \mid l > 50 \text{ cm})$
2010	86.4 %	83.2 %
2011	90.7~%	92.4~%
2012	87.6~%	92.0~%
2013	88.1~%	93.0~%
2014	89.8~%	93.7~%
2015	89.3~%	93.8~%
2016	93.0~%	93.7~%
2017	95.5~%	98.8~%

Table 11.2.2: Fraction of trawl hauls with length recordings that also had age recordings.

Table 11.2.3 shows lower catch rates for larger age–length groups and higher catch rates for smaller, younger fish. Table 11.2.4 gives the number at ALK for cod in the first quarter for all years.

Age (a)	NoAtALK	Length $(l \text{ in cm})$
1	460	9.0 - 38.0
2	1191	16.0 - 63.0
3	676	24.0 - 84.1
4	284	30.0 - 93.0
5	101	52.0 - 94.2
6	63	62.0 - 104.0
7	12	75 - 98
8	1	113

Table 11.2.4: Age-length composition of cod and number at ALK in Q1 for all years.

Age (a)	NoAtALK	Length $(l \text{ in cm})$
1	1423	8.0 - 38.0
2	1561	16.0 - 63.0
3	1099	24.0 - 84.1
4	665	30.0 - 93.0
5	293	51.0 - 94.2
6	128	57 - 105.0
7	34	66 - 112
8	9	60 - 113

RESULTS

Model-based ALK generally performs better in terms of uncertainty estimation. Accounts for Spatial differences in age–length structures.

DATRAS procedure generally gave smaller estimates of uncertainty as it lacks the potential to account for spatial variation in the data.

Estimated CPUE at age is captured within a 95% CI for all methods.

Table 11.2.5: Estimates of abundance indices (mCPUE_{1,a}) and the estimated bootstrap mean (boot. mCPUE_{1,a}) for cod in RFA 1 in the Q1 of 2015. Estimated standard error estimates of the mCPUE_{1,a} are given on parentheses, and approximate 95% confidence intervals (CI) for DATRAS, Stratified, Haul-based and Model-Based bootstrap procedures are also given.

	DAT	RAS	Stra	tified	Haul	-based	\mathbf{Mode}	el-based
Age (a)	$\mathrm{mCPUE}_{1,a}$	boot.mCPUE _{1,a}	$\mathrm{mCPUE}_{1,a}$	$boot.mCPUE_{1,a}$	$\mathrm{mCPUE}_{1,a}$	$boot.mCPUE_{1,a}$	$\mathrm{mCPUE}_{1,\alpha}$	boot.mCPUE _{1,a}
1	0 (0)	0	0 (0)	0	0 (0)	0	0 (0)	0
2	0.764(0.25)	0.718	0.764(0.23)	0.828	0.590(0.16)	0.631	0.704(0.40)	0.924
3	21.989(6.78)	22.399	21.989(4.34)	22.576	22.233 (4.23)	22.553	22.113(4.21)	22.242
4	11.285(2.20)	10.385	11.285 (1.27)	11.878	10.580(1.23)	11.532	10.995(1.94)	11.798
5	3.265(0.69)	2.665	3.265(0.60)	3.444	3.656(0.54)	3.740	3.501 (0.97)	3.642
6	1.147(0.34)	0.959	1.147(0.35)	1.263	1.267(0.42)	1.448	1.199(0.51)	1.327
7	$1.276\ (0.38)$	0.999	$1.276\ (0.40)$	1.472	1.400 (0.52)	1.701	$1.215\ (0.43)$	1.379
			Approxir	nate 95% CI fro	m bootstrap	procedures		
1	(0, 0)		(0, 0)		(0, 0)		(0, 0)	
2	(0.301, 1.293)		(0.405, 1.307)		(0.324, 0.933)		(0.354, 1.845)	
3	(12.673, 38.274)		(14.956, 30.131))	(14.867, 30.043))	(14.531, 30.396)
4	(6.661, 15.106)		(9.613, 14.470)		(9.215, 13.897)		(8.383, 15.741)	
5	(1.553, 4.339)		(2.329, 4.617)		(2.797, 4.659)		(2.025, 5.797)	
6	(0.424, 1.810)		(0.637, 1.959)		(0.644, 2.222)		(0.540, 2.487)	
7	(0.387, 1.839)		(0.735, 2.299)		(0.756, 2.644)		(0.648, 2.286)	

PLANNED WORK

- Include trawl haul in the model-based ALK estimator
- Derive an abundance-at-age estimator for the whole North Sea, and its variance estimator
- Compare ALK estimators
- Use ALK estimators in an assessment model, e.g. SAM or XSAM
- **Optimize sampling effort**: removal of trawl hauls and otoliths to determine if there is any effect on the variance
- As a means of justifying sampling effort e.g. number of days at sea and number of stations sampled and number of samples taken
- Consider Hierarchical bootstrapping approach (completed)
- Fully model-based approach for estimating abundance at age

11.3 Towing times outside the nominal duration of standard tows

(Morgane Travers, Kai Wieland)

Towing times additional to nominal tow duration, which is the only measured time reported routinely to DATRAS, were recorded during the recent NS- and NeAtl-IBTS. Here different time-steps were defined (Figure 11.3.1):

- **1.** Setting the codend
- 2. Start firing the doors
- 3. Touchdown of the trawl on the bottom
- **4.** Stop firing the warps
- 5. Trawl geometry and vessel speed has stabilized / Start nominal tow duration
- 6. Start retrieving the warps / End of nominal tow duration
- 7. Trawl lift-off from bottom
- 8. End of hauling the doors
- 9. Codend on deck.

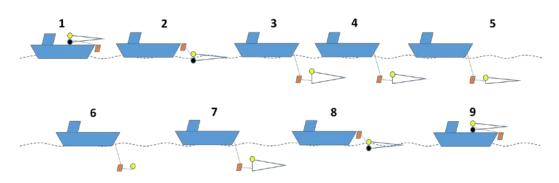


Figure 11.3.1. Illustration of steps for recording of towing times during the French CGFS-O4 in 2017 (from presentation on WD1).

As defined in the IBTSWG 2017 report steps 2, 3, 5, 6, 7 and 8 have been recorded by all countries and an examples for the results are given here for France from the Channel Goundfish Survey in Q4 (CGFS-Q4) in 2017 and for Denmark from the North Sea IBTS in Q3 2017 and in Q1 2018. Observations from other countries will be analysed together with the results of zero-minute tows as outlined in section 11.4).

Difficulties for a clear identification of the time when the trawl lifted off the bottom based on the echograms from the acoustic trawl geometry sensors were encountered in particular in shallow waters. However, bottom contact duration (from time-step 3 to 7) and total towing time (from time-step 2 to 8) exceeded the nominal tow duration (from time-step 5 to 6) by about 5 and 10 min on average (Figure 11.3.2). Time from the beginning of shooting (step 2) until groundgear bottom contact (step 3) (Figure 11.3.3.) and hence total fishing time outside the nominal tow duration was related to depth (Figures 11.3.2. and 11.3.4) due to higher warp length at larger depth.

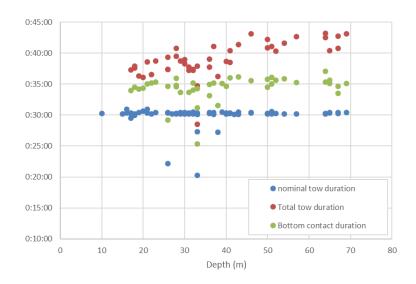


Figure 41.3.2. Tow times during the FR-CGFS-Q4 in 2017.

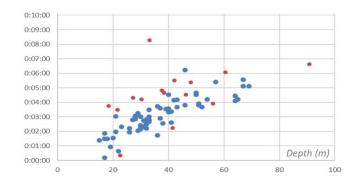


Figure 11.3.3. Time from setting the doors until touchdown during the 2017 FR-CGFS in Q4.

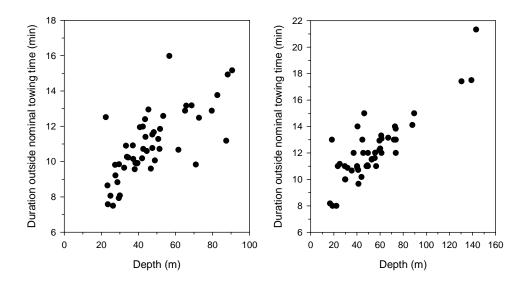


Figure 11.3.4. Total fishing time outside the nominal tow duration related to depth during the Danish NS-IBTS in Q3 2017 (left) and Q1 2018 (right).

11.4 Effect of tow duration on catch rates: Preliminary results from zero-minute tows

(Kai Wieland, Finlay Burns, Erik Olsen, Arnaud Auber, Chris Lynam, Anne Sell, Barbara Bland, Francisco Velasco, Corina Chaves, Ralf van Hal)

Background

IBTSWG has discussed the effect of varying tow duration together with the possibility of reducing the standard tow duration. This would potentially free up survey effort that could then be used to satisfy additional sampling requirements. These would allow the survey to move towards a more integrated ecosystem survey without impairing the integrity of the date required for stock assessments several times during the current 3 year but also during the previous term (see e.g. IBTSWG reports 2015 – 2017). In an experimental setup, the IBTSWG explored during the Q3 surveys in 2015 and 2016 the question whether the standard 30-min hauls could be reduced to 15-min without losing important information. During this analysis, it became apparent, that the portion of a haul caught during shooting and hauling of the net may be substantial in some cases. While it is obvious, that a portion of the catch may be obtained outside the nominal tow duration, but its magnitude and importance has not been well documented. It had been assumed that the proportion of the catch outside the nominal tow duration was relatively more important for short than for long tows and may depend on depth but there is no evidence that this has a significant effect on the overall abundance indices derived from a survey, and so far tows are accepted as valid even if their duration differed substantially from the standard towing time. Therefore, during its meeting in 2017, IBTSWG encouraged the participants in the NS- and NeAtl-IBTS to collect information on GOV fishing times outside the nominal tow duration (see section 11.3) and to conduct 'zero-minute' tows for estimating the so-called 'end effect' for the GOV trawl (ICES 2018: Report of the IBTSWG. ICES CM 2017/SSGIEOM:01. 337 pp.).

Information collected

10 different countries conducted zero-minute tows (Table 11.4.1) and for some of them details are described in several working documents (as attached in Annex 9). The zero-minute tows were usually conducted close to a 30-min standard tow and in some cases also additional 15-min tows were carried out. In a few cases replicates of zero-minute tows at the same sampling location were completed in order to estimate small-scale variability. An example for the geographical layout of the tows in the vicinity of a standard tow is shown in figure 11.4.1, avoiding fishing on exactly the same ground. This should ensure that the catches were taken far enough away from the preceding tows, thus ensuring there are no resulting aggregation/disturbance issues.

The trawl track of a zero-minute tow does not necessarily follow a straight line depending on wind and wave conditions during setting and hauling and thus towed distance cannot simply be calculated from the vessel positions at start and end of the station (Figure 11.4.1). Net geometry and vessel speed changes constantly during zero-minute tows (Figure 11.4.2) in which hauling back of the trawl starts just in the moment when stable values are obtained on the sea floor. Hence, catches can only be standardized by total tow duration or, preferably for demersal species, by fishing time at the bottom (outside stable conditions), but not by swept area as done in a study by Battaglia *et al* (2006, ICES JMS 63: 956-959).

' ear	Quarter	Country	Vessel	Set number / ID (Location)	Rectangle	Depth range	Number of zero minute tows	Accompanied 30 min tow (Y/N)	Accompanied 15 min tow (Y/N)	Documentation
2017	3	B DNK	DAN2	A	34F2	48 - 49	1	Y	N	
2017		B DNK	DAN2	В	39F1	47 - 48	3	Y	N	IBTSWG 2018 WD4, Dat
2017		B DNK	DAN2	С	41F1	83	1	Y	N	files on sharepoint
2017		B DNK	DAN2	D	41F4	68 - 69	3	Y	N	
2017	******	B DNK	DAN2	E	43F7	34 - 39	3	Y Y	N	
2017		sco sco	SCO3 SCO3	AB	41E9 47E7	66 - 74 80 - 72	3	Y	N	IBTSWG 2018 WD3, Dat
2018		L SCO	SCO3	C	47E7 43E9	82	3	Y	N	files on sharepoint
2018		sco	SCO3	D	49E5	182 - 188	3	Y	N	ines on sharepoint
2018	******	FRA	THA2	W9939	34F3	40-41	1	Ŷ	Y	
2018		FRA	THA2	W9944	36F2	36	1	Ŷ	N	
2018		FRA	THA2	W9961	35F1	50-51	1	Y	N	
2018	1	FRA	THA2	W9986	37F3	48	1	Y	N	IBTSWG 2018 WD5, Dat
2018	1	FRA	THA2	W9103	36F5	29	1	Y	Y	files on sharepoint
2018	1	FRA	THA2	W9126	34F2	39-40	1	Y	Y	
2018	1	FRA	THA2	W9135	32F1	32-35	1	Y	N	
2017	3	SWE	DANS	Haul 48 - 50	44F9	104 - 108	3	Y	N	
2017	3	SWE	DANS	Haul 70 - 71	43G1	62 - 63	1	Y	N	Data files on
2017		SWE	DANS	Haul 76 - 77	44G1	83 - 87	1	Y	N	sharepoint
2017	******	SWE	DANS	Haul 85 - 87	44G0	109 - 116	2	Y	N	
2017		GER	WH3	Α	38F7	21	1	Y	N	IBTSWG 2018 WD6, Dat
2017	******	GER	WH3	В	39F7	21 - 23	2	Y	N	files on sharepoint
2017		SPA	MO29	Set1_SPNSGFS	14E0	231-238	1	Y	N	
2017		SPA	MO29	Set2_SPNSGFS	15E0	169-170	1	Y	N	
2017		SPA	MO29	Set3_SPNSGFS	16E1	191-193	1	Y	N	
2017		SPA	MO29	Set4_SPNSGFS Set5 SPNSGFS	16E1	167-170	1	Y Y	N	
2017		SPA	MO29 MO29	_	16E3 16E4	139-140 309-311	1	Y	N	
2017		I SPA I SPA	MO29	Set6_SPNSGFS Set7_SPNSGFS	16E4 16E5	174-180	1	Y	N	
2017		SPA SPA	MO29	Set8_SPNSGFS	16E7	130-135	1	Y	N	Data files on
2017		SPA SPA	EZA	Set1_SPPORC	36D6	343-348	1	Y	N	sharepoint
2017		SPA	EZA	Set2_SPPORC	35D7	343-322	1	Y	N	Sharepoint
2017		SPA	EZA	Set3_SPPORC	34D7	264-287	1	Y	N	
2017		SPA	EZA	Set4 SPPORC	33D7	608-587	1	Ŷ	N	
2017		SPA	EZA	Set5_SPPORC	34D5	366-369	1	Ŷ	N	
2017		SPA	EZA	Set6_SPPORC	33D6	305-317	1	Ŷ	N	
2017		SPA	EZA	Set7_SPPORC	33D6/33D7	656-698	1	Y	N	
2017	3	SPA	EZA	Set8_SPPORC	32D6	425-429	1	Y	N	
2017	4	POR	NOR	6	02E2	380	1	Y	N	
2017	4	POR	NOR	74	09E0	73	2	Y	N	
2016	3	ENG	END	70	49F3	130 - 135	1	Y	N	
2016	3	ENG	END	62	47F0	118	1	Y	N	
2016	3	ENG	END	54A	45F0	148	1	Y	Y	
2016		ENG	END	55	45F1	106 - 108	1	(Y)	Y	
2016		ENG	END	26	40F3	37	1	Y	Y	
2016		ENG	END	9	36F2	70 - 73	1	Y	N	
2017		ENG	END	1	32F1	33 - 34	1	Y	N	
2017		ENG	END	2	32F2	30 - 34	1	Y	N	
2017		ENG	END	3	32F3	24	1	Y	N	
2017		ENG	END	4	34F2	38	1	Y	N	
2017		ENG	END	5	34F3	27 - 29	1	Y	N	
2017		ENG	END	7	36F0	54	1	Y	N	
2017			END	8	36F1	40	1	Y	N	IBTSWG 2018 WD2 an
2017		ENG	END	15	38F1	37 - 38	1	Y	N	IBTSWG 2018 WD2 an
2017 2017		ENG ENG	END END	18 29	38F4 40F6	44 37	1	Y Y	N	1013440 2017 WD0
2017		ENG	END	34	40F6 42F1	- 37 96 - 98	1	Y	N	
2017		ENG ENG	END	39	42F1 42F6	39 - 40	1	Y	N	
2017		ENG	END	40	42F6 43E8	116 - 129	1	Y	N	
2017		ENG ENG	END	58	43L8 45F4	156 - 164	1	Y	N	
2017		ENG	END	60	47E8	114 - 115	1	Y	N	
2017		ENG	END	64	47E0	124 - 126	1	Ŷ	N	
2017		ENG	END	65	47F3	164 - 187	1	Ŷ	N	
2017		ENG	END	66	49E9	127 - 130	1	Ŷ	N	
2017		ENG	END	74	51F1	130 - 135	1	Ŷ	N	
2017		ENG	END	76	43F0	80 - 82	1	Y	N	

Table 11.4.1. Inventory of zero-minute tow datasets collect during the NS- and NeAtl-Atlantic IBTS.

2017

2017

2017

2018

2018

2018

2018

2018

2018

3 ENG

3 ENG

3 ENG

1 NOR

1 NOR

1 NOR

1 NOR

1 NOR

1 NED

END

END

END

58G2

58G2

58G2

58G2

58G2

TRI2

43F0

45F0

35F1

43F4

49F1

49F2

49F3

50F3

80 - 82

149

30

53 - 182

14 - 95

76

54B

X1

Y

Y

Y

1

1

1

12

12

1

2

1

8 hauls

Ν

Ν

Ν

IBTSWG 2018 P8

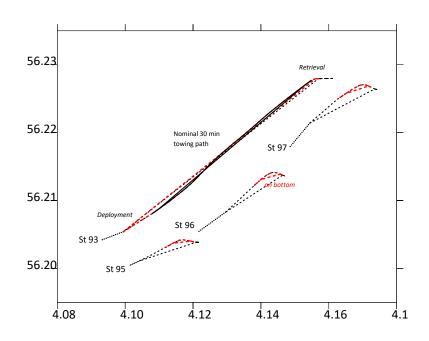


Figure 11.4.1. Trawl tracks of a 30-min standard tow and 3 subsequent zero-minute tows conducted in rectangle 41F4 by Denmark during the 3Q NS-IBTS in 2017 (St.: station, CTD taken between the standard tow and the first zero minute tow, station 94).

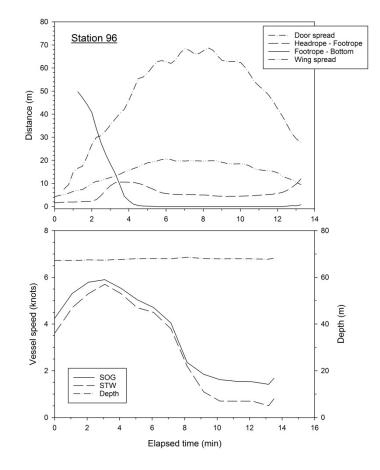


Figure 11.4.2. Gear geometry and vessel speed during a zero-minute tow conducted in rectangle 41F4 by Denmark during the 3Q NS-IBTS in 2017.

For most of the countries, average total tow duration and fishing time at the bottom for the zero minute tows were about 11 and 5 min, respectively (Figure 11.4.3, see section 11.3 for further details). Scotland reported significantly lower values for the bottom contact time (1 -2 min, WD3) whereas total tow duration of zero-minute tows for England (up to more than 30 min, WD2) far exceeded the ranges reported by the other countries. Since in general, for each country's vessel the fishing times outside the nominal tow duration is equal between standard tows and zero-minute tows, the comparison between both sets of catches is still valid. However, the difference when compared to the results from other countries has to be considered when a combined dataset is used and here standardization by either total tow duration of bottom contact time appears to be essential.

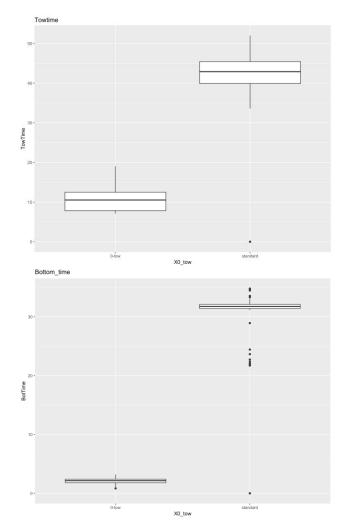


Figure 11.4.3. Total tow duration and bottom contact time of zero-minute tows compared to standard 30-min tows for Norway, NS-IBTS 1Q 2018.

Preliminary results

The results from the replicate zero-minute tows from Denmark, Scotland, Sweden and Germany are highly variable for pelagic species and indicate that it is questionable that comparisons of a single zero-minute tow with the closest standard tows can give conclusive results. In contrast, the variability for the demersal species was much less, except on one sampling location (Table 11.4.2) at which 93 % of the catch was saithe

(WD3). Without this, the average coefficient of variation of the demersal species group would decrease from 0.45 to 0.34, and the average catch of demersal fish species in the zero-minute tows ranged between 1 and 17 % of the nearest 30 min tow.

			Pelagic fish species catch (kg)					Demersal fish species catch (kg)			
			Zei	ro minute f	tow			Zer	ro minute t	ow	
Country	Rectangle	1	2	3	mean	CV	1	2	3	mean	cv
	39F1	0.15	0.00	0.00	0.05	1.73	30.57	21.24	27.09	26.30	0.18
DNK	41F4	0.00	0.00	0.00	0.00		18.69	33.97	26.82	26.49	0.29
	43F7	0.91	0.00	1.16	0.69	0.88	28.90	26.49	30.57	28.65	0.07
	41E9	0.00	0.00	0.00	0.00		1.48	0.75	2.15	1.46	0.48
SCO	47E7	1.44	0.21	0.02	0.56	1.39	0.24	0.87	1.12	0.74	0.61
300	43E9	0.00	0.00	0.00	0.00		2.31	0.62	0.87	1.26	0.72
	49E5	0.00	0.00	0.00	0.00		0.84	1.60	24.92	9.12	1.50
SWE	44F9	89.70	32.13	468.40	196.74	1.20	137.64	53.10	100.18	96.97	0.44
	44G0	0.00	7.06		3.53	1.41	59.28	49.34		54.31	0.13
GER	39F7	4.34	1.58		2.96	0.66	0.75	0.66		0.70	0.10
					average:	1.33				average:	0.45

Table 11.4.2. Catches of pelagic and demersal fish species in replicate zero-minute tows.

The few available data for comparing catches in zero-minute tows with 15- and 30minute tows conducted at the same locations are shown in table 11.4.3 for demersal gadoids. They do not allow conclusive interpretations, and for this aspect the collection of more data would be desirable.

Table 11.4.3. Catches of demersal gadoids in long and short standard tows compared to zero minute tows (*: 30 min tow average for two stations, **: 30 min tow aborted after 25 min, data for ENG from IBTSWG2017 WD6).

			Demersal gadoid catch (kg)						
		Nom	inal tow dura	ation	Catch zero minute tow in	Catch zero minute tow in			
Country	Rectangle	30 min	15 min	0 min	% of 30 min tow	% of 15 min tow			
FRA	36F5	2.30	1.13	0.00	0.00	0.00			
FNA	34F2	0.60	0.05	0.00	0.00	0.00			
	45F0	183.83	119.30	52.36	28.48	43.89	*		
ENG	45F1	221.47	252.73	94.76	42.79	37.49	**		
	40F3	2.96	0.99	0.07	2.36	7.07			
				Average:	14.73	17.69			

Species richness of demersal fish species in the zero-minute tow amounted to between 24 and 120 % and on average 69 % of that in the nearest 30-min standard tow, and maximum observed lengths for zero-minute and 30-min tows were similar (Figure 11.4.4). Hence, it is unlikely that the result of the comparison of catch rates is affected by the possibility that the zero-minute hauls do catch only a minor part of the present fish community or do only catch the small individuals.

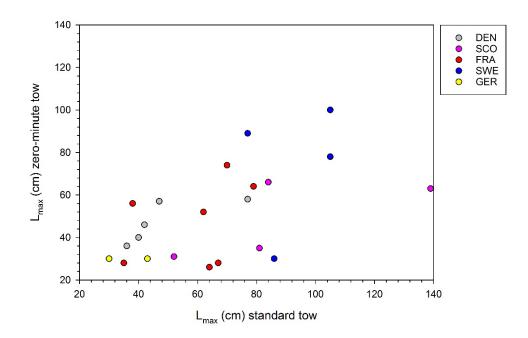


Figure 11.4.4. Comparison of maximum length of demersal fish species in zero-minute and 30-min tows.

Future plans

The IBTSWG 2018 meeting participants agreed that the national data will be made available to the IBTSWG member at IMR Bergen for a comprehensive analysis of the international dataset. Here, the data should be grouped into at least pelagic fish species, demersal gadoids, flatfish and other demersal fish species and this more in-depth analysis should consider additional potentially influential factors such as depth and behavioural aspects of the target species as well as differences between countries and vessels in respect of trawl settling and hauling time. Additional information, in particular for comparing 15-min tows with zero-minute tows, may be required to test whether the effect of the catch taken outside the nominal tow duration is more important for short than for long tows. It is planned that the results of the analyses will be written in collaboration between IBTSWG members and presented as a section in an ICES Cooperative Research Report entitled "Effect of tow duration on catch rates and species richness in the North Sea and Northeast Atlantic IBTS", which should then also include a full documentation of the additional tow time data (as specified in section 11.3) collected during recent North Sea and Northeast Atlantic International Bottom Trawl Surveys.

12 Data overviews (ToR h) and Data reporting guidelines and Input to WKSUREP (ToR i)

As stated in last year's report, generic issues on data overviews and the type of information collected of the North Sea and the NeAtlantic IBTS are provided in the respective survey manuals. In relation to how survey data have informed the assessment and advisory process for any specific stocks assessed by ICES Expert Groups, the annual report of the relevant assessment working groups, or benchmark reports, should be consulted. The information on the data collected on the annual surveys coordinated by IBTSWG is already collated in a standardized format and are presented in separated sections for the North Sea IBTS in the 1st and 3rd quarter and the NeAtlantic IBTS in the annual reports.

13 Cooperation

• Cooperation with other WG's

IBTSWG has close contact with HAWG and WGISDAA but less cooperation with assessment WG's such as e.g. WGNSSK and WGWIDE. Members of the IBTSWG participated regularly in WGISUR meetings.

• Cooperation with Advisory structures

There has been or is a good contact to the parental committees SSGIEOM and EOSG.

• Cooperation with other IGOs

Cooperation with other IGOs is currently not applicable for IBTSWG.

14 Summary of Working Group self-evaluation and conclusions

A summary list of IBTSWG achievements during this cycle is given in section 4. The group recommends continuing a new term in 2019 with new chairs (Annex 5).

Name	Address	Phone/Fax	E-mail
Anne Sell	<i>until June 2018:</i> Thünen Institute of Sea Fisheries Palmaille 9 22767 Hamburg Germany <i>after 1st June 2018:</i>	+49 40 38905 246 +49 40 38905 263	anne.sell@thuenen.de
	Thünen Institute of Sea Fisheries Heuwigstrape 31 27572 Bremerhaven Germany	+49 471 94460-0	anne.sell@thuenen.de
Arnaud Auber (part-time, day 1 -4)	Ifremer Boulogne-sur-Mer Centre 150, Quai Gambetta PO Box 699 62321 Boulogne Cedex France	+33 321 995 674	arnaud.auber@ifremer.fr
Barbara Bland (part-time, day 1 – 3.5)	Swedish University of Agricultural Sciences Institute of Marine Re- search Turistgatan 5 453 30 Lysekil Sweden	+46 104784013	barbara.bland@slu.se
Christo- pher Lynam (part-time, day 2 -4)	CEFAS Pakefield Road Lowestoft Suffolk NR330HT UK	+44 1502 524 514	chris.lynam@cefas.co.uk
Corina Chaves (co-chair)	Portuguese Institute for the Sea and the Atmosphere (IPMA) Avenida Alfredo Magalhães Ramalho, 6 1495-165 Lisbon Portugal	+351 213027185	corina@ipma.pt
David Stokes	Marine Institute Rinville Oranmore Co. Galway Ireland	Tel: +353 (0)91 387200 Fax: +353 (0)91 387201	david.stokes@marine.ie
Eric Foucher (part-time, day 1- 4)	Ifremer Station de Normandie Avenur du Général de Gaulle 14520 Port-en-Bessin France	+33 231 51 56 44	eric.foucher@ifremer.fr

Annex 1: List of participants

Erik Olsen	Institute of Marine Re- search	+47 934 39 256	eriko@hi.no
	Nordnes		
	PO Box 1870		
	5817 Bergen		
	Norway		
Finlay Burns	Marine Scotland Sci- ence Marine Laboratory 375 Victoria Road PO Box 101 AB11 9DB Aberdeen UK	+44 131 244 2897	burnsf@marlab.ac.uk
Francisco Baldó (part time, day 2 – 5, sick on day 1)	Instituto Español de Oceanografía Centro Oceanografico de Cádiz Puerto Pesquero, Muelle de Levante s/n E-11006 Cádiz Spain	+34956294189	francisco.baldo@ieo.es
Francisco Velasco	Instituto Español de Oceanografía Centro Oceanográfico de Santander Promontorio San Martín, s/n PO Box 240 39004 Santander Cantabria Spain	+34 942 291716 +34 942 275072	francisco.velasco@ieo.es
Kai Ulrich	DTU Aqua - National	+45 3396 3276	kw@aqua.dtu.dk
Wieland (co-chair)	Institute of Aquatic Resource The North Sea Science Park Willemoesvej 2 9850 Hirtshals Denmark	+45 3396 3260	Anouquiuuux
Morgane	Ifremer		morgane.travers@ifremer.fr
Travers (part-time, day 1 - 4)	Rue de l'Île d'Yeu 44000 Nantes France		0
Natoya Jourdain	Institute of Marine Re- search Nordnes PO Box 1870 5817 Bergen Norway	+47 483234	jourdain.natoya@hi.no
Pia Schuchert	Agri-Food and Biosci- ences Institute North- ern Ireland Belfast	+44 28902 55500	pia.schuchert@afbini.gov.uk

Ralf van Hal (part-time, day 1 - 4)	Wageningen Marine Research, PO Box 68, 1970 AB IJmuiden, Netherlands	+31317487088	ralf.vanhal@wur.nl
Rob	Marine Scotland Sci-	+44 131 244	
Kynoch	ence	3360	
	Marine Laboratory		
	375 Victoria Road		
	PO Box 101		
	AB11 9DB Aberdeen		
	UK		
Vaishav	International Council	+ 45 33 38	vaishav@ices.dk
Soni	for the Exploration of	6735	
(part time,	the Sea		
day 2 – 3,	H. C. Andersens		
sick on day	Boulevard 44-46		
1)	1553 Copenhagen V		
	Denmark		

Annex 2: Agenda adopted

Note: All items of the agenda were covered but not in the order as given below due to short term changes of the availability of several participants (see Annex 1).

•••••	ay, 19/3	Chart catting		Dlancer	Т	
09:00		Start, setting-up IT		<u>Plenary</u>		
09:30		Welcome and hous	sekeeping	Introduc- tion:	Kai, Corina, Dave	
		Adoption of agend	а			
		Structure and futur	re of IBTSWG			
		Introductory inform				
		discussion on				
		1 chair / 2 co-chairs	setup			
		Self-evaluation				
		ToR's for next perio	od			
10:30	COF-					
	FEE					
11:00		ToR a - Survey coor		<u>Plenary</u>		
		Status of reports or		Lead:	_	
		Northeastern Atlan	tic 2017		Fran	
		NS Q3 2017			NN	
		NS Q1 2018	-	Plenary	Ralf	
		-	-			
		Status of SISP's upd	Lead:			
		- Northeast A - North Sea C		Fran		
		- North Sea C		Anne Matthias		
		- Marine litte		Ralf		
11:30			Plenary	Kuij		
11.50		ToR c – DATRAS related topics		Presenta-	Vaishav	
				tion	• ansmar	
13:00	Lunch				<u>.</u>	
14:00		ToR a – Survey coordination		Subgroups		
		Prepare reports on		<u>.</u>	+	
		- Northeast A	• •	Lead:	Fran	
		- North Sea			Ralf/NN	
15:30	COF-					
	FEE					
16:00		ToR b – Survey	ToR a – Survey	<u>Subgroups</u>		
		Manuals	coordination	Lead:	As above	
		Prepare updates	Prepare reports			
		- North Sea	on previous sur-			
		GOV	veys			
		- North Sea	- Northeast At-			
		MIK	lantic			
		- Northeast				
40.00		Atlantic				
18:00	[Adjourn		1	<u> </u>	

Tuesda	ay, 20/3			
09:00		ToR g – Survey design	<u>Plenary</u>	
		Results from zero-minute tows Presentations by country:	Lead: Presenta- tions:	Finlay, Chris National representa- tives
10:30	COF- FEE			
11:00		Overview on towing times outside nominal tow duration News on results from tow duration consideration Estimating variance at age for the NS- IBTS Request French MFSD for fixed sta- tions Discussion on progress and decisions on future work	Presenta- tions:	Fran, NN, Ralf, Mor- gane Finlay, Kai, Anne Natoya Arnaud
13:00	Lunch			
14:00	Lunch	ToR's a, b, c, and g (zero-minute tows) Report writing		
15:30	COF- FEE			
16:00		ToR f – Collection of age and other biological data	<u>Plenary</u> Lead:	Ralf
		ToR d – Swept area index ToR e – Effect of variable sweep lengths, groundgears etc.)	<u>Plenary</u> Lead:	Vaishav, Rob, Finlay
		WKSEATEC: final update French onboard data collection	<u>Plenary</u> Presenta- tion:	Dave Pascal
18:00		Adjourn		

Wedne	esday, 21	L/3		
9:00		ToR a - Survey coordination	<u>Subgroups</u>	
		Planning the next surveys: - Northeast Atlantic 2018 - North Sea 3Q 2018 and North Sea 1Q 2019	Lead:	Fran NN, Ralf
		Response to ACOM Future Survey Risk Form (by survey/country)		
		ToR a, b and c		
		Prepare report		
10:30	COF- FEE			
11:00		ToR a, b and c	<u>Plenary</u>	
		Draft report Northeastern Atlantic 2017 NS Q3 2017 NS Q1 2018 DATRAS (incl. species identification and other data issues	Presenta- tions:	Fran, NN, Ralf, Vaishav, ?
13:00	Lunch			
14:00		Structure and future of IBTSWG Self-evaluation report Decision on 1 chair / 2 chair setup 'Nomination' of volunteers for chair(s) and area coordinators	Plenary	
15:30	COF-			
16:00	FEE	ToR d, e, f and g; Self-evaluation Prepare report		
18:00		Adjourn		

Thursd	lay, 22/3			
9:00		Modifications of GOV Vonon flyers instead of kite	<u>Plenary</u> Presenta- tions:	Kai
		Comparisons with different netting materials		Erik
				Rob
		New IBTS survey trawl		Finlay,
		Status, discussion on progress and de- cisions on future work on gear issues	Lead:	Rob
10:30	COF- FEE			
11:00		Structure and future of IBTSWG Election of new chairs and/or area co- ordinators Recommendations from other EG's to IBTS WG Action list Recommendations to other EG's	<u>Plenary</u>	
13:00	LUNCH			
14:00		ToR's and deliverables for next period Venue(s) and date(s) for next meet- ing(s) Contribution to ICES ASC 2018 Theme Session J (Survey data products for stock and ecosystem assessments)	<u>Plenary</u>	
		Input to WGISUR in 2018 and to work- shop on integrated monitoring in the North Sea in 2019	Lead:	Ralf
15:30	COF- FEE			
16:00		ToR d, e, f and g Draft report	Presenta- tions:	ToR leads
		Contribution to WKESIG (Workshop on evaluating survey information Celtic gadoids) in October 2018	Lead:	Dave
10.00		Report writing		
18:00	[Adjourn		

Friday,	, 23/3			
9:00			<u>Plenary</u>	
		Contribution to WKUSER (Workshop on unavoidable survey effort reduction) in January 2019	Lead:	Dave, Ar- naud
		Contribution to WKNSIMP (Workshop on impacts of planned changes in the North Sea) in June 2019	Lead:	Каі
		Update of action list and recommenda- tions, e.g. Contact to WGFTFB (Meeting 4-7 June in Hirtshals) and Survey trawl flume tank workshop		
10:00	COF-			
	FEE			
10:30		Report Final Draft	<u>Plenary</u>	
		Change / Adoption of final sections	Presenta- tions:	ToR leads and area coordina- tors Corina, Kai
12:00		Closure of the meeting		
		Update IBTSWG membership list		Chairs

Recommendation	Adressed to	
1. Provide swept area based CPUE by length and haul and CPUE by age and haul (for all rectangles including e.g. also 44F6), and swept area based based indices for the NS-IBTS target species (including plaice) applying the most recent species-specific standard areas as used in the stock assessments and defined by e.g. WKNSEA/WGNSSK, WGWIDE and HAWG	ICES Data Centre	
2. Etablish a joint workshop (WGFTFB and IBTSWG) for developing an new standard survey trawl and rigging for the NS-IBTS and the NeAtl-IBTS	SCICOM, WGFTFB	
3. Advice on improving the standardization of marine litter and provision categories and provision of an extended description preferably together with a photographic field guide for the identification of marine litter categories	WGML	
4. Provide a list of other experts groups that are using IBTS data from a particular survey identifying the species and/or other information from NS-IBTS and NeAtl-IBTS such as cephlapods, benthos and marine litter	SCICOM	
5. Identifying the species and age groups for which NS-IBTS and NeAtl-IBTS indices are used in the assessments or give acces to such information	ACOM, SCICOM	
6. Add a field in HH records allowing to specify experimental tows, e.g. for trawl calibration or non-standard tow durations	ICES Data Centre	
7. Prepare output from DATRAS for routine reporting on NS-IBTS and NeAtl-IBTS results	ICES Data Centre	
8. Establish a follow-up workshop on recent technical developments for im- proving data collection and data quality at sea (WKSEATEC II).	SCICOM	

Annex 3: Recommendations

Annex 4: Continuation of IBTSWG and ToRs for the next period

The International Bottom Trawl Survey Working Group (IBTSWG), co-chaired by
Ralf van Hal, Netherlands, and Pascal Laffargue, France, will meet to work on ToRs
and generate deliverables as listed in the Table below:
-

	MEETING DATES	Venue	REPORTING DETAILS	Comments (change in Chair, etc.)
Year 2019	1–5 April	Bremerhaven Germany, or Den Helder, NL	Interim report by xxx to ACOM-SCICOM	
Year 2020	XX-XX	Lysekil,	Interim report by xxx to	
	March/	Sweden, or	ACOM-SCICOM	
	April	Belfast, UK		
Year 2021	XX-XX	Aberdeen, UK,	Final report by xxx to	
	March/	or Madrid,	ACOM-SCICOM	
	April	Spain		

ToR descriptors

ToR	Description	Background	Science plan topics ad- dressed	Duration	Expected deliverables
a	Coordination and reporting of North Sea and Northeastern Atlantic surveys, including appropriate field sampling in accordance to the EU Data Collection Framework. Review IBTS SISP manuals in order to achieve additional updates and improvements in survey design and standardization.	planning of Q1; Q3 and Q4 surveys; communication of coordinator with cruise leaders;	30, 31	Recurrent annual update	 Survey summary including collected data and description of alterations to the plan, to relevant assessment WGs and other EGs (WGCSE, WGNSSK, HAWG, WGHMM;,WGDE EP, WGWIDE, WGEEL, WGCEPH, WGCEPH, WGML) and SCICOM. Indices for the relevant species to assessment WGs (see above) Planning of the upcoming surveys for the survey coordinators and cruise leaders Updated version of survey

				substantial changes are made.
b	Address DATRAS-related topics in cooperation with DGG: data quality checks and the progress in re- uploading corrected datasets, quality checks of indices calculated, and prioritizing further developments in DATRAS.	Issues with data 30 handling, data requests or challenges with re- uploading of historical or corrected data to DATRAS have been identified and solutions are being developed	Multi- annual activity.	Prioritized list of issues and suggestion for solutions and for quality checking routines, as well a definition of possible new DATRAS products, submitted to DATRAS group at ICES. Annual check of recent survey data
c	Develop a new survey trawl gear package to replace the existing standard survey trawl GOV.	The divergence in the 28 GOV specification from the one given in the survey manual due to historical drift and technical creep has been acknowledged by the group (WGIBTS 2015). Furthermore, the deviation from the specification contained in the manual and between users has widened to the point where it will never be reversed. Therefore, the perefered option is to maintain the status quo of national GOV specifications and develop a new survey trawl package to replace the GOV. A number of IBTS members are due to replace vessels in the next few years and this provides an oppertunity to review time-series and undertake inter- calibration trials between the GOV and a new trawl. A further driver for a new gear has been	2 years	Design specification (Working document) in 2020

		Celtic Sea area where		
		the necessity to		
		optimize sampling		
		oppertunities are not		
		been provided by the		
		GOV. In parellel with		
		trawl development		
		the process of		
		replacing the GOV		
		will need to be		
		defined with		
		reference to		
		continuing the		
		assessments and		
		existing time-series.		
		(For this ToR, the		
		IBTS WG seeks		
		support from gear		
		technology experts		
		and welcomes their		
		advice and input into		
		the development of		
		the new survey gear		
		package)		
d	Evaluate the current survey	Specific issues to be	1 - 3 years	CRR on effect of
	design and explore	addressed include:	5	tow duration on
	modifications or alternative	Stratification and		catch rates and
	survey designs, identifying	optimal spatial		species richness by
	any potential benefits and	distribution of effort.		end of 2019
	drawbacks with respect to			Paper on variance
	spatial distribution and			estimation of
	frequency of sampling,			abundance indices
	survey effort in terms of			in 2020
	number of otoliths by			Paper on
	species and number of trawl			Stratification and
	hauls.			distribution of
				survey effort in
				2021.

Summary of the Work plan

Updates for ToRs a, b and c.

Supporting information

Priority Essential, The general need for monitoring fish abundance using surveys is evident in relation to fish stock assessments, and it has increasing importance in relation to MSFD GES descriptors biodiversity, foodwebs, and bottom integrity. Besides the relation of fish abundance with descriptor 3 Exploited stocks.

Scientific justi- fication	 ToR a) This is a core function of the IBTSWG, an important forum for coordination and evaluation of standardized bottom trawl surveys in the Eastern Atlantic Area, to ensure good survey coverage in relation to stocks and areas. inter-calibration work. and high quality of data. The group also provides a brief overview the result of the individual surveys undertaken during the previous year and in the first quarter of the ongoing year. IBTSWG will continue to review feedback and implement modifications, including coordination and implementing new requirements of the EU DCF. To ensure quality and traceability of sampling protocols, changes in the design and procedures used in the surveys coordinated by the IBTSWG have tobe implemented and documented in detail in the IBTS manuals, which are available via the ICES webpage under Series of ICES Surveys Protocols. ToR b) DATRAS has become the core database containing the data obtained in the national IBTSurveys, the The development of DATRAS needs to be evaluated annually, and the group is also one of the forum to discuss with ICES Data Centre and agree on the priority of desired further developments. ToR c) A number of IBTS members is due to replace vessels in the next few years and this provides an opportunity to review time-series and undertake inter-calibration trials between the GOV and a new trawl.
Resource re- quirements	A five day IBTS meeting. Prepared documents from members following ToR Leaders identified above. Eight days Chair's time to edit. It is esti- mated that each ToR will require at least 8 hours preparation.
Participants	The Group is normally attended by some 20–25 members and guests. All members will participate on the discussion of all ToRs, but ToRs leaders have been identified and appointed to intersessionally prepare the work and lead it in the meeting.
Secretariat fa- cilities	Sharepoint plus normal secretariat support.
Financial	No financial implications.
Linkages to ad- visory commit- tees	ACOM. IBTS indices are used in the assessment of multiple stocks.
Linkages to other commit- tees or groups	There are relations with other botttom trawl surveys (WGBEAM, WGBIFS) that also use DATRAS as the international repository for its data (WGDIM, DGG). There are also a linkages with Assessment WGs using IBTS indices. Also relevant to the Working Group on Ecosystem Effects of Fishing Ac- tivities (WGECO), the Working Group on Improving use of Survey Data for Assessment and Advice (WGISDAA) and Working Group on Inte- grating Surveys for the Ecosystem Approach (WGISUR).

Linkages to other organizations

IOC, GOOS, OSPRA.

Annex 5: Working Group self-evaluation

- 1. Working Group name: International Bottom Trawl Surveys Working Group (IBTSWG)
- 2. Year of appointment: 2016
- 3. Current Chairs: Kai Wieland (Denmark) and Corina Chaves (Portugal)
- 4. Venues, dates and number of participants per meeting:

Venues	Dates	Number of participants
Sète, France	4–8 April 2016	21 + 7 MEDITS Seminar
ICES Headquarters	27-31 March 2017	22
Oranmore, Ireland	19-23 March 2018	18

WG Evaluation

5. If applicable, please indicate the research priorities (and sub priorities) of the Science Plan to which the WG make a significant contribution.

The IBTSWG is committed with Science Plan's topics 25, 27, 28, 30 and 31. The group has made significant contributions to the specified topics namely in the identification of monitoring requirements and quality of data estimates (SP 25); on the development of strategies to fill gaps in knowledge and methodological monitoring (SP 27); on the promotion of new technologies for observation and monitoring (SP 28); to comply with requests from other WG's and Experts Groups on the quality of its data products (SP30) and to ensure the best practices and the establishment of guidelines and quality standards for surveys's sampling programmes (SP 31)

- 6. In bullet form, list the main outcomes and achievements of the WG since their last evaluation. Outcomes including publications, advisory products, modelling outputs, methodological developments, etc. *
 - Publish and update of survey manuals for the International Bottom Trawl Surveys in the North Sea (SISP 10) and in the Northeast Atlantic areas (SISP 15) as well as for the MIK sampling in the Q1 NS-IBTS (SISP 2);
 - Establish routines for description of survey products: Survey summaries of IBTS coordinated surveys;
 - Results from analyses on survey stratification based on fish communities and other ecological information (NS-IBTS and the Western English Channel NeAtl-IBTS);
 - Tow durations experiments performed and analysed in Q3 NS-IBTS, 2015 and 2016 (Meadhdh Moriarty peer reviewed article on biodiversity aspects, several WD's to WGISDAA on catch rates effects)
 - Pursued and analysis on effects of stratification presented to WGISDAA and to be carry on as new ToR in 2019-2021 (further in-depth analysis)
 - Input data and algorithms for swept-area estimates have been checked for all NS-IBTS countries and some NE-Atl surveys (flexfile, CPUE estimates);
 - Swept-area based CPUE used in the analyses of the NS-IBTS 3Q 2015/2016 tow duration experiment in respect to catch rates.

From 2016/2017 reports:

- Review of WKPIMP outcome (Workshop to plan an integrated monitoring plan in the North Sea in the third quarter), initiated by WGISUR 2015, and held in February 2016;
- Initial analysis on the efficiency of the current sampling scheme of otoliths in the NS-IBTS;
- NS-IBTS data on net geometry since 2004 has been cleaned and interpolation routines for missing values have been established.

7. Has the WG contributed to Advisory needs? If so, please list when, to whom, and what was the essence of the advice.

The group provides fishery-independent survey indices to assessment working groups annually, such as: WGNSSK, WGBIE, WGDEEP, WGHANSA, WGWIDE, WGEF, WGCEPH, etc...

The group provides information and input to WG Marine Litter on Litter on the seabed collected in IBTSWG surveys;

The group provides information and data products to other EG within the ICES such as WGBIOP, etc...

8. Please list any specific outreach activities of the WG outside the ICES network (unless listed in question 6). For example, EC projects directly emanating from the WG discussions, representation of the WG in meetings of outside organizations, contributions to other agencies' activities.

Input on MSFD and marine litter for OSPAR committees.

9. Please indicate what difficulties, if any, have been encountered in achieving the work plan.

Experts required for the EG have shortage of time and heavy workloads, delaying delivery of products in time.

The lack of "ownership" on matters to be changed/evaluated (e.g. n^o otoliths, indices for assessment), which implies a more close interaction with other coordinators of data final products.

Future plans

10. Does the group think that a continuation of the WG beyond its current term is required? (If yes, please list the reasons)

Yes as the core actions of this group includes:

- Planning and coordination of International Bottom Trawl Surveys;
- Delivery of annual data products from bottom trawl surveys in the North Sea and the Northeast Atlantic;
- Identify ways to make surveys more cost-efficiency;
- Provide quality-ensured fishery-independent abundance indices with the lowest possible level of uncertainty.

11. If you are not requesting an extension, does the group consider that a new WG is required to further develop the science previously addressed by the existing WG.

(If you answered YES to question 10 or 11, it is expected that a new Category 2 draft resolution will be submitted through the relevant SSG Chair or Secretariat.)

12. What additional expertise would improve the ability of the new (or in case of renewal, existing) WG to fulfil its ToR?

The Group feels there is a need for the re-establishment of the link with data-users, whether their areas are gear technology, statistical modelling, and stock assessment WG's.

Links to other data end-users such as MSFD and Marine Litter legislators inside and outside ICES would be desirable.

13. Which conclusions/or knowledge acquired of the WG do you think should be used in the Advisory process, if not already used? (please be specific)

The distribution of many IBTS target species is changing and is not always being taken into account by the advisory process. The same or just slightly changed species-specific index areas are being used in DATRAS products and stock assessments of IBTS target species and this does not reflect the reality which has been identified by this group and other ICES EG's (see e.g. Heessen *et al.* (2015) Fish Atlas based on IBTS in the Celtic Sea, North Sea and Baltic Sea, and ICES (2016) WKFISHDISH). The process should integrate those alterations or adapt to those changes.

Technical developments occur and should be integrated improving data quality as in the evolution of fishery-based surveys into more complete and multi-purpose ecosystem surveys which then may also change sampling protocols and effort distribution.

Annex 6: Individual surveys summary reports

A.6.1. Introduction

This annex to the IBTSWG 2018 report presents the survey summaries by country that were formerly presented in the main report under section on the Northeastern Atlantic (i.e. ICES, 2017a section 5.3.2). All information about biological samples taken in all surveys, has been summarized and gathered on Table 5.3.3.1.1. under section 5.3.3.1. Biological samples).

Detailed information on survey sampling designs, stratifications and gears are also available from the Manual of the IBTS North Eastern Atlantic Surveys (ICES, 2017b).

Nation:	UK-Scotland	Vessel:	Scotia					
Survey	UK-SCOWCGFS Q1 0317S	Dates	14 th February – 06 th of March 2017					
Notes from survey (e.g. problems, additional work etc.):	distributed within 10 sampl miles to the specified samp If for any reason the trawl of was taken from a list of se (Table A.6.2.1) with all fis A total of 62 valid hauls we 85) in stratum Red 1for we one of which (haul 129) we was on poor ground and lac tained with commercial stat	ing strata. Trav ling position ar could not be un econdary rando hing bar 1 stati ere achieved. T hich a valid su vas redone succ cked a substitu tic gear (crab x) which facilit	atified with primary trawl locations randomly vls were undertaken within a radius of 5 nautical nd as near to the actual point as was practicable. Indertaken at the primary site then a replacement on positions. There were 65 trawls undertaken on (haul 96) taking place during daylight hours. There were 3 foul hauls encountered. One (haul bstitute (haul 86) plus another 2 two in Red 3, cessfully (haul 130) while the other (haul 124) te close by. Regular communication was main- creel) fishers working off the North coast, and tated the overall success of the survey. Figure ns and haul numbers					
	in order to obtain a tempera	ature and salini	oyed at 57 out of the 62 valid trawling stations ity profile to within approximately 5m of the 136 had no associated hydrography data.					
		of the otoliths from the main commercial demersal species were aged at sea, the pe- ic otoliths were aged at the lab.						
	All litter picked up in the trawl was classified, quantified and recorded then retained for appropriate disposal ashore.							
	Approximately 6kg each of toring (CRCE Scotland, Gl • Isopod pre Approximately 20 isopods transcriptome examination • Bobtail squ All bobtail squid (Sepiolida tion at Naturalis Biodiversi <i>rosoma, Sepietta neglecta,</i> • Golf Ball s Tissue samples and section preserved in ethanol for mo	asgow) servation (various specie (Aberdeen Un uid identification a) caught (n=20 ty Centre, Leio and <i>Sepiola pf</i> sponges as of all golf b	herring were frozen for environmental moni- es) were treated with RNA later and frozen for iversity) on)) were preserved in 70% ethanol for identifica- den where initial inspection shows <i>Rossia mac</i> -					
No. fish species rec-	Notable hauls included nur	nber 91 approx	verall catch weight of ~43.7 tonnes. 4.5 miles west of Uig, Lewis which held over					
orded and	4.7 tonnes of large cod and	over 1 tonne o	f haddock and also number 117 approx. 9 miles					

A.6.2. UK-Scotland: Western Division Bottom Trawl Survey Q1

notes on	southeast of Lagavulin, Islay which contained a large proportion of mixed elasmobranchs.
any rare	Catches from hauls 113, 114 and 115 in the Clyde exhibited large proportions by weight
species or	of cod, haddock and whiting. In previous years there has been a general trend of pelagic
unusual	species dominating catches in this area. Table A.6. 2.2 and Table A.6. 2.3 present biomass
catches:	and abundance indices of main commercial species in the survey.

Table A.6.2.1. Number of stations surveyed/gear during 0317S

ICES Divisions	Strata	Gear	Stations Planned	Valid Stations	Additional Stations	Invalid Stations	% Stations	Comments
				Achieved			Achieved	
6a-7b	All	GOV-D	64	62	0	3	97	3 foul hauls 2 re- done, 1 not redone

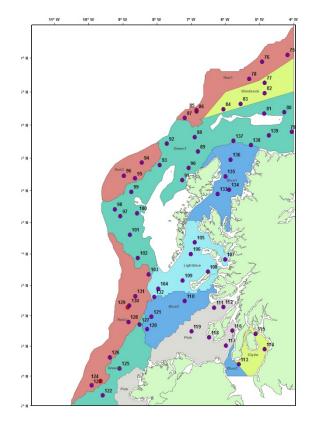


Figure A.6. 2.1 0317S survey map showing survey strata (coloured polygons), approximate midpoints of haul positions valid (purple circles) and foul (red circles) with haul numbers.

Table A.6. 2.2. Indices (numbers/10 hrs fishing) of 1-groups as above since 2011

Species	2011	2012	2013	2014	2015	2016	2017
Gadus morhua	0.5	14.0	20.0	11.4	8.2	4.7	2.9
M. aeglefinus	23.8	147.0	52.5	529.0	6800.0	560.0	2171.0
M. merlangus	222.0	3441.0	552.0	5805.0	2545.0	3226.0	4970.0
P. virens	0.0	0.0	0.4	0.0	0.0	0.0	0.0
T. esmarkii	1726.0	10119.0	42379.0	21365.0	46492.0	32452.0	43699.0

Species	2011	2012	2013	2014	2015	2016	2017
Gadus morhua	9.6	21.2	29.3	11.6	72.5	44.1	190.5
Melanogrammus aeglefinus	148.8	153.4	180.0	113.7	169.2	191.0	324.6
Merlangius merlangus	49.3	46.9	63.8	35.0	58.7	96.9	109.7
Pollachius virens	10.8	6.1	15.2	25.0	24.0	17.1	16.2
Trisopterus esmarkii	280.9	131.1	130.7	125.8	65.4	73.9	126.8

Table A.6. 2.3. CPUE indices (kg/hrs fishing) of major demersal species since 2011

A.6.3. UK-Scotland: West of Scotland Rockall Survey Q3

Nation:	UK-Scotland	Vessel:	Scotia				
Survey	UK-SCOROC-Q3	Dates	2 nd -13 th September 2017				
	(Rockall Haddock)						
Notes from survey (e.g. problems, ad- ditional work etc.):	distributed within 4 sampling 250m, 250-350m.Trawls we specified sampling position a reason the trawl could not b taken from a list of secondar (Table A.6. 3.1) with all f	s random-stratified with prima g strata defined by depth conto ere undertaken within a radiu and as near to the actual point be undertaken at the primary ry random positions. There we ishing taking place during d trawl locations and haul numb	ur: 0-150m, 150-200m, 200- is of 5 nautical miles to the as was practicable. If for any site then a replacement was ere 41 valid trawls completed laylight hours. Figure A.6.				
	This year haddock catches stand out as very strong. Haddock recruitment was observed over the upper bank, particularly in the north with haul 269 showing particularly in the north with haul 269 showing particularly high CPUE. Although down from that of 2016, overall haddock recruitment is well above the average since the new survey design of 2011. The CPUE of 1-g was also observed to be very strong and evenly distributed over the upper bank reflects the high recruitment of 2016. Catches of 2-5 year old fish were of a gen consistent low-moderate level over the survey area. Relatively few haddock of a years were encountered.						
	CTD casts (n=9) were made at selected stations to give a representative coverage of the bank over the depth range surveyed.						
	Sediment samples were attempted from a total of 37 positions during periods when the vessel was not fishing. Of these 22 produced viable sediment samples over a depth range of 146-249m (Figure A.6. 3.1).						
	All otoliths were aged back at the marine lab.						
	All litter picked up in the trawl was classified, quantified and recorded then retained for appropriate disposal ashore.						
No. fish spe- cies recorded and notes on	Overall a total of 47 species were caught during the survey for a total catch weight of ~27.3 tonnes. There were large catches overall of haddock (<i>Melanogrammus aeglefinus</i> ~13.6 tonnes) and blue whiting (<i>Micromesistius poutassou</i> , ~4.6 tonnes).						
any rare spe- cies or unu- sual catches:	Few cod (<i>Gadus morhua</i> , ~55kg) and saithe (<i>Pollachius virens</i> , ~64kg) were caught. As with the previous three years small amounts of whiting (<i>Merlangius merlangius</i> , ~18kg) were observed, many of them being 0-group fish. This catch however is a decrease on that of 2016. No mackerel (<i>Scomber scombrus</i>) were encountered this year.						
	Table A.6. 3.2 presents CPU3.3 Presents the megafauna	UE indices per 10 fishing by a sightings during the survey.	age for haddock. Table A.6.				

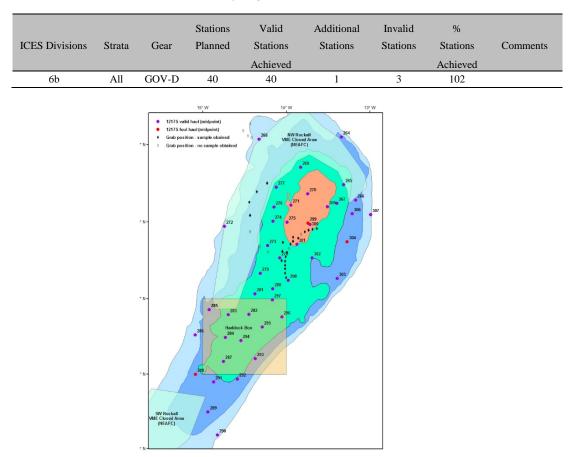


Table A.6. 3.4. Number of stations surveyed/gear

Figure A.6. 3.1. Survey strata, NEAFC closed areas, trawl positions with haul numbers of stations and grab positions undertaken at Rockall during 1217S. Red area = 0-150m, green = 150-200m, blue = 200-250m, light blue = 250-350m and white = >350m (outside the standard survey area).

Age	2011	2012	2013	2014	2015	2016	2017
0	5.3	14779.0	3248.0	1926.0	1212.0	33441.0	18583.0
1	16.3	2.2	12259.0	6146.0	2238.0	1154.0	23853.0
2	138.0	8.5	7.9	5275.0	5390.0	1403.0	615.0
3	17.9	55.8	22.1	3.8	4195.0	2444.0	967.0
4	68.0	9.6	36.6	0.0	0.0	1703.0	1596.0
5	101.0	59.3	22.6	8.8	0.0	13.6	692.0
6	816.0	32.0	28.0	0.0	8.6	0.8	0.7
7	2.6	413.0	71.7	6.6	0.5	3.5	0.2
8	2.7	5.3	273.0	6.4	6.4	0.8	0.9
9	2.7	0.4	0.5	94.3	1.6	1.9	0.0
10	0.0	0.0	0.0	0.5	42.2	2.8	1.3
11	0.0	5.8	1.1	0.6	0.5	16.4	2.1
12	0.0	0.0	1.0	0.0	0.0	0.5	4.8
13	0.0	0.0	0.0	1.0	0.0	0.0	1.4

Table A.6. 3.5.Rounded CPUE indices (no. per 10 hrs fishing) by age for Rockall haddock2011-2016 (actual values)

Species	No. of sighting	Estimated no.
	events	of individuals
Balaenoptera physalus (Fin whale)	3	3
Balaenoptera acutorostrata (Minke whale)	1	1
Unidentified baleen whale	1	1
Tursiops truncatus (Bottlenose dolphin)	2	20
Delphinus delphis (Common dolphin)	12	131
Stenella coeruleoalba (Striped dolphin)	2	15
Lagenorhynchus albirostris (White-beaked		
dolphin)	2	17
Unidentified dolphin	3	34
Unidentified tuna	2	40

Table A.6. 3.6. Megafauna encountered during sightings on 1216S

A.6.4. UK-Scotland: Western Division Bottom Trawl Survey Q4

Nation:	UK - Scotland	Vessel:	Scotia				
Survey	UK-SCOWCGFS-Q4	Dates	13 th November - 3 rd December 2017				
	1617S						
Notes from survey (e.g. problems, ad- ditional work etc.):	The 2017 survey design was the same as that used since 2011 using a random-stratifie design with primary trawl stations randomly distributed within 12 sampling strata. Haul were undertaken on suitable ground as near to the specified sampling position as was practicable and within a radius of 5 nautical miles of the sample position. If for an reason the haul could not be undertaken at the primary site due to poor ground, stati gear or prevailing weather conditions restricting towing direction then the nearest replacement was chosen from a list of secondary random positions.						
	day at first light. On 21 Nov and advised by QinetiQ (M Therefore, the vessel had to to two stations. During the due to significant pelagic fi trawls belly sheet being bac tions were poor with north shoals of pelagic fish (hors number of hauls to 15 minu along with pelagic shoals w tum (396) was reduced to 7 were snagged around the t creels all around this area no completed. A total of 58 hauls were co track given in Figure A.6. rig for 7 hauls. All demersal and pelagic ot at the institute. All haul su the Electronic Data Collect vertical temperature and sa	ember after ha MOD Hebride steam 70nm t cruise two hat sh marks ente dly torn. Durin terly or weste se mackerel at tes. Another is vere significan minutes due t trawls headlin one of the 4 pl. mpleted durin 4.1. The 110n oliths were pro- ummary data a ion system. A	s carried out during daylight commencing each aul 380 was completed the Scotia was contacted es) of a 50nm exclusion zone being in force. o leave the area and this limited the fishing day als were classified as foul in ICES area 6a, 407 ring the trawl after blockup and 399 due to the ng the second half of the cruise weather condi- rly gales throughout. Furthermore, significant and herring) were encountered which limited a ssue encountered in ICES area 7b (stratum GY) it quantities of creels. The first haul in the stra- o pelagic shoals but on hauling a fleet of creels e and kite. Due to the continued presence of anned stations in this stratum were successfully g the survey with the position and daily cruise n sweep rig was used for 48 hauls and the 60m becessed at sea but were subsequently aged back and length frequencies were entered at sea via A CTD was deployed at 52 stations to obtain a However, 3 deployments were abandoned due problems with the vessels dynamic positioning				
Number of fish species recorded and notes on any rare species or	A total of 90 species were caught during the survey with an overall catch weight of 32.2 tonnes. There were large catches overall of haddock (~6.51 tonnes), horse mackerel (~3.68 tonnes) and whiting (~3.38 tonnes). Herring were caught in significant numbers during one haul (408) where ~5.1 tonnes were retained.						
unusual catches:	Biological data was record ments of the EU Data Regu		ber of species in accordance with the require-				
	Catch of significant note: • Haul 408 v 92.7% of the overall herring		ring catch was ~5.1 tonnes which represented tonnes) during the survey.				

ICES Divisions	Strata	Gear	Stations Planned	Valid Stations Achieved	Additional Stations	Invalid Stations	% Stations Achieved	Comments
6a	11	GOV-D	56	55	0	2	98.2	
7b	1	GOV-D	4	0	٥	1	0	Creels

Table A.6. 4.7. Number of stations surveyed/gear

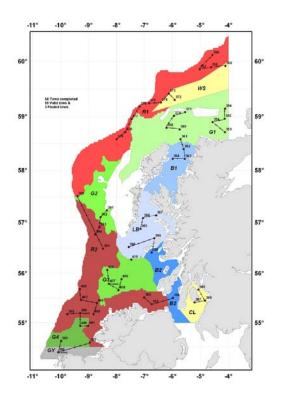


Figure A.6. 4.2. Trawl stations completed during the Q4 WC with daily cruise track – IBTS 2017 (1617S) the 3 invalid hauls are marked Fouled. (Note - The colour shading indicates the 12 different sampling strata covered by this survey).

Table A 6 18	CPUE indices	(numbare/10hre	fishing) of 1-or	oups for Q4 since 2011
1 abie A.0. 4.0.	CI UL multes	(1101110/015/101115	instang/ of 1-gr	oups for Q+ since 2011

Species	2011	2012	2013*	2014	2015	2016	2017
Cod	10.0	19.8	14.0	23.7	28.2	6.2	10.0
Haddock	39.2	114.8	69.6	678.7	9955.9	935.5	1688.2
Whiting	119.5	964.0	125.0	1517.8	2793.6	2415.4	2942.9
e						0.6	0.0
Saithe	0.0	1.1	0.0	0.4	5.0	12274.8	485.0
Norway Pout	2192.5	7213.9	1343.9	2669.7	14814.3	1227 1.0	.05.0

* Q4 survey 2014 was not completed only covered half of the sampling area

NATION:	UK- NORTHERN IRELAND	VESSEL:	CORYSTES
SURVEY:	UK-NIGFS Q1	DATES:	13/02/2017-05/03/2017
Notes from sur- vey (e.g. prob- lems, additional work etc.):	cod by area. • Table A.6. 5.1 presen Figure A.6. 5.1 show A.6. 5.2 presents bio	antifying exte ts the number s a map with to mass and abur	each station. ernal parasite loads in whiting and of stations fished per ICES division, ows carried out in 2017, while Table indance indices in the survey of main mparison in relative terms with the
Number of fish species recorded and notes on any rare species or unusual catches:	80 species/groups were red No unusual species were re		

A.6.5. UK-Northern Ireland: Northern Irish Groundfish Survey Q1

Table A.6. 5.9. Stations fished (aim to complete 63 valid tows)

ES DIVISIONS	Tows Planned	VALID TOWS	INVALID TOWS	% COVERED
7a	63	62	1	98
	0			
	55.0	- ? /	the brance	
	ŭ	2	> Some	
		-		
	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 M	
	54.0	- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	ц.		5	
			💌 🚽 🕹	
	0		••• ******	
	53.0	- }	- 6	
	40	- 4	ς · · · · · · · · · · · · · · · · · · ·	
			i j	
	O.	- Maria	and the second sec	
	52.0	- <u>v</u>		
	-	1 1		
		7 (

Figure A.6. 5.3. Map of valid survey stations completed by UK-NiGFS Q1 2017

Table A.6. 5.10	. Biomass a	and number	r estimates
-----------------	-------------	------------	-------------

		Bi	omass inde	ex		Number	index
Species	Strata	yi	y_i/y_{i-1}	y(i,i-1)/	yi	y_i/y_{i-1}	y(i,i-1)/
		kg/nm	%	y _(i-2,i-3,i-4) %	nº/nm	%	y(i-2,i-3,i-4) %
Gadus morhua	All	2.77	-24.0	-37.9	1.97	-33.0	-41.3
Melanogrammusaeglefinus	All	27.67	1.4	101.8	60.98	22.0	9.6
Merlangius merlangus	All	40.41	-31.9	92.8	135.10	26.0	1.9
Merluccius merluccius	All	0.03	-61.0	-81.9	0.40	135.0	34.5
Pleuronectes platessa	All	7.29	-66.0	2.1	47.59	5.7	9.2

NATION:	UK - NORTHERN IRELAND	VESSEL:	RV CORYSTES		
SURVEY:	UK-NIGFS Q4	DATES:	02/10/17-19/10/17		
Notes from sur-	Temperature and salinity w	vere recorde	d at each station.		
vey (e.g. prob- lems, additional work etc.):	Some stations could not be completed due to averse weather conditions and the wing spread sensors could not be employed due to the same rea- son.				
	One station had to be omitted due to static gear and another one was at- tempted twice but aborted due to large herring marks.				
	Additional work included quantifying external parasite loads in whiting and cod by area.				
	A.6. 6.1 depicts a map with t	he stations fis es of main co	ons fished per ICES division, Figure shed while Table A.6. 6.2 presents mmercial species caught in 2017 sur- the last 4 previous years.		
Number of fish	80 species/groups were rec	orded.			
species recorded and notes on any rare species		ecorded, but	large aggregations of herring as		
or unusual catches:					

A.6.6. UK-Northern Ireland: Northern Irish Groundfish Survey Q4

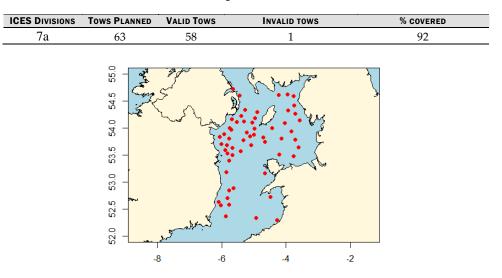


Figure A.6. 6.4. Map of valid survey stations completed by the NIGFS Q4 during 2017 survey.

Table A.6. 6.12. Biomass and number estimates

		Bi	omass inde	ex		Number	index
Species	Strata	yi	y_i/y_{i-1}	y(i,i-1)/	yi	y_i/y_{i-1}	y(i,i-1)/
				y(i-2,i-3,i-4)			y _(i-2,i-3,i-4)
		kg/nm	%	%	nº/nm	%	%
Gadus morhua	All	0.45	-45.8	-71.6	0.86	19.4	-37.1
Melanogrammus aeglefinus	All	18.43	-14.5	-33.8	80.36	14.3	-24.5
Merlangius merlangus	All	62.68	-13.6	-13.0	205.5	-6.8	-16.98
Merluccius merluccius	All	0.21	624.1	25.0	0.57	796.0	75.0
Pleuronectes platessa	All	6.67	11.7	-43.3	44.7	15.7	-12.0

106	

NATION:	IRELAND	VESSEL:	CELTIC EXPLORER
Survey:	IE-IAMS-Q1	Dates:	14 th Feb- 7 th Mar2017 (7b,c,j,k)
			8 th – 16 th April 2017 (6a)
Notes from sur-	The tickler chain wa	s shortened s	so it is now well ahead of the foot-
vey (e.g. prob-	rope (approx. 3m) as	s specified by	WKAGME 2009. Last year it was
lems, additional	about 1.5-2m ahead	of the footro	ope)
work etc.):			ing a new top-end in order to in-
	crease their surface	area from 5.2	25m2 to approx. 5.45m2 resulting
			ower (estimated by supplier). This
			ad in the deeper tows.
	-	-	the floats were tidied up (tied on
			ed). This resulted in an additional
	60cm headline heig		
		•	the area 7 part of the survey was
	1 . 0		sh size of the original codend was
	· ·	d (around 11	0mm inside) versus the specifica-
	tion of 100mm.		
	÷	-	ings was replaced with stronger
	of the floats	mage when i	it is pulled onto the drum on top
		oar a CTD M	vas mounted on one of the trawl
	doors.		vas mounted on one of the trawi
	 No technical downt 	imo	
	One haul with signi		amage
			-
			the number of stations per strata
			a, while Table A.6. 7.2shows
			egrims in the same strata and Ta-
			abundance indices in the whole
	survey of both angler sp	ecies, with th	neir coefficient of variation.
Number of fish	In 2017, 73 species of fish	n, 24 elasmo	branch, 7 cephalopod and 17
species recorded	other species/groups were		
and notes on	No unusual species were re	ecorded.	
any rare species			
or unusual			
catches:			

A.6.7. Ireland: Irish	Anglerfish and	Megrim Survey Q1

Table A.6. 7.13. Stations fished (aim to complete 110 valid tows per year)

ICES DIVISIONS	STRATA	VALID TOWS	STRATUM AREA (KM ²)	SWEPT AREA (KM ²)
6a	6a_Shelf_L	16	38424	6.38
6a	6a_Shelf_M	7	4441	3.56
6a	6a_Slope_H	11	3114	4.35
6a	6a_Slope_M	8	3044	2.53
7bcjk	7_Shelf_H	15	50764	7.08
7bcjk	7_Shelf_L	13	42034	5.90
7bcjk	7_Shelf_M	7	14621	3.32
7bcjk	7_Slope_H	25	35768	12.31
7bcjk	7_Slope_M	7	29406	4.02
	TOTAL	109	221616	49.45

Stratum	Catch num MON	Catch num WAF	Catch num MEG
6a_Shelf_L	156	35	111
6a_Shelf_M	121	126	62
6a_Slope_H	298	74	411
6a_Slope_M	134	0	7
7_Shelf_H	62	184	179
7_Shelf_L	128	75	156
7_Shelf_M	81	141	70
7_Slope_H	271	273	191
7_Slope_M	85	1	6
Total	1336	909	1193

Table A.6. 7.14. Summary statistics by stratum. Catch numbers are given for L. piscatorius(MON), L. budegassa (WAF) and L. whiffiagonis (MEG).

Table A.6. 7.15. Estimated numbers (millions) and biomass (kT) in the survey area, with CV
and confidence intervals. Only fish >500g live weight (approximately 32 cm) were included
in the estimate

	L pis	catorius	L bu	degassa
	6a 7		6a	7
NumMln	4.74	10.29	0.74	6.36
NumCV	16.7%	11.8%	25.1%	11.8%
BiomKT	8.11	31.44	0.81	9.27
BiomCV	17.9%	11.5%	24.7%	11.3%

A.6.8. Ireland: Irish Groundfish Survey Q4

NATION:	IRELAND	VESSEL:	RV CELTIC EXPLORER					
Survey:	IE-IGFS-Q4	Dates:	3rdOct – 14thOct (6a)					
	5th Nov – 9th Dec (7b,							
Notes from survey	No significant weather disruption in during 2017 with only a few							
(e.g. problems, addi-	hours being lost in total. Difficulties with the neighbouring EVHOE							
tional work etc.):	survey however meant a number of days (c.6) was allocated to com-							
	pleting 22 hauls south of the normal IGFS survey range to ensure							
	that at least some survey data would be available from the Northern							
	part of the EVHOE survey	area. Time	was allocated mostly from 7bc					
	where indices are not criti	ical to asse	ssments; catches are generally					
	low and therefore also variance. Diplomatic Clearance prevented							
	coverage further south than the UK territorial waters.							

Number of fish spe-	In 2017, 81 species of fish, 18 elasmobranch, 11 cephalopod and
cies recorded and	62 crustacean and 166 other species/groups were caught. Overall
notes on any rare spe-	virtually all species saw a decrease in catch rate over the previous
cies or unusual	year (see table xx below).
catches:	The most significant change in 6a was a strong increase in horse
	mackerel in terms of both biomass (135%) and numbers (117%).
	Otherwise pelagics (herring, mackerel and blue whiting) are all
	showing a downward trend over the 5yrs. These trends are similar
	for the Celtic Sea (area 7) also. Overall haddock, monkfish and
	plaice show the strongest improvement for 6a.
	As stated the survey perception for the west of Ireland and Celtic
	Sea was that pelagic catches of herring and mackerel were signifi-
	canntly reduced while horse mackerel showed an improving trend.
	Reasonable increases in cod and hake were also seen in the Celtic
	Sea area. Hake however show an increase in number only, not bio-
	mass, indicating this relates to juveniles rather than adults with
	higher biomass.

Table A.6. 8.1 and Figure A.6. 8.1 summarize the tows planned and performed per ICES Division and gear, and the area surveyed. Table A.6. 8.2 presents the abundance indices in weight and number with a comparison with the results in the last 4 years.

Table A.6. 8.16. Stations fished (aim to complete 170 valid tows per year)

ICES DIVISIONS	Strata	Gear	Tows planned	VALID	ADDITIONAL	Invalid	% STATIONS FISHED
ба	All	D	45	45	1	4	102
7b,c	All	А	38	28	0	0	79
7g	All	А	48	41	0	2	90
7j	All	А	40	35	2	2	92
EVHOE	-	А	NA	0	22	0	-
Total			171	149	24	7	88*

Percentage completed of target stations is for the planned survey only and does not include the additional work allocated to compensate for the lack of EVHOE Survey.

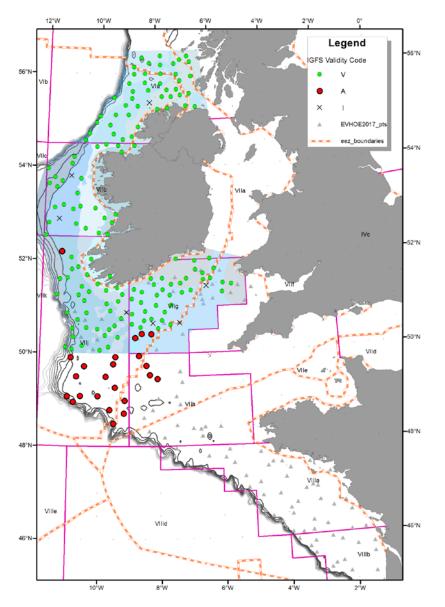


Figure A.6. 8.5. Map of Survey Stations completed by the Irish Groundfish Survey in 2017. Valid = green circles; Invalid = black crosses; Additional = red circles (everything south of 51deg is the 22 hauls for EVHOE); EVHOE historic station coverage in Celtic Sea = grey triangles.

			В	iomass iı	ndex	Nı	umber in	dex
Species	Strata	Valid	yi	$y_i / y_{i\text{-}1}$	y(i,i-1)/	yi	$y_i \! / \! y_{i\text{-}1}$	y(i,i-1)/
		tows			y(i-2,i-3,i-4)			Y(i-2,i-3,i-4)
			kg/Hr	%	%	No/Hr	%	%
Gadus morhua	6a	45	3.4	-42.0	4.3	1.6	-63.1	-33.1
Melanogrammus aeglefinus	6a	45	309.5	-39.6	49.3	1102.5	-42.8	-13.4
Clupea harengus	6a	45	44.8	-72.9	-55.8	507.2	-57.1	-51.8
Merluccius merluccius	6a	45	8.2	2.1	-60.2	39.8	30.7	-47.7
Trachurus trachurus	6a	45	341.6	-6.2	135.1	3565.7	17.5	116.9
Scomber scombrus	6a	45	149.6	-8.1	-43.3	1548.7	-57.0	8.3
Lepidorhombus whiffiagonis	6a	45	1.4	-38.9	1.0	6.3	-27.5	27.7
Lophius piscatorius	6a	45	4.0	-13.2	89.5	2.4	-40.9	21.6
Pleuronectes platessa	6a	45	13.9	-38.8	43.6	90.7	-30.1	52.4
Solea solea	6a	45	0.2	-69.3	23.8	0.9	-58.7	37.0
Micromesistius poutassou	6a	45	67.7	-19.3	-77.4	826.8	-57.5	-83.2
Merlangius merlangus	6a	45	103.6	-64.3	-3.9	540.0	-75.4	-28.8
Gadus morhua	7bgj	104	4.5	-46.2	54.0	1.1	-58.6	1.0
Melanogrammus aeglefinus	7bgj	104	70.2	-48.1	-24.4	357.3	-35.5	-62.0
Clupea harengus	7bgj	104	0.9	-53.9	-89.6	35.9	-22.0	-77.4
Merluccius merluccius	7bgj	104	30.8	32.6	0.7	328.2	26.6	50.6
Trachurus trachurus	7bgj	104	197.7	24.6	72.1	4628.9	38.2	28.8
Scomber scombrus	7bgj	104	15.0	-48.1	-75.6	305.3	-61.2	-64.3
Lepidorhombus whiffiagonis	7bgj	104	3.2	-32.4	21.2	26.3	-25.0	71.0
Lophius piscatorius	7bgj	104	7.9	-18.4	26.5	7.0	-23.3	22.6
Pleuronectes platessa	7bgj	104	6.9	-43.1	-22.5	39.6	-41.7	-14.7
Solea solea	7bgj	104	0.6	-18.5	34.5	2.8	10.6	10.2
Micromesistius poutassou	7bgj	104	19.8	-76.2	-3.1	251.6	-81.5	-51.8
Merlangius merlangus	7bgj	104	49.7	-42.2	-45.0	663.2	-17.6	-38.3

Table A.6. 8.17. Abundances in biomass and number of main species during 2017 IrishGroundfish Survey compared with the fourth previous years

Year estimate 2017 (y_i); previous year estimate 2016 (y_{i-1}); average of last two years estimate (y_{(i,i-1})); average of the previous three year estimates 2013-15 (y_{(i-2,i-3,i-4})). As results for survey trends are ratios they are quite sensitive to stocks with high variance, therefore comparing the 2 yr vs. 5 yr trend is advisable.

A.6.9. France: The Channel Groundfish Survey Q4

NATION: FRANCE	VESSEL: RV THALASSA				
SURVEY FR-CGFS-Q4	DATES	6 [™] October- 23 October			
Notes from surveyDue to important works realistic survey was slightly delayed a creasing importance of nume cruise program, except that a Weather conditions were rouventing some stations to be sized:71 trawls in the eastern Englionly 66 valid, i.e. without trawastes were counted and we Benthos and jellyfish were sets 22 hydrology stations (deplonet, the latter only on 71 statistics)160 samples of subsurface with a survey was slightly delayed a creasing importance of nume cruise program, except that a Weather conditions were rouventing some stations to be sized:	zed on the RV and the workir cric tools. Thes larger numbe gh at the begin ampled. In tot ish Channel w wyl damages) ighted at each orted, identifie ying hydrolog ions). ics were samp ater, in order t cale bathymetr	Thalassa during summer 2017, the CGFS ing conditions onboard changed with an in- se changes have globally not impacted the r of trawl damages occurred. Inning and at the end of the survey, pre- al, the following sampling has been real- ith GOV 36 x 47 (Figure A.6. 9.1, but a trawl station. ed and counted at each trawl station. ical probe, niskin bottle and plankton WP2 led with a Manta net. to get fish eggs, along the vessel trajectory.			

Over the eastern English Channel, 88 species of fish and cephalopods have been iden-Number of fish tified, and 111 taxa of benthic invertebrates (including commercial ones) and jellyfish species recorded have been identified. The preliminary results are characterized by a high dominance of and notes on horse mackerel, particularly in the central area, while the eastern part was dominated any rare species by mackerel and whiting to a lesser extent. Coastal areas show a higher species richor unusual ness than offshore (from 61 species per haul down to 23 species per haul). When integrated over the area, the dominance shows a similar pattern: dominance of horse catches: mackerel both in biomass and abundance; the small forage fish dominate the community in term of abundance (sardine, sprat, anchovy, mackerel), while the large individuals of the elasmobranch species make them important for the biomass dominance.It is worth noting the presence of sea bass among the most important species in biomass, which was not typical of the previous years. Globally, more red mullet but less plaice were caught this year compared to 2016. Both the number of fish and mean individual weight per haul have significantly increased compared to 2016.

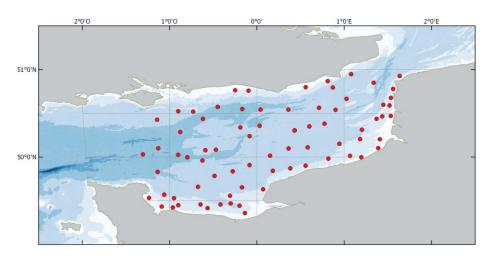


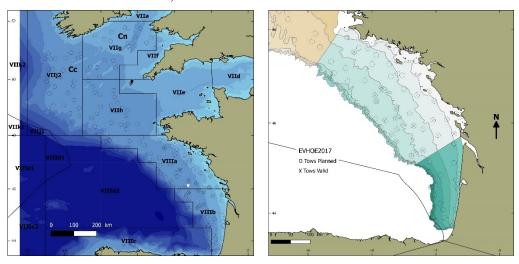
Figure A.6. 9.6. Sampling stations (red dots) of the CGFS 2017 survey.

Nation:	France	Vessel:	Thalassa 2			
Survey	FR-EVHOE Q4	Dates	25 th Oct9 th Dec. (planned)			
Notes from sur- vey (e.g. prob- lems, additional work etc.):	<i>Thalassa</i> . Only 26 stations hat tral/western part of t (Table A.6. 10.1 at loaded into DATRA for 2017 stock asses Compensatory meas the following 3 point - most of the norther regular IGFS survey	 EVHOE 2017 survey had to be cancelled due to engine failure of the RV <i>Thalassa</i>. Only 26 stations have been sampled (25 validated) mostly in the central/western part of the Bay of Biscay from an initial total of 156 station (Table A.6. 10.1 and Figure A.6. 10.1). Available data have been up loaded into DATRAS database but no regular dataset will be available for 2017 stock assessments. Compensatory measures to try to minimize it could be summarized into the following 3 points: most of the northern part of the Celtic Sea is already covered by the regular IGFS survey (RV <i>Celtic Explorer</i>) 22 additional stations have been covered by the <i>Celtic Explorer</i> in the 				
Number of fish species recorded and notes on any rare species or unusual catches:	Not relevant					

A.6.10. France: Celtic Sea/Bay of Biscay	Groundfish Survey Q4
--	----------------------

16

ICES. DIVI- SIONS	STRATA	TOWS PLANNED	TOWS REAL- IZED	VALID	ADDI- TIONAL*	%.STA- TIONS FISHED	COM- MENTS
7fghj	Cc3	8			2	25	
	Cc4	15			8	53	
	Cc5	4			1	25	
	Cc6	3			1	33	
	Cn2	7				0	
	Cn3	9				0	
	Cs4	24			6	25	
	Cs5	7			3	43	
	Cs6	4			1	25	
8abd	Gn1	5	3	3		60	
	Gn2	5	4	4		80	
	Gn3	14	5	5		36	
	Gn4	20	13	12		65	
	Gn5	3				0	
	Gn6	2				0	
	Gn7	2	1	1		50	
	Gs1	3				0	
	Gs2	6				0	
	Gs3	4				0	
	Gs4	4				0	
	Gs5	2				0	
	Gs6	2				0	
	Gs7	2				0	


Table A.6. 10.18. Stations fished

TOTAL * additional stations from IGFS, excluded from %s

155

26

ALL

25

Figure A.6. 10.7. Planned stations in the fixed sampling plan (o), validated (x) and invalidated (∇) tows for EVHOE 2017. ICES areas as well as EVHOE strata (Gs, Gn, Cs, Cc, Cn) are indicated.

NATION:	SP (SPAIN)	VESSEL:	RV VIZCONDE DE EZA			
SURVEY	SP-PORC-Q3	DATES	24TH AUG 24 TH SEP.			
Notes from sur- vey (e.g. prob- lems, additional work etc.):	vey (e.g. problems, additional work etc.):This year the reduction in tow duration implemented last year from 3 minutes after gear ground contact to 20 minutes was maintained. 10 experimental '0-minute' tows were conducted during the survey. Catches of these tows were highly variable ranging from 8.5 to 225 I Additional work undertaken included 84 CTD casts, at most trawl tions, 3 within the non-trawlable area, and 8 in four radials perpendid to the bank limits to obtain a general image of the hydrography.Number of fish species recorded and notes on 					
Number of fish species recorded and notes on any rare species or unusual catches:						

A.6.11. Spain: The Porcupine Spanish Groundfish Survey Q3

Table A.6. 11.19. Stations fished (aim: to complete 80 v	alid tows per year)
--	---------------------

ICES Divisions	Strata	Gear	Tows planned	Valid	Valid with rock- hopper	Additional	Invalid	% stations fished	comments
7b-k	All	Porcupine baca 39/52	80	80	-	4+10	4	117.5%	Also available by depth and geo-
	TOTAL		80	80	-	14	4	117.5%	graphical strata

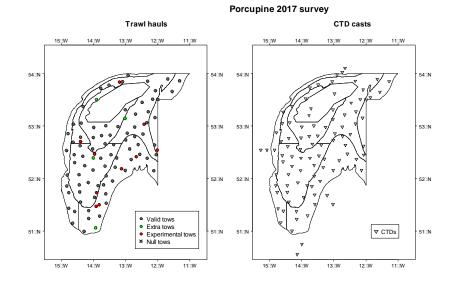


Figure A.6. 11.8.

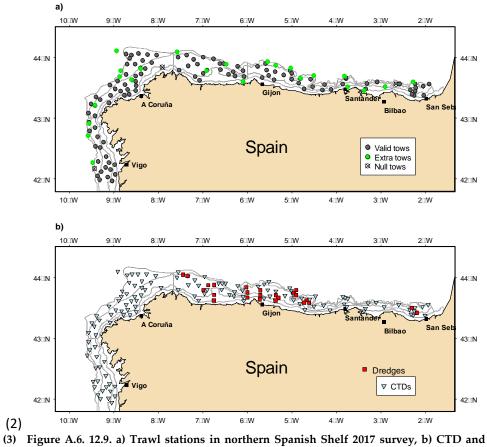
Trawl and CTD stations in Porcupine 2017 survey.

Figure A.6. 11.1 and Table A.6. 11.1 summarize the trawls and samplings performed during 2017 survey while Table A.6. 11.2 contain the biomass and number abundance indices on 2017 survey also compared with results from the last 4 years.

	BIOMASS AND NUMBER ESTIMATES										
			Biomass index			Number index					
Species	Strat	Vali	yi	y _i /y _{i-1}	y(i,i-1)/	yi	y_i/y_{i-1}	y(_{i,i-1})/			
	a	d tows	kg/.5h	%	y(i-2,i-3,i- 4) %	n°/.5h	%	y(_{i-2,i-3,i-} 4) %			
Merluccius merluccius	All	80	48.46	-12.3	-30.7	92.3	70.6	-19.2			
Lepidorhombus whiffiagonis	All	80	14.11	-4.5	4.0	190.7	-8.3	25.9			
Lepidorhombus boscii	All	80	11.37	-4.5	-13.1	110.4	-8.2	-28.5			
Lophius budegassa	All	80	1.02	-6.4	-41.6	0.6	-20.5	-32.3			
Lophius piscatorius	All	80	20.41	7.3	-2.6	6.0	16.0	2.2			
Micromesistius poutassou	All	80	662.63	69.6	21.9	6546.4	40.1	13.5			
Nephrops norvegicus	All	80	1.45	1.4	245.6	59.8	-8.4	406.3			

Table A.6. 11.20.	Abundances in biomass and number of main species during
2017 Spanish Porcupine Bank	Survey compared with the fourth previous years

yi, year estimate (2017); yi-1, previous year estimate (2016); y(i,i-1), Average of last two year estimates (2016 and 2015); y(i-2,i-3,i-4), Average of the previous three year estimates (2015, 2014 and 2013).


A.6.12. Spain: S	panish Northern	Shelf Ground	Fish Survey Q4

NATION:	SP (SPAIN)	VESSEL:	RV MIGUEL OLIVER				
SURVEY	SP-NSGFS-Q4	DATES	17TH SEP 23 RD OCT.				
Notes from sur- vey (e.g. prob- lems, additional work etc.):	survey instead of the RV 0 performed in 2012. Result the time-series, showing th as megrims, skates, catfish As in previous years, three shallow stations between 3 500 and 700 m.	Cornide de S as from the s ae usual prop a. ee additiona 30 and 70 m	el Oliver was used to perform the Saavedra, after the intercalibration survey are in line with those from portion of bentho-demersal species I hauls were undertaken to cover a, and 14 deeper stations, between				
	Additional work undertaken included CTD casts at all trawl stations an dredges carried out with a boxcorer to create a grid of sediment and i some areas infauna samples (Figure A.6. 12.1). Seabirds census was also carried out during fishing manoeuvres.						
		demersal species was performed in					
Number of fish species recorded and notes on any rare species or unusual catches:	A total of 240 species were molluscs, 32 echinoderms	-	38 fish species, 54 crustaceans, 45 r invertebrates.				

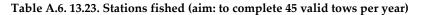
Table A.6. 12.21. Stations fished (aim: to complete 116 valid tows per year)

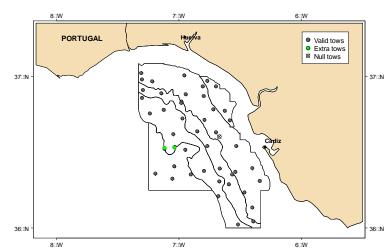
ICES DIVISIONS	STRATA	GEAR	Tows planned	VALID	ADDITIONAL (1)	INVALID	% STATIONS FISHED	COMMENTS
8c	All	Standard baca	96	92	20	2	98%	
9a North	All	Standard baca	20	19	3	1	99%	
8b	All	Standard baca	0	1	0	0	na	
	TOTAL	4	116	112	23	3	106%	

(1) Additional 15 hauls on shallow and deep grounds and 8 zero minutes tows.

dredge stations

(4) Table A.6. 12.2 contains the biomass and number abundance indices on 2017 survey also compared with results from the last 4 years.


			Biomass index			Number index		
Species Strata Valid		yi	y_i/y_{i-1}	Y(i,i-1)/	yi	yi/yi-1	y(i,i-1)/	
		tows			Y(i-2,i-3,i-			Y(i-2,i-3,i-
			kg/0.5h	%	4)	n/0.5h	%	4)
					%			%
Merluccius merluccius	9aN	19	5.29	-58.8	-17.2	123.0	-59.4	-38.2
Lepidorhombus boscii	9aN	19	6.58	-0.8	39.4	126.6	1.0	49.2
Lepidorhombus whiffiago-	9aN	19	0.18	157.1	150.0	1.8	89.4	191.4
nis								
Lophius budegassa	9aN	19	0.19	850.0	-33.0	0.2	-31.0	206.3
Lophius piscatorius	9aN	19	0.11	450.0	-72.1	0.1	-41.2	-35.7
Micromesistius poutassou	9aN	19	19.20	-57.9	-51.5	450.9	-57.1	-62.2
Trachurus trachurus	9aN	19	122.98	411.4	1319.2	1379.8	514.2	1414.0
Scomber scombrus	9aN	19	4.23	-49.9	40.6	32.8	-74.8	28.7
Nephrops norvegicus	9aN	19	0.01	-50.0	-25.0	0.1	-70.8	-37.2
Merluccius merluccius	8c	93	6.86	3.9	23.6	166.5	-13.5	26.1
Lepidorhombus boscii	8c	93	6.14	37.4	-12.9	108.4	37.6	4.5
Lepidorhombus whiffiago-	8c	93	4.49	37.3	69.4	60.2	15.9	151.4
nis								
Lophius budegassa	8c	93	0.63	0.0	-45.1	0.4	-13.6	-60.5
Lophius piscatorius	8c	93	0.62	-32.6	-58.9	0.2	-39.4	-83.6
Micromesistius poutassou	8c	93	50.33	-61.0	-25.8	996.7	-65.8	-54.6
Trachurus trachurus	8c	93	16.28	-40.0	-51.5	394.2	-35.2	-51.8
Scomber scombrus	8c	93	2.98	684.2	-60.8	110.7	4240.0	-6.7
Nephrops norvegicus	8c	93	0.03	-25.0	-38.2	0.7	-20.2	-22.2
Merluccius merluccius	Total	112	6.59	-14.2	11.6	159.0	-24.8	4.6
Lepidorhombus boscii	Total	112	6.21	28.3	-5.7	111.5	28.5	11.8
Lepidorhombus whiffiago-	Total	112	3.75	37.9	69.7	50.2	16.2	151.6
nis								
Lophius budegassa	Total	112	0.55	5.8	-45.2	0.4	-14.6	-56.5
Lophius piscatorius	Total	112	0.53	-31.2	-59.2	0.2	-40.0	-82.5
Micromesistius poutassou	Total	112	44.98	-60.8	-28.5	902.9	-65.2	-55.3
Trachurus trachurus	Total	112	34.63	30.1	-19.3	563.7	3.9	-36.5
Scomber scombrus	Total	112	3.19	81.3	-42.8	97.3	297.2	-0.4
Nephrops norvegicus	Total	112	0.03	-25.0	-34.4	0.6	-23.0	-22.9


Table A.6. 12.22.Abundance indices in biomass and number during 2017 survey compared with previous years in the time-series.

A.6.13. Spain:	Spanish Gulf of Cadiz Bottom Trawl Survey Q1	
----------------	--	--

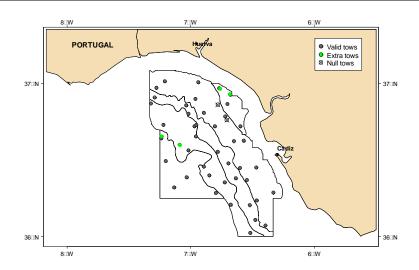
Nation:	SP (Spain)	Vessel:	Miguel Oliver
Survey:	SP-GCGFS-Q1 (0317)	Dates:	21 February– 06 March 2017
Notes from survey (e.g. problems, ad- ditional work etc.):	Additional work undertaken	included CTD	cast at every trawl stations.
Number of fish species recorded and notes on any rare species or unu- sual catches:	Overall, 152 fish species, 53 survey.	crustaceans, 6	2 molluscs were recorded during the

ICES Division	Strata	Gear	Tows planned	Valid	Additional	Invalid	% stations fished
9a	All	Standard baca 36/40	45	45	2	1	100 %
	TOTAL		45	45	2	1	100 %

Figure A.6. 13.10. Map showing tows performed during the 1st quarter Gulf of Cadiz groundfish survey

Figure A.6. 13.1 and Table A.6. 13.1 summarize the number of hauls performed per ICES division. Table A.6. 13.2 presents the biomass and number abundance indices from 2017 1st quarter survey and compares with results from the last 4 years.

Table A.6. 13.24.Biomass and number estimates and time-series comparisonsin SP-GCGFS Q1


			Biomass index			Number index		
Species	Strata	Valid	yi	yi/yi-1	Y(i,i-1)/	yi	yi/yi-1	Y(i,i-1)/
		tows			Y(i-2,i-3,i-			Y(i-2,i-3,i-
			kg/h	%	4)	n/h	%	4)
					%			%
Merluccius merluccius	All	45	3.39	-47.5	-15.7	51.3	-44.3	-37.2
Micromesistius poutassou	All	45	8.21	-89.0	76.0	82.4	-97.1	128.5
Nephrops norvegicus	All	45	0.68	-38.7	64.7	21.8	-54.6	98.6
Parapenaeus longirostris	All	45	0.68	-9.3	-34.8	130.5	-10.4	-30.4
Octopus vulgaris	All	45	2.65	45.6	-43.4	4.6	56.3	-41.1
Loligo vulgaris	All	45	0.67	-9.5	28.2	4.1	-42.1	57.1
Sepia officinalis	All	45	0.66	-68.3	-2.6	1.8	-69.2	-4.1

Nation:	SP (Spain)	Vessel:	Miguel Oliver				
Survey	SP-GCGFS-Q4 (ARSA)	Dates	30th Oct 12th Nov. 2017				
Notes from survey	Additional work undertake	Additional work undertaken included CTD cast at every trawl station.					
(e.g. problems, addi-							
tional work etc.):							
Number of fish spe-	Overall, 156 species of fis	h, 59 of crus	stacean and 64 of mollusc, 27				
cies recorded and	echinoderms and 59 other	invertebrates	s were recorded during the sur-				
notes on any rare spe-	vey.						
cies or unusual							
catches:							

A.6.14. Spain: Spanish Gulf of Cadiz Bottom Trawl Survey Q4

Table A.6. 14.25. St	tations fished (a	im: to complete	45 valid tows	per year)
----------------------	-------------------	-----------------	---------------	-----------

ICES Division	Strata	Gear	Tows planned	Valid	Additional	Invalid	% stations fished
9a	All	Standard baca 36/40	45	44	4	2	98 %
	TOTAL		45	44	4	2	98%

Figure A.6. 14.11. Map showing tows performed during the 4th quarter Gulf of Cadiz groundfish survey

Table A.6. 14.1 and Figure A.6. 14.1 show the hauls performed per ICES division during SP-GCGFS-Q4 in 2017. Table A.6. 14.2 contain the biomass and number abundance indices from 2016 4th quarter survey and compares with results from the last 4 years.

Table A.6. 14.26. Biomass and number estimates and time-series comparisons in SP-GCGFS Q4

			Biomass index			Number index			
Species	Strata	Valid	yi	yi/yi-1	Y(i,i-1)/	yi	yi/yi-1	Y(i,i-1)/	
		tows			Y(i-2,i-3,i-4)			Y(i-2,i-3,i-	
			kg/h	%	%	n/h	%	4)	
								%	
Merluccius merluccius	All	44	4.74	-19.9	-54.9	175.4	57.3	-31.9	
Micromesistius poutassou	All	44	18.68	-39.0	87.5	320.9	-15.1	-25.1	
Nephrops norvegicus	All	44	0.94	11.9	42.8	39.3	60.4	24.3	
Parapenaeus longirostris	All	44	1.67	456.7	80.2	430.2	769.1	155.8	
Octopus vulgaris	All	44	0.81	-80.3	-9.3	5.4	-77.9	-0.9	
Loligo vulgaris	All	44	0.80	-59.3	-34.2	1.4	-67.1	-39.7	
Sepia officinalis	All	44	1.89	127.7	-35.4	4.7	112.2	-41.6	

NATION:	Portugal	VESSEL:	RV NORUEGA					
SURVEY:	PT-PGFS-Q4 Autumn 2017	DATES:	18 ^{тн} - 31 st Остовек 9 ^{тн} – 22 nd November					
Notes from sur- vey (e.g. prob- lems, addi- tional work etc.)	The 9 day interval in th and bad weather.	7 stations could not be performed due to time constraints and bad weather.The 9 day interval in the middle of the survey was due to urgent repairs and bad weather.89 CTDs Stations were recorded.						
Number of fish species rec- orded and notes on any rare species or unu- sual catches:	Overall, 143 species of fish, 20 of cephalopods and 30 of crustaceans were rec- orded during the survey. 40 species of other groups were recorded, e.g. Echinoder- mata, Cnidarians, Bivalves, Gastropods, Polychaeta, Ascidians and Nudibranchia							

A.6.15. Portugal: Portuguese Autumn Groundfish Survey Q4

Table A.6. 15.27. Stations fished

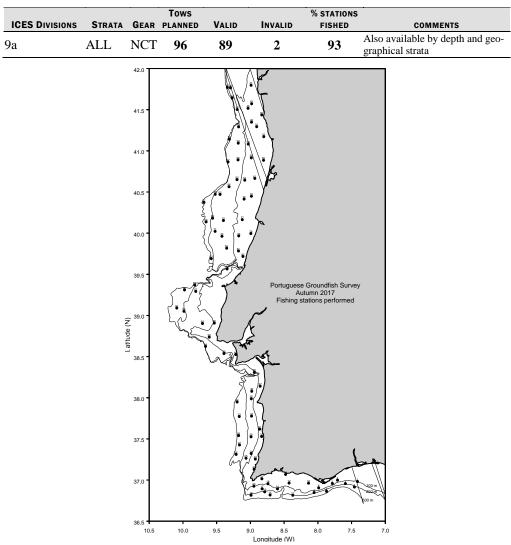


Figure A.6. 15.12. Fishing stations performed during the PT-IBTS 2017 cruise.

Table A.6. 15.1 presents a summary of the stations performed per ICES division and Figure A.6. 15.1 shows the area surveyed with the hauls, CTD, dredge and stations carried out. Table A.6. 15.2 contains the biomass and number abundance indices from 2016 quarter survey and compares with results from the last 4 years.

BIOMASS AND NUMBER ESTIMATES									
			В	iomass in	dex	Number index			
Species	Strata	Valid	yi	yi/yi-1	Y(i,i-1)/	yi	yi/yi-1	y(i,i-1)/	
		tows			Y(i-2,i-3,i-4)			Y(i-2,i-3,i-4)	
			kg/h	%	%	n/h	%	%	
Merluccius merluccius	9a	89	19.7	9.3	-37.0	256.1	46.0	-49.6	
Trachurus trachurus	9a	89	128.9	723.3	33.5	1862.7	702.9	-6.4	
Trachurus picturatus	9a	89	3.3	-47.9	-83.7	39.0	-49.6	-92.7	
Micromesistius poutassou	9a	89	90.7	71.1	51.6	1666.7	62.1	9.6	
Scomber scombrus	9a	89	65.9	213.8	44.9	179.7	33.6	-3.7	
Scomber colias	9a	89	22.0	8254.0	1875.3	1115.8	5615.3	3265.6	
Lepidorhombus boscii	9a	89	0.2	38.8	33.9	2.7	31.8	52.0	
Lepidorhombus whiffiagonis	9a	89	0.0	-11.7	99.4	0.2	31.9	34.7	
Lophius budegassa	9a	89	0.0	-89.5	1889.2	0.0	115.3	593.7	
Lophius piscatorius	9a	89	0.0		-,-	0.0			
Nephrops norvegicus	9a	89	0.2	56.2	239.5	3.8	53.1	178.6	

Table A.6. 15.28. Biomass and number estimates and comparison over the last years

yi, year estimate (2017); yi-1, previous year estimate (2016); y(i,i-1), Average of last two year estimates (2017 and 2016); y(i-2,i-3,i-4), Average of the previous three year estimates (2015, 2014 and 2013).

A.6.16. References

- ICES. 2017a. Interim Report of the International Bottom Trawl Survey Working Group. IBTSWG Report 2017 27-31 March 2017. ICES CM 2017/SSGIEOM:01. 337 pp.
- ICES. 2017b. Manual of the IBTS North Eastern Atlantic Surveys. Series of ICES Survey Protocols SISP 15. 92 pp. http://doi.org/10.17895/ices.pub.3519.

Annex 7: Maps of species distribution and length frequencies

(Francisco Velasco, Francisco Baldó)

Initial warning

As mentioned in the report of the IBTSWG 2018, in 2017 a breakage of RV Thalassa forced to suspend the FR-EVHOE survey after only 26 valid hauls. To obtain some information and data for the area not covered, the RV Celtic Explorer and the Marine Institute performed some hauls in area 7g, 7h and 7j. These hauls are included in this annex as IE-EVHOE, are not considered part of the standard EVHOE time-series and the coverage of FR-EVHOE has suffered a remarkable reduction compared with other years, these facts have to be considered when comparing the species distribution maps and length distributions per ICES areas.

Table A.7.1. Species for which distribution maps have been produced, with length split for prerecruit (0-group) and post-recruit (1+ group) where appropriate. The maps cover all the area encompassed by surveys coordinated within the IBTSWG (North Sea and North-eastern Atlantic Areas).

			Figure	Length Split
Scientific	Common	Code	No	(<cm)< td=""></cm)<>
Clupea harengus	Herring	HER	9-11	17.5
Gadus morhua	Atlantic Cod	COD	3-5	23
Galeorhinus galeus	Tope Shark	GAG	49	
Galeus melastomus	Blackmouthed dogfish	DBM	58	
Lepidorhombus boscii	Four-Spotted Megrim	LBI	24-26	19
Lepidorhombus whiffiago-	Megrim	MEG	21-23	21
nis	Ū.			
Leucoraja naevus	Cuckoo Ray	CUR	45-46	
Lophius budegassa	Black-bellied An-	WAF	30-32	20
	glerfish			
Lophius piscatorius	Anglerfish (Monk)	MON	27-29	20
Merlangus merlangius	Whiting	WHG	36-38	20
Melanogrammus aeglefi-	Haddock	HAD	6-8	20
nus				
Merluccius merluccius	European hake	HKE	12-14	20
Micromesistius poutassou	Blue whiting	WHB	39-41	19
Mustelus mustelus	Smooth Hound	SMH	50	
Mustelus asterias	Starry smooth hound	SDS	51	
Nephrops norvegicus	Norway Lobster	NEP	42	
Pleuronectes platessa	European Plaice	PLE	33-35	12
Raja clavata	Thornback ray (Roker)	THR	52-53	
Raja microocellata	Painted/Small Eyed Ray	PTR	55	
Raja montagui	Spotted Ray	SDR	55	
Raja undulata	Undulate Ray	UNR	56	
Scomber scombrus	European Mackerel	MAC	18-20	24
Scyliorhinus canicula	Lesser Spotted Dogfish	LSD	43-44	
Scyliorhnus stellaris	Nurse Hound	DGN	57	
Sprattus sprattus	European sprat	SPR	59-60	
Squalus acanthias	Spurdog	DGS	47-48	
Trachurus picturatus	Blue Jack Mackerel	JAA	62	
Trachurus trachurus	Horse Mackerel (Scad)	HOM	15-17	15
Trisopterus smarkii	Norway pout	NPO	61	
/	J 1			

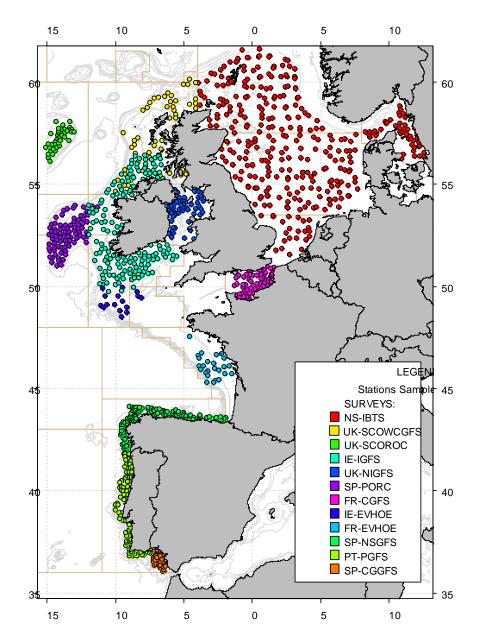


Figure A.7.1. Station positions for the IBTSurveys carried out in the North Eastern Atlantic and North Sea area in summer/autumn of 2017. Quarters 3 and 4.

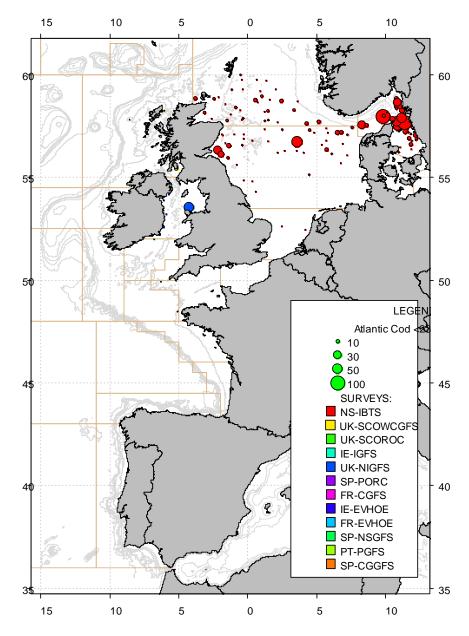


Figure A.7.2. Catches in numbers per hour of 0-group Cod, *Gadus morhua* (<23cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

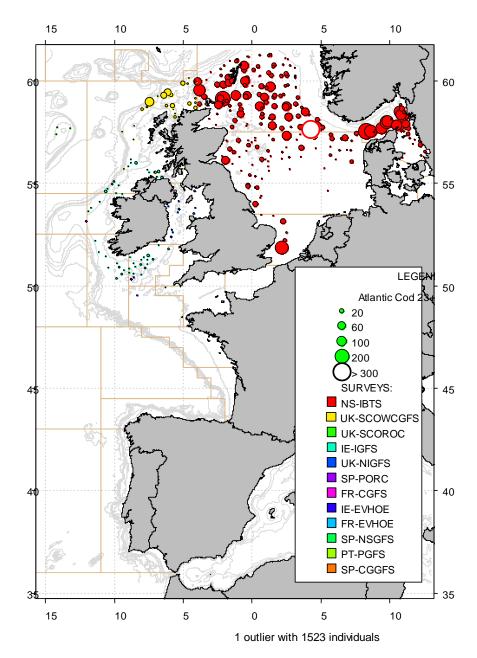


Figure A.7.3. Catches in numbers per hour of 1+ cod, *Gadus morhua* (\geq 23cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

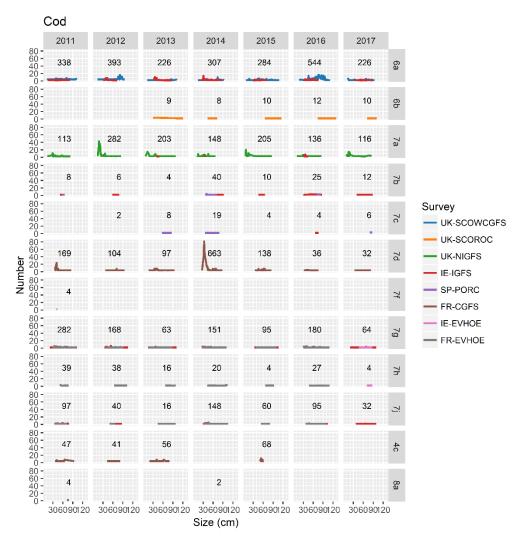


Figure A.7.4. Length distribution of cod, *Gadus morhua*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

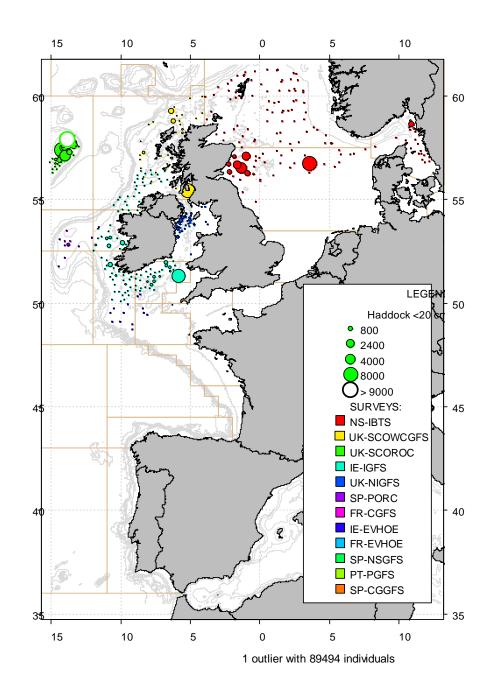


Figure A.7.5. Catches in numbers per hour of 0-group haddock, *Melanogrammus aeglefinus* (<20cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

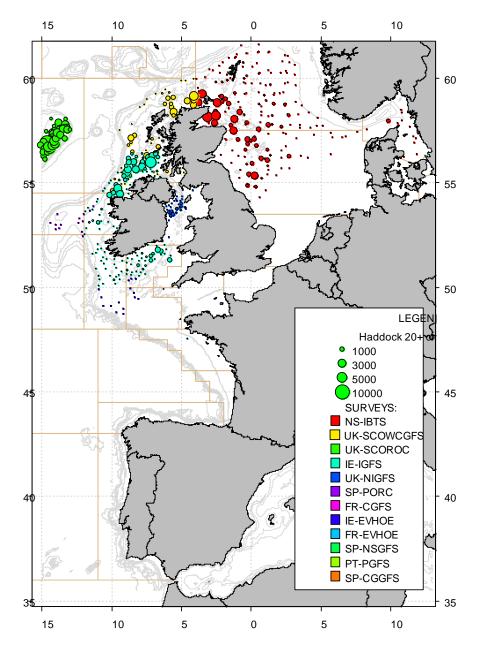


Figure A.7.6. Catches in numbers per hour of 1+ group haddock, *Melanogrammus aeglefinus* (≥20cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

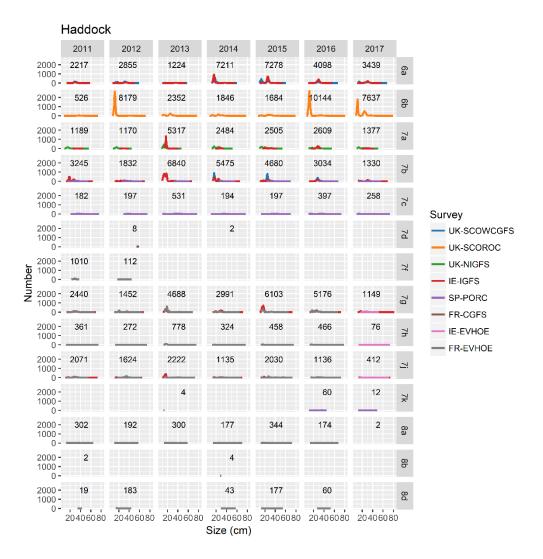


Figure A.7.7. Length distribution of haddock, *Melanogrammus aeglefinus* per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

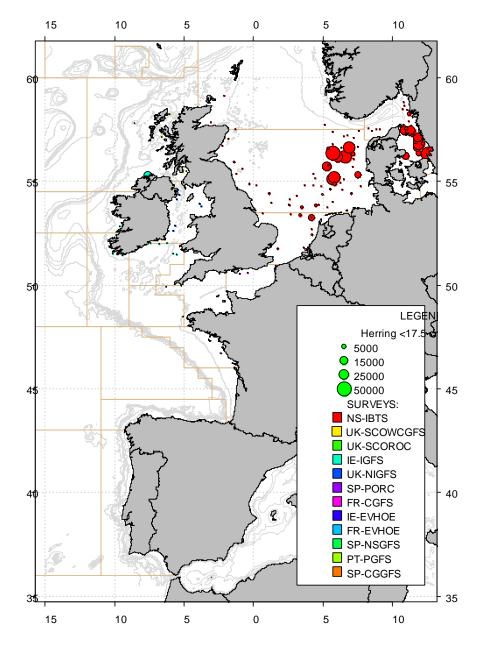


Figure A.7.8. Catches in numbers per hour of 0-group herring, *Clupea harengus* (<17.5 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

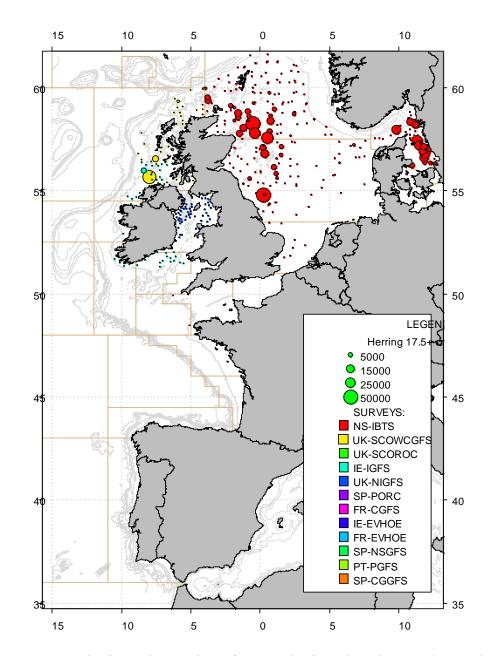


Figure A.7.9. Catches in numbers per hour of 1+ group herring, *Clupea harengus* (≥17.5 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

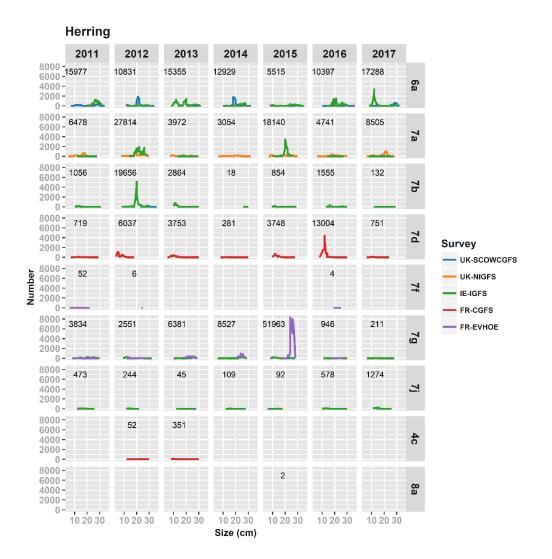


Figure A.7.10. Length distribution of herring, *Clupea harengus* per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

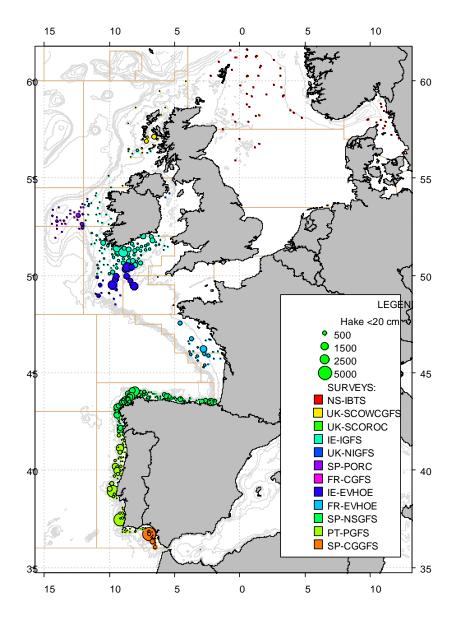


Figure A.7.11. Catches in numbers per hour of 0-group European hake, *Merluccius merluccius (<20cm)*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

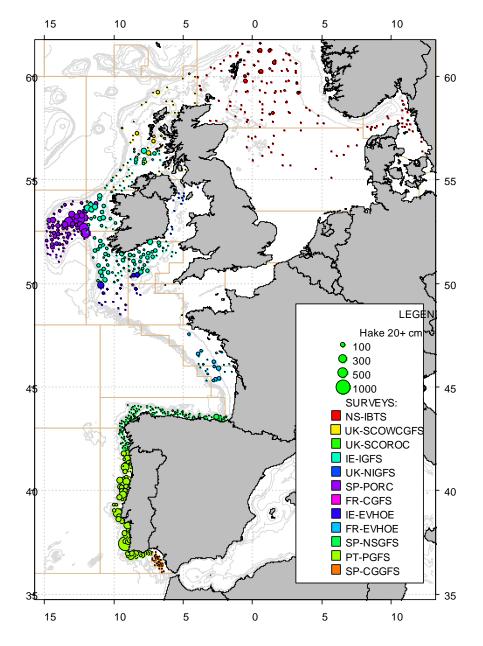


Figure A.7.12. Catches in numbers per hour of 1+ group European hake, *Merluccius merluccius* (≥20cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

	2011	2012	2013	2014	2015	2016	2017		
00 - 00 -	1297	1772	736	871	423	1084	870	6a	
00 - 00 -								Ð,	
0									
00 -	280	505	226	84	609	131	990	7a	
00 -									
00 -									
00 - 00 -	824	1796	1019	970	622	827	741	7b	
00 -						_	-		
00 - 00 -	432	1042	1232	1090	702	1049	895		
00 - 00 -	452	1042	1202	1000	102	1040	000	7c	
0									
00 - 00 -	8	16				12			
00 - 00 -								7f	Survey
0								-	- uk-scowcgr
00 -	977	1815	759	737	982	1101	2147	7g	
00 -								G	UK-NIGFS
00 -									IE-IGFS
00 - 00 -	236	776	396	336	180	364	876	7h	
00 - 00						_		_	SP-PORC
00 - 00 -	1642	1996	1370	657	1147	970	1190		IE-EVHOE
00 - 00 -	1042	1250	13/0	63,	1147	aro	1130	2!	FR-EVHOE
0	_					e			
00 - 00 -	171	181	305	506	382	350	1128	~	SP-NORTH
00 - 00 -								7k	PT-IBTS
0							-	_	CD 4004
00 - 00 -	1126	3895	1183	974	981	11571	570	8a	SP-ARSA
00 -			_		-			œ	
00 -									
00 - 00 -	1102	1492	2007	743	508	1847	804	88	
00	_					<u> </u>			
00 - 00 -	288	143	555	52	104	60	15		
00 - 00 -	200	145	335	52	104	60	15	p8	
0							-		
00 - 00	993	1600	1082	750	1246	1573	739	~	
00 - 00 -								8c	
0 -					-			_	
00 -	2475	1396	3468	1933	2060	2312	2086	9a	
00 - 00 -								a	

Figure A.7.13. Length distribution of hake, *Merluccius merluccius* per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

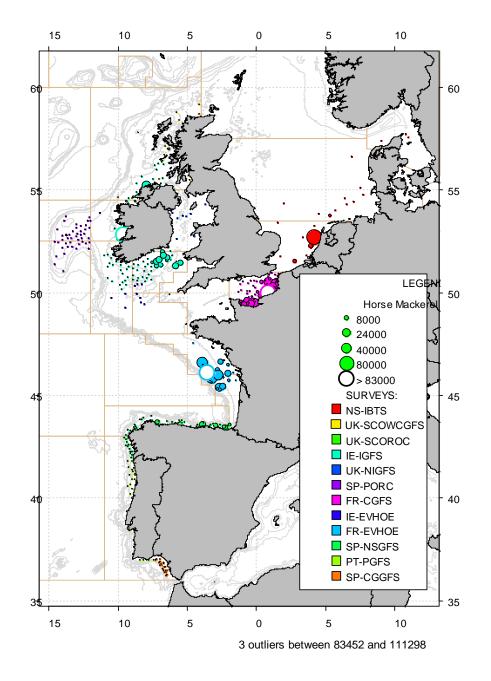


Figure A.7.14. Catches in numbers per hour of 0-group horse mackerel, *Trachurus trachurus* (<15 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

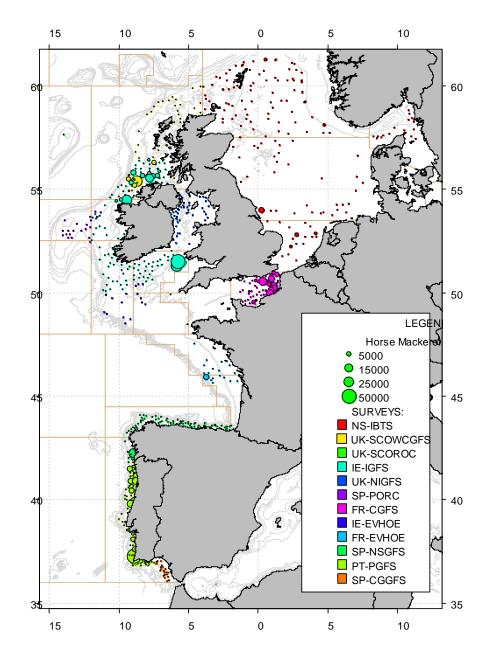


Figure A.7.15. Catches in numbers per hour of 1+ group horse mackerel, *Trachurus trachurus* (\geq 15 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

Figure A.7.16. Length distribution of horse mackerel, *Trachurus trachurus* per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

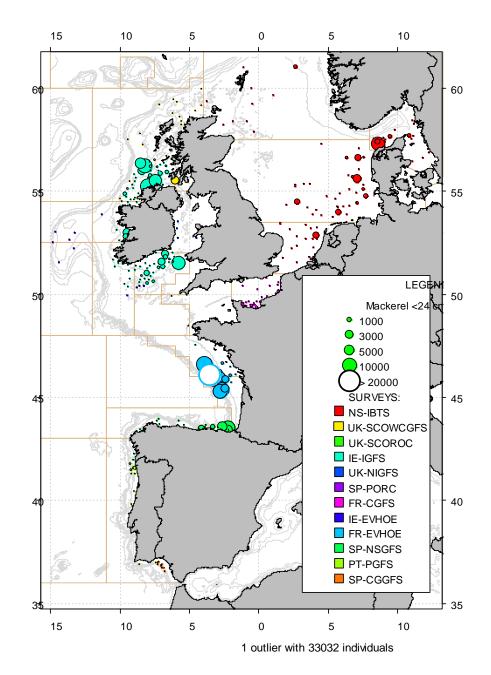


Figure A.7.17. Catches in numbers per hour of 0-group mackerel, *Scomber scombrus* (<24 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

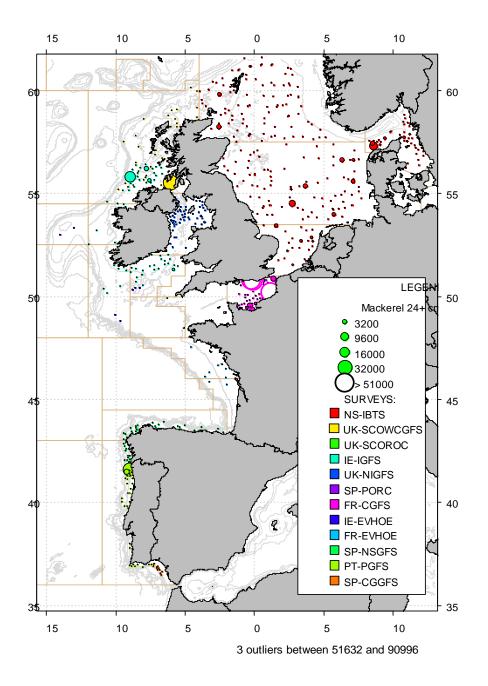


Figure A.7.18. Catches in numbers per hour of 1+ group mackerel, *Scomber scombrus* (≥24 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

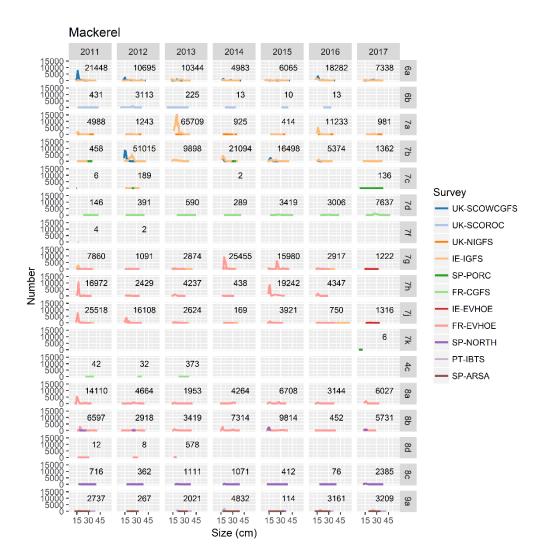


Figure A.7.19. Length distribution of mackerel, *Scomber scombrus* per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

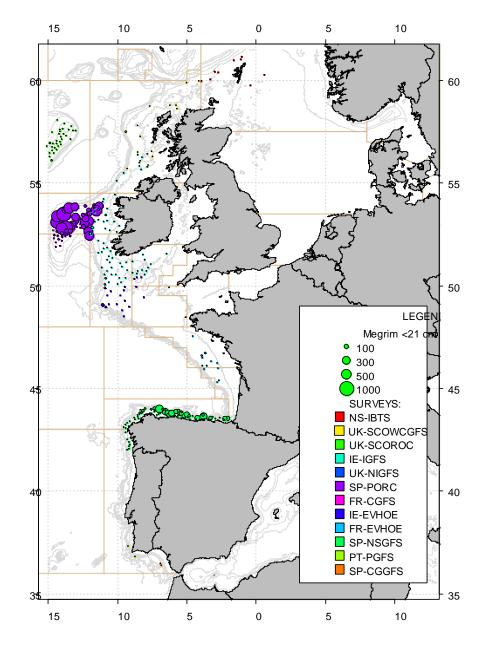


Figure A.7.20. Catches in numbers per hour of megrim recruits, *Lepidorhombus whiffiagonis* (<21 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

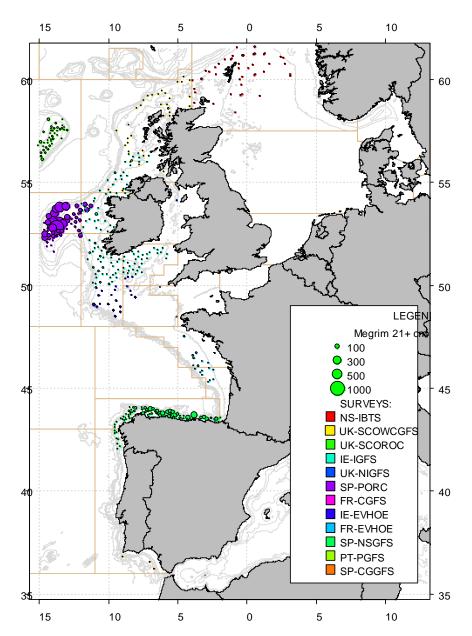


Figure A.7.21. Catches in numbers per hour of 2+ group megrim, *Lepidorhombus whiffiagonis* (≥21cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

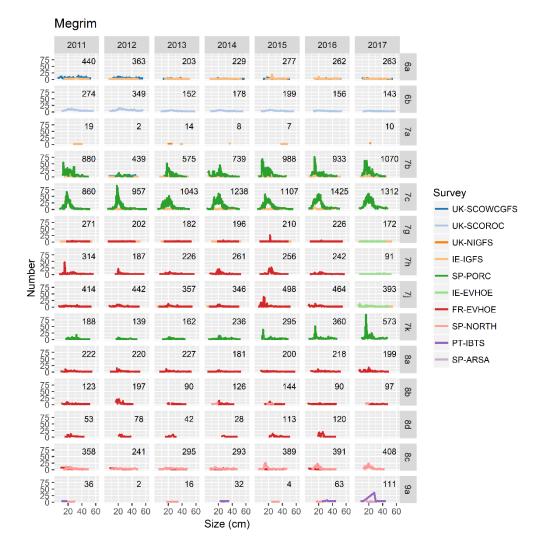


Figure A.7.22. Length distribution of megrim, *Lepidorhombus whiffiagonis*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

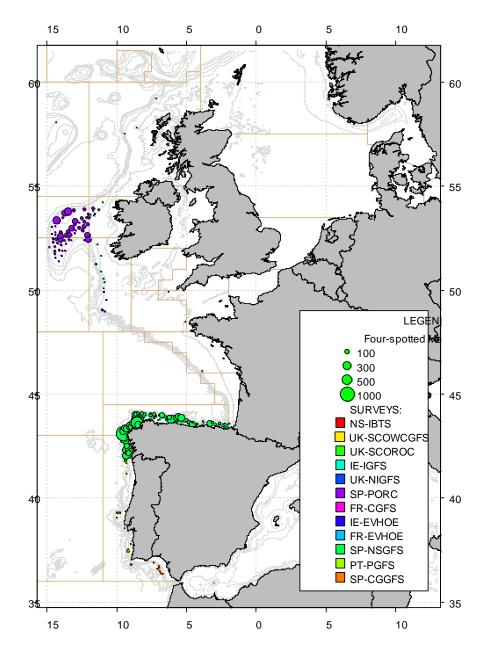


Figure A.7.23. Catches in numbers per hour of recruits of four-spotted megrim, *Lepidorhombus boscii* (<19 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

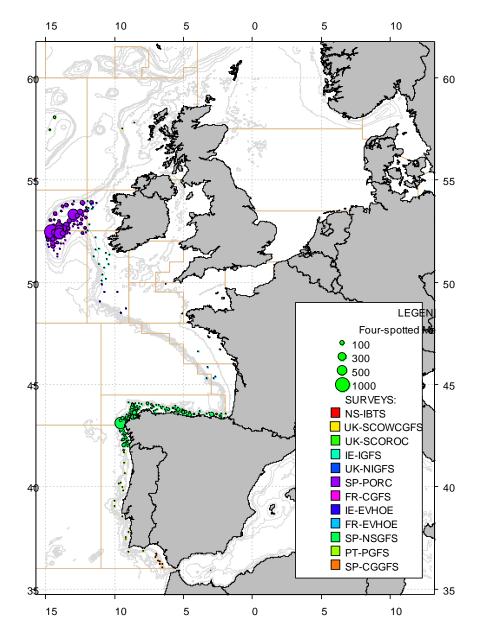


Figure A.7.24. Catches in numbers per hour of 2+ group four-spotted megrim, *Lepidorhombus boscii* (≥19 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

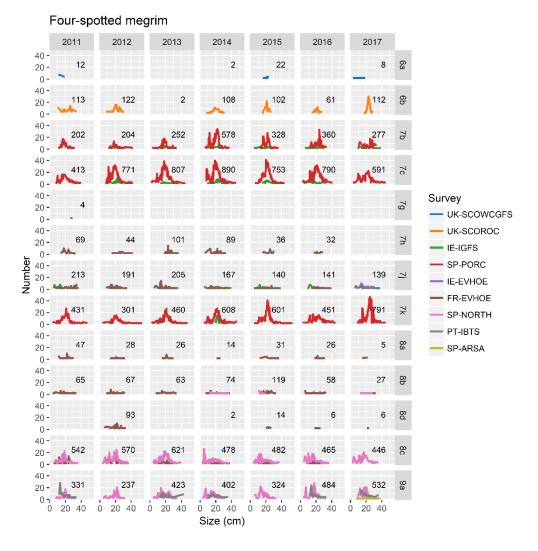


Figure A.7.25. Length distribution of four-spotted megrim, *Lepidorhombus boscii*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

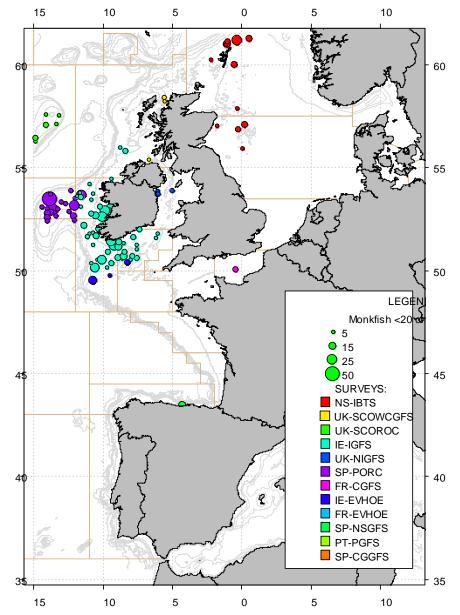


Figure A.7.26. Catches in numbers per hour of 0-group monkfish, *Lophius piscatorius* (<20 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

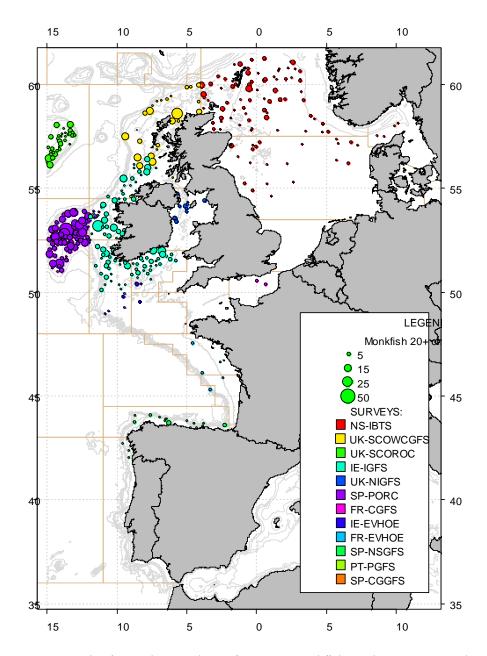


Figure A.7.27. Catches in numbers per hour of 1+ group monkfish, *Lophius piscatorius* (≥20 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

Ν	Nonkfis	h							
50 -	2011	2012	2013	2014	2015	2016	2017		
25 - 0 -	166	220	110	196	170	201	178	6a	
50 - 25 - 0 -	221	270	147	134	118	122	127	66	
50 - 25 - 0 -	32	44	77	48	85	78	90	7a	
50 - 25 - 0 -	115	141	112	224	152	175	145	7b	
50 - 25 - 0	120	190	202	238	203	300	308	7c	Survey
50 - 25 - 0 -	4			4	12	4	12	7d	UK-SCOWCGFS UK-SCOROC
50 - 25 - 0 -	10	12				2		7f	- UK-NIGFS
50 -	219	164	145	150	218	161	111	7g	IE-IGFS SP-PORC
Dagunger 50 - 25 - 0 -	36	35	60	25	12	52	4	7h	FR-CGFS
50 - 25 - 0 -	184	189	135	127	132	145	127	7j	FR-EVHOE
50 - 25 - 0 - •	89	105	131	199	186	181	188	7k	PT-IBTS
50 - 25 - 0 -	152	93	110	130	72	33	10	8a	- SP-ARSA
50 - 25 - 0 -	30	73	32	39	21	4	2	89	
50 - 25 - 0 -	12	14	12	10	16	2	4	8d	
50 - 25 - 0 - 1	115	128	172	122	107	57	38	8c	
50 - 25 -	2	15	22	5	10	6	4	9a	
0 -	306090120	0 306090120	0 306090120	0 306090120	0 306090120	0 306090120	0 30609012		

Size (cm)

Figure A.7.28. Length distribution of monkfish, *Lophius piscatorius*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

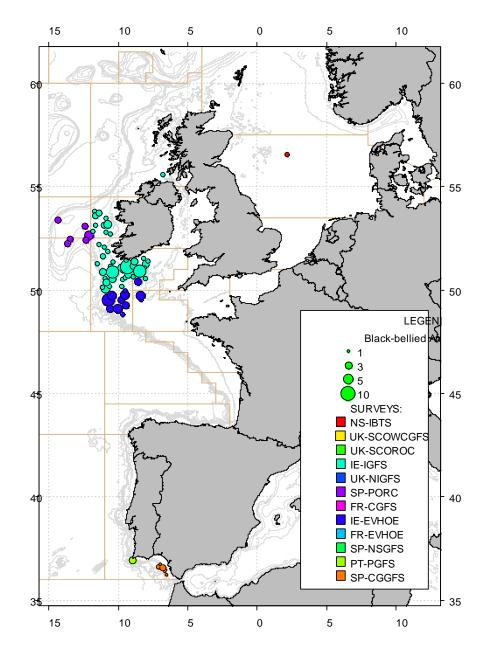


Figure A.7.29. Catches in numbers per hour of 0-group black-bellied anglerfish, *Lophius budegassa* (<20 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

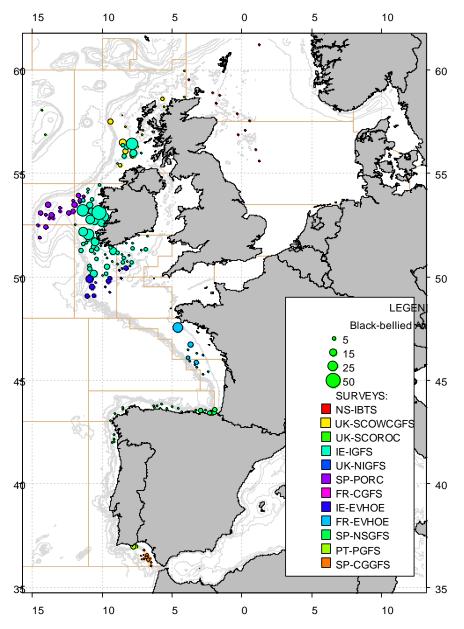


Figure A.7.30. Catches in numbers per hour of 1+ group black-bellied anglerfish, *Lophius budegassa* (≥20 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

		chieu angr	critisti					_	
	2011	2012	2013	2014	2015	2016	2017		
20 - 10 - 0 -	45	82	46	84	37	111	87	6a	
20 - 10 - 0 -			4	8	8	6	4	66	
20 - 10 - 0 -							2	7a	
20 - 10 - 0 -	34	42	78	126	75	133	121	7b	
20 - 10 - 0 -	30	54	69	121	90	64	57	7c	Survey
20 - 10 - 0 -	60	40	65	106	86	94	59	7g	 UK-SCOWCGFS UK-SCOROC
20 - 10 - 0 - 20 -	36	30	68	40	5	55	10	7h	- IE-IGFS SP-PORC
N 20 - 10 - 0 -	144	189	249	153	154	207	151	7j	FR-EVHOE
20 - 10 - 0 -	6		18	17	10	9	9	7k	
20 - 10 - 0 -	91	90	82	104	174	45	43	8a	- SP-ARSA
20 - 10 - 0 -	80	78	55	44	42	10	21	d8	
20 - 10 - 0 -	2	6	4	10	2			8d	
20 - 10 - 0 -	90	111	183	139	80	74	64	8c	
20 - 10 - 0 -	30	26	42	21	38	50	54	9a	
0	30 60 90	0 30 60 90 0	30 60 90 0	30 60 90 Size (cm)	0 30 60 90	0 30 60 90	0 30 60 90)	

Black bellied anglerfish

Figure A.7.31. Length distribution of black-bellied anglerfish, *Lophius budegassa*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

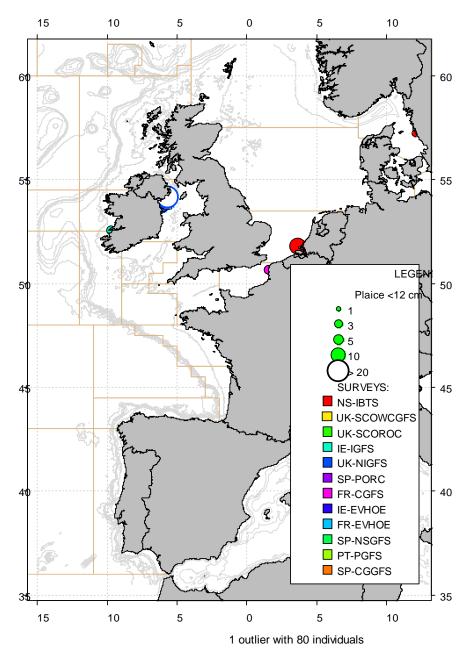


Figure A.7.32. Catches in numbers per hour of 0-group plaice, *Pleuronectes platessa* (<12 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

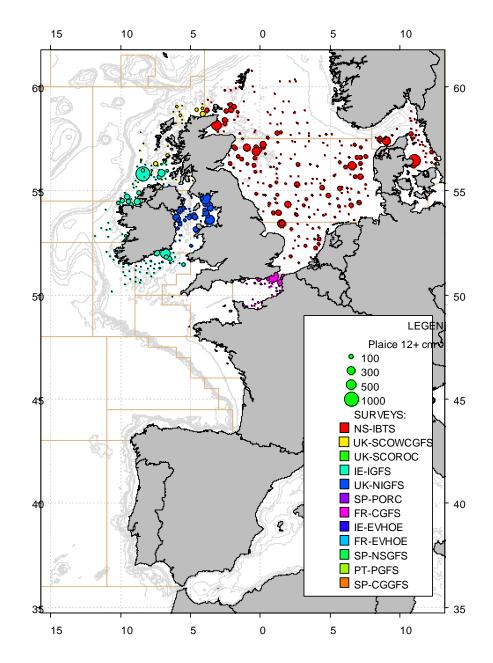


Figure A.7.33. Catches in numbers per hour of 1+ group plaice, *Pleuronectes platessa* (≥12 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

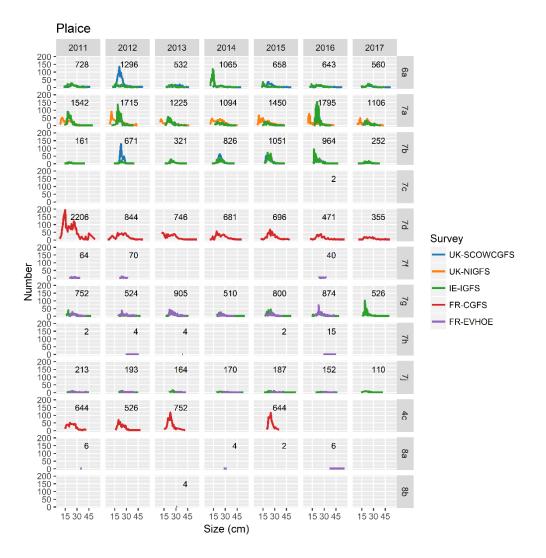


Figure A.7.34. Length distribution of plaice, *Pleuronectes platessa*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.



Figure A.7.35. Catches in numbers per hour of 0-group whiting, *Merlangius merlangus* (<20 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

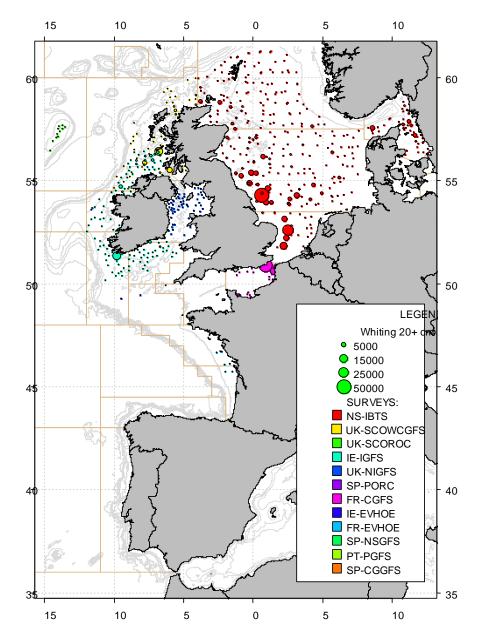


Figure A.7.36. Catches in numbers per hour of 1+ group whiting, *Merlangius merlangus* (≥20 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

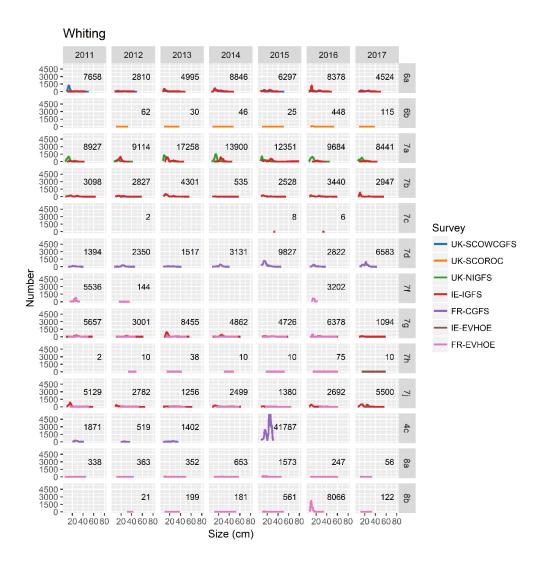


Figure A.7.37. Length distribution of whiting, *Merlangius merlangus*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

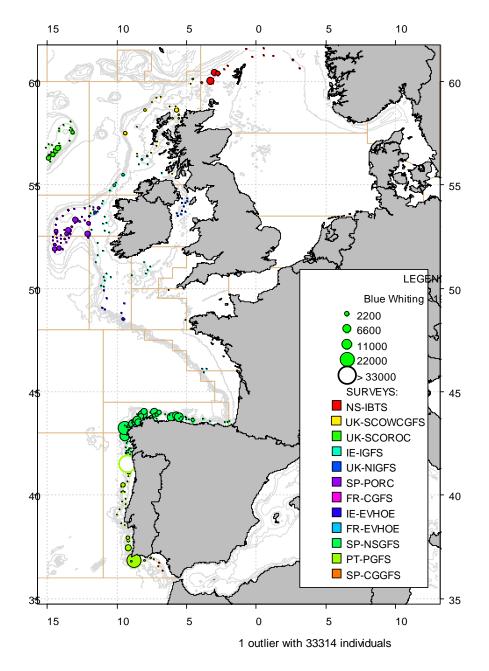


Figure A.7.38. Catches in numbers per hour of 0-group blue whiting, *Micromesistius poutassou* (<19 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

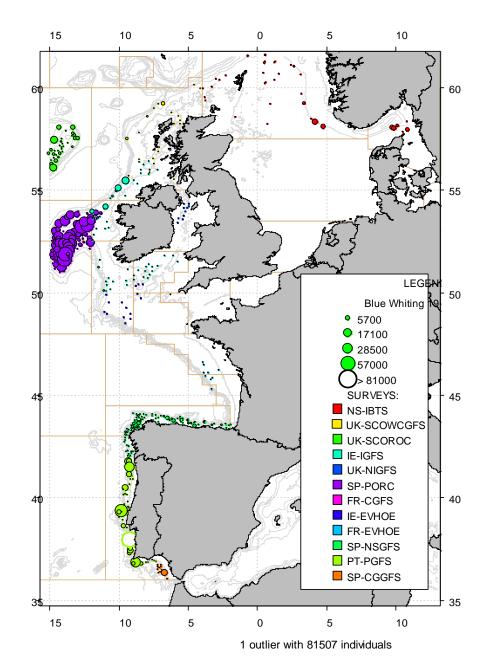


Figure A.7.39. Catches in numbers per hour of 1+ group blue whiting, *Micromesistius poutassou* (≥19 cm), in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

Figure A.7.40. Length distribution of blue whiting, *Micromesistius poutassou*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

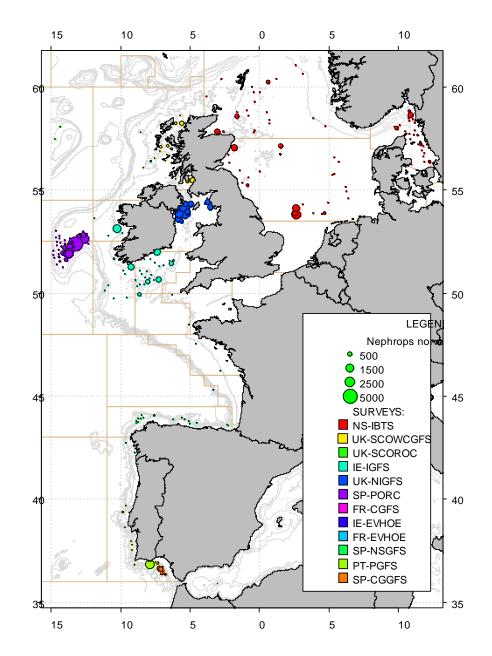


Figure A.7.41. Catches in numbers per hour of Norway lobster, *Nephrops norvegicus*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

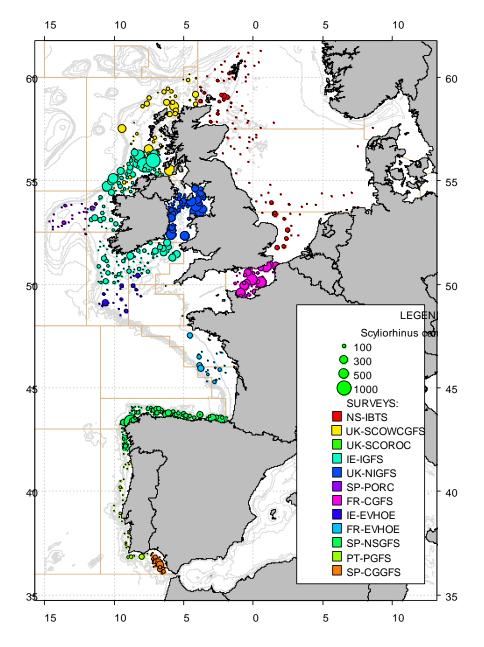


Figure A.7.42. Catches in numbers per hour of lesser spotted dogfish, *Scyliorhinus canicula*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

200 -	2011	2012	2013	2014	2015	2016	2017	
100 -	1605	1914	782	1066	1120	1038	1057	6a
200 - 100 -	1298	968	1099	1196	1172	1850	1051	7a
200 - 100 -	446	454	859	390	519	750	485	7b
200 - 100 -	101	84	144	166	243	248	155	7c
200 - 100 -	644	499	561	724	1109	766	1094	7d
200 - 100 -	2691	2025				714		Survey
0 - 200 - 100 -	1041	964	864	714	953	1076	582	UK-NIGFS
200 - 100 -	224	202	215	221	315	201	148	SP-PORC
200 - 100 -	569	489	505	575	643	757	700	→ FR-CGFS
0 - 200 - 100 -		2	18	44	4	9	39	→ FR-EVHOE → SP-NORTH
200 - 100 -	394	356	444		176			PT-IBTS
200 - 100 -	463	376	292	346	348	469	304	
0 - 200 - 100 -	499	418	544	525	458	409	311	8
200 - 100 -	515	221	101	35	281	120	2	8
200 - 100 -	396	422	821	894	545	566	413	8c
200-	602	635	1190	868	744	676	749	9a

Lesser spotted dogfish

Size (cm)

Figure A.7.43. Length distribution of lesser spotted dogfish, Scyliorhinus canicula, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

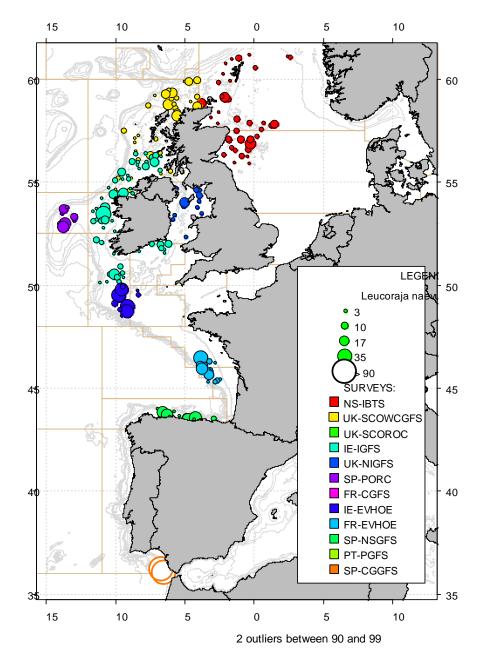


Figure A.7.44. Catches in numbers per hour of cuckoo ray, *Leucoraja naevus*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

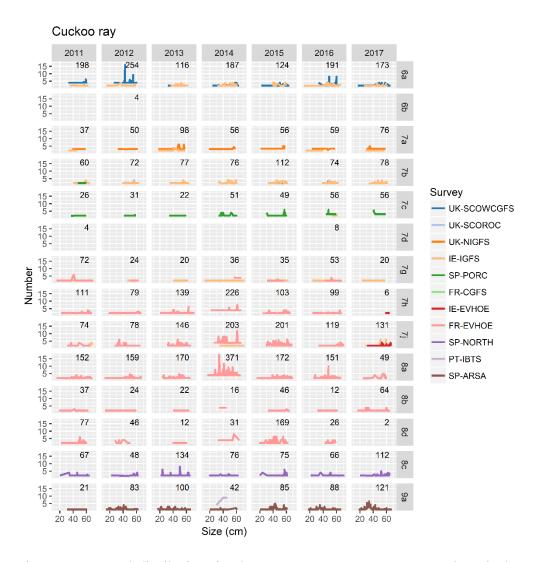


Figure A.7.45. Length distribution of cuckoo ray, *Leucoraja naevus*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

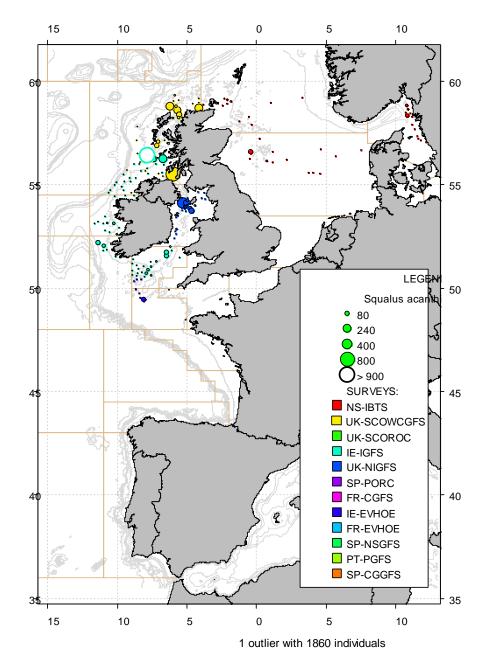


Figure A.7.46. Catches in numbers per hour per hour of spurdog, *Squalus acanthias*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

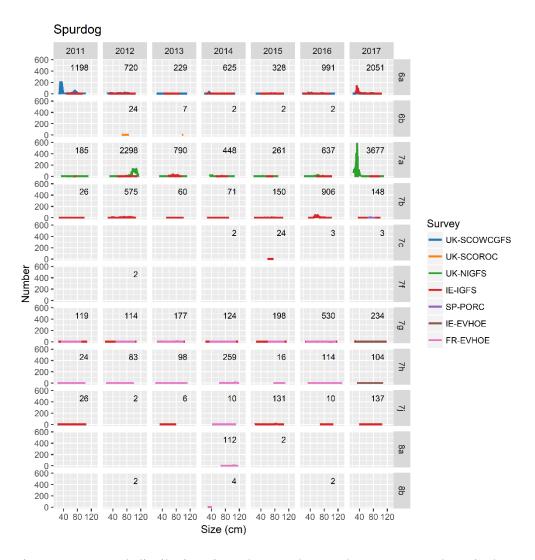


Figure A.7.47. Length distribution of spurdog, *Squalus acanthias*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

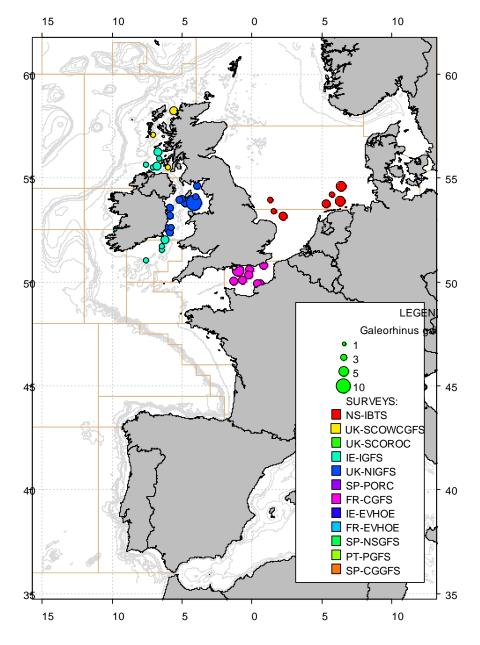


Figure A.7.48. Catches in numbers per hour per hour of tope, *Galeorhinus galeus*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

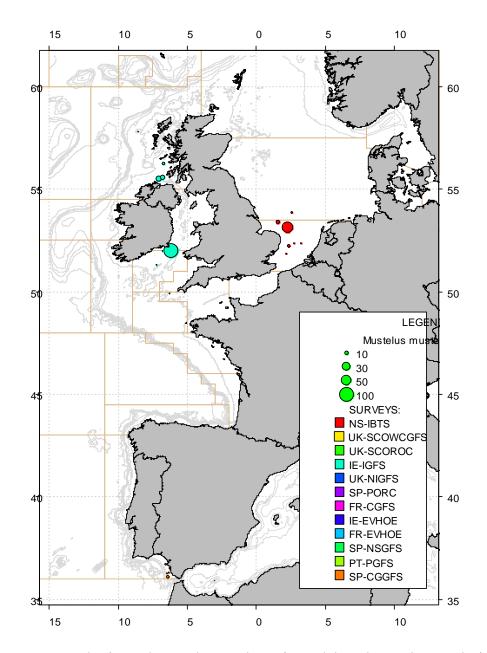


Figure A.7.49. Catches in numbers per hour per hour of smooth-hound, *Mustelus mustelus* in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

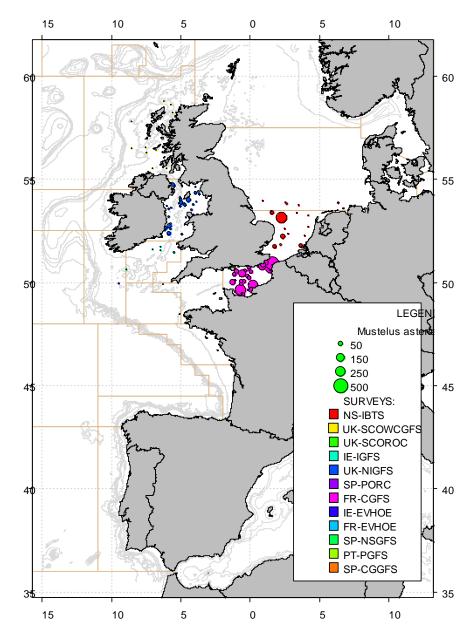


Figure A.7.49. Catches in numbers per hour per hour of smooth-hound, *Mustelus asterias* in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

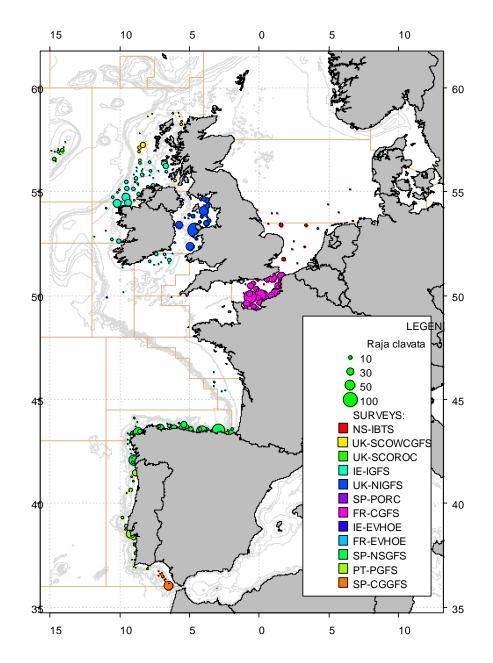


Figure A.7.50. Catches in numbers per hour per hour of thornback ray, *Raja clavata*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

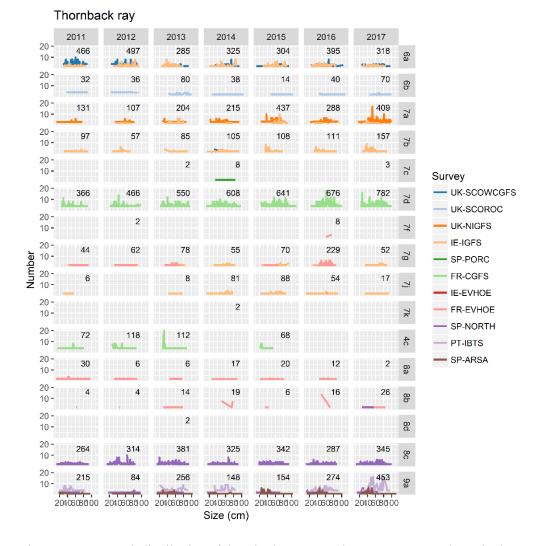


Figure A.7.51. Length distribution of thornback ray, *Raja clavata*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

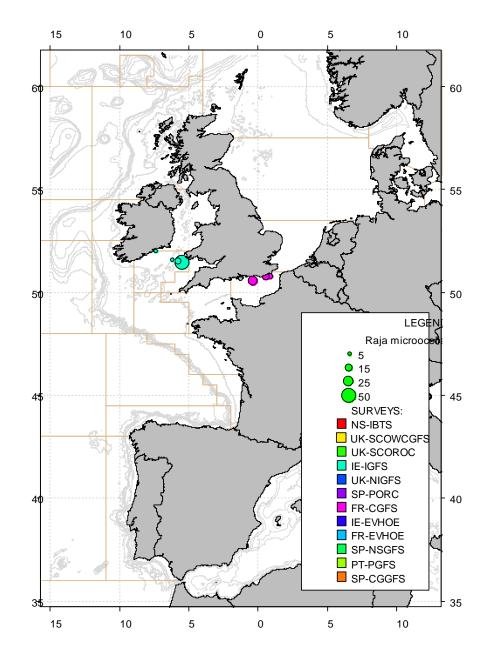


Figure A.7.52. Catches in numbers per hour per hour of small eyed ray, *Raja microocellata*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

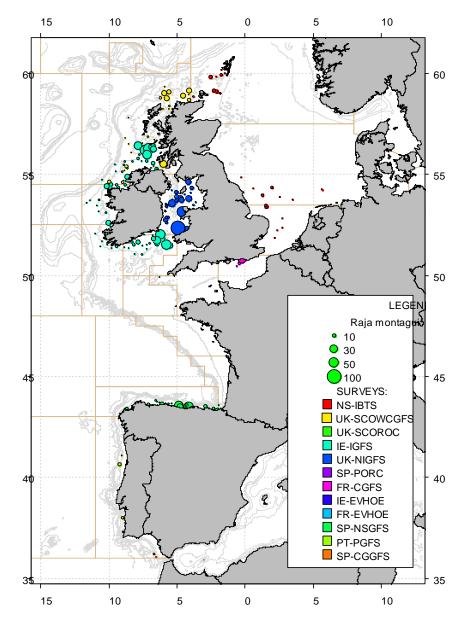


Figure A.7.53. Catches in numbers per hour per hour of spotted ray, *Raja montagui*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

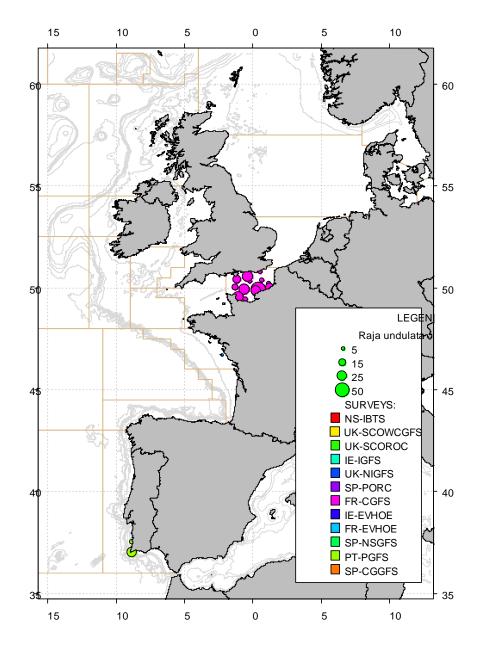


Figure A.7.54. Catches in numbers per hour per hour of undulate ray, *Raja undulata*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

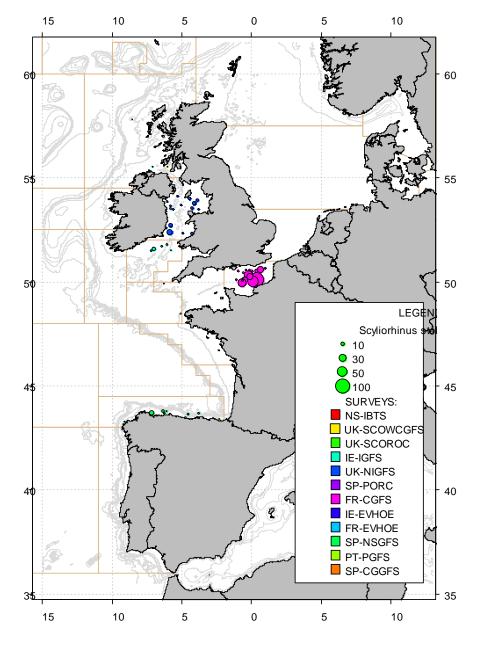


Figure A.7.55. Catches in numbers per hour per hour of nurse hound, *Scyliorhinus stellaris*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

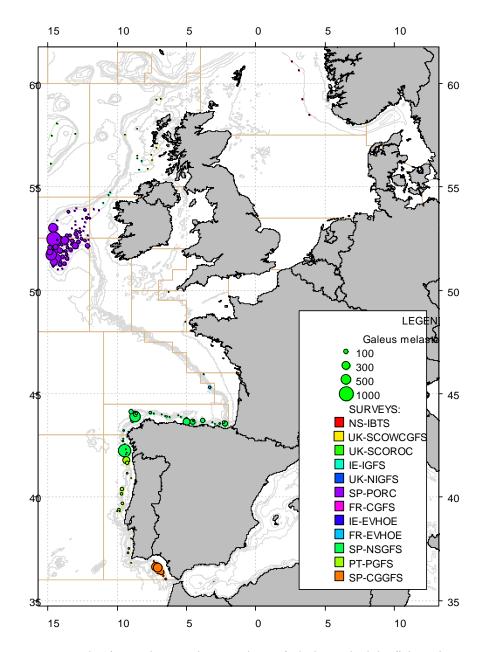


Figure A.7.56. Catches in numbers per hour per hour of Blackmouthed dogfish, *Galeus me-lastomus*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

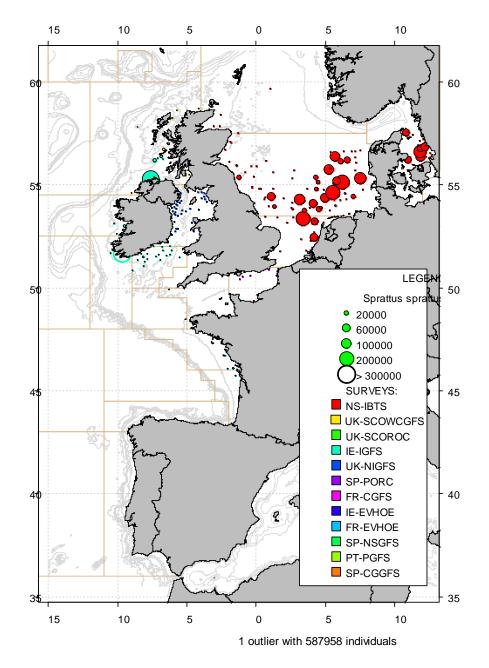


Figure A.7.57. Catches in numbers per hour per hour of European sprat, *Sprattus sprattus*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

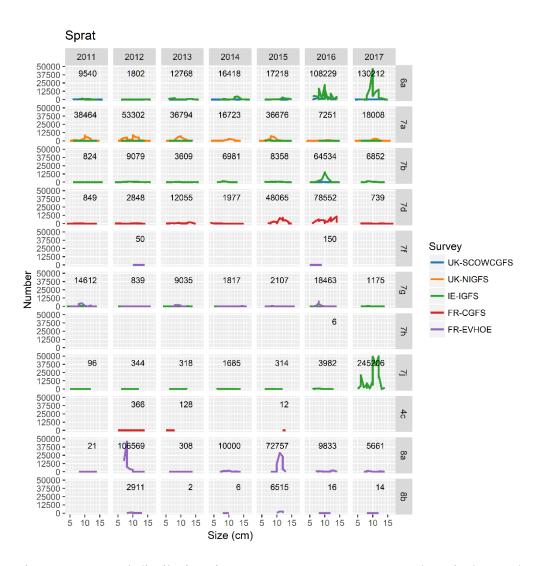


Figure A.7.58. Length distribution of sprat, *Sprattus sprattus*, per ICES Subarea in the NeAtl surveys (North Sea IBTS not included) during the last seven years, each panel presents the surveys occurring. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the lines do not reflect proportional abundance in all the areas but within each survey. The number in each panel corresponds to the sum of the mean stratified number of individuals caught in one hour haul in the surveys carried out in that subdivision.

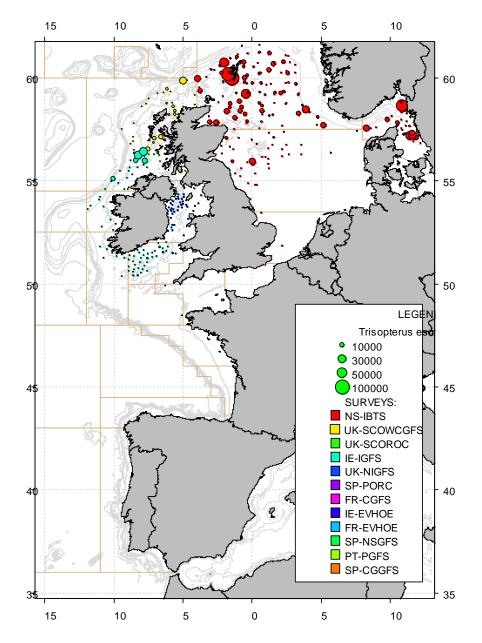


Figure A.7.59. Catches in numbers per hour per hour of Norway pout, *Trisopterus esmarkii*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

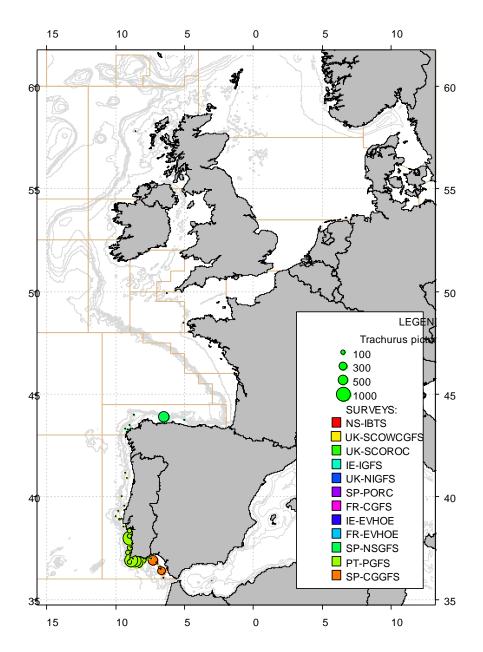


Figure A.7.60. Catches in numbers per hour per hour of blue jack mackerel, *Trachurus picturatus*, in summer/autumn 2017 IBTSurveys. The catchability of the different gears used in the NeAtl surveys is not constant; therefore the map does not reflect proportional abundance in all the areas but within each survey.

Annex 8: List of working documents and presentations

Working documents:

WD1 - Quantifying the different tow durations during the FR-CGFS-Q4. M. Travers-Trolet, IFREMER, Nantes, France.

WD2 - Catches in zero-minute tows compared to standard tows in the NS-IBTS for England. F. Flaviani, B. Hatton, I. Holmes, J.R. Ellis and C. Lynam, CEFAS, Lowestoft, UK England.

WD3 - Catches in zero-minute tows compared to standard tows in the NS-IBTS for Scotland. F. Burns, MSS, Marine Laboratory, Aberdeen, UK Scotland.

WD4 - Catches in zero-minute tows compared to standard tows in the NS-IBTS for Denmark. K. Wieland, DTU Aqua, Hirtshals, Denmark

WD5 - Catches in zero-minute tows compared to standard tows in the NS-IBTS for France. A. Auber, IREMER, Boulogne-sur-Mer, France.

WD6 - Catches in zero-minute tows compared to standard tows in the NS-IBTS for Germany. A. Sell and M. Bernreuther. Thünen Institute of Sea Fisheries, Hamburg, Germany.

Presentations (without corresponding working document):

P1 - The MIK and IBTS results for 0- and 1-ringer herring. M. Kloppmann, Thünen Institute of Sea Fisheries, Hamburg, Germany.

P2 - EVHOE 2017 fail. V. Badts, IFREMER, France.

P3 - DATRAS. V. Soni, ICES Data Centre, Copenhagen, Denmark.

P4 - WKSEATEC 2017. D. Stokes, MI, Oranmore, Ireland.

P5 - Comparison of nylon and polyethylene GOV trawl IBTS Q3 2017. A. Stordal, T. Haugen, R. Wienroither, J. Devine and E. Olsen, IMR, Bergen, Norway.

P6 - GOV tows with Vonin flyers replacing the Exocet kite – Dana NS-IBTS 1Q2018. K. Wieland, DTU Aqua, Hirtshals, Denmark.

P7 - New IBTS survey trawl – First steps, R. Kynoch, MSS, Marine Laboratory, Aberdeen, UK Scotland.

P8 - Norwegian 0-hauls, IBTS Q1 2018. E. Olsen, IMR Bergen, Norway.

Annex 9: Working documents

IBTS2018 WD1

Quantifying the different tow durations during the FR-CGFS-Q4

Morgane Travers-Trolet, IFREMER, France

Context

IBTSWG has been encouraging its members to record the entire tow duration additionally to nominal tow duration, and whenever possible to realize some 0-minute tows in order to estimate the portion of catch which is realized outside nominal tow duration. During the FR-CGFS-Q4 2017 survey, there was not sufficient time at sea to realized 0minute tows, but the different time-steps constituting the tow duration have been recorded, in order to quantify the time where the gear was fishing outside the nominal tow duration.

Results

The total tow duration, from deployment start time (trawl winches start and doors start to move) to retrieval finish time (trawl winches stop and doors arrive back at vessel) was related to depth (figure 1) and varies between 36 to 43 minutes for the classic 30-min tows.

The duration of bottom contact of the gear (from groundgear touch-down to groundgear take-off, assessed using MARPORT sensors) was also recorded but does not seem to varies with depth. Additionally to nominal tow duration (30 minutes in average, with few exceptions where the tow needed to be stopped earlier to prevent trawl damage), the groundgear was on the seabed for about 5 minutes, partly prior to the nominal tow duration (between 1 and 2 minutes), partly after. These different durations are reported for the different stations in table 1.

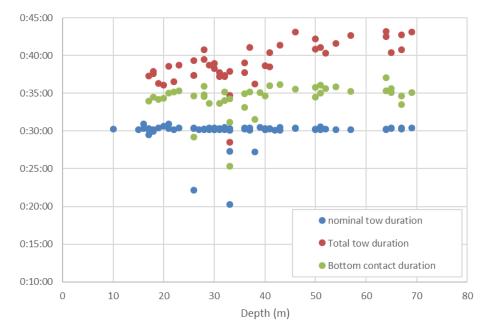


Figure 5 : Tow duration during the 2017 FR-CGFS-Q4 survey.

STA- TION	DEPTH	TOTAL TOW DURATION	NOMINAL TOW DURATION	BOTTOM CON- TACT DURATION
V0392	28		00:30:14	00:34:35
V0396	29		00:30:11	00:33:41
V0397	43	00:41:22	00:30:06	00:36:08
V0398	41	00:40:23	00:30:16	00:35:59
V0413	18	00:37:53	00:29:59	
V0414	26	00:37:23	00:22:10	00:29:12
V0416	31	00:37:47	00:30:22	
V0417	22	00:36:33	00:30:11	00:35:13
V0420	19	00:36:20	00:30:23	00:34:11
V0421	32		00:30:17	00:35:10
V0422	23	00:38:46	00:30:25	00:35:21
V0424	31	00:37:13	00:30:12	00:33:42
V0425	32	00:37:21	00:30:31	
V0427	36	00:37:47	00:30:24	00:34:55
V0428	37	00:41:03	00:30:25	00:35:11
V0430	32	00:37:12	00:30:18	00:34:02
V0431	29	00:38:44	00:30:24	
V0434	18	00:37:37	00:30:13	00:34:28
V0436	26	00:37:24	00:30:22	00:34:39
V0437	33	00:37:54	00:30:21	00:34:18
V0441	51		00:30:13	00:36:04
V0442	54	00:41:39	00:30:11	00:35:53
V0446	38	00:36:15	00:27:12	00:31:33

Table 1 : Different duration tows recorded during FR-CGFS-Q4 survey in 2017, with associated station depth

V0447	26	00:39:20	00:30:27	
V0448	39		00:30:30	00:35:06
V0449	40	00:38:38	00:30:20	00:34:39
V0450	41	00:38:31	00:30:19	
V0452	65	00:40:26	00:30:18	00:35:06
V0453	65		00:30:23	00:35:37
V0454	52	00:40:18	00:30:14	00:35:39
V0455	51	00:41:07	00:30:33	00:35:01
V0456	46	00:43:08	00:30:24	00:35:33
V0459	64	00:43:10	00:30:15	00:37:06
V0460	67	00:42:47	00:30:16	00:34:41
V0461	30	00:38:17	00:30:24	
V0462	36	00:39:03	00:30:17	00:33:09
V0463	67	00:40:45	00:30:24	00:33:31
V0464	69	00:43:07	00:30:24	00:35:07
V0465	57	00:42:40	00:30:13	00:35:16
V0466	64	00:42:31	00:30:11	00:35:19
V0467	50	00:40:50	00:30:11	00:34:28
V0468	50	00:42:13	00:30:15	00:35:48
V0471	21	00:38:33	00:30:57	00:35:00
V0472	17	00:37:20	00:30:11	00:33:56
V0473	33	00:34:43	00:27:18	00:31:10
V0474	33	00:28:30	00:20:18	00:25:19
V0475	20	00:36:06	00:30:39	00:34:20
V0477	30	00:38:56	00:30:15	
V0478	28	00:40:49	00:30:11	00:34:47
V0479	28	00:39:30	00:30:16	00:35:54

IBTS2018 WD2

Working document to the ICES IBTSWG

Not to be cited without prior reference to the author

Catches in zero-minute tows compared to standard tows in the NS-IBTS for England

Flaviani, F., Hatton, B., Holmes, I., Ellis, J. R. and Lynam, C.

Centre for Environment, Fisheries and Aquaculture Science (CEFAS)

Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK

Introduction

Following the preliminary observations of considerable catches taken outside the nominal tow duration of a 30 min standard tow (Hatton *et al.* 2016), the IBTS WG encouraged its members to collect data in 2017 where possible on unquantified trawl times, i.e. during shooting and hauling and crucially outside the nominal trawl period (ICES 2017). The data collected through these experiments will be collated with that from several participating nations.

Method:

England completed 22 zero-minute tows during 2017 (survey CEND 17/17) to complement the 6 tows made during 2016 (survey CEND 18/16) (Table 1). These data were combined, and analyses made here to investigate the difference in species catch-rates and length distributions and the community composition between tows with duration equal to 0 and tows greater than 24 min. For CEND 17/17, prime stations 1, 2, 3, 4, 5, 7, 8, 15, 18, 29, 34, 39, 40, 54 (here after as 54B), 58, 60, 64, 65, 66, 74, 76, NA (X1) were selected. Catches for tows with duration of 25 and 31 minutes have been normalized to 30 minutes duration. The trawl was deployed normally, electronic net sensors monitored, and time stamps were recorded as specified in section 11.1.6 of the 2017 IBTSWG (ICES 2017).

Results:

A total of 28 stations were sampled after 0 minutes and 30 minutes of towing, between August 2016 and September 2017 (Table 1, Figure 1). In total the combined hauls caught 264,488 individual organisms (fish, jellyfish, shellfish, and cephalopods), of this 29% were caught during the 0 minutes hauls and 71% caught during the 30 minutes hauls (Table 1). The majority of the catches for both zero and 30 minutes hauls were comprised by fish species (98% and 97% respectively), but with differences in the composition overall (Figure 2) and by station (Figure 3). The catch in zero minute hauls were composed of 68% pelagic fish by number, representing over 85% of the biomass (Table 4). For the 30 minutes hauls, the catches included similar proportions of benthopelagic and pelagic fish, catching 38% by number (31% by weight) and 36% by number (56% by weight) respectively.

Two demersal species were only be caught during the zero minutes hauls (*Pholis gun*nellus and Anguilla anguilla) whilst 11 demersal species were caught only during the 30 minute hauls (Trisopterus luscus, Gobius niger, Scophthalmus rhombus, Galeus melastomus, Ciliata mustela, Zeus faber, Lumpenus lampretaeformis, Raja montagui, Leucoraja fullonica, Scophthalmus maximus, Lophius budegassa) (Tables 5 and 6). In addition, the following species were caught exclusively on the 30 minute hauls: 2 benthopelagic species Cyclopterus lumpus and Etmopterus spinax and 7 pelagic species Crystallogobius linearis, Clupeidae, Dicentrarchus labrax, Galeorhinus galeus, Lampetra fluviatilis, Entelurus aequoreus, Alosa fallax. The remaining 49 fish species were sampled on both surveys. The zero minutes hauls also sampled jellyfish species that were absent in the 30 minutes hauls. A total of 185 individual jellyfish were caught during the zero minutes hauls and identified as moon jellyfish (Aurelia aurita), blue jellyfish (Cyanaea lamarckii), compass jellyfish (Chrysaora hysoscella), lions mane jellyfish (Cyanaea capillata), crystal jellies (Aequorea spp) and unidentified jellyfish (Cyanea spp). Shellfish were caught during both hauls with the majority of the catches represented by cephalopods. Cephalopods represented 1.5% and 2.0% of catches for the zero and thirty minutes hauls respectively (Figure 2) with two species recovered only during the thirty minutes hauls: Loligo vulgaris and Todarodes saggittatus. The remaining four species of cephalopods (Loligo -Allotheuthis- subulate, Loligo forbesi, Todaropsis eblane, Illex illecebrosus) and six shellfish (Cancer pagurus, Homarus gammarus, Lithodes maja, Necora puber, Nephrops norvegicus, *Pecten maimum*) were found during both zero and 30 minutes hauls. The difference in catch rate by number per species and station if shown in Figure 4. Length distributions by species are similar for catches by both 0 and 30 minutes hauls as can be seen in Figure 5.

References

- Hatton, B., Holmes, I., Ellis, J.R., Lynam, C. 2017. Preliminary observations on catches of fish in 'zero-minute' hauls. IBTSWG 2017. WD6. 9pp.
- ICES. 2017. Interim Report of the International Bottom Trawl Survey Working Group. ICES CM 2017/SSGIEOM:01. 337 pp.

Table 1: Stations details.

Prim		dd/mm/y							
e	Haul	ууу	Shot	Shot	Shot	Haul	Haul		
Sta-	Dura-		Dept	Lati-	Longi-	Lati-	Longi-	Shot	Haul
tion	tion		h	tude	tude	tude	tude	Time	Time
	0	01/09/201	24	-1 -1-	1 - 10	-4 -4-	1 = 10	05:56:	05 54 85
1	0	7	34	51.745	1.748	51.745	1.748	25	05:56:25
	01	04/08/201	22	-4	4 884	54 540	1 540	12:54:	10.05.05
	31	7	33	51.77	1.771	51.742	1.743	25	13:25:25
2	0	01/09/201 7	24	E1 E02	0 700	F1 F00	0 700	10:43:	10 42 25
2	0	-	34	51.583	2.782	51.583	2.782	25	10:43:25
	30	04/08/201 7	30	51.563	2.767	51.592	2.79	18:07: 25	18:37:25
	30		30	51.505	2.707	51.592	2.79		16.57.25
3	0	01/09/201 7	24	51.813	3.62	51.813	3.62	15:11: 25	15:11:25
5	0	05/08/201	24	51.615	5.02	51.015	5.02	23 04:08:	15.11.25
	30	7	24	51.812	3.617	51.83	3.661	04.08. 25	04:38:25
	50	02/09/201	24	01.012	5.017	01.00	0.001	07:43:	04.00.20
4	0	7	38	52.808	2.751	52.808	2.751	07.45. 25	07:43:25
1	0	05/08/201	00	02.000	2.701	02.000	2.701	18:41:	07.10.20
	30	7	38	52.803	2.753	52.825	2.714	25	19:11:25
		02/09/201						05:03:	
5	0	7	29	52.677	3.41	52.677	3.41	25	05:03:25
		05/08/201						15:00:	
	30	7	27	52.691	3.409	52.658	3.413	25	15:30:25
		30/08/201						16:56:	
7	0	7	54	53.961	0.269	53.961	0.269	25	16:56:25
		30/08/201						13:32:	
	30	7	54	53.977	0.252	53.947	0.275	25	14:02:25
		31/08/201						06:21:	
8	0	7	40	53.949	1.282	53.949	1.282	25	06:21:25
		31/08/201						04:56:	
	30	7	40	53.965	1.281	53.934	1.297	25	05:26:25
		06/09/201						09:17:	
9	0	6	70	53.834	2.636	53.834	2.636	44	09:17:44
		12/08/201						14:53:	
	30	6	73	53.84	2.622	53.85	2.568	44	15:23:44
45	0	08/08/201			1 000		1 000	15:42:	45 40 05
15	0	7	37	54.798	1.322	54.798	1.322	25	15:42:25
	21	08/08/201	20	E4.007	1.0((1 005	14:03:	14.04.05
	31	7	38	54.806	1.266	54.777	1.295	25	14:34:25
10	0	07/08/201 7	11	54 750	1 0EF	54 750	1955	18:06: 25	18.06.25
18	0	7	44	54.759	4.855	54.759	4.855	25 16.48	18:06:25
	30	07/08/201 7	44	54.77	4.917	54.763	4.861	16:48: 25	17:18:25
	50		-1-1	J 1 .//	4.71/	54.703	4.001		17.10.23
26	0	05/09/201 6	37	55.576	3.73	55.576	3.73	15:17: 44	15:17:44
20	0	0 16/08/201		55.570	5.75	55.570	5.75	44 12:37:	10.17.44
	30	16/08/201 6	37	55.594	3.708	55.567	3.741	12:37: 44	13:07:44
	00	10/08/201		00.074	0.700	00.007	0.7 11	08:42:	10.07.11
29	0	10/08/201 7	39	55.719	6.669	55.719	6.669	08.42. 25	08:42:25
<u> </u>	0	,		55.717	0.007	55.717	0.007	20	00.42.20

Prim		dd/mm/y							
e	Haul	ууу	Shot	Shot	Shot	Haul	Haul		
Sta-	Dura-	555	Dept	Lati-	Longi-	Lati-	Longi-	Shot	Haul
tion	tion		h	tude	tude	tude	tude	Time	Time
		10/08/201						07:17:	
	30	7	36	55.678	6.77	55.695	6.721	25	07:47:25
		12/08/201						09:36:	
34	0	7	96	56.781	1.398	56.781	1.398	25	09:36:25
		12/08/201						07:55:	
	30	7	98	56.744	1.517	56.76	1.464	25	08:25:25
		10/08/201						17:07:	
39	0	7	40	56.598	6.93	56.598	6.93	25	17:07:25
		10/08/201						15:04:	
	30	7	39	56.601	6.908	56.591	6.964	25	15:34:25
		27/08/201						16:49:	
40	0	7	129	57.049	-1.757	57.049	-1.757	25	16:49:25
10	0	27/08/201		071015	10.07	011015	1000	14:22:	10117.20
	31	7	116	57.043	-1.757	57.068	-1.719	14.22. 25	14:53:25
	01	04/09/201	110	071010	10.07	01.000	1017	13:03:	1100120
55	0	6	106	58.238	1.459	58.238	1.459	13.05. 44	13:03:44
00	0	26/08/201	100	00.200	1.107	00.200	1.107	10:05:	10.00.11
	25	6	108	58.244	1.457	58.218	1.444	10.05. 44	10:30:44
	20	15/08/201	100	00.211	1.107	00.210	1.111	06:30:	10.00.11
58	0	15/06/201 7	156	58.094	4.781	58.094	4.781	08.30. 25	06:30:25
50	0	, 15/08/201	150	50.074	4.701	50.074	4.701	04:40:	00.00.20
	30	13/00/201 7	164	58.11	4.748	58.089	4.796	04.40. 25	05:10:25
	50	23/08/201	104	50.11	4.740	50.007	4.770	17:42:	00.10.20
60	0	23/06/201 7	114	59.279	-1.218	59.279	-1.218	17:42: 25	17:42:25
00	0	23/08/201	114	57.275	-1.210	57.275	-1.210	15:12:	17.42.25
	30	23/08/201 7	115	59.277	-1.185	59.285	-1.247	15.12. 25	15:42:25
	50		115	57.217	-1.105	57.205	-1.247		15.42.25
62	0	02/09/201 6	118	59.221	0.904	59.221	0.904	13:45: 44	13:45:44
02	0	02/09/201	110	39.221	0.904	59.221	0.904	44 11:56:	15.45.44
	30	02/09/201 6	118	59.197	0.92	59.226	0.888	44	12:26:44
	30		110	39.197	0.92	39.220	0.000		12.20.44
64	0	16/08/201 7	126	59.308	2 1 4 2	E0 209	2 1 4 2	13:53: 25	12.52.25
04	0	-	120	39.308	2.142	59.308	2.142		13:53:25
	20	16/08/201 7	104	E0 279	2.076	50.2	0 107	11:59: 25	12,20,25
	30	7	124	59.278	2.076	59.3	2.127	25	12:29:25
(F	0	15/08/201	164	E0 10E	2.251	E0 10E	2.251	18:16:	10.14 05
65	0	7	164	59.195	3.351	59.195	3.351	25 15 59	18:16:25
	20	15/08/201	105	E0.00	2 205	E0 10	2.247	15:58:	16.00.05
	30	7	187	59.22	3.397	59.19	3.367	25	16:28:25
((0	23/08/201	120	(0.025	0.400	(0.025	0.400	06:06: 25	06.06.05
66	0	7	130	60.035	-0.492	60.035	-0.492	25	06:06:25
	20	23/08/201	107	(0.010	0 51	(0.022	0.497	04:38: 25	05.00.05
	30	7	127	60.012	-0.51	60.033	-0.486	25	05:08:25
70	0	01/09/201	100	(0.100	0.101	(0.100	0.101	14:31:	14.01.44
70	0	6	130	60.198	3.121	60.198	3.121	44	14:31:44
	0.0	01/09/201				(c =		12:18:	
	30	6	135	60.177	3.127	60.207	3.157	44	12:48:44
		21/08/201						19:00:	
74	0	7	153	61.187	1.27	61.187	1.27	25	19:00:25

Prim		dd/mm/y							
e	Haul	ууу	Shot	Shot	Shot	Haul	Haul		
Sta-	Dura-		Dept	Lati-	Longi-	Lati-	Longi-	Shot	Haul
tion	tion		h	tude	tude	tude	tude	Time	Time
		21/08/201						17:23:	
	30	7	157	61.206	1.27	61.179	1.309	25	17:53:25
		26/08/201						15:12:	
76	0	7	82	57.039	0.248	57.039	0.248	25	15:12:25
		26/08/201						13:15:	
	30	7	80	57.068	0.226	57.034	0.224	25	13:45:25
		04/09/201						07:32:	
54A	0	6	148	58.408	0.73	58.408	0.73	44	07:32:44
		26/08/201						04:49:	
	30	6	148	58.394	0.712	58.419	0.752	44	05:19:44
		25/08/201						14:59:	
54B	0	7	149	58.428	0.746	58.428	0.746	25	14:59:25
		25/08/201						12:46:	
	30	5	149	58.408	0.74	58.435	0.773	25	13:16:25
		31/08/201						17:40:	
X1	0	7	30	53.451	1.585	53.451	1.585	25	17:40:25
		31/08/201						14:36:	
	30	7	30	53.441	1.573	53.472	1.593	25	15:06:25

Table 2: Catch number for 0 minutes and 30 minutes tows. Avg: Average; Stdev: Standard deviation.

			0 Minut	es tows			30 minu	ites tows	
	Total ber	num-	Avg	Stdev	Range (min-max)	Total num- ber	Avg	Stdev	Range (min - max)
Fish Total		75892	1069	4929	0 — 37021	181816	2561	9251	0 - 64330
Benthope- lagic		15043	1671	4618	0 — 13965	70366	7818	21245	1 — 64330
Demersal		8103	169	613	0 - 3856	44310	923	3193	0 - 19029
Pelagic		52746	3768	10259	0 — 37021	67139	4796	10572	1 - 37413
Jellyfish To- tal		185	31	30	1 - 74	0	0	0	0 - 0
Shellfish To- tal		1286	107	205	0 — 552	5309	442	667	1 — 1823
Cephalopod		1095	182	277	0 - 552	3676	613	868	1 - 1823
Shellfish		191	32	43	1 — 92	1634	272	393	3 - 924
Catch by number		77363	869	4415	0 — 37021	187125	2103	8305	0 - 64330

		0 Minu	utes tows			30 mi	nutes tov	VS
	Total (kg)	Av g (kg)	Stde v	Range (min- max)	Total (kg)	Av g (kg)	Stde v	Range (min - max)
Fish Total	8459	119	822	0 - 6937	14491	207	670	0 - 4643
Benthopelagic	362	40	91	0 – 271	1659	184	393	0.003 - 1144
Demersal	833	17	42	0 - 199	4564	97	228	0 – 971
Pelagic	7264	519	1848	0 – 6937	8268	591	1379	0.001 - 4643
Jellyfish Total	26	4	9	0.01 - 23	0	0	0	0 – 0
Shellfish Total	33	3	3	0 - 9.9	186	16	18	0.6 – 50
Cephalopod	16	2	4	0 - 9.9	48	8	13	0.6 - 33
Shellfish	19	3	3	0.5 - 7.0	138	23	21	1.2 -50
Catches Total	8519	96	735	0 - 6937	14678	167	602	0 - 4643

Table 3: Weight of catches (kg) for 0 minutes and 30 minutes tows. Avg: Average; Stdev: Standard deviation.

Table 4: Percentages of number of catches and weights of catches per zero and 30 minutes hauls

	Percent	tage by nur	nber		Percen	tage by wei	ights	
	Zero	Minutes	30	Minutes	Zero	Minutes	30	Minutes
	Hauls		Hauls		Hauls		Hauls	
Benthopelagic	19.4%		37.6%		4.3%		11.3%	
Demersal	10.5%		23.7%		9.8%		31.1%	
Pelagic	68.2%		35.9%		85.3%		56.3%	
Jellyfish	0.2%		0%		0.3%		0%	
Cephalopod	1.4%		1.96%		0.2%		0.3%	
Shellfish	0.3%		0.87%		0.2%		0.9%	

Table 5: Number of species within groups caught by haul type

	Zero minutes	30 Minutes	Only Zero minutes	Only 30 Minutes	Zero and 30 minutes
Fish Total	51	69	2	20	49
Benthopelagic	7	9	0	2	7
Demersal	37	46	2	11	35
Pelagic	7	14	0	7	7
Jellyfish Total	6	0	6	0	0
Shellfish Total	10	12	0	2	10
Cephalopod	4	6	0	2	4
Shellfish	6	6	0	0	6
Catches Total	67	81	8	22	59

Organ- ism	Group	Spe- cies code	Scientific name	Common Name	A	В	С
Fish	Benthope- lagic	ARG	Argentinidae	Argentines			Х
Fish	Benthope- lagic	BOF	Capros aper	Boar fish			Х
Fish	Benthope- lagic	GSE	Hyperoplus lanceolatus	Great sandeel			Х
Fish	Benthope- lagic	LUM	Cyclopterus lumpus	Lumpsucker		Х	
Fish	Benthope- lagic	NOP	Trisopterus esmarki	Norway pout			х
Fish	Benthope- lagic	REV	Sebastes viviparus	Redfish			Х
Fish	Benthope- lagic	SYP	Gadiculus argenteus	Silvery pout			Х
Fish	Benthope- lagic	VBY	Etmopterus spinax	Velvet belly		Х	
Fish	Benthope- lagic	WHB	Micromesistius poutassou	Blue whiting			Х
Fish	Demersal	BIB	Trisopterus luscus	Whiting-pout (bib)		Х	
Fish	Demersal	BLG	Gobius niger	Black goby		Х	
Fish	Demersal	BLL	Scophthalmus rhombus	Brill		Х	
Fish	Demersal	BRT	Myoxocephalus scorpius	Bullrout			Х
Fish	Demersal	BTF	Pholis gunnellus	Butter fish	Х		
Fish	Demersal	CAA	Anarhichas lupus	Catfish (wolffish)			Х
Fish	Demersal	CDT	Callionymus lyra	Common dragonet			Х
Fish	Demersal	COD	Gadus morhua	Atlantic cod			Х
Fish	Demersal	CUR	Leucoraja naevus	Cuckoo ray			Х
Fish	Demersal	DAB	Limanda limanda	Dab			Х
Fish	Demersal	DBM	Galeus melastomus	Blackmouthed dog- fish		Х	
Fish	Demersal	ELE	Anguilla anguilla	European eel	Х		
Fish	Demersal	FRR	Enchelyopus cimbrius	Four-bearded rock- ling			Х
Fish	Demersal	FVR	Ciliata mustela	Five-bearded rockling		Х	
Fish	Demersal	GUG	Eutrigla (Chelidonicthys) gurnardus	Grey gurnard			Х
Fish	Demersal	HAD	Melanogrammus aeglefinus	Haddock			Х
Fish	Demersal	HGF	Myxine glutinosa	Hagfish			Х
Fish	Demersal	HKE	Merluccius merluccius	European hake			Х
Fish	Demersal	JOD	Zeus faber	John dory		Х	
Fish	Demersal	LEM	Microstomus kitt	Lemon sole			Х
Fish	Demersal	LIN	Molva molva	Common ling			Х
Fish	Demersal	LSD	Scyliorhinus canicula	Lesser spotted dogfish			Х
Fish	Demersal	MEG	Lepidorhombus whiffiagonis	Megrim			Х
Fish	Demersal	MON	Lophius piscatorius	Anglerfish (monk)			Х
Fish	Demersal	MUR	Mullus surmuletus	Red mullet			Х
Fish	Demersal	PLA	Hippoglossoides platessoides	American plaice (lr dab)			X
Fish	Demersal	PLE	Pleuronectes platessa	European plaice			Х
Fish	Demersal	POD	Trisopterus minutus	Poor cod			Х
Fish	Demersal	POG	Agonus cataphractus	Pogge (armed bull- head)			Х
Fish	Demersal	POK	Pollachius virens	Saithe			Х
Fish	Demersal	POM	Pomatoschistus spp	Gobies			Х
Fish	Demersal	SBY	Lumpenus lampretaeformis	Snake blenny		Х	
Fish	Demersal	SDF	Arnoglossus laterna	Scald fish			Х
Fish	Demersal	SDR	Raja montagui	Spotted ray		Х	

Table 6: (A) Organisms caught only during zero minutes hauls; (B) Organisms caught only during30 minutes hauls; (C) Organisms caught during both zero and 30 minutes hauls

Organ- ism	Group	Spe- cies code	Scientific name	Common Name	A	В	C
Fish	Demersal	SDS	Mustelus asterias	Starry smooth hound			Х
Fish	Demersal	SDT	Callionymus maculatus	Spotted dragonet			х
Fish	Demersal	SHR	Leucoraja fullonica	Shagreen ray			х
Fish	Demersal	SOL	Solea solea	Sole (dover sole)			х
Fish	Demersal	SOT	Buglossidium luteum	Solenette			Х
Fish	Demersal	SYR	Amblyraja radiata	Starry ray			х
Fish	Demersal	THR	Raja clavata	Thornback ray (roker)			х
Fish	Demersal	TUB	Trigla (Chelidonichthys) lucerna	Tub gurnard			Х
Fish	Demersal	TUR	Scophthalmus maximus (psetta max- ima)	Turbot		х	
Fish	Demersal	VLP	Lycodes vahlii	Vahl's eelpout			Х
Fish	Demersal	WAF	Lophius budegassa	Black-bellied an- glerfish		Х	Х
Fish	Demersal	WEL	Echiichthys (Trachinus) vipera	Lesser weever fish			Х
Fish	Demersal	WHG	Merlangius merlangus	Whiting			Х
Fish	Demersal	WIT	Glyptocephalus cynoglossus	Witch			Х
Fish	Pelagic	ANE	Engraulis encrasicolus	European anchovy			Х
Fish	Pelagic	CLG	Crystallogobius linearis	Crystal goby		Х	
Fish	Pelagic	CLU	Clupeidae	Herrings		Х	
Fish	Pelagic	ESB	Dicentrarchus labrax	European seabass		Х	
Fish	Pelagic	GAG	Galeorhinus galeus	Tope shark		Х	
Fish	Pelagic	HER	Clupea harengus	Herring			Х
Fish	Pelagic	HOM	Trachurus trachurus	Horse-mackerel (scad)			х
Fish	Pelagic	LAR	Lampetra fluviatilis	River lamprey		Х	
Fish	Pelagic	MAC	Scomber scombrus	(european) mackerel			х
Fish	Pelagic	PIL	Sardina pilchardus	Pilchard			Х
Fish	Pelagic	PLS	Maurolicus muelleri	Pearlside			х
Fish	Pelagic	SKP	Entelurus aequoreus	Snake pipefish		х	
Fish	Pelagic	SPR	Sprattus sprattus	Sprat			х
Fish	Pelagic	TAS	Alosa fallax	Twaite shad		Х	
Jellyfish	Jellyfish	AUA	Aurelia aurita	Moon jellyfish	Х		
Jellyfish	Jellyfish	BLU	Cyanea lamarckii	Blue jellyfish	Х		
Jellyfish	Jellyfish	CAX	Cyanea spp	Cyanea spp	Х		
Jellyfish	Jellyfish	COJ	Chrysaora hysoscella	Compass jellyfish	Х		
Jellyfish	Jellyfish	CRI	Aequorea spp	Cry(i)stal jellies	Х		
Jellyfish	Jellyfish	LIO	Cyanea capillata	Lions mane jellyfish	Х		
Shell- fish	Cephalopod	ATS	Loligo (Alloteuthis) subulata				Х
Shell- fish	Cephalopod	LLV	Loligo vulgaris	Squid		Х	
Shell- fish	Cephalopod	NSQ	Loligo forbesi	Northern squid			Х
Shell- fish	Cephalopod	OME	Todaropsis eblanae				Х
Shell- fish	Cephalopod	SQE	Todarodes saggittatus	Flying squid		Х	
Shell- fish	Cephalopod	SQI	Illex illecebrosus	Northern shortfin squid			X
Shell- fish Shell-	Shellfish	CRE	Cancer pagurus	Edible crab			x x
fish Shell-	Shellfish Shellfish	LBE LDM	Homarus gammarus Lithodes maja	European lobster Stone crab			x
fish Shell-	Shellfish	MLP	Necora puber	Velvet swimming			x
fish Shell-	Shellfish	NEP	Nephrops norvegicus	crab Norway lobster			x
fish			r				

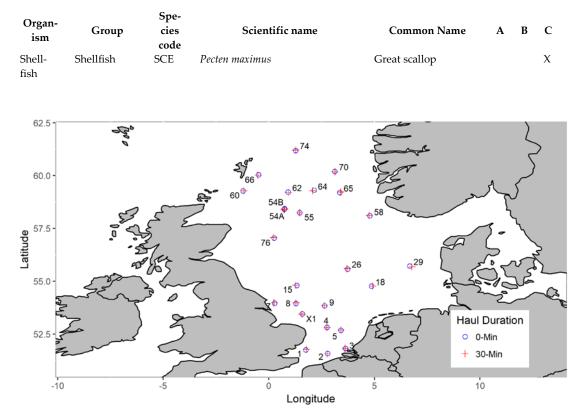


Figure 6: Station position at shot for 0 minutes and 30 minutes tows.

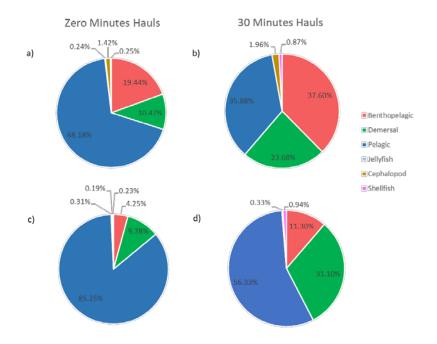


Figure 7: Grouping of zero minutes and thirty minutes hauls. a-b number of fish ; c-d weight of catches. Values in table 3

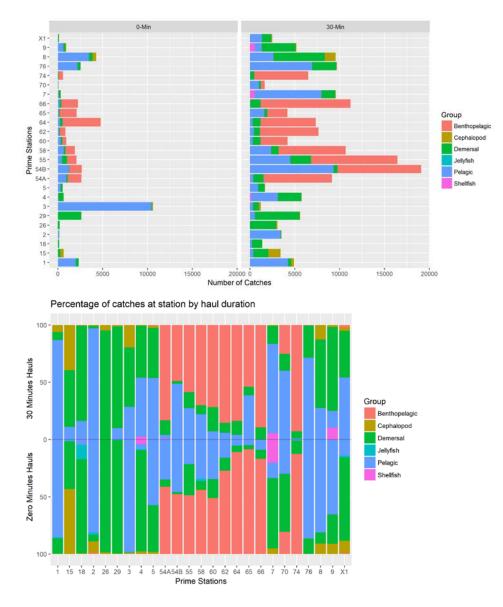


Figure 8: Group catch by number per station for zero and 30 minutes hauls (above by number and below by percentage of each group at station).

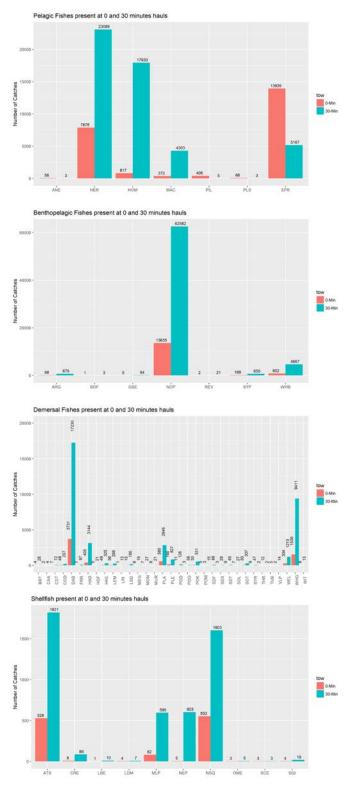


Figure 4: Group catch by number and species per station for zero and 30 minutes hauls

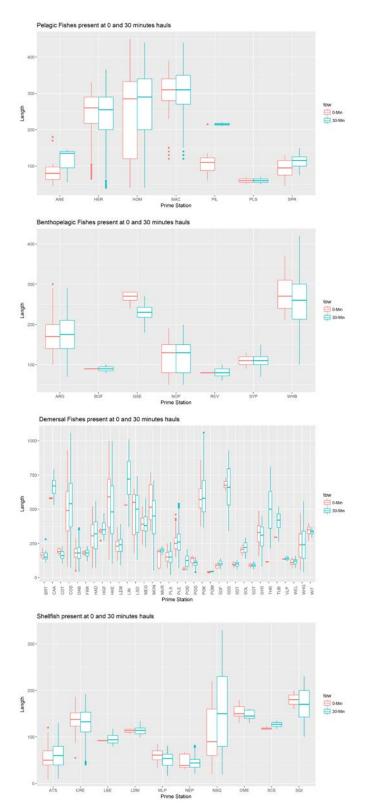


Figure 5: Length distribution of species for zero and 30 minutes hauls

Catches in zero-minute tows compared to standard tows in the NS-IBTS for Scotland

Finlay Burns, MSS, Marine Laboratory, Aberdeen

Introduction

Based on a report citing considerable catches taken outside the nominal tow duration of a 30 min standard tow (Hatton *et al.* 2016), the IBTS WG encourages its members to collect data where possible on unquantified trawl times, i.e. during shooting and hauling and crucially outwith the nominal trawl period. This was possible using the so called zero minute tows (ICES 2017). It is hoped that this will provide an interesting comparison between participating nations regarding the trawl deployment methodologies adopted by each vessel.

Material and Methods

Scotland conducted comparative standard and zero-minute tows at 4 locations and during 3 different surveys in 2017/2018. The 3Q NS-IBTS in 2017 (A), the 1Q NS-IBTS in 2018 (B,C) and also during the Q1 SCOWCGFS 2018 (D) (Figure 1). At all 4 locations 3 replicate zero-minute tow were made within a short distance of the standard 30 min tow (Figure 2).

Time stamps were recorded as specified in section 11.1.6 of the 2017 IBTSWG (ICES 2017). During fishing, vessel position, speed over ground (SOG) and depth were recorded. The trawl geometry (Door and wing spread, vertical net opening) was also monitored using ScanMar net mounted sensors and their readings recorded and displayed onto the MSS RADOS net monitoring system with an update interval rate of 20 seconds. Validation of touchdown and liftoff of trawl on the seabed was provided post haul using a bottom contact sensor mounted onto the footrope in the centre of the trawl groundgear.

All catches were worked up according to standard NS-IBTS procedures. Species were grouped into pelagic and demersal gadoids, flatfish and other demersal fish, and molluscs and crustaceans in the first place. For later analysis demersal gadoids, flatfish and other demersal fish were combined and summarized as demersal fish species.

Results and Conclusions

Towing times outside the nominal tow duration ranged from 5.3 to 10.05 minutes for the standard tows and amounted to between 4.8 and 14.4 minutes for the zero-minute tows with the highest values unsurprisingly being observed within set D which was undertaken at a depth of approximately 185m. Unquantified bottom time outside the nominal 30 minute bottom duration when the net was classified to be settling or during the process of hauling ranged from between 1.3 to 2.1 minutes. The same measurements recorded for the zero hours hauls ranged from between 0.8 to 1.8 minutes (Table1).

Catches observed in all the zero minute hauls were extremely small and with respect to pelagic species, only the zero minute hauls from set B yielded any pelagic fish (Table2). With regards to demersal species the zero minute catches generally ranged from between 0.2 - 2.5 kgs, the exception being one of the replicates from set D that yielded 24 kgs of predominantly small saithe. A comprehensive breakdown of each haul by species and species type is provided in table 2a - 2c. As one would expect with such small catches the number of taxa represented within the zero minute tows were also very low when compared to that of the accompanying standard duration haul. Table 3 provides the mean catchweight across all the replicate zero minute hauls and also provides an estimate of the zero minute catches expressed as percentage of the catchweight from the accompanying standard duration tow. For the demersal species the zero minute results are fairly consistent ranging from 0.8 - 1.5% with a mean of just over 1.17%.

Finally table 4 provides some reference information regarding the gear and vessel parameters data collected both for the standard duration tow and also the zero minutes tow. These provide information that allows a comparison to be made between the trawl geometry for both the standard hauls and also the zero minute tows. On balance I am confident that the results are overall comparable however it is clear than on a couple of occasions that during the zero hours tow the speed was significantly lower than is permitted by IBTS during trawling (Set B, stations 16 and 17), however these results are almost certainly an artefact due to the 20 second update rate that exists when recording the vessel and trawl sensor readings. The same issue is also responsible for the higher than permitted headline reading obverved within Set C, station 66. Should we repeat this experiment in future we would ideally increase the update rate to around 5 seconds for a zero minute tow in an effort to reduce the risk of this issue reoccurring. MSS is confident that it has successfully demonstrated that only a very small amount of time is being spent on the seabed either side of the nominal tow time. The methodology employed by the fishing masters on Scotia attempt to ensure that the trawl arrives on the seabed pretty much ready to fish almost immediately thus settlement time is reduced to a minimum.

References

- Hatton, B., Holmes, I., Ellis, J.R., Lynam, C. 2017. Preliminary observations on catches of fish in 'zero-minute' hauls. IBTSWG 2017. WD6. 9pp.
- ICES. 2017. Interim Report of the International Bottom Trawl Survey Working Group. ICES CM 2017/SSGIEOM:01. 337 pp.

Table 1: Sampling information (all tows *: from start of deployment until end of retrieval of the trawl doors)

(**estimate derived from time taken at similar depths as liftoff time not recorded)

			Total T	ow Duration (min)*			Duration trawl at bottom (min)				
Set	Rectangle	Depth (m)	Standard Tow	Zero Minute Tow			Standard Tow	Zero	Zero Minute Tow		
			Stanuaru Tow	1	2	3	Stanuaru Tow	1	2	3	
SET A	41E9	66-74	36.05	4.8	5	5.28	31.77	0.83	0.93	1.08	
SET B	47E7	68 - 80	39.09	8.85	7.57	7.17	32.12	1.43	1.8	1.77	
SFAD	e 1: Sam	pling inf	ormation (al	1 tows	*: 6.47	start of	depło y ment	untfil	1.3	1.32	
SEAD	of refiev	a188f18he	trawd @oors	11.32	14.42	13.25	31.32	1.05	0.92	1.47	

(**estimate derived from time taken at similar depths as liftoff time not recorded)

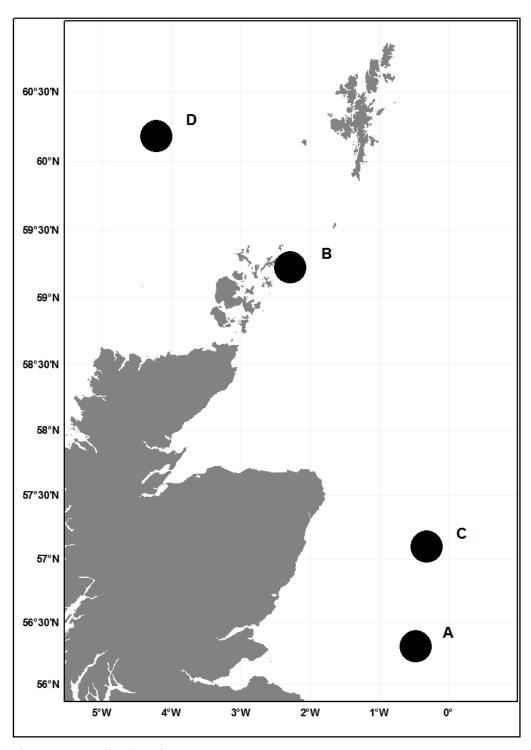
Table 2a: Species compositions for sampling locations A.

Set A		Sta	ation 259 (S	Standard 1	ōw)	5	Station 2	260 (zero-r	ninute t	ow)	Stat	tion 261 (zero-min	ute tow)		St	ation 262 (z	zero-minu	ute tow)	
Group	Species	W (kg)	N	L _{min}	L _{max}	W (kg)	Ν	L _{mir}		L _{max}	W (kg)	N	L _{min}	L _{ma}	x	W (kg)	N	L _{min}	L _{max}	:
Pelagic Fish	Scomber scombrus	1.1	6	2	6 3	1														
Demersal Gadoids	Melanogrammus aeglefinus	3.01	103	1	3 3	2					0.192		1	27	27	0.78	3 4	4	23	31
	Merlangius merlangus	5.5	42	1:	3 3	7					0.116		1	24	24	0.15	3	1	28	28
Flatfish	Limanda limanda	57.6	1187	1	1 2	1 0.6	72	12	13	2	1 0.38		7	13	20	1.05	4 1	7	13	23
	Hippoglossoides platessoides	3.085	58		4 2	3					0.06		1	20	20	0.02	9	1	15	15
	Microstomus kitt	1.54	19	1	6 2	7											4	4	19	28
	Pleuronectes platessa	12.7	67	18	3 3	8 0.2	38	3	18	24	4									
	Arnoglossus laterna	0.035	1	1	6 1	6														
Other Demersal Fish	Callionymus maculatus	0.13	5	14	4 1	7														
	Squalus acanthias	0.09	1	3) з	0														
	Lophius piscatorius	1.7	1	4	5 4	5														
	Eutrigla gurnardus	12.1	145	1	5 2	6 0.5	66	7	18	23	3					0.12	3 2	2	19	20
	Leucoraja naevus	0.86	1	5	2 5	2														
	Crystallogobius linearis	0.001	2		4	4					0.002		3	3	4	0.00	1	1	4	4
	Amblyraja radiata	0.048	1	4) 4	0														
Molluscs	Loligo forbesii					0.0	01	2	2	2	2 0.001		1	2	2	0.00	1	1	1	1
Crustaceans	Cancer pagurus	1.22	1	20.	1 20.	1														
Tota	al Pelagic Fish	1.1	6	2	6 3	1	0	0	0	(0 0		0	0	0	() ()	0	0
Total	Demersal Fish	98.399	1633		4 5	2 1.4	76	22	13	24	4 0.75	1	3	3	27	2.14	3 30)	4	31
Total Numbe	er of Pelagic Fish Taxa		1	1				0					0					0		
Total Number	r of Demersal Fish Taxa		1	4				3					5					6		

Table 2b: Species compositions for sampling locations B and C.

Set B		Statio	n 14, Ggear	B Standar	d tow	Station 1	5 Ggear P	(zero-m	in tow)	Station 1	6 Ggear	B (zero-m	in tow)	Station 1	7 Ggear	B (zero-m	nin tow)
Group	Species				Lmax	W (kg)			Lmax	W (kg)			Lmax	W (kg)			Lmax
Pelagic fish	Clupea harengus	14.6	96	23	30	1.43	10	24.5	28					(0/			
_	Sprattus sprattus	0.836	72	8	14	0.014	1	12.5	12.5	0.208	19	10.5	13	0.017	1	13	13
	Trachurus trachurus	0.064	1	18	18												
Demersal Gadoids	Gadus morhua	22.1	30	24	58												
	Melanogrammus aeglefinis	31.1	107	24	42									1.03	4	24	35
	Merluccius merluccius	0.672	2	31	41												
	Trisopterus esmarkii	0.188	12	8	15	0.023	1	15	15								
	Merlangius merlangus	11.5	90	21	29					0.287	1	32	32				
Flats	Limanda limanda	1.788	21	14	28									0.085	2	16	17
	Pleuronectes platessa	8.4	33	19	36	0.214	2	19	25	0.58	2	27	31				
	S rhombus	1.6	1	45	45												
Other Demersal	L naevus	1.26	1	56	56												
	E gurnardus	0.536	6	18	27												
	M surmulletus	0.118	1	20	20												
	S acanthias	6.4	4	62	91												
	S canicula	1.2	1	65	65												
	R montaguii	7.5	5	57	63												
Molluscs	Loligo forbesii	29.226	139	2	38	0.06	23	1	5								
Total Pelagic		15.5	169	8	30	1.444	11	12.5	28	0.208	19	10.5	13	0.017	1	13	13
Total Demersal		94.362	314	8	81	0.237	3	15	25	0.867	3	27	32	1.115	6	16	35
Total no. pelagic fish	taxa		3				2			· · · ·	1				1		
Total no. demersal f			14				2				2				2		
Set C		Statio	n 63, Ggear	A Standar	d tow	Station 6	4 Ggear A	(zero-m	in tow)	Station 6	5 Ggear	A (zero-m	nin tow)	Station 6	66 Ggear	A (zero-m	nin tow)
Group	Species				Lmax	W (kg)	_		Lmax	W (kg)	_		Lmax	W (kg)	-		Lmax
Pelagic fish	Sprattus sprattus	0.014	1	13	13												
	Trachurus trachurus	0.152	14	9	14.5												
Demersal Gadoids																	
Beinersar Gadoras	Gadus mornua	84	5	20	84											••••••	
	Gadus morhua Melanogrammus aeglefinis	8.4 67.5	595	20 16	84 43					0.265	2	19	29				
	Melanogrammus aeglefinis	67.5	595	16	43	0.006	1	10	10	0.265	2	19	29				
	Melanogrammus aeglefinis Trisopterus esmarkii	67.5 0.39	595 24	16 9	43 16	0.006	1	10	10	0.265 0.01	2	19 11	29 11				
<u></u>	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus	67.5 0.39 8.7	595 24 161	16 9 14	43 16 35	0.006	1	10	10	0.01	1	11	11	0.222			
Flats	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda	67.5 0.39 8.7 13.5	595 24 161 292	16 9 14 10	43 16 35 26					0.01	1	11 16	11 16	0.222	3	14	25
Flats	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides	67.5 0.39 8.7 13.5 1.778	595 24 161 292 38	16 9 14 10 15	43 16 35 26 23	0.12	1	10	10	0.01	1	11	11	0.192	4	15	20
Flats	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt	67.5 0.39 8.7 13.5 1.778 0.388	595 24 161 292 38 4	16 9 14 10 15 19	43 16 35 26 23 26	0.12	1	22	22	0.01 0.035 0.068	1 1 2	11 16 13	11 16 18			15	
Flats	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides	67.5 0.39 8.7 13.5 1.778 0.388 13.6	595 24 161 292 38	16 9 14 10 15	43 16 35 26 23 26 36	0.12	1	22 25	22 30	0.01	1	11 16	11 16	0.192	4	15	20
Flats Other Demersal	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt	67.5 0.39 8.7 13.5 1.778 0.388	595 24 161 292 38 4	16 9 14 10 15 19	43 16 35 26 23 26	0.12	1	22	22	0.01 0.035 0.068	1 1 2	11 16 13	11 16 18	0.192	4	15	20
	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa	67.5 0.39 8.7 13.5 1.778 0.388 13.6	595 24 161 292 38 4 63	16 9 14 10 15 19 18	43 16 35 26 23 26 36	0.12	1	22 25	22 30	0.01 0.035 0.068	1 1 2	11 16 13	11 16 18	0.192	4	15	20
	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5	595 24 161 292 38 4 63 1	16 9 14 10 15 19 18 48	43 16 35 26 23 26 36 48	0.12 0.406 0.568	1 2 1	22 25 47	22 30 47	0.01 0.035 0.068	1 1 2	11 16 13	11 16 18	0.192	4	15	20
	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5	595 24 161 292 38 4 63 1	16 9 14 10 15 19 18 48	43 16 35 26 23 26 36 48	0.12 0.406 0.568	1 2 1	22 25 47	22 30 47	0.01 0.035 0.068	1 1 2	11 16 13	11 16 18	0.192 0.055	4	15 18	20
	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6	595 24 161 292 38 4 63 1 71 71	16 9 14 10 15 19 18 48 15 65	43 16 35 26 23 26 36 48 32 65	0.12 0.406 0.568 0.146	1 2 1 1	22 25 47 25	22 30 47 25	0.01 0.035 0.068	1 1 2	11 16 13	11 16 18	0.192 0.055	4	15 18	20
	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula C cuculus	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6 1.1 1.1	595 24 161 292 38 4 63 1 71 71 1 36	16 9 14 10 15 19 18 48 15 65 65 17	43 16 35 26 23 26 36 48 32 65 29	0.12 0.406 0.568 0.146 1.06	1 2 1 1	22 25 47 25	22 30 47 25	0.01 0.035 0.068	1 1 2	11 16 13	11 16 18	0.192 0.055	4	15 18	20
	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula C cuculus M surmulletus	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6	595 24 161 292 38 4 63 1 71 71	16 9 14 10 15 19 18 48 15 65	43 16 35 26 23 26 36 48 32 65	0.12 0.406 0.568 0.146 1.06	1 2 1 1	22 25 47 25	22 30 47 25	0.01 0.035 0.068	1 1 2	11 16 13	11 16 18	0.192 0.055	4 1 1 1	15 18 	20
Other Demersal	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobildei S canicula C cuculus M surmulletus A radiata	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6 1.1 1.1 4.8 0.082	595 24 161 292 38 4 63 1 71 71 1 36 2	16 9 14 10 15 19 18 48 15 65 17 11	43 16 35 26 23 26 36 36 48 32 65 29 18	0.12 0.406 0.568 0.146 1.06	1 2 1 1	22 25 47 25	22 30 47 25	0.01	1 1 2 1	11 16 13 30	11 16 18 30	0.192 0.055 0.001 0.395	4 1 1 1 1 1	15 18 	20
	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula C cuculus M surmulletus A radiata Alloteuthis	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6 1.1 1.1	595 24 161 292 38 4 63 1 71 71 1 36	16 9 14 10 15 19 18 48 15 65 65 17	43 16 35 26 23 26 36 48 32 65 29	0.12 0.406 0.568 0.146 1.06	1 2 1 1	22 25 47 25	22 30 47 25	0.01	1 1 2 1	11 16 13	11 16 18	0.192 0.055	4 1 1 1	15 18 	20
Other Demersal	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula C cuculus M surmulletus A radiata Alloteuthis Sepiolidaie	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6 1.1 1.1 4.8 0.082 7.4	595 24 161 292 38 4 63 1 71 71 1 36 2 2009	16 9 14 10 15 19 18 48 15 65 17 11 3	43 16 35 26 36 36 36 48 32 65 29 18 9	0.12 0.406 0.568 0.146 1.06	1 2 1 1	22 25 47 25	22 30 47 25	0.01	1 1 2 1	11 16 13 30	11 16 18 30	0.192 0.055 0.001 0.395	4 1 1 1 1 1	15 18 	20
Other Demersal	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula C cuculus M surmulletus A radiata Alloteuthis Sepiolidaie Loligo forbesii	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6 1.1 4.8 0.082 7.4 7.4	595 24 161 292 38 4 63 1 71 71 1 36 2 2009 2009	16 9 14 10 15 19 18 48 15 65 17 11 3 3 21	43 16 35 26 23 26 36 36 48 32 65 29 18 	0.12 0.406 0.568 0.146 1.06	1 2 1 1 1	22 25 47 25 66	22 30 47 25	0.01	1 1 2 1	11 16 13 30	11 16 18 30	0.192 0.055 0.001 0.395	4 1 1 1 1 1	15 18 	20
Other Demersal Molluscs	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula C cuculus M surmulletus A radiata Alloteuthis Sepiolidaie	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6 1.1 4.8 0.082 7.4 0.274 0.274	595 24 161 292 38 4 63 1 71 71 1 36 2 2009 2009	16 9 14 10 15 19 18 48 15 65 17 11 11 3 21 6	43 16 35 26 23 26 36 48 32 65 29 18 9 9 21	0.12 0.406 0.568 0.146 1.06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 25 47 25	22 30 47 25	0.01 0.035 0.068 0.24 0.24 0.008 0.008	1 1 2 1 1	11 16 13 30	11 16 18 30	0.192 0.055 0.001 0.395 0.01	4 1 1 1 3	15 18 3 40 5	20
Other Demersal Molluscs Total Pelagic	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula C cuculus M surmulletus A radiata Alloteuthis Sepiolidaie Loligo forbesii	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6 1.1 1.1 4.8 0.082 7.4 0.274 0.274 0.274	595 24 161 292 38 4 63 1 71 71 1 36 2 2009 2009 1 1 16 15	16 9 14 10 15 19 18 48 15 65 17 11 11 3 3 21 6 9	43 16 35 26 36 36 48 32 65 29 18 	0.12 0.406 0.568 0.146 1.06 0.01	1 2 1 1 1 1 1 1 0	22 25 47 25 66 66	22 30 47 25 66	0.01	1 1 2 1 1 4 4 1 0 0	11 16 13 30	11 16 18 30	0.192 0.055 0.001 0.395 0.01	4 1 1 1 3 3	15 18 3 3 40 5	20 18 3 40 6
Other Demersal Molluscs Total Pelagic Total Demersal	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula C cuculus M surmulletus A radiata Alloteuthis Sepiolidaie Loligo forbesii Ilex coindetti	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6 1.1 4.8 0.082 7.4 0.274 0.274	595 24 161 292 38 4 63 1 71 71 1 36 2 2009 1 1 16 15 1293	16 9 14 10 15 19 18 48 15 65 17 11 3 3 21 6 9 9 9	43 16 35 26 23 26 36 48 32 65 29 18 9 9 21	0.12 0.406 0.568 0.146 1.06	1 2 1 1 1 1 1 1 1 1 0 7	22 25 47 25 66 6 6 10	22 30 47 25 66	0.01 0.035 0.068 0.24 0.24 0.008 0.008	1 1 2 1 1 4 1 1 0 7	11 16 13 30 31 31 11	11 16 18 30	0.192 0.055 0.001 0.395 0.01	4 1 1 1 3 0 10	15 18 3 3 40 5 5 3	20 18 3 40 6
Other Demersal Molluscs Total Pelagic	Melanogrammus aeglefinis Trisopterus esmarkii Merlangius merlangus Limanda limanda Hippoglossoides platessoides Microstomus kitt Pleuronectes platessa L naevus E gurnardus Gobiidei S canicula C cuculus M surmulletus A radiata Alloteuthis Sepiolidaie Loligo forbesii Ilex coindetti	67.5 0.39 8.7 13.5 1.778 0.388 13.6 0.5 6.6 1.1 1.1 4.8 0.082 7.4 0.274 0.274 0.274	595 24 161 292 38 4 63 1 71 71 1 36 2 2009 2009 1 1 16 15	16 9 14 10 15 19 18 48 15 65 17 11 3 21 6 9 9	43 16 35 26 36 36 48 32 65 29 18 	0.12 0.406 0.568 0.146 1.06 0.01	1 2 1 1 1 1 1 1 0	22 25 47 25 66 6 6 10	22 30 47 25 66	0.01	1 1 2 1 1 4 4 1 0 0	11 16 13 30 31 31 11	11 16 18 30	0.192 0.055 0.001 0.395 0.01	4 1 1 1 3 3	15 18 3 3 40 5 5 3	20 18 3 40 6

Table 2c: Species compositions for sampling location D


Set D		St	ation 79 (Star	dard Tov	v)		Station 8	30 (zero-mir	ute tow)		St	ation 81 (zero-mir	ute tow)		St	ation 82 (z	ero-minute	tow)
Group	Species	W (kg)	N L _m	in	L _{max}	W (kg)	N	L _{min}	L _{max}	x	W (kg)	N	Lmin	L _{ma}	x	W (kg)	N	L _{min}	L _{max}
Pelagic Fish	Clupea harengus	0.3	2	26	2	8													
Demersal Gadoids	Melanogrammus aeglefinus	135.1	242	19	5	4 ().1	3	14	18	0.3		1	32	32				
	Gadus morhua	46.9	21	29	8	1													
	Trisopterus esmarkii	265.9	11245	10	1	9													
	Trisopterus minutus	7.5	183	8	2	3 0.0	11	2	8	9									
	Pollachius virens	1.7	1	56	5	6					1.2		1	51	51	23.2	18	3 4	11 60
	Molva molva	24.4	7	61	11	0													
	Merlangius merlangus	45.7	156	22	4	7													
Flatfish	Limanda limanda	1.8	21	14	2	7													
	Lepidorhombus whiffiagonis	1.9	4	20	4	3													
	Microstomus kitt	2.4	6	21	3	8													
	Pleuronectes platessa	6.9	13	24	4	9													
Other Demersal Fish	Helicolenus dactylopterus	0.004	1	6		6 0.0	28	3	5	10	0.002		1	5	5	0.019	3	3	5 9
	Squalus acanthias	1	1	65	6	5													
	Callionymus lyra	0.1	2	14	2	8													
	Eutrigla gurnardus	8.4	34	17	4	1													
	Argentina sphyraena	0.1	1	22	2	2 ().1	2	21	22	0.1		1	21	21	0.1	2	2 1	16 17
	Chelidonichthys cuculus	27.3	84	23	3	9													
	Dipturus intermedia	21.4	1	139	13	9													
	Raja montagui	27.2	25	33	6	3													
	Gobiidei	0.002	1	4		4													
	Scyliorhinus canicula	13.5	21	43	7	1 ().6	1	57	57						1.6	2	2 5	52 63
Molluscs	Loligo forbesii	2.4	35	2	2	1 ().1	2	4	12	2.4	2	99	2	17	7	1116	6	3 6
Crustaceans																			
	al Pelagic Fish	0.3	2	26	2		0	0	0	0	Ű		0	0	0	0	(0 0
Tota	al Demersal Fish	639.206	12070	4	13	9 0.8	39	11	5	57	1.602		4	5	51	24.919	25	5	5 63
Total Numb	er of Pelagic Fish Taxa		1					0	-				0					0	
Total Numbe	er of Demersal Fish Taxa		21					5					4					4	

				Pel	agic Fish S	pecies Ca	atch (kg)		-
			Standard		Zero	Minute T	ōw		Average for zero minute
Set	Rectangle	Depth (m)	Tow	1	2	3	Mean	CV	tow in % of standard tow
А	41E9	66-74	1.1	0	0	0			0.00
В	47E7	68 - 80	15.5	1.444	0.208	0.017	0.556333	1.392423	3.59
С	43E9	82	0.166	0	0	0			0.00
D	49E5	182-188	0.3	0	0	0			0.00
								mean:	0.90
								cv:	1.79
				Dem	ersal Fish	Species (Catch (kg)		
			Standard		Zero	Minute T	ow		Average for zero minute
SET	Rectangle	Depth (m)	Tow	1	2	3	Mean	CV	tow in % of standard tow
А	41E9	66-74	98.399	1.476	0.75	2.148	1.458	0.48	1.48
В	47E7	68 - 80	94.362	0.237	0.867	1.115	0.739667	0.611949	0.78
С	43E9	82	127.338	2.306	0.618	0.865	1.263	0.721828	0.99
D	49E5	182-188	639.206	0.839	1.602	24.919	9.12	1.500839	1.43
								mean:	1.17
								cv:	0.30
				Number of	Pelagic ar	nd Demer	rsal Fish Sp	ecies	
			Standard		Zero	Minute T	ōw.		Average for zero minute
SET	Rectangle	Depth (m)	Tow	1	2	3	Mean	CV	tow in % of standard tow
А	41E9	66-74	99.499	1.476	0.75	2.148	1.458	0.48	1.47
В	47E7	68 - 80	109.862	1.681	1.075	1.132	1.296	0.258206	1.18
С	43E9	82	127.504	2.306	0.618	0.865	1.263	0.721828	0.99
D	49E5	182-188	639.506	0.839	1.602	24.919	9.12	1.500839	1.43
								mean:	1.27
								cv:	0.20

Table 3: Comparison of total	catch and species richness f	or taxonomic groups.

Table 4: Comparison of gear and vessel parameters readings recorded for each haul within sets A - D.

Set	Survey	Duration	Haul number	Lat Shoot	lon Shoot	Lat Haul	Lon Haul	Mean Wing Spread	Wing Spread TD	Mean Door Spread	Door Spread TD	Mean Headline Height	Headline Height TD	Mean SOG	SOG TD	Sounder Depth
А	1117S	30	259	56.25	-0.465	56.28	-0.462	17.2	17.9	71	74	5.1	5.0	3.7	3.6	66
А	1117S	0	260	56.315	-0.452	56.31	-0.452		18.2		72		5.2		3.8	72
А	1117S	0	261	56.338	-0.45	56.34	-0.45		18.0		72		5.2		3.9	74
А	1117S	0	262	56.352	-0.463	56.352	-0.463		18.6		75		5.4		3.8	74
В	0218S	30	14	59.193	-2.263	59.215	-2.223	18.7	19.3	72	74	5.5	5.9	3.6	3.6	80
В	0218S	0	15	59.191	-2.273	59.191	-2.273		17.8		68		5.7		3.4	77
В	0218S	0	16	59.206	-2.256	59.206	-2.256		18.8		69		5.8		2.9	78
В	0218S	0	17	59.221	-2.242	59.221	-2.242		17.8		68		5.9		2.6	68
С	0218S	30	63	57.074	-0.273	57.099	-0.310	19.2	21.9	73	73	5.3	5.5	3.8	3.1	82
С	0218S	0	64	57.087	-0.291	57.087	-0.291		20.4		72		5.5		3.3	82
С	0218S	0	65	57.088	-0.296	57.088	-0.296		18.3		71		5.8		3.1	82
С	0218S	0	66	57.095	-0.311	57.095	-0.311		18.3		72		7.1		3.1	82
D	0318S	30	79	60.179	-4.284	60.19	-4.227	20.7	24.4	101	104	5.3	5.2	3.7	3.5	186
D	0318S	0	80	60.178	-4.279	60.178	-4.279		19.1		92		5.7		3.5	184
D	0318S	0	81	60.186	-4.237	60.186	-4.237		19.8		100		5.5		3.6	183
D	0318S	0	82	60.194	-4.197	60.194	-4.197		20.5		100		5.7		3.2	182

Figure 1: Sampling locations

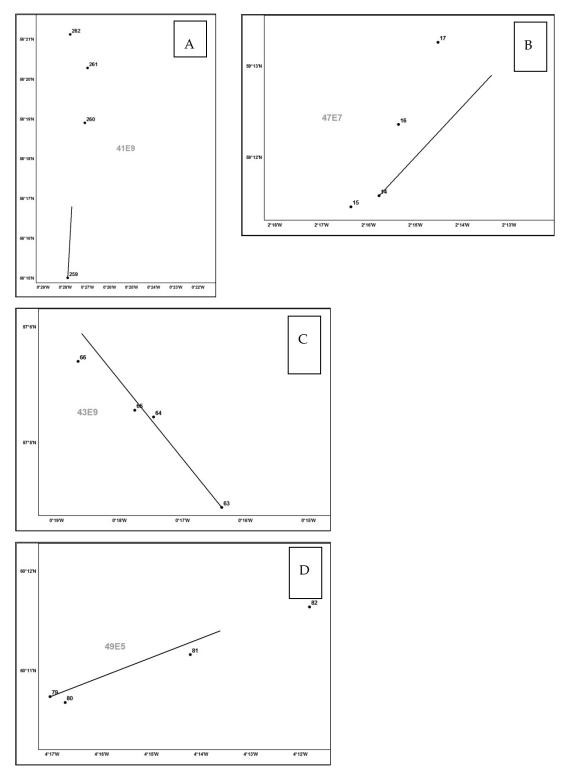


Figure 2: Trawl tracks of standard and zero-minute tows at the 4 different locations and rectangles.

IBTS2018 WD4

Catches in zero-minute tows compared to standard tows in the NS-IBTS for Denmark

Kai Wieland, DTU Aqua, Section for Monitoring and Data, Hirtshals

Introduction

Based on a report on considerable catches outside the nominal tow duration of a 30 min standard tow (Hatton *et al.* 2016), the IBTS WG encourage its members to collect data on unquantified trawl times, i.e. during shooting and hauling, and to conduct so-called zero minute tows (ICES 2017). It has been argued that the catch outside the nominal tow duration is proportionally larger for shorter than for longer tows and that such an 'end effect' would cause a bias for surveys which comprises different tow durations or varying proportions of different tow durations between years although evidence for the significance of an 'end effect' in this respect this is so far missing.

Material and Methods

Denmark conducted comparative standard and zero-minute tows at five locations during the 3Q NS-IBTS in 2017 (Figure 1). At three of the five locations 3 replicate zerominute tow were made in a short distance parallel with the standard 30 min tow while at the two other locations just one zero-minute tow was done in the vicinity of the standard tow (Figure 2).

Time stamps were recorded as specified in section 11.1.6 of the 2017 IBTSWG (ICES 2017). During fishing, vessel position, speed over ground (SOG) and through water (STW) and depth were recorded in 30 s intervals, and the trawl geometry (Door and wing spread, vertical net opening and clearance (footrope distance to bottom)) was monitored by a ScanMar system with a time resolution of 15 s.

All catches were worked up according to standard NS-IBTS procedures. Species were grouped into pelagic and demersal gadoids, flatfish and other demersal fish, and molluscs and crustaceans in the first place. For later analysis demersal gadoids, flatfish and other demersal fish were combined and summarized as demersal fish species.

Results and Conclusions

Towing times outside the nominal tow duration ranged from 10.3 to 13.7 min for the standard tows and amounted between 9.8 and 14.7 min for the zero-minute tows with the highest values observed at the largest depth in both cases (Table 1).

The swept area of the standard tows during the nominal tow duration of 30 min ranged between 0.2257 and 0.2568 km² but the trawl fished at the bottom some time before and after this period (Figure 2). The additional time at which the footrope had bottom contact but neither vessel speed nor net geometry was stable amounted to 6.7 min on average for the standard tows. Net geometry, vessel speed and bottom depth during the nominal tow duration of the standard tows are shown in Figure 3.

The time during which the footrope had bottom contact varied between 3.9 and 6.9 min (Table 1) and was 5.4 min on average for the zero-minute tows. Net geometry and vessel speed change considerably throughout this period (Figures 4a and 4b) and thus the calculation of swept area and a corresponding standardization of catches makes not much sense.

Species compositions varied between the five locations but were not that much different between the standard and the accompanying zero-minute tows except for rare species (Tab 2.). Little variation of the catches of demersal fish species between the replicate zero-minute tows at the same location except for pelagic species for which the catches were low in general. On average, the catch (in kg) and catch rate (in kg/h) of demersal fish species in a zero-minute tow amount to about 13 and 45 % of the values recorded in the corresponding standard tow (Tabs. 3 and 4) and species richness in the zero-minute tow was on average about 69 % of that found in the corresponding standard tow.

Catch rates and species richness observed in the zero-minute tow compared to the standard tows appears to be high considering that the effort in time for conducting a zero-minute tow is just 28 % of that for a standard 30 min tow.

Comparison of catch and catch rates did not give a clear indication that the amount of fish caught in a zero-minute tow is proportional to the amount seen in the corresponding standard tow (Figure 5) and that the maximum length recorded for demersal fish species differs between the two tow types (Figure 6).

However, further analysis of a much larger dataset, which should then also allow to analyse the three groups of demersal fish species separately, is needed before conclusions on the importance and the significance of an 'end-effect' can be made.

References

- Hatton, B., Holmes, I., Ellis, J.R., Lynam, C. 2017. Preliminary observations on catches of fish in 'zero-minute' hauls. IBTSWG 2017. WD6. 9pp.
- ICES. 2017. Interim Report of the International Bottom Trawl Survey Working Group. ICES CM 2017/SSGIEOM:01. 337 pp.

Table 1: Sampling information (all tows in 3Q 2017; *: from start of deployment until end of retrieval of the trawl doors

		Total tow duration (min)*									
		Standard Zero minute tow									
Rectangle	Depth (m)	tow	1	2	3						
34F2	48 - 49	41.03	10.40								
39F1	47 - 48	41.63	11.02	10.90	11.57						
41F1	83	43.70	14.68								
41F4	69	43.33	13.22	13.50	14.45						
43F7	34 - 39	40.30	10.30	9.83	9.98						

Duration trawl at bottom (min)

Standard	Zero minute tow									
tow	1	2	3							
37.30	3.90									
35.87	4.62	3.97	4.95							
36.73	6.55									
38.13	6.88	6.50	6.95							
36.00	5.53	4.90	4.88							

		Sta	ation 40 (sta	andard tow)		Stati	on 43 (zero	o-minute to	w)
Group	Species	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}
Pelagic fish	Clupea harengus	1.31	16	18.0	24.0	0.17	2	21.5	21.5
	Scomber scombrus	0.92	2	37.0	38.0	0.46	2	25.0	30.0
	Trachurus trachurus	16.88	151	15.0	28.0	0.93	8	21.0	23.0
Demersal gadoids	Gadus morhua	1.10	5	22.0	29.0	0.54	3	24.0	28.0
	Merlangius merlangus	1520.25	21493	16.0	31.0	55.45	810	16.0	28.0
	Trisopterus luscus	0.12	1	22.0	22.0				
	Trisopterus minutus	0.21	5	14.0	18.0	0.03	1	15.0	15.0
Flatfish	Buglossidium luteum	0.01	1	10.0	10.0				
	Limanda limanda	19.68	268	15.0	26.0	3.89	55	12.0	24.0
	Microstomus kitt	0.51	3	23.0	26.0	0.35	1	30.0	30.0
	Pleuronectes platessa	2.01	13	17.0	29.0	0.29	3	20.0	23.0
Other demersal fish	Callionymus lyra	0.30	6	15.0	22.0	0.05	1	18.0	18.0
	Chelidonichthys lucerna	0.76	1	40.0	40.0				
	Echiichthys vipera	0.31	19	8.0	13.0	0.08	5	8.0	11.0
	Eutrigla gurnardus	0.65	9	18.0	23.0	0.35	4	21.0	23.0
	Mullus surmuletus	2.11	14	15.0	26.0	0.69	4	22.0	26.0
	Mustelus asterias	2.84	3	49.0	70.0				
	Raja montagui					0.26	1	34.0	34.0
	Raja clavata	2.98	1	77.0	77.0				
	Scyliorhinus canicula	30.84	74	21.0	60.0	3.38	11	29.0	58.0
Molluscs	Aequipecten opercularis	0.03	2	na	na				
	Alloteuthis subulata	0.16	22	4.0	9.0	0.09	15	5.0	9.0
Tot	al pelagic fish	19.11	169	15.0	38.0	1.56	12	21.0	30.0
	l demersal fish	1584.70	21917	8.0	77.0	65.35	899	8.0	58.0
Total numb	er of pelagic fish taxa		3			·	3		
Total numb	er demersal fish taxa		16				12		

Table 2a: Species compositions for sampling locations A and B.

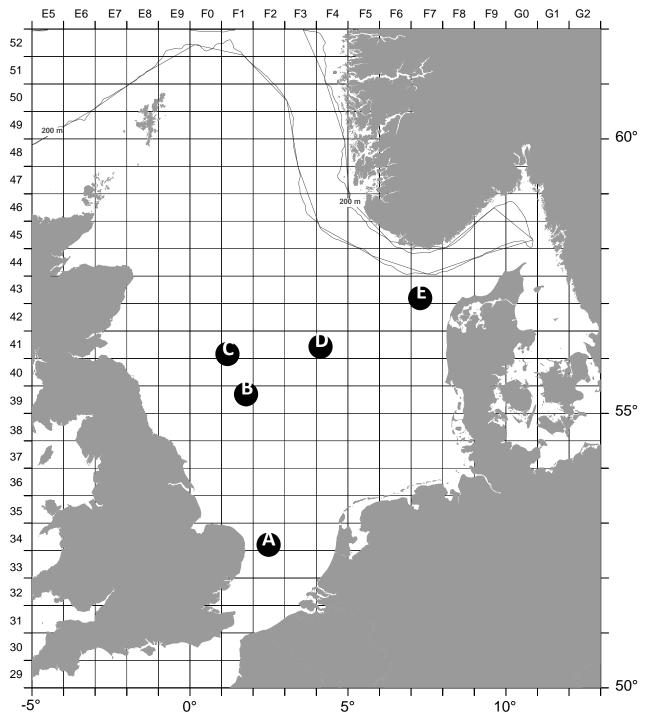
		St	ation 77 (st	andard tow)	Stat	ion 79 (zer	o-minute to	w)	Stat	ion 80 (zer	o-minute to	w)	Stat	ion 81 (zer	o-minute to	w)
Group	Species	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}	W (kg)	Ν	L _{min}	L _{max}
Pelagic fish	Clupea harengus	0.05	1	19.0	19.0												
	Scomber scombrus					0.15	1	26.0	26.0								
Demersal gadoids	Melanogrammus aeglefinus	0.08	1	21.0	21.0	0.27	1	31.0	31.0								
	Merlangius merlangus	0.71	11	15.0	24.0	0.33	5	14.0	27.0	0.48	4	20.0	33.0	0.24	3	13.0	27.0
Flatfish	Arnoglossus laterna	0.04	5	9.0	10.0	0.01	1	10.0	10.0	0.01	1	10.0	10.0	0.01	1	10.0	10.0
	Buglossidium luteum	0.02	2	8.0	9.0	0.01	1	9.0	9.0								
	Limanda limanda	120.80	1489	11.0	30.0	22.20	311	10.0	25.0	17.50	262	9.00	25.0	21.70	299	11.0	27.0
	Microstomus kitt	2.87	26	16	27	0.43	4	18	26	0.20	3	17.0	21.0	0.86	8	18.0	27.0
	Pleuronectes platessa	7.39	34	21.0	36.0	1.50	7	22.0	36.0	1.69	8	23.0	34.0	2.82	12	21.0	35.0
Other demersal fish	Amblyraja radiata	0.38	1	34.0	34.0												
	Callionymus lyra					0.04	1	20.0	20.0	0.08	2	20.0	23.0				
	Eutrigla gurnardus	19.90	244	12.0	31.0	5.78	64	15.0	30.0	1.29	15	15.0	25.0	1.45	19	13.0	26.0
	Hyperoplus lanceolatus	0.10	3	22.0	22.0												
	Mullus surmuletus	0.18	1	26.0	26.0												
Crustaceans	Cancer pagurus	1.67	2	15.9	19.9									1.20	1	19.9	19.9
Molluscs	Aequipecten opercularis									0.06	1	na	na	0.05	1	na	na
	Illex coindetii	0.16	3	11.0	12.0	0.06	1	13.0	13.0	0.04	2	8.0	9.0	0.06	1	12.0	12.0
	Loligo forbesii	0.42	45	3.0	17.0	0.05	8	3.0	5.0	0.12	20	3.0	5.0	0.01	1	4.0	4.0
Tota	al pelagic fish	0.05	1	19.0	19.0	0.15	1	26.0	26.0	0.00	0	0.0	0.0	0.00	0	0.0	0.0
Tota	l demersal fish	152.45	1818	8.0	36.0	30.57	395	9.0	36.0	21.24	295	9.0	34.0	27.09	342	10.0	35.0
Total numb	er of pelagic fish taxa		1				1				0				0		
Total numb	er demersal fish taxa	J	11			J	9				7				6		

		Sta	tion 86 (sta	andard tow))	Stati	on 88 (zero	-minute to	N)
Group	Species	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}
Pelagic fish	Scomber scombrus	1.32	4	31.0	35.0				
Demersal gadoids	Gadus morhua	0.13	1	24.0	24.0				
	Melanogrammus aeglefinus	211.03	687	23.0	40.0	29.30	104	22.0	40.0
	Merlangius merlangus	113.87	864	19.0	32.0	24.60	173	19.0	35.0
	Trisopterus esmarkii	0.50	13	14.0	18.0	0.13	3	17.0	18.0
Flatfish	Glyptocephalus cynoglossus					0.35	1	35.0	35.0
	Hippoglossoides platessoides	1.59	49	11.0	20.0	1.09	32	12.0	19.0
	Limanda limanda	8.20	153	15.0	20.0	5.74	99	15.0	22.0
	Microstomus kitt	0.83	8	18.0	26.0	0.46	5	16.0	24.0
	Pleuronectes platessa	6.94	24	22.0	35.0	1.53	7	24.0	32.0
Other demersal fish	Agonus cataphractus	0.02	1	15.0	15.0				
	Eutrigla gurnardus	6.10	74	17.0	24.0	4.14	44	18.0	26.0
	Squalus acanthias	0.07	1	28.0	28.0				
Crustaceans	Lithodes maja	0.17	1	6.5	6.5				
Molluscs	Illex coindetii	1.39	10	12.0	23.0	0.33	5	9.0	14.0
	Loligo forbesii	0.00	1	3.0	3.0				
	Todaropsis eblanae	0.14	1	13	13	0.11	1	11.0	11.0
Tot	al pelagic fish	1.32	4	31.0	35.0	0.00	0		
Tota	I demersal fish	349.29	1875	11.0	40.0	67.34	468	12.0	40.0
Total numb	er of pelagic fish taxa		1				0		
Total numb	per demersal fish taxa		11				9		

Table 2b: Species compositions for sampling locations C and D.

		Sta	ation 93 (st	andard tow)	Stat	tion 95 (zer	o-minute to	ow)	Stat	ion 96 (zer	o-minute to	w)	Sta	tion 97 (zer	o-minute to	w)
Group	Species	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}
Pelagic fish	Clupea harengus	0.32	5	18.0	23.0												
Demersal gadoids	Gadus morhua	0.10	1	22.0	22.0												
	Melanogrammus aeglefinus	0.38	2	26.0	28.0					0.01	1	10.0	10.0				
	Merlangius merlangus	67.99	1084	14.0	27.0	0.73	10	18.0	27.0	9.65	143	15.0	27.0	2.65	36	17.0	28.0
	Trisopterus esmarkii									0.03	1	15.0	15.0				
Flatfish	Hippoglossoides platessoides	6.48	107	13.0	25.0	1.05	15	14.0	26.0	1.22	21	15.0	25.0	1.75	32	14.0	26.0
	Limanda limanda	75.60	1011	14.0	25.0	14.60	197	14.0	21.0	17.50	224	13.0	24.0	16.60	216	13.0	21.0
	Microstomus kitt	12.00	95	19.0	32.0	0.62	6	18.0	24.0	3.33	24	16.0	29.0	2.45	21	18.0	25.0
	Pleuronectes platessa	8.20	25	21.0	42.0	0.31	2	24.0	26.0	1.55	5	25.0	34.0	1.69	6	24.0	35.0
Other demersal fish	Amblyraja radiata													0.83	1	46.0	46.0
	Eutrigla gurnardus	5.51	66	16.0	29.0	1.38	15	17.0	25.0	0.68	9	17.0	24.0	0.85	11	17.0	27.0
Crustaceans	Lithodes maja					0.31	1	9.3	9.3								
Molluscs	Loligo forbesii	0.26	1	20.0	20.0									0.05	11	3.0	7.0
	Todaropsis eblanae	0.21	1	15.0	15.0												
Tot	al pelagic fish	0.32	5	18.0	23.0	0.00	0			0.00	0			0.00	0		
Tota	I demersal fish	176.27	2390	13.0	42.0	18.69	245	14.0	27.0	33.97	428	10.0	34.0	26.82	323	13.0	46.0
Total numb	er of pelagic fish taxa		1				0			()	0				0		
Total numb	er demersal fish taxa		8				6				8				7		

		Sta	tion 109 (s	tandard tov	v)	Stati	on 111 (zei	ro-minute to	ow)	Stat	ion 112 (ze	ro-minute t	ow)	Statio	on 113 (zer	o-minute to	ow)
Group	Species	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}	W (kg)	N	L _{min}	L _{max}
Pelagic fish	Clupea harengus	0.10	3	16.5	17.5												
	Scomber scombrus	0.82	6	23.0	28.0	0.91	3	30.0	35.0					1.16	4	24.0	35.0
Demersal gadoids	Gadus morhua	1.01	8	21.0	26.0	0.10	1	21.0	21.0	0.67	8	17.0	23.0				
	Merlangius merlangus	5.15	61	17.0	26.0	0.39	8	6.0	23.0	1.88	19	19.0	25.0	0.01	2	5.0	9.0
Flatfish	Limanda limanda	41.88	316	11.0	32.0	3.53	26	12.0	29.0	5.11	41	12.0	30.0	2.33	26	13.0	27.0
	Microstomus kitt	0.34	1	29.0	29.0	0.24	1	27.0	27.0								
	Pleuronectes platessa	17.40	48	22.0	38.0	3.45	12	21.0	38.0	2.99	9	28.0	38.0	1.11	5	19.0	34.0
Other demersal fish	Amblyraja radiata	0.11	1	24.0	24.0											*****	
	Ammodytes marinus	26.76	2732	11	16	1.81	169	11.0	16.0					15.30	1677	12.0	16.0
	Callionymus lyra	0.58	16	15	19	0.15	4	16.0	17.0	0.11	3	15.0	19.0	0.17	5	15.0	18.0
	Eutrigla gurnardus	169.50	1076	19	37	16.60	128	16.0	31.0	12.50	88	17.0	32.0	8.90	72	12.0	31.0
	Hyperoplus lanceolatus	10.48	289	21.0	28.0	0.59	14	22.0	30.0	0.08	2	24.0	27.0	2.26	55	19.0	29.0
	Lophius piscatorius	1.70	1	47.0	47.0	2.05	1	55.0	55.0	3.16	1	57.0	57.0				
	Trachinus draco	0.31	1	36.0	36.0									0.50	2	29.0	36.0
Molluscs	Loligo forbesii	0.05	5	4.0	5.0	0.20	2	13.0	14.0	0.01	1	4.0	4.0	0.49	44	4.0	8.0
Tota	al pelagic fish	0.92	9	16.5	28.0	0.91	3	30.0	35.0	0.00	0			1.16	4	24.0	35.0
Tota	demersal fish	275.22	4550	11.0	47.0	28.90	365	6.0	55.0	26.49	171	12.0	57.0	30.57	1844	5.0	36.0
Total numb	er of pelagic fish taxa		2				1				0				1		
Total numb	er demersal fish taxa		12	2			10)			8				8		


Table 2c: Species compositions for sampling location E.

				Р	elagic fish	species ca	tch (kg)	
		Standard		Zer	o minute	tow		Average for zero minute
Rectangle	Depth (m)	tow	1	2	3	mean	CV	tow in % of standard tow
34F2	48 - 49	19.11	1.56					8.16
39F1	47 - 48	0.05	0.15	0.00	0.00	0.05	1.73	100.00
41F1	83	1.32	0.00					0.00
41F4	69	0.32	0.00	0.00	0.00	0.00		0.00
43F7	34 - 39	0.92	0.91	0.00	1.16	0.69	0.88	75.00
					***********		mean:	36.63
							cv:	1.29
				De	mercal fis	h species c	atch (kg)	
		Standard			o minute	-		Average for zero minute
Rectangle	Depth (m)	tow	1	2	3	mean	CV	tow in % of standard tow
34F2	48 - 49	1584.70	65.35	2		mean	CV	4.12
39F1	47 - 48	152.45	30.57	21.24	27.09	26.30	0.18	17.25
41F1	83	349.29	67.34	21.24	27.09	20.30	0.10	19.28
41F4	69	176.27	18.69	33.97	26.82	26.49		15.03
43F7	34 - 39	275.22	28.90	26.49	30.57	28.65	0.07	10.41
		275.22	20.50	20.45		20.05	mean:	13.22
							cv:	0.46
								0.40
				Number	of pelagic	and demer	sal fish sp	ecies
		Standard	Zei	ro minute t	ow			Average for zero minute
Rectangle	Depth (m)	tow	1	2	3	mean	CV	tow in % of standard tow
34F2	48 - 49	21	16					76.19
39F1	47 - 48	16	12	10	10	10.67	0.11	66.67
41F1	83	16	11					68.75
41F4	69	12	7	8	8	7.67	0.08	63.89
43F7	34 - 39	15	12	9	10	10.33	0.15	68.89
							mean:	68.88
							cv:	0.07

Table 3: Comparison of total catch and species richness for taxonomic groups.

Table 4: Comparison of catch rates

				Ре	lagic fish s	pecies CPU	E (kg/h)*				
		Standard		Zer	o minute t	ow		Average for zero minute			
Rectangle	Depth (m)	tow	1	2	3	mean	CV	tow in % of standard tow			
34F2	48 - 49	27.94	9.00					32.21			
39F1	47 - 48	0.07	0.82	0.00	0.00	0.27	1.73	377.91			
41F1	83	1.81	0.00					0.00			
41F4	69	0.44	0.00	0.00	0.00	0.00		0.00			
43F7	34 - 39	1.37	5.30	0.00	6.97	4.09	0.89	298.66			
							mean:	141.76			
							cv:	1.28			
				Dem	nersal fish	species CP	UE (kg/h)*				
		Standard		Zer	o minute t	ow		Average for zero minut			
Rectangle	Depth (m)	tow	1	2	3	mean	CV	tow in % of standard tow			
34F2	48 - 49	2317.19	377.02					16.27			
39F1	47 - 48	219.70	166.49	116.92	140.52	141.31	0.18	64.32			
41F1	83	479.57	275.17					57.38			
41F4	69	244.07	84.85	150.98	111.36	115.73		47.42			
43F7	34 - 39	409.76	168.35	161.63	183.73	171.24	0.07	41.79			
							mean:	45.43			
							cv:	0.41			
*: tow dura	ation from st	art of deplo	yment un	til end of r	etrieval of	the trawl o	loors				

Figure 1: Sampling locations

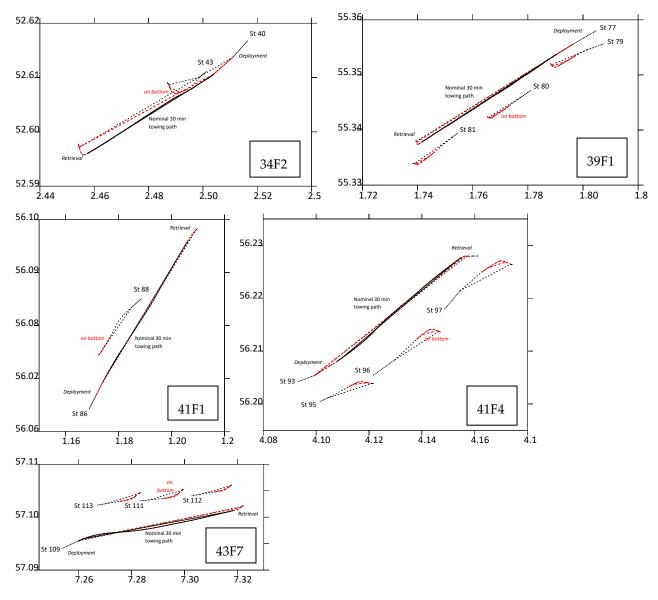


Figure 2: Trawl tracks of standard and zero-minute tows at the five different locations and rectangles (position data recorded in 30 s intervals)

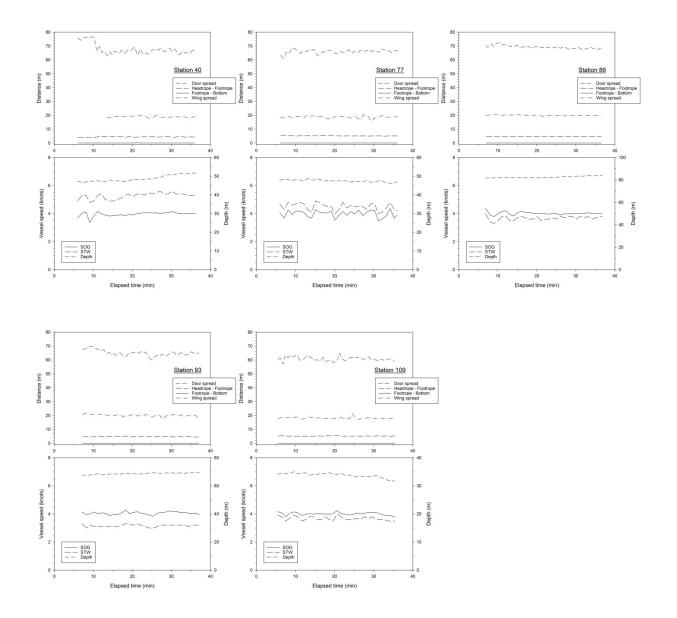


Figure 3: Gear geometry and tow characteristics of standard tows (data for nominal 30 min tow duration only, time resolution: 15 s)

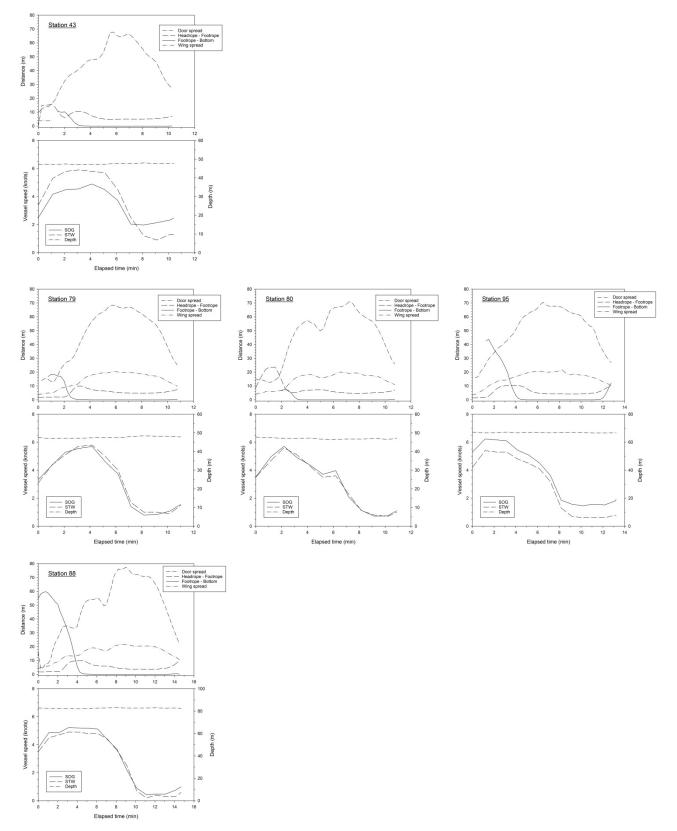


Figure 4a: Gear geometry and tow characteristics of zero-minute tows, sampling locations A, B and C (time resolution: 15 s).

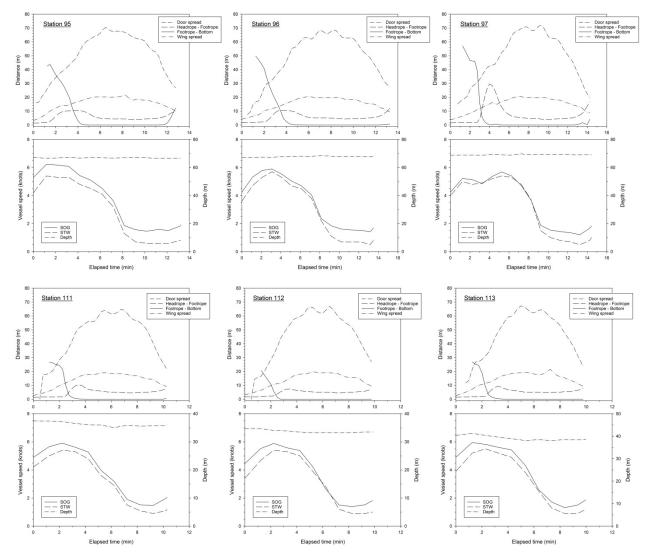


Figure 4b: Gear geometry and tow characteristics of zero-minute tows, sampling locations D and E (time resolution: 15 s).

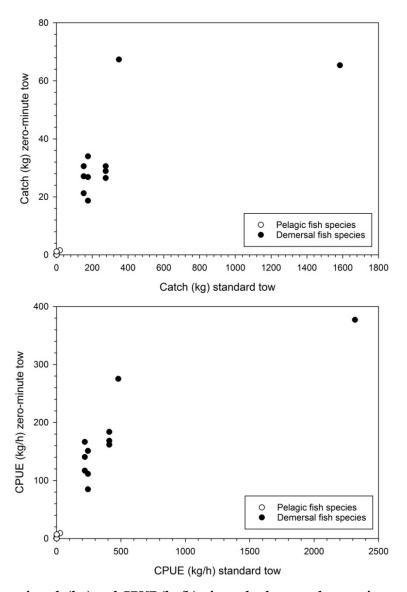


Figure 5: Comparison of catch (kg) and CPUE (kg/h) of standard tow and zero minute tows.

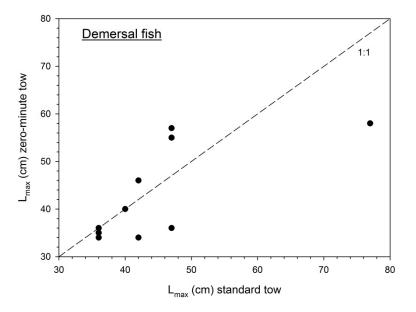


Figure 6: Comparison of maximum length of demersal fish species for standard and zero-minute tows.

IBTS2018 WD5

Catches in zero-minute tows compared to standard tows in the NS-IBTS for France

Rectangle	Depth (m)	Standard tows	Zero minute tow
36F5	29	42.09	9.16
34F2	39 - 40	47.18	7.26
32F1	35 - 32	41.41	11.30
34F3	40 - 41	46.02	8.45
36F2	36	49.01	12.42
35F1	51 - 50	46.55	16.35
37F3	48	44.02	10.02

Table 1: Sampling information (*: from start of deployment until end of retrieval of the trawl doors)

Table 2: Species compositions

3	34F3	Station W	0039 (Star	dard Tow)		Station W	9939 (0 mi	inute Tow)		Station W	/0939 (15 r	ninute Tow	<i>ı</i>)
Goup	Species	W (kg)	N	Lmin	Lmax	W (kg)	N	Lmin	Lmax	W (kg)	Ν	Lmin	Lmax
	Buglossidium luteum									0.59	7	7	10
	Limanda Limanda	19.5	397	11	25	5.3	88	12	25	24.04	448	11	24
Flatfish	Pleuronectes platessa	1.2	11	16	36	0.3	2	19	29	0.62	8	17	23
riduisii	Platichthys flesus	0.3	1	27	27								
	Microchirus variegatus									0.042	1	15	15
	Solea solea									0.573	2	25	34
	Trisopterus minutus	0.3	5	17	20								
Demersal Gadoids	Trisopterus luscus									0.25	6	12	19
Demersal Gauolus	Merlangius merlangus	282.3	4453	13	40	7	93	14	31	96.1	1486	14	36
	Gadus morhua	0.7	2	28	35					1.129	2	32	43
	Agonus cataphractus	0	1	7	7								
	Alloteuthis									0.008	3		
	Ammodytes marinus	0	1	5	5					0.006	7	6	7
	Dicentrarchus labrax	0.3	1	32	32					0.48	1	35	35
Other demersal fish	Echiichthys vipera	0.1	3	8	14					0.03	2	9	13
other demersal lish	Eutrigla gurnardus	2.1	23	11	28					1.05	12	15	26
	Mullus surmuletus	0.1	1	19	19	0.1	2	14	18				
	Myoxocephalus scorpius									0.16	1	21	21
	Scyliorhinus canicula	0.3	2	34	38					0.971	4	34	56
	Sepiola									0.001	1		
	Sprattus sprattus	0	3	11	12	0.1	15	10	13	2.45	221	10	12.5
Pelagic fish	Clupea harengus	0.4	6	17.5	17.5					0.2	4	18	21.5
	Trachurus trachurus	0.1	1	25	25					0.018	1	13	13
Crustacea	Necora puber	0	1							0.033	2		
Benthos													
Total pe	elagic fish	0.6	10	17.8	18.2	0.1	15	10	13	2.668	226	14	16
Total de	mersal fish	286.1	4492	17.4		7.1	95	14	24.5	100.185	1525	20	28
	of pelagic fish taxa			3				1				3	
Total number of	f demersal fish taxa		1	0				2			1	1	

36F2		Station W	0044(Stand	dard Tow)	Station W	9944(0 min	ute Tow)	
Goup	Species	W (kg)	N	Lmin	Lmax	W (kg)	N	Lmin	Lmax
Goup	Limanda limanda	7.1	136.0	12.0	26.0	0.3	4.0	15.0	24.0
Flatfish	Pleuronectes platessa	5.7	62.0	14.0	31.0			10.0	21.0
	Buglossidium luteum	0.1	6.0	6.0	10.0				
Demersal Gadoids	Merlangius merlangus	68.3	638.0	16.0	31.0	8.7	106.0	16.0	28.0
201101041 0440140	Echiichthys vipera	0.1	4.0	8.0	13.0	0			2010
	Eutrigla gurnardus	5.8	55.0	11.0	33.0				
	Mullus surmuletus	0.0	1.0	11.0	11.0				
Other demersal fish	Myoxocephalus scorpius	0.3	4.0	13.0	21.0				
	Loligo vulgaris	1.9	7.0	12.0	26.0	0.2	1.0		
	Scyliorhinus canicula	2.3	4.0	47.0	67.0				
	Sepiola	0.0	1.0						
	Clupea harengus	4.2	81.0	17.0	23.0	0.1	4.0	10.0	18.0
Pelagic fish	Engraulis encrasicolus	0.0	7.0	8.5	12.0				
	Sprattus sprattus	18.9	1573.0	7.0	13.5				
Crustacea									
Benthos									
Total	pelagic fish	23.1	1661.0	10.8	16.2	0.1	4.0	10.0	18.0
Total d	emersal fish	78.7	714.0	16.9	28.9	8.9	107.0	16.0	28.0
Total number	of pelagic fish taxa	· ·	3			•	1		
Total number of	of demersal fish taxa		8				2		
		1							
35F1			on W0061	È	т <u>′</u>		ion W9961	1	
Goup	Species	W (kg)	N	Lmin	Lmax	W (kg)	N	Lmin	Lmax
	Limanda limanda	3.2	45.0	14.0) 26.		-		_
Flatfish	Pleurnectesse platessa					0.2	2 1.0	26.0) 26.
	Microstomus kitt	0.1		9.0					
	Gadus morhua	0.6							
Demersal Gadoids	Trisopterus minutus	1.0		10.0	_				_
	Merlangius merlangus	10.4		16.0			2 2.0	25.0) 26.
	Agonus cataphractus	0.1		5.0	_				
	Ammodytes tobianus	0.0		15.0					
	Callionymus lyra	0.0		5.0					
	Ciliata mustela	0.1		13.0					
	Ciliata septentrionalis	0.0		10.0					
Other demersal fish	Liparis liparis	1.1	29.0	10.0					
	Loligo vulgaris	0.2	1.0	20.0	_				
	Myoxocephalus scorpius	0.1		15.0					
	Pholis gunnellus	0.0		13.0					
	Scyliorhinus canicula	5.3		57.0					
	Taurulus bubalis	0.1							
Pelagic fish	Clupea harengus	0.4		10.5	_	-		<u> </u>	
	Sprattus sprattus	0.2) 13.
	Cancer pagurus	0.7					5 5.0)	
Crustacea	Homarus gammarus	1.8	8.0	5.8	3 8.	-			
	Necora puber					0.3	3 3.0)	
Benthos						3.9	9		
Total	pelagic fish	0.6	49.0	9.3	3 21.	8 0.′	1 4.0	10.0) 13.
	emersal fish	19.1	174.0	17.4	1 21.	2 0.5	5 14.0	18.0) 20.
Total number	of pelagic fish taxa			2				1	
Total number	of demersal fish taxa		1	4					

37F3		Statio	n W0086	(Standard	Tow)	Static	n W9986	(0 minute	Tow)
Goup	Species	W (kg)	Ν	Lmin	Lmax	W (kg)	N	Lmin	Lmax
	Limanda limanda	18.2	443.0	11.0	21.0	2.2	78.0	12.0	25.0
Flatfish	Hippoglossoides platessoides	0.0	1.0	15.0	15.0				
	Pleuronectes platessa	9.7	73.0	11.0	33.0	1.1	14.0	13.0	26.0
Demersal Gadoids	Merlangius merlangus	17.7	256.0	9.0	35.0	1.7	20.0	10.0	28.0
	Alloteuthis	0.1	22.0						
Other demersal fish	Buglossidium luteum	0.1	8.0	8.0	11.0				
Other demersal lish	Enchelyopus cimbrius	0.0	1.0	15.0	15.0				
	Eutrigla gurnardus	22.3	258.0	13.0	30.0	3.6	46.0	14.0	28.0
	Clupea harengus	122.6	7032.0	10.0	19.5	3.7	313.0	10.0	17.0
Pelagic fish	Sprattus sprattus	31.4	5291.0	7.5	12.0	1.2	54.0	10.0	18.0
	Engraulis encrasicolus	0.0	1.0	9.5	9.5				
Crustacea	Nephrops norvegicus	0.0	0.0						
Benthos						8.5	413.0	11.3	21.0
Тс	otal pelagic fish	153.9	12324.0	9.0	13.7	4.9	367.0	10.0	17.5
To	tal demersal fish	40.2	1062	11.7143	160	5.3	158	12.25	107
Total nur	nber of pelagic fish taxa			3			2	2	
Total num	ber of demersal fish taxa		Į	5			2	2	

	36F5	Station W	/0103 (Star	ndard Tow)		Station W	/9103 (0 m	inute Tow	Ĵ	Station W	/9103 (15 ו	minute Tov	N)
Goup	Species	W (kg)	N	Lmin	Lmax	W (kg)	N	Lmin	Lmax	W (kg)	Ν	Lmin	Lmax
	Buglossidium luteum									0.005	1	6	6
Flatfish	Platichthys flesus	0.3	2	22	24								
FIGUISI	Pleuronectes platessa	1	10	18	30					0.573	4	19	29
	Limanda limanda	7.7	139	9	26	0.2	4	16	19	5.04	71	12	26
Demersal Gadoids	Merlangius merlangus	2.3	42	9	30					1.128	23	13	24
	Agonus cataphractus	0	1	9	9								
	Alloteuthis	0	1										
	Buglossidium luteum	0	1	10	10								
Other demersal fish	Callionymus lyra	0	1	15	15								
	Echiichthys vipera	0	1	13	13								
	Eutrigla gurnardus	2.1	14	15	35					0.235	2	20	24
	Scyliorhinus canicula	1.4	2	47	62					0.78	1	52	52
	Clupea harengus	30.8	1123	8	20	0.6	60	g	15	2.47	104	. 8	21
Pelagic fish	Engraulis encrasicolus	0	5	6	9.5								
	Sprattus sprattus	12	3477	5.5	12	0.3	41	5.5	10.5	1.041	251	5.5	5 12
Crustacea	Cancer pagurus	1.7	2	17.7	20.7								
Benthos													
To	tal pelagic fish	42.8	4605	6.5	13.8	0.8	101	7.3	12.8	3.511	355	7	17
Tota	al demersal fish	5.9	63	16.9	24.9	0	0			2.143	26	28	33
Total num	ber of pelagic fish taxa			3				2				2	
Total numb	er of demersal fish taxa			8				0				3	

	34F2	Station W	/0126 (Star	ndard Tow)		Station W	9126 (0 m	inute Tow))	Station W	/9126 (15 r	ninute Tov	v)
Goup	Species	W (kg)	Ν	Lmin	Lmax	W (kg)	N	Lmin	Lmax	W (kg)	Ν	Lmin	Lmax
	Limanda limanda	1.7	24	11	24	0.5	1	12	12	0.38	20	11	22
Flatfish	Pleuronectes platessa	3.6	36	12	43	0.1	1	22	22	2.5	39	9	29
FIGUISI	Buglossidium luteum	0.2	23	6	10	0	1	5	5	0.266	33	5	10
	Solea solea	0.1	1	19	19								
Demersal Gadoids	Merlangius merlangus	0.6	11	13	26					0.05	2	13	16
	Echiichthys vipera	0.4	32	8	13	0	2	9	12	0.303	25	7	12
	Eutrigla gurnardus	1.4	10	19	31					0.18	2	21	23
	Hyperoplus lanceolatus	0	4	6	26	0	2	6	9	0.001	1	6	6
	Loligo vulgaris	0.5	2	17	24								
Other demersal fish	Pomatoschistus minutus	0	1	5	5					0.001	1	5	5
	Raja brachyura	7.4	2	88	60					0.295	1	64	64
	Raja clavata	5.8	4	61	79					0.158	2	14	
	Raja montagui	5.6	5	50	42	1.3	1	58	58	1.042	4	27	44
	Scyliorhinus canicula	2.6	12	16	18					0.87	1	60	60
	Clupea harengus	0.2	3	17.5	22	1.4	274	5	11	0.298	5	7	15
Pelagic fish	Sprattus sprattus	19.3	3804	5	11.5					3.345	840	5	12.5
	Engraulis encrasicolus	0	7	8	10.5								
Benthos													
То	tal pelagic fish	19.5	3814	10.2	14.7	1.4	274	5	11	3.643	845	6	13.75
Tota	al demersal fish	43.8	83	28.3	27.6	2.8	5	24.3	22.5	2.9	39	24	29
Total num	ber of pelagic fish taxa			3				1				2	
Total numb	er of demersal fish taxa		1	10				3				9	

32F1		Statio	n W0135	(Standard	Tow)	Statio	n W9135	(0 minute ⁻	Tow)
Goup	Species	W (kg)	Ν	Lmin	Lmax	W (kg)	Ν	Lmin	Lmax
	Limanda limanda	0.8	15.0	11.0	27.0	0.0	1.0	13.0	13.0
Flatfish	Pleuronectes platessa	1.7	12.0	11.0	40.0	0.1	1.0	19.0	19.0
	Solea solea	0.8	7.0	11.0	28.0				
Demersal Gadoids	Merlangius merlangus	4.6	65.0	14.0	26.0	0.7	6.0	14.0	22.0
Jemersal Gadolds	Trisopterus luscus	0.1	3.0	12.0	16.0				
	Alosa fallax	0.8	1.0	46.0	46.0	0.8	1.0	46.0	46.0
	Agonus cataphractus	0.0	1.0	12.0	12.0				
	Ciliata mustela	0.1	2.0	14.0	20.0				
	Echiichthys vipera	0.0	1.0	9.0	9.0				
	Hyperoplus lanceolatus	0.0	2.0	5.0	6.0	0.0	1.0	6.0	6.0
Other demersal fish	Liparis liparis	0.0	1.0	8.0	8.0				
	Mustelus asterias	9.1	4.0	85.0	89.0				
Other demersal fish Pelagic fish	Raja brachyura	4.0	3.0	55.0	70.0				
	Raja clavata	11.4	10.0	34.0	32.0	3.0	3.0	33.0	74.0
	Raja montagui	1.7	1.0	62.0	62.0	1.2	4.0	21.0	58.0
	Scyliorhinus canicula	17.3	58.0	9.0	56.0	1.2	4.0	21.0	58.0
Dologic fich	Sprattus sprattus	3.5	745.0	5.0	11.5	0.2	49.0	5.0	12.0
Pelagic IISII	Clupea harengus	0.0	1.0	15.0	15.0	0.0	1.0	15.0	15.0
Benthos									
T	otal pelagic fish	3.5	746.0	10.0	13.3	0.2	50.0	10.0	13.5
То	tal demersal fish	49.1 152.0 28.1 34.8 7.0 19.0 23.5		23.5	44.0				
Total nur	nber of pelagic fish taxa			2 2					
Total num	ber of demersal fish taxa		1	3			6	6	

Table 3: Comparison of total catch and species richness for taxonomic groups.

Pelagic fish species catch (kg

		Standar	0 minute	15	Average for 0 minute
Rectangle	Depth	d	tow	minute	tow in % of standard
34F3	29	0.1	0.1	2.7	100.0
36F2	39	23.1	0.1		0.4
35F1	35	0.6	0.1		15.9
37F3	40	153.9	4.9		3.2
36F5	36	42.8	0.8	3.5	1.9
34F2	51	19.5	1.4	3.6	7.2
32F1		3.5	0.2		6.2

Demersa	al fish s	pecies c	atch (kg)	
		Standar	0 minute	15	Average for 0 minute
Rectangle	Depth	d	tow	minute	tow in % of standard
34F3	29	286.1	7.1	100.2	2.5
36F2	39	78.7	8.9		11.3
35F1	35	19.1	0.5		2.7
37F3	40	40.2	5.3		13.0
36F5	36	5.9	0.0	2.1	0.0
34F2	51	43.8	2.8	2.9	6.4
32F1		49.1	7.0		14.3

Number	of pela	gic and d	emersa	l fish spe	ecies
		Standar	0 minute	15	Average for 0 minute
Rectangle	Depth	d	tow	minute	tow in % of standard
34F3	29	13	3	14	23.1
36F2	39	11	3		27.3
35F1	35	16	5		31.3
37F3	40	8	4		50.0
36F5	36	11	2	5	18.2
34F2	51	13	4	11	30.8
32F1		15	2		13.3

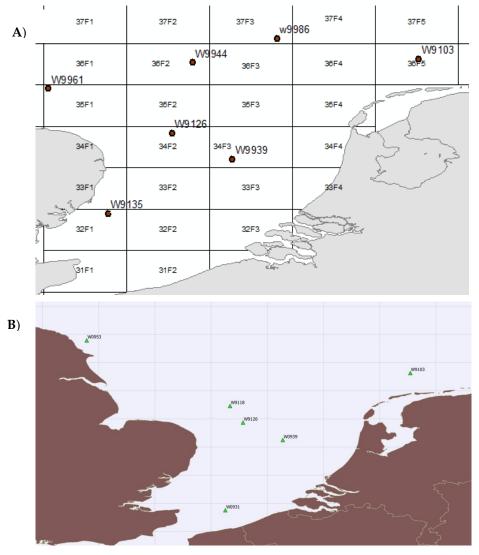


Figure 1: Sampling locations. A. Omin hauls. B. 15 min hauls.

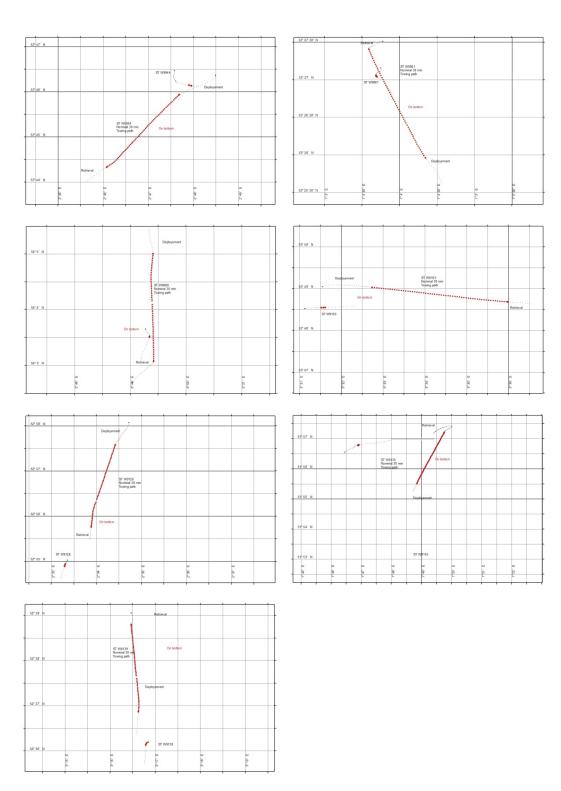


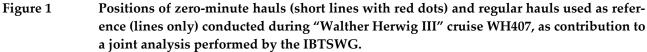
Figure 2: Trawl tracks

IBTS2018 WD6

Catches in zero-minute tows compared to standard tows in the NS-IBTS for Germany

Anne Sell and Matthias Bernreuther, Thünen Institute of Sea Fisheries, Hamburg, Germany


Introduction


In 2017, the IBTSWG decided to take additional "zero-minute" hauls during the Q3 IBTS-survey in the North Sea, in order to evaluate how the process of deploying and hauling the net contributes to the reported catches. Reducing the official haul time to zero minutes resulted in catches containing only those fish and invertebrates, which were caught in the water column during the net's path downwards to the sea floor, during the brief time span while it settled on the ground, or during the process of retrieving it. These additional experimental hauls were performed, depending on ship time available on the individual vessels. In the case of the German vessel "Walther Herwig" (WHIII), they were limited to three extra hauls which could be performed outside the regular programme.

The zero-minute hauls were taken at relatively shallow stations with sandy sediment structure, and were opposed to regular hauls performed within the same ICES rectangles. Due to the small number of extra hauls taken aboard the WHIII, the statistical power of conclusions drawn from these samples is limited. Yet, the analyses presented here serve to give a preliminary impression of catches obtained outside the official towing time at typical shallow sandy stations. The data will be included in a comprehensive analysis across the zero-minute hauls performed by all survey partners.

Methods

Zero-minute hauls were deployed just as regular 30-minute hauls, but retrieved as soon as the net had settled on the ground, i.e. exactly at the time which defines the start of a regular haul. The additional hauls were taken in two statistical rectangles of the German Bight (38F7 and 39F7), and were compared to the official IBTS hauls from the same rectangles. All five hauls in the analysis originated from depths barely exceeding 20 m. The catches were sorted and analysed in the same manner, taking total numbers and weights for all fish species and for the invertebrates specified in the IBTS manual (ICES 2015). Individual biological data and otolith for age readings were only taken for the valid 30-minute IBTS hauls as part of the regular programme, and are uploaded to DATRAS. In contrast, data from the zero-minute hauls are not being uploaded to DATRAS, but remain with the data pool of the IBTSWG, in order to prevent their unintentional inclusion in analyses of IBTS catches.

Results and Conclusions

Due to the moderate depths of the stations sampled, ranging from 20.8 to 23.4 m, the time span needed for shooting and hauling of the net (deployment time) remained rather short and remained between 4:30 and 5:59 min (Table 1). Accordingly, the total number of individuals caught in the zero-minute hauls was rather low, ranging from 23-170 for fish, and from 0-1 invertebrates. The corresponding regular hauls contained between 520-1260 fish, and 43-143 invertebrates (Table 2).

Pelagic fish were the most abundant group in each of the three zero-minute hauls, and in analogy to the regular hauls in the same rectangles, mackerel (*Scomber scombrus*) dominated in number (Table 2). Apart from further purely pelagic species, sandeel (*Ammodytes tobianus* and *Hyperoplus lanceolatus*) also occurred in the zero-minute hauls, and may have been caught during the passage of the net between surface and seafloor. In contrast, the few demersal fish collected have presumably been scared up when the net hit the ground. Purely demersal fish species were caught with between 4-9 individuals in the three zero-minute hauls, as opposed to 19-128 individuals in 30-minute hauls.

Overall, the zero-minute hauls conducted in the rectangles 38F7 and 39F7 represent examples for shallow sandy habitats within the IBTS survey area in the North Sea, and their rather low biomass was dominated by pelagic fish species.

References

ICES (2015) Manual for the International Bottom Trawl Surveys. Series of ICES Survey Protocols SISP 10 - IBTS IX. 86 pp.

Date	Station No.	Rectangle	Depth [m]	Tow duration [min]	Deployment time* [hh:mm:ss]	Station type	Validity
2017-08-02	557	38F7	21.0	0	0:05:30	ZERO	N
2017-08-02	559	39F7	22.4	0	0:05:01	ZERO	Ν
2017-08-02	560	39F7	23.4	0	0:05:30	ZERO	N
2017-08-02	556	38F7	20.8	30	0:35:59	IBTS	J
2017-08-02	558	39F7	21.3	30	0:34:30	IBTS	J

Table 1 Sampling information for zero-minute hauls ("ZERO") and standard hauls ("IBTS") in the same rectangles; cruise WH 407, Q3 2017

*) Between start and end of operation of the trawl door winch (doors leaving deck/ doors back on deck)

Table 2 Comparison of species compositions in zero-minute hauls (a) and standard hauls in the same ICES rectangles (b), conducted during cruise WH407, Q3 2017.

Group	Species	Weight [kg]	n [ind]	Min length [cm]	Max length [cm]	Rectangle	Station	Station type
Pelagic fish	SCOMBER SCOMBRUS	11.355	110	21.5	32.5	38F7	557	ZERO
	SPRATTUS SPRATTUS	0.087	9	10.25	11.25	38F7	557	ZERO
Flatfish	LIMANDA LIMANDA	0.503	5	13.5	29.5	38F7	557	ZERO
	AMMODYTES TOBIANUS	0.031	2	16.5	16.5	38F7	557	ZERO
Sandeel	HYPEROPLUS LANCEOLATUS	0.903	44	16.5	24.5	38F7	557	ZERO
Cephalopods	ALLOTEUTHIS SUBULATA	0.005	1	6.25	6.25	38F7	557	ZERO
Total - Pelagic fish		11.442	119					
Total - Flatfish		0.534	7					
Total - Sandeel		0.903	44					
Total - all demersal fish		1.437	51					
Pelagic fish	SCOMBER SCOMBRUS	4.337	47	21.5	35.5	39F7	559	ZERO
	TRACHURUS TRACHURUS	0.001	1	4.5	4.5	39F7	559	ZERO
Flatfish	LIMANDA LIMANDA	0.087	1	20.5	20.5	39F7	559	ZERO
	PLATICHTHYS FLESUS	0.276	1	30.5	30.5	39F7	559	ZERO

0.167

5

18.5

28.5

39F7

HYPEROPLUS

LANCEOLATUS

Sandeel

ZERO

559

Other demersal fish (w/o gadoids)	EUTRIGLA GURNARDUS	0.223	2	23.5	24.5	39F7	559	ZERO
Total - Pelagic fish		4.338	48					
Total - Flatfish		0.363	2					
Total - Sandeel		0.167	5					
Total - all demersal fish		0.753	9					

Pelagic fish	SCOMBER SCOMBRUS	1.580	11	22.5	36.5	39F7	560	ZERO
	TRACHURUS TRACHURUS	0.001	1	5.5	5.5	39F7	560	ZERO
Flatfish	LIMANDA LIMANDA	0.286	5	14.5	22.5	39F7	560	ZERO
	PLEURONECTES PLATESSA	0.050	1	16.5	16.5	39F7	560	ZERO
Sandeel	HYPEROPLUS LANCEOLATUS	0.029	2	16.5	17.5	39F7	560	ZERO
Demersal gadoids	MERLANGIUS MERLANGUS	0.073	1	21.5	21.5	39F7	560	ZERO
Demersal fish (w/o gadoids)	EUTRIGLA GURNARDUS	0.217	2	23.5	23.5	39F7	560	ZERO
Total - Pelagic fish		1.581	12					
Total - Flatfish		0.336	6					
Total - Sandeel		0.029	2					
Total - all demersal fish		0.655	11					

				Min	Max			
		Weigh		lengt	lengt	Rectangl		Station
Group	Species	t [kg]	n [ind]	h [cm]	h [cm]	e	Station	type
Pelagic fish	CLUPEA HARENGUS	0.072	5	10.25	13.75	38F7	556	IBTS
	SCOMBER SCOMBRUS	82.300	719	21.5	37.5	38F7	556	IBTS
	SPRATTUS SPRATTUS	4.985	510	10.25	12.25	38F7	556	IBTS
	TRACHURUS							
	TRACHURUS	0.001	2	3.5	4.5	38F7	556	IBTS
Flatfish	LIMANDA LIMANDA	0.478	5	12.5	24.5	38F7	556	IBTS
	PLATICHTHYS FLESUS	0.285	2	20.5	25.5	38F7	556	IBTS
	PLEURONECTES PLATESSA	0.201	3	18.5	20.5	38F7	556	IBTS
	HYPEROPLUS							
Sandeel	LANCEOLATUS	0.136	5	17.5	24.5	38F7	556	IBTS
	MERLANGIUS							
Demersal gadoids	MERLANGUS	0.193	6	5.5	18.5	38F7	556	IBTS

Demersal fish (w/o gadoids)	CHELIDONICHTHYS LUCERNA	0.418	2	27.5	29.5	38F7	556	IBTS
	EUTRIGLA GURNARDUS	0.104	1	23.9	23.9	38F7	556	IBTS
Cephalopods	ALLOTEUTHIS SUBULATA	0.759	142	1.25	12.75	38F7	556	IBTS
Crustaceans	CANCER PAGURUS	0.897	1	174.5	174.5	38F7	556	IBTS
Total - Pelagic fish		87.358	1236					
Total - Flatfish		0.964	10					
Total - Sandeel		0.136	5					
Total - all demersal fish		1.815	24					

Pelagic fish	SCOMBER SCOMBRUS	40.622	389	19.5	34.5	39F7	558	IBTS
	TRACHURUS							
	TRACHURUS	0.002	1	5.5	5.5	39F7	558	IBTS
Flatfish	LIMANDA LIMANDA	10.104	91	15.5	29.5	39F7	558	IBTS
	PLATICHTHYS FLESUS	0.318	2	19.5	29.5	39F7	558	IBTS
	PLEURONECTES							
	PLATESSA	0.097	2	16.5	17.5	39F7	558	IBTS
	PSETTA MAXIMA	1.25	1	43.5	43.5	39F7	558	IBTS
	AMMODYTES							
Sandeel	TOBIANUS	0.037	4	11.5	15.5	39F7	558	IBTS
Demersal fish (w/o								
gadoids)	ECHIICHTHYS VIPERA	0.066	1	18.5	18.5	39F7	558	IBTS
	EUTRIGLA							
	GURNARDUS	2.809	29	19.5	28.5	39F7	558	IBTS
	ALLOTEUTHIS							
Cephalopods	SUBULATA	0.2	41	3.75	9.75	39F7	558	IBTS
Crustaceans	CANCER PAGURUS	2.445	2	171.5	208.5	39F7	558	IBTS
Total - Pelagic fish		40.624	390					
Total - Flatfish		11.769	96					
Total - Sandeel		0.037	4					
Total - all demersal fish		14.681	130					