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Executive summary 

This manual represents a review of the potential sources and methods to be applied 

when providing prior information to Bayesian stock assessments and marine risk anal-

ysis. The manual is compiled as a product of the EC Framework 7 ECOKNOWS project 

(www.ecoknows.eu).  

The manual begins by introducing the basic concepts of Bayesian inference and the role 

of prior information in the inference. Bayesian analysis is a mathematical formalization 

of a sequential learning process in a probabilistic rationale. Prior information (also 

called ”prior knowledge”, ”prior belief”, or simply a ”prior”) refers to any existing rel-

evant knowledge available before the analysis of the newest observations (data) and 

the information included in them. Prior information is input to a Bayesian statistical 

analysis in the form of a probability distribution (a prior distribution) that summarizes 

beliefs about the parameter concerned in terms of relative support for different values. 

Apart from specifying probable parameter values, prior information also defines how 

the data are related to the phenomenon being studied, i.e. the model structure. Prior 

information should reflect the different degrees of knowledge about different parame-

ters and the interrelationships among them. 

Different sources of prior information are described as well as the particularities im-

portant for their successful utilization. The sources of prior information are classified 

into four main categories: (i) primary data, (ii) literature, (iii) online databases, and (iv) 

experts. This categorization is somewhat synthetic, but is useful for structuring the pro-

cess of deriving a prior and for acknowledging different aspects of it.  

A hierarchy is proposed in which sources of prior information are ranked according to 

their proximity to the primary observations, so that use of raw data is preferred where 

possible. This hierarchy is reflected in the types of methods that might be suitable – for 

example, hierarchical analysis and meta-analysis approaches are powerful, but typi-

cally require larger numbers of observations than other methods. In establishing an 

informative prior distribution for a variable or parameter from ancillary raw data, sev-

eral steps should be followed. These include the choice of the frequency distribution of 

observations which also determines the shape of prior distribution, the choice of the 

way in which a dataset is used to construct a prior, and the consideration related to 

whether one or several datasets are used. Explicitly modelling correlations between 

parameters in a hierarchical model can allow more effective use of the available infor-

mation or more knowledge with the same data. Checking the literature is advised as 

the next approach. Stock assessment would gain much from the inclusion of prior in-

formation derived from the literature and from literature compilers such as FishBase 

(www.fishbase.org), especially in data-limited situations. The reader is guided through 

the process of obtaining priors for length–weight, growth, and mortality parameters 

from FishBase. Expert opinion lends itself to data-limited situations and can be used 

even in cases where observations are not available. Several expert elicitation tools are 

introduced for guiding experts through the process of expressing their beliefs and for 

extracting numerical priors about variables of interest, such as stock–recruitment dy-

namics, natural mortality, maturation, and the selectivity of fishing gears. Elicitation of 

parameter values is not the only task where experts play an important role; they also 

can describe the process to be modelled as a whole.  

Information sources and methods are not mutually exclusive, so some combination 

may be used in deriving a prior distribution. Whichever source(s) and method(s) are 

chosen, it is important to remember that the same data should not be used twice. If the 

http://www.ecoknows.eu/
http://www.fishbase.org/
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plan is to use the data in the analysis for which the prior distribution is needed, then 

the same data cannot be used in formulating the prior. 

The techniques studied and proposed in this manual can be further elaborated and 

fine-tuned. New developments in technology can potentially be explored to find novel 

ways of forming prior distributions from different sources of information. Future re-

search efforts should also be targeted at the philosophy and practices of model building 

based on existing prior information. Stock assessments that explicitly account for 

model uncertainty are still rare, and improving the methodology in this direction is an 

important avenue for future research. More research is also needed to make Bayesian 

analysis of non-parametric models more accessible in practice. Since Bayesian stock 

assessment models (like all other assessment models) are made from existing 

knowledge held by human beings, prior distributions for parameters and model struc-

tures may play a key role in the processes of collectively building and reviewing those 

models with stakeholders. Research on the theory and practice of these processes will 

be needed in the future. 
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1 Introduction: why priors are logically necessary 

Samu Mäntyniemi and Atso Romakkaniemi 

1.1 Scientific reasoning in stock assessment for fishery management 

ICES advises competent authorities on marine policy and management issues related 

to the sustainable use of living marine resources and the impacts of human activities 

on marine ecosystems. In order to achieve this for fishery management, experts for a 

fish stock carry out a scientific analysis to estimate, where possible, historic and current 

fishing mortality, recruitment, and population size. For most stocks with population 

size estimates, experts can forecast future stock size as a function of a management 

action (e.g. catch) and calculate what action would lead to a desired management ob-

jective (e.g. fishing mortality not exceeding that corresponding to maximum sustaina-

ble yield). The estimate of current population size is the starting point for forecasting; 

thus, it has a central role in the process (ICES, 2013).  

Given suitable technology, current population size could, in principle, be observed and 

known without error. In practice, it cannot be directly observed and needs to be in-

ferred from indirect and incomplete information. This inference (estimation) is based 

on what scientists making the assessment believe about the relationship between true 

population size and observable information.  

In contrast to current population size, future consequences of management actions can-

not be observed, but can only be imagined (predicted). The result of this prediction 

depends, again, on the understanding of the scientists making the assessment.  

The key point to acknowledge is that estimation and prediction require human inter-

pretation of available information. This interpretation obviously differs between scien-

tists and their amount of experience and knowledge. Differences in interpretation are 

often linked to (even minor) differences in the exact areas of specialization and experi-

ence, which lead scientists to approach research questions from slightly different per-

spectives. Because of the importance of this expertise, stock assessment tasks are typi-

cally entrusted to groups of experts who comprise the membership of ICES stock as-

sessment working groups.  

Broadly standardized approaches across stocks may either fail or be suboptimal be-

cause they cannot sufficiently recognize the specificity of each fish stock, and infor-

mation available on individual stocks also varies (ICES, 2013). 

In other words, stock assessment is always, regardless of the analytical methods used, 

a subjective interpretation of observed data made by a group of experts. In this context, 

“subjective” refers to things that exist only in the human mind, and “objective” refers 

to the actual state of the physical world. This means that only the raw observations can 

be regarded as objective facts. Any inferences about unobservable phenomena, such as 

stock size, require a human assumption about the relationship between stock size and 

observed data.   

In this context, subjectivity does not entail or imply that experts would be invited to 

consider their personal preferences and valuation of a stock’s status or their political 

views about how a stock should be managed. It is only their personal (i.e. subjective) 

scientific experience and understanding that are sought in synthesizing their existing 

knowledge and interpretation of observed data. Experts are expected to place them-

selves into a neutral and independent position regarding stock assessments and to use 

their personal knowledge (i.e. expertise) honestly. In everyday language, experts are 
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expected to be objective when assessing the status of a stock using their own subjective 

scientific knowledge.  

In principle, a stock assessment working group could “eyeball” the data spreadsheets, 

discuss with their colleagues, and use their collective wisdom to derive an honest and 

independent assessment of the stock without using any analytical methods. However, 

most assessment problems are too complex for the human mind to grasp as a whole. 

Some form of predefined logic, organized analysis, and synthesis is usually necessary 

to perform the task itself and also for the transparency of the expert group’s work.  

Use of mathematical models has a long history in fishery stock assessment. They have 

been used to organize and structure the thinking of expert groups. The types of models 

used have ranged from yield-per-recruit analysis to virtual population analysis and 

further towards integrated state–space models. Modelling practices have been influ-

enced by developments in theoretical population dynamics and statistical data analy-

sis. The purpose of statistical data analysis is to describe a set of observed data with the 

fewest parameters without losing too much of the structure of the original data. Trans-

ferring this approach to stock assessment has led to the idea that the parameters of 

biological population dynamics models should all be statistically estimable from stock 

assessment data. However, biologically realistic population dynamics models tend to 

have so many parameters that their estimation from most stock assessment datasets is 

impossible. A common attempt to resolve this problem has been to reduce the number 

of estimated parameters by simplifying the model structure and then assume that some 

of the parameters are not uncertain, but are instead known exactly. The parameters still 

treated as unknown after this process can be estimated from the data, but at the cost of 

having decreased the biological credibility of the population dynamics model and the 

unwarranted exclusion of part of the uncertainty. Knowledge used to finalize model 

parameters usually comes from the expertise of the stock assessment working group: 

group members use their biological knowledge to produce best guesses for parameters, 

such as the natural mortality rate (M) and the maximum size of fish, by interpreting 

data and conclusions presented in scientific papers, reports, and biological databases. 

In this way, information from outside the stock assessment database is treated as if it 

were exactly known, with the consequence that the information contained in the as-

sessment data about these parameters cannot contribute to their estimation. Con-

versely, similar external information for the parameters estimated within the stock as-

sessment is often not used at all even when it is available. Interestingly, it has been 

common practice to treat M as fully known and fishing mortality (F) as completely 

unknown, even though the latter is under human control and the former is not.  

The Bayesian approach to scientific reasoning has been suggested as a remedy for this 

dichotomy in the use of existing knowledge. Instead of having to choose whether, 

based on existing information, a parameter is treated as precisely known or completely 

unknown, the expert group has the option to describe and quantify their uncertainty 

about each parameter. Some of the model parameters may be reasonably well, but not 

exactly, known, while other parameters are less precisely understood, but not com-

pletely unknown either. Probability distributions are used to reflect the different de-

grees of knowledge about different parameters and the interrelationships among them. 

At the heart of the Bayesian approach is the idea of presenting everything that is not 

known exactly as a probability distribution.  

Bayesian inference has been successfully applied in a growing number of stock assess-

ments. For example, since mid-2000, Atlantic salmon (Salmo salar) stocks in the Baltic 

Sea have been assessed by an ICES working group, and the consequent advice has been 
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provided by using sequential Bayesian analyses (Michielsens et al., 2008; ICES, 2014). 

Several stocks of Pacific salmon have been assessed by Bayesian assessment models (C. 

Michielsens, Pacific Salmon Commission, pers. comm.). A Bayesian version of a sur-

plus production model has been applied for the assessments of northern shrimp (Pan-

dalus borealis) in the Barents Sea and Greenland halibut (Reinhardtius hippoglossoides) in 

Iceland and East Greenland (ICES, 2012a,b).  

The Bayesian approach allows rigorous specification and utilization of relevant 

knowledge existing outside the primary input data used in stock assessment. This 

knowledge goes by various names: ”prior information”, ”prior knowledge”, ”prior be-

lief”, or simply ”prior”. The next section presents the basic concepts and terminology 

of Bayesian statistical inference. Readers not familiar with the Bayesian approach 

should acquaint themselves with this information in order to be able to fully absorb 

the contents of this report. 

1.2 The basic concepts of Bayesian inference and the role of prior 

information 

In Bayesian analysis, the concept of probability is used to measure how strongly a per-

son believes a particular hypothesis to be true. These hypotheses can consider past and 

future size of the fish stock, parameters of the population dynamics model, and differ-

ent causal relationships represented by different model structures. A fundamental as-

sumption is that one true stock size exists, and the Bayesian probability is used to ex-

press what a person thinks about this value. In other words, stock status exists objec-

tively, but knowledge about it is inherently subjective without an objectively true 

value. For causal models and their parameters, such as F and M, the distinction be-

tween subjectivity and objectivity is not equally clear. Causal models and their param-

eters are also constructions of the human mind, but can be seen to represent an ac-

cepted version of reality; accordingly, they can be thought to have one true value which 

the person may not know exactly.  

Bayesian probability is personal and, therefore, requires specification about whose 

probability is being used. In the case of ICES stock assessment, the most natural unit is 

the group of experts. The outcome of Bayesian stock assessment made by an expert 

group is a set of probability distributions describing their beliefs about the future status 

of the fish stock under each alternative management action. Ideally, these distributions 

summarize everything that the group knows, including the group’s interpretation of 

the stock assessment data. The group has typically used a variety of modelling tech-

niques to organize their thinking and to keep the inferences logical and transparent.  

Probabilities given by the expert group cannot be challenged; they represent what this 

particular group thinks, and different probabilities would be expected from another 

group. This is the key feature of the assessment; it is the honest view of this particular 

group of trusted experts. If the expertise was not expected to affect the assessment, 

Chinese berry pickers could be hired to compile the assessment of European fish stocks. 

Bayesian inference can perhaps be most easily understood as a learning or inductive 

process. Let us consider a phenomenon which, at first, we “know” nothing about (we 

have no prior beliefs whatsoever about the matter, which leads us to consider that all 

possible hypotheses are equally probable). When making our very first observation of 

the phenomenon, we intuitively realize that: 

 Before making the first observation, any state of the nature of the phenom-

enon is considered to be equally probable;
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 Given the observation, we then want to consider whether a particular state

or states of the nature of the phenomenon can be considered to be more

probable than others;

 Based on only one observation, we are still very uncertain about the phe-

nomenon.

By the above process, we update our knowledge about the phenomenon. This learning 

process can be formalized using the Bayes’ theorem (Berger, 1985; Gelman et al., 2004): 

𝑃(𝐻 = ℎ𝑖|𝐸 = 𝑒) =
𝑃(𝐸=𝑒|𝐻=ℎ𝑖)×𝑃(𝐻=ℎ𝑖)

∑ 𝑃(𝐸=𝑒|𝐻=ℎ𝑗)×𝑃(𝐻=ℎ𝑗)𝑗
(1) 

The denominator in equation (1) is a sum over all the possible hypotheses and, there-

fore, only depends on the data. The Bayes theorem is, therefore, often written in its 

simpler and unnormalized form:  

𝑃(𝐻 = ℎ𝑖|𝐸 = 𝑒) ∝ 𝑃(𝐸 = 𝑒|𝐻 = ℎ𝑖) × 𝑃(𝐻 = ℎ𝑖) (2) 

Here, ℎ𝑖 stands for a particular hypothesis in a set of hypotheses (ℎ1, … , ℎ𝐽) to be exam-

ined and 𝑒 stands for evidence (observation or data). 𝑃(𝐻 = ℎ𝑖|𝐸 = 𝑒) is the probability 

that the hypothesis ℎ𝑖 is true given the evidence, i.e. the posterior probability. 𝑃(𝐸 =

𝑒|𝐻 = ℎ𝑖) is the probability of observing the data 𝑒 given the hypothesis ℎ𝑖 is true (i.e. 

the likelihood). 𝑃(𝐻 = ℎ𝑖) is the prior distribution, representing prior knowledge about 

the hypothesis. In the situation described above, our prior knowledge is ”uninforma-

tive”, i.e. we set the same probability for this hypothesis to be true as for any other 

plausible ones. When we acquired the first observation, we could not avoid going 

through the inductive process described above, be it consciously or subconsciously. 

The principle of Bayesian conditionalization (Howson and Urbach, 1993) states that as 

soon as we have new evidence, we update our belief (knowledge) about the hypothesis. 

Consider now that after updating our knowledge with the first observation, we obtain 

a new observation. Again, we intuitively go through the previous steps of induction. 

This time, we realize that we want to update our knowledge based on the new obser-

vation without forgetting the information included in the first observation. Hence, our 

prior distribution must logically be informative. That is, the prior 𝑃(𝐻 = ℎ𝑖) corre-

sponds to the knowledge that we had after the first observation. After updating with 

the new observation, the resulting posterior distribution contains the information in-

cluded in both observations. Although this example of Bayesian inference is, of course, 

naive, it helps us to appreciate that very seldom is there no prior knowledge about the 

matter that we want to examine. Therefore, it is often clearly reasonable to use an in-

formative prior distribution in the process instead of trying to ignore or pretend that it 

does not exist.  

A practical problem arises, however, in specifying and quantifying prior information 

(i.e. how to do this?). Researchers usually base most of their knowledge on information 

from published literature, earlier studies, pilot experiments, etc. One way to quantify 

prior information is to conduct an analysis of the existing, documented observations. 

This may be performed by using primary data, if available, or by conducting a meta-

analysis of research results published in the literature. Online databases may help in 

the compilation of relevant information from the literature, and they may also include 

processed information not published elsewhere (e.g. detailed results of analyses car-

ried out in ICES assessment working groups). If information relevant for quantifying 

prior knowledge is diverse and/or non-commensurate as such, elicitation of expert 

opinions may be utilized. 
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1.3 Worked example of a Bayesian stock assessment 

In this section, we introduce the concepts and logic of Bayesian inference in the context 

of a simple stock assessment example. We walk through the steps of solving the prob-

lem using Bayesian inference and also compare the approach to classical (or fre-

quentist) statistical approaches based on maximum likelihood that might have been 

used with this problem. 

Our problem is to infer the size of a fish population (𝑁) using the method of removal 

sampling: fish are removed from the population in successive passes, with knowledge 

about the fishing effort used at each pass (Mäntyniemi et al., 2005; Rivot et al., 2008). 

The Bayesian approach starts by problem framing: what are the relevant variables? 

Obviously the population size (N) must be involved and also the number of fish caught 

(ci) at each pass i. Clearly, fishing effort ( ) and efficiency of the fishing technique (q) 

need to be taken into account. To keep the example simple, we assume that there are 

no births or deaths occurring during the sampling experiment. 

The next step is to establish the causal connections between the relevant variables. It is 

a useful practice to draw a picture where all the variables are connected using arrows 

that point from causes to effects. The resulting pictures are called directed acyclic 

graphs (DAGs) (Spiegelhalter et al., 1996). The DAG of this problem (Figure 1.1) shows 

that the first catch ( ) is caused by the initial abundance, fishing effort, and the effi-

ciency factor. The catch obtained on the second pass depends on the same variables, 

but also the catch removed from the population on the first pass is affecting it.  

Figure 1.1. Directed acyclic graph of the removal fishing problem. Round shapes denote uncertain 

quantities, boxes represent known or controllable quantities, and arrows denote the direction of 

the causal relationship. 

So far, we have used our existing understanding of the problem and created a mind 

map about how we think the problem works. The next phase is to start defining the 

mind map in more detail. How well do we already know what the values of these var-

iables are? The Bayesian approach is to use probability statements for this purpose; 

nearly impossible values should be given smaller probabilities than values that we re-

gard more credibly. Another way of thinking about the existing knowledge of a partic-

ular value, e.g. population size, is to consider the degree of disbelief; how surprised 

would we be if the true population size were actually 1000?  

Information by which we would judge the degree of belief (or disbelief) can stem from 

multiple sources. Our minds could interpret data observed somewhere else in a similar 

situation and process the information we have adopted from the scientific literature or 

from discussions with colleagues. Our theoretical understanding of the subject area is 

likely working as “glue” by which we would synthesize past experience into a set of 

N q

C1

C2

C3

E
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probability statements about population size and other parameters of interest. The pur-

pose of this document is to discuss the processes and practices for deriving and formu-

lating existing knowledge as a probability distribution. These distributions are called 

prior distributions or simply “priors”.  

In practice, priors typically have a parametric form, which means that the shape and 

location of the distribution is determined by one or more parameters. Based on those 

parameters, probabilities for all potential values of the variables can be calculated. 

Thus, it is commonplace to use well known distributions such as the normal and log-

normal distributions to describe existing knowledge.  

In this example, we use a log-normal distribution for population size (Figure 1.2, up-

per-left caption). The most credible population size is 170 individuals. Population size 

is believed to lie between 106 and 376, with probability 0.8. 

Fishing efficiency is also thought to affect catches. But, unlike population size, the 

meaning of “fishing efficiency” is not that clear and requires a more rigorous definition. 

For this example, we can think of the chance of capturing a fish as something that in-

creases when fishing effort (E) increases. Following the long tradition in stock assess-

ment modelling, we define  

(3) 

and consequently regard  as the instantaneous fishing mortality rate and q as catch-

ability.  

Now, we go back to defining the bits and pieces of our graphical model. We assume 

that, before collecting the data, effort is under our control and is not an uncertain quan-

tity. Compared to N and q, catches are different; there are arrows pointing to these 

variables. This means that their values are believed to depend on the values of the other 

variables. Conditional probability distributions are used to describe what we think 

about this dependency. Catching fish is a random process. Even if we knew exactly the 

number of fish and the efficiency of our fishing method, we would still be uncertain 

about how many fish we will catch. This type of uncertainty is often called “aleatory” 

because it arises from the random-looking variation in the process of which we are 

thinking. This is opposed to “epistemic” uncertainty that we have about N and q, which 

do not vary, but whose fixed value we do not know. In both cases, the uncertainty is 

personal and can be quantified using degree of belief-probability. If we believe that the 

fish react independently to fishing (i.e. there is no schooling behaviour or environmen-

tal batchiness), a natural conditional prior distribution (or “sampling model”) for the 

catches would be the binomial distribution, which describes the number of successes 

in N independent trials, where each trial has the chance of success φ.  

Finally, our full model specification can be written using mathematical notation 

(4) 

where bar “|” indicates that the variable has a conditional prior distribution that de-

pends on the uncertain parameters listed after the bar. The model includes five random 

variables, which means that the full Bayesian model is a five-dimensional probability 

distribution that encodes our current knowledge about the problem.  
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At this stage, it is worth noting that we have not observed the catches. Ideally, the 

model would be formulated before collecting the data, so that the model can be utilized 

in planning the removal process. The joint distribution can be visualized and examined 

by using computer simulation and taking a large sample of values from the distribution 

and examining the pairwise correlation plots. For example, Figure 1.2 shows that our 

current knowledge about the combinations of N and q is that they look independent. 

This means that if we now had more knowledge about N, it would not change what 

we think about q. However, N and  are correlated, and q and  are also correlated. 

This gives a hint that observing  will help us to learn about both q and N. We can also 

see that  and  are correlated. Thus, if we lost the data on , we could use  to infer 

the size of the first catch.  

Figure 1.2. Prior correlations between some of the parameters in the removal sampling problem. 

Red line illustrates the location of values that would be compatible with hypothetical observation

.   

Suppose then that we start collecting the data removal by removal and examine how 

our thinking starts to change about population size and catchability. The first catch 

happens to be ; what do we now know about population size? Now, the orig-

inal uncertainty about the first catch has completely disappeared. In terms of the large 

sample of numbers that we drew from the joint prior distribution of all parameters, 

this means that we should only look at those combinations where  and should 

remove all other values. The result is shown in Figure 1.3. The red values predicted the 

first catch correctly and remain within the limits of possibility. We can see that, com-

pared to the prior knowledge, a much smaller set of combinations is now realistic. It is 

also noteworthy that unlike before, now N and q are correlated in our minds. High N 
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and small q, and high q and small N, are supported by our interpretation of the obser-

vation. The joint distribution of the combination of values that are consistent with the 

data is called the joint posterior distribution. Looking at the variables one by one gives 

the marginal posterior distribution, which describes all we know about that variable. 

Thus, the marginal distribution of N is of most interest in this problem. We can see that 

the most probable population size has moved from ca. 170 to ca. 320, while the whole 

posterior distribution has moved to support higher population sizes. However, the 

probability for a very high population size has also clearly decreased. The 80% proba-

bility interval is now 237–531; i.e. we believe that the true population is between these 

two values with probability 0.8. 

The process of learning from observations can be intuitively described by using the 

simulation analogy and the idea of removing the values that are not consistent with 

the observations. Figure 1.3 shows how the set of parameter values gets smaller and 

smaller as new data are obtained, and the probability distribution describing our 

knowledge about N and q gets narrower. However, in addition to a simulation experi-

ment, the way in which the probability distribution changes with new knowledge can 

also be presented using the well-known result of probability theory: 

(5) 

where  denotes the joint posterior distribution of N and q (red dots in 

Figure 1.3),  is the joint prior of N and q (grey dots in Figure 1.3) and 

 is the probability of observing  for each combination of N and 

q. In other words, the Bayes’ rule above states that the posterior distribution of unob-

served variables, given the observed values, is proportional to the product of the prior 

distribution and the conditional probability of observing the data at hand. In this ex-

ample, the conditional probability of observations was defined using our belief that 

fish behave independently; consequently, the binomial distribution was used. Now 

that the observation is fixed at , the weight given to each combination of N and 

q is the probability by which this data would be observed if the combination were true. 

The higher the probability of data, the more realistic the (N,q) combination seems.  

Using the conditional distribution of data in this way gives rise to the so-called likeli-

hood function, which can be seen as our personal interpretation of the objective data 

that were observed. By first expressing our knowledge about the observation process 

as a conditional distribution of potential data, we create a predefined logic by which 

we later interpret any specific data that we happen to obtain.  

The likelihood function for a set of parameters consists of probabilities, but it does not 

form a probability distribution for these parameters. To make this difference clear, the 

values or weights given to each parameter combination are termed a “likelihood”. The 

widely used maximum likelihood estimation (MLE) seeks to find the combination with 

the highest likelihood, i.e. the values that make the observed data look most probable. 

However, this is not usually the same combination that is most probable, given the 

observed data. For example, after observing that , the ML estimate is that the 

population size was N = 100 and that the catchability q is infinite so that the capture 

probability φ = 1. Thus, it is our prior belief that catchability should be around 0.1 that 

keeps the posterior distribution in a sensible range.    
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Figure 1.3. Joint (A and D) and marginal distributions (B and C) of the population size N and catch-

ability coefficient q after observing different amount of data. Grey distribution shows the prior 

when no observations have been made. Red corresponds to c1 = 100, blue shows the knowledge 

after knowing that c1 = 100 and c2 = 50, and green is based on c1 = 100, c2 = 50, and c3 = 30.  

Frequency approach 

The marginal posterior of N now shows how uncertain we are about the population 

size after the first catch. The approach to quantifying uncertainty in classical statistics 

is different. Because N represents the state of nature which is assumed constant when 

collecting the data, it does not have a frequency probability distribution. However, it 

is possible to think about other estimates that could potentially realize. But this sce-

nario requires hypothetical values to be assumed for N and q; otherwise, the frequency 

distribution for other potential data does not exist. It is common practice to use the ML 

estimates obtained from real data and use them as true values; it is then possible to 

calculate the distribution of potential data and also examine how the potential estimates 

would vary. Our example case is interesting: now that  and , the ex-

pected value of potential catches is �̂�[1 − 𝑒𝑥𝑝(−�̂�)] = 100 and the variance is 

�̂�[1 − 𝑒𝑥𝑝(−�̂�)]𝑒𝑥𝑝(−�̂�)= 0, so we think that the data that we observed are actually 

the only data we could have observed and, consequently, that our potential maximum 

likelihood estimates would also not vary. This problematic situation arises from the 

idea of maximum likelihood estimation and from the practice to use that estimate as if 

it were the true state of nature. This situation reveals a major difference between Bayes-

ian and classical statistical inference. Bayesian inference is measuring uncertainty 
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about the parameters themselves, whereas the frequency approach is bound to assess 

how potential new estimates would vary when some known values for the parameters 

have first been assumed. 

When the second fishing pass was also made,  was observed, and the question 

is what we now think about population size? The answer is again a posterior distribu-

tion for N, which we can obtain in the simulation example by accepting only those 

combinations of red dots, for which . These values and the resulting marginal 

distributions are shown in blue. Alternatively, we could start from the sample from 

prior (grey) and choose values that predicted  and . In analytical terms, 

the Bayes’ rule can be used sequentially by taking the posterior based on the first catch 

as the prior for the second catch 

  (6) 

or by starting from the original prior and analyzing the whole data set at once 

  (7) 

The posterior distribution of the population size is now more peaked and covers a nar-

rower range of values, indicating that we now have a clearer idea about population 

size. The most probable value is ca. 230 and almost all of the probability mass is con-

centrated between 180 and 400.  

Frequency approach 

The probability of obtaining these two catches would be highest if N = 195 and q = 0.36, 

so this pair of values is the maximum likelihood estimate. Again, probability statements 

about population size and catchability are only possible within the Bayesian approach. 

At this point, however, other potential maximum likelihood estimates would vary if we 

assumed that the observed estimate was the true state of nature. This variation can be 

examined by using parametric bootstrapping; by assuming that the true values are N 

= 195 and q = 0.36, we can generate a large number of potential datasets and calculate 

the ML estimate from each dataset. Figure 1.4 shows the results of such an analysis. If 

population size were really 195, the potential ML estimates would vary around that 

value so that the true value would be the mean of all estimates. The joint distribution 

of ML estimates for N and q has a banana shape that resembles the joint posterior 

distribution of N and q in Bayesian analysis. It is worth noting that if N = 195, the 

most frequently occurring ML estimate would be ca. 180 (not 195), and that ca. 60% 

of the ML estimates would be smaller than the assumed true population size. 
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Figure 1.4. Frequency distributions of potential maximum likelihood estimates (black dots and 

lines) based on the observed maximum likelihood estimates (red dots and lines). Upper row in-

cludes first two catches and the lower row shows the case with all three observations. Posterior 

distributions of the population size (blue) are overlaid for comparison. 

After making the last observation c3 = 30, the marginal posterior distribution of N is 

concentrated to an even narrower range (190–280) than before (Figure 1.3), but the most 

probable population size has not changed from 220. The marginal distribution is the 

final result of our analysis after observing the three sequential catches.  

Frequency approach 

After these three observations, the maximum likelihood estimate of the population size 

is N = 211, q = 0.32. If these were the true values, then other potential maximum like-

lihood estimates would vary less in comparison to the case where only two sequential 

catches were hypothesized. The potential estimates would still be correlated, but less 

than with only two catches. With three catches and assumed true values of N = 211, q 

= 0.32, the most frequently occurring ML estimate for N would be 210. The frequency 

distributions of potential point estimates are quite often misinterpreted as if they were 

posterior distributions of the actual parameters based on the observed data. Figure 1.4 

shows the marginal posterior distribution of N from the Bayesian analysis overlaid 

with the distribution of potential ML estimates obtained assuming that the observed 

ML estimates were the true values. It can be immediately seen that the distributions 

do not have the same shape and location, but it is even more important to realize that 
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the interpretation of the x- and y-axes are very different. For the posterior distribution 

of N, the x-axis shows all the alternative true population sizes, and the y-axis shows 

the degree of belief assigned to each of these values based on prior knowledge and three 

successive catches. For the frequency distribution, the x–axis does not represent the 

alternative true population sizes, but alternative maximum likelihood estimates that 

could be potentially observed if the observed maximum likelihood estimate (red line) 

were the true value. The y-axis shows the relative frequencies of these estimates, after 

repeating the fishing process for a very large number of times. In other words, the fre-

quency distribution is not trying to assess the true population size, but considers a 

large sample of new point estimates. 

The interpretations can be bridged in the following way. The blue line shows the prob-

ability of each true population size and, therefore, also shows how credible the observed 

ML estimate is compared to other alternative true population sizes. In this case, the 

credibility is quite high, but not the highest of all. 

The joint distribution of q and N still shows some correlation, which hints that a further 

reduction in uncertainty about N would still be possible if more information about 

catchability could be obtained. Whether the current uncertainty is too large or not does 

not belong to the field of Bayesian inference; the uncertainty is what it is and does not 

possess any value in itself.  

Whether attempts should be made to further reduce uncertainty always depends on 

the context. The most rigorous way to analyze the need for collecting more data is to 

adopt the Bayesian decision-analysis approach (Raiffa and Schlaifer, 1961) where the 

costs of data collection can be contrasted with expected gains of managing with and 

without the potential new data (McDonald and Smith, 1997; Mäntyniemi et al., 2009). 

Such a value-of-information (VoI) concept is tightly linked to the honest use of prior 

information in fishery stock assessment and management. Whenever the expert group 

intentionally leaves some information unutilized in the Bayesian stock assessment 

(uses too flat prior distributions compared to actual knowledge), the value of any new 

information will become overestimated. Whenever the group pretends to know pa-

rameters that are not well known (e.g. by fixing natural mortality), the value of any 

new information will become underestimated (Mäntyniemi et al., 2009).  

Terminology 

Belief. Knowledge that includes uncertainty. The word ”belief” is used to underline 

the inherent subjectivity of any uncertain knowledge.  

Probability distribution. Also called probability density function (pdf) when it is spec-

ified as a function. A parameter the value of which is not exactly known has a proba-

bility distribution. The probability distribution encapsulates the current be-

lief/knowledge about what values the parameter may have and how probable each 

value is. Probability distribution may be continuous or discrete. 

Subjectivity. Knowledge is necessarily a personal thing and is subjective by its very 

nature. Our knowledge and the lack thereof are inside our mind (belief) and, therefore, 

are subjective. Collective knowledge is also (collectively) subjective. Subjectivity is 

equally present both in the Bayesian and non-Bayesian approaches. Subjectivity does 

not exclude neutrality, honesty, or ”unbiasness”, but rather stresses the importance to 

strive for them.  
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Objectivity. The real world outside the human mind is objective. Human knowledge 

is not objective, and there is no objective thinking. Therefore, objectivity only relates to 

”the truth out there”.  

Prior (belief/knowledge/information). Also simply called ”prior”. Existing relevant 

knowledge available before the analysis of the newest observations (data) and the in-

formation included in them. Prior knowledge is not fed into a statistical analysis in a 

form of observations, but in a form of probability distribution, which summarizes what 

is believed about values of the parameter of concern. Apart from specifying probable 

parameter values, prior knowledge is also specifying processes, i.e. defining how data 

are related to the studied phenomenon (model structure and sampling model).  

Posterior (belief/knowledge/information). Formal synthesis of prior knowledge and 

new observations (data) by using Bayes’ rule results in probability distribution, which 

is the posterior knowledge of the parameter of concern. 

Updating. The process of applying Bayes’ rule to combine prior knowledge and data. 

Bayes’ rule/Bayes’ theorem. P(h|e) ∝ P(e|h)P(h). See page 6 for more details. 

 

Uncertainty about uncertainty 

The chance parameter φ is interesting because it essentially represents a certain kind 

of probability. However, it is not a Bayesian degree of belief, but rather a parameter 

that describes the behaviour of the real-world system. While Bayesian probability 

measures what we know about the system, this chance parameter represents the ran-

domness in the system. If we imagine trying to catch an infinite number of fish, φ 

would represent the proportion of successes in such a situation. On the other hand, φ 

does not really exist in the same way as the true population size N, but exists in our 

minds as a property of the system. In other words, we can never observe φ directly; we 

can only observe counts of fish. This implies that we will always be uncertain about 

the (imaginary) true value of φ, which breaks down to uncertainty about catchability 

(q), effort ( ), or both. 

Now, the Bayesian approach is to express uncertainty about these parameters using a 

prior distribution. This is an important case because we are using the degree of belief 

– probability to express what we know about a “physical” probability. This is where 

the Bayesian inference encapsulates the frequency probability and allows us to meas-

ure the uncertainty about it. This is not possible in classical statistics, which uses only 

the concept of frequency probability. On the other hand, the Bayesian approach as-

sumes that everyone knows their own degree of belief and does not possess the concept 

of a person’s degree of belief about his or her own degree of belief. Yet another concept 

of probability would be needed for assessing such uncertainty. 

1.4 The aim of the report 

This report is a manual representing a review of the methods to be applied when 

providing prior information to Bayesian stock assessments and marine risk analysis. It 

is compiled by the ECOKNOWS project, where a critical summary of the existing meth-

ods to formulate prior information and further development of the methods is one of 

the essential deliverables to be provided. The manual also facilitates a better commu-

nication of scientific information expressed in the form of probabilities. 
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Due to the application of an ecosystem approach to fishery management, there is an 

increasing need to expand risk-related advice to new species. Often, little or no tradi-

tional stock assessment data exist about these species; hence, effective utilization of 

various background data and other sources of information is essential. Our report is a 

comprehensive handbook guiding the use of this type of information in assessment 

and advice, which is relevant both in data-rich target fisheries and especially in data-

poor cases related to, for example, bycatch species. 

As already pointed out, much research is built on more or less conscious (subjective) 

reasoning leading to choices or preferences regarding scientific questions to be studied, 

data, analyses, and conclusions. This also holds in the guidelines we present here, 

which are our ”posterior beliefs” based on our experience thus far and which we are 

offering as ”priors” for the readers. Thus, in order to be consistent with our message, 

we want to stress that updates to our guidelines are expected in the future1. We also 

welcome any feedback on how well stated and transparent our reasoning is, or how 

consistent it is with readers’ own experiences. 

1 The updates may arise from our own or from the readers’ future experiences and they may either confirm 

or refute our current understanding. 
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2 The nature of different information sources 

Jonathan White, Guillaume Bal, Niall Ó Maoiléidigh, Konstantinos Stergiou, 

Samu Mäntyniemi, Atso Romakkaniemi, Rebecca Whitlock, Rainer Froese, 

Vaishav Soni, Polina Levontin, Adrian Leach, and John Mumford 

2.1 Data 

Jonathan White, Guillaume Bal, and Niall Ó Maoiléidigh 

Setting an informative prior from data should be considered if only a small amount of 

data describing the target variable exist, or if the data in question are not believed to 

be representative of the true variable. This may be the case if sampling bias is sus-

pected, e.g. where data are believed to give a sample estimate of the distribution rather 

than the true population distribution. For example, the size of fish in a commercial 

catch may be subject to sampling bias either from restrictions on the fishing net mesh 

size, hook size, or an implemented minimum take size. If the size of fish in the entire 

population is the target of the variable being modeled, then an informative prior of the 

true range of fish size in the population would be desirable. This could be determined 

from scientific sampling, samples taken over a longer time-series where the time-series 

incorporates individuals from the full population, or from the literature.  

The aim is to develop a frequency distribution reflecting the true range of the variable 

or parameter of interest, with the weight of the distribution function concentrated 

around its midpoint. To this end, if the data to be applied in a model are believed to 

exhibit some sampling bias away from the true population (such as measurements of 

fish size from catches with fishing restrictions), then they should not be used in con-

structing the prior. Reliance on the same data would give rise to a higher degree of 

certainty in the posterior than should be accepted. 

In establishing an informative prior distribution for a variable or parameter from other 

ancillary data, several steps should be followed. The expected frequency distribution 

needs to be chosen that will determine the parameters needed to define the distribution 

within the mathematical syntax of the chosen software. For example, a normal distri-

bution is determined by values describing the mean and standard deviation; a binomial 

distribution is determined by the probability of success and the number of trials; and a 

negative binomial distribution is determined by the probability of success and the 

number of successes. The choice of the frequency distribution determines the (i) shape 

of the distribution, (ii) range of values around the midpoint (typically chosen as the 

mean, median, or mode of the distribution) and also their symmetry or asymmetry, 

and (iii) density of values (their probability) relative to distance from the midpoint. 

2.1.1 Choice of prior probability distribution 

The aim of setting an informative prior distribution from data is to describe the situa-

tion – the variable of interest – as well as possible. Two main factors will determine this 

choice:  

 prior understanding of the frequency distribution from other examples or 

knowledge and;  

 the size of the dataset being used to set the prior, and its apparent frequency 

distribution.  
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Prior knowledge of the variable in question and scientific knowledge of general types 

of data are important in a priori choosing the density function for an informative prior. 

The sample size of the data, however, will have the greatest influence on the choice.  

2.1.2 Influence of past studies and scientific understanding 

General knowledge of probability distributions, datasets of a similar nature, and expe-

rience with sets of the same type of data from different sources are likely to influence 

the choice of the prior distribution function. Examples of generally expected probabil-

ity distributions include: 

 Weight and length measurements of individuals in an age class tend to be

normally or log-normally distributed.

 Numbers of males to females in a population of known total size tend to

follow a binomial distribution.

 Organisms in the environment tend to be clumped or contagious in their

spatial distribution; therefore, probability distributions of their counts from

spatial sampling techniques (such as sweep net or quadrate surveys) tend

to be strongly right skewed, following negative binomial or log-normal dis-

tributions.

 Organism distributions are sometimes regularly distributed within conta-

gious clusters and, at this smaller scale, may display a uniform frequency

distribution.

 Certain events occur with a regular temporal distribution, such as temper-

ature relative to the time of day or year, or the eruptions of a geyser. In such

cases, this should be reflected by the chosen probability model.

 Some weather events have a contagious temporal distribution, such as the

frequency and strength of tornadoes and winds, for which the Weibull dis-

tribution has often been used to model probabilities.

Previously collected datasets of the same variable from a different source can also give 

valuable insight into the expected frequency distribution form. For example, length 

measurements of a population of a species, different from the population of interest, 

may be informative. While care needs to be taken doing this, it can be a useful ap-

proach. An “information donor” population should be chosen that is believed to be 

close to the population of interest. In this sense, the term “close” applies not only to the 

spatial and temporal localities of “donor” and “recipient” population estimates, but 

also to the value of the variable under scrutiny. 

Furthermore, the general form of a frequency distribution is more robust than the ac-

tual range of its elements (or measurements). For example, while a population of the 

wood mouse (Apodemus sylvaticus) from a productive habitat may have a mean weight 

of 26 g and a population from a less productive habitat may be significantly smaller 

with a mean weight of 20 g, the frequency distribution (probability function) of weights 

of the two populations may be expected to exhibit the same shapes and forms. This 

will hold true for many measurement types and their classes and justifies the applica-

tion of a probability distribution type based upon experience. 

2.1.3 Sample size 

The way in which a dataset is used to construct a prior needs consideration. Sample 

size is most important, as this will influence how the frequency descriptors of the data 
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are implemented, either using the full dataset directly or alternatively calculating or 

estimating descriptors of the dataset.  

Large sample sets clearly are the most reliable for setting informative priors. Frequency 

distributions of dataset values can be used to fit expected probability distribution func-

tions; then, goodness-of-fit tests are performed to choose the most appropriate form 

and its values to define the prior. This can lead to strongly informative priors that can 

be appropriate when the variable in question is very closely associated with the data 

used to create the prior. If, however, the data used in setting the prior represent a dif-

ferent population, time, or location, care should to taken to ensure they are not overly 

influential, as they could limit development of the posterior by being too strong and 

thus limit the model and its data in influencing the posterior estimate.  

For smaller datasets still large enough to exhibit a discernable probability distribution 

type or shape, descriptors can be calculated and the frequency distribution can be ex-

amined and compared against known, expected frequency distributions, and the mean, 

median, mode, standard deviation, variance, etc. calculated directly.  

For small datasets, comprising anything below ca. 50 samples, choosing an appropriate 

probability distribution becomes difficult. For small datasets, the shape of the distribu-

tion function is not always apparent. Figure 2.1 shows frequency plots of values ran-

domly drawn from a log-normal distribution (mean = 5; s.d. = 0.447) and an increasing 

number of drawn samples (n = 10, 50, 100, 1000, and 10 000). For the first two series of 

draws (n = 10 and 50) and, to an extent, the third (n = 100), the shape of the distribution 

is not clear, and no distinct pattern could be reliably proposed. In such cases, the basic 

details from the data (mean, median, standard deviation) can be calculated and applied 

to a prior. However, the choice of the distribution type would be left to expert opinion 

or prior knowledge (see above).  

If small sample sizes are to be used, misspecification of the prior could result in two 

ways: (i) inaccuracy in the direct estimate of the distribution descriptors (mean, me-

dian, standard deviation) and (ii) from application in a model of an incorrect probabil-

ity distribution type. In these cases, a balance must be reached between information 

arising from the data and that from expert opinion. In such instances, it is important to 

ensure that the informative prior incorporates the expected variability in the variable 

and does not force estimates to a very narrow and potentially falsely precise value. 
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Figure 2.1. Frequency distributions of n = 10, 50, 100, 1000, and 10 000 randomly drawn samples from 

a log-normal distribution with a predetermined mean of 5 and standard deviation of 0.447. The 

sample means and standard deviations given in Table 2.1 are included for comparison (note that 

for n = 10, 50, and 100, the expected distribution plots in red emphasize their difference to the ob-

served sample frequencies). 

Table 2.1. Sample size and associated means and standard deviations from randomly drawn sam-

ples of a log-normal distribution with a predetermined mean of 5 and standard deviation of 0.447.  

Frequency distributions are plotted in Figure 2.1.  

Distribution       n 10 50 100 1000 10 000 True values  

Log scale Mean 128.03 150.29 161.83 163.05 163.62 164.02  

 s.d. 49.285 73.334 67.344 76.687 78.026 77.194  

Transformed Mean 4.765 4.904 5.001 4.993 4.994 5.000 Used to 

establish 

distributions  s.d. 0.4747 0.4674 0.4201 0.4492 0.4551 0.4472 

 

2.1.4 Priors for unobserved values and parameters. 

Unobserved model components can fall into two categories:  

 Variables that are representative of a true value or count. For instance, the 

number of fish or their size at a specific life stage in a specific location that 

are not observed. These variables are true values even if not measured (i.e. 

not observed). 
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 Parameters or notional (conceptual) values that are used in mathematical 

modelling, but are not measurable (e.g. parameters within stock–recruit-

ment models). 

For unobserved values, informative priors can be implemented from alternative da-

tasets if samples of the population of interest are not available. These may be scientific 

samples or fishing samples. Priors may also be derived from combinations of datasets 

if there is an expected reliable relationship among the different datasets. The criteria 

described above for using data in the derivation of priors apply here as well.  

For parameters, the situation is similar. While the target value and its probability dis-

tribution may not be observed directly from a dataset, the combination of datasets 

through a relationship or model can indicate the expected probability distribution form 

and range [e.g. a parameter in a growth relationship, such as the growth rate (r) and 

carrying capacity (k) of the Beverton–Holt (1957) growth model]. 

If prior estimates of a value are going to be derived from two or more datasets, the 

conditions detailed above, namely the sample size of the dataset and the expected 

probability distribution form, need to be considered for each dataset. The methods pre-

sented in Section 3.2 include an appropriate toolbox for deriving priors from several 

datasets. 

2.2 Literature 

Konstantinos Stergiou, Samu Mäntyniemi, Atso Romakkaniemi, and Rebecca 

Whitlock 

2.2.1 Introduction 

Literature is an important source of information for various parameters related to the 

assessment of fish stocks. For instance, in a review of length-at-first-maturity of fish in 

the Mediterranean Sea, a region traditionally considered data-poor, information was 

found for 565 marine fish stocks representing 150 species (Tsikliras and Stergiou, 2014). 

This is especially true of the so-called grey literature (i.e. theses, proceedings, local jour-

nals, journals that publish in languages other than English) which was not widely 

available before the Internet era and, until recently, was generally not included in var-

ious online bibliographic databases (e.g. Scopus, Web of Science). For instance, >60% 

of the articles cited in four reviews on various biological aspects of Mediterranean ma-

rine and freshwater fish were in local, grey literature (Stergiou and Tsikliras, 2006). 

Despite the existence of large databases that accommodate the available literature and 

from which relevant information can be extracted (Section 2.3), the percentage of the 

published primary and grey literature that is not incorporated into such databases can 

be high (e.g. Stergiou and Moutopoulos, 2001; Stergiou and Karpouzi, 2002; Apos-

tolidis and Stergiou, 2008; Tsikliras and Stergiou, 2014). For instance, within the 

ECOKNOWS project (www.ecoknows.eu), for the five Mediterranean case study spe-

cies and the nine parameters examined, the percentage of records derived from both 

primary and grey literature not included in FishBase (Froese and Pauly, 2014, 

www.fishbase.org, version 8/2011) ranged from 0 to 100%, depending on the species 

and parameter (Tables 2.2 and 2.3) (Stergiou et al., 2012).  

https://vyvi-nettiposti.vy-verkko.fi/owa/redir.aspx?C=jVxvDSMvaUWomizDjfSJbw1eXmBtkdEI7Nf55nPZZk74dzuqw9XhcfTYK1xaypaVTCeR4ZkQAxw.&URL=http%3a%2f%2fwww.ecoknows.eu
https://vyvi-nettiposti.vy-verkko.fi/owa/redir.aspx?C=jVxvDSMvaUWomizDjfSJbw1eXmBtkdEI7Nf55nPZZk74dzuqw9XhcfTYK1xaypaVTCeR4ZkQAxw.&URL=http%3a%2f%2fwww.fishbase.org
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Table 2.2. Information already existing in FishBase (FB; www.fishbase.org; Froese and Pauly, 2014) 

and new information to be added to FishBase in the framework of the ECOKNOWS project (ECO) 

for the five Mediterranean case study species. Underlined values indicate cases where the new in-

formation collected exceeds in number the records already existing in FishBase. VBGP = von Ber-

talanffy growth parameters, W–L = parameters of the weight–length relationship, L-freq = length 

frequency distributions, Lm = length at first maturity, diet = quantitative description of feeding hab-

its (expressed as mass and/or volume of prey items), predator = number of recorded cases of preda-

tion of the species by other organisms (data from Stergiou et al., 2012). 

Parameter D. annularis M. merluccius M. surmuletus S. porcus S. cabrilla 

ECO FB ECO FB ECO FB ECO FB ECO FB 

VBGP K 5 15 23 66 10 27 1 20 4 5 

 L∞ 5 15 23 66 10 27 1 20 4 5 

 t0 5 11 15 27 8 18 1 13 4 5 

W–L a 16 54 25 61 13 51 8 32 7 25 

 b 18 54 25 61 21 51 8 32 7 25 

L-freq  42 2 30 7 35 2 10 2 14 2 

Maturity Lm 5 6 2 9 3 10 - 4 - 2 

Fecundity 1 - 5 7 - - 1 - - - 

Spawning season 10 10 12 14 17 10 8 1 10 5 

Diet  24 3 39 23 8 15 11 10 1 3 

Predator  6 3 17 17 7 8 3 2 1 - 

 

Table 2.3. Percentage of records that are not being included in FishBase (FB; www.fishbase.org; 

Froese and Pauly, 2014), based on data collected in the ECOKNOWS project for the five Mediterra-

nean case study species, as presented in Stergiou et al. (2012) (Table 2.2). For abbreviations, see 

Table 2.2. 

Parameter D. annularis M. merluccius M. surmuletus S. porcus S. cabrilla 

VBGP K 25 26 27 5 44 

 L∞ 25 26 27 5 44 

 t0 31 36 31 7 44 

W–L a 23 29 20 20 22 

 b 25 29 29 20 22 

L-freq  96 81 95 83 88 

Maturity Lm 46 18 23 0 0 

Fecundity 100 42  100  

Spawning season 50 46 63 89 67 

Diet  89 63 35 52 25 

Predator  67 50 47 60 100 

 

2.2.2  What information to collect 

Compiling information from the literature for the purposes of prior formulation is a 

rather straightforward process when the parameter of interest is available in a common 

form (i.e. with the same interpretation and units) across publications (as an example of 

the opposite situation, many parameterizations of the commonly-used Beverton–Holt 

(Beverton and Holt, 1957) and Ricker (1954) stock–recruitment functions can be found 

in the literature, so substantial care must be taken when compiling this information). 

In this case, one can use the published parameter estimates straightforwardly in a 

http://www.fishbase.org/
http://www.fishbase.org/
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Bayesian meta-analysis that combines the information across studies (Section 3.2). Each 

point estimate can be treated as a proxy for the mode of a hypothetical posterior distri-

bution for the estimate (i.e. the posterior distribution that would have been obtained if 

the analysis were a Bayesian one), while the standard deviation of the estimate may be 

treated as the posterior standard deviation. However, care should be taken to under-

stand what the reported values are and if they differ between studies, so that they can 

be used appropriately. For instance, if the published standard deviation were obtained 

using classical statistical methods, it would not be equivalent to a standard deviation 

from a Bayesian analysis (according to the theory, uncertainty will tend to be underes-

timated). Reported posterior distributions from appropriate Bayesian analyses can be 

directly used in meta-analyses. 

In addition to the results of data analyses, the literature also contains auxiliary infor-

mation about the subject and methods of a particular study. Description of the study 

area, study design (data collection and analysis), and other aspects of the study may be 

relevant when considering whether and how to use published results to formulate a 

prior. A careful review of the auxiliary information becomes more important when 

published results available do not share a common definition across studies and as the 

complexity of the models used to obtain those results increases. In such cases, auxiliary 

information may be needed to transform published parameter values in order to reach 

a common interpretation and scale. If the published results were obtained using differ-

ent modelling approaches, the validity (e.g. underlying assumptions) of those ap-

proaches may merit consideration, but in general, use of all results obtained using ap-

propriate methods is recommended to fully account for structural (i.e. model) uncer-

tainty. Auxiliary information may also play a central role when the parameter of inter-

est shares certain features across studies, but covariates are needed to explain some of 

the variation across studies (partial exchangeability, see Section 3.2.3) or if correlation 

between parameters is considered (Section 3.2.4). 

2.2.3 Publication bias 

Ideally, the scientific literature would include all knowledge accumulated by the sci-

entific community. However, it is well known that research and publication practices 

are biased towards showing only “positive” results. In other words, research efforts 

that yield “negative” results (i.e. results that are not statistically significant) are very 

rarely published. As Browman (1999) states: “The issue of negative results remains 

complex. It reflects our training, our thoughtfulness about what we do as scientists 

(and how we do it), and our humanity, with all its inherent biases.” (see also Gould, 

1993). 

Use of statistical-significance testing as the criterion for publication leads to over-rep-

resentation of studies in which the null hypothesis was rejected. This is predicted to 

happen by chance alone in a proportion of all studies even if their null hypotheses were 

all true. The proportion is mainly determined by an arbitrary threshold ( , the prob-

ability of a type-I error or false positive) which is chosen to act as a cut-off for statisti-

cally significant vs. non-significant results. The smaller the threshold, the smaller the 

proportion of studies with rejected null hypothesis that will be published. Typically, 

the null hypothesis of the study states that the value of a particular model parameter 

equals zero, and this is taken to represent “no effect”. In many cases, these are so-called 

“silly null hypotheses” where it is already known from other sources of knowledge 

that the null hypothesis cannot be true (Johnson, 1999). The true parameter value may 

be so close to zero that, from any practical point of view, there is no effect. However, 

hypothesis testing considers an exact hypothesis (e.g. equality to 0), so that the p-value 
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is a direct function of the amount of data collected. If the true parameter value deviates 

even slightly from the value under the null hypothesis, the p-value can be made small 

enough for publication by collecting a sufficiently large amount of data. Thus, studies 

with silly nulls and large datasets will get published more easily, even though these 

are not desirable criteria for publication. 

In order to make a point of the problem, the above description is somewhat exagger-

ated and can be seen as the worst-case scenario; there are other mechanisms that dilute 

publication bias. Whether the bias has severe consequences for the formulation of pri-

ors for Bayesian stock assessment can be difficult to assess and will require a certain 

degree of expert judgment. It clearly diminishes the amount of published information 

available for Bayesian meta-analysis, where one would ideally use the results from all 

relevant studies, whether statistically significant or not. 

Statistical hypothesis testing usually considers differences between groups or relation-

ships between two or more variables. The publication bias probably has less impact on 

auxiliary information, which has not been directly subject to selection through testing 

procedures. An example might be a case where length–weight data have been collected 

in order to estimate weight based on length in a larger sample, and the estimated 

weight for the larger sample has been compared to other populations or used in further 

regression analyses using hypothesis tests. In this example, the length–weight relation-

ship might be affected by the publication bias to a lesser extent. A reduced effect of the 

publication bias can also be expected in the grey literature, which falls short of the 

standards required for publication in peer-reviewed international journals (e.g. due to 

lack of statistical significance or lack of a wider relevance for the scientific community). 

2.3 Online databases 

Rainer Froese, Konstantinos Stergiou, and Vaishav Soni 

2.3.1 The nature of databases in the context of this work  

For the purpose of this subsection, databases are understood to be information systems 

containing information on fish or fisheries in well-defined database fields that are or-

ganized in interlinked tables. We are referring here mainly to information other than 

primary data (typically, they are estimates derived from the primary data, i.e. results 

collected from literature, etc.); therefore, it would be more justified to name these in-

formation systems as ”knowledge bases”. However, the use of the word ”database” is 

so common in this context that we use it. 

The free online encyclopedia Wikipedia is a wonderful information system, but it is 

basically a collection of text files that cannot be used to extract standardized infor-

mation to create meaningful graphs about e.g. catches in the North Atlantic in 1970. An 

example of a useful database is the FAO Capture database, which contains global 

catches by species, area, country, and year from 1950 onward 

(www.fao.org/fishery/statistics/software/fishstatj/en). Another useful database with 

time-series of catches, biomass, and recruitment is the RAM Legacy Stock Assessment 

Database maintained at Dalhousie University in Canada 

(http://ramlegacy.marinebiodiversity.ca/). Two useful databases produced by ICES are 

the stock assessment database (http://www.ices.dk/marine-data/tools/Pages/stock-

assessment-graphs.aspx), which contains time-series of biomass, recruitment, and fish-

ing mortality as well as reference points for the fully assessed ICES stocks, and 

DATRAS (http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx), which 

contains, for about 200 species, standardized catch data from scientific trawl surveys 

http://www.fao.org/fishery/statistics/software/fishstatj/en
http://ramlegacy.marinebiodiversity.ca/
http://www.ices.dk/marine-data/tools/Pages/stock-assessment-graphs.aspx
http://www.ices.dk/marine-data/tools/Pages/stock-assessment-graphs.aspx
http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx
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conducted in the Northeast Atlantic. A global database of relevance to fisheries re-

search is FishBase (www.fishbase.org) which has compiled key parameters from the 

scientific literature on life history traits, such as length–weight, growth, maturity, fe-

cundity, and mortality. SealifeBase (www.sealifebase.org) is a similar database with 

information on invertebrates and marine mammals. 

2.3.2 What makes a database a suitable source of information  

A widely used database type is the relational database model, where all information is 

stored in interlinked tables. For such a database to be useful for scientific work, the 

content of data fields has to be clearly described (units, limits, methods used), and the 

quality of the data has to be indicated whenever possible. Such “metadata” are needed 

for the database as a whole, but also the source of every piece of information has to be 

indicated, such that it can be traced back to its origin. For scientific data, this typically 

requires a link to a publication.  

Whenever there are established standards for information, such as ISO standards, these 

shall be used to enable interlinking of information with other databases that use the 

same standards. Important examples of standards are scientific names of species, 

which should follow FishBase (www.fishbase.org) for fishes and SeaLifeBase 

(www.sealifebase.org) for other aquatic organisms, as both databases are contributors 

to the Catalogue of Life authority file for scientific names (www.catalogueoflife.org). 

Another example is the ISO standard for official names of countries and territories. For 

spatial data, geographic coordinates are the standard of choice.  

Typical data types are numbers (e.g. 123, 0.123), Boolean fields (e.g., TRUE, FALSE or 

YES, NO), attributes selected from a limited list (e.g. “low”, “medium”, ”high”), re-

stricted text fields (e.g. “Gadus” or “myfile.xls”), and free text fields, such as for com-

ments of any kind. The strength of the relational database model lies in the ease of 

creating queries that connect previously unconnected information. One famous exam-

ple was the connection of annual catches from the FAO global catch database with the 

trophic level of the respective species from FishBase. This information could be con-

nected because both systems followed the same standard for scientific names of the 

respective species. The resulting analysis (Pauly et al., 1998) concluded that fisheries 

were impacting global foodwebs. 

One often overlooked aspect of databases is their level of completeness, i.e. whether all 

relevant information (e.g. all species, areas, years, studies) are included. If instead the 

database contains a biased subsample of the true distribution of the respective data, 

then any analysis of this database will have biased results.  

2.3.3 Biological information from FishBase 

FishBase is a global online database with key information on all 32 000 known fish 

species. Of special relevance to fisheries research are the compilations of thousands of 

published studies on fish biology and population dynamics. The respective estimates 

for parameters such as length–weight, growth, mortality, length- and age-at-maturity, 

fecundity, and diet composition were extracted by specialists, standardized if needed, 

and quality-controlled as to their probability when compared with known limits and 

with other studies for similar species. Doubtful parameter estimates are marked as 

such, with a short justification. Every number can be traced to the respective publica-

tion, to the specialist who entered it into the database, and to whom may have marked 

it as questionable. 

An overview of the topics covered by FishBase can be gained from Figure 2.2. 

http://www.fishbase.org/
http://www.sealifebase.org/
http://www.fishbase.org/
http://www.sealifebase.org/
http://www.catalogueoflife.org/
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Figure 2.2. Topics covered by the FishBase information system. A click on one of the radio buttons 

results in a list of all species for which the respective information is available. 

FishBase is available free on the Internet. A copy of the complete database in MySQL 

format can be obtained for a processing fee of USD 50. Users can then construct their 

own specific SQL queries against the database. Figure 2.3 shows the key tables relating 

to nomenclature and how they are interlinked. 

 

Figure 2.3. FishBase tables dealing with nomenclature, i.e. currently valid scientific names and their 

classification, as well as common names by language and country. The lines connect the fields on 

which the tables are linked. 

Figure 2.4 shows how fisheries-relevant information, such as trophic ecology and pop-

ulation dynamics, are structured within FishBase. Note that information can be specific 

to a population, stock, or cultured strain so that all information that does not apply to 

the species in general is linked through the STOCKS table. 
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Figure 2.4. FishBase data structure for information on trophic ecology and for population dynamics.  

Figure 2.5 shows an example, e.g. the FAO Catch and Aquaculture production data-

bases, of how an external database is linked to FishBase.  

 

Figure 2.5. FishBase data structure for linking external databases, here the FAO databases for global 

catches and for aquaculture production, through the ISSCAAP table which contains scientific 

names as well as the fields used by FAO to identify species items (Alphacode and SPECODE). 

Properly attributing scientific information to a source is not a trivial matter because 

several different scientific names may have been used for the same species, and many 

references treat more than one species. Figure 2.6 shows the respective data structure 

in FishBase. The REFRENS table contains all of the relevant information about a publi-

cation. The BIBLIO table establishes the link between a species and a reference and 

gives the page number from which the information has been retrieved. The 

SYNONYMS table shows the scientific name that has been used for the species in the 
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publication, which is then linked to the currently valid name and the SPECIES table 

that holds the general account for that species and links to all other information 

through the STOCKS table, as shown in Figure 2.4. 

 

 

Figure 2.6. Data structure for proper linking of publications and species. The BIBLIO table gives 

the page number from which the information has been extracted, and the SYNONYMS table links 

the scientific name used in the publication to the currently valid name of the species. 

As the above examples make clear, writing a query against a complex database requires 

good understanding of not only the data structure, but also the content of the fields 

and possible related fields with quality information. Incomplete understanding is 

likely to give misleading results. The FishBase team, therefore, prefers to be involved 

in scientific studies based on the database, e.g. by early involvement in prospective 

projects. Alternatively, especially when dealing with only a few species, users are en-

couraged to glean the required information from the FishBase portal where the respec-

tive data presentations have been thoroughly tested and are accompanied by relevant 

comments. Still, if users insist on doing the data mining by themselves, the whole da-

tabase is available upon request, as indicated above. Full descriptions of all fields and 

tables are available in the FishBase manual at www.fishbase.org/manual/english/con-

tents.htm.  

FishBase comes with a variety of tools of relevance to fisheries research. For example, 

researchers can plot their own parameter estimate of length–weight, maturity, or 

growth parameters against the background of all other estimates for the species and 

family, thus obtaining an idea of how their new estimate compares with existing esti-

mates. 

Following a rule-based process, information on growth, maturity, maximum age, and 

fecundity has been translated in species-specific estimates of resilience in the categories 

high, medium, low, and very low. These categories have been used to assign priors to 

estimates of the intrinsic rate of population increase (Martell and Froese, 2013), as 

shown in Table 2.4. 

Table 2.4. Default values used for batch processing of stocks based on resilience assignments in 

FishBase, where r is the maximum intrinsic rate of population increase. 

Resilience High Medium Low Very low 

r (year–1) 0.6–1.5 0.2–1 0.05–0.5 0.015 –0.1 

 

http://www.fishbase.org/manual/english/contents.htm
http://www.fishbase.org/manual/english/contents.htm
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Recently, a full hierarchical Bayesian analysis has been implemented in FishBase for 

the simple problem of estimating weight from length (Froese et al., 2014). Whenever 

new length–weight relationships are added to FishBase, the Bayesian estimates of 

many more other species are updated automatically. Figure 2.7 shows the section from 

the FishBase species summary page that contains this and other information based on 

models. 

 

 

Figure 2.7. A screenshot example of information in FishBase not extracted from the published lit-

erature, but summarized by appropriated models based on the available data.  

Users can also run their own Bayesian analysis of length–weight studies by selecting 

and weighing the studies they want to incorporate for their purposes. 

2.3.4 Biological information from SeaLifeBase 

SeaLifeBase is a FishBase-like information system for all aquatic living organisms (ma-

rine and freshwater) other than fish, with information for over 100 000 species of inver-

tebrates, marine mammals (complete), marine reptiles (complete), seabirds (complete), 

and algae. Because SeaLifeBase started only a few years ago and because of the large 

number of species covered, SeaLifeBase is less complete than FishBase. But for com-

mercially important species such as Norway lobster (Nephrops norvegicus), it contains 

numerous studies on maximum size, growth, length–weight, and maturity (Figure 2.8). 

Similar pages can be found for other commercially important invertebrates such as 

brown shrimp (Crangon crangon) or blue mussel (Mytilus edulis). 

 

 

 

 

 

 

http://www.fishbase.org/
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Figure 2.8. Screenshot of parts of the species summary page for Norway lobster in the online data-

base SeaLifeBase. Note that the “More information” section is reasonably complete with regard to 

key life history traits. Behind the links are tables with the respective parameters extracted from 

numerous studies. 

2.3.5 Description of the ICES DATRAS database 

DATRAS (the Database of Trawl Surveys) is an online database of trawl surveys that 

is publicly available from http://datras.ices.dk and resides at ICES headquarters in Co-

penhagen, Denmark. The survey data cover the Baltic Sea, Skagerrak, Kattegat, North 

Sea, English Channel, Celtic Sea, Irish Sea, Bay of Biscay, and the eastern Atlantic from 

the Shetlands to Gibraltar. At present, there are more than 48 years of time-series data 

for about 200 species in DATRAS. The surveys are primarily designed to provide in-

formation on abundance of commercially important species. However, information on 

all other fish species taken in survey catches are collected on a routine basis by national 

institutions and uploaded to DATRAS.  

System component 

The following components are part of the DATRAS system:  

DATSU: Data screening utility. All data are run through the data-screening utility be-

fore they are uploaded to the DATRAS database. The utility consists of: 

 an SQL database where the exchange format and all check descriptions are de-

fined; 

 a Microsoft.Net program which performs all the checks; 

 an Internet front-end where the data submitter can perform the data screening 

and see the results; and  

 an internal Access front-end to the SQL database where exchange formats and 

checks can be set up by ICES staff.  

RECO: Data storage for ICES codes with a web front-end for searches in the database. 

http://datras.ices.dk/
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DATRAS database: Data storage for raw trawl survey data consisting of an SQL data-

base that can be accessed and downloaded through the Internet. 

DATRAS data warehouse: Data storage for processed trawl survey data, with an Inter-

net front-end from which data can be downloaded. 

DATRAS has an integrated quality-check utility. All data have to pass an extensive 

quality check before being entered into the database. It has been developed to collate 

and document the survey data, ensure data quality, standardize data formats and cal-

culations, and ease data availability. Data from DATRAS are used for stock assess-

ments and fish community studies by the ICES community and public users. DATRAS 

offers raw data and data products (cpue-based products and indices) for free down-

load according to the ICES data policy, and it can be used for production of custom 

trawl data products as requested by ICES expert groups or as a part of external projects. 

As an example, extensive use of information in DATRAS is documented by Froese and 

Sampang (2013). They use the SMALK data tables to estimate growth, length–weight, 

and maturity data. Subsequently, they use the cpue-per-length-per-area table to derive 

proxy indices for spawning–stock biomass, number of recruits, stock–recruitment re-

lationship, biomass reference points, and total mortality (Figure 2.9). Their proxy 

stock–recruitment relationship is shown in Figure 2.10.  

Figure 2.9. Evaluation of a data-limited stock, here North Sea dab (Limanda limanda). The black 

line in the upper left graph shows the raw data obtained from the ICES DATRAS cpue-per-length-

per-area database, as numbers of dab caught on average per year by one hour of standardized re-

search trawling. The dotted line indicates the mean of the time-series. The red line indicates the 

number of individuals larger than the length at 50% female maturity. The upper right graph shows 

the number of “youngest fish in the survey”, as proxy for recruits, with the dotted line indicating 

the geometric mean of recruitment at large stock sizes. In the lower right graph, length of individ-

uals was converted to weight and summed to show biomass of mature (red) and all fish (black). 

The dotted horizontal lines are proxy reference points for spawning–stock biomass. The lower left 

graph shows total mortality (Z) experienced over the respective previous two years (black circles) 

and scaled exploitation rate (blue line), i.e. the ratio u between commercial catches and total survey 

biomass plus the rate of natural mortality, both as proxies for fishing mortality, with indication of 

natural mortality (M, dashed line) and total mortality (Z) if F = M (dotted line) as reference points. 
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Figure 1.10. A preliminary stock–recruitment relationship based on cpue in weight as proxy bio-

mass of mature fish and number of young fish (= proxy-recruits) two years later, derived from 

length composition in standardized survey catches. A hockey stick was fitted by a rule-based pro-

cedure. The dotted vertical line indicates proxy SSBpa as the precautionary borderline to poten-

tially compromised recruitment. 

2.3.6. Description of the ICES stock assessment database  

When delivering the results of analytic fish stock assessments, ICES needs to produce 

graphs and plots that are consistent for all fish stocks. Prior to 2013, this was done using 

a local Access database with an Excel plotting option. This setup resulted in annual 

databases containing a basic summary of the assessment, reference points, and yield-

per-recruit information for some stocks, but the graphs were only available in the ICES 

advice. In 2013, ICES developed a web-based interface with a database containing all 

assessment results since 2001 (Table 2.5). The database is extended with options to add 

catches split between landings/discards/recreational catches and adding confidence in-

tervals. The database also contains the editorial settings for the graphs, which means 

that from 2013 onwards, comparison of assessment results over time is possible, and if 

an assessment is accepted for trends rather than absolute, this information is also avail-

able.  

The new stock assessment database was developed to be able to present plots based on 

analytic fish stock assessments in a standardized way containing all assessment infor-

mation, reference points, and (where available) yield-per-recruit data. The database 

has a web-based password-protected interface where only stock experts can upload 

data and edit the graphs. 

The database can be accessed (http://standardgraphs.ices.dk/webservices.aspx) and 

used by outsiders, who can view and download data and plots from published advice. 

  

http://standardgraphs.ices.dk/webservices.aspx
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Table 2.5. The stock assessment database contains the summary of analytic assessments from 2000 

onwards.   

Parameters  Mean Confidence intervals Before 2013 

Recruitment  X If any  

Biomass Spawning  X If any  

 Total If any If any  

Fishing mortality Catch If any If any  

 Landings X If any  

 Discards If any If any  

 Industrial If any If any  

 Recreational* If any If any  

SOP  If any   

Yield/SSB  If any   

Catches Catch If any   

 Landings X   

 Discards If any   

 Industrial If any   

 Recreational* If any   

Stock settings Recruitment age X   

 Fishing mortality ages X   

 Reference points If any   

Yield-per-recruit 

information 

.sen or .ypr If any   

Note: “X” = must be available, “if any” = may be inserted if available. For years before 2013, only 

the highlighted rows could be filled. 

 

The predecessor of this database was used intensively by, e.g. Froese and Proelss (2010) 

to estimate fisheries reference points (MSY, Fmsy, Bmsy) for all ICES stocks with suita-

ble data. 

2.4 Experts 

Rebecca Whitlock, Polina Levontin, Adrian Leach, and John Mumford 

2.4.1 Introduction 

Expert opinion is a valuable aid for analysis and decision-making when the available 

data are very limited, of mixed quality (e.g. noisy), or not directly relevant (O’Hagan, 

2012). In some cases, expert judgment may be the best available source of information; 

however, it is more commonly used in support of available evidence, adding interpre-

tation from different perspectives, e.g. to observed relationships. Expert opinion may 

also be used to inform policy when urgent measures are required before sufficient sci-

entific evidence is available to serve as the basis for action (Knol et al., 2010). 

Formal expert elicitation is a systematic approach for consulting experts on uncertain 

issues (Knol et al., 2010). Formal elicitation methods have increasingly been developed 

and applied for incorporating expert knowledge in ecology and fish stock assessment 

and management (Burgman, 2005; Fletcher, 2005; Martin et al., 2005, 2012; Uusitalo et 

al., 2005; Kuhnert et al., 2010). The rise of expert knowledge in ecological modelling can 

be attributed, in part, to the fact that expert judgment is generally sought in situations 

characterized by high levels of uncertainty, which is a feature of many ecological prob-

lems. In this context, experts can bring the benefit of broad experience and the ability 
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to assimilate and interpret complex and possibly equivocal information (O’Hagan, 

2012).  

Elicitation of stakeholder views can also contribute to a participatory approach to fish 

stock assessment and management (Mäntyniemi et al., 2012). It is increasingly acknowl-

edged that management approaches that account for uncertainty and diversity of 

knowledge and objectives tend to produce improved outcomes for both stocks and 

fishers (Mackinson et al., 2011), e.g. through more transparent models and greater ac-

ceptance of assessment results among stakeholders (Mäntyniemi et al., 2012). Treating 

the views of different stakeholders as alternative hypotheses and expressing them as 

probability statements (e.g. Mäntyniemi et al., 2012) allows their incorporation in a 

quantitative and objective manner. 

What constitutes expertise? 

In-depth knowledge of the subject matter is usually key to being an expert. Fazey et al. 

(2006) suggest a definition based on experience, whereby the relevance, breadth, and 

depth of experience pertaining to the subject are an expert’s defining features. Exper-

tise also relates to how an expert is able to organize and draw on his/her knowledge 

and experience. Representation of problems in terms of formal principles and use of 

known strategies in problem solving have been suggested as attributes of an expert 

approach (Wood and Ford, 1993).   

2.4.2 Selection of experts 

The choice of experts is an important part of the elicitation process (O’Hagan et al., 

2006). In general, it is desirable to select a group of experts that is broad enough to 

encompass the complete range of scientific thought on a particular topic (Bedford and 

Cooke, 2001), so that the results of elicitation will not just reflect one particular opinion. 

Seeking a set of experts with diverse backgrounds can also help to reduce the potential 

for “groupthink”, i.e. an increased desire for consensus, or group-reinforced bias that 

can occur when members share a common background (Janis, 1971; Esser, 1998). In 

addition to knowledge and representativeness, experts’ interpersonal skills and com-

municative ability also merit consideration.  

A further important (and difficult to assess) criterion is impartiality; is there a direction 

in which the expert’s personal, professional, or cultural values may influence the elici-

tation? While it can be argued that all experts are stakeholders in some sense because 

they can affect the outcomes of models and, through them, policy (Krueger et al., 2012), 

experts should not have a direct economic or personal stake in the potential findings 

(Hora and von Winterfeldt, 1997). In case the recruitment of impartial experts is not 

possible, recording any potential conflict of interest is recommended (O’Hagan et al., 

2006).  

Several sources may be helpful in identifying experts: 

 published literature 

 expert networks and expert databases 

 records of participants in conferences and symposia 

 lists of recipients of academic awards and honours 

 professional social media (LinkedIn, ResearchGate, etc.) 
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2.4.3 Potential sources of bias 

 The facilitator should be aware that judgment under uncertainty is subject to a number 

of well-documented biases. The use of heuristics (or short-cuts) to make judgments 

under uncertainty can lead to systematic biases in experts’ evaluations (Tversky and 

Kahneman, 1974). Thorough discussion of these biases and their implications for elici-

tation practice can be found in Gilovich et al. (2002), while reviews are provided in 

Otway and von Winterfeld (1992) and O’Hagan et al. (2006). In the following section, 

several potential sources of bias that are particularly relevant to elicitation of expert 

opinion are reviewed.   

Anchoring 

In judging the value of a quantity under uncertainty, people have a natural tendency 

to associate their answer with some (possibly entirely random) anchor. Thus, they start 

with an initial estimate (the anchor) and adjust up or down. The bias arises because 

people tend not to adjust sufficiently far away from the initial estimate. This effect per-

sists when anchors are entirely arbitrary and even when the units of the anchor are not 

the same as the quantity to be elicited (Wong and Kwong, 2000). This is clearly prob-

lematic in the context of eliciting expert opinion, since we want the results of the elici-

tation to reflect only the expert’s knowledge. Some effects of anchoring include insuf-

ficient revision of prior beliefs (which act as an anchor) in the face of new evidence 

(Edwards, 1982) and anchoring on a value corresponding to equal probability for a set 

of mutually exclusive categories, such that the probability assigned to one identical 

category will differ depending on the number of categories (Fischhoff et al., 1978). In 

order to reduce the effect of anchoring, provision of quantitative examples should be 

avoided during elicitation. It might also be possible to reduce anchoring via the order-

ing of questions (e.g. avoiding serial questions on a related quantity where anchoring 

may lead to assessments that are too close together). 

Availability 

The ease with which instances of a certain event (or instances of a particular class of 

events) come to mind informs people’s judgments about the probability of that event 

(or the size of that class) – this is known as the availability heuristic (Tversky and 

Kahneman, 1974). While the availability heuristic is likely to be effective in general, it 

may also introduce bias into expert opinion when factors other than frequency or prob-

ability influence the ease with which examples come to the expert’s mind. Personal 

experience, recent events, and disproportionate media coverage of infrequent events 

are factors that can lead to overly high probability assessments. 

Representativeness 

The representativeness heuristic uses an assessment of the degree of correspondence 

between an outcome (e.g. a sample or instance) and a model (e.g. a population or cate-

gory) as a proxy for a probability assessment (Tversky and Kahneman, 1973; O’Hagan 

et al., 2006). This heuristic is particularly relevant to elicitation in that it applies to the 

assessment of single-event probabilities for unique events (O’Hagan et al., 2006). Bias 

can be introduced through the fact that representativeness and probability are imper-

fectly correlated (e.g. an outcome may be representative, but improbable). A number 

of biases have been attributed to the representativeness heuristic: 
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 Conjunction fallacy 

People’s tendency to assess the conjunction of two events as being more probable than 

one of the events separately is termed the conjunction fallacy (Tversky and Kahneman, 

1983). This can occur if one of the events in the conjunction is deemed unlikely because 

of being unrepresentative. Framing questions in terms of frequencies (e.g. “4 out of 15” 

rather than “27%”) can help to reduce bias associated with the conjunction fallacy (e.g. 

Jones et al., 1995). 

 Base-rate effect 

People’s tendency to ignore the relative frequency of an event within some defined 

class is termed the base-rate effect (O’Hagan et al., 2006). In practice, this means that 

people assign too much weight to an individual observation or event, neglecting the 

available background information. To illustrate this by example, consider that a patient 

receives a diagnosis that he/she has tested positive for the human immunodeficiency 

virus (HIV), and that the test gives a low rate (1%) of both false positive and false neg-

ative results. Suppose also that HIV is very rare among the general population, with 

an incidence of only 1 in 10 000. In this example, the patient’s conclusion (based on the 

test result) that he/she is, in fact, HIV positive would constitute the base-rate effect, 

since it neglects the information about the rareness of HIV. This can be seen by noting 

that out of 1 million people tested at random, 100 are expected to be HIV positive, 

whereas the test will give a positive diagnosis for about 1%, or 10 000 people. Formu-

lating questions in terms of frequencies may lessen the base-rate effect. 

 Insensitivity to sample size 

Even experts may fail to fully appreciate the fact that extreme results are less likely in 

large samples than in small samples. As a result, they may show a tendency to be over-

confident relative to what can be concluded about population parameters from a small 

sample (Tversky and Kahneman, 1971).  

Overconfidence 

Overconfidence refers to the tendency of experts to give probability distributions that 

are too narrow. This has been demonstrated using experiments that assess experts’ per-

formance at gauging credible intervals (the x% credible interval is the range of values 

for y such that there is an x% probability that the true value of y lies in this range). For 

example, if experts’ credible intervals corresponded well with reality, the proportion 

of 50% credible intervals that contain the true value should be about 50% (O’Hagan et 

al., 2006). In fact, assessors’ 90, 95, and 98% credible intervals have been found to con-

tain the correct answer between 40 and 70% of the time (Alpert and Raiffa, 1982; Lich-

tenstein et al., 1982). It has been suggested that overconfidence may result from peo-

ple’s concerns about being so uninformative as to be unhelpful (Yaniv and Foster, 1997) 

or from a type of anchoring where the lower and upper limits are anchored to the cen-

tral or best estimate (Slovic, 1972). In order to reduce the effects of overconfidence, 

training of experts in probability and calibration exercises with feedback have been 

recommended (e.g. Lichtenstein and Fischhoff, 1980). O’Hagan et al. (2006) suggest that 

asking experts to provide credible intervals for moderate levels of uncertainty (e.g. 

50%) is preferable to asking for credible intervals for high levels of certainty (e.g. ≥95%) 

in this respect.  

Is expert opinion independent from data used in the model? 

When expert knowledge comprises only part of the total information about a parame-

ter or model, care is needed to ensure that the same data are not used twice, leading to 
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overly precise assessments. This can occur if some of the observations that will be used 

to fit a model are available to experts and used by them to formulate priors. Using the 

same data that will appear in a model’s likelihood function to inform priors violates 

the likelihood principle, which requires that all interpretation of the data should enter 

inference via the likelihood function (Berger and Wolpert, 1988; Mäntyniemi et al., 

2012). In practice, it may not be possible to restrict experts’ access to data that will be 

used to update their priors; for example, when eliciting a prior for initial stock size for 

a new stock assessment model, experts’ responses might reflect the results of other as-

sessments that have used the same data. However, experts should be made conscious 

of this issue and asked to try to exclude interpretations of data that will be used in the 

likelihood function from their judgments to the extent possible. 

Motivational bias 

Motivational biases include impartiality and groupthink, as well as misinterpretation 

(inadequate translation of knowledge into response), wishful thinking (expert’s hopes 

influence their judgments), and impression management (response in a way that will 

be perceived as politically correct) (Booker and McNamara, 2004). An asymmetrical 

incentive structure can also lead to biased probability assessments. For example, if ex-

perts are held accountable when an undesirable event occurs, but otherwise face no 

consequences, their assessment of the probability of that event occurring may be biased 

high (Burgman, 2005). In order to minimize this type of bias, it is necessary to carefully 

consider the incentive structure for a particular problem. Building a trusting relation-

ship between expert and facilitator may help to reduce some forms of motivational bias 

(Oliver et al., 2012). 

2.4.4 Training of experts 

Some understanding of probability is required for effective elicitation of prior proba-

bility distributions; therefore, experts may require training in this regard. O’Hagan et 

al. (2006) write:  

“Substantive expertise in a specialist area is no guarantee of normative expertise in 

providing coherent probability assessments. Careful thought needs to be given to the 

training in probability and statistics that the expert should receive at the beginning of 

the elicitation exercise”.  

Establishing the extent of experts’ understanding of probability and distributions can 

help to give an idea of the amount of training that may be needed (O’Hagan et al., 2006). 

Training about probability distributions might include highlighting their key features, 

e.g. the fact that values around the mode are judged more likely than those in the tails, 

or that values far out in the tails can be thought of as nearly impossible. The concept 

that the area under the curve in a given region bounded by 𝑥1 and 𝑥2 corresponds to 

the probability of 𝑥1 < 𝑋 < 𝑥2 is also important. The “chips in bins” or “Roulette” 

method of elicitation (Oakley and O’Hagan, 2010) may be a useful tool for experts who 

lack training in probability distributions. This involves giving the expert n ”chips” to 

distribute among m bins, so that the proportion of chips allocated to a particular bin 

corresponds to the expert’s probability of 𝑋 lying in that bin. The Roulette method uses 

a probability format that is equivalent to the frequency format, which may initially be 

more accessible to experts. 

Experts might feel uncomfortable about providing a personal probability (e.g. if they 

believe that the subjectivity of personal probability carries a negative connotation). In 

such cases, familiarization with the idea of probability as a degree of belief – and the 

notion that personal knowledge is inherently subjective, varying from person to person 
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– may be required. Presenting experts with published examples of elicitation that use 

subjective (personal) probabilities may also help legitimize the process in their eyes. 

Experts who are concerned that their opinions may not be “correct” should be re-

minded that the objective of the elicitation is to capture their knowledge in a form that 

expresses neither too much nor too little uncertainty (O’Hagan et al., 2006). 

O’Hagan et al. (2006) go on to suggest that, in addition to covering probability and 

probability distributions, training should give experts an awareness of the most com-

mon biases that arise from the use of heuristics (discussed above) and how to overcome 

them. For example, to counter overconfidence, experts could be encouraged to consider 

alternative models for the processes affecting the variable of interest.  

Another key component of training is practice elicitations in which experts are asked 

to answer questions whose answers are known to the facilitator, but not to the expert. 

Performing several such exercises with feedback to the experts can help experts give 

better-calibrated assessments (i.e. assessments of probability that correspond more 

closely to reality). For example, this process might alert the expert to his/her tendency 

towards overconfidence. An example (eliciting the distance between two towns) can 

be found in O’Hagan (1998). Training questions with feedback and tests in which ex-

perts are asked to judge the same variable in two or more ways are additional methods 

of expert calibration that can help to counter bias (Krueger et al., 2012). 
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3 Methods 

Samu Mäntyniemi, Atso Romakkaniemi, Etienne Rivot, Rebecca Whitlock, 

Henni Pulkkinen, Rainer Froese, Konstantinos Stergiou, Polina Levontin, 

Adrian Leach, Juho Kopra, Charis Apostolidis, John Mumford, and Sakari 

Kuikka 

3.1 Introduction to methods 

Samu Mäntyniemi, Atso Romakkaniemi, Etienne Rivot, and Rebecca Whitlock 

The methodologies to aid in deriving priors must fulfill the criteria of transparency and 

thorough documentation. Guidelines for choosing the exact method to use in a partic-

ular situation can increase consistency and transparency, not only through establishing 

a common understanding for the methodological choices, but also by providing a com-

mon ground for arguing for or against any particular methodological choice. Formal 

methods for prior formulation naturally enhance the consistency and rigorousness of 

the process. 

Section 2 describes various information sources that can be used to formulate priors 

and classifies them into four main categories (primary data, literature, online data-

bases, and experts). As pointed out earlier, online databases typically contain pro-

cessed/analyzed data taken from the literature; thus, this category is clearly a deriva-

tive of the others. In addition, some categories are closely linked (e.g. experts may have 

attained their expertise by collecting and/or analyzing primary data and by assimilat-

ing information in the literature). Consequently, throughout compilation and pro-

cessing of any type of prior information, it is worth keeping in mind that: 

 Categorization is useful mainly for structuring the process and acknowledg-

ing different aspects of it. 

 All the categories are ultimately grounded in observations/data. 

 Data (i.e. observations) also have subjective features, e.g. the choices of what 

type of data is collected, how it is collected, and the criteria for inclusion in a 

database are man-made decisions. 

Depending on the type and quantity of information available, a number of methods 

can be used to formulate priors, ranging from methods based on processed infor-

mation, such as hierarchical meta-analysis (e.g. Sutton and Abrams, 2001; Royle and 

Dorazio, 2008), empirically-based methods (e.g. McAllister et al., 2001), and methods 

to extract and codify expert opinion (e.g. O’Hagan et al., 2006). While specific examples 

of the above approaches can be found, the methodological literature focusing on de-

riving priors is somewhat fragmented and, as such, offers limited support regarding 

selection of the most suitable method from the available options. 

Here, we attempt to build a ”decision tree”, indicating the most appropriate choice(s) 

of information sources and methodology in various situations (Figure 3.1).  
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Figure 3.1. A schematic ”decision tree” aiding in the process of deriving prior information. 

Given that all existing information has its grounding in observations, we propose a 

hierarchy in which sources of prior information are ranked according to their proxim-

ity to the primary observations (i.e. raw data), so that use of raw data is preferred where 

possible. This hierarchy is reflected in the types of methods that might be suitable, e.g. 

hierarchical analysis and meta-analysis approaches are powerful, but typically require 

larger numbers of observations (either primary observations or some derived quanti-

ties) than the other methods. As a next option (after looking for raw data), we advise 

checking the literature. Meta-analyses of results from the literature are widely under-

taken in research, and the Bayesian methods for meta-analysis are reviewed by Sutton 

and Abrams (2001) as well as later in this section. Expert opinion lends itself to being 

used in extremely data-limited situations and can be used even in cases where no ob-

servations (either primary or from the literature) are available. It should be noted that 

elicitation of parameter values is not the only task where experts play an important 

role; they also have expertise in describing the process to be modelled as a whole.  

These information sources and methods are not mutually exclusive, so that some com-

bination may be used in deriving a prior distribution. Information from the literature 

could be used on its own (in the absence of raw data), but it can also be used in con-

junction with raw data. Similarly, expert knowledge could be utilized together with 

other sources of information. For example, prior information from the literature or 

from experts could be used in an analysis of raw data to obtain the prior distribution 

for a further analysis (i.e. a sequential Bayesian approach, Michielsens et al., 2008). 

Whichever method is chosen, it is important to remember that the same data should 

not be used twice. If the plan is to use the data in the analysis for which the prior dis-

tribution is needed, then the same data cannot be used in formulating the prior. This 

should also be considered when using expert opinion. 

We advocate the use of existing knowledge and experience in the formulation of priors 

wherever possible. In case, this is not feasible (bottom-right corner of Figure 3.1); meth-
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ods for deriving non-informative priors (i.e. priors that contain little information rela-

tive to the data) can be found in Jeffreys (1961), Box and Tiao (1973), and Bernardo 

(1979), although they should be applied with care (Punt and Hilborn, 1997). Priors that 

are uniform on some scale are often used as non-informative priors in fish stock assess-

ment. However, owing to sensitivity to the measurement scale used, a uniform prior 

will not necessarily be non-informative for all the quantities of interest in a model. We 

recommend that users take special care when using parameter transformations. For 

instance, it is classical to use the logit() transformation on some parameters that must 

take values in the range [0,1], such as a survival rate, . Using a very flat (large variance) 

normal distribution (or even a uniform distribution over a wide range) on the logit 

scale turns out to be an inappropriate choice as it corresponds to a prior distribution 

on   that gives very high weights to values of   near 0 and 1 and may thus have an 

unwanted impact on the final inference. To avoid such kinds of misspecification, we 

strongly recommend that users always simulate the model based on priors only (i.e. 

with no data) to check whether the priors really correspond to the amount of infor-

mation they want to introduce a priori into the model.   

Assuming that prior information exists and can be used, the next subsections specify 

the contents of the toolbox of methods presented in the above ”selection tree” and pro-

vide examples of each method. Meta-analysis is an established term to be used when 

the results of various studies are combined, i.e. when literature is used as the source of 

information. Hierarchical modelling can be used to analyze both primary data and lit-

erature (thus also databases) and encompasses the Bayesian alternative for the meta-

analysis. We start with a detailed description of hierarchical modelling methods that 

can be applied in a meta-analysis or hierarchical modelling context as defined above. 

Then, we introduce the online toolbox developed in the ECOKNOWS project to ana-

lyze FishBase information. Finally, we provide illustrative examples and discuss meth-

ods for deriving priors using expert knowledge.  

3.2 Hierarchical modelling 

Henni Pulkkinen, Etienne Rivot, and Rebecca Whitlock 

In population modelling, the data available from the stock of interest are very valuable. 

Those data are thus usually reserved for model fitting (i.e. for use in observation mod-

els). In a full Bayesian analysis, external sources of information can be used to derive 

informative prior distributions for model parameters.  

Let us denote 𝜃 the vector of parameters of interest and 𝑦 the data available to estimate 

𝜃. In a Bayesian analysis, the prior distribution 𝑝(𝜃) synthesizes the knowledge about 

the value of 𝜃 before seeing the data, and the prior is updated by the data into the 

posterior distribution 𝑝(𝜃|𝑦). In its simplified unnormalized form (see Gelman et al., 

2004 for more details), the posterior distribution is defined as the product of the prior 

and the likelihood, which is the sampling distribution of the data in the model that 

conveys the information brought by the data: 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝜃) ∙ 𝑝(𝑦|𝜃)       (8) 

The posterior distribution in (8) then synthesizes the a priori knowledge and the infor-

mation brought by the data.  

However, in data-poor situations, the data available for the stock of interest may be 

scarce or even unavailable. In this context, hierarchical modelling approaches are ex-
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tremely useful as they allow learning via synthesis of information from other conspe-

cific or related stocks. Often, data are available from other stocks of the same species 

or from other related species, and these data can be used to build informative prior 

distributions for the stock of interest with hierarchical models. 

Hierarchical Bayesian models (HBM) offer a natural way to model variation at multiple 

levels (e.g. at the population and meta-population levels) and to “borrow strength” 

between and within the different levels of a model. This makes them suitable for many 

applications in statistical ecology; as a result, they have received considerable attention 

in this field (Clark, 2003; Royle and Dorazio, 2008; Kéry and Schaub, 2012; Parent and 

Rivot, 2012). Hierarchical models have been used extensively in fisheries science to im-

prove estimates of stock–recruitment parameters (Myers, 2001; Prévost et al., 2003; 

Michielsens and McAllister, 2004; Su et al., 2005; Hillary et al., 2012; Pulkkinen and 

Mäntyniemi, 2013; Archambault et al., 2014), growth parameters (Jiao et al., 2009), 

length–weight and length–fecundity relationships (Pulkkinen et al., 2011), selectivity 

curves (Harley and Myers, 2001), and catchability (McAllister et al., 2004; Robert et al., 

2010).  

Figure 3.2 illustrates the basics concepts of hierarchical models. Let us suppose that 

data are available for 𝑖= 1,…,𝑘 units, and define 𝑦𝑖  as the set of available data for unit 

𝑖 that can be used to estimate some parameters 𝜃𝑖 defined for each unit 𝑖. The 𝑘 units 

can represent different sites, populations, or individuals. For example, in a typical fish-

eries problem, the k units might be different stocks of the same species for which we 

wish to estimate stock-specific stock–recruitment parameters 𝜃𝑖 from the available data 

𝑦𝑖 .  

Hierarchical models seek to build a statistical model for all units 𝑖= 1,…,𝑘 by making 

an explicit hypothesis about the between-unit variability of the parameters 𝜃𝑖. It is often 

assumed that the𝜃𝑖 are drawn a priori from a common probability distribution that 

depends on common parameters 𝜙 (often referred to as hyperparameters that are also 

assigned prior distributions, which are sometimes referred to as hyperpriors) and pos-

sibly on some covariates 𝑥𝑖 specific to each unit (e.g. time, environmental covariates). 

The hierarchical structure sets the dependency between the units i by expressing both 

similarity and heterogeneity among the 𝜃𝑖. The hyperparameters 𝜙 most often define 

the mean and variance of the prior distribution of the 𝜃𝑖 parameters 𝜙 = (𝜇𝜃,𝜎𝜃). A 

small variance will express a closer resemblance between groups. The prior distribu-

tion on the common hyperparameters 𝜙 will be updated by the observations on all 

units i = 1,…,k. This updating of the hyperparameters has two main advantages:  

 First, it allows transfer of information between the different units (the con-

cept of borrowing strength from data-rich to data-poor units; McAllister et 

al., 2004; Punt et al., 2011; Parent and Rivot, 2012) that can improve the es-

timates of 𝜃𝑖 for data-poor units.  

 Second, it provides a structure for proposing an informative prior distribu-

tion for parameters 𝜃𝑛𝑒𝑤 for a new unit for which no data are available, but 

that can be considered as belonging to the same family (e.g. stock–recruit-

ment parameters for a new stock). This is accomplished through the poste-

rior predictive distribution 𝑃(𝜃𝑛𝑒𝑤|𝑦1:𝑘), where 𝑦1:𝑘 denotes the observa-

tions on all units I = 1,…,k.  The posterior predictive distribution is a natural 

product of a hierarchical model. This is the distribution of a new 𝜃 that 

would be drawn in the same population as (𝜃1, … , 𝜃𝑘) and then synthesizes 

the information brought by the data from all units. As detailed below, the 
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posterior predictive distribution depends on the structure of the hierar-

chical model. In the following text, these concepts are illustrated using ex-

amples of varying complexity. 

3.2.1 Exchangeable hierarchical models  

When applying a hierarchical model, exchangeability is often assumed for the set of 

parameters 𝜃1:𝑘. This means that the parameters 𝜃𝑖 for each unit i are considered to be 

independently drawn from the same prior distribution conditioned by common hy-

perparameters 𝜙:  

 𝑝(𝜃1:𝑘|𝜙) = ∏ 𝑝(𝜃𝑖|𝜙)
𝑘
𝑖=1        (9) 

Parameters for each unit i are then associated with observation 𝑦𝑖  through a likelihood 

function 𝑝(𝑦𝑖|𝜃𝑖) (Figure 3.2). Therefore, the observation model for unit i depends only 

on 𝜃𝑖, but the hyperparameter 𝜙 (on which a (hyper)prior 𝑝(𝜙) is set) links all the units. 

Exchangeability implies that there is no prior knowledge of any feature that would 

account for differences between the parameters of the different units i = 1,..,k. Ex-

changeability can be considered as something intermediate between having identical 

parameters in all the units and total independence between the unit-specific parame-

ters – parameters for different units have something in common even though they dif-

fer from each other. Looking at equation (9), this implies that all permutations of the 

unit indices i will leave the joint prior distribution 𝑝(𝜃1:𝑘|𝜙) unchanged.  

Exchangeable hierarchical models constitute a consistent framework for prediction 

(Figure 3.2). Inference about the parameter for a new unit, denoted as𝜃𝑛𝑒𝑤, can be de-

rived through the posterior predictive distribution conditioned by data from all units 

𝑦1:𝑘. This is an integration (an average) of the distribution 𝑝(𝜃𝑛𝑒𝑤|𝜙) over the posterior 

distribution of the hyperparameters 𝜙, 𝑝(𝜙|𝑦1:𝑘): 

 𝑝(𝜃𝑛𝑒𝑤|𝑦1:𝑘) = ∫ 𝑝(𝜃𝑛𝑒𝑤|𝜙)
𝜙

∙ 𝑝(𝜙|𝑦1:𝑘) ∙ 𝑑𝜙    (10) 

The posterior predictive distribution in equation (10) is a natural product of a hierar-

chical Bayesian model. The posterior distribution of the hyperparameters𝑝(𝜙|𝑦1:𝑘) re-

sults from updating the prior set on the hyperparameters 𝑝(𝜙). For example, if the hy-

perparameters 𝜙 define the mean and variance of the prior distribution of the 𝜃𝑖 pa-

rameters, e.g. 𝜙 = (𝜇𝜃,𝜎𝜃) as denoted above, the data available for all units 𝑦1:𝑘 will be 

used to learn about the mean 𝜇𝜃 and variance 𝜎𝜃 . The posterior predictive distribution 

in equation (9) then combines the distribution of a new 𝜃 with respect to the variability 

of the 𝜃 between units as defined in the model [𝑝(𝜃𝑛𝑒𝑤|𝜙)] with what has been learned 

from all available data about the parameters that control this variability between units 

[𝑝(𝜙|𝑦1:𝑘)].  

Inference in hierarchical models can be thought of as a flow of information (Figure 3.2). 

First, information from the observed quantities 𝑦1;𝑘 flows to the hyperparameters 𝜙 

updating them; the information then continues its journey from the hyperparameters 

𝜙 to the posterior predictive distribution of 𝜃𝑛𝑒𝑤. The latter distribution can be used as 

an informative prior distribution for 𝜃𝑛𝑒𝑤 for a new unit for which no data are availa-

ble, but that can be considered to belong to the same family. 
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Figure 3.2. Directed acyclic graph for an archetypal exchangeable hierarchical model. Each unit i = 

1,…,k has its own parameter 𝜽𝒊 and observations 𝒚𝒊. The parameters 𝜽𝒊 are supposed to be inde-

pendently drawn from the same prior distribution conditioned by hyperparameters 𝝓 (exchangea-

bility). This provides a structure for proposing an informative prior distribution for 𝜽𝒏𝒆𝒘for a new 

unit for which no data are available, but that can be considered to belong to the same family. The 

green shaded arrows indicate the flow of information.  

In order to examine the exchangeability of units in a hierarchical model, Michielsens 

and McAllister (2004) suggest running the model excluding one dataset at a time. If a 

parameter is exchangeable, the exclusion of any one dataset should not substantially 

alter its posterior predictive distribution (Michielsens and McAllister, 2004). In other 

terms, let us define 𝑦−𝑖  the dataset obtained from 𝑦1:𝑘 by excluding the data of unit 𝑖. 

If parameter 𝜃  is exchangeable with regard to the population of parameters 𝜃1:𝑘, the 

posterior predictive distribution of a new 𝜃 obtained with the altered data set 𝑦−𝑖 , that 

is 𝑝(𝜃𝑛𝑒𝑤|𝑦−𝑖), should not vary much when i varies in 1,…,k.  

Example 3.2.1: Estimating predictive distribution for the slope of the stock–recruitment rela-

tionship of Atlantic herring 

Let us suppose we are interested in obtaining an informative prior distribution for the 

slope at the origin parameter of the Beverton–Holt stock–recruit (SR) relationship for a 

herring (Clupea harengus) stock. Further suppose that data are available from i = 1,…,7 

stocks other than the stock of interest and that the data for those stocks are desired to 

be used to form an informative prior distribution for the analysis of the stock of inter-

est. In this example, a model is provided to analyze those data and to estimate a poste-

rior predictive distribution for the slope at the origin parameter. This example is similar 

to the one in Pulkkinen and Mäntyniemi (2013), except that the hierarchical model con-

tains only the Beverton–Holt SR function. BUGS/JAGS code for the example can be 

found in Annex 1. 

Based on the Beverton–Holt SR function, the expected number of recruits from stock 𝑖 

in year 𝑡, 𝜇𝑖,𝑡, depends on the maximum production 𝐾𝑖, slope at the origin 𝛼𝑖, and the 

egg production 𝐸𝑖,𝑡 of the corresponding spawning cohort: 

 𝜇𝑖,𝑡 =
𝐾𝑖𝐸𝑖,𝑡
𝐾𝑖
𝛼𝑖
+𝐸𝑖,𝑡

         (11) 

As the spawning–stock size is considered in terms of the number of eggs, the slope at 

the origin can be interpreted as the maximum survival of eggs to recruits, taking values 

in the interval [0,1]. By using a logit() transformation for 𝛼𝑖, the resulting logit-trans-

formed parameter can take any positive or negative value, so a normal prior distribu-
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tion seems like an appropriate choice for the logit-transformed parameter. An unin-

formative prior distribution can be used for the hyperparameters 𝜇𝛼and 𝜎𝛼 that de-

scribe the mean and variation of the logit-transformed slope parameter among differ-

ent stocks: 

𝑙𝑜𝑔𝑖𝑡(𝛼𝑖) = 𝐴𝑖 (12) 

𝐴𝑖~𝑁(𝜇𝛼 , 𝜎𝛼) 

𝜇𝛼~𝑁(−1,1000) 

𝜎𝛼~𝑙𝑜𝑔𝑁(−2,20). 

The posterior predictive distribution for a new herring stock (𝛼𝑛𝑒𝑤) that could be used 

as an informative prior in further analyses can then be simply obtained as: 

𝑙𝑜𝑔𝑖𝑡(𝛼𝑛𝑒𝑤) = 𝐴𝑛𝑒𝑤  (13) 

𝐴𝑛𝑒𝑤~𝑁(𝜇𝛼 , 𝜎𝛼),

where the hyperparameters (𝜇𝛼 , 𝜎𝛼)are integrated out using their posterior distribu-

tion after observing the available data for the seven herring stocks; this is similar to 

how the hyperparameters 𝜙were integrated out in equation (10). Figure 3.3 illustrates 

the estimated slope at the origin parameters for the seven herring stocks from which 

data are available and the posterior predictive distribution for a new stock of herring. 

Figure 3.3. An uninformative prior (red dashed) and posterior distributions (solid lines) for the 

stock-specific slope at the origin for seven stocks, with a predictive distribution for a new herring 

stock (black dashed). 
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3.2.2 Choice of prior on hyperparameters 

Inferences derived from a hierarchical model are generally robust to the choice of prior 

distributions on the hyperparameters 𝜙.  

Inferences derived from models that consider independent statistical units can be sen-

sitive to the choice of priors, particularly for units associated with weakly informative 

data. Thanks to their ability to share information between units, HBMs limit these un-

desirable effects. In the HBM framework, individual posterior distributions of the pa-

rameters for each unit are obtained by combining the likelihood with a modified prior 

that is constructed by combining information from all other units in a consistent man-

ner (see e.g. Rivot and Prévost, 2002). Inferences about the unit-specific parameters 𝜃𝑖 

can be significantly improved in terms of both precision and robustness by comparison 

with inferences derived from a model where all specific parameters are considered in-

dependent.  

A common approach consists of using weakly informative priors for the hyperparam-

eters 𝜙. However, it is strongly recommended that the predictive prior distribution of 

the unit-specific set of parameters (𝜃) = ∫ 𝑝(𝜃|𝜙)
𝜙

∙ 𝑝(𝜙) ∙ 𝑑𝜙 constructed from the 

combination of the hierarchical structure 𝑝(𝜃|𝜙) and the prior on hyperparameters 

𝑝(𝜙), should always be evaluated. In particular, one must avoid an inappropriate 

choice of priors on 𝜙 that would strongly limit a priori the between-unit variance of the 

parameters 𝜃 because such a prior may result in a very strong and possibly undesirable 

shrinkage effect among units. 

3.2.3 Using covariates in partially exchangeable models  

Exchangeable hierarchical models make the strong assumption that the unit-specific 

parameters 𝜃𝑖 can be considered a priori as independent random draws from a common 

probability distribution 𝑝(𝜃|𝜙). This assumes that there is no a priori knowledge of any 

feature that would explain the differences among units i = 1,..,k.  

In many cases, however, some covariates 𝑥𝑖 (typically environmental covariates) are 

known a priori for each unit i and can be utilized to explain some of the differences 

between the 𝜃𝑖. Then, a partially exchangeable model can be constructed which as-

sumes the 𝜃𝑖 are a priori independently drawn from a prior distribution conditioned by 

hyperparameters 𝜙 and unit-specific covariates 𝑥𝑖. A typical case is when the expected 

mean of the 𝜃𝑖s is not constant (as in an exchangeable hierarchical model), but can be 

thought of as a parametric function of 𝑥𝑖 (e.g. 𝜇𝜃𝑖 = 𝜈𝜃 + 𝜆𝜃 ∙ 𝑥𝑖).  

Such partially exchangeable models also provide a consistent framework for deriving 

an informative prior for 𝜃𝑛𝑒𝑤 based on the posterior predictive distribution (as in the 

exchangeable case), provided that the covariate 𝑥𝑛𝑒𝑤 is available for the new unit. The 

posterior predictive of 𝜃𝑛𝑒𝑤 is, therefore: 

 𝑝(𝜃𝑛𝑒𝑤|𝑦1:𝑘, 𝑥1:𝑘 , 𝑥
𝑛𝑒𝑤) = ∫ 𝑝(𝜃𝑛𝑒𝑤|𝜙, 𝑥𝑛𝑒𝑤)

𝜙
∙ 𝑝(𝜙|𝑦1:𝑘 , 𝑥1:𝑘) ∙ 𝑑  (14) 

 

Example 3.2.2: Estimating predictive distributions for Atlantic salmon management refer-

ence points  

This example develops a hierarchical stock–recruitment model for Atlantic salmon 

(Salmo salar) stocks using a more sophisticated hierarchical structure than the ex-
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changeability example in Section 3.2.1. In the following example, the hierarchical prob-

abilistic structure employed to capture the variability among stocks is designed condi-

tionally on some covariates, namely the latitude of the river associated with each stock. 

The example is directly drawn from Chapter 9 of Parent and Rivot (2012) and is in-

spired by the data and model originally published by Prévost et al. (2003).  

The model uses available stock–recruitment series for 13 monitored rivers throughout 

the European range of the species. This sample of rivers covers a broad area including 

Spain, France, UK, Ireland, Norway, the west coast of Sweden, and the southwest coast 

of Iceland.  

SR relationships are used to estimate reference points for the management of salmon 

populations, such as the spawning target 𝑆∗, a biological reference point for the number 

of spawners necessary to guarantee a sustainable exploitation rate, and the maximum 

sustainable exploitation rate ℎ∗. Here, the hierarchical model is used as a tool to forecast 

biological reference points for a new river without any SR data, but for which relevant 

covariates (latitude) are available.  

Let us denote the indices for the 13 rivers as i = 1,...,13. Within a river i, recruitment is 

modeled by a Ricker function with independent log-normal process errors. We use the 

reformulation of the Ricker model with management parameters (𝑆∗, ℎ∗), as defined in 

Schnute and Kronlund (1996): 

 log(𝑅𝑖,𝑡)~𝑁(𝜇𝑅𝑖,𝑡 , 𝜎
2) 𝜇𝑅𝑖,𝑡 = ℎ𝑖

∗ + 𝑙𝑜𝑔 (
𝑆𝑖,𝑡

1−ℎ𝑖
∗) −

ℎ𝑖
∗

𝑆𝑖
∗ ∙ 𝑆𝑖,𝑡  (15) 

The prior distribution on the parameters 𝑆𝑖
∗ and ℎ𝑖

∗ explicitly incorporates the latitudi-

nal gradient, as shown next.  

For 𝑆𝑖
∗, the latitudinal gradient can be incorporated by writing a log-linear relationship 

between the prior expectation of 𝑆𝑖
∗ and the latitude of river i denoted 𝑥𝑖. As no infor-

mation is available on the slope 𝛼 and intercept 𝛽 of the linear regression on the log 

scale (those are hyperparameters as defined above), they are given flat priors: 

 log(𝜇𝑆𝑖
∗) = 𝛼 ∙ 𝑥𝑖 + 𝛽        (16) 

𝛼~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−5,5) 

𝛽~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−50,50) 

Given the prior mean 𝜇𝑆𝑖
∗ and coefficient of variation 𝐶𝑉𝑆∗, the parameter 𝑆𝑖

∗ is drawn a 

priori from a gamma distribution with parameters 𝑎𝑖 and 𝑏𝑖 defined as follows: 

 𝐶𝑉𝑆∗~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,20)       (17) 

𝑎𝑖 =
1

𝐶𝑉𝑆∗²
 

𝑏𝑖 =
1

𝜇𝑆𝑖
∗ ∙ 𝐶𝑉𝑆∗²

 

𝑆𝑖
∗~𝑔𝑎𝑚𝑚𝑎(𝑎𝑖 , 𝑏𝑖) 

Because ℎ𝑖
∗ varies between 0 and 1, the logit() transform of ℎ is used to model the gra-

dient with increasing latitude as a linear regression on 𝜇ℎ∗ on the logit scale:  

 𝜇ℎ𝑖
∗ = 𝛿 ∙ 𝑥𝑖 + 𝜅        (18) 

𝛿~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−5,5) 

𝜅~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−50,50) 
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Given the prior mean 𝜇ℎ𝑖
∗, a river-specific contribution is modeled as a normal distri-

bution with precision  𝜏ℎ∗ (variance 1 𝜏ℎ∗⁄ ) that expresses the residual degree of simi-

larity between rivers as soon as the latitudinal gradient is accounted for: 

 𝑙𝑜𝑔𝑖𝑡(ℎ𝑖
∗)~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇ℎ∗ , 1 𝜏ℎ∗⁄ )      (19) 

𝜏ℎ∗~𝑔𝑎𝑚𝑚𝑎(0.001,0.001) 

Figure 3.4 shows that the posterior probability 𝑝(𝛼 < 0|𝑦1:𝑘) is null, while 

𝑝(𝛿 < 0|𝑦1:𝑘) = 0.05, which indicates that the covariate latitude offers a good statistical 

explanation of variation between rivers in both ℎ∗ and 𝑆∗. 

Figure 3.5 shows the posterior distribution of parameters (𝑆∗, ℎ∗) for the 13 rivers and 

the posterior predictive distributions, which represent our uncertainty/knowledge 

without SR observations. The marginal posterior predictive distributions of ℎ∗𝑛𝑒𝑤 and 

𝑆∗𝑛𝑒𝑤at various latitudes covering the salmon range in the Northeast Atlantic area (46, 

52, 59, and 63°N) are shown. They indicate that, when moving north, salmon stocks 

can sustain higher exploitation rates ℎ∗, but at the same time, higher conservation limits 

𝑆∗ should be set. These posterior predictive distributions could be used as informative 

priors for any river for which the latitude is known.  

Even if the case study is different, it is useful to point out the similarities with the her-

ring example in Figure 3.3, where the hierarchical structure is considered exchangea-

ble; the informative prior distribution of a SR parameter for a new herring stock will 

not depend on any covariates. In the salmon example in Figure 3.5, knowing the lati-

tude of the river will greatly improve the prediction of the associated salmon stock.  

 

 

Figure 3.4. Marginal posterior probability shapes of the parameters (𝜶, 𝜷), (𝜹, 𝜿), from the hierar-

chical model (source: Parent and Rivot, 2012, Chapter 9). 
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Figure 3.5. Marginal posterior distributions of 𝐥𝐨𝐠(𝑺∗) and 𝒉∗ for the 13 rivers obtained under the 

hierarchical model with latitude as a covariate (light grey). The posterior pdfs are graphed as a 

function of latitude. The thin lines are the regression in equations (16) and (18) with parameters 

(𝜶,𝜷) and (𝜹, 𝜿) set to their posterior medians. Boxplots in dark grey are the posterior predictive for 

𝐥𝐨𝐠(𝑺∗𝒏𝒆𝒘) and 𝒉∗𝒏𝒆𝒘obtained with latitudes 46, 52, 59, and 63°N (source: Parent and Rivot, 2012, 

Chapter 9). 

3.2.4 Modelling correlation between biological parameters 

A sufficient amount of data to derive informative prior distributions is not always 

available from the stock of interest or conspecific stocks. In such situations, it may be 

useful to consider data from other stocks of the same species and/or related species to 

reduce our uncertainty. In the case of life history parameters (growth, length–weight, 

etc.), correlations between parameters might be expected a priori e.g. because of life 

history characteristics and trade-offs. Explicitly modelling these correlations in a hier-

archical model can allow more effective use of the available information or more 

knowledge with the same data (Pulkkinen et al., 2011). In Pulkkinen et al. (2011), corre-

lations between length–weight and length–fecundity relationships were utilized to es-

timate posterior predictive distributions for the length–weight and length–fecundity 

parameters of a data-poor stock of round sardinella (Sardinella aurita). Information 

about the correlations between parameters was drawn from relatively data-rich Atlan-

tic herring and European pilchard (Sardina pilchardus) stocks. Figure 3.6 illustrates how 

uncertainty is reduced for the mean parameters of length–weight (𝜇𝑎𝑤 , 𝜇𝑏𝑤) and 

length–fecundity relationships (𝜇𝑎𝑓 , 𝜇𝑏𝑓) when information about correlations is uti-

lized.  
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Figure 3.6. Posterior distributions for mean parameters of length–weight (𝝁𝒂𝒘 , 𝝁𝒃𝒘) and length–fe-

cundity relationships (𝝁𝒂𝒇 , 𝝁𝒃𝒇) for Atlantic herring, European pilchard, and round sardinella spe-

cies. Bold lines illustrate the posterior distribution from a model with correlation; thin lines show 

the corresponding distribution from a model without correlations. Dotted lines illustrate prior dis-

tributions, those being the same in both models. 

Utilization of correlations is based on a computationally convenient assumption that 

the biological parameters follow a common multivariate normal distribution. If the pa-

rameters of interest cannot take negative values, a multivariate normal distribution 

should be assumed instead for the log-transformed parameters.  

Thus, observed values for stock-specific biological parameters are considered to follow 

a common multivariate normal distribution: 

 𝜃𝑘~𝑀𝑉𝑁(𝜇𝑘 , Σ)        (20) 

where 𝜃𝑘 is the vector of biological parameters for stock k and vector 𝜇𝑘 contains spe-

cies-specific means for all parameters. If 𝜇𝑘 are considered exchangeable among spe-

cies, a hierarchical prior distribution can be given for the expected values of the biolog-

ical parameters. Information from other species (except the ones included in the dataset 

of the current analysis) can be utilized when setting up the hyperpriors for 𝜇𝑘s. 

As in Pulkkinen et al. (2011), an inverse-Wishart distribution can be used as a prior 

distribution for the variance-covariance matrix 

 Σ−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(Ω, 𝑑)       (21) 
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where Ω is a positive definite-scale matrix and 𝑑 is the degrees of freedom parameter.   

Even though an inverse-Wishart distribution is a computationally convenient choice to 

ensure positive definiteness of the variance–covariance matrix, its usage can be prob-

lematic. For example, the inverse-Wishart distribution does not allow prior distribu-

tions to be set up separately for the marginal variances and covariances of different 

biological parameters (this is desirable as information about the plausible values of 

these parameters often exists). There are, however, alternative options for parameter-

izing the variance–covariance matrix, many of which utilize Cholesky decomposition. 

More information can be found, for example, from Pinheiro and Bates (1996) or Lu and 

Ades (2009). 

3.3 Getting priors from FishBase 

Rainer Froese and Konstantinos Stergiou 

Stock assessment, especially for data-limited stocks, depends on information derived 

from the literature (Section 2.2) as well as from literature compilers (i.e. databases) such 

as FishBase (Section 2.3). This section explains how to obtain priors for length–weight, 

growth, and mortality from FishBase. Given that only part of the existing literature is 

incorporated into databases (Section 2.2), it will always be useful to undertake a review 

of all available literature on the target stocks and, after incorporating it into FishBase 

(or SeaLifeBase), to proceed with obtaining priors from FishBase. One important issue 

to consider here is the credibility of existing data. The quality of the data can be exam-

ined, for example, by checking and evaluating the sample size and frequency, the sam-

pling gear used for collecting the data, the representativeness of lengths sampled, and 

the method used for estimation, depending on the parameter of concern (e.g. Froese et 

al., 2011; Tsikliras et al., 2013). 

3.3.1.1 Length–weight  

Froese et al. (2014) present a six-step procedure describing how related information can 

be summarized in a hierarchical Bayesian process for establishing priors for the Bayes-

ian analysis of new length–weight data. The length–weight equation has the form:

          

 𝑊 = 𝑎𝐿𝑏        (22) 

where W and L are variables representing body weight and length, respectively, and a 

and b are parameters. A Bayesian estimation of these two parameters may proceed in 

the following six steps:  

1) Textbook knowledge is translated into broad overall priors. Exponent b is 

known to be normally distributed around 3, with a typical range of 2.5–3.5. 

This is translated into a prior distribution with mean = 3.0 and s.d. = 0.5. Pa-

rameter a is known to be log-normally distributed, ranging from a = 0.001 in 

eel-like fish to a = 0.1 in spherical fish, if length is in cm and weight is in g. This 

general information is translated into an overall prior log-normal distribution 

with mean log10(a) = –2 and s.d. = 1.  

2) These overall prior distributions are updated with the parameters from over 

5000 length–weight relations (LWR) studies compiled in FishBase.  

3) The posterior across-all-species distributions from step 2 are updated for dif-

ferent typical body shape groups of fish, such as eel-like, elongated, fusiform, 

and short and deep. The posterior distributions obtained from this exercise can 
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be used directly as preliminary LWR parameters for species for which the body 

shape is known, but no LWR exists.  

4) Existing LWR estimates for a given species are combined with the respective 

body-shape priors to get posterior distributions for this species.  

5) This step is like the fourth step, but applies to species with fewer than five 

specific LWR estimates. In this case, the body-shape priors are updated with 

the few LWR studies for the species plus LWR studies from closely related 

species, such as congeners or family members.  

6) The appropriate posterior distributions from steps 3–5 are used to inform the 

analysis of new length–weight data. 

Steps 1–5 are implemented in FishBase and are re-run whenever new LWR data are 

entered. Users can see the respective posterior distributions in the species summary 

page in the section “Estimates of some properties based on models”. An example for 

Atlantic herring is shown in Figure 3.7.   

Figure 2.7. Example of posterior distribution of length–weight parameters a and b for herring (Clu-

pea harengus).  

Alternatively, FishBase allows the user to select and prioritize existing length–weight 

studies and perform a new online Bayesian analysis according to the steps outlined 

above. These Bayesian tools are available from the footer of the length–weight table in 

FishBase. 

3.3.1.2 Growth parameters 

A publication and an online web tool in FishBase similar to the one for length–weight 

relationships are in preparation for growth (R. Froese, pers. comm.). The von Ber-

talanffy growth equation for body length is: 

 𝐿𝑡 = 𝐿∞(1 − 𝑒−𝐾(𝑡−𝑡0))        (23) 

where Lt is the body length at age t, L∞ is a parameter representing asymptotic length, 

K is a parameter describing the exponential decay of the difference between Lt and L∞, 

and t0 is a parameter accounting for the fact that fish at birth already have a body 

length. 

A four-step process is used to derive and update priors for the parameters L∞ and K: 
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1) General knowledge about the growth of fish is used to obtain a first crude prior 

for L∞ as being equal to the known maximum length for the species in question, 

with mean L∞/Lmax = 1 and s.d. = 0.5. L∞ and K are known to be negatively cor-

related, i.e. populations with high L∞ have low K, and vice versa. 

 

 Based on the growth parameters in Pauly (1978), the largest compilation of its 

kind covering 1501 ”stocks” for 515 fish species, Pauly (1979) concluded that 

the values of log10(K) vs. log10(L∞) cluster in ellipsoid patterns, whose major 

axes had a mean slope of –2 . Thus, he suggested that a preliminary estimate 

of K could be obtained for an unstudied stock for which an estimate of L∞ was 

available (see above) together with the growth parameters of another stock of 

the same species, by assuming that Φ’ is a species-specific constant defined as 

Φ’ = log10(K) + 2 log10(L∞) (Pauly, 1979), where Φ’ is the intercept in a linear 

regression of log10(K) over log10(L∞) with a fixed slope of –2. When several sets 

of growth parameters for a given species are available, a mean value of Φ’ can 

be calculated and used to infer K from L∞ for an unstudied stock, along with 

its range of uncertainty.  

 

2) A Bayesian multiple regression is performed with log(K) as a function of log(L

∞), environmental temperature, and habitat use, with the priors from step 1. 

This results in narrower distributions for K for species within a certain climate 

zone and habitat. 

 

3) The priors from step 2 are updated with growth studies for the species in ques-

tion.  

 

4) As with the length–weight relationship, the posterior parameter distributions 

from this hierarchical analysis will be made available in FishBase in the species 

summary page in the section “Estimates of some properties based on models” 

(R. Froese, pers. comm.). Meanwhile for species with many available growth 

studies, users can perform a Bayesian analysis estimating mean values of 

log(K), log(L∞), and the slope of the covariance between log(K) and log(L∞) 

with the priors derived in step 1. The posterior distributions can then be used 

as priors in the analysis of new length-at-age data. 

3.3.1.3 Natural mortality 

Reasonable estimates of M of adults are rare, and stock assessments have often relied 

on empirical equations. In FishBase, estimates of M are presented as part of the Growth 

Table. When opening a respective growth record, the method used for estimating M is 

clearly indicated, as well as an assessment by FishBase staff whether the estimate was 

considered doubtful, together with a short comment. The reference from which the 

mortality estimate was taken is indicated. Clearly, given the importance of M in stock 

assessments, the user should carefully consider all available information about every 

published M estimate before accepting it for the analysis. Gislason et al. (2010) has pub-

lished a set of useful criteria for that purpose. For the purpose of deriving a preliminary 

prior distribution for M, taking the median of published estimates with a CV of ±0.5 

seems a reasonable option. If no or few published estimates are available for the species 

under consideration, M estimates from close relatives with similar maximum length 

and from the same climate zone may be included in the median. In addition, the em-

pirical equations by Pauly (1980), Hoenig (1983), and Gislason et al. (2010) can be used 

to introduce information from life history traits such as growth and maximum age that 
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are highly correlated with M. The geometric mean and s.d. across all these estimates 

may then serve as a useful prior summarizing the existing information on M.    

3.4 Eliciting expert opinion  

Rebecca Whitlock, Polina Levontin, Adrian Leach, Juho Kopra, Charis Apos-

tolidis, and John Mumford 

3.4.1 Introduction 

“Elicitation” refers to a set of methods designed to capture an expert’s knowledge and 

uncertainty about some unknown parameter(s) or process. Representation of expert 

judgments of uncertainty as probability distributions (following a Bayesian interpreta-

tion of probability as a degree of belief) has been advocated as the most appropriate 

way to capture expert knowledge (O’Hagan, 1998). This is also the form needed for 

prior distributions in Bayesian analyses. The Bayesian approach is thus naturally 

suited to the incorporation of expert judgments about parameters of interest or hypoth-

eses about model structure (O’Hagan et al., 2006; Kuhnert et al., 2010).  

Although expert elicitation methods are most commonly used to learn about model 

parameters, expert opinion enters the modelling process (albeit informally) at a num-

ber of stages, including problem definition and model development; this applies to 

Bayesian and non-Bayesian approaches. Expert opinion plays a fundamental role in 

the construction of models, in the assumptions that underlie model structure, and the 

choice between multiple ways to represent a particular process, given those assump-

tions. As a result, the model itself can be thought of as a prior (i.e. one hypothesis of 

many alternatives about model structure). Structural uncertainty may be of key im-

portance in ecological problems; explicit recognition and documentation of the role of 

expert judgement in informing model structure, selection of the set of candidate mod-

els, and quantification of prior model probabilities has been recommended (Krueger et 

al., 2012). 

In this chapter, we discuss the practical aspects of eliciting expert opinion, providing 

examples from the ECOKNOWS project in which expert knowledge was elicited about 

model parameters and model structure. Problem definition and structuring are dealt 

with first, followed by elicitation techniques and examples, and finally how to combine 

information from multiple experts. 

3.4.2  The elicitation process 

3.4.2.1 Defining and structuring the problem 

 In order to elicit the desired information from experts, it is important that all experts 

involved share a common understanding of the quantity to be elicited. O’Hagan (1998) 

recommends that the elicitor should “ask about quantities that the experts understand 

best, and in language that is as simple and familiar as possible”. Getting the question 

right is one of the most difficult parts of elicitation (Kuhnert et al., 2010). Linguistic 

uncertainty (uncertainty that arises because words have imprecise or unclear mean-

ings) can contribute significantly to the uncertainty associated with expert opinion 

and/or lead to unwanted biases in results (Kuhnert et al., 2010). 

For complex problems, the requirement for conceptual clarity may suggest some struc-

turing so that the problem can be presented in terms of quantities with which experts 

feel most comfortable (and that are thus easier to elicit). Structuring (or elaboration) is 

also a valuable method for multivariate elicitation (O’Hagan, 1998). In principle, a full 
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joint probability distribution is needed for two or more uncertain quantities. However, 

this can be difficult to elicit in practice, so restructuring to reformulate the problem in 

terms of independent quantities is common (note that in this context, independence 

means that learning about one of the quantities would not alter the expert’s judgment 

about the other) (O’Hagan, 1998).  

In the context of fish stock assessment, we may wish to learn about complex parameters 

that subsume several different processes and/or attributes, e.g. catchability of a fishing 

gear, or potential productivity of a particular habitat. An example of structuring can be 

found in Uusitalo et al. (2005), who structured elicitation of smolt production capacity 

for salmon rivers in the Baltic Sea into eight subquestions relating to the physical and 

biological attributes of rivers and the likely response of juvenile salmon to those attrib-

utes. They suggested that structuring can isolate parts of the problem that are most 

uncertain and/or controversial. Identification and separate elicitation of the main 

sources of uncertainty that contribute to overall uncertainty has also been recom-

mended to reduce overconfidence (see Section 2.4.3) (O’Hagan, 1998). This is based on 

the idea that separate consideration of possible sources of uncertainty will lead the ex-

pert to admit more reasons why extreme values might arise, and a correspondingly 

greater uncertainty about the elicited quantity. Finally, highlighting subcomponents of 

a problem for experts can help them see the overall picture, as well as the individual 

parts. 

3.4.2.2 Elicitation techniques 

Methods for eliciting expert opinion include interviews, workshops, and question-

naires, all designed to ensure that experts give consistent responses (McBride and 

Burgman, 2012). Elicitation by face-to-face interview with the expert involves a sub-

stantial investment of human resources, but may be more cost-effective than a ques-

tionnaire in the case of a single expert (O’Hagan et al., 2006) and can increase the ex-

pert’s motivation and sense of responsibility (Knol et al., 2010). Remote elicitation meth-

ods (e.g. questionnaires) are often lower in cost than face-to-face interviews, but this 

may be countered by low response rates and potential bias as a result (Page et al., 2012). 

Overall, in-person interviews are preferred for the reasons above and because they 

provide more opportunities for feedback and interaction than questionnaires or tele-

phone interviews. An emphasis for making the reasoning behind expert judgments 

transparent and ensuring that judgments are given on the basis of all relevant infor-

mation is common to all methods (Spiegelhalter et al., 2011). 

Elicitation of expert opinion with individuals allows for more interaction between fa-

cilitator and expert. Benefits of this include a greater opportunity for explanation to 

ensure the expert properly understands the subject of elicitation, the possibility for 

more targeted questioning, and the chance for more detailed feedback (Knol et al., 

2010). The possibility of the elicitation being influenced by the ideas of the facilitator 

could be greater in interactions with a single expert than with a group (Ayyub, 2001). 

Group elicitation (or behavioural aggregation) methods allow some interactions be-

tween a group of experts, with the aim of forming a consensus, so that a single distri-

bution is elicited from the group. Diverse views can be accommodated in group elici-

tation where the group’s uncertainty may reflect differing opinions by participants 

with different knowledge, experience, or interpretations. Group elicitation techniques 

can involve bringing experts together in one place, e.g. focus groups and consensus-

building workshops with an unbiased facilitator (Nuseibeh and Easterbrook, 2000), or 

involve more controlled interaction (e.g. the Delphi method). In the Delphi method, 

each expert first provides their own judgment, together with a rationale. Each expert’s 
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judgment is then made available to all other experts in the group, who are then given 

the chance to revise their own assessment. This process continues until a consensus is 

reached or the facilitator decides to combine the individual inputs. Some advantages 

and disadvantages of group elicitation are as follows (Janis, 1971; Esser, 1998; Ayyub, 

2001): 

Advantages: 

a) Group discussion allows redundant information to be discounted through 

sharing of information. 

b) Group elicitations can be more efficient when dealing with participants with 

different backgrounds by making disciplinary biases more explicit. 

c) Group elicitation can be seen by participants as more equitable, giving equal 

voice for all participants, especially when the results can be assessed directly 

by the entire group. 

d) Group elicitation allows a more natural interaction between participants than 

formal interview. 

Disadvantages: 

a) Groups may be dominated by one or few individuals, while some individuals 

may be underrepresented. 

b) Disagreement may arise over the structure of the problem, making it difficult 

to proceed with an informative discussion on components of the problem. 

c) Conflicting views might not be resolved during the allotted time, demanding 

further planning and follow-up meetings. 

d) There is potential for group-reinforced bias when members share a common 

background. The tendency towards overconfidence may be greater in groups 

than in individuals. 

As a result of the potential biases arising from group interaction, the role of an impar-

tial facilitator in managing the elicitation and ensuring that all group members have an 

opportunity to contribute is the key to successful elicitation.  

3.4.2.3 What to elicit?  

While the probability distribution that best describes an expert’s views is, in reality, 

comprised of a large (usually infinite) number of probabilities, in practice, a satisfac-

tory representation of the expert’s beliefs can be obtained using a small number of in-

dividual probabilities. Measures of location (such as mean and median) and scale 

(standard deviation, variance) or probabilities (quantiles) represent alternative sum-

maries of expert distributions. Generally, summaries based on probabilities are most 

widely used, owing to potential biases in elicited location and scale parameters (e.g. 

assessments of the mean tend to be biased towards the median for skewed distributions 

(Peterson and Miller, 1964). Other studies suggest that people are poor at interpreting 

the meaning of variance and assigning numerical values to it (O’Hagan et al., 2006). 

Probabilities can be elicited by specifying values 𝑥 (for the quantity to be elicited) at 

which the expert’s probabilities 𝑝(𝑋 ≤ 𝑥) are requested. Alternatively, the elicitor may 

opt to elicit quantiles of the expert’s distribution (i.e. the expert is asked for the value 

𝑥 for a specified probability 𝑝, such that 𝑝(𝑋 ≤ 𝑥) = 𝑝. The most commonly used quan-

tile is the median, 𝑝 = 0.50 (O’Hagan et al., 2006). The median can be used as the start-

ing point for sequentially bisecting the expert’s probability to elicit a number of quan-

tiles (O’Hagan et al., 2006), whereby each question takes the form of asking the expert 
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to determine a value for 𝑥 such that 𝑋 is equally likely to be less than or greater than 

this point (Figure 3.8). 

An additional method for eliciting quantiles is the credible interval method. For prob-

ability 𝑞, this involves eliciting two values for 𝑥 such that 𝑝(𝑥1 ≤ 𝑋 ≤ 𝑥2) = 𝑞, where 

the range is a central interval, i.e. it is equally likely that 𝑋 is lower than 𝑥1 or higher 

than 𝑥2. This approach can also be used to obtain a credible interval, whereby the prob-

ability 𝑞 corresponding to 𝑝(𝑥1 ≤ 𝑋 ≤ 𝑥2) = 𝑞 is elicited for given 𝑥1 and 𝑥2.  

In order to use quantile-based elicitation methods, the elicitor needs to decide on the 

probabilities 𝑝 or credible interval coverage probability 𝑞 to use. While the median and 

central 50% intervals are the most commonly used, some studies have indicated that 

assessment of the 33rd and 67th percentiles can reduce overconfidence (e.g. Barclay and 

Peterson, 1973).   

Once the elicitor has obtained summaries of the expert’s distribution, a parametric dis-

tribution is usually fitted to represent the expert’s opinion (Figure 3.8). The raw output 

of the elicitation may also be used, e.g. in the form of a histogram; however, it has been 

argued that a smooth density function provides a more realistic representation of an 

expert’s opinion (e.g. O’Hagan, 1998). The choice of distribution may be affected by the 

range of values that a quantity can take (e.g. a beta distribution is a natural choice for 

a proportion taking values between 0 and 1, while a log-normal or gamma distribution 

is suitable for a quantity that can only take positive values). Where such a preference 

does not exist, the choice of distribution can be guided by the implied shape of the 

expert’s probability distribution. For example, the choice between normal and log-nor-

mal distributions may be made on the basis of the distances between the expert’s prior 

estimate (e.g. median or mode) and his/her lower and upper quantiles, so that if these 

distances are approximately equal, a normal distribution would be implied, while a 

greater distance between the prior estimate and upper quantile would imply a log-

normal distribution (e.g. O’Hagan, 1998).    
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Figure 3.8. Fitted Beta(1.1, 2.2) distribution for the 0.25, 0.50, and 0.75 quantiles (red points) of a 

distribution elicited from an expert. (a) Cumulative distribution function; b) probability density 

function. The median (𝒑(𝑿 ≤ 𝒙) = 0.50) bisects the probability such that 𝑿is equally likely to be 

lower or higher than the median value. The regions below and above the median are then each 

bisected to obtain the lower and upper quartiles (0.25 and 0.75).  In the example, the expert believes 

that it is equally likely that 𝑿 is < or >0.30. Supposing that 𝑿 is > the expert’s median (0.30), he/she 

believes that it is equally likely that 𝑿 is < or >0.50. 

3.4.2.4 Dealing with inaccuracy and imprecision 

 As noted in Section 2.4.3, distributions fitted to represent expert knowledge will be 

subject to inaccuracy and imprecision (because it is difficult for experts to give precise 

numerical values for their probabilities and because only a few probability judgments 

are usually elicited). Two commonly-used methods to address the second problem are 

feedback and overfitting. Feedback involves showing the expert some summary or im-

plication of their fitted distribution (e.g. an additional quantile of the distribution or a 

visual summary) to allow them to confirm whether the fitted distribution is an accurate 

representation of their beliefs (examples using visual feedback can be found in Section 

3.4.3). Feedback should be accompanied by an opportunity for experts to revise their 

summaries (e.g. probabilities or quantiles) or request a more flexible probability model 

if they feel that their beliefs have not been accurately captured. Overfitting involves 

eliciting more summaries than are strictly needed to fit an expert’s distribution. For 

example, to fit a beta distribution, the elicitor might elicit three or more quantiles rather 

than the sufficient two. It is unlikely that a single beta distribution will fit the expert’s 

quantiles perfectly; in practice, there may be several beta distributions that fit equally 
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well. The elicitor can then use some method of minimizing the difference between the 

expert’s quantiles and a fitted beta distribution, although the final distribution selected 

will depend on the metric used for minimization (sum of squares, sum of percentage 

differences, etc.). An example of overfitting is provided in Figure 3.9. Overfitting has 

been advocated as preferable to feeding back a quantile to the expert because it avoids 

the need to ask a question that may suffer from problems of anchoring (i.e. the expert’s 

response is likely to be anchored to the value that the elicitor feeds back to him/her) 

(O’Hagan et al., 2006).  However, eliciting a large number of quantiles is a complex task 

that is more demanding of the elicitor’s time. 

An additional approach is to formally quantify the uncertainty about the expert’s dis-

tribution by updating the analyst’s prior beliefs about the expert’s density function 

with “observations” (elicited summaries of the expert’s distribution) obtained during 

elicitation, using Bayes theorem (O’Hagan and Oakley, 2004). The remaining uncer-

tainty about the expert’s distribution is then represented through the analyst’s poste-

rior distribution. 

 

 Figure 3.9. Example of overfitting. Five quantiles (12.5, 25, 50, 75, and 87.5%) were elicited (shown 

by the histogram) and a beta distribution was fitted using weighted sums of squares (dashed line). 

The median of the fitted distribution is indicated by the vertical blue line, and the mode is indi-

cated by the vertical red line (top panel). Boxplot describing the 95% credible interval and quartiles 

(ends of the box) of the fitted distribution (lower panel). This figure was immediately shown to the 

expert, who was offered the chance to revise one or more of the quantiles if the fitted distribution 

did not correspond to his/her beliefs.  

Sensitivity analysis can be carried out to explore the effect of alternative fitted distri-

butions on the problem at hand (recognizing that there is uncertainty in the elicited 

distribution). This may be particularly relevant in a Bayesian context when the analyst 
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wishes to evaluate the influence of the elicited prior distribution on the posterior. 

Global sensitivity analysis (Berger, 1994) builds on this idea to evaluate the effect of a 

class of prior distributions in terms of the range of posterior distributions that can be 

obtained. 

3.4.3 Expert elicitation tools with examples  

3.4.3.1 ECOKNOWS elicitor 

The ECOKNOWS elicitor is an Excel-based method for guiding experts through the 

process of expressing their beliefs about variables of interest, such as stock–recruitment 

dynamics, natural mortality, maturation (Figure 3.10). Its main advantage is providing 

an immediate visual feedback of elicited distributions enabling experts to iteratively 

arrive at a distribution that most closely reflects their knowledge and beliefs. 

Life history and ecological elicitation tool 

Three distributions are available to represent experts’ beliefs: normal, log-normal, and 

beta. For normal and log-normal variables, experts are invited to choose to work with 

standard parameterizations such as the median and CV (for log-normal) or mean and 

standard deviation (for normal), or alternatively to specify two quantiles of their 

choice: e.g. the 0.25 and 0.75 quantiles. The beta distribution is parameterized using a 

method that requires the expert to propose mode and ”mode weight” parameters 

which determine how much probability mass is centred on the mode. 

 

Figure 3.10. Screenshot from the ECOKNOWS elicitation tool used to quantify expert knowledge 

about sea trout (Salmo trutta) stocks in Rivers Isojoki and Lestijoki in Finland. 

 Stock–recruitment elicitation tool 

The ECOKNOWS stock–recruitment tool provides a specific elicitation platform for 

learning about the relationship between the reproductive potential of a fish (or wild-

life) population and recruitment of new individuals. The Beverton–Holt and Ricker 

models are currently implemented, although the elicited quantities could readily be 

used to parameterize other models (Pulkkinen and Mäntyniemi, 2013). Stock–recruit-

ment models are parameterized in terms of a density-independent parameter 𝛼 or 𝑎 

that is proportional to fecundity and a density-dependent parameter 𝛽 or 𝑏 that is pro-

portional to both fecundity and density-dependent mortality (Quinn and Deriso, 1999). 

The Beverton–Holt model is then: 
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 𝑅 =
𝛼𝑆

1+𝛽𝑆
        (24) 

and the Ricker model: 

𝑅 = 𝑎𝑆𝑒−𝑏𝑆        (25) 

where 𝑅 is the number of recruits, 𝑆 is a measure of spawning potential (e.g. spawning–

stock biomass or fecundity), 𝛼 and 𝑎 are slopes of recruits per unit of e.g. spawning–

stock biomass at the origin (density-independent parameters), and 𝛽 and 𝑏 are param-

eters that control the degree of density-dependence. The stock–recruitment elicitation 

tool requires input of probability distributions for the maximum lifetime reproductive 

rate, spawner biomass per recruit, and either maximum recruitment or recruitment at 

the unfished demographic equilibrium. Equations can be found in Annex 2. Input dis-

tributions for any of the quantities may be empirically based (e.g. information about 

spawner biomass per recruit). The ECOKNOWS stock–recruitment tool elicits uncer-

tainty about the functional form of the stock–recruitment relationship by asking ex-

perts about the most likely mechanism for density-dependence in the population of 

interest (Figure 3.11). Visual feedback is provided in the form of probability distribu-

tions for derived parameters (e.g. stock–recruit steepness) and spawner–recruit plots 

for elicited stock–recruitment functions. 

 

 

Figure 3.11. Screenshot from the ECOKNOWS stock–recruitment elicitation tool model choice in-

terface. 

The life history and ecological elicitation tool is available at http://www.ecok-

nows.eu/Results/LifeHistoryElicitationTool.php.  

http://www.ecoknows.eu/Results/LifeHistoryElicitationTool.php
http://www.ecoknows.eu/Results/LifeHistoryElicitationTool.php
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3.4.3.2 ECOKNOWS selectivity elicitor tool 

 The ECOKNOWS selectivity elicitor is an R tool for extracting expert opinion about 

the selectivity of fishing gears. Three functional forms for selectivity curves are cur-

rently implemented: normal, logistic, and double normal. Selectivity can be expressed 

as a function of size or age.   

Selectivity elicitation involves simulating the size distribution of the true population 

using estimates or priors for growth parameters and age-specific rates of total mortal-

ity. The simulated size distribution is plotted, can be shown to the experts, and itera-

tively adjusted (e.g. via the total mortality rate) to arrive at a distribution the expert 

believes to be representative of the actual size structure. Experts are then asked for their 

beliefs about the functional form of selectivity for the gear in question (i.e. logistic, nor-

mal or double normal) and for summaries of their distributions for lengths correspond-

ing to two selectivity probabilities, e.g. 50 and 90% selectivity. The expert’s answers are 

used to obtain parametric distributions for the parameters of the selectivity curve 

[length at 50% selectivity (log-normal distribution) and steepness (log-normal distribu-

tion) for the logistic curve, mean (normal distribution) and variance (inverse gamma 

distribution) for the normal curve, and minimum and maximum lengths at full selec-

tivity (both normal distributions) plus left- and right-hand-side variances (both inverse 

gamma distributions) for the double normal curve]. The tool produces a plot of the 

range of selectivity curves implied by the expert’s values, along with the expected size 

distribution in the catch and of missed (unselected) fish. Experts can then be given an 

opportunity to revise their values on the basis of the visual feedback. 

Methods used to obtain priors for selectivity curve parameters using summaries of an 

expert’s distribution for length at a particular selectivity value are described below for 

the logistic functional form and in Annex 3 for the normal and double normal func-

tional forms. The equations employed to derive priors using experts’ inputs to the R 

selectivity elicitor tool are described in Annex 4 for normal and logistic selectivity. 

Logistic selectivity 

The logistic distribution is parameterized by the length at 50% selectivity L50, and the 

steepness of the curve  . Log-normal priors are specified for L50 and   using the elic-

ited 0.10, 0.50 (median), and 0.90 quantiles for the length at which selectivity equals 

0.50 plus the 0.10, 0.50 (median), and 0.90 quantiles for the length at which selectivity 

equals 0.90 (Figure 3.12). 
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Figure 3.12. An example of a logistic selectivity curve where the most likely (modal) length at 50% 

selectivity (�̂�𝟓𝟎) is 15 cm, and the modal length at 90% selectivity (�̂�𝟗𝟎) is 16 cm. The 0.90 quantile 

for 𝑳𝟓𝟎(𝑳𝟓𝟎𝟗𝟎) is 18 cm and the 0.90 quantile for 𝑳𝟗𝟎 (𝑳𝟗𝟎𝟗𝟎) is 20 cm. 

Selectivity elicitor tool example  

To illustrate the selectivity elicitor tool, suppose an expert provides 0.50 and 0.90 

quantiles for length at 50 and 90% selectivity that are the same as those in Figure 3.12, 

with 0.10 quantiles for length at 50 and 90% selectivity of 12 cm and 15 cm, respectively. 

The resulting selectivity curve is shown in Figure 3.13, based on the fitted priors for 

L50 and 𝜐 of L50~log-normal(2.71,0.14) and 𝜐~log-normal(0.79,1.26). Numbers in pa-

rentheses are mean and standard deviation of log(x).  
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Figure 3.13. Example elicited logistic selectivity curve. Panel (a) shows the median selectivity curve 

(red) plus randomly sampled selectivity curves from the fitted prior distributions for L50 and 𝝊. 

Panel (b) shows the length frequency distribution of fish that are retained in the catch, given the 

median selectivity curve and simulated length distribution. Panel (c) shows the length frequency 

distribution of fish that are not retained in the catch, given the median selectivity curve and simu-

lated length distribution. 

3.4.4 Combining the opinions of multiple experts (mathematical aggrega-

tion) 

When judgments are elicited from more than one expert individually, it is usually con-

venient to combine them to yield one prior distribution for use in analyses. In this sec-

tion, we discuss a selection of some of the most common methods for combining mul-

tiple expert distributions (mathematical aggregation). Reviews of different methodol-

ogies available to aggregate expert opinions can be found in Clemen and Winkler 

(1999), Burgman (2005), and O’Hagan et al. (2006). 

Weighting expert opinions 

The mathematical aggregation methods considered here share a first step of determin-

ing and expressing numerically how much weight to place on the opinion of each ex-

pert. A common choice is to consider the opinions of all experts as equally valuable 

and assign them equal weights. However, methods that use performance-based 

weights have been shown to outperform methods that assume equal weights (Goos-

sens et al., 1998). Typically, performance-based weighting methods take into account 

an expert’s calibration as well as his/her informativeness. Calibration measures how 
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closely an expert’s opinion corresponds to reality, while informativeness is a measure 

of the information contained in an expert’s opinion and is related to the precision of 

the distribution. Cooke (1991) proposed the use of seeding variables (quantities chosen 

from the same subject area as the quantity to be elicited), whose true values are known 

to the facilitator, but not to the experts. Quantiles for the seeding variables are elicited 

from experts; an expert would be down-weighted for being poorly calibrated or giving 

a wide distribution that provides little information about the quantity of interest. The 

weight awarded to each expert is then a combined measure of his/her calibration and 

information scores. 

Aspinall (2010) describes an application of Cooke’s method (1991) in which expert risk 

assessors were given a series of seed questions to evaluate their proficiency in predict-

ing time to failure in old earthen dams in the UK. The experts’ responses (best estimate 

and 90% credible interval) were weighted according to their success in answering the 

seed questions. Experts who provided longer-time-to-failure estimates with wider 

credible intervals did better on seed questions, earning greater performance weights 

(Figure 3.14). 

 

Figure 3.14. Estimates from 11 experts of the time-to-failure of an earthen dam after the core begins 

to leak. The performance-weighted best judgment is about 70 days — much longer than the equal-

weights solution of ca. one week. Reprinted by permission of Macmillan Publishers Ltd: Nature 

(Aspinall, W. 2010. A route to more tractable expert advice. Nature, 463: 294–295), copyright (2010). 

Linear and logarithmic opinion pools 

Opinion pooling involves combining the distributions of individual experts to form a 

consensus distribution. The simplest method for achieving this is the linear opinion 

pool, is a linear weighted average of the individual distributions with weights wi  sum-

ming to 1: 

1

( ) ( )
n

i i

i

f w f 


        (26) 
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where 𝑓𝑖(𝜃) is the distribution of the ith expert. In the case of equal weights 𝑤𝑖 , this is a 

simple average of the individual distributions. The logarithmic opinion pool is based 

on a weighted geometric mean of the individual distributions (i.e. the weights are ex-

ponents): 

1

( ) ( ) i

n
w

i

i

f k f 


         (27) 

where k is a normalizing constant which ensures that the combined distribution 𝑓(𝜃) 

integrates to 1 and that the weights 𝑤𝑖  have the same interpretation as above. Linear 

and logarithmic opinion pools are appealing because of their simplicity, but they have 

some drawbacks. The linear opinion pool is not externally Bayesian (i.e. updating in-

dividual distributions with a new observation before combining, combining individual 

distributions, and then updating the combined distribution do not always yield the 

same result) (Madansky, 1964). The logarithmic opinion pool is externally Bayesian, 

but does not satisfy the marginalization requirement (i.e. summing the probabilities of 

two mutually exclusive events 𝑝(𝐴) and 𝑝(𝐵)elicited from several experts to obtain the 

probability of the event “A or B” does not always yield the same result before and after 

pooling the experts’ opinions) (O’Hagan et al., 2006). Logarithmic pooling tends to re-

sult in a narrower consensus distribution than linear pooling, implying stronger infor-

mation than that given by any individual expert, whereas the linear pooling consensus 

distribution implies less knowledge than any of the individual distributions (O’Hagan 

et al., 2006). It is also worth noting that the consensus distribution formed from the 

logarithmic opinion pool treats as implausible values of 𝜃 that are considered implau-

sible by any one expert. 

Bayesian methods  

An alternative way of combining the distributions of different experts is to treat them 

as alternative hypotheses about the true state of nature and merge them using Bayesian 

model averaging (BMA) (Carlin and Chib, 1995; Punt and Hilborn, 1997; Hoeting et al., 

1999; Mäntyniemi et al., 2012). BMA is a consistent method for taking structural uncer-

tainty into account in a Bayesian framework (Hoeting et al., 1999). The analyst assigns 

a prior probability 𝑝(𝑀𝑖) or weight to each of 𝐸 experts (𝑀 = 1,2, … , 𝐸) expressing their 

beliefs about the extent to which expert i’s assessment 𝑝(𝜃|𝑀𝑖) corresponds to the true 

state of nature (i.e. the probability that expert i is right), before observing any data. A 

common choice is to set 𝑝(𝑀𝑖) = 1/𝐸. Since 𝑀 is a discrete variable, the prior knowledge 

of the analyst about 𝜃 can be found using the weighted average of the beliefs of differ-

ent experts (see Mäntyniemi et al., 2012): 

 𝑝(𝜃) = ∑ 𝑝(𝜃|𝑀𝑖)𝑝(𝑀𝑖
𝐸
𝑖=1 )      (28) 

This approach thus belongs to the class of linear pooling methods, but differs in the 

conceptual interpretation of the weights as the (analyst’s) probability that an individ-

ual expert is correct. The weights of different experts in BMA can be updated using 

Bayes theorem as soon as new observations become available, so that the posterior 

weights will reflect the experts’ performance in predicting the observations 𝑦 (the pos-

terior weights are obtained using the marginal likelihood of the data given M’s beliefs, 

𝑝(𝑦|𝑀𝑖)). Since BMA allows updating of experts’ weights (rather than keeping them 

fixed) when new evidence is obtained, BMA adheres to the externally Bayesian crite-

rion. A combined distribution obtained using BMA is shown in Figure 3.15. JAGS code 

for this example can be found in Annex 5. 
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Figure 3.15. Prior probability distributions from three experts (solid red line, dashed black line, and 

solid non-bolded black line). The prior distribution obtained using Bayesian model averaging 

(BMA) is shown by the thick black line. 

In Bayesian decision theory, it is the decision maker’s beliefs rather than the experts’ 

that are ultimately required, so the correct procedure for combining expert opinions is 

for the decision maker to update his/her own prior distribution with data in the form 

of expert opinions (O’Hagan et al., 2006). To illustrate this with a simple example, point 

estimates of an unknown quantity X from different experts (𝑥1, 𝑥2, … 𝑥𝑒) could be 

treated as observations and used to update the decision maker’s prior for 𝑝(𝑥), yielding 

a posterior distribution for X (Winkler, 1981; Mosleh and Apostolakis, 1986):   

.     (29) 

The likelihood terms from different experts 𝑝(𝑥𝑖|𝑥) represent the likelihood of expert i 

giving an estimate of 𝑥𝑖, given that the true value is 𝑥. They are formulated to reflect 

the decision maker’s appraisal of expert i’s competence; two models, additive or mul-

tiplicative errors, have been suggested by Mosleh and Apostolakis (1986). Under the 

additive error model, expert i’s assessment of 𝑥 is modelled as the sum of two terms: 

        (30)  

where 휀𝑖 is an additive error term that follows a normal distribution with mean 𝜇𝑖 and 

standard deviation 𝜎𝑖 chosen to reflect the decision maker’s beliefs about i's bias and 

precision. If the opinions of different experts are assumed to be independent, the like-

lihood terms for different experts can simply be multiplied together; otherwise, the 

decision maker must provide his/her beliefs about the dependence of the assessments 

(the degree to which the experts’ errors are interrelated). 

More likely, the problem will involve combining distributions (rather than point esti-

mates) from many experts. In this case, a similar approach can be used where the deci-

sion maker updates his/her prior with the distributions of many experts (𝜃1, 𝜃2, . . . 𝜃𝑒), 

and the notions of bias, precision, and dependence relate to how well an expert’s judg-

ments are calibrated and precise, and the tendency of experts to report similar proba-

1 2, 1 2,( | , ... ) ( , ... ) ( )e ep x x x x p x x x x p x

i ix x  
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bilities (Clemen and Winkler, 1999). Examples can be found in Lindley and Singpur-

walla (1986) and Clemen and Winkler (1999). Hierarchical Bayesian approaches (Sec-

tion 3.2) have also been applied (e.g. Lipscomb et al., 1998); these allow the biases of 

different experts to be treated analogously to random effects and to introduce some 

dependence between the probabilities of different experts. However, a side-effect of 

the increased model complexity is the challenge of specifying an increasing number of 

priors for uncertain parameters. 

3.5 Bayesian belief networks 

Sakari Kuikka 

The idea behind Bayesian belief networks (BBN) is fairly simple. They mimic the hu-

man inference; the human mind connects variables by means of logic and in the infer-

ence more weight is given to better knowledge. If something is unknown (no infor-

mation), it should not be reflected in other parts of the model. The knowledge is ”col-

lected” from the different parts of the model. 

This mimicry is easy to explain; belief networks have been developed in the field of 

artificial intelligence (AI) research where one of the aims is to describe human logic 

(see Pearl, 1988 for a detailed text on belief networks). This close relationship between 

human thinking and belief networks can also be seen in the elicitation process of expert 

knowledge. It appears to be relatively easy for experts to include their logic and other 

knowledge in the belief network modification of Varis (1994), where a single link value 

is used to connect two variables instead of full conditional probability tables. The arti-

cles of Rowe et al. (1988), Rowe and Watkins (1992), and Shafer and Pearl (1990) all 

stress the need to model the logic required in expert judgments.  

Punt and Hilborn (1997) point out that one of the advantages of Bayesian assessment 

is that it offers the possibility of including some of the knowledge of non-modelling 

experts in the scientific analysis. When the non-experts see that their knowledge has 

also been used in the analysis, their commitment to scientific advice may improve.  The 

role of knowledge obtained from different sources can be tested separately and their 

impact on the conclusions evaluated. . 

BBN models can be used in expert elicitations. For example, Uusitalo et al. (2005) used 

BBN models to describe the probabilistic dependencies of the maximum salmon smolt 

production of different Baltic Sea rivers. This knowledge has been used as prior infor-

mation in the modelling of S/R relationships of Baltic Sea salmon stocks. In Bayesian 

decision analysis and in belief network modelling, both the parameters and the struc-

ture of the entire model are uncertain. The amount (quality) of knowledge is described 

by probability distributions, and the model is used to capture uncertainty in the rea-

soning process.  Clemen (1989) and Dagum et al. (1995) discuss the different aspects of 

combining information in forecasting and underline the importance of the Bayesian 

paradigm in forecasting.  

A short popularized description of BBN models is given in Kuikka and Varis (1996) 

and Varis and Kuikka (1997). Almond (1995), Shafer (1996), van der Graag (1996), and 

Darwiche (2009) provide clear presentations on the use of belief networks. In Bayesian 

belief networks, the relationships between the variables can be presented either by con-

ditional probabilities (used in influence diagrams, i.e. models that also include a deci-

sion node) or by links between variables (Pearl, 1988). In the modification of Varis 

(1994), the prior probabilities for each variable are given first. After this, links are esti-

mated or assessed by the expert in order to create a structure for the model (= input of 
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causal knowledge). Links enable the calculus of the posterior probabilities, i.e. the 

knowledge in the other parts of the model, to be taken into account by the information 

flow through the links and other variables.  

The present application area of BBN is wide (see e.g. Jensen, 1996). They are mostly 

applied to assess the state of a system by using direct observations, prior knowledge, 

and causal dependencies. They are very effective compared with rule-based systems 

(if x, then y), especially if there are high uncertainties in the relationships between the 

variables (see e.g. Chong and Walley, 1996, for a test on wastewater treatment). An-

other important use of belief networks is in the field of decision analysis, where modi-

fications of belief networks, i.e. influence diagrams, are used to analyze decision prob-

lems. The use of influence diagrams is close to the use of decision trees, but in compli-

cated problems, the corresponding graphical representation is more easily understood. 

Therefore, it is easier for an expert or other stakeholders to assess the suggested model 

structure.  

The aim of Bayesian decision analysis is to model the structure of human reasoning 

needed for problem solving. The model includes two or more possible alternatives. 

There is a need to model both the use of knowledge and the controllability (actions), 

and the causal relationships of the models should be relevant in describing the causal 

dependencies, from the perspective of the person constructing the model. This is an 

essential difference with the prevailing modelling practice in ecology or fisheries, 

where the aim is usually to model only the physical system itself.  

BBN models can include the following types of variables: 

a) probabilistic nodes: probabilistic variables, including conditional probabilities 

or prior probabilities;  

b) deterministic nodes: including arithmetic functions;  

c) decision nodes: control variables, values selected by decision makers;  

d) expected value/utility nodes: objective variables, nodes to be maximized or 

minimized.  

If the model is used only to assess the state of the system, it can include only probabil-

istic nodes. Moreover, the types of variables can also be algorithm- and software-spe-

cific. For example, Hugin software (http://www.hugin.dk/) is based on the algorithm 

presented in Lauritzen and Spiegelhalter (1988). This software allows the observation 

of new information for any of the probabilistic variables to be modeled. After observing 

one value, the beliefs on the state of the other variables are updated on the basis of the 

new information. In this algorithm, the information obtained can also go ”against” the 

direction of conditional probabilities shown by arrows. Computation is based on so-

called “junction trees” (e.g. Jensen, 1996). Lam and Bacchus (1994) and Cooper and 

Herskovits (1992) discuss the different aspects of estimation in belief-network model-

ling. Cooper and Herskovist (1992) discuss direct learning of Bayesian belief-network 

models from data, which is one possibility if the datasets are sufficiently large. 

In influence diagrams, where the focus is on decision analysis, uncertainty is described 

by conditional probabilities relating the flow of information in the inference. Arcs show 

the direction of the information flow from predecessor node (parents) to successor 

node (child) (Jensen, 1996). Models include at least one decision node and a node de-

scribing the objectives. Objective functions (in some cases called utility variables) are 

either minimized or maximized by the decision nodes. The ability to control the system 

is described by the model, i.e. how effectively the changes in decision variables are 

reflected in the probability distributions of interest variables. If the degree of uncer-

tainty in the chain between the decision and interest nodes is high (wide distributions 
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in conditional probabilities), the controllability is poor, and it is difficult to adjust the 

system to a desired state by means of the decision variables.  

BBN are at their best in modelling complex phenomena, where the models and data 

for different parts of the problem can be of very different quality and where expert 

judgments are needed. Rowe et al. (1988) discuss the management use of artificial in-

telligence in more detail. The call of Stephenson and Lane (1995) for interdisciplinary 

methodology is fulfilled by belief networks; conditional probabilities facilitate the use 

of, for example, socio-economic information.  

Burns and Clemen (1993) discussed the interesting relationship between covariance 

structure models and Gaussian influence diagrams (conditional distributions are nor-

mal). They stressed that these tools are closely related. Both tools are based on multi-

variate normality. Burns et al. (1993) applied a similar approach to the modelling of 

public responses to risk signals in the media. This approach seems to be an effective 

tool for modelling large datasets and might offer good possibilities for modelling com-

plicated ecological or fisheries systems.  

The Markov Chain Monte Carlo (MCMC) estimation procedures (Besag et al., 1995) are 

also used in the estimation of probabilities for belief networks. For example, Gibbs 

sampling (see Besag et al., 1995) is used in the estimation of probabilities in mixed 

graphical models, where some of the variables are continuous and some are discrete.  

In decision analysis, the robustness of the methodology is essential; models should not 

be too sensitive to, for example, assumptions. Pradhan et al. (1996) investigated the 

sensitivity of belief networks and concluded that they are robust tools and are not very 

sensitive to imprecise input probabilities. Experiences reported in Kuikka and Varis 

(1996) support this conclusion. Even though the structure varied, the models gave rel-

atively similar results. This finding suggests that belief networks can also be used as 

an effective tool for modelling the knowledge of non-mathematical experts.  

The elicitation process linked to expert knowledge (Kuikka and Varis, 1996; O’Hagan, 

2012) is relatively straightforward if the total number of arcs is not very large. Large 

numbers of parent nodes and their associated arcs lead, in turn, to large and unman-

ageable conditional probability tables. As a rule of thumb, if the link value (Kuikka and 

Varis, 1996) is <0.1 (the parent node explains <10% of the child node), there is no reason 

to make the model more complex by adding links. 
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4 Summary: impacts and interpretation 

Sakari Kuikka, Samu Mäntyniemi, and Etienne Rivot 

This report has demonstrated and discussed the logic of the Bayesian analysis, with 

particular focus on the role of prior information in stock assessment and has demon-

strated the collection of prior knowledge from primary data, literature, databases, and 

experts.  

The Bayesian analysis is a mathematical formalization of the sequential learning pro-

cess. Learning is one of the key aims of scientific activities. It is natural that new publi-

cations take into account earlier publications and discuss the results in light of earlier 

scientific results. In spite of this, it is still relatively uncommon to see publications that 

take former results fully into account in a formal, mathematical way. In papers, litera-

ture is usually only discussed without the results incorporated quantitatively by ap-

plying classical statistics, while databases have been used to estimate parameters for 

which there are no case-specific data. The role of expert knowledge is not formally 

taken into account in classical statistics, even though it is generally accepted that expert 

knowledge can be used effectively in the decision-making process to collect certain 

types of data and in the selection of methods to analyse the data. One can say that the 

effectiveness of scientific learning may be enhanced by taking account of expert expe-

rience in a formal analytical process.  

Publication bias can be a severe problem when collecting information from published 

results to build informative priors. For example, null hypothesis statistical testing 

(NHST) remains one of the most commonly used methods for testing a hypothesis 

when analyzing ecological data. P-values are one of the main statistical criteria used 

for NHST because of their apparent simplicity of interpretation; low p-values demon-

strate that the observed data are unlikely, given the null hypothesis. In practice, a low 

p-value is an essential criterion that will facilitate publication of any particular work. 

Although they are as much informative as results with low p-values, results with high 

p-values (“negative results”) are less likely to be published because they are less likely 

to be submitted by authors or accepted by editors. Then, literature does not keep track 

of “negative results” as it should, and there is a high risk that our world view becomes 

biased. This may not be a problem in cases where raw data are published for stock 

assessment purposes, but evaluation of the aim and purpose of the papers needs to be 

carried out before relying on the sampled literature set.  

In addition to the quality of the knowledge available, one must also consider the costs 

of obtaining new information. Collection of raw data is definitely more expensive than 

the use of databases or published papers. Moreover, one may regard it the moral duty 

of a scientist to exploit all information to decrease uncertainties and provide the most 

realistic estimates possible to decision-makers and fishers.   

In the context of a precautionary approach to fishery management, using all available 

sources of information to reduce uncertainty in parameter estimates and predictions 

may have impacts in decision-making. The precautionary approach to fishery manage-

ment means taking a risk-averse attitude in decision-making; i.e. the variance of the 

predictions plays a role, in addition to the expected value, in selecting the optimal de-

cision alternative. In some cases, it is preferable to accept a decision that implies a 

smaller expected value than another decision, if the risk for total failure is smaller. In 

fisheries, impaired recruitment is a good example of such a risk, the probability of 
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which should be low. The degree of risk aversion may depend on the consequences in 

each case. 

Online databases offer interesting possibilities. For example, current techniques enable 

an analysis where the impact of new data on the overall estimates of the databases can 

easily be assessed. If, at the same time, precautionary management is applied, the per-

son providing new data may see the quantitative impact of the new data, e.g. increased 

catches while maintaining the same level of risk as earlier. The reward from investing 

in more data is the improvement in either increased yield or reduced risk, or ideally 

both, that science can provide to society.  

It is often difficult to find an expert who has not seen the case-specific dataset before 

constructing a prior distribution. In this sense, there is a theoretical risk that the same 

knowledge will be used twice (i.e. to inform the prior and then as part of the data used 

in the analysis). On the other hand, as the stock assessment results are used to evaluate 

future outcomes, an expert may be able to identify new uncertainties to include in the 

evaluations, which have not yet been seen in the data. The impacts of climate change 

or other environmental disturbances offer good examples of possible sources of uncer-

tainty. Good knowledge of the literature and theoretical education may provide 

sources of information, e.g. on causal processes, which do not exist in historical da-

tasets.  Therefore, it may be useful to use experts at least in model selection.    

The use of hierarchical models, and especially the role of correlations, offers effective 

ways to exploit such features of the data, which usually cannot be obtained from expert 

elicitation. Even relatively small datasets offer possibilities for learning about correla-

tions.  Some of these correlations may be similar for many species, offering the possi-

bility of learning from other species or other populations of the same species. Similarity 

between species may be due to biology or to the environment where populations live. 
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5 Future research needs 

Samu Mäntyniemi and Etienne Rivot 

The use of prior information in Bayesian stock assessment faces both philosophical and 

practical challenges. This manual has studied and proposed techniques that can be 

used to deal with many practical challenges. All of these techniques can be further 

studied and fine-tuned, and new developments in interactive, database, and mobile 

communication technology can potentially be explored to find novel ways of forming 

prior distributions from different sources of information. 

However, the philosophical issues and their sociological consequences have not been 

dealt with here, although they represent key issues for future research. For example, 

the fact that a model structure is also a statement of prior knowledge and provides an 

important component for the joint prior distribution of all variables is not widely 

acknowledged. Instead, model structures and likelihood functions are often thought of 

as somehow representing the objective part of the analysis, with the research focused 

on the prior distributions of the model parameters: how to make the priors contain as 

little information as possible or, as examined in this manual, how to condense the ex-

isting information into a prior distribution of a parameter. 

It is well known that when the amount of observed data increases, the weight of the 

prior distributions of model parameters in the resulting inference decreases. This is 

often termed “data overriding the prior”, which overlooks the fact that the assump-

tions made about the model structure and the observation processes that define the 

likelihood function determine the interpretation of the observations. This logically 

means that the prior information used to construct the model becomes more influential 

when the amount of data increases. 

Future research efforts should also clearly be targeted at the philosophy and practices 

of model building based on existing prior information. Stock assessments that explic-

itly account for model uncertainty are still rare, and improving the methodology in this 

direction is an important avenue for future research. Bayesian model averaging meth-

ods have been developed, but are still difficult to implement for complex models with 

many parameters. Assigning a priori the same probabilities for the competing model 

structures may be justified in some cases. However, one easily forgets the fact that in 

the process of selecting alternative models, one already uses prior information in a 

crude way (selection/rejection); this could be elaborated further by using formal, trans-

parent, and consistent methods to assign informative priors for the alternative models. 

Non-parametric models do not require strong assumptions about the model structure 

(e.g. non-parametric stock–recruitment models avoid constraining the analysis to clas-

sical Ricker and Beverton–Holt forms) and can naturally cope with model uncertainty. 

More research is needed to make Bayesian analysis of non-parametric models more 

accessible in practice.   

Perhaps one of the key obstacles to the systematic and widespread use of prior infor-

mation lies in the attitudes of both scientists and the users of the scientific information. 

Scientific knowledge, such as stock assessment results, is often expected to be inde-

pendent of the people involved in the production of the results. As a result, scientists 

are often hesitant to use their expertise to the fullest extent and are more willing to “let 

the data speak”. 

However, new approaches to science are emerging. The importance of taking stake-

holder perspectives into account when dealing with highly uncertain and ambiguous 
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environmental problems is increasingly being stressed. Submitting a model to the crit-

ical review of an extended peer group enables assessing and potentially improving the 

credibility of the model. Moreover, building a model in a participatory process with 

stakeholders provides the possibility of integrating as many perspectives as is consid-

ered relevant in model building, thereby avoiding a one-sided interpretation. It can be 

assumed that a model built in a participatory process can increase the legitimacy of the 

results. 

The conventional juxtaposition related to subjective and objective science needs rea-

nalysis. Since Bayesian stock assessment models (like all other assessment models) are 

made from existing human knowledge, prior distributions for parameters and model 

structures may play a key role in the process of reviewing and collectively building 

those models with stakeholders. Research on theories and practices of such processes 

will be needed in the future. 
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Annex 1:  BUGS/JAGS code for est imation of slope at origin of 

Beverton–Holt  stock– recruit  function (Example 3.2.1) 

model{ 

 

 for(i in 1:N_SR){ 

    # Number of recruits in year i follows logNormal distribution   

    Rec[i] ~ dlnorm(MRec[i],tauRec) 

    

    # Expected recruitment follows Beverton-Holt s-r-function  

    muRec[i] <-K[stockSR[i]]/((K[stockSR[i]]/alpha[stockSR[i]])+Eggs[i]))*Eggs[i] 

    # Expected recruitment in log-scale 

    Mrec[i]<-log(muRec[i])-0.5*1/tauRec 

  } 

       

  for(i in 1:N_Stocks){    

    logit(alpha[i])<-A[i] 

    A[i]~dnorm(mu_a,tau_a) 

    K[i]~dlnorm(0,0.00001) 

  } 

 

  ANew~dnorm(mu_a,tau_a) 

  logit(alphaNew)<-ANew 

 

  cvRec~dlnorm(-0.3,0.00001) 

  tauRec<-1/log(cvRec*cvRec+1) 

 

  # Uninformative prior for slope at logit scale 

  mu_a~dnorm(-1,0.001) 

  sd_a~dlnorm(-2,0.05) 

  tau_a<-1/(sd_a*sd_a) 

         

} 
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Annex 2:  Derivat ion of priors for Beverton–Holt  and Ricker stock–

recruitment models using inputs to the ECOKNOWS stock– recruit-

ment el icitat ion tool  (Section 3.4.3.1) 

Prior for   or a  (slopes at the origin in the Beverton–Holt and Ricker 

models) 

Elicitation tool inputs: 

 Maximum lifetime reproductive rate ̂   

 Spawner biomass per recruit (SBPR) or eggs per recruit (EPR) in the absence 

of fishing 

The maximum lifetime reproductive rate (̂ ) is the number of spawners produced by 

each spawner over its lifetime at very low spawner abundance (a function of longevity, 

fecundity, and survival). Estimates of the maximum lifetime reproductive rate (e.g. 

from meta-analysis) have been published for many species (e.g. Myers et al., 1999), so 

that the distribution for ̂  can be taken from the literature if available;   (or a ) can 

be obtained as: 

ˆ

SBPR


   

SBPR is calculated as:  
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where 𝑤𝑖is weight at age i, 𝜂𝑖 is maturity at age i, 𝑀𝑖 is the rate of instantaneous natural 

mortality at age I, and A denotes the plus group. A prior for SBPR could be derived 

using available information on natural mortality-, weight-, and maturity-at-age, or al-

ternatively, constructed using distributions for natural mortality, growth parameters, 

and maturity elicited from experts.  

 

  (Beverton–Holt) from maximum recruitment 

Elicitation tool inputs 

 Maximum recruitment ( max R )  

In the parameterization of the Beverton–Holt model used by the ECOKNOWS elicita-

tion tool, max R



 , so that

max R


   . 

 

  (Beverton–Holt) from unfished recruitment 0R (assumes equilib-

rium) 

The following equations can be used to derive priors for stock–recruitment parameters 

corresponding to demographic equilibrium, conditional on the information provided 

about vital rates (used to calculate SBPR) and recruitment at demographic equilibrium. 

Elicitation tool inputs 

 Recruitment at equilibrium (𝑅0) 
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 Spawner biomass per recruit (SBPR) or eggs per recruit (EPR) in the absence 

of fishing 

 Maximum lifetime reproductive rate �̂�  

The Beverton–Holt 𝛽 parameter can be found by noting that the parameters steepness 

ℎ (defined as the proportion of recruitment obtained when spawner abundance or bi-

omass is reduced to 20% of the virgin level, relative to recruitment at unfished equilib-

rium) and maximum lifetime reproductive rate ( ̂ ) are related by: 

ˆ

ˆ4
h






  

(Myers et al., 1999) so that (using the parameterization 𝑅 =
𝛼𝑆

1+𝛽𝑆
): 

0

5 1

4

h

hR
 

 
  

 
 

 

b  (Ricker) from maximum recruitment 

Elicitation tool inputs 

 Maximum recruitment ( max R )  

Maximum recruitment ( max R ) is given by max
a

R
be

 , so that 
max e

a
b

R
 . 

 

b (Ricker) from unfished recruitment 0R (assumes equilibrium) 

Elicitation tool inputs 

 Recruitment at equilibrium (𝑅0) 

 Spawner biomass per recruit (SBPR) or eggs per recruit (EPR) in the absence 

of fishing 

Writing the Ricker equation (𝑅 = 𝑎𝑆𝑒−𝑏𝑆) as 𝑆0 = log(𝑎𝑆𝐵𝑃𝑅)
1

𝑏
 , where 𝑆0 is spawning 

stock biomass (or some other measure of spawning potential) at equilibrium and 𝑅0 =
𝑆0

𝑆𝐵𝑃𝑅
, the Ricker 𝑏 parameter can be obtained as: 

0

1

/ log( )
b

R SBPR aSBPR
 . 
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Annex 3:  Methods to obtain priors for parameters of normal and 

double normal selectivity curves (Section 3.4.3.2) 

Normal selectivity 

The normal distribution is parameterized by its mean 𝜇 and standard deviation 𝜎. Nor-

mal and inverse gamma priors are specified for 𝜇 and 𝜎2 using the elicited mode and 

quantile(s) for the length at which selectivity equals 0.50 and the elicited model and 

quantile(s) for the length at maximum selectivity (i.e. 𝜇) (Figure 1). 

 

Figure 1. An example of a normal selectivity curve where the most likely (modal) length at 50% 

selectivity (�̂�𝟓𝟎) is 12.5 cm, and the modal length at maximum (100%) selectivity (�̂�𝒎𝒂𝒙) is 15 cm. 

The 0.90 quantile for 𝑳𝟓𝟎 (𝑳𝟓𝟎𝟗𝟎) is 14 cm, and the 0.90 quantile for 𝑳𝒎𝒂𝒙 (𝑳𝒎𝒂𝒙𝟗𝟎) is 18 cm. 

 

Double normal selectivity 

The procedure used to obtain priors for a double normal selectivity curve is analogous 

to that used for the normal curve, except that quantiles for L50 and Lmax were elicited 

for both the right-hand and left-hand sides of the curve. Selectivity is then set equal to 

1 between the left-hand and right-hand Lmax values (Figure 2). 
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Figure 2. An example of a double normal selectivity curve where the most likely (modal) length at 

50% selectivity on the left-hand side (�̂�𝟓𝟎𝑳) is 12.5 cm and on the right-hand side (�̂�𝟓𝟎𝑹) is 26.4 cm. 

The most likely range for selectivity equal to 1 is between 15 cm (�̂�𝒎𝒂𝒙𝑳) and 24 cm (�̂�𝒎𝒂𝒙𝑹). The 

0.90 quantile for 𝑳𝟓𝟎𝑳 (𝑳𝟓𝟎𝟗𝟎𝑳) is 14 cm, and the 0.90 quantile for 𝑳𝟓𝟎𝑹 (𝑳𝟓𝟎𝟗𝟎𝑹) is 36 cm. 
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Annex 4:  Equations used to derive priors using experts’  input in 

the R selectivity el icitor tool ( Section 3.4.3.2) 

Normal selectivity 

The mean of the prior for 𝜇 (𝜇𝜇) is set equal to the expert’s mode for 𝜇. The standard 

deviation of the prior for 𝜇 is found by dividing the absolute difference between the 

mode for the mean and the elicited 0.10 or 0.90 quantile (or the largest absolute differ-

ence between the quantiles and the mode if both are elicited) by the 0.50 quantile of a 

standard normal distribution minus the 0.10 quantile: 

90 10

1 1

ˆ ˆmax( max max, max max )

(0.50) (0.10)

L L L L


  

 


  

where, e.g. 𝐿𝑚𝑎𝑥10 denotes the expert’s 10th percentile for the length at maximum se-

lectivity and 𝜙−1 is the quantile function of the standard normal distribution. A caret 

denotes the mode. 

The standard deviation of the normal selectivity curve (𝜎) can be found using the fact 

that the value corresponding to 50% of the probability density at the mode (and mean) 

in a standard normal distribution occurs at 1.177 standard deviations away from the 

mean. The mode of the prior for 𝜎 is thus obtained as: 

ˆ ˆmax 50
ˆ

1.177

L L





 

The 0.90 quantile for the prior for the standard deviation (𝜎90) is obtained using the 

difference between the 0.10 quantile for 𝐿50 and the 0.90 quantile for 𝐿𝑚𝑎𝑥; this is again 

divided by 1.177. After squaring to obtain variances, the parameters of an inverse 

gamma (IG) distribution for the variance are found using an iterative routine that is 

initialized with a starting value for the inverse gamma 𝛼 (shape) parameter, computes 

the 𝛽 (scale) parameter as: 

ˆ' ( 1)     

and computes the difference between the 0.90 quantile of the resulting IG distribution 

and 𝜎90. In each subsequent iteration, the value of 𝛼 is modified and the other steps 

repeated until the 0.90 quantile for 𝜎 is within 0.50 of the value obtained above. A prior 

for use in BUGS applications (that use precisions rather than variances by convention) 

can then be obtained as: 

1

2

1
~ Gamma( , ) 





 

 

Logistic selectivity 

The median of the prior for steepness (𝜐) can be found using the fact that 𝐿90 minus 

𝐿50  times 𝜐 equals 2.2: 

50

50 50

2.2

90 50L L
 


 

A 0.10 quantile for 𝜐 is computed as 2.2 divided by the difference between the 0.10 

quantile for 50% selectivity and the 0.90 quantile for 90% selectivity: 



 90  |                                                                                         ICES Cooperative Research Report No. 328 

 

10

90 10

2.2

90 50L L
 


 

Means (of log(𝑥)) of the log-normal distributions for 𝐿50  and 𝜐 (𝜇𝐿50 and 𝜇𝜐) are then 

given by log(𝐿5050) and log(𝜐50), while the standard deviations can be found using the 

quantile function of the standard normal distribution (𝜙−1), e.g. using the median and 

0.10 quantile for 𝜐: 

50 10

1 1

log( ) log( )

(0.50) (0.10)
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Annex 5:  BMA example using JAGS (Section 3.4.4) 

Three experts use the ECOKNOWS elicitor tool to summarize their beliefs about the 

proportion of tagged sea trout at age 2 released into the River Isojoki in Finland that 

migrate to the sea in the same year S. They each give a mode and mode weight, which 

are used to obtain the alpha and beta parameters of a beta distribution. In the following 

code, “#”denotes a comment. 

 

PriorModel<-" 

model{ 

for(i in 1:N_experts){  #Here N_experts=3 

p[i]<-1/N_experts  #equal prior probabilities across experts 

} 

 

Y~dcat(p[1:N_experts]) #Indicator variable for the ith expert’s assessment. Y 

takes values {1,2,3} with probabilities {p[1],p[2],p[3]} 

P.smolt<-S[Y]   #Combined (model averaged) distribution 

#The following lines express the individual assessments of the 3 experts as Beta distri-

butions. 

# Expert 1  

# ================= 

S[1]~dbeta(64,8)       

# Expert 2  

# ================= 

S[2]~dbeta(8,4)       

# Expert 3  

# ================= 

S[3]~dbeta(37,5)    

}" 
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