ICES WKSSRB REPORT 2008

ICES BALTIC COMMITTEE

CM 2008/BCC:05

REF. BCC

Report of the ICES/BSRP Workshop on Developing and Testing Environmentally-Sensitive Stock-Recruitment Relationships of Baltic Herring and Sprat Stocks (WKSSRB)

2-5 April 2008

Ponza, Italy

International Council for the Exploration of the Sea

Conseil International pour l'Exploration de la Mer

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk info@ices.dk

Recommended format for purposes of citation:

ICES. 2008. ICES/BSRP Workshop on Developing and Testing Environmentally-Sensitive Stock-Recruitment Relationships of Baltic Herring and Sprat Stocks (WKSSRB, 2–5 April 2008, Ponza, Italy. CM 2008/BCC:05. 54 pp. https://doi.org/10.17895/ices.pub.9118 For permission to reproduce material from this publication, please apply to the General Secretary.

The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

© 2008 International Council for the Exploration of the Sea

Contents

Exe	cutive	e summary	1
1	Ope	ning of the meeting and adoption of agenda	2
2	Intro	oduction	2
3	Revi Balti	ew of the work on environment-recruitment relationships for c herring and sprat stocks, especially by WKHRPB	3
4	Pres	entations given by participants	4
5	Ove	rview on data for statistical analyses	6
	5.1	New Sea Surface Temperature Data Series from Remote Sensing	6
	5.2	Qualitative measures for age/size structure of the sprat spawning stock	7
	5.3	Bottom Depth Anomaly	8
	5.4	Gulf of Riga Herring	9
	5.5	Central Baltic Herring (SD25-29&32 exl. Gulf of Riga)	10
	5.6	Baltic sprat (SD 22-32)	11
6	Envi	ronmentally-sensitive stock-recruitment relationships	11
	6.1	Introduction and Results Overview	11
	6.2	Western Baltic herring (D IIIa & SD22-24)	13
	6.3	Bothnian Sea herring (SD30) and Bothnian Bay herring (SD31)	13
	6.4	Gulf of Riga Herring	14
	6.5	Central Baltic Herring (SD25-29&32 exl. Gulf of Riga)	15
	6.6	Baltic sprat (SD 22-32)	19
7	Sho	t-term predictions	28
	7.1	Introduction	28
	7.2	Results	28
	7.3	Consequence of using the new model for TAC	28
8	Con	clusions and Recommendations	33
9	Refe	rences	34
Anr	1: 1:	List of participants	36
Anr	nex 2:	Agenda	37
Anr	nex 3: envi	Overview table on data series used in statistical analyses of ronment-recruitment relationships	39
Anr	nex 4 relat	: Output of statistical modelling of environment-recruitment ionships	40

Annex 5: Diagnostic plots of the finally selected environment-recruitment	
models	50
Annex 6: WKSSRB terms of reference for the next meeting	54

Executive summary

The direct and indirect effects of climate-induced hydrographic change and the effect of the parental stock on five Baltic herring stocks and Baltic sprat were investigated. Specifically, WKSSRB reviewed, updated and validated recruitment-environment relationships developed by WKRPBH (ICES 2007b) for five distinct Baltic Sea herring stocks: the Western Baltic (WBH), the Main Basin (MBH), the Gulf of Riga (GRH), the Bothnian Sea (BSH) and the Bothnian Bay (BBH). The predictors to be included in the final recruitment models were selected on the basis of the parsimonious principle and the ecological criterion fulfilled simultaneously (ICES 2007b). Data were also updated, including a revised time series of temperature, Baltic Sea Index and the inclusion of the Bottom Depth Anomalies for sprat recruitment modelling.

Temperature was detected to be an important predictor for all Baltic herring stocks. Spawning stock biomass (SSB) was the major factor explaining recruitment success (R_s) for MBH and recruitment for GRH. For MBH, food supply was also a significant predictor, suggesting that a part of the changes in climate and hydrographic conditions may affect herring indirectly via prey availability. Despite regional variability, our analyses showed that temperature was the main variable together with parental stock size, determining recruitment success of Baltic herring stocks. The effect of temperature on recruitment is likely to be in part indirect by changing the zooplankton food supply.

As during the WKSSRB meeting new potentially useful environmental and fisheries data series appeared, it was possible to construct a completely new model for sprat. Parental effect (SSB), predation mortality by cod on 0-group sprat (PM), Bottom Depth Anomalies (BDA), and August Sea Surface Temperature (NASA8) were identified as significant predictors of sprat recruitment. Unfortunately, predation mortality data might be not available for the most recent years as it is not an operational variable. Therefore, the alternative model with cod total biomass (Cod_TB) as a proxy of predation mortality was constructed. For both models, SSB and the newly introduced BDA were the most important predictors.

Generally, models developed in WKRPBH (ICES 2007b) were confirmed for herring stocks and predictions generated by those models were satisfactory. Short term projections were re-run using recruitment models predictions and compared to RCT3 estimates of recruitment.

1 Opening of the meeting and adoption of agenda

2007/2/BCC05 An ICES/BSRP Workshop on Developing and Testing Environmentally-Sensitive Stock-recruitment Relationships of Baltic Herring and Sprat stocks [WKSSRB] (Chair: M. Cardinale, Sweden and P. Margonski, Poland) met in Ponza, Italy from 2–5 April 2008 to:

- a) review the work on environment-recruitment relationships for Baltic herring and sprat stocks, especially by WKHRPB;
- b) construct stock-recruitment relationships including environmental variables;
- c) evaluate the performance of environmentally-sensitive stock-recruitment relationships in stock projections.

WKSSRB should report by 30 April 2008 to the attention of the Baltic Committee.

The Co-Chairs Max Cardinale and Piotr Margoński welcomed the participants (Annex 1) and introduced the agenda (Annex 2) for the workshop. The main objectives were clearly identified by the Terms of Reference adopted by the Council.

The agenda proposed by the Co-Chairs was discussed and adopted by the participants. Basically the first day was devoted to presentations provided by participants and plenary discussions on statistical analyses. Four subgroups were created: statistical analyses and recruitment modelling of herring (follow-up and modifications of last year results), statistical analyses and recruitment modelling of sprat (new analyses), short-term predictions including environmental variables, and report compilation and writing.

During the following days participants were working in sub-groups. Plenary sessions were organised to present workshop progress and discuss achieved results.

2 Introduction

A number of abiotic and biotic predictors for herring recruitment modelling were selected a priori on the basis of known ecological, biological and physiological processes. The predictors to be included in the final model were subsequently selected on the basis of the parsimonious principle and the ecological criterion fulfilled simultaneously (ICES 2007b). The ecological criterion implies that the sign of the relationship between certain variables cannot be accepted although it is statistically significant when lacking a sound ecological basis (Dippner and Ottersen, 2001). For example, there is no ecological explanation for zooplankton species to negatively affect fish condition (i.e., that more zooplankton results in a lower condition) and therefore such a relationship was discarded. If some of the relationships found in the best model selected by generalized cross validation (GCV) were not fulfilling the ecological criterion, the variable was excluded and the backward selection was continued. This implies that we might obtain recruitment models in which SSB is excluded as the model without SSB is statistically the most parsimonious. However, the number of recruits (or the recruitment success) in a fish species is generally related to egg number or SSB, a proxy of egg production, and thus the SSB effect should always be included when investigating recruitment-environment relationships (Myers and Barrowman, 1996; Cardinale and Hjelm, 2006). In particular cases, as for the WBH stock, where the time series is relatively short and/or the contrast in SSB is small, we might run the risk to exclude SSB on the basis of the parsimonious principle. Moreover, the effect of the SSB might be less evident when the SSB time series do not include values close to the origin but obviously its effect will increase if the stock does approach the lower range of the SSB values. On that basis, we decided that SSB should always be included in the recruitment models to be used for short term predictions purposes even when, with available data, SSB was excluded from the final model.

As a first step the models provided by the ICES/BSRP Workshop on Recruitment Processes of Baltic Sea herring stocks (ICES 2007b) and by Cardinale *et al.* (2008) were tested with updated data series. Models were modified when new data influenced the old models' performance. For sprat completely new models were calculated using a new set of possible explanatory variables.

3 Review of the work on environment-recruitment relationships for Baltic herring and sprat stocks, especially by WKHRPB

Max Cardinale reviewed the results from last year's recruitment modelling. The Baltic Sea hosts a number of different herring populations with considerable economic importance for the bordering countries. These populations inhabit local ecosystems with different abiotic and biotic conditions. The salinity gradient across the Baltic Sea is pronounced, from almost marine conditions in the Western Baltic to near fresh water conditions in the northern areas of the Bothnian Sea and Bothnian Bay. There is also a marked temperature gradient from the southern to the northern areas of the Baltic. As a result of the variable abiotic conditions, local ecosystem structure is likewise changeable, with e.g., differently structured zooplankton communities (Cardinale et al. 2008). Here we investigated the direct and indirect effects of climateinduced hydrographic change and the effect of the parental stock on five Baltic herring stocks. Specifically, we analyzed recruitment-environment relationships for five distinct Baltic Sea herring stocks; the Western Baltic (WBH), the Main Basin (MBH), the Gulf of Riga (GRH), the Bothnian Sea (BSH) and the Bothnian Bay (BBH). A number of hydro-climatic and biological variables were tested for their effect on recruitment. We used two proxies for recruitment; total recruitment (R: in numbers) or recruitment success (Rs: log (R/spawner biomass)), selected depending on the functional relationship between stock and recruitment. Temperature was detected to be an important predictor for all Baltic herring stocks, except for BBH. Spawning stock biomass (SSB) was the major factor explaining R_s for MBH and GRH, while for the other stocks SSB either did not affect Rs or the relationship between stock and recruitment could not be distinguished from a random process. Significant parental effects were found for MBH and GRH. For stocks for which complete zooplankton data were available, food supply was also a significant predictor, suggesting that a part of the changes in climate and hydrographic conditions may affect herring indirectly via prey availability. Despite regional variability, our analyses showed that temperature was the main variable together with parental stock size, determining Baltic herring recruitment success. The effect of temperature on recruitment is likely to be indirect by changing the zooplankton food supply.

For review of recruitment processes and detailed description of preformed analyses see the Report of the ICES/BSRP Workshop on Recruitment Processes of Baltic Sea herring stocks (ICES 2007b).

4 Presentations given by participants

The presentations given during the first day of the meeting covered (i) a report from the Ex Fish project on incorporating extrinsic drivers into fisheries management of the Baltic Sea, (ii) a review of last year's recruitment modelling results (see Section 3), (iii) an update of the time series from the Eastern Baltic and the Gulf of Riga, (iv) new recruitment-models, developed by Hannes Baumann, with respect to their further development and potential incorporation into operational models to be developed by WKSSRB, (v) a plan of the statistical analysis (see Section 6), and (vi) a review of processes affecting recruitment of open-sea and gulf Baltic herring stocks. A summary of the Rügen herring larvae survey was given during the 3rd day of the meeting.

Piotr Margoński presented the 'Incorporating extrinsic drivers into fisheries management (IN EX FISH) project experience'. The main aim of the project is to increase the responsiveness of fisheries management to a range of anthropogenic and non-anthropogenic forcing factors. Therefore, the potential explanatory variables influencing fish stock dynamics were reviewed and tested in stock-recruitment relationships. Project is dealing with various fish stocks of he North East Atlantic, the Baltic Sea, the West Iberian Sea, and the Mediterranean Sea RACs. In the Baltic Sea RAC area models were prepared for sprat, Gulf of Riga and Central Baltic herring, and Eastern Baltic cod stock. Central Baltic herring stock was used in the presentation as an example of carried out analyses. It was agreed within the project that the common procedure would be followed regarding data exploration: years (records) with missing values were removed, data were transformed to cope with outlier problem, correlation between explanatory variables was check by VIF and finally only those variables which presented the scientifically justified relation with recruitment were left in the model. The best model for the Central Baltic herring stock(s) included: SSB and sea surface temperature recorded in August.

George Kornilovs presented an update of the 2006 zooplankton and hydrological data for the Eastern Baltic and the Gulf of Riga. The data were submitted by the Latvian Fish Resources Agency which performs regular seasonal surveys in February, May, August and October. The winter of 2006 was the second coldest in the last 10 years, resulting in relatively low water temperatures in the winter and partly also in the spring. The summer water temperature of the upper layer in the eastern Baltic was relatively high, while in the Gulf of Riga it was rather low compared to the longterm average. In autumn the water temperature was high in both basins. The salinity in the Gotland Basin remained low in the upper 0–50 m level, while it remained at the same high level in the 50–100 m layer as the last four years, compared to the previous 15 years. The zooplankton data for the Eastern Baltic and the Gulf of Riga were updated for year 2006. The data were submitted by Latvian Fish Resources Agency which performs regular seasonal surveys in February, May, August and October. In 2006 the spring zooplankton abundance in the Gulf of Riga was comparatively low for the main Copepoda species Eurytemora affinis and Acartia spp., which is a characteristic pattern after cold winters. In summer the zooplankton biomass remained on a low level in comparison with long term average both for Copepoda and Cladocera species. In the Eastern Baltic in spring the zooplankton abundance was on an average level due to rather high level of *Pseudocalanus elongatus*, while the abundance of *Acar*tia spp. was low. In summer the zooplankton abundance was on a low level for all Copepoda species as well as for Cladocera.

| 5

Daniel Stepputtis presented new recruitment-models, developed by Hannes Baumann, with respect to their further development and potential incorporation into operational models to be developed by WKSSRB. Baumann *et al.* 2006 investigated possible relationships between year class strength and sea-temperature, drift pattern of eggs and larvae and SSB. Whereby, two new models were developed. This work was reviewed (see Baumann *et al.* 2006) and their use for models to be developed by WKSSRB was discussed. In that way, recent development to establish an operational available drift index for sprat early life stages was presented. For more details, refer to Section 5.3.

Tiit Raid discussed processes affecting recruitment of the gulf and open-sea Baltic herring stocks and potential causes for the different recruitment patterns observed for these stocks. While the Gulf herrings spend the whole year within the big gulfs, open sea stocks perform annual migrations to and from spawning grounds located along the open-sea coasts of the Baltic Proper and also in the gulfs. In the open sea populations, abundant year classes appear in the periods of intense water exchange between the Baltic and the North Sea and consequently higher salinity waters. Intense water exchange favours vertical mixing of water layers and up-mixing of nutrients to support high biological production, including abundant stock of copepod naupli, in herring spawning and larval retention areas in the period of transfer of herring larvae to exogenous feeding (e.g. Rannak, 1974). In the gulf populations, strong year-classes (in the North-eastern Baltic) are formed mainly in warm springs with dominating westerly winds promoting rich biological production in the period of larval development and favouring their high survival (Rannak, 1971; Ojaveer, 1988; Raid, 1997; Grygiel, 1999). The positive correlation between zooplankton abundance and herring recruitment abundance has been revealed in several areas, including in the Gulf of Riga (ICES, 2005) and in the Gdansk (Grygiel, 1999; Parmanne and Sjöblom; 1982). The gulf and open-sea stocks showed different, often opposite recruitment pattern over the recent 30 years. Recruitment was generally high in the Central Baltic (mostly open sea stocks) in 1970–1980s, while it was mostly average or below average in the 1990– 2000s. At the same time, the recruitment of the gulf stocks (Gulf of Riga herring and the Bothnian Sea herring) showed increasing trends from the historical lows in the 1970–1980s. The differences in recruitment dynamics probably indicate different responses by the open sea and gulf herring on recruitment formation conditions. There are also similarities in the recruitment pattern of gulf and open sea stocks however. Analyses of recruitment dynamics indicated that in both cases recruitment variability was different at different stock levels. When stock biomass was low, the recruitment variability was low, while at periods of high stock biomass, recruitment variability was higher. This may indicate that stock-related effects (stock size, condition, individual mean fecundity etc) were the dominating processes influencing recruitments at low stock levels. High variability of recruitment at high stock levels on the other hand may indicate the domination of other, particularly environmentally driven effects (e.g. survival at different stages of development). The domination of different recruitment formation factors at different stock levels may have implications when modelling the recruitment of a given stock. Consequently, the position of a stock on its historical trajectory of abundance or biomass should be considered in the recruitment model.

Christine Assmuth provided an overview of Rügen herring larvae survey (RHLS): A new recruitment index for WB-Herring and further works exploiting dynamics in larvae amount and activity. The RHLS started surveying up to 35 fixed stations in the Greifswalder Bodden, Strelasund and along the cost of Rügen and Usedom Island,

since 1977. This area is the main spawning area of WB-Herring. The RHLS data series were judged as one of the highest temporally and spatially resolved survey datasets in the world – with a huge potential value in investigating processes of life history of herring – by external reviewers (from IMARES and IMR) and experts from the Institute for Baltic Sea Fisheries in Rostock. The total number of larvae per m², their stationary length distribution and hydrographic information were collected weekly from mid March to early July (around 10-14 weeks) every year on an annual basis. For every station the total number of larvae for each length interval is estimated by the fraction of mean length interval of 3 sub-samples (larvae length up to 1 mm below) and the total counted sample number. Corrected by volume of filtered water of the Bongo-gear and depth the result is the ratio of larvae for each length class per m². With these data series Oeberst et al. 2008 developed a new year-class index of spring spawning herring in ICES subdivisions 22–24, which is going to be used in the stock assessment of WB-Herring. The N20-Index defines the total number of larvae per m², which will reach a maximum length of 20 mm with high probability. The estimation of this new index takes into account the influence of water temperature on mean daily larvae growth by including the water temperature increase dependent on cruise begin and sampling time of every cruise itself. A varied number of realized cruises and sampled stations yield a bias mean length frequency in the total spawning area. Hence, a stratified mean method is used, based on five defined strata. The N20-Index is the sum of the estimated mean length distribution overall cruises – presupposing the larvae will actually reach a length of 20mm during the duration of every cruise till the next cruise – based on stratified mean surface temperature. So the growth of larvae between the subsequent cruises is taken into account and the N20-Index can be used as unbiased indicator for the year class. A second important step to get a deeper insight into WB-Herring stock-activities in relation to climatic changes was done by Stürmer et al. 2007. They investigated the spawning behaviour by estimating the first significant hatch date. For every year the timing of hatching onset was recalculated for the first cohort of larvae, which survived with a length of 10 mm (i.e. started to feed). Moreover, an estimated last hatch date, where a certain amount of freshly hatched larvae dominate, is investigated. Regarding time trend, it is apparent, that the first successful hatch date shifts backwards in time and the last hatch time-point stays constant. Both generated time series were put into relation to different climatologic parameters. A closer, relationship could be uncovered with frost- and ice-airtemperatures, and the estimated hatch date of WB-Herring. An increasing amount of averaged frost- or ice-days influences a later hatch time point.

5 Overview on data for statistical analyses

5.1 New Sea Surface Temperature Data Series from Remote Sensing

As in some cases the monthly average values of sea surface temperature calculated on the basis of data downloaded from the ICES Data Centre was problematic due to unbalanced spatial and temporal coverage of different Baltic Sea areas, it was decided to test possibility of including NASA satellite sources (http://www.cdc.noaa.gov/cdc/data.noaa.ersst.html, 2x2 deg. grid, file: sst.mnmean.nc) in our analyses.

NASA data were used for Central Baltic Herring (CBH) and sprat stocks.

Monthly averages of SST calculated of points 1–15 and 4–15 were used for sprat and CBH analyses, respectively (Figure 5.1.1).

Figure 5.1.1. Central points of 2x2 degree grid of NASA SST measurements used for sprat and CBH analyses. (http://www.cdc.noaa.gov/cdc/data.noaa.ersst.html, file: sst.mnmean.nc)

5.2 Qualitative measures for age/size structure of the sprat spawning stock

Usually (or at least for other stocks), spawner abundance is not directly proportional to egg production. Moreover, the relative fecundity of fish usually increases with size/age. Hence the size/age structure of a stock and its development over time could be a useful link between SSB and recruitment. Therefore one goal of the recent workshop was to investigate whether the stock structure has an influence on the recruitment success for Baltic sprat.

Two different measures were calculated to give a qualitative measure for the stock structure of Baltic sprat.

a) Mean weight of spawning stock weighted by the spawning proportion per ageclasses and year:

During the WKHRPB workshop a mean weight was used as an explanatory variable. In this case, a simple average of weight at age of year class 3 and older was calculated based on the sprat WECA (weight in catch)/WEST(weight in stock) table of the WGBFAS 2006 report (ICES 2006). This index did not include the abundance of particular age groups.

During current workshop a new index was developed taking into account the different numbers in each age group. Additionally, when looking at the effect of stock structure, only spawning individuals should be relevant. Therefore, number of spawning stock per age was calculated using the total stock number at age (output from XSA) and MATPROP table (proportion per age of mature at spawning time) (ICES 2007a). The relative proportion of each age group for a given year was used to weight the mean individual weight of this age group. This procedure was done for all age groups older than two and three years, respectively:

- mean weight of spawning stock over all ages (1 to 8+)
- mean weight of spawning stock over all ages > 2 (2 to 8+)
- mean weight of spawning stock over all ages > 3 (3 to 8+)

b) Mean age of spawning stock weighted by the spawning proportion per age-class and year:

In a similar way, as mentioned above, the mean age per year was calculated.

5.3 Bottom Depth Anomaly

Previous work by Baumann *et al.* has shown that recruitment variability was highly depending on the drift of sprat larvae (Baumann *et al.* 2004, Baumann *et al.* 2006). Hereby, the survival of larvae (and the recruitment) was higher in, so called, retention years (Figure 5.3.1. left) – years where drifters stay in deeper areas. In, so-called, dispersion years (Figure 5.3.1. right), recruitment was found to be relatively low. Consequently, Baumann *et al.* (2006) developed an index, which captures the state of larvae drift. This Bottom Depth Anomaly (BDA) takes into account the change of bottom depth under modelled drifters over a given simulation period (see Hinrichsen *et al.* 2005 for a detailed introduction of the hydrodynamical model and the Lagrangian particle tracking method).

Figure 5.3.1. Two different scenarios of particle drift. Left: retention (2003 data), Right: dispersion (2005 data).

The dataset presented by Baumann *et al.* covers a time period from 1979-2003. This BDA time series was an excellent predictor for sprat recruitment (in a model with SSB). Therefore, the BDA should be included in environmental sensitive stock-recruitment relationships.

However, using the BDA by Baumann (2006) is limited since the time series is only available until 2003. Nevertheless, the underlying hydrodynamical model is calculated for a given year with driving data (atmospheric and river run-off data) available earliest in May of the following year, which means after the meeting of the Baltic Fisheries Assessment Working Group.

Therefore, a new data series (1999-2007) was calculated using a operational hydrodynamical model operated by the Bundesamt für Seeschifffahrt und Hydrographie (www.bsh.de). This model is calculated in real time and therefore, drift date and calculated BDA will be available each year at a time of WGBFAS meeting for the year prior to the meeting.

It was shown by Baumann *et al.* that simulations starting at day 190 each year (and lasting 50 days) have the highest correlation to recruitment. Therefore, the same settings were used for calculations of the new data series.

Since, the underlying model changed, some changes in particle tracking had to be implemented. The most important one was the need to reduce the number of drifters released into the model domain (see Figure 5.3.2.).

For the new data series, 1000 particles (compared to 2671 in the simulation by Baumann *et al.* (2006)) were distributed over all areas with water depth deeper than 40m and south of 58.12°N.

Figure 5.3.2. Comparison of release grid as used by Baumann *et al.* 2006 (left) and the new drift simulations (right).

Slight problems occurred, since the BDA is calculated as index over all model years, which might be somehow tricky when combining two different data series. Nevertheless, both data series were combined successfully by averaging results (mean bottom depth per day of the simulation) of overlapping years prior to the calculation of the BDA.

Since no reference for this new BDA-time series is available so far, please contact Daniel Stepputtis (daniel.stepputtis@vti.bund.de) for further information.

5.4 Gulf of Riga Herring

There was a shift of Gulf of Riga herring recruitment in late 1980s and SSB increased sharply during that time. The biomass of ages 5+ increased as well (Figure 5.4.1.). In contrast weight-at-age 3+ dropped in the same time. Positive values of Baltic Sea Index prevailed starting from late 1980s. It caused an increase of an average spring sea surface temperature. From the beginning of 1990s feeding conditions improved on average however a considerable year to year variability was observed during this period.

Figure 5.4.1. Biotic and abiotic time-series used for the Gulf of Riga herring analyses.

5.5 Central Baltic Herring (SD25-29&32 exl. Gulf of Riga)

Spawning Stock Biomass (SSB) and recruitment presented decreasing trends since the mid 1970s, with a slight increase during the last few years (Figure 5.5.1.). A similar pattern might be observed for the weight-at-age 3 and the biomass of ages 5+. Spring biomass of the copepods *Acartia* spp. and *Temora longicornis* increased strongly after the end of 1980s, whereas the biomass of the copepod *Pseudocalanus acuspes* declined. The August sea surface temperature (NASA 8) increased significantly over the last 20 years.

Figure 5.5.1. Biotic and abiotic time-series used for the Central Baltic herring analyses.

5.6 Baltic sprat (SD 22-32)

Sprat SSB started to increase dramatically since the beginning of 1990s (Figure 5.6.1.). Also recruitment was observed at much higher level during that period however a pronounced year to year variability appeared. Obviously predation mortality (calculated by MSVPA) caused by cod dropped with the decrease of cod biomass. Both summer sea surface temperatures revealed a significant increase since the late 1980s. No clear pattern may be found in BDA. Positive values of Baltic Sea Index prevailed starting from late 1980s.

Figure 5.6.1. Biotic and abiotic time-series used for sprat analyses.

6 Environmentally-sensitive stock-recruitment relationships

6.1 Introduction and Results Overview

As described by Stige *et al.* (2006) and by Cardinale and Hjelm (2006), the logarithm of the ratio between the annual numbers of recruits (R) and spawning stock biomass (SSB), is defined as recruitment success (R_s; see also Beverton 2002). According to the models by Ricker (1954) and Beverton and Holt (1995), this ratio is a linear function of SSB:

(1) $R_s = \ln (R \bullet SSB-1) = a + b \bullet SSB + f(1) + f(2)$

The other effects can be modelled as predictors (f) in equation (1). The point here is that the number of recruits in a fish species is generally related to egg number or SSB, a proxy of egg production and thus the SSB effect should always be scaled out when investigating recruitment-environment relationships (Myers and Barrowman, 1996; Cardinale and Hjelm; 2006). However, since SSB appears both as dependent and in-

dependent variable, this would run the risk to detect spurious correlations instead of the actual relation between SSB and recruitment success. In order to avoid this, we investigated the relationship between SSB and recruitment for a random effect. This tested the probability that the relationship between stock and number of recruits is equivalent to a random process. The test was performed dividing the scatter plots of the SSB-R relationship in 4 quadrants and testing if the frequency of observations in the quadrants is different from random (i.e. not statistically different frequency of observation between the different quadrants) using a t-test. For stocks where the frequency in the different quadrants was different from a random process, R_s was used as response in (1). Otherwise, R_s was considered to be not related to SSB or the relationship between SSB and R could not be distinguished from a random process (in the range of available data) and thus the number of recruits should be used as response. This will give:

(2) $R = a + b \bullet SSB + f(1) + f(2)$

The other effects can be modelled as predictors (f) in equation (2).

New or updated stock-recruitment models including environmental explanatory factors were calculated for Central Baltic and Gulf of Riga Herring stocks and for sprat (for detail see Sections 6.4–6.6). Those models were used to estimate recruitment for short term predictions. There were many different reasons that we decided not to update models and not to provide recruitment estimates for Western Baltic, Bothnian Sea, and Bothnian Bay Herring stocks. Details are presented in Sections 6.2. and 6.3. Final recruitment models are summarized in Table 6.1.1.

For the **Central Baltic Herring stock**, the last year best model (ICES 2007b) was used as a starting point. This model included SSB, Weight at Age 3+, Baltic Sea Index, August Sea Surface Temperature, and spring *Pseudocalanaus* biomass. The same model was fitted with the new assessment data for SSB and R_s and with revised explanatory variables (more accurate WAA3pl, August sea surface temperatures (NASA8), and a new BSI). Using the satellite SST data improved model fitting. As alternative, a simpler model was constructed as the effect of *Pseudocalanus* and BSI was weak. This model was not only simpler but also presented lower GCV score and it was still explaining almost 80% of deviance. Analysis of residuals confirmed no violations of normality and constancy of variance assumptions.

A similar approach was used for the **Gulf of Riga Herring stock**: the best 2007 model was run using new estimations for SSB, number of recruits, and May Sea Surface Temperature. The general model performance remained almost unchanged (Dev.expl. = 78.3%). The estimations of both the updated and the last year models were compared and their fit is very similar. The updated model shows less extreme values during early 1990s and in 2001 following the lower values produced by the most recent assessment. Both models are not able to follow the very high number of recruits observed since 2000.

In the case of **Sprat stock** the 2007 model (ICES 2007b) including SSB, Baltic Sea Index, spring *Pseudocalanus* biomass, and Predation Mortality by cod, running with updated data series was not valid any more. As during the WKSSRB meeting new potentially useful environmental and fisheries data series appeared it was possible to construct a completely new model for sprat (for details see the Section 6.6. and Annexes 4 & 5). Model which included predation mortality by cod (PM) was tested at first. The analysis of residuals indicated no violations of assumptions and the new model was relatively well following the high recruitment success values. Taking into account a considerable increase of deviance explained (possible overfitting) and much better fit to data, this model was regarded as the best model. The main problem with this model is that predation mortality data (PM) might be not available for the most recent years as it is not an operational variable. Therefore, the alternative model with cod total biomass (Cod_TB) as a proxy of predation mortality was constructed. The alternative best model is explaining over 80% of deviance. Recruitment success relation with SSB and NASA7 is linear and with BSI almost linear. Only in the case of BDA the pattern is more complicated (edf close to 3). However, a slight violation of normality and constancy of variance assumptions is observed at low sprat SSB values. This model has some problems with high recruitment success values.

Table 6.1.1. Results of the recruitment analysis for the Central Baltic (CBH), Gulf of Riga (GRH) herring and sprat stocks: Generalized cross validation (GCV) for models developed in 2007 and updated models, total deviance explained by each model, time interval covered and the variables explaining the largest proportion of the model deviance (LED).

Stock	Response	Model	Deviance explained	GCV	time interval	LED
CBH	Rs	$Rs \sim SSB + WAA3pl + BSI + SST8 + PSE$	81.4%		1974-2004	WAA3+, SSB
CBH	Rs	Rs ~ SSB + wWAA3pl + BSI_new + NASA8 + PSE	80.5%	0.0062	1974-2005	SST, SSB
CBH	Rs	Rs ~ SSB + wWAA3pl + NASA8	76.9%	0.0058	1974-2005	SST, WAA3+
GRH	R	$R \sim SSB + SST5$	78.5%		1977-2004	SSB
GRH	R	$R \sim SSB + SST5$	78.3%		1977-2005	SSB
sprat	Rs	$Rs \sim SSB + BSI + PSE + PM$	69.5%	0.3559	1974-2004	
sprat	Rs	$Rs \sim SSB + PM + BDA + NASA8$	91.6%	0.0057	1974-2005	BDA, SSB, NASA8
sprat	Rs	$Rs \sim SSB + BSI + BDA + NASA7$	80.7%	0.0072	1974-2005	BDA, SSB

6.2 Western Baltic herring (D IIIa & SD22-24)

According to Cardinale *et al.* (2008) the only predictor of recruitment dynamic in the final WBH model was the BSI. Following the benchmark assessment carried out during HAWG in 2008, spawning stock biomass and recruitment of WBH were reestimated as well as an estimate of the larval abundance was provided and used as recruitment index for the WBH stock (ICES 2008). After the benchmark assessment, the perception of the stock trend was slightly changed as the stock showed a decrease of both SSB and R in the last years (ICES 2008) compared to the latest assessment estimates (ICES 2008). In order to account for the newly estimated stock trends and larvae index availability, the analysis of recruitment process was re-made using both XSA age 0 and larval abundance estimates as response variable in the recruitment model. In both cases, no satisfactory model was found. A reason for that might be (i) the shortness of the time series and (ii) the lack of zooplankton estimates for the Western Baltic. Thus it was decided that no recruitment estimates for short-term predictions will be calculated.

6.3 Bothnian Sea herring (SD30) and Bothnian Bay herring (SD31)

SSB did not affect R_s for either the BBH or the BSH stocks and recruitment (as number of individuals; R) was used as response for modelling recruitment processes (Cardinale *et al.* 2008). Temperature (SST_{June}) was selected as an important predictor for the BSH stock explaining 62.3% of the deviance in the final model. No satisfactory model was found for the BBH stock. Potential reasons for the failure to find a significant model for the BBH stock and for the decision made not to conduct short term prediction for either stocks are that i) complete time series of potentially important variables, such as, zooplankton are missing for these areas, and ii) the assessment data are currently unreliable, as they are based solely on commercial CPUE, with no fishery independent tuning series available.

6.4 Gulf of Riga Herring

The last year best model (ICES 2007b) as presented below was used as a starting point for the analyses on the herring stock in the Gulf of Riga that were carried out during the workshop.

Family: Gamma Link function: log
Formula: RECR ~ s(SSB, k = 4) + s(SST5, k = 4)
Parametric coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.64810 0.06098 240.2 <2e-16 ***
Approximate significance of smooth terms:
 edf Est.rank F p-value
s(SSB) 1.000 1 26.15 3.11e-05 ***
s(SST5) 1.989 3 15.07 1.00e-05 ***
R-sq.(adj) = 0.58 Deviance explained = 78.5%
GCV score = 0.12141 Scale est. = 0.10411 n = 28</pre>

As updated versions of the explanatory variables WAA3pl and BSI were available, their effects were tested for the Gulf of Riga recruitment model, but the model defined the last year was found to be robust and still valid (results not presented).

Thus, the model was run using new estimations for SSB and number of recruits. The effect the parental component (SSB) and sea temperature in May (SST5) were still statistically significant (p<0.01). The effect of SST5 is confirmed as an asymptotic curve. On the contrary, the functional response of recruitment to increased SSB is changed from a simple positive linear relationship to a more classical Beverton and Holt R-S relationship. The asymptotic level is reached for SSB values >75-80 * 10³ tons (Figure 6.4.1).

General model performances remained almost unchanged (R-sq = 0.54; Dev.expl. = 78.3%).

Figure 6.4.1. Effects of SSB and SST5 on the number of herring recruits in the Gulf of Riga.

The estimations from the updated model (red line) were compared with the last year estimations (black line) and with observations (dots) (Figure 6.4.2.). The patterns described by the two models were very similar, with an evident increase in the recruitment level and variation from 1989. The revised model shows less extreme values during early 1990s and in 2001 following the lower values produced by the most recent assessment. As expected on the basis of the last year results, the Gulf of Riga model of herring recruitment was not able to catch the very high number of recruits observed since 2000.

The 2006 forward projection from the GAM model was compared with estimation from RCT3 and it was found only 25% higher (Figure 6.4.2. right panel).

Figure 6.4.2. Comparison of performance of 2007 model with the updated one (left). Updated model (+/- SE intervals) and its 2006 prediction (right).

6.5 Central Baltic Herring (SD25-29&32 exl. Gulf of Riga)

The last year best model (ICES 2007b) as presented below was used as a starting point for the analyses carried out in 2008.

(Intercept	3.0	00048 (0.03588	83.62	<2e-16	* * *
Approximat	te sign	ificance	of smoo	oth terms:		
	edf	Est.rank	F	p-value		
s(SSB)	1.822	2	13.272	0.000180	* * *	
s(WAA3pl)	1.174	2	8.462	0.001972	* *	
s(PSE)	1.955	3	2.772	0.066451		
s(SST8)	1.740	3	2.637	0.075890		
s(BSI)	1.998	3	6.538	0.002635	* *	
					01 40	
R-sq.(adj)) = 0	1.76 Dev 164026 S	viance e Scale es	explained	= 81.4%)44014 r	n = 31
Gev Deore	0.00	01020	Joure er	0.00	, 11011 1	1 - 51

The last year model was fitted with the new assessment data for SSB and R_s and with an additional point from the last year estimation (2005). Revised explanatory variables were available (more accurate WAA3pl, August sea surface temperatures (NASA8) and a new BSI). They were used running the updated model.

In the updated version of the CBH model for the recruitment success the deviance explained remained at comparably high level, but the biomass of *Pseudocalanus* (PSE) and the Baltic Index (BSI) still presented quite weak effects and their statistical significance in the last year model was even weaker.

Thus, we tested alternative reduced models that did not include one or both PSE and BSI.

Excluding BSI only:

Rs ~ s(SSB, k = 3) + s(wWAA3pl, k = 3) + s(NASA8, k = 4) + s(BSI_new, k = 4)

Parametric coefficients:

Estimate Std. Error t value Pr(> t) (Intercept) 3.01163 0.03779 79.7 <2e-16 ***
Approximate significance of smooth terms: edf Est rank E p-value
g(SSB) 1 793 2 11 236 0 000304 ***
s(wWAA3n1) = 1.773 = 2.7474 + 0.0000000000000000000000000000000000
s(NASA8) = 1 000 = 1 23 609 4 86e-05 ***
c(RST pew) = 1,000 = 1,0538,0,460728
S(BS1_Hew) 1.000 1 0.558 0.469/28
R-sq.(adj) = 0.734 Deviance explained = 77.7% GCV score = 0.0061207 Scale est. = 0.0049793 n = 32
Excluding both PSE and BSI (best model):
Formula: Rs ~ $s(SSB, k = 3) + s(wWAA3pl, k = 3) + s(NASA8, k = 4$
Parametric coefficients:
(Intercept) 3.01206 0.03763 80.05 <2e-16 ***
Approximate significance of smooth terms: edf Est.rank F p-value
s(SSB) 1.829 2 11.71 0.000214 ***
s(wWAA3pl) 1.000 1 13.58 0.001005 **
s(NASA8) 1.000 1 26.27 2.14e-05 ***
R-sq.(adj) = 0.735 Deviance explained = 76.9%
GCV SCOLE = 0.0056104 Scale eSL. = 0.0049335 II = 32

The last model was not only the most parsimonious including only three response variables, but also the best one on the basis of the GCV criteria (lowest GCV). At the same time it maintained elevated capabilities to fit the data and explain the temporal variability in recruitment success (R-sq = 0.735; Dev.expl = 76.9%).

Evaluation of the covariate effects substantially confirmed the same functional relationships observed in the last year model. The main difference was a more evident positive effect of sea temperature in August (NASA8) that changed to a linear relationship (Figure 6.5.1.). The SST8 effect in the previous year model was strongly affected by the occurrence of an extremely low value in 1995 (12.08°C). The use of the remote sensing data time series did not confirm this outlier in the sea surface temperature, with a consequent improved fitting of the variable effect.

Figure 6.5.1. Effects of SSB, wWAA3pl, and NASA8 on recruitment success of CBH (best model).

Also the model residuals were appropriately distributed according to the main assumptions of normality and constancy of variance (Figure 6.5.2.).

Figure 6.5.2. Analysis of residuals for the selected best model.

Finally the estimations from the *best model* (red line) were compared with the last year estimations (black line) and with observations (dots). As expected the two models behaved in a very similar way, following the same pattern throughout the 31 years of the time series (1975–2004). Slight but negligible differences were found in mid 90s. Thus, the current *best model* was run one year forward to estimate recruitment success in 2006 and the value was compared with the RCT3 estimation, even if they cannot be considered completely independent because both based on summer sea surface temperature. As shown in Figure 6.5.3. the value of 3.03 predicted by the *best model* is well comparable with the RCT3 estimation of 2.79.

Figure 6.5.3. Comparison of performance of 2007 model with the updated one (left). Updated model (+/- SE intervals) and its 2006 prediction (right).

6.6 Baltic sprat (SD 22-32)

We run the 2007 sprat model (ICES 2007b) with updated data series and changed to Gamma distributed:

```
Family: Gamma Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4) + s(BSI_newCM, k = 4) + s(PSE, k = 4) +
    s(PM, k = 4)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.387 0.126 34.81 <2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Approximate significance of smooth terms:
              edf Est.rank F p-value
s(SSB_new) 1.000 1 0.980 0.331
-(DST_nov(M) 1.625 3 1.624 0.207
s(BSI_newCM) 1.625
                           3 1.624
                                      0.207
                          1 2.339
s(PSE) 1.000
                                      0.138
             1.000
                           1 1.539
s(PM)
                                     0.225
R-sq.(adj) = 0.173 Deviance explained = 27%
GCV score = 0.032672 Scale est. = 0.027103 n = 33
```

Unfortunately, the 2007 model with new data was not valid any more.

Fortunately, during the WKSSRB meeting new potentially useful environmental and fisheries data series appeared (Table. 6.6.1). Therefore, a sprat model revision was possible.

Table. 6.6.1. Complete list of data available for the 2007 sprat model revision. Correlation with Sprat Recruitment Success is also presented. Data marked with asterix are presenting R>0.15. Data shadowed were used for construction of the best sprat model in 2007. Right panel presents data selected for further 2008 analyses; for variable codes, see Annex 3.

Correlations of the variables

selected for further analyses

MWSS2pl MWSS3pl BDA MASS Cod_TB

	Do now	
	RS_NEW	
NASA1	-0.147	
NASA2	-0.060	
NASA3	0.070	
NASA4	0.110	
NASA5	0.085	
NASA6	0.167	*
NASA7	0.277	*
NASA8	0.326	*
NASA9	0.224	*
NASA10	0.026	
NASA11	-0.137	
NASA12	0.016	
SI	-0.148	
BSI_new	0.139	
IC	-0.101	
ACA	-0.124	
TEM	-0.072	
PSE	0.454	
CLA	-0.136	
SSB_new	-0.380	
PM	0.314	
MWSS	0.286	*
MWSS2pl	0.332	*
MWSS3pl	0.349	*
BDA	0.704	*
MASS	0.186	*
Cod_TB	0.335	*

 SSB_new
 those of 2007 model (after revision and updating)

 BSI_new
 PSE

 PM
 PM

 NASA6
 plus others which seem do be promissing

 NASA7
 NASA8

 NASA9
 MWSS

Furthermore, the cross correlation between potentially useful parameters (see Table 6.6.1) was checked using Variance inflation factor-test (VIF) and parameters with VIF>5.0 were excluded. Remaining parameters are listed in table. 6.6.2.

Table. 6.6.2. List of variables successfully verified by VIF test (VIF<5.0). As predation mortality (PM) is not operational data series the other initial combination of variables with cod total biomass (Cod_TB) was tested as well (right panel)

Variance inflation factors

	GVIF		GVIF
NASA6	2.94	NASA6	2.99
NASA7	3.56	NASA7	3.4
NASA8	3.63	NASA8	2.37
NASA9	4.62	BSI_new	2.14
BSI_newCM	1.84	BDA	1.69
BDA	1.59	MASS	1.79
MASS	1.85	MWSS3pl	3.64
MWSS3pl	3.93	SSB_new	4.97
SSB_new	4.45	PSE	2.61
PSE	2.33	Cod_TB	4.47
PM	2.24		

Model including PM was tested at first.

As four SST times series were identified, four models each of them including one SST variable were constructed and the model presenting the lowest GCV score was selected (model with August temperature):

```
Family: Gamma
                            Link function: identity
Formula:
Rs_new ~ s(SSB_new, k = 4, bs = "cs") + s(BSI_newCM, k = 4, bs = "cs") +
     s(PM, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs") + s(MWSS3pl,
     k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs") + s(BDA, k = 4, 
     bs = "cs") + s(NASA8, k = 4, bs = "cs")
Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.44897 0.05208 85.43 <2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Approximate significance of smooth terms:
edf Est.rankFp-values(SSE_new)2.889e+00311.8470.00019***s(BSI_newCM)1.720e+0031.7080.20271s(PM)1.927e+0035.4510.00811**s(PSE)4.961e-0112.1100.16438s(MWSS3pl)4.787e-0610.0190.89305s(MASS)2.381e-0610.0860.77325s(BDA)1.006e+00322.8093.18e-06***s(NASA8)7.762e-0126.2370.00919**
                       edf Est.rank
                                           F p-value
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
R-sq.(adj) = 0.885 Deviance explained = 91.6%
GCV score = 0.0057261 Scale est. = 0.0036449 n = 27
```

Due to very low values of smoothers edfs of mean weight of spawning stock age 3 plus (MWSS3pl) and mean age of spawning stock (MASS) it is possible to construct simpler model and remove those variables:

```
Family: Gamma
                     Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(BSI_newCM, k = 4, bs = "cs") +
    s(PM, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs") + s(BDA,
   k = 4, bs = "cs") + s(NASA8, k = 4, bs = "cs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.44897 0.05208 85.43 <2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Approximate significance of smooth terms:
edf Est.rank F p-value
s(SSB_new) 2.8886 3 11.847 0.00019 ***
s(BSI_newCM) 1.7196
                          3 1.708 0.20271
      1.9270
                       3 5.451 0.00811
1 2.110 0.16438
                         3 5.451 0.00811 **
s(PM)
s(PSE)
            0.4960
           1.0058
                          3 22.809 3.18e-06 ***
s(BDA)
s(NASA8) 0.7762
                          2 6.237 0.00919 **
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
R-sq.(adj) = 0.885 Deviance explained = 91.6%
GCV score = 0.0057261 Scale est. = 0.0036449 n = 27
```

Removing insignificant variables (BSI and PSE) one at the time enabled to create a simpler model with lower GCV score:

```
Family: Gamma
                     Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(PM, k = 4, bs = "cs") +
   s(BDA, k = 4, bs = "cs") + s(NASA8, k = 4, bs = "cs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.45438 0.05161 86.32 <2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Approximate significance of smooth terms:
             edf Est.rank
                              F p-value
s(SSB_new) 2.9384 3 18.212 1.19e-05 ***
        2.0124
s(PM)
                       3 6.136 0.00474 **
                       3 25.290 1.25e-06 ***
          2.3293
S(BDA)
                       2 7.195 0.00515 **
s(NASA8) 0.9832
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
R-sq.(adj) = 0.878 Deviance explained = 91.6%
GCV score = 0.0054041 Scale est. = 0.00355 n = 27
```

The same model was calculated without bs='cs' parameter (*the best model*):

```
s(BDA) 2.533 3 24.661 1.81e-06 ***
s(NASA8) 1.000 1 11.083 0.00391 **
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
R-sq.(adj) = 0.874 Deviance explained = 91.6%
GCV score = 0.0056897 Scale est. = 0.0036359 n = 27
```

Figure 6.6.1. presents the response of sprat recruitment to changes of identified explanatory variables. Effect of August sea surface temperature is linear but the relation with the rest of variables is more complicated. Increasing predatory mortality causes a decrease of recruitment success at relatively low PM values. Further PM increase will not cause additional reduction of R_s but this part of relation is based on very few data points.

Figure 6.6.1. Effects of SSB, PM, BDA, and NASA8 on recruitment success of sprat (best model).

Comparison of the *best model* of 2008 with the 2007 one is presented in Figure 6.6.2. The current model is relatively well covering high recruitment values (at least much better than the 2007 one).

Figure 6.6.2. Comparison of performance of the 2007 model with the updated one (left). Updated model (+/- SE intervals) and its 2006 prediction (right).

Prediction for 2006 equals Rs=5.002258.

The main problem with this model is that predation mortality data (PM) might be not available for the most recent years as it is not an operational variable.

Therefore, the alternative model with cod total biomass (Cod_TB) as a proxy of predation mortality was constructed. List of potential explanatory variables has been presented in Table. 6.6.2.

As three summer SST times series were identified (Table. 6.6.2), three models each of them including one SST variable were constructed and the model with July temperature was selected as it presented the lowest GCV score:

```
Link function: identity
Family: Gamma
Formula:
Rs_new ~ s(SSB_new, k = 4, bs = "cs") + s(BSI_newCM, k = 4, bs = "cs") +
    s(Cod_{TB}, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs") +
    s(MWSS3pl, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs") +
    s(BDA, k = 4, bs = "cs") + s(NASA7, k = 4, bs = "cs")
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                 126.4 <2e-16 ***
(Intercept) 4.45258
                        0.03522
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Approximate significance of smooth terms:
                   edf Est.rank
                                     F p-value
             2.907e+00
                             3 14.295 0.000144 ***
s(SSB_new)
s(BSI_newCM) 8.854e-01
s(Cod_TB) 2.185e+00
                              2 1.563 0.243591
                              3 14.090 0.000155 ***
s(PSE)
             3.691e-05
                              1 1.081 0.315893
s(MWSS3pl)
             1.040e-05
                                 0.200 0.661337
                              1
s(MASS)
             2.686e+00
                              3
                                4.141 0.026575 *
             1.085e+00
                              3 57.621 3.44e-08 ***
s(BDA)
                              3 12.663 0.000268 ***
s(NASA7)
             2.056e+00
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
R-sq.(adj) = 0.929
                     Deviance explained = 96.9%
GCV \ score = 0.0031502
                        Scale est. = 0.0016562 n = 27
```

The following explanatory variables might be removed due to very low edf for smoothers: PSE and MWSS3pl (no change of GCV score):

```
Family: Gamma
                       Link function: identity
Formula:
Rs_new ~ s(SSB_new, k = 4, bs = "cs") + s(BSI_newCM, k = 4, bs = "cs") +
    s(Cod_TB, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs")
                                                              +
    s(BDA, k = 4, bs = "cs") + s(NASA7, k = 4, bs = "cs")
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                          <2e-16 ***
(Intercept)
            4.45258
                        0.03522
                                   126.4
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Approximate significance of smooth terms:
                edf Est.rank
                                   F p-value
s(SSB_new)
             2.9067
                           3 14.295 0.000144 ***
s(BSI_newCM) 0.8854
s(Cod_TB) 2.1852
                            2 1.563 0.243596
                            3 14.090 0.000155 ***
                            3 4.141 0.026575 *
s(MASS)
             2.6857
                            3 57.621 3.44e-08 ***
s(BDA)
             1.0854
                            3 12.663 0.000268 ***
s(NASA7)
             2.0562
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
R-sq.(adj) = 0.929
                      Deviance explained = 96.9%
GCV \ score = 0.0031502
                        Scale est. = 0.0016562 n = 27
```

As GCV score increased after BSI removal it was decided to include this variable in the *alternative model*. However a difficult to justify Rs response to Cod Total Biomass and Mean Age of Sprat Spawning Stock was observed (Figure 6.6.3.).

Figure 6.6.3. Effects of SSB, BSI, Cod_TB, MASS, BDA, and NASA7 on recruitment success of sprat.

Therefore, the next model was calculated without Cod_TB and MASS and without bs='cs' parameter (*alternative best model*).

```
Family: Gamma
                      Link function: identity
Formula:
Rs_new ~ s(SSB_new, k = 4) + s(BSI_newCM, k = 4) + s(BDA, k = 4) +
   s(NASA7, k = 4)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                  60.75
                                         <2e-16 ***
(Intercept) 4.45532
                        0.07334
_ _ _
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Approximate significance of smooth terms:
               edf Est.rank
                                   p-value
                                 F
                          1 15.798 0.000739 ***
s(SSB new)
             1.000
s(BSI_newCM) 1.186
                          3 1.368 0.281191
s(BDA)
             2.681
                          3 16.574 1.16e-05 ***
s(NASA7)
             1.000
                          1 6.281 0.020893
                                            *
               0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Signif. codes:
                      Deviance explained = 80.7%
R-sq.(adj) = 0.739
                        Scale est. = 0.0071823 n = 27
GCV \ score = 0.0096322
```

The alternative best model is explaining over 80% of deviance. Recruitment success relation with SSB and NASA7 is linear and with BSI almost linear. Only in the case of BDA the pattern is more complicated (edf close to 3) (Figure 6.6.4.).

Figure 6.6.4. Effects of SSB, BSI, BDA, and NASA7 on recruitment success of sprat.

Even a slight violation of normality and constancy of variance assumptions is observed at low sprat SSB values (Figure 6.6.5.) it was decided to predict 2006 recruitment using this model.

Figure 6.6.5. Analysis of residuals for the selected alternative best model.

Comparison of the *alternative best model* with the 2007 one is presented in Figure 6.6.6. This model has some problems with high recruitment values. The 2006 prediction (4.199018) is relatively close to RCT3 estimation but this time it is lower than observed.

Figure 6.6.6. Comparison of performance of 2007 model with the updated one (left). Updated model (+/- SE intervals) and its 2006 prediction (right).

7 Short-term predictions

7.1 Introduction

The short-term preditions forecast stock parameters for next 2 years is using the output from stock assessment models (XSA, ICA) and the recruitment estimates as an input. The estimates of most recent recruitment are derived from different sources for different stocks. In the short term forecast the recruitment estimates of the two last years are long-term geometric means.

For the **Gulf of Riga** herring the year class abundance is predicted from the relationship between year-class abundance of herring, average water temperature of 0–20 m layer in May and the biomass of *Eurytemora affinis* in spring.

To estimate the most recent **Central Baltic herring** year-class abundance at age 1, in RCT3 analysis, the number of 0 group herring from the Baltic International Acoustic Survey is used (since 1991).

The estimates of most recent recruitment of s**prat in Sub-divisions 22-32** are derived from Latvian/Russian acoustic estimates of age 0 sprat abundance in Subdivisions 26 + 28.

In order to provide additional sources for recruitment estimations incorporating the new knowledge on ecosystem interactions the Workshop performed a number of trial runs of short term predictions with new recruitment estimates

7.2 Results

Short-term forecast for the **Baltic herring in Sub-divisions 25-29 & 32** was rerun with the new obtained recruitment value (n=18808682) for age group one in 2007 (Table 7.2.1.). The recruitment value used by WGBFAS in 2007 was n=14706000 and was obtained from RCT3. At $F_{\text{status quo}}$ the new forecast produced slightly higher landings in 2007 (120.1 thou t compared to 118.7 thou t) and in 2008 (130.1 thou t compared to 127.6 thou t). The SSB in 2009 would be 1082.3 thou t in comparison with 1039.3 thou t of the forecast of the WGBFAS.

Short-term forecast for the **Gulf of Riga herring** was rerun with the new obtained recruitment value (n=3099135) for age group one in 2007 (Table 7.2.2.). The recruitment value used by WGBFAS in 2007 was n=2481575 and was obtained from RCT3. At $F_{\text{status quo}}$ the new forecast produced slightly higher landings in 2007 (38.5 thou t compared to 37.7 thou t) and in 2008 (36.1 thou t compared to 34.7 thou t). The SSB in 2009 would be 79.2 thou t in comparison with 75.5 thou t of the forecast of the WGBFAS.

Short-term forecast for the **sprat** in Sub-divisions 22-32 was rerun with the new obtained recruitment value (n=174 928) for age group one in 2007 (Table 7.2.3.). The recruitment value used by WGBFAS in 2007 was n=111145 and was obtained from RCT3. At $F_{\text{status quo}}$ the new forecast produced higher landings in 2007 (349 thou t compared to 325 thou t) and in 2008 (371 thou t compared to 330 thou t). The SSB in 2009 would be 1383 thou t in comparison to 1198 thou t of the WGBFAS forecast.

7.3 Consequence of using the new model for TAC

The obtained SSB and landing estimates of the short-term forecasts in the next three years are depending very much on the recruitment value which is used for the first year of the prediction. This value is usually calculated in RCT3 using estimates of the

0 group in surveys. Usually higher recruitment estimate will result in increase of SSB and landings while lower recruitment values will result in opposite development of the stock. For the management of the fish stocks the underestimation of recruitment would mean utilization of resources on lower level than possible, while the overestimation would mean possible overfishing and decrease of the fish stock.

The main advantage of the model constructed during the workshop is that they are providing the additional source of recruitment estimates based on better understanding of ecological processes influencing the recruitment changes.

The new recruitment values produced at the workshop for all three stocks were higher than those used by WGBFAS in 2007. Consequently higher estimates of SSB and possible landings were obtained for the predicted years in 2007-2009. Actually it would be necessary to determine which recruitment estimate is more correct and closer to the recruitment estimate of the assessment (XSA). The year-class 2006 (age group 1 in 2007) will be best estimated by the assessment of 2009 which will include catch and survey data up to 2008. In the further work it would be desirable to produce recruitment estimates not only for the last year but several estimates of the recent period which could be then compared with recruitment estimates which have been used by WGBFAS and recruitment estimates from the assessments.

Table. 7.2.1. Short term predictions for Central Baltic Herring.

MFDP version 1a Run: CBH-Ponza2 New forecast Herring in Sd 25-32 (excl. GOR). Time and date: 15:52 04/04/2008 Fbar age range: 3-6 Biomass SSB FMult FBar Landings 0.1205 Biomass SSB FBar Landings Biomass FMult SSB 0.012 0.1 0.2 0.0241 0.3 0.0361 0.4 0.0482 0.5 0.0602 0.0723 0.6 0.0843 0.7 0.8 0.0964 0.1084 0.9 0.1205 1.1 0.1325 0.1446 1.2 0.1566 1.3 1.4 0.1687 0.1807 1.5 0.1928 1.6 1.7 0.2048 1.8 0.2169 0.2289 1.9 0.241 Input units are thousands and kg - output in tonnes MFDP version 1a Run: CB Herring_1 Herring in Sd 25-32 (excl. GOR). Time and date: 10:16 21/04/2007 Fbar age range: 3-6 Landings Biomass SSB FMult FBar 0.1205 Landings Biomass SSB Biomass SSB FMult FBai 0.012 0.1 0.2 0.0241 0.3 0.0361 0.4 0.0482 0.5 0.0602 0.6 0.0723 0.7 0.0843 0.8 0.0964 0.9 0.1084 0.1205 1.1 0.1325 1.2 0.1446 0.1566 1.3 1.4 0.1687 0.1807 1.5 1.6 0.1928 1.7 0.2048 1.8 0.2169 1.9 0.2289 0.241

Input units are thousands and kg - output in tonnes

Table. 7.2.2. Short term predictions for Gulf of Riga Herring.

MFDP versio	n 1a						
Run: GoR-Po	onza	New for	ore	cast			
Herring Gulf	of Riga,20	008,AN	ON,	COMBSEX	,PLUSGRC	UP	
Time and dat	te: 16:22 (04/04/2	008				
Fbar age ran	ge: 3-7						
2007	-						
Biomass S	SB	FMult		FBar	Landings		
1/6000	96760	i wuut	1	0 /7/1	38/82		
140033	30700			0.4741	30402		
2008	2009					. .	
Biomass S	SB	FMult		FBar	Landings	Biomass	SSB
133482	97825		0	0	0	160024	122553
•	97022		0.1	0.0474	4262	155391	11/219
	96226		0.2	0.0948	8363	150936	112137
	95436		0.3	0.1422	12310	146653	107294
	94653		0.4	0.1897	16110	142534	102678
	93877		0.5	0.2371	19767	138573	98278
	93107		0.6	0.2845	23289	134762	94084
	92344		0.7	0.3319	26679	131097	90085
	91587		0.8	0.3793	29945	127570	86272
	90836		0.9	0.4267	33090	124177	82635
	90091		1	0.4741	36119	120913	79167
	89353		1.1	0.5216	39038	117771	75858
	88621		1.2	0.569	41850	114747	72701
	87896		1.3	0.6164	44560	111836	69688
	87176		1.4	0.6638	47171	109034	66813
	86462		1.5	0.7112	49688	106336	64069
	85754		1.6	0.7586	52115	103738	61449
	85053		1.7	0.806	54455	101237	58948
•	84357		1.8	0.8535	56711	98827	56559
•	83667		1.9	0.9009	58886	96507	54278
	82982		2	0.9483	60985	94271	52099
Input units ar	e thousar	nds and	kg ·	- output in t	onnes		
MFDP versio	n 1a						
MFDP versio Run: new07	n 1a	Forec	ast	with the s	ame inpu	t as in 200)7
MFDP versio Run: new07 Herring Gulf	n 1a of Riga,20	Forec 008,AN	ast	with the s	a me inpu ,PLUSGRC	t as in 200 DUP	07
MFDP versio Run: new07 Herring Gulf Time and dat	on 1a of Riga,20 te: 11:46 <i>2</i>	Forec 008,AN 28/03/2	ast ON,	with the s	a me inpu ,PLUSGRC	t as in 200 DUP	17
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran	on 1a of Riga,20 te: 11:46 2 qe: 3-7	Forec 008,AN 28/03/2	ast ON, 008	with the s COMBSEX	a me inpu ,PLUSGRC	t as in 200 DUP)7
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran	on 1a of Riga,20 te: 11:46 2 ge: 3-7	Forec 008,AN 28/03/2	ast ON, 008	with the s COMBSEX	a me inpu ,PLUSGRC	t as in 200 DUP)7
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S	n 1a of Riga,20 te: 11:46 2 ge: 3-7 SB	Forec 008,AN 28/03/2	ast ON, 008	with the s COMBSEX	a me inpu ,PLUSGRC	t as in 200 DUP)7
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089	on 1a of Riga,20 de: 11:46 2 ge: 3-7 SB	Forec 008,AN 28/03/2 FMult	ast ON, 008	with the s COMBSEX FBar	ame inpu PLUSGRC Landings	t as in 200 DUP)7
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089	on 1a of Riga,20 de: 11:46 2 ge: 3-7 SB 96760	Forec 008,AN 28/03/2 FMult	ast ON, 008	with the s COMBSEX FBar 0.4741	ame inpu ,PLUSGRC Landings 37723	t as in 200 DUP	97
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008	n 1a of Riga,2 te: 11:46 2 ge: 3-7 SB 96760 2009	Forec 008,AN 28/03/2 FMult	ast ON, 008	with the s COMBSEX FBar 0.4741	ame inpu ,PLUSGRC Landings 37723	t as in 200 DUP	07
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S	n 1a of Riga,2 te: 11:46 2 ge: 3-7 SB 96760 2009 SB	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008	with the s COMBSEX FBar 0.4741 FBar	ame inpu ,PLUSGRC Landings 37723 Landings	t as in 200 DUP Biomass	SSB
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,20 te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008	with the s COMBSEX FBar 0.4741 FBar 0	ame inpu ,PLUSGRC Landings 37723 Landings 0	t as in 200 DUP Biomass 154071	97 SSB 117059
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 ge: 3-7 SB 96760 2009 SB 93084 92313	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1	with the s COMBSEX FBar 0.4741 FBar 0 0.0474	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101	t as in 200 DUP Biomass 154071 149633	97 SSB 117059 111947
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 / ge: 3-7 SB 96760 2009 SB 93084 92313 91548	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2	with the s COMBSEX FBar 0.4741 FBar 0 0.0474 0.0948	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047	t as in 200 DUP Biomass 154071 149633 145366	SSB 117059 111947 107077
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(ie: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3	with the s COMBSEX FBar 0.4741 FBar 0 0.0474 0.0948 0.1422	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047 11844	t as in 200 DUP Biomass 154071 149633 145366 141265	SSB 117059 111947 107077 102438
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4	with the s COMBSEX FBar 0.4741 FBar 0 0.0474 0.0948 0.1422 0.1897	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498	t as in 200 DUP Biomass 154071 149633 145366 141265 137322	SSB 117059 111947 107077 102438 98018
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5	with the s COMBSEX FBar 0.4741 FBar 0 0.0474 0.0948 0.1422 0.1897 0.2371	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015	t as in 200 DUP Biomass 154071 149633 145366 141265 137322 133531	SSB 117059 111947 107077 102438 98018 93806
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,21 te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 88551	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6	with the s COMBSEX FBar 0.4741 FBar 0 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399	t as in 200 DUP Biomass 154071 149633 145366 141265 137322 133531 129885	SSB 117059 111947 107077 102438 98018 93806 89792
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2/ te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 88551 87818	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658	Biomass 154071 149633 145366 141265 137322 133531 129885 126379	SSB 117059 111947 107077 102438 98018 93806 89792 85966
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2/ te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 88551 87818 87091	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795	Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,21 te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90037 89291 88551 87818 87091 86370	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	with the s COMBSEX FBar 0.4741 FBar 0 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816	Biomass 154071 149633 14265 137322 133531 129885 126379 123006 119763	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319 78842
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90037 89291 88551 87818 87091 86370 85655	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2371 0.2345 0.3319 0.3793 0.4267 0.4741	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725	Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319 78842 75526
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 88251 87818 87091 86370 85655 84946	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267 0.4741 0.5216	ame inpu ,PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725 37527	Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642 113639	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319 78842 75526 72364
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 ; ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 88551 87818 87091 86370 85655 84946 84244	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267 0.4741 0.5216 0.569	ame inpu PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725 37527 40227	Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642 113639 110750	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319 78842 75526 72364 69347
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 87818 87091 86370 85655 84946 84244 83547	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267 0.4741 0.5216 0.569 0.6164	ame inpu PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725 37527 40227 42827	Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642 113639 110750 107970	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319 78842 75526 72364 69347 66470
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 88551 87818 87091 86565 84946 84944 83547 82856	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267 0.4741 0.5216 0.569 0.6164 0.6638	ame inpu PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725 37527 40227 42827 45333	Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642 113639 110750 107970 105294	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319 78842 75526 72364 69347 66470 63725
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 88551 87818 87091 86370 85655 84946 84244 83547 82856 82171	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267 0.4741 0.5216 0.569 0.6164 0.6638 0.7112	ame inpu PLUSGRC Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725 37527 40227 42827 42827 45333 47748	Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642 113639 110750 107970 105294 102718	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319 78842 75526 75526 72364 69347 66470 63725 61105
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2(te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 88551 87818 87091 86370 85655 84946 84244 83547 82856 82171 81491	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267 0.4741 0.5216 0.569 0.6164 0.6638 0.7112 0.7586	ame inpu PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725 37527 40227 42827 42827 45333 47748 50075	Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642 113639 110750 107970 105294 102718 100239	SSB 117059 111947 102438 98018 93806 89792 85966 82319 78842 75526 72364 69347 66470 63725 61105 58605
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,2/ te: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90789 90037 89291 88551 87818 87091 86370 85655 84946 84244 83547 828566 82171 81491 80818	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267 0.4741 0.5216 0.569 0.6164 0.6638 0.7112 0.7586 0.806	ame inpu PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725 37527 40227 42827 42827 45333 47748 50075 52319	Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642 113639 110750 007970 105294 102718 100239 97851	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319 78842 75526 72364 69347 66470 63725 61105 58605 56218
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,21 ie: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90037 89291 88551 87818 87091 86370 85655 84946 84244 83547 82856 82171 81491 80818 80150	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267 0.4741 0.5216 0.569 0.6164 0.6638 0.7112 0.7586 0.806 0.8535	ame inpu PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725 37527 40227 42827 45333 47748 50075 52319 54482	t as in 200 DUP Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642 113639 110750 107970 105294 100239 97851 95553	SSB 117059 111947 107077 102438 93806 89792 85966 82319 78842 75526 72364 69347 66470 63725 61105 58605 56218 53940
MFDP versio Run: new07 Herring Gulf Time and dat Fbar age ran 2007 Biomass S 140089 2008 Biomass S 128069	n 1a of Riga,21 ie: 11:46 2 ge: 3-7 SB 96760 2009 SB 93084 92313 91548 90037 89291 88551 87818 87091 86370 85655 84946 84244 83547 82856 82171 81491 80818 80150 79488	Forec 008,AN 28/03/2 FMult FMult	ast ON, 008 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	with the s COMBSEX FBar 0.4741 FBar 0.0474 0.0948 0.1422 0.1897 0.2371 0.2845 0.3319 0.3793 0.4267 0.4741 0.5216 0.569 0.6164 0.6638 0.7112 0.7586 0.806 0.8535 0.9009	ame inpu PLUSGRC Landings 37723 Landings 0 4101 8047 11844 15498 19015 22399 25658 28795 31816 34725 37527 40227 42827 42827 45333 47748 50075 52319 54482 56567	t as in 200 DUP Biomass 154071 149633 145366 141265 137322 133531 129885 126379 123006 119763 116642 113639 110750 107970 105294 102718 100239 97851 95553 93339	SSB 117059 111947 107077 102438 98018 93806 89792 85966 82319 78842 75526 72364 69347 66470 63725 64105 58605 56218 53940 51764

Input units are thousands and kg - output in tonnes

Table. 7.2.3. Short term predictions for sprat.

MFDP ver Run: sprat Sprat	sion 1 2	a 21·25	New f	ore	cast			
Fbar age r	ange:	3-5	10/00/2	.000				
2007								
Biomass	SSB		FMult		FBar	Landings		
2220		1238		1	0.2933	349		
2008							2009	
Biomass	SSB		FMult		FBar	Landings	Biomass	SSB
2186		1613		0	0	0	2421	1853
		1597		0.1	0.0293	41	2380	1798
		1582		0.2	0.0587	82	2339	1745
		1567		0.3	0.088	121	2300	1695
•		1552		0.4	0.1173	159	2262	1645
•		1537		0.5	0.1466	197	2224	1598
		1522		0.6	0.176	233	2187	1552
		1508		0.7	0.2053	269	2152	1507
		1493		0.8	0.2346	304	2117	1464
		1479		0.9	0.2639	338	2083	1423
		1465		1	0.2933	371	2050	1383
		1451		1.1	0.3226	404	2017	1344
		1438		1.2	0.3519	436	1985	1306
		1424		1.3	0.3812	467	1954	1270
•		1410		1.4	0.4106	497	1924	1234
•		1397		1.5	0.4399	527	1895	1200
•		1384		1.6	0.4692	556	1866	1167
•		1371		1.7	0.4986	584	1838	1135
•		1358		1.8	0.5279	611	1810	1105
•		1345		1.9	0.5572	638	1783	1075
		1333		2	0.5865	665	1757	1046

Input units are thousands and kg - output in tonnes

Sprat

Short-term forecast produced by WGBAS in 2007

Fbar age range: 3-5

	2007								
Biom	ass	SSB		FMult		FBar	Landings		
	1922		1196		1	0.2933	325		
	2008							2009	
Biom	ass	SSB		FMult		FBar	Landings	Biomass	SSB
	1885		1363		0	0	0	2152	1611
			1349		0.1	0.029	37	2115	1563
			1335		0.2	0.059	73	2080	1516
			1322		0.3	0.088	108	2045	1471
			1309		0.4	0.117	142	2011	1428
			1295		0.5	0.147	175	1978	1386
			1282		0.6	0.176	208	1945	1346
			1270		0.7	0.205	239	1914	1307
			1257		0.8	0.235	270	1883	1269
			1244		0.9	0.264	300	1853	1233
			1232		1	0.293	330	1824	1198
			1220		1.1	0.323	358	1795	1164
			1207		1.2	0.352	386	1767	1131
			1195		1.3	0.381	414	1740	1099
			1183		1.4	0.411	440	1714	1068
			1172		1.5	0.44	466	1688	1039
			1160		1.6	0.469	492	1662	1010
			1149		1.7	0.499	516	1638	982
			1137		1.8	0.528	541	1614	955
			1126		1.9	0.557	564	1590	929
			1115		2	0.587	587	1567	904

Input units are thousands and kg - output in tonnes

8 Conclusions and Recommendations

- 1) Workshop participants recommend verification of presented results (model predictions) by the ICES WGBFAS
- 2) Analysis for herring stocks in the Bothnian Sea and Bothnian Bay will be possible when existing fisheries assessment for those areas is verified by independent data.
- 3) Additional environmental datasets (e.g. zooplankton time series) are required to construct successful model(s) for the Western Baltic Herring stock.
- 4) Participants of the Workshop recommend to continue the work and to explore the possibility to calculate medium-term recruitment predictions including climatic scenarios.

9 References

- Baumann, H., Hinrichsen, H.-H., Köster, F.W., Temming, A. 2004. A new retention index fort the central Baltic Sea: long-term hydrodynamic modelling used to study recruitment variability in central Baltic sprat, *Sprattus sprattus*. ICES CM 2004/L:02.
- Baumann, H., Hinrichsen, H.-H., Möllmann, C., Köster, F.W., Mahlzahn, A., and Temming, A. 2006. Recruitment variability in Baltic Sea sprat (*Sprattus sprattus*) is tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Can. J. Fish Aquat. Sci., 63: 2191–2201.
- Beverton, R. J. H. 2002. Man or nature in fisheries dynamics: who calls the tune? *In* The Raymond J.H. Beverton Lectures at Woods Hole, Massachusetts: three lectures on fisheries science, May 2–3, 1994. NOAA. Ed. by E. D. Anderson. Tech Memo NMFS-F/SPO-54, 9–59.
- Beverton R.J.H., and Holt S. J. 1995. On the dynamics of exploited fish populations. Chapman & Hall, London.
- Beverton, R. J. H., and Holt, S. J. 1995. On the dynamics of exploited fish populations. Chapman and Hall, London. 502 pp.
- Cardinale, M., and Hjelm, J. 2006. Marine fish recruitment variability and climate. Mar. Ecol. Prog. Ser., 309: 307–309.
- Cardinale, M., Mölmann, C., Bartolino, V., Casini, M., Kornilovs, G., Raid, T., Margonski, P.,Raitaniemi, L., and Gröhsler, T. 2008. Climate and parental effects on the recruitment of Baltic herring (*Clupea harengus membras*) populations. Submitted to Fish. Oceanogr.
- Dippner, J., and Ottersen, G. 2001. Cod and climate variability in the Barents Sea. Clim. Res. 17:73–82.
- Grygiel, W. 1999. Rozmieszczenie i liczebność młodych śledzi i szprotów w południowym Bałtyku (lata 1976–1991). Morski Instytut Rybacki, Gdynia. 166 pp (in Polish).
- Hinrichsen, H. H., Kraus, G., Voss, R., Stepputtis, D., and Baumann, H. 2005. The general distribution pattern and mixing probability of Baltic sprat juvenile populations. J. Mar. Sys., 58: 52–66.
- ICES 2006. Report of the Baltic Fisheries Assessment Working Group. ICES CM 2006/ACFM:24. 684 pp.
- ICES. 2007a. Report of the Baltic Fisheries Assessment Working Group. ICES CM 2007/ACFM:15.727 pp.
- ICES 2007b. Report of the ICES/BSRP Workshop on Recruitment Processes of Baltic Sea herring stocks. ICES CM 2007/BCC:03. 75 pp.
- ICES 2008. Report of the Herring Assessment Working Group South of 62° N. ICES CM 2008/ACFM: 20.
- Myers, R. A. and Barrowman, N. J. 1996. Is fish recruitment related to spawning abundance? Fish. Bull., 9: 707–724.
- Oeberst, R., Klenz, B., and Gröhsler, T. 2008: Year-class index of spring spawning herring in ICES subdivisions 22-24 based on the larvae surveys in the Greifswalder Bodden (Working Paper of Planning Group of Herring Surveys 22–25 January 2008).
- Ojaveer, E. A. 1988. Baltic herrings. Agropromizdat, Moscow. 204 pp. (in Russian).
- Parmanne, R., and Sjöblom, V. 1982. Abundance, mortality and production of springspawning Baltic herring larvae in the seas around Finland in 1979. Finnish Fish. Res., 4: 20–26. Finnish Fish. Res. 6: 15-19.
- Raid, T. 1997. The effect of hydrological conditions on the state of herring stocks in the Baltic Sea. *In* Sensitivity to change: Black Sea, Baltic Sea and North Sea. Ed. by E. Özoy and A.

Mikaelyan. NATO ASI Series, Vol. 21, Kluwer Academic Publishers. Dordrecht-Boston-London: 139-147.

- Rannak, L. 1971. On recruitment to the stock of spring herring in the Northern Baltic. Rapp. P.v. Reun. Cons. int. Explor. Mer, 160, 76–82.
- Rannak, L. 1974. On the Stock-recruitment relationship and regulation of abundance of spring herring by environmental conditions Estonian Contributions to the IBP, IV: 51–65.
- Ricker, W. E. 1954. Stock and recruitment. J. Fish. Res. Board Can., 11: 559–623.
- Stige, L. C., Ottersen, G., Brander, K., Chan, K. S., and Stenseth, N. C. 2006. Cod and climate: effect of the North Atlantic Oscillation on recruitment in the North Atlantic. Mar. Ecol. Prog. Ser., 325: 227–241.
- Stuermer, I. W., Feistel, R., Assmuth, C., and Zimmermann, C. 2007: Climate change and variation of hatching onset in Baltic herring (*Clupea harengus*) – a long-time analysis of spring spawning in the Greifswalder Bodden (ICES area 24). NAFO ICES PICES Symposium Lisbon (Poster).

NAME	Address	EMAIL
Georgs Kornilovs	Latvian Fish Resources Agency 8 Daugaygrivas Str	georgs.kornilovs@lzra.gov.lv
	I V-1048 Riga	
	Latvia	
Max Cardinale	Swedish Board of Fisheries	massimiliano cardinale@fiskeriverket.se
(Co-Chair)	Institute of Marine Research.	
(ee enui)	Lysekil	
	P.O. Box 4	
	SE-453 21 Lysekil	
	Sweden	
Piotr Margonski	Sea Fisheries Institute in Gdynia	pmargon@mir.gdynia.pl
(Co-Chair)	ul. Kollataja 1	
(,	PL-81-332 Gdynia	
	Poland	
Tiit Raid	European Commssion	tiit.raid@ut.ee
	Joint Research Centre	tiit.raid@irc.it
	IPSC Fisheries and Maritime Affairs	,
	Unit- FISHRG	
	TP-051	
	Via E. Fermi 2749	
	I-21027 Ispra (VA) Italy	
Christine Assmuth	Johann-von-Thuenen-Institute	christine.assmuth@vti.bund.de
	Institute for Baltic Sea Fisheries Rostock	
	Alter Hafen Sued 2	
	18069 Rostock	
	Germany	
Mikaela Bergenius	Swedish Board of Fisheries	mikaela.bergenius@fiskeriverket.se
	Institute of Coastal Research	
	P.O. Box 109	
	SE-74222 Öregrund	
	Sweden	
Daniel Stepputtis	Johann-von-Thuenen-Institute	daniel.stepputtis@vti.bund.de
	Institute for Baltic Sea Fisheries	
	Rostock	
	Alter Hafen Sued 2	
	18069 Rostock	
	Germany	
Francesco Colloca	Dep. Animal and Human Biology,	francesco.colloca@uniroma1.it
	University of Rome La Sapienza.	
	Viale dell'universita, 32	
	I-00185 Rome	
	Italy	
Valerio Bartolino	Dep. Animal and Human Biology,	valerio.bartolino@uniroma1.it
	University of Rome La Sapienza.	
	Viale dell'universita, 32	
	I-00185 Rome	

Italy

Annex 1: List of participants

Annex 2: Agenda

ICES Workshop on Developing and Testing Environmentally-Sensitive Stockrecruitment Relationships of Baltic Herring and Sprat stocks [WKSSRB] Ponza, Italy, 2 April to 5 April 2008.

AGENDA

Tuesday, 1 April 2008

Arrival and arrangements in the Hotel Ortensia, dinner at Maurizio Restaurant

Wednesday, 2 April 2008

- 09:30 10:45 Practical information, Introduction to the Workshop and Discussion of the Agenda (Piotr Margonski & Max Cardinale)
- 10:45 11:15 Coffee & Tea (At the bar da Pippo)

11:15 – 13:00 Presentations:

- 1) Incorporating extrinsic drivers into fisheries management of the Baltic Sea: an In Ex Fish project experience (Piotr Margoński)
- 2) Review of the work on environment-recruitment relationships for Baltic herring and sprat stocks, especially by WKHRPB (Max Cardinale)
- 3) Updating of the time series from the Eastern Baltic and Gulf of Riga (George Kornilovs)
- 4) New recruitment-models, developed by Hannes Baumann, with respect to their further development and potential incorporation into operational models to be developed by WKSSRB (Daniel Stepputtis)
- 13:00 14:30 Lunch
- 14:30 15:30 Presentations cont.:
 - 5) Plan of the statistical analysis (Max Cardinale)
- 15:30 16:00 Coffee & Tea
- 16:00 16:30 Presentations cont.:
 - 6) Baltic herring recruitment: process and results (Tiit Raid)
- 16:00 17:00 Discussion of group work and forming of sub-groups

Sub-groups:

- 1) Statistical analyses and recruitment modelling of herring
- 2) Short term prediction with environmental variables
- 3) Statistical analyses and recruitment modelling of sprat
- 4) Report compilation and writing
- 19:00 Dinner

Thursday, 3 April 08

09:00 - 10:45	Work in subgroups
---------------	-------------------

- 10:45 11:00 Coffee & Tea
- 11:00 13:00 Work in subgroups cont.
- 13:00 14:15 Lunch
- 14:15 15:30 Plenary: 1st summary of the state of the sub-groups
- 15:30 16:00 Coffee & Tea
- 16:00 17:00 Work in subgroups cont.

Friday, 4 April 2008

09:00 – 10:00	Plenary: Review of the statistical analyses and the recruitment modelling
10:00 - 10:45	Presentations cont.:
	Ruegen herring larvae survey – A new recruitment index for WB- herring (Christine Assmuth)
10:45 – 11:00	Coffee & Tea
11:00 – 13:00	Work in subgroups cont

- 13:00 14:15 Lunch
- 14:15 15:30 Plenary: Summarizing results of subgroups; decision on structure and contents of the report
- 15:30 16:00 Coffee & Tea
- 16:00 17:00 report writing and (if needed) additional work in subgroups

Saturday, 5 April 2008

- 09:00 10:45 Plenary: Wash-up
- 10:45 11:00 Coffee & Tea
- 11:00 13:00 Report writing
- 13:00 Closure of workshop

Annex 3: Overview table on data series used in statistical analyses of environment-recruitment relationships

Stock area	Stock acronymous	Variable	Variable acronymus	Source
Div. IIIa & ICES SD 22-24	WBH	Sea Surface Salinity February	SAL2	www.smhi.se
Div. IIIa & ICES SD 22-24	WBH	Sea Surface Temperature February	SST2	www.smhi.se
ICES SD 25-29 & 32 exl.GOR	MBH	Sea Surface Temperature August	SST8	LatFRA
ICES SD 25-29 & 32 exl.GOR	MBH	Sea Surface Temperature August	NASA8	www.cdc.noaa.gov
SD 22-32	BS	Sea Surface Temperature January-December	NASA1-NASA12	www.cdc.noaa.gov
Gulf of Riga ICES SD 28.1	GRH	Sea Surface Temperature May	SST5	LatFRA
SD 22-32	BS	Baltic Depth Anomaly	BDA	Baumann et al. 2004 & 2006
Whole Baltic Sea	All stocks	Baltic Sea Index	BSI	Lehmann et al. 2002
SD 22-32	BS	Winter Severity Index	SI	LatFRA
SD 22-32	BS	Maximum Ice Cover	IC	FIMR
SD 22-32	BS	Pseudocalanus acuspes spring biomass	PSE	LatFRA
SD 22-32	BS	Temora longicornis spring biomass	TEM	LatFRA
SD 22-32	BS	Acartia spp. spring biomass	ACA	LatFRA
SD 22-32	BS	Cladocera summer biomass	CLA	LatFRA
ICES SD 25-29 & 32 exl.GOR	MBH	Pseudocalanus acuspes biomass	PSE	LatFRA
Gulf of Riga ICES SD 28.1	GRH	Eurytemora affinis biomass	EUR	LatFRA
Div. IIIa & ICES SD 22-24	WBH	Spawning stock biomass	SSB	ICES 2008
SD 25-29 & 32 exl.GOR	MBH	Spawning stock biomass	SSB	ICES 2007a
Gulf of Riga ICES SD 28.1	GRH	Spawning stock biomass	SSB	ICES 2007a
ICES SD 30	BSH	Spawning stock biomass	SSB	ICES 2007a
ICES SD 31	BBH	Spawning stock biomass	SSB	ICES 2007a
SD 22-32	BS	Spawning stock biomass	SSB	ICES 2007a
Div. IIIa & ICES SD 22-24	WBH	Recruitment at age 0	R0	ICES 2008
ICES SD 25-29 & 32 exl.GOR	MBH	Recruitment age at 1	R1	ICES 2007a
Gulf of Riga ICES SD 28.1	GRH	Recruitment age at 1	R1	ICES 2007a
ICES SD 30	BSH	Recruitment age at 1	R1	ICES 2007a
ICES SD 31	BBH	Recruitment age at 1	R1	ICES 2007a
SD 22-32	BS	Recruitment age at 1	R1	ICES 2007a
Div. IIIa & ICES SD 22-24	WBH	Biomass ages 5+	BIOM ₅₊	ICES 2008
ICES SD 25-29 & 32 exl.GOR	MBH	Biomass ages 5+	BIOM ₅₊	ICES 2007a
Div. IIIa & ICES SD 22-24	WBH	Weight at age 3+	WAA ₃₊	ICES 2008
ICES SD 25-29 & 32 exl.GOR	MBH	Weight at age 3+	WAA ₃₊	ICES 2007a
ICES SD 25-29 & 32 exl.GOR	MBH	Weight at age 3+	wWAA ₃₊	ICES 2007a
SD 22-32	BS	Mean Weight of Sprat Spawning Stock (all age classes)	MWSS	this report (see chapter 5.2.)
SD 22-32	BS	Mean Weight of Sprat Spawning Stock (at age 2 plus)	MWSS2pl	this report (see chapter 5.2.)
SD 22-32	BS	Mean Weight of Sprat Spawning Stock (at age 3 plus)	MWSS3pl	this report (see chapter 5.2.)
SD 22-32	BS	Mean Age of Spawning Stock	MASS	this report (see chapter 5.2.)
SD 22-32	BS	Cod Total Biomass	Cod_TB	ICES 2007a
SD 22-32	BS	Predation mortality by cod at age 0	PM	ICES 2007b

LatFRA = Latvian Fisheries Research Agency FIMR = Finnish Institute of Marine Research

Annex 4: Output of statistical modelling of environmentrecruitment relationships

For codes of the variables see Annex 3.

Gulf of Riga Herring

```
Family: Gamma Link function: log
RECR ~ s(SSB, k = 4) + s(SST5, k = 4)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.64810 0.06098 240.2 <2e-16 ***
Approximate significance of smooth terms:
         edf Est.rank F p-value
s(SSB) 1.000 1 26.15 3.11e-05 ***
s(SST5) 1.989 3 15.07 1.00e-05 ***
R-sq.(adj) = 0.58 Deviance explained = 78.5%
GCV score = 0.12141 Scale est. = 0.10411 n = 28
-----
1) Family: Gamma Link function: log
RECR ~ s(SSB, k = 4) + s(SST5, k = 4)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.65749 0.06074 241.3 <2e-16 ***
Approximate significance of smooth terms:
        edf Est.rank F p-value
s(SSB) 2.266 3 6.293 0.00273 **
s(SST5) 2.263 3 14.941 1.19e-05 **
s(SST5) 2.263
                    3 14.941 1.19e-05 ***
R-sq.(adj) = 0.54 Deviance explained = 78.3%
GCV score = 0.13219 Scale est. = 0.10699 n = 29
```

Central Baltic Herring (SD25-29&32 exl. Gulf of Riga)

```
Family: Gamma Link function: identity
Rs \sim s(SSB, k = 3) + s(WAA3pl, k = 3) + s(PSE, k = 4) + s(SST8,
     k = 4) + s(BSI, k = 4)
Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.00048 0.03588 83.62 <2e-16 ***
Approximate significance of smooth terms:
              edf Est.rank F p-value
          1.822 2 13.272 0.000180 ***
s(SSB)
s(WAA3pl)1.17428.4620.001972**s(PSE)1.95532.7720.066451.s(SST8)1.74032.6370.075890.s(BSI)1.99836.5380.002635**
R-sq.(adj) = 0.76 Deviance explained = 81.4%
GCV score = 0.0064026 Scale est. = 0.0044014 n = 31
____
1) Family: Gamma Link function: identity
Rs \sim s(SSB, k = 3) + s(wWAA3pl, k = 3) + s(PSE, k = 4) +
s(NASA8, k = 4) + s(BSI_new, k = 4)
Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.01124
                            0.03677 81.9 <2e-16 ***
Approximate significance of smooth terms:
               edf Est.rank F p-value

      > 11.168
      0.000366
      ***

      > (wwaA3pl)
      1.000
      1
      10.715
      0.003188
      **

      s(PSE)
      1.905
      3
      1.469
      0.247901

      s(NASA8)
      1.000
      1
      24.479
      4.63e-05
      ***

      s(BSI_new)
      1.000
      1
      0.648
      0
      40055

           1.872 2 11.168 0.000366 ***
R-sq.(adj) = 0.748 Deviance explained = 80.3%
GCV score = 0.0062272 Scale est. = 0.0047138 n = 32
_____
2) Family: Gamma Link function: identity
Rs \sim s(SSB, k = 3) + s(wWAA3pl, k = 3) + s(PSE, k = 4) +
s(NASA8, k = 4)
Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.01138 0.03652 82.45 <2e-16 ***
Approximate significance of smooth terms:
              edf Est.rank F p-value
s(SSB)
             1.868 2 11.232 0.000325 ***
                      1 10.621 0.003192 **
3 1.466 0.247532
s(wWAA3pl) 1.000
s(PSE) 1.923
s(NASA8) 1.000 1 27.291 2.04e-05 ***
```

```
R-sq.(adj) = 0.749 Deviance explained = 79.8%
GCV score = 0.0059038 Scale est. = 0.004651 n = 32
-----
3) Family: Gamma Link function: identity
Rs \sim s(SSB, k = 3) + s(wWAA3pl, k = 3) + s(NASA8, k = 4) +
s(BSI_new, k = 4)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.01163 0.03779 79.7 <2e-16 ***
Approximate significance of smooth terms:
            edf Est.rank F p-value
s(SSB)1.793211.2360.000304***s(wWAA3pl)1.17427.4740.002723**s(NASA8)1.000123.6094.86e-05***s(BSI_new)1.00010.5380.469728
R-sq.(adj) = 0.734 Deviance explained = 77.7%
GCV score = 0.0061207 Scale est. = 0.0049793 n = 32
_____
4) Family: Gamma Link function: identity
Rs ~ s(SSB, k = 3) + s(wWAA3pl, k = 3) + s(NASA8, k = 4)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.01206 0.03763 80.05 <2e-16 ***
Approximate significance of smooth terms:
            edf Est.rank F p-value
s(SSB)1.829211.710.000214***s(wWAA3pl)1.000113.580.001005**s(NASA8)1.000126.272.14e-05***
R-sq.(adj) = 0.735 Deviance explained = 76.9%
GCV score = 0.0058104 Scale est. = 0.0049335 n = 32
```

```
Sprat (SD 22-32)
```

```
Family: Gamma Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4) + s(BSI_new, k = 4) + s(PSE, k = 4)
+ s(PM, k = 4)
Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.387 0.126 34.81 <2e-16 ***
Approximate significance of smooth terms:
            edf Est.rank F p-value
s(SSB_new) 1.000 1 0.980 0.331
s(BSI_new) 1.625
                    3 1.624 0.207
s(PSE) 1.000
                    1 2.339 0.138
          1.000
                      1 1.539 0.225
s(PM)
R-sq.(adj) = 0.173 Deviance explained =
                                         27%
GCV score = 0.032672 Scale est. = 0.027103 n = 33
1) Family: Gamma
                    Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(BSI_new, k = 4, bs =
"cs") + s(PM, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs") +
s(MWSS3pl, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs") +
s(BDA, k = 4, bs = "cs") + s(NASA6, k = 4, bs = "cs")
Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.44735 0.05046 88.14 <2e-16 ***
Approximate significance of smooth terms:
             edf Est.rank F p-value
s(SSB_new) 0.9117 2 3.172 0.07409.
s(BSI_new) 2.1327
                      3 6.373 0.00636 **
                      3 4.936 0.01585 *
s(PM) 1.7473
                       3 4.265 0.02539 *
s(PSE)
          2.0092
s(MWSS3pl) 2.4263
                       3 2.548 0.09915 .
s(MASS) 0.1919
                       1 1.503 0.24108
                       3 33.792 1.49e-06 ***
          1.0777
s(BDA)
s(NASA6)
          1.9436
                        3 5.106 0.01414 *
R-sq.(adj) = 0.877 Deviance explained = 93.8%
GCV score = 0.0068188 Scale est. = 0.0034245 n = 27
2) Family: Gamma
                     Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(BSI_new, k = 4, bs =
"cs") + s(PM, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs") +
s(MWSS3pl, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs") +
s(BDA, k = 4, bs = "cs") + s(NASA7, k = 4, bs = "cs")
Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.44941 0.05254 84.7 <2e-16 ***
```

```
F p-value
1 1.684 0.21441
3 2.549 0.09559.
2.642e+00 3 4.046 0.02764 *
3 2.914 0.06945.
s(MWSS3pl) 7.095e-01 1 4.398 0.05371.
s(MASS) 1.722e+00 3 2.547 0.09581
s(BDA) 1.013e+00 3 24.103 6.22
s(NASA7) 1.471e+00 3 6.22
R-sq.(adj) = 0.856
GCV score = 0 ^2
                                      3 24.103 6.23e-06 ***
                                      3 6.754 0.00437 **
 GCV score = 0.0067963 Scale est. = 0.0037017 n = 27
 3) Family: Gamma Link function: identity
 Formula:
 Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(BSI_new, k = 4, bs =
 "cs") + s(PM, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs") +
 s(MWSS3pl, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs") +
 s(BDA, k = 4, bs = "cs") + s(NASA8, k = 4, bs = "cs")
 Parametric coefficients:
                Estimate Std. Error t value Pr(>|t|)
 (Intercept) 4.44897 0.05208 85.43 <2e-16 ***
 Approximate significance of smooth terms:
 edf Est.rank F p-value
s(SSB_new) 2.889e+00 3 11.847 0.00019 ***
s(BSI_new) 1.720e+00 3 1.708 0.20271

      s(BSI_new)
      1.720e+00
      3
      1.700
      0.20271

      s(PM)
      1.927e+00
      3
      5.451
      0.00811
      **

      s(PSE)
      4.961e-01
      1
      2.110
      0.16438

      s(MWSS3pl)
      4.787e-06
      1
      0.019
      0.89305

                                   1 2.110 0.16438
1 0.019 0.89305
1 0.086 0.77325
 s(MASS) 2.381e-06
                                       3 22.809 3.18e-06 ***
                 1.006e+00
 s(BDA)
 s(NASA8) 7.762e-01
                                      2 6.237 0.00919 **
 R-sq.(adj) = 0.885 Deviance explained = 91.6%
 GCV score = 0.0057261 Scale est. = 0.0036449 n = 27
 4) Family: Gamma Link function: identity
 Formula:
 Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(BSI_new, k = 4, bs =
 "cs") + s(PM, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs") +
 s(MWSS3pl, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs") +
 s(BDA, k = 4, bs = "cs") + s(NASA9, k = 4, bs = "cs")
 Parametric coefficients:
                Estimate Std. Error t value Pr(>|t|)
 (Intercept) 4.44637 0.06629 67.08 <2e-16 ***
 Approximate significance of smooth terms:
                         edf Est.rank F p-value
 s(SSB_new) 8.804e-01 2 3.184 0.0644.
 s(BSI_new) 2.001e+00
                                   3 3.340 0.0414 *
                1.939e+00 3 4.318 0.0177 *
7.811e-01 2 3.007 0.0736.
 s(PM)
 s(PSE)
```

s(MWSS3pl)1.688e-0510.1320.7205s(MASS)1.103e-0411.2310.2812s(BDA)1.106e+00319.2885.76e-06 3 19.288 5.76e-06 *** s(NASA9) 4.719e-01 1 3.354 0.0829. R-sq.(adj) = 0.808 Deviance explained = 85.1% GCV score = 0.0085115 Scale est. = 0.0059329 n = 27 5) Family: Gamma Link function: identity Formula: $Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(BSI_new, k = 4, bs =$ "cs") + s(PM, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs") + s(BDA, k = 4, bs = "cs") + s(NASA8, k = 4, bs = "cs")Parametric coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.44897 0.05208 85.43 <2e-16 *** Approximate significance of smooth terms: edf Est.rank F p-value s(SSB_new) 2.8886 3 11.847 0.00019 *** s(BSI_new) 1.7196 3 1.708 0.20271 s(BSI_new)1.719631.7080.20271s(PM)1.927035.4510.00811**s(PSE)0.496012.1100.16438s(BDA)1.0058322.8093.18e-06***s(NASA8)0.776226.2370.00919** R-sq.(adj) = 0.885 Deviance explained = 91.6% GCV score = 0.0057261 Scale est. = 0.0036449 n = 27 6) Family: Gamma Link function: identity Formula: $Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(PM, k = 4, bs = "cs")$ + s(PSE, k = 4, bs = "cs") + s(BDA, k = 4, bs = "cs") +s(NASA8, k = 4, bs = "cs")Parametric coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.4517 0.0539 82.6 <2e-16 *** Approximate significance of smooth terms: edf Est.rank F p-value s(SSB_new) 2.952e+00 3 15.685 2.14e-05 *** s(PM) 1.996e+00 3 6.192 0.00402 ** 1 0.507 0.48493 s(PSE) 2.368e-05 s(BDA) 1.019e+00 s(NASA8) 8.390e-01 3 23.148 1.37e-06 *** 2 6.602 0.00658 ** R-sq.(adj) = 0.872 Deviance explained = 90% GCV score = 0.0054745 Scale est. = 0.0038916 n = 27

```
7) Family: Gamma Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(PM, k = 4, bs = "cs")
+ s(BDA, k = 4, bs = "cs") + s(NASA8, k = 4, bs = "cs")
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.45438 0.05161 86.32 <2e-16 ***
Approximate significance of smooth terms:
             edf Est.rank F p-value
s(SSB_new)2.9384318.2121.19e-05***s(PM)2.012436.1360.00474**s(BDA)2.3293325.2901.25e-06***s(NASA8)0.983227.1950.00515**
R-sq.(adj) = 0.878 Deviance explained = 91.6%
GCV score = 0.0054041 Scale est. = 0.00355 n = 27
8) Family: Gamma Link function: identity
Formula:
Rs_new ~ s(SSB_new, k = 4) + s(PM, k = 4) + s(BDA, k = 4) +
s(NASA8, k = 4)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.4537 0.0522 85.32 <2e-16 ***
Approximate significance of smooth terms:
            edf Est.rank F p-value
s(SSB_new) 2.846 3 15.760 3.44e-05 ***
          2.36836.4310.00404**2.533324.6611.81e-06***
s(PM) 2.368
s(BDA)
s(NASA8) 1.000
                       1 11.083 0.00391 **
R-sq.(adj) = 0.874 Deviance explained = 91.6%
GCV score = 0.0056897 Scale est. = 0.0036359 n = 27
11) Family: Gamma
                              Link function: identity
Formula:
Rs_new ~ s(SSB_new, k = 4, bs = "cs") + s(BSI_new, k = 4, bs =
"cs") + s(Cod_TB, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs")
+ s(MWSS3pl, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs") +
s(BDA, k = 4, bs = "cs") + s(NASA6, k = 4, bs = "cs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.45504 0.03068 145.2 <2e-16 ***
Approximate significance of smooth terms:
                  edf Est.rank F p-value
s(SSB_new) 2.399e+00 3 29.336 2.12e-05 ***
s(BSL_new)1.965e+0036.9270.007648**s(Cod_TB)2.603e+00323.4005.97e-05***s(PSE)1.777e+0031.6990.227288s(MWSS3pl)5.388e-0610.7140.417146
```

s(MASS)1.455e+0033.0520.076374.s(BDA)2.902e+00387.0421.08e-07***s(NASA6)2.437e+00312.5660.000848*** R-sq.(adj) = 0.959 Deviance explained = 98.2% GCV score = 0.0032273 Scale est. = 0.0012506 n = 27 12) Family: Gamma Link function: identity Formula: Rs new ~ s(SSB new, k = 4, bs = "cs") + s(BSI new, k = 4, bs ="cs") + s(Cod TB, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs")+ s(MWSS3pl, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs") +s(BDA, k = 4, bs = "cs") + s(NASA7, k = 4, bs = "cs")Parametric coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.45258 0.03522 126.4 <2e-16 *** Approximate significance of smooth terms: edf Est.rank F p-value s(SSB_new) 2.907e+00 3 14.295 0.000144 *** s(BSI_new) 8.854e-01 2 1.563 0.243591

 s(Cod_TB)
 2.185e+00
 3 14.090 0.000155 ***

 s(PSE)
 3.691e-05
 1 1.081 0.315893

 s(MWSS3pl)
 1.040e-05
 1 0.200 0.661337

 s(MASS)
 2.686e+00
 3 4.141 0.026575 *

 1.085e+00 3 57.621 3.44e-08 *** s(BDA) s(NASA7) 2.056e+00 3 12.663 0.000268 *** R-sq.(adj) = 0.929 Deviance explained = 96.9% GCV score = 0.0031502 Scale est. = 0.0016562 n = 27 13) Family: Gamma Link function: identity Formula: $Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(BSI_new, k = 4, bs =$ "cs") + $s(Cod_TB, k = 4, bs = "cs") + s(PSE, k = 4, bs = "cs")$ + s(MWSS3pl, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs") +s(BDA, k = 4, bs = "cs") + s(NASA8, k = 4, bs = "cs")Parametric coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.45770 0.03705 120.3 <2e-16 *** Approximate significance of smooth terms: edf Est.rank F p-value s(SSB_new) 2.883e+00 3 30.571 1.39e-06 *** s(SSE_new)1.212e-0610.1630.69212s(Cod_TB)2.974e+00316.6475.25e-05***s(PSE)1.481e-0610.0140.90818s(MWSS3pl)1.763e-0610.1140.74089s(MASS)1.490e-0610.0040.95058s(BDA)2.924e+00347.3438.15e-08***s(NASA8)2.446e+0038.0710.00203** R-sq.(adj) = 0.939 Deviance explained = 96.4% GCV score = 0.0033247 Scale est. = 0.0018191 n = 27

```
14) Family: Gamma
                            Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(BSI_new, k = 4, bs =
"cs") + s(Cod_TB, k = 4, bs = "cs") + s(MASS, k = 4, bs = "cs")
+ s(BDA, k = 4, bs = "cs") + s(NASA7, k = 4, bs = "cs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.45258 0.03522 126.4 <2e-16 ***
Approximate significance of smooth terms:
               edf Est.rank F p-value
s(SSB_new) 2.9067 3 14.295 0.000144 ***
                       2 1.563 0.243596
s(BSI_new) 0.8854
s(Cod_TB) 2.1852 3 14.090 0.000155 ***
s(MASS) 2.6857 3 4.141 0.026575 *
            1.0854
                         3 57.621 3.44e-08 ***
s(BDA)
s(NASA7) 2.0562
                         3 12.663 0.000268 ***
R-sq.(adj) = 0.929 Deviance explained = 96.9%
GCV score = 0.0031502 Scale est. = 0.0016562 n = 27
15) Family: Gamma
                             Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4, bs = "cs") + s(Cod_TB, k = 4, bs =
"cs") + s(MASS, k = 4, bs = "cs") + s(BDA, k = 4, bs = "cs") +
s(NASA7, k = 4, bs = "cs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.45247 0.03833 116.2 <2e-16 ***
Approximate significance of smooth terms:
           edf Est.rank F p-value
s(SSB_new)2.842311.8150.000298***s(Cod_TB)2.193311.6950.000315***s(MASS)2.65233.7450.034059*
         1.193
                      3 51.100 3.62e-08 ***
s(BDA)
                      3 10.392 0.000573 ***
s(NASA7) 1.931
R-sq.(adj) = 0.916 Deviance explained = 96%
GCV score = 0.003487 Scale est. = 0.0019617 n = 27
16) Family: Gamma
                             Link function: identity
Formula:
Rs_new \sim s(SSB_new, k = 4) + s(BSI_new, k = 4) + s(BDA, k = 4)
+ s(NASA7, k = 4)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.45532 0.07334 60.75 <2e-16 ***
```

Approximate significance of smooth terms: edf Est.rank F p-value s(SSB_new) 1.000 1 15.798 0.000739 *** s(BSI_new) 1.186 3 1.368 0.281191 s(BDA) 2.681 3 16.574 1.16e-05 *** s(NASA7) 1.000 1 6.281 0.020893 * R-sq.(adj) = 0.739 Deviance explained = 80.7% GCV score = 0.0096322 Scale est. = 0.0071823 n = 27

Gulf of Riga Herring

Figure 1. Diagnostic plots of the finally selected environment-recruitment models using R (model 1, see Section 6.4. and Annex 4):

- Effects of spawning stock biomass (SSB) and May sea surface temperature (SST5);
- Analyses of model residuals.

Central Baltic Herring (SD25-29&32 exl. Gulf of Riga)

Figure 2. Diagnostic plots of the finally selected environment-recruitment models using Rs (model 4, see Section 6.5. and Annex 4):

- effects of spawning stock biomass (SSB), weight at age 3+ (wWAA3pl), and August sea surface temperature (NASA8);
- analyses of model residuals.

Figure 3. Diagnostic plots of the finally selected environment-recruitment models using Rs (see Section 6.6. and Annex 4: model 8): A) effects of spawning stock biomass (SSB), predation mortality (PM), Baltic Depth Anomaly (BDA), and August sea surface temperature (NASA8); B) analyses of model residuals; C) analyses of residuals' distribution vs. selected explanatory variables.

NASA8

Figure 4. Diagnostic plots of the finally selected environment-recruitment models using Rs (see Section 6.6. and Annex 4: model 16): A) effects of spawning stock biomass (SSB), Baltic Sea Index (BSI), Baltic Depth Anomaly (BDA), and July sea surface temperature (NASA7); B) analyses of model residuals; C) analyses of residuals' distribution vs. selected explanatory variables

Annex 6: WKSSRB terms of reference for the next meeting

An ICES Workshop on Combining Climatic Scenarios and Medium-Term Predictions for Baltic Herring and Sprat stocks [WKCSMPB] (Chair: M. Cardinale, Sweden and Piotr Margonski, Poland) will meet in Ponza, Italy from 21–24 April 2009 to:

- a) reviewing and validating the developed recruitment models using sensitivity analyses;
- b) test different climatic scenarios in the medium-term predictions;
- c) explore combining of medium-term predictions of clupeids with density dependent effects and climate scenarios.

WKCSSPB will report by 22 May 2009 for the attention of the Baltic Committee.

PRIORITY:	This Workshop will explore the possibility of combining the medium-term predictions of clupeids in the Baltic Sea with density dependent effects and different climate scenarios.
SCIENTIFIC JUSTIFICATION AND RELATION TO ACTION PLAN:	The Workshop contributes to Actions 1.2, 1.3, 1.6, 1.7, 1.12, 3.2, 3.5, 3.15, 4.11, 4.15, 5.3, 5.6. of the ICES Action Plan.Herring is an essential component of the Baltic ecosystem, being a food item for cod and exerting predation pressure on zooplankton populations. The different populations are of considerable commercial value for the countries bordering the Baltic. While growth of herring has been intensively studied, studies on recruitment processes of Baltic fish stocks have in recent decades been exclusively directed to cod and sprat. However, recruitment trends drive a large proportion of the dynamics of the different stocks, which are partly of opposite direction. The work of WKHRPB and WKSSRB has shown that these trends in recruitment are due to direct (e.g. temperature) and indirect effects (e.g. food availability) of climate. Reliably predicting recruitment is essential for proper stock management and environmentally-sensitive stock recruitment relationships are essential for implementing precautionary and ecosystem approaches. The workshop will thus built on the result of WKHRPB and WKSSRB and test different climatic scenarios in the medium-term predictions that are based on recruitment models developed in WKCSSP and includes density dependent effects on clupeid growth. Also, the workshop will develop stock-specific strategies for including environmental information into the work of WGBFAS.
RESOURCE REQUIREMENTS:	Assistance of the secretariat in maintaining and exchanging information and data to potential participants.
PARTICIPANTS:	This Workshop is expected to attract 10-15 participants working on Baltic herring and sprat stocks, contributing data and expertise. Further, experts from other areas should be encouraged to participate. SMS model expert should also be encouraged to participate,
SECRETARIAT FACILITIES:	None
FINANCIAL:	No financial implications.
Linkages to Advisory Committees:	ACFM
LINKAGES TO OTHER COMMITTEES OR GROUPS:	BCC, LRC, SG/WGs related to Baltic Sea issues, HAWG, WGIAB
Linkages to other organizations:	HELCOM