ICES WGCSE REPORT 2017

ICES Advisory Committee

ICES CM 2017 /ACOM:13

Report of the Working Group on Celtic Seas Ecoregion (WGCSE)

9-18 May 2017

Copenhagen, Denmark

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H. C. Andersens Boulevard 44-46
DK-1553 Copenhagen V
Denmark
Telephone (+45) 33386700
Telefax (+45) 33934215
www.ices.dk
info@ices.dk

Recommended format for purposes of citation:
ICES. 2017. Report of the Working Group on Celtic Seas Ecoregion (WGCSE), 9-18
May 2017, Copenhagen, Denmark. ICES CM 2017/ACOM:13. 1464 pp.
For permission to reproduce material from this publication, please apply to the General Secretary.

The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

Contents

Executive Summary 1
1 Introduction 3
1.1 Terms of reference 3
1.1.1 Generic ToRs 3
1.1.2 Specific ToRs 4
1.1.3 Additional ToR 5
1.2 Participation 5
1.3 Methods 7
1.4 Internal auditing and external reviews 8
1.5 ToR e WGCSE recommendations for stocks to be benchmarked 8
1.6 ToR c(ii) Estimation of MSY proxy reference points 8
1.7 Completion of checklist for upgrading category 3 and 4 stocks 9
4 Anglerfish (Lophius budegassa and Lophius piscatorius) in subareas 4 and 6, and in Division 3.a (North Sea, Rockall and West of Scotland, Skagerrak and Kattegat) 10
4.1 General 10
4.2 Data 14
4.3 Historical stock development 17
4.4 Short-term projections 17
4.5 Biological reference points 17
4.6 Management plans 18
4.7 Uncertainties and bias in assessment and forecast 18
4.8 Recommendations for next Benchmark 19
4.9 Management considerations 20
4.10 References 20
5 Cod in Division 6.a 47
5.1 Introduction 47
5.2 General 47
5.3 Data 49
5.3.1 Stock assessment 52
5.3.2 Short-term stock projections 55
5.3.3 Reference points 55
5.3.4 Management plans 56
5.3.5 Uncertainties and bias in assessment and forecast. 56
5.3.6 Recommendation for next Benchmark. 58
5.3.7 Management considerations 58
5.3.8 Frequency of assessment. 59
5.4 Sources 59
6 Cod in Division 27.6.b 119
6.1 General 119
6.2 Data 120
6.3 References 121
7 Cod in 7.a (Irish Sea) 128
7.1 General 128
7.2 Data. 130
7.3 Historical stock development 132
7.4 Short-term predictions 133
7.5 Biological reference points 133
7.6 Management plans 134
7.7 Uncertainties and bias in assessment and forecast 134
7.8 Management considerations 135
7.9 References 135
7.10 Audit of Cod 27.7a 191
8 Cod in Divisions 7.bc 195
9 Cod in Division 7.e-k (Celtic Sea) 197
9.1 General 197
9.2 Data 200
9.3 Stock assessment 202
9.4 Short-term projections 203
9.5 Medium-term projection 204
9.6 Biological reference points 204
9.7 Management plans 205
9.8 Uncertainties and bias in assessment and forecast 205
9.9 Management considerations 206
9.10 References 206
9.11 Audit of Cod 27.7.e-k 252
10 Haddock in Division 6.b (Rockall) 253
10.1.1 General 253
10.1.2 Data 255
10.1.3 Description of stock assessment approach 257
10.1.4 Short-term projections 260
10.1.5 MSY evaluations and biological reference points 261
10.1.6 Management plans 262
10.1.7 Uncertainties and bias in assessment and forecast 263
10.1.8 Recommendation for next benchmark 263
10.1.9 Management considerations 264
10.1.10 References 264
11 Haddock in Division 7.a 316
11.1 General 316
11.2 Data 318
11.3 Historical stock development 321
11.4 Short-term projections 323
11.5 Biological reference points 323
11.6 Management plans 324
11.7 Uncertainties and bias in assessment and forecast 324
11.8 Recommendations for next benchmark assessment 325
11.9 References 325
11.10 Audit of Haddock in the Irish Sea (had.27.7.a) 347
12 Haddock in Divisions 7.b,c,e-k 349
12.1 General 349
12.1.1 Information from the industry 351
12.1.2 Data 351
12.1.3 Historical stock development 353
12.1.4 Short-term projections 354
12.1.5 MSY evaluations and biological reference points 355
12.1.6 Management plans 355
12.1.7 Uncertainties and bias in assessment and forecast 355
12.1.8 Recommendation for next benchmark 357
12.1.9 Management considerations 358
12.1.10 References 358
13 Megrim in 4.a and 6.a (Northern North Sea and West of Scotland) 393
13.1 General 393
13.2 Estimation of survey cpue indices 396
13.3 Stock assessment 397
13.4 Short-term projections 397
13.5 Biological reference points 398
13.6 References 399
14 Megrim (Lepidorhombus ssp.) in Division 6.b (Rockall) 420
14.1 Uncertainties and bias in assessment and forecast 422
14.2 Recommendation for next Benchmark 423
14.3 References 423
15 Norway lobster (Nephrops norvegicus) in Division 6.a, Functional Unit 11 (West of Scotland, North Minch) 429
15.1 General 429
15.2 Data available 431
15.3 Assessment 433
15.4 Catch option table 434
15.5 Reference points 434
15.6 Management strategies 435
15.7 Quality of assessment and forecast 435
15.8 Recommendation for next benchmark 436
15.9 Management considerations 436
15.10 References 437
16 Norway lobster (Nephrops norvegicus) in Division 6.a, Functional Unit 12 (West of Scotland, South Minch) 459
16.1 General 459
16.2 Data available 460
16.3 Assessment 463
16.4 Catch option table 463
16.5 Reference points 464
16.6 Management strategies 464
16.7 Quality of assessment and forecast 465
16.8 Recommendation for next benchmark 466
16.9 Management considerations 466
16.10 References 467
16.11 Audit of nep.fu. 12 481
17 Norway lobster (Nephrops norvegicus) in Division 6.a, Functional Unit 13 (West of Scotland, the Firth of Clyde and Sound of Jura) 484
17.1 General 484
17.2 Data available 486
17.3 Assessment 489
17.4 Catch option table 489
17.5 Reference points 490
17.6 Management strategies 491
17.7 Quality of assessment and forecast 491
17.8 Recommendation for next benchmark 492
17.9 Management considerations 492
17.10 References 493
17.11 Audit of nep.fu. 13 510
18 Norway lobster (Nephrops norvegicus) in Division 7.a, Functional Unit 14 (Irish Sea, East) 513
18.1 Nephrops Subarea 7 general section 513
18.1.1 General 520
18.1.2 Data 522
18.1.3 Assessment 525
18.1.4 Catch option table 526
18.1.5 Reference points 526
18.1.6 Management strategies 527
18.1.7 Quality of assessment and forecast 527
18.1.8 Recommendation for next benchmark 527
18.1.9 Management considerations 528
18.1.10 References 528
18.2 Audit of Nephrops in Division 7.a (Irish Sea East, FU14) 542
19 Norway lobster (Nephrops norvegicus) in Division 7.a, Functional Unit 15 (Irish Sea, West) 545
19.1 General 545
19.2 Data 546
19.3 Assessment 549
19.4 Catch option table 549
19.5 Reference points 550
19.6 Management strategy 550
19.7 Quality of assessment and forecast 550
19.8 Recommendations for next benchmark 551
19.9 Management considerations 551
19.10 References 552
19.11 Audit of nep.fu. 15 569
20 Norway lobster (Nephrops norvegicus) in divisions 7.b-c and 7.j-k, Functional Unit 16 (west and southwest of Ireland, Porcupine Bank) 571
20.1 General 571
20.2 Closed area restrictions 574
20.3 Fishery in 2016 575
20.4 Data 576
20.5 Stock assessment 579
20.6 Reference points 580
20.7 Management strategies 580
20.8 Quality of assessment and forecast 580
20.9 Recommendation for next benchmark 580
20.10 Management considerations 580
20.11 References 581
21 Norway lobster (Nephrops norvegicus) in Division 7.b, Functional Unit 17 (west of Ireland, Aran grounds) 596
21.1 General 596
21.2 Data 597
21.3 Assessment 599
21.4 Catch option table 599
21.5 Reference points 600
21.6 Management strategies 600
21.7 Quality of assessment and forecast 600
21.8 Recommendation for next benchmark 601
21.9 Management considerations 601
21.10 References 601
22 Norway lobster (Nephrops norvegicus) in divisions 7.a, 7.g, and 7.j, Functional Unit 19 (Irish Sea, Celtic Sea, eastern part of southwest of Ireland) 621
22.1 General 621
22.2 Data 622
22.3 Assessment 625
22.4 Catch option table 626
22.5 Reference points 626
22.6 Management strategies 627
22.7 Quality of assessment and forecast 627
22.8 Recommendations for next benchmark 627
22.9 Management considerations 628
22.10 References 628
23 Norway lobster (Nephrops norvegicus) in divisions 7.g and 7.h, functional units 20 and 21 (Celtic Sea). 648
23.1 General 648
23.2 Data 650
23.3 Assessment 653
23.4 Catch options table 654
23.5 Reference points 654
23.6 Management plans 655
23.7 Quality of assessment and forecast 655
23.8 Recommendations for next benchmark 655
23.9 Management considerations 656
23.10 References 656
24 Norway lobster (Nephrops norvegicus) in divisions 7.g and 7.f, Functional Unit 22 (Celtic Sea, Bristol Channel) 674
24.1 General 674
24.2 Data 676
24.3 Assessment 678
24.4 Catch options table 679
24.5 Reference points 679
24.6 Management strategies 680
24.7 Quality of assessment and forecast 680
24.8 Recommendation for next benchmark 681
24.9 Management considerations 681
24.10 References 681
24.11 Audit of Nephrops FU22 (Smalls Grounds) 696
25 Plaice in Division 27.7.a (Irish Sea) 697
25.1 General 697
25.2 Data 699
25.3 Historical stock development 701
25.4 Short-term projections 704
25.5 Medium-term projections 705
25.6 MSY explorations 706
25.7 Management plans 706
25.8 Uncertainties and bias in assessment and forecast 706
25.9 Recommendations for next benchmark 706
25.10 Management considerations 707
25.11 Sources 707
26 Plaice in 7.bc (West of Ireland) 737
26.1 General 737
27 Plaice in the Western Channel (ICES Division 7.e) 741
27.1 General 741
27.1.1 Data-limited methods 749
27.1.2 Stock assessment 751
27.1.3 Short-term projections 755
27.1.4 Biological reference points 756
27.1.5 Management plans 756
27.1.6 Uncertainties and bias in assessment and forecast 757
27.1.7 Recommendations for next Benchmark 757
27.1.8 Management considerations 758
27.2 References 759
27.3 Audit of Plaice in 7.e 783
27.4 WKProxy review of WGCSE Ple.27.7e, Plaice (Pleuronectes platessa) in Division 7.e (Western English Channel) 784
28 Plaice in Divisions 7.f-g (Celtic Sea) 786
28.1 Type of assessment in 2017 786
28.2 Data 787
28.3 Stock assessment 790
28.4 Short-term projections 792
28.5 Precautionary approach reference points 792
28.6 Management plans 792
28.7 Uncertainties in assessment and forecast 793
28.8 References 793
28.9 WKProxy review of WGCSE Ple.27.7.fg (ple-celt) Plaice (Pleuronectes platessa) in divisions 7.f and 7.g (Bristol Channel, Celtic Sea) 824
29 Plaice in the southwest of Ireland (ICES Divisions 7.h-k) 826
29.1 General 826
29.2 Data 827
29.3 Historical stock development 828
29.4 MSY evaluation 829
29.5 Uncertainties and bias in the assessment and forecast 831
29.6 Recommendations for the next benchmark 832
29.7 Management considerations 832
29.8 References 832
29.9 Audit of plaice in Division 7.h-k (ple-7h-k) 854
30 Pollack in the Celtic Seas (ICES subareas 6 and 7) 855
30.1 General 855
30.1.1 Stock Identity 855
30.1.2 Management applicable to 2018 855
30.1.3 Biology 856
30.1.4 The fisheries 857
30.1.5 Surveys 857
30.2 Data 857
30.2.1 Landings 857
30.3 MSY explorations 858
30.3.1 DCAC model 858
30.3.2 Other DLS methods explorations 859
30.3.3 SPiCT 859
30.3.4 Length-based indicators and reference points: LBI methods 860
30.3.5 Mean length-based mortality estimators 860
30.4 Uncertainties in assessment and forecast 861
30.5 Ecosystem considerations 861
30.6 Management considerations 861
30.7 References 862
31 Seabass (Dicentrarchus labrax) in divisions 4.b-c, 7.a, and 7.d-h (central and southern North Sea, Irish Sea, English Channel, Bristol Channel, and Celtic Sea) 879
31.1 General 880
31.1.1 Management applicable to 2015 881
31.1.2 Management applicable to 2016 882
31.1.3 Management applicable to 2017 882
31.1.4 Fishery in 2016 883
31.2 Data 884
31.2.1 Landings data 884
31.2.2 Length compositions: commercial landings 884
31.2.3 Sampling rates 885
31.2.4 Length composition estimates for landings 885
31.2.5 Age composition estimates for landings 885
31.2.6 Commercial discards 886
31.2.7 Recreational catches 887
31.2.8 Biological data 891
31.2.9 Survey data used in assessment 897
31.2.10 Commercial landings per unit of effort 899
31.2.11 Other relevant data 899
31.3 Stock assessment 900
31.3.1 Model structure and input data / parameters for update assessment 900
31.3.2 Retrospective analyses 902
31.3.3 Final update assessment: long-term trends 902
31.3.4 Comparison with previous assessments 902
31.3.5 The state of the stock 903
31.3.6 Sensitivity of the final update assessment to data and assumptions 903
31.4 Biological reference points 904
31.5 Short-term predictions 905
31.5.1 Recruiting year-class strength 905
31.5.2 Numbers of fish in 2016 906
31.5.3 F-at-age vectors 906
31.5.4 Weights-at-age 906
31.5.5 Maturity ogive 906
31.5.6 Detailed short-term forecast output at status quo F 906
31.5.7 Management options 907
31.6 Uncertainties and bias in assessment and forecast 907
31.6.1 Landings and discards data 907
31.6.2 Fishery composition data 907
31.6.3 Recreational fishery harvests 908
31.6.4 Surveys 908
31.6.5 Commercial lpue indices 909
31.6.6 Model formulation 910
31.6.7 Stock structure and migrations 910
31.6.8 Biological parameters 910
31.6.9 Intermediate year fishing mortality and catch levels for forecasts 910
31.7 Recommendations for completion of the 2017 benchmark assessment 911
31.7.1 Full benchmark of NE Atlantic sea bass stocks 911
31.7.2 Management considerations 911
31.8 References 913
32 European sea bass in divisions 6.a, 7.b and 7.j (West of Scotland and Ireland) 985
33 Sole in Division 7.a (Irish Sea) 990
33.1 General 991
33.2 Stock assessment 996
33.3 Short-term projections 997
33.4 MSY explorations 997
33.5 Biological reference points 998
33.6 Management plans 998
33.7 Uncertainties and bias in assessment and forecast 999
33.8 Recommendations for next Benchmark 1000
33.9 Management considerations 1000
33.10 Ecosystem considerations 1001
33.11 References 1001
34 Sole in West of Ireland Division 7.bc 1031
34.1 General 1031
35 Sole in Division 7.e 1037
35.1 General 1037
35.2 Data 1039
35.3 Stock assessment 1043
35.4 Short-term projections 1046
35.5 Biological reference points 1046
35.6 Management plan 1047
35.7 Uncertainties in assessment and forecast 1047
35.8 Recommendation for the next benchmark 1049
35.9 Management considerations 1049
35.10 Ecosystem considerations 1050
35.11 Regulations and their effects 1050
35.12 Changes in fishing technology and fishing patterns 1050
35.13 Changes in the environment 1050
35.14 References 1050
35.15 Audit of Sole in 7.e 1095
36 Sole in divisions 7.f and 7.g 1114
36.1 General 1115
36.2 Data 1116
36.3 Stock assessment 1118
36.4 Short-term projections 1120
36.5 MSY explorations 1121
36.6 Biological reference points 1122
36.7 Management plans 1123
36.8 Uncertainties and bias in assessment and forecast 1123
36.9 Recommendation for next Benchmark 1124
36.10 Management considerations 1124
36.11 Ecosystem considerations 1125
36.12 References 1125
37 Sole in the Southwest of Ireland (ICES Divisions 7.h-k) 1175
37.1 General 1175
37.2 Data 1176
37.3 Historical stock assessment development 1177
37.4 MSY evaluation 1178
37.5 Uncertainties and bias in the assessment and forecast 1180
37.6 Recommendations for the next benchmark 1180
37.7 Management considerations 1180
37.8 References 1180
37.9 Audit of sole in divisions 7. h-k 1202
37 Sole in the Southwest of Ireland (ICES Divisions 7.h-k) 1175
37.1 General 1175
37.2 Data 1176
37.3 Historical stock assessment development 1177
37.4 MSY evaluation 1178
37.5 Uncertainties and bias in the assessment and forecast 1180
37.6 Recommendations for the next benchmark 1180
37.7 Management considerations 1180
37.8 References 1180
37.9 Audit of sole in divisions 7. h-k 1202
38 Whiting in Division 27.6.a 1203
38.1 General 1203
38.2 Data 1204
38.3 Historical stock development 1207
38.4 Short-term projections 1209
38.5 MSY explorations 1209
38.6 MSY and Biological reference points 1209
38.7 Management plans 1210
38.8 Uncertainties and bias in the assessment and forecast 1210
38.9 Recommendation for next benchmark 1210
38.10 Management considerations 1211
38.11 References 1211
38.12 Audit of wgh-scow (Division 27.6.a) 1252
39 Whiting in Division 27.6.b 1253
39.1 General 1253
39.2 Data 1254
39.3 Target category 1254
39.4 Management considerations 1255
39.1 Audit of whg-rock (Division 27.6b) 1261
40 Whiting in 7.a 1262
40.1 General 1262
40.2 Information from the Industry 1264
40.3 Data 1264
40.4 Historical stock development 1266
40.5 Short-term predictions 1266
40.6 Medium-term projection 1267
40.7 MSY evaluations and Biological Reference Points 1267
40.8 Management plans 1267
40.9 Uncertainties and bias in assessment and forecast 1267
40.10 Recommendations for next benchmark assessment 1269
40.11 Management considerations 1269
40.12 References 1269
41 Whiting in Division 7.b, c, e-k. 1311
41.1 General 1311
41.2 The fishery in 2016 1312
41.3 Data 1313
41.4 Historical stock development 1315
41.5 Short-term projections 1316
41.6 MSY evaluations and Biological reference points 1316
41.7 Management plans 1317
41.8 Uncertainties and bias in assessment and forecast 1317
41.9 Recommendation for next benchmark 1318
41.10 Management considerations 1318
41.11 References 1319
41.12 Tables 1320
41.13 Figures 1342
41.14 Audit of Whiting (Merlangius merlangus) in Divisions 7.b, c, and e- k (Southern Celtic seas and Eastern English Channel) 1354
Annex 1: Participants list 1356
Annex 2: WGCSE Stock Annexes 1361
Annex 3: Working Documents presented to WGCSE 2017 1366Annex 4: \quad Technical Minutes of the Review Group for the ReviewGroup of Celtic Sea Stocks (RGCS)1413

Executive Summary

The ICES Working Group for the Celtic Seas Ecoregion (WGCSE) met from 9th-18th May 2017 at ICES Headquarters in Copenhagen. The participants were from five countries; Belgium, France, Ireland, the Russian Federation and the UK. Of the 29 participants, 14 attended all of the meeting, eight attended part-time, and seven contributed by correspondence. The WG was supported throughout by a professional from ICES secretariat who assisted the WG with their advice drafting tasks. The meeting was chaired by Tim Earl and Helen Dobby (UK).

In total the WG is responsible for the provision of updated fisheries data, assessments and draft advice for 39 demersal fish and Nephrops stocks across ICES subareas 6 and 7 (with the distribution of megrim extending into Division 4.a, sea bass into 4.b,c and anglerfish into Subarea 4 and Division 3.a). This includes twelve Nephrops stocks, five sole and plaice stocks, four cod and whiting stocks, three haddock stocks, two each of megrim and sea bass, one anglerfish and one putative pollock stock. As in previous years, advice for Nephrops, anglerfish and Rockall megrim is not issued until autumn to make use of the most up to date survey information. Advice for sea bass has been delayed until autumn this year, to allow changes in the assessment data to be fully reviewed. Advice from the remaining stocks was scheduled for release on the 30th June.

Since the last Working Group meeting five stocks have gone through an Interbenchmark procedure; cod.27.7.a, had.27.7.a, ple.27.7.a, whg.27.7.a and bss.27.4.b.c7.a.d-h the results of which were presented to the group. The Working Group considered reference points for all category 3 and 4 stocks.

Update assessments were generally carried out according to the stock annexes (any deviations were detailed in the stock sections). Overall the stock status across the ecoregion shows a slight improvement relative to that presented last year. Of the 39 stocks assessed, 20 were fished below $\mathrm{F}_{\text {mSy }}$ and 18 were above MSY Btrigger, ten stocks were fished above $\mathrm{Fmsy}_{\text {m }}$ and ten were below MSY Btrigger, nine stocks had unknown status relative to $\mathrm{Fmsy}_{\text {m }}$ and eleven relative to $\mathrm{B}_{\text {trigger }}$ (see table below).

Number of stocks relative to reference points by WG year:

	2011	2012	2013	2014	2016	2017
F Below FMSY	17	11	14	16	19	20
F Above FMSY	9	14	13	11	10	10
Unknown	10	11	12	12	10	9
SSB Above B trigger	2011	2012	2013	2014	2016	2017
SSB Below $B_{\text {trigger }}$	13	13	11	13	15	18
Unknown	5	4	5	7	11	10

West of Scotland cod remains severely depleted, but the Nephrops stocks within functional units 11-13 and megrim in divisions 6.a and 4.a are exploited below FMSY and have biomass or abundance above MSY Btrigger. The assessment of Northern Shelf anglerfish stock also shows an increase in stock size and decrease in harvest rate, although reference points have not been defined for this stock.

In the Irish Sea, the WKIrish benchmark has resulted in an upgrading of the assessments for haddock, plaice and whiting from category 3 to category 1 , and the adoption of a model for cod that allows forecasts to be performed. Sole remains below Blim, but fishing is below Flim, and there are initial signs of increasing biomass and recruitment. Whiting in 7.a remains at a very low level relative to the past and remains severely depleted. Cod, haddock and plaice biomass are above possible reference points and increasing. The two Nephrops stocks FU15 and FU14 are above Btriger. FU14 and below Fmsr.

Further south, in the Celtic Sea and West of Ireland areas, the biomass of haddock and whiting stocks have been at a high level well above MSY Btrigger in recent years following some high or moderate recruitment. The cod stock is slightly below Blim, but forecast to increase above Blim during 2017, despite fishing pressure being consistently above Fmş. Among the Nephrops stocks in this area, three stocks are below MSY Btrigge: functional units 17, 19 and 22, and the remaining have no biomass reference points. Functional units 16, 19 and $20-21$ are estimated to be exploited below Fmş, while the remaining functional units are above Fmsr.

Celtic Sea sole is now assessed as being fished above FnsY although the SSB remains above MSY Btrigger. Reference points were adopted at the Working Group for ple.27.7.fg, ple.27.7.h-k and sol.27.7.h-k. Both sol.27.7.h-k and ple.27.7.fg are above MSY Btriger and below FmSY, whereas ple.27.7.h-k is below Blim and fishing pressure remains above Flim.

The assessment for sea bass in 4.b.c, 7.a and 7.d-h could not be updated at WGCSE 2017 due to a substantial revision to the calculation of lpue data used as tuning for the assessment.

1.1 Terms of reference

1.1.1 Generic ToRs

2016/2/ACOM05 The following ToRs apply to: AFWG, HAWG, NWWG, NIPAG, WGWIDE, WGBAST, WGBFAS, WGNSSK, WGCSE, WGDEEP, WGBIE, WGEEL, WGEF, WGHANSA and WGNAS.

The working group should focus on

a) Consider and comment on ecosystem and fisheries overviews where available;
b) For the aim of providing input for the Fisheries Overviews, consider and comment for the fisheries relevant to the working group on:
i) descriptions of ecosystem impacts of fisheries
ii) descriptions of developments and recent changes to the fisheries
iii) mixed fisheries overview, and
iv) emerging issues of relevance for the management of the fisheries;
c) Conduct an assessment to update advice on the stock(s) using the method (analytical, forecast or trends indicators) as described in the stock annex and produce a brief report of the work carried out regarding the stock, summarising where the item is relevant:
i) Input data and examination of data quality;
ii) Where misreporting of catches is significant, provide qualitative and where possible quantitative information and describe the methods used to obtain the information;
iii) For relevant stocks (i.e. all stocks with catches in the NEAFC area) estimate the percentage of the total catch that has been taken in the NEAFC Regulatory Area in the last year.
iv) The developments in spawning-stock biomass, total-stock biomass, fishing mortality, catches (wanted and unwanted landings and discards) using the method described in the stock annex;
v) The state of the stocks against relevant reference points;
vi) Catch options for next year;
vii)Historical performance of the assessment and catch options and brief description of quality issues with these;
d) Produce a first draft of the advice on the fish stocks and fisheries under considerations according to ACOM guidelines.
e) Review progress on benchmark processes of relevance to the expert group;
f) Prepare the data calls for the next year update assessment and for the planned data evaluation workshops;
g) Identify research needs of relevance for the expert group.

Information of the stocks to be considered by each Expert Group is available here.

1.1.2 Specific ToRs

2016/2/ACOM13 The Working Group for the Celtic Seas Ecoregion (WGCSE), chaired by Timothy Earl, UK and Helen Dobby, Scotland, UK will meet at ICES Headquarters, Copenhagen, Denmark, 9-18 May 2017 and by correspondence September / October 2017 to:
a) Address generic ToRs for Regional and Species Working Groups;
b) Report on reopened advice if appropriate;
c) Estimate MSY proxy reference points for the category 3 and 4 stocks in need of new advice in 2017 (see table below).
i) Collate necessary data and information for the stocks listed below prior to the Expert Group meeting. An official ICES data call was made for length and select life-history parameters for each stock in the table below;
ii) Propose appropriate MSY proxies for each of the stocks listed below by using methods provided in the ICES Technical Guidelines (i.e. peer reviewed methods that were developed by WKLIFE V, WKLIFE VI, and WKProxy) along with available data and expert judgement.

Stock Code	Stock name description	EG	Data Category
anf.27.3a46	Anglerfish (Lophius piscatorius and L. budegassa) in subareas 4 and 6, and in Division 3.a (North Sea, Rockall and West of Scotland, Skagerrak and Kattegat)	WGCSE	3
had.27.7a	Haddock (Melanogrammus aeglefinus) in Division 7.a (Irish Sea)	WGCSE	3.2
lez.27.6b	Megrim (Lepidorhombus spp.) in Division 6.b (Rockall)	WGCSE	3
nep.fu. 2021	Norway lobster (Nephrops norvegicus) in divisions 7.g and 7.h, functional units 20 and 21 (Celtic Sea)	WGCSE	4
ple.27.7a	Plaice (Pleuronectes platessa) in Division 7.a (Irish Sea)	WGCSE	3.2
ple.27.7e	Plaice (Pleuronectes platessa) in Division 7.e (western English Channel)	WGCSE	3.2
ple. 27.7 fg	Plaice (Pleuronectes platessa) in divisions 7.f and 7.g (Bristol Channel, Celtic Sea)	WGCSE	3.2
ple.27.7h-k	Plaice (Pleuronectes platessa) in divisions 7h-k (Celtic Sea South, southwest of Ireland)	WGCSE	3.2
pol.27.67	Pollack (Pollachius pollachius) in subareas 6-7 (Celtic Seas and the English Channel)	WGCSE	4.12
sol.27.7h-k	Sole (Solea solea) in divisions 7.h-k (Celtic Sea South, southwest of Ireland)	WGCSE	3.2
whg.27.7a	Whiting (Merlangius merlangus) in Division 7.a (Irish Sea)	WGCSE	3.14

The assessments will be carried out on the basis of the stock annex. The assessments must be available for audit on the first day of the meeting.

Material and data relevant for the meeting must be available to the group no later than 25 April 2017 according to the Data Call 2017.

WGCSE will report by 25 May 2017 for the attention of ACOM, and by 7 October 2017 for Nephrops stocks, anglerfish and megrim in Rockall. Concerning ToR b) the group will report on the ACOM guidelines on reopening procedure of the advice before 12 October and will report on reopened advice before 28 October.

1.1.3 Additional ToR

The Workshop on the Development of the ICES approach to providing MSY advice for category 3 and 4 stocks (WKMSYCat34) met on 6 to 10 March 2017. One of the ToRs was "Defining a set of criteria for the identification of category 3 and 4 stocks that should be candidates for full analytical assessment with forecast, and identifying some candidate stocks."

In response to this ToR, WKMSYCat34 developed a template to evaluate if a stock could be a candidate for a full analytical assessment with forecast (i.e. category 1) after a benchmark-type or similar process. The template was tested on three example stocks and was found to provide the necessary information to identify the potential candidate stocks.

WKMSYCat34 recommended that the template be used by the stock assessment expert groups in 2017 to identify candidate stocks for category 1.

Below I have included the relevant chapter of the WKMSYCat34 report.
The ACOM leadership has discussed the recommendation and agrees that the template is a useful tool to identify candidate category 3 and 4 stocks for full analytical assessment. The leadership also supports the recommendation to request stock assessment groups to apply the template.

The ACOM leadership is aware that adding a new ToR to your group at this stage is not optimal and that it may be difficult to find time to address the request. However, the input from your group is crucial to be able to move forward with this. For this reason, I would like to request that you read the chapter below from the WKMSYCat34 report and consider to what extent your group will be able to apply (fully or partly) the template for category 3 and 4 stocks assessed by your group.

1.2 Participation

The number of participants able to attend the Working Group for the full duration of the meeting continues to decline (Figures 1.2.1 and 1.2.2) but this year showed an increase in the total number of people participating due to an increase in numbers participating part-time (this includes members working by correspondence). As last year, seven institutes were represented by full-time participants at the meeting.

Figure 1.2.1. Numbers of WGCSE full-time participants by institute over time.

Figure 1.2.2. Numbers of WGCSE participants over time and whether they were full-time or parttime (part-time includes working by correspondence).

Figure 1.2.3. Number of participants in WGCSE 2017 by day.

1.3 Methods

The type of final assessments presented at the WG are summarised as follows:

- Category 1 age-based assessments and forecasts were conducted for cod.27.6.a, cod 27.7.a, cod.27.7.e-k, had.27.6.b, had.27.7.a, had.27.7.b-k, ple.27.7.a, sol.27.7.a, sol.27.7.fg, sol.27.7.e, whi.27.6.a, whi.27.7.a, whg.27.7.b-ce-k;
- Category 1 Bayesian surplus production model for lez.27.4.a6.a;
- Category 1: UWTV survey based assessments and advice were used for nep.fu.11, nep.fu.12, nep.fu.13, nep.fu.14, nep.fu.15, nep.fu.16, nep.fu.17, nep.fu.19, nep.fu. 2021 and nep.fu.22. Fisheries data were updated at the May meeting and survey data were updated in the autumn.
- Category 3: Catch-at-age based assessments with caveats i.e. used for trends only and without forecasts for ple.27.7.e, ple.27.7.h-k and sol.27.7.h-k.
- Category 3: Assessments based on survey data (Surba model or survey index) are used as the assessment and advice basis for anf.27.3a46, lez.27.6b, and ple.27.7fg.
- Category 4: Depletion corrected average catch was used for pol.27.67.
- Category 5 \& 6: No assessments were carried out in 2016 for bss.27.6bc7ad-h, ple.27.7bc, sol.27.7bc, cod.6b, whi.27.6b, nep.27.6aoutFU and nep.27.7outFU; only landings statistics were updated.
- No assessment could be performed at the working group for bss.27.4bc7ad-h due to changes in the calculation of the lpue index, which the Working Group considered needed an external review.

For the stocks for which a full analytical assessment was possible, the WG typically used either Extended Survivor's Analysis (XSA), Time-Series Analysis (TSA), or AgeStructured Assessment Program (ASAP). These approaches and procedures for using them are discussed in further detail in the relevant stock annexes.

1.4 Internal auditing and external reviews

This year ICES reinstated the external review process, establishing a Review Group (RG) with the responsibility of auditing all category 1 stocks ahead of the ADG. No major errors were detected by this process, but the RG did provide some useful comments to be considered in next year's assessments.

In addition, the WG again carried out its own internal audit process using the standard ICES template. Stocks audited by the WG included: cod.27.6b, cod.27.7a, cod.27.7e-k, had.27.7a, had.27.7b-k, ple.27.7e, ple.27.7fg, sol.27.7bc, sol.27.7e, sol.27.7fg, sol.27.7h-k, whg.27.6a, whg.27.6b, whg.27.7bce-k. Given the workload of many of the scientists at WGCSE (sometimes with one scientist responsible for two or more stocks), many of the reports were not finalized until after the WG meeting. Audits were therefore typically carried out by correspondence after the WG and not completed for some stocks. Lack of thorough review (due to time pressures) for a number of more minor category 3 stocks resulted in assessment errors being identified at the ADG and assessments and having to be re-run as a result.

1.5 ToR e WGCSE recommendations for stocks to be benchmarked

WGCSE recommend that cod, haddock and whiting in the Celtic Sea should be benchmarked together in 2018, and that sole in the Celtic Sea, haddock in Rockall, anglerfish in 3a46 should also be benchmarked in 2018. The WG also agreed that there is a need to benchmark both West of Scotland whiting and West of Scotland cod in the near future. However, given the issues associated with stock structure (for cod in particular), it may be appropriate to conduct West of Scotland and North Sea cod benchmarks concurrently. The focus of the benchmarks would be on streamlining data compilation procedures for fishery-dependent and survey data. This will give improved transparency and diagnostics surrounding commercial tuning fleets and surveys. The benchmark should also relook at the assessment methods and diagnostics given the potential for changes in selectivity in the commercial fishery. The benchmark should also investigate mixed fisheries and multispecies interactions as well as environmental drivers that may be impacting on growth and recruitment of all three species. Further details are given in the stock sections.

1.6 ToR c(ii) Estimation of MSY proxy reference points

The Terms of reference contained a list of eleven stocks for which proxy reference points should be considered. The Working Group addressed this Tor as follows.

- For three stocks (haddock, plaice and whiting in the Irish Sea), the WKIrish benchmark had already addressed this issue by calculating reference point based on category 1 assessments, and the results were presented to the Working Group and adopted.
- For three stocks (plaice in 7.e and in 7.h-k, sole in 7.h-k) age-based assessments are performed, although only used as relative indicators of stock status. For these stocks, reference points were estimated using the package EqSim, and the method of WKMSYREF4.
- For pollack in subareas 6-7, the current DCAC assessment provides indication of whether the stock is being exploited below FMSY. But no indication of a how biomass compares to any reference point. Alternative proxies using length-based methods and SpiCT were presented to the Working

Group, but judged to be unsatisfactory, and so the DCAC estimation was used.

- For plaice in 7.fg, a SpiCT assessment using survey and lpue data, combined with a hind-cast of discards was used to estimate the stock status relative to reference points.
- For Nephrops in functional units 20-21, proxy reference already exist, and there were no alternative approaches proposed.
- For megrim in Rockall, the majority of work for this stock is completed later in the year in time for Autumn advice.
- For anglerfish in subareas $4 \& 6$, none of the DL approaches for estimating proxy reference points proved entirely satisfactory. This stock is scheduled to be benchmarked in 2018, and so the work of finding suitable reference points was deferred until the assessment has been reviewed.

1.7 Completion of checklist for upgrading category 3 and 4 stocks

To address the additional ToR regarding completing the checklist for upgrading the category 3 and 4 stocks, the following progress was made:

- For plaice in 7.e and anglerfish in subareas $4 \& 6$ a checklist was completed and is included in this report in the relevant sections.
- For and plaice in 7.fg, which are planned to be benchmarked this winter, the issues lists were updated, and so the checklist was considered redundant.

For plaice in $7 . \mathrm{h}-\mathrm{k}$, sole in $7 . \mathrm{h}-\mathrm{k}$, pollock in subareas $6-7$, nephrops in functional units 20-21 (which is now a category 1 stock) and megrim in Rockall no checklists were completed.

Annex 1: Participants list

Name	Address	Phone/Fax	E-mail
Eric Foucher	Ifremer PO Box 32 Avenue du Général De Gaulle 14520 Port-en-Bessin France	$\begin{aligned} & \text { Phone }+33 \\ & 231515644 \end{aligned}$	Eric.foucher@ifremer.fr
Thomas Gibson	Marine Science Scotland Marine Laboratory PO Box 101 375 Victoria Road Aberdeen AB11 9DB Scotland, UK	$\begin{aligned} & \text { Cell }+44 \\ & 79289 \\ & 91931 \end{aligned}$	Thomas.Gibson2@gov.scot
Imelda Hehir	Marine Institute Rinville Oranmore Co Galway Ireland	$\begin{aligned} & +353 \\ & 91387200 \end{aligned}$	imelda.hehir@marine.ie
Helen Holah	Marine Laboratory 375 Victoria Road Room B17 Aberdeen AB11 9DB UK	$\begin{aligned} & \hline+441224 \\ & 295349 \\ & \text { Cell }+44 \\ & 7837051664 \end{aligned}$	helen.holah@gov.scot holahh@marlab.ac.uk
Kieran Hyder by correspondence	Cefas Pakefield Road Lowestoft Suffolk NR33 0HT UK		Kieran.hyder@cefas.co.uk
Andrzej Jaworski	Marine Scotland- Science 375 Victoria Road Aberdeen AB11 9DB Scotland, UK	$\begin{aligned} & \text { Phone }+44 \\ & 1224 \\ & 295427 \end{aligned}$	A.Jaworski@MARLAB.AC.UK
Vladimir Khlivnoi by correspondence	Knipovich Polar Research Institute of Marine Fisheries and Oceanography(PINRO) 6 Knipovitch Street 183038 Murmansk Russian Federation	$\begin{aligned} & \text { Fax }+47789 \\ & 1058 \end{aligned}$	khlivn@pinro.ru
Vladimir Laptikovsky	Cefas Pakefield Road Lowestoft Suffolk NR33 0HT UK	$\begin{aligned} & +441502 \\ & 524271 \end{aligned}$	Vladimir.laptikhovsky@cefas.co.uk
Colm Lordan	Colm Lordan Marine Institute Rinville Oranmore Co. Galway Ireland	Phone + 353 91387387 (or *200) / mobile +35 876995708 Fax +353 91 387201	colm.lordan@marine.ie

Name	Address	Phone/Fax	E-mail
Mathieu Lundy	AFBI 18a Newforge Lane Belfast BT9 5PX UK	$\begin{aligned} & \text { Phone }+44 \\ & \hline \end{aligned}$	Mathieu.Lundy@afbini.gov.uk
Claire Moore by correspondence	Marine Institute Rinville Oranmore Co. Galway Ireland	$\begin{aligned} & +35391 \\ & 387200 \end{aligned}$	claire.moore@Marine.ie
Sara-Jane Moore by correspondence	Marine Institute Rinville Oranmore Co. Galway Ireland	$\begin{aligned} & +35391 \\ & 387200 \end{aligned}$	Sara-jane.moore@marine.ie
Sofie Nimmegeers	Institute for Agricultural and Fisheries Research (ILVO) Ankerstraat 1 8400 Oostende Belgium	$\begin{aligned} & \text { Phone +32 } \\ & 59569806 \end{aligned}$	sofie.nimmegeers@ilvo.vlaanderen.be
Lisa Readdy	Cefas Pakefield Road Lowestoft Suffolk NR33 0HT UK	$\begin{aligned} & \text { Tel: }+44 \\ & 1502 \\ & 524319 \end{aligned}$	lisa.readdy@cefas.co.uk
Marianne Robert	Ifremer 8 rue François Toullec 56100 Lorient France	+33	Marianne.robert@ifremer.fr
Pia Schuchert	AFBI 18a Newforge Lane Belfast BT9 5PX UK		Pia.Schuchert@afbini.gov.uk
Stephen Shaw	Cefas Pakefield Road Lowestoft Suffolk NR33 0HT UK	$\begin{aligned} & +441502 \\ & 524502 \end{aligned}$	stephen.shaw@cefas.co.uk
Jonathan Shrives Observer	DGMare 200 rue de la Loi Unit C. 1 J79 02/53 1049 Brussels Belgium	$\begin{aligned} & \text { +32 229- } \\ & 62681 \end{aligned}$	jonathan.shrives@ec.europa.eu
David Stokes	Marine Institute Rinville Oranmore Co. Galway Ireland	$\begin{aligned} & +35391 \\ & 387200 \end{aligned}$	david.stokes@marine.ie

Name	Address	Phone/Fax	E-mail
Katie Thomas	Marine Institute		Katie.Thomas@marine.ie
	Rinville		
	Oranmore		
	Co. Galway		
	Ireland		
Jonathan White	Demersal fisheries	+35391387	Jonathan.white@marine.ie
	Fisheries Ecosystems	361	
	Advisory Services		
	Marine Institute		
	Oranmore, Galway		
	Ireland		

4 Anglerfish (Lophius budegassa and Lophius piscatorius) in subareas 4 and 6, and in Division 3.a (North Sea, Rockall and West of Scotland, Skagerrak and Kattegat)

Assessment in 2017

In 2016, the assessment was based on a stock size indicator from survey data and the advice followed the agreed procedures for category 3.2.0 of ICES RGLIFE datalimited stock (DLS) methods as set out in the stock annex. The advice is issued in October each year following the work up of the spring survey which is not available in time for the WG. This report therefore summarises last year's assessment and describes the commercial data available for 2016. The survey work up will be provided in a working document ahead of the autumn ADG.

ICES advice applicable to 2016 and 2017

ICES advice for 2016

ICES advises that when the precautionary approach is applied, catches in 2016 should be no more than 18435 tonnes. If discard rates do not change from the average of the last three years (2012-2014), this implies landings of no more than 17642 tonnes.

ICES advice for 2017
ICES advises that when the precautionary approach is applied, catches in 2017 should be no more than 22007 tonnes. If discard rates do not change from the average of the last three years (2013-2015), this implies landings of no more than 21171 tonnes.

4.1 Genera

Stock description and management units

The anglerfish stock on the Northern Shelf is considered to occur in Division 3.a (Skagerrak and Kattegat), Subarea 4 (the North Sea) and Subarea 6 (West of Scotland plus Rockall). Anglerfish in the North Sea and Skagerrak/Kattegat were considered by this Working Group for the first time in 1999. The WGNSDS in 2004 considered the stock structure of anglerfish on a wider European scale, and found no conclusive evidence to indicate an extension of the stock area northwards to include Division 2.a. In 2013, Division 2.a was removed from WGCSE ToR.

Management applicable to 2016 and 2017

	Species:	Anglerfish	Zone:
	Lophiidae	Union waters of IIa and IV	
Belgium		(ANF/2AC4-C)	
Denmark	$398\left({ }^{1}\right)$		
Germany	$878\left({ }^{1}\right)$		
France	$429\left({ }^{1}\right)$		
The Netherlands	$82\left({ }^{1}\right)$		
Sweden	$301\left({ }^{1}\right)$		
United Kingdom	$10\left({ }^{1}\right)$		
Union	$9169\left({ }^{1}\right)$		
TAC	$11267\left({ }^{1}\right)$		

${ }^{(1)}$ Special condition: of which up to 10% may be fished in: 6; Union and international waters of 5.b; international waters of 12 and 14 (ANF/*56-14).

Species	Anglerfish	Zone:	Norwegian waters of 4
	Lophiidae		(ANF/04-N.)
Belgium		45	
Denmark		1152	
Germany		18	
The Netherlands		16	Analytical TAC
United Kingdom		269	Article 3 of Regulation (EC)
Union		1500	No 847/96 shall not apply
TAC	Not relevant	Article 4 of Regulation (EC)	
			No 847/96 shall not apply
Species	Anglerfish	Zone:	6; Union and international waters of
	Lophiidae		5.b; international waters of 7 and 14
			(ANF/56-14)
Belgium		229	
Germany		262	
Spain		245	
France		2818	
Ireland		638	
The Netherlands		221	
United Kingdom		1962	
Union		6375	
TAC		6375	Precautionary TAC

COUNCIL REGULATION (EU) No 72/2016 of 22 January 2016 fixing for 2016 the fishing opportunities available to EU vessels for certain fish stocks and groups of fish stocks which are not subject to international negotiations or agreements.

Species:	Anglerfish	Zone:	Union waters of 2.a and 4
	Lophiidae		(ANF/2AC4- C)
Belgium		$478\left({ }^{1}\right)$	
Denmark		$1054{ }^{(1)}$	
Germany		515 (${ }^{1}$)	
France		$98\left({ }^{1}\right)$	
The Netherlands		$361\left({ }^{1}\right)$	
Sweden		$12\left({ }^{1}\right)$	
United Kingdom		$11003{ }^{(1)}$	
Union		$13521\left(1^{(1)}\right.$	
TAC		13521	Analytical TAC

${ }^{(1)}$ Special condition: of which up to 10% may be fished in: 6; Union and international waters of 5 b; international waters of 12 and 14 (ANF/*56-14).

Species	Anglerfish	Zone:	Norwegian waters of 4
	Lophiidae		(ANF/04-N.)
Belgium		45	
Denmark		1152	
Germany		18	
The Netherlands		16	Analytical TAC
United Kingdom		269	Article 3 of Regulation (EC)
Union		1500	No 847/96 shall not apply
TAC	Not relevant		Article 4 of Regulation (EC)
			No 847/96 shall not apply
Species	Anglerfish	Zone	6; Union and international waters of 5.b; international waters of 7 and 14
	Lophiidae		(ANF/56-14)
Belgium		275	
Germany		314	
Spain		294	
France		3383	
Ireland		765	
The Netherlands		265	
United Kingdom		2354	
Union		7650	
TAC		7650	Precautionary TAC

COUNCIL REGULATION (EU) No 127/2017 of 20 January 2017 fixing for 2016 the fishing opportunities available to EU vessels for certain fish stocks and groups of fish stocks which are not subject to international negotiations or agreements.

Management of Northern Shelf anglerfish is based on separate TACs for the North Sea Subarea 4 and West of Scotland Subarea 6. There is no TAC for Skagerrak and Kattegat Division 3.a. Table 4.1 summarises the ICES advice and actual management applicable for Northern Shelf anglerfish during 2003-2017.

Fishery description

A more detailed description of the fisheries can be found in the Stock Annex. The official national landings as reported to ICES are given in Table 4.2 and the breakdown by country in Tables 4.3-4.5. Minor revisions were made in 2017 to tables using the ICES Historical Nominal Catches 1950-2010 catch statistics datset for the time period 1991-2010 and the most up to date values from the ICES Official Nominal Catches 2006-2014 catch statistics dataset for the time period 2011-2014. Preliminary catch statistics were used for 2015-2016. Total officially reported landings of anglerfish from the Northern Shelf are shown in Figure 4.1.

The fishery in 2016

Official landings in 2016 for subareas 6 and 4 were 18919 t (6042 t and 12877 t), giving a 1% undershoot of the combined TAC of $19142 \mathrm{t}(95 \%$ and 101% TAC uptake respectively). In Subarea 6 Belgium (0\%), the Netherlands (0\%) and France (62\%) had noticeably low uptakes. These were the same countries, along with Germany observed to significantly undertake their quota in Subarea 4; Belgium (57\%), France (44%), Germany (51%) and the Netherlands (47%). The UK exceeded its quota in Subarea 6 (by 56%) as did Ireland (by 15%). In Subarea 4 Denmark exceeded its quota by 3%. Over quota landings were most likely due to countries obtaining additional quota from other EU member states, or carrying forward unutilised quota from 2015 and using a flexibility allowance whereby 10% of four TAC can be utilised to reattribute landings from Subarea 6.

Uptake of EC quota in 2016, based on the preliminary officially reported landings, was as follows:

	$\begin{gathered} \text { TAC } \\ 6 \end{gathered}$	Landings 6	Uptake (\%)	TAC 4 (Norwegian)	$\begin{gathered} \text { TAC } 2 . \mathrm{a} \\ \& 4 \end{gathered}$	$\begin{aligned} & \text { TAC 2.a \& } \\ & \text { 4(total) } \end{aligned}$	Landings 4	Uptake (\%)
Belgium	229	-	0\%	45	398	443	253	57\%
Denmark	-	-	-	1152	878	2030	2088	103\%
France	2818	1734	62\%	-	82	82	36	44\%
Germany	262	258	98\%	18	429	447	226	51\%
Ireland	638	735	115\%	-	-	-	-	-
Netherlands	221	-	0\%	16	301	317	148	47\%
Norway	-	12	-	-	-	-	624	-
Russia	-	-	-	-	-	-	-	-
Spain	245	234	96\%	-	-	-	-	-
Sweden	-	-	-	-	10	10	10	100\%
UK (total)	1962	3069	156\%	269	9169	9438	9429	100\%
Total Union TAC	6375	6042	95\%	1500	11267	12767	12877	101\%

${ }^{1}$ TAC applies to $6,5 . b$ (EC), and international waters of 7 and 14.
${ }^{2}$ Norwegian waters.

Based on data submitted to ICES, the fishery was principally prosecuted by vessels using demersal trawls, targeting either white fish (77\% of total landings by weight) or Nephrops (3\%). Alongside these fleets there was also a significant gillnet fishery (13\%), as well as an assortment of other gears in which small quantities of anglerfish are caught as bycatch. The latter have been grouped here as miscellaneous gears (7\%). A larger proportion of the landings were taken by demersal trawls in 2016 in comparison with 2015 (69%) and a lower proportion, by both the Nehrops and gillnet fleets.

UK (Scottish) vessels accounted for the majority of reported anglerfish landings from the combined Northern Shelf area, taking approximately 62% of the landings overall. Scottish, Danish and Norwegian vessels took $75 \%, 17 \%$ and 5%, respectively, of the North Sea (Divisions 4.a-4.c) landings. Scottish, French and Irish vessels took 46\%, 29% and 12%, respectively, of the West Coast (Subarea 6) landings. In 2013, landings were at their lowest level since the late 1980s, well below the TAC, since then they have increased by over 60%. Anecdotal information on the fishery in 2016 from industry representatives is that catches are increasing and subsequently quota uptake is higher on the same time in previous years. There are also reports of a large amount of small juveniles being seen in the inshore areas.

Landings in Division 3.a are not regulated: Table 4.5 shows the official landings which had fluctuated between 400-500 t since 2005, in 2016 they have increased significantly to 596 t.

4.2 Data

Landings

National landings data as reported to ICES and Working Group estimates of total landings are given in Table 4.2. The working group procedures used to determine the
total international landings numbers and weights-at-length are documented in the stock annex. It is acknowledged that throughout the landings time-series there have consistently been differences between the total official landings and the landings as estimated by the WG. This is likely due to differences in the data provided to the WG by national scientists and administrators.

Due to restrictive TACs, the likelihood of misreporting and underreporting of anglerfish landings in the past is considered to have been high, particularly during the period 2003-2005. During the benchmark at WKROUND (ICES, 2013), it was agreed that recent landings are likely to be more accurate due to, i) less restrictive TACs, ii) the introduction of buyers and sellers legislation in the UK Ireland and iii) the offshore gillnet fishery for anglerfish historically conducted by Spanish flagged vessels and thought to under-report landings, is now much reduced. Anecdotal reports from fisheries offices and catch sampling staff suggest that towards the end of 2016 and into 2017 the high abundance of anglerfish on the grounds, and the restrictive quota are leading to an increase in suspected misreporting, discarding and black landings. During the period 2005-2010, landings data were not provided to the Working Group by some of the major nations exploiting the fishery and hence WG estimates of the actual subarea 6 and 4 landings have not been calculated for this period.

Discards

Discard estimates have been available within InterCatch since 2012. The breakdown of landings and discards by main gear group and area for 2016 is given in Table 4.6. Discard data indicate that discarding in this fishery is relatively low due to high market value and no MLS. Overall discarding was 4.24% of total catch in 2016, an almost twofold increase on the 2015 rate of 2.6%. Demersal TR2 trawlers had the highest discard rate due to more restrictive quota share, 43.9% in 2016 up from 22.8% in 2015. In comparison TR1 trawlers, gillnets and miscellaneous gear types had much lower rates of $2.5 \%, 4.8 \%$ and 3.1% respectively. Discards in Subarea 4 (508 t) were higher than in Subarea 6 (314 t), however the percentage of discards was higher for Subarea 6 (5.3% compared to 3.9%).
Figures $4.3(\mathrm{a}-\mathrm{c})$ show the percentage of landed weight by fleet, country and area. Length-frequency samples for catch in 2016 were submitted by Denmark, France, Germany, Ireland and the UK. There was good coverage of both the demersal TR1 and TR2 fleets in Subarea 4 and Division 6.a. However once again there were poor levels of sampling for the TR1 fleet in Division 27.6.b with only four samples for landings (Ireland: 292 fish) and five for discards (UK (Scotland): 308 fish). The gillnet fleet on the whole was poorly sampled in all areas, with only two discard samples (Danish) totalling three fish measured and no samples from UK-flag vessels which alone accounted for approximately 8% of all landings.

Discard data are used in the provision of catch advice which is based on the DLS approach (ICES, 2012).

Biological

An anglerfish ageing exchange was held in 2011 to investigate the possibility of the collation of an international landings-at-age dataset, however little agreement was found between methods or readers. This was acknowledged in the findings of the WKROUND report on current assessment and issues with data and assessment of this stock (ICES, 2013). Recommendations of this report included examining the suitability of growth model for this stock, exploring simple harvest control rules with
appropriate biological reference points and collating an international catch-at-length dataset for use in an integrated stock synthesis assessment as is applied in southern anglerfish stocks.

Research vessel surveys

The 2016 SCO-IV-VI-AMISS-Q2 survey is described in detail in the Stock Annex and the most recent results of the 2016 SCO-IV-VI-AMISS-Q2 can be found in the working document (Barreto, E and Clarke, L., 2016). This is a targeted anglerfish survey using commercial gear, covering subareas 4 and 6 . The abundance and biomass estimates from the surveys are presented in Tables 4.7 and 4.8. The total biomass estimates for the Northern Shelf in 2015 and 2016 were 67915 t and 77946 t respectively.

Both total numbers and total biomass had been increasing since 2011 (Table 4.8 and Figure 4.6) however in 2016 there was a reduction in total numbers whilst biomass continued to increase. The substantial increases in numbers (2014-2015) and biomass (2014-2016) is due to a large number of small fish having entered the stock in 2013 (Figure 4.6). The scale of this year class has not previously been seen in the SCO-IV-VI-AMISS-Q2 survey (for years for which length data are currently available 20072015) (Figure 4.8). Whilst this year class was clearly identifiable in 2014 and 2015 in the total survey abundance-at-length (Figure 4.8) 2016 is the first year in which the year class's contribution to total biomass-at-length is markedly apparent (Figure 5.2.9).

After a period of low surveyed abundance in both subareas 4 and 6 .a for the years 2009-2012 there has been a significant increasing trend in the years following, however 2016 has shown the first decline in abundance in five years. Whilst the abundance and biomass of anglerfish in subareas 4 and 6.a have tracked each other relatively well over the time-series, in 2015-2016 the areas have shown divergent trends with a decline $6 . a$ and 4 continuing to increase.

Estimates of the ratio of survey biomass between subareas 4 and 6 have fluctuated around 1:1, (time-series average of 48% in Subarea 4 , Table 4.7). However, the proportion of biomass in Subarea 4 has been steadily increasing in recent years (reaching 57.7% in 2016). (Figure 4.10).

Commercial catch-effort data

Trends in nominal international fishing effort in Skagerrak, North Sea and Eastern Channel and West of Scotland collated by STECF for the Evaluation of Fishing Effort Regimes in European Waters are shown in Figure 4.2. Since 2014 there have been slight increases in TR effort in both the North Sea and West of Scotland, with effort across all gears in the North Sea stable since 2012 and in the West of Scotland increasing in the past two years driven by marked increases in long-line fisheries. A significant change in this overall trend of anglerfish fleets is not anticipated with the introduction of 2016 data.

There is now a time-series of commercial catch-at-length data for 2012-2016 (Figure 4.4). 2012-2014 show similar landing length-frequency profiles, while both the number of and mean length of fish being discarded reduced during this period. In 2015 we saw the strong 2013 cohort enter the fishery producing a markedly different catch composition of lengths with the bulk of landings being between 30 and 50 cm in length with steep tails either side. Corresponding discard levels in 2015 were the lowest in the time-series however the landings of $<30 \mathrm{~cm}$ fish were also lower, suggesting this reduction was due to catch composition rather than fisher behaviour. The strong
year 2013 year class can again be observed in the 2016 survey length-frequency plots, now between 50 and 60 cm in length. There is evidence that more larger fish are now being discarding with the tail of the discard distribution extending to 50 cm suggesting high grading practices. Generally there are less larger individuals in the profiles of the recent years.

4.3 Historical stock development

There has been no analytic assessment of Northern Shelf anglerfish since 2003, due to a combination of unreliable commercial data, landings misreporting, uncertain effort data and poor catchability of anglerfish in traditional research surveys. The Scottish Irish anglerfish and megrim industry science survey (SCO-IV-VI-AMISS-Q2) initiated by Marine Scotland Science in 2005, along with official logbook data and tally-book data schemes have addressed some of these issues, providing valuable information to fishery managers as well as minimum absolute abundance and biomass estimates annually. Since 2012 assessment has followed the ICES RGLIFE data-limited stock (DLS) 3.2.0 method of survey based indicative trends (ICES, 2012).

4.4 Short-term projections

In the absence of an age-based assessment, there are no short-term projections for this stock.

4.5 Biological reference points

Precautionary approach reference points

	TYPE	Value	Technical basis
Precautionary approach	Blim	Not defined	There is currently no biological basis for defining $\mathrm{Bl}_{\lim }$
	B_{pa}	Not defined	
	Flim	Not defined	There is currently no biological basis for defining Flim
	F_{pa}	0.30	$\mathrm{F}_{35 \% \text { SPR }}=0.30$. This fishing mortality corresponds to 35% of the unfished SSB/R. It is considered to be an approximation of $\mathrm{F}_{\mathrm{MSY}}$.
Targets	F_{y}	Not defined	

(unchanged since 1998).

Yield-per-recruit analysis and harvest rates

One suggested method for future assessment is a Nephrops-like harvest-ratio approach which creates a catch-options table based on a range of harvest ratios. However to date no MSY reference points have been determined for Northern shelf anglerfish despite further exploration (Holah, H., 2017). Limited data, dome-shaped selectivity and uncertain life-history parameters continue to be inhibiting factors. Previous attempts to determine suitable harvesting rates, based on a yield-per-recruit analysis, estimated $\mathrm{F}_{\text {max }}$ to be 0.19 (ICES, 2004). The southern stock has recently been benchmarked and an Fmax of 0.28 was used there (ICES, 2012b). This needs to be revisited for this stock. In the case of Nephrops the technical basis for MSY Btrigger is the bias-adjusted lowest observed UWTV survey estimate of abundance, however for anglerfish, whilst abundances from SCO-IV-VI-AMISS-Q2 were initially intended to
be an absolute measure of abundance they are now considered to be only a relative index so this may not be appropriate.

Figure 4.11 shows mean standardised harvest rate by both weight and number of individuals, whilst there are no reference levels to relate these harvest rates to, trends can still be interpreted. Harvests by number and biomass have increased in 2016, the rate by number of individuals shows a steeper increase than harvest rate by biomass which has been fairly stable since 2014. The marked fall in harvest rate by number from 2013-2014 is likely due to the influx of the substantial 2013 year class and not a change in fishing behaviour. As a result of the 2013 year classes now reaching exploitable length the harvest rate in 2016 has increased. It may be more appropriate to use a harvest rate which is measured over a given length range of fish which make up the bulk of catch.

4.6 Management plans

There is no management plan for this stock.

4.7 Uncertainties and bias in assessment and forecast

The WGCSE has previously attempted assessments of the anglerfish stock(s) within its remit using a number of different approaches. As yet none have proved entirely satisfactory. The catch-at-length analysis used in previous years appears to have addressed a number of the suspected problems with the data due to the rapid development of the fishery, and has also provided a satisfactory fit to the catch-at-length distribution data. However, since 2003, the WG has been unable to present an analytic assessment due to the lack of reliable fishery and insufficient survey information, and in addition it is not known to what extent the dynamic pool assumptions of the traditional assessment model are valid for anglerfish. A catch-at-age model was presented to two benchmark working groups (WKFLAT 2012 and WKROUND 2013) but was not accepted due to concerns over age reading. Given that there is now a longer time-series of survey data the benchmark in 2018 will attempt to develop a suitable analytical assessment for this stock.

Commercial data

For a number of years the WG has expressed concerns over the quality of the commercial catch-at-length data because of:

- Accuracy of landings statistics due to species and area misreporting (historically an issue between 1998-2005 and anecdotally again in 2016).
- Lack of information on total catch and catch composition of gillnetters operating on the continental slope to the northwest of the British Isles (See the stock annex for further details of this fishery).
- Lack of catch information submitted to ICES by several key exploiters of the fishery between 2006-2010.

Survey data

There are still several factors which make the survey estimates likely to be underestimates or minimum estimates. Firstly, although experiments have been carried out to estimate escapes from under the footrope, and a model applied to account for this component of catchability, the estimates of smaller anglerfish still look to be underestimated (Figure 4.7). This could be due to either a net selectivity issue, or an availabil-
ity [to the trawl] issue, as it is known that younger fish occur in shallower water (Hislop et al., 2001), or both. Secondly, the area considered is not complete, as the survey does not cover some of Division 4.a and none of $4 . b$ or 4.c. However, numbers are thought to be low in these areas.

Biological information

Knowledge of the biology of anglerfish is improving, with some basic biological parameters suitable for use in future assessments, such as mean weight-at-age in the stock, now becoming available from the industry-science surveys. Difficulties still remain in finding mature females. A further discussion of the biology can be found in the stock annex.

In addition, ageing has not been validated and should still be regarded as uncertain. An ageing exchange, carried out in 2011 found little agreement between methods or readers using the same method (ICES, 2013).

Stock structure

Currently, anglerfish on the Northern Shelf are split into Subarea 6 (including 5.b (EC), 7 and 14) and the North Sea (\& 2.a (EC)) for management purposes. However, genetic studies have found no evidence of separate stocks over these two regions (including Rockall) and particle-tracking studies have indicated interchange of larvae between the two areas (Hislop et al., 2001). So, at previous WGs, assessments have been made for the whole Northern Shelf area combined. In fact, both microsatellite DNA analysis (O'Sullivan et al., 2005) and particle tracking studies carried out as part of EC 98/096 (Anon, 2001) also suggested that anglerfish from further south (Subarea 7) could also be part of the same stock.

4.8 Recommendations for next Benchmark

This stock was last benchmarked in February 2013 at WKROUND and is due to be benchmarked in 2018. WKROUND recommended significant work to be carried out before the next benchmark. WGCSE short-listed the following tasks:

- Compile historical catch-at-length data.
- Investigate length-based stock assessment using, for example, the SS3 approach applied to southern anglerfish stocks.
- Investigate growth models appropriate for anglerfish subareas 4 and 6.
- Assess within reader variability for otolith readers used on the SCO-AMISS-IV-VI-Q2 survey.
- Investigate an age-aggregated production/depletion model.
- Determine the best way to incorporate Lophius budegassa into assessment and advice.

At this stage the focus of the current benchmark process moving forward is to ascertain what commercial sampling data (length, age, weight) are currently held internationally, to construct an appropriate data call to compile length-frequency, age composition and additional pertinent survey data.

4.9 Management considerations

Up to and including 2011, ICES provided qualitative advice regarding the future exploitation of 'data-limited' stocks where there was either limited knowledge of their biology or a lack of data on their exploitation. However in response to a strong interest from advice recipients to base advice on the information available, ICES developed the data-limited stocks (DLS) approach framework, for which anglerfish is a category 3 data-limited stock. This requires considering the application of an uncertainty cap and/or precautionary buffer to a survey adjusted status quo catch at each annual advice draft.

A comparison of mean biomass estimates from the SCO-IV-VI-AMISS-Q2 surveys (Table 4.9) shows that the mean biomass in subareas 4 and 6 combined has increased by 71.5% from $2012-2014$ to $2015-2016$. Application of the uncertainty cap implied advice for catches in 2017 to be no more than 20% greater than the previously advised catch. The stability observed in international effort time-series by the main fisheries in the stock area since 2003 meant that a precautionary buffer should not be applied.

The TACs in subareas 4 (including Norwegian waters) and 6 until 2010 were split 67:33\%, since 2011 they have been split $64: 36 \%$. In $2016,10 \%$ of the TAC for 4 and 2.a could be taken from Division 5.b, or subareas 6,7 and 9 . However the stock is fairly evenly distributed across the two areas (Table 4.7 and Figure 4.10). Over the survey time-series the $4: 6$ split has fluctuated around $50: 50$ (48% on average), increasing as the stock in 4 has increased. Note that the North Sea is only partially surveyed: however, the area covered does encompass most of the distribution of anglerfish.

Ideally, the management of the fishery should be based on a specific plan, or harvest control rule, after an evaluation of various stakeholder-led suggestions of alternative options. This still needs to be pursued in consultation with stakeholders such as the North Western Waters Advisory Council.

4.10 References

Anon. 2001. The distribution and biology of anglerfish and megrim in waters to the west of Scotland. EC Study Contract 98/096 Final Report August 2001.

Barreto, E., and Clarke, E. 2016. Anglerfish (Lophius piscatorius and Lophius budegassa) in Division IIIa and Subareas IV and VI Suvery Estimates for 2016. Working document??, 12 pp. Celtic Seas Ecosystem Working Group, ICES 2016.

COUNCIL REGULATION (EU) No 43/2014 of 19 January 2015 fixing for 2015 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union vessels, in certain non-Union waters, amending Regulation (EU) No 43/2014 and repealing Regulation (EU) No 779/2014. 145 pp.

COUNCIL REGULATION (EU) No 2017/127 of 20 January 2017 fixing for 2017 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters. 176 pp .

Hislop, J. R. G., Gallego, A., Heath, M. R., Kennedy, F. M., Reeves, S. A., and Wright, P. J. 2001. A synthesis of the early life history of the anglerfish, Lophius piscatorius (Linnaeus, 1758) in Northern British waters. ICES Journal of Marine Science 58:70-86.

Historical Nominal Catches 1950-2010. Version dd-mm-yyyy. Accessed dd-mm-yyyy via http://ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx. ICES, Copenhagen.

Holah, H. 2017. Length based indicators and SPiCT in relation to reference points for Anglerfish in subareas 4 and 6, and in Division 3.a (North Sea, Rockall and West of Scotland,

Skagerrak and Kattegat) (anf.27.3a46). Working document?? ??pp. Celtic Seas Ecosystem Working Group, ICES 2017.

ICES. 2004. Report of the Working Group on the Assessment of Northern Shelf Demersal Stocks. ICES CM 2004/ACFM:01. 558 pp.

ICES. 2012. Report of the ICES Advisory Committee on ICES implementation of Advice for Data-limited Stocks in 2012 in its 2012 Advice. ICES CM 2012/ACOM:68. 42 pp.

ICES. 2012b. Report of the Benchmark Workshop on Flatfish Species and Anglerfish (WKFLAT), 1-8 March 2012, Bilbao, Spain. ICES CM 2012/ACOM:46. 283 pp.

ICES. 2013. Report of the Benchmark Workshop on Roundfish Stocks (WKROUND), 4-8 February, Aberdeen. ICES CM 2013 / ACOM:47 213 pp.
ICES. 2016. Report of the Workshop to consider MSY proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015, ICES Head-quarters, Copenhagen. ICES CM 2015/ACOM:61. 183 pp.

Official Nominal Catches 2006-2014. Version 12-05-2016. Accessed 18-04-2017 via http://ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx. ICES, Copenhagen.

O'Sullivan, M., Wright, P., Vespoor, E., Knox, D. and Piertny, S. 2005. Microsatellite DNA polymorphism indicates an absence of population structure in monkfish Lophius piscatorius in its northern distribution. ICES CM2005/T:18 (poster).

Scientific, Technical and Economic Committee for Fisheries (STECF). 2016 - Fisheries Dependent Information (STECF-16-20); Publications Office of the European Union, Luxembourg; EUR 27758 EN; doi: 10.2788/502445.

Table 4.1 ICES advice and actual management applicable for Northern Shelf anglerfish for 2003 onwards.

YEAR	SINGLE STOCK EXPLOITATION BOUNDARY	BASIS	WEST OF SCOTLAND (6.a6.b)			NORTH SEA (4.a-4.c)		
			TAC ${ }^{4}$	\% change in F associated with TAC	WGCSE landings	$\left.\mathrm{TAC}^{5}\right)$	\% change in F associated with TAC	WGCSE landings
2003	<6700 ${ }^{1}$	Reduce F below F_{pa}	3180	49% reduction	4126	7000	49% reduction	8268
2004	<8800 ${ }^{\text {2 }}$	Reduce F below $\mathrm{Fpa}_{\mathrm{p}}$ 2)	3180	$\begin{aligned} & 48 \% \\ & \text { reduction } \end{aligned}$	3296	7000	48% reduction	9027
2005	-	No effort increase ${ }^{2)}$	4686	-	-	10314	-	-
2006	-	No effort increase ${ }^{2)}$	4686	-	-	10314	-	-
2007	-	No effort increase ${ }^{2)}$	5155	-	-	11345	-	-
2008	-	No effort increase ${ }^{3}$)	5155	-	-	11345	-	-
2009	-	No effort increase ${ }^{3)}$	5567	-	-	11345	-	-
2010	-	No effort increase ${ }^{3}$)	5567	-	-	11345	-	-
2011	-	Decrease effort	5456	-	-	9643	-	-
2012	-	Reduce catches	5183	-	4763	9161	-	7211
2013	-	$\begin{aligned} & 20 \% \\ & \text { reduction } \\ & \text { in } \mathrm{TAC}^{2} \text {) } \end{aligned}$	4924	-	4730	8703	-	6874
2014	-	$\begin{aligned} & 20 \% \\ & \text { reduction } \\ & \text { in } \left.\mathrm{TAC}^{2}\right) \end{aligned}$	4432	-	4328	$7833{ }^{6}$	-	8465
2015	-	20% increased in TAC ${ }^{2}$	5313	-	$5140{ }^{(7)}$	93906)	-	$10918^{(7)}$
2016	-	20% increased in TAC ${ }^{2}$	6375	-	6280	11267	-	13396
2017	-	20% increased in TAC ${ }^{2}$	7650	-	-	13521	-	-

All values raised to nearest tonne.
${ }^{1)}$ Advice for Division 3.a, Subarea 4 and Subarea 6.a combined.
${ }^{2)}$ Advice for Division 3.a, Subarea 4 and Subarea 6 combined.
${ }^{3)}$ Advice for Division 2.a, Division 3.a, Subarea 4 and Subarea 6 combined.
${ }^{4)}$ TAC applies to 5.b(EC), 6, 7 and 14.
5) TAC applies to 2.a \& 4 (EC).
${ }^{6)}$ of which up to 10% may be fished in: 5.b(EC), 6,7 and 14 .
${ }^{(7)}$ Landings including raised discards.

Although there is no minimum landing size for this species, there is an EU minimum weight of 500 g for marketing purposes (EC Regulation 2406/96).

An additional quota of 1500 t was also available for EU vessels fishing in the Norwegian zone of Subarea 4 in 2011-2016.

Table 4.2. Anglerfish on the Northern Shelf (3.a, $4 \& 6$). Total official landings by area (tonnes).

	3.a	4.a	4.b	4.c	6.a	6.b	4	6	Total $(3 . A, 4,6)$	WG Landings	WG Discards
1973	140	2085	575	41	9221	127	2701	9348	12189	-	-
1974	202	2737	1171	39	3217	435	3947	3652	7801	-	-
1975	291	2887	1864	59	3122	76	4810	3198	8299	-	-
1976	641	3624	1252	49	3383	72	4925	3455	9021	-	-
1977	643	3264	1278	54	3457	78	4596	3535	8774	-	-
1978	509	3111	1260	72	3117	103	4443	3220	8172	-	-
1979	687	2972	1578	112	2745	29	4662	2774	8123	-	-
1980	652	3450	1374	175	2634	200	4999	2834	8485	-	-
1981	549	2472	752	132	1387	331	3356	1718	5623	-	-
1982	529	2214	654	99	3154	454	2967	3608	7104	-	-
1983	506	2465	1540	181	3417	433	4186	3850	8542	-	-
1984	568	3874	1803	188	3935	707	5865	4642	11075	-	-
1985	578	4569	1798	77	4043	1013	6444	5056	12078	-	-
1986	524	5594	1762	47	3090	1326	7403	4416	12343	-	-
1987	589	7705	1768	66	3955	1294	9539	5249	15377	-	-
1988	347	7737	2061	95	6003	1730	9893	7733	17973	-	-
1989	334	7868	2121	86	5729	313	10075	6042	16451	-	-
1990	570	8387	2177	34	5615	822	10598	6437	17605	-	-
1991	595	9235	2522	26	5061	923	11790	5984	18369	17441	-
1992	938	10209	3053	39	5479	1089	13301	6568	20807	21872	-
1993	843	12309	3143	66	5553	681	15519	6234	22596	23971	-
1994	811	14505	3445	210	5273	909	18162	6182	25155	25057	-
1995	823	17891	2627	402	6354	958	20920	7312	29055	28913	-
1996	702	25176	1847	304	6408	602	27327	7010	35039	35100	-
1997	776	23425	2172	160	5330	990	25757	6320	32853	-	-
1998	626	16859	2088	78	4506	1313	19026	5819	25471	-	-
1999	660	13344	1517	24	4284	1401	14885	5685	21230	-	-
2000	602	12338	1617	31	3311	1074	13986	4385	18973	-	-
2001	621	12861	1832	21	2660	1309	14714	3969	19304	-	-
2002	667	11048	1244	21	2280	718	12313	2998	15978	-	-
2003	478	8523	847	20	2493	643	9390	3136	13004	-	-
2004	519	8987	851	15	2453	671	9853	3124	13496	-	-
2005	458	8424	688	5	3019	958	9117	3982	13557	-	-
2006	425	10339	683	3	2785	915	11026	3700	15151	-	-
2007	433	10632	749	4	3353	1260	11384	4613	16430	-	-
2008	486	11038	769	5	3373	1247	11812	4620	16918	-	-
2009	479	10067	652	9	2983	1821	10729	4804	16012	-	-
2010	434	8134	614	11	3040	1606	8759	4646	13839	-	-
2011	406	7759	764	9	2871	1871	8532	4741	13679	13770	-
2012	422	6460	714	3	2835	1831	7177	4666	12265	12449	498
2013	407	6392	546	4	2666	2124	6943	4789	12139	12054	787
2014	439	7629	823	27	2610	1755	8482	4366	13287	13283	416
2015*	480	9668	961	9	3365	1559	10639	4924	16043	16552	420
2016*	586	11671	1194	12	4676	1368	12877	6042	19505	19446	825

*Preliminary.

Table 4.3. Anglerfish in Subarea 6. Nominal landings (t) as officially reported to ICES.
Division 6.a (West of Scotland)
*Preliminary.

	ু	$\begin{aligned} & \text { N } \\ & \text { ু } \end{aligned}$	$\stackrel{\text { n }}{\stackrel{\circ}{\sigma}}$	ォ	$\begin{aligned} & \text { ㄴㅇ } \\ & \text { の } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \hat{\circ} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { ® } \end{aligned}$	$\begin{aligned} & \circ \\ & \hline- \\ & \text { N } \end{aligned}$	웅	$\begin{aligned} & \text { N } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { m } \\ & \stackrel{O}{i} \end{aligned}$	$\begin{aligned} & \text { J } \\ & \hline- \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \dot{o} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\stackrel{0}{\circ}$	두N	$\stackrel{N}{\sim}$	$\stackrel{m}{\vdots}$	$\underset{\sim}{\dot{\sim}}$	$\begin{gathered} \stackrel{n}{n} \\ \stackrel{O}{N} \end{gathered}$	$\begin{aligned} & * \\ & \stackrel{*}{0} \\ & \hline \end{aligned}$
Belgium	3	2	9	6	5	-	5	2	-	-	+	+	-	+	-	-	-	-	-	-	-	-	-	-	-	-
Denmark	1	3	4	5	10	4	1	2	1	+	+	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-
Faroe Is.	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	3	2	1	2	4	1	-	-	-	-	-
France	1910	2308	2467	2382	2648	2899	2058	1634	1814	1132	943	739	1212	1191	1392	1314	1764	1746	1513	1206	1168	1166	1114	1098	1107	1734
Germany	1	2	60	67	77	35	72	137	50	39	11	3	27	39	39	1	-	54	79	79	59	63	48	85	63	81
Ireland	250	403	428	303	720	717	625	749	617	515	475	304	322	219	356	392	470	295	328	510	488	346	336	410	446	576
Netherlands	-	-	-	-	-	-	27	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Norway	6	14	8	6	4	4	1	3	1	3	2	1	+	+	1	1	1	2	+	1	1	-	1	1	1	1
Spain	7	11	8	1	37	33	63	86	53	82	70	101	196	110	82	76	3	174	185	197	138	69	123	54	105	226
UK(E,W\&NI)	270	351	223	370	320	201	156	119	60	44	40	32	31	30	20	24	42	5	12	3	-	12	6	-	-	-
UK(Scot.)	2613	2385	2346	2133	2533	2515	2322	1773	1688	1496	1119	1100	705	862	1127	974	1071	1096	864	1040	-	1179	1038	-	-	-
UK (total)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1016	1191	1044	962	1643	2058
Total	5061	5479	5553	5273	6354	6408	5330	4506	4284	3311	2660	2280	2493	2453	3019	2785	3353	3373	2983	3040	2871	2835	2666	2610	3365	4676
Unallocated	296	2638	3816	2766	5112	11148	7506	5234	3799	3114	2068	1882	985	1938	-	-	-	-	-	-	110	59	-37	-58	-5	137
As used by WG	5357	8117	9369	8039	11466	17556	12836	9740	8083	6425	4728	4162	3478	4391	-	-	-	-	-	-	2981	2894	2629	2552	3360	4783

Table 4.3. Continued. Anglerfish in Subarea 6. Nominal landings (\mathbf{t}) as officially reported to ICES.

Division 6.b (Rockall)

*Preliminary.

	$\begin{aligned} & \text { ু } \\ & \text { ু } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ু } \end{aligned}$		ু	$\begin{aligned} & \text { ㄴㅇ } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { 人} \\ & \text { ᄋ } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { ু } \\ & \text { ু } \end{aligned}$	앙	$\stackrel{-}{\circ}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { m } \\ & \stackrel{O}{\circ} \end{aligned}$	$\stackrel{+}{\circ}$	$\begin{aligned} & \text { n } \\ & \stackrel{\circ}{\mathrm{o}} \end{aligned}$	응	슷	$\stackrel{\infty}{\circ}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\circ} \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & \sim \end{aligned}$	$\underset{\sim}{\bar{N}}$	$\frac{N}{\sim}$	$\stackrel{m}{\underset{\sim}{o}}$	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{*}{i n}$	$\begin{aligned} & \stackrel{*}{0} \\ & \stackrel{0}{N} \end{aligned}$
Faroe Is.	-	2	-	-	-	15	4	2	2	-	1	-	-	-	-	-	+	1	4	8	-	5	-	1	+	-
France	-	-	29	-	-	-	1	1	-	48	192	43	191	175	293	224	327	327	339	168	508	456	663	148	219	-
Germany	-	-	103	73	83	78	177	132	144	119	67	35	64	66	77	72	222	93	132	87	90	79	88	66	139	177
Ireland	272	417	96	135	133	90	139	130	75	81	134	51	26	13	35	53	70	76	91	107	108	235	237	162	156	160
Norway	18	10	17	24	14	11	4	6	5	11	5	3	6	5	4	6	7	5	9	12	7	5	9	3	6	11
Portugal	-	-	-	132	128	-	91	413	429	20	18	8	4	19	63	-	-	-	-	-	-	-	-	-	-	-
Russia	-	-	-	-	-	-	-	-	-	-	1	-	-	2	4	1	1	35	-	-	-	-	-	1	2	-
Spain	333	263	178	214	296	196	171	252	291	149	327	128	59	43	34	36	12	85	57	32	29	36	-	27	44	9
UK(E,W\&NI)	99	173	76	50	105	144	247	188	111	272	197	133	133	54	93	46	146	1	48	15	-	120	395	-	-	-
UK(Scot)	201	224	182	281	199	68	156	189	344	374	367	317	160	294	355	477	475	624	1141	1177	-	895	732	-	-	-
UK (total)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1129	1015	1127	1347	993	1011
Total	923	1089	681	909	958	602	990	1313	1401	1074	1309	718	643	671	958	915	1260	1247	1821	1606	1871	1831	2124	1755	1559	1368
Unallocated	-	-	-	132	128	-	-91	413	-9	17	-178	-47	145	121	-	-	-	-	-	-	-296	-214	-25	-50	-7	129
As used by WG	923	1089	681	777	830	602	899	900	1392	1091	1131	671	788	792	-	-	-	-	-	-	1575	1617	2099	1705	1552	1497

Table 4.3 continued. Anglerfish in Subarea 6. Nominal landings (\mathbf{t}) as officially reported to ICES.

Subarea 6 (West of Scotland and Rockall)

*Preliminary.

^ indicates landings assigned to subarea 6 but not to a division.

	ু	$\begin{aligned} & \text { N } \\ & \text { ת } \end{aligned}$	$\stackrel{\text { n}}{\AA}$	す	$\begin{aligned} & \text { んొ } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \circ \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \end{aligned}$	$\stackrel{\infty}{\circ}$	$\begin{aligned} & \text { ু } \\ & \text { ু } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	앙	No	$\begin{aligned} & \text { n } \\ & \underset{\sim}{\circ} \end{aligned}$	$\underset{\sim}{\mathrm{O}}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	$\stackrel{0}{\circ}$	$\bar{\sim}$	$\underset{\sim}{\sim}$	$\stackrel{m}{\sim}$	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{*}{i n} \underset{\sim}{\dot{N}}$	$\begin{aligned} & * \\ & \stackrel{0}{0} \\ & \stackrel{2}{2} \end{aligned}$
Belgium	3	2	9	6	5	-	5	2	-	-	+	+	-	+	-	-	-	-	-	-	-	-	-	-	-	-
Denmark	1	3	4	5	10	4	1	2	1	+	+	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-
Faroe Is.	-	2	-	-	-	15	4	2	2	-	1	-	-	2	2	3	2	2	6	12	1	5	-	1	+	-
France	1910	2308	2496	2382	2648	2899	2059	1635	1814	1180	1135	782	1403	1366	1689^	1538	2091	2073	1852	1374	1676	1622	1777	1246	1326	1734
Germany	1	2	163	140	160	113	249	269	194	158	78	38	91	105	116	73	222	147	211	166	149	142	136	151	201	258
Ireland	522	820	524	438	853	807	764	879	692	596	609	355	348	232	391	445	540	371	419	617	596	581	572	572	602	735
Netherlands	-	-	-	-	-	-	27	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Norway	24	24	25	30	18	15	5	9	6	14	7	4	6	5	5	7	8	7	9	13	7	6	10	4	8	12
Portugal	-	-	-	132	128	-	91	413	429	20	18	8	4	19	63	-	-	-	-	-	-	-	-	-	-	-
Russia	-	-	-	-	-	-	-	-	-	-	1	-	-	2	4	1	1	35	-	-	-	-	-	1	2	-
Spain	340	274	186	215	333	229	234	338	344	231	397	229	255	153	117^{\wedge}	112	15	259	242	229	167	105	123	81	149	234
UK(E,W\&NI)	369	524	299	420	425	345	403	307	171	316	237	165	164	84	113	70	188	6	60	18	-	132	401	-	-	-
UK(Scot)	2814	2609	2528	2414	2732	2583	2478	1962	2032	1870	1486	1417	865	1156	1482	1451	1546	1720	2005	2217	-	2073	1770	-	-	-
UK (total)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2145	2205	2171	2310	2636	3069
Total	5984	6568	6234	6182	7312	7010	6320	5819	5685	4385	3969	2998	3136	3124	3982	3700	4613	4620	4804	4646	4741	4666	4789	4366	4924	6042
Unallocated	296	2638	3816	2634	4984	11148	7415	4821	3790	3131	1890	1835	1130	2059	-	-	-	-	-	-	-185	-155	-61	-109	-12	238
As used by WG	6280	9206	10050	8816	12296	18158	13735	10640	9475	7516	5859	4833	4266	5183	-	-	-	-	-	-	4556	4511	4728	4257	4912	6280

Table 4.4. Nominal landings (t) of Anglerfish in the North Sea, as officially reported to ICES.

Northern North Sea (4.a)

*Preliminary.

	ন	Nั	$\stackrel{ }{\stackrel{-}{\sigma}}$	$\begin{aligned} & \text { す } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { 느 } \\ & \text { ᄋ } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \hat{ু} \\ & \text { 人} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \end{aligned}$	ু 윽	앙	웅	No	$\stackrel{\text { n}}{\substack{0 \\ \hline}}$	$\begin{aligned} & \text { J } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\circ}{\sim} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{\circ}{\sim} \end{aligned}$	$\stackrel{\hat{O}}{\stackrel{\rightharpoonup}{N}}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{O}{\sim} \end{aligned}$	$\stackrel{O}{\circ}$	$\underset{\sim}{i}$	$\underset{\sim}{\sim}$	$\stackrel{m}{o}$	$\underset{\sim}{\underset{\sim}{*}}$	$\begin{gathered} \stackrel{*}{n} \\ \stackrel{i}{\sim} \end{gathered}$	$\begin{aligned} & \stackrel{*}{0} \\ & \stackrel{\sim}{N} \end{aligned}$
Belgium	2	9	3	3	2	8	4	1	5	12	-	8	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Denmark	1245	1265	946	1157	732	1239	1155	1024	1128	1087	1289	1308	1523	1538	1379	1311	961	1071	1134	1143	841	821	854	801	962	1504
Faroes	1	-	10	18	20	-	15	10	6	-	2	-	3	11	22	2	-	-	4	-	-	-	-	-	-	-
France	124	151	69	28	18	7	7	3	18	8	9	8	8	8	4	7	13	13	20	23	20	14	15	27	26	35
Germany	71	68	100	84	613	292	601	873	454	182	95	95	65	20	84	173	186	344	216	124	46	265	274	321	286	208
Netherlands	23	44	78	38	13	25	12	-	15	12	3	8	9	38	13	14	14	12	5	8	5	5	-	16	-	21
Norway	587	635	1224	1318	657	821	672	954	1219	1182	1212	928	769	999	880	1006	831	860	859	735	494	485	545	521	406	608
Sweden	14	7	7	7	2	1	2	8	8	78	44	56	8	6	5	5	20	67	-	-	-	-	-	-	6	4
UK(E, W\&NI)	129	143	160	169	176	439	2174	668	781	218	183	98	104	83	34	99	303	13	320	371	-	248	550	-	-	-
UK (Scotland)	7039	7887	9712	11683	15658	22344	18783	13318	9710	9559	10024	8539	6033	6284	6003	7722	8304	8658	7509	5730	-	4622	4154	-	-	-
UK (total)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6353	4870	4704	5943	7983	9291
Total	9235	10209	12309	14505	17891	25176	23425	16859	13344	12338	12861	11048	8523	8987	8424	10339	10632	11038	10067	8134	7759	6460	6392	7629	9668	11671

Table 4．4．Continued．Nominal landings（ \mathbf{t} ）of Anglerfish in the North Sea，as officially reported to ICES．

Central North Sea（4．b）

＊Preliminary

	ু	~~	$\begin{aligned} & \text { 毋 } \\ & \underset{\sim}{\circ} \end{aligned}$	オ	$\begin{aligned} & \text { in } \\ & \text { ᄋ } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { 人 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \end{aligned}$	ু	O	응	$\underset{\sim}{\sim}$	$\stackrel{n}{0}$	$\stackrel{+}{\circ}$	$\begin{aligned} & \text { in } \\ & \stackrel{\circ}{\sim} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { or } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{N} \end{aligned}$	뭉	$\underset{\sim}{\sim}$	$\stackrel{m}{\underset{\sim}{o}}$	$\stackrel{ \pm}{\sim}$	$\stackrel{*}{i n}$	$\begin{aligned} & * \\ & \stackrel{*}{0} \end{aligned}$
Belgium	357	538	558	713	579	287	336	371	270	449	579	435	180	260	207	138	179	181	134	124	111	131	135	213	189	251
Denmark	345	421	346	350	295	225	334	432	368	260	251	255	191	274	237	276	173	237	248	194	286	301	192	334	369	584
Faroes	－	－	2	－	－	－	－	－	－	－	－	10	－	－	－	－	－	－	－	－	－	－	－	－	－	－
France	－	1	－	2	－	－	－	－	－	－	－	－	－	＋	－	－	＋	－	3	6	2	－	－	1	＋	＋
Germany	4	2	13	15	10	9	18	19	9	14	9	17	11	11	9	14	12	22	17	21	17	10	10	17	23	18
Ireland	－	－	－	－	－	－	－	－	－	－	－	－	1	－	－	－	－	－	－	－	－	－	－	－	－	－
Netherlands	285	356	467	510	335	159	237	223	141	141	123	62	42	25	31	33	61	58	36	46	53	61	41	72	74	119
Norway	17	4	3	11	15	29	6	13	17	9	15	10	12	22	16	12	24	15	21	10	11	11	26	11	9	16
Sweden	－	－	－	3	2	1	3	3	4	3	2	9	2	1	4	4	6	9	－	－	－	－	－	－	3	6
UK（E， W\＆NI）	669	998	1285	1277	919	662	664	603	364	423	475	236	167	120	96	108	122	105	85	88	－	85	70	－	－	－
UK （Scotland）	845	733	469	564	472	475	574	424	344	318	378	210	241	138	88	98	172	142	108	125	－	115	72	－	－	－
UK（total）	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	284	200	142	175	294	200
Total	2522	3053	3143	3445	2627	1847	2172	2088	1517	1617	1832	1244	847	851	688	683	749	769	652	614	764	714	546	823	961	1194

Table 4.4. Continued. Nominal landings (t) of Anglerfish in the North Sea as officially reported to ICES.

Southern North Sea (4.c)

* Preliminary.

	б	ু	$\stackrel{\text { n}}{\Omega}$	ホ	$\begin{aligned} & \text { ㄴ } \\ & \text { ㅇ﹎﹎ } \end{aligned}$	응	$\begin{aligned} & \text { 승 } \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { - } \end{aligned}$	$\stackrel{\circ}{\circ}$	앙	$\underset{\sim}{\sim}$	$\stackrel{n}{\circ}$	$\underset{\sim}{\mathrm{O}}$	$\begin{aligned} & \text { n } \\ & \stackrel{\circ}{\sim} \end{aligned}$	O	No	$\stackrel{\infty}{\circ}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\circ}{0}$	$\stackrel{\bar{\sim}}{-}$	$\underset{\sim}{\sim}$	$\stackrel{m}{\sim}$	$\stackrel{\underset{\sim}{\circ}}{\underset{\sim}{2}}$	$\stackrel{*}{i n}$	$\begin{aligned} & * \\ & \stackrel{\sim}{0} \end{aligned}$
Belgium	13	12	34	37	26	28	17	17	11	15	15	16	9	5	4	3	3	4	6	7	6	2	2	4	4	2
Denmark	2	+	-	+	+	+	+	+	+	+	+	+	+	+		+	+	-	-	-	-	-	-	-	-	+
France	-	-	-	-	-	-	-	10	-	+	-	+	-	-	-	-	-	-	1	1	1	-	-	1	+	1
Germany	-	-	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+
Netherlands	5	10	14	20	15	17	11	15	10	15	6	5	1	-	1	-	1	1	-	2	1	1	1	19	4	8
Norway	-	-	-	-	+	-	-	-	+	-		-	+	-	-	+	-	-	1	-	-	-	-	1	+	-
UK(E\&W\&NI)	6	17	18	136	361	256	131	36	3	1	-	-	10	3	-	+	-	+	1	1	-	-	1	-	-	-
UK (Scotland)	+	+	+	17	+	3	1	+	+	+	-	-	-	7	-	+	-	-	-	-	-	-	-	-	-	-
UK (Total)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1	2	1	1
Total	26	39	66	210	402	304	160	78	24	31	21	21	20	15	5	3	4	5	9	11	9	3	4	27	9	12

Table 4.4. Continued. Nominal landings (\mathbf{t}) of Anglerfish in the North Sea as officially reported to ICES.

Subarea 4 (North Sea)

*Preliminary
${ }^{\wedge}$ indicates landings assigned to subarea 6 but not to a division.

	б	$\begin{gathered} \text { N } \\ \text { תু } \end{gathered}$	$\stackrel{\text { N}}{\AA}$	$\begin{aligned} & \text { オ } \\ & \text { תু } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline- \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { ু } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \end{aligned}$	ু	O	웅	$\stackrel{N}{\circ}$	$\stackrel{n}{\circ}$	$\begin{aligned} & \text { J } \\ & \stackrel{\circ}{\sim} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\circ}{\sim} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	$\stackrel{0}{\circ}$	$\bar{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{m}{\sim}$	$\underset{\sim}{\underset{\sim}{*}}$	$\frac{i_{n}^{n}}{\underset{\sim}{2}}$	$\begin{aligned} & * \\ & \stackrel{*}{0} \\ & \stackrel{N}{2} \end{aligned}$
Belgium	372	559	595	753	607	323	357	389	286	476	594	459	190	265	211	141	181	185	140	131	116	133	137	217	193	253
Denmark	1599^	1686	$1293{ }^{\wedge}$	1509^	1027	1464	1489	1456	1496	1347	1540	1563	1714	1812	1616	1587	1134	1308	1382	1337	1127	1122	1046	1135	1331	2088

Faroes	1	-	12	18	20	-	15	10	6	-	2	10	3	11	22	2	-	-	4	-	-	-	-	-	-	-
France	124	152	69	30	18	7	7	13	18	8	9	8	8	8	4	7	13	13	24	30	24	15	15	30	26	36
Germany	75	70	113	99	623	301	619	892	463	196	104	112	76	31	93	187	198	366	233	145	63	275	284	339	309	226
Ireland	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Netherlands	313	410	559	568	363	201	260	238	166	168	132	75	52	63	45	47	76	71	41	56	59	67	42	108	79	148
Norway	604	639	1227	1329	672	850	678	967	1236	1191	1227	938	781	1021	896	1018	855	875	881	745	505	496	572	533	415	624
Sweden	14	7	7	10	4	2	5	11	12	81	46	65	10	7	9	10	26	76	-	-	-	-	-	-	9	10
UK(E\&W\&NI)	804	1158	1463	1582	1456	1357	2969	1307	1148	642	658	334	281	206	130	207	425	118	406	460	-	333	621	-	-	-
UK (Scotland)	7884	8620	10181	12264	16130	22822	19358	13743	10054	9877	10402	8749	6274	6429	6091	7820	8476	8800	7618	5855	-	4736	4226	-	-	-
UK (Total)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6638	5069	4847	6120	8277	9492
Total	11790	13301	15519	18162	20920	27327	25757	19026	14885	13986	14714	12313	9390	9853	9117	11026	11384	11812	10729	8759	8532	7177	6943	8482	10639	12877
Unallocated	-1224	-1573	-2441	-2732	-5126	11087	-7540	-4999	-3166	-2422	-2037	-1979	1117	-826	-	-	-	-	-	-	167	-269	-59	-17	89	519
WG estimate	10566	11728	13078	15430	15794	16240	18217	14027	11719	11564	12677	10334	8273	9027	-	-	-	-	-	-	8699	6908	6884	8465	10728	13396

Table 4.5. Nominal landings (t) of Anglerfish in Division 3.a, as officially reported to ICES.

*Preliminary

	бু	$\begin{gathered} \text { N̈ } \\ \text { ু } \end{gathered}$	$\stackrel{\text { N}}{\stackrel{\Omega}{\sigma}}$	$\begin{aligned} & \text { J } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { Ln } \\ & \text { ᄋ } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { 승 } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\Omega} \end{aligned}$	$\begin{aligned} & \text { ু } \\ & \text { ু } \end{aligned}$	O	웃	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\stackrel{n}{0}$	+	$\begin{aligned} & \text { n } \\ & \stackrel{0}{\sim} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\infty}{\circ}$	O-O	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \end{aligned}$	$\underset{\sim}{i}$	$\underset{\sim}{\sim}$	$\stackrel{m}{\sim}$	$\stackrel{+}{\sim}$	$\frac{*}{i n}$	$\begin{aligned} & \text { \% } \\ & \stackrel{\sim}{2} \end{aligned}$
Belgium	15	48	34	21	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Denmark	493	658	565	459	312	367	550	415	362	377	375	369	215	311	274	227	255	287	344	270	251	307	298	309	336	391
Germany	-	-	1	+	-	1	1	1	2	1	-	1	-	1	1	2	1	1	1	1	2	-	1	-	1	2
Netherlands	-	-	-	-	-	-	-	-	-	-	-	-	3	4	4	3	1	3	-	5	-	-	-	4	9	17
Norway	64	170	154	263	440	309	186	177	260	197	200	242	189	130	100	139	132	144	134	158	153	115	108	126	91	124
Sweden	23	62	89	68	36	25	39	33	36	27	46	55	71	73	79	54	44	51	-	-	-	-	-	-	43	52
Total	595	938	843	811	823	702	776	626	660	602	621	667	478	519	458	425	433	486	479	434	406	422	407	439	480	586
Unallocated	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	35	53	43	50	12	9
As used by WG	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	441	475	450	489	492	595

Table 4.6. Breakdown of WG estimates of commercial catches for 2016 by main gear group and area.

Fleet	$3 . \mathrm{a}$		4		6.a		6.b		Total		Percentage of Total	
	Landings	Discards										
Demersal trawl	64	0.21	10547	233	3780	93	607	49	14999	376	77	46
Nephrops trawl	335	1.67	231	200	89	86	0	0	655	287	3	35
Gillnets	137	0.42	1532	56	81	3.60	767	61	2517	121	13	15
Other/Not specified	56	0.20	577	19	631	20	12	0.95	1276	40	7	5
Total	593	3	12887	508	4580	203	1386	111	19446	825	100.0	100.0

Table 4.7. Total biomass estimates with confidence intervals and relative standard errors from the 2005-2016 SCO-IV-VI-AMISS-Q2 surveys.

Year	Biomass (t)	Confidence Interval		RSE	Percentage Biomass in
2005	38.617	23.479	53.755	20.0	48.27\%
2006	40.985	34.478	47.492	8.1	53.49\%
2007	50.392	43.676	57.108	6.8	56.62\%
2008	53.546	42.421	64.671	10.6	55.51\%
2009	38.060	32.987	43.133	6.8	44.82\%
2010	42.279	30.429	54.129	14.3	51.90\%
2011	33.254	24.846	41.662	12.9	44.96\%
2012	36.325	29.704	42.946	9.3	41.59\%
2013	38.395	31.020	45.770	9.8	37.04\%
2014	52.884	42.769	62.999	5.2	40.25\%
2015	67.915	58.782	77.047	6.9	43.66\%
2016	77.946	66.831	89.060	7.275	56.39\%

Table 4.8. Abundance and biomass estimates from the 2005-2016 SCO-IV-VI-AMISS-Q2 surveys by ICES subareas and divisions.

Abundance (millions)												
ICES Subarea/Division	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Subarea 4 (partial)	11.168	12.844	15.304	12.613	8.279	7.366	5.15	5.432	8.470	17.553	18.266	21.666
Division 4.a	10.866	10.459	7.956	7.718	5.144	5.161	6.057	4.961	8.461	16.096	28.604	14.383
Division 4.b	1.8	3.174	4	3.952	3.688	3.131	3.669	5.135	4.885	6.488	5.496	4.538
Subarea 6	12.666	13.633	11.956	11.67	8.832	8.292	9.725	10.096	13.346	22.584	34.100	18.922
Northern Shelf (partial)	23.833	26.477	27.261	24.283	17.111	15.658	14.875	15.528	21.816	40.136	52.366	40.569
Biomass (kilo tonnes)												
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Subarea 4 (partial)	18.642	21.921	28.534	29.721	17.058	21.944	14.949	15.106	14.369	21.284	29.653	43.956
Division 6.a	14.096	12.175	11.072	14.383	8.15	11.59	9.33	9.213	10.801	16.633	24.047	18.273
Division 6.b	5.879	6.889	10.786	9.442	12.852	8.745	8.974	12.005	13.626	14.967	14.215	15.717
Subarea 6	19.975	19.064	21.858	23.825	21.002	20.334	18.305	21.218	24.427	31.600	38.262	33.990
Northern Shelf (partial)	38.617	40.985	50.392	53.546	38.06	42.279	33.254	36.325	38.796	52.884	67.915	77.946

Table 4.9. Percentage change in mean stock biomass from 2012-2014 to 2015-2016 in ICES subareas 4 and 6 combined.

Figure 4.1. Northern Shelf anglerfish. Officially reported landings by ICES area (1973-2016).

Figure 4.2. Trends in nominal international fishing effort (kW^{*} days at sea) in North Sea and II (EU) (left) and West of Scotland (right) collated by STECF for the Evaluation of Fishing Effort Regimes in European Waters (STECF, 2016).

Figure 4.3a. Percentage of total landings weight by fleet and country in 2016; Subarea 4.

Figure 4.3b. Percentage of total landings weight by fleet and country in 2016; Division 6.a.

Figure 4.3c. Percentage of landings weight by fleet and country in 2016; Division 6.b.

Figure 4.4. WGCSE Landed numbers ('00 thousands) at-length (cm) 2012-2016.

Figure 4.5. SCO-IV_VI-AMISS-Q2 estimates of total biomass, with confidence intervals, for subareas 4 and 6 combined, 2005-2016. Bnow is the average biomass for 2015-2016, Bref is the average biomass for 2012-2014; both marked on the graph in their respective years. Ratio Est is the ratio of Bnow to Bref, expressed as a percentage, with confidence intervals (Ratio CIlo, Ratio CIup).

Figure 4.6. SCO-IV-VI-AMISS-Q2 estimates of total abundance (left) and biomass (right) of anglerfish for the Northern Shelf (black filled squares) 2005-2016. Estimates are also provided for ICES Subarea 4 (blue filled circles), Division 6.a (red triangles) and Division 6.b (turquoise diamonds).

Figure 4.7. SCO-IV-VI-AMISS-Q2 estimates of total numbers (millions) at-length (cm) for Subareas 4.a-c and 6.a-b, 2016.

Figure 4.8. SCO-IV-VI-AMISS-Q2 estimates of total numbers (millions) at-length (cm) for Subareas 4.a-c and 6.a-b combined, 2007-2016.

Figure 4.9. SCO-IV-VI-AMISS-Q2 estimates of total biomass (kt) at-length (cm) for Subareas 4.a-c and 6.a-b combined, 2007-2016.

Figure 4.10. Percentage of SCO-IV-VI-AMISS-Q2 total biomass, with confidence intervals, estimated to be in subareas $4 . a-c$ compared with subareas $4 . a-c$ and $6 . a-b$ combined. The full grey line represents the average of these percentages over the time-series (2005-2016) 4 (48%). The dotted grey lines represent the percentage of TAC allocated for subareas $4 . a-c$ compared to the total of the TAC for subareas 4.a-c and $6 . a-b,(67 \%$ in 2005-2010, 64% in 2011-2016).

Figure 4.11. Northern Shelf anglerfish harvest rate 2016 (mean standardised WG catch total numbers of biomass)/SCO-IV-VI-AMISS-Q2 total numbers or biomass).

5.1 Introduction

Cod in Division 6.a is included in the EU long-term management plan for cod stocks and the fisheries exploiting those stocks (Council Regulation (EC) 1342/2008). This plan was amended in 2016 by Council Regulation (EU) 2016/2094.

A benchmark assessment was conducted in February 2012 (ICES, 2012) and an interbenchmark in February 2015 (ICES, 2015). In general the assessment carried out at the WG follows the procedure outlined in the stock annex developed at the benchmark and updated at the inter-benchmark. There are minor deviations in terms of weighting of individual datapoints which are described in Section 5.3.1.

ICES Advice applicable for 2016 and 2017

ICES advises that when the MSY approach is applied, there should be no directed fisheries and all catches should be minimized in 2016 and 2017.

ICES Advice applicable for 2015

No new data are available that change the perception of the stock from the advice given in 2013. Therefore, the same catch advice is still applicable for 2015: ICES advises on the basis of the MSY and precautionary approach that there should be no directed fisheries and that bycatch and discards should be minimized.

5.2 General

Stock definition and the management unit

The assessment unit is Division 6.a although there are known to be at least two subpopulations of cod in Division 6.a. Further details can be found in the stock annex. The management unit is ICES Divisions 6.a plus EU and international waters of Division $5 . b$ to the east of $12^{\circ} 00^{\prime} W$. Prior to 2009 , the TAC was set for ICES subareas 6, 12 and 14 plus Subdivision 5.b.1.

Management applicable to 2012-2017

The minimum conservation reference size of cod for human consumption in this area is 35 cm .

Since 2012 the TAC for cod in Division 6.a has been set to zero with allowance for a bycatch of cod to be landed provided that it does not comprise more than 1.5% of the live weight of the total catch retained onboard per fishing trip. Since 2015, this provision has not been allowed for catches subject to the landing obligation.

TAC for 2012-2014

| Species:Cod
 Gadus morhua | Zone:Vla; Union and international waters of Vb east
 of $12^{\circ} 00^{\prime} \mathrm{W}$
 $(\mathrm{COD} / 5 \mathrm{BE} 6 \mathrm{~A})$ | |
| :--- | :--- | :--- | :--- |
| Belgium | 0 | |
| Germany | 0 | |
| France | 0 | |
| Ireland | 0 | |
| United Kingdom | 0 | Analytical TAC |
| Union | $\left.0{ }^{1}\right)$ | |
| TAC | | |

$\left.{ }^{(}{ }^{1}\right)$ By-catch of cod in the area covered by this TAC may be landed provided that it does not comprise more than $1,5 \%$ of the live weight of the total catch retained on board per fishing trip.

TAC for 2015-2017

| Species:Cod
 Gadus morhua | Zone:VIa; Union and international waters of Vb east of
 $12^{\circ} 00^{\prime} \mathrm{W}$
 $($ COD $/ 5 \mathrm{BE} 6 \mathrm{~A})$ | |
| :--- | :--- | :--- | :--- |
| Belgium | 0 | |
| Germany | 0 | |
| France | 0 | |
| Ireland | 0 | |
| United Kingdom | 0 | Analytical TAC |
| Union | 0 | |
| TAC | $0\left({ }^{1}\right)$ | |

[^0]Technical measures applicable to the West of Scotland, including those associated with the cod recovery plan in force up to 2008 (Council Regulation No. 423/2004), the cod long-term management plan in force from 2009 (Council Regulation No. $1342 / 2008$) and amended by Council Regulation No. 1243/2012. The management plan was further amended in 2016 by Council Regulation (EU) 2016/2094 to cover the transitional period in which preparations are ongoing towards multiannual plans for multi-species fisheries. The amended regulation discontinues the previous fishing effort regime and removes reference to the previous $\mathrm{F}_{\mathrm{mgt}}$ of 0.4.

The fishery in 2016

The table of official landings statistics is given in Table 5.1. Official landings in 2016 were 250 tonnes, an increase of over 50% on the 2014 value which was the lowest of the time-series. Approximately 70% of the official landings are reported by UK vessels with the remainder from Norway and Ireland. The majority of reported cod landings in Division 6.a are now taken in the far north of the area (Figure 5.1 shows Scottish reported landings by statistical rectangle).
Due to restrictive TACs, seasonal/spatial closures of the fishery, and effort restrictions based on bycatch composition, the likelihood of misreporting and underreporting of cod in the past is considered to have been high. Underreporting is considered to have
been reduced to low levels following the introduction of legislation in Ireland and the UK in 2006. However, area misreporting of cod landings from Division 6.a into Division $4 . a$ (i.e. caught in Division 6.a., but declared in Division 4.a) and to a lesser extent Division 5.b, by the Scottish fleet is now believed to occur. The UK legislation introduced in 2006 is also believed to be responsible for a significant increase in discards starting in 2006.

Area misreported landings by the Scottish fleet are considered to represent a considerable proportion of the total landings. Estimates of misreporting based on surveillance and consideration of VMS data by Marine Scotland Compliance, have been made available to the WG. Figure 5.2 shows the time-series of misreporting estimates which are assumed to come from the large mesh demersal trawl (TR1) fleet. Total estimated area misreported Division 6.a cod landings in 2016 were 499 t (largely reported into Division 4.a and to a lesser extent 5.b), more than double the estimate for 2014 and representing almost 60% of the total landings in 2016.

5.3 Data

Catch data

The landings uploaded into InterCatch are shown in Figure 5.3 by métier and country, and discard weights and proportions are shown in Figures 5.4 and 5.5 respectively. The French OTB_DEF ≥ 120 métier is the largest unsampled métier ($\sim 8 \%$ of the total landings in 2016).

There are no age composition samples from the misreported landings. Following discussions at last year's WG, the WG this year followed a slightly modified procedure for handling the misreported landings within InterCatch (a deviation from the Stock Annex). Previously landings numbers-at-age from the Scottish demersal fleet (TR1) were raised to the total reported plus area-misreported landings prior to uploading to InterCatch. However, the 'misreporting fleet' could potentially have a different landings age composition (as they are assumed not to discard) and hence the WG considered that a more appropriate approach would be to upload the misreported landings into InterCatch as a separate unsampled fleet. This allows a weighted average landings age composition (Irish and Scottish) to be applied. (The Irish landings comprise a substantially greater proportion of younger fisher than the Scottish sampled landings).

It can be seen that landings by Scottish trawl $\geq 120 \mathrm{~mm}$ dominate, and discards are also highest from this fleet. However the discard rate is higher from the Scottish trawl $70-100 \mathrm{~mm}$ fleet (TR2) (Figure 5.4). The discard rate observed in the Irish fleet is considerably lower than in the other demersal fleets. The proportions of the catch discarded (by weight) for the sampled fleets are given below.

Fleet	Scottish Demersal Trawl^ (TR1)	Scottish Nephrops Trawl(TR2)	Irish Demersal (TR1)	French Demersal trawl (TR1)	N Irish Nephrops (TR2)
Discard proportion	70%	97%	35%	60%	95%

${ }^{\wedge}$ The calculation of this discard proportion excludes the area misreported component of landings from this fleet which are assumed not to discard.

Discard proportions and landings and discard age distributions were assigned within InterCatch to unsampled fleets on the same basis (and as described in the Stock Annex). The discard percentages assigned to fleets without discard estimates are shown in Figure 5.6. The final mix of numbers-at-age from sampled and unsampled landings and sampled and raised (unsampled) discards is given in Figure 5.7. The large unsampled proportion of the catch-at-ages three and above is due to the landings from the Scottish misreported fleet.

Sampling levels (number of trips) by country are given below. Observer sampling coverage is similar to last year. Sampling of the Scottish TR1 landings is still relatively poor. The small sample sizes (which include a few very large fish with high raising factors) result in a sum of products (SOP, landings-at-age x weight-atage) of 1.07 times the landings in this fleet in 2015 and 2016.

	Scotland		Ireland	Northen Ireland	France	
Year	Demersal trawl (TR1)	Nephrops trawl (TR2)	Total	Total	Total	Total
Landings	12	0	12	24		14
Observer	12	29	41	10	14	33

The WG estimates of total landings and discards are given in Table 5.2 and shown in Figure 5.8. These values are for fish aged 1 to $7+$ which is the age range used in the assessment. Just under one tonne of age zero fish were also estimated to have been discarded in 2016.

The total discard proportion by weight is shown in Figure 5.9. The estimate of total discards as a proportion of total catch by weight has declined in 2015 and 2016 compared to 2014 although these estimates are uncertain (CV of over 60% for the Scottish TR1 discard weight estimate in 2016). Given the 1.5% bycatch regulation, the landings are potentially limited more by catch rates of other species in the fishery. So, for example, an increase in the catch rate of anglerfish and/or haddock could have allowed for a greater proportion of cod catches to be landed by the Scottish TR1 fleet.

Discarding occurs across most of the age classes in the catch including age five and six in recent years. The discard rate (proportion by number caught) at age three showed a marked decline in 2016, but was fairly stable for other age classes compared to 2015 (Figure 5.10).

Age compositions

Raised landings numbers-at-age and discard numbers-at-age are given in Tables 5.4 and 5.6 respectively and total catch numbers-at-age in Table 5.8. The age composition in the catch is very truncated with few individuals over age three apparent in the catch in recent years (Figure 5.11).

Weight-at-age

Annual mean weights-at-age in landings, discards and catch are given in Tables 5.5, 5.7 and 5.9. Figure 5.12 shows the mean weights-at-age in the landings and discards. The mean weight of age two and three fish in the landings has increased since the mid-2000s. Other age classes show fluctuations with a long-term downward trend
particularly for ages 5 and above. Values at older age are noisy, particularly in recent years. Mean weight-at-age in the discards shows no real trend, although there are higher values for ages three and four when they first began to be discarded around ten years ago.

Survey data

All available survey data are given in Table 5.3, with the data used in the assessment highlighted in bold. Survey descriptions are given in the stock annex. Survey indices for the two new Scottish surveys (UKSGFS-WIBTS-Q1 and UKSGFS-WIBTS-Q4) are provided with an estimate of variance. In 2017, the indices for age four, five and six cod show particularly high uncertainty due to a single very large haul (Figure 5.14) of large cod with most other stations having very low or zero values.

The cpue by survey haul for the IRGFS-WIBTS-Q4 survey are shown in Figure 5.13, and in Figure 5.14 for the two Scottish surveys (UKSGFS-WIBTS-Q1 and UKSGFS-WIBTS-Q4). All surveys show mostly zero returns over latitudes between 56 degrees N and 58.5 degrees N (although the IRGFS-WIBTS-Q4 survey only extends to 56.5 degrees N). This pattern has been consistent in surveys since 2007. The Scottish surveys have highest catch rates to the north of 59 degrees N , in and around the 'windsock' closed area. The Q1 surveys catch cod in the Clyde region and the Q4 surveys show moderate catch rates off the Northern Irish coast. From the IRGFS-WIBTS-Q4 survey there is also evidence of higher abundance in this area as well as along the shelf edge in the southern part of Division 6.a. Catch rates of age one cod are typically very low and the higher catches of older age classes that appear in the north of the region could potentially be due to overspill from the neighbouring North Sea stock which has increased in recent years.

A series of inshore and offshore Scottish industry-science surveys, known as the West Coast Demersal Fish (WCDF) project were conducted between December 2013 and November 2014. The initiative, funded by the Scottish Government and the European Fisheries Fund, was a joint venture between Marine Scotland Science and the Scottish Fishermen's Federation with the aim of improving the understanding of the current state of demersal stocks to the West of Scotland. The surveys show a broadly similar distribution to the UKSGFS-WIBTS-Q1 and UKSGFS-WIBTS-Q4 with bigger fish and increased abundance inside the Windsock compared to outside.

Biological data

Natural mortality-at-age (M) is assumed to be weight-dependent after Lorenzen (1996) but time invariant. M is calculated by finding the time-series means for stock weights-at-age before applying the Lorenzen parameters and the values are shown below.

Natural mortality (M)-at-age:

Age	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7 +}$
	0.539	0.386	0.307	0.263	0.238	0.224	0.211

Figure 5.15 shows the resulting M-at-age values used in the assessment and the values calculated in each year individually for comparison. Proportion of fish
mature-at-age are unchanged from the last meeting and is as detailed in the stock annex.

A study by the sea mammal research unit (SMRU) on seal predation has indicated that seal predation on cod probably constitutes significant natural mortality. A version of the TSA assessment model incorporating a seal predation model element was developed for WKROUND 2012. The specification of the seal feeding model is provided in the stock annex. Because only two years of seal consumption data were available at the time, WKROUND considered estimation of the seal feeding parameters likely to be highly uncertain and inclusion of seal predation in the model to be potentially adding little other than noise to the assessment. WKROUND 2012 concluded the final assessment of $6 . a \mathrm{cod}$ should not include seal predation estimation but that additional model runs including the seal feeding model could be performed to test the sensitivity of the assessment.

5.3.1 Stock assessment

This assessment uses a TSA run as outlined in the stock annex. Exploratory analysis of the input catch and survey data are also carried out.

Data screening

Catch curves from commercial catch-at-age data (landings plus discards) are shown in Figure 5.16. Although the data are noisy, there is some evidence for a flattening off of the catch curves in recent years compared to those of the cohorts spawned in the late 1990s. A plot of log catch curve gradients derived from commercial catch data (landings plus discards) over different age ranges is shown in Figure 5.17. There is some evidence of a decreasing mortality in recent years here too, particularly over age ranges including age two

Figure 5.18 shows the mean standardised catch-at-age by proportion (number). It shows good tracking of the strong cohorts as recently as the 2005 year class which shows well even at age 7+. More recently the data become rather noisy and in 2015, the proportion of the catch-at-age six is the highest of the time-series and similarly for age $7+$ in 2016. Neither of these observations are supported by above average values at younger ages of the same cohort. Potentially the age 6 value in 2015 and 7+ in 2016 could be an overspill of fish from the North Sea as this coincides with the strong 2009 year class in that area.

Figures 5.19 and 5.20 show the log mean standardised indices from the ScoGFS-WIBTS-Q1 survey by year and by cohort respectively. The early part of the timeseries appears to track the cohorts relatively well with no obvious year effects. However in later years the indices become more noisy and there is some evidence of year effects in the survey. The survey ended in 2010.

Figure 5.21 shows \log catch curves for the ScoGFS-WIBTS-Q1 survey. It shows a strong "hook" at the younger ages, with abundance-at-age two often higher than atage one. In later years survey abundance also shows increases from age 2 to age 3 in the same year class and the survey's ability to track recent cohorts seems poor relative to the 1990s and early 2000s. The survey scatterplots (Figure 5.22) show some consistency in the estimates of year-class strength across age classes (particularly the younger, adjacent ages), although less so at older ages. There is no trend in the log catch curve gradients derived from this survey (Figure 5.23) for any of the age ranges considered.

Figures 5.24 and 5.25 show the \log mean standardised indices by cohort and year from the IRGFS-WIBTS-Q4. The log mean standardised indices plot shows consistent signals at ages 1 and 2 with no real year effects. The scatterplots (Figure 5.27) also show reasonable consistency between ages one and two, but the tracking at older ages is less strong. The data cover too few age classes sufficiently well to give an indication in trend in mortality through catch curve gradients (Figure 5.26).

Figures 5.28 and 5.29 shows log mean standardised indices by year and cohort from the UKSGFS-WIBTS-Q1. There is little evidence of successful tracking of cohorts and some evidence of survey year effects. There appears to be a general increase in the catch rates of older ages over time (four and above), but no equivalent increase in the catch rates of younger ages (from the same cohort). An increase in catches of larger fish has also ben reported anecdotally by the fishing industry.

The log catch curves from the UKSGFS-WIBTS-Q1 are also very noisy (Figure 5.30) and typically do not show a decline as the cohort ages. The survey scatterplots show that even the catch rates of successive age classes (within the same cohort) are only weakly related (Figure 5.31).

Overall, information on mortality trends from all survey series (including the ScoGFS-WIBTS-Q1) appears to be fairly poor.

The high variability and large CVs (ranging from 35% to 80% depending on age class) for WKSGFS-WIBTS-Q1suggest that this survey is unlikely to contribute significantly to the assessment.

Final assessment

Model settings and input parameter settings for the final run are given in Table 5.10 and final parameter estimates from the TSA run are given in Table 5.11. There is a minor deviation from the stock annex in that landings-at-age 7+ are allowed to have higher variance in order to be able to address the inconsistencies in the age composition of the 2016 landings data observed in Figure 5.18 (and described above). (A similar approach was taken for the landings-at-age five and six in 2015 at the 2016 WG) This datapoint is unexpectedly high, not consistent with other data and could potentially be due to migration of fish from the adjacent North Sea stock. A run of TSA (not shown), with this point unweighted, gives very high prediction errors. Standardised prediction errors at-age from the update assessment run for landings and discards are shown in Figure 5.32 and for the two surveys in Figure 5.33. These are the main diagnostic tools for time-series Kalman filter models like TSA, and indicate the discrepancy between the model prediction and observation as the model steps through the data from the start to the end. They are a useful guide to suggest observations which might need to be down-weighted. Errors within ± 2 are considered reasonable.

Figures 5.34 and 5.35 show the residuals by age class for landings and discards and the two surveys respectively. The landings residuals show tendency for positive residuals at younger ages and an increase in the variance of the residuals in more recent years. This latter effect may be associated with the assumption of constant cv in the landings data which may be violated in recent years (the very low level of landings in recent years would imply very precise landings which is unlikely to be the case). The high precision of the landings (in recent years) compared to the UKSGFS-WIBTS-Q1 survey (the TSA model makes use of the CVs associated with the indices) also results in a poor distribution of survey residuals (although the magnitude of these is low). Essentially the model thinks the catch data are much
more plausible than the survey data and the survey data have an extremely low contribution to the likelihood. A fuller and more systematic evaluation of the weightings and uncertainty associated with the input data is currently underway. This is being guided by the cv estimates (for landings and discards) which are now available as part of the catch estimation procedure which takes place in national laboratories. Initial model runs are promising in terms of model diagnostics, but an (inter) benchmark process would be required for these changes to be reviewed and agreed as the final assessment.

The time-series of observed and fitted discard proportions-at-age is shown in Figure 5.36. The predictions follow the general trend in the data which are quite noisy.

Table 5.12 gives the TSA population numbers-at-age and Table 5.13 gives their associated standard errors. Estimated F at-age is given in Table 5.14 and standard errors on the \log of this mortality are given in Table 5.15 . Full summary output is given in Table 5.16. Note that catch, landings and discard weights presented in this table are the sum-of-products of numbers and weights at age rather than reported total weights. A summary plot for this run is shown in Figure 5.37.

Retrospectives for the final assessment run are shown in Figure 5.38. In recent years estimates of mean F have been revised downwards with the incorporation of addition data however this bias does not persist for earlier years. In general retrospective bias is small retrospective runs fall within the confidence intervals of the final model run (which for mean F in particular are very wide). The slight shift in historical SSB for the 2011 peel marks the inclusion of only a single year of the current survey series.

Stock status

Historical stock trends are shown in Figure 5.37 and the stock-recruitment relationship is shown in Figure 5.39. The estimated SSB shows a steady downward trend until 2006 and has fluctuated at a slightly higher level since then. The 2012 year class (recruitment in 2013) is estimated to be the highest since 2006, but given that mean F is still estimated to be high, this results in only minor increases in SSB in recent years. Recruitment in 2016 and 2017 is also estimated to be above the recent average, but with continued high mean F will result in only small increases in SSB.

Estimated SSB in the final year is well below Blim (= 14000 tonnes).Mean F is above Flim (= 0.82) in 2016, an increase on the values for 2015 and 2016 where F is estimated to be below Flim for the first time since 1995. Overall there is a general downward trend (but with significant annual fluctuations) in mean F since 2005, although points estimates are very uncertain. This trend agrees with the indications from the commercial catch data (when considered alone) that there has been a reduction in mortality across some age groups at least, although this is not apparent in the survey data and the age structure remains very truncated. Partial mean F for landings and discards separately is shown in Figure 5.42. Over the last three years, discarding has accounted on average for over 50% of the mean F .

The TSA estimated stock-recruit relationship is shown in Figure 5.39. It includes the datapoint of the 1986 year class which appears as an outlier. The relatively high strength of the 2005 year class (considering the size of SSB) can also be seen.

The precautionary approach plot for this stock is given in Figure 5.40. It shows clearly how the stock has moved and remained in the zone indicating reduced reproductive capacity and unsustainable removals.

Comparison with supplementary (seal predation) assessment

New data on seal consumption have recently become available to update the model, but not in time for this year's WG.

5.3.2 Short-term stock projections

The inputs for the short-term forecast follow the specifications in the Stock Annex. The recruitment in 2017 was taken as the TSA model estimate while future recruitment (2018 and 2019) was taken as a ten year geometric mean (excluding the final year estimate).

Fishing mortality in the intermediate year (2017) was taken as a three year average over 2014 to 2016. Mean weights-at-age and the partition of fishing mortality-at-age between landings and discards were also averaged over the most recent three years.

Variable	Value	Notes
F ages 2-5 (2017)	0.79437	Average of 2014-2016
SSB (2018)	2835 tonnes	Short-term forecast
Rage1 (2017)	3614 thousand	Assessment model estimate.
Rage1 (2018)	2610 thousand	$\mathrm{GM}_{2007-2016}$
Catch (2017)	1627 tonnes	Landings + Discards
Landings (2017)	535 tonnes	Average discard pattern (2014-2016)
Discards (2017)	1092 tonnes	Average discard pattern (2014-2016)

The short-term forecast inputs are shown in Table 5.17 and the outputs in Tablse 5.18 and 5.19. Note that the numbers-at-age in 2017 in Table 5.17 are the survivors from 2016 which differ slightly to the TSA numbers-at-age in 2017 (Table 5.12) which are smoothed estimates.

Under the forecast assumption of status quo F, landings in 2017 are predicted to be 535 t and discards to be around twice that. The SSB in 2018 is forecast to be 2835 t which is well below $\mathrm{B}_{\lim }$ (Table 5.18).

The forecast of landings in 2018, and SSB in 2019 in particular is sensitive to the recruitment assumptions. The TSA estimate of recruitment in 2017 and GM recruitment in 2018 contribute 43% and 24% respectively to the forecast SSB in 2019. (Figure 5.43).

5.3.3 Reference points

Both MSY and precautionary reference points were updated at WKMSYREF4 in November 2015 in accordance with ICES guidelines and are shown below (weights in tonnes). There are small differences to those used in the advice for 2015.

	Advice 2015	WKMSYREF4	Rationale (WKMSYREF4)
$B_{\lim }$	14000	14000	Bloss from which the stock has increased (SSB in 1992 as estimated in 2015)

B_{pa}	22000	20000	$1.4 \times \mathrm{B}_{\mathrm{lim}}$
$\mathrm{F}_{\text {lim }}$	0.8	0.82	Based on simulation with segmented regression recruitment with Blim as the breakpoint
F_{pa}	0.6	0.59	$\mathrm{~F}_{\text {lim }} / 1.4$
FMSY $^{\text {MSY B }}$ trigger	0.19	0.167	
FMSY upper	22000	20000	$\mathrm{~B}_{\mathrm{pa}}$
FMSY lower	0.254		

5.3.4 Management plans

Cod in $6 . a$ is included in Council Regulation No. 1342/2008 (amended by Council Regulation No. 1243/2012 and then further amended by Council Regulation (EU) 2016/2094) establishing a long-term plan for cod stocks and fisheries exploiting those stocks. The plan and its evaluation by ICES are discussed in Section XXX.

5.3.5 Uncertainties and bias in assessment and forecast

Figure 5.41 shows a comparison between this year's and last year's assessments. The assessment presented this year is very consistent with that presented last year in terms of estimates of SSB. The 2016 assessment estimated SSB in 2015 to be 2849 t while this year's assessment estimates it at 2762 t . Mean F in that year is now estimated at 0.69 which is a significant downward revision compared to last year's assessment (0.88). The 2014 mean F has also been revised downwards.

The estimate of recruitment in 2015 is revised down from 2.682 million to 2.020 million. The estimate of SSB in 2016 from this year's assessment is 2741 t with a s.e. of 373 t . Short-term forecasts of SSB conducted at previous WGs have not shown particularly good consistency with estimates of SSB in assessments conducted in successive years. (WGCSE, 2015).

Landings

Since the early 1990s the most significant problem with the assessment of this stock is with commercial data. Incorrect reporting of landings, species, quantity and management area, is known to have occurred. Scottish landings (from 2006) are adjusted to include estimates of misreporting (in an attempt to reduce bias in the assessment) and in 2016, area misreported landings account for around 60% of the total landings. The misreporting estimates are provided by Marine Scotland Compliance based on intelligence and consideration of VMS data. Estimates based on provisional analysis of VMS data linked to landings at a trip level (conducted at the 2015 inter-benchmark (ICES, 2015)) gave somewhat higher estimates. In addition these misreported landings are unsampled and potentially have different age compositions to the rest of the Scottish demersal finfish fleet (TR1) due to likely differences in discarding behaviour.

Discards

On average (over the last five years), discarding accounts for almost 70% of the total catch. Although sampling levels have improved in recent years, discard estimates are still very uncertain (approximate CV $=60 \%$ for Scottish TR1) contributing to uncertainty in the estimates of mean F.

Biological factors

Assumptions on mean weight-at-length and mean maturity-at-age have remained unchanged for a long period. However, biological responses of cod in 6.a as a localised species to high exploitation and low population numbers are so far unknown to the working group.
The contribution of seal predation to total cod mortality is likely to be significant and this may impair the ability of the cod stock to recover but data is limited. Weight dependent natural mortalities-at-age have been adopted to better take account of higher natural mortality at younger ages but it is not certain these values fully accommodate the possible large source of natural mortality from seals. Regular surveys giving estimates of consumption by seals would give greater confidence in natural mortality estimates. An assessment conducted by Cook et al. (2015) suggests declining fishing mortality and that seal predation may be impairing the recovery of this stock.

Stock structure

Stock structure is complex and at least two subpopulations are known to occur within this area. The survey distribution plots show that there is an almost complete absence of cod on the shelf in Division 6.a with the majority of the landings and stock concentrated in an area in the north of the region (around the 'windsock' closed area) bordering Division 4.a. It may be more appropriate to consider this component of the stock as part of the North Sea stock (or at least the northern component of this stock).

Assessment method

Down-weighting of various input datapoints to allow for inconsistencies in the data has been conducted on a rather ad hoc basis in the past and could potentially have introduced bias. A more systematic approach which uses estimates of CV derived as part of the catch estimation process conducted in national laboratories may improve the assessment model diagnostics.

5.3.6 Recommendation for next Benchmark

problem	solution	expertise necessary	suggested time
Stock identity	Evaluate a possible merge between North Sea and 6.a cod stocks. Or as an alternative, split area 6.a in two areas North and	Scientists from MSS and MI	Next benchmark although would need collaboration with WGNSSK.
	South.		
Further analysis of Misreporting of landings; does not take account of fleet components.	Scientists from supplied by Scotland, potentially making use of VMS data	One year before the benchmark as it is a proceess that is time consuming.	
Assessment method	Consideration of variance structures used in the TSA model to improve diagnostics	Scientists from	Intersessionally

${ }^{1}$ MSS = Marine Scotland Science; MI = Marine Institute Ireland.

5.3.7 Management considerations

The fishery is managed by a combination of landings limits, area closures, technical measures and effort restrictions. These do not seem to have been effective in controlling catches. Despite considerable reductions in fishing effort over the past decade, the stock structure is still truncated with few older fish present.

The fishing opportunities regulation has explicitly made the stock a bycatch species from 2012. Allowing landings up to 1.5% of the live weight of the total catch can cause a perverse incentive for vessels to increase catches of other species and does not inhibit the catch of cod. In fact, in recent years the landings of 6.a cod have increased.

Although the UK 'Buyers and Sellers' and Irish 'Sales Notes' legislation is considered to have reduced underreporting from 2006, discard data show increased discards atages one and two and a change in discard practices such that fish are discarded at older ages. In 2008, Scotland introduced a voluntary programme known as "Conservation Credits", which involved seasonal closures, real-time closures (RTCs) and various selective gear options. This was designed to reduce mortality and discarding of cod. RTCs are determined by lpue, based on fine scale VMS data and daily logbook records and also by on-board inspections. There have been no RTCs to the west of Scotland in the years since 2012 due to the lack of occurrence of high lpue in the area. Estimates of continuing high discard rates in Division 6.a indicate the scheme has not been as effective as in the North Sea. Figure 5.42 highlights the problem from discards. Since 2006 mortality from landings is estimated to have decreased rapidly but over the same period mortality from discards has increased just as rapidly. It also needs to be remembered that mortality estimates arising from an assessment heavily based on survey and/or discard data are poorly estimated. In contrast, historical trends in spawning biomass and recruitment appear to be robust measures of stock dynamics.

Estimates of misreporting from Marine Scotland Compliance imply ICES landings estimates which are in excess of TACs during the mid-2000s. Misreported landings make a significant contribution to the fishing mortality on this stock.

Cod is taken in mixed demersal fisheries, and in Division 6.a is now regarded as a bycatch species. To greatly reduce cod catch would likely result in having to greatly reduce harvesting of other stocks such as haddock, whiting and anglerfish. It is also important the bycatch from the Nephrops fleet is closely monitored (including discard observations). In 2015, trawl gear vessels targeting finfish (TR1) are responsible for around 85% of cod catches in Division 6.a, the Nephrops fleet (TR2) take approximately 12% and the remainder are taken by other gears, mainly longliners.

The EU cod long-term management plan, (Council Regulation No. 1342/2008) was amended in 2016 by Council Regulation (EU) 2016/2094 to cover the transitional period in which preparations are ongoing towards multiannual plans for multispecies fisheries. The amended regulation discontinues the previous fishing effort regime and removes reference to the previous $\mathrm{F}_{\mathrm{mgt}}$ of 0.4.

A report by the Sea Mammal Research unit (Hammond and Harris, 2006) gives estimates of cod consumed by grey seals to the west of Scotland. Although highly uncertain the estimates suggest predation mortality on cod is significant and this may impair the ability of the cod stock to recover, but data are limited (Cook et al., 2015).

5.3.8 Frequency of assessment

This stock has had zero catch advice for over ten years and therefore meets the first of the criteria for consideration for biennial assessment as outlined by WGCSE in 2016.

5.4 Sources

Cook, R. M., Holmes, S. J. and Fryer, R. J. 2015. Grey seal predation impairs recovery of an over-exploited fish stock. J. Applied Ecol., 52(4), 969-979.

EU. 2008. COUNCIL REGULATION (EC) No. 1342/2008 of 18 December 2008 establishing a long-term plan for cod stocks and the fisheries exploiting those stocks and repealing Regulation (EC) No. 423/2004. Official Journal of the European Union, L 348/21.
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:348:0020:0033:EN:PDF.
EU. 2016. COUNCIL REGULATION (EU) 2016/2094 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 November 2016 amending Council Regulation (EC) No 1342/2008 establishing a long-term plan for cod stocks and the fisheries exploiting those stocks.

Hammond, P. S., and Harris, R. N. 2006. Grey seal diet composition and prey consumption off western Scotland and Shetland. Final report to Scottish Executive Environment and Rural Affairs Department and Scottish Natural Heritage.

ICES. 2012. Report of the Benchmark Workshop on Western Waters Roundfish (WKROUND), 22-29 February 2012, Aberdeen, UK. ICES CM 2012/ACOM:49. 283 pp.

Lorenzen K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of Fish Biology 49, 627-647.

STECF. 2011. Scientific, Technical and Economic Committee for Fisheries. Evaluation of Fishing Effort Regimes Regarding Annexes IIA, IIB and IIC of TAC \& Quota Regulations, Celtic Sea and Bay of Biscay (STECF-11-13).

STECF. 2011. Scientific, Technical and Economic Committee for Fisheries. Evaluation of Fishing Effort Regimes (STECF-13-13).

Thomas, L. 2011. Estimating the size of the UK grey seal population between 1984 and 2010. SCOS Briefing Paper 11/02.

Scientific, Technical and Economic Committee for Fisheries (STECF) - Evaluation of Fishing Effort Regimes in European Waters - Part 2 (STECF-14-20). 2014. Publications Office of the European Union, Luxembourg, EUR 27027 EN, JRC 93183, 844 pp.

Table 5.1. Cod in Division 6.a. ICES official catch statistics.

Country	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Belgium	48	88	33	44	28	-	6	-	22	1	2	+	11	1	$+$
Denmark	-	-	4	1	3	2	2	3	2	+	4	2	-	-	+
Faroe Islands	-	-	-	11	26	-	-	-	-	-	-	-	-	-	-
France	7,411	5,096	5,044	7,669	3,640	2,220	2,503	1,957	3,047	2,488	2,533	2,253	956	714	842
Germany	66	53	12	25	281	586	60	5	94	100	18	63	5	6	8
Ireland	2,564	1,704	2,442	2,551	1,642	1,200	761	761	645	825	1,054	1,286	708	478	223
Netherlands	-	-	-	-	-	-	-	-	-	-	-	-	2	1	-
Norway	204	174	77	186	207	150	40	171	72	51	61	137	36	36	79
Spain	28	-	-	-	85	-	-	-	-	-	16	+	6	42	45
UK (E. W. N.I.)	260	160	444	230	278	230	511	577	524	419	450	457	779	474	381
UK (Scotland)	8,032	4,251	11,143	8,465	9,236	7,389	6,751	5,543	6,069	5,247	5,522	5,382	4,489	3,919	2,711
UK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total landings	18,613	11,526	19,199	19,182	15,426	11,777	10,634	9,017	10,475	9,131	9,660	9,580	6,992	5,671	4,289

Country	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015*	2016*
Belgium	+	2	+	-	-	-	-	-	-	-	0	0	0	0	-	-	-
Denmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Faroe Islands	-	-	-	-	2	0	0.8	12	1		0.2	0	-	-	-	-	-
France	236	391	208	172	91	107	100.7	92	82	74	60.3	46	4.21	3.36	5	-	-
Germany	6	4	+	+			2	2	1	0	0	0	0.04	0	-	-	-
Greenland																	1
Ireland	357	319	210	120	34	27.9	18	70	58.2	24.4	48.7	41.3	17.8	13.7	11.68	17.47	28
Netherlands	-	-	-	-	-	-	-	-	-	0		0	0	0	-	-	-
Norway	114	40	88	45	10	17	30	30	65	18	20.7	8.3	56.2	24.017	13.848	59.12	39
Spain	14	3	11	3	-	-	-	-	-	-	-	-	-	-	-	-	-
UK (E. W. N.I.)	280	138	195	79	46	25	-	21	6	14	-	-	-	-	-	-	-
UK (Scotland)	2,057	1,544	1,519	879	413	243	-	260	232	-	-	-	-	-	-	-	-
UK	-	-	-	-	-	-	332.1	-	-	104	118.6	110	137.2	131.266	129.995	167.89	182
Total landings	2,767	2,439	2,231	1,298	596	419.9	483.6	487	445.2	234.4	248.5	205.6	215.5	172.343	160.523	244.48	250

* Preliminary.

Table 5.2. Cod in Division 6.a. Landings (reported into 6a and area misreported), discards and catch (tonnes) estimates, as used by the WG. Values are totals for fish aged 1 to 7+.

Year	Landings		Discards	Catch
	Reported	Misreported		
1978	13521		161	13682
1979	16087		39	16126
1980	17879		423	18302
1981	23866		303	24169
1982	21510		571	22081
1983	21305		197	21502
1984	21271		329	21600
1985	18608		963	19571
1986	11820		263	12083
1987	18975		2388	21363
1988	20413		368	20781
1989	17171		2076	19247
1990	12176		571	12747
1991	10926		622	11548
1992	9086		1779	10865
1993	10315		139	10454
1994	8929		661	9590
1995	9438		141	9579
1996	9425		63	9488
1997	7033		499	7532
1998	5714		538	6252
1999	4201		69	4270
2000	2977		821	3798
2001	2347		92	2439
2002	2242		480	2722
2003	1241		34	1275
2004	540		72	612
2005	479		41	520
2006	463	25	464	952
2007	525	70	1879	2474
2008	451	231	695	1377
2009	222	186	945	1353
2010	239	320	785	1344
2011	206	248	1671	2125
2012	160	306	1166	1632
2013	172	123	1202	1497
2014	156	205	1311	1672
2015	256	461	983	1700
2016	334	499	851	1684

Table 5.3. Cod in Division 6.a. Survey data made available to the WG. Data used in update assessment are highlighted in bold. For the Scottish surveys, numbers are standardised to catch rate per ten hours. For the Irish surveys, effort is given as minutes towed and numbers are in units.

ScoGFS- W		Scottish	coast	dfish				
1985	2010							
1	1	0	0.25					
1	7							
10	1.5	23.7	8.6	13.6	3.9	2.5	1.2	1985
10	1.5	6.9	26.8	5.6	7.3	2.5	1.9	1986
10	57.4	16.2	15.3	22.8	3.0	2.8	0.0	1987
10	0.0	64.9	14.2	3.4	2.1	0.7	0.2	1988
10	4.5	7.2	45.1	8.6	1.9	0.5	0.8	1989
10	2.0	24.6	4.1	14.7	4.2	1.6	0.8	1990
10	4.8	5.4	17.4	5.2	13.4	2.8	0.5	1991
10	7.3	11.5	5.4	7.6	3.4	2.3	0.5	1992
10	1.7	38.2	12.7	1.7	1.4	1.1	0.0	1993
10	13.6	14.7	25.1	5.8	1.0	0.0	0.0	1994
10	6.4	23.8	14.0	16.5	1.2	1.9	0.7	1995
10	2.8	20.9	24.1	4.1	2.8	1.3	0.0	1996
10	11.1	7.7	11.6	7.9	4.2	4.7	1.0	1997
10	2.8	30.9	5.3	8.7	3.7	0.6	2.0	1998
10	1.5	8.2	8.2	1.4	3.2	0.5	0.5	1999
10	13.3	5.4	6.9	1.3	0.0	0.4	0.0	2000
10	2.7	18.4	5.7	13.2	19.5	1.1	1.6	2001
10	5.3	4.3	10.6	2.6	0.5	3.0	0.0	2002
10	2.7	16.7	2.0	4.7	1.8	0.7	0.4	2003
10	5.7	3.0	5.6	2.3	1.7	0.0	0.0	2004
10	1.3	1.5	1.2	0	0	0.4	0	2005
10	2.2	1.9	1.1	0.3	0	0	0.3	2006
10	2.1	18.8	3.4	1.2	0	0.6	0	2007
10	0.8	2.1	44.2	6.3	0.8	0	0	2008
10	1.8	2.6	2.3	0.4	0	0	0	2009
10	4.6	16.2	3.7	1.0	0.7	0	0	2010

Table 5.3. Continued. Cod in Division 6.a. Survey data made available to the WG. For the Scottish surveys, numbers are standardised to catch rate per ten hours. For the Irish surveys, effort is given as minutes towed and numbers are in units.

UKSGFS-WIBTS-Q1 (index)

2011	2017							
1	1	0						
1	7	32.95	21.07	0.93	0.98	0.74	0.00	2011
10	0.52	27.30	22.72	4.58	3.50	2.20	4.20	2012
10	13.99	40.26	26.38	36.95	7.76	0.30	0.00	2013
10	20.03	41.73	13.44	5.12	4.31	0.75	0.00	2014
10	11.40	36.40	70.70	37.74	23.25	13.00	2.47	2015
10	8.16	56.07	65.41	44.56	5.67	2.36	2.29	2016
10	4.73	33.49	50.58	49.58	156.64	10.71	24.89	2017
10	2.92							

UKSGFS-WIBTS-Q1 (variance)

2011	2017							
1	1	0	0.25					
1	7							
10	0.09	78.37	24.06	0.22	0.49	0.30	0.00	2011
10	44.18	120.08	33.73	2.31	8.34	4.83	13.02	2012
10	118.35	151.04	136.89	240.05	6.47	0.09	0.00	2013
10	20.17	383.27	12.23	3.04	5.47	0.28	0.00	2014
10	14.35	112.82	1264.73	602.27	289.82	98.91	5.48	2015
10	1.81	214.42	607.48	319.21	5.02	1.60	1.85	2016
10	1.43	155.67	498.57	1061.90	20475.95	84.79	287.62	2017

Table 5.3. Continued. Cod in Division 6.a. Survey data made available to the WG. For the Scottish surveys, numbers are standardised to catch rate per ten hours. For the Irish surveys, effort is given as minutes towed and numbers are in units.

IREGFS	IRISH GROUNDFISH SURVEY			
1993	2002			
1	1	0.75	0.79	
0	3			13.0
1849	0.0	312.0	49.0	13.0
1610	20.0	999.0	56.0	69.0
1826	78.0	169.0	142.0	18.0
1765	0.0	214.0	89.0	10.0
1581	6.0	565.0	31.0	6.0
1639	0.0	83.0	53.0	3.0
1564	0.0	24.0	14.0	1.0
1556	0.0	124.0	28.0	2.0
755	3.0	82.0	2.0	1.2
798	0.0			

ScoGFS-W	BTS-Q4:		arter	ttish		urvey				
1996	2010									
1	1	0.75	1.00							
0	8									
10	0	0.7	14.4	5	3	1.1	0.5	0	0	1996
10	1	10.9	2.4	1.4	1.4	1.4	0.2	0	0	1997
10	+	14.8	9.7	1.1	0	0	0	0	0	1998
10	2	4	6	9.2	0.5	0	0	0	0	1999
10	0	15.8	2.6	0.4	0.4	0	0	0	0	2000
10	1	1.7	7.3	1.7	0.3	0	0	0	0	2001
10	1	10.4	2.8	6.8	0.6	0	0	0	0	2002
10	1	1.5	11.3	2.9	0.6	0	0	0	0	2003
10	0	5.1	3.8	1.4	0	0.7	0	0	0	2004
10	+	2.1	3	0	0.6	0.3	0	0	0	2005
10	0	16.9	5.9	1.4	0.7	0	0	0	0	2006
10	0	12	20	1.3	0.5	0	0.3	0	0	2007
10	2	7.7	5	7	1	0	0	0	0	2008
10	2	14.2	3.8	1.2	1.2	0.3	0	0	0	2009
10	na	2010								

Table 5.3. Cont. Cod in Division 6.a. Survey data made available to the WG. For the Scottish surveys, numbers are standardised to catch rate per ten hours. For the Irish surveys, effort is given as minutes towed and numbers are in units.

UKSGFS-WIBTS-Q4 (index)

20112016										
1	1	0.75	1.0							
0	8									
10	0.60	9.71	31.54	10.88	0.93	1.70	2.38	0.00	0.00	2011
10	0.75	19.78	7.12	15.43	13.60	1.02	0.68	0.34	0.00	2012
Survey not completed due to mechanical issues 2013										
10	1.67	23.65	28.06	15.63	5.57	6.63	1.37	0.00	0.00	2014
10	3.64	28.17	52.53	34.22	10.58	4.24	5.27	1.18	0.59	2015
10	0.374	6.162	34.941	45.443	118.92	14.893	5.773	3.176	0	2016

UKSGFS-WIBTS-Q4 (variance)

20112016										
1	1	0.75	1.0							
0	8									
10	0.21	31.08	38.07	5.78	0.19	1.56	4.79	0.00	0.00	2011
10	0.14	41.72	2.79	11.37	48.79	1.05	0.46	0.12	0.00	2012
Survey not completed due to mechanical issues 2013										
10	0.68	132.97	56.62	44.17	3.87	4.79	0.39	0.00	0.00	2014
10	5.55	98.78	316.23	51.22	8.60	4.43	4.61	0.34	0.12	2015
10	0.14	7.394	419.36	716.38	7654.82	118.64	24.30	6.08	0	2016

Table 5.3. Continued. Cod in Division 6.a. Survey data made available to the WG. For the Scottish surveys, numbers are standardised to catch rate per ten hours. For the Irish surveys, effort is given as minutes towed and numbers are in units.

IRGFS-WIBTS-Q4 Irish West Coast groundfish.

2003	2016					
1	1	0.79	0.92			
0	4	10	11	0	0	2003
1127	0	24	10	1	0	2004
1200	0	7	0	2	2005	
960	63	95	12	0	0	2006
1510	0	161	12	0	1	2007
1173	0	23	24	4	0	2008
1135	0	75	4	5	0	2009
1378	1	26	26	4	0	2011
1291	0	74	7	3	0	2012
1287	1	92	11	0	0	2013
1230	0	113	20	2	0	2014
1295	0	15	11	3	0	2015
1200	0	27	23	2	0	2016
1213	0					
962	0					

Table 5.4. Cod in Division 6.a. Landings-at-age (thousands). Values for 2006 onwards include an adjustment for area misreporting.

Age							
Year	1	2	3	4	5	6	7+
1966	384	2883	629	999	825	78	52
1967	261	2571	3705	670	442	264	67
1968	333	1364	3289	1838	215	171	151
1969	64	1974	1332	1943	759	149	170
1970	256	1176	1638	571	476	153	74
1971	254	1903	550	841	240	201	95
1972	735	2891	1591	409	501	108	110
1973	1015	1524	1442	583	161	193	104
1974	843	2318	778	1068	288	72	102
1975	1207	1898	1187	533	325	90	35
1976	970	3682	1467	638	256	215	56
1977	1265	1314	1639	624	269	87	79
1978	723	1761	999	695	286	97	75
1979	929	1612	2125	682	342	134	69
1980	1195	3294	2001	796	191	77	37
1981	461	7016	3220	904	182	29	20
1982	1827	1673	3206	1189	367	111	33
1983	2335	4515	1118	1400	468	148	60
1984	2143	2360	2564	448	555	185	59
1985	1355	5069	1269	1091	140	167	79
1986	792	1486	2055	411	191	40	30
1987	7873	4837	988	905	137	56	26
1988	1008	8336	2193	278	210	39	20
1989	2017	1082	3858	709	113	69	33
1990	513	4024	432	924	170	23	11
1991	1518	1728	1805	188	266	70	23
1992	1407	1868	575	720	69	58	24
1993	328	3596	1050	131	183	24	36
1994	942	1207	1545	280	56	51	20
1995	753	2750	700	630	70	15	11
1996	341	2331	1210	247	204	31	13
1997	1414	1067	989	281	66	62	7
1998	310	3318	293	174	57	16	9
1999	132	884	1047	64	48	24	9
2000	765	532	211	231	15	12	13
2001	96	1241	155	63	52	3	4
2002	337	340	522	41	13	14	4
2003	62	516	85	107	6	2	1
2004	44	92	85	11	26	2	1
2005	31	121	43	37	7	6	0

	AGE						
2006	18	96	76	22	13	2	1
2007	6	187	70	37	3	4	3
2008	0	34	130	25	16	1	3
2009	2	12	11	59	8	2	0
2010	0	43	61	38	32	1	0
2011	0	11	40	34	12	13	2
2012	3	1	41	51	5	4	5
2013	0	8	9	43	10	2	1
2014	0	3	66	31	23	2	0
2015	0	53	55	41	29	27	1
2016	2	33	112	69	22	11	14

Table 5.5. Cod in Division 6.a. Mean weight-at-age in landings (kg).

	Age						
YEAR	1	2	3	4	5	6	7+
1966	0.730	1.466	3.474	5.240	4.868	8.711	9.250
1967	0.681	1.470	2.906	4.560	6.116	7.394	8.058
1968	0.745	1.776	2.766	4.721	6.304	7.510	8.278
1969	0.860	1.284	2.821	4.259	6.169	6.374	7.928
1970	0.595	0.955	2.533	4.678	6.016	7.120	8.190
1971	0.674	1.046	2.536	4.167	6.023	6.835	8.100
1972	0.609	1.192	2.586	4.417	6.226	7.585	8.538
1973	0.597	1.181	2.784	4.601	5.625	7.049	8.611
1974	0.611	1.103	2.834	4.750	6.144	7.729	9.339
1975	0.603	1.369	3.078	5.302	6.846	8.572	10.328
1976	0.616	1.397	3.161	5.005	6.290	8.017	9.001
1977	0.629	1.160	2.605	4.715	6.269	7.525	9.511
1978	0.63	1.373	3.389	5.262	7.096	8.686	9.857
1979	0.693	1.373	2.828	4.853	6.433	7.784	9.636
1980	0.624	1.375	3.002	5.277	7.422	8.251	9.331
1981	0.55	1.166	2.839	4.923	7.518	9.314	10.328
1982	0.692	1.468	2.737	4.749	6.113	7.227	9.856
1983	0.583	1.265	2.995	4.398	6.305	8.084	9.744
1984	0.735	1.402	3.168	5.375	6.601	8.606	10.35
1985	0.628	1.183	2.597	4.892	6.872	8.344	9.766
1986	0.71	1.211	2.785	4.655	6.336	8.283	9.441
1987	0.531	1.312	2.783	4.574	6.161	7.989	10.062
1988	0.806	1.182	2.886	5.145	6.993	8.204	9.803
1989	0.704	1.298	2.425	4.737	7.027	7.52	9.594
1990	0.613	1.275	2.815	4.314	7.021	9.027	11.671
1991	0.64	1.095	2.618	4.346	6.475	8.134	10.076
1992	0.686	1.293	2.607	4.268	6.19	7.844	10.598
1993	0.775	1.316	2.94	4.646	6.244	7.802	8.409
1994	0.644	1.292	2.899	4.71	6.389	8.423	8.409
1995	0.606	1.148	2.857	4.956	6.771	8.539	9.505
1996	0.667	1.221	2.738	5.056	6.892	8.088	10.759
1997	0.595	1.21	2.571	4.805	6.952	7.821	9.63
1998	0.605	1.061	2.264	4.506	6.104	8.017	9.612
1999	0.691	1.039	2.194	4.688	6.486	8.252	9.439
2000	0.689	1.261	2.457	4.126	6.666	7.917	8.392
2001	0.654	0.988	2.679	4.568	5.86	7.741	9.386
2002	0.668	1.14	2.33	4.841	6.175	7.192	9.548
2003	0.671	1.016	2.312	3.854	6.22	8.075	8.839
2004	0.609	1.027	2.194	4.396	6.003	8.258	9.678
2005	0.776	1.172	2.624	4.118	4.908	6.753	10.24
2006	0.656	1.169	2.236	3.822	6.172	7.796	11.1

Age							
YeAR	1	2	3	4	5	6	7+
2007	0.476	0.976	2.512	4.285	6.491	7.733	8.81
2008	0.557	1.183	2.992	4.826	6.33	7.957	8.471
2009	0.988	1.961	3.132	4.759	5.904	8.171	8.646
2010	0	1.521	2.671	3.977	5.269	6.144	7.974
2011	0	1.434	3.2	4.057	5.832	6.525	9.891
2012	0.66	1.737	2.797	4.833	6.876	7.296	7.52
2013	0.993	1.372	2.966	4.073	6.141	7.158	9.849
2014	0.969	1.422	2.094	3.046	4.697	5.505	7.206
2015	0.834	2.623	2.947	3.84	5.456	5.561	8.819
2016	0.737	1.411	2.427	3.958	5.267	6.606	7.746

Table 5.6. Cod in Division 6.a. Discard numbers at age (thousands). Data from 1978-2001 raised from Scottish sampling only; later data use samples from other nations when available.

	Age						
Year	1	2	3	4	5	6	7
1978	412	26	0	0	0	0	0
1979	16	81	0	0	0	0	0
1980	1171	0	0	0	0	0	0
1981	54	907	0	0	0	0	0
1982	1808	8	0	0	0	0	0
1983	843	25	0	0	0	0	0
1984	1088	11	0	0	0	0	0
1985	5188	114	0	0	0	0	0
1986	970	14	0	0	0	0	0
1987	14358	12	0	0	0	0	0
1988	231	1059	2	0	0	0	0
1989	6243	6	0	0	0	0	0
1990	4181	41	0	0	0	0	0
1991	2518	14	2	0	0	0	0
1992	7385	143	3	0	0	0	0
1993	279	84	1	0	0	0	0
1994	2743	6	0	0	0	0	0
1995	625	56	0	0	0	0	0
1996	191	50	0	0	0	0	0
1997	1521	34	0	0	0	0	0
1998	790	972	0	0	0	0	0
1999	230	5	0	0	0	0	0
2000	2882	33	0	0	0	0	0
2001	176	115	0	0	0	0	0
2002	1051	199	0	0	0	0	0
2003	69	26	1	0	0	0	0
2004	232	21	0	0	0	0	0
2005	108	20	0	0	0	0	0
2006	1210	47	24	2	3	1	0
2007	566	1489	50	38	3	3	0
2008	68	102	281	1	0	0	0
2009	605	150	109	94	0	5	0
2010	352	392	65	7	3	0	0
2011	316	281	535	42	0	2	0
2012	374	93	383	50	0	0	0
2013	2030	321	131	103	15	0	2
2014	705	316	255	51	19	1	0
2015	161	307	217	25	6	1	0
2016	1008	209	95	46	6	0	0

Table 5.7. Cod in Division 6.a. Mean weight-at-age in discards (kg). Data from 1978-2001 raised from Scottish sampling only; later data use samples from other nations when available.

	Age						
Year	1	2	3	4	5	6	7
1978	0.37	0.321	0	0	0	0	0
1979	0.276	0.43	0	0	0	0	0
1980	0.361	0	0	0	0	0	0
1981	0.135	0.326	0	0	0	0	0
1982	0.314	0.392	0	0	0	0	0
1983	0.223	0.374	0	0	0	0	0
1984	0.298	0.435	0	0	0	0	0
1985	0.178	0.346	0	0	0	0	0
1986	0.267	0.305	0	0	0	0	0
1987	0.166	0.37	0	0	0	0	0
1988	0.296	0.283	0	0	0	0	0
1989	0.332	0.59	0	0	0	0	0
1990	0.132	0.454	0	0	0	0	0
1991	0.245	0.351	0	0	0	0	0
1992	0.22	1.03	2.382	0	0	0	0
1993	0.239	0.812	3.723	0	0	0	0
1994	0.24	0.365	0	0	0	0	0
1995	0.203	0.256	0	0	0	0	0
1996	0.226	0.389	0	0	0	0	0
1997	0.321	0.328	0	0	0	0	0
1998	0.23	0.367	0.59	0	0	0	0
1999	0.294	0.299	0	0	0	0	0
2000	0.28	0.421	0	0	0	0	0
2001	0.248	0.417	0	0	0	0	0
2002	0.263	1.021	0	0	0	0	0
2003	0.272	0.57	0.39	0	0	0	0
2004	0.258	0.581	0	0	0	0	0
2005	0.285	0.501	0	0	0	0	0
2006	0.259	1.291	2.649	3.499	6.24	5.581	11.122
2007	0.198	0.94	3.016	4.453	5.018	10.627	0
2008	0.22	0.976	2.046	4.047	7.937	0	0
2009	0.261	1.312	2.248	3.324	0	6.448	0
2010	0.253	1.312	2.268	3.218	3.245	0	0
2011	0.212	1.023	2.207	2.993	4.891	4.168	0
2012	0.151	1.197	2.18	3.222	8.537	0	0
2013	0.111	0.945	2.119	3.05	5.029	0	6.27
2014	0.145	1.124	2.415	3.066	4.007	4.731	0
2015	0.344	0.994	2.32	3.409	4.414	6.103	0
2016	0.205	1.111	2.228	3.759	4.435	0	0

Table 5.8. Cod in Division 6.a. Total catch-at-age (thousands). Values for 2006 onwards include an adjustment for area misreporting.

	Age						
Year	1	2	3	4	5	6	7+
1978	1135	1787	999	695	286	97	75
1979	945	1693	2125	682	342	134	69
1980	2366	3294	2001	796	191	77	37
1981	515	7923	3220	904	182	29	20
1982	3635	1681	3206	1189	367	111	33
1983	3178	4540	1118	1400	468	148	60
1984	3231	2371	2564	448	555	185	59
1985	6543	5183	1269	1091	140	167	79
1986	1762	1500	2055	411	191	40	30
1987	22231	4849	988	905	137	56	26
1988	1239	9395	2195	278	210	39	20
1989	8260	1088	3858	709	113	69	33
1990	4694	4065	432	924	170	23	11
1991	4036	1742	1807	188	266	70	23
1992	8792	2011	578	720	69	58	24
1993	607	3680	1051	131	183	24	36
1994	3685	1213	1545	280	56	51	20
1995	1378	2806	700	630	70	15	11
1996	532	2381	1210	247	204	31	13
1997	2935	1101	989	281	66	62	7
1998	1100	4290	293	174	57	16	9
1999	362	889	1047	64	48	24	9
2000	3647	565	211	231	15	12	13
2001	272	1356	155	63	52	3	4
2002	1388	539	522	41	13	14	4
2003	131	542	86	107	6	2	1
2004	276	113	85	11	26	2	1
2005	139	141	43	37	7	6	0
2006	1228	143	100	24	16	2	1
2007	572	1677	120	75	6	7	3
2008	68	136	411	26	16	1	3
2009	607	162	120	154	8	7	0
2010	352	436	126	45	35	1	0
2011	316	292	574	77	12	15	2
2012	377	95	424	102	5	4	5
2013	2030	329	139	146	25	2	3
2014	705	320	322	81	42	3	0
2015	161	360	272	66	35	27	1
2016	1010	242	208	115	29	11	14

Table 5.9. Cod in Division 6.a. Mean weight-at-age (kg) in total catch.

	Age						
Year	1	2	3	4	5	6	7+
1978	0.536	1.358	3.389	5.262	7.096	8.686	9.857
1979	0.686	1.328	2.828	4.853	6.433	7.784	9.636
1980	0.494	1.375	3.002	5.277	7.422	8.251	9.331
1981	0.506	1.070	2.839	4.923	7.518	9.314	10.328
1982	0.504	1.463	2.737	4.749	6.113	7.227	9.856
1983	0.488	1.260	2.995	4.398	6.305	8.084	9.744
1984	0.588	1.398	3.168	5.375	6.601	8.606	10.350
1985	0.271	1.165	2.597	4.892	6.872	8.344	9.766
1986	0.466	1.203	2.785	4.655	6.336	8.283	9.441
1987	0.295	1.310	2.783	4.574	6.161	7.989	10.062
1988	0.711	1.081	2.883	5.145	6.993	8.204	9.803
1989	0.423	1.294	2.425	4.737	7.027	7.520	9.594
1990	0.185	1.267	2.815	4.314	7.021	9.027	11.671
1991	0.394	1.089	2.615	4.346	6.475	8.134	10.076
1992	0.295	1.274	2.606	4.268	6.190	7.844	10.598
1993	0.529	1.304	2.941	4.646	6.244	7.802	8.409
1994	0.343	1.287	2.899	4.710	6.389	8.423	8.409
1995	0.423	1.130	2.857	4.956	6.771	8.539	9.505
1996	0.509	1.204	2.738	5.056	6.892	8.088	10.759
1997	0.453	1.183	2.571	4.805	6.952	7.821	9.630
1998	0.336	0.904	2.264	4.506	6.104	8.017	9.612
1999	0.439	1.035	2.194	4.688	6.486	8.252	9.439
2000	0.366	1.212	2.457	4.126	6.666	7.917	8.392
2001	0.391	0.940	2.679	4.568	5.860	7.741	9.386
2002	0.361	1.096	2.330	4.841	6.175	7.192	9.548
2003	0.461	0.995	2.290	3.854	6.220	8.075	8.839
2004	0.314	0.946	2.194	4.396	6.003	8.258	9.678
2005	0.395	1.078	2.624	4.118	4.908	6.753	10.240
2006	0.265	1.209	2.335	3.799	6.183	7.071	11.102
2007	0.201	0.944	2.723	4.370	5.813	9.001	8.810
2008	0.221	1.028	2.345	4.801	6.351	7.957	8.471
2009	0.264	1.362	2.329	3.876	5.904	6.951	8.646
2010	0.253	1.333	2.462	3.856	5.095	6.144	7.974
2011	0.212	1.038	2.276	3.469	5.812	6.249	9.891
2012	0.155	1.205	2.239	4.036	6.913	7.296	7.520
2013	0.111	0.955	2.171	3.352	5.488	7.158	7.608
2014	0.145	1.127	2.349	3.058	4.379	5.358	7.206
2015	0.345	1.232	2.447	3.674	5.266	5.575	8.819
2016	0.206	1.152	2.336	3.878	5.082	6.606	7.746

Table 5.10. Cod in Division 6.a. TSA parameter settings for the assessment run.

Parameter	Setting	Justification
Age of full selection.	$\mathrm{am}_{\mathrm{m}}=4$	Carried over from previous TSA. Based on inspection of XSA runs.
Multipliers on variance matrices of measurements.	$\begin{aligned} & B_{\text {landings }}(a)=2 \text { for ages } 6,7+ \\ & B_{\text {survey }}(a)=2 \text { for age } 1,5,6 \end{aligned}$	Allows extra measurement variability for poorlysampled ages.
Multipliers on variances for fishing mortality estimates.	$\mathrm{H}(1)=2$	Allows for more variable fishing mortalities for age 1 fish.
Down-weighting of particular datapoints.	Landings: Age 2 in 1987 age 6 in 1982 and 2009, age 7 in 1982,1983,1989. Age 5 \& 6 in 2015 Age 7 in 2016 Discards: age 1 in 1988 and 1992, age 2 in 1988, 1992,1998,2002. Survey: age 2 in 2007 and 2010, age 3 in 2008 (large haul near 4W line), age 4 in 2001 and 2008, age 5 in 2001.	Large values indicated by exploratory prediction error plots. Down-weighting in 2001 resulted from a single large haul, 24 fish $>75 \mathrm{~cm}$ in 30 minutes.
Discards	Discards are allowed to evolve over time constrained by a trend. Ages 1 to 4 are modelled independently. A step function is specified with the step occurring in 2006.	
Recruitment.	Modelled by a Ricker model, with numbers-at-age 1 assumed to be independent and normally distributed with mean $\eta 1 S \exp (-\eta 2 S)$, where S is the spawning-stock biomass at the start of the previous year. To allow recruitment variability to increase with mean recruitment, a constant coefficient of variation is assumed.	
Large year classes.	The 1986 year class was large, and recruitment at-age 1 in 1987 is not well modelled by the Ricker recruitment model. Instead, $N(1,1987)$ is taken to be normally distributed with mean $5 \eta 1 S \exp (-\eta 2 S)$. The factor of 5 was chosen by comparing maximum recruitment to median recruitment from 1966-1996 for 6.a cod, haddock, and whiting in turn using previous XSA runs. The coefficient of variation is again assumed to be constant.	

Table 5.11. Cod in Division 6.a. Comparison of TSA parameter estimates from recent assessments.

Parameter	Notation	DESCRIPTION	2015 WG	2016 WG	2017 WG
Initial fishing mortality	$F(1,1981)$	Fishing mortality-at-age a in year y	0.3063	0.3307	0.314
	$F(2,1981)$		0.603	0.6863	0.676
	$F(4,1981)$		0.9469	1.0448	1.025
Fishing mortality standard deviations	σ_{F}	Transitory changes in overall fishing mortality	0.113	0.153	0.142
	σu	Persistent changes in selection (age effect in F)	0.0304	0.0145	0.005
	σ_{V}	Transitory changes in the year effect in fishing mortality	0.0822	0.1463	0.162
	$\sigma{ }_{\gamma}$	Persistent changes in the year effect in fishing mortality	0.0971	0	0
Measurement CVs	CV ${ }_{\text {landings }}$	CV of landings-atage data	0.1245	0.1174	0.121
	$\mathrm{CV}_{\text {discards }}$	CV of discards-atage data	0.5079	0.446	0.561
Recruitment	η_{1}	Ricker parameter (slope at the origin)	1.3184	1.2655	1.133
	η_{2}	Ricker parameter (curve dome occurs at $1 / \eta_{2}$)	0.0234	0.0239	0.021
	$c v_{\text {rec }}$	Coefficient of variation of recruitment data	0.3922	0.3934	0.405
Discards	$\sigma_{\text {logit }} \mathrm{p}$	Transitory trends in discarding	0.7504	0.7607	0.794
	$\sigma_{\text {persistent }}$	Persistent trends in discarding	0.5145	0.3383	0.224
	Step fn age 1	Amount by which discards increase in 2006	3.6191	3.9398	4.214
	Step fn age 2		5.8156	5.75	5.911
	Step fn age 3		0.8856	0.9198	0.958
	Step fn age 4		-0.4122	-0.4842	-0.510
Survey selectivities SCOWIBTS.Q1	$\Phi(1)$	Survey selectivity-at-age a	0.536	0.5602	0.580
	$\Phi(2)$		2.8965	2.8965	2.903
	$\Phi(3)$		6.6972	6.9061	6.928
	$\Phi(4)$		10.0868	10.6042	10.455
	$\Phi(5)$		14.0764	15.2594	14.998
	$\Phi(6)$		19.2501	20.5213	20.315

PARAMETER	NOTATION	DESCRIPTION	2015 WG	2016 WG	2017 WG
Survey CVs	$\sigma_{\text {survey }}$	CV parameter controlling gamma type dispersion	0.0891	0.2657	0.283
		$\eta_{\text {survey }}$	CV parameter controlling poisson type dispersion	1.3844	1.1524

Table 5.12. Cod in Division 6.a. TSA population numbers-at-age (thousands).

	Age						
Year	1	2	3	4	5	6	7+
1981	10983	19350	6908	1885	350	54	38
1982	25925	5282	7265	2466	673	119	32
1983	15108	12451	2259	2747	876	240	55
1984	25952	6458	4943	789	892	291	96
1985	13472	12010	2396	1604	235	235	113
1986	21714	4768	4090	717	345	64	80
1987	59151	10123	1903	1449	228	110	49
1988	6788	19639	3780	580	354	63	45
1989	23900	2764	6398	1151	184	100	32
1990	7967	9624	973	1656	313	50	34
1991	12931	3262	3505	356	493	105	30
1992	22630	5300	1079	1150	120	153	40
1993	9076	10246	2020	340	324	39	65
1994	18700	4158	3943	606	114	94	34
1995	15212	8201	1676	1399	176	35	38
1996	6776	6938	2891	559	441	58	25
1997	24280	2948	2253	805	159	125	21
1998	7088	10644	825	559	221	45	38
1999	5086	2911	3026	205	148	71	24
2000	18662	2157	806	742	52	39	27
2001	4314	7243	681	242	204	15	18
2002	9421	1853	2369	184	55	54	10
2003	2515	3447	542	634	44	13	14
2004	3167	880	835	134	153	11	6
2005	1794	1085	207	202	39	30	3
2006	5906	663	305	28	31	6	5
2007	1844	2549	235	100	7	10	4
2008	1471	725	797	56	23	2	3
2009	3462	632	237	231	14	5	1
2010	3927	1522	226	77	68	4	2
2011	2317	1851	580	65	21	23	2
2012	2532	990	643	136	10	6	7
2013	3538	1100	368	221	35	3	3
2014	2719	1328	387	123	70	7	1
2015	2020	1233	522	134	43	23	3
2016	3494	958	495	197	47	15	9
2017*	3614	1449	334	149	54	13	7
GM(81-16)	7273	3271	1213	385	111	32	15

[^1]Table 5.13. Cod in Division 6.a. Standard errors on TSA population numbers-at-age (thousands).

AGE							
Year	1	2	3	4	5	6	7+
1981	916	1290	464	125	36	10	7
1982	1380	287	508	180	49	21	5
1983	1227	653	123	191	66	26	8
1984	1363	451	276	50	68	33	11
1985	1211	578	156	111	19	35	15
1986	1626	365	239	50	34	9	13
1987	6150	723	122	102	21	18	7
1988	878	2004	212	47	39	12	9
1989	2020	225	633	76	15	15	6
1990	1232	691	75	184	26	7	6
1991	1601	455	369	36	68	14	4
1992	1988	605	148	138	13	27	7
1993	868	835	220	44	43	6	10
1994	1934	370	386	79	13	16	5
1995	1556	866	164	148	25	6	7
1996	944	675	341	64	52	10	4
1997	2319	379	280	115	21	20	5
1998	1073	1027	132	87	33	8	8
1999	760	413	410	37	25	11	4
2000	2020	296	132	116	9	9	5
2001	674	897	100	39	32	3	4
2002	1356	279	330	32	12	12	2
2003	646	527	89	100	9	4	4
2004	706	234	179	26	29	3	2
2005	447	238	62	48	7	10	2
2006	818	153	54	9	6	2	3
2007	295	345	46	13	2	2	1
2008	283	113	104	9	3	1	1
2009	490	119	36	27	2	2	0
2010	444	212	40	10	6	1	1
2011	314	209	75	10	3	3	0
2012	420	128	69	18	2	1	1
2013	631	177	43	20	4	1	1
2014	571	273	58	13	7	2	0
2015	698	268	101	16	5	4	1
2016	954	328	105	35	5	2	2
2017*	1245	460	125	45	17	4	2

*2017 values are standard errors on TSA-derived projections of population numbers.

Table 5.14. Cod in Division 6.a. TSA estimates for mortality-at-age.

AGE							
Year	1	2	3	4	5	6	7
1981	0.206	0.605	0.735	0.756	0.850	0.862	0.866
1982	0.179	0.438	0.673	0.768	0.778	0.776	0.788
1983	0.330	0.518	0.736	0.863	0.860	0.905	0.904
1984	0.204	0.612	0.823	0.956	1.123	1.031	1.015
1985	0.512	0.683	0.906	1.302	1.080	1.302	1.238
1986	0.185	0.544	0.740	0.904	0.930	0.918	0.860
1987	0.488	0.577	0.889	1.145	1.068	1.069	1.057
1988	0.368	0.720	0.879	0.891	1.057	1.034	0.993
1989	0.371	0.670	1.024	1.043	1.075	1.164	1.122
1990	0.361	0.632	0.695	0.976	0.845	0.812	0.801
1991	0.360	0.728	0.817	0.817	0.951	1.001	1.055
1992	0.235	0.581	0.858	1.017	0.882	0.854	0.922
1993	0.243	0.567	0.909	0.828	1.023	0.943	0.913
1994	0.290	0.516	0.729	0.988	0.941	1.019	1.001
1995	0.246	0.662	0.798	0.899	0.889	0.902	0.865
1996	0.307	0.747	0.970	1.008	1.040	1.162	1.129
1997	0.285	0.858	1.071	1.038	1.052	1.152	1.082
1998	0.356	0.870	1.043	1.068	0.907	1.038	0.997
1999	0.336	0.875	1.096	1.128	1.112	1.036	1.120
2000	0.414	0.777	0.908	1.048	1.033	1.050	1.153
2001	0.307	0.733	0.985	1.177	1.101	0.971	0.963
2002	0.465	0.836	1.013	1.149	1.201	1.254	1.341
2003	0.389	0.918	1.053	1.146	1.115	1.174	1.161
2004	0.396	0.838	0.985	0.961	1.259	1.263	1.201
2005	0.392	0.812	1.177	1.329	1.432	1.316	1.246
2006	0.305	0.666	0.841	1.057	0.963	0.958	0.951
2007	0.391	0.788	1.049	1.206	1.223	1.214	1.220
2008	0.319	0.738	0.947	1.118	1.224	1.183	1.225
2009	0.292	0.658	0.835	0.985	1.005	1.051	0.974
2010	0.212	0.584	0.904	1.034	0.856	0.844	0.858
2011	0.321	0.680	1.112	1.504	1.128	1.148	1.247
2012	0.304	0.609	0.757	1.108	1.042	1.036	1.073
2013	0.445	0.675	0.773	0.877	1.271	1.183	1.217
2014	0.258	0.565	0.767	0.759	0.912	0.897	0.813
2015	0.218	0.527	0.678	0.779	0.768	0.797	0.768
2016*	0.352	0.684	0.919	1.072	1.103	1.143	1.108

[^2]Table 5.15. Cod in Division 6.a. Standard errors of TSA estimates for \log mortality-at-age.

Age							
Year	1	2	3	4	5	6	7+
1981	0.027	0.055	0.065	0.069	0.123	0.135	0.136
1982	0.023	0.041	0.061	0.070	0.089	0.124	0.127
1983	0.052	0.045	0.060	0.075	0.097	0.121	0.143
1984	0.031	0.056	0.066	0.079	0.120	0.138	0.153
1985	0.068	0.053	0.071	0.097	0.119	0.169	0.181
1986	0.042	0.058	0.066	0.085	0.111	0.141	0.129
1987	0.088	0.072	0.073	0.093	0.129	0.151	0.161
1988	0.090	0.069	0.067	0.081	0.113	0.159	0.154
1989	0.071	0.065	0.090	0.085	0.118	0.155	0.178
1990	0.078	0.070	0.077	0.104	0.107	0.125	0.127
1991	0.084	0.098	0.102	0.102	0.131	0.158	0.181
1992	0.061	0.082	0.113	0.124	0.130	0.138	0.161
1993	0.060	0.075	0.113	0.116	0.145	0.162	0.151
1994	0.068	0.071	0.094	0.127	0.137	0.162	0.173
1995	0.061	0.087	0.099	0.110	0.130	0.153	0.146
1996	0.077	0.095	0.122	0.126	0.143	0.187	0.193
1997	0.068	0.110	0.129	0.135	0.150	0.179	0.187
1998	0.087	0.105	0.136	0.142	0.133	0.175	0.170
1999	0.085	0.114	0.135	0.156	0.159	0.167	0.194
2000	0.093	0.106	0.130	0.144	0.156	0.175	0.200
2001	0.078	0.100	0.129	0.152	0.156	0.167	0.164
2002	0.110	0.115	0.130	0.156	0.179	0.199	0.236
2003	0.099	0.120	0.137	0.147	0.168	0.202	0.199
2004	0.100	0.120	0.135	0.134	0.167	0.212	0.208
2005	0.106	0.133	0.181	0.189	0.206	0.215	0.229
2006	0.083	0.113	0.136	0.148	0.114	0.150	0.149
2007	0.101	0.119	0.150	0.135	0.144	0.168	0.193
2008	0.087	0.120	0.137	0.144	0.152	0.187	0.183
2009	0.080	0.110	0.129	0.121	0.115	0.169	0.159
2010	0.058	0.094	0.128	0.119	0.098	0.126	0.137
2011	0.085	0.104	0.138	0.162	0.132	0.150	0.202
2012	0.082	0.100	0.109	0.132	0.125	0.157	0.160
2013	0.116	0.111	0.119	0.102	0.134	0.181	0.183
2014	0.072	0.095	0.116	0.108	0.147	0.135	0.138
2015	0.063	0.095	0.115	0.110	0.121	0.146	0.138
2016*	0.106	0.142	0.189	0.219	0.223	0.234	0.231

[^3]Table 5.16. Cod in Division 6.a. TSA summary table. "Obs." denotes sum-of-products of numbers and mean weights-at-age, not reported caught, landed and discarded weight.

Year	Totalcatch (tonnes)			LANDINGS (tonnes)			DISCARdS (tonnes)			Mean F (2-5)		SSB (TONNES)		Recruitment (000s at age 1)	
	Овs.	Pred.	SE	Овs.	Pred.	SE	Obs.	Pred.	SE	Estimate	SE	Estimate	SE	Estimate	SE
1981	24168	24220	1516	23865	24047	1519	303	173	105	0.736	0.047	40438	1605	10983	916
1982	22082	20407	1271	21511	19667	1277	571	741	181	0.664	0.039	38122	1626	25925	1380
1983	21503	20394	1007	21305	20115	996	197	279	136	0.744	0.041	34059	1185	15108	1227
1984	21601	21121	1000	21272	20570	1001	329	551	221	0.878	0.047	31788	1104	25952	1363
1985	19570	18407	855	18607	17760	851	963	647	155	0.993	0.050	25146	886	13472	1211
1986	12083	12068	785	11820	11544	747	263	523	181	0.779	0.051	19582	767	21714	1626
1987	21358	18939	1297	18971	17091	1172	2388	1848	731	0.920	0.054	20856	823	59151	6150
1988	20781	20063	1665	20413	19753	1646	368	310	155	0.887	0.048	26822	1355	6788	878
1989	19246	17424	1352	17169	16031	1285	2076	1393	465	0.953	0.054	23007	1445	23900	2020
1990	12746	12063	799	12175	11862	789	571	201	74	0.787	0.065	18891	1165	7967	1232
1991	11549	10531	1442	10927	10089	1387	622	441	187	0.828	0.087	15623	1518	12931	1601
1992	10865	9311	1331	9086	8675	1271	1779	637	239	0.834	0.090	13206	1368	22630	1988
1993	10453	11005	1410	10314	10630	1374	139	375	132	0.832	0.092	16511	1434	9076	868
1994	9588	10885	1446	8928	10223	1375	661	662	225	0.794	0.087	17265	1569	18700	1934
1995	9580	11630	1527	9439	11254	1488	141	375	135	0.812	0.087	17722	1608	15212	1556
1996	9489	12380	1642	9427	12120	1613	63	260	93	0.941	0.098	17742	1685	6776	944
1997	7533	10727	1556	7034	9788	1443	499	938	357	1.005	0.106	12953	1447	24280	2319
1998	6252	9757	1383	5714	9430	1348	538	327	126	0.972	0.106	11199	1205	7088	1073
1999	4270	7513	1242	4201	7257	1205	69	255	97	1.052	0.116	10013	1250	5086	760
2000	3798	6402	1025	2977	5299	900	821	1103	342	0.942	0.111	7007	946	18662	2020
2001	2439	5951	983	2347	5710	950	92	241	85	0.999	0.110	7696	937	4314	674

Year	Totalcatch (tonnes)			Landings (tonnes)			DISCARDS (TONNES)			Mean F(2-5)		SSB (tonnes)		Recruitment (000s at age 1)	
	Овs.	Pred.	SE	Овs.	Pred.	SE	Овs.	Pred.	SE	Estimate	SE	Estimate	SE	Estimate	SE
2002	2722	6270	1064	2243	5717	988	480	552	201	1.050	0.119	7521	1008	9421	1356
2003	1275	4539	835	1241	4372	802	34	167	71	1.058	0.117	5787	823	2515	646
2004	612	2746	638	540	2557	598	72	189	81	1.011	0.114	3665	678	3167	706
2005	552	1952	515	511	1827	489	41	125	55	1.187	0.151	2335	474	1794	447
2006	954	1286	224	488	386	58	465	900	192	0.882	0.086	1435	179	5906	818
2007	2474	1972	296	595	538	71	1880	1434	278	1.067	0.087	2400	232	1844	295
2008	1377	1651	231	682	586	76	695	1066	217	1.007	0.090	2450	242	1471	283
2009	1353	1405	182	408	453	57	945	952	179	0.871	0.078	1942	175	3462	490
2010	1344	1567	215	559	542	51	785	1025	195	0.845	0.070	2219	197	3927	444
2011	2124	2052	249	454	444	45	1670	1608	243	1.106	0.084	2648	216	2317	314
2012	1632	1657	202	466	453	50	1166	1203	192	0.879	0.075	2564	198	2532	420
2013	1501	1471	164	299	349	44	1202	1123	169	0.899	0.074	2214	155	3538	631
2014	1668	1407	210	357	416	43	1311	991	200	0.751	0.081	2296	228	2719	571
2015	1752	1575	242	770	575	82	983	1000	206	0.688	0.079	2762	321	2020	698
2016	1745	1894	264	892	826	83	852	1069	240	0.944	0.155	2741	373	3494	954
2017		1788	433		586	177		1201	339	0.915	0.164	2483	548	3614	1245
Min	552	1286	164	299	349	43	34	125	55	0.664	0.039	1435	155	1471	283
GM	4761	5901	690	3230	3959	446	444	563	171	0.897	0.080	8260	692	7273	948
AM	8446	9018	891	7722	8304	810	723	714	198	0.905	0.085	13073	901	11273	1189
Max	24168	24220	1665	23865	24047	1646	2388	1848	731	1.187	0.155	40438	1685	59151	6150

*Estimates for 2017 are TSA projections.

Table 5.17. Cod in Division 6.a. Input values for short-term forecast. Note that LSel and LWt refer to the landings and DSel and DCWt refer to the discards. Numbers in thousands; Weights in kg.

2017

AGE	N	M	MAT	PF	PM	SWT	LSel	LWT	DSEL	DWT
1	3614	0.54	0	0	0	0.232	0.000	0.847	0.276	0.231
2	1433	0.39	0.52	0	0	1.170	0.058	1.819	0.534	1.076
3	329	0.31	0.86	0	0	2.377	0.249	2.489	0.538	2.321
4	145	0.26	1	0	0	3.537	0.461	3.615	0.409	3.411
5	52	0.24	1	0	0	4.909	0.660	5.140	0.268	4.285
6	12	0.22	1	0	0	5.847	0.878	5.891	0.068	3.611
7	6	0.21	1	0	0	7.924	0.896	7.924	0.000	0.000

2018

Age	N	M	MAT	PF	PM	SWT	LSel	LWT	DSEL	DWT
1	2610	0.54	0	0	0	0.232	0.000	0.847	0.276	0.231
2	1600	0.39	0.52	0	0	1.170	0.058	1.819	0.534	1.076
3	539	0.31	0.86	0	0	2.377	0.249	2.489	0.538	2.321
4	110	0.26	1	0	0	3.537	0.461	3.615	0.409	3.411
5	47	0.24	1	0	0	4.909	0.660	5.140	0.268	4.285
6	16	0.22	1	0	0	5.847	0.878	5.891	0.068	3.611
7	6	0.21	1	0	0	7.924	0.896	7.924	0.000	0.000

2019

AGe	N	M	MAT	PF	PM	SWT	LSel	LWT	DSEL	DWT
1	2610	0.54	0	0	0	0.232	0.000	0.847	0.276	0.231
2	1156	0.39	0.52	0	0	1.170	0.058	1.819	0.534	1.076
3	602	0.31	0.86	0	0	2.377	0.249	2.489	0.538	2.321
4	180	0.26	1	0	0	3.537	0.461	3.615	0.409	3.411
5	35	0.24	1	0	0	4.909	0.660	5.140	0.268	4.285
6	15	0.22	1	0	0	5.847	0.878	5.891	0.068	3.611
7	7	0.21	1	0	0	7.924	0.896	7.924	0.000	0.000

Table 5.18. Cod in Division 6.a. Single-option output of the short-term forecast ($F=$ mean $F 2014-2016$). Numbers in thousands, weights in tonnes.

2017

Age	F	LANDNos	Yield	DF	DiscNos	DYieLD	StockNos	BIomass	SSNos	SSB
1	0.276	1	1	0.276	681	158	3614	839	0	0
2	0.592	53	96	0.534	488	526	1433	1678	745	872
3	0.788	50	124	0.538	107	250	329	781	283	672
4	0.870	40	145	0.409	36	121	145	514	145	514
5	0.928	20	104	0.268	8	35	52	254	52	254
6	0.946	6	37	0.068	0	2	12	72	12	72
7	0.896	3	27	0.000	0	0	6	50	6	50
Total	0.794	173	535	0.437	1320	1092	5591	4188	1243	2434

2018

Age	F	LANDNos	YieLd	DF	DiscNos	DYieLD	StockNos	BIomass	SSNos	SSB
1	0.276	1	1	0.276	492	114	2610	606	0	0
2	0.592	59	107	0.534	545	587	1600	1873	832	974
3	0.788	82	203	0.538	176	409	539	1281	463	1102
4	0.870	30	110	0.409	27	92	110	389	110	389
5	0.928	18	94	0.268	7	32	47	230	47	230
6	0.946	8	49	0.068	1	2	16	94	16	94
7	0.896	3	25	0.000	0	0	6	47	6	47

| Total | 0.794 | 201 | 590 | 0.437 | 1248 | 1236 | 4928 | 4520 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2019

Age	F	LandNos	Yield	DF	DiscNos	DYieLD	StockNos	BIomass	SSNos	SSB
1	0.276	1	1	0.276	492	114	2610	606	0	0
2	0.592	43	78	0.534	394	424	1156	1353	601	703
3	0.788	91	227	0.538	197	457	602	1430	517	1230
4	0.870	50	180	0.409	44	151	180	638	180	638
5	0.928	14	71	0.268	6	24	35	174	35	174
6	0.946	8	44	0.068	1	2	15	85	15	85
7	0.896	4	30	0.000	0	0	7	55	7	55
Total	0.794	211	631	0.437	1134	1172	4605	4341	1355	2886

Table 5.19. Cod in Division 6.a. Management options table (plus table covering the interval between lower and upper bounds of Fmš). Weights in tonnes.

BASIS	Catch	Wanted.catch	UNWANTED.CATCH	Ftotal	F.wANTED	F.unwanted	SSB	Perc.SSB
Fsq $\times 0$	0	0	0	0.000	0.000	0.000	5324	87.757
Fsq $\times 1$	1826	590	1236	0.794	0.357	0.437	2886	1.770
Fmsy	490	164	326	0.167	0.075	0.092	4665	64.513
Fpa	1464	478	986	0.590	0.265	0.325	3365	18.665
Flim	1866	602	1264	0.820	0.369	0.451	2831	-0.151
Fmsy.up	719	239	480	0.254	0.114	0.140	4357	53.676
Fmsy.low	325	109	216	0.108	0.049	0.059	4887	72.342
Fmsy.low + 0.01	353	118	235	0.118	0.053	0.065	4848	70.986
Fmsy.low + 0.02	382	128	254	0.128	0.058	0.070	4810	69.643
Fmsy.low +0.03	410	137	273	0.138	0.062	0.076	4772	68.311
Fmsy.low + 0.04	437	146	291	0.148	0.067	0.081	4735	66.991
Fmsy.low + 0.05	466	156	310	0.158	0.071	0.087	4698	65.682
Fmsy.low + 0.06	493	165	328	0.168	0.076	0.092	4661	64.384
Fmsy.low + 0.07	520	174	346	0.178	0.080	0.098	4624	63.098
Fmsy.low + 0.08	548	183	365	0.188	0.085	0.103	4588	61.822
Fmsy.low + 0.09	573	191	382	0.198	0.089	0.109	4552	60.558
Fmsy.low +0.1	600	200	400	0.208	0.094	0.114	4517	59.304
Fmsy.low + 0.11	627	209	418	0.218	0.098	0.120	4482	58.062
Fmsy.low + 0.12	652	217	435	0.228	0.103	0.126	4447	56.830
Fmsy.low + 0.13	679	226	453	0.238	0.107	0.131	4412	55.608
Fmsy.low + 0.14	704	234	470	0.248	0.111	0.137	4378	54.398
Fmsy.low + 0.15	729	242	487	0.258	0.116	0.142	4344	53.197

Figure 5．1．Distribution of Scottish reported landings by statistical rectangle by year．

Figure 5.2. Cod in Division 6.a. Estimates of underreporting and area misreporting of cod caught in ICES Division 6.a by Scottish vessels. Negative values of area misreporting indicate a net balance of misreporting into Division 6.a from other areas.

Figure 5.3. Cod in Division 6.a. Amounts landed by métier (kg) in 2016 as entered into InterCatch.

Figure 5.4. Cod in Division 6.a. Amounts discarded by métier (kg) in 2016 as entered into InterCatch.

Figure 5.5. Cod in Division 6.a. Discard rates before allocations within InterCatch.

Figure 5.6. Cod in Division 6.a. Discard rates for all fleets after allocations within InterCatch.

Figure 5.7. Cod in Division 6.a. Number-at-age constituted by sampled and unsampled landings and sampled and raised (unsampled) discards after allocations within InterCatch.

Figure 5.8. Cod in Division 6.a. Landings and discards estimates by weight, as used by the WG. Values are totals for fish aged 1 to 7+.

Figure 5.9. Cod in Division 6.a. Discard proportion (of total catch) by weight. Includes fish aged 1 to 7+.

Figure 5.10. Cod in Division 6.a. Discard proportion by number.

Figure 5.11. Cod in Division 6.a. Catch-at-age in numbers by year. Pink: discards, blue: landings.

Figure 5.12. Cod in Division 6.a. Mean weights-at-age in landings and discards.

Figure 5.13. Cod in Division 6.a. Catch numbers for fish aged at 1+ per haul resulting from quarter four Irish ground fish survey (IRGFS-WIBTS-Q4). Values are standardised to 60 minutes towing. Zero shown as a black + symbol.

Figure 5.14. Cod in Division 6.a. Cpue numbers for fish aged at 1+ per tow resulting from Scottish quarter one survey (UKSGFS-WIBTS-Q1) in red and (UKSGFS-WIBTS-Q4) in blue. Numbers are standardised to 30 minutes towing. Green polygons are areas closed to fishing.

Figure 5.15. Cod in Division 6.a. Natural mortality-at-age based on mean weight-at-age and mortality-weight relationship. Solid horizontal lines show the time averaged values at each age used in the assessment. Dotted horizontal line shows value of 0.2 previously used at all ages in all years.

Figure 5.16. Cod in Division 6.a. Catch curves from commercial catch-at-age data.

Figure 5.17. Cod in Division 6.a. Log catch (landings + discards) curve gradient plot using WG commercial catch-at-age data over different age ranges.

Figure 5.18. Cod in Division 6.a. Mean standardised catch-at-age proportions by number.

Figure 5.19. Cod in Division 6.a. Log mean standardised index values, by year, from Scottish quarter one ground fish survey (ScoGFS-WIBTS-Q1); ages 1-6. Survey finished in 2010.

Figure 5.20. Cod in Division 6.a. Log mean standardised index values, by cohort, from Scottish quarter one ground fish survey (ScoGFS-WIBTS-Q1); ages 1-6. Survey finished in 2010.

Figure 5.21. Cod in Division 6.a. Log catch curves from Scottish quarter one ground fish survey (ScoGFS-WIBTS-Q1); ages 1-6. Survey finished in 2010.

ScoGFS-WIBTS-Q1

Figure 5.22. Cod in Division 6.a. Within-survey correlations for the Scottish quarter one ground fish survey (ScoGFS-WIBTS-Q1), comparing index values at different ages for the same cohorts. The straight line in a linear regression. Survey finished in 2010.

ScoGFS-WIBTS-Q1

Figure 5.23. Cod in Division 6.a. Log catch curve gradient plot using ScoGFS-WIBTS-Q1 index data. Solid line shows time-series of gradient of linear fit to curve over the age range 2-5, dashed line over the ages 2-4 and dotted line over the ages 3-5. Last cohort shown was at-age 5 in 2010, the last year of the ScoGFS-WIBTS-Q1 survey.

Figure 5.24. Cod in Division 6.a. Log mean standardised index values, by cohort, from Irish quarter four ground fish survey (IRGFS-WIBTS-Q4); ages 1-3. Survey started in 2003.

Figure 5.25. Cod in Division 6.a. Log mean standardised index values, by year, from Irish quarter four ground fish survey (IRGFS-WIBTS-Q4); ages 0-4. Survey started in 2003.

Figure 5.26. Cod in Division 6.a. Log catch curves from Irish quarter four ground fish survey (IRGFS-WIBTS-Q4); ages 1-4. Survey started in 2003.

IGFS-WIBTS-Q4

Figure 5.27. Cod in Division 6.a. Within-survey correlations for the Irish quarter four ground fish survey (IRGFS-WIBTS-Q4), comparing index values at different ages for the same cohorts. The straight line is a linear regression.

Figure 5.28. Cod in Division 6.a. Log mean standardised index values, by year, from Scottish quarter one ground fish survey UKS-IBTS-Q1); ages 1-6.

Figure 5.29. Cod in Division 6.a. Log mean standardised index values, by cohort, from Scottish quarter one ground fish survey UKS-IBTS-Q1); ages 1-6.

Figure 5.30. Cod in Division 6.a. Log catch curves from new Scottish quarter one ground fish survey (UKS-IBTS_Q1); ages 1-7. Survey started in 2011.

UKSGFS-WIBTS-Q1

Figure 5.31. Cod in Division 6.a. Within survey scatterplots from new Scottish quarter one ground fish survey (UKS-IBTS_Q1), comparing index values at different ages for the same cohorts. The straight line in a linear regression.

Figure 5.32. Cod in Division 6.a. TSA final run. Standardised prediction errors at-age plots for landings (upper) and discards (lower).

Figure 5.33. Cod in Division 6.a. TSA run. Standardised prediction errors at-age plots for ScoGFS-WIBTS-Q1 (upper) and UKSGFS-WIBTS-Q1 (lower).

Figure 5.34. Cod in Division 6.a. TSA final run. Residuals at-age plots for landings (upper) and discards (lower).

Figure 5.35. Cod in Division 6.a. TSA final run. Residuals at-age plots for ScoGFS-WIBTS-Q1 (upper) and UKSGFS-WIBTS-Q1 (lower).

Figure 5.36. Cod in Division 6.a. Observed (points) and fitted (red lines with 95\% CI indicated by grey bands) for the proportion discarded by age. Note that the plot also shows the TSA projection of discards for 2017.

Figure 5.37. Cod in Division 6.a. Summary plot of final TSA run. Stock summary from final TSA assessment. Red lines (or points) give best estimates, grey bands (or lines) give approximate pointwise $\mathbf{9 5 \%}$ confidence intervals, and black points give observed values.

Figure 5.38. Cod in Division 6.a. Retrospective plots of TSA run presented over a shortened time interval (to allow narrower y-axis range to be used).

Figure 5.39. Cod in Division 6.a. TSA final run. Stock-recruit relationship. Numbers indicate year class.

Figure 5.40. Cod in Division 6.a. Trajectory of SSB against mean F. Horizontal lines are $\mathrm{B}_{\text {lim }}$ (dotdashed) and $B_{p a} /$ MSY $B_{\text {trigger }}$ (dashed). Vertical lines are $F_{m s y}$ (dotted), $F_{p a}$ (dashed) and $F_{\text {lim }}$ (dashdotted).

Figure 5.41. Cod in Division 6.a. Comparison of SSB, mean F (2-5) estimates and recruitment-atage one produced by final run assessments between this year's assessment and previous four assessments.

Figure 5.42. Cod in Division 6.a. Partial mean F attributed to landings and discards. Horizontal lines represent $\mathrm{F}_{\text {lim }}$ (solid), F_{pa} (dashed) and $\mathrm{Fmsy}^{\text {(dotted) values for the stock. }}$

Landings yield 2018

SSB 2019

Figure 5.43. Cod in Division 6.a. Percentage contribution to landings yield in 2018 and SSB in 2019 by recruitment year (not year class).

Assessment in 2017

In 2017, the update assessment and advice followed the agreed procedures for category 6.2.0 of ICES RGLIFE data-limited stock (DLS) advice rules (ICES, 2017a) as set out in the stock annex. For stocks without information on abundance or exploitation, ICES considers that a precautionary reduction of catches should be implemented.

Given there are conflicting signals from the Irish otter-trawl and Scottish TR1 fleet effort and lpue series and that survey catch rates at Rockall remain too low to provide quantitative information on abundance the ICES advice is to apply the precautionary buffer (last applied in 2012).

ICES advice applicable in 2016-2017
ICES advises that when the precautionary approach is applied, landings should be no more than 17 tonnes in each of the years 2016 and 2017. ICES cannot quantify the corresponding total catches.

ICES advice applicable in 2013-2015

ICES first provided quantitative advice for data limited stocks in 2012, this resulted in biennial advice for this stock in 2013 and 2014. With no new data available that changed the perception of the stock in 2014 the same catch advice was considered to be applicable for 2015 and is given below.

Based on the ICES approach for data-limited stocks, ICES advises that catches should be no more than 70 tonnes.

ICES approach to data-limited stocks

For data-limited stocks without information on abundance or exploitation ICES considers that a precautionary reduction of catches should be implemented, unless there is ancillary information clearly indicating that the current level of exploitation is appropriate for the stock.

6.1 General

Management applicable to 2013-2017
The TAC for cod at Rockall covers ICES Division 6.b, EU and international waters of Division $5 . \mathrm{b}$ west of $12^{\circ} 00^{\prime} \mathrm{W}$ and subareas 12 and 14 . The following is applicable to 2013-2017:

Species:Cod Gadus morhua	Zone:VIb; Union and international waters of Vb west of $12^{\circ} 00^{\prime} \mathrm{W}$ and of XII and XIV (COD/5W6-14)		
Belgium	0		
Germany	1		
France	12		
Ireland	16	45	
United Kingdom	74	Precautionary TAC	
Union	74		
TAC			

The fishery in 2016

No specific information is available for 2016. Cod at Rockall are taken as a bycatch in fisheries for other species such as haddock and anglerfish.

6.2 Data

Official landings data for cod in $6 . \mathrm{b}$ are shown by nation in Table 4.2.1 and Figure 4.2.1. Total reported landings were 62.3 tonnes in 2016. There were no updates to landings from previous years. In the past, official landings have shown very high interannual variation and it is not known whether these are a true reflection of removals.

Landings data have been uploaded to InterCatch for 2016. In addition, some landings age compositions and discard data were also uploaded to IC. Data uploaded to IC are shown below.

Country	DISCARDS (T)	LANDINGS (T)
Ireland	0.3	14.6
Norway		10.6
UK (Scotland)	7.9	38.0
Grand Total		71.4

In recent years only limited discard data have been submitted to InterCatch for this stock. Discarded weight has been submitted for the Scottish demersal otter trawl fleet for the years 2014-2016 however there is high inter annual variability in the estimated discard rate for this fleet ($0 \%, 53.6 \%$ and 23.4%). In 2017 information provided by Ireland suggested much lower discard rates for both the Irish demersal otter trawl fleet (2.3%) and the Irish seine fleet (2.3%). This means that it is difficult to determine an appropriate discard rate for use in the provision of catch advice.

Irish and Scottish landings, effort and lpue are presented in Figures 4.2.2 and 4.2.3 and Tables 4.2.2 and 4.2.3. Figure 4.2.2 shows a large decline in the Irish lpue between 1995 and 2003 followed by relatively stable values at a level much lower than at the start of the time-series. The recording of Scottish hour's fished data is not mandatory in the log sheets and the data are incomplete. Scottish otter-trawl fleet data are therefore in units of $\mathrm{kg} / \mathrm{kWday}$. The Scottish time-series is much shorter and relatively noisier with a marked increase in 2015 and 2016 which given the magnitude of increase seems unlikely to be completely attributable to an increase in stock size (an
almost five-fold increase over two years). The increase in Irish otter-trawl effort since 2010 has been anecdotally attributed to increases in the squid fishery in which cod is not a target or common bycatch species. This brings into question the usefulness of this lpue series as an indicator of cod abundance.

Survey catch rates of cod at Rockall remain low and are therefore unlikely to provide a reliable index of abundance (Table 4.2.4).

Catches of cod (both survey and commercial) are too low to support the collection of the necessary information for an assessment of stock status.

6.3 References

ICES. 2017a. Advice basis. In Report of the ICES Advisory Committee, 2017. ICES Advice 2017, Book 1, Section 1.2.

Table 6.1. Cod in Division 6.b (Rockall). Official catch statistics.

Country	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Faroe Islands	18	-	1	-	31	5	-	-	-	1	-	-	-	-	-	-	-
France	9	17	5	7	2	-	-	-	-	-	-	-	-	-	-	-	+
Germany	-	3	-	-	3	-	-	126	2	-	-	-	10	22	3	11	1
Ireland	-	-	-	-	-	-	400	236	235	472	280	477	436	153	227	148	119
Norway	373	202	95	130	195	148	119	312	199	199	120	92	91	55	52	85	152
Portugal	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-	-	-
Russia	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7
Spain	241	1200	1219	808	1345	-	64	70	-	-	-	2	5	1	6	4	3
UK (E. \& W. \& N.I.)	161	114	93	69	56	131	8	23	26	103	25	90	23	20	32	22	4
UK (Scotland)	221	437	187	284	254	265	758	829	714	322	236	370	210	706	341	389	286
UK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	1023	1973	1600	1298	1886	549	1349	1596	1176	1097	661	1031	775	962	661	659	572

Table 6.1. Continued. Cod in Division 6.b (Rockall). Official catch statistics.

Country	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015*	2016*
Faroe Islands	-	-	-	-	-	-	-	-	3	5	-	-	-	-	-	-
France	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-
Germany	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ireland	40	18	11	7	12	23	24	41	20	6	12	1	2	6	5	15
Norway	89	28	25	23	7	7	12	12	25	27	49	11	3	+	18	11
Portugal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Russia	26	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-
Spain	1	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-
UK (E. \& W. \& N.I.)	2	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
UK (Scotland)	176	67	57	45	43	29	26	41	48	23	37	11	9	-	-	-
UK	-	-	-	-	-	-	-	-	-	-	-	-	-	10	18	37
Total	334	115	102	75	62	58	62	94	97	61	98	23	14	15	41	62

* Preliminary

Table 6.2. Cod in 6.b. Landings, effort and lpue data from Irish otter-trawl fleet.

Year	LANDINGS TONNES	Effort '000s Hrs	LPUE KG/HR
1995	415	9.14225	45.39
1996	402	7.219	55.68
1997	130	7.169	18.20
1998	207	7.337	28.16
1999	138	8.68	15.88
2000	101	9.883	10.23
2001	33	7.232	4.60
2002	16	2.626	6.18
2003	10	4.542	2.18
2004	7	2.233	3.08
2005	9	3.283	2.68
2006	22	5.9	3.76
2007	24	6.587	3.62
2008	40	9.898	4.08
2009	22	4.353	4.97
2010	7	3.28	2.03
2011	9	2.534	3.56
2012	1	3.248	0.31
2013	1.8	3.809	0.46
2014	5.6	4.2	1.34
2015	4.1	4.7	0.87
2016	11.4	6.2	1.83

Table 6.3. Cod in 6.b. Landings, effort and lpue data from the Scottish TR1 fleet.

YEAR	LNDS(T)	EFF(KWDAYS)	LPUE(KG/KWDAY)
2003	64.09	2504466	0.0256
2004	39.76	1842103	0.0216
2005	42.98	1217357	0.0353
2006	28.25	1011354	0.0279
2007	25.98	1060551	0.0245
2008	40.29	1124197	0.0358
2009	47.76	1631239	0.0293
2010	22.65	1744452	0.0130
2011	36.54	1565753	0.0233
2012	10.78	901552	0.0120
2013	9.09	532767	0.0171
2014	9.70	668665	0.0145
2015	19.92	563098	0.0354
2016	54.01	0.0661	

Table 6.4. Cod in 6.b. Survey data made available to the WG: Scottish Q3 ground fish survey ((Rock-WIBTS-Q3)). Catch rates are given as number per 10 hours.
$\left.\left.\begin{array}{lllllllllllll}\hline \text { YEAR } & \begin{array}{l}\text { Effort } \\ (10 \\ \text { Hours) }\end{array} & \text { AGE 0 } & \text { AGE 1 } & \text { AGE 2 } & \text { AGE 3 } & \begin{array}{l}\text { AGE } \\ 4\end{array} & \text { AGE 5 } & \text { AGE 6 } & \text { AGE } \\ 7\end{array} \begin{array}{l}\text { AGE } \\ 8\end{array}\right) \begin{array}{l}\text { AGE } \\ 9\end{array}\right]$

Figure 6.1. Cod in Division 6.b. Total of official catch (all nations combined). Values for 2016 are provisional.

Figure 6.2. Cod in Division 6.b. Landings, effort and lpue (kg/hr) from the Irish Otter-trawl fleet.

Figure 6.3. Cod in Division 6.b. Landings, effort and lpue ($\mathrm{Kg} / \mathrm{kWday}$) from the Scottish TR1 fleet.

Situated between Ireland and Great Britain the Irish Sea (7.a) is connected by to the Celtic Sea (7.g) at its southern extreme by the St George's Channel and in north is linked to sea region West of Scotland (6.a) by the Northern Channel. The average depth is 50 m but the area is contrasted between a deeper channel, in the west, and shallower bays in the east. The channel has a maximum depth exceeding 275 m whilst the eastern bays have depths less than 50 m . Distinct habitat patches result from a combination of bathymetry, topographical features and hydrography. The sea bed of the eastern Irish Sea is dominated by fine sediment plains with some small areas of areas of mud habitat, the fine sediments graduate to more coarse material in central areas. A large well defined deep-water mud basin is located in the northwestern region in close to the Northern Irish and Irish coast.

Irish Sea fisheries are predominantly demersal trawling and seining with demersal trawling for Nephrops dominating effort with vessels using mesh in the range 7099 mm . Effort using fishing gear with $\geq 100 \mathrm{~mm}$ mesh sizes is currently at a low level compared to historic activity, a considerable decline in effort was observed between 2003 and 2007 and has continued. The species composition of catches by vessels in using $\geq 100 \mathrm{~mm}$ mesh consists of primarily haddock, with lower quantities of hake. At present there is no commercial towed gear fishery for cod permitted. Beam trawls are operating within the Irish Sea with mesh sizes in the range $80-119 \mathrm{~mm}$, targeting sole, plaice, and rays. A seasonal pelagic and gillnet herring fishery operates in late sum-mer-early autumn in the pre and post spawning period. Dredge fisheries target king and queen scallops, with king scallops in coastal areas with the queen scallop fishery operating in the central area south of the Isle of Man, to a lesser extent queen scallops are also targeted using trawl nets, during the late summer when swimming activity is most pronounced.

Type of assessment

A full analytical assessment benchmarked at ICES WKIRISH 3 (ICES, 2017a). The assessment and data are detailed in the stock annex (ICES, 2017b).

ICES advice applicable to 2016 and 2017

ICES advised on the basis of the MSY and precautionary approaches that there should be no directed fisheries, and bycatch and discards should be minimized in 2016 and 2017.

7.1 General

Stock description and management units

The stock and the management unit are both ICES Division 7.a (Irish Sea).

Management applicable to 2016
TACs and quotas set for 2016

Zone 7a (COD/07A) \quad Analytical TAC	Weight tonnes	Landed
Belgium	2	2.98
France	5	0.04

Ireland	97	84.23
The Netherlands	0	0
United Kingdom	42	35.48
EU	146	122.83
TAC	146	

Management of cod is by TAC, days-at-sea limits and technical measures. Technical regulations in force in the Irish Sea, including those associated with the cod recovery plan since 2000, are described in Section 7. 2 and 7.10.

Fishery in 2016

The landings in 2016 were the lowest observed in the time-series at $122.83 \mathrm{t}, 82.33 \mathrm{t}$ after re-allocation of 40.5 t of Irish landings and continue the general downward trend in recorded landings (Table 7.1). Irish landings of cod reported from ICES rectangles immediately north of the Irish Sea/Celtic Sea boundary (ICES rectangles 33E2 and 33E3) have been reallocated into the Celtic Sea as they represent a combination of inaccurate area reporting and catches of cod considered by ICES to be part of the Celtic Sea stock (ICES, 2009). The amount of Irish landings transferred from 7a to $7 \mathrm{e}-\mathrm{k}$ by year is shown below:

Year	Tonnes
2004	108
2005	54
2006	103
2007	527
2008	558
2009	193
2010	143
2011	147
2012	130
2013	75
2014	24
2015	39
2016	40

The total quota uptake was less than the TAC advice for all nations except Belgium. Landings by UK vessels have realised 84% of TAC in 2016 (Table 7.2), with the majority taken as bycatch in Nephrops trawlers, landings and discards by métier and country can be seen in Table 7.3.

A Fishery-Science Partnership Survey (FSP) was repeated in the western Irish Sea in spring 2016 and 2017 in the western Irish Sea using semi-pelagic gear on commercial vessels. This survey attempts to address the lack of sampling opportunities created by the diminishing TAC for cod in the Irish Sea and the resulting significant reduction of a directed whitefish fleet targeting cod.

All sources of information on age composition in the stock, from the fishery as well as surveys using research vessels and chartered commercial vessels, start to show an increase of cod older than three years of age in the Irish Sea (Figures 7.1 and 7.4). Historically the proportion-at-age from the data collected during the sentinel fisheries supports a very steep age profile. The very low catches in the last couple of years in combination with two "strong" year classes in 2013/2012 is leading to a slightly less steep age profile. However, the question remains what is happening to the four plus year old fish in the Irish Sea.

7.2 Data

InterCatch procedure

Since 2013 international landings and discards-at-age are uploaded into InterCatch. Discards are raised for unreported strata and métiers to estimate total discards-at-age.

Landings

The input data on fishery landings and age compositions are split into four periods:
1) 1968-1990. Landings in this period, provided to ICES by stock coordinators from all countries, are assumed to be un-biased and are used directly as the input data to stock assessments.

2) 1991-1999. TAC reductions in this period caused substantial misreporting of cod landings into several major ports in one country, mainly species misreporting. Landings into these ports were estimated based on observations of cod landings by different fleet sectors during regular port visits. For other national landings, the WG figures provided to ICES stock coordinators were used.

3) 2000-2005. Cod recovery measures were considered to have caused significant problems with estimation of landings. The ICES WG landings data provided by stock coordinators for all countries are considered uncertain and estimated within an assessment model. Observations of misreported landings were available for 2000, 2001, 2002 and 2005. However, they have generally not been used to correct the reported landings but have been used to evaluate model estimates in those years.
4) 2006-2016. The introduction of the UK buyers and sellers legislation is considered to have reduced the bias in the landings data but the level to which this has occurred is unknown. Consequently comparisons were made between the fit of the model to recorded landings under an assumption of bias and unbiased information.

The annual numbers-at-age caught and the mean weights-at-age in landings (applied to the total catch) by age are given in Tables 7.2.4 and 7.2.5 and Figures 7.1 and 7.3. Weights-at-age prior to 1982 are fixed at constant values lower than estimated for subsequent years, leading to sum-of-products errors, and weights-at-ages $6+$ are becoming noisy for the last few years (Figure 7.3). Year classes rapidly disappeared from the commercial landings data, returning slowly with the 2013 cohort (Figure 7.1). Recent years' surveys and commercial data show an improvement in age structure which resulted from very low fishing pressure since 2013 and a relatively strong 2013 cohort.

Discards data

Discard data (Table $7.6 \mathrm{a}-\mathrm{b}$) have been included for the first time in the most recent assessment. Landings and discards are combined to catch weight and numbers.

The Cod 7.a Stock Annex and WKIRISH3 (ICES, 2017 a, b) benchmark report gives details on historic raising to total national and international discards.

Biological data

Natural mortality

Natural mortality has been revised in WKIRISH2 (ICES, 2016). M-at-age calculated following Lorenzen (1996) was considered a better representation of the natural mortality than $\mathrm{M}=0.2$. Natural mortality was kept constant throughout years.

Maturity

Maturity ogive has been revised in WKIRISH2 (ICES, 2016). Updated values after application of the smoother are in Table 7.7. Please refer to the stock annex for further information.

Survey data used in assessment

Please refer to the stock annex for a description of the surveys and survey data. For the current assessment data for all four surveys were available (Table 7.8)

Survey	Ages		Years
NIGFS-WIBTS-Q1	$1-4$	1993	2016
NIGFS-WIBTS-Q4	$0-2$	1993	2016
UK-FSPw	$2-6$	2005	2016 (except 2014)
NIMIK	0	1994	2016

Internal consistency of survey data

The survey data during spring each year are of critical importance for the fit of the assessment models as noted by WGCSE previously and evaluated by WKIRISH3 (ICES, 2017a). The data for all surveys were screened by WKIRISH3, and due to the number of plots produced, only few are presented here Figures 7.4-7.7.

Commercial cpue

Commercial cpue data are available for this stock but are not currently used in the assessment.

7.3 Historical stock development

Model used: ASAP, the full model input can be found at the end of the section.

Deviations from Stock Annex

None, stock annex was followed.

Software used and model options chosen

ASAP model with the parameters as in the recent stock annex was applied.

Input data types and characteristics

New data added to the ASAP assessment are the fishery catch data and survey data for 2016. Maturity ogive smoother was applied to the most recent NIGFS-Q1 data to produce a new maturity ogive. Full model description and inputs are at the end of the chapter.

Final update assessment: diagnostics

The diagnostics of the update ASAP run are given in Figure 7.8-7.18.
Figure 7.8 shows the fit of observed and predicted total catches.
Figure 7.9 presents the fitted catch-at-age data for the commercial fleet and the residuals of the fit of the time-series model to the catch data for each age. The fitted values track the trends in the observations well in the early years in which there is no calibration information, with no strong pattern in the residuals. After the introduction of the tuning data, the residuals are increasingly noisy especially for age classes 1 and 2.

The diagnostics for the Indices are presented in Figures 7.10-7.12. The fit to the surveys (except the MIKNET) still has some pattern in the early years but is much improved in recent years.

Figure 7.13 presents the selectivity-at-age of the fishery in two selectivity blocks. The first selectivity block represents the fishery until 1999, the dome-shaped selectivity curve from 2000, as described in the stock annex (ICES, 2107b)

Figure 7.14 presents the estimated selectivity parameters at-age for the time-series of the surveys used in the assessment. The noise in the estimates increases with age such that at oldest ages of the NIGFS-WIBTS-Q1 and NIGFS-WIBTS-Q4 surveys are not included in the assessment. The NIGFS-WIBTS-Q1 survey has a dome-shaped selectivity curve catching fewer older fish whereas UK-FSP survey has an increasing catch selectivity with age. Further information is in the stock index (ICES, 2017b) and Figure 7.15 shows the index catchability (constant across years).

Figure 7.16 shows the fit of the model RMSE. The fit to the total catch and MIKNET index is not perfect.

Retrospective summary for 2011-2016 is displayed in Figure 7.18. Fbar and SSB have been re-adjusted annually; Fbar is revised upwards, while SSB is revised downwards considerably.

Final assessment: long-term trends

Stock numbers of fishes at all ages have declined since the 1970s, however more recent years, starting from 2010, shows and increase in 3+ (Figure 7.17).

Figure 7.19 presents the ASAP estimated spawning-stock biomass, average F and recruitment. Population numbers and F-at-age from the assessment are given in Tables 7.9 and 7.10, and the summary data are presented in Table 7.11.

SSB is estimated to have increased above $\mathrm{B}_{\mathrm{lim}}$ and F is well below historic and reference levels. Recruitment in 2016 was very low, reaching a historic minimum.

The state of the stock

Spawning-stock biomass has declined ten-fold since the late 1980s and recruitment has been low since the mid-1990s, particularly since 2000 . Fishing mortality has been declining in recent years and has dropped to below FMSY. Since 2010 SSB has slowly recovered and surpassed Blim for the first time in 2016 (Figure 7.19).

Fishing mortality throughout large parts of the assessment period has been well above the candidate reference points associated with high long-term yields and a low risk of depleting the productive potential of the stock. The assessment shows a steep decline in F from 2012 (Figure 7.19).

Recruitment has been low for the past eighteen years. 2012 and 2013 year classes have increased recruitment, but were still well below the long-term average. Recruitment in 2016 was estimated at the historically lowest point (Figure 7.19).

Figure 7.20 indicates that under the status quo fishing pressure and geometric mean recruitment the SSB in 2019 will consists to 61% of the 2013 year class. This year class will be in the $6+$ group, an age group poorly understood and with hardly any commercial and survey data available.

7.4 Short-term predictions

Short-term forecasts have been carried out in 2017 for the first time following benchmarking of the stock in 2017.

A geometric mean (GM) approach was chosen for the recruitment at age 0 . As recruitment over the past 15 years has been below the historical average, GM was estimated from years 2005 to 2014 as 5513 thousands.

FSQ (F status quo for the interim year) was taken as a 3 year average (2014-2016) F as 0.07076 .

Input values are displayed in Tables 7.11 and 7.12 in combination with maturity ogives and natural mortality.

STF results of catches, landings, discards and SSB in 2019 under a range of management options can be seen in Table 7.13.

Table 7.14 shows the number at age under FSQ regime over the years 2017 to 2019.

7.5 Biological reference points

Fmsy evaluations

An evaluation of Fmsy reference points was carried out at WKIRISH3 and re-visited at WGCSE 2017 and the suggested level of Fmsy for this stock was within the range of 0.213 and 0.408 .

The current reference points for Irish Sea cod were benchmarked at WKIRISH 3:

```
Blim 6000 t
```

MSY	0.309 (range 0.213-0.408)
BPA	8161 t
Flim	0.614
FPA	0.442

7.6 Management plans

The Irish Sea cod management plan, as described in Council Regulation (EC) 1342/2008 was evaluated independently by ICES in 2009 using the approach adopted in AGCREMP 2008 and found to be not consistent with the ICES Precautionary Approach (WGCSE 2009).

7.7 Uncertainties and bias in assessment and forecast

Landings data

The quality of the commercial landings and catch-at-age data for this stock deteriorated in the 1990s following reductions in the TAC without associated control of fishing effort. The Working Group has, since the 1990s, attempted to overcome this problem by incorporating sample-based estimates of landings from three major ports in the WG landings figures. The data for this method have been poor for the years 2003-2006, hence data for this period has been estimated by the WG using modelling approaches.

Discarding

Discarding has historically been mainly at age 0 and 1 .
The Irish Sea whitefish fleet has got good observer coverage as does the Nephrop fleet except for the years 2003-2006.

Strict controls on landings reporting following the introduction of the Registration of Fish Buyers and Sellers regulations has resulted in documented increases in discarding of older cod in the Irish Sea since 2012 (Figure 7.2).

Compliance with catch composition rules for some fleets, especially for those targeting Nephrops, could also result in increased discarding of cod.

Surveys

The Irish Sea has relatively good survey coverage. The surveys in general give consistent signals of fish abundance-at-age (Figure 7.6).

The UK Fisheries Science Partnership surveys (UK-FSP) of the Irish Sea cod spawning grounds in spring 2005-2016 carried out using commercial trawlers, indicated a widespread distribution of cod mostly at low density but with some localized aggregations. The time-series of SSB indices shows an upward trend similar to that shown by NIGFS-WIBTS-Q1 pointing to some recovery following the maturation of the 2012 and 2013 year classes.

Model formulation

Stock structure and migrations

Stock structure and migrations have been in full discussed in the WKIRISH2 report (ICES, 2016).

A tagging study of Irish Sea cod began in 2016 in part to address these issues. In spring of 2016976 cod were caught and tagged aboard a chartered commercial fishing vessel using semi-pelagic fishing gear. The project relies on collaboration with the fishing industry to provide the data to develop a better understanding of the current behaviour, biology and stock status of Irish Sea cod.

Spawning-stock biomass estimate

The SSB retrospective plot shows a consistent downgrading of the estimated SSB from the previous years (Figure 7.18). This should be taken into consideration when considering future development of the stock.

7.8 Management considerations

A number of emergency and cod recovery plan measures have been introduced since 2000 to conserve Irish Sea cod. These include a spawning closure since 2000 and effort control since 2003. There have also been several vessel decommissioning schemes. As it has not been possible to provide analytical catch forecasts in recent years, the TAC has been reduced by $15-20 \%$ annually since 2006 and by 25% since 2009. At this point in time all sources of information on age composition in the stock, from the fishery as well as surveys using research vessels and chartered commercial vessels, indicate a trend towards a recovery of the stock and a decline in fishing pressure.

7.9 References

Armstrong, M. J., Gerritsen, H. D., Allen, M., McCurdy, W. J. and Peel, J. A. D. 2004. Variability in maturity and growth in a heavily exploited stock: cod (Gadus morhua L.) in the Irish Sea. ICES J. Mar. Sci., 61, 98-112.

Bendall, V. O., Ó' Cuaig, M., Schon, P-J., Hetherington, S., Armstrong, M., Graham, N., Righton, D. 2009. Spatio-temporal dynamics of Atlantic cod (Gadus morhua) in the Irish and Celtic Sea: results from a collaborative tagging programme. ICES Document CM 2009/J: 06. 35 pp.

ICES. 2016. Report of the Data Evaluation Workshop on Irish Sea Fisheries (WKIRISH2), 26-29 September 2016, Belfast, UK, ICES CM 2016/BSG:02.
ICES. 2017a. Report of the Benchmark Workshop on Irish Sea fish (WKIRISH3), 30 January-3 February 2017, Galway, ROI, ICES CM 2017/BSG:01.

ICES. 2107b. Stock Annex Cod27.7a.
Lorenzen, K. 1996. The relationship between body weight and natural mortality in fish: a comparison of natural ecosystems and aquaculture. J. Fish Biol., 49: 627-647.

Nash, R. M., Pilling, G. M., Kell, L. T., Schon, P-J. and Kjesbu, O. S. 2010. Investment in maturity-at-age and -length in Northeast Atlantic cod stocks. Fisheries Research, 104, 89-99.

Ó Cuaig, M. and Officer, R. 2007. Evaluation of the benefits to sustainable management of the seasonal closure of the Greencastle codling (Gadus morhua) fishery. Fisheries Bulletin No. 27/2007.

STECF. 2011. Scientific, Technical and Economic Committee for Fisheries. Evaluation of Fishing Effort Regimes Regarding Annexes IIA, IIB and IIC of TAC \& Quota Regulations, Celtic Sea and Bay of Biscay (STECF-11-13).

STECF. 2013. Evaluation of Fishing Effort Regimes in European Waters - Part 2 (STECF-13-21). Publications Office of the European Union, Luxembourg, EUR 26327 EN, JRC86088, 863 pp.

Table 7.1. Nominal landings (\mathbf{t}) of COD in Division 7.a as officially reported to ICES and figures used by ICES from 1997.

Country	1997	1998	1999	2000	2001	2002	2003	2004	200	200	200	200	200	201	2011	201	201	201	201	2016
									5	6	7	8	9	0	1	2	3	4	5	
Belgium	183	316	150	60	283	318	183	104	115	60	67	26	19	21	36	23	13	9	12	3
France	268	269	n/a	53	74	116	151	29	35	18^{2}	17^{2}	3	12	1	3	1	<1	<1	<1	<1
Ireland	1,492	1,739	966	455	751	1,111	594	380	220	275	608	618^{2}	323^{2}	289	275	193	160	148	137	84.2
Netherland S	29	20	5	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Spain	-	-	-	-	-	-	14	-	-	-	-	-	-	-	-	-	-	-	-	-
UK (England, Wales \& NI)	2,370	2,517	1,665	799	885	1,134	505	646	594	5892	423	5432	3872	282	169	109	107	79	50	35.5
UK (Isle of Man)	19	34	9	11	1	7	7	5	n/a	n/a	n/a	22	12	1	1	<1	<1	<1	<1	<1
UK (Scotland)	80	67	80	38	32	29	23	15	3	6	2	12	12	-	-	-	-	-	-	
Total	4,441	4,962	2,875	1,417	2,026	2,715	1,477	1,179	967	948	1,117	1224	754	594	485	326	281	236	199	$\begin{aligned} & 122.8 \\ & 3 \end{aligned}$
Unallocated	1,418	356	1,909	-143	226	-20	-192	-107	-57	-108	-415	-563	-286	-130	-117	-128	-75	-33	-38	-40.5
Total as used by WG	5859	5318	${ }_{3}^{4784}$	${ }_{4}^{1274}$	${ }_{4}^{2252}$	2695	${ }_{4}^{1285}$	${ }_{4}^{1072}$	910^{4}	840^{4}	702^{4}	$661{ }^{4}$	$468{ }^{4}$	$464{ }^{4}$	368	198	206	213	161	82

${ }^{1}$ Preliminary. ${ }^{2}$ Revised. $\quad \mathbf{n} / \mathbf{a}=$ not available ${ }^{3}$ includes sample-based estimates of landings into three ports ${ }^{4}$ based on official data only.

Table 7.2. a)-c) Cod in 7a. Working Group figures for annual landings and TAC uptake by country since 2000 (2009).
a)

Year	NI	E \& W	Scotland	IRELAND	France	Belgium	ISLE OF MAN	Netherlands	Total	TAC	\% UPTAKE
2000	638	156	39	321	52	56	11	0	1273	2100	61
2001	697	209	32	645	361	300	8	0	2251	2100	107
2002	983	171	39	953	251	294	1	2	2695	3200	84
2003	381	118	32	415	145	187	7	0	1285	1950	66
2004	539	103	15	271	37	103	5	0	1072	2150	50
2005	523	72	4	168	31	108	3	0	910	2150	42
2006	552	32	6	172	17	59	3	0	840	1828	46
2007	396	27	2	191	18	66	2	0	702	1462	48
2008	523	22	1	85	3	27	1	0	662	1199	55
2009	375	15	0	55	3	19	1	0	468	899	52
2010	274	17	0	151	1	21	1	0	465	674	69
2011	152	17	0	160	3	36	1	0	368	506	73
2012	98	14	0	63	0	23	0	0	198	380	52
2013	103	4	0	85	1	13	0	0	206	285	72
2014	72	7	0	124	0	9	0	0	213	182	117
2015	47	3	0	99	0	12	0	0	161	146	110
2016	32	3	0	45	0.4	3	0	0	82	146	56

b)

2009	UK	Ireland	France	Belgium	Netherlands	Total
Landings	391	55	3	19	0	498
TAC	259	592	33	12	3	899
$\%$ uptake	151%	9%	9%	160%	0%	

2010	UK	Ireland	France	Belgium	Netherlands	Total
Landings	292	151	1	21	0	465
TAC	194	444	25	9	2	674
$\%$ uptake	150%	34%	4%	233%	0%	

2011	UK	Ireland	France	Belgium	Netherlands	Total
Landings	170	160	3	36	0	369
TAC	146	333	19	7	2	506
\% uptake	117%	48%	16%	533%	0%	

2012	UK	Ireland	France	Belgium	Netherlands	Total
Landings	112	63	0	23	0	198
TAC	109	251	14	5	1	380
$\%$ uptake	103%	25%	0%	460%	0%	

2013	UK	Ireland	France	Belgium	Netherlands	Total
Landings	107	85	1	13	0	206
TAC	82	188	10	4	1	285
$\%$ uptake	130%	45%	10%	325%	0%	

2014	UK	Ireland	France	Belgium	Netherlands	Total
Landings	79	124	0	9	0	213
TAC	52	120	7	2	2	182
$\%$ uptake	153%	103%	0%	455%	0%	

2015	UK	Ireland	France	Belgium	Netherlands	Total
Landings	50	99	0	12	0	161
TAC	42	97	5	2	0	146
$\%$ uptake	119%	102%	0%	600%	NA	

2016	UK	Ireland	France	Belgium	Netherlands	Total
Landings	35	44	0.4	3	0	82
TAC	42	97	5	2	0	146
$\%$ uptake	83%	45%	8%	150%	0%	

c) Landings proportions by country since 2000 .

Year	NI	E \& W	Scotland	Ireland	France	Belgium	Isle of Man	Netherlands	Total
2000	50.1	12.3	3.0	25.2	4.1	4.4	0.9	0.0	100
2001	31.0	9.3	1.4	28.6	16.1	13.3	0.4	0.0	100
2002	36.5	6.4	1.5	35.4	9.3	10.9	0.0	0.1	100
2003	29.7	9.2	2.5	32.3	11.3	14.6	0.6	0.0	100
2004	50.3	9.6	1.4	25.2	3.5	9.6	0.4	0.0	100
2005	57.5	7.9	0.5	18.5	3.5	11.8	0.3	0.0	100
2006	65.7	3.8	0.7	20.4	2.0	7.1	0.3	0.0	100
2007	56.5	3.8	0.3	27.2	2.5	9.5	0.3	0.0	100
2008	78.9	3.4	0.2	12.8	0.5	4.0	0.2	0.0	100
2009	80.1	3.1	0.0	11.7	0.6	4.1	0.3	0.0	100
2010	41.3	4.6	0.0	43.5	0.8	9.8	0.2	0.0	100
2011	41.3	4.6	0.0	43.5	0.8	9.8	0.3	0.0	100
2015	49.5	7.1	0.0	31.8	0.0	11.6	0.0	0.0	100
2013	50.0	1.9	0.1	41.3	0.2	6.3	0.2	0.0	100
2014	33.8	3.3	0.0	58.2	0.0	4.2	0.0	0.0	100
2015	29.2	1.9	0.0	61.5	0.0	7.5	0.0	0.0	100
2016	39.0	3.7	0.0	54.9	0.5	3.7	0.0	0.0	100

Table 7.3. Landings and discard proportions by métier.

Catch (2016)	Estimated landings					
142 tonnes	otter trawls		Scottish seines	mid-water trawl	Beam Trawls	Other gear-types
	74\% Nephrops directed	7\% demersal fish directed	1\%	2\%	14\%	2\%
	82 tonnes					
	Estimated discards					
	otter trawls		Scottish seines	mid-water trawl	Beam Trawls	other gear types
	77\% Nephrops directed	<1\% demersal fish directed	<1\%	1\%	20\%	1\%
	60 tonnes					

Table 7.4. Cod in 7a. Total catch numbers-at-age used in the 2017 update ASAP assessment.

	0	1	2	3	4	5	$6+$
1968	17.81	438.71	1563	1003	456	177	30
1969	20.85	969.45	1481	1050	269	186	113
1970	22.13	1809.83	1385	352	204	163	71
1971	22.94	2835.2	2022	904	144	67	51
1972	26.51	900.18	3267	824	250	58	59
1973	27.17	2376.96	1091	1783	430	173	81
1974	16.94	601.04	3559	557	494	131	74
1975	26.38	1809.62	642	1407	294	249	117
1976	26.77	1247.28	3007	363	500	61	104
1977	31.05	946.23	511	1233	163	218	71
1978	39.96	854.57	1092	310	311	39	65
1979	44.35	1947.98	1288	608	127	164	71
1980	24.6	2636.16	2797	729	243	49	55
1981	37.67	1456.97	3635	1448	244	99	47
1982	46.04	538.1	2284	1455	557	102	79
1983	46.98	1011.05	932	751	499	154	46
1984	37.3	1733.45	1195	439	240	161	75
1985	33.89	1360.12	2105	703	158	84	77
1986	49.15	1180.15	2248	699	203	64	65
1987	47.38	4521.69	1793	841	252	75	43
1988	42.59	2970.64	4734	702	263	71	38
1989	41.03	754.09	2163	1886	231	86	37
1990	37.85	868.74	1075	545	372	70	30
1991	46.64	2168.61	1408	442	127	98	22
1992	36.74	1529.1	1243	664	132	42	49
1993	39.4	388.24	2907	403	119	16	13
1994	39.92	916.44	569	848	68	20	10
1995	42.97	678.2	1283	180	163	7	6
1996	87.95	446.79	1113	700	38	39	6
1997	5.28	650.79	1149.5	501	213	17	16
1998	0	231.47	1928	335	80	28	8
1999	141.42	235.79	843	871	66	21	7
2000	62.36	1106.69	176	107	50	4	1
2001	7.22	403.15	841	53	13	9	2
2002	0	238.49	564	405	7	2	3
2003	50.43	120.68	471.62	108.83	36.25	1.13	0
2004	50.43	160.78	133.81	173.83	22.25	6.13	3
2005	50.43	118.34	256.36	77.83	34.25	5.13	1
2006	50.43	89.08	174	127.83	17.25	8.13	3
2007	16	216	209.6	56	11	1	0
2008	5.5	77.4	169.4	87	9	3	0
2009	329.3	59.8	57.4	66.1	17	3	0
2010	48.7	220	188.3	16.4	7.5	2.1	1

	0	1	2	3	4	5	$6+$
2011	9.7	53.7	105.9	36	2	1	1
2012	7.5	83.9	135.2	144.9	9.9	0.2	0
2013	36.1	37	58.5	30	9	1.5	0
2014	1.09	40.66	85.93	26.3	5.53	1.1	0
2015	0	37.3	79.8	25.8	4.3	1.3	0
2016	0	10.84	24.55	30.146	2.28	1.191	0.176

Table 7.5. Cod in 7a. Mean weights-at-age in the landings (used for whole stock and catch).

	0	1	2	3	4	5	6+
1968	0.1	0.61	1.66	3.33	5.09	6.19	6.86
1969	0.1	0.61	1.66	3.33	5.09	6.19	7.26
1970	0.1	0.61	1.66	3.33	5.09	6.19	7.17
1971	0.1	0.61	1.66	3.33	5.09	6.19	7.12
1972	0.1	0.61	1.66	3.33	5.09	6.19	7.28
1973	0.1	0.61	1.66	3.33	5.09	6.19	7.16
1974	0.1	0.61	1.66	3.33	5.09	6.19	7.34
1975	0.1	0.61	1.66	3.33	5.09	6.19	7.05
1976	0.1	0.61	1.66	3.33	5.09	6.19	7.13
1977	0.1	0.61	1.66	3.33	5.09	6.19	7.63
1978	0.1	0.61	1.66	3.33	5.09	6.19	7.19
1979	0.1	0.61	1.66	3.33	5.09	6.19	7.48
1980	0.1	0.61	1.66	3.33	5.09	6.19	6.87
1981	0.1	0.61	1.66	3.33	5.09	6.19	7.55
1982	0.1	1.01	1.52	3.49	5.57	7.59	9.11
1983	0.1	1	1.84	3.99	5.96	7.97	9.97
1984	0.1	0.68	1.81	3.81	5.87	7.48	10.05
1985	0.1	0.78	2.02	4.24	5.83	7.5	9.04
1986	0.1	0.81	1.83	3.86	5.86	7.39	8.78
1987	0.1	0.71	2.16	3.91	6.41	7.82	10.32
1988	0.1	0.61	1.56	3.76	5.67	8.02	9.88
1989	0.1	0.94	1.85	3.22	5.41	6.57	9.47
1990	0.1	0.84	1.94	3.57	5.28	7.53	9.4
1991	0.1	0.86	1.64	3.54	5.42	6.39	9.11
1992	0.1	0.81	1.96	3.99	5.98	6.92	8.67
1993	0.1	0.85	1.71	3.67	5.68	7.37	10.17
1994	0.1	0.8	1.92	3.61	6.08	7.68	8.57
1995	0.1	0.9	1.84	4	5.79	8.45	9.14
1996	0.1	0.98	1.63	3.26	5.3	7.72	9.79
1997	0.1	0.85	1.94	3.62	5.29	6.12	9.4
1998	0.1	0.93	1.65	3.73	5.37	7.03	9.35
1999	0.1	0.85	1.62	3.18	5.51	7.52	10.25
2000	0.1	0.85	1.99	3.57	5.14	7.15	8.39
2001	0.1	0.99	1.82	4.15	5.61	7.33	9.51
2002	0.1	0.94	1.84	3.44	5.73	7.71	10.01
2003	0.1	1.21	1.66	3.29	5.43	10.2	11.09
2004	0.1	1.11	2.2	3.63	6.51	7.64	8.61
2005	0.1	0.91	1.94	3.51	5.32	7.74	8.89
2006	0.1	0.83	1.84	3.67	4.71	6.39	7.84
2007	0.1	0.83	1.85	3.78	5.35	7.99	10.04
2008	0.1	0.89	1.59	3.54	6	7.57	9.46
2009	0.1	1.1	2.01	3.46	5.31	7.1	6.82

2010	0.1	1.26	2.29	3.93	6.34	7.33	9.64
2011	0.1	0.949	1.88	3.745	5.536	6.754	9.036
2012	0.1	0.93	1.88	3.37	5.34	7.6	8.56
2013	0.1	0.97	2.32	4.06	5.54	7.43	10.79
2014	0.1	0.88	2.26	4.49	7	8.75	9.41
2015	0.1	0.83	1.79	3.69	6.49	8.55	9.95
2016	0.1	0.95	1.58	3.1	5.01	10.66	8.136

Table 7.6. Cod in 7.a. Estimates of numbers discarded (a) and the discarded proportions (b) from 1968-2016. Data are total numbers ('000 fish) discarded at-age, estimated from numbers per sampled trip raised to total fishing effort by each country supplying data (UK, Ireland and Belgium) Please refer to WKIRISH3 (ICES 2017a) documents.
a)

Year	0	1	2	3	4	5	$6+$
1968	17.81	74.71	0	0	0	0	0
1969	20.85	87.45	0	0	0	0	0
1970	22.13	92.83	0	0	0	0	0
1971	22.94	96.2	0	0	0	0	0
1972	26.51	111.18	0	0	0	0	0
1973	27.17	113.96	0	0	0	0	0
1974	16.94	71.04	0	0	0	0	0
1975	26.38	110.62	0	0	0	0	0
1976	26.77	112.28	0	0	0	0	0
1977	31.05	130.23	0	0	0	0	0
1978	39.96	167.57	0	0	0	0	0
1979	44.35	185.98	0	0	0	0	0
1980	24.6	103.16	0	0	0	0	0
1981	37.67	157.97	0	0	0	0	0
1982	46.04	193.1	0	0	0	0	0
1983	46.98	197.05	0	0	0	0	0
1984	37.3	156.45	0	0	0	0	0
1985	33.89	142.12	0	0	0	0	0
1986	49.15	206.15	0	0	0	0	0
1987	47.38	198.69	0	0	0	0	0
1988	42.59	178.64	0	0	0	0	0
1989	41.03	172.09	0	0	0	0	0
1990	37.85	158.74	0	0	0	0	0
1991	46.64	195.61	0	0	0	0	0
1992	36.74	154.1	0	0	0	0	0
1993	39.4	165.24	0	0	0	0	0
1994	39.92	167.44	0	0	0	0	0
1995	42.97	180.2	0	0	0	0	0
1996	87.95	128.79	0	0	0	0	0
1997	5.28	127.79	0.5	0	0	0	0
1998	0	27.47	2	0	0	0	0
1999	141.42	165.79	0	0	0	0	0
2000	62.36	817.69	0	0	0	0	0
2001	7.22	65.15	0	0	0	0	0
2002	0	42.49	0	0	0	0	0
2003	50.43	75.68	32.62	15.83	1.25	0.13	0
2004	50.43	92.78	32.81	15.83	1.25	0.13	0

Year	0	1	2	3	4	5	6+
2005	50.43	76.34	32.36	15.83	1.25	0.13	0
2006	50.43	75.08	32	15.83	1.25	0.13	0
2007	16	167	4.6	0	0	0	0
2008	5.5	63.4	3.4	0	0	0	0
2009	329.3	39.8	4.4	0.1	0	0	0
2010	48.7	180	60.3	1.4	0.5	0.1	0
2011	9.7	42.7	0.9	0	0	0	0
2012	7.5	79.9	100.2	112.9	5.9	0.2	0
2013	36.1	31	26.5	11	2	0.5	0
2014	1.09	34.66	41.93	10.3	1.53	0.1	0
2015	0	37.3	45.8	6.8	1.3	0.3	0
2016	0	9.84	14.15	13.45	0.91	0.74	0

b)

Year	0	1	2	3	4	5	6+
1968	1	0.17029	0	0	0	0	0
1969	1	0.09021	0	0	0	0	0
1970	1	0.05129	0	0	0	0	0
1971	1	0.03393	0	0	0	0	0
1972	1	0.12351	0	0	0	0	0
1973	1	0.04794	0	0	0	0	0
1974	1	0.11820	0	0	0	0	0
1975	1	0.06113	0	0	0	0	0
1976	1	0.09002	0	0	0	0	0
1977	1	0.13763	0	0	0	0	0
1978	1	0.19609	0	0	0	0	0
1979	1	0.09547	0	0	0	0	0
1980	1	0.03913	0	0	0	0	0
1981	1	0.10842	0	0	0	0	0
1982	1	0.35886	0	0	0	0	0
1983	1	0.19490	0	0	0	0	0
1984	1	0.09025	0	0	0	0	0
1985	1	0.10449	0	0	0	0	0
1986	1	0.17468	0	0	0	0	0
1987	1	0.04394	0	0	0	0	0
1988	1	0.06014	0	0	0	0	0
1989	1	0.22821	0	0	0	0	0
1990	1	0.18272	0	0	0	0	0
1991	1	0.09020	0	0	0	0	0
1992	1	0.10078	0	0	0	0	0
1993	1	0.42561	0	0	0	0	0
1994	1	0.18271	0	0	0	0	0
1995	1	0.26570	0	0	0	0	0

Year	0	1	2	3	4	5	$6+$
1996	1	0.28826	0	0	0	0	0
1997	1	0.19636	0.00043	0	0	0	0
1998	NA	0.11868	0.00104	0	0	0	0
1999	1	0.70313	0	0	0	0	0
2000	1	0.73886	0	0	0	0	0
2001	1	0.16160	0	0	0	0	0
2002	NA	0.17816	0	0	0	0	0
2003	1	0.62711	0.06917	0.14546	0.03448	0.11504	NA
2004	1	0.57706	0.24520	0.09107	0.05618	0.02121	0
2005	1	0.64509	0.12623	0.20339	0.03650	0.02534	0
2006	1	0.84284	0.18391	0.12384	0.07246	0.01599	0
2007	1	0.77315	0.02195	0	0	0	NA
2008	1	0.81912	0.02007	0	0	0	NA
2009	1	0.66555	0.07666	0.001513	0	0	NA
2010	1	0.81818	0.32023	0.085366	0.066667	0.047619	0
2011	1	0.79516	0.00850	0	0	0	0
2012	1	0.95232	0.74112	0.779158	0.59596	1	NA
2013	1	0.83784	0.45299	0.36667	0.22222	0.33333	NA
2014	1	0.85243	0.48796	0.39163	0.27667	0.09091	NA
2015	NA	1	0.57393	0.26357	0.30233	0.23077	NA
2016	NA	0.90775	0.57637	0.44616	0.39912	0.62133	0

$\mathrm{NA}=$ not available.

Table 7.7. Maturity ogive updated for 2016. Prior to 1995 maturity was considered constant.

	1	2	$3+$
1996	0	0.27	1
1997	0	0.34	1
1998	0	0.41	1
1999	0	0.48	1
2000	0	0.55	1
2001	0	0.6	1
2002	0	0.63	1
2003	0	0.66	1
2004	0	0.69	1
2005	0	0.7	1
2006	0	0.71	1
2007	0	0.71	1
2008	0	0.71	1
2009	0	0.7	1
2010	0	0.7	1
2011	0	0.7	1
2012	0	0.69	1
2013	0	0.67	1
2014	0	0.66	1
2015	0	0.65	1
2016	0	0.64	1

Table 7.8. Survey catch numbers-at-age and c.v.

Northern Irish Groundfish Q1

year	c.v.	0	1	2	3	4	5	$6+$
1993	0.783171	0	138.121	648.763	44.599	10.421	1.417	2.769
1994	0.340965	0	1380.438	109.71	120.271	8.45	1.367	0
1995	0.675194	0	700.728	386.153	20.039	10.779	0	0.994
1996	0.429215	0	1106.129	329.282	111.668	1.394	8.808	0
1997	0.644885	0	537.298	415.843	66.723	21.392	1.394	0
1998	0.839964	0	169.385	769.234	56.874	11.984	0	0
1999	0.861441	0	49.499	253.08	241.874	15.286	2.787	0
2000	0.653815	0	629.595	101.053	34.576	33.014	0	2.258
2001	0.890678	0	406.682	561.441	18.438	5.775	4.042	0
2002	0.644334	0	662.163	253.311	333.543	0	0	1.129
2003	0.543658	0	73.865	1079.204	104.05	32.702	3.652	3.049
2004	0.755489	0	216.956	171.956	88.622	5.375	4.381	0
2005	0.759642	0	63.533	225.07	29.407	27.963	18.27	0
2006	0.63449	0	169.989	130.752	58.304	2.523	0	0
2007	0.948715	0	164.351	124.393	30.601	5.148	0	0
2008	0.902387	0	40.658	217.151	13.018	5.172	4.178	0.994
2009	0.761727	0	144	59	33	9	0	0
2010	0.817134	0	1022.117	208.961	14.656	2.258	0	0
2011	0.494292	0	353.981	414.689	46.006	2.258	2.01	0
2012	0.807196	0	161.898	222.819	99.271	14.25	0	0
2013	0.805923	0	276.592	213.675	60.082	1.491	15.547	0
2014	0.632073	0	314.41	222.799	53.294	13.657	5.375	0
2015	0.843748	0	78.96	719.35	69.19	8.56	3.05	0
2016	1.057	0	349.2	175	148.3	10.7	1.12	0

Northern Irish Groundfish Quarter 4

year	c.v.	0	1	2	3	4	5	6+
1991	1207.03	1109.37	50.06	47.6	8.64	0	0	0
1992	700.43	553.23	146.44	0.76	0	0	0	0
1993	1708.37	1672.49	25.44	10.44	0	0	0	0
1994	1240.12	1206.8	33.32	0	0	0	0	0
1995	543.34	486.65	50.15	6.54	0	0	0	0
1996	1419.39	1322.2	97.19	0	0	0	0	0
1997	546.13	376.51	163.9	5.72	0	0	0	0
1998	100.44	58.47	32.48	9.49	0	0	0	0
1999	303.67	301.64	2.03	0	0	0	0	0
2000	616.7	506.79	109.91	0	0	0	0	0
2001	538.1	487.89	37.68	12.53	0	0	0	0
2002	190.85	161.45	29.4	0	0	0	0	0
2003	602.68	578.97	23.71	0	0	0	0	0
2004	831.13	706.13	107.72	17.28	2.89	0	0	0
2005	138.25	130.2	1.47	6.58	0	0	0	0
2006	89.97	86.99	0	2.98	0	0	0	0
2007	34.56	17.28	17.28	0	0	0	0	0
2008	219.72	213.62	6.1	0	0	0	0	0
2009	174.78	171.8	2.98	0	0	0	0	0
2010	149.39	92.48	53.86	3.05	3.05	0	0	0
2011	115.11	107.05	1.69	6.37	2.98	0	0	0
2012	374.936	321.82	32.791	20.325	0	0	3.049	0
2013	142.28	41.67	79.95	20.66	0	0	0	0
2014	94.5	0	55.35	39.15	6.78	0	0	0
2015	325.56	224.27	0	55.42	39.06	6.81	0	0
2016	229.46	14.98	0	181.79	26.6	6.1	0	0

UK FSP

year	c.v.		0	1	2	3	4	5	6+
2005	0.4	0		0	0.427	1.409	0.99	0.084	0.025
2006	0.4	0		0.003	0.536	2.815	0.427	0.104	0.01
2007	0.4	0		0.008	0.611	1.322	0.585	0.055	0.058
2008	0.4	0		0.003	0.221	0.824	0.147	0.084	0.02
2009	0.4	0		0.009	0.171	1.152	0.377	0.099	0.018
2010	0.4	0		0	0.735	0.452	0.467	0.13	0.023
2011	0.4	0		0	0.407	1.681	0.144	0.095	0.039
2012	0.4	0		0	0.364	2.3	0.803	0.072	0.021
2013	0.4	0		0	0.844	1.883	1.348	0.37	0.057
2014									
2015	0.4	0		0	0.602	2.041	1.169	0.256	0.045
2016	0.4	0		0	1.001	6.388	1.434	0.413	0.028

MIKNET survey

Year			0
1994	0.7	57.4	
1995	0.7	6.9	
1996	0.7	66.3	
1997	0.7	5.7	
1998	0.7	0.1	
1999	0.7	26.2	
2000	0.7	6.1	
2001	0.7	9.6	
2002	0.7	3.4	
2003	0.7	3.2	
2004	0.7	25.8	
2005	0.7	11.4	
2006	0.7	9	
2007	0.7	0.0	
2008	0.7	0.8	
2009	0.7	23.6	
2010	0.7	5.7	
2011	0.7	1.4	
2012	0.7	10.6	
2013	0.7	42.6	
2014	0.7	8.2	
2015	0.7	80.4	
2016	0.7	0.0	

Table 7.9. Estimated stock numbers-at-age (Thousands).

YEAR/AGE	0	1	2	3	4	5	6+
1968	49674.18	8039.637	4422.795	1850.133	768.6935	317.9662	249.2741
1969	70867.25	9064.336	3385.784	1717.089	804.2671	340.5472	254.3023
1970	116580.2	12926.71	3632.366	1081.937	612.3718	292.3084	218.7745
1971	41586.53	21273.18	5447.518	1413.883	471.5701	272.011	229.7268
1972	110042.5	7587.707	8830.458	1998.517	580.2442	197.2277	212.3604
1973	25392.02	20080.93	3213.368	3504.235	888.3403	262.8512	187.7907
1974	87805.45	4632.123	8146.546	1077.509	1312.457	339.072	174.0537
1975	27896.68	16020.21	1916.257	2949.115	436.2444	541.5243	214.2045
1976	42578.83	5089.042	6500.742	643.1701	1105.611	166.6714	292.0927
1977	45998.53	7767.273	2059.515	2159.064	238.5559	417.914	175.5514
1978	95705.8	8390.757	3126.582	669.7963	783.8835	88.2664	222.1441
1979	113802.6	17465.19	3565.785	1257.697	301.8628	360.0365	144.3545
1980	64895.01	20763.99	7251.085	1309.103	516.521	126.3415	213.5648
1981	28807.17	11840.05	8578.16	2611.002	527.1447	211.9667	141.2088
1982	41802.87	5255.061	4795.204	2857.383	971.3249	199.8515	135.4855
1983	65428.57	7624.472	2081.034	1462.693	971.9743	336.7189	117.6285
1984	62616.64	11935.14	3071.672	679.0212	532.831	360.8365	170.6262
1985	49833.85	11422.86	4845.227	1032.761	255.0113	203.9324	205.7907
1986	140518.6	9089.733	4555.447	1519.27	361.2952	90.91584	147.8373
1987	67126.98	25630.77	3626.435	1430.632	532.3348	129.012	86.30422
1988	30462.54	12241.04	9897.925	1002.357	440.2415	166.94	68.32466
1989	35901.61	5554.686	4687.04	2645.903	298.1457	133.4468	72.14452
1990	39450.48	6544.961	2062.809	1111.391	696.6962	80.0026	55.81647
1991	66321.05	7194.777	2561.475	600.8145	360.7042	230.4317	45.45627
1992	15409.64	12090.21	2663.111	599.6007	156.1419	95.52913	73.89883
1993	42991.74	2808.828	4407.645	587.3438	146.6686	38.92222	42.7385
1994	34653.82	7835.026	1000.164	886.3805	130.7989	33.28495	18.75667
1995	33070.61	6314.713	2745.158	188.7854	185.0771	27.83126	11.20392
1996	48933.8	6030.621	2437.541	757.5098	57.99599	57.94214	12.36302
1997	14946.65	8922.219	2288.448	629.055	217.3924	16.96147	20.79614
1998	3773.449	2724.988	3341.556	560.9454	171.3214	60.33575	10.60695
1999	28403.1	688.0844	1046.542	903.8995	168.871	52.56027	22.01206
2000	11677.27	5171.019	213.8912	123.5676	117.1326	22.29921	9.961976
2001	14502.5	2073.384	1826.765	35.7932	16.7373	29.86744	20.95129
2002	5017.56	2598.108	811.4246	479.0481	8.437425	6.127457	36.11972
2003	8672.125	891.6603	926.8044	141.7072	68.39474	2.226662	31.77445
2004	4910.127	1552.978	347.3501	238.181	32.58178	24.63487	26.53139
2005	5377.05	880.5865	615.2764	96.13452	60.00643	12.45726	37.3363
2006	6144.66	964.1867	348.307	169.0621	24.00502	22.80975	37.78965
2007	1260.928	1097.967	366.3111	80.19489	33.94313	7.914008	44.22347
2008	4514.998	225.5568	422.3928	89.10374	17.22994	11.69656	39.93376
2009	8499.888	806.9498	85.91363	98.35653	18.14045	5.732251	38.86832

YEAR/AGE	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6 +}$
2010	4585.899	1519.779	308.8153	20.42333	20.54135	6.136463	34.26514
2011	5451.636	820.9394	589.6445	77.96567	4.594036	7.293659	31.01416
2012	8777.311	989.1638	371.783	293.4373	40.50313	2.817107	30.59473
2013	13951.27	1584.86	423.6612	144.8465	112.7142	20.39414	26.53478
2014	5943.277	2539.88	745.931	249.6593	92.6898	79.19327	37.6138
2015	6750.108	1083.251	1211.421	465.9763	171.681	68.25602	93.71876
2016	49.39489	1231.514	522.5106	795.0443	340.543	131.5486	131.4952

Table 7.10. Estimated fishing mortalities F-at-age.

Year	0	1	2	3	4	5	$6+$
1968	0.00114	0.15080	0.59114	0.60108	0.60114	0.60114	0.60114
1969	0.00151	0.20046	0.78583	0.79905	0.79912	0.79912	0.79912
1970	0.00113	0.15014	0.58854	0.59844	0.59850	0.59850	0.59850
1971	0.00125	0.16524	0.64775	0.65865	0.65871	0.65871	0.65871
1972	0.00110	0.14521	0.56923	0.57881	0.57886	0.57886	0.57886
1973	0.00142	0.18818	0.73767	0.75007	0.75014	0.75014	0.75014
1974	0.00127	0.16864	0.66109	0.67220	0.67227	0.67227	0.67227
1975	0.00142	0.18793	0.73672	0.74911	0.74918	0.74918	0.74918
1976	0.00144	0.19062	0.74724	0.75981	0.75988	0.75988	0.75988
1977	0.00148	0.19598	0.76825	0.78117	0.78124	0.78124	0.78124
1978	0.00107	0.14175	0.55566	0.56500	0.56506	0.56506	0.56506
1979	0.00125	0.16506	0.64704	0.65792	0.65798	0.65798	0.65798
1980	0.00128	0.17000	0.66642	0.67762	0.67769	0.67769	0.67769
1981	0.00143	0.18987	0.74431	0.75683	0.75690	0.75690	0.75690
1982	0.00160	0.21233	0.83234	0.84633	0.84641	0.84641	0.84641
1983	0.00147	0.19514	0.76497	0.77783	0.77790	0.77790	0.77790
1984	0.00141	0.18749	0.73499	0.74734	0.74742	0.74742	0.74742
1985	0.00155	0.20529	0.80476	0.81830	0.81837	0.81837	0.81837
1986	0.00155	0.20490	0.80321	0.81671	0.81679	0.81679	0.81679
1987	0.00179	0.23747	0.93090	0.94655	0.94664	0.94664	0.94664
1988	0.00186	0.24599	0.96431	0.98053	0.98062	0.98062	0.98062
1989	0.00209	0.27657	1.08419	1.10242	1.10252	1.10252	1.10252
1990	0.00169	0.22411	0.87854	0.89331	0.89339	0.89340	0.89340
1991	0.00211	0.27986	1.09708	1.11552	1.11563	1.11563	1.11563
1992	0.00223	0.29506	1.15664	1.17609	1.17620	1.17620	1.17620
1993	0.00240	0.31860	1.24895	1.26995	1.27007	1.27007	1.27007
1994	0.00253	0.33477	1.31231	1.33437	1.33450	1.33450	1.33450
1995	0.00179	0.23789	0.93256	0.94824	0.94833	0.94833	0.94833
1996	0.00192	0.25498	0.99953	1.01633	1.01643	1.01643	1.01643
1997	0.00202	0.26811	1.05101	1.06868	1.06878	1.06878	1.06878
1998	0.00183	0.24297	0.95247	0.96849	0.96858	0.96858	0.96858
1999	0.00343	0.45444	1.78146	1.81141	1.81158	1.81159	1.81159
2000	0.02846	0.32652	1.43271	1.76715	1.15354	0.32153	0.05229
2001	0.01954	0.22415	0.98350	1.21308	0.79186	0.22072	0.03590
2002	0.02761	0.31680	1.39003	1.71451	1.11917	0.31195	0.05073
2003	0.01994	0.22875	1.00371	1.23801	0.80813	0.22525	0.03663
2004	0.01847	0.21186	0.92958	1.14658	0.74845	0.20862	0.03393
2005	0.01861	0.21350	0.93681	1.15549	0.75426	0.21024	0.03419
2006	0.02212	0.25380	1.11363	1.37358	0.89663	0.24992	0.04065
2007	0.02103	0.24128	1.05868	1.30581	0.85239	0.23759	0.03864
2008	0.02190	0.25123	1.10234	1.35966	0.88754	0.24739	0.04023
2009	0.02149	0.24652	1.08166	1.33416	0.87090	0.24275	0.03948

Year	0	1	2	3	4	5	$6+$
2010	0.02029	0.23280	1.02148	1.25992	0.82243	0.22924	0.03728
2011	0.00681	0.07814	0.34286	0.42289	0.27605	0.07694	0.01251
2012	0.01167	0.13393	0.58764	0.72481	0.47313	0.13188	0.02145
2013	0.00345	0.03962	0.17384	0.21442	0.13996	0.03901	0.00634
2014	0.00229	0.02632	0.11550	0.14246	0.09299	0.02592	0.00422
2015	0.00131	0.01508	0.06615	0.08159	0.05326	0.01485	0.00241
2016	0.00055	0.00637	0.02793	0.03445	0.02249	0.00627	0.00102

Table 7.11. Estimated recruitment (age 0), total stock biomass (TSB), spawning-stock biomass (SSB), and average fishing mortality for ages 2 to 4 ($\mathrm{F}_{\mathrm{Bar}}$).

year	Recruitment Low	Recruitment	Recruitment High	TSB	SSB low	SSB	SSB high	catch	F low	$\mathrm{F}_{\text {bar }}$	F high
1968	45981.38	49674.18	53366.98	30965.26	14895.48	15734.12	16572.76	9826.43	0.570171	0.597787	0.625403
1969	64306.95	70867.25	77427.55	32002.22	14462.86	15283.35	16103.84	9889.34	0.731874	0.794667	0.85746
1970	107843.4	116580.2	125317	35670.87	10736.8	11725.85	12714.9	7133.87	0.541942	0.595161	0.64838
1971	36017.33	41586.53	47155.73	36606.1	11738.5	12869.5	14000.5	9609.42	0.602834	0.655036	0.707238
1972	101417.3	110042.5	118667.7	42666.64	15110.14	16333.14	17556.14	10779.94	0.535681	0.575634	0.615587
1973	21372.72	25392.02	29411.32	39285.15	19178.82	20602.62	22026.42	13040.64	0.692245	0.745961	0.799677
1974	80733.45	87805.45	94877.45	38774.33	16072.4	17296.2	18520	11999.59	0.624942	0.668521	0.7121
1975	24131.18	27896.68	31662.18	32646.2	16565.48	17762.08	18958.68	10720.16	0.690357	0.745002	0.799647
1976	38036.93	42578.83	47120.73	29037.06	12796.57	13797.27	14797.97	10628.04	0.705529	0.755642	0.805755
1977	40961.63	45998.53	51035.43	25086.96	12293.48	13253.35	14213.22	8255.27	0.711615	0.776889	0.842163
1978	87835.3	95705.8	103576.3	28243.04	8825.038	9765.308	10705.58	5662.05	0.508006	0.561905	0.615804
1979	104837.6	113802.6	122767.6	36986.24	9567.49	10631.19	11694.89	7548.09	0.594728	0.654316	0.713904
1980	58177.71	64895.01	71612.31	40429.98	11374.18	12487.58	13600.98	10599.14	0.625434	0.673909	0.722384
1981	24854.77	28807.17	32759.57	38098.9	16413.43	17600.73	18788.03	13958.08	0.708288	0.752681	0.797074
1982	37201.67	41802.87	46404.07	34910.3	18889.84	20101.64	21313.44	13694.07	0.788675	0.841694	0.894713
1983	59438.07	65428.57	71419.07	33481.95	15325.37	16519.37	17713.37	10387.16	0.711696	0.773568	0.83544
1984	56359.14	62616.64	68874.14	30065.92	10550.17	11629.77	12709.37	8384.85	0.677092	0.743249	0.809406
1985	43984.35	49833.85	55683.35	32936.04	10813.85	11898.05	12982.25	10544.33	0.747156	0.813811	0.880466
1986	129974.6	140518.6	151062.6	39702.46	11090.1	12202.3	13314.5	10006.06	0.741503	0.812237	0.882971
1987	60458.78	67126.98	73795.18	43649.21	11702.21	13020.51	14338.81	13021.91	0.864214	0.941361	1.018508

year	Recruitment Low	Recruitment	Recruitment High	TSB	SSB low	SSB	SSB high	catch	F low	$\mathrm{F}_{\text {bar }}$	F high
1988	26471.94	30462.54	34453.14	34232.99	11395.44	12447.94	13500.44	14276.98	0.913634	0.975153	1.036672
1989	31381.71	35901.61	40421.51	29175.32	13069.73	14033.91	14998.09	12952.54	1.023713	1.096377	1.169041
1990	34430.68	39450.48	44470.28	22217.98	8985.987	9853.817	10721.65	7537.94	0.8062	0.888414	0.970628
1991	60650.35	66321.05	71991.75	22988.9	6285.216	7102.686	7920.156	7258.45	0.996167	1.109407	1.222647
1992	13377.54	15409.64	17441.74	21181.63	5253.158	6037.218	6821.278	7832.71	1.070103	1.169643	1.269183
1993	39433.24	42991.74	46550.24	17933.89	5204.177	5745.147	6286.117	7709.97	1.172774	1.26299	1.353206
1994	31627.42	34653.82	37680.22	16065.18	4420.329	4929.949	5439.569	5543.64	1.201041	1.327061	1.453081
1995	30179.31	33070.61	35961.91	16205.71	3118.051	3528.111	3938.171	4753.16	0.863312	0.943041	1.02277
1996	45312.4	48933.8	52555.2	18121.79	3972.07	4417.97	4863.87	5104.06	0.928592	1.010763	1.092934
1997	13308.95	14946.65	16584.35	17244.61	4753.883	5235.933	5717.983	5978.56	0.986975	1.062821	1.138667
1998	3153.969	3773.449	4392.929	11960.81	5413.81	5796.22	6178.63	5347.25	0.90731	0.963181	1.019052
1999	26541.3	28403.1	30264.9	9546.336	4905.577	5239.547	5573.517	4943.34	1.624334	1.801484	1.978634
2000	10556.47	11677.27	12798.07	7274.955	1245.232	1520.322	1795.412	1973.14	1.270762	1.451132	1.631502
2001	13280.8	14502.5	15724.2	7488.226	2428.03	2655.44	2882.85	2316.45	0.902813	0.996147	1.089481
2002	4457.04	5017.56	5578.08	6542.072	2779.666	3045.676	3311.686	2740.7	1.266583	1.407903	1.549223
2003	7993.185	8672.125	9351.065	4697.307	1992.117	2228.097	2464.077	1500.41	0.913728	1.016618	1.119508
2004	4469.517	4910.127	5350.737	4472.339	1799.977	2020.627	2241.277	1326.44	0.843859	0.941538	1.039217
2005	4970.16	5377.05	5783.94	3617.68	1719.131	1920.551	2121.971	1114.1	0.859205	0.948852	1.038499
2006	5725.67	6144.66	6563.65	3231.173	1459.515	1630.575	1801.635	1025.03	1.027164	1.127944	1.228724
2007	1101.748	1260.928	1420.108	2707.05	1279.589	1473.119	1666.649	847.16	0.978298	1.072295	1.166292
2008	4141.728	4514.998	4888.268	2208.973	1188.132	1361.962	1535.792	723.47	1.013301	1.116511	1.219721
2009	7694.658	8499.888	9305.118	2652.74	734.3308	863.3008	992.2708	554.36	0.966323	1.095573	1.224823
2010	3978.839	4585.899	5192.959	3666.491	910.493	1080.823	1251.153	850.31	0.89505	1.03461	1.17417

year	Recruitment Low	Recruitment	Recruitment High	TSB	SSB low	SSB	SSB high	catch	F low	$\mathrm{F}_{\text {bar }}$	F high
2011	4552.106	5451.636	6351.166	3079.686	1208.822	1422.892	1636.962	412.71	0.289418	0.347265	0.405112
2012	7147.811	8777.311	10406.81	3985.077	1660.378	1970.748	2281.118	875.65	0.471732	0.595192	0.718652
2013	11213.97	13951.27	16688.57	5565.687	1786.201	2308.891	2831.581	358.02	0.135225	0.176072	0.216919
2014	4628.577	5943.277	7257.977	7331.912	3035.856	3929.316	4822.776	396.53	0.090635	0.116984	0.143333
2015	5119.608	6750.108	8380.608	8092.306	4473.241	5759.241	7045.241	308.02	0.052228	0.067002	0.081776
2016	23.43289	49.39489	75.35689	8645.197	5576.015	7173.115	8770.215	142.23	0.022183	0.028288	0.034392
2017		5513				10299.23				0.109364	

Table 7.12: Forecast input, including landing, discard, total catch numbers (in thousands) and total F at age for 2016.

Age	Landings		Discards	Catch	F (total catch)
	0	0	0	0	0.000555
	1	1	9.84	10.84	0.006365
	2	10.4	14.15	24.55	0.027928
	3	16.696	13.45	30.47	0.034448
	4	1.37	0.91	2.28	0.022486
	0.451	0.74	1.191	0.006268	

Table 7.13 STF results with catches, landings and discards and associated F for 2018 under a range of options (Basis). Change in SSB from 2018 to 2019 under the option and how much of the TAC will be taken up by the total catch. FMSY range reaches from $\mathrm{F}_{\text {msYmin }}$ to $\mathrm{F}_{\mathrm{ms} \text { Ymax }}$ in steps of 0.01 .

Fmult	CATCH18	LAND18	Dis18	BASIS	FCATCH18	FLAND18	FDIS18	SSB19	DSSB	DTAC
0.01	3	2	1	FMultiplier	0.00071	0.00041	0.00029	10899.41	-0.93\%	-97.95\%
0.02	5	4	2	FMultiplier	0.00142	0.00083	0.00059	10895.94	-0.96\%	-96.58\%
0.03	8	5	3	FMultiplier	0.00212	0.00124	0.00088	10892.47	-1.00\%	-94.52\%
0.04	11	7	4	FMultiplier	0.00283	0.00166	0.00117	10889	-1.03\%	-92.47\%
0.05	14	9	5	FMultiplier	0.00354	0.00207	0.00147	10885.54	-1.06\%	-90.41\%
0.06	16	11	6	FMultiplier	0.00425	0.00248	0.00176	10882.08	-1.09\%	-89.04\%
0.07	19	12	7	FMultiplier	0.00495	0.0029	0.00206	10878.62	-1.12\%	-86.99\%
0.08	22	14	8	FMultiplier	0.00566	0.00331	0.00235	10875.16	-1.15\%	-84.93\%
0.09	25	16	9	FMultiplier	0.00637	0.00372	0.00264	10871.7	-1.18\%	-82.88\%
0.1	27	18	10	FMultiplier	0.00708	0.00414	0.00294	10868.25	-1.22\%	-81.51\%
0.11	30	20	11	FMultiplier	0.00778	0.00455	0.00323	10864.8	-1.25\%	-79.45\%
0.12	33	21	12	FMultiplier	0.00849	0.00497	0.00352	10861.35	-1.28\%	-77.40\%
0.13	36	23	13	FMultiplier	0.0092	0.00538	0.00382	10857.9	-1.31\%	-75.34\%
0.14	38	25	14	FMultiplier	0.00991	0.00579	0.00411	10854.46	-1.34\%	-73.97\%
0.15	41	27	14	FMultiplier	0.01061	0.00621	0.00441	10851.01	-1.37\%	-71.92\%
0.16	44	28	15	FMultiplier	0.01132	0.00662	0.0047	10847.57	-1.40\%	-69.86\%
0.17	47	30	16	FMultiplier	0.01203	0.00704	0.00499	10844.14	-1.43\%	-67.81\%
0.18	49	32	17	FMultiplier	0.01274	0.00745	0.00529	10840.7	-1.47\%	-66.44\%
0.19	52	34	18	FMultiplier	0.01344	0.00786	0.00558	10837.26	-1.50\%	-64.38\%

55	35	19	FMultiplier	0.01415	0.00828	0.00587	10833.83	-1.53\%	-62.33\%
57	37	20	FMultiplier	0.01486	0.00869	0.00617	10830.4	-1.56\%	-60.96\%
60	39	21	FMultiplier	0.01557	0.0091	0.00646	10826.97	-1.59\%	-58.90\%
63	41	22	FMultiplier	0.01627	0.00952	0.00676	10823.55	-1.62\%	-56.85\%
66	42	23	FMultiplier	0.01698	0.00993	0.00705	10820.13	-1.65\%	-54.79\%
68	44	24	FMultiplier	0.01769	0.01035	0.00734	10816.7	-1.68\%	-53.42\%
71	46	25	FMultiplier	0.0184	0.01076	0.00764	10813.28	-1.72\%	-51.37\%
74	48	26	FMultiplier	0.0191	0.01117	0.00793	10809.87	-1.75\%	-49.32\%
76	50	27	FMultiplier	0.01981	0.01159	0.00822	10806.45	-1.78\%	-47.95\%
79	51	28	FMultiplier	0.02052	0.012	0.00852	10803.04	-1.81\%	-45.89\%
82	53	29	FMultiplier	0.02123	0.01242	0.00881	10799.63	-1.84\%	-43.84\%
85	55	30	FMultiplier	0.02193	0.01283	0.00911	10796.22	-1.87\%	-41.78\%
87	57	31	FMultiplier	0.02264	0.01324	0.0094	10792.81	-1.90\%	-40.41\%
90	58	32	FMultiplier	0.02335	0.01366	0.00969	10789.41	-1.93\%	-38.36\%
93	60	33	FMultiplier	0.02406	0.01407	0.00999	10786	-1.96\%	-36.30\%
95	62	34	FMultiplier	0.02477	0.01448	0.01028	10782.6	-1.99\%	-34.93\%
98	64	35	FMultiplier	0.02547	0.0149	0.01057	10779.2	-2.03\%	-32.88\%
101	65	36	FMultiplier	0.02618	0.01531	0.01087	10775.81	-2.06\%	-30.82\%
103	67	36	FMultiplier	0.02689	0.01573	0.01116	10772.41	-2.09\%	-29.45\%
106	69	37	FMultiplier	0.0276	0.01614	0.01146	10769.02	-2.12\%	-27.40\%
109	71	38	FMultiplier	0.0283	0.01655	0.01175	10765.63	-2.15\%	-25.34\%
112	72	39	FMultiplier	0.02901	0.01697	0.01204	10762.24	-2.18\%	-23.29\%
114	74	40	FMultiplier	0.02972	0.01738	0.01234	10758.86	-2.21\%	-21.92\%
117	76	41	FMultiplier	0.03043	0.0178	0.01263	10755.47	-2.24\%	-19.86\%

0.44	120	77	42	FMultiplier	0.03113	0.01821	0.01292	10752.09	-2.27\%	-17.81\%
0.45	122	79	43	FMultiplier	0.03184	0.01862	0.01322	10748.71	-2.30\%	-16.44\%
0.46	125	81	44	FMultiplier	0.03255	0.01904	0.01351	10745.33	-2.33\%	-14.38\%
0.47	128	83	45	FMultiplier	0.03326	0.01945	0.01381	10741.96	-2.36\%	-12.33\%
0.48	130	84	46	FMultiplier	0.03396	0.01986	0.0141	10738.58	-2.39\%	-10.96\%
0.49	133	86	47	FMultiplier	0.03467	0.02028	0.01439	10735.21	-2.42\%	-8.90\%
0.5	136	88	48	FMultiplier	0.03538	0.02069	0.01469	10731.84	-2.46\%	-6.85\%
0.51	138	90	49	FMultiplier	0.03609	0.02111	0.01498	10728.48	-2.49\%	-5.48\%
0.52	141	91	50	FMultiplier	0.03679	0.02152	0.01527	10725.11	-2.52\%	-3.42\%
0.53	144	93	51	FMultiplier	0.0375	0.02193	0.01557	10721.75	-2.55\%	-1.37\%
0.54	146	95	52	FMultiplier	0.03821	0.02235	0.01586	10718.39	-2.58\%	0\%
0.55	149	97	53	FMultiplier	0.03892	0.02276	0.01616	10715.03	-2.61\%	2.05\%
0.56	152	98	53	FMultiplier	0.03962	0.02317	0.01645	10711.67	-2.64\%	4.11\%
0.57	154	100	54	FMultiplier	0.04033	0.02359	0.01674	10708.32	-2.67\%	5.48\%
0.58	157	102	55	FMultiplier	0.04104	0.024	0.01704	10704.96	-2.70\%	7.53\%
0.59	160	103	56	FMultiplier	0.04175	0.02442	0.01733	10701.61	-2.73\%	9.59\%
0.6	162	105	57	FMultiplier	0.04245	0.02483	0.01762	10698.26	-2.76\%	10.96\%
0.61	165	107	58	FMultiplier	0.04316	0.02524	0.01792	10694.92	-2.79\%	13.01\%
0.62	168	109	59	FMultiplier	0.04387	0.02566	0.01821	10691.57	-2.82\%	15.07\%
0.63	170	110	60	FMultiplier	0.04458	0.02607	0.01851	10688.23	-2.85\%	16.44\%
0.64	173	112	61	FMultiplier	0.04528	0.02649	0.0188	10684.89	-2.88\%	18.49\%
0.65	176	114	62	FMultiplier	0.04599	0.0269	0.01909	10681.55	-2.91\%	20.55\%
0.66	178	116	63	FMultiplier	0.0467	0.02731	0.01939	10678.21	-2.94\%	21.92\%
0.67	181	117	64	FMultiplier	0.04741	0.02773	0.01968	10674.88	-2.97\%	23.97\%

184	119	65	FMultiplier	0.04812	0.02814	0.01997	10671.55	-3.00\%	26.03\%
186	121	66	FMultiplier	0.04882	0.02855	0.02027	10668.22	-3.03\%	27.40\%
189	122	67	FMultiplier	0.04953	0.02897	0.02056	10664.89	-3.06\%	29.45\%
192	124	68	FMultiplier	0.05024	0.02938	0.02086	10661.56	-3.09\%	31.51\%
194	126	68	FMultiplier	0.05095	0.0298	0.02115	10658.24	-3.12\%	32.88\%
197	128	69	FMultiplier	0.05165	0.03021	0.02144	10654.92	-3.15\%	34.93\%
200	129	70	FMultiplier	0.05236	0.03062	0.02174	10651.6	-3.18\%	36.99\%
202	131	71	FMultiplier	0.05307	0.03104	0.02203	10648.28	-3.22\%	38.36\%
205	133	72	FMultiplier	0.05378	0.03145	0.02232	10644.96	-3.25\%	40.41\%
207	134	73	FMultiplier	0.05448	0.03187	0.02262	10641.65	-3.28\%	41.78\%
210	136	74	FMultiplier	0.05519	0.03228	0.02291	10638.34	-3.31\%	43.84\%
213	138	75	FMultiplier	0.0559	0.03269	0.02321	10635.03	-3.34\%	45.89\%
215	140	76	FMultiplier	0.05661	0.03311	0.0235	10631.72	-3.37\%	47.26\%
218	141	77	FMultiplier	0.05731	0.03352	0.02379	10628.41	-3.40\%	49.32\%
221	143	78	FMultiplier	0.05802	0.03393	0.02409	10625.11	-3.43\%	51.37\%
223	145	79	FMultiplier	0.05873	0.03435	0.02438	10621.81	-3.46\%	52.74\%
226	146	80	FMultiplier	0.05944	0.03476	0.02467	10618.51	-3.49\%	54.79\%
229	148	81	FMultiplier	0.06014	0.03518	0.02497	10615.21	-3.52\%	56.85\%
231	150	81	FMultiplier	0.06085	0.03559	0.02526	10611.91	-3.55\%	58.22\%
234	151	82	FMultiplier	0.06156	0.036	0.02556	10608.62	-3.58\%	60.27\%
236	153	83	FMultiplier	0.06227	0.03642	0.02585	10605.33	-3.61\%	61.64\%
239	155	84	FMultiplier	0.06297	0.03683	0.02614	10602.04	-3.64\%	63.70\%
242	157	85	FMultiplier	0.06368	0.03725	0.02644	10598.75	-3.67\%	65.75\%
244	158	86	FMultiplier	0.06439	0.03766	0.02673	10595.47	-3.70\%	67.12\%

0.92	247	160	87	FMultiplier	0.0651	0.03807	0.02702	10592.18	-3.72\%	69.18\%
0.93	250	162	88	FMultiplier	0.0658	0.03849	0.02732	10588.9	-3.75\%	71.23\%
0.94	252	163	89	FMultiplier	0.06651	0.0389	0.02761	10585.62	-3.78\%	72.60\%
0.95	255	165	90	FMultiplier	0.06722	0.03931	0.02791	10582.34	-3.81\%	74.66\%
0.96	257	167	91	FMultiplier	0.06793	0.03973	0.0282	10579.07	-3.84\%	76.03\%
0.97	260	168	92	FMultiplier	0.06864	0.04014	0.02849	10575.79	-3.87\%	78.08\%
0.98	263	170	93	FMultiplier	0.06934	0.04056	0.02879	10572.52	-3.90\%	80.14\%
0.99	265	172	93	FMultiplier	0.07005	0.04097	0.02908	10569.25	-3.93\%	81.51\%
1	268	173	94	FMultiplier	0.07076	0.04138	0.02937	10565.98	-3.96\%	83.56\%
	1073	695	377	FMSY	0.309	0.18072	0.12828	9570.405	-13.01\%	634.93\%
	0	0	0	$\mathrm{F}=0$	0	0	0	10902.88	-0.90\%	-100\%
	268	173	94	$\mathrm{F}=\mathrm{Fsq}$	0.07076	0.04138	0.02937	10565.98	-3.96\%	83.56\%
	1924	1248	676	$\mathrm{F}=\mathrm{Flim}$	0.614	0.35911	0.25489	8549.879	-22.29\%	1217.81\%
	1466	950	515	$\mathrm{F}=\mathrm{Fpa}$	0.442	0.25851	0.18349	9094.614	-17.34\%	904.11\%
	765	496	269	Min FMSY	0.213	0.12458	0.08842	9947.688	-9.58\%	423.97\%
	1369	887	481	Max FMSY	0.408	0.23863	0.16937	9211.398	-16.28\%	837.67\%
	268	173	94	Blim	0.07076	0.04138	0.02937	10565.98	-3.96\%	83.56\%
	1868	1212	656	Bpa	0.59184	0.34615	0.24569	8616	-21.69\%	1179.45\%
	1868	1212	656	Btrigger	0.59184	0.34615	0.24569	8616	-21.69\%	1179.45\%
	268	173	94	Stable SSB	0.07076	0.04138	0.02937	10565.98	-3.96\%	83.56\%
	192	124	67	-15\% TAC	0.05023	0.02938	0.02085	10661.61	-3.09\%	31.51\%
	225	146	79	Stable TAC	0.05929	0.03468	0.02461	10619.18	-3.48\%	54.11\%
	259	168	91	+ 15% TAC	0.06842	0.04002	0.0284	10576.8	-3.86\%	77.40\%
	765	496	269	FMSY range (min to max 0.01 steps)	0.213	0.12458	0.08842	9947.688	-9.58\%	423.97\%

798	517	281	FMSY range	0.223	0.13043	0.09257	9906.962	-9.95%	446.58%
831	539	292	FMSY range	0.233	0.13627	0.09673	9866.576	-10.32%	469.18%
864	560	304	FMSY range	0.243	0.14212	0.10088	9826.527	-10.68%	491.78%
896	581	315	FMSY range	0.253	0.14797	0.10503	9786.811	-11.05%	513.70%
928	601	327	FMSY range	0.263	0.15382	0.10918	9747.425	-11.40%	535.62%
960	622	338	FMSY range	0.273	0.15967	0.11333	9708.366	-11.76%	557.53%
992	643	349	FMSY range	0.283	0.16552	0.11748	9669.63		
1023	663	360	FMSY range	-12.11%	579.45%				
1054	683	371	FMSY range	0.293	0.17137	0.12163	9631.213	-12.46%	600.68%
1085	703	382	FMSY range	0.303	0.17721	0.12579	9593.114	-12.81%	621.92%
1116	723	393	FMSY range	0.313	0.18306	0.12994	9555.328	-13.15%	643.15%
1146	743	403	FMSY range	0.323	0.18891	0.13409	9517.852	-13.49%	664.38%
1177	763	414	FMSY range	0.333	0.19476	0.13824	9480.684	-13.83%	684.93%
1207	782	425	FMSY range	0.343	0.20061	0.14239	9443.819	-14.16%	706.16%
1237	802	435	FMSY range	0.353	0.20646	0.14654	9407.255	-14.50%	726.71%
1266	821	445	FMSY range	0.363	0.21231	0.15069	9370.99	-14.82%	747.26%
1296	840	456	FMSY range	0.373	0.21815	0.15485	9335.018	-15.15%	767.12%
1325	859	466	FMSY range	0.383	0.224	0.159	9299.339	-15.48%	787.67%
1354	878	476	FMSY range	0.393	0.22985	0.16315	9263.949	-15.80%	807.53%

Table 7.14: STF results on population numbers, biomass and spawning stock number and biomass by age group for the projected years 2017 to 2019 under FSQ fishing scenario.

Year	Age	F (LANDINGS)	LANDINGS Nos	LANDINGS (T)	F (DISCARDS)	DISCARD Nos	DISCARD (T)	Stock Nos	BIOMASS (T)	SS Nos	$\begin{aligned} & \hline \text { SSB } \\ & \text { (T) } \end{aligned}$
2017	0	0	4	0	0.001	0	0	5513	551	0	0
	1	0.001	0	0	0.015	0	0	9	8	0	0
	2	0.032	15	29	0.038	19	35	599	1125	389	731
	3	0.055	17	63	0.032	10	36	356	1340	356	1340
	4	0.038	20	125	0.018	10	60	609	3756	609	3756
	5	0.011	3	24	0.005	1	11	269	2508	269	2508
	6	0.003	0	5	0	0	0	214	1965	214	1965
	Total	0.041	59	246	0.029	40	142	7569	11253	1837	10300
2018	0	0	4	0	0.001	0	0	5513	551	0	0
	1	0.001	1	1	0.015	10	9	1006	892	0	0
	2	0.032	0	0	0.038	0	0	4	8	3	5
	3	0.055	18	69	0.032	11	40	392	1473	392	1473
	4	0.038	9	53	0.018	4	26	259	1598	259	1598
	5	0.011	4	42	0.005	2	19	465	4337	465	4337
	6	0.003	1	8	0	0	0	392	3588	392	3588
	Total	0.041	37	173	0.029	27	94	8031	12447	1511	11001
2019	0	0	4	0	0.001	0	0	5513	551	0	0
	1	0.001	1	1	0.015	10	9	1006	892	0	0
	2	0.032	13	24	0.038	15	28	485	910	315	591

3	0.055	0	0	0.032	0	0	3	11	3	11
4	0.038	9	58	0.018	5	28	285	1758	285	1758
5	0.011	2	18	0.005	1	8	198	1845	198	
6	0.003	2	15	0	0	0	694	6361	694	
Total	0.041	31	116	0.029	31	73	8184	12328	1495	10564

Figure 7.1. Landings (grey) and discards (white) at age in total weight and numbers from 1990 to 2016.

Figure 7.2. Discard proportions-at-age 1995-2016.

Figure 7.3. Weight-at-age, ages 1-6.

Figure 7.4. Log ratio of ages in commercial catches.

Figure 7.5. Log-standardised age distribution in survey indices.

Figure 7.6. Survey age continuity.

Figure 7.7. Log ratio of cohorts in surveys.

Figure 7.8. Observed and predicted catches.

Figure 7.9. Commercial fleet catch at age residuals.

Figure 7.10. Index Fit.

Figure 7.11. Index fit at-age.
0.67
0.4

Figure 7.12. Index residuals catch-at-age (NIMIK is not included as only targets age 0 group.

Block 1 -
Block 2 -

Figure 7.13. Cod in ICES Division 7.a: ASAP Fishery selectivity-at-age, Block 1: 1968-1999, Block 2: 2000-today.

Figure 7.14. Cod in ICES Division 7.a: ASAP Index selectivity-at-age, Index1: NIGFSQ1, Index 2: NIGFSQ4, Index3: UK-FSP, Index 4: Miknet.

Figure 7.15. Index catchability (q).

Figure 7.16. Model RMSE fit.

Figure 7.17. Estimated stock numbers-at-age.

Fbar 2-4

Recruits age 0

Figure 7.18. ASAP retrospective summary 2011-2016.

Figure 7.19. ASAP assessment results and short-term forecast using status quo F (Fsq) and Geometric mean (GM) recruitment.

Figure 7.20. Contribution to SSB and Landings with short-term forecast using status quo F (Fsq) and Geometric mean (GM) recruitment.

Full ASAP model setup

```
#nyears
    49
#year1
    1968
#nages
    7
#nfleets
    1
#nselblocks
    2
#navailindices
    9
#M
    1.7 0.714 0. 355 0.232 0.213 0.202 0.2
#isfecund
    0
#fracyearSSB
    0
#mature
        0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.27 1 1 1 1
    0 0 0.34 1 1 1 1
    0 0 0.41 1 1 1 1
    0 0 0.48 1 1 1 1
    0 0 0.55 1 1 1 1
    0 0 0.6 1 1 1 1
    0 0 0.63 1 1 1 1
    0 0 0.66 1 1 1 1
    0 0 0.69 1 1 1 1
    0 0 0.7 1 1 1 1
```

```
    0 0 0.71 1 1 1 1
    0 0 0.71 1 1 1 1
    0 0 0.71 1 1 1 1
    0 0 0.7 1 1 1 1
    0 0 0.7 1 1 1 1
    0 0 0.7 1 1 1 1
    0 0 0.69 1 1 1 1
    0 0 0.67 1 1 1 1
    0 0 0.66 1 1 1 1
    0 0 0.65 1 1 1 1
    0 0 0.64 1 1 1 1
#nWAAmatrices
    3
#WAA_ini
    0.1 0.61 1.66 3.33 5.09 6.19 6.86
    0.1 0.61 1.66 3.33 5.09 6.19 7.26
    0.1 0.61 1.66 3.33 5.09 6.19 7.17
    0.1 0.61 1.66 3.33 5.09 6.19 7.12
    0.1 0.61 1.66 3.33 5.09 6.19 7.28
    0.1 0.61 1.66 3.33 5.09 6.19 7.16
    0.1 0.61 1.66 3.33 5.09 6.19 7.34
    0.1 0.61 1.66 3.33 5.09 6.19 7.05
    0.1 0.61 1.66 3.33 5.09 6.19 7.13
    0.1 0.61 1.66 3.33 5.09 6.19 7.63
    0.1 0.61 1.66 3.33 5.09 6.19 7.19
    0.1 0.61 1.66 3.33 5.09 6.19 7.48
    0.1 0.61 1.66 3.33 5.09 6.19 6.87
    0.1 0.61 1.66 3.33 5.09 6.19 7.55
    0.1 1.01 1.52 3.49 5.57 7.59 9.11
    0.1 1 1.84 3.99 5.96 7.97 9.97
    0.1 0.68 1.81 3.81 5.87 7.48 10.05
    0.1 0.78 2.02 4.24 5.83 7.5 9.04
    0.1 0.81 1.83 3.86 5.86 7.39 8.78
    0.1 0.71 2.16 3.91 6.41 7.82 10.32
    0.1 0.61 1.56 3.76 5.67 8.02 9.88
    0.1 0.94 1.85 3.22 5.41 6.57 9.47
    0.1 0.84 1.94 3.57 5.28 7.53 9.4
    0.1 0.86 1.64 3.54 5.42 6.39 9.11
    0.1 0.81 1.96 3.99 5.98 6.92 8.67
    0.1 0.85 1.71 3.67 5.68 7.37 10.17
    0.1 0.8 1.92 3.61 6.08 7.68 8.57
    0.1 0.9 1.84 4 5.79 8.45 9.14
    0.1 0.98 1.63 3.26 5.3 7.72 9.79
    0.1 0.85 1.94 3.62 5.29 6.12 9.4
    0.1 0.93 1.65 3.73 5.37 7.03 9.35
    0.1 0.85 1.62 3.18 5.51 7.52 10.25
    0.1 0.85 1.99 3.57 5.14 7.15 8.39
    0.1 0.99 1.82 4.15 5.61 7.33 9.51
    0.1 0.94 1.84 3.44 5.73 7.71 10.01
    0.1 1.21 1.66 3.29 5.43 10.2 11.09
    0.1 1.11 2.2 3.63 6.51 7.64 8.61
    0.1 0.91 1.94 3.51 5.32 7.74 8.89
    0.1 0.83 1.84 3.67 4.71 6.39 7.84
    0.1 0.83 1.85 3.78 5.35 7.99 10.04
    0.1 0.89 1.59 3.54 6 7.57 9.46
    0.1 1.1 2.01 3.46 5.31 7.1 6.82
    0.1 1.26 2.29 3.93 6.34 7.33 9.64
    0.1 0.949 1.88 3.745 5.536 6.754 9.036
    0.1 0.93 1.88 3.37 5.34 7.6 8.56
    0.1 0.97 2.32 4.06 5.54 7.43 10.79
    0.1 0.88 2.26 4.49 7 8.75 9.41
```

```
0.1 0.83 1.79 3.69 6.49 8.55 9.95
0.1 0.95 1.58 3.1 5.01 10.66 8.136
0.1 0.61 1.66 3.33 5.09 6.19 6.86
0.1 0.61 1.66 3.33 5.09 6.19 7.26
0.1 0.61 1.66 3.33 5.09 6.19 7.17
0.1 0.61 1.66 3.33 5.09 6.19 7.12
0.1 0.61 1.66 3.33 5.09 6.19 7.28
0.1 0.61 1.66 3.33 5.09 6.19 7.16
0.1 0.61 1.66 3.33 5.09 6.19 7.34
0.1 0.61 1.66 3.33 5.09 6.19 7.05
0.1 0.61 1.66 3.33 5.09 6.19 7.13
0.1 0.61 1.66 3.33 5.09 6.19 7.63
0.1 0.61 1.66 3.33 5.09 6.19 7.19
0.1 0.61 1.66 3.33 5.09 6.19 7.48
0.1 0.61 1.66 3.33 5.09 6.19 6.87
0.1 0.61 1.66 3.33 5.09 6.19 7.55
0.1 1.01 1.52 3.49 5.57 7.59 9.11
0.1 1 1.84 3.99 5.96 7.97 9.97
0.1 0.68 1.81 3.81 5.87 7.48 10.05
0.1 0.78 2.02 4.24 5.83 7.5 9.04
0.1 0.81 1.83 3.86 5.86 7.39 8.78
0.1 0.71 2.16 3.91 6.41 7.82 10.32
0.1 0.61 1.56 3.76 5.67 8.02 9.88
0.1 0.94 1.85 3.22 5.41 6.57 9.47
0.1 0.84 1.94 3.57 5.28 7.53 9.4
0.1 0.86 1.64 3.54 5.42 6.39 9.11
0.1 0.81 1.96 3.99 5.98 6.92 8.67
0.1 0.85 1.71 3.67 5.68 7.37 10.17
0.1 0.8 1.92 3.61 6.08 7.68 8.57
0.1 0.9 1.84 4 5.79 8.45 9.14
0.1 0.98 1.63 3.26 5.3 7.72 9.79
0.1 0.85 1.94 3.62 5.29 6.12 9.4
0.1 0.93 1.65 3.73 5.37 7.03 9.35
0.1 0.85 1.62 3.18 5.51 7.52 10.25
0.1 0.85 1.99 3.57 5.14 7.15 8.39
0.1 0.99 1.82 4.15 5.61 7.33 9.51
0.1 0.94 1.84 3.44 5.73 7.71 10.01
0.1 1.21 1.66 3.29 5.43 10.2 11.09
0.1 1.11 2.2 3.63 6.51 7.64 8.61
0.1 0.91 1.94 3.51 5.32 7.74 8.89
0.1 0.83 1.84 3.67 4.71 6.39 7.84
0.1 0.83 1.85 3.78 5.35 7.99 10.04
0.1 0.89 1.59 3.54 6 7.57 9.46
0.1 1.1 2.01 3.46 5.31 7.1 6.82
0.1 1.26 2.29 3.93 6.34 7.33 9.64
0.1 0.949 1.88 3.745 5.536 6.754 9.036
0.1 0.93 1.88 3.37 5.34 7.6 8.56
0.1 0.97 2.32 4.06 5.54 7.43 10.79
0.1 0.88 2.26 4.49 7 8.75 9.41
0.1 0.83 1.79 3.69 6.49 8.55 9.95
0.1 0.95 1.58 3.1 5.01 10.67 8.14
0.1 0.61 1.66 3.33 5.09 6.19 6.86
0.1 0.61 1.66 3.33 5.09 6.19 7.26
0.1 0.61 1.66 3.33 5.09 6.19 7.17
0.1 0.61 1.66 3.33 5.09 6.19 7.12
0.1 0.61 1.66 3.33 5.09 6.19 7.28
0.1 0.61 1.66 3.33 5.09 6.19 7.16
0.1 0.61 1.66 3.33 5.09 6.19 7.34
0.1 0.61 1.66 3.33 5.09 6.19 7.05
0.1 0.61 1.66 3.33 5.09 6.19 7.13
0.1 0.61 1.66 3.33 5.09 6.19 7.63
```

```
    0.1 0.61 1.66 3.33 5.09 6.19 7.19
    0.1 0.61 1.66 3.33 5.09 6.19 7.48
    0.1 0.61 1.66 3.33 5.09 6.19 6.87
    0.1 0.61 1.66 3.33 5.09 6.19 7.55
    0.1 1.01 1.52 3.49 5.57 7.59 9.11
    0.1 1 1.84 3.99 5.96 7.97 9.97
    0.1 0.68 1.81 3.81 5.87 7.48 10.05
    0.1 0.78 2.02 4.24 5.83 7.5 9.04
    0.1 0.81 1.83 3.86 5.86 7.39 8.78
    0.1 0.71 2.16 3.91 6.41 7.82 10.32
    0.1 0.61 1.56 3.76 5.67 8.02 9.88
    0.1 0.94 1.85 3.22 5.41 6.57 9.47
    0.1 0.84 1.94 3.57 5.28 7.53 9.4
    0.1 0.86 1.64 3.54 5.42 6.39 9.11
    0.1 0.81 1.96 3.99 5.98 6.92 8.67
    0.1 0.85 1.71 3.67 5.68 7.37 10.17
    0.1 0.8 1.92 3.61 6.08 7.68 8.57
    0.1 0.9 1.84 4 5.79 8.45 9.14
    0.1 0.98 1.63 3.26 5.3 7.72 9.79
    0.1 0.85 1.94 3.62 5.29 6.12 9.4
    0.1 0.93 1.65 3.73 5.37 7.03 9.35
    0.1 0.85 1.62 3.18 5.51 7.52 10.25
    0.1 0.85 1.99 3.57 5.14 7.15 8.39
    0.1 0.99 1.82 4.15 5.61 7.33 9.51
    0.1 0.94 1.84 3.44 5.73 7.71 10.01
    0.1 1.21 1.66 3.29 5.43 10.2 11.09
    0.1 1.11 2.2 3.63 6.51 7.64 8.61
    0.1 0.91 1.94 3.51 5.32 7.74 8.89
    0.1 0.83 1.84 3.67 4.71 6.39 7.84
    0.1 0.83 1.85 3.78 5.35 7.99 10.04
    0.1 0.89 1.59 3.54 6 7.57 9.46
    0.1 1.1 2.01 3.46 5.31 7.1 6.82
    0.1 1.26 2.29 3.93 6.34 7.33 9.64
    0.1 0.949 1.88 3.745 5.536 6.754 9.036
    0.1 0.93 1.88 3.37 5.34 7.6 8.56
    0.1 0.97 2.32 4.06 5.54 7.43 10.79
    0.1 0.88 2.26 4.49 7 8.75 9.41
    0.1 0.83 1.79 3.69 6.49 8.55 9.95
    0.1 0.95 1.58 3.1 5.01 10.7 8.13
#WAApointbio
    11 1 1 2 3
#sel_blocks
```



```
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#sel_option
    2 3
#sel_ini
    0.1 -1 0 0.001
    0.25 2 0 0.3
    0.68 2 0 0.3
    1 -1 0 0.001
    1 -1 0 0.001
    1 -1 0 0.001
    1 -1 0 0.001
    2 2 1 0.8
    0.5 2 1 0.8
    2 200.8
    0.5 2 0 0.8
    2 2 0 0.8
    0.5 2 0 0.8
    0.1 -1 1 0.001
```

```
0.25 2 1 0.8
0.68 2 1 0.8
1 -1 1 0.001
1 -1 1 0.001
1 2 1 0.8
0.5 2 1 0.8
0 0 0 0.8
0 0 0 0.8
2 2 1 0.8
0.5 2 1 0.8
2 2 1 0.8
0.5 2 1 0.8
#sel_start_age
    1
#sel_end_age
    7
#Freport_agemin
    3
#Freport_agemax
    5
#Freport_wtopt
    1
#use_likelihood_constants
    1
#release_mort
    0
#CAA_ini
    17.8128 438.706 1563 1003 456 177 30 9826.43
    20.8513 969.449 1481 1050 269 186 113 9889.34
    22.1338 1809.83 1385 352 204 163 71 7133.87
    22.9383 2835.2 2022 904 144 67 51 9609.42
    26.5101 900.182 3267 824 250 58 59 10779.9
    27.172 2376.96 1091 1783 430 173 81 13040.6
    16.9394 601.043 3559 557 494 131 74 11999.6
    26.3767 1809.62 642 1407 294 249 117 10720.2
    26.7721 1247.28 3007 363 500 61 104 10628
    31.0517 946.229 511 1233 163 218 71 8255.27
    39.9559 854.572 1092 310 311 39 65 5662.05
    44.3458 1947.98 1288 608 127 164 71 7548.09
    24.5978 2636.16 2797 729 243 49 55 10599.1
    37.6666 1456.97 3635 1448 244 99 47 13958.1
    46.0421 538.098 2284 1455 557 102 79 13694.1
    46.9844 1011.05 932 751 499 154 46 10387.2
    37.3035 1733.45 1195 439 240 161 75 8384.85
    33.888 1360.12 2105 703 158 84 77 10544.3
    49.1542 1180.15 2248 699 203 64 65 10006.1
    47.3752 4521.69 1793 841 252 75 43 13021.9
    42.5944 2970.64 4734 702 263 71 38 14277
    41.0327 754.089 2163 1886 231 86 37 12952.5
    37.8496 868.739 1075 545 372 70 30 7537.94
    46.6409 2168.61 1408 442 127 98 22 7258.45
    36.7427 1529.1 1243 664 132 42 49 7832.71
    39.3996 388.24 2907 403 119 16 13 7709.97
    39.9237 916.437 569 848 68 20 10 5543.64
    42.9668 678.2 1283 180 163 7 6 4753.16
    87.954 446.79 1113 700 38 39 6 5104.06
    5.27579 650.792 1149.5 501 213 17 16 5978.56
    0 231.465 1928 335 80 28 8 5347.25
    141.424 235.792 843 871 66 21 7 4943.34
    62.3589 1106.69 176 107 50 4 1 1973.14
    7.21846 403.153 841 53 13 9 2 2316.45
```

```
    0 238.49 564 405 7 2 3 2740.7
    50.4318 120.685 471.624 108.834 36.2477 1.13333 0 1500.41
50.4318 160.785 133.814 173.834 22.2477 6.13333 3 1326.44
50.4318 118.345 256.364 77.8338 34.2477 5.13333 1 1114.1
50.4318 89.0846 174.004 127.834 17.2477 8.13333 3 1025.03
16 216 209.6 56 11 1 0 847.16
5.5 77.4 169.4 87 9 3 0 723.47
329.3 59.8 57.4 66.1 17 3 0 554.36
48.7 220 188.3 16.4 7.5 2.1 1 850.31
9.7 53.7 105.9 36 2 1 1 412.71
7.5 83.9 135.2 144.9 9.9 0.2 0 875.65
36.1 37 58.5 30 9 1.5 0 358.02
1.08612 40.6615 85.9318 26.3044 5.52931 1.1 0 396.53
0 37.3 79.8 25.8 4.3 1.3 0 308.02
0 10.9 24.6 30.1 2.3 1.2 0.2 142.23
#index_month_ini
    3 10 3 5
#index_start_age_ini
    2 3 1
#index_end_age_ini
    5 3 7 1
#index_ini
    1968 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1969 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1970 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1971 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1972 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1973 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1974 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1975 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1976 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1977 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1978 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1979 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1980 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1981 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1982 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1983-999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1984 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1985-999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1986 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1987-999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1988 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1989 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1990 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1991 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1992 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
    1993 841.904 0.783171 0 138.121 648.763 44.599 10.421 1.417
2.76950
    1994 1618.87 0.340965 0 1380.44 109.71 120.271 8.45 1.367 0 50
    1995 1117.7 0.675194 0 700.728 386.153 20.039 10.779 0 0.994
5 0
    1996 1548.47 0.429215 0 1106.13 329.282 111.668 1.394 8.808 0
5 0
    1997 1041.26 0.644885 0 537.298 415.843 66.723 21.392 1.394 0
5 0
```

```
    1998 1007.48 0.839964 0 169.385 769.234 56.874 11.984 0 0 50
    1999 559.739 0.861441 0 49.499 253.08 241.874 15.286 2.787 0
50
    2000 798.238 0.653815 0 629.595 101.053 34.576 33.014 0 2.258
50
    2001 992.336 0.890678 0 406.682 561.441 18.438 5.775 4.042 0
5 0
    2002 1249.02 0.644334 0 662.163 253.311 333.543 0 0 1.129 50
    2003 1289.82 0.543658 0 73.865 1079.2 104.05 32.702 3.652
3.049 50
    2004 482.909 0.755489 0 216.956 171.956 88.622 5.375 4.381 0
5 0
    2005 345.973 0.759642 0 63.533 225.07 29.407 27.963 18.27 0 50
    2006 361.568 0.63449 0 169.989 130.752 58.304 2.523 0 0 50
    2007 324.493 0.948715 0 164.351 124.393 30.601 5.148 0 0 50
    2008 275.999 0.902387 0 40.658 217.151 13.018 5.172 4.178
0.99450
    2009 245 0.761727 0 144 59 33 9 0 0 50
    2010 1247.99 0.817134 0 1022.12 208.961 14.656 2.258 0 0 50
    2011 816.934 0.494292 0 353.981 414.689 46.006 2.258 2.01 0 50
    2012 498.238 0.807196 0 161.898 222.819 99.271 14.25 0 0 50
    2013 551.84 0.805923 0 276.592 213.675 60.082 1.491 15.547 0
5 0
    2014 604.16 0.632073 0 314.41 222.799 53.294 13.657 5.375 0 50
    2015 876.06 0.843748 0 78.96 719.35 69.19 8.56 3.05 0 50
    2016 649.63 1.057 0 349.2 175 148.3 10.7 1.12 0 50
```

```
1968 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1969 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1970 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1971 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1972 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1973 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1974 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1975 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1976 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1977 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1978 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1979 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1980 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1981 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1982 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1983-999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1984 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1985 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1986 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1987 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1988 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1989 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1990 -999 0.2 -999 -999 -999 -999 -999 -999 -999 -999
1991 1207.03 0.566643 1109.37 50.06 47.6 8.64 0 0 0 50
1992 700.43 0.706612 553.23 146.44 0.76 0 0 0 0 50
1993 1708.37 0.466294 1672.49 25.44 10.44 0 0 0 0 50
1994 1240.12 0.384531 1206.8 33.32 0 0 0 0 0 50
1995 543.34 0.599703 486.65 50.15 6.54 0 0 0 0 50
1996 1419.39 0.818437 1322.2 97.19 0 0 0 0 0 50
1997 546.13 0.553396 376.51 163.9 5.72 0 0 0 0 50
1998 100.44 0.750048 58.47 32.48 9.49 0 0 0 0 50
1999 303.67 0.68287 301.64 2.03 0 0 0 0 0 50
2000 616.7 0.721767 506.79 109.91 0 0 0 0 0 50
```

```
2001 538.1 0.547575 487.89 37.68 12.53 0 0 0 0 50
2002 190.85 0.858148 161.45 29.4 0 0 0 0 0 50
2003 602.68 0.761013 578.97 23.71 0 0 0 0 0 50
2004 831.13 0.818665 706.13 107.72 17.28 2.89 0 0 0 50
2005 138.25 0.726955 130.2 1.47 6.58 0 0 0 0 50
2006 89.97 1.22263 86.99 0 2.98 0 0 0 0 50
2007 34.56 0.618457 17.28 17.28 0 0 0 0 0 50
2008 219.72 1.09287 213.62 6.1 0 0 0 0 0 50
2009 174.78 0.834397 171.8 2.98 0 0 0 0 0 50
2010 149.39 0.823742 92.48 53.86 3.05 3.05 0 0 0 50
2011 115.11 0.753755 107.05 1.69 6.37 2.98 0 0 0 50
2012 374.936 0.720274 321.82 32.791 20.325 0 0 3.049 0 50
2013 142.28 0.78101 41.67 79.95 20.66 0 0 0 0 50
2014 94.5 0.78 0 55.35 39.15 6.78 0 0 0 50
2015 325.56 0.566643 224.27 0 55.42 39.06 6.81 0 0 50
2016 229.46 0.83 14.98 0 181.79 26.6 6.1 0 0 50
1968 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999
1969 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1970 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1971 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1972 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1973 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1974 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1975 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1976 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1977 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1978 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1979 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1980 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1981 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1982 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1983 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1984 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1985 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1986 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1987 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1988 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1989 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1990 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1991 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1992 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1993 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1994 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1995 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1996 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1997 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1998 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
1999 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
2000 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
2001 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
2002 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
2003 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
2004 -999 0.4 -999 -999 -999 -999 -999 -999 -999 -999
2005 2.91 0.4 0 0 0.427 1.409 0.99 0.084 0.025 50
2006 3.895 0.4 0 0.003 0.536 2.815 0.427 0.104 0.01 50
2007 2.639 0.4 0 0.008 0.611 1.322 0.585 0.055 0.058 50
2008 1.299 0.4 0 0.003 0.221 0.824 0.147 0.084 0.02 50
2009 1.826 0.4 0 0.009 0.171 1.152 0.377 0.099 0.018 50
2010 1.807 0.4 0 0 0.735 0.452 0.467 0.13 0.023 50
2011 2.366 0.4 0 0 0.407 1.681 0.144 0.095 0.039 50
2012 3.56 0.4 0 0 0.364 2.3 0.803 0.072 0.021 50
```

```
2013 4.502 0.4 0 0 0.844 1.883 1.348 0.37 0.057 50
2014 -999 0.4 -999 -999 -999 -999 -999 -999 -999 50
2015 4.113 0.4 0 0 0.602 2.041 1.169 0.256 0.045 50
2016 9.264 0.4 0 0 1.001 6.388 1.434 0.413 0.028 50
```

```
1968-999 0.2 0 0 0 0 0 0 0 0
1969-999 0.2 0 0 0 0 0 0 0 0
1970-999 0.2 0 0 0 0 0 0 0 0
1971 -999 0.2 0 0 0 0 0 0 0 0
1972 -999 0.2 0 0 0 0 0 0 0 0
1973-999 0.2 0 0 0 0 0 0 0 0
1974 -999 0.2 0 0 0 0 0 0 0 0
1975 -999 0.2 0 0 0 0 0 0 0 0
1976 -999 0.2 0 0 0 0 0 0 0 0
1977-999 0.2 0 0 0 0 0 0 0 0
1978-999 0.2 0 0 0 0 0 0 0 0
1979 -999 0.2 0 0 0 0 0 0 0 0
1980-999 0.2 0 0 0 0 0 0 0 0
1981-999 0.2 0 0 0 0 0 0 0 0
1982 -999 0.2 0 0 0 0 0 0 0 0
1983-999 0.2 0 0 0 0 0 0 0 0
1984 -999 0.2 0 0 0 0 0 0 0 0
1985 -999 0.2 0 0 0 0 0 0 0 0
1986 -999 0.2 0 0 0 0 0 0 0 0
1987-999 0.2 0 0 0 0 0 0 0 0
1988-999 0.2 0 0 0 0 0 0 0 0
1989 -999 0.2 0 0 0 0 0 0 0 0
1990-999 0.2 0 0 0 0 0 0 0 0
1991-999 0.2 0 0 0 0 0 0 0 0
1992 -999 0.2 0 0 0 0 0 0 0 0
1993 -999 0.7 0 0 0 0 0 0 0 0
1994 57.4 0.7 0 0 0 0 0 0 0 0
1995 6.9 0.7 0 0 0 0 0 0 0 0
1996 66.3 0.7 0 0 0 0 0 0 0 0
1997 5.7 0.7 0 0 0 0 0 0 0 0
1998 0.1 0.7 0 0 0 0 0 0 0 0
1999 26.2 0.7 0 0 0 0 0 0 0 0
2000 6.1 0.7 0 0 0 0 0 0 0 0
2001 9.6 0.7 0 0 0 0 0 0 0 0
2002 3.4 0.7 0 0 0 0 0 0 0 0
2003 3.2 0.7 0 0 0 0 0 0 0 0
2004 25.8 0.7 0 0 0 0 0 0 0 0
2005 11.4 0.7 0 0 0 0 0 0 0 0
2006 9 0.7 0 0 0 0 0 0 0 0
2007 0.01 0.7 0 0 0 0 0 0 0 0
2008 0.8 0.7 0 0 0 0 0 0 0 0
2009 23.6 0.7 0 0 0 0 0 0 0 0
2010 5.7 0.7 0 0 0 0 0 0 0 0
2011 1.4 0.7 0 0 0 0 0 0 0 0
2012 10.6 0.7 0 0 0 0 0 0 0 0
2013 42.6 0.7 0 0 0 0 0 0 0 0
2014 8.2 0.7 0 0 0 0 0 0 0 0
2015 80.4 0.7 0 0 0 0 0 0 0 0
2016 0.01 0.7 0 0 0 0 0 0 0 0
#phase_Fmult_year1
1
#phase_Fmult_devs
3
#phase_recruit_devs
```

```
3
#phase_N_year1_devs
    2
#phase_q_year1
    1
#phase_q_devs
    -5
#phase_SR_scaler
    1
#phase_steepness
    1
#recruit_CV
    0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5
#lambda_ind_ini
    1 111111111111
#lambda_catch_tot
    1
#lambda_Discard_tot
    0
#catch_tot_CV
        0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.075
    0.075
    0.075
```

```
0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
    0.05
#input_eff_samp_size_catch_ini
    100
    100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
50
5 0
5 0
50
50
50
50
50
5 0
5 0
50
50
```

5 0
\#lambda_Fmult_year1
0
\#Fmult_year1_CV
0.1
\#lambda_Fmult_devs
0
\#Fmult_devs_CV
0.1
\#lambda_N_year1_devs
1
\#N_year1_CV
0.1
\#lambda_recruit_devs
0.01
\#lambda_q_year1_ini
0 0 0 0 0 0 0 0 0
\#q_year1_CV_ini
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
\#lambda_q_devs_ini
0 0 0 0 0 0 0 0 0
\#q_devs_CV_ini
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
\#lambda_steepness
0
\#steepness_CV
0.1
\#lambda_SR_scaler
0
\#SR_scaler_CV
0.1
\#NAA_year1_flag
1
\#NAA_year1_ini
10000 10000 10000 10000 10000 10000 10000
\#Fmult_year1_ini
0.2
\#q_year1_iniavail
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
\#is_SR_scaler_R
0
\#SR_scaler_ini
10000
\#SR_steepness_ini
0.7

```

\subsection*{7.10 Audit of Cod 27.7a}

Date: 8th June 2017
Auditor: Colm Lordan

\section*{General}

The key background documents are listed below:

\section*{Stock annex}
https://community.ices.dk/ExpertGroups/bench-
marks/2016/wkirish/2017\%20Meeting\%20docs/03.\%20Re-
port\%202017/Draft\%20report\%20sections\%20-
\%20do \%20not\%20edit/COD\%20Stock\%20Annex\%20Update\%201405.docx

WKIRISH3
https://community.ices.dk/ExpertGroups/bench-marks/2016/wkirish/2017\%20Meeting\%20docs/03.\%20Report\%202017/DRAFT wkirish3 2017.pdf

\section*{WKIRISH2}
https://community.ices.dk/ExpertGroups/bench-marks/2016/wkirish/2016\%20Meeting\%20documents/03.\%20Report\%202016/Final\%20consolidated\%20report/WKIRISH2 Final\%20Report.d OCX

For single stock summary sheet advice
- Assessment type: update of benchmark procedure
- Assessment: ASAP
- Forecast: Short-term Forecast (R script)
- Assessment model: ASAP

\section*{- Data issues:}

The mean weights for catch, landings and discards are the same. The rational for this is not explained in the stock annex or WKIRISH2 report. The WG report contains a very unclear sentence "Landings and discards are combined to catch weight and numbers". The dataset is consistent with that used at WKIRISH3.

- Consistency: The settings are consistent with the ASAP settings outlined in the WKIRISH3 report and stock annex. The two selectivity blocks used in the assessment result in a very sudden change in F-at-age post 1990 for ages 5 and 6 especially. This is a concern in the STF since the 2013 year class will be subjected to relatively low Fs in 2017 and 2018.


The update assessment has a significant retrospective pattern of over estimation of SSB and underestimation of F. This feature was not presented or discussed in the WKIRISH3 report. The retrospective bias was considered by the WG. To address the problem the bias corrected F was used in the STF.

- Management Plan: None

\section*{General comments}

Generally well-written report, clear and concise.

\section*{Technical comments}

Assessment follows the stock annex. The main concern is the retrospective bias and impact of low Fs on recent slightly better recruitments.

\section*{Conclusions}

The assessment \& STF has been performed correctly

\section*{Checklist for audit process}

\section*{General aspects}
- Has the EG answered those TORs relevant to providing advice? YES
- Is the assessment according to the stock annex description? YES
- If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary? The management plan is not considered precautionary.
- Have the data been used as specified in the stock annex? Yes
- Has the assessment, recruitment and forecast model been applied as specified in the stock annex? The short-term forecast is not documented properly in the stock annex or in the WG report. There are code and stock objects on the SharePoint site to evaluate how the STF has been performed. However it is very important that the STF settings properly documented in the stock
annex. The STF used a bias corrected F in the interim year rather than an FSQ.
- Is there any major reason to deviate from the standard procedure for this stock? No
- Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice? The assessment follows the model settings chosen at the benchmark (WKIRISH3). The retrospective bias in the update assessment presents an issue when forecasting. The STF setting appear not to have been considered by WKIRISH3 as they are not documented in the WKIRISH3 report or stock annex. WGCSE 2017 used the standard forecasting approach used for other stock with a modification in the interim year F to take account of the retrospective bias in F. The retrospective bias in SSB is also an issue since the stock size may well be revised down in future assessments and forecasts and might be below \(\mathrm{B}_{\mathrm{pa}}\) and Blim.

The estimation of \(\mathrm{B}_{\mathrm{pa}}\) follows the standard approach but the \(\sigma=0.21\) is almost certainly not a true reflection of the uncertainty on terminal biomass given the bias.

\section*{8 Cod in Divisions 7.bc}

\section*{Type of assessment: No assessment}

The nominal landings are given in Table 8.1.

Table 8.1. Landings ( \(\mathbf{t}\) ) of cod in Division 7.bc for 1995-2016 as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & FR & IE & ES & UK & Others & Total \\
\hline 1970 & 1889 & 158 & 0 & 0 & 2 & 2049 \\
\hline 1971 & 1188 & 114 & 0 & 0 & 0 & 1302 \\
\hline 1972 & 589 & 77 & 15 & 4 & 50 & 735 \\
\hline 1973 & 453 & 253 & 28 & 19 & 256 & 1009 \\
\hline 1974 & 284 & 77 & 22 & 16 & 6 & 405 \\
\hline 1975 & 365 & 215 & 42 & 14 & 56 & 692 \\
\hline 1976 & 331 & 290 & 120 & 0 & 15 & 756 \\
\hline 1977 & 143 & 132 & 14 & 3 & 0 & 292 \\
\hline 1978 & 256 & 173 & 4 & 2 & 0 & 435 \\
\hline 1979 & 203 & 286 & 0 & 2 & 20 & 511 \\
\hline 1980 & 585 & 320 & 9 & 13 & 5 & 932 \\
\hline 1981 & 841 & 765 & 15 & 11 & 0 & 1632 \\
\hline 1982 & 587 & 1234 & 11 & 9 & 0 & 1841 \\
\hline 1983 & 645 & 579 & 16 & 0 & 1 & 1241 \\
\hline 1984 & 435 & 524 & 24 & 288 & 1 & 1272 \\
\hline 1985 & 381 & 494 & 17 & 115 & 22 & 1029 \\
\hline 1986 & 1012 & 619 & 0 & 142 & 104 & 1877 \\
\hline 1987 & 591 & 758 & 0 & 104 & 1 & 1454 \\
\hline 1988 & 591 & 388 & 0 & 28 & 2 & 1009 \\
\hline 1989 & na & 915 & 0 & 41 & 10 & 966 \\
\hline 1990 & na & 795 & 0 & 312 & 29 & 1136 \\
\hline 1991 & na & 612 & 0 & 210 & 11 & 833 \\
\hline 1992 & 223 & 507 & 0 & 210 & 39 & 979 \\
\hline 1993 & 118 & 357 & 0 & 90 & 0 & 565 \\
\hline 1994 & 155 & 289 & 0 & 122 & 6 & 572 \\
\hline 1995 & 91 & 282 & 6 & 91 & 3 & 473 \\
\hline 1996 & 115 & 353 & 3 & 47 & 1 & 519 \\
\hline 1997 & 71 & 177 & 0 & 44 & 9 & 301 \\
\hline 1998 & 44 & 234 & 6 & 34 & 0 & 318 \\
\hline 1999 & na & 154 & 2 & 5 & 11 & 172 \\
\hline 2000 & 44 & 141 & 3 & 4 & 0 & 192 \\
\hline 2001 & 38 & 107 & 1 & 2 & 1 & 149 \\
\hline 2002 & 54 & 59 & 1 & 2 & 5 & 121 \\
\hline 2003 & 33 & 59 & 0 & 9 & 1 & 102 \\
\hline 2004 & 13 & 60 & 0 & 10 & 0 & 83 \\
\hline 2005 & 13 & 32 & 0 & 0 & 0 & 45 \\
\hline 2006 & 10 & 16 & 0 & 1 & 1 & 28 \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
\hline YEAR & FR & IE & ES & UK & OTHERS & TOTAL \\
\hline 2007 & 18 & 11 & 0 & 2 & 1 & 32 \\
\hline 2008 & 14 & 18 & 0 & 1 & 0 & 33 \\
\hline 2009 & 5 & 29 & 0 & 1 & 0 & 35 \\
\hline 2010 & 17 & 37 & 0 & 1 & 0 & 55 \\
\hline 2011 & 43 & 36 & 0 & 0 & 0 & 79 \\
\hline 2012 & 47 & 39 & 0 & 1 & 1 & 88 \\
\hline 2013 & 32 & 29 & 45 & 0 & 2 & 0 \\
\hline 2014 & 31 & 0 & 2 & 0 & 85 \\
\hline \(2015^{*}\) & 21 & 0 & 1 & 0 & 76 \\
\hline \(2016^{*}\) & 20 & & & 81 \\
\hline
\end{tabular}
* Preliminary, na = not available.

\section*{\(9 \quad\) Cod in Division 7.e-k (Celtic Sea)}

\section*{Full analytical assessment}

This stock has been benchmarked at WKROUND in February 2012. XSA was kept as the assessment model. Data, assessment and forecast procedure are detailed in the stock annex.

\section*{ICES advice}
"ICES advises on the basis of the MSY approach that landings in 2016 should be no more than 3569 t."
"ICES advises that when the MSY approach is applied, wanted catch in 2017 should be no more than 1447 tonnes. ICES cannot quantify the corresponding total catches."

\section*{\(9.1 \quad\) General}

\section*{Stock description and management units}

The 2017 TAC was set for ICES Areas 7.b-c, \(7 . \mathrm{e}-\mathrm{k}, 8,8,10\), and CECAF 34.1.1(1), excluding 7.d. This is more representative of the stock area than in previous years as the cod population in 7.d is more relevant to the North Sea population. However, landings from 7.bc are not included in the assessment area.

\section*{Management applicable in 2016 and 2017}

TAC 2016 (Council regulation 608/2013)


TAC 2017 (Council regulation 127/2017)
\begin{tabular}{|c|c|c|c|c|c|}
\hline L 24/46 FR & & \multicolumn{3}{|l|}{Journal officiel de l'Union européenne} & \\
\hline Espèce: & \multicolumn{2}{|l|}{Cabillaud Gadus morhua} & Zone: & Zones l'Union
(COD/ & \\
\hline Belgique & & 109 & & & \\
\hline France & & 1789 & & & \\
\hline Irlande & & 739 & & & \\
\hline Pays-Bas & & 0 & & & \\
\hline Royaume-Uni & & 193 & & & \\
\hline Union & & 2830 & & & \\
\hline TAC & & 2830 & & \begin{tabular}{l}
TAC a \\
L'articl \\
ment
\end{tabular} & \\
\hline
\end{tabular}

Since 2005, ICES rectangles 30E4, 31E4, and 32E3 have been closed during the first quarter (Council Regulations 27/2005, 51/2006, and 41/2007, 40/2008, and 43/2009).

Technical measures applied to this stock are a minimum mesh size (MMS) for beam and otter trawlers in Subarea 7 and a minimum landing size (MLS) of 35 cm .

\section*{Fishery}

Landings data used by the WG are shown in Table 9.1 and Figure 9.1. Landings in 2016 were 3299 t . The agreed TAC was not entirely taken ( \(72 \%\) uptake). TAC uptake varies among countries. Belgium and France did not use their TAC entirely whereas Ireland, Netherlands and United Kingdom use their national quota entirely. The low uptake rate for France is the consequence of the mixed nature of its fisheries. Cod is no longer a target species but is bycaught in haddock and whiting dedicated fisheries.

France is fishing in all area, whereas Ireland mostly fishes in area 7.g, UK in 7.e and Belgium in area 7.f (Figure 9.2). At the stock level, \(51 \%\) of the landings are taken from area \(7 . \mathrm{g}, 16 \%\) in \(7 . e, 17 \%\) in \(7 . \mathrm{h}\) and \(8 \%\) in \(7 . f\) and j respectively. No landings are reported in 7.k.

Landings and discards by countries.
\begin{tabular}{lllll} 
Country & CATChCATEGORY & CATON & TAC_C & TAC_UPTAKE \\
\hline Belgium & Discards & 10.5 & NA & NA \\
\hline France & Discards & 67.8 & NA & NA \\
\hline Ireland & Discards & 84 & NA & NA \\
\hline Netherlands & Discards & 0 & NA & NA \\
\hline United Kingdom & Discards & 57.7 & NA & NA \\
\hline Belgium & Landings & 96.8 & 193 & 50 \\
\hline France & Landings & 2013 & 3166 & 64 \\
\hline Ireland & Landings & 823.7 & 864 & 95 \\
\hline Netherlands & Landings & 0.8 & 1 & 80 \\
\hline United Kingdom & Landings & 364.8 & 341 & 107 \\
\hline Ireland & Logbook Registered Discard & 0 & NA & NA \\
\hline
\end{tabular}

Given the rapid growth of this species in this area, discards are mostly composed of one year old fish. Since 2011 quotas were not restricted and the discard rate has stabilized around \(10-15 \%\). Discards in 2016 were 220 t ; leading to \(6.3 \%\) discard in weight, which is lower than the previous years. This is likely to be the result of low recruitment and low stock size.

Cod 7.ek are mainly caught by OTB_DEF_100-119 and OTT_DEF_100-119 métiers. OTB_DEF_70-99 and beam trawlers also contribute significantly to the catches. The discard rate in weight varies among fleets depending on mesh size range and targeted species.

The group advices to follow métier definition specified in the Appendix 2 of the ICES data call to reduce the number of metier upload in InterCatch. Metiers which contribute to less than \(1 \%\) of the landings should be included in the MIS_MIS_0_0_0_HC métier.

Landings and discards by fleets.
\begin{tabular}{llll}
\hline FLEET & LANDINGS_T & DISCARDS_T & DISCARD_RATE \\
\hline OTB_DEF_100-119_0_0_all & 1497 & 85 & 5.4 \\
\hline OTT_DEF_100-119_0_0_all & 571 & 15 & 2.6 \\
\hline OTB_DEF_70-99_0_0_all & 286 & 19 & 6.2 \\
\hline TBB_DEF_70-99_0_0_all & 247 & 66 & 21.1 \\
\hline OTT_CRU_100-119_0_0 & 159 & 2 & 1.2 \\
\hline GNS_DEF_all_0_0_all & 158 & 1 & 0.6 \\
\hline SSC_DEF_100-119_0_0_all & 141 & 4 & 2.8 \\
\hline GNS_DEF_120-219_0_0_all & 71 & 0 & 0 \\
\hline OTB_DEF_>=120_0_0_all & 65 & 12 & 15.6 \\
\hline GTR_DEF_all_0_0_all & 39 & 0 & 0 \\
\hline OTB_CRU_70-99_0_0_all & 33 & 0 & 5.7 \\
\hline MIS_MIS_0_0_0_HC & 10 & 0 & 0 \\
\hline LLS_FIF_0_0_0_all & 7 & 0 & 0 \\
\hline SSC_DEF_All_0_0_All & 1 & 0 & NA \\
\hline OTB_CRU_32-69_0_0_all & 0 & 0 & NA \\
\hline OTB_SPF_32-69_0_0_all & 0 & 0 & NA \\
\hline OTM_SPF_32-69_0_0_all & 0 & 0 & NA \\
\hline SSC_DEF_70-99_0_0_all & 0 & 0 & NA \\
\hline SSC_DEF_70-99_0_0_all_FDF & 0 & 0 & \\
\hline TBB_CRU_16-31_0_0_all & 0 & 0 & NA \\
\hline TBB_DEF_>=120_0_0_all & 0 & 0 & \\
\hline
\end{tabular}

\section*{Information from the industry}

No specific information was reported to the group in 2017.

\subsection*{9.2 Data}

\section*{InterCatch procedure}

Since 2013, international landings and discards data are uploaded in InterCatch. Discards are raised for unreported strata to estimate total discards in weight.
Unsampled strata of landings and discards (number-at-age) are filled in using an allocation procedure. Information on national and international assumptions made by data providers and submitters at the national level and allocation grouping used in IC are available on SharePoint (/data/Cod7ek/Allocationscheme2017). To ensure the consistency of data processing at international level, the same rules are applied each year for the allocation procedure: fill unsampled strata using as much as possible the same métier and quarter, regardless of area and country. One of the ToRs proposed for the next benchmark is to streamlining data compilation procedures for fishery-dependent data of the three main gadoids species (cod, haddock and whiting). General raising protocol would then be added to the stock annex.

\section*{Landings}

Length distributions of 2016 landings provided by countries for sampled strata and quarter are shown Figure 9.3 a-d.

Age distribution of 2016 landings is shown in Figure 9.4. It is noticeable that this stock has always been composed of few age classes, even though Celtic Sea cod can live up to ten years. While the catch was mainly composed of age 2 over the period 2005-2008, the strong 2009 year class has contributed strongly to the catch at older ages in recent years: 63\% in number in 2012 at age 3, \(36 \%\) at age 4 in 2013 (Table 9.2). In 2014, high recruitment has been observed resulting in an increasing proportion of age 1 fish in the landings ( \(53 \%\) ), age 2 accounts for \(22 \%\) of the landings. In 2015, landings are dominated by fish of age 2, and in 2016 landings are dominated by fish of age 3 .

\section*{Discards}

The landings/discards pattern is known to be strongly variable between fleets and years due to metier, recruitment intensity, TACs constraints and mixed fisheries concerns. In 2009, age 1 individuals ( \(30-45 \mathrm{~cm}\) ) were mainly discarded. In 2010, most of them were landed. In 2011, ages 1 and 2 represents respectively \(51 \%\) and \(46 \%\) of the total discards in numbers for all fleets. Due to the low TAC relative to the high magnitude of recruitment in 2009 and 2010, all countries had unusually high discard rates in 2011, generally \(70 \%\) by weight was made up of fish above the MLS. The highgraded fish from the French fishery have been added to the landings in 2003-2011. In 2014, total amount of discards was 740 t ( 639 t imported +101 t raised), giving a discard rate of \(19 \%\). This discards rate was higher than the average \(10 \%\) and mostly consisted of undersized fish from the strong 2013 year class (fish of age 1 in 2014). In 2015, the total amount of discard was 565 t ( 250 t sampled and uploaded in InterCatch and 309 t resulting from the raising procedures), giving a discard rate by weight of \(12 \%\), which is considered the usual discard rate for this species in the mixed fisheries. High-grading in 2015 (discards of fish above Minimum conservation size) was low. In 2016, the total amount of discards was 220 t ( 154 t sampled and uploaded in InterCatch and 52 t resulting from the raising procedures), giving a discard rate by weight of \(6.3 \%\), which is considered lower than average.

Length distributions of 2016 discards provided by countries for sampled strata and quarter are shown Figure 9.3a-d. In recent years, due to quota constraints at vessels levels, length distribution of discards for the UK fleet show high-grading pattern (cod being a non-target species). However, this fleet has little contribution to both, landings and discards quantities.

Raised age distribution of landings and discards are shown in Figure 9.4. Discards are mainly composed of age 1 fish.

\section*{Biological}

Catch (landings) in numbers-at-age, catch and stock weights are given respectively in Tables 9.2, 9.3 and 9.4.

Biological parameters are described in the stock annex and are unchanged since the 2012 WKROUND benchmark. Celtic Sea cod are very fast growing and early maturing compared with more northern cod stocks.

\section*{Commercial Ipue}

Tables \(9.5 \mathrm{a}-\mathrm{c}\) show the trends of landings, fishing effort and lpue dataseries for the French (a), Irish (b) and UK fleets (c). Figure 9.5 ( \(a, b, c\) ) shows their trends.
A general decrease in the lpue trend is observed in almost all series between 1990 and 2004, where the TAC began to be constraining. From that point, the lpue seemed to stabilise, or even to increase if high-grading is taken into account. The strong 2009 year class resulted in an increase of lpue for all fleets between 2010 and 2012. Different features are observed in the effort time-series. The métiers showing the highest levels of cod directed effort have decreased significantly in the last 5-10 years until 2010. Since then, effort has gone up again until 2013 following the increased of TAC possibilities.

Since 2013 effort for the French tuning fleet decreased and lpue has stabilized. Effort of Irish fleet targeting gadoids (otter trawlers 7.g) remains at a high level and increased in recent years as a consequence of mixed fisheries interaction with increased whiting and haddock fisheries opportunities. In the meantime SSB is low in recent year, as such lpue is decreasing. Effort of the UK trawl fleet in 7.e shows a decreasing trend (down to zero in 2016) while beam trawl effort in 7.e-k is stable and slightly increased in 2016.

The UK English and Welsh effort data are only reliable for vessels over 12 metres registered length, and therefore has always been provided to working groups for vessels greater than 12 metres. The fleet of over 12 meter vessels has been declining gradually over the years, until in 2016 no effort was recorded from this fleet. The zero figures provided for 2016 have been checked and are correct.

\section*{Surveys and commercial tuning fleet}

Table 9.6 presents the survey dataseries. Two ongoing surveys, both part of the DCF, IBTS Q4 (FR-EVHOE \& IR-GFS7gj combined) are used to assess this stock (see details in the stock annex and modification based on 2014 WKCELT benchmark).

The historical time-series of age structure of the commercial tuning index (OTDEF French fleet for quarter 2, 3 and 4) and the survey index are shown in Figure 9.6 and Table 9.6.

\section*{Data issues}

No important issues were reported this year.
Remark: When for a métier/strata landings are upload annually, there are not information available in IC to split the annual landings into quarterly landings and therefore the associated age composition and mean weight-at-age. As a result, when extracting quarter 1 versus quarter 2,3 and, 4 data to inform on mean weight of the stock and the catch for the assessment, these data are not used.

This is not a relevant issue for 2016 cod 7 .ek data as the annual landings upload in InterCatch represents only \(3 \%\) of the landings (UK Scotland and Belgium).

\subsection*{9.3 Stock assessment}

Model used: XSA.

\section*{Final update assessment (XSA)}

The final assessment was run with the same settings as established by WKROUND 2012 and described in the stock annex. Discards are not included in the assessment. VPA. 95 software was run in parallel to the FLRXSA R script to fully validate the assessment.

Xsa diagnostics is shown in Table 9.7. Residuals (Figure 9.7) and diagnostics do not highlight any problem regarding the input data and model fit. Outputs from the assessment are shown are in Tables 9.8-10 and in Figures 9. 8-10.

Last year's assessment shows strong upward revision in F and downward revision in SSB in recent years. The upward revision in F is likely due to strong recruitment dynamics (strong 2009 year class still included in Fbar range).

This year's assessment is consistent with last year assessment and the revisions of estimates of SSB and F are lower than has been observed in the recent past.

The comparison of runs with and without tuning indices indicates that both tuning indices contain little information and that the majority of the information comes from the catch-at-age matrix (Figure 9.11b).

\section*{State of the stock}

Table 9.8 shows the estimated fishing mortality-at-age and Table 9.9 shows the stock numbers-at-age. The stock summary is given in Table 9.10 and Figure 9.10.

Catches are around 5000 t since 2000 (Figure 7.2.1), with some higher catches following strong recruitments. Reliable discard estimates are only available since 2011 and range between 200 and 1000 t depending on the interplay between recruitment dynamics and TAC constraints.

Recruitment has been highly variable over time with occasional very high recruitment followed by period of low recruitments. The 2011, 2012 year classes are estimated well below the average of the time-series, but the 2013 year class is above average. The 2014 year class is the lowest observed in the time-series. The 2015 year class is a bit below average.

Spawning-stock biomass (SSB) is well below MSYB trigger \(^{\text {since }} 2000\) and often below \(\mathrm{B}_{\mathrm{pa}}\), with the exception of 2012 as the consequence of a very good recruitment year. SSB is below \(\mathrm{B}_{\mathrm{pa}}\) since 2014 and is increasing slowly.

Fishing mortality (F) has declined between 2005 and 2010 and fluctuated in recent years with strong increases in 2011 and 2014 and has decreased since. In 2016, F was estimated lower than \(\mathrm{F}_{\text {pa }}\). Fishing mortality remains well above \(\mathrm{F}_{\mathrm{ms}}\).

\subsection*{9.4 Short-term projections}

Because catches of Celtic Sea cod are often composed of a high proportion of age 2 and age 3 fish (due to their fast growth rate, age 2 fish range between 30 and 60 cm ) and recruitment of cod is characterised by periods of low recruitment and sporadic events, the assumed geometric mean for recruitment introduces significant uncertainty in the short-term projections.

Recruitment (age 1) in 2017 and thereafter, is assumed as the geometric mean of the time-series minus the last two years, as specified in the stock annex.

Because of the decreasing trend in the recent year, the three year averages F at age (range 2 to 5) were scaled (by the last year F).

Three year averages were used for weights-at-age. No TAC constraint was applied. Input to the short-term predictions are presented in Table 9.11 and results in Table 9.12.
\begin{tabular}{llll}
\hline Variable & Value & Notes & Source \\
\hline F ages 2-5 (2017) & 0.43852 & \begin{tabular}{l} 
F=F average (2014-2016), \\
scale
\end{tabular} & ICES (2017a) \\
\hline SSB (2018) & 8755 t & Short-term forecast & ICES (2017a) \\
\hline Rage 1 (2017/2018) & \begin{tabular}{l}
4505 \\
thousand
\end{tabular} & GM (1971-2014) & ICES (2017a) \\
\hline Catch (2017) & 3703.7493 t & \begin{tabular}{l} 
Landings + estimated \\
discards
\end{tabular} & ICES (2017a) \\
\hline Landings (2017) & 3323 t & Short-term forecast & ICES (2017a) \\
\hline Discards (2017) & 380.7493 & \begin{tabular}{l} 
Average discard rate 2014- \\
2016 = 11.458\%
\end{tabular} & ICES (2017a) \\
\hline
\end{tabular}

Under the forecast assumption, landings in 2017 are predicted to be 3323 t (higher than the TAC set at \(2830 t\) and the 2016 ICES advice of 1447 t ). SSB is predicted to be \(8755 t\) in 2018 which would be above \(B_{\lim }(7300 t)\) but still below \(B_{p a}(10300 t)\) (Table 9.15).

The forecasts are sensitive to the recruitment assumption that contributes to \(34 \%\) of the landings in 2018 and the half of the projected SSB in 2019 (Figure 9.13 and Table 9.12).

\subsection*{9.5 Medium-term projection}

No medium-term projections were carried out.

\subsection*{9.6 Biological reference points}

New value of \(\mathrm{F}_{\text {MSY }}\) has been estimated using the agreed ICES guidelines (ICES, 2016, WKMSYref4).

The advice and forecasts are based on the following reference points:
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference POINT & Value & Technical basis & Source \\
\hline \multirow[t]{2}{*}{MSY approach} & MSY Btrigger & 10300 t & \(\mathrm{B}_{\mathrm{pa}}\) & \begin{tabular}{l}
ICES \\
(2012)
\end{tabular} \\
\hline & FMSY & 0.353 & Segmented regression with Bloss, the lowest observed spawningstock biomass (Eqsim). & \begin{tabular}{l}
ICES \\
(2016)
\end{tabular} \\
\hline \multirow[t]{4}{*}{Precautionary approach} & Blim & 7300 t & Lowest observed SSB (1976), rounded value & \begin{tabular}{l}
ICES \\
(2012)
\end{tabular} \\
\hline & \(\mathrm{B}_{\mathrm{pa}}\) & 10300 t & \(\mathrm{Blim}^{\times 1.4}\) & \begin{tabular}{l}
ICES \\
(2012)
\end{tabular} \\
\hline & Flim & 0.807 & Based on segmented regression with Blim as breakpoint & \begin{tabular}{l}
ICES \\
(2016)
\end{tabular} \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.576 & Flim/1.4 & \begin{tabular}{l}
ICES \\
(2016)
\end{tabular} \\
\hline \multirow[t]{2}{*}{Management plan} & SSBMGT & Not applicable. & & \\
\hline & Fmgt & Not applicable. & & \\
\hline
\end{tabular}

\subsection*{9.7 Management plans}

There are no specific management objectives or a management plan for this stock.

\subsection*{9.8 Uncertainties and bias in assessment and forecast}

WGCSE recommend that cod, haddock and whiting in the Celtic Sea should be benchmarked together in 2019. The focus of the benchmark would be on streamlining data compilation procedures for fishery dependent and survey data. This will improve transparency and diagnostics surrounding commercial tuning fleets and surveys. The benchmark should also review the assessment methods and diagnostics given the potential for changes in selectivity in the commercial fishery. The benchmark should also investigate mixed fisheries and multi-species interactions as well as environmental drivers that may be impacting on growth and recruitment of all three species.

Issues that might causes retrospectives bias are:
i) the non-inclusion of undersized discards (and high-grading in recent years) in the assessment. However, high-grading is estimated at a very low level in recent year because the TACs were not constraining (undershoot TACs).
ii ) Sensitivity analysis of the assessment to commercial tuning series calculation should be investigating during the next benchmark process.

Discards normally constitute about \(10 \%\) of the total catch, but discard rates in recent years have fluctuated substantially due to variable recruitment and TACs constraints. This prevents the forecast of a discard rate for 2017 with any certainty.

\subsection*{9.9 Management considerations}

Several management options can bring SBB above \(\mathrm{B}_{\mathrm{pa}}\) in 2019 under the current recruitment assumption. The retrospective pattern, even if limited, implies that the current F estimates might be uncertain. Forecasts are sensitive to the assumption on recruitment as the landings are usually composed of a high proportion of age 2 fish (and age 1 fort discards).

The recent technical measures introduced in the Celtic Sea (square mesh panels) are not expected to significantly reduce catches of Celtic Sea cod or improved the selection pattern. This is because of the fast growth rate of Celtic sea cod (age 2 fish range between 30 and 50 cm ).

The strong upward revision in F in previous year's assessment implies that the stock has never been fished at \(\mathrm{Fmsy}_{\text {which could explain why SSB is still below MSYB trigger. }}\). Additionally, mixed fisheries issues could be responsible for maintaining F at high level, as other gadoids fishing opportunities are higher. In this context, Cod is no longer a target species but can be considered as by catch in the fleet targeting haddock, whiting and Nephrophs.

Historical information on management consideration can be found in the stock annex.

\subsection*{9.10 References}

ICES. 2016a. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France.

ICES. 2016b. EU request to ICES to provide Fmsy ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

Table 9.1.Nominal landings of Cod in Divisions 7.e-k used by the Working Group.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & Belgium & France & Ireland & UK & Others & Total & Highgraded. DISCARD.ESTIMATES & Discard. ESTIMATES & \begin{tabular}{l}
LANDINGS. \\
TAKEN.OR.REPORTED .IN.33E2.33E3
\end{tabular} \\
\hline 1971 & NA & NA & NA & NA & NA & 5782 & & & NA \\
\hline 1972 & NA & NA & NA & NA & NA & 4737 & & & NA \\
\hline 1973 & NA & NA & NA & NA & NA & 4015 & & & NA \\
\hline 1974 & NA & NA & NA & NA & NA & 2898 & & & NA \\
\hline 1975 & NA & NA & NA & NA & NA & 3993 & & & NA \\
\hline 1976 & NA & NA & NA & NA & NA & 4818 & & & NA \\
\hline 1977 & NA & NA & NA & NA & NA & 3059 & & & NA \\
\hline 1978 & NA & NA & NA & NA & NA & 3647 & & & NA \\
\hline 1979 & NA & NA & NA & NA & NA & 4650 & & & NA \\
\hline 1980 & NA & NA & NA & NA & NA & 7243 & & & NA \\
\hline 1981 & NA & NA & NA & NA & NA & 10597 & & & NA \\
\hline 1982 & NA & NA & NA & NA & NA & 8766 & & & NA \\
\hline 1983 & NA & NA & NA & NA & NA & 9641 & & & NA \\
\hline 1984 & NA & NA & NA & NA & NA & 6631 & & & NA \\
\hline 1985 & NA & NA & NA & NA & NA & 8317 & & & NA \\
\hline 1986 & NA & NA & NA & NA & NA & 10475 & & & NA \\
\hline 1987 & NA & NA & NA & NA & NA & 10228 & & & NA \\
\hline 1988 & 554 & 13863 & 1480 & 1292 & 2 & 17191 & & & NA \\
\hline 1989 & 910 & 15801 & 1860 & 1223 & 15 & 19809 & & & NA \\
\hline 1990 & 621 & 9383 & 1241 & 1346 & 158 & 12749 & & & NA \\
\hline 1991 & 303 & 6260 & 1659 & 1094 & 20 & 9336 & & & NA \\
\hline 1992 & 195 & 7120 & 1212 & 1207 & 13 & 9747 & & & NA \\
\hline 1993 & 391 & 8317 & 766 & 945 & 6 & 10425 & & & NA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline YeAR & Belgium & France & Ireland & UK & Others & Total & Highgraded. DISCARD.ESTIMATES & DISCARD. ESTIMATES & \begin{tabular}{l}
LANDINGS. \\
TAKEN.OR.REPORTED .IN.33E2.33E3
\end{tabular} \\
\hline 1994 & 398 & 7692 & 1616 & 906 & 8 & 10620 & & & NA \\
\hline 1995 & 400 & 8321 & 1946 & 1034 & 8 & 11709 & & & NA \\
\hline 1996 & 552 & 8981 & 1982 & 1166 & 0 & 12681 & & & NA \\
\hline 1997 & 694 & 8662 & 1513 & 1166 & 0 & 12035 & & & NA \\
\hline 1998 & 528 & 8096 & 1718 & 1089 & 0 & 11431 & & & NA \\
\hline 1999 & 326 & 5488 & 1883 & 897 & 0 & 8594 & & & NA \\
\hline 2000 & 208 & 4281 & 1302 & 744 & 0 & 6535 & & & NA \\
\hline 2001 & 347 & 6033 & 1091 & 838 & 0 & 8309 & & & NA \\
\hline 2002 & 555 & 7368 & 694 & 618 & 0 & 9235 & & & NA \\
\hline 2003 & 136 & 5222 & 517 & 346 & 0 & 6221 & 210* & na & NA \\
\hline 2004 & 153 & 2425 & 663 & 282 & 0 & 3523 & 148* & na & 108 \\
\hline 2005 & 186 & 1623 & 870 & 309 & 0 & 2988 & \(74^{*}\) & na & 54 \\
\hline 2006 & 103 & 1896 & 959 & 368 & 0 & 3326 & 432* & na & 103 \\
\hline 2007 & 108 & 2509 & 1210 & 412 & 0 & 4239 & 592* & na & 527 \\
\hline 2008 & 65 & 2064 & 1221 & 289 & 0 & 3639 & 322* & na & 558 \\
\hline 2009 & 49 & 2080 & 870 & 264 & 0 & 3263 & 25* & na & 193 \\
\hline 2010 & 51 & 1853 & 1034 & 289 & 2 & 3229 & 7* & na & 143 \\
\hline 2011 & 124 & 3171 & 1011 & 414 & 17 & 4737 & 1828** & 696 & 147 \\
\hline 2012 & 290 & 5166 & 1536 & 701 & 0 & 7693 & na & 952 & 85 \\
\hline 2013 & 202 & 4064 & 1478 & 546 & 0 & 6290 & na & 530 & 76 \\
\hline 2014 & 141 & 2080 & 1159 & 464 & 1 & 3845 & na & 741 & 24 \\
\hline 2015 & 120 & 2487 & 1126 & 422 & 2 & 4157 & na & 565 & 39 \\
\hline 2016 & 96.8 & 2013.1 & 823.7 & 364.8 & 0.8 & 3299.2 & na & 220 & 40 \\
\hline
\end{tabular}
'*'French high-grading estimates from self-sampling programme. '**'International high-grading estimate. 3 croix Included in Ireland data.

Table 9.2a. Cod in Divisions 7.e-k. Landings number-at-age (in thousands) (note: 2011 values represent actual catch) - InterCatch outputs.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline YeAR & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 & Age 8 & Age 9 & Age 10 \\
\hline 1971 & 725 & 461 & 557 & 96 & 35 & 17 & 5 & 5 & 1 & 0 \\
\hline 1972 & 4 & 774 & 110 & 205 & 45 & 26 & 11 & 5 & 1 & 0 \\
\hline 1973 & 332 & 239 & 346 & 60 & 74 & 17 & 6 & 4 & 1 & 0 \\
\hline 1974 & 1 & 224 & 40 & 118 & 38 & 37 & 18 & 4 & 14 & 0 \\
\hline 1975 & 673 & 136 & 185 & 61 & 105 & 20 & 20 & 12 & 1 & 0 \\
\hline 1976 & 51 & 1456 & 61 & 107 & 11 & 22 & 2 & 4 & 1 & 0 \\
\hline 1977 & 25 & 416 & 236 & 15 & 60 & 2 & 2 & 5 & 10 & 0 \\
\hline 1978 & 197 & 497 & 129 & 116 & 20 & 34 & 6 & 8 & 4 & 2 \\
\hline 1979 & 438 & 357 & 263 & 68 & 104 & 19 & 24 & 5 & 2 & 1 \\
\hline 1980 & 609 & 1213 & 285 & 175 & 52 & 55 & 14 & 0 & 0 & 0 \\
\hline 1981 & 315 & 3086 & 811 & 153 & 41 & 20 & 10 & 2 & 0 & 0 \\
\hline 1982 & 76 & 1157 & 888 & 169 & 36 & 19 & 4 & 1 & 0 & 0 \\
\hline 1983 & 1285 & 529 & 540 & 424 & 77 & 21 & 5 & 5 & 1 & 0 \\
\hline 1984 & 737 & 1210 & 134 & 97 & 94 & 22 & 3 & 2 & 0 & 0 \\
\hline 1985 & 726 & 1245 & 465 & 61 & 40 & 47 & 12 & 2 & 1 & 0 \\
\hline 1986 & 651 & 1303 & 673 & 254 & 30 & 31 & 17 & 0 & 0 & 0 \\
\hline 1987 & 2741 & 946 & 448 & 250 & 62 & 20 & 11 & 4 & 0 & 0 \\
\hline 1988 & 1830 & 5443 & 320 & 133 & 46 & 21 & 4 & 2 & 2 & 0 \\
\hline 1989 & 666 & 2639 & 2483 & 149 & 77 & 18 & 8 & 2 & 1 & 0 \\
\hline 1990 & 360 & 846 & 1006 & 663 & 79 & 21 & 8 & 6 & 2 & 0 \\
\hline 1991 & 1377 & 1034 & 229 & 330 & 203 & 48 & 11 & 3 & 0 & 0 \\
\hline 1992 & 1434 & 2601 & 329 & 64 & 70 & 53 & 16 & 1 & 0 & 0 \\
\hline 1993 & 274 & 2371 & 928 & 79 & 24 & 19 & 14 & 2 & 0 & 0 \\
\hline 1994 & 1340 & 692 & 1199 & 258 & 27 & 10 & 11 & 6 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 & Age 8 & Age 9 & AGe 10 \\
\hline 1995 & 823 & 3320 & 310 & 284 & 73 & 13 & 2 & 3 & 0 & 0 \\
\hline 1996 & 617 & 2248 & 1199 & 134 & 95 & 43 & 3 & 1 & 0 & 0 \\
\hline 1997 & 1184 & 1870 & 951 & 297 & 48 & 22 & 6 & 0 & 0 & 0 \\
\hline 1998 & 639 & 2545 & 641 & 254 & 99 & 36 & 6 & 2 & 0 & 0 \\
\hline 1999 & 496 & 1141 & 756 & 158 & 59 & 36 & 9 & 5 & 0 & 0 \\
\hline 2000 & 1693 & 464 & 419 & 169 & 44 & 17 & 12 & 2 & 0 & 0 \\
\hline 2001 & 1091 & 2373 & 136 & 98 & 70 & 19 & 12 & 6 & 1 & 0 \\
\hline 2002 & 210 & 2069 & 883 & 64 & 33 & 12 & 6 & 4 & 1 & 0 \\
\hline 2003 & 103 & 556 & 827 & 217 & 15 & 9 & 6 & 1 & 0 & 0 \\
\hline 2004 & 341 & 298 & 175 & 168 & 59 & 8 & 4 & 3 & 0 & 0 \\
\hline 2005 & 295 & 664 & 138 & 52 & 45 & 11 & 2 & 0 & 0 & 0 \\
\hline 2006 & 368 & 994 & 249 & 25 & 14 & 13 & 4 & 1 & 0 & 0 \\
\hline 2007 & 491 & 1245 & 409 & 60 & 9 & 4 & 3 & 1 & 0 & 0 \\
\hline 2008 & 123 & 769 & 312 & 101 & 24 & 4 & 3 & 1 & 0 & 0 \\
\hline 2009 & 161 & 281 & 324 & 96 & 37 & 10 & 2 & 0 & 0 & 0 \\
\hline 2010 & 532 & 434 & 122 & 91 & 42 & 9 & 2 & 0 & 0 & 0 \\
\hline 2011 & 1516 & 3158 & 232 & 52 & 32 & 9 & 2 & 0 & 0 & 0 \\
\hline 2012 & 35 & 489 & 1346 & 219 & 26 & 14 & 4 & 0 & 3 & 0 \\
\hline 2013 & 110 & 195 & 433 & 451 & 65 & 21 & 6 & 0 & 0 & 0 \\
\hline 2014 & 762 & 327 & 82 & 113 & 134 & 9 & 1 & 0 & 0 & 0 \\
\hline 2015 & 37 & 1576 & 119 & 21 & 34 & 27 & 8 & 1 & 0 & 0 \\
\hline 2016 & 137 & 89 & 579 & 33 & 6 & 10 & 17 & 1 & 0 & 0 \\
\hline
\end{tabular}

Table 9.2b. Cod in Divisions 7.e-k. Landings number-at-age (in thousands) used in the assessment (note: 2011 values represent actual catch) - after sop correction.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline YEAR & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 \\
\hline 1971 & 4769 & 1118 & 1381 & 260 & 131 & 47 & 30 \\
\hline 1972 & 928 & 2296 & 390 & 540 & 115 & 72 & 46 \\
\hline 1973 & 2810 & 553 & 947 & 194 & 234 & 50 & 32 \\
\hline 1974 & 889 & 1428 & 184 & 402 & 96 & 118 & 113 \\
\hline 1975 & 6031 & 532 & 802 & 102 & 204 & 41 & 67 \\
\hline \[
1976
\] & 1986 & 3093 & 255 & 433 & 24 & 67 & 21 \\
\hline 1977 & 2871 & 1151 & 926 & 136 & 237 & 9 & 78 \\
\hline 1978 & 2741 & 1701 & 450 & 480 & 91 & 132 & 77 \\
\hline 1979 & 6630 & 1491 & 765 & 222 & 266 & 53 & 88 \\
\hline 1980 & 12254 & 3634 & 734 & 338 & 110 & 116 & 29 \\
\hline 1981 & 5179 & 6872 & 1506 & 297 & 105 & 40 & 24 \\
\hline 1982 & 2117 & 2860 & 2189 & 414 & 93 & 46 & 12 \\
\hline 1983 & 6923 & 1209 & 1003 & 841 & 167 & 41 & 21 \\
\hline 1984 & 6696 & 3153 & 396 & 276 & 272 & 62 & 14 \\
\hline 1985 & 5892 & 3443 & 1177 & 178 & 126 & 129 & 41 \\
\hline 1986 & 5000 & 2964 & 1338 & 466 & 82 & 63 & 34 \\
\hline 1987 & 25361 & 2493 & 967 & 409 & 134 & 37 & 28 \\
\hline 1988 & 12239 & 13110 & 950 & 335 & 97 & 51 & 19 \\
\hline 1989 & 3648 & 5919 & 4547 & 427 & 140 & 36 & 21 \\
\hline 1990 & 4042 & 1670 & 1900 & 1221 & 196 & 41 & 31 \\
\hline 1991 & 11365 & 2146 & 459 & 547 & 360 & 84 & 24 \\
\hline 1992 & 11743 & 5745 & 625 & 142 & 129 & 101 & 32 \\
\hline 1993 & 3700 & 5927 & 1812 & 179 & 53 & 39 & 32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline YEAR & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 \\
\hline 1994 & 13716 & 2005 & 2128 & 539 & 68 & 20 & 33 \\
\hline 1995 & 9675 & 7182 & 812 & 540 & 187 & 29 & 11 \\
\hline 1996 & 7430 & 5161 & 2209 & 333 & 165 & 81 & 7 \\
\hline 1997 & 10001 & 3975 & 1702 & 600 & 137 & 45 & 12 \\
\hline 1998 & 5018 & 5077 & 1195 & 438 & 199 & 65 & 14 \\
\hline 1999 & 2352 & 2512 & 1394 & 330 & 113 & 68 & 26 \\
\hline 2000 & 10657 & 1025 & 788 & 378 & 114 & 36 & 29 \\
\hline 2001 & 8841 & 5077 & 323 & 222 & 141 & 50 & 50 \\
\hline 2002 & 2185 & 4455 & 1541 & 122 & 84 & 49 & 44 \\
\hline 2003 & 1300 & 1147 & 1363 & 379 & 37 & 36 & 28 \\
\hline 2004 & 2931 & 700 & 331 & 296 & 100 & 16 & 14 \\
\hline 2005 & 4166 & 1492 & 236 & 94 & 79 & 26 & 5 \\
\hline 2006 & 4585 & 2268 & 479 & 55 & 26 & 22 & 8 \\
\hline 2007 & 3865 & 2463 & 742 & 140 & 20 & 8 & 8 \\
\hline 2008 & 1610 & 1936 & 668 & 196 & 54 & 8 & 8 \\
\hline 2009 & 3004 & 870 & 699 & 224 & 61 & 21 & 4 \\
\hline 2010 & 13533 & 1676 & 368 & 237 & 87 & 15 & 3 \\
\hline 2011 & 4897 & 7697 & 798 & 167 & 102 & 31 & 7 \\
\hline 2012 & 830 & 1762 & 2702 & 389 & 82 & 51 & 25 \\
\hline 2013 & 1461 & 470 & 812 & 835 & 106 & 41 & 11 \\
\hline 2014 & 7711 & 790 & 163 & 227 & 243 & 25 & 3 \\
\hline 2015 & 537 & 4043 & 280 & 51 & 76 & 74 & 24 \\
\hline 2016 & 3385 & 294 & 1535 & 108 & 21 & 31 & 55 \\
\hline
\end{tabular}

Table 9.3. Cod in Divisions 7.e-k. Catch (landings) weight-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 & Age 8 & Age 9 & Age 10 \\
\hline 1971 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1972 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1973 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1974 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1975 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1976 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1977 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1978 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1979 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1980 & 0.908 & 2.193 & 4.831 & 7.464 & 9.669 & 11.784 & 13.862 & 15.494 & 16.195 & 16.315 \\
\hline 1981 & 0.945 & 1.549 & 4.385 & 7.565 & 9.060 & 12.750 & 13.822 & 19.232 & 19.232 & 19.232 \\
\hline 1982 & 0.945 & 2.242 & 4.474 & 7.797 & 10.250 & 12.465 & 15.074 & 16.908 & 18.538 & 20.949 \\
\hline 1983 & 0.979 & 2.525 & 4.961 & 7.457 & 9.965 & 12.010 & 14.767 & 17.643 & 19.131 & 19.131 \\
\hline 1984 & 0.981 & 2.645 & 5.284 & 7.828 & 9.758 & 11.672 & 14.548 & 16.527 & 16.527 & 16.527 \\
\hline 1985 & 1.001 & 2.637 & 5.521 & 8.082 & 10.407 & 11.469 & 13.448 & 16.658 & 20.853 & 20.853 \\
\hline 1986 & 1.054 & 2.554 & 5.398 & 7.440 & 10.782 & 12.396 & 13.558 & 13.558 & 13.558 & 13.558 \\
\hline 1987 & 0.909 & 2.504 & 5.264 & 8.089 & 10.447 & 13.574 & 15.029 & 16.229 & 16.229 & 16.229 \\
\hline 1988 & 0.906 & 2.187 & 5.318 & 7.997 & 10.649 & 12.486 & 13.805 & 14.285 & 16.592 & 16.592 \\
\hline 1989 & 0.844 & 2.013 & 4.706 & 7.638 & 9.438 & 12.917 & 12.479 & 15.407 & 16.683 & 16.683 \\
\hline 1990 & 0.880 & 2.300 & 4.624 & 7.188 & 9.045 & 11.713 & 13.769 & 16.786 & 13.081 & 13.081 \\
\hline 1991 & 0.905 & 2.135 & 4.987 & 6.738 & 8.865 & 10.809 & 13.768 & 15.478 & 15.478 & 15.478 \\
\hline 1992 & 0.815 & 1.916 & 4.916 & 7.359 & 9.744 & 11.498 & 12.474 & 15.117 & 15.117 & 15.117 \\
\hline 1993 & 0.871 & 2.043 & 4.508 & 6.866 & 8.431 & 10.942 & 12.147 & 13.646 & 16.530 & 16.530 \\
\hline 1994 & 0.874 & 2.000 & 4.492 & 7.926 & 10.092 & 12.212 & 13.072 & 15.865 & 15.865 & 15.865 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 & Age 8 & Age 9 & Age 10 \\
\hline 1995 & 0.806 & 1.973 & 4.589 & 7.560 & 9.750 & 11.152 & 13.983 & 14.147 & 14.147 & 14.147 \\
\hline 1996 & 0.787 & 1.877 & 4.639 & 6.997 & 9.854 & 11.407 & 13.040 & 10.363 & 10.363 & 10.363 \\
\hline 1997 & 0.771 & 2.039 & 4.516 & 7.389 & 9.719 & 11.820 & 14.367 & 13.687 & 13.687 & 13.687 \\
\hline 1998 & 0.853 & 1.896 & 4.461 & 6.881 & 9.329 & 11.216 & 13.904 & 14.573 & 17.161 & 14.020 \\
\hline 1999 & 0.993 & 2.098 & 4.495 & 7.326 & 8.945 & 11.255 & 13.877 & 15.988 & 15.988 & 17.159 \\
\hline 2000 & 0.863 & 2.541 & 4.629 & 7.042 & 9.502 & 10.660 & 11.746 & 14.476 & 14.720 & 14.720 \\
\hline 2001 & 0.794 & 2.029 & 5.112 & 7.858 & 9.832 & 11.423 & 13.206 & 14.879 & 16.311 & 16.311 \\
\hline 2002 & 0.757 & 1.880 & 4.728 & 6.764 & 9.360 & 10.774 & 12.876 & 13.463 & 13.719 & 14.300 \\
\hline 2003 & 0.889 & 1.844 & 4.274 & 6.667 & 9.506 & 11.064 & 12.040 & 12.762 & 11.139 & 11.139 \\
\hline 2004 & 0.884 & 2.177 & 4.543 & 7.073 & 9.435 & 10.802 & 11.985 & 14.115 & 14.115 & 12.468 \\
\hline 2005 & 0.776 & 2.118 & 3.907 & 6.168 & 9.194 & 11.544 & 10.037 & 12.657 & 13.835 & 13.835 \\
\hline 2006 & 0.789 & 1.793 & 4.716 & 7.404 & 9.186 & 11.646 & 12.313 & 12.699 & 12.699 & 12.699 \\
\hline 2007 & 0.772 & 1.657 & 4.276 & 7.463 & 9.697 & 11.863 & 12.441 & 13.953 & 15.046 & 15.046 \\
\hline 2008 & 0.847 & 1.804 & 4.541 & 7.164 & 9.229 & 11.095 & 13.470 & 12.807 & 15.178 & 16.086 \\
\hline 2009 & 0.923 & 2.384 & 4.248 & 6.721 & 8.895 & 10.584 & 10.342 & 10.497 & 16.169 & 14.560 \\
\hline 2010 & 0.853 & 2.226 & 4.789 & 7.285 & 9.975 & 11.948 & 12.188 & 14.489 & 15.119 & 15.119 \\
\hline 2011 & 0.532 & 1.449 & 4.551 & 7.745 & 9.524 & 10.597 & 12.749 & 10.595 & 10.595 & 10.595 \\
\hline 2012 & 1.093 & 1.712 & 3.510 & 7.077 & 10.196 & 12.232 & 14.106 & 13.929 & 11.214 & 16.248 \\
\hline 2013 & 0.982 & 2.159 & 4.087 & 6.977 & 8.363 & 10.479 & 11.904 & 16.384 & 12.989 & 12.989 \\
\hline 2014 & 0.811 & 2.454 & 4.726 & 7.228 & 9.114 & 11.080 & 12.014 & 16.659 & 16.659 & 16.659 \\
\hline 2015 & 0.915 & 1.838 & 4.144 & 7.980 & 9.539 & 10.719 & 11.891 & 12.416 & 16.165 & 16.165 \\
\hline 2016 & 0.850 & 1.991 & 4.367 & 7.167 & 9.198 & 11.131 & 10.912 & 14.379 & 17.083 & 17.083 \\
\hline
\end{tabular}

Table 9.4. Cod in Divisions 7.e-k. Stock weight-at-age \(=1\) st quarter values.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 & Age 8 & Age 9 & Age 10 \\
\hline 1971 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1972 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1973 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1974 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1975 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1976 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1977 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1978 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1979 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1980 & 0.662 & 1.709 & 4.444 & 7.321 & 9.529 & 11.605 & 13.513 & 15.327 & 15.744 & 15.744 \\
\hline 1981 & 0.460 & 1.549 & 2.284 & 7.806 & 10.544 & 11.439 & 14.464 & 15.354 & 15.354 & 15.354 \\
\hline 1982 & 0.704 & 1.488 & 3.876 & 7.407 & 9.624 & 12.316 & 15.032 & 18.569 & 18.569 & 18.569 \\
\hline 1983 & 0.446 & 1.945 & 4.467 & 7.353 & 9.752 & 11.223 & 15.908 & 18.089 & 21.977 & 21.977 \\
\hline 1984 & 0.512 & 1.951 & 4.928 & 7.433 & 9.552 & 12.180 & 14.181 & 16.733 & 16.733 & 16.733 \\
\hline 1985 & 0.581 & 2.070 & 5.333 & 8.376 & 10.851 & 11.585 & 14.247 & 16.399 & 20.853 & 20.853 \\
\hline 1986 & 0.528 & 1.902 & 5.286 & 7.382 & 10.689 & 12.393 & 14.482 & 14.482 & 14.482 & 14.482 \\
\hline 1987 & 0.522 & 1.947 & 4.877 & 7.946 & 10.308 & 14.419 & 15.171 & 16.201 & 16.201 & 16.201 \\
\hline 1988 & 0.906 & 1.621 & 4.887 & 7.777 & 10.302 & 11.786 & 12.416 & 13.889 & 15.119 & 15.119 \\
\hline 1989 & 0.844 & 1.463 & 4.514 & 7.615 & 9.438 & 12.692 & 12.788 & 17.794 & 17.794 & 17.794 \\
\hline 1990 & 0.613 & 1.774 & 4.390 & 7.186 & 8.486 & 10.703 & 13.305 & 16.987 & 13.081 & 13.081 \\
\hline 1991 & 0.539 & 1.538 & 4.791 & 6.524 & 8.631 & 10.672 & 13.512 & 14.898 & 14.898 & 14.898 \\
\hline 1992 & 0.663 & 1.318 & 4.600 & 6.558 & 9.342 & 11.285 & 12.322 & 14.770 & 14.770 & 14.770 \\
\hline 1993 & 0.703 & 1.385 & 4.278 & 6.574 & 8.066 & 10.815 & 11.945 & 13.421 & 16.530 & 16.530 \\
\hline 1994 & 0.605 & 1.754 & 4.189 & 7.720 & 9.722 & 12.101 & 12.844 & 15.859 & 15.859 & 15.859 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 & Age 8 & Age 9 & Age 10 \\
\hline 1995 & 0.612 & 1.444 & 4.346 & 7.452 & 9.140 & 10.646 & 13.908 & 14.147 & 14.147 & 14.147 \\
\hline 1996 & 0.673 & 1.283 & 4.471 & 6.747 & 9.877 & 11.424 & 12.848 & 12.848 & 12.848 & 12.848 \\
\hline 1997 & 0.470 & 1.410 & 4.079 & 7.112 & 9.044 & 11.156 & 13.730 & 13.623 & 13.623 & 13.623 \\
\hline 1998 & 0.421 & 1.314 & 4.340 & 6.676 & 9.303 & 11.172 & 12.369 & 14.205 & 17.161 & 14.020 \\
\hline 1999 & 0.778 & 1.542 & 4.252 & 7.126 & 8.700 & 11.142 & 13.978 & 17.463 & 17.159 & 17.159 \\
\hline 2000 & 0.561 & 1.696 & 4.223 & 6.627 & 9.326 & 10.505 & 11.115 & 13.566 & 13.566 & 13.566 \\
\hline 2001 & 0.630 & 1.455 & 4.904 & 7.872 & 10.192 & 11.613 & 13.174 & 14.715 & 16.311 & 16.311 \\
\hline 2002 & 0.352 & 1.257 & 4.452 & 7.046 & 9.400 & 10.614 & 12.637 & 14.949 & 14.949 & 14.949 \\
\hline 2003 & 0.482 & 1.327 & 4.111 & 6.601 & 9.183 & 10.635 & 12.047 & 15.832 & 15.832 & 15.832 \\
\hline 2004 & 0.591 & 1.258 & 4.053 & 6.759 & 9.372 & 10.158 & 11.680 & 13.850 & 13.850 & 13.850 \\
\hline 2005 & 0.588 & 1.688 & 4.075 & 5.945 & 9.018 & 11.333 & 11.487 & 13.772 & 13.772 & 13.772 \\
\hline 2006 & 0.703 & 1.216 & 4.233 & 6.819 & 8.895 & 11.487 & 11.411 & 12.703 & 12.703 & 12.703 \\
\hline 2007 & 0.722 & 1.399 & 3.794 & 6.990 & 9.809 & 12.273 & 15.042 & 14.465 & 14.795 & 14.795 \\
\hline 2008 & 0.869 & 1.449 & 4.188 & 6.896 & 8.881 & 11.543 & 13.624 & 10.045 & 13.763 & 13.763 \\
\hline 2009 & 0.938 & 1.629 & 3.865 & 6.557 & 8.985 & 10.567 & 12.981 & 12.981 & 12.981 & 12.981 \\
\hline 2010 & 0.819 & 1.424 & 4.373 & 6.984 & 9.891 & 11.663 & 12.575 & 13.085 & 13.085 & 13.085 \\
\hline 2011 & 0.374 & 1.214 & 4.198 & 7.239 & 9.404 & 11.039 & 12.785 & 12.785 & 12.785 & 12.785 \\
\hline 2012 & 1.005 & 1.224 & 3.534 & 7.333 & 10.404 & 11.702 & 13.727 & 12.663 & 16.045 & 16.174 \\
\hline 2013 & 0.497 & 1.377 & 3.747 & 6.805 & 8.491 & 9.945 & 9.897 & 17.158 & 17.158 & 17.158 \\
\hline 2014 & 0.464 & 1.654 & 3.788 & 6.530 & 9.074 & 10.584 & 11.611 & 12.285 & 12.285 & 12.285 \\
\hline 2015 & 1.161 & 1.309 & 4.079 & 8.517 & 10.105 & 10.661 & 12.288 & 13.134 & 13.134 & 13.134 \\
\hline 2016 & 0.647 & 1.310 & 3.683 & 6.700 & 10.573 & 11.453 & 12.928 & 16.875 & 16.435 & 16.435 \\
\hline
\end{tabular}

Table 9.5a. Cod in Divisions 7.e-k. Time-series of landings, effort, lpue for French OT-DEF fleets. Units in tonnes, Effort in 000s hours fished, lpue in Kg/hour fished.
\begin{tabular}{|c|c|c|c|}
\hline Year & Effort & LANDINGS & LPUE \\
\hline 2000 & 217480.1 & 1360798.3 & 6.26 \\
\hline 2001 & 223428.0 & 2297415.3 & 10.28 \\
\hline 2002 & 191161.1 & 2521943.2 & 13.19 \\
\hline 2003 & 184878.5 & 1594331.4 & 8.62 \\
\hline 2004 & 164606.5 & 693554.3 & 4.21 \\
\hline 2005 & 132471.5 & 589933.2 & 4.45 \\
\hline 2006 & 117258.8 & 571191.5 & 4.87 \\
\hline 2007 & 115878.4 & 816210.8 & 7.04 \\
\hline 2008 & 113485.2 & 652235.7 & 5.75 \\
\hline 2009 & 113347.6 & 550405.7 & 4.86 \\
\hline 2010 & 100331.9 & 635001.8 & 6.33 \\
\hline 2011 & 101251.0 & 925372.7 & 9.14 \\
\hline 2012 & 124404.4 & 2518809.6 & 20.25 \\
\hline 2013 & 155301.2 & 1513472.3 & 9.75 \\
\hline 2014 & 147142.9 & 1097602.2 & 7.46 \\
\hline 2015 & 135732.0 & 1202081.0 & 8.86 \\
\hline 2016 & 131254.0 & 964207.0 & 7.35 \\
\hline
\end{tabular}

Table 9.5b. Cod in Divisions 7.e-k. Time-series of landings, effort, lpue for the Irish fleets. Units in tonnes live weight, Effort in 000s hours fished, lpue in Kg/hour fished.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{OTTER TRAWLERS 7.J} & \multicolumn{3}{|l|}{BEAM TRAWLERS 7.J} & \multicolumn{3}{|l|}{SCOTTISH SEINERS 7.J} & \multicolumn{3}{|l|}{GILLNET 7.J} \\
\hline YEAR & Landings & Effort & LPUE \\
\hline 1995 & 3393 & 937 & 36 & ก & ก) & ก) & 755 & 53 & 14 & 1788 & 213 & 84 \\
\hline 1996 & 326.4 & 70.2 & 4.6 & 8.7 & 1.4 & 6.3 & 124.5 & 8.2 & 15 & 65 & 5.2 & 12 \\
\hline 1997 & 352.7 & 82.7 & 4.3 & 3.4 & 1.7 & 2 & 115.8 & 10.7 & 11 & 45.5 & 8.3 & 5.5 \\
\hline 1998 & 262.7 & 89.1 & 2.9 & 19.1 & 5.2 & 3.7 & 103.4 & 6.6 & 16 & 59.1 & 16 & 3.7 \\
\hline 1999 & 76.7 & 40.5 & 1.9 & 27.5 & 7.4 & 3.7 & 9.6 & 1.4 & 6.8 & 24.6 & 8.7 & 2.8 \\
\hline 2000 & 95.5 & 63.9 & 1.5 & 21.2 & 6.9 & 3.1 & 24.4 & 3.5 & 7 & 13.8 & 7 & 2 \\
\hline 2001 & 148.5 & 67.4 & 2.2 & 10.7 & 3 & 3.6 & 31.3 & 4.4 & 7.1 & 14.8 & 6.6 & 2.3 \\
\hline 2002 & 150 & 90.4 & 1.7 & 5.4 & 3.1 & 1.7 & 24.6 & 8.9 & 2.8 & 12.3 & 8.1 & 1.5 \\
\hline 2003 & 73.6 & 107.4 & 0.7 & 8.8 & 9 & 1 & 12 & 7.9 & 1.5 & 6.3 & 11.2 & 0.6 \\
\hline 2004 & 36.1 & 88.3 & 0.4 & 2.5 & 2.2 & 1.2 & 10.3 & 8.1 & 1.3 & 4.2 & 6.1 & 0.7 \\
\hline 2005 & 37.8 & 71.3 & 0.5 & 4.7 & 2.4 & 2 & 17.5 & 5.8 & 3 & 3.4 & 6.1 & 0.6 \\
\hline 2006 & 39.6 & 64.5 & 0.6 & 2 & 1.5 & 1.3 & 15.6 & 5.3 & 2.9 & 7.2 & 7.3 & 1 \\
\hline 2007 & 35.9 & 78.3 & 0.5 & 7.8 & 2.4 & 3.3 & 9.8 & 3.5 & 2.8 & 6.5 & 10.5 & 0.6 \\
\hline 2008 & 33.1 & 66.7 & 0.5 & 2.6 & 1.1 & 2.3 & 9.5 & 2.8 & 3.3 & 6.5 & 7.9 & 0.8 \\
\hline 2009 & 26.6 & 73 & 0.4 & 4.7 & 2.8 & 1.7 & 8.9 & 3.3 & 2.7 & 8 & 10.9 & 0.7 \\
\hline 2010 & 52.5 & 85.7 & 0.6 & 1.7 & 1 & 1.7 & 17 & 4.4 & 3.9 & 8.4 & 9.4 & 0.9 \\
\hline 2011 & 57.7 & 62.8 & 0.9 & 1.7 & 0.6 & 2.7 & 21.6 & 4.6 & 4.7 & 16.8 & 8 & 2.1 \\
\hline 2012 & 62.8 & 65.6 & 1 & 0.4 & 0.3 & 1.5 & 29.8 & 5.4 & 5.6 & 25.2 & 8.3 & 3 \\
\hline 2013 & 66.1 & 61.3 & 1.1 & 1.8 & 0.6 & 3.3 & 32.5 & 6.6 & 4.9 & 15.4 & 9.8 & 1.6 \\
\hline 2014 & 51.6 & 53.9 & 1 & 1.2 & 0.6 & 1.9 & 52.6 & 7.4 & 7.1 & 9.7 & 12.2 & 0.8 \\
\hline 2015 & 63.6 & 46.9 & 1.4 & 0.6 & 0.1 & 6.3 & 38.2 & 5.3 & 7.2 & 18.1 & 14.2 & 1.3 \\
\hline 2016 & 48.5 & 50.5 & 1 & 0.3 & 0.2 & 1.6 & 25.2 & 5.3 & 4.7 & 15.8 & 17 & 0.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{OTTER TRAWLERS 7.G} & \multicolumn{3}{|l|}{BEAM TRAWLERS 7.G} & \multicolumn{3}{|l|}{SCOTTISH SEINERS 7.G} & \multicolumn{3}{|l|}{GILLNET 7.G} \\
\hline X & Landings & Effort & LPUE \\
\hline 1995 & 429.8 & 63.3 & 6.8 & 85.8 & 20.7 & 4.1 & 111.3 & 6.4 & 17.3 & 114.9 & 6.3 & 18.1 \\
\hline 1996 & 569.2 & 60.0 & 9.5 & 112.5 & 26.7 & 4.2 & 164.9 & 9.7 & 16.9 & 338.9 & 6.2 & 54.8 \\
\hline 1997 & 401.9 & 65.0 & 6.2 & 131.5 & 28.1 & 4.7 & 215.2 & 16.1 & 13.4 & 52.8 & 1.9 & 27.7 \\
\hline 1998 & 450.5 & 72.3 & 6.2 & 166.8 & 35.2 & 4.7 & 264.1 & 14.9 & 17.7 & 87.3 & 3.4 & 25.4 \\
\hline 1999 & 300.7 & 51.5 & 5.8 & 190.6 & 40.8 & 4.7 & 64.6 & 8.0 & 8.1 & 200.4 & 8.4 & 23.9 \\
\hline 2000 & 279.4 & 60.6 & 4.6 & 180.6 & 36.8 & 4.9 & 106.0 & 9.9 & 10.8 & 151.7 & 10.1 & 15.0 \\
\hline 2001 & 358.5 & 69.4 & 5.2 & 101.2 & 39.5 & 2.6 & 115.0 & 16.3 & 7.0 & 115.8 & 8.8 & 13.2 \\
\hline 2002 & 212.9 & 77.2 & 2.8 & 57.9 & 31.5 & 1.8 & 71.0 & 20.9 & 3.4 & 31.0 & 6.4 & 4.8 \\
\hline 2003 & 167.2 & 86.8 & 1.9 & 56.8 & 49.2 & 1.2 & 35.6 & 20.1 & 1.8 & 31.3 & 11.1 & 2.8 \\
\hline 2004 & 190.2 & 97.1 & 2.0 & 74.3 & 54.9 & 1.4 & 54.4 & 18.4 & 3.0 & 62.0 & 13.5 & 4.6 \\
\hline 2005 & 292.5 & 124.7 & 2.3 & 118.9 & 49.6 & 2.4 & 64.4 & 14.6 & 4.4 & 77.9 & 10.9 & 7.2 \\
\hline 2006 & 379.4 & 118.0 & 3.2 & 128.6 & 60.5 & 2.1 & 91.0 & 14.8 & 6.2 & 63.7 & 7.8 & 8.1 \\
\hline 2007 & 316.1 & 135.4 & 2.3 & 96.2 & 55.8 & 1.7 & 58.5 & 15.8 & 3.7 & 85.4 & 9.4 & 9.1 \\
\hline 2008 & 344.9 & 125.4 & 2.7 & 85.4 & 37.2 & 2.3 & 55.6 & 11.6 & 4.8 & 88.0 & 14.1 & 6.2 \\
\hline 2009 & 405.9 & 137.1 & 3.0 & 74.4 & 37.9 & 2.0 & 34.6 & 8.2 & 4.2 & 81.1 & 13.8 & 5.9 \\
\hline 2010 & 524.8 & 140.8 & 3.7 & 94.7 & 40.2 & 2.4 & 54.3 & 9.7 & 5.6 & 76.0 & 14.0 & 5.4 \\
\hline 2011 & 438.4 & 120.3 & 3.6 & 82.5 & 35.3 & 2.3 & 46.7 & 11.0 & 4.2 & 76.6 & 11.3 & 6.7 \\
\hline 2012 & 780.7 & 127.7 & 6.1 & 161.9 & 40.3 & 4.0 & 111.5 & 14.1 & 7.9 & 129.1 & 15.4 & 8.4 \\
\hline 2013 & 721.4 & 118.2 & 6.1 & 195.8 & 38.5 & 5.1 & 111.3 & 13.2 & 8.5 & 92.5 & 14.4 & 6.4 \\
\hline 2014 & 600.1 & 127.3 & 4.7 & 142.9 & 37.8 & 3.8 & 110.5 & 12.5 & 8.9 & 59.2 & 14.1 & 4.2 \\
\hline 2015 & 526.3 & 132.7 & 4.0 & 160.1 & 37.8 & 4.2 & 59.2 & 9.3 & 6.4 & 48.7 & 12.5 & 3.9 \\
\hline 2016 & 417.4 & 147.2 & 2.8 & 105.2 & 39.2 & 2.7 & 51.1 & 10.4 & 4.9 & 47.0 & 13.6 & 3.5 \\
\hline
\end{tabular}

Table 9.5c. Cod in Divisions 7.e-k. Time-series of landings, effort, lpue for the UK fleets. Units: landings in tonnes, Effort in days fished and lpue in Kg/day.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{YEAR} & \multicolumn{3}{|l|}{BEAM TRAWL 7.EK} & \multicolumn{3}{|l|}{TRAWL 7.E ONLY} \\
\hline & LANDS..T & EfFORT..DAYS. & LANDS..T & EfFORT..Days. & LANDS..T & EFFORT..DAYS \\
\hline 1983 & 25.55 & 2853 & 40.93 & 2573 & 20.60 & 1871 \\
\hline 1984 & 128.75 & 8427 & 235.68 & 8092 & 76.42 & 5618 \\
\hline 1985 & 145.39 & 7706 & 250.67 & 7186 & 63.97 & 5411 \\
\hline 1986 & 165.76 & 6651 & 232.19 & 6174 & 78.31 & 4425 \\
\hline 1987 & 248.91 & 8060 & 210.36 & 5446 & 88.49 & 3701 \\
\hline 1988 & 249.21 & 9487 & 262.68 & 5645 & 151.35 & 4265 \\
\hline 1989 & 231.24 & 10071 & 177.12 & 5997 & 96.00 & 4607 \\
\hline 1990 & 309.07 & 10477 & 305.78 & 6661 & 119.41 & 4423 \\
\hline 1991 & 256.19 & 9017 & 242.33 & 5938 & 83.60 & 4004 \\
\hline 1992 & 256.33 & 8183 & 231.85 & 6494 & 80.76 & 4108 \\
\hline 1993 & 221.79 & 9511 & 183.05 & 5055 & 42.88 & 3761 \\
\hline 1994 & 179.13 & 13925 & 78.23 & 4426 & 41.25 & 3423 \\
\hline 1995 & 241.35 & 15076 & 115.05 & 4405 & 55.09 & 3294 \\
\hline 1996 & 304.22 & 15748 & 120.46 & 4476 & 59.21 & 2589 \\
\hline 1997 & 303.67 & 16373 & 150.01 & 5088 & 79.81 & 3011 \\
\hline 1998 & 266.15 & 15574 & 119.56 & 4729 & 62.50 & 2699 \\
\hline 1999 & 257.43 & 15614 & 90.68 & 6638 & 46.81 & 2486 \\
\hline 2000 & 188.07 & 16456 & 110.79 & 7054 & 52.59 & 2681 \\
\hline 2001 & 257.24 & 17335 & 109.75 & 5875 & 59.05 & 2732 \\
\hline 2002 & 132.13 & 16503 & 82.70 & 5657 & 34.11 & 2448 \\
\hline 2003 & 108.77 & 18285 & 58.80 & 5120 & 24.48 & 2273 \\
\hline 2004 & 96.93 & 18250 & 44.06 & 5273 & 15.05 & 2334 \\
\hline 2005 & 103.60 & 17157 & 41.13 & 5047 & 17.38 & 1762 \\
\hline 2006 & 91.88 & 15412 & 55.43 & 5314 & 13.54 & 1699 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{YEAR} & \multicolumn{3}{|l|}{BEAM TRAWL 7.EK} & \multicolumn{3}{|l|}{TRAWL 7.E ONLY} \\
\hline & LANDS..T & EfFORT..DAYS. & LANDS..T & EfFORT..DAYS. & LANDS..T & EFFORT..DAYS \\
\hline 2007 & 111.28 & 15085 & 49.65 & 5679 & 21.61 & 1917 \\
\hline 2008 & 71.38 & 13734 & 49.34 & 4686 & 24.26 & 1750 \\
\hline 2009 & 67.27 & 12170 & 27.56 & 4928 & 12.56 & 1847 \\
\hline 2010 & 65.62 & 12150 & 31.13 & 5185 & 15.27 & 2213 \\
\hline 2011 & 99.03 & 13205 & 47.73 & 4354 & 26.00 & 1931 \\
\hline 2012 & 165.63 & 13411 & 79.03 & 4312 & 30.95 & 2068 \\
\hline 2013 & 114.49 & 12950 & 37.30 & 2014 & 22.94 & 1587 \\
\hline 2014 & 87.55 & 12807 & 17.07 & 1606 & 14.06 & 1440 \\
\hline 2015 & 89.39 & 12769 & 16.68 & 1061 & 14.40 & 978 \\
\hline 2016 & 73.81 & 13913 & 0.00 & 0 & 0.00 & 0 \\
\hline
\end{tabular}

Table 9.6. Cod in Divisions 7.e-k. Time-series of survey indices scrutinized at WGCSE and used in the assessment.
\begin{tabular}{llll}
\hline COD & & DIVISIONS & 7.E-K \\
\hline 102 & & & TUNING \\
\hline FR-OTDEF & Q2+3+4 & trawlers & \\
\hline 2000 & 2016 & & 1 \\
\hline 1 & 1 & 0.25 & \(\mathrm{e}-\mathrm{k}\) \\
\hline 1 & 10 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Effort & Age 1 & Age2 & Age3 & Age4 & Age5 & Age6 & Age7 & Age8 & Age9 & Agel 0 \\
\hline 2000 & 217479 & 200742 & 93804 & 59384 & 35784 & 11253 & 5683 & 3988 & 545 & 356 & 0 \\
\hline 2001 & 223427 & 119879 & 383175 & 45401 & 44844 & 34907 & 11427 & 5256 & 2109 & 0 & 0 \\
\hline 2002 & 191161 & 188306 & 472476 & 144332 & 38748 & 16046 & 9760 & 4317 & 4212 & 252 & 0 \\
\hline 2003 & 184878 & 22380 & 134512 & 138065 & 59698 & 7928 & 7313 & 4455 & 847 & 424 & 0 \\
\hline 2004 & 164606 & 12412 & 54908 & 41644 & 21032 & 13420 & 1720 & 208 & 0 & 0 & 208 \\
\hline 2005 & 132472 & 13489 & 132632 & 10525 & 6207 & 8814 & 2861 & 367 & 54 & 237 & 0 \\
\hline 2006 & 117259 & 24447 & 148506 & 27730 & 3716 & 1912 & 1282 & 845 & 0 & 0 & 0 \\
\hline 2007 & 115878 & 265362 & 409573 & 76766 & 13367 & 2099 & 684 & 818 & 235 & 60 & 0 \\
\hline 2008 & 113485 & 77385 & 252690 & 44372 & 16057 & 4178 & 624 & 236 & 447 & 0 & 8 \\
\hline 2009 & 113348 & 106600 & 58211 & 46807 & 14017 & 5042 & 1939 & 894 & 353 & 0 & 19 \\
\hline 2010 & 100332 & 206831 & 103580 & 15881 & 8766 & 4600 & 678 & 102 & 0 & 17 & 0 \\
\hline 2011 & 101251 & 6870 & 1145981 & 92577 & 22801 & 17131 & 3074 & 551 & 0 & 0 & 0 \\
\hline 2012 & 124404 & 2709 & 108920 & 463339 & 109825 & 12257 & 6173 & 1939 & 176 & 1329 & 0 \\
\hline 2013 & 155301 & 41174 & 66032 & 126952 & 129554 & 21809 & 5676 & 1921 & 0 & 0 & 0 \\
\hline 2014 & 147143 & 160520 & 70506 & 23843 & 29394 & 48405 & 2958 & 191 & 0 & 0 & 0 \\
\hline 2015 & 135732 & 3473 & 409342 & 36700 & 6263 & 11629 & 7460 & 4640 & 0 & 0 & 0 \\
\hline 2016 & 131254 & 11768 & 21661 & 149990 & 12802 & 2733 & 2975 & 6765 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline IR-GFS & FR-EVHOE & Q4 & COMBINED \\
\hline 2003 & 2016 & & \\
\hline 1 & 1 & 0.79 & 0.92 \\
\hline 0 & 6 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & Effort & Age_0 & AGE_ 1 & AGE_2 & Age_3 & Age_4 & Age_5 & AGE_6 \\
\hline 2003 & 1 & 0.14 & 0.61 & 0.75 & 0.5 & 0.17 & 0 & 0 \\
\hline 2004 & 1 & 0.24 & 0.88 & 0.24 & 0.15 & 0.14 & 0.07 & 0 \\
\hline 2005 & 1 & 0.06 & 1.81 & 0.26 & 0.09 & 0 & 0 & 0 \\
\hline 2006 & 1 & 0.04 & 1.39 & 0.67 & 0.08 & 0 & 0 & 0.02 \\
\hline 2007 & 1 & 0 & 1.93 & 0.64 & 0.19 & 0.05 & 0 & 0 \\
\hline 2008 & 1 & 0 & 0.55 & 0.88 & 0.24 & 0.12 & 0 & 0 \\
\hline 2009 & 1 & 0.1 & 1.38 & 0.17 & 0.26 & 0.12 & 0 & 0.01 \\
\hline 2010 & 1 & 0.12 & 7.34 & 0.76 & 0.04 & 0.06 & 0.07 & 0 \\
\hline 2011 & 1 & 0.02 & 4.09 & 3.54 & 0.22 & 0.04 & 0.03 & 0 \\
\hline 2012 & 1 & 0 & 0.39 & 1.32 & 0.8 & 0.19 & 0.04 & 0 \\
\hline 2013 & 1 & 0.08 & 0.42 & 0.05 & 0.21 & 0.23 & 0 & 0 \\
\hline 2014 & 1 & 0 & 3.64 & 0.27 & 0.12 & 0.15 & 0.2 & 0 \\
\hline 2015 & 1 & 0 & 0.31 & 1.36 & 0.12 & 0 & 0.05 & 0.06 \\
\hline 2016 & 1 & 0 & 2.27 & 0.18 & 0.81 & 0.07 & 0.02 & 0.07 \\
\hline
\end{tabular}

Table 9.7. Cod in Divisions 7.e-k. Final XSA diagnostics (from FLR XSA).
```

FLR XSA Diagnostics 2017-05-11 09:50:58
CPUE data from indices
Catch data for 46 years. }1971\mathrm{ to 2016. Ages 1 to 7.
fleet first age last age first year last year alpha beta
1 FR-OTDEF 1 6 2000 2016 <NA> <NA>
2 IR-FR COMBINED SURVEY 1 4 2003 2016 <NA> <NA>
Time series weights :
Tapered time weighting not applied
Catchability analysis :
Catchability independent of size for all ages
Catchability independent of age for ages > 3
Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final }5\mathrm{ years or the }3\mathrm{ oldest ages.
S.E. of the mean to which the estimates are shrunk = 1
Minimum standard error for population
estimates derived from each fleet = 0.3
prior weighting not applied
Regression weights
year
age 2007200820092010201120122013201420152016
all 1
Fishing mortalities
year
age 2007200820092010 20112012 201320142015 2016
1 0.179 0.104 0.072 0.0520.510 0.056 0.102 0.134 0.090 0.052
2}0.9370.6510.4910.3740.679 0.407 0.6920.668 0.600 0.43
3 1.028 0.788 0.775 0.489 0.413 0.870 0.972 0.854 0.646 0.550
4 0.6780.8950.673 0.580 0.441 1.0340.9640.819 0.6020.409
5 0.6940.699 1.150 0.790 0.440 0.446 1.192 0.943 0.664 0.364
6
7 0.797 0.8360.765 1.108 0.395 0.369 0.860 0.503 0.502 0.434

```

XSA population number (NA)
```

year 1 2 3 4 5 6 7
200738652463742140 2088
2008161019366681965488
20093004 870 69922461214
2010135331676 3682378715
201148977697798167102317
201283017622702389825125
201314614708128351064111
2014771179016322724325 3
2015537404328051767424
20163385 2941535108 213155

```
Estimated population abundance at 1st Jan 2017
    age
year 12234567
201701927132654551216

Fleet: FR-OTDEF
Log catchability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & year & & & & & & & & & & \\
\hline age & \[
\begin{aligned}
& 2000 \\
& 2011
\end{aligned}
\] & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\
\hline 1 & 0.053 & -0.336 & 1.645 & 0.053 & -1.201 & -1.292 & -0.663 & 1.946 & 1.565 & 1.244 & 0.512 \\
\hline 1.617 & & & & & & & & & & & \\
\hline 2 & \[
\begin{aligned}
& -0.389 \\
& 0.801
\end{aligned}
\] & -0.586 & -0.095 & 0.072 & -0.302 & 0.068 & -0.127 & 0.924 & 0.54 & -0.22 & -0.247 \\
\hline 3 & \[
\begin{aligned}
& -0.591 \\
& 0.286
\end{aligned}
\] & -0.164 & -0.169 & 0.013 & 0.193 & -0.517 & -0.257 & 0.391 & -0.167 & -0.165 & -0.65 \\
\hline 4 & \[
\begin{aligned}
& -0.526 \\
& 0.446
\end{aligned}
\] & 0.2 & 0.93 & 0.344 & -0.34 & -0.226 & -0.243 & 0.094 & 0.083 & -0.312 & -0.773 \\
\hline 5 & \[
\begin{aligned}
& -0.58 \\
& 0.641
\end{aligned}
\] & 0.455 & 0.222 & 0.37 & 0.309 & 0.311 & -0.068 & 0.163 & -0.101 & 0.221 & -0.307 \\
\hline 6 & \[
\begin{aligned}
& -0.001 \\
& 0.078
\end{aligned}
\] & 0.209 & 0.106 & 0.143 & -0.062 & 0.062 & -0.17 & 0.005 & -0.014 & 0.108 & -0.297 \\
\hline age & 2012 & 2013 & 2014 & 2015 & 2016 & & & & & & \\
\hline 1 & -1.245 & 0.717 & 0.486 & -0.627 & -1.238 & & & & & & \\
\hline 2 & -0.442 & 0.323 & -0.091 & 0.077 & -0.306 & & & & & & \\
\hline 3 & 0.736 & 0.48 & 0.4 & 0.25 & -0.066 & & & & & & \\
\hline 4 & 1.307 & 0.447 & 0.239 & 0.136 & 0.02 & & & & & & \\
\hline 5 & 0.32 & 0.848 & 0.725 & 0.378 & 0.058 & & & & & & \\
\hline 6 & 0.051 & 0.255 & -0.061 & -0.138 & -0.184 & & & & & & \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\[
\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array}
\]

Mean_Logq -8.9559-6.6946-6.6209-6.6209-6.6209-6.6209
S.E_Logq 1.15260 .42760 .39420 .51370 .36110 .1462

Fleet: IR-FR COMBINED SURVEY
Log catchability residuals.
year
age 20032004200520062007200820092010201120122013201420152016 \(10.011-0.388-0.075-0.4240 .135-0.309-0.0410 .1090 .932-0.031-0.4830 .0400 .2040 .321\) \(20.8390 .063-0.573-0.061-0.029 \quad 0.286-0.6940 .0480 .3220 .577-1.1320 .015-0.0580 .397\) \(30.4610 .4410 .434-0.578-0.067 \quad 0.068 \quad 0.092-1.384-0.517-0.056-0.1040 .8420 .1210 .248\) \(40.4940 .5400 .0000 .000-0.0590 .6620 .339-0.492-0.6620 .554-0.0780 .6750 .0000 .300\)

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\[
\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}
\]

Mean_Logq \(\quad-7.1463-7.1118-7.0660-7.0660\)
S.E Logq 0.36280 .51780 .54970 .4171

Terminal year survivor and \(F\) summaries:

Age 1 Year class = 2015
source
survivors \(N\) scaledWts
FR-OTDEF Q2+3+4 trawlers in 7e-k 5591 IR-GFS FR-EVHOE Q4 combined indices new 26551 fsh
\begin{tabular}{ccc}
5591 & 0.080 & \\
26551 & 0.801 & \\
& 5131 & 0.119
\end{tabular}
scaledWts

Age 2 Year class \(=2014\)


Age 6 Year class \(=2010\)
\begin{tabular}{lcccc} 
& & survivors N & scaledWts \\
FR-OTDEF Q2+3+4 trawlers in 7e-k & 156 & & 0.834 & \\
IR-GFS FR-EVHOE Q4 combined indices new & 284 & & 0.082 & \\
fshk & & 151 & & 0.084
\end{tabular}

Table 9.8. Cod in Divisions 7.e-k. Final XSA fishing mortality-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & AGE_1 & AGE_2 & AGe_3 & Age_4 & AGE_5 & AGE_6 & AGE_7+ & Fbar(mean \(2-5)\) \\
\hline 1971 & 0.219 & 0.685 & 0.635 & 0.550 & 0.359 & 0.519 & 0.519 & 0.557 \\
\hline 1972 & 0.006 & 0.518 & 0.397 & 0.567 & 0.585 & 0.521 & 0.521 & 0.517 \\
\hline 1973 & 0.165 & 0.731 & 0.553 & 0.437 & 0.442 & 0.481 & 0.481 & 0.541 \\
\hline 1974 & 0.001 & 0.208 & 0.290 & 0.407 & 0.595 & 0.435 & 0.435 & 0.375 \\
\hline 1975 & 0.156 & 0.367 & 0.313 & 1.160 & 0.871 & 0.791 & 0.791 & 0.678 \\
\hline 1976 & 0.034 & 0.838 & 0.327 & 0.333 & 0.717 & 0.463 & 0.463 & 0.554 \\
\hline 1977 & 0.011 & 0.570 & 0.352 & 0.135 & 0.338 & 0.277 & 0.277 & 0.349 \\
\hline 1978 & 0.097 & 0.431 & 0.405 & 0.322 & 0.287 & 0.340 & 0.340 & 0.361 \\
\hline 1979 & 0.089 & 0.340 & 0.512 & 0.433 & 0.585 & 0.515 & 0.515 & 0.468 \\
\hline 1980 & 0.066 & 0.513 & 0.601 & 0.896 & 0.767 & 0.764 & 0.764 & 0.694 \\
\hline 1981 & 0.082 & 0.776 & 0.987 & 0.890 & 0.580 & 0.829 & 0.829 & 0.808 \\
\hline 1982 & 0.048 & 0.680 & 0.653 & 0.642 & 0.586 & 0.633 & 0.633 & 0.640 \\
\hline 1983 & 0.274 & 0.747 & 0.987 & 0.861 & 0.741 & 0.874 & 0.874 & 0.834 \\
\hline 1984 & 0.153 & 0.617 & 0.499 & 0.514 & 0.496 & 0.507 & 0.507 & 0.532 \\
\hline 1985 & 0.175 & 0.577 & 0.624 & 0.505 & 0.450 & 0.531 & 0.531 & 0.539 \\
\hline 1986 & 0.184 & 0.752 & 0.881 & 0.978 & 0.536 & 0.808 & 0.808 & 0.787 \\
\hline 1987 & 0.148 & 0.596 & 0.757 & 1.165 & 0.726 & 0.894 & 0.894 & 0.811 \\
\hline 1988 & 0.215 & 0.691 & 0.497 & 0.606 & 0.763 & 0.629 & 0.629 & 0.639 \\
\hline 1989 & 0.269 & 0.768 & 1.010 & 0.510 & 0.978 & 0.843 & 0.843 & 0.816 \\
\hline 1990 & 0.121 & 0.923 & 0.942 & 0.954 & 0.602 & 0.843 & 0.843 & 0.855 \\
\hline 1991 & 0.170 & 0.865 & 0.869 & 1.173 & 1.018 & 1.034 & 1.034 & 0.981 \\
\hline 1992 & 0.172 & 0.786 & 0.948 & 0.724 & 0.948 & 0.884 & 0.884 & 0.851 \\
\hline 1993 & 0.101 & 0.656 & 0.908 & 0.705 & 0.726 & 0.789 & 0.789 & 0.749 \\
\hline 1994 & 0.135 & 0.536 & 1.067 & 0.792 & 0.602 & 0.831 & 0.831 & 0.749 \\
\hline 1995 & 0.116 & 0.811 & 0.588 & 0.919 & 0.584 & 0.705 & 0.705 & 0.726 \\
\hline 1996 & 0.113 & 0.741 & 0.999 & 0.617 & 1.058 & 0.903 & 0.903 & 0.854 \\
\hline 1997 & 0.166 & 0.834 & 1.052 & 0.835 & 0.504 & 0.807 & 0.807 & 0.806 \\
\hline 1998 & 0.180 & 0.925 & 0.982 & 1.090 & 0.829 & 0.980 & 0.980 & 0.956 \\
\hline 1999 & 0.319 & 0.792 & 1.001 & 0.795 & 0.900 & 0.910 & 0.910 & 0.872 \\
\hline 2000 & 0.230 & 0.785 & 0.965 & 0.716 & 0.574 & 0.763 & 0.763 & 0.760 \\
\hline 2001 & 0.173 & 0.824 & 0.671 & 0.704 & 0.822 & 0.553 & 0.553 & 0.755 \\
\hline 2002 & 0.133 & 0.817 & 1.099 & 0.917 & 0.590 & 0.326 & 0.326 & 0.856 \\
\hline 2003 & 0.108 & 0.873 & 1.224 & 1.063 & 0.607 & 0.327 & 0.327 & 0.942 \\
\hline 2004 & 0.163 & 0.719 & 0.956 & 1.053 & 1.102 & 0.838 & 0.838 & 0.958 \\
\hline 2005 & 0.096 & 0.768 & 1.147 & 1.004 & 1.042 & 0.648 & 0.648 & 0.990 \\
\hline 2006 & 0.110 & 0.749 & 0.930 & 0.729 & 0.921 & 1.119 & 1.119 & 0.832 \\
\hline 2007 & 0.179 & 0.937 & 1.028 & 0.678 & 0.694 & 0.797 & 0.797 & 0.834 \\
\hline 2008 & 0.104 & 0.651 & 0.788 & 0.895 & 0.699 & 0.836 & 0.836 & 0.758 \\
\hline 2009 & 0.072 & 0.491 & 0.775 & 0.673 & 1.150 & 0.765 & 0.765 & 0.772 \\
\hline 2010 & 0.052 & 0.374 & 0.489 & 0.580 & 0.790 & 1.108 & 1.108 & 0.558 \\
\hline 2011 & 0.510 & 0.679 & 0.413 & 0.441 & 0.440 & 0.395 & 0.395 & 0.493 \\
\hline 2012 & 0.056 & 0.407 & 0.870 & 1.034 & 0.446 & 0.369 & 0.369 & 0.689 \\
\hline 2013 & 0.102 & 0.692 & 0.972 & 0.964 & 1.192 & 0.860 & 0.860 & 0.955 \\
\hline 2014 & 0.134 & 0.668 & 0.854 & 0.819 & 0.943 & 0.503 & 0.503 & 0.821 \\
\hline 2015 & 0.090 & 0.600 & 0.646 & 0.602 & 0.664 & 0.502 & 0.502 & 0.628 \\
\hline 2016 & 0.052 & 0.432 & 0.550 & 0.409 & 0.364 & 0.434 & 0.434 & 0.439 \\
\hline
\end{tabular}

Table 9.9. Cod in Divisions 7.e-k. Final XSA stock number-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline YeAR & AGE_1 & AGE_2 & AGE_3 & AGE_4 & AGE_5 & AGE_6 & AGE_7+ \\
\hline 1971 & 4769 & 1118 & 1381 & 260 & 131 & 47 & 30 \\
\hline 1972 & 928 & 2296 & 390 & 540 & 115 & 72 & 46 \\
\hline 1973 & 2810 & 553 & 947 & 194 & 234 & 50 & 32 \\
\hline 1974 & 889 & 1428 & 184 & 402 & 96 & 118 & 113 \\
\hline 1975 & 6031 & 532 & 802 & 102 & 204 & 41 & 67 \\
\hline 1976 & 1986 & 3093 & 255 & 433 & 24 & 67 & 21 \\
\hline 1977 & 2871 & 1151 & 926 & 136 & 237 & 9 & 78 \\
\hline 1978 & 2741 & 1701 & 450 & 480 & 91 & 132 & 77 \\
\hline 1979 & 6630 & 1491 & 765 & 222 & 266 & 53 & 88 \\
\hline 1980 & 12254 & 3634 & 734 & 338 & 110 & 116 & 29 \\
\hline 1981 & 5179 & 6872 & 1506 & 297 & 105 & 40 & 24 \\
\hline 1982 & 2117 & 2860 & 2189 & 414 & 93 & 46 & 12 \\
\hline 1983 & 6923 & 1209 & 1003 & 841 & 167 & 41 & 21 \\
\hline 1984 & 6696 & 3153 & 396 & 276 & 272 & 62 & 14 \\
\hline 1985 & 5892 & 3443 & 1177 & 178 & 126 & 129 & 41 \\
\hline 1986 & 5000 & 2964 & 1338 & 466 & 82 & 63 & 34 \\
\hline 1987 & 25361 & 2493 & 967 & 409 & 134 & 37 & 28 \\
\hline 1988 & 12239 & 13110 & 950 & 335 & 97 & 51 & 19 \\
\hline 1989 & 3648 & 5919 & 4547 & 427 & 140 & 36 & 21 \\
\hline 1990 & 4042 & 1670 & 1900 & 1221 & 196 & 41 & 31 \\
\hline 1991 & 11365 & 2146 & 459 & 547 & 360 & 84 & 24 \\
\hline 1992 & 11743 & 5745 & 625 & 142 & 129 & 101 & 32 \\
\hline 1993 & 3700 & 5927 & 1812 & 179 & 53 & 39 & 32 \\
\hline 1994 & 13716 & 2005 & 2128 & 539 & 68 & 20 & 33 \\
\hline 1995 & 9675 & 7182 & 812 & 540 & 187 & 29 & 11 \\
\hline 1996 & 7430 & 5161 & 2209 & 333 & 165 & 81 & 7 \\
\hline 1997 & 10001 & 3975 & 1702 & 600 & 137 & 45 & 12 \\
\hline 1998 & 5018 & 5077 & 1195 & 438 & 199 & 65 & 14 \\
\hline 1999 & 2352 & 2512 & 1394 & 330 & 113 & 68 & 26 \\
\hline 2000 & 10657 & 1025 & 788 & 378 & 114 & 36 & 29 \\
\hline 2001 & 8841 & 5077 & 323 & 222 & 141 & 50 & 50 \\
\hline 2002 & 2185 & 4455 & 1541 & 122 & 84 & 49 & 44 \\
\hline 2003 & 1300 & 1147 & 1363 & 379 & 37 & 36 & 28 \\
\hline 2004 & 2931 & 700 & 331 & 296 & 100 & 16 & 14 \\
\hline 2005 & 4166 & 1492 & 236 & 94 & 79 & 26 & 5 \\
\hline 2006 & 4585 & 2268 & 479 & 55 & 26 & 22 & 8 \\
\hline 2007 & 3865 & 2463 & 742 & 140 & 20 & 8 & 8 \\
\hline 2008 & 1610 & 1936 & 668 & 196 & 54 & 8 & 8 \\
\hline 2009 & 3004 & 870 & 699 & 224 & 61 & 21 & 4 \\
\hline 2010 & 13533 & 1676 & 368 & 237 & 87 & 15 & 3 \\
\hline 2011 & 4897 & 7697 & 798 & 167 & 102 & 31 & 7 \\
\hline 2012 & 830 & 1762 & 2702 & 389 & 82 & 51 & 25 \\
\hline 2013 & 1461 & 470 & 812 & 835 & 106 & 41 & 11 \\
\hline
\end{tabular}
\begin{tabular}{llllllll}
\hline YeAR & AGE_1 & AGE_2 & AGE_3 & AGE_4 & AGE_5 & AGE_6 & AGE_7+ \\
\hline 2014 & 7711 & 790 & 163 & 227 & 243 & 25 & 3 \\
\hline 2015 & 537 & 4043 & 280 & 51 & 76 & 74 & 24 \\
\hline 2016 & 3385 & 294 & 1535 & 108 & 21 & 31 & 55 \\
\hline GMST_71_2014 & 4505 & 2277 & 832 & 295 & 108 & 41 & 21 \\
\hline AMST_71_2014 & 6036 & 3051 & 1072 & 354 & 129 & 50 & 29 \\
\hline
\end{tabular}

Table 9.10. Cod in Divisions 7.e-k. Final XSA summary table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Recruitment & SSB & Catch & Landings & TSB & Fbar_2_5 & Y/SSB \\
\hline 1971 & 4769 & 10093 & 5782 & 5782 & 15346 & 0.557 & 0.57 \\
\hline 1972 & 928 & 9298 & 4737 & 4737 & 12808 & 0.517 & 0.51 \\
\hline 1973 & 2810 & 8617 & 4015 & 4015 & 11700 & 0.541 & 0.47 \\
\hline 1974 & 889 & 8327 & 2898 & 2898 & 10717 & 0.375 & 0.35 \\
\hline 1975 & 6031 & 7526 & 3993 & 3993 & 12589 & 0.678 & 0.53 \\
\hline 1976 & 1986 & 7316 & 4818 & 4818 & 12224 & 0.554 & 0.66 \\
\hline 1977 & 2871 & 8841 & 3059 & 3059 & 12545 & 0.349 & 0.35 \\
\hline 1978 & 2741 & 9689 & 3647 & 3647 & 13783 & 0.361 & 0.38 \\
\hline 1979 & 6630 & 9848 & 4650 & 4650 & 16346 & 0.467 & 0.47 \\
\hline 1980 & 12254 & 10347 & 7243 & 7243 & 22845 & 0.694 & 0.7 \\
\hline 1981 & 5179 & 11212 & 10597 & 10597 & 20697 & 0.808 & 0.95 \\
\hline 1982 & 2117 & 13547 & 8766 & 8766 & 18951 & 0.64 & 0.65 \\
\hline 1983 & 6923 & 13008 & 9641 & 9641 & 18545 & 0.834 & 0.74 \\
\hline 1984 & 6696 & 9568 & 6631 & 6631 & 17147 & 0.531 & 0.69 \\
\hline 1985 & 5892 & 13103 & 8317 & 8317 & 21794 & 0.539 & 0.63 \\
\hline 1986 & 5000 & 13692 & 10475 & 10475 & 20931 & 0.787 & 0.77 \\
\hline 1987 & 25361 & 11364 & 10228 & 10228 & 28403 & 0.811 & 0.9 \\
\hline 1988 & 12239 & 16607 & 17191 & 17191 & 41445 & 0.639 & 1.04 \\
\hline 1989 & 3648 & 26324 & 19809 & 19809 & 37580 & 0.817 & 0.75 \\
\hline 1990 & 4042 & 19126 & 12749 & 12749 & 25110 & 0.855 & 0.67 \\
\hline 1991 & 11365 & 10846 & 9336 & 9336 & 19521 & 0.981 & 0.86 \\
\hline 1992 & 11743 & 9074 & 9747 & 9747 & 21917 & 0.851 & 1.07 \\
\hline 1993 & 3700 & 12281 & 10425 & 10425 & 20981 & 0.749 & 0.85 \\
\hline 1994 & 13716 & 14360 & 10620 & 10620 & 26254 & 0.749 & 0.74 \\
\hline 1995 & 9675 & 13027 & 11709 & 11709 & 26015 & 0.726 & 0.9 \\
\hline 1996 & 7430 & 15916 & 12681 & 12681 & 26397 & 0.854 & 0.8 \\
\hline 1997 & 10001 & 14101 & 12035 & 12035 & 23422 & 0.806 & 0.85 \\
\hline 1998 & 5018 & 12590 & 11431 & 11431 & 19651 & 0.956 & 0.91 \\
\hline 1999 & 2352 & 10985 & 8594 & 8594 & 16113 & 0.872 & 0.78 \\
\hline 2000 & 10657 & 7673 & 6536 & 6536 & 15320 & 0.76 & 0.85 \\
\hline 2001 & 8841 & 8590 & 8308 & 8308 & 18994 & 0.755 & 0.97 \\
\hline 2002 & 2185 & 10858 & 9236 & 9236 & 15995 & 0.856 & 0.85 \\
\hline 2003 & 1300 & 8873 & 6420 & 6420 & 11331 & 0.942 & 0.72 \\
\hline 2004 & 2931 & 4641 & 3672 & 3672 & 7224 & 0.958 & 0.79 \\
\hline 2005 & 4166 & 3397 & 3062 & 3062 & 7547 & 0.99 & 0.9 \\
\hline 2006 & 4585 & 3769 & 3776 & 3776 & 8965 & 0.832 & 1 \\
\hline 2007 & 3865 & 5121 & 4830 & 4830 & 10448 & 0.834 & 0.94 \\
\hline 2008 & 1610 & 5455 & 3961 & 3961 & 9023 & 0.758 & 0.73 \\
\hline 2009 & 3004 & 5092 & 3292 & 3292 & 9228 & 0.772 & 0.65 \\
\hline 2010 & 13533 & 4956 & 3229 & 3229 & 17821 & 0.558 & 0.65 \\
\hline 2011 & 4897 & 9064 & 7261 & 7261 & 17115 & 0.493 & 0.8 \\
\hline 2012 & \[
830
\] & 13628 & 7692 & 7692 & 17219 & 0.689 & 0.56 \\
\hline
\end{tabular}
\begin{tabular}{llllllll}
\hline YEAR & RECRUITMENT & SSB & CATCH & LANDINGS & TSB & FBAR_2_5 & Y/SSB \\
\hline 2013 & 1461 & 9604 & 6290 & 6290 & 11519 & 0.955 & 0.65 \\
\hline 2014 & 7711 & 4929 & 3879 & 3879 & 9488 & 0.821 & 0.79 \\
\hline 2015 & 537 & 5327 & 4154 & 4154 & 9358 & 0.628 & 0.78 \\
\hline 2016 & 3385 & 7043 & 3299 & 3299 & 10254 & 0.439 & 0.47 \\
\hline 2017 & 4505 & 7140 & & & & & \\
\hline Average_71_2014 & 5859 & 10188 & 7494 & 7494 & 17361 & 0.716 & 0.731 \\
\hline
\end{tabular}

Table 9.11. Cod Division 7.e-k. Short-term forecast. Input table.
\begin{tabular}{llllllll}
\hline YEAR & AGE & STOCK.N & STOCK.WT & CATCH.WT & MAT & M & F \\
\hline 2017 & 1 & 4505 & 0.757 & 0.859 & 0.00 & 0.512 & 0.06389 \\
\hline & 2 & 1927 & 1.424 & 2.094 & 0.39 & 0.368 & 0.39496 \\
\hline & 3 & 132 & 3.850 & 4.412 & 0.87 & 0.304 & 0.47621 \\
\hline & 4 & 654 & 7.249 & 7.458 & 0.93 & 0.269 & 0.42494 \\
\hline & 5 & 55 & 9.917 & 9.284 & 1.00 & 0.247 & 0.45796 \\
\hline & 6 & 12 & 10.899 & 10.977 & 1.00 & 0.233 & 0.33431 \\
\hline & 7 & 44 & 12.380 & 11.689 & 1.00 & 0.223 & 0.33431 \\
\hline 2018 & 1 & 4505 & 0.757 & 0.859 & 0.00 & 0.512 & 0.06389 \\
\hline & 2 & 2533 & 1.424 & 2.094 & 0.39 & 0.368 & 0.39496 \\
\hline & 3 & 898 & 3.850 & 4.412 & 0.87 & 0.304 & 0.47621 \\
\hline & 4 & 61 & 7.249 & 7.458 & 0.93 & 0.269 & 0.42494 \\
\hline & 5 & 327 & 9.917 & 9.284 & 1.00 & 0.247 & 0.45796 \\
\hline & 6 & 27 & 10.899 & 10.977 & 1.00 & 0.233 & 0.33431 \\
\hline 2019 & 32 & 12.380 & 11.689 & 1.00 & 0.223 & 0.33431 \\
\hline & 4 & 4505 & 0.757 & 0.859 & 0.00 & 0.512 & 0.06389 \\
\hline & 2 & 2533 & 1.424 & 2.094 & 0.39 & 0.368 & 0.39496 \\
\hline & 3 & 1181 & 3.850 & 4.412 & 0.87 & 0.304 & 0.47621 \\
\hline 4 & 412 & 7.249 & 7.458 & 0.93 & 0.269 & 0.42494 \\
\hline 5 & 30 & 9.917 & 9.284 & 1.00 & 0.247 & 0.45796 \\
\hline & 161 & 10.899 & 10.977 & 1.00 & 0.233 & 0.33431 \\
\hline & 34 & 12.380 & 11.689 & 1.00 & 0.223 & 0.33431 \\
\hline
\end{tabular}

Table 9.12. Cod Division 7.e-k. Short-term forecast. Single option output table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline [1] & YEAR :2017 & \begin{tabular}{l}
F \\
MULTIPLIER
\[
1
\]
\end{tabular} & FBAR \(=0.43852\) & & & & \\
\hline Age & F & CacthNos & CacthTons & StockNos & StockTons & SSBNos & SSBTons \\
\hline 1 & 0.0638890 & 219 & 188 & 4505 & 3412 & 0 & 0 \\
\hline 2 & 0.3949597 & 532 & 1115 & 1927 & 2744 & 751 & 1070 \\
\hline 3 & 0.4762059 & 44 & 193 & 132 & 509 & 115 & 443 \\
\hline 4 & 0.4249403 & 200 & 1494 & 654 & 4740 & 608 & 4408 \\
\hline 5 & 0.4579588 & 18 & 168 & 55 & 546 & 55 & 546 \\
\hline 6 & 0.3343122 & 3 & 33 & 12 & 127 & 12 & 127 \\
\hline 7 & 0.3343122 & 11 & 132 & 44 & 546 & 44 & 546 \\
\hline & Total & 1027 & 3323 & 7329 & 12624 & 1585 & 7140 \\
\hline [1] & Year :2018 & F multiplier 1 & Fbar=0.43852 & & & & \\
\hline Age & F & CacthNos & CacthTons & StockNos & StockTons & SSBNos & SSBTons \\
\hline 1 & 0.0638890 & 219 & 188 & 4505 & 3412 & 0 & 0 \\
\hline 2 & 0.3949597 & 700 & 1466 & 2533 & 3607 & 988 & 1407 \\
\hline 3 & 0.4762059 & 297 & 1311 & 898 & 3459 & 782 & 3009 \\
\hline 4 & 0.4249403 & 19 & 138 & 61 & 439 & 56 & 408 \\
\hline 5 & 0.4579588 & 107 & 997 & 327 & 3240 & 327 & 3240 \\
\hline 6 & 0.3343122 & 7 & 76 & 27 & 296 & 27 & 296 \\
\hline 7 & 0.3343122 & 8 & 95 & 32 & 394 & 32 & 394 \\
\hline & Total & 1357 & 4271 & 8383 & 14847 & 2212 & 8754 \\
\hline [1] & Year :2019 & F multiplier 1 & Fbar=0.43852 & & & & \\
\hline Age & F & CacthNos & CacthTons & StockNos & StockTons & SSBNos & SSBTons \\
\hline 1 & 0.0638890 & 219 & 188 & 4505 & 3412 & 0 & 0 \\
\hline 2 & 0.3949597 & 700 & 1466 & 2533 & 3607 & 988 & 1407 \\
\hline 3 & 0.4762059 & 390 & 1723 & 1181 & 4547 & 1027 & 3956 \\
\hline 4 & 0.4249403 & 126 & 941 & 412 & 2985 & 383 & 2776 \\
\hline 5 & 0.4579588 & 10 & 92 & 30 & 300 & 30 & 300 \\
\hline 6 & 0.3343122 & 41 & 452 & 161 & 1759 & 161 & 1759 \\
\hline \multirow[t]{2}{*}{7} & 0.3343122 & 9 & 101 & 34 & 417 & 34 & 417 \\
\hline & Total & 1495 & 4963 & 8856 & 17027 & 2623 & 10615 \\
\hline
\end{tabular}

Table 9.13. Cod Division 7.e-k. Short-term forecast. Management options output.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{2017} & & \multirow[t]{3}{*}{} \\
\hline Biomasse & ssb & fmult & f2_5 & landings & & \\
\hline 12624 & 7140 & 1 & 0.43852 & 3323 & & \\
\hline & \multicolumn{2}{|l|}{2018} & & & \multicolumn{2}{|l|}{2019} \\
\hline Biomasse & ssb & fmult & f2_5 & landings & Biomasse. 1 & ssb. 1 \\
\hline 14848 & 8755 & 0.0 & 0.00000 & 0 & 22634 & 15663 \\
\hline 14848 & 8755 & 0.1 & 0.04385 & 507 & 21962 & 15055 \\
\hline 14848 & 8755 & 0.2 & 0.08770 & 994 & 21318 & 14473 \\
\hline 14848 & 8755 & 0.4 & 0.17541 & 1913 & 20107 & 13382 \\
\hline 14848 & 8755 & 0.5 & 0.21926 & 2345 & 19539 & 12870 \\
\hline 14848 & 8755 & 0.7 & 0.30696 & 3161 & 18471 & 11910 \\
\hline 14848 & 8755 & 0.8 & 0.35081 & 3546 & 17970 & 11460 \\
\hline 14848 & 8755 & 0.9 & 0.39466 & 3915 & 17489 & 11028 \\
\hline 14848 & 8755 & 1.0 & 0.43852 & 4271 & 17027 & 10615 \\
\hline 14848 & 8755 & 1.1 & 0.48237 & 4613 & 16584 & 10219 \\
\hline 14848 & 8755 & 1.3 & 0.57007 & 5258 & 15752 & 9475 \\
\hline 14848 & 8755 & 1.4 & 0.61392 & 5563 & 15360 & 9126 \\
\hline 14848 & 8755 & 1.5 & 0.65777 & 5856 & 14985 & 8792 \\
\hline 14848 & 8755 & 1.6 & 0.70163 & 6138 & 14624 & 8471 \\
\hline 14848 & 8755 & 1.8 & 0.78933 & 6671 & 13946 & 7870 \\
\hline 14848 & 8755 & 1.9 & 0.83318 & 6923 & 13627 & 7587 \\
\hline 14848 & 8755 & 2.0 & 0.87703 & 7166 & 13321 & 7317 \\
\hline
\end{tabular}

Table 9.14. Catch option table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Rationale} & Wanted & \multirow[t]{3}{*}{BASIS} & F WANTED & \multirow[t]{3}{*}{SSB (2019)} & \multirow[t]{3}{*}{\begin{tabular}{l}
\% SSB \\
CHANGE
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
\% TAC \\
CHANGE
\end{tabular}} \\
\hline & CATCH & & CATCH & & & \\
\hline & 2018. & & 2018. & & & \\
\hline MSY Approach & 3546 & FMSY & 0.35 & 11460 & 31 & 25 \\
\hline MSY Approach & 2430 & FMSY Min & 0.23 & 12770 & 46 & -14 \\
\hline MSY Approach & 5102 & FMSY Max & 0.55 & 9655 & 10 & 80 \\
\hline Precautionary Buffer & 3082 & FBuff & 0.30 & 12002 & 37 & 9 \\
\hline Zero catch & 0 & \(\mathrm{F}=0\) & 0.00 & 15663 & 79 & -100 \\
\hline \multirow[t]{8}{*}{Other options} & 4271 & F2017 & 0.44 & 10615 & 21 & 51 \\
\hline & 2388 & TAC2017-15\% (F2017*0.51) & 0.22 & 12820 & 46 & -16 \\
\hline & 2842 & TAC2017 & 0.27 & 12284 & 40 & 0 \\
\hline & 3239 & TAC2017+15\% (F2017*0.72) & 0.32 & 11818 & 35 & 14 \\
\hline & 6723 & Flim & 0.80 & 7812 & -11 & 138 \\
\hline & 5320 & Fpa & 0.58 & 9404 & 7 & 88 \\
\hline & 7166 & Blim & 0.88 & 7317 & -16 & 153 \\
\hline & 4545 & Bpa & 0.47 & 10296 & 18 & 61 \\
\hline
\end{tabular}


Figure 9.1. Cod in Divisions 7.e-k 2016. Historical landings by countries.


Figure 9.2. Cod in Divisions 7.e-k 2016. 2016 landings by area, season and country.


Figure 9.3.a. Cod in Divisions 7.e-k 2016. Raised French 2016 landings and discards length distribution - Sampled strata only (e.g.Q4 unsampled, or number of sampled to low).


Figure 9.3.b. Cod in Divisions 7.e-k 2016. Raised Irish 2016 landings and discards length distribution- sampled strata only.


Figure 9.3.c. Cod in Divisions 7.e-k 2016. Belgian 2016 landings length distribution. Raised to the fleet.


Figure 9.3.d. Cod in Divisions 7.e-k 2016. Raised United Kingdom 2016 landings and discards length distribution - Sampled strata only.


Figure 9.4. Cod in Divisions 7.e-k 2016. Raised age distribution of the catches (landings and discards).


Figure 9.5a. Cod in Divisions 7.e-k. Time-series of landings, effort, lpue for the French fleets. Units: landings in tonnes, Effort in days fished and lpue in \(\mathrm{Kg} /\) day.


Figure 9.5b. Cod in Divisions 7.e-k. Time-series of landings, effort, lpue for the Irish fleets. Units in tonnes live weight, Effort in 000s hours fished, lpue in \(\mathrm{Kg} /\) hour fished.


Figure 9.5c. Cod in Divisions 7.e-k. Time-series of landings, effort, lpue for the UK fleets. Units: landings in tonnes, Effort in days fished and lpue in Kg/day.


Figure 9.6. Cod in Divisions 7.e-k. Tuning indices used in the assessment. Commercial tuning fleet corresponds to French OTDEF Q2+3+4 where total number-at-age are plotted. The survey index is a combined index based on both French IR-GFS and FR-Evhoe Q4 data where mean number-at-age per hour and grid cell are plotted.



Figure 9.7. Cod in Divisions 7.e-k. Final assessment. Residuals (Left panel: French OTDEF demersal tuning fleet; Right Panel: Combined survey indices).


Figure 9.8. Cod in Divisions 7.e-k. Final XSA outputs. Fishing mortality. Fbar=Thick balck line. Age1=red, Age2=green, Age3=blue, Age4=purple, Age5=orange, Age6=brown, Age7=pink. Age 0 are not included in the assessment.


Figure 9.9. Cod in Divisions 7.e-k. Final XSA outputs. Catch and Stock number-at-age. Age 0 are not included in the assessment.


Figure 9.10. Cod in Divisions 7.e-k. Final XSA outputs. Summary plots.


Figure 9.11a. Cod in Divisions 7.e-k. Final XSA. Retrospective plots.

\section*{Cod in VIlek}


F in legend for year shown by vertical dotted line


Figure 9.11b. Cod in Divisions 7.e-k. Final XSA. Comparison between runs (runs with the two tuning indices, with only the survey index and with only the commercial tuning index).


Figure 9.12. Cod in Divisions 7.e-k. Stock-recruitment plots and yield per recruits information yield per recruit not provides this year by sag outputs.


Figure 9.13. Cod in Divisions 7.e-k. Forecast yield in 2018 and SSB 2019.

\subsection*{9.11 Audit of Cod 27.7.e-k}

Date: 26th May 2017
Auditor: Pia Schuchert

\section*{General}

\section*{For single stock summary sheet advice}
- Assessment type: update
- Assessment: XSA
- Forecast: Short-term Forecast
- Assessment model: XSA
- Data issues: Catch data only
- Consistency: XSA as last year
- Stock status: SSB has been below MSY Btrigger since 2000 and is improving slowly since 2014. Fishing pressure is above Fmsy but has been declining in the past two years. Recruitment has been around average for the last few years.
- Management Plan: None

\section*{General comments}

Well written report, clear and concise

\section*{Technical comments}

Assessment follows the stock annex

\section*{Conclusions}

The assessment has been performed correctly

\section*{Checklist for audit process}

\section*{General aspects}
- Has the EG answered those TORs relevant to providing advice? YES
- Is the assessment according to the stock annex description? YES
- If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary?
- Have the data been used as specified in the stock annex? Yes
- Has the assessment, recruitment and forecast model been applied as specified in the stock annex? Yes
- Is there any major reason to deviate from the standard procedure for this stock? No
- Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice? Yes

\section*{10 Haddock in Division 6.b (Rockall)}

\section*{Type of assessment in 2017: Update assessment}

The current assessment is an update of last year's assessment. The same approach has been used in the annual assessment since 2005 when on the recommendation of RGNSDS, adopted a new assessment approach, which allows modelling of the total catch (including discards) when no on-board observations were available (for details see the Stock Annex).

ICES advice applicable to 2017
ICES advice applicable to 2017 can be found here:
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2016/2016/had-rock.pdf

\subsection*{10.1.1 General}

\section*{Stock description and management units}

The haddock stock at Rockall is an entirely separate stock from that inhabiting the continental shelf of the British Isles. Since 2004, the EU TAC for haddock in \(6 . b\) has been included with Divisions 12 and 14. For details of the earlier management units see the Stock Annex.

\section*{Management applicable to 2016 and 2017}

The EU TAC for 6.b, 12 and 14 was set at 3225 t in 2016 (a \(25 \%\) increasing compared to TAC for 2015).
\begin{tabular}{lr|ll}
\hline Species: \begin{tabular}{lrl}
\begin{tabular}{l} 
Haddock \\
Melanogrammus aeglefinus
\end{tabular} & Zone: & \begin{tabular}{l} 
Union and international waters of Vlb, XII and XIV \\
(HAD/6B1214)
\end{tabular} \\
\hline Belgium & 7 & \\
Germany & 24 & \\
France & 332 & \\
Ireland & 353 & \\
United Kingdom & 2509 & \\
Union & 3225 & Analytical TAC \\
TAC & 3225 & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

The EU TAC for 6.b, 12 and 14 was set at 4690 t in 2017 (a \(45 \%\) increasing compared to TAC for 2016).
\begin{tabular}{ll|ll}
\hline Species: & \begin{tabular}{l} 
Haddock \\
Melanogrammus aeglefinus
\end{tabular} & Zone: & \begin{tabular}{l} 
Union and international waters of VIb, XII and XIV \\
(HAD/6B1214)
\end{tabular} \\
\hline Belgium & 10 & \\
Germany & 36 & \\
France & 494 & \\
Ireland & 411 & \\
United Kingdom & 3739 & \\
Union & 4690 & & \\
TAC & 4690 & Analytical TAC \\
& & & \\
\end{tabular}

The ICES advice, agreed TAC for EU waters, and WG estimates of landings during 2002-2016 are summarised below. All values are in thousand tonnes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{YEAR} & Predicted & Predicted & BASIS & AGREED & WG \\
\hline & CATCH & Landings & & TAC \({ }^{\text {a }}\) & LANDINGS \\
\hline & CORRESP. TO & CORRESP. TO & & & \\
\hline & ADVICE & ADVICE & & & \\
\hline 2002 & \(<1.30\) & & Reduce F below 0.2 & & 3.0 \\
\hline 2003 & - & & Lowest possible F & & 6.1 \\
\hline 2004 & - & & Lowest possible \(\mathrm{F}^{\text {b }}\) & 0.702 & 6.3 \\
\hline 2005 & - & & Lowest possible \(\mathrm{F}^{\text {b }}\) & 0.702 & 5.2 \\
\hline 2006 & - & & Lowest possible \(\mathrm{F}^{\text {b }}\) & 0.597 & 2.8 \\
\hline 2007 & \(<7.10\) & & Reduce F below FPA \({ }^{\text {b }}\) & 4.615 & 3.3 \\
\hline 2008 & < 10.64 & & Keep F below FPA \({ }^{\text {b }}\) & 6.916 & 4.2 \\
\hline 2009 & & \(<4.3\) & No long-term gains in increasing \(\mathrm{F}^{\mathrm{b}}\) & 5.879 & 3.8 \\
\hline 2010 & & \(<3.3\) & Little gain on the long-term yield by increasing \(\mathrm{F}^{\mathrm{b}}\) & 4.997 & 3.4 \\
\hline 2011 & & \(<2.7\) & Reduction in F is needed to keep SSB to above BPA in 2012 & 3.748 & 1.9 \\
\hline 2012 & & \(<3.3\) & MSY approach & 3.300 & 0.7 \\
\hline 2013 & 0 & 0 & No directed fisheries, minimize bycatch and discards & 0.99 & 0.8 \\
\hline 2014 & \(<1.62^{\text {c }}\) & <0.98 & MSY approch & 1.21 & 1.7 \\
\hline 2015 & <4.31 & \(<2.93\) & MSY approch & 2.58 & 2.5 \\
\hline 2016 & < 3.932 & <3.225\# & MSY approach & 3.225 & 2.6 \\
\hline 2017 & \(\leq 4.69\) & \(\leq 4.13\) & MSY approach & 4.690 & \\
\hline
\end{tabular}

Before 2014 TAC was set for Divisions 6.a and 6.b (plus Vb1, 12 and 14) combined with restrictions on quantity that can be taken in 5.b and 6.a. The quantity shown here is the total area TAC minus the maximum amount which is allowed to be taken from 5.b and 6.a. In 2004, the EU TAC for Division 6 was split and the 6.b TAC for haddock was included with 12 and 14. This value is the TAC for 6.b, 12 and 14.
\({ }^{\text {b }}\) Single-stock boundary and the exploitation of this stock should be conducted in the context of mixed fisheries, protecting stocks outside safe biological limits.
\# Wanted catch.

The minimum landing size of haddock taken by EU vessels at Rockall is 30 cm . There is no minimum landing size for haddock taken by non-EU vessels in international waters.

In order to protect the pre-recruit stock, the International Waters component of the statistical rectangle 42D5 has been closed for fishing since 2001 and its EU component, since 2002 (see the Stock Annex). The protected area (the whole rectangle) is referred to as Rockall Haddock Box. In order to protect cold-water corals, three further areas (North West Rockall, Logachev Mounds and West Rockall Mounds) were closed since January 2007 (see the Stock Annex). A new area to protect cold-water corals (Empress of British Banks) was established by the NEAFC in 2007 and 2012.

Since 2009 in NEAFC regulatory are, including international waters of Rockall, was established a ban on discards.

Fishery in 2016

\section*{Russian fishery in 2016}

Directed fishing of haddock in Rockall by Russian vessels was not conducted in 2016.

\section*{Scottish fishery in 2016}

There were 22 Scottish vessels fishing in Division 6.b in 2016. Total Scottish demersal landings in \(6 . \mathrm{b}\) in 2016 were estimated to be 2864 t , of which 1846 t were haddock ( \(5 \%\) increase compared to 2015). Other important target species included anglerfish (Lophius spp.), ling, saithe and megrim. Scottish effort presented in Tables 4.3.2 and 4.3.3.

\section*{Irish fishery in 2016}

Irish effort in Rockall declined in 2009-2015 (Table 4.3.2).
Landings totalling 362 t haddock were reported from Irish otter trawlers in 2016 (increased from 190 t in 2015; Table 4.3.1). Irish vessels used single otter trawls with a mesh size ranging from 100 to 120 mm together with a square mesh panel.

\section*{Norwegian fishery in 2016}

In 2008-2015 Norwegian landings of haddock at Rockall 36-66 t were reported. Total Norwegian landings 63 t of haddock at Rockall were reported in 2016. Norwegian demersal fleet fishing on the Rockall Bank consisted mainly of longliners and targeted mainly ling and tusk.

\subsection*{10.1.2 Data}

\section*{Landings}

Nominal landings as reported to ICES are given in Table 4.3.1, along with Working Group estimates of total estimated landings. Revisions to official catch statistics for previous years are also shown in Table 4.3.1.

Anecdotal evidence suggests that misreporting of haddock from Rockall have occurred historically (which may have led to discrepancies in assessment), but a quantitative estimation of the degree of misreporting is not possible.

International age composition and mean weight-at-age in the landings were compiled according to the methods described in the Stock Annex.

\section*{BMS landings}

In 2016 BMS (Below Minimum Size) landings which are subject EU landings obligation were only 0.4 t . In assessment BMS landings were include in total landings.

\section*{Discards}

Historically, the discard rate was as high as \(12-87 \%\) by numbers according to the results of discards trips (see the Stock Annex). The methods used to reconstruct the historical time-series of discards is described in the Stock Annex.

The discards for 2010-2016 in the 2017 assessment were estimated from sampling onboard Scottish and Irish vessels collected in 2010-2016 (Table 4.3.4-4.3.6). On Rus-
sian vessels, the whole catch of haddock is kept on board and therefore, total catch is equivalent to landings and there is no need to calculate discards. In 2015 the discard rate was estimate at \(38 \%\) and \(52 \%\) by numbers on Scottish and Irish observer trips. (Tables 4.3.4-4.3.7).

In 2016 the level of discards has not changed significantly and was estimate at \(11 \%\) and \(56 \%\) by numbers on Scottish and Irish observer trips.

\section*{Biological}

There was no change in biological parameters compared to the 2016 assessment (see the Stock Annex).

\section*{Surveys}

There is only one abundance index available for this stock the Scottish Rock-IBTS-Q3 survey (Figures 4.3.1-4.3.3). The survey is co-ordinated by IBTS and described further in the IBTS reports and Stock Annex.

The area which was covered by survey was not stable and moreover the survey coverage, has been extended in recent years (Figure 4.3.1). The 2016 indices were obtained from the standard survey area, i.e. same indices as last year's for the final run (Figure 4.3.2, Table 4.3.8).

Additional abundance and biomass estimates are calculated by the swept area method using three types of stratification of the survey area:

1 ) by geographic strata of \(15^{\prime}\) latitude wide and 15 ' longitude long (Figure 4.3.4);

2 ) by five bathymetric strata depending on depth: <150 m, 150-175 m, 176\(200 \mathrm{~m}, 201-225 \mathrm{~m}\) and \(>225 \mathrm{~m}\) (Figure 4.3.5);
3 ) the whole survey area is taken for one strata without substratification (Figure 4.3.6).

All three methods show similar patterns (Figures 4.3.4-4.3.6).
In 2011, the gear was changed on the Scottish survey and an analysis showed that there was no detectable difference between the older and new survey on haddock indices in neighbouring areas (IBTSWG 2012).

The Russian trawl acoustic survey conducted in 2005 provided information on the size and biomass of the haddock stock both in the EU zone and in international waters. The acoustic survey yielded a biomass estimate of 60000 t and an abundance estimate of 225.9 million (for the details see the Stock Annex). No such survey has been conducted in subsequent years.

\section*{Commercial effort, Ipue and cpue}

Commercial effort series are available for Scottish trawlers, light trawlers, seiners, Irish otter trawlers and Russian trawlers fishing in Division 6.b. The effort data for these fleets are shown in Figure 4.3 .7 and Tables 4.3.2-4.3.3. Effort data in hours from the Scottish fleets are discontinued after 2008 and provided in KWDays after 2003 (Table 4.3.3). Effort by the Scottish and Irish fleets has been relatively stable at a low level in the last three years.

Commercial lpue for the Irish and Scottish fleets and cpue for the Russian fleet are shown in Figure 4.3.8. The WG decided that the commercial cpue and lpue data, that
do not include discards, and have not been corrected for changes in fishing power despite known changes in vessel size, engine power, fish-finding technology and net design, were unsuitable for catch-at-age tuning.

\subsection*{10.1.3 Description of stock assessment approach}

Model used:
The assessment is based on catch-at-age data and one survey index (Scottish Rock-IBTS-Q3) and conducted using the XSA method.

Software used:
The same software was used as in the last year's assessment (XSA from Lowestoft suite of VPA programs).

Model Options chosen:
Settings for the final XSA assessment did not change compared to the previous assessment (see the Stock Annex) and were as follows:

Assessment model: XSA
Tuning indices: one survey index (Scottish Rock-IBTS-Q3)
Time-series weights: none
Catchability dependent for ages \(<4\)
Regression type: C
Minimum number of points used for regression: 10
Q plateau: 5
Shrinkage stand. error: 1.0
Shrinkage age, year: 4 years, 3 ages
Minimum stand. error: 0.3
Plus group: 7+
Fbar: 2-5
Input data types and characteristics:
There were no changes in data types and characteristics compared to the previous assessment:

Year range: 1991-2016
Age range: 1-7+
For tuning data the following year and age ranges were used:
Year range: 1991-2016
Age range: 1-6

\section*{Data screening}

Figures 4.3.10 and 4.3 .11 as well as Tables 4.3 .9 show landings, discards and total catch by number and weight. Landings, discards and total catch-at-age by number are shown in Tables 4.3.10-4.3.12.

Mean weights-at-age in total catch, landings, discards and stock are shown in Tables 4.3.13-4.3.16. The mean weights-at-age in the stock are assumed to be the same as the catch weights. In 2012, the discard rate was relatively low and a small number of samples of discarded haddock were collected (especially for older ages). As a result, mean weights-at-age 3 and 7+ in discards were higher in 2012 compared to previous years (Figure 4.3.12). This increase in mean weight-at-age 3 and 7+ was observed in the Scottish samples. Mean weights and accordingly numbers of Scottish discards atage 3 and 7+ for 2011 has been recalculated using linear regression by analogy with haddock 6.a as in last year's assessment (Figure 4.3.12). Given the low numbers of discards, these recalculations did not significantly affect the mean weights-at-age of the total catch.

Mean weight-at-age 6 in landings was significant higher in 2012 compared to previous years (Figure 4.3.12). Mean weights and accordingly numbers of landings at-age 6 for 2012 have been recalculated using linear regression (Figure 4.3.12).

In 2014 for runs weight-at-age in landings was used same as weight-at-age observed in samples without recalculations.

In 2016 BMS (Below Minimum Size) landings which are subject EU landings obligation were only 0.4 t . In assessment BMS landings were include in total landings. Because BMS landings were low this did not lead to a decrease in the average weight of landings.

In 2016 mean weight-at-age in catches was higher compare to previous years. It gave not real increasing of mean weight-at-age in stock because the mean weights-at-age in the stock are assumed to be the same as the catch weights. To mitigate against this a five year mean was used for weight-at-age in stock in 2016.

The mean weights-at-age in the total catch (including discards) and in the stock are shown in Figure 4.3.13.

There were small landings of haddock aged 1 in 2010-2012 and very few aged 2 to 6 compared to historical values. Haddock aged 7 dominated landings. But in 2013 landings and discards of haddock aged 1 significant increased. Discarded fish are, primarily, haddock aged 1-2 (see Tables 4.3.1 and 4.3.2 in the Stock Annex). Figures of log catch by age show that these values are much less variable when discards are included (Figures 4.3.14-4.3.20). Data on catches, landings and discards-at-age are given in Tables 4.3.10-4.3.12.
The Scottish Rock-IBTS-Q3 was the only survey index available to the working group. Plots of \(\log\) cpue by age, year and year class are shown in Figures 4.3.21 and 4.3.23.

A SURBA 3.0 run was carried out to analyse the survey data. Previous working groups have concluded that the first three years of the survey should not be used in assessments and that age 0 data were a poor indicator of year-class strength. Here, the runs were actually conducted using the survey data from 1991 onwards to be consistent with the period over which the catch-at-age assessment could be run (the settings: lambda \(=1.0\), reference age \(=3\) ). A summary of the results are shown in Figure 4.3.25. SSB shows a declining trend from 1995, an increase in 2003-2004 and a general decrease in subsequent years. The estimates of the temporal component of Z are very noisy, but indicate a steep decline between 2000 and 2003 followed by an upward trend. Retrospective analysis showed consistent estimation of SSB and Z (25) (Figure 4.3.26).

Comparative scatter plots of log index at-age are shown in Figure 4.3.27. The survey shows relatively good internal consistency in tracking year-class strength through time.

\section*{Final update assessment}

\section*{Final run}

Settings for the final XSA assessment are shown in Section C of the Stock Annex. There have been no changes to assessment settings since 2013.

The diagnostics file of the final XSA run is given in Table 4.3.17 and Figure 4.3.28. Adjusted survey cpue against XSA population estimates are shown in Figures 4.3.30 and 4.3.31. The analysis of residuals and retrospective analysis (Figures 4.3 .31 and 4.3.32) show that applying the chosen parameters for XSA (as in the Stock Annex) improves the residual patterns compared to other exploratory settings. However, the same trends are still apparent in the log catchability residuals. The results of the retrospective analysis conducted by the Working Group in 2002 and 2003 indicated that using shrinkage values of more than 0.5 improved the retrospective curves and showed convergence. In this year's analysis, only 22 years data were available for the retrospective analysis, but a good year-to-year consistency was obtained. Dynamics of fishing mortality-at-age are presented in Figure 4.3.34. The final XSA results are given in Tables 4.3.18-4.3.20. The final XSA and SURBA results are compared in Figure 4.3.35. The SURBA estimates are more variable, but there is a good overall consistency between estimates by the two methods.

Summary plots from the final XSA assessment are shown in Figure 4.3.36.

\section*{Further exploratory run}

Haddock of 2007-2011 year classes are poor and rare caught in commercial and survey. That leads to the high variability of assessment of their numbers. This is especially evident when was assessed the number of haddock of the poor 2011 year class by the survey. In the first years of life a generation was underestimated. However, in 2015 the survey showed that year class is stronger and no typical tendency in dynamic of the Survey indices of that year class (Tables 4.3.8 and 4.3.17 and Figure 4.3.21). Analysis showed high catchability residual for these year classes in 2012-2015 (Figure 4.3.28).

To reconstruction of the indexes 2011 year class and two points of 2010 and 2009 classes was applied the linear regression. Corrected Survey indexes presented in the Table 4.3.9 and Figure 4.3.22. The exploratory runs with revised indexes led to a decreasing of catchability residual (Figure 4.3.29). The WG concluded as last year that the run without this adjustment was more appropriate and the assessment was not overly biased by this weak year class in the index.

Comparison of final and experimental XSA runs shown in Figure 4.3.37.

\section*{Comparison with previous assessments}

The estimates from this year's assessment are reasonably consistent with the assessments carried out in previous years (Figure 4.3.38). SSB in 2016 has been revised down by \(18 \%\) and F in 2015 has been revised down by \(96 \%\) in this year's assessment. Probably it is result of changes in selectivity pattern due to underestimating discards rate in 2013-2014 when in stock dominated haddock with small size (year class 2012).

\section*{State of the stock}

The stock summary relative to reference points is plotted in Figure 4.3.36.
The spawning-stock biomass (SSB) has increased from the lowest observed in 2014 and is estimated to be above MSY \(\mathrm{B}_{\text {trigger }}\) in 2016. Fishing mortality ( F ) has declined over time but has been above Fmsy since 2014. Recruitment during 2008-2012 is estimated to be extremely weak. Recruitment has improved in 2013-2014 and decreased again in 2015-2016 and is still lower than the values estimated at the beginning of the time-series.

\section*{Statistical catch-at-age analysis (SCAA)}

For Statistical catch-at-age analysis, StatCam model was used (J. Brodziak, 2005). VPA and SCAA used identical survey and catch data. For StatCam runs two scenarios were used: First scenario, non-parametric model; second, parametric model.

StatCam model shows good conformity between observed and predicted survey index and catch biomass. Log residuals were less than 0.4 for total survey index (Figures 4.3.39-4.3.40).

StatCam summary plots are shown in Figure 4.3.41.
Both Statistical catch-at-age analysis and VPA results show a similar tendency for the SSB dynamics. However, the assessment of the stock size depends on the choice of the model. SSB and TSB plots from the XSA and SCAA assessment are compared in Figure 4.3.42.

\subsection*{10.1.4 Short-term projections}

\section*{Estimating year-class abundance}

In 2007-2011, the abundance of age 0 individuals in the survey index were estimated to be extremely weak. In 2012, the observed large in number 0-group. Year classes 2013 and 2014 were below average but above levels 2008-2012 (Figure 4.3.43). Poor year classes may be related to environmental factors including rising seawater temperatures in Rockall Bank, a reduction in zooplankton abundance (ephausiids and Calanus finmarhicus) and the negative impact of predation on eggs and larvae and food competition from the grey gurnard. 2012 year class was overestimated by survey assessment of 0-group 2015 (Figure 4.3.44). It is result in increasing of uncertainty assessment because above \(70 \%\) of 0 -group fish were caught during a single haul (Figure 4.3.2). In 2007-2016 the recruitment (age 1) assessed by VPA was below average for full time-series 1991-2016 (Table 4.3.20).

In 2016 was observed strong 0-group. But in 2016, a considerable number of 0-group fish were caught during a single haul, with these individuals contributing more than \(69 \%\) towards the total numbers of 0 -group fish caught in the entire survey (Figure 4.3.2). That increases the uncertainty of forecasting recruitment same as in 2012.

VPA abundance for age 1 has been highly correlated with age 0 indices for 1993-2015 (Figure 4.3.44). The recruitment (age 1) in 2013-2017 was therefore estimated using RCT3 regression (Shepherd, 1997) relating survey indices to stock abundance. The recruitment in 2017 was estimated at 94770 thousand, one of the highest values of the time-series.

For forecasting recruitment (age 1) in 2018 and thereafter, the WG recommended the same procedure as last year using the 25th percentile over the whole time-series.

Many definitions of how to compute the percentile may be found in the literature. The WG chose the simple rounding of the result to the nearest integer and taking the value that corresponded to that rank of percentile. The rank of percentile was determined by the following equation:
\[
n=\frac{P}{10} * N+\frac{1}{2}
\]

P being the percentile value (here \(\mathrm{P}=25\) ), and N the length of the time-series (here \(\mathrm{N}=21\) ). The rank of 25 th percentile for the recruitment is then 7 . The 6th lowest value of the time-series corresponds to a value of 10387 thousand in 2016.

The input data for the short-term forecast can be found in Table 4.3.21.

\section*{Catch constraint}

A catch constraint is used for 2017. The assumed catch in 2016 of 6990 t is estimated based on and EU TAC of 4990 t and estimated Russian catch 2000 t . Recent EU quota up take has been high and the Russian fishery has already taken place in 2016 so the catch constraint forecast, as last year, is considered to be the best approach by the WG.

Results of forecast are shown in Tables 4.3.22-4.3.23.

\section*{Mean weights and F pattern}

In recent years the number of sampled trips for both landings and discards has been very low. This leads to higher variability in catch and survey estimates of those year classes, increasing the uncertainty in F. To mitigate against this in the forecast a five year mean was used for weight-at-age and fishing pattern was used (as last year).

\section*{Partitioning of catch into discards and landings}

An important uncertainty in the assessment and forecast concerns the estimates of discards. The number of sampled discard trips in the last years has been very low. According that results discard ratio-at-age varies considerably from year to year. As was done last year and mean discard ratio-at-age from 2006 was used for forecasting discards in the short term (Tables 4.3.7-4.3.10; Figure 4.3.45).

\section*{STF results}

Results obtained from the forecast (including discards) are given in Tables 4.3.224.3.23. The short-term forecast is also shown in Figure 4.3.46.

The sensitivity analysis of the forecast and probability plots for yield in 2018 and SSB in 2019.are shown in Figures 4.3.47-4.3.48. Stock numbers of recruits and their source for recent year classes used in the predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes are shown in Table 4.3.24.

\subsection*{10.1.5 MSY evaluations and biological reference points}

ICES carried out and evaluation of MSY and PA reference points for this stock last year at WKMSYREF4 (ICES, 2016a). The results have been published earlier this year (ICES, 2016b) are summarized below:
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference POINT & Value & Technical basis & Source \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MSY \\
approach
\end{tabular}} & MSY
\[
\mathrm{B}_{\text {trigger }}
\] & 13690 t & \(\mathrm{B}_{\mathrm{pa}}\). & ICES, 2016 \\
\hline & FMSY & 0.2 & Based on the peak of the median landings yield curve (WKMSYREF4). (MSY Range 0.13-0.2) & ICES, 2016 \\
\hline \multirow[t]{4}{*}{Precautionary approach} & Blim & 6800 t & Blim \(=\) Bloss, the lowest observed spawning stock estimated in previous assessments. & ICES, 2016 \\
\hline & \(\mathrm{B}_{\mathrm{pa}}\) & 10200 t & \(\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\lim } \times 1.5\). This is considered to be the minimum SSB required to obtain a high probability of maintaining SSB above Blim, taking into account the uncertainty of assessments. & ICES, 2016 \\
\hline & Flim & 0.69 & Based on a \(50 \%\) probability of being above \(B_{\lim }\) in a stochastic simulation with a segmented regression using breakpoint at \(\mathrm{Blim}_{\mathrm{lim}}\) & ICES, 2016 \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.46 & \(\mathrm{F}_{\mathrm{pa}}=\mathrm{F}_{\text {lim }} / 1.5\) & ICES, 2016 \\
\hline \multirow[t]{2}{*}{Management plan} & SSBMGT & 10200 t & \(\mathrm{B}_{\mathrm{pa}}\) & ICES, 2013 \\
\hline & Fmgt & 0.2 & Based on harvest control rule evaluations. & ICES, 2013 \\
\hline
\end{tabular}

\subsection*{10.1.6 Management plans}

In September 2011 and 2012 in accordance with the conclusions of the 2010-2011 Annual Meeting of the NEAFC, a delegation from the RF and EU considered the management plan. In the light of the ICES comments, were considered the necessary adjustments required to the draft plan. The revised proposal for a harvest control component of a long-term management plan for haddock at Rockall was forwarded to NEAFC at the opportunity for approval at the 2012 Annual Meeting. ICES is requested to evaluate the EU-Russia proposal for the harvest control component of the management plan for Rockall haddock and to evaluate the proposals on the protection of juvenile Rockall haddock. According the management plan the measure shall be put in place to ensure that total catch does not exceed the established TAC including measures to record and minimise discards. It is the consideration of 2004 Expert Group the basic measure to reduce discards should be effort regulation along with the biological reasonable the minimum landings size.

ICES evaluated a new HCR proposal RF and EU for the Rockall haddock stock in August 2013 (ICES, 2013) and found that a maximum F of 0.2 was required in the HCR to ensure consistency with the precautionary approach, under the low recruitment conditions observed since 2004.

The management plan additionally indicates that measures should be put in place to ensure that total catch does not exceed the established TAC, including measures to record and minimize discards. After the introduction of these measures, the human consumption TAC method currently used by ICES (advice based on landings) should not be applied.

By NEAFC opinion the measures to reduce discards for whole area distribution of stock need to develop and to implement on practice, while also reducing the TAC to take into account any discarding that is still taking place for realization of management plan. In NEAFC regulatory area (RA) established a ban on discards. The remainder of the management plan for this species is considered to be suitable and has been agreed by the Contracting Parties (NEAFC, 2015).

\subsection*{10.1.7 Uncertainties and bias in assessment and forecast}

The WG considers that the long-term trends in the XSA assessment and survey biomass estimates/indices are indicative of the general stock trends. The assessment has become increasingly uncertainty in recent years as catch and sampling levels have declined to low levels. In the catch options five-year average values were used and a catch constraint applied in the intermediate year.

\subsection*{10.1.8 Recommendation for next benchmark}

In recent years WGCSE have highlighted an increasing number of issues to be addressed when this stock is benchmarked.

1 ) There are concerns over the accuracy of landings statistics from Rockall in earlier years.
2 ) The determination of the fishing mortality for last strong year class (2005) is uncertain because same time included in plus group. An improved timeseries of landings and discards for ages 7 and older is needed for this assessment. It is necessary for separate estimation of fishing mortality of haddock included in the age plus group.
3 ) There was no analysis of which method is better to use when in terms poor information by result discards trips: the method of estimating discards from survey data or the results poor discards, especially in 2010 where an average rate had to be used since the survey could not take place.
4 ) Haddock poor year classes 2007-2011 are rare in samples this leads to higher variability in catch and survey estimates of those year classes. Analysis showed high catchability residual for year classes 2009-2011 in 2012-2015. The linear regression was proposed to reconstruction of the indexes these year classes. Analysis on the possibility of applying proposed method of reconstruction of the indexes of those year classes need.
5 ) The WG considers that a longer series of more accurate landings, discards (for non-Russian fleets) and survey data will be necessary to overcome these deficiencies.
6 ) In 1999 and 2011 the gear and tow duration were changed on the Scottish survey. Analysis of that changing on stock assessment needed.
7 ) There are doubts on the level of agreement of age reading by international experts.
8 ) The XSA assessment shows trends in catchability, even if reduced by weak shrinkage. Diagnostics give quite large standard errors on survivors' estimates (0.3-0.4) and there are often quite different values given by Scottish Rock-IBTS-Q3, F-shrinkage and P-shrinkage.

9 ) The survey covers only part of the currently known distribution area of haddock that raises uncertainty in the assessment.

10 ) The main conclusion of WGCSE is that a longer time-series of available landings and discard data is needed before progress can be made towards the next benchmark assessment of this stock.

11 ) The indices obtained from the standard survey area must be used for the next assessment on account of the heterogeneity in the abundance and length-age composition of the haddock stock in different parts of the bank. New survey indexes from whole area will be used for the assessment once the time-series for the whole area of haddock distribution is of sufficient length.

12 ) It is recommended to analyse the opportunity of using new estimation models including Statistical catch-at-age analysis which could improve the quality of the assessment. Finally, it would be beneficial to develop and introduce standardization methods for reading the age for haddock.

No timeframe for the next benchmark could be proposed at this stage.

\subsection*{10.1.9 Management considerations}

The new Fmsy estimate is consistent with the F in the management plan previously evaluated by ICES. The stock appears to be recovering after a period of very low recruitment. Incoming recruitment is still not a strong as it was historically. So a sudden expansion of the fishery at Rockall should be avoided.

A discards ban has been in place in the NEAFC regulatory area since 2009. Haddock in 6.b have not yet been included under the EU landings obligation in 2016 (EC, 2015). It would be beneficial to develop and introduce into fisheries practice measures aimed at preventing discards of haddock. Elaboration of such measures complies with recommendations under the UNGA Resolution 61/105 that urges states to take action to reduce or eliminate fish discards (UNGA Resolution 61/105, 2007, Chapter VIII, item 60).

\subsection*{10.1.10 References}

Blacker R.W. 1982. Rockall and its fishery. Laboratory Leaflet, Lowestoft. No 55. 23 pp.
Brodziak J. 2005. Technical Description of STATCAM Version 1.2. Northeast Fisheries Science Center 166 Water Street Woods Hole, MA 02543.39 pp.

Chuksin, Yu. V. and Gerber, E. M. 1976. Soviet fishery in the Rockall and Porcupine areas. Zaprybpromrazvedka. Kaliningrad, 8 pp.

EC. 2015. Commission Delegated Regulation (EU) 2015/2438 of 12 October 2015 establishing a discard plan for certain demersal fisheries in north-western waters.

Finina E.A., Khlivnoy V.N., Vinnichenko V.I. 2009. The Reproductive Biology of Haddock (Mellanogrammus aeglefinus) at the Rockall Bank. Journal of Northwest Atlantic Fishery Science, Vol. 40: pp. 59-73.

ICES. 2004. Report of an Expert Group on Rockall Haddock Recovery Plans following a request for advice made on behalf of the European Community and the Russian Federation. 13-15 January 2004. Galway, Ireland. ICES/ACFM. 300 p.

ICES. 2013. ICES Advice 5.3.2.2. Special request Advice August 2013. Request from NEAFC to evaluate the proposals for the harvest control components of the management plan for Rockall haddock fisheries. ICES CM 2013/ACOM. 8 p.

ICES. 2016. Report of the Workshop to consider Fmsy ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4). ICES CM 2015/ACOM:58. 183 p.

Khlivnoy V.N., Sentiabov E.V. 2009. Influence of environmental factors on formation of year classes of haddock (Melanogrammus aeglefinus) at the Rockall Bank. Theses and reports of X All-Russian conference on problems of fishery forecasting, Murmansk: PINRO. 137 pp .

Newton, A. W., Peach, K. J., Coull, K. A., Gault, M. and Needle, C. L. 2008. Rockall and the Scottish haddock fishery. Fisheries Research, 94: pp.133-140.
Shestov, V. P. 1977. Rockall haddock. Fishery biological resources of the North Atlantic and adjacent seas of the Arctic Ocean. Moscow, pp.344-346.

Sonina M. A. 1976. The condition of the Arcto-Norwegian haddock stock and the factors determining the population size. // The Edition of the PINRO works. Vol. 37. 129-150 pp.
Tormosova I. D. 1978. The survival of North Sea haddock eggs at different stages of development and its determining factors. The Edition of the AtlantNIRO works. Vol. 81. 7-18 pp.

Table 4.3.1. Nominal catch (tonnes) of haddock in Division 6.b, 1996-2016, as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & \(2016{ }^{5}\) \\
\hline \begin{tabular}{l}
Faroe \\
Islands
\end{tabular} & - & - & - & - & \(\mathrm{n} / \mathrm{a}\) & \(\mathrm{n} / \mathrm{a}\) & - & - & - & - & 2 & 2 & 16 & - & 42 & 2 & 53 & - & \(<1\) & \(<1\) & - \\
\hline France & - & - & - & & 5 & 2 & - & 1 & - & - & - & - & - & - & - & <1 & - & - & \(<1\) & - & - \\
\hline Iceland & - & - & - & 167 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Ireland & 747 & 895 & 704 & 1,021 & 824 & 357 & 206 & 169 & 19 & 105 & 41 & 338 & 721 & 352 & 169 & 123 & 31 & 105 & 94 & 190 & 362 \\
\hline Norway & 24 & 24 & 40 & 61 & 152 & 70 & 49 & 60 & 32 & 33 & 123 & 84 & 36 & 71 & 65 & 40 & 48 & 121 & 41 & 66 & 63 \\
\hline Portugal & - & - & 4 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & \\
\hline \begin{tabular}{l}
Russian \\
Federation
\end{tabular} & - & - & - & 458 & 2,154 & 630 & 1,630 & 4,237 & 5,844 & 4,708 & 2,154 & 1,282 & 1669 & 55 & 198 & - & 1 & 4 & 388 & 136 & - \\
\hline Spain & 1 & 22 & 21 & 25 & 47 & 51 & 7 & 19 & - & - & 5 & - & - & - & - & - & - & - & - & - & \\
\hline \[
\begin{aligned}
& \text { UK (E, W \& } \\
& \text { NI) }
\end{aligned}
\] & 293 & 165 & 561 & 288 & 36 & - & - & 56 & - & - & - & - & - & - & - & - & - & - & - & - & \\
\hline UK (Scotland) & 5,753 & 4,114 & 3,768 & 3,970 & 2,470 & 1,205 & 1,145 \({ }^{3}\) & 1,607 & \(411{ }^{3}\) & \(332{ }^{3}\) & \(440^{3}\) & 1,643 \({ }^{3}\) & 1,779 \({ }^{3}\) & 2,951 \({ }^{3}\) & 2,931 \({ }^{3}\) & 1,738 \({ }^{3}\) & \(577{ }^{3}\) & 5963 & 1,152 \({ }^{3}\) & 2,052 \({ }^{3}\) & 2,585 \({ }^{3}\) \\
\hline Total & 6,818 & 5,220 & 5,098 & 5,990 & 5,688 & 2,315 & 3,037 & 6,148 & 6,306 & 5,178 & 2,765 & 3,349 & 4,221 & 3,429 & 3,405 & 1,903 & 710 & 826 & 1,675 & 2,445 & 3,009 \\
\hline Unallocated catch & -543 & -591 & -599 & -851 & -357 & -279 & 299 & 94 & 139 & 1 & 0 & 0 & 0 & -192 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline WG estimate & 6,275 & 4,629 & 4,499 & 5,139 & 5,331 \({ }^{4}\) & 2,036 \({ }^{4}\) & 3,336 \({ }^{4}\) & \(6.242^{4}\) & 6,445 & 5,179 & 2,765 & 3,349 & 4,221 & 3,237 & 3,405 & 1,903 & 710 & 826 & 1,675 & 2,445 & 3,009 \\
\hline
\end{tabular}

\section*{Preliminary.}

\section*{\({ }^{2}\) Included in Division 6.a.}
\({ }^{3}\) Includes Scotland, England, Wales and NI landings.
\({ }^{4}\) Includes the total Russian catch.
\(n / \mathbf{a}=\) not available.

Table 4.3.2. Details of Scottish and Irish effort (in hours) from 1985-2015 (preliminary data).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{3}{|l|}{SCOTtish fleet} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { IRISH FLEET } \\
& \hline \text { IROTB* }^{*}
\end{aligned}
\]} \\
\hline & SCOTRL* & SCOLTR* & SCOSEI* & \\
\hline 1985 & 8421 & 3081 & 1677 & \\
\hline 1986 & 7465 & 4783 & 507 & \\
\hline 1987 & 8786 & 9737 & 402 & \\
\hline 1988 & 12450 & 5521 & 261 & \\
\hline 1989 & 10161 & 11946 & 1411 & \\
\hline 1990 & 3249 & 5335 & 4552 & \\
\hline 1991 & 2995 & 11464 & 6733 & \\
\hline 1992 & 2402 & 9623 & 3948 & \\
\hline 1993 & 1632 & 11540 & 1756 & \\
\hline 1994 & 2305 & 15543 & 399 & \\
\hline 1995 & 1789 & 13517 & 1383 & 9142 \\
\hline 1996 & 1627 & 17324 & 952 & 7219 \\
\hline 1997 & 563 & 16096 & 1061 & 7169 \\
\hline 1998 & 1332 & 12263 & 456 & 7461 \\
\hline 1999 & 11336 & 9424 & 456 & 8680 \\
\hline 2000 & 12951 & 8586 & 80 & 9883 \\
\hline 2001 & 7838 & 1037 & 42 & 7244 \\
\hline 2002 & 8304 & 1100 & 0 & 2626 \\
\hline 2003 & 15000 & 500 & 50 & 4618 \\
\hline 2004 & 15200 & 300 & 50 & 2070 \\
\hline 2005 & 7788 & 32 & 0 & 2693 \\
\hline 2006 & 9990 & 231 & 0 & 5903 \\
\hline 2007 & 4534 & 319 & 44 & 6589 \\
\hline 2008 & 2497 & 1016 & 82 & 9740 \\
\hline 2009 & NA & NA & NA & 4354 \\
\hline 2010 & NA & NA & NA & 3280 \\
\hline 2011 & NA & NA & NA & 2495 \\
\hline 2012 & NA & NA & NA & 3291 \\
\hline 2013 & NA & NA & NA & 2947 \\
\hline 2014 & NA & NA & NA & 3159 \\
\hline 2015 & NA & NA & NA & 3053 \\
\hline 2016 & NA & NA & NA & NA \\
\hline
\end{tabular}

SCOTRL* - Scottish Heavy Trawl, SCOLTR* - Scottish Light Trawl, SCOSEI* - Scottish Seine, IROTB* - Irish bottom otter trawl.

Table 4.3.3. Effort from the Scottish TR1 fleet at Rockall (see the Section Cod 6.b).
\begin{tabular}{lll}
\hline YEAR & \multicolumn{2}{c}{ EFFORT(KWDAYS) } \\
\hline 2003 & 2504466 \\
\hline 2004 & 1842103 \\
\hline 2005 & 1217357 \\
\hline 2006 & 1011354 \\
\hline 2007 & 1060551 \\
\hline 2008 & 1124197 \\
\hline 2009 & 1631239 \\
\hline 2010 & 1744452 \\
\hline 2011 & 1565753 \\
\hline 2012 & 901552 \\
\hline 2013 & 532767 \\
\hline 2014 & 668665 \\
\hline 2015 & 563098 \\
\hline 2016 & 514486 \\
\hline
\end{tabular}

Table 4.3.4. Discards and retained catches of haddock (number per trip) by Irish discard trips in the Rockall area from 2007-2009 and 2011-2012.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Year \\
Length (cm)
\end{tabular}} & \multicolumn{2}{|l|}{2007} & \multicolumn{2}{|l|}{2008} & \multicolumn{2}{|l|}{2009} & \multicolumn{2}{|l|}{2011} & \multicolumn{2}{|l|}{2012} \\
\hline & Discards & \begin{tabular}{l}
Retained \\
Catch
\end{tabular} & Discards & \begin{tabular}{l}
Retained \\
Catch
\end{tabular} & Discards & \begin{tabular}{l}
Retained \\
Catch
\end{tabular} & Discards & Retained Catch & Discards & Retained Catch \\
\hline 10 & & & & & & & & & 1 & \\
\hline 11 & & & & & & & & & 1 & \\
\hline 12 & & & & & & & & & 1 & \\
\hline 13 & & & & & & & & & 1 & \\
\hline \multicolumn{11}{|l|}{14} \\
\hline \multicolumn{11}{|l|}{15} \\
\hline \multicolumn{11}{|l|}{16} \\
\hline \multicolumn{11}{|l|}{17} \\
\hline \multicolumn{11}{|l|}{18} \\
\hline 19 & 1.3 & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{20} \\
\hline \multicolumn{11}{|l|}{21} \\
\hline 22 & 1.6 & & 14.8 & & & & & & & \\
\hline 23 & 4.6 & & 66.2 & & & & 13.1 & & & \\
\hline 24 & 7.3 & & 183.8 & & & & 98.9 & 5.7 & & \\
\hline 25 & 22.7 & & 576.9 & & 15.6 & & 53.9 & 5.7 & & \\
\hline 26 & 54.2 & & 1424.9 & & 30.4 & & 75.3 & 11.4 & & \\
\hline 27 & 104.6 & & 3024.6 & & 25.2 & & 121.3 & 34.3 & 2 & \\
\hline 28 & 256.9 & & 6274.7 & & 228.2 & & 96.4 & 108.5 & & \\
\hline 29 & 386.5 & 7.9 & 7193.3 & & 180.6 & & 33.6 & 62.8 & & \\
\hline 30 & 533.4 & 17.6 & 7813.5 & 13.9 & 573.2 & 9.9 & 73.9 & 5.7 & 3 & 2 \\
\hline 31 & 462.6 & 47.2 & 7573.7 & 40.6 & 1338.1 & 9.9 & 28.6 & 17.1 & 6 & 3 \\
\hline 32 & 298.8 & 88.3 & 4639.0 & 77.8 & 1762.8 & 57.8 & 46.9 & 125.3 & 7 & 4 \\
\hline 33 & 227.3 & 99.4 & 3664.7 & 126.8 & 2256.5 & 235.9 & 20.7 & 92.4 & 9 & 5 \\
\hline 34 & 120.8 & 139.2 & 2391.8 & 277.4 & 1496.5 & 397.3 & 16.0 & 196.8 & 7 & 7 \\
\hline 35 & 78.3 & 118.8 & 1590.1 & 503.6 & 656.6 & 614.8 & 4.8 & 118.6 & 6 & 8 \\
\hline 36 & 27.4 & 187.0 & 871.7 & 580.5 & 423.5 & 567.1 & 0.3 & 340.4 & 2 & 6 \\
\hline 37 & 26.1 & 139.8 & 280.3 & 640.9 & 66.9 & 526.8 & 0.0 & 235.8 & 1 & 11 \\
\hline 38 & 24.3 & 142.7 & 78.3 & 581.9 & 57.4 & 421.4 & 0.0 & 632.2 & & 8 \\
\hline 39 & 3.4 & 162.5 & 206.6 & 443.0 & 23.1 & 346.9 & 4.8 & 312.7 & & 11 \\
\hline 40 & 8.7 & 119.4 & 37.5 & 535.6 & & 281.4 & & 158.9 & & 9 \\
\hline 41 & 1.3 & 133.8 & 5.2 & 310.7 & & 197.9 & & 203.4 & & 12 \\
\hline 42 & 4.6 & 133.1 & 5.2 & 334.7 & & 155.7 & & 348.1 & & 13 \\
\hline 43 & 3.2 & 109.3 & & 333.5 & & 195.1 & & 225.4 & & 11 \\
\hline 44 & & 118.6 & & 291.1 & & 201.7 & & 305.4 & & 13 \\
\hline 45 & & 97.9 & & 253.6 & & 149.9 & & 226.0 & & 10 \\
\hline \(>45 \mathrm{~cm}\) & & 574.5 & 0.0 & 1791.2 & 0.0 & 1001.7 & & 2490.8 & 1 & 144 \\
\hline Total & 2659.9 & 2436.9 & 47916.8 & 7136.8 & 9134.4 & 5371.3 & 688.6 & 6263.7 & 48.0 & 277.0 \\
\hline Discard rate, \% & 52.2 & & 87.0 & & 63.0 & & 10.0 & & 14.8 & \\
\hline
\end{tabular}

Table 4.3.5. Length composition of Irish discards and landings of haddock (number) by results of Irish discard trips in the Rockall area in 2014-2015.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Year \\
Length (cm)
\end{tabular}} & \multicolumn{2}{|l|}{2014} & \multicolumn{2}{|l|}{2015} \\
\hline & Discards & Landings & Discards & Landings \\
\hline \multicolumn{5}{|l|}{10} \\
\hline \multicolumn{5}{|l|}{11} \\
\hline \multicolumn{5}{|l|}{12} \\
\hline \multicolumn{5}{|l|}{13} \\
\hline \multicolumn{5}{|l|}{14} \\
\hline \multicolumn{5}{|l|}{15} \\
\hline \multicolumn{5}{|l|}{16} \\
\hline \multicolumn{5}{|l|}{17} \\
\hline \multicolumn{5}{|l|}{18} \\
\hline \multicolumn{5}{|l|}{19} \\
\hline 20 & 508.86 & & & \\
\hline 21 & 1249.21 & & 68.03 & \\
\hline 22 & 3757.56 & & 136.45 & \\
\hline 23 & 9882.93 & & 548.57 & \\
\hline 24 & 17742.15 & & 2466.15 & \\
\hline 25 & 26690.88 & & 5489.88 & \\
\hline 26 & 29456.22 & 206.22 & 8664.85 & \\
\hline 27 & 27737.04 & 1787.22 & 17011.27 & \\
\hline 28 & 28506.24 & 4605.52 & 23581.32 & \\
\hline 29 & 23556.01 & 5224.18 & 28730.09 & \\
\hline 30 & 22791.88 & 4261.83 & 33689.11 & 274.85 \\
\hline 31 & 25734.19 & 4330.57 & 32838.74 & 742.11 \\
\hline 32 & 25404.86 & 3436.96 & 33210.44 & 1044.45 \\
\hline 33 & 17211.02 & 4880.48 & 25934.47 & 2308.78 \\
\hline 34 & 8877.72 & 6392.74 & 17534.75 & 2666.09 \\
\hline 35 & 4733.26 & 7217.61 & 7589.53 & 8300.60 \\
\hline 36 & 2034.38 & 6324.00 & 4142.17 & 9702.36 \\
\hline 37 & 918.99 & 5774.09 & 854.19 & 16628.69 \\
\hline 38 & 77.02 & 4674.26 & 110.53 & 10636.86 \\
\hline 39 & 153.20 & 3780.65 & 88.60 & 13495.35 \\
\hline 40 & 0.00 & 4949.22 & & 14787.16 \\
\hline 41 & 39.00 & 4949.22 & & 12808.21 \\
\hline 42 & 51.67 & 7011.39 & & 17425.77 \\
\hline 43 & 12.67 & 4743.00 & & 14732.19 \\
\hline 44 & 12.67 & 4055.61 & & 11488.91 \\
\hline 45 & 25.34 & 2680.83 & & 11186.57 \\
\hline \(>45 \mathrm{~cm}\) & 290.53 & 30520.19 & & 77254.68 \\
\hline Total & 277455.52 & 121805.80 & 242689.10 & 225483.63 \\
\hline Discard rate, \% & 69.5 & & 51.8 & \\
\hline
\end{tabular}

Table 4.3.6. Discards and retained catches of haddock (number per trip) by Scottish discard trips in the Rockall area in 2009 and \(2011-2015\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Length (cm)} & \multicolumn{2}{|l|}{2009} & \multicolumn{2}{|l|}{2011} & \multicolumn{2}{|l|}{2012} & \multicolumn{2}{|l|}{2013*} & \multicolumn{2}{|l|}{2014*} & \multicolumn{2}{|l|}{2015*} \\
\hline & Discards & LANDINGS \\
\hline 9 & & & & & 1.0 & & & & & & & \\
\hline 10 & & & & & 3.0 & & & & & & & \\
\hline 11 & & & & & 5.2 & & & & & & & \\
\hline 12 & & & & & 66.5 & & & & & & & \\
\hline 13 & & & & & 233.3 & & & & & & & \\
\hline 14 & & & & & 313.0 & & & & & & & \\
\hline 15 & & & & & 842.8 & & & & & & & \\
\hline 16 & & & & & 516.7 & & 226 & & 1493 & & & \\
\hline 17 & & & & & 247.3 & & 0 & & 7817 & & 138 & \\
\hline 18 & & & & & 341.7 & & 0 & & 22709 & & 957 & \\
\hline 19 & & & & & 81.5 & & 135 & & 39126 & & 4591 & \\
\hline 20 & & & & & 4.7 & & 39 & & 37513 & & 9278 & \\
\hline 21 & & & & & & & 357 & & 25979 & & 15194 & \\
\hline 22 & & & & & & & 1322 & & 8774 & & 16591 & \\
\hline 23 & & & & & 4.0 & & 2201 & & 14104 & & 19529 & \\
\hline 24 & & & & & 23.0 & & 3665 & & 28818 & & 42079 & \\
\hline 25 & & & & & 18.9 & & 6643 & & 64709 & & 122065 & \\
\hline 26 & & & 3.8 & & 36.4 & & 6714 & & 118616 & & 206928 & \\
\hline 27 & & & 3.8 & & 15.9 & & 6424 & & 164637 & & 254254 & \\
\hline 28 & 24.2 & & 17.4 & & 22.6 & & 5018 & & 142534 & & 305155 & \\
\hline 29 & 14.7 & & 78.6 & & 53.4 & & 3599 & & 121740 & 1422 & 342216 & \\
\hline 30 & & & 53.0 & & 77.9 & 37.3 & 2326 & & 78972 & 7965 & 330023 & 10543 \\
\hline 31 & 5.3 & 26.4 & 17.4 &  & 126.6 & \[
76.1
\] & 1286 & \[
894
\] & 58592 & 25316 & 178402 & 31628 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Length (cm)} & \multicolumn{2}{|l|}{2009} & \multicolumn{2}{|l|}{2011} & \multicolumn{2}{|l|}{2012} & \multicolumn{2}{|l|}{2013*} & \multicolumn{2}{|l|}{2014*} & \multicolumn{2}{|l|}{2015*} \\
\hline & DIscards & LANDINGS \\
\hline 32 & 12.0 & & 35.2 & 317.1 & 119.9 & 161.9 & 1181 & 2682 & 31670 & 30389 & 94018 & 84630 \\
\hline 33 & 20.1 & 47.1 & 28.0 & 463.7 & 160.4 & 464.8 & 643 & 6454 & 13957 & 33340 & 23867 & 195299 \\
\hline 34 & & 201.7 & & 637.4 & 71.0 & 1093.8 & 208 & 18902 & 10246 & 52890 & 9191 & 271402 \\
\hline 35 & & 220.2 & 139.8 & 1171.2 & 25.6 & 1366.4 & 101 & 23579 & 3404 & 47790 & & 328955 \\
\hline 36 & & 269.0 & 139.8 & 1709.7 & 42.0 & 1872.7 & 39 & 34036 & & 60976 & & 241848 \\
\hline 37 & & 296.5 & & 1668.7 & 10.1 & 2164.3 & & 35748 & & 57701 & & 277221 \\
\hline 38 & & 353.1 & 139.8 & 2032.6 & 17.5 & 1917.5 &  & 33986 & & 57472 & & 197661 \\
\hline 39 & & 193.2 & & 1927.7 & & 2393.7 & 39 & 27892 & & 61971 & & 256136 \\
\hline 40 & & 237.9 & 139.8 & 1233.5 & & 2091.6 & & 36058 & & 45808 & & 188271 \\
\hline 41 & & 131.7 & & 1020.3 & 1.5 & 1876.3 & & 23821 & & 42575 & & 189250 \\
\hline 42 & & 107.9 & & 959.1 & & 1247.9 & & 18935 & & 50824 & & 123229 \\
\hline 43 & & 181.9 & & 641.2 & 118.0 & 1416.8 & & 23001 & & 48330 & & 150363 \\
\hline 44 & & 96.8 & 139.8 & 406.0 & 118.0 & 1288.2 & & 20654 & & 48019 & & 108077 \\
\hline 45 & & 72.1 & & 233.1 & & 1326.8 & & 22804 & & 40359 & & 75009 \\
\hline 46 & & 82.4 & 139.8 & 138.1 & 2.1 & 1252.9 & & 22272 & & 34162 & & 78581 \\
\hline 47 & & 46.8 & & 122.2 & 193.5 & 1023.0 & & 22565 & & 36909 & & 39233 \\
\hline 48 & & 47.0 & 139.8 & 55.9 & & 833.8 & & 17565 & & 33530 & & 43136 \\
\hline 49 & & 33.3 & 1.0 & 49.9 & 194.5 & 711.7 & & 18802 & & 29220 & & 48753 \\
\hline 50 & & 19.3 & & 36.2 & 1.0 & 651.6 & & 17499 & & 28263 & & 42833 \\
\hline 51 & & 8.9 & & 37.5 & & 410.3 & & 12020 & & 22682 & & 50870 \\
\hline 52 & & 4.8 & & 14.7 & & 315.2 & & 14866 & & 23089 & & 72142 \\
\hline 53 & & 5.1 & & 20.5 & & 206.1 & & 12313 & & 27292 & & 40558 \\
\hline 54 & & 3.2 & & 8.4 & & 210.4 & & 18722 & & 34873 & & 9895 \\
\hline 55 & & 2.3 & & 5.4 & & \[
98.8
\] & 26 & 11861 & & 23816 & & 34552 \\
\hline 56 & & 4.6 & & 3.4 & & 203.3 & & 19573 & & 18753 & & 12660 \\
\hline 57 & & 2.7 & & 1.6 & & 408.4 & & 14254 & & 17896 & & 9895 \\
\hline 58 & & 1.9 & & 3.1 & & 404.8 & & 8962 & & 16511 & & 9506 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Length (cm)} & \multicolumn{2}{|l|}{2009} & \multicolumn{2}{|l|}{2011} & \multicolumn{2}{|l|}{2012} & \multicolumn{2}{|l|}{2013*} & \multicolumn{2}{|l|}{2014*} & \multicolumn{2}{|l|}{2015*} \\
\hline & Discards & Landing & Discards & LANDINGS \\
\hline 59 & & 1.7 & & 9.1 & & 87.8 & & 6702 & & 21930 & & 7518 \\
\hline 60 & & 1.2 & & & & 189.9 & & 9813 & & 20822 & & 2765 \\
\hline 61 & & 1.7 & & 2.7 & & 190.7 & & 5851 & & 12248 & & \\
\hline 62 & & 1.1 & & 1.3 & & 213.7 & & 6436 & & 20519 & & 5531 \\
\hline 63 & & 0.5 & & 2.4 & & 210.2 & & 4016 & & 9150 & & \\
\hline 64 & & 1.3 & & & & 97.7 & & 6675 & - & 7792 & - & 1166 \\
\hline 65 & & & & 1.1 & & 45.1 & & 5212 & & 9321 & & \\
\hline 66 & & & & 1.1 & - & 105.2 & - & 2314 & - & 13225 & & \\
\hline 67 & & & & & & 45.0 & & 3830 & & 14393 & & \\
\hline 68 & & & & 1.0 & & 24.3 & & 1649 & & 9712 &  & 3154 \\
\hline 69 & & & & & & 63.1 & & 1649 & & 3359 & & \\
\hline 70 & & & & 0.9 & & 58.0 & , & 1915 &  & 4556 & & \\
\hline 71 & & & & & & 47.9 & & 665 & & 2406 & & \\
\hline 72 & & & & & & 42.2 & & 1782 & & 190 & & \\
\hline 73 & & & & & & 20.1 & & 1117 & & 1102 & & 2765 \\
\hline 74 & & & & & & 20.6 & & 133 & & 2181 & & \\
\hline 76 & & & & & & 5.7 & & & & & & \\
\hline 77 & & & & & & 8.6 & & & & 71 & & \\
\hline 78 & & & & 0.7 & & 4.1 & & & & 759 & & \\
\hline 82 & & & & 0.6 & & & & & & & & \\
\hline Total & 76.3 & 2705.3 & 1216.8 & 14939.0 & 4110.5 & 29006.3 & 42218 & 600479 & 995410 & 1214092 & 1974476 & 3245035 \\
\hline Discard rate, \% & 2.7 & & 7.5 & & 12.4 & & 6.6 & & 45.0 & & 37.8 & \\
\hline
\end{tabular}

\section*{*Retained discards and landings.}

Table 4.3.7. Discards and retained catches of haddock (number) by Scottish and Irish discard trips in the Rockall area in 2013-2016.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{YEAR} & \multirow[t]{2}{*}{COUNTRY} & & \multicolumn{7}{|c|}{AgE} \\
\hline & & & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline \multirow[t]{6}{*}{2013} & Scotland & Landings & 116013 & 9886 & 1154 & 33064 & 4373 & 33020 & 3387 \\
\hline & & Discards & 4666330 & 28973 & 0 & 0 & 0 & 0 & 11791 \\
\hline & Ireland* & Landings & - & - & - & - & - & - & - \\
\hline & & Discards & 55362 & 5189 & 9389 & 3816 & 31041 & 35875 & 0 \\
\hline & Ireland** & Landings & - & - & - & - & - & - & - \\
\hline & & Discards & 3061 & 2869 & 5192 & 2110 & 1716 & 1984 & 0 \\
\hline \multirow[t]{4}{*}{2014} & Scotland & Landings & - & 577684 & 2252 & 213 & 87220 & 18169 & 528556 \\
\hline & & Discards & 142263 & 853148 & - & - & - & - & - \\
\hline & Ireland & Landings & 4188 & 58642 & 2353 & 1277 & 21085 & 7630 & 26631 \\
\hline & & Discards & 15651 & 261804 & - & - & - & - & - \\
\hline \multirow[t]{4}{*}{2015} & Scotland & Landings & - & 464407 & 2679182 & 1620 & 1171 & 24139 & 88332 \\
\hline & & Discards & 70129 & 1935829 & 45431 & - & - & - & - \\
\hline & Ireland & Landings & - & 2277 & 159849 & 3767 & 3662 & 42685 & 13244 \\
\hline & & Discards & - & 149261 & 93428 & - & - & - & - \\
\hline \multirow[t]{6}{*}{\[
2016
\]} & Scotland & Landings & 127 & 580 & 1991 & 590 & 0 & 0 & 2891 \\
\hline & & BMS landings & 1271 & 356 & 51 & - & - & - & \\
\hline & & Discards & 163346 & 153742 & 88894 & 402 & - & - & - \\
\hline & Ireland & Landings & - & 27955 & 138593 & 278405 & 3345 & 2294 & 8634 \\
\hline & & BMS landings & - & - & - & - & - & - & - \\
\hline & & Discards & 23629 & 177594 & 287589 & 108446 & - & - & - \\
\hline
\end{tabular}
* Mesh size 110-119 mm.
** Mesh size 70-99 mm

Table 4.3.8. Haddock in 6.b. Tuning data available from the Scottish groundfish survey conducted in September. In bold, the data used in the assessment. Final runs.

HADDOCK WGCSE 2015 ROCKALL
101
SCOGFS
19912016
110.660 .75

08
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 14458 & 16398 & 4431 & 683 & 315 & 228 & 37 & 64 & 3 \\
\hline 1 & 20336 & 44912 & 14631 & 3150 & 647 & 127 & 200 & 4 & 32 \\
\hline 1 & 15220 & 37959 & 15689 & 3716 & 1104 & 183 & 38 & 73 & 21 \\
\hline 1 & 23474 & 13287 & 11399 & 4314 & 969 & 203 & 30 & 12 & 4 \\
\hline 1 & 16923 & 16971 & 6648 & 5993 & 1935 & 483 & 200 & 16 & -1 \\
\hline 1 & 33578 & 19420 & 5903 & 1940 & 1317 & 325 & 69 & 6 & 1 \\
\hline 1 & 28897 & 10693 & 2384 & 538 & 292 & 281 & 71 & 9 & 1 \\
\hline 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1 & 10178 & 9969 & 2410 & 708 & 279 & 172 & 90 & 64 & 32 \\
\hline 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1 & 31813 & 7455 & 521 & 284 & 154 & 39 & 14 & 12 & 14 \\
\hline 1 & 11704 & 20925 & 2464 & 173 & 105 & 65 & 20 & 10 & 15 \\
\hline 1 & 2526 & 10114 & 10927 & 1656 & 138 & 97 & 100 & 26 & 6 \\
\hline 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1 & 24452 & 4082 & 920 & 1506 & 2107 & 231 & 33 & 13 & 7 \\
\hline 1 & 3570 & 18715 & 2562 & 256 & 1402 & 1694 & 349 & 16 & 6 \\
\hline 1 & 558 & 2671 & 6019 & 570 & 254 & 516 & 367 & 28 & 2 \\
\hline 1 & 85 & 560 & 966 & 3813 & 182 & 41 & 282 & 249 & 49 \\
\hline 1 & 132 & 139 & 323 & 488 & 1651 & 40 & 9 & 54 & 17 \\
\hline 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1 & 13 & 17 & 96 & 22 & 42 & 88 & 607 & 4 & 4 \\
\hline 1 & 39619 & 4 & 12 & 73 & 14 & 75 & 50 & 635 & 9 \\
\hline 1 & 6035 & 14179 & 5 & 8 & 8 & 9 & 11 & 23 & 166 \\
\hline 1 & 3044 & 7232 & 4692 & 5 & 0 & 13 & 0 & 11 & 10 \\
\hline 1 & 1997 & 2908 & 5634 & 3304 & 28 & 28 & 16 & 2 & 19 \\
\hline 1 & 67096 & 1576 & 1483 & 2064 & 1526 & 11 & 1 & 5 & 2 \\
\hline
\end{tabular}

Table 4.3.9. Haddock in 6.b. Exploratory runs. Corrected tuning data available from the Scottish groundfish survey conducted in September. In bold, the data used in the assessment.

HADDOCK WGCSE 2015 ROCKALL
101
SCOGFS
19912015
110.660 .75

08
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 14458 & 16398 & 4431 & 683 & 315 & 228 & 37 & 64 & 3 \\
\hline 1 & 20336 & 44912 & 14631 & 3150 & 647 & 127 & 200 & 4 & 32 \\
\hline 1 & 15220 & 37959 & 15689 & 3716 & 1104 & 183 & 38 & 73 & 21 \\
\hline 1 & 23474 & 13287 & 11399 & 4314 & 969 & 203 & 30 & 12 & 4 \\
\hline 1 & 16923 & 16971 & 6648 & 5993 & 1935 & 483 & 200 & 16 & -1 \\
\hline 1 & 33578 & 19420 & 5903 & 1940 & 1317 & 325 & 69 & 6 & 1 \\
\hline 1 & 28897 & 10693 & 2384 & 538 & 292 & 281 & 71 & 9 & 1 \\
\hline 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1 & 10178 & 9969 & 2410 & 708 & 279 & 172 & 90 & 64 & 32 \\
\hline 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1 & 31813 & 7455 & 521 & 284 & 154 & 39 & 14 & 12 & 14 \\
\hline 1 & 11704 & 20925 & 2464 & 173 & 105 & 65 & 20 & 10 & 15 \\
\hline 1 & 2526 & 10114 & 10927 & 1656 & 138 & 97 & 100 & 26 & 6 \\
\hline 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1 & 24452 & 4082 & 920 & 1506 & 2107 & 231 & 33 & 13 & 7 \\
\hline 1 & 3570 & 18715 & 2562 & 256 & 1402 & 1694 & 349 & 16 & 6 \\
\hline 1 & 558 & 2671 & 6019 & 570 & 254 & 516 & 367 & 28 & 2 \\
\hline 1 & 85 & 560 & 966 & 3813 & 182 & 41 & 282 & 249 & 49 \\
\hline 1 & 132 & 139 & 323 & 488 & 1651 & 40 & 9 & 54 & 17 \\
\hline 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1 & 71 & 17 & 96 & 22 & 42 & 88 & 607 & 4 & 4 \\
\hline 1 & 39619 & 55 & 12 & 73 & 14 & 75 & 50 & 635 & 9 \\
\hline 1 & 6035 & 14179 & 39 & 8 & 36 & 9 & 11 & 23 & 166 \\
\hline 1 & 3044 & 7232 & 4692 & 23 & 0 & 13 & 0 & 11 & 10 \\
\hline 1 & 1997 & 2908 & 5634 & 3304 & 7 & 6 & 16 & 2 & 19 \\
\hline 1 & 67096 & 1576 & 1483 & 2064 & 1526 & 11 & 1 & 5 & 2 \\
\hline
\end{tabular}

Table 4.3.10. Haddock in 6.b. International landings, discards and total catch.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{3}{|l|}{Num (*1000)} & \multicolumn{3}{|l|}{WEIGHT, TONNES} \\
\hline & Landings & Discards & Total Catch \({ }^{1}\) & Landings & Discards & Total Catch \({ }^{1}\) \\
\hline 1991 & 12302 & 65832 & 78134 & 5656 & 13228 & 18884 \\
\hline 1992 & 11418 & 55964 & 67383 & 5321 & 11871 & 17192 \\
\hline 1993 & 8767 & 44656 & 53423 & 4781 & 9853 & 14634 \\
\hline 1994 & 11400 & 46628 & 58028 & 5732 & 11023 & 16755 \\
\hline 1995 & \[
11784
\] & 35467 & 47251 & 5587 & 9168 & 14756 \\
\hline 1996 & 14066 & 41506 & 55572 & 7072 & 9356 & 16428 \\
\hline 1997 & 9966 & 26980 & 36946 & 5167 & 5894 & 11061 \\
\hline 1998 & 9034 & 47831 & 56865 & 4986 & 10862 & 15848 \\
\hline 1999 & 12930 & 52881 & 65811 & 5356 & 11062 & 16418 \\
\hline 2000 & 15999 & 26033 & 42031 & 5444 & 6609 & 12053 \\
\hline 2001 & \[
5361
\] & 9222 & 14583 & 2123 & 1535 & 3658 \\
\hline 2002 & 11167 & 21899 & 33066 & 3118 & 4152 & 7270 \\
\hline 2003 & 24409 & 25087 & 49496 & 5969 & 5521 & 11490 \\
\hline 2004 & 22705 & 3989 & 26694 & 6438 & 883 & 7321 \\
\hline 2005 & 19505 & 1877 & 21382 & 5189 & 505 & 5694 \\
\hline 2006 & 9605 & 1667 & 11272 & 2756 & 386 & 3142 \\
\hline 2007 & 8936 & 12261 & 21197 & 3348 & 2242 & 5590 \\
\hline 2008 & 10209 & 7603 & 17812 & 4221 & 2100 & 6321 \\
\hline 2009 & 6709 & 4765 & 11474 & 3237 & 1557 & 4794 \\
\hline 2010 & 5265 & 878 & 6144 & 3404 & 306 & 3710 \\
\hline 2011 & 3156 & 389 & 3545 & 1905 & 152 & 2057 \\
\hline 2012 & 749 & 44 & 793 & 711 & 16 & 727 \\
\hline 2013 & 782 & 55 & 6323 & 825 & 1143 & 1968 \\
\hline 2014 & 2862 & 1378 & 4240 & 1675 & 274 & 1949 \\
\hline 2015 & 4097 & 2294 & 6391 & 2446 & 527 & 2973 \\
\hline 2016 & 3830 & 1003 & 4833 & 2585 & 301 & 2886 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Landings and discards.
}

Table 4.3.11. Haddock in 6.b. International catch (landings and discards) numbers-(*103) at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{AGE} & \multicolumn{12}{|l|}{YEAR} \\
\hline & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & \\
\hline 1 & 21186 & 16084 & 11178 & 8170 & 2749 & 12096 & 9957 & 14224 & 17282 & 8222 & 7667 & \\
\hline 2 & 33847 & 24711 & 19375 & 20623 & 9831 & 18811 & 10535 & 19807 & 21949 & 12581 & 1961 & \\
\hline 3 & 15189 & 18584 & 15494 & 17868 & 21585 & 10911 & 5388 & 10173 & 12203 & 10697 & 1815 & \\
\hline 4 & 5341 & 5361 & 4938 & 8210 & 9756 & 9612 & 4098 & 4763 & 5499 & 4917 & 1018 & \\
\hline 5 & 1704 & 1761 & 1617 & 2449 & 2464 & 3299 & 5002 & 3740 & 3419 & 2050 & 1038 & \\
\hline 6 & 346 & 676 & 461 & 476 & 787 & 751 & 1758 & 2767 & 2684 & 1498 & 484 & \\
\hline +gp & 522 & 206 & 359 & 233 & 79 & 92 & 207 & 1391 & 2776 & 2066 & 601 & \\
\hline TOTAL & 78134 & 67383 & 53423 & 58028 & 47251 & 55572 & 36945 & 56865 & 65811 & 42031 & 145 & \\
\hline \multirow[t]{2}{*}{AGE} & \multicolumn{12}{|l|}{YEAR} \\
\hline & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 1 & 13364 & 6576 & 932 & 1061 & 2880 & 1491 & 476 & 223 & 0.05 & 4 & 4 & 5606 \\
\hline 2 & 11119 & 23606 & 4112 & 3723 & 1475 & 9829 & 2207 & 707 & 118 & 59 & 6 & 51 \\
\hline 3 & 4536 & 14559 & 10282 & 7420 & 1626 & 3605 & 11437 & 1237 & 264 & 107 & 156 & 11 \\
\hline 4 & 2445 & 2063 & 9212 & 8124 & 2414 & 1503 & 1291 & 8046 & 426 & 186 & 63 & 43 \\
\hline 5 & 898 & 1285 & 1386 & 753 & 2291 & 2213 & 507 & 495 & 4718 & 188 & 3 & 9 \\
\hline 6 & 260 & 925 & 296 & 109 & 436 & 1816 & 964 & 263 & 308 & 2725 & 65 & 46 \\
\hline +gp & 444 & 483 & 474 & 193 & 151 & 741 & 930 & 504 & 310 & 276 & 496 & 556 \\
\hline TOTAL & 33066 & 49496 & 26694 & 21382 & 11273 & 21198 & 17812 & 11474 & 6144 & 3545 & 793 & 6323 \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline \multirow{2}{*}{ AGE } & \multicolumn{2}{l}{ YEAR } & \\
\cline { 2 - 4 } & \multicolumn{1}{c}{2014} & 2015 & \multicolumn{1}{l}{2016} \\
\hline 1 & 370 & 74 & 314 \\
\hline 2 & 2636 & 2741 & 944 \\
\hline 3 & 418 & 3284 & 2530 \\
\hline 4 & 44 & 105 & 1025 \\
\hline 5 & 127 & 7 & 4 \\
\hline 6 & 38 & 68 & 3 \\
\hline+ gp & 607 & 112 & 13 \\
\hline TOTAL & 4240 & 6391 & 4833 \\
\hline
\end{tabular}

Table 4.3.11. Haddock in 6.b. International landings numbers-(* \({ }^{(103)}\) at-age.


Table 4.3.12. Haddock in 6.b. International discards numbers \({ }^{*}{ }^{*} 10^{3}\) ) at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{AGE} & \multicolumn{12}{|l|}{YEAR} \\
\hline & 1991 & 1992 & 1993 & 1994 & 1995* & * 1996 & & 1997* 1 & 1998 & 1999* & 2000 & 2001* \\
\hline 1 & 21099 & 15998 & 11151 & 8140 & 2748 & 12094 & 49 & 99571 & 14220 & 17037 & 8189 & 7268 \\
\hline 2 & 27040 & 21069 & 17456 & 19464 & 9685 & 13662 & & 102161 & 19415 & 19349 & 9136 & 1020 \\
\hline 3 & 12178 & 12961 & 10755 & 12570 & 16379 & 99051 & & 32878 & 8357 & 9210 & 5616 & 583 \\
\hline 4 & 3998 & 4397 & 3781 & 4545 & 4965 & 5463 & & 19443 & 3423 & 3526 & 1912 & 266 \\
\hline 5 & 1146 & 1182 & 1128 & 1409 & 1145 & 952 & & 1344 & 1842 & 2191 & 755 & 50 \\
\hline 6 & 313 & 312 & 317 & 410 & 509 & 278 & & 218 & 483 & 1084 & 322 & 15 \\
\hline +gp & 58 & 46 & 69 & 91 & 36 & 7 & & 159 & 91 & 485 & 103 & 21 \\
\hline TOTAL & 65832 & 55964 & 44656 & 46628 & 35467 & 741506 & & 26980 & 47831 & 52881 & 26033 & 9222 \\
\hline \multirow[t]{2}{*}{AGE} & \multicolumn{12}{|l|}{YEAR} \\
\hline & 2002 & 2003 & 2004 & 2005 & 20062 & 2007 & 2008 & 82009 & 2010* & 2011* & 2012* & 2013* \\
\hline 1 & 12706 & 5655 & 736 & 174 & 536 & 1459 & 458 & 218 & 0.02 & 2 & 4 & 5468 \\
\hline 2 & 8136 & 15503 & 2346 & 888 & 7078 & 8610 & 1458 & \(8 \quad 696\) & 47 & 36 & 6 & 39 \\
\hline 3 & 539 & 3558 & 781 & 554 & 3368 & 896 & 5246 & 6993 & 68 & 4 & 9 & 10 \\
\hline 4 & 334 & 217 & 93 & 210 & 58 & 429 & 128 & 2803 & 74 & 6 & 7 & 4 \\
\hline 5 & 89 & 97 & 22 & 28 & 2267 & 674 & 28 & 36 & 640 & 1 & 2 & 3 \\
\hline 6 & 43 & 48 & 10 & 11 & 8 & 193 & 203 & 2 & 33 & 313 & 0.04 & 4 \\
\hline +gp & 51 & 8 & 2 & 11 & 1 & 1 & 82 & 18 & 16 & 27 & 16 & 14 \\
\hline TOTAL & 21899 & 25087 & 3989 & 1877 & 1667 & 12261 & 7603 & 34765 & 878 & 389 & 44 & 5541 \\
\hline
\end{tabular}
\begin{tabular}{lccc}
\hline \multirow{2}{*}{ AGE } & YEAR & & \\
\cline { 2 - 4 } & \(2014^{*}\) & \(2015^{*}\) & \(2016^{*}\) \\
\hline 1 & 168 & 70 & 187 \\
\hline 2 & 1211 & 2085 & 331 \\
\hline 3 & 0 & 139 & 377 \\
\hline 4 & 0 & 0 & 109 \\
\hline 5 & 0 & 0 & 0 \\
\hline 6 & 0 & 0 & 0 \\
\hline+ gp & 0 & 0 & 0 \\
\hline TOTAL & 1378 & 2294 & 1004 \\
\hline
\end{tabular}
* data calculated using estimates from discard observer trips.

Table 4.3.13. Haddock in 6.b. International catch (landings and discards) weights-at-age (kg).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{YEAR} & \multicolumn{7}{|l|}{AGE} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1991 & 0.142 & 0.240 & 0.291 & 0.378 & 0.469 & 0.414 & 0.679 \\
\hline 1992 & 0.133 & \[
0.239
\] & 0.318 & 0.362 & 0.423 & 0.567 & 0.844 \\
\hline 1993 & 0.137 & \[
0.238
\] & 0.334 & 0.400 & 0.493 & 0.503 & 0.874 \\
\hline 1994 & 0.153 & 0.233 & 0.319 & 0.420 & 0.469 & 0.477 & 0.721 \\
\hline 1995 & 0.118 & 0.222 & 0.309 & 0.401 & 0.501 & 0.460 & 0.843 \\
\hline 1996 & 0.136 & 0.278 & 0.314 & 0.395 & 0.553 & 0.575 & 0.763 \\
\hline 1997 & 0.136 & 0.240 & 0.322 & 0.382 & 0.512 & 0.634 & 0.944 \\
\hline 1998 & 0.141 & 0.250 & 0.308 & 0.354 & 0.436 & 0.546 & 0.662 \\
\hline \[
1999
\] & 0.138 & 0.208 & 0.272 & 0.334 & 0.379 & 0.483 & 0.618 \\
\hline 2000 & 0.189 & 0.250 & 0.267 & 0.321 & 0.382 & 0.451 & 0.707 \\
\hline 2001 & 0.133 & 0.257 & 0.320 & 0.416 & 0.432 & 0.521 & 0.713 \\
\hline 2002 & 0.135 & 0.239 & 0.237 & 0.325 & 0.509 & 0.580 & 0.753 \\
\hline 2003 & 0.153 & 0.203 & 0.256 & 0.350 & 0.384 & 0.424 & 0.753 \\
\hline 2004 & 0.147 & 0.198 & 0.244 & 0.294 & 0.444 & 0.609 & 0.753 \\
\hline 2005 & 0.114 & 0.197 & 0.234 & 0.311 & 0.458 & 0.599 & 0.806 \\
\hline 2006 & 0.093 & 0.198 & 0.245 & 0.329 & 0.441 & 0.595 & 0.787 \\
\hline 2007 & 0.114 & 0.186 & 0.266 & 0.296 & 0.387 & 0.497 & 0.569 \\
\hline 2008 & 0.199 & 0.241 & 0.291 & 0.437 & 0.571 & 0.669 & 0.932 \\
\hline 2009 & 0.248 & 0.288 & 0.339 & 0.391 & 0.668 & 0.513 & 1.005 \\
\hline 2010 & 0.100 & 0.352 & 0.460 & 0.437 & 0.560 & 0.741 & 0.902 \\
\hline 2011 & 0.198 & 0.280 & 0.422 & 0.454 & 0.701 & 0.573 & 0.785 \\
\hline 2012 & 0.263 & 0.295 & 0.544 & 0.708 & 0.529 & 0.817 & 1.088 \\
\hline 2013 & 0.207 & 0.447 & 0.287 & 0.843 & 0.968 & 0.824 & 1.226 \\
\hline 2014 & 0.117 & 0.285 & 0.268 & 0.488 & 1.031 & 1.099 & 1.396 \\
\hline 2015 & 0.105 & 0.256 & 0.605 & 0.362 & 1.169 & 0.949 & 1.481 \\
\hline 2016 & 0.308 & 0.468 & 0.612 & 0.735 & 1.576 & 1.808 & 2.615 \\
\hline
\end{tabular}

Table 4.3.15. Haddock in 6.b. International landings weights-at-age (kg).
\begin{tabular}{llllllll}
\hline YEAR & AGE & & & \\
& 1 & 2 & 4 & 5 & 6 & 7 \\
\hline 1991 & 0.302 & 0.402 & 0.444 & 0.592 & 0.724 & 0.963 & 0.704 \\
\hline 1992 & 0.136 & 0.366 & 0.455 & 0.658 & 0.612 & 0.759 & 0.954 \\
\hline 1993 & 0.305 & 0.402 & 0.503 & 0.701 & 0.830 & 0.820 & 0.972 \\
\hline 1994 & 0.314 & 0.356 & 0.452 & 0.558 & 0.638 & 1.224 & 0.890 \\
\hline 1995 & 0.377 & 0.311 & 0.414 & 0.479 & 0.640 & 0.699 & 1.236 \\
\hline 1996 & 0.327 & 0.436 & 0.501 & 0.487 & 0.627 & 0.709 & 0.783 \\
\hline 1997 & 0.000 & 0.315 & 0.401 & 0.444 & 0.564 & 0.661 & 0.973 \\
\hline 1998 & 0.256 & 0.344 & 0.494 & 0.517 & 0.542 & 0.591 & 0.678 \\
\hline 1999 & 0.274 & 0.338 & 0.390 & 0.440 & 0.505 & 0.601 & 0.665 \\
\hline 2000 & 0.272 & 0.404 & 0.379 & 0.407 & 0.473 & 0.513 & 0.740 \\
\hline 2001 & 0.274 & 0.426 & 0.383 & 0.518 & 0.426 & 0.518 & 0.677 \\
\hline 2002 & 0.240 & 0.422 & 0.416 & 0.541 & 0.565 & 0.649 & 0.818 \\
\hline 2003 & 0.100 & 0.164 & 0.246 & 0.350 & 0.387 & 0.423 & 0.758 \\
\hline 2004 & 0.142 & 0.172 & 0.241 & 0.293 & 0.446 & 0.617 & 0.754 \\
\hline 2005 & 0.103 & 0.184 & 0.230 & 0.310 & 0.461 & 0.614 & 0.824 \\
\hline 2006 & 0.084 & 0.167 & 0.223 & 0.327 & 0.440 & 0.598 & 0.789 \\
\hline 2007 & 0.096 & 0.238 & 0.275 & 0.322 & 0.450 & 0.523 & 0.570 \\
\hline 2008 & 0.125 & 0.197 & 0.302 & 0.444 & 0.583 & 0.752 & 0.984 \\
\hline 2009 & 0.300 & 0.346 & 0.420 & 0.416 & 0.692 & 0.512 & 1.020 \\
\hline 2010 & 0.052 & 0.428 & 0.520 & 0.459 & 0.591 & 0.990 & 1.451 \\
\hline 2011 & 0.214 & 0.329 & 0.427 & 0.459 & 0.702 & 0.595 & 0.817 \\
\hline 2012 & 0.189 & 0.368 & 0.555 & 0.747 & 0.912 & 0.817 & 1.110 \\
\hline 2013 & 0.507 & 0.531 & 0.665 & 0.887 & 1.358 & 0.836 & 1.233 \\
\hline 2014 & 0.148 & 0.345 & 0.268 & 0.488 & 1.031 & 1.099 & 1.396 \\
\hline 2015 & 0.115 & 0.349 & 0.617 & 0.362 & 1.169 & 0.949 & 1.481 \\
\hline 2016 & 0.407 & 0.571 & 0.662 & 0.776 & 1.576 & 1.808 & 2.615 \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 4.3.15. Haddock in 6.b. International discards weights-at-age (kg).
\begin{tabular}{llllllll}
\hline YEAR & AGE & & & \\
& 1 & 2 & 3 & 5 & 6 & 7 \\
\hline 1991 & 0.142 & 0.199 & 0.253 & 0.306 & 0.345 & 0.358 & 0.478 \\
\hline 1992 & 0.133 & 0.217 & 0.258 & 0.298 & 0.330 & 0.342 & 0.464 \\
\hline 1993 & 0.137 & 0.220 & 0.260 & 0.307 & 0.346 & 0.359 & 0.462 \\
\hline 1994 & 0.153 & 0.226 & 0.263 & 0.308 & 0.345 & 0.356 & 0.458 \\
\hline 1995 & 0.118 & 0.220 & 0.276 & 0.325 & 0.341 & 0.329 & 0.379 \\
\hline 1996 & 0.136 & 0.218 & 0.276 & 0.326 & 0.370 & 0.348 & 0.524 \\
\hline 1997 & 0.136 & 0.238 & 0.272 & 0.312 & 0.372 & 0.442 & 0.568 \\
\hline 1998 & 0.141 & 0.248 & 0.267 & 0.291 & 0.327 & 0.336 & 0.436 \\
\hline 1999 & 0.139 & 0.212 & 0.255 & 0.288 & 0.313 & 0.318 & 0.410 \\
\hline 2000 & 0.189 & 0.267 & 0.289 & 0.311 & 0.330 & 0.334 & 0.462 \\
\hline 2001 & 0.135 & 0.247 & 0.294 & 0.344 & 0.412 & 0.440 & 0.495 \\
\hline 2002 & 0.137 & 0.254 & 0.308 & 0.335 & 0.398 & 0.338 & 0.367 \\
\hline 2003 & 0.161 & 0.223 & 0.287 & 0.342 & 0.337 & 0.440 & 0.510 \\
\hline 2004 & 0.148 & 0.218 & 0.282 & 0.343 & 0.324 & 0.371 & 0.469 \\
\hline 2005 & 0.171 & 0.240 & 0.298 & 0.357 & 0.387 & 0.473 & 0.506 \\
\hline 2006 & 0.132 & 0.233 & 0.334 & 0.420 & 0.495 & 0.435 & 0.435 \\
\hline 2007 & 0.115 & 0.179 & 0.239 & 0.232 & 0.244 & 0.280 & 0.406 \\
\hline 2008 & 0.202 & 0.264 & 0.279 & 0.370 & 0.351 & 0.358 & 0.392 \\
\hline 2009 & 0.246 & 0.287 & 0.319 & 0.343 & 0.360 & 0.662 & 0.593 \\
\hline 2010 & 0.161 & 0.239 & 0.289 & 0.335 & 0.359 & 0.404 & 0.458 \\
\hline 2011 & 0.178 & 0.248 & 0.300 & 0.302 & 0.406 & 0.403 & 0.481 \\
\hline 2012 & 0.263 & 0.295 & 0.356 & 0.372 & 0.340 & 0.733 & 0.440 \\
\hline 2013 & 0.202 & 0.421 & 0.228 & 0.397 & 0.247 & 0.679 & 0.980 \\
\hline 2014 & 0.080 & 0.216 & - & - & - & - & - \\
\hline 2015 & 0.104 & 0.227 & 0.338 & - & - & - & - \\
\hline 2016 & 0.241 & 0.276 & 0.325 & 0.393 & - & - & - \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 4.3.16. Haddock 6.b. Stock weights-at-age (kg).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{YEAR} & \multicolumn{7}{|l|}{AGE} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1991 & 0.142 & 0.240 & 0.291 & 0.378 & 0.469 & 0.414 & 0.679 \\
\hline \[
1992
\] & \[
0.133
\] & \[
0.239
\] & \[
0.318
\] & \[
0.362
\] & \[
0.423
\] & \[
0.567
\] & \[
0.844
\] \\
\hline \[
1993
\] & \[
0.137
\] & \[
0.238
\] & \[
0.334
\] & \[
0.400
\] & \[
0.493
\] & \[
0.503
\] & \[
0.874
\] \\
\hline \[
1994
\] & \[
0.153
\] & \[
0.233
\] & \[
0.319
\] & \[
0.420
\] & \[
0.469
\] & \[
0.477
\] & \[
0.721
\] \\
\hline \[
1995
\] & \[
0.118
\] & \[
0.222
\] & \[
0.309
\] & \[
0.401
\] & \[
0.501
\] & \[
0.460
\] & \[
0.843
\] \\
\hline \[
1996
\] & \[
0.136
\] & \[
0.278
\] & \[
0.314
\] & \[
0.395
\] & \[
0.553
\] & \[
0.575
\] & \[
0.763
\] \\
\hline \[
1997
\] & \[
0.136
\] & \[
0.240
\] & \[
0.322
\] & \[
0.382
\] & \[
0.512
\] & \[
0.634
\] & \[
0.944
\] \\
\hline \[
1998
\] & \[
0.141
\] & \[
0.250
\] & \[
0.308
\] & \[
0.354
\] & \[
0.436
\] & \[
0.546
\] & \[
0.662
\] \\
\hline \[
1999
\] & \[
0.138
\] & \[
0.208
\] & \[
0.272
\] & \[
0.334
\] & 0.379 & 0.483 & \[
0.618
\] \\
\hline \[
2000
\] & \[
0.189
\] & \[
0.250
\] & \[
0.267
\] & \[
0.321
\] & \[
0.382
\] & \[
0.451
\] & \[
0.707
\] \\
\hline \[
2001
\] & \[
0.133
\] & \[
0.257
\] & \[
0.320
\] & \[
0.416
\] & \[
0.432
\] & \[
0.521
\] & \[
0.713
\] \\
\hline \[
2002
\] & \[
0.135
\] & \[
0.239
\] & \[
0.237
\] & \[
0.325
\] & \[
0.509
\] & \[
0.580
\] & 0.753 \\
\hline \[
2003
\] & \[
0.153
\] & \[
0.203
\] & \[
0.256
\] & \[
0.350
\] & \[
0.384
\] & \[
0.424
\] & \[
0.753
\] \\
\hline \[
2004
\] & \[
0.147
\] & \[
0.198
\] & \[
0.244
\] & \[
0.294
\] & \[
0.444
\] & \[
0.609
\] & \[
0.753
\] \\
\hline \[
2005
\] & \[
0.114
\] & \[
0.197
\] & \[
0.234
\] & \[
0.311
\] & \[
0.458
\] & \[
0.599
\] & 0.806 \\
\hline \[
2006
\] & \[
0.093
\] & \[
0.198
\] & \[
0.245
\] & \[
0.329
\] & \[
0.441
\] & 0.595 & 0.787 \\
\hline \[
2007
\] & \[
0.114
\] & \[
0.186
\] & \[
0.266
\] & \[
0.296
\] & \[
0.387
\] & \[
0.497
\] & 0.569 \\
\hline \[
2008
\] & \[
0.199
\] & \[
0.241
\] & \[
0.291
\] & \[
0.437
\] & \[
0.571
\] & 0.669 & \[
0.932
\] \\
\hline \[
2009
\] & \[
0.248
\] & \[
0.288
\] & \[
0.339
\] & \[
0.391
\] & \[
0.668
\] & \[
0.513
\] & 1.005 \\
\hline \[
2010
\] & \[
0.100
\] & \[
0.352
\] & \[
0.460
\] & \[
0.437
\] & \[
0.560
\] & \[
0.741
\] & \[
0.902
\] \\
\hline \[
2011
\] & \[
0.198
\] & \[
0.280
\] & \[
0.422
\] & \[
0.454
\] & \[
0.701
\] & \[
0.573
\] & \[
0.785
\] \\
\hline \[
2012
\] & \[
0.263
\] & \[
0.295
\] & \[
0.544
\] & \[
0.708
\] & 0.529 & 0.817 & 1.088 \\
\hline \[
2013
\] & \[
0.210
\] & \[
0.466
\] & \[
0.665
\] & 0.887 & 1.358 & 0.836 & 1.226 \\
\hline 2014 & 0.117 & 0.285 & 0.268 & 0.488 & \[
1.031
\] & \[
1.099
\] & 1.396 \\
\hline \[
2015
\] & \[
0.105
\] & \[
0.256
\] & \[
0.605
\] & 0.362 & \[
1.169
\] & 0.949 & 1.481 \\
\hline 2016 & 0.178 & 0.312 & 0.425 & 0.571 & 0.880 & 0.852 & 1.195 \\
\hline
\end{tabular}

Table 4.3.17. XSA diagnostics from the assessment of Haddock in 6.b. Final runs.

Lowestoft VPA Version 3.1
4/05/2017 16:27
xxtended Survivors Analysi

HADDOCK LANDISC 2004 ROCKALL
CPUE data from file had6b.tun
Catch data for 26 years. 1991 to 2016. Ages 1 to 7.
\(\left.\begin{array}{rccccccc}\text { Fleet } & \begin{array}{c}\text { First Last } \\ \text { year }\end{array} & \begin{array}{c}\text { First } \\ \text { year }\end{array} & \begin{array}{c}\text { Last } \\ \text { age }\end{array} & \begin{array}{c}\text { Alpha }\end{array} & \text { Beta } \\ \text { age }\end{array}\right)\)

Tapered time weighting not applied

Catchability analysis:
Catchability dependent on stock size for ages < 4

Regression type \(=\mathrm{C}\)
Minimum of 10 points used for regression
Survivor estimates shrunk to the population mean for ages < 4

Catchability independent of age for ages >= 5

Terminal population estimation :

Survivor estimates shrunk towards the mean \(F\)
of the final 4 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=1.000\)

Minimum standard error for population
estimates derived from each fleet \(=.300\)
Prior weighting not applied

Tuning converged after 24 iterations
1

Regression weights
\begin{tabular}{rrrrrrrrrrr}
\begin{tabular}{c} 
Fishing mortalities \\
Age
\end{tabular} & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
& & & & & & & & & & \\
1 & 0.185 & 0.202 & 0.295 & 0 & 0.022 & 0.004 & 0.156 & 0.013 & 0.005 & 0.034 \\
2 & 0.172 & 0.459 & 0.522 & 0.251 & 0.064 & 0.043 & 0.066 & 0.101 & 0.121 & 0.079 \\
3 & 0.66 & 0.31 & 0.509 & 0.375 & 0.378 & 0.237 & 0.111 & 1.144 & 0.176 & 0.157 \\
4 & 0.829 & 0.526 & 0.374 & 0.328 & 0.496 & 0.4 & 0.095 & 0.857 & 1.06 & 0.076 \\
5 & 0.418 & 0.759 & 0.392 & 0.392 & 0.235 & 0.014 & 0.09 & 0.443 & 0.323 & 0.09 \\
6 & 0.428 & 0.323 & 1.271 & 0.453 & 0.414 & 0.118 & 0.277 & 0.666 & 0.45 & 0.186
\end{tabular}

1
XSA population numbers (Thousands)
\begin{tabular}{lrrrrrr} 
& AGE & & & \\
YEAR & 1 & 2 & 3 & 4 & 5 & 6
\end{tabular}
\(\begin{array}{llllllll}2007 & 9.74 \mathrm{E}+03 & 6.88 \mathrm{E}+04 & 8.25 \mathrm{E}+03 & 2.95 \mathrm{E}+03 & 7.16 \mathrm{E}+03 & 5.76 \mathrm{E}+03\end{array}\) \(\begin{array}{llllll}2008 & 2.87 \mathrm{E}+03 & 6.62 \mathrm{E}+03 & 4.75 \mathrm{E}+04 & 3.49 \mathrm{E}+03 & 1.05 \mathrm{E}+03 \\ 3.86 \mathrm{E}+03\end{array}\) 2009 9.63E+02 \(1.92 \mathrm{E}+03 \quad 3.43 \mathrm{E}+03 \quad 2.85 \mathrm{E}+04 \quad 1.69 \mathrm{E}+03 \quad 4.04 \mathrm{E}+02\) 2010 1.30E+03 5.87E+02 9.33E+02 \(1.69 \mathrm{E}+031.61 \mathrm{E}+049.34 \mathrm{E}+02\) \(2011 \quad 1.85 \mathrm{E}+02 \quad 1.06 \mathrm{E}+03 \quad 3.74 \mathrm{E}+02 \quad 5.25 \mathrm{E}+02 \quad 9.94 \mathrm{E}+02 \quad 8.89 \mathrm{E}+03\) \(\begin{array}{lllllll}2012 & 1.08 \mathrm{E}+03 & 1.48 \mathrm{E}+02 & 8.18 \mathrm{E}+02 & 2.10 \mathrm{E}+02 & 2.62 \mathrm{E}+02 & 6.44 \mathrm{E}+02\end{array}\) \(\begin{array}{lllllll}2013 & 4.33 \mathrm{E}+04 & 8.84 \mathrm{E}+02 & 1.16 \mathrm{E}+02 & 5.28 \mathrm{E}+02 & 1.15 \mathrm{E}+02 & 2.11 \mathrm{E}+02\end{array}\) \(2014 \quad 3.28 \mathrm{E}+04 \quad 3.03 \mathrm{E}+04 \quad 6.77 \mathrm{E}+02 \quad 8.52 \mathrm{E}+01 \quad 3.93 \mathrm{E}+02 \quad 8.61 \mathrm{E}+01\) \(2015 \quad 1.68 \mathrm{E}+04 \quad 2.66 \mathrm{E}+04 \quad 2.25 \mathrm{E}+04 \quad 1.77 \mathrm{E}+02 \quad 2.96 \mathrm{E}+01 \quad 2.07 \mathrm{E}+02\) 2016 1.04E+04 1.37E+04 1.93E+04 1.54E+04 \(5.01 \mathrm{E}+01 \quad 1.75 \mathrm{E}+01\)

Table 4.3.17 cont.
```

Estimated population abundance at 1st Jan 2017
0.00E+00
Taper weighted geometric mean of the VPA populations:
2.12E+04 1.64E+04 1.00E+04 4.76E+03 2.00E+03 9.99E+02
Standard error of the weighted Log(VPA populations):

```

```

Log catchability residuals.
Fleet:SCOGFS
Age 19091 1992 1993 1994 1995 1994 1996 1997 1998 1999 2000

1	-0.38	0.37	0.07	-0.13	0.11	0.31	-0.34	99.99	0.18	99.99
2	-0.01	0.58	0.49	-0.01	0.14	0.04	-0.49	99.99	-0.38	99.99
3	-0.61	0.49	0.55	0.43	0.45	-0.01	-0.96	99.99	-0.37	99.99
4	-0.24	0.54	0.45	0.46	0.76	-0.13	-1.21	99.99	-0.4	99.99
5	-0.29	-0.01	0.41	-0.54	0.79	-0.17	-1.01	99.99	-0.61	99.99
6	0.01	0.19	-0.06	-0.16	0.11	-0.14	-0.46	99.99	-0.28	99.99

Age

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	-0.73	-0.16	0.07	99.99	0.39	-0.17	0.58	0.59	0.65	99.99
2	-0.94	-0.86	0.3	99.99	0.11	0.69	-0.35	0.62	0.96	99.99
3	-0.59	-1.08	-0.26	99.99	0.06	-0.16	0.3	0.04	0.94	99.99
4	-0.8	-0.89	-0.6	99.99	0.61	0.59	0.63	-0.09	-0.09	99.99
5	-0.62	-1.21	0.18	99.99	-0.57	0.89	0.07	-0.31	-1.06	99.99
6	-0.53	-0.12	0.14	99.99	0.07	0.2	-0.05	0.02	-0.5	99.99

Age

	2011	2012	2013	2014	2015	2016
1	0.51	-2.4	0.38	0.05	0.01	0.02
2	0.25	0.45	-2.07	0.22	0.52	0.03
3	0.27	0.48	0.35	-1.18	0.58	0.29
4	0.32	0.07	-1.63	99.99	1.4	0.24
5	0.15	1.16	-0.08	-0.69	2.58	0.95
6	0.01	-0.07	-0.36	99.99	0.16	-0.33

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age		4	5	6				
Mean Log q		-2.3551	-2.2634	-2.2634				
S.E($\log \mathrm{q})$		0.7307	0.8786	0.2512				
Regression statistics :								
Ages with q dependent on year class strength								
Age		Slope	t-value	Intercept	RSquare	No Pts	Reg s.e	Mean $\log q$
	1	0.78	2.747	3.39	0.89		220.66	-1.53
	2	0.85	1.745	3.19	0.87	22	22.0 .7	-2.02
	3	0.9	1.277	3.03	0.9	22	220.6	-2.38

Ages with q independent of year class strength and constant w.r.t. time.
Age Slope t-value intercept RSquare No Pts Regs.e Mean Q

4	1.01	-0.101	2.29	0.81	21	0.76	-2.36
5	1.4	-2.986	0.2	0.73	22	1.05	-2.26
6	0.95	1.483	2.59	0.98	21	0.21	-2.36
1							

Terminal year survivor and F summaries :
Age 1 Catchability dependent on age and year class strength
Year class $=2015$

Fleet		Int	Ext	Var Ratio			Scaled Weights	Estimated
scogfs	8425	0.673	0		0	1	0.618	0.033
P shrinkage mean	16395	1.76					0.094	0.017
F shrinkage mean	6235	1					0.289	0.045

Weighted prediction:

```


Table 4.3.17 cont.


Table 4.3.18. Haddock in 6.b. Final XSA runs. Fishing mortality-at-age.

Run title : HADDOCK LANDISC 2004 ROCKALL

At 4/05/2017 16:28

Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 0.2417 & 0.1783 & 0.1055 & 0.1423 & 0.0508 & 0.2411 & 0.1668 & 0.2462 & 0.4995 & 0.3933 \\
\hline & 2 & 0.6153 & 0.4934 & 0.3386 & 0.2885 & 0.2545 & 0.5715 & 0.3425 & 0.5818 & 0.7467 & 0.8583 \\
\hline & 3 & 0.9062 & 0.8443 & 0.6706 & 0.605 & 0.5578 & 0.499 & 0.3143 & 0.6574 & 0.9013 & 1.0811 \\
\hline & 4 & 0.9631 & 1.0101 & 0.5629 & 0.963 & 0.8082 & 0.5213 & 0.3523 & 0.5089 & 0.9513 & 1.2727 \\
\hline & 5 & 0.4984 & 1.0565 & 1.0309 & 0.6121 & 0.9006 & 0.721 & 0.5707 & 0.6362 & 0.8713 & 1.2861 \\
\hline & 6 & 0.7799 & 0.3752 & 0.9171 & 1.0456 & 0.4027 & 0.7848 & 1.1638 & 0.7339 & 1.5113 & 1.3612 \\
\hline +gp & & 0.7799 & 0.3752 & 0.9171 & 1.0456 & 0.4027 & 0.7848 & 1.1638 & 0.7339 & 1.5113 & 1.3612 \\
\hline \multirow[t]{2}{*}{FBAR 2-5} & & 0.7458 & 0.8511 & 0.6507 & 0.6171 & 0.6303 & 0.5782 & 0.395 & 0.5961 & 0.8676 & 1.1246 \\
\hline & & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 0.1158 & 0.1577 & 0.1726 & 0.0758 & 0.0789 & 0.0371 & 0.1854 & 0.2021 & 0.2953 & 0 \\
\hline & 2 & 0.1512 & 0.2454 & 0.4597 & 0.1553 & 0.485 & 0.15 & 0.1717 & 0.4593 & 0.5222 & 0.2506 \\
\hline & 3 & 0.2738 & 0.6188 & 0.5883 & 0.3718 & 0.4627 & 0.405 & 0.6602 & 0.3096 & 0.5092 & 0.3749 \\
\hline & 4 & 0.2566 & 0.7302 & 0.6461 & 0.9648 & 0.5701 & 0.2663 & 0.829 & 0.5261 & 0.3737 & 0.3278 \\
\hline & 5 & 1.0872 & 0.3787 & 1.172 & 1.3674 & 0.1768 & 0.3074 & 0.4181 & 0.7587 & 0.392 & 0.3923 \\
\hline & 6 & 1.4089 & 0.9215 & 0.8665 & 0.9881 & 0.3298 & 0.1471 & 0.4285 & 0.3233 & 1.2707 & 0.4532 \\
\hline +gp & & 1.4089 & 0.9215 & 0.8665 & 0.9881 & 0.3298 & 0.1471 & 0.4285 & 0.3233 & 1.2707 & 0.4532 \\
\hline FBAR 2-5 & & 0.4422 & 0.4933 & 0.7165 & 0.7148 & 0.4237 & 0.2822 & 0.5197 & 0.5134 & 0.4493 & 0.3364 \\
\hline
\end{tabular}
\begin{tabular}{crrrrrrrr} 
& & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & FBAR \({ }^{* * * *}\) * \\
& & & & & & & & \\
AGE & & 0.0217 & 0.0043 & 0.1562 & 0.0125 & 0.0049 & 0.034 & 0.0171 \\
& 1 & 0 & 0.0635 & 0.0434 & 0.0658 & 0.1009 & 0.1211 & 0.0793 \\
& 3 & 0.3781 & 0.2369 & 0.1105 & 1.144 & 0.1762 & 0.1568 & 0.4923 \\
& 4 & 0.4956 & 0.4004 & 0.0949 & 0.8567 & 1.0604 & 0.0763 & 0.6645 \\
& 5 & 0.2348 & 0.0144 & 0.0902 & 0.4426 & 0.3233 & 0.09 & 0.2853 \\
& 6 & 0.4138 & 0.1183 & 0.2771 & 0.6656 & 0.4497 & 0.1865 & 0.4339 \\
+gp & & 0.4138 & 0.1183 & 0.2771 & 0.6656 & 0.4497 & 0.1865 & \\
FBAR 2-5 & 0.293 & 0.1738 & 0.0904 & 0.6361 & 0.4203 & 0.1006 &
\end{tabular}

Table 4.3.19. Haddock in 6.b. Final XSA runs. Stock numbers ( \({ }^{*} 10^{3}\) ) at-age.

Run title : HADDOCK LANDISC 2004 ROCKALL
At 4/05/2017 16:28
Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{4}{|l|}{Stock number at age (start of year)} & \multicolumn{3}{|c|}{Numbers*10**-3} & \multirow[b]{2}{*}{1997} & \multirow[b]{2}{*}{1998} & \multirow[b]{2}{*}{1999} & \multirow[b]{2}{*}{2000} \\
\hline YEAR & & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & & & & \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 109055 & 108831 & 123425 & 68087 & 61367 & 62402 & 71614 & 72038 & 48578 & 27943 \\
\hline & 2 & 81405 & 70117 & 74550 & 90938 & 48352 & 47755 & 40145 & 49623 & 46109 & 24135 \\
\hline & 3 & 28168 & 36023 & 35048 & 43505 & 55793 & 30692 & 22077 & 23336 & 22706 & 17891 \\
\hline & 4 & 9547 & 9318 & 12677 & 14675 & 19451 & 26149 & 15256 & 13200 & 9901 & 7549 \\
\hline & 5 & 4798 & 2984 & 2778 & 5911 & 4587 & 7097 & 12712 & 8782 & 6497 & 3131 \\
\hline & 6 & 705 & 2386 & 849 & 811 & 2624 & 1526 & 2826 & 5882 & 3806 & 2226 \\
\hline +gp & & 1050 & 722 & 651 & 389 & 261 & 184 & 325 & 2917 & 3836 & 2999 \\
\hline \multirow[t]{2}{*}{TOTAL} & & 234728 & 230382 & 249979 & 224317 & 192435 & 175805 & 164955 & 175778 & 141433 & 85872 \\
\hline & & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 77458 & 101235 & 45841 & 14107 & 15464 & 87273 & 9736 & 2872 & 963 & 1300 \\
\hline & 2 & 15438 & 56480 & 70792 & 31582 & 10706 & 11701 & 68848 & 6622 & 1922 & 587 \\
\hline & 3 & 8376 & 10865 & 36181 & 36600 & 22137 & 5397 & 8245 & 47474 & 3425 & 933 \\
\hline & 4 & 4969 & 5215 & 4791 & 16449 & 20662 & 11410 & 2947 & 3488 & 28520 & 1685 \\
\hline & 5 & 1731 & 3147 & 2057 & 2056 & 5132 & 9566 & 7158 & 1053 & 1688 & 16070 \\
\hline & 6 & 708 & 478 & 1764 & 522 & 429 & 3521 & 5759 & 3858 & 404 & 934 \\
\hline +gp & & 858 & 801 & 906 & 820 & 754 & 1216 & 2328 & 3697 & 757 & 931 \\
\hline TOTAL & & 109537 & 178221 & 162333 & 102134 & 75284 & 130084 & 105021 & 69065 & 37677 & 22440 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrr} 
& & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & GMST 91-** AMST \\
& & & & & & & & & & \\
AGE & 185 & 1084 & 43329 & 32849 & 16807 & 10387 & 0 & 22093 & 49460 \\
& 1 & 1064 & 148 & 884 & 30344 & 26560 & 13693 & 8219 & 16190 & 36677 \\
& 3 & 374 & 818 & 116 & 677 & 22458 & 19265 & 10356 & 9423 & 20702 \\
& 4 & 525 & 210 & 528 & 85 & 177 & 15416 & 13483 & 5195 & 9967 \\
& 5 & 994 & 262 & 115 & 393 & 30 & 50 & 11693 & 2785 & 4612 \\
& 6 & 8888 & 644 & 211 & 86 & 207 & 18 & 37 & 1262 & 2160 \\
+gp & & 893 & 4895 & 2524 & 1362 & 338 & 84 & 69 & & \\
TOTAL & & 12923 & 8060 & 47707 & 65797 & 66576 & 58913 & 43857 & &
\end{tabular}

Table 4.3.20. Haddock in 6.b. Final XSA run. Summary table.

Run title : HADDOCK LANDISC 2004 ROCKALL

At 4/05/2017 16:28

Table 16 Summary (without SOP correction) Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{lrrrrrrr} 
& \begin{tabular}{c} 
RECRUITS \\
\\
\\
Age 1
\end{tabular} & TOTALBIO & TOTSPBIO & LANDINGS & YIELD/SSB & FBAR \(2-5\) \\
1991 & 109055 & 50084 & 15060 & 5655 & 0.3755 & 0.7458 \\
1992 & 108831 & 49286 & 18053 & 5320 & 0.2947 & 0.8511 \\
1993 & 123425 & 53795 & 19143 & 4784 & 0.2499 & 0.6507 \\
1994 & 68087 & 55087 & 23482 & 5733 & 0.2442 & 0.6171 \\
1995 & 61367 & 46740 & 28765 & 5587 & 0.1942 & 0.6303 \\
1996 & 62402 & 46671 & 24909 & 7075 & 0.284 & 0.5782 \\
1997 & 71614 & 40918 & 21544 & 5166 & 0.2398 & 0.395 \\
1998 & 72038 & 43395 & 20832 & 4984 & 0.2392 & 0.5961 \\
1999 & 48578 & 32449 & 16154 & 5221 & 0.3232 & 0.8676 \\
2000 & 27943 & 22835 & 11520 & 4558 & 0.3957 & 1.1246 \\
2001 & 77458 & 20745 & 6476 & 1918 & 0.2962 & 0.4422 \\
2002 & 101235 & 33918 & 6752 & 2571 & 0.3807 & 0.4933 \\
2003 & 45841 & 34544 & 13160 & 5961 & 0.453 & 0.7165 \\
2004 & 14107 & 23941 & 15614 & 6400 & 0.4099 & 0.7148 \\
2005 & 15464 & 18693 & 14821 & 5191 & 0.3503 & 0.4237 \\
2006 & 87273 & 22780 & 12347 & 2759 & 0.2235 & 0.2822 \\
2007 & 9736 & 23938 & 10023 & 3348 & 0.334 & 0.5197 \\
2008 & 2872 & 24134 & 21967 & 4205 & 0.1914 & 0.5134 \\
2009 & 963 & 15199 & 14407 & 3237 & 0.2247 & 0.4493 \\
2010 & 1300 & 12033 & 11697 & 3404 & 0.291 & 0.3364 \\
2011 & 185 & 7221 & 6887 & 1905 & 0.2766 & 0.293 \\
2012 & 1084 & 6912 & 6583 & 710 & 0.1078 & 0.1738 \\
2013 & 43329 & 13484 & 3973 & 825 & 0.2076 & 0.0904 \\
2014 & 32849 & 15116 & 2624 & 1675 & 0.6382 & 0.6361 \\
2015 & 16807 & 22947 & 14383 & 2445 & 0.17 & 0.4203 \\
2016 & 10387 & 23271 & 17150 & 2585 & 0.1507 & 0.1006
\end{tabular}

Arith.
\begin{tabular}{lrrrrrr} 
Mean & \begin{tabular}{r}
46701
\end{tabular} & 29236 & 14551 & 3970 & 0.2902 & 0.5255 \\
Units & (Thousands) & (Tonnes) & \begin{tabular}{rl}
1451 \\
(Tonnes)
\end{tabular} & \begin{tabular}{l} 
(Tonnes)
\end{tabular} & &
\end{tabular}

Table 4.3.21. Haddock in 6.b. Detailed short-term forecast output.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MFDP version 1a} & & & & & & & & & & & \\
\hline Run: 02 & & & & & & & & & & & & \\
\hline \multicolumn{4}{|l|}{Time and date: 00:50 08.05.2017} & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{Fbar age range (Total) : 2-5} & & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{Fbar age range Fleet 1: 2-5} & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Year:} & 2017 & F multipli & 0.815 & Fleet1 HCl & 0.2479 & Fleet1 DFt & 0.0663 & & & & & \\
\hline & Catch & & & & & & & & & & & \\
\hline Age & F & CatchNos & Yield & DF & DCatchNo & DYield & StockNos & Biomass & SSNos(Jan & SSB(Jan) & SSNos(ST) & SSB(ST) \\
\hline 1 & 0.0039 & 334 & 74 & 0.01 & 855 & 152 & 94770 & 16869 & 0 & 0 & 0 & 0 \\
\hline 2 & 0.0271 & 194 & 87 & 0.0547 & 392 & 112 & 8219 & 2564 & 0 & 0 & 0 & 0 \\
\hline 3 & 0.2866 & 2231 & 1234 & 0.1146 & 892 & 278 & 10356 & 4401 & 10356 & 4401 & 10356 & 4401 \\
\hline 4 & 0.4793 & 4563 & 2975 & 0.0623 & 593 & 229 & 13483 & 7699 & 13483 & 7699 & 13483 & 7699 \\
\hline 5 & 0.1987 & 1886 & 2280 & 0.0338 & 321 & 94 & 11693 & 10290 & 11693 & 10290 & 11693 & 10290 \\
\hline 6 & 0.3329 & 9 & 10 & 0.0207 & 1 & 0 & 37 & 32 & 37 & 32 & 37 & 32 \\
\hline 7 & 0.3429 & 18 & 28 & 0.0108 & 1 & 0 & 69 & 82 & 69 & 82 & 69 & 82 \\
\hline Total & & 9236 & 6690 & & 3054 & 867 & 138627 & 41937 & 35638 & 22504 & 35638 & 22504 \\
\hline & & & & & & & & & & & & \\
\hline Year: & 2018 & F multipli & 0.5 & Fleet1 HCl & 0.1521 & Fleet1 DFI & 0.0407 & & & & & \\
\hline & Catch & & & & & & & & & & & \\
\hline Age & F & CatchNos & Yield & DF & DCatchNo & DYield & StockNos & Biomass & SSNos(Jan & SSB(Jan) & SSNos(ST) & SSB(ST) \\
\hline 1 & 0.0024 & 23 & 5 & 0.0062 & 58 & 10 & 10387 & 1849 & 0 & 0 & 0 & 0 \\
\hline 2 & 0.0167 & 1127 & 506 & 0.0336 & 2271 & 652 & 76517 & 23873 & 0 & 0 & 0 & 0 \\
\hline 3 & 0.1759 & 880 & 486 & 0.0703 & 352 & 110 & 6200 & 2635 & 6200 & 2635 & 6200 & 2635 \\
\hline 4 & 0.2941 & 1294 & 844 & 0.0382 & 168 & 65 & 5677 & 3241 & 5677 & 3241 & 5677 & 3241 \\
\hline 5 & 0.1219 & 663 & 801 & 0.0208 & 113 & 33 & 6423 & 5652 & 6423 & 5652 & 6423 & 5652 \\
\hline 6 & 0.2043 & 1267 & 1396 & 0.0127 & 79 & 56 & 7587 & 6464 & 7587 & 6464 & 7587 & 6464 \\
\hline 7 & 0.2104 & 10 & 16 & 0.0066 & 0 & 0 & 61 & 73 & 61 & 73 & 61 & 73 \\
\hline Total & & 5264 & 4056 & & 3041 & 926 & 112852 & 43788 & 25948 & 18066 & 25948 & 18066 \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Year:} & 2019 & F multipli & 0.5 & Fleet1 HCl & 0.1521 & Fleet1 DFt & 0.0407 & & & & & \\
\hline & Catch & & & & & & & & & & & \\
\hline Age & F & CatchNos & Yield & DF & DCatchNo & DYield & StockNos & Biomass & SSNos(Jan & SSB(Jan) & SSNos(ST) & SSB(ST) \\
\hline 1 & 0.0024 & 23 & 5 & 0.0062 & 58 & 10 & 10387 & 1849 & 0 & 0 & 0 & 0 \\
\hline 2 & 0.0167 & 124 & 56 & 0.0336 & 250 & 72 & 8432 & 2631 & 0 & 0 & 0 & 0 \\
\hline 3 & 0.1759 & 8452 & 4674 & 0.0703 & 3379 & 1054 & 59580 & 25321 & 59580 & 25321 & 59580 & 25321 \\
\hline 4 & 0.2941 & 905 & 590 & 0.0382 & 118 & 45 & 3969 & 2266 & 3969 & 2266 & 3969 & 2266 \\
\hline 5 & 0.1219 & 344 & 416 & 0.0208 & 59 & 17 & 3334 & 2934 & 3334 & 2934 & 3334 & 2934 \\
\hline 6 & 0.2043 & 762 & 839 & 0.0127 & 47 & 33 & 4559 & 3885 & 4559 & 3885 & 4559 & 3885 \\
\hline 7 & 0.2104 & 867 & 1359 & 0.0066 & 27 & 19 & 5041 & 6023 & 5041 & 6023 & 5041 & 6023 \\
\hline Total & & 11476 & 7939 & & 3937 & 1252 & 95301 & 44909 & 76482 & 40429 & 76482 & 40429 \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{5}{|l|}{Input units are thousands and kg - output in tonnes} & & & & & & & & \\
\hline
\end{tabular}

Table 4.3.22. Haddock in 6.b. Input data for the short-term forecast.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Fbar age range (Total) : 2-5} & & & & \\
\hline \multicolumn{3}{|l|}{Fbar age range Fleet 1 : 2-5} & & & & \\
\hline 2017 & & & & & & \\
\hline Age & N & M & Mat & PF & PM & SWt \\
\hline 1 & 94770 & 0.2 & 0 & 0 & 0 & 0.178 \\
\hline 2 & 8219 & 0.2 & 0 & 0 & 0 & 0.312 \\
\hline 3 & 10356 & 0.2 & 1 & 0 & 0 & 0.425 \\
\hline 4 & 13483 & 0.2 & 1 & 0 & 0 & 0.571 \\
\hline 5 & 11693 & 0.2 & 1 & 0 & 0 & 0.88 \\
\hline 6 & 37 & 0.2 & 1 & 0 & 0 & 0.852 \\
\hline 7 & 69 & 0.2 & 1 & 0 & 0 & 1.195 \\
\hline & & & & & & \\
\hline Catch & & & & & & \\
\hline Age & Sel & CWt & DSel & DCWt & & \\
\hline 1 & 0.0048 & 0.223 & 0.0123 & 0.178 & & \\
\hline 2 & 0.0333 & 0.449 & 0.0671 & 0.287 & & \\
\hline 3 & 0.3517 & 0.553 & 0.1406 & 0.312 & & \\
\hline 4 & 0.5881 & 0.652 & 0.0764 & 0.387 & & \\
\hline 5 & 0.2438 & 1.209 & 0.0415 & 0.293 & & \\
\hline 6 & 0.4085 & 1.102 & 0.0254 & 0.706 & & \\
\hline 7 & 0.4207 & 1.567 & 0.0132 & 0.71 & & \\
\hline & & & & & & \\
\hline 2018 & & & & & & \\
\hline Age & N & M & Mat & PF & PM & SWt \\
\hline 1 & 10387 & 0.2 & 0 & 0 & 0 & 0.178 \\
\hline 2 & . & 0.2 & 0 & 0 & 0 & 0.312 \\
\hline 3 & . & 0.2 & 1 & 0 & 0 & 0.425 \\
\hline 4 & & 0.2 & 1 & 0 & 0 & 0.571 \\
\hline 5 & . & 0.2 & 1 & 0 & 0 & 0.88 \\
\hline 6 & 6. & 0.2 & 1 & 0 & 0 & 0.852 \\
\hline 7 & . & 0.2 & 1 & 0 & 0 & 1.195 \\
\hline & & & & & & \\
\hline Catch & & & & & & \\
\hline Age & Sel & CWt & DSel & DCWt & & \\
\hline 1 & 0.0048 & 0.223 & 0.0123 & 0.178 & & \\
\hline 2 & 0.0333 & 0.449 & 0.0671 & 0.287 & & \\
\hline 3 & 0.3517 & 0.553 & 0.1406 & 0.312 & & \\
\hline 4 & 0.5881 & 0.652 & 0.0764 & 0.387 & & \\
\hline 5 & 0.2438 & 1.209 & 0.0415 & 0.293 & & \\
\hline 6 & 0.4085 & 1.102 & 0.0254 & 0.706 & & \\
\hline 7 & 0.4207 & 1.567 & 0.0132 & 0.71 & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{2019} & & & & & \\
\hline Age & N & M & Mat & PF & PM & SWt \\
\hline 1 & 10387 & 0.2 & 0 & 0 & 0 & 0.178 \\
\hline 2 & & 0.2 & 0 & 0 & 0 & 0.312 \\
\hline 3 & . & 0.2 & 1 & 0 & 0 & 0.425 \\
\hline 4 & . & 0.2 & 1 & 0 & 0 & 0.571 \\
\hline 5 & . & 0.2 & 1 & 0 & 0 & 0.88 \\
\hline 6 & . & 0.2 & 1 & 0 & 0 & 0.852 \\
\hline 7 & & 0.2 & - 1 & 0 & 0 & 1.195 \\
\hline & & & & & & \\
\hline Catch & & & & & & \\
\hline \multirow[t]{9}{*}{Age \begin{tabular}{|l|}
\hline 1 \\
\hline 2 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline 6 \\
\hline 7
\end{tabular}} & Sel & CWt & DSel & DCWt & & \\
\hline & 0.0048 & 0.223 & 0.0123 & 0.178 & & \\
\hline & 0.0333 & 0.449 & 0.0671 & 0.287 & & \\
\hline & 0.3517 & 0.553 & 0.1406 & 0.312 & & \\
\hline & 0.5881 & 0.652 & 0.0764 & 0.387 & & \\
\hline & 0.2438 & 1.209 & 0.0415 & 0.293 & & \\
\hline & 0.4085 & 1.102 & 0.0254 & 0.706 & & \\
\hline & 0.4207 & 1.567 & 0.0132 & 0.71 & & \\
\hline & & & & & & \\
\hline \multicolumn{5}{|l|}{Input units are thousands and kg - output in tonnes} & & \\
\hline
\end{tabular}

Table 4.3.23. Haddock in 6.b. Short-term forecast ouput.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Fbar age range (Total) : 2-5} & & & & & & \\
\hline \multicolumn{3}{|l|}{Fbar age range Fleet \(1: 2-5\)} & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{2017} & & & & & & & & \\
\hline & & Catch & Landings & & Discards & & & \\
\hline Biomass & SSB & FMult & FBar & Yield & FBar & Yield & & \\
\hline 41937 & 22504 & 0.815 & 0.2479 & 6690 & 0.0663 & 867 & & \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{2018} & & & & & & & 2019 & \\
\hline & & Catch & Landings & & Discards & & & \\
\hline Biomass & SSB & FMult & FBar & Yield & FBar & Yield & Biomass & SSB \\
\hline 43788 & 18066 & 0.4 & 0.1217 & 3308 & 0.0326 & 748 & 45865 & 41380 \\
\hline . & 18066 & 0.41 & 0.1247 & 3384 & 0.0334 & 766 & 45767 & 41284 \\
\hline . & 18066 & 0.42 & 0.1278 & 3460 & 0.0342 & 784 & 45671 & 41187 \\
\hline . & 18066 & 0.43 & 0.1308 & 3536 & 0.035 & 802 & 45574 & 41091 \\
\hline . & 18066 & 0.44 & 0.1339 & 3611 & 0.0358 & 820 & 45478 & 40996 \\
\hline - & 18066 & 0.45 & 0.1369 & 3686 & 0.0366 & 837 & 45382 & 40900 \\
\hline . & 18066 & 0.46 & 0.1399 & 3760 & 0.0374 & 855 & 45287 & 40806 \\
\hline - & 18066 & 0.47 & 0.143 & 3835 & 0.0383 & 873 & 45192 & 40711 \\
\hline . & 18066 & 0.48 & 0.146 & 3909 & 0.0391 & 891 & 45097 & 40617 \\
\hline - & 18066 & 0.49 & 0.1491 & 3982 & 0.0399 & 908 & 45003 & 40523 \\
\hline . & 18066 & 0.5 & 0.1521 & 4056 & 0.0407 & 926 & 44909 & 40429 \\
\hline - & 18066 & 0.51 & 0.1552 & 4129 & 0.0415 & 943 & 44816 & 40336 \\
\hline . & 18066 & 0.52 & 0.1582 & 4202 & 0.0423 & 961 & 44722 & 40244 \\
\hline . & 18066 & 0.53 & 0.1612 & 4274 & 0.0431 & 978 & 44629 & 40151 \\
\hline . & 18066 & 0.54 & 0.1643 & 4347 & 0.044 & 996 & 44537 & 40059 \\
\hline . & 18066 & 0.55 & 0.1673 & 4419 & 0.0448 & 1013 & 44445 & 39967 \\
\hline . & 18066 & 0.56 & 0.1704 & 4490 & 0.0456 & 1031 & 44353 & 39876 \\
\hline . & 18066 & 0.57 & 0.1734 & 4562 & 0.0464 & 1048 & 44261 & 39785 \\
\hline . & 18066 & 0.58 & 0.1765 & 4633 & 0.0472 & 1065 & 44170 & 39694 \\
\hline . & 18066 & 0.59 & 0.1795 & 4704 & 0.048 & 1083 & 44080 & 39604 \\
\hline - & 18066 & 0.6 & 0.1825 & 4774 & 0.0488 & 1100 & 43989 & 39514 \\
\hline & & & & & & & & \\
\hline \multicolumn{5}{|l|}{Input units are thousands and kg - output in tonnes} & & & & \\
\hline
\end{tabular}

Table 4.3.24. Haddock 6.b. Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes.



Figure 4.3.1. Distribution of haddock (catch N per 30 minutes) on the Rockall Bank in 2001-2016 from the Scottish trawl survey (Scottish Rock-IBTS-Q3).


Figure 4.3.2. Haulings pattern during bottom survey by RV 'Scotia' in September 2016: a) the whole area; \(b\) ) the standard area.


Figure 4.3.3. Distribution of 0-group haddock (number per 30 minutes) on the Rockall Bank in 2012-2016 from the Scottish trawl survey.


Figure 4.3.4. Abundance (a) and biomass (b) of haddock, assessed with the trawl survey method with geographical stratification based on rectangles of 15 ' latitude and 15 ' longitude by RV 'Scotia' survey. Red dashed line indicates the confidence interval with 0.95 reliability level.


Figure 4.3.5. Abundance (a) and biomass (b) of haddock, assessed with the trawl survey method with geographical stratification based on bathymetry by RV 'Scotia' survey. Red dashed line indicates the confidence interval with 0.95 reliability level.


Figure 4.3.6. Abundance (a) and biomass (b) of haddock, assessed with the trawl survey method without geographical stratification by RV 'Scotia' survey. Red dashed line indicates the confidence interval with 0.95 reliability level.


Figure 4.3.7. Rockall haddock in 6.b. Scottish, Irish effort in 1985-2016 and Russian effort in 19992016.


Figure 4.3.8. Lpue and cpue of the fleets fishing for Rockall haddock. Note that Scottish and Irish effort data are not reliable because reporting is not mandatory.

1 - Scottish lpue (all gears).
2 - Irish trawlers lpue.
3 - Cpue of Russian trawlers (BMRT type, tonnage class 10 in 1999-2007, and tonnage class 9 in 20082009, 2013-2015).


Figure 4.3.9. Dynamics of haddock total biomass (ICES, 2008a; ICES, 2008b) and directed fishing efficiency ( \(\mathbf{t}\) per a trawling hour) for tonnage class 10 vessels in 1999-2007.


Figure 4.3.10. Total landings and discards of Rockall haddock ('000 individuals).


Figure 4.3.11. Total landings and discards of Rockall haddock (tonnes).


Figure 4.3.12. Haddock in 6.b. Mean weights-at-age in discards (left) and in landings (right).


Figure 4.3.13. Haddock in 6.b. Mean weights-at-age in catch (left) and in stock (right).


Figure 4.3.14. Haddock in 6.b. Log catch-(with discards in numbers) at-age by year.


Figure 4.3.15. Haddock in 6.b. Log landings-(in numbers) at-age by year.


Figure 4.3.16. Haddock in 6.b. Log catch-(with discards, in numbers) at-age by year class.


Figure 4.3.17. Haddock in 6.b. Log landings-(without registered discards, in numbers) at-age by year class.


Figure 4.3.18. Haddock in 6.b. Catch curves (with registered discards).


Figure 4.3.19. Haddock in 6.b. Catch curves (landings without registered discards).


Figure 4.3.20. Haddock in 6.b. Log survey cpue at-age by year.


Figure 4.3.21. Haddock in 6.b. Final XSA run. Log survey cpue by year class.


Figure 4.3.22. Haddock in 6.b. Exploratory run. Log survey cpue by year class.


Figure 4.3.23. Haddock in 6.b. Final XSA run. Log survey cpue at-age.


Figure 4.3.24. Haddock in 6.b. Exploratory run. Log survey cpue at-age.


Figure 4.3.25. SURBA analysis for Rockall haddock.


Figure 4.3.26. SURBA analysis for Rockall haddock. Retrospective plots.


Figure 4.3.27. SURBA analysis for Rockall haddock. Pairwise plots of age.


Figure 4.3.28. Haddock in 6.b. Log catchability residual plots (shrinkage 1.0, catchability dependent on stock size at-ages <4). Final XSA.


Figure 4.3.29. Haddock in 6.b. Exploratory run. Log catchability residual plots (shrinkage 1.0, catchability dependent on stock size at-ages <4).


Figure 4.3.30. Haddock in 6.b. Adjusted Scottish groundfish survey cpue from the final XSA run plotted against VPA numbers-(shrinkage 1.0) at-age. Catchability dependent on stock size at-ages <4.


Figure 4.3.31. Haddock in 6.b. Survey indices and XSA estimates (shrinkage 1.0) at-age. Final XSA: catchability dependent on stock size at-ages \(<4\).


Figure 4.3.32. Haddock in 6.b. Retrospective analyses (F shrinkage 1.0).


Figure 4.3.33. Haddock in 6.b. Catch (with discards, in numbers) at-age (left) and stock abun-dance-at-age (right)


Figure 4.3.34. Haddock in 6.b. F at-age (F shrinkage 1.0).


Figure 4.3.35. Haddock in 6.b. Comparison of the final runs XSA and SURBA output.


Figure 4.3.36. Haddock in 6.b. Summary plots.


Figure 4.3.37. Haddock in 6.b. Comparison of the final XSA and exploratory XSA assessments.


Figure 4.3.38. Haddock in 6.b. Comparison of the current final assessment (in red) with the previous one (in black). In the SSB plot, the solid blue line indicates BPA and the dotted blue line refers to \(B_{l i m}\). In the fishing mortality plot, the solid blue line signifies FPA.


Figure 4.3.39. Haddock in 6.b. Comparison of observed and predicted survey and catch biomass derived from StatCam, Scenario 2.


Figure 4.3.40. Haddock in 6.b. Log catchability residuals plot for survey biomass index. Scenario 2 of StatCam run.


Figure 4.3.41. Haddock in 6.b. Population biomass, SSB, fishing mortality and recruitment by StatCam estimation. Scenario 2.


Figure 4.3.42. Haddock in 6.b. Comparison of the final XSA (VPA) assessment with the statistical catch-at-age model StatCam assessment.


Figure 4.3.43. Haddock in 6.b. Scottish Groundfish survey indices of haddock abundance-at-age 0 .


Figure 4.3.44. Haddock in 6.b. VPA numbers-at-age 1 from XSA plotted against Scottish Groundfish survey indices of haddock at-age 0 .


Figure 4.3. 45. Haddock in Division 6.b. Discard proportion-at-age by year, and mean discard pro-portion-at-age for periods: 1991-2016, 1999-2012, 2006-2016 and 1999-2016.

Figure Haddock, Vib. Short term forecast


Data from file C: MLA has 17 sen on 1605/2017 at 11:18:50

Figure 4.3.46. Haddock in 6.b. Short-term forecast.

Figure Haddock,Vib. Sensitivity analysis of short term forecast.


Figure 4.3.47. Haddock in 6.b. Delta plots from the sensitivity analysis of the short-term forecast.

Figure Haddock, Vib. Probability profiles for short term forecast.


Data from file C MLA had17 sen on \(16 / 05 / 2017\) at 11:18:15
Figure 4.3.48. Haddock in 6.b. Probability plots for yield in 2018 and SSB in 2019.

\section*{11 Haddock in Division 7.a}

\section*{Type of assessment}

Age-structured assessment model using Age Structured Assessment Program (ASAP).

\section*{ICES advice applicable to 2016}

ICES advises that when the precautionary approach is applied, catches in 2016 should be no more than 1072 tonnes \({ }^{1}\). If this stock is not under the EU landing obligation in 2016 and discard rates do not change from the average of the last three years (20122014), this implies landings of no more than 481 tonnes.

\section*{ICES advice applicable to 2017 (June 2016)}

ICES advises that when the precautionary approach is applied, catches in 2017 should be no more than 1286 tonnes \({ }^{1}\). Since this stock is only partially, under the EU landing obligation, ICES is not in a position to advise on landings corresponding to the advised catch.

\section*{ICES advice applicable to 2017 (Updated February 2017)}

ICES advises that when the MSY approach is applied, catches in 2017 for the Division 7.a haddock stock should be no more than 3061 tonnes \({ }^{1}\).

\subsection*{11.1 General}

\section*{Stock descriptions and management units}

The stock and management units are both ICES Division 7.a (Irish Sea). Landing taken or reported by Irish vessels in the southern most rectangles of 7.a have been reassigned to the \(7 . b-\mathrm{k}\) stock since 2003 because they are believed to be part of the Celtic Sea stock (See Section 7.4).

Management applicable to 2016 and 2017
Management measures include TAC and effort restrictions as well as technical measures. Due to the bycatch of cod in the haddock fishery, the regulations affecting Irish Sea haddock remain linked to those implemented under the cod recovery plan.

TAC regulations for 2016 and 2017 are given below:

\footnotetext{
\({ }^{1}\). Catches taken or reported in rectangles 33E2 and 33E3 are not believed to belong to the haddock stock in Division 7.a but rather to the stock in divisions 7.b-k (Southern Celtic Seas and English Channel). Catches of haddock taken or reported in rectangles 33E2 and 33E3 are therefore included in the assessment of the stock in divisions 7.bk.
}

2016 management (Council Regulation (EU) 2016/72)
\begin{tabular}{ll|ll}
\hline Species: \begin{tabular}{lll}
\begin{tabular}{l} 
Haddock \\
Melanogrammus aeglefinus
\end{tabular} & Zone: & \begin{tabular}{l} 
VIIa \\
(HAD/07A.)
\end{tabular} \\
\hline Belgium & 26 & \\
France & 120 & \\
Ireland & 716 & \\
United Kingdom & 792 & \\
Union & 1654 & \\
TAC & 1654 & Analytical TAC \\
\hline
\end{tabular} \\
\hline
\end{tabular}

2017 management (Council Regulation (EU) (amended) 2017/172)
\begin{tabular}{ll|ll}
\hline Species: \begin{tabular}{lll} 
Haddock \\
Melanogrammus aeglefinus
\end{tabular} & Zone: & VIIa \\
Belgium & & & (HAD/07A.) \\
France & 189 & Precautionary TAC \\
Ireland & 1132 & Article 7(2) of this Regulation applies \\
United Kingdom & 1252 & & \\
Union & 2615 & & \\
TAC & 2615 & & \\
\hline
\end{tabular}

The minimum landing size for haddock in the Irish Sea is 30 cm .

\section*{Landings obligation}

In 2016 the landings obligation applied to the stock for the first time. According to the delegate regulation (EC, 2015) vessels where more than \(25 \%\) of their landings using trawls and seines in the reference years (2013 \& 2014) and area were specified gadoids (Cod, Haddock, Whiting \& Saithe) were covered by the Landings Obligation. This implies that all catches of haddock in the Irish Sea by those vessels must be landed. However a \(7 \%\) de minimus was applied, meaning that these vessels could discard up to \(7 \%\) of the haddock they catch. This is unchanged for 2017.

\section*{Fishery in 2016}

The characteristics of the fishery are described in the stock annex.
The fishery in 2016 was prosecuted by the same fleets and gears as in recent years, with directed fishing prevented inside the cod closure in spring. The targeted whitefish fishery that developed during the 1990 using semi-pelagic trawls and was in continual decline underwent a slight increase in activity in 2014-2016 due to developing stock and increased fishing opportunity. This, however, continues to be pursued by a small number of vessel (<10). A large proportion of the TAC is taken as bycatch in the Nephrops fishery.

Recently the reported uptake of TAC had been poor since 2004, with the exception of 2007. The estimated percentage uptake, not considering international quota swaps, in the UK and Ireland in 2014 was UK 73\% (412 t of 566 t ), Ireland 105\% (534 t of 511 t ). In 2015 the uptake was UK \(80 \%\) ( 633 t of 792 t ), and Ireland \(71 \%\) ( 507 t of 716 t ). In 2016 the UK used \(104 \%\) ( 824 t of 792 t ) and Ireland \(25 \%\); 177 t of 716 t .

The figures for Ireland have been corrected to (pre-adjustment-632 \(t\) ) account for reallocation of landings from southern rectangles of 7.a to 7.g as it is believed that these fish do not belong to the 7.a stock.
Table 11.1 gives nominal landings of haddock from the Irish Sea (Division 7.a) as reported by each country to ICES since 1984.

\subsection*{11.2 Data}

All requested data as detailed in the ICES data call were supplied as required. Data were submitted to InterCatch, which was used for allocation and raising of unsampled fleets. The unsampled fleets for discard estimates \(10 \%\) of the total discard estimate. Age sampling was carried out on those fleets contributing \(69 \%\) of the international landings and \(89 \%\) of the international discards total in 2016. The assessment uses landings and discard information, updated proportion mature-at-age estimates and updated survey series.

\section*{Landings}

Table 11.2 gives the long-term trend of nominal landings of haddock from the Irish Sea (Division 7.a) as reported to ICES since 1972, together with Working Group estimates. The 1993-2005 WG estimates include sampled-based estimates of landings into a number of Irish Sea ports. Sampled-based evidence suggests that WG estimates are similar to reported landings since 2006. Following the benchmark (WKROUND 2013) the landings have been revised since 1993 and exclude landings from the southern rectangles in the Irish Sea as they not are believed to be part of this stock.

The methods for estimating quantities and composition of haddock landings from 7.a, used in previous years, are described in the stock annex (Annex 6.3). The series of numbers-at-age in the international commercial landings is given in Table 11.3. Sampling levels were not considered adequate to derive catch age compositions in 2003. The time-series mean weight-at-age in the landings is given Table 11.4.

\section*{Discards}

The series of raised discard data was updated for Ireland and Northern Ireland. Discard numbers-at-age for the different sampled fleets are given in the stock annex (Annex 6.3). The proportions of discards-by-age for the different sampled fleets are given in the stock annex (Annex 6.3). Issues relating to the reliability of the data were addressed at the benchmark assessment for this stock (WKROUND 2013 \& WKIrish3 2017).

Methods for estimating quantities and composition of discards from UK(NI) and Irish Nephrops trawlers are described in the stock annex (Annex 6.3). Sampling levels have increased in recent years. The very large estimates of discarding for Nephrops fleets observed by previous WG are still evident. A time-series of discard numbers-at-age was constructed at the benchmark (Annex 6.3), but this still need some refinement in terms of the raising methodology used. Discard rates are very variable between fleets.

\section*{Biological data}

The derivation of biological parameters and variables is described in the stock annex. Natural mortality-at-age was calculated using the methods proposed by Lorenzen (1996) at WKIrish 2 (2016). The proportions mature-at-age was also recalculated at the
benchmark and based on the mean proportion observed during the NIGFS-WIBTSQ1 survey with a smoother fit over time updated annually.

There is evidence of trends in mean length-at-age over time (Figure 11.1), which needs to be reflected in the stock weights-at-age. Since 2001 the WG calculated stock weights by fitting a von Bertalanffy growth curve to all available survey estimates of mean length-at-age in March, described in the Stock Annex 6.3. The procedure was updated this year using NIGFS-WIBTS-Q1 (2017) and quarter one commercial landings data for 2015. The time-series of length-weight parameters indicate a reduction in expected weight-at-length since 1996 although this strength of this decline has reduced in recent years (see stock annex for historical data):
\begin{tabular}{rrrrrr}
\hline & \multicolumn{2}{c}{ Length-weight parameters } & \multicolumn{2}{c}{ Expected weight-at-length } \\
\hline Year & A & & B & \multicolumn{2}{c}{30 cm} \\
\hline 2006 & 0.00506 & 3.165 & 239 & 50 cm \\
\hline 2007 & 0.00469 & 3.194 & 244 & 612 \\
\hline 2008 & 0.00523 & 3.159 & 242 & 601 \\
\hline 2009 & 0.00431 & 3.224 & 249 & 629 \\
\hline 2010 & 0.00413 & 3.238 & 250 & 635 \\
\hline 2011 & 0.00457 & 3.207 & 250 & 629 \\
\hline 2012 & 0.00499 & 3.174 & 243 & 606 \\
\hline 2013 & 0.00451 & 3.208 & 247 & 622 \\
\hline 2014 & 0.00591 & 3.121 & 241 & 591 \\
\hline 2015 & 0.00423 & 3.232 & 251 & 637 \\
\hline 2016 & 0.00420 & 3.233 & 250 & 634 \\
\hline 2017 & 0.004144 & 3.235 & 249 & 631 \\
\hline
\end{tabular}

The following parameter estimates were obtained (last year's estimates in parentheses):

Mean \(\mathrm{LI}_{\mathrm{yc}}=82.2 \mathrm{~cm} ; \mathrm{K}=0.178 ; \mathrm{t}_{0}=-0.452\)
Year-class effects giving estimates of asymptotic length relative to the mean were as follows:
\begin{tabular}{cccc}
\hline Year class & Effect & Year class & Effect \\
\hline 1990 & 1.022 & 2004 & 0.697 \\
\hline 1991 & 0.977 & 2005 & 0.707 \\
\hline 1992 & 0.919 & 2006 & 0.712 \\
\hline 1993 & 0.931 & 2007 & 0.730 \\
\hline 1994 & 0.942 & 2008 & 0.762 \\
\hline 1995 & 0.921 & 2009 & 0.750 \\
\hline 1996 & 0.846 & 2010 & 0.811 \\
\hline 1997 & 0.827 & 2011 & 0.823 \\
\hline 1998 & 0.837 & 2012 & 0.846 \\
\hline 1999 & 0.797 & 2013 & 0.729 \\
\hline 2000 & 0.814 & 2014 & 0.783 \\
\hline 2001 & 0.835 & 2015 & 0786 \\
\hline 2002 & 0805 & 2016 & 0877 \\
\hline 2003 & 0756 & & \\
\hline
\end{tabular}

The year-class effects show a smooth decline from the mid-1990s coincident with the rapid growth of the stock and may represent density-dependent growth effects, although other environmental factors may contribute. Although there is some evidence in a reversal of this trend in recent years. The close fit of the model to observed length-at-age data is shown by year classes in Figure 11.1. The resultant stock weights-at-age are given in Table 11.5. The weight-at-age in the stock shows a very clear decreasing trend over time, stabilizing in more recent years.

\section*{Surveys}

The survey data considered in the assessment for this stock are given in Table 11.7. Survey series for haddock available to the Working Group is described in the stock annex for 7a haddock. The following age-structured abundance indices were used in the assessment:
- UK (NI) groundfish survey (NIGFS) in March (age classes 1 to 5, years 1992-2016). Acronym NIGFS-WIBTS-Q1.
- UK (NI) groundfish survey (NIGFS) in October (age classes 0 to 3; years 1991 to 2016). Acronym NIGFS-WIBTS-Q4.
- UK (NI) Methot-Isaacs-Kidd (NI-MIK) net survey in June (age 0; years 1994-2016).
- UK Fishery Science Partnership (FSP) western Irish Sea roundfish survey, 2004-2016 (the survey was not conducted in 2014) (age classes 2 to 5, years 1992-2016) (UKFspW)

\section*{Additional Information:}

The relative log standardised indices for cohorts are plotted against time in Figure 11.2. Whilst ages 2 to 4 appear to show strong signal in the UKFspW the ability to detect the year class in age 5 haddock is less clear. The strong 2013 year class continues to be tracked in all indices, indicating that the different surveys are capturing the prominent year-class signals in this stock (Figure 11.2). Correlation between survey indices by age is positive for all surveys and show high consistency within each survey (Figure 11.3). The indices from the UKFspW survey in the western Irish Sea also
show similar year-class signals to the other survey-series, but are noisy with strong year effects (Figure 11.2).

\subsection*{11.3 Historical stock development}

\section*{Deviation from stock annex}

The assessment presented is the single fleet ASAP model. The assessment does not deviate from the procedure described in the stock annex as defined through the WKIrish Benchmark meeting (WKIrish 2017).

ASAP was used for the assessment and model settings:
\begin{tabular}{|c|c|}
\hline Option & Setting \\
\hline Use likelihood constant & Yes \\
\hline Mean F (Fbar) age range & 2-4 \\
\hline Fleet selectivity block 1 & Assymtotpic \\
\hline Fleet selectivity block 2 & Age coefficineits (age \(0-5\) ) (0.2;0.5;0.8;1;0.7;0.5) \\
\hline Fleet selectivity block 3 & Age coefficients (age \(0-5)(0.3 ; 0.6 ; 0.7 ; 8 ; 0.6 ; 0.4)\) \\
\hline Discards & Included in catch (not specified separately from landings) \\
\hline Index units & 4 (numbers) \\
\hline Index month & NIGFS-Q1 (3); NIGFS-Q4 (10); NIMIK (7); UKFSPW(3) \\
\hline Index selectivity linked to fleet & -1 (not linked) \\
\hline Index age range & NIGFS-Q1 (1-4); NIGFS-Q4 (0-3); NIMIK (0); UKFSPW(2-5) \\
\hline Index Selectivity (NIGFS-Q1) & Double logistic \\
\hline Index Selectivity (NIGFS-Q4) & Asytotpic \\
\hline Index Selectivity (NIMIK) & NA (age 0 only) \\
\hline Index Selectivity (UK-FSPW) & Aysmytotic \\
\hline Index CV \& ESS (NIGFS-Q1) & Observed strata CV (lower limit 0.1); ESS = 50 \\
\hline Index CV \& ESS (NIGFS-Q4) & Observed strata CV (lower limit 0.1); ESS = 50 \\
\hline Index CV \& ESS (NIMIK) & Observed station CV (lower limit 0.1); ESS = 50 \\
\hline Index CV \& ESS (UK-FSPW) & \(\mathrm{CV}=0.7\); ESS = 10 \\
\hline Phase for F-Mult in 1st year & 1 \\
\hline Phase for F-Mult deviations & 2 \\
\hline Phase for recruitment deviations & 3 \\
\hline Phase for N in 1st Year & 1 \\
\hline Phase for catchability in 1st Year & 3 \\
\hline Phase for catchability deviations & -5 (Assume constant catchability in indices) \\
\hline Phase for unexploited stock size & 1 \\
\hline Phase for steepness & -5 (Do not fit stock-recruitment curve) \\
\hline Catch total CV & 1993-2000 (0.175); 2003-2006 (0.2); 2007-2015 (0.15) \\
\hline Catch effective sample size & 1993-2000 (50); 2003-2006 (1); 2007-2015 (50) \\
\hline Lambda for recruit deviations & 0 (freely estimated) \\
\hline Lambda for total catch & 1 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline \multicolumn{1}{c}{ Option } & \multicolumn{1}{c}{ Setting } \\
\hline Lambda for total discards & NA (discards included in catch) \\
\hline Lambda for F-Mult in 1st year & 0 (freely estimated) \\
\hline Lambda for F-Mult deviations & 0 (freely estimated) \\
\hline Lambda for index & 1 for both indices in the model \\
\hline Lambda for index catchability & 0 for all indices (freely estimated) \\
\hline Lambda for catchability devs & NA (phase is negative) \\
\hline \begin{tabular}{l} 
Lambda N in 1st year \\
deviations
\end{tabular} & 0 (freely estimated) \\
\hline \begin{tabular}{l} 
Lambda devs initial \\
steepness
\end{tabular} & 0 (freely estimated) \\
\hline \begin{tabular}{l} 
Lambda devs unexpl stock \\
size
\end{tabular} & 0 (freely estimated) \\
\hline
\end{tabular}

\section*{Final update assessment}

The final assessment was run with the same settings as established by WKIrish 2017 and described in the stock annex. Discards were combined with the landings and not supplied separately to the model.

Figure 11.4 shows the predicted and observed catch. The catch information from 2007 to present is regarded as the most confident, during 2003-2006 it is regarded that catch and sampling information is of relatively lower quality due to lack of sampling opportunity. Before 2003 the catch series is regarded as of intermediate confidence. The model has close fit to the current observed catch 2011-present. Before this time there is consistent over estimation of the catch 2000-2011 following a period of consistent under estimation of catch 1993-2000. Figure 11.5 shows the residuals of the catch proportions at age. For all ages there appears to good fit with no consistent pattern, however, there are some large deviations from observed and predicted for age 5 fish across the series. Figure 11.6 shows that the catch is dominated by fish \(<4\) years, therefore the large residuals for fish of age 5 are likely to result from low sampling and small contribution of \(5+\) fish to the stock.

The residuals of the index are shown in Figure 11.7. A good fit to the NI-MIK index is seen across the series, although some single year events are observed. For the UKFsPW survey a poor fit to the 2009 index is observed. During the most recent two years of the index, when the stock biomass has been high the UKFspW survey appears to tend of overestimated compared to the model fit. There is strong tracking of the both NIGFS-WIBTS-Q1 and NIGFS-WIBTS-Q4 index in general patterns, however, a general trend to under estimate the NIGFS-WIBTS-Q4 index by the model is observed whilst the NIGFS-WIBTS-Q1 shows an initial period of over estimation 1993-2000, followed by a period of under estimation 2002-2013.

Figure 11.8 shows the residuals of the survey proportions-at-age. For all indices there is close fit between the observed and model predicted fit for fish up to four years old. The largest deviations occur in five year old fish in the UKFspW survey which under reported five year old fish prior to 2014.

Figure 11.9 shows the retrospective analysis. The predicted catch shows no obvious retrospective pattern, neither does the recruitment estimate or fishing pressure. However, the SSB has a tendency to be revised downwards. The use of current specified selectivity blocks may require review at annual at regular intervals. With advice and
management for haddock or other species it is possible that the character of the fishery may change. In recent years 2013-present it has been observed that targeted fishing of haddock has increased, due to the strength of the 2013 year class. As this year class has matured and the cohort progressed full selection of the older fish may need to be taken into consideration in model configuration. At present this selectivity period is too short to be parameterised robustly.

\section*{Comparison with previous assessments}

Figure 11.10 shows the comparison of the current assessment with previous ASAP and model. There is close agreement with the stock trends of the current assessment and the previous assessment.

\section*{State of the stock}

Following a period of sustained decline, since 2008, SSB increase during 2010-2013. A short-term decline was observed in 2014 but was reversed, and since 2014 the SSB has increased markedly. The stock is characterized by highly variable recruitment. The model indicates above average recruitment for the 2009-2011 year class after below average recruitment for the 2007 and 2008 year classes. Recruitment in 2013 is amongst the highest observed in the time-series and has been followed by strong recruitment in 2014 and 2015. The current SSB is predicted to exceed any previously observed level.

\subsection*{11.4 Short-term projections}

Short-term projections were performed using FLR libraries. Recruitment for 20172019 was estimated at 337738 (GM 1993-2014; thousands). Following the introduction of the current ASAP model to provide advice for 2017 allowing a MSY approach to be applied the catch advice for the stock has been changed considerably comparable to previous years. The F used in the forecast was derived as the F related to the TAC for 2017. The TAC for 2017 ( 2615 t ) was however adjusted to account for the predicted landings that would be taken in rectangles 33E2 and 33E3 calculated as the average annual reallocation within the last ten years ( 345 t ) suggesting that landings in 2017 could be approximately 2270 equating to an \(\mathrm{F}=0.26\).

Catches were split into landings and discards using the proportions of the catch that were discarded over the full the last three years. Input data for the short-term forecast are given in Table 7.4.9. The management options output is given in Table xx.xx.

Estimates of the relative contribution of recent year classes to the 2017 landings and 2018 SSB are shown in Figure 11.11. As the very strong 2013 year class continues move through the fishery the contribution to landings in 2018 is spread across three cohorts with the 2015 cohort contributing the most ( \(40 \%\) ) followed by the 2013 cohort (32\%).

\subsection*{11.5 Biological reference points}

\section*{MSY evaluations}

At WKIrish 3 (2017) Blim was set to the SSB in 1993, from which the fishery developed, an SSB of 2300 t in 1993. The S-R plot for Irish Sea haddock shows no obvious S-R relationship (Figure 9), mainly because the recruitment is highly variable. The S-R pairs from 1993:2012 were not used initially as the 2013 recruitment event and 2015 SSB were considered to be highly influential. The fitted relationship, compared to the
selecting Blim at 2300 t provides a Blim of 4035 t , a value which has only been exceeded on eight occasions.

Blim was estimated as 3093 t . MSYB trigger is set to \(\mathrm{B}_{\mathrm{pa}}\) as the stock has not been fished at or below Fmsy for more than five years. Fmsy median point estimates is 0.27 (0.273). The upper bound of the \(\mathrm{F}_{\text {mSY }}\) range giving at least \(95 \%\) of the maximum yield was estimated to \(0.35(0.351)\) and the lower bound at \(0.19(0.192)\). \(\mathrm{F}_{\mathrm{p} .05}\), without assessment error or Btrigger is estimated \(0.39(0.392)\) and therefore the upper bound does not need to be restricted because of precautionary limits. Flim is estimated to be 0.47 ( 0.473 ) as F with \(50 \%\) probability of \(\mathrm{SSB}<\mathrm{Blim}_{\lim }\) with \(\mathrm{F}_{\mathrm{pa}}\) as 0.34 (0.341) calculated as \(\mathrm{Flim}_{\text {lim }}\) combined with the assessment error; \(\mathrm{Flim}_{\mathrm{x}} \mathrm{x} \exp (-1.645 \times \sigma) ; \sigma=0.32\).

\section*{Yield and biomass-per-recruit}

Not available for this stock, previous explorations are detailed in the stock annex.

\subsection*{11.6 Management plans}

There is no specific management plan for haddock in the Irish Sea. The regulations affecting Irish Sea haddock remain linked to those implemented under the cod management plan due to potential for bycatch of cod in a fishery targeting haddock (Council Regulation (EC) 1342/2008).

\subsection*{11.7 Uncertainties and bias in assessment and forecast}

\section*{Landings}

Sampling levels of the landed catch for recent years are considered to be sufficient to support current assessment. However, the assessment relies on relocation of reported landings in rectangles 33E2 and 33E3 which are not considered part of the stock. Historic misreporting estimates are considered in the assessment and accounted for, current misreporting is not considered to be a factor within the fishery.

\section*{Discards}

Sampling levels of discarding at sea remains high. For Northern Irish vessels targeting haddock one in five trips observed and 2.8\% of (OTB_CRU) trips observed.

\section*{Selectivity}

A breakpoint in selectivity is applied in 2000, associated with management measures to reduce fishing mortality on cod. The model included three selectivity blocks in fishery-dependent data, reflecting bycatch and targeted fishery until the year 2000 (asymptotic). After 2007 a fleet selectivity pattern without targeted fishing of older fish (dome shaped) is applied. During 2000-2007 a transition between a fully selected stock to a regime without targeted fishing of older fish is fitted. The use of current specified selectivity blocks may require review at annual at regular intervals. With advice and management for haddock or other species it is possible that the character of the fishery may change. A retrospective analysis demonstrated a consistent historic downward revision of the perceived SSB trend however there is consistent estimation of F. The initial two years of the retrospective plot show significant deviations. This was considered due to the model having a selectivity block, beginning in 2007, with reduced selection for older fish and the introduction of the UKFSPW, with an asymptotic selectivity pattern, starting in 2007. The short period to estimate the selectivity
parameters for both the fishery and survey index are considered to contribute to the instability of the model during this time.

\section*{Surveys}

The survey indices used in the model have spatial coverage of the assessment area. The combination of a recruitment index (NI-MIK), juvenile fish survey indices (NIGFS-WIBTS-Q1 \& NIGFS-WIBTS-Q4) and the UKFspW survey aimed at older fish using commercial fishing gear means that the full age range of the stock is covered by survey information.

\subsection*{11.8 Recommendations for next benchmark assessment}

This stock was be benchmarked through the WKIRISH process in 2016-2017.

\subsection*{11.9 References}

EC. 2015. Commission Delegated Regulation (EU) 2015/2438 of 12 October 2015 establishing a discard plan for certain demersal fisheries in north-western waters.

Table 11.1. Nominal landings ( \(\mathbf{t}\) ) of HADDOCK in Division 7.a, 1984-2012, as officially reported to ICES. (Working Group figures are given in Table 11.2).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 \\
\hline Belgium & 3 & 4 & 5 & 10 & 12 & 4 & 4 & 1 & 8 & 18 \\
\hline France & 38 & 31 & 39 & 50 & 47 & n/a & n/a & n/a & 73 & 41 \\
\hline Ireland & 199 & 341 & 275 & 797 & 363 & 215 & 80 & 254 & 251 & 252 \\
\hline Netherlands & - & - & - & - & - & - & - & - & - & - \\
\hline UK(E\&W) \({ }^{1}\) & 29 & 28 & 22 & 41 & 74 & 252 & 177 & 204 & 244 & 260 \\
\hline UK (Isle of Man) & 2 & 5 & 4 & 3 & 3 & 3 & 5 & 14 & 13 & 19 \\
\hline UK (N. Ireland) & 38 & 215 & 358 & 230 & 196 & ... & .. & \(\ldots\) & ... & \(\ldots\) \\
\hline UK (Scotland) & 78 & 104 & 23 & 156 & 52 & 86 & 316 & 143 & 114 & 140 \\
\hline Total & 387 & 728 & 726 & 1,287 & 747 & 560 & 582 & 616 & 703 & 730 \\
\hline Country & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 \\
\hline Belgium & 22 & 32 & 34 & 55 & 104 & 53 & 22 & 68 & 44 & 20 \\
\hline France & 22 & 58 & 105 & 74 & 86 & n/a & 49 & 184 & 72 & 146 \\
\hline Ireland & 246 & 320 & 798 & 1,005 & 1,699 & 759 & 1,238 & 652 & 401 & 229 \\
\hline Netherlands & - & - & 1 & 14 & 10 & 5 & 2 & - & - & - \\
\hline UK(E\&W) \({ }^{1}\) & 301 & 294 & 463 & 717 & 1,023 & 1,479 & 1,061 & 1,238 & 551 & 248 \\
\hline UK (Isle of Man) & 24 & 27 & 38 & 9 & 13 & 7 & 19 & 1 & - & - \\
\hline UK (N. Ireland) & ... & \(\ldots\) & ... & ... & \(\ldots\) & \(\ldots\) & ... & ... & \(\ldots\) & ... \\
\hline UK (Scotland) & 66 & 110 & 14 & 51 & 80 & 67 & 56 & 86 & 47 & 31 \\
\hline Total & 681 & 841 & 1,453 & 1,925 & 3,015 & 2,370 & 2,447 & 2,229 & 1,115 & 674 \\
\hline Country & 2004 & 2005 & 2006 & 2007 & 2008 & 20092 & 2010 & 2011 & 2012 & 2013 \\
\hline Belgium & 15 & 22 & 23 & 30 & 15 & 7 & 9 & 16 & 13 & 6.2 \\
\hline France & 20 & 36 & 20 & 11 & 6 & 3 & 2 & 8 & 3 & . 7 \\
\hline Ireland & 296 & 139 & 184 & 477 & 319 & 388 & 333 & 434 & 561 & 492 \\
\hline Netherlands & - & - & & - & - & - & - & - & - & - \\
\hline UK (England \& Wales) \({ }^{1}\) & 421 & 344 & 419 & 559 & 521 & 446 & 593 & 355 & 236 & 154 \\
\hline UK (Isle of Man) & - & - & - & - & 1 & 1 & - & - & <1 & <. 1 \\
\hline \begin{tabular}{l}
UK (N. \\
Ireland)
\end{tabular} & \(\ldots\) & ... & ... \\
\hline UK (Scotland) & 9 & 6 & 9 & 1 & 17 & 1 & 2 & & & - \\
\hline United Kingdom & & & & & & & & & 236 & 154 \\
\hline Total & 761 & 547 & 655 & 1078 & 879 & 846 & 939 & 813 & 813 & 654 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline & Country & \multicolumn{2}{l}{2014} & \(2015^{*}\) \\
\hline Belgium & 7 & 7 & \(2016^{*}\) \\
\hline France & 0 & 7 & 5 \\
\hline Ireland & 541 & 507 & 1 \\
\hline Netherlands & - & - & 632 \\
\hline UK (England \& Wales) & \\
\hline UK (Isle of Man) & - & - & \\
\hline UK (N. Ireland) & \(<1\) & \(<1\) & \\
\hline UK (Scotland) & \(\ldots\) & - & \\
\hline United Kingdom & - & - & \\
\hline Total & 426 & 633 & 825 \\
\hline
\end{tabular}

\section*{* Preliminary.}
\({ }^{1}\) 1989-2015 Northern Ireland included with England and Wales.
n/a = not available .

Table 11.2. Haddock in 7.a. Total international landings of haddock from the Irish Sea, 1972-2015, as officially reported to ICES. Working Group figures, assuming 1972-1992 official landings to be correct, are also given. The 1993-2005 WG estimates include sampled-based estimates of landings at a number of Irish Sea ports. Sample-based evidence confirms more accurate catch reporting since 2006. Landings in tonnes live weight. Since 1993 the landings have been corrected to exclude catches from the southernmost rectangles, which are not considered part of this stock.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Official landings & \begin{tabular}{l}
WG \\
landings
\end{tabular} & ICES discards** & ICES catch & \begin{tabular}{l}
\% \\
Discard
\end{tabular} & Landings taken or reported in rectangles \(33 E 2\) and 33E3 \\
\hline 1972 & 2204 & 2204 & & & & \\
\hline 1973 & 2169 & 2169 & & & & \\
\hline 1974 & 683 & 683 & & & & \\
\hline 1975 & 276 & 276 & & & & \\
\hline 1976 & 345 & 345 & & & & \\
\hline 1977 & 188 & 188 & & & & \\
\hline 1978 & 131 & 131 & & & & \\
\hline 1979 & 146 & 146 & & & & \\
\hline 1980 & 418 & 418 & & & & \\
\hline 1981 & 445 & 445 & & & & \\
\hline 1982 & 303 & 303 & & & & \\
\hline 1983 & 299 & 299 & & & & \\
\hline 1984 & 387 & 387 & & & & \\
\hline 1985 & 728 & 728 & & & & \\
\hline 1986 & 726 & 726 & & & & \\
\hline 1987 & 1287 & 1287 & & & & \\
\hline 1988 & 747 & 747 & & & & \\
\hline 1989 & 560 & 560 & & & & \\
\hline 1990 & 582 & 582 & & & & \\
\hline 1991 & 616 & 616 & & & & \\
\hline 1992 & 703 & 656 & & & & \\
\hline 1993 & 730 & 813 & & & & \\
\hline 1994 & 681 & 1042 & & & & \\
\hline 1995 & 841 & 1736 & 780 & 2516 & 31\% & 16 \\
\hline 1996 & 1453 & 2981 & 709 & 3690 & 19\% & 33 \\
\hline 1997 & 1925 & 3547 & 895 & 4442 & 20\% & 36 \\
\hline 1998 & 3015 & 4874 & 1015 & 5889 & 17\% & 28 \\
\hline 1999 & 2370 & 4095 & 634 & 4729 & 13\% & 34 \\
\hline 2000 & 2447 & 1357 & 802 & 2159 & 37\% & 11 \\
\hline 2001 & 2229 & 2246 & 269 & 2515 & 11\% & 74 \\
\hline 2002 & 1115 & 1817 & 387 & 2204 & 18\% & 82 \\
\hline 2003 & 674 & 659 & - & - & - & 64 \\
\hline 2004 & 761 & 1217 & 392 & 1609 & 24\% & 53 \\
\hline 2005 & 547 & 666 & 551 & 1217 & 45\% & 35 \\
\hline 2006 & 655 & 633 & 306 & 939 & 33\% & 26 \\
\hline 2007 & 1078 & 886 & 722 & 1608 & 45\% & 222 \\
\hline 2008 & 879 & 786 & 643 & 1429 & 45\% & 194 \\
\hline
\end{tabular}
\begin{tabular}{ccccccc}
\hline Year & \begin{tabular}{c} 
Official \\
landings
\end{tabular} & \begin{tabular}{c} 
WG \\
landings
\end{tabular} & \begin{tabular}{c} 
ICES \\
discards**
\end{tabular} & \begin{tabular}{c} 
ICES \\
catch
\end{tabular} & \begin{tabular}{c}
\(\%\) \\
Discard
\end{tabular} & \begin{tabular}{c} 
Landings taken or \\
reported in rectangles \\
33E2 and 33E3
\end{tabular} \\
\hline 2009 & 846 & 581 & 579 & 1160 & \(50 \%\) & 285 \\
\hline 2010 & 939 & 679 & 508 & 1187 & \(43 \%\) & 267 \\
\hline 2011 & 813 & 446 & 307 & 753 & \(41 \%\) & 374 \\
\hline 2012 & \(\mathrm{n} / \mathrm{a}\) & 343 & 599 & 942 & \(64 \%\) & 473 \\
\hline 2013 & 654 & 254 & 283 & 537 & \(53 \%\) & 410 \\
\hline 2014 & 953 & 518 & 488 & 1006 & \(49 \%\) & 444 \\
\hline 2015 & 1154 & 833 & 652 & 1451 & \(44 \%\) & 322 \\
\hline 2016 & 1463 & 1008 & 298 & 3006 & \(10 \%\) & 455 \\
\hline
\end{tabular}

Table 11.3. Haddock in 7.a: Catch numbers-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Age} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1993 & 790 & 1568 & 2066 & 19 & 1 & 1 \\
\hline 1994 & 16857 & 821 & 258 & 922 & 3 & 2 \\
\hline 1995 & 950 & 8079 & 1587 & 107 & 220 & 5 \\
\hline 1996 & 15171 & 1380 & 5510 & 728 & 16 & 30 \\
\hline 1997 & 347 & 8828 & 1528 & 2388 & 201 & 16 \\
\hline \[
1998
\] & 4209 & 4642 & 10532 & 252 & 488 & 42 \\
\hline 1999 & 4944 & 3200 & 3436 & 4773 & 25 & 57 \\
\hline \[
2000
\] & 287 & 11118 & 1771 & 466 & 457 & 418 \\
\hline 2001 & 7883 & 425 & 3246 & 1074 & 30 & 89 \\
\hline 2002 & 2105 & 8229 & 789 & 2063 & 142 & 18 \\
\hline 2003 & 2000 & 2000 & 400 & 800 & 50 & 25 \\
\hline \[
2004
\] & 10797 & 2056 & 421 & 827 & 46 & 78 \\
\hline 2005 & 6048 & 4342 & 1416 & 285 & 193 & 34 \\
\hline 2006 & 5334 & 2971 & 656 & 524 & 63 & 51 \\
\hline 2007 & 2282 & 3537 & 3371 & 671 & 60 & 47 \\
\hline 2008 & 2158 & 4569 & 2052 & 837 & 242 & 36 \\
\hline \[
2009
\] & 4327 & 2490 & 2021 & 629 & 121 & 36 \\
\hline 2010 & 3933 & 4058 & 834 & 464 & 309 & 59 \\
\hline 2011 & 5669 & 2324 & 942 & 239 & 97 & 52 \\
\hline 2012 & 6235 & 2799 & 774 & 201 & 27 & 28 \\
\hline 2013 & 4525 & 1162 & 558 & 156 & 41 & 17 \\
\hline 2014 & 1392 & 3854 & 1265 & 189 & 17 & 10 \\
\hline 2015 & 518 & 1915 & 3087 & 324 & 63 & 5 \\
\hline 2016 & 512 & 1845 & 907 & 1079 & 109 & 108 \\
\hline
\end{tabular}

Table 11.4. Haddock in 7.a: stock weights-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Age} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1993 & 0.02 & 0.095 & 0.42 & 1.043 & 1.759 & 2.563 \\
\hline \[
1994
\] & \[
0.02
\] & \[
0.083
\] & 0.338 & 0.968 & 1.999 & 3.028 \\
\hline 1995 & 0.02 & 0.085 & 0.347 & 0.785 & 1.708 & 3.219 \\
\hline \[
1996
\] & 0.02 & 0.083 & 0.359 & 0.788 & 1.319 & 2.718 \\
\hline \[
1997
\] & 0.022 & \[
0.07
\] & 0.357 & 0.863 & 1.435 & 2.391 \\
\hline \[
1998
\] & \[
0.018
\] & \[
0.06
\] & \[
0.253
\] & 0.743 & 1.384 & 2.165 \\
\hline 1999 & \[
0.016
\] & \[
0.057
\] & 0.226 & 0.561 & 1.294 & 2.262 \\
\hline \[
2000
\] & \[
0.017
\] & \[
0.048
\] & \[
0.23
\] & 0.51 & 0.966 & 2.123 \\
\hline 2001 & \[
0.018
\] & \[
0.051
\] & \[
0.201
\] & 0.548 & 0.93 & 1.822 \\
\hline 2002 & 0.017 & \[
0.056
\] & 0.215 & 0.472 & 0.983 & 1.637 \\
\hline 2003 & 0.017 & 0.05 & 0.229 & 0.485 & 0.798 & 1.52 \\
\hline \[
2004
\] & \[
0.017
\] & \[
0.041
\] & 0.199 & 0.509 & 0.816 & 1.306 \\
\hline 2005 & \[
0.018
\] & \[
0.031
\] & 0.165 & 0.459 & 0.902 & 1.347 \\
\hline 2006 & 0.014 & 0.033 & 0.128 & 0.378 & 0.803 & 1.435 \\
\hline \[
2007
\] & \[
0.019
\] & \[
0.034
\] & 0.136 & 0.299 & 0.68 & 1.402 \\
\hline 2008 & 0.014 & 0.037 & 0.139 & 0.31 & 0.515 & 1.167 \\
\hline \[
2009
\] & \[
0.025
\] & \[
0.042
\] & 0.153 & 0.326 & 0.563 & 0.98 \\
\hline \[
2010
\] & 0.017 & \[
0.04
\] & 0.176 & 0.357 & 0.58 & 0.945 \\
\hline \[
2011
\] & \[
0.018
\] & \[
0.052
\] & 0.167 & 0.407 & 0.624 & 0.937 \\
\hline 2012 & 0.012 & 0.057 & 0.209 & 0.375 & 0.688 & 0.96 \\
\hline 2013 & 0.023 & 0.059 & 0.233 & 0.491 & 0.673 & 1.115 \\
\hline 2014 & 0.022 & 0.038 & 0.238 & 0.512 & 0.812 & 1.04 \\
\hline 2015 & 0.017 & 0.046 & 0.153 & 0.577 & 0.97 & 1.371 \\
\hline 2016 & 0.021 & 0.047 & 0.192 & 0.354 & 1.015 & 1.533 \\
\hline
\end{tabular}

Table 11.7. Haddock in 7.a: Available tuning data.
IRISH SEA haddock, 2013 WG,ANON, COMBSEX,TUNING DATA(effort, nos at age) 104
NIGFS-WIBTS-Q1
19922016
110.210 .25

05
\begin{tabular}{llllllll}
\hline & 1 & & 0 & \multicolumn{1}{l}{139} & & 569 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{NIMIK} \\
\hline 110.380 .47 & \\
\hline \multicolumn{2}{|l|}{\(\begin{array}{ll}1 \\ 0 & 0\end{array}\)} \\
\hline 1 & 47000 \\
\hline 1 & 1700 \\
\hline 1 & 47800 \\
\hline 1 & 14500 \\
\hline 1 & 2500 \\
\hline 1 & 15400 \\
\hline 1 & 1700 \\
\hline 1 & 17100 \\
\hline 1 & 1200 \\
\hline 1 & 4250 \\
\hline 1 & 25970 \\
\hline 1 & 8250 \\
\hline 1 & 40240 \\
\hline 1 & 3820 \\
\hline 1 & 6638 \\
\hline 1 & 18540 \\
\hline 1 & 4532 \\
\hline 1 & 6606 \\
\hline 1 & 9818 \\
\hline 1 & 28325 \\
\hline 1 & 12892 \\
\hline 1 & 48463 \\
\hline 1 & 18000 \\
\hline
\end{tabular}
UKFspW
\begin{tabular}{llllllll}
2005 & 2016 \\
1 & 1 & 0.15 & 0.25 & & & & \\
1 & 7 & & & & & & \\
1 & 0.000 & 1.774 & 1.506 & 4.981 & 0.291 & 0.256 & 0.018 \\
1 & 0.308 & 7.749 & 7.336 & 0.546 & 1.115 & 0.043 & 0.048 \\
1 & 0.208 & 42.727 & 37.286 & 6.289 & 0.697 & 0.147 & 0.020 \\
1 & 0.000 & 4.657 & 12.836 & 7.213 & 0.794 & 0.126 & 0.062 \\
1 & 0.000 & 0.662 & 3.990 & 1.443 & 0.541 & 0.115 & 0.031 \\
1 & 0.627 & 1.422 & 3.780 & 2.753 & 0.866 & 0.104 & 0.037 \\
1 & 0.048 & 0.598 & 1.976 & 1.121 & 0.810 & 0.184 & 0.058 \\
1 & 0.270 & 4.135 & 4.772 & 0.790 & 0.226 & 0.443 & 0.054 \\
1 & 0.035 & 3.684 & 7.674 & 1.742 & 0.176 & 0.162 & 0.045 \\
1 & 0.434 & 32.100 & 19.729 & 5.160 & 0.563 & 0.189 & 0.036 \\
1 & 0.000 & 0.000 & 59.769 & 12.592 & 6.205 & 0.832 & 0.531
\end{tabular}

Table 11.9. Forecast input data.
\begin{tabular}{lcll}
\hline \multicolumn{1}{c}{ Variable } & Value & Source & \multicolumn{1}{c}{ Notes } \\
\hline F ages 2-4 (2017) & 0.26006 & ICES (2017a) & \begin{tabular}{l} 
F in 2017 predicted for TAC, adjusted for \\
annual reallocation of landings from \\
rectangles 33E2 and 33E3 (ten year average \\
value)
\end{tabular} \\
\hline SSB (2017) & 18974 t & ICES (2017a) & Short-term forecast \\
\hline \begin{tabular}{l} 
Rage 0 (2017 and \\
2018) (thousand)
\end{tabular} & 337738 & ICES (2017a) & Geometric mean (1993-2014) \\
\hline Catch (2017) & 2171 t & ICES (2017a) & Short-term forecast, assuming F=0.26006 \\
\hline \begin{tabular}{l} 
Wanted catch * \\
\((2017)\)
\end{tabular} & 1791 t & ICES (2017a) & Average discard pattern (2013-2016) \\
\hline \begin{tabular}{l} 
Unwanted catch \\
* (2017)
\end{tabular} & 380 t & ICES (2017a) & Average discard pattern (2013-2016) \\
\hline
\end{tabular}
* "Wanted catch" is used to describe fish that would be landed in the absence of the EU landing obligation.

Table 11.10. Haddock in Division7.a. Annual catch options. All weights are in tonnes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Basis & Total catch (2018) & Wanted catch* (2018) & Unwanted catch* (2018) & \[
\begin{aligned}
& \text { Ftotal } \\
& (2018)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Fwanted } \\
& (2018)
\end{aligned}
\] & Funwanted
(2018) & \[
\begin{gathered}
\text { SSB } \\
(2019)
\end{gathered}
\] & \begin{tabular}{l}
\% SSB \\
change
**
\end{tabular} & \begin{tabular}{l}
\% TAC \\
change \\
***
\end{tabular} \\
\hline \multicolumn{10}{|l|}{ICES advice basis} \\
\hline \begin{tabular}{l}
MSY \\
approach: \\
Fmš
\end{tabular} & 3914 & 3225 & 689 & 0.273 & 0.20542 & 0.06758 & 15023.18 & \[
20.8223 \%
\] & 23.32696\% \\
\hline \multicolumn{10}{|l|}{Other options} \\
\hline \(\mathrm{F}=0\) & 0 & 0 & 0 & 0 & 0 & 0 & 16460.91 & \[
13.2449 \%
\] & -100\% \\
\hline \(\mathrm{F}_{\mathrm{pa}}\) & 4234 & 3437 & 798 & 0.34 & 0.25583 & 0.08417 & 12721.26 & -32.9543\% & 31.4340\% \\
\hline Flim & 4987 & 4047 & 940 & 0.41 & 0.3085 & 0.1015 & 12075.67 & -36.3568\% & 54.7610\% \\
\hline \[
\begin{aligned}
& \text { SSB } \\
& (2019)= \\
& \text { Blim }_{\text {lim }}
\end{aligned}
\] & 18265 & 14603 & 3662 & 2.8967 & 2.17958 & 0.71712 & 2300 & -87.8782\% & 458.4321\% \\
\hline \[
\begin{aligned}
& \text { SSB } \\
& (2019)= \\
& \mathrm{B}_{\mathrm{pa}}
\end{aligned}
\] & 16899 & 13561 & 3338 & 2.4139 & 1.8163 & 0.59759 & 3093 & -83.6988\% & 418.5851\% \\
\hline \[
\begin{aligned}
& \text { SSB } \\
& (2019)= \\
& \text { MSY } \\
& \text { Btrigger }
\end{aligned}
\] & 16899 & 13561 & 3338 & 2.4139 & 1.8163 & 0.59759 & 3093 & -83.6988\% & 418.5851\% \\
\hline \(\mathrm{F}=\mathrm{F}_{2017}\) & 3258 & 2647 & 611 & 0.25224 & 0.18979 & 0.06245 & 13672.8 & -27.9393\% & 1.2237\% \\
\hline \begin{tabular}{l}
\[
\mathrm{F}=\mathrm{F}_{\mathrm{MSY}}
\] \\
lower
\end{tabular} & 2516 & 2043 & 473 & 0.192 & 0.14447 & 0.04753 & 14217.65 & -25.0677\% & -21.8738\% \\
\hline \begin{tabular}{l}
\[
\mathrm{F}=\mathrm{F}_{\mathrm{MSY}}
\] \\
upper
\end{tabular} & 4355 & 3535 & 821 & 0.351 & 0.26411 & 0.08689 & 12617.29 & -33.5022\% & 35.1816\% \\
\hline
\end{tabular}

Table 11.8. Haddock in 7.a: SURBA fitted numbers-at-age, total mortality-at-age, SSB and Z using the NIGFS-WIBTS-Q1 survey data.
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference point & Value & Technical basis & Source \\
\hline \multirow[b]{2}{*}{MSY approach} & \[
\begin{aligned}
& \text { MSY } \\
& \text { Btrigger }
\end{aligned}
\] & 3093 t & \(\mathrm{B}_{\mathrm{pa}}\) & \[
\begin{aligned}
& \text { ICES } \\
& (2017)
\end{aligned}
\] \\
\hline & Fmsy & 0.27 & Median point estimates of EqSim with segmented regression stock-recruitment relationship & \[
\begin{aligned}
& \text { ICES } \\
& (2017)
\end{aligned}
\] \\
\hline \multirow{4}{*}{Precautionary approach} & Blim & 2300 t & Lowest observed: SSB in 1993 & \[
\begin{aligned}
& \text { ICES } \\
& (2017)
\end{aligned}
\] \\
\hline & \(\mathrm{B}_{\mathrm{pa}}\) & 3093 t & Blim combined with the assessment error;
\[
\mathrm{Blim} \times \exp (1.645 \times \sigma) ; \sigma=0.15
\] & \[
\begin{aligned}
& \text { ICES } \\
& (2017)
\end{aligned}
\] \\
\hline & Flim & 0.47 & F with \(50 \%\) probability of SSB < Blim & \[
\begin{aligned}
& \text { ICES } \\
& (2017)
\end{aligned}
\] \\
\hline & \(\mathrm{Fpa}_{\text {pa }}\) & 0.34 & Flim combined with the assessment error;
\[
F_{\lim } \times \exp (-1.645 \times \sigma) ; \sigma=0.2
\] & \[
\begin{aligned}
& \text { ICES } \\
& \text { (2017) }
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{Management plan} & SSBmgt & Not applicable & & \\
\hline & Fmgt & Not applicable & & \\
\hline
\end{tabular}


Figure 11.1. Haddock in 7.a: Growth of haddock in the Irish Sea. Top two panels: mean length-atage in UK(NI) groundfish surveys in March (NIGFS-WIBTS-Q1), by year and age, and expected mean weight-at-length based on length-weight parameters from each survey. Lower panels: mean length-at-age from March surveys, and from Quarter 1 commercial landings at-age 3 and over, by year class. Lines are von Bertalanffy model fits with year-class effect included. Model residuals are shown for the fit without year-class effects, and for the fit with year-class effects.


Figure 11.2. Haddock in 7.a: Trends in raw survey indices compared with international landings, by age class and year. All values are standardised to the mean for years common to all series in each plot (except for short FSP series).


Figure 11.3. Haddock in 7.a: Scatterplot matrix of \(\log\) indices of cohorts at different ages.


Figure 11.4. Fitted and observed catch from update assessment.


Figure 11.5. Fitted and observed catch age proportions from update assessment.


Figure 11.6. Observed catch numbers 2005-present.


Figure 11.7. Fitted and observed index series from update assessment.


Figure 11.8. Fitted and observed index age proportions from update assessment.


Figure 11.9. A retrospective plot the final update model.



Figure 11.10. Haddock in Division7.a. Historical assessment results.


Figure 11.11. Haddock in 7a. Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes.

\subsection*{11.10Audit of Haddock in the Irish Sea (had.27.7.a)}

Date: 07/06/2017
Auditor: Andrzej Jaworski

\section*{General}

ICES provides annual catch advice for this stock based on the MSY approach. A full analytical assessment and forecast were performed in 2017 in accordance with the procedures outlined in the stock annex. The assessment is based on an age-structured model.

\section*{For single stock summary sheet advice:}

1 ) Assessment type: Update (following the WKIrish3 benchmark assessment). Age-structured assessment. The stock was benchmarked by WKIrish in 2017.

2 ) Assessment: Age-structure assessment. Stock Category 1.
3 ) Forecast: Short-term forecast is presented. Conducted using FLR libraries. The introduction of ASAP has considerably changed the catch advice compared to previous years.
4 ) Assessment model: Age-structured assessment model using AgeStructured Assessment Program (ASAP) with commercial catches and four survey indices.
5 ) Consistency: There is close agreement of the stock trends in the current assessment and the benchmark assessment.
6 ) Stock status: Spawning-stock biomass (SSB) is currently at the highest observed levels in the time-series and above MSY \(\mathrm{B}_{\text {trigger. }}\). Fishing mortality (F) has been below Fmsy since 2012. The stock is characterized by highly variable recruitment. Recent recruitment has been above the time-series mean.

7 ) Man. Plan: No specific management plan has been agreed or proposed.

\section*{General comments}

The report was generally well written and the assessment followed the methods detailed in the stock annex.

\section*{Technical comments}

ASAP analysis was correctly performed. There were some small editorial errors.

\section*{Conclusions}

The assessment has been performed correctly and provides an appropriate basis for providing catch advice.

\section*{Checklist for review process}

\section*{General aspects}
- Has the EG answered those TORs relevant to providing advice? Yes
- Is the assessment according to the stock annex description? Yes
- Is general ecosystem information provided and is it used in the individual stock sections. Yes
- If a management plan has been agreed, has the plan been evaluated? No

\section*{For update assessments}
- Have the data been used as specified in the stock annex? Yes
- Has the assessment, recruitment and forecast model been applied as specified in the stock annex? Yes
- Is there any major reason to deviate from the standard procedure for this stock? No
- Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice? Yes

\section*{12 Haddock in Divisions 7.b,c,e-k}

Type of assessment in 2017
Update assessment procedure.

ICES advice applicable to 2017
Last year's full advice is available in the ICES Advice 2016, Book 5. The headline advice was as follows:
"ICES advises that when the MSY approach is applied, catches in 2017 should be no more than 12444 tonnes. If discard rates do not change from the average of the full time-series (1993-2015), this implies landings of no more than 7751 tonnes."

\subsection*{12.1 General}

\section*{Stock description and management units}

The basis for the stock assessment area \(7 . b, c, e-k\) is described in detail in the stock annex.

Figure 7.4.1 shows the spatial distribution of international haddock landings in the NE Atlantic for 2015. It is clear from the figure that the stock extends into Area 8 and it could be argued that landings from 8 should be included in the stock area. In recent years these landings varied between 20 and 300 t which is up to \(4 \%\) of the total landings in the stock area.

The TAC for haddock is set for the combined Areas 7.b-k, 8, 10 and 10 and EU waters of CECAF 34.1.1. This does not correspond to the stock assessment area ( \(7 . \mathrm{b}-\mathrm{k}\) ).


2016 management (Council Regulation (EU) 2016/72)
\begin{tabular}{|c|c|c|c|}
\hline Species: & \begin{tabular}{l}
Haddock \\
Melanogrammus aeglefinus
\end{tabular} & Zone: & \begin{tabular}{l}
VIIb-k, VIII, IX and X; Union waters of CECAF 34.1.1 \\
(HAD/7X7A34)
\end{tabular} \\
\hline Belgium & 81 & & \\
\hline France & 4838 & & \\
\hline Ireland & 1613 & & \\
\hline United Kingdom & 1726 & & \\
\hline Union & 7258 & & \\
\hline TAC & 7258 & & \begin{tabular}{l}
Analytical TAC \\
Article 12(1) of this Regulation applies
\end{tabular} \\
\hline
\end{tabular}

2017 management (Council Regulation (EU) 2017/127)
\begin{tabular}{lr|ll}
\hline Species: \begin{tabular}{l} 
Haddock \\
Melanogrammus aeglefinus
\end{tabular} & Zone: \begin{tabular}{l} 
VIIb-k, VIII, IX and X; Union waters of CECAF \\
34.1.1 \\
(HAD/7X7A34)
\end{tabular} \\
\hline Belgium & 86 & \\
France & 5168 & \\
Ireland & 1722 \\
United Kingdom & 775 \\
Union & 7751 \\
TAC & 7751 & \begin{tabular}{l} 
Analytical TAC \\
Article 7(2) of this Regulation applies \\
Article 12(1) of this Regulation applies
\end{tabular} \\
\hline
\end{tabular}

Since 2009, a separate TAC is set for 7.a haddock; previously a separate allocation for 7.a existed within the TAC for \(7,8,9\) and 10 .

During the 2011 December fisheries council meeting, Ireland, UK and France agreed to introduce additional technical measures to reduce the high levels of gadoids discards recently observed in the Celtic Seas. In consultation with national governments and
the NWWRAC it was agreed to introduce the mandatory use of a 110 mm square mesh panel in Nephrops trawls and a 100 mm panel in gadoid fisheries. While the regulation was not introduced until 14th August 2012 (EC Regulation 737/2012), it is understood that for both French and Irish fleets, the technical measures were in practice introduced much earlier in the year by the national administrations.

\section*{The fishery}

The official landings reported to ICES and Working Group estimates of the landings and discards are given in Table 7.4.1. The historic landings are also shown in Figure 7.4.2. No revisions to the landings or discard figures for 2015 were provided.

Before 2002, the TAC was well in excess of the landings in the TAC area (Table 7.4.1a). The TAC appeared to become restrictive for France in 2003-2004 and Ireland in 20022003 and perhaps after (Table 7.4.1a and Figure 7.4.2b). (WGSSDS05 provided some qualitative evidence that misreporting was a problem). During 2005-2008 landings were well below the TAC. In 2009 and 2010 the total landings were still below the TAC but the quota appeared to become restrictive again for Ireland and Belgium. Since 2011 the TAC has been close to the total landings and can be assumed to be restrictive for all countries.

Figure 7.4.2a gives a long-term overview of the landings of haddock. The time-series is characterized by a number of peaks with rapid increases in the landings, mostly followed by rapid decreases within a few years, suggesting the fishery was taking advantage of sporadic events of very high recruitment. During the 1960s and 1970s three such peaks in landings occurred: the landings increased from less than 4000 t to 10000 t or more. During the 1980s and early 1990s, landings were relatively stable around 2000-4000 t. During the mid-1990s the haddock landings increased again to over 10000 t , mirroring increased landings in the Irish Sea in that period. Since the late 1990s the landings have varied between 7000 and 10000 t and in 2012 the landings were the highest on record at more than 18000 t .

The discard estimate for 2010 was the highest on record at 16547 tonnes (Table 7.4.1b), this was mainly a consequence of the 2009 cohort entering the fishery.

Table 7.4.2 and Figure 7.4 .3 show that Irish commercial lpue was relatively low between 2003 and 2007 after which it increased. Effort in the French gadoid fleet has declined considerably since the early 2000s as the result of a decommissioning scheme. The French and Irish 7.fgh fleets both showed an increase in lpue as the strong 2009 cohort entered the fishery. These data are presented for auxiliary information only; these fleets are not used directly in the assessment.

\subsection*{12.1.1 Information from the industry}

The French and Irish fishing industry have reported that the abundance and distribution of haddock has increased a lot in 2016. Due to the restrictive TAC the industry have reported to national scientists that there is increased discarding of haddock.

\subsection*{12.1.2 Data}

\section*{Numbers-at-length}

Discard and retained catch-length distributions for 2015 and 2016 are shown in Figure 7.4.4. Significant numbers of discarded fish were above the MLS, which is likely to be the result of restrictive quota.

Figure 7.4.5a shows the available time-series of catch (discards and retained catch) length distributions. The Irish fleet in \(7 . b\) generally catches smaller fish than the other fleets although the retained catches appear similar to the Irish 7.gj fleets. The French fleets tend to catch fewer small fish and discard larger fish than the Irish fleets although this was not the case in 2014. Figure 7.4 .5 b shows the time-series of discard ogives. Discarding of fish over the minimum landing size of 30 cm has occurred in all years although nearly all fish \(>35 \mathrm{~cm}\) were landed up to 2010 . Since then increasing proportions of large fish have been discarded.

\section*{Landings and discard numbers-at-age}

The historic approach to raising the catch numbers-at-age is given in the stock annex. France and Ireland had allocated age distributions to most unsampled catches before uploading to InterCatch. The remaining unsampled catches were minor (Figure 7.4.6). For métiers where discards were not provided, the discards were estimated from the discard rate of métiers that had both landings and discards. The allocation rules were simple and slightly different from those described in the stock annex: any unsampled catches were allocated age compositions from the combined annual landings or discards of all countries using the same gear type (otter trawl, beam trawl, seine, gillnet or miscellaneous). An alternative allocation rule that merged all sampled landings/discards and applied to the unsampled landings/discards resulted in nearly identical estimates.

Landings numbers-at-age are given in Table 7.4.3a and discard numbers-at-age are given in Table 7.4.3b. Despite some uncertainty about the quality of the discard data, it is possible to track strong year classes in both the discards and the landings-at-age matrices. Discards account for a large proportion of the catch numbers up to age 3 . Figure 7.4.7 shows the proportions-at-age that are discarded; over the last ten years \(97 \%\) of one year-olds, \(80 \%\) of two year-olds and \(40 \%\) of three year-olds have been discarded. By number, \(77 \%\) of the total catch was discarded ( \(46 \%\) by weight; average last ten years). There is a trend for increasing proportions of two and 3-year-olds to be discarded, in the mid-nineties around half of the 2-year-olds were discarded and around \(10 \%\) of 3 -year-olds while in recent years around \(80 \%\) of 2 -year-olds and \(30 \%\) of 3 -yearolds were being discarded.

Catch and stock weights-at-age are given in the ASAP input file (Table 7.4.4). Figure 7.4.8 shows that the raw stock weights-at-age which are fairly noisy, a 3-year running average was applied to the stock weights used in the assessment. There appear to be cyclical trends in the weights-at-age that follow cohorts (rather than year-effects).

\section*{Biological}

The assumptions of natural mortality and maturity are described in the stock annex. The maturity ogive used in the assessment is knife-edged at-age 2. Recent Irish maturity data from 2004-2014 (working document to WGCSE15) suggested a similar maturity ogive for females but also indicated that a significant number of males mature before the age of two.

\section*{Surveys and commercial tuning fleets}

The available surveys and commercial tuning fleets are described in detail in the stock annex. One survey index is used in the assessment: the FR-IRL-IBTS index, which is a combined index from the French EVHOE Q4 WIBTS and Irish IGFS Q4 WIBTS surveys. Additionally one commercial tuning fleet is used: the IR-GAD index, which is the Irish gadoid fleet in selected rectangles of 7.gj. The index data are given in the ASAP input
file (Table 7.4.4). The standardised indices are given by year in Figure 7.4.9a and by cohort in Figure 7.4.9b. Figure 7.4 .10 shows the scatterplot matrices of the \(\log\) indices. These plots suggest that the internal consistency of the indices is quite good. The IRGAD index (Figure 7.4.9.a) shows an increasing trend over time, mainly as a result of the relatively strong 2002 and 2009 cohorts.

\subsection*{12.1.3 Historical stock development}

Model used: ASAP; (XSA is also used for quality control purposes).
Software used: ASAP V3.0.17 NOAA Fisheries toolbox (http://nft.nefsc.noaa.gov)
FLR with R version 3.1.2 with packages FLCore 2.5.20150116, FLAssess _2.5.20130716, FLXSA 2.5.20170215 and FLEDA 2.5 (http://flr-project.org/)

\section*{Data screening}

The general approach to data screening and analysis was followed in addition to the data exploration tools available in the FLR package FLEDA. The results of the data screening are fully documented using R markdown and are available in the folder 'Data \(\backslash\) Stock \(\backslash\) had- \(7 \mathrm{bce}-\mathrm{k}\) ' on SharePoint.

\section*{Final update assessment}

The final assessment was run with the same settings as established by WKROUND 2012 and described in the stock annex. Discards were combined with the landings and not supplied separately to the model.

Figure 7.4.11 shows the residuals of that catch proportions-at-age. For age classes where discards dominate, the residuals are relatively large. There is no obvious pattern in the younger ages but the residuals in the older ages at the start of the time-series are mostly positive. The observed and predicted catches are shown in Figure 7.4.12. The predicted catches were slightly lower than observed in most recent years while they were generally higher than observed from 2002-2006.

The residuals of the index proportions-at-age are shown in Figure 7.4.13a. The 2009 year class consistently has positive residuals in the survey index while the 2010 year class has negative residuals, indicating that the model does not 'believe' that the 2009 cohort is as strong as the index suggests. However, right-hand panel of the figures shows that the difference between observed and predicted values for this cohort are minor. The observed and predicted index cpue values are shown in Figure 7.4.14. The model closely follows the survey index but in there is a bias in the last few years for the IRL-GAD fleet that shows up in Figures 7.4.14 and 7.4.11 as a strong positive residual on the 2009 year class at ages 4 to 6 . There catches of this year class may be underestimated, which could cause the retrospective bias in F (see below).

The selectivity of the catch data was freely estimated for ages 1 and 2 by the model. For the other ages, selectivity was fixed. Table 7.4 .5 shows the model estimates for ages 1 and 2. Selectivity of the FR-IR-IBTS index was fixed at 1 for all ages that were included and selectivity (exploratory data analysis shows that log catch numbers of those ages decline in straight lines) of the IRL-GAD index was freely estimated for age 3 and fixed at one for older ages. (Discards are not included in this commercial fleet therefore selectivity was not assumed to be the same as that of the catch data).

Figure 7.4.15 shows the retrospective analysis. The predicted catch shows no obvious retrospective pattern, neither does the recruitment estimate. However, the SSB has a
tendency to be revised upwards as another year of data was added. F has been overestimated recently and revised downwards with the addition of another year. It is likely that this retrospective bias appears to have been caused by the strong 2009 cohort for which caused a conflict between the catch data and the IRL_GAD index: the index (Figure 7.4.11) shows large negative residuals for the young ages and positive residuals for this cohort at ages five and six.

\section*{Comparison with previous assessments}

Figure 7.4.16 shows the comparison of the current assessment with previous ASAP and XSA assessments. The 2017 assessment has revised F down for the last couple of years. The plot also shows the intermediate-year assumptions for the short-term forecast (for SSB the assumption is for the intermediate year +1 ). These assumptions appear to have been reasonable.

\section*{State of the stock}

Table 7.4.6 shows the estimated fishing mortality-at-age and Table 7.4.7 shows the stock numbers-at-age. The stock summary is given in Table 7.4.8 and Figure 7.4.17.

The spawning-stock biomass (SSB) peaked in 2011 as the very strong 2009 year class matured; this cohort was followed by three years of below-average recruitment which led to a rapid decline in SSB after 2011. Recent recruitment has varied around the average and SSB appears to have stabilised. Fishing mortality (F) has been above FmSY for the entire time-series but shows a declining trend.

\subsection*{12.1.4 Short-term projections}

Because recruitment of haddock is characterised by sporadic events, the assumed geometric mean (GM) recruitment for the intermediate year introduces significant uncertainty for the SSB estimate in 2017. The short-term predictions however, are expected to give a reasonably reliable estimate of landings in 2018 (assuming average F 20132015), which are largely based on the estimates of the 2014 and 2016 recruitments. In the past, recruitment has generally been accurately estimated.

Short-term projections were performed using FLR libraries. Recruitment for 2017-2019 was estimated at 257583 (GM 1993-2013; thousands). Three year averages were used for F (unscaled) and weights-at-age. Catches were split into landings and discards using the proportions of the catch that were discarded over the full time-series. This was done because the discard pattern over the last four years are unlikely to persist: the proportion of discards in the 2013-2014 was considerably lower than the historic proportion of discards.

Input data for the short-term forecast are given in Table 7.4.9. The single option output is given in Tables 7.4.10 and 7.4.11 gives the management options.

Estimates of the relative contribution of recent year classes to the 2018 landings and 2019 SSB are shown in Figure 7.4.18. The relatively high recruitment in 2015 accounts for over half of the projected landings in 2018. The GM assumption only accounts for \(4 \%\) of the landings in 2018. The 2015 cohort also contributes considerably to the estimated SSB in 2018 but much of this estimate results from the 2017 GM assumption. At GM recruitment and status quo F, SSB will remain well above Btrigger.

\subsection*{12.1.5 MSY evaluations and biological reference points}

ICES carried out and evaluation of MSY and PA reference points for this stock last year at WKMSYREF4 (ICES, 2016a). The results have been published earlier this year (ICES, 2016b) are summarized below:
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference point & Value & Technical basis & Source \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MSY \\
approach
\end{tabular}} & MSY Btrigger & 10000 t & \(\mathrm{B}_{\mathrm{pa}}\). & \begin{tabular}{l}
ICES \\
(2016b)
\end{tabular} \\
\hline & FMSY & 0.40 & Median point estimates of EqSim with segmented regression S-R relationship (landings: \(0.36+\) discards: 0.04). & \begin{tabular}{l}
ICES \\
(2016b)
\end{tabular} \\
\hline \multirow[t]{4}{*}{Precautionary approach} & Blim & 6700 t & Lowest observed SSB & \begin{tabular}{l}
ICES \\
(2016a)
\end{tabular} \\
\hline & \(\mathrm{B}_{\mathrm{pa}}\) & 10000 t & Blim combined with the assessment error; \(B_{\lim } \times \exp (1.645 \times \sigma), \sigma=0.26\) & ICES (2016) \\
\hline & Flim & 1.41 & F with \(50 \%\) probability of \(\mathrm{SSB}<\mathrm{B}_{\mathrm{lim}}\) & \begin{tabular}{l}
ICES \\
(2016a)
\end{tabular} \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.89 & Flim combined with the assessment error; \(\mathrm{F}_{\text {lim }} \times \exp (-1.645 \times \sigma), \sigma=0.28\) & \begin{tabular}{l}
ICES \\
(2016a)
\end{tabular} \\
\hline \multirow[t]{2}{*}{Management plan} & SSBMGT & Undefined & & \\
\hline & FMGT & Undefined & & \\
\hline
\end{tabular}

\subsection*{12.1.6 Management plans}

No management plan for \(7 . \mathrm{b}, \mathrm{c}, \mathrm{e}-\mathrm{k}\) haddock has been agreed or proposed.

\subsection*{12.1.7 Uncertainties and bias in assessment and forecast}

\section*{Landings}

Sampling levels of the landed catch for recent years are considered to be sufficient to support current assessment approaches, although the assessment is contingent on the accuracy of the landings statistics.

\section*{Discards}

Irish discards have been monitored since 1995. The number of trips sampled has varied considerably over time (between three and 62 trips per year). Sample numbers were particularly low in 1995, 1999-2002 and 2006. During the remaining years, the number of sampled trips was considered sufficient to give reliable estimates of discards.

French discard data exist from 2004 onwards but the data are not considered to be reliable before 2008. The time-series of French discards was reconstructed by assuming that \(90 \%\) of one-year olds, \(50 \%\) of two-year olds and \(10 \%\) of three year olds were discarded throughout the time-series. These proportions were estimated from the available discard and retained catch data provided by France. Because French discards are estimated to account for \(80-86 \%\) of the international discards (by weight; 2008-2012), there is considerable uncertainty around the historic discard estimates. However

WKROUND (2012) concluded that the ASAP assessment is relatively robust to the uncertainty in the discard estimates.

Although recent discard estimates are considered to be more reliable, the problem remains that the number of observer trips is very small compared to the total number of trips (typically \(<1 \%\) of all trips are sampled). The level of uncertainty due to the small sample sizes is likely to be high but the cost of increasing discard coverage would be considerable.

\section*{Selectivity}

As a consequence of the introduction of square-mesh panels in the Celtic Sea, the selectivity of the fleet might be expected to change. The regulations were introduced in the second half of 2012 (although many vessels had already voluntarily fitted panels earlier that year). STECF (PLEN-13-03) investigated the efficiency of the introduction of the square-mesh panel in the Celtic Sea and did not find evidence for a change in selectivity in 2012 or 2013. A possible change in selectivity was investigated using a number of different approaches:
- There is no evidence of a 'block' of negative residuals of young fish in recent years from the catch proportions-at-age residuals (Figure 7.4.11).
- An exploratory ASAP run with two selectivity blocks (1993-2011 and 20122015) estimated slightly higher lower selectivity for 1-year olds but slightly higher selectivity for 2-year olds since the introduction of the panels. The assessment results were otherwise nearly identical.
- The XSA assessment (which does not have a fixed selectivity pattern) does not show clear reductions in F for younger ages relative to the older ages since 2012.
- A change in selectivity may also be detected from a change in mean weight-at-age for young fish (within an age class the smaller, lighter fish should escape). The average catch weight of 1-year olds has shown minor increases since 2009 (Figure below). The catch weights of 2-year-olds increased between 2011 and 2014 and has been stable since, while Three-year-olds have also shown an increasing trend, and this age class is not expected to be affected by square-mesh panels.


Therefore there is no clear evidence that selectivity has changed significantly and the assumption of constant selectivity in ASAP appears to be valid. In future assessments a separate selectivity block for the last three years should continue to be considered.

\section*{Surveys}

The combined French/Irish survey has nearly full spatial coverage of the assessment area. The survey has good internal consistency. The commercial tuning fleet only covers a small part of the stock area but WKROUND (2012) decided to include this fleet due to the short time-series of the survey.

\section*{Forecast}

The 2015 cohort accounts for over half the projected landings in 2018, with recruitment of this cohort estimated with a CV of \(42 \%\), which is reasonably precise and recruitment estimates have tended to be accurate in the past with little retrospective bias. The strong cohort was picked up in all divisions covered by the survey and by both the French and Irish component of the survey index.

The 2017 GM recruitment assumption does not contribute much to the forecasted landings in 2018 (4\% contribution); however it contributes \(54 \%\) to the 2018 SSB estimate; this adds considerable uncertainty to the 2018 SSB forecast.

\subsection*{12.1.8 Recommendation for next benchmark}

\section*{Stock audit}

The audit of the 2016 report did not raise any concerns.

\section*{Recommendations for future work}

WGCSE recommend that cod, haddock and whiting in the Celtic Sea should be benchmarked together in 2018. The focus of the benchmark would be on streamlining data compilation procedures for fishery-dependent and survey data. This will give improved transparency and diagnostics surrounding commercial tuning fleets and surveys. The benchmark should also relook at the assessment methods and diagnostics given the potential for changes in selectivity in the commercial fishery. The benchmark
should also investigate mixed fisheries and multispecies interactions as well as environmental drivers that may be impacting on growth and recruitment of all three species.

The catch data should continue to be monitored for indirect evidence of improved selection patterns due to the augmented TCMs in the Celtic Sea. Direct monitoring of escapement through SMPs would also be useful.

It would be desirable to include discards separately in the assessment model in order to specify a lower precision for the discard numbers-at-age than for the landings num-bers-at-age. However WKROUND (2012) concluded that this resulted in undesirable residual patterns. The benchmark workshop did not have sufficient time to fully evaluate this problem.

It would be worth investigating if there is any worth in retaining the commercial tuning fleet. If this fleet is to be retained it would be useful to apply some sort of standardisation to account for possible changes in the fleet.

\subsection*{12.1.9 Management considerations}

The stock size fluctuates strongly over the time. The size of the stock is determined to a large extent by recruitment, which is erratic. There is no discernible relationship between stock size and recruitment, as is the case with most haddock stocks.

Fishing mortality has been consistently above FmSY, but this has not led to a decreasing \(^{\text {m }}\) trend in stock size, which suggests that the stock is very robust to over-fishing. On the other hand, at current levels of F the SSB could quickly fall below Bloss if recruitment is low for three or four years ( \(B_{\text {loss }}\) has been proposed as \(B_{\text {trigger }}\) ). Current SSB is well above Bloss.

The variable recruitment has also resulted in substantial short-term variability in TACs and high discards have occurred when a strong year class occurs. Discarding of undersize as well as marketable fish is a serious problem for this stock: over the last ten years over \(77 \%\) of the catch numbers and \(45 \%\) of the catch weight has been discarded. Alternative or complimentary approaches to managing such strong, recruit-driven fluctuations are required, especially with regard to the upcoming discard ban.

The minimum landing size of haddock is 30 cm , which is about the same as the mean length of two-year old haddock in the Celtic sea. Because gadoids are caught in a mixed fishery, restrictive quota in recent years have led to increased discarding of marketable fish as well as already considerable discarding of undersized fish. Technical measures have been introduced to reduce discards of undersize gadoids ( 110 mm square-mesh panel in the Nephrops fisheries and 100 mm in the gadoid fisheries). It is not clear whether this is sufficient to reduce discard mortality of future cohorts. It is important that technical measures are fully implemented and their effectiveness in reducing discards and impact on commercial catches are monitored and evaluated.

\subsection*{12.1.10 References}

ICES. 2016a. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

ICES. 2016b. EU request to ICES to provide Fmsy ranges for selected stocks in ICES subareas 5 to 10. ICES Advice 2016 Book 5, ICES Special Request Advice, Published 5 February 2016.

Table 7.4.1.a. Haddock in 7.bc-ek. Official landings (quota uptake in brackets).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & BEL & ESP & FRA & IRL & UK* & Others & Total & TAC** \\
\hline 1994 & 123 & 0 & 2788 & 908 & 240 & 17 & 4076 & \\
\hline 1995 & 189 (28\%) & 19 & 2964 (74\%) & 966 (72\%) & 266 (44\%) & 64 & 4468 & 6000 \\
\hline 1996 & 133 (9\%) & 48 & 4527 (49\%) & 1468 (47\%) & 439 (31\%) & 38 & 6653 & 14000 \\
\hline 1997 & 246 (16\%) & 54 & 6581 (71\%) & 2789 (90\%) & 569 (41\%) & 31 & 10270 & 14000 \\
\hline 1998 & 142 (6\%) & 260 & 3674 (28\%) & 2788 (63\%) & 445 (22\%) & 52 & 7361 & 20000 \\
\hline 1999 & 51 (2\%) & 88 & 2725 (19\%) & 2034 (42\%) & 278 (13\%) & 71 & 5247 & 22000 \\
\hline 2000 & 90 (5\%) & 110 & 3088 (28\%) & 3066 (83\%) & 289 (17\%) & 13 & 6656 & 16600 \\
\hline 2001 & 165 (12\%) & 646 & 4842 (61\%) & \[
\begin{aligned}
& 3608 \\
& (135 \%)
\end{aligned}
\] & 422 (35\%) & 19 & 9702 & 12000 \\
\hline 2002 & \[
\begin{aligned}
& 132 \\
& (128 \%)
\end{aligned}
\] & 85 & 4348 (70\%) & \begin{tabular}{l}
2188 \\
(106\%)
\end{tabular} & 315 (34\%) & 21 & 7089 & 9300 \\
\hline 2003 & \[
\begin{aligned}
& 118 \\
& (130 \%)
\end{aligned}
\] & 82 & 5781 (106\%) & \[
\begin{aligned}
& 1867 \\
& (103 \%)
\end{aligned}
\] & 393 (48\%) & 0 & 8241 & 8185 \\
\hline 2004 & \begin{tabular}{l}
136 \\
(127\%)
\end{tabular} & 143 & 6130 (96\%) & 1715 (80\%) & 313 (33\%) & 16 & 8453 & 9600 \\
\hline 2005 & \[
\begin{aligned}
& 167 \\
& (130 \%)
\end{aligned}
\] & 197 & 4166 (54\%) & 2037 (80\%) & 292 (25\%) & 0 & 6859 & 11520 \\
\hline 2006 & 99 (77\%) & 185 & 3190 (42\%) & 1875 (73\%) & 274 (24\%) & 24 & 5647 & 11520 \\
\hline 2007 & 119 (93\%) & 49 & 4142 (54\%) & 1930 (75\%) & 386 (34\%) & 3 & 6629 & 11520 \\
\hline \[
2008
\] & 108 (84\%) & 121 & 3639 (47\%) & 1800 (70\%) & 566 (49\%) & 0 & 6234 & 11579 \\
\hline 2009 & \begin{tabular}{l}
131 \\
(102\%)
\end{tabular} & 47 & 5429 (70\%) & \begin{tabular}{l}
2983 \\
(116\%)
\end{tabular} & 716 (62\%) & 1 & 9307 & 11579 \\
\hline 2010 & \begin{tabular}{l}
170 \\
(132\%)
\end{tabular} & 127 & 6240 (81\%) & \[
\begin{aligned}
& 2609 \\
& (101 \%)
\end{aligned}
\] & 852 (74\%) & 1 & 9999 & 11579 \\
\hline 2011 & \begin{tabular}{l}
211 \\
(143\%)
\end{tabular} & 94 & 8388 (94\%) & \[
\begin{aligned}
& 3322 \\
& (112 \%)
\end{aligned}
\] & \[
\begin{aligned}
& 1659 \\
& (125 \%)
\end{aligned}
\] & 35 & 13709 & 13316 \\
\hline 2012 & \begin{tabular}{l}
231 \\
(125\%)
\end{tabular} & 105 & \[
\begin{aligned}
& 11793 \\
& (106 \%)
\end{aligned}
\] & \begin{tabular}{l}
4130 \\
(112\%)
\end{tabular} & \begin{tabular}{l}
1901 \\
(114\%)
\end{tabular} & 62 & 18222 & 16645 \\
\hline 2013 & \begin{tabular}{l}
173 \\
(110\%)
\end{tabular} & 3 & 8748 (93\%) & 2699 (86\%) & \begin{tabular}{l}
1455 \\
(103\%)
\end{tabular} & 20 & 13098 & 14148 \\
\hline 2014 & 99 (94\%) & 3 & 6374 (101\%) & 2092 (99\%) & 785 (83\%) & 18 & 9371 & 9479 \\
\hline 2015 & \begin{tabular}{l}
\[
117
\] \\
(126\%)
\end{tabular} & 0 & 5681 (102\%) & 1656 (89\%) & 759 (91\%) & 4 & 8217 & 8342 \\
\hline 2016 & 88 (103\%) & 0 & 4487 (87\%) & 1713 (99\%) & 692 (91\%) & 26 & 7007 & 7751 \\
\hline
\end{tabular}
* UK Includes Channel Islands.
** TAC Applied to subareas 7-10 from 1995 to 2008 and to \(7 b-k, 8,9\) and 10 from 2009 onwards.

Table 7.4.1.b. Haddock in 7.bc-ek. ICES estimate of the landings (lan) and discards (dis).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \text { BEL } \\
& \text { LAN }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ESP } \\
& \text { LAN }
\end{aligned}
\] & \begin{tabular}{l}
FRA \\
LAN
\end{tabular} & \begin{tabular}{l}
IRL \\
LAN
\end{tabular} & \[
\begin{aligned}
& \text { UK } \\
& \text { LAN }
\end{aligned}
\] & Others LAN & Total LAN & FRA DIs* & \[
\begin{aligned}
& \text { IRL } \\
& \text { DIS** }
\end{aligned}
\] & Others DIS*** & Total Dis \\
\hline 1993 & & & & & & & 3348 & 505 & 594 & 109 & 1208 \\
\hline 1994 & & & & & & & 4131 & 1116 & 594 & 176 & 1886 \\
\hline 1995 & & & & & & & 4470 & 730 & 1221 & 267 & 2218 \\
\hline 1996 & & & & & & & 6756 & 3170 & 713 & 426 & 4309 \\
\hline 1997 & & & & & & & 10827 & 2129 & 502 & 253 & 2883 \\
\hline 1998 & & & & & & & 7928 & 680 & 140 & 114 & 934 \\
\hline 1999 & & & & & & & 4970 & 477 & 54 & 55 & 586 \\
\hline 2000 & & & & & & & 7499 & 1587 & 727 & 189 & 2503 \\
\hline 2001 & & & & & & & 9278 & 2234 & 743 & 441 & 3418 \\
\hline 2002 & 134 & 85 & 3878 & 2070 & 301 & 21 & 6488 & 871 & 5651 & 552 & 7073 \\
\hline 2003 & 116 & 82 & 5960 & 1731 & 362 & 41 & 8292 & 1835 & 6941 & 680 & 9456 \\
\hline 2004 & 137 & 143 & 6336 & 1785 & 303 & 73 & 8777 & 1108 & 5156 & 486 & 6750 \\
\hline 2005 & 165 & 197 & 4096 & 2026 & 282 & 21 & 6787 & 762 & 3933 & 496 & 5191 \\
\hline 2006 & 98 & 185 & 3151 & 1883 & 262 & 14 & 5593 & 1061 & 1167 & 256 & 2484 \\
\hline 2007 & 118 & 49 & 4073 & 2135 & 383 & 23 & 6781 & 1268 & 1241 & 230 & 2739 \\
\hline 2008 & 109 & 121 & 4587 & 2032 & 545 & 61 & 7455 & 7608 & 2153 & 1427 & 11187 \\
\hline 2009 & 131 & 47 & 5455 & 3271 & 703 & 1 & 9608 & 6064 & 2143 & 873 & 9080 \\
\hline 2010 & 170 & 127 & 6267 & 2876 & 789 & 34 & 10262 & 11396 & 3246 & 1905 & 16547 \\
\hline 2011 & 212 & 94 & 7365 & 3697 & 1511 & 0 & 12879 & 9320 & 2913 & 2145 & 14378 \\
\hline 2012 & 232 & 105 & 11793 & 4608 & 1637 & 0 & 18376 & 7221 & 1678 & 1293 & 10191 \\
\hline 2013 & 174 & 40 & 8622 & 3109 & 1480 & 0 & 13424 & 1103 & 727 & 255 & 2085 \\
\hline 2014 & 99 & 3 & 6376 & 2529 & 848 & 0 & 9855 & 1793 & 992 & 392 & 3177 \\
\hline 2015 & 118 & 0 & 5679 & 1978 & 766 & 4 & 8545 & 2798 & 2785 & 1110 & 6693 \\
\hline 2016 & 88 & 0 & 4487 & 1713 & 692 & 26 & 7574 & & & & \\
\hline
\end{tabular}
* For 1993-2007 fixed discard ratios were used to estimate French discards.
** For 1993-1994, the mean Irish discards over 1995-1999 were used.
*** Estimated from the proportion of the landings of `Others' between 1993 and 2012.

Table 7.4.2. Haddock in 7.bc-ek. Lpue (kg/hour fishing) of haddock and effort (hours fishing \(x\) 1000) for Irish Otter trawls in 7.bc, 7.fgh and 7.jk, the French demersal fleet in 7.bc-ek and effort only for the UK trawl fleets (excluding beam trawls) in 7.e-k (effort in fishing days).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { FR GAD } \\
\text { 7ek } \\
\text { effort }
\end{gathered}
\] & \begin{tabular}{l}
FR \\
GAD \\
7ek \\
Ipue
\end{tabular} & \[
\begin{aligned}
& \text { IRL OTB } \\
& 7 \mathrm{bc} \\
& \text { effort }
\end{aligned}
\] & \begin{tabular}{l}
IRL \\
OTB \\
7 bc \\
Ipue
\end{tabular} & \[
\begin{aligned}
& \text { IRL OTB } \\
& 7 \text { fgh } \\
& \text { effort }
\end{aligned}
\] & \begin{tabular}{l}
IRL \\
OTB \\
7fgh Ipue
\end{tabular} & \[
\begin{aligned}
& \text { IRL OTB } \\
& \text { 7jk } \\
& \text { effort }
\end{aligned}
\] & \begin{tabular}{l}
IRL \\
OTB \\
7jk \\
Ipue
\end{tabular} & \begin{tabular}{l}
UK \\
Trawl \\
7e-k \\
effort
\end{tabular} \\
\hline 1983 & NA & 51.5 \\
\hline 1984 & NA & 161.8 \\
\hline 1985 & NA & 143.7 \\
\hline 1986 & NA & 123.5 \\
\hline 1987 & NA & 108.9 \\
\hline 1988 & NA & 112.9 \\
\hline 1989 & NA & 119.9 \\
\hline 1990 & NA & 133.2 \\
\hline 1991 & NA & 118.8 \\
\hline 1992 & NA & 129.9 \\
\hline 1993 & NA & 101.1 \\
\hline 1994 & NA & 88.5 \\
\hline 1995 & NA & NA & 78 & 5.77 & 64 & 1.48 & 106 & 2.20 & 88.1 \\
\hline 1996 & NA & NA & 47 & 4.16 & 60 & 5.35 & 73 & 3.24 & 89.5 \\
\hline 1997 & NA & NA & 63 & 4.36 & 65 & 5.83 & 92 & 8.23 & 101.8 \\
\hline 1998 & NA & NA & 79 & 5.71 & 72 & 4.09 & 99 & 5.88 & 94.6 \\
\hline 1999 & NA & NA & 77 & 5.27 & 51 & 2.35 & 52 & 3.53 & 132.8 \\
\hline 2000 & 306 & 6.12 & 74 & 4.73 & 61 & 10.43 & 72 & 4.25 & 141.1 \\
\hline 2001 & 333 & 10.57 & 78 & 4.30 & 69 & 8.69 & 81 & 7.41 & 117.5 \\
\hline 2002 & 289 & 10.63 & 63 & 2.81 & 79 & 3.22 & 108 & 5.50 & 113.1 \\
\hline 2003 & 264 & 15.15 & 81 & 2.09 & 87 & 3.26 & 123 & 3.88 & 102.4 \\
\hline 2004 & 217 & 19.39 & 82 & 2.51 & 97 & 3.49 & 108 & 3.35 & 105.5 \\
\hline 2005 & 175 & 14.67 & 69 & 2.45 & 127 & 4.53 & 93 & 3.70 & 100.9 \\
\hline 2006 & 167 & 10.64 & 60 & 2.56 & 119 & 4.19 & 89 & 3.59 & 106.3 \\
\hline 2007 & 160 & 14.97 & 60 & 3.31 & 136 & 4.01 & 103 & 3.66 & 113.6 \\
\hline 2008 & 148 & 19.60 & 48 & 4.36 & 127 & 4.56 & 84 & 4.60 & 93.7 \\
\hline 2009 & 150 & 22.65 & 48 & 5.47 & 141 & 9.25 & 82 & 7.09 & 98.6 \\
\hline 2010 & 131 & 30.83 & 54 & 4.36 & 144 & 7.33 & 101 & 5.15 & 103.7 \\
\hline 2011 & 216 & 22.90 & 40 & 6.39 & 129 & 10.51 & 84 & 5.58 & 87.1 \\
\hline 2012 & 188 & 45.03 & 44 & 4.93 & 135 & 13.17 & 84 & 6.58 & 86.2 \\
\hline 2013 & 215 & 27.40 & 42 & 5.38 & 126 & 8.69 & 80 & 4.92 & 40.3 \\
\hline 2014 & 203 & 19.81 & 46 & 5.22 & 142 & 5.11 & 77 & 3.91 & 32.1 \\
\hline 2015 & NA & NA & 31 & 4.77 & 150 & 4.34 & 78 & 2.91 & 21.2 \\
\hline 2016 & NA & NA & 39 & 2.76 & 163 & 6.24 & 83 & 3.09 & NA \\
\hline
\end{tabular}

Table 7.4.3a. Haddock in 7.bc-ek. Landings numbers-at-age.
\begin{tabular}{llllllllll}
\hline & Age0 & Age 1 & Age2 & Age3 & Age4 & Age5 & Age6 & Age7 & Age8 \\
\hline 1993 & 0 & 491 & 3291 & 948 & 810 & 255 & 129 & 129 & 45 \\
\hline 1994 & 0 & 1277 & 5223 & 674 & 302 & 94 & 24 & 35 & 16 \\
\hline 1995 & 0 & 4275 & 1622 & 1327 & 270 & 245 & 46 & 0 & 0 \\
\hline 1996 & 0 & 3693 & 15998 & 818 & 313 & 93 & 32 & 10 & 9 \\
\hline 1997 & 0 & 1353 & 9645 & 5553 & 716 & 354 & 139 & 144 & 110 \\
\hline 1998 & 0 & 167 & 3184 & 7403 & 1443 & 307 & 178 & 86 & 61 \\
\hline 1999 & 0 & 476 & 654 & 1464 & 2425 & 307 & 18 & 19 & 6 \\
\hline 2000 & 0 & 2197 & 2996 & 784 & 741 & 1250 & 205 & 35 & 28 \\
\hline 2001 & 0 & 4297 & 8638 & 1131 & 303 & 317 & 321 & 54 & 39 \\
\hline 2002 & 0 & 879 & 4274 & 3400 & 765 & 39 & 89 & 74 & 26 \\
\hline 2003 & 0 & 703 & 8791 & 2160 & 1226 & 116 & 43 & 49 & 51 \\
\hline 2004 & 0 & 125 & 5948 & 4663 & 928 & 589 & 51 & 12 & 20 \\
\hline 2005 & 0 & 786 & 863 & 4366 & 1983 & 450 & 115 & 4 & 17 \\
\hline 2006 & 0 & 852 & 3393 & 1500 & 2219 & 400 & 67 & 7 & 1 \\
\hline 2007 & 0 & 707 & 6404 & 2687 & 532 & 864 & 155 & 29 & 5 \\
\hline 2008 & 0 & 1637 & 4034 & 4422 & 987 & 235 & 382 & 70 & 13 \\
\hline 2009 & 0 & 795 & 7010 & 3394 & 1939 & 489 & 145 & 110 & 27 \\
\hline 2010 & 0 & 1291 & 4814 & 6091 & 901 & 494 & 162 & 68 & 62 \\
\hline 2011 & 0 & 170 & 11164 & 3359 & 3249 & 606 & 200 & 55 & 43 \\
\hline 2012 & 0 & 61 & 787 & 18587 & 2352 & 1319 & 212 & 60 & 54 \\
\hline 2013 & 0 & 24 & 244 & 2071 & 11007 & 764 & 444 & 87 & 47 \\
\hline 2014 & 0 & 284 & 719 & 309 & 1632 & 5587 & 272 & 108 & 19 \\
\hline 2015 & 0 & 111 & 4775 & 552 & 215 & 946 & 1896 & 165 & 23 \\
\hline 2016 & 0 & 60 & 330 & 5509 & 201 & 94 & 394 & 476 & 45 \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

Table 7.4.3b. Haddock in 7.bc-ek. Discard numbers-at-age.
\begin{tabular}{lllllllllll}
\hline & Age0 & Age 1 & Age2 & Age3 & Age4 & Age5 & Age6 & Age7 & Age8 \\
\hline 1993 & 0 & 7617 & 2816 & 160 & 6 & 0 & 0 & 0 & 0 \\
\hline 1994 & 0 & 15120 & 3069 & 170 & 5 & 0 & 0 & 0 & 0 \\
\hline 1995 & 0 & 32830 & 1977 & 91 & 4 & 0 & 0 & 0 & 0 \\
\hline 1996 & 0 & 20734 & 8976 & 187 & 9 & 0 & 0 & 0 & 0 \\
\hline 1997 & 0 & 12613 & 10022 & 493 & 5 & 0 & 0 & 0 & 0 \\
\hline 1998 & 0 & 3580 & 2348 & 445 & 5 & 0 & 0 & 0 & 0 \\
\hline 1999 & 0 & 3742 & 1562 & 100 & 10 & 0 & 0 & 0 & 0 \\
\hline 2000 & 0 & 29015 & 2521 & 64 & 3 & 0 & 0 & 0 & 0 \\
\hline 2001 & 0 & 25234 & 6772 & 219 & 2 & 0 & 0 & 0 & 0 \\
\hline 2002 & 0 & 21624 & 20729 & 249 & 7 & 0 & 0 & 0 & 0 \\
\hline 2003 & 0 & 52412 & 11075 & 352 & 8 & 0 & 0 & 0 & 0 \\
\hline 2004 & 0 & 11733 & 21598 & 1395 & 61 & 0 & 0 & 0 & 0 \\
\hline 2005 & 0 & 15904 & 10766 & 4315 & 149 & 0 & 0 & 0 & 0 \\
\hline 2006 & 0 & 9377 & 4130 & 381 & 33 & 0 & 0 & 0 & 0 \\
\hline 2007 & 0 & 6387 & 7066 & 662 & 34 & 0 & 0 & 0 & 0 \\
\hline 2008 & 0 & 48764 & 15658 & 5492 & 330 & 0 & 0 & 0 & 0 \\
\hline 2009 & 0 & 23561 & 27015 & 873 & 581 & 0 & 0 & 0 & 0 \\
\hline 2010 & 0 & 98400 & 23292 & 2133 & 131 & 0 & 0 & 0 & 0 \\
\hline 2011 & 0 & 16081 & 47971 & 1831 & 665 & 0 & 0 & 0 & 0 \\
\hline 2012 & 0 & 7056 & 22315 & 12250 & 115 & 0 & 0 & 0 & 0 \\
\hline 2013 & 0 & 1645 & 1187 & 1339 & 1899 & 0 & 0 & 0 & 0 \\
\hline 2014 & 0 & 13089 & 3385 & 449 & 176 & 155 & 0 & 0 & 0 \\
\hline 2015 & 0 & 2806 & 17841 & 550 & 14 & 103 & 134 & 15 & 1 \\
\hline 2016 & 0 & 22590 & 4116 & 6993 & 80 & 4 & 33 & 311 & 0 \\
\hline & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 7.4.4. Haddock in 7.bc-ek. ASAP input data.
```


ASAP VERSION 3.0

Had7b-k

ASAP GUI 15 AUG 2012

Number of Years

24

First Year

1993

Number of Ages

9

Number of Fleets

1

Number of Sensitivity Blocks

1

Number of Available Survey Indices

2

Natural Mortality

0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.4 0.43 0.4 0. 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.4 0.43 0.4 0. 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0. 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0. 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0. 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.4 0.4 0.4 0. 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34
0.99 0.72 0.6 0.5 0.43 0.4 0.37 0.36 0.34

Fecundity Option

0

Fraction of year that elapses prior to SSB calculation (0=Jan-1)

0

Maturity

0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0}001111111111
0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0}0011111111111

```

```

0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1

```

```

0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0}0011\mp@code{1
0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0}001111111111
0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1

Number of Weights at Age Matrices

2

```
```


Weight Matrix - 1

0 0.09 0.257 0.524 0.848 1.402 1.693 2.13 2.573
0 0.1 0.358 0.614 0.987 1.456 1.745 2.014 2.536
0 0.089 0.388 0.875 1.321 1.188 1.746 0 0
0 0.13 0.275 0.576 0.799 1.181 1.369 1.828 1.827
0 0.097 0.305 0.743 1.205 1.362 1.268 1.412 1.176
0 0.103 0.296 0.611 0.938 0.956 1.086 1.292 1.453
0 0.129 0.299 0.848 1.072 1.186 1.223 0.908 1.708
0 0.091 0.452 1.19 1.463 1.719 1.627 1.163 1.459
0 0.122 0.384 0.971 1.857 1.783 1.705 2.297 1.612
0 0.095 0.295 0.791 1.03 1.733 1.678 1.505 1.569
0 0.133 0.353 0.804 1.238 1.441 1.818 1.704 1.709
0 0.136 0.285 0.654 1.135 1.378 1.876 1.84 2.084
0 0.136 0.211 0.499 0.971 1.252 1.942 2.667 1.949
0 0.162 0.348 0.504 0.925 1.47 2.091 2.59 4.022
0 0.168 0.34 0.566 0.855 1.2 1.642 1.507 2.837
0 0.13 0.287 0.461 0.74 1.159 1.282 1.685 1.926
0 0.118 0.291 0.618 0.846 1.311 1.547 1.653 2.441
0 0.114 0.268 0.653 1.072 1.754 1.845 1.738 1.673
0 0.155 0.278 0.59 0.928 1.623 2.116 1.888 1.478
0 0.127 0.248 0.543 1.041 1.443 2.022 2.278 2.203
0 0.151 0.298 0.587 0.832 1.422 1.611 2.209 1.86
0 0.142 0.372 0.63 0.911 1.179 1.654 1.965 2.576
0 0.155 0.403 0.667 1.02 1.233 1.478 1.859 2.462
0 0.197 0.316 0.736 1.1 1.548 1.816 1.433 1.888

Weight Matrix - 2

0.041 0.093 0.277 0.641 0.824 1.804 2.089 2.407 2.647
0.042 0.093 0.29 0.756 1.138 2.36 2.163 2.407 2.647
0.045 0.102 0.295 0.715 1.232 2.174 1.972 2.169 2.386
0.046 0.1 0.313 0.719 1.246 2.046 1.773 1.95 2.145
0.043 0.098 0.287 0.579 0.904 1.144 1.261 1.631 1.794
0.037 0.096 0.274 0.655 0.87 1.005 1.016 1.251 1.376
0.028 0.103 0.265 0.791 0.962 1.148 1.203 1.348 1.483
0.027 0.109 0.306 0.93 1.326 1.548 1.605 1.765 1.942
0.022 0.102 0.312 0.926 1.33 1.634 1.672 1.84 2.024
0.021 0.11 0.312 0.841 1.399 1.676 1.888 2.076 2.284
0.023 0.119 0.275 0.725 1.189 1.601 1.938 2.132 2.345
0.032 0.133 0.248 0.623 1.207 1.662 2.308 2.538 2.792
0.037 0.139 0.252 0.523 1.056 1.587 2.159 2.409 2.65
0.043 0.148 0.265 0.49 0.922 1.417 2.062 2.537 2.79
0.041 0.145 0.282 0.481 0.799 1.313 1.763 2.168 2.385
0.048 0.135 0.267 0.505 0.759 1.148 1.611 1.838 2.022
0.048 0.119 0.252 0.522 0.804 1.252 1.519 1.775 1.952
0.041 0.128 0.256 0.55 0.861 1.331 1.732 2.036 2.24
0.043 0.13 0.251 0.52 0.913 1.439 1.896 2.268 2.495
0.044 0.142 0.263 0.512 0.87 1.445 1.95 2.514 2.765
0.054 0.138 0.281 0.539 0.848 1.348 1.846 2.166 2.383
0.055 0.148 0.315 0.572 0.824 1.251 1.617 1.922 2.115
0.07 0.16 0.32 0.62 0.87 1.15 1.65 1.82 2
0.08 0.17 0.32 0.63 0.93 1.17 1.63 1.79 1.97

Weights at Age Pointers

1
1
1
2

Selectivity Block Assignment

 # Fleet 1 Selectivity Block Assignment
 1
1
1
1
1
1
1
1
1
1
1
1

```
```

1
1
1
1
1

Selectivity Options for each block 1=by age, 2=logisitic, 3=double logistic

1

Selectivity Block \#1 Data

0 -1 0 1
0.5101
1 1 0 1
1 -1 0 1
1 -1 0 1
1 -1 0 1
1 -1 0 1
1 -1 0 1
1 -1 0 1
1101
1 101
1101
1 101
1 101
1 101

Fleet Start Age

1

Fleet End Age

9

Age Range for Average F

4 6

Average F report option (1=unweighted, 2=Nweighted, 3=Bweighted)

1

Use Likelihood constants? (1=yes)

0

Release Mortality by Fleet

1

Catch Data

Fleet-1 Catch Data

0 8107 6107 1108 816 255 129 129 45 4556
0}16396 8292 844 307 94 24 35 16 6017
0 37105 3599 1419 273 245 46 0 0 6688
0 24428 24973 1005 321 93 32 10 9 11065
0}131396519667 6046 722 354 139 144 110 13710
0 3747 5531 7848 1448 307 178 86 61 8862
0 4218 2217 1564 2435 307 18 19 6 5556
0 31212 5517 848 744 1250 205 35 28 10002
0 29531 15409 1350 304 317 321 54 39 12696
0}2250325003 3650 772 39 89 74 26 13561
0 53115 19866 2512 1234 116 43 49 51 17748
0 11858 27546 6058 989 589 51 12 20 15527
0 16690 11629 8681 2133 450 115 4 17 11978
0 10229 7524 1881 2252400 67 7 1 8077
0 7094 13470 3350 566 864 155 29 5 9520
0 50401 19692 9913 1317 235 382 70 13 18642
0 24356 34025 4267 2519 489 145 110 27 18688
0 99691 28106 8225 1033 494 162 68 62 26809
0 16252 59134 5190 3914 606 200 55 43 27257
0 7116 23102 30837 2467 1319 212 60 54 28567
0}16691431 3410 12906 764 444 87 47 15509
0 13372 4103 758 1808 5741 272 108 19 13031
0 2918 22616 1102 229 1049 2029 180 24 15239
0 22650 4446 12503 281 98 427 787 46 17931

Discards

Fleet-1 Discards Data

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

```
```

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Release Proportion

Fleet-1 Release Data

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Survey Index Data

Aggregate Index Units

2 2

Age Proportion Index Units

2 2

Weight at Age Matrix

2

Index Month

117

Index Selectivity Link to Fleet

-1 -1

Index Selectivity Options 1=by age, 2=logisitic, 3=double logistic

1 1

Index Start Age

14

Index End Age

6 8

Estimate Proportion (Yes=1)

1 1

Use Index (Yes=1)

1 1

Index-1 Selectivity Data

1 1 1 1e-04
1 -1 0 1
1 -1 0 1
1 -1 0 1
1 -1 0 1
1 -1 0 1
-1 -1 0 1
-1 -1 0 1
-1 -1 0 1
1 1 0 1
1101
0 -1 0 1
0.001 -1 0 1
1 101
1 1 0 1

```
```


Index-2 Selectivity Data

 -1 -1 0 1
 -1 -1 0 1
 -1 -1 0 1
 0.8 1 0 1
 1 -1 0 1
 1 -1 0 1
 1 -1 0 1
 1 -1 0 1
-1 -1 0 1
1 1 0 1
1 1 0 1
3 -1 0 1
1 -1 0 1
8 -1 0 1
1 -1 0 1

Index-1 Data

1993 0 0 0 0 0 0 0 0 0 0 0 0
19940000 0 0 0 0 0 0 0 0 0
1995 0 0 0 0 0 0 0 0 0 0 0 0
1996 0 0 0 0 0 0 0 0 0 0 0 0
1997 0 0 0 0 0 0 0 0 0 0 0 0
19980 0 0 0 0 0 0 0 0 0 0 0
1999 0 0 0 0 0 0 0 0 0 0 0 0
2000 0 0 0 0 0 0 0 0 0 0 0 0
2001 0 0 0 0 0 0 0 0 0 0 0 0
2002 0 0 0 0 0 0 0 0 0 0 0 0
2003 707.4 0.2 157 508.3 32.6 7 2.4 0.1 0 0 0 40
2004 517.7 0.2 385.7 49.1 70.9 7.9 2.7 1.4 0 0 0 40
2005 310.7 0.2 193.5 85.7 9.9 19.4 1.9 0.3 0 0 0 40
2006 176.9 0.2 110.2 39.7 19 4.5 3.2 0.4 0 0 0 40
2007 670.6 0.2 610.8 38.6 9.9 5.8 2.8 2.7 0 0 0 40
2008 424 0.2 271.5 143.3 5.6 1.6 1.3 0.7 0 0 0 40
2009 1562.4 0.2 1428.4 67.1 62 2.1 1.9 0.8 0 0 0 40
2010 823.4 0.2 89.7 686 33 13.6 0.4 0.8 0 0 0 40
2011 317.8 0.2 69.2 45.3 193.9 7.2 2.1 0.2 0 0 0 40
2012 113.9 0.2 21.4 23.1 13.4 52.4 2.2 1.3 0 0 0 40
2013 705.9 0.2 666 10.5 8.9 5.2 14.3 0.8 0 0 0 40
2014 279.9 0.2 91.3 177.2 2.4 1.9 2.1 5.1 0 0 0 40
2015 476.7 0.2 355.6 74.1 42.7 0.9 1.2 2.2 0 0 0 40
2016 250.4 0.2 38.6 166.8 31.8 12.2 0.7 0.3 0 0 0 40

Index-2 Data

1993 0 0 0 0 0 0 0 0 0 0 0 0
19940000000000 0 0 0 0
1995 0.826 0.3 0 0 0 0.751 0.06 0.015 0 0 0 40
1996 1.031 0.3 0 0 0 0.675 0.226 0.096 0.035 0 0 40
1997 3.578 0.3 0 0 0 3.086 0.339 0.115 0.019 0.019 0 40
1998 6.695 0.3 0 0 0 5.811 0.824 0.033 0.008 0.018 0 40

```

```

2000 4.103 0.3 0 0 0 1.618 1.077 1.204 0.204 0 0 40
2001 3.47 0.3 0 0 0 2.926 0.293 0.148 0.093 0.009 0 40
2002 3.996 0.3 0 0 0 3.657 0.266 0.02 0.021 0.034 0 40
2003 2.075 0.3 0 0 0 1.267 0.703 0.082 0.009 0.015 0 40
2004 4.594 0.3 0 0 0 3.368 0.858 0.351 0.01 0.008 0 40
2005 7.108 0.3 0 0 0 4.707 2.085 0.268 0.048 0 0 40
2006 7.058 0.3 0 0 0 2.976 3.523 0.484 0.062 0.012 0 40
2007 4.706 0.3 0 0 0 2.664 0.674 1.219 0.136 0.012 0 40
2008 5.48 0.3 0 0 0 3.56 1.17 0.258 0.404 0.088 0 40
2009 5.872 0.3 0 0 0 2.952 1.822 0.569 0.307 0.223 0 40
2010 9.978 0.3 0 0 0 8.297 0.964 0.506 0.154 0.057 0 40
2011 9.597 0.3 0 0 0 3.939 4.592 0.705 0.301 0.06 0 40
2012 17.739 0.3 0 0 0 13.829 1.746 1.787 0.285 0.092 0 40
2013 9.851 0.3 0 0 0 0.796 7.03 0.989 0.891 0.145 0 40
2014 4.997 0.3 0 0 0 0.225 0.972 3.584 0.155 0.061 0 40
2015 3.057 0.3 0 0 0 0.378 0.166 0.521 1.902 0.089 0 40
2016 5.142 0.3 0 0 0 4.286 0.125 0.049 0.253 0.429 0 40

Phase Control

Phase for F mult in 1st Year

1

Phase for F mult Deviations

Phase for Recruitment Deviations

3

Phase for N in 1st Year

1

Phase for Catchability in 1st Year

```
```

3

Phase for Catchability Deviations

-5

Phase for Stock Recruitment Relationship

Phase for Steepness

-5

Recruitment CV by Year

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Lambdas by Index

1 1

Lambda for Total Catch in Weight by Fleet

1

Lambda for Total Discards at Age by Fleet

1

Catch Total CV by Year and Fleet

0.2
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

Discard Total CV by Year and Fleet

0
0
0
0
0
0
0
0

```
```

\odot
0
0
0
0
0
0
0
0

Catch Effective Sample Size by Year and Fleet

25
25
25
25
25
25
25
25
25
50
50
50
50
50
50
50
50
50
50
50
50
50

Discard Effective Sample Size by Year and Fleet

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Lambda for F Mult in First year by Fleet

0

CV for F Mult in First year by Fleet

0.5

Lambda for F Mult Deviations by Fleet

0

CV for F Mult Deviations by Fleet

0.5

Lambda for N in 1st Year Deviations

0

CV for N in 1st Year Deviations

Lambda for Recruitment Deviations

0

```
```


Lambda for Catchability in First year by Index

0 0

CV for Catchability in First year by Index

1 1

Lambda for Catchability Deviations by Index

0 0

CV for Catchability Deviations by Index

1 1

Lambda for Deviation from Initial Steepness

CV for Deviation from Initial Steepness

Lambda for Deviation from Unexploited Stock Size

0

CV for Deviation from Unexploited Stock Size

1

NAA Deviations Flag

1

Initial Numbers at Age in 1st Year

4 0 0 0 0 2 0 0 0 0 ~ 1 0 0 0 0 ~ 4 0 0 0 ~ 2 0 0 0 ~ 1 0 0 0 ~ 5 0 0 ~ 2 5 0 ~ 1 0 0 ~

Initial F Mult in 1st Year by Fleet

0.7

Initial Catchabilty by Index

1 1

Stock Recruitment Flag

Initial Unexploited Stock

1000

Initial Steepness

1

Maximum F

2.5

Ignore Guesses (Yes=1)

0

Projection Control

Do Projections (Yes=1)

0

Fleet Directed Flag

1

Final Year in Projection

2017

Projection Data by Year

2017 -1 3 -99 1

Do MCMC (Yes=1)

0

MCMC Year Option

0

MCMC Iterations

1000

MCMC Thinning Factor

200

MCMC Random Seed

1415963

Agepro R Option

0

Agepro R Option Start Year

1993

Agepro R Option End Year

2005

Export R Flag

1

Test Value

-23456

FINIS

Fleet Names

\#\$LAND+DIS

Survey Names

\#$FR-IRL-IBTS
#$IR-GAD


```

Table 7.4.5. Haddock in 7.bc-ek. Selectivity of the catches and indices. Catch selectivity was fixed at zero for age 0 and at one for ages \(\mathbf{3 - 8}\); it was freely estimated for ages \(\mathbf{1 - 2}\). For the FR_IR_IBTS survey the selectivity was fixed at 1 for all ages and for the IR_GAD commercial fleet selectivity was freely estimated for age 3 and fixed at 1 for the older ages. Catch and index selectivity were not allowed to vary over time.
\begin{tabular}{ccccc}
\hline Age & Catch & FRA.IRL.IBTS & & IRL.GAD \\
\hline 0 & 0.000 & 1 & NA & \\
\hline 1 & 0.364 & 1 & NA & \\
\hline 2 & 0.980 & 1 & NA & \\
\hline 3 & 1.000 & 1 & & 0.781 \\
\hline 4 & 1.000 & & 1 & 1.000 \\
\hline 5 & 1.000 & & 1 & 1.000 \\
\hline 6 & 1.000 & NA & & 1.000 \\
\hline 7 & 1.000 & NA & & 1.000 \\
\hline 8 & 1.000 & NA & & \(N A\) \\
\hline
\end{tabular}

Table 7.4.6. Haddock in 7.bc-ek. Fishing mortality- (F) at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Age0 & Agel & Age2 & Age3 & Age4 & Age5 & Age6 & Age7 & Age8 \\
\hline 1993 & 0 & 0.396 & 1.066 & 1.088 & 1.088 & 1.088 & 1.088 & 1.088 & 1.088 \\
\hline 1994 & 0 & 0.382 & 1.029 & 1.051 & 1.051 & 1.051 & 1.051 & 1.051 & 1.051 \\
\hline 1995 & 0 & 0.308 & 0.830 & 0.847 & 0.847 & 0.847 & 0.847 & 0.847 & 0.847 \\
\hline 1996 & 0 & 0.302 & 0.815 & 0.832 & 0.832 & 0.832 & 0.832 & 0.832 & 0.832 \\
\hline 1997 & 0 & 0.250 & 0.674 & 0.688 & 0.688 & 0.688 & 0.688 & 0.688 & 0.688 \\
\hline 1998 & 0 & 0.273 & 0.736 & 0.752 & 0.752 & 0.752 & 0.752 & 0.752 & 0.752 \\
\hline 1999 & 0 & 0.189 & 0.510 & 0.520 & 0.520 & 0.520 & 0.520 & 0.520 & 0.520 \\
\hline 2000 & 0 & 0.237 & 0.639 & 0.652 & 0.652 & 0.652 & 0.652 & 0.652 & 0.652 \\
\hline 2001 & 0 & 0.251 & 0.675 & 0.689 & 0.689 & 0.689 & 0.689 & 0.689 & 0.689 \\
\hline 2002 & 0 & 0.454 & 1.223 & 1.248 & 1.248 & 1.248 & 1.248 & 1.248 & 1.248 \\
\hline 2003 & 0 & 0.234 & 0.629 & 0.643 & 0.643 & 0.643 & 0.643 & 0.643 & 0.643 \\
\hline 2004 & 0 & 0.281 & 0.758 & 0.774 & 0.774 & 0.774 & 0.774 & 0.774 & 0.774 \\
\hline 2005 & 0 & 0.293 & 0.789 & 0.805 & 0.805 & 0.805 & 0.805 & 0.805 & 0.805 \\
\hline 2006 & 0 & 0.186 & 0.502 & 0.513 & 0.513 & 0.513 & 0.513 & 0.513 & 0.513 \\
\hline 2007 & 0 & 0.147 & 0.396 & 0.404 & 0.404 & 0.404 & 0.404 & 0.404 & 0.404 \\
\hline 2008 & 0 & 0.263 & 0.709 & 0.724 & 0.724 & 0.724 & 0.724 & 0.724 & 0.724 \\
\hline 2009 & 0 & 0.205 & 0.553 & 0.565 & 0.565 & 0.565 & 0.565 & 0.565 & 0.565 \\
\hline 2010 & 0 & 0.216 & 0.582 & 0.594 & 0.594 & 0.594 & 0.594 & 0.594 & 0.594 \\
\hline 2011 & 0 & 0.165 & 0.445 & 0.454 & 0.454 & 0.454 & 0.454 & 0.454 & 0.454 \\
\hline 2012 & 0 & 0.209 & 0.562 & 0.574 & 0.574 & 0.574 & 0.574 & 0.574 & 0.574 \\
\hline 2013 & 0 & 0.182 & 0.489 & 0.499 & 0.499 & 0.499 & 0.499 & 0.499 & 0.499 \\
\hline 2014 & 0 & 0.193 & 0.519 & 0.530 & 0.530 & 0.530 & 0.530 & 0.530 & 0.530 \\
\hline 2015 & 0 & 0.190 & 0.511 & 0.521 & 0.521 & 0.521 & 0.521 & 0.521 & 0.521 \\
\hline 2016 & 0 & 0.245 & 0.660 & 0.674 & 0.674 & 0.674 & 0.674 & 0.674 & 0.674 \\
\hline
\end{tabular}

Table 7.4.7. Haddock in 7.bc-ek. Stock numbers-at-age (start of year) ( 1000 ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Age0 & Agel & Age2 & Age3 & Age4 & Age5 & Age6 & Age7 & Age8 \\
\hline 1993 & 110936 & 49973 & 11947 & 2791 & 794 & 252 & 256 & 225 & 75 \\
\hline 1994 & 381728 & 41221 & 16376 & 2258 & 570 & 174 & 57 & 60 & 71 \\
\hline 1995 & 528864 & 141841 & 13693 & 3210 & 479 & 130 & 41 & 14 & 32 \\
\hline 1996 & 149612 & 196514 & 50740 & 3277 & 835 & 134 & 37 & 12 & 14 \\
\hline 1997 & 75711 & 55592 & 70690 & 12328 & 865 & 236 & 39 & 11 & 8 \\
\hline 1998 & 158254 & 28132 & 21071 & 19774 & 3758 & 283 & 80 & 14 & 7 \\
\hline 1999 & 419100 & 58803 & 10420 & 5538 & 5657 & 1153 & 89 & 26 & 7 \\
\hline 2000 & 398204 & 155728 & 23690 & 3435 & 1997 & 2187 & 459 & 37 & 14 \\
\hline 2001 & 449757 & 147963 & 59807 & 6865 & 1086 & 677 & 764 & 165 & 18 \\
\hline 2002 & 794417 & 167119 & 56052 & 16705 & 2090 & 354 & 228 & 265 & 64 \\
\hline 2003 & 216734 & 295187 & 51665 & 9054 & 2907 & 390 & 68 & 45 & 66 \\
\hline 2004 & 279581 & 80533 & 113749 & 15110 & 2888 & 995 & 138 & 25 & 41 \\
\hline 2005 & 269409 & 103886 & 29589 & 29257 & 4228 & 867 & 308 & 44 & 22 \\
\hline 2006 & 199665 & 100106 & 37732 & 7378 & 7932 & 1229 & 260 & 95 & 21 \\
\hline 2007 & 703294 & 74191 & 40439 & 12531 & 2680 & 3090 & 493 & 107 & 48 \\
\hline 2008 & 367760 & 261328 & 31179 & 14939 & 5074 & 1164 & 1383 & 228 & 73 \\
\hline 2009 & 1738552 & 136651 & 97773 & 8421 & 4394 & 1601 & 378 & 463 & 102 \\
\hline 2010 & 215775 & 646006 & 54164 & 30850 & 2903 & 1625 & 610 & 149 & 225 \\
\hline 2011 & 56642 & 80177 & 253350 & 16609 & 10329 & 1042 & 601 & 233 & 146 \\
\hline 2012 & 40546 & 21047 & 33084 & 89097 & 6396 & 4266 & 444 & 264 & 169 \\
\hline 2013 & 530150 & 15066 & 8315 & 10349 & 30444 & 2344 & 1611 & 173 & 171 \\
\hline 2014 & 119004 & 196992 & 6116 & 2798 & 3810 & 12020 & 954 & 675 & 147 \\
\hline 2015 & 450962 & 44219 & 79079 & 1997 & 999 & 1459 & 4742 & 388 & 339 \\
\hline 2016 & 44344 & 167567 & 17807 & 26042 & 719 & 386 & 581 & 1945 & 304 \\
\hline
\end{tabular}

Table 7.4.8. Haddock in 7.bc-ek. Stock Summary: weights in tonnes; CatchPred is prediced catch from ASAP; recruitment at age zero ('1000); Fbar ages 3-5.
\begin{tabular}{llllllllllllll}
\hline Year & Lan & Dis & Cat & CatPred & Tsb & Ssb & SsbCv & Recr & RecrCv & Fbar & FbarCv \\
\hline 1993 & 3348 & 1208 & 4556 & 4676 & 16678 & 7482 & 0.211 & 110936 & 0.212 & 1.088 & 0.246 \\
\hline 1994 & 4131 & 1886 & 6017 & 5346 & 27835 & 7969 & 0.220 & 381728 & 0.184 & 1.051 & 0.236 \\
\hline 1995 & 4470 & 2218 & 6688 & 6494 & 45661 & 7394 & 0.195 & 528864 & 0.160 & 0.847 & 0.258 \\
\hline 1996 & 6756 & 4309 & 11065 & 12228 & 46204 & 19671 & 0.183 & 149612 & 0.199 & 0.832 & 0.257 \\
\hline 1997 & 10827 & 2883 & 13710 & 13365 & 37264 & 28560 & 0.157 & 75711 & 0.222 & 0.688 & 0.257 \\
\hline 1998 & 7928 & 934 & 8862 & 9941 & 30943 & 22386 & 0.159 & 158254 & 0.193 & 0.752 & 0.244 \\
\hline 1999 & 4970 & 586 & 5556 & 5984 & 31852 & 14060 & 0.160 & 419100 & 0.182 & 0.520 & 0.289 \\
\hline 2000 & 7499 & 2503 & 10002 & 10675 & 45031 & 17306 & 0.167 & 398204 & 0.207 & 0.652 & 0.277 \\
\hline 2001 & 9278 & 3418 & 12696 & 16421 & 54173 & 29186 & 0.167 & 449757 & 0.174 & 0.689 & 0.303 \\
\hline 2002 & 6488 & 7073 & 13561 & 23560 & 71247 & 36181 & 0.203 & 794417 & 0.140 & 1.248 & 0.233 \\
\hline 2003 & 8292 & 9456 & 17748 & 17076 & 65349 & 25237 & 0.165 & 216734 & 0.156 & 0.643 & 0.268 \\
\hline 2004 & 8777 & 6750 & 15527 & 21988 & 62916 & 43258 & 0.141 & 279581 & 0.131 & 0.774 & 0.242 \\
\hline 2005 & 6787 & 5191 & 11978 & 14593 & 53833 & 29425 & 0.152 & 269409 & 0.125 & 0.805 & 0.232 \\
\hline 2006 & 5593 & 2484 & 8077 & 10525 & 46904 & 23503 & 0.138 & 199665 & 0.139 & 0.513 & 0.285 \\
\hline 2007 & 6781 & 2739 & 9520 & 8527 & 64440 & 24848 & 0.131 & 703294 & 0.106 & 0.404 & 0.267 \\
\hline 2008 & 7455 & 11187 & 18642 & 15314 & 76782 & 23850 & 0.130 & 367760 & 0.131 & 0.724 & 0.178 \\
\hline 2009 & 9608 & 9080 & 18688 & 15995 & 135880 & 36168 & 0.109 & 1738552 & 0.090 & 0.565 & 0.187 \\
\hline 2010 & 10262 & 16547 & 26809 & 25468 & 128894 & 37358 & 0.119 & 215775 & 0.139 & 0.594 & 0.183 \\
\hline 2011 & 12879 & 14378 & 27257 & 27682 & 98047 & 85188 & 0.092 & 56642 & 0.193 & 0.454 & 0.191 \\
\hline 2012 & 18376 & 10191 & 28567 & 25475 & 72814 & 68042 & 0.101 & 40546 & 0.207 & 0.574 & 0.160 \\
\hline 2013 & 13424 & 2085 & 15509 & 13364 & 71354 & 40647 & 0.113 & 530150 & 0.111 & 0.499 & 0.182 \\
\hline 2014 & 9854 & 3177 & 13031 & 12053 & 60554 & 24854 & 0.141 & 119004 & 0.196 & 0.530 & 0.202 \\
\hline 2015 & 8545 & 6694 & 15239 & 15031 & 76940 & 38298 & 0.118 & 450962 & 0.159 & 0.521 & 0.218 \\
\hline 2016 & 7594 & 10337 & 17931 & 17323 & 60285 & 28251 & 0.153 & 44344 & 0.424 & 0.674 & 0.252 \\
\hline \(2017 *\) & NA & NA & NA & NA & NA & 32936 & NA & 257583 & NA & 0.575 & NA \\
\hline & & & & & & & & & &
\end{tabular}
* GM recruitment and mean F last over the three years.

Table 7.4.9. Haddock in 7.bc-ek. Input values for short-term forecast. Note that Sel and CWt refer to the landings and DSel and DCWt refer to the discards. Numbers in thousands; Weights in kg.

2017
\begin{tabular}{lllllrlrlrr}
\hline Age & \multicolumn{1}{c}{N} & M & Mat & PF & PM & SWt & Sel & CWt & DSel & DCWt \\
\hline 0 & 257583 & 0.99 & 0 & 0 & 0 & 0.068 & 0.000 & 0.000 & 0.000 & 0.068 \\
\hline 1 & 16477 & 0.72 & 0 & 0 & 0 & 0.159 & 0.012 & 0.397 & 0.197 & 0.161 \\
\hline 2 & 63842 & 0.60 & 1 & 0 & 0 & 0.318 & 0.188 & 0.678 & 0.376 & 0.304 \\
\hline 3 & 5051 & 0.50 & 1 & 0 & 0 & 0.607 & 0.427 & 0.885 & 0.148 & 0.501 \\
\hline 4 & 8052 & 0.43 & 1 & 0 & 0 & 0.875 & 0.534 & 1.082 & 0.041 & 0.604 \\
\hline 5 & 238 & 0.40 & 1 & 0 & 0 & 1.190 & 0.571 & 1.344 & 0.004 & 0.869 \\
\hline 6 & 132 & 0.37 & 1 & 0 & 0 & 1.632 & 0.572 & 1.675 & 0.003 & 0.769 \\
\hline 7 & 204 & 0.36 & 1 & 0 & 0 & 1.844 & 0.563 & 1.878 & 0.012 & 1.318 \\
\hline 8 & 802 & 0.34 & 1 & 0 & 0 & 2.028 & 0.574 & 2.313 & 0.001 & 1.193 \\
\hline
\end{tabular}

2018
\begin{tabular}{lllllllllll}
\hline Age & \multicolumn{1}{c}{N} & M & Mat & PF & PM & SWt & Sel & CWt & DSel & DCWt \\
\hline 0 & 257583 & 0.99 & 0 & 0 & 0 & 0.068 & 0.000 & 0.000 & 0.000 & 0.068 \\
\hline 1 & 95712 & 0.72 & 0 & 0 & 0 & 0.159 & 0.012 & 0.397 & 0.197 & 0.161 \\
\hline 2 & 6507 & 0.60 & 1 & 0 & 0 & 0.318 & 0.188 & 0.678 & 0.376 & 0.304 \\
\hline 3 & 19947 & 0.50 & 1 & 0 & 0 & 0.607 & 0.427 & 0.885 & 0.148 & 0.501 \\
\hline 4 & 1724 & 0.43 & 1 & 0 & 0 & 0.875 & 0.534 & 1.082 & 0.041 & 0.604 \\
\hline 5 & 2947 & 0.40 & 1 & 0 & 0 & 1.190 & 0.571 & 1.344 & 0.004 & 0.869 \\
\hline 6 & 90 & 0.37 & 1 & 0 & 0 & 1.632 & 0.572 & 1.675 & 0.003 & 0.769 \\
\hline 7 & 51 & 0.36 & 1 & 0 & 0 & 1.844 & 0.563 & 1.878 & 0.012 & 1.318 \\
\hline 8 & 401 & 0.34 & 1 & 0 & 0 & 2.028 & 0.574 & 2.313 & 0.001 & 1.193 \\
\hline
\end{tabular}

2019
\begin{tabular}{lllllllllll}
\hline Age & \multicolumn{1}{c}{N} & M & Mat & PF & PM & SWt & Sel & CWt & DSel & DCWt \\
\hline 0 & 257583 & 0.99 & 0 & 0 & 0 & 0.068 & 0.000 & 0.000 & 0.000 & 0.068 \\
\hline 1 & 95712 & 0.72 & 0 & 0 & 0 & 0.159 & 0.012 & 0.397 & 0.197 & 0.161 \\
\hline 2 & 37798 & 0.60 & 1 & 0 & 0 & 0.318 & 0.188 & 0.678 & 0.376 & 0.304 \\
\hline 3 & 2033 & 0.50 & 1 & 0 & 0 & 0.607 & 0.427 & 0.885 & 0.148 & 0.501 \\
\hline 4 & 6807 & 0.43 & 1 & 0 & 0 & 0.875 & 0.534 & 1.082 & 0.041 & 0.604 \\
\hline 5 & 631 & 0.40 & 1 & 0 & 0 & 1.190 & 0.571 & 1.344 & 0.004 & 0.869 \\
\hline 6 & 1112 & 0.37 & 1 & 0 & 0 & 1.632 & 0.572 & 1.675 & 0.003 & 0.769 \\
\hline 7 & 35 & 0.36 & 1 & 0 & 0 & 1.844 & 0.563 & 1.878 & 0.012 & 1.318 \\
\hline 8 & 181 & 0.34 & 1 & 0 & 0 & 2.028 & 0.574 & 2.313 & 0.001 & 1.193 \\
\hline
\end{tabular}

Table 7.4.10. Haddock in 7.bc-ek. Single-option output of the short-term forecast ( \(\mathrm{F}=\) mean \(\mathrm{F} 2013-\) 2015). Numbers in thousands, weights in tonnes.

2017
\begin{tabular}{lcllcllllll}
\hline Age & F & CatchNos & Yield & DF & DCatchNos & DYield & StockNos & Biomass & SSNos & SSB \\
\hline 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 257583 & 17602 & 0 & 0 \\
\hline 1 & 0.012 & 125 & 50 & 0.197 & 2118 & 340 & 16477 & 2625 & 0 & 0 \\
\hline 2 & 0.188 & 7077 & 4796 & 0.376 & 14179 & 4310 & 63842 & 20323 & 63842 & 20323 \\
\hline 3 & 0.427 & 1321 & 1169 & 0.148 & 459 & 230 & 5051 & 3068 & 5051 & 3068 \\
\hline 4 & 0.534 & 2711 & 2933 & 0.041 & 210 & 127 & 8052 & 7043 & 8052 & 7043 \\
\hline 5 & 0.571 & 87 & 117 & 0.004 & 1 & 1 & 238 & 284 & 238 & 284 \\
\hline 6 & 0.572 & 49 & 82 & 0.003 & 0 & 0 & 132 & 215 & 132 & 215 \\
\hline 7 & 0.563 & 75 & 140 & 0.012 & 2 & 2 & 204 & 377 & 204 & 377 \\
\hline 8 & 0.574 & 302 & 698 & 0.001 & 1 & 1 & 802 & 1627 & 802 & 1627 \\
\hline Total & 0.511 & 11747 & 9985 & 0.065 & 16970 & 5011 & 352381 & 53164 & 78321 & 32937 \\
\hline
\end{tabular}

2018
\begin{tabular}{lclllllllll}
\hline Age & F & CatchNos & Yield & DF & DCatchNos & DYield & StockNos & Biomass & SSNos & SSB \\
\hline 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 257583 & 17602 & 0 & 0 \\
\hline 1 & 0.012 & 728 & 289 & 0.197 & 12304 & 1977 & 95712 & 15250 & 0 & 0 \\
\hline 2 & 0.188 & 721 & 489 & 0.376 & 1445 & 439 & 6507 & 2071 & 6507 & 2071 \\
\hline 3 & 0.427 & 5218 & 4618 & 0.148 & 1811 & 908 & 19947 & 12114 & 19947 & 12114 \\
\hline 4 & 0.534 & 580 & 628 & 0.041 & 45 & 27 & 1724 & 1508 & 1724 & 1508 \\
\hline 5 & 0.571 & 1075 & 1445 & 0.004 & 7 & 7 & 2947 & 3508 & 2947 & 3508 \\
\hline 6 & 0.572 & 33 & 56 & 0.003 & 0 & 0 & 90 & 147 & 90 & 147 \\
\hline 7 & 0.563 & 19 & 35 & 0.012 & 0 & 1 & 51 & 94 & 51 & 94 \\
\hline 8 & 0.574 & 151 & 349 & 0.001 & 0 & 0 & 401 & 814 & 401 & 814 \\
\hline Total & 0.511 & 8525 & 7909 & 0.065 & 15612 & 3359 & 384962 & 53108 & 31667 & 20256 \\
\hline
\end{tabular}

2019
\begin{tabular}{lclllllllll}
\hline Age & F & CatchNos & Yield & DF & DCatchNos & DYield & StockNos & Biomass & SSNos & SSB \\
\hline 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 257583 & 17602 & 0 & 0 \\
\hline 1 & 0.012 & 728 & 289 & 0.197 & 12304 & 1977 & 95712 & 15250 & 0 & 0 \\
\hline 2 & 0.188 & 4190 & 2840 & 0.376 & 8395 & 2552 & 37798 & 12032 & 37798 & 12032 \\
\hline 3 & 0.427 & 532 & 471 & 0.148 & 185 & 93 & 2033 & 1235 & 2033 & 1235 \\
\hline 4 & 0.534 & 2292 & 2479 & 0.041 & 178 & 107 & 6807 & 5954 & 6807 & 5954 \\
\hline 5 & 0.571 & 230 & 309 & 0.004 & 2 & 1 & 631 & 751 & 631 & 751 \\
\hline 6 & 0.572 & 411 & 689 & 0.003 & 2 & 2 & 1112 & 1815 & 1112 & 1815 \\
\hline 7 & 0.563 & 13 & 24 & 0.012 & 0 & 0 & 35 & 64 & 35 & 64 \\
\hline 8 & 0.574 & 68 & 157 & 0.001 & 0 & 0 & 181 & 367 & 181 & 367 \\
\hline Total & 0.511 & 8464 & 7258 & 0.065 & 21066 & 4732 & 401892 & 55070 & 48597 & 22218 \\
\hline
\end{tabular}

Table 7.4.11. Haddock in 7.bc-ek. Management options table. Weights in tonnes.
\begin{tabular}{lllllllllll}
\hline Fmult & Catch 17 & Land17 & Dis17 & Basis & FCatch17 & FLand17 & FDis 17 & SSB18 & dSSB & dTac \\
\hline 0.0 & 0 & 0 & 0 & NA & 0.00 & NA & NA & 32908 & \(62 \%\) & \(-100 \%\) \\
\hline 0.1 & 1372 & 985 & 387 & NA & 0.06 & 0.05 & 0 & 31593 & \(56 \%\) & \(-87 \%\) \\
\hline 0.2 & 2682 & 1921 & 761 & NA & 0.12 & 0.10 & 0 & 30341 & \(50 \%\) & \(-75 \%\) \\
\hline 0.3 & 3933 & 2810 & 1123 & NA & 0.17 & 0.15 & 0 & 29148 & \(44 \%\) & \(-64 \%\) \\
\hline 0.4 & 5128 & 3654 & 1474 & NA & 0.23 & 0.20 & 0 & 28011 & \(38 \%\) & \(-53 \%\) \\
\hline 0.5 & 6269 & 4456 & 1813 & NA & 0.29 & 0.26 & 0 & 26928 & \(33 \%\) & \(-43 \%\) \\
\hline 0.6 & 7360 & 5218 & 2142 & NA & 0.35 & 0.31 & 0 & 25895 & \(28 \%\) & \(-33 \%\) \\
\hline 0.7 & 8403 & 5943 & 2460 & NA & 0.40 & 0.36 & 0 & 24910 & \(23 \%\) & \(-23 \%\) \\
\hline 0.8 & 9400 & 6631 & 2769 & NA & 0.46 & 0.41 & 0 & 23970 & \(18 \%\) & \(-14 \%\) \\
\hline 0.9 & 10354 & 7286 & 3068 & NA & 0.52 & 0.46 & 0 & 23074 & \(14 \%\) & \(-6 \%\) \\
\hline 1.0 & 11267 & 7908 & 3359 & NA & 0.58 & 0.51 & 0 & 22218 & \(10 \%\) & \(2 \%\) \\
\hline 1.1 & 12141 & 8500 & 3640 & NA & 0.63 & 0.56 & 0 & 21402 & \(6 \%\) & \(10 \%\) \\
\hline 1.2 & 12977 & 9063 & 3914 & NA & 0.69 & 0.61 & 0 & 20622 & \(2 \%\) & \(17 \%\) \\
\hline 1.3 & 13778 & 9599 & 4179 & NA & 0.75 & 0.66 & 0 & 19876 & \(-2 \%\) & \(24 \%\) \\
\hline 1.4 & 14546 & 10109 & 4437 & NA & 0.81 & 0.71 & 0 & 19165 & \(-5 \%\) & \(30 \%\) \\
\hline 1.5 & 15282 & 10594 & 4688 & NA & 0.86 & 0.77 & 0 & 18484 & \(-9 \%\) & \(37 \%\) \\
\hline 1.6 & 15987 & 11056 & 4931 & NA & 0.92 & 0.82 & 0 & 17834 & \(-12 \%\) & \(43 \%\) \\
\hline 1.7 & 16664 & 11496 & 5168 & NA & 0.98 & 0.87 & 0 & 17212 & \(-15 \%\) & \(48 \%\) \\
\hline 1.8 & 17313 & 11916 & 5398 & NA & 1.04 & 0.92 & 0 & 16616 & \(-18 \%\) & \(54 \%\) \\
\hline 1.9 & 17936 & 12315 & 5621 & NA & 1.09 & 0.97 & 0 & 16047 & \(-21 \%\) & \(59 \%\) \\
\hline 2.0 & 18534 & 12695 & 5839 & NA & 1.15 & 1.02 & 0 & 15502 & \(-23 \%\) & \(64 \%\) \\
\hline
\end{tabular}


Figure 7.4.1. International haddock landings by ICES rectangle (all gears; 2015; data from https://stecf.jrc.ec.europa.eu/data-dissemination).


Figure 7.4.2. a) Haddock in 7.bc-ek. Official Ices landings and TAC of haddock in 7.b-k.


Figure 7.4.2 b) Haddock in 7.bc-ek. Recent working group landings and quota by country.


Figure 7.4.3. Haddock in 7.bc-ek. Effort ('1000h) of the Irish Otter trawl fleets, the French demersal otter trawl fleet and for UK trawl fleet (effort in fishing days, rescaled to other fleets) and lpue \((\mathrm{kg} / \mathrm{h})\) for the Irish and French fleets.


Figure 7.4.4. Haddock in 7.bc-ek. Length distributions of discards and the retained catch of haddock in 7.b-k in 2015. F; IRL OTB is the Irish otter trawl fleet; UK trawl consists of all UK trawls except beam trawls. Irish data were raised to total numbers.


Figure 7.4.5a. Haddock in 7.bc-ek. Time-series of the cumulative scaled length distributions of total catch and the retained catch of haddock in \(7 . \mathrm{b}-\mathrm{k}\). The minimum landing size \((\mathbf{3 0} \mathrm{cm})\) is indicated by the dotted red line.


Figure 7.4.5b. Haddock in 7.bc-ek. Time-series of the discard ogives of haddock in 7.bc-ek. The minimum landing size \((30 \mathrm{~cm})\) is indicated by the dotted red line.


Figure7.4.6. Haddock in 7.bc-ek. Distribution of sampled and unsampled in catches by country and gear (left) and by age (right). Note that both France and Ireland allocated age data to most unsampled strata before uploading to InterCatch.


Figure7.4.7. Haddock in 7.bc-ek. Proportion of discards by age (left) and year (right).


Figure7.4.8. Haddock in 7.bc-ek. Raw stock weights-at-age (left) and the three-year running average stock weights (right).


Figure 7.4.9a. Haddock in 7.bc-ek. Log standardised indices of tuning fleets by year. The FRA-IRLIBTS survey is the combined French EVHOE Q4 WIBTS and Irish IGFS Q4 WIBTS survey. The IRL-GAD commercial tuning fleet is the Irish gadoid fleet in 7.gj.


Figure 7.4.9b. Haddock in 7.bc-ek. Log standardised indices of tuning fleets by cohort.


Figure 7.4.10. Haddock in 7.bc-ek. Scatterplot matrix of \(\log\) indices of cohorts at different ages.



Figure 7.4.11. Haddock in 7.bc-ek. Catch proportions-at-age residuals (observed-predicted).


Figure 7.4.12. Haddock in 7.bc-ek. Observed and predicted catches.


Figure 7.4.13. Haddock in 7.bc-ek. Index proportions-at-age residuals (observed - predicted).


Figure 7.4.14. Haddock in 7.bc-ek. Observed and predicted index cpue.


Figure 7.4.15. Haddock in 7.bc-ek. Retrospective analysis of the final ASAP run. Note that the survey index only started in 2003.


Fbar 3-5 / 2-5


Recruits age 0



Figure 7.4.16. Haddock in 7.bc-ek. Comparison of the latest ASAP assessment (red) with historic assessments (ASAP in black; XSA in grey). The Fbar range was 3-5 for the ASAP assessments and 2-5 for the XSAs. The natural mortality assumption for the ASAP is much higher for young ages than the assumed \(M\) for the historic XSAs, resulting in a higher estimate of recruitment. The inter-mediate-year assumptions for the short-term forecast are also shown (for SSB the assumption is for the intermediate year +1 ).


Figure 7.4.17. Haddock in 7.bc-ek. Stock summary plot. The thick black line represents the ASAP assessment standard deviations from ASAP are shaded grey. The forecast/ assumed values are given by open circles. The thick black line in the catch plot represents the predicted catch from ASAP. The dotted line in the SSB, Fbar and recruitment plots represents the XSA assessment with the same input data.

\section*{Landings yield 2018}

SSB 2019


Figure 7.4.18. Haddock in 7.bc-ek. Haddock 7bc-ek. Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes.

\section*{13 Megrim in 4.a and 6.a (Northern North Sea and West of Scotland)}

\section*{Type of assessment in 2017}

Update of 2016 assessment with new landings and survey data. The model used to carry out the assessment is the Schaefar Surplus production process model in R and Winbugs.

\section*{ICES advice applicable to 2016 and 2017}

ICES advises that when the MSY approach is applied, catches in each of the years 2016 and 2017 should be no more than 8567 tonnes. If discard rates do not change from the average of the last three years (2012-2014), this implies landings of no more than 7539 tonnes.

\subsection*{13.1 General}

\section*{Stock description and management units}

Megrim stock structure is uncertain and historically the Working Group has considered megrim populations in \(6 . a\) and \(6 . \mathrm{b}\) as separate stocks. The review group questioned the basis for this in 2004. Data collected during an EC study contract (98/096) on the 'Distribution and biology of anglerfish and megrim in the waters to the West of Scotland' showed significantly different growth parameters and significant population structure difference between megrim sampled in \(6 . a\) and \(6 . \mathrm{b}\) (Anon, 2001). Spawning fish occur in both areas but whether these populations are reproductively isolated is not clear. As noted by WGNSDS (2008), megrim in 4.a has historically not been considered by ICES and WGNSDS (2008). Since 2009 data from 4 and 2.a are included in this report, but international catch and weight-at-age data for 4 prior 2006 were not available to the working group or WKFLAT (2011). Given that there is little evidence to suggest that megrim in \(6 . a\) and \(4 . a\) are separate stocks, based on a visual inspection of the spatial distribution of commercial landings and fishery-independent survey data, WKFLAT (2011) concluded that megrim in \(6 . a\) and 4 .a should be considered as a single stock. This has subsequently been supported through recent genetic studies (MacDonald and Prieto, 2012) indicating that there is one stock consisting of Divisions 4.a (northern North Sea) and 6.a (West of Scotland) and another separate stock in Division 6.b (Rockall).


Management area (red boxes) and assessment area (blue hatched boxes).
\begin{tabular}{|c|c|c|c|c|}
\hline Species: & \begin{tabular}{l}
Megrims \\
Lepidorhombus spp.
\end{tabular} & & Zone: & Union waters of Ila and IV (LEZ/2AC4-C) \\
\hline Belgium & & 8 & & \\
\hline Denmark & & 7 & & \\
\hline Germany & & 7 & & \\
\hline France & & 43 & & \\
\hline The Netherlands & & 34 & & \\
\hline United Kingdom & & 2540 & & \\
\hline Union & & 2639 & & \\
\hline TAC & & 2639 & & Analytical TAC \\
\hline Species: & \begin{tabular}{l}
Megrims \\
Lepidorhombus spp.
\end{tabular} & & Zone: & \begin{tabular}{l}
Union and international waters of Vb ; Vl ; international waters of XII and XIV \\
(LEZ|56-14)
\end{tabular} \\
\hline Spain & & 592 & & \\
\hline France & & 2312 & & \\
\hline Ireland & & 675 & & \\
\hline United Kingdom & & 1635 & & \\
\hline Union & & 5214 & & \\
\hline TAC & & 5214 & & \begin{tabular}{l}
Analytical TAC \\
Article 7(2) of this Regulation applies
\end{tabular} \\
\hline
\end{tabular}

2016 TAC for 6, EC waters of 5.b and International waters of 12 and 14 (lower) and TAC for 4 and 2.a (upper).


2017 TAC for 6, EC waters of 5.b and International waters of 12 and 14 (lower) and TAC for 4 and 2.a (upper).

The uptake of the 2016 TAC for ICES Division 6 and EU waters of 5. b was \(28 \%\). Uptake varied considerably between countries. France, which holds much of the quota allocation, utilised only \(6 \%\) of its allocation.

In ICES Area 4 and 2.a, \(88 \%\) of the TAC was used in 2016. The majority of available TAC is allocated to the UK.

\section*{Fishery in 2016}

\section*{Landings}

Official landings data for each country together with Working Group best estimates of landings from 6.a are shown in Table 13.1 and for 4.a in Table 13.2. To estimate ICES landings we take InterCatch estimates and, if unavailable, we use official estimates. There are a few discrepancies with the estimates, for example there are no Danish data in InterCatch for 2016 and there are often minor differences between official data and InterCatch for most countries.

Catches of megrim comprise two species, Lepidorhombus whiffiagonis and L. boscii. Information available to the Working Group indicates that L. boscii, are a negligible proportion of the Scottish and Irish megrim catch (Kunzlik et al., 1995; Anon, 2001). Commercial catches are dominated by female megrim, typically \(90 \%\) of the total catch.

The official landings estimate is 3219 tonnes but this includes 6.b. The InterCatch catch estimate is 2791 tonnes, and the ICES catch estimate for 6 .a and 4 .a was 2959 t . The total ICES landings are way below the TAC.

\section*{Discards}

Raised discard data were made available by Scotland and France (6.a and 4.a) and Ireland (6.a). Scottish data give a discard rate of \(6.6 \%\), Irish discards were \(2.4 \%\) and French discards were \(7.8 \%\) by weight. Total discards were estimated to be 167 t or \(5.3 \%\) by weight for the stock area in 2016. We assume no discards for Denmark, Spain, Netherlands and Norway.

A linear decline in discards from 30 to \(15 \%\) over time between 1985 and 2012 is assumed in the stock assessment. From 2013 onwards discard data have taken from InterCatch, there is no deviation from the agreed stock annex.

\section*{Catch}

A break for of 2016 catch by main gear type in InterCatch is given below:
\begin{tabular}{ccccccc}
\hline CATCH & \multicolumn{7}{c}{ LANDINGS } & & DISCARDS \\
\hline \multirow{2}{*}{2959 tonnes } & Nephrops trawls & Other Gears & Fin fish trawls & Nephrops trawls & Other Gears & Fin fish trawls \\
\cline { 2 - 7 } & \(0.65 \%\) & \(0.43 \%\) & \(98.92 \%\) & \(33.43 \%\) & \(0.02 \%\) & \(66.56 \%\) \\
\cline { 2 - 7 } & \multicolumn{8}{c}{2792 tonnes } & & 167 tonnes & \\
\hline
\end{tabular}

\section*{Surveys}

Indices from six fishery-independent surveys are used in the assessment. The surveys are outlined in Table 13.1 below and details can be viewed in the stock annex.

Table 13.1. Summary indices used for surplus production model.
\begin{tabular}{|c|c|c|c|c|c|}
\hline NUMBER & SURVEY & NATIONALITY & AREA & TIMESERIES & DEPTH RANGE(M) \\
\hline \[
1
\] & Sco-IBTS-Q3 & Scotland & 4.a & 1987-2015 & <400 m \\
\hline 2 & Sco-IBTS-Q1 & Scotland & 4.a & 1987-2015 & \(<400\) m \\
\hline \[
3
\] & \begin{tabular}{l}
ScoGFS- \\
WIBTS-Q1
\end{tabular} & Scotland & 6.a & 1986-2010 & 40-400 \\
\hline 4 & \begin{tabular}{l}
ScoGFS- \\
WIBTS-Q4
\end{tabular} & Scotland & 6.a & 1986-2010 & 50-300 \\
\hline 5 & SAMISS-Q2 & Scotland & 6.a/4.a & 2005-2015 & 50-1050 \\
\hline 6 & IAMISS-Q2 & Ireland & 6.a & 2005-2015 & 50-850 \\
\hline
\end{tabular}

The SAMISS and IAMISS surveys were combined for assessment purposes.
Figures 13.1 to 13.5 present the megrim biomass maps for the AMISS and IBTS surveys. The AMISS bubble plots show and increasing abundance over time throughout the area over the time-series. The abundance in 6.a was particularly high in 2013 and a similar high abundance occurred in \(4 . a\) in 2014 (Figure 13.1). Figures 13.2. (Sco-IBTS-Q3 4.a) and 13.3 (Sco-IBTS-Q1 4.a) show the large increase in biomass over time in the northern North Sea. Biomass in the southern North Sea remains quite low.
Figures 13.4 (Sco-GFS-Q1 4.a) and 13.5 (Sco-GFS-Q4 4.a) also show an increase in biomass over the time-series. However, the survey design and ground gear changed after 2010 so this should be taken into account when interpreting the plots.

\subsection*{13.2 Estimation of survey cpue indices}

\section*{Cpue trends of survey data}

The data from the IBTS surveys exhibit a relatively large proportion of zeros, therefore the delta method of Stefánsson (1996) was used to generate indices. This method (delta-gamma model) comprises fitting two generalized linear models. The first model (binomial GLM) is used to obtain the proportion of non-zero tows and is fit to the data coded as 1 or 0 if the tow contained a positive or zero cpue, respectively. The second model is fit to the positive only cpue data using a gamma or lognormal GLM.

At WGCSE 2017 it was discovered that previous delta-gamma cpue estimations had included the full time-series for the 6 .a surveys when fitting the model to those surveys. This generates a slightly different cpue index Figure 13.6. The truncated series was used in the 2017 assessment since fitting to the full series would be inappropriate.

The biomass trend for the AMISS survey is shown in Figure 13.7. There is a weakly increasing trend over time with year effects evident in 6.a in 2013 and 4.a in 2014. The biomass trends for the four IBTS surveys are shown in Figure 13.8.

\section*{Commercial cpue}

Commercial cpue data have not been updated compared to last year and are not used in the assessment.

\subsection*{13.3 Stock assessment}

The input data for the stock assessment are given in Table 13.4 This comprises of a time-series from all six surveys and ICES catch estimates for this stock.

\section*{2017 Final run}

The Pearson residuals diagnostic plots for the final assessment are shown in Figure 13.9. The residuals for the two 6 .a surveys and the AMISS survey are fairly randomly dispersed around zero. A trend in the residuals is evident for the two 4.a surveys is evident with increasing positive residuals in the last decade.

The prior and posterior distributions for the parameters in the final model fit are shown in Figure 13.10. The priors are given in Table 13.5. The posterior distributions are similar to previous year's assessments. The posterior parameter estimates for the final assessment model are given in Table 13.6. These are similar to recent assessments.

Figure 13.11 shows the final model fits to the cpue series and the estimates of total biomass and harvest ratio. The fits to the \(6 . a\) and AMISS surveys are reasonable. The fits to the 4 .a surveys show that the model is not fitting well to those surveys in recent years. This issues needs to be examined further in the next benchmark.

Figure 13.12 compares the assessment results of the model fitted with to a cpue generated using the full time-series of the 6 .a surveys and a model with the truncated cpue series. This indicates that the impact of fitting the model to the full time-series of delta-gamma cpues for 6.a instead of the truncated time-series was minimal, mainly effecting the early part of the time-series.

The time-series of \(\mathrm{B} / \mathrm{B}_{\text {MSY }}\) and \(\mathrm{F} / \mathrm{F}_{\text {MSY }}\) landings and discards used in the final assessment are given in Table 13.7.

\section*{Comparison with previous assessments}

Figure 13.13 compares the final assessment with those conducted by WGCSE at previous meetings. .The 2017 assessment revised down recent biomass estimates and up recent fishing mortality estimates. There is also some deviations in the historic estimates of F and Biomass around 2000. This is linked to the use of the truncated 6.a surveys to derive the delta-gamma cpues to input to the assessment model.

\section*{State of the stock}

The state of the stock has not changed since last year. Fishing mortality has been below FmSY for almost the full time-series and has an overall declining trend since the late 1990s. Biomass has consistently been above MSY Btrigger and shows and increasing trend since 2005. The stock in 2016 is estimated 1.7 times \(B_{\text {MSY. The fishing mortality }}\) in 2016 is estimated to \(35 \%\) of FMsy.

\subsection*{13.4 Short-term projections}

Short-term projections have been updated according to the method set out in the stock annex. The basis for the catch options is given in Table 13.8.

The management option table is given in Table 13.9. Fishing at \(\mathrm{F}_{\text {msy }}\) in 2018 is projected to result in total catches of 7800 t (landing of 7217 t and discards of 583 t ) and an SSB of 1.4 times \(B_{m s y}\) in 2019.

\subsection*{13.5 Biological reference points}

\section*{Precautionary approach reference points}

FMSY, Bmsy and the yield at MSY are all directly estimated in the model. It should be noted that these will vary when new survey and catch information is added. \(\mathrm{B}_{\mathrm{pa}}\) and Blim are defined as \(50 \%\) Bmsy and \(30 \%\) Bmsy respectively. Flim is defined as 1.7 Fmsy and is the \(F\) that drives the stock to \(B_{\lim }\) assuming \(B_{\lim }=30 \%\) Bмsу. The derivation is given below:
```

P=rB(1-B/K)
The surplus productivity associated with Blim is:
Plim=rBlim(1-Blim/K)
The corresponding F is:
Flim=rBlim}(1-Blim/K)/Blim =r(1-Blim /K)
Blim}=0.3\textrm{Bmsy}=0.3\textrm{K}/
Flim}=r(1-0.3K/(2K))=r(1-0.3/2)=0.85
Fmsy=r/2, let x denote the proportionality between Fmsy and Flim
xFmsy=Flim
x(r/2)=0.85r
x=2*0.85
x=1.7

```

\section*{MSY reference points}

In 2015 ICES provided precautionary Fmsy ranges that are derived to deliver no more than a \(5 \%\) reduction in long-term yield compared with MSY. Details of this analysis are given in WKMSYREF3 (ICES, 2015) and the derivations are given below.
\begin{tabular}{|c|c|c|c|c|}
\hline & MSY Flower \({ }^{\text {b }}\) & \(\mathrm{F}_{\text {MSY }}{ }^{\text {b) }}\) & MSY Fupper \(^{\text {b }}\) with AR & MSY Btrigger \\
\hline Megrim in Divisions 4.a and 6.a & \(0.39 \times \mathrm{r}^{\text {d) }}\) & \(\mathrm{r} / 2 \mathrm{~d})\) & \(\mathrm{r} / 2 \mathrm{~d})\) & \(0.25 \mathrm{~K}^{\text {d) }}\) \\
\hline
\end{tabular}

Because the stock has been fished below Fmsy for more than ten years the WG considered it appropriate to set the MSY \(\mathrm{B}_{\text {trigger }}=\mathrm{B}_{\text {mSY }}\) according to the ICES guidelines (ICES, 2017).

\section*{Uncertainties and bias in assessment and forecast}

The model estimates of SSB and F have large uncertainty, despite this there is a low probability that SSB is below Bmsy and a high probability that F is below Fmsy. Estimated stock trends are fairly consistent with previous assessments. The positive catchability residuals for the North Sea surveys indicate that the assessment model is having problems reconciling the increases in cpue seen in those surveys with other data.

The quality of the available landings data (unknown area misreporting) has been a concern in the past. Landings data after 2006 is thought to be more accurate. The dis-
card information in the past has also been a concern. The approach used to extrapolate the discards for the historic period is an assumption, although sensitivity explorations, have shown that the assessment is not overly sensitive to this approach.

\section*{Recommendation for next benchmark}

This stock was subject to an inter-benchmark in 2012 (IBP-MEG, 2012). Due to incomplete age data, particularly for \(4 . a\), a Bayesian state-space surplus production model was chosen as the final assessment model. Subsequent update assessments have highlighted a problem fitting to the 4 .a surveys which needs to be examined in a future benchmark.

WGCSE recommends the following explorations:
- The AMISS survey should be merged into one continuous index. The length data for the index should also be examined
- The Sco 6.a Q1/Q4 WIBTS 2011+: the Sco 6.a Q1/Q4 WIBTS survey timeseries should also be examined for re-introduced into the assessment as a new time-series. There may also be scope to integrate the IGFS.
- Available length and age-structured data should be compiled for this stock.
- Length or age-structured assessment models could be explored.

Once sufficient progress has been made on the points above WGCSE will suggest a benchmark schedule.

\section*{Management considerations}

Megrim is a bycatch species in the mixed demersal trawl in Divisions 6.a and 4.a. Management measures for other species have constrained the fishery and reduced effort and fishing mortality on megrim. The general increase in mesh size in 6 and 4 since 2010 has also benefited the stock.

The TAC in 6 has not been fully utilised. However, the uptake rate is country specific, with some Member States reporting landings above their quota in the North Sea. Partial quota uptake by individual Member States may be linked to reduction in effort rather than reflective of a reduction in biomass. The TAC and assessment area are incompatible. There are two separate TAC areas covering ICES Areas 6 and 4 whereas the assessment covers ICES Divisions 6.a and 4.a combined. Due consideration of the inconsistency between management and assessment area is required when setting fishing opportunities for this stock and the separate 6.b Rockall stock. ICES (2013) have advised the EC that the TAC areas should be consistent with the assessment area and that ICES has no basis on how to split the catch advice so that it is consistent with the TAC areas.

\subsection*{13.6 References}

ICES. 2015. Report of the Joint ICES-MYFISH Workshop to consider the basis for Fmsy ranges for all stocks (WKMSYREF3), 17-21 November 2014, Charlottenlund, Denmark. ICES CM 2014/ACOM:64. 156 pp.

ICES. 2012. Report of the Inter-benchmark Protocol for Megrim in Subarea IV and Division IVa (IBPMeg), 2-6 April 2012. By correspondence. ICES CM 2012/ACOM:67. 23 pp.

ICES. 2011. Report of the Benchmark Workshop on Flatfish (WKFLAT), 1-8 February 2011, Copenhagen, Denmark. ICES CM 2011/ACOM:39. 257 pp.

ICES. 2011. Report of the Working Group for Celtic Seas Ecoregion (WGCSE), 11-19 May 2011, Copenhagen, Denmark. ICES CM 2011/ACOM:12. 1573 pp.
Kunzlik, P. A., A. W. Newton and A. W. Jermyn. 1995. Exploitation of monks (Lophius spp.) and megrims (Lepidorhombus spp.) by Scottish fishermen in ICES Division VIa (west of Scotland). Final report EU FAR contract MA-2-520.

Laurenson, C. and MacDonald, P. 2008. Collection of fisheries and biological data on megrim in ICES Subarea IVa. Scottish Industry Science Partnership Report No 05/08.
Meyer and Millar. 1999. BUGS in Bayesian stock assessments. Canadian Journal of Fisheries and Aquatic Sciences; Jun 1999; 56, 6; Canadian Periodicals. pp. 1078.

Reid, D.G., Allen, V.J., Bova, D.J., Jones, E.G., Kynoch, R.J., Peach, K.J., Fernandes, P.G. and Turrell, W.R. 2007. Angler fish catchability for swept area abundance estimates in a new survey trawl. ICES J. Mar. Sci. 64.

Stefánsson, G. 1996. Analysis of groundfish survey abundance data: combining the GLM and delta approaches. ICES Journal of Marine Science, 53, 577-588.

Table 13.2. Megrim in Subarea 6.a. Nominal catch ( \(\mathbf{t}\) ) of Megrim West of Scotland, as officially reported to ICES and WG best estimates of landings. The shaded cells show updates in official data compared with last year.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\frac{\grave{\pi}}{\stackrel{1}{\sim}}
\] & \[
\begin{aligned}
& \frac{E}{D} \\
& \frac{0}{\omega 0} \\
& \infty \\
& \hline
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { D} \\
& \frac{त}{0} \\
& \underline{0}
\end{aligned}
\] &  & \[
\begin{aligned}
& \stackrel{\simeq}{\pi} \\
& \text { Ñ }
\end{aligned}
\] &  & 0
0
0
0
0
0
1
\(\vdots\)
ப & \(\stackrel{\checkmark}{\square}\) &  &  \\
\hline 1990 & 0 & 398 & 317 & 0 & 91 & 25 & 1093 & - & 1924 & 2210 \\
\hline 1991 & 1 & 455 & 260 & 0 & 48 & 167 & 1223 & - & 2154 & 2432 \\
\hline 1992 & 0 & 504 & 317 & 0 & 25 & 392 & 887 & - & 2125 & 2549 \\
\hline 1993 & 0 & 517 & 329 & 0 & 7 & 298 & 896 & - & 2047 & 2721 \\
\hline 1994 & 1 & 408 & 304 & 0 & 1 & 327 & 866 & - & 1907 & 2693 \\
\hline 1995 & 0 & 618 & 535 & 0 & 24 & 322 & 952 & - & 2451 & 3498 \\
\hline 1996 & 0 & 462 & 460 & 0 & 22 & 156 & 944 & - & 2044 & 4054 \\
\hline 1997 & 0 & 192 & 438 & 1 & 87 & 123 & 954 & - & 1795 & 3272 \\
\hline 1998 & 0 & 172 & 433 & 0 & 111 & 65 & 841 & - & 1622 & 2705 \\
\hline 1999 & 0 & 0 & 438 & 0 & 83 & 42 & 831 & - & 1394 & 2648 \\
\hline 2000 & 0 & 135 & 417 & 0 & 98 & 20 & 754 & - & 1424 & 2247 \\
\hline 2001 & 0 & 252 & 509 & 0 & 92 & 7 & 770 & - & 1630 & 2473 \\
\hline 2002 & 0 & 79 & 280 & 0 & 89 & 14 & 643 & - & 1105 & 1828 \\
\hline 2003 & 0 & 92 & 344 & 0 & 98 & 13 & 558 & - & 1105 & 1642 \\
\hline 2004 & 0 & 50 & 278 & 0 & 45 & 17 & 469 & - & 859 & 1328 \\
\hline 2005 & 0 & 48 & 156 & 0 & 69 & 10 & 269 & - & 552 & 561 \\
\hline 2006 & 0 & 53 & 221 & 0 & 52 & & & 346 & 672 & 875 \\
\hline 2007 & 0 & 104 & 191 & 0 & 5 & & & 667 & 967 & 1301 \\
\hline 2008 & 0 & 92 & 172 & 0 & 149 & & & 874 & 1287 & 1545 \\
\hline 2009 & 0 & 174 & 188 & 0 & 112 & & & 953 & 1427 & 1387 \\
\hline 2010 & 0 & 271 & 318 & 0 & 288 & & & 822 & 1699 & 1698 \\
\hline 2011 & 0 & 153 & 227 & 0 & 217 & & & 715 & 1312 & 1297 \\
\hline 2012 & 0 & 140 & 214 & 0 & 142 & & & 590 & 1086 & 1132 \\
\hline 2013 & 0 & 105 & 203 & 0 & 213 & & & 470 & 991 & 949 \\
\hline 2014 & 0 & 126 & 246 & 0 & 57 & & & 465 & 894 & 948 \\
\hline 2015* & 0 & 140 & 311 & 0 & 140 & & & 520 & 1110 & 1110 \\
\hline 2016* & 0 & 189 & 408 & 0 & 146 & & & 694 & 1437 & 1437 \\
\hline
\end{tabular}
* Preliminary. ** Historical landings data have been adjusted for area misreporting, mainly from Division 4.a to Division 6.a.

Table 13．3．Megrim in Subarea 4 and 2．a．Nominal catch（ \(\mathbf{t}\) ）of Megrim North Sea，as officially reported to ICES and WG best estimates of landings．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\] & \[
\begin{aligned}
& \frac{1}{3} \\
& \frac{3}{a} \\
& \text { of }
\end{aligned}
\] & 는
©
E
©
0 & \[
\begin{gathered}
\stackrel{U}{U} \\
\stackrel{C}{T D} \\
\frac{1}{4}
\end{gathered}
\] & \[
\begin{aligned}
& \lambda \\
& 0 \\
& 0 \\
& \frac{\pi}{0} \\
& 0
\end{aligned}
\] & －dəy＇pə」＇イиemıəפ & \[
\begin{aligned}
& \text { 믈 } \\
& \stackrel{\Gamma}{0} \\
& \underline{0}
\end{aligned}
\] &  & \[
\begin{aligned}
& 7 \\
& \frac{\pi}{3} \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& d \\
& \text { 苟 }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  &  & \[
\begin{aligned}
& 1 \\
& 3 \\
& =1 \\
& -1 \\
& 0 \\
& 0 \\
& 0 \\
& 4
\end{aligned}
\] & 0
\(\frac{0}{1}\)
0
0
1
1
\(\vdots\) & \(\stackrel{\checkmark}{\square}\) &  &  \\
\hline 1990 & 4 & 2 & － & － & 3 & － & 24 & － & － & － & 17 & － & － & 1126 & － & 1176 & 837 \\
\hline 1991 & 3 & 1 & － & 6 & － & － & 28 & － & － & － & 9 & － & － & 1169 & － & 1216 & 878 \\
\hline 1992 & 2 & 4 & 36 & 3 & － & － & 27 & － & － & － & 47 & － & － & 1372 & － & 1491 & 1025 \\
\hline 1993 & 7 & 6 & 25 & 4 & － & － & 30 & － & － & － & 8 & － & － & 1736 & － & 1816 & 1081 \\
\hline 1994 & 2 & 1 & 27 & 1 & － & － & 28 & － & － & － & 19 & － & － & 2000 & － & 2078 & 1207 \\
\hline 1995 & 7 & 2 & 24 & 2 & － & － & 26 & － & － & － & 44 & － & － & 2193 & － & 2298 & 1172 \\
\hline 1996 & 5 & 7 & 14 & 1 & － & － & 9 & － & － & － & 4 & － & － & 3221 & － & 3261 & 1199 \\
\hline 1997 & 3 & 5 & 16 & 2 & － & － & 20 & － & － & － & 3 & － & － & 3091 & － & 3140 & 1584 \\
\hline 1998 & 5 & 18 & 14 & 4 & － & － & 30 & － & － & － & 5 & － & － & 2628 & － & 2704 & 1548 \\
\hline 1999 & 4 & 21 & ． & 1 & － & － & 26 & － & － & － & 4 & － & － & 2121 & － & 2177 & 1111 \\
\hline 2000 & \[
\begin{aligned}
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & 29 & 7 & 3 & － & － & 20 & － & － & － & 2 & － & － & 2044 & － & 2115 & 1247 \\
\hline 2001 & 2 & 52 & 5 & 1 & － & － & 11 & － & － & － & 2 & － & － & 1854 & － & 1927 & 1098 \\
\hline 2002 & 5 & 8 & 6 & － & － & － & 9 & － & － & － & 3 & － & － & 1675 & － & 1706 & 975 \\
\hline 2003 & 3 & 11 & 11 & 2 & － & 1 & 7 & \[
\begin{array}{r}
<0 \\
5
\end{array}
\] & － & － & 1 & － & － & 1235 & － & 1271 & 727 \\
\hline 2004 & － & 7 & 9 & 2 & － & － & 11 & \[
\begin{array}{r}
<0 \\
5
\end{array}
\] & － & － & 1 & － & － & 1130 & － & 1160 & 739 \\
\hline 2005 & － & 1 & 3 & 4 & － & － & 19 & \[
\begin{array}{r}
<0 \\
5
\end{array}
\] & － & － & 1 & － & － & 958 & － & 986 & n／a \\
\hline 2006 & 0 & 3 & 4 & 1 & & 0 & 6 & 1 & 0 & 0 & & & & & 1342 & 1357 & 1179 \\
\hline 2007 & 0 & 11 & 18 & 4 & & 0 & 1 & 1 & 0 & 0 & & & & & 1437 & 1472 & 1047 \\
\hline 2008 & 0 & 31 & 20 & 1 & & 0 & 1 & 4 & 0 & 0 & & & & & 1524 & 1581 & 1349 \\
\hline 2009 & 0 & 54 & 9 & 0 & & 0 & 0 & 6 & 0 & 0 & & & & & 1474 & 1543 & 1484 \\
\hline 2010 & 0 & 22 & 1 & 0 & & 0 & 1 & 2 & 0 & 0 & & & & & 1440 & 1466 & 1499 \\
\hline 2011 & 0 & 23 & 10 & 3 & & 0 & 0 & 1 & 0 & 0 & & & & & 1394 & 1431 & 1421 \\
\hline 2012 & 0 & 35 & 5 & 3 & & 0 & 0 & 1 & 0 & 0 & & & & & 1397 & 1441 & 1458 \\
\hline 2013 & 0 & 48 & 7 & 3 & & 0 & 0 & 17 & 0 & 0 & & & & & 1690 & 1765 & 1788 \\
\hline 2014 & 0 & 35 & 7 & 1 & & 0 & 0 & 12 & 0 & 0 & & & & & 1475 & 1530 & 1551 \\
\hline 2015＊ & 0 & 26 & \[
\begin{aligned}
& 14 \\
& 37
\end{aligned}
\] & 0 & & 0 & 0 & 8 & 0 & 0 & & & & & 1175 & 1217 & 1230 \\
\hline 2016＊ & 0 & 46 & 13 & 2 & & 0 & 2 & 21 & 0 & 0 & & & & & 1278 & 1362 & 1361 \\
\hline
\end{tabular}
＊Preliminary．
＊＊Historical landings data have been adjusted for area misreporting，mainly from Division 4．a to Divi－ sion 6．a．

Table 13.4 Time-series of megrim survey indices in ICES Area 6.a and Division 4 as used in the surplus production model.
\begin{tabular}{llllllll}
\hline year & sco.6.a.ql & sco.6.a.q4 & sco.4.a.ql & sco.4.a.q3 & monk.6.a & monk.4.a \\
\hline 1985 & 2.587277 & NA & NA & NA & NA & NA \\
\hline 1986 & 1.687998 & NA & 1.243696 & NA & NA & NA \\
\hline 1987 & 1.370928 & NA & 1.373089 & NA & NA & NA \\
\hline 1988 & 2.008519 & NA & 1.664841 & NA & NA & NA \\
\hline 1989 & 1.161744 & NA & 1.351147 & NA & NA & NA \\
\hline 1990 & 1.072564 & 1.589121 & 0.722978 & NA & NA & NA \\
\hline 1991 & 0.79324 & 1.273655 & 0.489221 & 0.331577 & NA & NA \\
\hline 1992 & 0.958432 & 1.885181 & 0.664802 & 0.318708 & NA & NA \\
\hline 1993 & 1.013121 & 2.058297 & 1.114901 & 0.306721 & NA & NA \\
\hline 1994 & 1.589026 & 3.246435 & 0.24658 & 0.385281 & NA & NA \\
\hline 1995 & 1.555855 & 1.862839 & 0 & 0.386659 & NA & NA \\
\hline 1996 & 1.939844 & 1.94602 & 0.50344 & 0.617603 & NA & NA \\
\hline 1997 & 1.100464 & 1.081142 & 0.448168 & 0.431751 & NA & NA \\
\hline 1998 & 1.094432 & 1.892789 & 0.793617 & 0.24316 & NA & NA \\
\hline 2016 & NA & NA & NA & 1.477813 & 1.288101 & 3027.648 & 8207.787 \\
\hline 2099 & 1.322173 & 1.360191 & 1.006661 & 0.243381 & NA & NA \\
\hline 2013 & NA & NA & NA & 1.18569 & 0.851155 & 0.266202 & NA
\end{tabular}

Table 13.5. Lepidorhombus whiffiagonis in ICES Areas 6.a and 4.a. Prior distributions on parameters.
\begin{tabular}{llll}
\hline \multicolumn{1}{c}{ Parameter } & Symbol & \multicolumn{1}{c}{ Prior distribution } & \multicolumn{1}{c}{ Notes } \\
\hline \(\begin{array}{l}\text { Intrinsic rate } \\
\text { of population } \\
\text { growth }\end{array}\) & \(r\) & Uniform \((0.001,2.0)\) & \\
\hline \(\begin{array}{l}\text { Carrying } \\
\text { capacity }\end{array}\) & \(K\) & Uniform \(\left(\ln (\max (C)), \ln \left(10 \times \sum_{t=1985}^{2010} C_{t}\right)\right.\) & \(\begin{array}{l}\text { From the } \\
\text { maximum catch } \\
\text { to ten times the } \\
\text { cumulative } \\
\text { catch across all }\end{array}\) \\
years assuming \\
uniform \\
distribution on \\
the logarithmic
\end{tabular}\(]\)\begin{tabular}{l} 
scale
\end{tabular}

Table 13.6. Parameter estimates for final assessment outputs.
\begin{tabular}{lccccc}
\hline Parameter & Estimates 2013 & \begin{tabular}{c} 
Estimates \\
2014
\end{tabular} & \begin{tabular}{c} 
Estimates \\
2015
\end{tabular} & \begin{tabular}{c} 
Estimates \\
2016
\end{tabular} & \begin{tabular}{c} 
Estimates \\
2017
\end{tabular} \\
\hline r.hat & 0.67 & 0.55 & 0.51 & 0.51 & 0.507507 \\
\hline K.hat & 39346 & 43134 & 47216 & 46840 & 42681 \\
\hline MSY & 6037 & 5660 & 5612 & 5362 & 5072 \\
\hline FMSY & 0.33 & 0.28 & 0.26 & 0.26 & 0.253753 \\
\hline BMSY & 19673 & 21567 & 23608 & 23420 & 21340 \\
\hline B & 3624 & 4109 & 42416 & 42356 & 37610 \\
\hline F & 0.09 & 0.08 & 0.07 & 0.07 & 0.07291 \\
\hline Blim & 5902 & 6470 & 7082 & 7026 & 6402 \\
\hline Btrig & 9837 & 10783 & 11804 & 11710 & 10670 \\
\hline
\end{tabular}

Table 13.7. Time-series of \(B / B_{\text {msy }}\) and \(F / F_{\text {msy }}\) estimates and landings and discards in tonnes for the final assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & B/Bmsy & B/Bmsy High & \[
\begin{gathered}
\text { B/Bmsy } \\
\text { Low }
\end{gathered}
\] & Landings & Discards* & F/Fmsy & F/Fmsy High & F/Fmsy Low \\
\hline 1985 & 2.444963 & 3.701667 & 1.122219 & 4499 & 1928 & 0.645 & 1.242 & 0.361 \\
\hline 1986 & 1.688691 & 2.346281 & 1.020236 & 2858 & 1193 & 0.514 & 0.862 & 0.303 \\
\hline 1987 & 1.581257 & 2.125824 & 0.987249 & 4614 & 1874 & 0.905 & 1.491 & 0.534 \\
\hline 1988 & 1.496522 & 2.167995 & 0.944323 & 5212 & 2061 & 1.1 & 1.763 & 0.573 \\
\hline 1989 & 1.208168 & 1.719227 & 0.763424 & 3451 & 1327 & 0.837 & 1.323 & 0.466 \\
\hline 1990 & 1.107711 & 1.540362 & 0.70292 & 3047 & 1140 & 0.785 & 1.262 & 0.424 \\
\hline 1991 & 1.0399 & 1.414802 & 0.658489 & 3310 & 1204 & 0.905 & 1.468 & 0.507 \\
\hline 1992 & 1.103135 & 1.515213 & 0.711523 & 3574 & 1263 & 0.923 & 1.486 & 0.512 \\
\hline 1993 & 1.19408 & 1.654681 & 0.752711 & 3802 & 1305 & 0.91 & 1.463 & 0.495 \\
\hline 1994 & 1.309798 & 1.943307 & 0.804679 & 3900 & 1300 & 0.859 & 1.366 & 0.44 \\
\hline 1995 & 1.338153 & 1.924982 & 0.83885 & 4670 & 1511 & 1.019 & 1.621 & 0.53 \\
\hline 1996 & 1.301273 & 1.934497 & 0.783938 & 5253 & 1649 & 1.199 & 1.896 & 0.577 \\
\hline 1997 & 1.076817 & 1.518638 & 0.683062 & 4856 & 1478 & 1.295 & 2.043 & 0.67 \\
\hline 1998 & 1.033464 & 1.480897 & 0.630663 & 4253 & 1254 & 1.159 & 1.847 & 0.583 \\
\hline 1999 & 1.007944 & 1.52943 & 0.596785 & 3759 & 1074 & 1.033 & 1.662 & 0.508 \\
\hline 2000 & 0.942671 & 1.383785 & 0.578919 & 3494 & 966 & 1.004 & 1.665 & 0.508 \\
\hline 2001 & 0.87006 & 1.241912 & 0.524869 & 3571 & 956 & 1.103 & 1.847 & 0.567 \\
\hline 2002 & 0.890155 & 1.280771 & 0.518201 & 2803 & 725 & 0.82 & 1.388 & 0.43 \\
\hline 2003 & 0.926241 & 1.403114 & 0.556647 & 2369 & 592 & 0.654 & 1.094 & 0.312 \\
\hline 2004 & 0.928553 & 1.319734 & 0.54233 & 2067 & 499 & 0.555 & 0.927 & 0.283 \\
\hline 2005 & 0.911451 & 1.213525 & 0.581301 & 1527 & 356 & 0.401 & 0.65 & 0.229 \\
\hline 2006 & 1.035287 & 1.36525 & 0.682261 & 2054 & 461 & 0.482 & 0.786 & 0.272 \\
\hline 2007 & 1.178993 & 1.577439 & 0.771881 & 2348 & 508 & 0.489 & 0.78 & 0.275 \\
\hline 2008 & 1.292592 & 1.731072 & 0.83734 & 2894 & 602 & 0.557 & 0.899 & 0.318 \\
\hline 2009 & 1.426634 & 1.937708 & 0.922441 & 2871 & 574 & 0.503 & 0.803 & 0.284 \\
\hline 2010 & 1.434479 & 1.942705 & 0.897922 & 3197 & 614 & 0.555 & 0.911 & 0.323 \\
\hline 2011 & 1.470864 & 1.96107 & 0.989243 & 3257 & 600 & 0.548 & 0.857 & 0.325 \\
\hline 2012 & 1.590851 & 2.158184 & 1.030687 & 2545 & 449 & 0.419 & 0.656 & 0.254 \\
\hline 2013 & 1.818045 & 2.610614 & 1.158734 & 2737 & 327 & 0.322 & 0.494 & 0.183 \\
\hline 2014 & 1.776714 & 2.474693 & 1.179362 & 2500 & 309 & 0.296 & 0.459 & 0.171 \\
\hline 2015 & 1.628622 & 2.145848 & 1.088416 & 2471 & 152 & 0.313 & 0.482 & 0.191 \\
\hline 2016 & 1.667665 & 2.249389 & 1.144661 & 2792 & 167 & 0.348 & 0.54 & 0.206 \\
\hline
\end{tabular}

\footnotetext{
* The shaded discards are extrapolated form \(\mathbf{3 0 \%}\) of catch in 1985 to \(15 \%\) of catch in 2012. Estimates from 2013 onwards are derived from data submitted to InterCatch.
}

Table 13.8. Basis for the catch options.
\begin{tabular}{lcll}
\hline \multicolumn{1}{c}{ Variable } & Value & Source & \multicolumn{1}{c}{ Notes } \\
\hline F (2017)/FMSY & 0.3305456 & ICES (2017a) & F (average 2014-2016) \\
\hline B (UPDATE)/BMSY & 1.663618 & ICES (2017a) & Short-term forecast \\
\hline Catch (2017) & 2772 & ICES (2017a) & Short-term forecast \\
\hline Landings (2017) & 2565 & ICES (2017a) & \begin{tabular}{l} 
Assuming discard rate of 7.480\%in total \\
weight of catch (average 2014-2016)
\end{tabular} \\
\hline Discards (2017) & 207 & ICES (2017a) & \begin{tabular}{l} 
Assuming discard rate of 7.480\%in total \\
weight of catch (average 2014-2016)
\end{tabular} \\
\hline
\end{tabular}

Table 13.9. The management option table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Basis & Total catch (2018) & \begin{tabular}{l}
Wanted \\
catch*
(2018)
\end{tabular} & Unwanted catch* (2018) & Fishing mortality (F2018/FMSY) & \[
\begin{aligned}
& \text { Stock size } \\
& \text { (B2019/BMSY) }
\end{aligned}
\] & Probability** of Biomass2019 falling below MSY Btrigger & Probability** of Biomass2019 falling below Blim & \[
\begin{gathered}
\text { \% SSB } \\
\text { change ** }
\end{gathered}
\] & \begin{tabular}{l}
\% TAC \\
change
* *
\end{tabular} \\
\hline \multicolumn{10}{|l|}{ICES advice basis} \\
\hline \begin{tabular}{l}
MSY \\
approach: \\
FMSY
\end{tabular} & 7800 & 7217 & 583 & 1.00 & 1.40 & 0.07 & 0 & -16\% & -6\% \\
\hline \multicolumn{10}{|l|}{Other options} \\
\hline \(\mathrm{F}=0\) & 0 & 0 & 0 & 0.00 & 0.02 & 0.00 & 1.79 & 108\% & 0\% \\
\hline \[
\begin{aligned}
& \operatorname{SSB}(2019)= \\
& \text { Blim }
\end{aligned}
\] & 30000 & 27756 & 2244 & 3.83 & 0.30 & 0.98 & 0.53 & -82\% & 261\% \\
\hline \[
\begin{aligned}
& \text { SSB }(2019)= \\
& \mathrm{B}_{\mathrm{pa}}
\end{aligned}
\] & 25450 & 23546 & 1904 & 3.26 & 0.50 & 0.94 & 0.28 & -70\% & 206\% \\
\hline \[
\begin{aligned}
& \text { SSB }(2019)= \\
& \text { MSY Btrigger }
\end{aligned}
\] & 15350 & 14202 & 1148 & 1.96 & 1.00 & 0.51 & 0.01 & -40\% & 84\% \\
\hline \(\mathrm{F}=\mathrm{F}_{2017}\) & 2772 & 2565 & 207 & 0.33 & 1.66 & 0.00 & 0.00 & 0\% & -67\% \\
\hline \(\mathrm{F}=\mathrm{F}_{\text {MSY }}\) Upper & 6150 & 5690 & 460 & 0.78 & 1.48 & 0.04 & 0.00 & -11\% & -26\% \\
\hline \(\mathrm{F}=\mathrm{F}_{\text {MSY }}\) lower & 9500 & 8789 & 711 & 1.22 & 1.28 & 0.13 & 0.00 & -23\% & 14\% \\
\hline Long-term MSY & 5158 & 4772 & 386 & 0.66 & 1.51 & 0.04 & 0.00 & -9\% & -38\% \\
\hline
\end{tabular}


Longitude
Figure 13.1. Maps of the northern continental shelf around the British Isles showing the biomass of megrim during the anglerfish surveys (SAMISS and IAMISS) 2005-2016.


Figure 13.2. Scottish IBTS Q3 4.a megrim biomass maps.


Figure 13.3. Scottish IBTS Q1 4.a megrim biomass maps.


Figure 13.4 Scottish IBTS Q1 4.a megrim biomass maps.


Figure 13.5. Scottish IBTS Q4 6.a megrim biomass maps.


Figure 13.6. Comparison of the delta-gamma cpue estimates for the two 6.a Scottish IBTS surveys using the full time-series or truncating the series to 2010 after which the survey design and ground gear was changed.


Figure 13.7. Megrim biomass estimates in ICES Division 4, 6.a and 6.b from the anglerfish (AMISS) survey.


Figure 13.8. Megrim cpue estimates in ICES Division 6.a Q1 top left panel and 6.a Q4.


Figure 13.9. Pearson residuals for the six survey indices.


Figure 13.10 Prior (red line) and posterior distributions (black line) for the parameters in the model.


Figure 13. 11. Time-series of catch and model estimates of total biomass and exploitation rate (median values are shown as solid lines and \(95 \%\) confidence intervals shown as broken lines). The model fits to the various cpue series is also shown (observations dots, median fit solid line and \(95 \%\) confidence intervals shown as broken lines).


Figure 13.12. Comparison of assessment results models fitted to a cpue generated using the full time-series of the \(6 . a\) (red) and a truncated time-series (blue).


Figure 13.13. Comparison with previous assessments.


Figure 13.14. Kobe plot of stock status.

\section*{14 Megrim (Lepidorhombus ssp.) in Division 6.b (Rockall)}

\section*{Type of assessment in 2017}

The current assessment is based on survey trends in relative biomass from the ISPAnglerfish survey conducted annually in 6.a, 4.a and 6.b.

\section*{ICES advice applicable to 2016}

Based on ICES approach to data-limited stocks, ICES advises that landings and catches should be no more than 343 t and 380 t respectively in 2016.

\section*{ICES advice applicable to 2017}

ICES advises that when the precautionary approach is applied, catches in 2017 should be no more than 379 tonnes. If discard rates do not change from the average of the last three years (2013-2015), this implies landings of no more than 342 tonnes.

\section*{General}

\section*{Stock description and management units}

Megrim stock structure is uncertain. Data collected during an EC study contract (98/096) on the 'Distribution and biology of anglerfish and megrim in the waters to the west of Scotland,' showed significantly different growth parameters and significant population structure difference between megrim sampled in \(6 . a\) and \(6 . b\) (Anon, 2001). Spawning fish occur in both areas but whether these populations are reproductively isolated is not clear. WKFLAT (2011) concluded that megrim in \(6 . b\) should continue to be considered as a separate stock until further information is available.


Management area (red box) and assessment area (blue hatched area).

The recent TACs are presented above in Section 5.3.1.1.

\section*{Fishery in 2016}

Ireland had the highest catches in 2016 followed by Scotland and Spain (Table 14.1). The majority of the landings and catches are from otter trawlers.
\begin{tabular}{cccccc}
\hline Landings & \multicolumn{5}{c}{ Discards } \\
\hline Nephrops trawls & Other Gears & Finfish trawls & Nephrops trawls & Other Gears & Finfish trawls \\
\hline \(0.00 \%\) & \(0.12 \%\) & \(99.88 \%\) & \(0.00 \%\) & \(0.01 \%\) & \(99.99 \%\) \\
\hline
\end{tabular}

\section*{Data}

As part of the 2011 benchmark, landings-at-age data were compiled from 1990 to 2010. However, there are very sparse age data available from \(6 . \mathrm{b}\) and prior to 2002, a common Subarea 6 ALK was applied to megrim from 6.a and 6.b. Commencing in 2012, area-specific age data will be gathered during the anglerfish survey.

\section*{Landings}

Official landings data for each country together with Working Group best estimates of landings from \(6 . b\) are shown in Table 14.1. The WG best estimates of landings are the same as the official statistics.

Catches of megrim comprise two species, Lepidorhombus whiffiagonis and L. boscii. Information available to the Working Group indicates that L. boscii, are a negligible proportion of the Scottish and Irish megrim catch (Kunzlik et al., 1995; Anon, 2001). It is not clear to the WG whether landings of other countries are accurately partitioned by megrim species. Megrim are caught in association with anglerfish by some fleets and are area-misreported along with anglerfish. However, it is unknown whether misreporting from Division 6.b is an issue.

\section*{Discards}

Discard data were available from Ireland and Scotland in 2015 and 2016 in InterCatch. The discard estimates for Scotland increased in 2016. Discard data for 2014 were available for Ireland in InterCatch, but the estimate for Scotland based on discard rates in Area 6 were as reported to STECF and landings of 95 t. Total discard estimates were available from 2005-2013. To estimate catches prior to 2005, for the SPiCT analysis, a catch over landing ratio of 1.2 was used (derived from that observed ratio between 2005-2010).

\section*{Surveys}

In 2005, Scotland initiated a new industry-science partnership survey to provide an absolute abundance estimate for anglerfish. Eleven years of survey data are available and these cover the main distribution of the anglerfish fishery. The survey is also considered to have greater spatial coverage for megrim and as such is recommended by WKAGME (2008) as the main source of data of megrim relative biomass for all megrim stocks in the Northern Shelf.

The survey index for \(6 . b\) is presented in Table 14.2. There is an increasing trend in both abundance and biomass in \(6 . \mathrm{b}\) since 2005. Both abundance and biomass decline in 2017. The area-stratified survey provides a minimum estimate of absolute biomass as the survey catches are raised based on swept area raised and weighted by area. The survey assumes that all megrim in the trawl path are retained e.g. q=1. Assuming full retention is overly optimistic therefore providing a minimum estimate of stock biomass. However, the biomass dynamic model used for 6.a/4.a megrim assessment, provides megrim catchability estimates for SAIMISS-Q2/IAMISS-Q2 6.a and 4.a surveys. These are estimated to be in the region of \(0.2-0.3\). Using the upper q estimate of
0.3 in combination to scale the survey biomass estimate to provide an absolute biomass estimate, and catch estimate have been used to provide a broad estimate of the relative harvest ratio of megrim in 6.b (Table 5.3.1.9). This shows that the harvest ratio for megrim to be in the range 2 to \(25 \%\) over the time-series and this has been very low in recent years typically less than \(6 \%\).

\section*{Historical stock development}

No analytical assessment has been agreed for this stock since 1999.

\section*{State of the stock}

The state of the stock is unknown.

\section*{Short-term projections}

There is no accepted analytical assessment for this stock.

\section*{Biological and MSY reference points}

\section*{Precautionary approach reference points}

No precautionary reference points have been defined for this stock.

\section*{MSY evaluations}

Proxy reference points (Fmsy and Btrigger) were explored for the stock at WKProxy (ICES, 2016) and WGCSE 2016 (ICES, 2016). A biomass dynamic model (SPiCTStochastic Production model in Continuous Time) was used to explore these reference points. This analysis was updated again by WGCSE 2017 using the SPiCT r package (Pedersen and Berg, 2016). The summary plots are shown in Figure 14.3. The stochastic reference point estimates are shown below. These are not significantly different to the results obtained by WGCSE last year.
\begin{tabular}{lcccc}
\hline Reference point & estimate & cilow & ciupp & est.in.log \\
\hline BMSYS & 3178 & 1109 & 9108 & 8.1 \\
\hline FMSYS & 0.218 & 0.104 & 0.458 & -1.5 \\
\hline MSYs & 695 & 397 & 1215 & 6.6 \\
\hline
\end{tabular}

The general conclusion of WKProxy and WGCSE last year is still valid; that the stock is currently exploited well below FMSY proxy reference points and SSB is well above the proxy for MSY \(B_{\text {trigger }}\).

\section*{Yield-per-recruit analysis}

It was not possible to define \(\mathrm{F}_{0.1}\) and \(\mathrm{F}_{\text {max }}\) values for this stock due to the lack of international catch-at-age data and recent changes in fleet selectivity due to likely changes in targeting behaviour and recent changes in mesh selectivity, which, if fully implemented, will result in a significant change in age selectivity of the gear.

\subsection*{14.1 Uncertainties and bias in assessment and forecast}

There is no accepted analytical assessment for this stock.

\subsection*{14.2 Recommendation for next Benchmark}

This stock was recently subject to benchmark in 2011. This stock should be benchmarked as soon as practical. WGCSE next year should review the available data, discuss assessment options and schedule a benchmark.

\section*{Management considerations}

The TAC in 6 has not been fully utilised. However, the uptake rate is country specific, with full uptake being reported by some Member States. Partial quota by individual Member States may be an artefact of reduction in effort rather than reflective of a reduction in biomass. The TAC and assessment area are incompatible.

\subsection*{14.3 References}

Kunzlik, P. A., A. W. Newton and A. W. Jermyn. 1995. Exploitation of monks (Lophius spp.) and megrims (Lepidorhombus spp.) by Scottish fishermen in ICES Division VIa (West of Scotland). Final report EU FAR contract MA-2-520.

Laurenson, C. and MacDonald, P. 2008. Collection of fisheries and biological data on megrim in ICES Subarea IVa. Scottish Industry Science Partnership Report No 05/08.

ICES. 2016. Report of the Workshop to consider MSY proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015, ICES Headquarters, Copenhagen. ICES CM 2015/ACOM:61. 183 pp.
ICES. 2016a. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 4-13 May 2016, ICES Headquarters, Copenhagen, Denmark. ICES CM 2016/ACOM:13. 1031 pp.

Pedersen, M. W. and Berg, C. W. 2017. A stochastic surplus production model in continuous time. Fish Fish, 18: 226-243. doi:10.1111/faf. 12174

Table 14.1. Megrim in Subarea 6.b. Nominal catch ( \(t\) ) of Megrim Rockall, as officially reported to ICES and WG best estimates of landings.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { ர் } \\
& \text { ঠ }
\end{aligned}
\] & \[
\begin{aligned}
& \underline{E} \\
& \frac{\bar{O}}{\omega} \\
& \infty
\end{aligned}
\] &  &  & \[
\begin{aligned}
& \stackrel{\cong}{\tilde{D}} \\
& \text { n }
\end{aligned}
\] &  &  &  & \[
\underset{J}{\imath}
\] & \[
\begin{aligned}
& \bar{\pi} \\
& \stackrel{0}{0} \\
& \frac{\pi}{U} \\
& \underset{U}{4} \\
& 0
\end{aligned}
\] &  & \(n\)
0
\(\tilde{0}\)
\(\sim\)
0
\(u\)
\(u\) \\
\hline 1991 & & & 240 & 587 & 14 & & 204 & & 1045 & 1045 & \\
\hline 1992 & & & 139 & 683 & 53 & & 198 & & 1073 & 1073 & \\
\hline 1993 & & & 128 & 594 & 56 & & 147 & & 925 & 925 & \\
\hline 1994 & & & 176 & 574 & 38 & & 258 & & 1046 & 1046 & \\
\hline 1995 & & & 117 & 520 & 27 & & 152 & & 816 & 816 & \\
\hline 1996 & & & 124 & 515 & 92 & & 112 & & 843 & 843 & \\
\hline 1997 & & & 141 & 628 & 76 & & 164 & & 1009 & 1009 & \\
\hline 1998 & & & 218 & 549 & 116 & & 208 & & 1091 & 1091 & \\
\hline 1999 & & & 127 & 404 & 57 & & 278 & & 866 & 866 & \\
\hline 2000 & & 4 & 167 & 427 & 57 & & 309 & & 964 & 964 & \\
\hline 2001 & & <0.5 & 176 & 370 & 42 & & 236 & & 824 & 824 & \\
\hline 2002 & & \(<0.5\) & 87 & 120 & 41 & & 207 & & 455 & 455 & \\
\hline 2003 & & & 83 & 93 & 74 & & 382 & & 632 & 632 & \\
\hline 2004 & & & 43 & 71 & 42 & & 372 & & 528 & 528 & \\
\hline 2005 & & & 68 & 88 & 19 & & 207 & & 382 & 382 & 87 \\
\hline 2006 & & & 95 & 59 & 9 & & 181 & & 344 & 344 & 75 \\
\hline 2007 & & & 87 & 19 & & & & & 106 & 106 & 22 \\
\hline 2008 & & & 68 & 84 & & 1 & 141 & & 294 & 294 & 59 \\
\hline 2009 & & & 48 & 0 & & & 178 & & 226 & 226 & 44 \\
\hline 2010 & & & 47 & 0 & & & & 92 & 139 & 139 & 26 \\
\hline 2011 & & & 72 & 17 & & & & 66 & 155 & 155 & 7 \\
\hline 2012 & & & 120 & 15 & & & & 89 & 224 & 224 & 21 \\
\hline 2013 & & & 181 & 39 & & & & 58 & 278 & 278 & 15 \\
\hline 2014 & & & 230 & 18 & & & & 95 & 343 & 343 & 15 \\
\hline 2015 & & & 256 & 67 & & & & 130 & 453 & 453 & 85 \\
\hline 2016 & & & 272 & 27 & & & & 106 & 405 & 405 & 145 \\
\hline
\end{tabular}

Table14.2. Estimates of \(6 . b\) (Rockall) megrim biomass and harvest ratio from SAMISS surveys.
\begin{tabular}{cccccccc}
\hline Year & \begin{tabular}{c} 
Survey \\
Biomass
\end{tabular} & \begin{tabular}{c} 
Survey \\
q
\end{tabular} & \begin{tabular}{c} 
Raised \\
Biomass
\end{tabular} & Landings & Discards & Catch & \begin{tabular}{c} 
Harvest \\
Ratio
\end{tabular} \\
\hline 2005 & 566 & 0.3 & 1886 & 382 & 87 & 469 & 0.25 \\
\hline 2006 & 929 & 0.3 & 3098 & 344 & 75 & 419 & 0.14 \\
\hline 2007 & 1267 & 0.3 & 4224 & 106 & 22 & 128 & 0.03 \\
\hline 2008 & 1728 & 0.3 & 5759 & 294 & 59 & 353 & 0.06 \\
\hline 2009 & 1605 & 0.3 & 5349 & 226 & 44 & 270 & 0.05 \\
\hline 2010 & 1991 & 0.3 & 6636 & 139 & 26 & 165 & 0.02 \\
\hline 2011 & 885 & 0.3 & 2949 & 155 & 7 & 162 & 0.05 \\
\hline 2012 & 4320 & 0.3 & 14401 & 224 & 21 & 245 & 0.02 \\
\hline 2013 & 3030 & 0.3 & 10101 & 278 & 15 & 293 & 0.03 \\
\hline 2014 & 3318 & 0.3 & 11060 & 343 & 15 & 358 & 0.03 \\
\hline 2015 & 3262 & 0.3 & 10872 & 453 & 85 & 538 & 0.05 \\
\hline 2016 & 4507 & 0.3 & 15024 & 405 & 145 & 550 & 0.04 \\
\hline 2017 & 3020 & 0.3 & 10067 & & & & \\
\hline
\end{tabular}

\section*{Table14.3. SPICT results for \(6 . b\) (Rockall) megrim.}
```

Convergence: 0 MSG: relative convergence (4)
Objective function at optimum: 32.8975298
Euler time step (years): 1/16 or 0.0625
Nobs C: 26, Nobs I1: }1
Priors
logn ~ dnorm[log(2), 2^2]
logalpha ~ dnorm[log(1), 2^2]
logbeta ~ dnorm[log(1), 2^2]
Fixed parameters
fixed.value
phi NA
Model parameter estimates w 95% Cl
estimate cilow ciupp log.est
alpha 6.0891464 0.6165611 6.013630e+01 1.8065079
beta 0.6440206 0.2214100 1.873278e+00 -0.4400246
r 0.3781869 0.0252818 5.657245e+00 -0.9723669
rc 0.4385207 0.2114772 9.093198e-01-0.8243482
rold 0.5217594 0.0041890 6.498749e+01-0.6505488
m 700.2861751 395.4671377 1.240054e+03 6.5514891
K 6775.45749313778.3440376 1.214999e+04 8.8210622
q 0.7380516 0.3270360 1.665627e+00 -0.3037416
n 1.7248300 0.0756037 3.935043e+01 0.5451285
sdb 0.0591119 0.0064474 5.419603e-01-2.8283232
sdf 0.3326490 0.1632896 6.776630e-01-1.1006675
sdi 0.3599410 0.2343294 5.528863e-01-1.0218153
sdc 0.2142328 0.1260990 3.639655e-01 -1.5406920

```
Deterministic reference points (Drp)
    estimate cilow ciupp log.est
Bmsyd 3193.85668541118 .57598659119 .38093588 .068984
Fmsyd \(0.21926040 .1057386 \quad 0.4546599-1.517495\)
MSYd 700.2861751395 .46713771240 .05430606 .551489
Stochastic reference points (Srp)
    estimate cilow ciupp log.est rel.diff.Drp
Bmsys 3178.28982101109 .08716559107 .9641894 8.064099-0.004897874
Fmsys 0.2186368 0.1042506 0.4585301 -1.520343-0.002852048
MSYs 694.8813578397 .38575401215 .09162446 .543741 -0.007778043
States w 95\% CI (inp\$msytype: s)
    estimate cilow ciupp log.est
B_2017.00 4653.45440632409 .54117778987 .03791098 .4453651
F_2017.00 0.1171897 0.0487911 \(0.2814736-2.1439616\)
B_2017.00/Bmsy \(1.4641378 \quad 0.6123511 \quad 3.50076880 .3812666\)
F_2017.00/Fmsy \(0.5360016 \quad 0.1868626 \quad 1.5374808-0.6236181\)

Predictions w 95\% CI (inp\$msytype: s)
prediction cilow ciupp log.est
B_2017.00 4653.45440632409 .54117778987 .03791098 .4453651
F_2017.00 0.1171897 0.0487911 \(0.2814736-2.1439616\)
B_2017.00/Bmsy \(1.4641378 \quad 0.6123511 \quad 3.50076880 .3812666\)
F_2017.00/Fmsy \(0.5360016 \quad 0.1868626\) 1.5374808-0.6236181
Catch_2017.00 546.6202834 290.0562679 1030.1233496 6.3037544
E(B_inf) 4715.4471120 NA NA 8.4585990


Figure 14.1. Meg-rock estimate biomass time-series.


Figure 14.2. Meg-rock estimate abundance time-series.


Figure 14.3. Meg-rock SPiCT model output. Top right: observed and fitted catch with 95 ci. Centre left: Biomass relative to Bmsy. Centre: F relative to Fmsy. Corresponding MSY quantities are shown in each plot as horizontal lines ( \(0.5 \mathrm{~B}_{\mathrm{Msy}}\) in the case of the relative biomass plot). Centre right Kobe plot of stock trajectory.

\section*{15 Norway lobster (Nephrops norvegicus) in Division 6.a, Functional Unit 11 (West of Scotland, North Minch)}

Nephrops stocks have previously been identified by WGNEPH on the basis of population distribution, and defined as separate Functional Units. The Functional Units (FU) in ICES Division 6.a (of which there are three) are defined by the groupings of ICES statistical rectangles given in Table 15.1 and illustrated in Figure 15.1. The functional unit is the level at which the WG collates fishery data (quantities landed and discarded, fishing effort and length distributions) and at which it performs assessments.

\section*{Type of assessment in 2017}

The assessment of North Minch Nephrops in 2017 is based on a combination of examining trends in fishery indicators and abundance estimated by underwater TV survey, both of which comprise an extensive dataseries for this FU. The assessment follows the process defined by the benchmark WG (WKNEPH 2009 and WKNEPH 2013). Further details on the assessment and catch options are provided in the stock annex.

\section*{ICES advice applicable to 2016}
‘ICES advises that when the MSY approach is applied, catches in 2016 (assuming zero discards) should be no more than 3770 tonnes. If instead discard rates continue at recent values (average of 2012-2014) and there is no change in assumed discard survival rate, this implies landings of no more than 3677 tonnes.

To ensure that the stock in functional unit (FU) 11 is exploited sustainably, management should be implemented at the functional unit level.'

\section*{ICES advice applicable to 2017}
'ICES advises that when the MSY approach is applied, and assuming that discard rates and fishery selection patterns do not change from the average of 2013-2015, catches in 2017 should be no more than 3814 tonnes. This implies landings of no more than 3610 tonnes.

To ensure that the stock in functional unit (FU) 11 is exploited sustainably, management should be implemented at the functional unit level.'

\subsection*{15.1 Genera}

Nominal landings as reported to ICES for Divisions \(6 . a\) and \(6 . b\) are presented in Table 15.1.1. Total official landings from Division 6 .a were 14707 tonnes in 2016, mostly reported by the UK with only 107 tonnes reported from Ireland. Minor updates were available for 2013 Irish landings. Table 15.1.2 and Figure 15.1.1 shows WG estimates of landings in Division 6.a broken down by FU. Nephrops landings are also made from outside the functional units, from statistical rectangles where small pockets of suitable sediment exist, although these are generally small amounts. In 2016, 236 tonnes of landings were reported from outside the FUs which is lower than the long-term average (Table 15.1.2). The main areas of activity outside FUs are the Stanton Bank (to the west of the South Minch) and areas of suitable sediment along the shelf edge and slope to the west of the Hebrides. There are no functional units in Division 6.b and only very small quantities of Nephrops are landed. In 2016, less than a
tonne of Nephrops were landed from this division and is rounded to zero in Table 15.1.1(b).

\section*{Stock description and management units}

The North Minch (FU11) is located at the northern end of the west coast of Scotland (Figure 15.1). Owing to its burrowing behaviour, the distribution of Nephrops is restricted to areas of mud, sandy mud and muddy sand. Within the North Minch functional unit these substrates are distributed according to prevailing hydrographic and bathymetric conditions. The area is characterised by numerous islands of varying size and sea lochs which occur along the mainland coast. These topographical features create a diverse habitat with complex hydrography and a patchy distribution of soft sediments. Results from work on mapping the spatial extent of Nephrops habitat in the North Minch sea lochs indicate that the muddy habitat in these areas is only a very small proportion of the total Nephrops grounds in the North Minch (WKNEPH 2013).

\section*{Management applicable to 2016 and 2017}

The management unit is Subarea 6 and EU and international waters of 5.b. The TAC for this area is 16407 tonnes in 2017, down from 16524 tonnes in 2016.

Since 2016, fisheries catching Nephrops in Division 6.a have been covered by the EU landing obligation (EU, 2015a). Creel fisheries are exempted from the landing obligation due to high survivability of discards, while there is a de minimis exemption consisting of a 7\% discard rate by weight for the trawl fishery in 2016 and 2017.

\section*{Ecosystem aspects}

Details of the ecosystem aspects for this functional unit are provided in the stock annex if available.

\section*{Fishery description}

Information on developments in the fishery was provided by Marine Scotland fishery officers.

Overall fishing was reported to be fairly good throughout 2016, although similarly to 2015, poor weather caused the fleet to tie up at times. Trawlers targeted Nephrops year round whereas some creelers targeted Nephrops in the winter and shifted to lobster and crab over the summer months. Fourteen creelers also targeted wrasse between May and October, supposedly easing pressure on shellfish stocks. Non-local vessels were reported to arrive in the spring and early summer. However an influx of east coast vessels, as occurred in 2015, was not reported. The price was described as good, increasing in 2016 from 2015, as it had from 2014 to 2015. Profitability was further benefited by the weak pound and low fuel prices.

No information on Barra, Lochiver, Ullapool or Gairloch was received in 2016. The largest part of the North Minch fleet is still assumed to be based at Stornoway, numbering 209 vessels in 2016. The majority of the Stornoway vessels, 165, are below 10 m in length. In 2015 the Barra vessels were generally bigger than the Stornoway fleet, all being greater than 15 m in length. The Bara fleet was more nomadic due to fishing exposed grounds, forcing the vessels to find shelter on the east side of the North Minch. The Stornoway fleet in 2016 targeted the usual local grounds from Stornoway
to Northbay with trip lengths of one to two days, the same length as those reported from Barra in 2015.

No major changes in gear use were reported in 2016 on the previous year. Since 2009, vessels have been required to fit 120 mm square meshed panels, in accordance with the west coast emergency measures (Council Reg. (EU) 43/2009). Large SMPs \((200 \mathrm{~mm})\) are also widely used in the North Minch and have been mandatory for all TR2 vessels with power \(>112 \mathrm{~kW}\) fishing under the Scottish Conservation Credits scheme.

The implementation of management measures for Marine Protected Areas (MPAs) did influence the fishery. Specifically, the closure of the East Mingualy Special Area of Conservation (SAC) to creeling caused one creeler to tie up (this SAC is located in the South Minch). In addition certain areas of the Wester Ross Nature Conservation MPA (NCMPA) were closed to demersal trawls; this area tended to be fished during periods of poor weather.

Further general information on the fishery can be found in the stock annex.

\subsection*{15.2 Data available}

\section*{InterCatch}

Data for 2016 were successfully uploaded into InterCatch prior to the 2017 WG meeting according with the deadline proposed. Uploaded data were worked up in InterCatch to generate 2016 raised international length-frequency distributions. Allocation schemes for any unsampled fleets are described in the stock annex. Data exploration in InterCatch has previously shown that outputs of raised data were very close to those generated by the previous method applied internally with differences being \(<0.1 \%\). As such, InterCatch length-frequency outputs have been used in the stock assessment since 2012.

\section*{Commercial catch}

Official catch statistics (landings) reported to ICES are shown in Tables 15.1.1(a) and 15.1.1(b); these relate to the whole of \(6 . a\) of which the North Minch is a part. Landings by gear category for FU11 provided by country have been reported since 1981 and are presented in Table 15.2.1. Landings from this fishery are usually only reported from Scotland but in 2012-2014, 2 tonnes of Nephrops were reported by Ireland. Total reported Scottish landings in 2016 were 3529 tonnes, consisting of 3039 tonnes landed by trawlers targeting Nephrops ( \(\sim 86.1 \%\) ), 475 tonnes landed by creel vessels ( \(\sim 13.5 \%\) ) and 15 tonnes by other trawlers. In addition, 0.4 tonnes of Nephrops were landed in the below minimum size (or more properly minimum conservation reference size) category in accordance with the EU landing obligation (EU, 2015b).

\section*{Effort data}

In 2015 WGCSE agreed that effort should be reported in kW days as this is likely to be more informative about changes in the actual fleet effort. Reported effort by Scottish trawlers targeting Nephrops (Métiers: OTB_CRU - Bottom Otter Trawls Targetting Crustaceans and OTT_CRU - Multirig Otter Trawls Targetting Crustaceans) has shown a decreasing trend since 2000 (Figure 15.2.1) but in 2012 the effort increased by \(20 \%\) due to the influx of vessels from the North Sea during the first quarter of the year. Since then, effort has declined although was relatively stable between 2015 and 2016. Note that the year range in effort time-series (2000-2016) does not match with
the more extensive year range available for landings, due to a lack of reliable effort data in the MSS in-house database. The effort is also slightly inconsistent with the landings data in that effort is provided for TR2 vessels while the 'Nephrops trawl' landings additionally includes landings by large mesh trawlers targeting Nephrops.

\section*{Sampling levels}

Length compositions of landings and discards are obtained during market and onboard observer sampling respectively. These sampling levels are shown in Table 15.2.2. Length compositions for the creel fishery are available for landings only as the small numbers of discards survive well and are not considered to be removed from the population. Sampling for this FU was considered to be adequate in 2016. Ahead of the 2017 WG, additional market samples for 2015 became available and the catch estimation was updated resulting in minor changes to landings length-frequency distributions for that year.

\section*{Length compositions}

Figure 15.2.2 shows a series of annual length-frequency distributions for the period 2000 to 2016. Catch (removals) length compositions are shown for each sex along with the mean length for both. In both sexes the mean sizes fluctuate over time and has generally remained stable since 2012. This parameter might be expected to reduce in size if overexploitation were taking place. In 2016 the mean size was within the normal range of variation seen in this functional unit in recent years.

\section*{Sex ratio}

Males consistently make the largest contribution to the landings, although the proportion of males does seem to vary between years (Figure 15.2.3(a)). This is likely due to the varying seasonal pattern in the fishery and associated relative catchability (due to different burrow emergence behaviour) of male and female Nephrops. This occurs because males are available throughout the year and the fishery is prosecuted in all quarters (although effort is reduced during the winter months when the weather is poor). Females on the other hand are mainly taken in the summer when they emerge after egg hatching. The seasonal change in proportion of males to females is evident in Figure 15.2.3(b) where males dominate in quarters one and four but the ratio is more even (or often female dominated) in quarters two and three.

\section*{Mean weights}

The mean weight in the landings (trawls and creels combined) shows substantial interannual variation (Figure 15.2.4 and Table 15.2.3) decreasing between 2010 and 2012, followed by an increase in 2013-2015 and a decrease again in 2016. Given the relatively larger size of creel caught Nephrops (compared to trawl) the proportion of creel landings has a substantial effect on overall size composition. The increases in mean weight to 2010 (and also size, Figure 15.2.2) in particular are due to a higher proportion of creel landings. Figure 15.2 .5 shows the mean weight by sample and gear type over the period 2009-2016. There is no obvious trend in North Minch trawlcaught mean weights, a slight increasing trend previously detected in these landings from 2009 to 2015 is no longer visible on inclusion of the 2016 data. A slight decrease in the mean weight of creel caught males noted in 2016 is still obvious although this is largely driven by the cluster of high values from the start of 2010. The mean weight in the landings has a significant impact on the catch forecast. Due to the high interannual variability in mean weights it was considered more appropriate to use a full-time
series average, from 1999 (first year with creel and trawl length distributions combined) until 2016 for producing the catch options.

\section*{Discarding}

Discarding of undersized and unwanted Nephrops occurs in this fishery, and quarterly discard sampling has been conducted on the Scottish Nephrops trawler fleet since 1990. Discard rates fluctuate in this FU and averaged \(\sim 11 \%\) by number in the last three years (Table 15.2.4). In 2016 the discard rate increased to \(14.0 \%\) by number (from 12.6\% in 2015).

It is likely that some Nephrops survive the discarding process. An estimate of \(25 \%\) (Charuau et al., 1982; Sangster et al., 1997; Wileman et al., 1999) survival is assumed for this FU in order to calculate removals (landings + dead discards) from the population. The discard survival rate for creel caught Nephrops has been shown to be high (ICES, 2013) and a value of \(100 \%\) is used. The discard rate (adjusted for survival) which will be used in the provision of landings options for 2018 is \(8.5 \%\) based on a three year average of 2014-2016.

\section*{Abundance indices from UWTV surveys}

Underwater TV surveys are available for this stock since 1994 (missing surveys in 1995 and 1997). The stock area for this FU was updated in 2013 to \(2908 \mathrm{~km}^{2}\) (see stock annex for further details). In 2016, 39 valid stations were used in the survey final analysis (Table 15.2.5).

Table 15.2.6 shows the basic analysis for the most recent TV survey conducted in FU11. At the 2012 SGNEPS meeting (ICES, 2012) it was decided that a CV (relative standard error) of \(<20 \%\) was an acceptable precision level for UWTV survey estimates of abundance. The CV for the most recent TV survey was \(10.2 \%\), lower than the precision level agreed (Table 15.2.6).

Figure 15.2.6 shows the distribution of stations in recent TV surveys (2010-2016), with the size of the symbols reflecting the Nephrops burrow density. Table 15.2.5 and Figure 15.2.7 show the time-series estimated abundance for the TV surveys, with \(95 \%\) confidence intervals on annual estimates.

The use of the UWTV surveys for Nephrops in the provision of advice was extensively reviewed by WKNEPH (ICES, 2009; ICES, 2013). A number of potential biases were highlighted including those due to edge effects, species burrow misidentification and burrow occupancy. The cumulative relative to absolute conversion factor estimated for FU11 was 1.33 meaning that the TV survey is likely to overestimate Nephrops abundance by \(33 \%\).

\subsection*{15.3 Assessment}

\section*{Comparison with previous assessments}

The assessment is the same as last year and is based on a combination of examining trends in fishery indicators and underwater TV abundance estimates. Landings predictions are derived by applying a harvest rate to the UWTV survey estimate of abundance and assuming a length composition derived from recent fishery data (including data from both trawl and creel fisheries).

No major issues were highlighted by the audit conducted last year.

\section*{State of the stock}

The assessment summary is provided in Table 15.2.4. The underwater TV survey is presented as the best available information on the North Minch Nephrops stock. The surveys provide a fishery-independent estimate of Nephrops abundance. At present it is not possible to extract any length or age-structure information from the survey and therefore it only provides information on abundance over the area of the survey.
TV survey estimated stock abundance in 2016 was 1422 million individuals, a \(1.6 \%\) decrease from the 2015 estimate. However, this decrease was not statistically significant ( \(95 \%\) confidence intervals for 2015 and 2016 overlapped) and the stock is still well above the MSY Btrigger value of 541 million, or the rounded value of 540 million individuals used in the provision of advice (Figure 15.2.7).

The calculated harvest rate in 2016 (dead removals/TV abundance \(=10.7 \%\) ) is close to the Fmsy proxy for this stock (the value associated with high long-term yield and low risk depletion) of \(10.8 \%\). This is due to the relative increase in catches in 2016 against the survey abundance.

Note that there have been minor amendments to the 2015 estimates of total removals and resulting harvest rate compared to last year. This is due to additional sampling data being included in the catch estimation process.

\subsection*{15.4 Catch option table}

Landings predictions at various harvest rates (based on principles established at WKNEPH (ICES,2009)), including a selection of those equivalent to the per-recruit reference points, will be made on the basis of the 2017 UWTV survey conducted in June and presented in October 2017 for the provision of advice.

The table below shows the agreed inputs to the catch options table.
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ INPUT } & DATA & 2017 ASSESSMENT \\
\hline Survey abundance (millions) & UWTV 2017 & Not yet known \\
\hline Mean weight in landings \((\mathrm{g})\) & \(1999-2016\) & 25.82 \\
\hline Mean weight in discards \((\mathrm{g})\) & \(1999-2016\) & 10.88 \\
\hline Dead discard rate & average 2014-2016 & \(8.50 \%\) \\
\hline
\end{tabular}

Due to the high interannual variability in mean weights it was considered more appropriate to use a full time-series average, from 1999 (first year with creel and trawl length distributions combined) until 2016 for producing the catch options.

\subsection*{15.5 Reference points}

New reference point FMSY were derived for this stock at WKMSYRef4 (ICES, 2016). This was updated on the basis of an average of estimated Fmsy proxy harvest rates over a period of years, this corresponds more closely to the methodology for finfish. In cases where there is a clear trend in the values a five year average was chosen. Similarly, the five year average of the F at \(95 \%\) of the YPR obtained at the Fmsy proxy reference point was proposed as the Fmsy lower bound and the five year average of the F above \(\mathrm{F}_{\max }\) that leads to YPR of \(95 \%\) of the maximum as the upper bound. Using an average value also has the advantage of reducing the effect of any unusually high or low estimates of the Fmsy proxy which occasionally appear. For this stock the FMSy proxy has been revised from \(10.9 \%\) to \(10.8 \%\).

WKFMSYRef4 did not update the MSY Btrigger except for rounding to tens of millions. MSY Btrigger has been defined as the lowest stock size from which the abundance has increased (ICES, 2013) and is calculated as 541 million individuals and rounded to 540 million for use as MSY B \(\mathrm{Br}_{\text {trigger }}\) in the advice. Full details are contained in the stock annex.

These reference points should remain under review by WGCSE and may be revised should improved data become available.

Table 15.2.4 and Figure 15.5 .1 show the harvest rates for FU11. From 2006-2009 there was a sustained period of high, above Fmsy proxy, harvest rates followed by two years of low harvest rates of around \(6-7 \%\). There was a sudden increase in 2012, following this the harvest rate declined, remaining below the Fmsy proxy for 2013 to 2015. In 2016 the harvest rate has increased to \(10.7 \%\), just below the Fmsy proxy.

It is likely that prior to 2006, the estimated harvest rates may not be representative due to underreporting of landings.

\subsection*{15.6 Management strategies}

Scotland has recently established a network of regional Inshore Fisheries Groups (rIFGs), non-statutory bodies that aim to improve the management of Scotland's inshore fisheries out to six nautical miles, and to give commercial inshore fishermen a strong voice in wider marine management developments. The rIFGs will contribute to regional policies and initiatives relating to management and conservation of inshore fisheries, including impacts on the marine environment and the maintenance of sustainable fishing communities and measures designed to better conserve and sustainably exploit stocks of shellfish and sea fish (including salmon) in their local waters. Although no IFG proposals specific to the management of Nephrops fisheries have yet been adopted, some of the IFG management plans for the Scottish West Coast include spatial management of Nephrops fisheries and the introduction of creel limits.

On the 8th of February 2016 phase 1 of the fisheries management measures for inshore MPAs in Scottish waters came into force (SG, 2016). These measures relate to both NCMPA (Marine (Scotland) Act and the UK Marine and Coastal Access Act) and SACs (EC Habitats Directives - Council Directive 92/43/EEC) both of which have the aim of conserving biological diversity in Scottish waters and contribute to Scotland's MPA network (SG, 2017a). Although not specific to the management of the Nephrops fishery they will influence spatial patterns of fishing for Nephrops where controls on the two main gear types, demersal trawls and creels are implemented on Nephrops habitat. Within the North Minch functional unit two MPAs are covered by fisheries management measures. Specifically the Wester Ross NCMPA where fishing activity is banned for dermersal gears for vessels over 500 kW in power and banned in certain areas for vessels below 500 kW . North of the main Nephrops ground is the Loch Laxford SAC where demersal trawling is banned (SG, 2016). The areas of the SAC and NCMPA relative to the estimated Nephrops habitat within the North Minch functional unit are displayed in Figure 15.6.1.

\subsection*{15.7 Quality of assessment and forecast}

The length and sex composition of the landings data is considered to be well sampled. Discard sampling has been conducted on a quarterly basis for Scottish Nephrops trawlers in this fishery since 1990, and is considered to represent the fishery adequately. The length compositions from 1999 onwards are derived from both creel and
trawl samples. The creel fishery accounted for greater than \(20 \%\) of landings from 2009 to 2011, although this has decreased, reaching \(13.5 \%\) in 2016 . This part of the fishery exhibits a length composition composed of larger animals.

There were concerns over the accuracy of historical landings and effort data prior to 2006 when Buyers and Sellers legislation was introduced and the reliability began to improve. Because of this the final assessment adopted is independent of historical landings data. Harvest rates since 2006 are also considered more reliable due to more accurate landings data reported under this legislation. Incorporation of creel length compositions (since the 2010 WG ) has also improved estimates of harvest rates. Underwater TV surveys have been conducted for this stock since 1994, with a continual annual series available since 1998. The number of valid stations in the survey has remained relatively stable throughout the time period. Confidence intervals around the abundance estimates are relatively small for this functional unit. In the provision of catch options based on the absolute survey estimates additional uncertainties related to mean weight in the landings and the discard rates also arise. A three year average (2014-2016) of discard rates (adjusted to account for some survival of discarded animals) has been used in the calculation of catch options.

The cumulative absolute conversion factor estimates for FU11 are largely based on expert opinion (see stock annex). The precision of these bias corrections cannot yet be characterised. The method to derive landings for the catch options is sensitive to the input dead discard rate and mean weight in landings and this introduces uncertainties in the catch forecasts. Precision estimates are needed for these forecast inputs

The stock area was revised in 2013 (ICES, 2013) using integrated VMS-logbook data to more accurately estimate the spatial extent of Nephrops catches. Two other factors however, have the potential to increase the fished area further. Firstly, the inclusion of vessels smaller than 15 m would likely increase the fished area in some of the inshore locations and secondly, it is known that most of the sea lochs have areas of mud substrate and are typically fished by creel boats. In recent years, a number of TV surveys have taken place in the major North Minch sea lochs in an attempt to improve estimates of the ground area and Nephrops abundance. Work presented at the WKNEPH 2013 (ICES, 2013) showed that the total area of the sea lochs is \(105 \mathrm{~km}^{2}\), which is considerably smaller than the offshore VMS area estimated to be \(2908 \mathrm{~km}^{2}\). Therefore, it is unlikely that the exclusion of these inshore areas from the survey have an impact in the mean densities and overall abundance of Nephrops in the North Minch.

\subsection*{15.8 Recommendation for next benchmark}

This stock was last benchmarked in 2013 (ICES, 2013). WGCSE will keep the stock under close review and recommend a future benchmark as required.

\subsection*{15.9 Management considerations}

The WG, ACOM and STECF have repeatedly advised that management should be at a smaller scale than the ICES Division level and management at the functional unit level could provide the controls to ensure that catch opportunities and effort were compatible and in line with the scale of the resource.

Creel fishing takes place in this area but overall effort by this fleet in terms of creel numbers is not known and measures to control numbers are not in place. There is a need to ensure that the combined effort from all forms of fishing is taken into account when managing this stock.

There is a bycatch of other species in the area of the North Minch and STECF estimates that discards of whiting and haddock are high in 6 .a generally. It is important that efforts are made to ensure that unwanted bycatch is kept to a minimum in this fishery. Efforts to reduce discards and unwanted bycatches of cod include the implementation of large square meshed panels (SMPs) of 120 mm under the west coast emergency measures, and SMPs of 200 mm which were introduced under the Scottish Conservation Credits scheme.

\subsection*{15.10References}

Council Reg. (EU) 43/2009.
Charuau A., Morizur Y., Rivoalen J.J. 1982. Survival of discarded Nephrops norvegicus in the Bay of Biscay and in the Celtic Sea, ICES-CM-1982/B:13.

Dobby H. 2009. Fmsy proxies for Nephrops stocks. Working document for WGNSSK, 5-11 May 2010 and WGCSE, 12-20 May, 2010.

ESRI. 2014. ArcGIS. Version 10.2.1. Environmental Systems Research Institute, Inc.: Redlands, CA.

EU. 2015a. COMMISSION DELEGATED REGULATION (EU) 2015/2438 of 12 October 2015 establishing a discard plan for certain demersal fisheries in north-western waters. Official Journal of the European Union, L 336/29. Available at: <http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32015R2438\&from=EN \(>\) [Accessed: 2016].

EU. 2015b. REGULATION (EU) 2015/812 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 May 2015. Official Journal of the European Union, L 133/1. Available at: <http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R0812\&from=EN> [Accessed: 14/05/2017].

ICES. 2010. Report of the Study Group on Nephrops Surveys (SGNEPS), 9-11 November 2010, Lisbon, Portugal. ICES CM 2010/SSGESST:22. 95 pp.

ICES. 2012. Report of the Study Group on Nephrops Surveys (SGNEPS), 6-8 March 2012, Acona, Italy. ICES CM 2012/SSGESST:19. 36 pp.

ICES. 2013 Report of the Benchmark Workshop on Nephrops assessment (WKNEPH). ICES CM 2013/45. 230 pp.

ICES. 2015. Report of the Workshop to consider Fmsy ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4). ICES CM 2015/ACOM:58. 185 pp

ICES. 2016. EU request to ICES to provide FMSY ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.4.1.

ICES. 2017. ICES Statistical Rectangles. International Council for the Exploration of the Sea: Copenhagen, Denmark. Available at: <http://geo.ices.dk/index.phpSource> [Accessed: 16/03/2017]

Sangster, G.I., Breen, M., Bova, D.J., Kynoch, R., O'Neill, F.G., Lowry. N., Moth-Poulsen, T. Hansen, U.J., Ulmestrand, M., Valentinsson, D., Hallback, H., Soldal, A.V., and Hoddevik, B. 1997. Nephrops survival after escape and discard from commercial fishing gear. Presented at ICES FTFB Working Group, Hamburg, Germany 14-17 April, 1997, ICES CM 1997 CM/B.

SG. 2016. Simple guide to fisheries management measures in Marine Protected Areas. Marine Scotland (The Scottish Government): Edinburgh. Available at: <http://www.gov.scot/Resource/0049/00498320.pdf> [Accessed: 16/05/2017].

SG. 2017a. Marine Protected Areas in Scotland's Seas - Guidelines on the selection of MPAs and development of the MPA network. Marine Scotland (The Scottish Government): Edin-
burgh. Available at: <http://www.gov.scot/Topics/marine/marineenvironment/mpanetwork/mpaguidelines> [Accessed: 16/05/2017].

SG. 2017b. Marine conservation orders (MCOs) and fisheries management measures (MPAs and SACs) - with effect May 2017. Marine Scotland (The Scottish Government): Edinburgh. Available at: <https://marinescotland.atkinsgeospatial.com/nmpi/default.aspx?availablelayers=838> [Accessed: 31/05/2017].

SNH. 2015. Nature Conservation Marine Protected Areas. Scottish Natural Heritage (Scottish Government): Inverness. Available at: <https://gateway.snh.gov.uk/naturalspaces/index.jsp> [Accessed: 03/04/2017].
SNH. 2016. Special Areas of Conservation. Scottish Natural Heritage (Scottish Government): Inverness. Available at: <https://gateway.snh.gov.uk/natural-spaces/index.jsp> [Accessed: 03/04/2017].

Wessel, P. and Smith, W.H.F. 2016. GSHHG version 2.3.6 - A Global Self-consistent, Hierarchical, High-resolution Geography Database. National Centers for Environmental Information, National Oceanic and Atmospheric Administration: Boulder, CO. <https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html> [Accessed: 31/05/2017].

Wileman, D.A., Sangster, G.I., Breen, M., Ulmestrand, M., Soldal, A.V. and Harris, R.R. 1999. Roundfish and Nephrops survival after escape from commercial fishing gear. EU Contract Final Report. EC Contract No: FAIR-CT95-0753.

Table 15.1. Nephrops functional units and descriptions by statistical rectangle.
\begin{tabular}{clll}
\hline \begin{tabular}{c} 
Functional \\
Unit
\end{tabular} & \multicolumn{1}{c}{ Stock } & Division & ICES Rectangles \\
\hline 11 & North Minch & \(6 . \mathrm{a}\) & \(44-46\) E3-E4 \\
\hline 12 & South Minch & \(6 . \mathrm{a}\) & \(41-43\) E2-E4 \\
\hline 13 & Clyde & \(6 . a\) & \(39-40\) E4-E5 \\
\hline
\end{tabular}

Table 15.1.1(a). Nominal landings (tonnes) of Nephrops in Division 6.a, 1980-2016, as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & FRANCE & IRELAND & SPAIN & \[
\begin{gathered}
\text { UK- } \\
\text { (ENGL+WALES+N.IRL) }
\end{gathered}
\] & UKSCOTLAND & UK & TOTAL \\
\hline 1980 & 5 & 1 & - & - & 7422 & - & 7428 \\
\hline 1981 & 5 & 26 & - & - & 9519 & - & 9550 \\
\hline 1982 & 1 & 1 & - & 1 & 9000 & - & 9003 \\
\hline 1983 & 1 & 1 & - & 11 & 10706 & - & 10719 \\
\hline 1984 & 3 & 6 & - & 12 & 11778 & - & 11799 \\
\hline 1985 & 1 & 1 & 28 & 9 & 12449 & - & 12488 \\
\hline 1986 & 8 & 20 & 5 & 13 & 11283 & - & 11329 \\
\hline 1987 & 6 & 128 & 11 & 15 & 11203 & - & 11363 \\
\hline 1988 & 1 & 11 & 7 & 62 & 12649 & - & 12730 \\
\hline 1989 & - & 9 & 2 & 25 & 10949 & - & 10985 \\
\hline 1990 & - & 10 & 4 & 35 & 10042 & - & 10091 \\
\hline 1991 & - & 1 & - & 37 & 10458 & - & 10496 \\
\hline 1992 & - & 10 & - & 56 & 10783 & - & 10849 \\
\hline 1993 & - & 7 & - & 191 & 11178 & - & 11376 \\
\hline 1994 & 3 & 6 & - & 290 & 11047 & - & 11346 \\
\hline 1995 & 4 & 9 & 3 & 346 & 12527 & - & 12889 \\
\hline 1996 & - & 8 & 1 & 176 & 10929 & - & 11114 \\
\hline 1997 & - & 5 & 15 & 133 & 11104 & - & 11257 \\
\hline 1998 & - & 25 & 18 & 202 & 10949 & - & 11194 \\
\hline 1999 & - & 136 & 40 & 256 & 11078 & - & 11510 \\
\hline 2000 & 1 & 130 & 69 & 137 & 10667 & - & 11004 \\
\hline 2001 & 9 & 115 & 30 & 139 & 10568 & - & 10861 \\
\hline 2002 & - & 117 & 18 & 152 & 10225 & - & 10512 \\
\hline 2003 & - & 145 & 12 & 81 & 10450 & - & 10688 \\
\hline 2004 & - & 150 & 6 & 267 & 9941 & - & 10364 \\
\hline 2005 & - & 153 & 17 & 153 & 7616 & - & 7939 \\
\hline 2006 & - & 133 & 1 & 255 & 13419 & - & 13808 \\
\hline 2007 & - & 155 & - & 2088 & 14120 & - & 16363 \\
\hline 2008 & - & 56 & 1 & 419 & 14795 & - & 15271 \\
\hline 2009 & - & 53 & - & 1226 & 11462 & - & 12741 \\
\hline 2010 & - & 45 & 1 & 1962 & 10250 & - & 12258 \\
\hline 2011 & - & 38 & - & 2517 & 10419 & - & 12974 \\
\hline 2012 & - & 28 & - & 2502 & 11807 & - & 14337 \\
\hline 2013 & - & 5 & - & - & - & 12866 & 12871 \\
\hline 2014 & - & 51 & - & - & - & 12760 & 12811 \\
\hline 2015* & - & 75 & - & - & - & 11653 & 11728 \\
\hline 2016* & - & 107 & 0 & - & - & 14600 & 14707 \\
\hline
\end{tabular}

\footnotetext{
* Landings for 2015 and 2016 are preliminary.
}

Table 15.1.1(b). Nominal landings (tonnes) of Nephrops in Division 6.b, 1981-2016, as officially reported to ICES. There are no Functional Units in ICES Division \(6 . b\) but occasional small landings are made.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & FRANCE & GERMANY & IRELAND & SPAIN & \[
\begin{gathered}
\text { UK- } \\
\text { (ENGL+WALES+N.IRL) }
\end{gathered}
\] & UKSCOTLAND & TOTAL \\
\hline 1981 & - & - & - & - & - & - & 0 \\
\hline 1982 & - & - & - & - & - & - & 0 \\
\hline 1983 & - & - & - & - & - & - & 0 \\
\hline 1984 & - & - & - & - & - & - & 0 \\
\hline 1985 & - & - & - & - & - & - & 0 \\
\hline 1986 & - & - & - & 8 & - & - & 8 \\
\hline 1987 & - & - & - & 18 & 11 & - & 29 \\
\hline 1988 & - & - & - & 27 & 4 & - & 31 \\
\hline 1989 & - & - & - & 14 & - & - & 14 \\
\hline 1990 & - & - & - & 10 & 1 & - & 11 \\
\hline 1991 & - & - & - & 30 & - & - & 30 \\
\hline 1992 & - & - & - & 2 & 4 & 1 & 7 \\
\hline 1993 & - & - & - & 2 & 6 & 9 & 17 \\
\hline 1994 & - & - & - & 5 & 16 & 5 & 26 \\
\hline 1995 & 1 & - & - & 2 & 26 & 1 & 30 \\
\hline 1996 & - & 6 & - & 5 & 65 & 5 & 81 \\
\hline 1997 & - & - & 1 & 3 & 88 & 23 & 115 \\
\hline 1998 & - & - & 1 & 6 & 46 & 7 & 60 \\
\hline 1999 & - & - & - & 5 & 2 & 5 & 12 \\
\hline 2000 & 2 & - & 8 & 3 & 4 & 4 & 21 \\
\hline 2001 & 1 & - & 1 & 14 & 2 & 7 & 25 \\
\hline 2002 & 1 & - & - & 7 & 3 & 7 & 18 \\
\hline 2003 & - & - & 1 & 5 & 6 & 18 & 30 \\
\hline 2004 & - & - & - & 2 & 7 & 13 & 22 \\
\hline 2005 & 3 & - & 1 & 1 & 5 & 7 & 17 \\
\hline 2006 & - & - & - & - & 1 & 3 & 4 \\
\hline 2007 & - & - & - & 2 & 3 & - & 5 \\
\hline 2008 & - & - & - & - & - & - & 0 \\
\hline 2009 & - & - & - & - & - & - & 0 \\
\hline 2010 & - & - & - & - & - & - & 0 \\
\hline 2011 & - & - & - & - & - & - & 0 \\
\hline 2012 & - & - & - & - & - & - & 0 \\
\hline 2013 & - & - & - & - & - & - & 0 \\
\hline 2014 & - & - & - & - & - & - & 0 \\
\hline 2015* & - & - & - & - & - & - & 0 \\
\hline 2016* & - & - & - & - & - & 0 & 0 \\
\hline
\end{tabular}

\footnotetext{
*Landings for 2015 and 2016 are preliminary.
}

Table 15.1.2. Nephrops, Total Nephrops landings (tonnes) by Functional Unit plus Other rectangles, 1981-2016.
\begin{tabular}{|c|c|c|c|c|c|}
\hline YEAR & NORTH MINCH (FU1 1) & SOUTH MINCH (FU12) & CLYDE (FU13) & OTHER & TOTAL \\
\hline 1981 & 2861 & 3652 & 2968 & 39 & 9520 \\
\hline 1982 & 2799 & 3552 & 2620 & 27 & 8998 \\
\hline 1983 & 3197 & 3413 & 4076 & 34 & 10720 \\
\hline 1984 & 4143 & 4300 & 3310 & 36 & 11789 \\
\hline 1985 & 4060 & 4008 & 4286 & 104 & 12458 \\
\hline 1986 & 3381 & 3484 & 4341 & 89 & 11295 \\
\hline 1987 & 4084 & 3892 & 3009 & 257 & 11242 \\
\hline 1988 & 4035 & 4473 & 3664 & 529 & 12701 \\
\hline \[
1989
\] & \[
3205
\] & \[
4745
\] & 2812 & 212 & 10974 \\
\hline 1990 & 2546 & 4430 & 2909 & 182 & 10067 \\
\hline 1991 & 2793 & 4442 & 3038 & 255 & 10528 \\
\hline 1992 & 3559 & 4237 & 2803 & 248 & 10847 \\
\hline 1993 & 3193 & 4458 & 3343 & 344 & 11338 \\
\hline 1994 & 3614 & 4414 & 2630 & 441 & 11099 \\
\hline 1995 & 3655 & 4682 & 3987 & 460 & 12784 \\
\hline 1996 & 2872 & 3995 & 4057 & 239 & 11163 \\
\hline 1997 & 3046 & 4344 & 3621 & 243 & 11254 \\
\hline 1998 & 2441 & 3730 & 4841 & 157 & 11169 \\
\hline 1999 & 3257 & 4052 & 3752 & 438 & 11499 \\
\hline \[
2000
\] & 3247 & 3953 & 3417 & 421 & 11038 \\
\hline 2001 & 3259 & 3991 & 3182 & 420 & 10852 \\
\hline 2002 & 3440 & 3305 & 3384 & 397 & 10526 \\
\hline 2003 & 3269 & 3879 & 3173 & 433 & 10754 \\
\hline 2004 & 3082 & 3869 & 2973 & 403 & 10327 \\
\hline 2005 & 2949 & 3848 & 3395 & 254 & 10446 \\
\hline 2006 & 4166 & 4633 & 4780 & 241 & 13820 \\
\hline 2007 & 3978 & 5471 & 6660 & 420 & 16529 \\
\hline 2008 & 3799 & 5356 & 5923 & 128 & 15206 \\
\hline 2009 & 3496 & 4285 & 4779 & 185 & 12745 \\
\hline 2010 & 2413 & 3846 & 5843 & 569 & 12671 \\
\hline 2011 & 2697 & 3702 & 6432 & 219 & 13050 \\
\hline 2012 & 3542 & 3989 & 6687 & 435 & 14653 \\
\hline 2013 & 3413 & 3776 & 5435 & 234 & 12858 \\
\hline 2014 & 3257 & 3179 & 6207 & 53 & 12696 \\
\hline 2015 & 3002 & 3400 & 5147 & 309 & 11858 \\
\hline 2016 & 3529* & 4402 & 6447 & 236 & 14614* \\
\hline
\end{tabular}
*Includes below minimum size landed discards of \(0.4 \mathbf{t}\).

Table 15.2.1. Nephrops, North Minch (FU11), Nominal Landings of Nephrops, 1981-2016.
\begin{tabular}{llllllll}
\hline & & UK SCOTLAND & & & OTHER & TOTAL \\
& & & & & & UK \&
\end{tabular}
*Below minimum size landings not rounded to show it was reported.

Table 15.2.2. Nephrops Scottish sampling levels all FUs in 6.a (including N. Irish for Clyde).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FU} & & \multicolumn{2}{|r|}{2014} & \multicolumn{2}{|r|}{2015} & \multicolumn{2}{|r|}{2016} \\
\hline & & N TRIPS* & \begin{tabular}{l}
N \\
MEASURED
\end{tabular} & N TRIPS* & \begin{tabular}{l}
N \\
MEASURED
\end{tabular} & N TRIPS* & \begin{tabular}{l}
N \\
MEASURED
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
North \\
Minch \\
(FU11)
\end{tabular}} & Landings & 40 & 28859 & 46 & 26113 & 44 & 32483 \\
\hline & Discards & 24 & 3806 & 14 & 2382 & 23 & 4402 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
South \\
Minch \\
(FU12)
\end{tabular}} & Landings & 44 & 28378 & 52 & 30546 & 37 & 20439 \\
\hline & Discards & 21 & 3503 & 24 & 3074 & 8 & 1274 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Clyde \\
(FU13)
\end{tabular}} & Landings & 32 & 20968 & 40 & 27465 & 22 & 19069 \\
\hline & N.Irish Landings & 12 & 7283 & 4 & 2206 & 28 & 18218 \\
\hline & Discards & 19 & 2977 & 21 & 3467 & 21 & 3337 \\
\hline
\end{tabular}

\footnotetext{
*Number of trips expressed as number of hauls for discards.
}

Table 15.2.3. Nephrops mean weight in the landings (FU11-13).
\begin{tabular}{|c|c|c|c|}
\hline Year & FU1 1 & FU12 & FU1 3 \\
\hline 1990 & 21.39 & 19.99 & 24.27 \\
\hline 1991 & 25.35 & 21.74 & 20.65 \\
\hline \[
1992
\] & 21.66 & 24.10 & 25.16 \\
\hline 1993 & 20.79 & 21.26 & 29.44 \\
\hline 1994 & 23.45 & 24.96 & 25.28 \\
\hline \[
1995
\] & 22.24 & 21.96 & 19.24 \\
\hline 1996 & 26.68 & 23.10 & 21.68 \\
\hline 1997 & 21.71 & 23.37 & 24.21 \\
\hline \[
1998
\] & \[
23.65
\] & 22.18 & 17.98 \\
\hline 1999* & 22.70 & 25.14 & 17.39 \\
\hline \[
2000
\] & 24.19 & 27.30 & 19.96 \\
\hline \[
2001
\] & \[
25.33
\] & \[
23.79
\] & 19.46 \\
\hline 2002 & 25.93 & 26.83 & 16.35 \\
\hline \[
2003
\] & \[
26.03
\] & 27.86 & 19.13 \\
\hline \[
2004
\] & \[
25.16
\] & 27.37 & 18.80 \\
\hline \[
2005
\] & 27.65 & 28.11 & 17.96 \\
\hline \[
2006
\] & 24.52 & 26.24 & 19.27 \\
\hline 2007 & 23.61 & 23.95 & 19.05 \\
\hline \[
2008
\] & 23.90 & 23.91 & 16.59 \\
\hline \[
2009
\] & 25.42 & 23.87 & 18.31 \\
\hline 2010 & 29.39 & 25.86 & 21.21 \\
\hline 2011 & 27.56 & 31.10 & 19.34 \\
\hline 2012 & 23.43 & 29.17 & 21.83 \\
\hline 2013 & 27.52 & 27.48 & 20.72 \\
\hline 2014 & 27.96 & 29.91 & 20.79 \\
\hline 2015 & 28.74 & 28.15 & 22.21 \\
\hline \[
2016
\] & 25.76 & 24.76 & 17.70 \\
\hline Average** & 25.82 & 26.71 & 20.23 \\
\hline
\end{tabular}
*From 1999 onwards mean weights are shown for trawl and creels combined.
** Average for FU11 and FU12 (1999-2016); FU13 (2014-2016).

Table 15.2.4. Nephrops, North Minch (FU11): Adjusted TV survey abundance, landings, discard rate (proportion by number) and estimated harvest rate.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & LANDINGS IN NUMBERS (MILLIONS) & DISCARDS IN NUMBERS (MILLIONS) & REMOVALS IN NUMBERS (MILLIONS)** & \[
\begin{aligned}
& \text { ADJUSTED } \\
& \text { SURVEY } \\
& \text { VMS } \\
& \text { (MILLIONS)* }
\end{aligned}
\] & HARVEST RATE VMS & LANDINGS (TONNES) & DISCARDS (TONNES) & \[
\begin{aligned}
& \text { DISCARD } \\
& \text { RATE }
\end{aligned}
\] & DEAD DISCARD RATE & MEAN WEIGHT IN LANDINGS (g) & MEAN WEIGHT IN DISCARDS (g) \\
\hline 1999 & 144 & 28 & 165 & 794 & 20.7 & 3257 & 273 & 16.4 & 12.8 & 22.7 & 9.69 \\
\hline 2000 & 134 & 10 & 142 & 1166 & 12.1 & 3247 & 100 & 6.9 & 5.2 & 24.19 & 10.08 \\
\hline 2001 & 129 & 17 & 141 & 1092 & 13 & 3259 & 160 & 11.7 & 9.1 & 25.33 & 9.32 \\
\hline 2002 & 133 & 28 & 154 & 1337 & 11.5 & 3440 & 277 & 17.6 & 13.8 & 25.93 & 9.78 \\
\hline 2003 & 126 & 30 & 148 & 1751 & 8.5 & 3269 & 299 & 19.2 & 15.2 & 26.03 & 10 \\
\hline 2004 & 122 & 18 & 136 & 1751 & 7.8 & 3082 & 202 & 13 & 10.1 & 25.16 & 11.02 \\
\hline 2005 & 107 & 50 & 144 & 1540 & 9.4 & 2949 & 507 & 32 & 26.1 & 27.65 & 10.09 \\
\hline 2006 & 170 & 74 & 225 & 1762 & 12.8 & 4166 & 757 & 30.3 & 24.6 & 24.52 & 10.27 \\
\hline 2007 & 168 & 12 & 177 & 1206 & 14.7 & 3978 & 214 & 6.5 & 5 & 23.61 & 18.1 \\
\hline 2008 & 159 & 19 & 173 & 1047 & 16.5 & 3799 & 194 & 10.5 & 8.1 & 23.9 & 10.36 \\
\hline 2009 & 138 & 35 & 164 & 1195 & 13.7 & 3496 & 327 & 20.3 & 16 & 25.42 & 9.34 \\
\hline 2010 & 82 & 12 & 91 & 1293 & 7 & 2413 & 128 & 12.4 & 9.6 & 29.39 & 10.98 \\
\hline 2011 & 96 & 16 & 108 & 1726 & 6.3 & 2697 & 154 & 14.2 & 11 & 27.56 & 9.66 \\
\hline 2012 & 151 & 21 & 167 & 891 & 18.7 & 3542 & 213 & 12.6 & 9.3 & 23.43 & 10.33 \\
\hline 2013 & 122 & 24 & 140 & 1403 & 10 & 3413 & 364 & 16.4 & 12.8 & 27.52 & 15.18 \\
\hline 2014 & 115 & 8 & 121 & 1251 & 9.6 & 3257 & 77 & 6.3 & 4.8 & 27.96 & 9.99 \\
\hline 2015 & 103 & 15 & 114 & 1445 & 7.9 & 3002 & 143 & 12.6 & 9.8 & 28.74 & 9.66 \\
\hline 2016 & 136 & 22 & 152 & 1422 & 10.7 & 3529*** & 266 & 14 & 10.9 & 25.76 & 12.05 \\
\hline rage**** & & & & & & & & & 8.50 & 25.82 & 10.88 \\
\hline
\end{tabular}
* harvest rates previous to 2006 are unreliable.
** Removals numbers take the dead discard rate into account.
*** Includes 0.4 tonnes of below minimum size landings.
**** Dead discard average: 2014-2016; Mean weight in landings and discards average: 1999-2016.

Table 15.2.5. Nephrops, North Minch (FU11): Results of the 1994-2016 TV surveys (values adjusted for bias).
\begin{tabular}{ccllll}
\hline YEAR & \begin{tabular}{c} 
NUMBER OF \\
VALID STATIONS
\end{tabular} & \begin{tabular}{c} 
MEAN DENSITY \\
(BURROWS/m
\end{tabular} \\
& & & \begin{tabular}{c} 
ABUNDANCE \\
(VMS; MILLIONS)
\end{tabular} & \begin{tabular}{c} 
95\% \\
CONFIDENCE \\
INTERVAL (VMS; \\
MILLIONS)
\end{tabular} \\
\hline 1994 & 41 & No Survey & & 122
\end{tabular}

Table 15.2.6. Nephrops, North Minch (FU11): Results of the 2016 TV survey.
\begin{tabular}{lcccccccc}
\hline \multicolumn{1}{c|}{ STRATUM } & \begin{tabular}{c} 
AREA \\
\(\left(k m^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
NUMBER \\
OF \\
STATIONS
\end{tabular} & \begin{tabular}{c} 
MEAN \\
BURROW \\
DENSITY \\
\(\left(\mathrm{no}. / \mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
OBSERVED \\
VARIANCE
\end{tabular} & \begin{tabular}{c} 
ABUNDANCE \\
(MILLIONS)
\end{tabular} & \begin{tabular}{c} 
STRATUM \\
VARIANCE
\end{tabular} & \begin{tabular}{c} 
PROPORTION \\
OF TOTAL \\
VARIANCE
\end{tabular} & \begin{tabular}{c} 
SURVEY \\
PRECISION \\
LEVEL \\
(RSE)
\end{tabular} \\
\hline 2016 TV survey & & & & & & & & \\
\hline VMS & 2908 & 39 & 0.489 & 0.097 & 1421.8 & 20967 & 1 & \\
\hline Total & 2908 & 39 & & & 1421.8 & 20967 & 1 & 0.102 \\
\hline
\end{tabular}


Figure 15.1. Nephrops Functional Units in 6.a. North Minch (FU11), South Minch (FU12), Clyde (FU13).


Figure 15.1.1. Nephrops in Division 6.a. Landings (tonnes) by functional unit (FU11 to 13) and from rectangles outside the functional units (Other).

\section*{Landings - International}


Effort - Scottish Nephrops trawlers


Figure 15.2.1. Nephrops, North Minch (FU11). Long-term landings and effort.

\section*{Length frequencies for catch (dotted) and landed(solid): Nephrops in FU11}


Figure 15.2.2. Nephrops, North Minch (FU11), Catch length-frequency distribution and mean sizes (red line) for Nephrops in the North Minch, 2000-2016.


Figure 15.2.3 (a). Nephrops, North Minch (FU11), Landings by quarter and sex from Scottish trawlers.


Figure 15.2.3 (b). Nephrops, North Minch (FU11), Proportion of males by quarter (1980-2016).


Figure 15.2.4. Nephrops, (FU11 North Minch, FU12 South Minch and FU13 Clyde), mean weight in the landings from 1990-2016 (from Scottish market sampling data).


Figure 15.2.5. Nephrops, (FU11 North Minch, FU12 South Minch, FU13 Clyde), mean weight in landings 2009-2016 by sample date, sex, métier and functional unit.


Figure 15.2.6. Nephrops, North Minch (FU11), TV survey station distribution and relative density (burrows \(/ \mathrm{m}^{2}\) ), 2010-2016. Bubbles in these figures are all scaled the same. Crosses represent zero observations.

\section*{North Minch}


Figure 15.2.7. Nephrops, North Minch (FU11), time-series of revised TV survey abundance estimates (adjusted for bias), with 95\% confidence intervals, 1994-2016 (no survey in 1995 and 1997). The dashed blue line is the rounded \(\mathrm{B}_{\text {trigger }}\) value of 540 million individuals.


Figure 15.5.1. Nephrops, North Minch (FU11), harvest rate, 1995-2016 (no survey data in 1995 and 1997). The blue dashed and solid lines are the Fmsy proxy harvest rate ( \(10.8 \%\) ) and the harvest rate respectively. Harvest rates prior to 2006 are unreliable.


Figure 15.6.1. The area of Nephrops habitat (estimated from VMS data) within the North Minch (FU11) relative to the areas of the Nature Conservation MPA (NCMPA) and Special Area of Conservation (SAC) showing areas within these where demersal trawling is banned (hatched) and where it is permitted for vessels below 500 kW (clear; depending on gear type, see SG, 2016). Geographic Coordinate System: OSGB 1936, Datum: OSGB 1936, Projected Coordinate System: British National Grid. Coastline by Wessel and Smith (2016), MPA sites subsetted from NCMPA (SNH, 2015) and SAC (SNH, 2016) layers, management areas by SG (2017b) and functional units generated from merged ICES rectangles (ICES, 2017). Map and modified layers created using ArcGIS (ESRI, 2014).

\section*{16 Norway lobster (Nephrops norvegicus) in Division 6.a, Functional Unit 12 (West of Scotland, South Minch)}

\section*{Type of assessment in 2017}

The assessment and provision of advice through the use of the UWTV survey data and other commercial fishery data follows the process defined by the benchmark WG (WKNEPH, 2009; WKNEPH, 2013). Full details are provided in the stock annex.

\section*{ICES advice applicable to 2016}
'ICES advises that when the MSY approach is applied, catches in 2016 (assuming zero discards) should be no more than 6163 tonnes. If instead discard rates continue at recent values (average of 2012-2014) and there is no change in assumed discard survival rate, this implies landings of no more than 6073 tonnes.

To ensure that the stock in functional unit (FU) 12 is exploited sustainably, management should be implemented at the functional unit level.'

\section*{ICES advice applicable to 2017}
'ICES advises that when the MSY approach is applied, and assuming that discard rates and fishery selection patterns do not change from the average of 2013-2015, catches in 2017 should be no more than 6419 tonnes. This implies landings of no more than 6196 tonnes.

To ensure that the stock in functional unit (FU) 12 is exploited sustainably, management should be implemented at the functional unit level.'

\subsection*{16.1 General}

\section*{Stock description}

The South Minch (FU12) is located midway down the west coast of Scotland (North Minch report, Section 15, Figure 15.1). The area is characterised by numerous islands of varying size, and sea lochs occur along the mainland coast. These topographical features create a diverse habitat with complex hydrography and a patchy distribution of soft sediments. Further details are provided in the stock annex.

\section*{Management applicable to 2016 and 2017}

Management is at the ICES subarea level as described at the beginning of Section 15 (FU11 North Minch report).

\section*{Ecosystem aspects}

Details of the ecosystem aspects for this functional unit are provided in the stock annex where available.

\section*{Fishery description}

Information on developments in the fishery was provided by Marine Scotland staff, specifically fishery officers.

In 2016, the fishery was described as more active during winter months compared to the previous year due to good weather. Usually during winter, fishing activity is re-
duced in the South Minch and small boats are often restricted to trawling in the sheltered sea-lochs. Boats operating out of Oban and Portree continued to operate over similar areas to previous years. Boats operating out of Oban fished locally during the spring and summer while two larger vessels fished grounds from the east coast of North England from late autumn and through winter. No influx of east coast vessels were reported as in previous years. In Oban the few visiting vessels were English or from other west coast harbours, in Portree the few visiting boats were less than 12 m , probably local west coast vessels. Most of the 45 and 115 vessels fishing out of Oban and Portree, respectively, are creelers.

It is still presumed two distinct fleets operate in the South Minch and the main ports are Oban and Mallaig, as no information was received from Mallaig. Inshore a fleet of smaller vessels includes creel boats operated throughout the year in 2015, while some larger twin riggers fished further offshore. The local Mallaig fleet tended to fish closer to shore on harder ground and land better quality Nephrops than visitor boats. Most boats landed once or twice per week and only a few vessels (2-3) landed on a daily basis. Given that vessels were still fishing their usual grounds in 2016 it is likely this pattern persisted. In terms of the impact of Marine Protected Area (MPA) management measures, little impact was felt in Portree as the closest MPA was already covered by a seasonal closure. In Oban smaller vessels trawling for prawns were most affected with one vessel switching to creels.

There is increasing overlap of the areas exploited by trawl and creel fishing and this has led to some gear conflict issues, although this was not reported in 2016. Since 2009, vessels have been required to fit 120 mm square meshed panels, in accordance with the west coast emergency measures (Council Reg. (EU) 43/2009). Large SMPs ( 200 mm ) are also widely used in the North Minch and were made mandatory for all TR2 vessels with power > 112 kW fishing as part of the previous Scottish Conservation Credits scheme. Twin rig vessels tend to use a 200 mm square mesh panel with a 100 mm or larger mesh codend. These vessels do not catch bulk quantities and this leads to prawns of better average size and quality.

There is very little fish bycatch landed due to the restrictions on cod, haddock and whiting (detailed in ICES, 2016a, ICES, 2016b and ICES, 2016c). Estimates of discard rates of haddock and whiting remain high (ICES, 2016d and ICES, 2017a). Haddock in areas 6a are now covered by the landings obligation in area. From 2016, vessels with total landings that contained \(10 \%\) or more of any combination of cod, haddock, whiting or saithe in 2013 and 2014 had to land haddock (EU, 2015). This may include some vessels fishing for Nephrops.

Further general information on the fishery can be found in the stock annex.

\subsection*{16.2 Data available}

\section*{InterCatch}

Data for 2016 were successfully uploaded into InterCatch prior to the 2017 WG meeting according to the deadline. Uploaded data were worked up in InterCatch to generate 2016 raised international length-frequency distributions. Allocation schemes for any unsampled fleets are described in the stock annex. Data exploration in InterCatch has previously shown that outputs of raised data were very close to those generated by the previous method applied internally with differences being \(<0.1 \%\). As such, InterCatch length-frequency outputs have been used in the stock assessment since 2012.

\section*{Commercial catch}

Official catch statistics (landings) reported to ICES are shown in Table 15.1.1 (see FU11 North Minch report, Section 15). These relate to the whole of \(6 . a\) of which the South Minch is a part. Landings for FU12 provided through national laboratories are presented in Table 16.2.1, broken down by country and by gear type. Landings from this fishery are predominantly reported from Scotland, with low levels reported from the rest of the UK and Ireland. Total reported Scottish landings in 2016 were 4310 tonnes (plus 33 tonnes from other UK vessels and 59 tonnes from Ireland), consisting of 3450 tonnes ( \(80.0 \%\) ) landed by Scottish Nephrops trawlers and 838 tonnes \((19.4 \%)\) landed by Scottish creel vessels. The proportion of creel caught landings has remained relatively stable over the last five years.

\section*{Effort data}

In 2015 WGCSE agreed that effort should be reported in kW days as this is likely to be more informative about changes in the actual fleet effort. Effort shows an overall decreasing trend since 2003 but there are peaks in 2008 and 2012 which can be attributed to visiting North Sea trawlers (Figure 16.2.1). Since 2013 effort has been stable at a level comparable to 2011. Note that the effort time-series range (2000-2016) does not match with the more extensive year range available for landings due to a lack of reliable effort data in the Marine Scotland Science in-house database. The effort is also slightly inconsistent with the landings data in that effort is provided for TR2 vessels while the 'Nephrops trawl' landings additionally includes landings by large mesh trawlers targeting Nephrops.

\section*{Sampling levels}

Length compositions of landings and discards are obtained during market sampling and on-board observer sampling respectively. These sampling levels are shown in Table 15.2.2 (see FU11 North Minch report, Section 15). Sampling effort fell in 2016 compared to 2015, with only 8 discard samples available for 2016. This may have been due to a combination of potential factors; including recent changes to the sampling design, inadequate training of Scottish Fishermen's Federation observers and industry pelagic surveys taking priority over discard trips. Length compositions for the creel fishery are available for landings only. This is because survival in the, probably, low numbers of animals that are discarded (although little quantitative information exists) has been shown to be high. Therefore these animals are not considered to be removed from the population and hence a value of \(100 \%\) survival is used (ICES, 2013).

\section*{Length compositions}

Figure 16.2.2 shows a series of annual length-frequency distributions from 2000 onwards and appears fairly stable over the time-series. Catch (removals) length compositions are shown for each sex along with the mean size for both. The mean size declined slightly in 2016 compared to 2015 and this decrease was also reported by the industry. In both sexes there are peaks towards the lower size ranges, particularly for males which show a bimodal distribution. This may be indicative of elevated recruitment which would reduce the mean size. Moreover the tails of the distributions above 35 mm CL (the size beyond which the effects of recruitment pulses and discards are considered to be negligible) were stable in 2016. This supports the perception that the decline is due to elevated recruitment rather than exploitation, which would be consistent with the stock being exploited below Fmsy (see Section 16.3).

\section*{Sex ratio}

The sex ratio in the South Minch shows some variation but males consistently make the largest contribution to the annual landings. Males are available throughout the year while females are mainly caught in the summer when they emerge from the burrow after egg hatching. In 2016 weather during the winter was relatively settled, with increased landings in quarter one in comparison to 2015 when females are available to the fishery (Figure 16.2.3 (a)). Although the proportion of males in landings was only marginally higher in 2016 than it was in 2014 when weather was poor. Figure 16.2.3 (b) illustrates the sex ratio by season. There are no particularly anomalous values evident in 2016.

\section*{Mean weights}

The mean weight in the landings (Figures 15.2.4 and 15.2.5; see FU11 North Minch report, Table 15.2.3) has fluctuated at a high level (in comparison to values for 2006 to 2010) since 2011. Seasonal variability (and occasional outliers) in mean weights is seen in the individual sample estimates. Although no obvious trends between years are present (Figure 15.2.5). The annual estimate of mean weight in the landings has an effect on the catch forecast. Over the time-series there is an increasing trend in mean weights in the landings. This can be explained by the increasing proportion of creel samples (which tend to catch and land larger Nephrops).

\section*{Discarding}

Discarding of undersized and unwanted Nephrops occurs in this fishery. Discard sampling has been conducted on the Scottish Nephrops trawler fleet since 1990. Discarding rates in this FU have varied considerably over the years, ranging from as low as \(3 \%\) to over \(25 \%\). In 2016 the discarding rate was \(14.9 \%\), higher than in 2015 (7.7\%) and comparable to 2014 ( \(15.6 \%\) ) (Table 16.2.2).

Studies (Charuau et al., 1982; Sangster et al., 1997; Wileman et al., 1999) suggest that some Nephrops survive the discarding process, an estimate of \(25 \%\) survival is assumed for this FU in order to calculate removals (landings + dead discards) from the population. The discard survival rate for creel caught Nephrops has been shown to be high (ICES, 2013) and a value of \(100 \%\) is used. The discard rate (adjusted to account for survival) which will be used in the forecast was estimated by taking a three year average 2014-2016 and amounts to \(9.87 \%\).

\section*{Abundance indices from UWTV surveys}

Underwater TV surveys using a stratified random approach are available for this stock since 1995. TV surveys are targeted at known areas of mud, sandy mud and muddy sand in which Nephrops construct burrows. The numbers of valid stations used in the final analysis in each year are shown in Table 16.2.3. On average, 35 stations have been considered valid each year, and raised to a stock area of \(5072 \mathrm{~km}^{2}\) (derived from BGS sediment data). In 2016, 37 valid stations were used in the survey final analysis (Table 16.2.3).

TV survey abundance estimates from 1999-2016 are shown in Table 16.2.3 and Figure 16.2.4. They show that the Nephrops population in the South Minch experienced several years of high abundance in the early mid-2000s. Aside from this it has fluctuated without obvious trend over the period of the survey (Figure 16.2.4). The recently observed 2016 abundance represents a \(5.7 \%\) increase in relation to 2015. Although this
increase is not statistically significant given the overlap of the two years \(95 \%\) confidence intervals.

Table 16.2.4 shows a more detailed summary of the results from the three most recent TV surveys conducted in FU12. The table includes estimates of abundance and variability in each of the strata adopted in the stratified random approach. Mean burrow density increased slightly in 2016, in comparison to the 2015 survey. Densities are generally lower in the western parts of the area towards the Outer Hebrides and higher in the inshore areas to the south west of Skye (Figure 16.2.5). CVs for the three most recent TV surveys (Table 16.2.4) are lower than the precision level agreed by WGNEPS (2016; 15.4\%). Figure 16.2.4 show the time-series estimated abundance for the TV surveys, with \(95 \%\) confidence intervals on annual estimates.

The use of the UWTV surveys for Nephrops in the provision of advice was extensively reviewed by WKNEPH (ICES, 2009; ICES, 2013). A number of potential biases were highlighted including those due to edge effects, species burrow misidentification and burrow occupancy. The cumulative relative to absolute conversion factor estimated for FU12 was 1.32 meaning that the TV survey is likely to overestimate Nephrops abundance by \(32 \%\).

\subsection*{16.3 Assessment}

\section*{Comparison with previous assessments}

The assessment follows the same procedure as last year and is based on a combination of examining trends in fishery indicators and underwater TV abundance estimates. The process was defined by the benchmark WG and is described in the stock annex.

No major issues were highlighted by the audit conducted last year.

\section*{State of the stock}

The underwater TV survey is presented as the best available information on the South Minch (FU12) Nephrops stock. The details of the 2016 survey are shown in Table 16.2.4 and compared with the 2014 and 2015 outcomes. At present it is not possible to extract any length or age structure information from the survey and therefore it provides information on abundance over the area of the survey.

TV survey estimated stock abundance in 2016 was 2118 million individuals, substantially above the MSY Btrigger value of 1016 million, or the rounded value of 1020 million used for the provision of advice.

The calculated harvest rate in 2016 (dead removals/TV abundance \(=9.5 \%\) ) was below the \(\mathrm{F}_{\text {msy }}\) proxy for this stock (the value associated with high long-term yield and low risk depletion) of \(11.7 \%\).

\subsection*{16.4 Catch option table}

Landings predictions and catch options at various harvest rates (based on principles established at WKNEPH (ICES, 2009), will be made on the basis of the 2017 UWTV survey conducted in June. These will be presented in October 2017 for the provision of advice.

Catch option table inputs and historical estimates of mean weight in landings and harvest rates are presented in Table 16.2.2 and summarised below. The calculation of catch options for the South Minch follows the procedure outlined in the stock annex.
Given the variability in mean weights it was considered more appropriate to use a full time-series average, from 1999 (first year with creel and trawl length distributions combined) until 2017.
The table below shows the agreed inputs to the catch options table.
\begin{tabular}{lrc}
\hline \multicolumn{1}{c}{ Input } & Data & 2017 assessment \\
\hline Survey abundance (millions) & UWTV 2017 & Not yet known \\
\hline Mean weight in landings \((\mathrm{g})\) & \(1999-2016\) & 26.71 \\
\hline Mean weight in discards \((\mathrm{g})\) & \(1999-2016\) & 10.03 \\
\hline Average dead discard rate & \(2014-2016\) & \(9.87 \%\) \\
\hline
\end{tabular}

\subsection*{16.5 Reference points}

New reference points were derived for this stock at WKMSYRef4 (ICES, 2016e). These are updated on the basis of an average of estimated FMSY proxy harvest rates over a period of years which corresponds more closely to the methodology for finfish. In cases where there is a clear trend in the values a five year average was chosen. Similarly, the five year average of the F at \(95 \%\) of the YPR obtained at the Fmsy proxy reference point was proposed as the Fmsy lower bound and the five year average of the F above Fmax that leads to YPR of \(95 \%\) of the maximum as the upper bound. Using an average value also has the advantage of reducing the effect of any unusually high or low estimates of the Fmsy proxy which occasionally appear. For this stock the Fmsy proxy has been revised from \(12.3 \%\) to \(11.7 \%\).

For Nephrops stocks MSY Btrigger has been defined as the lowest stock size from which the abundance has increased and is calculated as 1016 million individuals. This value was rounded to 1020 million, in the advice from WKMSYRef4 on MSY Btrigger. Full details are contained in the stock annex.

These should remain under review by WGCSE and may be revised should improved data become available.

Table 16.2.2 and Figure 16.5.1 show the harvest rates for FU12. The harvest rate has fluctuated over the time-series and has been below the Fmsy proxy since 2013. The increase in 2016, compared to the 2013-2015 harvest rates, was due to relatively increased landings compared to abundance.

It is likely that prior to 2006, the harvest rates are underestimates due to underreported landings.

\subsection*{16.6 Management strategies}

Scotland has recently established a network of regional Inshore Fisheries Groups (rIFGs), non-statutory bodies that aim to improve the management of Scotland's inshore fisheries out to six nautical miles, and to give commercial inshore fishermen a strong voice in wider marine management developments. The rIFGs will contribute to regional policies and initiatives relating to management and conservation of inshore fisheries, including impacts on the marine environment and the maintenance of sustainable fishing communities and measures designed to better conserve and sus-
tainably exploit stocks of shellfish and sea fish (including salmon) in their local waters. Although no IFG proposals specific to the management of Nephrops fisheries have yet been adopted, some of the IFG management plans for the Scottish West Coast include spatial management of Nephrops fisheries and the introduction of creel limits.

On the 8th of February 2016 phase 1 of the fisheries management measures for inshore MPAs in Scottish waters came into force (SG, 2016). These measures relate to both Nature Conservation MPAs (NCMPAs; Marine (Scotland) Act and the UK Marine and Coastal Access Act) and Special Areas of Conservation (SACs; EC Habitats Directives - Council Directive 92/43/EEC) both of which have the aim of conserving biological diversity in Scottish waters and contribute to Scotland's MPA network (SG, 2017a). Although not specific to the management of the Nephrops fishery they will influence spatial patterns of fishing for Nephrops where controls on the two main gear types, demersal trawls and creels, are implemented on Nephrops habitat. There are seven protected areas within the South Minch functional unit with fisheries management measures. MPAs on the main areas of Nephrops habitat include the Loch Sunart to the Sound of Jura NCMPA where demersal trawling is banned in some areas, i.e. zoned, and seasonal closures implemented in others, Loch Sunart NCMPA/SAC, where demersal trawling is banned and creeling is zoned, the East of Mingulay SAC, demersal trawling banned and creeling zoned, and the Trenish Isles SAC, demersal trawling banned. Another area is the Loch Duich, Long and Alsh NCMPA/SAC, covering some patches of muddy sediment, where demersal trawling is banned or temporally closed in other areas that extend beyond the MPA onto muddy sediment. Other areas include the Loch Creran SAC/NCMPA, demersal trawling banned and creeling zoned, and the Firth of Lorn SAC which has the same management as the Loch Sunart to the Sound of Jura NCMPA. For the Firth of Lorn and Loch Creran, management was in place prior to 2016 (SG, 2016). An additional NCMPA, at Loch Carron, was designated using emergence powers in 2017 (SG, 2017b). However, this could not have influenced the fishery in 2016. The areas of the SACs and NCMPAs relative to the estimated Nephrops habitat within the South Minch functional unit are displayed in Figure 16.6.1.

\subsection*{16.7 Quality of assessment and forecast}

The length and sex composition of the landings data is considered to be adequately sampled, although sampling levels were lower in 2016 than previous years (see section 16.2). Discard sampling has been conducted for Scottish Nephrops trawlers in this fishery since 1990, and is considered to represent the trawl fishery adequately. The landings length compositions from 1999 onwards are derived from both creel and trawl samples. The creel fishery, which generally accounts for around \(20 \%\) of the landings and increasingly operates over similar areas to trawling, exhibits a length composition composed of larger animals.

There are concerns over the accuracy of historical landings and effort data prior to 2006 when Buyers and Sellers legislation was introduced and the reliability began to improve. Because of this, the final assessment adopted is independent of official statistics. Harvest rates since 2006 are also considered more reliable due to more accurate landings data reported under new legislation. Incorporation of creel length compositions has also improved estimates of harvest rates.

Underwater TV surveys have been conducted for this stock every year since 1995. The number of valid stations in the survey has remained relatively stable throughout
the time period. The UWTV-FU12 is targeted at known areas of mud, sandy mud and muddy sand within the South Minch. The variance of density estimates in the South Minch is relatively high, particularly in the sandy mud strata, resulting in large confidence intervals and a greater uncertainty on the abundance estimates than in other FUs. This makes it difficult to determine which population changes are significant.
There is a need to explore options to implement further stratification for the South Minch survey area. In the provision of catch options based on the absolute survey estimates, additional uncertainties related to mean weight in the landings and the discard rates also arise. A three year average (2014-2016) of discard rates (adjusted to account for some survival of discarded animals) has been used in the calculation of catch options.

The cumulative relative to absolute conversion factor estimates for FU12 are largely based on expert opinion. The precision of these bias corrections cannot yet be characterised. The landings derived in the forecast (catch options table) are sensitive to the input dead discard rate and mean weights in landings, and this introduces uncertainties in the catch forecasts. Precision estimates are needed for these forecast inputs.

The overall area of the ground is estimated from the available BGS contoured sediment data and at present is considered to be a minimum estimate. Work is underway to improve the area estimation. VMS data linked to landings (from queries of the Scottish FIN database), suggest no major differences between areas fished and the mud sediment maps. Two other factors however, are likely to increase the estimate of ground area available for Nephrops and Nephrops directed fishing. Firstly, the inclusion of vessels smaller than 15 m would likely increase the fished area in some of the inshore locations and secondly, it is known that most of the sea lochs have areas of mud substrate and are typically fished by creel boats. In recent years, limited TV surveys have taken place in some of the sea lochs and attempts are being made to utilise these data to improve estimates of mud area and Nephrops abundance in the South Minch.

\subsection*{16.8 Recommendation for next benchmark}

This stock was last benchmarked in 2009. WGCSE will keep the stock under close review and recommend future benchmark as required.

\subsection*{16.9 Management considerations}

ICES and STECF have repeatedly advised that management should be at a smaller scale than the ICES division level. Management at the functional unit level could provide controls to ensure effort and catch were in line with resources available.

Creel fishing takes place in this area but overall effort in terms of creel numbers is not known and measures to control numbers are not in place. There is a need to ensure that the combined effort from all forms of fishing is taken into account when managing this stock.

There is a bycatch of other species in the area of the South Minch and estimated discards of whiting and haddock by the TR2 fleet are high in area 6.a generally. It is important that efforts are made to ensure that unwanted bycatch is kept to a minimum in this fishery. Current efforts to reduce discards and unwanted bycatches of cod include the implementation of large square meshed panels (SMPs) of 120 mm under the west coast emergency measures, and SMPs of 200 mm which were introduced as part of the previous Scottish Conservation Credits scheme.

\subsection*{16.10References}

Afonso-Dias, M. S. 1998. Variability of Nephrops norvegicus (L.) populations in Scottish waters in relation to the sediment characteristics of the seabed. PhD Thesis University of Aberdeen. 282 pp.

BGS. 2011. Marine SeaBed Sediment Map - UK Waters - 250k (DigSBS250). British Geological Survey, Nottingham. Available at: <http://www.bgs.ac.uk/discoverymetadata/13605549.html> [Accessed: unknown date].

Charuau A., Morizur Y., Rivoalen J.J. 1982. Survival of discarded Nephrops norvegicus in the Bay of Biscay and in the Celtic Sea, ICES-CM-1982/B:13.

Council Reg. (EU) 43/2009.
EU. 2015. COMMISSION DELEGATED REGULATION (EU) 2015/2438 of 12 October 2015 establishing a discard plan for certain demersal fisheries in north-western waters. Official Journal of the European Union, L 336/29. Available at: <http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32015R2438\&from=EN> [Accessed: 30/06/2017].

ESRI. 2014. ArcGIS. Version 10.2.1. Environmental Systems Research Institute, Inc.: Redlands, CA.

Howard F.G. and Hall, W.B. 1983. Some observations on the biometrics of Nephrops norvegicus (L.) in Scottish waters. ICES, Doc.ShellfishComm.,CM1983/K:36.

ICES. 2010. Report of the Study Group on Nephrops Surveys (SGNEPS), 9-11 November 2010, Lisbon, Portugal. ICES CM 2010/SSGESST:22. 95 pp.

ICES. 2012. Report of the Study Group on Nephrops Surveys (SGNEPS), 6-8 March 2012, Acona, Italy. ICES CM 2012/SSGESST:19. 36 pp.
ICES. 2013. Report of the Benchmark Workshop on Nephrops assessment (WKNEPH). ICES CM 2013/45 230 pp.
ICES. 2016a. Stock Annex: Whiting (Merlangius merlangus) in Division 6.a (West of Scotland). Working Group for the Celtic Seas Ecoregion (WGSCE). Available at: <http://ices.dk/sites/pub/Publication\%20Reports/Stock\%20Annexes/2016/whgscow_SA.pdf.> [Accessed: 30/06/2017].
ICES. 2016b. Stock Annex: West of Scotland cod (Division 6.a). Working Group for the Celtic Seas Ecoregion (WGSCE). Available at: <http://ices.dk/sites/pub/Publication\%20Reports/Stock\%20Annexes/2016/codscow_SA.pdf.> [Accessed: 30/06/2017].

ICES. 2016c. Haddock (Melanogrammus aeglefinus) in Subarea 4, Division 6.a and Subdivision 20 (North Sea, West of Scotland, Skagerrak). Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). Available at: <http://www.ices.dk/sites/pub/Publication\%20Reports/Stock\%20Annexes/2016/had346a SA.pdf.> [Accessed: 30/06/2017].

ICES. 2016d. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 4-13 May 2016, Copenhagen, Denmark. ICES CM 2016/ACOM:13. 1343 pp.
ICES. 2016e. EU request to ICES to provide FmsY ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

ICES. 2017a. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK), 26 April-5 May 2016, Hamburg, Germany. ICES CM 2016/ ACOM:14. 19 pp.
ICES. 2017b. ICES Statistical Rectangles. International Council for the Exploration of the Sea: Copenhagen, Denmark. Available at: <http://geo.ices.dk/index.phpSource> [Accessed: 16/03/2017].

Sangster, G.I., Breen, M., Bova, D.J., Kynoch, R., O'Neill, F.G., Lowry. N., Moth-Poulsen, T. Hansen, U.J., Ulmestrand, M., Valentinsson, D., Hallback, H., Soldal, A.V., and Hoddevik, B. 1997. Nephrops survival after escape and discard from commercial fishing gear. Presented at ICES FTFB Working Group, Hamburg, Germany 14-17 April, 1997, ICES CM 1997 CM/B.

SG. 2016. Simple guide to fisheries management measures in Marine Protected Areas. Marine Scotland (The Scottish Government): Edinburgh. Available at: <http://www.gov.scot/Resource/0049/00498320.pdf> [Accessed: 16/05/2017].

SG. 2017a. Marine Protected Areas in Scotland's Seas - Guidelines on the selection of MPAs and development of the MPA network. Marine Scotland (The Scottish Government): Edinburgh. Available at: <http://www.gov.scot/Topics/marine/marineenvironment/mpanetwork/mpaguidelines> [Accessed: 16/05/2017].

SG. 2017b. Loch Carron Marine Protected Area Question and Answer Document. Marine Scotland (The Scottish Government): Edinburgh. Available at: <http://www.gov.scot/Resource/0051/00518275.pdf> [Accessed: 01/06/2017].
SG. 2017c. Marine conservation orders (MCOs) and fisheries management measures (MPAs and SACs) - with effect May 2017. Marine Scotland (The Scottish Government): Edinburgh. Available at: <https://marinescotland.atkinsgeospatial.com/nmpi/default.aspx?availablelayers=838> [Accessed: 31/05/2017].

SNH. 2015. Nature Conservation Marine Protected Areas. Scottish Natural Heritage (Scottish Government): Inverness. Available at: <https://gateway.snh.gov.uk/naturalspaces/index.jsp> [Accessed: 03/04/2017].
SNH. 2016. Special Areas of Conservation. Scottish Natural Heritage (Scottish Government): Inverness. Available at: <https://gateway.snh.gov.uk/natural-spaces/index.jsp> [Accessed: 03/04/2017].

Wessel, P. and Smith, W.H.F. 2016. GSHHG version 2.3.6 - A Global Self-consistent, Hierarchical, High-resolution Geography Database. National Centres for Environmental Information, National Oceanic and Atmospheric Administration: Boulder, CO. <https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html> [Accessed: 31/05/2017].

Wileman, D.A., Sangster, G.I., Breen, M., Ulmestrand, M., Soldal, A.V. and Harris, R.R. 1999. Roundfish and Nephrops survival after escape from commercial fishing gear. EU Contract Final Report. EC Contract No: FAIR-CT95-0753.

Table 16.2.1. Nephrops, South Minch (FU12), ICES estimates of landings of Nephrops, 1981-2016.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{UK SCOTLAND} & & \multirow[t]{2}{*}{OTHER UK} & \multirow[t]{2}{*}{IRELAND} & \multirow[t]{2}{*}{TOTAL} \\
\hline YEAR & NEPHROPS TRAWL & OTHER & CREEL & \begin{tabular}{l}
BELOW \\
MINIUM \\
SIZE
\end{tabular} & \begin{tabular}{l}
SUB \\
TOTAL
\end{tabular} & & & \\
\hline 1981 & 2966 & 254 & 432 & 0 & 3652 & 0 & 0 & 3652 \\
\hline 1982 & 2925 & 206 & 421 & 0 & 3552 & 0 & 0 & 3552 \\
\hline 1983 & 2595 & 362 & 456 & 0 & 3413 & 0 & 0 & 3413 \\
\hline 1984 & 3229 & 477 & 594 & 0 & 4300 & 0 & 0 & 4300 \\
\hline 1985 & 3096 & 424 & 488 & 0 & 4008 & 0 & 0 & 4008 \\
\hline 1986 & 2694 & 288 & 502 & 0 & 3484 & 0 & 0 & 3484 \\
\hline 1987 & 2928 & 418 & 546 & 0 & 3892 & 0 & 0 & 3892 \\
\hline 1988 & 3544 & 364 & 555 & 0 & 4463 & 10 & 0 & 4473 \\
\hline 1989 & 3846 & 338 & 561 & 0 & 4745 & 0 & 0 & 4745 \\
\hline 1990 & 3732 & 263 & 435 & 0 & 4430 & 0 & 0 & 4430 \\
\hline 1991 & 3596 & 342 & 503 & 0 & 4441 & 1 & 0 & 4442 \\
\hline 1992 & 3478 & 209 & 549 & 0 & 4236 & 1 & 0 & 4237 \\
\hline 1993 & 3609 & 194 & 650 & 0 & 4453 & 5 & 0 & 4458 \\
\hline 1994 & 3742 & 264 & 405 & 0 & 4411 & 3 & 0 & 4414 \\
\hline 1995 & 3443 & 717 & 508 & 0 & 4668 & 14 & 0 & 4682 \\
\hline 1996 & 3108 & 417 & 469 & 0 & 3994 & 1 & 0 & 3995 \\
\hline 1997 & 3518 & 329 & 493 & 0 & 4340 & 3 & 1 & 4344 \\
\hline 1998 & 2851 & 340 & 538 & 0 & 3729 & 0 & 1 & 3730 \\
\hline 1999 & 3165 & 359 & 514 & 0 & 4038 & 0 & 14 & 4052 \\
\hline 2000 & 2940 & 311 & 700 & 0 & 3951 & 0 & 2 & 3953 \\
\hline 2001 & 2823 & 391 & 768 & 0 & 3982 & 0 & 9 & 3991 \\
\hline 2002 & 2234 & 314 & 743 & 0 & 3291 & 0 & 14 & 3305 \\
\hline 2003 & 2812 & 203 & 858 & 0 & 3873 & 0 & 6 & 3879 \\
\hline 2004 & 2864 & 105 & 879 & 0 & 3848 & 0 & 21 & 3869 \\
\hline 2005 & 2812 & 46 & 955 & 0 & 3813 & 1 & 34 & 3848 \\
\hline 2006 & 3570 & 97 & 922 & 0 & 4589 & 9 & 35 & 4633 \\
\hline 2007 & 4437 & 21 & 959 & 0 & 5417 & 19 & 35 & 5471 \\
\hline 2008 & 4433 & 12 & 896 & 0 & 5341 & 2 & 13 & 5356 \\
\hline 2009 & 3346 & 24 & 900 & 0 & 4270 & 4 & 11 & 4285 \\
\hline 2010 & 2836 & 19 & 969 & 0 & 3824 & 16 & 6 & 3846 \\
\hline 2011 & 2876 & 11 & 783 & 0 & 3670 & 23 & 9 & 3702 \\
\hline 2012 & 3159 & 32 & 773 & 0 & 3964 & 19 & 6 & 3989 \\
\hline 2013 & 2490 & 543 & 729 & 0 & 3762 & 13 & 1 & 3776 \\
\hline 2014 & 2490 & 3 & 637 & 0 & 3130 & 32 & 17 & 3179 \\
\hline 2015 & 2662 & 18 & 665 & 0 & 3345 & 22 & 33 & 3400 \\
\hline 2016 & 3450 & 22 & 838 & 0 & 4310 & 33 & 59 & 4402 \\
\hline
\end{tabular}

Table 16.2.2. Nephrops, South Minch (FU12): Adjusted TV survey abundance, landings, discard rate proportion by number) and estimated harvest rate.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & \[
\begin{aligned}
& \text { LANDINGS } \\
& \text { NUMBER } \\
& \text { (MILLIONS) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { DISCARDS } \\
& \text { NUMBER } \\
& \text { (MILLIONS) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { REMOVALS } \\
& \text { NUMBER } \\
& \text { (MILLIONS)** }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ADJUSTED } \\
& \text { SURVEY } \\
& \text { (MILLIONS) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HARVEST } \\
& \text { RATE* }^{*}
\end{aligned}
\] & LANDINGS (TONNES) & DISCARDS (TONNES) & \[
\begin{aligned}
& \text { DISCARD } \\
& \text { RATE (\%) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DEAD } \\
& \text { DISCARD } \\
& \text { RATE (\%) }
\end{aligned}
\] & MEAN WEIGHT IN LANDINGS (G) & \begin{tabular}{l}
MEAN \\
WEIGHT \\
IN DIS- \\
CARDS (G)
\end{tabular} \\
\hline 1999 & 161 & 29 & 183 & 1086 & 16.9 & 4052 & 206 & 15.4 & 12 & 25.14 & 7 \\
\hline 2000 & 145 & 33 & 170 & 1854 & 9.2 & 3953 & 284 & 18.7 & 14.7 & 27.3 & 8.5 \\
\hline 2001 & 168 & 65 & 216 & 2037 & 10.6 & 3991 & 591 & 27.9 & 22.5 & 23.79 & 9.11 \\
\hline 2002 & 123 & 26 & 143 & 1899 & 7.5 & 3305 & 247 & 17.6 & 13.8 & 26.83 & 9.37 \\
\hline 2003 & 139 & 38 & 168 & 2157 & 7.8 & 3879 & 381 & 21.3 & 16.9 & 27.86 & 10.1 \\
\hline 2004 & 141 & 44 & 175 & 2558 & 6.8 & 3869 & 454 & 23.8 & 19 & 27.37 & 10.26 \\
\hline 2005 & 137 & 49 & 174 & 2208 & 7.9 & 3848 & 452 & 26.5 & 21.2 & 28.11 & 9.17 \\
\hline 2006 & 177 & 30 & 199 & 1845 & 10.8 & 4633 & 324 & 14.3 & 11.1 & 26.24 & 10.97 \\
\hline 2007 & 228 & 66 & 278 & 1016 & 27.3 & 5471 & 903 & 22.4 & 17.8 & 23.95 & 13.73 \\
\hline 2008 & 224 & 74 & 279 & 1608 & 17.4 & 5356 & 605 & 24.7 & 19.8 & 23.91 & 8.23 \\
\hline 2009 & 179 & 26 & 199 & 1542 & 12.9 & 4285 & 216 & 12.5 & 9.6 & 23.87 & 8.44 \\
\hline 2010 & 149 & 12 & 158 & 2076 & 7.6 & 3846 & 133 & 7.7 & 5.9 & 25.86 & 10.76 \\
\hline 2011 & 118 & 11 & 126 & 1945 & 6.5 & 3702 & 92 & 8.2 & 6.3 & 31.1 & 8.78 \\
\hline 2012 & 133 & 16 & 145 & 919 & 15.8 & 3989 & 145 & 10.8 & 8.3 & 29.17 & 9.05 \\
\hline 2013 & 136 & 4 & 140 & 1718 & 8.1 & 3776 & 50 & 3.1 & 2.4 & 27.48 & 11.31 \\
\hline 2014 & 105 & 19 & 120 & 2073 & 5.8 & 3179 & 233 & 15.6 & 12.1 & 29.91 & 12.04 \\
\hline 2015 & 120 & 10 & 128 & 1998 & 6.4 & 3400 & 121 & 7.7 & 5.9 & 28.15 & 12.04 \\
\hline 2016 & 177 & 31 & 201 & 2118 & 9.5 & 4402 & 365 & 14.9 & 11.6 & 24.76 & 11.74 \\
\hline Average*** & & & & & & & & & 9.87 & 26.71 & 10.03 \\
\hline
\end{tabular}
*Harvest rates previous to 2006 are unreliable.
**Removals numbers take the dead discard rate into account.
***Dead discard average: 2014-2016; Mean weight in landings and discards average: 1999-2016.

Table 16.2.3. Nephrops, South Minch (FU12): Results of the 1995-2016 TV surveys (adjusted for bias).
\begin{tabular}{|c|c|c|c|c|}
\hline YEAR & NUMBER OF VALID STATIONS & MEAN DENSITY (BURROWS \(/ \mathrm{m}^{2}\) ) & ABUNDANCE (MILLIONS) & 95\% CONFIDENCE INTERVAL (MILLIONS) \\
\hline 1995 & 33 & 0.227 & 1152 & 251 \\
\hline 1996 & 21 & 0.288 & 1473 & 530 \\
\hline 1997 & 36 & 0.212 & 1086 & 185 \\
\hline 1998 & 38 & 0.288 & 1452 & 232 \\
\hline 1999 & 37 & 0.212 & 1086 & 260 \\
\hline 2000 & 41 & 0.364 & 1854 & 348 \\
\hline 2001 & 47 & 0.402 & 2037 & 459 \\
\hline 2002 & 31 & 0.371 & 1899 & 567 \\
\hline 2003 & 25 & 0.424 & 2157 & 756 \\
\hline 2004 & 38 & 0.508 & 2558 & 473 \\
\hline 2005 & 33 & 0.432 & 2208 & 740 \\
\hline 2006 & 36 & 0.364 & 1845 & 598 \\
\hline 2007 & 39 & 0.197 & 1016 & 155 \\
\hline 2008 & 33 & 0.318 & 1608 & 415 \\
\hline 2009 & 25 & 0.303 & 1542 & 634 \\
\hline 2010 & 34 & 0.409 & 2076 & 665 \\
\hline 2011 & 36 & 0.383 & 1945 & 778 \\
\hline 2012 & 38 & 0.182 & 919 & 185 \\
\hline 2013 & 38 & 0.339 & 1718 & 365 \\
\hline 2014 & 36 & 0.409 & 2073 & 530 \\
\hline 2015 & 35 & 0.394 & 1998 & 514 \\
\hline 2016 & 37 & 0.417 & 2118 & 440 \\
\hline
\end{tabular}

Table 16.2.4. Nephrops South Minch (FU12). Results by stratum of the 2014-2016 TV surveys. Note that stratification was based on a series of sediment strata (M - Mud, SM - Sandy mud, MS - Muddy sand).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline STRATUM & \[
\begin{aligned}
& \text { AREA } \\
& \left(\mathrm{KM}^{2}\right)
\end{aligned}
\] & NUMBER OF STATIONS & MEAN BURROW DENSITY (no./m²) & OBSERVED VARIANCE & ABUNDANCE (MILLIONS) & STRATUM VARIANCE & PROPORTION OF TOTAL VARIANCE & SURV PRECI LEVEL (RSE) \\
\hline \multicolumn{9}{|l|}{2014 TV Survey} \\
\hline M & 303 & 4 & 0.212 & 0.001 & 64.3 & 32 & 0 & \\
\hline SM & 2741 & 16 & 0.52 & 0.115 & 1424.8 & 53930 & 0.769 & \\
\hline MS & 2028 & 16 & 0.288 & 0.063 & 583.7 & 16174 & 0.231 & \\
\hline Total & 5072 & 36 & & & 2072.8 & 70135 & 1 & 0.1 \\
\hline \multicolumn{9}{|l|}{2015 TV Survey} \\
\hline M & 303 & 4 & 0.509 & 0.141 & 154.4 & 3236 & 0.049 & \\
\hline SM & 2741 & 16 & 0.486 & 0.114 & 1330.1 & 53565 & 0.811 & \\
\hline MS & 2028 & 15 & 0.253 & 0.034 & 513 & 9215 & 0.14 & \\
\hline Total & 5072 & 35 & & & 1997.5 & 66016 & 1 & 0.1 \\
\hline \multicolumn{9}{|l|}{2016 TV Survey} \\
\hline M & 303 & 2 & 0.402 & 0.004 & 121.7 & 190 & 0.004 & \\
\hline SM & 2741 & 19 & 0.467 & 0.082 & 1281.8 & 32355 & 0.668 & \\
\hline MS & 2028 & 16 & 0.352 & 0.062 & 714.2 & 15905 & 0.328 & \\
\hline Total & 5071 & 37 & & & 2117.7 & 48450 & 1 & 0.1 \\
\hline
\end{tabular}

\section*{Landings - International}


Effort - Scottish Nephrops trawlers


Figure 16.2.1. Nephrops, South Minch (FU12). Long-term landings and effort.

\section*{Length frequencies for catch (dotted) and landed(solid): Nephrops in FU12}


Figure 16.2.2. Nephrops. South Minch (FU12). Catch length-frequency distribution and mean sizes (solid black line) for Nephrops in the South Minch, 2000-2016.


Figure 16.2.3. (a) Nephrops, South Minch (FU12). Landings by sex and quarter from Scottish trawlers.


Figure 16.2.3 (b) Nephrops, South Minch (FU12), Proportion of males by quarter (1980-2016).

\section*{South Minch}


Figure 16.2.4. Nephrops, South Minch (FU12), Time-series of TV survey abundance estimate (adjusted for bias), with \(95 \%\) confidence intervals, 1995-2016. The dashed blue line is the rounded \(B_{\text {trigger }}\) value of 1020 million individuals.


Figure 16.2.5. Nephrops, South Minch (FU12), TV survey station distribution and relative density (burrows \(/ \mathrm{m}^{2}\) ), 2011-2016. Shaded green and brown areas represent areas of suitable sediment for Nephrops. Bubbles in this figure are all scaled the same. Red crosses represent zero observations.

\section*{Harvest Rate}


Figure 16.5.1. Nephrops, South Minch (FU12), harvest rate, 1995-2016. The dashed and solid lines are the FMsy proxy harvest rate \((\mathbf{1 1 . 7 \%}\) ) and the harvest rate respectively. Harvest rates prior to 2006 are unreliable.


Figure 16.6.1. The area of Nephrops habitat (Mud, Muddy Sand and Sandy Mud) within the South Minch (FU12) relative to the areas of the Nature Conservation MPAs (NCMPAs) and Special Area of Conservations (SACs) with fisheries management measures. Areas where demersal trawling is prohibited, restricted (i.e. vessel size restrictions or seasonal closures) and where creeling is prohibited are displayed. For more detailed information see SG (2016). Geographic Coordinate System: OSGB 1936, Datum: OSGB 1936, Projected Coordinate System: British National Grid. Coastline by Wessel and Smith (2016), MPA sites subsetted from NCMPA (SNH, 2015) and SAC (SNH, 2016) layers, management areas from SG (2017c) and functional units generated from merged ICES rectangles (ICES, 2017b). Map and modified layers created using ArcGIS (ESRI, 2014).

\subsection*{16.11Audit of nep.fu. 12}

\section*{General}

\section*{For single stock summary sheet advice}
- Assessment type: Update with one additional year of survey and catch data (benchmarked at WKNEPH2009, stock annex updated at WGCSE 2016).
- Assessment: Analytical (UWTV survey-based abundance assessment combined with commercial fishery data, follows the process defined by the benchmark WG ((WKNEPH2009 and stock annex).
- Forecast: A short-term projection was completed to produce a catch option table.
- Assessment model: UWTV based approach.
- Data issues: None though the following points to note:

Sampling levels slightly lower than previous year.
- Consistency:

The 2017 assessment is consistent with the 2016 assessment and with the assessment methods described at the 2013 benchmark.

Stock annex was updated for FMSYRef4 report and the assessment process is consistence with the stock annex. Check the \(B_{\text {trigger }}\) value as this differs in report and annex compared to FMSYRef4 report (1016 versus 1020 million).

Given the fluctuations observed in mean weights for landings and discards an average from 1999 to 2016 is used in the calculation of catch options as set out in the stock annex.
- Stock status:

UWTV abundance estimates suggest that the stock size has fluctuated with a recent stable trend.

TV survey estimated stock abundance in 2016 was 2118 million individuals, substantially above the MSYB trigger value of 1016 million.
Recent harvest ratios which have been below the Fmsy proxy for the last three years.

The FmSY proxy was revised by WKMSYRef4. Rationale: F35\%SPR combined sexes \(=11.7 \%\) ).

The 2016 harvest ratio for the North Minch (9.5\%; dead removals/TV abundance) is below the FmSY proxy harvest rate. Increase due to increase in TV abundance
- Management Plan:

No specific management plan exists for this stock.
Scotland has recently established a network of regional Inshore Fisheries Groups (rIFGs), non-statutory bodies that aim to improve the management of Scotland's inshore fisheries out to six nautical miles, and to give commercial inshore fishermen a strong voice in wider marine management developments. The rIFGs will contribute to re-
gional policies and initiatives relating to management and conservation of inshore fisheries, including impacts on the marine environment and the maintenance of sustainable fishing communities and measures designed to better conserve and sustainably exploit stocks of shellfish and sea fish (including salmon) in their local waters. Although no IFG proposals specific to the management of Nephrops fisheries have yet been adopted, some of the IFG management plans for the Scottish West Coast include spatial management of Nephrops fisheries and the introduction of creel limits.

On the 8th of February 2016 phase 1 of the fisheries management measures for inshore MPAs in Scottish waters came into force (SG, 2016). These measures relate to both Nature Conservation MPAs (NCMPAs; Marine (Scotland) Act and the UK Marine and Coastal Access Act) and Special Areas of Conservation (SACs; EC Habitats Directives - Council Directive 92/43/EEC) both of which have the aim of conserving biological diversity in Scottish waters and contribute to Scotland's MPA network (SG, 2017a). Although not specific to the management of the Nephrops fishery, they will influence spatial patterns of fishing for Nephrops where controls on the two main gear types, demersal trawls and creels, are implemented on Nephrops habitat.

ICES advices that to ensure that the stock in functional unit (FU) 12 is exploited sustainably, management should be implemented at the functional unit level.

\section*{General comments}
- The assessment was well-written and explanations were thorough. Report is brief and clear.
- The assessment is in accordance with the Stock Annex. Methods to derive Fmsy and landings predictions did not deviate from the benchmark process/stock annex.
- Clear description on how the InterCatch was used in the 2017 assessment. Data were available in InterCatch and used to generate 2016 raised international length-frequency distributions.
- This stock has not been benchmarked but the full UWTV survey approach has been.

\section*{Technical comments}
- Have made comments using track changes on report document in SharePoint. Main point is to check table and figure numbering and suggest swapping tables/figures to be consistent.
- Check syntax for all Nephrops stocks: is it Harvest rate or Harvest ratio in report; we should all be consistent and probably follow that from the advice sheet.

\section*{Conclusions}
- The assessment has been performed correctly for the basis of management advice. The stock appears to be stable in recent years and is above Btrigger and recent Harvest ratios below FmSY (11.7\%).

\section*{Checklist for audit process}

\section*{General aspects}
- Has the EG answered those ToRs relevant to providing advice? YES
- Is the assessment according to the stock annex description? YES
- If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary? N/A
- Have the data been used as specified in the stock annex? Yes
- Has the assessment, recruitment and forecast model been applied as specified in the stock annex? Yes, where appropriate
- Is there any major reason to deviate from the standard procedure for this stock? No
- Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice?

\section*{17 Norway lobster (Nephrops norvegicus) in Division 6.a, Functional Unit 13 (West of Scotland, the Firth of Clyde and Sound of Jura)}

\section*{Type of assessment in 2017}

The assessment and provision of advice through the use of the UWTV survey data and other commercial fishery data follows the process defined by the benchmark WG (WKNEPH, 2009; WKNEPH, 2013). Full details are provided in the stock annex.

\section*{ICES advice applicable to 2016}
'ICES advises that when the MSY approach is applied, catches in 2016 (assuming zero discards) should be no more than 6568 tonnes ( 5554 tonnes for the Firth of Clyde and 1014 tonnes for the Sound of Jura). If instead discard rates continue at recent values (average of 2012-2014) and there is no change in assumed discard survival rate, this implies landings of no more than 6206 tonnes ( 5247 tonnes for the Firth of Clyde and 959 tonnes for the Sound of Jura).

To ensure that Nephrops stocks are exploited sustainably, management of Nephrops in general should be implemented at the functional unit (FU) level. In this particular FU additional measures may be required to ensure that the landings taken in each subarea (Firth of Clyde and Sound of Jura) are in line with the advice.'

\section*{ICES advice applicable to 2017}
'ICES advises that when the MSY approach is applied, and assuming that discard rates and fishery selection patterns do not change from the average of 2013-2015, catches in 2017 should be no more than 6747 tonnes ( 5755 tonnes for the Firth of Clyde and 992 tonnes for the Sound of Jura). This implies landings of no more than 6185 tonnes ( 5276 tonnes for the Firth of Clyde and 909 tonnes for the Sound of Jura).

To ensure that Nephrops stocks are exploited sustainably, management of Nephrops in general should be implemented at the functional unit (FU) level. In this particular FU additional measures should be implemented to ensure landings taken in each subarea (Firth of Clyde and Sound of Jura) are in line with the advice.'

\subsection*{17.1 General}

\section*{Stock description}

The Clyde functional unit (FU13) is located in the southern waters off the west coast of Scotland (North Minch report, Section 15, Figure 15.1)). It is comprised of two distinct patches in the Firth of Clyde and the Sound of Jura, to the east and west of the Mull of Kintyre respectively. The hydrography of the two subareas differs, with the Sound of Jura characterised by stronger tidal currents and the Firth of Clyde exhibiting features of a lower energy environment with a shallow entrance sill. Owing to its burrowing behaviour, the distribution of Nephrops is restricted to areas of mud, sandy mud and muddy sand. Within the two distinct patches these substrates are distributed according to prevailing hydrographic and bathymetric conditions. The available area of suitable sediment is smaller in the Sound of Jura, occupying only the deepest parts of the Sound, while in the Firth of Clyde these sediments predominate. Further details are provided in the stock annex.

\section*{Management applicable to 2016 and 2017}

Management is at the ICES subarea level as described at the beginning of Section 15 (FU11 North Minch report).

\section*{Ecosystem aspects}

Details of the ecosystem aspects for this functional unit are provided in the stock annex where available.

\section*{Fishery description}

Information on developments in the fishery was provided by Marine Scotland staff, specifically fishery officers.

The Nephrops fishery in 2016 was described as "still fairly strong" in the Campbeltown district and it was noted that some vessels from Ayr were targeting both the Clyde and the Sound of Jura. The activity of Northern Irish vessels was not perceived to be high in 2016 compared to 2015 near Campbeltown and around Ayr was perceived to be normal. However, this is not supported by landings data which shows Northern Irish landings were at their highest level ever from this functional unit (other UK landings in Table 17.1.1). Prices and market conditions were reported to be good in 2016, partly due to the reduced value of the pound and the strength of European markets. In Campbeltown lower fuel prices also benefited the fleet whereas in Ayr good prices helped balance out high fuel and running costs.

There are 70 resident vessels based in the Campbeltown district, 44 vessels over 10 m and 26 under 10 m . Of the over 10 m vessels six are creelers, whereas there are 19 creelers under 10 m . Vessel power was between \(80-585 \mathrm{~kW}\), the most powerful being the over 10 m trawlers. In addition, there are 30 trawlers and 15 creelers of \(10-18 \mathrm{~m}\) fishing out of Ayr, with vessel power between \(75-300 \mathrm{~kW}\). All trawlers use 80 mm single or twin rigs with square mesh panels (SMP) of at least 120 mm , in accordance with west coast emergency measures conditions (Council Reg. (EU) 43/2009). Under the Scottish Conservation Credits scheme, vessels with power \(>112 \mathrm{~kW}\) are required to use a 200 mm SMP.

Mobile gear is banned in the Inshore Clyde from Friday night to Sunday night as are vessels greater than 21 m in length. Most creel boats operating in the Clyde have two crew members and operate around 1000 creels. Creeling activity now takes place quite widely in the northern parts of the Firth operating on some of the same grounds but often taking place during the weekend trawling ban.

In terms of the influence of Marine Protected Area (MPA) management measures on the fishery it was stated that the South Arran Nature Conservation MPA (NCMPA) removed a large sea area for Nephrops trawlers to operate over. This reportedly increased trawling effort outside of prohibited area. However, this allowed creelers to move into the areas were trawling was banned. The small area of the Upper Loch Fyne NCMPA closed to trawlers was reported to have had little impact.

Further general information on the fishery can be found in the stock annex.

\subsection*{17.2 Data available}

\section*{InterCatch}

Data for 2016 were successfully uploaded into InterCatch prior to the 2017 WG meeting according with the deadline proposed. Uploaded data were worked up in InterCatch to generate 2016 raised international length-frequency distributions. Data exploration in InterCatch has previously shown that outputs of raised data were very close to those generated by the previous method applied internally with differences being \(<0.1 \%\). As such, InterCatch length-frequency outputs have been used in the stock assessment since 2012.

\section*{Commercial catch}

Official catch statistics (landings) reported to ICES are shown in Table 15.1.1 (see FU11 North Minch report, Section 15). These relate to the whole of area \(6 . a\) of which the Clyde FU is a part. Landings statistics for FU13 provided through national laboratories are presented in Table 17.1.1, broken down by country and by gear type. Landings from this fishery are predominantly reported from Scotland, although Northern Ireland contributed 1248 tonnes in 2016. Total reported Scottish landings in 2016 were 5195 tonnes (plus 1248 tonnes from other UK vessels i.e. Northern Ireland), consisting of 4922 tonnes landed by trawlers ( \(94.8 \%\) ) and 267 tonnes ( \(5.1 \%\) ) landed by Scottish creel vessels. Creel landings have generally increased in the most recent years, and have been in the range of \(4.3-5.1\) \% of total landings from 2013 to 2016, which is low compared to the other FUs to the west of Scotland.

Statistical rectangle 40 E 4 covers parts of both the Firth of Clyde and the Sound of Jura. Table 17.2.1 shows the split in landings between the two subareas comprising FU13. Historically the allocation of landings to the two components of FU13 was carried out by the fishery office and required them to have detailed knowledge of where vessels have been fishing within 40E4. The apparent sudden decline in landings from the Sound of Jura in 2001 is not considered to be associated with a sudden change in fishing practices and is thought more likely to be due to changes in fishery office recording practices. For this reason, the landings split is considered unreliable in recent years and the commercial landings data are now presented for the combined Firth of Clyde and Sound of Jura. Given the relative magnitudes of the fisheries (Clyde likely to be much bigger), the commercial data are likely to be more representative of the Clyde.

\section*{Effort data}

In 2015 WGCSE agreed that effort should be reported in kW days as this is likely to be more informative about changes in the actual fleet effort. Effort shows an overall decreasing trend but was stable through 2010 to 2012 (Figure 17.2.1). Effort increased in 2016 in comparison to 2015. Note that the effort time-series range (2000-2016) does not match with the more extensive year range available for landings due to a lack of reliable effort data in the Marine Scotland Science in-house database. The effort is also slightly inconsistent with the landings data in that effort is provided for TR2 vessels while the 'Nephrops trawl' landings additionally includes landings by large mesh trawlers targeting Nephrops.

\section*{Sampling levels}

Length compositions of landings and discards are obtained during market and onboard observer sampling respectively. These sampling levels are shown in Table 15.2.2 (see FU11 North Minch report, Section 15). Sampling of landings length compositions in the Sound of Jura is more infrequent but samples have been included in the FU13 raising procedure when available. Sampling for FU13 is considered acceptable and although Scottish landings sampling fell substantially in 2016, sampling of Northern Irish landings increased the net sampling effort by six trips. The fall in the sampling effort for Scottish landings may be due to changes in the sampling design, which has reduced flexibility as to when samples can be taken, however other factors are likely to have contributed. Sampling of discards was at the same level in 2016 as in 2015. Length compositions for the creel fishery are available for landings only. This is because survival in the, probably, low numbers of animals that are discarded (although little quantitative information exists) has been shown to be high. Therefore these animals are not considered to be removed from the population and hence a value of \(100 \%\) survival is used (ICES, 2013).

\section*{Length compositions}

Although assessments based on detailed catch analysis are not presently carried out, examination of length compositions can provide a preliminary indication of exploitation effects. Figure 17.2.2 shows a series of annual Clyde length-frequency distributions for the period 2000 to 2016. Catch (removals) length compositions are shown for each sex along with the mean size for both. In both sexes the mean size has declined in 2016 particularly for males. The industry also reported that prawn size in the northern areas of the Clyde had declined. Examination of the tails of the distributions above 35 carapace length CL mm (the length beyond which the effects of recruitment pulses and discards are considered to be negligible) shows the maximum sampled size for both sexes has fallen. Both these parameters suggest that exploitation of the stock has increased.

\section*{Sex ratio}

Sex ratio in the Clyde shows some variation but males generally make the largest contribution to the annual landings shown in Figure 17.2.3(a). This occurs because males are available throughout the year and the fishery takes place in all quarters, although effort is reduced during the winter months because of poor weather. Females on the other hand are mainly taken in the summer when they emerge after egg hatching. The seasonal change in proportion of males to females is evident in Figure 17.2.3(b) where males typically dominate in quarters one and four but the ratio is generally more even in quarters two and three. In 2014 and 2015 males were dominant in quarters one, two and four. In 2016 the males dominated in all quarters, but this was within the normal range of variation which is seen for this stock over the time-series.

\section*{Mean weights}

The mean weights in the landings have fluctuated in this FU over the time-series, although not as much compared to FU11-12. The mean weight declined in 2016 as observed in FU11 and 12. Mean weight for FU13 is generally lower than other areas over the time-series (Table 15.2.3). There is a trend of increasing mean weights in the samples of landings for creel catches, observable for both sexes, but particularly for males. However, sampling levels are low, particularly for the early years of the time-
series and given the seasonal variation present in other FUs it is not possible to say with any certainty that this trend is real (Figures 15.2.4 and 15.2.5; see FU11 North Minch report, Section 15).

\section*{Discarding}

Discarding of undersized and unwanted Nephrops occurs in the Clyde fishery, and discard sampling has been conducted on the Scottish Nephrops trawler fleet since 1990. Discard rates have been high in this FU and have averaged around \(28.2 \%\) by number in this FU since 1999. Since 2010, discard rates have been estimated to be substantially lower (19\%) than the average and there was a further decrease in 2016 to 15.9\% (Table 17.2.2). Studies (Charuau et al., 1982; Sangster et al., 1997; Wileman et al., 1999) suggest that some Nephrops survive the discarding process. An estimate of \(25 \%\) survival is assumed for this FU in order to calculate removals (landings + dead discards) from the population. The discard survival rate for creel caught Nephrops has been shown to be high (ICES, 2013) and a value of \(100 \%\) is used. The discard rate for use in the forecast (adjusted to account for some survival) was estimated to be \(14.60 \%\) (taking a three year average from 2014 to 2016).

\section*{Abundance indices from UWTV surveys}

Underwater TV surveys are available for both subareas since 1995 although the Sound of Jura has been surveyed more infrequently. Underwater television surveys of Nephrops burrow distributions avoid the problems associated with traditional trawl surveys that arise from variability in burrow emergence of Nephrops. TV surveys are targeted at known areas of mud, sandy mud and muddy sand in which Nephrops construct burrows. Full details of the UWTV approach can be found in the stock annex and the report of WKNEPH in 2009 (ICES, 2009). On average, 37 stations have been considered valid each year for the Firth of Clyde and 11 for the Sound of Jura. These are then raised to the estimated ground area available for Nephrops; in total \(2080 \mathrm{~km}^{2}\) based on contoured superficial sediment information (British Geological Surveys). In 2016, 37 valid stations were used in the survey final analysis for the Firth of Clyde (Table 17.2.3) and 12 stations for the Sound of Jura (Table 17.2.4). This was the same level of sampling effort as in 2015. Table 17.2 .5 shows a detailed breakdown of information from the most recent TV surveys conducted in the Firth of Clyde. This includes estimates of abundance and variability in each of the strata adopted in the stratified random approach. Details for the Sound of Jura are shown in Table 17.2.6. A CV (relative standard error) of \(<20 \%\) is considered an acceptable precision level for UWTV survey estimates of abundance. CVs for the three most recent TV surveys in Firth of Clyde and Sound of Jura are lower than the precision level agreed.

Figure 17.2.4 shows the distribution of stations in recent TV surveys (2010-2016) across FU13 (the two distinct subareas can be clearly seen) with the size of the symbols proportional to the Nephrops burrow density. Table 17.2.3 and Figure 17.2.5 show the time-series estimated abundance for the TV surveys in the Firth of Clyde, with \(95 \%\) confidence intervals on annual estimates. Similar information for the Sound of Jura is shown in Table 17.2.4 and Figure 17.2.6. Most surveys have shown higher density in the south part of the Clyde In 2016 this appeared to still be the case, although the relative difference appeared less distinct.

The TV survey estimates of abundance for Nephrops in the Firth of Clyde suggest that the population increased until the mid-2000s implying a sustained period of increased recruitment. Following this, abundance has declined and fluctuated around
the values previously observed in the early 2000s. In 2016 the abundance was at a comparable level to the abundances seen in the early 2000s (Figure 17.2.5).

There is not a continuous time-series of abundance in the Sound of Jura and in some years (particularly 2002 and 2006), estimates are associated with large confidence intervals. Abundance has fluctuated with no obvious trend. In 2013 the abundance was at the second lowest point in the time-series. The abundance has increased in subsequent years and in 2016 it was above the level seen in 2013 and 2014, this difference was statistically significant (i.e. \(95 \%\) confidence intervals did not overlap, Figure 17.2.6).

\subsection*{17.3 Assessment}

\section*{Comparison with previous assessments}

The assessment in 2017 is based on a combination of examining trends in fishery indicators and underwater TV using an extensive dataseries for the Firth of Clyde component of FU13 and a more limited time-series of UWTV data from the Sound of Jura subarea. The assessment in 2017 follows that of 2016 and 2015 in that the commercial data for Clyde and Sound of Jura have been combined because of concerns regarding the accuracy of the landings data. There are also no discard samples and limited market samples available for the Sound of Jura. Therefore the harvest rate and catches for the two areas are presented as a combined total. Nephrops abundance will continue to be monitored separately, with a TV survey in both subareas.

\section*{State of the stock}

The underwater TV surveys are presented as the best available information on the stocks of Nephrops in the two subareas of FU13. The surveys provide fisheryindependent estimates of Nephrops abundance. At present it is not possible to extract any length or age-structure information from the survey and it therefore only provides information on abundance over the area of the survey.

TV survey estimated stock abundance for the Firth of Clyde in 2016 was 1946 million individuals, a \(6.9 \%\) increase from the 2015 estimate (although this was not statistically significant) and well above the Btrigger value of 579 million, rounded to 580 million for the provision of advice. TV survey estimated stock abundance for the Sound of Jura in 2016 was 422 million individuals, a \(12.2 \%\) increase on the 2015 estimate (although \(95 \%\) CI intervals overlapped) and above the Btriger value of 160 million, this value does not require rounding for the provision of advice.

The calculated harvest rate for the FU13 in 2016 (dead removals for both subareas/ Firth of Clyde and Sound of Jura TV abundance \(=17.6 \%\) ) was above the Fmsy proxy value (the value associated with high long-term yield and low risk depletion) for both the Clyde ( \(15.1 \%\) ) and the Sound of Jura (12.0\%). Note the Fmsy proxy values for this stock was revised in October 2015 at WKMSYRef4 (ICES, 2016b).

\subsection*{17.4 Catch option table}

Landings predictions and catch options at various harvest rates (based on principles established at WKNEPH (ICES, 2009)), will be made on the basis of the 2017 UWTV survey conducted in June. These will be presented in October 2017 for the provision of advice.

Catch option table inputs and historical estimates of mean weight in landings and harvest rates are presented in Table 17.2.2 and summarised below. The calculation of catch options for the FU13 follows the procedure outlined in the stock annex.

The table below shows the agreed inputs to the catch options table.
\begin{tabular}{lrc}
\hline \multicolumn{1}{c}{ INPUT } & DATA & 2017 ASSESSMENT \\
\hline Survey abundance (millions) & UWTV 2017 & Not yet known \\
\hline Mean weight in landings \((\mathrm{g})\) & \(2014-2016\) & 20.23 g \\
\hline Mean weight in discards \((\mathrm{g})\) & \(2014-2016\) & 8.52 g \\
\hline Average dead discard rate & \(2014-2016\) & \(14.60 \%\) \\
\hline
\end{tabular}

\subsection*{17.5 Reference points}

Fmsy proxy for this stock was revised in October 2015 at WKMSYRef4 (ICES, 2016a; ICES, 2016b). These were updated on the basis of an average of estimated Fmsy proxy harvest rates over a period of years, which corresponds more closely to the methodology for finfish. In cases where there is a clear trend in the values a five year average was chosen. Similarly, the five year average of the F at \(95 \%\) of the YPR obtained at the Fmsy proxy reference point was proposed as the Fmsy lower bound and the five year average of the F above \(\mathrm{F}_{\text {max }}\) that leads to YPR of \(95 \%\) of the maximum as the upper bound. Using an average value also has the advantage of reducing the effect of any unusually high or low estimates of the Fmsy proxy which occasionally appear. For this functional unit the FMSY proxy has been revised to \(15.1 \%\) for the Clyde and \(12.0 \%\) for the Sound of Jura respectively.

For Nephrops stocks MSY Btrigger has been defined as the lowest stock size from which the abundance has increased and is calculated as 579 million individuals for the Firth of Clyde. The advice from WKMSYRef4 (ICES, 2016b) rounded this value to give an MSY Btrigger of 580 million.

An MSY Btrigger was not previously proposed for FU13 (SJ) as there were few points in the survey series (due to missing years). WKMSYRef4 stated that the survey series is now considered to be of sufficient length to allow the Bloss (abundance in 1995) to be proposed as the MSY \(B_{\text {trigger. }}\). This results in a value of 160 million (ICES, 2016b). Full details are contained in the stock annex.

These should remain under review by WGCSE and may be revised should improved data become available.

Table 17.2.2 and Figure 17.4.1 show the estimated harvest rates over this period. The harvest rate was calculated from the total dead removals for both subareas divided by the combined abundance for the Firth of Clyde TV survey and the Sound of Jura. This does result in some years were the harvest rate is not calculable as we do not have a full time-series of TV surveys for the Sound of Jura. The combined harvest rate peaked in 2007 at \(43.0 \%\) before declining to around the Fmsy level for the Clyde in 2010-2011. The harvest rate has fluctuated since then and rose from \(12.4 \%\) in 2015 (below \(\mathrm{F}_{\mathrm{MSY}}\) ) to \(17.6 \%\) in 2016 (above \(\mathrm{F}_{\text {MSY }}\) ). It is unlikely that prior to 2006, the estimated harvest rates are representative of actual harvest rates due to under-reporting of landings.

\subsection*{17.6 Management strategies}

Scotland has recently established a network of regional Inshore Fisheries Groups (rIFGs), non-statutory bodies that aim to improve the management of Scotland's inshore fisheries out to six nautical miles, and to give commercial inshore fishermen a strong voice in wider marine management developments. The rIFGs will contribute to regional policies and initiatives relating to management and conservation of inshore fisheries, including impacts on the marine environment and the maintenance of sustainable fishing communities and measures designed to better conserve and sustainably exploit stocks of shellfish and sea fish (including salmon) in their local waters. Although no IFG proposals specific to the management of Nephrops fisheries have yet been adopted, some of the IFG management plans for the Scottish West Coast include spatial management of Nephrops fisheries and the introduction of creel limits.

A weekend ban on mobile gear was introduced in the Clyde in 1986 under a Scottish Statutory Instrument. Mobile gear is banned in the Inshore Clyde from Friday night to Sunday night as are vessels greater than 21 m in length.

On the 8th of February 2016 phase 1 of the fisheries management measures for inshore MPAs in Scottish waters came into force (SG, 2016). These measures relate to both NCMPA (Marine (Scotland) Act and the UK Marine and Coastal Access Act) and Special Areas of Conservation (EC Habitats Directives - Council Directive \(92 / 43 / \mathrm{EEC}\) ) both of which have the aim of conserving biological diversity in Scottish waters and along with other protected sites make up Scotland's MPA network (SG, 2017a). Although not specific to the management of the Nephrops fishery they will influence spatial patterns of fishing for Nephrops where controls on the two main gear types, demersal trawls and creels, are implemented on Nephrops habitat. There are three NCMPAs within the Clyde functional unit. The MPA which extends onto the main patch of Nephrops habitat is the South Arran NCMPA, within the Firth of Clyde subarea, where a complete ban on demersal vessels greater than 120 gross tonnage has been implemented. Partial closures (i.e. zoned management) for demersal trawlers smaller than this size and creelers are also in place. For Loch Sween, north of the main habitat area in the Sound of Jura subarea, demersal trawling by vessels is banned. However for trawlers smaller than 75 gross tonnage, temporal closures are in place over some of the area. For the Upper Loch Fyne and Loch Goil NCMPA, just north of the main habitat area in Firth of Clyde subarea, demersal trawling by vessels greater than 75 gross tones is banned and the activity of vessels below this is zoned. Creeling activity is also zoned (SG, 2016). The areas of the NCMPAs relative to the estimated Nephrops habitat within the Clyde functional unit are presented in Figure 17.6.1.

\subsection*{17.7 Quality of assessment and forecast}

There are concerns over the accuracy of historical landings and effort data and because of this the final assessment adopted is independent of official statistics. Harvest rates since 2006 are also considered more reliable due to more accurate landings data reported under new legislation.
One of the main issues for this FU is the problem of not being able to split the landings between the Sound of Jura and Firth of Clyde. This means that we are unable to provide harvest rates for the two subareas separately. What is currently provided is not actually a harvest rate for either sub area; but is likely more representative of the

Firth of Clyde. This has an impact on the quality of the assessment but not on the forecast.

The length and sex composition of the landings data is considered to be well sampled. Discard sampling has been conducted on a quarterly basis for Scottish Nephrops trawlers in the Firth of Clyde subarea fishery since 1990, and is considered to represent the fishery adequately. There are few samples available from the Sound of Jura and these have been included in the FU13 raising procedure.
Underwater TV surveys have been conducted for this stock every year since 1995. The number of valid stations in the survey has remained relatively stable throughout the time period. Confidence intervals around the abundance estimates are stable throughout the series and relatively low compared with other FUs in area 6.a. In the provision of catch options based on the absolute survey estimates additional uncertainties related to mean weight in the landings and the discard rates also arise. A three year average (2014-2016) of discard rate (adjusted to account for some survival of discarded animals) has been used in the calculation of catch options.

The cumulative relative to absolute conversion factor estimates for FU13 component is largely based on expert opinion (see stock annex). The precision of these bias corrections cannot yet be characterised. The method to derive landings for the catch options is sensitive to the input dead discard rate and mean weight in landings and this introduces uncertainties in the catch forecasts. Precision estimates are needed for these forecast inputs.

The overall area of the ground is estimated from the available BGS contoured sediment data and at present is considered to be a minimum estimate. VMS data, recently made available and linked to landings (from queries of the Scottish FIN database) suggest no major differences between areas fished and the mud sediment maps. The inclusion of vessels smaller than 15 m would likely increase the fished area in some of the inshore locations, while in the Clyde the non-estimated sea loch areas are relatively small.

\subsection*{17.8 Recommendation for next benchmark}

This stock was last benchmarked in 2009 (ICES, 2009). WGCSE recommends that the issue concerning the split of landings between Sound of Jura and the Firth of Clyde be examined when this stock is next proposed for benchmark process.

\subsection*{17.9 Management considerations}

ICES and STECF have repeatedly advised that management should be at a smaller scale than the ICES division level. Management at the Functional Unit level could provide controls to ensure effort and catch were in line with resources available. In this FU the two subareas imply that additional controls may be required to ensure that the landings taken in each subarea are in line with the landings advice.
Creel fishing takes place in part of this area although the relative scale of the fishery is smaller than in the Minches. Overall effort in terms of creel numbers is not known and measures to control numbers are not in place. There is a need to ensure that the combined effort from all forms of fishing is taken into account when managing this stock.

There is a bycatch of other species in the area of the Firth of Clyde and estimated discards of whiting and haddock by the TR2 fleet are generally high in area 6.a. It is important that efforts are made to ensure that unwanted bycatch is kept to a minimum
in this fishery. Current efforts to reduce discards and unwanted bycatches of cod include the implementation of large square meshed panels (SMPs) of 120 mm under the west coast emergency measures, and SMPs of 200 mm implemented as part of the previous Scottish Conservation Credits scheme. A seasonal closure (early spring) in the southwest part of the Firth of Clyde is in place to protect spawning cod although Nephrops vessels are derogated to fish in those parts where mud sediments are distributed.

\subsection*{17.10References}

Bailey, N. and Chapman, C. J. 1983. A comparison of density, length composition and growth of two populations off the West coast of Scotland. ICES C. M. 1983/K:42.

BGS. 2011. Marine SeaBed Sediment Map - UK Waters - 250k (DigSBS250). British Geological Survey, Nottingham. Available at: <http://www.bgs.ac.uk/discoverymetadata/13605549.html> [Accessed: unknown date].

Charuau A., Morizur Y., Rivoalen J.J. 1982. Survival of discarded Nephrops norvegicus in the Bay of Biscay and in the Celtic Sea, ICES-CM-1982/B:13.

Council Reg. (EU) 43/2009
ESRI. 2014. ArcGIS. Version 10.2.1. Environmental Systems Research Institute, Inc.: Redlands, CA.

ICES. 2010. Report of the Study Group on Nephrops Surveys (SGNEPS), 9-11 November 2010, Lisbon, Portugal. ICES CM 2010/SSGESST:22. 95 pp.
ICES. 2012. Report of the Study Group on Nephrops Surveys (SGNEPS), 6-8 March 2012, Acona, Italy. ICES CM 2012/SSGESST:19. 36 pp.

ICES. 2013. Report of the Benchmark Workshop on Nephrops assessment (WKNEPH). ICES CM 2013/ACOM:45. 230 pp.

ICES. 2016a. EU request to ICES to provide FmSY ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

ICES. 2016b. Report of the Workshop to consider Fmsy ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

ICES. 2017. ICES Statistical Rectangles. International Council for the Exploration of the Sea: Copenhagen, Denmark. Available at: <http://geo.ices.dk/index.phpSource> [Accessed: 16/03/2017].

Sangster, G.I., Breen, M., Bova, D.J., Kynoch, R., O'Neill, F.G., Lowry. N., Moth-Poulsen, T. Hansen, U.J., Ulmestrand, M., Valentinsson, D., Hallback, H., Soldal, A.V., and Hoddevik, B. 1997. Nephrops survival after escape and discard from commercial fishing gear. Presented at ICES FTFB Working Group, Hamburg, Germany 14-17 April, 1997, ICES CM 1997 CM/B.

SG. 2016. Simple guide to fisheries management measures in Marine Protected Areas. Marine Scotland (The Scottish Government): Edinburgh. Available at: <http://www.gov.scot/Resource/0049/00498320.pdf> [Accessed: 16/05/2017].

SG. 2017a. Marine Protected Areas in Scotland's Seas - Guidelines on the selection of MPAs and development of the MPA network. Marine Scotland (The Scottish Government): Edinburgh. Available at: <http://www.gov.scot/Topics/marine/marineenvironment/mpanetwork/mpaguidelines> [Accessed: 16/05/2017].

SG. 2017b. Marine conservation orders (MCOs) and fisheries management measures (MPAs and SACs) - with effect May 2017. Marine Scotland (The Scottish Government): Edinburgh.

Available
at:
<https://marinescotland.atkinsgeospatial.com/nmpi/default.aspx?availablelayers=838> [Accessed: 31/05/2017].

SNH. 2015. Nature Conservation Marine Protected Areas. Scottish Natural Heritage (Scottish Government): Inverness. Available at: <https://gateway.snh.gov.uk/naturalspaces/index.jsp> [Accessed: 03/04/2017].
SNH. 2016. Special Areas of Conservation. Scottish Natural Heritage (Scottish Government): Inverness. Available at: <https://gateway.snh.gov.uk/natural-spaces/index.jsp> [Accessed: 03/04/2017].

Tuck, I.D., Chapman C.J. and Atkinson, R.J.A. 1997. Population biology of the Norway lobster, Nephrops norvegicus (L.) in the Firth of Clyde, Scotland. I: Growth and density. ICES J. Mar.Sci 54, 125-135.

Tuck, I.D., Bailey, N., Atkinson, R.J.A. and Marrs, S.J. 1999. Changes in Nephrops density in the Clyde Sea area from UWTV survey data. ICES, Doc. Living Resources Comm., CM 1999/G:13 (mimeo).

Wessel, P. and Smith, W.H.F. 2016. GSHHG version 2.3.6 - A Global Self-consistent, Hierarchical, High-resolution Geography Database. National Centers for Environmental Information, National Oceanic and Atmospheric Administration: Boulder, CO. <https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html> [Accessed: 31/05/2017].

Wileman, D.A., Sangster, G.I., Breen, M., Ulmestrand, M., Soldal, A.V. and Harris, R.R. 1999. Roundfish and Nephrops survival after escape from commercial fishing gear. EU Contract Final Report. EC Contract No: FAIR-CT95-0753.

Table 17.1.1. Nephrops, Clyde and Sound of Jura (FU13), ICES estimates of landings of Nephrops, 1981-2016.

** Total also includes Republic of Ireland.

Table 17.2.1. Nephrops, Clyde (FU13), ICES estimated landings of Nephrops, in each of the subareas (Firth of Clyde and Sound of Jura 1981-2016).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{YEAR} & \multicolumn{3}{|c|}{UK LANDINGS} \\
\hline & FIRTH OF CLYDE & SOUND OF JURA & ALL SUBAREAS \\
\hline 1981 & 2277 & 691 & 2968 \\
\hline 1982 & 1983 & 637 & 2620 \\
\hline 1983 & 3395 & 681 & 4076 \\
\hline 1984 & 2600 & 710 & 3310 \\
\hline 1985 & 3561 & 725 & 4286 \\
\hline 1986 & 3228 & 1113 & 4341 \\
\hline 1987 & 2408 & 601 & 3009 \\
\hline 1988 & 3509 & 155 & 3664 \\
\hline 1989 & 2595 & 217 & 2812 \\
\hline 1990 & 2592 & 317 & 2909 \\
\hline 1991 & 2654 & 384 & 3038 \\
\hline 1992 & 2383 & 420 & 2803 \\
\hline 1993 & 2766 & 577 & 3343 \\
\hline 1994 & 2095 & 535 & 2630 \\
\hline 1995 & 3692 & 295 & 3987 \\
\hline 1996 & 3671 & 386 & 4057 \\
\hline 1997 & 3135 & 486 & 3621 \\
\hline 1998 & 4373 & 468 & 4841 \\
\hline 1999 & 3423 & 329 & 3752 \\
\hline 2000 & 3229 & 188 & 3417 \\
\hline 2001 & 2979 & 203 & 3182 \\
\hline 2002 & 3350 & 34 & 3384 \\
\hline 2003 & 3154 & 19 & 3173 \\
\hline 2004 & 2965 & 8 & 2973 \\
\hline 2005 & 3388 & 7 & 3395 \\
\hline 2006 & 4768 & 12 & 4780 \\
\hline 2007 & 6580 & 80 & 6660 \\
\hline 2008 & 5845 & 78 & 5923 \\
\hline 2009 & 4688 & 91 & 4779 \\
\hline 2010 & 5782 & 61 & 5843 \\
\hline 2011 & 6363 & 69 & 6432 \\
\hline 2012 & 6634 & 53 & 6687 \\
\hline 2013 & NA & NA & 5435 \\
\hline 2014 & NA & NA & 6207 \\
\hline 2015 & NA & NA & 5147 \\
\hline 2016 & NA & NA & 6443 \\
\hline
\end{tabular}

Table 17.2.2. Nephrops, Clyde (FU13): Firth of Clyde and Sound of Jura combined. Adjusted TV survey abundance (Firth of Clyde subarea), landings, discard rate (proportion by number) and estimated harvest rate. The harvest rate was calculated from the total (dead) removals in number for both subareas divided by the combined abundance from both TV surveys.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & LANDINGS IN NUMBERS (MILLIONS) & DISCARD IN NUMBERS (MILLIONS) & \begin{tabular}{l}
REMOVALS \\
IN NUMBERS (MILLIONS)**
\end{tabular} & ADJUSTED SURVEY CLYDE (MILLIONS) & ADJUSTED SURVEY JURA (MILLIONS) & COMBINED HARVEST RATE* & LANDINGS (TONNES) & DISCARDS (TONNES) & DEAD DISCARDS (TONNES) & DISCARD RATE (\%) & \begin{tabular}{l}
DEAD DISCARD RATE \\
(\%)
\end{tabular} & \begin{tabular}{l}
MEAN \\
WEIGHT \\
IN \\
LANDINGS (gr)
\end{tabular} & \begin{tabular}{l}
MEAN \\
WEIGHT \\
IN DISCARDS (gr)
\end{tabular} \\
\hline 1995 & 207 & 82 & 269 & 579 & 160 & 36.40 & 3987 & 619 & 464 & 28.4 & 22.90 & 19.24 & 7.54 \\
\hline 1996 & 187 & 61 & 233 & 935 & 171 & 21.07 & 4057 & 635 & 476 & 24.7 & 19.70 & 21.68 & 10.35 \\
\hline 1997 & 150 & 70 & 202 & 1198 & NA & NA & 3621 & 598 & 448 & 32 & 26.10 & 24.21 & 8.50 \\
\hline 1998 & 269 & 187 & 409 & 1262 & NA & NA & 4841 & 1292 & 969 & 41 & 34.20 & 17.98 & 6.92 \\
\hline 1999 & 216 & 93 & 286 & 930 & NA & NA & 3752 & 566 & 424 & 30.2 & 24.50 & 17.39 & 6.05 \\
\hline 2000 & 171 & 48 & 207 & 1411 & NA & NA & 3417 & 470 & 352 & 22 & 17.40 & 19.96 & 9.75 \\
\hline 2001 & 164 & 82 & 225 & 1486 & 272 & 12.80 & 3182 & 677 & 508 & 33.5 & 27.40 & 19.46 & 8.23 \\
\hline 2002 & 207 & 50 & 245 & 1571 & 398 & 12.44 & 3384 & 406 & 305 & 19.5 & 15.40 & 16.35 & 8.12 \\
\hline 2003 & 166 & 134 & 266 & 1817 & 260 & 12.81 & 3173 & 1247 & 935 & 44.7 & 37.70 & 19.13 & 9.31 \\
\hline 2004 & 158 & 168 & 284 & 1970 & NA & NA & 2973 & 1435 & 1076 & 51.5 & 44.30 & 18.80 & 8.54 \\
\hline 2005 & 189 & 69 & 241 & 1959 & 303 & 10.65 & 3395 & 611 & 458 & 26.8 & 21.60 & 17.96 & 8.81 \\
\hline 2006 & 248 & 55 & 290 & 1851 & 430 & 12.71 & 4780 & 515 & 386 & 18.2 & 14.30 & 19.27 & 9.31 \\
\hline 2007 & 350 & 387 & 640 & 1233 & 255 & 43.01 & 6660 & 2566 & 1924 & 52.5 & 45.30 & 19.05 & 6.64 \\
\hline 2008 & 357 & 207 & 512 & 1769 & NA & NA & 5923 & 1433 & 1075 & 36.6 & 30.30 & 16.59 & 6.94 \\
\hline 2009 & 261 & 169 & 388 & 1499 & 251 & 22.17 & 4779 & 1390 & 1043 & 39.3 & 32.70 & 18.31 & 8.23 \\
\hline 2010 & 276 & 55 & 317 & 1750 & 376 & 14.91 & 5843 & 536 & 402 & 16.7 & 13.10 & 21.21 & 9.68 \\
\hline 2011 & 333 & 74 & 388 & 2165 & 312 & 15.66 & 6432 & 568 & 426 & 18.2 & 14.30 & 19.34 & 7.65 \\
\hline 2012 & 306 & 93 & 376 & 1421 & 371 & 20.98 & 6687 & 1066 & 800 & 23.4 & 18.60 & 21.83 & 11.42 \\
\hline 2013 & 262 & 62 & 309 & 1990 & 198 & 14.12 & 5435 & 454 & 341 & 19 & 15.00 & 20.72 & 7.37 \\
\hline 2014 & 295 & 78 & 353 & 1328 & 231 & 22.64 & 6207 & 696 & 522 & 20.9 & 16.60 & 20.79 & 8.92 \\
\hline 2015 & 232 & 54 & 273 & 1820 & 376 & 12.43 & 5147 & 401 & 301 & 18.9 & 14.80 & 22.21 & 7.43 \\
\hline 2016 & 364 & 69 & 416 & 1946 & 422 & 17.57 & 6447 & 636 & 477 & 15.9 & 12.40 & 17.70 & 9.21 \\
\hline Average*** & & & & & & & & & & & 14.60 & 20.23 & 8.52 \\
\hline
\end{tabular}
* Harvest rates previous to 2006 are unreliable.
** Removals numbers take the dead discard rate into account.
*** Dead discard average: 2014-2016; Mean weight in landings and discard average: 2014-2016.

Table 17.2.3. Nephrops, Clyde (FU13): Firth of Clyde subarea. Results of the 1995-2016 TV surveys (values adjusted for bias).
\begin{tabular}{|c|c|c|c|c|}
\hline YEAR & NUMBER OF VALID STATIONS & MEAN DENSITY (BURROWS / m²) & ABUNDANCE (MILLIONS) & \begin{tabular}{l}
95\% CONFIDENCE \\
INTERVAL \\
(MILLIONS)
\end{tabular} \\
\hline 1995 & 29 & 0.277 & 579 & 176 \\
\hline 1996 & 38 & 0.454 & 935 & 242 \\
\hline 1997 & 31 & 0.571 & 1198 & 262 \\
\hline 1998 & 38 & 0.605 & 1262 & 213 \\
\hline 1999 & 39 & 0.445 & 930 & 289 \\
\hline 2000 & 40 & 0.681 & 1411 & 246 \\
\hline 2001 & 39 & 0.714 & 1486 & 268 \\
\hline 2002 & 36 & 0.756 & 1571 & 288 \\
\hline 2003 & 37 & 0.874 & 1817 & 292 \\
\hline 2004 & 32 & 0.95 & 1970 & 367 \\
\hline 2005 & 44 & 0.941 & 1959 & 287 \\
\hline 2006 & 43 & 0.882 & 1851 & 257 \\
\hline 2007 & 40 & 0.597 & 1233 & 218 \\
\hline 2008 & 38 & 0.849 & 1769 & 291 \\
\hline 2009 & 39 & 0.723 & 1499 & 210 \\
\hline 2010 & 37 & 0.84 & 1750 & 327 \\
\hline 2011 & 40 & 1.041 & 2165 & 305 \\
\hline 2012 & 37 & 0.681 & 1421 & 227 \\
\hline 2013 & 34 & 0.956 & 1990 & 246 \\
\hline 2014 & 35 & 0.639 & 1328 & 237 \\
\hline 2015 & 37 & 0.875 & 1820 & 351 \\
\hline 2016 & 37 & 0.935 & 1946 & 249 \\
\hline
\end{tabular}

Table 17.2.4. Nephrops, Clyde (FU13): Sound of Jura subarea. Results of the 1995-2016 TV surveys (values adjusted for bias).
\begin{tabular}{|c|c|c|c|c|}
\hline YEAR & NUMBER OF VALID STATIONS & MEAN DENSITY (BURROWS / m²) & ABUNDANCE (millions) & \begin{tabular}{l}
95\% CONFIDENCE \\
INTERVAL (millions)
\end{tabular} \\
\hline 1995 & 7 & 0.42 & 160 & 58 \\
\hline 1996 & 10 & 0.45 & 171 & 26 \\
\hline 1997 & \multirow[t]{4}{*}{no surveys} & & & \\
\hline 1998 & & & & \\
\hline \[
1999
\] & & & & \\
\hline 2000 & & & & \\
\hline 2001 & 13 & 0.71 & 272 & 76 \\
\hline 2002 & 9 & 1.04 & 398 & 167 \\
\hline 2003 & 12 & 0.68 & 260 & 68 \\
\hline \[
2004
\] & \multicolumn{2}{|l|}{no survey} & & \\
\hline 2005 & 11 & 0.79 & 303 & 84 \\
\hline 2006 & 10 & 1.13 & 430 & 134 \\
\hline 2007 & 10 & 0.67 & 255 & 58 \\
\hline 2008 & \multicolumn{2}{|l|}{no survey} & & \\
\hline 2009 & 12 & 0.66 & 251 & 68 \\
\hline 2010 & 12 & 0.98 & 376 & 39 \\
\hline 2011 & 12 & 0.82 & 312 & 73 \\
\hline 2012 & 12 & 0.98 & 371 & 61 \\
\hline 2013 & 9 & 0.52 & 198 & 35 \\
\hline 2014 & 9 & 0.61 & 231 & 90 \\
\hline 2015 & 12 & 0.98 & 376 & 127 \\
\hline 2016 & 12 & 1.11 & 422 & 42 \\
\hline
\end{tabular}

Table 17.2.5. Nephrops, Clyde (FU13): Firth of Clyde subarea. Results by stratum of the 2014-2016 TV surveys. Note that stratification was based on a series of sediment strata (M - Mud, SM Sandy mud, MS - Muddy sand).
\begin{tabular}{lccccccccc}
\hline STRATUM & \begin{tabular}{c} 
AREA \\
\(\left(k^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
NUMBER \\
OF \\
STATIONS
\end{tabular} & \begin{tabular}{c} 
MEAN \\
BURROW \\
DENSITY \\
\(\left(\mathbf{n o .} / \mathbf{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
OBSERVED \\
VARIANCE
\end{tabular} & \begin{tabular}{c} 
ABUNDANCE \\
(MILLIONS)
\end{tabular} & \begin{tabular}{c} 
STRATUM \\
VARIANCE
\end{tabular} & \begin{tabular}{c} 
PROPORTION \\
OF TOTAL \\
VARIANCE
\end{tabular} & \begin{tabular}{c} 
SURVEY \\
PRECISION \\
LEVEL \\
(RSE)
\end{tabular} \\
\hline 2014 TV survey & & & & & & & & & \\
\hline M & 717 & 11 & 0.545 & 0.03 & 391 & 1397 & 0.099 & \\
\hline SM & 699 & 11 & 0.842 & 0.18 & 588.2 & 7990 & 0.567 & \\
\hline MS & 665 & 13 & 0.525 & 0.138 & 349.2 & 4713 & 0.334 & \\
\hline Total & 2081 & 35 & & & 1328.4 & 14099 & 1 & 0.09 \\
\hline 2015 TV survey & & & & & & & & \\
\hline M & 717 & 13 & 0.917 & 0.213 & 657.1 & 8407 & 0.273 & \\
\hline SM & 699 & 14 & 0.963 & 0.328 & 673 & 11422 & 0.37 & \\
\hline MS & 665 & 10 & 0.737 & 0.249 & 489.8 & 11006 & 0.357 & \\
\hline Total & 2081 & 37 & & & 1819.9 & 30835 & 1 & 0.09 \\
\hline 2016 TV survey & & & & & & & & \\
\hline M & 717 & 14 & 1.006 & 0.104 & 721.1 & 3799 & 0.245 & \\
\hline SM & 699 & 13 & 0.932 & 0.047 & 651.2 & 1773 & 0.114 & \\
\hline MS & 665 & 10 & 0.863 & 0.225 & 573.5 & 9936 & 0.641 & \\
\hline Total & 2081 & 37 & & & 1945.8 & 15508 & 1 & 0.06 \\
\hline
\end{tabular}

Table 17.2.6. Nephrops, Clyde (FU13): Sound of Jura subarea. Results by stratum of the 2014-2016 TV surveys. Note that stratification was based on a series of sediment strata.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline STRATUM & AREA ( \(\mathrm{km}^{2}\) ) & NUMBER OF STATIONS & \begin{tabular}{l}
MEAN \\
BURROW DENSITY \\
(no./m2)
\end{tabular} & \begin{tabular}{l}
OBSERVED \\
VARIANCE
\end{tabular} & ABUNDANCE (MILLIONS) & STRATUM VARIANCE & PROPORTION OF TOTAL VARIANCE & SURVEY PRECISION LEVEL SURVEY (RSE) \\
\hline \multicolumn{9}{|l|}{2014 TV survey} \\
\hline M & 90 & 3 & 0.619 & 0.202 & 55.7 & 545 & 0.269 & \\
\hline SM & 150 & 2 & 0.702 & 0.099 & 105.2 & 1116 & 0.552 & \\
\hline MS & 142 & 4 & 0.496 & 0.072 & 70.4 & 362 & 0.179 & \\
\hline Total & 382 & 9 & & & 231.3 & 2023 & 1 & 0.199 \\
\hline \multicolumn{9}{|l|}{2015 TV survey} \\
\hline M & 90 & 2 & 1.328 & 0.326 & 119.5 & 1318 & 0.327 & \\
\hline SM & 150 & 5 & 1.103 & 0.18 & 165.4 & 810 & 0.201 & \\
\hline MS & 142 & 5 & 0.642 & 0.47 & 91.2 & 1897 & 0.471 & \\
\hline Total & 382 & 12 & & & 376.1 & 4024 & 0.999 & 0.177 \\
\hline \multicolumn{9}{|l|}{2016 TV survey} \\
\hline MUD & 90 & 2 & 0.828 & 0.003 & 74.5 & 11 & 0.026 & \\
\hline SM & 150 & 6 & 0.872 & 0.069 & 130.9 & 260 & 0.578 & \\
\hline MS & 142 & 4 & 1.527 & 0.035 & 216.9 & 179 & 0.396 & \\
\hline Total & 382 & 12 & & & 422.4 & 450 & 1 & 0.058 \\
\hline
\end{tabular}


Effort - Scottish Nephrops trawlers


Figure 17.2.1. Nephrops, Clyde (FU13). Long-term landings and effort.

\section*{Length frequencies for catch (dotted) and landed(solid): Nephrops in FU13}


Figure 17.2.2. Nephrops, Clyde (FU13). Catch length-frequency distribution and mean sizes (red line) for Nephrops, 2000-2016.


Figure 17.2.3.(a) Nephrops, Clyde (FU13). Landings by quarter and sex from Scottish trawlers.


Figure 17.2.3. (b) Nephrops, Clyde (FU13), Proportion of males by quarter (1980-2016).


Figure 17.2.4. Nephrops, Clyde (FU13), TV survey station distribution and relative density (burrows \(/ \mathrm{m}^{2}\) ) for Firth of Clyde and Sound of Jura subareas, 2010-2016. Sound of Jura located to the east. Shaded green and brown areas represent areas of suitable sediment for Nephrops. Bubbles scaled the same. Red crosses represent zero observations.

\section*{Firth of Clyde}


Figure 17.2.5. Nephrops, Clyde (FU13): Firth of Clyde subarea. Time-series of revised TV survey abundance estimates (adjusted for bias), with \(95 \%\) confidence intervals, 1995-2016. The dashed blue line is the rounded \(B_{\text {trigger }}\) value of 580 million individuals.


Figure 17.2.6. Nephrops, Clyde (FU13): Sound of Jura subarea. Time-series of TV survey abundance estimates (adjusted for bias) with \(95 \%\) confidence intervals, 1995-2016. The dashed blue line is the rounded \(\mathrm{B}_{\text {trigger }}\) value of \(\mathbf{1 6 0}\) million individuals.


Figure 17.4.1. Clyde (FU13) Nephrops harvest rate, 1995-2016. The harvest rate is calculated by dead removals (both subareas combined)/TV abundances (both sub-areas combined). The dashed and solid lines are the Fmsy proxy harvest rate (for the Firth of Clyde \(\mathbf{1 5 . 1} \%\) ) and the harvest rate respectively. Harvest rates prior to 2006 are unreliable.


Figure 17.6.1. The area of Nephrops habitat (Mud, Muddy Sand and Sandy Mud) within the Clyde functional unit (FU13) relative to the areas of the Nature Conservation MPAs (NCMPAs) which fisheries management measures. Areas where demersal trawling is prohibited, restricted (i.e. vessel size restrictions or seasonal closures) and where creeling is prohibited are displayed. For more detailed information see SG (2016). Geographic Coordinate System: OSGB 1936, Datum: OSGB 1936, Projected Coordinate System: British National Grid. Coastline by Wessel and Smith (2016), MPA sites subsetted from NCMPA (SNH, 2015) and SAC (SNH, 2016) layers, management areas by SG (2017b) and functional units generated from merged ICES rectangles (ICES, 2017). Map and modified layers created using ArcGIS (ESRI, 2014).

\subsection*{17.11Audit of nep.fu. 13}

\section*{General}

\section*{For single stock summary sheet advice}
- Assessment type: Update with one additional year of survey and catch data (benchmarked at WKNEPH2009, stock annex updated at WGCSE 2016).
- Assessment: Analytical (UWTV survey-based abundance assessment combined with commercial fishery data, follows the process defined by the benchmark WG ((WKNEPH2009 and stock annex).
- Forecast: A short-term projection was completed to produce a catch option table.
- Assessment model: UWTV based approach.
- Data issues: Sampling for FU13 is considered acceptable and although Scottish landings sampling fell substantially in 2016, sampling of Northern Irish landings increased the net sampling effort by six trips.
- Consistency: The 2017 assessment is consistent with the 2016 assessment and with the assessment methods described at the 2013/2009 benchmark.

Stock annex was updated for FMSYRef4 report and the assessment process is consistence with the stock annex. Check the \(B_{\text {trigger }}\) value as this differs in report and annex compared to FMSYRef4 report rounding.

Given the fluctuations observed in mean weights for landings and discards an average from 2014 to 2016 is used in the calculation of catch options as set out in the stock annex.
- Stock status: UWTV abundance estimates suggest that the stock size has fluctuated for both Clyde and Jura with an increasing trend in recent years.

TV survey estimated stock abundance for the Firth of Clyde in 2016 was 1946 million individuals, a \(7 \%\) increase from the 2015 estimate and well above the \(B\)-trigger value of 579 million.

TV survey estimated stock abundance for the Sound of Jura in 2016 was 422 million individuals, a \(12 \%\) increase on the 2015 estimate and above the B-trigger value of 200 million. In FMSYRef4 Btrigger Jura \(=\) 160 million.

Recent harvest ratios which have been close to the Fmsy proxy for the last three years.

The FmSY proxy was revised by WKMSYRef4. Rationale: F35\%SPR combined sexes \(=15.1 \%\) ).
The combined calculated harvest ratio for the FU13 in 2016 (dead removals for both subareas/Firth of Clyde TV abundance \(=17.6 \%\) ) was above the MSY proxy for this stock (the value associated with high long-term yield and low risk depletion) of \(15.1 \%\).
- Management Plan:

No specific management plan exists for this stock.

Scotland has recently established a network of regional Inshore Fisheries Groups (rIFGs), non-statutory bodies that aim to improve the management of Scotland's inshore fisheries out to six nautical miles, and to give commercial inshore fishermen a strong voice in wider marine management developments. The rIFGs will contribute to regional policies and initiatives relating to management and conservation of inshore fisheries, including impacts on the marine environment and the maintenance of sustainable fishing communities and measures designed to better conserve and sustainably exploit stocks of shellfish and sea fish (including salmon) in their local waters. Although no IFG proposals specific to the management of Nephrops fisheries have yet been adopted, some of the IFG management plans for the Scottish West Coast include spatial management of Nephrops fisheries and the introduction of creel limits.

A weekend ban on mobile gear was introduced in the Clyde in 1986 under a Scottish Statutory Instrument. Mobile gear is banned in the Inshore Clyde from Friday night to Sunday night as are vessels greater than 21 m in length.

On the 8th of February 2016 phase 1 of the fisheries management measures for inshore MPAs in Scottish waters came into force (SG, 2016). These measures relate to both NCMPA (Marine (Scotland) Act and the UK Marine and Coastal Access Act) and Special Areas of Conservation (EC Habitats Directives - Council Directive 92/43/EEC) both of which have the aim of conserving biological diversity in Scottish waters and along with other protected sites make up Scotland's MPA network (SG, 2017a). Although not specific to the management of the Nephrops fishery they will influence spatial patterns of fishing for Nephrops where controls on the two main gear types, demersal trawls and creels, are implemented on Nephrops habitat. There are three NCMPAs within the Clyde functional unit. The MPA which extends onto the main patch of Nephrops habitat is the South Arran NCMPA, within the Firth of Clyde subarea, where a complete ban on demersal vessels greater than 120 gross tonnage has been implemented. Partial closures (i.e. zoned management) for demersal trawlers smaller than this size and creelers are also in place. For Loch Sween, north of the main habitat area in the Sound of Jura subarea, demersal trawling by vessels is banned. However for trawlers smaller than 75 gross tonnage, temporal closures are in place over some of the area. For the Upper Loch Fyne and Loch Goil NCMPA, just north of the main habitat area in Firth of Clyde subarea, demersal trawling by vessels greater than 75 gross tones is banned and the activity of vessels below this is zoned. Creeling activity is also zoned (SG, 2016).

\section*{General comments}
- The assessment was well-written and explanations were thorough. Report is brief and clear.
- The assessment is in accordance with the Stock Annex. Methods to derive Fmsy and landings predictions did not deviate from the benchmark process/stock annex.
- Clear description on how the InterCatch was used in the 2017 assessment. Data were available in InterCatch and used to generate 2016 raised international length-frequency distributions.

\section*{Technical comments}
- Have made comments using track changes on report document in SharePoint. Main point is to check table and figure numbering and suggest swapping tables/figures to be consistent.
- Check syntax for all Nephrops stocks: is it Harvest rate or Harvest ratio in report: we should be all consistent for Nephrops stocks and probably follow that from the advice sheet.

\section*{Conclusions}

The assessment has been performed correctly.
- The assessment has been performed correctly for the basis of management advice. Both Clyde and Sound of Jura patch appears to be stable in recent years and is above \(B_{\text {trigger. }}\) The combined harvest rate is just above Fmsy (15.1\%).

\section*{Checklist for audit process}

\section*{Checklist for audit process}

\section*{General aspects}
- Has the EG answered those ToRs relevant to providing advice? YES
- Is the assessment according to the stock annex description? YES
- If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary? N/A
- Have the data been used as specified in the stock annex? Yes
- Has the assessment, recruitment and forecast model been applied as specified in the stock annex? Yes, where appropriate
- Is there any major reason to deviate from the standard procedure for this stock? No
- Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice?

\section*{18 Norway lobster (Nephrops norvegicus) in Division 7.a, Functional Unit 14 (Irish Sea, East)}

\subsection*{18.1 Nephrops Subarea 7 general section}

\section*{Stock description and management units}

A TAC is in place for ICES Area 7 which does not correspond to the assessment units. As Nephrops are limited to muddy habitats the distribution of suitable sediment defines the species distribution and the stocks are therefore assessed as eight separate Functional Units. There are also some smaller catches from areas outside these Functional Units. The ICES statistical rectangles covered by the Functional Units in ICES Area 7 are listed in the table below.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{FU No.} & \multirow[t]{2}{*}{Name} & ICES & ICES Statistical rectangles \\
\hline & & Divisions & \\
\hline 14 & Irish Sea East & 7a & 35-38E6; 38E5 \\
\hline 15 & Irish Sea West & 7a & 35E3, 36E3; 35-37 E4-E5; 38E4 \\
\hline 16 & Porcupine Bank & 7b,c,j,k & 31-35 D5-D6; 32-35 D7-D8 \\
\hline 17 & Aran Grounds & 7 b & 34-35 D9-E0 \\
\hline 18 & Northwest Irish Coast & 7 b & 36-37 D9; 37E0-E1 \\
\hline 19 & Southeast and southwest Irish Coast & 7a,g,j & 31-33 D9-E0; 31E1; 32E1-E2; 33E2-E3 \\
\hline 20-21 & Labadie, Jones and Cockburn bank & 7g,h & 28 EO-E2; 29 E0-E3; 30E1-E3; 31E2 \\
\hline 22 & Smalls Ground & 7 g & 31-32 E3-E4 \\
\hline
\end{tabular}

Nephrops Functional Units in Subarea 7 (FU 14-22). The TAC covers all of Subarea 7. (Note: Functional Units in Subarea 6 (FU 11-13) also shown):


\section*{Landings obligation}

On the West Coast and around Ireland (FU 11-22), in 2016, vessels where \(30 \%\) or more of their landings in 2013 and 2014 were Nephrops had to land all Nephrops. In 2017, vessels where \(20 \%\) or more of their landings in 2014 and 2015 were Nephrops will have to land all Nephrops.

\section*{Minimum conservation reference size (minimum landing size)}

Under the Landing Obligation, minimum landings sizes are being abolished. Instead a Minimum Conservation Reference Size (MCRS) for each species will be introduced. Unless exempt, Nephrops below the MCRS must be landed and may be sold but cannot go for human consumption. In most cases, the MCRS is the same as old MLS, being 25 mm carapace length (or over 85 mm total length) in the North Sea (4, FUs 510), around Ireland (FUs 16-22) and the Norwegian Deep (FU 32); the MCRS is 20 mm CL (>70 mm TL) on the West coast (6.a, FUs 11-13), the Irish Sea (7a, FUs 1415) and the Bay of Biscay (7I), and the Iberian Peninsula (9). The MCRS for all EU States from Skagerrak and Kattegat (FUs 3 and 4) is now 32 mm CL ( \(>105 \mathrm{~mm}\) TL); Norway still uses the previous MCRS of 40 mm ( \(>130 \mathrm{~mm} \mathrm{TL}\) ).

The MCRS implemented for the Irish Sea is 20 mm CL is less than the rest of the ICES Area 7 (set at 25 mm CL) and applies to the Irish and UK fleets. A more restrictive regulation is adopted by the French Producers' Organisations ( 35 mm CL or 115 mm TL) to all French trawlers.

\section*{Exemptions}

De minimis exemptions apply to Nephrops vessels, allowing them to discard Nephrops under the MCRS, as long as they make up no more than \(6 \%\) of total catch in the North

Sea, Skagerrak and Kattegat or \(7 \%\) of the total catch in western waters. A survivability exemption exists in all areas allowing any level of discarding from creels and pots and in the Skagerrak and Kattegat for \(>70 \mathrm{~mm}\) mesh size trawlers fitted with designated selectivity devices.

\section*{Management applicable in 2016 and 2017}

The TAC is currently set for the whole Area 7. The TAC for 2017 was 25356 t , this represented an increase of \(8 \%\) in relation to 2016 with 23348 t . The TAC area includes a number of Nephrops stocks showing different levels of exploitation. A single TAC covering a number of distinct stocks allows the possibility of unrestricted catches being taken from a heavily exploited stock when advice suggests they should be limited.

Details of all regulations including effort controls in place are provided in the stock annex for all functional units under this subarea.

COUNCIL REGULATION (EU) 2017/127 of 20 January 2017 fixing for 2017 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters.

TAC in 2017
\begin{tabular}{llcl}
\hline Species: & \begin{tabular}{l} 
Norway lobster \\
Nephrops norvegicus
\end{tabular} & Zone: \begin{tabular}{l} 
VII \\
(NEP/07.)
\end{tabular} \\
\hline Spain & & 1521 & \\
France & 6166 & \\
Ireland & 9352 & \\
United Kingdom & 8317 & \\
Union & 25356 & Analytical TAC \\
TAC & 25356 & Article 11(1) of this Regulation applies \\
\hline
\end{tabular}

Special condition:
within the limits of the abovementioned quotas, no more than the quantities given below may be taken in the following zone:
\begin{tabular}{lrr} 
& \begin{tabular}{c} 
Functional Unit 16 of ICES Subarea \\
VII (NEP/*07U16):
\end{tabular} \\
\hline Spain & & 935 \\
France & & 586 \\
Ireland & 1124 \\
United Kingdom & 455 \\
Union & 3100
\end{tabular}

COUNCIL REGULATION (EU) 2016/72 of 22 January 2016 fixing for 2016 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters, and amending Regulation (EU) 2015/104.

TAC in 2016
\begin{tabular}{llcl}
\hline Species: & \begin{tabular}{l} 
Norway lobster \\
Nephrops norvegicus
\end{tabular} & Zone: \begin{tabular}{l} 
VII \\
(NEP/07.)
\end{tabular} \\
\hline Spain & & 1401 & \\
France & 5678 & \\
Ireland & 8610 & \\
United Kingdom & 7659 & \\
Union & 23348 & Analytical TAC \\
TAC & 23348 & Article 12(1) of this Regulation applies \\
\end{tabular}

Special condition:
within the limits of the abovementioned quotas, no more than the quantities given below may be taken in the following zone:
\begin{tabular}{lrr} 
& \begin{tabular}{c} 
Functional Unit 16 of ICES Subarea \\
VII (NEP/*07U16):
\end{tabular} \\
\hline Spain & 558 \\
France & 349 \\
Ireland & 671 \\
United Kingdom & 272 \\
Union & 1850 \\
\hline
\end{tabular}

\section*{Landings area 7}

Text table below gives the summary of reported landings by Functional Unit for ICES Area 7.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \begin{tabular}{l}
FU 14 - \\
Irish Sea \\
EAST
\end{tabular} & \begin{tabular}{l}
FU 15 - \\
Irish Sea \\
West
\end{tabular} & \begin{tabular}{l}
FU 16 - \\
Porcupine \\
BANK
\end{tabular} & \begin{tabular}{l}
FU 17 - \\
Aran \\
Grounds
\end{tabular} & \begin{tabular}{l}
FU 18 - \\
Ireland \\
North \\
West \\
COAST
\end{tabular} & \begin{tabular}{l}
FU 19 - \\
IreLand \\
South \\
West and \\
South \\
EAST COAST
\end{tabular} & \begin{tabular}{l}
FU 20-21 \\
- Labadie, JONES, Cockburn
\end{tabular} & \begin{tabular}{l}
FU 22 - \\
Smalls \\
Grounds
\end{tabular} & \begin{tabular}{l}
Fus
\[
20+21+22
\] \\
- All Celtic Sea FUs COMBINED
\end{tabular} & Other staTISTICAL RECTANGLES Outside FUs & Total LANDINGS ICES Subarea 7 & TAC FOR 7 \\
\hline 1978 & 961 & 7,296 & 1,744 & 481 & & & & & & 249 & 10,730 & \\
\hline 1979 & 900 & 8,948 & 2,269 & 452 & & & & & & 237 & 12,807 & \\
\hline 1980 & 730 & 4,578 & 2,925 & 442 & & & & & & 205 & 8,880 & \\
\hline 1981 & 829 & 7,249 & 3,381 & 414 & & & & & & 382 & 12,255 & \\
\hline 1982 & 869 & 9,315 & 4,289 & 210 & & & & & & 234 & 14,917 & \\
\hline 1983 & 763 & 9,448 & 3,426 & 131 & & & & & 3,667 & 174 & 17,609 & \\
\hline 1984 & 602 & 7,760 & 3,571 & 324 & & & & & 3,653 & 187 & 16,097 & \\
\hline 1985 & 498 & 6,901 & 3,919 & 207 & & & & & 3,599 & 194 & 15,317 & \\
\hline 1986 & 671 & 9,978 & 2,591 & 147 & & & & & 2,638 & 113 & 16,138 & \\
\hline 1987 & 449 & 9,753 & 2,499 & 62 & & & & & 3,409 & 107 & 16,279 & 24,700 \\
\hline 1988 & 462 & 8,586 & 2,375 & 828 & & & & & 3,165 & 140 & 15,557 & 24,700 \\
\hline 1989 & 401 & 8,128 & 2,115 & 344 & & 899 & & & 4,005 & 134 & 16,026 & 26,000 \\
\hline 1990 & 563 & 8,300 & 1,895 & 519 & & 754 & & & 4,290 & 102 & 16,423 & 26,000 \\
\hline 1991 & 747 & 9,554 & 1,640 & 410 & & 1,077 & & & 3,295 & 169 & 16,892 & 26,000 \\
\hline 1992 & 427 & 7,541 & 2,015 & 372 & & 888 & & & 4,165 & 409 & 15,816 & 20,000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \begin{tabular}{l}
FU 14 - \\
Irish Sea \\
EAST
\end{tabular} & \begin{tabular}{l}
FU 15 - \\
Irish Sea \\
West
\end{tabular} & \begin{tabular}{l}
FU 16 - \\
Porcupine \\
BANK
\end{tabular} & \begin{tabular}{l}
FU 17 - \\
Aran \\
Grounds
\end{tabular} & \begin{tabular}{l}
FU 18 - \\
IRELAND \\
North \\
West \\
CoAst
\end{tabular} & \begin{tabular}{l}
FU 19 - \\
Ireland \\
South \\
West and \\
South \\
EAST COAST
\end{tabular} & \begin{tabular}{l}
FU 20-21 \\
- Labadie, \\
JONES, \\
Cockburn
\end{tabular} & \begin{tabular}{l}
FU 22 - \\
Smalls \\
Grounds
\end{tabular} & \begin{tabular}{l}
Fus
\[
20+21+22
\] \\
- All Celtic \\
Sea FUs \\
combined
\end{tabular} & Other staTISTICAL RECTANGLES Outside FUs & \begin{tabular}{l}
Total \\
LANDINGS \\
ICES Sub- \\
AREA 7
\end{tabular} & TAC FOR 7 \\
\hline 1993 & 515 & 8,102 & 1,857 & 372 & 10 & 905 & & & 4,648 & 455 & 16,863 & 20,000 \\
\hline 1994 & 447 & 7,606 & 2,512 & 729 & 126 & 390 & & & 5,143 & 570 & 17,523 & 20,000 \\
\hline 1995 & 584 & 7,796 & 2,936 & 866 & 26 & 695 & & & 5,505 & 397 & 18,805 & 23,000 \\
\hline 1996 & 475 & 7,247 & 2,230 & 525 & 46 & 888 & & & 4,828 & 623 & 16,862 & 23,000 \\
\hline 1997 & 566 & 9,971 & 2,409 & 841 & 15 & 756 & & & 4,240 & 340 & 19,138 & 23,000 \\
\hline 1998 & 388 & 9,128 & 2,155 & 1,410 & 78 & 827 & & & 3,925 & 514 & 18,426 & 23,000 \\
\hline 1999 & 624 & 10,786 & 2,289 & 1,140 & 16 & 579 & 1,152 & 1,788 & & 322 & 18,699 & 23,000 \\
\hline 2000 & 567 & 8,370 & 911 & 880 & 9 & 696 & 1,778 & 2,907 & & 243 & 16,365 & 21,000 \\
\hline 2001 & 532 & 7,441 & 1,222 & 913 & 2 & 815 & 1,833 & 2,935 & & 368 & 16,064 & 18,900 \\
\hline 2002 & 577 & 6,793 & 1,327 & 1,154 & 14 & 1,318 & 2,674 & 1,990 & & 243 & 16,099 & 17,790 \\
\hline 2003 & 376 & 7,052 & 907 & 933 & 16 & 1,239 & 2,953 & 2,050 & & 186 & 15,712 & 17,790 \\
\hline 2004 & 472 & 7,266 & 1,525 & 525 & 22 & 1,074 & 2,443 & 1,827 & & 161 & 15,314 & 17,450 \\
\hline 2005 & 570 & 6,529 & 2,312 & 778 & 15 & 711 & 2,469 & 2,425 & & 180 & 16,042 & 19,544 \\
\hline 2006 & 628 & 7,535 & 2,120 & 637 & 14 & 741 & 2,523 & 1,752 & & 270 & 16,210 & 21,498 \\
\hline 2007 & 959 & 8,424 & 2,186 & 1,096 & 3 & 957 & 2,419 & 2,881 & & 206 & 19,130 & 25,153 \\
\hline 2008 & 726 & 10,482 & 1,000 & 1,057 & 1 & 841 & 2,980 & 3,114 & & 111 & 20,430 & 25,153 \\
\hline 2009 & 693 & 9,166 & 825 & 625 & 10 & 833 & 3,145 & 2,245 & & 81 & 17,619 & 24,650 \\
\hline 2010 & 583 & 8,929 & 917 & 1,000 & 7 & 722 & 1,793 & 2,708 & & 50 & 16,710 & 22,432 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \begin{tabular}{l}
FU 14 - \\
Irish Sea \\
EAST
\end{tabular} & FU 15 Irish Sea West & \begin{tabular}{l}
FU 16 - \\
Porcupine \\
BANK
\end{tabular} & \begin{tabular}{l}
FU 17 - \\
Aran \\
Grounds
\end{tabular} & \begin{tabular}{l}
FU 18 - \\
Ireland \\
North \\
West \\
Coast
\end{tabular} & \begin{tabular}{l}
FU 19 - \\
Ireland \\
South \\
West and \\
South \\
EAST COAST
\end{tabular} & \begin{tabular}{l}
FU 20-21 \\
- Labadie, \\
Jones, \\
Cockburn
\end{tabular} & \begin{tabular}{l}
FU 22 - \\
Smalls \\
Grounds
\end{tabular} & \begin{tabular}{l}
Fus
\[
20+21+22
\] \\
- All Celtic Sea FUs COMBINED
\end{tabular} & Other statistical RECTANGLES Outside FUs & \begin{tabular}{l}
Total \\
Landings \\
ICES Sub- \\
area 7
\end{tabular} & TAC FOR 7 \\
\hline 2011 & 561 & 10,159 & 1,187 & 600 & 13 & 608 & 1,237 & 1,617 & & 109 & 16,092 & 21,759 \\
\hline 2012 & 531 & 10,527 & 1,260 & 1,135 & 28 & 770 & 1,189 & 2,633 & & 289 & 18,360 & 21,759 \\
\hline 2013 & 495 & 8,672 & 1,142 & 1,295 & - & 781 & 1,387 & 2,255 & & 49 & 16,076 & 23,605 \\
\hline 2014 & 679 & 8,613 & 1,189 & 766 & - & 468 & 1,840 & 2,614 & & 119 & 16,288 & 20,989 \\
\hline 2015 & 378 & 8,632 & 1,394 & 370 & - & 507 & 2,116 & 2,368 & & 65 & 15,830 & 21,619 \\
\hline 2016 & 237 & 7327 & 2154 & 641 & - & 591 & 2453 & 3276 & & 118 & 16979 & 23,348 \\
\hline Average & 591 & 8356 & 2067 & 657 & 20 & 798 & 2,132 & 2,410 & 4,011 & 233 & 21,252 & \\
\hline
\end{tabular}

\section*{Nephrops FU1 4 section}

\section*{Type of assessment in 2017}

This stock was inter-benchmarked in September 2015 (ICES, 2015) and the assessment and provision of advice through the use of the UWTV survey data and other commercial fishery data follow the process defined by the inter-benchmark process and described in the stock annex (updated at WGCSE 2017). The UWTV survey done in the summer 2016 will form the basis of advice for this stock in the autumn 2017.

ICES advice applicable to 2017
"ICES advises that when the MSY approach is applied, and assuming that discard rates and fishery selection patterns do not change from the average of 2013-2015, catches in 2017 should be no more than 995 tonnes. This implies landings of no more than 941 tonnes.

To ensure that the stock in functional unit (FU) 14 is exploited sustainably, management should be implemented at the functional unit level."

\section*{ICES advice applicable to 2016}
"ICES advises that when the MSY approach is applied, catches in 2016 (assuming a landing obligation applies) should be no more than 1272 tonnes. If this stock is not under the EU landing obligation in 2016 and discard rates do not change from the average (2013-2014), this implies landings of no more than 1213 tonnes.

In order to ensure the stock in this FU is exploited sustainably, management should be implemented at the functional unit level."

\subsection*{18.1.1 General}

\section*{Stock description and management units}

The Irish Sea East Nephrops stock (FU14) is in ICES Subarea 7, more specifically in area 7a which also includes the Irish Sea West (FU15) stock.

FU14 ICES rectangles: 38E5, 38E6, 37E6, 36E6, 35E6
In FU14 Nephrops are caught on two spatially discrete grounds. Most of the fishery takes place on the main ground located between the west coast of England and Isle of Man, additionally there is also fishing activity in a small inshore ground known as Wigtown Bay.


East Irish Sea fishing grounds: A= Main fishing ground; B= Wigtown bay area. Windfarms represented by red polygons. Main landing ports: Whitehaven, Fleetwood, Maryport and Kilkeel.

Fishery in 2017
The Eastern Irish Sea Nephrops fishery is an UK lead fishery, representing on average \(93 \%\) of the reported annual international landings (2007-2016) and is considered to be a relative small fishery within Area 7.a where with landings showing a generally downward trend over the past ten years (Table 3.8.2), from a high of 959 tonnes in 2007 down to a low of 237 tonnes in 2016. The main fleets targeting Nephrops include directed single-rig and twin-rig otter trawlers operating out of ports in UK (E\&W), UK (NI), Republic of Ireland and UK (S).

As in previous years, in 2016, the UK fleet accounts for the highest proportion of landings in tonnes. Of this the majority is from English vessels, however there has been an increase this year in the proportion landed from Northern Irish vessels (Figure 3.8.1).

A more detailed historical fishery description is provided in the stock annex.

\section*{Information from stakeholders}

No information provided.

\subsection*{18.1.2 Data}

\section*{InterCatch}

Data for 2016 were successfully uploaded into InterCatch prior the 2017 WG meeting. Uploaded data were worked-up in InterCatch to generate 2016 raised international length-frequency distributions and to derive catch and discard length frequencies for 2016.

\section*{Landings}

Official landings as reported to ICES from FU14 are presented in Table 3.8.1 and were updated for 2016 data.

There are reported landings for this functional unit since 1973 with a minimum and maximum of 178.7 t (in 1974) and 960.5 t (in 1978), respectively. Between 1987 and 2006 landings from FU14 appeared relatively stable fluctuating around a long-term average of about 550 t . Landings in 2016 ( 237 t ) decreased \(38 \%\) in relation to 2015 following a comparable decrease in between 2015 and 2014 ( \(44 \%\) ). The introduction of the Buyers and Sellers legislation in 2006 by the UK precludes direct comparison with previous years as reported levels are considered to have significantly improved.

Over the last ten years (2007-2016), UK vessels have landed, on average, \(\sim 92 \%\) of the reported annual international landings. Irish vessels increased their share of the landings to \(35 \%\) in 2002, declining since then to values generally \(<10 \%\) of the international landings (2007-2014). In 2015 the Republic of Ireland fleet landings increased significantly, accounting for \(23 \%\) of the total landings, however the proportion dropped back down to \(9 \%\) in 2016 (Table 3.8.2).

\section*{Effort}

Following discussions at WGCSE it was concluded that effort should be reported in the WGCSE report in kWdays and lpue should be reported in KG/kWdays in the knowledge that the trend is likely to be a biased underestimate because it is not adjusted for efficiency or behavioural changes. The time-series of effort and lpue is updated in Table 3.8.3 and Figure 3.8.2. There was a significant decline in effort in 2016 which is due to decrease of Northern Ireland vessels on the ground.

\section*{Sampling levels}

Sampling levels, data aggregating and raising procedures were reviewed by IBPNeph 2015 and are documented in the stock annex. Recent sampling levels have fluctuated, but for 2016 were higher than in 2015 and comparable with 2013-2014 levels. Sampling has typically only been from the UK (E\&W) fleet however for 2016 also included samples the UK (NI) fleet.

\section*{Commercial length-frequency distributions}

The raised catch length distributions are shown in Figure 3.8.3. The mean sizes for both sexes from 2008 fluctuate considerably. For 2016, the mean size of the landings was in the lowest recorded (since 1999) and mean landed sizes from UK (NI) landings samples were much lower than those for UK (E\&W). Mean size of the discards is slightly higher in 2016, but consistent with earlier years.

\section*{Length composition}

Since 2009 sampling was considered insufficient to derive catch and discard length frequencies. As a result none of the length derived metrics have been updated for 2010, 2011 and 2012. However, due to increase in number of samples for 2013 and 2014, a full revision was done through an inter-benchmark process (ICES, 2015 (described in the stock annex)).

Data aggregating and raising procedures in 2015 were conducted according to benchmark procedures (ICES, 2005) and referred in the stock annex.

Updated historical trends in length distributions and proportion discarded are shown in Figure 3.8.3 and Table 3.8.4. Final discard selection for the East Irish Sea shows a \(\mathrm{L} 50=23.54\) and a \(\mathrm{L} 25=24.77 \mathrm{~mm}\) CL (Figure 3.8.4), which shows a selectivity at higher sizes compared with FU15.

Mature females are mainly caught in the non-berried state between the moulting, which reaches its peak in May. Females mature at about 23 mm carapace length. (Thomas and José Figueiredo, 1965)

\section*{Sex ratio}

The catch sex ratio by year is shown in Figure 3.8.5. This shows some fluctuations over time, but showing for the last three year a proportion of around \(50 \%\). Between 2010 and 2012 due to poor sampling levels estimates of sex ratio are not reliable.

\section*{Mean weight explorations}

The annual mean weight estimate for landings and discards is provided in Table 3.8.4 and in Figure 3.8.6. The mean weight for 2016 landings decreased markedly from its value in previous years and is the lowest on record. Mean weight of females was considerably lower in the UK (NI) fleet at Mean weight for discards increased from 2015, but is comparable with recent years.

\section*{Discarding}

Discard selection was revised at the IBP process in 2015 (ICES, 2015) and described in the stock annex. Figure 3.8 .4 shows a single discard ogive fitted by pooling all years (2003-2014) and mesh sizes. Final discard selection for the East Irish Sea shows a L50= 23.54 and a L25=24.77 mm CL (Figure 4.3.4), which shows a selectivity at higher sizes compared with FU15. The discard ogive was not updated using 2015 and 2016 data.

Table 3.8.5 gives raised international landings and discard weight and numbers by year.

At IBPNeph (ICES, 2015) it was agreed that the discard survival rate should be updated form \(0 \%\) to \(10 \%\). Although there are no direct survivability studies available for this area, it is expected that the survivability of discarded animals should be similar to the fishery in FU 15 where fishing practices are similar and both are largely spring/summer fisheries and animals discarded are exposed to warmer temperatures before returned to sea.

\section*{Abundance indices from UWTV surveys}

In August of 2007-2016 the UK and the Republic of Ireland carried out an underwater TV survey of the Nephrops grounds in the eastern Irish Sea. The survey is of a fixed
grid design and is carried out using the same protocols used in UWTV surveys in the western Irish Sea (ICES, 2007; ICES, 2014). The survey stations used in 2016 are presented in Figure 3.8.7.

Due to the construction of the windfarm in the southern part of the ground the survey area was reviewed at IBP 2015 but the protocols and standardised process to run the survey were not modified (see stock annex and IBP 2015 report ICES, 2015). The new survey area (based on a co-kriging model) is shown in Figure 3.8.8. The boundary used to define the ground limits for absolute abundance runs close to the outer survey stations.
\begin{tabular}{lcl}
\hline \multicolumn{1}{c}{ Ground } & Area \(\mathrm{Km}^{2}\) & \multicolumn{1}{c}{ Source } \\
\hline Main ground 2008-2010 & 1032.75 & WGCSE 2008 \\
\hline Main ground 2011-2016 & 1019.79 & IBP 2015 - ICES, 2015 \\
\hline Wigtown Bay & 67.21 & IBP 2015 - ICES, 2015 \\
\hline
\end{tabular}

Wigtown Bay in relation to Main ground \(=6.6 \%\) * (increase from \(1.9 \%\) prior to the windfarm construction).

Abundance indexes were revised back to 2011, year where the effect of effort displacement is clearly visible due to the wind farm construction. Final updated abundance burrow density estimates are presented in Figure 3.8 .9 where the geo-spatial model was updated using the new area based on the co-kriging approach ( \(1019.79 \mathrm{Km}^{2}\) ) and the extrapolation to Wigtown Bay using 6.6\%.

Abundance estimate for 2016 ( 432.9 million) decreased compared to 2015 figure of 590.5 million (Figure 3.8.10), but showing a similar abundance estimation of 2013 and 2014. The surveys show a clear spatial distribution pattern, with highest densities in the central north of the patch and variable in the area further south. The grounds are fairly well delineated by consistently low density ground to the northeast and west (Figure 3.8.9).
\begin{tabular}{cccccccc}
\hline Year & \begin{tabular}{c} 
No valid \\
stations
\end{tabular} & \begin{tabular}{c} 
Mean \\
Krigged \\
density \\
\(\left(\right.\) no. \(\left./ \mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Abundance (millions) \\
including Wigtown \\
Bay (1.9\% 2008- \\
\(2010)\)
\end{tabular} & \begin{tabular}{c} 
Abundance (millions) \\
including Wigtown \\
Bay (6.6\% 2011- \\
\(2015)\)
\end{tabular} & \begin{tabular}{c}
\(95 \%\) \\
CI
\end{tabular} & CV
\end{tabular}

As described in previous reports, the limited number of stations available on the 2007 survey and the poor quality of the data processed preclude its use in formal assessment. The subsequent surveys were far more successful. A new camera and sledge improved the resolution of the footage captured and the sea conditions were far better so the quality of the video data collected was much improved, thus the valid surveys dataseries started in 2008.

Changes to number of UWTV stations:
- Due to the construction of the Walney Offshore wind farm in the southern part of the ground, in 2010 and 2011 some stations were abandoned.
- In 2011 three new exploratory stations were added due to some VMS activity in that part of the ground. Although, those stations were very close to zero burrows counts and were not included in the calculations of the main area abundance.
- In 2012 another station was added in the eastern part of the ground, but no Nephrops burrows were observed in this station.
- In 2013 three stations were moved slightly due to the proximity of new windfarm.
- In 2015 new exploratory stations (14-AS, 14-AT, 14-AU, 14-AV and 14-AW) were added to support the benchmark process to review of the ground boundaries for this stock.
- In 2016, following the benchmark recommendations, new stations were added in Wigtown Bay area (14-BA, 14-AY, 14-AZ).

The use of the UWTV surveys for the provision of Nephrops management advice was extensively reviewed by WKNEPH (2009). A number of potential factors were highlighted including those due to edge effects; species burrow misidentification and burrow occupancy. Using the same process adopted at WKNEPH, a cumulative absolute conversion factor for this FU was predicted to be 1.2 for FU14 (see stock annex) which means the TV survey is likely to overestimate Nephrops abundance by \(20 \%\). The burrow abundances shown in Table 3.8.5 and Figure 3.8.9 have been adjusted using this conversion factor since 2008.

\subsection*{18.1.3 Assessment}

\section*{Comparison with previous assessments}

The WGCSE 2017 carried out an UWTV based assessment for this stock. The methods used were very much in line with WKNEPH (ICES, 2009) and the approach taken for other Nephrops stocks in 6 and 7 by WGCSE. This approach was interbenchmarked at IBPNeph (ICES, 2015).

\section*{State of the stock}

UWTV abundance estimates suggest that the stock size has fluctuated between abundance values of 350 and 694 million Nephrops. The 2017 estimate ( 580 million) increased in relation to 2016 and is broadly in line with some historical figures and is above the MSY \(\mathrm{B}_{\text {trigger }}\) ( 350 million).

The 2017 abundance is below the average of the series 2008-2016 (geo-mean: 477 million). Table 3.8.5 and Figure 3.8.11 summarize the abundance estimated including the
confidence intervals and the harvest ratios (\% dead removed / UWTV abundance) which have been above the Fmsy proxy.

\subsection*{18.1.4 Catch option table}

Catch option table inputs and historical estimates of mean weight in landings and harvest ratios are presented in Table 3.8.5 and summarised below. The calculation of catch options for the FU14 follows the procedure outlined in the stock annex. The basis for the catch options:
\begin{tabular}{lcl}
\hline \multicolumn{1}{c}{ Variable } & Value & \multicolumn{1}{c}{ Notes } \\
\hline Stock abundance & 580 million & UWTV Survey 2017 \\
\hline Mean weight in landings & 21.32 g & Average 2014-2016 \\
\hline Mean weight in discards & 8.63 g & Average 2014-2016 \\
\hline Discard rate & \(11.56 \%\) & \begin{tabular}{l} 
Average (proportion by number) 2014-2016. Calculated as \\
discards/(landings + discards).
\end{tabular} \\
\hline Discard survival rate & \(10 \%\) & \begin{tabular}{l} 
Only applies in scenarios where discarding is allowed. \\
Dead discard rate
\end{tabular} \\
\hline
\end{tabular}

\subsection*{18.1.5 Reference points}

New reference points were defined for this stock at the IBPNeph (ICES, 2015) and no new proposals were made by WKMSYRef4 (ICES, 2016a; 2016b).

Based on the fact that some biological parameters are poorly known; inconsistent biological sampling; uncertainties about the stability of the stock over the reference period and uncertainties about the variability of recruitment it is expected that a combined sex \(\mathrm{F}_{0.1}\) is a suitable \(\mathrm{Fmsy}_{\text {m }}\) proxy for this stock. This corresponds to a harvest rate of \(11 \%\) and this value is expected to deliver high long-term yield with a low probability of recruitment over-fishing. These calculations assume that the UWTV survey has knife-edge selectivity at 17 mm and that the supplied length frequencies represented the population in equilibrium. Currently this fishery is being harvested at \(4.7 \%\) (Fsq_2014-2016 \(=4.7 \%\); F2016 \(=3.7 \%\) ), and historically the available data show a maximum harvest rate of \(8.2 \%\) in 2008 which is below the Fmsy proxy.

At the IBP a MSY Btrigger was defined for this stock. Accordingly with this definition \(B_{\text {trigger }}\) it was set for FU14 as 350 million, corresponded to the abundance observed in 2009.
\begin{tabular}{lllll}
\hline Framework & \begin{tabular}{c} 
Reference \\
point
\end{tabular} & Value & \multicolumn{1}{c}{ Technical basis } & Source \\
\hline MSY approach & MSY Btrigger & \begin{tabular}{l}
350 million \\
individuals
\end{tabular} & \begin{tabular}{l} 
The lowest observed abundance \\
estimate from the UWTV survey \\
time-series.
\end{tabular} & ICES (2015) \\
\cline { 2 - 6 } & FMSY & \(11 \%\) harvest rate & \begin{tabular}{l} 
FMSY proxy equivalent to F0.1 for \\
combined sexes.
\end{tabular} & ICES (2015) \\
\hline
\end{tabular}

\subsection*{18.1.6 Management strategies}

There are no explicit management strategies for this stock.

\subsection*{18.1.7 Quality of assessment and forecast}

The quality of landings data has improved in the last four years, but concerns over the accuracy of earlier years limits the period we can be confident about regarding trends in lpue and landings.

Underwater TV surveys have been conducted annually for this stock since 2007. The quality of the data from the first survey and the limited number of valid stations in the survey limits the number of useable surveys to 2008-2013.

The revised algorithm used to derive distance covered by the sledge is considered as significantly more robust than the previous algorithm.

The IBP 2015 managed to address key points:
- Revisions to the area of the Nephrops grounds based on new available data: VMS, UWTV data and sediment information
- A review of fishery data and raising procedures.
- Review of Reference points: Fmsy proxies and MSY Btrigger.

After this revision the quality of the assessment improved. Although there are still specific uncertainties and assumptions that need to be examined further for the East Irish Sea before less conservative Fmsy proxies could be considered.

There are several key uncertainties and bias sources in the method proposed (these are discussed further in ICES, 2009a). Various agreed procedures have been put in place to ensure the quality and consistency of the survey estimates following the recommendations of several ICES groups (ICES, 2007; ICES, 2008; ICES, 2009b). Taking explicit note of the likely biases in the surveys may at least provide an estimate of absolute abundance that is more accurate but no more precise (ICES, 2009a).

The cumulative absolute conversion factor estimates for FU14 are largely based on expert opinion. However these were based on experience on other grounds and relatively limited experience on these grounds which would make this less reliable. The precision of these cannot yet be characterised. Ultimately there still remains a degree of subjectivity in the production of UWTV abundance estimates.

The effect of this assumption on realised harvest rates has not been investigated but remains a key uncertainty.

\subsection*{18.1.8 Recommendation for next benchmark}

This stock was last benchmarked by IBPNeph (ICES, 2015). WGCSE will keep the stock under close review and recommend future benchmark as required.

At IBP 2015 it was mentioned that there are specific uncertainties and assumptions that need to be examined further for the East Irish Sea before less conservative Fmsy proxies could be considered.
- More accurate mapping of the spatial extent of the grounds and fisheries, this includes having positional data for \(<12\) metre vessels and more survey
data in Wigtown Bay area to better define this ground. Station grid was extended to Wigtown Bay in 2016.
- For now the total abundance estimate for FU14 is based on the abundance estimates of the geospatial model for the main ground plus adding the area of Wigtown Bay. As this area is becoming a more significant fishing patch it is worth to consider the use of a separate geospatial model in this ground. This should be explored in a future benchmark work.
- Improvement of spatial coverage and sampling of landings and discards, this includes increasing the sampling levels to cover Northern Irish vessels, as the current sampling is mainly focused on local vessels form Whitehaven port.
- Area specific length-weight and maturity data to validate the parameters used for this FU.
- Better knowledge of the difference in growth and population structure across the area.
- If following the current advice, the recommended catches are taken, then the stock may decrease to well below MSY B trigger in the short term. The basis for setting MSY \(\mathrm{B}_{\text {trigger }}\) is currently from recent history may be too high, it could also be due to recent low recruitment (transitory issue) or that the FmSY is too high. As such, the MSY Btrigger reference point needs to be looked into. It was noted that the basis for MSY Btrigger was the recent history and that the value may be too high.
- Advice is compiled for ADGNEPH in October. Lagged (one year) TV survey gives good correlation with lpue, could this be used to calculate harvest rate rather than the in-year ratio?

\subsection*{18.1.9 Management considerations}

ICES and STECF have repeatedly advised that management should be at a smaller scale than the ICES division level. Management at the Functional Unit level could allow effort and catch to be controlled in line with the scale of the resource.

There are no explicit recruitment indices.
The UWTV survey data allow for the provision of catch options and also to adopt the MSY approach. The UWTV surveys are conducted annually and a benchmark process has been adopted in 2015. In the past this stock has only been assessed biannually. These data provide the opportunity to reassess this stock more reliably on an annual basis.

\subsection*{18.1.10 References}

EU. 2015a. COMMISSION DELEGATED REGULATION (EU) 2015/2438 of 12 October 2015 establishing a discard plan for certain demersal fisheries in north-western waters. Official Journal of the European Union, L 336/29. Available at: <http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32015R2438\&from=EN \(>\) [Accessed: 26/05/2017].

EU. 2015b. REGULATION (EU) 2015/812 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 May 2015. Official Journal of the European Union, L 133/1. Available at: <http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R0812\&from=EN> [Accessed: 26/05/2017].

ICES. 2007. Report of the Workshop on the use of UWTV surveys for determining abundance in Nephrops stocks throughout European waters (WKNEPHTV). ICES CM: 2007/ACFM:14.

ICES. 2008. Report of the Workshop and training course on Nephrops burrow identification (WKNEPHBID). ICES CM 2008/LRC:03.

ICES 2009a. Report of Benchmark Workshop on Nephrops assessment (WKNEPH). ICES CM:2009/ACOM:33.

ICES. 2009b. Report of the Study Group on Nephrops Surveys (SGNEPS). ICES CM 2009/LRC: 15, pp 52.

ICES. 2012. Report of the Study Group on Nephrops Surveys (SGNEPS), 6-8 March 2012, Acona, Italy. ICES CM 2012/SSGESST:19. 36 pp.

ICES. 2014. Report of the Working Group on Nephrops Surveys (WGNEPS). ICES CM 2014/SSGESST:20. 57 pp.

ICES. 2015. Report of the Inter-Benchmark Protocol of Nephrops in FU 17 and 14 (IBPNeph), from June to September 2015, by correspondence. ICES CM 2015/ACOM:38. 86pp.

ICES. 2016a. EU request to ICES to provide Fmsy ranges for selected stocks in ICES Subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

ICES. 2016b. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

Table 3.8.1. Irish Sea: Landings (tonnes) by FU, 2000-2012. 2015* refers to preliminary landings data. In 2012 and 2013 landings outside FU for Area 7a were not provided, so have been calculated from ICES official landings for 7 a minus the FU areas.
\begin{tabular}{ccccc}
\hline YEAR & FU14 & FU15 & OTHER & TOTAL \\
\hline 2000 & 567 & 8370 & 1 & 8938 \\
\hline 2001 & 532 & 7441 & 3 & 7976 \\
\hline 2002 & 577 & 6793 & 1 & 7371 \\
\hline 2003 & 376 & 7052 & 3 & 7431 \\
\hline 2004 & 472 & 7267 & 25 & 7764 \\
\hline 2005 & 570 & 6554 & 103 & 7227 \\
\hline 2006 & 628 & 7561 & 52 & 8241 \\
\hline 2007 & 959 & 8491 & 83 & 9533 \\
\hline 2008 & 676 & 1050 & 122 & 11306 \\
\hline 2009 & 708 & 9198 & 57 & 9963 \\
\hline 2010 & 582 & 8963 & 23 & 9568 \\
\hline 2011 & 561 & 10162 & 61 & 10784 \\
\hline 2012 & 531 & 10527 & 208 & 11266 \\
\hline 2013 & 495 & 8672 & 89 & 9256 \\
\hline 2014 & 679 & 8613 & NA & 9292 \\
\hline 2015 & 378 & 8632 & NA & 9010 \\
\hline 2016 & 237 & 7327 & 9 & 7564 \\
\hline
\end{tabular}

Table 3.8.2. Irish Sea East (FU14): Landings (tonnes) by country, 2000-2016.
\begin{tabular}{ccccc}
\hline YEAR & REP. OF IRELAND & UK & OTHER COUNTRIES & TOTAL \\
\hline 2000 & 114 & 451 & 2 & 567 \\
\hline 2001 & 26 & 506 & 0 & 532 \\
\hline 2002 & 203 & 373 & 1 & 577 \\
\hline 2003 & 69 & 306 & 1 & 376 \\
\hline 2004 & 62 & 409 & 1 & 472 \\
\hline 2005 & 34 & 536 & 0 & 570 \\
\hline 2006 & 34 & 594 & 0 & 628 \\
\hline 2007 & 86 & 873 & 0 & 959 \\
\hline 2008 & 29 & 652 & 0 & 681 \\
\hline 2009 & 16 & 692 & 0 & 708 \\
\hline 2010 & 45 & 538 & 0 & 583 \\
\hline 2011 & 31 & 530 & 0 & 561 \\
\hline 2012 & 53 & 478 & 0 & 531 \\
\hline 2013 & 35 & 460 & 0 & 495 \\
\hline 2014 & 31 & 648 & 0 & 679 \\
\hline 2015 & 88 & 290 & 0 & 378 \\
\hline 2016 & 21 & 216 & 0 & 237 \\
\hline
\end{tabular}

Table 3.8.3. Irish Sea East (FU14): Effort data for the UK and Irish trawl Nephrops directed fleet.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{YEAR} & \multicolumn{3}{|c|}{UK direct fleet} & \multicolumn{3}{|c|}{Irish direct fleet} \\
\hline & \begin{tabular}{l}
EFFORT \\
(KW \\
DAYS)
\end{tabular} & LANDINGS (TONNES) & LPUE/KWDAYS & \begin{tabular}{l}
EFFORT \\
(KW \\
DAYS)
\end{tabular} & LANDINGS (TONNES) & LPUE/KWDAYS \\
\hline 2000 & 145794 & 393 & 6.8 & 47958 & 109 & 2.3 \\
\hline 2001 & 141686 & 417 & 6.9 & 8691 & 21 & 2.4 \\
\hline 2002 & 97368 & 285 & 6.8 & 72588 & 201 & 2.8 \\
\hline 2003 & 114096 & 226 & 4.5 & 23269 & 41 & 1.8 \\
\hline 2004 & 107570 & 323 & 6.9 & 26345 & 55 & 2.1 \\
\hline 2005 & 124349 & 395 & 6.6 & 17504 & 34 & 1.9 \\
\hline 2006 & 249846 & 408 & 4.3 & 6932 & 18 & 2.7 \\
\hline 2007 & 345818 & 668 & 6.7 & 25309 & 79 & 3.1 \\
\hline 2008 & 308427 & 508 & 4.3 & 8136 & 15 & 1.8 \\
\hline 2009 & 262030 & 499 & 5.1 & 5516 & 13 & 2.4 \\
\hline 2010 & 217937 & 356 & 4.8 & 13496 & 45 & 3.3 \\
\hline 2011 & 188876 & 356 & 5.5 & 8955 & 31 & 3.4 \\
\hline 2012 & 163110 & 301 & 5.3 & 21224 & 53 & 2.5 \\
\hline 2013 & 170799 & 339 & 5.6 & 11304 & 35 & 3.1 \\
\hline 2014 & 179356 & 404 & 6.1 & 10259 & 29 & 2.8 \\
\hline 2015 & 79960 & 155 & 5.0 & 27128 & 84 & 3.1 \\
\hline 2016 & 59970 & 101 & 4.4 & 9496 & 21 & 2.2 \\
\hline
\end{tabular}

Table 3.8.4. Irish Sea East (FU14): Mean size (CL) and weight combined by sex for total annual landings and discards and proportion discarded.
\begin{tabular}{cccccc}
\hline Year & \begin{tabular}{c} 
Mean CL \((\mathrm{mm})\) \\
Landings
\end{tabular} & \begin{tabular}{c} 
Mean CL \\
\((\mathrm{mm})\) \\
Discards
\end{tabular} & \begin{tabular}{c} 
Mean Weight \((\mathrm{g})\) \\
Landings
\end{tabular} & \begin{tabular}{c} 
Mean Weight \\
(g) Discards
\end{tabular} & \begin{tabular}{c} 
Proportion \\
discarded
\end{tabular} \\
\hline 2000 & 29.83 & 22.32 & 19.05 & 7.52 & 0.26 \\
\hline 2001 & 30.59 & 22.74 & 20.87 & 7.97 & 0.17 \\
\hline 2002 & 30.64 & 23.75 & 22.41 & 8.98 & 0.15 \\
\hline 2003 & 33.69 & 22.43 & 29.12 & 7.62 & 0.10 \\
\hline 2004 & 31.01 & 22.24 & 21.93 & 7.57 & 0.15 \\
\hline 2005 & 30.74 & 23.16 & 21.48 & 8.44 & 0.13 \\
\hline 2006 & 32.36 & 22.75 & 25.07 & 7.98 & 0.10 \\
\hline 2007 & 31.81 & 21.92 & 23.94 & 7.33 & 0.14 \\
\hline 2008 & 31.07 & 23.14 & 22.88 & 8.49 & 0.13 \\
\hline 2009 & 35.57 & 23.21 & 36.49 & 8.58 & 0.04 \\
\hline \(2010^{*}\) & & & & & \\
\hline \(2011^{*}\) & & & & & \\
\hline \(2012^{*}\) & & & & & 0.16 \\
\hline 2013 & 30.14 & 22.43 & 19.94 & 7.87 & 0.16 \\
\hline 2014 & 31.01 & 24.34 & 22.37 & 9.60 & 0.11 \\
\hline 2015 & 32.05 & 22.57 & 25.19 & 7.82 & 0.13 \\
\hline 2016 & 27.69 & 23.21 & 16.39 & 8.47 & 0.1 \\
\hline
\end{tabular}

\footnotetext{
* Values for 2010, 2011 and 2012 are not reliable due to poor sampling.
}

Table 3.8.5. Irish Sea East (FU14): Sumary table for forecast inputs (current used shaded in blue) and historical estimates of raised landings and discards, mean weight in landings and harvest rate.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { ர̃ } \\
& \text { ঠ }
\end{aligned}
\] &  &  &  &  &  &  & ן^ләəи৷ әэиәр!лиоว \%ऽ6 &  & \[
\begin{aligned}
& \text { n } \\
& \text { ㄷ } \\
& 0 \\
&
\end{aligned}
\] & Total discards* &  & spдeวs!p u! дчб!әм иеәю \\
\hline & million s & million s & million s & \% & \% & million S & & \% & tonnes & tonnes & gramme & gramme \\
\hline 2000 & 29.7 & 10.7 & 40.4 & 24.4 & 26.4 & & & & 566.6 & 80.2 & 19.0 & 7.5 \\
\hline 2001 & 25.5 & 5.2 & 30.7 & 15.5 & 17.0 & & & & 532.3 & 41.6 & 20.9 & 8.0 \\
\hline 2002 & 25.8 & 4.7 & 30.4 & 14.1 & 15.4 & & & & 577.3 & 42.1 & 22.4 & 9.0 \\
\hline 2003 & 12.9 & 1.4 & 14.3 & 9.0 & 9.9 & & & & 376.0 & 10.8 & 29.1 & 7.6 \\
\hline 2004 & 21.5 & 3.7 & 25.3 & 13.5 & 14.8 & & & & 472.2 & 28.2 & 21.9 & 7.6 \\
\hline 2005 & 26.5 & 4.0 & 30.5 & 11.8 & 13.0 & & & & 569.7 & 33.4 & 21.5 & 8.4 \\
\hline 2006 & 25.1 & 2.8 & 27.9 & 9.2 & 10.1 & & & & 628.4 & 22.4 & 25.1 & 8.0 \\
\hline 2007 & 40.1 & 6.4 & 46.5 & 12.5 & 13.8 & & & & 959.0 & 46.8 & 23.9 & 7.3 \\
\hline 2008 & 29.5 & 4.3 & 33.9 & 11.6 & 12.7 & 407.6 & 63.0 & 8.2 & 676.0 & 36.6 & 22.9 & 8.5 \\
\hline 2009 & 19.4 & 0.7 & 20.1 & 3.3 & 3.7 & 350.0 & 76.0 & 5.7 & 707.0 & 6.3 & 36.5 & 8.6 \\
\hline 2010 & & & & & & 422.0 & 103.0 & & 582.3 & & & \\
\hline 2011 & & & & & & 449.2 & 98.8 & & 561.0 & & & \\
\hline 2012 & & & & & & 693.8 & 99.0 & & 531.0 & & & \\
\hline 2013 & 24.9 & 4.9 & 29.7 & 15.0 & 16.4 & 487.0 & 81.6 & 6.0 & 495.4 & 39.3 & 19.9 & 7.9 \\
\hline 2014 & 30.3 & 3.7 & 34.0 & 9.8 & 10.8 & 449.1 & 91.8 & 7.5 & 678.5 & 32.4 & 22.4 & 9.6 \\
\hline 2015 & 15.0 & 2.2 & 17.2 & 11.9 & 13.0 & 590.5 & 86.0 & 2.9 & 377.7 & 17.6 & 25.2 & 7.8 \\
\hline 2016 & 14.3 & 1.7 & 16.1 & 9.9 & 10.9 & 430.0 & 106.3 & 3.7 & 237.1 & 14.8 & 16.4 & 8.5 \\
\hline
\end{tabular}

Note: Abundance is adjusted by using a cumulative absolute conversion factor of 1.2. Abundance (millions) including Wigtown Bay (1.9\% 2008-2010; 6.6\% 2011-2016). Due to poor sampling no estimates for 2010-2012.


Figure 3.8.1. Irish Sea East (FU14): Landings in tonnes by country. GBE=England; GBN=Northern Ireland; GBS=Scotland; Rep. of Ireland=Republic of Ireland.


Figure 3.8.2. Irish Sea East (FU14): Effort data (KW days) for UK directed Nephrops fleet.

\section*{Length frequencies for catch (dotted) and landed(solid): Nephrops in fu14}


Figure 3.8.3. Irish Sea East (FU14): Length distribution of landings (solid lines) and catch (dotted lines), 2000-2016. Length frequencies for 2010-2012 are based in very poor sampling so not reliable. Figure shows a vertical display of MLS \((20 \mathrm{~mm} \mathrm{CL})\) and 35 mm CL levels.

FU14 combined year and mesh


Figure 3.8.4. Irish Sea East (FU14): Final discard ogive pooled for all years (2003-2014) and mesh sizes. L50=23.54 and L25=24.77.


Figure 3.8.5. Irish Sea East (FU14): Proportion of males in catch since 1999. Between 2010 and 2012 due to poor sampling levels estimates of sex ratio are not reliable.


Figure 3.8.6. Irish Sea East (FU14): Mean weight (g) combined by sex for total annual landings and discards. Values for 2010, 2011 and 2012 are not reliable due to poor sampling.

\section*{CO3117 Grid - FU14}


Figure 3.8.7. Irish Sea East (FU14): UWTV Survey stations for 2017.


Figure 3.8.8. Irish Sea East (FU14): Co-kriging approach. Interpolation result of VMS (cut off 3\%), survey density (2013-2015) data and mud distribution. A - model output; B - final polygon.



Figure 3.8.9. Irish Sea East (FU14): Burrow density estimates from the UWTV Survey 2008-2016 (individuals \(/ \mathbf{m}^{2}\). Abundance estimates (millions) given at the bottom of each plot are adjusted with the cumulative absolute conversion factor (but does not contain the additional area for Wigtown Bay). Area of ground \(=1032.75 \mathrm{Km}^{2}\) for 2008-2010 and \(1019.79 \mathrm{Km}^{2}\) for 2011-2016.


Figure 3.8.10. Irish Sea East (FU14): Burrow density estimates from the UWTV Survey 2008-2017. \(B_{\text {trigger }}\) set as 350 million (orange dashed line).


Figure 3.8.11. Irish Sea East (FU14): Harvest Rate (\% dead removed/UWTV abundance). The dashed and solid lines are the MSY proxy (11\%) and the harvest rate respectively. Between 2010 and 2012 due to poor sampling levels harvest rate estimates are not reliable.

\subsection*{18.2 Audit of Nephrops in Division 7.a (Irish Sea East, FU14)}

\section*{General}

\section*{For single-stock summary sheet advice}

1 ) Assessment type: Update with one additional year of catch and survey data (benchmarked at IBPNeph 2015, stock annex updated at WGCSE 2016).
2 ) Assessment: Analytical. A combination of UWTV survey-based abundance assessment and commercial fishery data, following the process defined by the benchmark working group (IBPNeph 2015 and stock annex).
3 ) Forecast: Short-term projection to produce a catch options table.

4 ) Assessment model: UWTV based approach.
5 ) Data issues:
5.1) The levels of biological sampling was not stated for 2016. It would be useful to state this for the last three years.
5.2 ) The number of valid stations used in the assessment was not stated.

6 ) Consistency:
6.1 ) The assessment process is consistent with the stock annex and the previous year's assessment.
6.2 ) Fluctuations are observed in the mean weight in sampled landings and discards and hence three year averages are given from 2014 to 2016.

7 ) Stock status:
7.1 ) UWTV abundance estimates suggest stock size has fluctuated generally above the \(B_{\text {trigger }}\).
7.2 ) In 2016 stock abundance was 432.9 million individuals for FU14, a decrease on 2015 ( 590.5 million), but still well above the Btrigger value of 350 million.
7.3 ) Harvest ratios have been below the Fmsy proxy (11\%; estimated by IBTNeph 2015, based on F0.1 for combined sexes) from 2013 to 2016.
8 ) Management Plan:
8.1 ) There are no explicit management strategies for this stock.
8.2 ) Management should be carried out at a smaller scale than the ICES division level.

\section*{General comments}
- The audit was undertaken with a draft of the document, prior to a second opinion given internally by another member of staff at Cefas, therefore some of the comments may not apply to the final document on SharePoint.
- The report did contain some misplotting in graphs (detailed in Technical comments) but was generally clearly written.
- The assessment is in line with the Stock Annex with the methods used to derive the Fmsy and landings predictions not deviating from the stock annex.
- The basis for the catch options (discard rates, survival, etc.) are clearly presented under Section 6.4.3.
- Most comments made in the 2016 stock audit appeared to have been taken on board i.e. stating survey CVs in the report, etc.

\section*{Technical comments}
- Comments were made on a draft of the report which was available on SharePoint and submitted to the report writer.
- The two main errors in the report draft:
- Landings from the Republic of Ireland in Figure 3.8.1 were not plotted.
- The most recent harvest ratio (for 2016) was not plotted in Figure 3.8.11 although is present in the table.

\section*{Conclusions}

The assessment was performed correctly and provides a valid basis for the management advice. The stock has declined in abundance from 2015 to 2016 but is still stable and above Btrigger. Although harvest ratios are still greatly below Fmsy (11\%).

\section*{Checklist for audit process}

\section*{General aspects}
- Has the EG answered those ToRs relevant to providing advice? Yes
- Is the assessment according to the stock annex description? Yes
- If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary? N/A
- Have the data been used as specified in the stock annex? Yes
- Has the assessment, recruitment and forecast model been applied as specified in the stock annex?
- Is there any major reason to deviate from the standard procedure for this stock? No
- Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice?

\section*{19 Norway lobster (Nephrops norvegicus) in Division 7.a, Functional Unit 15 (Irish Sea, West)}

\section*{Type of assessment}

The assessment and provision of advice through the use of the UWTV survey data and other commercial fishery data follows the general process defined by WKNEPH (2009) described in the stock annex. The TV survey is due to be repeated in the summer of 2017 and the new survey will form the basis of advice for this stock in the autumn.

\section*{ICES advice applicable to 2016}

ICES advises that when the MSY approach is applied, catches in 2016 (assuming zero discards) should be no more than 8682 tonnes. If instead discards rates continue at recent values (average 2012-2014) and there is no change in assumed discard survival rate, this implies landings of no more than 7577 tonnes.

To ensure that the stock in functional unit (FU) 15 is exploited sustainably, management should be implemented at the functional unit level.

\section*{ICES advice applicable to 2017}

ICES advises that when the MSY approach is applied, and assuming that discard rates and fishery selection patterns do not change from the average of 2013-2015, catches in 2017 should be no more than 11248 tonnes. This implies landings of no more than 9376 tonnes.

To ensure that the stock in functional unit (FU) 15 is exploited sustainably, management should be implemented at the functional unit level.

\subsection*{19.1 General}

\section*{Stock description and management units}

The Irish Sea West (FU15) is comprised of ICES rectangles 35E3-E5, 36E3-E5, 37E3E5 \& 38E4 within 7a. It is included in ICES Area 7 together with the Irish Sea East (FU14), Porcupine Bank (FU16), Aran Grounds (FU17) northwest Irish Coast (FU18), southeast and southwest Irish Coast (FU19), NW Labadie, Baltimore and Galley, and Jones and Cockburn (FU20-21) and the Smalls (FU22).

A TAC is in place for ICES Area 7 which does not correspond to the assessment units. As Nephrops are limited to muddy habitats the distribution of suitable sediment defines the species distribution and the stocks are therefore assessed as seven separate Functional Units (Figure xx). The TAC for Area 7 is shown in Table xx.

\section*{Fishery description}

The FU 15 Nephrops fishery first developed in the late 1950s. The environment in the Western Irish Sea is very suitable for Nephrops, with a large mud patch and a gyre that retains the larvae over the mud patch, thus ensuring good recruitment. The ground can be characterized as an area of very high densities of small Nephrops. Northern Ireland and Ireland are the main countries involved in the FU15 Nephrops fishery.

\section*{The fishery in 2016}

The Nephrops fishery in the Irish Sea west is economically the most important in ICES Division 7.a and is mainly prosecuted by vessels from UK (Northern Ireland) and Ireland. Working Group landings from FU15 are presented in Table 19.1 and Figure 19.1. Total declared international Nephrops landings reported from FU15 in 2015 was 7327 t , which are the lowest observed landings since 2005. There has been a trend for Irish, since 2012, and more recently Northern Irish vessels to switch to multi (quad) rig trawls. Provisional data suggest a \(\sim 30 \%\) increase in Nephrops catch rates and a reduction in fish bycatch of \(\sim 30 \%\) due to the lower headline height. Since March 2012, it is mandatory for all Irish vessels to use specified species selective gears. Similar conditions have been introduced in October 2012 for the UK (Northern Ireland) vessels.

Further general information on the fishery can be found in the stock annex.
Information from stakeholders
No information from stakeholders.

\subsection*{19.2 Data}

Commercial size composition data for landings and discards were provided by Northern Ireland and Ireland. Other biological data used in the assessment were as listed in the stock annex compiled by the Benchmark meeting WKNEPH (2009).

\section*{Intercatch}

Data were available in InterCatch and used to derive assessment input data.

\section*{Landings}

Working Group landings from FU15 are presented in Table 19.1 and Figure 19.1. Total declared international Nephrops landings reported from FU15 in 2016 was 7327 t , which are the lowest observed landings since 2005. Ireland's landings were 1609 t , a decrease of \(58 \%\) from the recent 2012 peak. UK vessels landed 5715 t in 2016, a decrease of \(11 \%\) from last year, with landing by Northern Irish vessel contributed to over \(98 \%\) of these landings.

\section*{Effort}

Effort by the UK fleet remained relatively stable since 2002 following a steady decline from the early 1990s. There was a further reduction in effort and lpuelpue time-series for Ireland (Table 19.3) compared to 2015, to the lowest reported value in the series. In previous years these inter annual fluctuations have been attributed to the high mobility and flexibility, in terms of fishing in other areas within the TAC area, whereas the Northern Irish effort is mostly concentrated on FU15. Fishing activity from the Irish fleet in FU15 increasingly concentrates on good fishing periods during the year, resulting in a larger and increasing lpuelpue. The decrease in landings and lpuelpue in 2015 is most likely associated with better fishing opportunity elsewhere in the TAC area. The lpue and effort lpue series for Northern Ireland are updated to provide kW days \((\mathrm{kWd})\) and lpue as \(\mathrm{kg} / \mathrm{kWd}\). A change to e-logbooks and recording of fishing hours after 2013 means that the recent data are not comparable with the historic series. Recent lpue and effort after 2013 has remained stable. The lpue for the Northern Irish and Irish fleets in 2016 are similar \(2.68 \mathrm{~kg} / \mathrm{kWd}\) c.f. \(2.75 \mathrm{~kg} / \mathrm{kWd}\) respectively.

\section*{Sampling levels}

Sampling catches by means of the fisher self-sampling scheme for Northern Irish vessels has continued at sustained high levels with 94 samples collected from the reference fleet, with 31, 20, 18 and 25 samples in quarters \(1-4\) respectively. The number of discard and catch samples collected from the Irish fleet was 38 with eight, eight,16 and six samples collected in quarters \(1-4\) respectively. These rates correspond to one sample per 58 t landed by the Northern Irish fleet and one sample for every 42 t landed by the Irish fleet. Sampling levels of commercial catches in 2016 remained at a level similar to those in previous years.

\section*{Commercial length-frequency distributions}

Length and sex compositions of Nephrops landed from the Irish Sea West are estimated from port sampling by Ireland and Northern Ireland. Sampling of Northern Ireland catches was not possible during 2003-2007, with the Irish length frequencies raised to the international catch for these years. Northern Ireland sampling resumed in 2008 and these data are combined with those from Ireland for that year.

This Northern Irish fisher self-sampling scheme uses a reference fleet of vessels selected vessels from the main Northern Irish ports. The reference vessels selection is designed to be representative of the entire fleet with systematic rota sampling. The mean sizes of Nephrops in the catches of both the Northern Ireland and Ireland fisheries have fluctuated for the last decade (Tables 19.4-19.5; Figure 19.1). There is little evidence to suggest a long-term trend in the mean size of males and females in the landings and catches which continues to fluctuate around the series mean (Figure 19.2).

\section*{Sex ratio}

The sex ratio by year is shown in Figure 19.3. This shows some fluctuations over time. In general the sex ratio in landings and catches are biased toward males, with a geomean of \(55.8 \%\) males in landings (1986-2016) and \(52.1 \%\) in catches (1986-2016). A small bias toward males in catches was observed in 2016, the catch comprises 51.8\% and \(55.3 \%\) in landings compared to \(49.2 \%\) in the catch and \(52.3 \%\) in landings in 2015 . The stronger bias of males in landings relates to the average larger size of male Nephrops.

\section*{Mean weights}

Explorations of the mean weight in the catch samples by sex shows a strong seasonal pattern in the females (Figure 19.4). This corresponds with the emergence of mature females from the burrows to mate in summer. Over time there has been a trend toward decreasing mean weights (Figure 19.5). The trend has decreased in strength in later years. The mean weights in landings (2014-2016) and mean weights in discards (2014-2016) are used in the basis for calculating catch options (Section 19.4).

\section*{Discards}

Annual discard rates are estimated using unsorted catch and discards sampling. Unsorted catches and samples of retained catch are provided by vessels. The catch sample is partitioned into landings and discards using a discard selection ogive derived, this selection ogive can be derived per sample or as aggregation of samples within a quarter or year when sampling rates are low. Sampling effort is stratified weekly, but quarterly aggregations are used to quarterly length frequencies and discard esti-
mates. The length-weight regression parameters given in the stock annex are used to calculate sampled weights and appropriate raising factors. Discarding practice is highly variable, mainly driven by market demand, and was \(30 \%\) of the catch by number in 2016 (Table 19.6). A discard survival rate of \(10 \%\) is assumed for Nephrops from this FU (WKNEPH 2009).

\section*{Surveys}

\section*{Abundance indices from UWTV surveys}

Since 2003 Ireland and Northern Ireland have jointly carried out underwater television surveys of the main Nephrops grounds in the western Irish Sea. These surveys were based on a randomised fixed-grid design. The methods used during the surveys were similar to those employed for UWTV surveys of other Nephrops stocks and were as agreed by WKNEPHTV (ICES, 2007), WKNEPBID (ICES, 2008), SGNEPS (ICES, 2009; 2010; 2012) , WKNEPH (ICES, 2009) and WGNEPS (ICES, 2013; 2014; 2015; 2016). From 2003 to 2011 year an average of 146 valid stations was covered by the two surveys combined and the data were raised to a stock area of around \(5290 \times 10-6 \mathrm{~km}^{2}\) as detailed in Table 19.7. Details of the survey methodology are available in WGNEPS (ICES, 2016). Figure 19.6 shows the distribution of stations sampled in 2016. The number of stations were significantly reduced in 2012 following a recommendation from SGNEPS 2012 that a CV (or relative standard error) of \(<20 \%\) is an acceptable precision level for UWTV survey estimates of abundance. This allowed sampling intensity to be reduced and survey effort allocated to other areas and FUs in area 7. Figures 19.7 and 19.8 are contour plot of the krigged-density estimates for FU15 over the period 2003-2016. The survey abundance estimate in 2016 is approximately \(6 \%\) higher than 2015 estimate (Table 19.7). A violin plot of the burrow densities observed in the survey (2003-2016) is shown in Figure 19.9. The character of the burrow densities encountered has remained consistent over time; characterised by a relatively high occurrence of low density stations and a normal distribution densities around one burrow \(/ \mathrm{m}^{2}\). Confidence in the survey estimates and design are assured through the maintained low coefficient of variation on the burrow estimates.

The use of the UWTV surveys for the provision of Nephrops management advice was extensively reviewed by WKNEPH (ICES, 2009) and potential biases were highlighted including those due to edge effects; species burrow misidentification and burrow occupancy. A cumulative bias correction factor estimated for FU15 was 1.14 which means the TV survey is likely to overestimate Nephrops abundance by \(14 \%\).

\section*{Nephrops trawl surveys}

In addition to UWTV surveys Northern Ireland have completed spring (April) and summer (August) Nephrops trawl surveys since 1994 and provide data on catch rates, size composition and biological data from fixed stations in the western Irish Sea as detailed in the Stock Annex (Stock Annex Figure 1). Survey cpue has reminded. Mean carapace length-by-sex (from the trawl survey) shows inter-annual variation fluctuating around mean with no apparent trend over time (Figure 19.10).

Due to reduced resources, the spring survey series was terminated in 2010 as part of a national rationalisation of the survey programme after considering benefits to management and stock assessment. Due to a major ship break-down, no data are available for the 2013 summer survey. The summer trawl survey catch rates correlate somewhat with UWTV survey abundance estimates (Figure 19.11), but showed a deviating trend, especially in 2010. The longer time-series of the trawl survey shows
that catch rates in the last few years \((2005-2009,2011)\) are close to the mean of the series when UWTV burrow abundances were in the range of \(5-6\) billion burrows. The reduction in the 2010 trawl estimate, that showed a conflicting trend to the UWTV abundance, is most likely associated with the survey taking place in suboptimal tidal conditions. Usually the trawl survey coincides with slack tides, but this was not optimal in 2010 due to availability of the ship and synchronisation with the UWTV survey.

\subsection*{19.3 Assessment}

\section*{Comparison with previous assessments}

The assessment approach used by WGCSE 2017 is consistent with that set out in the stock annex and WKNEPH (WKNEPH, 2009. Since the most recent three years of sampling data were available, three year averages of mean weights in the landings and proportions retained in the fishery have been used. This is in line with the procedure used for other stocks in areas 6 and 7 by WGCSE.

\section*{State of the stock}

The stock size is estimated to show a small increase, but with the limits previously observed for the stock. The harvest ratio has increased slightly in 2016 is below Fmsy (Figure 19.12). This stock has sustained landings at around 9000 t for many years. The stock increased until 2003. Since then, the stock has decreased but is still at high levels. The most recent UWTV abundance estimate of 5.1 billow in 2016 follows a period (2013-2015) of below average size (geometric mean of current series: 4.9 billion). Figure 19.12 is the stock summary plot for FU15. Recent harvest rates have fluctuated around Fmsy, estimated as 15.3 in 2016, having decreased from 19.9 in 2015 (Table 19.6). The stock is estimated to be well above \(B_{\text {trigger }}(3000\) million).

\subsection*{19.4 Catch option table}

Catch option table inputs are presented in Table 19.6 and summarised below. A three year average (2014-2016) of mean weight in the landings and proportion of removals retained was used.

A landings prediction for 2017 was made for FU15 using the approach agreed at the Benchmark Workshop (WKNEPH, 2009) and outlined in the stock annex made on the basis of the 2017 UWTV survey. This will be presented in October 2017 for the provision of advice.

The basis for the catch options.
\begin{tabular}{lcl}
\hline \multicolumn{1}{c}{ Variable } & Value & \multicolumn{1}{c}{ Notes } \\
\hline Stock abundance & Available in October 2017 & UWTV survey 2017. \\
\hline Mean weight in landings & 13.47 g & Average 2014-2016. \\
\hline Mean weight in discards & 7.68 g & Average 2014-2016. \\
\hline Discard rate & \(28.4 \%\) & \begin{tabular}{l} 
Average 2014-2016 (by \\
number).Calculated as discards divided by \\
landings + discards.
\end{tabular} \\
\hline Discard survival rate & \begin{tabular}{l} 
Only applies in scenarios where discarding \\
is allowed.
\end{tabular} \\
\hline Dead discard rate & \begin{tabular}{l} 
Average 2014-2016 (by number). \\
Calculated as dead discards divided by \\
dead removals (landings + dead discards). \\
Only applies in scenarios where discarding \\
is allowed.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{19.5 Reference points}

A decision-making framework for the choice of Fmsy proxy reference points is available in the introduction to the Nephrops ICES advice sheets. The current Fmsy proxy reference points for FU15 Nephrops was evaluated at WKMSYRef4. The MSY reference point for FU15 Nephrops is the \(\mathrm{F}_{\max }\) for combined sexes. No precautionary reference points have been defined for Nephrops stocks. Whereas the Fmsy proxy reference points were chosen with the intent that they should lead to a low probability of stock overfishing.

Previously the cpue data from the trawl surveys were scaled to the UWTV index to provide a \(B_{\text {trigger }}\) approximation based on the mean of the five lowest survey catch rates in the time-series (Figure 19.8), this is still accepted as an appropriate \(B_{\text {trigger }}\) for FU15.
\begin{tabular}{rccccc}
\hline Stock code & MSY Flower & Fmsy & \begin{tabular}{c} 
MSY Fupper \\
with AR
\end{tabular} & MSY Btrigger & \begin{tabular}{c} 
MSY Fupper \\
with no AR
\end{tabular} \\
\hline nep-15 & 12.4 & 18.2 & 18.2 & \(3000^{*}\) & 18.2 \\
\hline
\end{tabular}
*Abundance in millions.

\subsection*{19.6 Management strategy}

As yet there are no explicit management strategies for this stock.

\subsection*{19.7 Quality of assessment and forecast}

Uncertainties in the survey, mean weight in the landings and discard rates are not taken into account in the deterministic catch option. There is some variability in these over time.

There are several key uncertainties and bias sources in the method used here (these are discussed further in WKNEPH 2009). Various agreed procedures have been put in place to ensure the quality and consistency of the survey estimates following the recommendations of several ICES groups (WKNEPTV 2007; WKNEPHBID 2008; SGNEPS 2009). These have led to a revision in the historical time-series of survey abundance estimates for FU15, which was presented to last year's Working Group.

Ultimately there still remains a degree of subjectivity in the production of UWTV abundance estimates (Marrs et al., 1996).

Taking explicit note of the likely biases in the surveys may at least provide an estimate of absolute abundance that was more accurate but no more precise (WKNEPH 2009). The survey estimates themselves are very precisely estimated (CVs 2-5\%) given the homogeneous distribution of burrow density and the modelling of spatial structuring. The cumulative bias estimates for FU15 are largely based on expert opinion (see Stock Annex). The precision of these bias corrections cannot yet be characterised but is likely to be higher than that observed in the survey

In the provision of catch options based on the absolute survey estimates additional uncertainties related to mean weight in the landings and the discard rates also arise. These parameters are quite variable, in future years the uncertainty in these key parameters should be estimated

The quality of landings data has improved since 2007 with the implementation of sales notes and buyers and sellers legislation. Prior to that there were concerns that landings were underreported. The harvest ratio may be under estimated prior to 2007.

\subsection*{19.8 Recommendations for next benchmark}

WGCSE will keep the stock under close review and recommend future benchmark as required.

\subsection*{19.9 Management considerations}

The FU15 Nephrops fishery first developed in the late 1950s. Since then it has sustained landings of around 9000 t for more than 35 years. Fishing effort in the past has been very high but has declined somewhat in recent years. The environment in the Western Irish Sea is very suitable for Nephrops with a large mud patch and gyre, which retains the larvae over the mud patch thus ensuring good recruitment. The ground can be characterised as an area of very high densities of small Nephrops. All available information indicates that size structure of catches appears to have changed little since the fishery first began.

The Nephrops trawl fisheries take bycatches of other species, especially juvenile whiting, but also cod. Catches of these species should be reduced to as low as possible a level because of the poor status of these stocks. A conditional national licence has been introduced by Ireland since March 2012, making the use of grids or separator panels mandatory for all TR2 boats fishing in the Irish Sea. Around 55\% of the Irish vessels use separator trawls and while \(45 \%\) have opted to use Swedish grids to reduce bycatch. Additionally, there has been a trend for Irish vessels to switch to multi (quad) rig trawls. Provisional data suggests a \(\sim 30 \%\) increase in Nephrops catch rates and a reduction in fish bycatch of \(\sim 30 \%\) due to the lower headline height.

Since October 2012, all TR2 vessels in the UK (Northern Ireland) fleet are required to use a highly selective fishing gear. In the Irish Sea these currently include Seltra 300 mm box trawl, 270 mm diamond mesh panel Seltra box trawl and 300 mm square mesh panel. All these gears are being developed with the aim of achieving exemption from the cod recovery plan under Article 11 (less than \(1.5 \%\) cod catch). Enforcement is through the issue cod recovery zone fishing authorisations, where no authorisation is given to a vessel that is not using a highly selective gear.

ICES has repeatedly advised that management should be at a smaller scale than the ICES Subarea 7. Management at the Functional Unit level could provide the controls to ensure that catch opportunities and effort are at the same scale as the resource.
A number of cod recovery measures have been introduced since 2000 to promote recovery of Irish Sea cod stocks. These include a closure of the western Irish Sea cod spawning grounds from mid-February to end of April since 2000, with a later extension to the eastern Irish Sea closure. Despite a partial derogation for Nephrops vessels during the closed period the distribution of effort on Nephrops has been affected by this management plan. There have also been decommissioning schemes to reduce fishing effort.

\subsection*{19.10References}

Briggs, R.P., Armstrong, M.J., Dickey-Collas, M., Allen, McQuaid, N. and Whitmore, J. 2002. Estimation of Nephrops Biomass in the Western Irish Sea from Annual Larval Production. ICES Journal of Marine Research, 59: 109-119.

Hill, A. E., Durazo, R. and Smeed, D. A. 1994. Observations of a cyclonic gyre in the western Irish Sea. Continental Shelf Research, 14: 479-490.

Hill, A.E., Brown, J. and Fernand, L. 1996. The western Irish Sea gyre: a retention mechanism for the Norway Lobster (Nephrops norvegicus)? Oceanologica Acta 19:357-369.

McQuaid, N., Briggs R. P. and Roberts D. 2009. Fecundity of Nephrops norvegicus from the Irish Sea. Journal of the Marine Biological Association of the UK, 89: 1181-1188.

Marrs, S.J., Atkinson, R.J.A., Smith, C.J. and Hills, J.M. 1996. Calibration of the towed underwater TV technique for use in stock assessment of Nephrops norvegicus. Reference no. 94/069 (Study Project in support of the Common Fisheries Policy XIV/1810/C1/94, call for proposals 94/C 144/04).
ICES. 2016XX. EU request to ICES to provide FMSY ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

ICES. 2016YY. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.
SGNEPS. 2009. Report of the Study Group on Nephrops Surveys (SGNEPS). ICES CM 2009/LRC.
WKNEPH. 2009. Report of the Benchmark Workshop on Nephrops assessment (WKNEPH). ICES CM 2009/ACOM:33.

WKNEPHBID. 2008. Report of the Workshop and training course on Nephrops burrow identification (WKNEPHBID). ICES CM 2008/LRC:03.

WKNEPHTV. 2007. Report of the Workshop on the use of UWTV surveys for determining abundance in Nephrops stocks throughout European waters (WKNEPHTV). ICES CM: 2007/ACFM: 14.

Table 19.1. Irish Sea West (FU15): Landings (tonnes) by country, 2000-2016.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Ireland & Isle of Man & UK & Other countries & Total \\
\hline 2000 & 3,433 & 0 & 4937 & 0 & 8370 \\
\hline 2001 & 2,689 & 3 & 4749 & 0 & 7441 \\
\hline 2002 & 2,291 & 1 & 4501 & 0 & 6793 \\
\hline 2003 & 2,709 & 4 & 4352 & 0 & 7065 \\
\hline 2004 & 2,786 & 13 & 4470 & 1 & 7270 \\
\hline 2005 & 2,133 & 0 & 4420 & 0 & 6554 \\
\hline 2006 & 2,051 & 1 & 5508 & 1 & 7561 \\
\hline 2007 & 2,767 & 0 & 5724 & 0 & 8491 \\
\hline 2008 & 3,132 & 50 & 7323 & 2 & 10508 \\
\hline 2009 & 2,343 & 1 & 6855 & 0 & 9198 \\
\hline 2010 & 2,578 & 0 & 6384 & 0 & 8963 \\
\hline 2011 & 3,575 & 2 & 6584 & 0 & 10162 \\
\hline 2012 & 3,794 & 3 & 6732 & 0.2 & 10529 \\
\hline 2013 & 2,465 & 31 & 6175 & 0.2 & 8672 \\
\hline 2014 & 2,938 & \(0^{* *}\) & 5676 & 0.0 & 8613 \\
\hline 2015 & 2,199 & \(0^{* *}\) & 6433 & 0.3 & 8632 \\
\hline 2016* & 1,609 & 0** & 5715 & 3 & 7327 \\
\hline
\end{tabular}
* provisional. **included in UK landings.

Table 19.2. Irish Sea West (FU15): Catches and landings (tonnes), effort ('000 hours trawling), cpue and lpue (kg/hour trawling) Republic of Ireland Nephrops Directed Trawlers 2000-2013. Timeseries updated in 2016.
\begin{tabular}{cccccc}
\hline Year & Landings (Kg) & Effort (Hours) & Effort (days) & Effort (kwdays) & Ipue \\
\hline 1995 & 1706969 & 44459 & 3516 & 835977 & 2.041885 \\
\hline 1996 & 1406140 & 31409 & 2326 & 607785 & 2.313549 \\
\hline 1997 & 2801501 & 60502 & 4518 & 1124379 & 2.491599 \\
\hline 1998 & 2696979 & 52277 & 4051 & 1053491 & 2.560039 \\
\hline 1999 & 4031508 & 73786 & 5260 & 1367903 & 2.947217 \\
\hline 2000 & 3227565 & 61936 & 4396 & 1199896 & 2.68987 \\
\hline 2001 & 2428587 & 51111 & 3435 & 939387 & 2.585289 \\
\hline 2002 & 2015965 & 46072 & 2900 & 873563 & 2.307749 \\
\hline 2003 & 1620391 & 47704 & 3120 & 878568 & 1.844355 \\
\hline 2004 & 2586760 & 52673 & 3500 & 1033073 & 2.503946 \\
\hline 2005 & 2111185 & 50825 & 3414 & 1003901 & 2.102981 \\
\hline 2006 & 2031881 & 53461 & 3535 & 1084251 & 1.873995 \\
\hline 2007 & 2728841 & 52550 & 3575 & 1056291 & 2.583419 \\
\hline 2008 & 3165781 & 49218 & 3401 & 1027919 & 3.079796 \\
\hline 2009 & 2333433 & 34651 & 2368 & 706178 & 3.304312 \\
\hline 2010 & 2505061 & 36504 & 2546 & 739345 & 3.388218 \\
\hline 2011 & 3554343 & 47640 & 3229 & 921298 & 3.857972 \\
\hline 2012 & 3725318 & 49313 & 3560 & 966006 & 3.856413 \\
\hline 2013 & 2269336 & 33818 & 2571 & 682793 & 3.323608 \\
\hline 2014 & 2449612 & 40371 & 3007 & 852740 & 2.872635 \\
\hline 2015 & 2119880 & 35898 & 2733 & 756719 & 2.80141 \\
\hline 2016 & 1529418 & 28249 & 2301 & 556452 & 2.748516 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.3. Irish Sea West (FU15): Landings (tonnes), effort ('000 hours trawling), lpuelpue (kg/hour trawling), effort (' 000 kW days) and lpue ( \(\mathrm{kg} / \mathrm{kWd}\) ) of Northern Ireland Nephrops trawlers, 2000-2016.
\begin{tabular}{cccccc}
\hline Year & Landings & Effort ('000 hours) & Ipue ('000 hrs) & kW days ('000) & Ipue kWd \\
\hline 2000 & 4758 & 168.7 & 28.2 & & \\
\hline 2001 & 4587 & 163.7 & 28.0 & & \\
\hline 2002 & 4495 & 130.8 & 34.4 & & \\
\hline 2003 & 4146 & 136.1 & 29.0 & & \\
\hline 2004 & 4273 & 144.3 & 29.6 & & \\
\hline 2005 & 4235 & 138.4 & 30.6 & & \\
\hline 2006 & 5356 & 144.1 & 37.2 & & \\
\hline 2007 & 5512 & 126.9 & 43.4 & & \\
\hline 2008 & 7056 & 141.4 & 49.9 & & \\
\hline 2009 & 6487 & 134.7 & 48.2 & & \\
\hline 2010 & 5888 & 141.1 & 41.7 & & \\
\hline 2011 & 5952 & 132.7 & 44.9 & & \\
\hline 2012 & 5865 & 137.8 & 42.6 & & \\
\hline 2013 & 5605 & 135.7 & 41.3 & 2151.9 & 2.60 \\
\hline 2014 & 5190 & 114.6 & 45.3 & 2111.2 & 2.46 \\
\hline 2015 & 6396 & & & 1962.6 & 3.26 \\
\hline \(2016^{*}\) & 5638 & & & 2107.3 & 2.68 \\
\hline
\end{tabular}
* provisional.
cpuelpue

Table 19.4. Irish Sea West (FU15): Mean sizes (mm CL) of male and female Nephrops in Northern Ireland catches, landings and discards, 2000-2016.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Year } & \multicolumn{2}{|c|}{ Catches } & \multicolumn{2}{c|}{ Landings } & \multicolumn{2}{c|}{ Discards } \\
\cline { 2 - 7 } & Males & Females & Males & Females & Males & Females \\
\cline { 2 - 7 } 2000 & 27.7 & 24.5 & 29.4 & 26.3 & 22.5 & 22.6 \\
2001 & 25.7 & 23.6 & 26.1 & 24.4 & 21.7 & 21.2 \\
2002 & 26.7 & 24.1 & 26.7 & 24.9 & 21.8 & 21.7 \\
2003 & na & na & na & na & na & na \\
2004 & na & na & na & na & na & na \\
2005 & na & na & na & na & na & na \\
2006 & na & na & na & na & na & na \\
2007 & na & na & na & na & na & na \\
2008 & 25.9 & 24.6 & 26.9 & 25.5 & 21.4 & 21.5 \\
2009 & 27.7 & 25.1 & 29.3 & 26.5 & 23.6 & 23.2 \\
2010 & 28.3 & 25.6 & 29.5 & 26.3 & 23.2 & 22.8 \\
2011 & 27.6 & 26.0 & 29.3 & 27.7 & 22.6 & 22.8 \\
2012 & 26.8 & 24.3 & 27.7 & 25.4 & 21.7 & 21.1 \\
2013 & 26.2 & 24.2 & 27.2 & 25.4 & 21.5 & 21.3 \\
2014 & 26.3 & 23.9 & 27.1 & 24.9 & 21.1 & 20.6 \\
2015 & 25.3 & 23.4 & 26.8 & 24.7 & 21.6 & 21.3 \\
2016 & 25.9 & 24.3 & 26.9 & 25.5 & 22.3 & 21.8 \\
\hline
\end{tabular}
* provisional na \(=\) not available

Table 19.5. Irish Sea West (FU15): Mean sizes (mm CL) of male and female Nephrops in Republic of Ireland catches, landings and discards, 2000-2016.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Year } & \multicolumn{2}{|c|}{ Catches } & \multicolumn{2}{c|}{ Landings } & \multicolumn{2}{c|}{ Discards } \\
\cline { 2 - 7 } & Males & Females & Males & Females & Males & Females \\
\hline 2000 & 29.1 & 27.1 & 32.2 & 29.7 & 24.3 & 24.0 \\
2001 & 26.7 & 24.8 & 28.6 & 27.0 & 23.0 & 22.2 \\
2002 & 28.9 & 25.4 & 30.2 & 27.8 & 24.6 & 23.6 \\
2003 & 27.7 & 24.9 & 29.7 & 26.9 & 24.0 & 23.1 \\
2004 & 28.1 & 26.1 & 29.7 & 27.8 & 23.9 & 23.7 \\
2005 & 28.5 & 26.8 & 30.1 & 29.1 & 23.9 & 23.2 \\
2006 & 27.7 & 25.5 & 29.5 & 27.1 & 23.8 & 23.1 \\
2007 & 27.7 & 25.4 & 29.8 & 27.9 & 24.0 & 23.3 \\
2008 & 27.4 & 24.6 & 28.9 & 26.6 & 22.0 & 21.4 \\
2009 & 28.5 & 26.3 & 30.5 & 29.2 & 24.3 & 23.4 \\
2010 & 28.0 & 25.9 & 29.6 & 27.6 & 23.8 & 23.3 \\
2011 & 27.0 & 25.7 & 28.8 & 27.3 & 23.7 & 23.5 \\
2012 & 26.8 & 25.6 & 28.3 & 27.0 & 23.2 & 23.0 \\
2013 & 26.3 & 25.1 & 27.4 & 26.5 & 23.1 & 22.6 \\
2014 & 27.7 & 24.9 & 29.2 & 26.3 & 23.6 & 23.3 \\
2015 & 27.7 & 25.7 & 29.5 & 27.4 & 24.4 & 24.0 \\
2016 & 26.0 & 25.0 & 27.3 & 26.4 & 23.5 & 23.3 \\
\hline
\end{tabular}
na \(=\) not available

Table 19.6. Irish Sea West (FU15): Proportion discarded by weight and number from FU15. (Note a \(10 \%\) survivorship of discards is assumed in HR and forecast calculations).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Landings in number (millions) & Total discards in number (millions) & Removals in number (millions) & UWTV abundance estimates (billions) & \begin{tabular}{l}
95\% conf. \\
intervals
\end{tabular} & Harvest rate & Mean weight in landings (g) & Mean weight in discards (g) & Discard rate by number & Dead discard rate \\
\hline 2003 & 404 & 291 & 666 & 5.5 & 0.27 & 12.1 & 17.5 & 9.1 & 42\% & 39\% \\
\hline 2004 & 416 & 218 & 612 & 5.5 & 0.3 & 11 & 17.5 & 9.1 & 34\% & 32\% \\
\hline 2005 & 346 & 157 & 488 & 5.7 & 0.44 & 8.6 & 18.9 & 9 & 31\% & 29\% \\
\hline 2006 & 467 & 261 & 701 & 5.4 & 0.41 & 13 & 16.1 & 8.8 & 36\% & 33\% \\
\hline 2007 & 511 & 375 & 848 & 5.1 & 0.34 & 16.5 & 16.5 & 8.7 & 42\% & 40\% \\
\hline 2008 & 755 & 191 & 927 & 4.3 & 0.25 & 21.6 & 13.9 & 7.4 & 20\% & 19\% \\
\hline 2009 & 567 & 335 & 868 & 4.6 & 0.26 & 18.8 & 16.2 & 8.8 & 37\% & 35\% \\
\hline 2010 & 572 & 180 & 733 & 5 & 0.31 & 14.7 & 15.7 & 8.6 & 24\% & 22\% \\
\hline 2011 & 644 & 332 & 943 & 4.9 & 0.23 & 19.4 & 15.8 & 8.1 & 34\% & 32\% \\
\hline 2012 & 771 & 258 & 1003 & 5.1 & 0.29 & 19.8 & 13.7 & 7.2 & 25\% & 23\% \\
\hline 2013 & 662 & 229 & 867 & 4.3 & 0.27 & 20.1 & 13.1 & 7 & 26\% & 24\% \\
\hline 2014 & 641 & 198 & 819 & 4.6 & 0.25 & 17.8 & 13.4 & 7.2 & 24\% & 22\% \\
\hline 2015 & 620 & 280 & 872 & 4.4 & 0.29 & 19.9 & 13.9 & 8.0 & 31\% & 29\% \\
\hline 2016 & 562 & 245 & 783 & 5.1 & 0.3 & 15.4 & 13.0 & 7.7 & 30\% & 28\% \\
\hline Average 2014-2016 & & & & & & & 13.5 & 7.7 & 28.4\% & 26.3\% \\
\hline
\end{tabular}

Table 19.7. Irish Sea West (FU15): Results from NI/ROI collaborative UWTV surveys of Nephrops grounds in 2003-2016.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ground & Year & Number of stations & Mean Density (No./M²) & Domain Area (km²) & Estimate (billions) & CV on Burrow estimate \\
\hline Western Irish Sea & 2003 & 160 & 0.99 & 5295 & 5.5 & 3\% \\
\hline & 2004 & 147 & 1.00 & 5310 & 5.5 & 3\% \\
\hline & 2005 & 141 & 1.02 & 5281 & 5.7 & 4\% \\
\hline & 2006 & 138 & 0.97 & 5194 & 5.4 & 4\% \\
\hline & 2007 & 148 & 0.93 & 5285 & 5.1 & 3\% \\
\hline & 2008 & 141 & 0.77 & 5287 & 4.3 & 3\% \\
\hline & 2009 & 142 & 0.83 & 5267 & 4.6 & 3\% \\
\hline & 2010 & 149 & 0.90 & 5307 & 5.0 & 3\% \\
\hline & 2011 & 156 & 0.88 & 5289 & 4.9 & 2\% \\
\hline & 2012 & 99 & 0.91 & 5291 & 5.1 & 3\% \\
\hline & 2013 & 80 & 0.78 & 5278 & 4.3 & 3\% \\
\hline & 2014 & 99 & 0.83 & 5272 & 4.6 & 3\% \\
\hline & 2015 & 100 & 0.79 & 5279 & 4.4 & 3\% \\
\hline & 2016 & 100 & 0.84 & 5260 & 5.1 & 3\% \\
\hline
\end{tabular}

\section*{Landings - International}



Effort - Different fleets


Mean sizes - Different fleets


Figure 19.1. Irish Sea West (FU15): Long-term trends in landings, effort, lpue, and mean sizes of Nephrops. [The quality of landings data has improved since 2007 with the implementation of sales notes and buyers and sellers legislation, which result in misleading lpuelpue trend plots pre and post 2007].

\section*{Length frequencies for Landings: \\ Nephrops in FU15}


Figure 19.2. Irish Sea West (FU15): Length distributions in the landings (solid) and catches (dotted) 1986-2016 females (left) and females (right).


Figure 19.3 Nephrops in FU15 (Irish Sea West). Sex ratio of landings (1986-2016) and catch (19862016).


Figure 19.4 Nephrops in FU15 (Irish Sea West).Mean weight in catch samples by sex with GAM loess smoother ( \(\mathbf{k}=20\) ).


Figure 19.5 Nephrops in FU15 (Irish Sea West). Mean weight in landings and discards.


Figure 19.6. Irish Sea West (FU15): 2016 UWTV survey stations.


Figure 19.7. Irish Sea West (FU15): Contour plots of the krigged density estimates for the Irish Sea from 2003-2008.


Figure 19.8. Irish Sea West (FU15): Contour plots of the krigged density estimates for the Irish Sea from 2009-2016.


Figure 19.9. Irish Sea West (FU15): Box and kite plot of burrow density observed during UWTV survey 2003-2016.


Figure 19.10. Irish Sea West (FU15): Nephrops catches (kg per nm) from NI trawl surveys. No data available in 2013 due to major ship breakdown.


Figure 19.11. Irish Sea West (FU15): Revised UWTV index and scaled trawl survey. Cpue along with Btrigger based upon mean of five lowest trawl survey values. Abundance figures have not been bias corrected.


Figure 19.12. Irish Sea West (FU15): Stock summary plot of landings (tonnes), UWTV abundance and harvest rate (ratio).

\subsection*{19.11 Audit of nep.fu. 15}

\section*{General}

\section*{For single stock summary sheet advice}
- Assessment type: Update with one additional year of survey and catch data (benchmarked at WKNEPH2009, stock annex updated at WKNEPH2009).
- Assessment: Analytical (UWTV survey-based abundance assessment combined with commercial fishery data, follows the process defined by the benchmark WG ((WKNEPH2009 and stock annex).
- Forecast: A short-term projection was completed to produce a catch option table.
- Assessment model: UWTV based approach.
- Data issues: None though the following points to note:

Data weren't available to check on SharePoint - had to go through presentation.
- Consistency:

The 2017 assessment is consistent with the 2016 assessment and with the assessment methods described at the 2009 benchmark.

Stock annex needs to be updated with WKFMSYRef4 report. The assessment process is consistence with the stock annex. Check the Btrigger value as this differs in report and annex compared to WKFMSYRef4 report (6000 billion versus 3000 billion).
- Stock status:

UWTV abundance estimates suggest that the stock size has fluctuated with a recent stable trend.

TV survey estimated stock abundance in 2016 was 5.1 billion individuals, substantially above the MSY \(\mathrm{B}_{\text {trigger }}\) value of 3000 billion.

2016 Recent harvest ratios which have been hovering around the Fmsy proxy for the last three years.

The Fmsy proxy was revised by WKMSYRef4. Rationale: F35\%SPR combined sexes \(=18.2 \%\) ).

The 2016 harvest ratio for the North Minch (15.4\%; dead removals/TV abundance) is below the Fmsy proxy harvest rate.
- Management Plan:

No specific management plan exists for this stock.
ICES advices that to ensure that the stock in functional unit (FU) 15 is exploited sustainably, management should be implemented at the functional unit level.

\section*{General comments}
- The assessment was well-written and explanations were thorough. Report is brief and clear.
- The assessment is in accordance with the Stock Annex. Methods to derive Fmsy and landings predictions did not deviate from the benchmark process/stock annex.
- Clear description on how the InterCatch was used in the 2017 assessment. Data were available in InterCatch and used to generate 2016 raised international length-frequency distributions.
- This stock has not been benchmarked but the full UWTV survey approach has been.

\section*{Technical comments}
- Have made comments using track changes on report document in SharePoint. Main point is to check table and figure numbering. And years reference in the report.
- Nephrops effort in Kw Days not presented - would also be useful to have numbers of vessels in the fishery over time and have this in stock annex.
- Check syntax for all Nephrops stocks is it Harvest rate or Harvest ratio in report; we should all be consistent and probably follow that from the advice sheet.
- Catch options table needs to be in report.
- Are the Nephrops trawl data useful in report - these could be moved to the stock annex with a reference to the how the \(B_{\text {trigger }}\) was derived.
- Stock annex could do with a review.

\section*{Conclusions}
- The assessment has been performed correctly for the basis of management advice. The stock appears to be stable in recent years and is above \(B_{\text {trigger }}\) and 2016. Harvest ratios around \(\mathrm{F}_{\text {MSY }}\) (18.2\%).

\section*{Checklist for audit process}

\section*{General aspects}
- Has the EG answered those ToRs relevant to providing advice? YES
- Is the assessment according to the stock annex description? YES
- If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary? N/A
- Have the data been used as specified in the stock annex? Yes
- Has the assessment, recruitment and forecast model been applied as specified in the stock annex? Yes, where appropriate
- Is there any major reason to deviate from the standard procedure for this stock? No
- Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice?

\section*{20 Norway lobster (Nephrops norvegicus) in divisions 7.b-c and 7.jk, Functional Unit 16 (west and southwest of Ireland, Porcupine Bank)}

\section*{Type of assessment in 2017}

Available data on the fishery for 2016 and other stock indicators have been updated here according to the stock annex (Nephrops FU16). The assessment and catch options follow the agreed procedures set out in the stock annex.

\section*{ICES advice applicable to 2016}

ICES advises on the basis of the MSY approach that catches from FU 16 in 2016 should be no more than 1850 tonnes. All catches are assumed to be landed.

ICES advice applicable to 2017
ICES advises on the basis of the MSY approach that catches from FU 16 in 2017 should be no more than 3100 tonnes. All catches are assumed to be landed.

\subsection*{20.1 General}

\section*{Stock description and management units}

The TAC area is Subarea 7, since 2011 an 'of which' clause was introduced specifically for the Porcupine Bank (FU16) see Table 20.1. The Functional Unit for assessment includes some parts of the following ICES divisions \(7 . \mathrm{b}, \mathrm{c}, \mathrm{j}\), and k . The exact stock area is shown on the map below and includes the following ICES Statistical rectangles: 3135 D5-D6; 32-35 D7-D8.


The FU16 outlined by the red line. The closed area from 1 May-31 July since 2010 is shown with a green line. Irish Nephrops directed fishing effort between 2006-2009 derived from integrated VMS and logbook information is shown as a heat map.

\section*{Management applicable to 2016 and 2017}

TAC in 2016
COUNCIL REGULATION (EU) 2016/72 of 22 January 2016 fixing for 2016 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters, and amending Regulation (EU) 2015/104.
\begin{tabular}{ll|ll}
\hline Species: & \begin{tabular}{l} 
Norway lobster \\
Nephrops norvegicus
\end{tabular} & Zone: & \begin{tabular}{l} 
VII \\
(NEP/07.)
\end{tabular} \\
\hline Spain & 1401 & \\
France & 5678 & \\
Ireland & 8610 & \\
United Kingdom & 7659 & \\
Union & 23348 & \\
TAC & 23348 & & \\
& & Analytical TAC \\
& &
\end{tabular}

\section*{Special condition:}
within the limits of the abovementioned quotas, no more than the quantities given below may be taken in the following zone:
\begin{tabular}{lc} 
& \begin{tabular}{c} 
Functional Unit 16 of ICES Subarea \\
VII (NEP/*07U16):
\end{tabular} \\
\hline Spain & 558 \\
France & 349 \\
Ireland & 671 \\
United Kingdom & 272 \\
Union & 1850 \\
\hline
\end{tabular}

TAC in 2017
COUNCIL REGULATION (EU) 2017/127 of 20 January 2017 fixing for 2017 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters.
\begin{tabular}{ll|ll}
\hline Species: \begin{tabular}{lll} 
Norway lobster \\
Nephrops norvegicus
\end{tabular} & & Zone: & \begin{tabular}{l} 
VII \\
(NEP/07.)
\end{tabular} \\
\hline Spain & 1521 & \\
France & 6166 & \\
Ireland & 9352 & \\
United Kingdom & 8317 & \\
Union & 25356 & \\
TAC & 25356 & Analytical TAC \\
& & Article 12(1) of this Regulation applies \\
\hline
\end{tabular}

\section*{Special condition:}
within the limits of the abovementioned quotas, no more than the quantities given below may be taken in the following zone:
\begin{tabular}{lc} 
& \begin{tabular}{c} 
Functional Unit 16 of ICES Subarea \\
VII (NEP/*07U16):
\end{tabular} \\
\hline Spain & 935 \\
France & 586 \\
Ireland & 1124 \\
United Kingdom & 455 \\
Union & 3100
\end{tabular}

\subsection*{20.2 Closed area restrictions}

A seasonal closed area has been in place for three months May 1-31 July between 20102012 (shown in the map above and co-ordinates below). The period of the closure was been reduce to only one month after 2013. Article 11 of COUNCIL REGULATION (EU) 2017/127 is given below:

\section*{Article 11 \\ Closed fishing seasons}

> 1. It shall be prohibited to fish or retain on board any of the following species in the Porcupine Bank during the period from 1 May to 31 May 2017 : cod, megrims, anglerfish, haddock, whiting, hake, Norway lobster, plaice, pollack, saithe, skates and rays, common sole, tusk, blue ling, ling and picked dogfish.

For the purposes of this paragraph, the Porcupine Bank shall comprise the geographical area bounded by rhumb lines
sequentially joining the following positions:
\begin{tabular}{|c|c|c|}
\hline Point & Latitude & Longitude \\
\hline 1 & \(52^{\circ} 27^{\prime} \mathrm{N}\) & \(12^{\circ} 19^{\prime} \mathrm{W}\) \\
\hline 2 & \(52^{\circ} 40^{\prime} \mathrm{N}\) & \(12^{\circ} 30^{\prime} \mathrm{W}\) \\
\hline 3 & \(52^{\circ} 47^{\prime} \mathrm{N}\) & \(12^{\circ} 39,600^{\prime} \mathrm{W}\) \\
\hline 4 & \(52^{\circ} 47^{\prime} \mathrm{N}\) & \(12^{\circ} 56^{\prime} \mathrm{W}\) \\
\hline 5 & \(52^{\circ} 13.5{ }^{\prime} \mathrm{N}\) & \(13^{\circ} 53,830^{\prime} \mathrm{W}\) \\
\hline 6 & \(51^{\circ} 22^{\prime} \mathrm{N}\) & \(14^{\circ} 24^{\prime} \mathrm{W}\) \\
\hline 7 & \(51^{\circ} 22^{\prime} \mathrm{N}\) & \(14^{\circ} 03^{\prime} \mathrm{W}\) \\
\hline 8 & \(52^{\circ} 10^{\prime} \mathrm{N}\) & \(13^{\circ} 25^{\prime} \mathrm{W}\) \\
\hline 9 & \(52^{\circ} 32^{\prime} \mathrm{N}\) & \(13^{\circ} 07,500^{\prime} \mathrm{W}\) \\
\hline 10 & \(52^{\circ} 43^{\prime} \mathrm{N}\) & \(12^{\circ} 55^{\prime} \mathrm{W}\) \\
\hline 11 & \(52^{\circ} 43^{\prime} \mathrm{N}\) & \(12^{\circ} 43^{\prime} \mathrm{W}\) \\
\hline 12 & \(52^{\circ} 38,800^{\prime} \mathrm{N}\) & \(12^{\circ} 37^{\prime} \mathrm{W}\) \\
\hline 13 & \(52^{\circ} 27^{\prime} \mathrm{N}\) & \(12^{\circ} 23^{\prime} \mathrm{W}\) \\
\hline 14 & \(52^{\circ} 27^{\prime} \mathrm{N}\) & \(12^{\circ} 19^{\prime} \mathrm{W}\) \\
\hline
\end{tabular}

By way of derogation from the first subparagraph, transit through the Porcupine Bank while carrying on board the species referred to in that paragraph, shall be permitted in accordance with Article 50(3), (4) and (5) of Regulation (EC) No 1224/2009.

The following TCMs are in place for Nephrops in 7 (excluding 7.a) after EC 850/98 in operation since 2000:

Minimum Landing Sizes (MLS); total length \(>85 \mathrm{~mm}\), carapace length \(>25 \mathrm{~mm}\), tail length \(>46 \mathrm{~mm}\). Although it is legal to land smaller prawns from this fishery, marketing restrictions imposed by producer organizations in France mean smaller Nephrops ( \(<35 \mathrm{~mm} \mathrm{CL}\) or 115 mm whole length) are not retained in this fishery.

The mesh size restrictions apply to towed gears in \(7 . \mathrm{b}-\mathrm{k}\) targeting Nephrops and are given in Section 7.1. Vessels mainly used \(80-99 \mathrm{~mm}\) mesh to target Nephrops on the Porcupine Bank.

The landing obligation applied since 2016 for certain vessels that matched the criteria set out in the table below:
(c) Fisheries with TAC covering ICES subarea VII for Norway lobster
\begin{tabular}{l|c|c|c|c}
\hline \multicolumn{1}{c|}{ Fishery } & Gear Code & \begin{tabular}{c} 
Fishing gear \\
description
\end{tabular} & Mesh Size & Landing Obligation \\
\hline \begin{tabular}{l} 
Norway lobster (Nephrops norve- \\
gicus)
\end{tabular} & \begin{tabular}{c} 
OTB SSC, OTT, \\
PTB, SDN, SPR, \\
FPO, TBN, TB, \\
TBS, SX, SV,
\end{tabular} & \begin{tabular}{c} 
Trawls, \\
Seines, Pots, \\
Traps \& \\
Creels
\end{tabular} & All & \begin{tabular}{l} 
Where the total landings per vessel \\
of all species in 2013 and 2014 \\
consist of more than 30 \% of Nor- \\
way lobster, the landing obligation \\
shall apply to Norway lobster.
\end{tabular} \\
\hline
\end{tabular}

The landing obligation also applied in 2017 to additional vessels that meet the criteria set out below:

Fisheries with TAC covering ICES subarea VII for Norway lobster
\begin{tabular}{l|c|c|c|c}
\hline \multicolumn{1}{c|}{ Fishery } & Gear Code & \(\begin{array}{c}\text { Fishing gear } \\
\text { description }\end{array}\) & Mesh Size & \multicolumn{1}{c}{ Species to be landed } \\
\hline \(\begin{array}{l}\text { Norway lobster (Nephrops } \\
\text { norvegicus) }\end{array}\) & OTB SSC, OTT, & Trawls, Seines, & All & \(\begin{array}{l}\text { All catches of Norway lobster } \\
\text { where the total landings per } \\
\text { PTB, SDN, SPR, }\end{array}\) \\
Pots, Traps \& \\
Cressel of all species in 2014 and
\end{tabular}\()\)
\({ }^{(*)}\) Vessels listed as subject to the landing obligation in this fishery in accordance with Delegated Regulation (EU) 2015/2438 remain on the list indicated in Article 4 of this Regulation despite the change in the reference period and continue being subject to the landing obligation in this fishery.

In addition: The exemption from the landing obligation provided for in Article 15(4)(b) of Regulation (EU) No 1380/2013 for species for which scientific evidence demonstrates high survival rates shall apply to Norway lobster (Nephrops norvegicus) caught in pots, traps or creels (Gear codes (1) FPO and FIX) in ICES Division 6.a and Subarea 7.

Currently there are no pot fisheries for Nephrops on the Porcupine Bank.

\subsection*{20.3 Fishery in 2016}

WGCSE reviewed effort trends for Irish vessels that accounted for \(88 \%\) of the total landings in 2016. The fishery in 2016 took place throughout the year with the highest effort in June and July. Effort in all months in 2016 was significantly higher than usual. The industry reported very good catch on Nephrops but commented that the mean size had declined significantly.

\section*{Effect of regulations}

Prior to 2011 TACs and quotas were applied to the whole of 7 so the FU16 fishery was not been restricted by quotas. Since 2011 the "of which clause" was implemented in the TAC regulation specifically for the Porcupine Bank. Quotas have been very restrictive for Irish vessels and this has led to various changes in fishing patterns. Vessels
have tried to optimise the economic value of the catch by targeting areas and periods with relatively smaller \({ }^{1}\) volumes of larger higher value Nephrops. The FU16 specific quota has also increased the risk of area misreporting, discarding and of highgrading landings. The implementation of the quota in Ireland has had the perverse consequence of increasing effort and participation in the fishery as vessels try to establish 'track record' in the fishery.

Previously WGCSE have carried out an analysis of VMS effort data by month which illustrated that the spatio-temporal closed area has been respected by the fleet but effort was displaced to the parts of the Nephrops ground not fully covered by the closure.

\section*{Information from stakeholders}

The provision of grade information by individual fishers and co-ops remains a highly important assessment input. In 2016 the percentage of landings where grade data were provided increased.
\begin{tabular}{cc}
\hline Year & \% of Irish landings where grade data were provided \\
\hline 2011 & \(60 \%\) \\
\hline 2012 & \(45 \%\) \\
\hline 2013 & \(57 \%\) \\
\hline 2014 & \(33 \%\) \\
\hline 2015 & \(44 \%\) \\
\hline 2016 & \(49 \%\) \\
\hline
\end{tabular}

The industry has also collaborated with the development of the IFSRP survey since 2010 (Stokes and Lordan, 2011).

The Irish industry considers that the stock has increased significantly and no longer requires the Functional Unit "of which" clause.

\subsection*{20.4 Data}

\section*{InterCatch}

Data were available in InterCatch and used on a trial basis.

\section*{Landings}

Total international landings increased by \(\sim 54 \%\) in 2016 to 2154 t (Figure 20.1 and Table 20.2). The total landings include the WGCSE best estimate of "unallocated landings" for the area \(\sim 849 \mathrm{t}\). The "unallocated" landings includes an estimate of area-misreported catches for Irish vessels. This was derived in the following way: If a vessel had catch in rectangles outside the defined FUs this was assumed to be take in FU16 or if the vessel had a daily lpue outside FU16 on trips which also fished in FU16 that was beyond the 90th percentile of the lpue distribution for that other FU then the daily catch was estimated using daily effort * average annual lpue for that FU. Any residual catch

\footnotetext{
\({ }^{1}\) There is a large price differential between the large and small grades. So less volume of the larger grade generates an economically viable return for fishing.
}
was assumed to be taken in FU16. The "unallocated" landings prior to 2013 included a component derived for differences between Spanish "official" landings and IEO estimates for FU16.

\section*{Sampling levels}

Sampling levels, data aggregating and raising procedures were reviewed by WKNEPH 2013, and are documented in the stock annex. Recent sampling rate is provided in Table 20.3.

Since 2010 landings length distributions have been reconstructed using the methods outlined in the stock annex. This involves using samples of the grade length structure from Irish sampling and estimates of the volume of each commercial size grade provided by the fishing industry. This was used to reconstruct Irish LFDs, landings by other fleets which accounted for \(12 \%\) of the landings were unsampled.

\section*{Commercial length-frequency distributions}

The time-series of raised international length-frequency distributions of the sampled landings by sex are given in Figure 20.2. This also shows significant shift towards larger individuals in the landings between 2002-2009 when few individuals at smaller sizes were observed. The length distribution in 2016 is relatively broad but to the left of the historical time-series. The mean lengths by sex and year are presented in Table 20.4 .

\section*{Sex ratio}

Previous Nephrops working groups have highlighted stability in sex ratio as an important indicator for Nephrops stocks. The landings and fishery-independent survey catches show a dramatic switch in the sex ratio for this stock with larger proportions of females in the catches between 2007 and 2009 (Figure 20.3). Both the commercial and survey data indicate that sex ratio switched back to a more usual situation since 2010 with males accounting for larger proportions of the catch/landings.

Nephrops moult once a year shortly after hatching of eggs in April or May. There is a 24 hour period after moulting when the male Nephrops can mate with the female (Farmer, 1974). If there are insufficient males in the population to mate with the recently moulted females this can result in a change in female behaviour whereby unmated females concentrate on feeding and growth instead of reproduction. This so called "sperm limitation" hypothesis could explain the sex ratio changes observed in the Porcupine Nephrops. WKNEPH 2013 examined the available scientific data on proportions of females mated observed on the Spanish survey. These results showed high proportions of unmated females and a high \(L_{50}\) for mated females in catches in 2009. Simulations were also carried out to investigate the densities at which sperm limitation may become an issue given a range of plausible ranges of stock density, sex ratios, search radii. The conclusion was that at the densities recently observed on the Porcupine Bank that sperm limitation was a real possibility.

\section*{Mean weight explorations}

The mean weights in in the landings are shown for the full time-series in Figure 20.4 and Table 20.5.

\section*{Discards}

There are few historical estimates of discards for this stock. Irish sampling up to 2016 observed very minimal discarding (mainly limited to small and damaged individuals \(<5 \%\) by number). Four Irish trips were sampled in 2016. Discards were not recorded on one of the these trips. However on the other three trips, discards were estimated to be around \(8 \%, 9 \%\) and \(15 \%\) by number ( \(3 \%, 3 \%\) and \(6 \%\) by weight).

A detailed examination of discard estimates was provided in Spain in 2014. No estimate of was provided in InterCatch by Spain in 2015 or 2016.

\section*{Abundance indices from UWTV surveys}

The latest survey report is available at http://oar.marine.ie/handle/10793/59 (Doyle et al., 2016). These surveys use the standard UWTV methodology and conforms to WGNEPS best practice and guidelines. WKNEPH 2013 recommended that these surveys could be used for assessment and provision of catch options. The results are given in Table 20.6. Further detail of the survey is provided in the annex and annual survey reports available at http://oar.marine.ie/handle/10793/59.

\section*{Trawl surveys}

The longest time-series of fishery-independent source of data is from the Spanish Porcupine trawl survey 2001-2016 (SpPGFS-WIBTS-Q4). This survey is carried out in September when Nephrops catchability is quite low, particularly of adults. Further information on this survey is provided in the IBTS report (ICES, 2015) and in previous IBTS reports.

Distribution of Nephrops catches and biomass in Porcupine surveys between 2001 and 2016 is shown in Figure 20.5. There was a year effect in 2008 when unusual gear parameters were observed. Catch rates in 2011 may also have been reduced due to exceptionally poor weather and gear performance issues. The stratified abundance estimate and biomass increased significantly in 2010 (Figure 20.6).

The size structure of the catches in the survey shows two things: a much lower mean size than in the commercial fleets and an increasing trend in mean size for both sexes up to 2008. In 2009 there is large reduction of mean size in both sexes due to a recruiting year class with a modal length at around 27 mm (possibly the 2006 year class). Tracking of cohorts was carried out at WKNEPH 2013 but the results are inconclusive (ICES, 2013). There appears to be increased recruitment in the last few years with increased catches of individuals \(<21 \mathrm{~mm}\) (Figure 20.7).

An Irish Fisheries Science Research Partnership (IFSRP) survey was developed in collaboration the Irish fishing industry to obtain data from the closed area in 2010-2012. Details of the design and methodology are presented in Stokes and Lordan (2011). The survey uses both commercial gear (Comm) and a baca trawl similar to the SpPGFS-WIBTS-Q4. WKNEPH concluded that the IFSRP trawl survey is too short (with changes in coverage, gears and vessels) to draw an inference about cpue changes reflecting changing stock abundance (ICES, 2013). The surveys carried out between 201012 provided very useful data on population structure across the ground as well as data on grade structure and maturity-at-length.

\section*{Commercial cpue}

In the past the Nephrops fishery on the Porcupine Bank was both seasonal and opportunistic with increased targeting during periods of high Nephrops emergence and good
weather. Freezing of catches at sea has become increasingly prevalent since 2006 and the fishery now operates throughout the year, mainly targeting larger more valuable Nephrops in lower volumes. Fishing effort has fluctuated considerably in the recent past in response to availability of Nephrops.

Effort and lpue/cpue data are generally not standardized, and hence do not take into account vessel capacity, efficiency, seasonality or other factors that may bias perception of lpue/cpue and abundance trends over the longer term. WKNEPH concluded that effort and lpue series should be maintain in the WGCSE report for information purposes (ICES, 2013a). WGCES 2016 recommended presenting the effort in KWDays and lpue in tonnes/ KWDays. This has been done for Ireland this year. Any inferences about changes in stock abundance from these data, should take account of the quality and bias concerns raised above.

These data are presented by country in Table 20.7.

\subsection*{20.5 Stock assessment}

\section*{Comparison with previous assessments}

This assessment is based on UWTV approach outlined in WKNEPH 2013 and using parameter in the stock annex (ICES, 2013). No survey was possible in 2015 so this year's assessment has been updated based on the results of the June 2017 UWTV survey.

\section*{State of the stock}

The UWTV results are shown in Table 20.6. These indicate that recent harvest ratios have been below the Fmsy proxy but F has increased significantly in 2016 (Figure 20.8). Total abundance has declined by \(11 \%\) in 2017 but remains above the average of the time-series.

\section*{Catch options table}

The inputs to the catch options are given below. WGCSE concluded that the mean weights for the full time-series should be used for the catch options because recent mean weights in the landings have fluctuated considerably. At this point, it is not possible to estimate the numbers and mean weights of discards in the fishery although there are indications that discards have increased in 2016.
\begin{tabular}{lcll}
\hline \multicolumn{1}{c}{ Variable } & Value & \multicolumn{1}{c}{ Source } & \multicolumn{1}{c}{ Notes } \\
\hline Stock abundance & 850 & ICES (2016a) & UWTV survey 2017. \\
\hline \begin{tabular}{l} 
Mean weight in \\
landings
\end{tabular} & 51.9 & ICES (2016a) & Average 1986-2016. \\
\hline \begin{tabular}{l} 
Mean weight in \\
discards
\end{tabular} & ICES (2016a) & Not relevant. \\
\hline Discard proportion & ICES (2016a) & Discarding is negligible. \\
\hline \begin{tabular}{l} 
Discard survival \\
rate
\end{tabular} & ICES (2016a) & Not relevant. \\
\hline Dead discard rate & ICES (2016a) & Discarding is negligible. \\
\hline
\end{tabular}

\subsection*{20.6 Reference points}

New reference points were evaluated by WKMSYREF4 (ICES, 2016a) and advised by ICES (2016b). The Fmsy for this stock was increased from \(5.0 \%\) to \(6.2 \%\). The Fmsy for this stock is based on Fo.1 for both sexes combined given the low density of Nephrops on the Porcupine Bank.
\(\left.\left.\begin{array}{rccccc}\hline \begin{array}{r}\text { Stock } \\ \text { code }\end{array} & \text { MSY Flower* } & \text { FMSY* } & \begin{array}{c}\text { MSY Fupper* } \\ \text { with AR }\end{array} & \text { MSY Btrigger }\end{array} \begin{array}{c}\text { MSY } \\ \text { Fupper* }\end{array}\right] \begin{array}{ccc}\text { with no AR }\end{array}\right]\)

\footnotetext{
* Harvest rate (HR).
}

\subsection*{20.7 Management strategies}

There is no management plan for this stock.

\subsection*{20.8 Quality of assessment and forecast}

The main quality considerations for this stock are related to mean weight and discarding. The mean weight for this stock has been fluctuating, the most recent estimates maybe overestimate due to the non-inclusion of discards. A long-term mean weight has been used in the calculation of catch options. There is some evidence from surveys and length structure that recruitment has improved and this has resulted in a reduction in mean weight in the stock in 2016. The mean weight in 2017 and 2018 may well increase again as the strong cohort grows. Currently there is no methodology to take this into account in the calculation of catch options. In 2015 and 2016 the amount of discards observed on catch sampling trips have increased. This may be temporary linked to the incoming recruitment. It will result is a small underestimate of recent harvest rates of similar magnitude to the numbers which will not change the status evaluation.

The UWTV survey provides abundance since 2012 (except 2015) with high precision, but the time-series is short and an abundance MSY trigger hast yet to be defined. The landings are considered fairly well estimated (an unallocated component related to area misreporting has been included since 2011).

\subsection*{20.9 Recommendation for next benchmark}

This stock was benchmark in 2013 at WKNEPH. WGCSE will keep the stock under close review and recommend future benchmark as required.

\subsection*{20.10 Management considerations}

The introduction of the "of which limit" with the TAC regulations since 2011 has increased the risk of highgrading and area misreporting in this fishery.
A seasonal closed area (May 1-July 31) has been in place since 2010. The period of the closure was reduced to one month, May, since 2013. There hasn't been an evaluation of the impact of this closure and whether it provides a conservation benefit over and above catch limits.

Productivity of deep-water Nephrops stocks is generally lower than that in shelf waters, though individual Nephrops grow to relatively large sizes and attain high market prices. Other deep-water Nephrops stocks off the Spanish and Portuguese coast have
collapsed and have been subject to recovery measures for several years e.g. FU25, 26, 27 and 31. Recruitment in Nephrops populations in deep water may be more sporadic than for shelf stocks with strong larval retention mechanisms. This makes these stocks more vulnerable to over exploitation and potential recruitment failure as has been observed on the Porcupine Bank in the early 2000s.

Discarding by the Nephrops trawl fishery is around \(50 \%\) of the total catch by weight. The main species that are discarded by weight are blue mouth-red fish, blue whiting and argentines (Marine Institute and Bord Iascaigh Mhara, 2011).

\subsection*{20.11References}

Doyle, J., Lordan, C., Fitzgerald, R., O’Brien, S., Allsop, C., Kelly C., and McArdle J. 2016. Porcupine Bank Nephrops Grounds (FU16) 2016 UWTV Survey Report and catch options for 2017. Marine Institute UWTV Survey report.

Marine Institute and Bord Iascaigh Mhara. 2011. Atlas of Demersal Discarding, Scientific Observations and Potential Solutions, Marine Institute, Bord Iascaigh Mhara, September 2011. ISBN 978-1-902895-50-5. 82 pp. http://hdl.handle.net/10793/666.

ICES. 2015. Report of the International Bottom Trawl Survey Working Group (IBTSWG), 23-27 March 2015, Bergen, Norway. ICES CM 2015/SSGIEOM:24. 278 pp.

ICES. 2016a. Report of the Workshop to consider Fmsy ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

ICES. 2016b. EU request to ICES to provide Fmsy ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

Stokes, D. and Lordan, C. 2011. "Irish fisheries-science research partnership trawl survey of the Porcupine Bank Nephrops Grounds July 2010", Irish Fisheries Bulletin No. 39, Marine Institute 2011. http://hdl.handle.net/10793/712.

Table 20.1. Nephrops Porcupine Bank (FU 16): Of which catch limit.
\begin{tabular}{cccccc}
\hline Year & France & Ireland & Spain & UK & Total \\
\hline 2011 & 241 & 454 & 377 & 188 & 1260 \\
\hline 2012 & 238 & 457 & 380 & 185 & 1260 \\
\hline 2013 & 340 & 653 & 543 & 264 & 1800 \\
\hline 2014 & 349 & 671 & 557 & 271 & 1848 \\
\hline 2015 & 349 & 671 & 558 & 272 & 1850 \\
\hline 2016 & 349 & 671 & 558 & 272 & 1850 \\
\hline 2017 & 586 & 1124 & 935 & 455 & 3100 \\
\hline
\end{tabular}

Table 20.2. Nephrops Porcupine Bank (FU 16): Landings (tonnes) by country.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & France & Ireland & Spain & UK E\& W & UK Scotland & Unallocated & Total \\
\hline 1965 & 514 & & & & & & 514 \\
\hline 1966 & 0 & & & & & & 0 \\
\hline 1967 & 441 & & & & & & 441 \\
\hline 1968 & 441 & & & & & & 441 \\
\hline 1969 & 609 & & & & & & 609 \\
\hline 1970 & 256 & & & & & & 256 \\
\hline 1971 & 500 & & 1444 & & & & 1944 \\
\hline 1972 & 0 & & 1738 & & & & 1738 \\
\hline 1973 & 811 & & 2135 & & & & 2946 \\
\hline 1974 & 900 & & 1894 & & & & 2794 \\
\hline 1975 & 0 & & 2150 & & & & 2150 \\
\hline 1976 & 6 & & 1321 & & & & 1327 \\
\hline 1977 & 0 & & 1545 & & & & 1545 \\
\hline 1978 & 2 & & 1742 & & & & 1744 \\
\hline 1979 & 14 & & 2255 & & & & 2269 \\
\hline 1980 & 21 & & 2904 & & & & 2925 \\
\hline 1981 & 66 & & 3315 & & & & 3381 \\
\hline 1982 & 358 & & 3931 & & & & 4289 \\
\hline 1983 & 615 & & 2811 & & & & 3426 \\
\hline 1984 & 1067 & & 2504 & & & & 3571 \\
\hline 1985 & 1181 & & 2738 & & & & 3919 \\
\hline 1986 & 1060 & & 1462 & 69 & & & 2591 \\
\hline 1987 & 609 & & 1677 & 213 & & & 2499 \\
\hline 1988 & 600 & & 1555 & 220 & & & 2375 \\
\hline 1989 & 324 & 350 & 1417 & 24 & & & 2115 \\
\hline 1990 & 336 & 169 & 1349 & 41 & & & 1895 \\
\hline 1991 & 348 & 170 & 1021 & 101 & & & 1640 \\
\hline 1992 & 665 & 311 & 822 & 217 & & & 2015 \\
\hline 1993 & 799 & 206 & 752 & 100 & & & 1857 \\
\hline 1994 & 1088 & 512 & 809 & 103 & & & 2512 \\
\hline 1995 & 1234 & 971 & 579 & 152 & & & 2936 \\
\hline 1996 & 1069 & 508 & 471 & 182 & & & 2230 \\
\hline 1997 & 1028 & 653 & 473 & 255 & & & 2409 \\
\hline 1998 & 879 & 598 & 405 & 273 & & & 2155 \\
\hline 1999 & 1047 & 609 & 448 & 185 & & & 2290 \\
\hline 2000 & 351 & 227 & 213 & 120 & & & 910 \\
\hline 2001 & 425 & 369 & 270 & 158 & & & 1222 \\
\hline 2002 & 369 & 543 & 276 & 139 & & & 1327 \\
\hline 2003 & 131 & 307 & 489 & 108 & 29 & & 1064 \\
\hline 2004 & 289 & 494 & 468 & 126 & 28 & & 1406 \\
\hline 2005 & 397 & 754 & 681 & 208 & 156 & & 2197 \\
\hline 2006 & 462 & 731 & 636 & 201 & 155 & & 2185 \\
\hline 2007 & 302 & 1060 & 384 & 146 & 183 & & 2074 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & France & Ireland & Spain & UK E\& W & UK Scotland & Unallocated & Total \\
\hline 2008 & 26 & 562 & 234 & 41 & 138 & & 1000 \\
\hline 2009 & 4 & 356 & 348 & 13 & 159 & & 879 \\
\hline 2010 & 4 & 579 & 240 & 10 & 90 & & 922 \\
\hline 2011 & 8 & 643 & 182 & 23 & 122 & 301 & 1278 \\
\hline 2012 & 0.46 & 605 & 198 & 0 & 134 & 320 & 1258 \\
\hline 2013 & 5.8 & 651 & 132 & 1 & 118 & 234 & 1141 \\
\hline 2014 & 3 & 813 & 129 & 0 & 96 & 148 & 1189 \\
\hline 2015 & 3 & 744 & 84 & 0 & 109 & 454 & 1394 \\
\hline 2016 & 35 & 1052 & 58 & 1 & 160 & 849 & 2154 \\
\hline
\end{tabular}

Table 20.3. Nephrops Porcupine Bank (FU 16): Recent sampling used in the assessment.
\begin{tabular}{ccccccl}
\hline Year & \multicolumn{2}{c}{ Spain } & \multicolumn{2}{c}{ France } & \multicolumn{2}{c}{ Ireland } \\
\cline { 2 - 6 } & Number of Trips & Type & Number of Trips & Type & Number of Trips & Type \\
\hline 2016 & & & & 4 & Graded Landings \\
\hline 2015 & & & 3 & Graded Landings \\
\hline 2014 & & & 3 & Graded Landings \\
\hline 2013 & & & 3 & Graded Landings \\
\hline 2012 & 0 & 0 & 3 & Graded Landings \\
\hline 2011 & 0 & 0 & 2 & Graded Landings \\
\hline 2010 & 0 & & 3 & Graded Landings \\
\hline
\end{tabular}

Table 20.4. Nephrops Porcupine Bank (FU 16): Mean sizes (mm CL) of male and female Nephrops in Spanish, French and Irish landings and the Spanish Porcupine Groundfish survey 1981-2016.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{2}{|r|}{Spain} & \multicolumn{2}{|r|}{Ireland} & \multicolumn{2}{|r|}{France} & \multicolumn{2}{|l|}{Porcupine Survey} \\
\hline & \multicolumn{2}{|l|}{Landings} & \multicolumn{2}{|l|}{Landings} & \multicolumn{2}{|l|}{Landings} & \multicolumn{2}{|l|}{Catch} \\
\hline & Males & Females & Males & Females & Males & Females & Males & Females \\
\hline 1981 & 39.9 & 34.5 & - & - & - & - & - & - \\
\hline 1982 & 40.9 & 34.8 & - & - & - & - & - & - \\
\hline 1983 & 40.8 & 34.0 & - & - & - & - & - & - \\
\hline 1984 & 39.7 & 33.1 & - & - & - & - & - & - \\
\hline 1985 & 38.7 & 33.5 & - & - & - & - & - & - \\
\hline 1986 & 40.7 & 36.4 & - & - & - & - & - & - \\
\hline 1987 & 39.3 & 35.0 & - & - & - & - & - & - \\
\hline 1988 & 40.7 & 38.3 & - & - & - & - & - & - \\
\hline 1989 & 40.5 & 36.8 & - & - & - & - & - & - \\
\hline 1990 & 41.0 & 36.1 & - & - & - & - & - & - \\
\hline 1991 & 39.4 & 34.5 & - & - & - & - & - & - \\
\hline 1992 & 39.2 & 34.1 & - & - & - & - & - & - \\
\hline 1993 & 41.6 & 36.1 & - & - & - & - & - & - \\
\hline 1994 & 40.8 & 36.5 & - & - & - & - & - & - \\
\hline 1995 & 41.3 & 36.6 & 40.7 & 36.5 & 43.2 & 38.3 & - & - \\
\hline 1996 & 41.6 & 35.1 & 34.6 & 35.3 & 41.7 & 38.9 & - & - \\
\hline 1997 & 39.7 & 34.8 & 35.9 & 34.5 & 41.9 & 38.4 & - & - \\
\hline 1998 & 41.1 & 34.6 & 37.2 & 35.6 & 41.9 & 38.4 & - & - \\
\hline 1999 & 41.5 & 35.7 & 36.6 & 33.7 & 43.1 & 39.1 & - & - \\
\hline 2000 & 41.1 & 34.8 & na & na & 45.3 & 40.5 & - & - \\
\hline 2001 & 41.1 & 36.3 & 37.8 & 35.4 & 45.4 & 39.4 & 36.0 & 28.9 \\
\hline 2002 & 39.7 & 35.3 & 36.1 & 38.5 & 45.3 & 40.3 & 37.5 & 31.7 \\
\hline 2003 & 41.4 & 37.8 & 44.5 & 36.2 & 46.2 & 38.9 & 39.7 & 30.9 \\
\hline 2004 & 43.5 & 38.5 & 43.5 & 35.7 & 46.4 & 41.5 & 39.9 & 30.5 \\
\hline 2005 & 43.4 & 38.1 & 46.9 & 40.6 & 45.9 & 41.0 & 45.1 & 33.8 \\
\hline 2006 & 43.9 & 38.0 & na & na & 48.9 & 41.4 & 44.3 & 35.0 \\
\hline 2007 & 43.7 & 41.0 & na & na & 48.3 & 43.8 & 45.9 & 37.8 \\
\hline 2008 & 51.0 & 40.6 & 43.3 & 37.5 & na & na & 48.8 & 38.7 \\
\hline 2009 & 43.0 & 42.7 & 44.1 & 40.1 & na & na & 32.6 & 28.9 \\
\hline 2010 & na & na & 43.2 & 40.4 & na & na & 36.3 & 31.8 \\
\hline 2011 & na & na & 39.5 & 38.4 & na & na & 39.0 & 33.6 \\
\hline 2012 & na & na & 41.1 & 38.1 & na & na & 41.1 & 30.8 \\
\hline 2013 & na & na & 42.9 & 38.9 & na & na & 37.6 & 25.1 \\
\hline 2014 & na & na & 45.1 & 40.9 & na & na & 36.4 & 31.0 \\
\hline 2015 & na & na & 40.3 & 39.7 & na & na & 35.5 & 32.7 \\
\hline 2016 & na & na & 37.8 & 37.3 & na & na & 32.2 & 27.8 \\
\hline
\end{tabular}

Table 20.5. Nephrops Porcupine Bank (FU16): Time-series of numbers landed and mean weight in the landings.
\begin{tabular}{|c|c|c|c|}
\hline Year & Numbers (millions) & Weight Landed (Tonnes) & Mean Weight in landings (gr) \\
\hline 1986 & 55.7 & 2591 & 46.53 \\
\hline 1987 & 60.3 & 2499 & 41.42 \\
\hline 1988 & 48.1 & 2375 & 49.34 \\
\hline 1989 & 45.6 & 2115 & 46.40 \\
\hline 1990 & 38.9 & 1895 & 48.67 \\
\hline 1991 & 37.3 & 1640 & 43.98 \\
\hline 1992 & 47.0 & 2015 & 42.84 \\
\hline 1993 & 38.5 & 1857 & 48.29 \\
\hline 1994 & 54.4 & 2512 & 46.15 \\
\hline 1995 & 65.5 & 2936 & 44.79 \\
\hline 1996 & 52.9 & 2230 & 42.15 \\
\hline 1997 & 59.1 & 2409 & 40.73 \\
\hline 1998 & 49.9 & 2155 & 43.16 \\
\hline 1999 & 52.3 & 2290 & 43.76 \\
\hline 2000 & 15.1 & 910 & 60.13 \\
\hline 2001 & 24.6 & 1222 & 49.65 \\
\hline 2002 & 32.0 & 1327 & 41.49 \\
\hline 2003 & 18.4 & 1064 & 57.76 \\
\hline 2004 & 21.5 & 1406 & 65.28 \\
\hline 2005 & 31.5 & 2197 & 69.84 \\
\hline 2006 & 28.7 & 2185 & 76.24 \\
\hline 2007 & 29.2 & 2074 & 71.05 \\
\hline 2008 & 17.9 & 1000 & 55.89 \\
\hline 2009 & 16.5 & 879 & 53.19 \\
\hline 2010 & 14.1 & 922 & 65.32 \\
\hline 2011 & 27.9 & 1278 & 45.81 \\
\hline 2012 & 25.0 & 1258 & 50.36 \\
\hline 2013 & 19.8 & 1141 & 57.54 \\
\hline 2014 & 17.3 & 1189 & 68.54 \\
\hline 2015 & 27.4 & 1394 & 50.86 \\
\hline 2016 & 53.5 & 2154 & 40.29 \\
\hline Average 1986-2016 & & & 51.85 \\
\hline
\end{tabular}

Table 20.6. Nephrops Porcupine Bank (FU16): Assessment summary.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & Landings in number & Total discards in number & Removals in number & UWTV abundance estimates & \begin{tabular}{l}
95\% \\
conf. intervals
\end{tabular} & Harvest rate & Mean weight in landings & Mean weight in discards & Discard rate & Dead discard rate \\
\hline & millions & millions & millions & millions & millions & \% & grammes & grammes & \% & \multirow[t]{2}{*}{\%} \\
\hline 2012 & 25.0 & 0 & 25.0 & 787 & 78.7 & 3.2 & 50.4 & NA & 0 & \\
\hline 2013 & 19.8 & 0 & 19.8 & 768 & 61.4 & 2.6 & 57.5 & NA & 0 & 0 \\
\hline 2014 & 17.4 & 0 & 17.4 & 722 & 35.4 & 2.4 & 68.4 & NA & 0 & 0 \\
\hline 2015 & 27.4 & 0 & 27.4 & 840 & NA & \(3.3^{* *}\) & 50.9 & NA & 0 & 0 \\
\hline 2016 & 53.5 & 0 & 53.5 & 958 & 68.1 & 5.6 & 40.3 & NA & 0 & 0 \\
\hline 2017 & & & & 850 & 89.7 & & & & & \\
\hline
\end{tabular}
*Discards are considered negligible and are not included in the assessment.
** The harvest rate is estimated based on a linear extrapolation of abundance for 2016 when no survey was carried out.

Table 20.7. Nephrops Porcupine Bank (FU16): Effort and lpue for the various different fleets exploiting the stock 1971-2016.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & \multicolumn{2}{|c|}{Spain \({ }^{1}\)} & \multicolumn{2}{|r|}{France 2} & \multicolumn{2}{|c|}{Ireland3} \\
\hline & Effort ('000's Hrs) & LPUE (KG/HR) & EFFORT \({ }^{2}\) ('000's HRS) & LPUE ( \(>10 \%\) ) (KG/HR) & EFFORT \({ }^{3}\) ('000's KwDays) & LPUE (T/KWDAYs) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1980 & 318 & 9 & & & & \\
\hline 1981 & 272 & 12 & & & & \\
\hline 1982 & 237 & 17 & & & & \\
\hline 1983 & 196 & 14 & 18 & 35 & & \\
\hline 1984 & 194 & 13 & 30 & 35 & & \\
\hline 1985 & 200 & 14 & 33 & 36 & & \\
\hline 1986 & 162 & 9 & 28 & 38 & & \\
\hline 1987 & 174 & 10 & 24 & 26 & & \\
\hline 1988 & 180 & 9 & 22 & 27 & & \\
\hline 1989 & 173 & 8 & 14 & 23 & & \\
\hline 1990 & 159 & 9 & 15 & 23 & & \\
\hline 1991 & 138 & 7 & 19 & 18 & & \\
\hline 1992 & 96 & 9 & 32 & 21 & & \\
\hline 1993 & 80 & 9 & 36 & 22 & & \\
\hline 1994 & 80 & 10 & 38 & 28 & & \\
\hline 1995 & 67 & 9 & 42 & 30 & 584.9 & 1.40 \\
\hline 1996 & 58 & 8 & 41 & 26 & 192.5 & 1.59 \\
\hline 1997 & 57 & 8 & 41 & 25 & 327.3 & 1.26 \\
\hline 1998 & 56 & 7 & 40 & 22 & 284.6 & 1.59 \\
\hline 1999 & 53 & 8 & 43 & 21 & 278.0 & 1.29 \\
\hline 2000 & 47 & 5 & 23 & 14 & 92.8 & 1.25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|c|}{Spain \({ }^{1}\)} & \multicolumn{2}{|r|}{France 2} & \multicolumn{2}{|c|}{Ireland3} \\
\hline & Effort ('000's Hrs) & LPUE (KG/HR) & EFFORT \({ }^{2}\) ('000's HRS) & LPUE (>10\%) (KG/HR) & EFFORT \({ }^{3}\) ('000's KWDays) & LPUE (T/KWDAYS) \\
\hline 2001 & 44 & 6 & 24 & 15 & 230.2 & 1.12 \\
\hline 2002 & 54 & 5 & 18 & 18 & 339.8 & 1.30 \\
\hline 2003 & 66 & 5 & 7 & 19 & 294.7 & 0.80 \\
\hline 2004 & 59 & 10 & 9 & 25 & 569.2 & 0.68 \\
\hline 2005 & 60 & 13 & 15 & 26 & 756.2 & 0.83 \\
\hline 2006 & 65 & 9 & 22 & 21 & 952.8 & 0.72 \\
\hline 2007 & 58 & 8 & 17 & 18 & 1199.4 & 0.81 \\
\hline 2008 & 42 & 6 & 4 & 7 & 830.7 & 0.67 \\
\hline 2009 & 44 & 7 & & & 411.3 & 0.83 \\
\hline 2010 & 42 & 6 & & & 704.1 & 0.81 \\
\hline 2011 & na & na & & & 986.9 & 0.63 \\
\hline 2012 & \[
15
\] & na & & & 817.1 & 0.63 \\
\hline 2013 & na & na & & & 885.7 & 0.92 \\
\hline 2014 & na & na & & & 1019.8 & 0.92 \\
\hline 2015 & na & na & & & 1219.2 & 0.99 \\
\hline 2016 & na & na & & & 1330.7 & 1.45 \\
\hline
\end{tabular}

1 = Effort and lpue between 1980 and 2010 was estimated based on fishing days in 7. Effort in 2012 was based on logbooks for FU16.
\({ }^{2}=\) Effort and lpue for vessels where \(<\mathbf{1 0 \%}\) of landed value was Nephrops.
\({ }^{3}=\) Effort and lpue for vessels where \(30 \%\) of the landed weight was Nephrops.


Figure 20.1. Nephrops in FU16 (Porcupine Bank). WGs best estimates of landings in tonnes by country.


Figure 20.2. Nephrops in FU16 (Porcupine Bank). Female and male length distributions of raised international landings.


Figure 20.3. Nephrops in FU16 (Porcupine Bank). The percentage males in the landings and survey over time.


Figure 20.4. Nephrops in FU16 (Porcupine Bank). Mean weight in the commercial landings.


Figure 20.5. Nephrops in FU16 (Porcupine Bank). Distribution of Nephrops norvegicus in Porcupine surveys left biomass, right No. juveniles ( \(<20 \mathrm{~mm}\) carapace length.)


Figure 20.6. Nephrops in FU16 (Porcupine Bank). Changes in Nephrops norvegicus biomass and number stratified indices during Porcupine Survey time-series (2001-2016). Boxes mark parametric standard error of the stratified abundance index. Lines mark bootstrap confidence intervals ( \(\alpha=0.80\), bootstrap iterations=1000).


Figure 20.7. Proportion of individuals caught below 21 mm Carapace Length on the Porcupine Survey.


Figure 20.8. Summary of stock status for Porcupine Nephrops.

\section*{21 Norway lobster (Nephrops norvegicus) in Division 7.b, Functional Unit 17 (west of Ireland, Aran grounds)}

\section*{Type of assessment in 2017}

This stock was inter-benchmarked in September 2015 by correspondence (ICES, 2015). The assessment and catch options follow the agreed procedures set out in the stock annex.

\section*{ICES advice applicable to 2016}
"ICES advises that when the MSY approach is applied, catches in 2016 (assuming zero discards) should be no more than 991 tonnes. If instead discard rates continue at recent values (average of 2012-2014) and there is no change in assumed discard survival rate, this implies landings of no more than 948 tonnes.

In order to ensure the stock in this FU is exploited sustainably, management should be implemented at the functional unit level."

\section*{ICES advice applicable to 2017}

ICES advises that when the MSY approach is applied, and assuming that discard rates and fishery selection patterns do not change from the average of 2013-2015, catches in 2017 should be no more than 489 tonnes. This implies landings of no more than 456 tonnes.

To ensure that the stock in functional unit (FU) 17 is exploited sustainably, management should be implemented at the functional unit level.

\subsection*{21.1 General}

\section*{Stock description and management units}

The Aran Grounds Nephrops stock (FU17) covers ICES rectangles 34-35 D9-E0 within 7.b. This stock is included as part of the TAC Area 7 Nephrops which includes the following stocks: Irish Sea East and West (FU14, FU15), Porcupine Bank (FU16), northwestern Irish Coast (FU18), southeastern and southwestern Irish Coast (FU19) and the Celtic Sea (FU20-22).
Map below shows FU17 assessment area (blue) and TAC area (red). See Section 18 for details on Nephrops Subarea 7 general section.


\section*{Ecosystem aspects}

Details of the ecosystem on the Aran grounds are provided in the stock annex updated by IBPNeph (ICES, 2015).

\section*{Fishery description}

A description of the fleet is given in the stock annex. The time-series of numbers of vessels is updated in Figure 21.1.1. The numbers of vessels has been relatively stable since 1995. The time-series of vessel power is shown as a box and kite plot in Figure 21.1.2.

The majority of the landings are made with 80 mm mesh.
The majority of the landings come from the grounds to the west and southwest of the Aran Islands known as the 'back of the Aran ground' (See stock annex). The fishery on the Aran Grounds operates throughout the year, weather permitting with a seasonal trend (See stock annex).

\section*{Fishery in 2016}

In recent years several newer vessels specializing in Nephrops fishing have participated periodically in this fishery. These vessels target Nephrops on several other grounds within the TAC area and move around to optimize catch rates. There has been a trend for Irish vessels to switch to multi (quad) rig trawls since 2012. These vessels are more efficient at catching Nephrops (BIM, 2015).

\section*{Information from stakeholders}

Voluntary effort restriction were put in place by the Irish fishing industry in April and May 2015. These measures reduced catches and effort significantly on the stock in advance of the 2015 UWTV survey.

\subsection*{21.2 Data}

\section*{InterCatch}

Data were available in InterCatch and used on a trial basis.

\section*{Landings}

The reported landings time-series is shown in Figure 21.2.1 and Table 21.2.1. The 2016 landings increased by about \(60 \%\) from those made in 2015 and amounted to 641 t .

\section*{Effort}

The IBPNeph 2015 reviewed Irish commercial landings and effort data in detail. They concluded that effort should be reported in the WGCSE report in KWdays and lpue should be reported in KG/kwdays in the knowledge that the trend is likely to be a biased underestimate because it is not adjusted for efficiency or behavioural changes. The time-series of effort and lpue is updated in Figure 21.2.2 and Table 21.2.2. There was a significant decline in lpue and effort in 2015 which is due to the local management efforts put in place in April and May. In 2016 effort increased to levels observed previously.

\section*{Sampling levels}

Sampling levels, data aggregating and raising procedures were reviewed by IBPNeph 2015 and are documented in the stock annex. The time-series of samples is shown in Figure 21.2.3 and Table 21.2.3. Sampling levels in 2016 were good and are comparable to 2015 levels.

\section*{Commercial length-frequency distributions}

The raised catch length distributions are shown in Figure 21.2.4. The mean size for both sexes from 2008 fluctuate considerably.

\section*{Sex ratio}

The sex ratio by year is shown in Figure 21.2.5. This shows some fluctuations over time. The sex ratio has a distinct seasonal pattern (Figure 21.2.6) with lowest male proportions in the samples in May and June. Males dominate the catches in the autumn and winter.

\section*{Mean weight explorations}

Explorations of the mean weight in the catch samples by sex shows a strong cyclical pattern (Figure 21.2.6). This corresponds with the emergence of mature females from the burrows to mate in summer. The annual mean weight estimate for landings and discards is shown in Figure 21.2.7. The mean weight estimates from 2008 fluctuate considerably.

\section*{Discarding}

Table 21.2.4 gives weights, numbers and mean weights of the landings and discard raised internationally according to the stock annex. There is no information on discard survival rate in this fishery but a \(25 \%\) discard survival rate is assumed in line with other Nephrops stocks in the Celtic sea (see stock annex).

\section*{Abundance indices from UWTV surveys}

The spatial extent of the Nephrops grounds in FU17 has been re-defined by IBPNeph 2015 and the total abundance estimates have been revised using a new procedure (ICES, 2015). The redefinition of the polygons in FU17 resulted in \(\sim 30 \%\) increase in
overall area from \(1007 \mathrm{~km}^{2}\) to \(1320 \mathrm{~km}^{2}\) (stock annex). Operational details of the 2016 UWTV survey are available (Doyle et al., 2016).

The spatial distributions of burrow densities are shown in Figure 21.2.8. The densities have fluctuated considerably over the time-series and throughout the Aran grounds. In general the densities are higher towards the western side of the ground and there is a notable trend towards lower densities towards the east. On the southwestern boundary there are often high densities close to the boundary. In this area there is a sharp transition from mud to rocky substrate. The decrease in densities in 2016 was mainly towards the middle of the ground.

On average the Aran Grounds account for \(\sim 88 \%\) of the total estimated burrow abundance from FU17. Galway Bay and Slyne Head account for \(\sim 8 \%\) and \(\sim 2 \%\) respectively. The Galway Bay estimates fluctuate widely but appear to be highly correlated with the Aran ground (except 2004). Estimates for the Slyne Head ground also fluctuate considerably but show no significant correlation with the other areas (Figure 21.2.9).

Table 20.2.5 shows the Aran ground abundance estimates and CV (or relative standard error) which is well below ( \(<6 \%\) ) the recommendation of \(20 \%\) by SGNEPS (ICES, 2012). The CVs on the abundance estimates for Galway Bay and Slyne Head are also well within the recommendation showing the surveys are precise (Table 21.2.6). Figure 21.2.10 and Table 21.2.7 shows the total abundance estimate for FU17 with the IBPNeph proposed MSY Btrigger. The 2016 combined abundance estimate was \(32 \%\) lower than in 2015 and at 379 million and is \(30 \%\) below the MSY Btriger ( 540 million).

\subsection*{21.3 Assessment}

\section*{Comparison with previous assessments}

The WGCSE 2017 carried out an UWTV based assessment for this stock. The methods used were very much in line with WKNEPH (ICES, 2009) and the approach taken for other Nephrops stocks in 6 and 7 by WGCSE. This approach was interbenchmarked at IBPNeph (ICES, 2015).

\section*{State of the stock}

UWTV abundance estimates suggest that the stock size has fluctuated widely with an overall declining trend. The 2016 estimate is the lowest observed in the time-series and is \(30 \%\) below the MSY Btrigger. The 2016 abundance remains below the average of the series (geomean: 696 million). Harvest rate is calculated as (landings + dead discards/abundance estimate). Table 21.3.1.and Figure 21.3.1 summarize recent harvest ratios which have been above the Fmsүproxy for the last three years.

\subsection*{21.4 Catch option table}

Catch option table inputs and historical estimates of mean weight in landings and harvest ratios are presented in Table 21.3.1 and summarised below. The calculation of catch options for the Aran Grounds follows the procedure outlined in the stock annex.

The basis for the catch options.
\begin{tabular}{lcl}
\hline \multicolumn{1}{c}{ Variable } & Value & \multicolumn{1}{c}{ Notes } \\
\hline Stock abundance & \begin{tabular}{l} 
Available \\
October 2017
\end{tabular} & UWTV Survey 2017 \\
\hline \begin{tabular}{l} 
Mean weight in \\
landings
\end{tabular} & 22.2 g & Average 2008-2016. \\
\hline \begin{tabular}{l} 
Mean weight in \\
discards
\end{tabular} & 11.2 g & Average 2008-2016. \\
\hline Discard rate & \(12.9 \%\) & \begin{tabular}{l} 
Average (proportion by number) 2014-2016. \\
Calculated as discards/(landings + discards).
\end{tabular} \\
\hline Discard survival rate & \(25 \%\) & \begin{tabular}{l} 
Only applies in scenarios where discarding is allowed.
\end{tabular} \\
\hline Dead discard rate & \(10.0 \%\) & \begin{tabular}{l} 
Average 2014-2016 (proportion by number). \\
Calculated as dead discards divided by dead removals \\
(landings + dead discards). Only applies in scenarios \\
where discarding is allowed.
\end{tabular} \\
\hline
\end{tabular}

Given the fluctuations observed in mean weights for landings and discards (Figure 21.2.7) an average from 2008 to the most recent year is used in the calculation of catch options as set out in the stock annex. The discard rates and proportions for the last three years are used to account for recent on-board retention practices (this is also according to the stock annex).

\subsection*{21.5 Reference points}

New reference points were defined for this stock at the IBPNeph (ICES, 2015) and no new proposals were made by WKMSYRef4 (ICES, 2016XX; ICESYY). For Nephrops stocks MSY Btrigger has been defined as the lowest stock size from which the abundance has increased. This corresponds to the abundance observed in 2008 rounded to the nearest \(10=540\) million individuals (Figure 21.2.10 and Table 21.2.7).

The Fmsy proxy was revised during the benchmark in 2015. The observed burrow density has declined, from high ( \(>0.8\) individuals \(\mathrm{m}^{-2}\) ) at the start of the series to medium density ( \(\sim 0.3\) individuals \(\mathrm{m}^{-2}\) ) towards the end of the time-series. The nature of the fishery has also changed, from a continuous fishery throughout the year to a fishery which is more concentrated on periods of high catch rates. For these reasons a harvest rate consistent with a combined sex \(\mathrm{F}_{0.1}=8.5 \%\) is considered an appropriate proxy for Fmš.
These should remain under review by WGCSE and may be revised should improved data become available.

\subsection*{21.6 Management strategies}

As yet there are no explicit management strategies for this stock but there have been some discussions among the fishing industry and scientists about developing a longterm plan for the management of the Aran fishery. Sustainable utilization of the Nephrops stock will form the cornerstone of any management strategy for this fishery.

\subsection*{21.7 Quality of assessment and forecast}

Biological sampling for this stock is adequate. Since 2002 a dedicated annual UWTV survey has provided abundance estimates for the Aran Grounds with high precision. The area of the Aran Grounds was revised in 2015, resulting in a recalculation of the abundance time-series which now also includes Galway Bay and Slyne Head. A
number of other biological parameters such as mean weights and length distributions have also been revised. The revisions were made as part of an inter-benchmark process and have improved the quality of the assessment.

In the provision of catch options based on the absolute survey estimates additional uncertainties related to mean weight in the landings and the discard rates also arise. Fisheries catching Nephrops in Subarea 7 will be covered by the EU landing obligation from 2016 (EC, 2015). Nephrops creel fisheries are exempted from the landings obligation, with a de minimis exemption consisting of a \(7 \%\) discard rate by weight for the trawl fishery in 2016 and 2017. The average discard rate by weight for FU17 over the last three years is \(6 \%\). Two different catch options at Fmsy have been provided to give some information on the impact of different LO scenarios on catches.

There are several key uncertainties and bias sources in the method used here (these are discussed further in WKNEPH 2009). Various agreed procedures have been put in place to ensure the quality and consistency of the survey estimates following the recommendations of several ICES groups (WKNEPTV 2007; WKNEPHBID 2008; SGNEPS 2009; WGNEPS 2014; WKNEPS 2016). Ultimately there still remains a degree of subjectivity in the production of UWTV abundance estimates (Marrs et al., 1996). Taking explicit note of the likely biases in the surveys may at least provide an estimate of absolute abundance that is more accurate, although no more precise WKNEPH (ICES, 2009).

Landings data are adjusted to take into account landings that have been misreported from FU16 since 2011. This adjustment is thought to be reasonably accurate (See Section 18).

\subsection*{21.8 Recommendation for next benchmark}

This stock was last benchmarked by IBPNeph (ICES, 2015). WGCSE will keep the stock under close review and recommend future benchmark as required.

\subsection*{21.9 Management considerations}

A meeting was held with stakeholders in March 2015 to discuss the state of the Aran Nephrops stock. In response to this meeting voluntary effort limits were put in place for April, May and June. These voluntary measures have significantly reduced effort and catches on the Aran grounds in 2015 before the UWTV survey.

Small whole Nephrops are the main species comprising the discards. The main fish species discarded are haddock, hake, whiting, megrim and dogfish (Anon, 2011).

The ICES and STECF have repeatedly advised that management should be at a smaller scale than the ICES Division level. Management at the Functional Unit level could provide controls to ensure effort and catch were in line with resources available.

\subsection*{21.10References}

Anon. 2011. Atlas of Demersal Discarding, Scientific Observations and Potential Solutions, Marine Institute, Bord Iascaigh Mhara, September 2011. ISBN 978-1-902895-50-5. 82 pp.

BIM. 2015. Report on catch comparison of Quad and Twin-rig trawls in the Celtic Sea Nephrops fishery. Bord Iascaigh Mhara, 29 August 2014.

Doyle, J., Lordan, C., Stokes, D., O'Brien, S., Kelly, C., Bentley, K. and Vacherot, J.P. 2016. Aran, Galway Bay and Slyne Head Nephrops Grounds (FU17) 2016 UWTV Survey Report and
catch options for 2017. Marine Institute UWTV Survey report. http://hdl.handle.net/10793/1184.

Marrs S.J., Atkinson R.J.A., Smith C.J., Hills J.M. 1996. Calibration of the towed underwater TV technique for use in stock assessment of Nephrops norvegicus. EC DGXIV Final Report, Study Project 94/069.

ICES. 2007. Report of the Workshop on the use of UWTV surveys for determining abundance in Nephrops stocks throughout European waters (WKNEPHTV). ICES CM: 2007/ACFM:14.

ICES. 2008. Report of the Workshop and training course on Nephrops burrow identification (WKNEPHBID). ICES CM 2008/LRC:03.

ICES. 2009. Report of the Study Group on Nephrops Surveys (SGNEPS). ICES CM 2009/LRC: 15, pp 52.

ICES. 2009. Report of the Benchmark Workshop on Nephrops assessment (WKNEPH). ICES CM 2009/ACOM:33.

ICES. 2012. Report of the Study Group on Nephrops Surveys (SGNEPS). ICES CM 2012/SSGESST:19.

ICES. 2014. Report of the Working Group on Nephrops Surveys (WGNEPS). ICES CM 2014/SSGESST:20. 57 pp.

ICES. 2015. Report of the Inter-Benchmark Protocol of Nephrops in FU 17 and 14 (IBPNeph). ICES CM 2015/ACOM:38.

ICES. 2015. Report of the Working Group on Nephrops Surveys (WGNEPS), 10-13 November 2015, Cadiz, Spain. ICES CM 2015/ SSGIEOM:30.52 pp.
ICES. 2015. Report of the International Bottom Trawl Survey Working Group (IBTSWG), 23-27 March 2015, Bergen, Norway. ICES CM 2015/ SSGIEOM:20. 124 pp.

ICES. 2016. Report of the Working Group on Nephrops Surveys (WGNEPS), 7-8 November 2016, Reykjavík, Iceland. ICES CM 2016/ SSGIEOM:33.67 pp.
ICES. 2016. Report of the Workshop on Nephrops Burrow counting (WKNEPS), 9-11 November 2016, Reykjavík, Iceland. ICES CM 2016/ SSGIEOM:34.65 pp.

ICES. 2016XX. EU request to ICES to provide Fmsy ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

ICES. 2016YY. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

Table 21.2.1. Nephrops in FU17 (Aran Grounds). Landings in tonnes by country.
\begin{tabular}{|c|c|c|c|c|}
\hline Year & France & Rep. of Ireland & UK & Total \\
\hline 1974 & 477 & & & 477 \\
\hline 1975 & 822 & & & 822 \\
\hline 1976 & 131 & & & 131 \\
\hline 1977 & 272 & & & 272 \\
\hline 1978 & 481 & & & 481 \\
\hline 1979 & 452 & & & 452 \\
\hline 1980 & 442 & & & 442 \\
\hline 1981 & 414 & & & 414 \\
\hline 1982 & 210 & & & 210 \\
\hline 1983 & 131 & & & 131 \\
\hline 1984 & 324 & & & 324 \\
\hline 1985 & 207 & & & 207 \\
\hline 1986 & 147 & & 1 & 148 \\
\hline 1987 & 62 & & 0 & 62 \\
\hline 1988 & 14 & 814 & & 828 \\
\hline 1989 & 27 & 317 & 3 & 347 \\
\hline 1990 & 30 & 489 & & 519 \\
\hline 1991 & 11 & 399 & & 410 \\
\hline 1992 & 11 & 361 & 2 & 374 \\
\hline 1993 & 11 & 361 & 0 & 372 \\
\hline 1994 & 18 & 707 & 4 & 729 \\
\hline 1995 & 91 & 774 & 2 & 867 \\
\hline 1996 & 2 & 519 & 7 & 528 \\
\hline 1997 & 2 & 839 & 0 & 841 \\
\hline 1998 & 9 & 1401 & 0 & 1410 \\
\hline 1999 & 0 & 1140 & 0 & 1140 \\
\hline 2000 & 1 & 879 & 0 & 880 \\
\hline 2001 & 1 & 912 & 0 & 913 \\
\hline 2002 & 2 & 1152 & 0 & 1154 \\
\hline 2003 & 0 & 933 & 0 & 933 \\
\hline 2004 & 0 & 525 & 0 & 525 \\
\hline 2005 & 0 & 778 & 0 & 778 \\
\hline 2006 & 0 & 637 & 0 & 637 \\
\hline 2007 & 0 & 913 & 0 & 913 \\
\hline 2008 & 0 & 1050 & 7 & 1057 \\
\hline 2009 & 0 & 625 & 0 & 625 \\
\hline 2010 & 0 & 930 & 9 & 939 \\
\hline 2011 & 0 & 659 & 0 & 659 \\
\hline 2012 & 0 & 1246 & 0 & 1246 \\
\hline 2013 & 0 & 1295 & 0 & 1295 \\
\hline 2014 & 0 & 766 & 0 & 766 \\
\hline 2015 & 0 & 370 & 0 & 370 \\
\hline 2016 & 0 & 641 & 0 & 0 \\
\hline
\end{tabular}

Table 21.2.2. Nephrops in FU17 (Aran Grounds). Effort data for the Irish otter trawl Nephrops directed fleet.
\begin{tabular}{|c|c|c|}
\hline Year & Effort (Kw Days) & Landings (Kgs) \\
\hline 1995 & 286,939 & 522,007 \\
\hline 1996 & 174,030 & 312,421 \\
\hline 1997 & 260,676 & 442,218 \\
\hline 1998 & 445,308 & 940,902 \\
\hline 1999 & 366,839 & 782,407 \\
\hline 2000 & 293,684 & 561,244 \\
\hline 2001 & 362,754 & 586,462 \\
\hline 2002 & 350,346 & 798,744 \\
\hline 2003 & 492,284 & 801,813 \\
\hline 2004 & 355,673 & 420,652 \\
\hline 2005 & 396,202 & 708,540 \\
\hline 2006 & 337,503 & 618,515 \\
\hline 2007 & 460,396 & 905,282 \\
\hline 2008 & 512,245 & 1,052,077 \\
\hline 2009 & 319,873 & 613,220 \\
\hline 2010 & 441,080 & 910,346 \\
\hline 2011 & 332,300 & 667,564 \\
\hline 2012 & 488,721 & 1,139,413 \\
\hline 2013 & 571,916 & 1,239,469 \\
\hline 2014 & 460,818 & 774,097 \\
\hline 2015 & 232,190 & 461,409 \\
\hline 2016 & 396,502 & 578,420 \\
\hline
\end{tabular}

Table 21.2.3. Nephrops in FU17 (Aran Grounds). Sampling levels.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{QuARTER} & \multicolumn{2}{|r|}{Number of samples} & \multicolumn{2}{|r|}{Numbers Measured} \\
\hline & & Catch & Discards & Catch & Discards \\
\hline 2008 & 1 & 2 & 3 & 565 & 1376 \\
\hline 2008 & 2 & 9 & 8 & 2224 & 3758 \\
\hline 2008 & 3 & 5 & 4 & 1266 & 1834 \\
\hline 2008 & 4 & 3 & 3 & 889 & 1733 \\
\hline 2009 & 1 & 3 & 3 & 800 & 1184 \\
\hline 2009 & 2 & 6 & 6 & 1685 & 1978 \\
\hline 2009 & 3 & 6 & 6 & 2260 & 2726 \\
\hline 2009 & 4 & 2 & 2 & 1491 & 1149 \\
\hline 2010 & 1 & 4 & 4 & 3322 & 2322 \\
\hline 2010 & 2 & 8 & 7 & 3577 & 2957 \\
\hline 2010 & 3 & 2 & 2 & 951 & 742 \\
\hline 2010 & 4 & 6 & 4 & 3209 & 1802 \\
\hline 2011 & 1 & 7 & 7 & 3755 & 3537 \\
\hline 2011 & 2 & 7 & 7 & 7399 & 6617 \\
\hline 2011 & 3 & 4 & 2 & 3531 & 2386 \\
\hline 2011 & 4 & 5 & 5 & 2440 & 2271 \\
\hline 2012 & 1 & 3 & 3 & 1538 & 1250 \\
\hline 2012 & 2 & 17 & 15 & 6481 & 5113 \\
\hline 2012 & 3 & 0 & 0 & - & - \\
\hline 2012 & 4 & 5 & 5 & 2333 & 1945 \\
\hline 2013 & 1 & 10 & 9 & 3108 & 2983 \\
\hline 2013 & 2 & 11 & 11 & 3733 & 3733 \\
\hline 2013 & 2 & 3 & 3 & 1163 & 1263 \\
\hline 2013 & 4 & 7 & 7 & 2956 & 1779 \\
\hline 2014 & 1 & 3 & 3 & 1208 & 1223 \\
\hline 2014 & 2 & 12 & 12 & 5365 & 3563 \\
\hline 2014 & 3 & 2 & 2 & 786 & 499 \\
\hline 2014 & 4 & 8 & 8 & 3542 & 2760 \\
\hline 2015 & 1 & 2 & 2 & 827 & 611 \\
\hline 2015 & 2 & 2 & 2 & 961 & 664 \\
\hline 2015 & 3 & 0 & 0 & - & - \\
\hline 2015 & 4 & 2 & 2 & 1047 & 1388 \\
\hline 2016 & 1 & 5 & 4 & 2292 & 876 \\
\hline 2016 & 2 & 11 & 11 & 4756 & 3383 \\
\hline 2016 & 3 & 6 & 5 & 3020 & 2048 \\
\hline 2016 & 4 & 6 & 6 & 1389 & 1311 \\
\hline
\end{tabular}

Table 21.2.4. Nephrops in FU17 (Aran Grounds). Raised landings and discard weight and numbers by year.
\begin{tabular}{ccccccc}
\hline Year & LANDINGS (T) & DISCARDS (T) & \begin{tabular}{c} 
DISCARDS \\
BY WEIGHT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c} 
LANDINGS IN \\
NUMBER \\
\((' 000 s)\)
\end{tabular} & \begin{tabular}{c} 
DISCARDS IN \\
NUMBER \\
\((' 000 s)\)
\end{tabular} & \begin{tabular}{c} 
DISCARDS \\
BY NUMBER \\
\((\%)\)
\end{tabular} \\
\hline 2008 & 1057 & 248 & \(19 \%\) & 48,162 & 22,074 & \(31 \%\) \\
\hline 2009 & 626 & 129 & \(17 \%\) & 24,935 & 9,487 & \(28 \%\) \\
\hline 2010 & 939 & 224 & \(19 \%\) & 37,341 & 15,246 & \(29 \%\) \\
\hline 2011 & 659 & 92 & \(12 \%\) & 31,950 & 8,542 & \(21 \%\) \\
\hline 2012 & 1246 & 86 & \(6 \%\) & 61,076 & 8,292 & \(12 \%\) \\
\hline 2013 & 1295 & 129 & \(9 \%\) & 60,016 & 12,034 & \(17 \%\) \\
\hline 2014 & 766 & 48 & \(6 \%\) & 33,882 & 5,038 & \(13 \%\) \\
\hline 2015 & 370 & 15 & \(4 \%\) & 17,693 & 1,622 & \(8 \%\) \\
\hline 2016 & 641 & 69 & \(10 \%\) & 30,231 & 6,375 & \(17 \%\) \\
\hline
\end{tabular}

Table 21.2.5. Nephrops in FU17 (Aran Grounds). Results summary table for geostatistical analysis of UWTV survey.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ground & Year & Number of STATIONS & \begin{tabular}{l}
Mean \\
Density \\
ADJUSTED (BURROW/M²)
\end{tabular} & \begin{tabular}{l}
Domain \\
Area \\
(KM \({ }^{2}\) )
\end{tabular} & \begin{tabular}{l}
Geostatistical \\
Abundance \\
Estimate \\
ADJUSTED \\
(MILLIONS \\
BURROWS)
\end{tabular} & \begin{tabular}{l}
CV on \\
Burrow \\
ESTIMATE
\end{tabular} \\
\hline Aran Grounds & 2002 & 49 & 0.79 & 1196 & 947 & 3\% \\
\hline & 2003 & 41 & 0.94 & 1196 & 1118 & 6\% \\
\hline & 2004 & 64 & 1.08 & 1196 & 1297 & 3\% \\
\hline & 2005 & 70 & 0.81 & 1196 & 972 & 2\% \\
\hline & \[
2006
\] & 67 & 0.46 & 1196 & 556 & 3\% \\
\hline & 2007 & 71 & 0.69 & 1196 & 828 & 2\% \\
\hline & 2008 & 63 & 0.41 & 1196 & 494 & 3\% \\
\hline & 2009 & 82 & 0.52 & 1196 & 627 & 2\% \\
\hline & 2010 & 87 & 0.63 & 1196 & 752 & 2\% \\
\hline & 2011 & 76 & 0.51 & 1196 & 609 & 2\% \\
\hline & 2012 & \(31^{*}\) & 0.33 & 1196 & 397 & 3\% \\
\hline & 2013 & 31* & 0.33 & 1196 & 390 & 4\% \\
\hline & 2014 & 33* & 0.28 & 1196 & 332 & 4\% \\
\hline & 2015 & 34* & 0.4 & 1197 & 480 & 4\% \\
\hline & 2016 & \(34^{*}\) & 0.29 & 1197 & 343 & 3\% \\
\hline
\end{tabular}
*reduced isometric grid.

Table 21.2.6. Nephrops in FU17 (Galway Bay and Slyne Head). Results summary table for analysis of UWTV survey.
\begin{tabular}{ccccccc}
\hline GROUND & YEAR & \begin{tabular}{c} 
NUMBER OF \\
STATIONS
\end{tabular} & \begin{tabular}{c} 
MEAN DENSITY \\
ADJUSTED \\
(BURROW/M \({ }^{2}\)
\end{tabular} & \begin{tabular}{c} 
DOMAIN \\
AREA (KM \({ }^{2}\) )
\end{tabular} & \begin{tabular}{c} 
RAISED \\
ABUNDANCE \\
ESTIMATE
\end{tabular} & \begin{tabular}{c} 
CV ON \\
BURROW \\
ESTIMATE
\end{tabular} \\
& & & & & \begin{tabular}{c} 
ADJUSTED \\
(MILLIONS
\end{tabular} & \\
\hline Galway Bay & 2002 & 7 & & & & \\
\hline & & & & 1.18 & 79.0 & 93.1
\end{tabular}

\footnotetext{
*random stratified estimates are given for the Slyne Head and Galway Bay grounds.
\({ }^{* *}\) estimated as no survey data available for these years.
}

Table 21.2.7. Nephrops in FU17. Results summary table for analysis of UWTV survey for the combined grounds.
\begin{tabular}{cccc}
\hline Year & \begin{tabular}{c} 
Abundance \\
(Miluons)
\end{tabular} & UpPer bound & Lower bound \\
\hline 2002 & 1069.796 & 1139.209 & 1000.383 \\
\hline 2003 & 1246.37 & 1432.821 & 1059.92 \\
\hline 2004 & 1409.782 & 1523.114 & 1296.45 \\
\hline 2005 & 1091.971 & 1148.121 & 1035.822 \\
\hline 2006 & 626.7601 & 686.7448 & 566.7755 \\
\hline 2007 & 919.7013 & 972.1887 & 867.214 \\
\hline 2008 & 541.1782 & 572.2073 & 510.1491 \\
\hline 2009 & 695.6454 & 724.5324 & 666.7583 \\
\hline 2010 & 878.5592 & 916.5185 & 840.5999 \\
\hline 2011 & 672.1959 & 710.8391 & 633.5526 \\
\hline 2012 & 468.2692 & 504.6183 & 431.92 \\
\hline 2013 & 441.0297 & 486.5642 & 395.4952 \\
\hline 2014 & 383.0244 & 419.5843 & 346.4646 \\
\hline 2015 & 555.5154 & 605.8891 & 505.1418 \\
\hline 2016 & 379.1418 & 407.5817 & 350.7018 \\
\hline
\end{tabular}

Table 21.3.1. Nephrops in FU17 (Aran Grounds). Forecast inputs (bold) and historical estimates of mean weight in landings and harvest rate. Removals estimated in years with no sampling \(\left(^{*}\right.\) ) using ratio of removals to landings in adjacent years. na= not available due to non-cooperation with sampling programmes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ঠু } \\
& \stackrel{y}{\sim}
\end{aligned}
\]} &  &  &  & \[
\begin{gathered}
\text { Dead Discard Rate } \\
\text { number }
\end{gathered}
\] &  &  &  &  &  & \[
\begin{aligned}
& \dot{n} \\
& 0 \\
& 0 \\
& \tilde{y} \\
& \ddot{0} \\
& \overline{0} \\
& \stackrel{y}{0} \\
& \vdash
\end{aligned}
\] &  & spıeכs!̣ u! ұчб!əм иеәw \\
\hline & millions & millions & millions & \% & \% & millions & & \% & tonnes & tonnes & gramme & gramme \\
\hline 2001 & 48.7 & 25.4 & 67.8 & 28.2 & 34.3 & & & & 912 & & & \\
\hline 2002 & 54.5 & 17.7 & 67.8 & 19.6 & 24.5 & 1070 & 69 & 6.30 & 1152 & 192 & 21.2 & 10.8 \\
\hline 2003 & 44.1 & 18.3 & 57.8 & 23.7 & 29.3 & 1246 & 186 & 4.60 & 933 & 183 & 21.2 & 10 \\
\hline 2004 & 29 & 11.4 & 37.6 & 22.9 & 28.2 & 1410 & 113 & 2.70 & 525 & 112 & 18.1 & 9.9 \\
\hline 2005 & 42.4 & 19.7 & 57.2 & 25.9 & 31.7 & 1092 & 56 & 5.20 & 778 & 182 & 18.4 & 9.2 \\
\hline 2006 & na & na & 49.5* & na & na & 627 & 60 & 7.90 & 636 & na & na & na \\
\hline 2007 & na & na & 57.3* & na & na & 920 & 52 & 6.20 & 913 & na & na & na \\
\hline 2008 & 48.2 & 22.1 & 64.7 & 25.6 & 31.4 & 541 & 31 & 12.00 & 1057 & 248 & 21.9 & 11.2 \\
\hline 2009 & 24.9 & 9.5 & 32 & 22.2 & 27.6 & 696 & 29 & 4.60 & 626 & 129 & 25.1 & 13.6 \\
\hline 2010 & 37.3 & 15.2 & 48.8 & 23.4 & 29.0 & 879 & 38 & 5.60 & 939 & 224 & 25.2 & 14.7 \\
\hline 2011 & 31.9 & 8.5 & 38.4 & 16.7 & 21.1 & 672 & 39 & 5.70 & 659 & 92 & 20.6 & 10.8 \\
\hline 2012 & 61.1 & 8.3 & 67.3 & 9.2 & 12.0 & 468 & 36 & 14.40 & 1246 & 86 & 20.4 & 10.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ジ} &  &  &  &  &  &  &  &  &  &  &  &  \\
\hline & millions & millions & millions & \% & \% & millions & & \% & tonnes & tonnes & gramme & gramme \\
\hline 2013 & 60 & 12 & 69 & 13.1 & 16.7 & 441 & 46 & 15.70 & 1295 & 129 & 21.6 & 10.7 \\
\hline 2014 & 33.9 & 5 & 37.7 & 10.0 & 12.9 & 383 & 37 & 9.80 & 766 & 48 & 22.6 & 9.6 \\
\hline 2015 & 17.7 & 1.6 & 18.9 & 6.4 & 8.4 & 556 & 50 & 3.40 & 370 & 15 & 20.9 & 9.1 \\
\hline \multirow[t]{2}{*}{2016} & 30.2 & 6.4 & 35.0 & 13.7 & 17.4 & 379 & 28 & 9.20 & 641 & 69 & 21.2 & 10.9 \\
\hline & & & Average 14-16 & 10.0 & 12.9 & & & & & Average 08-16 & 22.2 & 11.2 \\
\hline
\end{tabular}


Figure 21.1.1. Nephrops in FU17 (Aran Grounds). Time-series of the number of Irish vessels reporting landings of Nephrops from FU17 with a \(>10 \mathrm{t}\) threshold.


Figure 21.1.2. Nephrops in FU17 (Aran Grounds). Combined box and kite plot of vessel power on the Aran Grounds by year. The blue line indicates the mean.


Figure 21.2.1. Nephrops in FU17 (Aran Grounds). Landings in tonnes by country.


Figure 21.2.2. Nephrops in FU17 (Aran Grounds). Effort data (KW days) for Irish directed Nephrops fleet.


Figure 21.2.3. Nephrops FU17 (Aran Grounds).Sampling levels for the Aran grounds.


Figure 21.2.4. Nephrops FU17 Aran Grounds. Annual length composition of landings (grey) and discards (blue) for males (right) and females (left) from 2008 (top) to 2016 (bottom). Mean sizes of landings (black vertical line) and discards (red vertical line) are also shown.


Figure 21.2.5. Nephrops FU17 (Aran Grounds). Annual sex ratio of landings (2008-2016) and catch (2008-2016).


Figure 21.2.6. Nephrops FU17 (Aran Grounds). Mean weight in catch samples by sex showing cyclical trends.


Figure 21.2.7. Nephrops FU17 (Aran Grounds). Annual mean weight (gr) estimates of landings and discards.


Figure 21.2.8. Nephrops in FU17 (Aran Grounds). Contour plots of the krigged density estimates for the Aran Ground UWTV surveys from 2002 (top left) to 2016 (bottom right).


Figure 21.2.9. Nephrops FU17 Aran Grounds. Nephrops burrow estimates in FU17 Aran, Galway Bay and Slyne Head grounds 2002-2016.


Figure 21.2.10. Time-series of total abundance estimates for FU17 (error bars indicate \(\mathbf{9 5 \%}\) confidence intervals) and \(B_{\text {trigger }}\) is dashed green line.


Figure 21.3.1. Nephrops FU17 Aran Grounds. Harvest Rate (\% dead removed/UWTV abundance). The dashed and solid lines are the MSY proxy and the harvest rate respectively.

\section*{22 Norway lobster (Nephrops norvegicus) in divisions 7.a, 7.g, and 7.j, Functional Unit 19 (Irish Sea, Celtic Sea, eastern part of southwest of Ireland)}

\section*{Type of assessment in 2017}

This stock was benchmarked in February 2014 and the assessment and provision of catch advice through the use of the UWTV survey data and other commercial fishery data follows the process defined by the benchmark WG (ICES, 2014) and set out in the stock annex.

\section*{ICES advice applicable to 2016}
"ICES advises that when the MSY approach is applied, catches in 2016 (assuming zero discards) should be no more than 793 tonnes. If instead discard rates continue at recent values (average of 2012-2014) and there is no change in assumed discard survival rate, this implies landings of no more than 618 tonnes.

To ensure that the stock in functional unit (FU) 19 is exploited sustainably, management should be implemented at the functional unit level."

\section*{ICES advice applicable to 2017}
"ICES advises that when the MSY approach is applied, and assuming that discard rates and fishery selection patterns do not change from the average of 2013-2015, catches in 2017 should be no more than 838 tonnes. This implies landings of no more than 599 tonnes.

To ensure that the stock in functional unit (FU) 19 is exploited sustainably, management should be implemented at the functional unit level."

\subsection*{22.1 General}

\section*{Stock description and management units}

In FU19 Nephrops are caught on a large number of spatially discrete small inshore grounds and on some larger grounds further offshore and of these the 'Galley ground \(4^{\prime}\) and around Cork channels appear to be the most important (see Figure 21.1.1). The Nephrops stock (FU19) covers ICES rectangles ; 31-33 D9-E0; 31E1; 32E1-E2; 33E2-E3 within 7.a, 7.g, and 7.j. This stock is included as part of the TAC Area 7 Nephrops which includes the following stocks: Irish Sea East and West (FU14, FU15), Porcupine Bank (FU16), northwestern Irish Coast (FU18) and the Celtic Sea (FU20-22).

The map below shows FU19 assessment area (blue) and TAC area (red). There is no evidence that the individual functional units belong to the same stock. See Section 18 for details on Nephrops in Subarea 7 general section.


\section*{Ecosystem aspects}

This section is detailed in stock annex. There are no updates.

\section*{Fishery description}

A description of the fleet is given in the stock annex.
The time-series of numbers of vessels reporting landings greater than 10 t is updated in Figure 21.1.2. The numbers of vessels has been relatively stable since 1995. The time-series of vessel power is shown as a box and kite plot in Figure 22.1.3.

\section*{Fishery in 2016}

There has been a trend for Irish vessels ( \(>18 \mathrm{~m}\) ) to switch to multi (quad) rig trawls. Provisional data suggest a \(\sim 30 \%\) increase in Nephrops catch rates and a reduction in fish bycatch of \(\sim 30 \%\) due to the lower headline height. The number of French vessels reporting landings in FU19, has decreased from 35 vessels in 2005 to seven vessels in 2016.

\section*{Information from stakeholders}

None available.

\subsection*{22.2 Data}

\section*{InterCatch}

All data were available in InterCatch and used on a trial basis.

\section*{Landings}

Landings data for FU19 are summarized in Table 22.2.1. The Republic of Ireland, France and the UK report landings for FU19. The Republic of Ireland landings have fluctuated considerably throughout the time-series, with a marked dip in 1994 (Table
22.2.1; Figure 22.2.1). The highest landings in the time-series were observed in 20022004 ( \(>1000 \mathrm{t}\) ). Landings in 2005 and 2006 have been below average for the series. In 2016 landings increased by approximately \(14 \%\) for the Irish fleet and were below the series average. This can be explained due to the poor weather conditions in quarter 1 which hampered fishing activities of smaller vessels and the larger vessels maximising effort in other FUs. Landings by the French fleet have fluctuated with a declining trend throughout the time-series from the highest value in 1989 of 245 t to 4 t in 2016. Landings from the UK are minor at 3 t .

\section*{Effort}

In line with WGCSE 2015 recommendation effort is reported in KWdays and lpue reported in KG/kwdays in the knowledge that the trend is likely to be a biased underestimate because it is not adjusted for efficiency or behavioural changes. The effort series is based on the same criteria for FU15, 16, 17, 22 and \(20-21\) ( \(30 \%\) landings threshold) and will be contingent on the accuracy of landings data reported in logbooks.

Disaggregated effort and landings data are available for the Irish Nephrops directed fleet in FU19 from 1995-2016 for all vessels and vessels >18 metres total length. (Table 22.2.2; Figure 22.2.2). For vessels \(>18\) effort (since early 2000s) has fluctuated with an overall decreasing trend in recent three years. This can be explained by fleet mobility where vessels target Nephrops in this area in periods of good emergence. For vessels \(<18\) effort has decreased in 2015 due to weather conditions.

\section*{Sampling levels}

Sampling levels, data aggregating and raising procedures were reviewed by WKCELT 2014 and are documented in the stock annex. The time-series of samples is shown in Figure 22.2.3 and Table 22.2.3. Sampling levels in 2016 were good and are comparable to 2015 levels.

\section*{Commercial length-frequency distributions}

Length-frequency data of the landings were collected on a regular basis 2002 to 2016. Spatial and temporal coverage is problematic with landings from FU19 coming from several discrete grounds (see stock annex.) The sampling intensity and coverage has varied over the time-series (see stock annex). Since 2008 sampling has been good although the majority of the samples come from Bantry Bay recently. Also sampling of the discards has quite sparse over the time-series and are difficult to obtain due to the spatial coverage of the grounds. The catch samples from 2008 to 2016 were split using the discard selection ogive agreed at the benchmark. The length-weight regression parameters given in the stock annex are used to calculate sampled weights and appropriate quarterly raising factors. The length distributions are shown in Figure 22.2.4. The mean size has remained relatively stable and the trend in mean size is stable in recent years.

\section*{Sex ratio}

The sex ratio in the landings is male biased in most years but there is a trend towards increased percentage of females in the landings (Figure 22.2.5). The proportion of females was higher in 2013 and this was confirmed by the industry.

\section*{Mean weight explorations}

Explorations of the mean weight in the catch samples by sex shows a strong cyclical pattern in the females for Bantry Bay (Figure 22.2.6) and also all grounds combined (Figure 22.2.7). This corresponds with the emergence of mature females from the burrows to mate in summer. These data also show an increase in mean weights for males in 2016. The annual mean weight estimate for landings and discards is shown in Figure 22.2.8. The mean weight estimates show a slight increase.

\section*{Discarding}

Sampling of the discards has quite sparse over the time-series and are difficult to obtain due to the spatial coverage of the grounds (see stock annex). Since 2002 discard rates have been estimated using unsorted catch and discards sampling (as described in the stock annex). WKCELT 2014 examined the available discard data observations for FU19. An average discard selection ogive using data from Bantry Bay in years 2008 and 2013 was generated and deemed appropriate given the variable sampling intensity and coverage. The catch data from 2008 to 2013 were then revised and split into landings and discards. Catch data sampling for years previous to 2008 was not revised as was considered to be not of good enough quality. The 2016 catch data were split using this selection ogive.

Discard rates range between \(25-86 \%\) of total catch by weight and \(41-80 \%\) of total catch by number (Table 22.2.4). These high discard rates are very high compared with other FUs. This is because the fleet is mainly smaller inshore vessels with limited space for extra crew. On-board "tailing" of the smaller Nephrops is not usually practiced and the bigger Nephrops are picked from catches. There is no information on discard survival rate in this fishery but a \(25 \%\) discard survival rate is assumed in line with other Nephrops stocks in the Celtic Sea.

Table 22.3.1 gives weights, numbers and mean weights of the landings and discard raised internationally according to the stock annex.

\section*{Abundance indices from UWTV surveys}

The methods used during the survey were similar to those employed for UWTV surveys of Nephrops stocks around Ireland and elsewhere and are documented by WKNEPHTV (ICES, 2007), WKNEPHBID (ICES, 2008), SGNEPS (ICES, 2009; 2010; 2012) and WGNEPS (ICES, 2013; 2014; 2015, 2016). Given the scale of the area and the number of distinct patches it is unrealistic to expect sufficient stations ( \(\sim 10\) ) in each individual patch to estimate densities separately. The random stratified approach may cause problems in years where the planned survey coverage is not achieved. WKCELT 2014 concluded that WGCSE or WGNEPS should make recommendations on the most appropriate fill in procedure to be adopted in these cases.

The spatial extent of the Nephrops grounds in FU19 has been re-defined by WKCELT 2014 and the abundance estimates are calculated using these areas. The redefinition of the polygons in FU19 resulted in \(\sim 16 \%\) increase in overall area from \(1653 \mathrm{~km}^{2}\) to \(1973 \mathrm{~km}^{2}\) (see stock annex). The discrete grounds have been named as: Bantry Bay, Galley Ground 1-4, Cork Channels and Helvick 1-2 and are shown in Figure 22.1.1. In terms of area the Galley Grounds (1-4) account for \(61 \%\) of the total grounds in FU19 and Galley Ground 4 is the largest of these representing \(47 \%\) of the total area (Table 22.2.5). Helvick patches 2 and 3 were also amalgamated and renamed Helvick 2 based on the information from the VMS data.

From 2011 to 2016 an average of 38 stations have been completed annually. The survey design is based on randomly picked stations from the ground polygons and the sampling effort on each ground was determined by relative area.

All grounds except Galley Ground 4 in 2011 and Galley Ground 1 in 2012 were covered by the TV survey. In 2015 and 2016 a new patch Kenmare Bay was surveyed. Operational details of the 2016 UWTV survey are available (WGNEPS, 2016).
Detailed summary statistics for the various Nephrops patches in FU19 over the timeseries are presented in Table 22.2.6. The mean density varies across the different patches but there is some consistency to the estimates over time. The UWTV coverage has improved. In 2016 all discrete grounds were covered by the TV survey and also two stations on a new patch Kenmare Bay (Lordan et al., 2015). The 2016 mean density estimates adjusted vary between patches from 0.07 (no. \(/ \mathrm{m}^{2}\) ) observed at Helvick 2 to 0.53 (no. \(/ \mathrm{m}^{2}\) ) at Galley ground 2 (Table 22.2.6, Figure 22.2.9) whereas in 2015 the lowest density was also observed at Cork Channels ( \(0.08 \mathrm{no} . / \mathrm{m}^{2}\) ) and the highest at Galley ground \(2\left(0.53 \mathrm{no} . / \mathrm{m}^{2}\right)\). The overall mean density for FU19 in 2016 is 0.20 (no. \(/ \mathrm{m}^{2}\) ) (Table 22.2.7) which is the lowest observed in the time-series.

Figure 22.2.10 and Table 22.2 .7 shows the total abundance estimate for FU19 with the WKMSYRef4 proposed MSY Btrigger (ICES, 2016XX, ICESYY). The 2016 abundance estimate was \(18 \%\) lower than in 2015 and at 399 million and is below the MSY \(\mathrm{B}_{\text {trigger }}\) ( 430 million) with a RSE of \(13 \%\) which is below the \(20 \%\) limit recommended by SGNEPs (2012).

\section*{Information from Irish Groundfish survey}

Length-frequency data of the Nephrops catches on the Irish groundfish survey (IGFS-WIBTS-Q4) from 2003-2016 are available (Stokes et al., 2014; ICES, 2015). These data were investigated for trends in indicators such as possible recruitment signals (Figure 22.2.11). The mean size of males and females in from the survey was fairly stable over time at 33 mm for males and 25 mm for females.

\subsection*{22.3 Assessment}

\section*{Comparison with previous assessments}

The WGCSE 2017 carried out an UWTV based assessment for this stock. The methods used were very much in line with WKNEPH (ICES, 2009) and the approach taken for other Nephrops stocks in 6 and 7 by WGCSE. This approach was benchmarked at WKCELT 2014 (ICES, 2014).

\section*{State of the stock}

UWTV abundance estimates suggest that the stock size has fluctuated although the series is quite short. The 2016 estimate is the lowest observed and is below the MSY \(\mathrm{B}_{\text {trigger. }}\) The 2016 abundance remains below the average of the series (geomean: [20112016]: 568 million).

Table 22.3.1 summarizes recent abundance estimates, harvest rates for the stock along with other stock parameters. Harvest rate is calculated as (landings + dead discards)/(abundance estimate).

Table 22.3.1.and Figure 22.3.1 summarize recent harvest ratios which have been below the FMSYproxy for the last three years.

\subsection*{22.4 Catch option table}

Catch option table inputs and historical estimates of mean weight in landings and harvest ratios are presented in Table 22.3.1 and summarised below.

The basis for the catch options.
\begin{tabular}{lcl}
\hline \multicolumn{1}{c}{ Variable } & Value & \multicolumn{1}{c}{ Notes } \\
\hline \begin{tabular}{l} 
Available \\
October abundance \\
2017
\end{tabular} & 29.4 g & UWTV survey 2017 \\
\hline \begin{tabular}{l} 
Mean weight in \\
landings
\end{tabular} & 14.0 g & Average 2014-2016 \\
\hline \begin{tabular}{l} 
Mean weight in \\
discards
\end{tabular} & \(41.6 \%\) & \begin{tabular}{l} 
Average 2014-2016 \\
discards divided by landings + discards.
\end{tabular} \\
\hline Discard rate & \begin{tabular}{l} 
Only applies in scenarios where discarding is \\
allowed.
\end{tabular} \\
\hline Discard survival rate & \(25 \%\) & \begin{tabular}{l} 
Average 2014-2016 (by number). Calculated as \\
dead discards divided by removals (landings + \\
dead discards). Only applies in scenarios where \\
discarding is allowed.
\end{tabular} \\
\hline Dead discard rate & \(34.9 \%\) & \begin{tabular}{l} 
Aver
\end{tabular} \\
\hline
\end{tabular}

The average in the recent three years is used to calculate the mean weight for landings and discards. The discard rates and proportions for the last three years are used to account for recent on-board retention practices (this is also according to the stock annex).

A prediction of landings for the FU19 using the approach agreed procedure proposed at WKNEPH 2009 and outlined in the stock annex will be made on the basis of the 2017 UWTV survey. This will be presented in October 2017 for the provision of advice.

\subsection*{22.5 Reference points}

WKMSYRef4 updated the FmSY reference points for FU19 (ICES, 2016XX; 2016YY) on the basis of an average of estimated FMSY proxy harvest rates over a period of years, this corresponds more closely to the methodology for finfish. The updated harvest rate calculated at \(9.3 \%\) is expected to deliver high long-term yield with a low probability of recruitment overfishing. This is close to the harvest rate of \(8.1 \%\) calculated by WKCELT (ICES, 2014)

This stock previously did not have MSY B trigger specified, the time-series and range of indicator biomass is also limited such that direct use of Bloss is considered too close to equilibrium biomass. The workshop proposed to use the \(5 \%\) interval on the probability distribution of indicator biomass assuming a normal distribution, which is analogous to the \(5 \%\) on Bmsy proposed for finfish stocks assuming these Nephrops FU have been exploited at a rate close to near HRmsy. The MSY Btrigger for FU 19 is 434 million individuals rounded to 430 million.

These reference points shown in text table below should remain under review by WGCSE should improved data become available.
\begin{tabular}{rccccc} 
Stock code & MSY Flower* & FMSY* & \begin{tabular}{c} 
MSY Fupper* \\
with AR
\end{tabular} & MSY Btrigger & \begin{tabular}{c} 
MSY Fupper* \\
with no AR
\end{tabular} \\
\hline nep-19 & \(8.3 \%\) & \(9.3 \%\) & \(9.3 \%\) & \(430^{* * *}\) & \(9.3 \%\) \\
\hline
\end{tabular}
* Harvest rate (HR).
*** Abundance in millions.

\subsection*{22.6 Management strategies}

No specific management plan exists for this stock.

\subsection*{22.7 Quality of assessment and forecast}

Biological sampling for this stock is improving given the spatial distribution of the Nephrops mud patches. A number of other biological parameters such as mean weights and length distributions have also been revised. The revisions were made as part of the benchmark process and have improved the quality of the assessment.

In the provision of catch options based on the absolute survey estimates additional uncertainties related to mean weight in the landings and the discard rates also arise. For FU19 deterministic estimates of the mean weight in the landings and discard rates for 2014-2016 are used although there is some variability of these over time.

Fisheries catching Nephrops in Subarea 7 will be covered by the EU landing obligation from 2016 (EC, 2015). Nephrops creel fisheries are exempted from the landings obligation, with a de minimis exemption consisting of a \(7 \%\) discard rate by weight for the trawl fishery in 2016 and 2017. The average discard rate by weight for FU19 over the last three years is \(25 \%\). Two different catch options at Fmsy have been provided to give some information on the impact of different LO scenarios on catches.

There are several key uncertainties and bias sources in the method used here (these are discussed further in WKNEPH 2009). Various agreed procedures have been put in place to ensure the quality and consistency of the survey estimates following the recommendations of several ICES groups (WKNEPTV 2007; WKNEPHBID 2008; SGNEPS 2009; WGNEPS 2014). Ultimately there still remains a degree of subjectivity in the production of UWTV abundance estimates (Marrs et al., 1996). Taking explicit note of the likely biases in the surveys may at least provide an estimate of absolute abundance that is more accurate, although no more precise WKNEPH (ICES, 2009). Different densities are apparent on the various different grounds within this FU. For the 2016 survey the number of observations on each individual patch is relatively low making the relative standard error (RSE) estimates not that relevant. Aggregating all areas together gives a mean burrow density of 0.20 with a RSE of around \(13 \%\) which is below the \(20 \%\) threshold recommended by SGNEPS (ICES, 2012). The cumulative bias estimates for FU19 are largely based on expert opinion. The precision of these bias corrections cannot yet be characterized, but is likely to be lower than that observed in the survey.

Landings data are adjusted to take into account landings that have been misreported from FU16 since 2011. This adjustment is thought to be reasonably accurate (See Section 19).

\subsection*{22.8 Recommendations for next benchmark}

This stock was benchmarked by ICES in February 2014 (ICES, 2014). WGCSE will keep the stock under close review and recommend future benchmark as required.

\subsection*{22.9 Management considerations}

The trends from the fishery (landings, effort, mean size, etc.) appear to be relatively stable. The UWTV abundance and mean density estimates vary between the discrete patches and population dynamics between these are not fully understood. A new survey point should be available by September 2017 which will provide a more up to date prognosis of stock status. This up to date survey information will be used to generate catch options and the provision of advice in October 2017.

In recent years several newer vessels specializing in Nephrops fishing have participated in this fishery. These vessels target Nephrops on several other grounds within the TAC area and move around to optimize catch rates. Since the introduction of effort management associated with the cod long-term plan (EC 1342/2008) there have been concerns that effort will be displaced towards FU19 and other Nephrops grounds where effort control has not been put in place.

Nephrops fisheries in this area are fairly mixed also catching megrim, anglerfish and other demersal species. There are also some catches of hake, and in the offshore parts of the area. The Nephrops grounds in FU19 coincide with an important nursery area for juvenile hake and anglerfish among other species (ICES, 2009).

\subsection*{22.10References}

Anon. 2011. Atlas of Demersal Discarding, Scientific Observations and Potential Solutions, Marine Institute, Bord Iascaigh Mhara, September 2011. ISBN 978-1-902895-50-5. 82 pp.

Gerritsen, H.D. and Lordan, C. 2011. Integrating Vessel Monitoring Systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES Journal of Marine Science, 68(1): 245-453.

ICES. 2007. Report of the Workshop on the use of UWTV surveys for determining abundance in Nephrops stocks throughout European waters (WKNEPHTV). ICES CM: 2007/ACFM:14.

ICES. 2008. Report of the Workshop and training course on Nephrops burrow identification (WKNEPHBID). ICES CM 2008/LRC:03.

ICES. 2009. Report of the Benchmark Workshop on Nephrops assessment (WKNEPH). ICES CM 2009/ACOM:33.

ICES. 2010. Report of the Study Group on Nephrops Surveys (SGNEPS), 9-11 November 2010, Lisbon, Portugal. ICES CM 2010/SSGESST:22.

ICES. 2012. Report of the Study Group on Nephrops Surveys (SGNEPS). ICES CM 012/SSGESST:19.

ICES. 2013. Report of the Working Group on Nephrops Surveys (WGNEPS), 5-8 November 2013, Barcelona, Spain. ICES CM 2013/SSGESST:21. 27 pp.

ICES. 2014. Report of the Benchmark Workshop on Celtic Sea stocks (WKCELT), 3-7 February 2014, ICES Headquarters, Copenhagen, Denmark. ICES CM 2014 \ACOM:42. 194 pp.
ICES. 2014. Report of the Working Group on Nephrops Surveys (WGNEPS), 4-6 November 2014, Lisbon, Portugal. ICES CM 2014/SSGESST:20. 57 pp.

ICES. 2015. Report of the Working Group on Nephrops Surveys (WGNEPS), 10-13 November 2015, Cadiz, Spain. ICES CM 2015/ SSGIEOM:30.52 pp.

ICES. 2015. Report of the International Bottom Trawl Survey Working Group (IBTSWG), 23-27 March 2015, Bergen, Norway. ICES CM 2015/ SSGIEOM:20. 124 pp.
ICES. 2016. Report of the Working Group on Nephrops Surveys (WGNEPS), 7-8 November 2016, Reykjavík, Iceland. ICES CM 2016/ SSGIEOM:33.67 pp.

ICES. 2016XX. EU request to ICES to provide FmsY ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

ICES. 2016YY. Report of the Workshop to consider Fmsy ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.
ICES. 2016YY. Report of the Workshop to consider FmsY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

Marrs S.J., Atkinson R.J.A., Smith C.J., Hills J.M. 1996. Calibration of the towed underwater TV technique for use in stock assessment of Nephrops norvegicus. Reference no. 94/069 (Study Project in support of the Common Fisheries Policy XIV/1810/C1/94, call for proposals 94/C 144/04).

Stokes, D., Gerritsen. H., O'Hea, B., Moore, S.J. and Dransfeld, L. 2014. "Irish Groundfish Survey Cruise Report, 24 September-17 December 2014", FEAS Survey Series; 2014/01. http://hdl.handle.net/10793/1064.

Table 22.2.1. Nephrops in FU19 (SW and SE Ireland). Landings in tonnes by country.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{4}{|c|}{FU 19} \\
\hline & France & Rep. of Ireland & UK & Total \\
\hline 1989 & 245 & 652 & 2 & 899 \\
\hline 1990 & 181 & 569 & 4 & 754 \\
\hline 1991 & 212 & 860 & 5 & 1077 \\
\hline \[
1992
\] & \[
233
\] & 640 & 15 & 888 \\
\hline \[
1993
\] & 229 & 672 & 4 & 905 \\
\hline \[
1994
\] & 216 & 153 & 21 & 390 \\
\hline 1995 & 175 & 507 & 12 & 695 \\
\hline 1996 & 145 & 736 & 7 & 888 \\
\hline 1997 & 93 & 656 & 7 & 756 \\
\hline \[
1998
\] & 92 & 733 & 2 & 827 \\
\hline 1999 & 77 & 499 & 3 & 579 \\
\hline \[
2000
\] & 144 & 541 & 11 & 696 \\
\hline \[
2001
\] & 111 & 702 & 2 & 815 \\
\hline 2002 & 188 & 1130 & 0 & 1318 \\
\hline \[
2003
\] & 165 & 1075 & 0 & 1239 \\
\hline \[
2004
\] & 76 & 997 & 1 & 1074 \\
\hline 2005 & 62 & 648 & 2 & 711 \\
\hline 2006 & 65 & 675 & 1 & 741 \\
\hline \[
2007
\] & 63 & 894 & 0 & 957 \\
\hline 2008 & 46 & 805 & 15 & 866 \\
\hline 2009 & 55 & 764 & 15 & 833 \\
\hline 2010 & 14 & 694 & 13 & 722 \\
\hline 2011 & 23 & 585 & 1 & 608 \\
\hline 2012 & 11 & 758 & 1 & 770 \\
\hline 2013 & 4 & 771 & 6 & 781 \\
\hline 2014 & 6 & 459 & 3 & 468 \\
\hline 2015 & 5 & 502 & 0 & 507 \\
\hline 2016 & 4 & 583 & 3 & 590 \\
\hline
\end{tabular}

Table 22.2.2. Nephrops in FU19 (SW and SE Ireland). Irish Nephrops directed effort (Kw Days) and landings.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Year} & \multicolumn{4}{|c|}{Irish Fleet - NEPhrops trawlers ( \(>30 \%\) landings weight)} \\
\hline & \multicolumn{2}{|l|}{All Vessels} & \multicolumn{2}{|l|}{Vessels >18 m} \\
\hline & Effort Kw Days & Landings Tonnes & Effort Kw Days & Landings Tonnes \\
\hline 1995 & 221,983 & 380 & 80,747 & 121 \\
\hline 1996 & 178,640 & 355 & 55,593 & 86 \\
\hline 1997 & 160,996 & 306 & 53,874 & 101 \\
\hline 1998 & 329,624 & 498 & 144,552 & 189 \\
\hline 1999 & 182,895 & 236 & 42,316 & 47 \\
\hline 2000 & 141,987 & 217 & 56,157 & 86 \\
\hline 2001 & 193,345 & 397 & 89,138 & 139 \\
\hline 2002 & 506,728 & 883 & 323,726 & 446 \\
\hline 2003 & 555,871 & 693 & 318,793 & 364 \\
\hline 2004 & 488,143 & 558 & 303,025 & 311 \\
\hline 2005 & 404,965 & 471 & 220,589 & 219 \\
\hline 2006 & 424,189 & 478 & 208,822 & 186 \\
\hline 2007 & 558,838 & 713 & 287,410 & 262 \\
\hline 2008 & 534,101 & 643 & 288,083 & 319 \\
\hline 2009 & 471,984 & 613 & 224,503 & 243 \\
\hline 2010 & 382,164 & 494 & 103,654 & 114 \\
\hline 2011 & 337,328 & 449 & 142,898 & 167 \\
\hline 2012 & 355,468 & 541 & 91,897 & 126 \\
\hline 2013 & 336,133 & 571 & 88,553 & 133 \\
\hline 2014 & 213,561 & 332 & 52,124 & 74 \\
\hline 2015 & 244,554 & 393 & 85,536 & 118 \\
\hline 2016 & 287,307 & 558 & 111,207 & 233 \\
\hline
\end{tabular}

Table 22.2.3. Nephrops in FU19 (SW and SE Ireland). Irish Sampling levels.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{QuARTER} & \multicolumn{2}{|l|}{Number of Samples} & \multicolumn{4}{|c|}{Numbers Measured} \\
\hline & & Catch & Discards & Landings & Catch & Discards & Landings \\
\hline 2008 & 1 & 3 & 0 & 0 & 1502 & 0 & 0 \\
\hline 2008 & 2 & 6 & 0 & 0 & 3521 & 0 & 0 \\
\hline 2008 & 3 & 6 & 0 & 0 & 6412 & 0 & 0 \\
\hline 2008 & 4 & 3 & 0 & 0 & 876 & 0 & 0 \\
\hline 2009 & 1 & 3 & 0 & 0 & 1347 & 0 & 0 \\
\hline 2009 & 2 & 6 & 0 & 0 & 3369 & 0 & 0 \\
\hline 2009 & 3 & 2 & 0 & 0 & 1003 & 0 & 0 \\
\hline 2009 & 4 & 5 & 0 & 0 & 1882 & 0 & 0 \\
\hline 2010 & 1 & 2 & 0 & 0 & 840 & 0 & 0 \\
\hline 2010 & 2 & 7 & 0 & 0 & 2989 & 0 & 0 \\
\hline 2010 & 3 & 4 & 0 & 0 & 1457 & 0 & 0 \\
\hline 2010 & 4 & 6 & 0 & 0 & 2376 & 0 & 0 \\
\hline 2011 & 1 & 3 & 0 & 0 & 1493 & 0 & 0 \\
\hline 2011 & 2 & 5 & 0 & 0 & 2747 & 0 & 0 \\
\hline 2011 & 3 & 2 & 0 & 0 & 938 & 0 & 0 \\
\hline 2011 & 4 & 5 & 0 & 0 & 2686 & 0 & 0 \\
\hline 2012 & 1 & 6 & 0 & 0 & 2053 & 0 & 0 \\
\hline 2012 & 2 & 7 & 0 & 0 & 3956 & 0 & 0 \\
\hline 2012 & 3 & 4 & 0 & 0 & 1980 & 0 & 0 \\
\hline 2012 & 4 & 4 & 0 & 0 & 1969 & 0 & 0 \\
\hline 2013 & 1 & 3 & 0 & 0 & 1857 & 0 & 0 \\
\hline 2013 & 2 & 8 & 5 & 0 & 4117 & 2059 & 0 \\
\hline 2013 & 2 & 3 & 3 & 0 & 1177 & 1250 & 0 \\
\hline 2013 & 4 & 3 & 3 & 0 & 1472 & 1276 & 0 \\
\hline 2014 & 1 & 3 & 2 & 0 & 1137 & 941 & 0 \\
\hline 2014 & 2 & 7 & 7 & 0 & 3331 & 2319 & 0 \\
\hline 2014 & 3 & 3 & 2 & 0 & 1344 & 682 & 0 \\
\hline 2014 & 4 & 10 & 8 & 0 & 3455 & 2200 & 0 \\
\hline 2015 & 1 & 1 & 1 & 0 & 417 & 310 & 0 \\
\hline 2015 & 2 & 3 & 3 & 0 & 1417 & 1267 & 0 \\
\hline 2015 & 3 & 2 & 2 & 1 & 856 & 648 & 321 \\
\hline 2015 & 4 & 3 & 2 & 0 & 1250 & 774 & 0 \\
\hline 2016 & 1 & 3 & 3 & 0 & 1500 & 1631 & 0 \\
\hline 2016 & 2 & 6 & 5 & 0 & 2310 & 1760 & 0 \\
\hline 2016 & 3 & 9 & 7 & 0 & 3328 & 2448 & 0 \\
\hline 2016 & 4 & 5 & 5 & 0 & 1,923 & 1521 & 0 \\
\hline
\end{tabular}

Table 22.2.4. Nephrops in FU19 (SW and SE Ireland). Landings and discard weight and numbers by year and sex.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|c|}{Female} & \multicolumn{2}{|c|}{MALE} & \multirow[t]{2}{*}{\begin{tabular}{l}
Both Sexes \\
\% Discard
\end{tabular}} \\
\hline & Landings (t) & Discards ( t ) & Landings (t) & Discards (t) & \\
\hline 2008 & 99 & 29 & 691 & 68 & 86\% \\
\hline 2009 & 117 & 106 & 681 & 141 & 79\% \\
\hline 2010 & 138 & 98 & 522 & 148 & 74\% \\
\hline 2011 & 155 & 135 & 425 & 235 & 69\% \\
\hline 2012 & 180 & 183 & 579 & 232 & 69\% \\
\hline 2013 & 272 & 203 & 500 & 197 & 59\% \\
\hline 2014 & 106 & 71 & 354 & 86 & 26\% \\
\hline 2015 & 78 & 69 & 424 & 107 & 26\% \\
\hline \multirow[t]{2}{*}{2016} & 154 & 91 & 429 & 100 & 25\% \\
\hline & \multicolumn{2}{|l|}{Female Numbers '000s} & \multicolumn{2}{|r|}{Male Numbers '000s} & Both sexes \\
\hline Year & Landings & Discards & Landings & Discards & \% Discard \\
\hline 2008 & 3892 & 1777 & 19520 & 3254 & 80\% \\
\hline 2009 & 5816 & 8248 & 20324 & 8793 & 39\% \\
\hline 2010 & 6271 & 8144 & 15996 & 10116 & 45\% \\
\hline 2011 & 7273 & 12161 & 15935 & 17167 & 56\% \\
\hline 2012 & 8670 & 15869 & 20129 & 16654 & 53\% \\
\hline 2013 & 12087 & 17833 & 16118 & 15191 & 54\% \\
\hline 2014 & 4,862 & 5,647 & 11,183 & 5,572 & 41\% \\
\hline 2015 & 3,697 & 5,738 & 13,187 & 7,012 & 43\% \\
\hline 2016 & 6,877 & 6,761 & 12,610 & 6,668 & 41\% \\
\hline
\end{tabular}

Table 22.2.5. Nephrops in FU19 (SW and SE Ireland). Area ( \(\mathrm{Km}^{2}\) ) of discrete patches and percentage contribution to overall area.
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ GRound } & AREA (Kм²) & \% CONTRIBUTION \\
\hline Bantry & 121.5 & \(6 \%\) \\
\hline Cork Channels & 562.0 & \(28 \%\) \\
\hline Galley Grounds 1 & 60.9 & \(3 \%\) \\
\hline Galley Grounds 2 & 76.7 & \(4 \%\) \\
\hline Galley Grounds 3 & 133.9 & \(7 \%\) \\
\hline Galley Grounds 4 & 925.1 & \(47 \%\) \\
\hline Helvick 1 & 33.1 & \(2 \%\) \\
\hline Helvick 2 & 59.5 & \(3 \%\) \\
\hline Total & 1972.8 & \\
\hline
\end{tabular}

Table 22.2.6. Nephrops in FU19 (SW and SE Ireland). Detailed summary statistics for the various Nephrops patches in FU19 over the time-series. ( \(\mathrm{N}=\) number of stations, Mean Density ( \(\mathrm{no} / \mathbf{m}^{2}\) ) is adjusted for the bias correction factor in Table 3, sd, se and ci are the standard deviation, standard error and \(95 \%\) confidence intervals on the mean density).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Ground & N & Mean Density ( \(\mathrm{NO} / \mathrm{M}^{2}\) ) & SD & SE & Cl \\
\hline 2006 & Galley Grounds 4 & 6 & 0.21 & 0.18 & 0.08 & 0.19 \\
\hline 2011 & Bantry & 5 & 0.33 & 0.23 & 0.1 & 0.28 \\
\hline 2011 & Cork Channels & 12 & 0.35 & 0.32 & 0.09 & 0.2 \\
\hline 2011 & Galley Grounds 1 & 3 & 0.52 & 0.41 & 0.24 & 1.02 \\
\hline 2011 & Galley Grounds 2 & 3 & 0.59 & 0.43 & 0.25 & 1.07 \\
\hline 2011 & Galley Grounds 3 & 4 & 0.58 & 0.22 & 0.11 & 0.35 \\
\hline 2011 & Helvick 1 & 3 & 0.6 & 0.01 & 0.01 & 0.04 \\
\hline 2011 & Helvick 2 & 5 & 0.12 & 0.21 & 0.09 & 0.26 \\
\hline 2012 & Bantry & 1 & 0.2 & NA & NA & NA \\
\hline 2012 & Cork Channels & 9 & 0.27 & 0.17 & 0.06 & 0.13 \\
\hline 2012 & Galley Grounds 2 & 4 & 0.59 & 0.12 & 0.06 & 0.19 \\
\hline 2012 & Galley Grounds 3 & 1 & 0.51 & NA & NA & NA \\
\hline 2012 & Galley Grounds 4 & 16 & 0.39 & 0.16 & 0.04 & 0.09 \\
\hline 2012 & Helvick 1 & 3 & 0.33 & 0.13 & 0.08 & 0.33 \\
\hline 2012 & Helvick 2 & 6 & 0.33 & 0.41 & 0.17 & 0.43 \\
\hline 2013 & Bantry & 4 & 0.38 & 0.2 & 0.1 & 0.31 \\
\hline 2013 & Cork Channels & 11 & 0.12 & 0.1 & 0.03 & 0.07 \\
\hline 2013 & Galley Grounds 1 & 2 & 0.23 & 0.18 & 0.13 & 1.59 \\
\hline 2013 & Galley Grounds 2 & 3 & 0.48 & 0.44 & 0.25 & 1.09 \\
\hline 2013 & Galley Grounds 3 & 4 & 0.59 & 0.24 & 0.12 & 0.38 \\
\hline 2013 & Galley Grounds 4 & 13 & 0.19 & 0.27 & 0.07 & 0.16 \\
\hline 2013 & Helvick 1 & 1 & 0.09 & NA & NA & NA \\
\hline 2013 & Helvick 2 & 2 & 0.06 & 0.05 & 0.04 & 0.48 \\
\hline 2014 & Bantry & 4 & 0.25 & 0.05 & 0.03 & 0.09 \\
\hline 2014 & Cork Channels & 10 & 0.1 & 0.06 & 0.02 & 0.04 \\
\hline 2014 & Galley Grounds 1 & 2 & 0.61 & 0.41 & 0.29 & 3.69 \\
\hline 2014 & Galley Grounds 2 & 2 & 0.82 & 0.14 & 0.1 & 1.23 \\
\hline 2014 & Galley Grounds 3 & 4 & 0.66 & 0.23 & 0.12 & 0.37 \\
\hline 2014 & Galley Grounds 4 & 14 & 0.29 & 0.29 & 0.08 & 0.17 \\
\hline 2014 & Helvick 1 & 2 & 0.67 & 0.28 & 0.2 & 2.53 \\
\hline 2014 & Helvick 2 & 2 & 0.03 & 0.04 & 0.03 & 0.39 \\
\hline 2015 & Bantry & 2 & 0.32 & 0.11 & 0.08 & 1.02 \\
\hline 2015 & Cork Channels & 10 & 0.08 & 0.11 & 0.03 & 0.08 \\
\hline 2015 & Galley Grounds 1 & 2 & 0.32 & 0.46 & 0.32 & 4.12 \\
\hline 2015 & Galley Grounds 2 & 2 & 0.53 & 0.08 & 0.06 & 0.74 \\
\hline 2015 & Galley Grounds 3 & 4 & 0.40 & 0.14 & 0.07 & 0.23 \\
\hline 2015 & Galley Grounds 4 & 14 & 0.27 & 0.19 & 0.05 & 0.11 \\
\hline 2015 & Helvick 1 & 2 & 0.30 & 0.23 & 0.16 & 2.08 \\
\hline 2015 & Helvick 2 & 2 & 0.09 & 0.09 & 0.06 & 0.79 \\
\hline 2015 & Kenmare Bay & 1 & 0.30 & NA & NA & NA \\
\hline
\end{tabular}

Table 22.2.6. Continued
\begin{tabular}{llccccc}
\hline \multicolumn{1}{c}{ Year } & \multicolumn{1}{c}{ Ground } & N & Mean Density & SD & SE & CI \\
\hline 2016 & Bantry & 4 & 0.20 & 0.07 & 0.04 & 0.12 \\
\hline 2016 & Cork Channels & 10 & 0.21 & 0.11 & 0.03 & 0.08 \\
\hline 2016 & Galley Grounds 1 & 2 & 0.03 & 0.01 & 0.01 & 0.08 \\
\hline 2016 & Galley Grounds 2 & 2 & 0.53 & 0.12 & 0.09 & 1.11 \\
\hline 2016 & Galley Grounds 3 & 4 & 0.16 & 0.12 & 0.06 & 0.19 \\
\hline 2016 & Galley Grounds 4 & 14 & 0.17 & 0.20 & 0.05 & 0.12 \\
\hline 2016 & Helvick 1 & 2 & 0.38 & 0.08 & 0.06 & 0.70 \\
\hline 2016 & Helvick 2 & 2 & 0.07 & 0.09 & 0.06 & 0.81 \\
\hline 2016 & Kenmare Bay & 2 & 0.24 & 0.15 & 0.11 & 1.33 \\
\hline
\end{tabular}

Table 22.2.7. Nephrops in FU19 (SW and SE Ireland). Summary statistics for FU19 combined over the time-series. No TV survey from 2007-2010.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Number of stations & Mean Density adjusted (burrow \(/ \mathrm{m}^{2}\) ) & \begin{tabular}{l}
Standard \\
Deviation
\end{tabular} & Raised abundance estimate adjusted (million burrows) & Upper \(95 \% \mathrm{Cl}\) on Abundance & Lower \(95 \% \mathrm{CI}\) on Abundance & CVs \\
\hline 2006 & 6 & 0.21 & 0.18 & 408 & 789 & 26 & 36\% \\
\hline 2007 & \multicolumn{7}{|l|}{No Survey Data} \\
\hline \multicolumn{8}{|l|}{2008} \\
\hline \multicolumn{8}{|l|}{2009} \\
\hline \multicolumn{8}{|l|}{2010} \\
\hline 2011 & 35 & 0.34 & 0.26 & 665 & 842 & 488 & 13\% \\
\hline 2012 & 40 & 0.30 & 0.18 & 594 & 708 & 480 & 9\% \\
\hline 2013 & 40 & 0.25 & 0.26 & 487 & 653 & 320 & 17\% \\
\hline 2014 & 40 & 0.32 & 0.31 & 636 & 829 & 442 & 15\% \\
\hline 2015 & 39 & 0.24 & 0.20 & 482 & 612 & 352 & 13\% \\
\hline 2016 & 42 & 0.20 & 0.17 & 399 & 501 & 296 & 13\% \\
\hline
\end{tabular}

Table 22.3.1. Nephrops in FU19 (SW and SE Ireland). Forecast inputs (bold) and historical estimates of mean weight in landings and harvest rate (landings + dead discards)/(abundance estimate), discard rate (discards divided by landings + discards) and dead discard rate as dead discards divided by removals (landings + dead discards).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & Landings in number & Total discards* in number & Removals in number & Discard Rate number & Dead discard rate number & \begin{tabular}{l}
UWTV \\
abundance estimate
\end{tabular} & 95\% Conf. intervals & Harvest rate & Landings & Total discards* & Mean weight in landings & Mean weight in discards \\
\hline & millions & millions & millions & \% & \% & millions & millions & \% & tonnes & tonnes & grammes & grammes \\
\hline 2006 & 26.2 & 2.6 & 28.1 & 9 & 7 & na & na & na & 741 & 37 & 28.3 & 14.4 \\
\hline 2007 & 30.8 & 1.5 & 31.9 & 5 & 4 & na & na & na & 957 & 26 & 31.1 & 17 \\
\hline 2008 & 25.7 & 5.5 & 29.8 & 18 & 14 & na & na & na & 866 & 107 & 33.7 & 19.3 \\
\hline 2009 & 27.3 & 17.8 & 40.6 & 39 & 33 & na & na & na & 833 & 258 & 30.5 & 14.5 \\
\hline 2010 & 24.4 & 20 & 39.3 & 45 & 38 & na & na & na & 722 & 269 & 29.6 & 13.5 \\
\hline 2011 & 24.3 & 30.7 & 47.3 & 56 & 49 & 665 & 171 & 7.10 & 608 & 387 & 25 & 12.6 \\
\hline 2012 & 29.2 & 33 & 54 & 53 & 46 & 594 & 111 & 9.10 & 770 & 420 & 26.4 & 12.7 \\
\hline 2013 & 28.5 & 33.4 & 53.6 & 54 & 47 & 487 & 161 & 11.00 & 781 & 404 & 27.4 & 12.1 \\
\hline 2014 & 16.4 & 11.4 & 24.9 & 41 & 34 & 636 & 188 & 3.90 & 468 & 161 & 28.6 & 14.1 \\
\hline 2015 & 17 & 12.9 & 26.7 & 43 & 36 & 482 & 126 & 5.50 & 507 & 177 & 29.8 & 13.8 \\
\hline \multirow[t]{2}{*}{2016} & 19.7 & 13.6 & 30 & 41 & 34 & 399 & 100 & 7.50 & 591 & 194 & 29.9 & 14.2 \\
\hline & & & Average 14-16 & 41.6 & 34.9 & & & & & Average 14-16 & 29.4 & 14.0 \\
\hline
\end{tabular}


Figure 22.1.1. Nephrops in FU19 (Ireland SW and SE Coast). Revised discrete patches overlaid on overlaid on proportion of Nephrops in the Irish landings overlaid on international OTB effort (red \(=0 \%\) Nephrops; blue \(=50-60 \%\) Nephrops; grey=unknown (no Irish landings).


Figure 22.1.2. Nephrops in FU19 (Ireland SW and SE Coast). Time-series of the number of Irish vessels reporting landings of Nephrops from FU19 with a \(>10 \mathrm{t}\) threshold.


Figure 22.1.3. Nephrops in FU19 (Ireland SW and SE Coast). Combined box and kite plot of vessel power by year. The blue line indicates the mean.


Figure 22.2.1. Nephrops in FU19 (Ireland SW and SE Coast). Landings in tonnes by country.


Figure 22.2.2. Nephrops in FU19 (Ireland SW and SE Coast). Trawl effort for Irish OTB vessels where \(>30 \%\) of landed weight was Nephrops.


Figure 22.2.3. Nephrops in FU19 (Ireland SW and SE Coast). Sampling levels for FU19.

\section*{Length frequencies for catch (dotted) and landed(solid): Nephrops in FU19}


Figure 22.2.4. Nephrops in FU19 (Ireland SW and SE Coast). Mean size trends for catches and whole landings by sex 2002-2016.


Figure 22.2.5. Nephrops in FU19 (Ireland SW and SE Coast). Annual sex ratio of landings (20082016) and catch (2008-2016).


Figure 22.2.6. Nephrops in FU19 (Ireland SW and SE Coast). Mean weight in Bantry Bay catch samples by sex with loess smoother and showing cyclical trends.


Figure 22.2.7. Nephrops in FU19 (Ireland SW and SE Coast). Mean weight in catch data for all grounds in FU19 by sex with loess smoother and showing cyclical trends.


Figure 22.2.8. Nephrops in FU19 (Ireland SW and SE Coast). Annual mean weights (gr) in the landings and discards.


Figure 22.2.9. Nephrops in FU19 (Ireland SW and SE Coast). Violin and box plot a of adjusted burrow density (burrow/m²) distributions by year from 2006-2016. The blue line indicates the mean density over time. The horizontal black line represents the median, white box is the inter quartile range, the black vertical line is the range and the black dots are outliers. No estimate available for Galley Ground 4 in 2011, Galley Ground 1 in 2012. No TV survey from 2007 to 2010.


Figure 22.2.10. Nephrops in FU19 (Ireland SW and SE Coast). Time-series of total abundance estimates for FU17 (error bars indicate \(95 \%\) confidence intervals) and \(B_{\text {trigger }}\) is dashed green line.

\section*{Length frequencies for IGFS Survey Catches: \\ Nephrops in FU19}


Figure 22.2.11. Nephrops in FU19 (Ireland SW and SE Coast). Mean size trends for catches by sex from Irish Groundfish Survey 2003-2016.


Figure 22.3.1. Nephrops in FU19 (Ireland SW and SE Coast). Harvest Rate (\% dead removed/UWTV abundance). The dashed and solid lines are the MSY proxy and the harvest rate respectively.

\section*{23 Norway lobster (Nephrops norvegicus) in divisions 7.g and 7.h, functional units 20 and 21 (Celtic Sea)}

\section*{Type of assessment in 2016}

A full UWTV based assessment was carried out and catch options based on the new stock-specific reference points estimated by WGCSE 2016 using the methods applied to other Nephrops stocks at WKFMSYREF4 (ICES, 2016).

\section*{ICES advice applicable to 2016}
"ICES advises that when the precautionary approach is applied, catches in 2016 (assuming zero discards) should be no more than 3045 tonnes. If instead discard rates continue at recent values (average of 2012-2014) and there is no change in assumed discard survival rate, this implies landings of no more than 2500 tonnes.

To ensure that the stock in functional units (FUs) 20 and 21 is exploited sustainably, management should be implemented at the functional unit level."

\section*{ICES advice applicable to 2017}
"ICES advises that when the MSY approach is applied, and assuming that discard rates and fishery selection patterns do not change from the average of 2013-2015, catches in 2017 should be no more than 3552 tonnes. This implies landings of no more than 2727 tonnes.

To ensure that the stock in functional units (FUs) 20 and 21 is exploited sustainably, management should be implemented at the functional unit level."

\subsection*{23.1 General}

\section*{Stock description and management units}

The FU20-21 Nephrops stock is included in the whole ICES Area 7 together with Irish Sea East and West [FU14, FU15], Porcupine Bank [FU16], Aran Islands [FU17], northwest Irish Coast [FU18], southeast and southwest Irish Coast [FU19], Smalls [FU22]. The TAC is set for Subarea 7 which does not correspond to the stock area.

Historically FU20-22 fishery and sampling data covered an amalgamation of several spatially distinct mud patches; FU20 NW Labadie, Baltimore and Galley, FU21 Jones and Cockburn and FU22 the Smalls. WGCSE 2013 recommended that FU20-22 should be split into FU20-21 and FU22 for the purposes of assessment and advice provision. There is evidence that the Celtic Sea Nephrops patches are linked in metapopulation sense (O'Sullivan et al., 2015). However, fishing mortality and biological parameters (density, growth, M, etc.) may vary across the different patches. The map below shows FU20-21 assessment area (blue) and TAC area (red). There is no evidence that the individual functional units belong to the same stock. See section 18 for details on Nephrops in Subarea 7 general section.


\section*{Ecosystem aspects}

Details of the ecosystem on FU20-21 are provided in the stock annex updated by WKCELT.

\section*{Fishery description}

Ireland, France and the UK are the main countries involved in the FU20-21 Nephrops fishery. In the early 2000s the Republic of Ireland fleet had on average \(10 \%\) of the landings and this has increased to over \(70 \%\) from this FU in recent times. A description of this fleet is given in the stock annex. The fishery on FU20-21 grounds operates throughout the year, weather permitting with a seasonal trend and has expanded in the mid-2000s. In 2011 Irish landings have been higher then French landings for the first time. The time-series of numbers of vessels with landings greater than 10 tonnes is updated in Figure 23.1.1. The time-series of vessel power is shown as a box and kite plot in Figure 23.1.2. In recent years the Irish fleet have increased landings from the southern part of the grounds (see stock annex).

French trawlers targeting Nephrops in the Celtic Sea operate mainly in the FU20-21 component of the stock. France dominated in the landings in the early 2000s on average \(90 \%\) of landings and this has decreased to \(20 \%\) in recent times. A description of this fleet is given in the stock annex.

There is an increase in participation by the UK in this fishery in the most recent years The UK fleet had on average \(6 \%\) of the landings from this FU in recent times (20112016).

\section*{Fishery in 2016}

\section*{Ireland}

In recent years several newer vessels specializing in Nephrops fishing have participated periodically in this fishery. These vessels target Nephrops on several other grounds within the TAC area and move around to optimize catch rates. There has been a trend for Irish vessels to switch to multi (quad) rig trawls since 2012. These vessels are more efficient at catching Nephrops (BIM, 2015).

In 201656 reported landings in excess of 10 t accounting for \(92 \%\) of total Irish landings.

\section*{France}

In 201645 French vessels reported landings from FU20-21 where many of these switch between FU20-21 and FU22 within a trip.

\section*{UK}
\(26 \mathrm{UK}(\mathrm{E} \& W)\) vessels reported landings for FU20-21, seven vessels from Scotland and three vessels from Northern Ireland.

Information from stakeholders

None presented.

\subsection*{23.2 Data}

\section*{InterCatch}

Data were available in InterCatch and used on a trial basis. French data provided directly by national expert.

\section*{Landings}

The reported landings time-series is shown in Figure 23.2.1 and Table 23.2.1.
The reported Irish landings from FU2021 have increased since the mid-2000s to the second highest in the Irish time-series in 2016 (1531 t). French landings have gradually decreased since the early 2000s to the present ( 477 t ). Reported landings from the UK have fluctuated with an increasing trend in 2016. UK England \& Wales had the highest landings at 389 t followed by Scotland (33 t), Northern Ireland reporting 22 t , and minor landings from Belgium less than 0.2 t . In 2016 most of the UK E\& W landings were from Scottish vessels (based at Fraserburgh).

The overall fishing profile remains typically seasonal with the majority of Irish and French landings coming from the 2nd and 3rd quarters (see stock annex).

Effort
Effort data are available for the Irish Nephrops directed fleet in FU2021 from 19952016. The effort series is based on the same criteria for FU15, 16, 17, 19and 22 ( \(30 \%\) landings threshold) and will be contingent on the accuracy of landings data reported in logbooks. Effort data are not standardized, and hence do not take into account vessel capabilities, efficiency, seasonality or other factors that may bias perception of
lpue as an abundance trend over the longer term. These data are not used in the assessment.

WGCSE 2015 recommended that effort data in Kw days should be presented as these data are more informative that uncorrected effort data. Effort data are available from 1995 for the Irish otter trawl Nephrops directed fleet. In 2016 this fleet accounted for \(\sim 95 \%\) of the landings compared with an average of \(70 \%\) over the time period. Effort shows an increasing trend since the mid-2000s (Figure 23.2.2 and Table 23.2.2).

Effort data in KW days are not available for France. Previously effort data were reported from 1983 to 2008 for the French Nephrops fleet for the combined Celtic Sea FU20-22 (see stock annex). Since 2009, a new registration system of official French statistics has changed the way fishing effort is computed and a new threshold method of 500 kg landed by trip is used to report effort. French fishing effort reported in hours and lpue ( \(\mathrm{kg} / \mathrm{hr}\) ) since 2009 shows an overall declining trend (Table 23.2.3).

\section*{Sampling levels}

Sampling levels, data aggregating and raising procedures were reviewed by WKCELT 2014 and are documented in the stock annex. The time-series of samples is shown in Table 23.2.4 and remains sparse due to the offshore nature of the fishery although progress is being made.

\section*{Commercial length-frequency distributions}

Prior to 2012 there was insufficient Irish sampling to generate length-frequency distributions although since then efforts are being progressed. For France limited data were available for 1997 and 2010 (see stock annex for details).

Length-frequency distributions of landings and discards for both countries from 2012 to 2016 are presented in Figure 23.2.3 along with the European ( 25 CL mm ) and French ( 35 CL mm ) minimum landings size also shown.

The short series on LFDs for both countries shows that the LFDs differ between the two countries. The French fishery caught higher proportions of larger individuals ( \(>35 \mathrm{~mm}\) ) on average \(70 \%\) compared to \(45 \%\) for the Irish fishery for the available time-series.

\section*{Sex ratio}

The sex ratio is male biased from the available French and Irish sampling data (Table 23.2.5).

\section*{Mean weight explorations}

The numbers in the French landings and discards raised to FU20-21 only for 20122016 were provided to WGCSE 2017. These data (years 2012-2015) are similar to that reported by WGCSE 2015 which could not be reproduced at WGCSE 2016. At WGCSE 2016 a scaling factor was applied to the French dataset as these were provided raised to the whole of area FU20-22. The French dataset provided to WGCSE 2017 (years 2012-2015) results in an increase in mean weights and decrease in removals from that previously reported at WGCSE 2016 (Table 23.2.6). The working group accepted the French dataset and this is used to calculate the estimated annual mean weights in the landings and discards.

WGCSE 2016 used the length-weight relationship as described in stock annex to raise both countries sampling data which are based on Scottish data (Pope and Thomas, 1955).

The mean weight in the landings for France is higher than that in the Irish landings (Table 23.2.7). The revised estimated annual mean weights in the landings and discards by country and also combined scaled to the international landings is shown in Table 23.2.8, Figure 23.2.4).

\section*{Discards}

For the Irish data discard rates have been estimated using unsorted catch and discards sampling. This involves unsorted catch and discard samples being provided by vessels or collected by observers at sea on discard trips. The catch sample is partitioned into landings and discards using an on-board discard selection ogive derived for the discard samples. Due to sparse sampling effort annual aggregations are used to derive length distributions and selection ogives. Figure 23.2.5 shows the annual discard ogive from the Irish sampling used to partition the catch. The length-weight regression parameters given in the stock annex are used to calculate sampled weights and appropriate annual raising factors. The sampling intensity and coverage has varied over the short time-series and is relatively poor but at present it is the best available.

Estimated discard rates range between 28-41\% of total catch by number and 13-27\% of total catch by weight in the Irish fishery shown in Table 23.2.7. In the French fishery estimated discard rates range between \(25-78 \%\) of total catch by number and 16 \(56 \%\) of total catch by weight shown in Table 23.2.6.

Estimated discard rates for both countries combined in shown in Table 23.2.8 and these range between \(38-52 \%\) of total catch by number and \(17-31 \%\) of total catch by weight. Discard rate of females tends to be higher due to the smaller average size and market reasons as is observed in other Nephrops fisheries.

There is no information on discard survival rate in this fishery. \(25 \%\) is assumed in line with other Nephrops stocks in the Celtic Sea (Charuau et al., 1982).

\section*{Abundance indices from UWTV surveys}

The methods used during the survey were similar to those employed for UWTV surveys of Nephrops stocks around Ireland and elsewhere and are documented by WKNEPHTV (ICES, 2007), SGNEPS (ICES, 2009; 2010; 2012) and WGNEPS (ICES, 2013; 2014; 2015; 2016). SGNEPS 2012 (ICES, 2012) recommended that a CV (or relative standard error) of \(<20 \%\) is an acceptable precision level for UWTV survey estimates of abundance. UWTV surveys conducted in 2006 and 2012 are deemed exploratory as stations were chosen based on areas heavily fished by vessels (Doyle et al., 2013). These are likely to be biased estimate of density and cannot be extrapolated to estimate density for the whole area. A randomised isometric grid design was employed with UWTV stations at 6.0 nmi intervals for 2013-2016 surveys. The 2013 survey achieved partial coverage \(\sim 60 \%\) of the total area. The 2013 abundance has been scaled up to the entire area since densities in the un-surveyed part of the ground were not significantly different in 2014. From 2014 to 2016 full survey coverage was achieved. The geo-statistical analysis for years 2013 to 2016 follows the steps documented in Doyle et al., 2016 in press.

The 2016 mean burrow density was 0.18 burrows \(/ \mathrm{m}^{2}\) compared with 0.20 burrows \(/ \mathrm{m}^{2}\) in 2015. The 2016 geostatistical abundance estimate was \(1.9 \pm 0.02\) billion a \(2 \%\) de-
crease on the abundance for 2014 with a CV of \(5 \%\) which is well below the upper limit of \(20 \%\) recommended by SGNEPS 2012. Highest densities were general observed towards the north and southwest of the ground, and there were also high densities observed close to boundaries. Figure 23.2.6 shows the krigged contour and density plots for the time-series. The summary statistics from this geostatistical analysis are given in Table 23.2.9 and plotted in Figure 23.2.7. The estimation variance of the survey is very low (CVs in the order 5\%).

\section*{Groundfish survey data}

There are two IBTS- GFS catching Nephrops in FU2021: French groundfish survey EVHOE-WIBTS-Q4 since 1997 and Irish groundfish survey-Q4: IGFS-WIBTS-Q4 commenced in 2003 (Stokes et al., 2014). These provide information on lengthfrequency compositions, mean size in the catches, cpue of Nephrops in FU2021 (ICES, 2015). The mean size of the catches is stable over the time-series except in 2006 and 2008 which signals recruitment into the fishery in 2006 and 2007 as shown by the Irish IBTS survey in Figure 23.2.8 and the French IBTS survey (Figure 23.2.9).

\subsection*{23.3 Assessment}

\section*{Comparison with previous assessments}

Previously a Nephrops data-limited exploration was carried out by working groups; see stock annex on historical overview of previous methods (ICES, 2015). This approach estimated harvest rates of \(4.4 \%\) which is very low relative to most other developed Nephrops fisheries and similar to the harvest rate in place for the Porcupine Bank (FU16).

In 2016 stock-specific reference points were estimated by this working group based on methods for other Nephrops stocks used by WKMSYREF4 (ICES, 2016). This is in accordance with recommendations by WKCELT 2014 where data improvements have been made for this stock such as:
- complete survey coverage of the stock area giving quality assured density estimates and abundance estimates conforming to WGNEPS recommendations; and also
- improved sampling data achieving better coverage and robust estimates of the various parameters need to calculate catch options (e.g. mean weight in the landings and discards, discard percentage in numbers).

The WGCSE 2017 carried out a full UWTV based assessment for this stock.

\section*{State of the stock}

UWTV abundance estimates suggest that the stock size is relatively stable over the short time-series. The 2016 estimate is a slight decrease from 2015 estimate by \(6 \%\).

No MSY Btrigger has been proposed as the time-series is too short (three years of full TV survey coverage).

Table 23.3.1 and Figure 23.3.1 summarize recent harvest ratios which have been below the Fmsy proxy for the last three years.

\subsection*{23.4 Catch options table}

Catch option table inputs and estimates of mean weight in landings and harvest ratios are presented in Table 23.3.1 and summarised below.

In line with previous practice an average (2014-2016) of mean weights is used to account for this variability. Three year average (2014-2016) of proportion of removals retained was used as is standard for other Nephrops stocks.

The basis for the catch options.
\begin{tabular}{lcl}
\hline \multicolumn{1}{c}{ Variable } & Value & \multicolumn{1}{c}{ Notes } \\
\hline Stock abundance & \begin{tabular}{l} 
Available Octo- \\
ber 2017
\end{tabular} & UWTV survey 2017 \\
\hline Mean weight in landings & 37.6 g & Average 2014-2016 \\
\hline Mean weight in discards & 17.4 g & Average 2014-2016 \\
\hline Discard rate & \(41.00 \%\) & \begin{tabular}{l} 
Average 2014-2016 (by number). Calculated as \\
discards divided by landings + discards.
\end{tabular} \\
\hline Discard survival rate & \(25 \%\) & \begin{tabular}{l} 
Only applies in scenarios where discarding is al- \\
lowed.
\end{tabular} \\
\hline Dead discard rate & \begin{tabular}{l} 
Average 2014-2016 (by number). Calculated as \\
dead discards divided by removals (landings + \\
dead discards). Only applies in scenarios where \\
discarding is allowed.
\end{tabular} \\
\hline
\end{tabular}

A prediction of landings for the FU2021 using the approach agreed procedure proposed at WKNEPH 2009 and outlined in the stock annex will be made on the basis of the 2017 UWTV survey. This will be presented in October 2017 for the provision of advice.

\subsection*{23.5 Reference points}

New reference points were estimated by WGCSE 2016 using the same method and approach used at WKMSYREF4 (ICES, 2016). The detailed analysis is available in working document 11. In the case of FU20-21 there is a limited number of years for which length-frequency data were available, so the three year moving window could only be applied to give two estimates. The resulting potential \(\mathrm{F}_{\text {msy }}\) harvest rates and ranges are given in the following table.
\begin{tabular}{cccccccccc}
\hline YEAR & FMAX & FMAX.LOW & FMAX.UP & F35 & F35.LOW & F35.UP & F0.1 & F0.1.LOW & F0.1.UP \\
\hline 2012 & 9.12 & 6.51 & 12.60 & 11.03 & 6.11 & 13.21 & 5.91 & 5.08 & 15.11 \\
\hline 2013 & 9.45 & 6.71 & 13.26 & 11.17 & 6.30 & 13.78 & 6.10 & 5.23 & 15.93 \\
\hline
\end{tabular}

Given the low density in the area and combined sex \(\mathrm{F}_{0.1}\) was considered and appropriate Fmsy proxy.
\begin{tabular}{lccccc}
\hline Stock code & MSY FLower* & FMSY* & \begin{tabular}{c} 
MSY FUPPER* \\
WITH AR
\end{tabular} & MSY BTRIGGER & \begin{tabular}{c} 
MSY FUPPER* \\
WITH NO AR
\end{tabular} \\
\hline nep-2021 & \(6.0 \%\) & \(6.0 \%\) & \(6.0 \%\) & Not defined & \(6.0 \%\) \\
\hline
\end{tabular}
* Harvest rate (HR).

No proposal has been made for MSY Btrigger as the time-series is too short.

\subsection*{23.6 Management plans}

There is no specific management plan for the FU20-21 Nephrops.

\subsection*{23.7 Quality of assessment and forecast}

Since the benchmark 2014 UWTV and sampling coverage has been improving in this area. There are now three years of full UWTV survey coverage (2014-2016).

There are several key uncertainties and bias sources in the method used here (these are discussed further in WKNEPH 2009). Various agreed procedures have been put in place to ensure the quality and consistency of the survey estimates following the recommendations of several ICES groups (WKNEPTV 2007; WKNEPHBID 2008; SGNEPS 2009; WGNEPS 2014). Ultimately there still remains a degree of subjectivity in the production of UWTV abundance estimates (Marrs et al., 1996). Taking explicit note of the likely biases in the surveys may at least provide an estimate of absolute abundance that is more accurate, although no more precise (WKNEPH, 2009). The survey estimates themselves are very precisely estimated (CVs \(\sim 5 \%\) ) given the homogeneous distribution of burrow density and the modelling of spatial structuring. The cumulative bias estimates for FU20-21 are largely based on expert opinion. The precision of these bias corrections cannot yet be characterised, but is likely to be lower than that observed in the survey.

Sampling of landing and discards for FU20-21 remains low but there is a limited number of years for which length-frequency data were available so the three year moving window could only be applied to give two estimates to calculate FmSY reference points.

French and Irish trawlers cover different areas and have presented contrasting features over the last decade. The French fleet moved gradually from the "Smalls" Ground (mainly 31E3) to the "Labadie" (30E2, increase of 28E2 in the early 2010s, although no trend is revealed within FU20-21 throughout the overall time-series): in the late 1990s, more than \(40 \%\) of French landings were reported from the "Smalls" area whereas by the end of 2000 s the contribution of this rectangle became minor (less than \(10 \%\) ). Irish vessels have increased their production on FU20-21 since the mid2000s and a gradual expansion towards the southern rectangles is obvious during the recent years (stock annex).

\subsection*{23.8 Recommendations for next benchmark}

This stock was last benchmarked by WKCELT (ICES, 2014). WGCSE will keep the stock under close review and recommend future benchmark as required.

\subsection*{23.9 Management considerations}

The indications are the Nephrops in FU20-21 are lightly exploited now relative to the past and recent average landings are broadly sustainable. Overall effort in the fishery has declined to less than \(25 \%\) of the peak effort observed in the early 1990s. Harvest rates based on recent landings and UWTV surveys suggest that the HR is low relative to most other Nephrops fisheries.

In recent years the Irish fishery in the area expanded whereas the French fishery continued to decline. The fishing patterns of the French and Irish fleet are very different with the Irish fleet specialising on Nephrops whereas the French fishery remains more mixed. French Nephrops fisheries in this area are fairly mixed also catching whiting, cod, megrim, anglerfish and other demersal species (Davie and Lordan, 2011). Nephrops tend to dominate the landings of Irish fisheries in the area but catches are more mixed in the North ( \(\sim 50 \%\) Nephrops) and cleaner Nephrops towards the south ( \(\sim 75 \%\) Nephrops) (Gerritsen et al., 2012). The French trawlers showed an overall decline in effort and landings during the last decade, mainly explained by decommissioning schemes associated to constraints linked to fuel prices.

In recent years several newer vessels specializing in Nephrops fishing have participated in this fishery. These vessels target Nephrops on several other grounds within the TAC area and move around to optimize catch rates.

Fisheries catching Nephrops in Subarea 7 will be covered by the EU landing obligation from 2016 (EC, 2015). Nephrops creel fisheries are exempted from the landings obligation, with a de minimis exemption consisting of a \(7 \%\) discard rate by weight for the trawl fishery in 2016 and 2017. The average discard rate by weight for FU20-21 over the last three years is \(24 \%\). Two different catch options at Fmsy have been provided to give some information on the impact of different LO scenarios on catches.

UWTV survey coverage has improved. A new survey point will be available by autumn 2017 providing a more up to date estimate of density and abundance. The use of the most up to date survey information should be considered for this stock.

Landings data are adjusted to take into account landings that have been misreported from FU16 since 2011. This adjustment is thought to be reasonably accurate (See Section 19).

ICES and STECF have repeatedly advised that management should be at a smaller scale than the ICES division level. Management at the functional unit level could provide controls to ensure effort and catch were in line with resources available.

\subsection*{23.10References}

Anon. 2011. Atlas of Demersal Discarding, Scientific Observations and Potential Solutions, Marine Institute, Bord Iascaigh Mhara, September 2011. ISBN 978-1-902895-50-5. 82 pp.

Charuau A., Morizur Y., Rivoalen J.J. 1982. Survival of discarded Nephrops norvegicus in the Bay of Biscay and in the Celtic Sea. ICES CM 1982/B:13.

Davie S., Lordan C. 2011. Definition, dynamics and stability of métiers in the Irish otter trawl fleet. Fish. Res. 111, 145-158. http://dx.doi.org/10.1016/j.fishres.2011.07.005 or http://hdl.handle.net/10793/673.

Doyle, J., Lordan, C., Dobby, H., O'Connor, S., Blaszkowski, M., Stokes, D., O'Brien, S., McAuliffe, M., Kelly, C., Bentley, K., O'Sullivan, D., Gallagher, J. and Vacherot, JP. 2015. The Labadie, Jones and Cockburn Banks Nephrops Grounds (FU20-21) 2016 UWTV Survey Report and catch options for 2017. Marine Institute UWTV Survey report. In press.

Gerritsen H.D., Lordan C. 2011. Integrating Vessel Monitoring Systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES Journal of Marine Science, 68(1): 245-453.

Gerritsen H.D., Lordan C., Minto C., Kraak S.B.M. 2012. Spatial patterns in the retained catch composition of Irish demersal otter trawlers: High-resolution fisheries data as a management tool. Fisheries Research, Vol. 129-130, Pp 127-136. Available from http://www.sciencedirect.com/science/article/pii/S0165783612002032.

ICES. 2009. Report of the Benchmark Workshop on Nephrops assessment (WKNEPH). ICES CM 2009/ACOM:33.

ICES. 2014a. Report of the Benchmark Workshop on Celtic Sea Stocks (WKCELT), 3-7 February 2014, ICES Headquarters, Copenhagen, Denmark. ICES CM 2014 \(\backslash \mathrm{ACOM}: 42.194 \mathrm{pp}\).

ICES. 2014b. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 13-22 May 2014, Copenhagen, Denmark. ICES CM 2014/ACOM:12.

ICES. 2015. Report of the Working Group on Nephrops Surveys (WGNEPS), 10-13 November 2015, Cadiz, Spain. ICES CM 2015/ SSGIEOM:30.52 pp.

ICES. 2015. Report of the International Bottom Trawl Survey Working Group (IBTSWG), 23-27 March 2015, Bergen, Norway. ICES CM 2015/ SSGIEOM:20. 124 pp.

ICES. 2016. Report of the Working Group on Nephrops Surveys (WGNEPS), 7-8 November 2016. Reykjavík, Iceland. ICES CM 2016/ SSGIEOM:33.67 pp.

ICES. 2016. Report of the Workshop on Nephrops Burrow counting (WKNEPS), 9-11 November 2016. Reykjavík, Iceland. ICES CM 2016/ SSGIEOM:34.65 pp.

ICES. 2016XX. EU request to ICES to provide FmsY ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

ICES. 2016YY. Report of the Workshop to consider Fmsy ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

O' Sullivan D., Lordan C., Doyle J., Berry A., Lyons K. 2013. Study of local hydrodynamics and larval dispersal on Nephrops fishing grounds. Irish Fisheries Investigation. No 26: Marine Institute.2014.http://hdl.handle.net/10793/985.

Stokes D., Gerritsen H., O'Hea B., Moore S.J., Dransfeld L. 2014. "Irish Groundfish Survey Cruise Report, 24 September-17 December 2014", FEAS Survey Series; 2014/01. http://hdl.handle.net/10793/1064.

Table 23.2.1. Nephrops FU 20-21. Landings in tonnes by country.
\begin{tabular}{lcccc}
\hline & \multicolumn{5}{c}{ FU 20-21 LANDINGS (T) } \\
\hline Year & France & & Rep. of Ireland & UK \\
\hline 1995 & 3419 & 117 & Total \\
\hline 1996 & 2721 & 101 & na & 3536 \\
\hline 1997 & 1957 & 81 & na & 2822 \\
\hline 1998 & 1583 & 130 & na & 2038 \\
\hline 1999 & 1051 & 83 & na & 1713 \\
\hline 2000 & 1661 & 107 & 18 & 1152 \\
\hline 2001 & 1750 & 69 & 10 & 1778 \\
\hline 2002 & 2559 & 104 & 14 & 1833 \\
\hline 2003 & 2796 & 148 & 11 & 2674 \\
\hline 2004 & 2140 & 299 & 9 & 2953 \\
\hline 2005 & 2008 & 455 & 4 & 2443 \\
\hline 2006 & 2066 & 450 & 6 & 2469 \\
\hline 2007 & 1816 & 600 & 7 & 2523 \\
\hline 2008 & 2036 & 937 & 3 & 2419 \\
\hline 2009 & 1930 & 1202 & 7 & 2980 \\
\hline 2010 & 975 & 756 & 13 & 3145 \\
\hline 2011 & 566 & 637 & 62 & 1793 \\
\hline 2012 & 453 & 708 & 34 & 1237 \\
\hline 2013 & 486 & 844 & 28 & 1189 \\
\hline 2014 & 465 & 1342 & 57 & 1387 \\
\hline 2015 & 355 & 1620 & 29 & 1837 \\
\hline 2016 & 477 & 1531 & 141 & 2116 \\
\hline & & & 440 & 2453 \\
\hline
\end{tabular}

Table 23.2.2. Nephrops FU 20-21. Effort data for the Irish otter trawl Nephrops directed fleet.
\begin{tabular}{lcc}
\hline Year & Effort (Kw Days) & Landings (tonnes) \\
\hline 1995 & 57 & 104 \\
\hline 1996 & 49 & 74 \\
\hline 1997 & 40 & 59 \\
\hline 1998 & 56 & 102 \\
\hline 1999 & 37 & 48 \\
\hline 2000 & 39 & 62 \\
\hline 2001 & 29 & 45 \\
\hline 2002 & 78 & 165 \\
\hline 2003 & 82 & 86 \\
\hline 2004 & 159 & 164 \\
\hline 2005 & 255 & 360 \\
\hline 2006 & 301 & 348 \\
\hline 2007 & 402 & 512 \\
\hline 2008 & 562 & 920 \\
\hline 2009 & 801 & 1,249 \\
\hline 2010 & 498 & 633 \\
\hline 2011 & 424 & 535 \\
\hline 2012 & 357 & 534 \\
\hline 2013 & 445 & 672 \\
\hline 2014 & 885 & 1,170 \\
\hline 2015 & 1,180 & 1,542 \\
\hline 2016 & 920 & 1,404 \\
\hline
\end{tabular}

Table 23.2.3. Nephrops FU 20-21. Effort data for the French fleet.
\begin{tabular}{|c|c|c|}
\hline Year & Effort France ('000 hrs) & Lpue France (kg/hr) \\
\hline 1983 & 231 & 14 \\
\hline 1984 & 205 & 16 \\
\hline 1985 & 203 & 16 \\
\hline 1986 & 163 & 15 \\
\hline 1987 & 190 & 15 \\
\hline 1988 & 171 & 16 \\
\hline 1989 & 179 & 17 \\
\hline 1990 & 230 & 16 \\
\hline 1991 & 225 & 11 \\
\hline 1992 & 277 & 12 \\
\hline 1993 & 268 & 13 \\
\hline 1994 & 259 & 14 \\
\hline 1995 & 239 & 15 \\
\hline 1996 & 220 & 14 \\
\hline 1997 & 187 & 13 \\
\hline 1998 & 155 & 13 \\
\hline 1999 & 151 & 11 \\
\hline 2000 & 194 & 14 \\
\hline \[
2001
\] & 170 & 15 \\
\hline 2002 & 166 & 19 \\
\hline 2003 & 192 & 18 \\
\hline 2004 & 153 & 16 \\
\hline 2005 & 147 & 16 \\
\hline 2006 & 137 & 16 \\
\hline 2007 & 102 & 19 \\
\hline 2008 & 100 & 23 \\
\hline 2009 & 93 & 23 \\
\hline 2010 & 67 & 17 \\
\hline 2011 & 52 & 12 \\
\hline 2012 & 42 & 13 \\
\hline 2013 & 48 & 12 \\
\hline 2014 & 36 & 15 \\
\hline 2015 & 35 & 11 \\
\hline 2016 & \[
35
\] & 15 \\
\hline
\end{tabular}

Table 23.2.4. Nephrops FU 20-21. Sampling levels by country.
\begin{tabular}{cccccccc}
\hline \multicolumn{2}{c}{ Ireland } & \multicolumn{3}{c}{ Number of Samples } & \multicolumn{2}{c}{ Numbers Measured } \\
\hline Year & Quarter & Catch & Discards & Landings & Catch & Discards & Landings \\
\hline 2009 & 2 & 1 & & 489 & & \\
\hline 2010 & 2 & 1 & & & 461 & & \\
\hline 2011 & 2 & 1 & & & 270 & & \\
\hline 2012 & 1 & 8 & 5 & 1 & 2654 & 2,024 & 1,747 \\
\hline 2013 & 1 & 1 & 1 & & 319 & 423 & \\
\hline 2013 & 2 & 9 & 7 & 1 & 2514 & 2,038 & 2,187 \\
\hline 2014 & 2 & 2 & 2 & & 718 & 782 & \\
\hline 2015 & 1 & & & & & & 1,724 \\
\hline 2015 & 2 & 6 & 6 & 2 & 2714 & 3,997 & 3,204 \\
\hline 2015 & 3 & & & 4 & & & 4,750 \\
\hline 2015 & 4 & 2 & 2 & & 650 & 419 & \\
\hline 2016 & 2 & 8 & 5 & 1 & 2,859 & 1,485 & 384 \\
\hline 2016 & 4 & 3 & 2 & 4 & 767 & 1,678 & 1,743 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{France} & \multicolumn{3}{|c|}{Number of samples} & \multicolumn{3}{|c|}{Numbers measured} \\
\hline Year & Quarter & Catch & Discards & Landings & Catch & Discards & Landings \\
\hline 2012 & 1 & & 31 & 9 & & 391 & 1,431 \\
\hline 2012 & 2 & & 13 & 8 & & 198 & 1,202 \\
\hline 2012 & 3 & & 47 & 8 & & 667 & 1,155 \\
\hline 2012 & 4 & & 6 & 6 & & 16 & 860 \\
\hline 2013 & 1 & & 0 & 12 & & 0 & 1,362 \\
\hline 2013 & 2 & & 68 & 72 & & 1,120 & 3,151 \\
\hline 2013 & 3 & & 16 & 68 & & 131 & 1,917 \\
\hline 2013 & 4 & & 2 & 14 & & 12 & 1,303 \\
\hline 2014 & 1 & & 0 & 10 & & 0 & 1,221 \\
\hline 2014 & 2 & & 40 & 47 & & 1,127 & 3,536 \\
\hline 2014 & 3 & & 20 & 33 & & 458 & 1,934 \\
\hline 2014 & 4 & & 0 & 9 & & 0 & 1,360 \\
\hline 2015 & 1 & & 2 & 14 & & 60 & 1,508 \\
\hline 2015 & 2 & & 24 & 44 & & 520 & 3,249 \\
\hline 2015 & 3 & & 1 & 9 & & 1 & 1,366 \\
\hline 2015 & 4 & & 0 & 9 & & 0 & 1,357 \\
\hline 2016 & 1 & & 35 & 46 & & 464 & 3,164 \\
\hline 2016 & 2 & & 24 & 27 & & 519 & 1,263 \\
\hline 2016 & 3 & & 18 & 26 & & 217 & 1,971 \\
\hline 2016 & 4 & & 8 & 20 & & 5 & 1,935 \\
\hline
\end{tabular}

Table 23.2.5. Nephrops FU 20-21. Sex ratio in the landings by country based on available sampling.
\begin{tabular}{lrrl}
\hline & & Ireland & \\
\hline Year & Females ('000s) & Males ('000s) & \% Males in Landings \\
\hline 2012 & 1,171 & 25,306 & \(96 \%\) \\
\hline 2013 & 8,452 & 15,752 & \(65 \%\) \\
\hline 2014 & 13,630 & 25,467 & \(65 \%\) \\
\hline 2015 & 8,916 & 39,018 & \(81 \%\) \\
\hline 2016 & 15807 & 23835 & \(60 \%\) \\
\hline & & France & \\
\hline Year & Females (' \(000 s)\) & Males ('000s) & \% Males in Landings \\
\hline 2012 & 1,545 & 9,323 & \(86 \%\) \\
\hline 2013 & 1,678 & 7,641 & \(82 \%\) \\
\hline 2014 & 3,292 & 7,316 & \(69 \%\) \\
\hline 2015 & 1,144 & 6,244 & \(85 \%\) \\
\hline 2016 & 819 & 8815 & \(91 \%\) \\
\hline
\end{tabular}

Table 23.2.6. Nephrops FU 20-21. Landings and discards by number and weight ( \(\mathbf{t}\) ), dead discard rate and discard rate by number, discard rate by weight and estimated mean weights (grs) in the landings and discards for France. * 25\% discards survival.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{France (as reported to WGCSE 2016)} \\
\hline  &  &  &  & лəqunи әдеу рıеэs!а реәа &  &  & \[
\begin{aligned}
& \text { a0 } \\
& \stackrel{\underline{D}}{0} \\
& \stackrel{\Gamma}{\top}
\end{aligned}
\] &  &  &  \\
\hline & millions & millions & millions & \% & \% & \% & tonnes & tonnes & gramme & gramme \\
\hline 2012 & 11.5 & 18.8 & 25.5 & 55 & 62 & 43 & 453 & 344 & 39.5 & 18.4 \\
\hline 2013 & 10.1 & 10.9 & 18.3 & 45 & 52 & 29 & 486 & 195 & 48.1 & 17.9 \\
\hline 2014 & 11.4 & 39.9 & 41.3 & 72 & 78 & 58 & 465 & 639 & 40.8 & 16.0 \\
\hline 2015 & 7.9 & 8.3 & 14.1 & 44 & 51 & 33 & 355 & 174 & 44.8 & 21.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{France Revised} \\
\hline - &  &  &  &  &  &  & \[
\begin{aligned}
& \text { a } \\
& \stackrel{0}{0} \\
& \text { 드̃ }
\end{aligned}
\] &  &  &  \\
\hline & millions & millions & millions & \% & \% & \% & tonnes & tonnes & gramme & gramme \\
\hline 2012 & 10.9 & 17.8 & 24.2 & 55 & 62 & 42 & 453 & 322 & 41.7 & 18.1 \\
\hline 2013 & 9.3 & 10.0 & 16.9 & 45 & 52 & 27 & 486 & 176 & 52.2 & 17.6 \\
\hline 2014 & 10.6 & 37.0 & 38.4 & 72 & 78 & 56 & 465 & 588 & 43.8 & 15.9 \\
\hline 2015 & 7.4 & 7.7 & 13.2 & 44 & 51 & 32 & 355 & 165 & 48.1 & 21.4 \\
\hline 2016 & 9.6 & 3.2 & 12.0 & 20 & 25 & 16 & 477 & 92 & 49.5 & 29.1 \\
\hline
\end{tabular}

Table 23.2.7. Nephrops FU 20-21. Landings and discards by number and weight ( \(\mathbf{t}\) ), dead discard rate and discard rate by number, discard rate by weight and estimated mean weights (grs) in the landings and discards for Ireland.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Ireland} \\
\hline  &  &  &  &  &  &  &  &  &  &  \\
\hline & millions & millions & millions & \% & \% & \% & tonnes & tonnes & gramme & gramme \\
\hline 2012 & 26.5 & 17.5 & 39.6 & 33 & 40 & 23 & 708 & 207 & 26.7 & 11.9 \\
\hline 2013 & 24.2 & 8.3 & 30.5 & 21 & 26 & 14 & 844 & 137 & 34.9 & 16.4 \\
\hline 2014 & 39.1 & 17.6 & 52.3 & 25 & 31 & 15 & 1,342 & 233 & 34.3 & 13.3 \\
\hline 2015 & 47.9 & 18.6 & 61.9 & 23 & 28 & 13 & 1,620 & 248 & 33.8 & 13.4 \\
\hline 2016 & 39.6 & 27.5 & 60.3 & 34 & 41 & 27 & 1,531 & 564 & 38.6 & 20.5 \\
\hline
\end{tabular}
*25\% discards survival.

Table 23.2.8. Nephrops FU 20-21. Landings and discards by number and weight ( \(\mathbf{t}\) ), dead discard rate and discard rate by number, discard rate by weight and estimated mean weights (grs) in the landings combined by both countries and scaled to international landings based on available sampling.

Combined and scaled to the international landings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \bar{\pi} \\
& \underset{\sim}{0}
\end{aligned}
\] &  &  &  &  &  &  & \[
\begin{aligned}
& \text { a0 } \\
& \stackrel{\underline{1}}{0} \\
& \stackrel{\Gamma}{\top}
\end{aligned}
\] &  &  &  \\
\hline & millions & millions & millions & \% & \% & \% & tonnes & tonnes & gramme & gramme \\
\hline 2012 & 38.2 & 36.1 & 65.3 & 41 & 49 & 31 & 1,189 & 542 & 31.1 & 15.0 \\
\hline 2013 & 34.8 & 19.2 & 49.2 & 29 & 36 & 19 & 1,387 & 327 & 39.9 & 17.0 \\
\hline 2014 & 50.6 & 55.5 & 92.2 & 45 & 52 & 31 & 1,836 & 834 & 36.3 & 15.0 \\
\hline 2015 & 59.4 & 28.1 & 80.5 & 26 & 32 & 17 & 2,116 & 442 & 35.7 & 15.7 \\
\hline 2016 & 60.2 & 37.5 & 88.3 & 32 & 38 & 25 & 2,453 & 801 & 40.7 & 21.4 \\
\hline
\end{tabular}
*25\% discards survival.

Table 23.2.9. Nephrops FU 20-21. Results summary table for geo-statistical analysis of UWTV survey.
\begin{tabular}{ccccccc}
\hline Ground & Year & \begin{tabular}{c} 
Number \\
of
\end{tabular} & \begin{tabular}{c} 
Mean Density \\
adjusted \\
(burrows \(\left./ \mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Domain \\
Area \(\left(\mathrm{km}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Geostatistical \\
Abundance
\end{tabular} & \begin{tabular}{c} 
CV on \\
Burrow \\
estimate
\end{tabular} \\
& & & \begin{tabular}{l} 
Estimate \\
adjusted \\
(millions
\end{tabular} & \\
& & & burrows)
\end{tabular}
\begin{tabular}{cccccccc}
\hline FU20-21 & 2006 & 9 & 0.44 & & nr & nr \\
\cline { 2 - 7 } & 2012 & 54 & 0.57 & & nr & nr \\
\cline { 2 - 7 } & 2013 & 55 & 0.16 & 5,701 & 942 & \(3 \%\) \\
\cline { 2 - 7 } & \(2013^{*}\) & 55 & & 10,014 & 1624 & \\
\cline { 2 - 7 } & 2014 & 98 & 0.19 & 10,014 & 2051 & \(3 \%\) \\
\hline & 2015 & 96 & 0.2 & 10,014 & 2003 & \(3 \%\) \\
\hline
\end{tabular}
* the 2013 survey achieved partial coverage \(\sim 60 \%\) of the total area. The abundance has been scaled up to the entire area since densities in the unsurveyed part of the ground were not significantly different in 2014.
nr= no reliable abundance estimate could be calculated because survey coverage was partial.

Table 23.3.1. Nephrops FU 20-21. Short-term catch options prediction inputs and recent estimates of mean weight in landings and harvest rates.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \grave{\grave{0}} \\
& \underset{\sim}{\sim}
\end{aligned}
\]} &  & *夫əqumu u! spдeכs!p &  &  &  &  & 95\% Confidence Interval &  &  &  & Mean weight in landings &  \\
\hline & millions & millions & millions & \% & \% & millions & & \% & tonnes & tonnes & gramme & gramme \\
\hline 2012 & 38.2 & 36.1 & 65.3 & 48.5 & 41.4 & & & & 1189 & 542 & 31.1 & 15.0 \\
\hline 2013 & 34.8 & 19.2 & 49.2 & 35.6 & 29.3 & 1624 & 103 & 3.0 & 1387 & 327 & 39.9 & 17.0 \\
\hline 2014 & 50.6 & 55.5 & 92.2 & 52.3 & 45.2 & 2051 & 131 & 4.5 & 1836 & 834 & 36.3 & 15.0 \\
\hline 2015 & 59.4 & 28.1 & 80.5 & 32.2 & 26.2 & 2003 & 125 & 4.0 & 2116 & 442 & 35.7 & 15.7 \\
\hline \multirow[t]{2}{*}{2016} & 60.2 & 37.5 & 88.3 & 38.4 & 31.8 & 1879 & 175 & 4.7 & 2453 & 801 & 40.7 & 21.4 \\
\hline & & & Average 14-16 & 34.4 & 41.0 & & & & & Average 14-16 & 37.6 & 17.4 \\
\hline
\end{tabular}


Figure 23.1.1. Nephrops FU 20-21. Number of Irish vessels reporting landings >10 t.


Figure 23.1.2. Nephrops FU 20-21. Combined box and kite plot of vessel power on the FU20-21 grounds by year. The blue line indicates the mean.


Figure 23.2.1. Nephrops FU 20-21. Landings in tonnes by country.


Figure 23.2.2. Nephrops FU 20-21. Effort data (Kw days) for the Irish otter trawl Nephrops directed fleet.


Figure 23.2.3. Nephrops FU 20-21. Commercial length frequency distribution by country. Minimum landing size of 25 mm (European MLS) and 35 mm (French MLS) displayed.


Figure 23.2.4. Nephrops FU 20-21. Annual mean weights (gr) in the landings and discards by country and combined scaled to international landings.


Figure 23.2.5. Nephrops FU 20-21. Annual discard ogive derived from Irish sampling. Minimum landing size of 25 mm (European MLS) as black line.


Figure 23.2.6. Nephrops FU 20-21. Contour plots of krigged density estimates for the UWTV surveys from 2013 to 2016.


Figure 23.2.7. Nephrops FU 20-21. Time-series of abundance estimates for FU20-21 (error bars indicate \(95 \%\) confidence intervals).


Figure 23.2.8. Nephrops FU 20-21. Mean size trends for catches by sex from the IBTS-IGFS Irish survey in the Celtic Sea.


Figure 23.2.9. Nephrops FU 20-21. Mean size trends for catches by sex from the IBTS-EVHOE French survey in the Celtic Sea.


Figure 23.3.1. Nephrops FU 20-21. Harvest ratio (\% dead removed / UWTV abundance). The dashed and solid lines are the MSY proxy and the harvest rate respectively.

\section*{24 Norway lobster (Nephrops norvegicus) in divisions 7.g and 7.f, Functional Unit 22 (Celtic Sea, Bristol Channel)}

\section*{Type of assessment in 2016}

UWTV based assessment using WKNEPH 2009 protocol as described in the stock annex. The TV survey is due to be repeated in the summer 2017 and the new survey will form the basis of advice for this stock in the autumn.

\section*{ICES advice applicable to 2016}
"ICES advises that when the MSY approach is applied, catches in 2016 (assuming zero discards) should be no more than 3027 tonnes. If instead discard rates continue at recent values (average of 2012-2014) and there is no change in assumed discard survival rate, this implies landings of no more than 2778 tonnes.

To ensure that the stock in functional unit (FU) 22 is exploited sustainably, management should be implemented at the functional unit level."

\section*{ICES advice applicable to 2017}
"ICES advises that when the MSY approach is applied, and assuming that discard rates and fishery selection patterns do not change from the average of 2013-2015, catches in 2017 should be no more than 2063 tonnes. This implies landings of no more than 1807 tonnes.

To ensure that the stock in functional unit (FU) 22 is exploited sustainably, management should be implemented at the functional unit level."

\subsection*{24.1 General}

\section*{Stock description and management units}

The Smalls Nephrops stock (FU22) covers ICES rectangles 31-32E3, 31-32E4 within 7.f.g. It is included in the whole ICES Area 7 together with Irish Sea East and West [FU14, FU15], Porcupine Bank [FU16], Aran Grounds [FU17], northwest Irish Coast [FU18], southeast and southwest Irish Coast [FU19], NW Labadie, Baltimore and Galley [FU20-21], Jones and Cockburn [FU21].

Historically FU20-22 has covered an amalgamation of several spatially distinct mud patches; FU 20 NW Labadie, Baltimore and Galley, FU 21 Jones and Cockburn and FU22 the Smalls. There is no evidence that the whole exploited area belongs to the same stock or that there are several patches linked in meta-population sense. WGCSE 2013 recommended that FU20-22 should be split into FU20-21 and FU22 for the purposes of assessment and advice provision. The map below shows FU22 assessment area (blue) and TAC area (red). There is no evidence that the individual functional units belong to the same stock. See Section 18 for details on Nephrops in Subarea 7 general section.


\section*{Ecosystem aspects}

This section is detailed in stock annex.

\section*{Fishery description}

Ireland, France and the UK are the main countries involved in the FU22 Nephrops fishery. In the early 2000s the Republic of Ireland fleet had on average over \(70 \%\) of the landings and this has increased to over \(90 \%\) from this FU in recent times. A description of this fleet is given in the stock annex. A description of the fleet is given in the stock annex. The time-series of numbers of vessels is updated in Figure 24.1.1. The numbers of vessels has been increasing in recent years. The time-series of vessel power is shown as a box and kite plot in Figure 24.1.2.

Irish landings from this FU come mainly from ICES statistical rectangle 31E3. The fishery on the Smalls grounds operates throughout the year, weather permitting with a seasonal trend

French trawlers targeting Nephrops in the Celtic Sea operate mainly in FU20-21., In the early 2000s French fleet had on average \(30 \%\) of the landings from FU22 where this has decreased to \(\sim 2 \%\) in recent times. \(80-90 \%\) of the FU22 French landings come from ICES statistical rectangle 31E3.

UK fleet is mainly UK-Northern Irish vessels in this fishery where in recent years the UK fleet had on average \(\sim 10 \%\) of the landings.

\section*{Fishery in 2016}

In 2016, 81 Irish vessels reported landings from FU22. Of these, 67 vessels reported landings in excess of 10 t . Vessels \(>18 \mathrm{~m}\) account for \(90 \%\) of the landings in 2016. In recent years several newer vessels specializing in Nephrops fishing have participated periodically in this fishery. These vessels target Nephrops on several other grounds within the TAC area and move around to optimize catch rates. In 2016, 15 French trawlers reported landings for FU22. French vessels switch between FU20-21 and FU22. In 2016, fourteen Northern Ireland and six UK(E\&W) vessels reported landings for this FU.

The French minimum mesh size of codend was set at 100 mm since January 2000 the majority of Irish landings are from vessels with \(80-99 \mathrm{~mm}\) codend mesh.

\section*{Information from stakeholders}

None presented.

\subsection*{24.2 Data}

\section*{InterCatch}

Data were available in InterCatch and used on a trial basis.

\section*{Landings}

The reported landings time-series by country is shown in Figure 24.2.1 and Table 24.2.1. The reported Irish landings from FU22 have increased since 2000 to the present highest level observed in 2016 of approximately 3000 t . French landings have gradually decreased since the early 2000s to the present to the lowest level (7 t). Reported landings from the UK have fluctuated with no obvious trend. Northern Ireland had the highest landings at 271 t followed by England and Wales reporting 24 t and 18 t from Scotland. In 2016 Belgium reported 3 t from this FU due to quota swap.

\section*{Effort}

In line with WGCSE 2015 recommendation effort is reported in KWdays and lpue reported in KG/kwdays in the knowledge that the trend is likely to be a biased underestimate because it is not adjusted for efficiency or behavioural changes. The effort series is based on the same criteria for FU15, 16, 17, 22 and 20-21 ( \(30 \%\) landings threshold) and will be contingent on the accuracy of landings data reported in logbooks. Effort data are available for the Irish Nephrops directed fleet in FU22 from 1995-2016. The time-series of effort and lpue is updated in Figure 24.2.2 and Table 24.2.2.

Effort shows an increasing trend since the early 2000s (Table 24.2.2. and Figure 24.2.2).

\section*{Sampling levels}

A dedicated sampling of landings and discards began in 2003 by Ireland. Sampling levels in 2016 were good and comparable to levels in 2015 (Figure 24.2.3) Sampling levels, data aggregating and raising procedures are documented in stock annex.

\section*{Commercial length-frequency distributions}

The Irish sampling programme started in 2003 and since then coverage and intensity have been very good covering the seasonal trend of the fishery. The mean size of Nephrops in Irish landings has remained stable for both sexes. The mean size of Nephrops in the catch has remained relatively stable since 2005 (Figure 24.2.4) with a slight increase observed in 2016. There is an increase in mean size in the catches in 2007 to 2009 for both sexes which is linked to the recruitment signal picked up by both the UWTV and Irish groundfish survey.

\section*{Sex ratio}

The sex ratio by year is shown in Figure 24.2.5. This shows some fluctuations over time. The sex ratio has a distinct seasonal pattern (Figure 24.2.6) with lowest males proportions in the samples in May and June. Males dominate the catches in the autumn and winter.

\section*{Mean weight explorations}

Explorations of the mean weight in the catch samples by sex shows a strong cyclical pattern in the females (Figure 24.2.6). This corresponds with the emergence of mature females from the burrows to mate in summer. There is an increase in mean weight in 2007 to 2009 for both sexes which is linked to the recruitment signal picked up by both the UWTV and Irish groundfish survey (Figure 24.2.10). The annual mean weight estimate for landings and discards is shown in Figure 24.2.7. The mean weight estimates show a slight increase.

\section*{Discarding}

Since 2003 discard rates have been estimated using unsorted catch and discards sampling. This involves unsorted catch and discard samples being provided by vessels or collected by observers at sea on discard trips. The catch sample is partitioned into landings and discards using an on-board discard selection ogive derived for the discard samples. Sampling effort is stratified monthly, but quarterly aggregations are used to derive length distributions and selection ogives. The length-weight regression parameters given in the stock annex are used to calculate sampled weights and appropriate quarterly raising factors. The sampling intensity and coverage has varied over the timeseries, but in recent years has been good.

Discard rates range between 6-34\% of total catch by weight and 10-48\% of total catch by number (Table 24.2.4). Discard rate of females tends to be higher due to the smaller average size and market reasons. There is no information on discard survival rate in this fishery. \(25 \%\) is assumed in line with other Nephrops stocks in the Celtic Sea (Charuau et al., 1982). Highest discard rates were observed in 2007 as a result of the recruitment into the fishery in 2006.

\section*{Surveys}

\section*{Abundance indices from UWTV surveys}

The methods used during the survey were similar to those employed for UWTV surveys of Nephrops stocks around Ireland and elsewhere and are documented by WKNEPHTV (ICES, 2007), SGNEPS (ICES, 2009; 2010; 2012) and WGNEPS (ICES, 2013; 2014; 2015; 2016). SGNEPS 2012 (ICES, 2012) recommended that a CV (or relative standard error) of \(<20 \%\) is an acceptable precision level for UWTV survey estimates of abundance. This allowed sampling intensity to be reduced from around 90 stations in the past to 41 on the Smalls grounds in 2016 which allowed survey coverage of other FUs. A randomised isometric grid design was employed with UWTV stations at 5.5 nmi intervals, whereas previously a 3.0 nmi square grid was used. Operational details of the 2016 UWTV survey are available (ICES, 2016).

WKCELT 2014 concluded that WGCSE or WGNEPS should make recommendations on the most appropriate fill in procedure to be adopted in cases when stations could not be surveyed. Seven stations in FU22 were not surveyed successfully in 2015 due to very poor visibility conditions encountered as a result of strong tides. WGCSE 2015 recommended the following procedure for this case:

Two buffer zones of 1 nmi and 2 nmi distance were generated around the missing stations. The counts and mean of historic density estimates within the 1 and 2 nmi buffers were calculated. The standard kriging procedure was carried out and summary results were computed for the 1 and 2 nmi "fill-ins". Finally the mean of historic densities
within 2 nmi buffer of the planned stations were used in the calculation of the 2015 abundance.

The blanked krigged contour plot and posted point density data are shown in Figure 24.2.8. The krigged contours correspond very well to the observed data. In general the densities are higher in the central area of the ground with a localised hotspot centrally and also in the southwestern leg. Densities and abundance have remained stable in the time-series with the exception of the first year which was the highest in the series. The mean density in 2016 is approximately \(36 \%\) decrease on 2015 and is the lowest observed in the series. The summary statistics from this geostatistical analysis are given in Table 24.2.5 and plotted in Figure 24.2.9. The statistical analysis follows these steps documented in Lordan et al., 2016 in press): annual variograms were used to create krigged grid files and the resulting cross-validation data were plotted. If the results looked reasonable then surface plots of the grids were made using a standardised scale. The final part of the process was to limit the calculation to a fixed ground boundary using a blanking file. The resulting blanked grid was used to estimate the mean, variance, standard deviation, coefficient of variation, domain area and total burrow abundance estimate.

The 2016 estimate of 866 million burrows is the lowest observed, although estimates have remained fairly stable since the survey commenced. The estimation variance of the survey as calculated by EVA is very low (CVs in the order \(<8 \%\) ).

\section*{Groundfish survey data}

The Irish groundfish survey (IGFS-WIBTS-Q4) has been carried out since 2003 (Stokes et al., 2014; ICES, 2015). This provides information on length-frequency compositions, mean size in the catches, cpue of Nephrops in FU22. The mean size of the catches is stable over the time-series except in 2006 and 2008 which signals recruitment into the fishery in 2006 and 2007 (Figure 24.2.10). This signal of recruitment was also picked up during the 2006 UWTV survey (Doyle et al., 2012). The groundfish survey provides a useful indicator of recruitment in this FU.

\subsection*{24.3 Assessment}

\section*{Comparison with previous assessments}

The WGCSE 2017 carried out an UWTV based assessment for this stock. The methods used were very much in line with WKNEPH (ICES, 2009) and the approach taken for other Nephrops stocks in areas 6 and 7 by WGCSE.

\section*{State of the stock}

UWTV abundance estimates suggest that the stock size is stable with a recent decline in 2016. The 2016 estimate is the lowest observed in the time-series and is below the MSY \(B_{\text {trigger. }}\) The2016 estimate ( 866 million) is above the average of the series (geomean [2006-2016]: 1240 million).

Harvest rate is calculated as (landings + dead discards)/(abundance estimate). Table 24.3.1 and Figure 24.3.1 summarize recent harvest rates. Recent harvest rates have fluctuated due to recruitment pulses into the fishery in 2006 and 2010.

\subsection*{24.4 Catch options table}

Catch option table inputs and historical estimates of mean weight in landings and harvest ratios are presented in Table 24.3.1 and summarised below.

Since 2003 mean weight in the landings has varied between 18-26 gr (Figure 24.2.7). In line with previous practice an average (2003-2016) of mean weights is used to account for this variability. Three year average (2014-2016) of proportion of removals retained was used as is standard for other Nephrops stocks. The estimate harvest ratio has also varied a lot, \(5-24 \%\) with 2007 being the highest observed (Figure 24.3.1). This is a result of recruitment into the fishery in 2006 and 2007.

The basis for the catch options.
\begin{tabular}{lll}
\hline Variable & Value & Notes \\
\hline \begin{tabular}{l} 
Stock abun- \\
dance
\end{tabular} & \begin{tabular}{l} 
Available \\
October \\
2017
\end{tabular} & UWTV survey 2017 \\
\hline \begin{tabular}{l} 
Mean weight \\
in landings
\end{tabular} & 22.1 g & Average 2003-2016 \\
\hline \begin{tabular}{l} 
Mean weight \\
in discards
\end{tabular} & 12.0 g & Average 2003-2016 \\
\hline \begin{tabular}{l} 
Discard rate
\end{tabular} & \(20.7 \%\) & \begin{tabular}{l} 
Average 2014-2016 (by number). Calculated as discards divided \\
by landings + discards.
\end{tabular} \\
\hline \begin{tabular}{l} 
Discard sur- \\
vival rate
\end{tabular} & \(25 \%\) & \begin{tabular}{l} 
Only applies in scenarios where discarding is allowed.
\end{tabular} \\
\hline \begin{tabular}{l} 
Dead discard \\
rate
\end{tabular} & \(16.3 \%\) & \begin{tabular}{l} 
Average 2014-2016 (by number). Calculated as dead discards di- \\
vided by removals (landings + dead discards). Only applies in \\
scenarios where discarding is allowed.
\end{tabular} \\
\hline
\end{tabular}

A prediction of landings for the FU22 using the approach agreed procedure proposed at WKNEPH 2009 and outlined in the stock annex will be made on the basis of the 2017 UWTV survey. This will be presented in October 2017 for the provision of advice.

\subsection*{24.5 Reference points}

New reference points were derived by WKMSYRef4 (ICES, 2016XX, 2016YY) for FU22. These were updated on the basis of an average of estimated Fmsy proxy harvest rates over a period of years, this corresponds more closely to the methodology for finfish. In cases where there is a clear trend in the values a five year average was chosen. Similarly, the five year average of the F at \(95 \%\) of the YPR obtained at the FMSY proxy reference point was proposed as the \(\mathrm{F}_{\text {MSY }}\) lower bound and the five year average of the F above \(\mathrm{F}_{\max }\) that leads to YPR of \(95 \%\) of the maximum as the upper bound. Using an average value also has the advantage of reducing the effect of any unusually high or low estimates of the Fmsy proxy which occasionally appear.
This stock previously did not have MSY Btrigger specified, the time-series and range of indicator biomass is also limited such that direct use of \(\mathrm{B}_{\text {loss }}\) is considered too close to equilibrium biomass. The workshop proposed to use the \(5 \%\) interval on the probability distribution of indicator biomass assuming a normal distribution, which is analogous
to the \(5 \%\) on BMSY proposed for finfish stocks assuming these Nephrops FU have been exploited at a rate close to near HRMSY. The MSY B trigger for FU22 is 987 million individuals rounded to 990 million.
\begin{tabular}{cccccc}
\hline Stock code & MSY Flower* & FMSY* & \begin{tabular}{c} 
MSY Fupper* \\
with AR
\end{tabular} & MSY Btrigger & \begin{tabular}{c} 
MSY Fupper* \\
with no AR
\end{tabular} \\
\hline nep- 22 & \(10.2 \%\) & \(12.8 \%\) & \(12.8 \%\) & \(990^{* * *}\) & \(12.8 \%\) \\
\hline
\end{tabular}
* Harvest rate (HR).
*** Abundance in millions.

\subsection*{24.6 Management strategies}

No management strategies exist for this stock.

\subsection*{24.7 Quality of assessment and forecast}

Since 2006 a dedicated annual UWTV survey has provided abundance estimates for FU22 with high precision. There are several key uncertainties and bias sources in the method used here (these are discussed further in WKNEPH 2009). Various agreed procedures have been put in place to ensure the quality and consistency of the survey estimates following the recommendations of several ICES groups (WKNEPTV 2007; WKNEPHBID 2008; SGNEPS 2009; WGNEPS 2016). Ultimately there still remains a degree of subjectivity in the production of UWTV abundance estimates (Marrs et al., 1996). Taking explicit note of the likely biases in the surveys may at least provide an estimate of absolute abundance that is more accurate, although no more precise (WKNEPH, 2009). The survey estimates themselves are very precisely estimated (CVs \(2-8 \%)\) given the homogeneous distribution of burrow density and the modelling of spatial structuring. The cumulative bias estimates for FU22 are largely based on expert opinion. The precision of these bias corrections cannot yet be characterised, but is likely to be lower than that observed in the survey.

In 2015 there is added uncertainty, not accounted for in the model or CV estimate, because \(17 \%\) of the planned TV stations could not be successfully surveyed due to poor visibility on the seabed. However, the spatial distributions of densities have been fairly consistent over time and the overall density has also been relatively stable. The fill in procedure used to generate density estimates for the seven missing stations should be a good approximation.

In the provision of catch options based on the absolute survey estimates additional uncertainties related to mean weight in the landings and the discard rates also arise. For FU22 deterministic estimates of the mean weight in the landings and discard rates for 2003-2016 are used by the WG to account for the variability in these over time. This variability has occurred when large recruitments are observed in the stock as was the case in 2006 and 2007.

Fisheries catching Nephrops in Subarea 7 will be covered by the EU landing obligation from 2016 (EC, 2015). Nephrops creel fisheries are exempted from the landings obligation, with a de minimis exemption consisting of a \(7 \%\) discard rate by weight for the trawl fishery in 2016 and 2017. The average discard rate by weight for FU22 over the last three years is \(25 \%\). Two different catch options at FmSY have been provided to give some information on the impact of different LO scenarios on catches.

Landings data are adjusted to take into account landings that have been misreported from FU16 since 2011. This adjustment is thought to be reasonably accurate (See Section 20).

Sampling and discard estimates have improved over the time-series.

\subsection*{24.8 Recommendation for next benchmark}

This stock has not been formally benchmarked by ICES although the approach used has. WGCSE recommends that the issue list below can be addressed through an interbench process:
- The methodology for aggregating length-distributions and calculating landings and discard LFDs and mean weights should be thoroughly investigated.
- The biological parameters used as inputs to the SCA should be reconsidered; growth parameters, length-at-maturity and natural mortality.
- The historical time-series of landings and effort by rectangle should be disaggregated and options for standardisation of lpue investigated.
- Historical sampling and groundfish survey data in this FU should also be disaggregated as far as possible back in time and investigated for useful trends and signals.

\subsection*{24.9 Management considerations}

The trends from the fishery (landings, effort, mean size, etc.) appear to be relatively stable. The UWTV abundance and mean density estimates show some fluctuations in burrow abundance although it is stable over the time-series. There are fluctuations in the harvest rates which are related to the signals of recruitment into the fishery in 2006 and 2007 picked up by the UWTV and IGFS-WIBTS-Q4. Recent harvest rates for the FU22 Smalls suggest the stock is exploited below Fmš.

A new survey point should be available in September 2017 which will provide a more up to date prognosis of stock status. This up to date survey information will be used to generate catch options and the provision of advice in October 2017.

In recent years several newer vessels specializing in Nephrops fishing have participated in this fishery. These vessels target Nephrops on several other grounds within the TAC area and move around to optimize catch rates. There have been concerns that effort could be displaced towards the Smalls and other Nephrops grounds due to effort controls in 7.a and 6.a. This has not happened to date and the 2014 effort was just below the recent average in the time-series.

There has been a trend for Irish vessels ( \(>18 \mathrm{~m}\) ) to switch to multi (quad) rig trawls. Provisional data suggest a \(\sim 30 \%\) increase in Nephrops catch rates and a reduction in fish bycatch of \(\sim 30 \%\) due to the lower headline height.

Nephrops fisheries in the Smalls have non-Nephrops bycatch composition. Cod, whiting and to a lesser extent haddock are the main bycatch species (Davie and Lordan, 2011). A target whiting fishery also overlaps with the Nephrops fishery in this area but this has negligible bycatch of Nephrops.

\subsection*{24.10References}

Charuau A., Morizur Y., Rivoalen J.J. 1982. Survival of discarded Nephrops norvegicus in the Bay of Biscay and in the Celtic Sea. ICES CM 1982/B:13.

Davie S., Lordan C. 2011. Definition, dynamics and stability of métiers in the Irish otter trawl fleet. Fish. Res. 111, 145-158. http://dx.doi.org/10.1016/j.fishres.2011.07.005 or http://hdl.handle.net/10793/673.

Doyle, J., Lordan, C., Hehir, I., Fee, D., O'Connor, S., Browne, P. and Casserly, J. 2012. The "Smalls" Nephrops Grounds (FU22) 2012 UWTV Survey Report and catch options for 2013. Marine Institute UWTV Survey report. http://hdl.handle.net/10793/833.

ICES. 2007. Report of the Workshop on the use of UWTV surveys for determining abundance in Nephrops stocks throughout European waters (WKNEPHTV). ICES CM: 2007/ACFM: 14.

ICES. 2008. Report of the Workshop and training course on Nephrops burrow identification (WKNEPHBID). ICES CM 2008/LRC:03.

ICES. 2009. Report of the Study Group on Nephrops Surveys (SGNEPS). ICES CM 2009/LRC: 15, pp 52.

ICES. 2009. Report of the Benchmark Workshop on Nephrops assessment (WKNEPH). ICES CM 2009/ACOM:33.

ICES. 2010. Report of the Study Group on Nephrops Surveys (SGNEPS), 9-11 November 2010, Lisbon, Portugal. ICES CM 2010/SSGESST:22.

ICES. 2012. Report of the Study Group on Nephrops Surveys (SGNEPS). ICES CM 012/SSGESST:19.

ICES. 2014. Report of the Working Group on Nephrops Surveys (WGNEPS), 4-6 November 2014, Lisbon, Portugal. ICES CM 2014/SSGESST:20. 57 pp.

ICES. 2015. Report of the Working Group on Nephrops Surveys (WGNEPS), 10-13 November 2015, Cadiz, Spain. ICES CM 2015/ SSGIEOM:30.52 pp.

ICES. 2015. Report of the International Bottom Trawl Survey Working Group (IBTSWG), 23-27 March 2015, Bergen, Norway. ICES CM 2015/ SSGIEOM:20. 124 pp.

ICES. 2016. Report of the Working Group on Nephrops Surveys (WGNEPS), 7-8 November 2016, Reykjavík, Iceland. ICES CM 2016/ SSGIEOM:33.67 pp.

ICES. 2016. Report of the Workshop on Nephrops Burrow counting (WKNEPS), 9-11 November 2016. Reykjavík, Iceland. ICES CM 2016/ SSGIEOM:34.65 pp.

ICES. 2016XX. EU request to ICES to provide Fmsy ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

ICES. 2016YY. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

Lordan, C., Doyle, J., O'Connor, S., Blaszkowski, M., McAuliffe, M., and O'Sullivan, D. 2016.The "Smalls" Nephrops Grounds (FU22) 2016 UWTV Survey Report and catch options for 2017. Marine Institute UWTV Survey report. In press.

Marrs S.J., Atkinson R.J.A., Smith C.J., Hills J.M. 1996. Calibration of the towed underwater TV technique for use in stock assessment of Nephrops norvegicus. Reference no. 94/069 (Study Project in support of the Common Fisheries Policy XIV/1810/C1/94, call for proposals 94/C 144/04).

Stokes, D., Gerritsen. H., O'Hea, B., Moore, S.J. and Dransfeld, L. 2014. "Irish Groundfish Survey Cruise Report, 24 September-17 December 2014", FEAS Survey Series;2014/01. http://hdl.handle.net/10793/1064.

Table 24.2.1. Nephrops in FU22 (Smalls Grounds). Landings in tonnes by country.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{FU 22 Landings (T)} \\
\hline Year & France & Rep. of Ireland & UK & Belgium & Total \\
\hline 1999 & 1,027 & 741 & 20 & & 1,788 \\
\hline 2000 & 1,186 & 1,687 & 34 & & 2,907 \\
\hline 2001 & 876 & 2,054 & 5 & & 2,935 \\
\hline 2002 & 595 & 1,392 & 3 & & 1,990 \\
\hline 2003 & 799 & 1,241 & 10 & & 2,050 \\
\hline 2004 & 465 & 1,330 & 33 & & 1,827 \\
\hline 2005 & 494 & 1,931 & 0 & & 2,425 \\
\hline 2006 & 302 & 1,398 & 52 & & 1,752 \\
\hline 2007 & 218 & 2,614 & 48 & & 2,881 \\
\hline 2008 & 312 & 2,474 & 328 & & 3,114 \\
\hline 2009 & 235 & 1,642 & 368 & & 2,245 \\
\hline 2010 & 136 & 2,220 & 351 & & 2,708 \\
\hline 2011 & 54 & 1,548 & 15 & & 1,617 \\
\hline 2012 & 65 & 2,509 & 59 & & 2,633 \\
\hline 2013 & 83 & 2,079 & 86 & 7 & 2,633 \\
\hline 2014 & 29 & 2,443 & 134 & 8 & 2,615 \\
\hline 2015 & 9 & 2258 & 97 & 5 & 2,368 \\
\hline 2016 & 7 & 2952 & 314 & 3 & 2016 \\
\hline
\end{tabular}

Table 24.2.2. Nephrops in FU22 (Smalls Grounds). Effort data for the Irish otter trawl Nephrops directed fleet.
\begin{tabular}{|c|c|c|}
\hline Year & Effort (Kw Days) & LANDINGS (TONNES) \\
\hline 1995 & 551,930 & 1,226 \\
\hline 1996 & 411,724 & 1,010 \\
\hline 1997 & 473,822 & 1,096 \\
\hline 1998 & 524,420 & 1,353 \\
\hline 1999 & 292,419 & 620 \\
\hline \[
2000
\] & 585,809 & 1,335 \\
\hline 2001 & 788,999 & 1,964 \\
\hline 2002 & 614,958 & 1,298 \\
\hline 2003 & 638,990 & 1,000 \\
\hline \[
2004
\] & 619,862 & 981 \\
\hline 2005 & 986,292 & 1,882 \\
\hline 2006 & 855,110 & 1,374 \\
\hline 2007 & 1,130,765 & 2,677 \\
\hline 2008 & 1,047,430 & 2,501 \\
\hline 2009 & 702,412 & 1,605 \\
\hline 2010 & 962,427 & 2,198 \\
\hline 2011 & 723,924 & 1,497 \\
\hline 2012 & 970,255 & 2,260 \\
\hline 2013 & 902,073 & 1,849 \\
\hline 2014 & 915,180 & 2,182 \\
\hline 2015 & 970,561 & 2,076 \\
\hline 2016 & 1,269,573 & 2,761 \\
\hline
\end{tabular}

Table 24.2.4. Nephrops in FU22 (Smalls Grounds). Landings and discards weight and numbers by year and sex.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{Female} & \multicolumn{2}{|c|}{MALE} & Both sexes \\
\hline Year & Landings (t) & Discards (t) & Landings (t) & Discards (t) & \% Discard \\
\hline 2003 & 504 & 193 & 886 & 170 & 21\% \\
\hline 2004 & 803 & 60 & 796 & 44 & 6\% \\
\hline 2005 & 1,075 & 692 & 1,289 & 428 & 32\% \\
\hline 2006 & 758 & 307 & 1,080 & 300 & 25\% \\
\hline 2007 & 1,041 & 903 & 2,137 & 738 & 34\% \\
\hline 2008 & 976 & 448 & 2,408 & 358 & 19\% \\
\hline 2009 & 645 & 200 & 2,181 & 249 & 14\% \\
\hline 2010 & 1,066 & 245 & 2,015 & 191 & 12\% \\
\hline 2011 & 402 & 34 & 1,129 & 78 & 7\% \\
\hline 2012 & 645 & 114 & 1,864 & 130 & 9\% \\
\hline 2013 & 567 & 160 & 1,514 & 174 & 14\% \\
\hline 2014 & 951 & 219 & 1,493 & 169 & 14\% \\
\hline 2015 & 737 & 94 & 1,522 & 77 & 7\% \\
\hline 2016 & 730 & 166 & 2221 & 299 & 14\% \\
\hline & Female & ERS '000s & Male & ERS '000s & Both Sexes \\
\hline Year & Landings & Discards & Landings & Discards & \% Discard \\
\hline 2003 & 29,116 & 20,427 & 35,772 & 16,335 & 36\% \\
\hline 2004 & 35,081 & 4,417 & 27,612 & 3,047 & 11\% \\
\hline 2005 & 56,023 & 55,037 & 55,817 & 33,507 & 44\% \\
\hline 2006 & 48,589 & 30,199 & 53,375 & 27,165 & 36\% \\
\hline 2007 & 74,047 & 98,994 & 107,834 & 66,434 & 48\% \\
\hline 2008 & 54,518 & 39,354 & 88,841 & 26,430 & 31\% \\
\hline 2009 & 38,239 & 19,316 & 78,474 & 19,796 & 25\% \\
\hline 2010 & 60,796 & 17,201 & 79,957 & 13,571 & 18\% \\
\hline 2011 & 19,377 & 2,003 & 38,878 & 4,288 & 10\% \\
\hline 2012 & 38,211 & 11,779 & 79,779 & 11,088 & 16\% \\
\hline 2013 & 30,197 & 14,471 & 58,890 & 13,813 & 24\% \\
\hline 2014 & 45,619 & 16,564 & 52,032 & 11,809 & 23\% \\
\hline 2015 & 47,225 & 11,207 & 69,748 & 8,139 & 14\% \\
\hline 2016 & 43,158 & 19,881 & 99,039 & 28,247 & 25\% \\
\hline
\end{tabular}

Table 24.2.5. Nephrops in FU22 (Smalls Grounds). Results summary table for geostatistical analysis of UWTV survey.

* reduced isometric grid 4.5 nmi .

Table 24.3.1. Nephrops in FU22 (Smalls Grounds). Short-term catch option prediction inputs and recent estimates of mean weight in landings and harvest rate (cells in bold indicates inputs to catch option calculations).
\begin{tabular}{lllllllllll}
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline &  &  &  &  &  &  &  &  &  & Total discards* &  &  \\
\hline だ & millions & millions & millions & \% & \% & millions & & \% & tonnes & tonnes & gramme & gramme \\
\hline 2015 & 122.6 & 20.3 & 137.8 & 11.0 & 14.2 & 1363 & 179 & 10.1 & 2,368 & 179 & 19.3 & 8.8 \\
\hline 2016 & 157.8 & 53.4 & 197.9 & 20.2 & 25.3 & 866 & 112 & 22.8 & 3,276 & 516 & 20.8 & 9.7 \\
\hline & & & Average 14-16 & 16.4 & 20.7 & & & & & Average 03-16 & 22.1 & 12.0 \\
\hline
\end{tabular}


Figure 24.1.1. Nephrops in FU22 (Smalls Grounds). Time-series of the number of Irish vessels reporting landings of Nephrops from FU22 with a \(>10 \mathrm{t}\) threshold.


Figure 24.1.2. Nephrops in FU22 (Smalls Grounds). Combined box and kite plot of vessel power on the Smalls Grounds by year. The blue line indicates the mean.


Figure 24.2.1. Nephrops in FU22 (Smalls Grounds). Landings in tonnes by country.


Figure 24.2.2. Nephrops in FU22 (Smalls Grounds). Fishing effort Kw days for the Irish otter trawl Nephrops directed fleet ( \(30 \%\) of Nephrops weight in total landings).


Figure 24.2.3. Nephrops in FU22 (Smalls Grounds). Sampling levels.

\section*{Length frequencies for catch (dotted Nephrops in FU22}


Figure 24.2.4 Nephrops in FU22 (Smalls Grounds). Mean size trends for catches and whole landings by sex 2003-2016.


Figure 24.2.5. Nephrops in FU22 (Smalls Grounds). Annual sex ratio of landings (2003-2016) and catch (2003-2016).


Figure 24.2.6. Nephrops in FU22 (Smalls Grounds). Mean weight in catch samples by sex with loess smoother and showing cyclical trends.


Figure 24.2.7. Nephrops in FU22 (Smalls Grounds). Annual mean weights (gr) in the landings and discards.


Figure 24.2.8. Nephrops in FU22 (Smalls Grounds). Contour plots of the krigged density estimates for the UWTV surveys from 2006-2016.

FU22 TV abundance


Figure 24.2.9. Nephrops in FU22 (Smalls Grounds). Time-series of abundance estimates for FU22 (error bars indicate \(95 \%\) confidence intervals) and \(B_{\text {trigger }}\) is dashed green line.

\section*{Length frequencies for IGFS Survey Catches: \\ Nephrops in FU22}


Figure 24.2.10. Nephrops in FU22 (Smalls Grounds). Mean size trends for catches by sex from Irish Groundfish Survey 2003-2016.


Figure 24.4.1. Nephrops in FU22 (Smalls Grounds). Harvest Ratio (\% dead removed/UWTV abundance). The dashed and solid lines are the MSY proxy and the harvest rate respectively.
24.11 Audit of Nephrops FU22 (Smalls Grounds)

There is no audit available.

\section*{25 Plaice in Division 27.7.a (Irish Sea)}

\section*{Type of assessment in 2017}

ICES WKIRISH (2017) benchmarked this assessment and choose the SAM model, including estimates of discards-at-age into the catch matrix. A baseline run of the model was performed using discards since 1981 reconstructed according to the medium discard scenario (ICES, WKIRISH 2017, Annex 4).

\section*{ICES advice applicable to 2016}

ICES advice applicable to 2016 ICES advises that when the precautionary approach is applied, catches in 2016 should be no more than 1244 tonnes. If this stock is not under the EU landing obligation in 2016 and discard rates do not change from the average of the last three years (2012-2014), this implies landings of no more than 343 tonnes.

\section*{ICES advice applicable to 2017}

ICES advises that when the precautionary approach is applied, catches in 2017 should be no more than 1493 tonnes. If this stock is not under the EU landing obligation in 2017 and discard rates do not change from the average of the last three years (20132015), this implies landings of no more than 436 tonnes.

Last year's advice is available at:
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2016/2016/ple-iris.pdf

\subsection*{25.1 General}

\section*{Stock description and management units}

The stock assessment area and the management unit are both Division 27.7.a (Irish Sea).

Management applicable in 2016 and 2017
Management of plaice in Division 27.7.a is by TAC and there is a minimum landing size (MLS) of 27 cm in force. The agreed TACs and associated implications for plaice in Division 27.7.a are detailed in the tables below.

2016
\begin{tabular}{ll|ll}
\hline Species: \begin{tabular}{lrl} 
Plaice \\
Pleuronectes platessa
\end{tabular} & & Zone: & \begin{tabular}{l} 
VIIa \\
(PLE/07A.)
\end{tabular} \\
\hline Belgium & 28 & \\
France & 12 & & \\
Ireland & 768 & & \\
The Netherlands & 9 & & \\
United Kingdom & 1081 & Analytical TAC \\
Union & 1098 & \\
TAC & & \\
\hline
\end{tabular}
\begin{tabular}{lr|ll}
\hline Species: \begin{tabular}{lll} 
Plaice \\
Pleuronectes platessa
\end{tabular} & Zone: & \begin{tabular}{l} 
VIla \\
(PLE \(/ 07 \mathrm{~A})\).
\end{tabular} \\
\hline Belgium & 28 & \\
France & 12 & & \\
Ireland & 768 & \\
The Netherlands & 9 & & \\
United Kingdom & 1098 & \\
Union & 1098 & Precautionary TAC \\
TAC & & \\
& & \\
\hline
\end{tabular}
(Source: Council Regulation (EU) 2017/127, ANNEX IA)

\section*{The fishery in 2016}

National landings data reported to ICES and Working Group estimates of total landings are given in Table 25.2.1. A summary by gear is given below.
\begin{tabular}{ccccccc}
\hline \begin{tabular}{c} 
Catch \\
\((2016)\)
\end{tabular} & \multicolumn{4}{c}{ Landings } & \multicolumn{2}{c}{ Discards } \\
\hline 1119 t & \begin{tabular}{c} 
Beam \\
trawl
\end{tabular} & Otter trawl & \begin{tabular}{l} 
Other gear \\
types
\end{tabular} & \begin{tabular}{l} 
Beam \\
trawl
\end{tabular} & Otter trawl & \begin{tabular}{l} 
Other gear \\
types
\end{tabular} \\
\cline { 2 - 7 } & \(49 \%\) & \(30 \%\) & \(21 \%\) & \(39 \%\) & \(44 \%\) & \(17 \%\) \\
\hline
\end{tabular}

The TAC in 2016 was 1098 tonnes and the working group estimate of landings in 2016 was 682 tonnes, which is a \(55 \%\) increase in landings comparable to 2015 and represents \(62 \%\) of the 2016TAC. This shortfall in estimated landings relative to the TAC has occurred in previous years, previously increasing steadily from 7\% of the TAC in 2003 to around \(70 \%\) in 2008, 2009 and 2012 and around \(80 \%\) in 2013 and 2014, before falling to \(60 \%\) in 2015 and 2016. The poor uptake of the quota is not a consequence of an inability to catch sufficient quantities of plaice greater than the MLS but rather is most likely due to the limited market demand and poor value of the catch.
Landings (based on working group estimates) by the Belgian, UK (E\&W), NI, Netherland and Irish fleets comprised approximately \(12 \%, 5 \%, 3 \%, 1 \%\) and \(79 \%\) respectively of total landings in 2016. The landings of plaice are mainly split between beam trawlers ( \(49 \%\); primarily Belgian vessels then Irish vessels) targeting sole, and otter trawlers ( \(30 \%\); UK and Irish vessels). Historically, otter trawling was dominated by UK vessels fishing for whitefish, but in recent years many vessels have switched to target Nephrops (Figure 25.2.1). Otter trawlers from Ireland and N. Ireland typically target Nephrops in the western Irish Sea.

High levels of discarding are known to occur in all fisheries that catch plaice in the Irish Sea (see Figures 25.2.4 to 25.2.6).

A general description of the fishery can be found in the stock annex (Annex 25) and also in 'Other Relevant Data' section below. For general mixed fisheries advice applicable to this stock and other species taken in the same fisheries, see Section 6.1.

\subsection*{25.2 Data}

\section*{Landings}

National landings data reported to ICES and Working Group estimates of total landings are given in Table 25.2.1. The working group procedures used to determine the total international landings numbers and weights-at-age are documented in the stock annex. As a result of increased rates of discarding, landed numbers-at-age for the younger ages (ages 2 to 4 ) have declined more rapidly over the last two decades than landings of older fish (Figure 25.2.2a).

\section*{Discards}

Discard sampling has been conducted by the UK(E\&W) since 2002 and by Ireland since 1993; Northern Ireland has collected data from 1996 (but not between 2003 and 2005), and Belgium since 2003. Length distributions (LD) of landed and discarded fish estimates are presented for all UK(E\&W) gears in Figure 25.2.4, for Irish otter trawls in Figure 25.2.5 and Belgian beam trawl fleets in Figure 25.2.6. For all of the fleets illustrated the discarding pattern is dominated by discarding of small fish, below the MLS of 27 cm .

WKFLAT 2011 first estimated total international discards-at-age and introduced them to the assessment of the stock for the first time. Due to limitations in the data available by gear type, discards for Ireland, France and Northern Ireland, for the years 2004-2011 were raised using UK estimates on the basis of equivalent gear types. A raising factor based on tonnages landed for these countries was calculated and applied to the \(\mathrm{UK}(\mathrm{E}+\mathrm{W})\) estimates of discard numbers. Finally, these estimates were added to those calculated for Belgium to give estimates of total international discard numbers-at-age.

Since 2012 catch data (landings and discards) are available from InterCatch disaggregated by country and fleet. Total international discards are raised from available discards data.

The total discard estimates (Table 25.2.1, Figure 25.2.2b) confirm the significant proportion of discarding that occurs in the fishery which has increased in time. Since 2004, the majority of the catch has been discarded ( \(62 \%\) average discard since 2004).

There is a considerable historic time period (1981-2003) for which no international raised discard estimates are available. The method for reconstructing discards prior to 2004 is based on size-varying discard rates and is documented in Annex 4 of ICES WKIRISH (2017) report.

\section*{Biological}

Landings numbers-at-age are given in Table 25.2.5 and plotted in Figure 25.2.2a. Weights-at-age in the landings and stock are given in Table 25.2.6. Discard weights-at-age are given in Table 25.2.7 and weights-at-age in the stock in Table 25.2.8. The history of the derivation of the landings weights and stock weights used in this assessment is described in the stock annex.

Mean weight-at-age in the landings and survey data indicate declines in both sexes throughout the Irish Sea since 1993 so that plaice at ages \(\leq 4\) are typically below MLS (see stock annex, Figure A2).

\section*{Surveys}

All available tuning data are shown in Tables 25.2.2, 25.2.3 (a and b) and 25.2.4. Due to inconsistencies in the available commercial tuning fleets, Irish Sea plaice assessments since 2004 have only included the UK(E\&W) beam trawl survey (UK(E\&W)-BTS-Q3) and the two NIGFS-WIBTS spawning biomass indices based on ground fish surveys (NIGFS-WIBTS-Q1 and NIGFS-WIBTS-Q4). For more information see WGNSDS 2004. The UK(E\&W)-BTS-Q3 index was revised by WKFLAT 2011 to include stations in the western Irish Sea and in St George's Channel. A second revision has been conducted this year to correct for some inconsistency in the index calculation (Cambiè and Earl, 2017). This revision does not substantially change the trend of the biomass index.

Previous reviews of the UK(E\&W)-BTS-Q3 mean standardised cpue trends have indicated that the survey has good internal consistency in monitoring trends across the stock area. For the entire Irish Sea, the biomass index of age 1-4 fish calculated from the UK(E\&W)-BTS-Q3 (Table 25.2.4) indicates an upwards trend between 1993 and 2003 with stability at a high level subsequently. The trends are mainly driven by increases in the biomass in the eastern Irish Sea (Figure 25.2.8). The NIGFS-WIBTS surveys show similar increases in biomass between 1993 and 2003/4 and then a further increase subsequently.

The NIGFS-WIBTS survey strata can be disaggregated into eastern (Strata 4-7) and western (Strata 1-3) subareas, where the subareas are divided by the deep trench that runs roughly north-south to the west of the Isle of Man (Figure 25.2.7, Table 25.2.3). The notable difference in mean biomass between spring and autumn in the western area (Strata 1-3) suggests either that spawning fish migrate into the area during spring or that catchability of plaice increases during spawning.

The SSB of plaice in the Irish Sea is also independently estimated using the Annual Egg Production Method (AEPM, Figure 25.2.2)
\begin{tabular}{ccc}
\hline Year & SSB (tonnes) & Catch/SSB harvest rate \\
\hline 1995 & 9081 & \\
\hline 2000 & 13303 & 15.16 \\
\hline 2006 & 14417 & 12.77 \\
\hline 2008 & 14352 & 19.5 \\
\hline 2010 & 15071 & \\
\hline
\end{tabular}

Catch (discards available from 2004) to egg survey biomass ratios indicate historically that the plaice in the Irish Sea has been lightly exploited. Splitting the SSB estimates from the AEPM into eastern and western Irish Sea areas (Figure 25.2.8) also indicates that the perceived increase in plaice biomass is due to increased production in the eastern Irish Sea only (For more details see stock annex).

In summary, the UK(E\&W)-BTS-Q3 in September, the NIGFS-WIBTS-Q3 index in October (but not NIGFS-WIBTS-Q1 March), and the AEPM indicate a sustained in-
crease in biomass in the eastern Irish Sea, but this rise does not appear to extend across the deep channel to plaice in the western Irish Sea (Figure 25.2.9).

\section*{Commercial cpue}

Age-based tuning data available for this assessment comprise three commercial fleets; the UK(E\&W) otter trawl fleet (UK(E\&W) OTB, from 2008), the UK(E\&W) beam trawl fleet (UK(E\&W)BT, from 1989) and the Irish otter trawl fleet (IR-OTB, from 1995). Due to inconsistencies in the available tuning fleets, Irish Sea plaice assessments since 2004 have omitted these indices. For more information see WGNSDS 2004. The effort and catch by these commercial fleets has been very low in recent years and the cpue data are no longer considered informative.

\section*{Other relevant data}

Table 25.2.2 and Figure 25.2.1 show that effort levels have decreased since 2002 for the majority of fleets. Both the UK otter and beam trawl fleets are close to their lowest recorded effort levels in time-series extending back to 1972 and 1978 respectively. Effort by UK Nephrops trawlers has greatly increased in the years 2006-2014 but has decreased in the last two years. However, this fleet is now the dominant UK fleet in terms of hours fished in 27.7.a. Belgian vessels operating in Division 7 typically move in and out of the Irish Sea, depending on the season, from specifically the Bristol Channel and Celtic Sea, the Bay of Biscay and the southern North Sea.

Since 2013, a problem with the gear effort information (000s hours fished) reported for the \(\mathrm{UK}(\mathrm{E}+\mathrm{W})\) commercial beam trawl fleet has been registered. Effort information from this fleet is largely missing as a result of a larger component of the fleet using the EU electronic logbook system to report its activities. Gear effort information reporting has not been mandatory with this system to date. As a result, few trips reported their gear effort information rendering the overall effort reported and resulting lpue unusable. However, an initial inspection of an alternate effort indicator for this gear (days fished) suggests that UK beam trawl effort in 2013, 2014, 2015 and 2016 is at the level observed in 2012. The otter trawl fleet effort reporting was unaffected by this as these vessels were not reporting their landings via this method in these years.

\subsection*{25.3 Historical stock development}

Model: Age-based analytical assessment (SAM) that uses landings and discards (Nielsen and Berg, 2014).

Software: \(R\) version 3.3.2 with additional packages (version in parenthesis):
stockassessment (0.2.0); FLCore (2.6.0); reshape (0.8.6); ggplot2 (2.2.1); Cairo (1.5-9); doParallel (1.0.10); TMB (1.7.9). (additional packages ellipse, MASS)

\section*{Model options chosen}

The Aarts and Poos model was replaced by the state-space assessment model (SAM). WGCSE 2016 agreed that the AP model was not the definitive assessment tool for Irish Sea plaice but a temporary solution to the fitting of datasets which included recent discards estimates but for which historic discard information was not available. Reconstructed values of historic discards (prior 2004) have been provided in the WKIRISH 2017 (Annex 4). The SAM model incorporates the estimated historic discards and is now used to run the assessment.

The model runs were performed using the R package 'stockassessment' (Nielsen et al., 2016). Settings for this update stock assessment are given in the table below. The update assessment follows the same procedure as in the WKIRISH 2017 benchmark assessment. A baseline run of the model was performed using discards since 1981 reconstructed according to the medium discard scenario (ICES, WKIRISH 2017, Annex 4 ). Discard survival was set at \(40 \%\), and natural mortality followed a Lorenzen curve, scaled to 0.12.

\section*{Input data types and characteristics}

Commercial catch-at-age data. Discards values available from 2004. Estimates of discards reconstructed for 1981-2003 (ICES, WKIRISH 2017). Only the dead fraction of discards (0.6) is accounted for in the model. Three survey indices (UK(E\&W)-BTS-Q3, NIGFS-WIBTS-Q1, and NIGFS-WIBTS-Q4); fixed maturity ogive; natural mortality constant over years and different across ages.

\section*{Data screening}

Data was screened as described in the stock annex.

\section*{Final update assessment}

ICES, WKIRISH (2017) benchmarked this assessment and included estimates of dis-cards-at-age into the catch matrix.

The assessment settings are shown in the following table, with changes to the previous year's settings highlighted in bold. Historic settings are given in the stock annex.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Assessment } \\
\text { year } \\
\hline
\end{gathered}
\] & & 2014 & 2015 & 2016 & 2017 \\
\hline Assessment model & & AP & AP & AP & SAM \\
\hline \multirow[t]{8}{*}{Tuning fleets} & UK (E\&W)-BTS-Q3 & Series omitted & Series omitted & Series omitted & Series omitted \\
\hline & \begin{tabular}{l}
Extended \\
UK (E\&W)- \\
BTS-Q3
\end{tabular} & \[
\begin{aligned}
& \text { 1993-2013, } \\
& \text { ages 1-6 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 1993-2014, } \\
& \text { ages 1-6 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 1993-2015, } \\
& \text { ages 1-6 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 1993-2016, } \\
& \text { ages 1-6 }
\end{aligned}
\] \\
\hline & UK(E\&W)
BTS Mar & Survey omitted & Survey omitted & Survey omitted & Survey omitted \\
\hline & \[
\begin{aligned}
& \text { UK(E\&W) } \\
& \text { OTB }
\end{aligned}
\] & Series omitted & Series omitted & Series omitted & Series omitted \\
\hline & \[
\begin{aligned}
& \text { UK(E\&W) } \\
& \text { BT }
\end{aligned}
\] & Series omitted & Series omitted & Series omitted & Series omitted \\
\hline & IR-OTB & Series omitted & Series omitted & Series omitted & Series omitted \\
\hline & \begin{tabular}{l}
NIGFS- \\
WIBTS-Q1*
\end{tabular} & 1993-2013 & 1993-2014 & 1993-2015 & 1993-2016 \\
\hline & \begin{tabular}{l}
NIGFS- \\
WIBTS-Q4
\end{tabular} & 1993-2013 & 1993-2014 & 1993-2015 & 1993-2016 \\
\hline Selectivity model & & Linear Time Varying Spline at age (TVS) & Linear Time Varying Spline at age (TVS) & Linear Time Varying Spline at age (TVS) & Correlated random walk \\
\hline Discard fraction & & \begin{tabular}{l}
Polynomial \\
Time Varying \\
Spline at age \\
(PTVS)
\end{tabular} & \begin{tabular}{l}
Polynomial \\
Time Varying \\
Spline at age \\
(PTVS)
\end{tabular} & \begin{tabular}{l}
Polynomial \\
Time Varying \\
Spline at age \\
(PTVS)
\end{tabular} & \begin{tabular}{l}
Estimated by \\
WKIRISH
\end{tabular} \\
\hline Landings num at age, range: & & 1-9+ & 1-9+ & 1-9+ & 1-8+ \\
\hline Discards N at age, yrs, ages: & & \[
\begin{aligned}
& \text { 2004-2012, } \\
& \text { ages 1-5 }
\end{aligned}
\] & \begin{tabular}{l}
2004-2013, \\
ages 1-5
\end{tabular} & \begin{tabular}{l}
2004-2014, \\
ages 1-5
\end{tabular} & \[
\begin{aligned}
& \text { 1981-2016, } \\
& \text { ages 1-8+ }
\end{aligned}
\] \\
\hline
\end{tabular}

The estimated selectivity patterns, split into the landed and discarded components are shown in Figure 25.2.9. Until early 1990s the landings selectivity had the highest values for fish aged 4 (indicating that 4 years age fish were selected). This selectivity shifted to age 5 in late 1990s and early 2000s, due to the increase of the MLS in 1998 (from 250 mm to 270 mm ). Since late 2000s landings gradually fell over time to very low values relative to the discard pattern, which became dominant and expanded to the older aged fish during (Figure 25.2.9),

The catchability of the UK(E\&W)-BTS-Q3 survey is elevated for ages 1 and 2 and reflects the nature of the survey, which was designed as a recruit index (Figure 25.2.10).

Diagnostic output from the SAM model is shown in Figure 25.2.11. A year effect in 2004 is present in the UK(E\&W)-BTS-Q3 residuals (which is the first year for which discard data are available. A pattern of negative residuals between 2004 and 2009 is present in the residuals of the NIGFS-WIBTS due to large fluctuations in the SSB indices, which are due potentially to variable catchability of the survey. In the catch residuals, negative values are apparent in ages 8+ from 1998.

Recruitment is fluctuating without an overall trend. The standardised values of the recruitment estimated by the SAM model and the standardised value of age 1 from the UK-BTS survey are characterised by similar pattern, demonstrating consistency in the model estimates (Figure 25.2.12).
The estimated SSB from the SAM model shows an increasing trend from 1995 until 2004-2005, followed by a drop in 2006 and 2007. This change in SSB trend from 2004 is probably due to the inclusion of more reliable discards values since 2004, when international raised discard estimates became available. Since 2012 SSB has increased reaching the highest value of the whole time-series in 2016. The SSB trend is largely in agreement with independent SSB estimates from the Annual Egg Production Method (AEPM, Figure 25.2.13), up to the most recent estimate in 2010, as well as with the survey data used in the assessment (NIGFS-WIBTS-Q1 and -Q4; UK(E\&W)-BTS-Q3, Figure 25.2.13).

Estimates of numbers-at-age in the landings, discards and population, and fishing mortality numbers-at-age are given in Tables 25.3.1-25.3.4. A summary plot for the SAM assessment is shown in Figure 25.2.14 and the time-series estimates for F, SSB and recruitment are given in Table 25.3.6.

\section*{Comparison with previous assessments}

In 2017 the Aarts and Poos model was replaced by the state-space assessment model (SAM). The assessment used the Lorenzen M scaled to 0.12 , and the most recent maturity ogive for the survey.

The methodology provided is as robust as possible, and does not currently appear to suffer from a serious retrospective pattern (Figures 25.2.15 and 25.2.16). The ten assessment model configurations compared in WKIRISH perform similarly in terms of temporal trends in SSB, recruitment, catch and Fbar. Small retrospective bias in SSB in 2004 likely resulted from the introduction of discards estimates based on samples collected (prior to 2004, discards estimates are reconstructed values based on sizevarying discard rates).

\section*{State of the stock}

Trends in Fbar, SSB, recruitment and catch, for the full time-series, are shown in Table 25.3.6 and Figure 25.2.14. The assessment consistently estimates that fishing mortality declined from high levels in the 1980s and early 1990s to very low levels, having been \(<0.1\) since 2013. Since 2012 SSB has increased reaching the highest value of the whole time-series in 2016. Estimated recruitments are highly variable but an increasing trend is present (Figure 25.2.14). Catch has decreased to low levels and, since 2004, the majority of the catch has been discarded ( \(62 \%\) average discard since 2004).

\subsection*{25.4 Short-term projections}

Model used: FLR projection
Software used: FLR projection
Initial stock size: Taken from last year of assessment
Maturity: The constant maturity ogive used in the assessment
\(F\) and \(M\) before spawning: 0

Weight-at-age in the stock: Average of the last three years' catch weights-atage (2014-2016)

Weight-at-age in the catch: Average of the last three years' catch weights-atage (2014-2016)

Exploitation pattern: Average of the last three years' selectivity (2014-2016)
Intermediate year assumptions: average F from last three years (2014-2016)
Stock-recruitment model used: Geometric mean recruitment (1981-2016)

Procedures used for splitting projected catches: Split according to average landings fractions at age from last ten years. Discard numbers multiplied by \(5 / 3\) to account for discard survival. Total catch is sum of three components: landings, discards assumed to die, and discards assumed to survive.

Raised InterCatch data in 2016 were \(1.96 \%\) above the precautionary TAC (1098 t). F estimates 2014-2016 is progressively decreasing from 0.09 (2014) to 0.06 (2015) and 0.05 (2016), although this decrease cannot be considered a trend, being consistent only over the last three years. Therefore, F in 2017 has been estimated by averaging the F 2014-2016. This option has been considered more conservative than the use of F in 2016 (F status quo, Fsq), which caused a decrease in the catch projections.

Biological and selectivity parameters were also averaged over the last three years (2014-2016). Recruitment was forecast using a long-term geometric mean (1981-2016) due to temporal variability in the time-series.
Complete input data for the short-term forecast are shown in Table 25.3.7.
A full management options table is provided. Implementing the management plan for this stock with Fmsy=0.165 leads to a total catch of 3254 t ( 1749 t of landings and 1505 t of discards) in 2018 and an SSB of 23013 t in 2019.

\subsection*{25.5 Medium-term projections}

There are no medium-term projections for this stock.

\subsection*{25.6 MSY explorations}

The most recent reference points for this stock were developed by WKIRISH3 in 2017 (ICES, 2017) and are presented in the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference point & Value & Technical basis & Source \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MSY \\
approach
\end{tabular}} & \[
\begin{aligned}
& \text { MSY } \\
& \mathrm{B}_{\text {trigger }}
\end{aligned}
\] & 10392 & Lower 5\%ile of current biomass & \[
\begin{aligned}
& \text { ICES. } \\
& 2017
\end{aligned}
\] \\
\hline & FMSY & 0.1645646 & Stochastic simulations with segmented regression from entire time-series (19812015) & \[
\begin{aligned}
& \text { ICES. } \\
& 2017
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Precautionary approach} & Blim & 4250 & Median breakpoint of stochastic fitting of segmented regression stock-recruit function & \[
\begin{aligned}
& \text { ICES. } \\
& 2017
\end{aligned}
\] \\
\hline & \[
\mathrm{B}_{\mathrm{pa}}
\] & 5825 & Blim combined with the assessment error; \(\mathrm{B}_{\mathrm{lim}}\) \(\times \exp (1.645 \times \sigma) ; \sigma=0.192\) & \[
\begin{aligned}
& \text { ICES. } \\
& 2017
\end{aligned}
\] \\
\hline & Flim & 0.4805195 & F with \(50 \%\) probability of SSB \(<\mathrm{Blim}_{\text {lim }}\) & \[
\begin{aligned}
& \text { ICES. } \\
& 2017
\end{aligned}
\] \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.3472183 & Flim combined with the assessment error; \(\mathrm{F}_{\text {lim }}\) \(\times \exp (-1.645 \times \sigma) ; \sigma=0.198\) & \[
\begin{aligned}
& \text { ICES. } \\
& 2017
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Management plan} & \(\mathrm{SSB}_{\text {mgt }}\) & & & \\
\hline & Fmgt & & & \\
\hline
\end{tabular}

\section*{Yield per Recruit analysis}

There are no yield per recruit analyses for this stock.

\subsection*{25.7 Management plans}

There are no management plans for this stock.

\subsection*{25.8 Uncertainties and bias in assessment and forecast}

The assessment was benchmarked in 2017 (WKIRISH 2017), which resulted in the SAM model being fitted using catches based on reconstructed estimates of discards prior to 2004. This discard reconstruction introduces additional uncertainty in the model. The model estimates of stock development since 2004 are more reliable as based on direct discard estimates. The SAM model considered only the dead portion of the discards \((60 \%)\), but in the forecast the estimates are raised to include the surviving discards.

\subsection*{25.9 Recommendations for next benchmark}

There is evidence of substantial substock structure and incorporating information about the differences in growth and maturity between the eastern and western sides of the Irish Sea, as well as by sex should be explored.

Incorporating data on changes in maturity and natural mortality over time, linked to the decreasing in weights-at-age observed in survey data, should also be considered.

Creating age-based indices for the NI groundfish surveys would improve the assessment.

Ecosystem information ought to be explored.
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Candidate Stock & Supporting Justification & Suggested time & Indicate expertise necessary at benchmark meeting \\
\hline 2017 & 7.a Plaice & \begin{tabular}{l}
- Incorporating data on changes in maturity and natural mortality over time, linked to the decreasing in weights-at-age observed in survey data. \\
- Incorporate information about the differences in growth and maturity between the eastern and western sides of the Irish Sea, and by sex. \\
- Creating age based indices for the NI groundfish surveys
\end{tabular} & 20XX (TBD) & Expert group members \\
\hline
\end{tabular}

\subsection*{25.10Management considerations}

The high level of discarding in this fishery indicates a mismatch between the minimum landing size and the mesh size of the gear being used. Any measures that effect a reduction in discards will result in increased future yield. However, the market demand for plaice is poor and small plaice are particularly undesirable. Strong year effects are seen in the discard data and these are likely due to spatial structure in the stock. Spatial management of fleets in the Irish Sea may reduce the discarding of plaice.

The overall state of the stock is consistently estimated to have low fishing mortality and high spawning biomass. Therefore the stock is considered to be within safe biological limits.

Discarding has increased throughout the period in which data are available, while landings of plaice have decreased, even though the TAC is not restrictive. Effort has decreased in fisheries targeting plaice (including UK(E\&W) and Belgian beam trawl fisheries and UK(E\&W) and Irish otter trawl fisheries targeting demersal fish). In contrast, effort by the UK(E\&W) Nephrops fleet has increased, however, this is still small in comparison to effort by the Irish Nephrops fleet. The main Nephrops grounds are located in the western Irish Sea, where relatively small plaice are found. Technical measures to mitigate discarding by all Nephrops fleets could include the use of sorting grids: gear selectivity trials and monitoring from four Irish Nephrops trawlers using grids since 2009 indicate a potential reduction in fish discarding by \(75 \%\) (BIM, 2009).

\subsection*{25.11 Sources}

Aarts, G., and Poos, J.J. 2009. Comprehensive discard reconstruction and abundance estimation using flexible selectivity functions. ICES Journal of Marine Science, 66: 763-771.

Armstrong M. J., Connolly P., Nash R. D. M., Pawson M. G., Alesworth E., Coulahan P. J., Dickey-Collas M., Milligan S. P., O'Neill M., Witthames P. R. and Woolner L. 2001. An application of the annual egg production method to estimate spawning biomass of cod (Gadus morhua L.), plaice (Pleuronectes platessa L.) and sole (Solea solea L.) in the Irish Sea. ICES J. Mar. Sci., 58, 183-203.

BIM. 2009. Summary report of Gear Trials to Support Ireland's Submission under Articles 11 \& 13 of Reg. 1342/2008. Nephrops Fisheries VIIa \& VIIb-k. Project 09.SM.T1.01. Bord Iascaigh Mhara (BIM) May 2009.

Cambiè, G. and Earl, T. 2017. Review of the UK(E\&W)-BTS-Q3 abundance index for Irish Sea plaice (ple-iris, plaice 7a). Working document submitted to ICES 2017.

ICES. 2011. Report of the Benchmark Workshop on Flatfish (WKFLAT), 1-8 February 2011, Copenhagen, Denmark. ICES CM 2011/ACOM:39.

Table 25.2.1. Nominal landings (tonnes) of Plaice in Division 27.7.a as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \frac{E}{J} \\
& \frac{0}{0} \\
& \infty
\end{aligned}
\] & ※ &  &  &  &  &  &  &  \\
\hline 1994 & 332 & 13 & 547 & - & 1082 & 14 & 63 & 2051 & - \\
\hline 1995 & 327 & 10 & 557 & - & 1050 & 20 & 60 & 2024 & - \\
\hline 1996 & 344 & 11 & 538 & 69 & 878 & 16 & 18 & 1874 & - \\
\hline 1997 & 459 & 8 & 543 & 110 & 798 & 11 & 25 & 1954 & - \\
\hline 1998 & 327 & 8 & 730 & 27 & 679 & 14 & 18 & 1803 & - \\
\hline 1999 & 275 & 5 & 541 & 30 & 687 & 5 & 23 & 1566 & - \\
\hline 2000 & 325 & 14 & 420 & 47 & 610 & 6 & 21 & 1443 & - \\
\hline 2001 & 482 & 9 & 378 & - & 607 & 1 & 11 & 1488 & - \\
\hline 2002 & 636 & 8 & 370 & - & 569 & 1 & 7 & 1591 & - \\
\hline 2003 & 628 & 7 & 490 & - & 409 & 1 & 9 & 1544 & - \\
\hline 2004 & 431 & 2 & 328 & - & 369 & 0 & 4 & 1134 & 628 \\
\hline 2005 & 566 & 9 & 272 & - & 422 & 0 & 1 & 1270 & 1210 \\
\hline 2006 & 343 & 2 & 179 & - & 413 & 0 & 0 & 937 & 1254 \\
\hline 2007 & 194 & 2 & 194 & - & 412 & 0 & 0 & 802 & 1743 \\
\hline 2008 & 157 & 2 & 102 & - & 300 & 1 & 1 & 562 & 1270 \\
\hline 2009 & 197 & 0.4 & 73 & - & 185 & \(\ldots\) & 2 & 457 & 1131 \\
\hline 2010 & 138 & 0.2 & 89 & - & 148 & 0.5 & 3 & 379 & 2560 \\
\hline 2011 & 332 & 0.28 & 118 & - & 145 & 0.25 & 0 & 594 & 604 \\
\hline 2012 & 236 & 0.08 & 106 & - & 154 & 0.11 & 0 & 496 & 981 \\
\hline 2013 & 144 & 0.29 & 67 & - & 91 & 0.05 & 0 & 303 & 718 \\
\hline 2014 & 100 & 0.03 & 123 & - & 59 & 0.08 & 0 & 282 & 1196 \\
\hline 2015 & 115 & 0.01 & 244 & - & 80 & 0 & 0 & 439* & 565 \\
\hline 2016 & 82 & 0.01 & 605 & - & 56 & 0 & 0 & 742* & 437 \\
\hline
\end{tabular}

\footnotetext{
* Provisional.
** Northern Ireland included with England and Wales.
}

Table 25.2.2. Irish Sea plaice: English standardised lpue and effort, Belgian beam trawl lpue and effort and Irish otter trawl lpue and effort series.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multicolumn{3}{|l|}{CPUE} & \multicolumn{5}{|c|}{LPUE} & \multicolumn{6}{|c|}{Effort ('000hrs)} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{UK(E\&W) Beam trawl survey \({ }^{4}\) March September September Prime only Extended}} & \multicolumn{2}{|l|}{English \({ }^{1}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \frac{\text { Belgian }^{5}}{\text { Beam }} \\
& \text { Trawl }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Irish \({ }^{7}\)} & \multicolumn{3}{|l|}{English} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \frac{\text { Belgian }^{5}}{\text { Beam }} \\
& \text { Trawl }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Irish} \\
\hline & & & & Otter & Beam & & Otter & Beam & Otter \({ }^{2}\) & Beam \({ }^{2}\) & Nephrops & & Otter & Beam \\
\hline & & & & Trawl & Trawl & & Trawl & Trawl & Trawl & Trawl & Trawl & & Trawl & Trawl \\
\hline 1972 & & & & 6.96 & & 9.8 & & & 128.4 & & & 6.8 & & \\
\hline 1973 & & & & 6.33 & & 9.0 & & & 147.6 & & & 16.5 & & \\
\hline 1974 & & & & 7.45 & & 10.4 & & & 115.2 & & & 14.2 & & \\
\hline 1975 & & & & 7.71 & & 10.7 & & & 130.7 & & & 16.2 & & \\
\hline 1976 & & & & 5.03 & & 5.8 & & & 122.3 & & & 15.1 & & \\
\hline 1977 & & & & 4.82 & & 5.3 & & & 101.9 & & & 13.4 & & \\
\hline 1978 & & & & 6.77 & 4.88 & 6.9 & & & 89.1 & 0.9 & & 12.0 & & \\
\hline 1979 & & & & 7.18 & 15.23 & 8.0 & & & 89.9 & 1.7 & & 13.7 & & \\
\hline 1980 & & & & 8.24 & 8.98 & 8.6 & & & 107.0 & 4.3 & & 20.8 & & \\
\hline 1981 & & & & 6.87 & 4.91 & 7.1 & & & 107.1 & 6.4 & & 26.7 & & \\
\hline 1982 & & & & 4.92 & 1.77 & 4.4 & & & 127.2 & 5.5 & & 21.3 & & \\
\hline 1983 & & & & 5.32 & 3.08 & 7.8 & & & 88.1 & 2.8 & & 18.5 & & \\
\hline 1984 & & & & 7.77 & 6.98 & 6.8 & & & 103.1 & 4.1 & & 13.6 & & \\
\hline 1985 & & & & 9.97 & 25.70 & 8.8 & & & 102.9 & 7.4 & & 21.9 & & \\
\hline 1986 & & & & 9.27 & 4.21 & 8.7 & & & 90.3 & 17.0 & & 38.3 & & \\
\hline 1987 & & & & 7.20 & 3.57 & 8.2 & & & 130.6 & 22.0 & & 43.2 & & \\
\hline 1988 & & 392 & & 5.02 & 3.05 & 6.3 & & & 132.0 & 18.6 & & 32.7 & & \\
\hline 1989 & & 253 & & 5.51 & 13.59 & 6.2 & & & 139.5 & 25.3 & & 36.7 & & \\
\hline 1990 & & 239 & & 5.93 & 12.02 & 7.2 & & & 117.1 & 31.0 & & 38.3 & & \\
\hline 1991 & & 157 & & 4.79 & 10.56 & 7.5 & & & 107.3 & 25.8 & & 15.4 & & \\
\hline 1992 & & 188 & & 4.20 & 9.99 & 11.9 & & & 96.8 & 23.4 & & 23.0 & & \\
\hline 1993 & 91 & 235 & 149 & 3.97 & 9.50 & 5.0 & & & 78.9 & 21.5 & & 24.4 & & \\
\hline 1994 & 128 & 225 & 132 & 4.90 & 7.79 & 9.2 & & & 43.0 & 20.1 & 0.0 & 31.6 & & \\
\hline 1995 & 134 & 169 & 109 & 5.08 & 7.69 & 9.5 & 3.2 & 17.0 & 43.1 & 20.9 & 0.0 & 27.1 & 80.3 & 8.6 \\
\hline 1996 & \(-^{6}\) & 210 & 111 & 5.37 & 12.96 & 11.8 & 4.1 & 18.9 & 42.2 & 13.3 & 0.0 & 22.2 & 64.8 & 6.3 \\
\hline 1997 & 147 & 262 & 148 & 5.25 & 7.66 & 13.9 & 3.1 & 13.7 & 39.9 & 10.8 & 0.0 & 29.3 & 92.2 & 9.0 \\
\hline 1998 & 113 & 249 & 146 & 5.00 & 5.66 & 12.3 & 3.7 & 22.2 & 36.9 & 10.4 & 0.0 & 23.8 & 93.5 & 11.6 \\
\hline 1999 & - \({ }^{6}\) & 264 & 151 & 5.38 & 7.76 & 7.1 & 2.3 & 23.2 & 22.9 & 11.0 & 0.0 & 37.2 & 110.3 & 14.7 \\
\hline 2000 & \(-{ }^{6}\) & 357 & 169 & 5.02 & 13.04 & 7.8 & 2.0 & 13.8 & 27.0 & 6.3 & 0.0 & 27.0 & 82.7 & 11.4 \\
\hline 2001 & & 281 & 147 & 3.35 & 8.33 & 9.2 & 2.5 & 10.8 & 33.0 & 12.5 & 0.0 & 41.9 & 77.5 & 13.1 \\
\hline 2002 & & 340 & 200 & 5.66 & 5.46 & 7.4 & 2.8 & 7.9 & 24.8 & 8.0 & 0.0 & 52.5 & 77.9 & 17.7 \\
\hline 2003 & & 503 & 247 & 2.60 & 3.76 & 7.5 & 4.1 & 9.5 & 23.9 & 14.0 & 0.0 & 48.7 & 73.8 & 18.7 \\
\hline 2004 & & 540 & 249 & 3.17 & 4.20 & 11.2 & 2.1 & 8.6 & 23.5 & 7.4 & 0.0 & 36.1 & 72.5 & 14.2 \\
\hline 2005 & & 367 & 177 & 4.85 & 4.67 & 12.8 & 2.0 & 8.0 & 16.7 & 11.6 & 1.0 & 42.1 & 68.3 & 14.7 \\
\hline 2006 & & 356 & 166 & 6.50 & 2.19 & 10.8 & 1.37 & 6.3 & 5.2 & 4.6 & 10.9 & 28.9 & 64.9 & 11.9 \\
\hline 2007 & & 432 & 190 & 17.94 & 4.22 & 6.9 & 1.20 & 6.1 & 4.4 & 3.2 & 12.6 & 23.8 & 73.2 & 14.0 \\
\hline 2008 & & 416 & 189 & 9.03 & 4.47 & 9.5 & 0.90 & 5.2 & 2.7 & 1.3 & 11.5 & 12.4 & 58.8 & 9.5 \\
\hline 2009 & & 467 & 199 & 6.46 & 1.21 & 10.1 & 1.0 & 3.8 & 1.5 & 0.5 & 10.0 & 14.7 & 41.5 & 7.6 \\
\hline 2010 & & 400 & 166 & 11.55 & 14.39 & 7.9 & 1.0 & 4.5 & 1.4 & 0.2 & 9.2 & 15.2 & 45.8 & 9.4 \\
\hline 2011 & & 417 & 155 & 4.35 & 11.95 & 18.7 & 1.2 & 5.5 & 0.7 & 1.6 & 11.7 & 16.4 & 54.5 & 8.1 \\
\hline 2012 & & 460 & 190 & 0.74 & 7.25 & 14.9 & 1.0 & 4.9 & 0.4 & 0.9 & 12.1 & 14.5 & 58.2 & 7.2 \\
\hline 2013 & & 550 & 211 & 7.41 & & 14.0 & 1.6 & 5.4 & 0.3 & & 10.6 & 8.9 & 42.7 & 5.0 \\
\hline 2014 & & 592 & 270 & - & & 13.9 & 1.5 & 8.3 & 0.0 & & 8.3 & 5.1 & 47.8 & 6.0 \\
\hline 2015 & & 564 & 235 & - & - \({ }^{8}\) & 20.4 & 3.3 & 8.6 & 0.0 & \(-^{8}\) & 4.5 & 4.6 & 41.0 & 8.3 \\
\hline 2016 & & 582 & 220 & 0 & 0 & 26.4 & 4.6 & 32.8 & 0.0 & 0.0 & 2.5 & 2.5 & 33.4 & 7.9 \\
\hline \multicolumn{15}{|l|}{1 Whole weight (kg) per corrected hour fished, weighted by area} \\
\hline \multicolumn{15}{|l|}{2 Corrected for fishing power (GRT)} \\
\hline \multicolumn{15}{|l|}{\(3 \mathrm{Kg} / \mathrm{hr}\)} \\
\hline \multicolumn{15}{|l|}{\(4 \mathrm{Kg} / 100 \mathrm{~km}\). Sept Prime: ISS/ISN Traditional Prime Stations Only. Sept Extended: ISS/ISN/ISW/SGC All Stations.} \\
\hline \multicolumn{15}{|l|}{5 Corrected for fishing power (HP) [data for 1999-2010, replaced at 2011WG following recalculation at WKFLAT 2011].} \\
\hline \multicolumn{15}{|l|}{6 Carhelmar survey, \(\mathrm{Kg} / 100 \mathrm{~km}\) not available} \\
\hline \multicolumn{15}{|l|}{7 All years updated in 2007 due to slight historical differences} \\
\hline \multicolumn{15}{|l|}{8 Effort not reported in hours for this fleet, see Section 6.7.2 for more detail} \\
\hline
\end{tabular}

Table 25.2.3a. Irish Sea plaice: NIGFS-WIBTS-Q1 and Q4 indices of relative biomass trends by region in spring.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline NIGFS-WIBTS-Q1 & \multicolumn{3}{|l|}{Estimated mean abundance} & \multicolumn{3}{|l|}{ESTIMATED STANDARD ERROR} \\
\hline Mar (Spring) & Combined & West & East & Combined & West & East \\
\hline Year & Str1-7 & Str1-3 & Str4-7 & Str1-7 & Str1-3 & Str4-7 \\
\hline 1992 & 8.35 & 5.47 & 9.20 & 3.45 & 1.96 & 4.44 \\
\hline 1993 & 12.36 & 18.43 & 10.54 & 2.14 & 4.78 & 2.39 \\
\hline 1994 & 9.65 & 4.47 & 11.09 & 2.43 & 1.46 & 3.12 \\
\hline 1995 & 7.27 & 4.79 & 7.64 & 1.24 & 0.83 & 1.59 \\
\hline 1996 & 7.29 & 12.60 & 5.70 & 1.64 & 5.71 & 1.28 \\
\hline 1997 & 13.87 & 14.72 & 13.54 & 3.19 & 5.68 & 3.77 \\
\hline 1998 & 10.40 & 13.32 & 9.00 & 2.73 & 7.10 & 2.84 \\
\hline 1999 & 10.71 & 13.53 & 9.59 & 1.81 & 4.92 & 1.84 \\
\hline 2000 & 12.92 & 26.29 & 8.88 & 4.11 & 17.00 & 1.66 \\
\hline 2001 & 12.06 & 18.03 & 9.92 & 1.41 & 4.25 & 1.31 \\
\hline 2002 & 15.27 & 27.95 & 11.17 & 2.53 & 8.39 & 2.14 \\
\hline 2003 & 20.97 & 40.71 & 15.09 & 6.11 & 23.98 & 3.44 \\
\hline 2004 & 8.55 & 5.69 & 9.40 & 1.74 & 1.21 & 2.24 \\
\hline 2005 & 11.10 & 19.43 & 8.62 & 1.93 & 5.99 & 1.76 \\
\hline 2006 & 7.85 & 12.14 & 6.39 & 1.39 & 4.62 & 1.16 \\
\hline 2007 & 6.25 & 14.47 & 3.80 & 1.27 & 4.80 & 0.83 \\
\hline 2008 & 4.46 & 5.11 & 4.57 & 0.76 & 1.23 & 0.91 \\
\hline 2009 & 7.90 & 7.85 & 7.86 & 1.27 & 2.04 & 1.53 \\
\hline 2010 & 19.40 & 8.77 & 17.30 & 1.86 & 2.70 & 2.28 \\
\hline 2011 & 16.34 & 26.20 & 13.03 & 3.51 & 10.11 & 3.41 \\
\hline 2012 & 14.22 & 21.47 & 11.05 & 2.37 & 7.48 & 2.13 \\
\hline 2013 & 21.89 & 28.98 & 16.57 & 3.74 & 8.04 & 4.21 \\
\hline 2014 & 11.43 & 10.96 & 9.65 & 2.04 & 4.82 & 2.22 \\
\hline 2015 & 22.81 & 22.57 & 18.66 & 2.84 & 7.18 & 3.01 \\
\hline 2016 & 34.52 & 30.29 & 35.77 & 7.17 & 9.95 & 8.82 \\
\hline 2017 & 16.10 & 14.85 & 16.47 & 2.99 & 3.90 & 3.70 \\
\hline
\end{tabular}

Table 25.2.3b. Irish Sea plaice: NIGFS-WIBTS-Q1 and Q4 indices of relative biomass trends by region in autumn.
\begin{tabular}{lcccccc}
\hline NIGFS-WIBTS-Q4 & Estimated mean abundance & & Estimated standard error \\
\hline Oct (Autumn) & Combined & West & East & Combined & West & East \\
\hline Year & Str1-7 & Str1-3 & Str4-7 & Str1-7 & Str1-3 & Str4-7 \\
\hline 1992 & 4.81 & 2.31 & 5.55 & 0.92 & 1.10 & 1.15 \\
\hline 1993 & 4.48 & 2.08 & 5.20 & 1.00 & 0.87 & 1.27 \\
\hline 1994 & 8.73 & 5.49 & 9.69 & 2.30 & 2.83 & 2.86 \\
\hline 1995 & 4.17 & 5.50 & 3.77 & 1.13 & 2.23 & 1.31 \\
\hline 1996 & 8.68 & 8.85 & 8.63 & 2.25 & 5.94 & 2.33 \\
\hline 1997 & 7.93 & 5.76 & 8.58 & 2.24 & 2.59 & 2.80 \\
\hline 1998 & 5.33 & 3.68 & 5.82 & 1.46 & 2.48 & 1.74 \\
\hline 1999 & 5.81 & 4.30 & 6.26 & 1.67 & 3.08 & 1.97 \\
\hline 2000 & 9.75 & 2.20 & 12.00 & 5.76 & 1.13 & 7.47 \\
\hline 2001 & 13.85 & 2.30 & 17.30 & 6.57 & 1.67 & 8.51 \\
\hline 2002 & 9.80 & 5.90 & 10.97 & 3.91 & 3.61 & 4.97 \\
\hline 2003 & 18.01 & 7.52 & 21.14 & 5.84 & 4.16 & 7.48 \\
\hline 2004 & 7.79 & 1.64 & 9.63 & 1.80 & 0.81 & 2.33 \\
\hline 2005 & 11.35 & 3.41 & 13.72 & 4.51 & 2.18 & 5.82 \\
\hline 2006 & 6.61 & 2.56 & 7.82 & 1.53 & 1.42 & 1.94 \\
\hline 2007 & 7.15 & 4.07 & 8.07 & 1.41 & 2.00 & 1.73 \\
\hline 2008 & 8.68 & 3.28 & 10.27 & 2.20 & 2.09 & 2.78 \\
\hline 2009 & 12.44 & 4.06 & 15.01 & 2.59 & 3.12 & 3.23 \\
\hline 2010 & 15.58 & 5.83 & 18.53 & 5.26 & 5.21 & 6.65 \\
\hline 2011 & 14.48 & 5.39 & 15.94 & 3.55 & 2.66 & 4.55 \\
\hline 2012 & 16.05 & 17.89 & 15.65 & 4.43 & 11.16 & 4.68 \\
\hline 2013 & 17.90 & 13.55 & 19.09 & 4.33 & 11.27 & 4.51 \\
\hline 2014 & 22.18 & 27.67 & 20.35 & 7.61 & 24.88 & 6.52 \\
\hline 2015 & 17.21 & 11.15 & 20.31 & 4.39 & 8.76 & 5.06 \\
\hline 2016 & & 0.95 & 22.53 & 4.52 & 0.43 & 5.86 \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 25.2.4. Irish Sea plaice: UK (E\&W)-BTS-Q3 biomass index (extended area). Ages in bold are those used in the assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline year & Distance towed (kms) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9+ \\
\hline 1993 & 292.77 & 0.13 & 4.64 & 4.03 & 0.82 & 0.43 & 0.03 & 0.04 & 0.08 & 0.01 & 0.02 \\
\hline 1994 & 218.65 & 0.33 & 4.13 & 2.48 & 1.42 & 0.28 & 0.10 & 0.03 & 0.02 & 0.03 & 0.04 \\
\hline 1995 & 218.65 & 0.78 & 5.56 & 1.96 & 0.84 & 0.41 & 0.07 & 0.05 & 0.02 & 0.00 & 0.03 \\
\hline 1996 & 222.36 & 0.26 & 5.79 & 2.17 & 0.53 & 0.19 & 0.20 & 0.05 & 0.02 & 0.00 & 0.02 \\
\hline 1997 & 218.65 & 0.96 & 5.47 & 2.91 & 1.26 & 0.30 & 0.16 & 0.17 & 0.05 & 0.02 & 0.03 \\
\hline 1998 & 218.65 & 0.56 & 4.50 & 4.26 & 1.09 & 0.38 & 0.21 & 0.08 & 0.06 & 0.01 & 0.04 \\
\hline 1999 & 214.95 & 1.86 & 3.96 & 3.91 & 1.99 & 0.68 & 0.29 & 0.09 & 0.07 & 0.03 & 0.05 \\
\hline 2000 & 218.65 & 1.22 & 8.74 & 2.80 & 1.47 & 1.11 & 0.47 & 0.12 & 0.09 & 0.03 & 0.04 \\
\hline 2001 & 214.95 & 0.83 & 5.99 & 3.62 & 1.11 & 0.60 & 0.54 & 0.11 & 0.06 & 0.02 & 0.01 \\
\hline 2002 & 214.95 & 0.23 & 6.46 & 4.94 & 2.27 & 0.88 & 0.53 & 0.48 & 0.10 & 0.04 & 0.04 \\
\hline 2003 & 211.24 & 2.07 & 6.12 & 5.85 & 2.61 & 1.58 & 0.58 & 0.38 & 0.25 & 0.07 & 0.07 \\
\hline 2004 & 214.95 & 1.09 & 8.07 & 5.36 & 3.94 & 1.88 & 1.15 & 0.21 & 0.19 & 0.13 & 0.10 \\
\hline 2005 & 211.24 & 1.75 & 3.76 & 4.75 & 1.98 & 1.42 & 0.80 & 0.48 & 0.11 & 0.09 & 0.06 \\
\hline 2006 & 214.95 & 3.56 & 5.01 & 3.45 & 2.46 & 1.10 & 0.79 & 0.36 & 0.20 & 0.02 & 0.07 \\
\hline 2007 & 214.95 & 1.15 & 7.97 & 4.47 & 1.66 & 1.20 & 0.65 & 0.33 & 0.25 & 0.14 & 0.06 \\
\hline 2008 & 200.12 & 1.22 & 4.68 & 5.71 & 2.03 & 1.15 & 0.82 & 0.31 & 0.12 & 0.08 & 0.05 \\
\hline 2009 & 214.95 & 1.23 & 4.74 & 3.40 & 3.30 & 0.99 & 0.66 & 0.63 & 0.16 & 0.11 & 0.20 \\
\hline 2010 & 211.24 & 2.01 & 6.22 & 4.31 & 2.05 & 1.44 & 0.66 & 0.54 & 0.36 & 0.20 & 0.19 \\
\hline 2011 & 211.24 & 1.02 & 6.73 & 4.28 & 1.75 & 1.00 & 1.08 & 0.47 & 0.27 & 0.24 & 0.37 \\
\hline 2012 & 214.95 & 1.40 & 6.52 & 6.37 & 1.71 & 1.03 & 0.47 & 0.53 & 0.30 & 0.14 & 0.42 \\
\hline 2013 & 214.95 & 2.04 & 4.33 & 5.05 & 3.08 & 1.60 & 1.07 & 0.47 & 0.44 & 0.20 & 0.42 \\
\hline 2014 & 214.95 & 1.56 & 7.82 & 6.85 & 3.13 & 2.16 & 0.99 & 0.77 & 0.44 & 0.20 & 0.28 \\
\hline 2015 & 214.95 & 1.02 & 6.16 & 6.88 & 2.60 & 1.80 & 1.04 & 0.66 & 0.37 & 0.19 & 0.50 \\
\hline 2016 & 211.24 & 0.18 & 2.91 & 5.97 & 3.95 & 2.45 & 1.61 & 0.96 & 0.74 & 0.45 & 0.58 \\
\hline
\end{tabular}

Table 25.2.5. Irish Sea plaice: Landings number-at-age 1 to 8+ (thousands), where rows are years 1981-2016 and columns are ages 1 to 8+.


Table 25.2.6. Irish Sea plaice: Landings weight-at-age 1 to \(8+(\mathrm{kg})\), where rows are years 1981-2016 and columns are ages 1 to 8+

IRISH SEA PLAICE
13
19812016
18
1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.069 & 0.176 & 0.267 & 0.376 & 0.512 & 0.592 & 0.678 & 1.085 \\
\hline 0.201 & 0.274 & 0.284 & 0.348 & 0.421 & 0.545 & 0.650 & 0.889 \\
\hline 0.232 & 0.261 & 0.290 & 0.319 & 0.368 & 0.426 & 0.484 & 0.699 \\
\hline 0.260 & 0.290 & 0.330 & 0.380 & 0.470 & 0.560 & 0.660 & 0.964 \\
\hline 0.290 & 0.310 & 0.340 & 0.390 & 0.470 & 0.540 & 0.630 & 0.851 \\
\hline 0.270 & 0.280 & 0.340 & 0.420 & 0.500 & 0.540 & 0.630 & 0.980 \\
\hline 0.260 & 0.290 & 0.315 & 0.370 & 0.440 & 0.520 & 0.610 & 0.916 \\
\hline 0.230 & 0.260 & 0.300 & 0.370 & 0.460 & 0.550 & 0.680 & 1.243 \\
\hline 0.227 & 0.272 & 0.321 & 0.374 & 0.430 & 0.491 & 0.555 & 0.761 \\
\hline 0.200 & 0.257 & 0.316 & 0.376 & 0.439 & 0.504 & 0.570 & 0.747 \\
\hline 0.247 & 0.267 & 0.295 & 0.332 & 0.377 & 0.431 & 0.494 & 0.652 \\
\hline 0.169 & 0.218 & 0.274 & 0.337 & 0.407 & 0.484 & 0.568 & 0.799 \\
\hline 0.260 & 0.270 & 0.292 & 0.328 & 0.375 & 0.436 & 0.508 & 0.690 \\
\hline 0.156 & 0.207 & 0.268 & 0.338 & 0.416 & 0.504 & 0.600 & 0.816 \\
\hline 0.189 & 0.224 & 0.262 & 0.329 & 0.353 & 0.406 & 0.461 & 0.699 \\
\hline 0.204 & 0.223 & 0.270 & 0.333 & 0.398 & 0.493 & 0.584 & 0.837 \\
\hline 0.205 & 0.233 & 0.241 & 0.286 & 0.354 & 0.410 & 0.510 & 0.620 \\
\hline 0.185 & 0.226 & 0.249 & 0.316 & 0.353 & 0.410 & 0.468 & 0.655 \\
\hline 0.205 & 0.236 & 0.250 & 0.300 & 0.375 & 0.457 & 0.483 & 0.615 \\
\hline 0.000 & 0.259 & 0.270 & 0.307 & 0.337 & 0.429 & 0.437 & 0.623 \\
\hline 0.232 & 0.233 & 0.271 & 0.334 & 0.396 & 0.439 & 0.571 & 0.764 \\
\hline 0.228 & 0.271 & 0.267 & 0.308 & 0.386 & 0.476 & 0.518 & 0.673 \\
\hline 0.000 & 0.235 & 0.289 & 0.335 & 0.383 & 0.458 & 0.567 & 0.678 \\
\hline 0.214 & 0.239 & 0.258 & 0.297 & 0.347 & 0.416 & 0.543 & 0.571 \\
\hline 0.235 & 0.245 & 0.265 & 0.292 & 0.322 & 0.394 & 0.441 & 0.632 \\
\hline 0.200 & 0.256 & 0.265 & 0.282 & 0.321 & 0.378 & 0.425 & 0.568 \\
\hline 0.000 & 0.280 & 0.266 & 0.281 & 0.320 & 0.371 & 0.416 & 0.481 \\
\hline 0.246 & 0.228 & 0.257 & 0.281 & 0.311 & 0.364 & 0.431 & 0.553 \\
\hline 0.000 & 0.257 & 0.256 & 0.265 & 0.305 & 0.330 & 0.395 & 0.482 \\
\hline 0.000 & 0.260 & 0.265 & 0.282 & 0.301 & 0.356 & 0.392 & 0.492 \\
\hline 0.236 & 0.251 & 0.257 & 0.283 & 0.298 & 0.354 & 0.404 & 0.513 \\
\hline 0.117 & 0.259 & 0.254 & 0.281 & 0.299 & 0.318 & 0.345 & 0.430 \\
\hline 0.249 & 0.245 & 0.249 & 0.267 & 0.297 & 0.330 & 0.386 & 0.417 \\
\hline 0.181 & 0.250 & 0.282 & 0.300 & 0.336 & 0.373 & 0.457 & 0.492 \\
\hline NA & 0.183 & 0.264 & 0.287 & 0.299 & 0.340 & 0.403 & 0.617 \\
\hline 0.113 & 0.149 & 0.229 & 0.318 & 0.422 & 0.362 & 0.433 & 0.660 \\
\hline
\end{tabular}

Table 25.2.7. Irish Sea plaice: Discards weight-at-age 1 to \(8+(\mathbf{k g})\), where rows are years 1981-2016 and columns are ages 1 to \(8+\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IRISH SEA PL } \\
& 123 \\
& 19812016 \\
& 18 \\
& 1
\end{aligned}
\] & & & & & & & \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.087 & 0.105 & 0.130 & 0.153 & 0.170 & 0.231 & 0.318 & 0.211 \\
\hline 0.057 & 0.115 & 0.145 & 0.164 & 0.211 & 0.290 & 0.238 & 0.210 \\
\hline 0.099 & 0.117 & 0.134 & 0.179 & 0.178 & 0.277 & 0.644 & 0.356 \\
\hline 0.141 & 0.113 & 0.141 & 0.145 & 0.162 & 0.210 & 0.274 & 0.077 \\
\hline 0.044 & 0.081 & 0.113 & 0.140 & 0.150 & 0.205 & 0.219 & 0.243 \\
\hline 0.096 & 0.097 & 0.116 & 0.135 & 0.151 & 0.173 & 0.217 & 0.170 \\
\hline 0.033 & 0.080 & 0.119 & 0.147 & 0.165 & 0.196 & 0.232 & 0.276 \\
\hline 0.083 & 0.101 & 0.138 & 0.183 & 0.201 & 0.140 & 0.194 & 0.225 \\
\hline 0.077 & 0.098 & 0.116 & 0.141 & 0.157 & 0.168 & 0.164 & 0.176 \\
\hline 0.026 & 0.038 & 0.081 & 0.119 & 0.162 & 0.200 & 0.157 & 0.182 \\
\hline 0.064 & 0.069 & 0.094 & 0.116 & 0.144 & 0.157 & 0.181 & 0.181 \\
\hline 0.056 & 0.067 & 0.084 & 0.120 & 0.128 & 0.150 & 0.152 & 0.153 \\
\hline 0.088 & 0.059 & 0.079 & 0.101 & 0.095 & 0.126 & 0.152 & 0.136 \\
\hline 0.136 & 0.103 & 0.109 & 0.120 & 0.146 & 0.161 & 0.155 & 0.170 \\
\hline
\end{tabular}

Table 25.2.8. Irish Sea plaice: New stock weights-at-age modified to include discard element (kg).


Table 25.3.1. Irish Sea plaice: Estimated landed numbers-at-age (thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline year \(\backslash\) age & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) & total \\
\hline 1981 & 24 & 1704 & 4592 & 3156 & 828 & 247 & 108 & 250 & 10908 \\
\hline 1982 & 23 & 857 & 3747 & 3330 & 1332 & 360 & 130 & 215 & 9994 \\
\hline 1983 & 50 & 2696 & 2712 & 2958 & 1454 & 649 & 205 & 230 & 10956 \\
\hline 1984 & 45 & 2716 & 4940 & 1410 & 1089 & 531 & 293 & 230 & 11253 \\
\hline 1985 & 5 & 2449 & 5207 & 3099 & 608 & 509 & 268 & 309 & 12454 \\
\hline 1986 & 35 & 1835 & 5332 & 3090 & 1449 & 296 & 292 & 344 & 12673 \\
\hline 1987 & 59 & 3216 & 4890 & 3784 & 1487 & 801 & 158 & 409 & 14804 \\
\hline 1988 & 56 & 2673 & 4995 & 2587 & 1398 & 614 & 350 & 319 & 12991 \\
\hline 1989 & 33 & 1690 & 4892 & 2588 & 911 & 500 & 231 & 308 & 11153 \\
\hline 1990 & 12 & 1140 & 2966 & 3134 & 1135 & 411 & 236 & 269 & 9304 \\
\hline 1991 & 150 & 1599 & 1721 & 1909 & 1490 & 522 & 193 & 263 & 7847 \\
\hline 1992 & 145 & 2071 & 3200 & 1189 & 1060 & 919 & 319 & 300 & 9202 \\
\hline 1993 & 32 & 1232 & 2092 & 1724 & 391 & 376 & 413 & 279 & 6540 \\
\hline 1994 & 97 & 1187 & 2981 & 1461 & 721 & 211 & 171 & 330 & 7160 \\
\hline 1995 & 26 & 991 & 1771 & 2116 & 624 & 297 & 99 & 224 & 6147 \\
\hline 1996 & 24 & 970 & 1381 & 1232 & 1030 & 315 & 127 & 169 & 5249 \\
\hline 1997 & 25 & 664 & 1880 & 1335 & 749 & 591 & 208 & 201 & 5653 \\
\hline 1998 & 6 & 718 & 1195 & 1122 & 685 & 395 & 315 & 263 & 4699 \\
\hline 1999 & 58 & 748 & 1351 & 1242 & 636 & 321 & 189 & 258 & 4801 \\
\hline 2000 & 372 & 393 & 1001 & 1563 & 788 & 292 & 177 & 227 & 4812 \\
\hline 2001 & 14 & 454 & 890 & 1096 & 1102 & 367 & 144 & 222 & 4288 \\
\hline 2002 & 1 & 227 & 1132 & 1038 & 835 & 640 & 195 & 209 & 4277 \\
\hline 2003 & 207 & 280 & 1009 & 1240 & 643 & 427 & 285 & 223 & 4314 \\
\hline 2004 & 18 & 251 & 787 & 900 & 724 & 241 & 155 & 224 & 3301 \\
\hline 2005 & 9 & 220 & 733 & 1340 & 633 & 522 & 151 & 280 & 3889 \\
\hline 2006 & 2 & 174 & 789 & 563 & 776 & 428 & 242 & 286 & 3260 \\
\hline 2007 & 0 & 57 & 298 & 685 & 490 & 332 & 194 & 244 & 2299 \\
\hline 2008 & 0 & 91 & 407 & 475 & 487 & 252 & 143 & 135 & 1988 \\
\hline 2009 & 0 & 9 & 180 & 379 & 320 & 315 & 98 & 187 & 1489 \\
\hline 2010 & 0 & 6 & 75 & 311 & 190 & 221 & 102 & 151 & 1055 \\
\hline 2011 & 1 & 80 & 320 & 406 & 565 & 306 & 167 & 262 & 2107 \\
\hline 2012 & 0 & 5 & 125 & 263 & 268 & 327 & 137 & 274 & 1400 \\
\hline 2013 & 1 & 17 & 77 & 176 & 229 & 188 & 143 & 287 & 1118 \\
\hline 2014 & 1 & 6 & 61 & 181 & 158 & 141 & 64 & 262 & 874 \\
\hline 2015 & 0 & 1 & 40 & 98 & 166 & 117 & 111 & 370 & 902 \\
\hline 2016 & 8 & 25 & 89 & 182 & 263 & 271 & 162 & 388 & 1388 \\
\hline
\end{tabular}

Table 25.3.2. Irish Sea plaice: Estimated discarded numbers-at-age (thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline year \(\backslash\) age & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8+ & total \\
\hline 1981 & 483 & 4490 & 5886 & 399 & 7 & 0 & 0 & 0 & 11265 \\
\hline 1982 & 653 & 3080 & 3490 & 405 & 14 & 0 & 0 & 0 & 7643 \\
\hline 1983 & 707 & 3478 & 1584 & 319 & 17 & 1 & 0 & 0 & 6106 \\
\hline 1984 & 581 & 2767 & 1879 & 122 & 12 & 1 & 0 & 0 & 5361 \\
\hline 1985 & 578 & 2672 & 1507 & 218 & 5 & 1 & 0 & 0 & 4981 \\
\hline 1986 & 565 & 3008 & 1588 & 239 & 13 & 0 & 0 & 0 & 5414 \\
\hline 1987 & 635 & 2562 & 1763 & 321 & 16 & 2 & 0 & 0 & 5300 \\
\hline 1988 & 440 & 3569 & 2063 & 253 & 21 & 1 & 0 & 0 & 6347 \\
\hline 1989 & 330 & 1936 & 2230 & 281 & 18 & 2 & 0 & 0 & 4796 \\
\hline 1990 & 498 & 1430 & 1527 & 431 & 34 & 2 & 0 & 0 & 3922 \\
\hline 1991 & 304 & 2678 & 1120 & 344 & 62 & 4 & 0 & 0 & 4513 \\
\hline 1992 & 506 & 2246 & 2653 & 283 & 59 & 10 & 1 & 0 & 5757 \\
\hline 1993 & 524 & 4316 & 2190 & 455 & 24 & 4 & 1 & 0 & 7514 \\
\hline 1994 & 406 & 2951 & 3576 & 395 & 51 & 3 & 0 & 0 & 7381 \\
\hline 1995 & 617 & 2581 & 2520 & 614 & 48 & 4 & 0 & 0 & 6384 \\
\hline 1996 & 786 & 3497 & 2391 & 430 & 102 & 6 & 0 & 0 & 7212 \\
\hline 1997 & 838 & 5929 & 3642 & 546 & 86 & 13 & 1 & 0 & 11055 \\
\hline 1998 & 749 & 6893 & 6639 & 1494 & 241 & 25 & 4 & 0 & 16047 \\
\hline 1999 & 493 & 4153 & 6687 & 1665 & 226 & 20 & 3 & 0 & 13247 \\
\hline 2000 & 0 & 3288 & 4194 & 1897 & 222 & 14 & 2 & 0 & 9617 \\
\hline 2001 & 515 & 3561 & 3188 & 1215 & 268 & 15 & 1 & 0 & 8763 \\
\hline 2002 & 471 & 3748 & 3817 & 1091 & 186 & 24 & 1 & 0 & 9339 \\
\hline 2003 & 0 & 3211 & 3607 & 1531 & 186 & 20 & 1 & 0 & 8556 \\
\hline 2004 & 208 & 1746 & 2904 & 1369 & 333 & 18 & 1 & 0 & 6580 \\
\hline 2005 & 278 & 2742 & 2888 & 1248 & 991 & 88 & 10 & 34 & 8280 \\
\hline 2006 & 460 & 2682 & 3771 & 2012 & 543 & 210 & 13 & 3 & 9695 \\
\hline 2007 & 643 & 4142 & 4165 & 2840 & 916 & 315 & 134 & 188 & 13345 \\
\hline 2008 & 412 & 4049 & 3364 & 1654 & 995 & 201 & 27 & 315 & 11017 \\
\hline 2009 & 228 & 2135 & 3809 & 1337 & 617 & 291 & 60 & 94 & 8570 \\
\hline 2010 & 505 & 3090 & 4156 & 3735 & 1770 & 729 & 532 & 471 & 14988 \\
\hline 2011 & 367 & 2012 & 1821 & 1009 & 689 & 246 & 68 & 207 & 6419 \\
\hline 2012 & 330 & 3164 & 2902 & 1583 & 711 & 506 & 207 & 333 & 9736 \\
\hline 2013 & 218 & 1660 & 2702 & 1416 & 621 & 206 & 121 & 86 & 7029 \\
\hline 2014 & 280 & 1861 & 2531 & 2017 & 1132 & 581 & 251 & 361 & 9015 \\
\hline 2015 & 90 & 1207 & 1521 & 1169 & 804 & 553 & 127 & 99 & 5569 \\
\hline 2016 & 57 & 563 & 1328 & 934 & 506 & 285 & 133 & 152 & 3959 \\
\hline
\end{tabular}

Table 25.3.3. Irish Sea plaice: Estimated population numbers-at-age (thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline year \(\backslash\) age & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8+ & total \\
\hline 1981 & 16551 & 19743 & 17922 & 7215 & 2013 & 690 & 327 & 758 & 65220 \\
\hline 1982 & 22504 & 12455 & 13178 & 7697 & 3267 & 1005 & 394 & 651 & 61152 \\
\hline 1983 & 23987 & 20612 & 7809 & 6371 & 3314 & 1662 & 569 & 637 & 64962 \\
\hline 1984 & 22914 & 21373 & 14352 & 3298 & 2721 & 1480 & 881 & 691 & 67710 \\
\hline 1985 & 21131 & 20371 & 14774 & 7273 & 1525 & 1412 & 803 & 924 & 68214 \\
\hline 1986 & 21740 & 17772 & 14857 & 7051 & 3490 & 775 & 830 & 974 & 67488 \\
\hline 1987 & 21188 & 19734 & 12378 & 7647 & 3136 & 1827 & 393 & 1014 & 67317 \\
\hline 1988 & 15564 & 20293 & 13203 & 5329 & 2955 & 1387 & 853 & 777 & 60361 \\
\hline 1989 & 12469 & 13430 & 14672 & 5962 & 2149 & 1260 & 625 & 833 & 51400 \\
\hline 1990 & 16109 & 9271 & 9210 & 7447 & 2735 & 1057 & 653 & 741 & 47221 \\
\hline 1991 & 16474 & 14538 & 5648 & 4648 & 3635 & 1363 & 542 & 737 & 47584 \\
\hline 1992 & 17953 & 12976 & 9754 & 2564 & 2200 & 2021 & 753 & 706 & 48926 \\
\hline 1993 & 15901 & 16559 & 7770 & 4189 & 894 & 903 & 1066 & 720 & 48002 \\
\hline 1994 & 15076 & 12586 & 11717 & 3613 & 1692 & 520 & 452 & 869 & 46524 \\
\hline 1995 & 17779 & 11101 & 7803 & 5625 & 1595 & 809 & 291 & 658 & 45660 \\
\hline 1996 & 22407 & 13795 & 6994 & 3611 & 2933 & 967 & 423 & 560 & 51688 \\
\hline 1997 & 23010 & 18487 & 9948 & 4017 & 2166 & 1847 & 702 & 679 & 60857 \\
\hline 1998 & 19856 & 21310 & 12663 & 4915 & 2286 & 1293 & 1106 & 917 & 64346 \\
\hline 1999 & 19079 & 17432 & 15817 & 6639 & 2640 & 1342 & 873 & 1181 & 65003 \\
\hline 2000 & 24304 & 15222 & 12200 & 9435 & 3764 & 1471 & 1018 & 1300 & 68714 \\
\hline 2001 & 24550 & 19280 & 11047 & 7154 & 5809 & 2104 & 976 & 1496 & 72416 \\
\hline 2002 & 25270 & 21444 & 15537 & 7519 & 4931 & 4238 & 1581 & 1682 & 82201 \\
\hline 2003 & 22396 & 23095 & 17290 & 11465 & 4701 & 3483 & 2963 & 2311 & 87705 \\
\hline 2004 & 20835 & 18245 & 18379 & 12180 & 7680 & 2726 & 2307 & 3309 & 85659 \\
\hline 2005 & 17936 & 19009 & 13570 & 11348 & 7836 & 4856 & 1879 & 3580 & 80013 \\
\hline 2006 & 23208 & 15609 & 15197 & 8945 & 6651 & 4512 & 2982 & 3426 & 80529 \\
\hline 2007 & 27272 & 19361 & 12490 & 10999 & 5739 & 3897 & 3095 & 4019 & 86873 \\
\hline 2008 & 21940 & 24188 & 13737 & 8655 & 7647 & 3540 & 2296 & 4662 & 86665 \\
\hline 2009 & 17347 & 17392 & 19262 & 9491 & 6507 & 6156 & 2553 & 4647 & 83353 \\
\hline 2010 & 23865 & 16309 & 13419 & 13641 & 7719 & 5311 & 5183 & 5336 & 90782 \\
\hline 2011 & 28083 & 18255 & 11769 & 8529 & 9404 & 5574 & 3906 & 7259 & 92778 \\
\hline 2012 & 24327 & 26163 & 14914 & 9722 & 6269 & 7108 & 4526 & 8183 & 101212 \\
\hline 2013 & 24507 & 21361 & 20716 & 12553 & 8287 & 5277 & 5663 & 8859 & 107222 \\
\hline 2014 & 30255 & 23063 & 18582 & 16072 & 10548 & 7326 & 4959 & 11046 & 121851 \\
\hline 2015 & 17550 & 26217 & 18745 & 14636 & 12183 & 9428 & 5908 & 13525 & 118193 \\
\hline 2016 & 16169 & 15934 & 21177 & 16255 & 12506 & 10654 & 8603 & 17013 & 118313 \\
\hline
\end{tabular}

Table 25.3.4. Irish Sea plaice: Estimated fishing mortality-at-age.
\begin{tabular}{lrrrrrrrrrr}
\hline year \(\backslash\) age & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) & \begin{tabular}{c} 
Fbar \\
\((3-6)\)
\end{tabular} \\
\hline 1981 & 0.020 & 0.270 & 0.652 & 0.686 & 0.573 & 0.474 & 0.425 & 0.425 & 0.596 \\
\hline 1982 & 0.020 & 0.262 & 0.632 & 0.673 & 0.567 & 0.474 & 0.426 & 0.426 & 0.586 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1983 & 0.021 & 0.283 & 0.684 & 0.736 & 0.627 & 0.530 & 0.477 & 0.477 & 0.644 \\
\hline 1984 & 0.019 & 0.245 & 0.592 & 0.643 & 0.553 & 0.476 & 0.431 & 0.431 & 0.566 \\
\hline 1985 & 0.018 & 0.238 & 0.575 & 0.632 & 0.548 & 0.478 & 0.433 & 0.433 & 0.559 \\
\hline 1986 & 0.019 & 0.245 & 0.593 & 0.661 & 0.580 & 0.514 & 0.463 & 0.463 & 0.587 \\
\hline 1987 & 0.022 & 0.295 & 0.708 & 0.794 & 0.698 & 0.620 & 0.550 & 0.550 & 0.705 \\
\hline 1988 & 0.022 & 0.290 & 0.690 & 0.780 & 0.698 & 0.628 & 0.563 & 0.563 & 0.699 \\
\hline 1989 & 0.020 & 0.256 & 0.596 & 0.669 & 0.602 & 0.543 & 0.492 & 0.492 & 0.602 \\
\hline 1990 & 0.021 & 0.260 & 0.590 & 0.655 & 0.589 & 0.530 & 0.479 & 0.479 & 0.591 \\
\hline 1991 & 0.022 & 0.267 & 0.594 & 0.654 & 0.585 & 0.521 & 0.470 & 0.470 & 0.588 \\
\hline 1992 & 0.027 & 0.328 & 0.731 & 0.817 & 0.742 & 0.656 & 0.590 & 0.590 & 0.737 \\
\hline 1993 & 0.024 & 0.281 & 0.622 & 0.698 & 0.650 & 0.582 & 0.524 & 0.524 & 0.638 \\
\hline 1994 & 0.024 & 0.287 & 0.621 & 0.684 & 0.632 & 0.563 & 0.509 & 0.509 & 0.625 \\
\hline 1995 & 0.024 & 0.278 & 0.588 & 0.628 & 0.565 & 0.494 & 0.443 & 0.443 & 0.569 \\
\hline 1996 & 0.024 & 0.270 & 0.555 & 0.572 & 0.499 & 0.427 & 0.381 & 0.381 & 0.513 \\
\hline 1997 & 0.025 & 0.278 & 0.566 & 0.575 & 0.494 & 0.418 & 0.373 & 0.373 & 0.513 \\
\hline 1998 & 0.025 & 0.277 & 0.566 & 0.569 & 0.483 & 0.407 & 0.360 & 0.360 & 0.506 \\
\hline 1999 & 0.020 & 0.220 & 0.445 & 0.441 & 0.369 & 0.304 & 0.261 & 0.261 & 0.390 \\
\hline 2000 & 0.017 & 0.181 & 0.364 & 0.361 & 0.300 & 0.243 & 0.203 & 0.203 & 0.317 \\
\hline 2001 & 0.014 & 0.154 & 0.313 & 0.315 & 0.261 & 0.209 & 0.170 & 0.170 & 0.275 \\
\hline 2002 & 0.012 & 0.131 & 0.266 & 0.272 & 0.227 & 0.178 & 0.140 & 0.140 & 0.236 \\
\hline 2003 & 0.010 & 0.107 & 0.217 & 0.222 & 0.186 & 0.143 & 0.107 & 0.107 & 0.192 \\
\hline 2004 & 0.007 & 0.079 & 0.158 & 0.162 & 0.136 & 0.103 & 0.074 & 0.074 & 0.140 \\
\hline 2005 & 0.011 & 0.110 & 0.214 & 0.217 & 0.181 & 0.134 & 0.093 & 0.093 & 0.187 \\
\hline 2006 & 0.013 & 0.130 & 0.240 & 0.235 & 0.193 & 0.139 & 0.093 & 0.093 & 0.202 \\
\hline 2007 & 0.015 & 0.150 & 0.271 & 0.261 & 0.213 & 0.152 & 0.098 & 0.098 & 0.224 \\
\hline 2008 & 0.012 & 0.118 & 0.207 & 0.198 & 0.163 & 0.118 & 0.076 & 0.076 & 0.171 \\
\hline 2009 & 0.008 & 0.082 & 0.146 & 0.142 & 0.119 & 0.088 & 0.057 & 0.057 & 0.124 \\
\hline 2010 & 0.014 & 0.129 & 0.227 & 0.221 & 0.188 & 0.140 & 0.090 & 0.090 & 0.194 \\
\hline 2011 & 0.008 & 0.078 & 0.136 & 0.134 & 0.117 & 0.090 & 0.058 & 0.058 & 0.119 \\
\hline 2012 & 0.009 & 0.081 & 0.143 & 0.142 & 0.125 & 0.099 & 0.063 & 0.063 & 0.127 \\
\hline 2013 & 0.006 & 0.052 & 0.091 & 0.091 & 0.080 & 0.065 & 0.041 & 0.041 & 0.082 \\
\hline 2014 & 0.006 & 0.053 & 0.095 & 0.096 & 0.088 & 0.073 & 0.047 & 0.047 & 0.088 \\
\hline 2015 & 0.003 & 0.030 & 0.055 & 0.060 & 0.058 & 0.052 & 0.034 & 0.034 & 0.056 \\
\hline 2016 & 0.003 & 0.025 & 0.046 & 0.050 & 0.049 & 0.045 & 0.030 & 0.030 & 0.047 \\
\hline
\end{tabular}

Table 25.3.5. Irish Sea plaice: SAM stock assessment summary ( \(\pm 2\) standard deviation uncertainty). Recruitment (000s), spawning-stock biomass (SSB, tonnes), mean fishing mortality ( \(F_{b a r}\) ) for ages 3-6, total spawning biomass (TBS, tonnes), landings and discards tonnage.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Recruitment (thousands)} & \multicolumn{3}{|c|}{SSB (t)} & \multicolumn{3}{|c|}{Fbar (3-6)} & \multicolumn{3}{|c|}{TSB (t)} & \multicolumn{3}{|c|}{Landings (t)} & \multicolumn{3}{|c|}{Discards (t)} \\
\hline year & Low & Mid & Hight \\
\hline 1981 & 11260 & 16551 & 24329 & 5793 & 7076 & 8644 & 0.46 & 0.60 & 0.77 & 10666 & 12830 & 15435 & 2938 & 3903 & 5185 & 707 & 940 & 1249 \\
\hline 1982 & 16116 & 22504 & 31425 & 5595 & 6755 & 8154 & 0.46 & 0.59 & 0.74 & 10484 & 12424 & 14722 & 2538 & 3238 & 4130 & 373 & 476 & 607 \\
\hline 1983 & 17293 & 23987 & 33274 & 5103 & 6074 & 7230 & 0.51 & 0.64 & 0.81 & 10918 & 12986 & 15447 & 2904 & 3637 & 4555 & 337 & 422 & 528 \\
\hline 1984 & 16617 & 22914 & 31597 & 6429 & 7682 & 9180 & 0.45 & 0.57 & 0.71 & 13328 & 15916 & 19005 & 3388 & 4278 & 5400 & 312 & 394 & 497 \\
\hline 1985 & 15360 & 21131 & 29070 & 7094 & 8485 & 10151 & 0.44 & 0.56 & 0.7 & 13975 & 16661 & 19863 & 4014 & 5085 & 6443 & 275 & 349 & 442 \\
\hline 1986 & 15781 & 21740 & 29948 & 7594 & 9074 & 10844 & 0.47 & 0.59 & 0.74 & 14202 & 16795 & 19862 & 3856 & 4867 & 6142 & 270 & 340 & 430 \\
\hline 1987 & 15259 & 21188 & 29421 & 7173 & 8510 & 10095 & 0.57 & 0.70 & 0.88 & 14062 & 16613 & 19627 & 4979 & 6244 & 7830 & 329 & 413 & 518 \\
\hline 1988 & 11312 & 15564 & 21416 & 6656 & 7909 & 9398 & 0.56 & 0.70 & 0.87 & 12468 & 14705 & 17344 & 4005 & 5002 & 6247 & 361 & 451 & 563 \\
\hline 1989 & 8785 & 12469 & 17699 & 5886 & 7040 & 8420 & 0.48 & 0.60 & 0.76 & 10815 & 12848 & 15263 & 3441 & 4362 & 5528 & 297 & 377 & 478 \\
\hline 1990 & 11763 & 16109 & 22059 & 5341 & 6394 & 7655 & 0.47 & 0.59 & 0.74 & 9396 & 11080 & 13066 & 2597 & 3272 & 4122 & 208 & 262 & 329 \\
\hline 1991 & 12104 & 16474 & 22420 & 4309 & 5121 & 6086 & 0.47 & 0.59 & 0.74 & 9221 & 10878 & 12833 & 2059 & 2557 & 3176 & 277 & 344 & 427 \\
\hline 1992 & 13309 & 17953 & 24218 & 4355 & 5176 & 6152 & 0.59 & 0.74 & 0.91 & 8627 & 10146 & 11932 & 2630 & 3260 & 4042 & 330 & 409 & 507 \\
\hline 1993 & 12136 & 15901 & 20833 & 3618 & 4323 & 5165 & 0.51 & 0.64 & 0.8 & 7683 & 9073 & 10715 & 1613 & 2000 & 2479 & 319 & 395 & 490 \\
\hline 1994 & 11455 & 15076 & 19842 & 3769 & 4558 & 5513 & 0.5 & 0.63 & 0.79 & 7557 & 8964 & 10633 & 1666 & 2067 & 2565 & 355 & 441 & 547 \\
\hline 1995 & 13565 & 17779 & 23302 & 3289 & 3991 & 4843 & 0.45 & 0.57 & 0.72 & 6823 & 8094 & 9602 & 1511 & 1874 & 2326 & 347 & 430 & 534 \\
\hline 1996 & 17052 & 22407 & 29444 & 3520 & 4308 & 5273 & 0.4 & 0.51 & 0.65 & 7423 & 8842 & 10533 & 1388 & 1706 & 2096 & 396 & 487 & 598 \\
\hline 1997 & 17548 & 23010 & 30173 & 3743 & 4575 & 5592 & 0.41 & 0.51 & 0.65 & 8025 & 9565 & 11402 & 1523 & 1873 & 2303 & 670 & 824 & 1013 \\
\hline 1998 & 15143 & 19856 & 26036 & 4034 & 4968 & 6119 & 0.39 & 0.51 & 0.65 & 8294 & 9933 & 11896 & 1431 & 1765 & 2178 & 1101 & 1358 & 1675 \\
\hline 1999 & 14444 & 19079 & 25202 & 4595 & 5740 & 7170 & 0.3 & 0.39 & 0.51 & 9191 & 11117 & 13447 & 1295 & 1600 & 1978 & 872 & 1078 & 1332 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Recruitment (thousands)} & \multicolumn{3}{|c|}{SSB (t)} & \multicolumn{3}{|c|}{Fbar (3-6)} & \multicolumn{3}{|c|}{TSB (t)} & \multicolumn{3}{|c|}{Landings (t)} & \multicolumn{3}{|c|}{Discards (t)} \\
\hline 2000 & 18125 & 24304 & 32588 & 4995 & 6317 & 7988 & 0.23 & 0.32 & 0.43 & 9425 & 11514 & 14066 & 1100 & 1372 & 1712 & 628 & 784 & 978 \\
\hline 2001 & 18543 & 24550 & 32503 & 5977 & 7669 & 9840 & 0.2 & 0.27 & 0.37 & 10780 & 13296 & 16398 & 1193 & 1473 & 1818 & 535 & 660 & 815 \\
\hline 2002 & 18992 & 25270 & 33623 & 7038 & 9145 & 11882 & 0.17 & 0.24 & 0.32 & 12081 & 15099 & 18871 & 1320 & 1624 & 1997 & 529 & 651 & 800 \\
\hline 2003 & 16604 & 22396 & 30209 & 8337 & 10989 & 14485 & 0.14 & 0.19 & 0.27 & 13608 & 17297 & 21986 & 1254 & 1559 & 1939 & 535 & 665 & 827 \\
\hline 2004 & 15545 & 20835 & 27925 & 8415 & 11125 & 14706 & 0.1 & 0.14 & 0.2 & 13278 & 16991 & 21741 & 912 & 1142 & 1429 & 494 & 618 & 774 \\
\hline 2005 & 13398 & 17936 & 24011 & 8203 & 10790 & 14194 & 0.13 & 0.19 & 0.26 & 13027 & 16489 & 20871 & 1032 & 1282 & 1591 & 585 & 726 & 902 \\
\hline 2006 & 17510 & 23208 & 30759 & 7299 & 9642 & 12736 & 0.15 & 0.20 & 0.28 & 12835 & 16129 & 20269 & 756 & 934 & 1154 & 609 & 752 & 929 \\
\hline 2007 & 20358 & 27272 & 36533 & 6025 & 7965 & 10531 & 0.16 & 0.22 & 0.31 & 9237 & 11725 & 14883 & 651 & 806 & 997 & 846 & 1046 & 1295 \\
\hline 2008 & 16533 & 21940 & 29116 & 6052 & 7980 & 10522 & 0.12 & 0.17 & 0.24 & 10587 & 13315 & 16745 & 457 & 563 & 693 & 617 & 761 & 937 \\
\hline 2009 & 12734 & 17347 & 23631 & 6841 & 9099 & 12102 & 0.09 & 0.12 & 0.17 & 9622 & 12375 & 15916 & 364 & 455 & 569 & 543 & 679 & 850 \\
\hline 2010 & 17939 & 23865 & 31748 & 6948 & 9080 & 11868 & 0.14 & 0.19 & 0.27 & 11086 & 13945 & 17542 & 301 & 378 & 476 & 1221 & 1536 & 1933 \\
\hline 2011 & 20956 & 28083 & 37634 & 8006 & 10765 & 14474 & 0.09 & 0.12 & 0.17 & 12294 & 15793 & 20288 & 481 & 594 & 735 & 293 & 362 & 447 \\
\hline 2012 & 18232 & 24327 & 32461 & 6708 & 9067 & 12255 & 0.09 & 0.13 & 0.18 & 8823 & 11545 & 15107 & 406 & 501 & 618 & 491 & 606 & 748 \\
\hline 2013 & 18348 & 24507 & 32733 & 8117 & 10989 & 14879 & 0.06 & 0.08 & 0.11 & 11748 & 15249 & 19795 & 245 & 303 & 374 & 352 & 435 & 537 \\
\hline 2014 & 21853 & 30255 & 41887 & 8318 & 11204 & 15091 & 0.06 & 0.09 & 0.12 & 12020 & 15558 & 20139 & 232 & 287 & 355 & 458 & 566 & 699 \\
\hline 2015 & 12505 & 17550 & 24631 & 10932 & 15234 & 21228 & 0.04 & 0.06 & 0.08 & 14387 & 19264 & 25796 & 353 & 440 & 548 & 276 & 343 & 428 \\
\hline 2016 & 11054 & 16169 & 23653 & 16464 & 22686 & 31258 & 0.03 & 0.05 & 0.07 & 21117 & 28151 & 37527 & 543 & 684 & 861 & 197 & 249 & 313 \\
\hline
\end{tabular}

Table 25.3.6. Irish Sea plaice. Input data for the short-term forecast.
\begin{tabular}{llllllllll}
\hline Age & N2017 & N2018 & N2019 & M & Mat & SWt & Sel & LWt & DWt \\
\hline 1 & 16169 & 20475 & 20475 & 0.14 & 0 & 0.092 & 0.063 & 0.147 & 0.093 \\
\hline 2 & 15934 & na & na & 0.13 & 0.24 & 0.078 & 0.562 & 0.194 & 0.076 \\
\hline 3 & 21177 & na & na & 0.12 & 0.57 & 0.100 & 1.021 & 0.258 & 0.091 \\
\hline 4 & 16255 & na & na & 0.12 & 0.74 & 0.145 & 1.074 & 0.302 & 0.113 \\
\hline 5 & 12506 & na & na & 0.12 & 0.93 & 0.196 & 1.018 & 0.352 & 0.123 \\
\hline 6 & 10654 & na & na & 0.12 & 1 & 0.227 & 0.887 & 0.358 & 0.146 \\
\hline 7 & 8603 & na & na & 0.11 & 1 & 0.295 & 0.579 & 0.431 & 0.153 \\
\hline 8 & 17013 & na & na & 0.11 & 1 & 0.485 & 0.579 & 0.589 & 0.153 \\
\hline
\end{tabular}

Table 25.3.7. Short-term forecast. Annual catch options. All weights are in tonnes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Basis & Total catch (2018) & Wanted catch* (2018) & Unwanted catch* (2018) & \[
\begin{aligned}
& \mathrm{F}_{\text {total }} \\
& (2018)
\end{aligned}
\] & \[
\begin{aligned}
& F_{\text {wanted }} \\
& (2018)
\end{aligned}
\] & Funwanted
(2018) & \[
\begin{gathered}
\text { SSB } \\
(2019)
\end{gathered}
\] & \[
\begin{gathered}
\text { \% SSB } \\
\text { change } \\
* *
\end{gathered}
\] & \begin{tabular}{l}
\% TAC \\
change \\
***
\end{tabular} \\
\hline \multicolumn{10}{|l|}{ICES advice basis} \\
\hline \begin{tabular}{l}
MSY \\
approach: \\
FMSY
\end{tabular} & \[
3254
\] & 1749 & 1505 & 0.164564 & 0.0366 & 0.12789 & 23013 & -2.45 & 196.34 \\
\hline \multicolumn{10}{|l|}{Other options} \\
\hline \(\mathrm{F}=0\) & 0 & 0 & 0 & 0 & 0 & 0 & 25859 & 9.62 & -100 \\
\hline \[
\mathrm{F}_{\mathrm{pa}}
\] & 6421 & 3472 & 2949 & 0.347218 & 0.0773 & 0.26984 & 20248 & -14.17 & 484.80 \\
\hline Flim & 8474 & 4601 & 3873 & 0.480519 & 0.1070 & 0.37343 & 18459 & -21.75 & 671.79 \\
\hline \[
\begin{aligned}
& \text { SSB } \\
& (2019)= \\
& \mathrm{Blim}_{\text {lim }}
\end{aligned}
\] & 25112 & 14215 & 10897 & 2.758924 & 0.6148 & 2.14409 & 4250 & -81.98 & 2187.09 \\
\hline \[
\begin{aligned}
& \text { SSB } \\
& (2019)= \\
& \mathrm{B}_{\mathrm{pa}}
\end{aligned}
\] & 23198 & 13060 & 10138 & 2.241954 & 0.4996 & 1.74234 & 5825 & -75.31 & 2012.75 \\
\hline \[
\begin{aligned}
& \text { SSB } \\
& (2019)= \\
& \text { MSY } \\
& \mathrm{B}_{\text {trigger }}
\end{aligned}
\] & 17801 & 9875 & 7926 & 1.333999 & 0.2972 & 1.03671 & 10392 & -55.95 & 1521.24 \\
\hline \(\mathrm{F}=\mathrm{F}_{2017}\) & 978 & 524 & 455 & 0.047341 & 0.0105 & 0.03679 & 25003 & 5.99 & -10.91 \\
\hline \begin{tabular}{l}
\[
\mathrm{F}=\mathrm{F}_{\mathrm{MSY}}
\] \\
lower
\end{tabular} & 2278 & 1222 & 1056 & 0.113 & 0.0251 & 0.08781 & 23866 & 1.17\% & 107.45 \\
\hline \begin{tabular}{l}
\[
\mathrm{F}=\mathrm{F}_{\mathrm{MSY}}
\] \\
upper
\end{tabular} & 4772 & 2572 & 2200 & 0.249 & 0.0554 & 0.19351 & 21687 & -8.07\% & 334.62 \\
\hline
\end{tabular}


Figure 25.2.1. Irish Sea plaice: Effort and lpue for commercial fleets.


Figure 25.2.2a. Landings-at-age data (left) and mean standardised proportion-at-age (right, black bubbles are positive values and orange bubbles are negative).


Figure 25.2.2b. Discards-at-age data (left) and mean standardised proportion-at-age (right, black bubbles are positive values and orange bubbles are negative).


Figure 25.2.3. Left: UK(E\&W)-BTS-Q3 (extended area) cpue by age. Right: standardised indices of SBB derived from NIGFS-WIBTS, biomass of ages 1-4 from UK(E\&W)-BTS-Q3 (extended area) and the SSB estimates from the Annual Egg Production Methods (circles, right). Mean standardised proportion-at-age = [ (proportion-at-age in year) - mean (proportion-at-age over all years)] / STDEV(proportion-at-age over all years).


Figure 25.2.4. Length distributions of discarded and retained catches from UK(E\&W).


Figure 25.2.5. Length distributions of discarded and retained catches from Ireland.


Figure 25.2.6. Length distributions of discarded and retained catches from Belgium.


Figure 25.2.7. Northern Irish groundfish survey SSB indices split into spring (left hand panels) and autumn (right hand panels) sampling by western strata (1-3), eastern strata (4-7) and total survey area (strata 1-7) with confidence intervals ( \(\pm 1\) standard error, vertical lines).

\section*{Biomass Eastern Irish Sea}


Biomass Western Irish Sea


Figure 25.2.8. Trends in biomass indices ( kg per km towed) from the UK(E\&W)-BTS-Q3 (black line) and the NIGFS-WIBTS-Q1 and -Q3 (blue and red lines respectively) in the eastern Irish Sea (top) and the western and southern Irish Sea (bottom). Also shown (green dots, right axis) are the estimates of SSB from the Annual Egg Production Method (AEPM) from Armstrong et al. (2011).


Figure 25.2.9. Selectivity of the fishery split into the landed (solid) and discarded (dashed) components as estimated by the SAM model, where the \(x\)-axis shows age and the \(y\)-axis gives the fishing mortality-at-age scaled so that the maximum value is 1 and split by the proportion of fish (by number) discarded and landed at-age.


Figure 25.2.10. Catchability for the UK (E\&W)-BTS-Q3 extended index by age, NIGFS-WIBTS-Q1 and NIGFS-WIBTS-Q4 as estimated by the SAM model.





Figure 25.2.11. Residuals in fits to catch and survey data from the baseline model. Expected values were estimated by the SAM model.


Figure 25.2.12. Comparison of the standardised age 1 index from the UK (E\&W)-BTS-Q3 extended area (red) and the standardised recruitment (blue dashed line) estimated by the SAM model.

\section*{Biomass estimates}


Figure 25.2.13. SAM model estimates of mean standardised SSB (orange line) overlain with standardised NIGFS in spring (red) and autumn (blue dashed) relative SSB indices, standardised (minus mean and divide by standard deviation) biomass (ages 1-4) from the UK(E\&W)-BTS (black solid line) and AEPM SSB index (circles, right axis).


Figure 25.2.14. Modelled SSB (tonnes, top left), recruitment (thousands, bottom left), F bar (ages 3-6, bottom right) catch tonnage (bottom right). Modelled using the SAM model. Error dashed lines indicate \(2 \times\) standard deviation.


Figure 25.2.15. Retrospective assessments for years 2006-2016 from the baseline model. SSB (tonnes, top left), recruitment (thousands, bottom left), Fbar (ages 3-6, bottom right) catch tonnage (bottom right). Error dashed lines indicate \(2 \times\) standard deviation.


Figure 25.2.16. Zoom (time-series truncated in 2000) of the retrospective assessments for years 2006-2016 from the baseline model. SSB (tonnes, top left), recruitment (thousands, bottom left), Frar \(^{\text {bages 3-6, bottom right) catch tonnage (bottom right). Error dashed lines indicate } 2 \times \text { standard }}\) deviation.

\section*{26 Plaice in 7.bc (West of Ireland)}

Type of assessment in 2016
No assessment was performed.

\subsection*{26.1 General}

\section*{Stock Identity}

Plaice in 7.b are mainly caught by Irish vessels on sandy grounds in coastal areas. Plaice catches in 7.c are negligible. There are two distinct areas in which plaice are caught by Irish vessels in 7.b: an area around Galway Bay and an area in the north of 7.b which extends into 6.a (the Stags and Broadhaven Ground). During 1995-2000 a large proportion of the \(7 . \mathrm{bc}\) plaice landings were taken from the Stags Grounds (Rectangles 37D8, 37D9, 37E0 and 37E1). The landings and lpue in this area have dropped sharply since 2000, in line with a general decrease of lpue in Division 6.a. Plaice in this area appear to be more linked with 6 .a than populations further south. The landings and lpue on the Aran grounds appear to have been more or less stable since the start of the logbooks' time-series in 1995 (WD 1, WGCSE 2009). It is not known how much exchange there is between plaice on the Aran grounds and those on the Stags ground. The commercial lpue time-series may not be reflective of overall stock abundance due to changing fishing practices.

\section*{Data}

The time-series of official landings is presented in Table 25.1 and Figure 25.1.
Sampling is carried out in Ireland but numbers of samples varies over time due to the low landings levels and varying encounter probability and is not sufficient to generate a time-series of annual length or age distributions. Sampling in 2016 was relatively good with 16 length samples (1300 fish measured), 291 fished aged and ten discard trips. The estimated age distribution of the catch is shown in Figure 25.2. The catch is dominated by age 3-9 year old fish. Discard estimates are relatively low mainly ages 1-5.

Table 26.1. Landings of plaice in 7.bc as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & BEL & FRA & UK & IRL & OTH & TOT & Year & BEL & FRA & UK & IRL & OTH & TOT & Unalloc & WG est \\
\hline 1908 & 0 & 0 & 0 & 135 & 0 & 135 & 1963 & 0 & 471 & 2 & 67 & 0 & 540 & & \\
\hline 1909 & 0 & 0 & 0 & 49 & 0 & 49 & 1964 & 0 & 427 & 2 & 66 & 0 & 495 & & \\
\hline 1910 & 0 & 0 & 0 & 36 & 0 & 36 & 1965 & 0 & 417 & 2 & 99 & 0 & 518 & & \\
\hline 1911 & 0 & 0 & 2 & 54 & 0 & 56 & 1966 & 0 & 0 & 1 & 127 & 0 & 128 & & \\
\hline 1912 & 0 & 0 & 1 & 40 & 0 & 41 & 1967 & 0 & 182 & 2 & 112 & 0 & 296 & & \\
\hline 1913 & 0 & 0 & 0 & 54 & 0 & 54 & 1968 & 0 & 403 & 0 & 89 & 0 & 492 & & \\
\hline 1914 & 0 & 0 & 0 & 85 & 0 & 85 & 1969 & 0 & 281 & 2 & 99 & 0 & 382 & & \\
\hline 1915 & 0 & 0 & 1 & 23 & 0 & 24 & 1970 & 0 & 124 & 0 & 110 & 0 & 234 & & \\
\hline 1916 & 0 & 0 & 0 & 22 & 0 & 22 & 1971 & 0 & 0 & 1 & 89 & 0 & 90 & & \\
\hline 1917 & 0 & 0 & 0 & 36 & 0 & 36 & 1972 & 0 & 110 & 0 & 124 & 0 & 234 & & \\
\hline 1918 & 0 & 0 & 0 & 29 & 0 & 29 & 1973 & 0 & 60 & 1 & 124 & 0 & 185 & & \\
\hline 1919 & 0 & 0 & 1 & 32 & 0 & 33 & 1974 & 0 & 45 & 1 & 106 & 0 & 152 & & \\
\hline 1920 & 0 & 0 & 25 & 15 & 0 & 40 & 1975 & 0 & 10 & 0 & 153 & 0 & 163 & & \\
\hline 1921 & 0 & 0 & 9 & 34 & 0 & 43 & 1976 & 0 & 9 & 0 & 133 & 0 & 142 & & \\
\hline 1922 & 0 & 0 & 1 & 37 & 0 & 38 & 1977 & 0 & 4 & 0 & 135 & 0 & 139 & & \\
\hline 1923 & 0 & 0 & 1 & 30 & 0 & 31 & 1978 & 0 & 16 & 0 & 122 & 0 & 138 & & \\
\hline 1924 & 0 & 0 & 4 & 166 & 0 & 170 & 1979 & 0 & 6 & 0 & 117 & 2 & 125 & & \\
\hline 1925 & 0 & 0 & 5 & 28 & 0 & 33 & 1980 & 0 & 12 & 0 & 142 & 65 & 219 & & \\
\hline 1926 & 0 & 13 & 10 & 42 & 0 & 65 & 1981 & 0 & 9 & 4 & 135 & 58 & 206 & & \\
\hline 1927 & 0 & 126 & 14 & 45 & 0 & 185 & 1982 & 0 & 8 & 4 & 122 & 22 & 156 & & \\
\hline 1928 & 0 & 40 & 7 & 35 & 0 & 82 & 1983 & 0 & 37 & 0 & 108 & 7 & 152 & & \\
\hline 1929 & 0 & 262 & 25 & 31 & 0 & 318 & 1984 & 0 & 2 & 6 & 110 & 0 & 118 & & \\
\hline 1930 & 0 & 96 & 6 & 44 & 0 & 146 & 1985 & 0 & 10 & 7 & 150 & 0 & 167 & & \\
\hline 1931 & 0 & 238 & 8 & 58 & 0 & 304 & 1986 & 0 & 11 & 5 & 114 & 0 & 130 & & \\
\hline 1932 & 0 & 411 & 19 & 76 & 0 & 506 & 1987 & 0 & 13 & 1 & 153 & 0 & 167 & & \\
\hline 1933 & 0 & 595 & 29 & 29 & 0 & 653 & 1988 & 0 & 9 & 2 & 157 & 0 & 168 & & \\
\hline 1934 & 0 & 406 & 31 & 33 & 0 & 470 & 1989 & 0 & 1 & 14 & 159 & 0 & 174 & & \\
\hline 1935 & 0 & 249 & 18 & 33 & 0 & 300 & 1990 & 0 & 11 & 92 & 130 & 0 & 233 & & \\
\hline 1936 & 0 & 265 & 47 & 37 & 0 & 349 & 1991 & 0 & 9 & 3 & 179 & 0 & 191 & & \\
\hline 1937 & 0 & 242 & 59 & 25 & 0 & 326 & 1992 & 0 & 3 & 9 & 180 & 0 & 192 & & \\
\hline 1938 & 0 & 359 & 25 & 20 & 0 & 404 & 1993 & 0 & 2 & 3 & 191 & 0 & 196 & & \\
\hline 1939 & 0 & 0 & 0 & 24 & 0 & 24 & 1994 & 0 & 1 & 5 & 200 & 0 & 206 & & \\
\hline 1940 & 0 & 0 & 0 & 47 & 0 & 47 & 1995 & 0 & 5 & 2 & 239 & 0 & 246 & & \\
\hline 1941 & 0 & 0 & 0 & 43 & 0 & 43 & 1996 & 0 & 1 & 2 & 248 & 0 & 251 & -11 & 240 \\
\hline 1942 & 0 & 0 & 0 & 41 & 0 & 41 & 1997 & 0 & 3 & 0 & 206 & 0 & 209 & 4 & 213 \\
\hline 1943 & 0 & 0 & 0 & 29 & 0 & 29 & 1998 & 0 & 0 & 1 & 160 & 0 & 161 & 22 & 183 \\
\hline 1944 & 0 & 0 & 0 & 42 & 0 & 42 & 1999 & 0 & 0 & 2 & 157 & 0 & 159 & 13 & 172 \\
\hline 1945 & 0 & 0 & 0 & 30 & 0 & 30 & 2000 & 0 & 31 & 0 & 99 & 0 & 130 & -22 & 108 \\
\hline 1946 & 0 & 0 & 5 & 32 & 0 & 37 & 2001 & 0 & 8 & 0 & 70 & 0 & 78 & 9 & 87 \\
\hline 1947 & 5 & 0 & 9 & 36 & 0 & 50 & 2002 & 0 & 17 & 2 & 51 & 0 & 70 & 1 & 71 \\
\hline 1948 & 0 & 0 & 8 & 47 & 0 & 55 & 2003 & 0 & 7 & 0 & 56 & 2 & 65 & 7 & 72 \\
\hline 1949 & 0 & 0 & 20 & 63 & 0 & 83 & 2004 & 0 & 14 & 0 & 39 & 1 & 54 & 1 & 55 \\
\hline 1950 & 0 & 289 & 16 & 42 & 0 & 347 & 2005 & 0 & 12 & 0 & 25 & 0 & 37 & 1 & 38 \\
\hline
\end{tabular}
\begin{tabular}{llllllllllllllll}
\hline Year & BEL & FRA & UK & IRL & OTH & TOT & Year & BEL & FRA & UK & IRL & OTH & TOT & Unalloc & WG est \\
\hline 1951 & 0 & 100 & 12 & 31 & 0 & 143 & 2006 & 0 & 11 & 0 & 20 & 1 & 32 & -2 & 30 \\
\hline 1952 & 0 & 120 & 18 & 46 & 0 & 184 & 2007 & 0 & 12 & 0 & 23 & 0 & 35 & -1 & 34 \\
\hline 1953 & 0 & 340 & 8 & 48 & 0 & 396 & 2008 & 0 & 9 & 0 & 21 & 1 & 31 & 4 & 35 \\
\hline 1954 & 0 & 273 & 5 & 72 & 0 & 350 & 2009 & 0 & 7 & 0 & 45 & 0 & 52 & 1 & 53 \\
\hline 1955 & 0 & 111 & 3 & 96 & 0 & 210 & 2010 & 0 & 6 & 0 & 27 & 0 & 33 & 0 & 33 \\
\hline 1956 & 0 & 174 & 1 & 64 & 0 & 239 & 2011 & 0 & 2 & 0 & 16 & 0 & 18 & -2 & 16 \\
\hline 1957 & 0 & 80 & 1 & 60 & 0 & 141 & 2012 & 0 & 9 & 0 & 20 & 0 & 29 & -3 & 26 \\
\hline 1958 & 0 & 204 & 0 & 71 & 0 & 275 & 2013 & 0 & 3 & 0 & 15 & 0 & 18 & 0 & 18 \\
\hline 1959 & 0 & 392 & 5 & 54 & 0 & 451 & 2014 & 0 & 6 & 0 & 17 & 0 & 23 & 0 & 23 \\
\hline 1960 & 0 & 197 & 3 & 46 & 0 & 246 & 2015 & 0 & 7 & 0 & 15 & 0 & 22 & 0 & 22 \\
\hline 1961 & 0 & 182 & 0 & 30 & 0 & 212 & 2016 & 0 & 11 & 0 & 17 & 0 & 29 & 0 & 29 \\
\hline 1962 & 0 & 239 & 0 & 42 & 0 & 281 & & & & & & & & & \\
\hline
\end{tabular}


Figure 26.1. Landings of plaice in 7.bc as officially reported to ICES (1908-2016).


Figure 26.2. Estimated age distribution of plaice 7.bc in 2016 based on Irish sampling (landings in blue, discards in red).

\section*{27 Plaice in the Western Channel (ICES Division 7.e)}

\section*{Type of assessment in 2016}
Last year's assessment report is available at:
http://www.ices.dk/sites/pub/Publication\%20Reports/Expert\%20Group\%20Report/ac om/2016/WGCSE/08.02 Plaice VIIe 2016.pdf

ICES advice applicable to 2017
Last year's advice is available at
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2016/2016/ple-echw.pdf

\subsection*{27.1 General}

\section*{Stock description and management units}

The management area for this stock is strictly that for ICES Division 7.e, called the Western English Channel. The TAC area does not correspond to the stock area given that it includes the larger component of 7.d (Eastern English Channel). However, WKFLAT 2010 found that a significant proportion of the catches of the 7.e stock are taken in the adjacent division during the spawning period. Plaice is not the main target species in 7.e, and it is generally taken as bycatch in fisheries targeting sole.


TAC area \(=7 . \mathrm{d}-\mathrm{e}\); Assessment area \(=7 . \mathrm{e}\).

Management applicable to 2016 and 2017
There are technical measures in operation including a minimum 80 mm mesh size and a minimum landings size \((27 \mathrm{~cm})\) for this species.

The TAC and the national quotas by country for 2016
\begin{tabular}{lccr}
\hline \multicolumn{1}{c}{ Species } & Plaice & Zone: & \begin{tabular}{c} 
7.d and 7.e \\
(PLE/7DE.)
\end{tabular} \\
\hline Belgium & 2037 & & \\
\hline France & 6788 & & \\
\hline United Kingdom & 3621 & Analytical TAC \\
\hline Union & 12446 & \\
\hline TAC & 12446 & & \\
\hline
\end{tabular}
(Source: Council Regulation (EU) 2016/72).

The TAC and the national quotas by country for 2017
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ Species } & Plaice & Zone: \\
Pleuronectes platessa
\end{tabular}\(\left.\quad \begin{array}{c}\text { 7.d and 7.e } \\
\text { (PLE/7DE.) }\end{array}\right]\)\begin{tabular}{lll}
\hline Belgium & 1640 & \\
\hline France & 5467 & \\
\hline United Kingdom & 2915 & Analytical TAC \\
\hline Union & 10022 & \\
\hline TAC & 10022 & \\
\hline
\end{tabular}
(Source: Council Regulation (EU) 2017/127).

\section*{The fishery in 2016}

A full description of the fishery is provided in the Stock Annex, Section A2.
In the Western English Channel, plaice are taken mainly as bycatch in bottom trawls targeting sole and anglerfish. In 2016, \(69 \%\) of the landings were taken by beam trawls, \(27 \%\) by otter trawls, \(3 \%\) by fixed nets and \(1 \%\) by other gears. Of the total international landings \(80 \%\) were reported by the UK, \(12 \%\) by France, \(8 \%\) by Belgium and \(0.03 \%\) by Netherlands (Table 27. 1; Figure 27.1).

This stock is the smaller of the two plaice stocks that make up the larger TAC Area 7.d-e. The landings from this stock amounted to \(26 \%\) of the TAC in 2015 and \(18 \%\) of the TAC in 2016.

\section*{Landings}

National landings data reported to ICES and estimates of total landings used by the Working Group are given in Table 27.1. Total international landings in 2016 for 7.e were 1777 t .

Landings increased to near 3000 t during the latter half of the 1980s due to a series of good recruitments in 1987-1989, but subsequently dropped to levels fluctuating around 1500 t . After this period, landings declined to below the long-term average of the time-series at about 1200 t per annum. Between 2011 and 2014 landings were stable at around 1350 t , dropped to 1246 t in 2015 and increased in 2016 to 1777 t .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Country} & Fleet & \multicolumn{6}{|l|}{Quarterly data provision} \\
\hline & & \multicolumn{3}{|l|}{Landings} & \multicolumn{3}{|l|}{Discards} \\
\hline & & Age structure & Length structure & Tonnage & Age structure & Length structure & Tonnage \\
\hline BELGIUM & OTB_CRU_70-99 & - & - & Q1-Q4 & - & - & - \\
\hline BELGIUM & SSC_DEF_70-99 & - & - & - & - & - & - \\
\hline BELGIUM & TBB_DEF_70-99 & - & - & ANNUAL & - & - & ANNUAL \\
\hline FRANCE & DRB_MOL_all & - & - & Q1-Q4 & - & - & - \\
\hline FRANCE & GNS_DEF_>=100 & - & - & Q1-Q4 & - & - & Q1-Q4 \\
\hline FRANCE & GNS_DEF_all & - & - & Q1-Q4 & - & - & Q1, Q3, Q4 \\
\hline FRANCE & GTR_DEF_>=220 & - & - & Q1-Q4 & - & - & Q1, Q2, Q3 \\
\hline FRANCE & GTR_DEF_100-119 & - & Q1 & Q1-Q4 & - & - & Q1 \\
\hline FRANCE & GTR_DEF_120-219 & - & Q1 & Q1-Q4 & - & - & Q1 \\
\hline FRANCE & GTR_DEF_all & - & - & Q1-Q4 & - & - & - \\
\hline FRANCE & MIS_MIS & - & - & Q1-Q4 & - & - & - \\
\hline FRANCE & OTB_DEF_100-119 & - & Q2 & Q1-Q4 & - & - & Q1-Q4 \\
\hline FRANCE & OTB_DEF_70-99 & - & Q1-Q4 & Q1-Q4 & - & - & Q1-Q4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Country} & \multirow[t]{3}{*}{Fleet} & \multicolumn{6}{|l|}{Quarterly data provision} \\
\hline & & \multicolumn{3}{|l|}{Landings} & \multicolumn{3}{|l|}{Discards} \\
\hline & & Age structure & Length structure & Tonnage & Age structure & Length structure & Tonnage \\
\hline FRANCE & OTB_DEF_All & - & - & Q1-Q4 & - & - & - \\
\hline FRANCE & OTT_DEF_>=70 & - & - & Q1-Q4 & - & - & Q2 \\
\hline FRANCE & OTT_DEF_100-119 & - & - & Q1-Q4 & - & - & - \\
\hline FRANCE & SSC_DEF_All & - & - & Q1, Q2, Q3 & - & - & - \\
\hline FRANCE & TBB_DEF_all & - & Q2 & Q1, Q2, Q3 & - & - & Q2, Q3 \\
\hline NETHERLANDS & SSC_DEF_70-99 & - & - & Q1, Q2 & - & - & - \\
\hline NETHERLANDS & SSC_DEF_70-99_FDF & - & - & Q1, Q2 & - & - & - \\
\hline UK (GUERNSEY) & MIS_MIS & - & - & Q1-Q4 & - & - & - \\
\hline UK (JERSEY) & MIS_MIS & - & - & Q1- Q4 & - & - & - \\
\hline UK (ENGLAND \& WALES) & GNS_DEF_all & Q2, Q3, Q4 & Q2, Q3, Q4 & Q1 & Q1, Q2 & Q1, Q2 & Q3 \\
\hline UK (ENGLAND \& WALES) & GTR_DEF_all & - & - & Q1, Q2, Q3 & Q2 & Q2 & Q3 \\
\hline UK (ENGLAND \& & LLS_FIF_all & - & - & Q1- Q4 & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Country} & \multirow[t]{3}{*}{Fleet} & \multicolumn{6}{|l|}{QuARTERLY data provision} \\
\hline & & \multicolumn{3}{|l|}{Landings} & \multicolumn{3}{|l|}{Discards} \\
\hline & & Age structure & Length structure & Tonnage & Age structure & Length structure & Tonnage \\
\hline \multicolumn{8}{|l|}{WALES)} \\
\hline UK (ENGLAND \& WALES) & MIS_MIS & Q1-Q4 & Q1-Q4 & - & Q3 & Q3 & Q1, Q2, Q4 \\
\hline UK (ENGLAND \& WALES) & OTB_CRU_16-31 & - & - & Q2, Q3, Q4 & - & - & - \\
\hline UK (ENGLAND \& WALES) & OTB_CRU_70-99 & - & - & Q2, Q3, Q4 & - & - & - \\
\hline UK (ENGLAND \& WALES) & OTB_DEF_>=120 & Q1-Q4 & Q1-Q4 & - & Q4 & Q4 & - \\
\hline UK (ENGLAND \& WALES) & OTB_DEF_70-99 & Q1-Q4 & Q1-Q4 & - & Q1-Q4 & Q1-Q4 & - \\
\hline UK (ENGLAND \& WALES) & OTM_SPF_32-69 & - & - & Q1 & - & - & - \\
\hline UK (ENGLAND \& WALES) & SSC_DEF_All & - & - & Q1, Q2 & - & - & - \\
\hline UK (ENGLAND \& WALES) & TBB_DEF_>=120 & - & - & Q4 & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{llllllll}
\hline Country & Fleet & Quarterly data provision & & & \\
\hline & & Landings & & Discards & \\
\hline
\end{tabular}

In addition to the estimated 2016 landings for 7.e, an extra of 235 tonnes was added from the 7.d plaice stock representing an adjustment for migration of \(15 \%\) of the mature component of quarter 1 landings between the two divisions. This process was agreed at WKFLAT 2010, and the migration correction was revised at WKPLE 2015. The process has been described in the Stock Annex. A reciprocal correction was made to the 7.d plaice stock at WGNSSK 2017. Figure 27.14 shows the total annual landings split by divisions 7.e and 7.d and Figure 27.15 the proportion of the landings landed in 7.d.

\section*{Data}

Annual length composition data outside InterCatch for 2017 was provided by the UK, France and Belgium.

Again this year, all nations provided data disaggregated by fleet and by quarter and this was all uploaded into the ICES InterCatch database. Quarterly age compositions for landings in 2017 were available from the UK \((E \& W)\) only and were provided for five fleets. These data accounted for \(79.7 \%\) of the total reported international landings. Additional landings data were available by quarter/fleet for Belgium, France, Netherlands, UK(E+W, Guernsey, Jersey). These datasets were aggregated to an international age structure using the ICES InterCatch platform and are shown in Figure 27.5.

An additional age composition representing the migration adjustment ( \(15 \%\) of the mature component of quarter 1 landings for \(7 . d\) ) was supplied on request by the WGNSSK stock coordinator for the 7.d plaice stock.

The method for the derivation of the international catch numbers and the calculation of the catch and stock weights-at-age has been fully described in the Stock Annex, Section B1 (Figure 27.10, Figure 27.11, Figure 27.12). Landings numbers-at-age (including the migration element) are given in Table 27.2 and plotted for the last five years in Figure 27.2. Landings and stock weights-at-age are given in Table 27.3 and Table 27.4 and plotted in Figure 27.13.

Catch weights are assumed to be mid-year values and stock weights are interpolated back (in year) to January 1st, as standard for this stock. The standard settings used for natural mortality and the proportions of F and M before spawning were used (see the Stock Annex). This is consistent with the procedures developed and agreed at the benchmark workshop held in February 2010 (WKFLAT) and updated at the interbenchmark meeting (IBPWCFlat2) in 2015.

\section*{Discards}

Although discards have not been used in the assessment of 7.e plaice in the past, some discard data are available. Discard tonnages are available within InterCatch and were provided by the UK(E\&W) for the years 2012-2016. In 2016 France provided discard tonnages for the first time, but only for 2015. In 2017, France submitted discard data for the years 2014-2016. Belgium provided some discard data for the years 2012, 2013, 2015 and 2016. Age samples for discards have only been provided by the UK(E\&W) but cover the years 2012-2016. Information about length distributions from samples for discards was provided by the UK, Belgium in 2017.

Available information on reported discard tonnage indicated a notable increase in discards in the recent years until 2015, but the rate dropped in 2016. Historically, the discard rate was calculated for those métiers for which discard data were available
within InterCatch. The total discard ratio was then estimated by calculating the arithmetic mean of the individual ratios. At WGCSE 2016 it turned out that this methodology caused a crucial underestimation of the actual discards. The reason for this underestimation is that there are some fleets with low discard rate but these fleets only have a minor contribution to the total catches. Hence, the total ratio is biased towards these smaller fleets and does not reflect actual and reported discards. Even by looking at the total reported discards a substantial increase in discards was evident. At WGCSE 2016 it was decided to calculate the total discard ratio for plaice in 7.e as the weighted mean of available discard data, weighted by the contribution of the métier to the total catches.

At WGCSE 2017 the discard rate calculation was changed again and now uses total international landings and discard tonnages as raised within InterCatch and corrected for the migration from 7.d. The discard rates calculated by this approach are 23, \(19,43,47\) and \(23 \%\) for the years \(2012-2016\). The final discard rate used for the catch advice is the average of these five years and is around \(31 \%\).

A comparison of the results from the different methods is shown in Figure 27.3.
In analogy to the landings, the discards are also uplifted by a migration correction from 7.d.

\section*{Revisions}

The United Kingdom, France and Belgium revised their data for 2015 for ICES Division 27.7.e. Total reported landings changed only slightly by less than one tonne to 1424 t . Total international reported discards decreased from 1230 t down to 1116 t , due to revision from Belgium, France and the UK. Belgium added 3 t (before 0) of discards in 2015, France reduced their reported discards dramatically from 244 t to 108 t and the UK increased reported discards from 986 t 1005 t .

For 2014, reported international landings in ICES Division 27.7.e increased slightly by less than one tonne to now 1341 t due to revisions by France and the UK. Total reported international discards increased from 796 t to 861 t , due to revision by the UK (increase from 796 t to 795 t ) and because France uploaded discards for 2014 ( 66 t ) for the first time in 2017.

\section*{Biological}

The natural mortality and the maturity ogives used were identical to previous assessments and as described in the stock annex.

\section*{Surveys}

IBPWCFlat2 2015 updated the derivation of cpue estimates for the research surveys to make full use of the available sampling data. Updated cpue estimates exhibited similar temporal trends to those presented at previous Working Groups but with more variability due to the inclusion of additional numbers-at-age information.

Two surveys currently provide abundance estimates to the Working Group (Figure 27.9; Table 27.5). The UK(E\&W) commercial beam trawl survey (UK-WEC-BTS) was terminated in 2013 due to a lack of UK science funding and excluded from the assessment input data in 2015. Detailed information on the survey protocols and area coverage can be found in the Stock Annex.

Since 2003, the UK Fisheries Science Partnership (FSP: Cefas-UK industry cooperative project) has been conducting a survey using commercial vessels with scientific observers and following a standard grid of stations extending from the Scilly Isles to Lyme Bay (UK FSP-7e). This survey covers a substantially larger area than the UK-WEC-BTS survey and is thought to be more representative of stock dynamics in UK waters. This dataset was first included in the 2007 assessment. There have been a number of vessel changes, gear changes and temporal variations in this survey series, but overall the survey has performed well in tracking year classes. Aggregated cpue estimates for the UK FSP-7e survey increased continuously since 2009 and reached a time-series maximum in 2014 but dropped afterwards.

Indices of abundance-at-age for the Quarter 1 South West Beam trawl (Q1SWBeam) survey started in 2006 and were included in the assessment for the first time in 2015. Including the Q1SWBeam survey in the assessment was considered appropriate by IBPWCFlat 2015 given the ability to track the progression of year classes among ages with few clear year effects and the loss of abundance estimates from the UK-WECBTS survey after 2013.

The Q1SWBeam survey is based on a stratified random survey approach that covers the entire region of the management area and some adjacent waters. The survey shows strong gradients in species composition within the Western Channel justifying the stratification approach. Age information provides estimates of abundance for all ages in the assessment. Theoretically, this removes the necessity of retaining the commercial lpue-at-age estimates. Internal consistency estimation is very difficult given the short time-series, and relatively small contrast in cohort strength observed (based on other series). Despite this, some cohort tracking is apparent and the signal matches the cohort signal from other survey series, particularly the UK FSP-7e survey. Cpue estimates for the Q1SWBeam survey gradually increased from 2006 to 2012 and increased rapidly thereafter to reach the highest levels on record in 2014. In 2015, the value dropped back to the level of 2013 but increased again in 2016.

\section*{Commercial fleet effort and Ipue}

IBPWCFlat2 2015 revised the effort time-series for the UK beam (UK WECBT) and otter trawl (UK WECOT) fleets due to fluctuations in lpue estimates after 2012 arising from modifications in the UK e-logbook effort recording system. Revised landings numbers, effort in days and lpue estimates in kg per 1000 days exhibited similar temporal trends to those presented previously, except with greater stability after 2012. UK(E\&W) beam trawl and otter trawl time-series are shown in Figure 27.4.

UK(E\&W) beam trawl effort (days fished-GRT corrected) are relatively stable at high levels since the early 2000s but the landings increased substantially in 2016.

UK(E\&W) otter trawl effort (days fished-GRT corrected) has declined since 1989 to very low levels in recent years. In 2016, this fleet reported 0 effort and no landings, i.e. there is no lpue value for 2016. The reason for is that the lpue otter trawl index is calculated only with vessel of at least 12 m length and in 2016 only smaller vessels deploying otter trawls reported any activity.

\subsection*{27.1.1 Data-limited methods}

In 2017 ICES requested to trial data-limited methods for category 3 stocks in order to try to estimate the stock status relative to (proxy) MSY reference points.

For the plaice in 7.e stock the length-based indicator (LBI) method as developed during WKLIFE workshops (ICES, 2014; 2015e) and the Surplus Production in Continuous Time (SPiCT, Pedersen and Berg, 2017) were trialled.

\section*{Length-based indicators}

The internationally raised length frequencies from InterCatch for the years 2014-2016 (Figure 27.6, Figure 27.7 disaggregated by country) were used as input data for the length-based indicator method. As landings predominated catches in 2016, the length frequencies derived from the total catches including discards were used and no assumptions about discard survival were made. The length-based method was conducted with the R scripts provided on the ICES GitHub site (https://github.com/ices-tools-dev/ICES MSY).

Using this script provided by ICES, the method came up with the following result table:
\begin{tabular}{|c|l|l|l|l|} 
Year|Lc_Lmat & \(\mid\) L25_Lmat & \(\mid\) Lmax5_Linf & \(\mid\) Pmega & \(\mid\) Lmean_Lopt
\end{tabular}\(|\) Lmean_LFeM \(\mid\)

The important column is the last column ("Lmean_LFeM") which is a proxy for the stock status according to the MSY approach. The values are above the threshold value of 1 indicating that the stock is a desirable state.

During WGCSE 2017 is was discovered that the R script provided by ICES contains several shortcomings and does not work with usual real life length frequencies. The approach in the script assumes a constant increase in the numbers-at-length until the maximum of the length-frequency distribution. The implemented method searches for the first peak in the length-frequency distribution and assumes the corresponding length is the maximum in the entire length distribution. The length at first capture (Lc) is then estimated by searching for the first length class where the abundance is equal or larger to \(50 \%\) of this maximum value. This approach fails to account for local maxima at lengths smaller than the absolute maximum in the length-frequency distribution, particularly if few catches at very lower lengths exist.

For the plaice 7.e stock for all three year with available total length data, local maxima exist and lead to absurd values which should not be used.

During WGCSE a quick fix for the method was implanted, working with the absolute maximum to calculate Lc. This lead to the following result table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year|Lc_Lmat & |L25_Lmat & | Lmax5 & | Pmega & | Lmean & | Lme \\
\hline : & & & & & \\
\hline 2014|**1.23** & |**1.32** & |0.66 & |0.01 & |0.7 & 10.88 \\
\hline 2015|**1.32** & |**1.38** & |0.68 & |0.01 & 10.75 & 10.9 \\
\hline 2016|**1.32** & |**1.43** & |0.7 & |0.01 & 10.77 & 10.93 \\
\hline
\end{tabular}

According to this table, the stock is slightly below MSY reference points.
Due to the uncertainty in the calculation of the length-based indicator values and the non-clearly formulated methodology, the estimated values were rejected. Further-
more, for this stock a variety of data are available and falling back onto length data when a longer age-disaggregated catch history exist, is implausible.

\section*{SPiCT}

During WKProxy (ICES, 2016b) a SPiCT assessment with a set of predefined parameter settings was used to assess plaice in 7.e. The workshop came up with reference values for biomass (exploitable biomass) and fishing mortality and found that the stock is in a desirable state, both in term of biomass and fishing mortality. The results from this assessment are also available on www.stockassessment.org.

Since WKProxy SPiCT has been further advanced and WGCSE 2017 tried to rerun the assessment with a newer version of SPiCT. Using the same input data and model specifications as during WKProxy in a more recent version of SPiCT (v1.1 vs. v0.2) did not lead to convergence in the model and resulted in different results.

During WGCSE a new set of input data for use in SPiCT was created. This comprised the same two tuning surveys as used in the traditional XSA assessment (FSP-UK and Q1SWBeam). For both surveys, an annual biomass value was created by summing up the biomass catch-at-age for the same ages as used in XSA. The catch input for SPiCT consisted of the total landings time-series. Several attempts were made to fit SPiCT, the result from the baseline run are shown in Figure 27.8.

Even though the model converged, the results are not appropriate. The uncertainty in absolute as well as relative estimates is very high and indicates a lack of certainty about. According to the assessment estimates the stock is currently below \(50 \%\) of BMSY and the fishing mortality well above Fmš, indicating an undesirable stock status. Several unsuccessful attempts were made to improve the model fit. The model was highly sensitive to the input data range.

The decision from this year's WGCSE is to reject the reference values calculated with SPiCT during WKProxy and not to use SPiCT to assess the stock status as the model does not seem to be able to track the dynamics of the stock properly.

Instead of using proxy reference points, this year WGCSE based the stock status evaluation for plaice in 7.e on analytical reference points from an XSA assessment, as described later in this report.

\subsection*{27.1.2 Stock assessment}

\section*{Catch-at-age analysis}

During this year's WGCSE an XSA assessment was performed with the settings defined in the stock annex.

\section*{Data compilation and screening}

The age range for the analysis was \(2-10+\) in accordance with the updated procedures outlined at IBPWCFlat2 2015 and detailed in the Stock Annex. The landings data were processed according to the stock annex and formed the reference dataset for this year's assessment.

As this was an update assessment, full data screening, tuning data and extensive exploratory XSA trials were not carried out.

Available tuning information consisted of five fleets: three UK commercial series, UK otter historic, UK otter trawl, UK beam trawl; and two UK survey series: FSP-7e
(UK(E\&W)) and Q1SWBeam but in accordance with the decision of WGCSE in 2015, only the UK surveys were analysed and used in the assessment. The cpue values for the FSP-7e and Q1SWBeam show a very similar pattern until 2015 (Figure 27.9). Older ages increased in recent years whereas the younger ages decreased. Furthermore, both surveys indicate low values for age 2 in 2012 and 2013. The UK FSP-7e survey data for 2008 continue to be excluded from the assessment as decided at WGCSE 2009. Both surveys aggregated over all ages showed a significant drop in the cpue for 2015 compared to 2014. The UK FSP cpue decreased further but the Q1SWBeam shows an increase again, driven by age 3 .

\section*{Update assessment}

The settings used for the final run are shown in the table below. The full assessment history is given in the stock annex.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & 2015 XSA & 2016 XSA & \[
\begin{gathered}
2016 \text { XSA } \\
\text { DISCARD TRIAL }
\end{gathered}
\] & 2017 XSA \\
\hline \multirow[t]{2}{*}{Catch-atage data} & Landings & \[
\begin{aligned}
& 1980-2014,2- \\
& 10+, 15 \% \\
& \text { mature Q1 } \\
& \text { catch from 7.d } \\
& \text { added }
\end{aligned}
\] & \[
\begin{aligned}
& 1980-2015,2- \\
& 10+, 15 \% \\
& \text { mature Q1 } \\
& \text { catch from } \\
& \text { 7.d added }
\end{aligned}
\] & \[
\begin{aligned}
& 1980-2015,2- \\
& 10+, 15 \% \\
& \text { mature Q1 } \\
& \text { catch from 7.d } \\
& \text { added }
\end{aligned}
\] & \[
\begin{aligned}
& 1980-2016,2- \\
& 10+, 15 \% \\
& \text { mature Q1 } \\
& \text { catch from } \\
& \text { 7.d added }
\end{aligned}
\] \\
\hline & Discards & - & - & \[
\begin{aligned}
& \text { 2012-2015, 2- } \\
& 10+, 15 \% \\
& \text { mature Q1 } \\
& \text { catch from 7.d } \\
& \text { added }
\end{aligned}
\] & - \\
\hline \multirow[t]{6}{*}{Fleets} & \begin{tabular}{l}
UK-WEC-BTS \\
- Survey
\end{tabular} & - & - & - & - \\
\hline & \begin{tabular}{l}
UK WECOT - \\
Commercial
\end{tabular} & - & - & - & - \\
\hline & UK WECOTCommercial historic & - & - & - & - \\
\hline & \begin{tabular}{l}
UK WECBT - \\
Commercial
\end{tabular} & - & - & - & - \\
\hline & \begin{tabular}{l}
FSP-7e- \\
Survey
\end{tabular} & \[
\begin{aligned}
& \text { 2003-2014, 2-8 } \\
& \text { (exc. 2008) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2003-2015, 2- } \\
& 8 \\
& (\text { exc. 2008) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2003-2015, 2-8 } \\
& \text { (exc. 2008) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2003-2016, 2- } \\
& 8 \\
& (\text { exc. 2008) }
\end{aligned}
\] \\
\hline & Q1SWBeam Survey & 2006-2014, 2-9 & \[
\begin{aligned}
& 2006-2015,2- \\
& 9
\end{aligned}
\] & 2006-2015, 2-9 & \[
\begin{aligned}
& 2006-2016,2- \\
& 9
\end{aligned}
\] \\
\hline Taper & & No & No & No & No \\
\hline Taper range & & - & - & - & - \\
\hline Ages catch dep. Stock size & & None & None & None & None \\
\hline q plateau & & 6 & 6 & 6 & 6 \\
\hline F shrinkage se & & 1.0 & 1.0 & 1.0 & 1.0 \\
\hline Year range & & 3 & 3 & 3 & 3 \\
\hline Age range & & 3 & 3 & 3 & 3 \\
\hline Fleet SE threshold & & 0.3 & 0.3 & 0.3 & 0.3 \\
\hline Prior weighting & & - & - & - & - \\
\hline Plus group & & 10 & 10 & 10 & 10 \\
\hline F Bar Range & & F(3-6) & F(3-6) & F(3-6) & F(3-6) \\
\hline
\end{tabular}

The log catchability residuals for the XSA run (landings only) are shown in Figure 27.16. For 2016, most residuals for the UK-FSP survey are negative, whereas they are positive for the Q1SWBeam survey. This is because of contradictory signals from the two surveys.

Fishing mortalities and stock numbers estimated from the final run are given in Table 27.6 and Table 27.7, and the assessment summary is shown in Table 27.8. SSB is still
increasing and fishing mortality is increasing slightly in the last year due to increased landings, but still at low levels.
Retrospective patterns in stock status and fishing mortality estimates exhibited an unacceptably high degree of temporal variability since the late-1990s, thereby indicating an excessive level of uncertainty and a lack of robustness in the assessment outputs. Consequently, since 2015 the Working Group assessed the status of the plaice 7.e stock using a qualitative evaluation of survey trends only in accordance with the ICES Data-Limited Stock (DLS) category 3 approach.

A seven-year retrospective analysis (Figure 27.17) was conducted in accordance with the procedures agreed at IBPWCFlat2 2015. Compared to the last years, the retrospective pattern is less pronounced and does not seem to be a problem anymore. The stock is still treated as a category 3 stock, mainly because of a missing discard timeseries.

\section*{Comparison with previous assessments}

Compared to last year's assessment, SSB is slightly higher in recent years and F slightly lower (Figure 27.19).

\section*{Alternative assessment with discards included}

Due to time constraints during the working group, the additional discard trial assessment could not be conducted in 2017.

\section*{State of the stock}

As in the last years the XSA assessment based on landings data only was used as final assessment run. A summary of this assessment is given in Table 27. 8 and Figure 27.18. Relative values have been presented for recruitment, spawning-stock biomass and fishing mortality estimates given that the Category 3 assessment is indicative of trends only.

Spawning-stock biomass was relatively stable from 1982 to 1985 and then increased until 1989 above the long-term average following strong recruitment events during the mid-1980s. Subsequently, spawning-stock biomass decreased until 1996. A strong year class in 1996 generated an increase in spawning-stock biomass between 1996 and 2000. However, successive poor year classes resulted in spawning-stock biomass declining to the lowest levels in 2007. A combination of above average recruitment and a reduction in fishing mortality has increased spawning-stock biomass since 2008 to reach the highest level on record in 2016.
Fishing mortality gradually increased from the 1980s up until the 2000s, peaking briefly in 2007. Following a large reduction in fishing mortality in 2009, this assessment shows a general decline that has reached the lowest levels on record in 2015. But due to higher landings in 2017, the fishing mortality increased slightly in 2016.
This assessment estimates that recruitment has been above the long-term geometric mean (1980-2016) between 2010 and 2015 and is just below in 2016.
However, the optimistic stock development in recent years is uncertain due to assessment uncertainty and omitting discard information. The decision to omit discard data is mainly due to uncertainty in the actual discard rate and unknown proportion of surviving plaice in the discards.

\section*{State of the stock in comparison to analytical reference points}

Analytical reference points for the landings only XSA assessment were estimated during WKMSYREF4 (ICES, 2016a) but never used due to the downgrading of the stock to category 3 . The main reason for this was an unacceptable retrospective pattern. This problem has now disappeared and consequently the analytical reference points have been restored.

If the absolute values from the XSA assessment are used, the fishing mortality in 2016 ( 0.237 ) is just below \(\mathrm{FMSY}^{(0.238)}\) ) and the SSB in 2016 ( 8520 t ) is above MSY Btrigger ( 5355 t ). Consequently, the stock is in a desirable state.

\subsection*{27.1.3 Short-term projections}

As in the last three years, plaice in 7.e continues to be treated as a category 3.2.0 stock and the assessment is indicative of trends only. Therefore, catch advice was provided by applying the ICES DLS framework for category 3 stocks where temporal trends in spawning-stock biomass are used as an index of stock development. The advice is based on a comparison of the two latest index values (index A) with the three preceding values (index B), multiplied by the recent advised catch. The SSB estimates from the landings only assessment are used as index values for this stock.

As basis for calculating the landing corresponding to the catch advice, the total catches as raised in InterCatch, including the migration correction from 7.d is used. The average of the last five years (all years available from InterCatch) is \(31.25 \%\).

The basis for the catch options for 2017 has been presented in Table 27.9. For stocks in ICES data categories 3-6, one catch option is provided.

The index ratio suggests an increase by more than \(20 \%\) and therefore the uncertainty cap was applied, i.e. the recent advised catch \((2714 \mathrm{t})\) is multiplied by 1.2.

Catches of the 7.e plaice stock should not exceed 3257 t in 2018 when the precautionary approach is applied. If discard rates do not change from the average (2012-2016), landings should be no more than 2239 t .

The average proportion of the landings of the 7.e plaice stock taken in division 20032016 is \(9.55 \%\). The year range (2003 until most recent year) was agreed between the two stocks and is also used in the advice for the 7.d stock. The calculation of this proportion only includes landings and disregards discards, as discard estimates for the plaice 7.e stock only exist from 2012 onwards. The advised catch for the stock is reduced by the average proportion to give advice for the 7.e area.

Assuming the same proportion of the Division 7.e plaice stock is taken in Division 7.d as during 2003-2016, this will correspond to catches of plaice in Division 7.e of no more than 2946 t . If discard rates do not change from the average (2012-2016), this implies landings of plaice in Division 7.e of no more than 2025 t.

Comparing the absolute values from the XSA assessment with the reference points from WKMSYREF4 (ICES, 2016a) leads to the conclusion that the stock is in a desirable state, both in terms of fishing mortality as well as SSB and consequently the application of the PA buffer was not considered. Furthermore, the SSB has been continuously increasing for more than five years and is currently at the time-series maximum.

\subsection*{27.1.4 Biological reference points}

Reference points for 7.e plaice were calculated at WKMSYREF4 (ICES, 2016a) using the results from an XSA with parameters implemented at WGCSE 2015. In contrast to the WGCSE assessment 2015, absolute values from the XSA assessment were used instead of the relative values for the calculation of the values. ICES did not adopt these reference point due to the classification of the plaice 7.e as category 3.

Instead MSY proxies were calculated at WKMSYPROXY 2015 (ICES, 2016b) which are presented in the following table.
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference POINT & Value & Technical basis & Source \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MSY \\
approach
\end{tabular}} & MSY \(B_{\text {trigger }}\) proxy & 1910 t & Fmsy (estimated by SPiCT from model parameters using data from 1980-2014) & \begin{tabular}{l}
WKPROXY 2015 \\
(ICES, 2016b)
\end{tabular} \\
\hline & \(\mathrm{F}_{\text {msy }}\) proxy & 0.56 & \(0.5 \times\) BMsy (estimated by SPiCT from model parameters using data from 1980-2014) & \begin{tabular}{l}
WKPROXY 2015 \\
(ICES, 2016b)
\end{tabular} \\
\hline
\end{tabular}

These values have been used to assess the relative stock status at WGCSE 2016. At WGCSE 2017, these values have been rejected as mentioned earlier in this report. Instead, the values from the WKMSYREF4 were restored. At WGCSE ICES asked for higher precision for the reference points and the highest precision as shown in the WKMSYREF4 report was used. For biomass reference points, the vales are rounded to the nearest tonne. For fishing mortality, all available digits were used. For F the last digit was extracted from the result plot depicted in the WKMSYREF4 report to achieve a value with 3 significant digits.
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference POINT & Value & Technical basis & Source \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MSY \\
approach
\end{tabular}} & \[
\begin{aligned}
& \text { MSY } \\
& \mathrm{B}_{\text {trigger }}
\end{aligned}
\] & \[
5355 \text { t }
\] & Computed with Eqsim based on the 2015 assessment in a run without error. & ICES (2016a) \\
\hline & FMSY & 0.238 & Eqsim run with segmented regression with breakpoint at Bloss. Fmsy was taken as the peak of the median landings yield curve. & ICES (2016a) \\
\hline \multirow[t]{4}{*}{Precautionary approach} & Blim & 1745 t & Bloss & ICES (2016a) \\
\hline & \(\mathrm{B}_{\mathrm{pa}}\) & 2443 t & \(1.4^{*} \mathrm{~B}_{\text {lim }}\) & ICES (2016a) \\
\hline & \[
\mathrm{F}_{\lim }
\] & 0.88 & Based on segmented regression simulation of recruitment without error & ICES (2016a) \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.63 & Flim \({ }^{*} \exp \left(-1.645^{*} \sigma\right) ; \sigma=0.2\) & ICES (2016a) \\
\hline
\end{tabular}

\subsection*{27.1.5 Management plans}

There is no management plan in place for this stock.

\subsection*{27.1.6 Uncertainties and bias in assessment and forecast}

A degree of uncertainty exists over the landings statistics for this stock given that mature plaice migrate between 7.d and 7.e during the spawning period. The current assessment applies a spawning migration correction that reallocates \(15 \%\) of quarter 1 landings for the mature proportion of the catch from 7.d to 7.e. Consequently, the assessment results depend on the mixing rate assumption estimated from existing tagging data. Further work is required to examine stock structure and the mixing rate during the spawning period. Additional data is also needed to determine if the current mixing rate remains valid given the increased abundance of plaice stocks in the English Channel in recent years.

Revisions to plaice migration rates between 7.d and 7.e outlined at WKPLE 2015 resulted in problems with the derivation of international catch numbers and weights-at-age in the time available at this year's Working Group. The revised migration correction included reallocating \(15 \%\) of quarter 1 landings for the mature proportion of the catch from 7.d to 7.e and applying the associated age composition to plaice 7.e. Data corrected for the revised migration rate included an amended landings tonnage and an associated age composition (numbers and mean weights-at-age) between 1980 and 2014 provided by the plaice 7d stock assessor. For each year, the corrected data were added to the international annual age composition for plaice 7.e following standard procedures outlined in the Stock Annex. The resulting combined dataset consisted of revised annual landings, catch numbers-at-age and weights-at-age that was included in the assessment for the first time in 2015.

There is a heavy reliance on the age composition data derived from UK(E\&W) sampling. Around \(25 \%\) of the landings for this stock are taken by countries that do not provide age-based data and this situation is improved only slightly once the migration correction data from 7.d are added.

Reliable discard data are only available for 2012-2016 and these data are mainly from the UK(E\&W). Historical discards rate are highly uncertain but available discard data reported implies a significant increase between 2012 and 2015. Discards are not included in the assessment. The assessment contains a certain degree of uncertainty due to excluding discards and is likely to be overly optimistic. Fishing mortality is likely to be higher and SSB lower than estimated by the current assessment. The decision to exclude discards in the assessment is based on the uncertainty in the available discards data and unknown discard survival rate of plaice.

\subsection*{27.1.7 Recommendations for next Benchmark}

A benchmark assessment was developed for this stock at WKFLAT 2010 and an interbenchmark meeting (IBPWCFlat2) subsequently convened in 2015 to revise the input data and update the XSA assessment settings. Nevertheless, any future benchmark meeting will need to consider the following issues

In 2017 ICES asked for the additional application of data limited methods for category 3 stocks. This massively increased the workload for the stock coordinator and assessor but with little benefit for this stock. Upgrading this stock to category 1 is desirable and feasible within a reasonable timeframe.

The decisive reason for downgrading the stock to category 3 were unacceptable retrospective patterns in the XSA assessment. This has now disappeared and a fully analytical assessment is possible. For doing so, the following issues need to be considered:
- A discard time-series should be developed and included into the assessment as discarding was substantial in recent years. The current assessment is based on landings only and therefore possibly fails to accurately model actual stock dynamics, particularly as the discard rate in recent years is variable.
- Discards including age compositions are now routinely estimated within InterCatch and exist for 2012-2016. Some UK discard data prior to 2012 exist but have never been used. The discard time-series should be extended back in time, as it has been done for other plaice and similar stocks.
- Including discards in the assessment might require a reparameterization of XSA settings and the exploration of alternative age structured assessment models.
- Biological data such as natural mortality and maturity ogives are time invariant in the current assessment and borrowed from other plaice stocks. There have been benchmarks for other plaice stocks and a similar approach could be pursuit for plaice in 7.e.

For completeness, the following issues from earlier reports are still mentioned, as they have not been addressed so far:
- Smoothing of stock and catch weights. The raw catch weights are corrected for migration from 7.d and then smoothed using a polynomial function of 2nd degree. Even though the fit seems to quite reasonable different more appropriate methods should be evaluated.
- Abundance estimates derived from the UK FSP-7e and Q1SWBeam surveys included in the assessment are spatially restricted to the same areas as the commercial tuning fleets, and therefore little population abundance information exists along the French coast. Cpue estimates from additional research surveys in French coastal waters would improve the robustness of future assessment outputs.
- Investigate the addition of age composition information from the French and Belgian fleets. These fleets collectively account for about \(30 \%\) of the total landings of this stock. In particular, inclusion of French data would add information on the stock dynamics on the French coast.

\subsection*{27.1.8 Management considerations}

The stock unit (Division 7.e) does not correspond with the management unit (divisions 7.d and 7.e), and this divisional mismatch hampers the effective management of plaice in the Western English Channel. However, some provision must be made to consider the effective management of adjacent plaice stocks given that components of the 7.e stock are also taken during spawning period in 7.d. WKPLE 2015 revised the established migration correction, so that \(15 \%\) of quarter 1 landings for the mature proportion of the catch are reallocated from 7.d to 7.e and the associated age composition is applied to plaice 7.e.

The total allowable catch (TAC) for the management area for 2016 has been doubled compared to 2015 but was reduced for 2017.

Due to migration patterns, catches of this stock also occur in Division 7.d during the spawning period; therefore, to be consistent with the advised catch for the Division 7.e plaice stock, the actual catches of plaice in Division 7.e should be lower than the
advised catch for the stock. ICES has calculated the corresponding actual catches in Division 7.e, assuming that the proportion of Division 7.e stock catches taken in Division 7.d remains as in previous years (i.e. 9.6\%, the average of 2003-2015, taking the age structure of the population into account). As the mixing rate of the two plaice stocks is uncertain, this calculation provides only a first approximation.

In accordance with the guidelines for category 3 stocks, a fully analytical assessment of the plaice 7.e stock including short-term forecast was not conducted at WGCSE 2017. Consequently, this year's category 3 assessment is indicative of trends only. Relative values presented for recruitment, spawning-stock biomass and fishing mortality estimates had similar temporal trends to absolute values presented at previous Working Groups. This year's trends-based assessment estimates that spawning-stock biomass is at a record high and fishing mortality only increased slightly from a record low in 2015.

\subsection*{27.2 References}

Council Regulation (EU) 2016/72 of 22 January 2016 fixing for 2016 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters, and amending Regulation (EU) 2015/104. OJ L22/1. http://data.europa.eu/eli/reg/2016/72/oj

Council Regulation (EU) 2017/127 of 20 January 2017 fixing for 2017 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters. OJ L 24, 28.1.2017, p. 1-172. http://data.europa.eu/eli/reg/2017/127/oj

ICES. 2014. Report of the Workshop on the Development of Quantitative Assessment Methodologies based on LIFE-history traits, exploitation characteristics, and other relevant parameters for data-limited stocks (WKLIFE IV), 27-31 October 2014, Lisbon, Portugal. ICES CM 2014/ACOM:54. 223 pp.

ICES. 2015a. Report of the Benchmark Workshop on Plaice (WKPLE), 23-27 February 2015, ICES Headquarters, Copenhagen, Denmark. ICES CM 2015/ACOM:33. 200 pp.

ICES. 2015b. Report of the Inter-Benchmark Protocol of West of Channel Flatfish (IBPWCFlat), From January to March 2015, By correspondence. ICES CM 2015/ACOM:36. 157 pp.

ICES. 2015c. Report of the Second Inter-Benchmark Protocol on West of Channel Flatfish (IBPWCFlat2), June-September 2015, By correspondence. ICES CM 2015/ACOM:55. 142 pp.

ICES. 2015d. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 12-21 May 2015, ICES Headquarters, Copenhagen, Denmark. ICES CM 2015/ACOM:12.

ICES. 2015e. Report of the Fifth Workshop on the Development of Quantitative Assessment Methodologies based on Life-history Traits, Exploitation Characteristics and other Relevant Parameters for Data-limited Stocks (WKLIFE V), 5-9 October 2015, Lisbon, Portugal. ICES CM 2015/ACOM:56. 157 pp.

ICES. 2016a. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

ICES. 2016b. Report of the Workshop to consider MSY proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015, ICES Headquarters, Copenhagen. ICES CM 2015/ACOM:61. 183 pp.

Pedersen, M. W. and Berg, C. W. 2017. A stochastic surplus production model in continuous time. Fish and Fisheries, 18(2), 226-243.

Table 27.1. Plaice in 7.e. Nominal landings ( t ) in Division 7.e, as used by the Working Group.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ォু } \\
& \text { ঠ }
\end{aligned}
\]} & \multicolumn{11}{|c|}{Landings} & \multirow[t]{2}{*}{} \\
\hline &  &  &  &  &  & &  & 品 &  &  & \[
\begin{aligned}
& \nearrow \\
& \infty \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& < \\
& 3
\end{aligned}
\] & \\
\hline 1976 & 5 & - & - & 323 & 312 & - & 640 & - & 640 & - & 640 & \\
\hline 1977 & 3 & - & - & 336 & 363 & - & 702 & - & 702 & - & 702 & \\
\hline 1978 & 3 & - & - & 314 & 467 & - & 784 & - & 784 & - & 784 & \\
\hline 1979 & 2 & - & - & 458 & 515 & - & 975 & 2 & 977 & - & 977 & \\
\hline 1980 & 23 & - & - & 325 & 609 & 9 & 966 & 113 & 1079 & 99 & 1178 & \\
\hline 1981 & 27 & - & - & 537 & 953 & - & 1517 & -16 & 1501 & 175 & 1676 & \\
\hline 1982 & 81 & - & - & 363 & 1109 & - & 1553 & 135 & 1688 & 190 & 1878 & \\
\hline 1983 & 20 & - & - & 371 & 1195 & - & 1586 & -91 & 1495 & 219 & 1714 & \\
\hline 1984 & 24 & - & - & 278 & 1144 & - & 1446 & 101 & 1547 & 211 & 1758 & \\
\hline 1985 & 39 & - & - & 197 & 1122 & - & 1358 & 83 & 1441 & 236 & 1677 & \\
\hline 1986 & 26 & - & - & 276 & 1389 & - & 1691 & 119 & 1810 & 268 & 2078 & \\
\hline 1987 & 68 & - & - & 435 & 1419 & - & 1922 & 36 & 1958 & 314 & 2272 & \\
\hline 1988 & 90 & - & - & 584 & 1654 & - & 2328 & 130 & 2458 & 377 & 2835 & \\
\hline 1989 & 89 & - & - & 448 & 1712 & - & 2249 & 109 & 2358 & 384 & 2742 & \\
\hline 1990 & 82 & 2 & - & N/A & 1891 & 2 & 1977 & 616 & 2593 & 392 & 2985 & \\
\hline 1991 & 57 & - & - & 251 & 1326 & - & 1634 & 214 & 1848 & 335 & 2183 & \\
\hline 1992 & 25 & - & - & 419 & 1110 & 14 & 1568 & 56 & 1624 & 258 & 1882 & \\
\hline 1993 & 56 & - & - & 284 & 1080 & 24 & 1444 & -27 & 1417 & 197 & 1614 & \\
\hline 1994 & 10 & - & - & 277 & 998 & - & 1285 & -129 & 1156 & 248 & 1404 & \\
\hline 1995 & 13 & - & - & 288 & 857 & - & 1158 & -127 & 1031 & 216 & 1247 & \\
\hline 1996 & 4 & - & - & 279 & 855 & - & 1138 & -94 & 1044 & 222 & 1266 & \\
\hline 1997 & 6 & - & - & 329 & 1038 & 1 & 1374 & -51 & 1323 & 260 & 1583 & \\
\hline 1998 & 22 & - & - & 327 & 892 & 1 & 1242 & -111 & 1131 & 215 & 1346 & \\
\hline 1999 & 12 & - & - & 194 & 947 & - & 1153 & 146 & 1299 & 244 & 1543 & \\
\hline 2000 & 4 & - & - & 360 & 926 & + & 1290 & -9 & 1281 & 345 & 1625 & \\
\hline 2001 & 12 & - & - & 303 & 797 & - & 1112 & -6 & 1106 & 204 & 1310 & \\
\hline 2002 & 27 & - & - & 242 & 978 & + & 1247 & 10 & 1257 & 215 & 1472 & \\
\hline 2003 & 39 & - & - & 216 & 985 & - & 1240 & 37 & 1277 & 110 & 1387 & \\
\hline 2004 & 46 & - & - & 184 & 912 & - & 1142 & 70 & 1212 & 126 & 1337 & \\
\hline 2005 & 48 & - & - & 198 & 887 & - & 1133 & 70 & 1203 & 117 & 1319 & \\
\hline 2006 & 52 & - & - & 223 & 964 & - & 1239 & 74 & 1313 & 97 & 1411 & \\
\hline 2007 & 84 & - & - & 202 & 680 & - & 966 & 37 & 1003 & 143 & 1146 & \\
\hline 2008 & 66 & - & - & 148 & 676 & - & 890 & 86 & 976 & 135 & 1112 & \\
\hline 2009 & 53 & - & 2 & 191 & 729 & - & 975 & -52 & 923 & 101 & 1024 & \\
\hline 2010 & 51 & - & 2 & 227 & 843 & - & 1123 & -31 & 1092 & 116 & 1208 & \\
\hline 2011 & 141 & - & 3 & 274 & 935 & - & 1353 & -19 & 1334 & 83 & 1417 & \\
\hline 2012 & 134 & - & 2 & 224 & 1003 & - & 1363 & 3 & 1366 & 126 & 1492 & 448 \\
\hline 2013 & 97 & - & 1 & 221 & 1040 & - & 1359 & -8 & 1351 & 121 & 1472 & 351 \\
\hline 2014 & 41 & - & 0 & 323 & 974 & - & 1338 & 3 & 1341 & 149 & 1490 & 1133 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\stackrel{\text { ゙ٓ }}{\stackrel{\text { ® }}{\sim}}
\]} & \multicolumn{12}{|c|}{Landings} & Discards \\
\hline & 5
0
0
0
0 & \[
\begin{aligned}
& \text { 关 } \\
& \sum_{4}^{4} \\
& \underset{\sim}{2}
\end{aligned}
\] &  & \[
\] &  &  &  & &  &  &  & \[
\begin{aligned}
& \star \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] &  \\
\hline 2015 & 110 & - & 1 & 224 & 909 & 1 & 1245 & 1 & & 1246 & 178 & 1424 & 1276 \\
\hline 2016**** & 145 & & 0 & 204 & 1429 & - & 1778 & -1 & & 1777 & 235 & 2013 & 618 \\
\hline
\end{tabular}

\section*{*Estimated by the Working Group.}
** Migration correction ( \(15 \%\) of the mature population caught in Quarter 1 in Division 7.d) added to stock.
***Discard estimated by the working group, including discards from the migration correction.
****Preliminary.

Table 27.2. Plaice in 7.e. Landings numbers-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Numbers at age [thousands]} \\
\hline year/age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10+ & TOTALNUM \\
\hline 1980 & 754 & 758 & 244 & 226 & 62 & 63 & 22 & 13 & 137 & 2279 \\
\hline 1981 & 667 & 2068 & 555 & 118 & 101 & 20 & 46 & 18 & 94 & 3688 \\
\hline 1982 & 279 & 1928 & 1371 & 257 & 87 & 82 & 16 & 28 & 121 & 4168 \\
\hline 1983 & 720 & 799 & 1613 & 586 & 101 & 40 & 47 & 2 & 99 & 4009 \\
\hline 1984 & 928 & 1650 & 659 & 518 & 191 & 90 & 28 & 33 & 50 & 4146 \\
\hline 1985 & 596 & 1424 & 1326 & 154 & 248 & 140 & 27 & 15 & 51 & 3980 \\
\hline 1986 & 914 & 2326 & 908 & 478 & 110 & 127 & 66 & 29 & 61 & 5018 \\
\hline 1987 & 1063 & 2083 & 1355 & 648 & 228 & 86 & 49 & 44 & 51 & 5608 \\
\hline \[
1988
\] & 1817 & 4627 & 1087 & 456 & 149 & 112 & 38 & 24 & 52 & 8362 \\
\hline 1989 & 269 & 2748 & 2873 & 825 & 268 & 118 & 94 & 31 & 100 & 7326 \\
\hline 1990 & 331 & 3151 & 2668 & 1198 & 263 & 133 & 76 & 56 & 71 & 7946 \\
\hline 1991 & 557 & 1192 & 1876 & 956 & 510 & 103 & 43 & 33 & 51 & 5320 \\
\hline 1992 & 699 & 1299 & 734 & 646 & 441 & 258 & 69 & 32 & 49 & 4227 \\
\hline 1993 & 670 & 1377 & 631 & 262 & 267 & 216 & 165 & 39 & 85 & 3712 \\
\hline 1994 & 326 & 1503 & 831 & 250 & 106 & 116 & 78 & 84 & 63 & 3357 \\
\hline 1995 & 322 & 732 & 943 & 263 & 118 & 56 & 79 & 68 & 88 & 2667 \\
\hline 1996 & 1050 & 668 & 379 & 382 & 122 & 59 & 38 & 47 & 105 & 2848 \\
\hline 1997 & 861 & 2228 & 435 & 177 & 147 & 75 & 31 & 17 & 99 & 4070 \\
\hline 1998 & 536 & 1482 & 1107 & 155 & 64 & 60 & 22 & 21 & 61 & 3507 \\
\hline 1999 & 650 & 2135 & 1124 & 407 & 92 & 37 & 39 & 17 & 45 & 4546 \\
\hline \[
2000
\] & 351 & 1157 & 2037 & 496 & 181 & 38 & 14 & 22 & 52 & 4348 \\
\hline 2001 & 469 & 785 & 788 & 950 & 145 & 79 & 19 & 11 & 37 & 3283 \\
\hline 2002 & 1017 & 1190 & 460 & 394 & 456 & 106 & 42 & 12 & 40 & 3718 \\
\hline 2003 & 886 & 964 & 532 & 182 & 166 & 236 & 58 & 45 & 38 & 3107 \\
\hline 2004 & 471 & 1364 & 566 & 338 & 107 & 74 & 109 & 51 & 38 & 3119 \\
\hline 2005 & 796 & 880 & 775 & 277 & 146 & 50 & 49 & 58 & 48 & 3080 \\
\hline 2006 & 995 & 1358 & 517 & 379 & 115 & 61 & 27 & 18 & 53 & 3523 \\
\hline 2007 & 393 & 1077 & 699 & 287 & 199 & 72 & 31 & 10 & 50 & 2819 \\
\hline 2008 & 919 & 703 & 570 & 259 & 112 & 87 & 32 & 15 & 29 & 2727 \\
\hline 2009 & 647 & 1255 & 297 & 151 & 79 & 32 & 21 & 7 & 17 & 2505 \\
\hline 2010 & 759 & 974 & 758 & 215 & 114 & 47 & 16 & 18 & 23 & 2924 \\
\hline 2011 & 1132 & 1441 & 725 & 255 & 75 & 50 & 27 & 12 & 18 & 3735 \\
\hline 2012 & 204 & 1561 & 1066 & 373 & 253 & 101 & 51 & 21 & 35 & 3664 \\
\hline 2013 & 137 & 1075 & 1377 & 510 & 200 & 149 & 45 & 49 & 36 & 3579 \\
\hline 2014 & 135 & 636 & 1407 & 845 & 356 & 135 & 70 & 54 & 35 & 3673 \\
\hline 2015 & 90 & 392 & 642 & 924 & 553 & 234 & 61 & 50 & 35 & 2982 \\
\hline 2016 & 61 & 888 & 1116 & 828 & 897 & 426 & 155 & 64 & 55 & 4490 \\
\hline
\end{tabular}

Table 27.3. Plaice in 7.e. Landings weights-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Weights-at-age [kg]} \\
\hline year/age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10+ \\
\hline 1980 & 0.329 & 0.435 & 0.538 & 0.640 & 0.741 & 0.840 & 0.939 & 1.035 & 1.392 \\
\hline 1981 & 0.273 & 0.400 & 0.526 & 0.647 & 0.767 & 0.883 & 0.997 & 1.108 & 1.448 \\
\hline 1982 & 0.302 & 0.391 & 0.474 & 0.548 & 0.617 & 0.678 & 0.732 & 0.780 & 0.890 \\
\hline 1983 & 0.224 & 0.338 & 0.446 & 0.547 & 0.642 & 0.730 & 0.812 & 0.888 & 1.085 \\
\hline 1984 & 0.254 & 0.356 & 0.461 & 0.570 & 0.682 & 0.797 & 0.914 & 1.034 & 1.510 \\
\hline 1985 & 0.222 & 0.337 & 0.450 & 0.561 & 0.669 & 0.775 & 0.878 & 0.979 & 1.341 \\
\hline 1986 & 0.260 & 0.353 & 0.450 & 0.551 & 0.655 & 0.764 & 0.877 & 0.994 & 1.490 \\
\hline 1987 & 0.287 & 0.347 & 0.418 & 0.503 & 0.599 & 0.710 & 0.833 & 0.968 & 1.387 \\
\hline 1988 & 0.225 & 0.310 & 0.407 & 0.515 & 0.634 & 0.765 & 0.906 & 1.059 & 1.398 \\
\hline 1989 & 0.224 & 0.293 & 0.370 & 0.454 & 0.547 & 0.647 & 0.756 & 0.872 & 1.167 \\
\hline 1990 & 0.270 & 0.315 & 0.371 & 0.437 & 0.514 & 0.602 & 0.700 & 0.809 & 1.081 \\
\hline 1991 & 0.252 & 0.316 & 0.389 & 0.473 & 0.566 & 0.670 & 0.784 & 0.908 & 1.246 \\
\hline 1992 & 0.286 & 0.345 & 0.417 & 0.503 & 0.601 & 0.713 & 0.838 & 0.976 & 1.330 \\
\hline 1993 & 0.263 & 0.338 & 0.418 & 0.503 & 0.596 & 0.694 & 0.798 & 0.907 & 1.194 \\
\hline 1994 & 0.266 & 0.336 & 0.412 & 0.494 & 0.582 & 0.676 & 0.775 & 0.879 & 1.136 \\
\hline 1995 & 0.282 & 0.362 & 0.445 & 0.531 & 0.619 & 0.709 & 0.803 & 0.899 & 1.083 \\
\hline 1996 & 0.268 & 0.371 & 0.474 & 0.577 & 0.681 & 0.786 & 0.891 & 0.997 & 1.216 \\
\hline 1997 & 0.272 & 0.345 & 0.427 & 0.514 & 0.608 & 0.709 & 0.816 & 0.931 & 1.196 \\
\hline 1998 & 0.190 & 0.313 & 0.435 & 0.556 & 0.674 & 0.793 & 0.911 & 1.028 & 1.339 \\
\hline 1999 & 0.206 & 0.295 & 0.382 & 0.466 & 0.548 & 0.628 & 0.706 & 0.781 & 1.006 \\
\hline 2000 & 0.206 & 0.293 & 0.380 & 0.468 & 0.555 & 0.642 & 0.729 & 0.817 & 1.066 \\
\hline 2001 & 0.218 & 0.301 & 0.388 & 0.480 & 0.576 & 0.677 & 0.782 & 0.891 & 1.268 \\
\hline 2002 & 0.256 & 0.331 & 0.410 & 0.496 & 0.588 & 0.686 & 0.788 & 0.895 & 1.208 \\
\hline 2003 & 0.266 & 0.371 & 0.475 & 0.577 & 0.675 & 0.772 & 0.866 & 0.959 & 1.273 \\
\hline 2004 & 0.300 & 0.361 & 0.429 & 0.505 & 0.588 & 0.679 & 0.778 & 0.883 & 1.203 \\
\hline 2005 & 0.293 & 0.366 & 0.445 & 0.528 & 0.616 & 0.709 & 0.806 & 0.908 & 1.134 \\
\hline 2006 & 0.296 & 0.361 & 0.433 & 0.512 & 0.600 & 0.694 & 0.795 & 0.904 & 1.121 \\
\hline 2007 & 0.255 & 0.333 & 0.415 & 0.499 & 0.586 & 0.677 & 0.770 & 0.868 & 1.105 \\
\hline 2008 & 0.281 & 0.357 & 0.441 & 0.531 & 0.627 & 0.729 & 0.838 & 0.954 & 1.308 \\
\hline 2009 & 0.242 & 0.379 & 0.513 & 0.644 & 0.771 & 0.894 & 1.013 & 1.128 & 1.383 \\
\hline 2010 & 0.274 & 0.364 & 0.460 & 0.562 & 0.668 & 0.779 & 0.895 & 1.016 & 1.285 \\
\hline 2011 & 0.241 & 0.351 & 0.463 & 0.577 & 0.693 & 0.811 & 0.931 & 1.052 & 1.376 \\
\hline 2012 & 0.207 & 0.310 & 0.413 & 0.515 & 0.618 & 0.721 & 0.824 & 0.927 & 1.239 \\
\hline 2013 & 0.268 & 0.318 & 0.382 & 0.458 & 0.548 & 0.650 & 0.766 & 0.894 & 1.355 \\
\hline 2014 & 0.207 & 0.280 & 0.358 & 0.441 & 0.528 & 0.619 & 0.714 & 0.814 & 1.164 \\
\hline 2015 & 0.244 & 0.306 & 0.380 & 0.466 & 0.563 & 0.672 & 0.792 & 0.923 & 1.251 \\
\hline 2016 & 0.279 & 0.325 & 0.379 & 0.441 & 0.512 & 0.591 & 0.677 & 0.773 & 1.001 \\
\hline
\end{tabular}

Table 27.4. Plaice in 7.e. Stock weights-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Stock weights-at-age [kg]} \\
\hline year/age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10+ \\
\hline 1980 & 0.275 & 0.381 & 0.485 & 0.587 & 0.688 & 0.788 & 0.886 & 0.983 & 1.342 \\
\hline 1981 & 0.207 & 0.336 & 0.462 & 0.585 & 0.705 & 0.823 & 0.937 & 1.049 & 1.393 \\
\hline 1982 & 0.253 & 0.345 & 0.430 & 0.508 & 0.579 & 0.643 & 0.701 & 0.751 & 0.874 \\
\hline 1983 & 0.164 & 0.282 & 0.393 & 0.497 & 0.595 & 0.687 & 0.772 & 0.851 & 1.059 \\
\hline 1984 & 0.202 & 0.302 & 0.405 & 0.512 & 0.621 & 0.733 & 0.849 & 0.967 & 1.433 \\
\hline 1985 & 0.163 & 0.280 & 0.394 & 0.506 & 0.615 & 0.722 & 0.827 & 0.929 & 1.295 \\
\hline 1986 & 0.215 & 0.306 & 0.401 & 0.500 & 0.603 & 0.709 & 0.820 & 0.935 & 1.422 \\
\hline 1987 & 0.261 & 0.313 & 0.378 & 0.455 & 0.545 & 0.648 & 0.764 & 0.892 & 1.292 \\
\hline 1988 & 0.186 & 0.266 & 0.357 & 0.460 & 0.573 & 0.698 & 0.833 & 0.980 & 1.309 \\
\hline 1989 & 0.193 & 0.258 & 0.330 & 0.411 & 0.500 & 0.596 & 0.701 & 0.813 & 1.098 \\
\hline 1990 & 0.250 & 0.290 & 0.340 & 0.401 & 0.472 & 0.554 & 0.647 & 0.750 & 1.009 \\
\hline 1991 & 0.224 & 0.282 & 0.350 & 0.428 & 0.516 & 0.615 & 0.723 & 0.842 & 1.167 \\
\hline 1992 & 0.259 & 0.310 & 0.375 & 0.453 & 0.544 & 0.648 & 0.765 & 0.895 & 1.231 \\
\hline 1993 & 0.227 & 0.298 & 0.375 & 0.458 & 0.547 & 0.641 & 0.742 & 0.848 & 1.126 \\
\hline 1994 & 0.230 & 0.297 & 0.369 & 0.447 & 0.531 & 0.620 & 0.715 & 0.816 & 1.063 \\
\hline 1995 & 0.243 & 0.322 & 0.403 & 0.487 & 0.573 & 0.663 & 0.755 & 0.850 & 1.031 \\
\hline 1996 & 0.217 & 0.319 & 0.421 & 0.524 & 0.628 & 0.732 & 0.837 & 0.943 & 1.160 \\
\hline 1997 & 0.237 & 0.308 & 0.385 & 0.469 & 0.559 & 0.657 & 0.761 & 0.872 & 1.129 \\
\hline 1998 & 0.128 & 0.251 & 0.374 & 0.495 & 0.616 & 0.735 & 0.853 & 0.971 & 1.283 \\
\hline 1999 & 0.160 & 0.250 & 0.339 & 0.424 & 0.508 & 0.589 & 0.667 & 0.743 & 0.972 \\
\hline 2000 & 0.162 & 0.248 & 0.335 & 0.422 & 0.509 & 0.596 & 0.683 & 0.771 & 1.019 \\
\hline 2001 & 0.178 & 0.259 & 0.344 & 0.434 & 0.528 & 0.626 & 0.729 & 0.836 & 1.205 \\
\hline 2002 & 0.215 & 0.285 & 0.361 & 0.443 & 0.529 & 0.621 & 0.719 & 0.822 & 1.119 \\
\hline 2003 & 0.211 & 0.318 & 0.422 & 0.524 & 0.624 & 0.722 & 0.817 & 0.911 & 1.227 \\
\hline 2004 & 0.272 & 0.329 & 0.393 & 0.464 & 0.544 & 0.630 & 0.725 & 0.827 & 1.136 \\
\hline 2005 & 0.257 & 0.328 & 0.404 & 0.484 & 0.569 & 0.659 & 0.754 & 0.853 & 1.074 \\
\hline 2006 & 0.265 & 0.326 & 0.395 & 0.471 & 0.554 & 0.644 & 0.741 & 0.846 & 1.057 \\
\hline 2007 & 0.217 & 0.294 & 0.374 & 0.457 & 0.542 & 0.631 & 0.723 & 0.818 & 1.052 \\
\hline 2008 & 0.245 & 0.318 & 0.398 & 0.484 & 0.577 & 0.676 & 0.782 & 0.894 & 1.238 \\
\hline 2009 & 0.171 & 0.311 & 0.447 & 0.579 & 0.707 & 0.832 & 0.953 & 1.070 & 1.329 \\
\hline 2010 & 0.229 & 0.318 & 0.411 & 0.509 & 0.612 & 0.720 & 0.834 & 0.952 & 1.215 \\
\hline 2011 & 0.186 & 0.295 & 0.407 & 0.520 & 0.635 & 0.752 & 0.870 & 0.991 & 1.313 \\
\hline 2012 & 0.156 & 0.259 & 0.361 & 0.464 & 0.567 & 0.670 & 0.773 & 0.876 & 1.187 \\
\hline 2013 & 0.247 & 0.291 & 0.348 & 0.418 & 0.501 & 0.597 & 0.706 & 0.828 & 1.270 \\
\hline 2014 & 0.172 & 0.243 & 0.319 & 0.399 & 0.484 & 0.573 & 0.666 & 0.763 & 1.119 \\
\hline 2015 & 0.217 & 0.274 & 0.342 & 0.422 & 0.513 & 0.616 & 0.730 & 0.856 & 1.181 \\
\hline 2016 & 0.259 & 0.301 & 0.350 & 0.409 & 0.475 & 0.550 & 0.633 & 0.725 & 0.948 \\
\hline
\end{tabular}

Table 27.5. Plaice in 7.e. Tuning fleet data available.


Table 27.6. Plaice in 7.e. Fishing mortality-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Fishing mortality-at-age} \\
\hline year/age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10+ & F(3-6) \\
\hline 1980 & 0.120 & 0.419 & 0.457 & 0.423 & 0.766 & 0.407 & 0.341 & 0.507 & 0.507 & 0.516 \\
\hline 1981 & 0.107 & 0.503 & 0.562 & 0.378 & 0.309 & 0.553 & 0.540 & 0.469 & 0.469 & 0.438 \\
\hline 1982 & 0.104 & 0.461 & 0.670 & 0.502 & 0.481 & 0.401 & 1.073 & 0.655 & 0.655 & 0.528 \\
\hline 1983 & 0.128 & 0.436 & 0.803 & 0.616 & 0.342 & 0.392 & 0.389 & 0.375 & 0.375 & 0.549 \\
\hline 1984 & 0.187 & 0.433 & 0.710 & 0.591 & 0.375 & 0.525 & 0.469 & 0.458 & 0.458 & 0.527 \\
\hline 1985 & 0.095 & 0.438 & 0.676 & 0.318 & 0.571 & 0.474 & 0.261 & 0.437 & 0.437 & 0.501 \\
\hline 1986 & 0.144 & 0.580 & 0.504 & 0.498 & 0.358 & 0.585 & 0.390 & 0.446 & 0.446 & 0.485 \\
\hline 1987 & 0.080 & 0.508 & 0.727 & 0.748 & 0.427 & 0.477 & 0.425 & 0.445 & 0.445 & 0.602 \\
\hline 1988 & 0.174 & 0.523 & 0.493 & 0.520 & 0.341 & 0.348 & 0.361 & 0.351 & 0.351 & 0.469 \\
\hline 1989 & \[
0.033
\] & 0.392 & 0.656 & 0.789 & 0.602 & 0.452 & 0.501 & 0.521 & 0.521 & 0.610 \\
\hline 1990 & 0.101 & 0.593 & 0.746 & 0.572 & 0.565 & 0.616 & 0.531 & 0.574 & 0.574 & 0.619 \\
\hline 1991 & \[
0.164
\] & 0.568 & 0.784 & 0.594 & 0.463 & 0.409 & 0.376 & 0.418 & 0.418 & 0.602 \\
\hline 1992 & 0.184 & 0.631 & 0.757 & 0.620 & 0.548 & 0.408 & 0.476 & 0.479 & 0.479 & 0.639 \\
\hline 1993 & 0.154 & 0.594 & 0.657 & 0.608 & 0.511 & 0.515 & 0.453 & 0.495 & 0.495 & 0.593 \\
\hline 1994 & 0.162 & 0.548 & 0.804 & 0.536 & 0.481 & 0.396 & 0.319 & 0.400 & 0.400 & 0.592 \\
\hline 1995 & 0.159 & 0.590 & 0.725 & 0.580 & 0.472 & 0.453 & 0.470 & 0.467 & 0.467 & 0.592 \\
\hline 1996 & 0.181 & 0.516 & 0.634 & 0.667 & 0.527 & 0.413 & 0.576 & 0.508 & 0.508 & 0.586 \\
\hline 1997 & 0.170 & 0.645 & 0.686 & 0.628 & 0.529 & 0.664 & 0.360 & 0.520 & 0.520 & 0.622 \\
\hline 1998 & 0.064 & 0.444 & 0.707 & 0.506 & 0.440 & 0.390 & 0.366 & 0.400 & 0.400 & 0.524 \\
\hline 1999 & 0.172 & 0.354 & 0.650 & 0.556 & 0.577 & 0.454 & 0.422 & 0.486 & 0.486 & 0.534 \\
\hline 2000 & 0.155 & 0.471 & 0.612 & 0.608 & 0.467 & 0.452 & 0.283 & 0.402 & 0.402 & 0.540 \\
\hline 2001 & 0.143 & 0.548 & 0.621 & 0.587 & 0.323 & 0.346 & 0.383 & 0.352 & 0.352 & 0.520 \\
\hline 2002 & 0.324 & 0.577 & 0.658 & 0.664 & 0.567 & 0.377 & 0.287 & 0.412 & 0.412 & 0.616 \\
\hline 2003 & 0.214 & 0.526 & 0.500 & 0.535 & 0.596 & 0.587 & 0.332 & 0.507 & 0.507 & 0.539 \\
\hline 2004 & 0.175 & 0.536 & 0.614 & 0.627 & 0.638 & 0.522 & 0.536 & 0.500 & 0.500 & 0.604 \\
\hline 2005 & 0.220 & 0.517 & 0.606 & 0.630 & 0.552 & 0.627 & 0.731 & 0.561 & 0.561 & 0.576 \\
\hline 2006 & 0.309 & 0.639 & 0.595 & 0.616 & 0.531 & 0.424 & 0.744 & 0.583 & 0.583 & 0.595 \\
\hline 2007 & 0.171 & 0.583 & 0.733 & 0.713 & 0.700 & 0.680 & 0.362 & 0.626 & 0.626 & 0.682 \\
\hline 2008 & 0.210 & 0.471 & 0.640 & 0.600 & 0.613 & 0.695 & 0.669 & 0.275 & 0.275 & 0.581 \\
\hline 2009 & 0.155 & 0.446 & 0.337 & 0.311 & 0.332 & 0.320 & 0.310 & 0.275 & 0.275 & 0.357 \\
\hline 2010 & 0.125 & 0.335 & 0.482 & 0.398 & 0.372 & 0.305 & 0.237 & 0.456 & 0.456 & 0.397 \\
\hline 2011 & 0.113 & 0.336 & 0.407 & 0.269 & 0.214 & 0.252 & 0.263 & 0.247 & 0.247 & 0.306 \\
\hline 2012 & 0.020 & 0.205 & 0.404 & 0.344 & 0.422 & 0.449 & 0.400 & 0.310 & 0.310 & 0.344 \\
\hline 2013 & 0.021 & 0.128 & 0.257 & 0.313 & 0.286 & 0.430 & 0.334 & 0.750 & 0.750 & 0.246 \\
\hline 2014 & 0.021 & 0.121 & 0.225 & 0.227 & 0.341 & 0.291 & 0.334 & 0.770 & 0.770 & 0.228 \\
\hline 2015 & 0.009 & 0.071 & 0.158 & 0.207 & 0.208 & 0.359 & 0.189 & 0.385 & 0.385 & 0.161 \\
\hline 2016 & 0.015 & 0.106 & 0.268 & 0.285 & 0.289 & 0.224 & 0.389 & 0.281 & 0.281 & 0.237 \\
\hline
\end{tabular}

Table 27.7. Plaice in 7.e. Stock numbers-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Stock numbers-at-age [thousands]} \\
\hline year/age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10+ & sum \\
\hline 1980 & 7067 & 2350 & 707 & 696 & 122 & 199 & 82 & 36 & 364 & 11623 \\
\hline 1981 & 6961 & 5558 & 1371 & 397 & 404 & 50 & 118 & 52 & 265 & 15175 \\
\hline 1982 & 3004 & 5545 & 2981 & 693 & 241 & 263 & 26 & 61 & 266 & 13080 \\
\hline 1983 & 6382 & 2402 & 3102 & 1353 & 372 & 132 & 156 & 8 & 335 & 14243 \\
\hline 1984 & 5788 & 4982 & 1378 & 1232 & 648 & 235 & 79 & 94 & 143 & 14579 \\
\hline 1985 & 6959 & 4260 & 2865 & 601 & 605 & 395 & 123 & 44 & 154 & 16006 \\
\hline 1986 & 7234 & 5611 & 2437 & 1293 & 388 & 303 & 218 & 84 & 180 & 17748 \\
\hline 1987 & 14731 & 5555 & 2786 & 1306 & 697 & 240 & 150 & 131 & 151 & 25748 \\
\hline 1988 & 12071 & 12064 & 2965 & 1194 & 548 & 403 & 132 & 87 & 186 & 29651 \\
\hline 1989 & 8717 & 8994 & 6343 & 1606 & 630 & 346 & 253 & 82 & 259 & 27229 \\
\hline 1990 & 3645 & 7478 & 5389 & 2920 & 647 & 306 & 195 & 136 & 172 & 20889 \\
\hline 1991 & 3916 & 2922 & 3665 & 2267 & 1462 & 326 & 147 & 102 & 156 & 14963 \\
\hline 1992 & 4421 & 2949 & 1469 & 1484 & 1111 & 816 & 192 & 89 & 137 & 12668 \\
\hline 1993 & 4977 & 3263 & 1392 & 611 & 708 & 570 & 481 & 106 & 229 & 12338 \\
\hline 1994 & 2312 & 3784 & 1597 & 640 & 295 & 377 & 302 & 271 & 201 & 9779 \\
\hline 1995 & 2324 & 1744 & 1940 & 634 & 332 & 162 & 225 & 195 & 249 & 7804 \\
\hline 1996 & 6728 & 1758 & 858 & 833 & 315 & 184 & 91 & 125 & 279 & 11171 \\
\hline 1997 & 5863 & 4979 & 930 & 403 & 379 & 165 & 108 & 46 & 258 & 13131 \\
\hline \[
1998
\] & 9132 & 4390 & 2318 & 416 & 191 & 198 & 75 & 67 & 195 & 16981 \\
\hline 1999 & 4376 & 7595 & 2498 & 1013 & 222 & 109 & 119 & 46 & 123 & 16101 \\
\hline 2000 & 2600 & 3269 & 4726 & 1156 & 515 & 111 & 61 & 69 & 166 & 12673 \\
\hline 2001 & 3745 & 1976 & 1809 & 2272 & 558 & 287 & 62 & 41 & 133 & 10884 \\
\hline 2002 & 3900 & 2880 & 1013 & 863 & 1120 & 358 & 180 & 38 & 126 & 10479 \\
\hline 2003 & 4876 & 2501 & 1434 & 466 & 394 & 564 & 218 & 120 & 102 & 10674 \\
\hline 2004 & 3109 & 3490 & 1310 & 771 & 242 & 192 & 278 & 139 & 102 & 9633 \\
\hline 2005 & 4288 & 2314 & 1810 & 629 & 365 & 113 & 101 & 144 & 118 & 9883 \\
\hline 2006 & 3975 & 3053 & 1223 & 876 & 297 & 187 & 54 & 43 & 127 & 9834 \\
\hline 2007 & 2659 & 2589 & 1429 & 598 & 420 & 155 & 108 & 23 & 113 & 8094 \\
\hline 2008 & 5151 & 1988 & 1282 & 609 & 260 & 185 & 70 & 67 & 129 & 9740 \\
\hline 2009 & 4779 & 3703 & 1101 & 600 & 296 & 125 & 82 & 32 & 75 & 10792 \\
\hline 2010 & 6856 & 3629 & 2103 & 697 & 390 & 188 & 81 & 53 & 66 & 14062 \\
\hline 2011 & 11268 & 5366 & 2302 & 1151 & 415 & 238 & 123 & 56 & 89 & 21009 \\
\hline 2012 & 10937 & 8928 & 3402 & 1359 & 781 & 297 & 164 & 84 & 138 & 26090 \\
\hline 2013 & 6857 & 9508 & 6448 & 2014 & 855 & 454 & 168 & 98 & 71 & 26472 \\
\hline 2014 & 7022 & 5952 & 7420 & 4422 & 1306 & 569 & 262 & 107 & 69 & 27130 \\
\hline 2015 & 10677 & 6101 & 4680 & 5256 & 3127 & 823 & 377 & 166 & 116 & 31324 \\
\hline 2016 & 4412 & 9385 & 5042 & 3546 & 3792 & 2252 & 510 & 277 & 235 & 29450 \\
\hline
\end{tabular}

Table 27.8. Plaice in 7.e. Assessment summary. Note that relative values have been presented given that the full analytical assessment was rejected due to large retrospective patterns.
\begin{tabular}{lllllll}
\hline Year & \begin{tabular}{l} 
Recruitment \\
(age 2) \\
[relative]
\end{tabular} & \begin{tabular}{l} 
TSB \\
[relative]
\end{tabular} & \begin{tabular}{l} 
SSB \\
[relative]
\end{tabular} & \begin{tabular}{l} 
Landings \\
[t]
\end{tabular} & \begin{tabular}{l} 
Relative \\
landings / \\
relative SSB
\end{tabular} & \begin{tabular}{l} 
Fbar(3-6) \\
[relative]
\end{tabular} \\
\hline 1980 & 1.163 & 0.483 & 0.725 & 1178 & 0.993 & 1.024 \\
\hline 1981 & 1.146 & 0.574 & 0.861 & 1676 & 1.190 & 0.869 \\
\hline 1982 & 0.495 & 0.626 & 0.939 & 1878 & 1.223 & 1.048 \\
\hline 1983 & 1.051 & 0.604 & 0.907 & 1714 & 1.156 & 1.089 \\
\hline 1984 & 0.953 & 0.603 & 0.905 & 1758 & 1.187 & 1.046 \\
\hline 1985 & 1.146 & 0.613 & 0.921 & 1677 & 1.113 & 0.993 \\
\hline 1986 & 1.191 & 0.721 & 1.082 & 2078 & 1.174 & 0.962 \\
\hline 1987 & 2.425 & 0.840 & 1.261 & 2272 & 1.102 & 1.194 \\
\hline 1988 & 1.987 & 0.913 & 1.371 & 2835 & 1.264 & 0.931 \\
\hline 1989 & 1.435 & 0.991 & 1.488 & 2742 & 1.126 & 1.209 \\
\hline 1990 & 0.600 & 0.939 & 0.59 & 2.461 & 2013 & 0.500
\end{tabular}

Table 27.9. Plaice in 7e. The basis for the catch options for 2017. Note that one catch option is provided for stocks in ICES data categories 3-6.
\begin{tabular}{ll}
\hline \multicolumn{2}{l}{ Division 7.e plaice stock } \\
\hline Index A (2015-2016) & 8126.3950028942 tonnes \\
\hline Index B (2012-2014) & 5379.0001011012 tonnes \\
\hline Index ratio (A/B) & 1.5107631251 \\
\hline Uncertainty cap & Applied \\
\hline Recent advised catch (2017) & 2714 tonnes \\
\hline Discard rate (2012-2016) & 0.3125470437 \\
\hline Precautionary buffer & Not applied \\
\hline Catch advice* & 3257 tonnes \\
\hline Landings corresponding to catch advice & 2239 tonnes \\
\hline Plaice in Division 7.e & \\
\hline Proportion of Division 7.e stock catches taken in Division 7.e (2003-2016) & 0.9044748639 \\
\hline Catch of plaice in Division 7.e corresponding to the advice for the stock & 2946 tonnes \\
\hline Landings of plaice in Division 7.e corresponding to the advice for the stock & 2025 tonnes \\
\hline
\end{tabular}
* [recent adviced catch \(x\) uncertainty cap].


Figure 27.1. Plaice in 7.e. International landings and discards by country as uploaded to InterCatch for 2012-2016.


Figure 27.2. Plaice in 7.e. International landings and discards reported to InterCatch per country and fleet for the years 2012-2016.


Figure 27.3. Plaice in 7.e. Discard ratios for 2012-2016. "Fleet mean" is the mean of the ratios for all fleets which reported discards, "reported" is the proportion of reported discards in the reported catches, "weighted fleet mean" is the mean of the ratios for all fleets which reported discards weighted by the catch of the individual fleets, "raised" is the proportion of the discards as raised within InterCatch in the total catch for 7.e and "raised incl. migration" includes the catch (discards and landings) from Division 7.d used in the migration correction.


Figure 27.4. UK commercial lpue time-series. Lpue values are only shown for historical reasons but were not used in the assessment. The grey dot in the cpue plot is based on preliminary data from the Q1SWBeam survey in 2016.


Figure 27.5. Plaice in 7.e. Age composition of reported international catches in InterCatch for Division 7.e.


Figure 27.6. Plaice in 7.e. Total international length frequencies for 2014-2016 as raised within InterCatch for landings and discards.


Figure 27.7. Plaice in 7.e. Total international length frequencies for 2014-2016 as raised within InterCatch for landings and discards, split by country.


Figure 27.8. Plaice in 7.e. Results of fitting a SPiCT model to the plaice 7.e stock.


Figure 27.9. Plaice in 7.e. Scientific tuning information used in the assessment.


Figure 27.10. Plaice in 7.e. Derivation of the 2016 stock and catch weights by applying a polynomial model to the raw InterCatch weights-at-age.


Figure 27.11. Plaice in 7.e. Derivation of the 2015 stock and catch weights by applying a polynomial model to the raw InterCatch weights-at-age.


Figure 27.12. Plaice in 7.e. Derivation of the 2014 stock and catch weights by applying a polynomial model to the raw InterCatch weights-at-age.


Figure 27.13. Plaice in 7.e. Landings and stock weights-at-age used in the assessment.


Figure 27.14. Plaice in 7.e. Total landings of the plaice 7.e stock disaggregated by the 7.e and the migration component from 7.d.


Figure 27.15. Plaice in 7.e. Proportion of the landings landed in 7.d (red line). The moving average displays the average of the proportion values, starting from the corresponding year up to and including the last value year in the time-series.


Figure 27.16. Plaice in 7.e. XSA survey log catchability residuals.


Figure 27.17. Plaice in 7.e. Seven-year retrospective of recruitment, spawning-stock biomass and fishing mortality estimates.


Figure 27.18. Plaice in 7.e. Summary of XSA final assessment.


Figure 27.19. Plaice in 7.e. Comparison of the current XSA assessment run with the results from WGCSE 2016.

\subsection*{27.3 Audit of Plaice in 7.e}

Date: 26th May 2017
Auditor: Sara-Jane Moore

\section*{General}

\section*{For single stock summary sheet advice}
- Assessment type: update
- Assessment: XSA indicative of trends only
- Forecast: N/A
- Assessment model: XSA
- Data issues: uncertainty with landings due to migration between 7.d and 7.e

Age composition relies heavily on UK sampling and around \(25 \%\) of landings are taken from other countries that don't provide age data;

Reliable discard data only available for 2012-2016.
- Consistency: XSA as last year
- Stock status: indicative of trends only, F has declined since 2007. SSB has increased since 2008 and recruitment well above average since 2010
- Management Plan: None

\section*{General comments}

Well written report, clear and concise

\section*{Technical comments}

\section*{Conclusions}

The assessment has been performed correctly

\section*{Checklist for audit process}

\section*{General aspects}
- Has the EG answered those TORs relevant to providing advice? YES
- Is the assessment according to the stock annex description? YES
- If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary?
- Have the data been used as specified in the stock annex? SA not updated in 2017
- Has the assessment, recruitment and forecast model been applied as specified in the stock annex? Yes, where appropriate
- Is there any major reason to deviate from the standard procedure for this stock? No
- Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice?

\subsection*{27.4 WKProxy review of WGCSE Ple.27.7e, Plaice (Pleuronectes platessa) in Division 7.e (Western English Channel)}

\section*{Category 3}

\section*{General comments}

1 ) Assessment method(s): Proxy methods: Length-Based Indicators (LBI) and SPiCT. Other methods used were XSA and general trends.
2 ) Evaluating Uncertainties
- As a bycatch fishery, discards comprise a significant portion of the catch. However, discards were only recently considered and estimated, and previous years did not have discard estimates.
- There is some unknown amount of movement of mature plaice between areas. All of the category 3 proxy methods assume a closed system, and so these methods may not be appropriate if migration is extensive.
- Biological parameters were not specific to this stock and instead were borrowed from other stocks. The RG was curious if the EG was confident in these values.
- The EG questioned the R script's definition of Lc as the half-modal length for the LBI method and so used their own script to define the modal length as the absolute maximum. The LBI method should not be using local maxima to define the modal length, so the EG was correct in altering the script. This error was noticed by another EG who reported a bug in the Shiny app doing the calculations. The error has been corrected.
3 ) Consistency:
- SPiCT (and XSA runs) demonstrated large retrospective patterns in stock status, SSB, and F estimates.
- The surveys don't necessarily have the same trends. In addition, there are currently no surveys covering the coast of France.

4 ) Stock status:
- Reference points:
- No proxy reference points were accepted.
- The EG rejected LBI due to high uncertainty and conflicting results.
- The EG rejected SPiCT because it would often not converge, was not robust to changing the range of the data input, and gave unreasonable results with high variance.
5 ) Comments \& Suggestions:
- The RG agrees with the EG that the results from these proxy methods should be rejected.
- It appears to the RG that the input data (survey estimates and landings) are highly uncertain and need to be improved. In particular, discard rates need to be better estimated throughout the time-series to provide more accurate landings indices.
- The RG appreciates the EG showing LBIs for both definitions of Lc (based on using local vs. absolute maxima). It would have been useful for the EG to show annual length frequency plots so the RG could examine and evaluate the effect of the two Lcs.
- It was unclear to the RG if there were only three years of length data available, or if those were the only years considered for the LBI method. If there were more years of length data, it might be useful to examine other lengthbased methods and determine if they have the same shortcomings.

\section*{Conclusions}

No proxy reference points were accepted.

\section*{28 Plaice in Divisions 7.f-g (Celtic Sea)}

\subsection*{28.1 Type of assessment in 2017}

In 2014 the analytic assessment by Aarts and Poos (2009) model was used to derive relative trends which include estimates of discards-at-age. The model was fitted at the benchmark meeting WGFLAT 2011. In 2015-2016 the AAP model had difficulties in interpreting the data due to conflicting trends between survey time-series and commercial time-series, particularly after 2010. The model has known issues in the recent years due to effort reporting, as well as changes in discard practice. Therefore, the AAP was not used to provide advice at WGCSE 2015-2016 and advice was based instead on survey trends. As previous ICES advice used a catch/landings and biomass index series, stock dynamics was investigated in 2017 by applying a biomass dynamic model (SPiCT - Stochastic Production model in Continuous Time) which provides model diagnostics. The model output suggests the stock is considered to be in a desirable state as \(F / F_{\text {MSY }}\) proxy \(<1\) and \(B /\) MSY \(B_{\text {trigger }}\) proxy \(>1\) (where MSY \(B_{\text {trigger }}\) proxy \(=0.5 \mathrm{~B}_{\mathrm{MSY}}\), a parameter estimated by the model). The diagnostics were found to be acceptable and therefore SPiCT was used as the basis for advice.

\section*{ICES advice applicable to 2017}

Based on the ICES approach for data-limited stocks, ICES advises that catches should be no more than 1800 tonnes. If discard rates remain unchanged from the average of the last three years, this implies landings of no more than 511 tonnes. Discards exceed landings and technical measures should be introduced to reduce discard rates.

\section*{General stock description and management units}

A TAC is allocated to ICES areas 7.f-g which corresponds to the stock area.

Management applicable to 2016 and 2017
TACs and quotas set for 2016 (source COUNCIL REGULATION (EU) No 72/2016).
Species: Plaice Pleuronectes platessa, Zone: 7.f and 7.g (PLE/7FG.)
Belgium 59
France 106
Ireland 200
United Kingdom 55
Total EU 420
Total TAC 420

TACs and quotas set for 2017 (source COUNCIL REGULATION (EU) No 127/2017).
Species: Plaice Pleuronectes platessa, Zone: 7.f and 7.g (PLE/7FG.)
Belgium 55
France 99
Ireland 199
United Kingdom 52
Total EU 405
Total TAC 405

\section*{Fishery in 2016}

As usual the main fishery was concentrated on the Trevose Head ground off the north Cornish coast and around Land's End. Plaice was harvested throughout the year, with most of the catch landed from Q2 to Q4. The fleets harvesting plaice in the Celtic Sea primarily involve vessels from Belgium, France, Ireland and the UK. In 2016 Belgium reported \(56.5 \%\) of the landings, France \(21.2 \%\), Ireland \(12.1 \%\) and the UK \(6.2 \%\). The contribution of individual countries to total landings was similar to 20132015. The Working Group estimated that total international landings for 2016 were \(430.9 \mathrm{t}, \sim 2.6 \%\) above the TAC of 420 t . Discards were a significant component of catch ( \(\sim 70 \%\) in 2016), with the available time-series extending from 2004 to 2016. Discards have exceeded landings since 2006. Most of the catch (54.3\%) were taken by beam trawlers, and \(42.4 \%\); by bottom otter trawlers. Other gears accounted for \(3.3 \%\). Efforts and lpues of fishing fleets are presented in Tables 28.2-28.4.

\subsection*{28.2 Data}

\section*{Landings}

National landings data and estimates of total landings and discards used by the WG are given in Table 28.1.

\section*{Discards}

Prior to 2010 indications were that discard rates, although variable, were substantial in some fleets/periods. At the ICES WKFLAT (2010) meeting discard data from the countries participating in the fishery was raised and collated to the total international level for first time, a process that will be continued annually. Discard information was available for Belgium, \(\mathrm{UK}(\mathrm{E}+\mathrm{W})\) and Ireland. The UK estimates were raised to produce equivalent levels of discards for France, Ireland and N Ireland (on the basis of similar gear type and quarter). The total estimates (Table 28.1) confirm the perception of the significant level of discarding; discards have therefore been included in the assessment since 2010. WG estimates of the level of discards available from 2004 show a steady increase in time to levels higher than landings since 2006; in 2007 a substantial increase occurred in the discarding by all fleets. This is followed by a return to the previously lower levels until 2011 after which discards always exceeded landings. Data from 2016 national discard sampling programmes are summarized in Figures 28.1a and b.

\section*{Biological information}

Quarterly or annual age compositions for 2016 were available for Belgium, Ireland, UK(E+W), and one French metier all together representing approximately \(80 \%\) of the total landings (Figure 28.2). International landings and discard numbers-at-age in years for which both are available (2004-2016) are compared in Figure 28.3; in recent years discards considerably exceeds landing in numbers at most ages. A strong cohort that appeared first in 2012 as 2 y.o., in 2015 attained the age of 5 y.o. and predominated landings, while the next strong generation ( 2 y.o.) appeared in the discards in 2015 and began be to important also in the 2016 landings. Numbers- and weights-at-age for landings, discards and the stock used in the assessment are presented in Tables 28.5-28.9.

\section*{Landings weight-at-age}

Historically, landings weights-at-age were constructed by fitting a quadratic smoother through the aggregated catch weights for each year. WKFLAT (2011) decided not to continue with this approach following concerns raised by WGCSE that poor fits of the quadratic smoothing curve were resulting in the youngest ages being estimated to have heavier weights than adjacent older ages. WKFLAT (2011) rejected the use of the polynomial smoother for weights-at-age and suggested that raw landings weights are used in future. Raw data back to 1995 was obtained by WKFLAT (2011) and used to update the catch weights and stock weights files (Table 28.6).

\section*{Discard weight-at-age}

Discard length and weight-at-age raw data was available for UK(E+W), Belgium and Ireland. The three national weight-at-age matrices were averaged to a total international estimate by weighting the individual weights-at-age for each year, by the catch numbers-at-age from the three countries for each year and age (Tables 28.6 and 28.7).

\section*{Stock weight-at-age}

Where discard estimates were available from 2004 onwards, a revised set of stock weights-at-age were calculated. The stock weights were derived from the total international landings weights-at-age and the discard weights-at-age averaged by num-bers-at-age from the respective data sets. Prior to 2004, a revised set of stock weights-at-age based on international landings data was produced. These new values were based on collected weight data with a SOP correction (Table 28.9).

\section*{Natural mortality and maturity}

Estimates of natural mortality ( 0.12 for all years and all ages from tagging studies) were based on the value estimated for Irish Sea plaice. The maturity ogive is based on UK(E\&W) 7.f-g survey data for March 1993 and March 1994 (Pawson and Harley, 1997). This maturity ogive was produced in 1997 and applied to all years in the assessment. Data were not used in the current assessment as AP model did not converge.
\begin{tabular}{rlcccc}
\hline Age & 1 & 2 & 3 & 4 & \(5+\) \\
\hline Maturity & 0 & 0.26 & 0.52 & 0.86 & 1.00 \\
\hline
\end{tabular}

\section*{Surveys}

Indices of abundance from the UK(E\&W)-BTS-Q3 beam trawl survey in 7.f and the Irish IBTS survey (IGFS-WIBTS-Q4) are presented in Table 28.10. Both surveys show consistent trends of the stock increase (Figure 28.4). The UK(E\&W)-BTS-Q3 started in 1995 and was always used for tuning the AP model. The Irish Celtic Explorer IBTS survey (IGFS-WIBTS-Q4) time-series started in 2003. WKFLAT (2011) noted that year effects in the survey catch rates dominate the abundance indices; year class and catch curve plots illustrated that the consistency of plaice year-class abundance estimates between ages is relatively poor. The survey was not fitted during preliminary runs of the assessment model in 2013, 2014, and 2015 but will be monitored for inclusion as the time-series progresses. Its tentative inclusion in assessment 2016 did not improve the AP model performance. These two survey time-series were used on the stock trends based advice in the years 2015 and 2016.

\section*{Commercial landings per unit of effort}

Commercial indices of abundance from the UK(E\&W) beam trawl and otter trawl data are presented in Table 28.11. In contrast to the survey data, they exhibit rather a declining trend (Figures 28.4 and 28.5), whereas the data from other fisheries (Figure 28.6) are contradictory.

During this assessment, data on landings age structure were used up to the year 2010 (inclusive) because of a significant increase in the number of fish above MLS being discarded by fishermen thereafter. Up to the year 2012 the bulk of annual discards (all fleets combined) consisted of 2 or 2-3 y.o. fish, and in 2013-2016 mostly 3-4 y.o. fish (Figure 28.3. The UK beam and otter fleets, which were traditionally used in the assessment of this stock began to change discarding practice earlier, around the year 2011 (Figure 28.7).

Historically, the commercial lpue data illustrate a general pattern of steep decline since the high levels in the early 1990s, followed by a further more gradual decline in the late 1990s. Since 2000, lpue has been relatively stable at a low level with small increases in some metiers, notably - in Belgian beam-trawlers - the most important harvesters of the stock. Overall, the lpue rates remain at a relatively low level compared to historic catch rates.

\section*{Other relevant data}

There were no early closures of the fishery for plaice in 2016. There is relatively little information on the level of landings misreporting on this stock, although it is not considered to be a problem. Recent research on discard survival in the English Channel revealed that discard mortality of adult plaice captured by beam trawl varied with season, fish size and other factors like vessel type (Revill et al., 2013; Depestele et al., 2014; Uhlmann et al., 2016 a,b) Therefore significant amounts (4 to 93\%, mostly <50\% in Belgian beam trawlers and mean \(48 \%\) in French beam trawlers) might survive discarding which has been confirmed by several (3-15) days of observations in captivity (Depestele et al., 2014; Uhlmann et al., 2016 a). Smaller undersized plaice that represent the bulk of discards are likely to have relatively higher mortality as with other flatfish species (review: Hendrikson, Nies, 2007). As discard survival is unknown it might be not adequately be taken into consideration.

\subsection*{28.3 Stock assessment}

\section*{Assessment model}

WKFLAT (2011) agreed that the model that will be used as a temporary basis for the assessment and provision of advice for the Celtic Sea plaice is AP model (Aarts and Poos, 2009). This was selected on the basis that it was the only model available to WKFLAT which reconstructs the historic discarding rates (derived from the survey dataseries).

WKFLAT (2011) concluded that:
1 ) Due to the change in estimated fishing mortality when discards are included within the model fit, discards should be retained within the assessment model structure.
2 ) Given that the time-series of discard data to which the models are fitted is short and that, consequently, there are likely to be changes in the management estimates as discard data are added in subsequent years, no definitive model structure can be recommended at this stage in the development process.
3 ) The most flexible of the models TVS_PTVS should be used as the basis for advice; in terms of relative changes in estimated total fishing mortality and biomass.
4 ) The other two models which provide similar structures should continue to be fitted at the WG to provide sensitivity comparisons.
5 ) As the dataseries are extended, a final model selection can be then determined.

In 2013, no assessment was presented for this stock given that the "preferred" Aarts and Poos (2009) model failed to converge and other model variants could not provide realistic representations of observed landings and discards. Consequently, WGCSE 2013 decided to avoid the use of the "preferred" TV_PTVS AP model variant and instead focus on assessing the stock using trends derived from the fishery-independent UK (E\&W) beam trawl survey. Trends derived from the UK(E\&W) beam trawl survey were selected for the basis of advice given that this survey most appropriately covered the spatial extent of the stock and well represented the mean age (2-5) landed in the fishery. The UK (E\&W) beam trawl survey was used to infer trends in recruitment, stock size (spawning-stock biomass) and fishing mortality.

In 2014 corrected TV_PTVS Aarts and Poos (2009) model converged and produced realistic results and confirmed conclusions derived in 2013 from the fisheryindependent UK(E\&W) beam trawl survey. In both 2015 and 2016 all three model variants converged but only of the "preferred" TV_PTVS AP variant provided estimations consistent with the previous run, observed catches and landings. However, trends of both UK(E\&W)-BTS-Q3 beam trawl and IGFS-WIBTS-Q4 surveys on one hand and data on lpues of commercial fleet produced conflicting signal that resulted in asymmetrical distribution of residuals. Because of this the ICES stock advice was based on both surveys' cpue trends.

Independently of WGCSE, the stock status was explored in 2015 by WKLIFE using a biomass dynamic model (SPiCT) (ICES, 2016 a). As discard data were not available prior 2004, the group approximated the total catch values from 1977 onwards. An adjustment was made to the data by applying the 2004 discard ratio back in time
(landings prior to 2004 were multiplied by \(\mathrm{K}=1.54\) ). These total catch data were combined with cpue trends of both surveys expressed in two mean-standardized biomass index series of +3 -year-old plaice, which were considered to reflect "exploitable biomass" for this stock.

Results of modelling were found to be sensitive to truncating the catch to ensure \(100 \%\) overlap between the survey and catch time-series. In this case, truncation lead to a \(\sim 60 \%\) increase in Bмяу and \(\sim 30 \%\) decrease in FmsY, whereas CVs were hugely increased (by \(\sim 200 \%\) and \(\sim 75 \%\) respectively). Therefore, the time-series was not truncated. Estimation of the observation error corresponding to the catch \((\beta)\) and survey \((\alpha)\) was tried, but the model did not converge when trying to estimate both of these, so \(\alpha\) was fixed at 1, while \(\beta\) was estimated. Under all these assumptions the results indicated current stock status (2015) to be well above the biomass reference point 0.5 BmsY, and F (2015) to be well be Fmsy (ICES, 2016a).

In 2016 the AP model did not converge. The ICES framework for category 3.2 stocks was applied (ICES, 2012; 2016 b-d). As the previous ICES advice used both catch/landings and biomass index series, the stock was investigated by applying SPiCT. The SPiCT results were chosen as the basis for advice using comparison of the two latest biomass index ( \(\mathrm{B}_{\text {/ }} \mathrm{B}_{\mathrm{msY}}\) ) values (index A ) with the three preceding values (index B), multiplied by the recent advised catch of 1500 tonnes.

\section*{Comparative model runs}

Usage of the entire dataset on commercial lpues and survey cpues of +3 -year-old plaice did not permit to the model to converge. Knowing the issue with reliability of recent commercial lpues, both lpue series (UK(E+W) BT and UK(E+W) OTB)) were truncated down to the year 2010. The catches time-series was approximated using average landings/discard ratio for the entire fishing history, 2004-2016 ( \(\mathrm{K}=2.799\) ). Then it was truncated up to the year 1989 to ensure \(100 \%\) overlap between the catch time-series and at least one cpue/lpue time-series. The overlaps between commercial time-series and surveys series was \(8-16\) years. The model converged without unreasonable extension of catch series backwards as well as without necessity to fix an observation error. The results of SPiCT indicated that current stock status is well above the biomass reference point \(0.5 \mathrm{Bmsy}_{\text {m, }}\) and F (2016) is above \(\mathrm{Fmsy}_{\text {m }}\) with satisfactory CIs.

An attempt to add a long series of lpues of Belgian beam trawlers (1996-2016, all ages combined) did not change perceived stock trends but increased drastically confidence intervals. So only four "traditional" cpue/lpue datasets were used for the assessment.

\section*{Final assessment}

The settings and data for the model fits are set out in the table below:
\begin{tabular}{lll}
\hline \multicolumn{1}{c}{ ASSESSMENT YEAR } & & \multicolumn{1}{c}{2016} \\
\hline Assessment model & & SPiCT \\
\hline Catch data & \begin{tabular}{l} 
Including discards 1989-2016 \\
(reported and raised discards for \\
2004-2016, and estimated discards \\
for 1989-2003)
\end{tabular} \\
\hline Discard rate & \begin{tabular}{l} 
Average (proportion by number) \\
2004-2016. Calculated as \\
discards/(landings + discards).
\end{tabular} \\
\hline Tuning fleets & UK(E\&W)-BTS-Q3 & 1995-2016 ages 3+ \\
\hline & IGFS-WIBTS-Q4 & 2003-2016 ages 3+ \\
\hline & \begin{tabular}{l} 
UK commercial beam \\
trawl
\end{tabular} & 1990-2010 ages 4-8 \\
& \begin{tabular}{l} 
UK commercial otter \\
trawl
\end{tabular} & 1989-2010 ages 4-8 \\
\hline
\end{tabular}

Figure 28.8 presents the output plots for the model. Tables 28.12 and 28.13 contain information about the model diagnostics, deterministic and stochastic reference points and primary data of the model output.

\section*{State of the stock}

On the relative scale the spawning biomass is estimated to have been increasing between 2005 and 2016, whereas F has been steadily declining from 2001 onwards (Figure 28.8, Table 28.13). The estimated biomass was above Bmsy from 2012, and the lower limit of this estimation exceeded Bмsy in 2016. Estimated F was below Fmsy from 2009, and upper limit of this estimation, from 2012. The stock increase is likely based on strong cohorts born in 2010 and 2013. The stock has been increasing from ~2008 after a period of low abundance in \(\sim 1995-2007\). As with some other plaice stocks around the UK, like in the divisions 7e, 7h-k (ICES, 2017) and North Sea (Dutz et al., 2016) this might be caused by some global processes.

\subsection*{28.4 Short-term projections}

The short-term projection from the model for 2017 (Table 28.14) forecasts B >BMSY and \(\mathrm{F}<\mathrm{F}_{\mathrm{MSY}}\) within \(95 \%\) confidence intervals.

\subsection*{28.5 Precautionary approach reference points}

On the basis of the revision of the assessment data structures and the AP model no MSY reference points were recommended for this stock. Meanwhile, using the SPiCT model at ICES WK Proxy (ICES, 2015) resulted in estimation of Btrigger as 3800 t ( \(50 \%\) of \(B_{M S Y}\) ) and \(\mathrm{F}_{\mathrm{MSY}}=0.27\). In 2016 application of the same model resulted in estimation
 index values with the three preceding values, multiplied by the recent advised catch demonstrated that estimated biomass to have increased by more than \(20 \%\), so the uncertainty cap was applied.

\subsection*{28.6 Management plans}

There is no management plan for Celtic Sea plaice.

\subsection*{28.7 Uncertainties in assessment and forecast}

\section*{Landings}

Sampling levels of landed catch (Figure 28.2) in recent years are sufficient to support current assessment approaches, and associated CVs of some national catch-at-age datasets are available in the Stock Annex.

\section*{Discards}

Estimates of discarding are included in the assessment. From 2003 onwards, discard sampling for Ireland, Belgium, France and the UK(E\&W) has been improved under the Data Collection Regulation. Unknown levels of partial discard survival varying with fishing gear and season bring uncertainty into the assessment, which assumes that all discarded fish die. Discarding remains too high (exceeding landings) in this fishery, thereby compromising the effectiveness of quota management on landings.

\section*{Consistency}

In 2015 and 2016 the advice for this stock was provided on the basis of research survey trends due to unreliability of the AP model results as well as conflicting trends between commercial vessels lpues (due to increasing discarding) and cpues of research surveys. In 2017 the WGCSE decided to use results of the SPiCT model, output of which was consistent with trends in abundance of commercial-sized fish aged 3+ as represented by data of research surveys.

\subsection*{28.8 References}

Aarts, G., Poos, J.J. 2009. Comprehensive discard reconstruction and abundance estimation using flexible selectivity functions. ICES journal of marine science, 66: 763-771.
Depestele J., Desender M., Benoît H.P., Polet H., Vincx M. 2014. Short-term survival of discarded target fish and non-target invertebrate species in the "eurocutter" beam trawl fishery of the southern North Sea. Fisheries Research 154: 82-92.

Dutz, J., Støttrup, Stenberg, C, Munk, P. 2016. Recent trends in the abundance of plaice Pleuronectes platessa and cod Gadus morhua in shallow coastal waters of the Northeastern Atlantic continental shelf - a review. Marine Biology Research 12: 785-796.
Hendrikson, L., Nies, T. 2009. Discard and gear escapement survival rates of some Northeast groundfish species. NOAA Draft Working Paper. Data Meeting GARM 2008, October 29, 2007, 12 pp. (http://www.nefsc.noaa.gov/GARMPublic/1.DataMeeting/B.3\%20Disc survival GARM2008.pdf)

Revill, A.S., Broadhurst, M.K., Millar, R.B. 2013. Mortality of adult plaice, Pleuronectes platessa and sole, Solea solea discarded from English Channel beam trawlers. Fisheries Research, 147: 320-326.

ICES. 2012. ICES Implementation of Advice for Data-limited Stocks in 2012 in its 2012 Advice. ICES CM 2012/ACOM 68. 42 pp.

ICES. 2015. Report of the Workshop to consider MSY proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015. ICES CM 2015/ACOM:61.

ICES. 2016a. Report of the Workshop to consider MSY proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015, ICES Headquarters, Copenhagen. ICES CM 2015/ACOM:61. 183 pp.

ICES. 2016b. EU request to provide a framework for the classification of stock status relative to MSY proxies for selected category 3 and category 4 stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.4.2.
ICES. 2016c. Advice basis. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 1, Section 1.2.
ICES. 2016d. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 4-13 May 2016, ICES Headquarters, Copenhagen, Denmark. ICES CM 2016/ACOM:13.

ICES. 2017. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 9-18 May 2017, ICES Headquarters, Copenhagen, Denmark. ICES CM 2017/ACOM:13.
Uhlmann, S. S., Theunynck, R., Ampe, B., Verkempynck, R., Miller, D. C. M., van Marlen, B., van der Reijden, K., Molenaar, P., Vanderperren, E., Polet, H. 2016 a. Overleving door boomkor gevangen pladijs - survival of beam-trawled European plaice (Pleuronectes platessa). ILVO Mededeling 210. Institute for Agricultural and Fisheries Research, Oostende, Belgium. 172 pp.

Uhlmann, S. S., Theunynck, R., Ampe, B., Desender, M., Soetaert, M., and Depestele, J. Injury, reflex impairment, and survival of beam-trawled flatfish. 2016 b. ICES Journal of Marine Science, 73: 1244-1254.

Table 28.1. Plaice in divisions 7.f-g. Nominal landings (t) as reported to ICES, and total landings as used by the working group.
\begin{tabular}{lllllllllll}
\hline & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 \\
\hline Belgium & 214 & 196 & 171 & 372 & 365 & 341 & 314 & 283 & 357 & 665 \\
\hline UK (Engl. \& Wales) & 150 & 152 & 176 & 227 & 251 & 196 & 279 & 366 & 466 & 529 \\
\hline France & 365 & 527 & 467 & 706 & 697 & 568 & 532 & 558 & 493 & 878 \\
\hline Ireland & 28 & 0 & 49 & 61 & 64 & 198 & 48 & 72 & 91 & 302 \\
\hline N. Ireland & & & & & & & & & & \\
\hline Netherlands & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline Scotland & 757 & 875 & 863 & 1373 & 1377 & 1303 & 1173 & 1279 & 1407 & 2384 \\
\hline Total reported & \(\mathrm{N} / \mathrm{A}\) \\
\hline Discards & 0 & 0 & 0 & 0 & 0 & 0 & -27 & -69 & 345 & -693 \\
\hline Unallocated & N & & & & & & & & 9 \\
\hline Landings used by WG & 757 & 875 & 863 & 1373 & 1377 & 1303 & 1146 & 1210 & 1752 & 1691 \\
\hline Catch as used by WG & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}
\begin{tabular}{lllllllllll}
\hline & \(\mathbf{1 9 8 7}\) & \(\mathbf{1 9 8 8}\) & \(\mathbf{1 9 8 9}\) & \(\mathbf{1 9 9 0}\) & \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 6}\) \\
\hline Belgium & 581 & 617 & 843 & 794 & 836 & 371 & 542 & 350 & 346 & 410 \\
\hline UK (Engl. \& Wales) & 496 & 629 & 471 & 497 & 392 & 302 & 290 & 251 & 284 & 239 \\
\hline France & 708 & 721 & 1089 & 767 & 444 & 504 & 373 & 298 & 254 & 246 \\
\hline Ireland & 127 & 226 & 180 & 160 & 155 & 180 & 89 & 82 & 70 & 83 \\
\hline
\end{tabular}
\(\mathbf{N}\). Ireland 1
\begin{tabular}{lllllllllll} 
Scotland & & & & 1 & & 5 & 9 & 1 & 2 & \\
\hline Total reported & 1912 & 2194 & 2583 & 2219 & 1827 & 1362 & 1303 & 982 & 956 & 978 \\
\hline Discards & N/A \\
\hline Unallocated & -11 & -78 & -432 & -137 & -326 & -174 & -189 & 88 & 72 & -26 \\
\hline Landings used by WG & 1901 & 2116 & 2151 & 2082 & 1501 & 1188 & 1114 & 1070 & 1028 & 952 \\
\hline Catch as used by WG & N/A \\
\hline
\end{tabular}
\begin{tabular}{lllllllllll}
\hline & \(\mathbf{1 9 9 7}\) & \(\mathbf{1 9 9 8}\) & \(\mathbf{1 9 9 9}\) & \(\mathbf{2 0 0 0}\) & \(\mathbf{2 0 0 1}\) & \(\mathbf{2 0 0 2}\) & \(\mathbf{2 0 0 3}\) & 2004 & 2005 & \(\mathbf{2 0 0 6}\) \\
\hline Belgium & 594 & 540 & 371 & 224 & 241 & 248 & 221 & 212 & 168 & 172 \\
\hline UK (Engl. \& Wales) & 258 & 176 & 170 & 134 & 136 & 105 & 127 & 87 & 55 & 88 \\
\hline France & 329 & 298 & & 287 & 262 & 186 & 165 & 145 & 132 & 106 \\
\hline Ireland & 78 & 135 & 115 & 76 & 45 & 79 & 51 & 45 & 44 & 48 \\
\hline Total reported & 1259 & 1149 & 656 & 721 & 684 & 618 & 564 & 489 & 399 & 414 \\
\hline Discards & \(\mathrm{N} / \mathrm{A}\) & 274 & 321 & 453 \\
\hline Unallocated & -42 & -82 & 312 & -3 & 30 & 24 & 30 & 21 & -13 & -10 \\
\hline Landings used by WG & 1217 & 1067 & 968 & 718 & 714 & 642 & 594 & 510 & 386 & 404 \\
\hline Catch as used by WG & \(\mathrm{N} / \mathrm{A}\) & 784 & 707 & 857 \\
\hline
\end{tabular}
\begin{tabular}{lllllllllll}
\hline & 2007 & \(\mathbf{2 0 0 8}\) & \(\mathbf{2 0 0 9}\) & \(\mathbf{2 0 1 0}\) & \(\mathbf{2 0 1 1}\) & \(\mathbf{2 0 1 2}\) & \(\mathbf{2 0 1 3}\) & 2014 & 2015 & 2016 \\
\hline Belgium & 194 & 187 & 216 & 188 & 210 & 203 & 185 & 182 & 185 & 244 \\
\hline UK & 61 & 63 & 55 & 54 & 45 & 44 & 41 & 25 & 25 & 27 \\
\hline France & 104 & 62 & \(\mathrm{~N} / \mathrm{A}\) & 136 & 98 & 126 & 106 & 155 & 111 & 108 \\
\hline Ireland & 58 & 63 & 63 & 63 & 67 & 76 & 80 & 49 & 59 & 64 \\
\hline Total reported & 417 & 375 & \(\mathrm{~N} / \mathrm{A}\) & 442 & 420 & 450 & 412 & 411 & 381 & 443 \\
\hline Discards & 1288 & 583 & 608 & 670 & 1107 & 1123 & 1274 & 1158 & 778 & 571 \\
\hline Unallocated & -7 & 62 & \(\mathrm{~N} / \mathrm{A}\) & -9 & 7 & -8 & -2 & -1 & 0 & -12 \\
\hline Landings used by WG & 410 & 437 & 481 & 442 & 427 & 450 & 414 & 410 & 381 & 431 \\
\hline Catch as used by WG & 1698 & 1020 & 1089 & 1112 & 1534 & 1565 & 1688 & 1568 & 1159 & 1002 \\
\hline
\end{tabular}

\section*{Table 28.2. Plaice in Divisions 7.f-g: Ipue and cpue for UK(E\&W) fleets.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{LANDINGS PER UNIT EFFORT (LPUE) kglday} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{}} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{Vllifg EFFORT} \\
\hline & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{RECT. GROUP}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{\text { Vllg EAST (grp 2) }}{\text { Effort }}
\]}} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \frac{\text { Vllg WEST (grp 3) }}{\text { Effort }} \\
& \hline
\end{aligned}
\]}} & & & & & \multicolumn{2}{|l|}{} \\
\hline & \multicolumn{2}{|l|}{Vectili (gro 1)} & & & & & \multicolumn{2}{|l|}{VIIg WEST (grp 3)} & & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { RECT. GROUP } \\
& \text { VIIf (grp 1) } \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { RECT. GROUP } \\
& \text { Vlif (grp 1) }
\end{aligned}
\]} & TRAWL & BEAM \\
\hline & TRAWL & beam & -ANDING & EFFORT & ANDINGS & EFFORT & (000 & (000 \\
\hline YEAR & & TRAWL & & TRAWL & (Days fished) & (Days fished) & & TRAWL & Days fished & pays fishe & (t) & pays fishe & (t) & Days fishe & pays fishe & ays fishe \\
\hline 1983 & 86.39 & 30.33 & 71.84 & 54.85 & 82 & 149 & 0.00 & 75.69 & a & 8 & 53.96 & 620 & 5.62 & 195 & 702 & 353 \\
\hline 1984 & 79.67 & 99.69 & 94.50 & 106.65 & 316 & 298 & 0.00 & 66.96 & 0 & 129 & 156.33 & 1723 & 99.01 & 901 & 2039 & 1328 \\
\hline 1985 & 115.93 & 122.91 & 119.63 & 174.39 & 206 & 285 & 67.62 & 233.25 & 23 & 92 & 188.60 & 1493 & 146.71 & 1101 & 1722 & 1478 \\
\hline 1986 & 119.81 & 113.62 & 103.37 & 183.72 & 334 & 180 & 49.93 & 380.20 & 35 & 29 & 138.48 & 1125 & 91.16 & 973 & 1494 & 1182 \\
\hline 1987 & 131.27 & 114.34 & 223.13 & 291.30 & 364 & 187 & 33.68 & 446.46 & 26 & 26 & 196.01 & 1211 & 148.39 & 1681 & 1601 & 1894 \\
\hline 1988 & 232.51 & 247.91 & 217.11 & 356.02 & 351 & 77 & 48.43 & 670.38 & 20 & 36 & 200.68 & 838 & 205.01 & 1102 & 1210 & 1215 \\
\hline 1989 & 130.84 & 138.62 & 137.76 & 293.89 & 327 & 125 & 86.54 & 575.30 & 15 & 7 & 129.65 & 966 & 96.15 & 861 & 1309 & 994 \\
\hline 1990 & 75.55 & 88.83 & 59.00 & 166.69 & 435 & 165 & 78.13 & 147.13 & 24 & 194 & 97.39 & 1229 & 155.84 & 1256 & 1689 & 1615 \\
\hline 1991 & 48.20 & 93.83 & 44.90 & 73.40 & 306 & 483 & 42.22 & 109.40 & 45 & 104 & 55.72 & 1066 & 190.79 & 1667 & 1417 & 2254 \\
\hline 1992 & 49.33 & 57.20 & 41.29 & 69.80 & 303 & 633 & 45.00 & 70.04 & 435 & 90 & 44.92 & 898 & 91.34 & 1420 & 1636 & 2143 \\
\hline 1993 & 43.85 & 69.98 & 23.83 & 65.14 & 251 & 694 & 56.64 & 32.85 & 30 & 135 & 38.41 & 836 & 109.37 & 1669 & 1117 & 2497 \\
\hline 1994 & 39.67 & 40.41 & 31.76 & 49.39 & 225 & 610 & 10.70 & 70.61 & 19 & 116 & 23.21 & 623 & 86.14 & 2219 & 866 & 2945 \\
\hline 1995 & 41.81 & 43.01 & 30.91 & 54.05 & 196 & 694 & 61.67 & 37.12 & 30 & 128 & 26.39 & 580 & 96.10 & 2303 & 807 & 3125 \\
\hline 1996 & 38.80 & 33.67 & 26.25 & 27.49 & 341 & 560 & 6.15 & 11.82 & 105 & 220 & 23.68 & 593 & 81.19 & 2391 & 1038 & 3170 \\
\hline 1997 & 34.61 & 31.01 & 21.37 & 33.42 & 370 & 770 & 17.47 & 7.50 & 122 & 146 & 20.76 & 577 & 85.13 & 2661 & 1069 & 3578 \\
\hline 1998 & 21.86 & 26.07 & 15.53 & 15.33 & 385 & 591 & 5.12 & 12.65 & 94 & 159 & 10.97 & 517 & 85.15 & 2846 & 995 & 3597 \\
\hline 1999 & 35.60 & 26.62 & 20.65 & 12.00 & 176 & 1461 & 5.14 & 11.96 & 235 & 312 & 12.06 & 395 & 85.55 & 3058 & 806 & 4831 \\
\hline 2000 & 32.09 & 16.10 & 40.58 & 11.64 & 187 & 1007 & 3.35 & 10.10 & 160 & 200 & 10.99 & 284 & 53.59 & 3133 & 630 & 4341 \\
\hline 2001 & 34.02 & 16.69 & 32.30 & 15.26 & 187 & 1155 & 4.66 & 11.04 & 179 & 91 & 9.82 & 309 & 53.47 & 3172 & 675 & 4418 \\
\hline 2002 & 19.78 & 15.64 & 48.80 & 20.81 & 123 & 463 & 7.43 & 4.81 & 170 & 60 & 6.91 & 416 & 38.85 & 2652 & 709 & 3174 \\
\hline 2003 & 23.45 & 18.24 & 8.19 & 20.78 & 51 & 772 & 4.48 & 1.49 & 124 & 158 & 15.85 & 696 & 50.94 & 2669 & 871 & 3599 \\
\hline 2004 & 18.77 & 15.54 & 8.66 & 7.81 & 198 & 923 & 3.09 & 3.39 & 125 & 178 & 12.45 & 641 & 40.72 & 2503 & 965 & 3604 \\
\hline 2005 & 11.20 & 11.00 & 2.14 & 8.25 & 21 & 618 & 0.25 & 1.33 & 154 & 116 & 9.55 & 876 & 23.25 & 1968 & 1051 & 2702 \\
\hline 2006 & 21.21 & 12.77 & 5.91 & 15.19 & 23 & 630 & 0.64 & 0.58 & 233 & 70 & 19.94 & 924 & 14.31 & 1330 & 1181 & 2030 \\
\hline 2007 & 14.79 & 17.93 & 20.42 & 10.58 & 31 & 518 & 1.71 & 5.90 & 219 & 12 & 12.09 & 798 & 18.18 & 1407 & 1048 & 1937 \\
\hline 2008 & 18.01 & 21.20 & 21.10 & 10.22 & 109 & 290 & 0.08 & 1.72 & 229 & 5 & 13.23 & 711 & 18.85 & 1202 & 1049 & 1497 \\
\hline 2009 & 14.40 & 15.66 & 11.58 & 14.77 & 244 & 266 & 1.63 & 0.76 & 296 & 48 & 8.33 & 656 & 24.33 & 1105 & 1197 & 1419 \\
\hline 2010 & 14.09 & 27.93 & 12.88 & 11.82 & 84 & 327 & 0.31 & 1.06 & 469 & 78 & 7.79 & 565 & 19.63 & 1162 & 1117 & 1567 \\
\hline 2011 & 11.11 & 32.98 & 5.43 & 17.11 & 8 & 180 & 2.09 & 0.76 & 353 & 111 & 6.32 & 525 & 18.79 & 868 & 887 & 1158 \\
\hline 2012 & 10.96 & 17.70 & 3.11 & 9.38 & 138 & 275 & 0.67 & 0.51 & 487 & 102 & 6.11 & 543 & 22.18 & 1408 & 1168 & 1785 \\
\hline 2013 & 6.40 & 12.29 & 0.89 & 8.18 & 72 & 265 & 0.44 & 0.61 & 37 & 77 & 1.47 & 280 & 20.68 & 1611 & 389 & 1947 \\
\hline 2014 & 5.76 & 15.52 & 7.43 & 10.61 & 10 & 131 & 0.00 & 2.50 & 0 & 24 & 0.90 & 156 & 10.25 & 959 & 165 & 1114 \\
\hline 2015 & 18.82 & 11.87 & 37.87 & 14.58 & & 245 & 0.00 & 3.65 & 0 & 56 & 1.39 & 79 & 7.80 & 726 & 82 & 1027 \\
\hline 2016 & 0.00 & 14.91 & 0.00 & 9.57 & 0 & 396 & 0.00 & 0.05 & 0 & 34 & 0.00 & 0 & 11.28 & 915 & 0 & 1346 \\
\hline
\end{tabular}

Table 28.3. Plaice in Divisions 7.f-g: lpue and effort for Belgian fleets in 7.f-g.
\begin{tabular}{llll}
\hline & \multicolumn{2}{c}{ BeLGIAN Beam Trawl 7fg } \\
\hline Year & Landings (t) & Effort (000 hr) & lpue \((\mathrm{kg} / \mathrm{h})\) \\
\hline 1996 & 356.89 & 53.27 & 6.70 \\
\hline 1997 & 474.71 & 57.36 & 8.28 \\
\hline 1998 & 443.38 & 57.79 & 7.67 \\
\hline 1999 & 410.22 & 55.11 & 7.44 \\
\hline 2000 & 230.63 & 51.34 & 4.49 \\
\hline 2001 & 274.84 & 54.90 & 5.01 \\
\hline 2002 & 259.80 & 49.60 & 5.24 \\
\hline 2003 & 215.95 & 62.73 & 3.44 \\
\hline 2004 & 207.27 & 78.73 & 2.63 \\
\hline 2005 & 153.73 & 64.50 & 2.38 \\
\hline 2006 & 134.44 & 50.28 & 2.67 \\
\hline 2007 & 139.39 & 45.72 & 3.05 \\
\hline 2008 & 106.29 & 28.71 & 3.70 \\
\hline 2009 & 140.76 & 30.84 & 4.56 \\
\hline 2010 & 127.15 & 32.74 & 3.88 \\
\hline 2011 & 159.03 & 41.41 & 3.84 \\
\hline 2012 & 165.73 & 46.25 & 3.58 \\
\hline 2013 & 155.973 & 45.159 & 3.454 \\
\hline 2014 & 155.317 & 31.271 & 4.967 \\
\hline 2015 & 165.17 & 31.792 & 5.195 \\
\hline 2016 & 212.009 & 32.34 & 6.556 \\
\hline & & & \\
\hline
\end{tabular}

Table 28.4. Plaice in Divisions 7.f-g: lpue and effort for Irish otter trawl, beam and seine fleets in 7.g.
\begin{tabular}{llllll}
\hline IR-OTB-7G & \multicolumn{5}{l}{ IR-SCC-7G } \\
\hline Landings (t) & Effort (000 hr) & Ipue (kg/h) & Landings (t) & Effort (000 hr) & Ipue (kg/h) \\
\hline 94.23 & 63.56 & 1.48 & 9.55 & 6.43 & 1.49 \\
\hline 133.66 & 60.04 & 2.23 & 14.20 & 9.73 & 1.46 \\
\hline 119.84 & 65.10 & 1.84 & 38.79 & 16.13 & 2.40 \\
\hline 96.72 & 72.30 & 1.34 & 21.38 & 14.94 & 1.43 \\
\hline 60.05 & 51.66 & 1.16 & 10.40 & 8.01 & 1.30 \\
\hline 28.78 & 60.60 & 0.47 & 11.40 & 9.90 & 1.15 \\
\hline 23.82 & 69.43 & 0.34 & 10.93 & 16.33 & 0.67 \\
\hline 42.30 & 77.69 & 0.54 & 16.42 & 20.86 & 0.79 \\
\hline 26.35 & 86.79 & 0.30 & 13.80 & 20.91 & 0.66 \\
\hline 26.62 & 96.99 & 0.27 & 5.04 & 19.38 & 0.26 \\
\hline 22.78 & 124.40 & 0.18 & 6.47 & 14.81 & 0.44 \\
\hline 25.17 & 119.23 & 0.21 & 5.10 & 14.79 & 0.34 \\
\hline 30.99 & 136.52 & 0.23 & 4.76 & 15.82 & 0.30 \\
\hline 39.17 & 125.81 & 0.31 & 8.38 & 11.65 & 0.72 \\
\hline 43.81 & 137.11 & 0.32 & 7.98 & 8.19 & 0.98 \\
\hline 44.29 & 140.65 & 0.31 & 10.71 & 9.69 & 1.11 \\
\hline 44.68 & 120.33 & 0.37 & 11.12 & 11.01 & 1.01 \\
\hline 43.21 & 121.08 & 0.35 & 18.41 & 14.15 & 1.30 \\
\hline 31.91 & 118.13 & 0.28 & 11.10 & 12.06 & 0.84 \\
\hline 28.00 & 127.40 & 0.22 & 7.60 & 12.00 & 0.61 \\
\hline 35.05 & 133.07 & 0.26 & 8.36 & 9.29 & 0.90 \\
\hline 34.61 & 147.43 & 0.23 & 9.37 & 10.44 & 0.90 \\
\hline
\end{tabular}

IR-TBB-7G
\begin{tabular}{ccccccc}
\hline Landings (t) & Effort (000 hr) & Ipue (kg/h) & Year & Landings (t) & Effort (000 hr) & Ipue (kg/h) \\
\hline 37.92 & 20.78 & 1.83 & 2006 & 14.46 & 60.48 & 0.24 \\
\hline 53.02 & 26.76 & 1.98 & 2007 & 21.18 & 55.86 & 0.38 \\
\hline 94.59 & 28.25 & 3.35 & 2008 & 14.18 & 37.22 & 0.38 \\
\hline 122.13 & 35.25 & 3.46 & 2009 & 6.96 & 37.96 & 0.18 \\
\hline 25.80 & 40.87 & 0.63 & 2010 & 6.56 & 40.22 & 0.16 \\
\hline 12.62 & 37.03 & 0.34 & 2011 & 6.71 & 35.33 & 0.19 \\
\hline 4.80 & 39.71 & 0.12 & 2012 & 33.63 & 40.33 & 0.83 \\
\hline 7.08 & 31.62 & 0.22 & 2013 & 32.32 & 38.48 & 0.84 \\
\hline 9.37 & 49.26 & 0.19 & 2014 & 12.50 & 37.80 & 0.33 \\
\hline 6.17 & 54.86 & 0.11 & 2015 & 12.10 & 37.79 & 0.32 \\
\hline 9.49 & 49.65 & 0.19 & 2016 & 9.71 & 39.33 & 0.25 \\
\hline
\end{tabular}

Table 28.5. Plaice in divisions 7.f-g. Landings numbers-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Landings numbers-at-age} & \multicolumn{3}{|l|}{Numbers*10**-3} & & & & & \\
\hline AGE\YEAR & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 989 & 851 & 877 & 1921 & 822 & 300 & 750 & 704 & 1461 & 703 \\
\hline 3 & 426 & 903 & 673 & 1207 & 2111 & 1180 & 560 & 918 & 2503 & 2595 \\
\hline 4 & 411 & 291 & 638 & 658 & 681 & 955 & 827 & 343 & 393 & 1332 \\
\hline 5 & 105 & 136 & 72 & 146 & 109 & 443 & 372 & 373 & 102 & 156 \\
\hline 6 & 72 & 76 & 70 & 21 & 54 & 86 & 92 & 209 & 177 & 59 \\
\hline 7 & 37 & 47 & 34 & 16 & 53 & 51 & 44 & 70 & 62 & 48 \\
\hline 8 & 59 & 23 & 8 & 16 & 11 & 14 & 27 & 41 & 25 & 32 \\
\hline +gp & 75 & 98 & 46 & 32 & 44 & 60 & 23 & 42 & 38 & 24 \\
\hline TOTALNUM & 2175 & 2426 & 2419 & 4018 & 3886 & 3090 & 2696 & 2701 & 4762 & 4950 \\
\hline AGE\YEAR & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 25 & 100 & 43 & 0 \\
\hline 2 & 434 & 967 & 797 & 164 & 279 & 800 & 1019 & 428 & 488 & 812 \\
\hline 3 & 1883 & 2099 & 3550 & 2078 & 1072 & 526 & 1179 & 936 & 572 & 734 \\
\hline 4 & 1812 & 1568 & 1807 & 2427 & 1193 & 357 & 284 & 730 & 743 & 515 \\
\hline 5 & 772 & 612 & 741 & 655 & 578 & 471 & 139 & 164 & 334 & 219 \\
\hline 6 & 156 & 413 & 160 & 242 & 179 & 275 & 185 & 117 & 117 & 137 \\
\hline 7 & 22 & 65 & 98 & 86 & 94 & 80 & 115 & 86 & 57 & 59 \\
\hline 8 & 125 & 16 & 24 & 70 & 78 & 21 & 62 & 92 & 48 & 37 \\
\hline +gp & 76 & 73 & 23 & 46 & 79 & 96 & 59 & 65 & 132 & 96 \\
\hline TOTALNUM & 5281 & 5814 & 7201 & 5769 & 3553 & 2627 & 3066 & 2716 & 2534 & 2609 \\
\hline AGE\YEAR & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline 1 & 8 & 17 & 22 & 19 & 75 & 3 & 15 & 6 & 24 & 12 \\
\hline 2 & 420 & 426 & 243 & 320 & 651 & 170 & 239 & 126 & 201 & 331 \\
\hline 3 & 1318 & 921 & 982 & 606 & 371 & 661 & 571 & 578 & 327 & 458 \\
\hline 4 & 929 & 849 & 802 & 482 & 323 & 543 & 465 & 428 & 265 & 140 \\
\hline 5 & 272 & 287 & 372 & 203 & 199 & 183 & 150 & 261 & 134 & 134 \\
\hline 6 & 121 & 96 & 116 & 145 & 108 & 113 & 85 & 46 & 73 & 76 \\
\hline 7 & 60 & 82 & 45 & 53 & 62 & 65 & 34 & 27 & 24 & 50 \\
\hline 8 & 20 & 39 & 27 & 22 & 23 & 24 & 26 & 15 & 14 & 12 \\
\hline +gp & 82 & 56 & 69 & 32 & 28 & 28 & 24 & 17 & 16 & 15 \\
\hline TOTALNUM & 3231 & 2773 & 2678 & 1881 & 1838 & 1789 & 1608 & 1504 & 1078 & 1229 \\
\hline AGE\YEAR & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 1 & 8 & 15 & 2 & 3 & 1 & 2 & 3 & 0 & 0 & 2 \\
\hline 2 & 130 & 270 & 127 & 135 & 135 & 106 & 64 & 24 & 55 & 20 \\
\hline 3 & 513 & 341 & 626 & 223 & 326 & 485 & 328 & 123 & 122 & 332 \\
\hline 4 & 340 & 443 & 345 & 430 & 208 & 288 & 383 & 452 & 231 & 201 \\
\hline 5 & 104 & 145 & 273 & 191 & 248 & 164 & 192 & 247 & 410 & 182 \\
\hline 6 & 76 & 47 & 68 & 152 & 130 & 163 & 67 & 109 & 127 & 228 \\
\hline 7 & 46 & 29 & 20 & 44 & 69 & 65 & 70 & 33 & 43 & 94 \\
\hline 8 & 26 & 11 & 10 & 8 & 28 & 33 & 29 & 36 & 17 & 42 \\
\hline +gp & 13 & 15 & 12 & 8 & 17 & 23 & 31 & 30 & 26 & 37 \\
\hline TOTALNUM & 1257 & 1315 & 1485 & 1187 & 1161 & 1329 & 1167 & 1054 & 1052 & 1138 \\
\hline
\end{tabular}

Table 28.6. Plaice in divisions 7.f-g. Landings weights-at-age.

Landings weights-at-age (kg)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline AGE\YEAR & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 \\
\hline 1 & 0.078 & 0.194 & 0.076 & 0.118 & 0.185 & 0.151 & 0.178 & 0.276 & 0.135 & 0.000 \\
\hline 2 & 0.205 & 0.258 & 0.203 & 0.238 & 0.255 & 0.245 & 0.274 & 0.324 & 0.251 & 0.160 \\
\hline 3 & 0.323 & 0.323 & 0.325 & 0.354 & 0.330 & 0.339 & 0.369 & 0.384 & 0.363 & 0.301 \\
\hline 4 & 0.430 & 0.389 & 0.440 & 0.467 & 0.412 & 0.433 & 0.464 & 0.455 & 0.470 & 0.434 \\
\hline 5 & 0.528 & 0.457 & 0.550 & 0.576 & 0.500 & 0.526 & 0.559 & 0.538 & 0.572 & 0.559 \\
\hline 6 & 0.615 & 0.525 & 0.652 & 0.682 & 0.595 & 0.620 & 0.654 & 0.633 & 0.670 & 0.677 \\
\hline 7 & 0.693 & 0.595 & 0.749 & 0.784 & 0.695 & 0.714 & 0.749 & 0.739 & 0.763 & 0.787 \\
\hline 8 & 0.760 & 0.666 & 0.839 & 0.882 & 0.802 & 0.808 & 0.844 & 0.857 & 0.851 & 0.889 \\
\hline +gp & 0.8762 & 0.8435 & 1.0653 & 1.1812 & 1.1824 & 1.0948 & 1.1579 & 1.2661 & 1.0036 & 1.1033 \\
\hline SOPCOFAC & 1.0052 & 1.0262 & 1.0225 & 1.0135 & 1.0042 & 1.0125 & 0.9995 & 1.0000 & 1.0047 & 0.9997 \\
\hline AGE\YEAR & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
\hline 1 & 0.129 & 0.260 & 0.102 & 0.240 & 0.200 & 0.148 & 0.171 & 0.236 & 0.219 & 0.000 \\
\hline 2 & 0.208 & 0.288 & 0.176 & 0.270 & 0.260 & 0.257 & 0.263 & 0.296 & 0.254 & 0.247 \\
\hline 3 & 0.288 & 0.325 & 0.255 & 0.309 & 0.327 & 0.362 & 0.314 & 0.308 & 0.304 & 0.295 \\
\hline 4 & 0.368 & 0.370 & 0.337 & 0.358 & 0.400 & 0.464 & 0.405 & 0.397 & 0.364 & 0.349 \\
\hline 5 & 0.449 & 0.423 & 0.423 & 0.416 & 0.481 & 0.563 & 0.500 & 0.455 & 0.485 & 0.512 \\
\hline 6 & 0.530 & 0.484 & 0.514 & 0.483 & 0.567 & 0.658 & 0.598 & 0.598 & 0.603 & 0.553 \\
\hline 7 & 0.612 & 0.554 & 0.608 & 0.560 & 0.661 & 0.750 & 0.643 & 0.801 & 0.714 & 0.523 \\
\hline 8 & 0.694 & 0.633 & 0.706 & 0.646 & 0.761 & 0.839 & 0.728 & 0.728 & 0.752 & 0.947 \\
\hline +gp & 0.8632 & 0.8887 & 0.9932 & 0.9097 & 1.0465 & 1.0399 & 0.9886 & 0.9585 & 1.0655 & 1.0667 \\
\hline SOPCOFAC & 1.0034 & 1.0024 & 1.0006 & 1.0009 & 1.0113 & 1.0022 & 0.9997 & 1.0001 & 1.0004 & 0.9998 \\
\hline AGE\YEAR & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline 1 & 0.249 & 0.213 & 0.213 & 0.245 & 0.268 & 0.246 & 0.205 & 0.221 & 0.237 & 0.238 \\
\hline 2 & 0.291 & 0.256 & 0.268 & 0.260 & 0.305 & 0.284 & 0.295 & 0.258 & 0.260 & 0.246 \\
\hline 3 & 0.304 & 0.317 & 0.278 & 0.302 & 0.340 & 0.281 & 0.321 & 0.287 & 0.295 & 0.291 \\
\hline 4 & 0.357 & 0.380 & 0.332 & 0.370 & 0.398 & 0.343 & 0.353 & 0.330 & 0.356 & 0.339 \\
\hline 5 & 0.466 & 0.463 & 0.440 & 0.479 & 0.466 & 0.433 & 0.439 & 0.382 & 0.425 & 0.385 \\
\hline 6 & 0.663 & 0.604 & 0.538 & 0.539 & 0.556 & 0.484 & 0.502 & 0.514 & 0.525 & 0.513 \\
\hline 7 & 0.745 & 0.661 & 0.618 & 0.672 & 0.675 & 0.541 & 0.651 & 0.649 & 0.631 & 0.549 \\
\hline 8 & 0.877 & 0.690 & 0.839 & 0.875 & 0.695 & 0.859 & 0.681 & 0.750 & 0.714 & 0.638 \\
\hline +gp & 1.1007 & 1.1886 & 1.1906 & 1.2018 & 1.0905 & 1.1262 & 1.0389 & 0.9919 & 1.0163 & 0.8369 \\
\hline SOPCOFAC & 1.0002 & 1.0009 & 1.0000 & 1.0007 & 1.0007 & 1.0004 & 0.9994 & 1.0007 & 1.0011 & 1.0008 \\
\hline AGE\YEAR & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 1 & 0.278 & 0.260 & 0.279 & 0.233 & 0.228 & 0.235 & 0.273 & 0.156 & 0.15 & 0.211 \\
\hline 2 & 0.271 & 0.273 & 0.267 & 0.292 & 0.242 & 0.246 & 0.285 & 0.28 & 0.24 & 0.253 \\
\hline 3 & 0.277 & 0.298 & 0.275 & 0.331 & 0.283 & 0.280 & 0.286 & 0.312 & 0.275 & 0.278 \\
\hline 4 & 0.303 & 0.329 & 0.329 & 0.328 & 0.335 & 0.307 & 0.320 & 0.346 & 0.3 & 0.318 \\
\hline 5 & 0.389 & 0.386 & 0.376 & 0.376 & 0.378 & 0.345 & 0.370 & 0.386 & 0.365 & 0.365 \\
\hline 6 & 0.457 & 0.433 & 0.469 & 0.458 & 0.465 & 0.418 & 0.465 & 0.504 & 0.467 & 0.416 \\
\hline 7 & 0.537 & 0.511 & 0.499 & 0.598 & 0.600 & 0.498 & 0.517 & 0.473 & 0.514 & 0.510 \\
\hline 8 & 0.547 & 0.719 & 0.605 & 0.469 & 0.690 & 0.570 & 0.602 & 0.599 & 0.609 & 0.567 \\
\hline +gp & 0.9862 & 0.9042 & 0.7197 & 1.0433 & 1.1810 & 0.6750 & 0.6550 & 0.735 & 0.946 & 1.003 \\
\hline SOPCOFAC & 1.0005 & 1.0001 & 0.9993 & 1.0002 & 1.0000 & 1.0001 & 0.9994 & 1.001 & 1.002 & 1.005 \\
\hline
\end{tabular}

Table 28.7. Plaice in divisions 7.f-g. Discards numbers-at-age.

\begin{tabular}{lll}
\hline AGE \(\backslash\) YEAR & 2015 & 2016 \\
\hline 1 & 38 & 29 \\
\hline 2 & 1527 & 224 \\
\hline 3 & 1253 & 1610 \\
\hline 4 & 753 & 615 \\
\hline 5 & 1106 & 229 \\
\hline 6 & 303 & 209 \\
\hline 7 & 54 & 34 \\
\hline 8 & 33 & 15 \\
\hline +gp & 80 & 9 \\
\hline TOTALNUM & 5145 & 2974 \\
\hline TONSLAND & 870 & 591 \\
\hline SOPCOF \(\%\) & 103 & 103 \\
\hline
\end{tabular}

Table 28.8. Plaice in divisions 7.f-g. Discards weights-at-age.

\begin{tabular}{lll}
\hline \multicolumn{2}{l}{ Discard weights-at-age (kg) } \\
\hline AGE \(\backslash\) YEAR & 2015 & 2016 \\
\hline 1 & 0.12 & 0.148 \\
\hline 2 & 0.124 & 0.153 \\
\hline 3 & 0.143 & 0.177 \\
\hline 4 & 0.171 & 0.205 \\
\hline 5 & 0.219 & 0.261 \\
\hline 6 & 0.315 & 0.288 \\
\hline 7 & 0.208 & 0.341 \\
\hline 8 & 0.204 & 0.416 \\
\hline & 0.529 & 0.462 \\
\hline
\end{tabular}

Table 28.9. Plaice in divisions 7.f-g. Stock weights-at-age.

Stock weights-at-age (kg)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline AGE\YEAR & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 \\
\hline 1 & 0.112 & 0.086 & 0.107 & 0.109 & 0.082 & 0.096 & 0.103 & 0.256 & 0.075 & 0.000 \\
\hline 2 & 0.216 & 0.170 & 0.212 & 0.217 & 0.167 & 0.192 & 0.206 & 0.298 & 0.193 & 0.087 \\
\hline 3 & 0.315 & 0.252 & 0.313 & 0.322 & 0.257 & 0.288 & 0.307 & 0.352 & 0.307 & 0.232 \\
\hline 4 & 0.406 & 0.334 & 0.412 & 0.426 & 0.350 & 0.383 & 0.408 & 0.418 & 0.417 & 0.369 \\
\hline 5 & 0.492 & 0.414 & 0.507 & 0.528 & 0.447 & 0.479 & 0.507 & 0.495 & 0.521 & 0.498 \\
\hline 6 & 0.570 & 0.493 & 0.599 & 0.628 & 0.548 & 0.574 & 0.606 & 0.584 & 0.621 & 0.619 \\
\hline 7 & 0.642 & 0.570 & 0.689 & 0.727 & 0.653 & 0.668 & 0.704 & 0.685 & 0.717 & 0.733 \\
\hline 8 & 0.707 & 0.646 & 0.775 & 0.823 & 0.762 & 0.763 & 0.801 & 0.797 & 0.808 & 0.839 \\
\hline +gp & 0.839 & 0.822 & 1.015 & 1.132 & 1.129 & 1.049 & 1.114 & 1.190 & 0.965 & 1.064 \\
\hline AGE\YEAR & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
\hline 1 & 0.089 & 0.249 & 0.066 & 0.228 & 0.173 & 0.092 & 0.171 & 0.236 & 0.219 & 0.000 \\
\hline 2 & 0.168 & 0.273 & 0.139 & 0.254 & 0.229 & 0.203 & 0.263 & 0.296 & 0.254 & 0.247 \\
\hline 3 & 0.248 & 0.305 & 0.215 & 0.288 & 0.293 & 0.310 & 0.314 & 0.308 & 0.304 & 0.295 \\
\hline 4 & 0.328 & 0.346 & 0.295 & 0.332 & 0.363 & 0.414 & 0.405 & 0.397 & 0.364 & 0.349 \\
\hline 5 & 0.408 & 0.395 & 0.380 & 0.386 & 0.440 & 0.514 & 0.500 & 0.455 & 0.485 & 0.512 \\
\hline 6 & 0.489 & 0.453 & 0.468 & 0.448 & 0.523 & 0.611 & 0.598 & 0.598 & 0.603 & 0.553 \\
\hline 7 & 0.571 & 0.518 & 0.560 & 0.520 & 0.613 & 0.705 & 0.643 & 0.801 & 0.714 & 0.523 \\
\hline 8 & 0.653 & 0.593 & 0.657 & 0.602 & 0.710 & 0.795 & 0.728 & 0.728 & 0.752 & 0.947 \\
\hline +gp & 0.822 & 0.837 & 0.938 & 0.854 & 0.987 & 1.000 & 0.989 & 0.959 & 1.066 & 1.067 \\
\hline AGE\YEAR & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline 1 & 0.249 & 0.213 & 0.213 & 0.245 & 0.268 & 0.246 & 0.205 & 0.221 & 0.237 & 0.238 \\
\hline 2 & 0.291 & 0.256 & 0.268 & 0.260 & 0.305 & 0.284 & 0.295 & 0.258 & 0.260 & 0.246 \\
\hline 3 & 0.304 & 0.317 & 0.278 & 0.302 & 0.340 & 0.281 & 0.321 & 0.287 & 0.295 & 0.291 \\
\hline 4 & 0.357 & 0.380 & 0.332 & 0.370 & 0.398 & 0.343 & 0.353 & 0.330 & 0.356 & 0.339 \\
\hline 5 & 0.466 & 0.463 & 0.440 & 0.479 & 0.466 & 0.433 & 0.439 & 0.382 & 0.425 & 0.385 \\
\hline 6 & 0.663 & 0.604 & 0.538 & 0.539 & 0.556 & 0.484 & 0.502 & 0.514 & 0.525 & 0.513 \\
\hline 7 & 0.745 & 0.661 & 0.618 & 0.672 & 0.675 & 0.541 & 0.651 & 0.649 & 0.631 & 0.549 \\
\hline 8 & 0.877 & 0.690 & 0.839 & 0.875 & 0.695 & 0.859 & 0.681 & 0.750 & 0.714 & 0.638 \\
\hline +gp & 1.101 & 1.189 & 1.191 & 1.202 & 1.091 & 1.126 & 1.039 & 0.992 & 1.016 & 0.837 \\
\hline AGE\YEAR & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 1 & 0.278 & 0.260 & 0.279 & 0.233 & 0.228 & 0.106 & 0.098 & 0.095 & 0.129 & 0.153 \\
\hline 2 & 0.271 & 0.273 & 0.267 & 0.292 & 0.242 & 0.129 & 0.136 & 0.116 & 0.128 & 0.161 \\
\hline 3 & 0.277 & 0.298 & 0.275 & 0.331 & 0.283 & 0.190 & 0.188 & 0.171 & 0.155 & 0.194 \\
\hline 4 & 0.303 & 0.329 & 0.329 & 0.328 & 0.335 & 0.234 & 0.257 & 0.202 & 0.202 & 0.233 \\
\hline 5 & 0.389 & 0.386 & 0.376 & 0.376 & 0.378 & 0.290 & 0.319 & 0.275 & 0.259 & 0.307 \\
\hline 6 & 0.457 & 0.433 & 0.469 & 0.458 & 0.465 & 0.332 & 0.463 & 0.334 & 0.36 & 0.355 \\
\hline 7 & 0.537 & 0.511 & 0.499 & 0.598 & 0.600 & 0.375 & 0.465 & 0.353 & 0.343 & 0.465 \\
\hline 8 & 0.547 & 0.719 & 0.605 & 0.469 & 0.690 & 0.470 & 0.525 & 0.543 & 0.339 & 0.527 \\
\hline +gp & 0.986 & 0.904 & 0.720 & 1.043 & 1.181 & 0.549 & 0.654 & 0.594 & 0.563 & 0.998 \\
\hline
\end{tabular}

Table 28.10. Plaice in divisions 7.f-g: Survey abundance indices.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{IRGFS} \\
\hline 2003 & 2016 & & & & & & \\
\hline 1 & 1 & 0.79 & 0.92 & & & & \\
\hline 1 & 7 & & & & & & \\
\hline 1 & 0.0 & 3.2 & 6.0 & 2.7 & 0.6 & 0.2 & 0.1 \\
\hline 1 & 0.1 & 0.4 & 1.9 & 3.1 & 1.2 & 0.8 & 0.1 \\
\hline 1 & 2.8 & 4.4 & 5.9 & 1.3 & 0.7 & 0.2 & 0.2 \\
\hline 1 & 0.2 & 6.0 & 4.6 & 1.2 & 1.0 & 0.6 & 0.7 \\
\hline 1 & 0.1 & 2.6 & 8.5 & 3.5 & 1.1 & 0.5 & 0.4 \\
\hline 1 & 0.4 & 6.0 & 5.6 & 3.8 & 1.0 & 0.4 & 0.2 \\
\hline 1 & 12.5 & 11.7 & 32.3 & 14.6 & 5.9 & 1.2 & 0.9 \\
\hline 1 & 10.1 & 37.9 & 13.2 & 20.8 & 8.6 & 3.7 & 1.0 \\
\hline 1 & 10.8 & 49.5 & 30.2 & 8.4 & 9.1 & 3.6 & 4.6 \\
\hline 1 & 14.6 & 40.5 & 36.8 & 11.3 & 2.1 & 2.0 & 2.9 \\
\hline 1 & 1.5 & 16.1 & 37.3 & 19.7 & 7.2 & 1.9 & 6.2 \\
\hline 1 & 0.4 & 7.9 & 14.3 & 13.6 & 6.1 & 3.4 & 2.2 \\
\hline 1 & 0.8 & 37.8 & 28.2 & 13.0 & 15.2 & 3.0 & 5.0 \\
\hline 1 & 1.1 & 13.8 & 33.6 & 13.9 & 9.2 & 9.0 & 4.2 \\
\hline \multicolumn{8}{|l|}{E+W BT Survey} \\
\hline \multicolumn{8}{|l|}{19952016} \\
\hline \multicolumn{8}{|l|}{110.750 .85} \\
\hline \multicolumn{8}{|l|}{15} \\
\hline 1 & 239.590 & 90.480 & 17.230 & 2.960 & 6.840 & & \\
\hline 1 & 223.690 & 288.110 & 30.780 & 0.990 & 2.620 & & \\
\hline 1 & 225.370 & 102.140 & 34.540 & 4.250 & 1.770 & & \\
\hline 1 & 237.200 & 126.220 & 46.990 & 8.920 & 2.000 & & \\
\hline 1 & 152.590 & 79.620 & 29.030 & 19.670 & 7.000 & & \\
\hline 1 & 339.630 & 63.170 & 31.250 & 6.560 & 5.500 & & \\
\hline 1 & 211.440 & 156.140 & 15.810 & 8.740 & 4.230 & & \\
\hline 1 & 136.740 & 175.120 & 80.450 & 5.930 & 6.130 & & \\
\hline 1 & 98.370 & 80.480 & 60.950 & 21.830 & 2.720 & & \\
\hline 1 & 258.510 & 33.410 & 27.080 & 13.420 & 2.190 & & \\
\hline 1 & 192.500 & 75.220 & 20.870 & 8.060 & 10.930 & & \\
\hline 1 & 85.780 & 101.970 & 34.160 & 9.570 & 1.790 & & \\
\hline 1 & 150.400 & 92.250 & 47.260 & 15.110 & 1.670 & & \\
\hline 1 & 140.690 & 217.040 & 46.790 & 15.700 & 4.820 & & \\
\hline 1 & 161.810 & 55.960 & 78.580 & 21.450 & 10.890 & & \\
\hline 1 & 331.760 & 88.540 & 26.410 & 39.940 & 6.680 & & \\
\hline 1 & 362.260 & 300.140 & 55.040 & 21.860 & 21.370 & & \\
\hline 1 & 142.130 & 430.790 & 100.570 & 22.360 & 9.020 & & \\
\hline 1 & 329.790 & 139.060 & 185.390 & 46.850 & 5.770 & & \\
\hline 1 & 371.760 & 202.300 & 64.650 & 105.700 & 23.800 & & \\
\hline 1 & 28.360 & 454.080 & 162.340 & 52.370 & 76.660 & & \\
\hline 1 & 12.520 & 163.100 & 268.260 & 102.300 & 27.500 & & \\
\hline
\end{tabular}

Table 28.11. Plaice in divisions 7.f-g: Commercial fleet abundance indices.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{UK (E+W) BEAM TRAWL 7F.} \\
\hline \multicolumn{6}{|l|}{19902016} \\
\hline \multicolumn{6}{|l|}{1101} \\
\hline \multicolumn{6}{|l|}{48} \\
\hline 1 & 12.6 & 3.656 & 2.103 & 0.868 & 0.725 \\
\hline 1 & 8.372 & 5.158 & 1.715 & 0.894 & 0.834 \\
\hline 1 & 2.254 & 3.289 & 1.93 & 0.528 & 0.162 \\
\hline 1 & 1.528 & 0.947 & 1.498 & 0.923 & 0.443 \\
\hline 1 & 2.245 & \[
0.424
\] & 0.415 & 0.347 & 0.446 \\
\hline 1 & \[
1.715
\] & \[
1.289
\] & \[
0.43
\] & 0.252 & 0.278 \\
\hline 1 & \[
0.569
\] & 0.569 & 0.535 & 0.159 & 0.184 \\
\hline 1 & \[
0.909
\] & \[
0.319
\] & 0.256 & 0.169 & 0.026 \\
\hline 1 & 2.221 & 0.618 & 0.127 & 0.151 & 0.095 \\
\hline 1 & 1.72 & 0.844 & 0.252 & 0.078 & 0.062 \\
\hline 1 & \[
0.858
\] & 0.568 & 0.405 & 0.156 & 0.057 \\
\hline 1 & 0.867 & 0.558 & 0.318 & 0.186 & 0.076 \\
\hline 1 & 0.637 & 0.294 & 0.279 & 0.143 & 0.079 \\
\hline 1 & 1.349 & 0.393 & 0.199 & 0.135 & 0.094 \\
\hline 1 & 1.051 & 0.711 & 0.136 & 0.104 & 0.08 \\
\hline 1 & 0.671 & 0.396 & 0.269 & 0.102 & 0.061 \\
\hline 1 & \[
0.353
\] & 0.338 & 0.233 & 0.12 & 0.03 \\
\hline 1 & \[
0.853
\] & 0.227 & 0.142 & 0.099 & 0.043 \\
\hline 1 & \[
1.506
\] & 0.433 & 0.158 & 0.117 & 0.075 \\
\hline 1 & 1.375 & 0.968 & 0.271 & 0.09 & 0.054 \\
\hline 1 & 1.601 & 0.62 & 0.508 & 0.146 & 0.009 \\
\hline 1 & 0.841 & 1.002 & 0.357 & 0.3 & 0.092 \\
\hline 1 & 1.03 & 0.497 & 0.398 & 0.192 & 0.085 \\
\hline 1 & 0.759 & 0.342 & 0.112 & 0.162 & 0.062 \\
\hline 1 & 1.564 & 0.688 & 0.125 & 0.073 & 0.063 \\
\hline 1 & 0.468 & 0.964 & 0.358 & 0.096 & 0.055 \\
\hline 1 & 0.448 & 0.382 & 0.765 & 0.317 & 0.131 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{UK E+W OTTER TRAWL 7F} \\
\hline 1989 & \multicolumn{5}{|l|}{2015} \\
\hline \multicolumn{6}{|l|}{1101} \\
\hline \multicolumn{6}{|l|}{48} \\
\hline 1 & 6.366 & 2.37 & 0.766 & 0.518 & 0.041 \\
\hline 1 & 10.452 & 2.774 & 1.074 & 0.333 & 0.35 \\
\hline 1 & 7.29 & 3.415 & 1.529 & 0.413 & 0.46 \\
\hline 1 & 1.391 & 2.059 & 0.946 & 0.156 & 0.045 \\
\hline 1 & 1.065 & 0.479 & 0.754 & 0.491 & 0.335 \\
\hline 1 & 2.407 & 0.433 & 0.498 & 0.225 & 0.273 \\
\hline 1 & 2.5 & 0.948 & 0.276 & 0.138 & 0.121 \\
\hline 1 & 0.725 & 0.574 & 0.422 & 0.169 & 0.186 \\
\hline 1 & 0.953 & 0.208 & 0.121 & 0.069 & 0.017 \\
\hline 1 & 1.664 & 0.387 & 0.097 & 0.135 & 0.039 \\
\hline 1 & 1.997 & 0.961 & 0.228 & 0.051 & 0.025 \\
\hline 1 & 2.327 & 0.882 & 0.458 & 0.141 & 0.035 \\
\hline 1 & 1.326 & 0.809 & 0.42 & 0.194 & 0.065 \\
\hline 1 & 0.696 & 0.36 & 0.264 & 0.12 & 0.048 \\
\hline 1 & 1.335 & 0.302 & 0.187 & 0.129 & 0.086 \\
\hline 1 & 1.622 & 0.905 & 0.14 & 0.078 & 0.047 \\
\hline 1 & 0.628 & 0.331 & 0.171 & 0.057 & 0.034 \\
\hline 1 & 0.736 & 0.703 & 0.487 & 0.26 & 0.065 \\
\hline 1 & 0.939 & 0.276 & 0.175 & 0.125 & 0.063 \\
\hline 1 & 1.645 & 0.52 & 0.197 & 0.098 & 0.056 \\
\hline 1 & 0.731 & 0.472 & 0.122 & 0.046 & 0.03 \\
\hline 1 & 1.311 & 0.496 & 0.407 & 0.089 & 0.018 \\
\hline 1 & 0.171 & 0.229 & 0.114 & 0.076 & 0.057 \\
\hline 1 & 0.847 & 0.368 & 0.276 & 0.111 & 0.037 \\
\hline 1 & 0.107 & 0.143 & 0.071 & 0.036 & 0.036 \\
\hline 1 & 0.514 & 0.193 & 0.129 & 0.001 & 0.001 \\
\hline 1 & 0.759 & 1.266 & 0.506 & 0.253 & 0.001 \\
\hline
\end{tabular}

Table 28.12. Diagnostic of the SPiCT model, stochastic and deterministic reference points.

Convergence: 0 MSG: rel at i ve conver gence (4)
Objective function at optimm 64. 3716764
Eul er time step (years): \(1 / 16\) or 0.0625
Nobs C: 28, Nobs I 1: 22, Nobs 12: 14, Nobs 13: 21, Nobs 14: 22

Priors
\(\operatorname{logn} \sim\) dnormilog(2), 2^2]
logal pha ~ dnormilog(1), 2^2]
logbeta ~ dnormilog(1), 2^2]

Mbdel parameter estimates w 95\% Cl
estimate cilow ci upp
al pha1 2. 106218e+00 1. 0982583 4. \(039263 \mathrm{e}+00\)
al pha2 1. \(932243 \mathrm{e}+00 \quad 0.9709785\) 3.845153e+00
al pha3 9. 339498e- \(01 \quad 0.4511693\) 1. \(933337 \mathrm{e}+00\)
al pha4 1.838994e+00 1. 0320304 3. 276938e+00
\(\begin{array}{llll}\text { bet a } \quad 4.443561 e-01 & 0.1531830 & 1.288996 e+00\end{array}\)
\(\begin{array}{llll}r & 5.366204 \mathrm{e}-01 & 0.1433445 & 2.008877 \mathrm{e}+00\end{array}\)
rc 5.775540e-01 0. 2966948 1. 124282e+00
\(\begin{array}{llll}\text { rol d } & 6.252480 \mathrm{e}-01 & 0.1792882 & 2.180484 \mathrm{e}+00\end{array}\)
m 2. 779378e+03 1643. 4376891 4. 700479e+03
K \(\quad 1.981229 \mathrm{e}+049995.6827827\) 3. \(926965 \mathrm{e}+04\)
q1 \(\quad 1.525950 \mathrm{e}-02 \quad 0.0071978\) 3. \(235030 \mathrm{e}-02\)
q2 4. \(153300 \mathrm{e}-03 \quad 0.00192518 .960400 \mathrm{e}-03\)
q3 1.220000e-05 0.0000058 2. 590000e- 05
\(\begin{array}{llll}\text { q4 } & 5.356000 \mathrm{e}-04 & 0.0002503 & 1.146200 \mathrm{e}-03\end{array}\)
n \(\quad 1.858252 \mathrm{e}+00 \quad 0.6693795\) 5. 158659e+00
sdb \(\quad 2.168589 \mathrm{e}-01 \quad 0.1331368\) 3. \(532292 \mathrm{e}-01\)
\(\begin{array}{llll}\text { sdf } & 2.387988 \mathrm{e}-01 & 0.1530494 & 3.725913 \mathrm{e}-01\end{array}\)
\(\begin{array}{llll}\text { sdi } 1 & 4.567522 e-01 & 0.3207009 & 6.505206 e-01\end{array}\)
\(\begin{array}{llll}\text { sdi } 2 & 4.190240 \mathrm{e}-01 & 0.2698735 & 6.506052 \mathrm{e}-01\end{array}\)
sdi \(3 \quad 2.025354 \mathrm{e}-01 \quad 0.1264440\) 3. 244170e- 01
sdi \(4 \quad 3.988023 \mathrm{e}-01 \quad 0.28802375 .521882 \mathrm{e}-01\)
sdc \(\quad 1.061117 \mathrm{e}-01 \quad 0.04678842 .406512 \mathrm{e}-01\)
log. est
al pha1 0. 7448939
al pha2 0.6586812
al pha3 - 0.0683326
al pha4 0. 6092188
bet a \(\quad-0.8111290\)
\begin{tabular}{lr} 
r & -0.6224643 \\
rc & -0.5489534 \\
rol d & -0.4696068 \\
m & 7.9299826 \\
K & 9.8940579 \\
q1 & -4.1825526 \\
q2 & -5.4838548 \\
q3 & -11.3099896 \\
q4 & -7.5321681 \\
n & 0.6196363 \\
sdb & -1.5285082 \\
sdf & -1.4321338 \\
sdi 1 & -0.7836143 \\
sdi 2 & -0.8698270 \\
sdi 3 & -1.5968408 \\
sdi 4 & -0.9192895 \\
sdc & -2.2432627
\end{tabular}

Determi ni stic reference points（ \(\operatorname{Dr} p\) ）
estimate
cilow
ci upp

Bnゅyd 9624． 653884 4715． 5801089 1． \(964423 \mathrm{e}+04\)
\(\begin{array}{llll}\text { Fnsyd } & 0.288777 & 0.1483474 & 5.621408 e-01\end{array}\)
MSYd 2779． 378495 1643． 4376891 4．700479e＋03 log．est
Bnsyd 9． 172083
Fnsyd－1． 242101
MSYd 7． 929983
Stochastic reference points（Srp）
estimate cilow ci upp
Bnゅys 9100． 3499700 4537． 7851153 18250． 394735
\(\begin{array}{llll}\text { Fnゅys } & 0.2789739 & 0.1421171 & 0.547622\end{array}\)
MSYS 2533． 6204525 1583． 5117392 4053． 795396
log．est rel．diff．Drp
Bnゅys 9． 116068 －0． 05761360
Fnゅys－1． \(276637-0.03513978\)
MSYs \(\quad 7.837405-0.09699876\)

St at es w 95\％Cl（i np\＄nsytype：s）
estimate cilow
B 2016． 88 1．592319e＋04 7393． 5761847
F＿2016． \(88 \quad 6.456550 \mathrm{e}-02 \quad 0.0278811\)
B＿2016．88／Впゅу 1．749734e＋00 1． 0607868
\begin{tabular}{|c|c|c|}
\hline \(y\) & 1e－ 01 ci upp & \[
\begin{aligned}
& \text { 0. } 1249880 \\
& \text { l og. est }
\end{aligned}
\] \\
\hline B＿2016． 88 & 3． \(429301 \mathrm{e}+04\) & 9． 6755318 \\
\hline F＿2016． 88 & 1． \(495171 \mathrm{e}-0\) & 2． 7400753 \\
\hline B＿2016．88／Впゅу & 2． \(886130 \mathrm{e}+00\) & 0． 5594637 \\
\hline F＿2016．88／Fnゅy & 4．285537e－ 01 & 4634383 \\
\hline \multicolumn{3}{|l|}{Predictions w 95\％Cl（i np\＄nฐytype：s） prediction} \\
\hline B＿2017． 00 & \multicolumn{2}{|l|}{1．595031e＋04 7396． 0875234} \\
\hline F＿2017． 00 & 6． \(451520 \mathrm{e}-02\) & 0． 0274358 \\
\hline B＿2017．00／Впゅy & 1． \(752713 \mathrm{e}+00\) & 1． 0626932 \\
\hline F＿2017．00／Fnゅy & 2．312589e－ 01 & 0． 1223281 \\
\hline Cat ch＿2017． 00 & 1． \(036783 \mathrm{e}+03\) & 612． 3562385 \\
\hline E（ B＿i nf & 1． \(573003 \mathrm{e}+04\) & \\
\hline & ci upp & l og．est \\
\hline B＿2017． 00 & 3． \(439822 \mathrm{e}+04\) & 9． 6772333 \\
\hline F＿2017．00 & 1．517073e－ 01 & －2． 7408544 \\
\hline B＿2017．00／Bnsy & 2． \(890773 \mathrm{e}+00\) & 0． 5611651 \\
\hline F＿2017．00／Fnsy & 4．371906e－ 01 & －1． 4642174 \\
\hline Cat ch＿2017． 00 & 1． \(755381 \mathrm{e}+03\) & 6． 9438776 \\
\hline E（B＿i nf ） & NA & 9． 6633266 \\
\hline
\end{tabular}

Table 28.13. Output of the SPiCT model: B (biomass), F (Fishing mortality), B/ Bmsy and F/ Fmsy. Estimates (est), upper (upp) and lower (low) 95\% CI. Weights are in tonnes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\underset{\sim}{\underset{\sim}{\sim}}}{\stackrel{\sim}{4}}
\] & \[
\underset{\sim}{\text { E }}
\] & \[
\begin{aligned}
& 3 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{0}{3} \\
& \infty \\
& \hline
\end{aligned}
\] & \[
\underset{4}{\text { 总 }}
\] & \[
\begin{aligned}
& 3 \\
& \text { 301 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { n} \\
& \hline
\end{aligned}
\] &  & \[
\begin{aligned}
& 3 \\
& \frac{3}{0} \\
& \sum_{\infty}^{\infty} \\
& \sum_{\infty}^{n}
\end{aligned}
\] & \[
\begin{aligned}
& \frac{0}{0} \\
& \frac{n}{n} \\
& \sum_{\infty}^{n}
\end{aligned}
\] &  & \(\stackrel{3}{3}\) &  \\
\hline 1989 & 24509.49 & 10447.78 & 57546.24 & 0.250 & 0.107 & 0.581 & 2.693 & 1.248 & 5.842 & 0.896 & 0.505 & 1.593 \\
\hline 1990 & 20203.69 & 8943.356 & 45644.12 & 0.273 & 0.121 & 0.614 & 2.220 & 1.157 & 4.262 & 0.978 & 0.609 & 1.572 \\
\hline 1991 & 15832.29 & 7039.365 & 35609.57 & 0.274 & 0.119 & 0.627 & 1.740 & 0.938 & 3.227 & 0.981 & 0.616 & 1.563 \\
\hline 1992 & 11490.37 & 5139.179 & 25691.32 & 0.293 & 0.128 & 0.672 & 1.263 & 0.695 & 2.294 & 1.052 & 0.662 & 1.671 \\
\hline 1993 & 9548.866 & 4315.376 & 21129.97 & 0.335 & 0.148 & 0.759 & 1.049 & 0.577 & 1.908 & 1.201 & 0.758 & 1.904 \\
\hline 1994 & 7401.438 & 3384.236 & 16187.54 & 0.408 & 0.183 & 0.908 & 0.813 & 0.454 & 1.458 & 1.463 & 0.940 & 2.276 \\
\hline 1995 & 5875.01 & 2707.64 & 12747.68 & 0.477 & 0.219 & 1.039 & 0.646 & 0.362 & 1.150 & 1.710 & 1.116 & 2.621 \\
\hline 1996 & 5292.578 & 2486.569 & 11265.76 & 0.512 & 0.242 & 1.084 & 0.582 & 0.329 & 1.027 & 1.836 & 1.212 & 2.783 \\
\hline 1997 & 5353.242 & 2546.598 & 11253.21 & 0.584 & 0.282 & 1.207 & 0.588 & 0.334 & 1.035 & 2.092 & 1.383 & 3.165 \\
\hline 1998 & 5123.55 & 2428.612 & 10809.09 & 0.583 & 0.279 & 1.218 & 0.563 & 0.321 & 0.989 & 2.090 & 1.386 & 3.151 \\
\hline 1999 & 4499.762 & 2101.406 & 9635.884 & 0.587 & 0.274 & 1.256 & 0.494 & 0.282 & 0.867 & 2.103 & 1.386 & 3.193 \\
\hline 2000 & 3664.317 & 1676.691 & 8008.212 & 0.556 & 0.255 & 1.212 & 0.403 & 0.229 & 0.707 & 1.993 & 1.304 & 3.045 \\
\hline 2001 & 3562.944 & 1629.49 & 7790.714 & 0.542 & 0.248 & 1.181 & 0.392 & 0.222 & 0.689 & 1.941 & 1.270 & 2.968 \\
\hline 2002 & 3509.494 & 1580.365 & 7794.15 & 0.506 & 0.228 & 1.124 & 0.386 & 0.217 & 0.687 & 1.815 & 1.171 & 2.812 \\
\hline 2003 & 3469.536 & 1512.636 & 7958.562 & 0.444 & 0.191 & 1.032 & 0.381 & 0.208 & 0.700 & 1.593 & 0.996 & 2.548 \\
\hline 2004 & 2748.048 & 1186.85 & 6363.206 & 0.320 & 0.131 & 0.785 & 0.302 & 0.166 & 0.549 & 1.149 & 0.690 & 1.911 \\
\hline 2005 & 2470.503 & 1083.406 & 5634.042 & 0.293 & 0.124 & 0.695 & 0.271 & 0.152 & 0.486 & 1.051 & 0.653 & 1.691 \\
\hline 2006 & 2881.526 & 1299.939 & 6387.946 & 0.316 & 0.139 & 0.719 & 0.317 & 0.179 & 0.561 & 1.134 & 0.723 & 1.779 \\
\hline 2007 & 3663.279 & 1647.496 & 8145.703 & 0.385 & 0.171 & 0.865 & 0.403 & 0.223 & 0.725 & 1.380 & 0.864 & 2.206 \\
\hline 2008 & 3794.162 & 1700.357 & 8466.481 & 0.290 & 0.127 & 0.660 & 0.417 & 0.233 & 0.747 & 1.039 & 0.657 & 1.643 \\
\hline 2009 & 4707.2 & 2141.1 & 10349.32 & 0.232 & 0.103 & 0.521 & 0.517 & 0.289 & 0.925 & 0.831 & 0.522 & 1.323 \\
\hline 2010 & 5652.987 & 2579.553 & 12388.39 & 0.200 & 0.090 & 0.444 & 0.621 & 0.348 & 1.110 & 0.717 & 0.442 & 1.164 \\
\hline 2011 & 8262.69 & 3780.852 & 18057.34 & 0.179 & 0.082 & 0.392 & 0.908 & 0.501 & 1.646 & 0.642 & 0.384 & 1.072 \\
\hline 2012 & 10634.69 & 4879.364 & 23178.63 & 0.150 & 0.068 & 0.330 & 1.169 & 0.652 & 2.094 & 0.537 & 0.314 & 0.920 \\
\hline 2013 & 12882.89 & 5876.13 & 28244.66 & 0.125 & 0.057 & 0.275 & 1.416 & 0.796 & 2.519 & 0.449 & 0.260 & 0.773 \\
\hline 2014 & 13127.91 & 6032.119 & 28570.83 & 0.094 & 0.042 & 0.210 & 1.443 & 0.842 & 2.473 & 0.338 & 0.195 & 0.585 \\
\hline 2015 & 14630.02 & 6703.868 & 31927.47 & 0.078 & 0.035 & 0.173 & 1.608 & 0.945 & 2.735 & 0.280 & 0.162 & 0.485 \\
\hline 2016 & 15634.46 & 7201.414 & 33943.67 & 0.067 & 0.030 & 0.151 & 1.718 & 1.027 & 2.875 & 0.239 & 0.134 & 0.428 \\
\hline
\end{tabular}

Table 28.14. Short-term projection of the SPiCT model, plaice 7.fg.
\begin{tabular}{lcccc}
\hline \multicolumn{1}{c}{ Reference Point } & Estimate & Cl 95\% Low & CI 95\% upp & CV, \% \\
\hline B/BMSYS & 1.767 & 1.072 & 2.914 & 25.5 \\
\hline F/FMSYs & 0.231 & 0.114 & 0.472 & 36.3 \\
\hline
\end{tabular}


Figure 28.1a. Plaice in divisions 7.f-g: Ireland otter trawl discard sampling results in 2007-2016; raised to sampled trips.


Figure 28.1b. Plaice in divisions 7.f-g: UK (E\&W) Discard sampling results in 2016 (only data for Q1 and Q2 available); raised to sampled trips. All gears bar beam.


Figure 28.2. Plaice in Division 7.f-g: Contribution of sampled and unsampled landings and discards to final assessment catch numbers-at-age in 2016.


Figure 28.3. Plaice in divisions 7.f-g: Age composition of international landings and discards from 2004 to 2016.


Figure 28.4. Trends in commercial lpues and survey cpues versus annual landings.


Figure 28.5. Plaice in divisions 7.f-g: UK (E\&W) lpue and effort by fleet.


Figure 28.6. Plaice in divisions 7.f-g: Ireland and Belgium: lpue and effort by fleet.


Figure 28.7. Discarding practices of the UK TBB_DEF_70_99 in respect to plaice in divisions 7.f-g.


Figure 28.8. Output of the SPiCT model: dynamics of biomass, catch and fishing mortality.



Figure 28.8. Changes in plaice biomass in the Division 7.fg (above) and the North Sea (below).

\subsection*{28.9 WKProxy review of WGCSE Ple.27.7.fg (ple-celt) Plaice (Pleuronectes platessa) in divisions 7.f and 7.g (Bristol Channel, Celtic Sea)}

\section*{Category 3.2}

\section*{General comments}

1 ) Assessment method(s): SPiCT
2 ) Evaluating Uncertainties
- Gaps in effort reporting in recent years.
- Very high levels of discard (sometimes exceeding landings). Discard data were made available starting in 2004 and an adjustment was made to the data prior to 2004 to estimate discard rates back in time.
- Changes in discard practices in recent years from discarding only fish below the minimum legal size (MLS) to discarding a large number of fish larger than the MLS.
- A majority of the landings are not reported. (In 2016 Belgium reported \(56.5 \%\) of the landings, France \(21.2 \%\), Ireland \(12.1 \%\) and the UK \(6.2 \%\) ).
- \(M=0.12\) was borrowed from Irish Sea plaice (estimated from tagging studies).
- Maturity ogive estimates are potentially outdated; maturity was estimated from just two months of survey data carried out in 1993 and 1994.
- Survival rate of discarded fish is unknown (assumed 0 in the assessment).

3 ) Consistency:
- Results from the 2016 assessment also indicated the stock was not overfished and overfishing was not occurring.
- SPiCT output is consistent with trends in abundance of commercially-sized fish aged 3+ as represented by data of research surveys.
4 ) Proxy reference points \& stock status:
- Proxy reference points:

SPiCT: \(\mathrm{B}_{\mathrm{t}} / \mathrm{Bmsy}_{\text {m }} \mathrm{F}_{\mathrm{t}} / \mathrm{Fmsy}_{\mathrm{m}}\)
- EG's conclusions: Overfished/ Overfishing occurring?

The SPiCT model indicates that the stock is not overfished and overfishing is not occurring. The EG accepted the SPiCT method and the proxy points.
- RG's conclusions: methods and stock status

The RG agrees with the EG's choice of the method and concludes that the stock is not overfished and overfishing is not occurring.

5 ) Comments \& Suggestions:
- The RG agrees with the EG that the SPiCT model was the most appropriate method to use given the available data.
- It is unclear to the RG whether the EG tried other stock assessment methods (e.g. length-based method) or had sufficient data to run other methods. The RG encourages the EG to look into the data availability and the potential to apply alternative stock assessment methods for this stock.
- The RG encourages the EG to conduct a retrospective analysis on the SPiCT model to explore the uncertainty of the model.

\section*{Proxy reference points: Conclusions}
1) Proxy Reference Points:

F/Fmš<1 and B/Bms>>1 (SPiCT)
2) EG Conclusions:

The stock is not overfished with no overfishing occurring.
3) RG Conclusions:

The stock is not overfished with no overfishing occurring.

\section*{29 Plaice in the southwest of Ireland (ICES Divisions 7.h-k)}

\section*{Type of assessment in 2017}

An update XSA assessment was performed for the 7.jk component of the landings according to the stock annex. MSY and PA reference points were estimated.

\section*{ICES advice applicable to 2015}

Based on the ICES approach for data-limited stocks, ICES advises that catches should be no more than 135 tonnes, and bycatch and discards should be reduced.
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2015/2015/ple-7h-k.pdf

\section*{ICES advice applicable to 2016}

Based on ICES approach to data-limited stocks, ICES advises that landings in 2016 should be no more than 86 tonnes. Discards are known to take place but cannot be quantified; therefore total catches cannot be calculated.
http://ices.dk/sites/pub/Publication\%20Reports/Advice/2016/2016/ple-7h-k.pdf

\subsection*{29.1 General}

\section*{Stock description and management units}

Plaice in 7.h-k is on the southwestern margins of the species distribution. Plaice in 7.j are mainly caught by Irish vessels on sandy grounds off the southwest of Ireland. Irish VMS and logbook data indicate that the 7.j landings occur close to shore and this species is a small component (up to \(5 \%\) ) of the landings in a mixed fishery (Figure 29.1).

Plaice catches in 7.k are negligible. Division 7.h is also considered part of the stock for assessment purposes but plaice in 7.h are separated from the 7.j plaice by several hundred miles. The distribution of the landings (Figure 29.1) suggests that the 7.h plaice are a continuation of the plaice caught in the western English Channel (7.e).

The TAC is set for Divisions 7.h,j and k. However, because no age-disaggregated data are available for 7.h, the assessment is performed for 7.jk only.

\section*{Management applicable to 2016 and 2017}

TAC table 2016
\begin{tabular}{lc|ll}
\hline Species: \begin{tabular}{l} 
Plaice \\
Pleuronectes platessa
\end{tabular} & Zone: \begin{tabular}{l} 
VIIh, VIIJ and VIIk \\
(PLE/7HJK.)
\end{tabular} \\
\hline Belgium & 8 & \\
France & 17 & \\
Ireland & 59 & \\
The Netherlands & 34 & \\
United Kingdom & 17 & \\
Union & 135 & Analytical TAC \\
TAC & 135 & Article 12(1) of this Regulation applies \\
& & \\
\hline
\end{tabular}

TAC table 2017
\begin{tabular}{lc|ll}
\hline Species: \begin{tabular}{lc|l}
\begin{tabular}{l} 
Plaice \\
Pleuronectes platessa
\end{tabular} & Zone: & \begin{tabular}{l} 
VIIh, VIIj and virk \\
(PIE \(/ 7 \mathrm{HJK})\).
\end{tabular} \\
\hline Belgium & 8 & \\
France & 16 & \\
Ireland & 56 & \\
The Netherlands & 32 & \\
United Kingdom & 16 & \\
Union & 128 & \\
TAC & 128 & Precautionary TAC \\
& & Article 12(1) of this Regulation applies \\
\hline
\end{tabular}
\end{tabular}

Article 12 refers to the closure of the Porcupine Bank in May and July.

\subsection*{29.2 Data}

\section*{Landings and discards}

The nominal landings are given in Table 29.1. Historic Belgian landings from 7.j are considered to have been area misreported and have been removed from the total landings. Because age data were only available for Irish landings (which were mainly from 7.jk) the remainder of Section 29 concerns 7.jk only.

Discard and retained catch numbers for the Irish 7.j OTB fleet in 2016 are based on only four observer trips. Currently there are no reliable time-series of discards-at-age is currently available and discard numbers are not included in the assessment. The proportion of the 7.j catch that was discarded varied between \(10 \%\) and \(100 \%\) since 2001, however the number of trips in some years was very low. Since 2007 the number of trips has been \(>5\) per year and the average proportion of the catch that has been discarded in that period in the order of \(30 \%\). Although not included in this assessment it is important to note here that discarding is part of this fishery. However we know from historical data and anecdotally information that discarding is quite high and may be on the increase due to limited quota

\section*{Commercial effort and Ipue}

The commercial effort landings and lpue for the Irish otter trawl fleet in 7.j is shown in Figure 29.1b.

\section*{Landings numbers-at-age}

Landings numbers-at-age are given in Table 29.3 and Figure 29.3. Figure 29.4 shows a bubble plot of the standardised landings proportions-at-age. There is very little contrast in the numbers-at-age matrix. Figure 29.5 gives the stock weights (which are the same as the landings weights).

\section*{Biological}

Natural mortality was assumed to be 0.12 for all ages and the proportion mature for age 4 is assumed to be 0.86 and 1 for all older ages (need to compare that to the stock annex).

\section*{Surveys and commercial tuning fleets}

There is no survey index available for this stock (the Irish IBTS Q4 Groundfish Survey data are too noisy to be used). A commercial tuning index is available which uses Irish VMS data linked to logbook landings (see Gerritsen et al., 2011 for details on linking VMS and logbook data). The data were used to identify an area where plaice are caught by OTB vessels (Figure 29.6). Next the effort and landings of the OTB vessels inside the plaice area was estimated (Figure 29.6). The VMS-based lpue showed similar trends to the lpue of Irish OTB vessels in the whole of 7.j, however by limiting the spatial extent, the index will be less sensitive to changes in the spatial distribution of the fleet; all vessels operating in this area are assumed to be capable of catching plaice (which is not the case further offshore).

The age composition of the Irish OTB fleet in 7.j was used for the tuning fleet (Table 29.5). Figure 29.7 shows the log standardised numbers-at-age in the tuning index by year and cohort. No year effects are obvious, but cohort tracking is not particularly good either. This is probably a consequence of the lack of contrast in recruitment (see 'Data quality'). Figure 29.8 shows the internal consistency regressions for the tuning fleet.

In years to come the annual Irish Beam Trawl Ecosystem Survey (IBES) may act as a possible tuning index for this stock as a number of valid tows occur in the area where the fishery is executed. The first of these surveys took place in 2016 (ICES, 2016c) and was repeated in 2017. With only two years of data this would not currently form a valid index for this fishery.

\section*{Data quality}

The age data for 1995 were considered insufficient and for this year the combined age data for 1993-1996 were used. Sampling appears to be sufficient to establish landings numbers-at-age. The lack cohort tracking in the numbers-at-age matrix is most likely due to an absence of very strong or weak cohorts, rather than poor sampling or ageing.

\subsection*{29.3 Historical stock development}

Target category: 3.2.0.
Model used: XSA

Software used: Lowestoft vpa95.exe and FLR with R version 2.15 .3 and packages FLCore 2.6.0; FLEDA 2.5 and FLAssess 2.5.0

\section*{Exploratory assessment}

Several exploratory assessments were carried out by means of a separable VPA and XSA. The initial VPA runs explored the year and age range to be used in the separable and the choices of reference age, final F and S. The XSA runs explored the choices of \(q\)-age, F-shrinkage and the minimum SE threshold. The results of these are available on the ICES SharePoint site of WGCSE under data for this stock.

\section*{Final assessment}

The model was applied to landings numbers for ages 4-8+ for the years 1993-2016. The tuning fleet included ages 4-8 for the years 2007-2016.

Model Options:
\begin{tabular}{lll}
\hline & Option & Setting \\
\hline Ages catch dep stock size & None \\
\hline Q plateau & 6 \\
\hline Taper & No \\
\hline F shrinkage SE & 1.0 \\
\hline F shrinkage year range & 5 \\
\hline F shrinkage age range & 3 \\
\hline Fleet SE threshold & 0.3 \\
\hline Prior weights & No \\
\hline
\end{tabular}

The diagnostics of the final XSA assessment are given in Table 29.6. Age classes 4 to 8+ were included in the model. Younger ages were omitted because significant discarding is expected to take place at these ages. Figure 29.9 shows the residuals. There are some year effects but the absolute values are small. Because the landings and the tuning fleet have nearly identical age compositions, the year effects result from the lpue estimate of the tuning fleet. The retrospective analysis shows no consistent retrospective bias, despite some noise the retrospective seems stable. 2015 saw a big drop in SSB but with the addition of 2016 data this has been revised up.

The summary table with a time-series of landings, recruitment, SSB and F is given in Table 29.10 and Figure 29.7. Recruitment in 2003-2014 years was stable at a lower level than at the start of the time-series and it appears to have declined sharply in 2015 and rose again in 2016. The SSB has declined from around 400 tonnes in 1993 to around 100 t in recent years and it appears that SSB may have declined to a low of 44 t in 2015 and small revision upwards in 2016. F has been quite variable throughout the time-series but shows no clear trend.

\subsection*{29.4 MSY evaluation}

Previously for this stock WKProxy (ICES, 2016a) proposed an Fmsy reference point of \(\mathrm{F}=0.25\), based on \(\mathrm{F}_{0.1}\) from a Thompson-Bell yield-per-recruit analysis of the landings numbers-at-age. This is a data-limited approach (which was in line with the ToRs of WKProxy); however the resulting reference point is not directly comparable with the outputs from the XSA (only the landings data are used in the Thompson-Bell ap-
proach). In 2016 this working group (ICES, 2016d) recommended that it would be more appropriate to move the stock to Category 2 next year and to apply the WKMSYREF4 (ICES, 2016b) methodology for estimating reference points (ICES, 2012).

An exploratory MSY evaluation following WKMSYREF4 guidelines is presented here. Details on this evaluation can be found in the working document in appendix xxx. The stock-recruitment graph (Figure 29.11) suggests recruitment has been impaired for most of the time-series. Because there is no obvious stock-recruitment relationship (it appears to be a recruit-stock relationship) it is difficult to specify an appropriate SR model. The SR estimation was carried out on age \(>=4\) as that is the onset of recruitment using: fit <- eqsr_fit_shift(stock, nsamp = 1000, models = c("Segreg"), rshift = 4). From this Blim was estimated to be 203.57 (Blim <-median(fit\$sr.sto\$b.b)) and a \(B_{p a}\) at 282.88 ( \(B_{p a}<-B_{p a}\left(B_{l i m}, 0.2\right)\). The following settings were used to estimate the the MSY reference points using the eqsim_run\{msy\} function in the msy package in R (full code available on SharePoint):
```

stockSetup <- list(data = stock,
bio.years = c(2007, 2016),
bio.const = FALSE,
sel.years = c(2007, 2016),
sel.const = FALSE
Fscan = seq(0,0.8,by=0.005),
Fcv = 0.212,
Fphi = 0.423,
Blim = Blim,
Вра= Вра,
verbose = TRUE,
extreme.trim=c(0.05,0.95))

```

Where \(\mathrm{F}_{\mathrm{cv}}\) and \(\mathrm{F}_{\text {phi }}\) were the same as those used by WKMSYREF4 for plaice in 7e (ICES, 2016b), which was calculate during WKMSYREF3 (ICES, 2014). Figures 7.11.12 and 7.11.13 summarise the MSY evaluation. The analysis resulted in an estimate of \(\mathrm{F}_{\mathrm{MSY}}=0.289\) without a \(\mathrm{B}_{\text {trigger }}\) harvest control rule and \(\mathrm{F}_{\mathrm{MSY}}=0.306\) with a \(\mathrm{B}_{\text {trigger }}=\mathrm{B}_{\mathrm{pa}}\) HCR. These values are slightly higher than the Fmsy proxy of 0.25 proposed by WKProxy (ICES, 2016a).

Biological reference points
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference POINT & Value & Technical basis & Source \\
\hline \multirow[b]{2}{*}{\[
\begin{array}{ll}
\text { MSY } & \text { ap- } \\
\text { proach }
\end{array}
\]} & MSY Btrigger & 282 & \(\mathrm{Bpa}_{\text {pa }}\) & ICES (2017) \\
\hline & Fmsy & 0.289 & Median point estimates of Eqsim with segmented regression S-R relationship & ICES (2017) \\
\hline \multirow{4}{*}{Precautionary approach} & Blim & 203 & Break point segmented regression S-R relationship & ICES (2017) \\
\hline & \(\mathrm{B}_{\mathrm{pa}}\) & 282 & \(B \lim \mathrm{xesp}(1.645 \times \sigma) ; \sigma=0.20\) & ICES (2017) \\
\hline & Flim & 0.471 & F with \(50 \%\) probability of SSB \(<\) Blim & ICES (2017) \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.339 & Flim \(\mathrm{x} \exp (-1.645 \times \sigma) ; \sigma=0.20\) & ICES (2017) \\
\hline \multirow{2}{*}{Management plan} & SSBmgt & Not applicable & & \\
\hline & Fmgt & Not applicable & & \\
\hline
\end{tabular}

\subsection*{29.5 Uncertainties and bias in the assessment and forecast}

The advice is based on an assessment model accepted for trends, used as an indicator of stock size. The uncertainty associated with the index values is not available. The assessment is only based on ages 4 and older; ICES does not have reliable information on younger ages.

The assessment is carried out on the landings in Divisions 7.j and 7.k. The trends in this area are assumed to be representative of the whole stock area (7.hjk). No age information is available for Division 7.h. ICES is unable to assess stock trends in Division 7.h. The advice takes into account the reported landings from the full TAC area; Divisions 7.h-k.

The apparent reduction in SSB in 2015 is mainly driven by a reduction in relative abundance of young fish in recent years, there is a slight increase in 2016. It is unclear whether this lack of young fish in the landings (and commercial tuning lpue index) is due to increased discarding or poor recruitment (Table 29.1). There has been an overall decrease in landings, with an increase in landings by Ireland and a reduction in those by France and the UK.

The tuning index only begins in 2006 and there is limited contrast between the cohorts; therefore the assessment is driven mostly by the strong trend in 7.jk landings in the first ten years of the time-series.

Discards in this stock may be considerable but are not presently included in the model as there are insufficient data, and because this might introduce more noise in the catch numbers-at-age matrix, particularly in the early years of the time-series when sampling levels were variable.

The use of a commercial tuning fleet has the potential to introduce bias if the behaviour of the fleet changes; for example the spatial distribution of effort can change over time, resulting in higher or lower catch rates of certain species. Additionally changes to the gear, vessel power, towing speed, etc. can influence the catch rates. By limiting the index to an area where plaice are known to be caught, some of this potential bias will be avoided. The working group applied a spatial stratification to check that changes in effort distribution within the plaice area did not affect the index and this did not appear to be the case. Because the stratified estimate is likely to be less precise, the final tuning index was based on the un-stratified estimate. More sophisticated modelling approaches to standardise the commercial index could be investigated for a future benchmark.

\subsection*{29.6 Recommendations for the next benchmark}

In 2012 WGCSE recommended that this stock is upgraded to a Category 2 stock (ICES, 2012) and that the reference points could be defined according to the procedures set out in WKMSYREF4 (ICES, 2016b). ACOM would need to decide if this requires a benchmark or whether an intersessional review of WGCSE's analysis is sufficient.

\subsection*{29.7 Management considerations}

Plaice are taken as a minor bycatch in a mixed fishery and should be managed as such. Restricting the landings by TAC is unlikely to reduce the catches. It is therefore not desirable to apply another PA buffer in the advice for 2017.

Because plaice are caught in spatially distinct areas, restricting effort in these areas will be more effective than limiting landings. Additionally, management should focus on reducing discards. The recently introduced square mesh panels will be unlikely to effect on catches of undersized plaice. An increase in mesh size could improve selection, but will also affect the catches of marketable fish. The landings obligation is not currently in effect for this stock.
The TAC area includes Division 7.h. However, the landings from Divisions 7.jk are taken in the northeastern part of Division 7.j which is remote from the northern part of Division 7.h, where most of the Division 7.h landings are taken. It is likely that the plaice from Division 7.h are part of the Divisions 7.e or 7.fg stocks. No further information on stock structure is likely to become available.

For Division 7.h, only landings data are available. Landings in Division 7.h have fluctuated around \(50 \%\) of the total landings of the stock (i.e. in Divisions 7.h-k) since 1993.

\subsection*{29.8 References}

Gerritsen HD and Lordan C. 2011. Integrating Vessel Monitoring Systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES J Mar Sci 68 (1): 245-252.
ICES. 2012. ICES implementation of advice for data-limited stocks in 2012. Report in support of ICES advice. ICES CM 2012/ACOM:68.

ICES. 2014. Report of the Joint ICES-MYFISH Workshop to consider the basis for FMSY ranges for all stocks (WKMSYREF3), 17-21 November 2014, Charlottenlund, Denmark. ICES CM 2014/ACOM:64. 164 pp.

ICES. 2016a. Report of the Workshop to consider MSY proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015, ICES Headquarters, Copenhagen. ICES CM 2015/ACOM:61. 183 pp.

ICES. 2016b. Report of the Workshop to consider Fmsy ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

ICES. 2016c. Final Report of the Working Group on Beam Trawl Surveys (WGBEAM), 12-15 April 2016, La Rochelle, France. ICES CM 2016/ SSGIEOM:20. 125 pp.

ICES. 2016d. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 4-13 May 2016, Copenhagen, Denmark. ICES CM 2016ACOM:13. 1312 pp.

Table 29.1. Plaice in Divisions 7. h-k (Southwest Ireland). Nominal landings (t), 1993-2016, as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{7.Jk} & \multicolumn{8}{|c|}{7.4} & \multirow[t]{2}{*}{7.JK TOT*} & \multirow[t]{2}{*}{\begin{tabular}{l}
7.н \\
TOT
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
7.HJK \\
TOT
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
7.HJK \\
WG EST
\end{tabular}} \\
\hline & BEL & FRA & IRL & UK & OTH & BEL & FRA & IRL & UK & OTH & & & & \\
\hline 1993 & 0 & 8 & 383 & 46 & 0 & 0 & 56 & 0 & 179 & 0 & 437 & 235 & 672 & 655 \\
\hline 1994 & 0 & 6 & 251 & 60 & 0 & 0 & 42 & 20 & 199 & 0 & 317 & 261 & 578 & 577 \\
\hline 1995 & 0 & 12 & 317 & 90 & 0 & 0 & 48 & 4 & 196 & 0 & 419 & 248 & 667 & 542 \\
\hline 1996 & 0 & 3 & 295 & 38 & 0 & 0 & 45 & 10 & 117 & 52 & 336 & 224 & 560 & 453 \\
\hline 1997 & 0 & 6 & 337 & 32 & 0 & 0 & 63 & 7 & 106 & 0 & 375 & 176 & 551 & 645 \\
\hline 1998 & 0 & 8 & 282 & 16 & 0 & 0 & 41 & 4 & 90 & 13 & 306 & 148 & 454 & 444 \\
\hline 1999 & 42 & 0 & 296 & 15 & 0 & 3 & 0 & 3 & 67 & 1 & 311 & 74 & 385 & 406 \\
\hline 2000 & 4 & 16 & 195 & 9 & 5 & 0 & 38 & 5 & 67 & 2 & 225 & 112 & 337 & 299 \\
\hline 2001 & 0 & 16 & 157 & 6 & 3 & 27 & 34 & 3 & 67 & 0 & 182 & 131 & 313 & 261 \\
\hline 2002 & 14 & 21 & 155 & 5 & 2 & 55 & 24 & 0 & 54 & 0 & 183 & 133 & 316 & 313 \\
\hline 2003 & 4 & 7 & 125 & 9 & 6 & 16 & 25 & 2 & 47 & 0 & 147 & 90 & 237 & 217 \\
\hline 2004 & 0 & 5 & 87 & 6 & 6 & 67 & 27 & 4 & 30 & 0 & 104 & 128 & 232 & 221 \\
\hline 2005 & 0 & 4 & 88 & 2 & 0 & 32 & 16 & 2 & 26 & 0 & 94 & 76 & 170 & 164 \\
\hline 2006 & 1 & 6 & 63 & 1 & 1 & 22 & 31 & 2 & 17 & 0 & 71 & 72 & 143 & 147 \\
\hline 2007 & 2 & 9 & 72 & 2 & 11 & 7 & 21 & 0 & 18 & 2 & 94 & 48 & 142 & 120 \\
\hline 2008 & 3 & 5 & 72 & 1 & 1 & 25 & 7 & 0 & 11 & 0 & 79 & 43 & 122 & 135 \\
\hline 2009 & 4 & 7 & 71 & 2 & 0 & 1 & 37 & 0 & 30 & 0 & 80 & 68 & 148 & 148 \\
\hline 2010 & 5 & 11 & 66 & 1 & 0 & 0 & 44 & 0 & 34 & 0 & 78 & 78 & 156 & 155 \\
\hline 2011 & 6 & 11 & 67 & 2 & 0 & 4 & 47 & 6 & 42 & 0 & 80 & 99 & 179 & 178 \\
\hline 2012 & 7 & 17 & 93 & 0 & 0 & 2 & 45 & 6 & 36 & 0 & 110 & 89 & 199 & 196 \\
\hline 2013 & 0 & 14 & 51 & 0 & 0 & 0 & 35 & 1 & 40 & 0 & 65 & 76 & 141 & 182 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{7.Jk} & \multicolumn{8}{|c|}{7.H} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
7.H \\
TOT
\end{tabular}} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 7. HJK } \\
\hline \text { WG EST }
\end{gathered}
\]} \\
\hline & BEL & FRA & IRL & UK & OTH & BEL & FRA & IRL & UK & OTH & & & & \\
\hline 2014 & 0 & 11 & 74 & 0 & 0 & 4 & 40 & 4 & 15 & 0 & 85 & 63 & 148 & 169 \\
\hline 2015 & 0 & 10 & 23 & 0 & 0 & 5 & 50 & 2 & 17 & 0 & 33 & 73 & 107 & 114 \\
\hline 2016 & 0 & 7 & 30 & 0 & 0 & 7 & 39 & 2 & 15 & 0 & 37 & 63 & 100 & 99 \\
\hline
\end{tabular}
* Excluding Belgium.

Table 29.3. Landings numbers-at-age for plaice in 7.jk, 1993-2016.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1993 & 92.8 & 623.6 & 479.4 & 115.4 & 44.8 & 22.8 & 10.5 & 5.9 & 2.6 \\
\hline 1994 & 103.7 & 340.2 & 259.7 & 82.1 & 45.5 & 18.3 & 8.1 & 5.0 & 2.9 \\
\hline 1995 & 207.3 & 632.8 & 347.5 & 106.9 & 36.3 & 15.7 & 7.1 & 4.8 & 3.1 \\
\hline 1996 & 76.9 & 314.5 & 228.1 & 127.0 & 37.1 & 23.4 & 4.9 & 3.0 & 0.7 \\
\hline 1997 & 166.4 & 277.0 & 268.1 & 118.9 & 42.3 & 19.5 & 4.3 & 0.0 & 9.1 \\
\hline 1998 & 46.5 & 355.2 & 163.9 & 102.9 & 38.3 & 25.6 & 10.4 & 4.0 & 3.0 \\
\hline 1999 & 126.1 & 274.6 & 177.1 & 57.1 & 33.0 & 15.9 & 9.8 & 8.3 & 10.7 \\
\hline 2000 & 72.3 & 158.2 & 186.4 & 62.5 & 34.9 & 6.5 & 4.9 & 3.4 & 3.2 \\
\hline 2001 & 55.3 & 164.8 & 145.6 & 47.1 & 5.9 & 21.5 & 2.3 & 7.4 & 0.0 \\
\hline 2002 & 49.9 & 143.8 & 159.4 & 50.6 & 39.1 & 40.9 & 11.6 & 3.4 & 1.9 \\
\hline 2003 & 71.8 & 161.4 & 63.6 & 28.4 & 5.8 & 14.5 & 10.2 & 1.5 & 3.6 \\
\hline 2004 & 30.9 & 120.8 & 91.2 & 26.5 & 11.9 & 1.7 & 2.4 & 3.9 & 1.5 \\
\hline 2005 & 25.2 & 70.9 & 77.4 & 47.7 & 22.4 & 12.6 & 3.7 & 0.0 & 1.2 \\
\hline 2006 & 16.7 & 40.7 & 52.6 & 38.2 & 12.4 & 6.5 & 1.1 & 1.1 & 2.4 \\
\hline 2007 & 47.0 & 136.0 & 60.7 & 22.2 & 17.1 & 4.1 & 2.2 & 0.4 & 0.7 \\
\hline 2008 & 54.6 & 105.9 & 70.0 & 20.5 & 4.8 & 1.9 & 1.3 & 0.1 & 0.2 \\
\hline 2009 & 13.6 & 113.4 & 79.4 & 30.7 & 10.8 & 4.8 & 0.0 & 0.8 & 0.6 \\
\hline 2010 & 55.9 & 42.2 & 59.9 & 43.1 & 18.2 & 4.3 & 1.5 & 1.5 & 1.1 \\
\hline 2011 & 19.2 & 85.4 & 55.3 & 36.5 & 22.7 & 10.9 & 3.8 & 0.8 & 1.3 \\
\hline 2012 & 12.5 & 128.4 & 103.4 & 37.4 & 29.5 & 12.6 & 6.8 & 1.9 & 2.9 \\
\hline 2013 & 5.8 & 44.2 & 84.8 & 32.0 & 7.8 & 4.9 & 3.0 & 1.1 & 0.5 \\
\hline 2014 & 9.8 & 48.8 & 89.3 & 71.7 & 25.0 & 4.6 & 3.8 & 2.3 & 0.6 \\
\hline 2015 & 6.1 & 14.8 & 20.9 & 17.5 & 12.7 & 4.6 & 0.8 & 0.9 & 0.4 \\
\hline 2016 & 4.3 & 74.3 & 54.1 & 35.7 & 25.8 & 16.0 & 6.9 & 0.8 & 1.9 \\
\hline
\end{tabular}

Table 29.4. Weight-at-age for plaice in 7.jk, 1993-2016.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1993 & 0.196 & 0.256 & 0.306 & 0.417 & 0.582 & 0.751 & 0.939 & 1.151 & 1.707 \\
\hline 1994 & 0.222 & 0.302 & 0.368 & 0.460 & 0.563 & 0.708 & 0.873 & 1.029 & 1.347 \\
\hline 1995 & 0.228 & 0.272 & 0.325 & 0.391 & 0.521 & 0.651 & 0.840 & 0.817 & 1.546 \\
\hline 1996 & 0.298 & 0.379 & 0.432 & 0.463 & 0.512 & 0.529 & 0.493 & 0.398 & 2.324 \\
\hline 1997 & 0.295 & 0.339 & 0.430 & 0.483 & 0.654 & 0.807 & 0.937 & 0.669 & 1.319 \\
\hline 1998 & 0.249 & 0.308 & 0.419 & 0.529 & 0.690 & 0.779 & 0.757 & 0.941 & 1.287 \\
\hline 1999 & 0.289 & 0.354 & 0.417 & 0.596 & 0.627 & 0.840 & 0.882 & 1.170 & 1.382 \\
\hline 2000 & 0.273 & 0.348 & 0.420 & 0.486 & 0.609 & 0.807 & 1.107 & 1.439 & 1.424 \\
\hline 2001 & 0.243 & 0.325 & 0.405 & 0.537 & 0.644 & 0.800 & 0.550 & 1.115 & 0.000 \\
\hline 2002 & 0.211 & 0.296 & 0.328 & 0.415 & 0.498 & 0.567 & 0.701 & 1.014 & 1.204 \\
\hline 2003 & 0.274 & 0.358 & 0.402 & 0.482 & 0.575 & 0.734 & 0.876 & 1.041 & 1.646 \\
\hline 2004 & 0.259 & 0.310 & 0.341 & 0.448 & 0.550 & 0.631 & 0.637 & 0.900 & 1.333 \\
\hline 2005 & 0.238 & 0.276 & 0.324 & 0.381 & 0.459 & 0.731 & 0.949 & 0.845 & 1.615 \\
\hline 2006 & 0.272 & 0.319 & 0.370 & 0.438 & 0.519 & 0.794 & 0.895 & 0.791 & 1.612 \\
\hline 2007 & 0.239 & 0.281 & 0.354 & 0.433 & 0.482 & 0.573 & 0.727 & 1.394 & 1.108 \\
\hline 2008 & 0.239 & 0.282 & 0.336 & 0.358 & 0.529 & 0.754 & 0.399 & 1.100 & 1.507 \\
\hline 2009 & 0.224 & 0.255 & 0.335 & 0.403 & 0.462 & 0.520 & 0.569 & 1.080 & 1.266 \\
\hline 2010 & 0.257 & 0.310 & 0.342 & 0.369 & 0.462 & 0.563 & 0.739 & 0.735 & 0.893 \\
\hline 2011 & 0.257 & 0.282 & 0.321 & 0.355 & 0.407 & 0.626 & 0.625 & 0.507 & 0.984 \\
\hline 2012 & 0.244 & 0.284 & 0.312 & 0.364 & 0.429 & 0.465 & 0.562 & 0.701 & 1.039 \\
\hline 2013 & 0.256 & 0.294 & 0.336 & 0.400 & 0.462 & 0.503 & 0.609 & 0.744 & 1.002 \\
\hline 2014 & 0.250 & 0.288 & 0.321 & 0.377 & 0.425 & 0.471 & 0.526 & 0.609 & 0.992 \\
\hline 2015 & 0.295 & 0.349 & 0.378 & 0.439 & 0.509 & 0.565 & 0.645 & 0.611 & 0.743 \\
\hline 2016 & 0.344 & 0.364 & 0.433 & 0.484 & 0.528 & 0.584 & 0.677 & 0.686 & 0.737 \\
\hline
\end{tabular}

Table 29.5. Tuning data. The ages and years used in the assessment are in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{PLE7jk, WGCSE} \\
\hline \multicolumn{11}{|l|}{101} \\
\hline \multicolumn{11}{|l|}{IRL-VMS: nos per 1000 hours} \\
\hline 2006 & 2016 & & & & & & & & & \\
\hline 1 & 1 & 0 & 1 & & & & & & & \\
\hline 2 & 10 & & & & & & & & & \\
\hline 1 & 250 & 611 & 790 & 573 & 186 & 98 & 17 & 16 & 35 & \#2006 \\
\hline 1 & 482 & 1394 & 622 & 227 & 176 & 42 & 23 & 5 & 7 & \#2007 \\
\hline 1 & 849 & 1648 & 1090 & 319 & 75 & 30 & 20 & 2 & 4 & \#2008 \\
\hline 1 & 146 & 1219 & 853 & 329 & 116 & 51 & 0 & 8 & 7 & \#2009 \\
\hline 1 & 585 & 441 & 627 & 451 & 191 & 45 & 16 & 15 & 11 & \#2010 \\
\hline 1 & 270 & 1200 & 777 & 512 & 320 & 154 & 53 & 12 & 19 & \#2011 \\
\hline 1 & 120 & 1236 & 996 & 360 & 284 & 121 & 66 & 18 & 28 & \#2012 \\
\hline 1 & 61 & 471 & 902 & 340 & 83 & 52 & 32 & 12 & 6 & \#2013 \\
\hline 1 & 114 & 569 & 1041 & 836 & 291 & 54 & 44 & 27 & 7 & \#2014 \\
\hline 1 & 57 & 139 & 196 & 164 & 119 & 44 & 8 & 8 & 4 & \#2015 \\
\hline 1 & 17 & 296 & 216 & 142 & 103 & 64 & 28 & 3 & 8 & \#2016 \\
\hline
\end{tabular}

Table 29.6. XSA diagnostics.
```

FLR XSA Di agnosti cs 2017-05-22 10: 13:47
CPUE data fromindi ces
Catch data for 24 years 1993 to 2016. Ages 4 to 8.
fleet first age last age first year last year al pha
1 I RL- VMS: nos per 1000 hours 4 2006 2016 <NA>
bet a
1 <NA>

```
Ti me series wei ghts:

Tapered time wei ghting not applied Cat chability anal ysis:

Cat chability i ndependent of size for all ages

Cat chability independent of age for ages \(>6\)

Terminal popul ation estimation :

Survi vor esti mates shrunk towards the mean F of the final 5 years or the 3 ol dest ages.
S. E. of the mean to whi ch the estimates are shrunk \(=1\)

M ni mum standard error for popul ation
estimates derived from each fleet \(=0.3\)
pri or wei ghting not applied

Regressi on wei ghts
year
age 2007200820092010201120122013201420152016
\begin{tabular}{lllllllllll} 
al | & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

Fishing mortalities year
age \(2007 \quad 2008 \quad 2009 \quad 2010 \quad 2011 \quad 2012 \quad 2013 \quad 2014 \quad 2015 \quad 2016\)
\(40.8090 .578 \quad 0.5550 .500 \quad 0.6230 .825 \quad 0.520 \quad 0.8920 .3361 .116\)
50.8470 .6430 .4900 .6060 .5911 .0770 .5931 .0500 .3831 .467

6 1. 423 0. 3930.7680 .549 0. 682 1. 325 0. 608 1. 250 0. 464 1. 494
\(\begin{array}{lllllllllllllll}7 & 0.823 & 0 . & 502 & 0.781 & 0.731 & 0.681 & 0.946 & 0.728 & 0.812 & 0.727 & 1 . & 819\end{array}\)


XSA popul ati on number (Thousand)
age
\(\begin{array}{llllll}\text { year } & 4 & 5 & 6 & 7 & 8\end{array}\) \(\begin{array}{llllll}2007 & 116 & 41 & 24 & 8 & 6\end{array}\) \(\begin{array}{llllll}2008 & 169 & 46 & 16 & 5 & 4\end{array}\) 2009198842193 20101621014698 \(2011127 \quad 87492313\)
```

 2012 195 60 43 22 20
 2013 222 76 18 10 9
 2014 161 117 37 9 13
 2015
 2016}805\quad49\quad35\quad201
 Esti mated popul ati on abundance at 1st J an 2017
 age
 year 4 5 6 7 8
2017 0 25 10 7 3
Fl eet: I RL-VMS: nos per 1000 hours
Log cat chability resi dual s
year
age 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
4 0. 547 0. 190 0. 275-0.137-0. 266 0. 246 0. 148-0. 212 0. 416-0.772-0.434
5 0. 582 0. 119 0. 266-0.378-0. 191 0. 078 0. 297-0. 196 0. 463-0.758-0. 282
6 0. 478 0. 535-0. 326-0.033-0.390 0. 120 0. 397-0. 275 0. 530-0.671-0. 365
7 0. 085-0.012-0.071-0.027-0.108 0. 122 0.062-0.099 0. 111-0. 203-0. 168

```

Mean log catchability and standard error of ages with catchability i ndependent of year class strength and constant w.r.t. time
\begin{tabular}{llll}
4 & 5 & 6 & 7
\end{tabular}

Mean_Logq 1. 9165 2. 0308 2. 1351 2. 1351
\(\begin{array}{lllllllllllll}\text { S. E_Logq } & 0.3480 & 0.3480 & 0.3480 & 0.3480\end{array}\)

Terminal year survi vor and F summaries
, Age 4 Year class =2012
sour ce
scal edW世 s survi vors yrcls
I RL-VME: nos per 1000 hours
0. \(654 \quad 16 \quad 2012\)
f shk
0. \(346 \quad 572012\)
, Age 5 Year class =2011
source
scal edWts survi vors yrcl s
I RL-VMG: nos per 1000 hours \(0.569 \quad 82011\)
fshk \(0.431 \quad 312011\)
, Age 6 Year class =2010
source
scal edWts survi vors yrcl s
I RL-VME: nos per 1000 hours \(0.522 \quad 52010\)
fshk 0.478 2017
, Age 7 Year class =2009
source
scal edV世 s survi vors yrcl s
I RL-VMS: nos per 1000 hours \(0.643 \quad 22009\)
fshk \(0.357 \quad 52009\)

Table 29.7. Summary table for ple-7.jk. Landings in tonnes. Recruitment (age 4) in thousands. SSB in tonnes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Land 7h-k & Land 7.jk & Recruit & Fbar & SSB \\
\hline 1993 & 672 & 437 & 726 & 0.9331 & 400 \\
\hline 1994 & 578 & 317 & 507 & 0.7457 & 355 \\
\hline 1995 & 667 & 419 & 647 & 0.7280 & 360 \\
\hline 1996 & 560 & 336 & 481 & 0.7174 & 371 \\
\hline 1997 & 551 & 375 & 474 & 0.8086 & 403 \\
\hline 1998 & 454 & 306 & 366 & 0.8220 & 340 \\
\hline 1999 & 385 & 311 & 360 & 0.7696 & 354 \\
\hline 2000 & 337 & 225 & 353 & 0.6240 & 307 \\
\hline 2001 & 313 & 182 & 229 & 0.5535 & 269 \\
\hline 2002 & 316 & 183 & 251 & 1.1867 & 193 \\
\hline 2003 & 237 & 147 & 151 & 0.6508 & 153 \\
\hline 2004 & 232 & 104 & 182 & 0.5484 & 128 \\
\hline \[
2005
\] & \[
170
\] & 94 & 158 & 0.9080 & 117 \\
\hline 2006 & 143 & 71 & 102 & 0.8748 & 99 \\
\hline 2007 & 142 & 94 & 116 & 1.0262 & 75 \\
\hline 2008 & 122 & 79 & 169 & 0.5381 & 80 \\
\hline 2009 & 148 & 80 & 198 & 0.6044 & 109 \\
\hline \[
2010
\] & \[
156
\] & 78 & 162 & 0.5517 & 117 \\
\hline 2011 & 179 & 80 & 127 & 0.6320 & 109 \\
\hline 2012 & 199 & 112 & 195 & 1.0757 & 117 \\
\hline 2013 & 141 & 65 & 222 & 0.5737 & 114 \\
\hline 2014 & 148 & 89 & 161 & 1.0641 & 116 \\
\hline 2015 & 107 & 33 & 78 & 0.3942 & 78 \\
\hline 2016 & 99 & 37 & 85 & 1.3587 & 94 \\
\hline
\end{tabular}


Figure 29.1.a. The spatial distribution of International landings of Plaice ( 2012 data, all gears combined; data from STECF).




Figure 29.1b. Landings, Lpue and effort for Irish otter trawlers in 7.j.
ple.27.7jk


Figure 29.3. Age distribution of plaice landings in 7.jk between 1993 and 2016. All gears and quarters combined. The age data for 1995 were considered insufficient and for this year the combined age data for 1993-1996 were used.
ple.27.7jk
Standardised landings proportions-at-age


Figure 29.4. Standardised landings proportions-at-age for plaice in 7.jk. Grey bubbles represent higher than average catch-at-age and black bubbles represent lower than average catch-at-age.


Figure 29.5. Landings weights / stock weights of ple7jk.


\section*{27.7j Plaice}


Figure 29.6. Top: the proportion of plaice in landings of Irish vessels with VMS over the years 2006-2016. The black line indicates the polygon inside which plaice are caught. Effort and landings from the VMS/logbooks data inside the polygon were used as a tuning index. Bottom: the VMS lpue index (black line) and the lpue of plaice in the whole of 7.j. This needs to be updated from the tunnning folder on the network.


Figure 29.7. The log-standardised tuning index by year (top) and cohort (bottom). Due to the lack of contrast in the numbers-at-age cohorts are not tracked particularly well.

IRL-VMS: nos per 1000 hours


Figure 29.8. Internal consistency of the tuning fleet.

Residuals
Plaice 27.7j-k
IRL-VMS: nos per 1000 hours


Figure 29.9. Residuals of the index fit.


Figure 29.10. Retrospective analysis of the assessment.


Figure 29.11. Ple7.jk stock-recruit plot. Because recruitment does not appear to be impaired at the lowest stock size, the inflection point of the segmented regression was chosen to be the lowest biomass that generated high recruitment.


Figure 29.12. Ple7.jk Summary of MSY evaluations (without \(B_{\text {trigger }}\) harvest control rule), a) simulated and observed recruitment, b)simulated and observed biomass, c) simulated an observed catch and d) Cumulative probability of \(F_{M S Y}\) and \(S S B<B_{\lim }\) and \(B_{\text {pa }}\).
PLE7jk, WGCSE, COMBSEX, PLUSGROUP a) Recruits
b) Spawning stock biomass

d) Prob MSY and Risk to SSB


Figure 29.13. Ple7.jk Summary of MSY evaluations (with \(B_{\text {trigger }}=\) Blim \(_{\text {lim }}\) harvest control rule), a) simulated and observed recruitment, b)simulated and observed biomass, c) simulated an observed catch and d) Cumulative probability of \(\mathrm{Fmš}_{\text {м }}\) and \(\mathrm{SSB}<\mathrm{B}_{\mathrm{lim}}\) and \(\mathrm{B}_{\mathrm{pa}}\).
29.9 Audit of plaice in Division 7.h-k (ple-7h-k)

There is no audit available.

\section*{30 Pollack in the Celtic Seas (ICES subareas 6 and 7)}

\section*{Type of assessment in 2017}

The Celtic Sea and West of Scotland (Subareas 6 and 7) Pollack stock is considered as Data Limited Stock, classified by ICES WKLIFE II (ICES CM2012/ACOM:79) as category 4.1.2 stock. DCAC (Depletion-Corrected Average Catch) method is recommended to assess this stock. In complement of this method, ICES ACOM assumes that DLS methods developed within WKLIFE V (ICES CM2015/ACOM:56) and WKProxy (ICES CM2015/ACOM:61) should be applied in 2017 for category 3-6 stocks, in order to estimate MSY references points proxies.

ICES advice applicable to 2018
The ICES advice based on precautionary approach, renew last ICES advice: "Catches should be no more than \(1 \%\) more than recent catch (last three years), and should not exceed 4200 tonnes for 2018."

\subsection*{30.1 General}

\subsection*{30.1.1 Stock Identity}

This section is not dedicated to a 'stock', it relates to a species in a wider region where data are available. The stock structure of Pollack populations in this ecoregion is not clear. ICES does not necessarily advocate that 6 and 7 constitutes a management unit for Pollack, and further work is required.

Nevertheless, WGNEW 2014 (ICES, 2014) bases on a study on genetic differences between Pollack populations in the North East Atlantic conducted by Charrier et al. (2006) to consider than Pollack population in the Western Channel extending into the Eastern Channel, the Celtic Sea, the Irish Sea, and the northern part of the French west coast (areas \(7 . \mathrm{e}-\mathrm{j}\) and \(8 . \mathrm{a}, \mathrm{b}\) - landings from the intermediate areas \(6 . \mathrm{a}\) and 4.c are generally small) could constitute a single stock.

\subsection*{30.1.2 Management applicable to 2018}

The TAC for Pollack is set for ICES subareas 6 (and \(5 . a, b\); international waters of 12 and 14) and 7 separately, and for 2017 as follows:
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Species: } & \begin{tabular}{c} 
Pollack \\
Pollachius pollachius
\end{tabular} & Zone: & \begin{tabular}{c} 
VI; Union and international waters \\
of Vb; international waters of XII \\
and XIV \\
(POL/56-14)
\end{tabular} \\
\hline Spain & 6 & & \\
\hline France & 190 & & \\
\hline Ireland & 56 & & \\
\hline United Kingdom & 145 & & \\
\hline Union & 397 & & Precautionary TAC \\
\hline TAC & 397 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l|c} 
Species: & Pollack \\
Pollachius pollachius
\end{tabular}} & Zone: & \[
\begin{gathered}
\text { VII } \\
\text { (POL/07.) }
\end{gathered}
\] \\
\hline Belgium & & \(420\left({ }^{76}\right)\) & & \\
\hline Spain & & \(25\left({ }^{(76)}\right.\) & & \\
\hline France & & \(9667\left({ }^{76}\right)\) & & \\
\hline Ireland & & \(1030\left({ }^{76}\right)\) & & \\
\hline United Kingdom & & \(2353\left({ }^{76}\right)\) & & \\
\hline Union & & \(13495\left({ }^{76}\right)\) & & \\
\hline TAC & & 13495 & & \begin{tabular}{l}
Precautionary TAC \\
Article 12(1) of this Regulation applies
\end{tabular} \\
\hline
\end{tabular}

Annex III to Council Regulation (EC) No 43/2009 ( 2 ), as amended by Regulation (EC) No 1288/2009 (3), and Regulation (EU) No 579/2011 of the European Parliament and of the Council (4), establishes within ICES Division \(6 . a\) zone in which fishing activities are prohibited. These regulations essentially make directed fisheries for Pollack in the West of Scotland illegal.

\subsection*{30.1.3 Biology}

0-group Pollack are found in shallow coastal waters and may therefore be protected from fisheries in the early life stages. Pollack is benthopelagic, found mostly close to the shore over hard bottom (Quero and Vayne, 1997; Svetovidov, 1986). It usually occurs at 40-100 m depth but is found down to 200 m . A maximum size of 130 cm , a maximum weight of 18.1 kg and a maximum age of 15 years are reported (Cohen et al., 1990). Growth is thus fairly rapid, approaching 10 cm per year, and probably more according to recent studies (Figure 30.1), and the maximum length probably shorter ( \(\mathrm{Linf}^{\mathrm{F}}=105 \mathrm{~cm}\), Alemany et al., 2017). There is a migration from the coast to deeper waters as it grows.
Cardinale et al. (2012) and Heino et al. (2012) suggested that \(50 \%\) of the individuals are mature at a length between 35 and 42 cm . More recent studies of maturity stages on Pollack in Iberian waters (Alonso-Fernández et al., 2013) show that length-atmaturity is significantly different between females \((47.5 \mathrm{~cm})\) and males \((36.1 \mathrm{~cm})\). Studies under process in France in 2017 (Alemany et al., 2017) show that size-atmaturity could be higher for Celtic Sea Pollack ( 51.5 cm for females, 40.7 cm for males, 46.3 cm for males and females combined) (Figure 30.2). Spawning occurs mainly in the first half of the year, at about 100 m depth, but a lack of knowledge still remains.

\subsection*{30.1.4 The fisheries}

Since ten years official landings in both subareas 6 and 7 are quite stable approximately around 4000 tonnes. They showed a significate increase from 2012 to 2014 (Tables 30.1 and 30.2 and Figure 30.3), followed by a slight decrease in 2015 ( 3741 tonnes) and 2016 (4132 tonnes). As previous years, in 2016 99\% of the landings originated from Subarea 7, especially in ICES Division 7.e (Figure 30.4). UK, France and Ireland together comprised \(99 \%\) of the official landings (Figure 30.5). Catches from Ireland (especially from subdivisions 7.g and 7.j) are relatively stable, even if the five year trend is slightly decreasing. French and UK catches showed severe decreases in 2015, mainly due to 7.e catches ( \(60 \%\) decrease from 2014 to 2015, from 3084 tonnes in 2014 to 1224 tonnes in 2015), but 2016 catches increase again for both countries (1626 tonnes in 7.e).

Most Pollack in the Celtic Sea ecoregions is caught by trawls (especially as bycatch), gillnets and trolling lines, and other gears come to complement the landings, such as seine nets or beam trawls (Figure 30.6).

Pollack is also an important species for recreational fishing, especially by angling and spearfishing, both from shore and from boats, but data remain poor. A study conducted in France in 2011-2013 by Levrel et al. (2013) estimated to 3300 tonnes the yearly recreational fishery catches of Pollack, among which 2274 tonnes would be kept, but no other information on recreational Pollack catches in this stock area is known. WGRFS 2012 (ICES, 2012b) listed Pollack in the Northeast Atlantic as a species for which recreational fishery sampling should be included in the new DC-MAP because of the potential impact of recreational fisheries on its population dynamics and because it is of strong socio-economic importance.

\subsection*{30.1.5 Surveys}

Pollack may be caught by Irish bottom trawl surveys such (IGFS-WIBTS). Only some individuals could be caught by French or UK survey. The abundance indexes estimated by IGFS-WIBTS are erratic, and the too low number of individuals caught by EVHOE-WIBTS-Q4 is not sufficient to estimate any trend of abundance indexes.

\subsection*{30.2 Data}

\subsection*{30.2.1 Landings}

The nominal landings are given in Table 30.1 and 30.2 for ICES subarea 6 and 7 respectively.

The French fishing locations for Pollack (Figure 30.7) shows a predominance of ICES division 7.e and inshore areas. Length frequencies of catches (French observers, all gears) are given in Figure 9.2.8.

In 2015, the total landings show a significant decrease ( 3741 tonnes) comparatively to the previous years ( 5255 tonnes in 2014, \(-28 \%\) ). Catches are below the landings recommended by previous ICES advices (catch should not be more than 4200 tonnes). But nevertheless, respectively quotas allocated to the main fishing countries were not achieved, except for Ireland.

\subsection*{30.3 MSY explorations}

\subsection*{30.3.1 DCAC model}

This stock has been categorized by WKLIFE (ICES, 2012) as category 4 data-limited and in this situation it was suggested to run a DCAC (Depleted-Corrected Adjusted Catch) method to estimate a yield likely to be sustainable (MacCall, 2009). The DCAC-method was applied during WGCSE 2017 with the same model settings as applied the previous year (ICES, 2014).

The inputs to the DCAC method are further detailed:
Sum of catch: The period over which the catches is summed is 1986-2016, i.e. 31 years, as 1986 is the year where Ireland recomposed a time-series of landings after 13 years of missing declaration. In Subarea 6, the landings by Spain were removed as they appear only over the period 1981-1988. In Subarea 7, the French landings in 1999 are missing and are replaced by the mean of the previous and following year. The value used is 6674 tonnes for Subarea 6 and 162346 tonnes for Subarea 7.

Natural mortality: set to 0.2 arbitrarily. The standard deviation and distribution are set at 0.4 and lognormal, after a series of trial settings.

FMSY to M: MacCall (2009) proposes a value of 0.6 for vulnerable stocks. Values of 0.6, 0.8 and 1.0 are used in order to test the sensitivity of the outputs.
\(\underline{\text { BMSy to }^{0}}\) : 0.5 will be used in line with a value proposed by MacCall (2009).
Depletion delta: is the fractional reduction in biomass from the beginning to the end of the time-series, relative to unfished biomass. A value of 0.5 is commonly used, whereas a value of 0 means that the biomass is unchanged and a value of 1 means that the stock is totally depleted. For Subarea 6, values of 0.8 and 0.9 , for Subarea 7, values of \(0.5,0.6\) and 0.7 will be used.

Given the fact that three \(\mathrm{F}_{\mathrm{ms}} / \mathrm{M}\)-values and two Depletion Deltas are tested for Subarea 6, a total of six DCAC-runs was carried out for this subarea. In the case of Subarea 7, nine DCAC-runs were completed (three Fmš/M-values * three Depletion Deltas). Tables 30.3 and 30.4 give an overview of all the input parameters of the 15 runs.

The results are as below:
\begin{tabular}{ccccc}
\hline Subarea 6 & & FMSY to M \\
\hline & & 0.6 & 0.8 & 1.0 \\
\hline Depl. \(\Delta\) & 0.8 & 143 & 156 & 165 \\
\hline & 0.9 & 138 & 151 & 160 \\
\hline Average & & & \\
\hline
\end{tabular}
\begin{tabular}{ccccc}
\hline Subarea 7 & & FMSY to M \\
\hline & & 0.6 & 0.8 & 1.0 \\
\hline Depl. \(\Delta\) & 0.5 & 3997 & 4239 & 4401 \\
\hline & 0.6 & 3821 & 4087 & 4268 \\
\hline Average & 0.7 & 3662 & 3947 & 4144 \\
\hline
\end{tabular}

The DCAC (Depletion-Corrected Average Catch) outputs (table above and Figure 30.10) suggest that yield in Subarea 6 could be increased up to 152 tonnes (comparable result as in the previous years' computations, when DCAC was 155 tonnes). The possibility to increase the catch is supported by evidence of very low effort on targeting this species due to restrictive regulations for inshore fisheries in the area. In 2012, the fisheries advice for this subarea was calculated as a \(10 \%\) increase of the average landings of the three preceding years (2010-2012), as the three year average landings were only around \(1 / 3\) of the DCAC. The 2013 and following years examinations gave almost identical results, so the advice was not changed. The four year average landings (2013-2016) remains at a very stable and low level ( 55 tonnes), and is still only around \(2 / 3\) of the new DCAC-value (see Table 30.5). The perception of the stock does not change, and WGCSE confirms that the same advice as last year is still valid for Subarea 6.

In Subarea 7, the range of sustainable yield estimated by DCAC averaged 4063 tonnes (same as 2015, 4062 tonnes) (Table 30.5). This is supported by the observation than landings for the last 20 years have been around that level without any signs of decline (even if 2015 landings were a little less than 400 tonnes, total landings increased again to 4132 tonnes in 2016). The difference between the last four years average landings and the calculated mean DCAC-values remains weak (10\%). 2016 official landings in Subarea 7 are inside the DCAC confidence interval and above the ICES advice ( \(>4200\) tonnes). Moreover, the global results given by DCAC computations made at the whole Subarea 7 level do not adequately bring out the decrease observed in 7.e for two years (even if the trend seems reversed in 2016), while trends of catches in other subdivisions stay quite stable.

The DCAC is not built to provide information on SSB and level of fishing effort (nor recent trends). In the absence of such information and basing on the stability of DCAC results, WGCSE would renew the same advice as last year for Subarea 7 (no decrease in landings advised, but "Catches should be no more than \(1 \%\) more than recent catch (last three years), and should not exceed 4200 tonnes").

Therefore also the combined advice for subareas 6 and 7 doesn't change in comparison with the 2016 advice.

\subsection*{30.3.2 Other DLS methods explorations}

In 2017 ICES proposed for Expert Working Groups new points for the global Terms of References according to categories 3 to 6 stocks. It proposed to estimate MSY proxies reference points using methods provided in the ICES Technical Guidelines, i.e. peer reviewed methods developed by WKLIFE V and VI and WKProxy along with available data and expert judgement.

3 different methods were tested for Pollack in WGCSE 2017: SPiCT, Length-based indicators LBI and Mean length-based mortality estimators.

\subsection*{30.3.3 SPiCT}

The Stochastic Surplus Production model in Continuous Time (SPiCT) has been developed by Pedersen and Berg (2017). The model needs as input data a time-series of catch and one or more time-series of indexes (tuning fleet, cpue, surveys indices...). The model provides as output estimates of reference points BMSY, FMSY and MSY.

The data used as input are a catch time-series (first run from 1950 to 2016, second run from 1995 to 2016) and two cpue indexes, one for the French trawlers and one for Irish trawlers (Table 30.6 and Figure 30.11).

For the first run the model cannot converge, probably due to minimal contrast in the time-series and the difference of length between catch and indexes time-series.

For the second run, where the durations of the catch and indexes time-series are comparable, the model presents relative convergence. Preliminary results show that there is high uncertainty around both the fishing mortality and biomass given very wide confidence intervals (Table 30.7). Stochastic Fmsy and Bmsy (Table 30.7 and Figure 30.12) have been estimated to be around 2.42 and 2397 tonnes respectively (but very wide \(95 \% \mathrm{CI}\) ). The most recent F seems below \(\mathrm{Fmsy}_{\text {a }}\) and biomass above Bmsy and MSY \(\mathrm{B}_{\text {trigger. }}\) Nevertheless, the estimated value of FmsY is really too high and unrealistic, even if the lowest values within the \(95 \%\) IC could be acceptable, and appears highly suspicious.

The state of pol. 27.67 seems to be in a good situation regarding the result of SPiCT (Figure 30.12, middle-right B/Bmsү), but caution is required when assessing the stock in relation to reference points and their CI .

\subsection*{30.3.4 Length-based indicators and reference points: LBI methods}

Length-based indicators are used for screening catch-length composition and allow to classify the stock according to conservation/sustainability, yield optimization and MSY considerations.

A set of catch lengths for Pollachius pollachius in Subarea 7 was used (all gears combined), from 2006 to 2016. Data for years 2006-2014 came from specific data call for WKProxy, 2016 from InterCatch database, 2015 is missing.

Life-history parameters used as input data in the model came from Alemany et al. (2017, in prep.) (Table 30.8).

Outputs of the model are given in Figures 30.13 and 30.14, and Table 30.9. These figures show that length at first catch ( \(\mathrm{L}_{\mathrm{c}}\) ) is always below the length-at-maturity (Lmat), because the minimum landing size \((30 \mathrm{~cm})\) is too small regarding \(L_{\text {mat }}(46.28 \mathrm{~cm})\). There is a real concern regarding fishing on immature Pollack in Subarea 7. Anyway, the level of immature fish catches is not very high, as the ratio 25 th percentile of length distribution on \(L_{\text {Mat }}\) is close to 1 (should be above 1 in appropriate situations). The proportion of mega-spawners is also a little bit weak. The two other indicators on conservation (mean length of largest \(5 \% \mathrm{~L}_{\text {max5 }} \%\) and the 95 th percentile \(\mathrm{L} 95 \%\) ) show a good situation for the stock. The indicators on yield optimization and MSY considerations confirm that acceptable situation.

In conclusion LBI results show that pol. 27.67 seems to be in a desirable status as it is not exploited above the LB indicator of MSY. This is in accordance with the results of DCAC and SPiCT.

\subsection*{30.3.5 Mean length-based mortality estimators}

The mean length-based estimators of total mortality rate was developed by Gedamke and Hoenig (2006) and completed by Then et al. (2011).

The model was developed from the Beverton and Holt estimator to allow for nonequilibrium conditions. It uses a time-series of length frequencies of catches, lifehistory parameters and natural mortality rate \(M\) as input data. The same von Ber-
talanffy parameters used previously for LBI (Table 30.8) are used again here. The model computes as output the mean length per year, and give two estimations of total mortality Z , the first one at the beginning of the time-series and the last at the end. It also estimates the year when a change of the slope between two situations of the stock status could be seen.

The results (Tables 30.10 and 30.11, Figure 30.15) show that the value of the last estimation of Z is smaller than the value of the first ( \(\mathrm{Z} 2=0.24\) and \(\mathrm{Z} 1=0.31\) ). The model highlights a decrease of total mortality, combined to an increasing trend of predicted mean lengths. This model confirms than the status of pol.27.67 seems to be in an appropriate situation, in accordance with conclusions of previous models.

Nevertheless, the model estimates than the year of change of the situation of the stock status is the first year of the time-series (2005). Results must be kept this caution, the length of the time-series in entry is probably too short to fully use it.

\subsection*{30.4 Uncertainties in assessment and forecast}

The main uncertainty in the assessment is that the recreational catch is not estimated and used. If we have no certainties, some signals (fishermen opinion, surveys...) let us think that recreational fishing recently increased. As for the last year, WGCSE highlights that if managers want to actively manage Pollack fisheries in 6 and 7 then better data on recreational fisheries will be needed. From preliminary data it seems likely that catches in recreational fisheries are of a similar order of magnitude to, or larger than, commercial landings.

Another important issue is directly linked to the choice of the assessment model used for Pol-celt stock. By construction, the DCAC method only uses long time-series of official landings. It may not reflect recent stock fluctuations or changes in the fisheries, smoothed by the length of the time-series. So new computations of DCAC are always very close to the previous year's results, even if recruitment or SSB highly fluctuate. In the other hand, DCAC method could not take into account trends of fishing effort. Outputs of the model could only conduct to a same advice as the last years. DCAC continues to be the reference model for Pollack assessment, even if other DataLimited Stocks models have been tested this year. WGCSE considers it is relevant to continue to explore new assessment models for Pol.27.67 stock. The choice of a new model to assess the stock is also clearly relevant. This could be done within a specific Benchmark WS for Pollack.

Progress in the qualification of the status of Pollack in the Celtic Seas can be made by processing all the data available through the EU fisheries monitoring programmes in place in all EU Member States since 2002 (EU, 2010). This can only be achieved if experts are formally designated as stock coordinator and stock assessor in order to take the leadership on the needed analysis.

\subsection*{30.5 Ecosystem considerations}

No information.

\subsection*{30.6 Management considerations}

TAC for Subarea 7 includes ICES Division 7.d, which is not in the remit of the Celtic Sea ecoregion. TAC set for both subarea 6 and 7 are not in line with the current estimates of catches and estimated sustainable yields, and therefore are not constraining.

\subsection*{30.7 References}

Alemany J., Foucher E., Rivot E., Vigneau J. and Robin J-P. 2017 (in prep.). Update of the lifehistory parameters of Pollack (Pollachius pollachius) with a Bayesian hierarchical model In Alemany J. (2017, in prep.). Development of a Bayesian framework for data limited stock assessment methods and management scenarios proposal. Case studies of cuttlefish (Sepia officinalis) and pollack (Pollachius pollachius), PhD thesis, University of Caen, France.

Alonso-Fernández A., Villegas-Ríos D., Valdés-López M., Olveira-Domínguez B. and SaboridoRey F. 2013. Reproductive biology of pollack (Pollachius pollachius) from the Galician shelf (northwest Spain). Journal of the Marine Biological Association of the United Kingdom, 2013, 93(7): 1951-1963.
Cardinale M., H. Svedäng, V. Bartolino, L. Maiorano, M. Casini and H. Linderholm. 2012. Spatial and temporal depletion of haddock and pollack during the last century in the Katte-gat-Skagerrak. J. Appl. Ichthyol. 28(2): 200-208.
Cohen D.M., T. Inada, T. Iwamoto and N. Scialabba. 1990. FAO Species Catalogue. Vol. 10. Gadiform fishes of the world (Order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers and other gadiform fishes known to date. FAO Fish. Synop. 125(10). \(x+442 p\). Rome: FAO.

Charrier G., Durand J.D., Quiniou L., Laroche J. 2006. An investigation of the population genetic structure of pollack (Pollachius pollachius) based on microsatellite markers. ICES Journal of Marine Science 63, 1705-1709.

Dorel D., 1986. Poissons de l'Atlantique Nord-Est: relations taille-poids. http://archimer.ifremer.fr/doc/00000/1289/ (Accessed 26 February 2015).

EU. 2010. Commission Decision (EU) No 2010/93/EU of 18 December 2009 adopting a multiannual Community programme for the collection, management and use of data in the fisheries sector for the period 2011-2013. Official Journal of the European Union, L 41/8.
Gedamke T. and Hoenig J.M. 2006. Estimating mortality from mean length data in nonequilibrium situations, with application to the assessment of Goosefish. Trans. Amer. Fish. Soc., 135:476-487.

Heino M., Svåsand T., Nordeide J. T. and Otterå H. 2012. Seasonal dynamics of growth and mortality suggest contrasting population structure and ecology for cod, pollack, and saithe in a Norwegian fjord. ICES Journal of Marine Science, 69: 537-546.

ICES. 2011. Report of the Working Group for Celtic Seas Ecoregion (WGCSE). ICES CM 2011/ACOM:12. 1572 pp.

ICES. 2012. Report of the Working Group on Assessment of New MoU Species (WGNEW).
ICES. 2012. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 9-18 May 2012, Copenhagen, Denmark. ICES CM 2012/ACOM:12. 1725 pp.

ICES. 2012b. Report of the ICES Working Group on Recreational Fisheries Surveys 2012 (WGRFS), 7-11 May 2012, Esplores Spain ICES CM 2012/ACOM:23. 51 pp.
ICES. 2012. Report of The Workshop to Finalize the ICES Data-limited Stock (DLS) Methodologies Documentation in an Operational Form for the 2013 Advice Season and to make Recommendations on Target Categories for Data-limited Stocks (WKLIFE II), 20-22 November 2012, Copenhagen, Denmark. ICES CM 2012/ACOM:79. 46 pp.

ICES. 2014. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 13-22 May 2014, Copenhagen, Denmark. ICES CM 2014/ACOM:12. 2034 pp.
ICES. 2014. Report of the Working Group on Assessment of New MoU Species WGNEW, 24-28 March 2014, Copenhagen, ICES CM 2014/ACOM:21. 162 pp.
ICES. 2015. Report of the Fifth Workshop on the Development of Quantitative Assessment Methodologies based on Life-history Traits, Exploitation Characteristics and other Rele-
vant Parameters for Data-limited Stocks (WKLIFE V), 5-9 October 2015, Lisbon, Portugal. ICES CM 2015/ACOM:56. 157 pp.

ICES. 2016. Report of the Workshop to consider MSY proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015, ICES Headquarters, Copenhagen. ICES CM 2015/ACOM:61. 183 pp.

ICES. 2017. Report of the ICES Workshop on the Development of Quantitative Assessment Methodologies based on Life-history traits, exploitation characteristics, and other relevant parameters for stocks in categories 3-6 (WKLIFE VI), 3-7 October 2016, Lisbon, Portugal. ICES CM 2016/ACOM:59. 106 pp .

Levrel H., Bellanger M., Le Goff R. and Drogou M. 2013. La pêche récréative en mer en France métropolitaine (Atlantique, Manche, Mer du Nord, Méditerranée). Résultats de l'enquête 2011-2013. http://archimer.ifremer.fr/doc/00162/27300/.

MacCall, A. D. 2009. Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-poor situations. ICES Journal of Marine Science, 66: 2267-2271.

Moreau, J. 1964. Contribution à l'étude du lieu jaune (Gadus pollachius L.). Revue des Travaux de l'Institut des Pêches Maritimes, 28: 238-255.

Pedersen M.W. and Berg C.W., 2017. A stochastic surplus production model in continuous time. Fish and Fisheries 18.2, doi: http://dx.doi.org/10.1111/faf.12174.

Quéro J.C. and J.J. Vayne, 1997. Les poissons de mer des pêches françaises. Editions Delachaux et Niestlé. 304 pp.

Svetovidov A. N. 1986. Gadidae. In Fishes of the North-eastern Atlantic and the Mediterranean (Whitehead P.J.P., Bauchot M.-L., Hureau J.-C., Nielsen J. and Tortonese E., eds), pp. 680710. Paris: UNESCO.

Then A., Hoenig J.M. and Gedamke T. 2011. Estimation of mortality rates from mean length and fishing effort: a modification of the Gedamke-Hoenig Length-based estimator. American Fisheries Society Conference paper.

Table 30.1. Landings of Pollack in Subarea 6 as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1950 & 1951 & 1952 & 1953 & 1954 & 1955 & 1956 & 1957 & 1958 & 1959 \\
\hline Belgium & 1 & - & - & - & - & - & - & - & - & 1 \\
\hline Denmark & - & - & - & - & - & - & - & - & - & \\
\hline France & - & - & - & - & - & - & - & - & - & \\
\hline Germany & - & - & - & - & - & - & - & - & 23 & \\
\hline Ireland & - & - & - & - & - & - & - & - & - & \\
\hline Netherlands & - & - & 1 & - & - & - & - & - & - & \\
\hline Norway & - & - & - & - & - & - & - & - & - & \\
\hline Portugal & - & - & - & - & - & - & - & - & - & \\
\hline Spain & - & - & - & - & - & - & - & - & - & \\
\hline Sweden & - & - & - & - & - & - & - & - & - & \\
\hline UK & 295 & 484 & 503 & 422 & 452 & 566 & 528 & 547 & 710 & 607 \\
\hline \multirow[t]{2}{*}{Subarea VI} & 296 & 484 & 504 & 422 & 452 & 566 & 528 & 547 & 733 & 61 \\
\hline & 1960 & 1961 & 1962 & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 \\
\hline Belgium & 15 & 1 & 2 & 6 & 1 & 1 & 2 & 1 & 5 & 1 \\
\hline Denmark & - & - & - & - & - & - & - & - & - & \\
\hline France & - & - & - & - & - & - & - & - & - & \\
\hline Germany & - & 1 & 8 & 2 & 1 & 1 & - & 1 & 2 & \\
\hline Ireland & - & 125 & 197 & 204 & 130 & 402 & 200 & 263 & 214 & 282 \\
\hline Netherlands & - & - & - & - & - & - & - & - & - & \\
\hline Norway & - & - & - & - & - & - & - & - & 148 & \\
\hline Portugal & - & - & - & - & - & - & - & - & - & \\
\hline Spain & - & - & - & - & - & - & - & - & - & \\
\hline Sweden & - & - & - & - & - & - & - & 1106 & 1012 & 1224 \\
\hline UK & 441 & 259 & 235 & 320 & 368 & 496 & 428 & 413 & 500 & 667 \\
\hline \multirow[t]{2}{*}{Subarea VI} & 456 & 386 & 442 & 532 & 500 & 900 & 630 & 1784 & 1881 & 2178 \\
\hline & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 \\
\hline Belgium & 2 & 1 & 1 & , & 6 & <0.5 & 7 & - & & \\
\hline Denmark & - & - & - & - & - & - & - & - & & \\
\hline France & - & - & - & - & - & - & - & 196 & 196 & 31 \\
\hline Germany & 1 & 5 & 1 & - & - & 1 & - & - & & \\
\hline Ireland & 398 & 75 & 127 & - & - & - & - & - & - & \\
\hline Netherlands & - & - & - & - & 3 & 1 & 1 & 1 & - & \\
\hline Norway & - & - & - & - & - & 4 & - & 2 & 4 & \\
\hline Portugal & - & - & - & - & - & - & - & - & - & \\
\hline Spain & - & - & - & - & - & - & - & - & - & \\
\hline Sweden & 756 & 750 & 779 & - & - & - & - & - & - & \\
\hline UK & 447 & 256 & 317 & 503 & 359 & 393 & 519 & 493 & 553 & 350 \\
\hline \multirow[t]{2}{*}{Subarea VI} & 1604 & 1087 & 1225 & 505 & 368 & 399 & 527 & 692 & 753 & 660 \\
\hline & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 \\
\hline Belgium & - & - & - & - & - & <0.5 & - & - & - & \\
\hline Denmark & - & - & <0.5 & - & - & - & - & <0.5 & <0.5 & <0.5 \\
\hline France & 36 & 342 & 272 & 331 & 212 & 224 & 145 & 108 & 128 & 111 \\
\hline Germany & - & - & - & - & - & 1 & - & - & - & \\
\hline Ireland & - & - & - & - & - & - & 223 & 103 & 163 & 103 \\
\hline Netherlands & - & - & - & - & - & - & - & - & - & \\
\hline Norway & - & - & - & - & - & - & - & - & - & \\
\hline Portugal & - & - & - & - & - & - & - & - & - & \\
\hline Spain & - & 55 & 95 & 86 & 222 & 283 & 2217 & 860 & 1925 & \\
\hline Sweden & - & - & - & - & - & - & & - & - & \\
\hline UK & 233 & 185 & 103 & 148 & 194 & 328 & 187 & 259 & 221 & 179 \\
\hline \multirow[t]{2}{*}{Subarea VI} & 269 & 582 & 470 & 565 & 628 & 836 & 2772 & 1330 & 2437 & 394 \\
\hline & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline Belgium & - & - & & - & - & - & & - & & \\
\hline Denmark & - & - & <0.5 & - & - & - & <0.5 & - & - & \\
\hline France & 76 & 31 & 21 & 39 & 34 & 64 & 29 & 14 & 21 & \\
\hline Germany & - & - & - & - & - & 3 & - & 1 & - & \\
\hline Ireland & 150 & 145 & 23 & 12 & 26 & 83 & 97 & 69 & 60 & 73 \\
\hline Netherlands & - & - & - & - & - & - & - & - & - & \\
\hline Norway & 1 & - & - & - & - & - & 1 & 2 & - & \\
\hline Portugal & - & - & - & - & - & - & - & - & <0.5 & \\
\hline Spain & - & 4 & - & - & - & - & - & - & - & \\
\hline Sweden & - & - & - & - & - & - & - & & & \\
\hline UK & 192 & 189 & 203 & 273 & 276 & 354 & 210 & 162 & 147 & 136 \\
\hline \multirow[t]{2}{*}{Subarea VI} & 419 & 369 & 247 & 324 & 336 & 504 & 337 & 248 & 228 & 212 \\
\hline & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 \\
\hline Belgium & & - & - & <0.5 & <0.5 & - & - & & & \\
\hline Denmark & - & - & - & - & - & - & - & - & - & \\
\hline France & 11 & 8 & 9 & 3 & 2 & 23 & 3 & 10 & 8 & \\
\hline Germany & 2 & - & - & - & - & - & - & - & - & \\
\hline Ireland & 62 & 108 & 26 & 88 & 68 & 28 & 25 & 21 & 21 & \\
\hline Netherlands & - & - & - & - & - & - & - & - & - & \\
\hline Norway & - & - & - & 1 & 1 & - & - & 6 & 1 & \\
\hline Portugal & - & - & - & - & - & - & - & - & - & \\
\hline Spain & - & - & - & - & - & - & 4 & - & - & \\
\hline Sweden & - & - & - & - & - & - & - & - & - & \\
\hline UK & 116 & 101 & 96 & 111 & 65 & 16 & 5 & 21 & 23 & 25 \\
\hline \multirow[t]{2}{*}{Subarea VI} & 191 & 217 & 131 & 203 & 136 & 67 & 37 & 58 & 53 & 36 \\
\hline & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & & & \\
\hline Belgium & - & 2 & - & - & - & - & - & & & \\
\hline Denmark & - & - & - & - & - & - & - & & & \\
\hline France & 4 & 3 & 2 & 1 & 1 & - & - & & & \\
\hline Germany & - & - & - & - & - & - & - & & & \\
\hline Ireland & 34 & 8 & 10 & 34 & 25 & 23 & 44 & & & \\
\hline Netherlands & - & - & - & - & - & - & - & & & \\
\hline Norway & <0.5 & - & - & - & - & - & <0.5 & & & \\
\hline Portugal & - & - & - & - & - & - & - & & & \\
\hline Spain & - & - & - & - & - & - & - & & & \\
\hline Sweden & - & - & - & - & - & - & - & & & \\
\hline UK & 39 & 34 & 33 & 22 & 18 & 25 & 29 & & & \\
\hline Subarea VI & 78 & 47 & 45 & 57 & 44 & 48 & 74 & & & \\
\hline
\end{tabular}

Table 30.2. Landings of Pollack in Subarea 7 as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1950 & 1951 & 1952 & 1953 & 1954 & 1955 & 1956 & 1957 & 1958 & 1959 \\
\hline Belgium & 93 & 74 & 80 & 34 & 17 & 38 & 67 & 219 & 342 & 158 \\
\hline Denmark & - & - & - & - & - & - & - & - & - & \\
\hline France & - & - & - & - & - & - & - & - & - & \\
\hline Germany & - & 2 & 10 & - & 4 & - & 1 & 6 & 17 & 32 \\
\hline Ireland & - & - & - & - & - & - & - & - & - & \\
\hline Netherlands & - & - & - & - & - & - & - & - & - & \\
\hline Norway & - & - & - & - & - & - & - & - & - & \\
\hline Spain & - & - & - & - & - & - & - & - & - & \\
\hline UK & 375 & 380 & 336 & 252 & 365 & 247 & 155 & 367 & 233 & 251 \\
\hline Subarea VII & 468 & 456 & 426 & 286 & 386 & 285 & 223 & 592 & 592 & 441 \\
\hline & 1960 & 1961 & 1962 & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 \\
\hline Belgium & 317 & 268 & 367 & 95 & 299 & 362 & 456 & 417 & 214 & 142 \\
\hline Denmark & - & - & - & - & - & - & - & - & - & \\
\hline France & - & - & - & - & - & - & - & - & - & \\
\hline Germany & - & - & 1 & - & - & - & - & - & - & \\
\hline Ireland & - & 360 & 369 & 411 & 342 & 335 & 438 & 474 & 508 & 794 \\
\hline Netherlands & - & - & - & - & - & - & - & - & - & \\
\hline Norway & - & - & - & - & - & - & - & - & - & \\
\hline Spain & - & - & - & - & - & - & - & - & - & \\
\hline UK & 267 & 210 & 170 & 176 & 194 & 231 & 175 & 202 & 167 & 161 \\
\hline Subarea VII & 584 & 838 & 907 & 682 & 835 & 928 & 1069 & 1093 & 889 & 1097 \\
\hline & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 \\
\hline Belgium & 165 & 114 & 142 & 89 & 299 & 295 & 339 & 157 & 186 & 151 \\
\hline Denmark & - & - & - & - & - & - & - & 1 & 21 & 18 \\
\hline France & - & - & - & - & - & - & - & 3569 & 5496 & 5119 \\
\hline Germany & 1 & - & - & - & - & - & - & - & 14 & 76 \\
\hline Ireland & 724 & 673 & 1073 & - & - & - & - & - & - & \\
\hline Netherlands & - & - & - & 3 & 13 & 17 & 4 & 1 & 8 & 1 \\
\hline Norway & - & - & - & - & - & - & - & - & - & \\
\hline Spain & - & - & - & - & - & - & - & - & - & \\
\hline UK & 120 & 116 & 123 & 127 & 223 & 290 & 421 & 465 & 515 & 696 \\
\hline Subarea VII & 1010 & 903 & 1338 & 219 & 535 & 602 & 764 & 4193 & 6240 & 6061 \\
\hline & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 \\
\hline Belgium & 237 & 244 & 154 & 167 & 207 & 269 & 241 & 149 & 191 & 145 \\
\hline Denmark & 7 & - & - & - & - & - & - & - & - & \\
\hline France & 5242 & 5814 & 4253 & 6214 & 3927 & 3741 & 4574 & 5213 & 5211 & 3893 \\
\hline Germany & - & - & - & - & - & - & - & - & - & \\
\hline Ireland & - & - & - & - & - & - & 1335 & 848 & 1066 & 994 \\
\hline Netherlands & 1 & 3 & - & - & - & - & - & - & - & \\
\hline Norway & - & - & - & - & - & - & - & - & - & \\
\hline Spain & 1 & 23 & 32 & 26 & 486 & 20 & 17 & 19 & 22 & 18 \\
\hline UK & 769 & 780 & 1022 & 1045 & 1100 & 1022 & 1795 & 2010 & 1740 & 1487 \\
\hline Subarea VII & 6257 & 6864 & 5461 & 7452 & 5720 & 5052 & 7962 & 8239 & 8230 & 6537 \\
\hline & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline Belgium & 133 & 76 & 62 & 55 & 94 & 88 & 94 & 99 & 92 & 86 \\
\hline Denmark & - & - & - & - & - & 2 & - & - & - & \\
\hline France & 4831 & 3211 & 2849 & 2325 & 2621 & 2315 & 2684 & 2443 & 2375 & \\
\hline Germany & - & - & - & - & - & - & - & - & - & \\
\hline Ireland & 1066 & 1045 & 1014 & 1137 & 921 & 1107 & 1190 & 984 & 886 & 976 \\
\hline Netherlands & - & - & - & - & - & - & 6 & 4 & 1 & \\
\hline Norway & - & - & - & - & - & - & - & \(<0.5\) & - & 3 \\
\hline Spain & 26 & 22 & 19 & 7 & 8 & 4 & 5 & 7 & 11 & 19 \\
\hline UK & 1914 & 1962 & 1889 & 2135 & 2391 & 2168 & 2519 & 2540 & 2347 & 1703 \\
\hline Subarea VII & 7970 & 6316 & 5833 & 5659 & 6035 & 5684 & 6498 & 6077 & 5712 & 2787 \\
\hline & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 \\
\hline Belgium & 71 & 100 & 117 & 113 & 104 & 98 & 79 & 91 & 76 & 42 \\
\hline Denmark & - & - & - & - & - & - & - & - & - & \\
\hline France & 2422 & 2515 & 2481 & 2284 & 1914 & 2198 & 2213 & 1970 & 1579 & 1641 \\
\hline Germany & & - & - & - & - & - & - & - & - & \\
\hline Ireland & 1069 & 1274 & 1308 & 1151 & 1049 & 728 & 809 & 782 & 738 & 828 \\
\hline Netherlands & - & - & - & - & 1 & 1 & 1 & 3 & 1 & 4 \\
\hline Norway & - & - & - & - & - & - & - & - & - & \\
\hline Spain & 5 & 9 & 17 & 12 & 13 & 16 & 28 & 1 & 14 & 3 \\
\hline UK & 1810 & 1987 & 1999 & 1788 & 1705 & 1684 & 1531 & 1764 & 1453 & 1545 \\
\hline Subarea VII & 5377 & 5885 & 5922 & 5348 & 4786 & 4725 & 4661 & 4611 & 3861 & 4063 \\
\hline & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & & & \\
\hline Belgium & 35 & 37 & 43 & 39 & 84 & 32 & 41 & & & \\
\hline Denmark & - & - & - & - & - & - & - & & & \\
\hline France & 1846 & 1784 & 1421 & 1790 & 2042 & 1142 & 1247 & & & \\
\hline Germany & - & - & - & - & - & - & - & & & \\
\hline Ireland & 942 & 967 & 1165 & 1249 & 1096 & 1060 & 934 & & & \\
\hline Netherlands & 2 & 2 & 1 & 1 & 1 & - & - & & & \\
\hline Norway & - & - & - & - & - & - & - & & & \\
\hline Spain & 3 & 4 & 3 & 11 & 14 & 21 & 16 & & & \\
\hline UK & 1381 & 1825 & 1836 & 1838 & 2122 & 1485 & 1893 & & & \\
\hline Subarea VII & 4209 & 4619 & 4469 & 4928 & 5359 & 3740 & 4131 & & & \\
\hline
\end{tabular}

Table 30.3. Input parameters for the six DCAC runs carried out for Pollack in Subarea 6.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Pol. } 27.67 \\
2017-6 \\
\text { - run } 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol. } 27.67 \\
2017-6 \\
\text { - run } 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol. } 27.67 \\
2017-6 \\
\text { - run } 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol. } 27.67 \\
2017-6 \\
-\quad \text { run } 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol. } 27.67 \\
2017-6 \\
\text { - run } 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol. } 27.67 \\
2017-6 \\
\text { - run } 6
\end{gathered}
\] \\
\hline sumC & 6674 & 6674 & 6674 & 6674 & 6674 & 6674 \\
\hline CV sumC & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{n}^{\circ}\) of yrs & 31 & 31 & 31 & 31 & 31 & 31 \\
\hline iterations & 10.000 & 10.000 & 10.000 & 10.000 & 10.000 & 10.000 \\
\hline M & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 \\
\hline stdev M & 0,4 & 0,4 & 0,4 & 0,4 & 0,4 & 0,4 \\
\hline \(\mathrm{F}_{\text {MSY }} / \mathrm{M}\) & 0,6 & 0,8 & 1 & 0,6 & 0,8 & 1 \\
\hline stdev FMSY to M & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 \\
\hline distr \(\mathrm{F}_{\mathrm{MSY}}\) to M & normal & normal & normal & normal & normal & normal \\
\hline \(\mathrm{BmSY}^{\text {/ }} \mathrm{B}_{0}\) & 0,5 & 0,5 & 0,5 & 0,5 & 0,5 & 0,5 \\
\hline stdev \(\mathrm{Bmsy}_{\text {/ }} \mathrm{B}_{0}\) & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 \\
\hline up \(\lim {\mathrm{BmSY} / \mathrm{B}_{0}}\) & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline low lim \(\mathrm{Bmsy}_{\text {/ }} \mathrm{B}_{0}\) & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline depletion delta \(\Delta\) & 0,8 & 0,8 & 0,8 & 0,9 & 0,9 & 0,9 \\
\hline stdev \(\Delta\) & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 \\
\hline \(\operatorname{distr} \Delta\) & normal & normal & normal & normal & normal & normal \\
\hline
\end{tabular}

Table 30.4. Input parameters for the nine DCAC runs carried out for Pollack in Subarea 7.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Pol. } 27.67 \\
2017-7- \\
\text { run } 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol. } 27.67 \\
2017-7- \\
\text { run } 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol.27.67 } \\
2017-7- \\
\text { run } 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol.27.67 } \\
2017-7- \\
\text { run } 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol.27.67 } \\
2017-7- \\
\text { run } 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol. } 27.67 \\
2017-7- \\
\text { run } 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol.27.67 } \\
2017-7- \\
\text { run } 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol.27.67 } \\
2017-7- \\
\text { run } 8
\end{gathered}
\] & \[
\begin{gathered}
\text { Pol.27.67 } \\
2017-7- \\
\text { run } 9
\end{gathered}
\] \\
\hline sumC & 162346 & 162346 & 162346 & 162346 & 162346 & 162346 & 162346 & 162346 & 162346 \\
\hline CV sumC & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{n}^{\circ}\) of yrs & 31 & 31 & 31 & 31 & 31 & 31 & 31 & 31 & 31 \\
\hline iterations & 10.000 & 10.000 & 10.000 & 10.000 & 10.000 & 10.000 & 10.000 & 10.000 & 10.000 \\
\hline M & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 \\
\hline stdev M & 0,4 & 0,4 & 0,4 & 0,4 & 0,4 & 0,4 & 0,4 & 0,4 & 0,4 \\
\hline \(\mathrm{FmSY}^{\text {/ }} \mathrm{M}\) & 0,6 & 0,8 & 1 & 0,6 & 0,8 & 1 & 0,6 & 0,8 & 1 \\
\hline stdev Fmsy to M & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 & 0,2 \\
\hline distr FMSy to M & normal & & & & & & & & \\
\hline Bms\%/B0 & 0,5 & 0,5 & 0,5 & 0,5 & 0,5 & 0,5 & 0,5 & 0,5 & 0,5 \\
\hline stdev Bmš/B0 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 \\
\hline up \(\lim \mathrm{Bmsy}^{\text {/ }}\) ( 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline low lim Bmš/B0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline depletion delta \(\Delta\) & 0,5 & 0,5 & 0,5 & 0,6 & 0,6 & 0,6 & 0,7 & 0,7 & 0,7 \\
\hline stdev \(\Delta\) & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 & 0,1 \\
\hline \[
\operatorname{distr} \Delta
\] & normal & & & & & & & & \\
\hline
\end{tabular}

Table 30.5. Comparison of the 2017 and 2016 DCAC results.
\begin{tabular}{lcccc}
\hline & DCAC & 6 & \% change & 7 \\
\hline 2017 & 152 & -1.9 & 4063 & \% change \\
\hline 2016 & 155 & -0.64 & 4062 & 0 \\
\hline 2015 & 156 & -1.3 & 4020 & +1.04 \\
\hline 2014 & 158 & -2.5 & 3986 & +0.9 \\
\hline 2013 & 162 & 0 & 3928 & 1.5 \\
\hline Average landings & 6 & \(\%\) diff. to DCAC & 7 & \(\%\) diff. to DCAC \\
\hline \(2013-2016\) & 55 & \(36.18 \%\) & 4473 & \(110.1 \%\) \\
\hline
\end{tabular}

Table 30.6. Irish and French trawlers cpue used as indexes as input data in SPiCT model.
\begin{tabular}{|r|r|r|}
\hline Year & Irish CPUE & French CPUE \\
\hline 1995 & 1.15 & NA \\
\hline 1996 & 1.36 & NA \\
\hline 1997 & 0.91 & NA \\
\hline 1998 & 0.89 & NA \\
\hline 1999 & 0.78 & NA \\
\hline 2000 & 1.07 & 6.10 \\
\hline 2001 & 2.13 & 6.07 \\
\hline 2002 & 2.15 & 5.93 \\
\hline 2003 & 1.65 & 6.03 \\
\hline 2004 & 1.4 & 6.55 \\
\hline 2005 & 1.02 & 6.88 \\
\hline 2006 & 0.98 & 8.24 \\
\hline 2007 & 1.14 & 7.58 \\
\hline 2008 & 1.25 & 7.82 \\
\hline 2009 & 1.4 & 8.94 \\
\hline 2010 & 1.42 & 8.10 \\
\hline 2011 & 1.65 & 8.73 \\
\hline 2012 & 1.68 & 10.06 \\
\hline 2013 & 1.9 & 9.52 \\
\hline 2014 & 1.46 & 10.86 \\
\hline 2015 & 1.49 & 6.36 \\
\hline 2016 & 1.36 & NA \\
\hline
\end{tabular}

Table 30.7. SPiCT outputs for pol.27.67.
\begin{tabular}{|l|r|r|r|}
\hline \multicolumn{3}{|l|}{ Stochastic reference points from SPiCT (95\% CI) } & \\
\hline & \multicolumn{1}{|c|}{ estimate } & \multicolumn{1}{c|}{ cilow } & \multicolumn{1}{c|}{ ciupp } \\
\hline Bmsys & 2397.05253 & 263.9730676 & 21766.84493 \\
\hline Fmsys & 2.429614 & 0.2274539 & 25.95261 \\
\hline MSYs & 5831.860198 & 4679.700311 & 7267.6862 \\
\hline
\end{tabular}

Relative estimated states from SPiCT (95\% CI)
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ estimate } & \multicolumn{1}{c|}{ cilow } & \multicolumn{1}{c|}{ ciupp } \\
\hline B_2016.50 & 5298.354686 & 2037.524799 & 13777.77703 \\
\hline F_2016.50 & 0.7859683 & 0.3040952 & 2.031424 \\
\hline B_2016.50/Bmsy & 2.2103624 & 0.3951639 & 12.363736 \\
\hline F_2016.50/Fmsy & 0.3234952 & 0.0470818 & 2.222711 \\
\hline
\end{tabular}

Table 30.8. Life-history parameters for pol. 27.67 used as input data in LBI model.
\begin{tabular}{lllc}
\hline \multicolumn{1}{c}{ PARAMETER } & ABBREVIATION & VALUE \\
\hline Length-at-maturity & Lmat & 46.28 \\
\hline \begin{tabular}{l} 
Von Bertalanffy growth \\
parameter
\end{tabular} & K & 87.96 \\
\hline \begin{tabular}{l} 
Von Bertalanffy Length-at- \\
infinity
\end{tabular} & Linf & 0.277 \\
\hline Von Bertalanffy length-at-birth & \(\mathrm{t}_{0}\) & 0.074 \\
\hline \begin{tabular}{l} 
Length-weight relationship \\
parameter a
\end{tabular} & a & \(1.98 \mathrm{E}-5\) \\
\hline \begin{tabular}{l} 
Length-weight relationship \\
parameter b
\end{tabular} & b & 2.84 \\
\hline
\end{tabular}

Table 30.9. Celtic sea Pollack. Traffic light indicators from LBI for 2006 to 2016 (no data for 2015).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multicolumn{7}{|c|}{Traffic ligths indicators for Celtic Sea Pollack} \\
\hline & \multicolumn{5}{|c|}{Conservation} & Optimizing Yield & MSY proxy \\
\hline & Lc/Lmat & L25\%/Lmat & Lmax5\%/Linf & L95\%/Linf & Pmega & Lmean/Lopt & Lmean/ \(L_{\text {fim }}\) \\
\hline & >1 & >1 & >0 & & >30\% & \(\sim_{1}(\mathbf{}\) ( 0.9\()\) & >=1 \\
\hline 2006 & 0.583405359 & 0.605012965 & 0.588301645 & 0.51159618 & & 0.556373119 & 0.772389198 \\
\hline 2007 & 0.453759723 & 0.950734659 & 0.970935676 & 0.920873124 & 0.366941884 & 0.945157904 & 1.468576033 \\
\hline 2008 & 0.583405359 & 1.123595506 & 0.902644403 & 0.864029104 & 0.291306519 & 0.993978084 & 1.379897605 \\
\hline 2009 & 1.1019879 & 1.145203111 & 0.846176215 & 0.807185084 & 0.244828336 & 1.040970586 & 1.013321965 \\
\hline 2010 & 1.231633535 & 1.188418323 & 0.903507736 & 0.8526603 & 0.335915882 & 1.111754968 & 1.007002029 \\
\hline 2011 & 0.713050994 & 0.885911841 & 0.932302216 & 0.875397908 & 0.251577057 & 0.93192408 & 1.169191871 \\
\hline 2012 & 0.972342264 & 1.080380294 & 0.892129335 & 0.8526603 & 0.236521899 & 1.019011606 & 1.072027998 \\
\hline 2013 & 0.713050994 & 0.907519447 & 0.868065095 & 0.829922692 & 0.232328662 & 0.925472336 & 1.161097514 \\
\hline 2014 & 0.842696629 & 1.080380294 & 0.897245245 & 0.8526603 & 0.279133451 & 0.995716647 & 1.139516475 \\
\hline 2015 & & & & & & & \\
\hline 2016 & 0.713050994 & 0.907519447 & 0.847237183 & 0.807185084 & 0.194524426 & 0.916182375 & 1.14944233 \\
\hline
\end{tabular}

Table 30.10. Estimations of total mortality rates by Mean LB mortality model.
\begin{tabular}{|l|r|r|}
\hline & Parameter & Estimate \\
\hline Z1 & 0.3052926 & 0.0649865 \\
\hline Z2 & 0.2437555 & 0.02109403 \\
\hline Y1 & 2005.424428 & 5.40097334 \\
\hline sigma & 648.6025436 & NA \\
\hline AIC & 175.3956812 & NA \\
\hline
\end{tabular}

Table 30.11. Estimations of mean lengths of catches by Mean LB mortality model.
\begin{tabular}{|r|r|r|r|}
\hline year & observed & predicted & residual \\
\hline 2005 & 56.53895 & 54.03801 & 2.5009409 \\
\hline 2006 & 53.05889 & 54.19942 & -1.14052232 \\
\hline 2007 & 60.55434 & 54.6055 & 5.94884648 \\
\hline 2008 & 55.05055 & 55.06817 & -0.01762756 \\
\hline 2009 & 54.36112 & 55.52243 & -1.1613083 \\
\hline 2010 & 57.45983 & 55.93808 & 1.52174708 \\
\hline 2011 & 55.53112 & 56.30334 & -0.77222474 \\
\hline 2012 & 55.02542 & 56.6161 & -1.59067844 \\
\hline 2013 & 58.54639 & 56.87914 & 1.6672543 \\
\hline 2014 & 59.13852 & 57.09749 & 2.04102353 \\
\hline 2015 & 53.84954 & 57.27697 & -3.427428 \\
\hline 2016 & 54.29327 & 57.42334 & -3.13006833 \\
\hline & & & \\
\hline
\end{tabular}


Figure 30.1. Comparison of the von Bertalanffy growth curve based on the recent sampling (solid bold line) with the curve based on the data from Moreau (1964) (solid line with " \(\mathrm{M}^{\prime \prime}\) ) for a) The English Channel and b) the Bay of Biscay (Alemany et al., 2017).


Figure 30.2. Comparison of the length-weight relationship based on the recent sampling (solid bold line) with the curve based on the data from Dorel (1986) (solid line with "D") for a) The English Channel and b) the Bay of Biscay (Alemany et al., 2017).


Figure 30.3. Pollack landings in 2016 in the Celtic Seas.


Figure 30.4 -Pollack landings by ICES division in the Celtic Seas.


Figure 30.5. Contributions of different countries in Pollack landings in the Celtic Seas.


Figure 30.6. Pollack in the Celtic Seas. Catches per gear in 2016 (all countries).


Figure 30.7. Pollack in the Celtic Seas. French landings by rectangle (raster map) and area (circle) from 2011 to 2016. The red circle is the average landings for the area over the range time (i.e. contraction of the grey circles around the red circle highlight the landings variability).


Figure 30.8. Length frequency of Pollack from 2006 to 2016 (no data for 2015).


Figure 30.10. Pollack in the Celtic Seas. Results of DCAC for Subarea 6 (left panel) and Subarea 7 (right panel).


Figure 30.11. Pol.27.67 catch data and cpue indexes as input data in SPiCT model (index1: French trawlers cpue; index2: Irish trawlers cpue).


Figure 30.12. SPiCT outputs for pol.27.67 (from 1995 to 2016).


Figure 30.13. Screening of length indicators under three scenarios: (a) Conservation (b) Optimal yield and (c) MSY.


Figure 30.14. Screening of length indicators ratios under three scenarios: (a) Conservation (b) Optimal yield and (c) MSY.


Figure 30.15. Observed and fitted mean lengths for Celtic sea Pollack.

\section*{31 Seabass (Dicentrarchus labrax) in divisions 4.b-c, 7.a, and 7.d-h (central and southern North Sea, Irish Sea, English Channel, Bristol Channel, and Celtic Sea)}

\section*{Type of assessment}

This is an update of the assessment carried out in WGCSE 2016 and accepted as the agreed methods to use at the benchmark workshop for the sea bass: IBPBass2 (ICES, 2016) a further benchmark to include discards and a commercial tuning series was carried out during March but remains incomplete and is expected to be finalised before the 2018 working group. The assessment is performed using the Stock Synthesis model implementation (SS3; Methot, 2000; 2011). The stock is treated as Category 1 with full analytical assessment. Last year's assessment is available in the WGCSE 2015 report.
(File names, WGCSE SharePoint paths and location in the files of key assessment model outputs are given in the readme file in the Sea bass 47 Report folder on WGCSE 2017 SharePoint).

\section*{ICES advice applicable to 2016}

The ICES advice for management of sea bass fisheries in 2017 is available in the ICES Advice released in 2016, and states that "ICES advises that when the precautionary approach is applied, there should be zero catch (commercial and recreational) in 2017."

\section*{Technical consideration}

IPBBass2 benchmark 2016 input data and parameters available for the WGCSE 2017 assessment are summarized in Table 10.1.1

Table 10.1.1. WKBASS inputs for assessment.
\begin{tabular}{|c|c|c|}
\hline Data / PARAMETER & Description & Source \\
\hline Growth & Fixed values of VBGF K; Length at Amin and Amax; SD of length-at-age; age error vector & Unchanged from IBPBass 2016 and WGCSE 2016 \\
\hline Maturity & Female proportion mature at age & Unchanged from IBPBass 2016 and WGCSE 2016 \\
\hline Natural Mortality & Options: \(\mathrm{M}=0.15\) all ages & Unchanged from IBPBass 2016 and WGCSE 2016 \\
\hline Commercial landings 1985
\[
-2016
\] & UK split by gear (otter trawl and nets combined; midwater pair trawl; lines); France all gears; other countries and other UK gears & Unchanged from IBPBass 2016 and WGCSE 2016 \\
\hline Commercial landings length/age composition & Length compositions and fleet-raised marginal age compositions: UK by gear-1985-2015 France combined fleets 2000-2015 & Unchanged from IBPBass 2016 and WGCSE 2016 \\
\hline \multirow[t]{3}{*}{Recreational catches kept and post-release mortality} & Estimates from Surveys in France (2009-2011), Netherlands (2010-2011); UK (2012). Combined estimate allocated to 2012. & From IBPBass 2016 and WGCSE 2016, with Belgium estimates removed. \\
\hline & Estimates from 2016 Surveys from UK and Netherlands raised to all countries. & WGRFS 2017 \\
\hline & Baseline value of \(15 \%\) from recent studies on sea bass and analogy with US striped bass marine studies. & WKBASS Data evaluation workshop \\
\hline Recreational fishery length compositions & UK on-site surveys in 2012; data from diary survey in France are available only for combined Area 7 and 8 data; Netherlands data-no data on released lengths. & WKBASS Data evaluation workshop \\
\hline Channel Groundfish survey (France) & Otter trawl survey in eastern Channel (7d) 19882014. Vessel and design change in 2015. Length compositions. & As used by WGCSE 2016 \\
\hline Solent trawl survey (UK) & Otter trawl survey of a major nursery area (19862015). Indices by age class for ages 2-4. & As used by WGCSE 2016 with minor edits. \\
\hline French commercial LPUE series & GLIM analysis of individual French vessel Ipue (tonnes/day) in selected rectangle and gear strata (2001-2015). Zero daily catches removed. & Submitted to WKBASS Data WK (Laurec and Drogou working document). Modified series excluding vessels with predominantly zero bass catch supplied to WKBASS assessment meeting by Laurec. \\
\hline
\end{tabular}

\subsection*{31.1 General}

Bass, Dicentrarchus labrax, is a widely distributed species in Northeast Atlantic shelf waters with a range from southern Norway, through the North Sea, the Irish Sea, the Bay of Biscay, the Mediterranean and the Black Sea to North-west Africa. The species is at the northern limits of its range around the British Isles and southern Scandinavia. The IBP New 2012 reports that it is clear that further studies are needed on sea bass stock identity, using conventional and electronic tagging, genetics and other individual and population markers (e.g. otolith microchemistry and shape), together with data on spawning distribution, larval transport and VMS data for vessels tracking migrating sea bass shoals, to confirm and quantify the exchange rate of sea bass between sea areas that could form management units for this stock. No update of stock identity was available in advance of the data evaluation workshop (WKBASS), so the stock identity was assumed to be the same as previous descriptions with the following Atlantic stocks (Figure 10.1,1.1): Northern (ICES areas 4.b-c, 7.a,d-h); Southern Ireland and Western Scotland (ICES areas 6.a, 7.b and 7.j); Biscay (ICES areas 8.a-b); Portugal \& Northern Spain (ICES areas 8.c \& 9.) (ICES, 2012; 2014).


Figure 10.1.1.1. Sea bass stock units defined at ICES (IBP New 2012).
Two large tagging programmes are underway that will provide significant information on the movements of sea bass in the end of 2017, and could indicate the levels of mixing between stocks. The first programme (C-Bass) is being led by the Cefas (UK) and has tagged almost 200 seabass with electronic data storage tags (DSTs) in two locations (Lowestoft and Weymouth). Around 20 tags have been returned and significant effort is being made to improve the geolocation algorithms through the inclusion of bathymetry and temperature at depth. The BARGIP study is being led by Ifremer and has released 1220 fish with DSTs at ten locations in the Channel and Bay of Biscay. So far, 282 tags have been returned, and the movements of individual fish are being reconstructed. Cefas and Ifremer are working together to compare geolocation algorithms. Behavioural and genetic studies of sea bass are also underway at the Marine Institute, Ireland, with the aim of investigating the distribution of sea bass within Irish waters and the potential existence of an Irish subpopulation.

Sea bass movement patterns between ICES stock units are plausible, as evidenced from some individuals tagged with DSTs and fidelity to both spawning and feeding grounds may provide evidence of fine population structure that identified using genetics. However, it is not possible to quantify the proportion of fish migrating between the stocks currently due to the small numbers of fish tracks analysed. However, as further DSTs are analysed, it may be possible to quantify exchange between stocks, so the next benchmark should consider how exchange between stocks should be incorporated into the assessment process.

Further details on stock identity are available in WKBASS 2017 report.

\subsection*{31.1.1 Management applicable to 2015}

Previous advice from ICES, showing a rapid decline in sea bass biomass in the North Sea, Channel, Celtic Sea and Irish Sea caused by poor recruitment with continued high levels of fishing; European Sea bass are not subject to EU TACs and quotas in
4.bc and 7.a,d-h (North Sea, Channel, Celtic Sea and Irish Sea). In 2015, the European Council has adopted measures to help sea bass recover. Effective emergency measures in January 2015 placed (i) a ban on targeting the fish stock by pair-trawling during the spawning season up until the end of April 2015.; (ii) a bag limit of three sea bass per day for recreational fishing has been imposed (EU Regulation 2015/523 of 25 March 2015); (iii) a monthly catch limit ( 1.5 t for pelagic trawlers; 1.8 t for bottom trawlers; 1 t for driftnets; 1.3 t for liners; 3 t for purse seiners) and (iv) an increase in the minimum size of northern sea bass from 36 cm to 42 cm from July 2015. Moreover, a continued area closure around Ireland for commercial fishing is set up (as in previous years). (source: http://ec.europa.eu/fisheries/cfp/fishing rules/seabass/index en.htm).

\subsection*{31.1.2 Management applicable to 2016}

The European Commission is working with Member States to identify more effective control measures to reduce fishing mortality towards Fmsy. Measures introduced in 2015 and completed in 2016 (given in the table below), include reduction or prohibition of landings depending on gears and months. These developments affect the short-term forecast assumptions for this stock and will have implications for how the stock assessment is conducted in future years.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
2016
\] \\
measures
\end{tabular} & Jan & Feb & Mar & Apr & May & June & Jul & Aug & Sept & Oct & Nov & Dec \\
\hline Bottom trawlers & \[
\left|\begin{array}{c}
x \\
(1 \% \text { by catch })
\end{array}\right|
\] & \begin{tabular}{l}
X \\
(1\% by catch)
\end{tabular} & X (1\% by catch) & \[
\left|\begin{array}{c}
\mathrm{X} \\
(1 \% \text { by catch })
\end{array}\right|
\] & \begin{tabular}{l}
X \\
(1\% by catch)
\end{tabular} & \begin{tabular}{l}
X \\
(1\% by catch)
\end{tabular} & 1 t & 1 t & 1 t & 1 t & 1 t & 1 t \\
\hline Seiners & \[
\begin{array}{|c|}
\hline \mathrm{X} \\
(1 \% \text { by catch }) \\
\hline
\end{array}
\] & (1\% by catch) & \[
\begin{gathered}
\mathrm{X} \\
(1 \% \text { by catch })
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \mathrm{X} \\
(1 \% \text { by catch }) \\
\hline
\end{array}
\] & (1\% by catch) & (1\% by catch) & 1 t & 1 t & 1 t & 1 t & 1 t & 1 t \\
\hline Pelagic trawlers & X & X & X & X & X & X & 1 t & 1 t & 1 t & 1 t & 1 t & 1 t \\
\hline Drift Gillnets & X & X & X & X & X & X & 1 t & 1 t & 1 t & 1 t & 1 t & 1 t \\
\hline Hooks & 1.3 t & X & X & 1.3t & 1.3 t \\
\hline Lines & 1.3 t & X & X & 1.3 t \\
\hline Set Gillnets & 1.3 t & X & X & 1.3 t \\
\hline
\end{tabular}

\subsection*{31.1.3 Management applicable to 2017}

According to scientific advice, sea bass (Dicentrarchus labrax) in the Celtic Sea, Channel, Irish Sea and southern North Sea (ICES divisions 4.b, 4.c and 7.a, 7.d-7.h) remains in a perilous state and the stock continues to decline. The conservation measures to prohibit fishing for sea bass should therefore be maintained in ICES divisions 7.a, 7.b, 7.c, 7.g, 7.j and 7.k, with the exception of the waters within 12 nautical miles of the baseline under the sovereignty of the United Kingdom. Spawning aggregations of sea bass should be protected with commercial catches restricted further in 2017. On the basis of social and economic impacts limited fisheries using hooks and lines should be permitted, while providing for a closure to protect spawning aggregations. Additionally, due to incidental and unavoidable bycatches of sea bass by vessels using demersal trawls and seines, such bycatches should be limited to \(3 \%\) of the weight of the total catch of marine organisms on board with a maximum of 400 kilograms per month. For the same reasons, for fixed gillnets bycatches should be limited to 250 kilograms per month. Catches of recreational fishermen from the Northern stock and, for precautionary reasons, from the stock in the Bay of Biscay should be
restricted by a daily limit (source: COUNCIL REGULATION (EU) 2017/127 of 20 January 2017).

\subsection*{31.1.4 Fishery in 2016}

The time-series of official landings figures and the landings used by the WG are given in Table 10.1.1.2. Differences occur where national scientists have had to rework official figures, for example to attribute landings more accurately to the stock area.

A period of rapid growth in the fishery in the 1990s and early 2000s coincided with an expansion of the stock biomass and spatial distribution. As a non-TAC species, bass has provided additional fishing opportunities for vessels with restricted quotas for other species. The growth in fishery landings halted rapidly around 2005 and reported landings fluctuated around 4000 t up to 2013 (Figure 10.1.1.1a; Table 10.1.1.1). A decrease is observed since (mainly due to bad weather condition in 2014 and restrictive management in 2015 and 2016); 1295 tonnes were landed in 2016. Landings by Belgium and the Netherlands have only appeared in catch statistics since the 2000s as fisheries in the North Sea became established following the spatial expansion of the stock.

The bulk of the international landings was historically taken by French bottom trawlers and midwater (pelagic) pair trawlers (Figure 10.1.1.1b). The midwater pair trawl fleet targeted adult bass on or near spawning grounds in the Channel and Celtic Sea in late winter and spring. Since the mid-2000s, this fleet had shifted more of its activities from the Bay of Biscay to the Channel causing an increased fishing effort on adult bass in this area. In 2013, the fleet of around 40 French pair-trawlers and a small number of UK midwater trawlers accounted for \(37 \%\) of the total international landings, but landings of this métier reduced from 1630 t in 2013 to only 243 t in 2014 due mainly to very bad weather conditions. The French pair trawlers switched from sea bass to fishing for hake. In 2015 because of the restrictive measures taken by the European Commission and the ban of pelagic trawlers, trends in landings have changed significantly with an expected decrease observed. Almost \(50 \%\) of the French landings in 2016 were also made by bottom trawlers, corresponding to a mix between sea bass targeted or caught as a bycatch. A large decrease of around \(50 \%\) in French landings is observed between 2015 and 2016 (1110 tonnes in 2015; 547 tonnes in 2016)

Some French vessels using Danish seines appeared in the offshore fisheries since 2009. Catches from this métier are low but increased from 27 t in 2009 to 112 t in 2012, falling to 18 t in 2016. Seining has also become more prevalent in the UK fleet in recent years although it is a small contributor to total landings.

Sea bass are targeted by relatively few UK inshore bottom trawlers, and are mainly a bycatch in that fleet. Total bottom-trawl landings of UK and French otter trawlers have been declining since the mid to late 2000s (Figure 10.1.1.1b,c). UK beam trawlers targeting flatfish and other benthic species in Area 7 also experienced a progressive decline in their normally small bycatches of sea bass over this period.

In \(201625 \%\) of total reported landings (all countries) in the area are from bottom trawlers, \(25 \%\) from netters and \(28 \%\) from lines.

Despite the apparent decline in sea bass biomass indicated by the ICES assessment of the stock, reported landings of UK inshore \(<10 \mathrm{~m}\) vessels deploying fixed or drifting gillnets have been progressively increasing since the 2000s and reached their highest value in 2014 (Figure 10.1.1.1c), but returned to a "classical" level in 2015 and 2016. Netting for bass, or taking bass as bycatch, takes place all around the coast of Eng-
land and Wales, both in inshore waters and in some areas such as the eastern Channel where netting extends into deeper water to intercept migrating adult bass in autumn and early winter. It is not known to what extent the reduction in pelagic pair trawl fishing in 2014 may have improved availability of bass to inshore fleets in subsequent months. An effect of this nature was not apparent in the French artisanal fleets.

In 2016, a total of 1295 tonnes was landed, 772 tonnes less than 2015 due to the EC regulations imposed.

\subsection*{31.2 Data}

\subsection*{31.2.1 Landings data}

Landings series for use in the assessment are given in Table 10.1.2.1 for the six fleets for which selectivity is modelled: fleet 1- UK bottom trawls and nets; fleet 2- UK lines; fleet 3- UK midwater pair trawls; fleet 4- French combined fleets; fleet 5- other countries plus UK gears not included in fleet 1, with selectivity based on fleet 4; and fleet 6 - recreational fisheries (2012 is the reference year with selectivity based on fleet 2, UK lines. The time-series of recreation fisheries is calculated iteratively so that fishing mortality is constant and equal to fishing mortality in 2012 for the period 1985-2015). The landings figures are from census data (EU logbooks and/or sales slips) from several sources:
1) Official statistics recorded in the ICES official landings database since around the mid-1970s (data from 1985 are used in the assessment) plus preliminary data for 2015;

2 ) French landings for 2000-2015 from a separate analysis by Ifremer of logbook, auction data and VMS data (SACROIS database, now treated as official statistics from 2010);
3 ) Landings for Belgian vessels supplied directly by the national fisheries laboratory;

4 ) Landings for Netherlands recorded in ICES database "InterCatch;"
5 ) UK landings by gear type recorded in official UK landings databases.

Details of the methodology used to calculate French and UK historical landings can be found in the stock annex.

\subsection*{31.2.2 Length compositions: commercial landings}

IBPBass 2016 developed the Stock Synthesis model to include both the length and age compositions for the landings of fleets for which selectivity is estimated (Fleet 1: UK combined trawl and nets - 1985 onwards; Fleet 2: UK lines -1985 onwards; Fleet 3: UK midwater trawlers - 1985 onwards; Fleet 4: French combined gears -2000 onwards). Fitting to length composition data helps the estimation of length-based selectivity, whilst the age compositions (from application of age-length keys to length frequencies according to stratified sampling schemes) provide direct fitting of model estimates of catch-at-age. Since the length data are effectively being used twice, the length and age datasets are down-weighted (lambda values) to avoid over-fitting of the data. The composition data for the fleets are given in the SS3 data file. Input sample sizes for the multinomial composition data are derived from numbers of fishing
trips sampled, as proxy for effective sample size. The relative sample sizes between years are maintained in any reweighting.

\subsection*{31.2.3 Sampling rates}

UK(E\&W) sampling rates for age compositions, by gear group, are given in Table 10.1.2.2. Although ALKs are derived by the UK for separate sea areas, the same ALK is applied to all gear groups in an area meaning that the age composition estimates for the different gears are not independent. This was a principal motivating factor for IBPBass (ICES, 2014) to combine UK trawls, nets and lines into a single fleet for estimation of selectivity in Stock Synthesis.

The UK midwater trawl fleet landings were not sampled in 1997, 2013, 2014, 2015 and 2016 due to the small number of trips targeting bass. The UK at-sea sampling programme selects vessels at random from stratified vessel lists, which includes midwater pair trawlers in the same over 10 m vessel stratum as demersal otter trawlers, nets and lines. Similarly, port sampling is stratified by groups of ports, not métiers. The number of vessels and trips by midwater pair trawlers is very low, and therefore there is a high probability of low or zero numbers of samples. In Stock Synthesis, the missing age compositions for midwater trawls are imputed based on the selectivity parameters and the input landings figure. This has negligible impact on the assessment as this UK métier represented only \(1 \%\) of total sea bass landings in 2013 and landed only 1 t in 2014, less than 1 t in 2015 and 1 t in 2016.

Sampling of sea bass in France has also been very variable between areas and gears (Table 10.1.2.3). There has been a general increase in numbers of trips sampled for length from 2009 to 2014, a decrease is observed in the recent two years mainly due to the discontinuation of the French midwater pair trawlers from the fishery.

Numbers of sampled trips for UK trawls, midwater trawls, nets and lines, and French all-gears, were used as proxies for effective sample size for initial development of the Stock Synthesis model for sea bass by ICES IBPNew, IBPBass and IBPBass2.

Based on those results, the input effective sample sizes were then iteratively adjusted using the Francis method of weighting reducing the disproportionate effect of the different dataset used. The effective sample size which reflects the goodness-of-fit to the composition data are now fixed and additional data and associated sample sizes be adjusted using the effective sample size multiplier for age and length compositions by fleet available in the stock annex.

\subsection*{31.2.4 Length composition estimates for landings}

Table 10.1.2.4 gives fleet-raised length compositions for all French gears combined, updated to include 2015. Sampling levels are given in Table 10.1.2.3. French numbers-at-length are available from 2000 onwards. In the assessment (WGCSE 2015) a single fleet called "French fleet" is used. This fleet is the combination of several types of sub-fleets using various fishing gears: pelagic trawlers, bottom trawlers, netters, liners, Danish seiners and purse seiners.

\subsection*{31.2.5 Age composition estimates for landings}

Fleet-raised age compositions were obtained for UK fleets from 1985 onwards by application of age-length keys developed for the Areas 4.bc, 7.d, 7.e\&h, and 7.a,f,g. The annual age compositions for the combined otter and nets fleet and the line fleet are given in Table 10.1.2.5, and the age compositions for the UK midwater pair trawl fleet
since 1996 are given in Table 10.1.2.6a. During WGCSE 2015, French mixed gear landings by age class were made available (Table 10.1.2.6b) and were used for some exploratory assessment runs for comparison with the baseline Stock Synthesis run using French length data.

Following to the IBPBass2 (2016) age compositions for French commercial fishery landings of sea bass are used, derived from an annual age-length key (ALK) constructed for the whole area. It is applied to the total landings length frequency for the whole area (Table 10.1.2.6b).

The age compositions for the trawls, nets and lines fleet show clear year-class signals and good tracking of year classes, and the year-class patterns appear similar in the constituent ICES division groups (Figure 10.1.2.1a). The impacts of strong year classes and periods of very weak year classes are clearly seen, particularly by standardising the annual catches-at-age to the mean of the time-series for that age (Figure 10.1.2.1b). The French data show some progression of year classes, for example a very weak 1996 year class and some stronger year classes after that (Figure 10.1.2.1.c.), observed also in the UK data. The UK and French data both show reduced landings of young bass from recent year classes which are indicated by surveys to be weak, though this is more apparent in the time-series standardised data in Figure 10.1.2.1b and c which also shows that sea bass over 20 years of age have become rarer in UK catches in each area. A direct comparison of the UK and French age-composition data (Figure 10.1.2.1.d) shows a relatively weak association, which is probably a reflection of very variable, and often low sample sizes in each country (see Tables 10.1.2.2a,b and 10.1.2.3)

\subsection*{31.2.6 Commercial discards}

Data sources for discards estimates, and sampling design, are described in the stock annex. Discarding of sea bass by commercial fisheries can occur where fishing takes place in areas with bass smaller than the minimum landing size ( 36 cm in most European countries), and where mesh sizes \(<100 \mathrm{~mm}\) are in use. Sampling rates and estimates of discards were provided to WGCSE from sampling in UK and France (Tables 10.1.2.7, 10.1.2.8, and 10.1.2.9. The annual estimated quantities discarded by UK and French vessels from 2009 to 2014 has been less than \(5 \%\) of total landings (Table 10.1.2.9).

In 2016 a level of \(22 \%\) of discarding in France is observed in the area (Table 10.1.2.9), mainly due to bottom trawlers (for which seabass is often a bycatch). For UK fleet a level of \(9 \%\) is observed, mainly due to bottom trawlers. Discards estimates for 2016 suggest increased discarding following the increase in MCRS from 36 cm to 42 cm part way through 2015.

In the UK, the addition of discard estimates from non-sampled fleets could alter the overall discard rate depending on their discard quantities and rates. Most discards are fish below the MLS of 36 cm , and mostly from otter trawlers using 80-99 mm mesh in areas such inshore regions of the English Channel where juvenile bass are most common.

England provided information to WGCSE 2016 on discards sampling design and achieved sampling in 2012-2014 using the discards quality tables supplied with the 2015 WGCSE data call. It was noted that the distribution of samples was not well reflected in spatial fishing effort in 2012, however spatial and temporal distribution of sampling relative to fleet effort improved annually from 2012-2014. However, out of 528 sampled trips on vessels and in areas where sea bass could potentially be caught,
only 27 trips had discards of sea bass. This reflects the small proportion of trips where bass are caught. Sampling at sea on under 10 m vessels, which take the bulk of the UK sea bass catch, was very infrequent until 2007, and line gears have seldom been sampled (but mortality of discards for this gear can probably be considered as low). Therefore, there is a large potential for bias in the discards estimates. It was recommended by England that the discards data for sea bass should be used with caution.

Previous assessments have excluded discards on the basis that the proportion discarded at an international level is relatively small ( \(\sim 5 \%\) by weight). Discarding has been more of an issue for local fisheries such as trawling in inshore waters. Restrictive bycatch limits for trawls and nets in the new legislation are also likely to cause increased discarding. Without an evaluation of historical fishery selectivity and discard patterns, and changes caused by the new legislation, it is not possible to evaluate the short-term impact of the measures or to monitor how selectivity and discarding will alter in the future as fleets adapt to the new regulations. WKBASS (ICES, 2017) explored the performance of the Stock Synthesis model including recent (noisy) estimates of commercial discards and length compositions. For years prior to inception of observer schemes, a history of discards can be constructed based on the estimates of fishery selectivity and discarding ogives estimated for the recent years that have discards observations.

Note that the lack of discards data for line fishing boats in the UK and France is a deficiency for any assessment including discards, given the importance of line fishing in both countries.

\subsection*{31.2.7 Recreational catches}

Recreational marine fishery surveys covering different parts of the sea bass stock in the North Sea, Channel, Celtic Sea and Irish Sea have been developed in France, Netherlands, England and Belgium (ICES, 2012c). Methods and description of national surveys are described in the stock annex and in ICES (2012c).

The available estimates are summarised in Table 10.1.2.11. WGRFS 2017 concluded from these surveys that around 1501 t and 1627 t of sea bass were either landed or died after being released by recreational fishing (mainly sea angling) in 2012 and 2016 respectively. This estimate will have some bias because it is incomplete (no surveys in Wales, for example) and there was considerable uncertainty in the figure for England due to limitations in the data available for estimating sea angling effort and for estimating private boat catches. An additional survey result for the Netherlands was available to WGCSE for the period March 2012-March 2013 indicating an increase in recreational harvest from 138 t to 229 t (van der Hammen et al., 2015). However, there is no additional information to allow any further estimates of total international recreational harvests.

From information available, the precision of combined international estimates is likely to be moderate, with relative standard errors of at least \(20 \%\). However, the ratio of recreational removals estimates in each country is a very consistent proportion of the combined recreational and reported commercial fishery landings (France: 25\%; England: \(28 \%\); Netherlands: \(26 \%\); Belgium: \(29 \%\) ) giving greater confidence in the estimates, although the figure for the 2012 Netherlands survey is much higher at \(38 \%\). The recreational catch estimates exclude figures for Wales or any other European countries without surveys.

The proportion of fishery removals comprising recreational harvests has additional uncertainty due to unknown rates of post-release mortality, biases in reported commercial fishery landings, and unaccounted-for commercial (dead) discards. Extensive studies have been carried out to estimate post-release mortality in recreational fisheries for a wide range of species (see stock annex) but no information is available for European sea bass. For the purposes of the assessment, post-release mortality of recreational caught fish has been assumed to be zero, but studies are needed to estimate the mortality. This will become more critical due to the imposition of bag limits and likely increases in MLS which will elevate the released rate further.

A bias in the proportion of total removals due to recreational fishing is unreported commercial fishery landings. For under 10 m vessels which do not have to submit EU logbooks, Article 65(2) of the EU Control regulation 1224/2009 allows disposal of up to 30 kg of fish for personal consumption without supplying sales slips. For smallscale, low-volume fisheries catching sea bass, this missing catch could be substantial but is poorly understood. French under 10 m vessels are all required to supply logbooks but this is currently not the case in all other countries including the UK. A separate logbook scheme for sea bass was developed in England by Cefas in the 1980s and indicated that total sea bass landings by commercial under 10 m boats using nets and lines could have been three or more times larger than reported landings (see results in stock annex). The scheme was terminated in 2010, so it is not known if the bias has continued at the same level.

It is concluded that recreational fishing may have accounted for up to \(30 \%\) of total fishery removals and fishing mortality in 2012, and this represents a significant missing catch from the assessment. IBPBass (ICES, 2014b) developed a method to reflect this additional mortality in the Stock Synthesis model. This is described further in the stock assessment section and the stock annex. The historical trends in recreational catches and fishing mortality are unknown, but they are likely to differ from commercial catch trends. It is possible that, before the large growth in biomass of the stock in the 1990s, recreational fishing may have been a much larger proportion of total fishery removals than today.

\section*{In blue : WKBASS REPORT TEXT}

The WKBASS Data WK documented and reviewed all available recreational catch estimates for sea bass in Areas 4.bc, 7.d.e-h (Table 4.2.6.1). It proposed that the assessment workshop explores ways to reflect the likely reduction in recreational fishing mortality due to the MCRS and bag limits especially in 2016.
The few national surveys that are available have not been internationally coordinated and cover different years, preventing the compilation of coherent annual estimates derived from national surveys in the same year. Previous ICES assessments have added together the retained and released catch estimates from surveys in France in 2009-2011; UK in 2012 and Netherlands in 2010-2011, together with a retained catch figure of 60 t for Belgium in 2012 (provided informally to ICES WGCSE) to give an amalgamated figure of 1500 t retained catch that was arbitrarily assumed to represent recreational fishery removals in 2012. Dead releases were not accounted for.

Fleet 6 (Recreational fishery) in the SS3 data file (Annex XX ) is now landings plus the released catch that is expected to die due to post-release mortality of \(15 \%\), but is an output of the model for all years other than 2012 for which a value of 1500 t is assumed based on recreational fishery surveys in UK, France and Netherlands. The addition of dead released fish has compensated for the removal of the Belgian retained
catch figure of 60 t , as WKBass could not locate direct evidence from analysis of data for this figure, hence the total removals has remained at 1500 t .

Table 4.2.6.1. Estimates of recreational catches of seabass in different countries and years in numbers and weight of fish for retained and released components of the catch, and release rates. The relative standard error (RSE) is provided where available and expressed as a percentage. The source of the data is also provided.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & Numbers (thousands) & Weight (tonnes) & & & & & & & & & & & & & \\
\hline Country & Year & Area & Retained & RSE & Released & RSE & Total & RSE & \begin{tabular}{l}
\% \\
released
\end{tabular} & Retained & RSE & relapsed & RSE & Total & RSE & \begin{tabular}{l}
\% \\
released
\end{tabular} & Source \\
\hline France & \[
\begin{aligned}
& 2009- \\
& 2011
\end{aligned}
\] & 4 \& 7 & 781 & & 796 & & 1578 & >26 & 50 & 940 & & 332 & & 1272 & >26 & 26 & ICES (2014c) \\
\hline & \[
\begin{aligned}
& 2009- \\
& 2011
\end{aligned}
\] & Biscay & 1168 & & 1190 & & 2357 & >26 & 50 & 1405 & & 496 & & 1901 & >26 & 26 & Calculated \\
\hline & \[
\begin{aligned}
& 2009- \\
& 2011
\end{aligned}
\] & All & 1949 & & 1986 & & 3935 & 26 & 50 & 2345 & & 828 & & 3173 & 26 & 26 & Rocklin et al. (2014) \\
\hline & \[
\begin{aligned}
& 2011- \\
& 2012
\end{aligned}
\] & 4 \& 7 & 2043 & & 1581 & & 3624 & & 44 & 2458 & & 659 & & 3117 & & 21 & Ifremer \\
\hline & \[
\begin{aligned}
& 2011- \\
& 2012
\end{aligned}
\] & Biscay & 572 & & 281 & & 852 & & 33 & 688 & & 117 & & 805 & & 15 & Ifremer \\
\hline & \[
\begin{aligned}
& 2011- \\
& 2012
\end{aligned}
\] & All & 2615 & & 1861 & & 3935 & & 47 & 3146 & & 776 & & 3922 & & 20 & Ifremer \\
\hline Netherlands & \[
\begin{aligned}
& 2010- \\
& 2011
\end{aligned}
\] & North Sea & 234 & 38 & 131 & 27 & 366 & 30 & 36 & 138 & 37 & & & & & & \begin{tabular}{l}
van der \\
Hammen and de Graaf (2013)
\end{tabular} \\
\hline & \[
\begin{aligned}
& 2012- \\
& 2013
\end{aligned}
\] & North Sea & 335 & 26 & 332 & 21 & 667 & & 50 & 229 & 26 & & & & & & \begin{tabular}{l}
van der \\
Hammen and de Graaf (2015)
\end{tabular} \\
\hline & \[
\begin{aligned}
& 2014- \\
& 2015
\end{aligned}
\] & North Sea & 176 & 19 & 499 & 20 & 675 & & 74 & 138 & 20 & & & & & & \begin{tabular}{l}
van der \\
Hammen and de Graff (unpublished data.)
\end{tabular} \\
\hline UK & \[
\begin{aligned}
& 2012- \\
& 2013
\end{aligned}
\] & \(4 \& 7\) & 367 & & 576 & & 943 & & 61 & 230-440 & & 150-250 & & \[
\begin{gathered}
380- \\
690
\end{gathered}
\] & \[
\begin{gathered}
26- \\
38
\end{gathered}
\] & 36-39 & Armstrong et al. (2013) \\
\hline
\end{tabular}

The combined figure of 1500 t represents around a quarter of total commercial and recreational fishery landings. IBPBass 2014 (ICES, 2014) considered it necessary to have the catch and fishing mortality due to recreational fishing represented in the assessment model. There are no data to indicate how the recreational catch may have changed over time. The large growth in both the sea bass stock and the commercial fisheries in the 1990s is unlikely to have been reflected in a similar growth in recreational fishing which is an activity targeting a wide range of species. IBPBass 2014 considered it more plausible to treat recreational fishing as having a more stable participation and effort over time than the commercial fishery. Historical surveys of angling participation in the UK tended to support this idea, although targeting of sea bass is likely to have changed according to fish availability, and improvements in sea angling technology and skills will have occurred. A decision was therefore made to apply a constant recreational fishing mortality-at-age vector to all years, with selectivity the same as UK commercial lines, and iteratively adjust the mean recreational F in successive Stock Synthesis runs until a retained catch of 1500 t was obtained for 2012. This was done by IBPBass 2014 by iteratively adjusting the recreational F-at-age vector and adding it to the natural mortality vector in each iteration. The annual recreational catch was then calculated by applying the catch equation with recreational F to the population numbers at each age estimated in the model. This approach had a disadvantage that estimation of virgin biomass at zero \(F\) in the model output was incorrect because the recreational \(F\) was added into the \(M\) vector in the control file. IBPBass 2016 modified this procedure by calculating the historical landings series that gives constant recreational F (and 1500 t landings in 2012), and including this as a landings series in the SS3 data input file rather than having the recreational F added to the M vector. WKBASS decided to continue this approach. WKBass agreed that the final values estimated for recreational catch from the approved benchmark assessment will remain fixed for the historic series until the next benchmark or when new data become available.

\subsection*{31.2.8 Biological data}

This section provides biological parameters of growth, maturity and natural mortality required for stock assessment of sea bass. Further information and plots of growth and maturity data can be found in the stock annex and WGCSE 2013, and detailed methods and results are given in IBPNew 2012 (ICES, 2012a) working documents by Armstrong (2012) and Armstrong and Walmsley (2012b,c). Further information of natural mortality data can be found in the WKBASS report (ICES, 2017)

\subsection*{31.2.8.1 Growth parameters}

Growth parameters, standard deviations of length-at-age distributions, and an age error vector are input to the Stock Synthesis model. These are derived from more than 90000 sea bass sampled by Cefas since 1985 from fishery catches around England and Wales as well as from trawls surveys of young bass in the Solent and Thames estuary.

The sampled sea bass show some sexual dimorphism of growth from about seven years of age onwards. It is currently not possible to implement a sex-disaggregated Stock Synthesis assessment as it is impossible to disaggregate commercial fishery catches and survey catches by sex. Therefore, a combined-sex assessment using a combined-sex growth curve is adopted. Mean length-at-age has not shown any trend over time, and length-at-age is also very similar in strong and weak year classes (Armstrong and Walmsley, 2012b). Hence data have been combined over the full se-
ries to estimate growth parameters, and the estimated body weights-at-length and age in the Stock Synthesis assessment model are treated as being constant over time.
Von Bertalanffy model parameters were estimated by area using an absolute error model minimizing \(\sum(\text { obs-exp })^{\wedge} 2\) ) in lengths-at-age:
\begin{tabular}{lccccc}
\hline \multicolumn{1}{r}{ Area } & 4.bc & 7.d & 7.e & 7.afg & All areas \\
\hline Linf \((\mathrm{cm})\) & 82.98 & 87.22 & 92.27 & 81.87 & 84.55 \\
\hline K & 0.1104 & 0.09298 & 0.07697 & 0.09246 & 0.09699 \\
\hline t0 (years) & -0.608 & -0.592 & -1.693 & -1.066 & -0.730 \\
\hline
\end{tabular}

The "all areas" VBGF parameters are used in the Stock Synthesis model.

\subsection*{31.2.8.2 Standard deviations of length-at-age}

As expected, the standard deviation of length-at-age increased with length, and the trend could be described by the linear model \(\mathrm{SD}=0.1166^{*}\) age +3.5609 . The regression estimates of SD by age class are input to the assessment model to generate length-at-age distributions.

\subsection*{31.2.8.3Age error parameters for Stock Synthesis}

Inclusion of age error parameters in the Stock Synthesis model (CVs for ageing error by age class) were derived from results of the ICES sea bass scale exchange in 2002 (Mahé et al., 2012). CVs of \(12 \%\) at-age were specified as increasing values per age class to give a standard error of \(\sim 1\) year per age class. These are used in the SS3 observation submodel to derive expected values for observed data on age distributions. Further information on ageing precision and calibration between laboratories will become available from an ICES calibration study in 2015.

\subsection*{31.2.8.4Weight-at-length}

Weight-at-length and age was estimated within the Stock Synthesis model according to the following relationship derived from UK sampling:
\[
W(\mathrm{~kg})=0.00001296 \mathrm{~L}(\mathrm{~cm})^{\wedge} 2.969
\]

\subsection*{31.2.8.5 Maturity-at-length}

Maturity ogives are derived from 590 male and 730 female seabass collected in the UK between 1982 and 2009 immediately prior to and during the spawning season (December to April). The data were modelled using a binomial error structure and logit link function, fitted in R to individual observations (Armstrong and Walmsley, 2012b). The logistic model describing proportion mature by 1 cm length class \(L\) was formulated as:
\[
\operatorname{Pmat}(L)=1 /\left(1+\mathrm{e}^{-(a+b L)}\right)
\]
defined by the parameters slope \(b\) and length intecept \(a\). These parameters were estimated separately for females and males. This can also be expressed as:
\[
\operatorname{Pmat}(L)=1 /\left(1+\mathrm{e}^{-\mathrm{b}(L+\mathrm{c})}\right) \text { where } \mathrm{c}=\mathrm{a} / \mathrm{b}
\]

Stock Synthesis uses the second formulation, and the parameters required are the slope ( \(b=0.3335\) : entered as a negative value) and the length inflection, which is the estimated length at \(50 \%\) maturity \(\left(\mathrm{L}^{50 \%}=40.65 \mathrm{~cm}\right)\).

The parameters of the model \(\operatorname{Pmat}(L)=1 /\left(1+\mathrm{e}^{-\mathrm{b}(\mathrm{L}+\mathrm{c})}\right)\) are given in Table 31.2.8.5.1.

Table 31.2.8.5.1. Estimated length-based maturity ogive parameters.
\begin{tabular}{lcc}
\hline & Females & Males \\
\hline Intercept (a) & -13.556 & -16.851 \\
\hline Slope (b) & 0.3335 & 0.4861 \\
\hline c =a/b & -40.6488 & -34.6652 \\
\hline L25\% & 37.35 & 32.41 \\
\hline L50\% & 40.65 & 34.67 \\
\hline L75\% & 43.95 & 36.93 \\
\hline
\end{tabular}

The logistic model for females and males is:
\[
\begin{array}{lr}
\operatorname{Pmat}(L)=1 /(1+\mathrm{e}-0.3335(L-40.6488)) & \text { (females) } \\
\operatorname{Pmat}(L)=1 /(1+\mathrm{e}-0.4861(L-34.6652)) & \text { (males) }
\end{array}
\]

The length-based maturity ogive for female seabass is used in the current Stock Synthesis assessment model, which derives proportion mature at age by applying the length-based ogive to the length-at-age distributions defined by the growth parameters and SD of length at age:

Table 31.2.8.5.2. Proportion mature at age (females) derived by Stock Synthesis model.
\begin{tabular}{lcccccccccc}
\hline Age & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline Pmat & 0.000 & 0.000 & 0.000 & 0.000 & 0.186 & 0.419 & 0.638 & 0.792 & 0.885 & 0.937 \\
\hline Age & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & \(19+\) \\
\hline Pmat & 0.965 & 0.980 & 0.989 & 0.993 & 0.996 & 0.998 & 0.998 & 0.999 & 0.999 & 1.000 \\
\hline
\end{tabular}

\subsection*{31.2.8.6 Natural mortality}

The current assessment uses a value of \(\mathrm{M}=0.15\) for all ages and years. This was derived in previous inter benchmarks based on methods using information on longevity, growth and maturity. The maximum observed age (tmax) in over 90000 age readings in the UK since the 1980s was 28 years. Data from 1145 recreationally caught seabass Ireland reported by IBPNew (ICES 2012) showed a maximum age of 26 . The Hoenig (1983) method based only on maximum age for teleosts gave M of \(0.15-0.16\) for maximum age 26-28 (Table 31.2.8.6.1). A more recent paper by Then et al. (2015) analysed data from 226 studies (including Hoenig, 1993) to evaluate the robustness of life-history based M inferences. They propose maximum-age methods as being the most robust. Their equation \(M=4.899\). tmax \({ }^{-0.916}\) gives \(M\) values of \(0.23-0.25\) for tmax of \(28-26\) years (Table 31.2.8.6.1). They also give an expression using values of von Bertalanffy parameters K and \(\operatorname{Linf}\left(\mathrm{M}=4.118 . \mathrm{K}^{0.73}\right.\). Linf \(\left.^{-0.33}\right)\) which predicts \(\mathrm{M}=0.17\) for sea bass in areas 4 and 7. The WKBASS Data WK proposed use of the Then et al. tmax method \((M=0.24)\) as being more robust than inferences from any single study.

Natural mortality is high in young fish and declines with age, as shown by multispecies models that include diet data and estimation of size preferences (such as applied by ICES WGSAM for the North Sea, ICES, 2014). Proxy methods to infer agedependent M in younger fish are given by Lorenzen (1996) and Gislason et al. (2010). Values for sea bass by age are given in Tables 31.2.8.6.1 and 31.2.8.6.2 and Figure 31.2.8.6.1. The Gislason method gives much lower M for adult fish. Brodziak et al. (2009) suggest that methods such as Lorenzen can be used to derive the relative agedependent patterns for younger fish, but can be re-scaled to give M at older ages more similar to those from methods using (e.g.) tmax. Table 31.2.8.6.2 and Figure 31.2.8.6.1 show Lorenzen and Gislason \(M\) rescaled to give mean \(M\) at ages 10 and older that are equivalent to the Then et al. (2015) prediction of 0.24 for tmax 26-28, or rescaled to the previous M value of 0.15 . The WKBASS Data WK proposed Lorenzen scaled to 0.24 for the older ages. For the benchmark, the following M options were therefore explored:

1 ) \(\mathrm{M}=0.15\) at all ages (continuity with current approach);
2 ) \(\mathrm{M}=0.24\) at all ages, Then et al. 2015;
3 ) Lorenzen scaled to \(\mathrm{M}=0.24\) at ages \(10+\);
4 ) Estimation of age-invariant \(M\) by model;
5 ) \(\mathrm{M}=0.1\) and 0.2 at all ages to explore likelihoods in comparison with the other options.

Table 31.2.8.6.1. Bss-47: inferences on natural mortality rate from a range of life-history based methods (WKBASS Data WK update of table provided by ICES, IBPNEW 2012 sea bass benchmark; see data WK report for full list of references).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Source} & \multirow[t]{2}{*}{Formulation} & \multicolumn{3}{|l|}{Combined sex M} \\
\hline & & tmax28 & tmax 27 & tmax 26 \\
\hline \multirow[t]{2}{*}{Hoenig 1983} & variety of taxa \(\ln (\mathrm{M})=1.44-0.982 * \ln (\operatorname{tmax})\); & 0.160 & 0.166 & 0.160 \\
\hline & teleosts \(\quad \mathrm{hn}(\mathrm{M})=1.46-1.01 * \ln (\mathrm{tmax})\) & 0.149 & 0.154 & 0.160 \\
\hline & \(\mathrm{M}=4.899^{*} \operatorname{tmax} \wedge-.916\) (from 226 species) & 0.231 & 0.239 & 0.248 \\
\hline Then et al 2015 & \(\mathrm{M}=4.118^{*} \mathrm{~K}^{\wedge} 0.73 . \mathrm{Linf}^{\wedge}-0.33\) & \multicolumn{3}{|c|}{0.173} \\
\hline Alverson and Carney 1975 & \(\mathrm{M}=3 \mathrm{k} /\left(\exp \left(0.38^{*} \mathrm{tmax}^{*} \mathrm{k}\right)-1\right)\) & 0.161 & 0.171 & 0.181 \\
\hline \multirow[t]{3}{*}{Pauly 1980} & \multirow[t]{3}{*}{\(M=\exp \left(-0.0152+0.6543^{*} \ln (\mathrm{k})-0.279 * \ln (\right.\) Linf,cm \(\left.)+0.4634^{*} \ln T(0 \mathrm{C})\right)\)} & 0.196 & TdegC= & 12 \\
\hline & & 0.211 & TdegC= & 14 \\
\hline & & 0.224 & TdegC= & 16 \\
\hline Ralston 1987 & \(\mathrm{M}=0.0189+2.06{ }^{*} \mathrm{k}\) & 0.219 & & \\
\hline \multirow[t]{2}{*}{Beverton 1992} & \multirow[t]{2}{*}{\(\mathrm{M}=3 \mathrm{k} /\left(\exp \left(a m^{*} \mathrm{k}\right)-1\right) \quad\) am = age at \(50 \%\) maturity} & 0.369 & \multicolumn{2}{|l|}{female \(a m\); comb sex k} \\
\hline & & 0.614 & \multicolumn{2}{|l|}{male am, comb sex k} \\
\hline Jensen (1997) & \(\mathrm{M}=1.5 \mathrm{~K}\) & \multicolumn{3}{|l|}{0.146} \\
\hline & & & Gislason & Lorenzen \\
\hline Gislason 2010 & \(M=\exp \left(0.55-1.61^{*} \operatorname{Ln}(\mathrm{~L})+1.44^{*} \operatorname{Ln}(\operatorname{Linf})+\operatorname{Ln}(\mathrm{K})\right)\) & age 1 & 1.599 & 1.210 \\
\hline \multirow[t]{6}{*}{Lorenzen} & \multirow[t]{2}{*}{\(\mathrm{M}=3^{*} \mathrm{~W}^{\wedge}-0.288\)} & age 3 & 0.539 & 0.644 \\
\hline & & age 5 & 0.312 & 0.482 \\
\hline & Gislason: L = length at age from VBGF & age 7 & 0.221 & 0.402 \\
\hline & \multirow[t]{3}{*}{Lorenzen: W = mean wt at age from 2016 WGCSE SS3 run} & age 9 & 0.175 & 0.355 \\
\hline & & age 15 & 0.117 & 0.287 \\
\hline & & age 20 & 0.100 & 0.262 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Life history parameters \\
\hline VBGF K (combined sex) & 0.097 \\
VBGF Linf (combined sex) & 84.55 \\
VBGF to (combined sex & -0.73 \\
Age at 50\% maturity females (L50\% converted to age) & 6 \\
Age at 50\% maturity males (L50\% converted to age) & 4 \\
& \\
Max age (combined sex) & 28 \\
Length at 50\% mat females & 40.65 \\
Length at 50\% mat males & 34.67 \\
\hline
\end{tabular}

Table 31.2.8.6.2. Bss-47: Inferences on natural mortality rate by age class using the Gislason et al. (2010) and Lorenzen (2006) methods. Values are given unscaled, and scaled to a mean \(M\) of 0.24 at ages 10-20 (based on Then et al. 2015 for maximum age of 27 years) and mean M of 0.15 at ages 10-20 (from Hoenig, 1983 using maximum age of 27-28 years).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{age class} & \multicolumn{4}{|c|}{Gislason method M} & \multicolumn{4}{|c|}{Lorenzen method M} \\
\hline & L & Not scaled & Scaled to 0.24 at ages 1020 & Scaled to 0.15 at age 5-20 & W (kg) & Not scaled & \begin{tabular}{l}
Scaled to \\
0.24 at \\
ages 10- \\
20
\end{tabular} & Scaled to 0.15 at age 5-20 \\
\hline 1 & 13.1 & 1.599 & 3.145 & 1.966 & 0.023 & 1.210 & 0.995 & 0.622 \\
\hline 2 & 19.7 & 0.827 & 1.627 & 1.017 & 0.096 & 0.807 & 0.663 & 0.415 \\
\hline 3 & 25.7 & 0.539 & 1.060 & 0.662 & 0.209 & 0.644 & 0.530 & 0.331 \\
\hline 4 & 31.1 & 0.395 & 0.778 & 0.486 & 0.369 & 0.547 & 0.450 & 0.281 \\
\hline 5 & 36.1 & 0.312 & 0.613 & 0.383 & 0.570 & 0.482 & 0.397 & 0.248 \\
\hline 6 & 40.5 & 0.258 & 0.508 & 0.317 & 0.807 & 0.436 & 0.359 & 0.224 \\
\hline 7 & 44.6 & 0.221 & 0.435 & 0.272 & 1.073 & 0.402 & 0.331 & 0.207 \\
\hline 8 & 48.3 & 0.195 & 0.383 & 0.239 & 1.359 & 0.376 & 0.309 & 0.193 \\
\hline 9 & 51.6 & 0.175 & 0.344 & 0.215 & 1.659 & 0.355 & 0.292 & 0.182 \\
\hline 10 & 54.7 & 0.159 & 0.314 & 0.196 & 1.968 & 0.338 & 0.278 & 0.174 \\
\hline 11 & 57.5 & 0.147 & 0.290 & 0.181 & 2.279 & 0.324 & 0.266 & 0.166 \\
\hline 12 & 60.0 & 0.138 & 0.270 & 0.169 & 2.588 & 0.312 & 0.257 & 0.160 \\
\hline 13 & 62.2 & 0.130 & 0.255 & 0.159 & 2.893 & 0.302 & 0.249 & 0.155 \\
\hline 14 & 64.3 & 0.123 & 0.242 & 0.151 & 3.190 & 0.294 & 0.242 & 0.151 \\
\hline 15 & 66.2 & 0.117 & 0.231 & 0.144 & 3.476 & 0.287 & 0.236 & 0.147 \\
\hline 16 & 67.9 & 0.113 & 0.222 & 0.138 & 3.751 & 0.280 & 0.231 & 0.144 \\
\hline 17 & 69.4 & 0.109 & 0.214 & 0.134 & 4.013 & 0.275 & 0.226 & 0.141 \\
\hline 18 & 70.8 & 0.105 & 0.207 & 0.129 & 4.262 & 0.270 & 0.222 & 0.139 \\
\hline 19 & 72.1 & 0.102 & 0.201 & 0.126 & 4.498 & 0.266 & 0.219 & 0.137 \\
\hline 20 & 73.2 & 0.100 & 0.196 & 0.122 & 4.719 & 0.262 & 0.216 & 0.135 \\
\hline 21 & 74.3 & 0.097 & 0.192 & 0.120 & 4.926 & 0.259 & 0.213 & 0.133 \\
\hline 22 & 75.2 & 0.095 & 0.188 & 0.117 & 5.119 & 0.256 & 0.211 & 0.132 \\
\hline 23 & 76.1 & 0.094 & 0.184 & 0.115 & 5.299 & 0.254 & 0.209 & 0.130 \\
\hline 24 & 76.9 & 0.092 & 0.181 & 0.113 & 5.464 & 0.252 & 0.207 & 0.129 \\
\hline 25 & 77.6 & 0.091 & 0.179 & 0.112 & 5.616 & 0.250 & 0.205 & 0.128 \\
\hline 26 & 78.2 & 0.090 & 0.176 & 0.110 & 5.755 & 0.248 & 0.204 & 0.127 \\
\hline 27 & 78.8 & 0.089 & 0.174 & 0.109 & 5.882 & 0.246 & 0.203 & 0.127 \\
\hline 28 & 79.3 & 0.088 & 0.172 & 0.108 & 5.996 & 0.245 & 0.201 & 0.126 \\
\hline \begin{tabular}{l}
mean over \\
ages 10- \\
20
\end{tabular} & & 0.122 & 0.240 & 0.150 & 3.422 & 0.292 & 0.240 & 0.150 \\
\hline
\end{tabular}


Figure 31.2.8.6.1. Bss-47 stock: (a) Natural mortality values inferred from Gislason et al. (2010) and Lorenzen (1996); (b) Gislason \(M\) values rescaled to average \(M=0.15\) or 0.24 at ages 10-20); (c) Lorenzen \(M\) values rescaled to average \(M=0.15\) or 0.24 at ages \(10-20\) ).

\subsection*{31.2.8.7 Hooking mortality, and mortality of discarded bass from commercial vessels}

Hooking mortality in recreational fisheries is discussed in the report section on recreational fish catches. Sea bass discarded from commercial line vessels and netters may survive depending on the extent of injury or stress. This will affect the calculation of fishing mortality reference points that are conditional on selectivity patterns. Trawlcaught undersized bass are less likely to survive. Unfortunately, no estimates of survival rates of commercial bass discards are available.

\subsection*{31.2.9 Survey data used in assessment}

\subsection*{31.2.9.1 Pre-recruit surveys}

An inshore trawl survey in autumn in the vicinity of a major bass nursery area in the Solent (7.d English coast, Figure 10.1.2.3) provides abundance indices at-ages 2 to 4 for the stock assessment. Data are available from 1982, although there are intermittent years when the survey did not take place (Table 10.1.2.12). The stock annex provides details of this survey and of some other pre-recruit survey series not considered appropriate by previous WGs and IBPBass for inclusion in the assessment. A previous assessment of the stock by Pawson et al. (2007), using a statistical separable model, indicated that recruitment patterns in 7.afg, 7.eh, 7.d and 4.bc were similar to the trends in the Solent survey. This provides some justification for using the Solent survey in the current assessment despite its extremely localised coverage. Similar surveys, carried out by Ifremer, commenced on the coast of France from 2014. At this stage, the methodology has been set and give good results in term of gear used, catchability of seabass group \(0,1,2,3\) and understanding of nurseries dynamics but in 2017, there is still uncertainty to its continuation.

Abundance indices for ages 2-4 in the Solent autumn survey have large interannual variability (Table 10.1.2.12; Figure10.1.2.4). Strong year classes are apparent in 1989, 1995 and 1997, but in the last decade, year-class strength has been less variable, a pattern also seen in the commercial fishery. The survey indicates a general trend of increasing recruitment since the early 1990s, but weak year classes from 2008 to 2012. There is only one pronounced year-effect, in 2007. The age-2 index appears less consistent than the age 3 and 4 indices.

WKBASS Data WK (ICES, 2017) made some small changes to the Solent bass survey indices for the most recent two years to ensure consistency with values for previous years. This resulted in an improved model fit to the data. The CVs of the aggregated index are substantially inflated because there are expected to be substantial additional variability in the index in relation to assessment model estimates of population trends at ages 2-4 which relate to the entire stock area.

\subsection*{31.2.9.2 Channel Groundfish survey}

The Ifremer Channel Groundfish survey, carried out in October each year since 1988, provides swept-area indices of sea bass abundance in the eastern Channel (7.d) together with annual length compositions. Details of the survey are given in Coppin et al. (2002), which includes a full description of the GOV trawl used in October each year at the 82 stations in ICES Division 7.d shown in Figure 10.1.2.5. The majority of sea bass are caught in the coastal waters of England and France (Figure 10.1.2.5).

The abundance indices are calculated applying a stratified-random swept-area based estimator. Strata correspond to ICES statistical rectangles. Swept-area is calculated using wingspread. As this is a stratified swept-area based indicator, uncertainty is based on between haul variance within a strata and summation of variances across strata. Further details are in the stock annex.

The swept-area indices are given in Table 10.1.2.13. The trends in both the index and in the proportion of stations with sea bass showed similarities to the trend in total biomass estimates from the ICES, WGCSE 2013 update assessment using Stock Synthesis, before the survey data became available, lending a priori support to the use of the index in the assessment (Figure 10.1.2.6)

The precision of the swept-area indices appears unrealistically high in some years (e.g. 0.025 in 1991), which may indicate that the index trends are driven largely by the incidence of positive catches. Modelling of the data using delta lognormal models may provide more realistic precision. During trial Stock Synthesis runs, the use of the CVs in Table 10.1.2.13 resulted in poor fit to length frequencies in many years due to individual years with very low CVs being given far too much weight. Relaxing the CVs to 0.30 for all years except the first three years (set to 0.6 in preliminary runs given the very low incidence of positive stations) allowed the model to fit the length compositions more closely over the series. The final assessment excluded the composition data for 1988-1990 due to the very low sample sizes, but retained the overall index.

NB: The Channel Ground Fish Survey (CGFS) has been conducted since 1988 with a systematic fixed sampling program with a high opening (GOV) bottom trawl \((20 \mathrm{~mm}\) meshsize codend), using the same Research Vessel Gwen Drez since 1988 to 2015. The RV Gwen Drez was decommissioned in 2015, and it was decided to continue the time-series using the RV Thalassa (a bigger vessel). An inter-calibration exercise was conducted in 2015 by using paired tows, simultaneously with both vessels (see Working Document in WGIBTS 2015 report for description of the inter-calibration results). The original index was calculated as numbers of fish per hour tow. The initial step in calculating the index was numbers per ICES square per hour tow (the stratum in this survey) and then raised to the whole Eastern Channel to compute a number of fish per age class per hour tow. As the surface trawled area differed between the two RVs (difference in trawling speed and width of the gear used) a density index (number of fish per \(\mathrm{km}^{2}\) ) was also calculated in order to create a consistent index over the whole time-series.

The index is then computed using the formula:
\[
\bar{N}=\frac{\sum_{s} A_{s} \cdot \overline{N_{s}}}{\sum_{s} A_{s}} \quad \overline{N_{s}} \text { mean abundance in the strata } s, \text { expressed in number } / \mathrm{km}^{2}
\]

With :

As the vertical opening of the gear used by the RV Thalassa was higher than the previous one, and in order to take into account any vessel effect on catchability, the cpue were compared for all the species caught. Differences in cpues between the new and the old survey setting were found for nine species (mostly pelagic species) and a correction factor applied to continue the time-series. The correction coefficient for sea bass used to continue the time-series is \(\mathrm{R}=1.707+/-0.091\). In addition to the calculation of the new index, a number of errors were found in the surface calculation of some strata. These errors where corrected and the new indices (expressed in number of fish per \(\mathrm{km}^{2}\) instead of number of fish per hour fished) take these corrections into account.

As the new index introduced significant changes that requires it to be reviewed and evaluated the WG decided not to use the new index, and to review and explore the use of it during the next benchmark in 2017.

\subsection*{31.2.10 Commercial landings per unit of effort}

A major shortcoming of the current Bss-47 assessment is the absence of relative abundance indices for adult fish covering the majority of the stock area. The Solent survey covers only pre-recruits at ages 2-4 at one nursery area in 7.d, and the Channel groundfish survey predominantly selects small sea bass in the length range 3045 cm , also only in area 7.d. Even if the recruitment time-series is estimated robustly by SS3, the estimates of stock size and fishing mortality for adult seabass in the most recent years are driven mainly by the fitting to catch data conditional on assumptions regarding fleet selectivity and stability of selectivity. The absence of a relative abundance index series covering adult sea bass has been routinely identified as a major data deficiency in ICES assessment reports and annual advice.

There are no scientific surveys providing sufficient data on adult sea bass to develop abundance indices. Therefore, Ifremer has investigated the potential for deriving an index from commercial fishery landings and effort data derived from the improved fishery data available since 2000 from commercial logbooks. This allows the possibility to model lpue at the resolution of ICES rectangle and gear strata. The methods and results of a GLIM analysis of data covering areas 7 and 8 were presented in a Working Document by Laurec and Drogou to the WKBASS data WK (ICES, 2017).

Analysis of trip data by rectangle and month showed very coherent seasonal and spatial patterns in lpue, matching what is known about the fisheries using different types of gears (otter trawl; midwater trawl; nets; lines) and the seasonal movements of sea bass to and from spawning sites. This provided confidence in the ability of the lpue data to provide information on relative abundance. Lpue relative abundance indices covering 2000-2015 were provided to WKBASS data WK for groups of rectangles and gears both as analytical solutions and as bootstrap estimates with confidence intervals. The lpue was calculated excluding all vessel-days where no sea bass were landed. Full diagnostics of the model fits were not available. Some unusual patterns were noted in the time-series by WKBASS members, including a large drop in lpue for Bss47 from 2000 to 2001, and a large step change in lpue in this stock between 2008 and 2009 in some gears and areas as well as the combined index. Ifremer considered the 2000 data to be unreliable as it was the year in which the new database was being introduced, and should not be used, however the 2008-2009 change could not be adequately explained.

During the WKBASS benchmark assessment meeting, a new index series was and a further update with a truncated index provided to the EWG, both excluding a large number of vessels with predominantly zero landings of seabass. This reduced the size of the lpue fleet but produced smoother lpue trends (Figure 4.2.7.3). The index combines trends from otter trawls, nets and lines, but excludes midwater trawls which target spawning aggregations and have not fished on the Bss-47 stock since 2014. However, WKBass decided that more detailed diagnostics of the GLIM fits, and supporting data, should be requested and evaluated by the external reviewers and other WKBass members before accepting the lpue series for use in the assessments.

\subsection*{31.2.11 Other relevant data}

None.

\subsection*{31.3 Stock assessment}

\subsection*{31.3.1 Model structure and input data / parameters for update assessment}

The assessment was conducted using Stock Synthesis (Methot, 2000; 2011), using version 3.24u (Methot, 2011). The structure and input data / parameters of the SS3 model developed by IBPBass 2 are summarized below:

\subsection*{31.3.1.1 Model structure}
- Temporal unit: annual based data (landings, survey indices, age-frequency and length-frequency);
- Spatial structure: One area;
- Sex: Both sexes combined.

\subsection*{31.3.1.2 Fleet definition}

Six fleets defined: 1. UK bottom trawls, nets; 2 . UK lines; 3 . UK midwater pair trawls; 4. French fleets (combined); 5. Other (other countries and other UK fleets combined); 6. Recreational fisheries.

\subsection*{31.3.1.3 Landed catches}

Annual landings in tonnes from 1985 to final year for the Five fleets from ICES subdivisions \(4 . b\) and \(c, 7 . a, d-h\). French data were as provided by Ifremer and the recreational catch was provide for 2012 and 2016 with the time-series from 1985 to 2015 was iteratively reconstructed conditioned on the 2012 estimated value of 1501 t .

\subsection*{31.3.1.4Abundance indices}

Channel Groundfish Survey in 7.d in autumn (France), 1988 to 2014: total swept-area abundance index and associated length composition data. Number of stations with sea bass is used as input effective sample size. Input CV for survey \(=0.30\) all years. First three years of composition data are excluded.
Cefas Solent Autumn bass survey (7.d), years 1986 to 2009, 2011, 2013 to 2015, for ages 2-4. Selection was fitted as a function of length using a double normal model, with minimum and maximum ages specified as 2 and 4 in the age selection function.

\subsection*{31.3.1.5 Fishery landings age composition data}

Age bins: 0 to 15 with a plus group for ages 16 and over. Age compositions for fleets are expressed as fleet-raised numbers-at-age, although they are treated as relative compositions in SS3. Year range for UK trawls/nets and UK lines: 1985 to present; UK midwater pair trawl: 1996 to 2015 (no samples for 1997, 2013-2014, 2016); French all fleets were input from 2000 to present.

\subsection*{31.3.1.6Fishery landings length composition data}

The length bin was set from 4 to 100 cm by 2 cm intervals. Length compositions for fleets are expressed as fleet-raised number-at-length. Year range for UK trawls/nets: 1985 to present; UK lines: 1985 to present; UK midwater pair trawl: 1985 to 2012 (no samples for 1997, 2013-2016); French all fleets combined were input from 2000 to present.

\subsection*{31.3.1.7 Model assumptions and parameters}

Table 10.1.3.1 summarises key model assumptions and parameters. Other parameter values and input data characteristics are defined in the SS3 control file BassIVVII.ctl, the start.SS file, the forecast file Forecast.SS and the data file BassIVVII.dat.

\subsection*{31.3.1.8 Incorporation of recreational fishery catch estimates}

Where catch is not available the vector of recreational fishing catch values, landed plus dead released fish assumed to be \(15 \%\) of all released fish, was generated using the selectivity for commercial UK line fisheries and a value of F for recreational fishing in 2012. For a given value of F , the recreational harvest was calculated based on catch in 2012 and the recreational F. The F and landings for recreational fishing was adjusted in successive SS3 runs until the recreational F for the time-series was close to the F giving 1501 t in 2012. The calculations for the final assessment run are given in Table 10.1.3.2.

\subsection*{31.3.1.9Final update assessment: diagnostics}

The likelihood components ( \(\log \mathrm{L}^{*}\) Lambda) for the update SS3 assessment are given below:
\begin{tabular}{lc}
\hline \multicolumn{1}{l}{ Likelihood components } & Likelihood \\
\hline TOTAL & 553.097 \\
\hline Catch & \(1.51759 \mathrm{e}-12\) \\
\hline Equilibrium catch & 0.480357 \\
\hline Survey & -1.22319 \\
\hline Length compositions & 207.776 \\
\hline Age compositions & 316.154 \\
\hline Recruitment & 29.877 \\
\hline Parameter soft bounds & 0.0136829 \\
\hline
\end{tabular}

A range of model outputs and diagnostics are given in Figures 10.1.3.4-10.1.3.17
Good correspondence was found between the observed and fitted length and age compositions for each fleet (Figures 10.1.3.6-10.1.3.14), although the fit to the French length compositions in 2014 was poorer than for preceding years. Some diagonal residual patterns are noted in the commercial age compositions indicating some problems in fitting extreme variations in recruitment.

Any smearing of age estimates from a strong year class into neighbouring weak ones could be responsible for year-class residuals in the UK age compositions that are apparent in the first half of the series. The age error vector included in the model helps to accommodate this in the fit to age compositions. The combined fit of the age and length composition data aggregated over the series was very close (Figure 10.1.3.8 and 14).

The survey abundance indices are fit reasonably well (Figure 10.1.3.15 and 16). The UK Solent autumn survey is characterised by a large variability with outliers present in the model fit (Figure 10.1.3.15). The model fits closely to the low indices for recent years because there are few fishery composition data for estimating these recent year classes.

The model is able to fit recruitment deviations with reasonable precision back to around the 1974 year class (Figure 10.1.3.17) allowing a longer term perception of recruitment dynamics. Recruitment is highly variable with no evidence of a reduction in average recruitment at the lower SSB values (Figure 10.1.3.17) although this perception is affected by the imposition of a steepness value of 0.999 for the fitted Beverton-Holt stock-recruit curve. IBPBass and IBPBass 2 found that likelihoods progressively worsened as steepness value was reduced.

\subsection*{31.3.2 Retrospective analyses}

Retrospective analysis with a five-year peel was carried out. For the runs with data up to 2012, 2013 and 2014, it was necessary to re-estimate the recreational F vector to give recreational landings of 1501 t in 2012. For runs with final data year 2011 or earlier, the recreational F vector for the run ending 2012 was adopted. There is some evidence of a retrospective pattern (Figure 10.1.3.18) although the WGCSE 2017 update assessment has higher SSB and lower F than the 2016 EWG assessment (Figure 10.1.3.20).

The model is sensitive to the addition of new data and its associated weightings with the more recent data having more influence given the higher sampling levels.

\subsection*{31.3.3 Final update assessment: long-term trends}

The time-series of estimates of numbers-at-age, combined recreational and commercial \(\mathrm{F}_{(5-11) \text {, }}\) are given in Tables 10.1.3.2-10.1.3.3, and a summary of SSB, total stock biomass (TSB), recruitment and F are given in Table 10.1.3.4 and Figure 10.1.3.19. These series are based on the final SS3 update run with 2015 set as the final year. In order to obtain biomass estimates for 2016 and Fs for 2015 for the forecast the final year is set to 2016.

A sharp increase in F between 2010 and 2013 is generated because the assessment model interprets that landings were maintained despite a rapid decline in biomass. This may be a plausible scenario where aggregations or predictable migration routes of sea bass can be targeted, and it is possible for fisheries to maintain landings as total stock size declines, and hence inflict an increasing fishing mortality rate. The F has however remained high despite the sharp reduction in landings in 2014. The most recent F estimates are the least precise, and it is therefore possible that the F estimate for 2014 could be revised downwards in future assessments.

WGCSE concludes that strong year classes in 1989 and some subsequent years caused a rapid increase in biomass throughout the stock area, and landings and fishing mortality in the commercial fishery also increased. The combined commercial and recreational fishery F is well above the FmSy proxy. Recruitment has been declining since the mid-2000s, and has been very poor since 2008, however the recruitment estimated for 2013 is above the geometric mean. The combination of declining recruitment and increasing F is causing a rapid decline in biomass. Uncertainties in the assessment are explored in a subsequent section.

\subsection*{31.3.4 Comparison with previous assessments}

The addition of catch and survey data for 2015 causes only a small change in historical biomass and fishing mortality compared with the IBPBass 2 assessment (Figure 10.1.3.20).

\subsection*{31.3.5 The state of the stock}

The marked increase in biomass in the 1990s was driven by the very strong 1989 year class and a number of subsequent year classes. The biomass prior to this was declining during a period of poor recruitment, and the recent decline in biomass also coincides with a period of poor recruitment, but under conditions of higher \(F\) than estimated for the 1980s. The stock has been characterised by periods of poor recruitment in the 1980s and now again since 2008. These periods of poor recruitment have a major impact on biomass, which is exacerbated by any increase in F. Total biomass reacts more quickly than SSB due to the delayed maturity.

The period of increasing SSB in the 1990s and early 2000s also coincided with expansion of the stock in the North Sea. The enhanced productivity and geographic range of the stock at this time also coincided with a period of elevated sea temperatures (see WGCSE and stock annex for UK inshore sea temperature trends in relation to sea bass recruitment).

The assumption of a constant recreational fishing mortality over time implies that recreational harvests were a much larger fraction of total fishery removals in the 1980s compared with the 2000s onwards (Figure 10.1.3.19). It is likely that in the 1970s or earlier, sea bass were primarily the target of recreational fishing. Even at the relatively small natural mortality value of 0.15 , removals due to natural deaths are a relatively large component of total removals. Consumption of sea bass by predators has not been estimated.

\subsection*{31.3.6 Sensitivity of the final update assessment to data and assumptions}

Sensitivity of the assessment to the use of different estimates of recreational fishery harvest in 2012 was explored in IBPBass and IBPBass 2. Decreasing the assumed recreational harvest from 1500 t down to zero in steps had no effect on the relative trends in SSB and recruitment, but scales the overall biomass and recruitment downwards due the reduction in \(F\). The assumption of constant recreational fishing mortality over time is an important potential source of bias in the assessment. WGCSE (2014) showed some historical UK estimates of sea angling participation that varied without clear trend, but the number of anglers and other recreational fishers targeting bass is likely to alter over time in response to changes in abundance.

IBPBass and IBPBass 2 also examined sensitivity to the use of different natural mortality estimates. The effect of this is to scale the biomass and recruitment throughout the series without altering the relative trend.

IBPBass considered the potential underestimate of UK commercial fishery landings due at least in part to the ability of fishermen to dispose of small catches below 25 kg or 30 kg depending on region, for personal consumption without supplying sales slips. Given the very many small-scale fishing activities of under 10 m vessels catching sea bass close inshore, this can amount to substantial quantities. IBPBass used separate landings estimates for UK nets and lines obtained by an independent bass logbook scheme and port census carried out since the 1980s by Cefas (UK) to increase the input landings of UK nets and lines by a factor of three throughout the series (see stock annex). This factor is approximate, as the logbook scheme has some unquantified biases. Again as expected, this acts to scale recruitment and biomass upwards without affecting the trend, and F stays the same. The assessment trends would be affected if the proportion of catch not reported changes over time, however the Cefas logbooks estimates are not good enough to accurately detect recent trends. The logbook scheme is no longer in operation due to a decline in numbers of fishers partici-
pating in the scheme. However, there is an urgent need to develop methods for more accurate recording to total catches of sea bass for these fleets, particularly for monitoring the effectiveness of any additional control measures to be implemented.

\subsection*{31.4 Biological reference points}

The Fmsy and Blim reference points defined by IBPBass 22016 have not been altered.
The YPR curve is flat topped and \(\mathrm{F}_{\text {max }}\) is not definable (Figure 10.1.4.1). The estimates of \(\mathrm{F}_{0.1}(0.11)\) and \(\mathrm{F}_{35 \% \text { SPR }}(0.13)\) are similar. WGCSE 2014 proposed \(\mathrm{F}_{35 \% \text { SPR }}\) as a suitable candidate for an \(\mathrm{Fmsy}_{\text {m }}\) proxy for sea bass, particularly in view of the delayed maturity, slow growth and inherent longevity (to \(\sim 30\) years). The historical combined F for commercial and recreational fishing has exceeded \(\mathrm{F}_{35 \% \text { SPR }}\) in all years since 1985 (Figure 10.1.3.16).

WGCSE 2015 noted that fishing at \(\mathrm{F}_{35 \% \text { SPR }}\) would lead to a long-term average SSB of almost 21 kt if recruitment varied around the long-term average, above any SSB observed historically. However, the SSB achieved will vary according to periods of above-average or below-average recruitment as have been observed historically.

It was not possible to conduct MCMC runs of the Stock Synthesis model through to the forecast period in order to examine probabilities of falling below candidate reference points for biomass. WGCSE 2014 proposed that a Blim could be set as Bloss, the lowest observed SSB, which the current assessment has revised Bloss to 7507 t (Figure 10.1.3.16) but it is not recommended to change the Blim after only one year of additional data particularly as the revised Bloss lies within the confidence limits for the 1992 SSB estimate in the IBPBass 2 assessment.

The absence of a \(B_{p a}\) or MSYB \(B_{\text {trigger }}\) is problematic for reporting on stock status. In the absence of a full stochastic evaluation of risks, WGCSE 2015 suggests that \(B_{p a}\) and MSYB trigger could be set using the approach proposed by ICES (1992) where it was suggested that \(B_{\lim }=B_{\mathrm{pa}} * \exp (-1.645 \sigma)\) where \(\sigma\) is the relative standard error of the biomass estimate. The SS3 estimates of relative standard error and associated Bal \(\mathrm{B}_{\mathrm{pa}}\) values given the IBPBass 2 Blim value of 8075 t are as follows:
\begin{tabular}{cccc}
\hline Year & \(\sigma\) & B \(_{\text {lim }}\) & B \(_{\text {pa }}\) \\
\hline 2012 & 0.1532 & 8075 & 10389 \\
\hline 2013 & 0.1981 & 8075 & 11186 \\
\hline 2014 & 0.274 & 8075 & 12673 \\
\hline
\end{tabular}

As the population numbers and biomass surviving at the start of 2015 is the metric of interest in relation to forecasts and management decisions, IBPBass 2 suggests that 12673 t could be adopted as a value for \(\mathrm{B}_{\mathrm{ps}}\), retaining 8075 t as \(\left.\mathrm{B}_{\mathrm{lim}}\right)\). The stock summary Figure 10.1.3.19 shows that the point estimate of SSB in 2015 is just below this value of \(B_{p a}\), whilst \(B_{\text {lim }}\) lies around 0.5 of a standard error below the point estimate for 2015.

The following table summarises what the reference points would be under this method of computing \(\mathrm{B}_{\mathrm{pa}}\). Ranges for reference points will be evaluated by ICES later in 2017:
\begin{tabular}{|c|c|c|c|}
\hline & Type & Value & Technical basis \\
\hline \multirow[t]{4}{*}{Brecautionary approach} & Blim & 8075 t & Lowest observed SSB (IBPBass 2 2016) \\
\hline & \(\mathrm{Bpa}_{\text {pa }}\) & 12673 t & Blim \(* \exp (1.645 \sigma), \sigma=\) RSE of \(\operatorname{SSB}(2015)\) estimate \(=0.274\) \\
\hline & Flim & Undefined & \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & Undefined & \\
\hline \multirow[t]{2}{*}{MSY approach} & Fmsy & 0.13 & Based on F giving SSB per recruit \(35 \%\) of value at zero F. \\
\hline & MSYB \({ }_{\text {trigger }}\) & 12673 t & \(\mathrm{Bpa}_{\text {pa }}\) \\
\hline
\end{tabular}
\(F_{\text {max }}\) is not definable.

\subsection*{31.5 Short-term predictions}

Inputs for a short-term forecast are given in Table 10.1.5.1, and their derivation is explained below.

\subsection*{31.5.1 Recruiting year-class strength}

Recruitment estimates for sea bass are well below average from 2008 to 2012 (Table 10.1.3.4). SS3 does not estimate recruit deviations for years with no survey data for that year class. Hence, the model imputes a value from the stock-recruit curve at virgin biomass for year classes 2013 and after. This value (7321 thousand) differs slightly from the 1985 to 2013 geometric mean ( 6469 thousand) which was adopted for subsequent year classes for the forecast. This is summarised in the text table below:
\begin{tabular}{ccc}
\hline Year class & SS3 (age 0) & LTGM 1985-2013 \\
\hline 2013 & 10576 thousand & \\
\hline 2014 & & 6469 thousand \\
\hline 2015 & 6469 thousand \\
\hline 2016 & 6469 thousand \\
\hline
\end{tabular}

WGCSE (2013 and 2014) reviewed some information on environmental influences on sea bass recruitment which supports the apparent recent reduction in recruitment from 2008-2012. Survival of 0-gp and 1-gp sea bass in nursery areas in estuaries and salt marshes is thought to be enhanced by warmer conditions promoting survival through the first two winters, and increasing the growth rates (Pawson, 1992). Data on coastal sea temperatures in the south of the UK were presented by WGCSE to show that shifts between periods of poor recruitment and periods of above-average recruitment were associated with changes from cooler to warmer sea conditions, and that recent poor recruitment from 2008 onwards coincided with cooler conditions (see stock annex). During 2014, sea temperatures off southern England were exceptionally warm, which may have favoured survival and growth of young bass. The Solent survey in 2014 indicated that numbers of 1-gp bass (2013 year class) had returned to around the series average. Although the evidence is weak, it is not a critical assumption for short-term forecasts as these year classes have very little impact on the shortterm forecast.

\subsection*{31.5.2 Numbers of fish in 2016}

These were derived from the update Stock Synthesis run with final year set at 2016. The numbers for ages \(0-2\) in 2016 were adjusted using the ratio of LTGM to SS3 values for 2014-2015 age 0 as explained above.

\subsection*{31.5.3 F-at-age vectors}

Status quo F-at-age for the commercial fishery was taken as the 2015 estimates scaled to the previous three years derived from the update Stock Synthesis run with final year set at 2016. This approach was taken to allow for the change in selectivity associated with the large reduction in French pelagic trawl catch (Figure 10.1.5.1a), assuming that this will continue into 2015 and 2016 due to the emergency closure of that fishery and possible continuation of the closure. The recreational F vector was the same as input to the SS3 model in combination with the assumed M of 0.15 . The imposition of a three fish per day bag limit part way through 2015 is intended to reduce the F due to recreational fishing, and an increase in MLS to 42 cm is expected to improve selectivity. WGCSE has no way to determine how the recreational F will be altered by these measures until survey information becomes available in future on recreational catches, releases and catch composition in European countries taking the bulk of the recreational catch, which may allow an evaluation of how recreational F has changed since 2012.

\subsection*{31.5.4 Weights-at-age}

Mean weight-at-age in the stock were taken from the Stock Synthesis output. The commercial fishery weights for 2015 were derived as a weighted mean of the values for French and UK fleets given in the Stock Synthesis output, using the model estimates of catch numbers for the two fleets as weighting factors. The annual weights-at-age for any fleet are time-invariant, as they are derived from length-at-age derived from von Bertalanffy growth curve parameters, with selectivity applied where appropriate. Length at \(\mathrm{Amax}^{\max }(30\) years) was estimated as 84.12 cm .

\subsection*{31.5.5 Maturity ogive}

The proportion mature at-age is the length-based ogive applied to the length-at-age distributions around the input VB growth curve, calculated within Stock Synthesis.

\subsection*{31.5.6 Detailed short-term forecast output at status quo \(F\)}

A detailed short-term forecast is given in Table 10.1.5.2 assuming that F in 2015 and 2016 is the 2015 values scaled to the average of the previous three years from the assessment. Fishing at the same fishing mortality as in 2015 (i.e. with continued reduction in pelagic pair trawl catches) will result in a further decline in SSB from 7352 t in 2016 to 6219 t in 2017, and to 5845 t in 2018, below the \(\operatorname{Blim}\) of 8075 t . It is expected that the commercial fishery landings would decline from 2040 t in 2015 to 1633 t in 2016, then to 1475 t in 2017. The recreational fishery harvests would decline from 799 t in 2015 to 642 t in 2016 and to 560 t in 2017.

This forecast is highly uncertain, as the actual rate of decline in population abundance in recent years is likely to be more uncertain than indicated by the SS3 model confidence limits. Also, the final package of technical and other management measures for sea bass in 2015, 2016 and 2017 are not fully known at this stage, and information will be needed on their implementation and effectiveness before their
impact on fishing mortality can be ascertained. The assumption of constant recreational F is also untested.

\subsection*{31.5.7 Management options}

WGCSE provides management options in which F multipliers are applied equally to commercial and recreational F-at-age (Table 10.1.5.3). In reality, management may wish to allocate the combined forecasted landings in any way considered appropriate, and this would imply differing F-multipliers applied to each fishery.

The management options table includes options for \(F\) multipliers 0 to 2, including the multiplier giving the proposed \(\mathrm{Fmsy}_{\text {proxy of }} 0.13\) for combined commercial and recreational fishing. With zero F in 2016, SSB is expected to increase from 6219 t in 2016 to 7583 t in 2017. At \(\mathrm{F}_{\mathrm{MSY}}\), the combined commercial and recreational catch in 2016 is expected to be around 944 t . However, as SSB is predicted to be below MSY B trigger in 2017 Fmsy is adjusted accordingly and expected landings are thus reduced to 478 t . When compared with estimated landings for all fisheries of 2305 t in 2016, this represents an almost \(80 \%\) reduction in combined commercial and recreational landings. The allocation between commercial and recreational fisheries depends on the balance of controls applied on recreational and commercial fishing in 2017.

\subsection*{31.6 Uncertainties and bias in assessment and forecast}

\subsection*{31.6.1 Landings and discards data}

The historical fishery catch data are subject to several biases. From 2000 to 2015, French landings data from the ICES commercial landings database are replaced by more accurate figures from a separate analysis of logbook, auction data and VMS. From 2011 onwards, the official and scientific French landings use the same analysis of logbook and auction data and VMS data. Prior to 2000 official French landings figures have had to be redistributed between ICES areas, according to the average spatial pattern observed from 2000 onwards.

Historical landings of small-scale national fisheries not supplying EU logbooks or sales slips are known to be inaccurate. IBPBass ran the Stock Synthesis model with and without additional UK landings for nets and lines estimated from a separate Cefas logbook scheme, and found this had relatively little impact on stock trends or fishing mortality, but rescaled the biomass and recruitment due to the additional catch. However, if the extent of non-reporting is changing over time, for example to develop track record in the possible event of a future TAC, then bias will be introduced in the assessment trends.

Discard rates are low in most fisheries other than trawls. Estimates of discards are available only from the early 2000s, but do not cover all fisheries, are imprecise, and are not included in the assessment. The overall discard rate by weight is thought to be less than \(5 \%\) due to the predominance of offshore fisheries from France targeting adult bass. Nonetheless, a time-series of discards at-length or -age is needed for all fleets if the impact of technical measures to improve selectivity is to be evaluated as part of any future bass management.

\subsection*{31.6.2 Fishery composition data}

The ability to fit selectivity patterns for defined groups of fishery métiers, and to detect changes in selectivity, depends crucially on collection of adequate numbers of independent, representative samples of length and age to sufficiently characterise the
length or age compositions of the selected métier groups. What constitutes "sufficient" is impossible to define without simulation studies to examine relationship between precision of input data and the precision of estimates required for management.
The absence of length composition data for French fisheries prior to 2000 is a serious deficiency in the model preventing any evaluation of changes in selectivity that may have occurred, for example due to changes in the mix of gear types. The numbers of trips of each métier group sampled on shore in France and the UK has varied widely over time, and in the UK has declined substantially since the 2000s. Currently there are no composition data supplied by Netherlands and Belgium.

ICES has developed extensive advice on establishing statistically-sound sampling designs for estimating fishery length and age compositions and discard quantities (see reports of ICES Workshops on Practical Implementation of Statistically Sound Catch Sampling Programmes (WKPICS1-3, available on ICES website). Stratified random sampling of fishing vessels or harbours may lead to low sample sizes for species such as sea bass for which large fractions of the total catches may be taken in relatively small numbers of fishing trips. The cost-benefit of expanding the sampling in vessel or harbour strata where most sea bass landings are recorded, without compromising statistical sampling design, should be investigated. The next benchmark should evaluate if sampling is currently sufficient to support continued application of Stock Synthesis fitting selection parameters to fishery composition data.

The comparative assessment using age compositions for French fleets showed that these data may improve the robustness of the assessment in future, and this should be subject to an inter-benchmark assessment and peer review.

\subsection*{31.6.3 Recreational fishery harvests}

IBPBass 22016 accommodated an estimate of recreational fishery landings in the assessment and forecasts based on landing from 2012. This is however, a crude approach based on surveys for only a year or two in France, UK, Netherlands and Belgium and leads to an assumption of constant recreational fishing mortality over time. This assumption is as unlikely to be correct as the assumption of a constant natural mortality (which is around \(50 \%\) larger than the estimated recreational F). The estimate of recreational harvest in the Netherlands increased between 2010/2011 and 2012/2013.

Further survey data are needed to confirm the level of recreational catches and releases, and to develop a time-series to evaluate changes in recreational fishing mortality and any changes in selectivity.
More work is needed on post-release (e.g. hooking) mortality rates given the high incidence of catch-and-release practices in sea angling for sea bass. Release rates are expected to increase due to bag limits and increases in MLS that are in place or planned. WGCSE must collaborate closely with the ICES Working Group on Recreational Fishery Surveys to identify priorities for future surveys and hooking mortality studies.

\subsection*{31.6.4 Surveys}

The surveys included in the assessment since 2014 include the Channel Groundfish Survey which provides data on a wider range of sizes and ages than the Cefas Solent survey, though with a steeply domed size selection pattern. From 2015 onwards,

Ifremer will no longer use the scientific vessel "Gwen Drez" which will be replaced by the larger vessel "Thalassa". A calibration was done in 2014. WGCSE is concerned that coverage of the coastal waters of \(7 . \mathrm{d}\) could be altered by the use of this new vessel (the size of the vessel may prevent fishing as close to the coast as is possible with the previous vessel) and how the continuity of the Index could be kept. This could degrade the bass index due to the inshore distribution of the bulk of the fish caught. Statistically robust calibration data will be required to allow continuity of the index for 7.d pending establishment of a series for the larger area. If there are changes to the gear, size selectivity for sea bass may be altered, requiring a new year-block for selectivity estimation. These issues should be carefully considered by Ifremer in designing the new survey if the time-series for sea bass is to be continued.

The Cefas pre-recruit surveys are now reduced to just the Solent autumn survey, with the Solent spring and the Thames survey having been removed by previous benchmark assessments as being unsuitable. Recruitment estimates for the most recent years are heavily dependent on the Solent survey, and it is important to maintain this series. However, there is a need for information on recruitment trends in other areas as it cannot be assumed that the Solent index will in the long term represent overall recruitment patterns throughout Areas 4 and 7. A study by France under the EU Framework for Community actions in the field of water policy (Table 10.1.5.31) shows clearly that sea bass nurseries in the Channel have asynchronous patterns of abundance of young bass. In the UK, 37 sea bass nursery areas such as estuaries and saltmarshes are defined for implementing conservation measures, and there are others that may be added. Similar habitats for young bass also occur in France and the Netherlands. A more robust survey design would treat individual nursery grounds as strata or station clusters in an internationally coordinated, stratified survey design. The possibility for this, and the sampling effort and costs for a desired precision, could be considered as part of a long-term sea bass management plan.

\subsection*{31.6.5 Commercial Ipue indices}

The reliance of the assessment on the Solent and Channel trawl surveys is a potential source of bias because they cover only a part of the stock range, and the selectivity is heavily skewed towards young bass. This is of principle concern in establishing the current rate of decline in spawning-stock biomass and associated trends in fishing mortality. In the absence of relative abundance indices for older bass from surveys or commercial fishing vessels covering the range of the stock, it is difficult for the model to fix the recent stock trends and fishing mortality. Statistical modelling of French lpue data by vessel and rectangle by Laurec and Drogou (WGCSE 2015, Annex 3, WD 07) appears promising and should be further developed for the next benchmark assessment. In parallel a study on effect of vessel selection is done (Bissery, Mahevas and Drogou), but is still under development and cannot be evaluated yet.

Analyses of UK commercial fishery lpue, based on averaging across ICES rectangles where the bulk of sea bass catches have been recorded, was presented to IBPNEW in 2012. There were divergent trends between fleets where sea bass are typically a bycatch, and mainly under 10 m vessels where increased targeting has probably been occurring using lines and nets. Future development of UK lpue indices together with equivalent French data would require careful evaluation of potential for lpue of each fleet to track abundance.

\subsection*{31.6.6 Model formulation}

Following from advice given by WGCSE in 2013, the Stock Synthesis model formulation was altered to include a more rational combination of fleets with more realistic selectivity patterns. It remains a complex model and further intersessional work would be beneficial to see if robustness can be further improved. A particular improvement may be conversion of the CGFS length compositions, to age compositions using age material collected by Ifremer. These data should be further investigated as part of a future benchmark or inter-benchmark assessment.

\subsection*{31.6.7 Stock structure and migrations}

The assessment treats all sea bass in 4.b,c and 7.a,d-h as a single biological stock. Although there can be extensive migrations, for example between the south of the area and the Bay of Biscay (which is treated separately in the WGBIE group), or between the North Sea and the Channel, there is also strong site fidelity (Pawson et al., 2008) resulting in a high proportion of tagged fish being recaptured at the same coastal location, even in subsequent years after migrations to offshore spawning sites. Immature sea bass may remain close inshore, and exploitation of young fish in coastal waters ( \(<6\) nautical miles offshore) may be predominantly by inshore fleets of that country. Mature fish originating from coastal waters of the UK, France or Netherlands or other countries may become increasingly vulnerable to offshore pelagic pair trawlers fishing mainly on mature fish during December to April. These spatial, ontogenetic patterns may lead to complex responses of length and age compositions to previous fishery catches of each country and fleet. This could potentially be addressed using spatial structuring in Stock Synthesis, but the data demands would increase substantially. Both the UK (England) and France have embarked on major programmes of bass research involving electronic and conventional tagging, and modelling of larval drift patterns, to try and improve knowledge of spatial dynamics.

\subsection*{31.6.8 Biological parameters}

The maturity ogive used in the assessment was derived from sampling from the 1980s onwards. There has been no coordinated sampling across the full range of the stock in recent years to determine if the current ogive is still valid. Sporadic recent sampling has suggested that sea bass may be spawning at sizes smaller than recorded historically (see stock annex). This would alter the Fmsy based on \(\mathrm{F}_{35 \%} \%\) spr, and could also be associated with changes in growth parameters. Mean length-at-age in UK samples remained more or less constant over several decades of sampling, but this analysis needs updating. Changes in growth, or inappropriate growth parameters, will lead to bias in fitting length-selectivity parameters to the French fishery and survey data.

\subsection*{31.6.9 Intermediate year fishing mortality and catch levels for forecasts}

As the Measures introduced by the EU commission to reduce fishing mortality toward Fmsy, have the potential to affect the short-term forecast assumptions for this stock. The working group agreed that the fishing mortality in 2017 under the same measures are likely to be similar to those in 2016. In the absence of any data on changes in selectivity there would be no reason to deviate much from this assumption.

Tables 10.1.6.1 and 2 provide the management options from the forecast run. Given the assumed F and catches in 2018 is set to zero SSB in 2019 remains below Blim, and therefore below MSYB trigger. \(^{\text {. }}\)

\subsection*{31.7 Recommendations for completion of the 2017 benchmark assessment}

\subsection*{31.7.1 Full benchmark of NE Atlantic sea bass stocks}

WGCSE proposes a full benchmark for 2017, preferably in conjunction with the other stocks of sea bass particularly the Bay of Biscay stock. ICES, WGBIE 2015 encouraged documentation of the quality of the sea bass data for the Bay of Biscay, and studies to better understand the stock dynamics and movements between the current stock areas. In the longer term, Stock Synthesis could be configured to include spatially disaggregated data covering populations within Areas 4, 7 and 8, with estimates of exchange rates between the areas. New data on fish movements from electronic and conventional tagging, and modelling of egg/larva dispersal, will be available from the UK C-bass and French BarGip projects currently underway. New relative abundance indices for bass- 47 based on commercial lpue data by rectangle and vessel trip are under development and will be available. The benchmark will allow a full evaluation and further development of the Stock Synthesis application and diagnostics as well as developing other simpler assessment approaches for comparison. The issues list for the proposed benchmark assessment is given in Table 10.1.7.2.

\subsection*{31.7.2 Management considerations}

Sea bass in this stock are characterised by slow growth, late maturity and low natural mortality on adults, which imply the need for comparatively low rates of fishing mortality to avoid depletion of spawning potential in each year class. Productivity of the stock is affected by extended periods of enhanced or reduced recruitment which appear to be related to changes in sea temperature. Warm conditions facilitate northward penetration of sea bass in the North Sea and Northeast Atlantic, and enhance the growth and survival of young fish in estuarine and other coastal nursery habitats. A period of above-average sea temperatures and enhanced recruitment between 1989 and the mid-2000s generated a large increase in biomass and a geographic expansion. Increased abundance and a lack of a TAC or other means to control fishing outside of nursery areas stimulated a growth of fisheries and markets for sea bass. Many smallscale artisanal fisheries, especially line fishing and some forms of netting, have developed a high seasonal dependency on sea bass, and there is also a significant recreational fishing mortality in inshore waters. The behaviour of bass, forming predictable aggregations for spawning and moving close inshore to feed at other times of year, increase their vulnerability to exploitation by offshore and inshore fisheries. Increased targeting of sea bass has resulted in a progressive increase in fishing mortality above values considered appropriate to achieve Fmsy. The combination of increasing fishing mortality and environmental conditions causing poor recruitment since 2008 appears responsible for a continuous decline in biomass since 2010. Catches appear to be declining in fisheries where sea bass is mainly a bycatch, but some other fisheries such as netting in the UK appear to be expanding and may be exploiting known seasonal migration routes and local aggregations of fish despite a more widespread contraction of the population.

A reduction in fishing mortality on sea bass is needed to prevent SSB declining to such an extent that the stock's ability to produce strong recruitment in more favourable environmental conditions is impaired. Since 2013, the European Commission has
been in dialogue with Member States to develop a package of management measures to promote recovery of the stock. This resulted in emergency measures to stop the offshore pelagic trawl fishery on spawning aggregations between January and April 2015, bag limits for recreational fishing, and proposals to increase the MLS to 42 cm . Further measures to restrict catches without resorting to a TAC are under consideration. Any management measures applied to commercial and recreational fisheries should take into account the need for collection of data to demonstrate the effectiveness of the measures, and the ability to enforce the measures adequately.

ICES advice in 2004 recommended that "implementation of 'input' controls, preferably through technical measures aimed at protecting juvenile fish, in conjunction with entry limitations into the offshore fishery in particular should be promoted", and that "any consideration of catch limitation (output control) would need to take into account that sea bass are a bycatch in mixed fisheries to a various extent, depending on gear and country; this incites discarding and should be avoided". This form of advice has re-occurred in subsequent ICES advice for sea bass.

WGCSE notes that protection of juvenile fish through technical measures is good to improve the fishery selectivity and increase the number of sea bass that are able to spawn at least once, but this is probably not enough to ensure a sufficient decrease in F. Protection of juveniles already exists to an extent already through designation of 37 UK sea bass nursery areas where certain types of fishing on sea bass is prevented annually or seasonally. However, catching and discarding of sea bass by trawlers fishing close to nursery areas remains an issue. Data available to WGCSE indicate that discarding is mainly by otter trawlers using \(80-90 \mathrm{~mm}\) mesh in or near areas where juvenile bass are most abundant, for example in UK coastal waters of the eastern Channel. Improvements to fishery selectivity to successfully achieve a large reduction in fishing mortality on pre-spawning fish without increasing discarding would require changes to gear designs, which could have a strong spatial management component.

Entry limitation can prevent an increase in effort but will not decrease \(F\) to the extent needed, unless existing licences are withdrawn. The occurrence of sea bass as a small bycatch in many fisheries raises the problem of this becoming a "choke species" if vessel catch limits are introduced under EU legislation and sea bass fall under the landings obligation.

ICES also previously advised that "Management of sea bass fisheries needs to take into account the distinctive characteristics and economic value of the different fisheries. Sea bass is of high social and economic value to the large inshore artisanal fleets and to sea angling and other recreational fishing that contribute substantially to local economies". Data from France indicate that the first sale value of the high-volume and lower quality catches of sea bass caught by pelagic trawlers targeting offshore spawning fish during December to March has been up to three times lower per kg than for smaller volume sales of higher-quality fish for métiers fishing inshore (Drogou et al., 2011). However, there is at present insufficient information to accurately evaluate the total economic value and impact of sea bass fisheries beyond just the first sale value, and covering direct incomes from sales and direct as well as indirect and induced costs, employment and added value generated downstream. The interrelationship between markets for wild caught and farmed sea bass also needs to be evaluated. A number of studies on the economic value of recreational sea fisheries have been conducted in recent years, and these demonstrate high levels of spend into national economies; for example the total direct, indirect and induced spend of sea
angling in England in 2012 was estimated at \(£ 2\) bn GBP (Anon., 2014) although this cannot be easily allocated to a spend per species.

No bio-economic scenarios are available at present to appreciate the effect of management measures for sea bass, based on economic considerations, and work is urgently needed in this area. The importance of sea bass to recreational fisheries, artisanal and other inshore commercial fisheries and large-scale offshore fisheries in different regions means that resource sharing is an important management consideration that has implications for the type of scientific evidence needed. WGCSE has estimated that up to \(30 \%\) of total landings in France, England, the Netherlands and Belgium were attributable to the recreational fisheries in recent years.

The effects of targeting of offshore spawning aggregations of sea bass in the English Channel and Celtic Sea are poorly understood, particularly how the fishing effort is distributed in relation to mixing of fish from different nursery grounds or summer feeding grounds in the UK, France and other countries, given the strong site fidelity of sea bass. This is a subject of a new scientific study on sea bass in the UK.

The current stock structure assumptions are pragmatic, and need further evaluation. The sea bass population in coastal waters of the Republic of Ireland is currently considered as a separate stock, although it extends into at least one of the ICES divisions defining the \(4 . \mathrm{bc}\) and \(7 . \mathrm{a}, \mathrm{d}-\mathrm{h}\) stock. Further studies are needed to determine if the sea bass in Irish coastal waters are indeed functionally separate, or if they also mix with the other stock during spawning time and contribute to commercial catches on the offshore spawning grounds. Moreover, the Bay of Biscay is also currently considered as a separate stock although tagging program indicates some exchange with the area 4 and 7 stock studied assessed by WGCSE.

As bass is, at present, a non-TAC species, there is potential for continued displacement of fishing effort from other species with limiting quotas. The effort of the pelagic fisheries during winter and spring can shift between the Bay of Biscay and the English Channel and approaches, and there is evidence for such a shift to the Channel in recent years, which is likely to have increased the fishing mortality on sea bass in Area 7. The fisheries on sea bass have grown in the 1990s and 2000s due to good recruitment, and new markets have been established, competing with farmed bass. Fishing mortality has gradually increased over time and is above the Fmsy proxy for many years. With the stock in decline and no effective control on these fisheries, the risk of stock collapse is currently very high unless strong year classes are produced again. Therefore, in addition to technical measures to improve the fishery selection pattern, an overall limitation of total fishing mortality across all ages of sea bass is urgently needed through appropriate measures.

\subsection*{31.8 References}

Anon. 2014. Sea Angling 2012: a survey of sea angling activity and economic value in England. http://www.marinemanagement.org.uk/seaangling/.

Armstrong, M.J. 2012. Life-history estimates of natural mortality of sea bass around the UK. Working Document: ICES IBPNew 2012; October 2012. 3 pp.

Armstrong and Walmsley. 2012b. Age and growth of sea bass sampled around the UK. Working Document: ICES IBPNew 2012; October 2012. 15 pp.

Armstrong and Walmsley. 2012c. Maturity of sea bass sampled around the UK. Working Document: ICES IBPNew 2012; October 2012. 14 pp.

Armstrong, M.J. and Maxwell, D. 2012. Commercial fleet lpue trends for sea bass around the UK. Working Document: ICES IBPNew 2012; October 2012. 29 pp.

Coppin, F., Le Roy, D., Schlaich, Y. 2002. Manuel des protocoles de campagne halieutique: Campagnes CGFS, Système d'information halieutiques - Campagnes à la mer. Ifremer, 09/2001. DRV/RH/DT/AN-NUMERO, 29pp. (in French).
Drogou, M., Biseau, A., Berthou, P., de Pontual, H., Habasque, J and le Grand, C. 2011. Synthèse des informations disponibles sur le Bar: flottilles, captures, marché. Reflexions autour de mesures degestion. http://archimer.ifremer.fr/doc/00035/14577/11879.pdf.

ICES. 1998. Report of the study group on the precautionary approach to fisheries management. ICES Copenhagen, 3-6 February 1998. ICES C.M. 1998/Assess:10.
ICES. 2003. Study Group on Precautionary Reference Points for Advice on Fishery Management. Copenhagen, 24-26 February 2003. ICES CM 2003/ACFM:15.

ICES. 2008. Report of the Working Group on the Assessment of New MoU Species (WGNEW). By correspondence, ICES CM 2008/ACOM:25. 77 pp.

ICES. 2012a. Report of the Inter-Benchmark Protocol on New Species (Turbot and Sea bass; IBPNew 2012). ICES CM. 2012/ACOM:45.
ICES. 2012b. Report of the Working Group on Assessment of New MoU Species (WGNEW), 59 March 2012, ICES CM 2012/ACOM:20. 258 pp.

ICES. 2012c. Report of the Working Group on Recreational Fisheries Surveys (WGRFS). ICES CM 2012/ACOM:23. 55 pp.
ICES. 2014. Report of the Working Group for Celtic Seas Ecoregion (WGCSE), 8-17 May 2013, Copenhagen, Denmark. ICES CM 2013/ACOM:12. 1986 pp.
ICES. 2014b. Report of the Inter-Benchmark Protocol for Sea Bass in the Irish Sea, Celtic Sea, English Channel, and Southern North Sea (IBPBass). By correspondence. ICES CM 2014/ ACOM:46.
ICES. 2014c. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 13-22 May 2014, Copenhagen, Denmark. ICES CM 2014/ACOM:12.

Mahé, K., Holmes, A., Huet, J., Sévin, K., Elleboode, R. 2012. Report of the Sea bass (Dicentrachuslabrax) Otolith and Scale Exchange Scheme 2011, 16 pp.
Methot, R.D. 2000. Technical Description of the Stock Synthesis Assessment Program. National Marine Fisheries Service, Seattle, WA. NOAA Tech Memo. NMFS-NWFSC-43: 46 pp.
Methot, R.D. 2011. User Manual for Stock Synthesis, Model Version 3.23b. NOAA Fisheries Service, Seattle. 167 pp.
Pawson, M. G. 1992. Climatic influences on the spawning success, growth and recruitment of bass (Dicentrarchus labrax L.) in British Waters. ICES mar. Science Symp. 195: 388-392.
Pawson, M. G., Kupschus, S. and Pickett, G. D. 2007. The status of sea bass (Dicentrarchus labrax) stocks around England and Wales, derived using a separable catch-at-age model, and implications for fisheries management. ICES Journal of Marine Science 64, 346-356.

Pawson, M.G., Brown, M., Leballeur, J. and Pickett, G.D. 2008. Will philopatry in sea bass, Dicentrarchuslabrax, facilitate the use of catch-restricted areas for management of recreational fisheries? Fisheries Research 93 (2008) 240-243.
Quirijns, F. and Bierman, S. 2012. Growth and maturity of sea bass sampled around the Netherlands. Working Document: ICES IBPNew 2012; October 2012. 9 pp.
Van der Hammen, T and de Graaf, M. 2012. Recreational fishery in the Netherlands: demographics and catch estimates in marine and freshwater. IMARES Wageningen UR, Report Number C147/13.

Van der Hammen T, and de Graaf, M. 2015. Recreational fisheries in the Netherlands: analyses of the 2012-2013 logbook survey, 2013 online screening survey and 2013 random digit dialing survey. IMARES C042/15, pp 55.

\section*{Table 10.1.1.1. Bass-47: Annual landings from 4.b,c and 7.d,e-h.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Belgium & Denmark & Germany & France & UK & Netherlands & Channel Is. & Total & Total WG figures1 \\
\hline 1985 & 0 & 0 & 0 & 620 & 105 & 0 & 18 & 743 & 994 \\
\hline 1986 & 0 & 0 & 0 & 841 & 124 & 0 & 15 & 980 & 1319 \\
\hline 1987 & 0 & 0 & 0 & 1226 & 123 & 0 & 14 & 1363 & 1980 \\
\hline 1988 & 0 & 18 & 0 & 714 & 173 & 8 & 12 & 925 & 1239 \\
\hline 1989 & 0 & 2 & 0 & 675 & 192 & 2 & 48 & 919 & 1161 \\
\hline 1990 & 0 & 0 & 0 & 609 & 189 & 0 & 25 & 824 & 1063 \\
\hline 1991 & 0 & 0 & 0 & 726 & 239 & 0 & 16 & 982 & 1227 \\
\hline 1992 & 0 & 0 & 0 & 721 & 148 & 0 & 36 & 906 & 1186 \\
\hline 1993 & 0 & 1 & 0 & 718 & 230 & 0 & 45 & 994 & 1255 \\
\hline 1994 & 0 & 1 & 0 & 593 & 535 & 0 & 49 & 1178 & 1371 \\
\hline 1995 & 0 & 1 & 0 & 801 & 708 & 0 & 69 & 1579 & 1835 \\
\hline 1996 & 0 & 1 & 0 & 1703 & 563 & 8 & 56 & 2331 & 3022 \\
\hline 1997 & 0 & 1 & 0 & 1429 & 561 & 1 & 74 & 2066 & 2620 \\
\hline 1998 & 0 & 2 & 0 & 1363 & 488 & 48 & 79 & 1980 & 2390 \\
\hline 1999 & 0 & 1 & 0 & 0 & 685 & 32 & 108 & 826 & 2670 \\
\hline 2000 & 0 & 5 & 0 & 1522 & 407 & 60 & 130 & 2124 & 2407 \\
\hline 2001 & 0 & 2 & 0 & 1619 & 458 & 77 & 80 & 2236 & 2500 \\
\hline 2002 & 0 & 1 & 0 & 1580 & 627 & 96 & 73 & 2377 & 2622 \\
\hline 2003 & 154 & 1 & 0 & 1903 & 586 & 163 & 84 & 2891 & 3458 \\
\hline 2004 & 159 & 1 & 0 & 1883 & 617 & 191 & 159 & 3010 & 3731 \\
\hline 2005 & 206 & 1 & 0 & 1937 & 512 & 327 & 220 & 3203 & 4430 \\
\hline 2006 & 211 & 2 & 0 & 2033 & 574 & 308 & 162 & 3290 & 4377 \\
\hline 2007 & 178 & 1 & 0 & 1975 & 713 & 376 & 142 & 3385 & 4064 \\
\hline 2008 & 188 & 0 & 0 & 1420 & 791 & 380 & 123 & 2902 & 4107 \\
\hline 2009 & 173 & 0 & 0 & 2732 & 697 & 395 & 91 & 4088 & 3889 \\
\hline 2010 & 215 & 4 & 0 & 3294 & 736 & 399 & 120 & 4768 & 4563 \\
\hline 2011 & 152 & 2 & 0 & 2566 & 793 & 395 & 90 & 3998 & 3858 \\
\hline 2012 & 154 & 3 & 0 & 2399 & 892 & 376 & 55 & 3879 & 3987 \\
\hline 2013 & 145 & 5 & 2 & 2786 & 803 & 370 & 37 & 4148 & 4136 \\
\hline 2014 & 146 & 1 & 0 & 1309 & 1038 & 253 & 37 & 2784 & 2682 \\
\hline 2015 & 40 & 0 & 0 & 1110 & 683 & 207 & 26 & 2066 & 2066 \\
\hline 2016 & 23 & 0 & 0 & 547 & 551 & 151 & 23 & 1295 & 1295 \\
\hline
\end{tabular}

\footnotetext{
Source: Official Landings Statistics 1950-2013 and 2006-2013 datasets and 2016 provisional data, ICES Copenhagen. \({ }^{1 .}\) Includes figures supplied directly to WGCSE by France and Belgium.
}

Table. 10.1.2.1. Bass-47: Landings for the country / fleet components included separately in the assessment model.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & \begin{tabular}{l}
Fleet 1 : UK \\
Trawls, nets
\end{tabular} & Fleet 2 : UK Lines & \begin{tabular}{l}
Fleet 3 : \\
UK pelagic trawlers
\end{tabular} & \begin{tabular}{l}
Fleet 4 : \\
France combined gears
\end{tabular} & \begin{tabular}{l}
Fleet 5: \\
Other countries and gears
\end{tabular} & \begin{tabular}{l}
Fleet 6 : \\
RecFish
\end{tabular} \\
\hline 1985 & 70 & 30 & 1 & 870 & 23 & 1052 \\
\hline 1986 & 84 & 33 & 2 & 1180 & 19 & 963 \\
\hline 1987 & 96 & 18 & 0 & 1840 & 25 & 901 \\
\hline 1988 & 129 & 30 & 8 & 1028 & 44 & 883 \\
\hline 1989 & 141 & 29 & 7 & 917 & 67 & 836 \\
\hline 1990 & 128 & 18 & 22 & 849 & 47 & 735 \\
\hline 1991 & 152 & 60 & 14 & 971 & 29 & 640 \\
\hline 1992 & 105 & 23 & 8 & 1001 & 49 & 621 \\
\hline 1993 & 146 & 62 & 1 & 979 & 68 & 766 \\
\hline 1994 & 354 & 154 & 0 & 786 & 76 & 1090 \\
\hline 1995 & 424 & 169 & 4 & 1057 & 181 & 1293 \\
\hline 1996 & 308 & 128 & 87 & 2395 & 104 & 1289 \\
\hline 1997 & 335 & 119 & 71 & 1984 & 111 & 1210 \\
\hline 1998 & 241 & 121 & 85 & 1773 & 170 & 1151 \\
\hline 1999 & 274 & 148 & 220 & 1843 & 185 & 1177 \\
\hline 2000 & 236 & 53 & 52 & 1805 & 261 & 1259 \\
\hline 2001 & 263 & 58 & 97 & 1883 & 199 & 1314 \\
\hline 2002 & 361 & 75 & 110 & 1825 & 251 & 1415 \\
\hline 2003 & 353 & 65 & 127 & 2471 & 443 & 1504 \\
\hline 2004 & 380 & 72 & 131 & 2604 & 544 & 1581 \\
\hline 2005 & 353 & 59 & 68 & 3161 & 789 & 1586 \\
\hline 2006 & 359 & 119 & 11 & 3259 & 629 & 1559 \\
\hline 2007 & 413 & 166 & 37 & 2771 & 677 & 1618 \\
\hline 2008 & 514 & 163 & 17 & 2750 & 663 & 1723 \\
\hline 2009 & 486 & 147 & 9 & 2649 & 598 & 1768 \\
\hline 2010 & 452 & 183 & 42 & 3236 & 649 & 1713 \\
\hline 2011 & 462 & 143 & 98 & 2526 & 629 & 1617 \\
\hline 2012 & 564 & 185 & 49 & 2610 & 579 & 1501 \\
\hline 2013 & 530 & 191 & 39 & 2871 & 506 & 1320 \\
\hline 2014 & 751 & 236 & 1 & 1303 & 391 & 1132 \\
\hline 2015 & 440 & 199 & 0 & 1110 & 317 & 957 \\
\hline 2016* & 305 & 210 & 2 & 547 & 231 & 1627 \\
\hline
\end{tabular}
*Preliminary.
\({ }^{1}\).Preliminary.

Table 10.1.2.2. (a) Bass-47: Sampling of commercial fishery landings of otter and pelagic midwater trawls for length and age by area in the UK (England and Wales). Nsamp = number of landings sampled; Nfish = number of fish.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{UK Otter trawl} & \multicolumn{5}{|c|}{UK Pelagic/midwater} \\
\hline & Age & & Length & & Landings (t) & Age & & Length & & Landings (t) \\
\hline Year & Nsamp & Nfish & Nsamp & Nfish & & Nsamp & Nfish & Nsamp & Nfish & \\
\hline 1985 & 45 & 235 & 15 & 225 & 27 & 3 & 44 & 2 & 43 & 1 \\
\hline 1986 & 18 & 216 & 28 & 2591 & 24 & & & & & 2 \\
\hline 1987 & 41 & 421 & 54 & 1181 & 41 & 4 & 42 & 1 & 589 & 0.02 \\
\hline 1988 & 23 & 257 & 23 & 1298 & 65 & 2 & 64 & 2 & 1684 & 8 \\
\hline 1989 & 63 & 531 & 44 & 1595 & 80 & 4 & 126 & 4 & 1451 & 7 \\
\hline 1990 & 63 & 883 & 48 & 773 & 67 & 8 & 19 & & & 22 \\
\hline 1991 & 92 & 983 & 32 & 731 & 39 & 12 & 125 & 1 & 1490 & 14 \\
\hline 1992 & 69 & 699 & 17 & 398 & 41 & 2 & 50 & 2 & 220 & 8 \\
\hline 1993 & 118 & 1219 & 38 & 836 & 80 & 9 & 39 & & & 1 \\
\hline 1994 & 182 & 1927 & 113 & 3925 & 125 & & & 1 & 127 & 0.3 \\
\hline 1995 & 28 & 529 & 66 & 1995 & 162 & & & 1 & 19 & 4 \\
\hline 1996 & 49 & 660 & 39 & 1041 & 122 & 1 & 41 & 3 & 392 & 87 \\
\hline 1997 & 59 & 1660 & 52 & 2445 & 140 & 1 & 49 & & & 71 \\
\hline 1998 & 28 & 676 & 39 & 1442 & 133 & 20 & 95 & 4 & 167 & 85 \\
\hline 1999 & 24 & 379 & 46 & 1216 & 138 & 12 & 382 & 9 & 770 & 220 \\
\hline 2000 & 92 & 759 & 42 & 1814 & 133 & 23 & 847 & 14 & 2463 & 52 \\
\hline 2001 & 45 & 851 & 49 & 2152 & 141 & 3 & 58 & 5 & 691 & 97 \\
\hline 2002 & 54 & 523 & 47 & 1454 & 161 & & & 4 & 545 & 110 \\
\hline 2003 & 48 & 512 & 45 & 1418 & 207 & 15 & 459 & 4 & 744 & 127 \\
\hline 2004 & 33 & 361 & 31 & 1295 & 173 & 8 & 161 & 5 & 522 & 131 \\
\hline 2005 & 35 & 498 & 31 & 2432 & 181 & 3 & 149 & 2 & 299 & 68 \\
\hline 2006 & 15 & 252 & 17 & 810 & 160 & 1 & 43 & 1 & 100 & 11 \\
\hline 2007 & 44 & 385 & 21 & 903 & 173 & 1 & 20 & 3 & 355 & 37 \\
\hline 2008 & 37 & 580 & 32 & 2151 & 196 & 6 & 409 & 8 & 1283 & 17 \\
\hline 2009 & 24 & 1184 & 13 & 807 & 175 & 8 & 317 & 6 & 625 & 9 \\
\hline 2010 & 25 & 360 & 28 & 1312 & 150 & 7 & 153 & 3 & 376 & 42 \\
\hline 2011 & 25 & 577 & 49 & 1903 & 137 & 3 & 103 & 4 & 463 & 98 \\
\hline 2012 & 18 & 182 & 41 & 751 & 157 & & & 1 & 199 & 49 \\
\hline 2013 & 15 & 289 & 23 & 859 & 125 & & & & & 39 \\
\hline 2014 & 14 & 164 & 22 & 523 & 104 & & & & & 1 \\
\hline 2015 & 28 & 377 & 39 & 1277 & 100 & 1 & 4 & 1 & 4 & 1 \\
\hline 2016 & 19 & 256 & 90 & 527 & 52 & & & & & 2 \\
\hline
\end{tabular}

Table 10.1.2.2. (b) Bass-47: Sampling of commercial fishery landings of lines and net gears for length and age by area in the UK (England and Wales). Nsamp = number of landings sampled; Nfish = number of fish.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{UK Lines} & \multicolumn{5}{|c|}{UK Nets} \\
\hline & Age & & Length & & Landings (t) & Age & & Length & & Landings (t) \\
\hline Year & Nsamp & Nfish & Nsamp & Nfish & & Nsamp & Nfish & Nsamp & Nfish & \\
\hline 1985 & 53 & 395 & 19 & 285 & 30 & 34 & 332 & 15 & 181 & 43 \\
\hline 1986 & 60 & 496 & 31 & 894 & 33 & 18 & 251 & 18 & 1132 & 61 \\
\hline 1987 & 92 & 313 & 69 & 557 & 18 & 37 & 528 & 44 & 1321 & 55 \\
\hline 1988 & 66 & 538 & 53 & 1325 & 30 & 37 & 584 & 40 & 1397 & 64 \\
\hline 1989 & 249 & 652 & 26 & 310 & 29 & 49 & 469 & 45 & 1248 & 60 \\
\hline 1990 & 281 & 918 & 22 & 260 & 18 & 24 & 207 & 11 & 456 & 61 \\
\hline 1991 & 346 & 1468 & 53 & 963 & 60 & 57 & 481 & 30 & 583 & 113 \\
\hline 1992 & 418 & 2905 & 111 & 2077 & 23 & 40 & 281 & 28 & 1248 & 64 \\
\hline 1993 & 287 & 1787 & 123 & 1426 & 62 & 127 & 1141 & 94 & 1686 & 66 \\
\hline 1994 & 212 & 1616 & 155 & 3783 & 154 & 146 & 2846 & 157 & 5130 & 229 \\
\hline 1995 & 160 & 1043 & 107 & 1493 & 169 & 95 & 1786 & 150 & 6248 & 262 \\
\hline 1996 & 155 & 1326 & 106 & 1790 & 128 & 85 & 1371 & 113 & 3348 & 186 \\
\hline 1997 & 141 & 1262 & 137 & 2072 & 119 & 73 & 1055 & 106 & 2747 & 195 \\
\hline 1998 & 182 & 1215 & 111 & 2820 & 121 & 88 & 1119 & 82 & 2465 & 108 \\
\hline 1999 & 237 & 1304 & 149 & 3793 & 148 & 127 & 1189 & 74 & 2966 & 137 \\
\hline 2000 & 405 & 1395 & 65 & 1964 & 53 & 119 & 1719 & 104 & 5482 & 103 \\
\hline 2001 & 451 & 2485 & 114 & 2935 & 58 & 140 & 2027 & 92 & 3309 & 122 \\
\hline 2002 & 210 & 1286 & 146 & 3031 & 75 & 220 & 3800 & 206 & 6680 & 201 \\
\hline 2003 & 151 & 1009 & 90 & 3108 & 65 & 171 & 1720 & 224 & 5899 & 146 \\
\hline 2004 & 127 & 906 & 66 & 1980 & 72 & 83 & 974 & 150 & 3567 & 207 \\
\hline 2005 & 87 & 380 & 25 & 921 & 59 & 73 & 768 & 33 & 1126 & 172 \\
\hline 2006 & 54 & 359 & 67 & 989 & 119 & 56 & 598 & 47 & 1197 & 199 \\
\hline 2007 & 94 & 713 & 31 & 1088 & 166 & 90 & 753 & 40 & 1811 & 239 \\
\hline 2008 & 37 & 552 & 28 & 1325 & 163 & 100 & 1444 & 63 & 3361 & 318 \\
\hline 2009 & 49 & 304 & 18 & 915 & 147 & 116 & 1571 & 100 & 3247 & 311 \\
\hline 2010 & 34 & 418 & 40 & 970 & 183 & 63 & 1214 & 66 & 2350 & 302 \\
\hline 2011 & 46 & 1091 & 55 & 2250 & 143 & 34 & 793 & 41 & 1433 & 324 \\
\hline 2012 & 89 & 1295 & 100 & 2215 & 185 & 35 & 909 & 56 & 2809 & 407 \\
\hline 2013 & 41 & 896 & 42 & 1236 & 191 & 42 & 1123 & 49 & 2342 & 405 \\
\hline 2014 & 67 & 1247 & 73 & 1889 & 236 & 60 & 1161 & 71 & 2781 & 647 \\
\hline 2015 & 72 & 1183 & 79 & 3055 & 199 & 48 & 776 & 67 & 3985 & 338 \\
\hline 2016 & 69 & 1151 & 110 & 1236 & 210 & 59 & 1165 & 83 & 1974 & 252 \\
\hline
\end{tabular}

Table 10.1.2.3. Bass-47: Sampling of commercial fishery landings by area in France, giving numbers of fishing trips sampled, number of fish measured, and the total landings.
\begin{tabular}{cccccccccc}
\hline Year & \multicolumn{3}{c}{ FR_lines } & & \multicolumn{3}{c}{ FR_nets } & \multicolumn{2}{c}{ FR_bottom trawl } \\
\cline { 2 - 11 } & No. Trips & No.fish & Landings & No. Trips & No.fish & Landings & No. Trips & No.fish & Landings \\
\hline 2000 & 53 & 1613 & 305 & 2 & 72 & 108 & 2 & 196 & 692 \\
\hline 2001 & 101 & 2659 & 375 & 1 & 5 & 110 & 0 & 0 & 713 \\
\hline 2002 & 79 & 2076 & 349 & 0 & 0 & 128 & 4 & 710 & 911 \\
\hline 2003 & 78 & 1732 & 438 & 1 & 4 & 152 & 8 & 998 & 1087 \\
\hline 2004 & 78 & 1748 & 381 & 6 & 84 & 150 & 12 & 887 & 1236 \\
\hline 2005 & 34 & 949 & 439 & 4 & 110 & 148 & 14 & 689 & 1239 \\
\hline 2006 & 73 & 1719 & 554 & 11 & 291 & 140 & 11 & 1240 & 1110 \\
\hline 2007 & 69 & 2235 & 560 & 28 & 641 & 158 & 11 & 588 & 1187 \\
\hline 2008 & 41 & 1280 & 425 & 25 & 496 & 128 & 18 & 1927 & 1145 \\
\hline 2009 & 33 & 1339 & 251 & 25 & 159 & 94 & 93 & 1468 & 1052 \\
\hline 2010 & 10 & 334 & 278 & 49 & 615 & 160 & 64 & 626 & 819 \\
\hline 2011 & 17 & 540 & 359 & 156 & 278 & 129 & 151 & 1955 & 791 \\
\hline 2012 & 10 & 681 & 295 & 60 & 408 & 142 & 87 & 1204 & 824 \\
\hline 2013 & 16 & 309 & 291 & 26 & 512 & 126 & 73 & 2060 & 737 \\
\hline 2014 & 10 & 299 & 285 & 29 & 218 & 163 & 137 & 2139 & 571 \\
\hline 2015 & 16 & 326 & 210 & 35 & 242 & 109 & 76 & 1628 & 642 \\
\hline 2016 & 2 & 84 & 156 & 32 & 293 & 64 & 183 & 1396 & 271 \\
\hline
\end{tabular}
\begin{tabular}{ccccccccccc}
\hline \multirow{2}{*}{ Year } & \multicolumn{3}{c}{ FR_pelagic trawl } & \multicolumn{3}{c}{ FR_danish seine } & \multicolumn{2}{c}{ FR_other gears } \\
\cline { 2 - 13 } & No. Trips & No.fish & Landings & No. Trips & No.fish & Landings & No. Trips & No.fish & Landings \\
\hline 2000 & 2 & 629 & 681 & 0 & 0 & 0 & 0 & 0 & 20 \\
\hline 2001 & 0 & 0 & 659 & 0 & 0 & 0 & 0 & 0 & 27 \\
\hline 2002 & 3 & 680 & 415 & 0 & 0 & 0 & 0 & 0 & 22 \\
\hline 2003 & 4 & 753 & 773 & 0 & 0 & 0 & 0 & 0 & 23 \\
\hline 2004 & 6 & 938 & 820 & 0 & 0 & 0 & 0 & 0 & 17 \\
\hline 2005 & 11 & 1239 & 1319 & 0 & 0 & 0 & 0 & 0 & 17 \\
\hline 2006 & 16 & 2597 & 1420 & 0 & 0 & 0 & 0 & 0 & 35 \\
\hline 2007 & 8 & 1800 & 841 & 0 & 0 & 0 & 0 & 0 & 24 \\
\hline 2008 & 8 & 1065 & 1012 & 0 & 0 & 0 & 0 & 0 & 40 \\
\hline 2009 & 55 & 899 & 1098 & 0 & 0 & 27 & 0 & 0 & 127 \\
\hline 2010 & 28 & 1299 & 1828 & 0 & 0 & 61 & 2 & 2 & 90 \\
\hline 2011 & 30 & 2309 & 1142 & 2 & 6 & 43 & 36 & 292 & 62 \\
\hline 2012 & 9 & 1649 & 1143 & 6 & 370 & 112 & 7 & 154 & 91 \\
\hline 2013 & 10 & 1253 & 1516 & 2 & 28 & 18 & 1 & 1 & 82 \\
\hline 2014 & 23 & 455 & 242 & 12 & 23 & 9 & 1 & 1 & 25 \\
\hline 2015 & 12 & 158 & 107 & 0 & 12 & 26 & 0 & 0 & 16 \\
\hline 2016 & 6 & 48 & 17 & 28 & 78 & 20 & 0 & 0 & 20 \\
\hline
\end{tabular}

Table 10.1.2.4. Bass-47: Numbers-at-length in French commercial all-gears fishery landings (input to assessment at lengths 14-94 \(\mathbf{c m}\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Length & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 717 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 22 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 26 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 28 & 0 & 0 & 0 & 3455 & 0 & 0 & 0 & 0 & 0 & 292 & 0 & 0 & 1219 & 0 & 0 & 291 & 0 \\
\hline 30 & 0 & 0 & 1015 & 13054 & 14 & 0 & 15689 & 0 & 0 & 473 & 0 & 0 & 0 & 146 & 0 & 346 & 71 \\
\hline 32 & 0 & 0 & 0 & 58717 & 13057 & 9903 & 32459 & 181 & 8250 & 2239 & 9811 & 1976 & 1583 & 0 & 3076 & 2678 & 1481 \\
\hline 34 & 9931 & 17962 & 12469 & 105655 & 78811 & 29872 & 179130 & 4715 & 28986 & 10714 & 28290 & 13885 & 6518 & 1504 & 3620 & 5102 & 1440 \\
\hline 36 & 34932 & 19809 & 38249 & 125326 & 127801 & 97890 & 285704 & 39335 & 229758 & 124925 & 169311 & 57121 & 85760 & 29667 & 33532 & 44175 & 2814 \\
\hline 38 & 85866 & 68920 & 46427 & 180475 & 124051 & 128022 & 217657 & 102714 & 263071 & 211881 & 177571 & 87842 & 172510 & 88507 & 68262 & 75546 & 4340 \\
\hline 40 & 126730 & 76594 & 62503 & 119495 & 227214 & 231750 & 178250 & 146272 & 266408 & 225545 & 182105 & 128838 & 140273 & 149070 & 74871 & 93273 & 7417 \\
\hline 42 & 102836 & 98008 & 82461 & 145456 & 282390 & 266905 & 196868 & 145122 & 237160 & 193030 & 283064 & 187586 & 147895 & 146130 & 82684 & 115713 & 24816 \\
\hline 44 & 80478 & 109595 & 91064 & 104545 & 243107 & 344681 & 289998 & 164011 & 270810 & 222613 & 251956 & 201447 & 162333 & 123170 & 51365 & 122460 & 20422 \\
\hline 46 & 93344 & 106857 & 86723 & 130023 & 188494 & 270532 & 285451 & 130859 & 228996 & 238849 & 230227 & 199487 & 180752 & 140677 & 61292 & 95208 & 22427 \\
\hline 48 & 80934 & 77694 & 62163 & 115806 & 126685 & 239265 & 263272 & 100043 & 142650 & 155222 & 188149 & 194697 & 158490 & 127136 & 39844 & 59668 & 20653 \\
\hline 50 & 55399 & 57055 & 55905 & 91915 & 72581 & 169478 & 200874 & 99210 & 112385 & 159658 & 186310 & 145447 & 130759 & 116842 & 38109 & 51436 & 15619 \\
\hline 52 & 52948 & 51658 & 46180 & 93878 & 82331 & 115269 & 119836 & 75929 & 74336 & 114530 & 109212 & 124239 & 107214 & 99156 & 29929 & 37860 & 10415 \\
\hline 54 & 42094 & 36737 & 35998 & 48742 & 50633 & 62106 & 99509 & 74405 & 66260 & 84649 & 120550 & 92526 & 90638 & 103818 & 39911 & 21406 & 16034 \\
\hline 56 & 26460 & 35839 & 26001 & 60839 & 60284 & 67741 & 99674 & 55147 & 48853 & 96257 & 71590 & 72471 & 78934 & 89197 & 32298 & 20681 & 9753 \\
\hline 58 & 27357 & 22762 & 19019 & 31614 & 31334 & 61132 & 54522 & 46087 & 39689 & 51578 & 62211 & 46869 & 54869 & 59004 & 30016 & 13591 & 12328 \\
\hline 60 & 23581 & 25834 & 14210 & 33688 & 19126 & 43591 & 45908 & 28056 & 29840 & 36547 & 31544 & 31690 & 35387 & 65851 & 21467 & 11946 & 7678 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Length & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 62 & 14295 & 18773 & 11129 & 30691 & 23996 & 35774 & 23763 & 23057 & 28335 & 57472 & 19076 & 19998 & 33085 & 64579 & 16797 & 11776 & 7506 \\
\hline 64 & 18044 & 13532 & 16771 & 18823 & 14799 & 25788 & 20607 & 18091 & 14420 & 24016 & 62005 & 17624 & 17714 & 53482 & 16261 & 9356 & 4348 \\
\hline 66 & 10773 & 11068 & 11011 & 13230 & 10650 & 12456 & 14969 & 8715 & 12694 & 21415 & 26388 & 14720 & 15170 & 37744 & 8387 & 6653 & 2634 \\
\hline 68 & 9903 & 9120 & 5447 & 7960 & 8569 & 13360 & 13976 & 8793 & 9039 & 27466 & 9340 & 7906 & 9374 & 23884 & 5579 & 2485 & 4465 \\
\hline 70 & 5709 & 11771 & 4795 & 5374 & 4880 & 8908 & 9653 & 4835 & 6821 & 20198 & 8541 & 6114 & 8114 & 32512 & 8995 & 1163 & 1353 \\
\hline 72 & 5721 & 5733 & 4559 & 5617 & 2974 & 8053 & 4521 & 2707 & 4714 & 12083 & 29128 & 2082 & 4147 & 14996 & 3027 & 660 & 956 \\
\hline 74 & 2345 & 5345 & 1825 & 3275 & 2675 & 9811 & 3424 & 1962 & 1623 & 7551 & 1884 & 1163 & 2313 & 9001 & 642 & 628 & 219 \\
\hline 76 & 2595 & 2782 & 1260 & 1356 & 2567 & 5020 & 2883 & 1010 & 1257 & 979 & 2114 & 1096 & 1540 & 2640 & 773 & 431 & 0 \\
\hline 78 & 2102 & 1691 & 357 & 297 & 548 & 2378 & 731 & 399 & 534 & 1765 & 182 & 476 & 1134 & 2073 & 0 & 9 & 127 \\
\hline 80 & 888 & 583 & 155 & 783 & 425 & 1365 & 201 & 158 & 261 & 264 & 5525 & 148 & 282 & 176 & 198 & 16 & 0 \\
\hline 82 & 1021 & 296 & 109 & 112 & 149 & 107 & 261 & 37 & 8 & 1004 & 6097 & 104 & 451 & 1566 & 0 & 278 & 0 \\
\hline 84 & 548 & 204 & 0 & 148 & 295 & 0 & 30 & 59 & 0 & 0 & 863 & 0 & 29 & 0 & 0 & 0 & 0 \\
\hline 86 & 123 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 27 & 1115 & 0 & 0 & 301 \\
\hline 88 & 0 & 61 & 0 & 0 & 149 & 0 & 0 & 0 & 0 & 0 & 1207 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 90 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 10.1.2.6b. Bass-47: Numbers-at-age in French commercial fishery landings, 2000-2016, all gears combined.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age class & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 2 & 0 & 0 & 0 & 2611 & 3 & 0 & 3138 & 0 & 1208 & 315 & 717 & 0 & 0 & & 0 & 47 & 24 \\
\hline 3 & 0 & 2651 & 8114 & 10800 & 4 & 24195 & 74600 & 5307 & 79917 & 23355 & 1962 & 0 & 406 & 36 & 603 & 1394 & 565 \\
\hline 4 & 9440 & 55640 & 73892 & 364427 & 80483 & 77794 & 131099 & 73224 & 175402 & 119979 & 39409 & 6087 & 14357 & 491 & 6846 & 20917 & 3419 \\
\hline 5 & 222655 & 47734 & 125531 & 241694 & 627951 & 253455 & 564668 & 135809 & 545960 & 282754 & 221063 & 172404 & 65157 & 34169 & 11735 & 116939 & 23364 \\
\hline 6 & 273687 & 298773 & 90294 & 318445 & 438799 & 735235 & 361515 & 460583 & 401231 & 473020 & 515711 & 252236 & 262593 & 61973 & 123435 & 139446 & 25335 \\
\hline 7 & 139562 & 211740 & 236147 & 96562 & 297961 & 352182 & 841651 & 124606 & 456312 & 238022 & 411737 & 312186 & 346334 & 331051 & 149938 & 125305 & 22790 \\
\hline 8 & 79413 & 90962 & 86108 & 254050 & 65297 & 443765 & 146484 & 139879 & 143871 & 408951 & 437222 & 303804 & 308183 & 213427 & 133129 & 191220 & 29076 \\
\hline 9 & 47258 & 44742 & 31151 & 114829 & 131612 & 39104 & 253945 & 79978 & 147881 & 100487 & 200328 & 314164 & 264012 & 237503 & 143241 & 88543 & 38383 \\
\hline 10 & 43924 & 21074 & 23025 & 57883 & 77533 & 161572 & 13655 & 69214 & 40719 & 200417 & 172430 & 125800 & 214803 & 332529 & 39242 & 67528 & 26822 \\
\hline 11 & 49293 & 39908 & 17823 & 26223 & 25416 & 69617 & 132370 & 33191 & 57341 & 73570 & 109342 & 89188 & 83939 & 174544 & 39476 & 24658 & 18455 \\
\hline 12 & 20207 & 36007 & 14760 & 19879 & 14848 & 26314 & 84910 & 65868 & 17882 & 37114 & 75421 & 34465 & 50701 & 119858 & 12679 & 17551 & 4964 \\
\hline 13 & 10767 & 17787 & 15912 & 14232 & 14254 & 17996 & 22068 & 68599 & 35092 & 32657 & 46461 & 28352 & 24784 & 37411 & 7347 & 5046 & 3114 \\
\hline 14 & 4925 & 4394 & 9752 & 18088 & 13528 & 19238 & 6648 & 11131 & 12669 & 55506 & 21880 & 12942 & 8470 & 18454 & 3067 & 5387 & 1866 \\
\hline 15 & 4927 & 6838 & 3743 & 6600 & 7628 & 17974 & 6999 & 9034 & 5518 & 33537 & 4806 & 5585 & 3191 & 12343 & 198 & 431 & 381 \\
\hline \(16+\) & 10901 & 8034 & 1553 & 4028 & 5270 & 22718 & 16069 & 5486 & 6091 & 23529 & 16480 & 337 & 1583 & 9852 & 0 & 428 & 429 \\
\hline
\end{tabular}

Table 10.1.2.5. Bass-47: Numbers-at-age in UK(England and Wales) mixed bottom otter trawl, nets.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age class & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 65 & 0 & 0 & 0 & 33417 & 0 & 1533 & 0 & 16 & 2 & 0 & 191 & 59 & 0 & 720 \\
\hline 3 & 21068 & 16250 & 548 & 1963 & 5411 & 3341 & 7064 & 17177 & 1183 & 1399 & 6085 & 11683 & 2944 & 4780 & 337 \\
\hline 4 & 42318 & 29242 & 31315 & 22613 & 1761 & 2585 & 45358 & 61023 & 93082 & 35028 & 44006 & 52635 & 11603 & 53363 & 105572 \\
\hline 5 & 9562 & 22103 & 62176 & 67860 & 15831 & 3955 & 2852 & 38824 & 77756 & 489199 & 103508 & 44119 & 79613 & 60382 & 183644 \\
\hline 6 & 15593 & 4386 & 15885 & 46777 & 79957 & 17331 & 1460 & 1477 & 29427 & 60011 & 432323 & 79955 & 56652 & 92118 & 57430 \\
\hline 7 & 2131 & 10016 & 2676 & 15201 & 28734 & 34915 & 7368 & 1064 & 1941 & 25472 & 25312 & 230860 & 47517 & 35851 & 42279 \\
\hline 8 & 5027 & 1062 & 2915 & 2272 & 9373 & 23427 & 22990 & 2475 & 916 & 2072 & 12244 & 12802 & 196226 & 21588 & 14900 \\
\hline 9 & 14846 & 3955 & 1088 & 3330 & 3180 & 5939 & 20272 & 5943 & 2727 & 467 & 1182 & 8600 & 10958 & 69289 & 11193 \\
\hline 10 & 3630 & 15932 & 1249 & 989 & 3109 & 2543 & 8875 & 6395 & 8745 & 4036 & 1114 & 343 & 6091 & 5619 & 38594 \\
\hline 11 & 3275 & 2793 & 7308 & 906 & 1937 & 1832 & 678 & 1793 & 7264 & 11256 & 1877 & 825 & 1189 & 1951 & 2781 \\
\hline 12 & 2233 & 2274 & 3409 & 7367 & 3111 & 1040 & 3846 & 581 & 2867 & 9958 & 9124 & 818 & 993 & 234 & 2767 \\
\hline 13 & 390 & 3842 & 2100 & 2919 & 9953 & 1343 & 4005 & 628 & 1373 & 2801 & 6911 & 4403 & 537 & 292 & 287 \\
\hline 14 & 963 & 1794 & 928 & 2027 & 1614 & 6098 & 847 & 308 & 1438 & 1290 & 3782 & 3261 & 4884 & 1178 & 1047 \\
\hline 15 & 420 & 2333 & 996 & 1325 & 1373 & 434 & 11490 & 640 & 1118 & 920 & 3539 & 1834 & 2777 & 2005 & 412 \\
\hline 16+ & 1828 & 4901 & 3984 & 3566 & 3770 & 3532 & 6561 & 4612 & 6135 & 6507 & 7412 & 4130 & 3805 & 2065 & 4144 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age class & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 668 & 368 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 9949 & 11556 & 12224 & 5778 & 4685 & 19532 & 20541 & 977 & 9537 & 2974 & 1133 & 853 & 1711 & 0 & 7868 & 50 & 0 \\
\hline 4 & 2878 & 99793 & 46215 & 82420 & 39967 & 137879 & 157456 & 40217 & 115884 & 81472 & 84129 & 33839 & 15830 & 46202 & 38480 & 3716 & 1591 \\
\hline 5 & 170896 & 30457 & 254649 & 78332 & 227996 & 94261 & 180880 & 200850 & 324302 & 189812 & 200773 & 136163 & 185326 & 67527 & 144449 & 20172 & 7863 \\
\hline 6 & 85149 & 123033 & 19465 & 179281 & 85254 & 139121 & 67783 & 125021 & 181154 & 206263 & 172945 & 117249 & 248476 & 217993 & 87567 & 45807 & 13991 \\
\hline 7 & 14468 & 33031 & 85004 & 10886 & 112443 & 39325 & 78587 & 58933 & 69178 & 90693 & 118126 & 90388 & 84826 & 150073 & 171438 & 36830 & 31088 \\
\hline 8 & 14330 & 9415 & 23779 & 49065 & 5131 & 37161 & 23139 & 51895 & 32104 & 31018 & 44773 & 71006 & 62555 & 51505 & 117204 & 63272 & 24925 \\
\hline 9 & 6468 & 11980 & 10071 & 17334 & 18592 & 3701 & 36865 & 21376 & 29898 & 23763 & 16968 & 44808 & 49578 & 44984 & 56803 & 35025 & 40386 \\
\hline 10 & 5885 & 7495 & 13201 & 6262 & 7666 & 13053 & 3852 & 25317 & 14118 & 14085 & 9373 & 15385 & 25467 & 33060 & 40965 & 17302 & 24807 \\
\hline 11 & 13020 & 9896 & 4145 & 4178 & 2764 & 3234 & 6609 & 16694 & 11088 & 14002 & 8953 & 17293 & 17152 & 28016 & 44939 & 12685 & 10618 \\
\hline 12 & 1147 & 11296 & 5607 & 3056 & 2183 & 1358 & 3535 & 7648 & 2223 & 8357 & 3352 & 9042 & 7086 & 17931 & 28854 & 10431 & 8218 \\
\hline 13 & 442 & 1244 & 13853 & 2279 & 1973 & 1671 & 1164 & 6740 & 1825 & 3045 & 2605 & 4874 & 6536 & 6638 & 10843 & 2917 & 4788 \\
\hline 14 & 30 & 1069 & 966 & 5641 & 669 & 207 & 568 & 95 & 4419 & 2377 & 2632 & 4390 & 4704 & 5573 & 3953 & 7265 & 1960 \\
\hline 15 & 143 & 96 & 294 & 1123 & 3272 & 839 & 1203 & 598 & 515 & 0 & 616 & 1197 & 1134 & 4386 & 3859 & 7308 & 2098 \\
\hline 16+ & 1203 & 1179 & 749 & 922 & 364 & 1449 & 2167 & 913 & 1815 & 249 & 1940 & 2350 & 1751 & 4071 & 3012 & 966 & 1528 \\
\hline
\end{tabular}

Table 10.1.2.5. Bass-47: Numbers-at-age in UK(England and Wales) Lines.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age class & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 22 & 0 & 0 & 0 & 16 & 0 & 0 & 0 & 59 & 0 & 479 & 0 \\
\hline 3 & 577 & 108 & 33 & 0 & 305 & 131 & 1195 & 526 & 71 & 486 & 210 & 454 & 3676 & 255 & 421 \\
\hline 4 & 8939 & 1052 & 1751 & 538 & 82 & 8420 & 5473 & 11652 & 4059 & 6943 & 8804 & 3102 & 8366 & 25158 & 294 \\
\hline 5 & 3343 & 3719 & 13389 & 8171 & 185 & 471 & 5267 & 11776 & 119784 & 21979 & 12487 & 15613 & 10920 & 37306 & 19380 \\
\hline 6 & 933 & 2132 & 5067 & 36046 & 1284 & 177 & 294 & 7569 & 18540 & 97509 & 15338 & 11415 & 22630 & 13589 & 12402 \\
\hline 7 & 2354 & 581 & 2398 & 1842 & 3456 & 792 & 269 & 590 & 9393 & 7380 & 57127 & 8287 & 10485 & 13697 & 2696 \\
\hline 8 & 358 & 477 & 551 & 371 & 2407 & 4927 & 518 & 289 & 943 & 5313 & 4566 & 50819 & 6452 & 5288 & 3285 \\
\hline 9 & 758 & 432 & 1014 & 104 & 897 & 4024 & 1193 & 931 & 173 & 480 & 4979 & 2853 & 28231 & 5001 & 1476 \\
\hline 10 & 5428 & 523 & 209 & 208 & 357 & 1842 & 1633 & 3941 & 1754 & 699 & 127 & 1635 & 2949 & 20522 & 1248 \\
\hline 11 & 960 & 1578 & 456 & 58 & 369 & 89 & 563 & 3344 & 5414 & 831 & 510 & 557 & 1091 & 1669 & 4697 \\
\hline 12 & 871 & 845 & 1863 & 215 & 193 & 1229 & 130 & 1367 & 5570 & 5684 & 364 & 354 & 138 & 2038 & 330 \\
\hline 13 & 953 & 211 & 895 & 1040 & 242 & 1685 & 195 & 663 & 1205 & 3696 & 2521 & 243 & 196 & 247 & 258 \\
\hline 14 & 573 & 167 & 715 & 115 & 1261 & 367 & 169 & 703 & 639 & 1936 & 1573 & 2195 & 793 & 777 & 16 \\
\hline 15 & 645 & 179 & 523 & 87 & 81 & 4831 & 143 & 643 & 274 & 840 & 1300 & 1065 & 1381 & 315 & 88 \\
\hline 16+ & 1307 & 1187 & 977 & 334 & 828 & 2887 & 1411 & 3789 & 2790 & 4733 & 2346 & 1570 & 1254 & 3314 & 559 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age class & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 54 & 30 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 471 & 729 & 80 & 279 & 621 & 44 & 22 & 199 & 315 & 814 & 8 & 91 & 0 & 980 & 6 & 0 \\
\hline 4 & 7385 & 2609 & 7166 & 1697 & 2669 & 16121 & 6611 & 5010 & 8415 & 7029 & 5209 & 1695 & 1187 & 4985 & 1834 & 742 \\
\hline 5 & 1392 & 14173 & 7917 & 13884 & 5059 & 35990 & 31578 & 27319 & 19843 & 45515 & 11538 & 18362 & 6979 & 26081 & 5941 & 7020 \\
\hline 6 & 17864 & 2686 & 25014 & 8601 & 14699 & 13714 & 28396 & 42071 & 33661 & 54766 & 24667 & 28593 & 35135 & 20743 & 23369 & 11858 \\
\hline 7 & 7702 & 17358 & 2167 & 17310 & 5529 & 22306 & 14511 & 21561 & 25695 & 39716 & 19293 & 23507 & 32251 & 39548 & 22221 & 20142 \\
\hline 8 & 2027 & 7757 & 10164 & 2398 & 6985 & 5794 & 17834 & 12265 & 12017 & 15835 & 16668 & 22946 & 18057 & 28357 & 31442 & 15479 \\
\hline 9 & 3239 & 2621 & 3262 & 6365 & 589 & 12717 & 8499 & 12566 & 9320 & 5147 & 13032 & 17909 & 14762 & 15323 & 19014 & 25838 \\
\hline 10 & 1685 & 5179 & 1473 & 3626 & 5697 & 1644 & 10951 & 5458 & 5021 & 2395 & 4947 & 10199 & 10333 & 12440 & 10344 & 13362 \\
\hline 11 & 1761 & 1463 & 982 & 1181 & 1845 & 3135 & 5163 & 4960 & 5371 & 2910 & 6066 & 7725 & 10543 & 12413 & 8210 & 7406 \\
\hline 12 & 3774 & 1766 & 796 & 1189 & 236 & 1258 & 3121 & 1372 & 4748 & 706 & 2695 & 2994 & 6106 & 8018 & 7036 & 5904 \\
\hline 13 & 440 & 3687 & 681 & 1172 & 1307 & 305 & 5119 & 1032 & 811 & 522 & 1941 & 2672 & 3730 & 4889 & 2504 & 4674 \\
\hline 14 & 301 & 322 & 1704 & 406 & 33 & 358 & 85 & 3431 & 1075 & 359 & 2187 & 2158 & 2886 & 1976 & 3136 & 2548 \\
\hline 15 & 27 & 101 & 186 & 2243 & 189 & 1016 & 344 & 198 & 0 & 81 & 522 & 596 & 1957 & 1673 & 744 & 3894 \\
\hline 16+ & 420 & 180 & 166 & 143 & 606 & 734 & 485 & 992 & 0 & 277 & 657 & 820 & 1938 & 1322 & 798 & 2567 \\
\hline
\end{tabular}

Table 10.1.2.6a. Bass-47: Numbers-at-age in UK(England and Wales) midwater pair trawl fleet (no samples for 1997, 2013, 2014, 2015, 2016).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age class & 1996 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 0 & 0 & 0 & 15 & 0 & 3 & 0 & 7 & 0 & 0 & 0 & 45 & 0 & 9 & 0 & 0 \\
\hline 4 & 289 & 245 & 2983 & 60 & 179 & 37 & 2689 & 1254 & 114 & 227 & 385 & 445 & 90 & 36 & 255 & 391 \\
\hline 5 & 796 & 5979 & 18409 & 2476 & 899 & 2380 & 10619 & 12502 & 2103 & 567 & 2517 & 1540 & 635 & 1741 & 4397 & 4461 \\
\hline 6 & 3892 & 11845 & 15106 & 7587 & 19777 & 1578 & 39257 & 14372 & 15321 & 608 & 7038 & 3279 & 2175 & 5546 & 10231 & 10776 \\
\hline 7 & 71666 & 8553 & 27147 & 3270 & 20290 & 24087 & 7971 & 48109 & 14397 & 4076 & 5387 & 1787 & 2596 & 8261 & 13640 & 10016 \\
\hline 8 & 5583 & 8135 & 13818 & 4497 & 7042 & 9693 & 40551 & 3199 & 17408 & 1423 & 6833 & 1412 & 843 & 6678 & 15909 & 8757 \\
\hline 9 & 1648 & 25138 & 18060 & 1459 & 5268 & 6297 & 10293 & 20694 & 1907 & 3085 & 2795 & 1557 & 784 & 4755 & 13642 & 5789 \\
\hline 10 & 21 & 2517 & 43097 & 2830 & 3124 & 5978 & 3162 & 8010 & 5182 & 254 & 1900 & 755 & 168 & 403 & 4424 & 2741 \\
\hline 11 & 334 & 345 & 4389 & 7077 & 2845 & 450 & 3254 & 353 & 0 & 176 & 631 & 960 & 298 & 3786 & 4233 & 1134 \\
\hline 12 & 154 & 93 & 1686 & 634 & 9666 & 5664 & 618 & 1797 & 1831 & 111 & 807 & 30 & 173 & 152 & 2773 & 290 \\
\hline 13 & 622 & 53 & 324 & 174 & 857 & 9215 & 169 & 1141 & 99 & 0 & 12 & 183 & 11 & 294 & 1688 & 433 \\
\hline 14 & 485 & 119 & 387 & 39 & 636 & 0 & 4043 & 91 & 0 & 0 & 37 & 490 & 169 & 313 & 1003 & 143 \\
\hline 15 & 199 & 893 & 308 & 96 & 123 & 0 & 77 & 968 & 40 & 0 & 19 & 0 & 0 & 551 & 264 & 127 \\
\hline 16+ & 559 & 569 & 2689 & 420 & 261 & 530 & 281 & 18 & 599 & 53 & 121 & 40 & 0 & 50 & 423 & 226 \\
\hline
\end{tabular}

\section*{Table 10.1.2.7. Numbers of trips sampled for discards by Cefas (UK): 2002-2015, by gear group and area.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Division (a) bottom otter trawls & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 4 & 16 & 34 & 56 & 37 & 41 & 85 & 58 & 49 & 46 & 42 & 54 & 30 & 53 & 45 & 12 \\
\hline 7.afg & 8 & 15 & 23 & 8 & 11 & 43 & 50 & 28 & 22 & 22 & 22 & 12 & 14 & 16 & 2 \\
\hline 7.d & 1 & 2 & 4 & 3 & 1 & 2 & 1 & 6 & 7 & 9 & 4 & 5 & 7 & 3 & 13 \\
\hline 7.eh & 9 & 24 & 37 & 31 & 49 & 90 & 87 & 38 & 29 & 32 & 29 & 45 & 73 & 68 & 29 \\
\hline total & 34 & 75 & 120 & 79 & 102 & 220 & 196 & 121 & 104 & 105 & 109 & 92 & 147 & 132 & 56 \\
\hline \multicolumn{16}{|l|}{(b) Fixed/driftnets} \\
\hline Division & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 4 & 0 & 0 & 2 & 1 & 11 & 31 & 15 & 20 & 15 & 11 & 13 & 18 & 10 & 7 & 0 \\
\hline 7.afg & 3 & 7 & 5 & 3 & 7 & 8 & 9 & 10 & 7 & 16 & 22 & 16 & 25 & 12 & 3 \\
\hline 7.d & 0 & 0 & 1 & 0 & 0 & 17 & 6 & 4 & 1 & 7 & 10 & 42 & 25 & 17 & 10 \\
\hline 7.eh & 1 & 5 & 9 & 2 & 3 & 16 & 10 & 14 & 19 & 17 & 25 & 24 & 24 & 15 & 0 \\
\hline total & 4 & 12 & 17 & 6 & 21 & 72 & 40 & 48 & 42 & 51 & 70 & 100 & 84 & 51 & 13 \\
\hline \multicolumn{16}{|l|}{(c) Lines} \\
\hline Division & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 4 & 0 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline 7.afg & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 7.d & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 33 \\
\hline 7.eh & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 8 & 5 & 4 \\
\hline total & 0 & 1 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 2 & 1 & 10 & 6 & 37 \\
\hline
\end{tabular}
\begin{tabular}{llllllllllllllll}
\hline (d) Midwater trawls & & & & \\
\hline Division & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7.afg & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7.d & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7.eh & 0 & 1 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
\hline total & 1 & 1 & 1 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline (e) Other gears & & & & & & & & & & & & & & & \\
\hline Division & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
\hline 4 & 8 & 5 & 10 & 1 & 2 & 1 & 1 & 7 & 6 & 8 & 4 & 10 & & 0 & 6 \\
\hline 7.afg & 4 & 11 & 8 & 4 & 9 & 1 & 2 & 3 & 3 & 1 & 4 & 8 & & 0 & 5 \\
\hline 7.d & 0 & 1 & 5 & 2 & 3 & 1 & 1 & 2 & 4 & 1 & 2 & 3 & 1 & 2 & 0 \\
\hline 7.eh & 10 & 17 & 27 & 16 & 24 & 32 & 18 & 13 & 17 & 27 & 22 & 21 & 14 & 15 & 1 \\
\hline total & 22 & 34 & 50 & 23 & 38 & 35 & 22 & 25 & 30 & 37 & 32 & 42 & 15 & 17 & 12 \\
\hline
\end{tabular}

Table 10.1.2.8a. Estimated annual numbers and weight of sea bass retained and discarded by UK using fixed or driftnets, otter trawl, beam trawl and lines fleets in Areas 4, 7.d, 7.eh and 7.afg, based on at-sea sampling, and raised from landings in sampled strata to landings in all strata. Numbers of sampled trips are shown.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Otter trawl} & \multicolumn{4}{|c|}{Nets} & \multicolumn{4}{|c|}{Beam trawl} & \multicolumn{4}{|c|}{Lines} & \multicolumn{3}{|l|}{Total OTB, nets, lines and BTS} \\
\hline & discards & retained & \begin{tabular}{l}
rate \\
(\%)
\end{tabular} & \begin{tabular}{l}
No. \\
trips sampled
\end{tabular} & discards & retained & \[
\begin{aligned}
& \text { rate } \\
& \%
\end{aligned}
\] & \begin{tabular}{l}
No. \\
trips sampled
\end{tabular} & discards & retained & \[
\begin{aligned}
& \text { rate } \\
& \%
\end{aligned}
\] & No. trips sampled & discards & retained & \begin{tabular}{l}
rate \\
(\%)
\end{tabular} & No. trips sampled & discards & retained & rate\% \\
\hline 2002 & 17 & 161 & 9 & 34 & 0 & 201 & 0 & 4 & 0.2 & 24 & 0.7 & - & - & - & - & - & 17 & 386 & 4 \\
\hline 2003 & 16 & 207 & 7 & 75 & 0 & 146 & 0 & 12 & 1.9 & 21 & 8.1 & - & - & - & - & - & 18 & 374 & 5 \\
\hline 2004 & 59 & 173 & 25 & 120 & 0 & 207 & 0 & 17 & 0.3 & 24 & 1.3 & - & - & - & - & - & 59 & 404 & 13 \\
\hline 2005 & 6 & 181 & 3 & 79 & 90 & 172 & 34 & 6 & 2.4 & 15 & 13.7 & - & - & - & - & - & 99 & 368 & 21 \\
\hline 2006 & 34 & 160 & 17 & 102 & 19 & 199 & 9 & 21 & 0.4 & 14 & 2.5 & - & - & - & - & - & 53 & 373 & 12 \\
\hline 2007 & 49 & 173 & 22 & 220 & 1 & 239 & 0.4 & 72 & 0.0 & 19 & 0.0 & - & - & - & - & - & 50 & 432 & 10 \\
\hline 2008 & 5 & 196 & 3 & 196 & 3 & 318 & 0.9 & 40 & 1.2 & 21 & 5.6 & - & - & - & - & - & 9 & 535 & 2 \\
\hline 2009 & 85 & 175 & 33 & 121 & 0 & 311 & 0.1 & 48 & 0.2 & 10 & 1.5 & - & - & - & - & - & 86 & 495 & 15 \\
\hline 2010 & 49 & 150 & 25 & 104 & 1 & 302 & 0.3 & 42 & 1.2 & 6 & 17.1 & - & - & - & - & - & 51 & 458 & 10 \\
\hline 2011 & 8 & 137 & 6 & 105 & 14 & 324 & 4.2 & 51 & 0.0 & 5 & 0.0 & - & - & - & - & - & 22 & 467 & 5 \\
\hline 2012 & 27 & 157 & 15 & 109 & 2 & 407 & 0.5 & 70 & 0.0 & 5 & 0.0 & - & - & - & - & - & 29 & 569 & 5 \\
\hline 2013 & 4 & 125 & 3 & 92 & 2 & 405 & 0.4 & 100 & 1.1 & 4 & 20.1 & - & - & - & - & - & 6 & 534 & 1 \\
\hline 2014 & 1 & 104 & 1 & 147 & 6 & 647 & 0.9 & 84 & 0.0 & 8 & 0.0 & - & - & - & - & - & 7 & 758 & 1 \\
\hline 2015 & 6 & 77 & 7 & 132 & 1 & 340 & 0.4 & 51 & 0.0 & 8 & 0.0 & - & - & - & - & - & 7 & 425 & 2 \\
\hline 2016 & 35 & 52 & 40 & 56 & 8 & 252 & 3 & 13 & 0.1 & 23 & 0.0 & & 8.4 & 210.0 & 4.0 & 37.0 & 52 & 537 & 9 \\
\hline Mean & 27 & 148 & 14 & 113 & 10 & 298 & 4 & 42 & 1 & 14 & 5 & & 8 & 210 & 4 & 37 & 38 & 474 & 8 \\
\hline
\end{tabular}

Table 10.1.2.9. Number of fishing trips sampled for retained and discarded weight of sea bass on French vessels using different gear types: 2009-2016.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ pelagic trawl FR VIIIab provisional } \\
\hline year & discards \((t)\) & Landings \((t)\) discard rates & cv indicator & Nb trip sampled & Nb fish sampled \\
\hline \(\mathbf{2 0 0 3}\) & 0 & 773 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 4}\) & 0 & 820 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 5}\) & 0 & 1319 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 6}\) & 0 & 1420 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 7}\) & 0 & 841 & \(0.00 \%\) & NA & 12 & 2 \\
\hline \(\mathbf{2 0 0 8}\) & 2 & 1012 & \(0.20 \%\) & 3.93 & 21 & 4 \\
\hline \(\mathbf{2 0 0 9}\) & 21.2 & 1098 & \(1.89 \%\) & 0.05 & & \\
\hline \(\mathbf{2 0 1 0}\) & 7.4 & 1828 & \(0.40 \%\) & 0.71 & 35 & 106 \\
\hline \(\mathbf{2 0 1 1}\) & 7.2 & 1142 & \(0.63 \%\) & 0.12 & 9 & 46 \\
\hline \(\mathbf{2 0 1 2}\) & 0.9 & 1143 & \(0.08 \%\) & 2.38 & 7 & 29 \\
\hline \(\mathbf{2 0 1 3}\) & 0.3 & 1516 & \(0.02 \%\) & 2 & & \\
\hline \(\mathbf{2 0 1 4}\) & 0 & 242 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 1 5}\) & 11.7 & 107 & \(9.86 \%\) & 0.03 & 32 & 5 \\
\hline \(\mathbf{2 0 1 6}\) & 0.5 & 17.43081 & \(2.79 \%\) & NA & & 19
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ bottom trawIFR VIllab provisional } \\
\hline year & discards \((t)\) & Landings \((t)\) discard rates & cv indicator & Nb trip sampled & Nb fish sampled \\
\hline \(\mathbf{2 0 0 3}\) & 73.8 & 1087 & \(6.36 \%\) & 0.35 & 18 & 26 \\
\hline \(\mathbf{2 0 0 4}\) & & 1236 & NA & NA & 24 & 3 \\
\hline \(\mathbf{2 0 0 5}\) & 43.9 & 1239 & \(3.42 \%\) & 0.9 & & \\
\hline \(\mathbf{2 0 0 6}\) & 42.9 & 1110 & \(3.72 \%\) & 1.07 & 24 & 36 \\
\hline \(\mathbf{2 0 0 7}\) & 9.6 & 1187 & \(0.80 \%\) & 0.73 & & \\
\hline \(\mathbf{2 0 0 8}\) & 40.7 & 1145 & \(3.43 \%\) & 0.94 & 57 & 63 \\
\hline \(\mathbf{2 0 0 9}\) & & 1052 & NA & NA & 143 & 102 \\
\hline \(\mathbf{2 0 1 0}\) & 76.6 & 819 & \(8.55 \%\) & 0.32 & 137 & 5 \\
\hline \(\mathbf{2 0 1 1}\) & 27.2 & 791 & \(3.32 \%\) & 0.46 & 122 & 57 \\
\hline \(\mathbf{2 0 1 2}\) & 24.5 & 824 & \(2.89 \%\) & 0.23 & 151 & 118 \\
\hline \(\mathbf{2 0 1 3}\) & 26.3 & 737 & \(3.45 \%\) & 0.37 & 139 & 145 \\
\hline \(\mathbf{2 0 1 4}\) & & 571 & NA & NA & 133 & 29 \\
\hline \(\mathbf{2 0 1 5}\) & 35.4 & 642 & \(5.23 \%\) & 0.49 & 189 & 356 \\
\hline \(\mathbf{2 0 1 6}\) & 126.9 & 271.43102 & \(31.86 \%\) & NA & 512 & 90 \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ netsFR VIIIab provisional } \\
\hline year & discards \((t)\) & Landings (t) & discard rates & cv indicator & Nb trip sampled & Nb fish sampled \\
\hline \(\mathbf{2 0 0 3}\) & 31.7 & 152 & \(17.26 \%\) & 1.2 & & \\
\hline \(\mathbf{2 0 0 4}\) & 77.6 & 150 & \(34.09 \%\) & 0.1 & & \\
\hline \(\mathbf{2 0 0 5}\) & 0 & 148 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 6}\) & 125.5 & 140 & \(47.27 \%\) & 0.34 & & \\
\hline \(\mathbf{2 0 0 7}\) & 2.2 & 158 & \(1.37 \%\) & 0.61 & 32 & 2 \\
\hline \(\mathbf{2 0 0 8}\) & 0.5 & 128 & \(0.39 \%\) & 0.79 & & \\
\hline \(\mathbf{2 0 0 9}\) & 6.4 & 94 & \(6.37 \%\) & 0.41 & 196 & 3 \\
\hline \(\mathbf{2 0 1 0}\) & 6.1 & 160 & \(3.67 \%\) & 0.29 & 108 & 5 \\
\hline \(\mathbf{2 0 1 1}\) & 9 & 129 & \(6.52 \%\) & 0.35 & & \\
\hline \(\mathbf{2 0 1 2}\) & 11.8 & 142 & \(7.67 \%\) & 0.55 & 269 & 9 \\
\hline \(\mathbf{2 0 1 3}\) & 21.6 & 126 & \(14.63 \%\) & 0.18 & 173 & 2 \\
\hline \(\mathbf{2 0 1 4}\) & 21.7 & 163 & \(11.75 \%\) & 0.11 & 118 & 3 \\
\hline \(\mathbf{2 0 1 5}\) & 14.7 & 109 & \(11.88 \%\) & 0.2 & 217 & 8 \\
\hline \(\mathbf{2 0 1 6}\) & 19.4 & 64.04074 & \(23.25 \%\) & NA & 258 & 209 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ linesFR VIIIab provisional } \\
\hline year & discards \((t)\) & Landings (t) & discard rates & cv indicator & Nb trip sampled & Nb fish sampled \\
\hline \(\mathbf{2 0 0 3}\) & 0 & 438 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 4}\) & 0 & 381 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 5}\) & 0 & 439 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 6}\) & 0 & 554 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 7}\) & 0 & 560 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 8}\) & 100.3 & 425 & \(19.09 \%\) & 0.35 & & \\
\hline \(\mathbf{2 0 0 9}\) & 5.6 & 251 & \(2.18 \%\) & 0.71 & 17 & 21 \\
\hline \(\mathbf{2 0 1 0}\) & 3.9 & 278 & \(1.38 \%\) & 1.24 & & \\
\hline \(\mathbf{2 0 1 1}\) & 13.1 & 359 & \(3.52 \%\) & 0.35 & & \\
\hline \(\mathbf{2 0 1 2}\) & 15.8 & 295 & \(5.08 \%\) & 0.26 & & \\
\hline \(\mathbf{2 0 1 3}\) & 14.2 & 291 & \(4.65 \%\) & 0.45 & & \\
\hline \(\mathbf{2 0 1 4}\) & 15.8 & 285 & \(5.25 \%\) & 0.4 & & 28 \\
\hline \(\mathbf{2 0 1 5}\) & 7.4 & 210 & \(3.40 \%\) & 0.32 & & 28 \\
\hline \(\mathbf{2 0 1 6}\) & & 156.15459 & & NA & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ OtherFR VIllab provisional } \\
\hline year & discards \((t)\) & Landings \((t)\) & discard rates & cv indicator & Nb trip sampled & Nb fish sampled \\
\hline \(\mathbf{2 0 0 3}\) & 0 & 23 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 4}\) & 6.6 & 17 & \(27.97 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 5}\) & 0 & 17 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 6}\) & 0 & 35 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 7}\) & 0 & 24 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 0 8}\) & 0 & 40 & NA & NA & & \\
\hline \(\mathbf{2 0 0 9}\) & 0 & 127 & NA & NA & & \\
\hline \(\mathbf{2 0 1 0}\) & 0 & 90 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 1 1}\) & 44.8 & 62 & \(41.95 \%\) & 5.97 & & \\
\hline \(\mathbf{2 0 1 2}\) & 1.1 & 91 & \(1.19 \%\) & 0.25 & 6 & 9 \\
\hline \(\mathbf{2 0 1 3}\) & 0 & 82 & \(0.00 \%\) & NA & & \\
\hline \(\mathbf{2 0 1 4}\) & 0 & 25 & \(0.00 \%\) & NA & 130 & 96 \\
\hline \(\mathbf{2 0 1 5}\) & 11 & 11 & \(50.00 \%\) & 0.58 & & \\
\hline \(\mathbf{2 0 1 6}\) & 5.9 & 19.82406 & \(22.94 \%\) & NA & 64 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ FR_ALL } \\
\hline year & discards (t) & Landings (t) & discard rates & cv indicator & Nb trip sampled & b fish sample, \\
\hline \(\mathbf{2 0 0 3}\) & 105.5 & 2473 & \(4 \%\) & & 18 & 26 \\
\hline \(\mathbf{2 0 0 4}\) & 84.2 & 2604 & \(3 \%\) & & 24 & 3 \\
\hline \(\mathbf{2 0 0 5}\) & 43.9 & 3162 & \(1 \%\) & & 0 & 0 \\
\hline \(\mathbf{2 0 0 6}\) & 168.4 & 3259 & \(5 \%\) & & 24 & 36 \\
\hline \(\mathbf{2 0 0 7}\) & 11.8 & 2770 & \(0 \%\) & & 44 & 4 \\
\hline \(\mathbf{2 0 0 8}\) & 143.5 & 2750 & \(5 \%\) & & 78 & 67 \\
\hline \(\mathbf{2 0 0 9}\) & 33.2 & 2622 & \(1 \%\) & & 356 & 126 \\
\hline \(\mathbf{2 0 1 0}\) & 94 & 3175 & \(3 \%\) & & 280 & 116 \\
\hline \(\mathbf{2 0 1 1}\) & 101.3 & 2483 & \(4 \%\) & 7.25 & 131 & 103 \\
\hline \(\mathbf{2 0 1 2}\) & 54.1 & 2495 & \(2 \%\) & 3.67 & 433 & 165 \\
\hline \(\mathbf{2 0 1 3}\) & 62.4 & 2752 & \(2 \%\) & & 312 & 147 \\
\hline \(\mathbf{2 0 1 4}\) & 37.5 & 1286 & \(3 \%\) & & 381 & 128 \\
\hline \(\mathbf{2 0 1 5}\) & 80.2 & 1079 & \(7 \%\) & 1.62 & 466 & 390 \\
\hline \(\mathbf{2 0 1 6}\) & 152.7 & 529 & \(22 \%\) & & 853 & 310 \\
\hline
\end{tabular}

Table 10.1.2.11. Estimates of annual recreational fishery catches of sea bass in France, Netherlands and UK (England) from surveys in recent years. RSE = relative standard error. An additional \(60 t\) of removals was estimated by Belgium in 2013. Estimates are by weight except for Netherlands where weight and numbers are given.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(a) France} & Kept & RSE & Released & RSE & Total & RSE & Release \\
\hline 2009- & NE Atlantic & 2,343t & & 830t & & 3,173t & 26\% & 26\% \\
\hline 2011 & ICES IV \& VII & 940 t & & 332 t & & 1,272t & >26\% & 26\% \\
\hline \[
\begin{aligned}
& 2011- \\
& 2012
\end{aligned}
\] & NE Atlantic & 3,146t & & 776 t & & 3,922t & & 20\% \\
\hline
\end{tabular}

RSE was \(26 \%\) for area VII and VIII combined; area VII represented \(40 \%\) of total.
\(\sim 80 \%\) by weight in 2009/11 was recreational sea angling
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{(b) Netherlands} & Kept & RSE & Released & RSE & Total & RSE & Release \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { March } \\
& 2010-\mathrm{Feb} \\
& 2011
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Southern \\
North \\
Sea
\end{tabular}} & By number & 234000 & 38\% & 131000 & 27\% & 365000 & 26\% & 64\% \\
\hline & & By weight & 138 t & 37\% & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { March } \\
& 2012-\mathrm{Feb} \\
& 2013
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Southern \\
North \\
Sea
\end{tabular}} & By number & 335000 & 26\% & 332000 & 21\% & 667000 & 17\% & 50\% \\
\hline & & By weight & 229 t & 26\% & & & & & \\
\hline
\end{tabular}
\(93 \%\) by weight in 2010/11 was recreational sea angling. 2012/13 figure is angling only
\begin{tabular}{l} 
(c) England \\
\begin{tabular}{l} 
Kept \\
\hline 2012
\end{tabular} \\
\begin{tabular}{|l|l|l|l|l|l|l|l|} 
Release \\
rate
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
Survey covered only recreational sea angling
}

Range of values is for different effort estimation procedures

Table 10.1.2.12. Updated time-series of Cefas Solent autumn survey of juvenile sea bass, including 2013 survey results. Indices for 2000 are revised. A change in trawl design took place in 1993, and calibration factors are applied.
\begin{tabular}{|c|c|}
\hline Year & Solent Index \\
\hline 1986 & 5.84 \\
\hline 1987 & 2.6 \\
\hline 1989 & 7.05 \\
\hline 1990 & 3.98 \\
\hline 1991 & 3.32 \\
\hline 1992 & 19.7 \\
\hline 1993 & 14.63 \\
\hline 1994 & 5.46 \\
\hline 1995 & 10.24 \\
\hline 1996 & 6.06 \\
\hline 1997 & 38.2 \\
\hline 1998 & 7.34 \\
\hline 1999 & 20.91 \\
\hline 2000 & 17.46 \\
\hline 2001 & 39.91 \\
\hline 2002 & 11.7 \\
\hline 2003 & 13.55 \\
\hline 2005 & 21.93 \\
\hline 2006 & 19.73 \\
\hline 2007 & 5.5 \\
\hline 2008 & 25.52 \\
\hline 2009 & 19.83 \\
\hline 2011 & 4.05 \\
\hline 2013 & 1.52 \\
\hline 2014 & 1.4 \\
\hline 2015 & 7.44 \\
\hline 2016 & 6.03 \\
\hline
\end{tabular}

Table 10.1.2.13. Sea bass indices of abundance 2000-2014 (swept area) from the Channel Groundfish Survey. The relative standard error CV is the log-transformed value used in SS3 (sqrt(loge \(\left.\left(1+C V^{\wedge} 2\right)\right) .2015\) not updated (Intercalibration need to be reviewed during benchmark 2017).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline year & Total hauls & No. hauls with seabass & Percentage of hauls with seabass & Mean no. seabass per positive haul & Swept-area abundance index & CV \\
\hline 1988 & 68 & 6 & 9 & 2 & 245776 & 0.15 \\
\hline 1989 & 61 & 3 & 5 & 1 & 77716 & 0.58 \\
\hline 1990 & 75 & 8 & 11 & 8 & 1129914 & 0.12 \\
\hline 1991 & 79 & 19 & 24 & 9 & 4250636 & 0.03 \\
\hline 1992 & 60 & 23 & 38 & 13 & 2617986 & 0.11 \\
\hline 1993 & 65 & 21 & 32 & 8 & 2299919 & 0.10 \\
\hline 1994 & 86 & 19 & 22 & 5 & 1097828 & 0.11 \\
\hline 1995 & 166 & 17 & 10 & 5 & 1021741 & 0.09 \\
\hline 1996 & 134 & 26 & 19 & 3 & 1224238 & 0.13 \\
\hline 1997 & 169 & 31 & 18 & 6 & 1817599 & 0.12 \\
\hline 1998 & 82 & 38 & 46 & 8 & 2531043 & 0.08 \\
\hline 1999 & 102 & 37 & 36 & 8 & 1642271 & 0.12 \\
\hline 2000 & 100 & 36 & 36 & 9 & 2570994 & 0.08 \\
\hline 2001 & 109 & 39 & 36 & 9 & 3150674 & 0.14 \\
\hline 2002 & 100 & 44 & 44 & 12 & 3872427 & 0.11 \\
\hline 2003 & 94 & 41 & 44 & 20 & 8739056 & 0.11 \\
\hline 2004 & 94 & 44 & 47 & 8 & 3598436 & 0.10 \\
\hline 2005 & 105 & 40 & 38 & 7 & 3005315 & 0.08 \\
\hline 2006 & 110 & 36 & 33 & 14 & 5518000 & 0.12 \\
\hline 2007 & 103 & 33 & 32 & 8 & 3661314 & 0.14 \\
\hline 2008 & 105 & 40 & 38 & 10 & 6468839 & 0.15 \\
\hline 2009 & 102 & 26 & 26 & 7 & 2564694 & 0.09 \\
\hline 2010 & 101 & 30 & 30 & 4 & 1804538 & 0.10 \\
\hline 2011 & 108 & 27 & 25 & 4 & 1513742 & 0.12 \\
\hline 2012 & 96 & 25 & 26 & 5 & 2034552 & 0.11 \\
\hline 2013 & 96 & 19 & 20 & 4 & 995987 & 0.13 \\
\hline 2014 & 98 & 20 & 20 & 3 & 669931 & 0.13 \\
\hline
\end{tabular}

Numbers-at-age in Solent Survey1986-2015: updated time-series of Cefas Solent autumn survey of juvenile sea bass (2015 revised).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { AGE } \\
\text { CLASS }
\end{gathered}
\] & 1986 & 1987 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2005 & 2006 & 2007 & 2008 & 2009 & 2011 & 2013 & 2014 & 2015 & 2016 \\
\hline 2 & 0.27 & 0.05 & 6.68 & 2.81 & 3.08 & 0.95 & 6.65 & 3.33 & 4.83 & 5.52 & 33.62 & 1.22 & 19.37 & 6.07 & 34.42 & 7.42 & 8.37 & 13.12 & 9.51 & 3.42 & 18.52 & 13.25 & 2.25 & 1.34 & 1.17 & 6.95 & 3.75 \\
\hline 3 & 4.26 & 0.28 & 0.37 & 1.15 & 0.21 & 18.59 & 3.59 & 1.84 & 4.69 & 0.43 & 4.52 & 5.5 & 0.67 & 11.35 & 3.92 & 3.87 & 4.6 & 7.98 & 9.21 & 1.78 & 6.66 & 6.25 & 1.39 & 0.08 & 1.02 & 0.44 & 2.17 \\
\hline 4 & 1.31 & 2.27 & 0 & 0.02 & 0.03 & 0.16 & 4.39 & 0.29 & 0.72 & 0.11 & 0.06 & 0.61 & 0.87 & 0.03 & 1.57 & 0.4 & 0.59 & 0.84 & 1.02 & 0.3 & 0.34 & 0.33 & 0.42 & 0.1 & 0.11 & 0.05 & 0.11 \\
\hline 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(16+\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
10.1.3.1. Key model assumptions and parameters from the WGCSE 2014 update assessment.
\begin{tabular}{|c|c|}
\hline Characteristic & Settings \\
\hline Starting year & 1985 \\
\hline Ending year & 2016 \\
\hline Equilibrium commercial catch for starting year & \(0.82^{*}\) landings in 1985 by fleet. \\
\hline Equilibrium recreational catch for starting year & Constant F estimated using F from 2012 \\
\hline Number of areas & 1 \\
\hline Number of seasons & 1 \\
\hline Number of fishing fleets & 6 \\
\hline Number of surveys & two surveys: CGFS; Solent autumn survey. \\
\hline Individual growth & von Bertalanffy, parameters fixed, combined sex \\
\hline Number of active parameters & 86 \\
\hline \multicolumn{2}{|l|}{Population characteristics} \\
\hline Maximum age & 30 \\
\hline Genders & 1 \\
\hline Population length bins & 4-100, 2 cm bins \\
\hline Ages for summary total biomass & 0-30 \\
\hline \multicolumn{2}{|l|}{Data characteristics} \\
\hline Data length bins (for length structured fleets) & 6-94, 2 cm bins \\
\hline Data age bins (for age structured fleets) & 0-16+ \\
\hline Minimum age for growth model & 2 \\
\hline Maximum age for growth model & 30 \\
\hline Maturity & Logistic 2-parameter - females; L50 \(=40.65 \mathrm{~cm}\) \\
\hline \multicolumn{2}{|l|}{Fishery characteristics} \\
\hline Fishery timing & -1 (whole year) \\
\hline Fishing mortality method & Hybrid \\
\hline Maximum F & 2.9 \\
\hline Fleet 1: UK Trawl/nets selectivity & Double normal, length-based \\
\hline Fleet 2: UK Line selectivity & Asymptotic, length-based \\
\hline Fleet 3: UK Midwater trawl selectivity & Asymptotic, length-based \\
\hline Fleet 4: Combined French fleet selectivity & Asymptotic, length-based \\
\hline Fleet 5: Other fleets/gears selectivity & Asymptotic: mirrors French fleet \\
\hline Fleet 6: Rrecreational fishery & Asymptotic: mirrors UK Lines fleet \\
\hline \multicolumn{2}{|l|}{Survey characteristics} \\
\hline Solent autumn survey timing (yr) & 0.83 \\
\hline CGFS survey timing (yr) & 0.70 \\
\hline Catchabilities (all surveys) & Analytical solution \\
\hline Survey selectivities: Solent autumn: & Double normal, length-based constrained by Min-Max age selectivity, age-based \\
\hline Survey selectivities: CGFS & Double normal, length-based \\
\hline \multicolumn{2}{|l|}{Fixed biological characteristics} \\
\hline Natural mortality & 0.15 \\
\hline Beverton-Holt steepness & 0.999 \\
\hline Recruitment variability ( \(\sigma\) ) & 0.9 \\
\hline Weight-length coefficient & 0.00001296 \\
\hline
\end{tabular}
\begin{tabular}{lc}
\hline \multicolumn{1}{c}{ Characteristic } & Settings \\
\hline Weight-length exponent & 2.969 \\
\hline Maturity inflection (L50\%) & 40.649 cm \\
\hline Maturity slope & -0.33349 \\
\hline Length-at-age Amin & 19.6 cm at Amin \(=2^{1}\) \\
\hline Length-at-Amax & 80.26 cm \\
\hline von Bertalanffy k & 0.09699 \\
\hline von Bertalanffy Linf & 84.55 cm \\
\hline von Bertalanffy t0 & -0.730 yr \\
\hline Std. Deviation length-at-age (cm) & CD \(=0.1166^{*}\) age +3.5609 \\
\hline Age error matrix & \\
\hline Other model settings & \\
\hline First year for main recruitment deviations for & \\
burn-in period & \\
\hline Last year for recruit deviations & \\
\hline Last year no bias adjustment & \\
\hline First year full bias adjustment & \\
\hline Last year full bias adjustment & \\
\hline First year recent year no bias adjustment year class with survey indices) & 1971 \\
\hline Maximum bias adjustment & 1882.5 \\
\hline
\end{tabular}
\({ }^{1}\) as recommended by R. Methot after scrutinizing earlier SS3 runs during IBPNew 2012, and used by IBPNew and WGCSE.

Table 10.1.3.2. Final sea bass update assessment: stock numbers-at-age (thousands of fish). Shaded figures for 2013-2015 year classes are values over-written at age \(\mathbf{0}\) by the longterm geometric mean, decremented by natural mortality to give numbers-at-ages 1 and 2 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \(16+\) \\
\hline 1985 & 336 & 480 & 8229 & 3602 & 2472 & 728 & 695 & 605 & 887 & 2192 & 612 & 385 & 288 & 228 & 182 & 140 & 108 \\
\hline 1986 & 667 & 290 & 413 & 7082 & 3092 & 2068 & 573 & 521 & 446 & 651 & 1609 & 449 & 283 & 212 & 167 & 133 & 103 \\
\hline 1987 & 7302 & 574 & 249 & 356 & 6077 & 2574 & 1598 & 417 & 371 & 316 & 461 & 1139 & 318 & 200 & 150 & 119 & 94 \\
\hline 1988 & 5730 & 6285 & 494 & 214 & 305 & 5012 & 1922 & 1099 & 278 & 245 & 209 & 304 & 752 & 210 & 132 & 99 & 78 \\
\hline 1989 & 35611 & 4931 & 5409 & 425 & 184 & 254 & 3858 & 1394 & 781 & 197 & 173 & 147 & 215 & 532 & 148 & 93 & 70 \\
\hline 1990 & 3070 & 30651 & 4244 & 4655 & 365 & 153 & 195 & 2797 & 992 & 553 & 139 & 123 & 104 & 153 & 377 & 105 & 66 \\
\hline 1991 & 5921 & 2643 & 26378 & 3652 & 3993 & 302 & 117 & 140 & 1977 & 699 & 390 & 98 & 87 & 74 & 107 & 265 & 74 \\
\hline 1992 & 8789 & 5096 & 2274 & 22698 & 3131 & 3285 & 226 & 81 & 95 & 1340 & 474 & 264 & 67 & 59 & 50 & 73 & 180 \\
\hline 1993 & 4069 & 7565 & 4386 & 1957 & 19465 & 2586 & 2472 & 158 & 55 & 65 & 906 & 320 & 179 & 45 & 40 & 34 & 49 \\
\hline 1994 & 12726 & 3503 & 6510 & 3774 & 1679 & 16127 & 1968 & 1759 & 110 & 38 & 45 & 626 & 221 & 123 & 31 & 27 & 23 \\
\hline 1995 & 19541 & 10954 & 3014 & 5602 & 3238 & 1394 & 12443 & 1442 & 1270 & 79 & 28 & 32 & 451 & 159 & 89 & 22 & 20 \\
\hline 1996 & 1002 & 16819 & 9426 & 2594 & 4805 & 2680 & 1065 & 8992 & 1026 & 902 & 56 & 20 & 23 & 321 & 113 & 63 & 16 \\
\hline 1997 & 23064 & 862 & 14474 & 8111 & 2223 & 3943 & 1977 & 723 & 5925 & 672 & 591 & 37 & 13 & 15 & 210 & 74 & 41 \\
\hline 1998 & 8025 & 19851 & 742 & 12455 & 6952 & 1825 & 2919 & 1355 & 483 & 3938 & 447 & 393 & 24 & 9 & 10 & 140 & 49 \\
\hline 1999 & 22301 & 6907 & 17084 & 638 & 10678 & 5725 & 1362 & 2018 & 911 & 323 & 2631 & 298 & 262 & 16 & 6 & 7 & 93 \\
\hline 2000 & 10866 & 19195 & 5944 & 14701 & 547 & 8783 & 4250 & 930 & 1335 & 598 & 212 & 1725 & 196 & 172 & 11 & 4 & 4 \\
\hline 2001 & 12580 & 9353 & 16520 & 5115 & 12607 & 452 & 6616 & 2975 & 634 & 904 & 405 & 143 & 1167 & 132 & 116 & 7 & 3 \\
\hline 2002 & 19908 & 10828 & 8049 & 14216 & 4387 & 10414 & 341 & 4635 & 2029 & 430 & 612 & 274 & 97 & 790 & 90 & 79 & 5 \\
\hline 2003 & 21024 & 17135 & 9319 & 6926 & 12190 & 3621 & 7845 & 239 & 3174 & 1383 & 293 & 417 & 187 & 66 & 539 & 61 & 54 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16+ \\
\hline 2004 & 14253 & 18096 & 14746 & 8019 & 5937 & 10019 & 2681 & 5342 & 158 & 2081 & 906 & 192 & 273 & 122 & 43 & 353 & 40 \\
\hline 2005 & 10794 & 12267 & 15573 & 12689 & 6873 & 4876 & 7398 & 1818 & 3510 & 103 & 1356 & 590 & 125 & 178 & 80 & 28 & 230 \\
\hline 2006 & 12097 & 9290 & 10557 & 13401 & 10873 & 5618 & 3537 & 4870 & 1154 & 2210 & 65 & 853 & 371 & 79 & 112 & 50 & 18 \\
\hline 2007 & 10083 & 10412 & 7995 & 9085 & 11481 & 8878 & 4065 & 2322 & 3085 & 725 & 1387 & 41 & 535 & 233 & 49 & 70 & 31 \\
\hline 2008 & 7091 & 8679 & 8960 & 6880 & 7785 & 9403 & 6500 & 2723 & 1507 & 1988 & 467 & 893 & 26 & 345 & 150 & 32 & 45 \\
\hline 2009 & 6169 & 6104 & 7469 & 7710 & 5896 & 6378 & 6907 & 4391 & 1788 & 984 & 1298 & 305 & 583 & 17 & 225 & 98 & 21 \\
\hline 2010 & 735 & 5309 & 5253 & 6427 & 6609 & 4841 & 4722 & 4727 & 2926 & 1185 & 652 & 860 & 202 & 387 & 11 & 149 & 65 \\
\hline 2011 & 2003 & 633 & 4569 & 4520 & 5506 & 5398 & 3516 & 3129 & 3032 & 1865 & 755 & 415 & 548 & 129 & 246 & 7 & 95 \\
\hline 2012 & 977 & 1724 & 545 & 3932 & 3873 & 4509 & 3961 & 2373 & 2051 & 1977 & 1215 & 492 & 271 & 357 & 84 & 161 & 5 \\
\hline 2013 & 6424 & 841 & 1484 & 469 & 3367 & 3151 & 3250 & 2612 & 1521 & 1310 & 1263 & 777 & 315 & 173 & 228 & 54 & 103 \\
\hline 2014 & 5033 & 5529 & 724 & 1276 & 401 & 2721 & 2222 & 2070 & 1611 & 933 & 804 & 775 & 477 & 193 & 106 & 140 & 33 \\
\hline 2015 & 6161 & 4332 & 4757 & 623 & 1092 & 324 & 1936 & 1468 & 1351 & 1055 & 614 & 529 & 511 & 314 & 127 & 70 & 92 \\
\hline 2016 & 6161 & 5303 & 3727 & 4093 & 533 & 887 & 234 & 1305 & 973 & 897 & 702 & 409 & 352 & 340 & 209 & 85 & 47 \\
\hline 2017 & 6161 & 5303 & 4563 & 3207 & 3500 & 429 & 624 & 151 & 821 & 612 & 565 & 443 & 258 & 222 & 215 & 132 & 53 \\
\hline
\end{tabular}

Table 10.1.3.3. Final sea bass update assessment: fishing mortality-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \(16+\) \\
\hline 1985 & 0.000 & 0.000 & 0.000 & 0.003 & 0.028 & 0.090 & 0.138 & 0.155 & 0.159 & 0.159 & 0.159 & 0.159 & 0.159 & 0.159 & 0.159 & 0.159 & 0.159 \\
\hline 1986 & 0.000 & 0.000 & 0.000 & 0.003 & 0.033 & 0.108 & 0.167 & 0.189 & 0.194 & 0.195 & 0.195 & 0.195 & 0.195 & 0.195 & 0.195 & 0.195 & 0.195 \\
\hline 1987 & 0.000 & 0.000 & 0.000 & 0.004 & 0.043 & 0.142 & 0.224 & 0.256 & 0.264 & 0.265 & 0.266 & 0.266 & 0.266 & 0.266 & 0.266 & 0.266 & 0.266 \\
\hline 1988 & 0.000 & 0.000 & 0.000 & 0.003 & 0.035 & 0.112 & 0.171 & 0.192 & 0.196 & 0.197 & 0.197 & 0.197 & 0.197 & 0.197 & 0.197 & 0.197 & 0.197 \\
\hline 1989 & 0.000 & 0.000 & 0.000 & 0.003 & 0.036 & 0.114 & 0.172 & 0.191 & 0.194 & 0.195 & 0.194 & 0.194 & 0.194 & 0.194 & 0.194 & 0.194 & 0.194 \\
\hline 1990 & 0.000 & 0.000 & 0.000 & 0.003 & 0.038 & 0.118 & 0.178 & 0.197 & 0.200 & 0.200 & 0.200 & 0.200 & 0.200 & 0.200 & 0.200 & 0.200 & 0.200 \\
\hline 1991 & 0.000 & 0.000 & 0.000 & 0.004 & 0.045 & 0.142 & 0.213 & 0.235 & 0.239 & 0.239 & 0.239 & 0.238 & 0.238 & 0.238 & 0.238 & 0.238 & 0.238 \\
\hline 1992 & 0.000 & 0.000 & 0.000 & 0.004 & 0.041 & 0.134 & 0.208 & 0.235 & 0.241 & 0.242 & 0.242 & 0.242 & 0.242 & 0.242 & 0.242 & 0.242 & 0.242 \\
\hline 1993 & 0.000 & 0.000 & 0.000 & 0.003 & 0.038 & 0.123 & 0.190 & 0.214 & 0.219 & 0.220 & 0.220 & 0.220 & 0.220 & 0.220 & 0.220 & 0.220 & 0.220 \\
\hline 1994 & 0.000 & 0.000 & 0.000 & 0.003 & 0.036 & 0.109 & 0.161 & 0.176 & 0.178 & 0.177 & 0.177 & 0.177 & 0.177 & 0.177 & 0.177 & 0.177 & 0.177 \\
\hline 1995 & 0.000 & 0.000 & 0.000 & 0.004 & 0.039 & 0.120 & 0.175 & 0.190 & 0.192 & 0.191 & 0.191 & 0.191 & 0.191 & 0.191 & 0.191 & 0.191 & 0.191 \\
\hline 1996 & 0.000 & 0.000 & 0.000 & 0.004 & 0.048 & 0.154 & 0.237 & 0.267 & 0.273 & 0.274 & 0.274 & 0.274 & 0.274 & 0.274 & 0.274 & 0.274 & 0.274 \\
\hline 1997 & 0.000 & 0.000 & 0.000 & 0.004 & 0.048 & 0.151 & 0.228 & 0.254 & 0.258 & 0.259 & 0.258 & 0.258 & 0.258 & 0.258 & 0.258 & 0.258 & 0.258 \\
\hline 1998 & 0.000 & 0.000 & 0.000 & 0.004 & 0.044 & 0.142 & 0.219 & 0.247 & 0.253 & 0.253 & 0.253 & 0.253 & 0.253 & 0.253 & 0.253 & 0.253 & 0.253 \\
\hline 1999 & 0.000 & 0.000 & 0.000 & 0.004 & 0.045 & 0.148 & 0.231 & 0.263 & 0.271 & 0.272 & 0.272 & 0.272 & 0.272 & 0.272 & 0.272 & 0.272 & 0.272 \\
\hline 2000 & 0.000 & 0.000 & 0.000 & 0.004 & 0.041 & 0.133 & 0.207 & 0.234 & 0.240 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 & 0.241 \\
\hline 2001 & 0.000 & 0.000 & 0.000 & 0.004 & 0.041 & 0.133 & 0.206 & 0.233 & 0.239 & 0.239 & 0.240 & 0.240 & 0.240 & 0.240 & 0.240 & 0.240 & 0.240 \\
\hline 2002 & 0.000 & 0.000 & 0.000 & 0.004 & 0.042 & 0.133 & 0.204 & 0.229 & 0.233 & 0.234 & 0.234 & 0.234 & 0.234 & 0.234 & 0.234 & 0.234 & 0.234 \\
\hline 2003 & 0.000 & 0.000 & 0.000 & 0.004 & 0.046 & 0.151 & 0.234 & 0.265 & 0.272 & 0.273 & 0.273 & 0.273 & 0.273 & 0.273 & 0.273 & 0.273 & 0.273 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \(16+\) \\
\hline 2004 & 0.000 & 0.000 & 0.000 & 0.004 & 0.047 & 0.153 & 0.238 & 0.270 & 0.277 & 0.278 & 0.278 & 0.278 & 0.278 & 0.278 & 0.278 & 0.278 & 0.278 \\
\hline 2005 & 0.000 & 0.000 & 0.000 & 0.005 & 0.052 & 0.171 & 0.268 & 0.305 & 0.313 & 0.314 & 0.314 & 0.314 & 0.314 & 0.314 & 0.314 & 0.314 & 0.314 \\
\hline 2006 & 0.000 & 0.000 & 0.000 & 0.005 & 0.053 & 0.173 & 0.271 & 0.306 & 0.314 & 0.316 & 0.316 & 0.316 & 0.316 & 0.316 & 0.316 & 0.316 & 0.316 \\
\hline 2007 & 0.000 & 0.000 & 0.000 & 0.004 & 0.050 & 0.162 & 0.251 & 0.283 & 0.289 & 0.290 & 0.290 & 0.290 & 0.290 & 0.290 & 0.290 & 0.290 & 0.290 \\
\hline 2008 & 0.000 & 0.000 & 0.000 & 0.004 & 0.049 & 0.158 & 0.242 & 0.271 & 0.276 & 0.277 & 0.277 & 0.277 & 0.277 & 0.277 & 0.277 & 0.277 & 0.277 \\
\hline 2009 & 0.000 & 0.000 & 0.000 & 0.004 & 0.047 & 0.151 & 0.229 & 0.256 & 0.261 & 0.261 & 0.261 & 0.261 & 0.261 & 0.261 & 0.261 & 0.261 & 0.261 \\
\hline 2010 & 0.000 & 0.000 & 0.000 & 0.005 & 0.052 & 0.170 & 0.261 & 0.294 & 0.300 & 0.301 & 0.301 & 0.301 & 0.301 & 0.301 & 0.301 & 0.301 & 0.301 \\
\hline 2011 & 0.000 & 0.000 & 0.000 & 0.004 & 0.050 & 0.159 & 0.243 & 0.272 & 0.278 & 0.278 & 0.278 & 0.278 & 0.278 & 0.278 & 0.278 & 0.278 & 0.278 \\
\hline 2012 & 0.000 & 0.000 & 0.000 & 0.005 & 0.056 & 0.177 & 0.266 & 0.294 & 0.299 & 0.298 & 0.298 & 0.298 & 0.298 & 0.298 & 0.298 & 0.298 & 0.298 \\
\hline 2013 & 0.000 & 0.000 & 0.000 & 0.005 & 0.063 & 0.200 & 0.301 & 0.334 & 0.339 & 0.338 & 0.338 & 0.338 & 0.338 & 0.338 & 0.338 & 0.338 & 0.338 \\
\hline 2014 & 0.000 & 0.000 & 0.001 & 0.006 & 0.065 & 0.190 & 0.264 & 0.277 & 0.273 & 0.269 & 0.268 & 0.267 & 0.267 & 0.267 & 0.267 & 0.267 & 0.267 \\
\hline 2015 & 0.000 & 0.000 & 0.000 & 0.005 & 0.058 & 0.172 & 0.245 & 0.261 & 0.260 & 0.258 & 0.257 & 0.257 & 0.256 & 0.256 & 0.256 & 0.256 & 0.256 \\
\hline 2016 & 0.000 & 0.000 & 0.000 & 0.006 & 0.068 & 0.203 & 0.290 & 0.313 & 0.313 & 0.312 & 0.311 & 0.311 & 0.311 & 0.311 & 0.311 & 0.311 & 0.311 \\
\hline
\end{tabular}

Table 10.1.3.4. Final sea bass update assessment: stock summary table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Recruitment (age 0)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SSB (t) } \\
\hline \text { LOWER }
\end{gathered}
\]} & \multicolumn{3}{|c|}{TSB (t)} & \multicolumn{2}{|c|}{Landings} \\
\hline Year & Estimate ('000) & LOWER & UPPER & Estimate & & UPPER & Estimate & F(5-11) & COMMERCIAL & Recreational \\
\hline 1985 & 336 & 17 & 656 & 12923 & 10586 & 15260 & 16226 & 0.146 & 994 & 1052 \\
\hline 1986 & 667 & 65 & 1270 & 11718 & 9577 & 13859 & 15576 & 0.177 & 1318 & 963 \\
\hline 1987 & 7302 & 5302 & 9302 & 10654 & 8712 & 12597 & 14603 & 0.240 & 1979 & 901 \\
\hline 1988 & 5730 & 3142 & 8317 & 9629 & 7886 & 11373 & 12974 & 0.180 & 1239 & 883 \\
\hline 1989 & 35611 & 30927 & 40296 & 9477 & 7851 & 11102 & 12196 & 0.179 & 1161 & 836 \\
\hline 1990 & 3070 & 729 & 5412 & 8895 & 7301 & 10488 & 12011 & 0.185 & 1064 & 735 \\
\hline 1991 & 5921 & 3415 & 8427 & 7939 & 6353 & 9526 & 13121 & 0.221 & 1226 & 640 \\
\hline 1992 & 8789 & 6085 & 11493 & 6973 & 5415 & 8531 & 14655 & 0.220 & 1186 & 621 \\
\hline 1993 & 4069 & 1978 & 6161 & 7163 & 5646 & 8679 & 16689 & 0.201 & 1256 & 766 \\
\hline 1994 & 12726 & 9180 & 16273 & 9019 & 7563 & 10476 & 18714 & 0.165 & 1370 & 1090 \\
\hline 1995 & 19541 & 15787 & 23295 & 12034 & 10558 & 13510 & 20183 & 0.179 & 1835 & 1293 \\
\hline 1996 & 1002 & 57 & 1947 & 13924 & 12332 & 15515 & 20952 & 0.251 & 3022 & 1289 \\
\hline 1997 & 23064 & 18790 & 27338 & 13559 & 11889 & 15228 & 20638 & 0.238 & 2620 & 1210 \\
\hline 1998 & 8025 & 3759 & 12291 & 12923 & 11206 & 14639 & 20750 & 0.232 & 2390 & 1151 \\
\hline 1999 & 22301 & 17004 & 27598 & 12619 & 10873 & 14364 & 21621 & 0.247 & 2670 & 1177 \\
\hline 2000 & 10866 & 6771 & 14962 & 12771 & 11007 & 14536 & 22502 & 0.219 & 2407 & 1259 \\
\hline 2001 & 12580 & 7251 & 17910 & 13629 & 11790 & 15467 & 24009 & 0.218 & 2500 & 1314 \\
\hline 2002 & 19908 & 13249 & 26567 & 14392 & 12453 & 16332 & 25530 & 0.214 & 2622 & 1415 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Recruitment (age 0)} & \multirow[t]{2}{*}{\[
\frac{\text { SSB (t) }}{\text { LOWER }}
\]} & \multicolumn{3}{|c|}{TSB (t)} & \multicolumn{2}{|c|}{Landings} \\
\hline Year & Estimate ('000) & LOWER & UPPER & Estimate & & UPPER & Estimate & F(5-11) & COMMERCIAL & Recreational \\
\hline 2003 & 21024 & 14911 & 27137 & 15518 & 13486 & 17550 & 27077 & 0.249 & 3459 & 1504 \\
\hline 2004 & 14253 & 9173 & 19332 & 16228 & 14126 & 18330 & 28068 & 0.253 & 3731 & 1581 \\
\hline 2005 & 10794 & 6670 & 14918 & 16850 & 14698 & 19002 & 28976 & 0.286 & 4430 & 1586 \\
\hline 2006 & 12097 & 7882 & 16311 & 16660 & 14440 & 18880 & 29190 & 0.287 & 4377 & 1559 \\
\hline 2007 & 10083 & 5785 & 14381 & 16609 & 14328 & 18890 & 29330 & 0.265 & 4064 & 1618 \\
\hline 2008 & 7091 & 3200 & 10982 & 17406 & 15054 & 19757 & 29473 & 0.254 & 4107 & 1723 \\
\hline 2009 & 6169 & 3315 & 9022 & 18317 & 15812 & 20822 & 28989 & 0.240 & 3889 & 1768 \\
\hline 2010 & 735 & - 7 & 1478 & 18770 & 16022 & 21519 & 28004 & 0.276 & 4562 & 1713 \\
\hline 2011 & 2003 & 907 & 3099 & 17875 & 14822 & 20928 & 25685 & 0.255 & 3858 & 1617 \\
\hline 2012 & 977 & 291 & 1664 & 17007 & 13575 & 20439 & 23317 & 0.276 & 3987 & 1501 \\
\hline 2013 & 6424 & 2003 & 10845 & 15528 & 11640 & 19415 & 20195 & 0.313 & 4137 & 1320 \\
\hline 2014 & 5033 & 787 & 9279 & 13285 & 8908 & 17662 & 16490 & 0.258 & 2682 & 1132 \\
\hline 2015 & 6161 & & & 11633 & 6802 & 16463 & 14064 & 0.244 & 2066 & 957 \\
\hline 2016 & 6161 & & & 9880 & 4721 & 15038 & 12323 & 0.293 & 1295 & 1627 \\
\hline 2017 & 6161 & & & 7820 & 2474 & 13166 & 10810 & & & \\
\hline
\end{tabular}

Table 10.1.5.1. Inputs for short-term forecast. Fishing mortality is the estimates for 2015, which takes into account a change in overall selectivity due to the reduction in French landings. Num-bers-at-ages 0-2 in 2015 are adjusted by replacing Stock Synthesis values for 0-group in 2014-2015 (years with no recruit deviations estimated) with the long-term GM, adjusted for natural mortality.
\begin{tabular}{ccccccccc}
\hline age & 2017 & \begin{tabular}{c} 
weight \\
in \\
stock
\end{tabular} & \begin{tabular}{c} 
Proportion \\
mature \\
(female)
\end{tabular} & \begin{tabular}{c} 
H.Cons \\
mean \\
F \\
\((2014)\)
\end{tabular} & \begin{tabular}{c} 
H.Cons \\
mean \\
weights
\end{tabular} & \begin{tabular}{c} 
Recreational \\
F
\end{tabular} & \begin{tabular}{c} 
Recreational \\
removals \\
mean
\end{tabular} & M \\
weight
\end{tabular}

Age \(\mathbf{0 , 1 , 2}\) over-written as follows:
2017 yc 2017 age 0 replaced by 1985-2014 LTGM (6161);
2016 yc 2017 age 1 from SS3 survivor estimate at-age 1, 2017 * LTGM / SS3 estimate of age 0 in 2016;
2015 yc 2017 age 2 from SS3 survivor estimate at-age 2, 2017 * LTGM / SS3 estimate of age 0 in 2015.

Table 10.1.5.2. Bass-47: Detailed short-term status quo forecast.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Year:} & \multicolumn{2}{|l|}{Intermediate year} & \multicolumn{2}{|l|}{2017} & \multirow[t]{2}{*}{} & & & & & \\
\hline & \multicolumn{2}{|l|}{H.cons F mult:} & 1 & F(5-11): & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0.133
0.160}} & & & & \\
\hline & \multicolumn{2}{|l|}{Recreational F mult} & 1 & F(5-11): & & & & & & \\
\hline Age & \begin{tabular}{l}
\[
F(5-11):
\] \\
Commercial
\end{tabular} & \begin{tabular}{l}
\[
F(5-11):
\] \\
Recreational
\end{tabular} & \begin{tabular}{l}
Catch Nos: \\
Commercial
\end{tabular} & \begin{tabular}{l}
Yield: \\
Commercial
\end{tabular} & \begin{tabular}{l}
Catch Nos: \\
Recreational
\end{tabular} & \begin{tabular}{l}
Yield: \\
Recreational
\end{tabular} & Stock Nos & Biomass & \begin{tabular}{l}
SSB nos. \\
Jan 1
\end{tabular} & SSB tonnes Jan 1 \\
\hline 0 & 0.000 & 0.000 & 0.0 & 0.0 & 0.0 & 0.0 & 6161 & 17 & 0 & 0 \\
\hline 1 & 0.000 & 0.000 & 1.4 & 0.1 & 0.0 & 0.0 & 5303 & 124 & 0 & 0 \\
\hline 2 & 0.000 & 0.000 & 1.4 & 0.4 & 0.4 & 0.1 & 4563 & 436 & 0 & 0 \\
\hline 3 & 0.003 & 0.003 & 9.0 & 4.1 & 9.8 & 4.5 & 3207 & 669 & 0 & 0 \\
\hline 4 & 0.036 & 0.033 & 112.5 & 70.5 & 102.6 & 63.7 & 3500 & 1289 & 306 & 113 \\
\hline 5 & 0.103 & 0.100 & 37.3 & 29.4 & 36.0 & 28.2 & 429 & 244 & 124 & 71 \\
\hline 6 & 0.140 & 0.150 & 70.6 & 69.7 & 75.9 & 74.5 & 624 & 503 & 359 & 290 \\
\hline 7 & 0.143 & 0.169 & 17.3 & 21.3 & 20.5 & 25.1 & 151 & 162 & 120 & 129 \\
\hline 8 & 0.139 & 0.174 & 91.6 & 138.5 & 114.4 & 172.9 & 821 & 1115 & 751 & 1020 \\
\hline 9 & 0.137 & 0.175 & 67.0 & 121.5 & 85.9 & 155.6 & 612 & 1014 & 591 & 979 \\
\hline 10 & 0.136 & 0.175 & 61.4 & 130.3 & 79.4 & 168.4 & 565 & 1110 & 557 & 1094 \\
\hline 11 & 0.135 & 0.176 & 48.0 & 116.7 & 62.2 & 151.3 & 443 & 1007 & 440 & 1001 \\
\hline 12 & 0.135 & 0.176 & 27.9 & 76.5 & 36.2 & 99.2 & 258 & 666 & 257 & 664 \\
\hline 13 & 0.135 & 0.176 & 24.1 & 73.2 & 31.3 & 95.0 & 222 & 642 & 222 & 641 \\
\hline 14 & 0.135 & 0.176 & 23.2 & 77.4 & 30.2 & 100.5 & 215 & 683 & 214 & 683 \\
\hline 15 & 0.135 & 0.176 & 14.3 & 51.6 & 18.6 & 67.0 & 132 & 458 & 132 & 458 \\
\hline 16+ & 0.135 & 0.176 & 17.5 & 75.4 & 22.8 & 88.3 & 162 & 679 & 162 & 679 \\
\hline Total & & & 625 & 1056 & 726 & 1294 & 27365 & 10820 & 4235 & 7820 \\
\hline \multirow[t]{3}{*}{Year:} & \multicolumn{2}{|l|}{Intermediate year +1} & \multicolumn{2}{|l|}{2018} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{0.133
0.160}} & & & & \\
\hline & \multicolumn{2}{|l|}{H.cons F mult:} & 1 & F(5-11): & & & & & & \\
\hline & \multicolumn{2}{|l|}{Recreational F mult} & 1 & F(5-11): & & & & & & \\
\hline Age & \begin{tabular}{l}
F(5-11): \\
Commercial
\end{tabular} & \begin{tabular}{l}
F(5-11): \\
Recreational
\end{tabular} & \begin{tabular}{l}
Catch Nos: \\
Commercial
\end{tabular} & \begin{tabular}{l}
Yield: \\
Commercial
\end{tabular} & \begin{tabular}{l}
Catch Nos: \\
Recreational
\end{tabular} & Yield: Recreational & Stock Nos & Biomass & \begin{tabular}{l}
SSB nos. \\
Jan 1
\end{tabular} & SSB tonnes Jan 1 \\
\hline 0 & 0.000 & 0.000 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0.000 & 0.000 & 1.4 & 0.1 & 0.0 & 0.0 & 5303 & 124 & 0 & 0 \\
\hline 2 & 0.000 & 0.000 & 1.4 & 0.4 & 0.4 & 0.1 & 4563 & 436 & 0 & 0 \\
\hline 3 & 0.003 & 0.003 & 11.0 & 5.1 & 12.0 & 5.5 & 3925 & 819 & 0 & 0 \\
\hline 4 & 0.036 & 0.033 & 88.2 & 55.2 & 80.4 & 49.9 & 2743 & 1010 & 240 & 88 \\
\hline 5 & 0.103 & 0.100 & 244.6 & 193.0 & 236.3 & 185.0 & 2813 & 1603 & 817 & 465 \\
\hline 6 & 0.140 & 0.150 & 34.1 & 33.7 & 36.7 & 36.0 & 301 & 243 & 173 & 140 \\
\hline 7 & 0.143 & 0.169 & 46.1 & 56.8 & 54.4 & 66.9 & 401 & 430 & 320 & 343 \\
\hline 8 & 0.139 & 0.174 & 10.6 & 16.0 & 13.2 & 20.0 & 95 & 129 & 87 & 118 \\
\hline 9 & 0.137 & 0.175 & 56.6 & 102.5 & 72.5 & 131.4 & 517 & 856 & 499 & 826 \\
\hline 10 & 0.136 & 0.175 & 41.9 & 88.9 & 54.2 & 115.0 & 386 & 758 & 380 & 747 \\
\hline 11 & 0.135 & 0.176 & 38.6 & 93.9 & 50.1 & 121.8 & 356 & 811 & 354 & 805 \\
\hline 12 & 0.135 & 0.176 & 30.3 & 82.8 & 39.3 & 107.5 & 279 & 722 & 278 & 719 \\
\hline 13 & 0.135 & 0.176 & 17.6 & 53.5 & 22.9 & 69.5 & 163 & 470 & 162 & 469 \\
\hline 14 & 0.135 & 0.176 & 15.2 & 50.6 & 19.7 & 65.7 & 140 & 447 & 140 & 446 \\
\hline 15 & 0.135 & 0.176 & 14.7 & 52.9 & 19.0 & 68.7 & 135 & 470 & 135 & 470 \\
\hline 16+ & 0.135 & 0.176 & 20.1 & 86.3 & 26.1 & 101.1 & 185 & 778 & 185 & 777 \\
\hline Total & & & 672 & 972 & 737 & 1144 & 22306 & 10105 & 3771 & 6414 \\
\hline \multirow[t]{4}{*}{Year:} & \multicolumn{2}{|l|}{Intermediate year + 2} & \multicolumn{2}{|r|}{2019} & & & & & & \\
\hline & \multicolumn{2}{|l|}{H.cons F mult:} & 1 & F(5-11): & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{0.133 combined
0.160}} & \multirow[t]{2}{*}{0.293} & & & \\
\hline & \multicolumn{2}{|l|}{Recreational F mult} & 1 & F(5-11): & & & & & & \\
\hline & \begin{tabular}{l}
F(5-11): \\
Commercial
\end{tabular} & \begin{tabular}{l}
F(5-11): \\
Recreational
\end{tabular} & \begin{tabular}{l}
Catch Nos: \\
Commercial
\end{tabular} & \begin{tabular}{l}
Yield: \\
Commercial
\end{tabular} & \begin{tabular}{l}
Catch Nos: \\
Recreational
\end{tabular} & \begin{tabular}{l}
Yield: \\
Recreational
\end{tabular} & Stock Nos & Biomass & \begin{tabular}{l}
SSB nos. \\
Jan 1
\end{tabular} & \[
\begin{gathered}
\text { SSB tonnes } \\
\text { Jan } 1 \\
\hline
\end{gathered}
\] \\
\hline 0 & 0.000 & 0.000 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0.000 & 0.000 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0.000 & 0.000 & 1.4 & 0.4 & 0.4 & 0.1 & 4563 & 436 & 0 & 0 \\
\hline 3 & 0.003 & 0.003 & 11.0 & 5.1 & 12.0 & 5.5 & 3925 & 819 & 0 & 0 \\
\hline 4 & 0.036 & 0.033 & 107.9 & 67.6 & 98.4 & 61.1 & 3357 & 1236 & 294 & 108 \\
\hline 5 & 0.103 & 0.100 & 191.6 & 151.3 & 185.1 & 145.0 & 2205 & 1256 & 640 & 365 \\
\hline 6 & 0.140 & 0.150 & 223.9 & 220.9 & 240.6 & 236.3 & 1977 & 1595 & F 1138 & 918 \\
\hline 7 & 0.143 & 0.169 & 22.3 & 27.4 & 26.3 & 32.3 & 194 & 208 & 155 & 166 \\
\hline 8 & 0.139 & 0.174 & 28.2 & 42.6 & 35.2 & 53.2 & 253 & 343 & 231 & 314 \\
\hline 9 & 0.137 & 0.175 & 6.5 & 11.9 & 8.4 & 15.2 & 60 & 99 & 58 & 96 \\
\hline 10 & 0.136 & 0.175 & 35.4 & 75.1 & 45.8 & 97.0 & 326 & 640 & 321 & 630 \\
\hline 11 & 0.135 & 0.176 & 26.4 & 64.1 & 34.2 & 83.1 & 243 & 553 & 242 & 550 \\
\hline 12 & 0.135 & 0.176 & 24.3 & 66.7 & 31.6 & 86.5 & 225 & 581 & 224 & 579 \\
\hline 13 & 0.135 & 0.176 & 19.1 & 58.0 & 24.8 & 75.2 & 176 & 509 & 176 & 508 \\
\hline 14 & 0.135 & 0.176 & 11.1 & 37.0 & 14.4 & 48.0 & 103 & 327 & 102 & 326 \\
\hline 15 & 0.135 & 0.176 & 9.6 & 34.6 & 12.4 & 44.9 & 88 & 307 & 88 & 307 \\
\hline \(16+\) & 0.135 & 0.176 & 21.9 & 94.2 & 28.5 & 110.4 & 202 & 849 & 202 & 848 \\
\hline Total & & & 741 & 957 & 798 & 1094 & 17896 & 9757 & 3870 & 5714 \\
\hline
\end{tabular}

Table 10.1.5.3. Management options table. The F-at-age in 2015, when the French pelagic fishery was substantially reduced, was assumed as status quo for 2016 when the pelagic fishery was closed in spring, and assumed to continue in 2017. F-Multipliers for 2017 are applied to both the commercial and recreational fishery. Note that the combined total commercial and recreational forecasted catch could be allocated in different ways.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{2017} & \multicolumn{3}{|c|}{Commercial fishery} & \multicolumn{3}{|r|}{Recreational fishery} & \multicolumn{2}{|r|}{Total fishery} \\
\hline Biomass & SSB & Fmult & Fbar & Landings & Fmult & Fbar & Catch & Total Fbar & Total landings \\
\hline 10820 & 7820 & 1 & 0.133 & 1056 & 1 & 0.160 & 1294 & 0.293 & 2351 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{2018} & \multicolumn{3}{|c|}{Commercial fishery} & \multicolumn{3}{|r|}{Recreational fishery} & \multicolumn{2}{|r|}{Total fishery} & \multicolumn{2}{|c|}{2019} \\
\hline Biomass & SSB & Fmult & Fbar & Landings & Fmult & Fbar & Catch & Total Fbar & Total landings & Biomass & SSB \\
\hline 10105 & 6414 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0.000 & 0 & 11819 & 7521 \\
\hline & & 0.276 & 0.037 & 295 & 0.276 & 0.044 & 348 & 0.081 & 642 & 11191 & 6968 \\
\hline & & 0.2 & 0.027 & 216 & 0.2 & 0.032 & 255 & 0.059 & 470 & 11359 & 7116 \\
\hline & & 0.4 & 0.053 & 420 & 0.4 & 0.064 & 495 & 0.117 & 915 & 10925 & 6734 \\
\hline & & 0.435 & 0.058 & 455 & 0.435 & 0.070 & 536 & 0.128 & 991 & 10851 & 6669 \\
\hline & & 0.6 & 0.080 & 614 & 0.6 & 0.096 & 723 & 0.176 & 1337 & 10514 & 6374 \\
\hline & & 0.8 & 0.107 & 797 & 0.8 & 0.128 & 939 & 0.235 & 1737 & 10125 & 6034 \\
\hline & & 1 & 0.133 & 972 & 1 & 0.160 & 1144 & 0.293 & 2116 & 9757 & 5714 \\
\hline & & 1.2 & 0.160 & 1137 & 1.2 & 0.192 & 1338 & 0.352 & 2475 & 9410 & 5412 \\
\hline & & 1.4 & 0.187 & 1294 & 1.4 & 0.224 & 1521 & 0.411 & 2815 & 9081 & 5128 \\
\hline & & 1.6 & 0.213 & 1443 & 1.6 & 0.256 & 1695 & 0.469 & 3138 & 8769 & 4859 \\
\hline & & 1.8 & 0.240 & 1584 & 1.8 & 0.288 & 1860 & 0.528 & 3444 & 8475 & 4606 \\
\hline & & 2 & 0.267 & 1719 & 2 & 0.320 & 2016 & 0.587 & 3735 & 8196 & 4367 \\
\hline
\end{tabular}

Table 10.1.5.31. Annual average cpue bars Group 0 ( 1000 minutes trawling) and annual deviations from the time-series average per site. The sites are listed from north to south.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|l|}{annual LPUE (number of age 0 for 1000minutes of trawling} & \multicolumn{6}{|c|}{average annual deviation} \\
\hline & area & 2005 & 2006 & 2007 & 2009 & 2010 & 2011 & average per area & 2005 & 2006 & 2007 & 2009 & 2010 & 2011 \\
\hline \multirow{3}{*}{East Channel} & seine aval & & 4 & & & 133 & 15 & 51 & & -91 & & & 161 & -70 \\
\hline & Ome & & 206 & & & 164 & 268 & 213 & & -3 & & & -23 & 26 \\
\hline & Baie des Veys & 0 & 167 & & & 96 & 4 & 89 & -100 & 88 & & & 7 & -95 \\
\hline \multirow[t]{2}{*}{West Channel} & Mont St Michel & & 567 & & & 836 & 252 & 551 & & 3 & & & 52 & -54 \\
\hline & Morlaix & & & 664 & 182 & 535 & 456 & 459 & & & 45 & -60 & 16 & -1 \\
\hline \multirow{3}{*}{South Britanny} & Laita & & & 0 & 2 & 278 & 17 & 74 & & & -100 & -98 & 275 & -78 \\
\hline & Blavet & & & 25 & 42 & 19 & 58 & 36 & & & -32 & 17 & -46 & 61 \\
\hline & Vilaine & & & 301 & 19 & 23 & 101 & 111 & & & 171 & -83 & -79 & -9 \\
\hline \multirow{7}{*}{Bay of Biscay} & Loire & & 151 & & 192 & 0 & 30 & 93 & & 62 & & 106 & -100 & -68 \\
\hline & Sevre Niortaise & & & 3772 & 2133 & 460 & 74 & 1610 & & & 134 & 32 & -71 & -95 \\
\hline & Charente & & & & 28 & 14 & 6 & 16 & & & & 76 & -12 & -65 \\
\hline & Seudre & 0 & & & 127 & 0 & 11 & 35 & -100 & & & 268 & -100 & -68 \\
\hline & Gironde aval & & & & & 87 & 7 & 47 & & & & & 86 & -86 \\
\hline & Gironde & 3 & & & 72 & & & 38 & -91 & & & 91 & & \\
\hline & Adour aval & 4 & 22 & & 12 & 0 & 0 & 8 & -45 & 191 & & 54 & -100 & -100 \\
\hline & & & & & & & & mean & -84 & 42 & 44 & 40 & 5 & -50 \\
\hline SD >-20\% & & & & & & & & SD & 26.2 & 96 & 112.6 & 108.1 & 109.6 & 49.8 \\
\hline \multicolumn{15}{|l|}{-20\%<SD>20\%} \\
\hline SD >+20\% & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Stock} & ss in 4.bc and 7.a,d-h & & \\
\hline Issue & Problem/Aim & Work needed / possible direction of solution & Data needed to be able to do this: are these available / where should these come from? & External expertise needed at benchmark type of expertise / proposed names \\
\hline Validation of use of French fishery age compositions in the assessment & WGCSE 2015 carried out a Stock Synthesis run using French age compositions from 2000-2014 rather than length compositions. This removed an unusual sharp increase in F in recent years, and the fit to the data, though noisy, showed no residual patterns which are apparent in the residuals to the fit of the length data. A change to the agreed methods from IBPBass needs to be agreed to allow use of the age data in the 2016 update assessment. & Evaluation of the French landings-at-age data. Review outcome of 2015 age calibration study between UK and France. Develop input data including empirical weights-at-age for French and UK fleets. More detailed comparison of model performance using age rather than length data. Establish the most appropriate selection pattern and input priors/soft bounds. Explore methods of deriving age compositions for the Channel groundfish surveys from the length data and evaluate performance in the assessment. & All data are available. & Stock assessment expert. For continuity, external review by one of the IBPBass benchmark meeting would be valuable. E.g. Chris Legault, NOAA. \\
\hline
\end{tabular}

Suggested ToRs: (a) Review quality and performance of age composition data for French fishery landings in the Stock Synthesis model formulated by IBPBass; (b) Develop input data including empirical weights-at-age; (c) Develop age compositions for the Channel groundfish survey and test in SS3 model.

\section*{Table 10.1.7.2. Proposed full benchmark to be done together with WGBIE bass stocks in ICES 8,9,10. Benchmark assessment around March 2017, data compilation / evaluation late 2016 or January 2017}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Stock} & 4.bc and 7.a,d-h & & \\
\hline Issue & Problem/Aim & Work needed/ possible direction of solution & Data needed to be able to do this: are these available / where should these come from? & External expertise needed at benchmark type of expertise / proposed names \\
\hline Fishery landings data & The assessment is heavily driven by fishery landings data and age/length compositions. Historical landings are subject to several biases, and this will bias the assessment trends. & Review the French landings prior to 2000. Develop more accurate series of UK small scale national fisheries landings. Develop plausible alternative scenarios for landings series for testing in SS3 including pre-1985 data.. & Historical national landings data (available). Cefas sea bass logbook data (available) plus other regional observations (to be sourced) & \\
\hline Fishery composition data and selectivity & SS3 model relies on fitting selectivity by fleet, and this needs sufficiently accurate data on age/length composition and to properly account for any changes in selectivity whilst minimising numbers of parameters to estimate. Current implementation of age and length selectivity could be a source of bias in estimating stock trends. & Review quality and amount of sampling for length and age composition by fleet; examine evidence for shapes of selectivity curves and for changes in selectivity over time; identify minimum sufficient disaggregation of fleets; evaluate parameter correlations and minimise numbers of parameters to estimate; review availability of French sampling data prior to 2000; evaluate sampling data by métier from other countries (Netherlands; Belgium). Identify leverage of individual fleet data on final results. & Sample and fleet data held nationally. Available & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Issue & Problem/Aim & \begin{tabular}{l}
Work needed/ \\
possible direction of solution
\end{tabular} & Data needed to be able to do this: are these available / where should these come from? & External expertise needed at benchmark type of expertise / proposed names \\
\hline Recreational catches and selectivity & Recreational fishery catches are considered to be around quarter of total removals but current assessment uses only one annual estimate to provide a crude value for recreational fishing mortality to apply to all years. This assumption is almost certainly incorrect and it will be necessary to account for changes in recreational catches based on successive survey estimates as they become available. Selectivity of recreational catches is based on limited data and is likely to change over time. & Update results of new surveys conducted since WGCSE 2015, if available. Develop and test alternative methods for accounting for recreational fishery catches in the assessment. Liaise with ICES WGRFS to develop inputs and methods. & Recreational survey estimates available nationally and from submissions to ICES WGRFS. & \\
\hline Relative abundance indices & The assessment currently includes the French Channel Groundfish Survey and the UK Solent pre-recruit survey. These are restricted to 7.d and not the full stock area, and are mainly focused on young bass. They show similar trends to analysis of commercial landings-atage/length data without the surveys included, and appear to have limited influence on the model fit. The design of the Channel GFS is expected to change in 2015 and this may render it unsuitable for inclusion in the assessment. Relative abundance indices are needed that cover the full age range and stock area. & Evaluate the calibration and the area covered by the new vessel for the redesigned CGFS survey. Collate and evaluate information on changes in abundance of young bass in nursery areas in the UK and France, and evaluate the need for a more coordinated pre-recruit survey in terms of potential benefits vs costs. A study modelling French commercial fishery lpue is available and should be further developed and tested in the assessment. Evaluate UK data for inclusion in the lpue analysis. & Ifremer data for the CGFS calibration (available); UK and French pre-recruit dataseries for as many nursery areas as possible (mostly available). UK and French landings and effort data by rectangle and trip, with vessel/gear data (available). Data from the Netherlands and Belgium should be requested also. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Issue & Problem/Aim & Work needed/ possible direction of solution & Data needed to be able to do this: are these available / where should these come from? & External expertise needed at benchmark type of expertise / proposed names \\
\hline Discards & Discards estimates are imprecise due to small numbers of sampled trips with sea bass catches, are available only for a recent period, and are not included in assessment though considered low. However absence of data in assessment could cause some bias, and prevents correct estimation of selectivity to allow evaluation of technical conservation measures such as minimum conservation reference size & Compile historical estimates; evaluate precision and bias; test some scenarios for including data in the assessment & Discards data are held nationally and are available & \\
\hline Post release mortality & Inclusion of discards estimates in the assessment needs an evaluation of potential survival rates of released fish. Post release mortality in recreational fisheries needs to be accounted for. Increases in MLS and recreational bag limits will lead to more releases. & Provide updated review of studies on post release mortality in liaison with WGRFS. Test sensitivity of assessment and advice to assumptions regarding post release mortality. & Literature review. & \\
\hline Stock structure and migration & \begin{tabular}{l}
Stock structure remains uncertain. Trends in recruitment could vary between areas whilst current surveys are spatially limited. \\
Movements between \(4 / 7\) and 8 , particularly if changing over time, would bias the assessment trends.
\end{tabular} & Review findings of the UK C-Bass and French BarGip projects which have carried out tagging studies and hydrographic modelling of egg and larval dispersal. SS3 could potentially be configured to include spatially disaggregated data covering population within area 4,7 and 8 , as an exploratory exercise and to see if this could improve the advice for both areas. & Results of UK and French studies should be available; assessment input data for Bass-47 and Bass8 ab needed and will be available. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Issue & Problem/Aim & Work needed/ possible direction of solution & Data needed to be able to do this: are these available / where should these come from? & External expertise needed at benchmark type of expertise / proposed names \\
\hline \begin{tabular}{l}
Biological \\
Parameters
\end{tabular} & Natural mortality is considered as constant over time at a relatively low value of 0.15 , set for all ages. Maturity ogives are based on longterm historical UK sampling data and do not account for any trends that may have occurred. Inappropriate treatment of growth and \(M\) could bias the assessment and reference points, whilst not accounting for changes in maturity would bias SSB trends and reference points. & Review evidence for spatio-temporal variation in growth and maturity, and age-dependent M . Examine sensitivity of assessment and advice to this. Develop parameter inputs for future assessments. & Historical and recent sampling data for growth and maturity. Available nationally. Review methods for identifying appropriate M values and plausible ranges. & \\
\hline Assessment method & Stock Synthesis 3 is complex, highly parameterised and requires considerable expertise to fully understand how to set up the model and interpret the diagnostics. If age data become available for French fishery and survey data, alternative models could be explored more easily. If SS3 is retained, more comprehensive evaluation of model performance is needed, e.g. jitter analysis, and this needs to be developed. & Comparison of performance of alternative assessment models of differing structure and complexity including very simple approaches. Further development of SS3 and presentation / interpretation of diagnostics, forecasts and MCMC evaluation of confidence intervals. & Will be done with available data. & \begin{tabular}{l}
Expertise in Stock Synthesis and other statistical and simpler assessment methods. \\
Suggest: Neil Klaer (CSIRO, Hobart), Chris Legault (NOAA),
\end{tabular} \\
\hline \begin{tabular}{l}
Biological \\
Reference Points
\end{tabular} & Current reference point is FMSY proxy = F35\%spr. This is driven by the choice of M. The assessment forces stock-recruit steepness as 1.0 as there is little information in the stock-recruit data to define steepness. & Review of choice of M as discussed above. Further evaluation of \(S / R\) steepness including \(S / R\) data from alternative assessment models. & Agreed stock assessment inputs. & As for assessment methods \\
\hline
\end{tabular}

Proposed Terms of Reference for Data Compilation and Evaluation meeting:
a) Evaluate quality of historical fishery landings data and develop series by country, area and gear including plausible alternative scenarios where biases are known or suspected. Develop scenarios for pre-1985 landings.
b ) Compile and evaluate historical estimates of discards by fleet and provide indicators of precision and bias.
c ) Compile and evaluate length and age composition by fleet for landings and discards, and weights-at-length or -age, and provide indicators of precision and bias.
d ) Compile historical estimates of recreational catches and length-age compositions by country and area, for retained and released components, and provide indicators of precision and bias.
e ) Provide updated review of studies on post release mortality in commercial and recreational fisheries, and propose candidate ranges of values for sea bass.
f) Review findings of the UK C-Bass and French BarGip projects and identify if any changes to stock areas are needed based on connectivity of populations in neighbouring areas shown by tagging and hydrographic modelling of egg/larva dispersal.
g ) Compile and evaluate available series of fishery-independent and fisherydependent indices of abundance, and propose series for use in assessment together with quality indicators that could guide relative weightings in the assessment.
h ) Update previous review of methods to establish the value of natural mortality, and propose any changes needed including age-dependent values if appropriate.
i) Review evidence for spatio-temporal variation in growth and maturity and develop parameter inputs for the benchmark assessment.

ToRs for benchmark assessment meeting to be decided.


Figure 10.1.1.1. Bass-47: Trends in ICES Working Group landings by (a) country and (b, c) by gear group in France and the UK (Source: Official Catch Statistics 1985-2015 and data supplied by national laboratories).


Figure 10.1.2.1. (a) Annual landings-at-age in the combined UK(E\&W) trawls, nets and lines fleet. Bubble diameter is proportional to the square root of the catch number. Data for the four separate regions with independent length compositions and age-length keys are shown below. All plots are standardised so will not show actual differences in catches between regions.


Figure 10.1.2.1. (b) Annual landings-at-age in the combined UK(E\&W) trawls, nets and lines fleet, standardised at each age class by dividing by the 1985-2014 mean catch numbers for the age class. Data for the four separate regions with independent length compositions and age-length keys are shown below.


Figure 10.1.2.1. (c) Annual landings-at-age in the combined French fleets, as (top) square root of catch numbers, and (bottom) standardised at each age class by dividing by the 2000-2014 mean catch numbers for the age class.


Figure 10.1.2.1. (d) Comparison of UK and French landings numbers-at-age from 2000 to 2014. Data for each age class are shown as percentage of 2000-2014 mean.


Figure 10.1.2.2. Numbers of bass retained and discarded, summed over the period 2002-2014 for otter trawls and beam trawls, and 2007-2014 for fixed and driftnets. The retention ogives for the three gears are shown at right.


Figure 10.1.2.3. Location of Cefas Solent and Thames juvenile sea bass surveys.

(b) Solent 1-gp index


Figure 10.1.2.4. Cefas Solent survey in autumn: (a) year and year-class effects in indices; (b) 1-gp index from 1996 onwards compared with a composite year-class index derived from the age 2-4 indices.


Figure 10.1.2.5. Left: stations fished during the Channel Groundfish Survey carried out annually by France. Right: distribution of total catches of sea bass over the survey series.


Figure 10.1.2.6. Mean standardised time-series of (a) percentage of stations with sea bass, and (b) swept-area abundance indices (millions of fish) from the Ifremer Channel Groundfish Survey.


Figure 10.1.2.7. Bass-47: Trends in commercial lpue index for French fleets overlaid on this year's update assessment estimates of spawning-stock biomass ( \(+/-2\) standard errors). Top: index based on data from all 12 months; bottom: index excluding fishing trips during spring spawning season.


Figure 10.1.3.4. Left: Datasets used in the final sea bass update assessment. Right: landings series for the six fleets.


Ending year selectivity for AutBass


Figure 10.1.3.5. Final sea bass update assessment: Fitted length-based and age-based selectivity curves.


Pearson residuals, retained, UKOTB_Nets (max=22.44)


Figure 10.1.3.6. Final sea bass update assessment: fit to UK trawl and net fishery length composition data.


Pearson residuals, retained, Lines (max=14.13)


Figure 10.1.3.6. Final sea bass update assessment: fit to UK lines length composition data.


Pearson residuals, retained, UKMWT (max=4.85)


Figure 10.1.3.6. Final sea bass update assessment: fit to UK midwater trawl fishery length composition data.


Pearson residuals, retained, French (max=3.19)


Figure 10.1.3.6. Final sea bass update assessment: fit to French fishery length composition data.


Pearson residuals, whole catch, CGFS1 (max=2.39)


Figure 10.1.3.7. Final sea bass update assessment: Fit to Channel groundfish survey length compositions.
length comps, whole catch, aggregated across time by fleet

length comps, retained, aggregated across time by fleet


Figure 10.1.3.8. Final sea bass update assessment: Fit to the commercial fisheries and Channel groundfish survey length compositions, aggregated across time.


Pearson residuals, retained, UKOTB_Nets (max=25.79)


Year

Figure 10.1.3.9. Final sea bass update assessment: Fit to age composition data for the combined UK otter trawl and nets fleets.


Pearson residuals, retained, Lines (max=5.7)


Year

Figure 10.1.3.10. Final sea bass update assessment: Fit to age composition data for the combined UK otter trawl and nets fleets.


Pearson residuals, retained, UKMWT (max=6.81)


Figure 10.1.3.11. Final sea bass update assessment: Fit to age composition data for the UK midwater trawl fleet.


Pearson residuals, retained, French (max=2.66)


Figure 10.1.3.12. Final sea bass update assessment: Fit to age composition data for the combined French fleets.


Pearson residuals, whole catch, AutBass (max=3.61)


Figure 10.1.3.13. Final sea bass update assessment: Fit to age composition data for the Solent Autumn bass survey.
age comps, whole catch, aggregated across time by fleet

age comps, retained, aggregated across time by fleet


Figure 10.1.3.14. Final sea bass update assessment: Fit to UK fleets age compositions, aggregated across time.


Index AutBass


Figure 10.1.3.15. Final sea bass update assessment: Fit to Solent Autumn bass survey total abundance index, accounting for age and length-based selectivity.


Figure 10.1.3.16. Final sea bass update assessment: Fit to Channel groundfish survey total abundance index, accounting for length-based selectivity.




Figure 10.1.3.17. Final sea bass update assessment: Top: time-series of log-recruit deviations (deviations for 1965-1984 precede the period of input catch data). Below: stock-recruit scatter (model is fitted assuming Beverton-Holt stock-recruit model and steepness \(=0.999\).)


Fbar (5-11)


Figure 10.1.3.18. Retrospective analysis of stock trends from final update assessment, based on Stock Synthesis run final year set to 2015 and peeling back five years (for the final run, terminal \(F\) is for 2014 and SSB and total biomass terminate in 2015).

20000


Figure 10.1.3.19. Stock trends from final update assessment, based on Stock Synthesis run final year set at 2016 to give 2016 numbers and biomass and 2014 F. Recruitment in 2014 and 2015 is the long-term geometric mean. The FMSY proxy is \(\mathrm{F}_{35 \% \text { SPR }}=\mathbf{0} .13\). Error bars on recruitment plot and dotted lines on SSB plot are \(\pm 2\) standard errors.


Figure 10.1.3.20. Comparison between stock trends from this year's final update assessment and the 2016 WGCSE assessment.


Figure 10.1.4.1. Bass-47: Yield and biomass per recruit analysis from 2016 IBPBass 2 conditional on mean pattern of F-at-age for 2012-2014 for the combined commercial and recreational fishing.

\section*{32 European sea bass in divisions 6.a, 7.b and 7.j (West of Scotland and Ireland)}

\section*{Type of assessment}

There is no assessment for this stock component.

\section*{ICES advice applicable to 2018 \& 2019}
"Based on ICES approach to data-limited stocks, ICES advises that when the precautionary approach is applied, commercial landings should be no more than 4 tonnes in each of the years 2018 and 2019. ICES cannot quantify total catches.No information on discards is available, therefore it is not possible to provide commercial catch advice. Also, recreational catches cannot be quantified. Therefore total catches cannot be calculated.

\section*{ICES advice applicable to 2016}
"The revised landings data do not change the perception of the stock but result in a revision of the advised landings. Therefore, ICES advises based on the data-limited stocks approach, but cannot quantify the resulting catches. The implied commercial landings should be no more than 5 tonnes.

Currently there is no TAC for this species in this area, and it is not clear whether this should constitute a separate management unit. ICES does not necessarily advocate the introduction of a TAC for sea bass in this area."

\subsection*{32.1 General}

\section*{Stock description and management units}

At IBP-NEW (2012a), it was agreed that sea bass in the North Sea (4.b\&c) and in the Irish Sea, Channel and Celtic Sea (7.a,d,e,f,g\&h) would be treated as a functional stock unit as there is no clear basis from fishery data, tagging and genetics studies to subdivide the populations in the Irish Sea, Celtic Sea, Channel and North Sea into independent stock units. It was proposed based on previous ICES bass study group reports to allocate sea bass in 6.a, 7.b and 7.j to a separate stock, although it is recognised that sea bass in Irish coastal waters of 7.g and 7.a are likely to be from the same stock as in 7.j. As there are negligible commercial fishery catches of sea bass in Irish coastal waters due to the moratorium on commercial fishing for bass by Irish vessels, the splitting of the stock between 7.g and is not likely to have any impact on the bass assessment in 4.b,c and 7.a,d-h. Supporting information can be found in the IBP-NEW (ICES, 2012a) report.

\section*{Management applicable to 2016 and 2017}

Sea bass are not subject to EU TACs and quotas. A moratorium on commercial fishing for sea bass has been in place for Irish vessels fishing in areas 6 and 7 since 1990, and a minimum landing size of 40 cm applies to Irish fisheries. The official minimum landing size for non-Irish vessels is 36 cm (EC regulation 850/98). In addition, a variety of national restrictions on commercial sea bass fishing are also in place for non-Irish commercial vessels, including licensing, individual landings limitations, larger MLS and seasonal/ area closures. Recreational fishing for sea bass in Ireland is prohibited from 15 May to 15 June, and a bag limit of two fish per 24 hours is in place.

Previous advice from ICES, showing a rapid decline in sea bass biomass in the North Sea, Channel, Celtic Sea and Irish Sea caused by poor recruitment and over-fishing, has resulted in the European Commission working with Member States to identify more effective control measures to reduce fishing mortality towards Fmsy. It shall be prohibited for Union fishing vessels to fish for sea bass in ICES divisions 7.b, 7.c, 7.j and 7.k, as well as in the waters of ICES divisions 7.a and 7.g that are more than 12 nautical miles from the baseline under the sovereignty of the UK. It shall be prohibited for Union fishing vessels to retain on board, tranship, relocate or land sea bass caught in that area. Depending on the true stock structure of sea bass in area 6 and 7, very restrictive measures introduced in 2016 may have some effect on sea bass in 6.a, \(7 . \mathrm{b}\) and 7.j: .see Article 10 « Measures on Sea bass fisheries » COUNCIL REGULATION (EU) 2016/72 of 22 January 2016 which consist in catch limits (from 0 to \(1300 \mathrm{~kg} /\) month depending of the period and gear used).

\section*{Fishery in 2016}

Landings data used by the WG are given in Table 10.2.1. Due to the Irish sea bass moratorium, official landings reports are by other countries, historically mainly by France, although the landings are less than 10 tonnes per year and only 2 tonnes or less since 2012.

\subsection*{32.2 Data}

\section*{Commercial landings data}

Landings data are given in Table 32.2.1. No other data for sea bass in this area were provided to WGCSE

\section*{Commercial discards}

No estimates of sea bass discards are available.

\section*{Recreational catches}

Recreational marine fishery surveys in Europe are still at an early stage in development and are described by the ICES Working Group on Recreational Fishery Surveys (ICES, 2012b). A survey was conducted in Ireland in 2010 and 2011 (O'Reilly and Roche, 2012). Domestic shore bass anglers are estimated at 11600 individuals and these anglers harvested and estimates of 30 t and 44 t of bass in 2010 and 2011. The 2010 estimate was considered to be more robust. In addition between \(75 \%\) and \(80 \%\) of bass caught were returned to the water. The survey doesn't disaggregate the angling catch estimates by ICES division.

The IBP-NEW meeting report (ICES, 2012a) includes some data supplied by a stakeholder on trends in recreational catch rates from an angling club on the southern Irish coast, as well as age compositions of sea bass caught by anglers, which may be applicable also to trends in 7.j.

\section*{Biological data}

Data on growth and maturity for this stock component were not reviewed by WGCSE.

\section*{Survey data}

No survey data were available to WGCSE for this stock.

\section*{Other relevant data}

None.

\subsection*{32.3 Historical stock development}

No information is available for this stock area.

\subsection*{32.4 Management plans}

There are no existing management plans for European sea bass.

\subsection*{32.5 Management considerations}

Sea bass grow slowly, do not mature until 4-7 years of age, and have been recorded up to 28 years of age. Juvenile bass up to three years of age occupy nursery areas in estuaries whilst adults undertake seasonal migrations from inshore habitats to offshore spawning sites. It is not known to what extent adults from the stock in 7.b,j and 6.a are caught by pelagic trawlers targeting mature sea bass on spawning sites in divisions 7.e-h. After spawning, sea bass tend to return to the same coastal sites each year. The combination of slow growth, late maturity, spawning aggregation and strong site fidelity, increase the vulnerability of sea bass to over-exploitation and localized depletion.

ICES advice sheets for sea bass in the Northeast Atlantic have previously recommended that "implementation of 'input' controls (preferably through technical measures aimed at protecting juvenile fish, in conjunction with entry limitations into the offshore fishery in particular) should be promoted (ICES, 2004)" and that "Any consideration of catch limitation (output control) would need to take into account that sea bass are a bycatch in mixed fisheries to a various extent, depending on gear and country; this incites discarding and should be avoided".

Management of sea bass fisheries needs to take into account the distinctive characteristics and economic value of the different fisheries. Sea bass is of high social and economic value to sea angling in Ireland which contributes substantially to local economies.

The current stock structure assumptions are pragmatic, and need further evaluation. Further studies are needed to determine if the sea bass in Irish coastal waters are indeed functionally separate, or if they also mix with the other stock during spawning time and contribute to commercial catches on the offshore spawning grounds.

As bass is, at present, a non-TAC species, there is potential for displacement of fishing effort by non-Irish fleets from other species with limiting quotas. The effort of the pelagic fisheries during winter and spring can shift between the Bay of Biscay and the English Channel and approaches, and there is evidence for such a shift to the Channel in recent years which is likely to have increased the fishing mortality on sea bass in Area 7.

\subsection*{32.6 Data needs}

Time-series of relative abundance indices need to be developed throughout the range of the stock, for both the adult and pre-recruit components of the stock.

There is a need to develop a time-series of recreational fishery catch, effort, and catch composition.

Catch locations and composition of significant commercial landings should be monitored to help establish the stock affiliation.

Further studies using tagging, genetics, and other stock and individual markers are needed to more accurately define stock boundaries suitable for assessment and management purposes.
Studies are needed to document the survival of recreationally caught and released sea bass. IBP-NEW (ICES, 2012a) noted that a range of studies on striped bass in the USA indicated hooking mortalities of around \(20 \%\) on average, although a lower value of around \(9 \%\) from one specific study is currently considered most appropriate for inclusion in the assessments.

\subsection*{32.7 References}

ICES. 2012a. Report of the Inter-Benchmark Protocol on New Species (Turbot and Sea bass; IBPNew 2012). ICES CM 2012/ACOM:45.
ICES. 2012b. Report of the Working Group on Recreational Fisheries Surveys (WGRFS). ICES CM 2012/ACOM:23. 55 pp .
O'Reilly, S. and Roche, W. 2012. Pilot study to estimate recreational angling landings of bass in Ireland. Inland Fisheries Ireland report IFI/2012/1-4099. http://www.miextranet.ie/fss/sites/DCMAP/Annual\%20Report/Annex 2 DCF Bass Landings 2010 11.pdf.

Table 32.2.1. European sea bass in Divisions 6.a, 7.b and 7.j. Official landings: all countries (predominantly France). Source: ICES official catch statistics.
\begin{tabular}{lll}
\hline YeAR & OfFICIAL LANDINGS & \\
\hline 2000 & 1 \\
\hline 2001 & 4 \\
\hline 2002 & 4 \\
\hline 2003 & 2 \\
\hline 2004 & 8 \\
\hline 2005 & 4 \\
\hline 2006 & 2 \\
\hline 2007 & 5 \\
\hline 2008 & 5 \\
\hline 2009 & 4 \\
\hline 2010 & 9 \\
\hline 2011 & 7 \\
\hline 2012 & 1 \\
\hline 2013 & 0 \\
\hline 2014 & 2 \\
\hline 2015 & 0.8 \\
\hline 2016 & \(0.1^{*}\) \\
\hline & \\
\hline
\end{tabular}
* Preliminary.

\section*{33 Sole in Division 7.a (Irish Sea)}

\section*{Type of assessment in 2017}

This assessment is an Update Assessment.

\section*{ICES advice applicable to 2016}

In the advice for 2016, the stock status was presented as follows:



\section*{MSY approach}

ICES advises that when the MSY approach is applied, there should be no directed fisheries and all catches should be minimized in 2016.

\section*{ICES advice applicable to 2017}

In the advice for 2017, the stock status was presented as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{Fishing pressure} & \multicolumn{5}{|c|}{Stock size} \\
\hline & & 2013 & 2014 & & 2015 & & 2014 & 2015 & & 2016 \\
\hline Maximum sustainable yield & \(\mathrm{F}_{\text {MSY }}\) &  & v &  & Below & MSY \(B_{\text {triger }}\) & x & \[
x
\] & & Below trigger \\
\hline Precautionary approach & \[
\begin{aligned}
& \mathrm{F}_{\mathrm{pa}}, \\
& \mathrm{~F}_{\text {lim }}
\end{aligned}
\] & &  &  & Harvested sustainably & \(\mathrm{B}_{\mathrm{pa}}, \mathrm{Bl}_{\text {lim }}\) & \(\times\) & ( & \[
x
\] & Reduced reproductive capacity \\
\hline Management plan & \(\mathrm{F}_{\text {MGT }}\) & - & - & - & Not applicable & SSB \(_{\text {MGT }}\) & - & - & - & Not applicable \\
\hline
\end{tabular}

ICES advises that when the MSY approach is applied, there should be zero catch in each of the years 2017 and 2018.

\section*{Comments made by the audit of last year's assessment}

No major deficiencies for the sole assessment in the Irish sea were reported.

\subsection*{33.1 General}

\section*{Stock description and management units}

The sole fisheries in the Irish Sea are managed by TAC (see text tables below) and technical measures, with the assessment area corresponding to the stock area. Technical measures in force are minimum mesh sizes and minimum landing size ( 24 cm ). In addition beam trawlers, fishing with mesh sizes equal to or greater than 80 mm , are obliged to have 180 mm mesh sizes in the entire upper half of the anterior part of their net. More details can be found in Council Regulation (EC) N \({ }^{\circ} 254 / 2002\) and the Stock Annex.

Since 2000, a spawning closure for cod has been in force. The first year of the regulation the closure covered the Western and Eastern Irish Sea. Since then, closure has been mainly in the Western part whereas the sole fishery takes place mainly in the Eastern part of the Irish Sea (Liverpool Bay and Cardigan Bay). No direct impact on the sole stock is expected from this closure.

For 2009 Council Regulation (EC) \({ }^{\circ}\) 43/2009 allocates different amounts of \(\mathrm{kW}{ }^{*}\) days by Member State and area to different effort groups of vessels depending on gear and mesh size. The areas are Kattegat, part of 3.a not covered by Skaggerak and Kattegat, ICES zone 4, EC waters of ICES zone 2.a, ICES zone 7.d, ICES zone 7.a, ICES zone 6.a and EC waters of ICES zone 5.b. The grouping of fishing gear concerned are: bottom trawls, Danish seines and similar gear, excluding beam trawls of mesh size: TR1 ( \(\geq 100 \mathrm{~mm}\) ), TR2 ( \(\geq 70\) and \(<100 \mathrm{~mm}\) ), TR3 ( \(\geq 16\) and \(<32 \mathrm{~mm}\) ); beam trawl of mesh size: BT1 ( \(\geq 120 \mathrm{~mm}\) ), BT2 ( \(\geq 80\) and \(<120 \mathrm{~mm}\) ); gillnets excluding trammelnets: GN1; trammelnets: GT1 and longlines: LL1.

For 2010-2017, Council Regulation (EC) \(\mathrm{N}^{\circ} 53 / 2010\), Council Regulation (EC) \(\mathrm{N}^{\circ} 57 / 2011\), Council Regulation (EC) \(\mathrm{N}^{\circ} 43 / 2012\), Council Regulation (EC) \(\mathrm{N}^{\circ} 40 / 2013\), Council Regulation (EC) \(\mathrm{N}^{\circ} 43 / 2014\), Council Regulation (EC) \(\mathrm{N}^{\circ} 2015 / 104\), Council Regulation (EC) \(\mathrm{N}^{\circ} 2016 / 72\) and Council Regulation (EC) \(\mathrm{N}^{\circ} 2017 / 127\) were updates of the Council Regulation (EC) \(\mathrm{N}^{\circ} 43 / 2009\) with new allocations, based on the same effort groups of vessels and areas as stipulated in Council Regulation (EC) N \({ }^{\circ} 43 / 2009\).

Management applicable to 2016 and 2017
TAC 2016

\({ }^{(1)}\) Exclusively for by-catches. No directed fisheries are permitted under this quota.

TAC 2017

\({ }^{(1)}\) Exclusively for by-catches. No directed fisheries are permitted under this quota.
\(\left.{ }^{(2}\right)\) In addition to this TAC, the Member States having quota for sole in VIIa may decide by common agreement to allocate an overall total of 7 tonnes to one or more vessels carrying out the directed scientific fishery assessed by the STECF in order to improve scientific information on this stock (SOL/*07A.). The Member States concerned shall communicate the name(s) of the vessel(s) to the Commission before allowing any landings.

\section*{Fishery in 2016}

A full description of the fishery is provided in the Stock Annex, Section A2.
The Working Group estimated the total international landings at 35 t in 2016 (Table 33.1), which is \(12.5 \%\) below the 2016 TAC ( 40 t ) and last year's forecast.

The main countries fishing for Irish Sea sole are Belgium, Ireland and UK(E\&W).
The Belgian beam trawl effort shows a declining trend since 2003, then remaining stable over the period 2008-2012 at this low level. In 2013 it continues the downward trend and in 2016 it dropped to the lowest level in the time-series. After a peak in

2003, the Irish beam trawl effort has shown a declining trend and dropped to the lowest level in the time-series in 2013. Since 2014, the Irish beam trawl effort has slightly increased. The Irish otter trawl effort has fallen sharply from the higher level observed over the period 2011-2012, and is in 2016 at the lowest level in the timeseries.

The significant decline in effort in the Irish Sea reported by all of the major fleets in 2013 and the Belgian beam trawlers in 2014, is in line with the substantial reductions of the TAC in 2013 and 2014. This situation continues in 2015 and 2016 as the TAC and effort drop to record low levels.

Since the beginning of the nineties the UK beam trawl and UK otter trawl effort has continued to decline. However, it should be noted that the UK beam trawl effort value of 2013 is stated as zero. As the UK administration switched to the EU electronic logbook system, a lot of the reported effort is missing and therefore the 2013 value cannot be used as an absolute number. Details of the 2013 UK beam trawl were unavailable due to reduced numbers of trips reporting this gear specific effort information via the newly introduced e-logbook system. The otter trawl fleet effort reporting was unaffected by this as these vessels were not reporting their landings via this method in 2013. However, for 2014 and 2015 both the UK beam trawl and otter trawl effort values are unavailable because of the reporting issues. Inspection of an alternate effort indicator (days fished) suggests that beam trawl effort in 2013-2015 is significantly reduced and has slightly increased again in 2016. As, in 2015 and 2016 all otter trawl vessels active in the Irish Sea were under 12 m , no effort (days fished) was recorded.

\section*{Landings}

An overview of the landings data provided and used by the WG is shown in Table 33.1. The landings reached a level of 2808 t in the mid-1980s due to good recruitments in 1982-1984, but then subsequently dropped to a lowest of 818 t in 2000 (Table 33.1). After a small increase to 1090 t in the beginning of the 2000s, the landings have fallen to under 350 t in 2008-2012. From 2013 onwards the landings continued to decrease as they dropped to under 150 t .

The WG estimated the total international landings at 35 t in 2016, of which Belgium landed \(40 \%(14 \mathrm{t}\) ), Ireland \(43 \%(15 \mathrm{t}), 10 \%(3 \mathrm{t})\) by the UK (England \& Wales) and the remainder by Northern Ireland, the Netherlands, Scotland and France. These land-ing-figures are the lowest in the time-series, corresponding to an international uptake of \(87.5 \%\) of the agreed TAC in 2016 (40 t).

The Working Group estimate of the 2015 landings was not revised.

\section*{Data}

Quarterly age compositions for 2016 were available from the countries that take the major part of the international landings (92\%) (Belgium, UK(E\&W) and Ireland). The raw age data were combined for the three countries without weighting. The combined ALK was applied to the raised length distribution of the national catches to obtain a combined age distribution. This distribution was applied to the landings from Northern Ireland, the Netherlands, Scotland and France to obtain the catch numbers-at-age for 2016 (Table 33.2, Figure 33.1). Annual length distributions of the three major countries involved are given in Table 33.3. Because of the substantial reduction of the TAC in the last two years, sampling levels are also substantially reduced.

Catch weights-at-age for 2016 were taken from the combined age-weight key (Table 33.4).

Stock weights-at-age for 2016 were derived from the mean catch weights by cohort interpolation to the first of January (Rivard weight calculator) (Table 33.5).

Further details on raising methods are given in the stock annex.
As last year, the combined age data (calculated outside InterCatch) as well as the landings from Northern Ireland, the Netherlands and Scotland were uploaded to InterCatch. The landings from France were not uploaded to InterCatch. It should be noted that the international age distribution is uploaded as "BE" as no international country code is available in InterCatch at present.

\section*{Discards}

The available discard information (Table 33.6) suggests that discarding is not a major problem in the Irish Sea sole fishery. Belgian beam trawl length distributions of retained and discarded catches of sole for 2016 (Figure 33.2a) indicate that predominantly 2-3-year old fish are discarded. Observer information from UK and Irish beam trawl and otter trawl fleets also suggest low discard rates. The working group decided not to include discards in the assessment at this stage due to the scarcity of the data but will monitor the situation in the future.

As an attempt, estimating an overall discard rate for the stock, individual discard estimates for 2014-2016 from the main métiers and countries were averaged to obtain an overall discard rate (Table 33.6b). The percent of the métiers with discard information covering the total international landings is \(50 \%, 60 \%\) and \(65 \%\) for 2014,2015 and 2016 respectively. Assuming that discard rates do not change from the average of the last three years (2014-2016) and a fixed proportion of discards survive, a discard rate of around 0.06 (of the catch) could be assumed for this stock at the moment.

\section*{Biological}

Natural mortality, maturity and proportions of natural mortality and fishing mortality before spawning were set as in previous years, details of which can be found in the Stock Annex section B2.

\section*{Surveys}

Lpue and effort series were available from the UK(E\&W) September beam trawl survey (UK(E\&W)-BTS-Q3) (1988-2016) and the UK(E\&W) March beam trawl survey (UK(E\&W)-BTS-Q1) (1993-1998) (Tables 33.7b and Figure 33.3c). From 2006 until 2010 the two UK beam trawl surveys have been used as tuning indices in the Irish Sea sole assessments. Following the outcome of WKFLAT 2011, the March survey (UK(E\&W)-BTS-Q1) was omitted from the following assessments. The lpue from the UK(E\&W)-BTS-Q3 has fluctuated since the beginning of the time-series (1988) between 90 and \(200 \mathrm{~kg} / 100 \mathrm{Km}\) fished. Since 2000 it has dropped gradually to the lowest value in 2012 \((26.47 \mathrm{~kg} / 100 \mathrm{Km}\) fished). In the last 4 years it slightly increased to \(69.35 \mathrm{~kg} / 100 \mathrm{Km}\) fished in 2016.

Detailed information on the survey protocols and area coverage can be found in the Stock Annex.

\section*{Commercial Ipue}

Commercial lpue and effort data were available for Belgian beam trawlers, UK(E\&W) beam and otter trawlers and Irish otter and beam trawlers. It should be noted that the most recent lpue values of the UK(E\&W) beam trawlers (2013-2016) and the UK(E\&W) otter trawlers (2014-2016) are not available as the effort values for those years are missing.

Trends in lpue and effort are given in Table 33.7 and Figure 33.3-33.4.
Effort from both Belgian and UK commercial beam trawl fleets increased from the early seventies until the beginning of the nineties. Since then UK beam trawl effort has shown a continuing declining trend. In contrast, the Belgian beam trawl effort has shown a fluctuating pattern. After the decline in the early nineties, it reached its highest level in 2002 and decreased again afterwards. For the period 2008-2012, it remained stable at a very low level but in 2013 it continued to decrease and in 2016 it dropped to the lowest level in the time-series. The effort of the Irish beam trawlers shows a slow decline since 2004 and reached the lowest level in the time-series in 2013. In 2008 all beam trawl fleets showed a substantial reduction in effort compared to 2007. The effort from the UK otter trawlers remained stable until the beginning of the nineties. Since then the UK otter trawl effort has continuously declined and is at the lowest level in 2013. The Irish otter trawlers have shown a striking reduction in effort since 2000, followed by a slight increase in the period 2010-2012. In 2016 the Irish otter trawl effort fell back to the lowest observed level in the time-series. Nearly all effort time-series show a substantial decrease in the last four years.

Lpue for both UK and Belgian beam trawlers was at a high level in the late seventies and early eighties but since early 2000s, lpue for these fleets has fluctuated at a lower level. Since 2007-2009 there has been a small increase in the UK beam trawl lpue. However, in 2012 the lpue has dropped to a remarkable low level in the time-series ( \(4.3 \mathrm{~kg} /\) hour fished). An update for 2013-2016 was not available. However, the alternate lpue indicator ( \(\mathrm{kg} /\) days fished) suggests that the UK beam trawl lpue is increased in 2015. For 2016 no catches of sole were recorded therefore the lpue is zero.

The Belgian beam trawlers hold on to a higher lpue value ( \(18-20 \mathrm{~kg} / \mathrm{hour}\) fished) for the period 2008-2012. However, in 2013 the lpue decreased ( \(12.7 \mathrm{~kg} / \mathrm{hour}\) fished) and in 2016 it dropped to the lowest level in the time-series \((6.5 \mathrm{~kg} / \mathrm{hour}\) fished). Irish beam trawl lpue shows a gradually diminishing trend over the whole time-series. After the slight increase in 2013, it fell back to a record low level in 2016. In the most recent years, the lpue of Irish otter trawlers are fluctuating at a lower level.

\section*{Historical stock development}

In 2010, the Irish Sea sole assessment was based on XSA with two survey tuning indices (UK(E\&W)-BTS-Q3 and UK(E\&W)-BTS-Q1 (Table 33.8). The UK(E\&W)-BTS-Q1 indices only provide information for the years 1993 up to 1999 and therefore no longer contribute to the final survivor estimates. At WKFLAT 2011, the exclusion of the UK(E\&W)-BTS-Q1 from the assessment was investigated and it was found that there was little effect on the catchability residuals and that the retrospective pattern was slightly improved. WKFLAT 2011 therefore decided to omit this survey from the assessment.

\subsection*{33.2 Stock assessment}

\section*{Data screening}

The age range for the analysis was \(2-8+\).
The screening of the tuning indices (UK(E\&W)-BTS-Q3) showed good cohort tracking (Figure 33.5) and consistency between ages for year-class strength (Figure 33.6).

\section*{Final update assessment}

The model settings for the final assessment are summarized below:
\begin{tabular}{lll} 
Assmnt Year & \(: 2010\) & \(: 2011-2017\) \\
Assmnt Model & \(:\) XSA & \(:\) XSA \\
Fleets & \(:\) & \(:\) \\
Bel Beam Trwl & \(:\) omitted & :omitted \\
UK Trawl & \(:\) omitted & :omitted \\
UK Sept BTS & \(: 1988-20092-7\) & \(: 1988-20162-7\) \\
UK Mar BTS & \(: 1993-19992-7\) & \(:\) omitted \\
Time Ser. Wts & \(:\) linear 20 yrs & \(:\) no taper weighting \\
Power Model & \(:\) none & \(:\) none \\
Q plateau & \(: 7\) & \(: 4\) \\
Shk se & \(: 1.5\) & \(: 1.5\) \\
Shk age-yr & \(: 5\) yrs 3 ages & \(: 5\) yrs 3 ages \\
Pop Shk se & \(: 0.3\) & \(: 0.3\) \\
Prior Wting & \(:\) none & \(:\) none \\
Plusgroup & \(: 8\) & \(: 8\) \\
Fbar & \(: 4-7\) & \(: 4-7\)
\end{tabular}

The final XSA output is given in Table 33.9 (diagnostics), Table 33.10 (fishing mortalities) and Table 33.11 (stock numbers). Log catchability residuals for the final assessment are given in Figure 33.7. A summary of the XSA results is given in Table 33.12 and trends in yield, fishing mortality, recruitment and spawning-stock biomass are shown in Figure 33.8. Retrospective patterns for the final run are shown in Figure 33.9 .

Adding the 2016 data to the time-series did not cause any additional anomalies compared to last year. The log catchability residual pattern showed no trends apart from the year effect in 2016. The positive residuals (higher estimates from the UK(E\&W)-BTS-Q3 fleet compared to the VPA estimates) in 2016 are likely due to the fact that de age composition in the catch is flattened.

The survivor estimates and fishing mortality estimates are almost entirely determined by the UK(E\&W)-BTS-Q3 survey as it gets a high weighting (>93\%) at all ages.

This assessment shows no retrospective bias and a high consistency.

\section*{Comparison with previous assessments}

A comparison of the estimates of this year's assessment with last year's is given in Figure 33.10.

Trends in fishing mortality, SSB and recruitment are very similar. In last year's assessment, F and SSB for 2015 were estimated to be 0.075 and 1337 t respectively; this year's estimates for 2015 are 0.070 and 1374 t , a downward revision of \(7 \%\) for F and an upward revision of \(3 \%\) for SSB. The estimated recruitment by XSA in 2015 (2149 thousand fish) was revised downward by \(3 \%\) in this year's assessment (2094 thousand fish).

\section*{State of the stock}

Estimated trends of Irish Sea sole landings, SSB, fishing mortality and recruitment are presented in Table 33.12 and Figure 33.8. Since the late eighties the landings of Irish Sea sole have been declining to the lowest level of the time-series ( 35 t ) in 2016. SSB has been at a higher level until the late eighties. Since then SSB has been fluctuating between \(\mathrm{B}_{\mathrm{pa}}\) and Blim and since 2004 it dropped below Blim. In 2014 SSB declined to the lowest estimate of the time-series ( 916 t ), but in 2015 SSB increased ( 1337 t ) again to the level of 2008. In 2016 SSB remained at this higher level. High fishing mortalities were observed during the late eighties until the mid-nineties. Thereafter fishing mortality declined to a level fluctuating just above Flim. From 2013 onwards, fishing mortality has dropped under the level of Fpa and Fmsy (0.164 in 2013, 0.114 in 2014 and 0.070 in 2015). In 2016 the lowest level of the time-series was recorded (0.034). The decline in F is supported by a substantial reduction of the TAC in the most recent years. Since 2001 recruitment has been well below the mean ( 5683 thousand fish) and the 2011 recruitment (year class 2009) is estimated to be the lowest in the time-series (640 thousand fish). The 2015 recruitment (2094 thousand fish, year class 2013) is estimated to be 3.3 times higher than the record low recruitment in 2011. The increasing trend in recruitment is continuing as the incoming recruitment (year class 2014) is estimated to be 4658 thousand fish ( 7.3 times higher than the record low recruitment in 2011), which is \(287 \%\) higher than the short term GM ( 1205 thousand fish) used in last year's forecast.

\subsection*{33.3 Short-term projections}

No short-term projections were performed this year as last year's advice is valid for 2017 and 2018.

\subsection*{33.4 MSY explorations}

Investigations for possible Fmsy candidates for this stock were carried out at WGCSE 2010. ACOM adopted an Fmsy value of 0.16, based on stochastic simulations using a Ricker model (PLOTMSY program). Btrigger was set to the \(B_{p a}\) value of 3100 t .

Exploratory analysis investigating possible revisions of MSY estimates were conducted at WGCSE 2014 with a recent version of PLOTMSY (Cefas 2014). The simulations indicated the use of equally weighting for the stock-recruitment relationships and the resulting \(\mathrm{F}_{\text {msy }}\) value was in line with the Fmsy of 0.16 used at that moment for this stock.

In response to the EC long-term management plans for western EU waters (ICES Subareas 5 to 10), ICES WKMSYREF4 (October 2015, Brest (France)) used long-term stochastic simulations (Eqsim) to estimate Fmsy and appropriate ranges. The method-
ology used for stocks with age-based assessments follows the approaches developed in ICES WKMSYREF2 (ICES, 2014b) and WKMSYREF3 (ICES, 2014c) and is documented in the report of WKMSYREF4 (ICES, 2016c). Estimates of reference points Blim, \(\mathrm{B}_{\mathrm{pa}}, \mathrm{F}_{\text {lim }}\) and \(\mathrm{F}_{\mathrm{pa}}\) were provided, and the \(\mathrm{F}_{\mathrm{mS}}\) ranges [ \(\mathrm{F}_{\text {lower, }} \mathrm{F}_{\text {upper }}\) ] deliver no more than \(5 \%\) reduction in long-term yield compared with MSY.

The sole 7.a stock is at a low level and mean recruitment has been seen to be reduced at current biomass, simulations were conducted with S-R function (Beverton-Holt and Ricker models) that followed the mean of the recruitment data, giving some reduction in recruitment at Blim. The revised MSY reference points are less restrictive (Fmš=0.20 instead of 0.16 and MSY \(B_{\text {trigger }}=3500 t\) instead of \(3100 t\) ).

In order to be consistent with the ICES precautionary approach, Fupper is capped, so that the probability of SSB < Blim is no more than \(5 \%\). Two approaches have been used to derive the values of the cap on Fupper. One conforms to the ICES MSY advice rule \((A R)\), and requires reducing F linearly towards zero when SSB is below MSY Btrigger. The second uses a constant F without an advice rule; i.e. no reduction in F with SSB less than MSY Btrigger. Although the first often provides a wider Fmsy range, it requires the ICES MSY advice rule to be used (ICES, 2016d).
\begin{tabular}{lcccc}
\hline Stock code & MSY Flower & FMSY & MSY Fupper with AR & MSY Fupper with no AR \\
\hline Sol-iris & 0.16 & 0.20 & 0.24 & 0.22 \\
\hline
\end{tabular}

\subsection*{33.5 Biological reference points}

\section*{Precautionary approach reference points}

The Working Group's current approach to reference points is outlined in Section 33.4. Current biological reference points are given in the text table below:
\begin{tabular}{|c|c|c|}
\hline Reference points & ACFM 2007 onwards & 2016 onwards \\
\hline FMSY & 0.16 (PLOTMSY, WG2010) & 0.20 (Eqsim, WKMSYREF 4) \\
\hline \[
\mathrm{F}_{\mathrm{lim}}
\] & 0.4 (based on Floss) & 0.29 (based on simulated recruitment to give median biomass \(=\) Blim) \\
\hline \(\mathrm{FPA}_{\text {P }}\) & 0.3 (high probability of avoiding Flim) & 0.21 (Flim \({ }^{*} 1.4\) ) \\
\hline \[
\mathrm{B}_{\mathrm{lim}}
\] & 2200 t (Bloss estimated in 2007) & 2500 t (lowest value with above average recruitment) \\
\hline BPA & \(3100 \mathrm{t}\left(\mathrm{B}_{\mathrm{pa}} \sim \mathrm{Blim}^{*} 1.4\right)\) & 3500 t ( \(\operatorname{Blim}\) * 1.4 ) \\
\hline \(B_{\text {trigger }}\) & BPA & 3500 t \\
\hline
\end{tabular}

\subsection*{33.6 Management plans}

No management plan is currently in place for Irish Sea sole.

\subsection*{33.7 Uncertainties and bias in assessment and forecast}

\section*{Sampling}

The deteriorating quality of the historic catch numbers-at-age data was considered to be a consequence of the low biological sampling intensity, and in particular the limited sampling in the first quarter. Therefore the combined age distribution was introduced in 2000 as an alternative method for raising the international catch numbers-atage. The mean catch weights from this combined key were taken and the stock weights-at-age were obtained using a cohort interpolation method from the catch weights-at-age. Under the DCF there is an initiative to co-ordinate sampling across the three countries involved in the fishery. However, as the TAC is substantially reduced in the most recent years, sampling levels are also significantly reduced.

\section*{Landings}

There is no reliable information on the accuracy of the landing statistics. For the period 2005-2012, the total TAC uptake was only in the range of \(50-98 \%\). In this context, misreporting was not considered to be a major problem. In the most recent years, the TAC was substantially reduced and was restrictive in 2013 and 2014. In 2015 and \(2016,84 \%\) and \(87.5 \%\) of the TAC has been taken.

\section*{Discards}

The absence of discard data is unlikely to affect the quality of the assessment as information from recent years indicates that the average discarding by weight is \(6 \%\) of the catch.

\section*{Effort}

There are no indications of Irish Sea sole fisheries misreporting effort. Effort in beam trawl fisheries that target sole has declined substantially in the last few years in accordance with the significant reductions in TAC.

\section*{Surveys}

The UK(E\&W)-BTS-Q3 survey appears to track year-class strength well. As previously investigated, this tuning fleet is also consistent in estimating year-class strength of the same year class at different ages. Therefore the Working Group had confidence in using the UK(E\&W)-BTS-Q3 survey as the only tuning fleet. The bias problem in the assessment maybe the result of the precise survey and less precise catch-at-age data.

\section*{Model formulation}

At present XSA is used to assess Irish Sea sole. In the WG of 2007 the model settings were changed which had a considerable impact on the estimates of SSB and fishing mortality. Due to these major revisions, ACFM changed the biomass reference points at its meeting of 2007. In the next two update assessments (2008-2009) no major changes were apparent. In the assessment of 2011, the settings were changed according to the outcome of WKFLAT 2011. The following assessments were update assessments. In 2016, the reference points were updated (see Section 33.4-33.5).

\subsection*{33.8 Recommendations for next Benchmark}

The assessment diagnostics indicate a good correlation between the catch data and the survey tuning series. Therefore, at present there are no recommendations for a single stock benchmark. However, in the recent years there has been great uncertainty from the fishing industry on the actual status of the sole stock in the Irish Sea. Fishermen are concerned that due to ecosystem changes and the changing fishing behaviour in the Irish Sea, science is no longer capturing the current situation. Because of this mismatch an EU action plan for the Irish Sea fisheries was set up. First, a comparative fishing study was suggested to compare the catch efficiency between the UK-BTS-Q3 and a Belgian commercial vessel. Secondly, a pilot industry-science beam trawl survey should reveal the spatial distribution of sole. The outcome of those work packages will indicate whether the data gathered by the UK-BTS-Q3 is still representative for the current situation or whether the implementation of an additional (annual) industry-science industry survey is needed. Thirdly, stock identification techniques (i.e. genetic fingerprinting and otolith shape analysis) will be performed to give insight on the origin and potential migration routes of sole that is caught in the Irish Sea.

The industry survey was not able to identify other areas of importance for sole in the Irish Sea than is already covered by the UK-BTS-Q3. Also, catchability and composition of catches in both surveys were comparable. These results suggest that the UK-BTS-Q3 gives a good representation of sole abundance and that an annual industry survey additional to this survey would not be of added value to the assessment. With regards to the stock identification study, the combination of otolith shape analysis and genetic markers (SNPs) show subtle differences between the Irish Sea, Celtic Sea and Bristol Channel populations. However more samples from the different areas and from different years need to be analyzed to reveal what is driving these differences. Also, in the attempt to effectively reassign adult sole to their place of origin, it would be preferable to include a third stock identification technique: micro-chemical fingerprinting. Despite many questions yet unsolved, the pilot industry survey delivered valuable information that can be added to an ecosystem model for the Irish Sea (one of the aims of WKIRISH: an ecosystem benchmark for the Irish Sea). Moreover, the survey was an example of a fruitful cooperation between fishermen and fisheries scientists and gave useful insights on how to cooperate with the fishing industry and to gain their trust in the collection of fisheries-independent data.

\subsection*{33.9 Management considerations}

There is a stock-recruitment relationship for this stock and evidence of reduced recruitment at low levels of SSB. However, the recruitment for higher levels of SSB is less well defined (Figure 33.11).

Recruitment-at-age 2 has been well below average since 2001, and is estimated in 2011 to be the lowest in the time-series. In the last two years recruitment has substantially increased. SSB is below Blim since 2004. XSA indicates that fishing mortality has fallen over the last couple of years (as did effort for most fleets fishing for Irish Sea sole), and is now well below Fmsy.

It is not possible for the stock to reach \(B_{p a}\) in one year. A management plan for effort reduction that can be phased in over a number of years and implemented in conjunction with technical conservation measures should be considered.

Sole is caught in a mixed fishery with other flatfish as well as gadoids. Information from observer trips indicates that discarding of sole is relatively low.

\subsection*{33.10 Ecosystem considerations}

Sole and plaice are primarily targeted by beam trawl fisheries. Beam trawling, is known to have an impact on the benthic communities, although less so on soft substrates and in areas which have been historically exploited by this fishing method. Some beam trawlers are using benthic drop-out panels that release about \(75 \%\) of benthic invertebrates from the catches. Full square mesh codends are being tested in order to reduce the capture of benthos further and improve the selection profile of gadoids (Connolly, P.L. et al., 2009).

A complete ecosystem overview can be found in the stock annex section A. 3

\subsection*{33.11References}

Connolly, P.L., Kelly, E., Dransfeld, L., Slattery, N., Paramor, O.A.L., and Frid, C.L.J. 2009. MEFEPO North Western Waters Atlas. Marine Institute.

ICES. 2014b. Report of the Workshop to consider reference points for all stocks (WKMSYREF2), 8-10 January 2014, ICES Headquarters, Copenhagen, Denmark. ICES CM 2014/ACOM:47. 91 pp .

ICES. 2014c. Report of the Joint ICES-MYFISH Workshop to consider the basis for FmsY ranges for all stocks (WKMSYREF3), 17-21 November 2014, Charlottenlund, Denmark. ICES CM 2014/ACOM:64. 147 pp.
ICES. 2016c. Report of the Workshop to consider Fmsy ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 183 pp.

ICES. 2016d. EU request to ICES to provide Fmsy ranges for selected stocks in ICES subareas 5 to 10, ICES special request advice. 5 February 2016 Version 2; 13 May 2016.

Table 33.1. Sol.27.7.a. Nominal landings (tonnes) as officially reported by ICES, and working group estimates of the landings. Last year's landings are preliminary.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \frac{\xi}{3} \\
& \frac{\overline{0}}{0} \\
& \infty
\end{aligned}
\] &  &  &  & \[
\begin{aligned}
& \underset{3}{+} \\
& \underset{\sim}{4} \\
& \underset{y}{v}
\end{aligned}
\] &  &  &  &  &  & \[
\begin{aligned}
& \text { U } \\
& 3 \\
& \text { a } \\
& 0 \\
& 0 \\
& n \\
& \frac{1}{5} \\
& \stackrel{0}{0}
\end{aligned}
\] & \[
\stackrel{\cup}{\gtrless}
\] \\
\hline 1973 & 793 & 12 & 27 & 281 & 258 & - & 46 & 11 & 1428 & 0 & 1428 & \\
\hline 1974 & 664 & 54 & 28 & 320 & 218 & - & 23 & - & 1307 & 0 & 1307 & \\
\hline 1975 & 805 & 59 & 24 & 234 & 281 & - & 24 & 15 & 1442 & -1 & 1441 & \\
\hline 1976 & 674 & 72 & 74 & 381 & 195 & - & 49 & 18 & 1463 & 0 & 1463 & \\
\hline 1977 & 566 & 39 & 84 & 227 & 160 & - & 49 & 21 & 1146 & 1 & 1147 & \\
\hline 1978 & 453 & 65 & 127 & 177 & 189 & - & 57 & 30 & 1098 & 8 & 1106 & \\
\hline 1979 & 779 & 48 & 134 & 247 & 290 & - & 47 & 42 & 1587 & 27 & 1614 & \\
\hline 1980 & 1002 & 41 & 229 & 169 & 367 & - & 44 & 68 & 1920 & 21 & 1941 & \\
\hline 1981 & 884 & 13 & 167 & 186 & 311 & - & 41 & 45 & 1647 & 20 & 1667 & \\
\hline 1982 & 669 & 9 & 161 & 138 & 277 & - & 31 & 44 & 1329 & 9 & 1338 & \\
\hline 1983 & 544 & 3 & 203 & 224 & 219 & - & 33 & 29 & 1255 & -86 & 1169 & \\
\hline 1984 & 425 & 10 & 187 & 113 & 230 & - & 38 & 17 & 1020 & 38 & 1058 & \\
\hline 1985 & 589 & 9 & 180 & 546 & 269 & - & 36 & 28 & 1657 & -511 & 1146 & \\
\hline 1986 & 930 & 17 & 235 & - & 637 & 1 & 50 & 46 & 1916 & 79 & 1995 & \\
\hline 1987 & 987 & 5 & 312 & - & 599 & 3 & 72 & 63 & 2041 & 767 & 2808 & 2100 \\
\hline 1988 & 915 & 11 & 366 & - & 507 & 1 & 47 & 38 & 1885 & 114 & 1999 & 1750 \\
\hline 1989 & 1010 & 5 & 155 & - & 613 & 2 & . & 38 & 1823 & 10 & 1833 & 1480 \\
\hline 1990 & 786 & 2 & 170 & - & 569 & 10 & . & 39 & 1576 & 7 & 1583 & 1500 \\
\hline 1991 & 371 & 3 & 198 & - & 581 & 44 & . & 26 & 1223 & -11 & 1212 & 1500 \\
\hline 1992 & 531 & 11 & 164 & - & 477 & 14 & . & 37 & 1234 & 25 & 1259 & 1350 \\
\hline 1993 & 495 & 8 & 98 & - & 338 & 4 & . & 28 & 971 & 52 & 1023 & 1000 \\
\hline 1994 & 706 & 7 & 226 & - & 409 & 5 & - & 14 & 1367 & 7 & 1374 & 1500 \\
\hline 1995 & 675 & 5 & 176 & - & 424 & 12 & . & 8 & 1300 & -34 & 1266 & 1300 \\
\hline 1996 & 533 & 5 & 133 & 149 & 194 & 4 & . & 5 & 1023 & -21 & 1002 & 1000 \\
\hline 1997 & 570 & 3 & 130 & 123 & 189 & 5 & . & 7 & 1027 & -24 & 1003 & 1000 \\
\hline 1998 & 525 & 3 & 134 & 60 & 161 & 3 & . & 9 & 895 & 16 & 911 & 900 \\
\hline 1999 & 469 & <1 & 120 & 46 & 165 & 1 & . & 8 & 810 & 53 & 863 & 900 \\
\hline 2000 & 493 & 3 & 135 & 60 & 133 & 1 & - & 8 & 833 & -15 & 818 & 1080 \\
\hline 2001 & 674 & 4 & 135 & - & 195 & + & . & 4 & 1012 & 41 & 1053 & 1100 \\
\hline 2002 & 817 & 4 & 96 & - & 165 & + & . & 3 & 1085 & 5 & 1090 & 1100 \\
\hline 2003 & 687 & 4 & 103 & - & 217 & \(+\) & . & 3 & 1014 & 0 & 1014 & 1010 \\
\hline 2004 & 527 & 1 & 77 & - & 106 & + & . & 1 & 712 & -3 & 709 & 800 \\
\hline 2005 & 662 & 3 & 85 & - & 103 & + & . & 1 & 854 & 1 & 855 & 960 \\
\hline 2006 & 419 & 1 & 85 & - & 69 & + & . & 2 & 576 & -7 & 569 & 960 \\
\hline 2007 & 305 & 1 & 115 & - & 66 & <1 & . & 4 & 491 & 1 & 492 & 820 \\
\hline 2008 & 216 & 1 & 66 & - & 37 & \(\mathrm{n} / \mathrm{a}\) & - & n/a & 320 & 12 & 332 & 669 \\
\hline 2009 & 257 & \(\mathrm{n} / \mathrm{a}\) & 47 & - & 19 & 1 & . & 1 & 325 & 0 & 325 & 502 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \frac{\varepsilon}{3} \\
& \frac{0}{0} \\
& \hline
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { D} \\
& \underline{C} \\
& \underline{\sim} \\
& \underline{D}
\end{aligned}
\] &  & \[
\begin{aligned}
& \stackrel{3}{3} \\
& \underset{\sim}{4} \\
& \underset{y}{v}
\end{aligned}
\] &  & \[
\begin{aligned}
& \bar{O} \\
& \stackrel{\rightharpoonup}{\top} \\
& \stackrel{\pi}{0} \\
& \vdots \\
& \dot{z} \\
& \vdots
\end{aligned}
\] &  &  &  & \[
\begin{aligned}
& u \\
& 3 \\
& \lambda \\
& 0 \\
& 0 \\
& 0 \\
& 3 \\
& \vdots \\
& 0 \\
& 1
\end{aligned}
\] & \[
\underset{\gtrless}{\gtrless}
\] \\
\hline 2010 & 217 & <1 & 47 & - & 12 & <1 & . & \(\mathrm{n} / \mathrm{a}\) & 277 & 0 & 277 & 402 \\
\hline 2011 & 250 & \(<1\) & 48 & - & 31 & <1 & . & \(\mathrm{n} / \mathrm{a}\) & 330 & 0 & 330 & 390 \\
\hline 2012 & 222 & <1 & 51 & - & 23 & <1 & - & \(\mathrm{n} / \mathrm{a}\) & 296 & 0 & 298 & 300 \\
\hline 2013 & 96 & \(<1\) & 40 & - & 12 & <1 & - & \(\mathrm{n} / \mathrm{a}\) & 148 & 0 & 148 & 140 \\
\hline 2014 & 43 & \(\mathrm{n} / \mathrm{a}\) & 43 & - & 10 & \(<1\) & - & \(\mathrm{n} / \mathrm{a}\) & 96 & 0 & 99 & 95 \\
\hline 2015 & 37 & \(\mathrm{n} / \mathrm{a}\) & 32 & - & 7 & \(\mathrm{n} / \mathrm{a}\) & - & \(\mathrm{n} / \mathrm{a}\) & 76 & 0 & 76 & 90 \\
\hline 2016 & 14 & \(\mathrm{n} / \mathrm{a}\) & 15 & - & 6 & \(\mathrm{n} / \mathrm{a}\) & - & \(\mathrm{n} / \mathrm{a}\) & 35 & 0 & 35 & 40 \\
\hline
\end{tabular}
\({ }^{1} 1989\) onwards: N. Ireland included with England \& Wales.

Table 33.2-Sol.27.7a - Catch numbers at age (in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Age/Year & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 \\
\hline 2 & 29 & 113 & 31 & 368 & 25 & 262 & 29 & 221 & 65 \\
\hline 3 & 895 & 434 & 673 & 363 & 891 & 733 & 375 & 416 & 958 \\
\hline 4 & 1009 & 2096 & 730 & 2195 & 576 & 2386 & 1331 & 1292 & 649 \\
\hline 5 & 467 & 1130 & 1538 & 557 & 1713 & 539 & 2329 & 774 & 1009 \\
\hline 6 & 1457 & 232 & 537 & 815 & 383 & 842 & 247 & 1066 & 442 \\
\hline 7 & 289 & 878 & 172 & 267 & 422 & 157 & 544 & 150 & 638 \\
\hline +gp & 2537 & 1886 & 1501 & 1143 & 971 & 1006 & 739 & 648 & 587 \\
\hline Age/Year & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 \\
\hline 2 & 108 & 187 & 70 & 8 & 37 & 651 & 154 & 141 & 189 \\
\hline 3 & 1027 & 940 & 580 & 346 & 165 & 786 & 1600 & 3334 & 3347 \\
\hline 4 & 3432 & 1969 & 1668 & 1241 & 998 & 380 & 1085 & 3465 & 4104 \\
\hline 5 & 829 & 3057 & 1480 & 1298 & 758 & 610 & 343 & 960 & 3184 \\
\hline 6 & 637 & 521 & 1640 & 711 & 757 & 343 & 334 & 235 & 844 \\
\hline 7 & 326 & 512 & 114 & 641 & 416 & 424 & 164 & 277 & 307 \\
\hline +gp & 620 & 1146 & 865 & 397 & 709 & 557 & 739 & 848 & 808 \\
\hline Age/Year & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
\hline 2 & 32 & 179 & 564 & 1316 & 363 & 83 & 122 & 132 & 60 \\
\hline 3 & 444 & 771 & 1185 & 1269 & 2431 & 543 & 1343 & 920 & 469 \\
\hline 4 & 4747 & 775 & 986 & 841 & 917 & 1965 & 1070 & 1444 & 1188 \\
\hline 5 & 2100 & 3979 & 598 & 300 & 556 & 559 & 1579 & 737 & 741 \\
\hline 6 & 1309 & 1178 & 2320 & 226 & 190 & 251 & 394 & 1010 & 430 \\
\hline 7 & 203 & 552 & 592 & 1172 & 156 & 199 & 133 & 179 & 509 \\
\hline +gp & 515 & 255 & 466 & 459 & 928 & 686 & 524 & 350 & 347 \\
\hline Age/Year & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 \\
\hline 2 & 790 & 167 & 301 & 178 & 240 & 148 & 437 & 299 & 536 \\
\hline 3 & 714 & 1728 & 1069 & 906 & 1438 & 930 & 825 & 862 & 1052 \\
\hline 4 & 475 & 466 & 1259 & 907 & 822 & 1623 & 966 & 342 & 626 \\
\hline 5 & 711 & 256 & 297 & 600 & 717 & 740 & 795 & 368 & 271 \\
\hline 6 & 409 & 315 & 115 & 150 & 511 & 575 & 302 & 304 & 314 \\
\hline 7 & 258 & 191 & 136 & 55 & 80 & 254 & 217 & 139 & 279 \\
\hline +gp & 532 & 423 & 232 & 258 & 272 & 217 & 345 & 181 & 368 \\
\hline Age/Year & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 \\
\hline 2 & 112 & 171 & 99 & 92 & 22 & 17 & 17 & 23 & 12 \\
\hline 3 & 670 & 356 & 353 & 414 & 336 & 225 & 148 & 99 & 49 \\
\hline 4 & 649 & 348 & 190 & 333 & 233 & 401 & 311 & 75 & 59 \\
\hline 5 & 203 & 243 & 195 & 146 & 177 & 176 & 274 & 106 & 37 \\
\hline 6 & 113 & 86 & 156 & 132 & 65 & 97 & 116 & 78 & 38 \\
\hline 7 & 151 & 41 & 56 & 127 & 72 & 54 & 52 & 34 & 51 \\
\hline +gp & 379 & 298 & 209 & 162 & 158 & 122 & 115 & 82 & 56 \\
\hline Age/Year & 2015 & 2016 & & & & & & & \\
\hline 2 & 15 & 1 & & & & & & & \\
\hline 3 & 36 & 18 & & & & & & & \\
\hline 4 & 37 & 22 & & & & & & & \\
\hline 5 & 30 & 14 & & & & & & & \\
\hline 6 & 17 & 10 & & & & & & & \\
\hline 7 & 21 & 7 & & & & & & & \\
\hline +gp & 74 & 32 & & & & & & & \\
\hline
\end{tabular}

Table 33.3 - Sol.27.7a - Annual lenght distributions by country (2016)
\begin{tabular}{|c|c|c|c|}
\hline Length (cm) & UK (England \& Wales) All gears & \begin{tabular}{l}
Belgium \\
All gears
\end{tabular} & \begin{tabular}{l}
Ireland \\
All gears
\end{tabular} \\
\hline 22 & & & 40 \\
\hline 23 & 38 & 288 & 121 \\
\hline 24 & 86 & 2311 & 258 \\
\hline 25 & 1120 & 4830 & 874 \\
\hline 26 & 1080 & 5654 & 1225 \\
\hline 27 & 1228 & 5930 & 2402 \\
\hline 28 & 1271 & 4447 & 2733 \\
\hline 29 & 1384 & 4310 & 2729 \\
\hline 30 & 574 & 3561 & 2336 \\
\hline 31 & 747 & 3234 & 3506 \\
\hline 32 & 838 & 2414 & 3300 \\
\hline 33 & 1135 & 2495 & 2801 \\
\hline 34 & 322 & 2042 & 2213 \\
\hline 35 & 649 & 1632 & 1729 \\
\hline 36 & 307 & 1106 & 2270 \\
\hline 37 & 325 & 1037 & 1778 \\
\hline 38 & 219 & 664 & 1714 \\
\hline 39 & 68 & 496 & 952 \\
\hline 40 & 70 & 544 & 1162 \\
\hline 41 & 10 & 432 & 875 \\
\hline 42 & 48 & 178 & 613 \\
\hline 43 & 0 & 254 & 302 \\
\hline 44 & 0 & 77 & 254 \\
\hline 45 & 10 & 66 & 201 \\
\hline 46 & 10 & 46 & 131 \\
\hline 47 & & 67 & 41 \\
\hline 48 & & 23 & 82 \\
\hline 49 & & & 41 \\
\hline 50 & & & 32 \\
\hline 51 & & & 8 \\
\hline Total & 11539 & 48138 & 36723 \\
\hline
\end{tabular}

Table 33.4-Sol.27.7a - Catch weights at age (kg)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Age/Year & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 \\
\hline 2 & 0.13 & 0.152 & 0.126 & 0.151 & 0.138 & 0.13 & 0.12 & 0.085 & 0.093 \\
\hline 3 & 0.153 & 0.178 & 0.164 & 0.178 & 0.174 & 0.172 & 0.161 & 0.146 & 0.147 \\
\hline 4 & 0.178 & 0.204 & 0.201 & 0.204 & 0.209 & 0.21 & 0.2 & 0.202 & 0.197 \\
\hline 5 & 0.204 & 0.23 & 0.237 & 0.23 & 0.241 & 0.244 & 0.239 & 0.251 & 0.243 \\
\hline 6 & 0.232 & 0.257 & 0.272 & 0.256 & 0.272 & 0.275 & 0.276 & 0.293 & 0.286 \\
\hline 7 & 0.26 & 0.284 & 0.306 & 0.283 & 0.301 & 0.303 & 0.313 & 0.33 & 0.326 \\
\hline +gp & 0.377 & 0.419 & 0.417 & 0.392 & 0.396 & 0.367 & 0.457 & 0.387 & 0.429 \\
\hline Age/Year & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 \\
\hline 2 & 0.134 & 0.146 & 0.162 & 0.112 & 0.189 & 0.191 & 0.144 & 0.122 & 0.135 \\
\hline 3 & 0.165 & 0.169 & 0.183 & 0.171 & 0.212 & 0.225 & 0.189 & 0.164 & 0.164 \\
\hline 4 & 0.199 & 0.193 & 0.207 & 0.225 & 0.238 & 0.257 & 0.231 & 0.203 & 0.196 \\
\hline 5 & 0.234 & 0.219 & 0.234 & 0.275 & 0.266 & 0.288 & 0.272 & 0.241 & 0.231 \\
\hline 6 & 0.271 & 0.247 & 0.264 & 0.321 & 0.298 & 0.318 & 0.31 & 0.277 & 0.268 \\
\hline 7 & 0.311 & 0.275 & 0.296 & 0.362 & 0.332 & 0.347 & 0.346 & 0.311 & 0.308 \\
\hline +gp & 0.451 & 0.380 & 0.452 & 0.456 & 0.458 & 0.408 & 0.430 & 0.407 & 0.462 \\
\hline Age/Year & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
\hline 2 & 0.111 & 0.125 & 0.135 & 0.133 & 0.149 & 0.102 & 0.175 & 0.129 & 0.156 \\
\hline 3 & 0.147 & 0.163 & 0.162 & 0.172 & 0.177 & 0.156 & 0.198 & 0.182 & 0.193 \\
\hline 4 & 0.183 & 0.201 & 0.192 & 0.208 & 0.207 & 0.205 & 0.227 & 0.232 & 0.228 \\
\hline 5 & 0.218 & 0.237 & 0.227 & 0.241 & 0.239 & 0.248 & 0.261 & 0.277 & 0.263 \\
\hline 6 & 0.252 & 0.271 & 0.265 & 0.272 & 0.274 & 0.285 & 0.301 & 0.318 & 0.296 \\
\hline 7 & 0.286 & 0.304 & 0.307 & 0.3 & 0.31 & 0.318 & 0.346 & 0.356 & 0.327 \\
\hline +gp & 0.419 & 0.389 & 0.414 & 0.345 & 0.379 & 0.370 & 0.509 & 0.451 & 0.410 \\
\hline Age/Year & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 \\
\hline 2 & 0.154 & 0.187 & 0.179 & 0.14 & 0.175 & 0.162 & 0.16 & 0.17 & 0.16 \\
\hline 3 & 0.197 & 0.209 & 0.217 & 0.189 & 0.18 & 0.172 & 0.187 & 0.219 & 0.203 \\
\hline 4 & 0.237 & 0.234 & 0.252 & 0.25 & 0.271 & 0.211 & 0.247 & 0.289 & 0.256 \\
\hline 5 & 0.275 & 0.263 & 0.285 & 0.311 & 0.293 & 0.283 & 0.294 & 0.338 & 0.286 \\
\hline 6 & 0.311 & 0.295 & 0.314 & 0.368 & 0.326 & 0.328 & 0.342 & 0.371 & 0.312 \\
\hline 7 & 0.345 & 0.331 & 0.341 & 0.428 & 0.42 & 0.333 & 0.326 & 0.383 & 0.326 \\
\hline +gp & 0.407 & 0.440 & 0.399 & 0.504 & 0.438 & 0.375 & 0.415 & 0.444 & 0.352 \\
\hline Age/Year & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 \\
\hline 2 & 0.179 & 0.172 & 0.148 & 0.141 & 0.166 & 0.215 & 0.187 & 0.17 & 0.17 \\
\hline 3 & 0.194 & 0.224 & 0.189 & 0.195 & 0.193 & 0.213 & 0.22 & 0.213 & 0.196 \\
\hline 4 & 0.224 & 0.296 & 0.248 & 0.229 & 0.266 & 0.276 & 0.26 & 0.278 & 0.269 \\
\hline 5 & 0.297 & 0.36 & 0.279 & 0.279 & 0.285 & 0.362 & 0.311 & 0.32 & 0.328 \\
\hline 6 & 0.293 & 0.38 & 0.291 & 0.277 & 0.321 & 0.413 & 0.331 & 0.347 & 0.369 \\
\hline 7 & 0.318 & 0.429 & 0.386 & 0.261 & 0.308 & 0.368 & 0.368 & 0.353 & 0.397 \\
\hline +gp & 0.349 & 0.479 & 0.392 & 0.277 & 0.335 & 0.364 & 0.335 & 0.354 & 0.441 \\
\hline Age/Year & 2015 & 2016 & & & & & & & \\
\hline & 0.18 & 0.187 & & & & & & & \\
\hline & 0.221 & 0.223 & & & & & & & \\
\hline & 0.309 & 0.269 & & & & & & & \\
\hline & 0.342 & 0.356 & & & & & & & \\
\hline & 0.381 & 0.332 & & & & & & & \\
\hline & 0.4 & 0.414 & & & & & & & \\
\hline +gp & 0.384 & 0.436 & & & & & & & \\
\hline
\end{tabular}

Table 33.5-Sol.27.7a - Stock weights at age (kg)


Table 33.6.a. Sol.27.7.a. Discard rates for the main fleets operational in the Irish Sea (Belgian, UK and Irish beam trawl, UK and Irish otter trawl, UK and Irish Nephrops trawl).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{BEL} & \multicolumn{5}{|c|}{UK} & \multicolumn{3}{|c|}{IRL} \\
\hline Gear & TBB & TBB & ОTB & TWIN OTB & NEPH ОТВ & TWIN NEPH & Other & TBB & NEPH ОТВ & OTB DEF \\
\hline Landings (t) & 716 & 284 & 61 & 4 & 25 & 6 & Na & 427 & 1 & 1 \\
\hline Discard ratio & 0.05 & 0.08 & 0.05 & 0.01 & 0.08 & 0.02 & Na & 0.02 & 1 & 1 \\
\hline years & 2007-2009 & \[
\begin{aligned}
& 2002 \\
& 2005-2007
\end{aligned}
\] & 2002-2009 & 2003,2004,2007 & \[
\begin{aligned}
& 2003,2006- \\
& 2009
\end{aligned}
\] & 2002,2003,2008 & Na & 2003-2009 & / & 1 \\
\hline Landings (t) 2010 & 210.917 & 1.721 & 1.071 & 0.014 & 3.329 & 0.501 & 0.741 & 38.283 & 5.327 & 3.632 \\
\hline Discard ratio 2010 & 0.04 & Na & 0.00 & Na & 0.05 & Na & Na & 0.05 & 0.16* & 0.39* \\
\hline Landings (t) 2011 & 239.483 & 13.662 & 2.866 & 0.05 & 5.201 & 0.414 & 0.821 & 32.514 & 10.116 & 5.581 \\
\hline Discard ratio 2011 & 0.04 & Na & 0.02 & Na & 0.00 & Na & Na & 0.003 & 0.16* & 0.00 \\
\hline
\end{tabular}
* It should be noted that the \(\mathbf{1 6 \%}\) discard rate for 2010-2011 of the Irish Nephrops fleet and the \(\mathbf{3 9 \%}\) discard rate for 2010 of the Irish otter trawl fleet only accounts for respectively \(\mathbf{1 . 9} \%\), \(3.1 \%\) and \(1.3 \%\) of the total international landings.

Table 33.6b - Sol.27.7a - Discard rates.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country & Year & \multicolumn{3}{|c|}{Landings (L) (t)} & Discards (D) (t) \\
\hline BE & & TBB & ОтВ & other & \\
\hline & 2012 & 213.392 & 8.301 & 0 & 16.222 \\
\hline & 2013 & 93.009 & 3.028 & 0 & 8.538 \\
\hline & 2014 & 36.144 & 7.288 & 0 & 2.286 \\
\hline & 2015 & 32.2 & 3.995 & 0 & 2.343 \\
\hline & 2016 & 12.533 & 1.538 & 0 & 0.336 \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{UK 2012}} & & & & \\
\hline & & 7.278 & 5.459 & 1.229 & 0 \\
\hline \multirow{4}{*}{UK} & 2013 & 0.168 & 5.108 & 1.258 & 0 \\
\hline & 2014 & 0.149 & 3.579 & 1.582 & 1.195 \\
\hline & 2015 & 0.164 & 3.505 & 0.491 & 0 \\
\hline & 2016 & 0.110 & 2.700 & 0.641 & 0.006 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{IR} & 2012 & 38.79 & 8.162 & 3.824 & 1 \\
\hline & 2013 & 30.934 & 9.23 & 0.009 & 0 \\
\hline & 2014 & 37.007 & 6.016 & 0.1613 & 0.4 \\
\hline & 2015 & 24.306 & 7.19 & 0.031 & 1.394 \\
\hline & 2016 & 9.205 & 5.842 & 0.037 & 0.273 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & total L & L corresponding with discard info & \% coverage of L & total D & rate \\
\hline 2012 & 286.44 & 227.01 & 0.79 & 17.22 & 0.071 \\
\hline 2013 & 142.74 & 107.35 & 0.75 & 8.54 & 0.074 \\
\hline 2014 & 91.93 & 45.74 & 0.50 & 3.88 & 0.078 \\
\hline 2015 & 71.88 & 42.89 & 0.60 & 3.74 & 0.080 \\
\hline 2016 & 32.61 & 21.08 & 0.65 & 0.62 & 0.029 \\
\hline average & & & 0.58 & 2.75 & 0.06 \\
\hline
\end{tabular}

Table 33.7a - Sol.27.7a - Effort series.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & Belgium & \multicolumn{4}{|c|}{UK(E\&W)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{UK beam survey \({ }^{4}\)}} & \multicolumn{2}{|c|}{Ireland} \\
\hline & beam \({ }^{1}\) & beam \({ }^{3}\) & beam \({ }^{2}\) & otter \({ }^{3}\) & otter \({ }^{2}\) & & & otter & beam \\
\hline & Whole year & Sept & March & Whole year & Whole year \\
\hline 1972 & - & - & - & 1.06 & - & - & - & - & - \\
\hline 1973 & - & - & - & 1.06 & - & - & - & - & - \\
\hline 1974 & - & - & - & 1.09 & - & - & - & - & - \\
\hline 1975 & 21.4 & - & - & 1.39 & - & - & - & - & - \\
\hline 1976 & 23.1 & - & - & 0.94 & - & - & - & - & - \\
\hline 1977 & 19.8 & - & - & 0.80 & - & - & - & - & - \\
\hline 1978 & 18.1 & 34.32 & - & 1.04 & - & - & - & - & - \\
\hline 1979 & 33.4 & 32.01 & - & 1.43 & - & - & - & - & - \\
\hline 1980 & 28.2 & 31.70 & - & 1.01 & - & - & - & - & - \\
\hline 1981 & 22.2 & 21.32 & - & 0.75 & - & - & - & - & - \\
\hline 1982 & 22.0 & 29.94 & - & 0.53 & - & - & - & - & - \\
\hline 1983 & 13.9 & 37.31 & 0.0 & 0.57 & 150.2 & - & - & - & - \\
\hline 1984 & 22.5 & 16.24 & 2851.4 & 0.71 & 119.3 & - & - & - & - \\
\hline 1985 & 20.6 & 17.34 & 2956.3 & 0.56 & 135.7 & - & - & - & - \\
\hline 1986 & 19.1 & 19.23 & 3925.7 & 0.84 & 174.9 & - & - & - & - \\
\hline 1987 & 17.7 & 14.82 & 3726.9 & 0.77 & 144.9 & - & - & - & - \\
\hline 1988 & 21.3 & 11.81 & 2673.3 & 0.46 & 80.3 & 161.92 & - & - & - \\
\hline 1989 & 21.9 & 9.17 & 1750.6 & 0.70 & 138.9 & 150.07 & - & - & - \\
\hline 1990 & 17.5 & 9.52 & 2300.9 & 0.61 & 119.7 & 196.90 & - & - & - \\
\hline 1991 & 18.7 & 10.43 & 2420.9 & 1.12 & 177.4 & 175.76 & - & - & - \\
\hline 1992 & 19.2 & 9.50 & 2763.0 & 1.02 & 126.0 & 162.64 & - & - & - \\
\hline 1993 & 20.0 & 7.60 & 1879.8 & 0.54 & 69.1 & 100.16 & 104.7 & - & - \\
\hline 1994 & 19.1 & 11.76 & 1479.9 & 0.74 & 88.1 & 110.71 & 91.9 & & - \\
\hline 1995 & 18.1 & 14.96 & 1721.1 & 0.95 & 142.3 & 92.04 & 79.3 & 0.38 & 12.69 \\
\hline 1996 & 17.7 & 9.44 & 1471.7 & 0.53 & 47.7 & 89.48 & - & 0.25 & 14.94 \\
\hline 1997 & 16.6 & 10.49 & 961.8 & 0.73 & 103.2 & 155.79 & 63.3 & 0.23 & 8.53 \\
\hline 1998 & 19.0 & 8.42 & 907.8 & 0.48 & 50.5 & 144.97 & 89.3 & 0.38 & 7.77 \\
\hline 1999 & 19.5 & 9.94 & 1124.9 & 0.60 & 64.8 & 116.02 & - & 0.29 & 9.22 \\
\hline 2000 & 15.5 & 12.90 & 1604.7 & 0.44 & 34.6 & 130.70 & - & 0.29 & 8.49 \\
\hline 2001 & 15.0 & 11.72 & 1537.4 & 0.15 & 23.4 & 96.87 & - & 0.38 & 7.86 \\
\hline 2002 & 15.0 & 16.73 & 1484.3 & 1.48 & 98.8 & 76.73 & - & 0.32 & 4.67 \\
\hline 2003 & 14.8 & 13.20 & 1351.6 & 0.15 & 340.4 & 88.55 & - & 0.34 & 4.20 \\
\hline 2004 & 15.4 & 13.86 & 941.7 & 0.17 & 27.6 & 98.92 & - & 0.14 & 4.31 \\
\hline 2005 & 16.7 & 9.14 & 1199.9 & 0.19 & 21.3 & 48.91 & - & 0.16 & 4.70 \\
\hline 2006 & 15.2 & 7.83 & 826.1 & 0.52 & 34.8 & 52.63 & - & 0.16 & 6.00 \\
\hline 2007 & 13.7 & 16.38 & 1629.9 & 0.42 & 21.4 & 53.05 & - & 0.37 & 6.37 \\
\hline 2008 & 19.5 & 15.25 & 887.4 & 0.30 & 16.4 & 50.67 & - & 0.20 & 6.08 \\
\hline 2009 & 20.2 & 18.88 & 1201.2 & 0.22 & 13.6 & 45.75 & - & 0.28 & 4.53 \\
\hline 2010 & 18.0 & 13.90 & 262.3 & 0.46 & 17.8 & 27.80 & - & 0.19 & 4.09 \\
\hline 2011 & 17.6 & 4.45 & 322.5 & 0.18 & 13.7 & 36.97 & - & 0.30 & 4.13 \\
\hline 2012 & 18.9 & 4.27 & 99.9 & 0.08 & 10.5 & 26.47 & - & 0.14 & 5.41 \\
\hline 2013 & 12.7 & - & 27.7 & 0.10 & 3.4 & 31.65 & - & 0.22 & 6.27 \\
\hline 2014 & 8.9 & - & 0.0 & - & 0.0 & 41.14 & - & 0.14 & 5.40 \\
\hline 2015 & 8.9 & - & 146.1 & - & 0.0 & 58.88 & - & 0.18 & 3.14 \\
\hline 2016* & 6.5 & - & 0.0 & - & 0.0 & 69.35 & - & 0.18 & 1.17 \\
\hline \multicolumn{10}{|l|}{All LPUE values in Kg/hr} \\
\hline \begin{tabular}{l}
/000'hr \\
/day \\
/000'hr fis \\
/100km fis \\
ovisional
\end{tabular} & GRT correc & 20' vessels & & & & & & & \\
\hline
\end{tabular}

\section*{Table 33.8 - Sol.27.7a - Tuning series (values in bold are used in the assessmer}


\section*{Table 6.8.8-Sole in 7.a-Continued (values in bold are used in the assessment}


Table 6.8.8-Sole in VIIa. Continued (values in bold are used in the assessment)


Table 33.9. Sol.27.7.a. Diagnostics.
FLR XSA Diagnostics 2017-05-11 10:46:37
CPUE data from indices
Catch data for 47 years. 1970 to 2016. Ages 2 to 8.
fleet first age last age first year last year alpha beta
\begin{tabular}{lllllll}
1 \\
UK (E\&W)-BTS-Q3 & 2 & 7 & 1988 & 2016 & 0.75
\end{tabular} 0.85

Time series weights :
Tapered time weighting not applied Catchability analysis :

Catchability independent of size for all ages Catchability independent of age for ages > 4
Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=1.5\)

Minimum standard error for population
estimates derived from each fleet = 0.3
prior weighting not applied
Regression weights
year
age 2007200820092010201120122013201420152016
\(\begin{array}{lllllllllll}\text { all } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\)
Fishing mortalities
year
age \(20072008 \quad 20092010 \quad 2011 \quad 2012 \quad 2013 \quad 2014 \quad 2015 \quad 2016\) 20.1010 .0540 .0430 .0140 .0280 .0180 .0350 .0160 .0080 .000 30.4190 .2760 .2980 .1960 .1780 .3240 .1260 .0880 .0530 .010 40.3220 .3680 .4040 .2430 .3370 .3550 .2410 .0930 .0800 .037 50.3130 .2680 .4740 .3460 .2610 .3610 .1750 .1610 .0560 .035 60.3070 .3040 .2610 .3550 .2880 .2460 .1470 .0790 .0930 .021 70.3910 .2990 .3830 .1990 .4950 .2200 .0950 .1220 .0520 .044 80.3910 .2990 .3830 .1990 .4950 .2200 .0950 .1220 .0520 .044 XSA population number (Thousand) age
\(\begin{array}{llllllll}\text { year } & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\) 2007187610911329949341133963 200819691535649872628227850 2009228716881054406603419533
```

 2010 1622 1982 1134 637 229 420 921
 2011 640 1447 1473 804 408 145 327
 2012 990 563 1095 952 560 277 611
 2013 701 880}3696695601 397 955
 2014 821 612 702 262 528 469 515
 2015 2094 731 507 579 202 441 1554
 20164658 1881 627 424 495 166 784
Estimated population abundance at 1st Jan 2017
age
year
2017 438 4215 1685 547 370 438 144
Fleet: UK (E\&W)-BTS-Q3
Log catchability residuals.

year																
age	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
2	0.060	0.043	0.426	0.524	-0.035	-0.258	0.176	0.195	-0.264	0.109	0.456	-0.136	0.015	-0.028	-0.884	0.155
3	0.601	0.382	-0.110	-0.279	0.486	-0.258	-0.030	0.308	-0.660	-0.059	0.121	0.017	-0.196	-0.210	-0.213	-0.159
4	0.012	0.075	-0.236	-0.920	0.454	-0.094	-0.280	0.055	-0.243	-0.156	-0.761	0.323	0.325	-0.483	0.072	0.239
5	-0.379	-0.014	0.972	-0.610	-0.015	-0.310	0.032	-0.577	-0.217	0.033	-0.749	0.340	-0.117	-0.139	-0.389	0.206
6	-0.228	-0.232	0.303	-0.196	0.172	-0.070	0.538	-0.020	-0.174	-0.157	-0.283	0.360	0.153	-0.097	0.073	0.000
7	-0.118	0.085	0.188	-0.194	-0.198	-0.088	0.183	-0.344	-0.158	0.271	0.200	0.182	-0.123	-0.022	-0.019	-0.237
year																
age	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016			
2	0.055	0.014	0.291	-0.219	0.029	0.015	-0.581	-0.149	-0.257	0.223	-0.232	0.074	0.183			
3	0.434	-0.353	0.160	0.263	0.040	0.058	-0.100	0.054	-0.241	-0.064	-0.225	0.192	0.040			
4	-0.093	-0.212	-0.089	0.268	0.054	0.212	-0.067	0.383	0.304	0.488	0.236	-0.009	0.145			
5	0.448	-0.062	0.721	0.269	0.395	0.476	-0.187	0.265	-0.162	0.253	0.359	-0.020	0.165			
6	0.041	0.176	0.249	-0.029	0.126	0.368	-0.380	-0.106	-0.457	-0.230	0.213	-0.463	0.181			
7	0.347	-0.030	-0.207	-0.031	-0.205	-0.087	-0.525	-0.006	0.141	0.297	0.151	-0.180	0.190			

```

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{llllll}
2 & 3 & 4 & 5 & 6 & 7
\end{tabular}

Mean_Logq -7.4609 -7.7873-7.9164 -7.9164 -7.9164 -7.9164
S.E_Logq
0.2957
0.2957
0.2957
0.2957
0.2957
0.2957

Terminal year survivor and \(F\) summaries:
Age 2 Year class =2014
source
scaledWts survivors yrcls
\begin{tabular}{llrl} 
UK (E\&W)-BTS-Q3 & 0.962 & 5059 & 2014 \\
fshk & 0.038 & 44 & 2014
\end{tabular}

Age 3 Year class =2013
source
scaledWts survivors yrcls
\begin{tabular}{lrrr} 
UK (E\&W)-BTS-Q3 & 0.961 & 1754 & 2013 \\
fshk & 0.039 & 101 & 2013
\end{tabular}

Age 4 Year class =2012
source
\begin{tabular}{|c|c|c|c|}
\hline UK (E\&W)-BTS-Q3 & 0.95 & 633 & 2012 \\
\hline fshk & 0.05 & 83 & 2012 \\
\hline \multicolumn{4}{|l|}{Age 5 Year class =2011} \\
\hline \multicolumn{4}{|l|}{source} \\
\hline & scaledWts & survivors & yrcls \\
\hline UK (E\&W)-BTS-Q3 & 0.931 & 436 & 2011 \\
\hline fshk & 0.069 & 58 & 2011 \\
\hline \multicolumn{4}{|l|}{Age 6 Year class \(=2010\)} \\
\hline \multicolumn{4}{|l|}{source} \\
\hline & scaledWts & survivors & yrcls \\
\hline UK (E\&W)-BTS-Q3 & 0.961 & 525 & 2010 \\
\hline fshk & 0.039 & 50 & 2010 \\
\hline \multicolumn{4}{|l|}{Age 7 Year class =2009} \\
\hline \multicolumn{4}{|l|}{source} \\
\hline & scaledWts & survivors & yrcls \\
\hline UK (E\&W)-BTS-Q3 & 0.96 & 174 & 2009 \\
\hline fshk & 0.04 & 208 & 2009 \\
\hline
\end{tabular}


\section*{Table 33.11-Sol.27.7a - Stock numbers at age (start of year, in thousands)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age/Year & & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline 2 & & 3695 & 10177 & 3186 & 13133 & 5870 & 6680 & 3857 & 15773 & 9041 & 8849 & 5071 & 4499 & 2463 \\
\hline 3 & & 8349 & 3316 & 9101 & 2853 & 11533 & 5288 & 5795 & 3462 & 14061 & 8119 & 7905 & 4411 & 4004 \\
\hline 4 & & 4145 & 6703 & 2588 & 7595 & 2236 & 9588 & 4087 & 4887 & 2737 & 11812 & 6370 & 6259 & 3439 \\
\hline 5 & & 1368 & 2791 & 4071 & 1647 & 4784 & 1476 & 6406 & 2432 & 3193 & 1859 & 7424 & 3890 & 4076 \\
\hline 6 & & 4389 & 794 & 1451 & 2221 & 960 & 2699 & 822 & 3581 & 1465 & 1930 & 894 & 3809 & 2112 \\
\hline 7 & & 939 & 2585 & 498 & 802 & 1234 & 504 & 1642 & 509 & 2227 & 905 & 1140 & 313 & 1886 \\
\hline +gp & - & 8212. & 5534. & 4321. & 3418 & 2829 & 3220 & 2221. & \({ }^{2193}\) & 2042. & \({ }^{1713 .}\) & \({ }^{2536}\). & 2366. & 1164 \\
\hline TOTAL & & 31097 & 31900 & 25214 & 31667 & 29447 & 29455 & 24831 & 32836 & 34766 & 35188 & 31340 & 25546 & 19144 \\
\hline Age/Year & & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
\hline 2 & & 5560 & 15488 & 16262 & 23779 & 3465 & 3503 & 4380 & 5573 & 12708 & 4962 & 6201 & 5262 & 2007 \\
\hline 3 & & 2221 & 4996 & 13395 & 14568 & 21382 & 2955 & 3139 & 3793 & 4506 & 10246 & 4145 & 5532 & 4645 \\
\hline 4 & & 3294 & 1852 & 3773 & 10598 & 10010 & 16163 & 2252 & 2107 & 2304 & 2869 & 6959 & 3234 & 3728 \\
\hline 5 & & 1931 & 2031 & 1315 & 2382 & 6293 & 5154 & 10109 & 1300 & 968 & 1285 & 1724 & 4427 & 1909 \\
\hline 6 & & 2453 & 1026 & 1258 & 864 & 1241 & 2666 & 2666 & 5363 & 608 & 591 & 634 & 1028 & 2504 \\
\hline 7 & & 1234 & 1500 & 603 & 821 & 558 & 320 & 1167 & 1291 & 2645 & 335 & 354 & 335 & 555 \\
\hline +gp & F & \({ }^{2095}\) & 1964 & 2707 & \({ }^{2502}\) & 1458 & 807 & \({ }^{536}\) & 1011 & 1029 . & 1982 & \({ }^{1210}\) & 1315. & 1082 \\
\hline TOTAL & & 18789 & 28857 & 39312 & 55513 & 44407 & 31568 & 24248 & 20437 & 24767 & 22271 & 21226 & 21133 & 16429 \\
\hline Age/Year & & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline 2 & & 2502 & 8406 & 6927 & 5273 & 6980 & 4569 & 2334 & 3062 & 3650 & 2965 & 1323 & 1876 & 1969 \\
\hline 3 & & 1690 & 2207 & 6855 & 6109 & 4485 & 6147 & 3906 & 1971 & 2355 & 3018 & 2173 & 1091 & 1535 \\
\hline 4 & & 3328 & 1083 & 1318 & 4559 & 4510 & 3196 & 4194 & 2649 & 998 & 1311 & 1731 & 1329 & 649 \\
\hline 5 & & 2000 & 1881 & 529 & 749 & 2928 & 3218 & 2110 & 2252 & 1478 & 578 & 591 & 949 & 872 \\
\hline 6 & & 1026 & 1105 & 1025 & 235 & 395 & 2079 & 2230 & 1205 & 1281 & 987 & 265 & 341 & 628 \\
\hline 7 & & 1305 & 520 & 611 & 628 & 103 & 215 & 1395 & 1471 & 803 & 870 & 595 & 133 & 227 \\
\hline +gp & - & 886 & 1062 & 1348 & 1069 & 479 & 728 & 1188 & 2327. & 1041. & 1143 & \({ }^{1490}\) & \({ }^{963}\) & 850 \\
\hline TOTAL & & 12737 & 16264 & 18611 & 18621 & 19880 & 20150 & 17356 & 14936 & 11605 & 10871 & 8168 & 6683 & 6730 \\
\hline Age/Year & & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & GMST 70-14 & & & \\
\hline 2 & & 2287 & 1622 & 640 & 990 & 701 & 821 & 2094 & 4658 & 0 & 4176 & & & \\
\hline 3 & & 1688 & 1982 & 1447 & 563 & 880 & 612 & 731 & 1881 & 4214 & & & & \\
\hline 4 & & 1054 & 1134 & 1473 & 1095 & 369 & 702 & 507 & 627 & 1685 & & & & \\
\hline 5 & & 406 & 637 & 804 & 952 & 695 & 262 & 579 & 424 & 547 & & & & \\
\hline 6 & & 603 & 229 & 408 & 560 & 601 & 528 & 202 & 495 & 370 & & & & \\
\hline & & 419 & 420 & 145 & 277 & 397 & 469 & 441 & 166 & 438 & & & & \\
\hline +gp & . & 533 & 921 & 327 & 611 & 955 & 515 & 1554 & 784 & 823 & & & & \\
\hline TOTAL & & 6990 & 6944 & 5244 & 5048 & 4597 & 3909 & 6109 & 9035 & 8077 & & & & \\
\hline
\end{tabular}

\section*{Table 33.12-Sol.27.7a - Summary}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
RECRUITS \\
Age 2
\end{tabular} & SSB & BIOMASS & LANDINGS & FBAR 4-7 & YIELD/SSB \\
\hline 1970 & 3695 & 6436 & 7132 & 1785 & 0.3901 & 0.28 \\
\hline 1971 & 10177 & 6222 & 7406 & 1882 & 0.4404 & 0.3 \\
\hline 1972 & 3186 & 5011 & 5727 & 1450 & 0.4508 & 0.29 \\
\hline 1973 & 13133 & 5123 & 6553 & 1428 & 0.4300 & 0.28 \\
\hline 1974 & 5870 & 5068 & 6189 & 1307 & 0.4442 & 0.26 \\
\hline 1975 & 6680 & 5359 & 6229 & 1441 & 0.3953 & 0.27 \\
\hline 1976 & 3857 & 4889 & 5501 & 1463 & 0.4270 & 0.3 \\
\hline 1977 & 15773 & 4490 & 5510 & 1147 & 0.3695 & 0.26 \\
\hline 1978 & 9041 & 5092 & 6245 & 1106 & 0.3575 & 0.22 \\
\hline 1979 & 8849 & 5685 & 6888 & 1614 & 0.4746 & 0.28 \\
\hline 1980 & 5071 & 5514 & 6430 & 1941 & 0.6372 & 0.35 \\
\hline 1981 & 4499 & 5166 & 5909 & 1667 & 0.4812 & 0.32 \\
\hline 1982 & 2463 & 4332 & 4747 & 1338 & 0.4410 & 0.31 \\
\hline 1983 & 5560 & 4097 & 4919 & 1169 & 0.4361 & 0.29 \\
\hline 1984 & 15488 & 4606 & 6792 & 1058 & 0.3518 & 0.23 \\
\hline 1985 & 16262 & 5645 & 7864 & 1146 & 0.3361 & 0.2 \\
\hline 1986 & 23779 & 6961 & 9528 & 1995 & 0.4369 & 0.29 \\
\hline 1987 & 3465 & 7173 & 8567 & 2808 & 0.8601 & 0.39 \\
\hline 1988 & 3503 & 5528 & 6006 & 1999 & 0.6872 & 0.36 \\
\hline 1989 & 4380 & 4644 & 5193 & 1833 & 0.5739 & 0.39 \\
\hline 1990 & 5573 & 3640 & 4302 & 1583 & 0.6508 & 0.43 \\
\hline 1991 & 12708 & 3200 & 4492 & 1212 & 0.5001 & 0.38 \\
\hline 1992 & 4962 & 3462 & 4471 & 1259 & 0.5250 & 0.36 \\
\hline 1993 & 6201 & 3243 & 3874 & 1023 & 0.5500 & 0.32 \\
\hline 1994 & 5262 & 4067 & 5001 & 1374 & 0.4883 & 0.34 \\
\hline 1995 & 2007 & 3537 & 3979 & 1266 & 0.5021 & 0.36 \\
\hline 1996 & 2502 & 2725 & 3095 & 1002 & 0.5182 & 0.37 \\
\hline 1997 & 8406 & 2511 & 3458 & 1003 & 0.5891 & 0.4 \\
\hline 1998 & 6927 & 3042 & 4273 & 911 & 0.4913 & 0.3 \\
\hline 1999 & 5273 & 3338 & 4346 & 863 & 0.4663 & 0.26 \\
\hline 2000 & 6980 & 3140 & 3931 & 818 & 0.4528 & 0.26 \\
\hline 2001 & 4569 & 3584 & 4335 & 1053 & 0.3444 & 0.29 \\
\hline 2002 & 2334 & 3600 & 4043 & 1090 & 0.3777 & 0.3 \\
\hline 2003 & 3062 & 3239 & 3640 & 1014 & 0.3557 & 0.31 \\
\hline 2004 & 3650 & 2314 & 2797 & 709 & 0.3095 & 0.31 \\
\hline 2005 & 2965 & 2087 & 2527 & 855 & 0.5484 & 0.41 \\
\hline 2006 & 1323 & 1650 & 1901 & 569 & 0.4627 & 0.34 \\
\hline 2007 & 1876 & 1405 & 1665 & 492 & 0.3333 & 0.35 \\
\hline 2008 & 1969 & 1343 & 1597 & 332 & 0.3098 & 0.25 \\
\hline 2009 & 2287 & 1087 & 1361 & 325 & 0.3804 & 0.3 \\
\hline 2010 & 1622 & 1212 & 1477 & 277 & 0.2856 & 0.23 \\
\hline 2011 & 640 & 1109 & 1270 & 330 & 0.3452 & 0.3 \\
\hline 2012 & 990 & 1181 & 1326 & 298 & 0.2953 & 0.25 \\
\hline 2013 & 701 & 1125 & 1247 & 148 & 0.1643 & 0.13 \\
\hline 2014 & 821 & 916 & 1011 & 99 & 0.1137 & 0.11 \\
\hline 2015 & 2094 & 1374 & 1621 & 76 & 0.0703 & 0.06 \\
\hline 2016 & 4658 & 1333 & 1816 & 35 & 0.0342 & 0.03 \\
\hline Arith. Mean & 5683 & 3649 & & 1098 & 0.4231 & 0.29 \\
\hline Units & (Thousands) & (Tonnes) & & (Tonnes) & & \\
\hline
\end{tabular}


Figure 33.1.a. Sol.27.7.a. Age composition of landings.


Figure 33.1.b. Sol.27.7.a. Age composition of landings.

Figure 33.2a - Sol.27.7a - BE Length distributions of discarded and retained fish from discard sampling studies (Beam trawl)


Figure 33.2b - Sol.27.7a - IR Length distributions of discarded and retained fish from discard sampling studies (Otter trawl)


Figure 33.3a - Sol.27.7a - Effort series


Figure 33.3b - Sol.27.7a - Relative effort series


Figure 33.3c - Sol.27.7a - Relative LPUE series


Figure 33.4a - Sol.27.7a - Effort series


Figure 33.4b - Sol.27.7a - Relative effort series


Figure 33.4c - Sol.27.7a - Relative LPUE series


Figure 33.5-Sol.27.7.a - Mean-standardised indices


Figure 33.6 - Sol.27.7a - Consistency plot UK(E\&W)-BTS-Q3 survey


Figure 33.7 - Sol.27.7a - LOG CATCHABILITY RESIDUAL PLOTS - Final XSA


Figure 33.8 - Sol.27.7a - Summary plots


Figure 33.9-Sol.27.7a - Retrospective XSA analysys (shinkage SE=1.5)


Figure 33.10-Sol.27.7a - comparison with last year's assessment


Figure 33.11 - Sol.27.7a - Stock-recruitment plot


\section*{34 Sole in West of Ireland Division 7.bc}

Type of assessment in 2016
No assessment was performed.

\subsection*{34.1 General}

\section*{Stock Identity}

Sole in 7.b are mainly caught by Irish vessels on sandy grounds in coastal areas. Sole catches in 7.c are negligible. In 7.b there are two distinct areas where sole are caught: an area around Galway Bay and an area in the north of \(7 . \mathrm{b}\) which extends into \(6 . \mathrm{a}\) (the Stags and Broadhaven Ground). The landings and lpue of sole in 7.bc appear to have been more or less stable since the start of the logbooks' time-series in 1995 (WD1, WGCSE 2009). It is not known how much exchange there is between sole on the Aran Grounds and those on the Stags Ground.

\section*{Data}

The time-series of official landings is presented in Table 33.1 and Figure 33.1.
The time-series of otter-trawl landings effort and lpue since 1995 are shown in Figure 33.2. Lpue shows no trend over the time-series but has fluctuated more in recent years.

Sampling is carried out in Ireland but numbers of samples varies over time due to the low landings levels and varying encounter probability and is not sufficient to generate a time-series of annual length or age distributions. Sampling in 2016 was good with 20 length samples taken, 1863 fish measured, 452 fish aged and ten discard trips. The estimated age distribution for the stock is shown in Figure 33.3. This shows a broad age distribution with fish \(>10\) years still fairly abundant. There is also an indication that the 2007 and 2008 year classes were strong (ages 8 and 9 in 2016). Discard estimates are negligible \(<300 \mathrm{~kg}\).

\section*{Historical stock development}

No analytical assessment was performed.

Table 33.1. Landings of Sole in 7.bc as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & BEL & FRA & UK & IRL & OTH & TOT & Year & BEL & FRA & UK & IRL & OTH & TOT & Unalloc & WG est \\
\hline 1908 & 0 & 0 & 1 & 37 & 0 & 38 & 1963 & 0 & 172 & 0 & 19 & 0 & 191 & & \\
\hline 1909 & 0 & 0 & 0 & 32 & 0 & 32 & 1964 & 0 & 159 & 1 & 24 & 0 & 184 & & \\
\hline 1910 & 0 & 0 & 0 & 28 & 0 & 28 & 1965 & 0 & 95 & 5 & 24 & 0 & 124 & & \\
\hline 1911 & 0 & 0 & 1 & 22 & 0 & 23 & 1966 & 0 & 0 & 1 & 11 & 0 & 12 & & \\
\hline 1912 & 0 & 0 & 1 & 22 & 0 & 23 & 1967 & 0 & 78 & 0 & 11 & 0 & 89 & & \\
\hline 1913 & 0 & 0 & 1 & 25 & 0 & 26 & 1968 & 0 & 121 & 0 & 8 & 0 & 129 & & \\
\hline 1914 & 0 & 0 & 1 & 43 & 0 & 44 & 1969 & 0 & 86 & 1 & 9 & 0 & 96 & & \\
\hline 1915 & 0 & 0 & 1 & 12 & 0 & 13 & 1970 & 0 & 3 & 0 & 8 & 0 & 11 & & \\
\hline 1916 & 0 & 0 & 0 & 14 & 0 & 14 & 1971 & 0 & 0 & 2 & 5 & 0 & 7 & & \\
\hline 1917 & 0 & 0 & 0 & 6 & 0 & 6 & 1972 & 0 & 4 & 0 & 13 & 0 & 17 & & \\
\hline 1918 & 0 & 0 & 0 & 7 & 0 & 7 & 1973 & 0 & 0 & 0 & 12 & 0 & 12 & & \\
\hline 1919 & 0 & 0 & 0 & 6 & 0 & 6 & 1974 & 0 & 25 & 0 & 12 & 0 & 37 & & \\
\hline 1920 & 0 & 0 & 9 & 5 & 0 & 14 & 1975 & 0 & 7 & 0 & 19 & 0 & 26 & & \\
\hline 1921 & 0 & 0 & 10 & 9 & 0 & 19 & 1976 & 0 & 6 & 0 & 44 & 0 & 50 & & \\
\hline 1922 & 0 & 0 & 4 & 9 & 0 & 13 & 1977 & 0 & 3 & 0 & 14 & 0 & 17 & & \\
\hline 1923 & 0 & 0 & 2 & 10 & 0 & 12 & 1978 & 0 & 3 & 0 & 16 & 0 & 19 & & \\
\hline 1924 & 0 & 0 & 15 & 64 & 0 & 79 & 1979 & 0 & 6 & 0 & 13 & 0 & 19 & & \\
\hline 1925 & 0 & 0 & 11 & 18 & 0 & 29 & 1980 & 0 & 9 & 0 & 24 & 0 & 33 & & \\
\hline 1926 & 0 & 7 & 10 & 18 & 0 & 35 & 1981 & 0 & 6 & 0 & 47 & 0 & 53 & & \\
\hline 1927 & 0 & 47 & 11 & 19 & 0 & 77 & 1982 & 0 & 5 & 1 & 55 & 0 & 61 & & \\
\hline 1928 & 0 & 49 & 8 & 16 & 0 & 73 & 1983 & 0 & 9 & 0 & 40 & 0 & 49 & & \\
\hline 1929 & 0 & 74 & 11 & 18 & 0 & 103 & 1984 & 0 & 3 & 0 & 17 & 0 & 20 & & \\
\hline 1930 & 0 & 52 & 5 & 22 & 0 & 79 & 1985 & 0 & 6 & 0 & 44 & 0 & 50 & & \\
\hline 1931 & 0 & 82 & 9 & 29 & 0 & 120 & 1986 & 0 & 8 & 0 & 29 & 0 & 37 & & \\
\hline 1932 & 0 & 122 & 10 & 27 & 0 & 159 & 1987 & 0 & 2 & 0 & 39 & 0 & 41 & & \\
\hline 1933 & 0 & 411 & 10 & 10 & 0 & 431 & 1988 & 0 & 2 & 1 & 34 & 0 & 37 & & \\
\hline 1934 & 0 & 217 & 10 & 13 & 0 & 240 & 1989 & 0 & 0 & 0 & 38 & 0 & 38 & & \\
\hline 1935 & 0 & 40 & 7 & 11 & 0 & 58 & 1990 & 0 & 0 & 0 & 41 & 0 & 41 & & \\
\hline 1936 & 0 & 43 & 20 & 9 & 0 & 72 & 1991 & 0 & 5 & 0 & 46 & 0 & 51 & & \\
\hline 1937 & 0 & 32 & 25 & 14 & 0 & 71 & 1992 & 0 & 2 & 0 & 43 & 0 & 45 & & \\
\hline 1938 & 0 & 44 & 21 & 7 & 0 & 72 & 1993 & 0 & 1 & 0 & 59 & 0 & 60 & 0 & 60 \\
\hline 1939 & 0 & 0 & 0 & 13 & 0 & 13 & 1994 & 0 & 1 & 0 & 60 & 0 & 61 & 9 & 70 \\
\hline 1940 & 0 & 0 & 0 & 19 & 0 & 19 & 1995 & 0 & 2 & 0 & 59 & 0 & 61 & -2 & 59 \\
\hline 1941 & 0 & 0 & 0 & 14 & 0 & 14 & 1996 & 0 & 2 & 0 & 52 & 0 & 54 & 3 & 57 \\
\hline 1942 & 0 & 0 & 0 & 8 & 0 & 8 & 1997 & 0 & 3 & 1 & 51 & 0 & 55 & 0 & 55 \\
\hline 1943 & 0 & 0 & 0 & 11 & 0 & 11 & 1998 & 0 & 0 & 0 & 49 & 0 & 49 & 17 & 66 \\
\hline 1944 & 0 & 0 & 0 & 16 & 0 & 16 & 1999 & 0 & 0 & 0 & 68 & 0 & 68 & 4 & 72 \\
\hline 1945 & 0 & 0 & 0 & 20 & 0 & 20 & 2000 & 0 & 12 & 0 & 65 & 0 & 77 & -9 & 68 \\
\hline 1946 & 0 & 0 & 12 & 10 & 0 & 22 & 2001 & 0 & 7 & 0 & 53 & 0 & 60 & 0 & 60 \\
\hline 1947 & 15 & 0 & 6 & 8 & 0 & 29 & 2002 & 0 & 14 & 0 & 50 & 0 & 64 & -3 & 61 \\
\hline 1948 & 0 & 0 & 11 & 14 & 0 & 25 & 2003 & 0 & 19 & 0 & 50 & 0 & 69 & -5 & 64 \\
\hline 1949 & 0 & 41 & 12 & 12 & 0 & 65 & 2004 & 0 & 18 & 0 & 49 & 0 & 67 & 2 & 69 \\
\hline 1950 & 0 & 24 & 9 & 6 & 0 & 39 & 2005 & 0 & 7 & 0 & 38 & 0 & 45 & -1 & 44 \\
\hline
\end{tabular}
\begin{tabular}{llllllllllllllll}
\hline Year & BEL & FRA & UK & IRL & OTH & TOT & Year & BEL & FRA & UK & IRL & OTH & TOT & Unalloc & WG est \\
\hline 1951 & 0 & 27 & 7 & 6 & 0 & 40 & 2006 & 0 & 12 & 0 & 31 & 0 & 43 & 0 & 43 \\
\hline 1952 & 0 & 40 & 2 & 6 & 0 & 48 & 2007 & 0 & 7 & 0 & 34 & 0 & 41 & 1 & 42 \\
\hline 1953 & 0 & 99 & 2 & 4 & 0 & 105 & 2008 & 0 & 6 & 0 & 31 & 0 & 37 & 3 & 40 \\
\hline 1954 & 0 & 116 & 1 & 7 & 0 & 124 & 2009 & 0 & 5 & 0 & 46 & 0 & 51 & 0 & 51 \\
\hline 1955 & 0 & 66 & 1 & 9 & 0 & 76 & 2010 & 0 & 8 & 0 & 35 & 0 & 43 & 0 & 43 \\
\hline 1956 & 0 & 161 & 1 & 6 & 0 & 168 & 2011 & 0 & 5 & 0 & 22 & 0 & 27 & -5 & 22 \\
\hline 1957 & 0 & 94 & 1 & 4 & 0 & 99 & 2012 & 0 & 7 & 0 & 38 & 0 & 45 & -2 & 43 \\
\hline 1958 & 0 & 163 & 2 & 6 & 0 & 171 & 2013 & 0 & 3 & 0 & 30 & 0 & 33 & 0 & 33 \\
\hline 1959 & 0 & 327 & 1 & 8 & 0 & 336 & 2014 & 0 & 3 & 0 & 23 & 0 & 26 & 1 & 27 \\
\hline 1960 & 0 & 80 & 1 & 9 & 0 & 90 & 2015 & 0 & 3 & 0 & 31 & 0 & 34 & 0 & 34 \\
\hline 1961 & 0 & 110 & 1 & 12 & 0 & 123 & 2016 & 0 & 6 & 0 & 36 & 0 & 42 & 0 & 42 \\
\hline 1962 & 0 & 100 & 0 & 8 & 0 & 108 & & & & & & & & & \\
\hline
\end{tabular}


Figure 33.1. Landings of Sole in 7.bc as officially reported to ICES (1908-2016).


Figure 33.2. Sole in 7.b Irish otter trawl landings effort and lpue since 1995.


Figure 33.3. Estimated age distribution of sole 7.bc catches in 2016 based on Irish sampling.

\section*{35 Sole in Division 7.e}

\section*{Type of assessment in 2016}

Last year's assessment report is available at:
http://ices.dk/sites/pub/Publication\%20Reports/Expert\%20Group\%20Report/acom/20 16/WGCSE/08.03_Sole\%20VIIe_2016.pdf

\section*{ICES advice applicable to 2016}

Last year's advice is available at:
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2016/2016/sol-echw.pdf

\subsection*{35.1 General}

\section*{Stock description and management units}

The TAC specified for ICES Division 7.e is consistent with the assessment area.
Official national landings data as reported to ICES and the landings estimates as used by the Working Group are given in Table 35.1.

Official landings in 2016 were 913t, an \(8 \%\) undershoot of the TAC in 2016 (979 t). A UK single area licence scheme introduced at the end of 2008 stopped the previous practice of misreporting; previous UK landings estimates have been corrected for area misreporting to ICES Division 27.7.d which brought UK landings into line with the national quota.

The TAC and the national quotas by country for 2017
\begin{tabular}{lcc}
\hline Species: \begin{tabular}{l} 
Plaice \\
Pleuronectes platessa
\end{tabular} & \begin{tabular}{c} 
7.d and 7.e \\
(PLE/7DE.)
\end{tabular} \\
\hline Belgium & 42 & \\
\hline France & 443 & \\
\hline United Kingdom & 693 & Analytical TAC \\
\hline Union & 1178 & Article 7(2) of this Regulation applies \\
\hline TAC & 1178 & \\
\hline
\end{tabular}

\footnotetext{
Article 7(2): " 2 . The stocks of non-target species within safe biological limits referred to in Article 15(8) of Regulation (EU) No 1380/2013 are identified in Annex I to this Regulation for the purposes of the derogation from the obligation to count catches against the relevant quotas provided for in that Article."
(Source: Council Regulation (EU) 2017/127, ANNEX IA)
}

The TAC and the national quotas by country for 2016
\begin{tabular}{lcc}
\hline Species: \begin{tabular}{c} 
Plaice \\
Pleuronectes platessa
\end{tabular} & \begin{tabular}{c} 
7.d and 7.e \\
(PLE/7DE.)
\end{tabular} \\
\hline Belgium & 35 & \\
\hline France & 369 & \\
\hline United Kingdom & 575 & Analytical TAC \\
\hline Union & 979 & Article 7(2) of this Regulation applies \\
\hline TAC & 979 & \\
\hline
\end{tabular}

Article 7(2): " 2 . The stocks of non-target species within safe biological limits referred to in Article 15(8) of Regulation (EU) No 1380/2013 are identified in Annex I to this Regulation for the purposes of the derogation from the obligation to count catches against the relevant quotas provided for in that Article."
(Source: Council Regulation (EU) 2016/72, ANNEX IA)

\section*{Landing obligation}

In 2016, the landing obligation applied to the sole 7.e stock for the first time.
The Commission Delegated Regulation (EU) 2015/2438 (EC, 2015) introduced the landings obligation for this stock covering the years 2016-2018. According to this regulation all catches of sole with trammelnets and gillnets are subject to the landing obligation. For beam trawls, landings are subject to the landing obligation for those vessels, where the total landings consisted of more than \(10 \%\) of sole during the reference years 2013 and 2014. However, a de minimis exemption applied. For trammelnets and gillnets up to a maximum of \(3 \%\) of the total annual sole catches may be discarded. Additionally, for beam trawls, vessels using gear with increased selectivity (TBB \(80-199 \mathrm{~mm}\) ) may also discard up to \(3 \%\) of the total annual sole catches.

The landing obligation for this stock was refined in Commission Delegated Regulation (EU) 2016/2375 (EC, 2016), covering the years 2017-2018. The rules for trammelnets and gillnets remained the same. For beam trawls the reference period was changed to 2014-2015 and the threshold reduced from \(10 \%\) to \(5 \%\). The current landing obligation for beam trawls now applies if the annual landings of during 20142015 consisted of more than \(5 \%\) of sole. The de minimis exemption applies as before, except for the mesh size for the beam trawls with increased selectivity, which was changed from 80-199 to 80-119.

Given the low discards observed in the fishery the landings obligation is unlikely to have a significant impact on this stock or the advice.

The current rules as set out by the Commission Delegated Regulation (EU) 2016/2375 (EC, 2016) are shown below:

Fisheries in ICES Division 7.e for common sole.
\begin{tabular}{cllll}
\hline \multicolumn{1}{c}{ Fishery } & Gear Code & Fishing gear & \begin{tabular}{c} 
Mesh \\
Size
\end{tabular} & \multicolumn{1}{c}{ Landing Obligation } \\
\begin{tabular}{llll} 
Common Sole \\
(Solea solea)
\end{tabular} & TBB & \begin{tabular}{l} 
All Beam \\
trawls
\end{tabular} & All & \begin{tabular}{l} 
All catches of common sole where \\
the total landings per vessel of all \\
species in 2014 and 2015 (*6) \\
consisted of more than 5\% of \\
common sole
\end{tabular} \\
\hline \begin{tabular}{l} 
Common Sole \\
(Solea solea)
\end{tabular} & \begin{tabular}{l} 
GNS, GN, \\
GND, GNC, \\
GTN, GTR, \\
GEN
\end{tabular} & \begin{tabular}{l} 
All \\
Trammelnets \\
\& Gillnets
\end{tabular} & All & All catches of common sole
\end{tabular}
(*6) Vessels listed as subject to the landing obligation in this fishery in accordance with Delegated Regulation (EU) 2015/2438 remain on the list indicated in Article 4 of this Regulation despite the change in the reference period and continue being subject to the landing obligation in this fishery.

Source: Commission Delegated Regulations (EU) 2016/2375 (EC, 2016)

Furthermore, Article 3 defined the following de minimis exemptions:
By way of derogation from Article 15(1) of Regulation (EU) No 1380/2013, the following quantities may be discarded:

For common sole (Solea solea), up to a maximum of \(3 \%\) in 2017 and 2018 of the total annual catches of that species by vessels using trammel and gillnets to catch common sole in ICES divisions 7.d, 7.e, 7.f and 7.g;

For common sole (Solea solea), up to a maximum of 3\% in 2017 and 2018 of the total annual catches of that species by vessels obliged to land common sole and using TBB gear with mesh size of \(80-119 \mathrm{~mm}\) with increased selectivity, such as a large mesh extension, in ICES divisions 7.d, 7.e, 7.f, 7.g and 7.h.

Source: Commission Delegated Regulations (EU) 2016/2375 (EC, 2016)

\subsection*{35.2 Data}

\section*{InterCatch}

International catch data are collated using the ICES InterCatch platform. For 2016, Belgium, France, the United Kingdom (England, Scotland, the Channel Islands Guernsey and Jersey) uploaded data into InterCatch (Figures 35.1 and 35.2).

\section*{Landings}

Landings of sole in Division 7.e were below 500 t at the beginning of the time-series in the 1970s, increased and stayed around 1500 t in the 1980 and have been around 1000 t since the 1990s. Landings were relative low in 2015 (774 t) but increased again to 913 t in 2016.

Only the UK and France provided age-structured landings samples in InterCatch.
Total international landings numbers-at-age (Table 35.2, Figure 35.5) and landings and stock weights-at-age (Tables 35.3 and 35.4; Figure 35.6) as used in the assessment were derived in accordance with the procedures outlined in the stock annex. Some

UK age information was used to supplement sparse French age information at larger lengths between 2009 and 2014.

Sampling levels are detailed in InterCatch.

\section*{Discards}

Discards for this stock are low and not included in the assessment.
For 2016, France and the UK provided discard information for some fleets in InterCatch. Age-structured discard samples are very sparse and only provided by the UK. As discard are considered to be low, discards were not raised to an international level or allocated with an age structure from sample data.
Discard data are only available from InterCatch for the years 2012-2016. In general, the discard rates are low (Figure 35.3). The reported discards accounted for \(6.6 \%\) in 2015 and \(1.1 \%\) in 2016. The three-year average (2014-2016) is \(2.9 \%\). The current discard rate is comparable to 2014 and a decrease compared to 2015. In 201610.5 t of discards were reported. This reduction in the discard rate might potentially be linked to the introduction of the landings obligation in 2016.

The discards rate by fleet and country are shown in Figure 35.3 (shown are only reported discards and for those fleets that reported discards). For the UK, the discard rates are very low and below \(0.6 \%\). France reported discard rates higher than \(1 \%\) for three fleets: OTB_DEF_70-99_0_0 3.9\%, OTT_DEF_>=70_0_0 12.5\% and TBB_DEF_all_0_0_all 4.7\%. The OTT gears are not specifically covered by the landing obligation, as the landing obligation only refers to beam trawls, trammelnets and gillnets. OTB however, should have been covered by the landing obligation in 2016, if the vessel caught more than \(10 \%\) sole in 2014 and 2015. As the amount of sole landed by the French OTB_DEF_70-99_0_0 is substantially (144 t), and the reported discard rate is above the de minimis exemption of \(3 \%\), not all vessels might have strictly adhered to the landing obligation. In general, on an international level compliance with the landing obligation seems well.

Available length frequency information from discard observer trips are shown in Figures 35.8 and 35.9.

Substantial discarding of undersized sole occurs occasionally in the coastal waters by French trawlers using modified gears to target cuttlefish. However, it has not been possible up until now to use these data when extrapolating discards samples to the fleet-level given the relatively low sampling rate of this seasonal activity. The French discards estimates in 2016 include all samples to show the magnitude of the issue, and highlight the need for further work to build a coherent time-series of discard estimates. The selectivities of the gears used to target sole are highly selective for fish above the minimum landings size and only a few sporadic cases of high-grading (included in the numbers above) have been observed. Consequently, discarding of sole is relatively low compared to other stocks.

No discard information is included in the assessment given that it is currently not possible to provide discard estimates for the entire time-series. Nevertheless, excluding discard estimates from the assessment is unlikely to have any major impact on the perception of stock status given the minor scale of the problem.

\section*{Revisions}

Only the United Kingdom revised data for 2015, increasing the landings from 487 to 489 t .

\section*{Biological}

Natural mortality was assumed to be constant over ages and years at 0.1 and the maturity ogive from Divisions 7.f and 7.g was used in accordance with the procedures outlined in the stock annex and adopted in previous assessments. The review group suggested developing temporally variable maturity data for this stock. However, the surveys usually used for such estimates are conducted in September due to the much better quality control on staging individuals. This time of year has been determined to be unreliable for estimating maturity for this species as gonadal development has not commenced. A new quarter 1 survey may provide better data which could be considered at another benchmark meeting.

In agreement with the stock annex stock and catch weights-at-age were derived by fitting a 2 nd degree polynomial model to the raw landings weights-at-age extracted from InterCatch (Figure 35.7).

\section*{Survey indices}

IBPWCFlat2 2015 (ICES, 2015) updated the derivation of cpue estimates for the UKFSP and Q1SWBeam surveys to make full use of the available sampling data. Updated cpue estimates exhibited similar temporal trends to those presented previously but with more variability due to the inclusion of additional numbers-at-age information.

Aggregated cpue estimates for the UK-FSP and Q1SWBeam surveys increased between 2012 and 2014 to reach the highest levels of the time-series. Cpue estimates for ages 6-8 increased in both survey indices during this time period. A decrease in aggregated cpue estimates was evident in both survey indices between 2014 and 2015 due to reductions in the abundance of sole aged 3-7. Year-class estimates from the surveys have remained below average since 2012.

Abundance estimates derived from the surveys are given in Table 35.6 and shown in, Figures 35.11, 35.12 and 35.13. Year-class tracking was relatively good with historical consistency in the estimation of strong and weak cohorts and no major year effects in cpue estimates. Notable differences between the commercial and survey tuning series are the 1998 year class. This is well represented in the commercial data, but less clearly in the survey data. The 1998 year class was also seen to be very strong in the 7.f and 7.g stock and may represent some overspill of recruitment from that stock in the adjacent western part of 7.e, not observed by the Q1SWbeam survey

\section*{The UK-FSP survey}

The UK Fisheries Science Partnership (UK-FSP) conducted another survey, now in its 14th year (only 13 years used for sole due to data issues), of sole and plaice abundance in the Western English Channel. The results indicate that sole continue to be widespread in the area and that a large number of cohorts contribute to the stock. The working group has reported on this survey on several occasions and the information is now included in the assessment following the benchmark in 2012. Abundance estimates for the UK-FSP survey increased markedly from 2010 to 2014, but dropped in 2015 and slightly further in 2016

\section*{The Q1SWBeam survey}

Abundance estimates for the Quarter 1 South West Beam trawl (Q1SWBeam) survey started in 2006 and have been included in the assessment for the fourth time. The survey shows strong gradients in species composition within the Western English Channel (justifying the stratification approach), although there is some indication that more appropriate post stratification could potentially provide an increase in precision of single-species abundance estimates. Aggregated cpue estimates for the Q1SWBeam survey increased to reach the highest levels on record 2014, dropped markedly in 2015 but recovered again in 2016.

\section*{Commercial fleets effort and Ipue}

IBPWCFlat2 (ICES, 2015) revised the effort time-series for the UK commercial beam (UK-CBT) and otter trawl (UK-COT) fleets due to fluctuations in lpue estimates after 2012 arising from modifications in the UK e-logbook effort recording system. Revised landings numbers, effort in days and lpue estimates in kg per 1000 days exhibited similar temporal trends to those presented previously, except with greater stability after 2012.

Effort for under 24 m UK beam trawlers in days fished steadily increased between 1992 and 2012 to reach the highest levels on record and stayed around this level until the end of the time-series (Figure 35.10). Currently the effort is well above the longterm average. In contrast, effort for over 24 m UK beam trawlers increased from 1992 to 2004 and then decreased to below the average of the time-series thereafter, reaching a minimum in 2013. Since then, the effort increased again slightly and almost reached the long-term average in 2016. Beam trawlers over 24 m have declined in favour of smaller boats due to a combination of the UK decommissioning scheme and the substantial increases in fuel costs, making the larger boats commercially unviable. The decline of the larger boats has resulted in a resurgence of the use of under 24 m vessels. Given the licence transfer rules currently in force in the UK, restructuring of the fleets will lead to a \(10 \%\) decrease in the kW day capacity of replaced vessels not withstanding any latent capacity. When the effort of all UK beam trawl vessels is combined, the effort stayed almost constant since the early 2000s.

UK otter trawl (UK-COT) effort has been in continual decline since the early 1970s and was at the lowest levels on record in 2015. For 2016, this fleet reported zero effort and landings. The reason for is likely to be linked to a shift in the size of fishing vessels to smaller vessels. Gross registered tonnage corrected effort used in the assessment shows a strong decline in effort in the main fleet exploiting the stock in 2009 as vessels moved out of the area following the introduction of the UK single area licensing scheme.
Otter trawl effort included as tuning information in the assessment has declined steadily since 1989 and is now at historically low levels, but this fleet took only a small proportion (8\%) of the landings in the last year in which it showed any activity (2015).

All fleets exhibited an increase in lpue estimates from the low point in 2004 to around the average of the time-series thereafter. Lpue estimates for UK beam trawlers under and over 24 m steadily decreased from 1988 to 2004 and then increased from 2004 to 2005. Since 2008, lpue estimates for the UK-CBT fleet have been relatively stable below the average of the time-series. For the UK-COT fleet, lpue estimates have been relatively consistent, fluctuating around the average of the time-series since 1993, but reported no activity in 2016.

Age disaggregated commercial abundance indices for the UK-CBT-late and UK-COT fleets are given in Table 35.5 and plotted mean standardised by cohort and year in Figures 35.11 and 35.12. The UK-CBT-late fleet shows good year-class tracking indicated by the consistent estimation of strong and weak year classes at different ages with little indication of year effects in the time-series. In addition, the UK-COT fleet shows good year-class tracking over the middle of the time period and indicates a decline in lpue in the early 1980s. This is likely in part caused by the strong year effect seen for this fleet in 1991 and to a lesser degree in 2004. The causes of this are not clear from anecdotal evidence, but sampling for the fleet is now at relatively low levels due to the small size of the fleet and landings. In 2013, the review group commented on the use of commercial tuning data which appear to show undesirable trends. The reasons for using these data were justified by WKFLAT 2012 (ICES, 2012) and these reasons still apply.

\section*{Information from the fishing industry}

No comments were received in 2017 regarding the assessment or management of this stock beyond the information from the UK fisheries-science partnership already formally included in the assessment process. Industry reports from France indicated a decrease in fishing effort on sole in 2015, with fleets increasingly targeting other economically valuable species and some vessels exiting the fishery.

\subsection*{35.3 Stock assessment}

Model used: Extended Survivors Analysis (XSA) as outlined in the stock annex by IBPWCFlat2 2015.

Software used: FLR - FLXSA.
Model options chosen: Data included in the assessment were identical to previous years.

Assessment input data characteristics: catch numbers-at-age excluding discards and four tuning fleets (two fishery-independent surveys: UK-FSP and Q1SWBeam; and two commercial lpue time-series: UK-CBT-late and UK-COT). At IBPWCFlat2 2015, the XSA model parameterisation was updated to incorporate revised tuning information due to modifications in the UK e-logbook effort recording system.

\section*{Data screening}

Data screening procedures identified no anomalies in the catch numbers-at-age, weights or tuning information used in the 2017 assessment.

Tuning information consisted of four fleets: two UK commercial time-series (UK-CBT-late and UK-COT) and two UK standardised research surveys (UK-FSP and Q1SWBeam). Commercial lpue estimates in kg per 1000 days fished for the UK-CBTlate and UK-COT fleets were included in the assessment for the third time. IBPWCFlat2 2015 decided to exclude the UK-CBT-early fleet from the tuning indices due to the time-series contributing relatively little to assessment outputs except for noise and the log catchability residuals from the fitted data showed a decreasing trend over time.

The UK commercial otter trawl fleet (UK-COT) reported zero effort in 2016 and therefore a lpue value for 2016 for this fleet does not exist. Consequently, this tuning index only influences the assessment up to and including 2015

Details of the derivation of the tuning fleets are presented in the stock annex, and the tuning information available for this assessment is shown in Table 35.6. All four of the tuning indices possess relatively consistent year-class estimates with few clear year effects (Figures 35.11, 35.11 and 35.12).

\section*{Final update assessment}

The working group fitted the XSA model developed by WKFLAT 2012 (ICES, 2012) using the updated assessment settings agreed at IBPWCFlat2 (ICES, 2015), which had no major impacts on the diagnostics or the interpretation of the assessment.

The XSA assessment settings used at the last three working groups are shown in the table below and more historic settings have been included in the stock annex.
\begin{tabular}{|c|c|c|c|}
\hline & WGCSE 2015* & WGCSE 2016 & WGCSE 2017 \\
\hline Assessment age range & 2-12+ & 2-12+ & 2-12+ \\
\hline Fbar age range & F(3-9) & F(3-9) & F(3-9) \\
\hline Assessment method & XSA & XSA & XSA \\
\hline Tuning Fleets: & & & \\
\hline Q1SWBeam & \[
\begin{gathered}
\text { 2006-2014 } \\
2-11 \text { (non-offset) }
\end{gathered}
\] & \[
\begin{gathered}
\text { 2006-2015 } \\
2-11 \text { (non-offset) }
\end{gathered}
\] & \[
\begin{gathered}
2006-2016 \\
2-11 \text { (non-offset) }
\end{gathered}
\] \\
\hline UK-FSP & \[
\begin{gathered}
2004-2014 \\
2-11
\end{gathered}
\] & \[
\begin{gathered}
\text { 2004-2015 } \\
2-11
\end{gathered}
\] & \[
\begin{gathered}
\text { 2004-2016 } \\
2-11
\end{gathered}
\] \\
\hline UK combined beam (early) Ages & - & - & - \\
\hline UK combined beam (late) Ages & \[
\begin{gathered}
\text { 2003-2014 } \\
3-11
\end{gathered}
\] & \[
\begin{gathered}
2003-2015 \\
3-11
\end{gathered}
\] & \[
\begin{gathered}
2003-2016 \\
3-11
\end{gathered}
\] \\
\hline UK otter trawl Ages & \[
\begin{gathered}
1988-2014 \\
3-11
\end{gathered}
\] & \[
\begin{gathered}
1988-2015 \\
3-11
\end{gathered}
\] & \[
\begin{gathered}
1988-2016^{* *} \\
3-11
\end{gathered}
\] \\
\hline UK-WEC-BTS Ages & - & - & - \\
\hline Time taper & Yes & Yes & Yes \\
\hline Power model & Tricubic & Tricubic & Tricubic \\
\hline Taper range & 15 years & 15 years & 15 years \\
\hline P shrinkage & No & No & No \\
\hline Q plateau age & 7 & 7 & 7 \\
\hline F shrinkage S.E & 0.5 & 0.5 & 0.5 \\
\hline Number of years & 3 & 3 & 3 \\
\hline Number of ages & 5 & 5 & 5 \\
\hline Fleet S.E. & 0.4 & 0.4 & 0.4 \\
\hline
\end{tabular}
*Note that the XSA assessment settings were updated to incorporate revised tuning information at IBPWCFlat2 (ICES, 2015).
** the UK otter trawl fleet as used in the assessment reported zero effort in 2016 and consequently only the data up to and including 2015 has an impact on the assessment.

Figure 35.15 shows the results from the final XSA model fit, Figure 35.16 the residuals, Figure 35.17 a comparison of the current assessment with the assessment from last year, Figure 35.18 XSA survivor weightings for the last years and Figure 35.19 a five year retrospective.

Recruitment, SSB and F estimates only exhibited minor deviation from the 2016 assessment (Figure 35.17). Temporal trends in recruitment, SSB and F estimates were virtually identical with relatively minor differences in absolute values over the last decade.

XSA diagnostic tables, stock numbers-at-age and fishing mortalities-at-age for the final assessment are shown in Tables 35.7, 35.8, 35.9 and 35.10

A five year retrospective analysis showed some small retrospective bias starting in the 2000s. Spawning-stock biomass seems to be slightly overestimated. Some of the retrospective bias in SSB and F estimates observed in the assessment undoubtedly results from the loss of influence of the UK-FSP and Q1SWBeam survey time-series which is too short for an unbiased retrospective analysis. Temporal variation in SSB and F estimates in the most recent period likely resulted from noise rather than retrospective bias.

\section*{State of the stock}

Stock trends are shown in Table 35.10 and plotted in Figure 35.15. The stock is in a favourable state, both in term of spawning-stock biomass and fishing mortality.

SSB is estimated to have increased between 1972 and 1980 following successive strong recruitment events. Subsequently, SSB declined from 1980 to 1993 and remained relatively stable until 2008. After this period, SSB increased and reached 4522 t , i.e. is well above all biomass reference points.

The base level of recruitment has remained relatively stable throughout the timeseries, fluctuating without major temporal trend at around 4 million recruits. Recruitment variability has decreased since 1991. Recruitment over the last decade has been fluctuating around the long-term average of the time-series.

Fishing mortality was relatively stable at a low level between 1969 and 1978, after which it increased sharply until 1983 and fluctuated at a higher level before peaking briefly in 1989-1990. After a period of temporal variability, F decreased abruptly to below the Fmsy target of 0.29 in 2009 and has remained below this level ever since and stayed around 0.2 . Fishing mortality was estimated to be 0.21 in 2016, well below all reference points.

Information consistent with the decrease in fishing mortality in the most recent years is provided by the recent decline in UK landings and effort. Total international landings are around the agreed TAC, but vary year to year. Slight increases in effort for UK beam trawlers from 2009 to 2012 did not have the commensurate effect on F due to a shift in the spatial distribution of the fleet. UK beam trawlers are operating further offshore than in the past in areas of lower sole abundance to take advantage of other fishing opportunities.

The age structure of sole in 7.e continues to be more extended than other sole stocks in European waters, implying low mortality rates, with the plus group at age 12 containing a high proportion of the catches and including some individuals aged 33-38 in recent years.

\subsection*{35.4 Short-term projections}

Reported landings were 6\% above the TAC in 2014 but 9\% below in 2015 and 7\% below in 2016. Reported landings and working group estimates are trending around the TAC estimate, but French landings are still subject to a lag between reaching the TAC and closure of the fishery so that a rescaled F interim year assumption remains prudent.

F estimates 2014-2016 fluctuate around 0.2. Consequently, rescaling F2016 by average \(\mathrm{F}_{14-16}\) is considered appropriate for the forecast as per the stock annex to account for the slight retrospective pattern. The mean catch and stock weights-at-age 2014-2016 were also used.

Recruitment was forecast using a long-term geometric mean (1969-2016) due to temporal variability in the time-series and the lack of distinct periods of successive high or low recruitment in recent years.

Complete input data for the short-term forecast are shown in Table 35.11 and the resulting forecast estimates landings in 2017 to be \(932 \mathrm{t}, 246 \mathrm{t}(-21 \%)\) less than the TAC (1178 t) in 2017.

SSB estimated at 4370 t in 2017 will decrease slightly to 4354 t in 2018 at the current level of F assuming long-term geometric (1969-2016) recruitment for the 2015 year class.

The proportions that the 2014-2018 year classes will contribute to landings in 2017 and to SSB in 2018 are given in Table 35.13. The 2015 year class that has been replaced with long-term geometric (1969-2016) recruitment contributes to \(12.0 \%\) of the landings in 2018 and \(15.6 \%\) of the SSB in 2019.

A full management options table is provided in Table 35.14. Implementing the management plan for this stock with \(\mathrm{F}_{\mathrm{mg}}=0.27\) leads to a yield of 1129 t in 2018 and an SSB of 4150 t in 2019. Implementing the MSY approach with FMSY \(=0.29\) leads to a yield of 1202 t in 2018 and an SSB of 4079 t in 2018. The output for the short-term forecast under the MSY approach is presented in Figure 35.20.

\subsection*{35.5 Biological reference points}

The most recent reference points for this stock were developed by WKMSYREF4 in 2015 and are presented in the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference point & Value & Technical basis & Source \\
\hline \multirow[t]{4}{*}{MSY approach} & MSY Btrigger & 2900 t & The 5th percentile of the distribution of SSB when fishing at \(\mathrm{F}_{\text {MSY }}(0.29)\) with no error. & \[
\begin{aligned}
& \text { ICES } \\
& \text { (2016a) }
\end{aligned}
\] \\
\hline & Fms & 0.29 & The peak of the median landings yield curve. & \[
\begin{aligned}
& \text { ICES } \\
& \text { (2016a) }
\end{aligned}
\] \\
\hline & Fmsy lower & 0.16 & & \begin{tabular}{l}
ICES \\
(2016a)
\end{tabular} \\
\hline & Fmsr upper & 0.34 & & \[
\begin{aligned}
& \text { ICES } \\
& (2016 a)
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Precautionary approach} & Blim & 2000 t & Rounded \(\mathrm{Bpa}_{\mathrm{pa}} 1.4\). & \[
\begin{aligned}
& \text { ICES } \\
& \text { (2016a) }
\end{aligned}
\] \\
\hline & \(\mathrm{B}_{\text {pa }}\) & 2900 t & Rounded Bloss (1999 year class). Lowest SSB with high recruitment. & \[
\begin{aligned}
& \text { ICES } \\
& \text { (2016a) }
\end{aligned}
\] \\
\hline & Flim & 0.44 & Segmented regression simulation of recruitment with Blim as the breakpoint and no error. & ICES (2016a) \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.32 & \(\mathrm{Flim}_{\text {lim }} \times \exp (-1.645 \times \sigma) ; \sigma=0.2\). & \[
\begin{aligned}
& \text { ICES } \\
& (2016 a)
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Management plan} & SSBmgt & Not defined & & \\
\hline & Fmgt & 0.27 & & EU (2007) \\
\hline
\end{tabular}

\subsection*{35.6 Management plan}

The Commission implemented a management plan for the recovery of the stock early in 2007 (Council Regulation (EC) No 509/2007). ICES evaluated the management plan and concluded that:

The long-term management target \(\left(\mathrm{F}_{\mathrm{MGT}}=0.27\right)\) is precautionary in the sense that it ensures that there is a less than \(5 \%\) chance of SSB declining below previously observed levels, as well as maintaining yield within \(10 \%\) of MSY (WGCSE note: longterm yield at \(F_{M A X}\) ) (working group, 2005; working group, 2006).

\subsection*{35.7 Uncertainties in assessment and forecast}

The methodology provided is as robust as possible, and does not currently appear to suffer from a serious retrospective pattern but the effect is beginning to re-emerge as the trimmed commercial fleet increases in length, as predicted by WKFLAT 2012 (ICES, 2012). Modifications to the UK e-logbook effort recording system in 2012 and the loss of lpue estimates from the UK Western Channel Beam Trawl survey (UK-WECBTS) in 2013 are also likely to have contributed to the minor retrospective patterns in SSB and F. The short-term forecast is relatively insensitive to such problems and management targets and limits are sufficiently removed from the current state so that the risk to the stock is small.

Two uncertainties that cannot be quantified in the assessment limit the accuracy of the short-term forecast. Firstly, the likely F in 2017 remains uncertain. Secondly, the size of recent year classes have been estimated to be weak in the assessment, except for in the terminal year. Previous assessments have estimated recruitment in the most recent period to be among the lowest on record. However, recruitment in 2016 is estimated to be around the long-term average of the time-series. Recruitment in 2017
was forecasted using a long-term geometric mean (1969-2016) due to temporal variability in the time-series and the lack of distinct periods of successive high or low recruitment in recent years.

\section*{Discarding}

Discarding is considered to be negligible in this fishery, averaging \(2.9 \%\) of total international catch weight in 2016. Nevertheless, a time-series of available discard information raised to the fleet level should be developed to deal with potential future discard issues effectively and improve estimates of total mortality. The landings obligation applied to some fleets catching sole in 2016. The landings advice has been topped up with the available discard information to give catch advice so developing a time-series of discard information appears to be less urgent than in the past.

\section*{Surveys}

The assessment methodology includes two survey indices. The Q1SWBeam survey added to the assessment in 2012 covers the entire management area, providing fish-ery-independent tuning information for the entire age range used in the assessment. Therefore, the assessment now relies much less on the commercial tuning information and is less susceptible to localised exploitation by the fishery. However, there is still some uncertainty with respect to the precision of this information particularly when the duration of the time-series remains relatively short. Consequently, commercial tuning information is still used in the assessment to maintain the balance between accuracy and precision required by management. Survey information for the recruiting year class remains temporally variable and is not used in the forecast for this reason.

\section*{Sampling}

Age and length sampling for this stock is mostly adequate. Age data from the largest two sectors operating in this fishery (UK and France, together taking 95\% of landings) are included in the assessment. French age data between 2009 and 2014 were insufficient at older ages to raise the length compositions, and therefore UK age data were used to cover the larger fish.

\section*{Consistency}

The assessment for this stock was last benchmarked in 2012 and an inter-benchmark was held in 2015. The 2017 assessment is consistent with the previous assessment conducted in recent years. Temporal trends in recruitment, SSB and F estimates were virtually identical. Across the entire time-series, SSB and F estimates were less than \(1 \%\) lower and higher, respectively, than the previous assessment. SSB in 2014 was revised down by \(6 \%\) and \(F\) was revised up by \(5 \%\).

\section*{Misreporting}

Area misreporting, mainly to Area 7.d had declined to low levels in recent years, through a combination of enforcement and a substantial increase in the TAC in 2005. Some attempts to prosecute UK fishers for misreporting to area \(7 . \mathrm{h}\) have been made, however to date, none of those prosecutions have been successful due to a lack of legally acceptable evidence.

Levels of underreporting are thought to have been serious in the early 1980s prior to the shift to area misreporting. Although it is clear that levels of under reporting are
also much lower now, no quantitative information is available on the size of the problem in the fishery.

Landings from the UK beam-trawl fleet, historically the main contributors to area misreporting, in 2010-2015 were in line with the TAC, suggesting improved compliance. The decrease in landings is also consistent with a reduction in effort by the main fleet and a decline in F observed on the plaice 7.e stock, a major bycatch of the sole fishery.

\subsection*{35.8 Recommendation for the next benchmark}

There is no requirement to benchmark this stock in the short term.
Lpue estimates for the UK-CBT and UK-COT fleets should be closely monitored to avoid the recurrence of inaccuracies in commercial tuning information observed at the 2014 and 2015 working groups. Minor retrospective patterns in stock status and fishing mortality estimates have begun to re-merge but are expected to stabilise as the duration of the lpue time-series increases in future. Consequently, the next benchmark should evaluate the temporal stability of the retrospective patterns and determine whether the assessment settings need to be revised.

The UK-COT effort has been in continuous decline and reported no activity in 2016. Depending on whether there might be fishing activity or not in the future, a benchmark could investigate the removal of this commercial tuning information from the assessment.

As the time-series on discards is increasing a future benchmark might look into including discard estimates in the assessment and estimating historical discards. As of now, discards are very low and due to the implementation of the landings obligation in 2016 unlikely to become a problem in the future.

\subsection*{35.9 Management considerations}

Effort restrictions have been sufficient to ensure an observable decrease in F in recent years. Decommissioning in the UK fleet in 2007-2008 reduced the capacity of the fleet. In addition, the UK single area licensing scheme appears to have been effective since 2009 and resulted in the UK fleet utilising fishing opportunities in other ICES divisions so that effective effort and F in Division 7.e dropped markedly. A catch quota scheme based on an assumed \(30 \%\) discarding by weight is currently running in the UK for beam trawlers. This value is well in excess of the likely discarding in the fleet, which was less than \(1 \%\) of total catch weight in 2015. Consequently, as this concession continues to be granted to boats in the fishery this will lead to additional mortality.

France provided discard estimates for the first time at the 2016 working group. Discard estimates from France were higher (17\%) than the UK ( \(0.8 \%\) ) and Belgium ( \(0.6 \%\) ). Data for 2016 showed a much lower discard rate for France of \(2.8 \%\) and the high discard rate of 2015 is unlikely to repeat, particularly in the light of the introduction of the landings obligation in 2016.

Plaice is taken as bycatch in this fishery, and therefore management advice for sole must also take into account the advice for plaice. The effort reductions in 2009 positively impacted the plaice stock with a sizeable reduction in F. Anglerfish, cuttlefish, and lemon sole are also important bycatches in this fishery. The UK beam-trawl fleet
has recently started to land sizeable quantities of gurnards for human consumption (information as of WGCSE 2016).

\subsection*{35.10Ecosystem considerations}

See stock annex.

\subsection*{35.11 Regulations and their effects}

Management of this stock is mainly by TAC. In 2005, effort restrictions were implemented for beam trawlers and entangling gears targeting sole in this fishery to enforce the TAC and improve data quality. To date, the latter restrictions have not been limiting in this fishery, in part due to the large numbers of days available, but also because in the UK fleet there appears to remain some latent effort/over-capacity in the beam-trawl fleet despite decommissioning. WKFLAT 2012 (ICES, 2012) observed a change in the distribution of the fleet due to multispecies considerations (foregoing higher cpue for sole in favour of taking a larger proportion of other available resources). Under the current pattern of exploitation, effort restrictions are commensurate with the TAC as indicated by the negligible contribution of high-grading to the total mortality. However if the availability of other resources such as monkfish, scallops, cuttlefish and lemon sole were to decrease, then economics may drive the fishery back to areas of higher sole abundance in which case current effort restrictions may not be sufficient to ensure an appropriate relationship between TAC and effort restrictions.

In November 2008, the UK introduced a single area licensing scheme for beam trawlers, which is thought to be highly effective in eliminating the current practice of area misreporting by this fleet, but will have had little effect on the fishery in 2008. UK landings and effort data indicate that the measure has been effective since 2009.

Mesh restrictions for towed gears are set to 80 mm codends, which correspond well with the minimum landing size of sole at 24 cm . Consequently, there is little discarding of sole in this fishery and this view has not changed in spite of the more restrictive TAC on the UK beam-trawl fleet.

\subsection*{35.12 Changes in fishing technology and fishing patterns}

The UK industry applied for MSC certification in 2009 and started to adopt larger codend meshes and square mesh panels to limit the impact of fishing activities on vulnerable marine habitats. However, these changes appear to minimally affect the catch rates of sole and the degree of uptake of these measures in the fleet remains unclear. Changes in fishing patterns to make the most of available opportunities for other species in this multispecies fishery have changed fleet behaviour. To date, the evidence suggests that these effects are more substantial than those associated with changes in the fishing gear, but both will need to be monitored in the future.

\subsection*{35.13Changes in the environment}

See stock annex.

\subsection*{35.14References}

EC. 2015. Commission Delegated Regulation (EU) 2015/2438 of 12 October 2015 establishing a discard plan for certain demersal fisheries in north-western waters. OJ L 336, 23.12.2015, p. 29-35. http://eur-lex.europa.eu/eli/reg_del/2015/2438/oj.

EC. 2016. Commission Delegated Regulation (EU) 2016/2375 of 12 October 2016 establishing a discard plan for certain demersal fisheries in North-Western waters. C/2016/6439, OJ L 352, 23.12.2016, p. 39-47. http://eur-lex.europa.eu/eli/reg_del/2016/2375/oj.

EU. 2007. Council Regulation (EC) No. 509/2007 of 7 May 2007 establishing a multi-annual plan for the sustainable exploitation of the stock of sole in the Western Channel. Official Journal of the European Union, L 122/7. http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32007R0509\&from=EN.

ICES. 2012. Report of the Benchmark Workshop on Flatfish Species and Anglerfish (WKFLAT), 1-8 March 2012, Bilbao, Spain. ICES CM 2012/ACOM:46. 283 pp.

ICES. 2015. Report of the Second Inter-Benchmark Protocol on West of Channel Flatfish (IBPWCFlat2), June-September 2015, By correspondence. ICES CM 2015/ACOM:55. 142 pp.

ICES. 2016a. EU request to ICES to provide FMSY ranges for selected stocks in ICES subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.4.1.

ICES. 2016b. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

Table 35.1. Sole in Division 7.e. Nominal landings in tonnes as used by ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{7}{|c|}{Landings} & \multirow[t]{2}{*}{\begin{tabular}{l}
Discards \\
ICES \\
estimate
\end{tabular}} \\
\hline & Belgium & France & Netherlands & Ireland & UK and the Channel Islands & Unallocated & Total & \\
\hline 1974 & & 323 & & & & 104 & 427 & \\
\hline 1975 & 3 & 271 & & & 217 & & 491 & \\
\hline 1976 & 4 & 352 & & & 260 & & 616 & \\
\hline 1977 & 3 & 331 & & & 272 & & 606 & \\
\hline 1978 & 4 & 384 & & & 453 & 20 & 861 & \\
\hline 1979 & 1 & 515 & & & 665 & & 1181 & \\
\hline 1980 & 45 & 447 & & 13 & 764 & & 1269 & \\
\hline 1981 & 16 & 415 & 1 & & 788 & -5 & 1215 & \\
\hline 1982 & 98 & 321 & & & 1028 & -1 & 1446 & \\
\hline 1983 & 47 & 405 & 3 & & 1043 & & 1498 & \\
\hline 1984 & 48 & 421 & & & 901 & & 1370 & \\
\hline 1985 & 58 & 130 & & & 911 & 310 & 1409 & \\
\hline 1986 & 62 & 467 & & & 840 & 50 & 1419 & \\
\hline 1987 & 48 & 432 & & & 632 & 168 & 1280 & \\
\hline 1988 & 67 & 98 & & & 784 & 495 & 1444 & \\
\hline 1989 & 69 & 112 & 6 & & 613 & 590 & 1390 & \\
\hline 1990 & 41 & 81 & & & 636 & 556 & 1315 & \\
\hline 1991 & 35 & 325 & & & 477 & 15 & 852 & \\
\hline 1992 & 41 & 267 & & & 468 & 119 & 895 & \\
\hline 1993 & 59 & 236 & & & 498 & 111 & 904 & \\
\hline 1994 & 33 & 257 & & & 546 & -38 & 800 & \\
\hline 1995 & 21 & 294 & & & 565 & -24 & 856 & \\
\hline 1996 & 8 & 297 & & & 428 & 91 & 833 & \\
\hline 1997 & 13 & 348 & & 1 & 496 & 91 & 949 & \\
\hline 1998 & 40 & 343 & & & 389 & 108 & 880 & \\
\hline 1999 & 13 & & & & 396 & 548 & 957 & \\
\hline 2000 & 4 & 241 & & & 413 & 256 & 914 & \\
\hline 2001 & 19 & 224 & & & 407 & 419 & 1069 & \\
\hline 2002 & 33 & 198 & & & 309 & 566 & 1106 & \\
\hline 2003 & 1 & 363 & & 1 & 255 & 458 & 1078 & \\
\hline 2004 & 7 & 302 & & & 185 & 581 & 1075 & \\
\hline 2005 & 26 & 406 & & & 527 & 80 & 1039 & \\
\hline 2006 & 32 & 357 & & & 576 & 56 & 1022 & \\
\hline 2007 & 34 & 384 & & 2 & 531 & 64 & 1015 & \\
\hline 2008 & 28 & 312 & & 0 & 472 & 96 & 908 & \\
\hline 2009 & 17 & 386 & & & 381 & -83 & 701 & \\
\hline 2010 & 17 & 375 & & & 368 & -62 & 698 & \\
\hline 2011 & 22 & 401 & & & 428 & -50 & 801 & \\
\hline 2012 & 39 & 325 & & 0 & 506 & 2 & 872 & 2 \\
\hline 2013 & 30 & 319 & & & 540 & -6 & 883 & 1 \\
\hline 2014 & 25 & 351 & & & 509 & -1 & 884 & 10 \\
\hline 2015 & 42 & 243 & & 0 & 490 & -1 & 774 & 54 \\
\hline 2016* & 46 & 245 & & & 623 & -1 & 913 & 10 \\
\hline
\end{tabular}

\footnotetext{
* preliminary.
}

Table 35.2. Sole in Division 7.e. Landings numbers at age (thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline year & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) & total \\
\hline 1969 & 89 & 322 & 80 & 148 & 210 & 21 & 50 & 26 & 20 & 9 & 63 & 1037 \\
\hline 1970 & 53 & 232 & 322 & 90 & 83 & 112 & 13 & 35 & 52 & 22 & 113 & 1127 \\
\hline 1971 & 51 & 200 & 246 & 198 & 65 & 80 & 156 & 10 & 35 & 54 & 113 & 1207 \\
\hline 1972 & 146 & 412 & 167 & 115 & 112 & 14 & 25 & 134 & 38 & 54 & 106 & 1323 \\
\hline 1973 & 71 & 396 & 433 & 89 & 99 & 120 & 17 & 52 & 30 & 4 & 136 & 1446 \\
\hline 1974 & 45 & 349 & 220 & 178 & 71 & 80 & 43 & 32 & 24 & 55 & 106 & 1202 \\
\hline 1975 & 82 & 567 & 170 & 199 & 115 & 28 & 53 & 26 & 22 & 24 & 171 & 1456 \\
\hline 1976 & 167 & 419 & 472 & 161 & 135 & 92 & 46 & 58 & 51 & 14 & 213 & 1830 \\
\hline 1977 & 426 & 318 & 384 & 206 & 102 & 70 & 74 & 10 & 24 & 32 & 159 & 1804 \\
\hline 1978 & 250 & 1123 & 347 & 214 & 189 & 103 & 72 & 77 & 38 & 27 & 203 & 2644 \\
\hline 1979 & 227 & 803 & 811 & 250 & 229 & 174 & 103 & 90 & 104 & 28 & 290 & 3108 \\
\hline 1980 & 175 & 559 & 497 & 630 & 126 & 183 & 140 & 65 & 56 & 130 & 342 & 2902 \\
\hline 1981 & 245 & 806 & 651 & 467 & 389 & 179 & 126 & 76 & 58 & 55 & 211 & 3262 \\
\hline 1982 & 128 & 1451 & 916 & 553 & 352 & 240 & 136 & 113 & 81 & 61 & 294 & 4324 \\
\hline 1983 & 91 & 753 & 1573 & 583 & 351 & 267 & 294 & 119 & 73 & 37 & 262 & 4401 \\
\hline 1984 & 333 & 663 & 826 & 758 & 325 & 204 & 129 & 152 & 54 & 28 & 255 & 3727 \\
\hline 1985 & 287 & 1700 & 756 & 469 & 585 & 179 & 97 & 103 & 85 & 29 & 125 & 4414 \\
\hline 1986 & 246 & 1618 & 971 & 421 & 321 & 336 & 84 & 75 & 90 & 74 & 127 & 4363 \\
\hline 1987 & 487 & 808 & 1090 & 427 & 204 & 224 & 229 & 47 & 50 & 41 & 162 & 3770 \\
\hline 1988 & 443 & 1438 & 596 & 728 & 374 & 153 & 162 & 109 & 39 & 50 & 171 & 4262 \\
\hline 1989 & 390 & 871 & 1233 & 497 & 509 & 225 & 110 & 107 & 113 & 48 & 214 & 4316 \\
\hline 1990 & 341 & 902 & 581 & 553 & 244 & 264 & 143 & 103 & 75 & 85 & 235 & 3525 \\
\hline 1991 & 450 & 415 & 482 & 289 & 220 & 93 & 111 & 68 & 37 & 31 & 145 & 2341 \\
\hline 1992 & 316 & 1434 & 417 & 297 & 115 & 112 & 61 & 74 & 26 & 23 & 90 & 2964 \\
\hline 1993 & 209 & 704 & 1107 & 350 & 219 & 151 & 78 & 60 & 56 & 31 & 79 & 3045 \\
\hline 1994 & 97 & 657 & 558 & 558 & 112 & 106 & 49 & 57 & 44 & 50 & 99 & 2388 \\
\hline 1995 & 95 & 308 & 629 & 427 & 411 & 131 & 101 & 61 & 33 & 18 & 142 & 2356 \\
\hline 1996 & 365 & 445 & 364 & 298 & 235 & 257 & 68 & 61 & 49 & 37 & 143 & 2321 \\
\hline 1997 & 216 & 831 & 724 & 325 & 180 & 194 & 173 & 44 & 20 & 40 & 88 & 2835 \\
\hline 1998 & 265 & 606 & 536 & 336 & 209 & 151 & 80 & 127 & 35 & 34 & 162 & 2543 \\
\hline 1999 & 280 & 915 & 500 & 398 & 255 & 114 & 103 & 54 & 107 & 25 & 123 & 2874 \\
\hline 2000 & 307 & 599 & 751 & 367 & 229 & 107 & 53 & 68 & 51 & 88 & 91 & 2710 \\
\hline 2001 & 145 & 1401 & 531 & 497 & 268 & 178 & 100 & 55 & 43 & 42 & 159 & 3419 \\
\hline 2002 & 332 & 1251 & 843 & 387 & 322 & 129 & 105 & 94 & 33 & 18 & 85 & 3599 \\
\hline 2003 & 598 & 835 & 953 & 645 & 130 & 74 & 50 & 58 & 63 & 14 & 61 & 3482 \\
\hline 2004 & 398 & 1080 & 448 & 445 & 526 & 164 & 116 & 61 & 54 & 35 & 85 & 3412 \\
\hline 2005 & 258 & 468 & 834 & 449 & 366 & 293 & 113 & 80 & 45 & 24 & 96 & 3027 \\
\hline 2006 & 500 & 786 & 472 & 606 & 250 & 224 & 185 & 85 & 56 & 31 & 87 & 3282 \\
\hline 2007 & 201 & 852 & 755 & 293 & 362 & 179 & 130 & 110 & 55 & 27 & 99 & 3062 \\
\hline 2008 & 281 & 752 & 678 & 376 & 163 & 184 & 105 & 71 & 67 & 39 & 89 & 2805 \\
\hline 2009 & 166 & 540 & 385 & 333 & 202 & 66 & 74 & 37 & 50 & 35 & 65 & 1955 \\
\hline 2010 & 68 & 348 & 394 & 329 & 204 & 127 & 49 & 71 & 20 & 34 & 78 & 1723 \\
\hline 2011 & 91 & 499 & 476 & 405 & 233 & 156 & 80 & 39 & 34 & 28 & 93 & 2136 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrrrrr}
\hline year & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) & total \\
\hline 2012 & 31 & 227 & 525 & 400 & 355 & 231 & 137 & 67 & 44 & 39 & 124 & 2180 \\
\hline 2013 & 120 & 324 & 483 & 595 & 280 & 214 & 147 & 98 & 48 & 23 & 110 & 2441 \\
\hline 2014 & 198 & 320 & 466 & 426 & 410 & 168 & 112 & 79 & 61 & 27 & 97 & 2364 \\
\hline 2015 & 177 & 329 & 395 & 336 & 261 & 206 & 115 & 78 & 45 & 30 & 82 & 2054 \\
\hline 2016 & 92 & 420 & 469 & 276 & 249 & 242 & 189 & 67 & 50 & 33 & 107 & 2194 \\
\hline
\end{tabular}

Table 35.3. Sole in Division 7.e. Landings weights-at-age (kg).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline year \(\backslash\) age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) \\
\hline 1969 & 0.188 & 0.245 & 0.332 & 0.329 & 0.367 & 0.522 & 0.455 & 0.463 & 0.606 & 0.648 & 0.661 \\
\hline 1970 & 0.188 & 0.224 & 0.295 & 0.315 & 0.355 & 0.436 & 0.5 & 0.444 & 0.514 & 0.53 & 0.596 \\
\hline 1971 & 0.151 & 0.222 & 0.296 & 0.367 & 0.35 & 0.359 & 0.431 & 0.455 & 0.476 & 0.388 & 0.654 \\
\hline 1972 & 0.194 & 0.227 & 0.272 & 0.369 & 0.408 & 0.458 & 0.496 & 0.402 & 0.454 & 0.509 & 0.601 \\
\hline 1973 & 0.203 & 0.224 & 0.262 & 0.311 & 0.382 & 0.415 & 0.46 & 0.467 & 0.538 & 0.655 & 0.562 \\
\hline 1974 & 0.183 & 0.224 & 0.281 & 0.379 & 0.434 & 0.372 & 0.465 & 0.476 & 0.488 & 0.475 & 0.732 \\
\hline 1975 & 0.178 & 0.21 & 0.293 & 0.351 & 0.395 & 0.427 & 0.487 & 0.58 & 0.638 & 0.525 & 0.663 \\
\hline 1976 & 0.17 & 0.218 & 0.287 & 0.324 & 0.391 & 0.455 & 0.414 & 0.476 & 0.479 & 0.585 & 0.629 \\
\hline 1977 & 0.197 & 0.249 & 0.303 & 0.357 & 0.4 & 0.503 & 0.464 & 0.518 & 0.485 & 0.553 & 0.683 \\
\hline 1978 & 0.178 & 0.239 & 0.3 & 0.387 & 0.435 & 0.374 & 0.482 & 0.485 & 0.484 & 0.535 & 0.665 \\
\hline 1979 & 0.189 & 0.239 & 0.33 & 0.427 & 0.464 & 0.472 & 0.481 & 0.57 & 0.527 & 0.574 & 0.732 \\
\hline 1980 & 0.189 & 0.254 & 0.343 & 0.389 & 0.525 & 0.56 & 0.609 & 0.646 & 0.655 & 0.6 & 0.783 \\
\hline 1981 & 0.174 & 0.225 & 0.321 & 0.381 & 0.477 & 0.514 & 0.533 & 0.598 & 0.619 & 0.708 & 0.66 \\
\hline 1982 & 0.214 & 0.209 & 0.278 & 0.347 & 0.426 & 0.498 & 0.51 & 0.523 & 0.526 & 0.564 & 0.663 \\
\hline 1983 & 0.187 & 0.25 & 0.271 & 0.306 & 0.388 & 0.417 & 0.473 & 0.53 & 0.608 & 0.551 & 0.665 \\
\hline 1984 & 0.21 & 0.243 & 0.306 & 0.381 & 0.391 & 0.481 & 0.542 & 0.562 & 0.604 & 0.726 & 0.643 \\
\hline 1985 & 0.163 & 0.226 & 0.298 & 0.36 & 0.391 & 0.472 & 0.523 & 0.534 & 0.522 & 0.588 & 0.822 \\
\hline 1986 & 0.174 & 0.237 & 0.297 & 0.354 & 0.407 & 0.456 & 0.502 & 0.544 & 0.583 & 0.618 & 0.703 \\
\hline 1987 & 0.174 & 0.245 & 0.31 & 0.37 & 0.425 & 0.474 & 0.518 & 0.557 & 0.59 & 0.618 & 0.665 \\
\hline 1988 & 0.17 & 0.244 & 0.312 & 0.375 & 0.432 & 0.484 & 0.531 & 0.572 & 0.608 & 0.639 & 0.694 \\
\hline 1989 & 0.167 & 0.222 & 0.275 & 0.326 & 0.375 & 0.422 & 0.467 & 0.51 & 0.551 & 0.59 & 0.692 \\
\hline 1990 & 0.217 & 0.272 & 0.324 & 0.372 & 0.419 & 0.461 & 0.501 & 0.538 & 0.571 & 0.601 & 0.669 \\
\hline 1991 & 0.182 & 0.255 & 0.323 & 0.386 & 0.445 & 0.499 & 0.549 & 0.594 & 0.634 & 0.669 & 0.741 \\
\hline 1992 & 0.166 & 0.238 & 0.305 & 0.366 & 0.423 & 0.474 & 0.52 & 0.561 & 0.597 & 0.627 & 0.683 \\
\hline 1993 & 0.146 & 0.209 & 0.268 & 0.324 & 0.376 & 0.425 & 0.47 & 0.513 & 0.551 & 0.587 & 0.672 \\
\hline 1994 & 0.183 & 0.241 & 0.295 & 0.347 & 0.396 & 0.442 & 0.484 & 0.524 & 0.561 & 0.595 & 0.671 \\
\hline 1995 & 0.192 & 0.248 & 0.301 & 0.351 & 0.397 & 0.441 & 0.481 & 0.518 & 0.552 & 0.583 & 0.652 \\
\hline 1996 & 0.214 & 0.262 & 0.308 & 0.354 & 0.399 & 0.442 & 0.484 & 0.524 & 0.564 & 0.602 & 0.694 \\
\hline 1997 & 0.186 & 0.244 & 0.3 & 0.354 & 0.406 & 0.455 & 0.503 & 0.548 & 0.592 & 0.633 & 0.734 \\
\hline 1998 & 0.191 & 0.247 & 0.3 & 0.35 & 0.397 & 0.441 & 0.482 & 0.52 & 0.555 & 0.586 & 0.661 \\
\hline 1999 & 0.208 & 0.257 & 0.303 & 0.347 & 0.389 & 0.429 & 0.468 & 0.503 & 0.536 & 0.567 & 0.637 \\
\hline 2000 & 0.202 & 0.258 & 0.31 & 0.358 & 0.401 & 0.441 & 0.476 & 0.508 & 0.535 & 0.558 & 0.647 \\
\hline 2001 & 0.203 & 0.245 & 0.287 & 0.326 & 0.365 & 0.402 & 0.438 & 0.472 & 0.505 & 0.537 & 0.616 \\
\hline 2002 & 0.181 & 0.236 & 0.29 & 0.342 & 0.391 & 0.439 & 0.485 & 0.529 & 0.57 & 0.61 & 0.706 \\
\hline 2003 & 0.173 & 0.241 & 0.306 & 0.367 & 0.425 & 0.479 & 0.53 & 0.577 & 0.62 & 0.66 & 0.746 \\
\hline
\end{tabular}
\begin{tabular}{llllllllllll}
\hline year \(\backslash\) age & \multicolumn{1}{c}{2} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) \\
\hline 2004 & 0.176 & 0.23 & 0.282 & 0.334 & 0.385 & 0.435 & 0.485 & 0.534 & 0.582 & 0.629 & 0.757 \\
\hline 2005 & 0.18 & 0.236 & 0.29 & 0.343 & 0.394 & 0.444 & 0.493 & 0.54 & 0.586 & 0.63 & 0.747 \\
\hline 2006 & 0.169 & 0.228 & 0.282 & 0.333 & 0.381 & 0.424 & 0.464 & 0.501 & 0.533 & 0.562 & 0.672 \\
\hline 2007 & 0.183 & 0.244 & 0.299 & 0.35 & 0.395 & 0.436 & 0.471 & 0.501 & 0.526 & 0.546 & 0.616 \\
\hline 2008 & 0.197 & 0.245 & 0.292 & 0.337 & 0.382 & 0.425 & 0.468 & 0.509 & 0.549 & 0.588 & 0.652 \\
\hline 2009 & 0.176 & 0.252 & 0.322 & 0.385 & 0.443 & 0.494 & 0.54 & 0.579 & 0.612 & 0.639 & 0.703 \\
\hline 2010 & 0.169 & 0.258 & 0.339 & 0.412 & 0.476 & 0.532 & 0.58 & 0.619 & 0.65 & 0.673 & 0.699 \\
\hline 2011 & 0.2 & 0.261 & 0.319 & 0.375 & 0.428 & 0.48 & 0.528 & 0.575 & 0.618 & 0.66 & 0.749 \\
\hline 2012 & 0.162 & 0.24 & 0.311 & 0.373 & 0.428 & 0.476 & 0.516 & 0.548 & 0.572 & 0.589 & 0.664 \\
\hline 2013 & 0.172 & 0.228 & 0.283 & 0.337 & 0.389 & 0.439 & 0.489 & 0.536 & 0.583 & 0.628 & 0.74 \\
\hline 2014 & 0.191 & 0.254 & 0.313 & 0.366 & 0.415 & 0.459 & 0.499 & 0.533 & 0.563 & 0.588 & 0.709 \\
\hline 2015 & 0.182 & 0.25 & 0.313 & 0.37 & 0.423 & 0.471 & 0.513 & 0.551 & 0.583 & 0.611 & 0.697 \\
\hline 2016 & 0.215 & 0.282 & 0.345 & 0.401 & 0.453 & 0.499 & 0.541 & 0.576 & 0.606 & 0.631 & 0.72 \\
\hline
\end{tabular}

Table 35.4. Sole in Division 7.e. Stock weights-at-age (kg).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline year \(\backslash\) age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) \\
\hline 1969 & 0.125 & 0.2 & 0.27 & 0.33 & 0.38 & 0.425 & 0.46 & 0.49 & 0.52 & 0.55 & 0.609 \\
\hline 1970 & 0.12 & 0.195 & 0.255 & 0.305 & 0.355 & 0.395 & 0.43 & 0.465 & 0.49 & 0.51 & 0.541 \\
\hline 1971 & 0.09 & 0.17 & 0.24 & 0.295 & 0.345 & 0.39 & 0.42 & 0.445 & 0.47 & 0.49 & 0.544 \\
\hline 1972 & 0.13 & 0.2 & 0.265 & 0.325 & 0.38 & 0.42 & 0.46 & 0.49 & 0.52 & 0.54 & 0.558 \\
\hline 1973 & 0.105 & 0.17 & 0.235 & 0.29 & 0.34 & 0.39 & 0.435 & 0.475 & 0.51 & 0.54 & 0.585 \\
\hline 1974 & 0.125 & 0.2 & 0.265 & 0.32 & 0.37 & 0.41 & 0.455 & 0.49 & 0.515 & 0.53 & 0.571 \\
\hline 1975 & 0.144 & 0.221 & 0.267 & 0.327 & 0.385 & 0.435 & 0.479 & 0.516 & 0.545 & 0.569 & 0.628 \\
\hline 1976 & 0.146 & 0.198 & 0.247 & 0.294 & 0.338 & 0.38 & 0.417 & 0.456 & 0.491 & 0.523 & 0.595 \\
\hline 1977 & 0.156 & 0.221 & 0.278 & 0.332 & 0.382 & 0.425 & 0.462 & 0.497 & 0.527 & 0.553 & 0.629 \\
\hline 1978 & 0.156 & 0.217 & 0.276 & 0.33 & 0.38 & 0.425 & 0.463 & 0.498 & 0.526 & 0.555 & 0.63 \\
\hline 1979 & 0.141 & 0.216 & 0.287 & 0.352 & 0.414 & 0.463 & 0.502 & 0.539 & 0.574 & 0.608 & 0.719 \\
\hline 1980 & 0.125 & 0.206 & 0.288 & 0.36 & 0.436 & 0.513 & 0.575 & 0.62 & 0.65 & 0.674 & 0.714 \\
\hline 1981 & 0.119 & 0.197 & 0.276 & 0.358 & 0.427 & 0.49 & 0.543 & 0.582 & 0.616 & 0.645 & 0.699 \\
\hline 1982 & 0.117 & 0.195 & 0.265 & 0.335 & 0.398 & 0.455 & 0.506 & 0.536 & 0.562 & 0.585 & 0.632 \\
\hline 1983 & 0.12 & 0.195 & 0.25 & 0.307 & 0.365 & 0.42 & 0.475 & 0.52 & 0.57 & 0.615 & 0.709 \\
\hline 1984 & 0.108 & 0.192 & 0.268 & 0.339 & 0.4 & 0.453 & 0.501 & 0.545 & 0.577 & 0.607 & 0.696 \\
\hline 1985 & 0.15 & 0.204 & 0.258 & 0.311 & 0.364 & 0.416 & 0.468 & 0.52 & 0.571 & 0.621 & 0.79 \\
\hline 1986 & 0.14 & 0.206 & 0.268 & 0.326 & 0.381 & 0.432 & 0.48 & 0.524 & 0.564 & 0.601 & 0.691 \\
\hline 1987 & 0.137 & 0.21 & 0.278 & 0.341 & 0.398 & 0.45 & 0.497 & 0.538 & 0.574 & 0.605 & 0.659 \\
\hline 1988 & 0.131 & 0.208 & 0.278 & 0.344 & 0.404 & 0.459 & 0.508 & 0.552 & 0.591 & 0.624 & 0.687 \\
\hline 1989 & 0.139 & 0.195 & 0.249 & 0.3 & 0.35 & 0.398 & 0.444 & 0.488 & 0.531 & 0.571 & 0.675 \\
\hline 1990 & 0.187 & 0.243 & 0.296 & 0.346 & 0.393 & 0.437 & 0.478 & 0.516 & 0.551 & 0.583 & 0.654 \\
\hline 1991 & 0.144 & 0.219 & 0.29 & 0.355 & 0.416 & 0.473 & 0.524 & 0.572 & 0.614 & 0.652 & 0.731 \\
\hline 1992 & 0.128 & 0.202 & 0.272 & 0.336 & 0.395 & 0.449 & 0.498 & 0.542 & 0.58 & 0.613 & 0.677 \\
\hline 1993 & 0.114 & 0.178 & 0.239 & 0.296 & 0.35 & 0.401 & 0.448 & 0.492 & 0.532 & 0.57 & 0.659 \\
\hline 1994 & 0.153 & 0.212 & 0.268 & 0.322 & 0.372 & 0.419 & 0.463 & 0.505 & 0.543 & 0.578 & 0.659 \\
\hline 1995 & 0.163 & 0.221 & 0.275 & 0.326 & 0.374 & 0.419 & 0.461 & 0.5 & 0.536 & 0.568 & 0.641 \\
\hline
\end{tabular}
\begin{tabular}{lllllllllllll}
\hline year \(\backslash\) age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) \\
\hline 1996 & 0.189 & 0.238 & 0.285 & 0.331 & 0.376 & 0.42 & 0.463 & 0.504 & 0.544 & 0.583 & 0.677 \\
\hline 1997 & 0.156 & 0.215 & 0.272 & 0.327 & 0.38 & 0.431 & 0.48 & 0.526 & 0.57 & 0.612 & 0.717 \\
\hline 1998 & 0.162 & 0.22 & 0.274 & 0.325 & 0.374 & 0.419 & 0.462 & 0.501 & 0.537 & 0.571 & 0.65 \\
\hline 1999 & 0.183 & 0.233 & 0.28 & 0.326 & 0.369 & 0.41 & 0.448 & 0.485 & 0.519 & 0.551 & 0.624 \\
\hline 2000 & 0.172 & 0.23 & 0.284 & 0.333 & 0.379 & 0.421 & 0.458 & 0.492 & 0.521 & 0.546 & 0.643 \\
\hline 2001 & 0.181 & 0.224 & 0.266 & 0.307 & 0.346 & 0.384 & 0.42 & 0.455 & 0.489 & 0.521 & 0.602 \\
\hline 2002 & 0.152 & 0.209 & 0.263 & 0.316 & 0.367 & 0.415 & 0.462 & 0.507 & 0.55 & 0.591 & 0.688 \\
\hline 2003 & 0.137 & 0.207 & 0.274 & 0.337 & 0.396 & 0.452 & 0.505 & 0.554 & 0.599 & 0.641 & 0.732 \\
\hline 2004 & 0.149 & 0.203 & 0.256 & 0.308 & 0.36 & 0.41 & 0.46 & 0.509 & 0.557 & 0.605 & 0.734 \\
\hline 2005 & 0.152 & 0.208 & 0.263 & 0.316 & 0.368 & 0.419 & 0.468 & 0.516 & 0.562 & 0.607 & 0.726 \\
\hline 2006 & 0.138 & 0.197 & 0.254 & 0.306 & 0.355 & 0.4 & 0.442 & 0.479 & 0.514 & 0.544 & 0.661 \\
\hline 2007 & 0.151 & 0.214 & 0.272 & 0.325 & 0.373 & 0.416 & 0.454 & 0.486 & 0.514 & 0.536 & 0.614 \\
\hline 2008 & 0.172 & 0.221 & 0.268 & 0.315 & 0.36 & 0.404 & 0.447 & 0.489 & 0.529 & 0.569 & 0.64 \\
\hline 2009 & 0.136 & 0.215 & 0.287 & 0.354 & 0.415 & 0.469 & 0.518 & 0.56 & 0.596 & 0.626 & 0.698 \\
\hline 2010 & 0.121 & 0.215 & 0.3 & 0.376 & 0.445 & 0.505 & 0.557 & 0.6 & 0.636 & 0.663 & 0.696 \\
\hline 2011 & 0.169 & 0.231 & 0.29 & 0.347 & 0.402 & 0.454 & 0.504 & 0.552 & 0.597 & 0.639 & 0.738 \\
\hline 2012 & 0.12 & 0.202 & 0.276 & 0.343 & 0.402 & 0.453 & 0.497 & 0.532 & 0.561 & 0.581 & 0.664 \\
\hline 2013 & 0.144 & 0.2 & 0.256 & 0.31 & 0.363 & 0.414 & 0.464 & 0.513 & 0.56 & 0.606 & 0.729 \\
\hline 2014 & 0.157 & 0.223 & 0.284 & 0.34 & 0.391 & 0.438 & 0.48 & 0.517 & 0.549 & 0.576 & 0.706 \\
\hline 2015 & 0.147 & 0.217 & 0.282 & 0.342 & 0.397 & 0.448 & 0.493 & 0.533 & 0.568 & 0.598 & 0.692 \\
\hline 2016 & 0.178 & 0.248 & 0.313 & 0.373 & 0.427 & 0.476 & 0.519 & 0.557 & 0.59 & 0.617 & 0.714 \\
\hline
\end{tabular}

Table 35.5. Sole in Division 7.e. Landings, effort and mean standardised lpue for the UK commercial fleets.
\begin{tabular}{llllll}
\hline Fleet & Year & \begin{tabular}{c} 
Effort \\
(days)
\end{tabular} & \begin{tabular}{c} 
Landings \\
(tonnes)
\end{tabular} & \begin{tabular}{c} 
LPUE \\
(kg/l000 \\
days)
\end{tabular} & means standardised LPUE \\
\hline UK-CBT & 1988 & 5497 & 684 & 124.51 & 2.44 \\
\hline UK-CBT & 1989 & 5894 & 503 & 85.27 & 1.67 \\
\hline UK-CBT & 1990 & 5476 & 493 & 89.97 & 1.76 \\
\hline UK-CBT & 1991 & 3870 & 341 & 88.02 & 1.72 \\
\hline UK-CBT & 1992 & 3334 & 339 & 101.69 & 1.99 \\
\hline UK-CBT & 1993 & 4111 & 349 & 84.79 & 1.66 \\
\hline UK-CBT & 1994 & 6814 & 397 & 58.23 & 1.14 \\
\hline UK-CBT & 1995 & 6935 & 391 & 56.37 & 1.1 \\
\hline UK-CBT & 1996 & 7591 & 284 & 37.41 & 0.73 \\
\hline UK-CBT & 1997 & 7368 & 331 & 44.99 & 0.88 \\
\hline UK-CBT & 1998 & 7302 & 263 & 36.07 & 0.71 \\
\hline UK-CBT & 1999 & 7031 & 256 & 36.47 & 0.71 \\
\hline UK-CBT & 2000 & 8150 & 285 & 34.92 & 0.68 \\
\hline UK-CBT & 2001 & 9620 & 290 & 30.13 & 0.59 \\
\hline UK-CBT & 2002 & 9439 & 214 & 22.69 & 0.44 \\
\hline UK-CBT & 2003 & 10596 & 186 & 17.59 & 0.34 \\
\hline UK-CBT & 2004 & 10612 & 132 & 12.46 & 0.24 \\
\hline & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Fleet & Year & Effort (days) & Landings (tonnes) & LPUE (kg/1000 days) & means standardised LPUE \\
\hline UK-CBT & 2005 & 9990 & 427 & 42.7 & 0.84 \\
\hline UK-CBT & 2006 & 9873 & 460 & 46.57 & 0.91 \\
\hline UK-CBT & 2007 & 9621 & 421 & 43.75 & 0.86 \\
\hline UK-CBT & 2008 & 9552 & 367 & 38.42 & 0.75 \\
\hline UK-CBT & 2009 & 7563 & 300 & 39.7 & 0.78 \\
\hline UK-CBT & 2010 & 7791 & 294 & 37.79 & 0.74 \\
\hline UK-CBT & 2011 & 8703 & 350 & 40.22 & 0.79 \\
\hline UK-CBT & 2012 & 9797 & 400 & 40.82 & 0.8 \\
\hline UK-CBT & 2013 & 8767 & 422 & 48.15 & 0.94 \\
\hline UK-CBT & 2014 & 8769 & 413 & 47.05 & 0.92 \\
\hline UK-CBT & 2015 & 9298 & 411 & 44.17 & 0.86 \\
\hline UK-CBT & 2016 & 10175 & 518 & 50.93 & 1 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1988 & 2527 & 293 & 115.97 & 1.96 \\
\hline UK-
\[
\mathrm{CBT}<24 \mathrm{~m}
\] & 1989 & 1956 & 162 & 83.06 & 1.4 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1990 & 1958 & 179 & 91.51 & 1.55 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1991 & 1458 & 134 & 92.22 & 1.56 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1992 & 1342 & 142 & 106.22 & 1.79 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1993 & 1432 & 154 & 107.71 & 1.82 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1994 & 2241 & 161 & 71.97 & 1.22 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1995 & 2017 & 134 & 66.28 & 1.12 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1996 & 1999 & 106 & 52.99 & 0.9 \\
\hline UKCBT<24m & 1997 & 1991 & 132 & 66.3 & 1.12 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1998 & 2357 & 99 & 42.12 & 0.71 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 1999 & 2518 & 115 & 45.7 & 0.77 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 2000 & 2913 & 134 & 45.85 & 0.77 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2001 & 3746 & 148 & 39.57 & 0.67 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 2002 & 3482 & 110 & 31.55 & 0.53 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 2003 & 3785 & 93 & 24.44 & 0.41 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 2004 & 3512 & 64 & 18.12 & 0.31 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 2005 & 3305 & 191 & 57.72 & 0.98 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Fleet & Year & \begin{tabular}{l}
Effort \\
(days)
\end{tabular} & Landings (tonnes) & \[
\begin{aligned}
& \text { LPUE } \\
& \text { (kg/1000 } \\
& \text { days) }
\end{aligned}
\] & means standardised LPUE \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2006 & 3277 & 224 & 68.27 & 1.15 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2007 & 4027 & 225 & 55.77 & 0.94 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2008 & 4629 & 213 & 45.94 & 0.78 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2009 & 4040 & 185 & 45.85 & 0.77 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2010 & 4727 & 201 & 42.42 & 0.72 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2011 & 5913 & 258 & 43.65 & 0.74 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT<24m }
\end{aligned}
\] & 2012 & 7188 & 314 & 43.65 & 0.74 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2013 & 6322 & 329 & 52.02 & 0.88 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2014 & 5870 & 308 & 52.54 & 0.89 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2015 & 6260 & 310 & 49.54 & 0.84 \\
\hline \begin{tabular}{l}
UK- \\
CBT<24m
\end{tabular} & 2016 & 6096 & 352 & 57.82 & 0.98 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 1988 & 2971 & 391 & 131.77 & 2.92 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 1989 & 3938 & 340 & 86.37 & 1.91 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 1990 & 3518 & 314 & 89.12 & 1.97 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 1991 & 2412 & 206 & 85.47 & 1.89 \\
\hline UKCBT>24m & 1992 & 1993 & 197 & 98.63 & 2.18 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 1993 & 2678 & 194 & 72.54 & 1.61 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 1994 & 4574 & 236 & 51.5 & 1.14 \\
\hline UK-
\[
\mathrm{CBT}>24 \mathrm{~m}
\] & 1995 & 4917 & 257 & 52.3 & 1.16 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 1996 & 5592 & 178 & 31.84 & 0.71 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 1997 & 5377 & 199 & 37.1 & 0.82 \\
\hline UKCBT>24m & 1998 & 4945 & 164 & 33.19 & 0.73 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 1999 & 4512 & 141 & 31.32 & 0.69 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2000 & 5237 & 151 & 28.84 & 0.64 \\
\hline UK- & 2001 & 5874 & 142 & 24.11 & 0.53 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Fleet & Year & Effort (days) & Landings (tonnes) & \[
\begin{gathered}
\text { LPUE } \\
\text { (kg/1000 } \\
\text { days) }
\end{gathered}
\] & means standardised LPUE \\
\hline CBT>24m & & & & & \\
\hline UK-
\[
\mathrm{CBT}>24 \mathrm{~m}
\] & 2002 & 5957 & 104 & 17.51 & 0.39 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2003 & 6810 & 94 & 13.78 & 0.31 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2004 & 7100 & 69 & 9.66 & 0.21 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2005 & 6684 & 236 & 35.27 & 0.78 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2006 & 6595 & 236 & 35.79 & 0.79 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 2007 & 5594 & 196 & 35.1 & 0.78 \\
\hline UKCBT>24m & 2008 & 4924 & 154 & 31.36 & 0.69 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2009 & 3523 & 115 & 32.66 & 0.72 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2010 & 3064 & 94 & 30.64 & 0.68 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2011 & 2790 & 92 & 32.95 & 0.73 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2012 & 2609 & 86 & 33.01 & 0.73 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2013 & 2444 & 93 & 38.13 & 0.84 \\
\hline \begin{tabular}{l}
UK- \\
CBT>24m
\end{tabular} & 2014 & 2900 & 104 & 35.95 & 0.8 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2015 & 3039 & 101 & 33.12 & 0.73 \\
\hline \[
\begin{aligned}
& \text { UK- } \\
& \text { CBT>24m }
\end{aligned}
\] & 2016 & 4080 & 166 & 40.64 & 0.9 \\
\hline UK-COT & 1988 & 4265 & 29 & 6.77 & 1.43 \\
\hline UK-COT & 1989 & 4607 & 28 & 6.18 & 1.31 \\
\hline UK-COT & 1990 & 4423 & 26 & 5.97 & 1.27 \\
\hline UK-COT & 1991 & 4004 & 14 & 3.39 & 0.72 \\
\hline UK-COT & 1992 & 4108 & 12 & 3.02 & 0.64 \\
\hline UK-COT & 1993 & 3761 & 15 & 3.95 & 0.84 \\
\hline UK-COT & 1994 & 3423 & 18 & 5.27 & 1.12 \\
\hline UK-COT & 1995 & 3294 & 13 & 3.99 & 0.84 \\
\hline UK-COT & 1996 & 2589 & 12 & 4.83 & 1.02 \\
\hline UK-COT & 1997 & 3011 & 15 & 4.96 & 1.05 \\
\hline UK-COT & 1998 & 2699 & 11 & 4.22 & 0.89 \\
\hline UK-COT & 1999 & 2486 & 13 & 5.16 & 1.09 \\
\hline UK-COT & 2000 & 2681 & 11 & 4.11 & 0.87 \\
\hline UK-COT & 2001 & 2732 & 13 & 4.9 & 1.04 \\
\hline UK-COT & 2002 & 2448 & 9 & 3.66 & 0.78 \\
\hline UK-COT & 2003 & 2273 & 8 & 3.31 & 0.7 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
\hline Fleet & Year & \begin{tabular}{c} 
Effort \\
(days)
\end{tabular} & \begin{tabular}{c} 
Landings \\
(tonnes)
\end{tabular} & \begin{tabular}{c} 
LPUE \\
(kg/1000 \\
days)
\end{tabular} & means standardised LPUE \\
\hline UK-COT & 2004 & 2334 & 6 & 2.46 & 0.52 \\
\hline UK-COT & 2005 & 1762 & 12 & 6.86 & 1.45 \\
\hline UK-COT & 2006 & 1699 & 8 & 4.57 & 0.97 \\
\hline UK-COT & 2007 & 1917 & 9 & 4.9 & 1.04 \\
\hline UK-COT & 2008 & 1750 & 7 & 4.26 & 0.9 \\
\hline UK-COT & 2009 & 1847 & 10 & 5.36 & 1.14 \\
\hline UK-COT & 2010 & 2213 & 10 & 4.53 & 0.96 \\
\hline UK-COT & 2011 & 1930 & 8 & 4.08 & 0.86 \\
\hline UK-COT & 2012 & 2068 & 12 & 5.96 & 1.26 \\
\hline UK-COT & 2013 & 1587 & 8 & 4.96 & 1.05 \\
\hline UK-COT & 2014 & 1440 & 8 & 5.56 & 1.18 \\
\hline UK-COT & 2015 & 978 & 5 & 4.98 & 1.06 \\
\hline UK-COT & 2016 & 0 & 0 & NA & NA \\
\hline
\end{tabular}

Note that the lpue time-series for the UK commercial beam-trawl fleet was revised at IBPWCFlat2 due to modifications in the UK e-logbook effort recording system in 2012.

Table 35.6 Sole in Division 7.e. Tuning data file. Not all tuning time-series, years and ages shown here were used in the assessment.

W CHANNEL SOLE 2017 WGCSE, 2-11, SEXES COMBINED,
104
UK-CBT-late
20032016
1101
311
\begin{tabular}{lllllllllllll}
\hline 10.59557 & 130.7 & 168.87 & 129.96 & 21.43 & 18.32 & 10.28 & 13.49 & 6.67 & 2.19 & 2.06 & 3.35 & 2.82 \\
\hline 10.61183 & 146.5 & 61.53 & 53.46 & 75.23 & 11.35 & 14.96 & 7.49 & 5.98 & 4.27 & 2.12 & 1.18 & 1.89 \\
\hline 9.98951 & 210.39 & 326.3 & 132.94 & 155.21 & 132.09 & 27.41 & 32.6 & 22.54 & 14.24 & 8.3 & 5.95 & 4.84 \\
\hline 9.87254 & 376.87 & 186.46 & 243.45 & 85.59 & 108.34 & 106.98 & 37.22 & 20.67 & 13.69 & 13.61 & 6.68 & 2.99 \\
\hline 9.6207 & 456.04 & 261.42 & 105.82 & 103.55 & 54.21 & 62.07 & 51.47 & 15.34 & 11.12 & 10.41 & 8.44 & 8.17 \\
\hline 9.55231 & 294.03 & 286.06 & 126.1 & 67.89 & 65.42 & 42.34 & 39.54 & 36.27 & 14.54 & 11.8 & 4.3 & 6 \\
\hline 7.56283 & 190.03 & 182.63 & 152.83 & 89.59 & 26.02 & 27.9 & 13.23 & 16.1 & 12.91 & 4.85 & 3.74 & 1.92 \\
\hline 7.79112 & 80.09 & 179.7 & 157.57 & 101.24 & 51.98 & 25.24 & 22.59 & 8.23 & 16.75 & 25.39 & 7.42 & 3.88 \\
\hline 8.70287 & 243.76 & 148.58 & 186.66 & 121.43 & 81.66 & 35.56 & 15.79 & 20.25 & 10.83 & 14.11 & 8.26 & 2.1 \\
\hline 9.79734 & 129.79 & 307.88 & 139.02 & 143.59 & 91.49 & 66.22 & 30.49 & 17.81 & 14.83 & 8.55 & 12.25 & 11.03 \\
\hline 8.76655 & 81.92 & 242.49 & 288.92 & 134.34 & 93.18 & 72.27 & 44.15 & 24.5 & 10.73 & 9.84 & 8.14 & 9.84 \\
\hline 8.7692 & 111.72 & 201.15 & 169.62 & 201.19 & 99.91 & 67.46 & 43.84 & 30.63 & 15.94 & 7.71 & 9.34 & 4.9 \\
\hline 9.29849 & 137.05 & 178.21 & 198.83 & 135.74 & 117.19 & 65.74 & 45.95 & 31.78 & 20.59 & 11.01 & 5.52 & 5.96 \\
\hline 10.17526 & 262.1 & 216.2 & 158.1 & 161 & 118.2 & 101.6 & 48.81 & 44.98 & 21.18 & 23.01 & 12.96 & 5.66 \\
\hline
\end{tabular}
\begin{tabular}{llllllllll} 
UK-COT & & & & & & & & & \\
1988 2016 & & & & & & & & & \\
1101 & & & & & & & & & \\
311 & & & & & & & & \\
4264.71 & 30.97 & 15.73 & 19.29 & 8.63 & 2.55 & 2.55 & 1.83 & 0.35 & 0.76 \\
4607.04 & 15.09 & 18.34 & 9.22 & 11.75 & 4.72 & 2.42 & 2.36 & 2.01 & 1.4 \\
4422.52 & 18.3 & 12.56 & 9.21 & 6.09 & 5.53 & 2.08 & 1.83 & 1.12 & 0.9 \\
4004.37 & 10.04 & 7.03 & 4.12 & 2.46 & 0.96 & 1.44 & 0.42 & 0.41 & 0.23 \\
4107.71 & 26.24 & 6 & 3.6 & 1.19 & 1.14 & 0.48 & 0.65 & 0.17 & 0.09 \\
3761 & 12.45 & 17.56 & 5.38 & 3.44 & 2.49 & 1.26 & 1 & 0.92 & 0.56 \\
3423.03 & 12.42 & 11.46 & 12.35 & 2.5 & 2.6 & 1.23 & 1.35 & 1.03 & 1.18 \\
3294.06 & 5.25 & 9.75 & 6.34 & 6.17 & 1.89 & 1.49 & 0.91 & 0.52 & 0.25 \\
2589.38 & 9.47 & 6.54 & 4.37 & 3.15 & 3.54 & 0.95 & 0.76 & 0.68 & 0.45 \\
3010.66 & 15.16 & 8.81 & 4.78 & 2.83 & 2.9 & 2.53 & 0.63 & 0.28 & 0.43 \\
2698.6 & 8.74 & 7.58 & 4.25 & 2.49 & 1.53 & 0.93 & 1.47 & 0.31 & 0.44 \\
2486.17 & 11.56 & 5.84 & 4.91 & 2.89 & 1.45 & 1.46 & 0.74 & 1.49 & 0.39 \\
2680.63 & 6.67 & 8.41 & 4.03 & 2.64 & 1.24 & 0.59 & 0.81 & 0.62 & 0.99 \\
2731.54 & 18.02 & 5.27 & 4.96 & 2.69 & 2.01 & 1.12 & 0.7 & 0.51 & 0.5 \\
2448.37 & 9.88 & 6.12 & 2.39 & 2.67 & 1.27 & 0.82 & 0.33 & 0.2 & 0.25 \\
2272.9 & 4.61 & 5.87 & 4.8 & 1.04 & 0.85 & 0.49 & 0.54 & 0.27 & 0.13 \\
2334.16 & 6.05 & 2.58 & 2.23 & 3.25 & 0.46 & 0.57 & 0.3 & 0.24 & 0.18 \\
1762.36 & 6.44 & 9.56 & 3.53 & 4.13 & 3.44 & 0.74 & 0.9 & 0.58 & 0.45 \\
1699.49 & 6.93 & 3.27 & 4.13 & 1.36 & 1.63 & 1.75 & 0.6 & 0.31 & 0.2 \\
1916.84 & 9.32 & 5.44 & 2.3 & 2.32 & 1.19 & 1.41 & 1.13 & 0.36 & 0.21 \\
1750.36 & 5.61 & 4.85 & 2.08 & 1.15 & 1.18 & 0.75 & 0.75 & 0.7 & 0.32 \\
1847.2 & 7.97 & 5.47 & 3.92 & 2.17 & 0.64 & 0.83 & 0.39 & 0.52 & 0.45 \\
2212.85 & 2.71 & 5.85 & 4.74 & 3.15 & 1.63 & 0.81 & 0.74 & 0.3 & 0.6 \\
1930.5 & 6.51 & 3.32 & 3.89 & 2.46 & 1.64 & 0.58 & 0.31 & 0.37 & 0.19 \\
2068.16 & 4.24 & 9.16 & 3.97 & 4.06 & 2.3 & 1.76 & 0.82 & 0.49 & 0.46 \\
1586.58 & 2.01 & 4.55 & 5.64 & 2.66 & 1.74 & 1.49 & 0.89 & 0.56 & 0.26 \\
1440.22 & 2.13 & 3.57 & 2.99 & 3.56 & 1.8 & 1.29 & 0.9 & 0.68 & 0.34 \\
977.63 & 1.62 & 1.98 & 1.86 & 1.59 & 1.35 & 0.7 & 0.5 & 0.42 & 0.25 \\
0 & & & & & & & & & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Q1SWBeam-nonoffset 20062016
110.10 .25

211
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 13.9827 & 17.7418 & 9.8877 & 19.4529 & 11.9525 & 9.8066 & 10.4549 & 4.74613 & 3.23665 \\
\hline & 7.00007 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 12.3291 & 36.7717 & 16.2021 & 2.0082 & 7.3474 & 2.5642 & 2.7218 & 6.92397 & 5.55754 \\
\hline & 4.41774 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 11.9556 & 27.2521 & 26.915 & 11.617 & 8.7491 & 3.3699 & 10.2461 & 9.66501 & 5.70182 \\
\hline & 2.42857 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 3.3789 & 24.1601 & 18.2609 & 15.6175 & 6.4364 & 2.5672 & 2.8808 & 1.45679 & 4.30936 \\
\hline & 5.37546 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 21.1326 & 26.0624 & 27.4407 & 19.3966 & 11.162 & 11.8984 & 2.0858 & 1.94805 & 2.06037 \\
\hline & 1.40477 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 12.4384 & 25.0406 & 20.7327 & 17.9799 & 8.7678 & 4.4703 & 6.4495 & 2.72388 & 0.29235 \\
\hline & 1.9532 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 2.3036 & 23.2228 & 26.7927 & 11.0111 & 9.7258 & 11.4579 & 5.9073 & 3.97145 & 0.13376 \\
\hline & 1.82684 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 3.7142 & 12.4853 & 23.6131 & 21.5683 & 14.7024 & 11.8911 & 8.5158 & 7.77601 & 6.54977 \\
\hline & 1.0211 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 5.2342 & 25.2683 & 31.1232 & 13.363 & 19.2418 & 13.2925 & 24.9744 & 7.5189 & 2.67556 \\
\hline & 3.84886 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 5.0564 & 10.4716 & 13.1777 & 16.4052 & 13.1156 & 12.5791 & 7.5394 & 7.55054 & 3.25374 \\
\hline & 3.63526 & & & & & & & & \\
\hline \multirow[t]{2}{*}{1} & 14.2613 & 29.7948 & 14.0505 & 14.3579 & 10.8978 & 9.6971 & 12.9744 & 2.26091 & 2.49797 \\
\hline & 4.98397 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{FSP-UK} \\
\hline \multicolumn{6}{|l|}{20042016} \\
\hline \multicolumn{6}{|l|}{110.70 .75} \\
\hline \multicolumn{6}{|l|}{211} \\
\hline \multirow[t]{2}{*}{1} & 0.153824204 & 0.547681643 & 0.306598463 & 0.260341438 & 0.128202976 \\
\hline & 0.058539491 & 0.088039872 & 0.036080529 & 0.015391278 & 0.016189065 \\
\hline \multirow[t]{2}{*}{1} & 0.103329518 & 0.19641048 & 0.241991372 & 0.109126628 & 0.156802612 \\
\hline & 0.145326301 & 0.036140277 & 0.029396359 & 0.014350801 & 0.015371889 \\
\hline \multirow[t]{2}{*}{1} & 0.153481326 & 0.340850506 & 0.155281433 & 0.213275765 & 0.098438279 \\
\hline & 0.115716826 & 0.133540754 & 0.026435039 & 0.025857425 & 0.018344075 \\
\hline \multirow[t]{2}{*}{1} & 0.119241548 & 0.44701361 & 0.204189719 & 0.077363475 & 0.090584633 \\
\hline & 0.059564942 & 0.048392134 & 0.103423228 & 0.018747854 & 0.026135604 \\
\hline \multirow[t]{2}{*}{1} & 0.218979316 & 0.30433917 & 0.264569783 & 0.247314819 & 0.043056202 \\
\hline & 0.03740343 & 0.01459082 & 0.056655904 & 0.032866413 & 0.002043144 \\
\hline \multirow[t]{2}{*}{1} & 0.087175684 & 0.299624141 & 0.311159869 & 0.161288882 & 0.060718142 \\
\hline & 0.039957338 & 0.028000462 & 0.015193089 & 0.017913114 & 0.047375509 \\
\hline \multirow[t]{2}{*}{1} & 0.119863413 & 0.196874246 & 0.245797705 & 0.181168944 & 0.127269974 \\
\hline & 0.035676999 & 0.020992322 & 0.027191027 & 0.017568869 & 0.023533383 \\
\hline \multirow[t]{2}{*}{1} & 0.08434561 & 0.454242063 & 0.099822858 & 0.198143553 & 0.092414777 \\
\hline & 0.051026632 & 0.004550745 & 0.013069111 & 0.007266136 & 0.010694232 \\
\hline \multirow[t]{2}{*}{1} & 0.046242932 & 0.366107405 & 0.375112338 & 0.171327639 & 0.117372943 \\
\hline & 0.033525922 & 0.044422343 & 0.027607474 & 0.003111774 & 0.006368894 \\
\hline \multirow[t]{2}{*}{1} & 0.049788133 & 0.358433744 & 0.430170523 & 0.361132406 & 0.16996429 \\
\hline & 0.091513266 & 0.052297487 & 0.037267927 & 0.006358564 & 0 \\
\hline \multirow[t]{2}{*}{1} & 0.099297931 & 0.313276906 & 0.404824384 & 0.318775666 & 0.21442343 \\
\hline & 0.120233411 & 0.07079201 & 0.034672021 & 0.042728627 & 0.002023089 \\
\hline \multirow[t]{2}{*}{1} & 0.109960059 & 0.242341369 & 0.344948703 & 0.18515098 & 0.128097028 \\
\hline & 0.109022188 & 0.07705002 & 0.058290808 & 0.023876194 & 0.025259617 \\
\hline \multirow[t]{2}{*}{1} & 0.106692296 & 0.462891223 & 0.153264215 & 0.144225902 & 0.123064161 \\
\hline & 0.078114192 & 0.102312786 & 0.030107449 & 0.047801647 & 0.014684173 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{UK-CBT-early} \\
\hline \multicolumn{11}{|l|}{19882002} \\
\hline \multicolumn{11}{|l|}{1101} \\
\hline \multicolumn{11}{|l|}{311} \\
\hline \multirow[t]{2}{*}{5.50} & 660.36 & 337.83 & 439.11 & 199.29 & 63.46 & 62.34 & 58.95 & 13.18 & 21.70 & 13.33 \\
\hline & 27.52 & 6.95 & & & & & & & & \\
\hline \multirow[t]{2}{*}{5.89} & 334.92 & 420.18 & 206.01 & 239.87 & 86.59 & 36.69 & 36.30 & 34.02 & 21.23 & 13.23 \\
\hline & 14.64 & 8.91 & & & & & & & & \\
\hline \multirow[t]{2}{*}{5.48} & 330.59 & 249.78 & 187.83 & 120.79 & 118.15 & 45.22 & 34.04 & 22.00 & 18.96 & 10.14 \\
\hline & 16.62 & 8.71 & & & & & & & & \\
\hline \multirow[t]{2}{*}{3.87} & 169.69 & 178.00 & 138.03 & 89.94 & 39.06 & 50.15 & 27.73 & 13.14 & 9.08 & 16.74 \\
\hline & 3.98 & 7.26 & & & & & & & & \\
\hline \multirow[t]{2}{*}{3.33} & 569.33 & 159.31 & 112.20 & 42.39 & 44.18 & 21.30 & 30.70 & 7.94 & 5.60 & 5.48 \\
\hline & 5.88 & 5.21 & & & & & & & & \\
\hline \multirow[t]{2}{*}{4.11} & 276.52 & 436.07 & 135.24 & 82.61 & 58.75 & 29.82 & 23.11 & 22.81 & 11.35 & 3.31 \\
\hline & 8.58 & 5.80 & & & & & & & & \\
\hline \multirow[t]{2}{*}{6.81} & 347.00 & 282.99 & 271.57 & 54.29 & 49.16 & 24.17 & 27.27 & 20.69 & 23.17 & 11.03 \\
\hline & 8.54 & 4.49 & & & & & & & & \\
\hline \multirow[t]{2}{*}{6.93} & 139.39 & 287.26 & 193.06 & 187.53 & 57.49 & 45.54 & 26.86 & 14.72 & 8.08 & 17.93 \\
\hline & 7.45 & 5.17 & & & & & & & & \\
\hline \multirow[t]{2}{*}{7.59} & 146.04 & 118.70 & 100.89 & 81.14 & 87.63 & 23.24 & 21.23 & 16.83 & 12.69 & 13.77 \\
\hline & 12.60 & 5.11 & & & & & & & & \\
\hline \multirow[t]{2}{*}{7.37} & 300.18 & 244.82 & 114.67 & 60.06 & 66.02 & 58.33 & 14.54 & 6.74 & 13.71 & 5.51 \\
\hline & 6.41 & 4.75 & & & & & & & & \\
\hline \multirow[t]{2}{*}{7.30} & 188.05 & 166.31 & 103.86 & 61.72 & 44.52 & 23.65 & 35.65 & 9.80 & 9.76 & 8.10 \\
\hline & 8.57 & 3.78 & & & & & & & & \\
\hline \multirow[t]{2}{*}{7.03} & 264.75 & 137.13 & 101.88 & 64.10 & 27.00 & 25.49 & 13.29 & 26.52 & 5.87 & 9.91 \\
\hline & 2.81 & 2.98 & & & & & & & & \\
\hline \multirow[t]{2}{*}{8.15} & 194.23 & 235.47 & 112.00 & 69.45 & 33.41 & 16.90 & 19.70 & 14.88 & 26.19 & 2.84 \\
\hline & 4.35 & 1.86 & & & & & & & & \\
\hline \multirow[t]{2}{*}{9.62} & 400.24 & 142.06 & 135.26 & 69.22 & 46.01 & 25.81 & 13.47 & 11.17 & 10.68 & 12.43 \\
\hline & 4.64 & 3.50 & & & & & & & & \\
\hline \multirow[t]{2}{*}{9.44} & 280.20 & 169.83 & 62.21 & 62.54 & 27.88 & 19.67 & 8.64 & 3.97 & 4.69 & 2.63 \\
\hline & 4.92 & 2.28 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{UK-WEC-BTS} \\
\hline \multicolumn{10}{|l|}{19882013} \\
\hline \multicolumn{10}{|l|}{110.750 .8} \\
\hline \multicolumn{10}{|l|}{19} \\
\hline 128.20 & 2.00 & 39.00 & 129.00 & 52.00 & 75.00 & 22.00 & 0.00 & 12.00 & 3.00 \\
\hline 165.70 & 5.00 & 56.00 & 120.00 & 107.00 & 34.00 & 40.00 & 17.00 & 5.00 & 7.00 \\
\hline 175.70 & 23.00 & 52.00 & 76.00 & 31.00 & 24.00 & 7.00 & 15.00 & 3.00 & 6.00 \\
\hline 171.70 & 11.00 & 231.00 & 79.00 & 51.00 & 23.00 & 21.00 & 5.00 & 17.00 & 4.00 \\
\hline 196.60 & 5.00 & 140.00 & 316.00 & 44.00 & 36.00 & 12.00 & 7.00 & 5.00 & 11.00 \\
\hline 189.20 & 5.00 & 54.00 & 115.00 & 105.00 & 14.00 & 10.00 & 9.00 & 3.00 & 3.00 \\
\hline 205.90 & 6.00 & 47.00 & 106.00 & 62.00 & 44.00 & 5.00 & 5.00 & 2.00 & 3.00 \\
\hline 187.20 & 14.00 & 37.00 & 44.00 & 42.00 & 26.00 & 31.00 & 4.00 & 5.00 & 5.00 \\
\hline 184.40 & 28.00 & 112.00 & 67.00 & 25.00 & 32.00 & 20.00 & 17.00 & 3.00 & 2.00 \\
\hline 184.70 & 11.00 & 130.00 & 126.00 & 43.00 & 14.00 & 16.00 & 13.00 & 14.00 & 5.00 \\
\hline 185.50 & 11.00 & 141.00 & 114.00 & 76.00 & 22.00 & 10.00 & 14.00 & 6.00 & 8.00 \\
\hline 187.90 & 11.00 & 97.00 & 128.00 & 47.00 & 23.00 & 8.00 & 4.00 & 4.00 & 4.00 \\
\hline 180.40 & 12.00 & 136.00 & 70.00 & 52.00 & 23.00 & 16.00 & 5.00 & 3.00 & 5.00 \\
\hline 178.00 & 9.00 & 197.00 & 162.00 & 52.00 & 31.00 & 12.00 & 12.00 & 4.00 & 1.00 \\
\hline 180.00 & 6.00 & 37.00 & 113.00 & 48.00 & 27.00 & 6.00 & 3.00 & 2.00 & 0.00 \\
\hline 170.70 & 23.00 & 124.00 & 78.00 & 56.00 & 28.00 & 6.00 & 1.00 & 1.00 & 2.00 \\
\hline 164.90 & 16.00 & 110.00 & 120.00 & 24.00 & 15.00 & 10.00 & 16.00 & 9.00 & 4.00 \\
\hline 186.60 & 8.00 & 110.00 & 39.00 & 53.00 & 12.00 & 12.00 & 6.00 & 2.00 & 4.00 \\
\hline 184.70 & 5.00 & 120.00 & 95.00 & 26.00 & 37.00 & 10.00 & 7.00 & 9.00 & 0.00 \\
\hline 181.00 & 7.00 & 188.00 & 135.00 & 50.00 & 11.00 & 23.00 & 3.00 & 3.00 & 1.00 \\
\hline 174.70 & 10.00 & 85.00 & 158.00 & 77.00 & 40.00 & 2.00 & 14.00 & 3.00 & 6.00 \\
\hline 172.00 & 11.00 & 104.00 & 126.00 & 96.00 & 49.00 & 13.00 & 13.00 & 12.00 & 1.00 \\
\hline 179.90 & 20.00 & 175.00 & 154.00 & 84.00 & 59.00 & 31.00 & 20.00 & 7.00 & 12.00 \\
\hline 176.20 & 9.00 & 156.00 & 231.00 & 62.00 & 39.00 & 25.00 & 24.00 & 8.00 & 2.00 \\
\hline 179.70 & 3.00 & 47.00 & 162.00 & 125.00 & 40.00 & 27.00 & 13.00 & 3.00 & 6.00 \\
\hline 181.60 & 4.00 & 36.00 & 100.00 & 106.00 & 80.00 & 21.00 & 9.00 & 6.00 & 3.00 \\
\hline
\end{tabular}

Table 35.7. Sole in Division 7.e. Detailed XSA survivor diagnostics.

\section*{FLR XSA Di agnostics 2017-04-25 17: 19: 05}

CPUE dat a fromindi ces
Cat ch data for 48 years 1969 to 2016. Ages 2 to 12 .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & fleet & first age l ast age & first year & year & al pha beta \\
\hline 1 & UK- CBT-I at e & 311 & 2003 & 2016 & <NA \(>\) <NA> \\
\hline 2 & UK- COT & 311 & 1988 & 2016 & \(\langle N A><N A>\) \\
\hline 3 & Q1SWBeam nonof f set & 211 & 2006 & 2016 & <NA> <NA> \\
\hline 4 & FSP- UK & 211 & 2004 & 2016 & \(\langle N A><N A>\) \\
\hline
\end{tabular}

Ti me-seri es wei ghts :
Tapered time wei ghting applied
Power = 3 over 15 years
Cat chability anal ysis:
Cat chability independent of size for all ages
Cat chability independent of age for ages \(>7\)
Terminal popul ation estimation :
Sur vi vor esti mates shrunk towards the rean \(F\)
of the final 3 years or the 5 ol dest ages.
S. E. of the mean to whi ch the estimates are shrunk \(=0.5\)

M ni mom st andard er ror for popul ation
estimates derived fromeach fleet \(=0.4\)
prior wei ghting not applied
Regressi on wei ghts
```

age year 2007 2008 2009 2010 2011 2012 2012 2013 2014 2015 2016
al| 0.482 0.61 0.725 0.82 0.893 0.944 0.976 0.993 0.999 1

```
Fishing mortalities
\begin{tabular}{rrrrrrrrrrr}
\multicolumn{8}{l}{ year } \\
age & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
2 & 0.054 & 0.071 & 0.049 & 0.014 & 0.026 & 0.010 & 0.043 & 0.073 & 0.041 & 0.028 \\
3 & 0.271 & 0.260 & 0.170 & 0.124 & 0.121 & 0.074 & 0.122 & 0.140 & 0.150 & 0.117 \\
4 & 0.411 & 0.319 & 0.184 & 0.162 & 0.223 & 0.162 & 0.199 & 0.230 & 0.229 & 0.294 \\
5 & 0.376 & 0.327 & 0.228 & 0.211 & 0.223 & 0.264 & 0.249 & 0.242 & 0.231 & 0.222 \\
6 & 0.426 & 0.330 & 0.262 & 0.191 & 0.204 & 0.278 & 0.266 & 0.243 & 0.205 & 0.240 \\
7 & 0.404 & 0.354 & 0.192 & 0.234 & 0.196 & 0.284 & 0.240 & 0.226 & 0.165 & 0.266 \\
8 & 0.264 & 0.390 & 0.210 & 0.191 & 0.201 & 0.235 & 0.262 & 0.170 & 0.212 & 0.201 \\
9 & 0.248 & 0.202 & 0.207 & 0.283 & 0.205 & 0.233 & 0.235 & 0.196 & 0.155 & 0.164 \\
10 & 0.307 & 0.212 & 0.191 & 0.150 & 0.193 & 0.332 & 0.234 & 0.202 & 0.145 & 0.126 \\
11 & 0.259 & 0.331 & 0.147 & 0.170 & 0.283 & 0.306 & 0.255 & 0.178 & 0.130 & 0.137 \\
12 & 0.259 & 0.331 & 0.147 & 0.170 & 0.283 & 0.306 & 0.255 & 0.178 & 0.130 & 0.137
\end{tabular}

XSA popul ation number (Thousand)
\begin{tabular}{rrrrrrrrrrrr} 
\\
year & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2007 & 4031 & 3778 & 2357 & 981 & 1097 & 565 & 589 & 526 & 221 & 123 & 454 \\
2008 & 4301 & 3456 & 2608 & 1414 & 610 & 648 & 341 & 409 & 371 & 147 & 332 \\
2009 & 3640 & 3624 & 2412 & 1715 & 922 & 397 & 412 & 209 & 302 & 272 & 502 \\
2010 & 5158 & 3136 & 2765 & 1816 & 1235 & 642 & 296 & 302 & 154 & 226 & 524 \\
2011 & 3790 & 4602 & 2506 & 2127 & 1330 & 923 & 460 & 221 & 206 & 120 & 395 \\
2012 & 3317 & 3342 & 3689 & 1815 & 1540 & 982 & 687 & 340 & 163 & 154 & 494 \\
2013 & 2973 & 2972 & 2808 & 2839 & 1261 & 1056 & 669 & 491 & 244 & 106 & 512 \\
2014 & 2955 & 2576 & 2381 & 2081 & 2002 & 874 & 752 & 465 & 351 & 175 & 625 \\
2015 & 4598 & 2486 & 2026 & 1711 & 1478 & 1422 & 631 & 574 & 346 & 260 & 708 \\
2016 & 3520 & 3992 & 1936 & 1458 & 1228 & 1090 & 1090 & 462 & 444 & 271 & 878
\end{tabular}

Estimated popul ation abundance at 1st Jan 2017
\(\begin{array}{llrrrrrrrrrrr}\text { year } & 2 & 3 & 4 & 5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2017 & 0 & 3098 & 3213 & 1306 & 1057 & 874 & 756 & 807 & 355 & 354 & 214\end{array}\)
FI eet: UK- CBT-I at e
Log cat chability resi duals.
year
\begin{tabular}{crcccccccccc}
\multicolumn{2}{c}{ year } \\
age & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 \\
2013 & 2014 & 2015 & 2016 & & & & & \\
3 & -0.277 & -0.493 & 0.572 & 0.753 & 0.871 & 0.523 & 0.230 & -0.541 & 0.076 & \(-0.375-7\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{ccc}
\(0.584-0.122\) & 0.064 \\
4 & -0.563 & -1.204
\end{tabular} & \[
\begin{aligned}
& 0.133 \\
& 0.231
\end{aligned}
\] & 0. 306 & 0. 286 & 0. 240 & 0. 039 & -0. 154 & -0. 328 & -0.133 \\
\hline \(0.0300 .023 \quad 0.004\) & 0. 183 & & & & & & & \\
\hline 0. \({ }^{5} 118-0.807-1.387\) & -0.053 & 0. 337 & 0. 142 & -0.064 & 0. 123 & 0. 058 & -0.035 & -0. 270 \\
\hline \(0.118-0.108-1.644-0.987\) & 0. 0108 & -0. 059 & -0. 020 & 0. 108 & 0. 173 & -0.060 & -0.057 & -0.119 \\
\hline 0. 120 0.050-0.116 & 0. 166 & & & & & & & \\
\hline 7 -1.252-1.878 & 0. 157 & 0. 245 & 0. 072 & 0. 107 & - 0.166 & 0. 034 & -0. 006 & -0. 031 \\
\hline 0. \({ }_{8} 006\) - \(0.257-0.154-1.131\) & 0.075
-0.557 & 0. 356 & 0. 102 & 0. 330 & -0. 125 & 0. 065 & -0. 138 & -0. 019 \\
\hline 0. \(219-0.011 \quad 0.099\) & -0.108 & & & & & & & \\
\hline \[
\begin{gathered}
9 \\
0.02685-1.354 \\
0.021
\end{gathered}
\] & 0. 131 & 0. 156 & 0. 020 & -0.007 & -0. 196 & -0. 021 & -0. 216 & -0. 094 \\
\hline 10-1.049-1.073 & 0. 179 & 0. 131 & -0. 295 & 0. 008 & -0.375 & -0. 420 & 0. 099 & 0. 150 \\
\hline \(132-0.025-0.059\)
\(11-1.168-0.995\) & -0.061
0.289 & 0. 076 & -0. 051 & 0. 076 & -0. 511 & -0. 084 & 0. 057 & 0. 015 \\
\hline 0. 151 0.010-0.213 & -0. 314 & & & & & & & \\
\hline
\end{tabular}

Mean I og cat chability and standard error of ages with cat chability i ndependent of year cl ass strength and constant w.r.t. time
\begin{tabular}{lrcccccccc} 
& 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 Mean Logq & -5.0693 & -4.5044 & -4.4043 & -4.3527 & -4.4388 & -4.4388 & -4.4388 & -4.4388 & - \\
4. 4388 & & 0.4647 & 0.4647 & 0.4647 & 0.4647 & 0.4647 & 0.4647 & 0.4647 & 0.4647 \\
S. E Logq & 0.4647 & & & & & &
\end{tabular}

FI eet: UK-COT
Log cat chability resi dual s.


Mean log catchability and standard error of ages with catchability i ndependent of year class strength and constant w.r.t. time
\begin{tabular}{lllllllll}
10 & 11 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{tabular} Mean Logq \(-14.0567-13.6217-13.5561-13.4953-13.5902-13.5902-13.5902-\) 13. \(5 \overline{9} 02-13.5902\)
\(\begin{array}{llllllll}\text { 13. } 590 & -13.5902 & 0.4199 & 0.4199 & 0.4199 & 0.4199 & 0.4199 & 0.4199 \\ \text { S. }^{-1} 4 \overline{1} 99 & 0.4199 & 0.4199\end{array}\)

FI eet: Q1SUBeam nonof \(f\) set
Log cat chability residual s.
\(\begin{array}{lllllllllll}\text { year } \\ 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015\end{array}\)
\begin{tabular}{ccccccccc}
2016 & 0.462 & 0.478 & \(0.386-0.715\) & 0.764 & \(0.544-1.012\) & -0.419 & -0.065 & -0.547
\end{tabular}
\(\begin{array}{lllllllll}3 & -0.212 & 0.420 & 0.207 & 0.024 & 0.236-0.188 & 0.049-0.446 & 0.405 & -0.439\end{array}\)
\(\begin{array}{ccccccccc}4 & -0.256-0.156 & 0.234-0.099 & 0.168-0.004-0.144 & 0.009 & 0.455-0.243-\end{array}\)
\(\begin{array}{lllllllll}0.122 & 0.337-1.307 & 0.074 & 0.159 & 0.316 & 0.084-0.240-0.018-0.188 & 0.212\end{array}\)
\(\begin{array}{llllllllll}0.237 \\ 6 & 0.444-0.241 & 0.505-0.228 & 0.018-0.296-0.325 & 0.285 & 0.088 & 0.002\end{array}\)
\(\begin{array}{lllllllll}0.008 \\ 7 & 0.199-0.676-0.549-0.358 & 0.701-0.648 & 0.247 & 0.204 & 0.502-0.050-\end{array}\)
\(\begin{array}{cccccccccc}0.027 & 0.392-0.682 & 1.211 & -0.277 & -0.274 & 0.417 & -0.066 & 0.331 & 1.274 & 0.258\end{array}\)
\(\begin{array}{lllllllllll}8 & 0.392 & -0.682 & 1.211 & -0.277 & -0.274 & 0.417 & -0.066 & 0.331 & 1.274 & 0.258 \\ 0.252 & & & & & \\ 9 & 0.451 & 0.362 & 0.939-0.282-0.345 & 0.287 & 0.239 & 0.544 & 0.557 & 0.346-\end{array}\)
\(\begin{array}{llllllllll}0.511 & 11 & 1.768 & 1.371 & 0.604 & 0.751 & -0.402 & 0.582 & 0.271 & 0.052\end{array} 0.865 \quad 0.402\)

Mean log cat chability and standard error of ages with cat chability i ndependent of year class strength and constant w.r.t. time
\begin{tabular}{llllllllll}
10 & 11 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{tabular} Mean Logq \(-6.2411-4.9873-4.7348-4.801-4.6733-4.6312-4.6312-4.6312-\) 4. 6312 - 4.6312
\(\begin{array}{lllllllll}\text { S. ELLogq } & 0.5830 & 0.5830 & 0.5830 & 0.583 & 0.5830 & 0.5830 & 0.5830 & 0.5830\end{array}\) \(\begin{array}{ll}0.5 \overline{8} 30 & 0.5830\end{array}\)

FI eet: FSP-UK
Log cat chability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline age & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 2014 & 2015 & 2016 & & & & & & & & \\
\hline 2 & 0.835 & 0.034 & 0. 320 & 0. 174 & 0. 730 & - 0.040 & -0.096 & -0. 130 & -0. 610 & -0.402 \\
\hline 0. 316 & -0.047 & 0. 180 & & & & & & & & \\
\hline 3 & 0. 328 & -0.068 & 0. 076 & 0. 247 & -0.056 & -0. 184 & -0.493 & - 0.043 & 0. 028 & 0. \\
\hline 0. 180 & -0.034 & 0.116 & & & & & & & & \\
\hline 4 & 0. 351 & -0. 154 & 0. 031 & -0. 071 & 0. 021 & 0. 163 & -0. 225 & -0.984 & -0. 091 & 0. 346 \\
\hline 0. 473 & 0. 473 & -0. 246 & & & & & & & & \\
\hline 5 & 0. 196 & -0. 279 & 0. 172 & -0.242 & 0. 520 & -0. 173 & -0. 126 & -0. 186 & -0. 143 & 0. 145 \\
\hline 0. 325 & -0.030 & -0.127 & & & & & & & & \\
\hline & -0. 191 & 0. 292 & 0. 270 & 0. 029 & -0. 197 & -0. 316 & 0. 080 & -0. 305 & -0. 158 & 0.403 \\
\hline 0. 156 & -0.083 & 0. 088 & & & & & & & & \\
\hline 7 & 0. 114 & 0. 551 & 0. 598 & 0. 453 & -0. 186 & 0. 254 & -0. 311 & -0. 344 & -0.761 & 0. 138 \\
\hline 0. 589 & -0.038 & -0.033 & & & & & & & & \\
\hline 8 & 1. 002 & 0.011 & 0. 860 & 0. 103 & -0.460 & -0. 126 & -0. 098 & -2. 060 & -0. 158 & 0. 052 \\
\hline 0. 171 & 0. 460 & 0. 189 & & & & & & & & \\
\hline 9 & 0. 565 & 0. 332 & 0. 102 & 0. 963 & 0. 580 & -0.062 & 0. 208 & . 271 & 0. 067 & 001 \\
\hline 0. 045 & 0. 236 & -0. 202 & & & & & & & & \\
\hline 10 & 0. 253 & 0.019 & 0. 655 & 0. 166 & 0. 139 & -0. 278 & 0. 349 & -0. 794 & -1. 309 & 1. 067 \\
\hline 0. 449 & -0. 0.159 & 0. 272 & & & & & & & & \\
\hline 11 & 0. 716 & 0. 654 & 0. 649 & 1. 052 & 1. 626 & 0. 769 & 0. 271 & 0. 199 & 0. 551 & NA \\
\hline 1. 919 & 0. 173 & -0.406 & & & & & & & & \\
\hline
\end{tabular}

Mean Iog cat chability and st andard error of ages with cat chability
i ndependent of year class strength and constant w.r.t. time


Terminal year survi vor and \(F\) summari es:
, Age 2 Year class =2014
\begin{tabular}{lrrr}
\hline & scal edWt s & sur vi vors & yrcl s \\
Q1SWBeam nonof fset & 0.166 & 6590 & 2014 \\
FSP-UK & 0.503 & 3708 & 2014 \\
fshk & 0.331 & 1615 & 2014
\end{tabular}
, Age 3 Year class \(=2013\)
source
\begin{tabular}{lrrr} 
& scal edWt s survi vors & yrcl s \\
UK-CBT-I at e & 0.211 & 3669 & 2013 \\
Q1SWBeam nonof f set & 0.290 & 3650 & 2013 \\
FSP-UK & 0.290 & 3607 & 2013 \\
fshk & 0.209 & 2712 & 2013
\end{tabular}
, Age 4 Year class =2012
\begin{tabular}{lrrr} 
sour ce & & & \\
& scal edWk s survi vors & yr cl s \\
& 0.278 & 1567 & 2012 \\
UK-CBT- I at e & 0.278 & 1156 & 2012 \\
Q1SWBeam nonof f set & 0.206 & 1021 & 2012 \\
FSP-UK & 0.238 & 1813 & 2012 \\
fshk & & &
\end{tabular}
, Age 5 Year class =2011
source
\begin{tabular}{lrrr} 
& scal edWts & survi vors & yrcl s \\
& 0.266 & 1077 & 2011 \\
UK-CBT-I at e & 0.256 & 1339 & 2011 \\
Q1SWBeam nonof fset & 0.266 & 931 & 2011 \\
FSP-UK & 0.212 & 962 & 2011
\end{tabular}
, Age 6 Year class =2010
source
\begin{tabular}{lrrr} 
& scal edVts & survi vors & yrcl s \\
& 0.262 & 1032 & 2010 \\
UK-CBT- I at e & 0.262 & 881 & 2010 \\
Q1SWBeam nonof f set & 0.262 & 955 & 2010 \\
FSP-UK & 0.213 & 881 & 2010
\end{tabular}
, Age 7 Year class =2009
source
\begin{tabular}{lrrr} 
& scal edWt s & survi vors & yr cl s \\
UK-CBT-I at e & 0.301 & 815 & 2009 \\
Q1SWBeam nonof fset & 0.205 & 736 & 2009 \\
FSP-UK & 0.242 & 731 & 2009 \\
fshk & 0.251 & 981 & 2009
\end{tabular}
, Age 8 Year class =2008
source scal edWts survi vors yrcls
\begin{tabular}{lrrr} 
& UK-CBT-I at e & 0.421 & 724 \\
Q1SWBeam nonof fet & 0.143 & 1039 & 2008 \\
FSP-UK & 0.107 & 975 & 2008 \\
fshk & 0.329 & 748 & 2008
\end{tabular}
, Age 9 Year class =2007
\begin{tabular}{lrrr} 
sour ce & & & \\
& scal edWts survi vors & yr cl s \\
UK-CBT- I at e & 0.304 & 355 & 2007 \\
Q1SWBeam nonof f set & 0.163 & 187 & 2007 \\
FSP-UK & 0.304 & 290 & 2007 \\
fshk & 0.229 & 293 & 2007
\end{tabular}
, Age 10 Year class =2006
source
\begin{tabular}{lrrr} 
& scal edWt s survi vors & yr cl s \\
& 0.470 & 334 & 2006 \\
UK-CBT- I at e & 0.048 & 213 & 2006 \\
Q1SVBeam nonof fset & 0.140 & 465 & 2006 \\
FSP-UK & 0.342 & 222 & 2006 \\
fshk &
\end{tabular}
, Age 11 Year class =2005
\begin{tabular}{lrrr} 
source & & & \\
& scal edWHs & survi vors & yrcl s \\
UK-CBT-I at e & 0.470 & 156 & 2005 \\
Q1SWBeam nonof fset & 0.117 & 421 & 2005 \\
FSP-UK & 0.067 & 142 & 2005 \\
fshk & 0.345 & 142 & 2005 \\
\hline
\end{tabular}

Table 35.8. Sole in Division 7.e. Estimated stock numbers at age (thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline year \(\backslash\) age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) & total \\
\hline 1969 & 1874 & 2380 & 625 & 966 & 1513 & 159 & 507 & 572 & 262 & 90 & 636 & 9585 \\
\hline 1970 & 1343 & 1611 & 1848 & 490 & 732 & 1170 & 124 & 412 & 494 & 218 & 1123 & 9564 \\
\hline 1971 & 3826 & 1164 & 1237 & 1365 & 358 & 584 & 952 & 100 & 340 & 397 & 821 & 11144 \\
\hline 1972 & 2568 & 3414 & 863 & 885 & 1047 & 262 & 452 & 713 & 81 & 274 & 542 & 11102 \\
\hline 1973 & 2264 & 2185 & 2698 & 621 & 691 & 840 & 224 & 386 & 518 & 37 & 1222 & 11687 \\
\hline 1974 & 3107 & 1981 & 1600 & 2029 & 478 & 532 & 646 & 187 & 300 & 440 & 850 & 12149 \\
\hline 1975 & 2967 & 2769 & 1461 & 1238 & 1667 & 365 & 406 & 544 & 138 & 248 & 1756 & 13559 \\
\hline 1976 & 2791 & 2607 & 1966 & 1160 & 931 & 1399 & 304 & 317 & 468 & 105 & 1598 & 13645 \\
\hline 1977 & 6556 & 2367 & 1960 & 1330 & 896 & 714 & 1178 & 230 & 231 & 375 & 1866 & 17703 \\
\hline 1978 & 4657 & 5527 & 1839 & 1408 & 1007 & 714 & 580 & 995 & 199 & 186 & 1385 & 18497 \\
\hline 1979 & 4389 & 3976 & 3933 & 1334 & 1070 & 732 & 548 & 456 & 827 & 144 & 1493 & 18901 \\
\hline 1980 & 4702 & 3755 & 2834 & 2787 & 970 & 751 & 497 & 397 & 327 & 650 & 1702 & 19373 \\
\hline 1981 & 8130 & 4088 & 2866 & 2092 & 1923 & 758 & 506 & 316 & 298 & 243 & 934 & 22154 \\
\hline 1982 & 4680 & 7124 & 2933 & 1974 & 1448 & 1370 & 516 & 337 & 214 & 214 & 1035 & 21845 \\
\hline 1983 & 3866 & 4113 & 5066 & 1782 & 1260 & 976 & 1011 & 337 & 198 & 117 & 828 & 19555 \\
\hline 1984 & 5968 & 3412 & 3006 & 3087 & 1058 & 806 & 629 & 635 & 192 & 110 & 982 & 19886 \\
\hline 1985 & 6982 & 5083 & 2457 & 1934 & 2073 & 649 & 535 & 446 & 430 & 123 & 532 & 21243 \\
\hline 1986 & 3766 & 6045 & 2982 & 1504 & 1304 & 1320 & 417 & 392 & 306 & 309 & 529 & 18872 \\
\hline 1987 & 5849 & 3173 & 3931 & 1775 & 961 & 874 & 874 & 297 & 283 & 191 & 754 & 18962 \\
\hline 1988 & 3880 & 4828 & 2102 & 2519 & 1199 & 675 & 578 & 573 & 224 & 208 & 713 & 17501 \\
\hline 1989 & 3736 & 3089 & 3001 & 1335 & 1587 & 729 & 465 & 369 & 415 & 166 & 743 & 15637 \\
\hline 1990 & 2818 & 3009 & 1966 & 1543 & 736 & 952 & 446 & 317 & 232 & 268 & 739 & 13027 \\
\hline 1991 & 7169 & 2225 & 1865 & 1226 & 870 & 434 & 610 & 268 & 189 & 139 & 656 & 15651 \\
\hline 1992 & 3908 & 6059 & 1619 & 1229 & 835 & 578 & 304 & 447 & 177 & 136 & 528 & 15819 \\
\hline 1993 & 3354 & 3236 & 4118 & 1068 & 829 & 646 & 416 & 217 & 334 & 136 & 345 & 14700 \\
\hline 1994 & 2373 & 2836 & 2259 & 2673 & 633 & 542 & 441 & 302 & 140 & 249 & 488 & 12935 \\
\hline 1995 & 3434 & 2055 & 1942 & 1513 & 1888 & 466 & 389 & 352 & 219 & 84 & 647 & 12989 \\
\hline 1996 & 3987 & 3017 & 1566 & 1158 & 962 & 1317 & 297 & 257 & 260 & 167 & 651 & 13641 \\
\hline 1997 & 3388 & 3261 & 2307 & 1071 & 765 & 648 & 948 & 205 & 174 & 189 & 413 & 13367 \\
\hline 1998 & 4468 & 2860 & 2160 & 1399 & 660 & 521 & 401 & 693 & 144 & 138 & 649 & 14093 \\
\hline 1999 & 3599 & 3791 & 2011 & 1444 & 946 & 398 & 328 & 287 & 506 & 97 & 478 & 13884 \\
\hline 2000 & 6693 & 2990 & 2560 & 1345 & 928 & 613 & 251 & 199 & 208 & 356 & 369 & 16512 \\
\hline 2001 & 5495 & 5764 & 2136 & 1602 & 867 & 622 & 453 & 177 & 116 & 140 & 525 & 17896 \\
\hline 2002 & 3857 & 4834 & 3883 & 1427 & 977 & 530 & 394 & 314 & 108 & 64 & 295 & 16683 \\
\hline 2003 & 5452 & 3174 & 3184 & 2712 & 923 & 578 & 357 & 256 & 195 & 67 & 295 & 17193 \\
\hline 2004 & 2893 & 4364 & 2078 & 1974 & 1840 & 712 & 452 & 276 & 177 & 116 & 280 & 15161 \\
\hline 2005 & 4063 & 2239 & 2921 & 1454 & 1363 & 1165 & 488 & 298 & 192 & 108 & 428 & 14720 \\
\hline 2006 & 4701 & 3431 & 1580 & 1850 & 888 & 886 & 776 & 333 & 194 & 131 & 367 & 15137 \\
\hline 2007 & 4031 & 3778 & 2357 & 981 & 1097 & 565 & 589 & 526 & 221 & 123 & 454 & 14721 \\
\hline 2008 & 4301 & 3456 & 2608 & 1414 & 610 & 648 & 341 & 409 & 371 & 147 & 332 & 14638 \\
\hline 2009 & 3640 & 3624 & 2412 & 1715 & 922 & 397 & 412 & 209 & 302 & 272 & 502 & 14407 \\
\hline 2010 & 5158 & 3136 & 2765 & 1816 & 1235 & 642 & 296 & 302 & 154 & 226 & 524 & 16255 \\
\hline 2011 & 3790 & 4602 & 2506 & 2127 & 1330 & 923 & 460 & 221 & 206 & 120 & 395 & 16681 \\
\hline
\end{tabular}
\begin{tabular}{lcccccccccccc}
\hline year \(\backslash\) age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) & total \\
\hline 2012 & 3317 & 3342 & 3689 & 1815 & 1540 & 982 & 687 & 340 & 163 & 154 & 494 & 16522 \\
\hline 2013 & 2973 & 2972 & 2808 & 2839 & 1261 & 1056 & 669 & 491 & 244 & 106 & 512 & 15930 \\
\hline 2014 & 2955 & 2576 & 2381 & 2081 & 2002 & 874 & 752 & 465 & 351 & 175 & 625 & 15238 \\
\hline 2015 & 4598 & 2486 & 2026 & 1711 & 1478 & 1422 & 631 & 574 & 346 & 260 & 708 & 16240 \\
\hline 2016 & 3520 & 3992 & 1936 & 1458 & 1228 & 1090 & 1090 & 462 & 444 & 271 & 878 & 16370 \\
\hline
\end{tabular}

Table 35.9. Sole in Division 7.e. Estimated fishing mortality at age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline year \(\backslash\) age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) & Fbar(3-9) \\
\hline 1969 & 0.051 & 0.153 & 0.144 & 0.176 & 0.157 & 0.151 & 0.108 & 0.048 & 0.084 & 0.11 & 0.11 & 0.134 \\
\hline 1970 & 0.043 & 0.164 & 0.203 & 0.213 & 0.126 & 0.106 & 0.115 & 0.093 & 0.118 & 0.112 & 0.112 & 0.146 \\
\hline 1971 & 0.014 & 0.2 & 0.234 & 0.165 & 0.212 & 0.155 & 0.188 & 0.109 & 0.113 & 0.156 & 0.156 & 0.181 \\
\hline 1972 & 0.062 & 0.136 & 0.228 & 0.147 & 0.12 & 0.059 & 0.059 & 0.219 & 0.69 & 0.23 & 0.23 & 0.138 \\
\hline 1973 & 0.034 & 0.212 & 0.185 & 0.163 & 0.163 & 0.162 & 0.081 & 0.151 & 0.063 & 0.124 & 0.124 & 0.16 \\
\hline 1974 & 0.015 & 0.205 & 0.156 & 0.097 & 0.17 & 0.171 & 0.072 & 0.199 & 0.089 & 0.14 & 0.14 & 0.153 \\
\hline 1975 & 0.029 & 0.243 & 0.13 & 0.185 & 0.075 & 0.083 & 0.147 & 0.051 & 0.181 & 0.108 & 0.108 & 0.131 \\
\hline 1976 & 0.065 & 0.185 & 0.291 & 0.158 & 0.166 & 0.072 & 0.176 & 0.216 & 0.122 & 0.151 & 0.151 & 0.18 \\
\hline 1977 & 0.071 & 0.152 & 0.23 & 0.178 & 0.128 & 0.108 & 0.069 & 0.048 & 0.114 & 0.093 & 0.093 & 0.13 \\
\hline 1978 & 0.058 & 0.24 & 0.221 & 0.174 & 0.22 & 0.165 & 0.14 & 0.085 & 0.226 & 0.167 & 0.167 & 0.178 \\
\hline 1979 & 0.056 & 0.239 & 0.244 & 0.219 & 0.254 & 0.287 & 0.221 & 0.232 & 0.142 & 0.228 & 0.228 & 0.242 \\
\hline 1980 & 0.04 & 0.17 & 0.204 & 0.271 & 0.147 & 0.295 & 0.352 & 0.188 & 0.198 & 0.236 & 0.236 & 0.232 \\
\hline 1981 & 0.032 & 0.232 & 0.273 & 0.268 & 0.239 & 0.285 & 0.305 & 0.289 & 0.229 & 0.27 & 0.27 & 0.27 \\
\hline 1982 & 0.029 & 0.241 & 0.398 & 0.349 & 0.295 & 0.203 & 0.325 & 0.434 & 0.503 & 0.353 & 0.353 & 0.321 \\
\hline 1983 & 0.025 & 0.214 & 0.395 & 0.421 & 0.347 & 0.34 & 0.365 & 0.461 & 0.489 & 0.402 & 0.402 & 0.363 \\
\hline 1984 & 0.061 & 0.229 & 0.341 & 0.298 & 0.39 & 0.309 & 0.244 & 0.29 & 0.35 & 0.317 & 0.317 & 0.3 \\
\hline 1985 & 0.044 & 0.433 & 0.391 & 0.294 & 0.352 & 0.342 & 0.212 & 0.277 & 0.232 & 0.284 & 0.284 & 0.329 \\
\hline 1986 & 0.071 & 0.33 & 0.419 & 0.348 & 0.3 & 0.312 & 0.238 & 0.226 & 0.37 & 0.29 & 0.29 & 0.31 \\
\hline 1987 & 0.092 & 0.312 & 0.345 & 0.292 & 0.252 & 0.314 & 0.322 & 0.182 & 0.205 & 0.256 & 0.256 & 0.288 \\
\hline 1988 & 0.128 & 0.376 & 0.354 & 0.362 & 0.397 & 0.272 & 0.348 & 0.223 & 0.201 & 0.289 & 0.289 & 0.333 \\
\hline 1989 & 0.116 & 0.352 & 0.565 & 0.496 & 0.411 & 0.393 & 0.285 & 0.363 & 0.337 & 0.359 & 0.359 & 0.409 \\
\hline 1990 & 0.136 & 0.379 & 0.372 & 0.473 & 0.428 & 0.345 & 0.41 & 0.417 & 0.413 & 0.404 & 0.404 & 0.403 \\
\hline 1991 & 0.068 & 0.218 & 0.317 & 0.285 & 0.309 & 0.256 & 0.212 & 0.311 & 0.23 & 0.264 & 0.264 & 0.272 \\
\hline 1992 & 0.089 & 0.286 & 0.316 & 0.293 & 0.156 & 0.229 & 0.237 & 0.191 & 0.167 & 0.196 & 0.196 & 0.244 \\
\hline 1993 & 0.068 & 0.26 & 0.332 & 0.423 & 0.326 & 0.282 & 0.22 & 0.341 & 0.194 & 0.273 & 0.273 & 0.312 \\
\hline 1994 & 0.044 & 0.279 & 0.301 & 0.248 & 0.206 & 0.23 & 0.125 & 0.223 & 0.404 & 0.238 & 0.238 & 0.23 \\
\hline 1995 & 0.029 & 0.172 & 0.417 & 0.352 & 0.26 & 0.349 & 0.317 & 0.202 & 0.171 & 0.26 & 0.26 & 0.295 \\
\hline 1996 & 0.101 & 0.168 & 0.28 & 0.315 & 0.296 & 0.23 & 0.274 & 0.288 & 0.22 & 0.262 & 0.262 & 0.265 \\
\hline 1997 & 0.069 & 0.312 & 0.4 & 0.384 & 0.284 & 0.379 & 0.213 & 0.254 & 0.131 & 0.253 & 0.253 & 0.318 \\
\hline 1998 & 0.064 & 0.252 & 0.302 & 0.291 & 0.406 & 0.364 & 0.235 & 0.215 & 0.295 & 0.303 & 0.303 & 0.295 \\
\hline 1999 & 0.085 & 0.293 & 0.303 & 0.342 & 0.334 & 0.36 & 0.399 & 0.221 & 0.253 & 0.314 & 0.314 & 0.322 \\
\hline 2000 & 0.049 & 0.236 & 0.369 & 0.338 & 0.301 & 0.203 & 0.249 & 0.443 & 0.297 & 0.299 & 0.299 & 0.306 \\
\hline 2001 & 0.028 & 0.295 & 0.303 & 0.395 & 0.392 & 0.357 & 0.266 & 0.396 & 0.495 & 0.382 & 0.382 & 0.343 \\
\hline 2002 & 0.095 & 0.318 & 0.259 & 0.335 & 0.426 & 0.295 & 0.33 & 0.377 & 0.383 & 0.362 & 0.362 & 0.334 \\
\hline 2003 & 0.123 & 0.324 & 0.378 & 0.288 & 0.161 & 0.146 & 0.158 & 0.271 & 0.417 & 0.246 & 0.246 & 0.246 \\
\hline
\end{tabular}
\begin{tabular}{lllllllllllll}
\hline 2004 & 0.156 & 0.301 & 0.257 & 0.27 & 0.357 & 0.278 & 0.315 & 0.263 & 0.39 & 0.383 & 0.383 & 0.292 \\
\hline 2005 & 0.069 & 0.248 & 0.357 & 0.393 & 0.331 & 0.307 & 0.28 & 0.331 & 0.281 & 0.269 & 0.269 & 0.321 \\
\hline 2006 & 0.119 & 0.276 & 0.377 & 0.422 & 0.352 & 0.308 & 0.288 & 0.312 & 0.359 & 0.286 & 0.286 & 0.334 \\
\hline 2007 & 0.054 & 0.271 & 0.411 & 0.376 & 0.426 & 0.404 & 0.264 & 0.248 & 0.307 & 0.259 & 0.259 & 0.343 \\
\hline 2008 & 0.071 & 0.26 & 0.319 & 0.327 & 0.33 & 0.354 & 0.39 & 0.202 & 0.212 & 0.331 & 0.331 & 0.312 \\
\hline 2009 & 0.049 & 0.17 & 0.184 & 0.228 & 0.262 & 0.192 & 0.21 & 0.207 & 0.191 & 0.147 & 0.147 & 0.208 \\
\hline 2010 & 0.014 & 0.124 & 0.162 & 0.211 & 0.191 & 0.234 & 0.191 & 0.283 & 0.15 & 0.17 & 0.17 & 0.2 \\
\hline 2011 & 0.026 & 0.121 & 0.223 & 0.223 & 0.204 & 0.196 & 0.201 & 0.205 & 0.193 & 0.283 & 0.283 & 0.196 \\
\hline 2012 & 0.01 & 0.074 & 0.162 & 0.264 & 0.278 & 0.284 & 0.235 & 0.233 & 0.332 & 0.306 & 0.306 & 0.219 \\
\hline 2013 & 0.043 & 0.122 & 0.199 & 0.249 & 0.266 & 0.24 & 0.262 & 0.235 & 0.234 & 0.255 & 0.255 & 0.225 \\
\hline 2014 & 0.073 & 0.14 & 0.23 & 0.242 & 0.243 & 0.226 & 0.17 & 0.196 & 0.202 & 0.178 & 0.178 & 0.207 \\
\hline 2015 & 0.041 & 0.15 & 0.229 & 0.231 & 0.205 & 0.165 & 0.212 & 0.155 & 0.145 & 0.13 & 0.13 & 0.193 \\
\hline 2016 & 0.028 & 0.117 & 0.294 & 0.222 & 0.24 & 0.266 & 0.201 & 0.164 & 0.126 & 0.137 & 0.137 & 0.215 \\
\hline
\end{tabular}

Table 35.10. Sole in Division 7.e. Assessment summary.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Recruitment Age 2 [000's] & TSB [tonnes] & SSB [tonnes] & Landings [tonnes] & Yield/SSB & Fbar (Ages 3-9) \\
\hline 1969 & 1874 & 2927 & 2437 & 353 & 0.14 & 0.134 \\
\hline 1970 & 1343 & 3023 & 2652 & 391 & 0.15 & 0.146 \\
\hline 1971 & 3826 & 2838 & 2390 & 432 & 0.18 & 0.181 \\
\hline 1972 & 2568 & 3091 & 2395 & 437 & 0.18 & 0.138 \\
\hline 1973 & 2264 & 3266 & 2778 & 459 & 0.17 & 0.16 \\
\hline 1974 & 3107 & 3512 & 2896 & 427 & 0.15 & 0.153 \\
\hline 1975 & 2967 & 4429 & 3670 & 491 & 0.13 & 0.131 \\
\hline 1976 & 2791 & 4102 & 3403 & 616 & 0.18 & 0.18 \\
\hline 1977 & 6556 & 5339 & 4098 & 606 & 0.15 & 0.13 \\
\hline 1978 & 4657 & 5429 & 4074 & 861 & 0.21 & 0.178 \\
\hline 1979 & 4389 & 6014 & 4865 & 1181 & 0.24 & 0.242 \\
\hline 1980 & 4702 & 6387 & 5338 & 1269 & 0.24 & 0.232 \\
\hline 1981 & 8130 & 5957 & 4572 & 1215 & 0.27 & 0.27 \\
\hline 1982 & 4680 & 5916 & 4575 & 1446 & 0.32 & 0.321 \\
\hline 1983 & 3866 & 5377 & 4374 & 1498 & 0.34 & 0.363 \\
\hline 1984 & 5968 & 5463 & 4430 & 1370 & 0.31 & 0.3 \\
\hline 1985 & 6982 & 5569 & 4009 & 1409 & 0.35 & 0.329 \\
\hline 1986 & 3766 & 5258 & 4014 & 1419 & 0.35 & 0.31 \\
\hline 1987 & 5849 & 5311 & 4112 & 1280 & 0.31 & 0.288 \\
\hline 1988 & 3880 & 5121 & 4044 & 1444 & 0.36 & 0.333 \\
\hline 1989 & 3736 & 4319 & 3443 & 1390 & 0.4 & 0.409 \\
\hline 1990 & 2818 & 4224 & 3288 & 1315 & 0.4 & 0.403 \\
\hline 1991 & 7169 & 4222 & 2993 & 852 & 0.28 & 0.272 \\
\hline 1992 & 3908 & 4104 & 2940 & 895 & 0.3 & 0.244 \\
\hline 1993 & 3354 & 3584 & 2814 & 904 & 0.32 & 0.312 \\
\hline 1994 & 2373 & 3791 & 3058 & 800 & 0.26 & 0.23 \\
\hline 1995 & 3434 & 3878 & 3073 & 856 & 0.28 & 0.295 \\
\hline 1996 & 3987 & 4163 & 3059 & 833 & 0.27 & 0.265 \\
\hline
\end{tabular}
\begin{tabular}{ccccccc}
\hline Year & Recruitment Age 2 [000's] & TSB [tonnes] & SSB [tonnes] & Landings [tonnes] & Yield/SSB & Fbar (Ages 3-9) \\
\hline 1997 & 3388 & 3851 & 2928 & 949 & 0.32 & 0.318 \\
\hline 1998 & 4468 & 3975 & 2927 & 880 & 0.3 & 0.295 \\
\hline 1999 & 3599 & 3988 & 2859 & 957 & 0.33 & 0.322 \\
\hline 2000 & 6693 & 4377 & 2912 & 914 & 0.31 & 0.306 \\
\hline 2001 & 5495 & 4601 & 2957 & 1069 & 0.36 & 0.343 \\
\hline 2002 & 3857 & 4288 & 3097 & 1106 & 0.36 & 0.334 \\
\hline 2003 & 5452 & 4515 & 3388 & 1078 & 0.32 & 0.246 \\
\hline 2004 & 2893 & 4134 & 3200 & 1075 & 0.34 & 0.292 \\
\hline 2005 & 4063 & 4167 & 3279 & 1039 & 0.32 & 0.321 \\
\hline 2006 & 4701 & 3878 & 2888 & 1023 & 0.35 & 0.334 \\
\hline 2007 & 4031 & 4002 & 2951 & 1015 & 0.34 & 0.343 \\
\hline 2008 & 4301 & 3974 & 2825 & 908 & 0.32 & 0.312 \\
\hline 2009 & 3640 & 4174 & 3224 & 701 & 0.22 & 0.208 \\
\hline 2010 & 5158 & 4643 & 3622 & 698 & 0.19 & 0.2 \\
\hline 2011 & 3790 & 4967 & 3730 & 801 & 0.21 & 0.196 \\
\hline 2012 & 3317 & 4809 & 3960 & 872 & 0.22 & 0.219 \\
\hline 2013 & 2973 & 4652 & 3854 & 883 & 0.23 & 0.225 \\
\hline 2014 & 2955 & 4924 & 4114 & 885 & 0.22 & 0.207 \\
\hline 2015 & 4598 & 5055 & 4097 & 774 & 0.19 & 0.193 \\
\hline 2016 & 3520 & 5689 & 4522 & 913 & 0.2 & 0.215 \\
\hline
\end{tabular}

Table 35.11. Sole in Division 7.e. Input data for the short-term forecast.
\begin{tabular}{lllllllllll}
\hline Age & N2017 & N2018 & N2019 & M & Mat & PF & PM & SWt & Sel & CWt \\
\hline 2 & 3890 & 3890 & 3890 & 0.1 & 0.14 & 0 & 0 & 0.161 & 0.05 & 0.196 \\
\hline 3 & 3098 & 3349 & 3349 & 0.1 & 0.45 & 0 & 0 & 0.229 & 0.142 & 0.262 \\
\hline 4 & 3213 & 2431 & 2628 & 0.1 & 0.88 & 0 & 0 & 0.293 & 0.264 & 0.324 \\
\hline 5 & 1306 & 2233 & 1690 & 0.1 & 0.98 & 0 & 0 & 0.352 & 0.243 & 0.379 \\
\hline 6 & 1057 & 926 & 1584 & 0.1 & 1 & 0 & 0 & 0.405 & 0.241 & 0.43 \\
\hline 7 & 874 & 752 & 659 & 0.1 & 1 & 0 & 0 & 0.454 & 0.23 & 0.477 \\
\hline 8 & 756 & 629 & 541 & 0.1 & 1 & 0 & 0 & 0.497 & 0.204 & 0.518 \\
\hline 9 & 807 & 558 & 464 & 0.1 & 1 & 0 & 0 & 0.536 & 0.18 & 0.553 \\
\hline 10 & 355 & 610 & 421 & 0.1 & 1 & 0 & 0 & 0.569 & 0.166 & 0.584 \\
\hline 11 & 354 & 272 & 467 & 0.1 & 1 & 0 & 0 & 0.597 & 0.156 & 0.61 \\
\hline 12 & 906 & 976 & 966 & 0.1 & 1 & 0 & 0 & 0.704 & 0.156 & 0.709 \\
\hline
\end{tabular}

Table 35.12. Sole in Division 7.e. Single option output.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Age & F & Catch.No & Yield & Stock.No & Biomass & SSNo & SSB \\
\hline \multicolumn{8}{|l|}{Year \(=2017, \mathrm{~F} / \mathrm{F}_{2014-2016}=1.034, \mathrm{Fbar}=0.215\)} \\
\hline 2 & 0.05 & 180 & 35 & 3890 & 625 & 545 & 87 \\
\hline 3 & 0.142 & 392 & 103 & 3098 & 710 & 1394 & 320 \\
\hline 4 & 0.264 & 710 & 230 & 3213 & 941 & 2827 & 828 \\
\hline 5 & 0.243 & 269 & 102 & 1306 & 459 & 1280 & 450 \\
\hline 6 & 0.241 & 215 & 93 & 1057 & 428 & 1057 & 428 \\
\hline 7 & 0.23 & 171 & 82 & 874 & 397 & 874 & 397 \\
\hline 8 & 0.204 & 133 & 69 & 756 & 376 & 756 & 376 \\
\hline 9 & 0.18 & 127 & 70 & 807 & 432 & 807 & 432 \\
\hline 10 & 0.166 & 52 & 30 & 355 & 202 & 355 & 202 \\
\hline 11 & 0.156 & 49 & 30 & 354 & 212 & 354 & 212 \\
\hline 12+ & 0.156 & 125 & 88 & 906 & 638 & 906 & 638 \\
\hline Total & & 2423 & 932 & 16616 & 5420 & 11155 & 4370 \\
\hline \multicolumn{8}{|l|}{\[
\text { Year }=2018, F / F_{2014-2016}=1.034, \text { Fbar }=0.215
\]} \\
\hline 2 & 0.05 & 180 & 35 & 3890 & 625 & 545 & 87 \\
\hline 3 & 0.142 & 423 & 111 & 3349 & 768 & 1507 & 346 \\
\hline 4 & 0.264 & 537 & 174 & 2431 & 712 & 2139 & 627 \\
\hline 5 & 0.243 & 460 & 174 & 2233 & 785 & 2189 & 770 \\
\hline 6 & 0.241 & 189 & 81 & 926 & 375 & 926 & 375 \\
\hline 7 & 0.23 & 147 & 70 & 752 & 341 & 752 & 341 \\
\hline 8 & 0.204 & 111 & 57 & 629 & 313 & 629 & 313 \\
\hline 9 & 0.18 & 88 & 49 & 558 & 299 & 558 & 299 \\
\hline 10 & 0.166 & 89 & 52 & 610 & 347 & 610 & 347 \\
\hline 11 & 0.156 & 37 & 23 & 272 & 162 & 272 & 162 \\
\hline 12+ & 0.156 & 134 & 95 & 976 & 687 & 976 & 687 \\
\hline Total & & 2395 & 921 & 16626 & 5414 & 11103 & 4354 \\
\hline \multicolumn{8}{|l|}{Year \(=2019, \mathrm{~F} / \mathrm{F}_{2014-2016}=1.034, \mathrm{Fbar}=0.215\)} \\
\hline 2 & 0.05 & 180 & 35 & 3890 & 625 & 545 & 87 \\
\hline 3 & 0.142 & 423 & 111 & 3349 & 768 & 1507 & 346 \\
\hline 4 & 0.264 & 581 & 188 & 2628 & 770 & 2313 & 678 \\
\hline 5 & 0.243 & 348 & 132 & 1690 & 594 & 1656 & 582 \\
\hline 6 & 0.241 & 323 & 139 & 1584 & 642 & 1584 & 642 \\
\hline 7 & 0.23 & 129 & 61 & 659 & 299 & 659 & 299 \\
\hline 8 & 0.204 & 95 & 49 & 541 & 269 & 541 & 269 \\
\hline 9 & 0.18 & 73 & 40 & 464 & 248 & 464 & 248 \\
\hline 10 & 0.166 & 61 & 36 & 421 & 240 & 421 & 240 \\
\hline 11 & 0.156 & 64 & 39 & 467 & 279 & 467 & 279 \\
\hline 12+ & 0.156 & 133 & 94 & 966 & 680 & 966 & 680 \\
\hline Total & & 2410 & 924 & 16659 & 5414 & 11123 & 4350 \\
\hline
\end{tabular}

Input units are in 000 's and \(\mathbf{k g}\); output in tonnes.

Table 35.13. Sole in Division 7.e. Year-class sources and contributions for the short-term forecast.
\begin{tabular}{rccccc}
\hline cohort & Yield 2017 & Yield 2018 & SSB 2017 & SSB 2018 & SSB 2019 \\
\hline 2014 & 11 & 18.9 & 7.3 & 14.4 & 13.4 \\
\hline 2015 & 3.8 & 12 & 2 & 7.9 & 15.6 \\
\hline 2016 & & 3.8 & 2 & 7.9 \\
\hline 2017 & & & 2 \\
\hline
\end{tabular}


Table 35.14. Sole in Division 7.e. Management option output.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline BASIS & CATCH_2018 & LANDING_2018 & DISCARDS_2018 & FBAR_2018 & SSB_2019 & SSB_CHANGE & TAC_CHANGE \\
\hline F0 & 0 & 0 & 0 & 0 & 5243.569 & 20.43368 & -100 \\
\hline Fsq0.6 & 592.4061 & 575.005 & 17.40116 & 0.128936 & 4685.371 & 7.613066 & -51.188 \\
\hline FMSY_lower & 724.7385 & 703.4503 & 21.28825 & 0.16 & 4561.039 & 4.757412 & -40.2844 \\
\hline \(\mathrm{F}=0.17\) & 766.5277 & 744.012 & 22.51575 & 0.17 & 4521.805 & 3.856301 & -36.8411 \\
\hline Fsq0.8 & 774.4838 & 751.7343 & 22.74945 & 0.171914 & 4514.337 & 3.68478 & -36.1855 \\
\hline \(\mathrm{F}=0.18\) & 807.9289 & 784.197 & 23.73186 & 0.18 & 4482.95 & 2.963882 & -33.4298 \\
\hline \(\mathrm{F}=0.19\) & 848.946 & 824.0093 & 24.93668 & 0.19 & 4444.47 & 2.080069 & -30.0501 \\
\hline \(\mathrm{F}=0.2\) & 889.5827 & 863.4524 & 26.13034 & 0.2 & 4406.36 & 1.204772 & -26.7018 \\
\hline \(\mathrm{F}=0.21\) & 929.843 & 902.5301 & 27.31293 & 0.21 & 4368.618 & 0.337906 & -23.3845 \\
\hline Fsq & 949.4067 & 921.5191 & 27.88759 & 0.214893 & 4350.283 & -0.08321 & -21.7726 \\
\hline \(\mathrm{F}=0.22\) & 969.7306 & 941.2461 & 28.48458 & 0.22 & 4331.239 & -0.52062 & -20.098 \\
\hline \(\mathrm{F}=0.23\) & 1009.249 & 979.6039 & 29.64538 & 0.23 & 4294.219 & -1.37088 & -16.8418 \\
\hline TAC085 & 1031.602 & 1001.3 & 30.30197 & 0.235698 & 4273.286 & -1.85166 & -15 \\
\hline \(\mathrm{F}=0.24\) & 1048.403 & 1017.607 & 30.79546 & 0.24 & 4257.555 & -2.21296 & -13.6157 \\
\hline \(\mathrm{F}=0.25\) & 1087.194 & 1055.259 & 31.93492 & 0.25 & 4221.244 & -3.04696 & -10.4194 \\
\hline MP2 & 1103.408 & 1070.996 & 32.41116 & 0.254207 & 4206.071 & -3.39544 & -9.08349 \\
\hline \(\mathrm{F}=0.26\) & 1125.628 & 1092.564 & 33.06386 & 0.26 & 4185.281 & -3.87294 & -7.25261 \\
\hline MP & 1163.707 & 1129.525 & 34.18239 & 0.27 & 4149.664 & -4.691 & -4.11503 \\
\hline \(\mathrm{F}=0.27\) & 1163.707 & 1129.525 & 34.18239 & 0.27 & 4149.664 & -4.691 & -4.11503 \\
\hline \(\mathrm{F}=0.28\) & 1201.436 & 1166.145 & 35.29061 & 0.28 & 4114.388 & -5.50121 & -1.00635 \\
\hline TAC & 1213.649 & 1178 & 35.64937 & 0.283257 & 4102.971 & -5.76343 & -3.33E-14 \\
\hline FMSY & 1238.816757 & 1202.428126 & 36.38863089 & 0.29 & 4079.450717 & -6.303649167 & 2.073694923 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline BASIS & CATCH_2018 & LANDING_2018 & DISCARDS_2018 & FBAR_2018 & SSB_2019 & SSB_CHANGE & TAC_CHANGE \\
\hline FMSY_fbar_mean_int & FMSY_fbar_mean_int & 1249.268047 & 1212.572423 & 36.69562394 & 0.29 & 4109.774303 & -6.43675547 \\
\hline FMSY_TAC & 1174.320053 & 1139.825929 & 34.49412411 & 0.29 & 3892.123085 & -5.431522417 & -3.240583248 \\
\hline \(\mathrm{F}=0.3\) & 1275.854 & 1238.377 & 37.47655 & 0.3 & 4044.848 & -7.0984 & 5.125406 \\
\hline \(\mathrm{F}=0.31\) & 1312.55 & 1273.996 & 38.55446 & 0.31 & 4010.577 & -7.88554 & 8.14906 \\
\hline Fpa & 1348.909852 & 1309.28738 & 39.62247236 & 0.32 & 3976.633381 & -8.665145803 & 11.14493886 \\
\hline \(\mathrm{F}=0.32\) & 1348.91 & 1309.287 & 39.62247 & 0.32 & 3976.633 & -8.66515 & 11.14494 \\
\hline \(\mathrm{F}=0.33\) & 1384.936 & 1344.255 & 40.68068 & 0.33 & 3943.015 & -9.43729 & 14.11332 \\
\hline TAC115 & 1395.697 & 1354.7 & 40.99678 & 0.333005 & 3932.975 & -9.66788 & 15 \\
\hline FMSY_upper & 1420.630851 & 1378.901668 & 41.72918341 & 0.34 & 3909.717579 & -10.20206018 & 17.05447093 \\
\hline Flim & 1760.117 & 1708.416 & 51.70115 & 0.44 & 3593.723 & -17.4598 & 45.02681 \\
\hline Bpa & 2510.93126 & 2437.17592 & 73.75533974 & 0.699982133 & 2900 & -33.39313641 & 106.8909949 \\
\hline Btrigger & 2510.93126 & 2437.17592 & 73.75533974 & 0.699982133 & 2900 & -33.39313641 & 106.8909949 \\
\hline Blim & 3501.415631 & 3398.566101 & 102.8495298 & 1.17242569 & 2000 & -54.06423201 & 188.5030646 \\
\hline
\end{tabular}


Figure 35.1. Sole in Division 7.e. Reported landings and discards.


Figure 35.2. Sole in Division 7.e. International landings by fleet.


Figure 35.3. Sole in Division 7.e. Discard rates for discards reported in InterCatch.


Figure 35.4. Sole in Division 7.e. Annual reported discard rates by fleet and country.


Figure 35.5. Sole in Division 7.e. International landings numbers-at-age.


Figure 35.6. Sole in Division 7.e. Catch and stock weights-at-age.


Figure 35.7. Sole in Division 7.e. Generation of stock and catch weights from landings weights-atage.


Figure 35.8. Sole in Division 7.e. Discards by quarter and fleet from sampled trips for the UK.


Figure 35.9. Sole in Division 7.e. Discards from sampled trips for Belgium. Figure shows only annual numbers for fleet TBB_DEF_70-99_0_all. The numbers are raised to the catch for this fleet. Four samples were taken for landings and discards, for landings 3285 fish were measured and for discards 19.


Figure 35.10. Sole in Division 7.e. Means standardised lpue and effort for the UK commercial fleets.


Figure 35.11. Sole in Division 7.e. Means standardised lpue/cpue by year class. Note the cohorts differ on the \(x\)-axes due to the differences in the length and age ranges of the tuning series.


Figure 35.12. Sole in Division 7.e. Means standardised lpue/cpue by year. Note the cohorts differ on the \(x\)-axes due to the differences in the length and age ranges of the tuning series.


Figure 35.13. Sole in Division 7.e. Survey indices for all commercial and scientific surveys.


Figure 35.15. Sole in Division 7.e. Results of the final XSA run.


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Q1SWBeam-nonoffset} \\
\hline & & 000000000 \\
\hline & & 000.0000000 \\
\hline & & \(00000 \cdot 0 \cdot 000\) \\
\hline & & \(00000 \cdot 000\) \\
\hline & & \(0000 \cdot 000 \%\). \\
\hline & & 0000000000 \\
\hline & & 00000000 \\
\hline & & 0000000000 \\
\hline & & ccoscle 0 \\
\hline & & C60000000 \\
\hline 1990 & 2000 & 2010 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{FSP-UK} \\
\hline & & 0000000000000 \\
\hline & & 000000000000 \\
\hline & & \(0000 \cdot 0000000\) \\
\hline & & 00000000000 \\
\hline & & \(000 \bigcirc 00000000\) \\
\hline & & 00000000000 \\
\hline & & \(\bigcirc 0000 \bigcirc 0000\) \\
\hline & & COOCO0000.000 \\
\hline & & 000000060000 \\
\hline & & coccloon 0 \\
\hline 1990 & 2000 & 2010 \\
\hline
\end{tabular}
\(\log\) residuals
- 0.01
- 0.10
○ 0.50
○ 1.00
2.00
- negative
- positive




Figure 35.16. Sole in Division 7.e. XSA fleet log catchability residuals. Note that the application of time-series weighting set as a tricubic taper with a range of 15 years excludes log catchability residuals for the UK-COT fleet prior to 2001.


Figure 35.17. Sole in Division 7.e. Comparison of the current XSA assessment with the final assessment run from last year's WGCSE.


Figure 35.18. Sole in Division 7.e. Scaled weights for the current XSA assessment and the previous XSA assessment conducted at ICES, WGCSE 2016.


Figure 35.19. Sole in Division 7.e. Five-year retrospective of stock status and fishing mortality estimates.


Figure 35.20. Sole in Division 7.e. Options for the intermediate year in the short-term forecast.


Figure 35.21. Sole in Division 7.e. Output for the short-term forecast under the MSY approach.


Figure 35.22. Sole in Division 7.e. Output of the short-term forecast of the MSY approach, including Fmsy ranges.

\subsection*{35.15Audit of Sole in 7.e}

\author{
Marianne Robert
}

17 May 2017

\section*{General}

ICES provides annual catch advice for this stock based on the MSY approach. Advice is topped up based on average discards rate. Last benchmark WKFLAT 2012 but IBPWCFlat2 2015 (The second Inter-benchmark Protocol of Western English Channel Flatfish) provides new recommendation for the assessement. At IBPWCFlat2 2015, the XSA model parameterisation was updated to incorporate revised tuning information due to modifications in the UK e-logbook effort recording system. During WGCSE 2017, the same procedure as last year was applied (the one described in the stock annex) In agreement with the stock annex stock and catch weights-at-age were derived by fitting a 2 nd degree polynomial model to the raw landings weights-at-age extracted from InterCatch. This fit is not checked within the audits procedure.

In 2016, the landing obligation applied to the sole 27.7.e stock for the first time. However, a de minimis exemption applied.

\section*{For single stock summary sheet advice}

\section*{Data}

The report says "As discard are considered to be low, discards were not raised to an international level or allocated with an age structure from sample data." I can understand why the age structure is not raised (no allocation scheme for discards) but the reason why raising discards procedure at international level is not applied is unclear to me.

UK commercial tuning fleet UK COT has dropped to zero this year. The implication of this on assessment results should be better documented.

\section*{Assessment}

1 ) Assessment type: update/DALY XSA Extended Survivors Analysis (XSA) as outlined in the stock annex.
2 ) Assessment: analytical FLXSA (and VPA.95) used two UK commercial time-series (UK-CBT-late and UK-COT) and two UK standardised research surveys (UK-FSP and Q1SWBeam). Biological parameter are in line with the stock annex. These XSA settings are as outlined in the stock annex (including the FLXSA control is specified the stock annex). XSA setting are in line with the stock annex.

\section*{Forecast}
- Forecast: Short-term forecast is presented and conducted in R. However, the stock annex says "Software used: MFDP".

The stock annex mentioned "appropriate forecast parameter are largely based on diagnostics of the assessment"

Advice sheet and report: \(\mathrm{F}(2013-2015)\) rescaled : " French landings are still subject to a lag between reaching the TAC and closure of the fishery so that a rescaled F interim year assumption remains prudent. F estimates 2014-2016 fluctuate around 0.2. Con-
sequently, rescaling \(\mathrm{F}_{2016}\) by average \(\mathrm{F}_{14-16}\) is considered appropriate for the forecast as per the stock annex to account for the slight retrospective pattern. The mean catch and stock weights-at-age 2014-2016 were also used."

The report says : rec=gm(1969-2016) \(=>\) "Recruitment was forecast using a long-term geometric mean (1969-2016) due to temporal variability in the time-series and the lack of distinct periods of successive high or low recruitment in recent years." This reasoning is the same as last year.
The stock annex stipulates "In 2015, IBPWCFlat2 decided to forecast recruitment using a long-term geometric mean (1969-2014) due to temporal variability in the timeseries and the lack of distinct periods of successive high or low recruitment in recent years. IBPWCFlat2 also issued a caveat that recruitment should be forecast using a short-term geometric mean if distinct periods of successive low or high recruitment is evident over the final three years (ICES, 2015b)."

Stock annex is therefore unclear on the forecast recruitment assumption to be used. Need to be clarified.

\section*{Diagnostics}
- Consistency: The assessment is consistent with last year assessment.
- retro: Downward revision in SSB and upward revision in F are observed in the retro plots. The amplitude of this revision are low to moderate.

Recruitment has been very noisy in the last five years of the retro
- Stock status: F is estimated below Fmsy since 2009 and SSB above MSYB trigger. Recruitment is variable without clear trend.
- Management Plan: A management plan has been agreed by the EU in 2007 (EC, 2007). In its current phase, it aims at keeping F at the target value of 0.27 with a \(15 \%\) TAC constraint. This plan has not been evaluated by ICES.

\section*{Conclusion}

The assessment and forecast have been performed correctly. Report is clear and well written. Stock annex is very detailed.
The catch options inputs and table in the advice sheet are consistent with the tables and description in the WG report. Minors erros has been spoted:
=> please check in the advice : Landings and discards in 2017; 2015 and 2016 catches per countries, rounding of 2016 catches between the different tables and documents (report and advice)
Clarification on forecast recruitment assumption need to be added to the stock annex
One of the tuning indices (UK COT) has dropped to zero in 2016. This needs to be better explained in the report and impact on the assessment better highlight in the report and maybe in the advice.
Some minor suggestions, corrections are highlighted in the report word document and in the advice.

\section*{General aspects}

Has the EG answered those TORs relevant to providing advice? Yes.
Is the assessment according to the stock annex description? Yes

If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary? A management plan exists and the catch option table includes the management plan rationale.

Have the data been used as specified in the stock annex? Yes
Has the assessment, recruitment and forecast model been applied as specified in the stock annex? Yes

Is there any major reason to deviate from the standard procedure for this stock? No
Does the update assessment give a valid basis for advice?
If not, suggested what other basis should be sought for the advice? Yes

This an r-Markdown document to check and validate the assessment and STF for Sole 7e (echw) at WGCSE 2016.
\#install.packages("FLCore", repos="http://flr-project.org/R")
\#install.packages("FLXSA", repos="http://flr-project.org/R")
\#install.packages("FLAssess", repos="http://flr-project.org/R")
\#install.packages("knitr", repos="http://flr-project.org/R")
\#install.packages("tidyr", repos="http://flr-project.org/R")
rm(list=Is())
library(FLCore)
\#\# Warning: package 'FLCore' was built under R version 3.1.2
\#\# Loading required package: lattice
\#\# Loading required package: MASS
\#\# FLCore (Version 2.5.20150116, packaged: 2015-01-23 08:53:29 UTC)
\#\#
\#\# Attaching package: 'FLCore'
\#\# The following objects are masked from 'package:base':
\#\#
\#\# cbind, rbind
library(FLAssess)
\#\# Loading required package: FLash
\#\# Warning: package 'FLash' was built under R version 3.1.2
library(FLXSA)
library(knitr)
\#\# Warning: package 'knitr' was built under \(R\) version 3.1.3
\# instal en .zip \# sinon ca plante
library(tidyr)
\#\#
\#\# Attaching package: 'tidyr'
\#\# The following object is masked from 'package:FLCore':
\#\#
\#\# expand
sessionInfo()
```


R version 3.1.1 (2014-07-10)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=French_France.1252 LC_CTYPE=French_France. }125

[3] LC_MONETARY=French_France.1252 LC_NUMERIC=C

[5] LC_TIME=French_France. }125

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] tidyr_0.2.0 knitr_1.12.3 FLXSA_2.5.20140808

[4] FLAssess_2.5.20130716 FLash_2.5.2 FLCore_2.5.20150116

[7] MASS_7.3-33 lattice_0.20-29

loaded via a namespace (and not attached):

[1] digest_0.6.8 evaluate_0.9 grid_3.1.1 htmltools_0.2.6

[5] rmarkdown_0.9 stats4_3.1.1 stringr_0.6.2 tools_3.1.1

[9] yaml_2.1.13

R3.1.1. 32 bits

Read the stock objext
set the main directory and data and output directories.
\#maindir <- 'C:/Users/marobert/Documents/work/ICES/2016/WGCSE/audit sol echw/'
maindir <- 'C:/Users/marobert/Documents/work/ICES/2017/WGCSE/audit/sol7e/'
\#datadir <- 'C:/Users/marobert/Documents/work/ICES/2016/WGCSE/audit sol echw/VPA/VPA/'
datadir <-'C:/Users/marobert/Documents/work/ICES/2017/WGCSE/audit/sol7e/sharepointdownload_160517/sol-
echw/data/vpa_files'
assessment_year<- 2017 \# année du groupe WGCSE 2017
TAC<-1178 \# check 2017 TAC \# update every year
discard_rate <-2.93737 \# in % \# copy from advise sheet : average of the last 3 years 2014:2016
read in the input files for this stock.
stock <- readFLStock(file.path(datadir,"SOL7EIND.DAT",sep=""),no.discards=T)
tun<- readFLIndices(file.path(datadir,"SOL7ETU3a.dat",sep=""),type="VPA")
units(stock)[1:17] <- as.list(c(rep(c("tonnes","thousands","kg"),4), "NA", "NA", "f", "NA", "NA"))
summary(stock)

An object of class "FLStock"

Name: W CHANNEL SOLE 2016 WGCSE SEXES COMB

Description: Imported from a VPA file. (

C:/Users/marobert/Documents/work/ICES/2017/WGCSE/audit/sol7e/sharepointdownload_160517/sol-
echw/data/vpa_files/SOL7EIND.DAT). Wed May 17 17:35:17 2017

Range: min max pgroup minyear maxyear minfbar maxfbar

2 15 NA 1969 2016 2 15

Quant: age

catch :[1481111], units = tonnes

catch.n :[[4441111], units = thousands

catch.wt :[[14481111], units = kg

discards :[[4811111], units = tonnes

discards.n :[14481111], units = thousands

discards.wt :[[14481111]], units = kg

landings :[[481111]], units = tonnes

landings.n : [14481111], units = thousands

landings.wt : [14481111], units = kg

stock :[1481111], units = tonnes

stock.n :[14481111], units = thousands

stock.wt :[14481111]], units = kg

m :[14481111], units = NA

mat :[14481111]], units = NA

harvest :[14481111], units = f

```
\#\# harvest.spwn : [ 14481111 ], units = NA
\#\# m.spwn : [ 14481111 ], units = NA
stock@m
\#\# An object of class "FLQuant"
\#\# , , unit = unique, season = all, area = unique
\#\#
\#\# year
\#\# age 19691970197119721973197419751976197719781979198019811982
\#\# 20.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 300.10 .100 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 40.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 50.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 60.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 70.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 80.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 90.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 100.10 .10 .10 .10 .10 .10 .10 .110 .10 .10 .10 .10 .10 .1
\#\# 110.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 120.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 130.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 140.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .110 .1
\#\# 150.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# year
\#\# age 19831984198519861987198819891990199119921993199419951996
\#\# 20.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .110 .10 .10 .1
\#\# 30.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .110 .10 .10 .1
\#\# 40.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .110 .10 .10 .1
\#\# 50.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 60.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 70.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 80.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
\#\# 90.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 100.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 110.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .110 .1
 \#\# 130.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1
 \#\# 150.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# year
\#\# age 19971998199920002001200220032004200520062007200820092010
\#\# 20.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 30.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .110 .10 .10 .1 \#\# 40.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 50.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 60.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 70.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 80.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 90.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 100.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .110 .1 \#\# 110.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 120.10 .10 .10 .10 .10 .10 .10 .10 .110 .10 .10 .10 .10 .1 \#\# 130.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 140.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# 150.10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 \#\# year
\#\# age 201120122013201420152016
\#\# 20.10 .10 .10 .10 .10 .1
\#\# 30.10 .10 .10 .10 .10 .1
\#\# 40.10 .10 .10 .10 .10 .1
\#\# 50.10 .10 .10 .10 .10 .1
\#\# 60.10 .10 .10 .10 .10 .1
\#\# 70.10 .10 .10 .10 .10 .1
\#\# 80.10 .10 .10 .10 .10 .1
\#\# 90.10 .10 .10 .10 .10 .1
\#\# 100.10 .10 .10 .10 .10 .1
\#\# 110.10 .10 .10 .10 .10 .1
\#\# 120.10 .10 .10 .10 .10 .1
\#\# 130.10 .10 .10 .10 .10 .1
\#\# 140.10 .10 .10 .10 .10 .1
\#\# \(150.10 .10 .10 .10 .10 .1 \quad 0.1\)
\#\#
\#\# units: NA
stock@mat
\#\# An object of class "FLQuant"
\#\# , , unit = unique, season = all, area = unique
\#\#
\#\# year
\#\# age 19691970197119721973197419751976197719781979198019811982
\#\# 20.140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .14
\#\# 30.450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .45
\#\# 40.880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .88
\#\# 50.980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .98
\#\# 61.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 71.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 81.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 91.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 101.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 111.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 121.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 131.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 141.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 151.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# year
\#\# age 19831984198519861987198819891990199119921993199419951996
\#\# 20.140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .14
\#\# 30.450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .45
\#\# 40.880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .88
\#\# 50.980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .98
\#\# 61.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 71.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 81.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 91.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 101.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 111.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 121.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 131.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 141.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# 151.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00
\#\# year
\#\# age 19971998199920002001200220032004200520062007200820092010
\#\# 20.140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .140 .14 \#\# 30.450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .45 \#\# 40.880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .88 \#\# 50.980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .980 .98 \#\# 61.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 71.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 81.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 91.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 101.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 111.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 121.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 131.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 141.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# 151.001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .00 \#\# year
\#\# age 201120122013201420152016
\#\# 20.140 .140 .140 .140 .140 .14
\#\# 30.450 .450 .450 .450 .450 .45
\#\# 40.880 .880 .880 .880 .880 .88
\#\# 50.980 .980 .980 .980 .980 .98
\#\# 61.001 .001 .001 .001 .001 .00
\#\# 71.001 .001 .001 .001 .001 .00
\#\# 81.001 .001 .001 .001 .001 .00
\#\# 91.001 .001 .001 .001 .001 .00
\#\# 101.001 .001 .001 .001 .001 .00
\#\# 111.001 .001 .001 .001 .001 .00
\#\# 121.001 .001 .001 .001 .001 .00
\#\# 131.001 .001 .001 .001 .001 .00
```


14 1.00 1.00 1.00 1.00 1.00 1.00

15 1.00 1.00 1.00 1.00 1.00 1.00

units: NA

```
stock@m.spwn
\#\# An object of class "FLQuant"
\#\# , , unit = unique, season = all, area = unique
\#\#
\#\# year
\#\# age 19691970197119721973197419751976197719781979198019811982

\#\# \(300 \begin{array}{llllllllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\)
\#\# 400000




\#\# 900000

\#\# 110000000




\#\# year
\#\# age 19831984198519861987198819891990199119921993199419951996

\#\# 30000
\#\# 400000

\#\# 6000000

\#\# 8000000

\#\# \(10000 \begin{array}{lllllllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\)
\#\# 110 0 00
\#\# 12000000
\#\# 130000
\#\# 1400000
\#\# 150000
\#\# year
\#\# age 19971998199920002001200220032004200520062007200820092010


\#\# 4000000
\#\# 500
\#\# 6000000

\#\# 8000000
\#\# 900000
\#\# \(10000 \begin{array}{llllllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0\)

\#\# 120000000
\#\# 130000
\#\# 14000000
\#\# 15000
\#\# year
\#\# age 201120122013201420152016
\#\# 200000000
\#\# 300
\#\# 400000000
\#\# 500
\#\# 60000000
\#\# 700000000
\#\# 80000000
\#\# 900000
\#\# 100000000
\#\# 110000000
\#\# 120000000
```


130 0 0 0 0 0

140 0 0 0 0 0

150 0 0 0 0

units: NA

stock@harvest.spwn

An object of class "FLQuant"

, , unit = unique, season = all, area = unique

year

age 196919701971197219731974197519761977 19781979198019811982

```

```


3 0 0 0 0 0 0 0

4}0

5 0 0 0}0

6 0 0 0 0 0

7 0 0 0 0 0 0

```

```


9 0 0 0 0 0 0

100 0 0 0 0 0 0 0}0

110}0

120}0

130 00 0}0

140}0000000000\mp@code{0

150 0}0

year

age 1983 1984198519861987198819891990199119921993199419951996

2 0 0 0 0 0 0 0 0 0

```

```


4}0

```

```


6}0

7 0 0 0 0 0 0 0

80 0

9}0

100 00 0}0

110

```

```


130}00000000\mp@code{0

140}0

150 0

year

age 199719981999200020012002200320042005 20062007200820092010

2 0 0 0 0 0 0 0}0

3}0

```

```


5}0

6 0 0

7 0 0 0 0 0

8 0 0

9}0

100 00 0}0

```

```


120}0000000000 0 0 0 0 0 0 0 0 0 0 0,

130 0 0 0 0

140}0

150}000000000\mp@code{0

year

age 201120122013201420152016

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

9 0 0 0 0 0 0

100 0}00000

110 0 0 0 0 0

```
```


120

130}0

140

150}0

units: NA

stock@stock.wt [,40:48]

An object of class "FLQuant"

, , unit = unique, season = all, area = unique

year

age 2008 2009 2010 2011 2012 2013 2014 2015 2016

2 0.172 0.1360.121 0.169 0.120 0.144 0.157 0.147 0.178

3 0.221 0.215 0.215 0.231 0.202 0.200 0.223 0.2170.248

4 0.268 0.287 0.300 0.290 0.2760.256 0.2840.2820.313

5 0.315 0.354 0.376 0.347 0.343 0.310 0.340 0.342 0.373

6 0.360 0.415 0.445 0.402 0.402 0.363 0.391 0.397 0.427

7 0.404 0.469 0.505 0.454 0.453 0.414 0.438 0.4480.476

8 0.447 0.5180.557 0.504 0.497 0.4640.4800.4930.519

9 0.489 0.560 0.600 0.552 0.532 0.5130.5170.5330.557

100.5290.5960.6360.5970.5610.5600.5490.5680.590

110.5690.6260.6630.639 0.581 0.6060.5760.5980.617

120.6070.6500.6820.6800.5940.6500.5990.6230.639

130.6440.6680.6920.7170.5990.6930.6160.6430.656

140.680 0.680 0.6940.7530.5970.7350.6290.6580.668

150.671 0.736 0.735 0.802 0.752 0.769 0.778 0.760 0.787

units: kg

stock@catch.wt [,40:48]

An object of class "FLQuant"

, , unit = unique, season = all, area = unique

year

age 2008 2009 2010 2011 2012 2013 2014 2015 2016

2 0.197 0.1760.169 0.200 0.162 0.172 0.191 0.1820.214

3 0.245 0.2520.2580.261 0.2400.2280.2540.2500.281

4 0.292 0.322 0.339 0.319 0.3110.283 0.3130.3130.344

5 0.3370.3850.4120.375 0.373 0.3370.366 0.370 0.400

6 0.382 0.443 0.476 0.428 0.4280.389 0.415 0.4230.452

7 0.425 0.4940.532 0.480 0.476 0.4390.459 0.4710.498

8 0.468 0.540 0.580 0.528 0.516 0.489 0.499 0.5130.539

9 0.509 0.5790.6190.5750.5480.5360.5330.551 0.574

100.549 0.6120.6500.6180.572 0.5830.5630.5830.604

110.5880.6390.6730.6600.5890.6280.5880.6110.629

120.6260.660 0.6880.699 0.5970.6720.6080.6340.648

130.6620.6750.6940.7350.5990.7140.6230.6510.662

140.6980.6840.6930.770 0.5920.755 0.6340.6640.671

150.6710.736 0.735 0.802 0.752 0.769 0.778 0.760 0.787

units: kg

```

For sole 7.e discards are not included in the assessment currently. (catch and landings number identical, discards slots empty) Natural mortality set to 0.1: in line with the stock annex Maturity:in line with the stock annex catch weight and stock weight different \(=>\) ok harvest.spwn and m.spwn equal to zero : in line with the stock annex
```

summary(tun)

An object of class "FLIndices"

Elements: UK-CBT-late UK-COT Q1SWBeam-nonoffset FSP-UK

Name: UK-CBT-late

Description: W CHANNEL SOLE 2017 WGCSE, 2-11, SEXES COMBINED, . Imported from VPA file.

Range: min max pgroup minyear maxyear startf endf

3 111112003 2016 0 1

```
```


Quant: age

dim: 914111

Name: UK-COT

Description: W CHANNEL SOLE 2017 WGCSE, 2-11, SEXES COMBINED, . Imported from VPA file

Range: min max pgroup minyear maxyear startf endf

3 11 11 1988 2016 0 1

Quant: age

dim: 9 29111

Name: Q1SWBeam-nonoffset

Description: W CHANNEL SOLE 2017 WGCSE, 2-11, SEXES COMBINED, . Imported from VPA file.

Range: min max pgroup minyear maxyear startf endf

2 11 11 2006 2016 0.10.25

Quant: age

dim: 1011111

Name: FSP-UK

Description: W CHANNEL SOLE 2017 WGCSE, 2-11, SEXES COMBINED, . Imported from VPA file

Range: min max pgroup minyear maxyear startf endf

2 11 11 2004 2016 0.70.75

Quant: age

dim: 10 13111

```

Tuning information consisted of four fleets: two UK commercial time-series (UK-CBT-late and UK-COT) and two UK standardised research surveys (UK-FSP and Q1SWBeam).
save the stock object in case we need to load it independently later.
save(stock,tun,file=file.path(datadir,'sol7e_stock.Rdata'))
set some of the parameters for this stock i.e. Fbar range, plusgroup, recruit age, Fmsy, MSYB trigger, interim year TAC.
```

stock@range[c("minfbar","maxfbar")] = c(3,9)
fbarage <- 3:9
stock <- setPlusGroup(stock,plusgroup=12)
fmsy <- 0.291
fmsylower<-0.160
fmsyupper<-0.342
msybtrig <- 2900
blim<-2000
rage <- 2 \#Recruitment age

```
run XSA output the F-at-age matrix to compare with the final assessment. Final XSA output is saved generate a stock summary table which will be used for output later.
```

xsa.control <- FLXSA.control(tol = 1e-09, maxit = 200, min.nse = 0.4, fse = 0.5,
rage =0, qage = 7, shk.n = FALSE, shk.f = TRUE,
shk.yrs = 3, shk.ages= 5, tsrange = 15,
tspower = 3)

in the script of Jonathan

\#control <- FLXSA.control(fse = 0.5, rage = 0, qage = 7, shk.n = FALSE, shk.f =TRUE, shk.ages = 5, shk.yrs = 3, min.nse =
\#0.4, tspower = 3, tsrange = 15, maxit= 200)

```
```

tun.sel<-tun
xsa<-FLXSA(stock=stock, indices=tun.sel, control=xsa.control)
fout <- as.data.frame(xsa@harvest)
fout <-fout[,c(1,2,7)]
names(fout)[3] <- 'f'
fout <- tidyr::spread(fout,age,f)
save(xsa,file=file.path(datadir,'sol7e_xsa.Rdata'))
stock@stock.n <- xsa@stock.n; stock@harvest <- xsa@harvest
summary<-data.frame(year=stock@range['minyear']:stock@range['maxyear']
\#,catch=c(stock@catch)
,land=c(stock@landings)
,recruit=c(stock@stock.n[as.character(rage)])
,tsb=c(tsb(stock))

```
```

,ssb=c(ssb(stock))
,fbar=c(apply(stock@harvest[as.character(fbarage)],2,mean))
)

```
knitr::kable(subset(fout,year>2000),row.names=F, digits=3)
\begin{tabular}{cccccccccccc}
\hline year & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 2001 & 0.028 & 0.295 & 0.303 & 0.395 & 0.392 & 0.357 & 0.266 & 0.396 & 0.495 & 0.382 & 0.382 \\
\hline 2002 & 0.095 & 0.318 & 0.259 & 0.335 & 0.426 & 0.295 & 0.330 & 0.377 & 0.383 & 0.362 & 0.362 \\
\hline 2003 & 0.123 & 0.324 & 0.378 & 0.288 & 0.161 & 0.146 & 0.158 & 0.271 & 0.417 & 0.246 & 0.246 \\
\hline 2004 & 0.156 & 0.301 & 0.257 & 0.270 & 0.357 & 0.278 & 0.315 & 0.263 & 0.390 & 0.383 & 0.383 \\
\hline 2005 & 0.069 & 0.248 & 0.357 & 0.393 & 0.331 & 0.307 & 0.280 & 0.331 & 0.281 & 0.269 & 0.269 \\
\hline 2006 & 0.119 & 0.276 & 0.377 & 0.422 & 0.352 & 0.308 & 0.288 & 0.312 & 0.359 & 0.286 & 0.286 \\
\hline 2007 & 0.054 & 0.271 & 0.411 & 0.376 & 0.426 & 0.404 & 0.264 & 0.248 & 0.307 & 0.259 & 0.259 \\
\hline 2008 & 0.071 & 0.260 & 0.319 & 0.327 & 0.330 & 0.354 & 0.390 & 0.202 & 0.212 & 0.331 & 0.331 \\
\hline 2009 & 0.049 & 0.170 & 0.184 & 0.228 & 0.262 & 0.192 & 0.210 & 0.207 & 0.191 & 0.147 & 0.147 \\
\hline 2010 & 0.014 & 0.124 & 0.162 & 0.211 & 0.191 & 0.234 & 0.191 & 0.283 & 0.150 & 0.170 & 0.170 \\
\hline 2011 & 0.026 & 0.121 & 0.223 & 0.223 & 0.204 & 0.196 & 0.201 & 0.205 & 0.193 & 0.283 & 0.283 \\
\hline 2012 & 0.010 & 0.074 & 0.162 & 0.264 & 0.278 & 0.284 & 0.235 & 0.233 & 0.332 & 0.306 & 0.306 \\
\hline 2013 & 0.043 & 0.122 & 0.199 & 0.249 & 0.266 & 0.240 & 0.262 & 0.235 & 0.234 & 0.255 & 0.255 \\
\hline 2014 & 0.073 & 0.140 & 0.230 & 0.242 & 0.243 & 0.226 & 0.170 & 0.196 & 0.202 & 0.178 & 0.178 \\
\hline 2015 & 0.041 & 0.150 & 0.229 & 0.231 & 0.205 & 0.165 & 0.212 & 0.155 & 0.145 & 0.130 & 0.130 \\
\hline 2016 & 0.028 & 0.117 & 0.294 & 0.222 & 0.240 & 0.266 & 0.201 & 0.164 & 0.126 & 0.137 & 0.137 \\
\hline
\end{tabular}

Consistent with the report: Table 8.3.10. Sole in Division 7.e. Fishing mortality-at-age continued at least the last two lines checked

Running the STF
```

years<-stock@range['minyear']:stock@range['maxyear']
nyears <-length(years)
ages <- stock@range['min']:stock@range['max']
nages <- length(ages)
catchoptions <- function() {
out <- data.frame(Catch=round(c(landings(stf1)[,nyears+2]+discards(stf1)[,nyears+2]))
,Land=round(c(landings(stf1)[,nyears+2]))
,Dis=round(c(discards(stf1)[,nyears+2]))
,FCatch=round(mean(harvest(stf1)[as.character(fbarage),nyears+2]),2)
,FLand=round(mean((harvest(stf1)*landings.n(stf1)/catch.n(stf1))[as.character (fbarage),nyears+2]),2)
,FDis=round(mean((harvest(stf1)*discards.n(stf1)/catch.n(stf1))[as.character(fbarage),nyears+2]),2)
,SSB=round(c(ssb(stf1)[,nyears+3]),0)
,SSB.change= round((c(ssb(stf1)[,nyears+3])/ssbInt-1)*100,0)
,TAC.chanage=round((c(landings(stf1)[nyears+2])/TAC-1)*100,0)
)
names(out) <- paste0(names(out),c(rep(max(years)+2-2000,6),max(years)+3-2000,
max(years)-2000+2, max(years)-2000+1))
return(out)
}
\#Extends an FLStock object along the year dimensin and prepares some of the slots for forward stock projection,
stf0 <- stf(stock, nyears=3, wts.nyears=3, fbar.nyears=3)

```
```


[1] }389

stock.n(stf0)[1,nyears+1] <- GM
stock.n(stf0)[1,nyears+2] <- GM
stock.n(stf0)[1,nyears+3] <- GM
srr <- FLSR(segreg) \# not used as we are using GM but required under setup

F assumption

\#fsq <- mean(harvest(stf0)[as.character(fbarage), nyears-2:0])

from jonathan's scrip : F recalcted to the last year

Fy <- as.vector(fbar(stf0)[,ac(assessment_year-1)])\#F2015 value saved as a vector
Fy1 <- apply(harvest(stf0)[,ac((assessment_year-3):(assessment_year-1))],1,mean)\#Mean F at age for the last 3 years
Fy1 <- ((Fy1/mean((Fy1)[ac(3:9),,,,,,])*(Fy))\#Average F at age weighted by terminal year Fbar
fsq <- quantMeans(Fy1[ac(3:9)])
\#fsq <- round(fsq, digits = 2)
fsq

An object of class "FLQuant"

, , unit = unique, season = all, area = unique

year

age 1

all 0.21489

units: f

a copier a la main 0.21489 sinon il une ligne () qui marche pas

fsq<- 0.21489
ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq,fsq,0),quantity=rep('f',3)))
stf1 <- project(stf0, ctrl, srr)
ssbInt <- c(ssb(stf1)[,nyears+2]) \# ssb in intermediate year (1 jan)
tsbInt <- c(tsb(stf1)[,nyears+2]) \# ssb in intermediate year (1 jan)
landlnt <- c(landings(stf1)[nyears+1]) \# catch in intermediate year, assuming fsq
out <- NULL
for(f in seq(0,2,by=0.1)){
ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq,f*fsq,0),quantity=rep('f',3)))
stf1 <- project(stf0, ctrl, srr)
out <- rbind(out,data.frame(Fmult=f,catchoptions()))
}

```
\#setup for other options
fmsyapproach <- fmsy*ifelse(ssbInt/msybtrig>1,1,ssbInt/msybtrig)
\# other options
ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq,fmsyapproach,0),quantity=rep('f',3)))
stf1 <- project(stf0, ctrl, srr)
msyapproach <- catchoptions()
ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq,fmsy,0),quantity=rep('f',3)))
stf1 <- project(stf0, ctrl, srr)
msy <- catchoptions()
ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq,fmsylower,0),quantity=rep('f',3)))
stf1 <- project(stf0, ctrl, srr)
msylow <- catchoptions()
ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq,fmsyupper,0),quantity=rep('f',3)))
stf1 <- project(stf0, ctrl, srr)
msyup <- catchoptions()
ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq,0.27,0),quantity=rep('f',3)))
stf1 <- project(stf0, ctrl, srr)
mngplan <- catchoptions()
ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq, TAC,0), quantity=c('f', 'landings', 'f')))
stf1 <- project(stf0, ctrl, srr)
```

TACstable <- catchoptions()
\#ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq,TAC*1.15,0),quantity=c('f',',landings','f')))
\#stf1 <- project(stf0, ctrl, srr)
\#TACplus15 <- catchoptions()
\#ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq, TAC*O.85,0), quantity=c(''f', 'landings', 'f'))
\#stf1 <- project(stf0, ctrl, srr)
\#TACminus15 <- catchoptions()

```

\section*{Outputs}

The detailed catch option table and other stock specific catch options are also listed.
summary <- rbind(summary, c(max(years)+1,landlnt, GM, tsbInt, ssbInt, fsq))
knitr::kable(summary,row.names=F, digits \(=c(0,0,0,0,0,2))\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline year & land & recruit & tsb & ssb & fbar \\
\hline 1969 & 353 & 1874 & 2927 & 2437 & 0.13 \\
\hline \[
1970
\] & 391 & 1343 & 3023 & 2652 & 0.15 \\
\hline 1971 & 432 & 3826 & 2838 & 2390 & 0.18 \\
\hline 1972 & 437 & 2568 & 3091 & 2395 & 0.14 \\
\hline 1973 & 459 & 2264 & 3266 & 2778 & 0.16 \\
\hline 1974 & 427 & 3107 & 3512 & 2896 & 0.15 \\
\hline 1975 & 491 & 2967 & 4429 & 3670 & 0.13 \\
\hline \[
1976
\] & 616 & 2791 & 4102 & 3403 & 0.18 \\
\hline 1977 & 606 & 6556 & 5339 & 4098 & 0.13 \\
\hline 1978 & 861 & 4657 & 5429 & 4074 & 0.18 \\
\hline 1979 & 1181 & 4389 & 6014 & 4865 & 0.24 \\
\hline 1980 & 1269 & 4702 & 6387 & 5338 & 0.23 \\
\hline \[
1981
\] & 1215 & 8130 & 5957 & 4572 & 0.27 \\
\hline 1982 & 1446 & 4680 & 5916 & 4575 & 0.32 \\
\hline \[
1983
\] & \[
1498
\] & 3866 & 5377 & 4374 & 0.36 \\
\hline \[
1984
\] & \[
1370
\] & 5968 & 5463 & 4430 & 0.30 \\
\hline \[
1985
\] & 1409 & 6982 & 5569 & 4009 & 0.33 \\
\hline 1986 & 1419 & 3766 & 5258 & 4014 & 0.31 \\
\hline 1987 & 1280 & 5849 & 5311 & 4112 & 0.29 \\
\hline 1988 & 1444 & 3880 & 5121 & 4044 & 0.33 \\
\hline \[
1989
\] & \[
1390
\] & 3736 & 4319 & 3443 & 0.41 \\
\hline 1990 & \[
1315
\] & 2818 & 4224 & 3288 & 0.40 \\
\hline 1991 & 852 & 7169 & 4222 & 2993 & 0.27 \\
\hline 1992 & 895 & 3908 & 4104 & 2940 & 0.24 \\
\hline 1993 & 904 & 3354 & 3584 & 2814 & 0.31 \\
\hline 1994 & 800 & 2373 & 3791 & 3058 & 0.23 \\
\hline 1995 & 856 & 3434 & 3878 & 3073 & 0.30 \\
\hline 1996 & 833 & 3987 & 4163 & 3059 & 0.26 \\
\hline 1997 & 949 & 3388 & 3851 & 2928 & 0.32 \\
\hline 1998 & 880 & 4468 & 3975 & 2927 & 0.29 \\
\hline 1999 & 957 & 3599 & 3988 & 2859 & 0.32 \\
\hline 2000 & 914 & 6693 & 4377 & 2912 & 0.31 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline year & land & recruit & tsb & ssb & fbar \\
\hline 2001 & 1069 & 5495 & 4601 & 2957 & 0.34 \\
\hline 2002 & 1106 & 3857 & 4288 & 3097 & 0.33 \\
\hline 2003 & 1078 & 5452 & 4515 & 3388 & 0.25 \\
\hline 2004 & 1075 & 2893 & 4134 & 3200 & 0.29 \\
\hline 2005 & 1039 & 4063 & 4167 & 3279 & 0.32 \\
\hline 2006 & 1023 & 4701 & 3878 & 2888 & 0.33 \\
\hline 2007 & 1015 & 4031 & 4002 & 2951 & 0.34 \\
\hline 2008 & 908 & 4301 & 3974 & 2825 & 0.31 \\
\hline 2009 & 701 & 3640 & 4174 & 3224 & 0.21 \\
\hline 2010 & 698 & 5158 & 4643 & 3622 & 0.20 \\
\hline 2011 & 801 & 3790 & 4967 & 3730 & 0.20 \\
\hline 2012 & 872 & 3317 & 4809 & 3960 & 0.22 \\
\hline 2013 & 883 & 2973 & 4652 & 3854 & 0.22 \\
\hline 2014 & 885 & 2955 & 4924 & 4114 & 0.21 \\
\hline 2015 & 774 & 4598 & 5055 & 4097 & 0.19 \\
\hline 2016 & 913 & 3520 & 5689 & 4522 & 0.21 \\
\hline 2017 & 930 & 3890 & 5415 & 4354 & 0.21 \\
\hline
\end{tabular}

\section*{Consistent with Table 8.3.11}
other <- rbind(msyapproach, msy, msylow, msyup,mngplan, TACstable)
\# need to be updated FLand18 a la main
other\$Fmult <- other\$FLand18/fsq
out <- rbind(out,other[, c(10,1:9)])
out\$basis <- c(paste0('Fsq*',seq(0,2,by=0.1)),'msyapproach', 'msy', 'msylow', 'msyup', 'mngplan','TACstable')
out\$Dis18 <- (out\$Land18*discard_rate)/100
out\$Catch18<- out\$Dis18 +out\$Land18
knitr::kable(out,row.names=F, digits= c(2,0,0,0,2,2,2,0,0,0,0))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fmult & Catch 18 & Land 18 & Dis 18 & FCatch 18 & FLand 18 & FDis 18 & SSB19 & SSB.change 18 & TAC.chanage 17 & basis \\
\hline 0.00 & 0 & 0 & 0 & 0.00 & NaN & NaN & 5244 & 20 & -100 & Fsq* 0 \\
\hline 0.10 & 104 & 101 & 3 & 0.02 & 0.02 & 0 & 5146 & 18 & -91 & Fsq** \({ }^{*}\) \\
\hline 0.20 & 205 & 199 & 6 & 0.04 & 0.04 & 0 & 5050 & 16 & -83 & Fsq*0.2 \\
\hline 0.30 & 305 & 296 & 9 & 0.06 & 0.06 & 0 & 4956 & 14 & -75 & Fsq** 0.3 \\
\hline 0.40 & 402 & 391 & 11 & 0.09 & 0.09 & 0 & 4864 & 12 & -67 & Fsq* 0.4 \\
\hline 0.50 & 497 & 483 & 14 & 0.11 & 0.11 & 0 & 4774 & 10 & -59 & Fsq** \({ }^{*}\) \\
\hline 0.60 & 591 & 574 & 17 & 0.13 & 0.13 & 0 & 4685 & 8 & -51 & Fsq*0.6 \\
\hline 0.70 & 682 & 663 & 19 & 0.15 & 0.15 & 0 & 4599 & 6 & -44 & Fsq**.7 \\
\hline 0.80 & 773 & 751 & 22 & 0.17 & 0.17 & 0 & 4514 & 4 & -36 & Fsq* 0.8 \\
\hline 0.90 & 861 & 836 & 25 & 0.19 & 0.19 & 0 & 4432 & 2 & -29 & Fsq**.9 \\
\hline 1.00 & 947 & 920 & 27 & 0.21 & 0.21 & 0 & 4350 & 0 & -22 & Fsq* \({ }^{*}\) \\
\hline 1.10 & 1032 & 1003 & 29 & 0.24 & 0.24 & 0 & 4271 & -2 & -15 & Fsq*1.1 \\
\hline 1.20 & 1115 & 1083 & 32 & 0.26 & 0.26 & 0 & 4193 & -4 & -8 & Fsq*1.2 \\
\hline 1.30 & 1196 & 1162 & 34 & 0.28 & 0.28 & 0 & 4117 & -5 & -1 & Fsq*1.3 \\
\hline 1.40 & 1276 & 1240 & 36 & 0.30 & 0.30 & 0 & 4042 & -7 & 5 & Fsq* 1.4 \\
\hline 1.50 & 1355 & 1316 & 39 & 0.32 & 0.32 & 0 & 3969 & -9 & 12 & Fsq*1.5 \\
\hline 1.60 & 1431 & 1390 & 41 & 0.34 & 0.34 & 0 & 3897 & -10 & 18 & Fsq*1.6 \\
\hline 1.70 & 1506 & 1463 & 43 & 0.37 & 0.37 & 0 & 3827 & -12 & 24 & Fsq*1.7 \\
\hline 1.80 & 1580 & 1535 & 45 & 0.39 & 0.39 & 0 & 3758 & -14 & 30 & Fsq*1.8 \\
\hline 1.90 & 1652 & 1605 & 47 & 0.41 & 0.41 & 0 & 3691 & -15 & 36 & Fsq*1.9 \\
\hline 2.00 & 1723 & 1674 & 49 & 0.43 & 0.43 & 0 & 3625 & -17 & 42 & Fsq* 2 \\
\hline 1.35 & 1240 & 1205 & 35 & 0.29 & 0.29 & 0 & 4076 & -6 & 2 & msyapproach \\
\hline 1.35 & 1240 & 1205 & 35 & 0.29 & 0.29 & 0 & 4076 & -6 & 2 & msy \\
\hline 0.74 & 724 & 703 & 21 & 0.16 & 0.16 & 0 & 4561 & 5 & -40 & msylow \\
\hline
\end{tabular}
\begin{tabular}{ccccccccccc}
\hline Fmult & Catch 18 & Land18 & Dis1 8 & FCatch1 8 & & FLand18 & FDis18 & SSB19 & SSB.change18 & TAC.chanage17 \\
\hline 1.58 & 1425 & 1384 & 41 & 0.34 & 0.34 & 0 & 3903 & -10 & basis \\
\hline 1.26 & 1161 & 1128 & 33 & 0.27 & 0.27 & 0 & 4150 & -5 & msyup \\
\hline 1.30 & 1213 & 1178 & 35 & 0.28 & 0.28 & 0 & 4102 & -6 & -4 & mngplan \\
\hline
\end{tabular}

Consistent with Table 6.3.45.3 advice sheet (except minor difference coming from rounding) discards and catches are calculated using the discards rate given in the advice sheet

The stfout function below generates detailed STF output tables for the status quo forecast. These are picked up to make the Landings and SSB contribution plot.
```


les hypothse de projection standard

ctrl <- projectControl(data.frame(year=max(years)+1:3,val=c(fsq,fsq,fsq),quantity=rep('f',3)))
stf1 <- project(stf0, ctrl, srr)
p <- c(1,1,1,1,1,1,1) \# fudge because this is a landings only STF
stfout <- function(i){
out <- data.frame(Age=ages
,LF=round(c(harvest(stf1)[i])*p,3)
,CatchNos=round(c(landings.n(stf1)[i]))
,Yield=round(c((landings.n(stf1)*landings.wt(stf1))[i]),0)
,DF=round(c(harvest(stf1)[,i])*(1-p),3)
,DCatchNos=round(c(discards.n(stf1)[i]))
,DYield=round(c((discards.n(stf1)*discards.wt(stf1))[,i]),0)
,StockNos=round(c(stock.n(stf1)[i]))
,Biomass=round(c((stock.n(stf1)*stock.wt(stf1))[i]))
,SSNos=round(c((stock.n(stf1)*mat(stf1))[,i]))
,SSB=round(c((stock.n(stf1)*stock.wt(stf1)*mat(stf1))[,i]))
)
out <- rbind(out,colSums(out))
nrows <- nrow(out)
out[nrows,1] <- 'Total'
out[nrows,2] <- round(mean((harvest(stf1)[i]*p)[as.character(fbarage)]),3)
out[nrows,5] <- round(mean((harvest(stf1)[,i]*(1-p))[as.character(fbarage)]),3)
return(out)
}
stfout1 <- stfout(nyears+1)

Warning in c(harvest(stf1)[, i]) * p: la taille d'un objet plus long n'est

pas multiple de la taille d'un objet plus court

Warning in c(harvest(stf1)[, i]) * (1 - p): la taille d'un objet plus long

n'est pas multiple de la taille d'un objet plus court

knitr::kable(stfout1,row.names=F)

```
\begin{tabular}{ccccccccccc}
\hline Age & LF & CatchNos & Yield & DF & DCatchNos & DYield & StockNos & Biomass & SSNos & SSB \\
\hline 2 & 0.050 & 180 & 35 & 0 & 0 & 0 & 3890 & 625 & 545 & 87 \\
\hline 3 & 0.142 & 392 & 102 & 0 & 0 & 0 & 3098 & 710 & 1394 & 320 \\
\hline 4 & 0.264 & 710 & 230 & 0 & 0 & 0 & 3213 & 941 & 2827 & 828 \\
\hline 5 & 0.243 & 269 & 102 & 0 & 0 & 0 & 1306 & 459 & 1280 & 450 \\
\hline 6 & 0.241 & 215 & 93 & 0 & 0 & 0 & 1057 & 428 & 1057 & 428 \\
\hline 7 & 0.230 & 171 & 81 & 0 & 0 & 0 & 874 & 397 & 874 & 397 \\
\hline 8 & 0.204 & 133 & 69 & 0 & 0 & 0 & 756 & 376 & 756 & 376 \\
\hline 9 & 0.180 & 127 & 70 & 0 & 0 & 0 & 807 & 432 & 807 & 432 \\
\hline 10 & 0.166 & 52 & 30 & 0 & 0 & 0 & 355 & 202 & 355 & 202 \\
\hline 11 & 0.156 & 49 & 30 & 0 & 0 & 0 & 354 & 212 & 354 & 212 \\
\hline 12 & 0.156 & 125 & 88 & 0 & 0 & 0 & 906 & 638 & 906 & 638 \\
\hline Total & 0.215 & 2423 & 930 & 0 & 0 & 0 & 16616 & 5420 & 11155 & 4370 \\
\hline
\end{tabular}
stfout2 <- stfout(nyears+2)
 \#\# pas multiple de la taille d'un objet plus court
\#\# Warning in c(harvest(stf1)[, i]) * p: la taille d'un objet plus long n'est \#\# pas multiple de la taille d'un objet plus court
knitr::kable(stfout2,row.names=F)
\begin{tabular}{lcccccccccc}
\hline Age & LF & CatchNos & Yield & DF & DCatchNos & DYield & StockNos & Biomass & SSNos & SSB \\
\hline 2 & 0.050 & 180 & 35 & 0 & 0 & 0 & 3890 & 625 & 545 & 87 \\
\hline 3 & 0.142 & 423 & 111 & 0 & 0 & 0 & 3349 & 768 & 1507 & 346 \\
\hline 4 & 0.264 & 537 & 174 & 0 & 0 & 0 & 2431 & 712 & 2139 & 627 \\
\hline 5 & 0.243 & 460 & 174 & 0 & 0 & 0 & 2233 & 785 & 2189 & 770 \\
\hline 6 & 0.241 & 189 & 81 & 0 & 0 & 0 & 926 & 375 & 926 & 375 \\
\hline 7 & 0.230 & 147 & 70 & 0 & 0 & 0 & 752 & 341 & 752 & 341 \\
\hline 8 & 0.204 & 111 & 57 & 0 & 0 & 0 & 629 & 313 & 629 & 313 \\
\hline 9 & 0.180 & 88 & 48 & 0 & 0 & 0 & 558 & 299 & 558 & 299 \\
\hline 10 & 0.166 & 89 & 52 & 0 & 0 & 0 & 610 & 347 & 610 & 347 \\
\hline 11 & 0.156 & 37 & 23 & 0 & 0 & 0 & 272 & 162 & 272 & 162 \\
\hline 12 & 0.156 & 134 & 95 & 0 & 0 & 0 & 976 & 687 & 976 & 687 \\
\hline Total & 0.215 & 2395 & 920 & 0 & 0 & 0 & 16626 & 5414 & 11103 & 4354 \\
\hline
\end{tabular}
stfout3 <- stfout(nyears+3)
\#\# Warning in c(harvest(stf1)[, i]) * p: la taille d'un objet plus long n'est
\#\# pas multiple de la taille d'un objet plus court
\#\# Warning in \(\mathrm{c}(\) harvest(stf1)[, i]) * p: la taille d'un objet plus long n'est
\#\# pas multiple de la taille d'un objet plus court
knitr::kable(stfout3,row.names=F)
\begin{tabular}{lcccccccccc}
\hline Age & LF & CatchNos & Yield & DF & DCatchNos & DYield & StockNos & Biomass & SSNos & SSB \\
\hline 2 & 0.050 & 180 & 35 & 0 & 0 & 0 & 3890 & 625 & 545 & 87 \\
\hline 3 & 0.142 & 423 & 111 & 0 & 0 & 0 & 3349 & 768 & 1507 & 346 \\
\hline 4 & 0.264 & 581 & 188 & 0 & 0 & 0 & 2628 & 770 & 2313 & 678 \\
\hline 5 & 0.243 & 348 & 132 & 0 & 0 & 0 & 1690 & 594 & 1656 & 582 \\
\hline 6 & 0.241 & 323 & 139 & 0 & 0 & 0 & 1584 & 642 & 1584 & 642 \\
\hline 7 & 0.230 & 129 & 61 & 0 & 0 & 0 & 659 & 299 & 659 & 299 \\
\hline 8 & 0.204 & 95 & 49 & 0 & 0 & 0 & 541 & 269 & 541 & 269 \\
\hline 9 & 0.180 & 73 & 40 & 0 & 0 & 0 & 464 & 248 & 464 & 248 \\
\hline 10 & 0.166 & 61 & 36 & 0 & 0 & 0 & 421 & 240 & 421 & 240 \\
\hline 11 & 0.156 & 64 & 39 & 0 & 0 & 0 & 467 & 279 & 467 & 279 \\
\hline 12 & 0.156 & 133 & 94 & 0 & 0 & 0 & 966 & 680 & 966 & 680 \\
\hline Total & 0.215 & 2410 & 924 & 0 & 0 & 0 & 16659 & 5414 & 11123 & 4350 \\
\hline
\end{tabular}
\(\operatorname{par}(m f r o w=c(1,2), \operatorname{mar}=c(5,8,4,1), c e x=0.8)\)
nrows <- nrow(stfout2)
yield <- stfout2[-nrows,'Yield']
prop <- pasteO(round(100*yield/sum(yield)),'\%')
labels <- paste(max(years)-ages+2,rep(c('GM','XSA'),c(2,nages-2)))
b <- barplot(yield,horiz=T,names=labels,las=1,xlab='Tonnes',main=paste('Landings
yield',max(years)+2),xlim=c(0,max(yield)*1.25))
text(yield,b,prop,adj=-0.2)
ssb <- stfout3[-nrows, 'SSB']
prop <- paste0(round(100*ssb/sum(ssb)),'\%')
labels <- paste(max(years)-ages+3,rep(c('GM','XSA'),c(3,nages-3)))
b <- barplot(ssb,horiz=T,names=labels,las=1,xlab='Tonnes',main=paste('SSB',max(years)+3),xlim=c(0,max(ssb)*1.25))
text(ssb,b,prop,adj=-0.2)

Landings yield 2018


Tonnes

SSB 2019


Input table and management option table are consistent with the report.
Year-class sources and contributions for short-term forecast consistent with the report.

\section*{36 Sole in divisions 7.f and 7.g}

\section*{Type of assessment in 2017}

This assessment is an update assessment.

\section*{ICES advice applicable to 2016}

In the advice for 2016, the stock status was presented as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Fishing pressure} \\
\hline & & 2012 & 2013 & 2014 \\
\hline Maximum Sustainable Yield & \(\mathrm{F}_{\text {MSY }}\) & X & * & * Above \\
\hline Precautionary approach & \[
\begin{aligned}
& \mathrm{F}_{\mathrm{pa}} \\
& \mathrm{~F}_{\mathrm{lim}}
\end{aligned}
\] & \[
0
\] & - & (0) Increased risk \\
\hline Management Plan & \(\mathrm{F}_{\text {MGT }}\) & - & - & - Not applicable \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{5}{|c|}{Stock size} \\
\hline & & 2013 & 2014 & \multicolumn{2}{|r|}{2015} \\
\hline Maximum & MSY & - & \(\checkmark\) & & Above trigger \\
\hline Sustainable Yield & \(B_{\text {trigger }}\) & & \(\checkmark\) & & Above trigger \\
\hline Precautionary approach & \(\mathrm{B}_{\mathrm{pa}}, \mathrm{B}_{\text {lim }}\) & & \(\checkmark\) & & Full reproductive capacity \\
\hline Management Plan & SSB \({ }_{\text {MGT }}\) & - & - & - & Not applicable \\
\hline
\end{tabular}

\section*{MSY approach}

ICES advises that when the MSY approach is applied, catches in 2016 should be no more than 760 tonnes. If this stock is not under the EU landing obligation in 2016 and discard rates do not change from the average of the last three years (2012-2014), this implies landings of no more than 745 tonnes.

\section*{ICES advice applicable to 2017}

In the advice for 2017, the stock status was presented as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{Fishing pressure} & \multicolumn{5}{|c|}{Stock size} \\
\hline & & 2013 & 2014 & & 2015 & & 2014 & 2015 & & 2016 \\
\hline Maximum sustainable yield & \(\mathrm{F}_{\text {MSY }}\) & - & ( & \[
x
\] & Above & \begin{tabular}{l}
MSY \\
\(\mathrm{B}_{\text {trigger }}\)
\end{tabular} &  &  & \[
\nabla
\] & Above trigger \\
\hline Precautionary approach & \[
\begin{aligned}
& \mathrm{F}_{\mathrm{pa}}, \\
& \mathrm{~F}_{\mathrm{lim}}
\end{aligned}
\] & \[
0
\] &  & & Harvested sustainably & \(\mathrm{B}_{\mathrm{pa}}, \mathrm{B}_{\text {lim }}\) & \(\checkmark\) & ( &  & Full reproductive capacity \\
\hline Management plan & \(\mathrm{F}_{\text {MGT }}\) & - & - & - & Not applicable & SSB MGT & - & - & - & Not applicable \\
\hline
\end{tabular}

ICES advises that when the MSY approach is applied, catches in 2017 should be no more than 806 tonnes.

\section*{Technical comments made by the audit}

No major deficiencies for the sole assessment in the Celtic Sea were reported.

\subsection*{36.1 General}

\section*{Stock description and management units}


A TAC is in place for ICES Divisions 7.f and 7.g. These Divisions do correspond to the stock area. The basis for the stock assessment area 7.f and 7.g is described in detail in the Stock Annex.

\section*{Management applicable to 2016 and 2017}

The sole fisheries in the Celtic Sea are managed by TAC and technical measures. The agreed TACs in 2016 and 2017 are presented in the text tables below. Technical measures in force for this stock are minimum mesh sizes and minimum landing size ( 24 cm and 25 cm for Belgian vessels from March 11th 2017 until December 31th 2017). National regulations also restricted areas for certain types of vessels.

2016 TAC
\begin{tabular}{lc|ll}
\hline Species: \begin{tabular}{lc|}
\hline & \begin{tabular}{l} 
Common sole \\
Solea solea
\end{tabular}
\end{tabular} & Zone: & \begin{tabular}{l} 
VIIf and VIIg \\
(SOL./7FG.)
\end{tabular} \\
\hline Belgium & 487 & \\
France & 49 & \\
Ireland & 24 & \\
United Kingdom & 219 & \\
Union & 779 & Analytical TAC \\
TAC & 779 & \\
\hline
\end{tabular}

2017 TAC


Three rectangles in the Celtic Sea (30E4, 31E4 and 32E3) were closed during the first quarter of 2005, and in February-March each year from 2006 onwards. A derogation has permitted beam trawlers to fish there in March 2005. The effects of this closure have been discussed in previous WGSSDS meetings and ACFM 2007, and evaluated at WKCELT 2014.

\section*{Fishery in 2016}

The Expert Group estimated the total international landings at 831 t in 2016 (Table 36.1), which is \(6.7 \%\) above the 2016 TAC or last year's forecast (779 t ).

Early in the time-series officially reported landings included divisions \(7 . g-\mathrm{k}\) for some countries and their total was higher than the WG estimate. Since 1999 official landings correspond to divisions 7.f and 7.g, and the total is lower than the working group estimate. During the period 2002-2005 the difference between the two estimates was substantial. This was mainly due to area misreporting, which was taken into account in the working group estimates (WKCELT 2014). In the recent years, the estimates are more similar.

\subsection*{36.2 Data}

\section*{Landings}

Annual length compositions for 2016 are given by fleet in Table 36.2. Length distributions of the total Belgian and UK \((E \& W)\) landings for the last seventeen years are plotted in Figure 36.1. Belgian land a greater proportion of small fish compared to the UK(England \& Wales).

Belgium, Ireland and UK have provided data this year under the ICES InterCatch format on a métier basis. Quarterly/yearly data for 2016 were available for landing numbers and weight-at-age, for most of the Belgian, Irish and UK fleets. These comprise \(86 \%\) of the international landings. Allocation has been made as follows: five groups of métiers with age distributions were set up: e.g. OTB_DEF_70-99, OTB_DEF_100-119, OTB_DEF_>=120, GNS_DEF_all métiers and a group of all available métiers with age distributions (Overall). The OTB_DEF_70-99 ( \(<1 \%\) of overall landings), OTB_DEF_100-119 (5.7\% of overall landings), OTB_DEF_>=120 ( \(<1 \%\) of overall landings) and GNS_DEF_all ( \(<1 \%\) of overall landings) métiers without age distributions were allocated with the group OTB_DEF_70-99, OTB_DEF_100-119, OTB_DEF_>=120 and GNS_DEF_all respectively. The rest of the métiers without age distributions ( \(7.6 \%\) of overall landings) were allocated to the group Overall.
For the period 2008-2016, the original total international catch weights-at-age were used. The stock weights were obtained using the Rivard weight calculator (http://nft.nefsc.noaa.gov./), that conducts a cohort interpolation of the catch weights.
Catch numbers-at-age are given in Table 36.3, and weights-at-age in the catch and the stock are given in Tables 36.4-36.5. Age compositions over the last seventeen years are plotted in Figure 36.2. The standardised catch proportion-at-age is presented in Figure 36.3.

The low catch numbers for age 1 in 2014 and 2016 were excluded from the catch numbers-at-age matrix to be consistent with previous years for which age 1 catch numbers are set to zero.

\section*{Discards}

The available discard data indicate that discarding of sole is usually minor. For 2007 up to 2016, discarding of sole in the UK fleet was estimated at about \(1-9 \%\) in numbers. Discard rates of sole in the Belgian beam trawl fleet were available to the expert group for 2004-2005 and 2008-2016 accounting for about \(2 \%-5 \%\) of the total sole catches in weight. The length distributions of retained and discarded catches of sole from the Belgium beam trawl fleet for 2016 are presented in Figure 36.4a. The UK length distributions for 2016 from samples of UK gear except beam trawls and beam trawls are given in Figure 36.4b. The Irish length distributions for 2016 from samples of beam and otter trawls are shown in Figure 36.4c. It should be noted that the Irish otter trawl landings only amount to about \(1.7 \%\) of the total international landings.

As an attempt, estimating an overall discard rate for the stock, individual discard estimates for 2014, 2015 and 2016 from the main métiers and countries were averaged to arrive at an overall discard rate by year (Table 36.6). The percent of the métiers with discard information covering the total international landings is \(90 \%, 93 \%\) and \(87 \%\) for 2014, 2015 and 2016 respectively.

Assuming that discard rates do not change from the average of the last three years (2014-2016) and a fixed proportion of discards survive, a discard rate of around 0.03 (of the catch) could be assumed for this stock at the moment.

\section*{Biological}

Natural mortality was assumed to be 0.1 for all ages and years. The maturity ogive is based on samples taken during the UK(E\&W) beam trawl survey of March 1993 and 1994 and is applied to all years of the assessment.

The proportion of M and F before spawning was set to zero.

\section*{Surveys}

Standardised abundance indices for the UK beam trawl survey (UK(E\&W)-BTS-Q3)) are shown in Table 36.7 and Figure 36.5. Abundance-at-age 0 is highly variable and not used further on. The UK-survey appears to track the stronger year classes reasonably well. The internal consistency plot indicates also a reasonable fit for most of the ages (Figure 36.6).

\section*{Commercial Ipue}

Available estimates of effort and lpue are presented in Tables 36.8-36.9 and Figure 36.7.

Belgian beam trawl (BE-CTB) effort was at highest levels in 2003-2005. During these years effort shifted from the Eastern English Channel (7.d) to the Celtic Sea because of days at sea limitations in the former area. In 2006, these restrictions had been lifted and effort decreased substantially to about half of the values observed in the early 2000s. The sharp effort reduction in 2008 may be a combined result of the unrestricted effort regime in 7.d and the high fuel prices. The increase in 2012-2013 is due to the good opportunities of sole catches in the Celtic sea taken by the mobile Belgian fleet. In 2014-2015, effort decreased again to the lower level in 2009. In 2016 a slight increase was recorded. Lpue peaked in 2002. After a sharp decline to its record low in 2004, lpue has been increasing gradually, levelling off in 2010-2013 at around \(15 \mathrm{~kg} /\) hour. In 2014-2015, lpue increased to around \(19-20 \mathrm{~kg} / \mathrm{hour}\). In 2016, a decrease to \(15.63 \mathrm{~kg} /\) hour was recorded.

The effort from the UK(E\&W) beam trawl fleet (UK(E\&W)-CBT) has declined sharply since the early 2000s to a record low in 2009 since 1983, and stayed at that level since. However, it should be noted that the UK beam trawl effort value for 2013 is extremely low compared to previous years and the 2014, 2015 and 2016 values are unavailable. As the UK administration switched to the EU electronic logbook system, a lot of the reported effort is missing. Therefore, the absolute effort numbers for 2013-2016 could not be used and the \(\mathrm{UK}(\mathrm{E} \& W)\)-CBT tuning indices for the four most recent years were excluded in this year's assessment.

Details of the 2013-2016 UK beam trawl were unavailable due to reduced numbers of trips reporting this gear specific effort information via the newly introduced elogbook system. The otter trawl fleet effort reporting was unaffected by this as these vessels were not reporting their landings via this method in 2013. However, for 2014, 2015 and 2016 also the UK otter trawl effort is unavailable. Inspection of an alternate effort indicator (days fished) suggest that the beam trawl and otter trawl effort in 2014-2016 significantly decreased. As, in 2016 all otter trawl vessels active in the Celtic Sea were under 12 m , no effort (days fished) was recorded.

Lpue of the UK beam trawlers was stable in the 1990s and 2000s, but at lower levels compared to the period before. In 2007, lpue increased considerably and gave a similar value for 2008. In 2009, there was a decrease to a level just above the mean of the time-series, followed by similar values for 2010, 2011 and 2012. Because of the effort reporting issues, the 2013-2016 values are unavailable. Inspection of an alternate lpue indicator ( kg /days fished) suggest that the beam trawl lpue in 2014-2016 increased.

Irish effort and lpue data are also presented. The main target species in the Irish fisheries are megrim, anglerfish, etc. The vessels usually operate on fishing grounds in the Western Celtic Sea with lower sole densities.
The internal consistency plots for the main two commercial lpue series, used in the assessment (UK(E\&W)-CBT(1991-2012), BEL-CBT(1971-1996) and BEL-CBT2(19972016)), show high consistencies for the entire age range (Figures 36.8-36.9). However, the internal consistencies between the younger and older ages in the new Belgian commercial lpue series BEL-CBT2 (1997-2016) are rather low (Figure 36.9b).

\section*{Other relevant data}

Reports from UK industry suggest that the main issues affecting the fishery in 7.f and 7.g were displacement of effort due to the rectangle closures and the restrictions on the use of 80 mm mesh west of \(7^{\circ} \mathrm{W}\) (Trebilcock and Rozarieux, 2009).
No additional information was received from the Belgian, French and Irish industries.

\subsection*{36.3 Stock assessment}

The method used to assess Celtic Sea sole is XSA, using one survey and two commercial tuning-series (Table 36.10). The Belgian commercial beam trawl tuning fleet is now split into two parts (period 1971-1996 and 1997-2016). It should also be noted that the 2002, 2003 and 2004 numbers-at-age have been corrected for misreporting (See WKCELT). Table 36.10 also includes tuning indices of the Irish ground fish survey (IGFS-IBTS_Q4) and the commercial UK otter trawl fleet (UK(E\&W)-COT) which are not used in this assessment.

\section*{Data screening}

As mentioned in Section 36.2, the 2013-2016 data from the UK(E\&W) commercial tuning series was excluded from the assessment.

Adding the 2016 data to the time-series did not cause any additional anomalies compared to previous years.

\section*{Final update assessment}

The final settings used in this year's assessment are as detailed below:
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{2014-2017 assessment} \\
\hline Fleets: & Years & Ages & \(\alpha-\beta\) \\
\hline BEL-CBT commercial & 1971-1996 & 2-9 & 0-1 \\
\hline BEL-CBT2 commercial & 1997-2016 & 2-9 & 0-1 \\
\hline UK-CBT commercial & 1991-2012 & 2-9 & 0-1 \\
\hline UK(E\&W)-BTS-Q3 survey & 1988-2016 & 1-5 & 0.75-0.85 \\
\hline -First data year -Last data year & \begin{tabular}{l}
\[
1971
\] \\
assessment year-1
\end{tabular} & & \\
\hline -First age -Last age & \[
\begin{aligned}
& 1 \\
& 10+
\end{aligned}
\] & & \\
\hline Time-series weights & None & & \\
\hline -Model & Mean q model all ages & & \\
\hline -Q plateau set at age & 7 & & \\
\hline -Survivors estimates shrunk towards mean F & 5 years/5 ages & & \\
\hline -s.e. of the means & 1.5 & & \\
\hline -Min s.e. for pop. Estimates & 0.3 & & \\
\hline -Prior weighting & None & & \\
\hline Fbar (4-8) & & & \\
\hline
\end{tabular}

The catchability residuals for the final XSA are shown in Figure 36.10 and the XSA tuning diagnostics are given in Table 36.11. There may be some indications of a decreasing trend in the UK beam trawl fleet (UK(E\&W)-CBT) with predominantly positive residuals since 2007. The UK beam trawl survey (UK(E\&W)-BTS-Q3) shows a similar trend over the same time-series with predominantly negative residuals, indicating a possible conflicting signal between these two fleets.

In this year's assessment the estimates for the recruiting year class 2015 were estimated solely by the UK beam trawl survey UK(E\&W)-BTS-Q3) (Figure 36.11).

With the inclusion of the new commercial Belgian tuning series BE-CBT2 (1997-2016), the weighting of the final survival estimates are more equally spread over the two commercial series and the survey for the older ages with relative similar estimates by the commercial tuning files. However, as the most recent UK(E\&W)-CBT indices (2013-2016) are not included in the assessment, the UK(E\&W)-CBT gives no information on the youngest year classes (Figure 36.11).

However, it should be noted that the UK beam trawl survey is rather consistent in predicting year-class strengths at different ages (Figure 36.5), where the UK and Belgian (new) commercial tuning series have a higher variability in estimates of yearclass strength at different ages.

F shrinkage gets low weights for all ages (max \(3.5 \%\) ). The weighting of the survey decreases for the older ages as only the tuning indices for the younger ages are used in the assessment (age range: \(1-5\) ). Information on age 1 is solely defined by the sur-
vey. The commercial fleets (UK(E\&W)-CBT and BE-CBT2) on the other hand are given more weight (Figure 36.11) for the older ages.
Retrospective patterns for the final run are shown in Figure 36.12. There appears to be no apparent retrospective bias in estimating fishing mortality and SSB for the most recent years. In the most recent years, F was slightly underestimated whereas SSB was slightly overestimated. Recruitment in the first year may sometimes be overestimated but the overall retrospective pattern show reasonable consistent estimates.
The final XSA output is given in Table 36.12 (fishing mortalities) and Table 36.13 (stock numbers). A summary of the XSA results is given in Table 36.14 and trends in yield, fishing mortality, recruitment and spawning stock biomass are shown in Figure 36.13.

\section*{Comparison with previous assessment}

A comparison of the estimates of this year's assessment with last year's is given in Figure 36.14.

With the addition of the 2016 data, F was slightly up scaled whereas SSB was slightly downscaled. In last year's assessment, F and SSB for 2015 were estimated to be 0.31 and 2714 t respectively; this year's estimates for 2015 are 0.33 and 2561 t , an upward revision of \(8 \%\) for F and a downward revision of \(6 \%\) for SSB. The estimated recruitment by XSA in 2015 (10 172 thousand fish) was downscaled by \(16 \%\) in this year's assessment (8587 thousand fish).

\section*{State of the stock}

Trends in landings, SSB, F(4-8) and recruitment are presented in Table 36.14 and Figure 36.13.

During the eighties fishing mortality increased for this stock. In the following decades fishing mortality fluctuated between this higher level and Fpa. Since 2006 fishing mortality decreased and fluctuated between \(\mathrm{F}_{\mathrm{pa}}\) (0.34) and \(\mathrm{F}_{\mathrm{mSY}}\) (0.27). In 2012 fishing mortality begins to increase again and is estimated in 2014 to be at 0.44 . After a drop in 2015 to below \(\mathrm{F}_{\mathrm{pa}}\), the F in 2016 increased again and is estimated to be between \(\mathrm{F}_{\mathrm{pa}}\) and \(F_{\text {lim }}\) at 0.37 .

Recruitment has fluctuated around 5 million recruits with occasional strong year classes. The 1998 year class is estimated to be the strongest in the time-series (14756 thousand fish) and the 2007 year class is also one of the stronger year classes ( 9740 thousand fish). The 2013 year class is by far the lowest in the time-series ( 1765 thousand). The 2014 year class and the incoming recruitment (year class 2015) are estimated to be well above the average ( 8587 and 7762 thousand fish).

SSB has declined almost continuously from the highest value of 7540 t in 1971 to the lowest observed in the time-series in 1998 (1664 t). The exceptional year class of 1998 has increased SSB to above the long-term average. The above average recruitment in 2012, the strong 2014 and 2015 year classes are predicted to keep SSB just above \(\mathrm{B}_{\mathrm{pa}} / \mathrm{B}_{\text {trigger }}\).

\subsection*{36.4 Short-term projections}

The long-term GM71-14 recruitment (4802 thousand fish) was assumed for the 2016 and subsequent year classes.

Population numbers at the start of 2017, estimated for ages 2 and older, were taken from the XSA output.

The 2015 year class is estimated at 7762 thousand fish at age 1, which is \(57 \%\) higher than the GM (4933 thousand fish) used in last year's forecast. The estimate is solely coming from the UK(E\&W)-BTS-Q3 survey. The exponential decay model was applied to calculate the age 2 survivors of this cohort (7024 thousand fish).

The 2014 year class is estimated to be above average at 8587 thousand fish at age 1.
The working group estimates of year-class strength used for prediction can be summarised as follows:
\begin{tabular}{lcccl}
\hline Year class & At age in 2017 & XSA & GM & Source \\
\hline 2014 & 3 & 6541 & & XSA \\
\hline 2015 & 2 & 7024 & & XSA \\
\hline 2016 & 1 & - & 4802 & GM 1971-2014 \\
\hline \(2017 \& 2018\) & recruits & - & 4802 & GM 1971-2014 \\
\hline
\end{tabular}

Fishing mortality was set as the mean over the last three years not scaled to 2016. Weights-at-age in the catch and in the stock are averages for the years 2014-2016. Input to the short-term predictions, the sensitivity analysis and the Fmsy analysis are shown in Table 36.15. Results are presented in Table 36.16 (management options) and Table 36.17 (detailed output).

The working group decided to use a TAC constraint for the intermediate year (2017) as recent landings have been close to the TAC or only limited overshot. Moreover, status quo fishing mortality gives higher landings (1054 t) in the intermediate year than the agreed TAC (845 t).

Assuming a TAC constraint for 2017 of 845 t , implies a fishing mortality in 2017 of 0.29. The assumed landings using a status quo fishing mortality in 2018 is 1206 t . This results in a SSB of 3112 t in 2018 and 3149 t in 2019.

Assuming a TAC constraint for 2017 and a status quo F in 2018, the proportional contributions of recent year classes to the predicted landings and SSB are given in Figure 36.15. The assumed GM recruitment accounts for about 3\% of the landings in 2018 and about \(10 \%\) of the 2019 SSB.

There are no known specific environmental drivers known for this stock.

\subsection*{36.5 MSY explorations}

Investigations for possible FMSY candidates for this stock were done at WGCSE 2010. ACOM adopted an FMSY value of 0.31, based on stochastic simulations using a "Ricker" model (PLOTMSY program). Btrigger was set to the BPA value of 2200 t .

Exploratory analysis investigating possible revisions of MSY estimates were conducted at WGCSE 2014 with a recent version of PLotMSY (Cefas, 2014). The simulations indicated that there is no reason for using a particular weighting for any of the stockrecruitment relationships. The resulting Fmsy values were in line with the Fmsy of 0.31 used at that moment for this stock.

In response to the EC long-term management plans for western EU waters (ICES subareas 5 to 10), ICES WKMSYREF4 (October 2015, Brest (France)) used long-term stochastic simulations (Eqsim) to estimate FMSY and appropriate ranges. The methodology used for stocks with age-based assessments follows the approaches developed in ICES WKMSYREF2 (ICES, 2014b) and WKMSYREF3 (ICES, 2014c) and is documented in the report of WKMSYREF4 (ICES, 2016c). Estimates of reference points Blim, \(B_{p a}, F_{l i m}\) and \(\mathrm{F}_{\mathrm{pa}}\) were provided, and the \(\mathrm{F}_{\mathrm{msy}}\) ranges [ Flower , \(\mathrm{F}_{\text {upper }}\) ] deliver no more than \(5 \%\) reduction in long-term yield compared with MSY.

The full available time-series of sole 7.f and 7.g recruitment was used to fit stockrecruitment models. The simulations indicated that there is no reason for using a particular weighting for any of the stock-recruitment relationships. The workshop decided to use a more conservative approach and to base the analysis on a segmented regression only with a breakpoint set at \(\mathrm{B}_{\lim }\) of 1700 t . Blim was chosen as the lowest value of the SSB time-series ( \(\mathrm{B}_{\text {losss }}\) ). The revised MSY reference points are more restrictive ( \(\mathrm{F}_{\text {msy }}=0.27\) instead of 0.31 and MSY \(\mathrm{B}_{\text {trigger }}=2400 \mathrm{t}\) instead of 2200 t ) and demand a larger reduction in F to achieve the MSY objectives as foreseen in the basic regulation.

In order to be consistent with the ICES precautionary approach, Fupper is capped, so that the probability of \(\mathrm{SSB}<\mathrm{B}_{\lim }\) is no more than \(5 \%\). Two approaches have been used to derive the values of the cap on \(F_{\text {upper }}\). One conforms to the ICES MSY advice rule (AR), and requires reducing F linearly towards zero when SSB is below MSY Btrigger. The second uses a constant \(F\) without an advice rule; i.e. no reduction in \(F\) with SSB less than MSY \(B_{\text {trigger. }}\) Although the first often provides a wider \(\mathrm{F}_{\text {MSY }}\) range, it requires the ICES MSY advice rule to be used (ICES, 2016d).
\begin{tabular}{lcccc}
\hline Stock code & MSY Flower & FMSY & MSY Fupper with AR & MSY Fupper with no AR \\
\hline Sol-celt & 0.154 & 0.274 & 0.419 & 0.36 \\
\hline
\end{tabular}

\subsection*{36.6 Biological reference points}

\section*{Precautionary approach reference points}

The Working Group's current approach to reference points is outlined in Section 7.13.5. Current biological reference points are given in the text table below:
\begin{tabular}{|c|c|c|}
\hline Reference points & ACFM 98 onwards & 2016 onwards \\
\hline FMSY & 0.31 (PLOTMSY, WG2010) & 0.274 (Eqsim, WKMSYREF 4) \\
\hline \[
\mathrm{F}_{\mathrm{lim}}
\] & 0.52 (based on Floss, WG1998) & 0.488 (based on segmented regression with Blim as breakpoint) \\
\hline \[
F_{P A}
\] & 0.37 (Flim x 0.72) & 0.34857 (Flim/1.4) \\
\hline \[
\mathrm{B}_{\mathrm{lim}}
\] & Not defined & 1700 t (Bloss estimated in 2015) \\
\hline BPA & \[
\begin{aligned}
& 2200 \mathrm{t} \text { (based on Bloss (1991), } \\
& \text { WG1998) }
\end{aligned}
\] & 2380 t ( \(\mathrm{Blim}^{*} 1.4\) ) \\
\hline \(B_{\text {trigger }}\) & BPA & 2380 t \\
\hline
\end{tabular}

\subsection*{36.7 Management plans}

There are no explicit management plans for Celtic Sea sole.
In 2006, the working group presented results from a series of medium-term scenarios, carried out in conjunction with 7.f and 7.g plaice, to simulate some possible management plans for the two stocks. Results indicated that an F in the range 0.27 to 0.49 in the long term would maintain yield at or above \(95 \%\) of that given by \(\mathrm{F}_{\mathrm{max}}\), whilst posing a low probability ( \(<5 \%\) ) of SSB falling below Blim. Three year average exploitation patterns were calculated and are given in Figure 36.16. The results of the Fmsy analysis, carried out during the 2014 WKMSYREF4 (ICES, 2016c) also confirm that a fishing mortality of 0.274 could be the long-term management objective for sole in 7.f and 7.g. Other species caught in the fishery (mixed fisheries) should also be considered.

\subsection*{36.8 Uncertainties and bias in assessment and forecast}

\section*{Sampling}

The major fleets fishing for 7.f and 7.g sole are sampled (approximately \(86 \%\) of the total landings). Sampling is considered to be at a reasonable level.

\section*{Discards}

Discard estimates, which are low (average discarding by weight is \(3 \%\) of the catch) are not included in the assessment.

\section*{Surveys}

The UK(E\&W)-BTS-Q3 survey, which is solely responsible for the recruiting estimates, has been able to track year-class strength at ages greater than 0 rather well in the past. However, the strong year classes have sometimes been revised downward in previous assessments and therefore estimates of very strong year classes may cause bias in the forecast.

\section*{Consistency}

The assessment provided by the Expert Group revised down SSB by \(6 \%\) and F up by \(8 \%\), indicating that there is no major concern about the uncertainty in the assessment and the forecast. Recruitment was revised down by \(16 \%\) relative to last year's assessment. There is no apparent retrospective pattern in estimating F and SSB in the last few years. Recruitment in the first year may sometimes be overestimated but the overall retrospective pattern show reasonable consistent estimates.

\section*{Misreporting}

Area misreporting is known to have been considerable over the period 2002-2005. This was due to a combination of the good 1998 year class still being an important part of the catch composition and more restrictive TACs. The area misreporting has been corrected for the years 2002-2006 (WGSSDS 2007). At the WKCELT 2014, analysis revealed that there was additional misreporting taking place in 2002-2003 and 2004 which was not accounted for in the first correction done at WGSSDS in 2007. Since 2007 the area misreporting that could be estimated was negligible.

\subsection*{36.9 Recommendation for next Benchmark}

Sole in 7.f and 7.g has been benchmarked in February 2014. A new benchmark is proposed for the moment.
\begin{tabular}{|c|c|c|c|}
\hline Issue & Problem / Aim & Work needed / Work NEEDED / POSSIBLE DIRECTION OF SOLUTION & \begin{tabular}{l}
Data needed to be ABLE TO DO THIS: ARE THESE \\
AVAILABLE / WHERE SHOULD THESE COME FROM?
\end{tabular} \\
\hline \multirow[t]{3}{*}{Tuning series} & \begin{tabular}{l}
Commercial UK(E\&W)-CBT fleet \\
The UK beam trawl tuningseries is in the current assessment used up to 2012, because of effort reporting issues. A new tuning series was provided with effort in days instead of hours up to 2015. The inclusion of this new tuning series results in a significant upward revision of F and downward revision of SSB from the late 90's up until now, compared to the original tuning series.
\end{tabular} & \begin{tabular}{l}
*Need to review the new UK-CBT tuning series with effort in days \\
*Investigate if commercial tuning fleets should still be used in future assessments of sole in 7.f and 7.g.
\end{tabular} & *UK-CBT tuning series calculations \\
\hline & \begin{tabular}{l}
UK-BTS-Q3 survey \\
The UK-BTS-Q3 survey is the only survey used in the current assessment and is solely providing information on the recruiting age (age 1)
\end{tabular} & *Investigate if additional survey information (e.g. UKQ1SWBeam, started in 2006) is available and can be incorporated in the assessment. & *UK-Q1SWBeam tuning series \\
\hline & & *Additional survey data can confirm the info provided by the UK-BTS-Q3 survey. & *other available survey data \\
\hline Fisheries \& ecosystem issues and data & \begin{tabular}{l}
Trends in mean weights \\
The mean weights have dropped over time (20002010) and recently increased again.
\end{tabular} & \begin{tabular}{l}
*What drives this change? \\
*Is it driven by an ecosystem change? \\
*Is there a similar trend in the weights from other stocks?
\end{tabular} & *information on the evolution in the Celtic Sea ecosystem \\
\hline
\end{tabular}

\subsection*{36.1 0 Management considerations}

There is no apparent stock-recruitment relationship for this stock and no evidence of reduced recruitment at low levels of SSB (Figure 36.17).

SSB has declined almost continuously from the highest value of 7540 t in 1971 to the lowest observed in the time-series in 1998 ( 1664 t ). The exceptional year class of 1998 has increased SSB to above the long-term average. The above average recruitment in 2012, the strong 2014 and 2015 year classes are predicted to keep SSB just above \(B_{p a} / B_{\text {trigger }}\).

The Celtic Sea is an area without days at sea limitations for demersal fisheries. In this context and given that many demersal vessels are very mobile, changes in effort measures in areas other than the Celtic Sea, can influence the effort regime in the Celtic Sea (cfr. increased effort in Celtic Sea for Belgian beamers during 2004-2005 when days at sea limitations were in place for the Eastern English Channel).

\subsection*{36.1 1 Ecosystem considerations}

Sole and plaice are predominantly caught by beam trawl fisheries. Beam trawling is known to have an impact on the benthic communities, although less so on soft substrates and in areas which have been historically exploited by this fishing method. Benthic drop-out panels have been shown to release around \(75 \%\) of benthic invertebrates from the catches. Information from the UK industry (Trebilcock and Rozarieux, 2009) suggests that uptake in 2008 was minimal.

\subsection*{36.12References}

Trebilcock P. and N. de Rozarieux. 2009. National Federation Fishermen's Organisation Annual Fisheries Reports. Cornish Fish Producers Organisation / Seafood Cornwall Training Ltd, March 2009.

ICES. 2009. Report of the Benchmark and Data Compilation Workshop for Flatfish (WKFLAT 2009), 6-13 February 2009, Copenhagen, Denmark. ICES CM 2009/ACOM:31. 192 pp.

ICES. 2014. Report of the Benchmark WKCELT, 3-7 February 2014, Copenhagen, Denmark. ICES CM 2014/ACOM:42. 194 pp .

ICES. 2014b. Report of the Workshop to consider reference points for all stocks (WKMSYREF2), 8-10 January 2014, ICES Headquarters, Copenhagen, Denmark. ICES CM 2014/ACOM:47. 91 pp .

ICES. 2014c. Report of the Joint ICES-MYFISH Workshop to consider the basis for FMSY ranges for all stocks (WKMSYREF3), 17-21 November 2014, Charlottenlund, Denmark. ICES CM 2014/ACOM:64. 147 pp.

ICES. 2016c. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 183 pp.

ICES. 2016d. EU request to ICES to provide FMSY ranges for selected stocks in ICES subareas 5 to 10, ICES special request advice. 5 February 2016 Version 2; 13 May 2016.

Table 36.1 - Sol.27.7fg - Official Nominal landings and data used by the Working Group (t)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Belgium & Denmark & France & Ireland & UK(E.\&W,NI.) & UK(Scotland) & Netherlands & TotalOfficial & Unallocated & Used by WG & TAC \\
\hline 1986 & 1039 * & 2 & 146 & 188 & 611 & & 3 & 1989 & -389 & 1600 & \\
\hline 1987 & 701 * & - & 117 & 9 & 437 & & & 1264 & -42 & 1222 & 1600 \\
\hline 1988 & 705 * & - & 110 & 72 & 317 & & & 1204 & -58 & 1146 & 1100 \\
\hline 1989 & 684 * & - & 87 & 18 & 203 & & - & 992 & 0 & 992 & 1000 \\
\hline 1990 & 716 * & - & 130 & 40 & 353 & 0 & - & 1239 & -50 & 1189 & 1200 \\
\hline 1991 & 982 * & - & 80 & 32 & 402 & 0 & & 1496 & -389 & 1107 & 1200 \\
\hline 1992 & 543 * & - & 141 & 45 & 325 & 6 & - & 1060 & -79 & 981 & 1200 \\
\hline 1993 & 575 * & - & 108 & 51 & 285 & 11 & - & 1030 & -102 & 928 & 1100 \\
\hline 1994 & 619 * & - & 90 & 37 & 264 & 8 & - & 1018 & -9 & 1009 & 1100 \\
\hline 1995 & 763 * & - & 88 & 20 & 294 & & - & 1165 & -8 & 1157 & 1100 \\
\hline 1996 & 695 * & - & 102 & 19 & 265 & 0 & - & 1081 & -86 & 995 & 1000 \\
\hline 1997 & 660 * & - & 99 & 28 & 251 & 0 & - & 1038 & -111 & 927 & 900 \\
\hline 1998 & 675 * & - & 98 & 42 & 198 & & - & 1013 & -138 & 875 & 850 \\
\hline 1999 & 604 & - & 61 & 51 & 231 & 0 & - & 947 & 65 & 1012 & 960 \\
\hline 2000 & 694 & - & 74 & 29 & 243 & & - & 1040 & 51 & 1091 & 1160 \\
\hline 2001 & 720 & - & 77 & 35 & 288 & & & 1120 & 48 & 1168 & 1020 \\
\hline 2002 & 703 & - & 65 & 32 & 318 & + & - & 1118 & 227 & 1345 & 1070 \\
\hline 2003 & 715 & - & 124 & 26 & 342 & + & & 1207 & 185 & 1392 & 1240 \\
\hline 2004 & 735 & - & 79 & 33 & 283 & - & - & 1130 & 119 & 1249 & 1050 \\
\hline 2005 & 645 & - & 101 & 34 & 217 & - & & 997 & 47 & 1044 & 1000 \\
\hline 2006 & 576 & - & 75 & 38 & 232 & - & - & 921 & 25 & 946 & 950 \\
\hline 2007 & 582 & - & 85 & 32 & 244 & - & & 943 & 2 & 945 & 890 \\
\hline 2008 & 466 & - & 68 & 28 & 218 & - & - & 780 & 20 & 800 & 964 \\
\hline 2009 & 513 & - & 74 & 26 & 194 & - & - & 807 & -2 & 805 & 993 \\
\hline 2010 & 620 & - & 45 & 27 & 179 & - & - & 871 & 5 & 876 & 993 \\
\hline 2011 & 766 & - & 50 & 30 & 168 & - & - & 1013 & 16 & 1029 & 1241 \\
\hline 2012 & 843 & - & 48 & 33 & 175 & - & - & 1099 & 5 & 1104 & 1060 \\
\hline 2013 & 789 & - & 49 & 42 & 206 & - & & 1086 & 6 & 1092 & 1100 \\
\hline 2014 & 705 & - & 59 & 28 & 252 & - & - & 1044 & 2 & 1042 & 1001 \\
\hline 2015 & 671 & - & 24 & 27 & 105 & - & & 827 & 3 & 830 & 851 \\
\hline \(2016{ }^{\wedge}\) & 563 & \(-\) & 72 & 21 & 175 & - & - & 831 & 0 & 831 & 779 \\
\hline
\end{tabular}

Table 36.2-Sol.27.7fg - Annual length distributions by fleet
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Length (cm)} & UK (England \& Wales) & Belgium & \multicolumn{2}{|c|}{Ireland} \\
\hline & Beam trawl & Beam trawl & Beam trawl & Otter trawl \\
\hline 17 & & & & \\
\hline 18 & & & & \\
\hline 19 & & & & \\
\hline 20 & & & & \\
\hline 21 & & 544 & & \\
\hline 22 & 5 & 2908 & & \\
\hline 23 & 22 & 20604 & & \\
\hline 24 & 417 & 112048 & 294 & \\
\hline 25 & 1549 & 170147 & 503 & 1678 \\
\hline 26 & 4342 & 242722 & 0 & 2464 \\
\hline 27 & 8941 & 288813 & 3105 & 492 \\
\hline 28 & 13232 & 251899 & 5766 & 13257 \\
\hline 29 & 19510 & 203980 & 5596 & 14473 \\
\hline 30 & 22232 & 169243 & 4509 & 8245 \\
\hline 31 & 28081 & 122818 & 2447 & 3208 \\
\hline 32 & 33898 & 108330 & 8409 & 4284 \\
\hline 33 & 30742 & 89755 & 8665 & 2440 \\
\hline 34 & 36279 & 65844 & 2029 & 5137 \\
\hline 35 & 29139 & 53348 & 3963 & 4347 \\
\hline 36 & 24232 & 41732 & 4897 & 1799 \\
\hline 37 & 25899 & 26536 & 2730 & 3240 \\
\hline 38 & 14428 & 22437 & 4075 & 1326 \\
\hline 39 & 18403 & 15896 & 836 & 1177 \\
\hline 40 & 11897 & 12342 & 2351 & 2564 \\
\hline 41 & 10320 & 6539 & 503 & 971 \\
\hline 42 & 9502 & 5205 & 418 & 139 \\
\hline 43 & 5997 & 2780 & 1003 & 277 \\
\hline 44 & 3317 & 2093 & 729 & \\
\hline 45 & 1645 & 715 & 1481 & \\
\hline 46 & 1430 & 612 & 644 & \\
\hline 47 & 866 & 702 & & \\
\hline 48 & 177 & 150 & & \\
\hline 49 & 420 & 67 & & \\
\hline 50 & 227 & & & \\
\hline 51 & 151 & & & \\
\hline 52 & & & & \\
\hline 53 & & & & \\
\hline 54 & & & & \\
\hline 55 & & & & \\
\hline 56 & & & & \\
\hline 57 & & & & \\
\hline 58 & & & & \\
\hline 59 & & & & \\
\hline 60 & & & & \\
\hline Total & 357298 & 2040809 & 64953 & 71518 \\
\hline
\end{tabular}

Table 36.3-Sol.27.7fg - Catch numbers at age (in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age/Year & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 386 & 541 & 364 & 155 & 119 & 312 & 314 & 317 & 328 & 657 \\
\hline 3 & 270 & 903 & 1883 & 438 & 287 & 833 & 438 & 739 & 561 & 971 \\
\hline 4 & 1341 & 314 & 748 & 863 & 336 & 559 & 349 & 338 & 748 & 875 \\
\hline 5 & 625 & 671 & 305 & 411 & 638 & 610 & 271 & 154 & 208 & 584 \\
\hline 6 & 433 & 329 & 352 & 209 & 304 & 558 & 244 & 159 & 154 & 180 \\
\hline 7 & 537 & 213 & 119 & 239 & 110 & 261 & 404 & 99 & 197 & 62 \\
\hline 8 & 763 & 232 & 110 & 97 & 102 & 131 & 120 & 198 & 124 & 96 \\
\hline 9 & 376 & 314 & 116 & 109 & 67 & 197 & 28 & 71 & 153 & 100 \\
\hline +gp & 1220 & 731 & 644 & 541 & 372 & 462 & 365 & 174 & 169 & 352 \\
\hline Age/Year & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 602 & 342 & 647 & 671 & 196 & 494 & 318 & 526 & 479 & 277 \\
\hline 3 & 675 & 830 & 1078 & 845 & 1475 & 1296 & 958 & 464 & 1163 & 993 \\
\hline 4 & 792 & 309 & 729 & 605 & 767 & 1173 & 798 & 878 & 601 & 1175 \\
\hline 5 & 399 & 467 & 284 & 541 & 566 & 526 & 578 & 441 & 621 & 399 \\
\hline 6 & 377 & 280 & 349 & 184 & 296 & 358 & 273 & 387 & 237 & 452 \\
\hline 7 & 150 & 207 & 225 & 277 & 100 & 193 & 205 & 127 & 188 & 138 \\
\hline 8 & 120 & 92 & 192 & 106 & 140 & 87 & 100 & 78 & 82 & 115 \\
\hline 9 & 94 & 111 & 52 & 47 & 73 & 103 & 61 & 67 & 24 & 50 \\
\hline +gp & 380 & 326 & 320 & 274 & 240 & 328 & 179 & 268 & 102 & 129 \\
\hline Age/Year & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 1458 & 433 & 354 & 295 & 129 & 177 & 245 & 197 & 608 & 1721 \\
\hline 3 & 690 & 1699 & 862 & 790 & 1154 & 1036 & 890 & 931 & 1719 & 1480 \\
\hline 4 & 658 & 644 & 1103 & 739 & 1096 & 905 & 599 & 724 & 834 & 683 \\
\hline 5 & 496 & 409 & 332 & 864 & 419 & 424 & 400 & 297 & 282 & 241 \\
\hline 6 & 151 & 253 & 186 & 283 & 482 & 229 & 252 & 171 & 143 & 60 \\
\hline 7 & 156 & 61 & 161 & 149 & 133 & 192 & 127 & 108 & 80 & 56 \\
\hline 8 & 55 & 59 & 63 & 65 & 112 & 57 & 126 & 51 & 31 & 43 \\
\hline 9 & 46 & 28 & 83 & 42 & 65 & 43 & 45 & 52 & 23 & 19 \\
\hline +gp & 162 & 89 & 99 & 146 & 109 & 106 & 106 & 87 & 44 & 51 \\
\hline Age/Year & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 701 & 29 & 132 & 476 & 290 & 684 & 335 & 214 & 607 & 281 \\
\hline 3 & 1909 & 1465 & 776 & 1927 & 917 & 1329 & 865 & 452 & 464 & 1316 \\
\hline 4 & 856 & 2202 & 1262 & 886 & 897 & 714 & 743 & 559 & 426 & 744 \\
\hline 5 & 434 & 660 & 2070 & 889 & 508 & 576 & 474 & 565 & 346 & 347 \\
\hline 6 & 241 & 249 & 448 & 807 & 426 & 163 & 325 & 277 & 292 & 258 \\
\hline 7 & 65 & 95 & 248 & 128 & 373 & 148 & 157 & 198 & 173 & 164 \\
\hline 8 & 39 & 54 & 89 & 67 & 51 & 178 & 145 & 76 & 103 & 118 \\
\hline 9 & 26 & 36 & 29 & 38 & 44 & 44 & 184 & 109 & 44 & 66 \\
\hline +gp & 81 & 51 & 84 & 55 & 45 & 51 & 70 & 172 & 193 & 118 \\
\hline Age/Year & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & & & & \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & & & & \\
\hline 2 & 124 & 160 & 436 & 115 & 85 & 514 & & & & \\
\hline 3 & 1013 & 233 & 1065 & 629 & 806 & 428 & & & & \\
\hline 4 & 1443 & 1029 & 343 & 743 & 863 & 607 & & & & \\
\hline 5 & 398 & 1308 & 837 & 217 & 382 & 663 & & & & \\
\hline 6 & 273 & 364 & 693 & 430 & 140 & 245 & & & & \\
\hline 7 & 194 & 207 & 227 & 421 & 217 & 86 & & & & \\
\hline 8 & 133 & 136 & 80 & 138 & 117 & 143 & & & & \\
\hline 9 & 66 & 91 & 66 & 84 & 82 & 97 & & & & \\
\hline +gp & 199 & 246 & 166 & 218 & 132 & 93 & & & & \\
\hline
\end{tabular}

Table 36.4-Sol.27.7fg - Catch weights at age (kg)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age/Year & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 \\
\hline 1 & 0.039 & 0.106 & 0.081 & 0.063 & 0.046 & 0.114 & 0.098 & 0.068 & 0.023 & 0.048 \\
\hline 2 & 0.106 & 0.147 & 0.143 & 0.137 & 0.132 & 0.167 & 0.169 & 0.154 & 0.132 & 0.144 \\
\hline 3 & 0.167 & 0.186 & 0.202 & 0.205 & 0.212 & 0.218 & 0.235 & 0.234 & 0.232 & 0.234 \\
\hline 4 & 0.222 & 0.226 & 0.258 & 0.270 & 0.286 & 0.268 & 0.297 & 0.309 & 0.321 & 0.316 \\
\hline 5 & 0.272 & 0.264 & 0.311 & 0.329 & 0.355 & 0.316 & 0.355 & 0.378 & 0.401 & 0.392 \\
\hline 6 & 0.315 & 0.302 & 0.361 & 0.385 & 0.417 & 0.363 & 0.409 & 0.441 & 0.471 & 0.461 \\
\hline 7 & 0.352 & 0.340 & 0.408 & 0.436 & 0.473 & 0.409 & 0.460 & 0.499 & 0.531 & 0.523 \\
\hline 8 & 0.383 & 0.376 & 0.452 & 0.483 & 0.523 & 0.453 & 0.506 & 0.551 & 0.581 & 0.579 \\
\hline 9 & 0.408 & 0.413 & 0.493 & 0.525 & 0.567 & 0.496 & 0.548 & 0.598 & 0.622 & 0.627 \\
\hline +gp & 0.440 & 0.538 & 0.602 & 0.624 & 0.672 & 0.665 & 0.668 & 0.720 & 0.664 & 0.720 \\
\hline Age/Year & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 \\
\hline 1 & 0.078 & 0.061 & 0.085 & 0.019 & 0.089 & 0.046 & 0.048 & 0.074 & 0.013 & 0.049 \\
\hline 2 & 0.154 & 0.156 & 0.173 & 0.131 & 0.170 & 0.144 & 0.146 & 0.157 & 0.109 & 0.134 \\
\hline 3 & 0.225 & 0.243 & 0.255 & 0.235 & 0.246 & 0.236 & 0.236 & 0.235 & 0.198 & 0.214 \\
\hline 4 & 0.292 & 0.324 & 0.330 & 0.330 & 0.317 & 0.321 & 0.320 & 0.309 & 0.280 & 0.291 \\
\hline 5 & 0.355 & 0.397 & 0.398 & 0.416 & 0.383 & 0.400 & 0.396 & 0.378 & 0.355 & 0.363 \\
\hline 6 & 0.414 & 0.462 & 0.459 & 0.494 & 0.444 & 0.471 & 0.466 & 0.442 & 0.424 & 0.430 \\
\hline 7 & 0.469 & 0.521 & 0.514 & 0.562 & 0.500 & 0.536 & 0.528 & 0.502 & 0.487 & 0.494 \\
\hline 8 & 0.519 & 0.572 & 0.561 & 0.622 & 0.552 & 0.594 & 0.584 & 0.557 & 0.543 & 0.553 \\
\hline 9 & 0.565 & 0.617 & 0.602 & 0.673 & 0.598 & 0.645 & 0.632 & 0.608 & 0.592 & 0.609 \\
\hline +gp & 0.665 & 0.704 & 0.679 & 0.772 & 0.703 & 0.748 & 0.740 & 0.738 & 0.691 & 0.747 \\
\hline Age/Year & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
\hline 1 & 0.054 & 0.073 & 0.057 & 0.081 & 0.068 & 0.027 & 0.074 & 0.079 & 0.015 & 0.078 \\
\hline 2 & 0.150 & 0.147 & 0.134 & 0.151 & 0.147 & 0.124 & 0.156 & 0.163 & 0.122 & 0.166 \\
\hline 3 & 0.239 & 0.216 & 0.207 & 0.216 & 0.220 & 0.214 & 0.234 & 0.244 & 0.222 & 0.248 \\
\hline 4 & 0.320 & 0.281 & 0.275 & 0.276 & 0.288 & 0.296 & 0.307 & 0.320 & 0.315 & 0.322 \\
\hline 5 & 0.393 & 0.342 & 0.338 & 0.331 & 0.351 & 0.372 & 0.376 & 0.393 & 0.400 & 0.390 \\
\hline 6 & 0.459 & 0.398 & 0.396 & 0.380 & 0.409 & 0.439 & 0.440 & 0.462 & 0.478 & 0.451 \\
\hline 7 & 0.516 & 0.451 & 0.450 & 0.425 & 0.462 & 0.500 & 0.500 & 0.528 & 0.549 & 0.506 \\
\hline 8 & 0.566 & 0.499 & 0.500 & 0.465 & 0.510 & 0.552 & 0.555 & 0.589 & 0.613 & 0.553 \\
\hline 9 & 0.608 & 0.543 & 0.545 & 0.500 & 0.553 & 0.598 & 0.605 & 0.647 & 0.670 & 0.594 \\
\hline +gp & 0.674 & 0.640 & 0.645 & 0.563 & 0.643 & 0.677 & 0.707 & 0.781 & 0.765 & 0.665 \\
\hline Age/Year & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\
\hline 1 & 0.066 & 0.054 & 0.123 & 0.066 & 0.068 & 0.085 & 0.075 & 0.128 & 0.128 & 0.127 \\
\hline 2 & 0.148 & 0.130 & 0.171 & 0.130 & 0.145 & 0.139 & 0.139 & 0.164 & 0.179 & 0.160 \\
\hline 3 & 0.225 & 0.202 & 0.218 & 0.194 & 0.219 & 0.192 & 0.200 & 0.198 & 0.221 & 0.186 \\
\hline 4 & 0.296 & 0.271 & 0.266 & 0.256 & 0.288 & 0.245 & 0.258 & 0.258 & 0.252 & 0.230 \\
\hline 5 & 0.363 & 0.336 & 0.313 & 0.317 & 0.354 & 0.297 & 0.313 & 0.309 & 0.320 & 0.310 \\
\hline 6 & 0.425 & 0.399 & 0.361 & 0.377 & 0.415 & 0.349 & 0.365 & 0.305 & 0.394 & 0.346 \\
\hline 7 & 0.482 & 0.457 & 0.408 & 0.435 & 0.473 & 0.400 & 0.414 & 0.412 & 0.417 & 0.404 \\
\hline 8 & 0.533 & 0.513 & 0.454 & 0.493 & 0.528 & 0.451 & 0.460 & 0.521 & 0.463 & 0.404 \\
\hline 9 & 0.579 & 0.564 & 0.501 & 0.549 & 0.578 & 0.501 & 0.503 & 0.532 & 0.481 & 0.530 \\
\hline +gp & 0.677 & 0.704 & 0.639 & 0.721 & 0.690 & 0.618 & 0.609 & 0.536 & 0.622 & 0.591 \\
\hline Age/Year & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & & & & \\
\hline 1 & 0.140 & 0.110 & 0.125 & 0.073 & 0.134 & 0.130 & & & & \\
\hline 2 & 0.162 & 0.162 & 0.179 & 0.170 & 0.163 & 0.187 & & & & \\
\hline 3 & 0.184 & 0.213 & 0.205 & 0.208 & 0.200 & 0.211 & & & & \\
\hline 4 & 0.223 & 0.247 & 0.253 & 0.273 & 0.254 & 0.262 & & & & \\
\hline 5 & 0.272 & 0.279 & 0.285 & 0.366 & 0.319 & 0.293 & & & & \\
\hline 6 & 0.354 & 0.324 & 0.334 & 0.393 & 0.352 & 0.353 & & & & \\
\hline 7 & 0.420 & 0.341 & 0.350 & 0.425 & 0.443 & 0.462 & & & & \\
\hline 8 & 0.447 & 0.377 & 0.475 & 0.484 & 0.516 & 0.434 & & & & \\
\hline 9 & 0.475 & 0.409 & 0.412 & 0.530 & 0.436 & 0.476 & & & & \\
\hline +gp & 0.622 & 0.538 & 0.576 & 0.685 & 0.549 & 0.604 & & & & \\
\hline
\end{tabular}

Table 36.5 - Sol.27.7fg - Stock weights at age (kg)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age/Year & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 \\
\hline 1 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 \\
\hline 2 & 0.076 & 0.113 & 0.113 & 0.113 & 0.113 & 0.113 & 0.145 & 0.113 & 0.113 & 0.113 \\
\hline 3 & 0.136 & 0.157 & 0.142 & 0.159 & 0.141 & 0.160 & 0.174 & 0.167 & 0.163 & 0.157 \\
\hline 4 & 0.190 & 0.222 & 0.203 & 0.221 & 0.215 & 0.210 & 0.236 & 0.257 & 0.255 & 0.238 \\
\hline 5 & 0.239 & 0.298 & 0.263 & 0.305 & 0.295 & 0.269 & 0.366 & 0.360 & 0.392 & 0.354 \\
\hline 6 & 0.406 & 0.351 & 0.334 & 0.450 & 0.353 & 0.354 & 0.392 & 0.413 & 0.437 & 0.394 \\
\hline 7 & 0.472 & 0.352 & 0.322 & 0.448 & 0.593 & 0.432 & 0.454 & 0.521 & 0.485 & 0.622 \\
\hline 8 & 0.389 & 0.593 & 0.400 & 0.464 & 0.423 & 0.462 & 0.505 & 0.508 & 0.595 & 0.556 \\
\hline 9 & 0.346 & 0.417 & 0.539 & 0.624 & 0.465 & 0.425 & 0.907 & 0.560 & 0.657 & 0.704 \\
\hline +gp & 0.583 & 0.600 & 0.582 & 0.671 & 0.711 & 0.728 & 0.701 & 0.783 & 0.696 & 0.771 \\
\hline Age/Year & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 \\
\hline 1 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 \\
\hline 2 & 0.113 & 0.113 & 0.113 & 0.118 & 0.113 & 0.113 & 0.113 & 0.113 & 0.113 & 0.113 \\
\hline 3 & 0.159 & 0.164 & 0.175 & 0.173 & 0.175 & 0.180 & 0.153 & 0.158 & 0.152 & 0.164 \\
\hline 4 & 0.232 & 0.255 & 0.262 & 0.274 & 0.268 & 0.273 & 0.242 & 0.233 & 0.227 & 0.247 \\
\hline 5 & 0.306 & 0.356 & 0.370 & 0.429 & 0.472 & 0.398 & 0.361 & 0.363 & 0.308 & 0.369 \\
\hline 6 & 0.385 & 0.487 & 0.488 & 0.517 & 0.433 & 0.462 & 0.473 & 0.466 & 0.465 & 0.476 \\
\hline 7 & 0.462 & 0.543 & 0.633 & 0.641 & 0.462 & 0.546 & 0.468 & 0.687 & 0.546 & 0.523 \\
\hline 8 & 0.551 & 0.610 & 0.606 & 0.613 & 0.480 & 0.636 & 0.587 & 0.687 & 0.526 & 0.753 \\
\hline 9 & 0.737 & 0.766 & 0.464 & 0.836 & 0.944 & 0.890 & 0.820 & 0.676 & 0.542 & 0.847 \\
\hline +gp & 0.663 & 0.856 & 0.823 & 0.978 & 0.798 & 0.843 & 0.838 & 0.818 & 0.752 & 0.973 \\
\hline Age/Year & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
\hline 1 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 \\
\hline 2 & 0.113 & 0.113 & 0.148 & 0.113 & 0.113 & 0.104 & 0.113 & 0.113 & 0.110 & 0.062 \\
\hline 3 & 0.179 & 0.184 & 0.196 & 0.135 & 0.143 & 0.186 & 0.178 & 0.195 & 0.204 & 0.169 \\
\hline 4 & 0.230 & 0.265 & 0.267 & 0.227 & 0.233 & 0.284 & 0.276 & 0.282 & 0.317 & 0.306 \\
\hline 5 & 0.356 & 0.388 & 0.392 & 0.329 & 0.335 & 0.387 & 0.386 & 0.371 & 0.433 & 0.434 \\
\hline 6 & 0.536 & 0.498 & 0.470 & 0.430 & 0.441 & 0.486 & 0.495 & 0.454 & 0.541 & 0.534 \\
\hline 7 & 0.376 & 0.751 & 0.492 & 0.521 & 0.540 & 0.573 & 0.598 & 0.529 & 0.635 & 0.603 \\
\hline 8 & 0.859 & 0.754 & 0.576 & 0.599 & 0.629 & 0.647 & 0.689 & 0.593 & 0.712 & 0.648 \\
\hline 9 & 0.735 & 0.475 & 0.636 & 0.661 & 0.705 & 0.708 & 0.766 & 0.644 & 0.772 & 0.677 \\
\hline +gp & 0.679 & 0.896 & 0.727 & 0.757 & 0.845 & 0.808 & 0.892 & 0.732 & 0.852 & 0.707 \\
\hline Age/Year & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\
\hline 1 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.090 & 0.108 & 0.115 & 0.112 \\
\hline 2 & 0.113 & 0.113 & 0.158 & 0.116 & 0.149 & 0.143 & 0.117 & 0.141 & 0.151 & 0.143 \\
\hline 3 & 0.187 & 0.189 & 0.205 & 0.176 & 0.213 & 0.188 & 0.177 & 0.176 & 0.190 & 0.183 \\
\hline 4 & 0.312 & 0.289 & 0.258 & 0.248 & 0.275 & 0.235 & 0.236 & 0.232 & 0.223 & 0.226 \\
\hline 5 & 0.434 & 0.403 & 0.317 & 0.329 & 0.337 & 0.284 & 0.294 & 0.274 & 0.287 & 0.280 \\
\hline 6 & 0.538 & 0.512 & 0.381 & 0.415 & 0.399 & 0.334 & 0.350 & 0.261 & 0.349 & 0.333 \\
\hline 7 & 0.619 & 0.609 & 0.449 & 0.502 & 0.459 & 0.386 & 0.406 & 0.389 & 0.357 & 0.399 \\
\hline 8 & 0.680 & 0.691 & 0.521 & 0.587 & 0.520 & 0.441 & 0.460 & 0.542 & 0.437 & 0.410 \\
\hline 9 & 0.725 & 0.757 & 0.594 & 0.667 & 0.579 & 0.496 & 0.513 & 0.526 & 0.501 & 0.495 \\
\hline +gp & 0.783 & 0.873 & 0.812 & 0.868 & 0.737 & 0.641 & 0.662 & 0.495 & 0.581 & 0.579 \\
\hline Age/Year & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & & & & \\
\hline 1 & 0.130 & 0.086 & 0.107 & 0.049 & 0.113 & 0.107 & & & & \\
\hline 2 & 0.143 & 0.151 & 0.140 & 0.146 & 0.109 & 0.158 & & & & \\
\hline 3 & 0.172 & 0.186 & 0.182 & 0.193 & 0.184 & 0.186 & & & & \\
\hline 4 & 0.204 & 0.213 & 0.232 & 0.237 & 0.230 & 0.229 & & & & \\
\hline 5 & 0.250 & 0.249 & 0.265 & 0.304 & 0.295 & 0.273 & & & & \\
\hline 6 & 0.331 & 0.297 & 0.305 & 0.335 & 0.359 & 0.336 & & & & \\
\hline 7 & 0.381 & 0.347 & 0.337 & 0.377 & 0.417 & 0.403 & & & & \\
\hline 8 & 0.425 & 0.398 & 0.403 & 0.412 & 0.468 & 0.439 & & & & \\
\hline 9 & 0.438 & 0.428 & 0.394 & 0.502 & 0.459 & 0.496 & & & & \\
\hline +gp & 0.591 & 0.559 & 0.551 & 0.638 & 0.574 & 0.565 & & & & \\
\hline
\end{tabular}

Table 36.6-Sol.27.7fg - Discard rates
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Country & Year & \multicolumn{4}{|c|}{Landings (L) (t)} & Discards (D) (t) \\
\hline BE & & TBB & OTB & GNS & other & \\
\hline & 2012 & 786.828 & 55.767 & 0 & 0 & 21.023 \\
\hline & 2013 & 746.751 & 40.031 & 0 & 1.475 & 19.061 \\
\hline & 2014 & 666.183 & 36.317 & 0 & 0.604 & 12.08 \\
\hline & 2015 & 640.168 & 33.623 & 0 & 0 & 12.729 \\
\hline & 2016 & 525.63 & 37.865 & 0 & 0 & 18.765 \\
\hline & & & & & & \\
\hline UK & 2012 & 153.388 & 21.528 & 4.346 & 1.138 & 0 \\
\hline & 2013 & 177.3898 & 22.156 & 2.421 & 2.258 & 2.602 \\
\hline & 2014 & 240.910 & 7.825 & 2.699 & 0.7851 & 2.950 \\
\hline & 2015 & 87.039 & 13.878 & 2.917 & 0.7047 & 0.195 \\
\hline & 2016 & 157.221 & 11.584 & 4.284 & 0.279 & 5.664 \\
\hline & & & & & & \\
\hline IR & 2012 & 12.136 & 19.276 & 0 & 1.392 & 6 \\
\hline & 2013 & 15.996 & 16.583 & 0 & 18.686 & 1 \\
\hline & 2014 & 11.893 & 14.234 & 0 & 1.614 & 7.4 \\
\hline & 2015 & 12.439 & 13.354 & 0.183 & 1.444 & 14.3 \\
\hline & 2016 & 7.112 & 14.039 & 0.129 & 0.043 & 5.202 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|r|}
\multicolumn{1}{c|}{} & \multicolumn{1}{c|}{ total L } & \begin{tabular}{c} 
L corresponding with \\
discard info
\end{tabular} & \% coverage of L & total D & rate \\
\hline 2012 & 1104.28 & 818.24 & 0.74 & 27.02 & \\
\hline 2013 & 1092.76 & 978.88 & 0.90 & 22.66 & 0.032 \\
\hline 2014 & 1041.88 & 934.01 & 769.80 & 0.90 & 22.40 \\
\hline 2015 & 720.15 & 0.93 & 27.22 & 0.023 \\
\hline 2016 & 830.66 & & 0.87 & 0.023 \\
\hline average \(14-16\) & & & 0.90 & 0.034 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Table 36.7-Sol.27.7fg - Indices of abundance (No/100km) for UK(E\&W)-BTS-Q3} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 1988 & 30 & 81 & 326 & 49 & 19 & 5 & 0 & 0 & 0 & 0 \\
\hline 1989 & 144 & 222 & 331 & 176 & 20 & 15 & 7 & 4 & 2 & 2 \\
\hline 1990 & 30 & 385 & 313 & 50 & 16 & 4 & 7 & 3 & 0 & 0 \\
\hline 1991 & 32 & 241 & 517 & 67 & 17 & 15 & 4 & 0 & 2 & 2 \\
\hline 1992 & 4 & 394 & 260 & 139 & 30 & 18 & 10 & 1 & 2 & 1 \\
\hline 1993 & 3 & 169 & 320 & 43 & 19 & 1 & 2 & 2 & 1 & 1 \\
\hline 1994 & 1 & 333 & 387 & 99 & 14 & 7 & 7 & 0 & 0 & 2 \\
\hline 1995 & 27 & 124 & 222 & 52 & 11 & 6 & 12 & 1 & 1 & 1 \\
\hline 1996 & 3 & 150 & 211 & 54 & 23 & 6 & 2 & 3 & 1 & 2 \\
\hline 1997 & 32 & 433 & 180 & 18 & 11 & 12 & 4 & 3 & 5 & 0 \\
\hline 1998 & 90 & 770 & 411 & 51 & 10 & 7 & 4 & 2 & 1 & 5 \\
\hline 1999 & 24 & 2464 & 250 & 32 & 14 & 5 & 4 & 4 & 1 & 0 \\
\hline 2000 & 13 & 916 & 1356 & 31 & 22 & 5 & 0 & 2 & 1 & 1 \\
\hline 2001 & 22 & 379 & 599 & 259 & 20 & 7 & 5 & 2 & 0 & 2 \\
\hline 2002 & 8 & 663 & 238 & 127 & 102 & 12 & 6 & 2 & 3 & 0 \\
\hline 2003 & 12 & 392 & 530 & 47 & 26 & 47 & 8 & 3 & 3 & 0 \\
\hline 2004 & 56 & 749 & 377 & 87 & 13 & 19 & 37 & 4 & 2 & 0 \\
\hline 2005 & 37 & 343 & 225 & 32 & 14 & 6 & 4 & 14 & 1 & 2 \\
\hline 2006 & 11 & 273 & 201 & 39 & 13 & 7 & 0 & 2 & 10 & 0 \\
\hline 2007 & 91 & 357 & 108 & 43 & 14 & 7 & 6 & 3 & 3 & 11 \\
\hline 2008 & 5 & 1039 & 104 & 13 & 15 & 6 & 8 & 3 & 3 & 4 \\
\hline 2009 & 1 & 509 & 318 & 24 & 6 & 8 & 3 & 2 & 2 & 2 \\
\hline 2010 & 18 & 85 & 471 & 122 & 17 & 2 & 4 & 7 & 3 & 1 \\
\hline 2011 & 17 & 501 & 52 & 139 & 69 & 7 & 2 & 6 & 3 & 0 \\
\hline 2012 & 13 & 542 & 231 & 7 & 53 & 24 & 1 & 1 & 1 & 2 \\
\hline 2013 & 9 & 279 & 518 & 43 & 13 & 24 & 15 & 1 & 5 & 1 \\
\hline 2014 & 34 & 244 & 258 & 76 & 14 & 5 & 23 & 8 & 1 & 1 \\
\hline 2015 & 28 & 747 & 48 & 44 & 31 & 7 & 3 & 13 & 6 & 0 \\
\hline 2016 & 26 & 574 & 359 & 12 & 27 & 12 & 7 & 3 & 5 & 8 \\
\hline Geomean & 16 & 375 & 272 & 50 & 19 & 8 & 1 & 0.5 & 0.2 & 0.0 \\
\hline Mean & 28 & 495 & 335 & 68 & 23 & 11 & 7 & 3 & 2 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{England \& Wales} & \multicolumn{2}{|r|}{Belgium} & \multicolumn{3}{|c|}{Ireland} \\
\hline & Otter trawl \({ }^{1}\) & Otter trawl \({ }^{6}\) & Beam trawl \({ }^{1}\) & Beam trawl \({ }^{6}\) & Beam trawl \({ }^{3}\) & Beam trawl \({ }^{5}\) & Otter trawl \({ }^{4}\) & Scottish seine \({ }^{5}\) & Beam trawl \({ }^{5}\) \\
\hline 1971 & - & - & - & - & 11.06 & - & - & - & - \\
\hline 1972 & 45.72 & - & - & - & 8.44 & - & - & - & - \\
\hline 1973 & 45.28 & - & - & - & 17.39 & - & - & - & - \\
\hline 1974 & 38.94 & - & - & - & 18.83 & - & - & - & - \\
\hline 1975 & 33.53 & - & - & - & 16.38 & - & - & - & - \\
\hline 1976 & 25.61 & - & - & - & 28.07 & - & - & - & - \\
\hline 1977 & 27.16 & - & - & - & 24.11 & - & - & - & - \\
\hline 1978 & 27.08 & - & 2.50 & - & 18.09 & - & - & - & - \\
\hline 1979 & 23.84 & - & 1.96 & - & 18.90 & - & - & - & - \\
\hline 1980 & 26.43 & - & 4.31 & - & 29.02 & - & - & - & - \\
\hline 1981 & 24.10 & - & 6.24 & - & 35.39 & - & - & - & - \\
\hline 1982 & 19.20 & - & 9.95 & - & 28.77 & - & - & - & - \\
\hline 1983 & 17.61 & 620 & 12.35 & 195 & 34.95 & - & - & - & - \\
\hline 1984 & 23.16 & 1723 & 13.55 & 901 & 33.48 & - & - & - & - \\
\hline 1985 & 25.24 & 1493 & 18.70 & 1101 & 40.49 & - & - & - & - \\
\hline 1986 & 21.18 & 1125 & 20.72 & 973 & 52.46 & - & - & - & - \\
\hline 1987 & 24.43 & 1211 & 38.76 & 1681 & 37.26 & - & - & - & - \\
\hline 1988 & 20.09 & 838 & 25.62 & 1102 & 42.92 & - & - & - & - \\
\hline 1989 & 17.61 & 966 & 20.26 & 861 & 53.58 & - & - & - & - \\
\hline 1990 & 22.56 & 1229 & 30.77 & 1256 & 40.27 & - & - & - & - \\
\hline 1991 & 18.57 & 1066 & 40.81 & 1667 & 18.05 & - & - & - & - \\
\hline 1992 & 16.00 & 898 & 35.78 & 1420 & 25.47 & - & - & - & - \\
\hline 1993 & 13.79 & 836 & 39.64 & 1669 & 31.27 & - & - & - & - \\
\hline 1994 & 9.48 & 623 & 37.03 & 2219 & 38.35 & - & - & - & - \\
\hline 1995 & 8.46 & 580 & 37.59 & 2303 & 47.81 & - & 63.33 & 6.43 & 20.69 \\
\hline 1996 & 8.67 & 593 & 39.78 & 2391 & 47.63 & 53.27 & 59.97 & 9.73 & 26.70 \\
\hline 1997 & 8.14 & 577 & 43.00 & 2661 & 51.98 & 57.36 & 65.00 & 16.07 & 28.16 \\
\hline 1998 & 7.13 & 517 & 47.84 & 2846 & 52.11 & 57.79 & 72.25 & 14.88 & 35.33 \\
\hline 1999 & 5.69 & 395 & 50.87 & 3058 & 55.03 & 55.11 & 51.48 & 8.01 & 41.04 \\
\hline 2000 & 4.05 & 284 & 51.19 & 3133 & 56.05 & 51.34 & 60.56 & 9.86 & 36.91 \\
\hline 2001 & 4.42 & 309 & 49.32 & 3172 & 52.06 & 54.90 & 69.37 & 16.33 & 39.50 \\
\hline 2002 & 6.10 & 416 & 37.53 & 2652 & 43.24 & 49.60 & 77.20 & 20.88 & 31.49 \\
\hline 2003 & 9.94 & 696 & 40.71 & 2669 & 42.81 & 62.73 & 86.78 & 20.07 & 49.39 \\
\hline 2004 & 9.42 & 641 & 32.37 & 2503 & - & 78.73 & 97.12 & 18.42 & 57.77 \\
\hline 2005 & 12.09 & 876 & 27.73 & 1968 & - & 64.50 & 124.67 & 14.64 & 51.67 \\
\hline 2006 & 12.97 & 924 & 18.57 & 1330 & - & 50.28 & 118.04 & 14.78 & 63.21 \\
\hline 2007 & 10.66 & 798 & 15.37 & 1407 & - & 45.72 & 135.36 & 15.81 & 56.59 \\
\hline 2008 & 10.13 & 711 & 13.83 & 1202 & - & 28.71 & 125.41 & 11.65 & 38.66 \\
\hline 2009 & 8.97 & 656 & 12.31 & 1105 & - & 30.85 & 137.11 & 8.18 & 39.11 \\
\hline 2010 & 7.67 & 565 & 14.44 & 1162 & - & 32.22 & 140.79 & 9.68 & 40.97 \\
\hline 2011 & 7.44 & 525 & 13.79 & 868 & - & 39.58 & 120.33 & 11.05 & 36.07 \\
\hline 2012 & 7.79 & 543 & 12.77 & 1408 & - & 46.25 & 127.68 & 14.21 & 40.49 \\
\hline 2013 & 4.27 & 280 & 0.78 & 1608 & - & 45.16 & 118.20 & 13.15 & 38.74 \\
\hline 2014 & - & 156 & - & 959 & - & 31.27 & 127.34 & 12.46 & 37.88 \\
\hline 2015 & - & 79 & - & 726 & - & 31.79 & 132.69 & 9.29 & 37.79 \\
\hline 2016* & - & 0 & - & 915 & - & 32.34 & 147.18 & 10.44 & 39.33 \\
\hline \multicolumn{10}{|l|}{\({ }^{1}\) Division Vlif only-Fishing hours (x10^3) corrected for fishing power} \\
\hline \multicolumn{10}{|l|}{\({ }^{2}\) Days at sea VIIfg} \\
\hline \multicolumn{10}{|l|}{\({ }^{3}\) Fishing hours ( \(\times 10 \wedge 3\) ) corrected for fishing power using \(\mathrm{P}=0.000204\) BHP^1.23} \\
\hline \multicolumn{10}{|l|}{\({ }^{4}\) Division Vlig only - Fishing hours ( \(\mathrm{X} 10^{\wedge} 3\) )} \\
\hline \multicolumn{10}{|l|}{\({ }^{5}\) Fishing hours ( \(\times 10 \wedge 3\) )} \\
\hline \multicolumn{10}{|l|}{\begin{tabular}{l}
\({ }^{6}\) Division VIff only - Days fished corrected for fishing power \\
* provisional
\end{tabular}} \\
\hline
\end{tabular}


Table 36.10-Sol.27.7fg - Tuning series

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{Table 34.10-Sol.27.7fg -Tuning series continued Indices in bold are used in the assessment} \\
\hline UK(E\&W)-CBT & \multicolumn{14}{|l|}{UK(E+W) 7.f Beam trawl} \\
\hline 1991 & 2012 & & & & & & & & & & & & & \\
\hline 1 & 1 & 0 & 1 & & & & & & & & & & & \\
\hline 1 & 14 & & & & & & & & & & & & & \\
\hline 40.81 & 0 & 52 & 98 & 189 & 171 & 60 & 67 & 23 & 20 & 16 & 13 & 5 & 4 & 4 \\
\hline 35.78 & 0 & 18 & 220 & 103 & 83 & 69 & 22 & 21 & 10 & 13 & 5 & 3 & 1 & 1 \\
\hline 39.64 & 2 & 6 & 83 & 198 & 77 & 50 & 41 & 11 & 24 & 9 & 5 & 4 & 3 & 4 \\
\hline 37.03 & 0 & 23 & 80 & 59 & 116 & 36 & 31 & 19 & 11 & 15 & 8 & 5 & 5 & 4 \\
\hline 37.59 & 0 & 16 & 87 & 73 & 56 & 105 & 24 & 30 & 23 & 8 & 8 & 4 & 5 & 3 \\
\hline 39.78 & 0 & 22 & 96 & 128 & 70 & 45 & 53 & 15 & 13 & 12 & 4 & 9 & 5 & 2 \\
\hline 43 & 0 & 10 & 60 & 86 & 69 & 53 & 27 & 39 & 11 & 11 & 5 & 5 & 3 & 2 \\
\hline 47.84 & 0 & 13 & 101 & 73 & 77 & 50 & 17 & 13 & 20 & 7 & 6 & 4 & 2 & 1 \\
\hline 50.87 & 0 & 31 & 204 & 107 & 52 & 50 & 28 & 13 & 6 & 10 & 4 & 2 & 1 & 0 \\
\hline 51.19 & 0 & 72 & 152 & 150 & 75 & 27 & 28 & 20 & 9 & 4 & 8 & 3 & 2 & 2 \\
\hline 49.32 & 0 & 37 & 272 & 99 & 89 & 48 & 19 & 17 & 11 & 9 & 3 & 7 & 1 & 2 \\
\hline 37.53 & 0 & 11 & 149 & 375 & 90 & 63 & 28 & 18 & 14 & 9 & 6 & 4 & 4 & 1 \\
\hline 40.71 & 0 & 18 & 101 & 176 & 369 & 77 & 45 & 18 & 6 & 7 & 3 & 4 & 1 & 2 \\
\hline 32.37 & 0 & 19 & 91 & 65 & 114 & 180 & 34 & 27 & 15 & 7 & 3 & 5 & 1 & 1 \\
\hline 27.73 & 0 & 27 & 78 & 126 & 55 & 60 & 115 & 15 & 14 & 4 & 5 & 2 & 2 & 1 \\
\hline 18.57 & 0 & 16 & 86 & 94 & 103 & 32 & 39 & 69 & 13 & 8 & 4 & 2 & 2 & 1 \\
\hline 15.37 & 1 & 18 & 77 & 89 & 77 & 82 & 32 & 41 & 76 & 8 & 8 & 4 & 2 & 3 \\
\hline 13.83 & 0 & 12 & 76 & 100 & 67 & 52 & 54 & 19 & 32 & 42 & 10 & 5 & 2 & 3 \\
\hline 12.31 & 0 & 23 & 54 & 72 & 72 & 63 & 27 & 29 & 12 & 12 & 29 & 4 & 3 & 1 \\
\hline 14.44 & 0 & 2 & 98 & 65 & 48 & 46 & 34 & 19 & 18 & 5 & 5 & 13 & 1 & 1 \\
\hline 13.79 & 0 & 7 & 57 & 125 & 41 & 34 & 22 & 19 & 12 & 12 & 4 & 7 & 16 & 1 \\
\hline 12.77 & 0 & 3 & 14 & 84 & 108 & 26 & 18 & 17 & 9 & 7 & 6 & 1 & 3 & 3 \\
\hline UK(E\&W)-BTS-Q3 & UK(E+ & ) 7.f Cor & ystes (a & tomat & indice & since & & & & & & & & \\
\hline 1988 & 2016 & & & & & & & & & & & & & \\
\hline 1 & 1 & 0.75 & 0.85 & & & & & & & & & & & \\
\hline 0 & 9 & & & & & & & & & & & & & \\
\hline 74.120 & 22 & 60 & 242 & 36 & 14 & 4 & 0 & 0 & 0 & 0 & & & & \\
\hline 91.909 & 132 & 204 & 304 & 162 & 18 & 14 & 6 & 4 & 2 & 2 & & & & \\
\hline 69.858 & 21 & 269 & 219 & 35 & 11 & 3 & 5 & 2 & 0 & 0 & & & & \\
\hline 123.410 & 40 & 297 & 638 & 83 & 21 & 18 & 5 & 0 & 3 & 2 & & & & \\
\hline 125.078 & 5 & 493 & 325 & 174 & 37 & 23 & 12 & 1 & 2 & 1 & & & & \\
\hline 127.672 & 6 & 207 & 436 & 52 & 28 & 3 & 2 & 2 & 1 & 1 & & & & \\
\hline 120.816 & 1 & 424 & 430 & 133 & 23 & 11 & 9 & 0 & 0 & 3 & & & & \\
\hline 114.886 & 31 & 142 & 255 & 60 & 13 & 7 & 14 & 1 & 1 & 1 & & & & \\
\hline 118.592 & 3 & 178 & 251 & 64 & 27 & 7 & 3 & 4 & 1 & 3 & & & & \\
\hline 114.886 & 37 & 498 & 207 & 21 & 13 & 14 & 5 & 3 & 6 & 0 & & & & \\
\hline 114.886 & 104 & 885 & 472 & 58 & 11 & 9 & 5 & 2 & 1 & 5 & & & & \\
\hline 118.592 & 29 & 2922 & 297 & 38 & 16 & 7 & 4 & 5 & 1 & 0 & & & & \\
\hline 118.592 & 16 & 1086 & 1608 & 37 & 26 & 6 & 0 & 2 & 1 & 1 & & & & \\
\hline 118.592 & 26 & 449 & 711 & 307 & 23 & 9 & 6 & 2 & 0 & 2 & & & & \\
\hline 118.592 & 9 & 786 & 283 & 151 & 121 & 14 & 7 & 2 & 3 & 0 & & & & \\
\hline 118.592 & 14 & 465 & 628 & 55 & 30 & 56 & 9 & 3 & 3 & 0 & & & & \\
\hline 114.886 & 64 & 860 & 434 & 99 & 15 & 22 & 42 & 4 & 3 & 0 & & & & \\
\hline 118.592 & 44 & 407 & 267 & 38 & 16 & 7 & 5 & 17 & 1 & 2 & & & & \\
\hline 118.592 & 13 & 324 & 238 & 47 & 16 & 8 & 0 & 2 & 12 & 0 & & & & \\
\hline 118.592 & 108 & 424 & 128 & 51 & 16 & 8 & 7 & 3 & 4 & 13 & & & & \\
\hline 118.592 & 6 & 1232 & 124 & 15 & 18 & 7 & 9 & 4 & 3 & 5 & & & & \\
\hline 118.592 & 1 & 604 & 377 & 29 & 8 & 10 & 4 & 3 & 3 & 2 & & & & \\
\hline 118.592 & 21 & 101 & 558 & 144 & 20 & 2 & 5 & 9 & 4 & 2 & & & & \\
\hline 118.592 & 21 & 595 & 62 & 164 & 82 & 8 & 2 & 7 & 3 & 0 & & & & \\
\hline 118.592 & 16 & 643 & 274 & 9 & 63 & 28 & 1 & 1 & 1 & 3 & & & & \\
\hline 118.592 & 11 & 331 & 614 & 51 & 16 & 29 & 18 & 1 & 6 & 1 & & & & \\
\hline 118.592 & 40 & 289 & 305 & 90 & 16 & 6 & 27 & 9 & 1 & 1 & & & & \\
\hline 118.592 & 33 & 885 & 57 & 52 & 37 & 8 & 4 & 16 & 7 & 0 & & & & \\
\hline 118.592 & 31 & 680 & 426 & 14 & 32 & 15 & 8 & 4 & 6 & 9 & & & & \\
\hline
\end{tabular}

Table 34.10-Sol. 27.7 fg -Tuning series continued Indices in bold are used in the assessment

IR - GFS : Irish Groundfish Survey (IBTS 4th Qtr) - 7.g Sole number at age (Interim indices for new Celtic Explorer series) 20032014 \(\begin{array}{lrrr}1 & 1 & 0.79 & 0.92 \\ 1 & 10 & & \end{array}\)
\begin{tabular}{lllllllllll}
832 & 1.0 & 5.2 & 1.1 & 3.2 & 3.0 & 4.1 & 4.0 & 0.0 & 1.0 & 0.0 \\
980 & 1.0 & 8.0 & 6.0 & 5.0 & 1.0 & 2.0 & 1.0 & 0.0 & 0.0 & 1.0 \\
845 & 0.0 & 0.0 & 6.0 & 2.0 & 4.0 & 2.0 & 2.0 & 0.0 & 0.0 & 0.0 \\
1046 & 0.0 & 0.0 & 4.0 & 4.0 & 6.0 & 4.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
1168 & 0.0 & 2.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
1139 & 2.0 & 9.0 & 7.0 & 3.0 & 2.0 & 0.0 & 2.0 & 0.0 & 1.0 & 0.0 \\
1018 & 0.0 & 15.0 & 3.0 & 4.0 & 1.0 & 1.0 & 2.0 & 1.0 & 0.0 & 2.0 \\
1381 & 0.0 & 12.0 & 24.7 & 9.1 & 8.2 & 1.0 & 3.0 & 3.9 & 0.0 & 2.1 \\
1392 & 2.0 & 0.0 & 20.1 & 8.0 & 6.1 & 3.1 & 0.0 & 1.0 & 1.0 & 3.7 \\
1470 & 0.0 & 7.0 & 3.0 & 3.0 & 3.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1439 & 0.0 & 2.0 & 10.0 & 7.5 & 1.8 & 2.0 & 3.8 & 2.0 & 1.0 & 1.0 \\
1487 & 0.1 & 3.4 & 7.7 & 8.0 & 6.1 & 3.7 & 0.5 & 0.1 & 0.1 & 0.1
\end{tabular}

UK (E+W) TRAWL 107F. (Processed as unsexed - from 2001WG)
(LPUE data reprocessed in 2014. Effort changed from hours to days)


Table 36.11. Sol.27.7fg - Diagnostics.


Time series weights :

Tapered time weighting not applied

Catchability analysis :

Catchability independent of size for all ages

Catchability independent of age for ages > 7

Terminal population estimation :

Survivor estimates shrunk towards the mean F
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk = 1.5

Minimum standard error for population
estimates derived from each fleet \(=0.3\)
prior weighting not applied
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Regression weights} \\
\hline age & 20072 & 2008200 & 22010 & 2011 & 201220 & 132014 & 2015 & 2016 & \\
\hline all & 1 & 1 & 11 & 1 & 1 & 1 & 1 & 1 & \\
\hline \multicolumn{10}{|l|}{Fishing mortalities} \\
\hline \multicolumn{10}{|c|}{year} \\
\hline age
\[
2016
\] & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 \\
\hline \multicolumn{9}{|l|}{\[
0.000
\]} & 0.000 \\
\hline \[
\begin{gathered}
2 \\
0.072
\end{gathered}
\] & 0.113 & 0.058 & 0.075 & 0.049 & 0.079 & 0.041 & 0.085 & 0.031 & 0.058 \\
\hline \[
\begin{gathered}
3 \\
0.400
\end{gathered}
\] & 0.309 & 0.197 & 0.155 & 0.207 & 0.224 & 0.187 & 0.373 & 0.153 & 0.276 \\
\hline \multicolumn{9}{|l|}{\[
0.307
\]} & 0.290 \\
\hline \multicolumn{9}{|l|}{\[
0.336
\]} & 0.362 \\
\hline \multicolumn{7}{|l|}{\[
0.370
\]} & 0.462 & 0.369 & 0.490 \\
\hline \multicolumn{9}{|l|}{\[
0.564
\]} & 0.286 \\
\hline \multicolumn{9}{|l|}{\[
0.275
\]} & 0.223 \\
\hline \multicolumn{9}{|l|}{\[
0.262
\]} & 0.452 \\
\hline \[
\begin{gathered}
10 \\
0.262
\end{gathered}
\] & \[
0.354
\] & 0.349 & 0.233 & 0.185 & 0.264 & 0.328 & 0.283 & 0.531 & 0.452 \\
\hline
\end{tabular}

XSA population number (Thousand) age
\begin{tabular}{rrrrrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2007 & 4409 & 3289 & 3422 & 2819 & 1656 & 1259 & 526 & 583 & 648 & 246 \\
2008 & 9740 & 3989 & 2657 & 2274 & 1844 & 1047 & 830 & 326 & 389 & 613 \\
2009 & 6815 & 8813 & 3406 & 1974 & 1525 & 1130 & 684 & 562 & 223 & 975 \\
2010 & 1897 & 6167 & 7397 & 2641 & 1381 & 1051 & 745 & 454 & 411 & 733 \\
2011 & 4581 & 1717 & 5313 & 5441 & 1682 & 920 & 706 & 518 & 299 & 899 \\
2012 & 6183 & 4145 & 1435 & 3844 & 3550 & 1144 & 572 & 454 & 342 & 923 \\
2013 & 4422 & 5595 & 3598 & 1077 & 2499 & 1968 & 688 & 321 & 281 & 706 \\
2014 & 1765 & 4001 & 4648 & 2243 & 648 & 1466 & 1122 & 407 & 214 & 554
\end{tabular}
```

2015 8587 1597 3511 3608 1323 380 917 614 237 380
2016 7762 7770 1364 2410 2443 834 211 623 444 425

```

Estimated population abundance at 1st Jan 2017

\section*{age}
\begin{tabular}{lllllllllll} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{tabular}

201707024654182716041580521109428310

Fleet: BE-CBT

Log catchability residuals.

```

 year
 age 1993 1994 1995 1996
2 0.238 -0.336 -1.295 -0.944
3 0.244 -0.243 0.055 0.199
4-0.073 0.190 0.370 0.133
5 -0.237 0.134 -0.024 -0.035
6 -0.398 0.263 -0.134 -0.089
7 0.196 -0.122 0.007 -0.440
8 0.443 -0.730 -0.023 -0.360
9 0.349 0.078 -0.196 -0.242

```

Mean \(\log\) catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
23

8
9
Mean_Logq \(-6.2006-5.0658-4.8507-4.8620-4.8859-4.9729-\) 4.9729-4.9729
S.E_Logq
0.3408
0.3408
0.3408
0.3408
0.3408
0.3408
0.3408 0.3408

Fleet: BE-CBT2

Log catchability residuals.
\begin{tabular}{rrrrrrrrrrrr}
\multicolumn{8}{c}{ year } & & & & \\
age & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 \\
2 & 0.132 & -0.377 & 0.668 & 0.817 & 0.582 & -0.529 & -0.937 & 0.036 & -0.675 & 0.759 & 0.326 \\
3 & 0.555 & 0.448 & 0.771 & 0.419 & -0.226 & 0.306 & -0.377 & 0.080 & -0.220 & 0.084 & -0.079 \\
4 & 0.373 & 0.874 & 0.665 & -0.092 & 0.262 & 0.130 & -0.125 & -0.161 & -0.359 & -0.357 & -0.318 \\
5 & 0.400 & 0.259 & 0.542 & -0.509 & 0.104 & 0.624 & 0.065 & -0.286 & 0.055 & -0.459 & -0.327 \\
6 & 0.669 & 0.315 & 0.047 & -1.129 & 0.591 & 0.167 & 0.615 & -0.511 & -0.059 & -0.687 & -0.481 \\
7 & 0.690 & 1.044 & 0.045 & -0.893 & 0.087 & 0.183 & 0.582 & -0.512 & -0.692 & -0.965 & -0.084 \\
8 & 0.231 & 0.543 & -0.242 & -0.507 & -0.401 & 0.355 & 0.394 & -1.266 & -0.617 & -1.443 & -0.481 \\
9 & 0.585 & -0.023 & 0.347 & -0.365 & -0.191 & 0.086 & 0.361 & -0.719 & -0.465 & -0.403 & -0.716
\end{tabular}
```

 year
 age
2
3
4
5
6
7
8
9
2008 2009 2010 2011 2012 2013 2014 2015 2016
-0.050 0.150
-0.366 -0.599 -0.280 -0.315 -0.585 0.073 -0.403 0.292 0.419
-0.204 -0.406 -0.014 -0.213 -0.233 -0.038 0.287 0.025 -0.097
0.152 -0.439 -0.285 -0.421 0.168 0.007 0.254 0.138

```

```

-0.201 0.046 -0.305 -0.005 0.0.293 0.168
-0.181 -0.574 -0.023 -0.127 0.033 -0.579 0.180 -0.193 -0.242
-0.062 -0.457 -0.857 -0.443 -0.136 -0.402 0.547 0.560

```

Mean \(\log\) catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
2
3

9
Mean_Logq \(-6.9533-5.6065-5.3747-5.3499 \quad-5.5050 \quad-5.6132 \quad-\) 5.6132-5.6132
S.E_Logq
0.4428
0.4428
0.4428
0.4428
0.4428
0.4428 0.44280 .4428

Fleet: UK(E\&W)-CBT

Log catchability residuals.
\begin{tabular}{rrrrrrrrrrrr}
\multicolumn{8}{l}{ year } \\
age & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 \\
2 & 0.421 & 0.163 & -1.113 & 0.296 & 0.159 & 0.467 & -0.586 & -0.738 & -0.049 & -0.052 & -0.097 \\
3 & 0.041 & 0.303 & -0.161 & -0.252 & -0.121 & 0.176 & -0.343 & -0.136 & 0.238 & -0.191 & -0.493 \\
4 & 0.501 & 0.078 & -0.032 & -0.523 & -0.396 & 0.238 & 0.012 & -0.181 & -0.167 & -0.106 & -0.689 \\
5 & 0.523 & 0.043 & -0.112 & -0.251 & -0.283 & -0.060 & -0.030 & 0.136 & -0.119 & -0.258 & -0.413 \\
6 & 0.391 & 0.151 & -0.237 & -0.409 & 0.119 & -0.090 & 0.145 & 0.036 & 0.055 & -0.426 & -0.330 \\
7 & 0.370 & -0.045 & 0.078 & -0.192 & -0.208 & -0.062 & -0.030 & -0.317 & -0.090 & -0.094 & -0.409 \\
8 & 0.489 & -0.177 & -0.311 & -0.023 & 0.471 & -0.116 & 0.181 & -0.151 & 0.049 & 0.047 & -0.134 \\
9 & 0.657 & 0.412 & 0.430 & 0.527 & 0.859 & 0.393 & 0.157 & 0.012 & -0.397 & 0.215 & 0.047
\end{tabular}
```

 year
 age
2
3
4
5
6
7
8
9

2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
-0.460	-0.506	0.098	0.464	0.558	1.150	0.630	0.613	-1.645	0.948	-0.723
-0.218	-0.178	-0.413	-0.123	0.245	0.572	0.865	0.370	0.056	-0.101	-0.136
-0.132	-0.300	-0.541	-0.037	0.265	0.302	0.727	0.637	0.128	0.093	0.122
-0.269	0.018	-0.293	-0.289	0.298	0.382	0.255	0.579	0.129	-0.189	0.203
-0.180	0.045	-0.044	-0.412	-0.139	0.503	0.342	0.569	0.160	0.072	-0.322
-0.079	-0.020	0.131	0.089	-0.092	0.394	0.526	0.152	0.115	-0.183	-0.035
0.363	0.031	0.390	-0.038	0.364	0.504	0.411	0.374	0.054	-0.034	0.094
0.462	-0.163	0.860	0.408	0.676	1.039	0.787	0.426	0.038	0.034	-0.283

```

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{llllll}
2 & 3 & 4 & 5 & 6 & 7
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mean_Logq -8.9855 & -6.9007 & -6.2849 & -5.9620 & -5.7658-5 & -5.6964 \\
\hline \multicolumn{6}{|l|}{5.6964-5.6964} \\
\hline S.E_Logq 0.3879 & 0.3879 & 0.3879 & 0.3879 & 0.3879 & 0.3879 \\
\hline 0.38790 .3879 & & & & & \\
\hline
\end{tabular}

Fleet: UK(E\&W)-BTS-Q3

\section*{Log catchability residuals.}
\begin{tabular}{rrrrrrrrrrrrr}
\multicolumn{9}{l}{ year } \\
age & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
1 & -1.403 & -0.213 & -0.503 & -0.258 & 0.175 & -0.708 & 0.323 & -0.684 & -0.681 & 0.079 & 0.506 & 0.81 \\
2 & 0.080 & 0.354 & 0.448 & 0.210 & 0.164 & 0.352 & 0.386 & 0.143 & 0.148 & -0.196 & 0.303 & -0.279 \\
3 & 0.375 & 1.136 & 0.182 & 0.541 & 0.616 & -0.008 & 0.841 & 0.212 & 0.524 & -0.550 & 0.227 & \(-0.42!\) \\
4 & -0.176 & 0.506 & -0.120 & 0.124 & 0.734 & -0.244 & 0.306 & -0.215 & 0.598 & 0.111 & 0.076 & 0.08 \\
5 & -0.119 & 0.424 & -0.041 & 0.695 & 1.023 & -1.039 & -0.245 & 0.062 & 0.101 & 0.961 & 0.645 & \(0.60)\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{age} \\
\hline \multicolumn{10}{|l|}{2} \\
\hline \multicolumn{10}{|l|}{3} \\
\hline \multicolumn{10}{|l|}{4} \\
\hline \multicolumn{10}{|l|}{5} \\
\hline 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 \\
\hline 0.428 & 0.170 & 0.266 & 0.018 & 0.550 & -0.068 & 0.018 & 0.093 & 0.367 & 0.012 \\
\hline 0.578 & 0.333 & -0.042 & 0.303 & 0.314 & -0.361 & -0.222 & -0.577 & -0.846 & -0.513 \\
\hline -0.633 & 0.494 & 0.417 & -0.095 & 0.231 & -0.526 & -0.418 & -0.109 & -1.169 & -0.792 \\
\hline 0.212 & -0.113 & 0.486 & -0.224 & -0.333 & -0.656 & -0.466 & -0.570 & -0.257 & -0.961 \\
\hline -0.159 & -0.088 & 0.259 & 0.623 & 0.325 & -0.281 & -0.635 & -0.451 & -0.667 & -0.214 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrr}
\multicolumn{8}{l}{ year } \\
age & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 \\
1 & -0.498 & 0.394 & 0.171 & -0.157 & 0.626 & 0.163 & 0.000 \\
2 & 0.215 & -0.680 & -0.105 & 0.437 & 0.029 & -0.708 & -0.268 \\
3 & 0.077 & 0.551 & -1.072 & -0.108 & 0.029 & -0.141 & -0.409 \\
4 & -0.260 & 0.408 & 0.495 & 0.458 & -0.259 & -0.006 & 0.266 \\
5 & -1.697 & -0.524 & 0.145 & 0.486 & 0.260 & -0.223 & -0.229
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lllll}
1 & 2 & 3 & 4 & 5
\end{tabular}

Mean_Logq -7.1307-7.2740-8.5462 -9.0377-9.2913
\(\begin{array}{llllll}\text { S.E_Logq } & 0.4865 & 0.4865 & 0.4865 & 0.4865 & 0.4865\end{array}\)

Terminal year survivor and \(F\) summaries:
```

Age = 1 . Catchability constand w.r.t. time and dependant on age
Year class = 2015
Fleet = UK(E\&W)-BTS-Q3
Survivors 7024.000
Raw weights 4.203

```
    Fleet Est.Suvivors Int. s.e. Ext. s.e. Var Ratio N Scaled Wgts Estimated F
[1,] "UK (E\&W) -BTS-Q3" "7024" "0.488" "Inf" "Inf" "1" "1" "0"
    Weighted prediction:

Age \(=2\). Catchability constand w.r.t. time and dependant on age
    Year class \(=2014\)
Fleet \(=\mathrm{BE}-\mathrm{CBT} 2\)
Survivors 8229.000
Raw weights 3.585
Fleet \(=\) fshk
\begin{tabular}{lr} 
& 2 \\
Survivors & 8069.000 \\
Raw weights & 0.444
\end{tabular}
Fleet \(=\mathrm{UK}(\mathrm{E} \& \mathrm{~W})-\mathrm{BTS}-\mathrm{Q}^{3}\)
Survivors 5006.000 7696.000
Raw weights 5.8013 .911


Weighted prediction:
```

 Suvivors Int.s.e. Ext.s.e. Var.Ratio F
 [1,] "6541" "" "" "" "0.072"

```
```

Age = 3 . Catchability constand w.r.t. time and dependant on age
Year class = 2013
Fleet = BE-CBT2
Survivors 1257.000 852.000
Raw weights 3.943 2.437
Fleet = fshk
Survivors 1479.000
Raw weights 0.444
Fleet = UK(E\&W)-BTS-Q3
Survivors
Raw weights 2.087 3.944 2.659

```

    Weighted prediction:
    Suvivors Int.s.e. Ext.s.e. Var.Ratio F
[1,] "827" "" "" "" "0.4"
Age \(=4\). Catchability constand w.r.t. time and dependant on age
    Year class \(=2012\)
Fleet \(=\mathrm{BE}-\mathrm{CBT} 2\)
Survivors \(1456.000 \quad 2148.0001025 .000\)
\(\begin{array}{llll}\text { Raw weights } 5.942 & 3.282 & 2.084\end{array}\)
Fleet \(=\) fshk
Survivors 1343.000
Raw weights 0.444
Fleet \(=\) UK \((E \& W)-B T S-Q 3\)
Survivors 2093.0001393 .0001651 .0001370 .000
\begin{tabular}{lllll} 
Raw weights 4.252 & 1.737 & 3.373 & 2.274
\end{tabular}


Weighted prediction:
```

 Suvivors Int.s.e. Ext.s.e. Var.Ratio F
 [1,] "1604" "" "" "" "0.307"

```
```

Age = 5 . Catchability constand w.r.t. time and dependant on age
Year class = 2011
Fleet = BE-CBT2

	5	4	3	2
Survivors	1514.000	1620.000	1056.0	1906.000
Raw weights	5.951	4.323	2.7	1.623

Fleet = fshk

	5
Survivors	1273.000
Raw weights	0.444

Fleet = UK(E\&W)-BTS-Q3
Survivors 1257.000 1570.000 1626.000 2446.000 1876.000
Raw weights 1.948 3.094 1.429 2.627 1.771
Fleet Est.Suvivors Int. s.e. Ext. s.e. Var Ratio N Scaled Wgts Estimated F
[1,] "BE-CBT2" "1483" "0.2" "0.101" "0.505" "4" "0.563" "0.354"
[2,] "fshk" "1273" "1.268" "Inf" "Inf" "1" "0.017" "0.402"
[3,] "UK(E\&W)-BTS-Q3" "1737" "0.217" "0.113" "0.521" "5" "0.419" "0.31"

```

Weighted prediction:
```

 Suvivors Int.s.e. Ext.s.e. Var.Ratio F
 [1,] "1580" "" "" "" "0.336"

```
Age \(=6\). Catchability constand w.r.t. time and dependant on age
Year class \(=2010\)
Fleet \(=\mathrm{BE}-\mathrm{CBT} 2\)
Survivors \(543.000598 .000694 .000-561.000276 .000\)
\(\begin{array}{llllll}\text { Raw weights } & 3.233 & 4.006 & 2.534 & 1.271 & 0.799\end{array}\)
Fleet \(=\) fshk
Survivors 444.000
Raw weights 0.444
Fleet \(=\) UK \((E \& W)-\) BTS-Q3
Survivors \(417.000 \quad 402.000 \quad 468.000 \quad 469.000 \quad 773.000\)
\(\begin{array}{llllll}\text { Raw weights } & 1.312 & 1.814 & 0.673 & 1.292 & 0.871\end{array}\)
Fleet \(=\mathrm{UK}(\mathrm{E} \& \mathrm{~W})-\mathrm{CBT}\)
Survivors 253.000
Raw weights 0.421
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Fleet & Est.Suvivors & Int. s.e. & Ext. s.e & Var Ratio & N & Scaled Wgts & d \\
\hline [1, ] & "BE-CBT2" & "567" & "0.196" & "0.106" & "0.541" & "5" & "0.634" & "0.344" \\
\hline [2, ] & "fshk" & "444" & "1.247" & "Inf" & "Inf" & "1" & "0.024" & "0.422" \\
\hline [3, ] & "UK (E\&W) -BTS-Q3" & "469" & "0.225" & "0.108" & "0.48" & "5" & "0.319" & "0.404" \\
\hline [4, ] & "UK (E\&W) -CBT" & "253" & "0.702" & "Inf" & "Inf" & "1" & "0.023" & "0.653" \\
\hline
\end{tabular}

Weighted prediction:
```

 Suvivors Int.s.e. Ext.s.e. Var.Ratio F
 [1,] "521" "" "" "" "0.37"

```
```

Age = 7 . Catchability constand w.r.t. time and dependant on age
Year class = 2009
Fleet = BE-CBT2
Survivors
Raw weights 2.032 1.632 1.881 1.214 0.733 1. 1. 1.444
Fleet = fshk
Survivors 163.000
Raw weights 0.444
Fleet = UK(E\&W)-BTS-Q3
Survivors 141.000 172.000 37.000 55.000 66.000
Raw weights 0.616 0.869}00.388 0.718 0.484
Fleet = UK(E\&W)-CBT
Survivorg 05.000 200.000
Raw weights 1.103 0.234

```


Weighted prediction:
```

 Suvivors Int.s.e. Ext.s.e. Var.Ratio F
 [1,] "109" "" "" "" "0.564"

```
Age \(=8\). Catchability constand w.r.t. time and dependant on age
Year class \(=2008\)
Fleet \(=\mathrm{BE}-\mathrm{CBT} 2\)
\begin{tabular}{lrrrrrrr} 
& 8 & 7 & 6 & 5 & 4 & 3 & 2 \\
Survivors & 336.000 & 474.000 & 502.000 & 431.000 & 339.000 & 312.000 & 328.000
\end{tabular}
\begin{tabular}{llllllll} 
Raw weights 2.199 & 2.036 & 1.845 & 2.127 & 1.483 & 0.864 & 0.539
\end{tabular}
Fleet \(=\) fshk
Survivors 343.000
Raw weights 0.444
Fleet \(=\) UK \((\) E\&W \()-\) BTS-Q3
Survivors \(696.000 \quad 702.000 \quad 743.000 \quad 531.000 \quad 433.000\)
\(\begin{array}{llllll}\text { Raw weights } & 0.696 & 1.062 & 0.457 & 0.871 & 0.587\end{array}\)
Fleet \(=\) UK (E\&W) - CBT
Survivors 484.000 387.00083 .000
\(\begin{array}{llll}\text { Raw weights } 1.303 \quad 1.299 & 0.284\end{array}\)


Weighted prediction:
```

 Suvivors Int.s.e. Ext.s.e. Var.Ratio F
 [1,] "428" "" "" "" "0.275"

```

Age \(=9\). Catchability constand w.r.t. time and dependant on age Year class \(=2007\)

Fleet \(=\mathrm{BE}-\mathrm{CBT}\) 2
23 2
vors \(223.000255 .000560 .000361 .000 \quad 366.000 \quad 250.000 \quad 234.000 \quad 360.000\)
\(\begin{array}{llllllllll}\text { Raw weights } & 3.295 & 1.782 & 1.329 & 1.098 & 1.197 & 0.838 & 0.496 & 0.301\end{array}\)
Fleet \(=\) fshk
Survivors \(206.000^{9}\)
Raw weights 0.444
Fleet \(=\) UK(E\&W)-BTS-Q3
\(\left.\begin{array}{lrrrrr} \\ \text { Survivors } & 5 & 5 & 4 & 3 & 2\end{array}\right] 1\)
\(\begin{array}{llllll}\text { Raw weights } 0.392 & 0.599 & 0.262 & 0.487 & 0.329\end{array}\)
Fleet \(=\) UK \((E \& W)-C B T\)
\begin{tabular}{lrrrrr} 
& 5 & 4 & 3 & 2 \\
Survivors & 379.000 & 340.000 & 327.000 & 571.000 \\
Raw weights & 1.597 & 0.736 & 0.746 & 0.159
\end{tabular}
    Fleet Est.Suvivors Int. s.e. Ext. s.e. Var Ratio \(N\) Scaled Wgts Estimated \(F\)
[1,] "BE-CBT2" "294" "0.21" "0.118" "0.562" "8" "0.643" "0.274"
[2, " "fshk" "206" "1.316" "Inf" "Inf" "1" "0.028" "0.372"
[3,] "UK(E\&W)-BTS-Q3" "340" "0.218" "0.179" "0.821" "5" "0.129" "0.241"
[4,] "UK (E\&W)-CBT" "365" "0.191" "0.069" "0.361" "4" "0.201" "0.226"

Weighted prediction:
```

 Suvivors Int.s.e. Ext.s.e. Var.Ratio F
 [1,] "310" "" "" "" "0.262"

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age/rear & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline 1 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 2 & 0.0840 & 0.0696 & 0.1069 & 0.0559 & 0.0428 & 0.1320 & 0.0734 & 0.0838 & 0.0727 & 0.2458 & 0.1477 & 0.0856 \\
\hline 3 & 0.1471 & 0.2569 & 0.3244 & 0.1624 & 0.1252 & 0.4128 & 0.2473 & 0.2210 & 0.1872 & 0.2832 & 0.3806 & 0.2779 \\
\hline 4 & 0.3953 & 0.2280 & 0.3125 & 0.2157 & 0.1620 & 0.3386 & 0.2699 & 0.2739 & 0.3235 & 0.4389 & 0.3495 & 0.2668 \\
\hline 5 & 0.4059 & 0.3120 & 0.3213 & 0.2518 & 0.2191 & 0.4354 & 0.2430 & 0.1635 & 0.2413 & 0.3996 & 0.3251 & 0.3181 \\
\hline 6 & 0.3238 & 0.3447 & 0.2389 & 0.3378 & 0.2667 & 0.2704 & 0.2757 & 0.1961 & 0.2194 & 0.3017 & 0.4318 & 0.3535 \\
\hline 7 & 0.4183 & 0.2333 & 0.1796 & 0.2260 & 0.2664 & 0.3421 & 0.2853 & 0.1533 & 0.3532 & 0.1153 & 0.3924 & 0.3967 \\
\hline 8 & 0.3585 & 0.2854 & 0.1624 & 0.1949 & 0.1274 & 0.5129 & 0.2325 & 0.1966 & 0.2615 & 0.2584 & 0.3033 & 0.3939 \\
\hline 9 & 0.2728 & 0.2186 & 0.2014 & 0.2144 & 0.1796 & 0.3422 & 0.1725 & 0.1873 & 0.2060 & 0.3090 & 0.3847 & 0.4496 \\
\hline +gp & \({ }^{0.2728}\) & \({ }^{0.2186}{ }_{\text {F }}\) & 0.2014 . & 0.2144 , & 0.1796 & \(0^{0.3422}\). & 0.1725 . & 0.1873 & 0.2060 & 0.3090 & 0.3847 & 0.4496 \\
\hline FBAR 4-8 & 0.3804 & 0.2807 & 0.2429 & 0.2452 & 0.2083 & 0.3799 & 0.2613 & 0.1967 & 0.2798 & 0.3028 & 0.3604 & 0.3458 \\
\hline Age/rear & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 \\
\hline 1 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 2 & 0.1680 & 0.1227 & 0.0501 & 0.1079 & 0.1257 & 0.1133 & 0.1332 & 0.0905 & 0.2188 & 0.1270 & 0.0963 & 0.0800 \\
\hline 3 & 0.3736 & 0.3064 & 0.3814 & 0.4695 & 0.2800 & 0.2428 & 0.3474 & 0.3957 & 0.3024 & 0.3783 & 0.3543 & 0.2869 \\
\hline 4 & 0.3723 & 0.3298 & 0.4460 & 0.5245 & 0.5234 & 0.3966 & 0.4999 & 0.6233 & 0.4390 & 0.4526 & 0.4005 & 0.5149 \\
\hline 5 & 0.3724 & 0.4620 & 0.5172 & 0.5552 & 0.4702 & 0.5445 & 0.4781 & 0.6460 & 0.5167 & 0.4756 & 0.3947 & 0.5553 \\
\hline 6 & 0.3706 & 0.3893 & 0.4393 & 0.6418 & 0.5552 & 0.5874 & 0.5619 & 0.6794 & 0.4779 & 0.4799 & 0.3654 & 0.6087 \\
\hline 7 & 0.4731 & 0.4989 & 0.3379 & 0.5059 & 0.8437 & 0.4796 & 0.5607 & 0.6639 & 0.4640 & 0.3194 & 0.5677 & 0.4952 \\
\hline 8 & 0.6926 & 0.3775 & 0.4501 & 0.4879 & 0.4737 & 0.8124 & 0.5783 & 0.7099 & 0.5367 & 0.2833 & 0.5612 & 0.4171 \\
\hline 9 & 0.3593 & 0.3143 & 0.4310 & 0.6191 & 0.6687 & 0.5940 & 0.5555 & 0.7501 & 0.6111 & 0.5100 & 0.7116 & 0.8092 \\
\hline +gp & 0.3593 & 0.3143 . & 0.4310 & \(0^{0.6191}{ }_{\text {r }}\) & 0.6687 . & 0.5940 & \({ }^{0.5555}\). & 0.7501 . & \(0.6111{ }_{r}\) & 0.5100 " & \({ }^{0.7116}\) & 0.8092 \\
\hline FBAR 4-8 & 0.4562 & 0.4115 & 0.4381 & 0.5431 & 0.5733 & 0.5641 & 0.5358 & 0.6645 & 0.4869 & 0.4022 & 0.4579 & 0.5182 \\
\hline Age/ear & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline 1 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 2 & 0.0445 & 0.0641 & 0.0735 & 0.0431 & 0.1192 & 0.1456 & 0.1063 & 0.0078 & 0.0226 & 0.1122 & 0.0594 & 0.1742 \\
\hline 3 & 0.4467 & 0.5176 & 0.4576 & 0.3864 & 0.5532 & 0.4162 & 0.2134 & 0.2998 & 0.2643 & 0.4587 & 0.2912 & 0.3705 \\
\hline 4 & 0.7125 & 0.6692 & 0.5678 & 0.7371 & 0.6293 & 0.3922 & 0.4005 & 0.3613 & 0.4046 & 0.4810 & 0.3559 & 0.3439 \\
\hline 5 & 0.5490 & 0.5881 & 0.6261 & 0.5425 & 0.6343 & 0.3281 & 0.4113 & 0.5442 & 0.6017 & 0.4917 & 0.4959 & 0.3612 \\
\hline 6 & 0.6127 & 0.5832 & 0.7450 & 0.5295 & 0.4841 & 0.2334 & 0.5603 & 0.3896 & 0.7811 & 0.4395 & 0.4103 & 0.2583 \\
\hline 7 & 0.5703 & 0.4657 & 0.6631 & 0.7420 & 0.4484 & 0.3139 & 0.3758 & 0.3967 & 0.7447 & 0.4687 & 0.3315 & 0.2162 \\
\hline 8 & 0.7583 & 0.4542 & 0.5617 & 0.5402 & 0.4299 & 0.4093 & 0.3319 & 0.5461 & 0.7027 & 0.4002 & 0.3059 & 0.2318 \\
\hline 9 & 0.8468 & 0.6591 & 0.6953 & 0.4210 & 0.4423 & 0.4519 & 0.4101 & 0.5167 & 0.5653 & 0.6546 & 0.4423 & 0.4163 \\
\hline +gp & \({ }^{0.8468}\) & \({ }^{0.6591}\) & \({ }^{0.6953}{ }^{\text {\% }}\) & 0.4210 & \({ }^{0.4423}\), & \({ }^{0.4519}\). & \({ }^{0.4101}{ }^{\text {\% }}\) & \({ }^{0.5167}{ }^{\text {. }}\) & 0.5653 & 0.6546 & \({ }^{0.4423}\) & 0.4163 \\
\hline FBAR 4-8 & 0.6406 & 0.5521 & 0.6327 & 0.6183 & 0.5252 & 0.3354 & 0.4160 & 0.4476 & 0.6469 & 0.4562 & 0.3799 & 0.2823 \\
\hline Age/̌ear & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & fat 14-16 & \\
\hline 1 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 " & 0.0000 & \\
\hline \({ }^{2}\) & 0.1133 & 0.0581 & 0.0751 & 0.0491 & 0.0789 & 0.0414 & 0.0854 & 0.0307 & 0.0576 & \(0.0721^{\prime \prime}\) & \({ }^{0.0535}\) & \\
\hline 3 & 0.3089 & 0.1972 & 0.1545 & 0.2071 & 0.2236 & 0.1871 & 0.3726 & 0.1534 & 0.2762 & 0.4003 " & 0.2766 & \\
\hline 4 & 0.3245 & 0.2994 & 0.2572 & 0.3510 & 0.3269 & 0.3305 & 0.4075 & 0.4280 & 0.2896 & \(0.3075{ }^{\prime \prime}\) & \({ }^{0.3417}\) & \\
\hline 5 & 0.3580 & 0.3893 & 0.2724 & 0.3066 & 0.2859 & 0.4899 & 0.4338 & 0.4342 & 0.3618 & 0.3359" & 0.3773 & \\
\hline 6 & 0.3167 & 0.3261 & 0.3168 & 0.2983 & 0.3739 & 0.4074 & 0.4621 & 0.3693 & 0.4897 & \(0.3698{ }^{\prime \prime}\) & 0.4096 & \\
\hline 7 & 0.3768 & 0.2891 & 0.3090 & 0.2630 & 0.3409 & 0.4783 & 0.4254 & 0.5024 & 0.2862 & 0.5639" & 0.4508 & \\
\hline 8 & 0.3032 & 0.2812 & 0.2138 & 0.3187 & 0.3143 & 0.3783 & 0.3036 & 0.4412 & 0.2234 & \(0.2754^{\prime \prime}\) & 0.3134 & \\
\hline & 0.3542 & 0.3488 & 0.2325 & 0.1849 & 0.2640 & 0.3276 & 0.2830 & 0.5314 & 0.4522 & \(0.2620^{\prime \prime}\) & 0.4152 & \\
\hline +gp & \({ }^{0.3542}\). & \({ }^{0.3488}\), & \({ }^{0.2325}\). & \(0^{0.1849}{ }_{\text {r }}\) & 0.2640 \% & \({ }^{0.3276}\) & \({ }^{0.2830}\) & \({ }^{0.5314}\) & \(0^{0.4522}{ }_{\text {r }}\) & 0.2620 & & \\
\hline FBAR 4.8 & 0.3358 & 0.3170 & 0.2739 & 0.3075 & 0.3284 & 0.4169 & 0.4065 & 0.4350 & 0.3301 & 0.3705 & & \\
\hline
\end{tabular}


\section*{Table 36.14-Sol.27.7fg - Summary}
\begin{tabular}{|rrrrrr} 
& \begin{tabular}{c} 
RECRUITS \\
Age 1
\end{tabular} & SSB & BIOMASS & LANDINGS & FBAR \(4-8\)
\end{tabular} YIELD/SSB

\section*{Table 36.15 - Sol. 27.7 fg \\ Input for catch forecast and Fmsy analysis}

Input: TAC constraint for 2017 (845 t)
Catch and stock weights are mean 14-16
Recruits age 1 in 2017,18 and 19 GM (71-14)
\begin{tabular}{|lrllll} 
Label & Value & CV & Label & Value & CV \\
& & & & & \\
Number at age & & & \multicolumn{2}{l}{ Weight in the stock } & \\
N1 & 4802 & 0.42 & WS1 & 0.090 & 0.39 \\
N2 & 7024 & 0.49 & WS2 & 0.138 & 0.19 \\
N3 & 6541 & 0.26 & WS3 & 0.188 & 0.03 \\
N4 & 827 & 0.23 & WS4 & 0.232 & 0.02 \\
N5 & 1604 & 0.17 & WS5 & 0.291 & 0.05 \\
N6 & 1580 & 0.15 & WS6 & 0.343 & 0.04 \\
N7 & 521 & 0.15 & WS7 & 0.399 & 0.05 \\
N8 & 109 & 0.15 & WS8 & 0.440 & 0.06 \\
N9 & 428 & 0.14 & WS9 & 0.486 & 0.05 \\
N10 & 605 & 0.15 & WS10 & 0.593 & 0.07 \\
& & & & & \\
H.cons selectivity & & & Weight in the & & \\
sH1 & 0.0000 & 0.00 & WH1 catch & \\
sH2 & 0.0535 & 0.39 & WH2 & 0.112 & 0.173 \\
sH3 & 0.2766 & 0.45 & WH3 & 0.206 & 0.07 \\
sH4 & 0.3417 & 0.22 & WH4 & 0.263 & 0.04 \\
sH5 & 0.3773 & 0.14 & WH5 & 0.326 & 0.11 \\
sH5 & 0.4096 & 0.17 & WH6 & 0.366 & 0.06 \\
sH6 & 0.4508 & 0.32 & WH7 & 0.443 & 0.04 \\
sH7 & 0.3134 & 0.36 & WH8 & 0.478 & 0.09 \\
sH8 & 0.4152 & 0.33 & WH9 & 0.481 & 0.10 \\
sH9 & 0.4152 & 0.33 & WH10 & 0.613 & 0.11
\end{tabular}

Natural mortality
\begin{tabular}{lrllrr} 
M1 & 0.1 & 0.1 & MT1 & 0 & 0 \\
M2 & 0.1 & 0.1 & MT2 & 0.14 & 0.1 \\
M3 & 0.1 & 0.1 & MT3 & 0.45 & 0.1 \\
M4 & 0.1 & 0.1 & MT4 & 0.88 & 0.1 \\
M5 & 0.1 & 0.1 & MT5 & 0.98 & 0.1 \\
M6 & 0.1 & 0.1 & MT6 & 1 & 0 \\
M7 & 0.1 & 0.1 & MT7 & 1 & 0 \\
M8 & 0.1 & 0.1 & MT8 & 1 & 0 \\
M9 & 0.1 & 0.1 & MT9 & 1 & 0 \\
M10 & 0.1 & 0.1 & MT10 & 1 & 0 \\
& & & & & \\
Relative effort & & & & & \\
in HC fihery & & & & K17 & 1
\end{tabular}

Recruitment in 2018 and 2019
\begin{tabular}{lll} 
R18 & 4802 & 0.37 \\
R19 & 4802 & 0.37
\end{tabular}

Proportion mature

Year effect for natural mortality

Table 36.16-Sol.27.7fg - Management option table
TAC constraint for 2017 ( 845 t)
Catch and stock weights are mean 14-16
Recruits age 1 in 2017,18 and 19 GM (71-14)
Fbar age range: 4-8
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
2017
\] \\
Biomass
\end{tabular} & SSB & FMult & FBar & Landings \\
\hline 4648 & 2678 & 0.7727 & 0.2925 & 845 \\
\hline & \multicolumn{2}{|r|}{2018} & & 2019 \\
\hline SSB & FMult & FBar & Landings & SSB \\
\hline 3112 & 0.0000 & 0.0000 & 0 & 4310 \\
\hline 3112 & 0.1000 & 0.0379 & 140 & 4175 \\
\hline 3112 & 0.2000 & 0.0757 & 275 & 4044 \\
\hline 3112 & 0.3000 & 0.1136 & 406 & 3918 \\
\hline 3112 & 0.4000 & 0.1514 & 532 & 3796 \\
\hline 3112 & 0.5000 & 0.1893 & 654 & 3678 \\
\hline 3112 & 0.6000 & 0.2271 & 772 & 3565 \\
\hline 3112 & 0.7000 & 0.2650 & 886 & 3455 \\
\hline 3112 & 0.8000 & 0.3028 & 997 & 3350 \\
\hline 3112 & 0.9000 & 0.3407 & 1103 & 3247 \\
\hline 3112 & 1.0000 & 0.3786 & 1206 & 3149 \\
\hline 3112 & 1.1000 & 0.4164 & 1305 & 3054 \\
\hline 3112 & 1.2000 & 0.4543 & 1402 & 2962 \\
\hline 3112 & 1.3000 & 0.4921 & 1495 & 2873 \\
\hline 3112 & 1.4000 & 0.5300 & 1585 & 2787 \\
\hline 3112 & 1.5000 & 0.5678 & 1672 & 2705 \\
\hline 3112 & 1.6000 & 0.6057 & 1756 & 2625 \\
\hline 3112 & 1.7000 & 0.6435 & 1837 & 2548 \\
\hline 3112 & 1.8000 & 0.6814 & 1916 & 2473 \\
\hline 3112 & 1.9000 & 0.7192 & 1992 & 2401 \\
\hline 3112 & 2.0000 & 0.7571 & 2066 & 2331 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes
\begin{tabular}{|c|r|c|c|r|r|c|}
\hline \multicolumn{3}{|c|}{2018} & 2019 & 2018-2019 & 2017-2018 & \\
\hline FMult & Landings & FBar & SSB & SSB change & TAC change & Basis \\
\hline 0.7133 & 901 & 0.27000 & 3441 & 10 & 10 & msyapproach \\
\hline 0.7133 & 901 & 0.27000 & 3441 & 10 & 10 & Fmsy \\
\hline 1.1069 & 1312 & 0.41900 & 3047 & -2 & 55 & Fmsy_upper \\
\hline 0.4068 & 541 & 0.15400 & 3788 & 22 & -36 & Fmsy_lower \\
\hline 0.6633 & 845 & 0.25110 & 3495 & 12 & 0 & TACstable \\
\hline 0.7772 & 972 & 0.29421 & 3373 & 8 & 15 & TACplus15 \\
\hline 0.5537 & 718 & 0.20960 & 3617 & 16 & -15 & TACminus15 \\
\hline 0.8982 & 1101 & 0.34000 & 3249 & 4 & 35 & Fpa \\
\hline 1.268 & 1465 & 0.48000 & 2901 & -7 & 79 & Flim \\
\hline 0.7727 & 967 & 0.29250 & 3378 & 9 & 14 & FInt \\
\hline 1.9014 & 1993 & 0.71975 & 2400 & -23 & 136 & Brrigger \\
\hline 3.1109 & 2741 & 1.17763 & 1700 & -45 & 224 & Blim \\
\hline
\end{tabular}

\section*{Table 36.17-Sol.27.7fg - Detailed results}

TAC constraint for 2017 (845 t)
Catch and stock weights are mean 14-16
Recruits age 1 in 2017,18 and 19 GM (71-14)
Fbar age range: 4-8
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year: Age & 2017 F & F multiplier: CatchNos & \[
\begin{array}{r}
0.7727 \\
\quad \text { Yield } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Fbar: \\
StockNos
\end{tabular} & \[
\begin{gathered}
0.2925 \\
\text { Biomass } \\
\hline
\end{gathered}
\] & SSNos & SSB \\
\hline 1 & 0.000 & 0 & 0 & 4802 & 431 & 0 & 0 \\
\hline 2 & 0.041 & 271 & 46.92 & 7024 & 967 & 983 & 135 \\
\hline 3 & 0.214 & 1200 & 247.6 & 6541 & 1228 & 2943 & 552 \\
\hline 4 & 0.264 & 183 & 48.14 & 827 & 192 & 728 & 169 \\
\hline 5 & 0.292 & 387 & 126.1 & 1604 & 466 & 1571 & 457 \\
\hline 6 & 0.317 & 409 & 149.71 & 1580 & 543 & 1580 & 543 \\
\hline 7 & 0.348 & 146 & 64.86 & 521 & 208 & 521 & 208 \\
\hline 8 & 0.242 & 22 & 10.64 & 109 & 48 & 109 & 48 \\
\hline 9 & 0.321 & 112 & 53.88 & 428 & 208 & 428 & 208 \\
\hline 10 & 0.321 & 159 & 97.16 & 605 & 359 & 605 & 359 \\
\hline Total & 0.293 & 2889 & 845 & 24041 & 4650 & 9468 & 2679 \\
\hline \begin{tabular}{l}
Year: \\
Age
\end{tabular} & 2018 F & \begin{tabular}{l}
F multiplier: \\
CatchNos
\end{tabular} & \[
\begin{aligned}
& 1 \\
& \text { Yield }
\end{aligned}
\] & \begin{tabular}{l}
Fbar: \\
StockNos
\end{tabular} & \begin{tabular}{l}
\[
0.3786
\] \\
Biomass
\end{tabular} & SSNos & SSB \\
\hline 1 & 0.000 & 0 & 0 & 4802 & 431 & 0 & 0 \\
\hline 2 & 0.053 & 215 & 37.34 & 4345 & 598 & 608 & 84 \\
\hline 3 & 0.277 & 1406 & 290.01 & 6098 & 1144 & 2744 & 515 \\
\hline 4 & 0.342 & 1320 & 347.21 & 4780 & 1109 & 4206 & 976 \\
\hline 5 & 0.377 & 172 & 56.21 & 575 & 167 & 563 & 164 \\
\hline 6 & 0.410 & 348 & 127.33 & 1084 & 372 & 1084 & 372 \\
\hline 7 & 0.451 & 361 & 160.11 & 1042 & 416 & 1042 & 416 \\
\hline 8 & 0.313 & 85 & 40.83 & 333 & 146 & 333 & 146 \\
\hline 9 & 0.415 & 25 & 12.02 & 77 & 37 & 77 & 37 \\
\hline 10 & 0.415 & 220 & 134.91 & 678 & 402 & 678 & 402 \\
\hline Total & 0.379 & 4152 & 1206 & 23814 & 4822 & 11335 & 3112 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrr}
\begin{tabular}{r} 
Year: \\
Age
\end{tabular} & \multicolumn{2}{c}{\(\mathbf{2 0 1 9}\)} & F & \begin{tabular}{r} 
F multiplier: \\
CatchNos
\end{tabular} & \multicolumn{1}{l}{\begin{tabular}{r} 
Yield
\end{tabular}} & \begin{tabular}{l} 
Fbar: \\
StockNos
\end{tabular} & \begin{tabular}{c}
0.3786 \\
Biomass
\end{tabular} \\
\hline 1 & 0.000 & 0 & 0 & 4802 & 431 & SSNos & SSB \\
2 & 0.053 & 215 & 37.34 & 4345 & 598 & 0 & 0 \\
3 & 0.277 & 859 & 177.24 & 3727 & 699 & 1677 & 34 \\
4 & 0.342 & 1156 & 303.97 & 4184 & 971 & 3682 & 854 \\
5 & 0.377 & 922 & 300.55 & 3073 & 893 & 3012 & 875 \\
6 & 0.410 & 114 & 41.89 & 357 & 122 & 357 & 122 \\
7 & 0.451 & 226 & 100.07 & 651 & 260 & 651 & 260 \\
8 & 0.313 & 154 & 73.69 & 601 & 264 & 601 & 264 \\
9 & 0.415 & 71 & 34.34 & 220 & 107 & 220 & 107 \\
10 & 0.415 & 146 & 89.75 & 451 & 267 & 451 & 267 \\
\hline Total & 0.379 & 3863 & 1159 & 22411 & 4612 & 11259 & 3148
\end{tabular}

Input units are thousands and kg - output in tonnes

Figure \(\mathbf{3 6 . 2}\) - Sol.27.7fg - Age composition of landings

age

Figure 36.3 - Sol.27.7fg - Standardized catch proportion

> Standardized catch (L) proportion at age


Figure 36.4a - Sol.27.7fg - Belgian length distributions of discarded and retained fish from discard sampling studies


\section*{Figure 36.4 b - Sol.27.7fg - UK (E+W) Length distributions of discarded and retained fish from discard sampling studies}




Figure \(\mathbf{3 6 . 4 c}\) - Sol. 27.7 fg - Ireland Length distributions of discarded and retained fish from discard sampling studies



Figure 36.5a - Sol.27.7.fg - Mean-standardised indices


Figure 36.5b - Sol.27.7.fg - Mean-standardised indices


Figure 36.6 - Sol.27.7fg - Consistency plot UK(E\&W)-BTS-Q3 survey


Figure 36.7 - Sol.27.7.fg - Effort (hours ('000) (BE-CBT and IR-CBT), hours ('000) GRT corrected (UK-CBT)) and LPUE (kg/hour (BE-CBT and IR-CBT), kg/hour GRT corrected (UK-CBT), kg/100km (UK-BTS-3Q))

Effort

\(\rightarrow\) UK-CBT \(\rightarrow\) BEL-CBT \(\rightarrow\) IR-CBT

LPUE


Figure 36.8 - Sol.27.7fg - Consistency plot UK(E\&W) commercial beam trawl



Figure 36.9a - Sol.27.7fg - Consistency plot commercial Belgian beam trawl Years: 1971-1996

Figure 36.9b - Sol.27.7fg - Consistency plot commercial Belgian beam trawl Years: 1997-2016


Figure 36.10 - Sol.27.7fg - Catchability residuals for the final XSA run
Residuals



Figure 36.11 - Sol.27.7.fg - Estimates of survivors from different fleets and shrinkage, as well as their different weighting in the final XSA-run



Figure 36.12-Sol.27.7fg - Retrospective XSA analysis (shinkage SE=1.5)


Figure 36.13 - Sol.27.7fg - Summary plots


Figure \(\mathbf{3 6 . 1 4}\) - Sol.27.7fg - Comparison with last year's assessment


Figure 36.15 - Sol.27.7fg -
Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes



Figure 36.16 - Sol.27.7fg - Three year average exploitation pattern, standardised to Fbar (4-8)


Figure 36.17-Sol.27.7fg - Stock/recruitment plot


\section*{37 Sole in the Southwest of Ireland (ICES Divisions 7.h-k)}

\section*{Type of assessment in 2017}

An update XSA assessment was performed for the 7.jk component of the landings according to the stock annex. Only MSY reference points were explored as they are comparable with the XSA.

\section*{ICES advice applicable to 2016}

Based on ICES approach to data-limited stocks, ICES advises that catches should be no more than 205 t in 2016. All catches are assumed to be landed.
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2015/2015/sol-7h-k.pdf

\section*{ICES advice applicable to 2017}

ICES advises that when the precautionary approach is applied, catches in 2017 should be no more than 223 tonnes.
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2016/2016/sol-7h-k.pdf

\subsection*{37.1 General}

\section*{Stock description and management units}

Sole in 7.j are mainly caught by Irish vessels on sandy grounds off the southwest of Ireland. Catches in 7.k are negligible. 7.h is also considered part of the stock for assessment purposes but there is no evidence to suggest that this is actually the same stock (Figure 37.1). Irish VMS and logbook data indicate that the 7.j landings occur close to shore and this species is a small (but valuable) component (up to 5\%) of the landings in a mixed fishery.

The TAC is set for divisions 7.h,j and k. However, because no age-disaggregated data are available for 7.h, the assessment is performed for 7.jk only.

\section*{Management applicable to 2016 and 2017}

TAC table 2016
\begin{tabular}{ll|ll}
\hline Species: \begin{tabular}{lrl} 
Common sole \\
Solea solea
\end{tabular} & & Zone: \begin{tabular}{l} 
VIIh, VIIj and VIIk \\
(SOL/7H)K.)
\end{tabular} \\
\hline Belgium & 32 & \\
France & 64 & \\
Ireland & 171 & \\
The Netherlands & 51 & \\
United Kingdom & 64 & \\
Union & 382 & Analytical TAC \\
TAC & 382 & Article 12(1) of this Regulation applies \\
&
\end{tabular}

TAC table 2017
\begin{tabular}{lc|ll}
\hline Species: & \begin{tabular}{l} 
Plaice \\
Pleuronectes platessa
\end{tabular} & Zone: \begin{tabular}{l} 
VIIh, VIIj and VIIk \\
(PLE \(/ 7 \mathrm{HJK})\).
\end{tabular} \\
\hline Belgium & 8 & \\
France & 16 & \\
Ireland & 56 & \\
The Netherlands & 32 & \\
United Kingdom & 16 & \\
Union & 128 & \\
TAC & 128 & Precautionary TAC \\
& & Article 12(1) of this Regulation applies \\
\hline
\end{tabular}

Article 12(1) refers to the closure of the Porcupine bank in May and July.

\section*{Landings obligation}

In 2016 the landings obligation will apply to this stock for the first time. According to the delegate regulation (EC, 2015) vessels where more than \(5 \%\) of their landings using beam trawls were sole during the reference years ( \(2013 \& 2014\) ) in ICES divisions 7.b, 7.c and 7.f-7k will be covered by the Landings Obligation. The landings obligation will also apply to all catches of sole with trammelnets or gillnets. These vessels will have to land all sole in 2016. However a de minimis exemption will also apply allowing for up to a maximum of \(3 \%\) of the annual catch to be discarded. Given the low discards observed in the fishery the landings obligation is unlikely to have a significant impact on this stock or the advice given for 2017.

\subsection*{37.2 Data}

\section*{Landings and discards}

The nominal landings are given in Table 37.1. Historic Belgian landings from 7.j are considered to have been area misreported and have been removed from the total landings. Because age data were only available for Irish landings (which were mainly from 7.jk) the remainder of Section 37 concerns 7.jk only.

Table 37.2 gives the landings in \(7 . j \mathrm{jk}\). Generally Ireland has taken around \(90 \%\) of the landings.

Discarding of sole in 7.jk is not considered to be a problem. In 2014 less than \(1 \%\) of the catch was discarded and in 2015 there were no observation of sole discards on three observer trips (Figure 37.2).

\section*{Landings numbers-at-age}

Landings numbers-at-age are given in Table 37.2 and Figure 37.3. Figure 37.4 shows a bubble plot of the standardised landings proportions-at-age. The numbers-at-age matrix shows quite good cohort tracking, suggesting that ageing is accurate and that recruitment is variable. Figure 37.5 gives the stock weights (which are the same as the landings weights).

\section*{Biological}

Natural mortality was assumed to be 0.1 for all ages and the proportion mature is assumed to be as follows:
\begin{tabular}{ccccc}
\hline Age 2 & Age 3 & Age 4 & Age 5 & Age 6+ \\
\hline 0.14 & 0.45 & 0.88 & 0.98 & 1.00 \\
\hline
\end{tabular}

\section*{Surveys and commercial tuning fleets}

There is currently no survey index available for this stock (the Irish IBTS Q4 Groundfish Survey data are too noisy to be used). A commercial tuning index is available which use Irish VMS data linked to logbook landings (see Gerritsen et al., 2011 for details on linking VMS and logbook data). The data were used to identify an area where sole are caught by OTB vessels (Figure 37.6). Next the effort and landings of the OTB vessels inside the sole area was estimated. The VMS-based lpue showed similar trends to the lpue of Irish OTB vessels in the whole of 7.j, however by limiting the spatial extent, the index will be less sensitive to changes in the spatial distribution of the fleet. All vessels operating in this area are assumed to be capable of catching sole (which is not the case further offshore).

The age composition of the Irish OTB fleet in 7.j was used for the tuning fleet (Table 37.4). Figure 37.7 shows the log standardised numbers-at-age in the tuning index by year and cohort. No year effects are obvious, and cohort tracking appears to be reasonably good. Figure 37.8 shows the internal consistency regressions for the tuning fleet.

In years to come the annual Irish Beam Trawl Ecosystem Survey (IBES) may act as a possible tuning index for this stock as a number of valid tows occur in the area where the fishery is executed. The first of these surveys took place in 2016 (ICES, 2016c) and was repeated in 2017. With only two years of data this would not currently form a valid index for this fishery.

\section*{Data quality}

Sampling appears to be sufficient to establish catch numbers-at-age. The tuning index is quite short and does, but should be long enough to inform the trends that are not already converged.

\subsection*{37.3 Historical stock assessment development}

Target category: 3.2.0.

Model used: XSA.
Software used: Lowestoft vpa95.exe and FLR with R version 3.3.2 and packages FLCore 2.6.0; FLEDA 2.5 and FLAssess 2.5.0.

\section*{Exploratory assessment}

Several exploratory assessments were carried out by means of a separable VPA and XSA. The initial VPA runs explored the year and age range to be used in the separable and the choices of reference age, final F and S. The XSA runs explored the choices of q-age, F-shrinkage and the minimum SE threshold. The results of these are available on the ICES SharePoint site of WGCSE under data for this stock.

\section*{Final assessment}

The model was applied to catch numbers for ages 2-10+ for the years 1993-2016. The tuning fleet included ages 3-9 for the years 2006-2016.

Model Options:
\begin{tabular}{lll}
\hline & Option & \\
\hline Ages catch dep stock size & None \\
\hline Q plateau & 7 \\
\hline Taper & No \\
\hline F shrinkage SE & 1.5 \\
\hline F shrinkage year range & 5 \\
\hline F shrinkage age range & 5 \\
\hline Fleet SE threshold & 0.2 \\
\hline Prior weights & No
\end{tabular}

The diagnostics of the final XSA assessment are given in Table 37.5. Figure 37.9 shows the residuals. There are some year effects but the absolute values are small. Because the catch and the tuning fleet have nearly identical age compositions, the year effects result from the lpue estimate of the tuning fleet.

\section*{State of the stock}

The summary table with a time-series of landings, recruitment, SSB and F is given in Table 37.6 and Figure 37.10. Recruitment is variable without a clear trend. The SSB has declined from nearly 800 tonnes around 400 t in 2000-2009 but appears to have recovered to around 800 t in recent years F shows a slowly declining trend and currently appears to be quite low, with a slight revision upwards in 2016.

\subsection*{37.4 MSY evaluation}

Previously for this stock WKProxy (ICES, 2016a) proposed an Fmsy reference point of \(\mathrm{F}=0.17\), based on \(\mathrm{F}_{0.1}\) from a Thompson-Bell yield-per-recruit analysis of the landings numbers-at-age. This is a data-limited approach (which was in line with the ToRs of WKProxy); however the resulting reference point is not directly comparable with the outputs from the XSA (only the landings data are used in the Thompson-Bell approach). In 2016 this working group (ICES, 2016 d) recommended that it would be
more appropriate to move the stock to Category 2 next year and to apply the WKMSYREF4 (ICES, 2016b) methodology for estimating reference points (ICES, 2012).

An exploratory MSY evaluation following WKMSYREF4 guidelines is presented here. Details on this evaluation can be found in the working document in appendix xxx. As there is no obvious stock-recruitment relationship it is difficult to specify an appropriate SR model. The SR estimation was carried out on age \(>=3\) as that is the onset of recruitment using: fit <- eqsr_fit_shift(stock, nsamp \(=1000\), models \(=c(\) "Segreg"), rshift \(=\) 3). From this Blim was estimated to be 424.88 (Blim \(<-\) median(fit\$sr.sto\$b.b)) and a \(\mathrm{B}_{\mathrm{pa}}\) at 590.41 ( \(B_{p a}<-B_{p a}\left(B_{l i m}, 0.2\right.\) ). The following settings were used to estimate the MSY reference points using the eqsim_run\{msy\} function in the msy package in R (full code available on SharePoint):
```

stocksetup <- list(data = stock,
bio.years =c(2007, 2016),
bio.const = FALSE,
sel.years =c(2007, 2016),
sel.const = FALSE,
Fscan = seq(0,0.44,by=0.005),
Fcv = 0.212
Fphi= 0.423,
Blim = Blim,
Bpa=Bpa,
verbose = TRUE,
extreme.trim=c(0.05,0.95)

```

Where \(\mathrm{F}_{\mathrm{cv}}\) and \(\mathrm{F}_{\text {phi }}\) were the same as those used by WKMSYREF4 for plaice in 7.e (ICES, 2016b), which was calculate during WKMSYREF3 (ICES, 2014). Figures 37.12 and 37.13 summarise the MSY evaluation. The analysis resulted in an estimate of FMSY \(=\) 0.161 without a \(B_{\text {trigger }}\) harvest control rule and \(F_{M S Y}=0.181\) with a Btrigger \(=B_{\text {PA }}\) HCR. These values are slightly higher than the Fmsy proxy of 0.25 proposed by WKProxy (ICES, 2016a).

MSY and Biological reference points
\begin{tabular}{|c|c|c|c|c|}
\hline Framework & Reference point & Value & Technical basis & Source \\
\hline \multirow[t]{2}{*}{MSY approach} & MSY Btrigger & 590 & \(\mathrm{B}_{\mathrm{pa}}\) & ICES (2017) \\
\hline & \(\mathrm{F}_{\mathrm{MSY}}\) & 0.161 & Median point estimates of EqSim with segmented regression S-R relationship & ICES (2017) \\
\hline \multirow[t]{4}{*}{Precautionary approach} & Blim & 425 & Breakpoint segmented regression S-R relationship & ICES (2017) \\
\hline & \(\mathrm{B}_{\text {pa }}\) & 590 & \(\mathrm{Bl}_{\lim } \times \exp (1.645 \times \sigma) ; \sigma=0.20\) & ICES (2017) \\
\hline & Flim & 0.222 & F with \(50 \%\) probability of \(\mathrm{SSB}<\mathrm{B}_{\lim }\) & ICES (2017) \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.161 & \(\mathrm{F}_{\lim } \times \exp (-1.645 \times \sigma) ; \sigma=0.20\) & ICES (2017) \\
\hline \multirow[t]{2}{*}{Management plan} & SSBmgt & & & \\
\hline & Fmgt & & & \\
\hline
\end{tabular}

\subsection*{37.5 Uncertainties and bias in the assessment and forecast}

The assessment is carried out on the 7.jk part of the stock area only.
There is sufficient contrast in the landings-at-age matrix to inform the model. However there may be some data issues between 1999 and 2003 which result in erratic \(F\) estimates.

The use of a commercial tuning fleet has the potential to introduce bias if the behaviour or efficiency of the fleet changes. E.g. changes to the gear, vessel power, towing speed, etc. can influence the catch rates. By limiting the index to an area where sole are known to be caught, some of the potential bias due to changes in spatial effort distribution will be avoided. The working group applied a spatial stratification to check that changes in effort distribution within the sole area did not affect the index and this did not appear to be the case. Because the stratified estimate is likely to be less precise, the final tuning index was based on the un-stratified estimate. More sophisticated modelling approaches to standardise the commercial index could be investigated for a future benchmark.

\subsection*{37.6 Recommendations for the next benchmark}

WGCSE recommend that this stock is upgraded to a Category 2 stock (ICES, 2012) where the previous advice is increased or decrease based on the results of the assessment and forecast for 7.j carried out by WGCSE. The reference points could be defined according to the procedures set out in WKMSYREF4 as is shown in Section 37.4. ACOM would need to decide if this requires a benchmark or whether an intersessional review of WGCSE's analysis is sufficient.

\subsection*{37.7 Management considerations}

Fishing mortality has been slowly declining in the last ten years and SSB has been stable in recent years.

The TAC area includes Division 7h. However, the landings from divisions 7jk are taken in the northeastern part of Division 7j which is remote from the northern part of Division 7h, where most of the Division 7h landings are taken. It is likely that the sole from Division 7h are part of the divisions 7e or 7 fg stocks. No further information on stock structure is likely to become available in the short term.

The catches are taken in a mixed fisheries and should be managed as such. Constraining the landings by TAC will not constrain the catches. Because sole are caught in spatially distinct areas, restricting effort in these areas will be more effective than limiting landings. The catches are taken in a mixed fisheries and should be managed as such. Constraining the landings by TAC will not constrain the catches. The TAC is currently not restrictive, but for some countries the quota appears to have become restrictive.

\subsection*{37.8 References}

Gerritsen HD and Lordan C. 2011. Integrating Vessel Monitoring Systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES J Mar Sci 68 (1): 245-252.

ICES. 2012. ICES implementation of advice for data limited stocks in 2012. Report in support of ICES advice. ICES CM 2012/ACOM:68.

ICES. 2014. Report of the Joint ICES-MYFISH Workshop to consider the basis for FMSY ranges for all stocks (WKMSYREF3), 17-21 November 2014, Charlottenlund, Denmark. ICES CM 2014/ACOM:64. 164 pp.

ICES. 2016a. Report of the Workshop to consider MSY proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015, ICES Headquarters, Copenhagen. ICES CM 2015/ACOM:61. 183 pp .

ICES. 2016b. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

ICES. 2016c. Final Report of the Working Group on Beam Trawl Surveys (WGBEAM), 12-15 April 2016, La Rochelle, France. ICES CM 2016/ SSGIEOM:20. 125 pp.
ICES. 2016d. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 4-13 May 2016, Copenhagen, Denmark. ICES CM 2016ACOM:13. 1312 pp.

Table 39.1. Sole in Divisions 7.h-k (Southwest Ireland). Nominal landings ( \(\mathbf{t}\) ), 1993-2016, as officially reported to ICES. Belgian landings from 7.j are considered to have been areamisreported and are not included in the total. * Preliminary data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 7 h & & & & & 7 j & & & & 7 k & & & 7 h Total & 7 jk Total & 7 hjk & 7hjk \\
\hline Row Labels & BEL & FRA & IRE & NL & UK & BEL & FRA & IRE & UK & FRA & IRE & UK & TOT & TOT & TOT & WG Est \\
\hline 1993 & & 43 & & & 206 & & 1 & 237 & 8 & & & & 249 & 246 & 495 & \\
\hline 1994 & & 42 & 8 & & 172 & & & 176 & 2 & & & & 222 & 178 & 400 & \\
\hline 1995 & & 44 & 11 & & 186 & & 1 & 232 & 6 & 2 & & & 241 & 241 & 482 & \\
\hline 1996 & & 48 & 20 & 70 & 147 & & 2 & 162 & 1 & & 1 & & 285 & 166 & 451 & 443 \\
\hline 1997 & & 56 & 16 & & 111 & & 2 & 187 & 1 & & & 1 & 183 & 191 & 374 & 564 \\
\hline 1998 & & 65 & 13 & 7 & 109 & & 8 & 208 & 2 & 1 & & & 194 & 219 & 413 & 423 \\
\hline \[
1999
\] & 5 & & 8 & 1 & 96 & 96 & & 199 & 1 & & & & 110 & 200 & 310 & 381 \\
\hline 2000 & & 72 & 8 & 10 & 95 & 8 & 4 & 103 & & 2 & & & 185 & 109 & 294 & 329 \\
\hline 2001 & 6 & 86 & 11 & & 111 & 7 & 11 & 113 & & 2 & 1 & & 214 & 127 & 341 & 325 \\
\hline 2002 & 85 & 85 & 9 & & 124 & 69 & 8 & 120 & & 15 & 1 & & 303 & 144 & 447 & 430 \\
\hline 2003 & 122 & 113 & 23 & & 78 & 48 & 20 & 82 & & & & & 336 & 102 & 438 & 245 \\
\hline 2004 & 155 & 95 & 33 & & 79 & 2 & 7 & 78 & & & & & 362 & 85 & 447 & 290 \\
\hline 2005 & 90 & 86 & 28 & & 112 & & 7 & 69 & & & 1 & & 316 & 77 & 393 & 326 \\
\hline 2006 & 36 & 81 & 14 & 1 & 86 & 0 & 11 & 49 & 1 & 0 & 0 & 0 & 218 & 61 & 279 & 272 \\
\hline 2007 & 31 & 69 & 4 & 0 & 91 & 0 & 9 & 73 & 0 & 0 & 1 & 0 & 195 & 83 & 278 & 277 \\
\hline 2008 & 10 & 49 & 3 & 0 & 80 & 0 & 8 & 69 & 0 & 0 & 0 & 0 & 142 & 77 & 219 & 225 \\
\hline 2009 & 11 & 70 & 0 & 0 & 58 & 0 & 9 & 60 & 0 & 0 & 0 & 0 & 139 & 69 & 208 & 208 \\
\hline 2010 & 20 & 73 & 3 & 0 & 51 & 0 & 14 & 68 & 0 & 0 & 0 & 0 & 147 & 82 & 229 & 228 \\
\hline 2011 & 10 & 70 & 1 & 0 & 54 & 0 & 23 & 63 & 0 & 1 & 0 & 0 & 135 & 87 & 222 & 237 \\
\hline 2012 & 18 & 74 & 2 & 0 & 46 & 0 & 11 & 83 & 0 & 0 & 0 & 0 & 140 & 94 & 234 & 228 \\
\hline 2013 & 4 & 69 & 1 & 0 & 47 & 0 & 7 & 84 & 0 & 0 & 0 & 0 & 121 & 91 & 212 & 211 \\
\hline 2014 & 42 & 56 & 3 & 0 & 54 & 0 & 5 & 82 & 0 & 0 & 0 & 0 & 155 & 87 & 242 & 243 \\
\hline 2015 & 40 & 70 & 3 & 0 & 53 & 0 & 4 & 74 & 0 & 0 & 0 & 0 & 166 & 78 & 244 & 248 \\
\hline 2016* & 91 & 67 & 0 & 0 & 61 & 0 & 10 & 94 & 2 & 0 & 0 & 0 & 223 & 106 & 329 & 339 \\
\hline
\end{tabular}

Table 37.2. Landings numbers-at-age for sole in 7.jk.
\begin{tabular}{lllllllllllllllll}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \(16+\) \\
\hline 1993 & 32.8 & 217.9 & 224.5 & 76.8 & 55.7 & 56.7 & 31.5 & 20.6 & 11.6 & 11.0 & 5.5 & 4.7 & 4.7 & 8.2 & 0.9 \\
\hline 1994 & 23.5 & 117.3 & 130.2 & 68.8 & 40.8 & 22.4 & 19.1 & 10.9 & 12.0 & 13.0 & 10.7 & 4.0 & 3.3 & 11.0 & 12.1 \\
\hline 1995 & 0.0 & 279.2 & 80.8 & 174.0 & 117.1 & 50.9 & 14.9 & 15.3 & 4.1 & 22.0 & 7.7 & 8.5 & 2.1 & 2.2 & 2.1 \\
\hline 1996 & 12.3 & 45.9 & 115.9 & 80.4 & 52.7 & 54.2 & 31.5 & 8.1 & 4.8 & 5.6 & 10.0 & 2.6 & 5.3 & 6.3 & 20.9 \\
\hline 1997 & 39.0 & 160.9 & 83.5 & 109.7 & 42.6 & 41.5 & 37.7 & 15.7 & 1.4 & 0.0 & 3.9 & 3.0 & 3.2 & 2.2 & 11.4 \\
\hline 1998 & 23.5 & 137.2 & 113.3 & 58.9 & 92.7 & 40.0 & 43.1 & 34.4 & 8.8 & 5.4 & 2.8 & 5.0 & 2.8 & 0.0 & 29.7 \\
\hline 1999 & 34.6 & 121.2 & 147.1 & 126.4 & 45.2 & 52.0 & 20.3 & 18.7 & 12.9 & 1.2 & 7.1 & 0.8 & 0.0 & 0.8 & 12.2 \\
\hline 2000 & 36.7 & 89.0 & 77.2 & 38.9 & 26.9 & 14.7 & 19.5 & 10.0 & 15.4 & 7.3 & 2.8 & 0.0 & 1.6 & 0.0 & 3.2 \\
\hline 2001 & 61.7 & 109.5 & 50.2 & 46.9 & 36.0 & 21.4 & 20.8 & 13.7 & 8.8 & 3.5 & 1.9 & 5.0 & 2.8 & 1.6 & 3.2 \\
\hline 2002 & 8.6 & 94.2 & 124.1 & 44.4 & 25.6 & 26.2 & 10.1 & 5.6 & 16.3 & 5.2 & 13.9 & 3.5 & 3.7 & 2.2 & 14.9 \\
\hline 2003 & 1.4 & 36.5 & 63.0 & 87.0 & 51.8 & 30.6 & 12.5 & 2.7 & 3.7 & 6.1 & 9.3 & 0.0 & 1.8 & 0.6 & 3.6 \\
\hline 2004 & 6.9 & 18.0 & 90.1 & 46.7 & 35.5 & 18.3 & 13.3 & 5.7 & 7.8 & 1.2 & 6.8 & 1.2 & 4.4 & 3.4 & 12.0 \\
\hline 2005 & 9.4 & 34.1 & 47.4 & 64.9 & 17.2 & 38.4 & 20.7 & 9.4 & 3.8 & 4.2 & 0.0 & 3.8 & 4.4 & 3.2 & 6.7 \\
\hline 2006 & 12.8 & 29.1 & 29.7 & 27.6 & 37.7 & 17.8 & 15.7 & 10.8 & 6.0 & 3.8 & 1.3 & 0.6 & 1.4 & 1.3 & 8.6 \\
\hline 2007 & 1.1 & 44.0 & 35.7 & 30.1 & 44.4 & 42.3 & 20.5 & 15.9 & 10.1 & 4.3 & 4.2 & 1.2 & 3.3 & 1.1 & 3.3 \\
\hline 2008 & 1.2 & 24.7 & 89.6 & 42.6 & 21.5 & 20.3 & 25.0 & 10.5 & 7.9 & 4.8 & 2.8 & 3.2 & 2.0 & 1.4 & 3.9 \\
\hline 2009 & 0.3 & 14.8 & 38.4 & 76.5 & 31.4 & 16.9 & 16.6 & 15.9 & 6.3 & 6.1 & 5.5 & 1.0 & 0.8 & 0.0 & 3.2 \\
\hline 2010 & 5.0 & 48.5 & 49.5 & 54.0 & 47.3 & 13.7 & 8.8 & 9.1 & 8.8 & 6.2 & 6.7 & 2.9 & 3.1 & 0.2 & 4.8 \\
\hline 2011 & 0.7 & 24.9 & 66.7 & 47.4 & 33.6 & 33.5 & 13.8 & 8.6 & 8.6 & 7.8 & 7.1 & 4.5 & 2.3 & 1.0 & 8.6 \\
\hline 2012 & 0.7 & 11.4 & 48.1 & 70.8 & 33.6 & 31.0 & 26.4 & 9.8 & 9.1 & 6.8 & 8.2 & 5.5 & 3.3 & 2.6 & 7.0 \\
\hline 2013 & 0.2 & 8.8 & 30.6 & 69.9 & 60.9 & 32.2 & 17.9 & 14.2 & 7.5 & 4.0 & 4.4 & 2.6 & 2.2 & 2.4 & 3.5 \\
\hline 2014 & 1.5 & 21.5 & 28.5 & 38.2 & 64.2 & 53.7 & 21.7 & 12.1 & 8.7 & 4.0 & 2.9 & 2.6 & 1.6 & 2.1 & 2.9 \\
\hline 2015 & 2.1 & 28.7 & 50.0 & 27.0 & 32.2 & 41.2 & 31.1 & 16.9 & 7.9 & 7.2 & 3.4 & 2.6 & 1.6 & 1.7 & 3.1 \\
\hline 2016 & 5.2 & 20.4 & 59.2 & 67.4 & 37.2 & 30.3 & 29.5 & 23.1 & 11.3 & 9.4 & 5.3 & 2.7 & 2.3 & 1.3 & 5.1 \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 7.14.3. Weight-at-age for sole in 7.jk.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \(16+\) \\
\hline 1993 & 0.154 & 0.221 & 0.275 & 0.342 & 0.412 & 0.455 & 0.511 & 0.496 & 0.628 & 0.567 & 0.762 & 0.499 & 0.505 & 0.777 & 1.095 \\
\hline 1994 & 0.143 & 0.233 & 0.278 & 0.346 & 0.421 & 0.453 & 0.514 & 0.552 & 0.610 & 0.632 & 0.632 & 0.583 & 0.660 & 0.845 & 0.661 \\
\hline 1995 & 0.141 & 0.194 & 0.322 & 0.362 & 0.338 & 0.370 & 0.493 & 0.452 & 0.722 & 0.579 & 0.401 & 0.297 & 0.836 & 0.350 & 0.607 \\
\hline 1996 & 0.138 & 0.169 & 0.230 & 0.307 & 0.435 & 0.421 & 0.505 & 0.587 & 0.613 & 0.712 & 0.755 & 0.643 & 0.765 & 0.723 & 0.673 \\
\hline 1997 & 0.133 & 0.200 & 0.281 & 0.334 & 0.409 & 0.526 & 0.618 & 0.592 & 0.679 & 0.679 & 0.691 & 0.848 & 0.889 & 0.695 & 0.974 \\
\hline 1998 & 0.136 & 0.223 & 0.281 & 0.357 & 0.379 & 0.448 & 0.515 & 0.554 & 0.455 & 0.647 & 0.497 & 0.641 & 0.659 & 0.763 & 0.819 \\
\hline 1999 & 0.152 & 0.192 & 0.308 & 0.345 & 0.400 & 0.426 & 0.461 & 0.575 & 0.578 & 0.657 & 0.449 & 0.896 & 0.592 & 0.832 & 0.760 \\
\hline 2000 & 0.180 & 0.210 & 0.255 & 0.396 & 0.416 & 0.47 & 0.503 & 0.489 & 0.506 & 0.452 & 0.555 & 0.818 & 0.525 & 0.850 & 0.694 \\
\hline 2001 & 0.164 & 0.228 & 0.295 & 0.337 & 0.394 & 0.481 & 0.548 & 0.530 & 0.587 & 0.795 & 0.542 & 0.740 & 0.967 & 0.867 & 0.438 \\
\hline 2002 & 0.203 & 0.198 & 0.254 & 0.305 & 0.469 & 0.490 & 0.473 & 0.654 & 0.730 & 0.721 & 0.626 & 0.616 & 1.150 & 0.643 & 0.871 \\
\hline 2003 & 0.168 & 0.191 & 0.296 & 0.323 & 0.329 & 0.378 & 0.371 & 0.575 & 0.499 & 0.548 & 0.477 & 0.557 & 0.446 & 0.779 & 0.640 \\
\hline 2004 & 0.094 & 0.199 & 0.197 & 0.293 & 0.313 & 0.353 & 0.287 & 0.584 & 0.636 & 0.499 & 0.595 & 0.499 & 0.845 & 0.457 & 0.761 \\
\hline 2005 & 0.131 & 0.168 & 0.198 & 0.249 & 0.383 & 0.313 & 0.340 & 0.446 & 0.525 & 0.468 & 0.604 & 0.489 & 0.393 & 0.437 & 0.841 \\
\hline 2006 & 0.160 & 0.180 & 0.205 & 0.257 & 0.298 & 0.354 & 0.354 & 0.377 & 0.456 & 0.377 & 0.612 & 0.438 & 0.568 & 0.508 & 0.775 \\
\hline 2007 & 0.154 & 0.208 & 0.268 & 0.282 & 0.329 & 0.341 & 0.378 & 0.395 & 0.449 & 0.376 & 0.418 & 0.554 & 0.494 & 0.594 & 0.527 \\
\hline 2008 & 0.144 & 0.204 & 0.236 & 0.278 & 0.305 & 0.339 & 0.339 & 0.395 & 0.389 & 0.445 & 0.560 & 0.450 & 0.512 & 0.457 & 0.744 \\
\hline 2009 & 0.123 & 0.196 & 0.234 & 0.265 & 0.268 & 0.318 & 0.386 & 0.420 & 0.393 & 0.417 & 0.368 & 0.476 & 0.828 & 0.480 & 0.527 \\
\hline 2010 & 0.177 & 0.197 & 0.247 & 0.304 & 0.331 & 0.364 & 0.371 & 0.400 & 0.440 & 0.427 & 0.512 & 0.423 & 0.541 & 0.503 & 0.505 \\
\hline 2011 & 0.186 & 0.207 & 0.236 & 0.260 & 0.298 & 0.340 & 0.420 & 0.479 & 0.469 & 0.523 & 0.580 & 0.600 & 0.597 & 0.485 & 0.639 \\
\hline 2012 & 0.191 & 0.216 & 0.254 & 0.294 & 0.320 & 0.362 & 0.404 & 0.423 & 0.459 & 0.483 & 0.461 & 0.517 & 0.584 & 0.681 & 0.552 \\
\hline 2013 & 0.141 & 0.226 & 0.268 & 0.302 & 0.339 & 0.352 & 0.404 & 0.440 & 0.483 & 0.483 & 0.546 & 0.614 & 0.477 & 0.557 & 0.647 \\
\hline 2014 & 0.130 & 0.209 & 0.246 & 0.282 & 0.314 & 0.348 & 0.354 & 0.398 & 0.485 & 0.479 & 0.451 & 0.493 & 0.438 & 0.653 & 0.820 \\
\hline 2015 & 0.152 & 0.206 & 0.231 & 0.284 & 0.316 & 0.319 & 0.330 & 0.374 & 0.393 & 0.455 & 0.476 & 0.533 & 0.404 & 0.643 & 0.510 \\
\hline 2016 & 0.203 & 0.254 & 0.280 & 0.302 & 0.336 & 0.359 & 0.403 & 0.383 & 0.443 & 0.418 & 0.452 & 0.491 & 0.491 & 0.528 & 0.591 \\
\hline
\end{tabular}

Table 39.4. Tuning data. The ages (3-9) and years used in the assessment are in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{SOL7jk, WGCSE} \\
\hline \multicolumn{17}{|l|}{101} \\
\hline \multicolumn{17}{|l|}{IRL-VMS: nos per 1000 hours} \\
\hline 2006 & 2015 & & & & & & & & & & & & & & & \\
\hline 1 & 1 & 0 & 1 & & & & & & & & & & & & & \\
\hline 2 & 16 & & & & & & & & & & & & & & & \\
\hline 1 & 172 & 390 & 398 & 369 & 506 & 239 & 210 & 145 & 81 & 52 & 18 & 9 & 19 & 17 & 115 & \#2006 \\
\hline 1 & 14 & 591 & 480 & 405 & 597 & 569 & 276 & 214 & 136 & 58 & 56 & 17 & 44 & 14 & 44 & \#2007 \\
\hline 1 & 19 & \[
412
\] & \[
1495
\] & 711 & 358 & 339 & 417 & 176 & 131 & 80 & 47 & 54 & 33 & 24 & 65 & \#2008 \\
\hline 1 & 4 & 223 & 578 & 1150 & 472 & 254 & 249 & 238 & 95 & 92 & 83 & 15 & 12 & 0 & 49 & \#2009 \\
\hline 1 & 64 & 624 & 638 & 695 & 609 & 177 & 113 & 117 & 113 & 79 & 86 & 38 & 39 & 3 & 61 & \#2010 \\
\hline 1 & 10 & 343 & 919 & 654 & 463 & 462 & 191 & 118 & 119 & 107 & 97 & 62 & 32 & 14 & 119 & \#2011 \\
\hline 1 & 9 & 145 & 612 & 901 & 427 & 394 & 335 & 125 & 115 & 86 & 105 & 70 & 42 & 33 & 89 & \#2012 \\
\hline 1 & 4 & 155 & 536 & \[
1224
\] & 1067 & 563 & 313 & 248 & 131 & 70 & 77 & 45 & 39 & 42 & 62 & \#2013 \\
\hline 1 & 25 & 361 & 477 & 640 & 1075 & 901 & 363 & 202 & 146 & 66 & 49 & 44 & 26 & 36 & 49 & \#2014 \\
\hline 1 & 45 & 627 & 1094 & 591 & 703 & 901 & 681 & 369 & 173 & 158 & 75 & 57 & 36 & 37 & 68 & \#2015 \\
\hline 1 & 104 & 407 & 1179 & 1343 & 740 & 604 & 588 & 461 & 224 & 188 & 107 & 54 & 46 & 25 & 101 & \#2016 \\
\hline
\end{tabular}

Table 7.14.5. XSA diagnostics.
x
FLR XSA Diagnostics 2017-05-25 15:58:17

CPUE data from indices

Catch data for 24 years 1993 to 2016. Ages 2 to 10.
fleet first age last age first year last year alpha beta 1 IRL-VMS: nos per 1000 hours 3920062016 <NA> <NA>

Time series weights :

Tapered time weighting not applied

Catchability analysis :

Catchability independent of size for all ages

Catchability independent of age for ages > 7

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=1.5\)

Minimum standard error for population
estimates derived from each fleet \(=0.2\)
prior weighting not applied

Regression weights
year
age 2007200820092010201120122013201420152016
\(\begin{array}{lllllllllll}\text { all } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\)

Fishing mortalities
year
age 2007200820092010201120122013201420152016
20.0030 .0030 .0000 .0070 .0020 .0020 .0000 .0020 .0030 .002
30.0850 .0680 .0360 .0730 .0420 .0310 .0280 .0340 .0390 .037
```

4 0.170 0.2220.129 0.1440.1230.0950.098 0.106 0.0930.094
5 0.2420.280 0.268 0.241 0.179 0.166 0.175 0.1520.1240.156
60.3530.2430.305 0.2350.208 0.167 0.189 0.2150.1670.225
7 0.288 0.241 0.274 0.189 0.233 0.269 0.214 0.226 0.1870.209
8 0.3080.2450.2830.200 0.263 0.259 0.219 0.196 0.177 0.177
90.3100.2290.2180.221 0.2730.269 0.1930.2020.206 0.174
100.3100.229 0.2180.2210.273 0.269 0.1930.202 0.206 0.174

```
```

XSA population number (Thousand)
age
year 2 2 3 4 5 5 6 7 7 8 9 10
2007436569240147157178 81 63108
200849239447318410510012154133
2009798444 333 343126747185123
2010715722387265237845148173
201143764360730318817063 38175
2012375 39455848622913812244189
2013 751 339346459372176 96 85 159
2014883679298284349279128 69142
2015656798594 243 221254 201 95 155
2016 3009591 695490194169191152246

```
    Estimated population abundance at 1st Jan 2017
        age
year \(2 \begin{array}{lllllllll}3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)
    201702717516572379140124145116

Fleet: IRL-VMS: nos per 1000 hours

Log catchability residuals.

\section*{year}
age 2006200720082009201020112012201320142015 2016
\(30.6780 .4300 .428-0.3200 .240-0.258-0.636-0.419-0.2650 .128-\) 0.006
\(40.1790 .1490 .634-0.010-0.055-0.150-0.485-0.139-0.1030 .031-\) 0.050
\(5-0.3470 .1050 .4650 .3170 .059-0.168-0.3250 .042-0.136-0.073\) 0.061
\(6-0.3310 .3240 .1660 .288-0.125-0.180-0.479-0.0370 .0480 .058\) 0.266
\(7-0.3280 .0920 .1320 .154-0.370-0.094-0.0320 .060 \quad 0.0740 .146\) 0.166
```

 8-0.211 0.162 0.149 0.184-0.317 0.030-0.071 0.084-0.074 0.097
 0.001
9-0.009 0.167 0.083-0.080-0.218 0.061-0.028-0.043-0.043 0.243-
0.018

```

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
```

 3 4}405\mp@code{6
 Mean_Logq -0.3002 0.6742 1.0727 1.2310 1.2582 1.2582 1.2582
S.E_Logq 0.2444 0.2444 0.2444 0.2444 0.2444 0.2444 0.2444

```

Terminal year survivor and \(F\) summaries:
,Age 2 Year class =2014
source
scaledWts survivors yrcls
fshk 127172014
,Age 3 Year class =2013
source
scaledWts survivors yrcls
IRL-VMS: nos per 1000 hours 0.925132013
fshk \(0.08 \quad 5522013\)
,Age 4 Year class =2012
source
scaledWts survivors yrcls
IRL-VMS: nos per 1000 hours 0.9625442012
fshk \(0.038 \quad 5202012\)
,Age 5 Year class =2011
source
scaledWts survivors yrcls
IRL-VMS: nos per 1000 hours 0.9664032011
fshk \(0.034 \quad 3702011\)
,Age 6 Year class =2010
source
scaledWts survivors yrcls
IRL-VMS: nos per 1000 hours 0.961832010
fshk
0.041702010
,Age 7 Year class =2009
source
scaledWts survivors yrcls
IRL-VMS: nos per 1000 hours 0.9791462009 fshk \(0.021 \quad 1142009\)
,Age 8 Year class =2008
source
scaledWts survivors yrcls
IRL-VMS: nos per 1000 hours 0.9791452008
fshk \(0.021 \quad 1122008\)
,Age 9 Year class =2007
source
scaledWts survivors yrcls
IRL-VMS: nos per 1000 hours 0.9791142007
fshk \(0.021 \quad 1172007\)

Table 37.6. Summary table for sol 7.jk. Catch/landings in tonnes (7.jk only). Recruitment (age 3) in thousands. SSB in tonnes.
\begin{tabular}{|c|c|c|c|c|}
\hline year & catch & recruit & fbar & ssb \\
\hline 1993 & 246 & 897 & 0.369 & 679 \\
\hline 1994 & 178 & 546 & 0.224 & 775 \\
\hline 1995 & 241 & 889 & 0.41 & 649 \\
\hline 1996 & 166 & 378 & 0.266 & 625 \\
\hline 1997 & 191 & 570 & 0.345 & 605 \\
\hline 1998 & 219 & 530 & 0.41 & 561 \\
\hline 1999 & 200 & 465 & 0.589 & 425 \\
\hline 2000 & 109 & 437 & 0.314 & 367 \\
\hline 2001 & 127 & 623 & 0.26 & 391 \\
\hline 2002 & 144 & 418 & 0.26 & 501 \\
\hline 2003 & 102 & 545 & 0.272 & 388 \\
\hline 2004 & 85 & 321 & 0.198 & 421 \\
\hline \[
2005
\] & 77 & 250 & 0.182 & 362 \\
\hline \[
2006
\] & 61 & 296 & 0.156 & 343 \\
\hline 2007 & 83 & 569 & 0.212 & 377 \\
\hline \[
2008
\] & 77 & 394 & 0.203 & 388 \\
\hline 2009 & 69 & 444 & 0.184 & 384 \\
\hline 2010 & 82 & 722 & 0.174 & 473 \\
\hline \[
2011
\] & 87 & 643 & 0.138 & 530 \\
\hline 2012 & 94 & 394 & 0.115 & 600 \\
\hline 2013 & 91 & 339 & 0.122 & 615 \\
\hline 2014 & 87 & 679 & 0.127 & 578 \\
\hline 2015 & 78 & 798 & 0.106 & 601 \\
\hline 2016 & 106 & 591 & 0.128 & 846 \\
\hline
\end{tabular}


Figure 37.1. The spatial distribution of International landings of sole (2012 data, all gears combined; data from STECF).


Figure 37.2. Irish OTB retained catches on observer trips in 7.j during 2016. Numbers raised to fleet level using fishing effort (hours fished). No discards observed during 2015.

SOL 7jk


Figure 7.14.3. Age distribution of sole in 7.jk between 1993 and 2015. All gears and quarters combined.

SOL 7jk
Standardised landings proportions-at-age


Figure 37.4. Standardised catch proportions-at-age for sole in 7.jk. Grey bubbles represent higher than average catch-at-age and black bubbles represent lower than average catch-at-age.

\section*{Sol 7jk \\ stock weights}


Figure 37.5. Catch weights/stock weights of sol7.jk.


\section*{27.7j Sole}


Figure 37.6. Top: the proportion of sole in landings of Irish vessels with VMS over the years 20062014. The black line indicates the polygon inside which sole are caught. Effort and landings from the VMS/logbooks data inside the polygon were used as a tuning index. Bottom: the VMS lpue index (black line) and the lpue of sole in the whole of 7.j.


Figure 37.7. The log-standardised tuning index by year (top) and cohort (bottom). The cohorts are tracked quite well and no year effects are obvious.

\section*{IRL-VMS: nos per 1000 hours}

log index

Figure 37.8. Internal consistency of the tuning fleet.


Figure 37.9. Residuals of the index fit.

\section*{Sol 7jk}


Figure 37.10. Stock summary plot.


Figure 37.11. Sole 7jk stock-recruit plot. Because recruitment does not appear to be impaired at the lowest stock size, the inflection point of the segmented regression was chosen to be Bloss.


Figure 37.12. Sole 7.jk Summary of MSY evaluations (without \(B_{\text {trigger }}\) harvest control rule), a) simulated andMarine 2018 observed recruitment, b)simulated and observed biomass, c) simulated an observed catch and d) Cumulative probability of \(F_{\text {msy }}\) and \(S S B<B_{l i m}\) and \(B_{\text {pa }}\).


Figure 37.13. Sole 7.jk Summary of MSY evaluations (with \(B_{\text {trigger }}=B_{\text {loss }}\) harvest control rule), a) simulated and observed recruitment, b)simulated and observed biomass, c) simulated an observed catch and d) Cumulative probability of \(F_{\text {msy }}\) and \(S S B<B_{l i m}\) and \(B_{p a}\).

\subsection*{37.9 Audit of sole in divisions 7. h-k}

\section*{38 Whiting in Division 27.6.a}

\section*{Type of assessment in 2017}

An update/SPALY Time-Series Analysis (TSA) was carried out with catch and survey data, following the procedure outlined in the Stock Annex. No changes were considered with regard to reference points in relation to those estimated in the previous year.

\section*{ICES advice applicable to 2016}

ICES advises that when the precautionary approach is applied, there should be no directed fisheries and all catches should be minimized in 2016.
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2015/2015/whg-
scow.pdf

\section*{ICES advice applicable to 2017}

ICES does not issue any advice in 2017. The recommendations made in 2016 hold in 2017. The next advice for this stock is scheduled for May 2018.

\subsection*{38.1 General}

\section*{Stock description}

General information is now located in the Stock Annex.

Management applicable to 2016 and 2017
The TAC for whiting (in tonnes) is set for ICES subareas 6, 12 and 14 and EU and international waters of ICES Division 27.5b, for 2016-2017 is shown below (unchanged for 2017):

TAC for 2016
\begin{tabular}{lc|ll}
\hline Species: \begin{tabular}{l} 
Whiting \\
Merlangius merlangus
\end{tabular} & Zone: \begin{tabular}{l} 
VI; Union and international waters of Vb; internat- \\
ional waters of XII and XIV \\
(WHG/56-14)
\end{tabular} \\
\hline Germany & 1 & \\
France & 26 & \\
Ireland & 64 & \\
United Kingdom & 122 & Analytical TAC \\
Union & 213 & \\
TAC & 213 & \\
\hline
\end{tabular}
(Council Regulation (EU) 2016/72).

TAC for 2017

(Council Regulation (EU) 2017/127).
The minimum landing size for whiting in Division 27.6.a is 27 cm .

\section*{Fishery in 2016}

A description of the fisheries in the West of Scotland is given in the Stock Annex.
Anecdotal information from the fishing industry suggests that the number of vessels targeting whiting continues to be very low. However, the recent low TACs combined with increased interest in bigger whiting (driven by good prices) has resulted in an increasing uptake of the whiting quota.

Total landings (nominal landings, ICES statistics) in 2016 were 232 t , up by \(5 \%\) from 2015 (Table 38.1). These are the fifth lowest recorded landings in the time-series. The majority were landed by Scottish, Irish and Dutch vessels, and a smaller amount by French vessels. The UK landings in Division 27.6.a in 2016 constituted \(81 \%\) of the UK quota, while Ireland exceeded its quota by \(21 \%\). Total landings in 2016 exceeded TAC for that year by \(9 \%\).

The total estimated international catch of ages 1 and older in 2016 was 1029 t of which 796 t were discards (Table 38.2). An additional 160 t were discarded as the 0 -group. Of the discards, \(57 \%\) were discarded by the trawl fleet targeting crustaceans (Nephrops).
Mandatory introduction of larger square mesh panels for the Nephrops fleet in 2008 does not seem to have had much of an effect on the discards of whiting in Division 27.6.a in 2016. In terms of quantity, the discards in 2016 (ages 1 and older) were almost as high as those in 2015, and still above the average in the last decade. In terms of discard rate (discards as a proportion of catch), they were still high (the 4th highest in the time-series).

The general perception from fishermen is that large number of whiting are being discarded in the Nephrops fleet that the numbers of smaller whiting has exploded recently but mainly in inshore areas.

\subsection*{38.2 Data}

\section*{Landings}

Total landings, as officially reported to ICES in 1965-2016, are shown in Figure 38.1 and Table 38.2. In the past, there had been concerns that the quality of landings data was deteriorating, giving a possible reason for the different stock dynamics implied
by the commercial fleet and the annual survey (ScoGFS-WIBTS-Q1) being in operation at that time (see Section 5.1.6.1.3 in the 2005 WG Report; ICES, 2005) and as a result the total landings data from 1995 to 2005 are not used in the assessment. Improved compliance measures and the introduction of UK and Irish legislation requiring registration of all fish buyers and sellers may mean that the reported total landings from 2006 onwards are more representative of actual landings.
Landings uploaded to InterCatch by métier and country are shown in Figure 38.2. Age distributions were estimated from market samples. Annual numbers-at-age in the landings are given in Table 38.3. Annual mean weights-at-age in the landings are given in Table 38.6 and shown in Figure 38.3. These have been variable in recent years due to the variability associated with low sample sizes. Efforts to increase sampling in these fisheries are being pursued.

\section*{Discards}

This year, WG estimates of discards are based on data collected in the Irish and Scottish discard programme (raised by weighted average to the level of the total international discards). Discard age compositions from Scottish and Irish samples have been applied to unsampled fleets. Discards uploaded to InterCatch by métier and country are shown in Figure 38.2.

Annual numbers-at-age in the discards are given in Table 38.4. Annual mean weights-at-age in the discards are given in Table 38.7 and shown in Figure 38.3.

\section*{Biological}

Annual numbers-at-age in the total catch are given in Table 38.5. Annual mean weights-at-age in the total catch are given in Table 38.8. As in previous meetings, the catch mean weights-at-age were also used as stock mean weights-at-age (see the Stock Annex).

Natural mortality \((M)\) is assumed to vary and be dependent on fish weight (Lorenzen, 1996). \(M\) values are time-invariant and are calculated as:
\[
M_{a}=3.0 \bar{W}_{a}^{-0.29}
\]
where \(M_{a}\) is natural mortality-at-age a, \(\bar{W}_{a}\) is the time averaged stock weight-at-age \(a\) (in g ) and the numbers are the Lorenzen's parameters for fish in natural ecosystems.

Maturity-at-age was assumed to be knife-edge, with the value 0 at age 1 and full maturity at age \(2+\) according to the Stock Annex.

\section*{Surveys}

Five research vessel survey series for whiting in 27.6.a were available to the WG. In all surveys listed, the highest age represents a true age not a plus group.
- Scottish first-quarter west coast groundfish survey (ScoGFS-WIBTS-Q1): ages 1-7, years 1985-2010
- Scottish fourth-quarter west coast groundfish survey (ScoGFS-WIBTS-Q4): ages 0-7, years 1996-2009.

The Q1 Scottish Groundfish survey was running in the period 1981-2010, and this was performed using a repeat station format with the GOV survey trawl together
with the west coast groundgear rig, ' \(\mathrm{C}^{\prime}\). Similarly the Q4 Scottish Groundfish survey was running in 1996-2009, once again using the GOV survey trawl with groundgear ' C ' and the fixed station format. The Q4 survey was not carried out in 2010 due to an engine break down of the research vessel.

In 2011, the Q1 and Q4 Scottish Groundfish surveys were re-designed. The previous repeat station survey format consisting of the same series of survey trawl positions being sampled at approximately the same temporal period every year is considered a rather imprecise method for surveying both these subareas and as such a move towards some sort of random stratified survey design was judged necessary (see further details of the modified survey design in the Stock Annex). The introduction of the new design initiated two time-series:
- Scottish first-quarter west coast groundfish survey (UKSGFS-WIBTS-Q1): ages 1-7, years 2011-2017
- Scottish fourth-quarter west coast groundfish survey (UKSGFS-WIBTSQ4): ages 0-7, year 2011-2016
(see the distribution of whiting cpue at age in the Q1 and Q4 surveys in 2014-2017, Figure 38.4). The Q4 survey in 2013 (not shown in Figure 38.4) was not complete due to adverse weather conditions; it covered only the northern half of Division 27.6.a and is therefore not used in the assessment. The Q1 survey in 2017 has recently been completed and processed. As a result, seven years of data are currently available in the time-series for the Q1 survey and five years of data for the Q4 survey (as valid indices). These data were made available this year's assessment.

The Irish groundfish survey:
- Irish fourth-quarter west coast groundfish survey (IGFS-WIBTS-Q4): ages 0-6, years 2003-2016
(see the distribution of whiting at age in the two Q4 surveys, UKSGFS-WIBTS-Q4, only the southern part, and IGFS-WIBTS-Q4, in 2013-2016, Figure 38.5). The previous Irish survey (IreGFS), being in operation in 1993-2002 (see the Stock Annex), is not used in the assessment. The current Irish survey uses the RV Celtic Explorer and is part of the IBTS coordinated western waters surveys. The vessel uses a GOV trawl, and the design is a depth stratified survey with randomised stations. Effort is recorded in terms of minutes towed. This survey was considered long enough to be used in the assessment of whiting in Division 27.6.a, giving useful additional indications of year-class strength.

Further descriptions of the above five surveys can be found in the last IBTSWG report (ICES, 2016a).

IBPWSRound decided to include the new Scottish survey time-series in the assessment (ICES, 2015). An attempt was made to use one index to represent the stock abundance combining the two Q4 surveys currently in operation, IGFS-WIBTS-Q4 and UKSGFS-WIBTS-Q4. However, considerable differences were found between the two surveys with cpue being overall higher in the Irish survey. As a consequence of these differences, the IBPWSRound agreed to continue using the Irish Q4 survey as an independent time-series although did not rule out revisiting this issue when a longer time-series of Scottish data became available. Ultimately, five survey timeseries were used in the last year and present assessment.

The survey indices for the five surveys are shown in Table 38.9 with data used in the final assessment highlighted in bold.

A comparison of scaled (standardised to z-scores) survey indices (from the five timeseries) at age show roughly similar trends, mainly for the Scottish surveys, for most ages (up to age 5, Figure 38.6). The two new Scottish surveys seem to show greater consistency (on a year basis) compared to the previous surveys.

Log mean-standardised survey indices by year class and by year in the Irish survey and new Scottish time-series are shown in Figure 38.7. Given the short length of the survey time-series, the year-class plots demonstrate, in most cases, the ability of the surveys to reliably track year classes and to identify the stronger/weaker than average year classes.

The log catch curves for the commercial catch and for the surveys are shown in Figure 38.8. The curves for both ScoGFS-WIBTS-Q1 and ScoGFS-WIBTS-Q4 (unchanged since 2011) are relatively linear and not very noisy. They also show a fairly steep and consistent drop in abundance. Patterns are less clear with the Irish survey. Little can be said in this respect about the new survey time-series (UKSGFS-WIBTS-Q1 and UKSGFS-WIBTS-Q4) as they are relatively short.

\section*{Commercial cpue}

Four commercial catch-effort time-series were previously available to the WG, but they have not been used for a number of years. They are only presented in the Stock Annex.

\subsection*{38.3 Historical stock development}

The final assessment of whiting in 27.6.a was conducted using a TSA model. The method was first developed by Gudmundsson (1994), and it was modified by Rob Fryer for the purpose of assessing time-series containing several years with survey data but no reliable catch data (Fryer, 2002). Subsequent enhancements to the method are detailed in Needle and Fryer (2002). The TSA model allows for years with missing catch or survey data.

Alternative exploratory assessments conducted using SURBA (Needle, 2003) and a Bayesian approach (Cook, 2012) were presented at the WKROUND benchmark in 2012 (ICES, 2012), but were not further explored in this assessment.

\section*{Data screening and exploratory runs}

Model used: TSA
Software used: NAG library (FORTRAN DLL) and functions in R.
Input data types and characteristics:
- Landings, ages 1-7+, years 1981-2015 (1995-2005 age structure only used),
- Discards, ages 1-7+, years 1981-2015 (1995-2005 age structure only used)
- ScoGFS-WIBTS-Q1, ages 1-6, years 1985-2010
- ScoGFS-WIBTS-Q4, ages 1-6, years 1996-2009
- IGFS-WIBTS-Q4, ages 1-4, years 2003-2006 and 2008-2016
- UKSGFS-WIBTS-Q1: ages 1-6, years 2011-2017
- UKSGFS-WIBTS-Q4: ages 1-6, years 2011-2012 and 2014-2016

The assessment of whiting in 27.6.a was conducted using a TSA model with updated survey data (five time-series). The details of the method are presented in the Stock Annex. No modification to the landings was made to account for area misreporting although total landings are excluded from the assessment for the years 1995-2005 as the reported landings data are considered to be unreliable during this period. (ICES, 2012). A "hockey-stick" model was employed to describe the stock-recruitment relationship. Some extra variability in landings and discards was allowed for some ages. Also some points in the time-series that were identified as outliers were downweighted to improve the fit. One point in the IGFS-WIBTS-Q4 time-series (for 2007) was treated as an outlier and was excluded from the analysis. Similarly, one point in UKSGFS-WIBTS-Q4 (for 2013) was excluded as the survey was not complete in that year. Table 38.10 shows the TSA parameter settings for the assessment run.

The main diagnostics of the quality of the model fit was the value of the objective function \(\left(-2^{*} \log\right.\) likelihood), prediction errors and a consideration of how well the model has replicated discard ratios in the input data.

The WG assessment in 2015 was not properly optimised. The introduction of the new survey time-series at IBPWSRound had a considerable effect (not anticipated at that time) on some of the model parameters. In the last year's assessment, greater care was taken to ensure that the model parameters were accurately chosen, which consequently improved the model's performance. This alteration resulted in a downward revision of the stock biomass compared to the 2015 assessment. This year's assessment closely followed the optimisation setup used last year.

IBPWSRound attempted TSA runs with and without a survey catchability trend compared (ICES, 2015). In the latter, the parameters for persistent and transitory trends in survey catchability were both set to 0 . Given the overestimation of catch and uncertainty in the assessment with fixed survey catchability, this option was not further explored and the assessment including estimation of survey catchability trend was retained, which also applied to the 2016 and present assessment.

\section*{Final assessment}

The TSA run using the five surveys is presented as the final assessment run. Table 38.11 shows the TSA parameter estimates for the assessment.

Figure 38.9 shows the proportion discarded at age from the final TSA run. Discards continue to account for a large proportion of the total catch, with no obvious tendency to decrease or to level off.
Table 38.12 gives the TSA population numbers-at-age and Table 38.13 gives their associated standard errors. Estimated F at age is given in Table 38.14 and standard errors on the \(\log\) of this mortality are given in Table 38.15 . Full summary output is given in Table 38.16.

Standardised residuals for landings and discards are given in Figure 38.10, and those for the five surveys in Figure 38.11. None of these are large enough to invalidate the model fit and there are no obvious time-trends in recent years.
TSA also estimated a change in catchability (this is plotted as the percentage change compared to the catchability at the start of each of the five surveys, Figure 38.12). There was a large increase in catchability in the two previous Scottish surveys and in the Irish current survey. No such increase could be seen in the new Scottish surveys.

The TSA stock-recruit plot is presented in Figure 38.13 and shows a rather good relationship, partly because the stock was driven to very low levels of SSB in 2006-2010. The summary plots for the final assessment are shown in Figure 38.14.
The final estimates for the stock are:
\(\mathrm{F}_{(2-4)}\) in \(2016=0.052\)
SSB in \(2017=17023 \mathrm{t}\)

Retrospectives for the final assessment run are shown in Figure 38.15. This figure also shows lines at \(\pm 2\) se (approximate \(95 \%\) confidence limits) around the run in the last year. Retrospective bias is small with respect to SSB. With respect to mean F and recruitment, the results are roughly within the confidence limits of this year's run. The confidence interval for mean \(F\) reflects uncertainty in estimation of mean \(F\) when that estimation is based to a large extent on survey data (1995-2005) or the age structure of discards data (2006 onwards).

\section*{Comparison with last year's assessment}

The above estimates show relatively high consistency (with regard to F and SSB) with the last year's assessment:
\(\mathrm{F}_{(2-4)}\) in \(2015=0.057\) (the present assessment: in 2015, 0.067)
SSB in \(2016=16247 \mathrm{t}\) (the present assessment: in 2016, 15907 t )

\section*{State of the stock}

The spawning-stock biomass (SSB) has been increasing since 2006 but remains very low compared to the historical estimates and is below Blim. Fishing mortality (F) has declined continuously since around 2000 and is now very low. Recruitment is estimated to have been very low since 2002 but estimated to have increased in recent years.

\subsection*{38.4 Short-term projections}

No short-term projection was conducted this year as the forecast for this stock is updated biennially starting from the last year. The next forecast is scheduled in 2018.

The last short-term projection followed the procedure outlined in the Stock Annex.

\subsection*{38.5 MSY explorations}

The reference points for this stock were not updated in this assessment.
Last year, MSY reference points and ranges were calculated for the stock using the same procedure as that agreed at WKMSYREF4 (ICES, 2016b). The details of the analysis and the results are presented in Working Document 7 (ICES, 2016c).

\subsection*{38.6 MSY and Biological reference points}

The reference points estimated in 2016 are summarised in the table below:
\begin{tabular}{|c|c|c|c|}
\hline REFERENCE POINT & WKMSYREF4 2016 & \[
\begin{gathered}
\text { WGCSE } \\
2016
\end{gathered}
\] & Rationale (WKSYREF4) \\
\hline Blim & 28500 t & 31900 t & SSB value at the change point in the segmented regression stock-recruit function. \\
\hline \(\mathrm{B}_{\mathrm{pa}}\) & 39900 t & 44600 t & \(\mathrm{Blim} \times 1.4\) \\
\hline Flim & 0.25 & 0.27 & Based on segmented regression simulation of recruitment with \(\mathrm{B}_{\mathrm{lim}}\) as the breakpoint \\
\hline \(\mathrm{F}_{\mathrm{pa}}\) & 0.18 & 0.19 & Flim/1.4 \\
\hline \(\mathrm{F}_{\mathrm{MSY}}\) & 0.22 & 0.23 & with \(\mathrm{B}_{\text {trigger }}\left(=\mathrm{B}_{\mathrm{pa}}\right)\) \\
\hline & 0.16 & 0.18 & upper precautionary with \(\mathrm{B}_{\text {trigger }}\left(=\mathrm{B}_{\mathrm{pa}}\right)\) \\
\hline FMSY upper & 0.34 & 0.32 & with \(\mathrm{B}_{\text {trigger }}\left(=\mathrm{B}_{\mathrm{pa}}\right)\) \\
\hline Fmsy lower & 0.16 & 0.15 & with \(\mathrm{B}_{\text {trigger }}\left(=\mathrm{B}_{\mathrm{pa}}\right)\) \\
\hline MSY Btrigger & 39900 t & 44600 t & \(\mathrm{B}_{\mathrm{pa}}\) \\
\hline Median SSB at F MSY & 36600 & & \\
\hline
\end{tabular}

\subsection*{38.7 Management plans}

There are no specific management objectives or a management plan for this stock, but a plan is under development.

\subsection*{38.8 Uncertainties and bias in the assessment and forecast}

The most significant problem with assessment of this stock is with commercial data. Incorrect reporting of landings (species and quantity) is known to have occurred in the past and directly affecting the perception of the stock. TSA is explicitly designed to allow for omission in the catch data during this period (1995-2005 uses only age structure data from the catch), which is why it was used here as the final assessment.
The survey data and commercial catch data contain different signals concerning the stock. A similar problem has been present in the North Sea whiting stock (as reported by ICES, 2010). Three potential sources of this discrepancy were identified for the North Sea stock, and they may apply to whiting in 27.6.a as well: bias in catch estimates, changes in survey catchability or changes in natural mortality due to predation or regime shift (ICES, 2010). Allowing the TSA assessment to interpret this difference as a persistent trend (increase) in survey catchability may lead to an underestimation of stock size, but the magnitude of underestimation is unknown.
After being explored extensively, new reliable reference points were eventually delivered by the last year's WG for the stock and, if necessary, will be updated in future assessments.

Long-term information on the historical yield and catch composition indicates that the present stock size is low. The current assessment also indicates that the stock is at a low level. Total mortality has been declining over the past few years. The sum of the Scottish West Coast groundfish survey indices (both in quarter one and quarter four) is also low, but shows a moderate increase from 2008 onwards.

\subsection*{38.9 Recommendation for next benchmark}

A landings and discards disaggregated assessment appeared to be a reliable basis for determining the status of the whiting stock in Division 27.6.a.

The emergence of a trend in survey catchability needs to be addressed. The cause of this is very uncertain. Trends in catchability have been a feature of this assessment in the past and point to some issues with the model structure or assumptions. There have been significant changes in the commercial fishing practices in recent years that are not explicitly taken into account by this assessment model (e.g. emergency measures since 2010 and decline in the TR1 gadoid fishery prior to that). This will require detail explorations in the next benchmark.

The discrepancy in the abundance index between the two Q4 surveys, IGFS-WIBTSQ4 and UKSGFS-WIBTS-Q4, should further be explored. With more years of data available (an additional 1-2 years), the analysis of catchability in the two surveys could be revisited with the ultimate goal of creating one common index.

With regard to the assessment method, changes to the variance structures used in the model should be allowed if they improve model diagnostics (e.g. likelihood ratio tests, prediction error plots).

\subsection*{38.10Management considerations}

Recruitment during the 1990s appears to have been high while after the year 2000, it has been below average. A number of relatively strong (compared to the recent past) year classes have been recorded recently (2009, 2011, 2013 and 2014).

Whiting are caught in mixed fisheries with cod and haddock in Division 27.6.a. Management of whiting will be strongly linked to that for cod for which there is an ongoing recovery plan (EC, 2008). There have also been several technical conservation measures introduced in the 27.6.a gadoid fishery in recent years including the mandatory increases in mesh size to 120 mm .

Whiting are caught and heavily discarded in small-meshed fisheries for Nephrops. When this stock falls under the landing obligation, it can (in the presence of high discards and low quota) become a "choke species" for the Nephrops fishery.

\subsection*{38.11References}

Cook, R. M. 2012. Assessment of West of Scotland cod (ICES Division VIa) using a Bayesian approach, Working paper to WKROUND 2012, February 2012: 1-31.

EC 2008. Council Regulation (EC) No 1342/2008 of 18 December 2008 establishing a long-term plan for cod stocks and the fisheries exploiting those stocks and repealing, Regulation (EC) No 423/2004, OJ L 348, 24.12.2008: 20-33.

Fryer, R. J. 2002. TSA: is it the way? Appendix D in report of Working Group on Methods on Fish Stock Assessment. ICES CM 2002/D:01.

Gudmundsson, G. 1994. Time-series analysis of catch-at-age observations. Applied Statistics 43: 117-126.

ICES. 2005. Report of the Working Group on the Assessment of Northern Shelf Demersal Stocks (WGNSDS), 10-19 May 2005, Murmansk, Russia, ICES CM 2005/ACFM:13, pp. 644.

ICES. 2010. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK), 5-11 May 2010, ICES Headquarters, Copenhagen, ICES CM 2010/ACOM:13, pp. 1072.

ICES. 2012. Report of the Benchmark Workshop on Western Waters Roundfish (WKROUND), 22-29 February 2012, Aberdeen, UK. ICES CM 2012/ACOM:49, pp. 283.

ICES. 2015. Report of the Inter-Benchmark Protocol of West of Scotland Roundfish (IBPWSRound), February-April 2015, By correspondence. ICES CM 2015/ACOM:37. 72 pp.

ICES. 2016a. First Interim Report of the International Bottom Trawl Survey Working Group (IBTSWG), 4-8 April 2016, Sète, France. ICES CM 2016/SSGIEOM:24. 292 pp.

ICES. 2016b. Report of the Workshop to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 183 pp.
ICES. 2016c. Report of the Working Group for the Celtic Seas Ecoregion (WGCSE), 4-13 May 2016, Copenhagen, Denmark. ICES CM 2016/ACOM:13. 1343 pp.

Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of Fish Biology, 49: 627-647.

Needle, C. L. 2003. Survey-based assessments with SURBA. Working Document to the ICES Working Group on Methods of Fish Stock Assessment, Copenhagen, 29 January-5 February 2003.

Needle, C. L. and Fryer, R. J. 2002. A modified TSA for cod in Division VIa: separate landings and discards. Working document to the ICES Advisory Committee on Fisheries Management, October 2002.

Table 38.1. Whiting in Division 27.6.a. Nominal landings (in tonnes) as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline Belgium & 1 & - & \(+\) & - & + & \(+\) & + & - & 1 & 1 & + & - & - & - & - & + & - & - & - & - \\
\hline Denmark & 1 & + & 3 & 1 & 1 & + & + & + & + & - & - & - & - & - & + & + & - & - & - & - \\
\hline Faroe Islands & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & + & + \\
\hline France & 199 & 180 & 352 & 105 & 149 & 191 & 362 & 202 & 108 & 82 & 300 & 48 & 52 & 21 & 11 & 6 & 9 & 7 & 6 & 1 \\
\hline Germany & + & + & + & 1 & 1 & + & - & + & - & - & + & - & - & - & - & - & - & + & 1 & - \\
\hline Ireland & 1,315 & 977 & 1,200 & 1,377 & 1,192 & 1,213 & 1,448 & 1,182 & 977 & 952 & 1,121 & 793 & 764 & 577 & 568 & 356 & 172 & 196 & 56 & 69 \\
\hline Netherlands & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Norway & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Spain & - & - & - & - & - & - & 1 & - & 1 & 2 & + & - & 2 & - & - & - & - & - & - & - \\
\hline UK (E, W \& NI) & 44 & 50 & 218 & 196 & 184 & 233 & 204 & 237 & 453 & 251 & 210 & 104 & 71 & 73 & 35 & 13 & 5 & 2 & 1 & - \\
\hline UK (Scot.) & 6,109 & 4,819 & 5,135 & 4,330 & 5,224 & 4,149 & 4,263 & 5,021 & 4,638 & 3,369 & 3,046 & 2,258 & 1,654 & 1,064 & 751 & 444 & 103 & 178 & 424 & - \\
\hline UK (total) & & & & & & & & & & & & & & & & & & & & 370 \\
\hline Total landings & 7,669 & 6,026 & 6,908 & 6,010 & 6,751 & 5,786 & 6,278 & 6,642 & 6,178 & 4,657 & 4,677 & 3,203 & 2,543 & 1,735 & 1,365 & 819 & 289 & 383 & 488 & 441 \\
\hline
\end{tabular}

Table 38.1. (continued).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Country & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016* \\
\hline Belgium & - & - & - & - & - & - & - & - \\
\hline Denmark & - & - & - & - & - & - & - & - \\
\hline Faroe Islands & - & + & 1 & 1 & - & - & - & - \\
\hline France & 1 & 3 & + & + & 1 & 1 & + & 5 \\
\hline Germany & - & - & - & - & - & - & - & - \\
\hline Ireland & 125 & 99 & 149 & 96 & 97 & 97 & 88 & 77 \\
\hline Netherlands & - & - & - & - & - & - & 11 & 52 \\
\hline Norway & 2 & - & - & - & - & - & - & - \\
\hline Spain & - & - & - & - & - & - & - & - \\
\hline UK (E, W \& NI) & - & - & - & - & - & - & - & - \\
\hline UK (Scot.) & - & - & - & - & - & - & - & - \\
\hline UK (total) & 354 & 247 & 80 & 204 & 116 & 83 & 122 & 98 \\
\hline Total landings & 482 & 349 & 230 & 301 & 214 & 181 & 221 & 232 \\
\hline
\end{tabular}

\section*{* Preliminary.}
\(+<0.5\) t.

Table 38.2. Whiting in Division 27.6.a. Landings, discards and catch estimates 1978-2016, as used by the WG. Values are totals for fish over the ages 1 to \(7+\). Discard and catch values are revised 1978-2003 compared to previous assessments because of a revised method for raising discards.
\(\left.\begin{array}{lllllll}\hline \text { Year } & & \text { Weight (tonnes) } & & & \text { Numbers (thousands) } \\ \hline & \text { Total } & \begin{array}{l}\text { Human } \\ \text { consumption }\end{array} & \text { Discards } & \text { Total } & \text { Human } \\ & & & & \text { consumption }\end{array}\right]\)

Table 38.2. (continued).
\begin{tabular}{lllllll}
\hline \multicolumn{1}{c}{ Year } & & Weight (tonnes) & & Numbers (thousands) \\
\hline & Total & \begin{tabular}{l} 
Human \\
consumption
\end{tabular} & Discards & Total & \begin{tabular}{l} 
Human \\
consumption
\end{tabular} & Discards \\
\hline 2015 & 1060 & 227 & 833 & 9336 & 479 & 8857 \\
\hline 2016 & 1029 & 233 & 796 & 7102 & 433 & 6669 \\
\hline Min & 569 & 184 & 174 & 3085 & 408 & 1853 \\
\hline GM & 5510 & 2552 & 2418 & 33928 & 7738 & 21260 \\
\hline AM & 9728 & 5843 & 3885 & 52291 & 19949 & 32342 \\
\hline Max & 23462 & 17081 & 13285 & 176734 & 61393 & 166616 \\
\hline
\end{tabular}

Table 38.3. Whiting in Division 27.6a. Landings-at-age (thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Age} \\
\hline YEAR & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1965 & 6938 & 6085 & 43530 & 4803 & 388 & 103 & 22 \\
\hline 1966 & 1685 & 10544 & 2229 & 28185 & 1861 & 186 & 52 \\
\hline 1967 & 5169 & 26023 & 10619 & 697 & 14574 & 789 & 143 \\
\hline \[
1968
\] & 7265 & 16484 & 9239 & 3656 & 324 & 5036 & 368 \\
\hline \[
1969
\] & 873 & 25174 & 8644 & 2566 & 1206 & 118 & 2333 \\
\hline \[
1970
\] & \[
730
\] & 6423 & 28065 & 3241 & 670 & 214 & 550 \\
\hline 1971 & 2387 & 8617 & 4122 & 34784 & 1338 & 240 & 223 \\
\hline 1972 & 16777 & 12028 & 4013 & 1363 & 14796 & 793 & 148 \\
\hline 1973 & 14078 & 36142 & 5592 & 1461 & 357 & 4292 & 310 \\
\hline \[
1974
\] & 9083 & 51036 & 10049 & 1166 & 180 & 52 & 849 \\
\hline \[
1975
\] & 14917 & 16778 & 36318 & 2819 & 281 & 57 & 245 \\
\hline 1976 & 8500 & 46421 & 15757 & 17423 & 1508 & 66 & 57 \\
\hline 1977 & 16120 & 13376 & 25144 & 3127 & 4719 & 292 & 24 \\
\hline \[
1978
\] & 17670 & 18175 & 6682 & 9400 & 941 & 1433 & 68 \\
\hline 1979 & 6334 & 34221 & 13282 & 3407 & 3488 & 276 & 384 \\
\hline 1980 & 11650 & 11378 & 14860 & 4155 & 1244 & 1085 & 190 \\
\hline 1981 & 3593 & 24395 & 11297 & 4611 & 1518 & 452 & 201 \\
\hline 1982 & 2991 & 5783 & 29094 & 6821 & 2043 & 803 & 348 \\
\hline 1983 & 3418 & 7094 & 8040 & 22757 & 6070 & 1439 & 540 \\
\hline 1984 & 7209 & 12765 & 8221 & 4387 & 14825 & 1953 & 858 \\
\hline 1985 & 4139 & 19520 & 8574 & 3351 & 1997 & 4764 & 822 \\
\hline 1986 & 2674 & 14824 & 9770 & 2653 & 532 & 291 & 529 \\
\hline 1987 & 6430 & 13935 & 13988 & 5442 & 837 & 330 & 259 \\
\hline 1988 & 1842 & 20587 & 9638 & 6168 & 1949 & 290 & 207 \\
\hline 1989 & 2529 & 5887 & 11889 & 4767 & 1266 & 468 & 71 \\
\hline 1990 & 3203 & 8028 & 2393 & 4009 & 1326 & 204 & 37 \\
\hline 1991 & 3294 & 8826 & 10046 & 1208 & 1391 & 286 & 51 \\
\hline 1992 & 2695 & 9440 & 4473 & 4782 & 396 & 373 & 106 \\
\hline 1993 & 1051 & 10179 & 6293 & 2673 & 2738 & 163 & 147 \\
\hline 1994 & 909 & 4889 & 9158 & 3607 & 712 & 715 & 69 \\
\hline
\end{tabular}
\begin{tabular}{llllllll}
\hline \multicolumn{8}{c}{ Age } \\
\hline YEAR & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline 1995 & 215 & 4322 & 6516 & 5654 & 1397 & 376 & 282 \\
\hline 1996 & 990 & 5410 & 7675 & 5052 & 2461 & 583 & 157 \\
\hline 1997 & 877 & 3658 & 8514 & 4316 & 1441 & 338 & 106 \\
\hline 1998 & 840 & 3504 & 4277 & 3698 & 1442 & 338 & 288 \\
\hline 1999 & 1013 & 6131 & 4546 & 2040 & 1774 & 355 & 112 \\
\hline 2000 & 484 & 2952 & 4211 & 1570 & 485 & 328 & 89 \\
\hline 2001 & 461 & 3271 & 2630 & 1567 & 401 & 131 & 16 \\
\hline 2002 & 62 & 1624 & 3018 & 799 & 227 & 23 & 13 \\
\hline 2003 & 170 & 710 & 1111 & 1673 & 347 & 111 & 2 \\
\hline 2004 & 54 & 724 & 543 & 521 & 622 & 78 & 29 \\
\hline 2005 & 28 & 276 & 455 & 140 & 99 & 45 & 7 \\
\hline 2006 & 82 & 139 & 369 & 260 & 61 & 113 & 24 \\
\hline
\end{tabular}

Table 38.3. (continued).
\begin{tabular}{llllllll}
\hline \multicolumn{3}{c}{ Age } & & & \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline 2007 & 187 & 168 & 255 & 326 & 132 & 27 & 50 \\
\hline 2008 & 6 & 265 & 394 & 336 & 152 & 55 & 24 \\
\hline 2009 & 59 & 216 & 254 & 430 & 100 & 44 & 13 \\
\hline 2010 & 53 & 94 & 153 & 119 & 126 & 24 & 31 \\
\hline 2011 & 0 & 310 & 133 & 82 & 28 & 17 & 12 \\
\hline 2012 & 9 & 25 & 375 & 210 & 57 & 15 & 11 \\
\hline 2013 & 21 & 49 & 83 & 277 & 67 & 18 & 7 \\
\hline 2014 & 12 & 30 & 131 & 102 & 99 & 23 & 11 \\
\hline 2015 & 11 & 83 & 61 & 164 & 69 & 67 & 25 \\
\hline 2016 & 1 & 73 & 166 & 75 & 74 & 16 & 28 \\
\hline
\end{tabular}

Table 38.4. Whiting in Division 27.6.a. Discards-at-age (thousands). Previous discard estimates (ICES, WGCSE 2011) for the years 1978-2003 were replaced by those estimated by Millar and Fryer (2005).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Age} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1965 & 17205 & 4968 & 11437 & 531 & 14 & 2 & 0 \\
\hline 1966 & 4322 & 8946 & 515 & 3317 & 79 & 3 & 0 \\
\hline 1967 & 12237 & 20791 & 2674 & 84 & 629 & 12 & 1 \\
\hline 1968 & 16394 & 12612 & 2137 & 377 & 13 & 82 & 3 \\
\hline 1969 & 1983 & 20494 & 2093 & 292 & 51 & 2 & 26 \\
\hline 1970 & 1776 & 6704 & 7494 & 382 & 33 & 4 & 0 \\
\hline 1971 & 5505 & 6719 & 969 & 3906 & 57 & 4 & 1 \\
\hline 1972 & 39192 & 8930 & 850 & 152 & 610 & 14 & 1 \\
\hline 1973 & 30521 & 26995 & 1225 & 147 & 14 & 77 & 2 \\
\hline 1974 & 23101 & 40590 & 2362 & 123 & 7 & 1 & 7 \\
\hline 1975 & 37295 & 13541 & 8485 & 310 & 12 & 1 & 0 \\
\hline 1976 & 24891 & 35812 & 3360 & 1940 & 63 & 1 & 0 \\
\hline 1977 & 48148 & 8675 & 5432 & 301 & 212 & 5 & 0 \\
\hline 1978 & 17886 & 12512 & 501 & 194 & 0 & 40 & 0 \\
\hline 1979 & 2581 & 12099 & 1113 & 264 & 34 & 0 & 0 \\
\hline 1980 & 2725 & 4889 & 2003 & 366 & 86 & 12 & 0 \\
\hline 1981 & 1128 & 10415 & 1397 & 201 & 27 & 12 & 0 \\
\hline 1982 & 19511 & 3421 & 12683 & 1197 & 187 & 4 & 0 \\
\hline 1983 & 21690 & 6748 & 2909 & 5372 & 158 & 8 & 0 \\
\hline 1984 & 34330 & 2400 & 909 & 371 & 811 & 73 & 1 \\
\hline 1985 & 17615 & 9858 & 3273 & 672 & 205 & 363 & 40 \\
\hline 1986 & 6159 & 9823 & 1962 & 185 & 1 & 0 & 10 \\
\hline 1987 & 97611 & 17427 & 1763 & 154 & 0 & 0 & 0 \\
\hline 1988 & 28057 & 38019 & 2239 & 467 & 11 & 0 & 0 \\
\hline 1989 & 31079 & 5598 & 8570 & 223 & 13 & 5 & 0 \\
\hline 1990 & 20952 & 11176 & 71 & 23 & 3 & 0 & 0 \\
\hline 1991 & 23211 & 7540 & 7355 & 266 & 236 & 56 & 0 \\
\hline 1992 & 50665 & 16729 & 2810 & 954 & 0 & 0 & 0 \\
\hline 1993 & 14057 & 11139 & 2903 & 588 & 431 & 0 & 1 \\
\hline 1994 & 12700 & 6859 & 3872 & 1152 & 189 & 150 & 4 \\
\hline 1995 & 21974 & 21786 & 3416 & 484 & 7 & 1 & 1 \\
\hline 1996 & 33621 & 18625 & 5086 & 1535 & 13 & 1 & 20 \\
\hline 1997 & 22422 & 9632 & 3806 & 540 & 71 & 2 & 1 \\
\hline 1998 & 53742 & 16058 & 3553 & 847 & 177 & 31 & 8 \\
\hline 1999 & 7928 & 17097 & 1402 & 503 & 275 & 44 & 0 \\
\hline 2000 & 158913 & 5254 & 2238 & 154 & 16 & 41 & 0 \\
\hline 2001 & 5666 & 23084 & 715 & 172 & 0 & 0 & 0 \\
\hline 2002 & 11055 & 8531 & 2428 & 415 & 175 & 9 & 3 \\
\hline 2003 & 3770 & 1416 & 334 & 374 & 32 & 9 & 4 \\
\hline 2004 & 14667 & 3557 & 536 & 305 & 107 & 4 & 2 \\
\hline 2005 & 2923 & 1578 & 534 & 37 & 19 & 7 & 4 \\
\hline 2006 & 9784 & 852 & 1000 & 256 & 36 & 11 & 2 \\
\hline
\end{tabular}

Table 38.4. (continued).
\begin{tabular}{llllllll}
\hline \multicolumn{4}{c}{ Age } & & \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline 2007 & 995 & 1077 & 308 & 64 & 4 & 3 & 0 \\
\hline 2008 & 806 & 638 & 142 & 162 & 51 & 41 & 0 \\
\hline 2009 & 6926 & 112 & 72 & 49 & 16 & 3 & 0 \\
\hline 2010 & 16005 & 1427 & 245 & 42 & 61 & 6 & 1 \\
\hline 2011 & 2697 & 1410 & 172 & 12 & 3 & 0 & 0 \\
\hline 2012 & 7837 & 434 & 576 & 106 & 21 & 2 & 0 \\
\hline 2013 & 13156 & 1338 & 159 & 252 & 12 & 3 & 2 \\
\hline 2014 & 10618 & 44 & 71 & 35 & 36 & 10 & 3 \\
\hline 2015 & 7550 & 866 & 284 & 119 & 20 & 17 & 0 \\
\hline 2016 & 4640 & 1736 & 261 & 15 & 11 & 4 & 1 \\
\hline
\end{tabular}

Table 38.5. Whiting in Division 27.6.a. Total catch-at-age (thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Age} \\
\hline YEAR & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1965 & 24143 & 11054 & 54967 & 5334 & 402 & 105 & 22 \\
\hline 1966 & 6007 & 19490 & 2744 & 31502 & 1940 & 189 & 53 \\
\hline 1967 & 17406 & 46814 & 13293 & 781 & 15204 & 801 & 144 \\
\hline 1968 & 23659 & 29096 & 11376 & 4034 & 337 & 5118 & 372 \\
\hline 1969 & 2856 & 45668 & 10737 & 2858 & 1257 & 120 & 2358 \\
\hline 1970 & 2506 & 13128 & 35559 & 3623 & 703 & 218 & 550 \\
\hline 1971 & 7891 & 15336 & 5090 & 38690 & 1395 & 245 & 224 \\
\hline 1972 & 55969 & 20958 & 4863 & 1514 & 15406 & 807 & 149 \\
\hline \[
1973
\] & 44599 & 63137 & 6817 & 1608 & 371 & 4369 & 313 \\
\hline \[
1974
\] & 32185 & 91625 & 12412 & 1289 & 188 & 53 & 856 \\
\hline 1975 & 52213 & 30319 & 44804 & 3129 & 293 & 58 & 245 \\
\hline 1976 & 33392 & 82233 & 19117 & 19363 & 1571 & 67 & 57 \\
\hline 1977 & 64268 & 22051 & 30576 & 3428 & 4931 & 297 & 24 \\
\hline 1978 & 35556 & 30687 & 7183 & 9594 & 941 & 1473 & 68 \\
\hline 1979 & 8915 & 46320 & 14395 & 3671 & 3522 & 276 & 384 \\
\hline 1980 & 14375 & 16267 & 16863 & 4521 & 1330 & 1097 & 190 \\
\hline 1981 & 4721 & 34810 & 12694 & 4812 & 1545 & 464 & 201 \\
\hline 1982 & 22502 & 9204 & 41777 & 8018 & 2230 & 807 & 348 \\
\hline 1983 & 25108 & 13842 & 10949 & 28129 & 6228 & 1447 & 540 \\
\hline 1984 & 41539 & 15165 & 9130 & 4758 & 15636 & 2026 & 859 \\
\hline 1985 & 21754 & 29378 & 11847 & 4023 & 2202 & 5127 & 862 \\
\hline 1986 & 8833 & 24647 & 11732 & 2838 & 533 & 291 & 539 \\
\hline 1987 & 104041 & 31362 & 15751 & 5596 & 837 & 330 & 259 \\
\hline 1988 & 29899 & 58606 & 11877 & 6635 & 1960 & 290 & 207 \\
\hline 1989 & 33608 & 11485 & 20459 & 4990 & 1279 & 473 & 71 \\
\hline 1990 & 24155 & 19204 & 2464 & 4032 & 1329 & 204 & 37 \\
\hline
\end{tabular}
\begin{tabular}{llllllll}
\hline \multicolumn{7}{c}{ Age } \\
\hline YEAR & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline 1991 & 26505 & 16366 & 17401 & 1474 & 1627 & 342 & 51 \\
\hline 1992 & 53360 & 26169 & 7283 & 5736 & 396 & 373 & 106 \\
\hline 1993 & 15108 & 21318 & 9196 & 3261 & 3169 & 163 & 148 \\
\hline 1994 & 13609 & 11748 & 13030 & 4759 & 901 & 865 & 73 \\
\hline 1995 & 22189 & 26108 & 9932 & 6138 & 1404 & 377 & 283 \\
\hline 1996 & 34611 & 24035 & 12761 & 6587 & 2474 & 584 & 177 \\
\hline 1997 & 23299 & 13290 & 12320 & 4856 & 1512 & 340 & 107 \\
\hline 1998 & 54582 & 19562 & 7830 & 4545 & 1619 & 369 & 296 \\
\hline 1999 & 8941 & 23228 & 5948 & 2543 & 2049 & 399 & 112 \\
\hline 2000 & 159397 & 8206 & 6449 & 1724 & 501 & 369 & 89 \\
\hline 2001 & 6127 & 26355 & 3345 & 1739 & 401 & 131 & 16 \\
\hline 2002 & 11117 & 10155 & 5446 & 1214 & 402 & 32 & 16 \\
\hline 2003 & 3940 & 2126 & 1445 & 2047 & 379 & 120 & 6 \\
\hline 2004 & 14721 & 4281 & 1079 & 826 & 729 & 82 & 31 \\
\hline 2005 & 2951 & 1854 & 989 & 177 & 118 & 52 & 11 \\
\hline 2006 & 9866 & 991 & 1369 & 516 & 97 & 124 & 26 \\
\hline
\end{tabular}

Table 38.5. (continued).
\begin{tabular}{llllllll}
\hline \multicolumn{4}{c}{ Age } & & & \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline 2007 & 1182 & 1245 & 563 & 390 & 136 & 29 & 50 \\
\hline 2008 & 812 & 903 & 536 & 498 & 203 & 96 & 24 \\
\hline 2009 & 6985 & 328 & 325 & 478 & 116 & 47 & 13 \\
\hline 2010 & 16058 & 1521 & 399 & 161 & 187 & 30 & 32 \\
\hline 2011 & 2697 & 1720 & 305 & 93 & 32 & 17 & 12 \\
\hline 2012 & 7846 & 460 & 952 & 316 & 78 & 16 & 11 \\
\hline 2013 & 13177 & 1388 & 243 & 529 & 79 & 21 & 8 \\
\hline 2014 & 10630 & 75 & 202 & 137 & 136 & 33 & 14 \\
\hline 2015 & 7561 & 949 & 345 & 283 & 88 & 84 & 25 \\
\hline 2016 & 4641 & 1809 & 427 & 90 & 85 & 21 & 29 \\
\hline
\end{tabular}

Table 38.6. Whiting in Division 27.6.a. Landings weight-at-age (kg).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Age} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1965 & 0.218 & 0.249 & 0.308 & 0.452 & 1.208 & 0.72 & 0.778 \\
\hline 1966 & 0.238 & 0.243 & 0.325 & 0.374 & 0.61 & 0.72 & 0.828 \\
\hline 1967 & 0.204 & 0.24 & 0.319 & 0.424 & 0.412 & 0.639 & 0.821 \\
\hline 1968 & 0.206 & 0.263 & 0.366 & 0.444 & 0.554 & 0.538 & 0.735 \\
\hline 1969 & 0.178 & 0.223 & 0.335 & 0.5 & 0.57 & 0.649 & 0.63 \\
\hline 1970 & 0.205 & 0.203 & 0.274 & 0.382 & 0.519 & 0.619 & 0.683 \\
\hline 1971 & 0.209 & 0.247 & 0.276 & 0.316 & 0.426 & 0.551 & 0.712 \\
\hline 1972 & 0.211 & 0.258 & 0.345 & 0.368 & 0.426 & 0.494 & 0.638 \\
\hline 1973 & 0.196 & 0.235 & 0.362 & 0.479 & 0.485 & 0.532 & 0.666 \\
\hline 1974 & 0.193 & 0.215 & 0.317 & 0.444 & 0.591 & 0.641 & 0.584 \\
\hline 1975 & 0.209 & 0.245 & 0.305 & 0.471 & 0.651 & 0.615 & 0.717 \\
\hline 1976 & 0.201 & 0.242 & 0.309 & 0.361 & 0.497 & 0.687 & 0.856 \\
\hline 1977 & 0.2 & 0.244 & 0.296 & 0.392 & 0.431 & 0.629 & 0.819 \\
\hline 1978 & 0.199 & 0.235 & 0.286 & 0.389 & 0.516 & 0.549 & 0.612 \\
\hline 1979 & 0.218 & 0.232 & 0.306 & 0.404 & 0.536 & 0.678 & 0.693 \\
\hline 1980 & 0.172 & 0.242 & 0.33 & 0.42 & 0.492 & 0.595 & 0.817 \\
\hline 1981 & 0.192 & 0.228 & 0.289 & 0.382 & 0.409 & 0.409 & 0.547 \\
\hline 1982 & 0.184 & 0.22 & 0.276 & 0.352 & 0.505 & 0.513 & 0.526 \\
\hline 1983 & 0.216 & 0.249 & 0.28 & 0.34 & 0.409 & 0.494 & 0.51 \\
\hline 1984 & 0.216 & 0.259 & 0.313 & 0.371 & 0.412 & 0.458 & 0.458 \\
\hline 1985 & 0.185 & 0.238 & 0.306 & 0.402 & 0.43 & 0.461 & 0.538 \\
\hline 1986 & 0.174 & 0.236 & 0.294 & 0.365 & 0.468 & 0.482 & 0.499 \\
\hline 1987 & 0.188 & 0.237 & 0.304 & 0.373 & 0.511 & 0.52 & 0.576 \\
\hline 1988 & 0.176 & 0.215 & 0.301 & 0.4 & 0.483 & 0.567 & 0.6 \\
\hline 1989 & 0.171 & 0.22 & 0.279 & 0.348 & 0.459 & 0.425 & 0.555 \\
\hline 1990 & 0.225 & 0.251 & 0.324 & 0.359 & 0.417 & 0.582 & 0.543 \\
\hline 1991 & 0.199 & 0.22 & 0.291 & 0.354 & 0.391 & 0.442 & 0.761 \\
\hline 1992 & 0.193 & 0.23 & 0.288 & 0.349 & 0.388 & 0.397 & 0.51 \\
\hline 1993 & 0.186 & 0.242 & 0.314 & 0.361 & 0.412 & 0.452 & 0.474 \\
\hline 1994 & 0.161 & 0.217 & 0.29 & 0.371 & 0.451 & 0.482 & 0.483 \\
\hline 1995 & 0.19 & 0.225 & 0.296 & 0.381 & 0.469 & 0.473 & 0.528 \\
\hline 1996 & 0.195 & 0.245 & 0.288 & 0.365 & 0.483 & 0.526 & 0.569 \\
\hline 1997 & 0.198 & 0.245 & 0.297 & 0.384 & 0.522 & 0.629 & 0.661 \\
\hline 1998 & 0.215 & 0.236 & 0.301 & 0.364 & 0.438 & 0.5 & 0.646 \\
\hline 1999 & 0.181 & 0.225 & 0.28 & 0.365 & 0.44 & 0.524 & 0.594 \\
\hline 2000 & 0.205 & 0.241 & 0.298 & 0.336 & 0.419 & 0.488 & 0.617 \\
\hline 2001 & 0.173 & 0.234 & 0.303 & 0.37 & 0.395 & 0.376 & 0.595 \\
\hline 2002 & 0.213 & 0.257 & 0.304 & 0.363 & 0.464 & 0.65 & 0.707 \\
\hline 2003 & 0.228 & 0.264 & 0.309 & 0.362 & 0.374 & 0.436 & 0.717 \\
\hline 2004 & 0.193 & 0.251 & 0.295 & 0.345 & 0.382 & 0.403 & 0.342 \\
\hline 2005 & 0.189 & 0.261 & 0.313 & 0.378 & 0.44 & 0.482 & 0.356 \\
\hline 2006 & 0.221 & 0.292 & 0.319 & 0.394 & 0.455 & 0.528 & 0.567 \\
\hline
\end{tabular}

Table 38.6. (continued).
\begin{tabular}{llllllll}
\hline \multicolumn{3}{c}{ Age } & & & & & \\
\hline Year & 1 & 2 & 3 & 4 & 5 & \(7+\) \\
\hline 2007 & 0.215 & 0.280 & 0.349 & 0.418 & 0.498 & 0.598 & 0.660 \\
\hline 2008 & 0.274 & 0.245 & 0.322 & 0.384 & 0.514 & 0.530 & 0.653 \\
\hline 2009 & 0.328 & 0.347 & 0.437 & 0.479 & 0.470 & 0.519 & 0.595 \\
\hline 2010 & 0.288 & 0.402 & 0.456 & 0.567 & 0.652 & 0.619 & 0.613 \\
\hline 2011 & 0.210 & 0.327 & 0.405 & 0.523 & 0.613 & 0.570 & 0.393 \\
\hline 2012 & 0.295 & 0.304 & 0.387 & 0.508 & 0.615 & 0.705 & 0.493 \\
\hline 2013 & 0.191 & 0.277 & 0.354 & 0.442 & 0.541 & 0.631 & 0.729 \\
\hline 2014 & 0.243 & 0.271 & 0.374 & 0.463 & 0.544 & 0.659 & 0.699 \\
\hline 2015 & 0.290 & 0.356 & 0.444 & 0.467 & 0.513 & 0.601 & 0.624 \\
\hline 2016 & 0.272 & 0.402 & 0.520 & 0.543 & 0.614 & 0.700 & 0.693 \\
\hline
\end{tabular}

Table 38.7. Whiting in Division 27.6.a. Discard weight-at-age (kg).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Age} \\
\hline YEAR & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1965 & 0.122 & 0.177 & 0.213 & 0.249 & 0.287 & 0.303 & 0.287 \\
\hline 1966 & 0.122 & 0.178 & 0.212 & 0.248 & 0.29 & 0.297 & 0.286 \\
\hline 1967 & 0.122 & 0.178 & 0.213 & 0.248 & 0.29 & 0.295 & 0.289 \\
\hline 1968 & 0.128 & 0.179 & 0.213 & 0.249 & 0.291 & 0.298 & 0.287 \\
\hline 1969 & 0.121 & 0.178 & 0.214 & 0.249 & 0.29 & 0.295 & 0.285 \\
\hline 1970 & 0.121 & 0.175 & 0.213 & 0.249 & 0.29 & 0.299 & 0.284 \\
\hline \[
1971
\] & 0.12 & \[
0.177
\] & 0.211 & 0.248 & 0.29 & 0.299 & 0.284 \\
\hline 1972 & 0.121 & 0.177 & 0.213 & 0.248 & 0.289 & 0.301 & 0.281 \\
\hline 1973 & 0.123 & 0.176 & 0.215 & 0.252 & 0.288 & 0.301 & 0.285 \\
\hline 1974 & 0.119 & 0.177 & 0.214 & 0.25 & 0.285 & 0.299 & 0.288 \\
\hline 1975 & 0.119 & 0.176 & 0.213 & 0.25 & 0.286 & 0.301 & 0.278 \\
\hline 1976 & 0.116 & 0.177 & 0.213 & 0.249 & 0.288 & 0.3 & 0.28 \\
\hline 1977 & 0.118 & 0.177 & 0.214 & 0.249 & 0.289 & 0.299 & 0.282 \\
\hline 1978 & 0.135 & 0.167 & 0.199 & 0.288 & 0.32 & 0.238 & 0 \\
\hline \[
1979
\] & 0.173 & 0.188 & 0.208 & 0.215 & 0.281 & 0 & 0 \\
\hline \[
1980
\] & 0.14 & 0.179 & 0.208 & 0.22 & 0.271 & 0.386 & 0 \\
\hline 1981 & 0.108 & 0.16 & 0.195 & 0.298 & 0.286 & 0.295 & 0 \\
\hline 1982 & 0.096 & 0.18 & 0.209 & 0.243 & 0.283 & 0.44 & 0 \\
\hline 1983 & 0.141 & 0.186 & 0.228 & 0.237 & 0.267 & 0.267 & 0 \\
\hline 1984 & 0.087 & 0.199 & 0.246 & 0.26 & 0.259 & 0.303 & 0.227 \\
\hline 1985 & 0.102 & 0.191 & 0.237 & 0.286 & 0.326 & 0.312 & 0.316 \\
\hline 1986 & 0.092 & 0.17 & 0.196 & 0.245 & 0.258 & 0.33 & 0.263 \\
\hline 1987 & 0.085 & 0.182 & 0.233 & 0.249 & 0.225 & 0 & 0 \\
\hline 1988 & 0.076 & 0.143 & 0.203 & 0.227 & 0.262 & 0 & 0 \\
\hline 1989 & 0.099 & 0.177 & 0.205 & 0.209 & 0.294 & 0.305 & 0 \\
\hline 1990 & 0.124 & 0.171 & 0.214 & 0.219 & 0.237 & 0.264 & 0 \\
\hline
\end{tabular}
\begin{tabular}{llllllll}
\hline \multicolumn{8}{c}{ Age } \\
\hline YEAR & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline 1991 & 0.085 & 0.169 & 0.205 & 0.223 & 0.226 & 0.281 & 0 \\
\hline 1992 & 0.109 & 0.173 & 0.219 & 0.227 & 0 & 0 & 0 \\
\hline 1993 & 0.118 & 0.197 & 0.225 & 0.242 & 0.256 & 0 & 0.436 \\
\hline 1994 & 0.087 & 0.157 & 0.22 & 0.283 & 0.297 & 0.253 & 0.299 \\
\hline 1995 & 0.075 & 0.154 & 0.189 & 0.246 & 0.278 & 0.597 & 0.493 \\
\hline 1996 & 0.095 & 0.18 & 0.203 & 0.229 & 0.302 & 0.421 & 0.26 \\
\hline 1997 & 0.112 & 0.182 & 0.221 & 0.235 & 0.243 & 0.422 & 0.819 \\
\hline 1998 & 0.098 & 0.179 & 0.225 & 0.254 & 0.282 & 0.264 & 0.245 \\
\hline 1999 & 0.077 & 0.168 & 0.217 & 0.205 & 0.266 & 0.268 & 0 \\
\hline 2000 & 0.075 & 0.164 & 0.203 & 0.233 & 0.282 & 0.25 & 0 \\
\hline 2001 & 0.094 & 0.154 & 0.196 & 0.203 & 0.381 & 0 & 0 \\
\hline 2002 & 0.073 & 0.162 & 0.212 & 0.245 & 0.24 & 0.295 & 0.276 \\
\hline 2003 & 0.077 & 0.177 & 0.231 & 0.242 & 0.213 & 0.3 & 0.278 \\
\hline 2004 & 0.086 & 0.186 & 0.236 & 0.246 & 0.304 & 0.349 & 0.314 \\
\hline 2005 & 0.088 & 0.149 & 0.223 & 0.214 & 0.315 & 0.292 & 0.373 \\
\hline 2006 & 0.046 & 0.197 & 0.235 & 0.295 & 0.322 & 0.518 & 0.362 \\
\hline
\end{tabular}

Table 38.7. (continued).
\begin{tabular}{llllllll}
\hline \multicolumn{8}{c}{ Age } \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline 2007 & 0.059 & 0.159 & 0.225 & 0.226 & 0.334 & 0.794 & 0.266 \\
\hline 2008 & 0.075 & 0.211 & 0.286 & 0.301 & 0.397 & 0.222 & 0.304 \\
\hline 2009 & 0.051 & 0.288 & 0.227 & 0.262 & 0.248 & 0.253 & 0 \\
\hline 2010 & 0.038 & 0.124 & 0.269 & 0.375 & 0.376 & 0.401 & 0.964 \\
\hline 2011 & 0.030 & 0.141 & 0.321 & 0.266 & 0.221 & 0 & 0 \\
\hline 2012 & 0.057 & 0.151 & 0.292 & 0.355 & 0.349 & 0.414 & 0.907 \\
\hline 2013 & 0.041 & 0.208 & 0.238 & 0.355 & 0.377 & 0.297 & 0.371 \\
\hline 2014 & 0.049 & 0.168 & 0.279 & 0.364 & 0.442 & 0.441 & 0.791 \\
\hline 2015 & 0.074 & 0.181 & 0.226 & 0.349 & 0.322 & 0.440 & 0 \\
\hline 2016 & 0.073 & 0.216 & 0.282 & 0.292 & 0.310 & 0.261 & 0.384 \\
\hline
\end{tabular}

Table 38.8. Whiting in Division 27.6.a. Total catch weight-at-age (kg).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Age} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1965 & 0.150 & 0.217 & 0.288 & 0.432 & 1.176 & 0.712 & 0.778 \\
\hline 1966 & 0.155 & 0.213 & 0.304 & 0.361 & 0.597 & 0.713 & 0.812 \\
\hline 1967 & 0.146 & 0.212 & 0.298 & 0.405 & 0.407 & 0.634 & 0.817 \\
\hline 1968 & 0.152 & 0.227 & 0.337 & 0.426 & 0.544 & 0.534 & 0.729 \\
\hline 1969 & 0.138 & 0.203 & 0.311 & 0.474 & 0.559 & 0.643 & 0.626 \\
\hline 1970 & 0.145 & 0.189 & 0.261 & 0.368 & 0.508 & 0.613 & 0.683 \\
\hline 1971 & 0.147 & 0.216 & 0.264 & 0.309 & 0.420 & 0.545 & 0.710 \\
\hline 1972 & 0.148 & 0.223 & 0.322 & 0.356 & 0.421 & 0.491 & 0.636 \\
\hline 1973 & 0.146 & 0.210 & 0.336 & 0.458 & 0.478 & 0.528 & 0.661 \\
\hline 1974 & 0.140 & 0.198 & 0.297 & 0.425 & 0.576 & 0.635 & 0.582 \\
\hline 1975 & 0.145 & 0.214 & 0.288 & 0.449 & 0.636 & 0.610 & 0.717 \\
\hline 1976 & 0.138 & 0.214 & 0.292 & 0.350 & 0.489 & 0.681 & 0.856 \\
\hline 1977 & 0.139 & 0.218 & 0.281 & 0.379 & 0.425 & 0.623 & 0.819 \\
\hline 1978 & 0.160 & 0.210 & 0.276 & 0.387 & 0.516 & 0.545 & 0.612 \\
\hline 1979 & 0.202 & 0.222 & 0.295 & 0.378 & 0.530 & 0.678 & 0.693 \\
\hline 1980 & 0.167 & 0.220 & 0.308 & 0.393 & 0.467 & 0.594 & 0.817 \\
\hline 1981 & 0.173 & 0.196 & 0.271 & 0.379 & 0.402 & 0.408 & 0.547 \\
\hline 1982 & 0.109 & 0.202 & 0.252 & 0.336 & 0.499 & 0.513 & 0.526 \\
\hline 1983 & 0.155 & 0.215 & 0.270 & 0.324 & 0.405 & 0.479 & 0.510 \\
\hline 1984 & 0.099 & 0.245 & 0.305 & 0.358 & 0.397 & 0.454 & 0.456 \\
\hline 1985 & 0.107 & 0.216 & 0.288 & 0.383 & 0.427 & 0.448 & 0.537 \\
\hline 1986 & 0.109 & 0.198 & 0.274 & 0.360 & 0.465 & 0.481 & 0.474 \\
\hline 1987 & 0.097 & 0.210 & 0.297 & 0.369 & 0.510 & 0.520 & 0.576 \\
\hline 1988 & 0.080 & 0.164 & 0.281 & 0.392 & 0.477 & 0.567 & 0.600 \\
\hline 1989 & 0.108 & 0.204 & 0.255 & 0.337 & 0.446 & 0.422 & 0.555 \\
\hline 1990 & 0.140 & 0.217 & 0.295 & 0.342 & 0.405 & 0.575 & 0.543 \\
\hline 1991 & 0.096 & 0.207 & 0.265 & 0.338 & 0.376 & 0.424 & 0.761 \\
\hline 1992 & 0.114 & 0.195 & 0.265 & 0.329 & 0.388 & 0.397 & 0.510 \\
\hline 1993 & 0.123 & 0.211 & 0.271 & 0.331 & 0.361 & 0.452 & 0.473 \\
\hline 1994 & 0.089 & 0.170 & 0.258 & 0.344 & 0.419 & 0.448 & 0.473 \\
\hline 1995 & 0.076 & 0.166 & 0.235 & 0.361 & 0.440 & 0.472 & 0.526 \\
\hline 1996 & 0.098 & 0.198 & 0.257 & 0.336 & 0.482 & 0.526 & 0.537 \\
\hline 1997 & 0.116 & 0.200 & 0.275 & 0.369 & 0.505 & 0.629 & 0.661 \\
\hline 1998 & 0.101 & 0.197 & 0.274 & 0.341 & 0.420 & 0.469 & 0.573 \\
\hline 1999 & 0.084 & 0.194 & 0.269 & 0.341 & 0.433 & 0.505 & 0.594 \\
\hline 2000 & 0.076 & 0.199 & 0.277 & 0.329 & 0.415 & 0.477 & 0.617 \\
\hline 2001 & 0.100 & 0.183 & 0.280 & 0.350 & 0.395 & 0.376 & 0.560 \\
\hline 2002 & 0.074 & 0.194 & 0.270 & 0.346 & 0.385 & 0.541 & 0.728 \\
\hline 2003 & 0.080 & 0.211 & 0.287 & 0.340 & 0.360 & 0.424 & 0.498 \\
\hline 2004 & 0.086 & 0.197 & 0.266 & 0.308 & 0.371 & 0.400 & 0.340 \\
\hline 2005 & 0.089 & 0.166 & 0.264 & 0.344 & 0.420 & 0.456 & 0.362 \\
\hline 2006 & 0.047 & 0.210 & 0.258 & 0.345 & 0.406 & 0.527 & 0.551 \\
\hline
\end{tabular}

Table 38.8. Whiting in Division 27.6.a. Total catch weight-at-age (kg).
\begin{tabular}{llllllll}
\hline \multicolumn{3}{c}{ Age } & & & & & \\
\hline Year & 1 & 2 & 3 & 4 & 6 & \(7+\) \\
\hline 2007 & 0.084 & 0.175 & 0.281 & 0.387 & 0.494 & 0.616 & 0.659 \\
\hline 2008 & 0.076 & 0.221 & 0.312 & 0.357 & 0.484 & 0.397 & 0.649 \\
\hline 2009 & 0.053 & 0.327 & 0.391 & 0.457 & 0.440 & 0.500 & 0.595 \\
\hline 2010 & 0.038 & 0.141 & 0.341 & 0.517 & 0.562 & 0.573 & 0.622 \\
\hline 2011 & 0.030 & 0.174 & 0.358 & 0.491 & 0.571 & 0.570 & 0.393 \\
\hline 2012 & 0.058 & 0.160 & 0.329 & 0.456 & 0.543 & 0.673 & 0.497 \\
\hline 2013 & 0.041 & 0.211 & 0.278 & 0.401 & 0.516 & 0.583 & 0.658 \\
\hline 2014 & 0.050 & 0.210 & 0.341 & 0.438 & 0.517 & 0.593 & 0.720 \\
\hline 2015 & 0.074 & 0.196 & 0.264 & 0.417 & 0.470 & 0.567 & 0.624 \\
\hline 2016 & 0.073 & 0.224 & 0.374 & 0.500 & 0.573 & 0.612 & 0.680 \\
\hline
\end{tabular}

Table 38.9. Whiting in Division 27.6.a. Survey data made available to the WG. Data used in the TSA run are highlighted in bold. For the Scottish surveys, numbers are standardised to catch-rate per ten hours. The Scottish surveys from 2011 have been conducted according to new design and ground gear.
\begin{tabular}{lclllllllll}
\hline & ScoGFS-WIBTS-Q1: Scottish Groundfish Survey - Effort in hours - Numbers at age \\
\hline & Effort & Age & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|r|}{ScoGFS-WIBTS-Q4: Scottish Groundfish Survey - Effort in hours - Numbers at age} \\
\hline & Effort & Age & & & & & & & \\
\hline Year & (hours) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1996 & 10 & 5154 & 1908 & 1116 & 570 & 188 & 51 & 6 & 1 \\
\hline 1997 & 10 & 8001 & 2869 & 951 & 323 & 160 & 46 & 12 & 1 \\
\hline 1998 & 10 & 1852 & 2713 & 1125 & 150 & 100 & 20 & 1 & 0 \\
\hline 1999 & 10 & 8203 & 2338 & 582 & 141 & 33 & 24 & 1 & 1 \\
\hline 2000 & 10 & 4434 & 4056 & 789 & 160 & 9 & 7 & 1 & 0 \\
\hline 2001 & 10 & 9615 & 1957 & 1420 & 155 & 40 & 12 & 2 & 0 \\
\hline 2002 & 10 & 14658 & 1591 & 621 & 479 & 30 & 9 & 5 & 0 \\
\hline 2003 & 10 & 9932 & 3446 & 567 & 338 & 83 & 27 & 4 & 0 \\
\hline 2004 & 10 & 5923 & 1758 & 940 & 83 & 57 & 62 & 1 & 0 \\
\hline 2005 & 10 & 2297 & 308 & 318 & 76 & 9 & 4 & 1 & 1 \\
\hline 2006 & 10 & 415 & 296 & 140 & 101 & 35 & 8 & 3 & 0 \\
\hline 2007 & 10 & 1894 & 434 & 326 & 99 & 83 & 48 & 1 & 0 \\
\hline 2008 & 10 & 2297 & 208 & 78 & 110 & 28 & 24 & 4 & 0 \\
\hline 2009 & 10 & 4833 & 236 & 178 & 50 & 58 & 12 & 6 & 6 \\
\hline
\end{tabular}

Table 38.9. (continued).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|l|}{IRGFS-WIBTS-Q4: Irish groundfish survey - Effort in minutes - Numbers at age} \\
\hline & Effort & Age & & & & & & \\
\hline Year & (hours) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 2003 & 10 & 586 & 6860 & 1541 & 273 & 154 & 54 & 1 \\
\hline 2004 & 10 & 3462 & 1557 & 656 & 52 & 18 & 8 & 1 \\
\hline 2005 & 10 & 569 & 1393 & 704 & 57 & 3 & 3 & 0 \\
\hline 2006 & 10 & 39 & 419 & 366 & 85 & 11 & 1 & 0 \\
\hline 2007 & 10 & 70 & 1018 & 1217 & 369 & 87 & 129 & 62 \\
\hline 2008 & 10 & 13 & 2295 & 702 & 303 & 128 & 65 & 19 \\
\hline 2009 & 10 & 7361 & 623 & 431 & 141 & 29 & 9 & 18 \\
\hline 2010 & 10 & 50 & 4565 & 702 & 178 & 56 & 30 & 7 \\
\hline 2011 & 10 & 211 & 2074 & 2817 & 318 & 135 & 32 & 33 \\
\hline 2012 & 10 & 129 & 3226 & 499 & 970 & 276 & 24 & 11 \\
\hline 2013 & 10 & 11247 & 494 & 1865 & 498 & 555 & 65 & 6 \\
\hline 2014 & 10 & 14934 & 7930 & 1300 & 2618 & 300 & 356 & 30 \\
\hline 2015 & 10 & 1862 & 15267 & 3237 & 794 & 400 & 81 & 54 \\
\hline 2016 & 10 & 6404 & 5918 & 8840 & 1387 & 234 & 290 & 92 \\
\hline
\end{tabular}


Table 38.10. Whiting in Division 27.6.a. TSA parameter settings for the assessment run.
\begin{tabular}{|c|c|c|}
\hline Parameter & Setting & Justification \\
\hline Age of full selection & \(a_{m}=4\) & Based on inspection of previous XSA and TSA runs. \\
\hline Multipliers on variance matrices of measurements & \begin{tabular}{l}
\(B\) landings \((a)=2\) for ages 1, 7+ \\
\(B_{\text {discards }}(a)=2\) for age 5 \\
\(B \mathrm{ScoGFs}-\mathrm{WIBTS}-\mathrm{Q} 4(a)=2\) for age 6
\end{tabular} & Allows extra measurement variability for poorlysampled ages. \\
\hline Multipliers on variances for fishing mortality estimates & \(H(1)=2\) & Allows for more variable fishing mortalities for age 1 fish. \\
\hline Down-weighting of particular datapoints & \begin{tabular}{l}
Discards: \\
cvmult = 3 for age 1 in 1981, age 1 in 1987, age 3 in 1991, age 1 in 2000, age 1 in 2013 \\
Surveys: \\
ScoGFS-WIBTS-Q1 \\
cvmult \(=3\) for age 5 in 1992, age 2 in 1993, age 1 in 2000, age 2 in 2000 \\
cvmult = 5 for age 4 in 1992 \\
ScoGFS-WIBTS-Q4 \\
cvmult \(=3\) for age 4 in 2007, age 5 in 2007
\end{tabular} & Large values indicated by exploratory prediction error plots. \\
\hline Discards & Discards are allowed to evolve over time to 5 are modelled independently. & constrained by a trend. Ages 1 \\
\hline Recruitments & Modelled by a hockey-stick model, with be independent and normally distribute variability to increase with mean recruit variation is assumed. & numbers-at-age 1 assumed to To allow recruitment nent, a constant coefficient of \\
\hline
\end{tabular}

Table 38.11. Whiting in Division 27.6.a. TSA parameter estimates for final assessment presented this year.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Notation & Description & \[
\begin{gathered}
2015 \\
\text { WG }
\end{gathered}
\] & \[
\begin{gathered}
2016 \\
\text { WG }
\end{gathered}
\] & \[
\begin{gathered}
2017 \\
\text { WG }
\end{gathered}
\] \\
\hline \multirow[t]{3}{*}{Initial fishing mortality} & \[
\begin{aligned}
& F(1, \\
& 1981)
\end{aligned}
\] & \multirow[t]{3}{*}{Fishing mortality-at-age \(a\) in year \(y\)} & 0.10 & 0.09 & 0.09 \\
\hline & \[
\begin{aligned}
& F(2, \\
& 1981)
\end{aligned}
\] & & 0.12 & 0.11 & 0.11 \\
\hline & \[
\begin{aligned}
& F(4, \\
& 1981)
\end{aligned}
\] & & 0.37 & 0.32 & 0.32 \\
\hline \multirow[t]{4}{*}{Fishing mortality standard deviations} & \(\sigma F\) & Transitory changes in overall fishing mortality & 0.10 & 0.00 & 0.01 \\
\hline & ou & Persistent changes in selection (age effect in F) & 0.11 & 0.09 & 0.09 \\
\hline & ov & Transitory changes in the year effect in fishing mortality & 0.09 & 0.00 & 0.00 \\
\hline & \(\sigma r\) & Persistent changes in the year effect in fishing mortality & 0.30 & 0.27 & 0.28 \\
\hline \multirow[t]{2}{*}{Measurement CVs} & CV landings & CV of landings-at-age data & 0.16 & 0.17 & 0.16 \\
\hline & \(\mathrm{CV}_{\text {discards }}\) & CV of discards-at-age data & 0.54 & 0.53 & 0.53 \\
\hline \multirow[t]{3}{*}{Recruitment} & & \begin{tabular}{l}
Hockey-stick parameter \\
Recruitment value at change point
\end{tabular} & 28.4 & 29.6 & 29.4 \\
\hline & & Hockey-stick parameter SSB at change point & 2.86 & 3.19 & 2.90 \\
\hline & \(\mathrm{CV}_{\text {rec }}\) & Coefficient of variation of recruitment data & 0.28 & 0.32 & 0.33 \\
\hline \multirow[t]{2}{*}{Discards} & \(\sigma_{\text {ogit }} \mathrm{p}\) & Transitory trends in discarding & 0.30 & 0.30 & 0.26 \\
\hline & \(\sigma_{\text {persistent }}\) & Persistent trends in discarding & 0.20 & 0.22 & 0.22 \\
\hline \multirow[t]{8}{*}{Survey selectivities (ScoGFS-WIBTS-Q1)} & \(\Phi(1)\) & Survey selectivity-at-age \(a\) & 1.71 & 1.09 & 1.01 \\
\hline & \(\Phi(2)\) & & 1.80 & 1.12 & 1.05 \\
\hline & \(\Phi(3)\) & & 1.57 & 0.96 & 0.89 \\
\hline & \(\Phi(4)\) & & 1.40 & 0.81 & 0.75 \\
\hline & \(\Phi(5)\) & & 1.19 & 0.66 & 0.60 \\
\hline & \(\Phi(6)\) & & 0.91 & 0.58 & 0.53 \\
\hline & \(\sigma_{\text {survey }}\) & Standard error of survey data & 0.41 & 0.44 & 0.45 \\
\hline & \(\sigma_{\eta}\) & & 0.10 & 0.10 & 0.10 \\
\hline \multirow[t]{2}{*}{Survey catchability standard deviations} & \(\sigma_{\Omega}\) & Transitory changes in survey catchability & 0.06 & 0.18 & 0.22 \\
\hline & \(\sigma_{\beta}\) & Persistent changes in survey catchability & 0.21 & 0.11 & 0.11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Notation & Description & \[
\begin{gathered}
2015 \\
\text { WG }
\end{gathered}
\] & \[
\begin{gathered}
2016 \\
\text { WG }
\end{gathered}
\] & \[
\begin{gathered}
2017 \\
\text { WG }
\end{gathered}
\] \\
\hline \multirow[t]{8}{*}{Survey selectivities (ScoGFS-WIBTS-Q4)} & \(\Phi(1)\) & \multirow[t]{6}{*}{Survey selectivity-at-age \(a\)} & 3.63 & 3.23 & 3.15 \\
\hline & \(\Phi(2)\) & & 3.28 & 2.97 & 3.00 \\
\hline & \(\Phi(3)\) & & 2.57 & 2.33 & 2.33 \\
\hline & \(\Phi(4)\) & & 2.22 & 2.02 & 1.99 \\
\hline & \(\Phi(5)\) & & 3.15 & 2.70 & 2.67 \\
\hline & \(\Phi(6)\) & & 0.64 & 0.47 & 0.48 \\
\hline & \(\sigma_{\text {survey }}\) & Standard error of survey data & 0.19 & 0.21 & 0.20 \\
\hline & \(\sigma_{\eta}\) & & 0.17 & 0.19 & 0.19 \\
\hline \multirow[t]{2}{*}{Survey catchability standard deviations} & \(\sigma_{\Omega}\) & Transitory changes in survey catchability & 0.00 & 0.00 & 0.00 \\
\hline & \(\sigma_{\beta}\) & Persistent changes in survey catchability & 0.16 & 0.15 & 0.14 \\
\hline
\end{tabular}

Table 38.11. (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Notation & Description & \[
\begin{gathered}
2015 \\
\text { WG }
\end{gathered}
\] & \[
\begin{gathered}
2016 \\
\text { WG }
\end{gathered}
\] & \[
\begin{gathered}
2017 \\
\text { WG }
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Survey selectivities \\
(IRGFS- \\
WIBTS-Q4)
\end{tabular}} & \(\Phi(1)\) & & 8.70 & 12.93 & 12.47 \\
\hline & \(\Phi(2)\) & & 8.31 & 10.99 & 11.60 \\
\hline & \(\Phi(3)\) & & 9.19 & 14.59 & 14.72 \\
\hline & \(\Phi(4)\) & & 7.63 & 10.48 & 10.26 \\
\hline & \(\sigma_{\text {survey }}\) & Standard error of survey data & 0.27 & 0.28 & 0.27 \\
\hline & \(\sigma_{\eta}\) & & 0.40 & 0.51 & 0.47 \\
\hline \multirow[t]{2}{*}{Survey catchability standard deviations} & \(\sigma_{\Omega}\) & Transitory changes in survey catchability & 0.16 & 0.10 & 0.08 \\
\hline & \(\sigma_{\beta}\) & Persistent changes in survey catchability & 0.09 & 0.16 & 0.18 \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Survey selectivities \\
(UKSGFS- \\
WIBTS-Q1)
\end{tabular}} & \(\Phi(1)\) & & 2.63 & 5.35 & 5.42 \\
\hline & \(\Phi(2)\) & & 2.34 & 6.00 & 6.40 \\
\hline & \(\Phi(3)\) & & 3.51 & 6.92 & 7.67 \\
\hline & \(\Phi(4)\) & & 2.50 & 6.07 & 6.32 \\
\hline & \(\Phi(5)\) & & 2.35 & 5.39 & 5.53 \\
\hline & \(\Phi(6)\) & & 2.49 & 6.64 & 6.30 \\
\hline & \(\sigma_{\text {survey }}\) & Standard error of survey data & 0.43 & 0.43 & 0.36 \\
\hline & \(\sigma_{\eta}\) & & 0.23 & 0.11 & 0.16 \\
\hline \multirow[t]{2}{*}{Survey catchability standard deviations} & \(\sigma_{\Omega}\) & Transitory changes in survey catchability & 0.31 & 0.02 & 0.01 \\
\hline & \(\sigma_{\beta}\) & Persistent changes in survey catchability & 0.00 & 0.13 & 0.06 \\
\hline
\end{tabular}
\begin{tabular}{lllccc}
\hline \multicolumn{1}{c}{ Parameter } & Notation & Description & \begin{tabular}{c}
2015 \\
WG
\end{tabular} & \begin{tabular}{c}
2016 \\
WG
\end{tabular} & \begin{tabular}{c}
2017 \\
WG
\end{tabular} \\
\hline \begin{tabular}{l} 
Survey \\
selectivities \\
(UKSGFS-
\end{tabular} & \(\Phi(1)\) & & 1.83 & 6.91 & 6.02 \\
WIBTS-Q4)
\end{tabular}\(\quad\)\begin{tabular}{llllll} 
& & & & & \\
\hline & \(\Phi(2)\) & & 6.88 & 11.10 & 10.36 \\
\hline & \(\Phi(3)\) & & 3.73 & 6.84 & 6.12 \\
\hline & \(\Phi(4)\) & & 4.38 & 8.24 & 7.89 \\
\hline & \(\Phi(5)\) & & 2.70 & 5.45 & 6.89 \\
\hline & \(\sigma_{\text {survey }}\) & Standard error of survey data & 0.33 & 0.28 & 0.26 \\
\hline & \(\sigma_{\eta}\) & & 0.05 & 0.06 & 0.01 \\
\hline \begin{tabular}{lll} 
Survey \\
catchability \\
standard \\
deviations
\end{tabular} & \(\sigma_{\Omega}\) & \begin{tabular}{l} 
Transitory changes in survey \\
catchability
\end{tabular} & 0.00 & 0.01 & 0.13 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 38.12. Whiting in Division 27.6.a. TSA population numbers-at-age (thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Age} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1981 & 199286 & 470622 & 85831 & 22394 & 7134 & 2107 & 907 \\
\hline 1982 & 163930 & 79554 & 218417 & 38575 & 9429 & 3091 & 1333 \\
\hline 1983 & 197890 & 63743 & 35579 & 94654 & 15977 & 4032 & 1926 \\
\hline 1984 & 326424 & 72393 & 24228 & 12310 & 31706 & 5424 & 2088 \\
\hline 1985 & 310390 & 115368 & 24418 & 7174 & 3385 & 9328 & 2229 \\
\hline 1986 & 289433 & 111645 & 37585 & 5895 & 1339 & 646 & 2499 \\
\hline 1987 & 405405 & 109638 & 40797 & 12080 & 1426 & 321 & 780 \\
\hline 1988 & 106901 & 143420 & 37275 & 12460 & 3267 & 320 & 215 \\
\hline 1989 & 325015 & 34852 & 42573 & 10786 & 2518 & 599 & 21 \\
\hline 1990 & 176231 & 119683 & 10686 & 11544 & 2568 & 435 & 36 \\
\hline 1991 & 245830 & 64206 & 46964 & 3832 & 3333 & 743 & 66 \\
\hline 1992 & 338241 & 91076 & 23806 & 17180 & 1274 & 1052 & 245 \\
\hline 1993 & 267856 & 127245 & 34886 & 8831 & 5972 & 457 & 470 \\
\hline 1994 & 282810 & 101850 & 49449 & 12710 & 2718 & 1921 & 293 \\
\hline 1995 & 303691 & 109629 & 41899 & 18800 & 4158 & 914 & 757 \\
\hline 1996 & 195381 & 118044 & 43082 & 15527 & 5473 & 1199 & 475 \\
\hline 1997 & 183810 & 68840 & 44242 & 14485 & 4040 & 1388 & 421 \\
\hline 1998 & 244782 & 61772 & 23177 & 14108 & 3576 & 992 & 449 \\
\hline 1999 & 181119 & 77645 & 18288 & 6648 & 3387 & 812 & 325 \\
\hline 2000 & 280702 & 51935 & 20702 & 4450 & 1271 & 669 & 224 \\
\hline 2001 & 115876 & 81827 & 14799 & 5665 & 847 & 253 & 180 \\
\hline 2002 & 41087 & 32483 & 23868 & 4194 & 1094 & 155 & 83 \\
\hline 2003 & 65060 & 9632 & 10837 & 7822 & 1117 & 304 & 67 \\
\hline 2004 & 40280 & 16510 & 2913 & 3561 & 1847 & 276 & 94 \\
\hline 2005 & 21810 & 9896 & 4800 & 836 & 861 & 414 & 87 \\
\hline 2006 & 27266 & 7175 & 3806 & 1743 & 263 & 263 & 165 \\
\hline 2007 & 14178 & 8959 & 2839 & 1473 & 579 & 90 & 149 \\
\hline 2008 & 16126 & 4240 & 3725 & 1186 & 512 & 214 & 90 \\
\hline 2009 & 24774 & 5013 & 1578 & 1530 & 382 & 163 & 102 \\
\hline 2010 & 59876 & 8526 & 2037 & 622 & 555 & 138 & 96 \\
\hline 2011 & 18600 & 20461 & 3809 & 903 & 234 & 227 & 94 \\
\hline 2012 & 38328 & 7073 & 9570 & 1880 & 430 & 111 & 157 \\
\hline 2013 & 19751 & 14392 & 3406 & 4722 & 918 & 216 & 138 \\
\hline 2014 & 48210 & 7655 & 7025 & 1747 & 2410 & 485 & 191 \\
\hline 2015 & 101689 & 19143 & 3818 & 3661 & 929 & 1317 & 377 \\
\hline 2016 & 70431 & 41323 & 9563 & 1995 & 1966 & 513 & 954 \\
\hline 2017* & 138913 & 29185 & 20870 & 5063 & 1094 & 1109 & 849 \\
\hline 2018* & 181667 & 57377 & 14716 & 11020 & 2768 & 615 & 1127 \\
\hline GM(81-16) & 104527 & 38752 & 15141 & 5707 & 1860 & 583 & 260 \\
\hline
\end{tabular}

\footnotetext{
* Estimates for 2017 and 2018 are TSA projections.
}

Table 38.13. Whiting in Division 27.6.a. Standard errors on TSA population numbers-at-age (thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Age} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1981 & 19420 & 33253 & 7258 & 1919 & 708 & 252 & 217 \\
\hline 1982 & 17182 & 7871 & 16079 & 3586 & 908 & 346 & 166 \\
\hline 1983 & 18922 & 6886 & 3842 & 7838 & 1700 & 460 & 223 \\
\hline 1984 & 26137 & 7084 & 3124 & 1640 & 3236 & 784 & 292 \\
\hline 1985 & 23449 & 9321 & 2979 & 1148 & 618 & 1409 & 444 \\
\hline 1986 & 21118 & 8783 & 3951 & 1070 & 430 & 268 & 791 \\
\hline 1987 & 33364 & 8296 & 3929 & 1606 & 438 & 192 & 448 \\
\hline 1988 & 11021 & 12312 & 3206 & 1427 & 604 & 174 & 225 \\
\hline 1989 & 21607 & 3845 & 4437 & 1236 & 554 & 250 & 131 \\
\hline 1990 & 18304 & 8236 & 1301 & 1707 & 501 & 244 & 143 \\
\hline 1991 & 22963 & 6935 & 3349 & 516 & 722 & 236 & 159 \\
\hline 1992 & 28486 & 8804 & 2690 & 1365 & 211 & 315 & 153 \\
\hline 1993 & 23414 & 10997 & 3543 & 1080 & 591 & 89 & 171 \\
\hline 1994 & 25775 & 9461 & 4836 & 1601 & 464 & 294 & 102 \\
\hline \[
1995
\] & 24382 & 10795 & 4470 & 2373 & 733 & 221 & 182 \\
\hline 1996 & 20128 & 10095 & 4808 & 1969 & 948 & 323 & 170 \\
\hline 1997 & 22993 & 7791 & 4034 & 1828 & 631 & 336 & 169 \\
\hline 1998 & 32489 & 9035 & 3211 & 1589 & 625 & 239 & 172 \\
\hline 1999 & 28039 & 11915 & 3453 & 1082 & 504 & 208 & 125 \\
\hline 2000 & 41148 & 9650 & 3785 & 978 & 244 & 133 & 79 \\
\hline 2001 & 17401 & 13757 & 2755 & 938 & 179 & 51 & 46 \\
\hline 2002 & 8709 & 5770 & 4339 & 805 & 222 & 48 & 27 \\
\hline 2003 & 11896 & 2606 & 1737 & 1485 & 213 & 65 & 22 \\
\hline 2004 & 7396 & 3697 & 638 & 547 & 352 & 61 & 25 \\
\hline 2005 & 4074 & 2095 & 838 & 174 & 115 & 97 & 26 \\
\hline 2006 & 2469 & 784 & 457 & 193 & 32 & 27 & 34 \\
\hline 2007 & 1722 & 783 & 270 & 170 & 68 & 12 & 22 \\
\hline 2008 & 1533 & 557 & 336 & 128 & 84 & 36 & 17 \\
\hline 2009 & 1883 & 511 & 218 & 159 & 62 & 42 & 25 \\
\hline 2010 & 5089 & 663 & 219 & 103 & 78 & 32 & 32 \\
\hline 2011 & 1398 & 1869 & 306 & 110 & 52 & 43 & 32 \\
\hline 2012 & 3759 & 548 & 905 & 159 & 58 & 29 & 37 \\
\hline 2013 & 1980 & 1482 & 271 & 483 & 87 & 32 & 31 \\
\hline 2014 & 7061 & 804 & 748 & 148 & 271 & 51 & 31 \\
\hline 2015 & 9698 & 2915 & 408 & 408 & 83 & 157 & 43 \\
\hline 2016 & 12888 & 4095 & 1485 & 223 & 227 & 48 & 109 \\
\hline 2017* & 44029 & 5450 & 2123 & 808 & 127 & 133 & 86 \\
\hline 2018* & 64931 & 18433 & 2787 & 1183 & 455 & 75 & 121 \\
\hline & & & & & & & \\
\hline GM(81-16) & 11214 & 4274 & 1745 & 721 & 289 & 123 & 87 \\
\hline
\end{tabular}

\footnotetext{
* Estimates for 2017 and 2018 are TSA projections.
}

Table 38.14. Whiting in Division 27.6.a. TSA estimates for mortality-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Age} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1981 & 0.1035 & 0.1240 & 0.2174 & 0.3283 & 0.3284 & 0.3284 & 0.3284 \\
\hline 1982 & 0.1159 & 0.1532 & 0.2570 & 0.3428 & 0.3429 & 0.3431 & 0.3430 \\
\hline 1983 & 0.1807 & 0.2678 & 0.4326 & 0.5530 & 0.5542 & 0.5538 & 0.5535 \\
\hline 1984 & 0.2251 & 0.3812 & 0.5495 & 0.6856 & 0.6863 & 0.6858 & 0.6860 \\
\hline 1985 & 0.2374 & 0.4461 & 0.6260 & 0.7908 & 0.7914 & 0.7914 & 0.7909 \\
\hline 1986 & 0.1839 & 0.3633 & 0.4900 & 0.5878 & 0.5875 & 0.5876 & 0.5877 \\
\hline 1987 & 0.2265 & 0.4433 & 0.5904 & 0.6968 & 0.6966 & 0.6974 & 0.6968 \\
\hline 1988 & 0.2623 & 0.5219 & 0.6460 & 0.8654 & 0.8650 & 0.8650 & 0.8649 \\
\hline 1989 & 0.2319 & 0.4504 & 0.5947 & 0.7592 & 0.7594 & 0.7597 & 0.7595 \\
\hline 1990 & 0.1766 & 0.3111 & 0.4271 & 0.5587 & 0.5590 & 0.5586 & 0.5587 \\
\hline 1991 & 0.1782 & 0.3324 & 0.4360 & 0.5539 & 0.5540 & 0.5539 & 0.5539 \\
\hline 1992 & 0.1685 & 0.3159 & 0.4212 & 0.5385 & 0.5387 & 0.5388 & 0.5388 \\
\hline 1993 & 0.1684 & 0.3065 & 0.4243 & 0.6160 & 0.6168 & 0.6161 & 0.6161 \\
\hline 1994 & 0.1511 & 0.2606 & 0.3772 & 0.5568 & 0.5565 & 0.5572 & 0.5567 \\
\hline 1995 & 0.1758 & 0.2952 & 0.4122 & 0.6336 & 0.6335 & 0.6338 & 0.6336 \\
\hline 1996 & 0.2395 & 0.3728 & 0.5116 & 0.7781 & 0.7783 & 0.7780 & 0.7779 \\
\hline 1997 & 0.2807 & 0.4353 & 0.5766 & 0.8202 & 0.8205 & 0.8196 & 0.8200 \\
\hline 1998 & 0.3302 & 0.5078 & 0.6502 & 0.8971 & 0.8990 & 0.8984 & 0.8987 \\
\hline 1999 & 0.4067 & 0.6283 & 0.7778 & 1.1093 & 1.1111 & 1.1107 & 1.1103 \\
\hline 2000 & 0.4061 & 0.5899 & 0.7312 & 1.1348 & 1.1339 & 1.1361 & 1.1350 \\
\hline 2001 & 0.3957 & 0.5419 & 0.6592 & 1.0682 & 1.0706 & 1.0704 & 1.0693 \\
\hline 2002 & 0.3063 & 0.3988 & 0.4818 & 0.7652 & 0.7650 & 0.7655 & 0.7654 \\
\hline 2003 & 0.3412 & 0.4070 & 0.4824 & 0.8382 & 0.8384 & 0.8389 & 0.8378 \\
\hline 2004 & 0.3975 & 0.4280 & 0.5405 & 0.8564 & 0.8581 & 0.8574 & 0.8574 \\
\hline 2005 & 0.3600 & 0.3499 & 0.4571 & 0.6710 & 0.6700 & 0.6707 & 0.6707 \\
\hline 2006 & 0.3437 & 0.2870 & 0.3790 & 0.5781 & 0.5781 & 0.5789 & 0.5782 \\
\hline 2007 & 0.3134 & 0.2286 & 0.2874 & 0.4762 & 0.4759 & 0.4763 & 0.4762 \\
\hline 2008 & 0.3525 & 0.2599 & 0.3039 & 0.5335 & 0.5330 & 0.5337 & 0.5331 \\
\hline 2009 & 0.3343 & 0.2265 & 0.2763 & 0.4402 & 0.4400 & 0.4399 & 0.4399 \\
\hline 2010 & 0.2662 & 0.1661 & 0.2079 & 0.3267 & 0.3268 & 0.3266 & 0.3267 \\
\hline 2011 & 0.1756 & 0.1055 & 0.1302 & 0.1964 & 0.1965 & 0.1963 & 0.1964 \\
\hline 2012 & 0.1620 & 0.0890 & 0.1182 & 0.1773 & 0.1772 & 0.1771 & 0.1771 \\
\hline 2013 & 0.1277 & 0.0677 & 0.0900 & 0.1284 & 0.1283 & 0.1284 & 0.1283 \\
\hline 2014 & 0.0987 & 0.0515 & 0.0711 & 0.0935 & 0.0934 & 0.0935 & 0.0935 \\
\hline 2015 & 0.0864 & 0.0475 & 0.0690 & 0.0842 & 0.0843 & 0.0842 & 0.0842 \\
\hline 2016 & 0.0676 & 0.0371 & 0.0560 & 0.0631 & 0.0631 & 0.0631 & 0.0631 \\
\hline 2017* & 0.0706 & 0.0388 & 0.0585 & 0.0660 & 0.0660 & 0.0660 & 0.0660 \\
\hline 2018* & 0.0735 & 0.0404 & 0.0609 & 0.0687 & 0.0687 & 0.0687 & 0.0687 \\
\hline GM(81-16) & 0.2158 & 0.2540 & 0.3405 & 0.4836 & 0.4837 & 0.4837 & 0.4836 \\
\hline
\end{tabular}

\footnotetext{
* Estimates for 2017 and 2018 are TSA projections.
}

Table 38.15. Whiting in Division 27.6.a. Standard errors of TSA estimates for log mortality-at-age.

* Estimates for 2017 and 2018 are TSA projections.

Table 38.16. Whiting in Division 27.6.a. TSA summary table. "Obs." denotes sum-of-products of numbers and mean weights-at-age, not reported caught, landed and discarded weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{3}{|l|}{Landings (tonnes)} & \multicolumn{3}{|l|}{Discards (tonnes)} & \multicolumn{3}{|l|}{Total catches (tonnes)} & \multicolumn{2}{|l|}{Mean F(2-4)} & \multicolumn{2}{|l|}{SSB (tonnes)} & \multicolumn{2}{|l|}{TSB (tonnes)} & \multicolumn{2}{|l|}{Recruitment (000s at age 1)} \\
\hline & Obs. & Pred. & SE & Obs. & Pred. & SE & Obs. & Pred. & SE & Estimate & SE & Estimate & SE & Estimate & SE & Estimate & SE \\
\hline 1981 & 12194 & 11429 & 1257 & 2132 & 4568 & 931 & 14325 & 15997 & 1458 & 0.223 & 0.020 & 134374 & 7349 & 168638 & 8298 & 199286 & 19420 \\
\hline 1982 & 13880 & 13028 & 1391 & 5485 & 4298 & 889 & 19366 & 17326 & 1621 & 0.251 & 0.022 & 91982 & 4860 & 109637 & 5360 & 163930 & 17182 \\
\hline 1983 & 15962 & 16705 & 1534 & 6294 & 5342 & 933 & 22257 & 22047 & 2015 & 0.418 & 0.035 & 63151 & 3502 & 93075 & 4836 & 197890 & 18922 \\
\hline 1984 & 16459 & 14423 & 1295 & 4017 & 5209 & 965 & 20476 & 19633 & 1879 & 0.539 & 0.043 & 46166 & 2835 & 81872 & 4360 & 326424 & 26137 \\
\hline 1985 & 12879 & 11383 & 1094 & 4840 & 7308 & 1248 & 17719 & 18691 & 1809 & 0.621 & 0.047 & 42190 & 2643 & 78752 & 4082 & 310390 & 23449 \\
\hline 1986 & 8458 & 7799 & 827 & 2669 & 5383 & 906 & 11127 & 13183 & 1314 & 0.480 & 0.039 & 38125 & 2426 & 71937 & 3694 & 289433 & 21118 \\
\hline 1987 & 11542 & 9852 & 979 & 11918 & 8131 & 1371 & 23460 & 17982 & 1789 & 0.577 & 0.045 & 40521 & 2400 & 77561 & 4102 & 405405 & 33364 \\
\hline 1988 & 11349 & 10537 & 992 & 8132 & 5568 & 1058 & 19481 & 16105 & 1512 & 0.678 & 0.052 & 41384 & 2503 & 50167 & 2879 & 106901 & 11021 \\
\hline 1989 & 7523 & 6570 & 688 & 5876 & 6159 & 1054 & 13399 & 12729 & 1403 & 0.601 & 0.049 & 22598 & 1646 & 56536 & 3007 & 325015 & 21607 \\
\hline 1990 & 5642 & 5129 & 547 & 4530 & 4998 & 908 & 10172 & 10126 & 1123 & 0.432 & 0.038 & 33375 & 2048 & 57588 & 3502 & 176231 & 18304 \\
\hline 1991 & 6658 & 5617 & 545 & 4883 & 4073 & 741 & 11541 & 9690 & 1030 & 0.441 & 0.039 & 27425 & 1833 & 51803 & 3193 & 245830 & 22963 \\
\hline 1992 & 6005 & 5512 & 511 & 9249 & 6153 & 1065 & 15253 & 11665 & 1288 & 0.425 & 0.039 & 30535 & 2117 & 68838 & 4267 & 338241 & 28486 \\
\hline 1993 & 6872 & 6565 & 611 & 4759 & 7094 & 1175 & 11631 & 13659 & 1414 & 0.449 & 0.043 & 43537 & 3005 & 76411 & 4985 & 267856 & 23414 \\
\hline 1994 & 5901 & 5811 & 549 & 3455 & 5174 & 805 & 9356 & 10986 & 1064 & 0.398 & 0.040 & 38416 & 2993 & 64419 & 4754 & 282810 & 25775 \\
\hline 1995 & 6078 & 6756 & 998 & 5771 & 5879 & 1020 & 11849 & 12635 & 1755 & 0.447 & 0.051 & 38772 & 3484 & 61887 & 4836 & 303691 & 24382 \\
\hline 1996 & 7158 & 7804 & 1265 & 7940 & 7701 & 1416 & 15098 & 15505 & 2368 & 0.554 & 0.067 & 42621 & 3663 & 61741 & 5122 & 195381 & 20128 \\
\hline 1997 & 6290 & 7945 & 1163 & 5251 & 7173 & 1348 & 11542 & 15118 & 2210 & 0.611 & 0.073 & 34352 & 3152 & 55534 & 5252 & 183810 & 22993 \\
\hline 1998 & 4627 & 6011 & 925 & 9216 & 8190 & 1613 & 13843 & 14201 & 2260 & 0.685 & 0.075 & 24978 & 2978 & 49408 & 5669 & 244782 & 32489 \\
\hline 1999 & 4613 & 5436 & 963 & 3975 & 7353 & 1535 & 8588 & 12789 & 2237 & 0.838 & 0.083 & 23285 & 3318 & 39365 & 5298 & 181119 & 28039 \\
\hline 2000 & 3011 & 4028 & 820 & 13285 & 7818 & 1715 & 16296 & 11846 & 2298 & 0.819 & 0.082 & 17871 & 2939 & 39034 & 5521 & 280702 & 41148 \\
\hline 2001 & 2439 & 3590 & 708 & 4263 & 6188 & 1380 & 6702 & 9778 & 1902 & 0.756 & 0.079 & 20099 & 3111 & 31680 & 4512 & 115876 & 17401 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \multicolumn{3}{|l|}{Landings (tonnes)} & \multicolumn{3}{|r|}{Discards (tonnes)} & \multicolumn{3}{|l|}{Total catches (tonnes)} & \multicolumn{2}{|l|}{Mean F(2-4)} & \multicolumn{2}{|l|}{SSB (tonnes)} & \multicolumn{2}{|l|}{TSB (tonnes)} & \multicolumn{2}{|l|}{Recruitment (000s at age 1)} \\
\hline & Овs. & Pred. & SE & Овs. & Pred. & SE & Овs. & Pred. & SE & Estimate & SE & Estimate & SE & Estimate & SE & Estimate & SE \\
\hline 2002 & 1767 & 2714 & 607 & 2851 & 2179 & 572 & 4618 & 4893 & 1085 & 0.549 & 0.062 & 13924 & 2242 & 16955 & 2727 & 41087 & 8709 \\
\hline 2003 & 1355 & 2074 & 470 & 719 & 1836 & 518 & 2074 & 3910 & 909 & 0.576 & 0.067 & 8358 & 1425 & 13792 & 2251 & 65060 & 11896 \\
\hline
\end{tabular}

Table 38.16. (continued).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{3}{|l|}{Landings (tonnes)} & \multicolumn{3}{|r|}{Discards (tonnes)} & \multicolumn{3}{|l|}{Total catches (tonnes)} & \multicolumn{2}{|l|}{Mean F(2-4)} & \multicolumn{2}{|l|}{SSB (tonnes)} & \multicolumn{2}{|l|}{TSB (tonnes)} & \multicolumn{2}{|l|}{Recruitment (000s at age 1)} \\
\hline & Obs. & Pred. & SE & Obs. & Pred. & SE & Obs. & Pred. & SE & Estimate & SE & Estimate & SE & Estimate & SE & Estimate & SE \\
\hline 2004 & 811 & 1210 & 284 & 2159 & 1676 & 517 & 2970 & 2886 & 753 & 0.608 & 0.082 & 5952 & 1064 & 9432 & 1582 & 40280 & 7396 \\
\hline 2005 & 341 & 710 & 172 & 629 & 823 & 249 & 970 & 1532 & 394 & 0.493 & 0.079 & 3778 & 567 & 5718 & 803 & 21810 & 4074 \\
\hline 2006 & 380 & 546 & 53 & 946 & 615 & 110 & 1327 & 1161 & 139 & 0.415 & 0.041 & 3427 & 241 & 4721 & 297 & 27266 & 2469 \\
\hline 2007 & 427 & 439 & 38 & 317 & 425 & 78 & 745 & 864 & 98 & 0.331 & 0.035 & 3378 & 201 & 4564 & 276 & 14178 & 1722 \\
\hline 2008 & 445 & 416 & 39 & 314 & 504 & 93 & 759 & 920 & 114 & 0.366 & 0.037 & 2915 & 207 & 4148 & 270 & 16126 & 1533 \\
\hline \[
2009
\] & 488 & 393 & 39 & 419 & 475 & 86 & 908 & 868 & 108 & 0.314 & 0.033 & 3264 & 247 & 4585 & 298 & 24774 & 1883 \\
\hline 2010 & 307 & 293 & 32 & 893 & 530 & 101 & 1200 & 823 & 115 & 0.234 & 0.025 & 2671 & 188 & 4996 & 313 & 59876 & 5089 \\
\hline 2011 & 230 & 244 & 26 & 339 & 310 & 58 & 569 & 554 & 71 & 0.144 & 0.016 & 5678 & 409 & 6236 & 427 & 18600 & 1398 \\
\hline 2012 & 313 & 289 & 32 & 727 & 447 & 84 & 1039 & 736 & 97 & 0.128 & 0.015 & 5525 & 393 & 7720 & 515 & 38328 & 3759 \\
\hline 2013 & 222 & 253 & 27 & 951 & 277 & 50 & 1173 & 530 & 64 & 0.095 & 0.012 & 6558 & 493 & 7372 & 533 & 19751 & 1980 \\
\hline 2014 & 184 & 216 & 22 & 583 & 278 & 58 & 767 & 493 & 69 & 0.072 & 0.010 & 6434 & 496 & 8807 & 719 & 48210 & 7061 \\
\hline \[
2015
\] & 227 & 217 & 22 & 835 & 587 & 131 & 1063 & 805 & 140 & 0.067 & 0.010 & 7713 & 779 & 15271 & 1268 & 101689 & 9698 \\
\hline 2016 & 233 & 248 & 26 & 797 & 528 & 117 & 1030 & 776 & 130 & 0.052 & 0.009 & 15907 & 1409 & 21051 & 1975 & 70431 & 12888 \\
\hline 2017* & NA & 353 & 109 & NA & 732 & 283 & NA & 1084 & 368 & 0.054 & 0.018 & 17023 & 1808 & 26125 & 3752 & 138913 & 44029 \\
\hline 2018* & NA & 496 & 205 & NA & 1013 & 495 & NA & 1508 & 671 & 0.057 & 0.025 & 24387 & 4443 & 36291 & 6590 & 181667 & 64931 \\
\hline Min & 184 & 216 & 22 & 314 & 277 & 50 & 569 & 493 & 64 & 0.052 & 0.009 & 2671 & 188 & 4148 & 270 & 14178 & 1398 \\
\hline GM & 2199 & 2368 & 287 & 2373 & 2326 & 457 & 4954 & 4835 & 642 & 0.360 & 0.037 & 16877 & 1409 & 26728 & 2057 & 104527 & 11214 \\
\hline AM & 5091 & 5061 & 599 & 3928 & 3924 & 747 & 9019 & 8985 & 1112 & 0.436 & 0.044 & 27534 & 2088 & 43924 & 3105 & 159680 & 16092 \\
\hline Max & 16459 & 16705 & 1534 & 13285 & 8190 & 1715 & 23460 & 22047 & 2368 & 0.838 & 0.083 & 134374 & 7349 & 168638 & 8298 & 405405 & 41148 \\
\hline
\end{tabular}

\footnotetext{
* Estimates for 2017 and 2018 are TSA projections.
}


Figure 38.1. Whiting in Division 27.6.a. Landings, discards and catch (in tonnes, whiting at age 1 and older) as officially reported to ICES (upper panel) and discards (as \% of catch, lower panel).
whg.27.6a LandWt

whg.27.6a DisWt


Figure 38.2. Whiting in Division 27.6.a. Landings (upper panel) and discards (all ages, lower panel) by métier ( kg ) in 2016 as entered into InterCatch.

Landings weight at age for whiting in 27.6a


Discards weight at age for whiting in 27.6a


Figure 38.3. Whiting in Division 27.6.a. Mean weight-at-age in the landings (upper panel) and discards (lower panel).


Figure 38.4. Whiting in Division 27.6.a. The catch of whiting per unit of effort during the Scottish first quarter west coast groundfish survey (UKSGFS-WIBTS-Q1, in red) and the Scottish fourth quarter groundfish survey (UKSGFS-WIBTS-Q4, in blue) in 2014-2017. Each circle shows the sample location and the size of the circle is proportional to the log number density ( \(\mathrm{n} / 30 \mathrm{~min}\) fished), according to the legend. Two closed areas (the Windsock in the north and the Clyde in the south) are shown as green polygons.


Figure 38.5. Whiting in Division 27.6.a. The catch of whiting per unit of effort during the Scottish fourth quarter west coast groundfish survey (UKSGFS-WIBTS-Q4, only the southern part of the survey area, in blue) and the Irish fourth quarter groundfish survey (IGFS-WIBTS-Q4, in green) in 2013-2016. Each circle shows the sample location and the size of the circle is proportional to the \(\log\) number density ( \(\mathrm{n} / 30 \mathrm{~min}\) fished), according to the legend. The Clyde closed area is shown as a green polygon.


Figure 38.6. Whiting in Division 27.6.a. Scaled survey indices from ScoGFS-WIBTS-Q1, ScoGFS-WIBTS-Q4, IGFS-WIBTS-Q4, UKSGFS-WIBTS-Q1 and UKSGFS-WIBTS-Q4. The abundance index for IGFS-WIBTS-Q4 is shown only for ages 0-6.


Figure 38.7. Whiting in Division 27.6.a. Log mean standardised survey index for each age by cohort (upper panels) and year (lower panels) in IGFS-WIBTS-Q4, UKSGFS-WIBTS-Q1 and UKSGFS-WIBTS-Q4, respectively.


Figure 38.8. Whiting in Division 27.6.a. Log catch curves from the catch (ages 1-7) and from the five survey series (ages as specified in Table 38.9).


Figure 38.9. Whiting in Division 27.6.a. Proportion discarded at age from the final TSA run.


Figure 38.10. Whiting in Division 27.6.a. Standardised residuals for landings (left panel) and discards (right panel) from the final TSA run.


Figure 38.11. Whiting in Division 27.6.a. Standardised survey residuals from TSA in ScoGFS-WIBTS-Q1 (top left panel), ScoGFS-WIBTS-Q4 (top left panel), IGFS-WIBTS-Q4 (middle panel), UKSGFS-WIBTS-Q1 (bottom left panel) and UKSGFS-WIBTS-Q4 (bottom right panel), from the final TSA run.


Figure 38.12. Whiting in Division 27.6.a. Percentage change in catchability from the final TSA run. Transient changes (points) and the persistent change (solid line) with uncertainty bounds.


Figure 38.13. Whiting in Division 27.6.a. Stock-recruitment relationship (recruitment in millions, SSB in thousand tonnes) from the final TSA run, with points labelled as year classes, and fitted with a segmented-regression model ("hockey-stick", solid line).


Figure 38.14. Whiting in Division 27.6.a. TSA stock summaries from the final TSA run. Catch, landings, discards and SSB in tonnes, recruitment in thousands. Estimates are plotted with approximate pointwise \(95 \%\) confidence bounds. Dots indicate observed values for catch, landings and discards.


Figure 38.15. Whiting in Division 27.6.a. Retrospective plots of TSA run (the retro analysis for 2007-2016). Catch, landings, discards and SSB in tonnes, recruitment in thousands. Blue points show observed values, black lines show estimates in the respective years, grey bands show confidence intervals for the last estimate.
38.12 Audit of wgh-scow (Division 27.6.a)

The audit is not available.

\section*{39 Whiting in Division 27.6.b}

\section*{Type of assessment in 2017}

No assessment was performed in 2017.
ICES advice applicable to 2016-2018
In 2015, ICES provided multiyear advice:
ICES advises that when the precautionary approach is applied, catches should be no more than 11 tonnes in each of the years 2016, 2017 and 2018.
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2015/2015/whgrock.pdf

\subsection*{39.1 General}

\section*{Stock description}

There is an absence of information on whiting stock structure in this region and whiting caught at Rockall may potentially be part of the adjacent 27.6.a stock.

\section*{Management applicable to 2016 and 2017}

The TAC for whiting is set for ICES Subareas 6, 12 and 14 and EU and international waters of ICES Division 27.5.b. The following TACs and quotas have been applicable in recent years:

TAC for 2016
\begin{tabular}{lr|ll}
\hline Species: \begin{tabular}{l} 
Whiting \\
Merlangius merlangus
\end{tabular} & Zone: \begin{tabular}{l} 
VI; Union and international waters of Vb; internat- \\
ional waters of XII and XIV \\
(WHG/56-14)
\end{tabular} \\
\hline Germany & 1 & \\
France & 26 & \\
Ireland & 64 & \\
United Kingdom & 122 & \\
Union & 213 & Analytical TAC \\
TAC & 213 & \\
\hline
\end{tabular}
(Council Regulation (EU) 2016/72).

TAC for 2017
\begin{tabular}{ll|ll}
\hline Species: \begin{tabular}{lrl} 
Whiting \\
Merlangius merlangus
\end{tabular} & Zone: \begin{tabular}{l} 
VI; Union and international waters of Vb; internat- \\
ional waters of XII and XIV \\
(WHG/56-14)
\end{tabular} \\
\hline Germany & \(1\left({ }^{( }\right)\) & \\
France & \(26^{(1)}\) & \\
Ireland & \(64^{(1)}\) & \\
United Kingdom & \(122^{(1)}\) & \\
Union & \(213\left(^{(1)}\right.\) & \\
TAC & \(213^{(1)}\) & Analytical TAC \\
\end{tabular}
(') Exclusively for by-catches. No directed fisheries are permitted under this quota
(Council Regulation (EU) 2017/127).
Fishery in 2016
No specific information is available for 2016. Whiting at Rockall are taken as a bycatch in fisheries for other species such as haddock and anglerfish.

\subsection*{39.2 Data}

Landings data for whiting in 27.6.b are shown by nation in Table 39.1 and Figure 39.1. Total officially reported landings were 33 t in 2016, of which 22 t were reported by the UK, 9 t by Ireland and 1 t by Norway (for the first time in the time-series). In the past, official landings have shown very high interannual variation and it is not known whether these are a true reflection of removals.

Landings and discards have been uploaded to InterCatch for 2016 (Figure 39.2).
In addition, some landings and discards age compositions were also uploaded to InterCatch. About \(67 \%\) of the total landings ( 22 t ) are from the Scottish TR1 fleet which, based on two sampled trips has a \(0 \%\) discard rate. The data available in InterCatch are shown below.
\begin{tabular}{lccc}
\hline \multicolumn{1}{c}{ Country } & LANDINGS (T) & DISCARDS (T) & TOTAL (T) \\
\hline Ireland & 9.4 & 4.9 & 14.4 \\
\hline UK (Scotland) & 22.2 & 0.1 & 22.2 \\
\hline Norway & 1.5 & 0 & 1.5 \\
\hline Grand total & 33.0 & 5.0 & 38.1 \\
\hline
\end{tabular}

Survey catch rates of whiting at Rockall are extremely low (Table 39.2, Figure 39.3) and are therefore unlikely to provide a reliable index of abundance.

Catches of whiting (both survey and commercial) are too low to support the collection of the necessary information for an assessment of stock status.

\subsection*{39.3 Target category}

In 2012, advice was provided using the DL approach for category 6.2.0; stocks with negligible landings stocks and stocks caught in minor amounts as bycatch with no indication of F in relation to reference points and no marked positive trends in stock
indicators. WKLIFE has previously suggested a target category of 4 for this stock. Given the comments in Section 39.2 regarding the potential unreliability of landings data and lack of sampled data, WGCSE considers that whiting in 27.6.b is likely to remain a category 6 stock.

\subsection*{39.4 Management considerations}

Rockall whiting is managed under a TAC for the combined Divisions 27.6.a and 27.6.b and therefore cannot be effective in limiting catches in Rockall.

Table 39.1. Whiting in Division 27.6.b. Nominal landings (in tonnes) as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline Faroe Islands & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline France & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Ireland & - & - & - & - & 32 & 10 & 4 & 23 & 3 & 1 & - & - & 10 & - & 2 & 3 & 3 & 104 \\
\hline Norway & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Spain & - & - & - & - & - & - & - & - & - & - & + & - & - & - & - & - & - & - \\
\hline UK (E, W \& NI) & 16 & 6 & 1 & 5 & 10 & 2 & 5 & 26 & 49 & 20 & - & - & - & - & - & - & - & - \\
\hline UK (Scotland) & 18 & 482 & 459 & 283 & 86 & 68 & 53 & 36 & 65 & 23 & 44 & 58 & 4 & 7 & 11 & 1 & 1 & 1 \\
\hline \multicolumn{19}{|l|}{UK (all)} \\
\hline Total & 34 & 488 & 460 & 288 & 128 & 80 & 62 & 85 & 117 & 44 & 44 & 58 & 14 & 7 & 13 & 4 & 4 & 105 \\
\hline Country & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016* & & & & & & & & \\
\hline Faroe Islands & - & - & - & - & - & - & - & - & - & - & & & & & & & & \\
\hline France & + & - & - & - & - & - & - & - & - & - & & & & & & & & \\
\hline Ireland & 16 & 23 & 4 & 2 & 3 & - & + & 6 & 6 & 9 & & & & & & & & \\
\hline Norway & - & - & - & - & - & - & - & - & - & 1 & & & & & & & & \\
\hline Spain & - & - & - & - & - & - & - & - & - & - & & & & & & & & \\
\hline UK (E, W \& NI) & - & - & - & - & - & - & - & - & & & & & & & & & & \\
\hline UK (Scotland) & 1 & 8 & 12 & 16 & 6 & 1 & 3 & 23 & & & & & & & & & & \\
\hline UK (all) & & & & & & & & & 46 & 22 & & & & & & & & \\
\hline Total & 17 & 31 & 16 & 18 & 9 & 1 & 3 & 29 & 52 & 33 & & & & & & & & \\
\hline
\end{tabular}

\section*{* Preliminary.}
\(+<0.5\) t.

Table 39.2. Whiting in Division 27.6.b. Survey data made available to the WG: Scottish Q3 groundfish survey (Rock-WIBTS-Q3). Catch rates are given as number per ten hours.
\begin{tabular}{ccccccccc}
\hline 2011 & 2016 & & & & & & & \\
\hline 1 & 1 & 0.66 & 0.75 & & & & & \\
\hline 0 & 7 & & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 33.279 & 0 & 0.358 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 6.687 & 1.924 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 17.425 & 3.426 & 0.838 & 0.307 & 0 & 0 & 0 & 0 \\
\hline 10 & 8.853 & 0.559 & 0.559 & 0.55 & 0 & 0 & 0 & 0 \\
\hline 10 & 250.012 & 0.782 & 0 & 0.223 & 0.447 & 0 & \\
\hline
\end{tabular}


Figure 39.1. Whiting in Division 27.6.b. Official landings of whiting in 27.6.b by nation.
whg.27.6b LandWt

whg.27.6b DisWt


Figure 39.2. Whiting in Division 27.6.b. Landings (upper panel) and discards (all ages, lower panel) by métier ( kg ) in 2016 as entered into InterCatch.


Figure 39.3. Whiting in Division 27.6.b. Whiting distribution by age on the Rockall Bank in 20112016 as observed in the Rockall Haddock survey. The densities (numbers of fish per 30 min ) are represented by circles. The red polygons show the protected areas. The red rectangle in the centre shows the Haddock Box. The dashed line shows the NEAFC Regulatory Area.

\subsection*{39.1 Audit of whg-rock (Division 27.6b)}

Date: 07/06/2017
Auditor: Claire Moore

\section*{General}
- No assessment was preformed
- In 2015 this stock received three year multiannual advice, therefore there are no changes this year.

\section*{For single stock summary sheet advice}
1) Assessment type: none
2) Assessment: Not applicable
3) Forecast: Not applicable
4) Assessment model: Not applicable
5) Data issues: No issues
6) Consistency: Not applicable
7) Stock status: Not applicable
8) Management Plan: None

\section*{General comments}

Well written report, clear and concise

\section*{Technical comments}

Report follows multiannual advice given in 2015

\section*{Conclusions}

Report has been completed correctly given the data and advice available.

\section*{40 Whiting in 7.a}

\section*{2017 Assessment and advice}

This stock was benchmarked in 2017 and the outcome was to upgrade the assessment from category 3 (trends-based) to category 1 (analytical assessment and forecast). Data exploration was carried out in WKIRISH 2 (ICES, 2017). A full analytical assessment procedure was developed during WKIRISH 3 (ICES, 2017) using ASAP. Reference points were also estimated during WKIRISH 3. WGCSE 2017 updated the assessment with 2016 data.

\section*{Type of assessment}

SPALY update of ASAP assessment.

ICES advice applicable to 2017 and 2016
ICES advises that when the precautionary approach is applied, there should zero catch in 2017.
http://www.ices.dk/sites/pub/Publication\%20Reports/Advice/2016/2016/whg-iris.pdf

\subsection*{40.1 General}

\section*{Stock description and management units}

The stock and the management unit are both ICES Division 7.a (Irish Sea). Whiting landings taken or reported in ICES rectangles 33E2 and 33E3 have been reassigned to the \(7 . \mathrm{b}, \mathrm{c}, \mathrm{e}-\mathrm{k}\) whiting stock since 2003.

[ Assessment area

\section*{Management applicable to 2016 and 2017}

The minimum landing size of whiting is 27 cm . The 2017 TAC for whiting 7.a was \(80 t\) the same as 2016. Overall official landings in 2016 were below the TAC but some countries landings were close to their quotas. This stock is not yet under the landings obligation (EU) 2016/2375.
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{2016} & 2016 Quota & 2016 Officially reported Landings \\
\hline Belgium & 0 & 1 \\
\hline France & 3 & \(<0.5\) \\
\hline Ireland & 46 & 49 \\
\hline The Netherlands & 0 & - \\
\hline United Kingdom & 31 & 8 \\
\hline
\end{tabular}

Note for Ireland, 40 t were reallocated from rectangles \(33 \mathrm{E} 2 \& 33 \mathrm{E} 3\).

TAC 2016
\begin{tabular}{lc|cl}
\hline Species: \begin{tabular}{l} 
Whiting \\
Merlangius merlangus
\end{tabular} & Zone: \begin{tabular}{l} 
VIla \\
(WHG/07A.)
\end{tabular} \\
\hline Belgium & 0 & \\
France & 3 & \\
Ireland & 06 & \\
The Netherlands & 31 & \\
United Kingdom & 80 & Analytical TAC \\
Union & 80 & \\
TAC & & \\
\hline
\end{tabular}

TAC 2017
\begin{tabular}{lc|cl}
\hline Species: \begin{tabular}{l} 
Whiting \\
Merlangius merlangus
\end{tabular} & Zone: \begin{tabular}{l} 
VIla \\
(WHG/07A.)
\end{tabular} \\
\hline Belgium & 0 & \\
France & 3 & \\
Ireland & 46 & \\
The Netherlands & 0 & \\
United Kingdom & 81 & \\
Union & 80 & Analytical TAC \\
TAC & &
\end{tabular}

\section*{Fishery in 2016}

The characteristics of the fishery are described in the stock annex.
The fishery in 2016 was prosecuted by the same fleets and gears as in recent years.
Table 40.1 gives the official nominal landings of 7 .a whiting as reported by each country to ICES. Working Group estimates of the landings and discards for the main fleets are given in Table 40.2. In recent years the values provided to the WG are very similar to officially reported landings. The majority of the catch was discarded in the Nephrops fishery (762 t) by UK-NI and IRE (Table 40.2).

The closure of the western Irish Sea to whitefish fishing from mid-February to the end of April, designed to protect cod, was continued in 2016 but is unlikely to have affected whiting catches which are mainly bycatch in the derogated Nephrops fishery.

Nephrops vessels can obtain a derogation to fish in certain sections of the closed area, providing they fit separator panels to their nets to allow escape of cod and other fish. The TR2 fleet in 7.a are obliged to use one of four types of cod selective measures, namely a 'Swedish' grid; the inclined separator panel, SELTRA trawl or 300 square mesh panel.

A summary of the 2016 catches by main gear types is presented below.
\begin{tabular}{ccccccc}
\begin{tabular}{c} 
Catch \\
\((2016)\)
\end{tabular} & & \multicolumn{2}{c}{ Landings } & & \multicolumn{2}{c}{ Discards } \\
\hline 780 t & \begin{tabular}{l} 
fin-fish \\
trawls
\end{tabular} & \begin{tabular}{l} 
Nephrops \\
directed \\
otter trawl
\end{tabular} & \begin{tabular}{l} 
Beam \\
trawlers
\end{tabular} & \begin{tabular}{l} 
Other \\
gears
\end{tabular} & \begin{tabular}{l} 
Nephrops \\
directed \\
otter trawls
\end{tabular} & Other gears
\end{tabular}

\subsection*{40.2 Information from the Industry}

There was no information on the whiting stock from the industry.

\subsection*{40.3 Data}

Data were provided by all countries according to the data call.
For WGCSE (2017) all data have been updated. Furthermore, to allow an age-based assessment, catch numbers-at-age, catch weights-at-age, stock weights-at-age have all be constructed since 2003. These updates are documented in the Stock Annex.

\section*{Fishery landings}

Working Group estimates of catch available since 1980 are illustrated in Figure 40.1 and indicate the declining trend since the start of the time-series.

The introduction of UK and Irish legislation requiring registration of fish buyers and sellers may mean that the reported landings from 2006 onwards are more representative of actual landings.

Working group estimates of landings are corrected for misreporting in the past. There is information that officially reported landings of whiting, especially around the mid1990s, have been inaccurate due to misreporting. Landings data have previously been partially corrected for by using sample-based estimates of landings at a number of Irish Sea ports. Due to the low level of landings recently, this has not been carried out since 2003. As for 7.a cod and haddock, the whiting landings taken or reported in ICES rectangles 33E2 and 33E3 have been reassigned to the \(7 . \mathrm{e}-\mathrm{k}\) whiting stock since 2003 (Table 40.3).

\section*{Fishery discards}

Discard estimates are available from Ireland and Northern Ireland, with minor discards from Belgium and the UK(E\&W). Raising methods used are described in the stock annex for \(7 . a\) whiting.

\section*{Landings-at-age data}

Sampling and raising methods previously used are described in the stock annex for 7.a whiting. Methods for estimating quantities and composition of landings are described in the stock annex.

Landings numbers-at-age are given in Table 40.4. For the 2003 data onwards, the catch and mean weight-at-age are estimated using combined UK(NI) and Irish quarterly length-weight relationships and age-length keys. This data are raised to the international catch data provided to ICES. Typically, quarterly landings are provided by the UK(Scotland), Belgium and France and annual landings are provided by UK(IOM). The quality of the landings-at-age data has been declining in recent years due to reduced sample numbers commensurate with the decline in landings.

\section*{Discards numbers-at-age data}

Discard number-at-age are given in Table 40.5. Discarding of whiting is high within the Irish Sea. Discard Numbers-at-age were combined for Ireland and Northern Ireland for ages 0 to \(6+\) and then raised to the international discards. Data from other UK and Belgium were available from 2012-2016. From 2003, the discard time-series from Ireland is based on the Nephrops fleet only. Therefore the discard weight in tonnes has been revised. Discards from NI were not available from 2003-2005 and so discard numbers-at-age are based on Irish sampling data only. There has been a high number of age 1 and 2 discarded at the start of the time-series with almost all age 1 and 2 discarded later in time-series (Figure 40.3).

The length frequency of discards of national sampled fleets in 2016 is given in Figure 40.2. More detailed information is available in the stock annex.

\section*{Biological data}

The derivation of these parameters and variables is described in the stock annex. The Lorenzen method was used to estimate M. This was derived during WKIRISH, 2 and investigated during WKIRISH, 3. Maturity-at-age is knife edge at age 2. Stock weights were also revised at the benchmark meeting. Stock weights-at-age were derived from the catch weights and then smoothed using a three year moving average. Figure 40.4 shows the stock weights used. There are strong trends in mean weights-at-age over the time-series with a minimum around 2000s for most ages. There was a small increase in the mid-2000s but overall mean weights are significantly lower than at the start of the series.

\section*{Survey data used in assessment}

Table 40.6 describes the survey data made available to the Working Group.
In 2016, the entire time-series of the UK(E\&W)-BTS-Q3 survey data was revised so that only the selected prime stations are used.

Survey series for whiting provided to the Working Group are further described in the stock annex for 7.a whiting (Section B.3). Five survey series were available. The inclusion of the different available surveys was tested in a series of preliminary model runs at WKIRISH, 3. Figure 40.5 shows the log standardized indices of tuning fleets by cohort. There are very little cohort signals in any of the indices. The beam trawl survey shows an increasing trend in the early part of the time-series not seen in the other surveys. The three surveys included in the final assessment were NIGFSQ1, NIGFSQ2 and the NIMIK net survey.

\subsection*{40.4 Historical stock development}

Model used: ASAP; (XSA is also carried out for comparison)
Software used: ASAP V3.0.17 NOAA Fisheries toolbox (http://nft.nefsc.noaa.gov)
FLR with R version 3.1.2 with packages FLCore 2.5.20150309, FLAssess _2.5.20130716, FLXSA 2.5.20140808 and FLEDA 2.5 (http://flr-project.org)

\section*{Data screening}

The general approach to data screening and analysis was followed in addition to the data exploration tools available in the FLR package FLEDA. The results of the data screening are fully documented using R markdown and are available in the folder ‘Data \(\backslash\) Whg 7.a \(\backslash\) Assessment. On SharePoint. Table 40.7 shows the ASAP input data.

\section*{Final update assessment}

The final assessment was run using the same settings as described in WKIRISH, 3. These final settings are described in the Stock Annex.

The observed and predicted catches are shown in Figure 40.7. Fit to the overall catch is reasonably good. There is some deviation in the early to mid-1990s. This is most likely due to the introduction of the survey data into the assessment model.
The observed and predicted index cpue values are shown in Figure 40.8. There is poor fit to the Northern Irish groundfish survey indices in the first half of the series but it improves in recent years.

Figure 40.6 shows the selectivity-at-age in the catch. Full selectivity is assumed for age 3 and the model is allowed to estimate ages 1 and 2 . . Table 40.8 shows the model estimates.

Figure 40.9 shows the retrospective analysis. The predicted catch shows no obvious retrospective pattern, neither does the recruitment estimate. There is some deviation in the early part of the time-series when the surveys were first introduced. However, recent estimates of SSB and F are consistent with no apparent bias.

\section*{The state of the stock}

Table 40.9 shows the estimated fishing mortality-at-age and Table 40.10 shows the stock numbers-at-age. The stock summary is given in Table 40.11 and Figure 40.11.

The present stock size is extremely low. SSB has declined since the start of the timeseries and has been well below Blim since the mid-1990s. Recruitment has been low since the early 1990s. Large variations in fishing mortality estimates have been observed in recent years. F has been well above Flim for since the early 1990s.

\subsection*{40.5 Short-term predictions}

Short-term projections were performed using FLR libraries. Recruitment for 20172019 was estimated at 117107 (GM 2000 onwards; thousands). Three year averages were used for F (unscaled) and weights-at-age.

Input data for the short-term forecast are given in Table 40.12. The single-option output is given in Tables 40.13 and 40.14 gives the management options.

Estimates of the relative contribution of recent year classes to the 2018 landings and 2019 SSB are shown in Figure 40.12. The 2014 year-class estimates from ASAP ac-
counts for \(60 \%\) projected landings in 2018. The 2017 GM assumption contributes considerably to the estimated SSB in 2019.

\subsection*{40.6 Medium-term projection}

There is no analytical assessment for this stock.

\subsection*{40.7 MSY evaluations and Biological Reference Points}

ICES carried out and evaluation of MSY and PA reference points for this stock at WKIRISH 3. The results are summarized below:
\begin{tabular}{|c|c|c|c|}
\hline & Type & Value & Technical basis \\
\hline MSY & MSY Btrigger & 16300 t & Bpa \\
\hline \multirow[t]{2}{*}{Approach} & \(\mathrm{F}_{\mathrm{MSY}}\) & 0.22 & Median point estimates of EqSim with combined SR \\
\hline & Blim & 10000 t & Below 10000 t recruitment is impaired \\
\hline Precautionary & \(\mathrm{B}_{\mathrm{pa}}\) & 16300 t & Blim combined with the assessment error \\
\hline \multirow[t]{2}{*}{Approach} & Flim & 0.37 & F with \(50 \%\) probability of SSB less than Blim \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.22 & Flim combined with the assessment error \\
\hline
\end{tabular}

\subsection*{40.8 Management plans}

No management plan has been agreed or proposed.

\subsection*{40.9 Uncertainties and bias in assessment and forecast}

This stock was benchmarked in January 2017. The result of the benchmark was that the stock was elevated from a category 3 stock (trend-based assessment) to a category 1 stock (analytical assessment). The assessment includes information from the commercial fishery, including both landings and discards, and takes into account selectivity changes that have occurred in 1995. Three survey series are used within the assessment. Natural mortality parameters were updated to reflect current stock dynamics. The highly fluctuating estimates of fishing mortality in recent years (2002present) are likely to be the result of variability in the sampling data and discard estimates. Despite this inherent uncertainty it is clear from the assessment and additional information from surveys that the stock remains extremely low. Figure 40.10 shows a comparison between the final ASAP run and an XSA run. Both models with different structural assumptions show a consistent picture of stock trends.

Stock status classification relative to MSY proxies is given below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{Fishing pressure} & \multicolumn{5}{|c|}{Stock size} \\
\hline & & 2015 & 2016 & & 2017 & & 2015 & 2016 & & 2017 \\
\hline Maximum sustainable yield & \(\mathrm{F}_{\mathrm{MSY}}\) & * & * & * & Above & \[
\begin{aligned}
& \text { MSY } \\
& \text { B }_{\text {trigger }}
\end{aligned}
\] & \[
\theta
\] &  & & Below trigger \\
\hline Precautionary approach & \(\mathrm{F}_{\mathrm{pa}}, \mathrm{F}_{\mathrm{lim}}\) & \(\cdots\) & \(\cdots\) & \[
x
\] & Harvested unsustainably & \(\mathrm{B}_{\mathrm{pa}}, \mathrm{B}_{\text {lim }}\) & 0 & \(\cdots\) & & Reduced reproductive capacity \\
\hline Management plan & \(\mathrm{F}_{\text {MGT }}\) & - & - & - & Not applicable & \(\mathrm{B}_{\text {MGT }}\) & - & - & & Not applicable \\
\hline Qualitative evaluation & - & (4) & (4) & ( 3 & Increasing & & (4) & (3) & & Increasing \\
\hline
\end{tabular}

\subsection*{40.10Recommendations for next benchmark assessment}

This stock was benchmarked in 2017 as part of the WKIRSH process. A number of recommendations for future work were made and these are listed below. Given the current stock status there is no urgency to schedule another benchmark for this stock in the short term.

\section*{Time-varying M}

The stock shows very strong changes in weights-at-age over time (they can change by a factor of up to two). This is likely to affect the natural mortality. Further information to support this would be very useful for future benchmarks.

\section*{Dome-shaped selectivity surveys}

There are very little data to inform the question whether survey catchability is flattopped or dome-shaped. At the moment the highly truncated age structure means that this makes little difference in the model outputs. However if the stock recovers and more older fish appear then this will need to be revisited.

\section*{FSP survey}

The FSP survey potentially has useful information on the older fish (even though the survey is discontinued). Including the survey in the final assessment run resulted in many of the retrospective runs to fail to converge. It appears therefore that it causes the model to be unstable and was omitted from the final run. For future benchmarks it may be useful to investigate why this survey makes the model unstable.

\subsection*{40.11 Management considerations}

Discarding in the Nephrops fishery is the main management issue. Despite the implementation of several technical measures, which experimentally reduce whiting catches, as part of the cod long-term management plan the discards estimates still remain ca. 1000 t . Given the continued high discards and low TAC, this stock could become a major 'choke species' for the 7.a Nephrops fishery in the context of the landing obligation.

Effort limitations are in force within the Irish Sea as a result of the cod long-term management plan. These effort limitations have not significant reduced mortality on whiting.

Whiting has a low market value, which is likely to contribute to discarding rates.
Technical measures applied to this stock include a minimum landing size ( \(\geq 27 \mathrm{~cm}\) ), whiting now mature well below this MLS.

\subsection*{40.12 References}

ICES. 2012. ICES Implementation of Advice for Data-limited Stocks in 2012 in its 2012 Advice. ICES CM 2012/ACOM 68. 42 pp.

ICES. 2016. Report of the Workshop to consider MSY proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015, ICES Headquarters, Copenhagen, Denmark. ICES CM 2015/ACOM:61. 159 pp.

ICES. 2017 :Report of the Benchmark Workshop on the Irish Sea Ecosystem (WKIrish3), 30 Jan-uary-3 February 2017, Galway, Ireland, ICES CM 2017/BSG:01.

ICES. 2017. Report of the Second Workshop on the Impact of Ecosystem and Environmental Drivers on Irish Sea Fisheries Management (WKIrish2), 26-29 September 2016, Belfast, Northern Ireland, ICES CM 2016/BSG:02.

Table 40.1. Official Landings \((\mathbf{t})\) of whiting in Division 7.a, 1988-2016, as reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Belgium & France & IreLand & Netherlands & \begin{tabular}{l}
UK(NI, \\
ENGL. \& \\
Wales)
\end{tabular} & SPAIN & UK (ISLE of MAN) & UK (Scotland) & UK & Total human CONSUMPTION \\
\hline 1988 & 90 & 1,063 & 4,394 & & 5,823 & & 15 & 107 & & 11,492 \\
\hline 1989 & 92 & 533 & 3,871 & & 6,652 & & 26 & 154 & & 11,328 \\
\hline 1990 & 142 & 528 & 2,000 & & 5,202 & & 75 & 236 & & 8,183 \\
\hline 1991 & 53 & 611 & 2,200 & & 4,250 & & 74 & 223 & & 7,411 \\
\hline 1992 & 78 & 509 & 2,100 & & 4,089 & & 44 & 274 & & 7,094 \\
\hline 1993 & 50 & 255 & 1,440 & & 3,859 & & 55 & 318 & & 5,977 \\
\hline 1994 & 80 & 163 & 1,418 & & 3,724 & & 44 & 208 & & 5,637 \\
\hline 1995 & 92 & 169 & 1,840 & & 3,125 & & 41 & 198 & & 5,465 \\
\hline 1996 & 80 & 78 & 1,773 & 17 & 3,557 & & 28 & 48 & & 5,581 \\
\hline 1997 & 47 & 86 & 1,119 & 14 & 3,152 & & 24 & 30 & & 4,472 \\
\hline 1998 & 52 & 81 & 1,260 & 7 & 1,900 & & 33 & 22 & & 3,355 \\
\hline 1999 & 46 & 150 & 509 & 6 & 1,229 & & 5 & 44 & & 1,989 \\
\hline 2000 & 30 & 59 & 353 & 1 & 670 & & 2 & 15 & & 1,130 \\
\hline 2001 & 27 & 25 & 482 & & 506 & & 1 & 25 & & 1,066 \\
\hline 2002 & 22 & 33 & 347 & & 284 & & 1 & 27 & & 714 \\
\hline 2003 & 13 & 29 & 265 & & 130 & 85 & 1 & 31 & & 554 \\
\hline 2004 & 11 & 8 & 96 & & 82 & & 1 & 6 & & 204 \\
\hline 2005 & 10 & 13 & 94 & & 47 & & & \(<0.5\) & & 164 \\
\hline 2006 & 4 & 4 & 55 & & 22 & & & \(<0.5\) & & 85 \\
\hline 2007 & 3 & 3 & 187 & & 3 & & 1 & \(<0.5\) & & 197 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Belgium & France & Ireland & Netherlands & \begin{tabular}{l}
UK(NI, \\
ENGL. \& \\
Wales)
\end{tabular} & Spain & UK (IsLE of MAN) & UK (Scotland) & UK & Total human CONSUMPTION \\
\hline 2008 & 2 & 2 & 68 & & 11 & & 1 & & & 84 \\
\hline 2009 & 2 & & 78 & & 20 & & & & & 100 \\
\hline 2010 & 5 & 3 & 97 & & 16 & & <0.5 & & & 121 \\
\hline 2011 & 4 & 3 & 95 & & 16 & & <0.5 & & & 118 \\
\hline 2012 & 5 & 1 & 58 & & 10 & & & 1 & 11 & 86 \\
\hline 2013 & 2 & <0.5 & 44 & & & & <0.1 & 2 & 20 & 68 \\
\hline 2014 & 2 & <0.5 & 60 & & 11 & & <0.1 & & & 73 \\
\hline 2,015 & 1 & \(<0.5\) & 49 & & 8 & & & & & 59 \\
\hline 2016* & 1 & \(<0.5\) & 44 & & 5 & & \(<0.1\) & & & 50 \\
\hline
\end{tabular}
* Preliminary

Table 40.2. ICES estimates of discards, landings and catch of whiting in Division 7.a, 1988-2016.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{year} & \multicolumn{5}{|c|}{Discards by country/fleet} & \multirow[t]{3}{*}{Discards} & \multirow[t]{3}{*}{Landings} & \multirow[t]{3}{*}{Catch} \\
\hline & & IR-OTB fleet \({ }^{\text {ce }}\) & & Belgium & UK(E\&W) fleet & & & \\
\hline & fishery \({ }^{\text {b }}\) & & fishery \(^{\text {d }}\) & & & & & \\
\hline 1988 & 1,611 & & & & & 1,611 & 10,245 & 11,856 \\
\hline 1989 & 2,103 & & & & & 2,103 & 11,305 & 13,408 \\
\hline 1990 & 2,444 & & & & & 2,444 & 8,212 & 10,656 \\
\hline 1991 & 2,598 & & & & & 2,598 & 7,348 & 9,946 \\
\hline 1992 & 4,203 & & & & & 4,203 & 8,588 & 12,791 \\
\hline 1993 & 2,707 & & & & & 2,707 & 6,523 & 9,230 \\
\hline 1994 & 1,173 & & & & & 1,173 & 6,763 & 7,936 \\
\hline 1995 & 2,151 & & & & & 2,151 & 4,893 & 7,044 \\
\hline 1996 & 3,631 & & & & & 3,631 & 4,335 & 7,966 \\
\hline 1997 & 1,928 & & & & & 1,928 & 2,277 & 4,205 \\
\hline 1998 & 1,304 & & & & & 1,304 & 2,229 & 3,533 \\
\hline 1999 & 1,092 & & & & & 1,092 & 1,670 & 2,762 \\
\hline 2000 & 2,118 & & & & & 2,118 & 762 & 2,880 \\
\hline 2001 & 1,012 & & & & & 1,012 & 733 & 1,745 \\
\hline 2002 & 740 & & & & & 740 & 747 & 1,487 \\
\hline 2003 & & 480 & & & & 480 & 517 & 996 \\
\hline 2004 & & 905 & & & & 905 & 133 & 1,038 \\
\hline 2005 & & 272 & & & & 272 & 125 & 397 \\
\hline 2006 & & 1,580 & 193 & & & 1,773 & 64 & 1,837 \\
\hline 2007 & & 725 & 787 & & & 1,512 & 35 & 1,547 \\
\hline 2008 & & 693 & 476 & & & 1,169 & 37 & 1,206 \\
\hline 2009 & & 688 & 633 & & & 1,321 & 39 & 1,360 \\
\hline 2010 & & 240 & 914 & & & 1,154 & 30 & 1,184 \\
\hline 2011 & & 330 & 616 & & & 946 & 31 & 977 \\
\hline 2012 & & 257 & 1,065 & 17 & 1 & 1,339 & 60 & 1,399 \\
\hline 2013 & & 95 & \[
833
\] & 17 & 3 & 948 & 33 & 981 \\
\hline 2014 & & 263 & 1,645 & 15 & 28 & 1,951 & 23 & 1,974 \\
\hline 2015 & & 438 & 1,074 & 9 & 1 & 1,521 & 28 & 1,549 \\
\hline 2016* & & 173 & 589 & & \[
3
\] & 765 & 15 & 780 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\mathrm{b}}\) Based on UK(N.Ireland) and Ireland data. \({ }^{\text {c }}\) Based on data from Ireland.
\({ }^{d}\) Based on data from Northern Ireland.* Preliminary (and rounded).
\({ }^{e}\) Raised using Days.Table 40.3. Whiting landings taken or reported in ICES rectangles 33E2, 33E3 and 33E4 have been reassigned to the \(7 . \mathrm{e}-\mathrm{k}\) whiting stock since 2003.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Official landings & ICES landings & ICES Discards & ICES catch & Landings taken or reported in rectangles \(33 E 2\) and 33E3 \\
\hline 1988 & 11,492 & 10,245 & 1,611 & 11,856 & \\
\hline 1989 & 11,328 & 11,305 & 2,103 & 13,408 & \\
\hline 1990 & 8,183 & 8,212 & 2,444 & 10,656 & \\
\hline 1991 & 7,411 & 7,348 & 2,598 & 9,946 & \\
\hline 1992 & 7,094 & 8,588 & 4,203 & 12,791 & \\
\hline 1993 & 5,977 & 6,523 & 2,707 & 9,230 & \\
\hline 1994 & 5,637 & 6,763 & 1,173 & 7,936 & \\
\hline 1995 & 5,465 & 4,893 & 2,151 & 7,044 & \\
\hline 1996 & 5,581 & 4,335 & 3,631 & 7,966 & \\
\hline 1997 & 4,472 & 2,277 & 1,928 & 4,205 & \\
\hline 1998 & 3,355 & 2,229 & 1,304 & 3,533 & \\
\hline 1999 & 1,989 & 1,670 & 1,092 & 2,762 & \\
\hline 2000 & 1,130 & 762 & 2,118 & 2,880 & \\
\hline 2001 & 1,066 & 733 & 1,012 & 1,745 & \\
\hline 2002 & 714 & 747 & 740 & 1,487 & \\
\hline 2003 & 554 & 517 & 480 & 996 & 159 \\
\hline 2004 & 204 & 133 & 905 & 1,038 & 51 \\
\hline 2005 & 164 & 125 & 272 & 397 & 33 \\
\hline 2006 & 85 & 64 & 1,773 & 1,837 & 22 \\
\hline 2007 & 197 & 35 & 1,512 & 1,547 & 161 \\
\hline 2008 & 84 & 37 & 1,169 & 1,206 & 44 \\
\hline 2009 & 100 & 39 & 1,321 & 1,360 & 63 \\
\hline 2010 & 121 & 30 & 1,154 & 1,184 & 91 \\
\hline 2011 & 118 & 31 & 946 & 977 & 75 \\
\hline 2012 & 86 & 60 & 1,339 & 1,399 & 43 \\
\hline 2013 & 68 & 33 & 948 & 981 & 33 \\
\hline 2014 & 73 & 23 & 1,951 & 1,974 & 50 \\
\hline 2015 & 59 & 28 & 1,521 & 1,549 & 34 \\
\hline 2016 & 50 & 15 & 765 & 780 & 40 \\
\hline
\end{tabular}

Table 40.4. Whiting7.a. Landings numbers-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Age 0 & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 \\
\hline 1980 & 0 & 14520 & 21811 & 6468 & 2548 & 350 & 0 \\
\hline 1981 & 0 & 11203 & 29011 & 16004 & 2596 & 821 & 0 \\
\hline 1982 & 41 & 5427 & 18098 & 19340 & 6108 & 813 & 0 \\
\hline 1983 & 0 & 4886 & 9943 & 9100 & 4530 & 1165 & 321 \\
\hline 1984 & 0 & 18254 & 12683 & 5257 & 2571 & 1045 & 402 \\
\hline 1985 & 0 & 15540 & 35324 & 8687 & 996 & 0 & 675 \\
\hline 1986 & 0 & 6306 & 16839 & 10809 & 1877 & 285 & 0 \\
\hline 1987 & 0 & 10149 & 21563 & 6968 & 1943 & 242 & 0 \\
\hline 1988 & 0 & 6983 & 25768 & 6989 & 1513 & 396 & 0 \\
\hline 1989 & 0 & 11645 & 14029 & 13011 & 3645 & 490 & 0 \\
\hline 1990 & 0 & 9502 & 17604 & 4734 & 1477 & 318 & 0 \\
\hline 1991 & 102 & 7426 & 18406 & 5829 & 993 & 0 & 311 \\
\hline 1992 & 0 & 8380 & 21907 & 7959 & 1374 & 462 & 0 \\
\hline 1993 & 38 & 2742 & 21468 & 7327 & 932 & 0 & 135 \\
\hline 1994 & 0 & 3245 & 6983 & 18509 & 1801 & 208 & 0 \\
\hline 1995 & 0 & 1124 & 10095 & 3020 & 4444 & 233 & 0 \\
\hline 1996 & 129 & 1652 & 6162 & 7432 & 1263 & 1082 & 135 \\
\hline 1997 & 0 & 610 & 0 & 4239 & 2567 & 1795 & 87 \\
\hline 1998 & 0 & 329 & 0 & 3287 & 4727 & 888 & 0 \\
\hline 1999 & 1 & 341 & 0 & 2806 & 2607 & 741 & 0 \\
\hline 2000 & 0 & 319 & 0 & 1364 & 1002 & 299 & 0 \\
\hline 2001 & 0 & 111 & 0 & 1189 & 1006 & 171 & 0 \\
\hline 2002 & 0 & 67 & 0 & 748 & 0 & 1480 & 376 \\
\hline 2003 & 0 & 89 & 0 & 1051 & 606 & 0 & 199 \\
\hline 2004 & 0 & 0 & 0 & 17 & 0 & 117 & 0 \\
\hline 2005 & 0 & 0 & 0 & 101 & 0 & 216 & 0 \\
\hline 2006 & 0 & 34 & 0 & 41 & 0 & 88 & 0 \\
\hline 2007 & 0 & 24 & 0 & 41 & 0 & 32 & 0 \\
\hline 2008 & 0 & 38 & 0 & 66 & 0 & 25 & 0 \\
\hline 2009 & 0 & 65 & 0 & 44 & 0 & 22 & 0 \\
\hline 2010 & 0 & 18 & 0 & 83 & 0 & 11 & 0 \\
\hline 2011 & 0 & 1 & 0 & 17 & 0 & 59 & 0 \\
\hline 2012 & 0 & 4 & 0 & 29 & 0 & 80 & 0 \\
\hline 2013 & 8 & 81 & 0 & 36 & 0 & 20 & 0 \\
\hline 2014 & 0 & 2 & 0 & 25 & 0 & 24 & 0 \\
\hline 2015 & 0 & 0 & 0 & 9 & 0 & 44 & 0 \\
\hline 2016 & 0 & 0 & 0 & 6 & 0 & 21 & 0 \\
\hline
\end{tabular}

Table 40.5. Whiting7.a. Discards numbers-at-age.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Age 0 & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 \\
\hline 1980 & 12786 & 32318 & 6888 & 65 & 26 & 0 & 0 \\
\hline 1981 & 9865 & 24935 & 9162 & 162 & 26 & 0 & 0 \\
\hline 1982 & 4047 & 8489 & 560 & 19 & 0 & 0 & 0 \\
\hline 1983 & 23847 & 7328 & 2036 & 9 & 0 & 0 & 0 \\
\hline 1984 & 26394 & 33900 & 1568 & 11 & 0 & 0 & 0 \\
\hline 1985 & 12380 & 26461 & 1859 & 9 & 0 & 0 & 0 \\
\hline 1986 & 28364 & 21111 & 1464 & 33 & 0 & 0 & 0 \\
\hline 1987 & 16594 & 40598 & 1875 & 0 & 0 & 0 & 0 \\
\hline 1988 & 6922 & 17958 & 1940 & 0 & 0 & 0 & 0 \\
\hline 1989 & 17247 & 20701 & 2476 & 26 & 0 & 0 & 0 \\
\hline 1990 & 4216 & 31810 & 3353 & 72 & 0 & 0 & 0 \\
\hline 1991 & 20349 & 29334 & 3823 & 146 & 1 & 0 & 0 \\
\hline 1992 & 1497 & 61451 & 10404 & 97 & 0 & 0 & 0 \\
\hline 1993 & 12639 & 13979 & 17707 & 426 & 5 & 0 & 0 \\
\hline 1994 & 3731 & 12063 & 1812 & 1702 & 29 & 0 & 0 \\
\hline 1995 & 7118 & 17613 & 7015 & 492 & 234 & 0 & 0 \\
\hline 1996 & 12732 & 39647 & 8168 & 1976 & 81 & 0 & 0 \\
\hline 1997 & 8163 & 25497 & 5352 & 689 & 141 & 0 & 0 \\
\hline 1998 & 6096 & 27131 & 2293 & 550 & 44 & 0 & 0 \\
\hline 1999 & 20851 & 7677 & 2117 & 228 & 34 & 2 & 2 \\
\hline 2000 & 7321 & 38922 & 4395 & 564 & 55 & 1 & 10 \\
\hline 2001 & 16940 & 12631 & 3150 & 102 & 10 & 0 & 0 \\
\hline 2002 & 8538 & 13412 & 1588 & 231 & 33 & 0 & 1 \\
\hline 2003 & 12389 & 4595 & 201 & 0 & 0 & 0 & 0 \\
\hline 2004 & 19699 & 14938 & 345 & 59 & 0 & 0 & 0 \\
\hline 2005 & 643 & 5797 & 346 & 16 & 3 & 0 & 0 \\
\hline 2006 & 15764 & 20590 & 613 & 21 & 0 & 0 & 0 \\
\hline 2007 & 17436 & 24319 & 747 & 50 & 0 & 0 & 0 \\
\hline 2008 & 10645 & 19994 & 676 & 16 & 0 & 0 & 0 \\
\hline 2009 & 6622 & 27448 & 1176 & 0 & 0 & 0 & 0 \\
\hline 2010 & 3946 & 15102 & 2810 & 64 & 1 & 0 & 0 \\
\hline 2011 & 25982 & 8197 & 658 & 314 & 0 & 0 & 0 \\
\hline 2012 & 6637 & 31020 & 790 & 37 & 1 & 3 & 0 \\
\hline 2013 & 8493 & 11945 & 613 & 4 & 0 & 0 & 0 \\
\hline 2014 & 13467 & 27553 & 2425 & 259 & 10 & 0 & 0 \\
\hline 2015 & 3883 & 23595 & 2603 & 223 & 1 & 0 & 0 \\
\hline 2016 & 4509 & 5780 & 4804 & 294 & 15 & 0 & 0 \\
\hline
\end{tabular}

Table 40.6. Whiting in 7.a. Survey data available to WGCSE 2017.

NIGFS-WIBTS-Q1: Northern Ireland March Groundfish Survey
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 1993 & 2017 & & & & & \\
\hline 1 & 1 & 0.21 & 0.25 & & & & \\
\hline 0 & 6 & & & & & & \\
\hline 1 & 665.6 & 710.3 & 81.2 & 11.7 & 4 & 0.8 & 1993 \\
\hline 1 & 1804.6 & 262.1 & 299.2 & 44.7 & 11.9 & 8.1 & 1994 \\
\hline 1 & 1688.9 & 635.7 & 174.2 & 88.4 & 22.0 & 6.3 & 1999 \\
\hline 1 & 1468.4 & 334.0 & 213.0 & 35.1 & 37.2 & 5.4 & 1996 \\
\hline 1 & 1406.1 & 1536.4 & 156.0 & 52.8 & 4.5 & 13.7 & 1997 \\
\hline 1 & 1485.0 & 754.4 & 415.4 & 29.7 & 7.4 & 1.8 & 1998 \\
\hline 1 & 1369.4 & 373.3 & 111.2 & 41.5 & 3.7 & 1.0 & 1999 \\
\hline 1 & 2302.4 & 410.9 & 181.8 & 26.6 & 3.7 & 0.0 & 2000 \\
\hline 1 & 1065.7 & 696.5 & 124.6 & 13.7 & 5.9 & 2.7 & 2001 \\
\hline 1 & 2307.7 & 686.7 & 175.3 & 52.9 & 11.2 & 1.4 & 2002 \\
\hline 1 & 1495.1 & 905.2 & 130.2 & 10.9 & 1.6 & 0.1 & 2003 \\
\hline 1 & 1609.8 & 231.7 & 61.4 & 2.7 & 1.3 & 0.2 & 2004 \\
\hline 1 & 689.3 & 124.0 & 28.5 & 12.3 & 3 & 0.1 & 2005 \\
\hline 1 & 959.8 & 235.6 & 30.3 & 6.0 & 0 & 0.1 & 2006 \\
\hline 1 & 905.0 & 158.6 & 14.9 & 2.7 & 0 & 0.0 & 2007 \\
\hline 1 & 756.7 & 347.0 & 45.0 & 2.8 & 0 & 0.4 & 2008 \\
\hline 1 & 1062.3 & 281.1 & 36.4 & 1.8 & 0.2 & 0.1 & 2009 \\
\hline 1 & 739.4 & 545.8 & 51.6 & 4.7 & 6 & 0.0 & 2010 \\
\hline 1 & 586.4 & 156.5 & 36.0 & 3.9 & 1 & 0.0 & 2011 \\
\hline 1 & 972.2 & 354.4 & 42.3 & 5.9 & 1 & 0.0 & 2012 \\
\hline 1 & 629.6 & 649.3 & 66.7 & 3.5 & 1 & 0.0 & 2013 \\
\hline 1 & 922.1 & 367.6 & 67.0 & 4.3 & 0 & 0.1 & 2014 \\
\hline 1 & 2797.3 & 469.3 & 18.8 & 2.3 & 0.0 & 0.0 & 2015 \\
\hline 1 & 1409.1 & 924.8 & 38.7 & 1.5 & 0.1 & 0.0 & 2016 \\
\hline 1 & 888.1 & 831.8 & 142.2 & 11.2 & 0.7 & 0.1 & 2017 \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 40.6. Whiting in 7.a. Survey data available to WGCSE 2017.

NIGFS-WIBTS-Q1: Northern Ireland October Groundfish Survey
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1993 & 2016 & & & & & & & \\
\hline 1 & 1 & 0.83 & 0.88 & & & & & \\
\hline 0 & 6 & & & & & & & \\
\hline 1 & 714.0 & 1040.5 & 475.9 & 67.5 & 8.2 & 3.1 & 0.3 & 1993 \\
\hline 1 & 1113.1 & 1320.0 & 208.6 & 150.7 & 33.9 & 2.3 & 0.5 & 1994 \\
\hline 1 & 3124.4 & 477.3 & 166.5 & 30.6 & 35.6 & 5.4 & 1.2 & 1995 \\
\hline 1 & 2306.2 & 591.2 & 134.4 & 52.4 & 10.5 & 7.0 & 1.3 & 1996 \\
\hline 1 & 2626.5 & 676.6 & 497.6 & 61.0 & 18.2 & 4.6 & 4.5 & 1997 \\
\hline 1 & 2863.5 & 466.8 & 153.8 & 72.8 & 6.2 & 2.2 & 0.1 & 1998 \\
\hline 1 & 2478.4 & 1079.7 & 192.0 & 51.7 & 43.3 & 3.7 & 1.8 & 1999 \\
\hline 1 & 2374.3 & 1084.7 & 126.0 & 20.0 & 16.9 & 6.0 & 2.7 & 2000 \\
\hline 1 & 6356.4 & 658.3 & 270.8 & 28.9 & 4.9 & 2.3 & 0.0 & 2001 \\
\hline 1 & 2692.4 & 1322.5 & 268.3 & 41.6 & 4.5 & 1.2 & 0.0 & 2002 \\
\hline 1 & 4431.0 & 1572.3 & 921.1 & 74.8 & 16.8 & 1.5 & 0.0 & 2003 \\
\hline 1 & 4457.1 & 699.6 & 268.3 & 113.8 & 4.4 & 1.9 & 0.0 & 2004 \\
\hline 1 & 2377.2 & 487.8 & 183.3 & 15.8 & 1.5 & 0.4 & 0.0 & 2005 \\
\hline 1 & 2849.2 & 144.8 & 46.8 & 7.9 & 1.8 & 0.0 & 0.0 & 2006 \\
\hline 1 & 2163.1 & 957.6 & 149.1 & 16.7 & 4.8 & 4.3 & 0.2 & 2007 \\
\hline 1 & 4884.6 & 1312.6 & 114.3 & 3.8 & 0.2 & 0.0 & 0.0 & 2008 \\
\hline 1 & 2246.5 & 510.8 & 71.7 & 7.5 & 1.6 & 0.0 & 0.2 & 2009 \\
\hline 1 & 2274.4 & 312.1 & 259.6 & 8.2 & 0.7 & 0.2 & 0.0 & 2010 \\
\hline 1 & 3534.1 & 348.4 & 139.7 & 26.3 & 3.5 & 0.9 & 0.0 & 2011 \\
\hline 1 & 1330.9 & 402.5 & 134.7 & 19.5 & 6.2 & 0.1 & 0.0 & 2012 \\
\hline 1 & 7135.8 & 354.7 & 155.9 & 31.1 & 1.5 & 0.5 & 0.9 & 2013 \\
\hline 1 & 4504.0 & 507.7 & 135.5 & 8.8 & 0.7 & 0.0 & 0.0 & 2014 \\
\hline 1 & 2802.4 & 891.0 & 115.2 & 6.3 & 0.7 & 0.0 & 0.0 & 2015 \\
\hline 1 & 2718.7 & 859.3 & 203.5 & 31.7 & 3.5 & 0.4 & 0.0 & 2016 \\
\hline
\end{tabular}

Table 40.6. Whiting in 7.a. Survey data available to WGCSE 2017.

UK (E\&W)-BTS-Q3: Corystes Irish Sea Beam-Trawl Survey - Prime stations only - Effort and numbers-at-age (per km towed).
\begin{tabular}{llll}
1988 & 2015 & & \\
1 & 10.75 & 0.79 & \\
0 & 1 & & \\
1 & 96 & 26 & 1988 \\
1 & 93 & 21 & 1989 \\
1 & 99 & 33 & 1990 \\
1 & 216 & 25 & 1991 \\
1 & 405 & 206 & 1992 \\
1 & 253 & 95 & 1993 \\
1 & 205 & 125 & 1994 \\
1 & 1949 & 87 & 1995 \\
1 & 169 & 194 & 1996 \\
1 & 409 & 254 & 1997 \\
1 & 893 & 199 & 1998 \\
1 & 550 & 137 & 1999 \\
1 & 320 & 122 & 2000 \\
1 & 585 & 195 & 2001 \\
1 & 280 & 96 & 2002 \\
1 & 456 & 229 & 2003 \\
1 & 917 & 330 & 2004 \\
1 & 849 & 294 & 2005 \\
1 & 1010 & 228 & 2006 \\
1 & 339 & 89 & 2007 \\
1 & 780 & 72 & 2008 \\
1 & 389 & 371 & 2009 \\
1 & 324 & 33 & 2010 \\
1 & 1002 & 341 & 2011 \\
1 & 442 & 426 & 2012 \\
1 & 1535 & 228 & 2013 \\
1 & 261 & 113 & 2014 \\
1 & 211 & 112 & 2015 \\
1 & 666 & 213 & 2016
\end{tabular}

Table 40.6. Whiting in 7.a. Survey data available to WGCSE 2017.

\section*{NIMIK: Northern Ireland MIK Net Survey}
\begin{tabular}{lll}
1994 & 2015 & \\
1 & 10.46 & 0.50 \\
0 & 0 & \\
1 & 778 & 1994 \\
1 & 225 & 1995 \\
1 & 397 & 1996 \\
1 & 205 & 1997 \\
1 & 59 & 1998 \\
1 & 91 & 1999 \\
1 & 40 & 2000 \\
1 & 167 & 2001 \\
1 & 19 & 2002 \\
1 & 148 & 2003 \\
1 & 101 & 2004 \\
1 & 135 & 2005 \\
1 & 118 & 2006 \\
1 & 82 & 2007 \\
1 & 99 & 2008 \\
1 & 173 & 2009 \\
1 & 78 & 2010 \\
1 & 122.2 & 2011 \\
1 & 123.9 & 2012 \\
1 & 197.6 & 2013 \\
1 & 54.9 & 2014 \\
1 & 59.5 & 2015 \\
1 & 6.7 & 2016
\end{tabular}

Eastern Irish Sea FSP: Isadale - 2005-2013: Numbers of fish per hour towed
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 2005 & 2013 & & & & & & \\
\hline 1 & 1 & 0.2 & 0.2 & & & & \\
\hline 1 & 6.0 & & & & & & \\
\hline 1 & 0.2 & 11.1 & 21.1 & 5.3 & 1.0 & 0.0 & 0.7 \\
\hline 1 & 8.7 & 46.7 & 15.2 & 1.9 & 0.5 & 0.0 & 0.0 \\
\hline 1 & 4.2 & 10.8 & 5.6 & 1.0 & 0.3 & 0.0 & 0.0 \\
\hline 1 & 3.7 & 10.3 & 8.6 & 2.0 & 0.4 & 0.3 & 0.0 \\
\hline 1 & 27.3 & 84.9 & 48.7 & 3.6 & 0.3 & 0.0 & 0.0 \\
\hline 1 & 4.5 & 57.9 & 43.5 & 5.0 & 0.2 & 0.1 & 0.0 \\
\hline 1 & 2.2 & 8.4 & 31.9 & 5.1 & 1.0 & 0.0 & 0.0 \\
\hline 1 & 5.2 & 80.9 & 29.8 & 22.1 & 1.2 & 0.1 & 0.0 \\
\hline 1 & 4.2 & 47.4 & 26.4 & 3.1 & 1.7 & 0.0 & 0.0 \\
\hline
\end{tabular}

Table 40.7. Whiting7.a. ASAP input data.
```


ASAP VERSION 3.0

Irish Sea Whiting

ASAP GUI 15 AUG 2012

Number of Years

37

First Year

1980

Number of Ages

7

Number of Fleets

1

Number of Sensitivity Blocks

2

Number of Available Survey Indices

5

Natural Mortality

1.078
1.078}00.803 0.718 0.608 0.554 0.518 0.518
1.078}00.803 0.718 0.608 0.554 0.518 0.518
1.078}00.803 0.718 0.608 0.554 0.518 0.518
1.078}00.803 0.718 0.608 0.554 0.518 0.518
1.078 0.803 0.718
1.078}00.803 0.718 0.608 0.554 0.518 0.518
1.078 0.803 0.718
1.078}00.803 0.718 0.608 0.554 0.518 0.518
1.078

```

```

1.078 0.803 0.718
1.078
1.078
1.078
1.078
1.078 0.803 0.718
1.078
1.078
1.078 0.803 0.718
1.078
1.078
1.078
1.078
1.078
1.078 0.803 0.718
1.078
1.078 0.803 0.718
1.078 0.003
1.078 0.803 0.718 0.608 0.554 0.518

Fecundity Option

Fraction of year that elapses prior to SSB calculation (0=Jan-1)

0

Maturity

0
0
0}0
0
0
0
0
0

```

\begin{tabular}{lllllll}
0 & 0.085 & 0.194 & 0.321 & 0.45 & 0.5813 & 0.6668 \\
0 & 0.079 & 0.1918 & 0.3163 & 0.4473 & 0.5743 & 0.6628 \\
0 & 0.0697 & 0.1807 & 0.3038 & 0.4455 & 0.5825 & 0.6998 \\
0 & 0.0643 & 0.1685 & 0.2907 & 0.4338 & 0.5893 & 0.7485 \\
0 & 0.0598 & 0.1572 & 0.2857 & 0.4387 & 0.6195 & 0.8123 \\
0 & 0.0617 & 0.15 & 0.2662 & 0.425 & 0.6262 & 0.8682 \\
0 & 0.0607 & 0.1497 & 0.2533 & 0.3963 & 0.6057 & 0.8412 \\
0 & 0.0608 & 0.1473 & 0.24 & 0.355 & 0.5375 & 0.7817 \\
0 & 0.0545 & 0.1417 & 0.2393 & 0.3318 & 0.4772 & 0.718 \\
0 & 0.048 & 0.1233 & 0.2218 & 0.3148 & 0.4282 & 0.7055 \\
0 & 0.0463 & 0.117 & 0.2045 & 0.2927 & 0.3982 & 0.6358 \\
0 & 0.0462 & 0.118 & 0.2002 & 0.2798 & 0.396 & 0.6755 \\
0 & 0.0473 & 0.1208 & 0.202 & 0.2695 & 0.3752 & 0.6523 \\
0 & 0.042 & 0.1142 & 0.205 & 0.2675 & 0.3703 & 0.6678 \\
0 & 0.0367 & 0.1053 & 0.1952 & 0.258 & 0.3345 & 0.521 \\
0 & 0.0322 & 0.101 & 0.194 & 0.2598 & 0.3227 & 0.4225 \\
0 & 0.0313 & 0.0945 & 0.1937 & 0.2632 & 0.3212 & 0.3588 \\
0 & 0.0312 & 0.0895 & 0.2015 & 0.2742 & 0.3532 & 0.3367 \\
0 & 0.0293 & 0.0835 & 0.1987 & 0.2888 & 0.3812 & 0.3847 \\
0 & 0.029 & 0.0992 & 0.2054 & 0.2847 & 0.4021 & 0.4114 \\
0 & 0.0281 & 0.1007 & 0.2267 & 0.3261 & 0.3847 & 0.4357 \\
0 & 0.0288 & 0.1045 & 0.2282 & 0.3338 & 0.3984 & 0.4062 \\
0 & 0.0323 & 0.0918 & 0.2277 & 0.3525 & 0.3862 & 0.3827 \\
0 & 0.0331 & 0.0939 & 0.2097 & 0.3355 & 0.4296 & 0.5145 \\
0 & 0.0352 & 0.0901 & 0.2082 & 0.3326 & 0.4961 & 0.7133 \\
0 & 0.0311 & 0.0815 & 0.2152 & 0.3261 & 0.5283 & 0.9183 \\
0 & 0.0331 & 0.077 & 0.1989 & 0.3325 & 0.4804 & 0.9181 \\
0 & 0.0326 & 0.0756 & 0.1883 & 0.3311 & 0.4127 & 0.784 \\
0 & 0.0313 & 0.078 & 0.175 & 0.3326 & 0.3957 & 0.5933 \\
0 & 0.032 & 0.0753 & 0.1748 & 0.3127 & 0.3924 & 0.455 \\
0 & 0.0334 & 0.0808 & 0.1777 & 0.3134 & 0.4162 & 0.4746 \\
0 & 0.0369 & 0.0836 & 0.1851 & 0.3267 & 0.4009 & 0.5369 \\
0 & 0.0339 & 0.0805 & 0.1806 & 0.3283 & 0.4403 & 0.6021 \\
0 & 0.0328 & 0.0745 & 0.1862 & 0.3264 & 0.4092 & 0.5803
\end{tabular}
Weights-at-age Pointers
Selectivity Block Assignment
Fleet 1 Selectivity Block Assignment
```

2
2
2
2
2

Selectivity Options for each block 1=by age, 2=logisitic, 3=double lo-

gistic
2 2

Selectivity Block \#1 Data

0 1 0 0.25
0.5 1 0 0.25
0.9 1 0 0.25
1 -1 0}0.2
-1 0 0.25
-1 0}00.2
-1 0 0.25
1 0 1
0.5 1 0 1
0
0

Selectivity Block \#2 Data

0.2 1 0 0.5
1 -1 0 0
-1 0}
-1}0
-1 0}
-1
. }
0}0
0}00
Fleet Start Age
Fleet End Age

Age Range for Average F

 4

Average F report option (1=unweighted, 2=Nweighted, 3=Bweighted)

Use Likelihood constants? (1=yes)

Release Mortality by Fleet

Catch Data

Fleet-1 Catch Data

12786	46838	28699	6533	2574	350	621	16737
9865	36138	38173	16166	2622	821	339	21331
4088	13916	18658	19359	6108	813	400	17969
23847	12214	11979	9109	4530	1165	321	12405
26394	52154	14250	5268	2571	1045	402	14999
12380	42001	37183	8696	996	675	372	18169
28364	27417	18303	10842	1877	285	270	12129
16594	50747	23438	6968	1943	242	111	14270
6922	24941	27708	6989	1513	396	197	11856
17247	32346	16505	13037	3645	490	177	13408
4216	41312	20957	4806	1477	318	128	10656
20451	36760	22229	5975	994	311	84	9946
1497	69831	32311	8056	1374	462	93	12791
12677	16721	39175	7753	937	135	27	9230
3731	15308	8795	20211	1830	208	50	7936
7118	18737	17110	3512	4678	233	21	7044
12861	41299	14330	9408	1344	1082	135	7966
8163	26107	9591	3256	1936	87	79	4205
6096	27460	5580	5277	932	261	95	3533

6096	27460	5580	5277	932	261	95	3533

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 20852 & 8018 & 4923 & 2835 & 776 & 161 & 121 & & 2762 \\
\hline 7321 & 39242 & 5758 & 1566 & 354 & 115 & 25 & & 2880 \\
\hline 16940 & 12742 & 4338 & 1108 & 181 & 53 & 20 & & 1745 \\
\hline 8538 & 13480 & 2336 & 1710 & 408 & 48 & 42 & & 1487 \\
\hline 12389 & 4685 & 1252 & 606 & 199 & 0 & 0 & 996 & \\
\hline 19699 & 14938 & 362 & 176 & 150 & 17 & 0 & 1038 & \\
\hline 643 & 5797 & 448 & 232 & 98 & 21 & 3 & 397 & \\
\hline 15764 & 20624 & 654 & 109 & 39 & 9 & 1 & 1837 & \\
\hline 17436 & 24343 & 787 & 82 & 10 & 3 & 0 & 1547 & \\
\hline 10645 & 20032 & 742 & 41 & 5 & 1 & 0 & 1206 & \\
\hline 6622 & 27513 & 1220 & 22 & 4 & 1 & \(\bigcirc\) & 1360 & \\
\hline 3946 & 15120 & 2894 & 75 & 4 & 0 & \(\bigcirc\) & 1184 & \\
\hline 25982 & 8198 & 675 & 373 & 15 & 3 & 0 & 977 & \\
\hline 6637 & 31023 & 819 & 116 & 61 & 12 & 1 & 1399 & \\
\hline 8501 & 12026 & 649 & 24 & 5 & 1 & 1 & 981 & \\
\hline 13467 & 27555 & 2450 & 284 & 21 & 1 & 1 & 1974 & \\
\hline 3883 & 23595 & 2613 & 267 & 15 & 1 & 1 & 1549 & \\
\hline 4504 & 5773 & 4802 & 307 & 21 & 2 & 0 & 780 & \\
\hline \# Disca & rds & & & & & & & \\
\hline \# Flee & -1 Dis & ds Da & & & & & & \\
\hline 00 & 00 & 0 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 0 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 0 0 & & & & & \\
\hline 00 & 00 & 00 & \(0 \quad 0\) & & & & & \\
\hline 00 & 00 & 00 & 0 0 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 0 0 & & & & & \\
\hline 00 & 00 & 00 & 0 0 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 0 - & & & & & \\
\hline 00 & 00 & 00 & \(0 \quad 0\) & & & & & \\
\hline 00 & 00 & 00 & 0 0 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 0 0 & & & & & \\
\hline 00 & 00 & 00 & 00 & & & & & \\
\hline 00 & 00 & 00 & 0 0 & & & & & \\
\hline 00 & 00 & 00 & 0 0 & & & & & \\
\hline 00 & 00 & 00 & 0 0 & & & & & \\
\hline 00 & 0 & 0 & 0 0 & & & & & \\
\hline \# Rele & se Prop & rtion & & & & & & \\
\hline \# Flee & -1 Rel & se Dat & & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & \(\bigcirc\) & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & \(\bigcirc\) & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline 00 & 00 & 00 & 0 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
\# Survey Index Data
Aggregate Index Units
2222
\# Age Proportion Index Units
2222
\# Weight-at-age Matrix
1 1 1111
\# Index Month
\(310 \quad 5 \quad 9 \quad 5\)
\# Index Selectivity Link to Fleet
\(\begin{array}{lllll}-1 & -1 & -1 & -1 & -1\end{array}\)
\# Index Selectivity Options 1=by age, 2=logisitic, 3=double logistic
111112
\# Index Start Age
21112
\# Index End Age
\(\begin{array}{lllll}7 & 7 & 1 & 2 & 7\end{array}\)
\# Estimate Proportion (Yes=1)
1000
\# Use Index (Yes=1)
11100
\# Index-1 Selectivity Data
\(0 \quad-1 \quad 0 \quad 0\)
\(0.5 \quad 1 \quad 0 \quad 0.5\)
\(\begin{array}{llll}1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0\end{array}\)
\(\begin{array}{llll}1 & -1 & 0 & 0\end{array}\)
\(\begin{array}{llll}1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0\end{array}\)
\(2 \quad 1 \quad 0 \quad 1\)
\(0.5 \quad 1 \quad 0 \quad 1\)
\(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\)
\# Index-2 Selectivity Data
0.2100 .5
\(\begin{array}{llll}0.5 & 1 & 0 & 0.5\end{array}\)
\(\begin{array}{llll}1 & -1 & 0 & 0\end{array}\)
\(\begin{array}{llll}1 & -1 & 0 & 0\end{array}\)
\(\begin{array}{llll}1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0\end{array}\)
\(\begin{array}{rrrr}1 & -1 & 0 & 0 \\ 2 & & 1 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 1\end{array}\)
\begin{tabular}{llll}
0.5 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{tabular}
000



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1989 & 93 & 0.5 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & \(\bigcirc\) & 0 \\
\hline 1990 & 99 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 1991 & 216 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 1992 & 405 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 1993 & 253 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1994 & 205 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 1995 & 1949 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 1996 & 169 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1997 & 409 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1998 & 893 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1999 & 550 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2000 & 320 & 0.5 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & \(\bigcirc\) & \(\bigcirc\) \\
\hline 2001 & 585 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2002 & 280 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2003 & 456 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2004 & 917 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2005 & 849 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2006 & 1010 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2007 & 339 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2008 & 780 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2009 & 389 & 0.5 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & \(\bigcirc\) & \(\bigcirc\) \\
\hline 2010 & 324 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2011 & 1002 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2012 & 442 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2013 & 1535 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2014 & 261 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2015 & 211 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2016 & 666 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{11}{|l|}{\# Index-5 Data} \\
\hline 1980 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1981 & 0 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1982 & 00 & 0 & 0 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1983 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1984 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & \(\bigcirc\) & 0 & & \\
\hline 1985 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1986 & 00 & \(\bigcirc\) & 0 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1987 & 00 & \(\bigcirc\) & 0 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1988 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1989 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & \(\bigcirc\) & 0 & & \\
\hline 1990 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1991 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1992 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1993 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1994 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1995 & 0 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1996 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1997 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1998 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & \(\bigcirc\) & 0 & & \\
\hline 1999 & 0 & \(\bigcirc\) & 0 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 2000 & 00 & 0 & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 2001 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 2002 & 00 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 2003 & 0 & \(\bigcirc\) & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 2004 & 00 & 0 & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 2005 & 38.66 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2006 & 72.953 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2007 & 21.87 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2008 & 25.23 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2009 & 164.82 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2010 & 111.12 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2011 & 48.6 & 0.5 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & \(\bigcirc\) & \(\bigcirc\) \\
\hline 2012 & 139.25 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2013 & 82.85 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 \\
\hline 2014 & 00 & 0 & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 2015 & 00 & 0 & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 2016 & 00 & 0 & 00 & 0 & 0 & 0 & 0 & 0 & & \\
\hline \multicolumn{11}{|l|}{\# Phase Control} \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\# Phase for F mult in 1st Year}} \\
\hline & & & & & & \multicolumn{5}{|c|}{1} \\
\hline \multicolumn{11}{|l|}{\# Phase for F mult Deviations} \\
\hline \multicolumn{11}{|l|}{2} \\
\hline \# Pha & se for & crui & itment & evi & io & & & & & \\
\hline
\end{tabular}
```

3

Phase for N in 1st Year

1

Phase for Catchability in 1st Year

2

Phase for Catchability Deviations

-5

Phase for Stock Recruitment Relationship

3

Phase for Steepness

-5

Recruitment CV by Year

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Lambdas by Index

1

Lambda for Total Catch in Weight by Fleet

1

Lambda for Total Discards at Age by Fleet

0

Catch Total CV by Year and Fleet

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

```
```

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
\# Discard Total CV by Year and Fleet

```
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
# Discard Effective Sample Size by Year and Fleet
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
# Lambda for F Mult in First year by Fleet
# CV for F Mult in First year by Fleet
0.9
# Lambda for F Mult Deviations by Fleet
0
# CV for F Mult Deviations by Fleet
0.9
# Lambda for N in 1st Year Deviations
```

```
0
# CV for N in 1st Year Deviations
. }
# Lambda for Recruitment Deviations
.1
# Lambda for Catchability in First year by Index
0 0 0 0 0
# CV for Catchability in First year by Index
0.9 0.9 0.9 0.9 .9
# Lambda for Catchability Deviations by Index
0 0 0 0 0
# CV for Catchability Deviations by Index
.9 . }9\mathrm{ . }9\mathrm{ . }9\mathrm{ . }
# Lambda for Deviation from Initial Steepness
0
# CV for Deviation from Initial Steepness
.9
# Lambda for Deviation from Unexploited Stock Size
0
# CV for Deviation from Unexploited Stock Size
. }
# NAA Deviations Flag
1
# Initial Numbers-at-age in 1st Year
1000000 500000 250000 125000 60000 30000 10000
# Initial F Mult in 1st Year by Fleet
1
# Initial Catchabilty by Index
.001 . 001 . 001 . 001 0.001
# Stock Recruitment Flag
0
# Initial Unexploited Stock
1000
# Initial Steepness
1
# Maximum F
2.5
# Ignore Guesses (Yes=1)
0
# Projection Control
# Do Projections (Yes=1)
0
# Fleet Directed Flag
1
# Final Year in Projection
2017
# Projection Data by Year
2017 -1 3 -99 1
# Do MCMC (Yes=1)
0
# MCMC Year Option
# MCMC Iterations
# MCMC Thinning Factor
# MCMC Random Seed
# Agepro R Option
-1
# Agepro R Option Start Year
0
# Agepro R Option End Year
0
# Export R Flag
1
# Test Value
-23456
######
###### FINIS ######
# Fleet Names
#$All
```

```
# Survey Names
#$NI-Q1
#$NI_Q2
#$NI-MIK
#$UK-BTS
#$UK-FSP
#
```

Table 40.8. Whiting 7.a. Selectivity of the catches and indices.

AGE	CATCH	NI-Q1	NI-Q4	NI-MIK
0	0.124	0.000	0.667	1.000
1	0.862	0.568	0.755	0.000
2	0.996	1.000	1.000	0.000
3	1.000	1.000	1.000	0.000
4	1.000	1.000	1.000	0.000
5	1.000	1.000	1.000	0.000
6	1.000	1.000	1.000	0.000

Table 40.9. Whiting7.a Fishing mortality-(F)-at age.

	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6
1980	0.026	0.173	0.431	0.513	0.524	0.525	0.526
1981	0.032	0.207	0.516	0.614	0.627	0.629	0.629
1982	0.035	0.229	0.57	0.679	0.693	0.695	0.695
1983	0.036	0.233	0.579	0.69	0.704	0.706	0.706
1984	0.044	0.286	0.71	0.846	0.863	0.865	0.866
1985	0.053	0.347	0.862	1.027	1.048	1.05	1.051
1986	0.041	0.27	0.671	0.799	0.816	0.818	0.818
1987	0.044	0.286	0.713	0.848	0.866	0.868	0.868
1988	0.037	0.243	0.604	0.719	0.734	0.735	0.735
1989	0.052	0.34	0.847	1.008	1.029	1.031	1.032
1990	0.044	0.289	0.718	0.855	0.873	0.875	0.875
1991	0.044	0.289	0.72	0.857	0.875	0.877	0.877
1992	0.071	0.468	1.164	1.386	1.415	1.418	1.419
1993	0.057	0.371	0.923	1.099	1.122	1.124	1.124
1994	0.059	0.384	0.955	1.137	1.161	1.163	1.164
1995	0.105	0.73	0.843	0.846	0.846	0.846	0.846
1996	0.114	0.797	0.921	0.924	0.924	0.924	0.924
1997	0.1	0.694	0.802	0.805	0.805	0.805	0.805
1998	0.139	0.968	1.119	1.123	1.123	1.123	1.123
1999	0.11	0.765	0.884	0.887	0.887	0.887	0.887
2000	0.143	0.999	1.155	1.159	1.159	1.159	1.159
2001	0.116	0.81	0.936	0.939	0.939	0.939	0.939
2002	0.158	1.103	1.274	1.279	1.279	1.279	1.279
2003	0.079	0.549	0.634	0.636	0.636	0.636	0.636
2004	0.217	1.513	1.749	1.755	1.755	1.755	1.755
2005	0.057	0.397	0.458	0.46	0.46	0.46	0.46
2006	0.194	1.353	1.563	1.569	1.569	1.569	1.569
2007	0.153	1.065	1.23	1.235	1.235	1.235	1.235
2008	0.123	0.86	0.994	0.998	0.998	0.998	0.998
2009	0.14	0.977	1.129	1.133	1.133	1.133	1.133
2010	0.145	1.013	1.171	1.175	1.175	1.175	1.175
2011	0.109	0.762	0.881	0.884	0.884	0.884	0.884
2012	0.144	1.004	1.16	1.164	1.164	1.164	1.164
2013	0.083	0.577	0.667	0.669	0.669	0.669	0.669
2014	0.186	1.298	1.5	1.505	1.505	1.505	1.505
2015	0.117	0.815	0.941	0.945	0.945	0.945	0.945
2016	0.074	0.513	0.593	0.595	0.595	0.595	0.595

Table 40.10. Whiting7.a Stock Numbers-at-age (start of year) ('1000).

	AGE 0	AGE 1	AGE 2	AGE 3	AGE 4	AGE 5	AGE 6
1980	634875	387588	123018	20634	7315	1005	1793
1981	322564	210395	145994	38980	6722	2489	986
1982	285178	106342	76594	42499	11480	2063	1104
1983	880701	93704	37878	21119	11733	3298	942
1984	630674	289221	33255	10350	5768	3334	1247
1985	513723	205458	97383	7972	2419	1398	1148
1986	870583	165806	65079	20053	1555	487	530
1987	474957	284290	56706	16218	4908	395	268
1988	488278	154708	95634	13562	3780	1186	166
1989	601748	160113	54375	25508	3599	1043	386
1990	523266	194402	51036	11373	5068	739	303
1991	686554	170386	65252	12139	2634	1217	259
1992	229804	223533	57154	15496	2805	631	366
1993	214792	72810	62714	8703	2110	392	144
1994	184671	69069	22510	12157	1580	395	104
1995	343300	59265	21077	4225	2123	284	93
1996	204896	105204	12798	4424	987	523	96
1997	172204	62190	21247	2486	956	225	147
1998	168308	53039	13912	4645	605	246	99
1999	209650	49842	9022	2216	823	113	67
2000	109785	63920	10387	1817	497	195	44
2001	193639	32367	10542	1597	311	90	45
2002	80493	58659	6449	2016	340	70	31
2003	121095	23381	8722	879	306	54	17
2004	95987	38086	6051	2257	253	93	22
2005	106343	26286	3756	513	212	25	12
2006	155909	34184	7920	1158	177	77	14
2007	104358	43690	3958	809	131	21	11
2008	149762	30479	6748	564	128	22	6
2009	93394	45042	5776	1218	113	27	6
2010	93123	27623	7597	911	214	21	6
2011	152628	27399	4491	1149	153	38	5
2012	79945	46555	5727	908	258	36	11
2013	160974	23555	7645	876	154	46	9
2014	202376	50421	5924	1914	244	45	17
2015	111405	57162	6168	645	231	31	8
2016	73818	33726	11338	1174	136	52	9
2017	117107	23335	9043	3056	352	43	20

Table 40.11. Whiting7.a Stock Summary: weights in tonnes: CatchPred is predicted catch from ASAP. Recruitment-at-age zero ('1000), Fbar ages (1-3)

YEAR	LAN	DIS	CAT	CATPRED	TSB	SSB	SSBCV	RECR	RECRCV	FBAR	FBARCV
1980	13422	3314	16737	16687.64	61039.66	32629.44	0.327925	634875.4	0.325387	0.372722	0.322519
1981	18267	3064	21331	21129.98	59606.34	43090.35	0.245206	322563.9	0.42311	0.446001	0.293789
1982	17167	801	17969	17946	43511.25	34578.53	0.266949	285177.6	0.443759	0.492886	0.329732
1983	10577	1829	12405	12366.03	29917.51	21952.64	0.344642	880700.7	0.252594	0.500751	0.388257
1984	11619	3380	14999	14738.96	37821.26	14972.78	0.411413	630673.8	0.313125	0.61383	0.355033
1985	15525	2644	18169	17965.82	37034.95	22714.54	0.293134	513722.7	0.343337	0.745188	0.325287
1986	10063	2066	12129	12084.56	28815.08	18153.78	0.321255	870583.4	0.261595	0.580289	0.350309
1987	10411	3859	14270	14068.29	33163.48	16162.93	0.336758	474957.3	0.345989	0.615815	0.325033
1988	10245	1611	11856	11797.72	29994.02	20448.57	0.27866	488278.1	0.322398	0.521575	0.327604
1989	11305	2103	13408	13406.66	26702.97	16984.09	0.306192	601747.5	0.266623	0.731667	0.323508
1990	8212	2444	10656	10637.54	24500.52	12680.86	0.327651	523266.1	0.249663	0.620573	0.30836
1991	7348	2598	9946	9918.658	23077.41	13791.4	0.261504	686553.7	0.16746	0.621965	0.255336
1992	8588	4203	12791	12552.23	22624.92	11895.34	0.208485	229804.5	0.152229	1.006027	0.186953
1993	6523	2707	9230	6907.15	13353.1	9982.075	0.152894	214792	0.130685	0.797363	0.171076
1994	6763	1173	7936	5074.371	8949.33	5758.361	0.163857	184670.7	0.137223	0.825295	0.17784
19	489	215	704	45	69	4138.936	0.166379	343300.4	0.118564	0.806319	0.172512
1996	4335	3631	7966	4417.117	7309.3	2890.724	0.18824	204896.3	0.128812	0.880345	0.149828
1997	2277	1928	4205	3030.9	5403.375	3121.015	0.1527	172203.5	0.139538	0.767375	0.167845
1998	2229	1304	3533	2907.449	4292.339	2584.476	0.161166	168307.7	0.130493	1.069987	0.168909
1999	1670	1092	2762	2270.118	3118.85	1558.802	0.198781	209649.7	0.127885	0.845638	0.179119
2000	762	2118	2880	2372.386	3510.023	1515.725	0.191011	109784.6	0.139391	1.10422	0.154797
2001	733	1012	1745	1641.008	2286.874	1338.526	0.173713	193638.9	0.130625	0.895241	0.184889
2002	747	740	1487	1899.731	2892.649	1191.53	0.194397	80492.75	0.136273	1.218762	0.161237
2003	517	480	996	1277.829	1862.462	1205.466	0.173136	121095	0.149346	0.606273	0.238655
2004	133	905	1038	2085.752	2374.888	1278.009	0.196704	95986.93	0.125111	1.672411	0.175214
2005	125	272	397	500.1733	1399.921	550.8759	0.266067	106343.1	0.138711	0.438244	0.280962
2006	64	1773	1837	2601.818	2217.654	1086.157	0.218679	155908.8	0.126074	1.495156	0.184161
2007	35	1512	1547	1540.226	2125.135	587.2439	0.272323	104358	0.13103	1.176623	0.171414
2008	37	1169	1206	1288.862	1677.813	729.914	0.210066	149762.2	0.124771	0.95073	0.194535
2009	39	1321	1360	1505.441	2234.113	743.2255	0.214228	93394.39	0.133541	1.079439	0.177648
2010	30	1154	1184	1455.614	1730.781	830.2582	0.193554	93122.57	0.128358	1.1199	0.19216
2011	31	946	977	988.2198	1477.868	620.2893	0.232569	152628.2	0.125678	0.842261	0.199523
2012	60	1339	1399	1439.404	2179.637	689.8764	0.214981	79944.65	0.135581	1.108899	0.175336
2013	33	948	981	1035.754	1632.012	845.2731	0.201059	160974.5	0.140252	0.637902	0.223498
2014	23	1951	1974	2632.195	2817.076	956.5321	0.21211	202375.9	0.1221	1.434274	0.188249
2015	28	1521	1549	1689.851	2645.404	707.6253	0.263233	111404.7	0.159114	0.900314	0.217968
2016	15	765	780	833.5219	2240.35	1134.145	0.231567	73817.9	0.248598	0.56715	0.313215
2017*	NA	NA	NA	NA	NA	1426.148	NA	117107	NA	0.967246	NA

Table 40.12. Whiting7.a . Input values for short-term forecast. Note that Sel and CWt refer to the landings and DSel and DCWt refer to the discards. Numbers in thousands; Weights in kg.

2017										
Age	N	M	Mat	PF	PM	SWt	Sel	CWt	DSel	DCWt
0	117107	1.078	0	0	0	0	0	0.092	0.126	0.025
1	23335	0.803	0	0	0	0.035	0.103	0.128	0.772	0.04
2	9043	0.718	1	0	0	0.08	0.477	0.277	0.535	0.114
3	3056	0.608	1	0	0	0.184	0.795	0.374	0.22	0.225
4	352	0.554	1	0	0	0.327	0.958	0.46	0.057	0.401
5	43	0.518	1	0	0	0.417	1.007	0.477	0.008	0.155
6	20	0.518	1	0	0	0.573	1.002	0.796	0.013	0
2018										
Age	N	M	Mat	PF	PM	SWt	Sel	CWt	DSel	DCWt
0	117107	1.078	0	0	0	0	0	0.092	0.126	0.025
1	35145	0.803	0	0	0	0.035	0.103	0.128	0.772	0.04
2	4356	0.718	1	0	0	0.08	0.477	0.277	0.535	0.114
3	1604	0.608	1	0	0	0.184	0.795	0.374	0.22	0.225
4	603	0.554	1	0	0	0.327	0.958	0.46	0.057	0.401
5	73	0.518	1	0	0	0.417	1.007	0.477	0.008	0.155
6	14	0.518	1	0	0	0.573	1.002	0.796	0.013	0
2019										
Age	N	M	Mat	PF	PM	SWt	Sel	CWt	DSel	DCWt
0	117107	1.078	0	0	0	0	0	0.092	0.126	0.025
1	35145	0.803	0	0	0	0.035	0.103	0.128	0.772	0.04
2	6561	0.718	1	0	0	0.08	0.477	0.277	0.535	0.114
3	773	0.608	1	0	0	0.184	0.795	0.374	0.22	0.225
4	317	0.554	1	0	0	0.327	0.958	0.46	0.057	0.401
5	126	0.518	1	0	0	0.417	1.007	0.477	0.008	0.155
6	19	0.518	1	0	0	0.573	1.002	0.796	0.013	0

Table 40.13. Whiting7.a .Single-option output of the short-term forecast ($\mathrm{F}=$ mean $\mathrm{F}_{2014-2016 \text {). Num- }}$ bers in thousands, weights in tonnes.

2017										
Age	F	CatchNos	Yield	DF	DCatchNos	DYield	StockNos	Biomass	SSNos	SSB
0	0	0	0	0.126	8553	211	117107	0	0	0
1	0.103	0	0	0.772	9898	399	23335	806	0	0
2	0.477	22	6	0.535	4329	493	9043	719	9043	719
3	0.795	163	61	0.22	1371	309	3056	562	3056	562
4	0.958	112	51	0.057	69	28	352	115	352	115
5	1.007	22	11	0.008	0	0	43	18	43	18
6	1.002	10	8	0.013	0	0	20	11	20	11
Total	0.458	329	137	0.509	24220	1440	152956	2231	12514	1425
2018										
Age	F	CatchNos	Yield	DF	DCatchNos	DYield	StockNos	Biomass	SSNos	SSB
0	0	0	0	0.126	8553	211	117107	0	0	0
1	0.103	0	0	0.772	14908	601	35145	1214	0	0
2	0.477	10	3	0.535	2085	238	4356	346	4356	346
3	0.795	85	32	0.22	720	162	1604	295	1604	295
4	0.958	191	88	0.057	118	47	603	197	603	197
5	1.007	38	18	0.008	0	0	73	31	73	31
6	1.002	7	6	0.013	0	0	14	8	14	8
Total	0.458	331	147	0.509	26384	1259	158902	2091	6650	877
2019										
Age	F	CatchNos	Yield	DF	DCatchNos	DYield	StockNos	Biomass	SSNos	SSB
0	0	0	0	0.126	8553	211	117107	0	0	0
1	0.103	0	0	0.772	14908	601	35145	1214	0	0
2	0.477	16	4	0.535	3141	358	6561	522	6561	522
3	0.795	41	15	0.22	347	78	773	142	773	142
4	0.958	100	46	0.057	62	25	317	104	317	104
5	1.007	65	31	0.008	0	0	126	52	126	52
6	1.002	10	8	0.013	0	0	19	11	19	11
Total	0.458	232	104	0.509	27011	1273	160048	2045	7796	831

Table 40.14. Whiting7.a. Management options table. Weights in tonnes.

FMULT	CATCH18	LAND18	DIS18	BASIS	FCATCH18	FLAND18	FDIS18	SSB19	DSSB	DTAC
0	0	0	0		0	NA	NA	2103	139.80\%	-100\%
0.1	190	21	169		0.09672	0.00376	0.09297	1916	118.47\%	-73.75\%
0.2	366	41	326		0.19345	0.00752	0.18593	1746	99.09\%	-48.75\%
0.3	530	58	472		0.29017	0.01128	0.2789	1591	81.41\%	-27.50\%
0.4	683	75	608		0.3869	0.01504	0.37186	1449	65.22\%	-6.25\%
0.5	825	90	735		0.48362	0.0188	0.46483	1321	50.63\%	12.50\%
0.6	957	103	854		0.58035	0.02256	0.55779	1204	37.29\%	28.75\%
0.7	1081	115	965		0.67707	0.02632	0.65076	1097	25.09\%	43.75\%
0.8	1196	127	1070		0.7738	0.03008	0.74372	1000	14.03\%	58.75\%
0.9	1305	137	1167		0.87052	0.03384	0.83669	911	3.88\%	71.25\%
1	1406	147	1259		0.96725	0.0376	0.92965	831	-5.25\%	83.75\%
1.1	1501	155	1345		1.06397	0.04136	1.02262	757	-13.68\%	93.75\%
1.2	1590	163	1427		1.1607	0.04511	1.11558	690	-21.32\%	103.75\%
1.3	1674	171	1503		1.25742	0.04887	1.20855	629	-28.28\%	113.75\%
1.4	1753	178	1576		1.35414	0.05263	1.30151	574	-34.55\%	122.50\%
1.5	1828	184	1644		1.45087	0.05639	1.39448	523	-40.37\%	130\%
1.6	1898	189	1709		1.54759	0.06015	1.48744	477	-45.61\%	136.25\%
1.7	1965	195	1770		1.64432	0.06391	1.58041	435	-50.40\%	143.75\%
1.8	2028	200	1828		1.74104	0.06767	1.67337	396	-54.85\%	150\%
1.9	2088	204	1884		1.83777	0.07143	1.76634	361	-58.84\%	155\%
2	2144	208	1936		1.93449	0.07519	1.8593	330	-62.37\%	160\%
2.1	2198	212	1986		2.03122	0.07895	1.95227	301	-65.68\%	165\%
2.2	2250	215	2034		2.12794	0.08271	2.04523	274	-68.76\%	168.75\%
2.3	2299	219	2080		2.22467	0.08647	2.1382	250	-71.49\%	173.75\%
2.4	2346	222	2124		2.32139	0.09023	2.23116	228	-74.00\%	177.50\%
2.5	2390	225	2166		2.41812	0.09399	2.32413	208	-76.28\%	181.25\%

Figure 40.1. Whiting 7.a. Working group estimates of International landings and discards between 1980-2016.

Figure 40.2. 7.a Whiting discard length-frequency by national fleets in 2016 for the OTB_CRU metier. Note due to low levels of retained catch, and hence low sampling, these data are not presented.

Figure 40.3. Whiting 7.a Proportion of discards by age (left) and year (right).

Figure 40.4. Whiting 7.a Smoothed Stock Weights (Three year running average).

Figure 40.5. Whiting 7.a. Log Standardized indices of tuning fleets by cohort.

Figure 40.6. Whiting 7.a. Selectivity-at-age in the Catch.

Figure 40.7. Whiting 7.a. Observed and Predicted Catches.

Figure 40.8. Whiting 7.a. Observed and Predicted index cpue.

Figure 40.9. Whiting 7.a. Retrospective analysis of the final ASAP run.

Figure 40.10. Whiting 7.a. Comparison of the ASAP assessment and XSA run.

Figure 40.11. Whiting 7.a. Stock Summery Plot. The thick black line represents the ASAP assessment standard deviations from ASAP are shaded grey. The forecast/ assumed values are given by open circles. The thick black line in the catch plot represents the predicted catch from ASAP. The dotted line in the SSSB, Fbar and recruitment plots represents the XSA assessment with the same input data.

Landings yield 2018

SSB 2019

Figure 40.12. Whiting 7.a. Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes.

41 Whiting in Division 7.b, c, e-k

Type of assessment in 2017

Full analytical assessment (XSA) and short-term forecast tuned with a single combined survey index according to the stock annex. Since WGCSE 2015 national discard data have been available through InterCatch for countries with significant landings for this stock. Biological reference points proposed by WKMSYREF4 (ICES, 2016) are included also.

ICES advice applicable to 2017

ICES advises that when the MSY approach is applied, catches in 2017 should be no more than 25125 tonnes.

Since this stock is only partially under the EU landing obligation, ICES is not in a position to advise on landings corresponding to the advised catch.
http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/whg-7ek.pdf

ICES advice applicable to 2016

ICES advises based on the MSY approach that catches in 2016 should be no more than 19076 tonnes. If discards rates do not change from the average of the last three years this implies landings of no more than 15395 tonnes.
http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/whg-7ek.pdf

41.1 General

Stock description and management units

The TAC for whiting is set for Divisions 7.b, 7.c, 7.d, 7.e, 7.f, 7.g, 7.h, 7.j and 7.k. The assessment area does not correspond to the TAC area. Since the 2014 Benchmark, Whiting in 7.b,c are now assessed as part of $7 . \mathrm{bc}$, $\mathrm{e}-\mathrm{k}$, while whiting in $7 . \mathrm{d}$ are included in the WGNSSK assessment of the North Sea stock. Any management measures implemented for this stock should be consistent with the assessment area.

Red Boxes-TAC/Management Areas Blue Shading-Assessment Area.

The 2016 TAC for whiting 7.bc, e-k increased from 17742 t (2015) to 22778 t (2016) and increased again to 27500 t for 2017. ICES official landings for whiting 7.bc, e-k in 2016 are 15053 t . Thus the current TAC for whiting catches in the 7.bk stock area is not restrictive regarding landings in the $7 . \mathrm{bc}, \mathrm{e}-\mathrm{k}$ assessment area.

TAC in 2016

Species:Whiting Merlangius merlangus	Zone:	VIIb, VIIc, VIId, VIIe, VIIf, VIIg, VIIh, VIIj and VIIk (WHG/7X7A-C)	
Belgium	222		
France	13668		
Ireland	6333	111	
The Netherlands	2444		
United Kingdom	22778	Analytical TAC Article 12(1) of this Regulation applies Union	22778
TAC			

Landings obligation

In 2016 the landings obligation applied to this stock for the first time in accordance with Delegate Regulation (EC, 2015). Vessels where more than 25% of total landings from trawls and seines in the reference years (2013 \& 2014) were specified gadoids (cod, haddock, whiting and saithe) were covered by the Landings Obligation. These vessels remain subject to the updated Delegated Regulation (EU) 2016/2375 where the reference fleet is modified to 2014-2015 and total landings consisted of more than 20% cod, haddock, whiting and saithe combined.

This implies that all catches of whiting in the Celtic Sea and Western Channel by those vessels must be landed. However a 7% de minimus still applies, meaning that these vessels can discard up to 7% of the whiting they catch up to 2017, reducing to 6% in 2018. It is difficult to assess how this might impact on the fishery, the stock, the scientific data and the advice given for 2018 at this stage.

41.2 The fishery in 2016

ICES officially reported landings for Divisions 7.b, c, e-k and landings as used by the Working Group are given in Table 1.

Catch for 7.b, c, e-k in addition to landings for 7.d (excluding discards) is also presented as a guide figure for comparison to the 7.b-k TAC.

The 7.bc, e-k whiting stock is primarily targeted by otter trawlers and to a lesser extent Scottish seines and beam trawls. An overview of landings by fleet is given in Table 2 and more generally effort trends in fleets catching whiting in the Celtic Sea is provided by STECF (STECF, 2015).

The spatial distributions of landings by Irish and UK fleets in 2014 are given in Figure 1. Irish catches are primarily from within 7.g particularly within 32E2 and 31E3. Landings also emanate, to a lesser extent from 7.j. In previous years French landings have exhibited similar spatial and temporal focus around 31E3. The majority of UK landings are from otter trawlers in 7.e, and focused within rectangles 29E5 and 29E6.

41.3 Data

Landings

National landings and numbers-at-age data were aggregated in InterCatch for the Area 7.bc, e-k following methodology described in the stock annex.

The allocation schemes below were used:

Discard raising scheme

Strata	Unsampled	Sampled
1	GNS_AllCountries	GNS_IRL\&UK
2	TBB_BEL\&UK	TBB_UK
3	TBB_VIIj_IRL	TBB_VIIg_IRL
4	SSC\&SDN_AllAreas_AllCountries	SDN_VIIeg_FRA
5	OTB_MIS_VIIbc_AllCountries	OTB_VIIb_IRL
6	OTB_MIS_VIIjk_AllCountries	OTB_VIIjk_IRL
7	OTB_MIS_VIIeh_FRA	OTB_VIIeg_FRA
8	OTB_MIS_VIIeh_UKBELNED	OTB_VIIe_UK
9	OTB_MIS_VIIeh_IRLNISCO	OTB_VIIg_IRL
10	GTR_VIIeh_FRA	OTB_VIIgeh_FRA

Sample allocation scheme

Strata	Unsampled	Sampled
1	GNS_DIS_ALL	GNS_DIS_ALL
2	GNS_LAN_ALL	GNS_LAN_ALL
3	SSC\&SDN_LAN_ALL	SSC_LAN_ALL
4	TBB_DIS_ALL	TBB_DIS_ALL
5	TBB_LAN_ALL	TBB_LAN_ALL
6	OTB\&SSC\&Others_DIS_All*	OTB\&Others_DIS_All
7	OTB\&SSC\&Others_LAN_All	OTB\&MIS_LAN_All

NB: Everything has been weighted by CATON.

* SSC included in this group as no SSC specific sampled discards available.

Age sampling allocation scheme

The length compositions for 2016 from the main gears are presented in Table 3 and Figure 2. The landings and discard length distributions are similar for the all otter trawl fleets (OTB), but TBB tend to have discarded slightly larger fish.

The international catch and landings numbers-at-age are given in Table 4 and Figure 3. It is possible to track the very strong 1999 and 2013 year classes, but the strong 2009 recruitment is only apparent at some older ages. The age distribution has remained similar over time with the exception of periods where strong year classes pass through older ages. Older ages (3+) were proportionally higher in the 2016 catch than in most of the preceding time-series. Age group 0 was included in the assessment data to allow inclusion of 0-group indices in the XSA, although landings at this age are not recorded
in most years. Mean weights-at-age in the catch and stock (Table 5 and Table 6) were derived as per methodology described in the stock annex. The stock weights are shown in Figure 4. There is some variability of stock weights particularly at older ages. Mean weight-at-age appears to have declined during the period of recent high fishing effort and landings between 2005-2008. There is some indication of an increasing trend in weights for ages 6 and 7 since 2008.

Discards

A time-series of discard data for Ireland and France was made available at WKCELT 2014 and is now included in the assessment. Procedures for raising discards to international landings are described above and in the stock annex. However, as more accurate national data become available through InterCatch, these have been included in the assessment as an improvement over simply raising Irish and French OTB discards to the international landings to produce a catch time-series.

A summary of discarding rates at-age for 2016 as available in InterCatch is presented in Table 7. Discarded whiting length distributions from 2016 for the main fleets is presented in Figure 2. The available data suggest that discarding occurs well above the 27 cm minimum conservation reference size (MCRS) with fish occasionally being discarded above 40 cm in some fleets. Annual proportions-at-age of discard numbers in the catch and also catch numbers in the predicted Stock from the XSA assessment are given in Figure 3. Data show a recent upward trend in discarding of all ages in the catch and stock.

Figure 5 presents the proportion of 1-3 year olds in the discards, catch and stock indicating that while there is a lot of 2-3 year olds in the stock and a lot of 1-2 year olds in the catch it is the 2 year olds that seem to suffer from discarding disproportionately higher than the stock.

Biologica

Mean stock and catch weights-at-age data were calculated following the methodology described in the stock annex. Natural mortality is based on Lorenzen's model and thus a power function of catch weights-at-age. Maturity is knife-edge at-age 2

The proportions of F and M before spawning were both set to zero to reflect the SSB calculation date of January 1st.

Surveys

The combined Q4 IBTS survey index for the Irish (IGFS) and French (EVHOE) timeseries for ages $0-5$ is given in Table 8. Further details for combining the survey series is given in the stock annex. The internal consistency of the survey tuning fleet was examined using pairwise scatterplots of log numbers-at-age (Figure 6), bearing in mind that the correlations may be impacted by changes in fishing mortality. Other than 0grp fish, the index is reasonably consistent for older ages (Ages 1-5).

Cohort and year effects were examined with mean \log standardized plots of indices by cohort and year (Figure 7). The index is quite noisy and shows a number of year affects for some ages.

Commercial Ipue

Commercial lpue, from 2000 to 2013, were evaluated at WKCELT 2014 and have been omitted from the assessment due to catchability trends.

41.4 Historical stock development

An XSA assessment was carried out for this stock applying the same settings as last year, using a truncated time-series 1999-2015 of combined landings and discards data. The settings previously used were applied again this year and are detailed within the stock annex.

Data screening \& Final update assessment

The general methodology is outlined in Section 2. Exploratory analysis was carried out using FLR under R version 3.1.1. The packages FLCore 2.5, and FLXSA 2.5 and FLEDA 2.5 were used.

Catch date range:	Years	$1999-2015$
	Ages	$0-7+$
Fbar Age Range:		$2-5$
Assessment Method:	XSA	
Survey Tuning-series:	Yrs	
IGFS-EVHOE	Ages	$2003-2015$
Time taper:		$0-5$
Q plateau age:		No
F shrinkage S.E:	Num yrs	5
	Num ages	1.0
		5
Fleet S.E:		3

The full XSA diagnostics are given in Table 9 . Overall the estimates are reasonably consistent for ages $1+$ given that whiting are prone to year effects in survey catches.

The log-catchability residuals from the XSA fit are plotted for the tuning-series in Figure 8. The residual patterns for the survey index does not show significant trends. Some year effects however are apparent 2005 and 2011.

The retrospective pattern is shown in Figure 9. A retrospective bias in F and SSB appears to be developing in this assessment with F being revised down and SSB being revised up. This year the WG scaled F to F_{2016} to address this retrospective trend.

Estimates of fishing mortality and stock numbers from the final XSA are given in Table 10 and Table 11. These are summarized in Figure 10. The assessment this year reveals a further increase in fishing mortality and recruitment in 2013 remains the second highest in the time-series (Figure 11).

Comparison with previous assessments

The current assessment is consistent with last year as shown in the historical stock summary retrospective below.

State of the stock

Trends in landings, $\mathrm{F}(2-5)$, SSB, and recruitment are presented in Table 12. For the current time-series SSB displays a peak biomass in 2012 following the strong recruitment of the 2009 year class and again in 2015 following the 2013 recruitment.

Fishing mortality (Fbar) has declined since 2007, but is now increasing possibly in response to recent increased SSB and Fbar increasing to achieve Fmsy. SSB is well within precautionary limits for this stock while $\mathrm{F}_{\mathrm{bar}}$ is approaching Fmsy.

There has been two above average recruitments (2008 and 2009) entering the fishery in recent years prior to the 2013 cohort, estimated to be the second highest in the timeseries. Notwithstanding a downward revision of the 2013 year-class F and catch-at-age suggest significant numbers of two year olds in the 2015 fishery.

41.5 Short-term projections

The short-term projection settings were as described in the stock annex with the following exceptions. The GM period was 1999-2015 (full time-series minus the last year).

Table 13 gives the management option table. Fishing at $\mathrm{F}_{\mathrm{MSY}}=0.52$ in 2018 implies catches of 19548 t and landings of 13841 t .

The input values for the catch forecast (using FLR 2.5) are given in Table 14. The F-atage values used were calculated as the mean of the XSA values from 2013-2015, scaled to the most recent year. Historically F has been used unscaled, but as mentioned in the Annex it was suggested in the benchmark that other options might be considered depending on consistent patterns in the retrospective analysis. Catch and stock weights-at-age were also the mean of the period 2013-2015. Stock numbers-at-age in 2015 for ages 0 and older were obtained from the XSA. SSB values are calculated for 1 January.

The estimated contributions of recent recruited year classes to the landings and SSB predictions are given in Figure 12. The assumptions of $\mathrm{GM}_{1999-2015}$ recruitment for 2016 and 2017 are predicted to contribute c. 2% to the landings in 2017 and $<1 \%$ to SSB in 2017-2018. Yield is still heavily reliant on the XSA estimate 2013 year class which is estimated at 57%.

41.6 MSY evaluations and Biological reference points

ICES carried out an evaluation of MSY and PA reference points for this stock at WKMSYREF4 (ICES, 2016a). The results are summarised below:

Framework	Reference point	Value	Technical basis	Source
MSY approach	MSY Btrigger	35000 t	$B_{p a}$	ICES, 2016b
	Fms	0.524	Segmented regression with Blim as the breakpoint $\text { Range }=0.32-0.67$	ICES, 2016b
Precautionary approach	Blim	25000 t	Bloss, the lowest observed spawning-stock biomass.	2016a
	Bpa	35000 t	Blim X 1.4	ICES, 2016a
	Flim	1.120	Based on segmented regression simulation of recruitment with Blim as the breakpoint	2016a
	F_{pa}	0.800	Flim/1.4	2016a
Management plan	SSBmGT	Undefined		
	Fmgt	Undefined		

41.7 Management plans

No management plan has been agreed or proposed.

41.8 Uncertainties and bias in assessment and forecast

Sampling

Sampling levels of the landed catch for recent years are considered to be sufficient to support current assessment approaches. There has been SOP differences in some recent years particularly that have led to a disparity between the reported catch in tons (landings and discards) going into the assessment and the comparable $\sum(\mathrm{CNAA} \times \mathrm{MWAA})$ coming out of the assessment. While the overall SOP checks are invariably $<1 \%$, any difference in the catches going into the assessment vs those coming out will cause concern. Rather than correct the national data provided therefore a SOP correction is now done within FLR once the initial data QC is complete to ensure corrections are minor and not masking a potential error/bias.

Ageing

Cohort tracking in the landings-at-age matrix appears fairly consistent up to age 6 . Tracking deteriorates at older ages.

Discards

Discarding is a major feature of most fisheries catching whiting in the Celtic Sea. Sampling coverage of discarding has improved over time particularly since 2004. Attempts to reconstruct a time-series for the main Irish and French fleets failed to extend further back than 1999. No discard data were available for France prior to 2004 and had to be constructed as proportion-at-age for the recent years where data were available. Sampling levels for either country also did not allow for quarterly age-based reconstruction of the discards so a length-based ogive from Ireland had to be used to reconstruct the
data for both countries. Discard estimates for the UK were not available at the benchmark, but are available now through InterCatch and have been included in the assessment.

Selectivity

Square-mesh panels were introduced in the second half of 2012 to reduce catches and discards of smaller whiting and haddock. The current assessment does not show an obvious reduction in F-at-age since the introduction of this TCM (see Figure 5 and Figure 10).

Surveys

The surveys for whiting are prone to year effects. However, cohort tracking for the $1+$ fish is quite consistent for the combined tuning index.

Misreporting

The level of misreporting of this stock is not known and underreporting has previously been considered unlikely to have been a significant source of unaccounted mortality of whiting in the assessment because the TAC has been in excess of recent landings.

41.9 Recommendation for next benchmark

Overall, WGCSE recommend that cod, haddock and whiting in the Celtic Sea should be benchmarked together in 2018. The focus of the benchmark should be on streamlining data compilation procedures for fishery-dependent and survey data. This would give improved transparency for diagnostics surrounding commercial tuning fleets and surveys. The benchmark should also relook at the assessment methods and diagnostics given the potential for changes in selectivity in the commercial fishery. The benchmark should also investigate mixed fisheries and multi-species interactions as well as environmental drivers that may be impacting on growth and recruitment of all three species.

For whiting, specifically:

- Further develop and evaluate statistical Catch at Age models such as SAM first conducted during WKCELT.
- Simplification of the complexity of métiers and the raising process in InterCatch. This is error prone and places a significant onus on the stock co-ordinator as the last stage in the data raising process in the narrow window before the assessment.
- Mapping of survey indices by age show significant recruitment data available outside the current combined index area which could potentially be utilised to improve the 0-grp estimates.

41.10Management considerations

Catches and SSB in 7.b, c, e-k whiting fluctuate considerably depending on year-class strength. The 2008 and 2009 year classes were above average with 2013 being second highest in the time-series. These will be contributing to catches and SSB in the short term but the upturn in catches and SSB is likely to be short lived as recent recruitment is episodic and F appears to be increasing.

Discarding of this stock for different fleets is substantial and highly variable depending on gear and year-class strength. High levels of discarding for a species like whiting reduce the longer term yields one might expect from the stock so efforts to improve selection and reduce discards in the mixed fishery should be encouraged. ICES notes the introduction of square mesh panels in all trawl fisheries operating in ICES Divisions 7.fg. It is important that these measures are fully implemented and their effectiveness in reducing discards and the impact on commercial catches is monitored and evaluated. Further gear modifications to increase the likelihood of small whiting passing through the gear, such as introduction of larger minimum mesh sizes, separator panels, or grids may be needed.

Whiting are caught in directed gadoid trips and as part of mixed fisheries throughout the Celtic Sea, as well as bycatch within Nephrops fisheries. Discard rates are high as a consequence of the low market value of the species, particularly at smaller sizes. Highgrading above the MLS to some extent is also prevalent in most fisheries.

From the 1 February to the 31 March fishing activity has been prohibited within ICES rectangles: 30E4, 31E4, 32E3 (excluding within six nautical miles from the baseline) annually since 2005 to protect the cod stock.

There have been major changes in fleet dynamics over the period of the assessment. Effort in the French gadoid fleet has been declining since 1999, but the effort has fluctuated in recent years due to the way the effort series is derived. Irish otter-trawl effort in $7 . \mathrm{b}-\mathrm{k}$ has been declined slightly over the time-series.

41.11 References

EC. 2015. Commission Delegated Regulation (EU) 2015/2438 of 12 October 2015 establishing a discard plan for certain demersal fisheries in north-western waters.

EC. 2016. Commission Delegated Regulation (EU) 2016/2375 of 12 October 2016 establishing a discard plan for certain demersal fisheries in north-western waters.

ICES. 2016a. Report of the Workshop to consider FMsy ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 187 pp.

ICES. 2016b. EU request to ICES to provide Fmsy ranges for selected stocks in ICES Subareas 5 to 10. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 5, Section 5.2.3.1.

41.12Tables

Table 1. Whiting in Divisions 7.bc,e-k. Nominal Landings (t) as reported to ICES, and total landings as used by the Working Group.

YEAR	BEL	FRA	Official ices Landings			Total	UNALLOCATED	Used by WG		7.BC, E-K CATCH +		
			IRL	UK_EW	Others			WG Total	DICARDS	CATCH	7.D LANDINGS	TAC
1998	479	11748	5549	1755	179	19710	-	-	-	-		
1999b	448	16418	6013	1354	27	7842	-12336	20178	5420	25598	31401	
2000	194	9184	5358	1255	39	16030	385	15645	4400	20045	26117	
2001	171	7317	5365	948	31	13832	640	13192	9877	23070	29684	
2002	149	7546	5718	847	35	14295	655	13640	7336	20977	26338	
2003	129	5989	4516	763	21	11418	321	11097	3559	14656	21661	
2004	180	4870	4350	587	132	10119	-70	10189	6481	16670	21953	
2005	218	5886	5774	482	136	12496	285	12211	6700	18911	23812	
2006	128	4711	4570	413	129	9951	291	9660	12031	21691	25440	
2007	127	3575	4864	575	87	9227	140	9087	8456	17543	20934	19900
2008	122	3072	2406	618	36	6254	394	5860	2880	8740	11933	19900
2009	87	2815	2798	828	25	6554	41	6513	4101	10614	17183	16950
2010	101	3464	4331	792	93	8778	190	8588	3008	11596	17729	14407
2011	100	4311	4752	739	174	10076	592	9484	1954	11438	16902	16658
2012	170	3709	5842	763	142	10626	438	10188	2449	12630	16234	19053
2013	226	4007	6887	906	92	12118	187	11931	2512	14796	18700	24500
2014	222	4927	6873	1057	38	13117	158	12847	3977	16742	19954	19162
2015	152	5640	6437	819	97	13145	-29	13174	6101	19275	19954	17742
$2016{ }^{\text {a }}$	186	6294	7644	890	39	15053	-126	15179	7278	22457	26187	22778

aProvisional data.

${ }^{\text {b }}$ French Official landings not available, not updated.

Table 2. Whiting in Divisions 7.bc-ek. Landings (t) by fleet.

Fleet	BEL	FRA	IRL	UK	Others	Total	\%
OTB	25	5202	4132	359	3	9720	74\%
SSC	7	97	2042	0	156	2300	17\%
TBB	123	0	24	66	0	212	2\%
Other	0	449	272	176	44	941	7\%
	155	5748	6469	601	202	13174	100\%

Table 3. Whiting in Divisions 7.b,c,e-k. Length distributions for Landings (LAN) and Discards (DIS) for 2016 by country and main fleet (Numbers in ‘000s). Nos raised to the Catch.

CatchCat	Lngt	GNS_IRL	OTB_FRA	OTB_IRL	OTB_UK	OTT_FRA	TBB_BEL	TBB_IRL	TBB_UK
DIS	6	0	0	0	0	0	0	0	0
DIS	7	0	0	1	1	0	0	0	0
DIS	8	0	0	1	1	0	0	0	0
DIS	9	0	0	1	1	0	0	0	0
DIS	10	0	0	1	0	1	0	0	0
DIS	11	0	0	1	0	1	3	0	0
DIS	12	0	0	0	0	0	9	0	1
DIS	13	0	0	1	2	4	38	0	0
DIS	14	0	0	6	4	0	91	0	0
DIS	15	0	11	9	3	2	92	0	0
DIS	16	0	4	31	3	6	106	0	0
DIS	17	0	42	31	0	4	71	0	3
DIS	18	0	14	21	2	4	55	0	0
DIS	19	0	16	21	3	2	68	0	5
DIS	20	0	69	21	3	2	62	0	11
DIS	21	0	147	29	14	2	102	0	13
DIS	22	0	162	27	13	22	130	0	7
DIS	23	0	190	85	75	20	183	0	25
DIS	24	0	161	136	207	13	215	0	27
DIS	25	0	110	119	166	15	207	0	24
DIS	26	0	188	228	228	61	289	1	63
DIS	27	0	254	248	214	53	277	1	59
DIS	28	0	259	270	172	59	339	2	96
DIS	29	0	240	238	183	46	280	2	94
DIS	30	0	256	125	114	67	241	2	135
DIS	31	0	181	102	82	100	282	2	172
DIS	32	0	132	86	72	91	229	2	143
DIS	33	0	103	60	55	39	153	2	109
DIS	34	0	55	36	29	20	140	2	76
DIS	35	0	44	26	30	6	77	1	47
DIS	36	0	27	17	16	12	88	1	44
DIS	37	0	22	9	7	12	41	1	16
DIS	38	0	2	9	5	22	56	1	23
DIS	39	0	3	5	1	20	19	1	5
DIS	40	0	5	2	2	1	4	0	4
DIS	41	0	0	2	1	15	1	0	2
DIS	42	0	5	1	0	0	6	0	3
DIS	43	0	1	0	0	0	0	0	0
DIS	44	0	8	1	0	0	0	0	0
DIS	45	0	2	0	0	0	0	0	0
DIS	46	0	0	0	1	0	1	0	0

CatchCat	Lngt	GNS_IRL	OTB_FRA	OTB_IRL	OTB_UK	OTT_FRA	TBB_BEL	TBB_IRL	TBB_UK
DIS	47	0	0	0	5	0	0	0	0
DIS	48	0	1	0	0	0	0	0	0
DIS	49	0	0	0	1	0	0	0	0
DIS	50	0	0	0	0	0	0	0	0
DIS	51	0	0	0	0	0	0	0	0
DIS	52	0	0	0	0	0	0	0	0
DIS	53	0	0	0	0	0	0	0	0
DIS	54	0	0	0	0	0	0	0	0
DIS	55	0	0	0	0	0	0	0	2
DIS	56	0	0	0	0	0	0	0	0
DIS	57	0	0	0	0	0	0	0	0
DIS	58	0	0	0	0	0	0	0	0
DIS	59	0	0	0	0	0	0	0	0
DIS	60	0	0	0	0	0	0	0	0
DIS	61	0	0	0	0	0	0	0	0
DIS	62	0	0	0	0	0	0	0	0
DIS	63	0	0	0	0	0	0	0	0
DIS	64	0	0	0	0	0	0	0	0
DIS	65	0	0	0	0	0	0	0	0
DIS	66	0	0	0	0	0	0	0	0
DIS	69	0	0	0	0	0	0	0	0
LAN	6	0	0	0	0	0	0	0	0
LAN	7	0	0	0	0	0	0	0	0
LAN	8	0	0	0	0	0	0	0	0
LAN	9	0	0	0	0	0	0	0	0
LAN	10	0	0	0	0	0	0	0	0
LAN	11	0	0	0	0	0	0	0	0
LAN	12	0	0	0	0	0	0	0	0
LAN	13	0	0	0	0	0	0	0	0
LAN	14	0	0	0	0	0	0	0	0
LAN	15	0	0	0	0	0	0	0	0
LAN	16	0	0	0	0	0	0	0	0
LAN	17	0	0	0	0	0	0	0	0
LAN	18	0	0	34	0	0	0	0	0
LAN	19	0	0	0	0	0	0	0	0
LAN	20	0	0	0	0	0	0	0	0
LAN	21	0	0	0	0	0	0	0	0
LAN	22	0	0	0	0	0	0	0	0
LAN	23	0	0	0	0	0	0	0	0
LAN	24	0	16	0	0	0	0	0	0
LAN	25	0	12	0	0	0	0	0	0
LAN	26	0	13	0	1	0	0	0	0
LAN	27	0	95	0	9	0	0	0	1
LAN	28	0	33	16	24	1	2	0	0

CatchCat	Lngt	GNS_IRL	OTB_FRA	OTB_IRL	OTB_UK	OTT_FRA	TBB_BEL	TBB_IRL	TBB_UK
LAN	29	0	301	47	48	0	2	0	3
LAN	30	0	240	119	80	1	6	0	4
LAN	31	0	550	154	138	1	9	0	8
LAN	32	0	392	211	145	2	14	0	10
LAN	33	0	479	293	147	8	17	0	12
LAN	34	0	614	345	129	6	17	0	10
LAN	35	23	526	370	127	6	20	0	10
LAN	36	85	484	350	118	6	19	0	6
LAN	37	0	415	291	86	11	23	0	10
LAN	38	19	407	251	78	9	25	0	11
LAN	39	19	402	128	62	9	18	0	10
LAN	40	0	521	114	58	4	20	0	15
LAN	41	0	479	116	52	7	15	0	15
LAN	42	0	445	115	39	7	10	0	3
LAN	43	0	332	127	42	6	11	0	11
LAN	44	0	248	116	36	8	8	0	9
LAN	45	0	174	183	27	7	6	0	4
LAN	46	0	192	144	19	9	2	0	7
LAN	47	0	96	170	19	4	3	0	6
LAN	48	0	91	102	19	4	2	0	5
LAN	49	0	81	99	16	4	1	0	3
LAN	50	0	120	66	10	7	0	0	2
LAN	51	0	72	62	7	6	0	0	2
LAN	52	0	48	40	9	5	0	0	2
LAN	53	0	35	28	6	3	1	0	0
LAN	54	0	27	29	7	1	0	0	0
LAN	55	0	13	2	2	1	0	0	2
LAN	56	0	7	10	5	1	0	0	0
LAN	57	0	11	10	2	1	0	0	0
LAN	58	0	7	5	2	0	0	0	0
LAN	59	0	1	3	0	0	0	0	0
LAN	60	0	1	2	1	0	0	0	0
LAN	61	0	0	2	1	0	0	0	0
LAN	62	0	1	0	1	0	0	0	0
LAN	63	0	0	0	0	0	0	0	0
LAN	64	0	1	0	0	0	0	0	0
LAN	65	0	0	0	0	0	0	0	0
LAN	66	0	0	0	0	0	0	0	0
LAN	69	0	1	0	0	0	0	0	0

Table 4. Whiting in Divisions 7.bc,e-k. The strong 1999 year class is distinct in both the catch and landings data, with some evidence of the strong 2009 year class appearing at older ages. Catch numbers-at-age ('000).

CATCH							
1999	2016						
0	7						
5370.0	20744.1	25957.7	14662.4	8744.8	8987.8	6670.2	1498.7
8176.3	26561.7	26303.7	12529.9	6122.5	2605.9	2100.9	2424.3
8795.0	26105.8	51390.6	13715.2	5317.1	2049.0	763.1	627.3
4568.6	13387.4	34319.6	24356.6	5968.2	1057.6	291.6	111.0
3687.0	12213.5	11836.5	10634.3	12778.4	1640.7	227.8	58.1
2473.8	27330.2	15052.2	6542.4	7241.9	6212.0	573.2	81.2
1421.1	10663.5	32482.0	12581.9	5079.9	4819.8	3717.7	155.1
5114.1	29760.2	44102.5	10995.4	4217.2	1750.4	1181.6	579.4
1017.0	14791.8	36137.0	12258.9	5296.7	1407.4	345.4	325.7
1650.1	8270.8	13274.5	6373.7	3290.8	858.5	214.8	68.4
538.1	8045.5	20840.4	7931.2	2653.7	770.3	192.4	201.5
348.0	4004.6	12591.3	10429.8	4761.1	1201.0	260.9	101.4
737.0	4691.4	8226.7	8280.5	5464.3	1738.5	355.4	84.5
156.0	5399.4	6661.7	10006.3	5577.9	1725.5	505.5	116.1
739.0	1076.3	6880.1	7160.1	10810.1	4379.2	938.2	216.5
158.7	13119.4	5727.8	7237.2	6301.1	7941.1	2032.8	352.8
262.3	4167.2	25419.9	8601.1	7555.1	2619.8	4343.9	805.3
1223.7	9891.3	11827.4	29870.3	5397.2	3145.3	1160.7	1933.0

Table 5. Whiting in Divisions 7.bc,e-k. Catch weights-at-age (kg).

Age								
	0	1	2	3	5	6	$7+$	
1999	0.027	0.133	0.222	0.341	0.427	0.440	0.496	0.623
2000	0.031	0.069	0.220	0.396	0.505	0.563	0.580	0.587
2001	0.032	0.112	0.185	0.378	0.529	0.633	0.760	0.777
2002	0.027	0.097	0.197	0.351	0.532	0.707	0.825	1.013
2003	0.029	0.094	0.211	0.360	0.452	0.629	0.831	1.087
2004	0.040	0.155	0.227	0.361	0.432	0.491	0.537	0.785
2005	0.020	0.105	0.195	0.361	0.501	0.504	0.487	0.674
2006	0.033	0.124	0.210	0.385	0.538	0.588	0.544	0.675
2007	0.042	0.121	0.201	0.364	0.497	0.642	0.609	0.638
2008	0.028	0.109	0.214	0.386	0.524	0.626	0.780	0.830
2009	0.026	0.117	0.206	0.395	0.549	0.653	0.689	0.951
2010	0.034	0.119	0.228	0.420	0.560	0.679	0.815	0.836
2011	0.024	0.126	0.239	0.444	0.613	0.811	0.954	1.211
2012	0.039	0.096	0.225	0.461	0.649	0.808	0.967	1.088
2013	0.053	0.130	0.209	0.358	0.600	0.704	0.915	0.864
2014	0.038	0.142	0.254	0.397	0.554	0.662	0.759	1.007
2015	0.018	0.102	0.220	0.375	0.573	0.778	0.671	0.929
2016	0.052	0.149	0.217	0.358	0.577	0.685	0.746	0.784

Table 6. Whiting in Divisions 7.bc,e-k. Q1 Stock weights-at-age (kg) from Rivard corrected annual mean catch weights.

	Age							
	0	1	2	4	5	6	$7+$	
1999	0.0170	0.1034	0.1659	0.2804	0.3724	0.3834	0.4674	0.6230
2000	0.0167	0.0432	0.1713	0.2960	0.4152	0.4905	0.5055	0.5868
2001	0.0180	0.0592	0.1131	0.2886	0.4575	0.5658	0.6541	0.7775
2002	0.0146	0.0551	0.1481	0.2549	0.4481	0.6117	0.7229	1.0133
2003	0.0125	0.0507	0.1428	0.2662	0.3981	0.5782	0.7663	1.0873
2004	0.0248	0.0671	0.1463	0.2763	0.3946	0.4711	0.5810	0.7846
2005	0.0079	0.0648	0.1741	0.2859	0.4254	0.4666	0.4889	0.6744
2006	0.0174	0.0494	0.1484	0.2742	0.4405	0.5427	0.5237	0.6750
2007	0.0259	0.0636	0.1577	0.2768	0.4379	0.5877	0.5982	0.6382
2008	0.0139	0.0677	0.1612	0.2788	0.4370	0.5582	0.7076	0.8298
2009	0.0119	0.0575	0.1502	0.2908	0.4604	0.5850	0.6571	0.9506
2010	0.0180	0.0553	0.1631	0.2946	0.4704	0.6108	0.7296	0.8356
2011	0.0123	0.0659	0.1688	0.3179	0.5077	0.6739	0.8049	1.2106
2012	0.0211	0.0482	0.1684	0.3320	0.5366	0.7040	0.8856	1.0881
2013	0.0327	0.0710	0.1412	0.2835	0.5258	0.6762	0.8599	0.8644
2014	0.0232	0.0870	0.1820	0.2877	0.4449	0.6304	0.7310	1.0072
2015	0.0063	0.0622	0.1767	0.3090	0.4767	0.6562	0.6666	0.9295
2016	0.0516	0.0518	0.1486	0.2807	0.4655	0.6261	0.7615	0.7836

Table 7. Whiting in Divisions 7.e-k. Summary of landings and discard data in 2015 provided to the Working Group.

WEIGHT IN TONNES										
DISCARDS	COUNTRY	0	1	2	3	4	5	6	7+	Grand Total
	Belgium	0.1	92.7	108.5	265.5	17.1	4.3	7.6	2.3	498.1
	France	22.5	412.7	432.0	838.4	53.1	12.7	15.6	20.7	1807.7
	Ireland	39.0	663.2	1003.3	2146.6	184.6	85.7	41.2	59.3	4222.9
	UK (England)	0.5	119.2	150.5	399.5	17.8	3.5	5.5	2.6	699.0
	Other	0.4	8.5	11.7	26.3	1.8	0.7	0.4	0.5	50.2
	Total	62.6	1296.2	1706.0	3676.3	274.4	106.8	70.1	85.4	7277.9
Landings	Belgium	0.0	2.5	8.7	114.1	24.8	9.4	16.4	10.1	186.0
	France	0.7	142.9	464.0	2907.8	1130.0	572.6	332.0	777.2	6327.2
	Ireland	0.0	15.7	331.1	3431.5	1574.0	1411.6	381.6	592.9	7738.4
	UK (England)	0.0	14.9	50.3	518.3	86.5	30.9	59.0	39.6	799.6
	Other	0.0	0.5	6.0	57.1	25.9	22.2	6.4	9.5	127.7
	Total	0.7	176.6	860.1	7028.8	2841.1	2046.8	795.4	1429.3	15178.8

Number in 000's										Grand Total
Discards	Country	0	1	2	3	4	5	6	7	
	Belgium	2.1	787.3	874.2	1096.9	42.0	9.2	16.8	5.7	2834.3
	France	138.9	2051.6	1741.5	2952.2	125.5	31.3	29.3	38.0	7108.3
	Ireland	1055.4	5535.8	5907.0	10027.6	675.9	261.5	105.4	146.8	23715.4
	UK (England)	15.1	863.1	945.2	1611.8	43.0	7.9	12.0	5.9	3504.0
	Other	8.9	60.7	63.2	113.9	5.9	2.1	0.9	1.3	256.9
	Total	1220.4	9298.6	9531.1	15802.4	892.4	312.0	164.4	197.6	37418.8
Landings	Belgium	0.0	10.4	28.5	260.1	42.1	13.5	18.0	14.1	386.7
	France	3.3	462.6	1235.3	5655.0	1794.0	789.5	444.2	969.3	11353.2
	Ireland	0.0	53.1	842.2	6859.5	2484.3	1960.8	457.1	688.9	13345.9
	UK (England)	0.0	64.7	174.2	1180.2	144.0	39.1	69.4	51.4	1723.0
	Other	0.0	1.8	16.2	113.1	40.5	30.5	7.6	11.6	221.3
	Total	3.3	592.7	2296.4	14067.9	4504.8	2833.3	996.3	1735.4	27030.1

Table 8. Whiting in Divisions 7.bc,e-k. Combined survey abundance indices of age groups 0-5.

IGFSEVHOE No/Hr						
Age						
	0	1	2	3	4	5
2003	207.826	201.071	73.602	26.557	13.911	0.658
2004	698.971	186.364	79.658	19.396	7.531	5.387
2005	195.372	89.18	21.949	7.791	3.758	5.495
2006	459.365	144.858	70.157	14.538	6.327	1.488
2007	895.572	126.044	31.128	8.434	1.512	0.689
2008	536.87	199.458	62.553	11.364	3.787	1.175
2009	755.508	267.503	52.211	12.282	2.666	1.082
2010	108.815	282.721	120.372	26.99	4.408	1.341
2011	432.351	205.258	208.778	71.683	14.117	3.000
2012	261.964	147.137	88.25	77.797	10.675	2.054
2013	1229.544	90.559	64.323	20.139	27.93	8.694
2014	112.842	314.208	38.057	19.858	9.104	12.72
2015	273.468	97.528	144.185	11.552	6.13	7.197
2016	280.238	117.811	72.835	38.436	7.998	4.413

Table 9. Whiting in Divisions 7.bc,e-k. XSA Diagnostics.

Run 1

FLR XSA Diagnostics 2017-05-15 15:48:58

CPUE data from indices

Catch data for 18 years 1999 to 2016. Ages 0 to 7 .
fleet first age last age first year last year alpha beta
1 IGFSEVHOENo/Hr $0 \quad 520032016$ <NA> <NA>

Time series weights :

Tapered time weighting not applied
Catchability analysis :
Catchability independent of size for all ages

Catchability independent of age for ages > 5

Terminal population estimation :
Survivor estimates shrunk towards the mean F of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk $=1$

Minimum standard error for population
estimates derived from each fleet $=0.5$
prior weighting not applied

Regression weights
year
age 2007200820092010201120122013201420152016
$\begin{array}{lllllllllll}\text { all } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

Fishing mortalities
year
age 2007200820092010201120122013201420152016 00.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000 10.1050 .0450 .0330 .0110 .0300 .0330 .0090 .0330 .0350 .066 20.7740 .2360 .2810 .1170 .0500 .0960 .0970 .1060 .1490 .239 30.7830 .4560 .3330 .3400 .1570 .1170 .2140 .2100 .3560 .410 41.0710 .7100 .4830 .4740 .4120 .2020 .2400 .4070 .4930 .557 50.9760 .6360 .4560 .5550 .4080 .2790 .3090 .3590 .3800 .513 60.6330 .4670 .3480 .3410 .3920 .2440 .2990 .2850 .4290 .360 70.6330 .4670 .3480 .3410 .3920 .2440 .2990 .2850 .4290 .360

XSA population number (Thousand)
age
$\begin{array}{lllllllll}\text { year } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
2007986692228997928092897999932758890818 20081301691291301872812234180292229697217 200918972563842981178873597385862569791814 2010829944560127157387464851564234451091417 2011855666245024234420730662007263351326310

20126344992526181006331164343786886502823640 201320976691873231033864772262828201344385997 20146373806192957856849001233683215199111695 2015808397188174253528368782408410119150502736 20167494972386637691711398715669957446387592

Estimated population abundance at 1st Jan 2017

> age
$\begin{array}{lllllllll}\text { year } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
20170221277945603160945874584038422212

Fleet: IGFSEVHOENo/Hr

Log catchability residuals.
year
age 20032004200520062007200820092010201120122013201420152016 $0-0.5580 .637-0.5410 .4600 .8870 .098 \quad 0.063-1.0480 .3010 .0990 .450-0.748-0.1000 .000$ 10.528 0.203 -0.635 0.056-0.008 0.161 0.167-0.172 $0.350-0.010-0.217-0.149-0.126-0.149$ $20.5190 .452-0.8450 .342-0.2160 .096-0.3490 .0620 .158 \quad 0.181-0.162-0.404-0.208 \quad 0.377$ $3-0.0070 .432-0.3330 .252-0.1010 .185-0.3170 .2200 .593$ 0.175-0.204-0.247-0.383-0.265 $4-0.196-0.2510 .0990 .845-0.4180 .418-0.188-0.2930 .570-0.519-0.032-0.025-0.3790 .370$ $5-0.719-0.2830 .5380 .440-0.0870 .3760 .0020 .0050 .079-0.718-0.096-0.1410 .4630 .140$

Mean \log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

$$
\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

Mean_Logq -6.8746-6.6929-6.5974-6.9712 -7.1275-7.0606 S.E_Logq 0.38640 .38640 .38640 .38640 .38640 .3864

Terminal year survivor and F summaries:
,Age 0 Year class =2016
source
scaledWts survivors yrcls
IGFSEVHOENo/Hr 12212772016
,Age 1 Year class =2015
source
scaledWts survivors yrcls
IGFSEVHOENo/Hr 0.789814892015
fshk $0.211 \quad 2194862015$
,Age 2 Year class =2014
source
scaledWts survivors yrcls
IGFSEVHOENo/Hr 0.759460702014
fshk $\quad 0.241 \quad 79708 \quad 2014$
,Age 3 Year class =2013
source
scaledWts survivors yrcls
IGFSEVHOENo/Hr 0.726352082013
fshk $0.274 \quad 972152013$

,Age 4 Year class =2012

source
scaledWts survivors yrcls
IGFSEVHOENo/Hr 0.69684562012
fshk $\quad 0.304 \quad 101602012$
,Age 5 Year class =2011
source
scaledWts survivors yrcls
IGFSEVHOENo/Hr 0.70544182011
fshk 0.29560952011
,Age 6 Year class =2010
source scaledWts survivors yrcls
fshk 114732010

Table 1. Whiting in Divisions 7.b, c, e-k. Fishing mortality (F)-at-age. Fbar range is 2-5.

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7 +}$	$\mathbf{F}_{\text {BAR } 2-5}$
2007	0.000	0.105	0.774	0.783	1.071	0.976	0.633	0.633	0.901
	2008	0.000	0.045	0.236	0.456	0.710	0.636	0.467	0.467
2009	0.000	0.033	0.281	0.333	0.483	0.456	0.348	0.348	0.388
2010	0.000	0.011	0.117	0.340	0.474	0.555	0.341	0.341	0.372
2011	0.000	0.030	0.050	0.157	0.412	0.408	0.392	0.392	0.257
2012	0.000	0.033	0.096	0.117	0.202	0.279	0.244	0.244	0.174
2013	0.000	0.009	0.097	0.214	0.240	0.309	0.299	0.299	0.215
2014	0.000	0.033	0.106	0.210	0.407	0.359	0.285	0.285	0.271
2015	0.000	0.035	0.149	0.356	0.493	0.380	0.429	0.429	0.345
2016	0.000	0.066	0.239	0.410	0.557	0.513	0.360	0.360	0.430

Table 11. Whiting in Divisions 7.b, c, e-k. Stock number-at-age (‘000).

| YEAR | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 2007 | 986692 | 228997 | 92809 | 28979 | 9993 | 2758 | 890 | 818 |
| 2008 | 1301691 | 291301 | 87281 | 22341 | 8029 | 2229 | 697 | 217 |
| | 1897256 | 384298 | 117887 | 35973 | 8586 | 2569 | 791 | 814 |
| 2010 | 829944 | 560127 | 157387 | 46485 | 15642 | 3445 | 1091 | 417 |
| 2011 | 855666 | 245024 | 234420 | 73066 | 20072 | 6335 | 1326 | 310 |
| 2012 | 634499 | 252618 | 100633 | 116434 | 37868 | 8650 | 2823 | 640 |
| 2013 | 2097669 | 187323 | 103386 | 47722 | 62828 | 20134 | 4385 | 997 |
| 2014 | 637380 | 619295 | 78568 | 49001 | 23368 | 32151 | 9911 | 1695 |
| 2015 | 808397 | 188174 | 253528 | 36878 | 24084 | 10119 | 15050 | 2736 |
| 2016 | 749497 | 238663 | 76917 | 113987 | 15669 | 9574 | 4638 | 7592 |

Table 12. Whiting in Divisions 7.b, c, e-k. Summary table.

	RECRUITS	TOTALBIO	TOTSPBIO	LANDINGS	YIELD/SSB	FBAR 2-5
1999	2295542	120208	50345	20180	0.508	0.719
2000	1357759	94357	42405	15644	0.473	0.703
2001	623570	85535	50581	13196	0.456	0.781
2002	717424	77903	57285	13640	0.366	0.581
2003	971252	67854	44974	11098	0.326	0.428
2004	988436	82673	38920	10188	0.428	0.410
2005	897849	66603	40600	12207	0.466	0.723
2006	775656	60904	34313	9660	0.632	0.781
2007	986692	69829	29709	9086	0.590	0.901
2008	1301691	63539	25724	5859	0.340	0.510
2009	1897256	79592	34918	6572	0.306	0.388
2010	829944	95885	49971	8514	0.231	0.371
2011	855666	105371	78700	9498	0.146	0.257
2012	634499	110772	85208	9812	0.144	0.173
2013	2097669	161303	79409	12402	0.188	0.215
2014	637380	136679	68013	12847	0.247	0.271
2015	808397	103688	86890	13174	0.222	0.344
2016	749497	117231	66195	15179	0.339	0.430
Geomean						
Mean	1098.628	94440	53565	11598	0.356	0.499
0 Units	Thousands	$(T o n n e s)$	$(T o n n e s)$	$(T o n n e s)$		

Table 13. Whiting in Divisions 7.b, c, e-k. Management options table.

Fmult	Catch 18	LAND1 8	Dis 18	FCATCH 18	FLaND1 8	FDIS 18	SSB19
0	0	0	0	0	NA	NA	63499
0.1	1956	1422	534	0.043	0.030	0.013	61778
0.2	3840	2785	1055	0.086	0.059	0.027	60126
0.3	5653	4091	1563	0.129	0.089	0.040	58540
0.4	7400	5342	2058	0.172	0.118	0.053	57017
0.5	9084	6542	2542	0.215	0.148	0.067	55554
0.6	10706	7692	3015	0.258	0.178	0.080	54149
0.7	12271	8795	3476	0.301	0.207	0.094	52799
0.8	13779	9853	3927	0.344	0.237	0.107	51502
0.9	15235	10868	4367	0.387	0.267	0.120	50254
1	16640	11842	4798	0.430	0.296	0.134	49055
1.1	17995	12777	5219	0.473	0.326	0.147	47901
1.2	19305	13674	5630	0.516	0.355	0.160	46790
1.3	20569	14536	6033	0.559	0.385	0.174	45722
1.4	21791	15364	6427	0.602	0.415	0.187	44693
1.5	22972	16160	6812	0.645	0.444	0.200	43702
1.6	24114	16924	7190	0.688	0.474	0.214	42748
1.7	25219	17659	7560	0.731	0.504	0.227	41828
1.8	26287	18366	7922	0.774	0.533	0.241	40942
1.9	27321	19045	8276	0.817	0.563	0.254	40087
2	28322	19699	8624	0.860	0.592	0.267	39263

Additional Catch Options							
Basis18	Catch18	Land18	Dis	FCatch18	FLand18	FDis18	SSB19
FMSY	19548	13841	5707	0.524	0.361	0.163	46584
$\mathrm{F}=0$	0	0	0	0.000	NA	NA	63499
$\mathrm{F}=\mathrm{Fpa}$	26923	18784	8139	0.800	0.551	0.249	40416
F = Flim	33753	23165	10589	1.120	0.772	0.348	34852
Blim	46510	30624	15886	2.004	1.381	0.623	25000
Bpa	33569	23050	10520	1.110	0.765	0.345	35000
Btrigger	33569	23050	10520	1.110	0.765	0.345	35000
$\mathrm{F}=\mathrm{F} 2017$	16640	11842	4798	0.430	0.296	0.134	49055
Min FMSY	13053	9344	3709	0.323	0.223	0.100	52126
Max FMSY	23647	16612	7035	0.670	0.462	0.208	43138
Stable SSB	16982	12078	4903	0.441	0.304	0.137	48763
-15\% TAC	34090	23375	10715	1.138	0.784	0.354	34582

Input units are thousands and kg output in tonnes.

Table 14. Whiting in Divisions 7.b, c, e-k. Input values for the catch forecast.

Whiting in the Celtic Sea (7.b,C, e-k), WGCSE 2017, COMBSEX										
$F_{\text {bar }}$ age range: 2-5										
nyea	s +1									
Age	N	M	Mat	PF	PM	SWt	Sel	CWt	DSel	DCWt
0	1005961	1.22	0	0	0	0.027	0	0.098	0	0.036
1	221274	0.86	0	0	0	0.067	0.003	0.265	0.041	0.119
2	94559	0.65	1	0	0	0.169	0.041	0.369	0.124	0.187
3	31609	0.5	1	0	0	0.292	0.238	0.506	0.087	0.245
4	45873	0.43	1	0	0	0.462	0.453	0.651	0.033	0.297
5	5840	0.4	1	0	0	0.638	0.408	0.742	0.009	0.396
6	3842	0.38	1	0	0	0.72	0.344	0.826	0.014	0.376
7	5906	0.36	1	0	0	0.907	0.353	0.948	0.005	0.505

nyears +2

Age	N	M	MAT	PF	PM	SWT	Sel	CWT	DSel	DCWT
0	1005961	1.22	0	0	0	0.027	0	0.098	0	0.036
1	296990	0.86	0	0	0	0.067	0.003	0.265	0.041	0.119
2	88629	0.65	1	0	0	0.169	0.041	0.369	0.124	0.187
3	40269	0.5	1	0	0	0.292	0.238	0.506	0.087	0.245
4	12830	0.43	1	0	0	0.462	0.453	0.651	0.033	0.297
5	16392	0.4	1	0	0	0.638	0.408	0.742	0.009	0.396
6	2339	0.38	1	0	0	0.72	0.344	0.826	0.014	0.376
7	4337	0.36	1	0	0	0.907	0.353	0.948	0.005	0.505

nyears +3

Age	N	M	MAT	PF	PM	SWT	Sel	CWT	DSEL	DCWT
0	1005961	1.22	0	0	0	0.027	0	0.098	0	0.036
1	296990	0.86	0	0	0	0.067	0.003	0.265	0.041	0.119
2	118956	0.65	1	0	0	0.169	0.041	0.369	0.124	0.187
3	37744	0.5	1	0	0	0.292	0.238	0.506	0.087	0.245
4	16345	0.43	1	0	0	0.462	0.453	0.651	0.033	0.297
5	4584	0.4	1	0	0	0.638	0.408	0.742	0.009	0.396
6	6565	0.38	1	0	0	0.72	0.344	0.826	0.014	0.376
7	2972	0.36	1	0	0	0.907	0.353	0.948	0.005	0.505

Input units are thousands and kg output in tonnes.

Table 15. Whiting in Divisions 7.e-k. The detailed output for the status quo F forecast by age group.

NYears+1

Age	F	Catchnos	Yield	DF	DCAtchNos	DYield	StockNos	Bıomass	SSNos	SSB
0	0	0	0	0	0	0	981125	19884	0	0
1	0.004	573	137	0.027	3587	386	203425	14938	0	0
2	0.031	1235	448	0.096	3521	636	53879	8980	53879	8980
3	0.188	12287	6105	0.108	10953	2707	113887	33426	113887	33426
4	0.347	2536	1663	0.055	710	218	11877	5733	11877	5733
5	0.323	1791	1341	0.029	196	80	8024	5249	8024	5249
6	0.329	998	866	0.026	225	107	4872	3666	4872	3666
7	0.336	1762	2051	0.018	97	42	7344	6854	7344	6854
Total	0.222	21182	12611	0.072	19289	4176	1384433	98730	199883	63908

NYears+2

Age	F	Catchnos	Yield	DF	DCATCHNos	DYIELD	StockNos	Bıomass	SSNos	SSB
0	0	0	0	0	0	0	981125	19884	0	0
1	0.004	816	195	0.027	5108	550	289658	21271	0	0
2	0.031	1914	694	0.096	5454	985	83463	13910	83463	13910
3	0.188	2673	1328	0.108	2383	589	24774	7271	24774	7271
4	0.347	10970	7192	0.055	3073	942	51381	24802	51381	24802
5	0.323	1153	863	0.029	126	52	5165	3379	5165	3379
6	0.329	774	672	0.026	175	83	3781	2845	3781	2845
7	0.336	1423	1657	0.018	79	34	5934	5538	5934	5538
Total	0.222	19723	12601	0.072	16398	3235	1445281	98900	174498	57745

NYears+3

Age	F	Catchnos	Yield	DF	DCatchnos	DYIELD	StockNos	Bıomass	SSNos	SSB
0	0	0	0	0	0	0	981125	19884	0	0
1	0.004	816	195	0.027	5108	550	289658	21271	0	0
2	0.031	2725	988	0.096	7765	1403	118843	19807	118843	19807
3	0.188	4140	2057	0.108	3691	912	38376	11263	38376	11263
4	0.347	2386	1565	0.055	668	205	11177	5395	11177	5395
5	0.323	4987	3735	0.029	545	224	22344	14617	22344	14617
6	0.329	498	433	0.026	112	53	2434	1831	2434	1831
7	0.336	1132	1318	0.018	63	27	4720	4405	4720	4405
Total	0.222	16684	10291	0.072	17952	3374	1468677	98473	197894	57318

41.13 Figures

Figure 1. Irish landings for the main gear types in 1995-2015, along with annual average between 1995-2012.

TBB

Figure 2. Whiting in 7.b, c, e-k (Celtic Sea). 2016 length compositions (raised numbers 000's) of French, UK and Irish Landings (LAN) and Discards (DIS) for the main fleets.

Figure 3. Whiting in 7.b, c, e-k (Celtic Sea), annual Landings (green) and Discards (red) by age composition.

Figure 4. Whiting in 7.b, c, e-k (Celtic Sea). Rivard corrected stock weights-at-age.

Figure 5. 2016 Annual proportions-at-age of Discard Nos in the Stock (above); Discard Nos in the Catch (middle) and Catch Nos in the Stock (below) from the assessment.

Figure 6. Whiting in 7.b, c, e-k (Celtic Sea). Pairwise scatterplots for the log numbers-at-age for the IGFS-EVHOE combined survey index.

$\operatorname{r} \triangle \omega N \rightarrow 0$
$\Delta \Delta X+D 0$

Figure 7. Whiting in 7.e-k (Celtic Sea). Mean log standardized plots of indices by year class (top panel) and by year (lower panel).

Figure 8. Whiting in 7.b, c, e-k (Celtic Sea). Log fleet catchability residuals bubble plots.

Figure 9. Whiting in 7.b, c, e-k (Celtic Sea). Retrospective analysis.

Figure 10. Whiting in 7.b, c, e-k (Celtic Sea). Fishing mortality-at-age.

Figure 11. Whiting in 7.b, c, e-k (Celtic Sea). Stock summary.

Landings yield 2017

Figure 12. Whiting in Divisions 7.b, c, e-k. Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes.

41.14Audit of Whiting (Merlangius merlangus) in Divisions 7.b, c, and e-k (Southern Celtic seas and Eastern English Channel)

Date: 1st June 2017
Auditor: Lisa Readdy

General

- Whiting are caught in directed gadoid trips and as part of mixed fisheries throughout the Celtic Sea, as well as bycatch within Nephrops fisheries.
- This stock is only partially under the landings obligation.
- The assessment area does not correspond to the TAC management area as whiting in 7.d is assessed as part of the North Sea stock.
- ICES advises that when the MSY approach is applied, catches in 2018 should be no more than 19548 tonnes.
- Since 2010 below average recruitment with the exception of the 2013 year class, recent catches rely on this year class.

For single stock summary sheet advice

- Assessment type: update
- Assessment: Analytical
- Forecast: Presented
- Assessment model: XSA
- Data issues:
- Consistency: XSA as last year
- Stock status: Spawning-stock biomass has been well above MSY Btrigger since 2009 and Fishing mortality has declined to below Fmsy since 2008, since 2012 it has been steadily increasing towards Fmsy. Recruitment has been below average since 2010 with the exception of the 2013 year class, estimated to be the second highest in the series.
- Management Plan: None

General comments

Well written report, clear and concise.

Technical comments

- Minor errors to text and references to tables and figures, which have subsequently been corrected.
- No explicit method on how the wanted and unwanted catches have been calculated from the forecasted catches.

Conclusions

The assessment has been performed according to the stock annex.

Checklist for audit process

General aspects

- Has the EG answered those TORs relevant to providing advice? Yes
- Is the assessment according to the stock annex description? Yes
- If a management plan is used as the basis of the advice, has been agreed to by the relevant parties and has the plan been evaluated by ICES to be precautionary? No management plan.
- Have the data been used as specified in the stock annex? Yes
- Has the assessment, recruitment and forecast model been applied as specified in the stock annex? Yes. Fbar was scaled to F_{2016}
- Is there any major reason to deviate from the standard procedure for this stock? No
- Does the update assessment give a valid basis for advice? If not, suggested what other basis should be sought for the advice? Yes

Annex 2: WGCSE Stock Annexes

The table below provides an overview of the WGCSE Stock Annexes. Stock Annexes for other stocks are available on the ICES website Library under the Publication Type "Stock Annexes". Use the search facility to find a particular Stock Annex, refining your search in the left-hand column to include the year, ecoregion, species, and acronym of the relevant ICES expert group.

Stock ID	Stock name	LAST UPDATED	LINK
anf.27.3a46	Anglerfish (Lophius budegassa, Lophius piscatorius) in subareas 4 and 6, and in Division 3.a (North Sea, Rockall and West of Scotland, Skagerrak and Kattegat)	May 2013	$\frac{\text { Anglerfish }}{3 . a 46}$
bss.27.4bc7d-h	Seabass (Dicentrarchus labrax) in divisions 4.b-c, 7.a, and 7.d-h (central and southern North Sea, Irish Sea, English Channel, Bristol Channel, and Celtic Sea)	May 2015	Sea bass 47
cod.27.7e-k	Cod (Gadus morhua) in divisions 7.e-k (eastern English Channel and southern Celtic Seas)	March 2016	Cod 7.e-k
cod.27.7a	Cod (Gadus morhua) in Division 7.a (Irish Sea)	March 2017	Cod 7.a
cod.27.6b	Cod (Gadus morhua) in Division 6.b (Rockall)	May 2013	Cod 6.b
cod.27.6a	Cod (Gadus morhua) in Division 6.a (West of Scotland)	March 2016	Cod 6.a
gug-celt	Grey gurnard in Subarea 6 and Divisions 7.a-c and e-k	March 2014	Grey gurnard
had.27.7b-k	Haddock (Melanogrammus aeglefinus) in divisions 7.b-k (southern Celtic Seas and English Channel)	May 2017	$\begin{aligned} & \underline{\text { Haddock } 7 . \mathrm{b}-} \\ & \underline{\mathrm{k}} \end{aligned}$
had.27.7a	Haddock (Melanogrammus aeglefinus) in Division 7.a (Irish Sea)	March 2017	Haddock 7.a
had.27.6b	Haddock (Melanogrammus aeglefinus) in Division 6.b (Rockall)	May 2017	Haddock 6.b

Stock ID	Stock name	LAST UPDATED	Link
had.27.46a20	Haddock (Melanogrammus aeglefinus) in Subarea 4, Division 6.a and Subdivision 20 (North Sea, West of Scotland, Skagerrak)	May 2009	Haddock 6.a
lez.27.4a6a	Megrim (Lepidorhombus ssp.) in divisions 4.a and 6.a (northern North Sea, West of Scotland)	May 2016	Megrim 4a6a
nep.fu. 11	Norway lobster (Nephrops norvegicus) in Division 6.a, Functional Unit 11 (West of Scotland, North Minch)	May 2016	Nephrops FU11
nep.fu. 12	Norway lobster (Nephrops norvegicus) in Division 6.a, Functional Unit 12 (West of Scotland, South Minch)	May 2016	Nephrops FU12
nep.fu. 13	Norway lobster (Nephrops norvegicus) in Division 6.a, Functional Unit 13 (West of Scotland, the Firth of Clyde and Sound of Jura)	May 2017	Nephrops FU13
nep.fu. 14	Norway lobster (Nephrops norvegicus) in Division 7.a, Functional Unit 14 (Irish Sea, East)	$\begin{aligned} & \text { September } \\ & 2015 \end{aligned}$	Nephrops FU14
nep.fu. 15	Norway lobster (Nephrops norvegicus) in Division 7.a, Functional Unit 15 (Irish Sea, West)	March 2009	Nephrops FU15
nep.fu. 16	Norway lobster (Nephrops norvegicus) in divisions 7.b-c and 7.j-k, Functional Unit 16 (west and southwest of Ireland, Porcupine Bank)	March 2013	Nephrops FU16
nep.fu. 17	Norway lobster (Nephrops norvegicus) in Division 7.b, Functional Unit 17 (west of Ireland, Aran grounds)	May 2016	Nephrops FU17
nep.fu. 19	Norway lobster (Nephrops norvegicus) in divisions 7.a, 7.g, and 7.j, Functional Unit 19 (Irish Sea, Celtic Sea, eastern part of southwest of Ireland)	May 2017	Nephrops FU19

Stock ID	Stock name	LAST UPDATED	Link
nep.fu. 2021	Norway lobster (Nephrops norvegicus) in divisions 7.g and 7.h, functional units 20 and 21 (Celtic Sea)	May 2017	$\begin{aligned} & \text { Nephrops } \\ & \text { FU2021 } \end{aligned}$
nep.fu. 22	Norway lobster (Nephrops norvegicus) in divisions 7.g and 7.f, Functional Unit 22 (Celtic Sea, Bristol Channel)	May 2015	Nephrops FU22
nep.fu. 2324	Norway lobster (Nephrops norvegicus) in divisions 8.a and 8.b, functional units 23-24 (northern and central Bay of Biscay)		Not available
ple.27.7bc	Plaice (Pleuronectes platessa) in divisions 7.b-c (West of Ireland)	April 2013	Plaice 7.bc
ple.27.7h-k	Plaice (Pleuronectes platessa) in divisions 7h-k (Celtic Sea South, southwest of Ireland)	May 2014	Plaice 7.h-k
ple.27.7fg	Plaice (Pleuronectes platessa) in divisions 7.f and 7.g (Bristol Channel, Celtic Sea)	May 2017	Plaice 7.fg
ple.27.7e	Plaice (Pleuronectes platessa) in Division 7.e (western English Channel)	April 2016	Plaice 7.e
ple.27.7a	Plaice (Pleuronectes platessa) in Division 7.a (Irish Sea)	May 2017	Plaice 7.a
sol.27.7bc	Sole (Solea solea) in divisions 7.b and 7.c (West of Ireland)	April 2013	Sole 7.bc
sol.27.7h-k	Sole (Solea solea) in divisions 7.h-k (Celtic Sea South, Southwest of Ireland)	May 2014	Sole 7.h-k
sol.27.7fg	Sole (Solea solea) in divisions 7.f and 7.g (Bristol Channel, Celtic Sea)	May 2017	Sole 7.fg
sol.27.7e	Sole (Solea solea) in Division 7.e (western English Channel)	May 2017	Sole 7.e
sol.27.7a	Sole (Solea solea) in Division 7.a (Irish Sea)	May 2017	Sole 7.a

Stock ID	Stock name	LAST UPDATED	Link
$\begin{aligned} & \text { whg. } 27.7 \mathrm{~b}-\mathrm{ce}- \\ & \mathrm{k} \end{aligned}$	Whiting (Merlangius merlangus) in divisions 7.b -c and 7.e-k (southern Celtic Seas and eastern English Channel)	February 2014	Whiting 7.bc,e-k
whg.27.7a	Whiting (Merlangius merlangus) in Division 7.a (Irish Sea)	May 2017	Whiting 7.a
whg.27.6b	Whiting (Merlangius merlangus) in Division 6.b (Rockall)	May 2013	Whiting 6.b
whg.27.6a	Whiting (Merlangius merlangus) in Division 6.a (West of Scotland)	May 2017	Whiting 6.a

Annex 3: Working Documents presented to WGCSE 2017

The following four working documents were presented to WGCSE in 2017. They are found below on the following pages:

Length-based indicators and SPiCT in relation to reference points for Anglerfish in subareas 4 and 6, and in Division 3.a (North Sea, Rockall and West of Scotland, Skagerrak and Kattegat) (anf.27.3a-46). Helen Holah, Marine Scotland Science.

Review of the UK(E\&W)-BTS-Q3 abundance index for Irish Sea plaice (ple-iris, plaice 7.a). Giulia Cambiè and Timothy Earl, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, United Kingdom.

Note on french lpue for WGCSE 2017. Seabass. Alain Laurec, Mickael Drogou.
Estimating MSY Reference Points for Sol 27.7.h-k. Colm Lordan.

Length based indicators and SPiCT in relation to reference points for Anglerfish in subareas 4 and 6, and in Division 3.a (North Sea, Rockall and West of Scotland, Skagerrak and Kattegat) (anf.27.3a-46)

Helen Holah, Marine Scotland Science

Introduction

Following on from the method development work of WKLIFE V in 2015 (ICES, 2016a) and the WKPROXY workshop in 2016 (ICES, 2016b), ICES has decided that stock status in relation to MSY reference points should be established for all category 3 and 4 stocks with update assessments in 2017 (see ACOM ToRs 2017). The suggested methods for exploration are outlined in the "ICES technical guidance for providing reference points for stocks in categories 3-4" (ICES, 2017).

This document presents the input data, results and interpretation of the Length Based Indicators (LBI) and Stock Production in Continuous Time (SPiCT) model and justification as to why the other suggested methods were not appropriate for this stock.

LBI

Input data

LBI can be used to provide a perception of stock status and direct further exploration using suitable methodologies. All input data are listed in Table 1. Catch Length frequencies and weight at-length data were available for both the landed and discarded components of the catches for 2012 onwards. Length frequencies available from earlier years were not included as the discard component was insufficiently sampled. The length frequencies show clear modes/peaks in 2013-2015, however 2012 has a slightly plateaued distribution and in 2016 there is evidence of a second smaller recruitment driven mode (Fig. 1). The fishery for anglerfish may have a dome-shaped selectivity pattern. Larger or mature fish are suspected to move from the continental shelf into deeper waters making them less available to the fishery (Laurenson et al., 2001). Mature females are also known to deposit their ribbon-like eggs higher in the water column, occasionally being caught in the pelagic fisheries (Hislop et al., 2000; Bjelland et al.,, 2006). Length-at-age plots from the SCO-IV-VI-AMISS-Q2 survey show anglerfish exhibit a near linear growth pattern which is not well modelled by the Von Bertalanffy growth curve (Fig. 2). However other studies have estimated VB parameters e.g. Quincoces et al (1998) and Landa et al (2001) who estimated Linf to be 150 and 140.5 for females and 100 and 110.5 for males respectively. In the absence of a model estimated $\mathrm{L}_{\text {inf, }}$ a value of 146 cm was used, the length of the largest fish recorded in the catches of the last 10 years, associated K and equivalent M and M / K values are unknown.

Table 1: LBI Input data

Data type	Source	Years/value	Comment
Length frequency data	Intercatch	$2012-2016$	4 cm grouping
Weight-at-length data	Intercatch	$2012-2016$	4 cm grouping
Lmat	L50 maturity for females (Laurenson et al., 2008)*	102.4 cm	Males and females modelled together.
Linf	Maximum observed length in the last decade (ICES, 2016a).	146 cm	

[^4]
Outputs

The results are compared to the suggested reference points in Table 2. Where a cell is highlighted green, the indicator suggests the stock is in a good condition relative to the reference, and red a poor condition. Across all parameters where the size composition is compared to $L_{\text {inf }}$ and $L_{\text {mat }}$ the stock appears to be in a bad state, particularly for the presence of mega spawners ($\mathrm{P}_{\text {mega }}$). The MSY reference points suggest that the stock is being exploited above MSY, which can be seen in the graphical representation of the results (Fig. $3)$.

Length class: $\mathbf{4 c m}$

Figure 1: Length distribution from the commercial northern shelf anglerfish fishery.

Figure 2: Length-at-age of anglerfish (Lophius piscatorius and L. budegassa) by sex from the SCO-IV-VI-AMISS-Q2 survey for years 2012, 2013 \& 2015.

Table 2: table with LBI derived indicators of stock status compared to reference points.

	Conservation				Optimising Yield	MSY
Year	$L_{c} / L_{\text {mat }}$	$L_{25} / L_{\text {mat }}$	$L_{\text {max }} / L_{\text {inf }}$	Pmega	Lmean/Lopt	$L_{\text {mean }} / L_{\text {F }}=\mathrm{M}$
Reference	>1	>1	>0.8	>30\%	$\sim 1(>0.9)$	≥ 1
2012	0.21	0.29	0.59	0	0.47	0.87
2013	0.14	0.28	0.58	0	0.43	0.89
2014	0.25	0.31	0.61	0	0.49	0.85
2015	0.33	0.37	0.54	0	0.49	0.78
2016	0.18	0.42	0.53	0	0.50	0.98

L_{c} : Length at first catch (length at 50% of mode).
L_{25} : $25^{\text {th }}$ percentile of length distribution.
$L_{\text {max5 }}$: Mean length of largest 5\%.
Pmega: Proportion of individuals above $L_{\text {opt }}+10 \%$.
$L_{\text {mean }}$: Mean length of individuals larger than L_{c}.
Lopt: Length of optimal yield (=2/3 * Lint).
$L_{F=M}$: Length based proxy for MSY, $=0.75^{*} L_{c}+0.25^{*} L_{\text {inf }}$.

Figure 3: Development over time of the stock indicators in relation to suggested reference points.

Conclusion

The length based indicators suggest that the bulk of the catch is small and immature individuals, $L_{c}, L_{95 \%}$ and $L_{\text {max } 5 \%}$ are all lower than $L_{\text {mat }}$. $L_{\text {max } 5 \%}$ is also below $L_{\text {inf }}$ suggesting a poor conservation of large fish in the catches. This high exploitation pattern of juveniles leaves the stock vulnerable to overexploitation. However, literature concerning the biology and life history traits of anglerfish shows some consensus with larger fish migrating out of the fishery. In these situations the use of length based indicators are likely to be much less useful in terms of providing an indication of status in terms of conservation and optimising yield as they assume the (fully selected) catch length composition to be representative of the population length composition. However, it remains a concern that these fish are not represented in either the survey or commercial catches and therefore changes in their abundance cannot be observed or monitored. The linear nature of growth exhibited by anglerfish (Fig. 2) led to the approximation of a value for $L_{\text {inf }}$ providing a further reason for treating the related indicators ($L_{\text {opt }}, P_{\text {mega }}, L_{F=M}$) with caution. Given the characteristics of the anglerfish stock and fishery, this method appears unlikely to be useful for the provision of advice on stock status.

MLZ

Comment

The mean length-z model assumes that Von Bertalanffy growth parameters $L_{\text {inf }}$ and K can be estimated for the stock and that the selectivity of the fishery is knife-edged above the length of full selectivity $\left(L_{c}\right)$ at which point 100% of individuals are vulnerable to capture. As these assumptions cannot be adequately met for this stock this method was not explored further.

LB-SPR

Comment

The length based spawner per recruit model also assumes Von Bertalanffy growth parameters $L_{\text {inf }}$ and K are known for the stock and that the ratio of natural mortality and the Von Bertalanffy coefficient can be estimated. In addition the length structure observed in the catch should be representative of the stock. Again this stock does not meet the required assumptions for this method.

SPiCT model

Input data

The surplus production model in continuous-time (SPiCT) provides model diagnostics along with reference points for both biomass and fishing mortality and relative values respectively. All available input data are shown in Table 3 and Fig. 4. A single survey was included in the SPiCT model (the Scottish and Irish anglerfish and megrim industry/science survey SCO-IV-VI-AMISS-Q2) a targeted survey covering ICES Subareas 27.4 and 27.6. This was used as a relative or exploitable biomass index input. Landings data is available from 1973 however there are uncertainties associated with the catches between 1998-2006 after the introduction of a Total Allowable Catch (TAC) in 1998 and prior to the registration of fish sellers and buyers and designation of auction sites (Scotland) regulations of 2005. Landings during this period are assumed to be unreliable due to high levels of suspected area misreporting and possible black landings under a restrictive TAC. An effort series for Scottish demersal trawls (TR1) in Subarea 27.4 and 27.6 was available from 2000 to present. The recording of Scottish hours fished data is not mandatory in log sheets and the data are incomplete therefore Scottish otter-trawl fleet effort data are provided in units of kWdays.

Exploration

The SPiCT model was applied to relative biomass index as a proxy for exploitable biomass and landings as a proxy for catches. SPiCT allows for fixing the noise parameters on data series, due to the short time-series the parameters of observation error of the landings (β) and survey biomass (α) were not estimated in the model therefore fixed values of $\beta=0.65$ and $\alpha=0.85$ were adopted from the WKPROXY report (ICES, 2016b). No priors were used. The method exploration conducted at WKPROXY discounted the survey years where the survey was not conducted in April (November, 2005-2007, 2013) however SPiCT allows for the time at which the observation was made and the intervals between observation to be specified so these years were included (Fig. 4) in all model runs reported here.

Several trials were run (5 shown here) using various lengths and combinations of the available time-series (Table 3) as inputs.

Table 3: Input data available to the SPiCT model.

Data type	Source	Years/value	Comment
Survey time-series	SCO-IV-VI-AMISS-Q2	$2005-2016$	Conducted in November (rather than April) in 2005-2007 and

			2013.
Landings time-series	ICES; Historical Nominal Catches 1950- 2010, Official Nominal Catches 2006-2014 and preliminary catch statistics 2015-2016.	$1973-2016$	Uncertainty surrounding reliability of landings 1998-2006.
Effort time-series	Scottish otter-trawl kWdays	$2000-2016$	

Nobs I: 12

Nobs E: 17

Figure 4: Input data available to the SPiCT model. Top: Landings as collated by ICES. Middle: SCO-IV-VI-AMISS-Q2 estimates of relative biomass. Bottom: Effort in kW days of the Scottish otter trawl fleet.

Output

Reference points and stock status can be found in the respective output tables for each trial (Tables 4-8). The output includes both stochastic and deterministic reference points. Both are shown but if a suitable model was agreed upon for the approximation of reference points then the more conservative of the two would likely be chosen. The graphical output of the runs can be seen in figures 5-19.

Discussion

Run 1

Exploration started with a model using the landings 2006-2016 and the biomass index 20052016 (run 1). This was a similar model to that available on the www.stockassessment.org portal as used by the WKPROXY workshop with an update to include the most recent years of landings (2015 and 2016), the most recent year of biomass index (2016) and the inclusion of the years in which the SCO-IV-VI-AMISS survey was conducted in November (2005-2007
and 2013). With the inclusion of the most recent data the model output gave a significantly poorer outlook of stock state (Fig. 5) with the biomass index below $B_{M S y}$ for the whole timeseries and the landings above $F_{M s y}$ for all years excluding 2015, also reflected in the stock development plot. The uncertainties associated with the absolute and relative $B_{M S Y}$ and $F_{\text {MSY }}$ reference points are very high. The values estimated (Table 4) for $F_{\text {msy }}$ are quite high and the F for 2016 is unrealistically high (0.75). The model diagnostics appear ok for all the runs, however the retrospective plot for run 1 (Fig. 7) fails to converge and appears to be highly sensitive to the removal of data points.

Run 2

For run 2 the biomass index and catch time-series used as model input remained the same as run 1, but an effort time-series was added to the model from 2006-2016 (Table 5). The effort data changes the outlook of the model dramatically, with the absolute and relative biomass values over the time-series all above $B_{M S Y}$ and similarly the fishing mortality values are well below $F_{M s y}$. The stock development plot now shows a healthy and highly productive stock (Fig. 8). Despite the stock appearing to be in a healthy state the uncertainties surrounding the reference points in run 2 are much greater. The model predicted stochastic MSY of 31796 t is very high, as is the B_{2016} estimate of 119751 t with the F_{2016} of 0.166 unrealistically low for an anglerfish stock. Whist adding the effort series to the model improves the perceived condition of the stock the failure in the retrospective convergence suggests that the model is still highly unstable (Fig. 10).

Run 3

For run 3 the catch time-series was extended back to 1998, the first year of TAC management and the effort series extended back to its earliest year (2000) (Table 6). The model uncertainties in run 3 are much lower than in runs 1 and 2 . The model shows the stock to have been below $B_{\text {MSY }}$ between 1999-2004 and also above $F_{M S Y}$ from 1998-2002. This change over time is also seen in the stock development plot (Fig. 11). The model summary produces a slightly low $B_{M S Y} 36677$ t and similarly slightly high $F_{M S Y} 0.628$ although the estimates for MSY (23 022 t), $\mathrm{B}_{2016}(71589)$ and $\mathrm{F}_{2016}(0.275)$ are all sensible. Whilst the retrospective fits of run 3 converged there is still instability appearing to come from the last two years of data (Fig. 13) suggesting that the model is fitting poorly to the steep increases observed in both the biomass and catch since 2014.

Run 4 and 5

For run 4 the landings time-series was extended back to 1973 with the biomass and effort series remaining the same as run 3 . As with run 3 the uncertainties around the reference points are low however there appear to be much larger uncertainty bounds surroundings the absolute biomass of the first year (1973) which also looks unusual on the production curve plot (Fig. 14). The model suggests the stock has been exploited sustainably for the majority of the time series excluding the years of very high catch during the late 1990s (Fig. 14). There also appears to be a switch in the catch residuals from mainly positive to mainly negative around 1998, the model may be expecting more catches than were observed, which could be a result of the misreporting suspected to have begun at this time (Fig. 15). The model estimated reference points (Table 7) appear to be more realistic than those of the previous runs. The retrospective models successfully converge and appear to show pretty good fits and an indication of stability (Fig. 16). However due to the unusual way the model was responding to the first year of landings data (1973), predicting an unrealistically high absolute biomass run 5 was a rerun of run 4 with the exclusion of the first landings value for 1973. The impact of removing this single year on the model predictions of stock biomass and fishing morality is marked. The absolute biomass is now estimated to be below $\mathrm{B}_{\mathrm{MSy}}$ until 1998 and in fact appears to increase from almost zero at the start of the time series. The estimates for fishing mortality also appear rather strange: fishing mortality is estimated to be well above $\mathrm{F}_{\text {MSy }}$ at the start of the time series when it was a relatively low value, by-catch species. The uncertainty margins increase towards the present day for the biomass estimates and decrease for the fishing mortality. The relative biomass shows an
exaggerated-increasing trend (Fig. 17) in recent years. The model predicts unfeasible estimates of $\mathrm{B}_{\text {MSY }}\left(74713 \mathrm{t}\right.$) and B_{2016} (144 144 t). The retrospective fits again failed to fully converge and show very large variation (Fig. 19).

Overall conclusion

Whilst the inclusion of an effort time-series and additional years of landings data have made the model predictions more representative of existing knowledge of this stock's exploitation the model retrospective fits in almost all instances only partially converge and show significant differences between the retrospective fits demonstrating a lack of robustness in the SPICT model estimates.
The survey biomass index used in the SPiCT assessment is too short to inform production parameters, despite having a long time-series of landings available; using the two together is not advisable as it creates a large mismatch in the series for which the model is making assumptions. The reported landings since 1998 have been driven by quota limitations and are therefore not reflective of stock size. In addition, there is considerable uncertainty around the reported landings during the period 1998 to 2006 - a period when underreporting is known to have occurred. The analysis conducted here supports the conclusions of the WKPROXY experts and external reviewers that given the currently available data, SPiCT does not provide a reliable indication of stock status or associated MSY reference points.
Anglerfish will receive update advice in October 2017 at which point the presence or absence of MSY reference points will be considered when deciding whether or not the 20\% precautionary buffer should be applied. Given that the exploitable biomass of this stock has increased significantly over the past 5 years and that the ratio of the most recent two to the previous three years biomass is 1.71 this stock has good grounds for an exemption in applying the PA buffer. There is a plan to benchmark this stock in 2018 and it is envisaged that this process will result in an analytical stock assessment and associated reference points.

References

Bjelland, O., et al., 2006. Anglerfish (Lophius spp) in Nordic waters, Nordic Council of Ministers, Copenhagen.
Hislop, J.R.G., Holst. J.C., and Skagen, D. 2000. Near-surface captures of post-juvenile anglerfish in the North-east Atlantic - an unsolved mystery. Journal of Fish Biology. Vol. 57 pp 1083-1087.

Historical Nominal Catches 1950-2010. Version 30-11-2011. Accessed 08-05-2017 via http://ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx. ICES, Copenhagen.
ICES. 2016a. Report of the Fifth Workshop on the Development of Quantitative Assessment Methodologies based on Life-history Traits, Exploitation Characteristics and other Relevant Parameters for Data-limited Stocks (WKLIFE V), 5-9 October 2015, Lisbon, Portugal. ICES CM 2015/ACOM:56. 183 pp.
ICES. 2016b. Report of the Workshop to consider MSY proxies for stocks in ICES cate-gory 3 and 4 stocks in Western Waters (WKProxy), 3-6 November 2015, ICES Head-quarters, Copenhagen. ICES CM 2015/ACOM:61. 183 pp.
ICES. 2017. ICES technical guidance for providing reference points for category 3 and 4 stocks. ICES CM 2912/ACOM 68. 44 pp.
Landa, J., Pereda, P., Duarte,R., and Azevedo, M. 2001. Growth of anglerfish (Lophius piscatorius and L. budegassa) in Atlantic Iberian wasters. Fisheries Research. Vol. 51 pp 363-376.
Laurenson, C. H., Priede, I. G., Bullough, L. W., and Napier, I. R. 2001. Where are the mature anglerfish? - The population biology of Lophius pisccatorius in Northern European waters. ICES Document CM 2001/J:27, 2001 pg. 15
Laurenson, C. H., Dobby, H., McLay, H. A., and Leslie, B. 2008. Biological features of the Lophius piscatorius catch in Scottish waters. - ICES Journal of Marine Science, 65: 1281-1290.

Official Nominal Catches 2006-2014. Version 12-05-2016. Accessed 18-04-2017 via
http://ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx. ICES, Copenhagen.
Quincoces, I., Saturtun, M., and., Lucio, P. 1998. Biological aspects of white anglerfish (Lophius piscatorius) in the Bay of Bicsay (ICES Division VIIIa, b, d) in 1996-1997. ICES Council Meetings papers CM-1998/O:48. 29 pp.

Figure 5: Output from the SPiCT run 1.

Table 4: Model estimated reference points run 1

Run 1	Parameter	Type	Value
Landings: 2006-2016 Index: 2005-2016	MSY	S	33667 t
		D	33747 t
	$\mathrm{F}_{\text {MSY }}$	S	0.691
		D	0.692
		S	23264 t
	B_{2016}	-	23337 t
	F_{2016}	-	25305
	$\mathrm{~B}_{2016} / \mathrm{B}_{\text {MSY }}$	S	0.750
	$\mathrm{~F}_{2016} / \mathrm{F}_{\text {MSY }}$	S	1.086

Figure 6: Model diagnostics from the SPiCT model run 1.

Figure 7: 4-year retrospective of SPiCT run 1.

Figure 8: Output from the SPiCT run 2.

Table 5: Model estimated reference points run 2

Run 2	Parameter	Type	Value
Landings: 2006-2016 Index: 2005-2016 Effort: 2006-2016	$\mathrm{B}_{\text {MSY }}$	S	54952 t
		MSY	F
		S	0.556
		D	0.563
	$\mathrm{~B}_{2016}$	-	30534 t
	F_{2016}	-	119751
	$\mathrm{~B}_{2016} / \mathrm{B}_{\text {MSY }}$	S	0.166
	$\mathrm{~F}_{2016} / \mathrm{F}_{\text {MSY }}$	S	2.179

Figure 9: Model diagnostics from the SPiCT model run 2.

Figure 10: 4-year retrospective of SPiCT run 2.

Figure 11: Output from the SPiCT run 3.

Table 6: Model estimated reference points run 3

Run 3	Parameter	Type	Value
Landings: 1998-2016	$\mathrm{B}_{\text {MSY }}$	S	35923 t
		D	36677 t
	MSY	S	0.623
		S	0.628
		D	22372 t
	B_{2016}	-	23022 t
	F_{2016}	-	71589
	$\mathrm{~B}_{2016} / \mathrm{B}_{\text {MSY }}$	S	1.993
	$\mathrm{~F}_{2016} / \mathrm{F}_{\text {MSY }}$	S	0.442

Figure 12: Model diagnostics from the SPiCT model run 3.

Figure 13: 4-year retrospective of SPiCT run 3.

Figure 14: Output from the SPiCT run 4.

Table 7: Model estimated reference points run 4

Run 4	Parameter	Type	Value
Landings: 1973-2016 Index: 2005-2016 Effort: 2000-2016	Bmsy	S	47987 t
		D	48918 t
	FMSY	S	0.518
		D	0.523
	MSY	S	24861 t
		D	25579 t
	B_{2016}	-	97086
	F_{2016}	-	0.202
	$\mathrm{B}_{2016} / \mathrm{B}_{\text {MSY }}$	S	2.023
	$\mathrm{F}_{2016} / \mathrm{F}_{\text {MSY }}$	S	0.390

Figure 15: Model diagnostics from the SPiCT model run 4.

Figure 16: 4-year retrospective of SPiCT run 4.

Figure 17: Output from the SPiCT run 5.

Table 8: Model estimated reference points run 5

Run 5	Parameter	Type	Value
Landings: 1974-2016 Index: 2005-2016 Effort: 2000-2016	Bmsy	S	73284 t
		D	74713 t
	FMSY	S	0.353
		D	0.357
	MSY	S	25852 t
		D	26690 t
	B2016	-	144144
	F_{2016}	-	0.136
	$\mathrm{B}_{2016} / \mathrm{B}_{\text {MSY }}$	S	1.967
	$\mathrm{F}_{2015} / \mathrm{F}_{\text {MSY }}$	S	0.384

Lag

Lag

Lag

Figure 18: Model diagnostics from the SPiCT model run 5.

Figure 19: 4-year retrospective of SPiCT run 5.

Appendix 1: SPiCT input data.

Year	Landings (t)	Index (t)	Effort (kW/days)
1973	12189		
1974	7801		
1975	8299		
1976	9021		
1977	8774		
1978	8172		
1979	8123		
1980	8485		
1981	5623		
1982	7104		
1983	8542		
1984	11075		
1985	12078		
1986	12343		
1987	15377		
1988	17973		
1989	16451		
1990	17605		
1991	17441		
1992	21879		
1993	23966		
1994	25049		
1995	28897		
1996	35102		
1997	40258		
1998	30293		
1999	25026		
2000	22185		43410630
2001	21238		40520601
2002	17868		33034289
2003	14141		23411493
2004	15551		18454206
2005	13552	38617	15515821
2006	15150	40985	14518615
2007	16431	50392	13779921
2008	16918	53546	15070471
2009	16011	38060	15905442
2010	13896	42279	14198734
2011	13680	33254	13330728
2012	12265	36325	12036662
2013	12139	38395	12819808
2014	11438	52884	12743584
2015	15562	67915	13064499
2016	19505	77946	14729181

Working Document for WGCSE (2017)

Review of the UK (E\&W)-BTS-Q3 abundance index for Irish Sea plaice (ple-iris, plaice 7a)

Authors:

Giulia Cambiè giulia.cambie@cefas.co.uk
Timothy Earl timothy.earl@cefas.co.uk
Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 OHT, United Kingdom

26/04/2017

Introduction

The UK(E\&W)-BTS-Q3 beam trawl survey provides an abundance index by age class for plaice in the Irish sea 7a since 1993. The index is calculated from 4 sampling strata: Irish Sea North (ISN), Irish Sea East (ISE), Irish Sea West (ISW), St George's Channel (SGC) (Figure 1).

Figure 1. Locations of hauls (white circles) with plaice taken for age sampling in the Irish Sea during 2016.

For each age ($0-9+$), the index is calculated according to Figure 2. The initial combination of the values between Irish Sea North (ISN) and Irish Sea East (ISE) and between Irish Sea West (ISW), St George's Channel (SGC) is based on similarities in the growth function.

Figure 2. Flow chart resuming the methodological approach for the calculation of the biomass index from the UK(E\&W)-BTS-Q3 beam trawl survey.

Review of the index

Here we provide a revision of the index to correct for few miscalculations present in the data set (Figure 3). No significant change in the index has been found for the ages used to run the stock assessment (ages $1-7$). Ages 0,8 and $9+$ show the most significant changes with respect to the previous calculations (Figure 3). However, these last age classes do not influence the mean age value, which is calculated considering only age classes between 1 and 6 . The effect of the new values for the age classes 0,8 and $9+$ on the total abundance index (obtained, for each year, by summing the abundance index across all ages) is also very limited (Figure 3).

Comparisons of the SAM model's outputs between the "old" and the "new" abundance index showed a difference in the SSB estimate with a higher value when using the revised index (SSB = 22686 t) with respect to the old one (SSB = 20504 t) (Figure 4). The estimation of the catchability also varied with the new revised index (highest catchability for age 1 vs age 2 with the previous index) as well as the recruitment (Figure 5 and Figure 6).

Figure 3. Comparison of the abundance index between the old (red line) and the new (green line) revised data set. Ages 1-7 (in bold) represent the ages used to run the stock assessment.

Figure 4. Comparison of the SSB estimate with SAM model the old and the new UK survey index of abundance.

Figure 5. Comparison of the catchability estimate with SAM model the old and the new UK survey index of abundance.

Figure 5. Comparison of the SAM model outputs with the old and the new UK survey index of abundance.

Note on french LPUE for WGCSE 2017. Seabass

Alain Laurec, Mickael Drogou

Feedback on almost zero catches from log books

Daily catch histograms per year, integrating all boats, every month all squares are presented in Figure 1 taking into account all the years (2000-2016).

Figure 1 : seabass landings pear day (all years included)
The important element is the very low values, in this case with catches less than or equal to 1 kg . They are well isolated from the global mode (a few tens of kg). The frequency varies especially as it was already noted from year to year with a break in 2009 (figure 2).

Figure 2 : fréquences of landings $<=1 \mathrm{~kg}$

There is indeed a heterogeneity with a cut between 2008 and 2009. It is feared that many of the very low catches (many are declared at 0.1 kg) are false positives. In order to homogenize the whole, vessels may be selected which, even before 2009, have very few very low values, but it has been preferred finally for WGCSE 2017 to exclude values of less than 1 kg for all vessels and all years. This leads to the multi-year trends described in figure 3 (NB took 2009 as reference year).

Intégration of 2016

Like before, previous options are retained: elimination of catches of less than 1 kg , and elimination of MWT and purse seiners, (choice of 2009 as reference). For seasonal patterns the additional year does not change much. The graph below (Figure 3) shows the multiannual trends from 2000 to 2016.

Figure 3 : annual trends per «stock »
To evaluate the reliability of these results 500 bootstrap have been made. The syntheses also include a basic estimate, average over 500 copies (average boot), maximum (boot) and minimum (boot) values on the 500 prints, the upper limits (B.sup.) And lower (B.inf) confidence intervals of the 5% confidence intervals (constructed on the basis of the normal approximation) and the standard deviation of the 500 simulations and the number of prints (<=500) Which allowed a complete calculation.

Figures 4-a to 4-5 show the estimated annual effects (compared to 2009) for the three "stocks".

Figure 4 : LPUE indices with confidence intervals
In all cases, the mean of the simulations is very close to the mean of the simulations, which suggests that the so-called Laurent correction sometimes evoked by purists has no impact.

For the Bay of Biscay the increase from 2009 to 2014 is "significant", and at least 8\%. In the Channel the decrease since 2009 is significant since 2013, and is in 2016 by at least 30%, and may reach 50%. Special calculations have been made of the apparent decreases since 2014. The confidence intervals for the 2014-2015, 2015-2016 and 2014-2016 ratios are shown in the table below.

"Stock"	Gascogne	Gascogne	Gascogne	Manche	Manche	Manche
Couple	Ratio 14-15	Ratio 15-16	Ratio 14-16	Ratio 14-15	Ratio 15-16	Ratio 14-16
Base	1.18	1.11	1.26	1.08	1.35	1.39
B.inf 5\%	1.13	1.05	1.18	1	1.22	1.26
B.Sup 5\%	1.24	1.18	1.35	1.17	1.49	1.53

This suggests for example that in the Bay of Biscay the decrease from 2014 to 2016 would be at least 18% and could go up to 35%. The corresponding reduction would be at least 26% and could reach 53\%.

Estimating MSY reference Points for Sol 27.7.h-k

Colm Lordan

9 June 2017

Introduction

This Markdown document outlines the steps involved in estimating PA and MSY reference points for Sole 7.h-j at WGCSE 2017. The objective is to have a reproducible document that transparently outlines the process, settings and decisions.

The ICES technical guidelines document establishes the procedures to be followed.
These have been developed based on the experiences and approach applied at WKMSYREF4 which estimated PA reference points and Fmsy and MSY ranges for category 1 stocks in western waters and WKMSYREF3 which estimated Fmsy and MSY ranges for North Sea stocks.

For typical age-based assessments the preferred ICES approach used the EqSim methodology. This is available from the developmental repository for the 'msy package' which is located on github, more specifically on github.com/ices-tools-prod/msy.
The MSY evaluation used the stock object for the update assessment carried out at WGCSE 2017.

Overview of stock

First we plot the stock object to see what the input data to Eqsim look like. The mean weights and stock weights declined in the mid to late 2000s. A fixed maturity vector is used throughtout time. The F pattern-at-age looks resonably stable over the last decaed. Strong cohorts are apparent in the stock numbers-at-age.
The stock summary plot shows some indication of auto-correlation in recruitment which is typicall in sole stocks. F shows a decling trend and SSB shows and increasing trend over time.

```
stock <- trim(stock, age = 3:10) # Need this as SOL only mature at age 3
stock@range['minfbar'] <- 3
stock@range['maxfbar'] <- 6
set.seed(196788) # to ensure repeatable results
ggplot(data = stock, aes(year, data)) + geom_line(aes(group = age,
    colour = factor(age))) + facet_wrap(~slot, scales = "free",
    nrow = 5) + labs(x = "", y = "")
```

\#\# Warning: Removed 24 rows containing missing values (geom_path).


```
ggsave("Summary_of_stock_object.png", device="png")
## Warning: Removed 24 rows containing missing values (geom_path).
plot(stock) + theme_bw()
```



```
ggsave("Stock_summary_plot.png", device="png")
```


Plotting the SR relationship

Next we have an inital look at the stock and recruit plot. Recruitment is age 3 so there needs to be an off set.

```
ssb <-as.data.frame(ssb(stock))
ssb$var <- "SSB"
rec <-as.data.frame(rec(stock))
rec$year <- rec$year-rec$age
rec$var <- "Recruitment"
sr <- left_join(ssb,rec, by="year") [,c(2,7,14)]
names(sr) <- c("year", "SSB", "Recruitment")
ggplot(sr, aes(SSB, Recruitment)) + geom_point() +
    geom_text(aes(label=year), hjust=-0.1) + theme_bw() +
    xlim(0, max(sr$SSB)*1.05) + ylim(0, max(sr$Recruitment)*1.05) +
    geom_path(aes(colour = year), arrow = arrow(angle = 30, length = unit(0.15, "inches")))
## Warning: Removed 3 rows containing missing values (geom_point).
## Warning: Removed 3 rows containing missing values (geom_text).
## Warning: Removed 3 rows containing missing values (geom_path).
```



```
ggsave("sr_summary_plot.png", device="png")
## Warning: Removed 3 rows containing missing values (geom_point).
## Warning: Removed 3 rows containing missing values (geom_text).
## Warning: Removed 3 rows containing missing values (geom_path).
```


Shift function

This is a function to shift ages in eqsim.

```
eqsr_fit_shift <-
    function (stk, nsamp = 5000, models = c("Ricker", "Segreg", "Bevholt"),
                method = "Buckland", id.sr = NULL, remove.years = NULL, delta = 1.3,
                nburn = 10000, rshift = 3) {
    dms <- FLCore::dims(stk)
    rage <- dms$min
    if (rage == 0) {
        x = FLCore::stock.n(stk)[1, drop = TRUE]
    }
    else {
        x = c(FLCore::stock.n(stk)[1, -seq(rage), drop = TRUE],
                rep(NA, rage))
    }
    if (rshift > 0){
        x = c(FLCore::stock.n(stk)[1, -seq(rshift), drop = TRUE],
```

```
        rep(NA, rshift))
    } else { NULL }
    rby <- data.frame(year = with(dms, minyear:maxyear), rec = x,
                ssb = FLCore::ssb(stk)[drop = TRUE], fbar = FLCore::fbar(stk)[drop = TRUE],
                landings = FLCore::landings(stk)[drop = TRUE], catch = FLCore::catch(stk)[drop =
    # print(rby)
    row.names(rby) <- NULL
    rby <- rby[!is.na(rby$rec), ]
    data <- rby[, 1:3]
    if (!is.null(remove.years)) {
        data$ssb[data$year %in% remove.years] <- NA
    }
    data <- data[complete.cases(data), ]
    if (is.null(id.sr))
        id.sr <- FLCore::name(stk)
    method <- match.arg(method, c("Buckland", "Simmonds", "King", "Cadigan"))
    if (!is.character(models))
        stop("models arg should be character vector giving names of stock recruit models")
    if (method == "Buckland") {
        return(c(eqsr_Buckland(data, nsamp, models), list(stk = stk,
                        rby = rby, id.sr = id.sr)))
    }
    else {
        cat("The", method, "is not ready yet! Working on it!\n")
    }
}
```


Fitting a Segmented regression

This stock can arguably be classified as Type 2 - Stocks with a wide dynamic range of SSB, and evidence that recruitment is or has been impaired. For these types of stock Blim is set to the change point in segmented regression.

```
fit <- eqsr_fit_shift(stock, nsamp = 1000, models = c("Segreg"), rshift = 3)
eqsr_plot(fit,ggPlot=T)
```


boxplot(fit\$sr.sto\$b.b, main="Stochastic Breakpoint estimates")

Stochastic Breakpoint estimates


```
Blim <- median(fit$sr.sto$b.b)
Bpa <- Bpa(Blim, 0.2)
```

Based on the segmented regression above $\mathrm{Blim}=424.8830039$ and $\mathrm{Bpa}=590.4080134$.

Running the simulation with and without errors and advice rules

The function below originally writen by Einar Hjorleifsson. It is a very handy way of getting results for the various types of simulation in one place to avoid confusion.

```
do_the_whole_thing <- function(stockSetup) {
    results <- within(stockSetup, {
        fit <- eqsr_fit_shift(stock, nsamp=1000, model="Segreg", method="Buckland", id.sr=NULL, remove.year
        ## Simulate a stock to equilibrium and continue simulating for some years
        ## 1) simulation with no error
        sim_noError <- eqsim_run(fit, Fscan=Fscan, verbose=verbose,
                            extreme.trim=extreme.trim,
                            bio.years=bio.years, sel.years=sel.years,
                            bio.const=TRUE, sel.const=TRUE,
                            Fcv=0, Fphi=0,
                            Blim=Blim, Bpa = Bpa)
        ## 2) simulation with age error
        sim_ageError <- eqsim_run(fit, Fscan=Fscan, verbose=verbose,
            extreme.trim=extreme.trim,
            bio.years=bio.years, sel.years=sel.years,
            bio.const=FALSE, sel.const=FALSE,
```

```
Fcv=0, Fphi=0,
Blim=Blim, Bpa = Bpa)
        ## 3) simulation of base data
        sim_base <- eqsim_run(fit, Fscan=Fscan, verbose=verbose,
                                    extreme.trim=extreme.trim,
                                    bio.years=bio.years, sel.years=sel.years,
                                    bio.const=FALSE, sel.const=FALSE,
                                    Fcv=Fcv, Fphi=Fphi,
                                    Blim=Blim, Bpa = Bpa)
        ## 4 ) simulation incudling Btrigger harvest control rule
        sim_trigger <- eqsim_run(fit, Fscan=Fscan, verbose=verbose,
                    extreme.trim=extreme.trim,
                    bio.years=bio.years, sel.years=sel.years,
                    bio.const=FALSE, sel.const=FALSE,
                    Fcv=Fcv, Fphi=Fphi,
                    Blim=Blim, Bpa = Bpa,
                    Btrigger=Bpa)
    })
    return(results)
}
```


Running Eqsim

The setup for the simulation is fairly standard. Ten years for biologicals and selection. The Fscan range is limted to 0.44 with a percision of 0.005 to get very percise estimates. The FCV and Fphi are the standard ones advised by WKMSYREF4.

```
stocksetup <- list(data = stock,
    bio.years = c(2007, 2016),
    bio.const = FALSE,
    sel.years = c(2007, 2016),
    sel.const = FALSE,
    Fscan = seq(0,0.44,by=0.005),
    Fcv = 0.212,
    Fphi = 0.423,
    Blim = Blim,
    Bpa = Bpa,
    verbose = TRUE,
    extreme.trim=c(0.05,0.95)
)
out <- do_the_whole_thing(stocksetup)
## 0% 50% 100%
##
[> ]
[> ]
[=> ]
[=> ]
[==> ]
[==> ]
[===> ]
[===> ]
```

[====>
[=====>
[=====>
[======>
[======>
[=======>
[=======>
[========>
[========>
[=========>
[==========>
[==========>
[===========>
[===========>
[============>
[============>
[=============>>
[==============>
[==============>
[===============>>
[===============>>
[================>
[================>
[=================>>
[=================>>
[=================>>
[===================>>
[===================>>>>
[===================>>
[===================>>
[=====================>
[======================>>
[$=======================\ggg$
[$=========================\ggg$
[$==========================\ggg$
[$============================\ggg$
[$==============================\gg$

[==================================>=1]
[===================================>]
[==================================>]
[====================================>>>]
[=====================================>]
[=====================================>]
[=======================================>>>]
[======================================>]
[======================================>>>>>1]
[=======================================>>>1]
[=======================================>>>1]
[===>>>1]
[===>>1]
[===1]
[==>]
[==1]
[===>>1]
[==>]
[===>=1]
[===>>>1]
[==1]
[===1]
[===>]
[===>]
[===>]]
[===>]][===1]
\#\# 0\% 100\%
\#\#
[>]
[>]
[=>]
[=>]
[=>>]
[==>]
[===>]
[===>]
[====>]
[=====>]
[=====>]
[======>]
[======>]
[=======>]
[=======>]
[========>]
[========>]
[=========>]
[==========>]
[==========>]
[===========>]
[===========>]
[============>]
[============>]

```
[=============> ]
[==============>> ]
[==============> ]
[===============> ]
[===============> ]
[================>> ]
[================> ]
[=================>> ]
[=================>> ]
[==================> ]
[===================>> ]
[===================> ]
[====================>> ]
[====================>> ]
[=====================> ]
[=====================> ]
[======================> ]
[=======================>> ]
[=======================>> ]
[========================>> ]
[========================> ]
[=========================> ]
[=========================> ]
[==========================>> ]
[===========================> ]
[===========================>> ]
[============================> ]
[============================>> ]
[=============================>> ]
[=============================> ]
[==============================>>]
[==============================> ]
[===============================> ]
[================================>> ]
[================================>>]
[=================================>> ]
[=================================>> ]
[==================================> \ ]
[==================================>> ]
[===================================>>]
[====================================> ]
[====================================> ]
[=====================================>> ]
[=====================================>> ]
[======================================>> ]
[======================================>> ]
[=======================================>> ]
[=======================================>> ]
[=========================================> ]
[=========================================>> ]
[=========================================> ]
[==========================================>> ]
[==========================================>> ]
[============================================>> ]
```


[=======================>]
[=======================>>]
[=======================>>]
[=========================>>>>>]
[=========================>>>>]
[=========================>>>>>]
[==========================>>>]
[===========================>]
[==========================>>>]
[============================>>>]
[=============================>]
[=============================>]
[==============================>>]
[=============================>>]
[===============================>>]
[===============================>>>>]
[===============================>]
[================================>]
[=================================>>>>]
[=================================>>]
[==================================>]
[===================================>>>>]
[==================================>]
[===================================>>>]
[===================================>>]
[=====================================>>]
[=====================================>>>]
[====================================>>>>]
[=======================================>>>>]
[=======================================>>]
[=======================================>>]
[=======================================>>>>]
[===>>>>]
[==>>>>]
[==>]
[==>>>>]
[===>>]
[==>>>]
[===>>]
[===1]
[==>>]
[===1]
[===>>]
[===>]
[==1]
[==>]
[===>]]
[===>>]
[==>]]
[==>]
\#\# 0\% 50\% 100\%
\#\#
[>]
[>]
=>]
[=>]
[==>]
[==>]
[===>]
[===>]
[====>]
[=====>]
[=====>]
[======>]
[======>]
[=======>]
[=======>]
[========>]
[========>]
[=========>]
[==========>]
[==========>]
[===========>]
[===========>]
[============>]
[============>]
[=============>]
[==============>]
[==============>]
[===============>]
[===============>]
[================>]
[================>]
[=================>]
[=================>]
[==================>]
[===================>]
[===================>]
[====================>]
[====================>]
[=====================>]
[=====================>]
[======================>]
[=======================>]
[=======================>>]
[========================>>>]
[========================>>]
[=========================>]
[=========================>]
[==========================>]
[=========================>>>]
[===========================>>>]
[============================>]
[============================>]
[=============================>>]
[=============================>]
[==============================>>>1]
$[========================1$

Output from eqsim analysis

The tables below gives the estimates for FMSY with and without Btrigger.
knitr::kable(t(out\$sim_base\$Refs2), digits=c(3,3,0,0,0,0))

	catF	lanF	catch	landings	catB	lanB
F05	0.160	NA	108	NA	590	NA
F10	0.171	NA	107	NA	557	NA
F50	0.213	NA	94	NA	425	NA
medianMSY	NA	0.162	NA	108	NA	585
meanMSY	0.160	0.160	108	108	589	589
Medlower	NA	0.113	NA	102	NA	745
Meanlower	NA	0.112	NA	105	NA	NA
Medupper	NA	0.194	NA	103	NA	487
Meanupper	NA	0.188	NA	105	NA	NA

```
knitr::kable(t(out$sim_trigger$Refs2), digits=c(3,3,0,0,0,0))
```

	catF	lanF	catch	landings	catB	lanB
F05	0.204	NA	108	NA	532	NA
F10	0.223	NA	107	NA	508	NA
F50	0.306	NA	100	NA	425	NA
medianMSY	NA	0.185	NA	109	NA	560
meanMSY	0.185	0.185	109	109	559	559
Medlower	NA	0.120	NA	103	NA	719
Meanlower	NA	0.117	NA	105	NA	NA
Medupper	NA	0.271	NA	103	NA	456
Meanupper	NA	0.272	NA	105	NA	NA

```
#FMSY base
refs <- round(t(out$sim_base$refs_interval),3)
fmsy_base <- refs[4,]
f05_base <- refs[7,]
#FMSY trig
refs <- round(t(out$sim_trigger$refs_interval),3)
fmsy_trigger <- refs[4,]
f05_trigger <- refs[7,]
```

The Fmsy without the ICES advice rule is 0.161 . The F0.05 without the ICES advice rule is 0.16 . The Fmsy range is $0.115,0.161,0.192$.

The Fmsy with the ICES advice rule is 0.181 . The F0.05 with the ICES advice rule is 0.204 . The Fmsy range is $0.122,0.181,0.27$.

Visulatisation of MSY reference points

Below we produce the standard plots used to evaluate the fits etc.

```
png('stock-recruit.png',4.5,4.5,'in',10,res=600)
eqsr_plot(out$fit)
dev.off()
## pdf
## 2
png('yield_base.png',4.5,4.5,'in',10,res=600)
eqsim_plot(out$sim_base, catch = TRUE)
dev.off()
## pdf
## 2
png('yield_trigger.png',4.5,4.5,'in',10,res=600)
eqsim_plot(out$sim_trigger, catch = TRUE)
dev.off()
## pdf
## 2
```

```
png('msy_base.png',4.5,4.5,'in',10,res=600)
eqsim_plot_range(out$sim_base, type="median")
dev.off()
## pdf
## 2
png('msy_trigger.png',4.5,4.5,'in', 10,res=600)
eqsim_plot_range(out$sim_trigger, type="median")
dev.off()
## pdf
## 2
eqsim_plot_range(out$sim_base, type="ssb")
```


eqsim_plot_range(out\$sim_trigger, type="ssb")

Estimating Flim and Fpa

Eqsim is run with no error to estimate Flim and the MSY Btrigger you would get from the analysis. There a a few different approaches to estimating the Flim point. Here we use a loess smoother to predict the F that has a 50% probability of bringing the stock to Blim. A similar approach is used to estimate the MSY Btrigger you would get from the analysis to test if this is higher than Bpa.

```
data.95 <- out$sim_noError$rbp
x.95 <- data.95[data.95$variable == "Spawning stock biomass", ]$Ftarget
b.95 <- data.95[data.95$variable == "Spawning stock biomass", ]$p50
#plot(b.95~x.95, ylab="SSB", xlab="F")
b.lm <- loess(x.95 ~ b.95, span = 0.3)
flim<- round(predict(b.lm, Blim), 3)
fpa<- round(Fpa(flim, 0.2),3)
###BTrigger
data.05 <- out$sim_noError$rbp
x.05 <- data.05[data.05$variable == "Spawning stock biomass", ]$Ftarget
b.05 <- data.05[data.05$variable == "Spawning stock biomass", ]$p05
plot(b.05~x.05, ylab="SSB", xlab="F")
```


Summary of the results

For this stock the estimated Fmsy is very close to F0.05 and Fpa.

Table 2. Summary of reference ploints

Reference point	Value	Technical basis
MSY Btrigger	590.40801343849 t	Bpa
FMSY	0.161	Median point estimates of EqSim with segmented regression SR
Blim	424.883003902523 t	Break point segmented regression S-R relationship
Bpa	590.40801343849 t	Blim $\times \exp (1.645 \times$ sigma $)$ sigma $=0.20$
Flim	0.222	F with 50% probability of SSB less than Blim
Fpa	0.16	Flim combined with the assessment error

Annex 4: Technical Minutes of the Review Group for the Review Group of Celtic Sea Stocks (RGCS)

- RGCS
- By correspondence 25 May-2 June 2017
- Reviewers: Brooke Wright (chair), Steve Cadrin (chair), Gavin Fay (chair), Nicholas Calabrese, Alexander Hansell, Amanda Hart, Lauren Horton, Judith Rosellon-Druker, Ashley Weston, Robert Wildermuth, and Megan Winton; University of Massachusetts Dartmouth, School for Marine Science \& Technology, Fairhaven, Massachusetts, USA.
- Review of ICES Working Group for the Celtic Sea Ecoregion (WGCSE) Report 2017

Review Process - The ICES advisory service quality assurance program requested that a team of graduate students and their professors serve as a review group, as specified in Guidelines for Review Groups (RG; ICES, 2009). The group initially met on 24 May 2017 to review the ICES advisory process, RG guidelines, and to assign two WGCSE report sections to each reviewer. RG members reviewed WG report sections independently, and presented their summaries and reviews to the group in a series of meetings from 30 May 2017 to 1 June 2017. A RG template (Appendix A) was provided to each reviewer so that the information needed for RG discussions and conclusions could be compiled and efficiently reported. At these meetings, reviewers provided a summary of their report, focusing on changes to methodology, stock status or basis for advice. At the close of each presentation the RG discussed and finalized recommendations for each stock. Reviews were collated and finalized by the chairs, which included verifying the data provided in each review and resolving any outstanding questions raised by reviewers.

Sixteen stock assessment reports (i.e. WGCSE report sections) were reviewed (Table 1). The WG reports were generally informative, and WG decisions about data, model choice, and specification were clearly explained and justified. In general, the RG concludes that most reports are technically correct, and agrees with the WG interpretations and recommendations, with only a few exceptions.

General comments

WGCSE report sections were downloaded 25-29 May 2017. Some report sections were still in 'track changes' mode, so we accepted all changes and reviewed the revised document, unless otherwise noted in each review section. UMass Dartmouth has formed a RG annually since 2008, and the efficiency of the review process improves each year.

Most update assessments applied the benchmark methods. There were a few exceptions, and most of these were well justified. The RG recommends that the benchmark method should be applied whenever possible, so that the results and diagnostics of any proposed alternative methods can be reviewed. The RG supported the conclusions of the WGCSE and supported their assessments as a reliable basis for advice. One exception was that the RG could not determine if the updated assessment for plaice in Division 7.a (ple.27.7.a) was consistent with the benchmark method or if it is a valid basis for advice because of the lack of detail on data and model decisions in the annex and the apparent inconsistencies between the WG report and the annex.

Table 1. Stocks reviewed by RGCS.

Stock	
cod.27.6.a	Cod (Gadus morhua) in Division 6.a (West of Scotland)
cod.27.7.a	Cod (Gadus morhua) in Division 7.a (Irish Sea)
cod.27.7.e-k	Cod (Gadus morhua) in divisions 7.e-k (eastern English Channel and southern Celtic Seas)
had.27.7.a	Haddock (Melanogrammus aeglefinus) in Division 7.a (Irish Sea)
had.27.7b-k	Haddock (Melanogrammus aeglefinus) in divisions 7.b-k (southern Celtic Seas and English Channel)
ple.27.7.a	Plaice (Pleuronectes platessa) in Division 7.a (Irish Sea)
ple.27.7.e	Plaice (Pleuronectes platessa) in Division 7.e (western English Channel)
ple.27.7.fg	Plaice (Pleuronectes platessa) in divisions 7.f and 7.g (Bristol Channel, Celtic Sea)
ple.27.7.h-k	Plaice (Pleuronectes platessa) in divisions 7.h-k (Celtic Sea South, southwest of Ireland)
sol.27.7.e	Sole (Solea solea) in Division 7.e (western English Channel)
sol.27.7.fg	Sole (Solea solea) in divisions 7.f and 7.g (Bristol Channel, Celtic Sea)
sol.27.7.h-k	Sole (Solea solea) in divisions 7.h-k (Celtic Sea South, southwest of Ireland)
whg.27.7.a	Whiting (Merlangius merlangus) in Division 7.a (Irish Sea)
whg.27.7.b-ce-k	Whiting (Merlangius merlangus) in divisions 7.b-c and 7.e-k (southern Celtic Seas and eastern English Channel)

Some RG comments apply to several assessment sections:

- The UMassD RG previously reviewed WGCSE stock assessments in 2009 and 2012. The RG was impressed with several trends toward data improvements and modelling advancements. For example, discards are being monitored and included in many stock assessments in the region. Continued monitoring and integration of discards into stock assessments is encouraged to improve the basis of ICES advice, particularly as the landings obligation begins to affect more fisheries. The transition from calibrated Virtual Population Analysis (e.g. eXtended Survivor Analysis, XSA) toward statistical catch-at-age (e.g. Age-Structured Assessment Program, ASAP; State-space Assessment Model, SAM) is considered to be a systematic improvement. The RG encourages WGCSE to continue the transition by adopting a fleetbased approach to modelling fishery catch. Applications of ICES recent advances for data-limited stock assessments, Maximum Sustainable Yield (MSY) reference points and MSY proxy reference points are also positive developments.
- Several benchmark ASAP applications were revised to remove the likelihood constant from the recruitment likelihood component. Although most assessments are not sensitive to the revision, removal of the likelihood constant is considered to be 'best practice' to avoid biased estimates. For example, update assessments of New England groundfish all made the same revision from benchmark methods (NEFSC, 2015).
- The RG used the same terminology for retrospective patterns as the WG. However, the RG notes that the phrases 'revised upward' and 'revised downward' are more appropriate than 'underestimated', 'overestimated' or 'bias', because simulation studies have demonstrated that the direction and magnitude of retrospective inconsistency is not a measure of bias. The terminology and implied meanings are important for considering practices like retrospective adjustment.
- Several reported values imply a false sense of precision (e.g. fishing mortality values to five digits).
- The RG thanks WGCSE Chair and Assessment authors for timely responses to RG questions. The RG notes that some assessment authors included assessment model data and output files as part of the reports; these aided in diagnosing RG questions and/or inconsistencies during the review process.

References

ICES. 2009. Guidelines for Review Groups. ACOM 2009.
Northeast Fisheries Science Center. 2015. Operational Assessment of 20 Northeast Groundfish Stocks, Updated Through 2014. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 15-24; 251 p.

Review of the Working Group for the Celtic Seas Ecoregion Report (WGCSE)

cod.27.6.a [WGCSE Section 05: Cod (Gadus morhua) in Division 6.a (West of Scotland)]

1) Assessment Type: Update including commercial landings and survey data through 2016 (Benchmarked in 2012 and Inter-Benchmarked in 2015).

2) Assessment: Analytical (Category 1.20)
3) Forecast:

- Short-term: Age-structured model using status quo F (0.79), 2017 recruitment from TSA and a 10-year geometric mean recruitment for 2018. Catch in 2017 is predicted to be 1627, and SSB in 2018 is predicted to be 2835 t . Catch in 2018 and SSB in 2019 were not predicted due to sensitivity to recruitment assumptions.
- Medium-term: None
- Long-term: None

4) Assessment method: The assessment was conducted using a time-series analysis (TSA). Commercial data included landings and discards. Survey data included Scottish West Coast Groundfish Survey cpue index ScoGFS-WIBTS-Q1 (1985-2010) and UKSGFS-WIBTS-Q1 cpue index (2011-2017).
5) Consistency:

- The update is consistent with the annex with some changes.
- Misreported landings are treated as a separate fleet instead of applying landings-at-age of the Scottish fishery. The annex provides for flexibility in the method of accounting for misreported landings, and the WG documented that misreported catch has different age composition than the Scottish fleet. The RG agrees that the revised method appears to be reasonable, but the change may influence the results because of the large contribution of misreported landings to the total catch.
- Landing-at-age 7+ are allowed to have higher variance in the model due to inconsistencies in the age composition of 2016 landings. The RG agrees that this change also seems reasonable.
- Overall retrospective bias is small with a slight overestimation of F in recent years but is not apparent in earlier years of the assessment.
- Stock status is consistent with previous years.
- A forecast was not provided because of sensitivity to recruitment assumptions.

6) Stock Status:

- Historical trends show as steady decline in SSB with minor increases in recent years. F has fluctuated with no trend but remains above $\mathrm{F}_{\lim }(0.82)$
- SSB $_{2016}(2741 \mathrm{t})<\mathrm{B}_{\mathrm{pa}}(20000 \mathrm{t})$; increased risk
- $\quad \mathrm{F}_{\mathrm{pa}}(0.59)<\mathrm{F}_{\lim }(0.82)<\mathrm{F}_{2016}(0.94)$; harvested unsustainably
- $\mathrm{F}_{2016}(0.94)>\mathrm{FMSY}^{2}(0.17)$; overfished
- $B_{2016}(2741 t)<B_{\lim }(14000 t)<B_{\text {trigger }}(20000 t)$; reduced reproductive capacity
- Recruitment in 2016 and 2017 are estimated to be higher than average, but high F will result in small increases in SSB.

7) Management Plan:

- There is no new management plan for cod in Division 6.a.
- Following the MSY approach, the TAC will remain at zero with a bycatch allowance of 1.5% the total live weight of catch on board the vessel. Identical with the previous year.
- Under current management plan, 2017 F (0.79) will drop below $\mathrm{F}_{\lim }(0.82)$. However, 2018 SSB (2835 t) will remain well below $\operatorname{Blim}(14000 \mathrm{t}$)
- The WG believes the current regulations encourage the increased catches of other species, which has led to increased landings of cod in recent years.

General comments

- The WG report is well written and concise. The WG did follow the Stock Annex with some changes.
- Misreported landings are treated as a separate fleet instead of applying landings-at-age of the Scottish fishery.
- Landing-at-age 7+ are allowed to have higher variance in the model due to inconsistencies in the age composition of 2016 landings.

Technical comments

- The WG Report and advice documents were downloaded on 5/28/17. All track changes for advice were accepted.
- Inconsistent documentation within the annex on ScoGFS-WIBTS-Q4 survey. Listed as data used, but absent from model.
- Management plan references Section XXX.

Conclusions

The assessment was consistent with the Stock Annex with some changes that appear to be well justified. The RG agrees with the WG decision to continue with the current management strategy. The RG also agrees with WG concern that current regulations could increase harvest of other species thus increasing cod landings as seen in recent years, as well as the need for more information on seal predation. The RG agrees the updated assessment is suitable for advice.

cod.27.7.a [WGCSE Section 07: Cod (Gadus morhua) in Division 7.a (Irish Sea)]

1) Assessment Type: New assessment including commercial catch through 2016, including discards data, and survey index data through 2016 (benchmarked in 2017).

2) Assessment: Analytical assessment (Category 1.2)
3) Forecast:
a) Short-term: The WG assumed status quo F (three-year average from 20142016 with retrospective correction) and geometric mean recruitment from 2005-2014 to forecast 2017 and 2018 values. At this fishing and recruitment rate, the WG estimates SSB2017 as 10299 t and total catch in 2017 as 591 t . There is no benchmark method for forecasts in the Stock Annex.
b) Medium-term: None.
c) Long-term: None.
4) Assessment method: Age-structured assessment program (ASAP)
a) Input data: commercial catch and discards from InterCatch at four time intervals (1968-1990, 1991-1999, 2000-2005, 2006-2016), numbers- and weights-at-age of catch from 1982-2016, survey indices (NIGFS-WIBTS-Q1 from 1993-2016, NIGFS-WIBTS-Q4 from 1993-2016, UK-FSP from 20052016 except 2014, and NIMIK from 1994-2016), maturity-at-age applied to NIGFS-WIBTS-Q1 data, and Lorenzen mortality.
b) Landings from ICES rectangles 33E2 and 33E3 have been transferred from Division 7a to 7e-k for the years 2004-2016.
c) Discards were included in catch totals as follows:
i) 2007-2016: Discards reported by the EU Data Collection Framework.
ii) 2003-2006: Discards were estimated as the mean from 2007-2015.
iii) 2000-2003: Discard data from observer programs in Ireland, UK (NI, E\&W), and Belgium were applied to fleet/métier levels.
iv) Mid-1990s-2000: Discards from the Northern Ireland Nephrops fleet were raised to international Nephrops fleet.
v) 1968-mid-1990s: The mean Nephrops fleet/métier bycatch level for ages 0 and 1 was applied to international Nephrops fleet.
5) Consistency:

- The update is not consistent with the annex (file "cod.27.7a_SA.docx").
- According to the WG Report text, some ages were excluded (age 5 in the NIGFS-WIBTS-Q1 survey and age 1 in the UK-FSP survey) while one additional age was included (age 6 in the UK-FSP survey). According to the WG Report text, NIGFS-WIBTS-Q4 data from 1993-2016 were used in the model although the annex called for the inclusion of year 1992. However, based on the figures and ASAP files, it appears that NIGFS-WIBTS-Q4 survey data from 1991-2016 were used and that age 6 was not included from the UKFSP survey. It is, therefore, not entirely clear what changes were made, and no justification was provided for the changes.
- There are retrospective patterns in average F ages 2-4 (corrected upwards) and SSB (corrected downwards).
- Stock status changed from last year's stock size for both MSY and precautionary approaches. The stock is now above Blim, but it is not clear to the RG if the change in perception of stock status is a result of the revised method or if the benchmark method also indicates a change in status. Fishing pressure remains consistent with the 2015 status with F below all reference points. The ASAP model and catch-at-age data suggest a slight recovery of older aged fish.
6) Stock Status: (reference values listed in the WG Report and annex draft "COD Stock Annex Update 1405.docx")
- There has been no directed fishery on Division 7.a cod in recent years and most catch results from bycatch and discards in beam trawls and Nephrops fleets.
- A relatively large recruitment in 2013 has led to a recent increasing trend in SSB, and TAC has been reduced by $15-25 \%$ annually since 2006 , leading to a substantial decrease in F .
- SSB $_{2016}$ (7173 t) < Ba (8161 t); increased risk
- $\quad \mathrm{F}_{\lim }(0.61)>\mathrm{F}_{\mathrm{pa}}(0.44)>\mathrm{F}_{2016}(0.03)$; acceptable
- $\mathrm{F}_{2016}(0.03)<\mathrm{FMSY}^{2}(0.31)$; below target
- $\quad B_{\text {trigger }}(8161 \mathrm{t})>\mathrm{B}_{2016}(7173 \mathrm{t})>\mathrm{B}_{\lim }(6000 \mathrm{t})$; increased risk
- Recruitment-at-age 0 in 2016 (49 t) is a historically low estimate.

7) Management Plan:

- The plan in Council Regulation (EC) 1342/2008 was determined to be not consistent with the ICES Precautionary Approach, according to the evaluation adopted in AGCREMP 2008.
- The TAC has been reduced by 25% annually since 2009 , with most recent TAC levels set to 146 t for 2016 and 2017.
- According to WKROUND2, the Division 7a stock likely consists of local substocks, which are not expected to replenish each other so maintenance of these local substocks is important for the overall stock.
- If status quo fishing mortality for ages 2-4 and geometric mean recruitment are observed in 2017, the biomass ($\mathrm{B}_{2017}(10299)>\mathrm{B}_{\text {trigger }}(8161 \mathrm{t})$) will be acceptable and fishing mortality ($\mathrm{F}_{2017}(0.11)<\mathrm{Fmsy}^{\text {(}} 0.31$)) will be below target.
- Based on an MSY approach to determine advice for 2018, fishing at $\mathrm{F}_{2018}=$ 0.31 corresponds to a total catch of 1035 t and $\mathrm{SSB}_{2019}=9337 \mathrm{t}$. Alternatively, fishing at status quo $\left(\mathrm{F}_{2018}=0.11\right)$ corresponds to a catch of 400 t and $\mathrm{SSB}_{2019}=$ 10366 t.

General comments

- The WG report is well written and concise. The WG did not follow the Stock Annex.
- The WG updated the maturity ogive using the 2016 NIGFS-Q1 data.
- The residuals for proportions-at-age in catch (Figure 6.9) were positive for age-3, which is not mentioned in the text.
- The advice document lists $B_{p a}$ and $B_{\text {trigger }}$ as $8616 t$ rather than $8161 t$, as in the Stock Annex. These values do not equal the value derived from the Technical Basis calculation in the draft advice.

Technical comments

- The Stock Annex (cod.27.7a_SA.docx), the WG Report, and Advice documents were downloaded May 25, 2017. Track changes in the Advice document were accepted before review.
- The annex update (COD Stock Annex Update 1405.docx) was downloaded May 25,2017 because no values had been entered in the biological reference points table in the Stock Annex.
- Including the ASAP model file is helpful.
- There are a few grammatical errors in the text.
- The WG Report lists Cod 7.a (Irish Sea) as Section 6 instead of 7, as is referred to on the SharePoint 2017 Report.
- The name of the model description file should be updated in 6.1.3.
- References to Figures 6.4-6.6 do not match the figures file.
- The size and y-axis scale of age-level figures (Figures 6.1, 6.11, 6.12) should be increased to help viewing.

Conclusions

The Cod 7.a working group assessment is not consistent with the Stock Annex, with the changes made to data included in the model. The RG recommends caution when interpreting spawning biomass with respect to the defined precautionary limits. The finding that $B_{\text {trigger }}(8161 \mathrm{t})>\mathrm{B}_{2016}(7173 \mathrm{t})>\operatorname{Blim}(6000 \mathrm{t})$ largely depends on the model's fit to the 2013 recruitment cohort. The WG discussed the uncertainty in the estimate of this cohort: 1) 2014 data are missing for one index (UK-FSP), 2) these estimates were formed with surveys with low estimates of selectivity (NIGFS-WIBTS-Q1, UK-FSP) 3) the assessment model estimates positively biased catch residuals for age $3 \operatorname{cod}$ (the age of the 2013 cohort in 2016), and 4) the model shows a retrospective pattern, overestimating SSB for the most recent years. Along with few samples and high uncertainty about ages 5 and $6+$, the RG recommends interpreting results from this assessment with precaution. The benchmark method is a valid basis for advice.

cod.27.7.e-k [WGCSE Section 09: Cod (Gadus morhua) in Division 7.e-k (Celtic Sea)]

1) Assessment Type: Update including data from the at-sea observer program (obsmer), landings to determine numbers-at-age, as well as two surveys FREVHOE (EVHOE-WIBTS-Q4 (1997-2016) survey and the IrGFS(IGFS-WI-BTS-Q4 survey (2003-2016) that were combined to form IBTS Q4. The historical time-series of age structure from OTDEF French fleet Q1, 2, and 3 are used for the commercial tuning index. The benchmark assessment occurred in 2012.

2) Assessment: XSA (Category 1).
3) Forecast:
a) Short-term: Under the forecast assumption, landings in 2017 are predicted to be 3323 t . SSB in 2017 is 7140 t . SSB is 8755 t in 2018
b) Medium-term: None.
c) Long-term: None.
4) Assessment method: The WG used an XSA model as designated in the benchmark assessment using landings to determine numbers-at-age, as well as two surveys FR-EVHOE (EVHOE-WIBTS-Q4 (1997-2016) survey and the IrGFS(IGFS-WIBTS-Q4 survey (2003-2016) that were combined to form IBTS Q4. The historical time-series of age structure from OTDEF French fleet Q1, 2 , and 3 are used for the commercial tuning index. The forecast model was age-structured using an initial stock size with 1) the survivors at age $2+$ from the XSA assessment and N at age $1=$ long-term geometric mean omitting the last two years. Maturity was the ogive as in the assessment, F and $\mathrm{M}=0$ before spawning (all ages and years), weight-at-age in the stock was the average stock and catch rates over the preceding three years. A three year average of F (age 2-5) was scaled using the last year F, following an alternative plan stated by the Annex.
5) Consistency:

- The update is consistent with the annex.
- There are slight retrospective trends, likely due to infrequent, large year classes
- Stock status is consistent with last year.

6) Stock Status:

- SSB has been below $B_{p a}$ since 2014 and is slowly increasing. F was estimated lower than $\mathrm{F}_{\text {pa, }}$, but well above $\mathrm{Fmsy}_{\text {. }}$ SSB shows a slight positive trend while F has fluctuated with downward trends before and after sharp increases in 2011 and 2014.
- $\operatorname{SSB}_{2016}(7043 \mathrm{t})<\operatorname{Bim}(7300 \mathrm{t})$; Reduced Reproductive Capacity
- $\mathrm{F}_{\text {lim }}(0.807)>\mathrm{F}_{\text {pa }}(0.576)>\mathrm{F}_{2016}(0.439)$; Harvested Sustainably
- $\quad F_{2016}$ (0.439) > FMSY (0.353); Overfished
- Recruitment is highly variable with occasional high recruitments followed by several years of low recruitment. The 2015 year class is slightly lower than average.
7) Management Plan:
- There are no specific management plans or objectives.
- ICES advice has been based on MSY.

General comments

- The WG report is thorough and concise and follows the Stock Annex.
- The RG recommends using two significant figures for stock estimates and forecasts to avoid implying a false level of precision.
- Effort from the UK/Welsh fishery dropped to 0 in 2016 (confirmed by the WG).

Technical comments

- The WG report was downloaded 5/27.
- The Advice document appears unfinished.
- The WGCSE is incorrectly labelled (year).
- There are frequent grammatical errors.
- There are a few minor aesthetic errors in table labels.
- There are occasional typographical errors.
- There are minor rounding errors.
- The reference points from the WG and the Annex are essentially the same values (with occasional rounding differences), but they are cited from different sources.

Conclusions

The WGCSE Report is consistent with the Stock Annex procedure and is a valid basis for advice. The RG agrees with the WG that the retrospective pattern implies uncertainty in the F value. The WG notes that the large increase in the F revision from last year's assessment implies that that the stock has never been fished at Fmsy resulting in low SSB. Alternately, including a measure of discards (not currently included in the assessment) in F may account for the poorly forecasted SSB, resulting in a stock that is still above MSY $B_{\text {trigger }}$ since most discards are age- 1 fish and the F value for pre-spawners $=0$.

had.27.7.a [WGCSE Section 11: Haddock (Melanogrammus aeglefinus) in Division7.a (Irish Sea)]

1) Assessment Type: New assessment method derived at the most recent Benchmark (WKIRISH3, 2017).

2) Assessment: The stock assessment was advanced from a category 3 stock (trend-based assessment) to a category 1 stock (analytical assessment) in the 2017 Benchmark.

3) Forecast:
a) Short-term: Provided, as specified in the stock annex. Recruitment for 20172019 was estimated at 337738 . F used in the forecast was derived as the F related to TAC for 2017 which changed considerably compared to previous years, due to the introduction of the ASAP model.
b) Medium-term: None.
c) Long-term: None.
4) Assessment method: Age-structured assessment model using Age-Structured Assessment Program (ASAP). Assessment includes landings and discard data from commercial fishery through 2016. Quarterly landings are provided by the UK(E\&W), UK(Scotland), UK(IOM), Belgium and France. Discards are estimated from the following sources: Northern Ireland selfsampling scheme for Nephrops (first time used in this assessment due to unreliability of the data), Northern Ireland observer sampling, and Irish otter trawl fleet (IR-OTB). Discards and landings are supplied together to the model. Four different surveys are used in this model; NIGFS-WIBTS-Q1 (age classes 1 to 5, years 1992-2016). NIGFS-WIBTS-Q4 (age classes 0 to 3; years 1991 to 2016). NI-MIK (age 0; years 1994-2016). UKFspW (age classes 2 to 5, years 1992-2016).
5) Consistency:

- The introduction of the ASAP model to provide advice for 2017 with a MSY approach was performed as established by the Benchmark and as outlined by the annex.
- The predicted catch, recruitment or fishing pressure shows no obvious retrospective pattern. However, there is a slight retrospective pattern of underestimating SSB.
- WG stated that "there is a close agreement with the stock trends of the current and previous assessment"
- ICES advice applicable to 2016 and 2017 are different because MSY approach is applied instead of the precautionary approach. ICES advises that catch in 2017 and 2018 should be no more than 3016 and 3479 t , respectively. These values are different compared with the advice of 1072 t in 2016.
6) Stock Status:
- SSB is currently at the highest levels observed in the time-series and is above MSY Btrigger. Fishing mortality has been below Fmsy since 2012.
- MSY $\mathrm{B}_{\text {trigger }}=\mathrm{B}_{\mathrm{pa}}$
- SSB $_{2017}\left(18974\right.$ t) $>$ Ba $_{\text {pa }}(3093 \mathrm{t})$ Above Trigger and Full Reproductive Capacity.
- $\mathrm{F}_{2017}(0.26)<\mathrm{F}_{\mathrm{MSY}}(0.27)$ Below Target or Appropriate.
- Recent recruitment has been above the time-series average, with the second largest recruitment event in the time-series in 2013. Recruitment has been highly variable throughout the time-series.
7) Management Plan:
- There is no management plan for haddock in this area.
- MSY approach is now the basis of the advice.
- The TAC increased from 1654 t for 2016 to 2615 t for 2017.
- A large proportion of the TAC is taken as bycatch by the Nephrops fishery.
- Fishing mortality is expected to increase, and the spawning-stock biomass is expected to decline after 2017 as the 2013 cohort is exploited by the fishery.
- Landings have been adjusted since 2003 to exclude landings taken from the southern rectangles (33E2 and 33E3) in the Irish Sea as they are not believed to be part of this stock. This should be considered when setting TACs for the two management areas for haddock in divisions 7.a and 7.b-k. The RG notes that some recent recruitment episodes appear to be asynchronous between the two adjacent stocks.
- Vessels actively targeting haddock have been subject to the EU landing obligation since 2016.
- Regulations affecting haddock are linked to those implemented under the cod management plan (bycatch issues).

General comments

- The WG report is well written and concise. The WG followed the stock annex.
- The major changes in assessment and basis advice resulted from the 2017 Benchmark methods.

Technical comments

- Draft advice was reviewed as a marked-up document (downloaded on 05/26/17).
- In WG report: Figure 11.9 is missing; Figure 11.10 does not contain a legend. Table 7.4.9 is mislabelled; Management options output table is mislabelled as "Table $\mathrm{xx} . \mathrm{xx}$ "

Conclusions

The WG report was consistent with the stock annex and provides a valid basis for advice. The WG raised some important concerns associated with the new methods used for this stock: 1) Discard rates are very variable between fleet and uncertain in some years (e.g. 2003-2007), 2) recruitment is highly variable, 3) estimation of age 5+ abundance is uncertain, but that might change as the 2013 exceptionally strong year class fully matures. The uncertainty in abundance of older ages is especially relevant to the use of specified selectivity blocks with partial selectivity for older ages. This RG agrees with the WG that model performance needs to be closely inspected in annual update assessments, because all these uncertainties may require deviations from the Benchmark method.

had.27.7.b-k [WGCSE Section 12: Haddock in divisions 7.b-k (southern Celtic Seas and English Channel]

1) Assessment Type: Update including commercial catch data (landings plus estimated discards), survey data, and one commercial tuning fleet through 2016. The stock was last benchmarked in 2012.

2) Assessment: Analytical (Category 1.00)
3) Forecast:
a) Short-term: Multifleet Deterministic Projection. Landings and discards are modelled as separate fleets. Under current exploitation patterns (average F 2014-2016), SSB in 2017, 2018, and 2019 are projected to be $32937 \mathrm{t}, 20256 \mathrm{t}$, and 22218 t , respectively.
b) Medium-term: None.
c) Long-term: None.

4) Assessment method: Age-structured assessment program (ASAP) with an Extended Survivors Analysis (XSA) also used for quality control purposes
a) Input data: commercial landings from 1993-2016 (catch-at-age, weight-atage, and estimated discards-at-age); survey indices (FR-IRL-IBTS index, which is a combined index from the French EVHOE Q4 WIBTS and Irish IGFS Q4 WIBTS surveys from 2003-2016); and one commercial tuning fleet (IR-GAD from 1995-2016). Age-specific natural mortality and the age at maturity were estimated and assumed to be constant over the time-series.
5) Consistency:

- The assessment is an update and is consistent with the stock annex, with a few apparently minor exceptions.
- The predicted catch and recruitment time-series did not have any clear retrospective patterns (Figure 7.4.15). SSB tended to increase as years of data were added, and F decreased with additional years. These retrospective patterns are likely due to the influence of the strong 2009 cohort, which caused conflict between catch data and the commercial tuning index (IRL-GAD).
- Stock status is consistent with last year.

6) Stock Status:

- Decreasing trend in SSB
- Increasing trend in F
- $\mathrm{SSB}_{2016}(28251 \mathrm{t})>\mathrm{B}_{\mathrm{pa}}(10000 \mathrm{t})>\mathrm{B}_{\lim }(6700 \mathrm{t})$; full reproductive capacity
- SSB2016 (28 251 t$)>\mathrm{MSY} \mathrm{B}_{\text {trigger }}(10000 \mathrm{t}$); acceptable,
- $\mathrm{F}_{2016}(0.674)<\mathrm{F}_{\mathrm{pa}}(0.89)<\mathrm{F}_{\lim }(1.41)$; harvested sustainably
- $\mathrm{F}_{2016}(0.674)>\mathrm{F}_{\text {MSY }}$ (0.40); overfished
- F has been above Fmsy for the entire time-series but shows a declining trend.
- Recent recruitment has varied around the average, following three years of below-average recruitment after the very strong 2009 year class.
7) Management Plan:
- There is no management plan for this stock.
- Since 2015, advice for this stock has been based on the MSY approach.
- The agreed TAC for 2017 is slightly higher (7751 t) than that for $2016(7258 \mathrm{t})$.
- Under the MSY approach, catches in 2018 should not exceed 8393 t and $\mathrm{F}_{2018}=0.40$, which will result in an increase in SSB in 2019 (SSB2019 $=24919 \mathrm{t}$, remains above MSY $B_{\text {trigger }}$) and a decrease in the TAC (-23.42%).
- Landings have been adjusted since 2003 to exclude landings taken from the southern rectangles (33E2 and 33E3) in the Irish Sea as they are not believed to be part of this stock. This should be considered when setting TACs for the two management areas for haddock in divisions 7.a and 7.b-k.

General comments

- The WG report is generally well written and thorough.
- The WG followed the Stock Annex, with a few exceptions.
- The allocation rules applied to unsampled catches allocated age compositions from the combined annual landings and discards of all countries using the same gear type. This differed slightly from the Stock Annex, which specified country-gear combinations for allocating unsampled catches after 2013. The RG recognizes that the majority of the catch is unaffected by the change in allocation rules, but the justification for this minor change was unclear to the RG. A table indicating the specific fleets/areas used in the assessment vs. those used to characterize lpue would be helpful. In several instances, the WG presented lpue information from fleets that were not included in the assessment as auxiliary information; it was difficult for the RG to assess whether or not that data should have been included in the assessment as it was presented in both the Stock Annex and the WG report. Ensuring that the acronyms used to refer to each fleet are consistent both within and between the WG report and the Stock Annex would also be helpful.
- Direct inclusion of the ASAP input data table (Table 7.4.4) was very helpful. However, there were two changes from the benchmark method:
- The input file indicates that likelihood constants were not used, though they were specified in the Stock Annex. The RG recognizes this change reflects current 'best practice' in ASAP applications to avoid biased estimates. For example, update assessments of New England groundfish all made the same revision from benchmark methods (NEFSC, 2015).
- The catch total CV value used for 1993 is 0.2 , but should be 0.3 according to the Stock Annex. No justification for the change was provided by the WG.
- The Stock Annex indicates that, in addition to ASAP, an XSA should be applied for quality control purposes. The XSA appears to have been last conducted in 2011.
- Discards for short-term projections were based on the proportions of the catch that were discarded over the full-time-series, rather than the benchmark method of averaging over the last three years. The WG justified this change, because the relatively low discards estimated over the last four years are unlikely to persist. The RG agrees that the revised approach to projected discards is reasonable.

Technical comments

- The TAC listed for 2016 in Table 7.4.1.a is the 2017 TAC.
- Figure 7.4.5a is difficult to interpret at its current size/colour scheme.
- Figure 7.4 .5 b is referred to as a time-series of discard ogives, but the plots appear to show the probability that a fish of a given size is retained, rather than discarded.
- Figure 7.4.9a is cluttered and difficult to interpret.
- Documents were initially downloaded on $5 / 26 / 17$, but had not been updated with the current year's advice. The updated files were downloaded on 5/29/17.
- More specific language regarding the methods used (rather than just referring the 'historic approach' provided in the Stock Annex) would be helpful to the RG for evaluating consistency with the Stock Annex.

Conclusions

The assessment was carried out as specified in the Stock Annex with a few apparently minor exceptions. Although there were several changes to the data protocol, model settings, and forecast assumptions from the approved benchmark method, the revised method appears suitable as the basis for advice. The RG agrees that the recommended catch in the Draft Advice is appropriate given the stock status. The RG agrees that potential shifts in selectivity in response to gear changes should continue to be considered in future assessments (despite limited evidence of selectivity shifts since mesh regulations changed in 2012). The RG encourages further evaluation of an assessment that includes discards separately (given the high degree of uncertainty in discard estimates) at a future benchmark.
ple-27-7.a [WGCSE Section 25: Plaice (Pleuronectes platessa) in Division7.a (Irish Sea)]

1) Assessment Type: New assessment including landings, discards, and survey data from the extended UK (E\&W)-BTS-Q3, NIGFS-WIBTS-Q1, and NIGFS-WIBTS-Q4 surveys. Benchmarked in 2017.
2) Assessment: Analytical (ICES data category 1.00)
3) Forecast:
a) Short-term: FLR projection.
b) Medium-term: none.
c) Long-term: none.
4) Assessment method: The assessment was conducted using an age-based analytical assessment (SAM model). Data used in the assessment include commercial landings numbers-at-age and discard numbers-at-age. Discards were reconstruction before 2004. Only dead fraction of discards (0.6) accounted for. Three survey indices including extended UK(E\&W)-BTS-Q3 (1993-2016), NGFS-WIBTS-Q1 (1993-2016), and NIGFS-WIBTS-Q4 (19932016) were used. Fixed maturity ogive. Natural mortality is age specific and constant over time.
5) Consistency:

- The update is not entirely consistent with the annex.
- The WG report reference points (F_{mS}, $\mathrm{B}_{\lim }$ and B_{pa}) are not consistent with the stock annex.
- Projected catches in forecast are split according to average landings fractions at age from the last ten years; Annex specifies using the last three years.
- There is a lack of clarity in the Stock Annex about data usage and assessment model configurations making it difficult to tell if the WG report is correct.
- No retrospective trends.
- Stock status is consistent with last year.

6) Stock Status:

- Increasing trend in SSB and decreasing trend in F.
- Relative SSB2016 (22 686 t$)>\mathrm{B}_{\mathrm{pa}}(7900 \mathrm{t})$; full reproductive capacity
- $\mathrm{F}_{\text {lim }}(0.48)>\mathrm{F}_{\mathrm{pa}}(0.25)>$ relative $\mathrm{F}_{2016}(0.05)$; acceptable
- $\mathrm{F}_{2016}(0.05)<\mathrm{F}_{\mathrm{MSY}}(0.15)$ below target
- Relative $\mathrm{B}_{2016}(22686 \mathrm{t})>(10400 \mathrm{t})$, $\mathrm{B}_{\lim }(4200)$; acceptable
- These reference points ($\mathrm{F}_{\mathrm{msy}}$ and B_{pa}) are from the annex, but the WG report has different values.
- No trend in recruitment.

7) Management Plan:

- There is no explicit management plan for Irish Sea plaice, but there is a TAC and minimum landing size.
- The TAC for 2017 (1098 t) was the same as that for 2016.
- The WG report states that under a precautionary approach:
- 2017 catches should not exceed 1493 t.
- If the stock is not under the EU landings obligation in 2017 and discards stay at the average of the last three years, then landings should not exceed 436 t .
- Assuming Fmsy $=0.154$, total catch for 2018 is 3254 t and SSB in 2019 is 23013 t .

General Comments

- The WG report is well written and concise.
- The WG did not follow the Stock Annex for reference points, the assumed values for selectivity in the forecast, and possibly some data and model decisions.
- The Stock Annex provides no information on usage of landings data and discards weight-at-age, so it is not clear if the WG followed the Annex.
- There were numerous references to supplemental explanations such as weight-at-age, numbers-at-age, and data screening to be provided in the Stock Annex throughout the WG report, but those explanations were not provided in the Annex.
- There was no information in the Stock Annex in sections on "Survey design and analysis" or "Survey data used". It is unclear if the WG followed the Annex in this regard.

Technical comments

- The WG report, advice, and annex were downloaded on 5/30/17.
- The annex does not appear to be complete because there are headings with blank sections and no references.
- Some tables are referenced incorrectly and some tables are difficult to interpret.
- Header title of the report is "ICES WGCSE REPORT 2015"; the year should be 2017.

Conclusions

The WG report is well written and concise, but the assessment is not entirely consistent with the Stock Annex. There were discrepancies in reference point values between the Annex and the Report/Advice. A lack of clarity and information in the Stock Annex made it difficult to interpret consistency. The RG could not determine if the updated assessment was consistent with the benchmark method or is a valid basis for advice because of the lack of detail on data and model decisions in the annex and the apparent inconsistencies between the WG report and the annex.

ple.27.7e [WGCSE Section 27: Plaice (Pleuronectes platessa) in Division 7.e (Western English Channel)]

1) Assessment Type: Update including survey and fisheries data through 2016, as well as exploration of proxy MSY points (requested by WKMSY 2017) (Benchmarked in 2010, Inter-Benchmarked in 2015, Benchmark extended in 2016).

2) Assessment: Survey Based Trends (Category 3.2)
3) Forecast:

- Short-term: Projection of landings is based on recent trends in SSB. A ratio of the two previous years' average SSB (2015-2016) to the previous three years' average SSB (2012-2014) is applied to the 2017 advised catch (2714 t). This ratio suggested more than a 20% increase, but the allowed increase is constrained to an uncertainty limit of 1.2. This results in a 2018 advised catch of 3257 t .
- Medium-Term: None
- Long-term: None (Annex says it took place from 2012-2014, but stopped at the 2015 Inter-Benchmark)
4) Assessment method: This assessment was completed using an extended survivor analysis (XSA) including commercial landings-at-age (2-10+) (1980-2016) adjusted for migration, the UK Fisheries Science Partnership Survey UK-FSP: Cefas-UK industry cooperative project (2003-2016), and the UK Southwest Beam Trawl Survey Q1SWBeam (2006-2016).
5) Consistency:
- The update is consistent with the annex with some changes.
- Discard rate is not estimated in the Annex, but was estimated and applied to the advised catch by the WG in 2016 and 2017.
- The method of estimating discard rate was changed from average by métier for 2016 to international average for 2017, because the previous estimate was biased low. Métiers with low discard rates only contributed a small amount to total landings.
- Length-based indicators and a SPiCt model were explored to produce proxy MSY reference points (requested by WKMSY 2017). The length-based indicators and SPiCt methods of producing proxy MSY reference points were rejected on the basis of unrealistic results, and inability to track the dynamics of the stock.
- The retrospective patterns experiences in past assessments did not persist in the 2017 assessment.

6) Stock Status:

- Stock status is reported as relative values described previously. With the 2016 SSB showing an increase with respect to 2015 (2.461 ratio) and F showing a decrease (0.47 ratio).
- Relative recruitment has decreased from previous years (0.73 ratio)

7) Management plan:

- There is no management plan in place for this stock.
- The TAC for this stock includes portions of bordering stocks and does not directly reflect changes in this stock.
- The TAC for 2017 (10 022 t) decreased from 2016 (12 446 t).
- The advised catch for the Division 7.e Plaice stock increased from 2262 t in 2016 to 2714 t in 2017.

General comments

- The WG report is well written, concise, and follows the annex with some changes.
- There were no data changes from the Inter-Benchmark in 2015
- The WG explored two methods of producing proxy MSY reference points, but both were rejected.
- The WG requests that more work should be done to reduce uncertainty regarding the migration rate correction factor.
- The WG advises that without discard information being included in the model, results are likely to be optimistic.

Technical comments

- The WG Report and advice documents were downloaded on 5/28/17. All track changes for advice were accepted.
- 'Error Reference Source Not Found' in Stock Status Section
- Multiple grammatical errors.

Conclusions

The assessment was consistent with the Stock Annex. The RG agrees with the WG conclusion that advised catch should increase. The RG also agrees that the assessment could benefit from improved estimates of migration rates and the inclusion of discard data. The RG notes that the positive trends indicated by surveys are supported by the exploratory XSA. The RG agrees that the assessment could be considered for a new benchmark review when a longer series of discard estimates and possibly movement information is available. The RG agrees the updated assessment is suitable for advice.

ple.27.7.fg [WGCSE Section 28: Plaice (Pleuronectes platessa) in divisions 7.f

 and 7.g (Bristol Channel, Celtic Sea)]1) Assessment Type: Revised analytical technique including landing data and survey data (benchmarked in 2011).
2) Assessment: Survey trends based (Category 3.2)
3) Forecast:

- Short term: Projection of the model for the year 2017 forecasts B > BMSY and F< FMSY within 95% confidence intervals. There is no benchmark method for forecasts.
- Medium term: None
- Long term: None

4) Assessment method: biomass dynamic model (SPiCT - Stochastic Production model in Continuous Time) with two survey indices (UK(E\&W)-BTSQ3) 1995-2016, (IGFS-WIBTS-Q4) 2003-2016, two commercial fleet indices (UK(E+W) BT 7F and UK OTB 7F) 1989-2010, commercial landings and discards. The SPiCT model was not included in the benchmark method.
5) Consistency:

- The update is not consistent with the annex.
- WKFLAT (2011) agreed to use the AP model (Aarts and Poos, 2009) as a temporary basis for advice. This was selected on the basis that it was the only model available to WKFLAT which reconstructs the historic discarding rates (derived from the survey dataseries).
- The annex also states, "As the dataseries are extended a final model selection can be then determined".
- The stock annex outlines the use of an AP (Aarts and Poos) model to provide advice for this stock. In 2013, the AP model failed to converge. In 2015 \& 2016 advice was based on research surveys due to unreliability of the AP model.
- In 2017, the WG decided to use the SPiCT model. Output from the SPiCT was consistent with trends in abundance of commercial-sized fish aged 3+ as represented by data of research surveys. The SPiCT model was first explored in 2015 by WKLIFE.
- The SPiCT estimates MSY reference points, but they were not reviewed by the benchmark.
- There are no retrospective trends.
- Stock status is consistent with last year.

6) Stock Status:

- Increasing trend in SSB and decreasing trend in F
- B2016 (15 634 t), B_{pa} (not defined)
- $\quad \mathrm{Flim}_{\text {(}}$ not defined), $\mathrm{F}_{2016}(0.067)$, F_{pa} (not defined)
- $\mathrm{F}_{2016}(0.067)<\mathrm{Fmsy}^{(0.28)}$), Below Target
- $B_{2016}(15634 \mathrm{t})>$ Bmsy $\left.^{(9100} \mathrm{t}\right)>\mathrm{B}_{\text {trigger }}(4550 \mathrm{t}), \mathrm{B}_{\lim }($ not defined $)$; Acceptable

7) Management Plan:

- There is no management plan.
- ICES advice has been based on a general precautionary approach.
- TAC decreased from 2016 (420 t) to 405 t for 2017.

General comments

- The WG report is concise and organized.
- The WG did not follow the annex.
- The WG did a good job explaining recent difficulties in the analysis of this stock.
- There is limited background information on the SPiCT model in the WG report or annex. A further explanation and discussion of this technique is recommended.
- There is no information provided on how the short-term forecast was conducted.
- Plaice in areas 7 f and g are discarded at a high rate. The discard mortality is assumed to be 100%. Survival of discards might be worth investigating for future assessments.
- The RG notes that there are different trends in commercial lpue and survey cpue time-series. The RG recommends the WG discuss some of the possible causes for these differences and encourages a larger overall discussion on their implication for the assessment model.

Technical comments

- There are different styles of font used within the document.
- There are two "Figure 28.8", the RG suggests changing the one in the text to a table.
- Figure 28.1a, 28.3 and 28.8 are small, making them difficult to interrupt.

Conclusions

The WG does a good job describing recent difficulties that have complicated the analysis of this stock, and the RG understands the WG's motivation for exploring a new analytical technique that has been reviewed by ICES, WKLIFE. The RG recommends further background information be provided on the SPiCT model, as no information
on this technique is provided in the stock annex. Although MSY reference points are now available, the RG agrees with the WG that a precautionary approach should be applied because of remaining uncertainties in the assessment. The RG also recommends that this stock might be worth investigating for an inter-benchmark or benchmark assessment.
ple.27.7.h-k [WGCSE Section 29: Plaice (Pleuronectes platessa) in divisions 7.h-k (Celtic Sea South, southwest of Ireland)]

1) Assessment Type: Update XSA assessment for the 7.j,k component of the landings through 2016.
2) Assessment: Category 3 stock (trend-based assessment).
3) Forecast:

- No forecast presented.

4) Assessment method: Age-based analytical assessment (XSA) is indicative of stock trends. Input data include commercial Irish landings from divisions 7.j and 7.k (1993-present) and a commercial tuning index (IRL-VMS-OTB 2006-present). Discards are high but cannot be reliably quantified.

5) Consistency:

- The update is not consistent with the annex.
- The WG performed exploratory assessments carried out by means of a separable VPA and XSA. VPA was used to explore choices of reference age, F, and S.
- The WG also relied on methods used by WKProxy (ICES, 2016a) and the WKMSYREF4 (ICES, 2016b) to perform MSY evaluations. Fmsy $=0.25$ was proposed based on $\mathrm{F}_{0.1}$ from a Thomson-Bell yield-per-recruit analysis of the landing numbers-at-age.
- The RG notes that the new proxy Fmsy is substantially less from the Fmsy= 0.43 defined by the annex.
- The WG recommends that Blim be estimated as the lowest SSB that generated high recruitment (354 t in 1999) and $\mathrm{B}_{\text {PA }}=1.4^{*} \mathrm{~B}_{\mathrm{lim}}=496 \mathrm{t}$. These methods resulted in an $\mathrm{F}_{\text {ms }}=0.27$ without a $\mathrm{B}_{\text {trigger }}$ harvest control rule and $\mathrm{F}_{\mathrm{ms}}=0.30$ with a Btrigger harvest control rule.
- The WG did not clarify if these estimates for reference points change the perception of the stock status. The RG tried to compare the advice from 2016 and 2017. However, recruitment, SSB, and F were listed as "relative" values in the 2016 advice and cannot be compared to the values provided in 2017. Landings in 2014 (148 t) and 2015 (107 t) were the same in both Advice documents.
- No consistent retrospective pattern (from the XSA).

6) Stock Status:

- Recruitment declined in 2015 and increased again in 2016. The SSB has declined from around 400 t in 1993 to around 100 t in recent years to a low of 44 t in 2015. F has been quite variable throughout the time-series but shows no clear trend.
- The summary table (29.10) with a time-series of landings, recruitment, SSB and F does not present values for 2016.
- Not all values for reference points provided in the Draft Advice are consistent with the previous or new values provided in the WG report.
- $\operatorname{SSB}_{2016}(94 \mathrm{t})<\mathrm{B}_{\mathrm{pa}}(282 \mathrm{t})$
- $\quad \mathrm{F}_{\lim }(0.471)<\mathrm{F}_{2016}(1.359)<\mathrm{F}_{\mathrm{pa}}$ (reported as 2639 in the draft advice)
- $\quad F_{2016}(1.359)>F_{\text {MSY }}(0.289)$
- $\quad B_{2016}(94 t)<B_{\text {trigger }}(282 t), B_{\lim }(203 t)$

7) Management Plan:

- No management plan for plaice in this area
- ICES advised that landings should be no more than 86 t in 2017.

General comments

- The WG report was downloaded 05/28/17 and checked again on 05/30/17 and 06/05/17 and was still in a draft format.
- Several errors and omissions were found in the WG report and the Draft Advice.
- It was extremely difficult for this RG to provide further suggestions to the WG, since key information was missing (e.g. SSB, F, R in 2016).

Technical comments

- Several editing comments are still present in the WG report.
- Figures 7.11.7, 7.11.12, 7.11.13 are referenced but not present in the WG report.
- Table 29.10 is incomplete.

Conclusions

The WG report is not consistent with the annex. The WG relied on methods and analyses performed by the WKProxy (ICES, 2016a) and the WKMSYREF4 (ICES, 2016b) to provide the basis for advice. This RG recognizes that the revised reference points are based on the ICES initiative to provide MSY advice for data-limited stocks. The WG recommended upgrading this stock to a category 2 , but the RG suggests that the uncertainties in discard estimates and XSA need to be considered in a Benchmark review. For example, there is strong evidence reported in the annex that the stock structure is incorrectly defined. The RG notes that if the absolute estimates from XSA are correct, the current F is more than two times greater than Flim. The RG agrees that the annual Irish Beam-trawl Ecosystem Survey (IBES) may be included in the future as another tuning index once more years of this survey become available. The RG agrees with the WG statement that management of this stock should focus on reducing discards because discards are very high.

sol.27.7.e [WGCSE Section 35: Sole (Solea solea) in Division 7.e (Western English Channel)]

1) Assessment Type: Update including commercial landings and survey data through 2016 (benchmarked in 2012 and inter-benchmarked in 2015).
2) Assessment: Analytical (Category 1.00)
3) Forecast:

- Short-term: Recruitment was forecast using a long-term geometric mean (1969-2016) and F was rescaled by average F_{14-16}.
- Medium-term: None.
- Long-term: None.

4) Assessment method: Extended Survivors Analysis (XSA) with catch num-bers-at-age excluding discards.

- Input data: four tuning fleets (two fishery-independent surveys: UK-FSP (2003-2016) and Q1SWBeam (2006-2016); and two commercial lpue timeseries (1988-2016): UK-CBT-late (1988-2016); and UK-COT (1988-2016)).
5) Consistency:
- The update is consistent with the annex.
- Minor retrospective patterns have begun to emerge. Spawning-stock biomass seems to be slightly overestimated.
- Stock status is consistent with last year.
- In 2016, a European Union landings obligation was applied to this stock for the first time. Given the low discards observed in the fishery the landings obligation is unlikely to have a significant impact on this stock or the advice.
- UK-COT reported zero effort in 2016 and therefore a lpue value for 2016 for this fleet does not exist.
6) Stock Status:
- Increasing trend in SSB and increasing trend in F
- SSB $_{2016}(4522 \mathrm{t})>\mathrm{B}_{\mathrm{pa}}(2855 \mathrm{t})$; Full Reproductive Capacity
- $\quad \mathrm{F}_{\lim }(0.44)>\mathrm{F}_{2016}(0.22)<\mathrm{F}_{\mathrm{pa}}(0.32)$; Acceptable
- $\mathrm{F}_{2016}(0.22)<\mathrm{FmSY}^{2}$ (0.29); Below Target
- SSB $_{2016}$ (4522) > B trigger (2826), $\mathrm{B}_{\text {lim }}$ (2039); Acceptable
- Recruitment in 2016 (3520) is lower than 2015 (4598). Since 1969 recruitment has varied without an overall trend.

7) Management Plan:

- Council Regulation (EC) No 509/2007 establishes a multiannual plan for the sustainable exploitation of sole in Division 7.e. The long-term management target $\left(\mathrm{F}_{\mathrm{MgT}}=0.27\right)$ is precautionary in the sense that it ensures there is a less than 5% chance of SSB declining below previously observed levels, as well as maintaining yield within 10% of MSY.
- The TAC increased from 979 t for 2016 to 1178 t for 2017. Landings in 2017 are projected to be $932 \mathrm{t}, 246 \mathrm{t}(-21 \%)$ less than the TAC in 2017.
- Projections based off of $\mathrm{F}_{\text {MGT }}=0.27$ project SSB $_{2019}(4150 \mathrm{t})>\mathrm{B}_{\text {trigger }}(2826 \mathrm{t})$.

General comments

- The WG report is well written, organized and concise.
- The WG did follow the Stock Annex.
- The WG does a good job explaining possible causes for retrospective patterns.
- The WG does a good job discussing the driving factors behind the reduction in effort in the UK-COT fleets.
- Discard data are available from 2012. Even though discards are minimal the use of this time-series could be worth investigating at the next benchmark.

Technical comments

- The WG report and advice were downloaded on May 25, 2017. All track changes for advice were accepted at that time.
- There were minor track changes in the stock annex.
- The RG recommends in the future that documents be labelled consistently (e.g. the WG document was labelled "echw" while the annex and advice report is labelled 7.e).
- Table 35.6 is not in the same format as other tables, making it difficult to interpret.
- Minor spacing issues with figures.
- There are capitalization inconsistencies in the use of cpue and lpue throughout the document.

Conclusions

The assessment was in accordance with the Stock Annex. The RG agrees with the WG that retrospective patterns should be re-examined if they continue to be observed in future assessments. The RG also agrees with the WG that if effort of the UK-COT fleet continues to be non-existent, the next benchmark should investigate the removal of this commercial tuning information from the assessment. The RG agrees the updated assessment is suitable for advice.

sol.27.7.fg [WGCSE Section 36: Sole (Solea solea) in divisions 7.f and 7.g (Bristol Channel, Celtic Sea)]

1) Assessment Type: Update includes international commercial landings and UK Beam-trawl survey (UK(E\&W)-BTS-Q3) through 2016. Benchmarked in 2017.

2) Assessment: Analytical (ICES data category 1.00)
3) Forecast:

- The short-term forecast assumed a TAC for 2017 of 845 t which implies a fishing mortality of 0.29 . Resulting SSB is 3112 t in 2018 and 3149 t in 2019.
- No medium-term or long-term forecasts presented.

4) Assessment method: The assessment was conducted using an XSA. Data included the UK(E\&W)-BTS-Q3 survey index (1988-2016), and two commercial lpue tuning series indices; BEL-CBT (1971-1996) changed to BELCBT2 (1997-2016) and UK-CBT (1991-2012; not used since 2012). Commercial data include international landings numbers-at-age and weights-at-age from catch sampled by métier. Discards are not accounted for within the assessment.
5) Consistency:

- The update using an XSA model is consistent with the annex.
- There are no major retrospective patterns in estimates of SSB and F. In recent years, F was slightly underestimated and SSB was slightly overestimated.
- Stock status is consistent with last year; above Btrigger.

6) Stock Status:

- SSB has historically declined, but has been consistently above Btrigger since 2001. F has been above $\mathrm{F}_{\mathrm{MSY}}$ since 2009; it exceeded $\mathrm{F}_{\text {pa }}$ in 2016.
- $\mathrm{SSB}_{2016}(2525 \mathrm{t})>\mathrm{B}_{\mathrm{pa}}(2380 \mathrm{t})$; full reproductive capacity
- $\quad \mathrm{F}_{\text {lim }}(0.49)>\mathrm{F}_{2016}(0.37)>\mathrm{F}_{\mathrm{pa}}$ (0.35); increased risk
- $\mathrm{F}_{2016}(0.37)>\mathrm{FMSY}^{(0.27)}$; overfished
- $B_{2016}(2525 \mathrm{t})<\mathrm{B}_{\text {trigger }}(2380 \mathrm{t})$; acceptable
- Recruitments in 2015 and 2016 are estimated to be well above average.

7) Management Plan:

- There is no explicit management plan for Celtic Sea sole, but a TAC has been in place since 1983. Technical measures include minimum mesh size and minimum landing size. National authorities can impose additional management measures.
- The agreed TAC increased from 779 t for 2016 to 845 t for 2017.
- The above average recruitments in 2012, 2014, and 2015 are predicted to keep SSB just above Btrigger.
- If $2018 \mathrm{~F}=\mathrm{F}_{\mathrm{pa}}, \mathrm{SSB}$ is expected to be 3227 t in 2019.

General comments

- The WG report is very well written and concise.
- The WG followed the Stock Annex, which was updated this year.
- The UK-CBT tuning series was excluded again in 2017 (as in the benchmark method) due to effort reporting issues.
- The WG raises concerns that the UK-BTS-Q3 survey is the only source of information for age 1 recruitment. Previously, estimates of the magnitude of strong year classes have sometimes been revised downward causing bias in forecasts.

Technical comments

- The WG Report and advice documents were downloaded on $5 / 24 / 17$. All "track changes" for advice were accepted.
- Most figures and tables were located in supplemental file folders.

Conclusions

The assessment was performed correctly and in accordance with the stock annex. The RG agrees with the WG that catches in 2017/2018 should only slightly increase due to strong recruitment and SSB being above $B_{\text {trigger, }}$ but there has been a recent increase in fishing mortality. The RG also agrees with the WG concern that recruitment estimates are only informed by a single series, and past recruitment estimates have been uncertain, which should be considered in the perception of recent above average recruitment and projections. The RG agrees that the updated assessment is a valid basis for advice.

sol.27.7.h-k [WGCSE Section 37: Sole (Solea solea) in divisions 7.h-k Celtic

Sea South, southwest of Ireland]

1) Assessment Type: Update commercial landings in divisions 7.j-k, Irish agecomposition for catch, commercial tuning index (IRL-VMS-OTB).
2) Assessment: Age-based analytical assessment (XSA) indicative of stock trends (Category 3.2)
3) Forecast:

- Short-term: None
- Medium-term: None
- Long-term: None

4) Assessment method: XSA performed for divisions 7.jk using catch numbers for age 2-10+ from 1993-2016. The tuning fleet of Irish VMS-based lpue (IRL-VMS-OTB) included age composition data from Division 7.j for age 39 from 2006-2016. Belgian landings from 7.j are excluded from total landings due to concerns over misreporting. Irish landings occur mainly in $7 . \mathrm{jk}$, therefore the assessment occurs in this area. An exploratory VPA investigated year and age range for use in a separable VPA and choices of reference age, final F and S. Exploratory XSA investigated q-age, F-shrinkage and minimum SE threshold. The exploratory analysis is not used as the basis of advice for this assessment.

5) Consistency:

- The update is consistent with the annex
- Stock status is consistent with last year.

6) Stock Status:

- SSB declined from 800 t to 400 t between 2000-2009, but has been increasing since 2010 and recently recovered to nearly 800 t . F slowly declined in recent years and has been below FmSY since 2012, and slightly increased in 2016. Biomass has been above MSY B trigger $^{\text {since }} 2015$.
- $\quad F_{2016}(0.128)<F_{\text {MSY }}$ (0.25); appropriate
- Recruitment has been variable with no clear trend.

7) Management Plan:

- There is no management plan for sole in this area, a TAC is specified for divisions 7.h-7.k. and was set at 382 t in both 2016 and 2017. A precautionary TAC regulation applies (Article 12(1)) which closes Porcupine Bank in May and July.
- Landings obligations began in 2016 for divisions 7.b-c,f-k for beam-trawl vessels for which sole landings made up more than 5\% of landings in 2013 and 2014. Landings obligations also took effect for all trammelnet and gillnet sole fisheries. Vessels are permitted to discard up to 3% of sole they catch in 2017.
- The assessment considers divisions 7.j-k but Division 7.h landings are accounted for when producing catch advice. Sole in Division 7.h are likely a part of stocks in 7.e,f,g.
- If the precautionary approach is applied, catch in 2018 should not exceed 268 t .

General comments

- The WG report is well written and concise.
- The WG report followed the stock annex.
- The Irish Beam-trawl Ecosystem Survey (IBES) began in 2016 and could someday be used as a tuning index, but currently is too short.
- The tuning index that is currently used is still short, but the WG believes it is long enough to inform trends. There are no obvious year effects in the tuning fleet. There were small year effects in XSA results from the tuning fleet lpue estimate.
- The WG noted that landings-at-age data problems between 1999 and 2003 may have resulted in erratic estimates of F , and the inclusion of a commercial tuning fleet may introduce bias if fleet efficiency changes over the timeseries which may be avoided by limiting the index to only include areas where sole is caught.
- The TAC for sole in this area is currently not restrictive but quota may be restrictive in some countries, and the WG notes that restricting effort may be more effective than limiting landings.
- The WG noted that the landings obligation is unlikely to significantly impact advice for 2017 due to low discards in the fishery.
- A proposed Fmsy reference point proposed by WKProxy of $F=0.17$ was based on $\mathrm{F}_{0.1}$ and represents a data-limited approach, but is not directly comparable with XSA results due to differences in input data.
- An exploratory MSY evaluation was conducted but not used as a basis for advice $\left(B_{\text {lim }}=B_{\text {loss }}=355 \mathrm{t}, \mathrm{B}_{\mathrm{pa}}=1.4^{*} \mathrm{~B}_{\text {lim }}=497 \mathrm{t}, \mathrm{F}_{\mathrm{MSY}}=0.20\right.$ with no $\mathrm{B}_{\text {trigger }}, \mathrm{F}_{\mathrm{MS}}=0.25$ with $B_{\text {trigger }}=B_{p a}$).
- Some reference points in the draft advice are not reported in the annex or the $W G$ report $\left(S_{S B}^{2016}(846 \mathrm{t})>\mathrm{B}_{\mathrm{pa}}(590 \mathrm{t})>\mathrm{B}_{\lim }(425 \mathrm{t})\right.$; Full Reproductive Capacity; $\mathrm{Flim}_{\text {(}}(0.222)>\mathrm{Fpa}_{\mathrm{pa}}$ (0.161); Acceptable).

Technical comments

- WG report downloaded on $5 / 29 / 17$, advice and stock annex downloaded $5 / 30 / 17$. The RG last checked for updates on $6 / 5 / 17$.
- ICES advice sections of the WG report and draft advice document appear to contain incorrect information, although current advice is contained later in both reports.
- Page headings do not reflect the current assessment year
- The final paragraph of the Management Considerations section is repetitive.
- The MSY Evaluation section is highlighted.
- The annex does not report the date of the most recent benchmark review.
- In the draft advice, there were two copies of Table 7 and several marked changes.

Conclusions

The assessment was performed according to the stock annex. The RG agrees that this assessment provides a valid basis for advice. The WG recommends that a benchmark or intersessional review be conducted to upgrade the stock to Category 2 next year. Potential methods for estimating reference points were explored in this assessment but
are not currently used as the basis for advice. The short tuning index, lack of survey index, and potential problems in landings data from 1999-2003 which impact F estimates may limit accuracy of forecasts needed for Category 2 assessments. The RG recommends that a new benchmark review may be appropriate when a sufficient timeseries of survey data are available.

whg.27.7.a [WGCSE Section 40: Whiting (Merlangius merlangus) in Division 7.a]

1) Assessment Type: New assessment commercial catch through 2016, including discards data, and survey index data through 2016 (benchmarked in 2017).

2) Assessment: Analytical assessment (Category 1)
3) Forecast:

- Short-term: FLAssess using R software packages using a three-year moving average for F and a geometric mean of recruitment from 2000-2016. The WG concluded that the recruitment assumption has a considerable effect on estimates of SSB for 2019.
- Medium-term: None.
- Long-term: None.

4) Assessment method:SPALY update of Age-structured assessment program (ASAP)

- Input data: commercial catch (1980-2016), numbers- and weights-at-age of catch (2003-2016), survey indices (NIGFS-WIBTS-Q1 from 1993-2016, NIGFS-WIBTS-Q4 from 1993-2016, and NIMIK from 1994-2016), knife-edge maturity-at-age 2, and Lorenzen mortality.
- Stock annual weights-at-age are calculated as a three-year moving average of catch weights-at-age.
- Landings from ICES rectangles 33E2 and 33E3 have been transferred from Division 7.a to 7.b,c,e-k for the years 2003-2016.
- Recent landings (since 2003) have not been corrected for misreporting
- Discard estimates from Ireland and Northern Ireland were included with minor discards from Belgium and UK(E\&W).
- XSA assessment was carried out for comparison, and the FLR package FLEDA was used for data screening.

5) Consistency:

- The update is consistent with the annex. There are no retrospective patterns for recent estimates of SSB, though some deviations occur prior to the mid1990s, likely due to the addition of the survey. Slight retrospective patterns are present for F and recruitment.
- Stock status is consistent with last year.

6) Stock Status:

- Recruitment and SSB have been low since the 1990s, and F has been high with large variations in recent years.
- SSB2016 (1134 t) < $\operatorname{Bpa}(16300 \mathrm{t})$; increased risk
- $\mathrm{F}_{2016}(0.57)>\mathrm{Flim}_{\mathrm{l}}(0.37)>\mathrm{F}_{\mathrm{pa}}(0.22)$; harvested unsustainably
- $\mathrm{F}_{2016}(0.57)>$ Fmsy (0.22); overfished
- $B_{\text {trigger }}(16300 \mathrm{t})>\operatorname{Bim}_{\lim }(10000 \mathrm{t})>\mathrm{B}_{2016}(1134 \mathrm{t})$; reduced reproductive capacity
- Recruitment has been low with no trend in recent years.

7) Management Plan:

- No management plan has been agreed or proposed.
- The TAC for 2017 is the same as for 2016 (80 t). The ICES advice from the precautionary approach advised zero catch in 2017.
- Advice from an MSY approach corresponds to no directed fisheries and minimized catch in 2018.
- If total catch is reduced to zero $(\mathrm{F}=0)$ as advised by the MSY approach, SSB in 2019 is estimated to be 2103 t .
- Assuming a three-year moving average for F and a geometric mean of recruitment from 2000-2016. At these rates, the WG estimates SSB $_{2017}$ as 877 t .
- Decreasing maturity-at-age means whiting now mature well below the minimum landing size $(27 \mathrm{~cm})$ and variable weight-at-age has potential to affect mortality-at-age estimates.
- This stock is not yet under the landings obligation.
- Due to the high bycatch rate of undersize whiting in the Nephrops fleet and low TAC, the WG expressed concern that the 7 .a whiting stock may become a major "choke species."

General comments

- The WG report is well written and concise. The WG followed the Stock Annex.
- A considerable portion (765 t of 780 t in 2016) of the catch is derived from discards, mostly (78%) from bycatch in the Nephrops fleet.
- Landings-at-age data have declined in quality recently due to reduced sample numbers consistent with declining landings
- The value for F_{pa} (0.22) does not equal the value derived from the Technical Basis calculation in the draft advice.
- The model does not fit survey trends before the mid-1990s well.

Technical comments

- The annex and advice documents were downloaded May 30, 2017; the assessment was downloaded May 31, 2017.
- Track changes in the Advice document were accepted before review.
- Including the ASAP model input is helpful, though uploading it as a separate file would improve readability of the report.
- There are few grammatical errors in the text.

Conclusions

The whiting 7.a WG Report is consistent with the Stock Annex. The RG agrees with the WG's advice that all catches should be minimized in 2017 and 2018 due to high estimates of F and low estimates of SSB and the persistent truncation of the age distribution. The RG recommends that future benchmark reviews should consider modelling catch components (landings and discards) as separate fleets (e.g. white fish fleet, Nephrops fleet). The RG considers the WG assessment as a valid basis for advice.
whg.27.7.b-ce-k [WGCSE Section 41: Whiting (Merlangius merlangus) in divisions 7.b-c and 7.e-k (southern Celtic Seas and eastern English Channel)]

1) Assessment Type: Update including catch, landings, discards, and num-bers-at-age (benchmarked in 2014). Landings and numbers-at-age data drawn from updated InterCatch.

2) Assessment: Analytical (Category 1.0)
3) Forecast:

- Short-term: Multi Fleet Deterministic Projection with Numbers-at-age 0 replaced with the geometric mean of full time-series minus last year (19992015), F-at-age and catch weight-at-age were calculated as mean values from 2013-2015, stock numbers-at-age for age 0+ obtained from XSA.
- Medium-term: None
- Long-term: Multi Fleet Yield-per-recruit using same input information as short-term forecast

4) Assessment method: XSA that uses catch-at-age. Inputs include commercial landings, estimated discards, age composition of catch and the IGFSEVHOE survey index (2003-2016) which contains data for age $0-5$ and is used as a tuning index. It is a combined survey including data from the Q4 IBTS survey index for Irish Groundfish (IGFS) in divisions 7.b,g,j and the French EVHOE survey in divisions 7.e,h,j. Maturity and natural mortality are set in accordance with the stock annex. Landings and discard data are included for the full time-series (1999-2016).
5) Consistency:

- The WG report has some inconsistencies with the annex.
- Stock status is consistent with last year.
- Retrospective patterns appear to be developing with F revised downward, and SSB revised upward. WG chose to "scale F to F2016" in this assessment to account for the retrospective pattern. This decision is not in accordance with the stock annex. The RG notes that the magnitude of retrospective inconsistency is small, there is only a three-year pattern, and the brief pattern may result from revised perception of the 2013 recruitment event (see figure). The retrospective adjustment does not influence the stock status determination.
- It is unclear whether discards are being raised according to the stock annex since the WG report states that "as more accurate national data become available through InterCatch, these have been included in the assessment as an improvement over simply raising Irish and French OTB discards to the international landings to produce a time-series." No further explanation is provided to identify the extent to which this assessment may deviate from the stock annex when more accurate data are available.

6) Stock Status:

- SSB has been well above MSY $B_{\text {trigger }}$ since 2009 and F has been below FMSY since 2008 but has shown a recent increasing trend
- SSB peaks in 2012 and 2015 correspond to peak recruitment events in 2009 and 2013 respectively.
- SSB $_{2016}(66195 \mathrm{t})>\mathrm{B}_{\mathrm{pa}}(21000 \mathrm{t})$ Full Reproductive Capacity
- $\quad \mathrm{F}_{\lim }(1.18)>\mathrm{F}_{\mathrm{pa}}(0.72)>\mathrm{F}_{2016}(0.43$ retrospective adjusted); Acceptable
- $\quad \mathrm{F}_{2016}$ (0.43 retrospective adjusted) < FMSY (0.524) Acceptable
- $B_{2016}(117231 t)>B_{\text {trigger }}(35000 t)>B \lim (15000 t)$; Acceptable
- Recruitment has been below average since 2010 with the exception of a very strong year class in 2013 which was the highest in the time-series.
7) Management Plan:
- There is no management plan for whiting in this area, a TAC is specified for divisions 7.b-7.k. and increased from 22778 t in 2016 to 27500 in 2017.
- There is a mismatch between assessment area and TAC area since Division 7.d is assessed separately. Rectangles 33E2 and 33E3 from Division 7.a have been reallocated to this stock and since 2005 no fishing is allowed in rectangles 30E4, 31E4, 32E3 from February 1 through March 31 to protect cod stocks.
- Beginning in 2016 landings obligations for vessels with whiting landings of greater than 25% total landings in 2013 and 2014 took effect. Vessels are permitted to discard up to 7% of whiting they catch in 2017 and 6% in 2018. The WG noted that the impacts of this allowable discard are still unknown.
- Assuming $2017 \mathrm{~F}=0.52$, the 2018 projected catch and landings are 19548 t and 13841 t respectively.

General comments

- The WG report generally produced advice in accordance with the stock annex with only minor deviations as follows: 1) WG chose to scale F to F_{2016} in this assessment to account for the retrospective pattern, and 2) discards may not be raised in accordance with the stock annex when more accurate discard data are available, but the accuracy of discard data used in this assessment was not discussed further. The RG does not understand the justification for retrospective adjustment of F , but notes that the adjustment is small and does not affect stock status. Further explanation of the revised discard data would also help to justify the change.
- The WG noted that the impacts of landings obligations are still unknown as fleets in which whiting is a bycatch species are not subject to landings obligations, but significant landings occurred in midwater herring fisheries in 2016 as a result of these obligations. Discards above the 27 cm MLS occurred across fleets, with some fleets discarding fish larger than 40 cm .
- The WG raised concerns that surveys are prone to year effects, but cohort tracking for age 1+ fish appear consistent for the combined tuning index. Age 3+ fish were proportionally higher in the 2016 catch than in most of the preceding time-series.
- The WG noted that increased SSB is likely related to strong year classes, and unlikely to persist in the long term.
- Discards also appeared variable depending on gear type and year-class strength, and age distribution was similar over the time-series, except when large year classes pass though older ages (1999, 2009, 2013). The WG reported "a recent upward trend in discarding of all ages in the catch and stock".
- Mean weight-at-age apparently declined from 2005-2008 when fishing effort and landings were high. There is some indication that age 6 and age 7 weights may be increasing since 2008, but the WG notes that weights of older fish have been more variable over the whole time-series.
- Square-mesh panels introduced to all trawl fisheries in divisions 7.fg in 2012 to reduce F-at-age do not appear to be effective and the WG suggests that additional measures may be necessary.

Technical comments

- WG report downloaded on $5 / 29 / 17$, advice and stock annex downloaded 5/30/17
- The description of catch weights-at-age used in projections is not clear in the annex.
- The advice document had highlighted sections and appeared to be missing information from predicted catch and landings corresponding to advice in Table 7.
- ICES advice sections of the WG report appear to contain incorrect information, although current advice is contained later in the report.
- Section 41.2 in the WG report is empty.
- Figures numbers included in the text of the WG report do not always align with the corresponding figure included at the end of this report and should be double-checked and figure labels are not always sufficient to interpret without assistance from the WG report text.
- Page headings do not reflect the current assessment year
- Time-series range has not been updated to reflect addition of 2016 data in Historical stock development section.

Conclusions

Stock status is consistent with the previous year, but deviations from the stock annex were not fully justified. However, the effect of these inconsistencies is small, so the RG concludes that this assessment is similar to the benchmark method and is a valid basis for advice. The RG suggests that further justification be provided for the deviations
from the stock annex. The WG recommended that cod, haddock, and whiting in the Celtic Sea be benchmarked together in 2018 with emphasis placed on streamlining the compilation of fishery-dependent and survey data and the exploration of statistical catch-at-age models like SAM. The RG supports this recommendation, especially given the WG's concerns about recent retrospective patterns observed in F and SSB.

Appendix A. Review Group template for section reviews

stock-code [WG Section \#: Common name (Genus species) in Division\# or Subarea\#]

1) Assessment Type: Update including this dataset and this dataset (benchmarked in 20xx).
2) Assessment: Analytical
3) Forecast:

- Short-term:
- Medium-term:
- Long-term:

4) Assessment method: What type of model, which data (give the long names of dataseries).
5) Consistency:

- The update is/is not consistent with the annex. What changes were made?
- Are there retrospective trends?
- Stock status is/is not consistent with last year. If it changed, how so?

6) Stock Status:

- Increasing/Decreasing trend in SSB and Increasing/Decreasing trend in F
- SSB $_{2016 / 7}$ (number) $>,<,=\mathrm{B}_{\mathrm{pa}}$ (number)
- $\mathrm{F}_{\text {lim }}$ (number) $>,<,=\mathrm{F}_{2016(\text { number })}>,<,=\mathrm{F}_{\mathrm{pa}}$ (number); acceptable, increased risk, or harvested unsustainably
- F_{2016} (number) $>,<,=\mathrm{F}_{\text {MSY }}$ (number) below target, appropriate , or overfished
- $\mathrm{B}_{2016 / 7}$ (number) $>,<,=\mathrm{B}_{\text {trigger }}$ (number), $\mathrm{B}_{\lim }$ (number); acceptable, increased risk, or reduced reproductive capacity
- Recruitment

7) Management Plan:

- Brief description of plan.
- This year's advice relative to last year's advice (e.g. The TAC for 2016 (\qquad t) increased/decreased to \qquad t in 2017.)
- What is projected to happen to F and B (relative to reference points) if this year's advice is followed?
- Other relevant management plan information

General comments

- The WG did/did not follow the Stock Annex.
- Data changes.
- Changes from Annex method.
- Other comments.

Technical comments

- Anything technically inaccurate that doesn't affect interpretation of the document.
- Spelling, grammar, punctuation
- Figure and table labels (size)
- typographical errors

Conclusions

Briefly summarize the assessment review, noting any deviations from the Stock Annex procedure. Note whether the RG agrees or disagrees with the (WG's) decision(s) and any recommendations. Is the assessment a valid basis for advice?

[^0]: $\left.{ }^{(}{ }^{1}\right)$ By-catch of cod in the area covered by this TAC may be landed provided that it does not comprise more than $1,5 \%$ of the live weight of the total catch retained on board per fishing trip. This provision shall not apply for catches subject to the landing obligation.

[^1]: *2017 values are TSA-derived projections of population numbers (smoothed).

[^2]: *2016 values are TSA-derived projections of fishing mortality.

[^3]: *2016 values are TSA-derived projections.

[^4]: *for reference 58.3 cm for males.

