International Council for the Exploration of the Sea
: https://doi.org/10.17895/ices.pub. 9526
C.M.1974/F:7

Demersal Fish (Northern) Committee

REPORT OF THE NORTH-EAST ARCTIC FISHERIES WORKING GROUP

18-22 March 1974, Charlottenlund Slot, Denmark.

CONTENTS Page
I. Participation .. 1
2. Terms of Reference ... I
3. The Status of the Fisheries 1
3.1. Cod ... I
3.2. Haddock ... 2
4. Fishing Mortality ... 2
5. Recruitment ... 2
6. Effective Mesh Size in Use 3
7. Assessments ... 3
7.1. Estimates of Immediate Losses (Gulland Method) 3
7.1.2. Estimates Based on the Age Composition Method 4

7.2.1. Trends in Catches 5
7.3. The Effect of Regulations Upon the Size of the
Spawning Stock ...

Tables 1 - 12 ... 8
Figure 1 .. 15
Appendix .. 16
$\bar{x})_{\text {The General Secretary, }}$ ICES, Charlottenlund Slot, 2920 Charlottenlund, DENMARK.

1. Participation

Mr D.J. Garrod	United Kingdom
Mr A. Hylen (Chairman)	Norway
Mr B.W. Jones	United Kingdom
Mr S.D. Melnikov	USSR
Dr V.P. Ponomarenko	USSR

Mr D. de G. Griffith, ICES Statistician, also took part in the Meeting.

2. Terms of Reference

At the 1973 Statutory Meeting of ICES the following Resolution (C.Res.1973/ 2:20) was adopted:
"It was decided that:
the North-East Arctic Fisheries Working Group meets at Charlottenlund from 18 to 22 March 1974 to:
a) continue assessments of the Arcto-Norwegian cod and haddock stocks;
b) assess the effects on individual countries' catches of the proposed increase in mesh size to 145 mm manila;
c) examine the proposal for such an increase in relation to other proposed regulatory measures, e.g. quotas;
d) examine the effect of the proposal concerning mesh size on the size of the spawning stock and whether it would obtain the optimal level of recruitment."
3. The Status of the Fisheries
3.1. Cod (Tables 1-4).

At the 1973 Meeting of the Working Group provisional catch and effort statistics vere not available for all countries and therefore the data for 1972 given in this Report differ from the estimates which were given in the last Report.

In 1973 there was a big improvement in catches from Sub-area I and Division IIb resulting from the recruitment of the 1969 and the very rich 1970 year classes. Catches in Division IIa declined as expected as a result of the reduced size of the mature part of the stock. The abundant 1963 and 1964 year classes which gave improved catches on the Norway coast in 1971 and 1972 are now past making their maximum contribution to the catches. The sparming fishery is now expected to continue to decline until the 1969 and 1970 year classes reach maturity.

The estimates of total fishing effort on cod in English and USSR units (Table 3) give conflicting indications of the trend in the amount of fishing. Part of this discrepancy is likely to be due to an underestimate of catch-per-uniteffort of English trawlers because of rejection at sea of young fish. The general impression, however, is that there was an increase in the amount of fishing in Sub-area I and Division IIb while there was very little change in Division IIa.
3.2. Haddock (Tables 5-7).

The estimates for haddock landings in 1972 given in the 1973 Report were much more seriously in error than were those for cod. 1972 catches in all areas showed big increases compared with 1971 following the recruitment of the abundant 1969 Jear class. Catches increased again in 1973 in Sub-area I and Division IIb, but the decline in Division IIa resulted from the reduoed size of the mature part of the stock as Jear classes after those of 1963 and 1964 are of lower abundance.

Fishing effort on haddock probably reduced slightly in 1973 after an increase in 1972.
4. Fishing Mortality (Tables 8 and 9).

Provisional age composition data were available for catches in 1973 taken by England, Norway, Federal Republic of Germany and the USSR. These data provided the basis of estimates of the age composition of the total 1973 catches of cod and haddock which were used to update the Virtual Population Analysis (VPA). Revised data for the 1972 catches were also available.

For cod, estimates of fishing mortality in 1973, used to initiate the VPA, were similar to the values used at the last Meeting of the Group. These estimates were derived from information on probable trends in fishing effort with additional guidance from an analysis of the data by a new method (unpublished) being developed by Mr J. Pope of the Fisheries Laboratory, Lowestoft, England. For haddock, values slightly lower than last year were used since it is believed that the fishing effort on haddock in 1973 was slightly lower than in 1972. Results of the VPA are given in Tables 8 and 9.
5. Recruitment (Tables 10 and Il).

For cod, the year classes 1965 - 1968 have all been very weak (Table 10). The fisheries in Sub-area I and Division IIb are now beginning to benefit from the recruitment of more abundant Jear classes. The 1969 Jear class now seems to be not so abundant as had appeared from the rather poor provisional data available at the 1973 Meeting. The most recent estimate indicates that it is slightly above average size. The 1970 year class which recruited to the fishery in 1973 is fulfilling earlier expectations and it is well above average abundance, although it is still too early to have an accurate estimate of its size. Of the subsequent year classes of cod, the indications from 0-group and young fish surveys, are that those of 1971 and 1972 are of about average size and that of 1973 is very abundant.

For haddock (Table 11), the very abundant 1969 year class has been joined in the fishery by the 1970 year class which is also well above average abundance. The 0-group survey results suggest that the 1971-1972 year classes are of average size and that of 1973 below average.

6. Effective Mesh Size in Use

Bottom trawling experiments with double cod ends were made in April and June 1973 by Norway off the East Finmark coast. The nesh sizes in both cod ends were 130 mm . The catches were sorted by fishermen into those fish acceptable for landing and those to be discarded, according to current commercial practice. In this manner discarding rates, by number, of between $23-28 \%$ were found. All fish less than 35 cm and most of the fish in the length group 35 - 39 cm were discarded. No fish greater than 49 cm were discarded.

Some of the countries fishing in the North-East Arctic are known to discard small fish at sea. Presuming this to be reflected in the length composition of landings which show a higher mean length, the discard factors deduced from the experiments were applied to the landings of countries B and C in Figure 1.

The adjusted length frequency of these landings then appear to be very similar to the unadjusted landings of country A. The carrection implies discarding of 44% and 37% by numbers by countries B and C in 1973.

The similarity between length compositions of commercial catches, adjusted for discarding, and the length composition of experimental hauls using double cod ends of 130 mm might be taken to indicate that the enforcenent of Commission regulations is inadequate.

No doubt this may occur from time to time, but a similar effect might be achieved by the concentration of the fishery in areas where the new year class is most abundant, so that the gelection of cod by trawl cod ends of the Commission size is influenced by the abundance and behaviour of the fish. Whatever its cause, it is apparent that in 1973 at least the effective mesh size of cod ends was lower than 130 mm , and 115 mm has been adopted as a working value for estimating the immediate loss that may be caused by changing to a new mesh size.

7. Assessments

The effects of changes in mesh regulations were calculated in two ways. The Gulland method using length composition data was used to estimate immediate losses. Another method based on age composition of the stock and fishing mortality data was used to estimate the long-term change and also the catches to be expected in each year 1975-1977 if a mesh size of 130 mm or 145 mm were to be introduced in 1975.

7.1. Estimates of Immediate Losses (Gulland Method).

If the Gulland method is to be successfully applied the length composition of the population should be relatively stable. At present in the North-East Arctic the size compositions of the stock fluctuates from year to year with variations in year class strength. The result of a mesh change in this situation will depend critically on the relative abondance of the recruiting year classes. The calculations were based on the average length compositions of the catches in 1968 and 1969 for cod and 1969 and 1970 for haddock when the relative strengths of the recruiting year classes were similar to those expected in 1975 and 1976. For cod, some allowance has been made for rejection. It has been assumed that there was no rejection by USSR vessels, but the rejection rate for trawlers of all other countries was eatimated on the basis of the relative abundance of the smallest age groups in their landings compared with USSR catches. No allowance was made for rejection of
haddock. The immediate loss was calculated for increases to 130 mm and 145 mm from 115 mm which is the present estimated effective mesh size.

For cod, an increase to 130 mm would be expected to result in a 6% immediate loss for USSR catches with very little change for other countries. An increase. to 145 mm would result in immediate losses of 16% and 7% for USSR and U.K., and 6% for Norwegian trawlers. For haddock, the magnitude of the immediate losses would be greater, being 20%, 3% for USSR and J.K. and 3% for Norwegian trawlers, for a change to 130 mm . The corresponding immediate losses for a change to 145 mm would be $36 \%, 12 \%$ and 11%.

7.1.2. Estimates Based on the Age Composition Method.

The Tables belov summarise the immediate and long-term effects of possible adjustments to the mesh regulations, depending upon the effective mesh size at present in use (see Section 6).

Immediate Effects ($\%$)

Species	Method	$\begin{gathered} 1973 \\ \text { Effective } \\ \text { Mesh (ma) } \end{gathered}$	New Mesh (mm)	USSR	Norway		Ј.K.	Germany(F.R.)	Others	Total
					Trawl	Total				
COD	$\left\|\begin{array}{l} \mathrm{VPA} \\ \text { Gulland } \end{array}\right\|$	115	130	$\left\lvert\, \begin{aligned} & -11 \\ & -6 \end{aligned}\right.$	- 1	-2	-7 -2	- 1	-7	-8
	VPA Guiland	115	145	$\left\lvert\, \begin{aligned} & -17 \\ & -16 \end{aligned}\right.$	-6	- 8	$\begin{array}{r} -14 \\ -\quad 7 \end{array}$	- 1	$\begin{aligned} & -13 \\ & -2 \end{aligned}$	-13
		130	145	-7		-6	-7		-6	- 6
HADDOCK	$\begin{aligned} & \text { VPA } \\ & \text { Gulland } \end{aligned}$	115	130	$\begin{aligned} & -16 \\ & -20 \end{aligned}$	- 3	+ 5	- -4	- 1	$\begin{array}{r} -27 \\ -\quad 2 \end{array}$	-9
	VPA Gulland	115	145	$\begin{aligned} & -33 \\ & -36 \end{aligned}$	-11	-7	$\begin{aligned} & -20 \\ & -12 \\ & \hline \end{aligned}$	-7	$\begin{array}{r} -45 \\ -\quad 8 \\ \hline \end{array}$	-25
		130	145	-20		-11	-7		-25	-17

If a new mesh regulation were introduced in 1975, the traw fisheries which would show the greatest immediate losses would be those of the Barents Sea and the Bear Iscand - Spitsbergen area, and there would be a greater loss for haddock than for cod.

Innr:-Tera Effects (\%)

Species	$\begin{gathered} 1973 \\ \text { Effective } \\ \text { Mesh (mm) } \end{gathered}$	New Mesh (ma)	USSR	Norway All Gears	U.K.	Others	Total
($\mathrm{M}=0.3$)	115	130	-3	$+8$	$+1$	+ 2	$+2$
COD ($\mathrm{M}=0.3$)	115	145	-5	$+13$	$+1$	0	$+3$
COD ($M=0.2$)	115	145	-1	+15	$+4$	0	$+7$
($\mathrm{I}=0.3$)	130	145	-2	$+5$	0	0	$+1$
HADDOCK	115	130	-7	+27	+28	+11	+9
	115	145	-10	+53	$+56$	+33	$+18$
	130	145	-4	+21	+22	+20	+ 9

The long-term change in the cod fishery would be small, even allowing for some uncertainty in the level of natural mortality that should apply. However, with a totallong-term gain of perhaps 5% there would be some redistribution of catch in favour of fisheries based on older cod. There would be a somewhat greater long-term gain in the total catch of haddock (perhaps up to 20%) but with a greater redistribution of catch between areas and countries:

7.2. Estimates of Future Catches and the Fffect of Changes in Mesh Regulations Based on Age Composition.

7.2.1. Trends in Gatches.

Prospective catches of cod and haddock have been estimated for two levels of fishing and three mesh sizes as summarised in Table 12. Prospective catches at the present mesh size are abstracted below for two levels of fishing: (i) if the 1973 level is maintained and (ii) if it is reduced by 25% to approach the level of fishing mortality giving the Marimum Sustainable Yield per recruit.

	Catch ('000 tons)					
	Level of Fishing (F) as in 1973			$F=3 / 4$ of the Level in 1973		
	I + IIb	IIa	Total	$I+I I b$	IIa	Total
1974	577	109	686			
COD 1975	736	77	813	585	62	647
COD 1976	804	105	909	684	97	781
1977	828	171	999	726	178	905
1974	207	17	224			
HADDOCK 1975	182	37	220	144	30	174
1976	162	22	184	141	20	161

If cod catches in 1974 do not exceed the tripartite Agreement level of 550000 tons then prospective catches for 1975-1977 will be slightly higher. Haddock catches have also been estimated assuming the 1973 level of fishing is maintained but these may be influenced by interaction between the two fisheries. For example, if cod and haddock are always caught together, then the haddock catch may be limited by the possibilities for catching cod.

The estimated catches given above can be compared with separate estimates of 1 110, 1165 and 1240 thousand tons for the jears 1974, 1975 and 1976 respectively prepared by USSR scientists using a technique based upon the historic performance of the fishery relative to changes in year class strength (see Appendix). However, the Group noted that in 1968 the catch of this magnitude came from a stock which contained two outstanding year classes (1963 and 1964) as 4 and 5 year-old fish, and additional atock of older age groups whereas nov, in 1974, the stock containg only one good year class (1970) as 4 year olds and the stock of older age groups is particalarly weak. The Groap therefore considered the USSR estinates for 1974 and 1975 to be optimistic.
7.3. The Fiffect of Regulations Upon the Size of the Spawning Stock.

The Group has previously expressed concern at the declining size of the spawming stock of cod, and earlier reports have stressed the need to ensure that an adequate quantity of cod from the 1970 Jear class survive to augment the spawning stock from 1978 onwards. The effects of regulation of the fishing mortality and/or mesh size on the size of the spawning stock are summarised below by comparison of the expected size of the spawning stock at the beginning of 1978 (before the spawing season) for different mesh adjustments.

Clearly a reduction in fishing mortality will achieve more rapid recovery of the spawning stock than mesh regulation; the most rapid recovery would be achieved by a combination of measures. It is not certain what the best level of spawning stock should be, but the Group noted that in 1970-1972 the number of mature cod of 8 years and older averaged 136 million. This might perhaps be a first objective, knowing that the recovery can be expected to continue in the years following 1978 and may later come to approach more closely the level of 212 miliion, averaged in the years 19.1959.

The cod catches in thousands of tons for the period 1974-1977, associated with the two levels of fishing, are:

| 1974 | Level of Fishing (F) as in 1973 | $F=3 / 4$ of the Level in 1973 |
| :---: | :---: | :---: | :---: |
| 1975 | 686 | 686 |
| 1976 | 913 | 647 |
| 1977 | 909 | 781 |

Together, these serve to show that a recovery in the spawning stock at least to the 1970-1972 level could be achieved by careful regulation of the catches in the coming years. In effect, management can take advantage of the improving stock to reduce fishing mortality without reducing actual catches. It is, however, essential that a regulation be maintained to prevent unrestricted increase in fishing on the whole stock within the period 1975-1977, and to prevent too high a proportion of the allowable catch being taken from the mature stock.

Table 1. COD.
Total Nominal Catch by Fishing Areas (Metric Tons).

Year	Sub-Area I	Division IIb	Division IIa	Total
1960	380962	$94599 \ldots$	155116	630677
1961	409694	222451	149122	781267
1962	548621	222611	138396	909628
1963	547469	113707	116924	778100
1964	202566	126029	108803	437398
1965	241489	103407	99855	444751
1966	292244	56568	134664	483476
1967	322781	121050	128729	572560
1968	642449	268908	162472	1073829
1969	670158	266117	254985	1191260
1970	551015	85423	240150	876588
1971	311788	56907	336269	704964
1972	197234	33220	338553	569007
1973^{x}	501903	87499	211211	800613

x) Provisional figures.

Table 2. COD.
Mominal Catch (In Metric Tons) by Countries
(Sub-Area I and Divisions IIa and IIb Combined).

Year	England	$\begin{gathered} \text { Germany } \\ (\mathrm{F} . \mathrm{R} .) \end{gathered}$	Horway	USSR	Others	Total
1960	141175	9472	231997	213400	34633	630677
1961	157909	8129	268377	325780	21072	781267
1962	174914	6503	225615	476760	25836	909628
1963	129779	4223	205056	417964	21078	778100
1964	94549	3202	149878	180550	9219	437398
1965	89874	3670	197085	152780	1342	444751
1966	103012	4284	203792	169300	3088	483476
1967	87008	3632	218910	262340	670	572560
1968	140054	1073	255611	676758	333	1073829
1969	231066	5434	305241	612215	37287	1191260
1970	179562	9451	377606	276632	33337	876588
1971	78160	9726	407044	144802	65232	704964
1972	56669	3405	394181	96653	18099	569007
$1973^{\text {x }}$	76493	14240	280021	387196	42643	800613

Table 3. COD.
Estimates of Total International Fishing Effort in Sub-Area I and Divisions IIa and IIb.

Toun	Sub-Area I				Division IIb				Division IIa			
	Hational Effort		Total International Effort		National Effort		Total Intarnational Effort		National Effort		Total Interrational Effort	
	U.K. ${ }^{\text {1) }}$	USSR ${ }^{2}$	$\begin{aligned} & \text { U.K. } \\ & \text { Units } \end{aligned}$	USSR Units	U.K.	USSR	$\begin{aligned} & \text { U.K. } \\ & \text { Onits } \end{aligned}$	USSR Units	D.K.	Morway ${ }^{3)}$	U.K. Units	Norwegian Units
1960	95	43	512	91	42	11	97	34	39	10	252	26
1961	94	53	518	109	51	22	173	39	30	9	255	20
1962	93	61	590	94	51	16	168	29	34	10	210	21
1963	78	62	635	91	45	9	120	22	29	7	176	19
1964	42	30	351	55	49	17	136	32	36	6	157	17
1965	42	25	367	62	37	11	95	4	33	5	150	16
1966	63	33	387	69	23	16	71	29	46	5	199	15
1967	51	30	395	61	10	12	110	13	50	5	261	22
1968	86	45	584	67	9	24	151	26	52	6	288	15
1969	115	45	593	72	24	19	197	26	73	5	272	18
1970	122	35	573	77	24	15	122	27	55	5	346	16
1971	82	23	576	74	4	27	79	34	48	5	523	14
1972	71	41	418	111	7	11	65	17	35	6	602	14
$1973^{\text {x }}$	97	61	887	96	18	12	160	15	27	7	486	14

1) Hours fishing x average tonnage $x 10^{-6}=$ millions on ton-hours.
2) Hours fishing (catch/catch per hour fishing) $\times 10^{-4}$.
3) lumber of men fishing at Lofoten $x 10^{-3}$.
x) Provisional figuras.

Table 4. COD.
Catch Per Unit Effort (Metric Tons, Round Fresh).

Year	Sub-Area I		Division IIb		Division IIa	
	U.K. 2	USSR 2	U.K.	USSR	U.K.	Norway
1960	0.075	0.42	0.105	0.31	0.067	3.0
1961	0.079	0.38	0.129	0.44	0.058	3.7
1962	0.092	0.59	0.133	0.74	0.066	4.0
1963	0.085	0.60	0.098	0.55	0.066	3.1
1964	0.058	0.37	0.092	0.39	0.070	4.8
1965	0.066	0.39	0.109	0.49	0.066	2.9
1966	0.074	0.42	0.078	0.19	0.067	4.0
1967	0.081	0.53	0.106	0.87	0.052	3.5
1968	0.110	1.09	0.173	1.21	0.056	5.1
1969	0.113	1.00	0.135	1.17	0.094	5.9
1970	0.100	0.80	0.100	0.80	0.066	6.4
1971	0.056	0.43	0.071	0.16	0.062	10.6
1972	0.047	0.50	0.051	0.16	0.055	11.5
1973^{x}	0.057	0.60	0.054	0.85	0.043	6.8

1) U.K. data - tons per 100 ton-hours fishing.
2) USSR data - tons per hour fishing.
3) Norwegian data - tons per gill net boat week at Lofoten.

Table 5. HADDOCK.
Total Nominal Catch by Fishing Areas (Metric Tons).

| Year | Sub-Area I | Division IIb | Division IIa | Total |
| :---: | ---: | :---: | :---: | :---: | :---: |
| 1960 | 125675 | 1854 | 27925 | 155454 |
| 1961 | 165165 | 2427 | 25642 | 193234 |
| 1962 | 160972 | 1727 | 25189 | 187888 |
| 1963 | 124774 | 939 | 21031 | 146744 |
| 1964 | 79056 | 1109 | 18735 | 98900 |
| 1965 | 98505 | 939 | 18640 | 118079 |
| 1966 | 124115 | 1614 | 34892 | 160621 |
| 1967 | 108066 | 440 | 27980 | 136486 |
| 1968 | 140970 | 725 | 40031 | 181726 |
| 1969 | 88960 | 1341 | 40208 | 130509 |
| 1970 | 59493 | 497 | 26611 | 86601 |
| 1971 | 56300 | 435 | 21567 | 78302 |
| 1972 | 221183 | 2155 | 41979 | 265317 |
| $\left.1973^{x}\right)$ | 257147 | 12112 | 29533 | 298792 |

x) Provisional figures.

Table 6. EADDOCK.
Nominal Catch (In Metric Tons) by Countries (Sub-Area I and Divisions IIa and IIb Combined).

Year	England	Germany $\left(F \cdot R_{0}\right)$	Horway	USSR	Others	Total
1960	45469	5597	47263	57025	100	155454
1961	39625	6304	60862	85345	1098	193234
1962	37486	2895	54567	91940	1000	187888
1963	19809	2554	59955	63526	900	146744
1964	14653	1482	38695	43870	200	98900
1965	14314	1568	60447	41750	-	118079
1966	27723	2098	82090	48710	-	160621
1967	24158	1705	51954	57346	1323	136486
1968	40102	1867	64076	75654	27	181726
1969	37234	1490	67549	24211	27	130509
1970	20344	2119	36716	26802	620	86601
1971	15605	896	45715	15778	308	78302
1972	16846	1433	46700	196225	4113	265317
$1973{ }^{\text {x }}$	31574	8654	64960	186585	7019	298792

Table 7. HADDOCK.
Catch Per Unit Effort and Estimated Total International Effort.

Year	Catch per Effort (J.K.) Kilos/100 ton-hours			Estimated Total International Effort in J.K. Units Total Catch in Mons $x 10^{-6}$ tons/100 ton-hours Sub-Area. I
	Sub-Area	Divisions		
		IIa	IIb	
1960	33	34	2.8	4.7
1961	29	36	3.3	6.7
1962	23	42	2.5	8.2
1963	13	33	0.9	11.2
1964	18	18	1.6	5.5
1965	18	18	2.0	6.6
1966	17	34	2.8	9.4
1967	18	25	2.4	7.6
1968	19	50	1.0	9.6
1969	13	42	2.0	10.0
1970	7	31	1.0	12.4
1971	8	25	3.0	9.8
1972	14	18	23.0	19.0
$1973^{\text {x) }}$	22	20	21.0	13.6

[^0]Table 8. Fishing Mortality 1969 - 1973.
Estimated by Virtual Population Analysis.

| | COD $(M=0.3)$ | | | | | HADDOCK $(M=0.2)$ | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Age Year | 1969 | 1970 | 1971 | 1972 | $\left.1973^{X}\right)$ | 1969 | 1970 | 1971 | 1972 | $\left.1973^{x}\right)$ |
| 3 | 0.02 | 0.03 | 0.02 | 0.04 | 0.20 | 0.11 | 0.18 | 0.02 | 0.20 | 0.30 |
| 4 | 0.16 | 0.13 | 0.10 | 0.15 | 0.20 | 0.21 | 0.26 | 0.30 | 0.28 | 0.35 |
| 5 | 0.37 | 0.28 | 0.24 | 0.31 | 0.35 | 0.54 | 0.32 | 0.21 | 1.31 | 0.55 |
| 6 | 0.46 | 0.42 | 0.19 | 0.46 | 0.45 | 0.63 | 0.57 | 0.26 | 1.28 | 0.60 |
| 7 | 0.69 | 0.53 | 0.38 | 0.25 | 0.60 | 0.48 | 0.60 | 0.50 | 1.00 | 0.60 |
| 8 | 0.83 | 0.75 | 0.74 | 0.44 | 0.65 | 0.51 | 0.52 | 0.49 | 0.84 | 0.60 |
| 9 | 1.04 | 0.85 | 0.89 | 0.96 | 0.65 | 0.47 | 0.40 | 0.44 | 1.07 | 0.60 |
| 10 | 0.87 | 0.89 | 0.71 | 1.24 | 0.65 | 0.48 | 0.39 | 0.38 | 1.25 | 0.60 |
| 11 | 0.91 | 0.60 | 0.64 | 1.14 | 0.65 | 0.16 | 0.50 | 0.35 | 0.76 | 0.60 |
| 12 | 0.79 | 0.32 | 0.52 | 0.79 | 0.65 | 0.45 | 0.14 | 0.96 | 1.37 | 0.60 |
| 13 | 0.75 | 0.53 | 0.41 | 1.06 | 0.65 | 0.24 | 1.74 | 0.21 | 1.58 | 0.60 |
| 14^{x} | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |

x) Assumed values.

Table 2. Stock Size 1969-1973 (Millions of Fish) from Virtual Population Analysis.

	$\operatorname{COD}(\mathrm{M}=0.3)$					HADDOCK ($\mathrm{M}=0.2$)				
Age Year	1969	1970	1971	1972	1973	1969	1970	1971	1972	1973
3	137	243	507	1178	2000	16	152	126	1393	385
4	188	100	174	368	842	11	11	104	101	934
5	888	118	65	117	234	117	7	7	63	63
6	564	455	66	38	63	44	56	4	5	14
7	182	265	222	40	18	10	19	26	3	1
8	54	68	115	113	23	13	5	9	13	1
9	24	18	24	41	54	5	7	3	4	5
10	10	6	6	7	12	1	2	4	1	1
11	4	3	2	2	2			1	2	
12	1	2	1	1	1				1	1
13				1						

Table 10.
Arcto-Morwegian Cod.
Tear Class Strength. The Number per Hour Fishing for USSR Young Fish Survey is for 3-Year-01d Fish.

Year Class	USSR Survey. No. per Hour Trawling			USSR Assessmant	0-Group Survey	Virtual Population No. of 3 Year 01ds 10^{-6}
	Sub-Area	$\begin{gathered} \text { Division } \\ \text { IIb } \end{gathered}$	Mean			
1956	10	21	14	- Average		932
1957	12	16	13	- Average		1060
1958	16	24	19	+ Average		1253
1959	18	14	16	+ Average		1044
1960	9	19	13	Poor		697
1961	2	2	2	Poor		527
1962	7	4	6	Poor		1156
1963	21	120	76	Rich		2263
1964	49	45	46	Rich		1930
1965	<1	<1	4	Very Poor	Very Poor	258
1966	2	<1	1	Very Poor	Very Poor	137
1967	1	<1	1	Very Poor	Poor	243
1968	7	1	5	Poor	Very Poor	507
1969	11	6	9	Poor	Rich	1178
1970	74	86	79	Rich	Very Rich	
1971	(12)	(25)	(18)	Average	Average	(950)
1972	(15)	(18)	(16)	Average	Average	(950)
1973	(18)	(18)	(18)	Average	Very Rich	(2000)

Table 11. Arcto-Morwegian Haddock.
Year Class Strength. The Namber per Hour Trawling for USSR Young Fish Survey is for the 3-Year-0ld Fish.

Year Class	USSR Survey. No. per Hour Trawling. Sub-Area I	O-Group Survey	Virtual Population Mo. of ${ }^{3} 0^{-5}$ Tear 0lds
1956	27		325
1957	14		241
1958	5		110
1959	33		240
1960	72		273
1961	34		314
1962	4		97
1963	12		232
1964	15		282
1965	<1	Very Poor	14
1966	<1	Very Poor	16
1967	8	Average	152
1968	3	Vory Poor	126
1969	120	Very Bich	1393
1970	31	Rich	(385)
1971	(3)	Average	(131)
1972	(2)	Average	(186)
1973	(2)	Poor	(186)

() : Estimated

Table 12. Estimated Catches of Cod and Haddock for Two Levels of Fishing.

	Effective Mesh Size (mm)	Level of Fishing (F) as in 1973				$\mathrm{F}=3 / 4$ of the Level in 1973		
		Year	I+IIb	IIa	Σ	I+IIb	IIa	Σ
COD	Prosent	1974	577	109	686			
		1975	736	77	813	585	62	647
		1976	804	105	909	684	97	781
		1977	828	171	999	726	178	905
	130	1975	674	77	751	530	62	592
		1976	756	105	861	640	98	738
		1977	796	172	968	695	179	874
	145	1975	628	76	704	494	62	556
		1976	729	101	834	610	96	707
		1977	762	177	938	618	181	799
HADDOCK	Present	1974	207	17	224			
		1975	182	37	220	144	30	174
		1976	162	22	184	141	20	161
	130	1975	160	41	201	129	32	161
		1976	131	41	172	117	38	155
	145	1975	130	36	166	102	28	130
		1976	126	42	168	117	42	159

Figure 1. Percentage Length Compositions of Cod Landed in 1973 by Three Countries. Adjusted Length Compositions Allowing for Estimated Rejection Rates are also shown for Countries B \& C.

Prediction Equations of Total Annual Catch of the North-East Arctic Cod and Haddock Stocks

by
V.P. Ponomarenko

PINRO, Kolskaya 6a, Murmansk, USSR.
(A Working Paper presented to the 1974 Meeting of the NorthEast Arctic Fisheries Working Group)

At recent levels of intensity, the fishery is based on 3-7 year-old fish in the fattening areas and on 7-10 jear olds on the spawning grounds.

In 1974 - 1976, fish of the ages mentioned above will belong to those year classes given below.

Year of Fishery	Age, Year Class								
	3	4	5	6	7	8	9	10	
	1971	1970	1969	1968	1967	1966	1965	1964	
1975	1972	1971	1970	1969	1968	1967	1966	1965	
1976	1973	1972	1971	1970	1969	1968	1967	1966	

The estimates of abundance of these year classes of cod are shown in Appendix Table I, and for haddock in Appendix Table II.

The fish at the age of 4,5 and 6 years dominated in cod catches in the fattening areas. The cod of the extrememly abundant 1970 year class and two fairly abundant year classes will be at the mentioned ages in 1974/5/6 (the 1968 and 1969 year classes in 1974, the 1971 and 1969 ones in 1975 and the 1971 and 1972 year classes in 1976).

Thus, the state of the cod stocks in the fattening areas in 1974, 1975 and 1976. will be at the level of maximum jears. The mature cod stocks in these years will be ainimum for the recont 10-15 jears observed.

Haddock constitute on the average about 20% of the long-term mean catch of cod. The fish of the abundant 1969 and 1970 year classes at the age of 4 and 5 years will form the basis of haddock catches in 1974, at ages 5 and 6 in 1975, and at 6 and 7 years old in 1976.

The 3, 4 and 5 year olds are the most important for the haddock fishery. The commercial haddock stocks, excluding 1974, will be below the long-term mean levol.

Taking into account the age composition of the catches, PINRO composed methods for comercial forecasts of fish resources for trawl fishery of demersal fishes in the Barents Sea. The fishery forecasts compiled by these methods are of satisfactory reliability.

The prediction equations used for forecasting the total catches of cod and haddock by all countries in 1974, 1975 and 1976 are as follows:

$$
\begin{equation*}
y=4.58 x+388 \quad r=0.70 \tag{1}
\end{equation*}
$$

$\mathrm{x}=$ index of cod stock abundance for the whole area, 1974-1989, (1975 = 105, $1976=113$);
$y=$ cod yield (thousands of tons) in the fattening areas by all countries.

$$
\begin{equation*}
y=5.98 x+214 \quad r=0.82 \tag{2}
\end{equation*}
$$

$x=$ index of cod stock abundance in Sub-area I, (1974 =92, $1975=97,1976=101$) ;
$y=$ cod yield (thousands of tons) in Sub-area I by all countries.

$$
\begin{equation*}
y=1.34 x+14 \tag{3}
\end{equation*}
$$

$$
\mathbf{r}=0.95
$$

$x=$ cod yield (thousands of tons) in Sub-area I by all countries, (1974 = 764, $1975=794,1976=818$);
$y=$ cod yield (thousands of tons) in the fattening areas by all countries.

$$
\begin{equation*}
\mathbf{y}=0.997 x+189 \quad \mathbf{r}=0.95 \tag{4}
\end{equation*}
$$

$x=\operatorname{cod} y i e l d$ (thousands of tons) in the fattening areas by all countries,
(1974 = 920, $1975=975,1976=1050$);
$y=$ cod rield (thousands of tons) over the whole fishing area by all countries.

$$
\begin{equation*}
y=0.0029 x+189 \quad r=0.86 \tag{5}
\end{equation*}
$$

$x=$ cod yield (thousands of tons) in the fattening areas by all countries,
(1974 = 920, $1975=975,1976=1050$);
$y=\operatorname{cod} y i e l d$ (thousands of tons) in Division IIa by all countries.

$$
y=3.38 x+24 \quad r=0.64
$$

$x=$ index of haddock stock abundance,
(1974 = 31, $1975=7,1976=2$);
$y=$ haddock yield (thousands of tons) by USSR trawlers.

$$
y=0.889 x+91
$$

$x=$ haddock yield (thousands of tons) by USSR trawlers,

$$
\begin{equation*}
r=0.89 \tag{7}
\end{equation*}
$$ (1974 = 130, $1975=50,1976=30$);

$y=$ haddock yield (thousands of tons) over the whole fishing area by vessels of all countries.

Aimost all the equations give a satisfactory coincidence of calculated catches and actual ones. The poorest agreement is observed in the calculation of the cod catches in Division IIa. This may be explained by the fact that different codare fished over this area ("capelin" cod, pre-spawning and spawning), and also various fishing gears are uscil there (trawls, long-lines, nets, purseseines). If the cod catches in Division IIa are divided by fishing gears and fishery types, then the reliability of forecasting catches in this area would be considerably improved taking into account their age composition.

Calculated total catches of cod and haddock from predicted equations are given in Appendix Table III. On the basis of the data from this Table, Appendix Table IV was compiled.

Appendix Table IV shows the calculated catoh of cod and haddock by all countries at the existing level of fishing intensity and also with a reduction of 20% in the fattening areas and on the spawning grounds, i.e. over the whole area inhabited by the cod stocks.

Appendix Table I. Young Cod Catch at the Third Year of Life (From Data of Autumn - Winter Investigations Undertaken by PIMRO). Specimens per Hour Trawling.

Year Class	Southern Barents Sea Sub-area 1	IW Areas Division IIb	Thole Area
1946	5.3	-	5.8
1947	21.0	3.7	17.5
1948	18.1	19.7	19.2
1949	29.4	5.9	23.6
1950	76.1	40.2	74.5
1951	6.5	2.2	6.4
1952	2.8	1.0	2.8
1953	10.6	1.7	8.8
1954	5.6	4.9	5.6
1955	8.7	12.3	9.2
1956	10.3	21.0	13.6
1957	11.8	16.3	13.1
1958	15.7	24.3	18.9
1959	17.6	14.4	16.2
1960	9.3	18.7	13.2
1961	2.3	1.8	2.0
1962	7.0	3.6	5.5
1963	21.3	120.3	75.6
1964	49.0	45.3	46.3
1965	0.5	0.2	0.4
1966	1.5	0.0	1.0
1967	1.4	0.3	1.0
1968	6.8	1.0	4.6
1969	10.5	6.0	8.9
1970	74.3	85.5	78.8
1971 ${ }^{\text {x }}$	12.1	25.3	18.0
$1972^{\text {x }}$)	15.0	18.3	16.0
$1973^{\text {xx }}$)	18.0	18.0	18.0

x) Calculated according to survival coefficient. xx) Preliminary data.

Appendix Table II. Young Haddock Catches at the 2nd and 3rd Years of Life (From the Autumn - Vinter Determination Carried Out by PINRO), (Specimens per Hour Travling).

Year Class	The Southern Barents Sea, Sub-area I	
	2nd Year of Life	3rd Year of Life
1946	-	1
1947	<1	1
1948	32	26
1949	1	11
1950	247	262
1951	19	12
1952	5	10
1953	40	25
1954	7	3
1955	3	2
1956	18	27
1957	9	14
1958	4	5
1959	14	33
1960	40	72
1961	50	34
1962	3	4
1963	9	12
1964	12	15
1965	<1	<1
1966	<1	<1
1967	13	8
1968	<1	3
1969	69	120
1970	38	31
1971	3	(3)
1972	(2)	(2)
1973	(2)	(2)

Appendix Table III. Calculated Catches of Cod and Haddock (in Thousands of Tons).

No. of Prediction Equation	Year	COD			Haddock Total
		Total	Sab-Area I Division IIb	Division IIa	
(1)	1974		800		
	1975		870		
	1976		900		
(3)	1974		1040		
	1975		1080		
	1976		1110		
Average of (1) $\&$ (3)	1974		920		
	1975		975	\because	
	1976	.	1050		
(4)	1974	1100			
	1975	1160			
	1976	1240	.		
(5)	1974			190	
	1975			190	
	1976			190	
(7)	1974				210
	1975			.	140
	1976				120

Ampondix Table IV. Prodictod Total Catchos of Cod and Haddock at the Existing Level of Fiohing Intcnoity and at the Recommended Level of Fishing (in Thousando of Tons).

	1974			1975			1976		
	Total	Fattening Areas	IIa	Total	Fattening Areas	IIa	Total	Fattening Areas	IIa
At the Existing Level of Pishing Intensity COD EADDOCK	$\begin{aligned} 1110 \\ 210 \end{aligned}$	920	190	$\begin{array}{r} 1165 \\ 140 \end{array}$	975	190	$\begin{array}{r} 1240 \\ 120 \end{array}$	1050	190
Total	1320			1305			1360		
At the Recommended Level of Fishing COD HADDOCK	$\begin{aligned} & 890 \\ & 210 \end{aligned}$	740	150	$\begin{aligned} & 925 \\ & 140 \end{aligned}$	775	150	990 120	840	150
Total	1100			1065			1110		

[^0]: 2) Provisional figures.
