Series of ICES Survey Protocols

SISP 8 - IBAS

October 2017

Ma nual for the Intemational Baltic Ac oustic Surveys (IBAS)

Version 2.0

Baltic Intemational Fish Survey Working Group (WGBIFS)

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H. C. Andersens Boulevard 44-46

DK-1553 Copenhagen V
Denmark
Telephone (+45) 33386700
Telefax (+45) 33934215
www.ices.dk
info@ices.dk

Recommended format for purposes of citation:
ICES. 2017. Manual for the International Baltic Acoustic Surveys (IBAS). Series of ICES Survey Protocols SISP 8 - IBAS. 47 pp. http://doi.org/10.17895/ices.pub. 3368

The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary.

This document is the product of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council.

DOI: http://doi.org/10.17895/ices.pub. 3368
ISBN 978-87-7482-205-9
ISSN 2304-6252

Contents

1 Introduction 1
2 Survey design 2
2.1 Area of observation 2
2.2 Stratification 2
2.3 Transects 2
2.4 Observation time 2
3 Acoustic measurements 3
3.1 Equipment 3
3.2 Instrument settings 3
3.3 Sampling unit 4
3.4 Calibration 4
3.5 Intercalibration 4
3.6 S_{A} at trawl stations 4
4 Fishing 6
4.1 Gear 6
4.2 Method 6
4.3 Samples 6
4.3.1 Species composition 6
4.3.2 Length distribution 7
4.3.3 Weight distribution 7
4.3.4 Age distribution 8
4.4 Environmental data 8
5 Data analysis 9
5.1 Species composition 9
5.2 Length distribution 9
5.3 Age distribution 9
5.4 Weight distribution 10
5.5 Lack of sample hauls 10
5.6 Allocation of records 10
5.7 Target strength of an individual fish 10
5.8 Estimation of the mean cross section in the ICES rectangle 11
5.9 Abundance estimation 11
6 Data exchange and database 13
6.1 Exchange of survey results 13
6.2 Databases 13
7 References 14
8 Figures 16
9 Tables 23
Annex 1: List of symbols 37
Annex 2: The example of calculation method and formulas used for fish stocks abundance and biomass 38

1 Introduction

The acoustic surveys have been conducted in the Baltic Sea internationally since 1978. The starting point was the cooperation between Sweden and the German Democratic Republic in October 1978, which produced the first acoustic estimates of total biomass of herring - Clupea harengus and sprat - Sprattus sprattus in the Baltic Proper (Håkansson et al., 1979). Since then there has been at least one annual hydroacoustic survey for herring and sprat stocks mainly for assessment purposes and results have been reported to ICES to be used for stock assessment (Hagström et al., 1991; ICES, 1994a, 1995a, 1995b; 2006; Gasyukov et al., 2009; Grygiel and Orłowski, 2009).

At the ICES Annual Science Conference in September 1997, the Baltic Fish Committee decided, that a manual for the International Baltic Acoustic Surveys (IBAS) should be elaborated. The structure of the manual follows that of the Baltic International Trawl Surveys (BITS). In order to obtain standardization for all ICES acoustic surveys some demands from the Manual for Herring Acoustic Surveys in ICES Divisions 3, 4 and 6 (ICES, 1994b) are adopted.

The objective of the Baltic International Acoustic Survey (BIAS) and Baltic Acoustic Spring Survey (BASS) programs are to standardize survey design, acoustic measurements, fishing method and data analysis throughout all national surveys where data are used as abundance indices for Baltic herring, sprat and to some extent cod stocks assessment purposes.

2 Survey design

2.1 Area of obsenvation

The acoustic surveys should cover the total area of the ICES Division 3 (Figure 2.1.). The border by the ICES Subdivisions is given in Figure 2.1. and Table 2.1. The area is limited inshore by the 10 m depth line. Historically, the national EEZ was typically the boundary for the area covered in the national acoustic surveys. Such survey design lead to the problems with overlapping areas and to an inefficient use of survey time. Therefore, during the Baltic International Fish Survey Working Group (WGBIFS) meeting in 2005 it was agreed that, each ICES statistical rectangle of the area under investigation was allocated to one country, thus each country has a mandatory responsible area. A general assignment scheme of the ICES statistical rectangles to the countries in the Baltic Sea is presented in Figure 2.2.. It should be emphasized that, Denmark and Germany are performing the acoustic surveys also in the ICES Subdivision 21, the borders of which are not currently defined. The above allocation scheme should be used for the planning of Baltic International Acoustic Surveys. As there are only few countries participating in Baltic Acoustic Spring Surveys, partition of the rectangles within the planned survey area among the participating countries is agreed during the preceding the WGBIFS meeting.

2.2 Stratification

The stratification is based on the ICES statistical rectangles with a range of 0.5 degrees in latitude and 1 degree in longitude. The areas (A) of all strata limited inshore by the 10 m depth line are given in Table 2.2.

2.3 Transects

Parallel fixed transects are spaced on ICES rectangles basis at a maximum distance of 15 nautical miles (NM; Figures 2.3.A., 2.3.B.).

The transect density should be about 60 NM per area of $1000 \mathrm{NM}^{2}$.
Near islands and in straits the strategy of parallel transects can leads to an unsuitable coverage of the survey area. In this case, a zigzag course should be used to achieve a regular covering. The length of the survey track per $1000 \mathrm{NM}^{2}$ track should be the same as when using parallel transects.

2.4 Observation time

The Baltic Acoustic Spring Survey (BASS) and Baltic International Acoustic Survey (BIAS) are carried out annually in May and September/October, respectively. It is assumed that during autumn survey there is little or no emigration or immigration of pelagic stocks in the main part of the Baltic Sea so that the estimates are representing a good 'snapshot' of the herring, sprat and cod resources. The spring survey is focuses on estimating the stock size indices of sprat.

In the shallow water areas of the western Baltic a great part of the fish concentrations are close to the bottom during daytime and therefore not detectable with echosounder (Orłowski, 2000; 2001). This leads to a potential underestimation of fish (Orłowski, 2005). Therefore, shallow water areas in the western Baltic should be surveyed only during night-times, which is defined as a period one hour after sunset and one hour before sunrise.

3 Acoustic measurements

3.1 Equipment

The standard acoustic equipment used in the BIAS and BASS surveys is the Simrad EK/EY-60 echo-sounder (Simrad, 2012) and the standard frequency is 38 kHz .
It is recommended to follow instructions and recommendations concerning the underwater noise of research vessels (Mitson, 1995; Mitson and Knudsen, 2003; Ona et al., 2007; De Robertis et al., 2008; De Robertis and Wilson, 2011; De Robertis and Handegard, 2013).

Some basic, historical information about theory of underwater acoustics and echosounder transducers can be found in Bodholt (1991, 1996).

3.2 Instrument settings

Some instrument settings may influence the acoustic measurements to a high degree. Therefore, the following calibration settings are essential in order to achieve the correct function of the acoustic device:

Parameter	EK-60
Maximum transmit power (W)	Transmit Power
Integrated 2-way beam angle (dB)	Two-way Beam Angle
Volume backscatter gain (dB)	Gain
sA gain correction	SaCorrection
Alongship angle sensitivity	Angle Sensitivity, Alongship
Athwartship angle sensitivity	Angle Sensitivity, Athwartship
Alongship beam width at 3-dB points (deg.)	3dB Beam Width, Alongship
Athwartship beam width at 3-dB points (deg.)	3dB Beam Width, Athwartship
Offset of the acoustic axis in the along ship direction (deg.)	Angle Offset, Alongship
Offset of the acoustic axis in the athwart ship direc- tion (deg.)	Angle Offset, Athwartship
Pulse Length	1 m sec.
Sound attenuation (dB km-1)	Absorption (in brackish water 3 dB $\mathrm{km}-1)$

The following settings are recommended to use during the data collection:
Pulse rate 1 ping per second
The high ping rate, i.e. of 3-4 pings per second (optional)

Absorption coef.	$3 \mathrm{~dB} / \mathrm{km}$
Pulse Length	1 ms.
Bottom margin	0.5 m

It is recommended to record this setting regularly to have a log about the main function of the acoustic measuring system. The threshold (Min Sv $=-60 \mathrm{~dB}$) is NOT set during data acquisition. This threshold should only apply to data post-processing.

3.3 Sampling unit

The length of the survey transect should be divided into 1 NM elementary sampling distance units (ESDU), where acoustic measurements are averaged to give one value of nautical area scattering coefficient (NASC) (Simmonds and MacLennan, 2005).

3.4 Calibration

A calibration of the transducer must be conducted at least once during the survey with the same ping rate and parameter settings as described in Section 3.2. If possible, the transducer should be calibrated both at the beginning and at the end of the survey. Annually, prior to each calibration, respective experts (divers) must inspect the hullmounted transducers and photographical documentation of the state of transducers must be presented. The surface of transducers should be cleaned from bio-fouling (barnacle, algae, etc.) and covered with protective paint.

Foote et al. (1987) and Simrad (2012) describe calibration procedures. It is recommended to use the 60 mm copper (Cu) sphere for the 38 kHz echosounder. The theoretical target strength (TS) of the sphere should be determined according to Foote et al. (1987) or to use a standard sphere target strength calculator, such as (http://swfscdata.nmfs.noaa.gov/AST/SphereTS/).

If calibration is performed in the site with different hydrological conditions as prevailing in the survey area, the transducer gain needs to be recalculated and edited in EK60 Simrad transducer settings as described in Bodholt (2002):

$$
G=G_{-} 0+10^{*} \log 10\left(c_{-} 0^{\wedge} 2 / c^{\wedge} 2\right) \text { (Bodholt 2002). }
$$

The data deviation from beam model RMS parameter value should be less than 0.3 dB however, the values between $0.3-0.4 \mathrm{~dB}$ could also be considered as a valid calibration.

An example of coverage of the beam area during calibration process is presented in Figure 3.1.

3.5 Intercalibration

When more than one ship is engaged in the same area in the same time the performance of the equipment should be compared by means of an inter-calibration. Preferably, the vessels should start and finish the inter-calibration with trawl hauls. A survey track should be chosen in the areas with high-density scattering layers. The settings of the acoustic equipment should be kept constant during the whole survey.

During the inter-calibration, one leading vessel should proceed 0.5 nautical miles ahead of another. The lateral distance between the survey tracks should be 0.3 NM . The inter-calibration should be done with two 20 NM transects covering approximately the same area. The first 20 NM transect with one vessel leading, then turn around, and have the other vessel lead (Ona et al., 2007; De Robertis et al. 2008; De Robertis and Wilson, 2011; De Robertis and Handegard, 2013).

3.6 $\quad S_{A}$ at trawl stations

The new approach for combining the results of the fish trawling stations during the acoustic surveys was presented during the WGBIFS meeting in 2012. This new method uses relationships between the S_{A} values of the target species and the S_{A} value of the total water column during the trawling stations. Thus, it is recommended that S_{A} values from the total water column during trawling stations be collected as a standard procedure. Accordingly, fish trawling stations are defined as a period between settings
and shut retrieving the gear. Hence, $S_{A}(\mathrm{k})$ is noted as total S_{A} values during the trawling station k and $S_{A}(\mathrm{i}, \mathrm{k})$ is noted as S_{A} value of the target species i during the trawling station k.

4.1 Gear

Trawl hauls should be performed with small-meshed pelagic gears. The stretched mesh size in the codend of the pelagic trawl used in the ICES Subdivisions 22-24 and $25-32$ should be 20 mm and 12 mm , respectively.

The collection of the trawl gears used in surveys is given in Table 4.1. An example of the technical scheme of pelagic trawl type WP 53/64x4, used by the Polish RV "Baltica" in the BIAS surveys, is presented in Figure 4.1. The proposal of standardization the pelagic trawls for fishing during BIAS and BASS surveys (ToR j) was discussed during the WGBIFS annual meetings in 2015 and 2016. However, due to a lack of real independent scientific advice, which one gear can be applied as a standard, the problem was not solved yet and will be prolonged on the next meetings.

Ona (1999) has described information about the entering of fish into the trawls, and Walsh and Godø (2003) have considered the quantitative analysis of fish reaction to towed fishing gears.

4.2 Method

The collection of biological samples is performed to determine the species composition at fishing-station. The length, age and weight of target fish species should be determined.

It is recommended to sample a minimum of two hauls per the ICES statistical rectangle. The country responsible for acoustic-trawl monitoring in given ICES rectangle (Figure 2.2.) is oblige to coordinate accomplishment of a minimum two catch-stations during the BIAS and BASS surveys by own or chartered research vessel. During the same type of survey is allowed realization by a foreign vessel of additional catch-station in given ICES rectangle (in most cases in the border rectangles).

Standard fishing speed is 3.0-3.5 knots.
The duration of standard trawl hauls is 30 minutes.
Relative numerical share of all fish species should be recorded to aid acoustic species identification. In situations with fish vertically distributed over the whole water column, specifically in shallow waters, the whole depth range should be sampled by the trawl haul. In the case of two or more layers in one area (Figure 4.2), it is recommended to sample all layers by same haul. That should be done by trawling in the one layer first and then shifting the gear into another layer. Trawling time in each layer should be equal excluding the time for the shift of gear from one layer to another. If shoals and scattering layers are present (Figure 4.3.), both should be sampled by same trawl haul as described above.

4.3 Samples

4.3.1 Species composition

The species composition of the total catch should be established and the corresponding total weight of every species in each fishing-station should be registered (Table 4.3.1).

In case of homogenous large catches of clupeids, a subsample of at least $50-60 \mathrm{~kg}$ should be taken and sorted out for the identification of the species composition. In the practice, 3 boxes with such fish should be collected from beginning, middle-part and
end-part of catch in trawl. The weight of the subsample and the total weight per species in the subsample should be recorded.

In case of heterogeneous large catches consisting of a mixture of clupeids and few larger species, the total catch should be partitioned into the part of larger species and that of the mixture of clupeids. From the mixture of clupeids, a subsample of at least 50 kg should be taken. The total weight per species for the part of the larger species and the total weight of the subsample of mixed clupeids should be registered.

In the case, when sampled catch is difficult to identify to species level, and then may be grouped to genus or family taxonomic units.

4.3.2 Length distribution

Length distributions are recorded for all fish species caught. Length is defined as the total length, measured from tip of snout to tip of caudal fin. Both herring and sprat should be measured from each catch-station and sorted out into $0.5-\mathrm{cm}$ classes (midpoints $\times 0.25$ and $\times 0.75 \mathrm{~cm}$), and into $1-\mathrm{cm}$ classes for all other species (midpoints $\times 0.5$ cm). Additional information on the fish length-measuring scheme is described in Figure 4.4.

In case of large catches of clupeids with a condensed length distribution, a subsample should be taken containing at least 200 specimens per species to get a reasonable length distribution. For other species, at least 50 specimens should be measured, if possible.

4.3.3 Weight distribution

Herring and sprat should be sorted out into $0.5-\mathrm{cm}$ length classes and all fish that are length measured are weighed, accordingly to each single length class as stratum. Two alternative procedures can be applied in the case of sprat and herring weight determination:

1. if the weather condition at sea is good and the marine scales are very stable, then each individual fish taken for ichthyological analysis is weighed and in the final phase of sampling or after that, the mean weight of each length-class is calculated,
2. sprat and herring taken for the length measurements is weighed by $0.5-\mathrm{cm}$ length-classes and the mean weight is calculated as a quotient of sum of weight and sum of number of individuals in given length-class.

If the weather conditions at sea are rough and the marine scales are not stable, the samples are collected for length and weight determination in the next days of survey or in the coastal laboratory.

The procedure 1) is recommended to apply during the survey at least for herring. In the case of cod (which is considered as a bycatch during the BIAS and BASS) all individuals should be collected for the length measurements and weight determination.

Depending on the availability of work force, two alternative methods described below can be applied.

Maximum effort method (preferred). The mean weight of every length class for herring and sprat is to be measured for each catch-station.

Minimum effort method. The mean weight per length class for herring and sprat is to be measured for each ICES subdivisions. It is recommended to cover the whole subdivision homogeneously.

4.3.4 Age distribution

If otoliths samples are to be taken of herring, sprat and cod (the target species), the number of otoliths per length-class is not fixed. The following minimum sampling levels should be maintained for the ICES subdivision and per $0.5-\mathrm{cm}$ length class:

- 5 otoliths per length class, if fish length is $<10 \mathrm{~cm}$
- 10 otoliths per length class, if fish length is $\geq 10 \mathrm{~cm}$.

For the smallest size groups, that presumably contain only one age group, the number of otoliths per length-class may be reduced.

Taking into account, the available work force two methods are possible:
Maximum effort method (preferred). The otoliths samples are collected for herring, sprat and cod per each trawl haul and all length-classes.

Minimum effort method. The otoliths samples are collected for herring, sprat and cod per each the ICES subdivision and all length-classes. It is recommended to cover the whole subdivision homogeneously.

4.4 Environmental data

Temperature, salinity and oxygen content should be measured with a CTD probe before or after each catch-station, and recorded at least in 1-m intervals.

5 Data analysis

5.1 Species composition

Trawl catches within each ICES rectangle are combined to give an average species composition of the catch. Each trawl catch is given equal weight, unless it is decided that a trawl catch is not representative for the fish concentrations sampled. In this case, the particular trawl-catch data are not used. The above-mentioned case is occurred when:

- the single catch-station is realized by a foreign vessel on the boundary of ICES rectangles as additional one to two obligatory hauls realized by country responsible for acoustic-trawl monitoring in given rectangle;
- even if the catch-station was realized by designated country however, in the real wrongful weather conditions the catch can be considered as not representative for fish distribution;
- catch was realized wrongly from technical or methodological points of view, e.g. a trawl was performed in an area of high S_{A} and few fish were present in catch;
- the trawl codend was destroyed during fishing operation (invalid station);
- trawling, by mistake, was made in one water layer only however fish shoals were diverse between two vertical zones (upper and lower).

The species frequency f_{i} of species i can be estimated by the formula below:

$$
\begin{equation*}
f_{i}=\frac{1}{M} \sum_{k=1}^{M} \frac{n_{i k}}{N_{k}} \tag{5.1}
\end{equation*}
$$

where: $n_{i k}$ - the fish number of species i in haul k, N_{k} - the total fish number in this haul and M is the number of hauls in the ICES rectangle.

It is allowed to exclude a species from further total species frequency calculation if the overall mean contribution to all sampled hauls is lower than one per cent.

Data on the share of cod and clupeids in samples as well as their abundance per the ICES rectangle should be reported to at least two decimals rounding format and sent to the acoustic surveys data coordinators (for names see the Section 2.1), for a final calculation of fish stocks resources.

5.2 Length distribution

It is assumed that catches are poorly related to abundance (by ICES rectangle) hence each trawl catch is given an equal weight. The fish length frequency $f_{i j}$ in the length class j is calculated as the mean of all M_{i} trawl catches containing species i; see the formula below:

Annex 1: $\quad f_{i j}=\frac{1}{M_{i}} \sum_{k=1}^{M_{i}} \frac{n_{i j k}}{N_{i k}}$
where: $n_{i j k}$ - the number of fish within the length class $j_{\text {, }}$ and $N_{i k}$ - the total number of species i in the haul k.

5.3 Age distribution

Minimum effort method: all sampled otoliths within each the ICES subdivision is assumed representative for the species age distribution within this area. The age-lengthkey in this ICES subdivision can be expressed as frequencies $f_{a j}$ or as relative quantities (fractions) $q_{a j}$ associated with age a in length class j. The combination of the age length
key $q_{a j}$ for the whole subdivision with the length distribution f_{j} from a specific ICESrectangle result in the age distribution f_{a} for this ICES-rectangle, i.e.:
Annex 2: $\quad f_{a}=\sum_{j} q_{a j} \cdot f_{j}$
Maximum effort method: the age distribution for each ICES rectangle is estimated as simple mean of all samples, i.e.:

Annex 3: $\quad f_{a}=\frac{1}{M} \sum_{k} f_{a k}$
The example of fish (Baltic sprat) ALK calculation (age structure) in ICES rectangle or subdivision is presented in Table 5.3.

5.4 Weight distribution

Minimum effort method: for the calculation of the weight distribution per age group W_{a} we use also the normalized age-length-key $q_{a j}$ (see Section 5.3) and the mean weight per length-class W_{j} :
$W_{a}=\sum_{j} q_{a j} \cdot f_{j} \cdot W_{j}$
Maximum effort method: the weight distribution for each rectangle is estimated as simple mean of all samples:

$$
\begin{equation*}
w_{a}=\frac{1}{M} \sum_{k} w_{a k} \tag{5.4.2}
\end{equation*}
$$

5.5 Lack of sample hauls

In the case of lack of sample hauls (no data on fish species composition and length structure) within an individual ICES rectangle (because of small bottom depth, bad weather conditions, or other limitations) a mean of all available neighbouring ICES rectangles should be taken.

5.6 Allocation of rec ords

During the survey, herring and sprat normally is difficult to distinguish from other species by visual inspection of the echogram. Such problem is typical, when fish are dispersed in a water column moreover; very frequently sprat, young herring and smelt are well mixed, inhabiting the same niche of inshore waters. Both herring and sprat tend to be distributed in scattering layers or in pelagic layers of small schools, and it is not possible to ascribe values to typical herring schools.
Species allocation is then based entirely upon trawl catch composition. The estimates of total fish density are then allocated to species and age groups according to the trawl catch composition in the corresponding ICES rectangle.

5.7 Target strength of an individual fish

The mean cross section σ of an individual fish of species i should be derived from a function, which describes the length-dependence of the target-strength:

$$
\begin{equation*}
T S=a_{i}+b_{i} \cdot \log L \tag{5.7.1}
\end{equation*}
$$

a_{i} and b_{i} are constants for the species i^{\prime} and L is the length of the individual fish in cm .
The equivalent formula for the cross section is:

$$
\begin{equation*}
\sigma_{i j}=4 \pi \cdot 10^{a_{i} / 10} \cdot L_{j}^{b_{i} / 10} \tag{5.7.2}
\end{equation*}
$$

Normally we assume a quadratic relationship that means b_{i} is 20 (Simmonds and MacLennan, 2005). We get the formula:

$$
\begin{equation*}
\sigma_{i j}=d_{i} \cdot L_{j}{ }^{2} \tag{5.7.3}
\end{equation*}
$$

The parameters a, b and d are listed in Table 5.7 for different species.
Until new TS parameters are agreed upon, the following is suggested:

- gadoids should be treated as cod;
- salmonids and three-spined stickleback should be treated as herring;
- other fish species should be treated as cod.

Recently calculated values of TS parameters for Scomber scombrus (Table 5.7) are recommended to use for preparation of the standard dataset from the BIAS and BASS surveys. However, the Atlantic mackerel appearance in the Baltic Sea is noticed only sporadically, mostly in the south-western part of the sea, and due to specific hydrological conditions.

Note: information about the split-beam technique applied for in-situ TS measurements is described in Bodholt and Solli (1992).

5.8 Estimation of the mean cross section in the IC ES rectangle

The basis for the estimation of total fish density F from the measured nautical area scattering coefficient s_{A} (or NASC) is the conversion factor c (MacLennan et al. 2002).

$$
\begin{equation*}
F=s_{A} \cdot c=\frac{s_{A}}{\langle\sigma\rangle} \tag{5.8.1}
\end{equation*}
$$

The mean cross section $\langle\sigma\rangle$ in the ICES rectangle is dependent from the species composition and the length distributions of all species. From formula 5.7 .3 we get the corresponding cross section $\left\langle\sigma_{i}\right\rangle$

$$
\begin{equation*}
<\sigma_{i}>=\sum_{j} f_{i j} \cdot d_{i} \cdot L_{j}^{2} \tag{5.8.2}
\end{equation*}
$$

where: L_{j} is the midpoint of the j-th length class and $f_{i j}$ the respective frequency.
It follows that the mean cross section in the ICES rectangle can be estimated as the weighted mean of all species related cross sections $\left\langle\sigma_{i}\right\rangle$:

Annex 4: $\quad<\sigma>=\sum f_{i} \sigma_{i}=\sum_{i} f_{i} \sum_{j} f_{i j} d_{i} L_{j}^{2}$

5.9 Abundance estimation

The total number of fish in the ICES rectangle is estimated as:

$$
\begin{equation*}
N=F \cdot A=\frac{S_{A}}{\langle\sigma\rangle} \cdot A \tag{5.9.1}
\end{equation*}
$$

This total abundance is split into species classes N_{i} by

$$
\begin{equation*}
N_{i}=N \cdot f_{i} \tag{5.9.2}
\end{equation*}
$$

especially in abundance of herring N_{h}, sprat N_{s} and $\operatorname{cod} N_{c .}$

The abundance of the species i is divided into age classes, $N_{a, j}$ according to the age distribution $f_{i, a}$ in each the ICES rectangle:

$$
\begin{equation*}
N_{i a}=N_{i} \cdot f_{i a} \tag{5.9.3}
\end{equation*}
$$

Biomass estimation

The biomass $Q_{i a}$ for the species i and the age group a is calculated from the abundance $N_{i a}$ and the mean weight per age group:

$$
\begin{equation*}
Q_{a i}=N_{a i} \cdot W_{a} \tag{5.10.1}
\end{equation*}
$$

Note: more information about definitions and symbols used in this manual is presented e.g. in MacLennan et al. (2002), and information on sources of error in acoustic estimation of fish abundance - in Aglen (1994).

The example of calculations method and formulas used for fish stocks (herring and sprat) abundance and biomass assessment are presented in Annex 2.

6.1 Exchange of survey results

Main results of the recently conducted acoustic survey (BASS and BIAS) should be summarized and uploaded one month before the WGBIFS meeting of the next year to the data folder of the current WGBIFS SharePoint. Data should be uploaded in the exchange format using the Excel spreadsheet. Names of files should contain the abbreviation of the survey (e.g. BIAS), three letters code of the countries responsible (e.g. Pol - for Poland, Swe - for Sweden, etc.), when files are named as e.g. BIAS_Pol_data2008.xls. An example of the file is available on the SharePoint folder "DATA" (acoustic survey data exchange file.xls). The following documents should be uploaded to the SharePoint:

- a map showing the echo integration tracks and the location of fish catchstations;
- an Excel file with spread sheets accordingly like in the Table 6.1.

The new standard exchange format, which is described in the Table 6.1, is recommended for the next survey documents preparation. The exchange Excel-sheets consists of the following 10 tables:

- SU: Description of the different surveys;
- ST: Basic values for the computation of the abundance;
- N_HerW: Number of herring (million) WBSSH per age group;
- N_HerC: Number of herring (million) CBH per age group;
- N_Spr: Number of sprat (millions) per age group;
- N_Cod: Number of cod (millions) per age group;
- W_HerW: Mean weight of herring (gramme) WBSSH per age group;
- W_HerC: Mean weight of herring (gramme) CBH per age group;
- W_Spr: Mean weight of sprat (gramme) per age group;
- W_cod: Mean weights of cod per age group.

The herring stock under investigation was divided in to Western Baltic Spring Spawning Herring (WBSSH) and Central Baltic Herring (CBH) stocks and there are exchange sheets for both stocks. The percentage of cod in the exchange sheet "ST" should be at least submitted. The exchange sheets "N_Cod" and "W_cod" are optional but recommended if the age distribution of cod is available.

6.2 Databases

The data of the Baltic Acoustic Spring Survey (BASS) are stored in the BASS_DB.mdb. The data of the Baltic International Acoustic Survey (BIAS) are stored in the BIAS_DB.mdb. These Microsoft Access-files also include queries with the used algorithms for creation of the report tables and the calculation of the different tuning fleets. The current versions of the database files are located in the folder "Data" of the WGBIFS Share Point. The inner structure of the tables is summarized in the Table 6.2.

It should be underlined, that beginning from 2016, acoustic-trawl surveys results from the next both types of cruises needs to be also uploaded to the newly created ICES acoustic database (linked with the StoX programme), and managed by the ICES Data Centre. The transition period will be lasted five years, needs for collecting representative time-series data from both types of database, which will be used for comparative analysis.

7
 References

Aglen, A. 1994. Sources of Error in Acoustic Estimation of Fish Abundance. Chapter 7; pp. 107133, [in:] Fernö A, Olsen S, editors. Marine Fish Behaviour in Capture and Abundance Estimation.

Anon. 1974. Manual of Fisheries Science. Part 2 - Methods of Resource Investigation and Their Application. FAO Fisheries Technical Paper No. 115, rev. 1, FAO, Rome.
Bodholt, H. 1991. Basic theory of underwater acoustics. Ed. by SIMRAD Company: 30 pp . (mimeo).

Bodholt, H., H. Solli 1992. Application of the Split-Beam Technique for in-situ Target Strength Measurements. World Fisheries Congress, Athens May 1992: 22 pp. (mimeo).

Bodholt, H. 1996. Echo sounder transducers. Ed. by SIMRAD Company: 14 pp . (mimeo).
Bodholt, H. 2002. The effect of water temperature and salinity on echo sounder measurements. ICES Symposium on Acoustics in Fisheries, Montpellier June 2002, paper No. 123.

De Robertis, A., Hjellvik, V., Williamson, N. J. \& Wilson, C. D. 2008. Silent ships do not always encounter more fish: comparison of acoustic backscatter recorded by a noise-reduced and conventional research vessel. ICES J. Mar. Sci. 65: 623-635.

De Robertis, A. \& Wilson, C. D. 2011. Silent ships do not always encounter more fish (revisited): comparison of acoustic backscatter from walleye pollock recorded by a noise-reduced and conventional research ship in the eastern Bering Sea. ICES J. Mar. Sci. 68: 2229-2239.

De Robertis, A. \& Handegard, N. O. 2013. Fish avoidance of research vessels and the efficacy of noise-reduced vessels: a review. ICES Journal of Marine Science, 70: 34-45.

Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D. N. and Simmonds, E. J. 1987. Calibration of acoustic instruments for fish density estimation: A practical guide. ICES Cooperative Research Report, 44: 69 pp.

Gasyukov, P., S. Kasatkina and W. Grygiel 2009. Estimating statistical characteristics of sprat and herring abundance indices by years and age groups using simulation method with the Polish surveys in 2004-2006 as the example. Working paper on the WGBIFS meeting in Lysekil (Sweden); 30.03. - 03.04.2009: 9 pp. [in:] ICES CM 2009/LRC:05.

Grygiel, W. and A. Orłowski 2009. The clupeids stocks size and distribution in the southern and eastern Baltic (autumn 2005-2007), determined by the acoustic method. Poster at the scientific session: "Fisheries and environmental impacts on stock structure, reproductive potential and recruitment dynamics" of the ICES/PICES/UNCOVER Symposium (3-6 November 2009, Warnemünde/Rostock); http://www.uncover.eu/index.php?id=195; http://www.un-cover.eu/fileadmin/exchange/symposium_2009/UNCOVER_Book_of_Abstra-cts.pdf

Håkansson, N., Kollberg, S., Falk, U., Götze, E. \& Rechlin, O. 1979. A hydroacoustic and trawl survey of herring and sprat stocks of the Baltic proper in October 1978. Fischerei-Forschung, Wissenschaftliche Schriftenreihe 17(2): 7-23.

Hagström, O., Palmen, L.-E., Hakansson, N., Kästner, D., Rothbart, H. Götze, E., Grygiel, W. \& Wyszynski, M. 1991. Acoustic estimates of the herring and sprat stocks in the Baltic proper, October 1990. ICES CM 1991/J:34.

ICES. 1994a. Report of the Planning Group for Hydroacoustic Surveys in the Baltic. ICES CM 1994/J:4, 18pp.

ICES. 1994b. Report of the Planning Group for Herring Surveys. ICES CM 1994/H:3, 26 pp.
ICES. 1995a. Report of the Study Group on Data Preparation for the Assessment of Demersal and Pelagic Stocks in the Baltic. ICES CM 1995/Assess:17, 104 pp.

ICES. 1995b. Report of the Study Group on Assessment-related Research-Activities relevant to the Baltic Fish Resources. ICES CM 1995/J:1, 59 pp.

ICES. 2006. Report of the Study Group on Target Strength Estimation in the Baltic Sea (SGTSEB). ICES Fisheries Technology Committee. ICES CM 2006/FTC:08 REF. BCC,WGFAST. 9pp.

MacLennan, D. N., Fernandes, P. G. \& Dalen, J. 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59: 365-369.

Mitson, R. B., ed. 1995. Underwater Noise of Research Vessels: Review and Recommendations. ICES Cooperative Research Report, 209: 61 pp.

Mitson, R. B., H. P. Knudsen 2003. Causes and effects of underwater noise on fish abundance estimation. Aquatic Living Resources 16: 255-263.

Ona, E. 1999. Determining the entrance position of fish in trawls. ICES CM 1999/J:13, 10 pp.
Ona, E., Godo, O. R., Handegard, N. O. Hjellvik, V. Patel, R. \& Pedersen, G. 2007. Silent research vessels are not quiet. J. Acoust. Soc. Am., JASA Express Letters, 121(4): 145-150.

Orłowski, A. 2000. Diel dynamics of acoustic measurements of Baltic fish. ICES J. Mar. Sci. 57: 1196-1203.

Orłowski, A. 2001. Behavioural and physical effect on acoustic measurements of Baltic fish within a diel cycle. ICES J. Mar. Sci. 58: 1174-1183.

Orłowski, A. 2005. Experimental verification of the acoustic characteristics of the clupeids daily cycle in the Baltic. ICES J. Mar. Sci. 62: 1180e1190.

Simmonds, E. J. \& MacLennan, D. N. 2005. Fisheries Acoustics, Theory and Practice, 2nd Ed., 437 pp.
Simrad 2012. Simrad EK-60, Reference Manual, Release 2.4.X. Kongsberg Maritime AS.
Walsh, S., O. R. Godø 2003. Quantitative analysis of fish reaction to towed fishing gears. What responses are important? Letter to the Editor, Fisheries Research 63 (2003): 289-292, www.elsevier.com/locate/fishres.

Figures

Figure 2.1. ICES subdivisions border and the ICES rectangles codes in the Baltic Sea. On the x-axis (e.g. G4, G5) are rectangle coordinates in longitude dimension at 1° intervals and on the right y-axis (e.g. 38,39) are rectangle coordinates in latitude dimension at 0.5° intervals. Thus, rectangles are named e.g. 38G4, 39G5; remark - borders of the ICES Subdivision 21 are not fixed so far.

Figure 2.2. General assignment scheme of the ICES statistical rectangles (within standard acoustic surveys) to the countries in the Baltic Sea.

Figure 2.3.A. The example of scheme of acoustic transects distribution planned during the BIAS survey (the Polish RV "Baltica", Sep.-Oct. 2013); note: location of shallow waters, national EEZ borders, large technical constructions at sea and the navy military trainings areas modified the shape of acoustic transects.

Figure 2.3.B. The map of acoustic transects distribution (thin dashed lines) during the German RV "Solea" BIAS/2016 survey, with indicated catch-stations (red bullets); after Schaber and Gröhsler, 2017, [in:] ICES WGBIFS 2017 Report - Annex 7.

Figure 3.1. An example (a screenshot) of coverage of the beam area during calibration process of the Simrad EK-60 with 38 kHz transducer, performed on 13.09.2016 by the RV "Baltica".

The technical scheme of pelagic trawl type WP $53 / 64 \times 4$ used by the Polish r/V "Baltica" for

Figure 4.1. An example of the technical scheme of pelagic trawl type WP 53/64x4 used by the Polish r/v "Baltica" in the BIAS surveys.

Figure 4.2. Multiple scattering fish layers.

Figure 4.3. Shoals and scattering fish layers.

Figure 4.4. The fish length measuring scheme; symbols used: * during measuring upper and lower lobes of caudal fin are getting together (Anon. 1974), ${ }^{* *}$ - during measuring caudal fin is in the natural position.

9 Tables

Table 2.1. The boundaries of the ICES subdivisions of the Baltic Sea and the Belts (IBSFC Fishery Rules); note: the country, which is responsible for the BIAS survey realization in given subarea, is mentioned in parentheses; see also Figure 2.2..

Remark: Denmark and Germany are performing the acoustic surveys also in the ICES Subdivision 21, which borders are not clarified so far.

Subdivision 22	(GERMANY AND DENMARK - JOINTLY)
Northern boundary:	a line from Hasenore head to Gniben Point
Eastern boundary:	a line at longitude 12° East due South from Zealand to Falster, then along the East coast of the Island of Falster to Gedser Odde (54 34^{\prime} N, $11^{\circ} 58^{\prime}$ E), then due South to the coast of the Federal Republic of Germany.
Subdivision 23	(GERMANY AND DENMARK - JOINTLY)
Northern boundary:	a line from Gilbjerg Head to the Kullen.
Southern boundary:	a line from Falsterbo Light on the Swedish coast to Stevns Light on the Danish coast.
Subdivision 24	(GERMANY AND DENMARK - JOINTLY)
The western boundaries coincide with the eastern boundary of the ICES Subdivision 22 and the southern boundary of the ICES Subdivision 23 . The eastern boundary runs along the line from Sandhammeren Light to Hammerode Light and south of the Bornholm further along $15^{\circ} \mathrm{E}$.	
Subdivision 25	(POLAND AND SWEDEN - PARTLY)
Northern boundary:	the latitude $56^{\circ} 30^{\prime} \mathrm{N}$.
Eastern boundary:	the longitude $18^{\circ} \mathrm{E}$.
Western boundary:	coincides with the eastern boundary of the ICES Subdivision 24
Subdivision 26	(POLAND, RUSSIA, LITHUANIA,LATVIA AND SWEDEN - PARTLY)
Northern boundary:	the latitude $56^{\circ} 30^{\prime} \mathrm{N}$.
Eastern boundary:	the longitude $18^{\circ} \mathrm{E}$.
Subdivision 27	(SWEDEN)
Eastern boundary:	the longitude $19^{\circ} \mathrm{E}$ from $59^{\circ} 41^{\prime} \mathrm{N}$ to the Isle of Gotland and from the Isle of Gotland along $57^{\circ} \mathrm{N}$ to $18^{\circ} \mathrm{E}$ and further to the south along the longitude $18^{\circ} \mathrm{E}$.
Western boundary:	the latitude $56^{\circ} 30^{\prime} \mathrm{N}$.
Subdivision 28	(LATVIA, ESTONIA AND SWEDEN - PARTLY)
Northern boundary:	the latitude $58^{\circ} 30^{\prime} \mathrm{N}$.
	the latitude $56^{\circ} 30^{\prime} \mathrm{N}$.
Western boundary:	north of Gotland, the latitude $19^{\circ} \mathrm{E}$ and south of Gotland along $57^{\circ} \mathrm{N}$ to the longitude $18^{\circ} \mathrm{E}$, and further south along the longitude $18^{\circ} \mathrm{E}$.

Subdivision 29	(FINLAND, SWEDEN AND ESTONIA - PARTLY)
Northern boundary:	the latitude $60^{\circ} 30^{\prime} \mathrm{N}$.
Eastern boundary:	the longitude $23^{\circ} \mathrm{E}$ to $59^{\circ} \mathrm{N}$ and further along $59^{\circ} \mathrm{N}$ to the southeastern boundary: the latitude $58^{\circ} 30^{\prime} \mathrm{N}$.
Western boundary:	from $59^{\circ} 41^{\prime} \mathrm{N}$, along the longitude $19^{\circ} \mathrm{E}$ to the south.
Subdivision 30	(FINLAND AND SWEDEN - PARTLY)
Northern boundary:	the latitude $63^{\circ} 30^{\prime} \mathrm{N}$.
Southern boundary:	the latitude $60^{\circ} 30^{\prime} \mathrm{N}$.
Subdivision 31	(FINLAND AND SWEDEN - PARTLY)
Southern boundary:	the latitude $63^{\circ} 30^{\prime} \mathrm{N}$.
Subdivision $\mathbf{3 2}$	(ESTONIA, FINLAND AND RUSSIA - PARTLY)
Western boundary:	coincides with the eastern boundary of the ICES Subdivision 29

Table 2.2. Area [NM^{2}] of the ICES rectangles and subdivisions with water depth of more or equal than 10 m .

```
SD
* 41G0 41G1 41G2 42G1 
|108.1 946.8
```

22	37GO	37G1	38F9	38GO	38G1	39F9	39G0	39G1	40F9	40G0	40G1	41 GO	41G1
	209.9	723.3	51.9	735.3	173.2	159.3	201.7	250.0	51.3	538.1	174.5	173.1	18.0

23	39 G 2	40G2	41G2
	130.9	1640	723

| 192.4 | 167.7 | 875.1 | 832.9 | 865.7 | 1034.8 | 406.1 | 765.0 | 524.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 642.2 | 130.7 | 1035.7 | 940.2 | 471.7 | 287.3 | 979.0 | 1026.0 | 1026.0 | 677.2 | 1012.9 | 1013.0 | 1013.0 | 59.4 | 190.2 | 764.4 | 1000.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

266.0	986.9	269.8	913.8	106.1	200.9	960.5	456.6	72.9	908.7	947.2	38.9	452.6	884.8	264.3	53.8

31	56 G 9	56 HO	56 H 1	56 H 2	56 H 3	57 H 1	57 H 2	57 H 3	57 H 4	58 H 1	58 H 2	58 H 3	58 H 4	59 H 1	59 H 2	59 H 3	59 H 4	60 H 2	60 H 3	60 H 3


```
32) 47H3 47H44 47H7
```


Table 4.1. Specification of trawl gears that were used in BIAS surveys. Trawl type P is pelagic and B is bottom. Length of head line (Headl), groundrope (Groundr), and sweeps. The densifications of mesh sizes from trawl opening to codend, trawl height and spread during the haul.

Note: The trawls type P20/25 and TV-3 930\# were used by the Polish RV "Baltica" during acoustic surveys very occasionally (in limited time and areas), for experimental catches only.

Table 4.3. Species list.

NODC	Scientific name	English name
3734030201	AURELIA AURITA	COMMON JELLYFISH
5704020401	SEPIETTA OWENIANA	
5706010401	ALLOTEUTHIS SUBULATA	
6188030110	CANCER PAGURUS	EDIBLE CRAB
8603010000	PETROMYZINIDAE	LAMPREYS
8603010217	LAMPETRA FLUVIATILIS	RIVER LAMPREY
8603010301	PETROMYZON MARINUS	SEA LAMPREY
8606010201	MYXINE GLUTINOSA	HAGFISH
8710010201	SQUALUS ACANTHIAS	SPURDOG / SPINY DOGFISH
8713040134	RAJA RADIATA	STARRY RAY
8741010102	ANGUILLA ANGUILLA	EEL
8747010000	CLUPEIDAE	HERRINGS
8747010109	ALOSA FALLAX	TWAITE SHAD
8747010201	CLUPEA HARENGUS	HERRING
8747011701	SPRATTUS SPRATTUS	SPRAT
8747012201	SARDINA PILCHARDUS	PILCHARD, SARDINE
8747020104	ENGRAULIS ENCRASICOLUS	ANCHOVY
8755010115	COREGONUS OXYRINCHUS / C. LAVARETUS	WHITEFISH / HOUTING / POWAN
8755010305	SALMO SALAR	SALMON
8755010306	SALMO TRUTTA	TROUT
8755030301	OSMERUS EPELANUS	SMELT
8756010237	ARGENTINA SPYRAENA	LESSER SILVERSMELT
8759010501	MAUROLICUS MUELLERI	PEARLSIDE
8776014401	RUTILUS RUTILUS	ROACH
8791030402	GADUS MORRHUA	COD
8791030901	POLLACHIUS VIRENS	SAITHE
8791031301	MELANOGRAMMUS AEGLEFINUS	HADDOCK
8791031501	RHINONEMUS CIMBRIUS	FOUR BEARDED ROCKLING
8791031701	TRISOPTERUS MINUTUS	POOR COD
8791031703	TRISOPTERUS ESMARKI	NORWAY POUT
8791031801	MERLANGIUS MERLANGIUS	WHITING
8791032201	MICROMESTISTIUS POTASSOU	BLUE WHITING
8791040105	MERLUCCIUS MERLUCCIUS	HAKE
8793010000	ZOARCIDAE	EEL-POUTS
8793010724	LYCODES VAHLII	VAHL'S EELPOUT
8793012001	ZOARCES VIVIPARUS	EELPOUT
8803020502	BELONE BELONE	GARFISH
8818010101	GASTEROSTEUS ACULEATUS	THREE-SPINED STICKLEBACK
8818010201	SPINACHIA SPINACHIA	SEA STICKLEBACK
8820020000	SYNGNATHIDAE	PIPE FISH
8820020119	SYNGNATUS ROSTELLATUS	NILSSON'S PIPEFISH
8820020120	SYNGNATUS ACUS	GREAT PIPEFISH
8820020123	SYNGNATUS TYPHLE	DEEP-SNOUTED PIPEFISH
8820022101	ENTELURUS AEQUOREUS	SNAKE PIPEFISH

NODC	Scientific name	English name
8826020601	EUTRIGLA GURNARDUS	GREY GURNARD
8831020825	COTTUS GOBIO	BULLHEAD
8831022205	MYOXOCEPHALUS QUADRICORNIS	FOUR SPINED SCULPIN
8831022207	MYOXOCEPHALUS SCORPIUS	BULL ROUT
8831024601	TAURULUS BUBALIS	SEA SCORPION
8831080803	AGONUS CATAPHRACTUS	POGGE
8831090828	LIPARIS LIPARIS	SEA SNAIL
8831091501	CYCLOPTERUS LUMPUS	LUMPFISH
8835020101	DICETRARCHUS LABRAX	BASS
8835200202	PERCA FLUVIATILIS	PERCH
8835200403	STIZOSTEDION LUCIOPERCA	ZANDER (PIKEPERCH)
8835280103	TRACHURUS TRACHURUS	HORSE MACKEREL
8835450202	MULLUS SURMULETUS	RED MULLET
8839013501	CTENOLABRUS RUPESTRIS	GOLD SINNY
8840060102	TRACHINUS DRACO	GREATER WEEVER
8842120905	LUMPENUS LAMPRETAEFORMIS	SNAKE BLENNY
8842130209	PHOLIS GUNELLUS	BUTTERFISH
8845010000	AMMODYTIDAE	SANDEELS
8845010105	AMMODYTES TOBIANUS (LANCEA)	SANDEEL
8845010301	HYPEROPLUS LANCEOLATUS	GREATER SANDEEL
8846010106	CALLIONYMUS LYRA	SPOTTED DRAGONET
8846010107	CALLIONYMUS MACULATUS	DRAGONET
8847010000	GOBIIDAE	GOBIES
8847015101	POMATOSCHISTUS MINUTUS	SAND GOBY
8847015103	POMATOSCHISTUS MICROPS	COMMON GOBY
8847016701	LESUEURIGOBIUS FRIESSII	FRIESES' GOBY
8850030302	SCOMBER SCOMBRUS	MACKEREL
8857030402	SCOPHTHALMUS MAXIMUS	TURBOT
8857030403	SCOPHTHALMUS RHOMBUS	BRILL
8857031702	ARNOGLOSSUS LATERNA	SCALDFISH
8857040603	HIPPOGLOSSOIDES PLATESSOIDES	LONG ROUGH DAB
8857040904	LIMANDA LIMANDA	DAB
8857041202	MICROSTOMUS KITT	LEMON SOLE
8857041402	PLATICHTHYS FLESUS	FLOUNDER
8857041502	PLEURONECTES PLATESSA	PLAICE
8858010601	SOLEA SOLEA	SOLE
8858010801	BUGLOSSIDIUM LUTEUM	SOLENETTE

Table 5.3. The example of ALK calculation for Baltic sprat.

Table 5.7. Target strength parameters for some species in the Baltic Sea.

Species	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{D}
Clupea harengus	-71.2	20	$9.533 \mathrm{E}-07$
Sprattus sprattus	-71.2	20	$9.533 \mathrm{E}-07$
Gadus morhua	-67.5	20	$2.235 \mathrm{E}-06$
Scomber scombrus	-84.9	20	$4.066 \mathrm{E}-08$

Table 6.1. Format and content of the Excel-exchange file.
Structure of table SU

| Field | Type | Length | Rounded to
 decimals |
| :--- | :--- | :--- | :--- | Description \quad| CCODE | C | 20 | |
| :--- | :--- | :--- | :--- |
| Survey code (e.g.
 BIAS_FinEst2013) | | | |
| SHIP | C | 20 | Name of the vessel |
| YEAR | C | 5 | Survey year |
| COUNTRY | C | 3 | Country delivering and holding
 the original data (e.g. Fin) |

Structure of table ST

Field	Type	Length	Rounded to decimals	Description
CCODE	C	20		Survey code
SD	C	4	ICES Subdivision	
RECT	C	5	ICES rectangle	
AREA	N	7	1	Area [NM ${ }^{2}$] see according the values in the manual
SA	N	7	1	Mean Sa [m²/NM ${ }^{2}$]
SIGMA	N	7	3	Mean s [cm ${ }^{2}$] see formula (5.8.3) formula numer of fish (millions) see
NTOT	N	8	2	Percentage of herring, Western Baltic Spring Spawner (WBSSH)
HHerW	N	7	2	

Field	Type	Length	Rounded to decimals	Description
HHerC	N	7	2	Percentage of herring, Central Baltic Stock (CBH)
HSpr	N	7	2	Percentage of sprat
Hcod	N	7	3	Percentage of cod

Structure of table N_HerW

Field	Type	Length	Rounded to decimals	Description
CCODE	C	20		Survey code
SD	C	4		ICES subdivision
RECT	C	5	ICES rectangle	
NH0	N	8	2	Number of herring WBSSH age group 0 (millions)
NHerW1	N	8	2	Number of herring WBSSH age group 1 (millions)
NHerW2	N	8	2	Number of herring WBSSH age group 2 (millions)
NHerW3	N	8	2	Number of herring WBSSH age group 3 (millions)
NHerW4	N	8	2	Number of herring WBSSH age group 4 (millions)
NHerW5	N	8	2	Number of herring WBSSH age group 5 (millions)
NHerW6	N	8	2	Number of herring WBSSH age group 6 (millions)
NHerW7	N	8	2	Number of herring WBSSH age group 7 (millions)
NHerW8	N	8	2	Number of herring WBSSH age group 8+ (millions)

Structure of table N_HerC

Field	Type	Length	Rounded to decimals	Description
CCODE	C	20		Survey code
SD	C	4		ICES Subdivision
RECT	C	5		ICES rectangle
NHerC0	N	8	2	Number of herring CBH age group 0 (millions)
NHerC1	N	8	2	Number of herring CBH age group 1 (millions)
NHerC2	N	8	2	Number of herring CBH age group 2 (millions)
NHerC3	N	8	2	Number of herring CBH age group 3 (millions)
NHerC4	N	8	2	Number of herring CBH age group 4 (millions)
NHerC5	N	8	2	Number of herring CBH age group 5 (millions)

Field	Type	Length	Rounded to decimals	Description
NHerC6	N	8	2	Number of herring CBH age group 6 (millions)
NHerC7	N	8	2	Number of herring CBH age group 7 (millions)
NHerC8	N	8	2	Number of herring CBH age group $8+$ (millions)

Structure of table N_Spr

Field	Type	Length	Rounded to decimals	Description
CCODE	C	20		Survey code
SD	C	4		ICES subdivision
RECT	C	5	ICES rectangle	
NSpr0	N	8	2	Number of sprat age group 0 (millions)
NSpr1	N	8	2	Number of sprat age group 1 (millions)
NSpr2	N	8	2	Number of sprat age group 2 (millions)
NSpr3	N	8	2	Number of sprat age group 3 (millions)
NSpr4	N	8	2	Number of sprat age group 4 (millions)
NSpr5	N	8	2	Number of sprat age group 5 (millions)
NSpr6	N	8	2	Number of sprat age group 6 (millions)
NSpr7	N	8	2	Number of sprat age group 7 (millions)
NSpr8	N	8	2	Number of sprat age group 8+ (millions)

Structure of table N_Cod

Field	Type	Length	Rounded to decimals	Description
CCODE	C	20		Survey code
SD	C	4		ICES subdivision
RECT	C	5	ICES rectangle	
NCod0	N	8	2	Number of cod age group 0 (mil- lions)
NCod1	N	8	2	Number of cod age group 1 (mil- lions)
NCod2	N	8	2	Number of cod age group 2 (mil- lions)
NCod3	N	8	2	Number of cod age group 3 (mil- lions)
NCod4	N	8	2	Number of cod age group 4 (mil- lions)

Field	Type	Length	Rounded to decimals	Description
NCod5	N	8	2	Number of cod age group 5 (mil- lions)
NCod6	N	8	2	Number of cod age group 6 (mil- lions)
NCod7	N	8	2	Number of cod age group 7 (mil- lions)
NCod8	N	8	2	Number of cod age group 8+ (millions)

Structure of table W_HerW

Field	Type	Length	Rounded to decimals	Description		
CCODE	C	20		Survey code		
SD	C	4	ICES subdivision			
RECT	C	5	2	ICES rectangle		
WHerW0	N	7	2	Mean weight of herring WBSSH age group 0 (gramme)		
WHerW1	N	7	Mean weight of herring age group 1 (gramme)			
WHerW2	N	7	2	Mean weight of herring WBSSH age group 2 (gramme)		
WHerW3	N	7	2	Mean weight of herring WBSSH age group 3 (gramme)		
WHerW4	N	7	2	Mean weight of herring WBSSH age group 4 (gramme)		
WHerW5	N	7	7	2		Mean weight of herring WBSSH age
:---						
group 5 (gramme)						

Structure of table W_HerC

Field	Type	Length	Rounded to decimals	Description
CCODE	C	20		Survey code
SD	C	4		ICES Subdivision
RECT	C	5	ICES rectangle	
WHerC0	N	7	2	Mean weight of herring CBH age group 0 (gramme) Mean weight of herring CBH age group 1 (gramme)
WHerC1	N	7	2	Mean weight of herring CBH age group 2 (gramme)
WHerC2	N	7	2	Mean weight of herring CBH age group 3 (gramme)
WHerC3	N	7	2	

Field	Type	Length	Rounded to decimals	Description	
WHerC4	N	7	2	Mean weight of herring CBH age group 4 (gramme)	
WHerC5	N	7	2	Mean weight of herring CBH age group 5 (gramme)	
WHerC6	N	7	2	Mean weight of herring CBH age group 6 (gramme)	
WHerC7	N	7	2	Mean weight of herring CBH age group 7 (gramme)	
WHerC8	N	7	2	Mean weight of herring CBH age group 8+ (gramme)	
Structure of table W_Spr					
Field		Type	Length	Rounded to decimals	Description
CCODE		C	20	Survey code	
SD		C	4	ICES Subdivision	
RECT		C	5	ICES rectangle	
WSpr0		N	7	2	Mean weight of sprat age group 0 (gramme)
WSpr1		N	7	2	Mean weight of sprat age group 1 (gramme)
WSpr2		N	7	2	Mean weight of sprat age group 2 (gramme)
WSpr3		N	7	2	Mean weight of sprat age group 3 (gramme)
WSpr4		N	7	2	Mean weight of sprat age group 4 (gramme)
WSpr5		N	7	2	Mean weight of sprat age group 5 (gramme)
WSpr6		N	7	2	Mean weight of sprat age group 6 (gramme)
WSpr7		N	7	2	Mean weight of sprat age group 7 (gramme)
WSpr8		N	7	2	Mean weight of sprat age group 8+ (gramme)

Structure of table W_cod

Field	Type	Length	Rounded to decimals	Description
CCODE	C	20		Survey code
SD	C	4		ICES Subdivision
RECT	C	5	ICES rectangle	
WCod0	N	7	2	Mean weight of cod age group 0 (gramme)
WCod1	N	7	2	Mean weight of cod age group 1 (gramme)
WCod2	N	7	2	Mean weight of cod age group 2 (gramme)
WCod3	N	7	2	Mean weight of cod age group 3 (gramme)
WCod4	N	7	2	Mean weight of cod age group 4 (gramme)
WCod5	N	7	2	Mean weight of cod age group 5 (gramme)
WCod6	N	7	2	Mean weight of cod age group 6 (gramme)
WCod7	N	7	2	Mean weight of cod age group 7 (gramme)
WCod8	N	7	2	Mean weight of cod age group 8+ (gramme)

Table 6.2. Structure in BIAS and BASS database format.

Structure of table SURV

Field	Type	Length	Rounded to decimals	Description
CCODE	String	10		Survey code
SHIP	String	20		Name of ship
YEAR	Int	4	Year of survey	
COUNTRY	String	20		responsible country

Structure of table STAT

Field	Type	Length	Rounded to decimals	Description
CCODE	String	10		Survey code
SD	String	4		ICES subdivision
RECT	String	5		ICES rectangle
FLAG	Dec	6	4	Treatment for multiple coverage (1)
SA	Dec	10	1	NASC per ESDU
SIGMA	Dec	10	1	Acoustic cross section of mean target
NTOT	Dec	10	2	Total number of targets
HH	Dec	6	2	Proportion of herring
HS	Dec	6	2	Proportion of sprat
HC	Dec	6	2	Proportion of cod

Remarks String 50

Structure of table NHER (abundance of herring)

Field	Type	Length	Rounded to decimals	Description
CCODE	String	10		Survey code
SD	String	4		ICES subdivision
RECT	String	5	ICES rectangle	
N	Dec	10	2	Number (millions)
AGE	Int	1	Age group (1-8)	

Structure of table NSPR (abundance of sprat)

Field	Type	Length	Rounded to decimals	Description
CCODE	String	10		Survey code
SD	String	4		ICES subdivision
RECT	String	5		ICES rectangle
N	Dec	10	2	Number (millions)
AGE	Int	1		Age group (1-8)

Structure of table NCOD (abundance of cod)

Field	Type	Length	Rounded to decimals	Description
CCODE	String	10		Survey code
SD	String	4		ICES subdivision
RECT	String	5	ICES rectangle	
N	Dec	10	2	Number (millions)
AGE	Int	1		Age group (1-8)

Structure of table WHER (Mean weight of herring)

Field	Type	Length	Rounded to decimals	Description
CCODE	String	10		Survey code
SD	String	4		ICES subdivision
RECT	String	5	ICES rectangle	
N	Dec	10	2	Mean weight (gramme)
AGE	Int	1		Age group (1-8)

Structure of table WSPR (Mean weight of sprat)

Field	Type	Length	Rounded to decimals	Description
CCODE	String	10		Survey code
SD	String	4		ICES subdivision
RECT	String	5	ICES rectangle	
N	Dec	10	2	Mean weight (gramme)
AGE	Int	1		Age group (1-8)

Structure of table WCOD (Mean weight of cod)

Field	Type	Length	Rounded to decimals	Description
CCODE	String	10		Survey code
SD	String	4		ICES subdivision
RECT	String	5		ICES rectangle
N	Dec	10	2	Mean weight (gramme)
AGE	Int	1		Age group (1-8)

Annex 1: List of symbols

a	age group
i	species
j	length class
k	haul
$\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}$	parameter of the TS-length relation for species i
$\mathrm{fi}^{\text {i }}$	frequency of species i
$\mathrm{fa}_{\text {a }}$	frequency of age group a
f_{j}	frequency of length j
$\mathrm{fij}_{\mathrm{ij}}$	frequency of length class j for species i
fia	frequency of age group a for species i
$\mathrm{n}_{\text {ik }}$	fish number of species i in haul k
$\mathrm{n}_{\mathrm{ijk}}$	fish number of species i and length class j in haul k
$\mathrm{q}_{\text {ai }}$	normalized age-length-key
A	Area of the ICES rectangle
F	fish density
L_{j}	length in class j
M	number of hauls in the ICES rectangle
Mi	number of hauls containing species i
N_{k}	total fish number in haul k
Nik	fish number of species i in haul k
N_{i}	abundance of species i
Nia	abundance of age group a for species i
N	total abundance
${ }^{s} A$	nautical area scattering coefficient (NASC)
${ }^{s} A(\mathrm{k})$	NASC value during haul k
${ }^{s} A(\mathrm{i}, \mathrm{k})$	NASC value of species i during haul k
W_{j}	mean weight in length class j
Wa	mean weight of age group a
Qai	biomass of age group a for species i
< $\sigma>$	mean cross section
$\left.<\sigma_{\mathrm{i}}\right\rangle$	mean cross section of species i

Note: more information about definitions and symbols used in fisheries acoustics is presented e.g. in MacLennan et al. (2002), and about sources of error in acoustic estimation of fish abundance - in Aglen (1994).

Annex 2: The example of calculation method and formulas used for fish stocks abundance and biomass

Survey log information - the mean NASC

	A	B	c	D	E	F	G	H	1	」	K	L	M
1	Survey log information - the mean NASC									Mean NASC per strata			
2	Log distance	Date	Time	Latitude	Longitude	NASC value	Rectangle	Sub-division		Sub-divisionRectangle Mean NASC			
3	1	20081020	09:33:49.44	58,08396887	20,99588887	5778	45H0	28		28	45H0	1283,850	
4	2	20081020	09:41:00.44	58,08213333	20,98420000	8381	45 HO	28					
5	3	20081020	09:48:13.44	58,08026867	20,93280000	4297	45 HO	28			=MEAN(F3:F62)		
6	4	20081020	09:55:30.44	58,07958277	20,90128108	3399	45 HO	28					
7	5	20081020	10:05:57.44	58,08291687	20,88315000	7909	45 HO	28					
8	6	20081020	10:28:00.44	58,08855000	20,91295082	3119	45 HO	28					
9	7	20081020	10:46:05.44	58,09280000	20,94375000	1511	45 HO	28					
10	8	20081020	11:18:55.44	58,09970000	20,96985000	580	45 HO	28					
11	9	20081020	11:27:21.44	58,09785000	20,93844444	825	45H0	28					
12	10	20081020	11:34:48.44	58,09575000	20,90707085	1525	45 HO	28					
13	11	20081020	11:42:16.44	58,09323170	20,87579345	384	45 HO	28					
14	12	20081020	11:49:51.44	58,09016867	20,84468300	3346	45 HO	28					
15	13	20081020	11:57:22.44	58,08690000	20,81365999	3101	45 HO	28					
16	14	20081020	12:04:50.44	58,08359811	20,78269242	1613	45 HO	28					
17	15	20081020	12:12:32.44	58,08091687	20,75154088	1281	45 HO	28					
18	16	20081020	12:20:07.44	58,08073333	20,71998632	876	45 HO	28					
19	17	20081020	12:27:53.44	58,08080000	20,68834957	1085	45 HO	28					
20	18	20081020	12:35:34.44	58,08056867	20,65877575	784	45 HO	28					
21	19	20081020	12:43:18.44	58,08038333	20,62512587	343	45 HO	28					
22	20	20081020	12:51:11.44	58,08013333	20,59351632	2842	45 HO	28					
23	21	20081020	12:58:59.44	58,07975000	20,58188299	1203	45H0	28					
24	22	20081020	13:06:48.44	58,07931939	20,53032244	2844	45 HO	28					
25	23	20081020	13:14:42.44	58,07943333	20,49872244	84	45 HO	28					
26	24	20081020	13:22:37.44	58,07985000	20,46706118	97	45 HO	28					
27	25	20081020	13:30:02.44	58,08903878	20,45043333	881	45 HO	28					
28	26	20081020	13:36:44.44	58,10578878	20,45058333	518	45 HO	28					
29	27	20081020	13:43:27.44	58,12252708	20,45220347	760	45 HO	28					
30	28	20081020	13:50:09.44	58,13920728	20,45430000	500	45 HO	28					
31	29	20081020	13:56:51.44	58,15587395	20,45850000	349	45 HO	28					
32	30	20081020	14:03:32.44	58,17255747	20,45890000	608	45H0	28					
33	31	20081020	14:10:18.44	58,18928923	20,45968333	344	45H0	28					
34	32	20081020	14:17:06.44	58,20807256	20,45931687	98	45H0	28					
35	33	20081020	14:23:54.44	58,22279462	20,45801687	162	45 HO	28					
36	34	20081020	14:30:38.44	58,23952808	20,45811887	319	45 HO	28					
37	35	20081020	14:37:26.44	58,25624472	20,45470000	336	45H0	28					
38	36	20081020	14:44:18.44	58,27302806	20,45305000	609	45 HO	28					
39	37	20081020	14:51:13.44	58,28975543	20,45168333	125	45 HO	28					
40	38	20081020	14:58:11.44	58,30847185	20,45228508	373	45 HO	28					
41	39	20081020	15:04:58.44	58,32277288	20,45941687	396	45 HO	28					
42	40	20081020	15:11:50.44	58,33952288	20,45948887	161	45H0	28					
43	41	20081020	15:18:53.44	58,35628863	20,48006067	255	45 HO	28					

	A	B	C	D	E	F	G	H
1	Survey log information - the mean NASC							
2	Log distance	Date	Time	Latitude	Longitude	NASC value	Rectangle	Sub-division
43	41	20081020	15:18:53.44	58,35628863	20,46006867	255	45H0	28
44	42	20081020	15:25:52.44	58,37310765	20,46030000	300	45H0	28
45	43	20081020	15:33:06.44	58,38915302	20,46871969	229	45H0	28
46	44	20081020	15:51:22.44	58,40256867	20,48565403	206	45H0	28
47	45	20081020	16:10:45.44	58,41643610	20,50410277	318	45H0	28
48	46	20081020	16:36:53.44	58,42868687	20,52468867	104	45H0	28
49	47	20081020	16:54:00.44	58,42935405	20,55379954	156	45H0	28
50	48	20081020	17:02:40.44	58,42733333	20,58541277	790	45H0	28
51	49	20081020	17:11:07.44	58,42428155	20,61700378	685	45H0	28
52	50	20081020	17:19:29.44	58,41999489	20,64774867	972	45 HO	28
53	51	20081020	17:27:58.44	58.41650583	20,67708998	911	45H0	28
54	52	20081020	17:36:02.44	58,41957748	20,70774007	1836	45H0	28
55	53	20081020	17:43:56.44	58,41643333	20,73923683	1297	45 HO	28
56	54	20081020	17:51:36.44	58,41327739	20.77085117	923	45 HO	28
57	55	20081020	17:59:58.44	58,41009496	20,80218683	938	45 HO	28
58	58	20081020	18:08:28.44	58,40741687	20,83381031	858	45H0	28
59	57	20081020	18:16:57.44	58,40462796	20,86535483	802	45H0	28
60	58	20081020	18:25:26.44	58,40170000	20,89683444	838	45H0	28
61	59	20081020	18:33:56.44	58,39905000	20.92847370	1231	45 HO	28
62	60	20081020	18:42:22.44	58,39573333	20,95980111	2078	45H0	28

The species composition - Catch in kg; Mean weight of individuals in $\mathbf{k g}$; Catch in numbers; Spec ies composition per haul; Species composition per strata

The example of map reflecting location of the BIAS survey acoustic transects and fish catch-stations.

Length distribution - Length measured fish in numbers; Length distribution; Length distribution per strata; on the example of sprat

The mean cross section

	2	5	c	0	:	*	a	H	I	」
45	Spacian milatad man cron maction									
48		3-b-4ivis: Maxingi	28							
47			48M0							
48	Specles		Men crexi 1axis?							
42	Spat									
50	Hamiri									
52	smal:									
32	Threagine aideldelak									
35	Nirergime a Jodlelask									
54	umgiah		$4,0803^{+}+$-5UMPRODUKK(C23-NG23,CS3:NCS3)							
35	Cad		6, 5 Sos	-suMpRodukt(C24:NG24,C39:Na39)						
28										
37	Man erean uection par atata									
58	$\begin{array}{r} \text { Sub-division Rectangle Mean ersu } \\ \text { nactisn } \end{array}$									
32	28	48.40	8,378:034- -SUMPRODUKT(CS:C11,C42:C35)							
40										

Abundance estimation

	A	B	C	D	E	F	G	H	1	J	K	L
1	Survey results									=\$F3*G3	$=\$ \mathrm{FF}^{*} \mathrm{H} 3$	=\$F3* ${ }^{\text {\% }}$ 3
2	Sub-division	Rectangle	$\begin{gathered} \text { Area } \\ \left(\mathrm{n} . \mathrm{mi} .^{2}\right) \end{gathered}$	Mean NASC $\left(\mathrm{m}^{2} / \mathrm{n} \cdot \mathrm{mi} .{ }^{2}\right)$	Mean cross section (m^{2})	Fish total abundance (millions)	Sprat share $=\mathrm{D} 3 / \mathrm{E}$		cod share	Sprat abundance (millions)	Herring abundance (millions)	Cod abundance (millions)
3	28	45H0	947,2	1283,850	8,578E-05	14176,778271	0,571	0,031	0,000	8089,720519	434,688014	0,440370
4	28	45H1	827,1	2213,427	9,489E-05	19292,453681	0,992	0,005	0,000	19129,393793	105,284635	0,000000
5	29	46 H 1	921,5	1293,935	1,005E-04	11867,519967	0,822	0,017	0,000	9754,033526	201,428899	0,147455
6	29	46 H 2	258,0	1319,415	1,116E-04	3049,406882	0,954	0,039	0,000	2909,780642	117,961047	0,000000
7	29	47H1	920,3	1789,773	1,116E-04	14755,081993	0,784	0,205	0,000	11569,637909	3028,590410	0,000000
8	29	47H2	793,9	3895,305	1,116E-04	27702,663279	0,985	0,013	0,000	27292,400267	349,803833	0,000000
9	29	48 H 2	597,0	2833,359	1,230E-04	13748,863473	0,583	0,398	0,000	8016,050171	5470,505095	0,000000
10	32	47H3	536,2	1423,042	1,171E-04	6514,155847	0,849	0,131	0,000	5527,662021	854,601397	0,000000
11	32	48H3	615,7	1144,844	1,259E-04	5599,034502	0,946	0,032	0,000	5295,426492	179,388991	0,000000

length-age distribution - on the example of sprat

	A	B	C	D	E	F	G	H	1
1	Species:	prat							
2	Length distri	ution per	rata						
3	Sub-division	28	28	28	28				
4	Rectangle	45 HO	45H1	45H0	45H0		Abundance p	strata	
5	Length class in mm			Haul 2	Haul 3		Sub-division	Rectangle	Sprat abundance (millions)
6	50	0,000	0,000	0,000	0,000		28	45HO	8089,720519
7	55	0,000	0,000	0,000	0,000		28	45H1	19129,389748
8	60	0,000	0,003	0,000	0,000				
9	65	0,000	0,010	0,000	0,000				
10	70	0,005	0,028	0,010	0,000				
11	75	0,087	0,133	0,173	0,000				
12	80	0,101	0,260	0,203	0,000				
13	85	0,059	0,068	0,119	0,000				
14	90	0,017	0,000	0,035	0,000				
15	95	0,002	0,000	0,005	0,000				
16	100	0,002	0,003	0,005	0,000				
17	105	0,040	0,058	0,059	0,020				
18	110	0,117	0,170	0,149	0,085				
19	115	0,219	0,145	0,124	0,315				
20	120	0,177	0,093	0,084	0,270				
21	125	0,125	0,023	0,035	0,215				
22	130	0,035	0,010	0,000	0,070				
23	135	0,013	0,000	0,000	0,025				
24	140	0,000	0,000	0,000	0,000				
25	145	0,000	0,000	0,000	0,000				
26	150	0,000	0,000	0,000	0,000				

	2	s	c	0	:	*	a	H	1	1	\leqslant	1
214										-sum(52	17-9217)	
218	Nu-bar of	Wab nt	perlan	elm		Heal	3	3.b-diviaign	28	*axis	940	
126		0	2	2	\%	4	5	8	7	$8+$	$3 .-$	
217	30										F	
218	38										-	
212	80										0	
220	83										0	
222	70										0	
122	73										0	
228	80										0	
124	83										0	
128	20										0	
128	23										0	
227	100										0	
128	108		2								2	
122	210		s	2							7	
130	123		:	4	2	0	2				10	
232	120			4	3	0	4	1		1	13	
132	123			4	2	1	3	1		-	12	
135	130					2	2		2	5	a	
134	235						2			5	e	
138	140										\bigcirc	
238	145										\bigcirc	
217	130										0	
238		(5ckse	573/8									
232	Agx-ianth-ka	(AK)			Heal		3.b-divizian	28	Nextary	4940		
240	$\begin{aligned} & \operatorname{lor} r^{2} \text { dim } \\ & i n-m \end{aligned}$			2	3	4	-	E	7	s+		
242	30											
242	38											
243	80											
144	43											
248	70	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
248	73	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
247	80	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
248	83	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
242	20	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
280	23	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
282	100	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
282	108	0,000	0,727	0,182	0,000	0,000	0,000	0,002	0,000	0,000		
238	210	0,000	0,887	0,187	0,000	0,000	0,267	0,000	0,000	0,000		
284	125	0,000	0,427	0,230	0,000	0,000	0,230	0,085	0,000	0,000		
238	220	0,000	0,000	0,900	0,500	0,100	0,200	0,000	0,000	0,000		
238	225	0,000	0,000	0,123	0,230	0,225	0,375	0,000	0,000	0,123		
127	130											
288	258											
232	140											
280	145											
261	230											

Weight distribution - on the example of sprat

	A	B	c	D	E	F	G	H	1	」
1	Species:	prat								
2	Length distribution per strata						Mean weight per length ing			
3	Sub-division	28	28	28	28		Sub-division	28	28	28
4	Rectangle	45HO	45H1	45HO	45H0		Rectangle	45HO	45HO	
5	Length class in mm			Haul 2	Haul 3		Length class in mm	Haul 2	Haul 3	Mean of Subdivision
6	50	0,000	0,000	0,000	0,000		50			
7	55	0,000	0,000	0,000	0,000		55			
8	60	0,000	0,003	0,000	0,000		60			1,9
9	65	0,000	0,010	0,000	0,000		65			2,3
10	70	0,005	0,028	0,010	0,000		70	2,5		2,7
11	75	0,087	0,133	0,173	0,000		75	2,8		2,8
12	80	0,101	0,260	0,203	0,000		80	3,2		3,1
13	85	0,059	0,068	0,119	0,000		85	3,6		3,6
14	90	0,017	0,000	0,035	0,000		90	4,3		4,3
15	95	0,002	0,000	0,005	0,000		95	5,2		5,2
16	100	0,002	0,003	0,005	0,000		100	8,6		7,8
17	105	0,040	0,058	0,059	0,020		105	8,4	8,2	8,1
18	110	0,117	0,170	0,149	0,085		110	8,9	9,2	8,8
19	115	0,219	0,145	0,124	0,315		115	9,9	10,0	9,9
20	120	0,177	0,093	0,084	0,270		120	10,4	10,8	10,6
21	125	0,125	0,023	0,035	0,215		125	12,1	11,6	11,6
22	130	0,035	0,010	0,000	0,070		130		12,9	12,8
23	135	0,013	0,000	0,000	0,025		135		13,6	13,6
24	140	0,000	0,000	0,000	0,000		140			
25	145	0,000	0,000	0,000	0,000		145			
26	150	0,000	0,000	0,000	0,000		150			

Biomass estimation - on the example of sprat

	A	B	C	D	E	F	G	H	1	」	K
1	Species:	Sprat									
2	Number at age per strata (in millions)										8+
3	Sub-division Rectangle			$1 \quad 2$		3	4	5	6	7	
4	28	45HO	2202,647	1566,356	1645,076	656,334	185,045	1172,560	239,930	43,560	378,213
5	28	45 H 1	9564,695	4153,954	2602,246	673,763	134,689	1438,489	323,860	29,430	208,264
6	29	46 H 1	11945,406	799,275	1164,300	368,444	223,475	465,777	149,578	7,861	35,525
7	29	46 H 2	4246,321	139,881	192,447	61,188	37,384	69,553	24,372	0,000	0,000
8	29	47 H 1	4417,653	2380,480	3631,223	1144,937	690,525	1560,130	471,586	43,300	195,670
9	29	47 H 2	7416,026	4894,605	6167,981	1843,359	1049,649	2595,462	712,444	63,735	369,697
10	29	48 H 2	753,639	1388,281	2344,315	770,951	531,054	1456,857	392,586	63,159	311,524
11	32	47 H 3	1558,920	1157,338	1299,261	378,871	103,472	684,541	245,314	9,653	87,223
12	32	48 H 3	941,506	1115,847	1370,204	450,709	136,664	798,703	257,432	12,105	95,324
13											
14	Mean weight	at age per	strata (in g)								
15	Sub-division	Rectangle	0	1	2	3	4	5	6	7	8+
16	28	45HO	3,2	9,1	10,2	10,9	11,4	10,7	10,5	12,8	12,3
17	28	45 H 1	3,1	8,9	9,7	10,6	11,2	10,1	9,8	12,8	11,8
18	29	46 H 1	3,0	8,9	9,7	9,9	10,1	10,1	10,3	11,9	12,0
19	29	46 H 2	3,0	8,8	9,7	9,9	10,0	9,9	10,1	0,0	0,0
20	29	$47 \mathrm{H1}$	3,0	9,0	9,7	9,9	10,2	10,3	10,4	11,9	12,0
21	29	47 H 2	3,0	8,7	9,6	9,8	10,2	10,1	10,3	11,8	12,3
22	29	48 H 2	2,8	8,6	9,9	10,2	10,5	10,5	10,6	11,9	12,2
23	32	47 H 3	3,3	8,4	9,3	10,1	10,7	9,9	9,3	11,1	11,9
24	32	48 H 3	3,3	8,4	9,4	10,1	10,8	10,0	9,3	11,1	11,5
25											
26	Biomass at age	e per strata	in kg)	=	${ }^{*} \mathrm{C} 16^{*} 100$						
27	Sub-division	Rectangle		1	2	3	4	5	6	7	$8+$
28	28	45HO	7064816	14303029	16800489	7122052	2117383	12529431	2526856	558536	4656397
29	28	45 H 1	29276749	37060656	25324011	7155870	1507910	14591619	3189793	377356	2451300
30	29	46 H 1	35717789	7113295	11310127	3646009	2258517	4722037	1534794	93605	426867
31	29	46 H 2	12705326	1234123	1872215	603932	373094	691197	246942	0	0
32	29	47 H 1	13086850	21341299	35234045	11352625	7046985	16017948	4884198	515570	2351145
33	29	47 H 2	22616383	42770856	59072352	18131674	10710261	26200456	7371383	755216	4558016
34	29	48 H 2	2115395	12004190	23228285	7868658	5565010	15268754	4155463	749075	3802195
35	32	$47 \mathrm{H3}$	5124635	9672088	12102265	3820299	1109220	6766075	2272874	107429	1034346
36	32	48H3	3107621	9401113	12867400	4535029	1469484	7971443	2401914	134726	1092378

