

9 FEBRUARY 2016

Guidelines for the
 VMSdatacall_2016_proposedWorkflow.r

Part 1

This document is designed to aid analysts streamline the process of extracting VMS data
in accordance with requirements of the ICES VMS data call.

Part 1 of the document is provides guidelines for installing all the software necessary for
data manipulation and aggregation into the requested format. The software used, R and
RStudio, are available as freeware.

The document is designed to aid all users, regardless of their experience using R. The
steps listed cover the installation of R and RStudio and detailed information will be pro-
vided to cover all stages of the installation process to ensure success. Depending on your
skills you might want to jump some of the steps. To ensure consistency across all users
we advise installing VMStools version 0.72. Following these steps should enable quick
and simple processing of all data.

All the instructions and code below were tested in windows 7 and 8. However, if for any
reason something is not working you can contact one of the members of our support
team (emails at the end of the document).

Step 1: Instal lation of R

(Where R is already installed (any 3.x.x 32 bits version) move to step 2)

Completion of the first two steps of these guidelines is dependent on the user's computer
security setting. In instances where administrator privilege is required then please ask a
member of your IT/computer support team to run the first two steps for you.

So let's start by installing R; click on the link below to download R version 3.1.3.

https://cran.rstudio.com/bin/windows/base/old/3.1.3/R-3.1.3-win.exe

Once it is downloaded, double click on the file. Depending on your security settings you
might get a pop up security warning asking if you want to Run or Cancel the installation,
Click Run.

• Select a language (when you select the language, bear in mind that these in-
structions are in English)

• At this point you should be on the R installation Wizard menu. Just click Next
• Here you are presented with the GNU general public license which you are

most welcome to read. Click Next
• The menu (picture below) will appear and you will be asked to select the des-

tination folder

https://cran.rstudio.com/bin/windows/base/old/3.1.3/R-3.1.3-win.exe

Rather than accepting the default (C:Files-3.1.3) you should click on the browse button
and create a directory C:-3.2.1 this will allow you to install packages without having ad-
ministrator privileges. Once you have changed the folder just click Next

• In the menu "Select components" simply deselect/untick the 64-bit files. Click
Next

• Click Next all the menus until the end of installation, and that's it; R is now in-
stalled on the computer.

Step 2: Instal lation of RStudio

(Where R studio is already installed move to step 3)

If you don't have administrator privilege on your computer you will need to call your
IT/computer support to install RStudio. First download RStudio by clicking on the link
below:

https://download1.rstudio.org/RStudio-0.99.467.exe

Once downloaded, double click on it. Depending on your security settings you might get
a popup security warning asking if you want to Run or Cancel the installation, Click on
Run. At this point you should be on the RStudio installation Wizard menu. RStudio is

https://download1.rstudio.org/RStudio-0.99.467.exe

very easy to install so just accept all defaults and click Next in all the menus until the
end.

That's it Step 2 is complete, RStudiois now installed.

Step 3: Instal l ing vmstools

Next, download a compiled version of vmstools 0.72 by clicking the link below. Make
sure you click save rather than open.

https://github.com/nielshintzen/vmstools/releases/download/0.72/vmstools
_0.72.zip

Now start Rstudio to install all the necessary R packages that vmstools depends on.

Copy the following text

in-
stall.packages(c("cluster","data.table","doBy","maps","mapdata","
maptools","PBSmapping","sp","Matrix","ggplot2"))

into the console and press enter. It should start installing all the packages needed. This
might take two or three minutes and your console should look like this once it has fin-
ished.

https://github.com/nielshintzen/vmstools/releases/download/0.72/vmstools_0.72.zip
https://github.com/nielshintzen/vmstools/releases/download/0.72/vmstools_0.72.zip

To install vmstools click on the Tools tab on the main menu in RStudio. Then select In-
stall Packages. This will trigger a popup menu like the one below. Click on the down
arrow in the "Install from:" dialogue box and select the second option "Package Archive
File(Zip;tar.gz)" then browse to the vmstools zip file that you just downloaded and press
Install.

That's it; you now have all you need to process your data.

Part 2

Part one of these guidelines have guided you through the installation of all the software
needed to process your data into the formats specified in the data call. Now, part two will
focus on guiding you through the eight steps that comprise the workflow. The aim is to
get your data converted into the tables requested by the data call in Annex 1 and 2. .

The work flow was developed in R, the principal objective being to facilitate the submis-
sion of data in the specified format by providing all country institutions with a standard-
ised tool for data extraction. This will make data outputs more comparable and easy to
work with.

Many of the specific functions that this workflow uses to extract and process VMSVMS
and landings data are part of the open-source vmstools package. This package was spe-
cifically developed to work with VMS and landings data. If you want to learn more about
this tool you will find plenty of information and tutorials in the link below.

https://github.com/nielshintzen/VMStools/wiki
Before initiating the workflow, it is first necessary that you have all VMS and landings
data in the tacsat2 and eflalo2 formats respectively. If you need more information about
either format you can download a document with the detailed specifications for both in
the link below.

https://github.com/nielshintzen/VMStools/releases/download/0.0/Exchange
_EFLALO2_v2-1.doc

If you are experiencing difficulties and your data is not yet in the tacsat and/or eflalo
format please get in touch with one of the contacts at the bottom of these guidelines.
Someone will get back to you and help you to rearrange your data into the specified for-
mats allowing you to move on with the analysis.

The proposed workflow is not a one-size-fits-all solution and there are parts of the script
that may need to be adapted to allow for the specific nature of the fisheries data from
each country. Throughout this document all parts of code that need adjustment will be
highlighted and explained so you should have a good understanding of what is happen-
ing at all times.

The code is divided in eight sections and within these there are many blocks. We will
explain briefly what each section and block does and its purpose within the code. The
idea of the guidelines is not to explain in detail what each line of code does but to give an
overview of what is happening at each stage. The script itself is well annotated, so if you
are familiar with R and the vmstools package, you probably won't need to follow these
guidelines as closely.

https://github.com/nielshintzen/VMStools/wiki
https://github.com/nielshintzen/VMStools/releases/download/0.0/Exchange_EFLALO2_v2-1.doc
https://github.com/nielshintzen/VMStools/releases/download/0.0/Exchange_EFLALO2_v2-1.doc

Let's begin:

House keeping

Open "Rstudio" and load the workflow. Before making any changes save the script with a
different name. This will allow you to quickly refer back to the original code in case any-
thing unexpected happens.

Just a quick note, which may be very obvious for all of those using R, but not so much for
someone just trying to follow the guidelines. Anything in the code after a hashtag (#) sign
is not code and it won't be read by the program. The # sign is used to add sections and
block headers or general annotations. As such, the first line of code starts on line 23.

To make it easier to follow the guidelines we will explain the code, referencing the sec-
tions, headers (numbered) and blocks by highlighting them in bold.

- Clear workspace

This code will just clear your work space to allow you to start afresh. Also, the three
packages that will be needed to run the code will be loaded into the session. If you fol-
lowed the instructions in part one these should already be installed and loading them
shouldn't be a problem.

#- Settings paths

At this point you need to replace the paths shown in the code with your own ones. The
approach used in the code is one of best practice, as everything will be in one main folder
"VMSdatacall". This will make it very easy to navigate between folders and to backup. So,
for your own convenience it is recommended that you use the default paths as listed in
the code. However, it is possible to change these by simply specifying your personal des-
tination folders and defining the chosen path.

#- Settings and specific thresholds

The thresholds here defined will be used later in different processes throughout the code.
These will include, data cleaning or definition of vessel state (i.e. fishing/not fishing). The
values set for the thresholds are considered to be reasonable and unless there are particu-
larities in your data there shouldn't be a need to change these values.

#- Load OSPAR and HELCOM areas

Before running this block, you will need to download and unzip (to the Polygons folder)
two GIS shapefiles that will be used at this stage. The shapefiles are polygons of the
OSPAR and HELCOM areas and they will be used to identify the VMS pings and land-
ings within these areas. Links to the files are below:

http://geo.ices.dk/download.php?dataset=ext_ref:helcom_subbasins
http://geo.ices.dk/download.php?dataset=ext_ref:ospar_regions_without_c
oastline

Once you have unzipped both files into the "Polygons" folder you can then run the code
which will load the shapefiles into the session.

http://geo.ices.dk/download.php?dataset=ext_ref:helcom_subbasins
http://geo.ices.dk/download.php?dataset=ext_ref:ospar_regions_without_coastline
http://geo.ices.dk/download.php?dataset=ext_ref:ospar_regions_without_coastline

1) Load the data

#- 1a) Load VMStools underlying data

This will load into the session support data such as a map of Europe, list of harbours and
ICES areas that will be used throughout the code.

#-1b) Looping through the data

The next line of code has a "for" loop which means that the all the code within the loop
will run at the same time. This particular loop stretches from line 56 to line 505 leaving
only a couple of lines at the end of the code. However, before running the "for" loop there
are a few things that need to be changed/ adapted to your case.

In order to ensure that everything is working properly and to have a better understand-
ing of what the code is doing inside the loop we will run one single year as a test. If we
are able to run one year of data without coming across errors then we can run the code
for all the years at once.

So for the moment we will ignore this block (#-1b) Looping through the data and copy
the line below into the console:

year<-2009

#- 1c) load tacsat and eflalo data from file

In your "Data" folder you should have all your tacsat and eflalo files in the .RDATA for-
mat. In the code it is expected that your files have the following naming convention
"tacsat_ XXXX" i.e. tacsat_2009; tacsat_2010, etc. The same naming convention is applied
to the eflalo files. This will allow the code to load the files as they are needed during the
"for" loop. Failing to correctly name the files will result in an error.

Since we have just copied year<- 2009 to the console, when we run this block only the
2009 year data will be loaded.

Now that you have just loaded both tacsat and eflalo for 2009 the next two lines will just
change the name of your objects to "tacsat" and "eflalo". Depending on what your objects
are called you may need to change the code. (tip: If at any stage you don't remember
what the names are just type "ls()" and a list of all objects already loaded will appear). If
your object names are not "tacsat" and "eflalo" you will need to adapt the code. However,
this is a simple process. Below are two examples for changing objects names in this case
the names are "2009Tacsat" and another called "Tac09".

tacsat <- get(paste(year,"Tacsat",sep=""))
tacsat <- get(paste("Tac",substr(year,3,4),sep=""))

If the objects are already called tacsat and eflalo then, you don't need to run those two
lines and you can add a # at the beginning of each line. However, make sure that whatev-

er you have called your objects the naming structure is consistent across all years other-
wise the "For" loop won't run.

#- Make sure data is in right format

It just ensures that your files are formatted properly.

#- Take only VMS pings and eflalo records inside OSPAR and HELCOM region

This block of code will identify all VMS pings (tacsat) and landings (eflalo) within the
OSPAR and HELCOM regions.

2) Clean the tacsat data

This section will focus on "cleaning" the data in the tacsat file. The information in the
tacsat (vms) comes from an electronic system that uses GPS information to collect the
data on board the vessel and uses a satellite link to send the data to the database. Despite
the reliability of this system conditions at sea are not always the best. There are two main
opportunities for errors to occur, when receiving or sending data from the GPS and to the
database. The code in this section will look to the most common errors and try to identify
all of them. The code will not only delete the errors but also keep a record of what was
deleted allowing you to keep track of how much data you have lost due to errors.

#- Keep track of removed points

This section will check for five common types of errors. At each of these checks errors
will be removed from the tacsat object. However, the data removed will be kept and
saved in the "Results" folder so you can verify the errors. Also, the volume for each of
errors for each of the five checks is recorded the "remrecsTacsat" object. This object will
tell you percentage wise how much you have lost in relation to the original tacsat object.

#- Remove duplicate records

#- Remove points that cannot be possible

#- Remove points which are pseudo duplicates as they have an interval rate < x
minutes

#- Remove points in harbour

#- Remove points on land

All of the above are self-explanatory and each of the five blocks will check for a particular
type of error, remove them where they occur and store the removed entries in the "Re-
sults" folder and will quantify the number of values removed.

#- Save the remrecsTacsat file

The file is now saved and by typing "remrecsTacsat" into the console you will get an
overview of how much data was lost due to errors.

#- Save the cleaned tacsat file

Now you have your file cleaned and saved so no need to repeat the process in future
analysis.

3) Clean the eflalo data

This section, like the previous one also focuses on "cleaning" the data. This time the target
is the eflalo file. The types of errors are of a different nature but once again the code tries
to account for the most commons errors. As in the previous section, the code will keep
track of what data has been removed and how much. All these files can be found in the
"Results" folder. One should spend a bit of time looking at the data removed as it can be
very useful to understand why and where problems occur.

#- Keep track of removed points

The "remrecsEflalo" object will keep you informed of how much data has been removed.

#- Warn for outlying catch records

Basically this block looks for outliers. For each species, it generates a data-driven outlier
threshold. If any outliers are found, these will be converted into "NA" values. You can
check in the "Results" folder for the files containing all the outliers and you can double
check if they are correct or not. If they were correct then you can run the code again but
the code will need some adjustments.

#- Remove non-unique trip numbers

#- Remove impossible time stamp records

#- Remove trip starting before 1st Jan

#- Remove trip with overlap with another trip

#- Remove records with arrival date before departure date

The above block headers are self-explanatory and the code in each of the blocks is just
identifying those common errors and removing them from the eflalo object.

#- Save the remrecsEflalo file

#- Save the cleaned eflalo file

The "remrecsEflalo" file is saved for future reference. So is the cleaned eflalo file which,
like the tacsat, will be ready to use in the future.

4) Merge the tacsat and eflalo data together

In section four we bring the tacsat and eflalo together by merging to create a new object.
This will enable us to relate the landings component (eflalo) to the vessel activity i.e. VMS
(tacsat).

#- Merge eflalo and tacsat

The files tacsat and eflalo will be combined using some very clever algorithms that use
the vessel identifier and date and time in both data sets to relate the landings to the cor-
responding VMS data for the same trip.

 ## #- Assign gear and length to tacsat. The new object tacsatp is now a merged version
of the cleaned tacsat and eflalo objects. However, the new object hasn't inherited all the
fields from eflalo due to reasons of processing speed and workability. At this point we
will extract some data from the eflalo dataset to populate the corresponding tacsatp
fields. The data we are interested in are data that will be used later on in the code to pop-
ulate the final data tables. Things like gear; kw; metiers, etc.

#- Save not merged tacsat data

Not all vessel activity is associated with fishing events; quite often vessels may be testing
equipment or chartered to do jobs other than fishing. So, the merge executed in the pre-
vious block only includesVMS data that can be linked to corresponding landings records.
As such, it will not be possible to merge all tacsat data for allocation to the tacsatp object.
This block will save both the merged and non-merged data into the "Results" folder.

5) Define activity

This is a crucial section, as vessel activity will be defined here. Also, this is the section
that needs the most customization for which some knowledge of fisheries activities will
be needed. In this section we will try to explain the steps in more detail and incorporate
some reproducible examples as well. The first couple of lines in this section will calculate
time interval between points. The time values and the interval threshold will be para-
mount in identifying vessel activity later on.

#- Remove points with NA's in them in critical places

This block gets rid of any rows in the tacsatp for which critical information (vessel refer-
ence, latitude, longitude, speed, date and time) is missing. If this data wasn't removed it
would most likely lead to errors.

#- Define speed thresholds associated with fishing for gears

The code in this block creates a very useful plot of speed frequency by gear. This plot will
be saved in the "Results" folder and before you run any further code you should look
closely at the output plot.

The three last lines of this block will create a threshold object. However, your input and
knowledge of the relevant fisheries will be needed at this stage. The threshold object will

hold the minimum and maximum speed of fishing for each of the gears (i.e. the mini-
mum and maximum speeds at which the specific fishing activity is thought to occur). To
help you with this task you should look at the previous speed frequency plot to help
distinguish steaming from fishing events.

By running the third last line in this block you create an object "speedarr" with all the
different gears in your data. The second and third lines will fill in column 2 and 3 of the
"speedarr" object with the minimum and maximum fishing speeds. These values are set
to 1kt and 6kt by default. At this stage you will need to set up the upper and lower limits
for each of the gears. Although there are several ways of accomplishing this, we will
demonstrate one of them here. In the example below we use a list of 5 gears (DRB; PTB;
OTT; GN; FPO) although you are likely to have many more gears in your dataset so you
will need to extend the code to accommodate all gears accordingly.

To create our example, copy the code below into the console:

speedarr <- as.data.frame(cbind(LE_GEAR=c("DRB", "PTB", "OTT",
"GN", "FPO"),min=NA,max=NA),stringsAsFactors=F)

speedarr

speedarr$min[which(speedarr$LE_GEAR=="DRB")]<- 2 ; speed-
arr$max[which(speedarr$LE_GEAR=="DRB")]<- 5
speedarr$min[which(speedarr$LE_GEAR=="PTB")]<- 2 ; speed-
arr$max[which(speedarr$LE_GEAR=="PTB")]<- 6
speedarr$min[which(speedarr$LE_GEAR=="OTT")]<- 1.5 ; speed-
arr$max[which(speedarr$LE_GEAR=="OTT")]<- 4
speedarr$min[which(speedarr$LE_GEAR=="GN")]<- 0.5 ; speed-
arr$max[which(speedarr$LE_GEAR=="GN")]<- 3
speedarr$min[which(speedarr$LE_GEAR=="FPO")]<- 0.5 ; speed-
arr$max[which(speedarr$LE_GEAR=="FPO")]<- 3

speedarr

So, in the example above you can easily see how each line applies to one gear and on the
left you have the minimum values on the right the maximum. Make sure when you copy
and paste the lines you change the gears and values on both sides.

If your data varies from year to year you might want to check if you have different gears
in different years. Before running the full code, you should make sure that all gears are
included in the code above.

#- Analyse activity automated for common gears only. Use the speedarr for the oth-
er gears

This block allows you to select some gears for which the detection can be done automati-
cally. This is another functionality of VMStools which applies for the most common
gears. So, in this block you will need to choose which gears to want to apply auto detec-
tion. You can add or delete gears in the first line of code in this block.

The remainder of the code in the block will split the tacsatp object in two depending on
whether gears will be detected automatically or whether the thresholds need to be user
defined according to the code from the previous block. The remaining lines in the block
don't need to be changed.

 #- Fill the storeScheme values based on analyses of the pictures

In this block the speed histogram plot created previously will be used once more. You
will have to identify the peaks in the plot for the gears for which you want the activity to
be automatically detected (bear in mind that the algorithm was developed with trawling
in mind).

So, first of all make sure you have a line for each of the gears (see line below) changing
the gears and mean speeds accordingly.

storeScheme$means[which(storeScheme$analyse.by == "SSC")] <- c("-
9 0 9")

Now using the plot, identify where the peaks are and use this to change the code. Make
sure you follow the same nomenclature as the example provided. Also, for the algorithm
to perform better, we need to create a mirror image of the peaks and with 0 (zero) in the
middle .If the number of peaks for a particular gear is greater or less than 5 you will need
to add a line (like the one below) with the true number of peaks observed. In the example
above there were three peaks -9, 0, 9 so we would need to add the line below to the code.

storeScheme$peaks[which(storeScheme$analyse.by == "SSC")] <- 3

The second half of the block, checks the results of the auto detection; if they are not satis-
factory the analysis is run once more; this time using fixed peaks. However, in this work-
flow we will not be using fixed peaks so no need to worry about this.

#- Assign for visually inspected gears a simple speed rule classification

This block deals with all the other gears that are not automatically detected. The code
simply applies the upper and lower limits defined previously to define if vessel activity
as either steaming or fishing.

 #- Combine the two dataset together again

Now that all gears have had their activity defined, the code in this block is just putting it
all back together in one object. As usual the object will be saved in the "Results" folder.

6) Dispatch landings of merged eflalo at the ping scale

This section calculates the total daily landings (weight and value) and splits the values
equally among the daily fishing pings.

7) Assign c-square, year, month, quarter, area and create table 1

We are at final stage and the code in this block will generate one of the tables requested
by the data call (see annex 1). The first part of the code pulls together all the fields needed
to create the table. The second part deals with the aggregation by CSquare.

8) Assign year, month, quarter, area and create table 2

We have reached the last section. As in the previous one, the first part of the code will
create all the fields needed for table 2 (see annex 2) as requested in the data call. The sec-
ond part of the code deals with the aggregation into CSquares.

Running the last two lines saves the data into the "Results" folder. Don't forget to check
the outputs to make sure that everything is correct.

If you are happy with all the results then you can proceed running the entire code. Make
sure you double check the names of the input files, ensuring they follow the convention
(as in the example) and run the entire code.

Contacts:

Josefine Egekvist: jsv@aqua.dtu.dk

Niels Hintzen: niels.hintzen@wur.nl

Rui Catarino: r.catarino@marlab.ac.uk

mailto:jsv@aqua.dtu.dk
mailto:niels.hintzen@wur.nl
mailto:r.catarino@marlab.ac.uk

Annex 1: Exchange format for combined VMS and Log book data

M = mandatory. *DCF level = Fishing activity - Metier:

https://datacollection.jrc.ec.europa.eu/wordef/fishing-activity-metier

https://datacollection.jrc.ec.europa.eu/wordef/fishing-activity-metier

Annex 2: Exchange format for reporting Log book data

M = mandatory. *DCF level = Fishing activity - Metier:

https://datacollection.jrc.ec.europa.eu/wordef/fishing-activity-metier

https://datacollection.jrc.ec.europa.eu/wordef/fishing-activity-metier

	Part 1

