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Acoustic target classification 

Foreword 

Data are collected from a variety of acoustic systems in many countries to address a 

range of ecosystem monitoring and stock management objectives. A key step in the 

analysis of fisheries acoustics data is target classification, i.e. categorizing the backscat-

ter data, ultimately by target species, so that it can be converted into estimates of abun-

dance or biomass. The information needed to classify acoustic targets may be contained 

within the acoustic measurements, particularly if they are made over a range of fre-

quencies. 

The SIMFAMI project, financed by the European Union, presented some multifre-

quency methods for species identification (Fernandes et al., 2006). Readers should also 

note that there are two other ICES reports on related topics: CRR No. 238 Report on 

Echo Trace Classification (Reid, 2000) and Acoustic seabed classification of marine 

physical and biological landscapes (ICES, 2007). However, as these reports were written 

when multifrequency and wideband methods were less mature, they mostly focus on 

single-frequency methods. 

Acoustic classification of biological targets is a fast-moving field. While most of the 

theoretical principles in the earlier reports are still relevant, there is a need to evaluate 

recent developments, expand their applications to contemporary technologies, and rec-

ommend target-classification protocols for use in fisheries research and ecosystem sur-

veys. Several ICES Member Countries and observer countries have identified these 

needs and conveyed them to ICES Working Group on Fisheries Acoustics, Science, and 

Technology (WGFAST) and Science Committee (SCICOM). This is the first ICES CRR 

to detail the latest multifrequency and wideband methods for acoustic target classifi-

cation. 
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1 Executive overview 

Species identification is “the grand challenge” (MacLennan and Holliday, 1996) for 

acoustic methods used to estimate fish abundance (Simmonds and MacLennan, 2005). 

Acoustic survey methods are continuously improved to increase the accuracy of acous-

tic classification and thereby reduce the uncertainty of abundance estimates. 

Most commonly, single-frequency acoustic data are classified using echogram features 

and biological samples. First, the echogram data are scrutinized (analysed, corrected, 

and classified) e.g. by checking for errors, removing noise, thresholding, and setting 

analysis depth layers. Then, target features are delineated by lines, rectangles, or poly-

gons and ascribed to species using expert knowledge resulting from relevant biological 

and oceanographic samples. In most surveys, the aim is to identify echoes from one or 

two species, with other echoes considered less important. Acoustic target classification 

can be improved by using multifrequency data and exploiting its inherent information. 

The target audiences for this report are: 

 users who conduct surveys and derive abundance estimates;

 those who understand what can and cannot be done using existing and modi-

fied processing tools, but may not be familiar with the theory underlying

acoustic target classification methods;

 developers who use and modify existing tools and develop advanced tools;

 those with advanced theoretical knowledge.
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2 Terminology 

The names, symbols, and units of physical quantities must be precisely defined to as-

sure effective scientific communication. The following terminology is used consistently 

throughout this report and can be adopted for more general use in the field of fisheries 

acoustics. Terminology (Table 2.1) and symbols (Table 2.2) defined here are used con-

sistently throughout this report, and in Demer et al. (2015; Calibration of acoustic instru-

ments). Note that this terminology is used in acoustics; optics and radar may have dif-

ferent definitions, e.g. broadband. 

Symbols uniquely represent a term. All symbols for variables are italicized. Any symbol 

for a variable (x) which is not logarithmically transformed is lower case. Any symbol 

for a variable with units of decibels, e.g.    
refxxLogX 10dB  , relative to a reference

value (xref), is capitalized. 

Table 2.1. Terminology used throughout this report. 

Term Description and references 

Approximate model Approximate models are modifications of exact models where boundary 

conditions and/or model input are simplified and/or parameter ranges 

and prediction ranges are restricted.  

Bandwidth The difference between half-power points in a signal, expressed in hertz, or 

normalized by the mid-frequency, in percent (Chatfield, 1989). 

Broadband A signal with 10% or greater bandwidth. Also known as broad bandwidth.  

Classification Apportionment of acoustic backscatter to taxon (e.g. genus, species), trophic 

level (e.g. secondary producer, primary consumer), or anatomical characteris-

tics (e.g. gas-bearing, fluid-like scatterer). Synonymous with identification and 

categorization (Horne, 2000). See Section 3.3. 

Chirp A frequency-modulated (FM) broadband signal, e.g. frequency increasing lin-

early from the start to the end of the pulse. 

Combined-frequency data Data generated by combining data from two or more frequencies into a single 

data channel. Term used for example in Korneliussen (2000) and Korneliussen 

and Ona (2002, 2003). 

Composite data Data generated by combining data from two or more frequencies into a single 

data channel. (The term combined-frequency data was used previously, and is 

still used sometimes). 

dB Difference () in Sv at two acoustic frequencies, f1 and f2, e.g. Sv(f1)–Sv(f2).  

Exact model Exact models are derived from physical first principles and are accepted as 

theoretically correct. They are often expressed in the form of infinite series ex-

pansions valid for model–parameter ranges that ensure convergence. 

Fluid Liquids and gases that do not support shear waves. 

Geometric scattering region a/λ << 1. Sometimes called “high-frequency scattering region” although this 

term relates to the size of the target relative to the wavelength 

Logarithmic relative 

frequency response 

 )(log)( 10 frfR 

Model Mathematical expressions of acoustic backscattering cross-sectional area  

(Jech et al., 2015). 

Model input The data used to produce a model output. 

Morphology Study of the form and structure of organisms and their features. 

In this document it relates to the shape, form, and structure of targets. 

Morphometry The process of measuring external shape, dimension and form. 
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Multifrequency Multiple narrowband signals. In general, each narrowband signal is generated 

by its own individual echosounder; therefore, multifrequency data require 

multiple echosounders (or one echosounder with several processing units). 

Data from two or more frequencies. Historically, the term dual-frequency has 

been used for two frequencies. 

Narrowband Also known as narrow bandwidth. Narrowband is defined here as a signal 

with bandwidth < 10% of the centre frequency. 

Noise Unwanted component of a measurement. Ambient noise can be measured by 

an instrument in passive mode. Interference noise is from unsynchronized in-

struments. 

Numerical model Numerical models use numerical methods to solve the mathematical equa-

tions. They are approximations but can be used to predict acoustic backscatter 

from complex targets. 

Rayleigh (Strutt, 1919) 

scattering region  

a/λ << 1. Sometimes called “low-frequency scattering region” although this re-

lates to the size of the target relative to the wavelength. 

Relative frequency response 

)(

)(

)(

)(
)(

refA

A

refv

v

fs

fs

fs

fs
fr      Commonly, fre  f= 38 kHz. sv, sA, f in Table 1.2 (Kor-

neliussen and Ona, 2002, 2003). 

Q The quality factor of a signal, usually related to the resonance frequency. Q is 

the ratio of the resonance frequency (fr) to the bandwidth (∆f), fr/∆f. Narrow-

band signals have higher Q and broadband signals have lower Q (ANSI, 

1994). 

Relative frequency response 

based on single targets )(

)(
)(

,,

,,

refiTbs

iTbs

T
f

f
fr






 Commonly, fref =38 kHz, bs for fish T, ping i.  

See Pedersen and Korneliussen (2009). 

Resonant scatter Mie region. Scatter where the frequency of the ensonifying wave matches one 

of the targets own natural frequencies of vibration. See Urick (1983). 

Scrutinization Also called manual categorization. The process of allocating acoustic backscat-

ter to acoustic scrutinize categories, such as “cod”, “cod or haddock”, 

“sandeel”, or “possibly sandeel”. Those acoustic values are validated against 

biological sampling and are eventually used to allocate the observed backscat-

ter to species. 

Single-frequency data  Data from one echosounder with a narrowband signal. 

Target The source of desired acoustic backscatter. 

Wideband Also known as wide bandwidth. Includes a suite of frequencies from multiple, 

narrowband signals, multiple broadband signals, or a combination of these. 

Z-score Method based on the normal deviate (Z-score) of the ∆dB for frequency pairs 

and classes of scatterers. Z-score is a standard statistical feature that allows 

comparison of two different normal distributions. See e.g. De Robertis et al. 

(2010) for use of Z-score in fisheries acoustics. 
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Table 2.2. Terms, symbols, and units 

Term Symbol Unit Description or defining equation 

Absorption 

coefficient 

αa dB m−1 A metric of absorption loss. The reduction in acoustic in-

tensity with r resulting from the conversion of pa to heat. 

Acoustic power pa W Acoustic RMS (root mean squared) energy per unit time. 

Acoustic 

wavelength 

λ M Distance spanned by one cycle of a periodic pressure 

wave. 

Area 

backscattering 

coefficient 

sa m2 m−2 The integral of sv over a range of depths. 
dzss

z

z

va 
2

1

 

Backscattering 

cross section 

bs  m2 
inc

r

bs IrIr a

bsv
/10)(

10/2          
inc

r

bs IrIr a

bsv
/10)(

10/2    

Depth d M The vertical distance below the sea surface. 

Frequency f Hz Number of complete cycles of a periodic wave per unit 

time. 

Nautical area 

scattering 

coefficient 

sA Nautical mile−2 m2 sa multiplied by 4π18522. 

Pulse duration τ S The duration of a sound pulse. 

Radius a M Equivalent spherical radius of object. 

Range r M Distance between objects, e.g. the transducer and the tar-

get. 

Sampled volume V m3 The volume contributing to a received signal. 

Signal-to-noise 

ratio 

snr  Dimensionless The quotient of signal to noise power. 

Target strength TS dB re 1 m2 
)(log10

0

10
A

TS bs
               2

0 1mA   

)
4

(log10
0

10
A

TS



           

UrickMedwinClaybs 



 

4
&

 

Volume 

backscattering 

coefficient 

sv m−1 

m2 m−3 

dB re 1 m2 m−3 

The backscattering cross section per unit of water vol-

ume. 
V

s bs
v

  

Volume 

backscattering 

strength 

Sv dB re 1 m−1 

dB re 1 m2 m−3 
)(log10

0

10
A

s
S v

v 
    2

0 1mA   
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3 Introduction 

3.1 Why classify acoustic data? 

Classification is needed to efficiently and objectively interpret acoustic data and achieve 

accurate and reproducible results for stock management and ecosystem studies. Classi-

fication results can be used to guide sampling, quantify measurement and sampling 

uncertainty, and better assess target species and other ecosystem components. Classifi-

cation results can also be used to guide sampling during a survey. Ultimately, this pro-

duces more objective data for stock management. 

3.2 What this report contains 

This report describes methods that can be used to classify acoustic targets in multiple 

narrowband frequencies data. Some of the methods may be applicable to broadband 

data or applied to data from narrowband frequencies that have been derived from 

broadband measurements. The classification methods are demonstrated through case 

studies. 

3.3 What this report does not contain (and why) 

 Seabed classification. It does not pertain to the classification of aquatic or-

ganisms, see Anderson et al. (2007a);

 Echotrace classification. It is based on single-frequency echogram morphol-

ogy, see Reid (2000);

 Scrutinization of echograms. It focuses on the classification of single-fre-

quency data, see ICES (2015).

3.4 Approaches to target classification 

The expected relative frequency response from a few scatterer types is illustrated in 

Figure 3.1, with the region covered by five discrete frequencies in the range 18–200 kHz, 

as indicated. Under survey conditions, measurement uncertainties, available acoustic 

frequencies, and equipment limitations make it more appropriate, initially, to catego-

rize echoes from scatterers with common features (e.g. fluid-like or gas filled). 

Fluid-like objects have sound speed, and density properties similar to those of water, 

and the backscatter is characterized by fluctuations between the low-frequency (Ray-

leigh) and high-frequency (geometric) scattering regions (e.g. organism types 1, 2, and 

3 in Figure 3.1). All gas-filled objects, such as siphonophores and fish with swimblad-

ders, exhibit resonant scattering at a frequency that depends on depth and size of the 

gas inclusion (e.g. curves 5 and 7 in Figure 3.1). Backscatter from elastic-shelled zoo-

plankton is characterized by the smooth transition between low- and high-frequency 

regions. There will also be differences in scattering features within each class, e.g. the 

rate of increase in the low-frequency region, the height and width of the resonance 

peak, the spacing of high-frequency oscillations, and the high-frequency backscatter-

ing strength. 
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Figure 3.1. Target strength vs. frequency for different types of animals, with zooplankton in the 

three lower right curves. The x-axis location of the various curves depends on the ratio of organism 

size divided by acoustic wavelength. The curves are shown for typical organism sizes over the 

range of typical acoustic frequencies. Reproduced from Benoit-Bird and Lawson (2016). 

The workflow (Figure 3.2) starts with planning (sections 5.1–5.4), followed by acquisi-

tion (Section 5.5), quality control (Section 5.6), and concludes with classification (Section 

6). 

 

Figure 3.2. The process described in this report involves planning, data acquisition, quality control, 

and classification. 
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The aim of acoustic target classification is to categorize backscatter into groups, ulti-

mately associated with target species, so that the data can be converted into estimates 

of abundance or biomass. The approach depends on a combination of perspective, avail-

able data, and the application. 

Four levels of acoustic target classification include: (i) discrimination, (ii) categoriza-

tion, (iii) identification, and (iv) validation. Discrimination removes unwanted data 

from data to be processed. For example, if the objective is to estimate the abundance of 

a fish species with a swimbladder, then backscatter values lower than those expected 

from the target species may be excluded from analysis using a threshold on the volume 

backscattering strength (SV) or the difference in SV measured with multiple frequencies 

(e.g. Sato et al., 2015). Categorization groups data that represent scatterers with com-

mon acoustic characteristics. For example, a layer of strongly scattering demersal tar-

gets can be grouped separately from discrete pelagic scatterers higher in the water col-

umn. Identification is the assignment of a taxon or species to each category. For exam-

ple, the demersal-layer and pelagic-discrete scattering categories may be identified as 

ground and pelagic fish, respectively. With a priori information, bottom- and midwa-

ter-trawl data, or both, these identifications may be validated as Atlantic cod (Gadus 

morhua) and herring (Clupea harengus), respectively. Thus, the results of acoustic cate-

gorization may, in many cases, be refined to species level, such as cod, capelin (Mallotus 

villosus), or herring.  
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4 Acoustic scattering properties of aquatic organisms 

Classification of acoustic backscatter into functional groups depends on the scattering 

properties of the target, the instruments used, and how the instruments are operated. 

When subjected to a pressure wave, aquatic organisms with an acoustic impedance dif-

ferent from that of the surrounding body of water scatter the wave in a characteristic 

way. The characteristics of acoustic scattering have only been studied for a small num-

ber of species. Factors that influence backscatter characteristics include the acoustic in-

strument (e.g. transmit signal), the environment (e.g. seawater density and sound 

speed), and the target shape and morphology (e.g. fluid-like or gas-filled). A list of pa-

rameters assumed to significantly affect the acoustic scattering properties of aquatic or-

ganisms is given in Table 4.1 (Urick, 1983; Stanton et al., 1996; Medwin and Clay, 1998; 

Lavery et al., 2003; Moum et al., 2003; Simmonds and MacLennan, 2005).  

Information about the echosounder and transducer can be obtained from the manufac-

turer or estimated from an instrument calibration (Demer et al., 2015). 

Table 4.1. Dominant factors affecting the acoustic scattering properties of aquatic organisms. 

Instrument Transducer Environment (water) Organism 

Source level Resonance frequency Depth Species 

Frequency Bandwidth Temperature Size 

Bandwidth Beam width Salinity Number density 

Sampling 

frequency 

Transmit sensitivity Sound speed Specific density 

Pulse duration Receive sensitivity Density Compressional 

wave speed 

System gain Built-in gain Sound absorption coefficient Shear wave speed 

Electrical noise 

Efficiency Ambient noise Sound absorption 

coefficient 

Electrical/mechanical 

noise 

Dissipation rate of turbulent 

kinetic energy 

Morphology 

Dissipation rates of tempera-

ture and salinity variances 

Behaviour 

Molecular diffusivities for 

temperature and salt 

Anatomy 

Molecular viscosity Fecundity 

Maturity 

Environmental parameters, the physical and chemical properties of water, can be meas-

ured with instruments such as conductivity temperature depth (CTD). The parameters 

defining the scattering properties of aquatic organisms are highly variable and mostly 

unknown. These parameters can be categorized into three groups:  

 physical parameters such as sound speed (fluid) in the seawater, and com-

pressional and shear wave speeds in the organisms; 

 geometric parameters including those related to morphology such as shape 

(length, width, and height) and behaviour affecting the angle of orientation 

relative to the incident wave; and 

 biological parameters such as anatomy and fecundity.  
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Although instrument and geometric parameters can generally be estimated with prac-

tical levels of uncertainty, biological factors and their influence are more variable and 

can rarely be described with high levels of certainty (Gross and Raymont, 1942; 

Lowndes, 1942; Enright, 1963; Greenlaw, 1977; Kogeler et al., 1987; Chu et al., 2000, 2003; 

Smith et al., 2010; Chu and Wiebe, 2005; Warren and Smith, 2007; Wiebe et al., 2010; 

Becker and Warren, 2014). There is interspecies variability (different species have dif-

ferent parameters), instability (properties change significantly with environmental con-

ditions, life-history traits, behavioural characteristics, etc.), and intraspecies differences 

(e.g. ontogenetic stage). The paucity of information on biological parameters limits the 

characterization of acoustic scattering from marine organisms that is needed for species 

identification and target classification. 

4.1 Variability of scattering characteristics of aquatic organisms 

Variation in the scattering characteristics of aquatic organisms relates to environmen-

tal, biological, and behavioural parameters (Table 4.1). The dominant behavioural fac-

tor is generally the orientation angle relative to the incident wave (i.e. tilt angle), e.g. 

resulting from swimming behaviours such as vertical migration or prey–predator in-

teraction (Torgersen and Kaartvedt, 2001). Backscatter also varies due to changes in 

swimbladder morphology vs. life stage (Chu et al., 2003) and depth (pressure; see Fig-

ure 8 in Horne et al., 2009). Scattering properties also vary geographically. The tem-

poral and spatial variability of acoustic scattering must be considered when applying 

classification algorithms because it increases classification uncertainty. 

4.2 Stochastic acoustic scattering properties 

Stochastic variables, notably target strength (TS), are imprecisely known or incom-

pletely characterized. While the underlying physical theory is determinate, the echo 

measurements are stochastic due to unobserved changes in the environment (e.g. tem-

perature fluctuations) or target properties such as acoustic-wave incidence angles or 

school structure. Observed temporal variation in TS may be described by a probability-

density function (PDF), in which case the mean over many measurements can be esti-

mated precisely. The stochastic characteristics of echoes have been modelled theoreti-

cally (Rice, 1954; Ehrenberg, 1972; Baraket, 1974; Jao and Elbaum, 1978; Stanton, 1985; 

Stanton et al., 1993, Chu and Stanton, 2010). 

4.3 Mixed species assemblages 

Total acoustic backscatter may be the sum of echoes from different species comprising 

the aggregation. If the backscatter from one species is dominant, classification is rela-

tively simple (Stanton et al., 1998a, 1998b; Traykovski et al., 1998; Hammond and 

Swartzman, 2001; Korneliussen et al., 2009; Korneliussen, 2010; Pedersen and Kor-

neliussen, 2009; De Robertis et al., 2010). However, if backscatter from multiple species 

is not resolvable and is similar in strength, then classification, if possible, is difficult 

(Campanella and Taylor, 2016; Korneliussen et al., 2016; Gastauer et al., 2017a, 2017b). 

For mixed-species aggregations, classification to species requires ancillary information 

such as from trawl catches or camera images (see e.g. Simmonds and McLennan, 2005, 

p. 340).
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5 Steps prior to target classification 

5.1 Considerations related to instrumentation and installation 

The first step in data collection is planning (Figure 3.2) and the first part of the planning 

process is to understand the scattering properties of targets and select appropriate in-

strumentation. Acoustic data collected at multiple frequencies should be comparable 

both physically and spatially. Requirements for the collection of comparable multifre-

quency data (Korneliussen et al., 2008) include: 

Physically comparable data 

 Echosounder systems are expected to operate such that the linear wave 

equation applies; 

 All systems of echosounders and transducers must be calibrated; 

 Noise must be insignificant; 

 Insignificant interference between acoustic systems. 

Spatially comparable data (at high spatial resolution) 

 Identical pulse lengths and pulse shapes at all frequencies; 

 Individual pings should always be identifiable in the data files; 

 Similar acoustic sampling volume at all frequencies for comparable 

ranges to the scatterers; 

 Simultaneous transmission of pulses at all acoustic frequencies. 

5.2 Requirements for physically comparable data 

5.2.1 Echosounder systems are expected to operate such that the linear wave equa-

tion applies 

Explanation: The equations used to estimate fish stock abundance are far-field approx-

imations of the linear wave equation. The sound speed in water is pressure dependent, 

so propagation of a pressure wave (sound) inherently propagates non-linearly. There-

fore, some energy leaks from the original acoustic frequency to other frequencies, e.g. 

to the double and triple of the original frequency (i.e. harmonic frequencies). The linear 

wave equation is a low-power approximation of wave propagation, while one of the 

more general and far more complicated non-linear wave equations is required to better 

approximate high-power sound. See e.g. Korneliussen (2002), Tichy et al. (2003), Sim-

mons and MacLennan (2005, p. 37) or (in particular) Pedersen (2006) for description of 

non-linear sound propagation in fisheries acoustics. Non-linear generation of sound de-

pends on several parameters, of which sound pressure level and frequency are two. 

Standard target calibration compensates for most of the non-linear loss until the depth 

of the calibration sphere, e.g. at 20 m below the hull, but the non-linear loss continues 

beyond that depth. 

Suggested solution: A solution is to use power low enough that the linear wave equa-

tion applies or, more correctly, power low enough that – combined with calibration – 

the non-linear loss can be ignored. Transducers generating 7° beams have a smaller area 

at increasing frequencies. At the danger of oversimplifying, a simple rule of thumb is to 

use < 25 kW m−2 active area transducer ceramics for transducers of 60% efficiency 

(20 kW m−2 power input on transducers of 75% efficiency, which is typical for Simrad 

composite transducers). A more exact approach is to estimate non-linear loss from the 

equations given in Pedersen (2006). If data have already been collected with too high a 
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power, a method to estimate the losses due to non-linear effects is given by Pedersen 

(2006, p. 170). 

5.2.2 All systems of echosounders and transducers must be calibrated 

Explanation: Use sonars that can be calibrated (see Demer et al., 2015). The term “sonar” 

includes vertically oriented sonars also known as echosounders. Note that the calibra-

tion methods inherently require sound propagation to follow the linear wave equation. 

Suggested solution: Follow the guidelines in Demer et al. (2015) to calibrate. 

5.2.3 Noise must be insignificant 

Measurements should not be biased by noise and noise should not reduce the sampling 

volume (see point 5.3.2 below; Ona, 1987; Foote, 1991) 

Explanation: Ambient noise will inherently limit the sampling volume, i.e. the usable 

range (at a given maximum off-axis angle). Absorption and ambient noise are fre-

quency-dependent, which gives a frequency-dependent usable range. The maximum 

usable range also depends on the scattering properties of the targets (i.e. on the target 

strength) as well as the acoustic frequency. Signal-to-noise ratios (rsn) should be high as 

ratios like the relative frequency responses, r(f), used for categorization, are sensitive to 

both the numerator and the denominators. 

Suggested solution: Passive data should be collected regularly so that ambient noise 

can be estimated and later removed from the data. Noise measurements should be rec-

orded at different water depths, vessel speeds, engine revolutions, and propeller tilts. 

In bad weather, if possible, change vessel bearing and speed (and put out the protrud-

ing keel if you have one). Note that signals received some time after the detection of 

the first bottom echo can be considered passive (depending on range, ping rate, bottom 

type, etc; Korneliussen, 2000). In other words, this means that noise can be estimated 

continuously while actively pinging, provided the recording is sufficiently long (i.e. 

the receiver is listening for long enough after transmission) after the first bottom echo 

is received (e.g. see Korneliussen, 2000). The ambient noise can be used to estimate the 

maximum usable range, which depends on the scattering properties of the targets (i.e. 

on the target strength; Foote, 1991). 

5.2.4 Insignificant interference between acoustic systems 

Explanation: Acoustic instruments should not influence each other appreciably. The 

worst-case situation is two unsynchronized systems transmitting in the same frequency 

band. Similarly, internal echosounder electronics used at one frequency should not in-

fluence another, and the sound transmitted at one frequency should not influence an-

other frequency. This requires synchronization, i.e. simultaneous transmission of sound 

at all frequencies, or alternating pings from systems that would otherwise interfere with 

each other. Acoustic energy leakage cannot occur from one frequency to another, which, 

in practice, means no non-linear effects. This in turn requires that the transmission 

power should be kept low. It also requires that there is no transfer of electric energy (i.e. 

crosstalk), e.g. between the electronics or between the cables carrying the energy to the 

transducers that convert the electrical energy to sound. 

Suggested solution: This is an issue that manufacturers need to solve but customers 

may put effort into ensuring that manufacturers do so. Good electrical earth connections 

for all the instrumentation are essential to avoid interference that may be picked up by 

electrical signal cables. The transducer cables should be as short as possible to reduce 
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electrical interference from outside sources. If AC power supply is noisy, it may be re-

placed by a linear DC power supply if possible. Furthermore, limit any unnecessary 

ship-based noise. 

5.3 Spatially comparable data 

5.3.1 Identical pulse lengths and pulse shapes at all frequencies 

Explanation: The requirement for identical pulse lengths and pulse shapes at all fre-

quencies is necessary to ensure that samples are directly comparable at the highest spa-

tial resolution. See Figure 5.1a. 

Suggested solution: The use of identical pulse lengths and pulse shapes at all frequen-

cies should be made possible by the manufacturer. There may be different solutions to 

this, e.g. reduction of vertical resolution in the data which naturally reduces the achiev-

able spatial resolution. 

5.3.2 Individual pings should always be identifiable in the data files 

Explanation: More than having the measurements comparable physically and spatially, 

the coherent pings at different frequencies must be identified in the data files. One 

should know which pings to compare between frequencies – it is not very useful to 

compare current ping at one frequency with a ping from 2 min earlier at another fre-

quency. 

Suggested solution: Individual pings always identifiable in the data files require high 

enough time-resolution in the data. 

5.3.3 Similar acoustic sampling volume at all frequencies for comparable ranges to 

the scatterers 

Targets of interest should be acoustically visible in all parts of the sampled volumes for 

the ranges used. Provided that signal-to-noise is high, this implies (i) same half-power 

beam widths at all frequencies, (ii) same acoustic centre of all transducers (includes 

same transducer depth), and (iii) same orientation for the acoustic axis for all transduc-

ers. 

Explanation: It is currently unrealistic to cover a wide acoustic bandwidth with a single 

transducer that has the same opening angle at all frequencies, so any solution would be 

a compromise. See Figure 5.1 b for illustration of point (i). Higher sv measured in wider 

beams may indicate that scatterers are avoiding the sampling platform, and lower sv 

measured in wider beams may indicate that scatterers are attracted to the sampling 

platform. Since direction to the target is not available (in sv-data!), comparing data from 

a wide 18-kHz beam and a narrow 38-kHz beam may indicate either a target resonant 

at 18 kHz or a target on the outer edge of the narrow 38 kHz beam. The use of multiple 

transducers inherently means that points (ii) and (iii) cannot be fulfilled. 

Suggested solution: Similar acoustic sampling volume at all frequencies for compara-

ble ranges to the scatterers. Having the same half-power beam width (determined 

where the acoustic power is half of the value in the centre of the beam) for a transducer 

at its resonance frequency is achievable, and manufacturers have been encouraged to 

produce transducers with 7° beam width at its resonance frequency. Achieving the 

same half-power beam width for a single transducer over a wide bandwidth is chal-

lenging, especially when high efficiency is required, but it is possible (Sæther, 2009). 

Such a transducer inherently also has the same acoustic centre and acoustic axis over 

the frequency range. A more realistic solution is to cluster multiple transducers together 

and thus optimize beam overlap by minimizing distances between the transducers. 
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5.3.4 Simultaneous transmission of pulses at all acoustic frequencies 

Explanation: There will be a lot of spike (i.e. impulse) noise if the pulse transmission of 

multiple acoustic sources is unsynchronized. For sequential pinging, spike noise may 

be avoided, but the pings then ensonify different volumes (and thereby different tar-

gets) at different frequencies. Furthermore, for sequential pinging one frequency at a 

time, the specimens could have moved and changed orientation from one ping/fre-

quency to the next. A non-moving target measured from a moving platform will appear 

as a moving target. Since measurements can be averaged across pings, this is a smaller 

problem if there are many targets in the sampling volume since. Finally, different band-

widths of echosounder subsystems at different frequencies may result in frequency-de-

pendent pulse delays (as shown in Figure 5.1 c). 

Suggested solution: Synchronization should include other ship-based acoustic devices 

(e.g. sonars and non-scientific echosounders). Any acoustic devices which cannot be 

synchronized should be switched off. Frequency-dependent pulse delays can easily be 

compensated for by applying frequency-dependent vertical shift, so that samples at the 

same depth are compared. 

 

 

Figure 5.1. Illustration of some requirements to make sv or sA samples physically comparable.  

(a) Integrated backscatter is independent of pulse durations due to calibration, but the individual 

samples will differ for different pulse duration (Section 5.3.1). (b) Backscatter of homogeneous lay-

ers are independent of beam width due to calibration, therefore evenly distributed targets in a layer 

will give same value. The integral will differ if the targets are not homogeneously distributed, e.g. 

most targets at the edges due to avoidance [Section 5.3.3 ]. (c) If pulses at different frequencies are 

not simultaneous, sample by sample comparison will be incorrect (Section 5.3.4). 

The use of a high ping rate makes it easier to improve data after collection, e.g. estimat-

ing and removing noise, smoothing data, or using different ping numbers to compen-

sate for a long-ship distance between transducers. A further reason is to achieve high 

spatial resolution in the ship cruise direction. It is, therefore, advisable to use as high a 

ping-rate as practically possible. 

For a flat bottom and fixed ping rate, false seabed detections appear at a predictable 

depth in the echogram. Therefore, it is possible to optimize ping rate to avoid false sea-

bed detections at the same time as maintaining a high ping rate (Renfree and Demer, 

2016). 

To reduce bias induced by sampling different volumes with different transducers, Ber-

ger et al. (2009) developed a method for filtering fish school frequency response ob-

served by several beams coming from different transducers and with different beam 
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widths. The filtering method makes use of the true school position provided by the roll 

and pitch stabilized Simrad ME70 multibeam echosounder (Trenkel et al., 2008), the 

positions and orientations of the transducers, and the dynamic position of the vessel. 

Echoes from the single-beam echosounders that were not simultaneously observed by 

all frequencies are removed, hence allowing for the study of in situ frequency response 

from fish schools with increased accuracy. The method is available in the MOVIES 3D 

software (Trenkel et al., 2009). 

5.4 Survey planning 

5.4.1 Goals and logistics 

The first and most important consideration is the question being asked or the goal of 

the project or survey, as all decisions are dependent on this. Will the data be for man-

agement purposes, such as stock assessments? If so, what is required from the assess-

ment (species identification, target size, etc.)? The following are points that need to be 

considered: 

 biology (e.g. spawning) 

 behaviour (e.g. migration) 

 historical information (e.g. past surveys or fisheries-dependent data can 

help inform survey design) 

 temporal distribution (e.g. seasonal changes or day/night effects which will 

affect acoustic detectability and survey efficiency) 

 spatial distribution (e.g. do the species inhabit deep or shallow water?) 

 conditions at time of data collection 

 utilize existing knowledge to inform survey decisions (e.g. literature, local 

knowledge from fishers, etc.) 

 permit requirements 

 ethical approval 

 funding 

 expertise and availability of personal 

5.4.2 Sampling for species verification and validation 

Robust classifications based on acoustic methods ideally rely on accurate knowledge of 

the organisms responsible for the backscattering responses. This is usually obtained 

from dedicated and concurrent sampling using capture devices such as nets, optical 

methods, or other forms of physical sampling (e.g. Fernandes et al., 2016). In practice, 

acoustic target identification will only be as good as the validation tools used. This re-

quirement poses a challenge, as validation of acoustic targets is subject to many uncer-

tainties. In the context of fisheries acoustics, where the primary goal is generally classi-

fication of acoustic backscatter as species and size classes, this often means comparison 

of acoustic classifications with the results of sampling with nets and/or optical instru-

ments (Ona, 2003; Doray et al., 2007, 2016; Ryan et al., 2009; Sawada et al., 2009; Kubilius 

and Ona, 2012; O’Driscoll et al., 2013; Fernandes et al., 2016). These samples are size- and 

species-selective (Wileman et al., 1996), and the animals captured or imaged are unlikely 

to accurately represent the species and size composition of acoustic scatters. In addition, 

organisms have complex behaviours and may react to sampling platforms such as ves-

sels (De Robertis and Handegard, 2013) and underwater vehicles (Koslow et al., 1995; 

Stoner et al., 1998).  
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The details of biases introduced by factors such as reactions to sampling platforms, nets, 

and cameras are outside the scope of this report. However, the basic methods of con-

ducting validation sampling for comparison to acoustic classification are discussed in 

Section 6. It should be emphasized that while validation is critical to the success of an 

acoustic classification method, it is complicated by uncertainties in the methods used. 

Extrapolation error is also a possibility. The efficacy of an acoustic classification method 

is often situation-dependent (e.g. which species are present, the behaviour of these spe-

cies, etc.), and acoustic target identification is unlikely to be generally applicable. Where 

possible, potential biases in both the target classification and the validation methods 

with their associated uncertainties should be considered explicitly under realistic local 

conditions (even if they are poorly understood). Given the large potential biases in these 

measures, multiple lines of validation may prove effective in addressing issues of spe-

cies- and size-specific catchability and availability to sampling tools. In addition, com-

parison with prior knowledge, laboratory measurements, and model predictions may 

help build confidence in classification results. Model predictions are also subject to po-

tentially large and poorly understood biases. 

The species and size classes estimated from sampling may correspond to those domi-

nating the environment, but they may not necessarily dominate the acoustic scattering 

due to large differences in acoustic scattering properties of various organisms (e.g. Stan-

ton et al., 1993, 1994a, 1994b; Gauthier and Horne, 2004). For example, in mixed assem-

blages, a small proportion of swimbladder-bearing fish can dominate the backscatter at 

low frequency (38 kHz) even if they do not dominate the biomass or numerical densities 

(McClatchie and Coombs, 2005). Therefore, the abundance of organisms and their scat-

tering properties must both be considered. Computing expected backscatter based on 

animal abundance and their scattering properties is referred to as the forward problem 

(Lavery et al., 2007). This approach can also be used to assess if the biological sampling 

is representative of the organisms acoustically sampled (Mair et al., 2005; Peña et al., 

2015). 

The level of identification depends on the species present, the availability of validation 

data, and the need to identify species. Validation data typically include coincident sam-

ples obtained during the acoustic survey. Direct sampling uses nets or other technolo-

gies to obtain representative samples from observed patterns on echograms of individ-

ual or aggregated targets. Qualitative or quantitative use of these supplementary sam-

ples depends on the “representativeness” of the validation data, such as catch or photos. 

Criteria for representativeness include how well the samples reflect the size and species 

composition of the acoustically detected organisms and the spatial resolution of acous-

tic samples. 

It is important to remember that all sampling technologies, direct or remote sensing, 

have constraints, resulting in biased samples. The most appropriate sampling technol-

ogy will maximize the probability of obtaining representative samples and minimize 

bias in catches (i.e. the selectivity of the gear), however the definition of “appropriate” 

is not simple. Choosing which sampling gear to use will be dictated by the location 

being sampled, organism behaviour relative to the sampling gear, the platform used to 

conduct the sampling, the construction of the sampling gear, how the gear is deployed, 

knowledge of the selectivity of the sampler, and the competency of the operator. Ideally, 

the selectivity of a sampler will be quantified (e.g. Nakashima, 1990; Williams et al., 

2011; De Robertis et al., 2017). In cases where validation samples contribute to time-

series for abundance or biomass estimates of commercially important species, effects of 
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changing the sampling gear and/or the sampling method should be quantified, as a con-

version factor is needed to scale data from samples obtained using the modified gear to 

samples collected from the existing dataseries. 

5.4.3 Modelling the scattering properties 

Models of the scattering properties of aquatic organisms can assist in understanding the 

effects described in Table 5.1. Scattering models can be used to guide or inform classifi-

cation. Mathematical models are important in understanding what affects the scattering 

properties at a given frequency. The anatomy of the species, e.g. possession or lack of a 

swimbladder, affects the scattering strength, as does orientation behaviour, but not to 

the same degree at all frequencies. Ona (1990) describes several physiological factors 

that cause natural variations in acoustic TS of fish. Several scattering models of zoo-

plankton and fish (e.g. Stanton, 1988, 1989; Clay, 1992; Stanton et al., 1993, 1994a, 1994b, 

1996, 1998a, 1998b; Stanton and Chu, 2004; Clay and Horne, 1994; Demer and Conti, 

2003) show that orientation, morphology, and physical properties (e.g. density and 

sound speed contrasts (g and h) affect scattering properties. An effective scattering 

model needs to be complex enough to describe the real scattering properties and simple 

enough for practical use. 

5.4.3.1 Types of models 

Acoustic scattering models can be categorized into two types: (i) analytical and (ii) nu-

merical. A detailed summary of these models can be found in Jech et al. (2015) and are 

listed in Table 5.1. 

Analytical expressions of scattering models can be further divided into two forms: exact 

and approximate. Exact solutions are limited to a few targets with regular geometric 

shapes expressed as modal series solutions. They are applicable for targets with a low 

ka value, where k is the acoustic wave number and a is the characteristic dimension of 

the target, e.g. the radius of a sphere. When the ka is very large, the exact modal series 

solutions may suffer from convergence problems, especially for prolate spheroids. Ap-

proximate models normally have either closed-form solutions or forms that can be com-

puted easily and can describe targets with more complicated geometry and material 

properties. These models can describe most of the practical scattering by aquatic organ-

isms in the field of fisheries and zooplankton acoustics (Jech et al., 2016; Table 5.1).  

Numerical models are normally discrete forms of the exact integral solutions and can 

describe the scattering by targets with complex geometry and material properties 

(boundary conditions). There are two major methods: (i) boundary element and (ii) fi-

nite element. Although these methods are exact and more flexible in dealing with com-

plicated shapes and material properties, they are computationally expensive, requiring 

computers with large memory and fast computation speed (Jech et al., 2015; Table 5.1).
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Table 5.1. Types of acoustic scattering models 

Model/approximation solution Shape Use  Limitations Advantages Reference 

ANALYTICAL MODELS 

Exact model 

Spheres Simple 

geometric 

shape 

Siphonopores Limited to spheres Simple to use Anderson (1950); Faran (1951) 

Infinitely long cylinder Simple 

geometric 

shape 

Fish body and 

krill/shrimp 

Not 

morphologically 

realistic 

Simple to use Faran (1951); Stanton (1988) 

Prolate spheroid Simple 

geometric 

shape 

Copepods, swimblad-

der, and fish body 

Numerically 

difficult for ka<<1 

Simple to use Flammer (1957); Yeh (1967); Fu-

rusawa (1988); Reeder and Stanton 

(2004) 

Approximate model 

Fourier Matching Method 

(FMM) 

Axisymmetric 

simple 

geometric 

shape 

Swimbladder and fish 

body 

Axisymmetric 

representation 

Valid over wide range of 

frequencies, body shapes, 

tilt angles, and material 

properties 

Reeder and Stanton (2004) 

Deform and Finite cylinder 

(DFC) 

    Stanton (1989); Ye et al. (1997) 

Modal Series Based 

Deformed Cylinder Model 

(MSB-DCM) 

Axisymmetric 

simple 

geometric 

shape 

Swimbladder and fish 

body 

Axisymmetric 

representation 

Low computational 

requirements 

Stanton (1989) 

Resonance scattering Simple 

geometric 

shape 

Swimbladder Not accurate for 

high frequencies, 

where ka>>1 

Low computational 

requirements 

Weston (1967); Love (1978); Ye 

(1997a, b); Scoulding et al. (2015) 
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Ray-based approximation     Clay (1992); Stanton et al. (1993) 

Kirchhoff approximation 

(KA) 

True shape Swimbladder and fish 

body 

Computationally 

intensive, not accu-

rate for long thin 

objects 

Valid over wide range of 

frequencies, body shapes, 

tilt angles, and material 

properties 

Foote (1985); Clay and Horne (1994) 

Distorted Wave Born 

Approximation 

Simple 

geometric 

shape 

Fish body Applicable only for 

weak scatterers 

Low computational 

requirements 

Chu et al. (1993); Stanton et al. 

(1994a, 1994b); Demer and Conti 

(2003); Jones et al. (2009) 

Hybrid model 

Kirchhoff Ray Mode Approx-

imation (KRM) 

Simplified 

shape 

Swimbladder and fish 

body 

Not valid at high 

tilt angles and low 

frequencies, where 

ka<=1 

Low computational 

requirements 

Clay and Horne (1994) 

DWBA and DFC Axisymmetric 

(bent) shape 

Swimbladder and fish 

body 

Axisymmetric: 

with equals height 

May represent relatively 

complex shapes 

Gorska et al. (2005) 

NUMERICAL MODELS 

Boundary Element Model 

(BEM) 

Complex 

shape 

Swimbladder and fish 

body 

 Not as computationally 

intensive as FEM 

Chen and Scheikert (1963); Chertock 

(1964); Copley (1967); Okumura et 

al. (2003) 

Finite Element Model (FEM) Complex 

shape 

Swimbladder and fish 

body 

Computationally 

intensive. Requires 

a lot of computer 

memory at high 

frequencies. 

Valid over wide range of 

frequencies, body shapes, 

tilt angles, and material 

properties 

Berenger (1996); Ihlenburg (1998); 

Lilja et al. (2004); Zampolli et al. 

(2009) 
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5.4.3.2 Model input parameters 

There are several parameters that are crucial to model-based classification, therefore the 

list below is not exhaustive. Some parameters (e.g. absorption) are frequency-specific. 

As the absorption coefficient strongly depends on acoustic frequency, any classification 

schemes based on the spectral characteristics of the organisms could be affected if the 

water absorption coefficients are incorrect. According to Doonan et al. (2003), commonly 

used estimates of acoustic absorptions in seawater (Francois and Garrison, 1982) are 

inaccurate above 200 kHz. Thus, variables based on frequency ratios, such as the rela-

tive frequency responses, r(f), will vary with depth, and if those variables are used in 

target classification, the results may be incorrect. Models require input parameters 

based on what they are modelling. Different input parameters will affect different mod-

els in different ways. 

 material properties: e.g. density, sound speed, viscosity, specific heat ratio, 

surface tension, conductivity 

 biological/anatomical: e.g. bone, flesh, gas bearing vs. non-gas bearing, age, 

sex, maturity, life history 

 morphology: e.g. geometric shape, i.e. length, height, and width (typically 

mean and standard deviation) 

 physiology: e.g. fat content, ontogeny, stomach fullness 

 behaviour: e.g. angle of orientation relative to the receiver (typically mean 

and standard deviation) often associated with diel vertical migration 

 environmental: e.g. sound speed, density, salinity, temperature, depth, pH, 

absorption coefficient 

 instrumental: e.g. transmit power, frequency, pulse duration, bandwidth 

Material properties inside aquatic organisms will be inhomogeneous. Numerical mod-

els, such as finite element models, can handle such inhomogeneous material properties, 

but cannot realistically be used for classification due to computational demands. In such 

a scenario, a three-dimensional DWBA model can be used for weakly scattering objects 

(Jones et al., 2009). 

5.4.4 Platform selection 

Platform selection for echosounders should be based on: (i) cost, (ii) required temporal 

and/or spatial and/or vertical coverage, (iii) whether results need to be quantitative or 

qualitative, and (iv) additional ancillary data required for quality and validation (e.g. 

net samples, CTD data). Platform choice should minimize noise and interference and 

maximize coverage. 

Echosounders were originally ship-borne, mounted on the hull, drop keel, or a pole 

(Sund, 1935; Simmonds and MacLennan, 2005), and were used to provide large spatial-

scale surveys of fish and plankton distribution, within relatively synoptic time-scales 

(e.g. Hewitt et al., 2004). However, given the large temporal and geographic scales in-

volved and the cost of research vessels, alternative means are being explored to collect 

data where possible (Greene et al., 2014). These include using echosounders on fishing 

vessels (Watkins and Brierley, 2016), autonomous underwater gliders (Guihen et al., 

2014), and autonomous surface vehicles (Ghania et al., 2014; Greene et al., 2014). 

Alternatively, when research questions require acoustic observations over long periods, 

moored instruments are now commonly used (Brierley et al., 2006; Urmy and Horne, 

2016). The sample rate from moorings is typically constrained by the size of mooring 
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and battery capacity, except where cabled observatories permit permanent operation 

(e.g. LoVe observatory, Godø et al., 2014; Venus observatory, Lemon et al., 2012).  

Finally, platforms such as towed and lowered systems, remotely operated vehicles 

(ROVs), and autonomous underwater vehicles (AUVs) have been used to provide 

novel insights into target identification at depth (Kloser et al., 2002), vessel avoidance 

(Fernandes et al., 2000, 2003), and hard-to-reach locations such as undersea ice (Brierley 

et al., 2002). The resulting platform should minimize noise and interference and max-

imize the spatial and temporal coverage. Simmonds and MacLennan (2005) is a useful 

reference for using acoustics in fisheries science. 

5.4.5 Survey design 

Simmonds et al. (1992) deals with survey design. Simmonds and MacLennan (2005), 

Shotton and Bazigos (1984), and Jolly and Hampton (1990) are also useful documents 

for survey design. 

The following topics should be considered when designing a survey: 

 The key objectives of the survey (e.g. assessment of spawning-stock bio-

mass would require a different survey design than determining in situ tar-

get strength).

 If the focus of the survey is acquisition of multifrequency data, ensure that

the data are physically and spatially comparable (see Section 5.1).

 Consider a contingency plan in case of unforeseen circumstances (e.g.

equipment malfunctions or bad weather).

 Consider an adaptive survey design which permits a degree of flexibility

to reflect survey conditions (e.g. too much or too little time to complete sur-

vey objectives).

 Expertise and availability of personnel.

 Allocation of time to carry out pilot studies and equipment tests.

 Allowing enough time for calibration.

 Allowing enough time to collect validation data (e.g. biological samples us-

ing trawls).

 Time is usually the limiting factor.A vessel intercalibration can be per-

formed when multiple vessels are used (see Simmonds and MacLennan,

2005, p. 326).

5.4.5.1 Survey design principle 

Survey design is platform- and instrument-specific. It also depends on the survey ob-

jectives. One can, for example, classify echotraces to assess the marine organism bio-

mass in a given area, study their spatial distribution, or analyse their temporal dynam-

ics. Achieving each of these objectives will likely require different survey designs. De-

signing a survey consists of defining a sound cruise track and an efficient sampling 

strategy in order to make the best use of the time and resources available. Good refer-

ences on survey design for acoustic biomass assessment include Simmonds et al. (1992) 

and Simmonds and MacLennan (2005). Although these provide guidance on how to 

design a single-frequency survey for fish biomass assessment, they are generally valid 

in the multifrequency context of this report. The following section builds on these ref-

erences to provide a general overview of survey design best practice in the specific 

context of multifrequency target classification. 
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5.4.5.2 Procedure 

Simmonds and MacLennan (2005) provide a general procedure to be worked through 

when designing a survey:  

1. Defining the geographical area to be covered and the sampling strategy

There are two main sampling strategies in the design of an acoustic survey: pre-

planned or adaptive sampling. Pre-planned sampling involves predefining a 

fixed cruise track in the case of a mobile platform, or a predetermined sampling 

timetable in the case of a fixed observatory. Adaptive sampling allows the cruise 

track or the sampling rate to change according to observations made during a 

predefined outline survey. Results of acoustic target classification themselves 

can also be used to guide sampling during survey (see e.g. Case study 1 in Annex 

1). When designing a survey, the first step is to decide whether to conduct pre-

planned or adaptive sampling and, in the case of an adaptive strategy, to decide 

on the principles to be applied in adjusting the sampling coverage or rate and 

the data analysis methods. 

Survey limits can be predefined based on natural boundaries, knowledge of or-

ganisms’ distribution, or a controlling variable (e.g. water depth or other habitat 

characteristics, Zwolinski et al., 2011). If the boundaries of the organism of inter-

est distribution are unknown, using an adaptive strategy could be taken. 

2. Estimating the resources

With a moving platform, the density of sampling should be adjusted to optimize 

the limited sampling resources, i.e. principally platform time, but also the avail-

ability of trained crew or scientists to perform specific tasks. In the case of a plat-

form such as a mooring or autonomous vehicle, limited energy supply and/or 

storage space may require adapting the sampling rate in order to capture the 

biological patterns of interest. 

If the final objective is to derive biomass estimates, the precision required can 

also define the density of sampling in space and time. . In the case of a moving 

platform, the spatial error made when using a specific survey track to assess the 

abundance of organisms can be estimated beforehand using geostatistics if 

quantitative information on the organisms’ spatial distribution are available 

(Petitgas, 2001; Doray et al., 2008). 

3. Calculating the time available for the survey

Practitioners should calculate the amount of resources available for the actual 

survey, making due allowance for other activities such as fishing (Simmonds 

and MacLennan, 2005). All activities require time allocation, which must be care-

fully estimated beforehand: logistics, transit, calibration, trawl or camera sam-

pling, hydrographic stations, and track running time. A schedule must be in 

place before the survey takes place. 

When planning to acquire multifrequency data for classification purposes, a spe-

cific consideration is adjusting the ping rate and/or vessel speed in order to op-

timize the sampling resolution in the along-ship direction and to plan eventual 

specific deployments (e.g. switching from hull-mounted to lowered or ROV-

based echosounders). Dedicated time should be allocated for addressing classi-

fication specifically. Trawl and optical measurements should be performed as 

close as possible in space and time to the acoustic data collection. It is advisable 

to allocate survey time for conducting pilot studies and equipment tests. 
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In the case of a systematic survey conducted on a moving platform, practitioners 

choose between random or systematic survey tracks and then define the shape 

of the survey grid (triangular, rectangular, etc.). If estimating biomass is not a 

survey goal, running a random survey track is inadvisable, as it would increase 

transit time. If a map of the organisms’ distribution is required, a random survey 

track would also generally provide suboptimal spatial coverage, compared to a 

systematic survey track designed to sample the area homogeneously. 

Common survey shapes include parallel (see e.g. case studies 2 and 5 in Annex 

1), triangular (Simmonds et al., 1992) or star designs (Doray et al., 2008). Small-

scale (~ 5 km) square tracks can also be surveyed repetitively to characterize diel 

dynamics and submesoscale behaviour of marine organisms using multifre-

quency acoustic data (e.g. Bertrand et al., 2008). Simmonds et al. (1992), Sim-

monds and Fryer (1996), and Simmonds and MacLennan (2005) extensively dis-

cuss the pros and cons of survey-track options and shapes for fish biomass as-

sessment surveys. 

Adaptive surveys on a moving platform generally follow a predefined survey 

track whose shape can be adapted to concentrate efforts in areas with higher 

abundance or by reducing/removing effort in areas of low abundance (Sim-

monds and MacLennan, 2005). One can, for example, choose to (i) increase sam-

pling intensity in high-density areas when they are encountered or after a pre-

liminary scouting survey, or (ii) adjust the transect length to map the organism’s 

distribution (Simmonds et al., 1992). 

In the case of a fixed platform, acoustic samples can be collected at regular (Kaar-

tvedt et al., 2009; Urmy et al., 2012) and irregular (Doksæter et al., 2009) intervals 

or in an adaptive manner, depending on survey objectives, power supply, and 

data-storage limitations. 

5. Adapting the sampling strategy to the survey area/time frame

This step consists of drawing the calculated length of the cruise track on a map 

to ensure good spatial coverage when surveying on a mobile platform (Sim-

monds and MacLennan, 2005). If stratified sampling is required, the sampling 

intensities applied to the different regions of the map must be calculated to check 

that the survey track complies with the sampling strategy.  

In the case of a fixed platform, the acoustic sampling timetable must be fit into 

the deployment/survey time frame. The practitioner should also check that the 

sampling timetable is adequate to capture (or avoid) specific ecological pro-

cesses known to occur at given times or frequency (i.e. diel vertical migration). 

Annex 1 contains case studies (A1.1, A1.2, A1.3, A1.4 and A1.5) that contain a need for 

survey design. 

5.5 Data acquisition 

The physical and spatial characteristics, as discussed in Section 5.1, should be as similar 

as possible for detailed analysis of the acoustic data. While absolute comparability is 

impossible in all situations, we propose that ‘‘ideal data’’ are considered as a reference 

point with the purpose of co-analysis of data at multiple frequencies (Korneliussen et 

al., 2008). Acoustic data are defined as ‘‘ideal’’ in this context if data from several fre-

quencies can be used to generate combined-frequency data at the same resolution as the 

original data. This requires measurements that are physically comparable (and of the 

same quality at all frequencies), that recordings are made simultaneously from identical 

Deciding on sampling strategy and cruise track4.
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volumes, and are limited only by the effective range of the higher frequencies. There-

fore, it is proposed that the requirements outlined in Section 5.1 should be followed if 

ideal multifrequency or broadband acoustic data are to be obtained. 

Different platforms may be used: ships (hull or drop keel mounted echosounders), 

moorings, towed bodies, gliders, or autonomous underwater vehicles. On vessels, 

transducers are typically mounted close together on the hull (mounted directly or on a 

blister) or drop keel (which can protrude more than 3 m below the hull). Transducers 

should be mounted as deep as possible to reduce the negative influence of unwanted 

surface signals caused by bad weather (i.e. wind- and wave-generated bubbles), but 

also shallow enough to include enough near-surface fish registrations. Transducers 

mounted on a 2.5 m retractable drop keel at the bottom of a 5 m deep ship hull may be 

only 0.5 m below the hull in good weather and 2.5 m in bad weather, i.e. 5.5 or 7.5 m 

below the sea surface, respectively. 

5.6 Preprocessing 

Good data analysis starts with good quality data (Figure 3.2). Although this is im-

portant with any data analysis, high quality data are essential with multifrequency clas-

sification (MFC) as algorithms could be applied indiscriminately on all biological tar-

gets rather than on a narrow subset of specific, preselected echoes. Standards of best 

practice for data acquisition should be followed (see Sections 5.4 and 5.5) to ensure op-

timal data quality and coherency among frequencies. However, if for whatever reason 

they are not or that uncontrollable factors compromise data quality, recorded artefacts 

or noise must be excluded from further analyses. To do so, the raw data are prepro-

cessed through a quality-control filtering process, whereby unwanted data (mostly sig-

nals from non-biological scatterers or external sources such as nearby ships) are identi-

fied through manual scrutiny and/or by automated algorithms. 

5.6.1 Unwanted data – noise 

“Wanted” signals/data include all backscatter from intended or desired biological tar-

gets. Therefore, “unwanted” or bad data occurs when noise, unwanted signals, or other 

inadequacies are recorded in the data acquisition process (see Section 5.5) having both 

physical and biological origins (Table 5.2). Often bad data are associated with noise. 

Noise can be defined as uncorrelated interference or unwanted sound, i.e. a signal pro-

cessed by the receiver that is independent of the generated ping. This can include inter-

nal noise, platform-related noise (e.g. machinery), or asynchronous electronic or acous-

tic interference (e.g. other echosounders). However, uncorrelated interference can also 

include signals with biological origins, such as whale clicks and fish vocalizations. Kor-

neliussen (2000) defined noise as the opposite of wanted signal: “if the intended signal 

is defined as all transmitted sound backscattered onto the transducer surface, then noise 

is everything else”. In the present context, unwanted signal is separate from noise. Un-

wanted signal is backscatter received by the transducer that is correlated with the trans-

mit pulse, but originates from non-targeted objects. This is predominantly from physi-

cal entities (air bubbles, the seabed, sampling equipment such as CTDs, vertical nets, 

etc.) or from physical, data-logging artefacts (second echo from seabed, ringing, etc.) 

but may include non-targeted biological organisms such as marine mammals or certain 

zooplankton assemblages, for example. Determining what is noise and what is un-

wanted or non-targeted signals is important when deciding how to preprocess the data 

(e.g. zooplankton are unwanted signal in the context of analysing swimbladder-bearing 

fish). 
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Table 5.2. Classification of bad data. 

Noise – uncorrelated interference Unwanted signal* – correlated backscatter 

Physical Biological Physical Biological 

Asynchronous elec-

tronic and acoustic 

pulsed interference  

(other echosounders, 

pingers, ADCP, 60-Hz 

equipment crosstalk, 

etc.) 

Biologically 

produced 

sounds (clicks, 

vocalizations, 

etc.) 

Sampling equipment 

(profilers, vertical 

nets, etc.) 

Non-targeted or-

ganisms (marine 

mammals, some 

zooplankton as-

semblages 

Internal “self-noise” Seabed and double 

seabed, side lobes 

Platform-related noise Surface 

reverberation, 

ringing 

Air bubbles (wind- or 

vessel-generated), 

gas plumes (seeps)  

* The definition of unwanted signal is subjective and dependent on the project objectives, although in most 

cases, signal from a physical source (other than the transducer used to both transmit and measure) will be 

unwanted. 

5.6.2 Ambient noise and uncorrelated interference 

5.6.2.1 Physical 

Internal noise independent of the transmit pulse can be caused by the electronic cir-

cuitry of the sounder or the noise from other electronics that are not electrically isolated 

from the sounder. This is often referred to as ambient noise as it is amplified by the 

sounders time-varied gain (TVG) to produce coloured bands with depth range on the 

echogram. 

Platform-related noise can also be called TVG noise because it also passes through the 

time-varied gain. However, this noise often varies over time or even from ping to ping. 

It includes broadband vessel- or platform-generated noise, e.g. flow noise, engine noise, 

generators, vibrations, etc., but also has an environmental component as it increases 

with wind and sea state. 

Asynchronous electronic and acoustic pulsed interference is caused by uncorrelated 

signal produced by independent transmitting equipment such as other echosounders, 

pingers, ADCPs, AC equipment crosstalk, etc. that have not been synchronized to the 

master sounder and, therefore, produce incoherent pulsed signals that are processed 

by the receiver. These received signals are not necessarily from the main pulse of the 

offending instrument, but can originate in one of the generated harmonics. 

5.6.2.2 Biological 

Although considerably less common than the other types of uncorrelated interference, 

biologically produced sounds such as clicks, e.g. sperm whales and shrimp, and vocal-

izations, e.g. fish and seals, can produce interference on echograms, depending on the 

context. 
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5.6.3 Unwanted signal or backscatter correlated with transmit pulse 

5.6.3.1 Physical 

Not all unwanted signals are strictly speaking noise, as they may be backscatter from 

unwanted targets such as bubbles and are therefore correlated with the transmit pulse. 

Ringing, caused by the transceiver picking up the transmit pulse directly or after it has 

bounced around the installation casing, limits what can be detected within a couple of 

metres of the transducer. This reverberation usually dissipates within a fixed range 

from the transducer and is transducer-dependent (pulse duration, power setting, etc.). 

Ringing can usually be mitigated by applying absorbing material behind the trans-

ducer. For horizontally oriented transducers in sonars, backscatter from surface is also 

undesired 

Another common source of surface-related, unwanted signal is wind-generated air bub-

bles. As wind and sea state increase, air bubbles are generated at the air–sea interface 

and are exacerbated by the pitching of the vessel. As these bubbles are entrained below 

the vessel over the transducer faces (bubble sweep-down), large echo returns are pro-

duced. Furthermore, as the bubble layer increases with windspeed and sea state, signif-

icant signal attenuation can affect the acoustic return (Novarini and Bruno, 1982) which, 

in the extreme, can block out the transmitted signal completely. 

During surveys, non-biological backscatter can be recorded from sampling equipment 

suspended below the vessel, e.g. profilers, vertical nets, etc. In addition, rising gas 

plumes (seeps) can be quite common when surveying methane-laden seabeds, and at 

times difficult to distinguish from schools of swimbladdered fish. 

Of course, the dominant backscatter of physical origin in acoustic data comes from the 

seabed. Although automatic seabed-detection algorithms are quite effective for remov-

ing the seabed echo from further analyses, the occasional unwanted seabed detection 

can occur. However, missed seabed detections will result in large anomalies in the cu-

mulative echo integration of the water column and can therefore be easily identified 

and corrected. 

Other seabed related issues include alias seabed echoes, which can occur above the true 

seabed and, therefore, be misidentified as biological in nature. A false seabed can occur 

when the ping rate is too fast, resulting in the residual echo from the previous ping 

being recorded during the subsequent ping-recording interval (Tomczak et al., 2002). 

These conditions are exacerbated with seabed depth and hardness. The alias seabed 

appears as a scattering layer in midwater, however it can easily be identified as it mim-

ics the form of the true seabed. 

A false seabed can also occur when an echo is produced from a side lobe along a cliff 

face or regions of highly fluctuating seabed depths. Given that the side lobe echo ar-

rives from a shorter range than the true seabed beneath the vessel, the false seabed will 

appear as a biological scattering layer, although this time close to the true seabed. 

5.6.3.2 Biological 

Unwanted signal can also include non-targeted biological backscatter. These unwanted 

signals can be caused by large unknown objects, which produce significant backscatter 

anomalies but are not from a physical or inanimate source. The most common large 

unknown objects are marine mammals, e.g. whales and seals, although turtles and large 

fish such as tuna will produce similar anomalies. These objects can often be detected by 

isolating them using a low-pass threshold or data spike check. 
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Non-targeted biological backscatter can also mean weaker echoes such as plankton 

scattering layers when one is interested in fish echoes, which are most commonly re-

moved with a high-pass threshold. 

5.6.4 Data processing prior to classification 

Data editing the removal of unwanted signals, either via manual or algorithm-based 

methods. Once the echoes from noise and unwanted signals have been identified, they 

must then be excluded from further processing through data editing. The preferred 

method to eliminate unwanted signal is to classify it as “bad” or “missing” data. It is 

important to emphasize that these data should be treated as missing, i.e. that these data 

should not (i) be interpolated or averaged between adjacent data cells or (ii) be replaced 

by zeros. 

There are cleaning and filtering algorithms that can be applied automatically, such as 

for internal “self-noise” removal. The simplest method for filtering TVG noise is with a 

time-varied threshold (TVT). This will eliminate all noise below the TVG-amplified 

threshold which can be estimated by recording in passive mode (receiving, but not 

transmitting) and fitting a regression to the noise curve. However, a TVT is difficult to 

implement if that threshold is changing over time (e.g. due to changes in ship speed or 

bottom depth). In addition, since noise and signal are additive, self-noise should be sub-

tracted from the signal, not thresholded, especially in a situation of low signal-to-noise 

ratio (rsn). Therefore, several methods of estimating and subtracting self-noise have been 

developed (see Watkins and Brierley, 1996; Korneliussen, 2000; De Robertis and 

Higginbottom, 2007; McQuinn et al., 2013). 

The rsn needs to be sufficiently high for the relative frequency response r(f) to be reliable. 

Generally, noise is stochastic with a non-symmetric probability density function (pdf). 

Resampling to a lower resolution will reduce stochastic noise, but will also reduce the 

spatial resolution; thus, if data are going to be smoothed, that should be done prior to 

noise removal. In practice, an rsn in the range of 6–10 should be sufficient for measure-

ments of volume scattering, depending on the degree of averaging used (less for heavy 

smoothing). 

Most methods that quantify noise rely on empirically estimating the self-noise pro-

file,using the background or minimum noise level once the TVG function has been re-

moved, and applying a buffer to the fitted relationship associated with either the rsn (e.g 

Korneliussen, 2000; De Robertis and Higginbottom, 2007) or the error distribution of the 

noise values around the mean response (e.g. McQuinn et al., 2013). An alternate method, 

which is not widely implemented in instruments used in fisheries acoustics, would be 

to switch between active and passive modes, i.e. pause transmitting and estimate pas-

sive noise via passive listening after a given number of transmissions. 

Surface reverberation, ringing, and the bubble layer can easily be removed by automat-

ically blanking a fixed range from the transducer face. This blanking range will vary as 

reverberation and ringing are transducer-dependent, i.e. depending on installation and 

transmit configuration. However, special attention is required when removing the bub-

ble layer as it increases with sea state, and bubbles can produce very strong echoes and 

attenuation of the acoustic signal. Bubble layers can be detected either through visual 

scrutinization or with a low-pass threshold detector. When editing data collected in 

rough weather, significantly attenuated pings should be classified as bad data. 

Seabed detection and removal should be carried out with automatic algorithms, fol-

lowed by manual verification and correction if needed. In most situations, automatic 

seabed detection algorithms are efficient. However, quickly shifting seabed depths from 
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irregular seabeds and fish aggregations close to or on the seabed may introduce errors 

that need to be edited manually. As a first filter, applying a small backstep of 0.5–1.0 m 

above the detected seabed is usually sufficient to remove most seabed signals left in the 

integrated water column. However, in situations with fast-rising slopes or where the 

seabed has been missed completely, a check for data spikes will most often identify any 

seabed echoes that are still above the detected seabed, which can then be corrected man-

ually. Specifically, for MFC, using the average of bottom channels may be helpful. Thus, 

all detected seabed depths should be synchronized among channels to avoid unequal 

bin sizes between channels close to the seabed. Unequal bin sizes will result in compar-

ing unequal sample volumes, giving erroneous frequency responses. 

Side-lobe echoes can be mistaken for biological layers near the seabed and are difficult 

to detect automatically. When surveying in areas with fast-rising slopes or when run-

ning transect lines parallel with cliff faces, echograms should be scrutinized for so-

called false seabeds or “second bottom echoes” (i.e. a multipath seabed signal from the 

previous ping appearing in the water column) which should then be classified as un-

wanted data. 

5.6.5 Data averaging 

Small-scale acoustic data are inherently highly variable. Attempts to classify data at the 

resolution of the echosounder’s sampling resolution are unlikely to be effective as var-

iability of classifiers from different scatters are likely to overlap. The data should be 

vertically and temporally averaged or smoothed to reduce variability prior to classifi-

cation, although as little as possible to keep high spatial resolution. Averaging samples 

reduces random variability of measurements of relative frequency response and mini-

mizes biases introduced by differences in the volume sampled at the different frequen-

cies (Korneliussen and Ona, 2002). If transducers are not colocated, a first-order correc-

tion can be made prior to averaging by shifting the data in time to correspond as closely 

as possible to the spatial location sampled by the other frequencies (Demer et al., 1999; 

Conti et al., 2005; Korneliussen et al., 2008). Thus, selection of an appropriate scale of 

spatial averaging (i.e. smoothing) is a central consideration in many methods of 

backscatter classification. Note that data samples below a specified threshold should 

not be set to zero prior to averaging (Korneliussen, 2000; Fernandes et al., 2006). 

The choice of analysis cell size represents a trade-off between decreasing variability of 

the observed relative frequency response and minimizing violations of the assumption 

that backscatter is dominated by a single organism. At the same time, relatively fine-

scale averaging is desirable to minimize the extent to which backscatter from multiple 

taxa will be observed in a single analysis cell (Demer et al., 2009). Either very low or 

very high levels of averaging are likely to yield poor results. The affect of averaging on 

variance can be evaluated via a sensitivity analysis (e.g. Gorska et al., 2005, 2007; De 

Robertis et al., 2010), but understanding the degree to which different types of scatterers 

will overlap in analysis cells of a given size remains a challenge as this will change over 

space and time. Conducting analyses of the sensitivity of classification results to data 

averaging is recommended. 

Classifications can be improved in cases where organisms form well-defined mono-

specific aggregations by preclassifying fish aggregations and combining all samples in 

an aggregation prior to multifrequency analysis to maximize the degree of averaging 

(Fernandes, 2009; Korneliussen et al., 2009, 2016). In addition, combining preclassifica-

tion at a fine spatial resolution to remove samples that are inconsistent with the taxon 

of interest, followed by classification based on the relative frequency response in spa-
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tially averaged analysis cells (Demer et al., 2009), or classifying pixels based on the clas-

sification results of their neighbours (De Robertis et al., 2010; Korneliussen et al., 2016) 

are promising approaches as they may allow for averaging of many samples, while 

minimizing the degree to which backscatter from different types of scatterers will be 

averaged together. 
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6 Approaches to multifrequency target classification 

Models and measurements are dependent on each other. Scattering models must be 

verified by measurements, and measurements not described by current scattering mod-

els require new or improved models to be developed. A model should be complex 

enough to approximate the real world, but simple enough to apply. In general, models 

need to be supported through measurements to have confidence that they are consistent 

with our understanding of the physical world. In fisheries acoustics, scattering models 

are needed to understand empirical backscatter and translate observed patterns into 

viable biological densities. 

Both modelling and empirical techniques are used to classify acoustic targets. Theoret-

ical and numerical scattering models are used to understand how sound interacts with 

biology to reflect energy and to aid in the classification of aquatic organisms. Represen-

tation of aquatic organisms in scattering models began with geometric shapes, e.g. bub-

bles (Anderson, 1950) and evolved to direct representations of bodies and scattering 

inclusions, e.g. swimbladders in fish (Clay and Horne, 1994) and invertebrates, e.g. zo-

oplankton (Chu et al., 1993) and cephalopods (Lee et al., 2012). For target classification, 

model predictions may be extracted from a particular scattering region, e.g. resonance 

or from amplitude differences among multiple frequencies (see Section 4). 

The advantages of using a model-based approach instead of an empirical approach to 

classify backscatter include: (a) permitting the validation and theoretical interpretation 

of the empirical approach; (b) allowing the performance of emulations and simulations 

with controlled input parameters and variables to assess the efficiency, effectiveness, 

robustness, and uniqueness of the classification; and (c) extending the classification 

(frequency) ranges to those beyond measurements that are achievable with current 

technologies. 

Although an empirically approach to classification is based on some á priori knowledge 

of scattering properties, it primarily relies on comparison of observed patterns of rela-

tive frequency response to some known monospecific scatterers at a set of given bio-

logical and physical conditions measured with a defined set of instrument settings. It 

may be possible to classify scatterers where the scattering properties are not fully un-

derstood, but where the species and their behaviour (e.g. spawning migration, feeding 

migration, wintering, etc.) are known. A major challenge to the empirical description 

of scattering properties is access to measurements of monospecific registrations with 

similar behaviour as the one being investigated. Although monospecific aggregations 

are used to extract scattering properties such as the relative frequency responses, the 

latter may not be sufficiently unique to acoustically differentiate species (e.g. echoes 

from herring vs. sardine). 

Thus, a combined use of scattering models and measured backscatter with verified 

origin is the ideal scenario and an important step towards a reduction in the overall 

uncertainty of the final density estimates. 

There are a range of classification methods that can be used either alone or in combina-

tion with multifrequency methods. Statistical descriptions of ensemble echo envelopes 

and image-analysis techniques have been used to characterize and classify acoustic tar-

gets. If aggregations of a species have unique shapes or sizes, then constituent species 

may be identified based on metrics derived from time-dependent amplitudes (i.e. echo 

envelopes) that describe the aggregations (e.g. Rose and Leggett, 1988). This approach 

has been applied to pixels in echograms (e.g. Nero and Magnuson, 1989; Scalabrin et al., 
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1994) and extended to characterize pelagic fish aggregations (e.g. Barange, 1994; Coet-

zee, 2000).  

Individual echo and aggregation descriptors have been used, often in conjunction with 

physical variables, as input to multivariate statistic techniques to classify targets. Dis-

criminant function analysis (e.g. Rose and Leggett, 1988), cluster analysis (Weill et al., 

1993; Campanella and Taylor, 2016; Gastauer et al., 2017a), and ordination techniques 

such as principle components analysis (e.g. Scalabrin et al., 1994) are the most common 

tools used to classify fish species. An extension of the use of statistical descriptors is to 

use them as input to artificial neural networks, which have been used to classify an-

chovy (Engraulis encrasicolus), sardine (Sardina pilchardus), and horse mackerel (Trachu-

rus trachurus) aggregations (e.g. Haralabous and Georgakarakos, 1996). 

The availability of machine-learning techniques has led to additional acoustic target 

classification approaches, which can include probability-based classification of targets. 

Supervised classification uses validation samples to predict known species classes (e.g. 

Fernandes, 2009; Korneliussen et al., 2009; De Robertis et al., 2010). Unsupervised clas-

sification does not use validation samples, and the number of classes is not specified 

(e.g. Anderson et al., 2007a, 2007b; Campanella and Taylor, 2016; Gastauer et al., 2017a). 

A hybrid approach (semi-supervised learning) allows large datasets to be classified if 

validation samples from known classes are contained in the data (e.g. Woillez et al., 

2012). 

6.1 Target classification based on scattering models 

6.1.1 Theoretical basis for classification 

In contrast to the empirical approach to target classification (Section 6.2), which can be 

very effective under certain circumstances, the model-based approach requires 

knowledge of both the data and the physical mechanisms from which the data are pro-

duced. Here, the word model represents the acoustic scattering by targets. Target 

backscattering is mostly monostatic (i.e. same source and receiver) but can be bistatic 

(different source and receiver). 

Holliday (1972) combined model predictions with empirical measurements and sam-

ples to demonstrate that resonant peaks corresponded to distinct organism sizes. This 

logic was extended to the identification of fish species using maximum target strengths. 

Over the next decade, classification of fish targets to species was aligned with maximum 

observed target strengths. Unfortunately, two implicit assumptions were not appropri-

ate to this extension: 

1. that a maximum peak would also occur at the frequencies commonly used in

fisheries acoustics (i.e. geometric scattering frequencies where ka or L/ > 1),

and,

2. that intraspecies maximum target strengths variability was low relative to spe-

cies variability.

Non-unique and highly variable echo amplitudes of acoustic targets within the geomet-

ric scattering region negate the use of maximum target strength as a target classifier. 

While maximum backscatter amplitudes may separate acoustically large targets from 

smaller targets (e.g. predators and prey), stochastic variability of backscatter amplitudes 

(from individual organisms due to orientation or among morphologically similar spe-

cies due to differences in material properties) reduces the utility of this approach. 
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6.1.2 Inversion – using scattering models in classification 

Inversion is similar to the approach described by Fernandes et al. (Chapter 6 in Fer-

nandes et al., 2006). The purpose of an inversion algorithm is to fit the gathered volume 

backscatter coefficients for multiple frequencies to analytical plankton backscatter 

models. The data are fit to each scattering model by the non-negative least-squares al-

gorithm (Lawson and Hanson, 1974). The model with the smallest residual is selected 

as the best-fit model if the residual is smaller than a configurable maximal residual. A 

cost function corresponding to the kth model (organism) can be formulated as (Taran-

tola, 2005; Menke, 2012): 
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In the implementation originally described by Holliday (1977) and Holliday et al. 

(1989), the inversion is performed with a given size vector chosen by the user. The size 

vector contains assumed sizes for the zooplankton specimens. Often there is a desire 

to estimate more sizes than the available number of acoustic frequencies, i.e. the prob-

lem is underdetermination (i.e. the ratio “number of unknowns”/”number of measure-

ments”). In Fernandes et al. (2006), an iterative optimization of the size vector was pro-

posed; after a first estimate of the size distribution of the scatterers, the size vector is 

redistributed. The purpose of the optimization is to redistribute the size vector around 

the sizes where non-null abundance has been found. The number of sizes in the size 

vector is kept constant. If the number of sizes is not a multiple of non-null elements, 

the elements with the smallest size are divided first. This method helped Mair et al. 

(2005) in the interpretation of particularly strong acoustic scattering layers at 38 kHz in 

the northern North Sea in summer; it suggested the contribution of gas-filled gas-in-

cluding organisms, which were not sampled by nets. It has also been successfully ap-

plied by Korneliussen et al. (2009) on pure krill concentrations, resulting in an estimate 

close to the mean length of organisms. In this case, the species and the appropriate 

model to use were both known, therefore only the sizes were anticipated. Cox et al. 

(2013) applied this to a more complex situation where the type of organisms, the sizes, 

and the abundance were unknown. In this case, the inversion supports the existence of 

an expected north–south change in the population, but does not reach a satisfactory 

classification of organisms. At this scale, dealing with the volumes of mixed popula-

tions sampled, classification is challenging, as is biological ground-truthing because 

dominant organisms in a net are rarely the dominant acoustic scatterers. Pearlside 

(Maurolicus muelleri) is an example of this: it dominates the acoustic backscatter as it 

feeds on the krill that dominates the biomass. 
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Simple inversions that have been previously performed in more focused situations are 

more likely to succeed (Trevorrow et al., 2005; Lavery et al., 2007), but require prior con-

ditions for the processed data, e.g. to work on a sample where a known scatterer dom-

inates the scattering for all the frequencies considered in the inversion. 

Case study 2 in Annex 1 applies a related method to determine organism size for krill. 

6.2 Empirical approach to classification 

6.2.1 Frequency-dependent scattering – relative frequency response 

The frequency dependence of acoustic targets (Section 3.4) is a key characteristic used 

in categorization. There is often clear frequency-dependent scattering in backscatter 

data (e.g. Figure 6.1), and this can be used as the basis for classification. 

Figure 6.1. Example of frequency-dependent backscatter from fish and zooplankton. a) 38-kHz 

echogram showing backscatter from fish. b) 120-kHz echogram showing backscatter from fish as 

well as a band of zooplankton backscatter between 65 and 75 m which is not evident at 38 kHz.  

This frequency dependence is typically characterized by normalizing the observed 

backscatter to a reference frequency (by convention often 38 kHz, Korneliussen and 

Ona, 2002; Korneliussen et al., 2016). In linear terms, the relative frequency response r(f) 

of volume backscattering coefficients measured at two frequencies (f1, f2) is defined in 

Table 2.1 for both volume scatterers and single targets. The key advantage of using a 

ratio for classification over other metrics, based on absolute volume backscatter, is that 

the frequency ratio depends only on the frequency-dependent properties of the targets 

rather than their absolute abundance. 

A variety of equivalent terms has been used to describe the relative frequency response 

in the literature (Korneliussen and Ona, 2002; Pedersen and Korneliussen, 2009; 

McQuinn et al., 2013). For example, R(f) = log10[r(f)] is sometimes referred to as a “dB-

difference” and can be expressed as follows for volume scattering: 

  )()()()()(log)( 212110 21
fTSfTSMVBSfSfSfrfR ffvv                      (3) 

In practice, the measurement of r(f) can be limited by noise, as the targets must be ob-

served at all frequencies in overlapping beams and with a significantly high rsn to allow 



 

 

Acoustic target classification | 33 

 

Aco

ustic 

tar-

get 

clas-

sifi-

ca-

tion 

r(f). At low rsn (i.e. long ranges, weak scatterers, frequencies with low r(f)), the effects of 

noise will bias the estimates of r(f).  

Methods for acoustic target classification based on r(f) are described in increasing com-

plexity in the following sections. 

6.2.1.1 Manual categorization 

Manual data scrutiny typically starts with excluding unwanted areas (e.g. transit be-

tween transects, trawl, and CTD stations) followed by the removal of unwanted 

backscatter (e.g. bottom echoes and noise spikes). Operators then identify and select 

regions with similar acoustic properties. The subjective analyst scrutiny may be sup-

ported by objective information e.g. relative frequency response, r(f), including reso-

nance peaks. Furthermore, some fish species typically appear as single individuals, 

while other species are usually seen in schools, layers, or loose aggregations at certain 

times and locations. Geographical location, distance to sea surface, and distance to sea-

bed are also used to support the species identification process. The mean r(f) and the 

scattering coefficient (sA) of an encircled region (e.g. a fish aggregation) are often effi-

cient at differentiating between species, especially when those species form single-spe-

cies aggregations. Sometimes r(f) and (sA) are efficient at partitioning the total sA of that 

region between different species. The scrutiny of acoustic backscatter is supported by 

results of directed biological samples when available (see Section 5.4.2 for description 

of sampling methods). During manual categorization, the measured r(f) in each volume 

may be compared to a reference of r(f) of known scatterers, thereby making the catego-

rization process more objective and aiding the interpretation of the echogram. 

If several species are present in the same volume, the resulting r(f) will be the sum of 

the individual species r(f). The composite total r(f) may, in this case, be less useful for 

characterizing weak scattering species as the r(f) of weaker scatterers may be masked 

by stronger ones or the global r(f) will not resemble any single-species r(f). Increasing 

the resolution of echosounders, reducing the degree of averaging used (Section 5.6.5), 

or decreasing the observation distances can help to reduce sampling volume and im-

prove target classification. 

Case studies 3 and 4 compare manual categorization to categorization based on an 

acoustic feature library. (See Annex 1). 

6.2.1.2 Automatic use of frequency-dependent backscatter 

The volume backscatter relative frequency response has successfully been applied to 

assign species of zooplankton and fish where the species being studied are in homoge-

neous aggregations of a relatively uniform size class. Examples of this are krill in the 

Antarctic (Brierley et al., 1998) and eastern Canada (McQuinn et al., 2013), the deep-wa-

ter orange roughy (Hoplostethus atlanticus; Kloser et al., 2002), and herring (Clupea ha-

rengus), mackerel (Scomber scombrus), and capelin (Mallotus villosus) in the North Sea 

and the Barents Sea (Korneliussen and Ona, 2002, 2003; Fernandes et al., 2006; Kornelius-

sen et al., 2009). The assignment of species is often supported with empirical data based 

on multiple lines of evidence including trawl catch, behaviour, optical verification, and 

target strength (e.g. Fernandes et al., 2006, 2016; McQuinn et al., 2013; Ryan and Kloser, 

2016) or knowledge of the model scattering characteristics of the species (Fernandes et 

al., 2006; Kloser et al., 2002). The relative frequency response method works best when 

there are large differences (e.g. > ca. 3 dB) in the species groups being discriminated 

either due to size (Raleigh, resonance and geometric scattering regions – Figure 3.1) or 
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different composition (e.g. fluid-filled and gas-bladder organisms). Resonance scatter-

ing is often used to distinguish species or size classes of species that possess gas blad-

ders at various depths (e.g. Kloser et al., 2002). 

There has been a long history of using resonance scattering volume reverberation meth-

ods to estimate the average size of the species gas-bladder by comparing the frequency 

response, using broadband with low- and high- frequency ranges as well as using sev-

eral discrete frequencies, to a scattering model (Andreeva, 1964; Holliday, 1972; Kalish 

et al., 1986; Stanton et al., 2010). These volume reverberation methods are range limited 

due to sound absorption at higher frequencies (Francois and Garrison, 1982) and due to 

spherical spreading increasing the ensonified volume. A large ensonified volume cre-

ates classification uncertainty by increases the number of potential scatterers of differ-

ent species and sizes. These range dependent effects can be minimized using deeply 

towing systems (Kloser et al., 2002). To avoid multi-scatterer volume reverberation clas-

sification errors single target frequency response methods can be used (Demer et al., 

1999; Conti et al., 2005). These methods generally require a profiling probe to ensure one 

target is detected within the ensonified beam. Using lowered probes it is possible to 

obtain an individual frequency response for an organisms with optical verification (e.g. 

Kloser et al., 2016). 

6.2.1.3 Objective categorization using reference libraries 

An acoustic reference library is one that contains measured scattering properties origi-

nating in known species. It could be a set of measured relative frequency responses used 

for reference during manual scrutiny or it could be a digital reference of acoustic data 

that is automatically or semi-automatically compared with the digital acoustic data be-

ing scrutinized. 

The Bergen echo integrator (BEI; Foote et al., 1991; Korneliussen, 2010) began by allow-

ing observations to be compared with a library of relative frequency responses of 

known scatterers during manual scrutiny and then evolved such that those results of 

automatic categorization (species identification) were available during scrutiny (Kor-

neliussen and Ona, 2002, 2003). Data from multifrequency echosounders working sim-

ultaneously with nearly identical and overlapping acoustic beams are processed step-

wise in a modular sequence. This is to remove noise and bad data and to average data. 

Similarly, data from wideband echosounders could be converted to multifrequency 

data and processed in the same way as multifrequency data. In later systems, data were 

processed in a similar manner, e.g. by Korneliussen et al. (2009) and using Z-score in De 

Robertis et al. (2010). 

Case study 3 in Annex 1 details a relatively simple application of this approach where 

species classification during acoustic surveys in Alaska were based on the mean and 

standard deviation of trawl ground-truthed frequency response. 

6.2.1.4 Library of statistical features of acoustic variables from known species 

The overall approach of this method is to extract statistical descriptors of acoustic vari-

ables from a known target and store them in a library. The descriptors are used to clas-

sify new targets based on their similarity to taxa in the library. Prior to extracting fea-

tures into a library, data should be processed as described above (Section 6.2.1.3) to re-

move noise and bad data and to average data. This should be done in a standardized 

mannerto ensure data in a library containingstatistical properties of acoustical variables 

are as comparable as possible. Statistical properties of acoustical variables based on 

measured backscatter from known species, such as relative frequency responses and sv, 

can then be extracted from these high-quality data and stored in a reference library. 
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Other variables such as geographical position, temperature, and depth can also be con-

tained in a library. More sophisticated implementations of an acoustic library have the 

potential to work well in more challenging situations. 

One procedure of extracting such statistical properties is described in Figure 4 in Kor-

neliussen et al. (2016). The driving idea, to be able to extract features that are later used 

to distinguish species in unknown data, is quite general, however, and is not connected 

to any software. 

Case study 4 in Annex 1 uses a library containing statistical properties of acoustical var-

iables. 

6.3 Machine learning methods 

Machine learning techniques can be classified in supervised and unsupervised algo-

rithms. Supervised algorithms include a known response variable that acts as “teacher” 

for the algorithm. The most commonly used techniques are described in the subsections 

below. Principal component analysis, clustering (e.g. K-means), neural networks (e.g. 

self-organizing maps; Kohonen, 1982; Peña et al., 2008), and other topology-preserving 

mappings (Peña, 2007) are the most used unsupervised techniques. 

If ground-truth data are reliable, then supervised classification methods are the pre-

ferred approach. However, target classification can be problematic in areas with many 

species and where the collection of ground-truth data is limited or unreliable: unsuper-

vised classification techniques can be helpful in this case. With unsupervised learning, 

the data do not have class attributes a priori and the classification is based on the intrinsic 

characteristics of the data. The assumption behind this approach is that the groups of 

aggregations/schools identified by the classification correspond to biologically mean-

ingful structures that can be related, for example, to morphological and/or behavioural 

similarity between species. Unless the species investigated have very different patterns, 

it is unlikely that this method could identify groups at a high taxonomic level, but it can 

provide useful information on a broader scale (e.g. family, functional groups, guilds). 

Machine learning techniques can be applied at the school level, and a large list of fea-

tures describing the characteristics of the aggregations can be used in the classification 

process. Metrics describing the energetic and geometric properties and multifrequency 

response of schools are the most common categories of variables used for this purpose, 

and thorough description of these can be found in the literature (Nero and Magnuson, 

1989; Scalabrin and Massè, 1993; Haralabous and Georgarakos, 1996; Reid, 2000; Kor-

neliussen et al., 2009). 

6.3.1 Supervised 

6.3.1.1 Feed forward neural networks 

Artificial neural networks (ANN) are a family of statistical models that mimic the de-

sign of biological neural networks, such as the human brain. ANNs can recognize pat-

terns and learn from their interactions with the environment. Every connection between 

the nodes (or neurons) is referred to as “weight”, with all connections being iterative: 

“feed forward” means that information is transferred from the previous to the next 

layer. Different forms of ANNs exist, but the most commonly used ones are multilayer 

feed-forward networks (Rumelhart et al., 1986), which are supervised methods. “Learn-

ing”’ or “training” is achieved through an iterative process where a fraction of the vali-

dation information is used for training and the remaining fraction is used for testing. A 

cross-validation process is often used to maintain equal representation of the labelled 
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information for both training and validation. During the iteration, the detected error is 

propagated backwards through the network to adjust weights to decrease the error. 

Once the training is achieved, the feed-forward structure is used for the classification of 

the entire dataset. 

One of the main advantages of ANNs is their capacity to account for non-linear rela-

tionships between input and outputs, which make it an effective classification method. 

ANNs are effective when dealing with extreme values, as their affect is minimized (Lek 

et al., 1996). On the other hand, ANNs have been recognized as a “black box’’, due to a 

lack of information regarding the relative influence of the metrics used as input for the 

classification (Olden and Jackson, 2002). 

ANNs are mainly applied to categorized acoustic data based on echotrace characteris-

tics (Ramani and Patrick, 1992; Haralabous and Georgakarakos, 1996; Cabreira et al., 

2009), but also based on multifrequency data (Simmonds et al., 1996). 

6.3.1.2 Random forests 

Random forests are a machine-learning method for data classification or regression 

analysis (Breiman, 2001). Random-forest classification (or “walks”) grow a multitude of 

classification decision trees during the training process, outputting the mode of the clas-

ses (classification, discrete values) or the mean prediction (regression, continuous val-

ues). The main strengths of random forests include their ability to run efficiently over 

large datasets. This allows for large numbers (e.g. thousands) of input variables without 

variable deletion, and the results provide an overview of the importance or influence of 

the different variables to the final classification (Breiman, 2001). It provides an in-built 

quality check as an alternative to cross-validation checks. The error (uncertainty) is com-

puted as each tree is constructed using a different bootstrap sample from the original 

data. 

With a few exceptions, random forests have seldom been used in classification of mul-

tifrequency fisheries acoustics data. Fallon et al. (2016) used random forests to classify 

krill (Euphausia superba), icefish (Champsocephalus gunnari), and mixed aggregations 

of weakly scattering fish with 95% accuracy. Antona (2016) used Breiman’s random for-

ests to classify herring, sprat (Sprattus sprattus), and Norway pout (Trisopterus esmarkii) 

based on broadband acoustic data collected with Simrad EK80 echosounders operating 

at six frequencies (18, 38, 70, 120, 200, and 333 kHz). In their study, the accuracy of the 

random forests improved with the inclusion of auxiliary data (e.g. latitude, longitude, 

and depth). Lefort et al. (2012) used random forests as a classification tool for character-

izing pelagic fish schools from data collected with single-beam (two-dimensional) and 

multibeam (three-dimensional) sonar images. 

Single classification or regression trees (a variant of decision trees; Breiman et al., 1984) 

are suitable for analyses of ecological data (De’ath and Fabricius, 2000) and have been 

used as such (De’ath, 2007). However, despite their suitability for use with active-acous-

tic data, few studies have applied these methods. Fernandes (2009) identified species 

based on multifrequency acoustic data using classification trees; however, the presented 

methods are more prone to overfitting and hence have comparatively poor predictive 

performance. At the same time, they have the advantage of being intuitive (Fernandes, 

2009). 



 

 

Acoustic target classification | 37 

 

Aco

ustic 

tar-

get 

clas-

sifi-

ca-

tion 

6.3.2 Unsupervised 

6.3.2.1 Multivariate ordination in reduced space 

Multivariate ordination methods are commonly used in numerical ecology and can re-

veal the major variance trends contained in multifrequency data. Ordination methods 

project the scatter of objects (e.g. acoustic elementary sampling volumes) in a multidi-

mensional (e.g. multifrequency) diagram onto two-dimensional bivariate graphs (bip-

lots). The axes (or components) of these graphs are chosen to represent a large fraction 

of the variability of the multidimensional data matrix in a space with reduced (i.e. 

lower) dimensionality relative to the original dataset. Methods for ordination in re-

duced space also allow one to derive quantitative information on the quality of the pro-

jections and study the relationships among descriptors as well as among objects (Legen-

dre and Legendre, 2012). 

Principal component analysis (PCA) is the most commonly used ordination technique 

in reduced space; however, it is limited to quantitative descriptors.  

Doray et al. (2009) applied PCA on sA profiles at 38 and 120 kHz to identify the principal 

components of micronektonic sound-scattering layers observed at moored fishing ag-

gregation devices at a vertical resolution of 10 m depth. Other commonly used multi-

variate ordination methods include (i) correspondence analysis (CA) to analyse pres-

ence/absence or zero-inflated data and (ii) principal coordinate analysis (metric scaling, 

PCoA) or nonmetric multidimensional scaling (nMDS) to handle quantitative, semi-

quantitative, qualitative, or mixed descriptors (Legendre and Legendre, 2012). Borcard 

et al. (2011) show how to carry out calculations for the methods described in Legendre 

and Legendre (2012) using the programming language of R (R Core Team, 2016). Cam-

panella and Taylor (2016) and Gastauer et al. (2017a) classified acoustically detected 

schools by applying a clustering algorithm on multifrequency descriptors of the fish 

schools and plotted the clustering results on a PCA biplot derived from the same da-

taset. 

6.3.2.2 Clustering 

Clustering is an unsupervised multivariate approach that partitions the data into a set 

of clusters based on a collection of objects or descriptors (Legendre and Legendre, 2012). 

Clustering is classically performed on association matrices, which describe the similar-

ity or dissimilarity between the different objects. Legendre and Legendre (2012) provide 

an extensive description of the clustering methods principles and algorithms that are 

used in numerical ecology. 

The most commonly used clustering methods are k-means (MacQueen, 1967), methods, 

and derivatives thereof (Kondo et al., 2012). K-means partitions the data into a prede-

termined number of clusters. The goal of this method is to minimize the total intraclus-

ter variance (the squared error function) or to reduce dissimilarity within groups typi-

cally assessed through Euclidean distance measures. K-means is a relatively efficient 

method but has several drawbacks that need considering. First, choosing the number of 

clusters must be done a priori, which can be problematic especially if little is known 

about the expected number of clusters. The most objective way to determine the ideal 

number of clusters is through an iterative approach. The most common approaches 

used are based on the evaluation of the “quality” of the clustering using different types 

or a combination of internal indices (sum of squared error, silhouette, gap statistics) and 

external indices (e.g. Rand index, entropy; Rand, 1971; Rouesseeuw, 1987; Jain and 

Dubes, 1988; Tibshirani et al., 2001; Handl et al., 2005; Theodoridis and Koutroubas, 

2008). Another approach is the “Clest” algorithm which is a prediction-based 
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resampling method (Dudoit and Fridlyand, 2002; Kondo et al., 2012; Campanella and 

Taylor, 2016; Gastauer et al., 2017a). The algorithm selects the optimal number of clus-

ters based on the evaluation of the predictive power of the classification using a set of 

validation datasets iteratively selected randomly from the original dataset, similar to 

bootstrapping methods. To address uncertainty in the number of clusters, expectation 

maximization (EM) for finite mixture models (Dempster et al., 1977) can identify the 

probability of a given data point belonging to a given group (e.g. Anderson et al., 2007b). 

Cluster metrics (e.g. Bayesian information criterion, Schwarz, 1978) can assess the fit of 

clusters to data (Fraley and Raftery, 1998) and to iteratively determine the optimum 

number of clusters. A further weakness of the traditional k-means method is its limited 

ability to deal with outliers or noise data: it uses the squared Euclidean distance to de-

termine the dissimilarity matrix, giving more weight to outliers. The characteristics of 

each cluster can provide insights into biologically or ecologically relevant features. 

Moreover, any other form of biological validation can contribute to the speculation of 

what could be described by the clusters or indicator species and can be attributed to the 

different clusters (Gastauer et al., 2017a). 

K-means classification has been applied to broadband acoustic data in Ross et al. (2013) 

and combined multifrequency split-beam and multibeam data in Buelens et al. (2009). 

A review of clustering applied to multifrequency data in Peña (2018) highlights the im-

portance of considering variance and cluster geometry. It also includes a new technique 

to initialize clustering that helps the algorithm find less abundant groups. 

Case study 5 in Annex 1 illustrates the use of clustering. 

6.3.2.3 Self-organizing maps 

The self-organizing map (SOM; Kohonen, 1982) searches for hidden structure in unla-

belled data, producing a low-dimensional, discretized representation of the input space. 

It computes a set of reference vectors (prototypes or neurons) representing local means 

of the data. In this way, redundancy in the variables is reduced, projecting the data into 

a two-dimensional space (similar to principal components analysis), while redundancy 

in the samples is reduced creating these prototypes (like in k-means). 

The algorithm organizes the positions of the neurons in an unsupervised competitive 

learning mechanism. The SOM can be considered a non-linear extension of the scatter-

plot technique often used in acoustics, but the SOM is able to employ all available mean 

volume backscattering strengths (ΔMVBS) simultaneously (Peña and Calise, 2016). The 

SOM can also search for linear and non-linear correlations between variables (Peña et 

al., 2015). Different relationships may arise in this way for intercorrelated variables, al-

lowing a more in-depth analysis of the data. The SOM is also robust to errors/outliers 

that are usually embedded in the acoustic data. The maximum number of variables used 

in supervised techniques depend on the number of observations (fivefold less as a rule 

of thumb), while the SOM is often used for feature selection, even with more variables 

than samples. These advantages improve the ability of researchers to identify potential 

effects not considered a priori and help them to establish new hypotheses about causal 

relations.  

6.4 Other classification methods 

There are several classification methods that are not yet common but that may be used 

either alone or in combination with other multifrequency or broadband analysis meth-

ods. 
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6.4.1 Phase coherence 

A low standard deviation of the phase samples within an echo is a metric typically used 

to identify echoes from acoustically resolvable individual scatterers (Soule et al., 1995). 

However, if multiple targets are spaced with radial ranges differing by an integer mul-

tiple of a half-wavelength, their combined echoes interfere constructively and have a 

coherent phase (Demer et al., 1999). Consequently, measurements with interferometric 

systems (e.g. split-beam echosounders) may be inaccurate in cases of echoes coinci-

dentally arriving from multiple sources (Soule et al., 1995; Foote, 1996; Yang and Taxt, 

1997) or directions (e.g. multipath reverberation; Kraeutner and Bird, 1999). However, 

coincident echoes can be better rejected, thus significantly improving measurement ac-

curacy, by using co-located, multifrequency, split-aperture transducers and interfero-

metric processing (Demer et al., 1999; Conti et al., 2005). This is because it is unlikely for 

echoes from multiple targets to constructively interfere at multiple frequencies. There-

fore, high coherence in the target phase and estimated three-dimensional location 

(Demer et al., 1999) are good indicators of a resolvable single target. The frequency re-

sponses of accurate TS measurements at multiple frequencies can then be used for 

acoustic target classifications (Figure 6.2; Demer et al., 1999). 

 

Figure 6.2. Target strength of Southern Ocean scatterers at 38, 120, and 200 kHz. Spatial matches of 

single-target detections at all three frequencies totaled 5690. The 38 kHz histogram (a) contains 

three modes: mode 1, −85 to −65 dB; mode 2, −65 to −55 dB; and mode 3, −55 to 40 dB. In (d), mode 1 

(black dots) and mode 3 (grey dots) are clearly separable by the three-frequency target strength 

classification. (Reproduced from Figure 14 in Demer et al., 1999). 

Even for resolvable single targets, however, some degree of incoherence results from 

the target size, shape, and behaviour (Stanton and Clay, 1986) and the signal-to-noise 

ratio (rsn; Ehrenberg and Torkelson, 1996). For resolvable single targets that are small 

compared to the acoustic wavelength, the echoes are weak and coherent (Stanton and 

Clay, 1986). For larger scatterers, interference caused by echoes from distributed ana-

tomical features will cause phase fluctuations (e.g. Demer and Conti, 2003), introduc-



 

 

40  | 

ICES 

Coop-

era-

tive 

Re-

search 

Re-

port 

No. 

344 

ICES Cooperative Research Report No. 344 

 

 

ing some incoherence in the larger returns. For multiple unresolved scatterers, the in-

coherence increases further, more so for swarming vs. schooling organisms. Thus, var-

ying degrees of incoherence occur when echoes originate in a stationary or moving 

single target, multiple features of a single organism, swarming or schooling multiple 

organisms, or single or multiple facets of the seabed. In other words, there is a spectrum 

of echo coherence. 

6.4.2 Statistical-spectral identification 

Target identification may be improved by exploiting information contained in both the 

statistics and the spectra of the backscatter amplitude (Demer et al., 2009). Backscatter 

intensity, proportional to the square of echo amplitude, is usually measured as TS 

(dB re 1 m2) for resolvable individual targets, or volume backscattering strength (Sv; 

dB re 1 m−1) for backscatter from multiple non-resolvable targets in a volume. In some 

cases, the multifrequency backscatter-intensity information is sufficient to remotely 

identify target sizes, morphologies, taxa, or perhaps species (Demer et al., 1999). In other 

cases, echo statistics may provide additional useful information to characterize single 

targets and aggregations. 

Backscatter amplitude, 20/
10 vS

e  , deconvolved from the transducer beam-directivity 

pattern (Clay, 1983), can be modelled as the sum of coherent (ec) and incoherent (ed) 

components (Clay and Heist, 1984; Stanton and Clay, 1986): 

𝑒 =  𝑒𝑐 +  𝑒𝑑                    (4) 

The probability density function (PDF) of e is described by the single-parameter 

(γ = ec
2/ed

2) Rician distribution. When the echo amplitude is mostly coherent (the target 

is stable or small relative to a wavelength), γ is large and the Rician PDF approaches a 

Gaussian PDF. Conversely, when the echo amplitude is mostly incoherent (the target is 

active or large relative to a wavelength), γ is small, approaching zero, and the Rician 

PDF conforms to the Rayleigh PDF. In this case, the mean echo amplitude decreases, 

and the variance increases (Figure 6.3; Demer et al., 2009). 

The ratio of the variance and the mean of echo amplitude (VMR; dB) can be used to 

estimate the magnitude of γ; if calculated from measurements of e at multiple frequen-

cies, it can be used for pixel-wise classification of Sv data (Demer et al., 2009). In addition 

to describing echo-phase stability, the VMR also includes information about the mean 

echo amplitude. Consequently, high values of VMR indicate high phase coherence and 

thus highly resolved or schooling targets; low VMR indicates low phase coherence re-

sulting from large or active single targets or both, or unresolved targets, perhaps 

swarming. For example, the authors demonstrated that the VMR of echo amplitudes 

measured at three or more frequencies can be used to classify backscatter from zoo-

plankton (low VMR), fish schools (intermediate VMR), and resolvable single targets 

and initial seabed reflections (high VMR). 

For studies of targets located near a boundary (e.g. demersal fish), the statistical-spec-

tral method for identification (SSID) also provides estimates of the height of the region 

near the boundary in which targets cannot be resolved (Demer et al., 2009), the so-called 

acoustic dead zone (ADZ; Ona and Mitson, 1996). 
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Figure 6.3. (a) A 38 kHz echogram illustrating aggregations over a high-relief rocky seabed; (b) A 

VMR echogram providing high temporal-spatial resolution of the incoherent scatter from the ag-

gregations of rockfish, the coherent initial reflection from the seabed, and the subsequent incoher-

ent reflection, primarily from the rough seabed; (c) the coherent (reflected) echo from the seabed at 

38 kHz; (d) the incoherent echoes from the aggregations of rockfish (Sebastes spp.) and the rough 

seabed; and (e) echoes at 38 kHz from the putative aggregations of rockfish. (Reproduced from Fig-

ure 2 in Demer et al., 2009). 

6.4.3 Scattering spectra and directivity 

Target strength, TS, and hence Sv, is a function of the target size, shape, and morphol-

ogy, as well as acoustic frequency (f; Hz) and incidence angle (θ; °). In the Rayleigh 

scattering region, where λ is large compared to the target size, acoustic scatter is omni-

directional, independent of θ, and TS and Sv increase vs. f and target length (L; m). In 

the geometric scattering region, where the acoustic wavelength (λ; m) is small com-

pared to the target size, echoes from the facets comprising a target will interfere con-

structively and destructively causing peaks and nulls in the scattering spectra. In the 

geometric region, TS and Sv are dependent on θ, and this backscattering directivity in-

creases with f and L. Consequently, when θ varies around normal incidence, Sv increases 

with increasing f or L when λ is large compared to the target size (Rayleigh region), and 

decreases with increasing f or L when λ is small compared to the target size (geometric 

region). The effects of scattering directivity can be exploited for acoustic target classifi-

cation. 

6.4.4 Multifrequency biplanar split-aperture processing 

With a focus on high-resolution seabed imaging and classification, Cutter and Demer 

(2010) showed that each coherent sample from the measurement frequencies could be 

positioned in geographic coordinates. Their multifrequency biplanar interferometric 

(MBI) imaging technique provides data for estimating within-beam seabed range, slope, 

hardness, and roughness (Demer et al., 2009; Cutter and Demer, 2010). Demer et al. 



 

 

42  | 

ICES 

Coop-

era-

tive 

Re-

search 

Re-

port 

No. 

344 

ICES Cooperative Research Report No. 344 

 

 

(2009) showed that the MBI technique could also be applied to data from a multifre-

quency multibeam echosounder to image and identify targets both in the water column 

and on the seabed. With measurements made over a range of incidence angles, the an-

gular dependence of backscattering from the targets, the target directivity, may also be 

exploited to further enhance the accuracy of target identification and size estimation.  

Using the multifrequency biplanar interferometric technique (MBI; Cutter and Demer, 

2010), the three-dimensional positions of resolved targets can be compensated for trans-

ducer location, transducer motion, transducer directivity, and propagation losses. The 

geographic coordinates can also be located. Coherent, resolved targets may be biotic or 

abiotic, entire individuals or aggregations of animals, facets of animals or the seabed. 

Thus, MBI can estimate fish aggregation shape, density, abundance, and behaviour as 

well as detect and classify echoes from animals and the seabed using the same dataset. 

MBI allows greatly improved estimations of seabed depth; sub-beam slope, hardness, 

and roughness; and the height of the unresolved region near the seabed, the ADZ 

(Demer et al., 2009; Cutter and Demer, 2010, 2014). 
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7 Future objectives, recommendations, and conclusions 

National and international directives for marine governance, typical in broad ecosystem 

monitoring for state-of-the-environment reporting (ecosystem health) and fisheries 

maangement through stock assessments, will drive the future objectives of target clas-

sification. Ecosystem monitoring will require better knowledge of species/group alloca-

tions with metrics on lower trophic levels, changes in community composition, and size 

changes. Likewise, effective fisheries management has an ongoing need for more pre-

cise stock assessments with a trend to have real-time management for some species. The 

advent of real-time management will require better real-time species identification with 

ascribed uncertainty. 

To address the objectives of target classification, advances in technology and method-

ology are expected. Of recent interest are acoustic systems with wider frequency ranges; 

however, the same principles and challenges described in this document for narrow-

band multifrequency classification still apply, along with new challenges including data 

volume (and hence processing efficiency) and frequency variability due to stochasticity. 

 

Other advances are likely to include systems with broader coverage used on new plat-

forms taking advantage of lower power requirements. Lower power requirements will 

also make it possible to perform on-board processing for real-time target classification 

and reporting, creating a need for more automatic classification for efficient data pro-

cessing. Advanced platforms are expected to have more integrated sensors of physical, 

chemical, and biological parameters. The newest sensors and platforms in use include 

low-frequency broadband on a towed body (Stanton et al., 2012) and array systems with 

reduced noise pollution (Diachok, 2016). Both of which provide insight into fish size 

classes. Combined acoustic and optical probes that can be deployed to deep layers re-

duce the sampling volume, thus providing better species/group resolution (Kloser et al., 

2016), such as differentiating between phytoplankton and zooplankton (Benoit-Bird et 

al., 2010). 

 

These advances require ongoing development of data preparation, calibration, feature 

extraction, grouping, and validation of acoustic data. 
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Annex 1: Case studies by methods described in Section 6 

Table A1.1 Case studies referring to methods described in Section 6 

Case study Order Species Methods used Link to CRR Source 

Benoit-Bird 1 Mesopelagics Adaptive sam-

pling based on r(f) 

Guiding 

sampling 

Moline and 

Benoit-Bird 

(2016) 

Lawson and 

Fielding 

2 Euphausia 

superba 

SDWBA models 

used to determine 

r(f) limits for spe-

cies ID 

Applications of 

models, deter-

mining param-

eters for r(f) 

during surveys 

De Robertis 3 Various Z-score r(f), feature li-

brary, data 

preprocessing 

De Robertis 

et al. (2010) 

Korneliussen 4 Various Bayesian 

classification 

r(f), feature li-

brary, data 

preprocessing 

Korneliussen 

et al. (2016) 

Campanella 5 Reef fish Robust Sparse  

K-Means (RSKC) 

Unsupervised 

clustering 

Campanella 

and Taylor 

(2016) 

Sakinan 6 Artificial neural 

networks 

A1.1 Case Study 1: Adaptive sampling based on real-time target classification 

by means of ΔMVBS (and more) 

Acoustic attenuation reduces the effective range of ship-mounted echosounders, partic-

ularly in the case of higher frequencies commonly used to detect and classify micron-

ekton and nekton aggregations. Work undertaken by researchers from the University 

of Delaware and Oregon State University applied autonomous technology and classifi-

cation techniques to carry out a detailed study of nektonic organisms in the mesopelagic 

zone. Kongsberg’s Remote Environmental Monitoring Unit (REMUS) autonomous un-

derwater vehicle (AUV) fitted with Simrad EK60 echosounders (38 and 120 kHz), log-

ging and processing computers, and navigational equipment was used for the study, 

providing a stable platform with increased effective range and resolution at operational 

depths beyond that of ship-mounted systems (Moline et al., 2015). 

The AUV’s computer dedicated to processing data and communication of synthesized 

results for navigational purposes ran Echoview processing software to analyse data in 

real time, as well as a custom application for communicating the processed data-output 

product. Data processing comprised standard preliminary steps, such as seabed re-

moval, depth correction, and noise removal, followed by an advanced workflow for 

automated and objective target classification: 

1. detection of individual targets in each frequency,

2. elimination of targets present in only one of the two frequencies,

3. filtering of targets based on the expected difference in volume scattering across

frequencies for the target species,

4. conversion of target strength to (a) length estimates and (b) density within a

depth interval,

5. combining length and density to estimate biomass,
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6. integration over a specified time- and depth-interval, and  

7. application of binary-based approach to ascertain whether a biomass threshold 

has been met. 

Once the threshold criteria have been met, this is communicated by the custom appli-

cation to the navigation system, resulting in a change of survey plan, i.e. greater survey 

effort in the immediate area containing the targets of interest. 

If required, the software data-processing workflow can easily be updated to adjust the 

classification routine for different species/targets of interest and other applications. 

Workflow steps to identify squid and an example of the threshold determination pro-

cess are shown in Figures A1.1 and A1.2, respectively, and expected difference in vol-

ume scattering across frequencies (refer to step 3) is detailed in Benoit-Bird et al. (2008). 

Such on-board analysis and classification process for guided sampling allows fine-scale 

measurements of spatial variability of targets of interest and contributes to enhancing 

our understanding of ecological processes such as predator/prey interactions, biogeo-

chemical cycling, energy transfer, and the interactions between these processes 

throughout the entire water column (Benoit-Bird et al., 2016). 

 

Figure A1.1. Raw data collected off the Californian coast in 2013 was analysed following this dia-

grammatic representation of data processing, synthesis, and data-product generation. Squid were 

the target organisms, and targets were classified to identify presence/absence of squid as a data 

product for use in AUV decision-making and autonomy. From Moline and Benoit-Bird (2016). 
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Figure A1.2. Threshold determination for guided sampling, using example data from off California 

in 2013. Squid number and length criteria feed into vehicular navigation. From Moline and Benoit-

Bird (2016). 
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A 1.2 Case study 2: dB difference based on theoretical models of Antarctic krill 

Antarctic krill (Euphausia superba) are one of the key species in the Antarctic marine 

foodweb, both as prey to a wide variety of dependent species as well as being commer-

cially harvested (Atkinson et al., 2009; Nicol et al., 2011). They are considered to influ-

ence ocean biogeochemistry and, therefore, the carbon pump (Tovar-Sanchez et al., 

2007). Antarctic krill are also notable for their formation of dense and typically mono-

specific aggregations (Watkins, 1986) that lend themselves to acoustic quantification 

and classification. 

The commercial exploitation of krill is managed under the direction of the Convention 

for the Conservation of Antarctic Marine Living Resources (CCAMLR). This manage-

ment is informed by acoustic surveys of krill density and distribution using an historical 

international synoptic survey (hereafter CCAMLR 2000 survey; Hewitt et al., 2004; Wat-

kins et al., 2004; Fielding et al., 2011), national interannual surveys (Reiss et al., 2008; 

Fielding et al., 2014; Kinsey et al., 2015; Skaret et al., 2015), national research programmes 

(Cox et al., 2015) and future plans for fishing vessels (Watkins et al., 2015). In addition 

to CCAMLR-related efforts, acoustic techniques are also commonly used in studies of 

krill ecology and predator–prey interactions (Nowacek et al., 2011; Schmidt et al., 2011). 

The current classification method employed by these studies to attribute acoustic data 

to krill utilizes a dB-differences technique (or relative frequency response) applied to 

the Sv data typically averaged over 50 pings (reflecting a horizontal resolution of 100 s 

or 500 m at a survey speed of 10 knots) and 5 m vertical resolution. An objective method 

for identification was initially followed using the two-frequency dB fixed windows of 

Maduriera et al. (1993) and Watkins and Brierley (2002) of SV120kHz–38kHz 2–12 or 2–

16 dB re m−1, respectively, derived empirically from aggregations of known composi-

tion based on concurrent net sampling. Often such dual-, and later multifrequency, ap-

proaches have been used in conjunction with thresholding as an additional step to ex-

clude more weakly scattering targets than krill. Thresholds are typically based on likely 

minimum numerical densities, sometimes in combination with estimates of visual acu-

ity, sensing distances, and minimum packing densities (Lawson et al., 2008). 

In 2005, the use of fixed dB windows changed to survey-specific windows derived using 

an empirically validated scattering model, the stochastic distorted-wave Born approxi-

mation (SDWBA; McGehee et al., 1998; Demer and Conti, 2003), which allowed the in-

clusion of more frequencies into the identification technique (in principle, any fre-

quency combination, but in practical application, Sv120kHz–38kHz and Sv200kHz–120kHz) and pro-

vided a means to constrain the dB windows to the size range of krill measured in the 

survey area, thereby minimizing the chance of misclassifying backscattering from other 

types of scatterer as krill associated with the use of a broad fixed window. Parameteri-

zation of the SDWBA for Antarctic krill with material properties, target shape, target 

anatomy, and orientation will all influence the dB windows generated to identify krill. 

Of these parameters, orientation has a particularly strong influence on the modelled 

target strength of krill, although the morphology has also been shown to contribute sig-

nificantly to TS (Calise and Skaret, 2011). 

The parameterization of the SDWBA currently used by the Antarctic studies above in-

cludes the density contrast (g) and sound–speed contrast (h) taken from Foote (1990), 

the generic krill shape described by McGehee et al. (1998), and updated by Demer and 

Conti (2003) to be 40% fatter, and a normal distribution of orientations of N[–20°, 28°]. 

This orientation N[mean°, standard deviation°] was estimated by a least-squares inver-

sion of the full SDWBA model using the krill length distributions measured during the 

CCAMLR 2000 survey and compared with the observed differences in volume-
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backscattering strengths (Sv) at 120 and 38 kHz (Conti and Demer, 2006; CCAMLR, 

2010). 

As an example of its use, the technique is applied to acoustic data collected as part of 

the British Antarctic Surveys Western Core Box (WCB; Fielding et al., 2014) during RRS 

“James Clark Ross” cruise 304 (JR304). To parameterize the SDWBA for target identifi-

cation, the length frequency distribution of Antarctic krill (Figure A1.3) were collected 

from trawls made using an RMT8 (rectangular midwater trawl) with a 4.5-mm mesh 

size and mouth opening of 8 m2. Trawls were targeted on krill swarms using the acous-

tic data, and up to 100 krill were measured from each trawl for total length (TL) from 

the anterior edge of the eye to the tip of the telson and rounded down (Morris et al., 

1988). Volume backscattering strength data (Sv; dB re 1 m−1) were collected solely during 

daylight using a calibrated Simrad EK60 operating at 38, 70, 120, and 200 kHz; in this 

specific case, a 30 km transect (along WCB leg 4_1) is used as the example. The raw 

acoustic data were cleaned for attenuated signal (following Ryan et al., 2015), back-

ground noise (following Watkins and Brierley, 1996) and impulsive “spike” noise (fol-

lowing Fielding et al., 2014) using the software Echoview™. Finally, the cleaned data 

were averaged into 500 m horizontal and 5 m vertical cells on which the identification 

procedure was carried out. 

The target strength of krill modelled using the SDWBA, parameterized as detailed 

above, was calculated for 38, 120, and 200 kHz (Figure A1.4 left panel). The variable dB 

windows for Sv120kHz–38kHz (0.4 to 14.3 dB re 1 m−1) and Sv200kHz–120kHz (−5.3 to 3.9 dB re 1 m−1) 

were calculated as the minimum and maximum ΔSv values based on the distribution of 

95% of the krill length frequencies estimated from a cumulative distribution function 

(with tails of 2.5% at each end) and rounded to smaller/larger 10 mm (this results in a 

window for 20–60 mm sized krill during JR304, Figure A1.4 right panel). Using these 

windows, 53.5% of the total nautical area scattering coefficient (sA, m2 nautical miles−2) 

was attributed to krill using the Sv120kHz–38kHz, and this is was further reduced to 44.9% 

using the Sv200kHz–120kHz window (Table A1.2) 

Compared with the traditional fixed Sv120kHz–38kHz window of 2–16 dB re 1 m−1, this sur-

vey-specific window allows, via the lower limit of 0.4, for the possibility of large krill 

(60 mm) that are found in the catches, via the upper limit of 14.3 dB re 1 m−1, avoids 

possible contamination by smaller non-krill scatterers; the addition of the Sv200kHz–120kHz 

criteria further increases the likelihood of accurate classification. The model-based ap-

proach to defining context-specific dB windows hence offers substantial flexibility and 

utility, although its accuracy, of course, hinges on accurate knowledge of the krill length 

distribution and proper model parameterization. Ongoing efforts are, therefore, seeking 

to characterize possible seasonal, spatial, and vertical variability of these parameters 

(e.g. Chu and Wiebe, 2005). 



 

 

64  | 

ICES 

Coop-

era-

tive 

Re-

search 

Re-

port 

No. 

344 

ICES Cooperative Research Report No. 344 

 

 

JR304 Antarctic krill length frequency

Krill length (mm)

20 30 40 50 60

P
ro

b
a

b
ili

ty

0.00

0.02

0.04

0.06

0.08

0.10

0.12

n = 697

 

Figure A1.3 Antarctic krill length frequency probability density function. Antarctic krill total 

length (TL) in mm. In all, 697 krill were measured from 7 net hauls. 
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Figure A1.4. Left panel: Antarctic krill target strength at 38, 120 and 200 kHz calculated using the 

SDWBA, parameterized using values of g and h given in Foote (1990), a fatness coefficient of 40% 

(Demer and Conti, 2004) applied to the 2-D shape representation described by McGehee et al. 

(1998), and an orientation of N[-20°, 28°] after CCAMLR, 2010. Right panel: dB differences calcu-

lated for Sv120kHz-38kHz and Sv200kHz-120kHz. The red shaded box identifies the Sv120kHz-38kHz window for 

cruise JR304 and the blue shaded box identifies the Sv200kHz-120kHz window. 
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Table A1.2. 120 kHz nautical area scattering coefficient (sA) integrated to 250 m across transect for 

cleaned resampled data, data identified as krill using Sv120kHz–38kHz, and data identified as krill using 

Sv120kHz–38kHz and Sv200kHz–120kHz. 

 Cleaned resampled 

120 kHz  

(Figure A2.3c) 

Sv120kHz–38kHz identified 

krill targets  

(Figure A2.3d) 

Sv120kHz–38kHz and Sv200kHz–120kHz 

identified krill targets  

(Figure A2.3e) 

Nautical area scatter-

ing coefficient  

(sA, m2 nautical mile−2) 

169.58 90.80 76.07 

 

 

 

 

Figure A1.5. (a) Raw 120 kHz acoustic backscatter data (Sv, dB re 1 m–−1); (b) cleaned 120-kHz acous-

tic backscatter data; (c) averaged (500 m horizontal by 5 m vertical) 120 kHz acoustic backscatter 

data; (d) 120 kHz acoustic backscatter data identified as krill using Sv120kHz–38kHz; and (e) 120 kHz 

acoustic backscatter data identified as krill using Sv120kHz–38kHz and Sv200kHz–120kHz. The seabed is delin-

eated by the black line. 

(a) 

(e) 

(d) (c) 

(b) 
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A1.3 Case study 3: Application of frequency response for species classification 

during acoustic surveys in Alaska 

Motivation 

Acoustic–trawl surveys of walleye pollock (Gadus chalcogrammus) are regularly con-

ducted in Alaska to support fisheries management (Karp and Walters, 1994). During 

these surveys, acoustic backscatter measurements are allocated to species based on the 

examination of echograms by experienced analysts and targeted trawling of aggrega-

tions with pelagic and bottom trawls (Honkalehto et al., 2009). By the mid-2000s, echo-

sounder technology had progressed to the point that acoustic data were routinely being 

collected at 4–5 frequencies (i.e. 18, 38, 120, 200 kHz and sometimes 70 kHz) but the 

multifrequency information was not being used for species classification. 

At the time, instrumentation, methods, and software for routine multifrequency acous-

tic measurement via multiple narrowband echosounders (Higginbottom et al., 2000; 

Korneliussen and Ona, 2002; Korneliussen et al., 2008) were becoming available, and 

promising results that had used multifrequency information to inform acoustic species 

classifications (Fernandes et al., 2006, and references therein) were being reported. In 

the areas of Alaska where pollock are surveyed, the pelagic communities are generally 

dominated by a few species, as is often the case in high-latitude areas. These areas are 

likely to be environments where the use of frequency response as the basis for acoustic 

classification could be informative. 

At the outset, the study chose to quantify the frequency response of dominant scatterers 

in the survey areas and evaluate how a relatively simple classification approach would 

perform in distinguishing among major scattering groups observed in pollock surveys 

in Alaska. The aim was to develop a method that could be implemented during routine 

surveys. In addition, only frequency response (i.e. rather than backscatter strength or 

other information such as previous distributions of each species or echotrace character-

istics of aggregations; Reid, 2000), would be considered as this was thought to be less 

dependent on fish density and behaviour and thus potentially a more robust classifier. 

Thus, the goals were to 1) document the frequency response of the organisms encoun-

tered during these surveys and 2) develop an objective technique to classify backscatter 

to taxonomic categories that could be easily integrated with survey operations and the 

software tools available at the time. 

Methods 

An empirical approach was undertaken; a library of the relative frequency response was 

compiled in instances where species composition had been shown, by trawl sampling, 

to be dominated by a single species or taxon (see De Robertis et al., 2010 for details). 

Survey trawls where ≥ 4 frequencies were available (n = 375) were screened by catch 

composition, and those trawls where the catch composition was dominated by a single 

species or group were included in further analysis. 

Initial analysis of frequency response revealed that spatially averaging acoustic data 

was essential to reduce variability (see Section 5.6.5 and Figure 1 in De Robertis et al., 

2010) and low signal-to-noise data needed to be identified and removed from further 

consideration (see Section 5.6.4 and De Robertis and Higginbottom, 2007) to avoid arte-

facts from noise. Backscatter occurring in the trawl path was isolated to maximize the 

probability that the trawl catch reflected the species causing the backscatter, and the 

frequency response for cells with above a minimum threshold (Sv > −70 dB re 1 m−1), and 

a signal-to-noise ratio of > 10 dB was computed in 5 m × 5 ping analysis cells. This cell 

size was empirically determined based on a decrease in the variance of the frequency 
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response with increasing cell size (cf. Figure 1 in De Robertis et al., 2010). Histograms of 

the pairwise frequency response revealed that the spatially averaged observations (ex-

pressed in logarithmic units, i.e. ΔSvf1–f2 = Sv,f1–Sv,f2) generally could be approximated by 

a normal distribution (i.e. the mean and standard deviation were used to summarize 

pairwise frequency measurements). 

A Z-score (normal deviate, Z ) approach was used to summarize the relative frequency 

response and to evaluate the degree to which an unclassified measurement corresponds 

to the relative frequency response of a known class of scatterers in the database of 

ground-truthed frequency differences (De Robertis et al., 2010). One practical advantage 

of this approximation is that this provided a metric that could be summarized using the 

post-processing tools employed during the surveys (i.e. no additional software or pro-

cessing steps were required). The average Z-score across all frequency pairs provides a 

convenient measure of confidence in the cell classification, expressed in units of stand-

ard deviations relative to the measured relative frequency response for taxon m. For 

example, a backscatter observation with a pollockZ of 0.5 compared is much more con-

sistent with backscatter from pollock than one with a pollockZ of 2.5, as 2.5 standard de-

viations is much farther from the mean than 0.5 standard deviations. 

A workflow1, which did not require user input, was developed that allowed the Z-

score relative to those for taxa in the trawl ground-truthed library for a given set of 

acoustic measurements (Figure A1.6) classifying backscatter to taxonomic classes (e.g. 

pollock vs. euphausiids) as a binary decision based on Z-score alone (see De Robertis 

et al., 2010 for details). The Z-scores were used to generate a classification in which the 

label corresponding to a library component (e.g. Z-score relative to pollock is com-

puted using the pollock mean and s.d. at each frequency pair tabulated in the library) 

is assigned to each backscatter observation. In addition, the aggregate frequency re-

sponse of multiple adjacent cells is considered in the classification as one and is un-

likely to observe high average Z-scores if the species identification is correct (i.e. cases 

in which many observations are in the tails of the expected distribution are removed 

as multiple observations from the tails of the distribution are unlikely). The spatially 

averaged Z was also used as an index of classification certainty as the units of Z  de-

scribe how well the sample conforms to the measured frequency response of a given 

class. For example, one would expect a spatially averaged Z  of 1 for a given species 

and deviations from this (either spatially or temporally) should cause one to consider 

the effectiveness of the classification. 

 

                                                           

1An example implementation and tutorial is available at: http://sup-

port.echoview.com/WebHelp/Data_Processing/Classification/dB_difference_z_score.htm 
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Figure A1.6. Example of implementation of the Z-score method in the eastern Bering Sea: (a) origi-

nal 38 kHz echogram showing backscatter from demersal and pelagic walleye pollock (Gadus chal-

cogrammus) and a near-surface layer of unknown composition; (b) synthetic echogram of pollockZ

summarizing the frequency responses at 18, 38, 120, and 200 kHz; results are shown for all samples 

above the integration threshold of −70 dB re 1 m−1 at 38 kHz; (c) as in (b), but implementing criteria 

excluding neighbouring cells where cells are, on average, only marginally consistent with pollock 

(De Robertis et al., 2010). (d) 38 kHz echogram showing all samples with a frequency response con-

sistent with that of pollock. Colour scales for 38 kHz Sv (left) and pollock (right) are shown, and 

black horizontal lines demarcate 25 m depth intervals. Reprinted with permission from De Rob-

ertis et al. (2010). 

Results 

A library of frequency responses was established by extracting acoustic data from a 

sizeable number of trawl sites with almost pure catches of pollock (n = 56 hauls) and 

euphausiids (n = 27) and small sample sizes of other species [n = 2–4 for capelin (Mallo-

tus villosus), myctophids (Myctophidae), eulachon (Thaleichthys pacificus), and Pacific 

ocean perch (Sebastes alutus)]. These measurements (Figure A1.6) characterized the ex-

pected frequency response for pollock and euphausiids (Figure A1.7) and produced 

preliminary results for other less well-sampled species. Overall (see De Robertis et al., 

2010 for details), the data showed that (i) walleye pollock frequency responses were 

similar along a wide range of body size, (ii) fish with large gas-filled swimbladders 

(pollock, Pacific ocean perch, capelin) had similar frequency response, (iii) myctophids 

showed evidence of resonance close to 38 kHz, (iv) areas where jellyfish were captured 

show higher backscatter at 18 kHz, and (v) eulachon, which lack a swimbladder, 

showed evidence of higher backscatter at 120 kHz, consistent with the predictions of 

Gauthier and Horne (2004). 

Pollock backscatter automatically classified using the Z-score method (i.e. based on 

frequency response alone with no user input) and the standard survey technique (i.e. 

based on trawls and expert examination of echograms) compared favourably in the 

eastern Bering Sea (Figure A1.8). The consistency between the estimates of pollock 

abundance based on the two methods indicates that, in the case of pollock in the east-

ern Bering Sea, the assumptions of the Z-score method are largely met. Similarly, the 

pollockZ  for backscatter identified as pollock was consistently in the range expected for 

pollock (1–1.2), which provides some confidence that the backscatter classified as pol-

lock had a consistent frequency response over space and among cruises. 
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Figure A1.7. Means and standard deviations of frequency response (ΔSv) estimated for groups of 

fish and invertebrates commonly encountered during acoustic–trawl surveys in the Gulf of Alaska 

and eastern Bering Sea. Reprinted with permission from De Robertis et al. (2010). 

Discussion 

The similarity between Z-score and survey pollock classifications indicates that an 

abundance index of pollock approximating that from a traditional survey can success-

fully be made with species identification based solely on relative frequency response in 

this environment. However, one must keep in mind that the eastern Bering Sea midwa-

ter fish community is dominated by a few abundant species (e.g. Honkalehto et al., 2009; 

De Robertis and Cokelet, 2012) and acoustic species classification based on relative fre-

quency response and other methods will be more challenging in more diverse environ-

ments. 

The Z-score method is now routinely implemented during surveys of Alaska pollock. 

It is primarily used to generate real-time synthetic echograms to establish whether ob-

served backscatter has a frequency response consistent with pollock. This is used as an 

additional source of information to inform the decision to deploy a trawl during sur-

veys and as a source of information when backscatter is being allocated to species by 

an analyst. In addition, the method has been used for species classification in cases 

where trawl samples are not available (De Robertis and Cokelet, 2012) or as an initial 

filter to exclude backscatter that is unlikely to be from the target species (De Robertis 

et al., 2017). 
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Figure A1.8. Comparison of pollock backscatter based on multifrequency identification of pollock, 

with pollock backscatter identified in the acoustic survey for five surveys between 2004 and 2009. 

Each point represents a transect mean. The figure legend lists the r2 resulting from linear regression 

of the multifrequency and survey pollock abundance in each year. The outlier from 2007 shows a 

transect in which aggregations of rockfish were misidentified by the Z-score method as pollock due 

to their similar frequency response. Reprinted with permission from De Robertis et al. (2010). 

In addition, the Z-score method has been used as the basis for acoustic identification of 

euphausiids during the pollock surveys (Ressler et al., 2012), and the measured euphau-

siid frequency response has been used in dual-frequency classifications (e.g. Benoit-Bird 

et al., 2011; De Robertis and Cokelet, 2012). The euphausiid classifications appear to be 

robust. Follow-up trawl sampling principally captured euphausiids in areas with a fre-

quency response expected for euphausiids (e.g. Ressler et al., 2012; Simonsen et al., 2016), 

which lends support to the acoustic classifications. In addition, a limited number of 

measurements of euphausiid frequency response using the same method produced 

very similar frequency responses for euphausiids in both the Barents Sea (Ressler et al., 

2015) and the Gulf of Alaska (Simonsen et al., 2016). Although the ability to distinguish 

zooplankton from other scatterers based on frequency response is by no means novel 

(e.g. Watkins and Brierley, 2002), the method appears to be relatively robust to the as-

sumptions made in the environments tested. There is substantial interest in euphausiid 

abundance, and the Z-score classification method has facilitated several studies of eu-

phausiid population dynamics and predator–prey relationships (e.g. Sigler et al., 2012; 

Ressler et al., 2014, 2015; Hunt et al., 2016; Simonsen et al., 2016). An acoustic-based eu-

phausiid abundance index based on this method is routinely considered as an “ecosys-

tem indicator” as part of fisheries management deliberations in Alaska (Bolt and Zador, 

2009). 

The method described in this case study is quite simple. It was, by design, restricted to 

the arithmetic operations available in the software package used during these surveys 

at the time. For example, all frequency pairs are weighted equally, although some spe-

cies may differ at some frequencies (e.g. compare eulachon and other species in Figure 

A1.7). Treating all frequency pairs equally will dilute the differences in frequency re-

sponse. However, despite these inherent simplifications, the method has proved rela-

tively robust and useful in separating species with large frequency differences (e.g. fish 

and zooplankton) in studies of relatively simple high-latitude ecosystems. However, it 
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is unlikely that the method is sensitive enough to robustly distinguish between acous-

tically similar groups such as fish with non-resonant swimbladders fish [e.g. walleye 

pollock and rockfish (Sebastes spp.)]. This, if achievable, will require more sophisticated 

methods for characterizing frequency-dependent scattering measurements and their 

variance and will require other sources of information such as measurements over a 

broader frequency range. 

It is important to recognize that success for methods of acoustic species classification 

will be situation-dependent. These methods typically rely on assumptions (e.g. that the 

primary scatterers largely do not coincide in space and that they differ in frequency 

response) and it should be expected that acoustic classifications are likely to fail under 

some circumstances. The utility and effectiveness of any approach is situation-depend-

ent; classification success depends on the species composition, relative abundance, rel-

ative frequency response, and spatial overlap of the species assemblage present in the 

environment. To avoid making incorrect interpretations, it is important to be able to 

identify the situations under which a particular method will provide useful results (i.e. 

it may be unavoidable to make mistakes, but it may be possible to identify incorrect 

classifications so that incorrect inferences can be avoided). In this context, a goodness-

of-fit criterion is a useful metric; a poor fit with the expected acoustic properties may 

indicate a violation of the underlying assumptions, and the goodness-of-fit should be 

monitored and suspect results critically investigated. The method described here pro-

vides a goodness-of-fit criterion (the Z-score) which can be used as a measure of confi-

dence in the classification, and it has proved robust in several applications. It is straight-

forward to implement and can be adapted to other situations if the necessary parame-

ters can be generated from empirical observations or theoretical predictions (Sakinan 

and Gücü, 2017). It could certainly be improved upon, e.g. using more sophisticated 

statistics (Anderson et al., 2007; Korneliussen, 2010), incorporating sources of infor-

mation other than frequency response (Woodd-Walker et al., 2003), or averaging obser-

vations within aggregations to reduce variability (Korneliussen et al., 2009), format 

treatment of species mixtures (Woillez et al., 2012), and in some applications such addi-

tional considerations will be necessary. However, the method has proven useful in some 

applications in low-diversity ecosystems, and it may prove useful in other applications. 
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A1.4 Case study 4: Identification of mackerel, sandeel, and capelin by means 

of LSSS in three different ecosystems 

The LSSS software 

The Large Scale Survey System (LSSS) software analyses acoustic backscatter from ma-

rine organisms such as zooplankton and pelagic and demersal fish. It is designed for 

efficient post-processing of large amounts of echosounder and sonar data and contains 

tools to isolate echotraces by creating regions and assigning categories to these regions. 

The LSSS preprocessing facility (KORONA) carries out time-intensive automated pro-

cessing of acoustic data. With automatic categorization the primary intention is to pro-

vide information that allows more objective scrutiny of the echograms and, second, to 

accelerate manual scrutiny. 

Populating the feature library 

Data were processed in a standardized manner to remove noise, bad data, and to aver-

age data. Acoustic multifrequency data that originated from registrations that were 

monospecific according to biological sampling were used to populate a library of statis-

tical properties of measured acoustical variables. In its current implementation, the log-

arithmic relative frequency responses, R(f), and the scattering strength, Sv, are main 

acoustic variables used by the LSSS (Korneliussen et al., 2016). The procedure and the-

ory for extracting the statistical properties, as implemented in LSSS, are described in 

Korneliussen et al. (2016). The content of the feature library is used to group the scatter-

ers into scattering-classes. The acoustic feature library contains statistical properties, 

such as mean, variance, and covariance of the acoustic variables for each of the acoustic 

library categories (ALC). 

Species identification – acoustic categorization 

Data processing started, as described above, and continued by detecting schools and 

categorizing acoustic targets. Two types of automatic categorization were used simul-

taneously: one based on scattering models through inversion (Section 6.1.2) and one 

based on an acoustic feature library described here. The acoustic variables in the library 

are expected to be lognormal distributed, and the number of acoustic variables equals 

the number of available frequencies (R(f) at all frequencies, f, except 38 kHz, where 

Sv(38) is used), e.g. 6 for RV “G. O. Sars” until 2016. The method also works for broad-

band data as it can be split into several narrower bands, so after 2016, the number of 

variables could be e.g. 25 on board RV “G. O. Sars”. 

A multidimensional, lognormal probability density function (PDF) is fitted to the data 

and compared to the content of the feature library. As such, multidimensional compar-

ison is difficult to visualize. The comparison is shown for one dimension only. Figure 

A1.9 shows the fitted PDF for two hypothetical acoustic library categories (ALC). Since 

R(x)> R(x), which indicates category  as the most likely if the separation is based 

on one feature only. Note that R(f) = 10log10[r(f)]. 
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Figure A1.9. Probability density function of one acoustic variable W (i.e. one dimension) for two 

acoustic library categories (ALC) is used to determine if measurement x (of acoustic variable W) is 

most likely to originate in species 1 or 2. Here p(x|ω2) > p(x|ω1) indicates species 2 as the most 

likely. In practice, many such comparisons between different features and categories contribute to 

the chosen category. 

Figure A1.10 shows two dimensions, R(70) and R(200), of the hyper ellipses of the same 

acoustic library categories (ALC). The covariances among the individual acoustic vari-

ables are considered as well as the variance. This means that the contours of the distri-

butions will be ellipses, whose axes are not necessarily parallel with those of the prop-

erty–space axes. The use of covariance in addition to variance gives more accurate dis-

tribution functions and better separation between the different acoustic library catego-

ries. The centre of the ellipses represents the mean, and the size and tilt of the ellipses 

represents the variances and covariance of these acoustic variables, R(70) and R(200). 

The separation of the ellipses visualizes the ability to distinguish the categories. In this 

case, there are three spatial resolutions – pixels, cells, and entire schools. Each point in 

the cell resolution is averaged over many samples, which in turn gives smaller variances 

that appear as smaller ellipses with better separation. Additional good separations be-

tween the categories may be found by similar visualizations of other pairs of variables. 

Multifrequency data from each pixel are tested against the properties of the acoustic 

library categories (ALC; further details below). The most probable ALC are associated 

with that pixel. This is determined by the probability that the tested data belongs to a 

specific acoustic library category. The categorization method is based on Bayes decision 

theory (Theodoridis and Koutroumbas, 2008). Measurements on new backscatter are 

compared to the content of the feature library to decide which, if any, of the existing 

ALC the new measurements are close to. The details of the categorization algorithm are 

described in Korneliussen et al. (2016). 

Application of the procedures described above results in a library containing statistical 

features of acoustical measurements. Figures A1.11 and A1.12 show two different ways 

of visualizing the statistical properties of the variables in a feature library. 
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Figure A1.10. Acoustic variables R(70) and R(200) at different spatial resolutions for three acoustic 

library categories (ALC): (a) pixel resolution; (b) cell resolution (800 pixels averaged spatially); (c) 

school resolution (one value per identified school). 

 

Figure A1.11. Logarithmic relative frequency responses R(18) vs. R(200) at cell resolution (800 sam-

ples averaged) for the ALC of importance for the case studies. The ellipses are statistical boundaries 

on each category that contain 90% of the observations. The plot shows that for the features R(18) 

vs. R(200), ALC_mackerel is almost completely separated from ALC_resonant_18, while ALC_her-

ring has partial overlap with both ALC_mackerel and ALC_resonant_18. In addition to R(18) and 

R(200), using more features improves the separation of categories. 
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Figure A1.12. Relative frequency responses, r(f), of the acoustic library categories (ALC). The cate-

gories are generated from ground-truthed backscatter of Scomber scombrus L. (ALC_mackerel), Am-

modytes marinus L. (ALC_sandeel), Mallotus villosus L. (ALC_capelin), Gadus morhua L. (ALC_cod), 

Micromesistius poutassou L. (ALC_blue_whiting) and Clupea harengus L. (ALC_herring and 

ALC_herring_nvg). The ALC_herring_nvg category is trained on Norwegian spring-spawning her-

ring, while the ALC_herring category also includes North Sea herring. 

Multifrequency acoustic data were collected according to existing protocols (Kornelius-

sen et al., 2008) with the intention of combining and analysing coincident observations 

from several echosounders operating at different frequencies. This requires the use of 

calibrated systems (Foote et al., 1987; Demer et al., 2015) operated at the same pulse-

duration (in these data, 1 ms) and ensonifying nearly the same volume of water at all 

frequencies. Data were collected during three surveys using Simrad EK60 echosounders 

mounted in a tightly packed configuration on a protruding keel (Korneliussen, 2010). 

All surveys were used for stock abundance estimation. The surveys were: 

1. Survey number 2004113 

RV “G. O. Sars” in October–November 2004 in the northern part of the North 

Sea and southern part of the Norwegian Sea targeting Atlantic mackerel 

(Scomber scombrus). The survey was selected to compare the categorization 

method with an earlier method (Korneliussen, 2010). 

2. Survey number 2014807 

RV “Eros” in 2014 in the North Sea targeting sandeel (Ammodytes marinus). The 

survey was selected because it observed small schools on and just above the 

seabed, which provides a challenge to the categorization process. 

3. Survey number 2014116 

RV “G. O. Sars” in the Barents Sea in 2014 for investigation of the complete 

ecosystem (which is the survey selected for identification of capelin, which is 

acoustically similar to herring and cod in the same waters). 

Data from the three surveys were processed stepwise through independent processing 

modules, i.e. the output from one processing module was the input of the next module. 

The processing was as follows: 

1. Discrimination – removal of unwanted signal 

a. Remove spike-noise (originating in unsynchronized instruments or sonars 

on nearby ships). Median value of surrounding pixels replaces removed 

values. 

b. Replace negative spikes, i.e. drop in values with a vertical extent (originat-

ing in pings blocked by a bubble cloud). Median value of surrounding pix-

els replaces removed values. 
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c. Quantify and remove ambient noise from the remaining data. 

2. Align data spatially 

a. Correct data for horizontal and vertical placement of transducers and for 

the frequency-dependent system delay. 

3. Group data in schools and seabed (grouping in tracks not used in these case 

studies) 

a. Detect seabed. 

b. Detect extent of the schools. 

4. Categorize data 

a. Categorize all pixels. (Categorization of some pixels may not be conclu-

sive). To speed up processing, only pixels below the surface blind zone and 

above the detected seabed are attempted to be categorized. 

b. Categorize all pixels inside the detected schools as a unit. The results are 

usually more conclusive than pixels categorized individually. Results of 

school categorization takes precedence over pixel categorization. 

c. Use inversion to investigate if the measured backscatter of a pixel origi-

nates from zooplankton. To speed up the processing, pixels categorized as 

fish are not investigated further. 

The processing modules of points 4.a and 4.b do not use all frequencies at all ranges. 

For example, at ranges beyond 300 m, 200 kHz data are not used even if they are avail-

able; at ranges beyond 350 m, 120 kHz data are not used. ALC_mackerel requires 200 kHz 

to be identified, so there is no attempt to identify ALC_mackerel at ranges 300 m beyond 

the transducer. The processing module of point 4.c needs to use all specified frequen-

cies. If the frequencies 18, 38, 70, 120, 200, and 333 kHz are specified, there will be no 

attempt to fit a zooplankton scattering model to the measured data beyond the maxi-

mum specified range of 333 kHz, which may be 110 m. 

The settings for pixel categorization and school categorization were the same for all 

surveys, except that the selection of acoustic library categories to be identified was dif-

ferent due to geographical considerations. For example, as Atlantic mackerel is unlikely 

to be found far north in the Barents Sea in late September, the acoustic library category 

ALC_mackerel was not used in that case study. ALC_mackerel is based on acoustic data 

verified to be Atlantic mackerel and is used to identify mackerel. 

Acoustic aggregations appearing as schools may not necessarily contain only one spe-

cies. Assuming that a school may contain more than one species requires that different 

parts of the school are automatically tested for acoustic properties. If the test is incon-

clusive or does not conclude that the school is monospecific, the school is processed as 

if it contains multiple species. Processing individual pixels of a school usually leaves 

many pixels uncategorized, which gives values of sA too low for the automatic categori-

zation of the school. Most schools in the investigation areas were expected to be mono-

specific. The disadvantage of getting values for sA too low for many schools was evalu-

ated to be larger than sometimes being wrong about schools being monospecific. 

For this study, schools were assumed to be monospecific. In cases where all the echoes 

from a school have similar relative frequency responses, it may be assumed that the 

aggregation contains only scatterer type and potentially only one species. Note, that the 

result of the categorization is an acoustic category, not a species. The sA was stored at a 

horizontal resolution of 0.1 nautical miles both for the original manual scrutiny and for 

the automatic categorization. Table A1.3 shows the acoustic library categories used by 

the categorization modules in the different case studies. 
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Table A1.3. Categories and species compared in the surveys. The second column is the target spe-

cies. The third and fourth columns are the similar scrutinize category and acoustic library category 

(ALC) believed to originate in the target species. The final column contains ALC that were identi-

fied simultaneously with the target library category. If the backscatter of a pixel is not most likely 

to originate in the target ALC, or if the probability is below the probability threshold, sv = 0 for that 

pixel. 

Survey Biological 

target 

species 

Scrutinize 

category 

ALCG Number 

of 

training 

schools 

Training 

schools 

collection 

year 

ALC used to remove 

backscatter 

2004113 Scomber 

scombrus L. 

Mackerel ALC_mackerel 35 1999 

2005 

ALC_resonant_18A 

ALC_krill_northB 

ALC_krill_thyssanoessaC 

ALC_herringD 

2014807 Ammodytes 

marinus L. 

Sandeel ALC_sandeel 44 2008 

2009 

ALC_resonant_18A 

ALC_krill_northB 

ALC_krill_thyssanoessaC 

ALC_herringD 

2014116 Mallotus 

villosus L. 

Capelin ALC_capelin 67 2008 

2014 

ALC_resonant_18A 

ALC_krill_northB 

ALC_krill_thyssanoessaC 

ALC_herring_nvgE 

ALC_codF 

A ALC_resonant_18 were trained from 4 shoals of zooplankton that were resonant at 18 kHz. 
B ALC_krill_north was trained from 24 schools of Meganictiphanes norwegica L. 
C ALC_krill_thyssanoessa trained from 8 shoals of Thyssanoessa inermis L. 
D ALC_herring were trained from 40 schools of Clupea harengus L. 
E ALC_herring_nvg were trained from 9 schools of Norwegian spring-spawning herring. 
F ALC_cod were trained from 10 schools of Gadus morhua L. These were actually schools of cod. 
GAcoustic library categories are always in italic and preceded by ALC_ 

The acoustic library categories resulting (ALC) from processing points 4.a and 4.b are 

mapped to scrutiny categories. The results of the scrutiny categories are stored to a da-

tabase and, for each survey, that result is compared to the data scrutiny carried out 

during the surveys. 

Results 

The sA values from the automatic categorization and the manual scrutiny for the three 

surveys show that the automatic categorization and the manual scrutiny are strongly 

correlated, especially for large sA (Figure A1.13 a and c). A notable characteristic, espe-

cially for capelin, is that the values from the automatic categorization are equal to or 

slightly smaller than the manual scrutiny, except for small values of sA. Furthermore, 

there are many small-to-moderate values from the automatic categorization that give 

zero sA for the manual scrutiny, especially for sandeel. Subsequent inspection of the 

manually scrutinised sandeel survey echograms showed that some sandeel schools 

were clearly scrutinized incorrectly. This objective check of the manual scrutiny is one 

advantage of the automatic process. There was high spatial conformity between the 

manual scrutiny and the automatic categorization (Figures A1.11 and A1.13b) and the 

correlation between the two methods was high except for low values of sv where the 

correlation varied considerably (Figure A1.13c). 
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Figure A1.13. Comparison of automatic categorization (acoustic library categories) and manual 

scrutiny (scrutiny categories) for Atlantic mackerel, sandeel, and capelin. sA are stored in the data-

base at a horizontal resolution of 0.1 nautical miles and shown here as sA0.5 to better show the dy-

namics. a) Automatically categorized acoustic library category compared to manually scrutinized. 

b) Automatically categorized (black) and manually scrutinized (orange) as a function of distance 

travelled. c) Correlation between sA from acoustic library category (resulting from automatic cate-

gorization) and sA for similar scrutiny category (resulting from manual scrutiny) for the same 

100 x 0.1 nautical miles distance. 

The overall correlations between manual scrutiny and automatic categorization are 

very high for all surveys (Table A1.4). For mackerel and sandeel, the total acoustic 

abundance of the automatic categorization and the manual scrutiny were within 2% of 

each other. The slight difference is explained by the observation that manually drawn 

school integration regions are always slightly larger than the automatically drawn 

school regions. The capelin data correlation is close to 1 (Table A1.4), but the automatic 

categorization resulted in a 15% lower sA than the manual scrutiny. This may be due to 

school categorization failing so that some schools are not being categorized as a unit, 

but as individual pixels. This, in turn, leaves many pixels uncategorized and some of 

the pixels being wrongly identified as cod or herring instead of capelin. In that case, 

masking the measurements with pixels identified as capelin will give values that are 

too low.  
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Table A1.4. Comparison of manual scrutiny and automatic categorization. The sA(200) samples are 

averaged over 0.1 nautical miles. Column 6 gives number of samples, column 7 the total sA of auto-

matic detection relative to sA of manual scrutiny. 

Survey Biological 

target species 

Scrutinize 

category 

ALC Correlation sA,200 

samples 

sA(200)auto/ 

sA(200)man 

2004113 Scomber 

scombrus L. 

Mackerel ALC_mackrel 0.996 7 913 0.985 

2014807 Ammodytes 

marinus L. 

Sandeel ALC_sandeel 0.998 17 925 0.994 

2014116 Mallotus 

villosus L. 

Capelin ALC_capelin 0.976 9 869 0.855 

Discussion 

Averge values of R(f) at the school resolution level for the main acoustic library catego-

ries (ALC_mackerel, ALC_sandeel, and ALC_capelin) were used in the three surveys and 

some other categories with features similar to ALC_capelin (herring, cod, blue whiting). 

The mean r(f) values of ALC_mackerel and ALC_sandeel are quite different from the other 

acoustic library categories (Figure A1.10 – r(f) not logarithmic), which makes reliable 

automatic categorization likely. However, the variation (uncertainty) of r(200), (not 

shown) is typically three–fivefold the mean value of r(200) at school resolution and 

around 10–20-fold the mean value at pixel level. This makes occasional misclassifica-

tions likely, especially at pixel level. In other words, misclassification is more likely if 

the scattering regions cannot be grouped into single fish tracks or schools of somewhat 

stronger scattering regions. 

The good results from ALC_mackerel were expected because the r(f) of ALC_mackerel is 

markedly different from other categories. The r(f) of ALC_sandeel is also quite different 

from the other categories, so a high similarity between manual scrutiny and automatic 

categorization was also expected. The sample correlation coefficient is high for large sA, 

thus the total correlation also becomes large. The less common alternative, the rank cor-

relation coefficient (Walpole et al., 2002), gives equal weight to all values and results in 

a somewhat lower correlation. However, it is the large values that have most influence 

on the abundance estimates, and it is, therefore, felt that the use of sample correlation 

is more appropriate. 

The high correlation between manual scrutiny and automatic categorization of 

ALC_capelin was unexpected, especially since the r(f) of ALC_capelin in the feature li-

brary is like that of ALC_cod and ALC_herring_nvg. The manual scrutiny of ALC_capelin 

is reliable in this case due to the low water temperature in which ALC_capelin is often 

found, the location in the water column, the schooling behaviour, and the results of the 

biological sampling. It was expected that additional, non-acoustic characteristics would 

be needed for a high correlation between manual scrutiny and automatic categorization. 

Difference in school shapes has previously been used to improve automatic categoriza-

tion (Scalabrin et al., 1996; Korneliussen et al., 2009a), but that was not used in this case 

as the scattering regions mostly formed large layers and not schools of limited size, so 

morphology was not considered to be reliable. A reduction in the a priori probability of 

ALC_herring and ALC_cod, e.g. from 1 to 0.8, may be defended due to the low water 

temperature. Such a reduction in the a priori probability did, in fact, improve both cor-

relations, and improved, to some degree, the ratio between automatic categorization 

and manual scrutiny. 
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Each acoustic library category should contain a sufficient quantity of data for each cat-

egory for extraction of statistical properties, preferably from more than one survey. Poor 

training of one category in the acoustic feature library can lead to unreliable results, as 

would the use of data from uncalibrated echosounders. Uncalibrated instruments give 

biased sA values and, therefore, an incorrect relative frequency response. The uncritical 

use of fully automated species identification during operational surveys is inadvisable. 

Although these surveys showed good agreement between automatic categorization and 

manual scrutiny, the relative frequency responses may potentially change with water 

temperature, fat content, specimen size, and species behaviour, so that similarly good 

results may not be found in other cases. A solution to this problem is to build an acoustic 

library that allows for seasonal variations in the scattering properties. Alternatively, one 

species may be used to build up several acoustic library categories, like ALC_macke-

rel_spring, ALC_mackerel_summer, etc. 

Automatic categorization may be used to reanalyse data from old surveys to obtain a 

new and objective view of those data and to analyse data that have no temporally rele-

vant ground-truth information available such as data collected with autonomous un-

derwater vehicles or with ocean observatories. Automatic categorization is reliable for 

the large sA values present in the case studies. Furthermore, automatic categorization 

can provide a more objective view to assist manual scrutiny and, from experience, 

speeds up the scrutinizing process (as allocation of scrutiny categories to echotraces can 

be taken with confidence faster than otherwise and requires less consideration by the 

scrutiny team). The speed and objectivity of the scrutiny naturally also improves with 

the use of reliable echotrace detection, as the acoustic library categorization becomes 

more reliable and because less time is needed to draw school regions. 

Efficient and effective scrutinizing of acoustic data in a resource-limited environment 

requires attention to the time required to produce abundance estimates. The use of au-

tomatic categorization contributes to this aim and is particularly important for surveys 

which require abundance estimates at their completion, such as the joint Russian and 

Norwegian surveys of Barents Sea capelin (Eriksen, 2012) and the Norwegian surveys 

of North Sea sandeel (Johnsen et al., 2009).  

A future enhancement is to incorporate more of the information that the scrutinizing 

operator has at hand, such as the local geography, and use it to automatically adjust 

the a priori probability, such as reducing the probability of finding Atlantic mackerel in 

the Barents Sea during winter. The methods for acoustic categorization presented here 

can be applied to wideband acoustic data, although this has not been shown here. 

Wideband data improve range resolution and hence improve single fish detection and 

tracking. Wideband backscatter can be split into several frequency bands to give an 

increased number of points in the r(f) curve, which should lead to improved species 

identification. 
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A1.5: Case study 5 Acoustic diversity and classification of fish aggregations in 

coral reefs eco-systems 

Introduction 

Acoustic surveys have been used successfully for several decades as an assessment tool 

for small pelagic or demersal fish populations in high-latitude areas where species di-

versity and the general complexity of the systems are relatively low. So far, very few 

fisheries acoustic assessments have been carried out for fish species in coral and rocky 

reef systems (Costa et al., 2014). The high diversity of these areas and the inability to 

identify species using only sonar (echosounders) have limited the use of this technol-

ogy. Groundtruthing can be very challenging due to the nature of the seabed, inhibiting 

the use of extractive methods like trawlnets. To respond to the increasing need for reli-

able large-scale data for the management of these important ecosystems, there is a need 

to improve fisheries acoustics and develop alternative approaches for target classifica-

tion in these areas.  

In this case study, we evaluate previously defined metrics that describe the shape (ge-

ometric) and acoustic backscatter (energetic) properties (Nero and Magnuson, 1989; 

Reid, 2000; Scalabrin and Massè, 1993; Haralabous and Georgarakos, 1996; Kornelius-

sen et al., 2009) of Caribbean reef fish aggregations and schools in order to investigate 

the acoustic diversity and identify meaningful patterns that could help classify the 

acoustic signatures to species groups or guilds rather than individual species. We use 

an unsupervised statistical clustering method in order to describe the acoustic varia-

bility of the coral reef areas. Underwater video surveys of fish aggregations and schools 

from remotely operated vehicle (ROV) were used to guide our interpretation of the 

unsupervised classification. The research was conducted in the US Virgin Islands and 

Puerto Rico in spring 2011, 2013, and 2014. 

Methods 

Acoustics 

The acoustic surveys were carried out on board the NOAA ship “Nancy Foster” using 

Simrad EK 60 split-beam echosounders operating at three frequencies (38, 120, 

200 kHz). The survey design was generally based on parallel transects. The intertran-

sect distance, transect length, and direction varied among sampling sites and were cho-

sen according to the characteristics of the reef. 

The acoustic backscatter was processed using the software Echoview (Version 7.0, 

Echoview, Pty Ltd., Hobart, Tasmania). Background noise and other unwanted 

backscatter (e.g. bubbles, plankton) were removed to get a “clean” echogram. The Sv 

echograms were averaged at each frequency and an image filtering procedure was used 

to stabilize the data by removing the small samples and better identifying the schools, 

as described in Korneliussen et al. (2009). The synthetic echogram obtained was used to 

detect schools by applying the SHAPES (SHoal Analysis and Patch Estimation System) 

algorithm in Echoview (Barange, 1994). 

A series of parameters describing the energetic, morphological structure and position 

of the school in the water column were exported. These metrics provide detailed infor-

mation of the acoustic characteristics and behaviour of fish aggregations. The full list of 

metrics used is shown in Table A1.5. The remaining backscatter was not identified as 

the school was excluded from further analysis for this case study. This low-density 

backscatter most likely belongs to a large number of species that have individual swim-

ming behaviour and are analysed with other approaches (e.g. echo counting). 
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An unsupervised robust sparse K-means (RSKM) clustering approach was used for the 

classification of the aggregations (Kondo et al., 2012). This method is a derived form of 

k-means that is able to reduce the negative effect of using a large number of variables, 

and it is able to deal with the presence of outliers in the dataset. 

Species composition and schooling behaviour of the fish communities in the area were 

detected using videos and still images taken by an ROV (Super Phantom S2 and Sub-

Atlantic Mohawk18). Fish schools and aggregations observed by the ROV were paired 

with the closest aggregations and clusters from the analysis of the echosounder surveys. 

Fish behaviour (e.g. packing density, number of fish in the schools, school shape, dis-

tance from the seabed) was also evaluated as were coupling patterns in clusters with 

species observed. Figure A1.14 summarizes the general workflow of the approach used. 

Table A1.5. List of school features used for school classification. 

Class School descriptor Unit Description Reference 

Energetic MVBS 38, 120, 200 

kHz (MVBS38, 

MVBS120, 

MVBS200) 

db re 1 m−1 Mean volume 

backscattering 

coefficient 

Simmonds 

and 

MacLennan 

(2005) 

Sv max 38, 120, 200 

kHz (sv_max38, 

sv_max120, 

sv_max200) 

db re 1 m−1 Maximum volume 

backscattering 

coefficient 

Simmonds 

and 

MacLennan 

(2005) 

Horizontal rough-

ness 38 kHz 

(hor_rough) 

db re 1 m−1 Measure of the dis-

persion of acoustic 

energy in the hori-

zontal direction 

Nero and 

Magnuson 

(1989) 

Vertical roughness 

38 kHz 

(ver_rough) 

Db re 1 m−1 Measure of the dis-

persion of acoustic 

energy in the verti-

cal direction 

Nero and 

Magnuson 

(1989) 

Skewness 38 kHz 

(skew) 

- Skewness of the 

sample values in a 

school 

Lawson et al. 

(2001) 

Standard 

deviation (s.d.) 

- Standard deviation 

of the Sv values in 

the school 

 

Coefficient of 

variation (CV) 

- Coefficient of varia-

tion of the Sv values 

in the school 

 

r(200) 200/38 

(freq_resp200) 

db re 1 m−1 Relative frequency 

response: volume-

backscattering coef-

ficient at 200 kHz 

relative to 38 kHz 

considered as refer-

ence frequency 

Korneliussen 

and Ona 

(2003) 

r(120) 120/38 

(freq_resp120) 

db re 1 m−1 Relative frequency 

response: volume-

backscattering coef-

ficient at 120 kHz 

relative to 38 kHz 

Korneliussen 

and Ona 

(2003) 
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considered as refer-

ence frequency 

Geometric Corrected length 

(length) 

m Horizontal dimen-

sion in the plane of 

the echogram cor-

rected for known 

beam geometry 

Reid (2000) 

Corrected 

thickness (thick) 

m Vertical dimension 

in the plane of the 

echogram corrected 

for known beam ge-

ometry 

Reid (2000) 

Corrected 

perimeter (perim) 

m Length of the pe-

rimeter (in the plane 

of the echogram) 

corrected for known 

beam geometry 

Reid (2000) 

Corrected area 

(area) 

m2 Cross-sectional area 

(in the plane of the 

echogram) of a 

school represented 

by a region on an 

echogram corrected 

for known beam ge-

ometry 

Reid (2000) 

Image 

compactness 

(compact) 

- Measure of the 

shape of a school 

calculated as the ra-

tio between the pe-

rimeter and the area 

Reid (2000) 

3D school volume 

(vol_3d) 

m3 Estimated volume 

of a school assum-

ing it is cylindrical 

 

Rectangularity 

(rectangul) 

- (Length * 

thickness)/area 

Scalabrin 

and Massè 

(1993); Har-

alabous and 

Georgarakos 

(1996) 

Circularity (circul) - (4π*area)/perimeter2 Korneliussen 

et al. (2009) 

Uneveness (unev) - Relation between 

the school perimeter 

and the rectangle 

perimeter computed 

from the school 

height and length 

Weill et al. 

(1993) 

Fractal dimension 

(fractal) 

- Index of shape com-

plexity 

(Ln (perimeter/4) × 

2)/Ln(number of 

samples) 

Nero and 

Magnuson 

(1989); 

Barange 

(1994) 

Elongation (elong) - Length/thickness Coetzee 

(2000) 



 

 

Acoustic target classification | 89 

 

Aco

ustic 

tar-

get 

clas-

sifi-

ca-

tion 

 

Figure A1.14. Workflow for analysis and classification of multifrequency echosounder data of the 

fish schools. Low density backscatter detected from individual fish are logged and analysed using 

echo counting (not discussed further here). 

Results and discussion 

The clustering identified five distinct aggregation groups. Different names were asso-

ciated with the clusters based on the characteristics observed. The clusters were named: 

“high energy” (Cluster 1), “moderate energy” (Cluster 2), “low energy” (Cluster 3), 

“very low energy” (Cluster 4), and “serpentine” (Cluster 5). The first four clusters were 

well separated based on the energetic parameters. The “serpentine” cluster showed a 

stronger separation from the others for geometric parameters. The results of clustering 

are shown in Figure A1.15 on a principal component analysis (PCA) biplot. 

The variables that were most influential in the clustering were the energetic parameters 

(maximum Sv and MVBS) followed by several geometric parameters (rectangularity, 

length, elongation, perimeter, and thickness; Figure A1.16). Bathymetric variables and 

frequency response were relatively unimportant.  

In all,  seven ROV dives were carried out and the videos were visually inspected to 

identify the species that formed schools, aggregations, or loose groups that could be 

associated with the clusters we analysed acoustically (Figure A1.17 and Table A1.6). The 

Bathymetric Depth mean 

(school depth) 

m The distance from 

the sea surface to 

the geometric centre 

of the fish school 

 

 

Mean distance 
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m The distance from 
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deployment of the ROV occurred within ca. 2 h from the acoustic surveys. Packing den-

sity, size of the schools, and number of schools detected were the features observed in 

the ROV videos to help the coupling with the acoustic clusters.  

Based on these results, we can say that the “high energy” and the “moderate energy” 

clusters include mainly large-bodied predator species and commercially important 

species. In contrast, the remaining clusters may include small-bodied species that are 

not typically harvested but still have important ecological roles in the system. 

 

Figure A1.15. Clustering results plotted in a PCA biplot. 
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Figure A1.16. Weights of the clustering features estimated by the RSKM algorithm. 

This study is the first work that describes the acoustic patterns and diversity of fish 

aggregations in a coral reef system, building the basis for a more extensive use of acous-

tic techniques in diverse and complex ecosystems. The approach used could identify 

consistent patterns in the acoustic backscatter and shape of schools ascribable to the 

different morphologies of individuals and behaviours of groups and schools of coral 

reef fish. 

 

Figure A1.17. Example of the association between acoustic transect and ROV. The top panel shows 

the distribution of school clusters around the ROV transect. The echogram of the entire acoustic 

transect is shown in the bottom panel. 
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Table A1.6. Association of the acoustic clusters with the species and their behaviours observed in 

the ROV videos. 

Cluster Acoustic features Candidate species Behaviour 

High 

energy 

High backscatter-

ing 

High thickness 

Large size schools 

Large carangids: Caranx 

ruber, Caranx latus 

Spadefish: Chaetodipterus 

faber 

Moderate to highly 

packed schools 

Organized and co-

ordinated schools 

Moderate 

energy 

High/moderate 

backscattering 

Moderate size 

schools 

Small size carangids: Selar 

crumenophtalmus 

Dog and gray snapper: 

Lutjianus jocu, L. griseus 

Bermuda chub: Kyphosus 

sectatrix 

Triggerfish: Canthidermis 

sufflamis 

Moderate to highly 

packed schools with 

smaller body size 

Organized and 

coordinated schools 

Low 

energy 

Moderate/low 

backscattering 

Moderate size 

schools 

Black durgon: Melichtys ni-

ger 

Creole wrasse: Clepticus 

parrae 

Damselfish:  

Moderate/low pack-

ing density 

Shoaling behaviour 

Very low 

energy 

Low backscattering 

Small schools 

Small mixed species  Low packing den-

sity 

Shoaling behaviour 

Serpentine Moderate/low 

backscattering 

Highly elongated 

Large size schools 

Creole wrasse: Clepticus 

parrae 

Damselfish 

Small planktivorous 

Large and elon-

gated schools 

Organized and co-

ordinated move-

ments 
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A1.6 Case study 6 Identification of the small pelagic fish in the northeastern 

Mediterranean Sea by means of an artificial neural network 

Motivation 

The northeast corner of the Mediterranean Sea is one of the warmest and most saline 

parts of the entire basin (Marullo et al., 1999). The area has been highly affected by the 

invasion of alien species introduced to the Mediterranean through the man-made Suez 

Canal. The intensity and distributional range of this invasion is likely to expand further 

towards the western extent of the basin with increasing temperatures (Raitsos et al., 

2010). For management purposes, prediction of the potential future changes is im-

portant, and a detailed characterization of the current ecological conditions is neces-

sary. In the study area, the role of the pelagic migrant Lessepsian fish has become more 

noticeable, and their commercial catch has been increasing (Gücü et al., 2010). How-

ever, knowledge of their habitat characteristics and their interactions with local species 

has been limited. This work was conducted to characterize the spatial distribution of 

small pelagic fish in this area using hydroacoustics, trawl, and CTD between 2009 and 

2011 (Figure A1.18). Species identification was challenging due to the lack of previous 

expert knowledge of their acoustic characteristics. Therefore, unsupervised and super-

vised classification techniques were utilized to assist species identification. Supervised 

classification techniques, such as artificial neural network (ANN), are powerful classi-

fication tools in cases where introduced patterns are distinct with regard to several 

descriptors (Lek and Guégan, 2000). In this work, the school identification process be-

gan with an exploration of the patterns within the school dataset, grouping the similar 

components, and finally labelling each distinct group using the trawl dataset. The su-

pervised method, ANN, was useful for fine-tuning the relatively subjective initial clas-

sification rather than automatic recognition and classification of fish schools. Further-

more, different size groups of the same species showed different characteristics, and 

ANN was used to discriminate between juvenile and adult aggregations. 

 

Figure A1.18. The study area in the northeast corner of the Mediterranean Sea. 

Methods 

The acoustic data were collected with a pole-mounted split-beam Simrad EY60 120 kHz 

echosounder and processed with the Echoview software and its virtual ecogram oper-

ators. Fish aggregations were detected and characterized using the ‘‘Schools detection’’ 

module. The trawl catch data were the primary basis for interpretation of the size and 
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species composition and relative contribution to the total abundance. The positions of 

the trawl stations were selected based on the fish school types observed on the echo-

grams throughout the survey. In all, 131 trawls were conducted in 5 surveys. The tow-

ing speed varied between 2.8 and 4.5 knots, and the duration was determined based on 

the fish distribution on echograms; nevertheless, maximum duration was 30 minutes. 

The study area was divided into eight subsections in east-to-west and inshore-to-off-

shore coverage. Most dominant species (biomass and spatial coverage) were selected 

and ranked according to their biomass proportions. As relative abundance in the catch 

undergoes high uncertainty, the individual trawl catches were regarded as representa-

tive only of presence/absence of the species, and allocation was done in accordance with 

the ranking. An initial K-means clustering was used to group similar schools based on 

school descriptors. Subsequently, the trawl catch compositions were associated with 

these clusters based on spatial information. For this interpretation, all fish schools lo-

cated within 4 nautical miles of the centre of a trawl haul were used. Schools within the 

trawl area were manually assigned to the species, taking in account trawl catch compo-

sition and k-means cluster labels. Factors associated with schooling behaviour of the 

fish, such as school density, depth preference, geographical location, total depth, and 

position in the water column, were also considered during allocation. This approach 

rather than directly using the catch composition was taken due to uncertainties, includ-

ing vessel avoidance, variation in catchability of species, and net performance. The de-

scriptor metrics of this set of identified schools were exported to be used as a learning 

set. 

 

Supervised scrutinization was conducted in three stages: 

1. The classification success of the identified schools located near trawl sites were 

tested. 

2. The test was applied to the entire dataset. Initial labelling extended to the en-

tire dataset manually, taking into account k-means labelling and the subjec-

tively identified patterns. ANN was used to test the consistency of this subjec-

tive identification and apply fine-tuning. Inconsistencies within the learning 

set with respect to spatial continuity (e.g. depth, position, and distance to 

shore) were eliminated. 

3. The test was repeated by discriminating the juvenile schools of Sardinella aurita 

within the learning set. 

Training and testing was performed by cross validation with ten folds, meaning that 

the dataset was randomly partitioned into ten subsets and by an iterative process, one 

set was used for training and the rest were used for testing. The neural network model 

was composed of ten descriptors, six outputs representing major species groups, and 

eight nodes at the hidden layer, which were determined by testing the performance of 

the model using a range of different node numbers. 

Results and discussion 

In total, 110 different species were observed in all trawl hauls, including untargeted 

species such as bottom-dwelling flatfish. Only 34 species were observed more than 13 

times (10% of the total number of hauls). Most (84%) of the pelagic and semi-pelagic 

fish were captured in nearshore areas at depths < 50 m. In total, 3231 fish schools were 

acoustically detected; however, only 2841 of them were used in the analysis. K-means 

analysis using tenfold cross-validation resulted in 5–8 different clusters. The larger 

number of clusters provided better resolution, but increased the uncertainties by po-

tentially creating artificial subclusters. The final decision on the number of clusters 
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(n = 6) was a trade-off between resolution and convenience for use. In clustering Sv, 

mean and depth were the most influencing parameters. The schools with higher Sv-

mean located at shallower depths ca. < 50 m were the most discrete group (Figure 

A1.19a). 

 

Figure A1.19. Example schools for the different groups characterized by clustering. Depth and en-

ergetic density were the main discriminators where association with the seabed was also important. 

Results obtained from clustering were then checked for their consistency with the 

trawling results regarding depth, energetic features of the school (Sv mean), and mor-

phometric descriptors. Figure A1.20 shows an example of the location of the selected 

fish schools near trawl stations. At these points, schools with known clusters labels 

were assigned species based on corresponding image pattern and trawl information. 

The labelling obtained for the schools located near trawl stations was then used as in-

put for ANN for identification of the remaining schools in the entire dataset. The per-

formance of the learning set was assessed by tenfold cross-validation test: the accuracy 

was 87.5% for Sardinella aurita. School distribution per species in selected datasets was 

rather homogeneous, changing between 11% and 1.7%. Two exceptions were S. aurita, 

with a strong dominancy of 37%, and Etrumeus teres, which accounted for only 8%. 

Although the accuracy of the classification seems promising, the significance of the S. 

aurita dominance in the learning set could have led to misclassification. This was due 

to the model’s tendency to prioritize this discretely abundant group with bias (false 

positives). As a result, the Sardinella group appeared to dominate the dataset, account-

ing for an average of 59% of the backscatter. In a further step, ANN was used to test 

the S. aurita classification with respect to developmental stage (juveniles and adults). 

Because the adult and the juvenile fish form dissimilar schools, changing in size, den-

sity, and school morphometry, a subset of data attributed only to this species was sub-

jected to the test. 
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Figure A1.20. Examples from June 2009. Upper panel: position of the identified fish schools and the 

nearest trawl haul within a 4-nautical-mile grid. Middle panel: the species composition from trawls 

and position of the entire fish schools. Lower panel: map of identified fish schools. 

As June corresponds to spawning and October corresponds to the appearance of juve-

niles, typological differences in fish schools were assessed. In the two October surveys, 

juvenile distribution was almost identical, tending to accumulate at the outer edge of 

river plumes. Adult S. aurita schools were widely distributed all along the coast in the 

study area within the 0–50 m bathymetric range. Specifically, the largest acoustic den-

sities and trawl catches for S. aurita were observed in the Bay of Mersin where the chlo-

rophyll concentration was the highest and species classification results were consistent. 

This difference was captured with ANN and helped distinguish nursery areas of this 

species. This study lacked multifrequency acoustics observations. Frequency responses 
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have been used as a powerful discriminator in several studies (Fässler et al., 2007; De 

Robertis et al., 2010). In this case, when overall descriptors were considered, the school 

depth was the most important parameter. One reason for this could be the effect of 

temperature. Since there was a constant thermal stratification during both survey sea-

sons, the species partitioned the habitat based on their temperature preferences. 

Conclusion 

ANN was used for fine-tuning the species identification procedure of initially subjec-

tively classified fish schools. Fine-tuning involved cross-validation tests where all sam-

ples in the training dataset were used for both training and validation; hence, the vali-

dation of every possible sample in the dataset. ANN, furthermore, helped characterize 

the distribution areas of different life stages of the most dominant species in the area (S. 

aurita). Although automatic recognition and classification of schools with ANN may not 

be possible in case of similarity in school patterns of different species, it may assist over-

all in decision-making. 
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Annex 2: Case studies illustrating the need for target classification 

The following case study is not referred to in Section 6 but it illustrates the need for a 

target classification method. 

A2.1 Case study 7 Acoustic buoys in tuna purse-seine fisheries 

Since 2010, tuna fishing companies use acoustic buoys more often. In 2015, it is esti-

mated that almost 100% (Delgado de la Molina et al., 2014; Lopez et al., 2014) of fish 

aggregating devices (FADs) are equipped with an acoustic buoy to (i) locate the FADs 

and (ii) evaluate how much fish is located under that FAD. 

Acoustic buoys are using transducers with 50, 130, 190, and 200 kHz. The companies 

that build these buoys are making ca. 100 000 buoys per year for use by tuna fishing 

companies worldwide (Figure A2.1). 

For example, Gaertner et al. (2015) estimate that in 2013, ca. 17 300 acoustic buoys were 

used in the Atlantic Ocean. 

 

Figure A2.1. Worldwide distribution of tuna buoys. 

New generation echosounder buoys are being used with two frequencies. Furthermore, 

the buoy manufacturers are using new filters and ways to integrate the acoustic data, 

but there is a lack of standardization so that they cannot be compared equally. 

The fishing market and consumers are also requesting size and species differentiation, 

thus some of the buoy manufacturers are developing acoustic buoys with two transduc-

ers with difference frequencies. 

As can be seen in Figures A2.2–A2.3, buoys and FADs used by tuna vessels in the At-

lantic are well distributed from 20°N to 20°S and from Africa to the South American 

coast. 

This information, according to Santiago et al. (2016), can be used to estimate a relative 

acoustic index or abundance. TTV Ltd. made an initial relative abundance evaluation 

in 2013; what can be seen when all companies share their acoustic and biologic infor-

mation? Moreover, the future trend gives us the possibility to differentiate size and spe-

cies. 
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Figure A2.2. Acoustic buoy distribution in the Atlantic Ocean. Sources: Maufroy et al. (2015), 

ANABAC and OPAGAC fleet data (2011), and TTV fleet (2013). 
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Figure A2.3. Fish relative abundance (tonnes) map using acoustic bouy data. 

Conclusion 

Buoy acoustic information could speed up the process for a more selective fishery. 

Moreover, this information could help to estimate biomass or relative acoustic abun-

dance of the highly migratory species. 

Buoy technology is currently at the level of discrimination but the market has stronger 

needs, i.e. identification of specific sizes and species. 
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