- This paper not to be cited without prior reference to the Council ${ }^{\#}$)
- International Council for the

Exploration of the Sea
https://doi.org/10.17895/ices.pub. 9523
C.M. 1975/F:2

Demersal Fish (Northern) Committee

Charlottenlund, 3-7 February 1975

Digitalization sponsored by Thünen-Institut

1. Participants

Mr N. Daan	Netherlands
M B. Fontaine	France
$M r$ K. Hoydal	Denmark
$M r$ T. Jakobsen	Norway
Mr B.W. Jones (Chairman) U.K. (England)	
Dr H.H. Reinsch	Federal Republic of Germany
Mr J. Richards	U.K. (Scotland)
Dr S.A. Schopka	Iceland
$M r$ D. de G. Griffith,	ICES Statistician, also took part in the

2. Terms of Reference

The Working Group was asked "to assess potential catches for 1975 and if possible total allowable catches for 1976; and to consider the effect of introducing a minimum landing size".

3. Landings

A summary of landings by fishing areas since 1960 is given in Table 1 . In the last three years landings have shown only small fluctuations with the average total catch being just under 600000 tons. The increase since 1970 in landings from the West of Scotland is due to an increase in catches reported by France in 1973 and revised estimates of French catches in 1971 and 1972. Preliminary estimates of landings in 1974 by country and fishing area are given in Table 2 . Tables $3-7$ give similar data (taken from "Bulletin Statistique") for the main fishing areas for the period 1960-73.
4. Virtual Population Analysis

Since the last (1974) meeting of the Working Group (Doc. C.M.1974/F:2) additional data have become available of age compositions of catches for 1973 and in most cases provisional data for 1974 were provided. In some cases amendments have been made to the data used in previous assessments where additional data have become available. The assessments for the North Sea include catches in Division IIIa, and West of Scotland includes both VIa and VIb. No age composition data of the USSR catches in 1973 or 1974 were made available to the Working Group nor were preliminary estimates of the USSR landings for 1974.

[^0]In the North Sea in recent years USSR landings have constituted about 50% of the total catches of saithe, and the absence of USSR data for the two most recent years limits the possibilities for updating the assessments for this area. In addition the Working Group considered that USSR age composition data for the North Sea for earlier years were inconsistent with the weights of fish landed. The Virtual Population Analysis (VPA) for the North Sea included in this Report is an alternative assessment to that given in the previous Report in that new age compositions have been prepared for USSR landings up to 1972 and estimates of age compositions for USSR landings, based on combined age composition of landings by England, Netherlands and Scotland have been included for 1973 and 1974. The USSR age compositions for the earlier years have been adjusted on the assumption that the landed weights were correct but that the numbers at each age were overestimated. The age distributions in each year were adjusted by a factor:

Recorded weight of landings Calculated weight of landings

The calculated weight of landings was derived from the sum of products of numbers at age x mean weight at age.

For the other areas the earlier assessments were updated by the addition of data for 1973 and 1974. The estimates of fishing mortality rates from the VPA are given in Tables 8-12. In the North-East Arctic fishery mortality rates appear to have remained relatively steady ($\mathrm{F}=0.3-0.4$) although age groups 3 to 5 tend to suffer higher mortality rates than the older age groups.

The present alternative assessment for the North Sea (Table 9) gives lower values of fishing mortality in the recent years than in last year's analysis (about 0.2 - 0.3 compared with $0.4-0.5$), and there is no marked trend of increasing fishing mortality. However, estimates of stock sizes at 2 years old (Table l3) are of a similar order of magnitude to those in the earlier analysis. A possible interpretation of these results is that in the earlier years only part of the North Sea saithe stock was being exploited, and as the landings have been increasing the fishery has been expanding to exploit a greater proportion of the total stock. Alternatively, there may have been a real increase in recruitment to the stock in recent years.

At Iceland the updated assessment shows little change from the previous one and the fishery has remained stabilized over the last few years with a fishing mortality of about 0.5 - 0.6 on the fully exploited age groups.

At Faroe the fishing mortality estimates varied very little from 1964-1971 when the average value was $0.2-0.3$. From 1972 the increase in saithe landings from this area have been accompanied by an increase in the estimated fishing mortality to $0.5-0.6$.

The assessment for the West of Scotland is influenced in the last three years (1972-74) by the inclusion of age composition data for the Scottish fishery in the Clyde. This fishery takes a greater proportion of young (2 and 3 year old) fish than the fisheries further off the coast. The Clyde fishery has been increasing in importance in recent years. This fishery exploits the younger fish which have an inshore distribution and it seems likely that the survivors migrate into the offshore fishery as they grow. The fishing mortality rates on the older age groups have mainly been in the range $F=0.15-0.30$ but on the younger age groups the mortality rates are higher having been about 0.3 and probably increasing in the last two years with the growth of the Clyde fishery.
5. The State of the Stocks

Table 14 gives estimates of the present levels of fishing mortality and average age at first capture for each area. Also shown are the values of ages at first capture which would give maximum yield per recruit at current levels of fishing mortality, and the optimum levels of fishing mortality for the present ages at first capture. The indications are that in none of the stocks is the fishing cortality excessive. In many areas, however, the yield could be improved by reducing the amount of fishing on the younger age groups.
6. Estimates of Total Allowable Catches (T.A.C's)

None of the saithe stocks appears to be seriously overexploited at present. However, as catch quota regulations have been introduced, or are being considered, for most of the other major demersal fish resources in the North Atlantic, there are obvious advantages in introducing catch quotas for the saithe stocks to prevent surplus fishing effort being diverted onto saithe and increasing exploitation above the optimum level.

The Working Group considers that, as exploitation levels are generally close to those giving the maximum sustainable yield for the present selection pattern, the present aim should be to set T.A.C's to stabilize the saithe fisheries at the exploitation levels of recent years, and at the same time to prevent any increase in, or preferably to reduce, the mortality on the younger fish. In considering Total Allowable Catches (T.A.C's) the Group based its calculations on the following area groupings:

North-East Arctic (Sub-areas I and II)
North Sea, Kattegat and Skagerak (Sub-area IV, Division IIIa)
Iceland (Division. Va)

Faroe Islands (Division Vb)
West of Scotland and Rockall (Sub-area VI).
Landings of saithe from other ICES fishing areas are relatively insignificant.
Estimates of catches which are expected to be taken in 1975 and 1976, if fishing effort is maintained at its present level, have been prepared. Estimates of stock size and catch in numbers were calculated for 1974-76 from the 1973 catch data and estimates of fishing mortality. Catch in numbers at each age were converted into weight using mean weight-at-age data and summed to give an estimate of total catch for each year. Some difficulties were experienced in obtaining good agreement between declared landings in 1973 and landed weight calculated as the sum of products of numbers at each age times average weight at age. There are potential errors in weight-at-age data because of the different selection characteristics of the various national fisheries and even a weighted average of national weight-at-age data is subject to some error since the proportions of the total catch taken by the different countries are variable, and also because there is variation in the age structure of the stock. It is also possible that there are significant errors in the various national estimates of numbers of fish at each age in their landings. No information was available on the size of the year-classes which will be recruiting over the next few years and so average year-class strengths (year-classes 1958-68) of 2-yearold fish have been used in the calculations of predicted catches.

For the North Sea there is some doubt about the quality of some of the catch data and also no data for landings in 1973 and 1974 by the USSR (expected to be about 50% of the total landings) have been provided. As a result it has not been possible to prepare reliable catch predictions. The Working Group recommends that for the North Sea the TAC should be set at about the average of the catches in recent years, i.e. 200000 tons. For the other areas the predicted catches
for 1975 and 1976 are tabulated below together with recommendations for T.A.C"s.

For the West of Scotland the average year-class strength used in the calculation of predicted catches is probably too low as estimates for recent year-classes have been tending to increase with the expansion of the fishery, and allowance has been made for this in the recommended T.A.C's.

At Iceland the predicted catches are appreciably below catch levels in recent years (average catch 1969-74 = 113000 tons) and this is due to poorer recruitment in the last few years.

For Faroe there is less certainty about the recent levels of fishing mortality and accordingly a relatively conservative T. A. G^{1} s has been recommended until more reliable estimates are available.

In all areas the stock of saithe is liable to vary as a result of migration of fish between the different fishing regions. It is known that, at times at least, very substantial migrations take place but, as no adequate quantitative data are available and as variations in migration from year to year cannot be predicted, no allowance has been made for migration in the present calculations.
7. Effects of a Minimum Landing Size for Saithe

If minimum landing sizes were to be introduced for saithe in the NEAFC region this species would have to be included with those listed in NEAFC Recommendation (4), and it would also become subject to Recommendation (5) which limits the amount of by-catch of Recommendation (4) species which may be taken in industrial landings from Mixed Fisheries (Recommendation 2).

This subject was considered by the Working Group at its 1973 meeting (Doc. C.M. 1973/F:10) and the general conclusions reached then still stand. At present the rate of exploitation on small fish is not excessive and there are now no important industrial fisheries based on saithe. Saithe is, however, taken as a by-catch in some industrial fisheries for other species such as the industrial fisheries for Norway pout in the North Sea. The inclusion of saithe in Recommendation (4) might help to reduce the by catch in these fisheries not only of saithe but also of other protected species, if the by-catch of total protected species became increased above the proposed 25% maximum by including saithe as a protected species.

As has been mentioned in an earlier section some of the saithe fisheries would benefit from a reduction in fishing on the younger age groups. The development of any fisheries for very small saithe would have undesirable consequences for the established fisheries. The introduction of a suitable minimum landing size would help to prevent such fisheries developing and could help to reduce the fishing mortality on the youngest age groups in the established fisheries. Table 15 gives updated estimates of the percentages by weight in the various national landings of fish less than 30,35 and 40 cm in length. Lengths of saithe corresponding to various retention percentages for different mesh sizes are given in Table 16.

From a biological point of view little benefit can be expected from a minimum landing size less than 40 cm . For the majority of fisheries a minimum landing size up to 40 cm would involve very little immediate loss. The fisheries which would suffer the greatest losses would be in the Norwegian coastal fisheries in the North Sea (44% of catch $<40 \mathrm{~cm}$), and in fishing areas I + IIa ($18 \%<40 \mathrm{~cm}$). In the latter area it is the Norwegian fisheries in the southern part of the area (NEAFC Region 2, 80 mm minimum trawl cod end mesh size) that are affected to the greatest extent. The Scottish fisheries West of Scotland, especially the Clyde fishery, also have high proportions of fish below 40 cm (16% and 21% respectively).

Table 1. Summary of total landings of saithe from the main fishing areas (metric tons, whole weight). This table is based on biological data supplied to the Working Group and used in the assessments. These figures differ to some extent from the official "Bulletin Statistique" data, which are used for Tables 3-7.

Year	Fishing Area					Total
	NE Arctic	IV+IIIa	Va	Vb	VI	
1960	136006	31515	48.120	11845	8345	235835
1961	109821	35489	50826	9 552	6723	212451
1562	122841	24559	50514	10454	7159	215527
1963	148036	30300	48011	12693	6609	245649
1564	158110	58669	60257	20550	13556	351182
1965	184548	73274	60177	22071	18395	358465
1966	201860	55940	52003	24557	18534	392934
1967	151151	76759	75712	23 215	16034	382915
1968	107181	S8179	77549	19704	12787	315400
1969	140375	115564	115853	27536	17214	416546
1570	260404	179296	116601	29148	14538	595987
1571	244732	219731	134127	30867	19246	648703
1572	214386	219264	111301	46702	24003	615656
1973	210833	191200	110888	56606	35834	605361
$1974{ }^{\text {x }}$	192526	201874	90077	44913	29180	558570

x) Preliminary estimate.

Table 2. Preliminary Estimates of Saithe Landings in 1974 (Metric tons, whole weight)

	I	IIa	IIb	IIIa	IV	Va	Vb	VI	VII	Total
Belgium					26	2008		177	44	2255
Denmark				5124	3149					8273
Faroe Islands					359	2227	3776	6		6368
France		20	114		25566		20924	16239	153	63016
German Dem.Rep. ${ }^{\text {\% }}$)		(12000)								12000
Germany, Fed.Rep.	267	35269	(732)	9	19875	17895	5919	19		79985
Iceland						56000				56000
Netherlands					12839			211	47	13097
Norway	12513	123580	10	1100	13150		1606			151959
Poland	199	2322			22203		1925	125	1	26775
$\text { Spain }{ }^{\#)}$										
$\begin{gathered} \text { UK (England \& } \\ \text { Wales) } \end{gathered}$	849	2068	30		4148	8839	3821	1354		21109
UK (N. Ireland) ${ }^{\text {\# }}$)										
UK (Scotland	57	96			14326	3108	6942	11049	10	35588
Sub-Total	13885	175355	886	6233	115641	90077	44913	29180	255	476425
USSR ${ }^{\text {T }}$		(2 400)			(80000)					82400
- total		192526		6233	195641	90077	44913	29180	255	558825

${ }^{\text {F) }}$ No data available for 1974. German Democratic Republic catches in the North-East Arctic assumed to be 12000 tons. USSR catches assumed to be similar to 1973.
Estimated catches in brackets.

Table 3. Landings of Saithe from the liortn-East Arctic (I + IIa + IIb), by country, for the years 1960-1573. Metric tons, whole weignt. (Data from Bulletin Statistique).

	1560	1561	1562	1963	1564	1565	1566	1567	1568	1965	1570	1571	1572	1573
Belgium	14	18	4	-	-	-	-	-	-	-	-	-	-	-
Faroe Is.	23	61	2	-	-	-	-	-	-	20	1057	215	105	7
France	1700	3625	544	1110	1525	i 618	2587	S 472	-	153	-	14536	14519	11320
German Dem. Rep. ${ }^{\text {\# }}$			-	-	-	-	813	304	70	$\bigcirc 744$	25362	16840	7474	12015
Germany, Fed. Rep.	25548	15757	12651	8108	is 420	12387	11265	11822	4753	4355	23466	22 204	24558	30331
Netherlands				-	186	181	41	48	-	23	-	-	-	-
Norway	96050	77875	101855	135257	184: 700	165531	175037	150860	56641	115140	151759	125455	143775	148789
Poland		-	-	-	-	-	-	-	-	-	-	6017	1111	23
Spain	-	-	-	-	-	-	-	-	-	-	-	13057	13125	603
$\begin{aligned} & \text { UK (England and } \\ & \text { Wales) } \end{aligned}$	9780	4595	4655	4112	$65 \% 1$	6741	13078	8375	8780	13585	15465	10361	8223	6503
UK (Scotland)	-	20	-	-	-	5	-	-	2	-	221	106	125	2.4
USSR	-	-	912	-	84.	137	563	4.41	-	-	43550	35357	1278	2411
Total	133515	105951	120707	148627	157506	185600	203788	181326	110246	140033	264524	241272	214334	212263

[^1]Table 4. Landings of Saitine from the North Sea, Kattegat and Skagerak (IV + IIIa), by country, for the years 1560-1973. Metric tons, whole weight. (Data from Bulletin Statistique).

	1560	1561	1962	1563	1564	1565	1566	1967	1568	1569	1570	1571	1572	1573
Belgium	108	51	154	132	140	126	161	74	94	135	36	44	55	55
Denmark	2412	1589	2679	3559	3755	4534	4310	5495	7756	5566	17555	14200	19323	10195
Faroe Is.	-	-	-	-	-	-	-	-	-	2	-	18	182	552
France	-	12728	-	-	26082	23678	19282	13559	34139	24631	38873	37442	26060	30555
German Dem. Rep. ${ }^{\text {F }}$	-	-	-	-	-	-	4085	-	-	5984	3554	6398	10674	7668
Germany, Fed. Rep	8381	3138	2560	2773	3351	7736	7462	7036	6066	7242	6022	4217	8665	12003
Iceland	-	-	-	-	-	-	-	-	5	2	18	57	4	24
Netherlands	3637	2527	2656	4455	4552	5000	8177	13355	16482	18214	20460	18136	12532	9232
Norway	$\checkmark 007$	5336	8358	今 582'	于 602	12330	14183	10842	8683	8155	11201	15184	23256	13548
Poland	12	28	112	3	-	-	655	104	43	-	-	4	186	7512
Sweden	2135	2262	2670	3206	3356	6574	3643	631.8	8212	4322	1521	4523	3855	1876
$\begin{aligned} & \text { UK (England } \\ & \text { and Wales) } \end{aligned}$	4215	4153	3407	3821	4143	5573	6172	5408	3525	3815	2664	3162	3744	3378
UK (Scotland)	1589	1033	1520	2207	3059	3159	3254	3911	6001	3838	5293	6106	10757	10834
USSR		-	-	-	-	10	22388	11527	11405	32830	68062	110200	99883	83333
Total	31500	33325	24414	30178	58159	73160	93772	77669	103171	114744	176139	219731	215264	151200

*) German Democratic Republic catch data taken from "Atlantic Fish Catches of the Socialist Countries, 1961-72" (Moscow, 1974).

Table 5. Landings of Saithe from Iceland (Va), by country
for the years 1960-1973. Metric tons, whole weight. (Data from Bulletin Statistique).

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973
Delgium	2771	3354	2505	2830	2144	1999	2282	2739	3155	3995	4153	3490	2250	2131
Rarco Islancs	514	893	590	491	45	285	100	39	101	119	2386	2046	857	1467
France	-	105	409	-	-	$\ldots{ }^{1}$	500	5803	6701	8122	2046	3951	-	-
German Dew. Rep.	\cdots	-	-	-	-	-	154	202	634	357	3527	2637	3471	-
Germany, Fed. Sep:	3412	$22 \quad 223$	24015	17622	21130	16708	17204	$24 \quad 037$	17327	34732	27806	40628	30918	38565
Iceland	12703	13675	13469	14758	21665	24866	21022	29021	38027	53988	63882	60080	59945	56342
Tetherlands	-	. 48	37	401	309	409	25	-	-	52	-	-	-	-
ETorway	59	-	-	11	4	-	-	-	-	-	-	-	-	-
Foland	-	-	-	-	-	-	-	-	-	-	-	113	150	-
Spain	-	-	-	-	-	-	-	-	-	-	-	59	13	-
$\begin{gathered} \text { TK (Tngland } \dot{\text { (ales }} \\ \text { Ma } \end{gathered}$	3454	9010	8767	11262	13899	14472	9857	13694	11561	13665	10634	21767	13152	11874
UR. (Scotiand)	120	431	563	1074	1221	1365	920	901	982	1605	2402	1743	545	509
USSE	-	-	-	-	-	3	258	35	90	65	-	5	-	-
Cotal	10035	49795	$50 \quad 385$	48449	$60 \quad 417$	60107	52322	76471	78 578	116700	116836	136519	111301	110888

1)

Inc. in Vb_{1}
${ }^{\text {F }}$) German Democratic Republic catch data taken from "Atlantic Fish Catches of the Socialist Countries,

Table 6. Landings of Saithe from Faroe Islands (Vb), by country, for the years 1960-1973. Metric tons whole weight. (Data from Bulletin Statistique).

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973
Parse Islands	585	929	2494	2431	1338	1000	1167	2242	2629	4835	2694	5653	5646	2973
France	-	-	620	2207	6458	(565^{1})	9967	5555	424	7899	11036	10621	28346	22241
German Dem. Rep. ${ }^{\text {² }}$	-••	-	-	-	-	-	66	193	-	-	-	-	-	-
Cermany, Fed. Rep.	2533	2219	985	1415	6459	3557	4963	5797	7433	4676	2211	2254	3440	9329
Iethorlands	-	-	-	-	-	-	-	-	-	-	-	63	-	-
Torvay	-	-	-	-	+	-	2498	-	-	378	1495	1839	470	355
Poiand	-	-	-	-	-	-	-	-	-	-	-	-	-	4050
	6437	4230	3724	3177	4 32s	5265	3321	3536	5123	4303	3056	3305	2453	7527
TIT (5cotland)	2140	2214	2631	3463	3309	3794	3581	3996	4778	5346	8608	7198	6225	10131
Toial	111845	9592	$10 \quad 454$	12693	21893	22181	25563	21319	20387	27437	29110	30933	46580	56606

1) Va included.
F) German Democratic Republic catch data from "Atlantic Fish Catches of the Socialist Countries, 1961-72" (Moscow, 1974).

Table 7. Landings of Saithe from West of Scotland and Rockall (VIa + VIb), by country, for the years 1960-1973. Zietric tons whole weight. (Data from Bulletin Statistique).

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1959	1970	1971	1972	1973
Seloiun	94	6	15	61	10	-	168	31	27	40	34	-29	125	191
Dermark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Faroe Islands	-	-	-	-	-	-	-	-	-	-	-	-	-	4
Prance	41	33	434	415	2780	5059	7550	7092	3841	8109	5140	3300	6258	20972
Gcrmea Deu. Repo ${ }^{\text {T) }}$	-	-	-	-	-	-	25	-	283	-	-	-	-	-
Ccmany, Yed. Rep.	122	23	155	15	235	119	62	368	368	1988	545	1068	350	52
Ieciand	-	-	-	-	-	-	-	-	-	-	1	1	-	-
Setherlands	-	-	-	-	$+$	12	+	54	59	14	7	32	638	67
Momay	-	-	-	-	-	-	-	-	-	-	-	-	-	2
Poland	-	-	-	-	-	-	-	-	1	-	-	2	-	394
Spain	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Syeden	-	-	-	-	-	-	-	-	-	-	-	-	-	-
UK (Ongland \& Vales)	$6: 56$	4484	4359	4072	7455	9012	7693	5796	5704	4015	3615	1965	2268	2138
UK (H. Ireland)	-	43	9	20	22	36	31	17	21	13	19	24	6	14
TKK (Scotland)	1656	2130	2187	2026	3194	4157	3005	2676	2433	3035	5175	4620	6706	11330
USE:	-	-	-	-	-	-	-	-	-	-	-	105	112	670
Sotal	8349	6724	7159	16609	13596	18395	18534	16034	12787	17214	14536	11146	16473	35834

*) German Democratic Republic catch data from "Atlantic Fish Catches of the Socialist Countries, 1961-72" (Moscow, 1974).

Table 8. Saithe. North-East Arctic. (I + IIa + IIb $)$.
Estimates of fishing mortality from Virtual Population Analysis ($M=0.2$)

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1															
2	. 07	. 02	. 00	. 03	. 06	. 17	. 03	. 04	. 02	. 01	. 07	. 11	. 03	. 10	. 10
3	. 16	. 25	. 26	. 18	. 11	. 15	.19	. 17	. 20	. 34	. 18	. 36	. 54	. 29	. 40
4	. 19	. 20	. 25	. 33	. 41	. 08	. 34	. 33	. 15	. 14	. 51	. 42	. 40	. 40	. 40
5	. 50	. 27	. 14	. 20	. 24	. 32	.31	. 39	. 10	. 20	. 24	. 40	. 35	. 34	. 40
6	. 26	. 25	. 29	. 22	. 13	. 30	. 25	. 15	. 15	. 13	. 31	. 23	. 29	. 32	.30
7	. 26	. 10	. 25	. 22	. 25	. 20	. 22	. 17	. 04	. 12	. 20	. 28	. 24	. 31	. 30
8	. 20	. 08	. 10	. 17	. 23	. 24	. 14	. 21	. 08	. 07	. 29	. 15	. 17	. 24	. 30
9	. 12	. 06	. 10	. 15	. 30	. 38	.16	. 21	. 09	. 09	. 23	. 24	. 16	. 19	. 30
10	. 15	. 05	. 07	. 10	. 26	. 28	. 23	. 37	. 13	. 09	. 30	. 26	. 20	. 31	. 30
11	. 18	. 11	. 08	. 09	. 21	. 34	.31	. 32	.17	. 06	. 21	. 41	. 29	. 20	. 30
12	.16	.13	. 11	. 08	. 23	. 17	.33	. 87	. 14	. 08	. 33	. 35	. 19	. 28	. 30
13	. 39	. 06	. 22	. 17	. 13	. 19	. 27	. 63	. 48	. 02	. 27	. 21	. 17	. 27	. 30
$14=\mathrm{F}_{\mathrm{I}}$. 20	. 20	. 20	. 20	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30

Table 9. Saithe North Sea (IV + IIIa)
Estimates of Fishing Mortality from Virtual Population Analysis ($M=0.2$)

Table 10. Iceland (Va) Saithe
Estimates of Fishing Mortality from Virtual Population Analysis ($M=0.2$)

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1															
2	. 01	. 02	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
3	. 05	. 15	. 06	. 08	. 06	. 02	. 01	. 02	. 02	. 02	. 01	. 01	. 02	. 00	. 02
4	. 15	. 20	. 27	. 11	. 23	. 13	. 03	. 07	. 05	. 10	. 09	. 07	. 13	. 10	. 10
5	. 29	. 34	. 31	. 21	. 25	. 23	. 13	. 11	. 09	. 16	. 17	. 22	. 23	. 27	. 20
6	. 29	. 33	. 47	. 40	. 31	. 24	. 18	. 25	. 18	. 25	. 25	. 34	. 31	. 41	. 30
7	. 24	. 20	. 29	. 45	. 28	. 29	. 22	. 35	. 29	. 41	. 39	. 47	. 38	. 47	. 40
8	. 25	. 13	. 21	. 38	. 24	. 24	. 26	. 33	. 37	. 45	. 51	. 64	. 46	. 44	. 40
9	. 28	.13	. 17	. 26	. 18	. 23	. 22	. 31	. 28	. 41	. 54	. 86	. 62	. 43	. 40
10	. 22	. 22	. 18	. 24	.17	. 19	. 23	. 30	. 33	. 34	. 51	. 66	. 83	. 57	. 40
11	. 18	. 26	. 19	. 29	. 14	. 18	. 23	. 26	. 33	. 15	. 39	. 91	. 58	. 61	. 50
12	. 29	. 54	. 26	. 42	. 16	. 16	. 17	. 19	. 25	. 28	. 41	1.10	1.14	. 96	. 50
13	. 32	. 29	. 24	. 39	. 22	. 21	. 29	. 43	. 32	. 12	. 39	. 41	. 84	2.00	. 60
$14^{\prime}=\mathrm{F}_{\mathrm{I}}$. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 40	. 50	. 60	. 60	. 60

Table 11. Faroe Vb Saithe.
Estimates of fishing mortality from Virtual Population Analysis ($M=0.2$).

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1															
2	. 03	. 01	. 00	. 01	.00	. 01	.00	. 01	. 01	. 00	. 02	. 02	. 01	. 03	. 01
3	.19	. 03	. 05	. 04	. 06	. 06	. 03	. 03	. 04	. 04	. 07	. 10	. 10	. 11	. 10
4	. 07	. 06	.10	. 04	. 15	. 09	. 12	-. 05	. 12	.19	. 32	. 20	. 10	. 29	. 20
5	. 12	. 11	.13	. 08	. 25	.19	.19	. 12	. 12	. 24	. 21	. 48	. 29	. 61	. 40
6	.16	. 14	.16	. 12	. 21	.26	.29	.15	. 16	. 22	. 24	. 19	. 57	. 66	. 60
7	. 15	. 11	.14	.19	. 25	. 27	. 35	. 27	. 17	. 24	. 21	.19	. 62	. 68	. 60
8	. 15	. 11	. 09	.14	. 30	. 28	. 32	. 29	. 29	. 29	. 24	. 15	. 62	. 55	. 60
9	.16	. 11	. 16	.17	.18	. 37	.33	. 25	.31	. 45	. 25	.15	.69	. 51	. 60
10	.16	. 11	. 15	. 29	. 21	. 31	.46	. 30	. 29	. 53	. 35	. 18	.76	. 56	. 60
11	. 20	.13	.14	. 18	. 30	. 35	. 42	. 33	. 27	. 45	.37	. 22	. 85	. 45	. 60
12	.18	. 29	. 11	. 55	. 24	. 71	. 38	. 29	. 42	. 56	. 34	. 39	. 64	. 61	. 60
13	1.73	. 05	. 22	. 36	. 29	. 44	. 80	. 21	. 31	. 50	. 55	. 13	. 44	. 20	. 60
$14=\mathrm{F}_{\mathrm{I}}$. 20	. 20	. 20	. 20	. 30	. 30	. 30	. 30	. 30	. 40	. 40	. 40	. 60	. 60	. 60

Table 12. Saithe: West of Scotland (VI).
Estimates of fishing mortality from Virtual Population Analysis ($M=0.2$)

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1															
2	. 04	. 02	. 03	. 01	. 00	. 01	. 00	. 02	. 00	. 01	. 00	. 02	. 23	. 11	. 40
3	. 27	.14	. 17	. 12	. 22	. 16	. 19	. 15	. 13	. 15	. 15	. 14	. 29	. 84	. 60
4	. 49	. 39	. 36	. 19	. 28	. 57	. 36	. 30	. 26	. 39	. 26	. 35	. 29	1.11	. 50
5	. 62	. 34	. 38	.16	. 29	. 35	. 47	. 23	. 20	. 27	. 26	. 34	. 19	. 51	. 50
6	. 36	. 44	. 31	. 26	. 25	. 36	. 21	. 18	. 11	. 12	. 16	. 24	. 26.	.37	. 40
7	. 33	.36	. 44	.21	. 30	. 33	. 15	. 22	. 14	. 14	. 08	. 18	. 22	. 46	.30
8	. 23	. 32	. 29	. 51	.18	.29	. 07	. 15	. 09	. 14	. 06	. 15	. 20	. 27	. 30
9	. 15	. 42	. 25	. 26	.31	. 49	. 12	. 11	. 06	. 07	. 08	. 13	. 16	. 18	. 30
10	. 05	. 21	. 52	. 05	. 32	. 41	. 15	. 19	. 07	. 06	. 07	. 12	. 14	. 14	. 30
11	. 09	. 46	. 06	.33	.36	. 85	. 23	. 25	. 11	. 08	. 07	. 15	. 32	. 18	. 30
12	. 02	. 65	. 48	. 07	. 15	. 14	. 28	.33	. 19	. 11	. 11	. 10	. 27	. 30	. 30
13	. 19	. 17	. 90	. 19	. 09	. 41	. 16	. 61	. 19	. 35	. 23	. 24	. 22	. 24	.30
$14=F_{I}$. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30	. 30

Table 13. Estimates from Virtual Population Analysis of Population Size (millions) at 2 years old of each year-class. Estimates of year-class size of the more recent year-classes are less reliable than those of earlier year-classes.

Year-class Area	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
North-East Arctic	115	225	349	121	383	210	263	193	366	368	406	233	405	180	212
North Sea	37	36	50	84	183	137	181	137	308	368	324	163	178	170	72
Iceland	41	38	103	67	114	87	85	74	112	70	51	32	60	90	123
Faroe Islands	10	14	24	17	25	22	25	21	40	30	38	45	32	56	5
West of Scotland	8	8	18	14	31	22	19	27	19	28	14	26	29	42	28

Table 14. Estimates of present Fishing Mortality rates and mean agesat first capture, with corresponding values for maximum yield per recruit.

Area	Estimates present Fishing Mortality	Present Mean Age at First Capture (years)	Optimum Mean Age at First (years) Capture for Present F	Optimum F at Present Age at First Capture
North-East Arctic	$0.3-0.4$	3.0	5.5	0.3
North Sea	$0.3-0.4$	5.0	5	0.3
Iceland	$0.5-0.6$	5.0	5	0.5
Faroe Islands	$0.4-0.6$	4.5	0.4	
West of Scotland	$0.3-0.5$	3.0	5	0.4

Table 15. Percentages by Weight of Saithe less than 30, 35 and 40 cm in Length in the Landings from the Different Areas ${ }^{\text {T }}$.

Country	Length	Percentage by Weight					
		I+II	IV	Va	Vb		VI
England	30	0	0	0	0		0
	35	0	0.1	0	0		0.1
	40	0.2	2.4	>0.1	0.1		1.4
Faroe	40			0			
Germany, F.R.	30	0	0	0	0		
	35	0	0	0	0		
	40	>0.1	0.3	0	0		
Iceland	40				0		
Netherlands	30		0				
	35		0.1				
	40		1.0				
Norway	30	0.9	1.3				
	35	5.8	8.8				
	40	18.1	43.5				
USSR	30	<0.1	0				
	35	0.6	0.2				
	40	6.6	2.8			Clyde	$\begin{aligned} & \text { North } \\ & \text { Coast } \end{aligned}$
Scotland	30		0		0	0.1	0.1
	35		0.2		>0.1	7.9	2.6
	40		4.3		0.4	20.9	16.1

*) Averaged for 1971-73, except USSR and Netherlands (1970-72) and Scotland (1972-73).

Table 16. Lengths of Saithe Corresponding to Different Rates of Retention. Selection Factor: 3.8.

	Mesh Size (mm)		
\% Retention	80	130	145
5	18.4	37.4	43.1
25	26.2	45.2	50.9
50	30.4	49.4	55.1
75	35.0	54.0	59.7
95	41.2	60.2	65.9

This paper not to be cited without prior referencesiollot. to the author ${ }^{2 /}$

International Council for the
Explaration of the Sea
C.M.1975/F: II

Demersal Fish
(Northern) Committee
The Arcto-Norwegian Haddock (Melanogrammus aeglefinus (Linne) Fishery and their Stock Status
Sonina, M.A.

Abstract
The haddock fishery in the Barents Sea
in 1950-1974, their abundance and stock (biomass) are considered in the paper. The relationship between the fishery and stock and growth rate of the species is analysed. The cause of the abundance reduction of immature fish population in 1974 is revealed. The forecast of the stock status and possible optimum tield of haddock in 1975 and 1976 is given due to the assessment of the year classes abundance:

$$
x^{x} x
$$

Immature haddock mainly inhabit in the southem Barents Sea and Bear Island - Spitsbergen area. The species, reached

[^2]the maturity,migrate to the spawning grounds into the Norwegian Sea: As usually,after spawning mature haddock migrate back to the southern Barents Sea in small numbers (Sonina,1969, 1973).

Haddock start to mature since the age of 3-4 years at the length of $37-42 \mathrm{~cm}$ and on the whole they become matured at the age of $5-6$ complete years with mean length of 47 cm : I'hus, haddock inhabit in the Barents Sea mainly at the age up to 7 years and constitute the bulk of the catches at the age of 3-5 complete years (Konstantinov and Mukhin,1965; Sonina, 1967). Mean length of haddock in the southern Barents. Sea in 1950-1974 was equal to $40^{\circ} 7 \mathrm{~cm}$ and their average weight was 795 (Table 1): -

Haddock at the age of 5-10 years with the length of $50-70 \mathrm{~cm}$ dominated in the catches taken in the Norwegian Sea:

In 1950-1966 an annual mean yield of baddock taken by all countries and USSR in the southern Barents Sea constituted $102^{\circ} \cdot 2$ thou.t. $46^{\circ} 6$ thou.t. was taken by USSR: Annual mean Jield of haddock in the Norwegian Sea was $35^{\circ} 3$ thou.t. and in the Bear Island-Spitsbergen area - $4^{\circ} 3$ thou.t. (Nizovtsev, Ponomarenko,Sonina,Shestova,1970). The Soviet Union chiefly undertakes the haddock fishery in the southern Barents Sea:

The investigations showed that the existing fishery does not mainly effect the stock and abundance of haddock, because the commercial mortality is greatly overlapped by
natural fluctuations of the Jeat classes abundance. The haddock stock in the Barents Sea depends mainly upon the abundance of successive year classes;growth and maturity rates (Sonina, 1969,1970a):

The abundance fluctuations of the Arcto-Norwegian haddock Jear classes are fairly great: for fry - 250 times.

The abundance of the haddock year classes depends mainly upon the survival conditions of fry (Sonina, 1969; Ponomarenko,1973;Hylen and Dragesund,1973) and at present time it does not depend upon the parents stock value, sizeagm composition and sex composition of spawners, ratio between recruits and second spawness in population and extruded egss (Sonina, 1969, 1970a, 1972, 1973).

The efficiency of haddock fishery in the southern Barents Sea depends upon the stock state, distributien and bohaviour of fish, chiefly (Sonina, 1969, 1970b): The coefficient of correlation between the Fiela taken by the Soviet steam trawlers and their catch (stock index) per one hour trawling taken in the southern Barents Sea in 1950-1953 constituted $+0^{\bullet} 89 \pm 0^{\bullet} 05$. Theigreatest catches of haddock for the period analysed were taken in those Jears (1954, 1955, 1956, 1957,1961, $1962,1965,1966,1967,1968,1972,1973$), when the stock-mas fairly great. In 1952-1968 in most cases the abundance and stock of commercial stock of haddock were on the average and good levels, because in these years the abundant jear classes dominated in stock.

In 1950-1964 one stroig;six rich,four average and four poor year classes were registered (Table 2). The year classes with the greatest abundance we refer to the "strong" ones. The next symbols for year classes arb: "rich","average" and "poor". In 1969-1971 the abundance and biomass of the commercial baddock stock in the Barents Sea sharply decreased because of scanty of the 1965, 1966 and 1968 year classes: In these jears the baddock gield in the Barents Sea considerably reduced. However, in 1972 and 1973 the abundance and biomass considerably increased because the haddock of the abundant 1969 year class reached the commercial size and their yield was record. In 1972 and 1973 the Soviet vessels took 176 and. 186 thou.t. of haddock, that exceeded the maximum yield taken in 1956, when the species of the abundant 1950 year class at the age of 6 years constituted the bulk of catches. In 1973 the haddock abundance in the Barents Sea was on considerably high level. 546 specimens were registered in the mean weighted catch per one hour trawling, that exceeded the indexes of relative abundance of population in all the previous years since 1927 (Sonina, 1969). The 1969 year class of haddock was greater than the 1950° one, which up to the present time was considered to be the most abundant for the last 35 years. So,if the species of the 1950 year class at the age of 3 complete years constituted $137^{\circ} 7$ specimens in the mean weighted catch per one hour trawling and at the age of 4 years - $193^{\circ} 7$ specimens, then the 1969

Jear class haddock at the adequate age constituted $252^{\circ} 5$ and $300^{\circ} 2$ specimens, respectively (Table 3). The average catch per one hour trawling taken by the Soviet steam trawlers in 1972 and 1973 was twice higher than in 1953 and $1954-2^{\circ} 3$ and $3^{\circ} 2$ ggainst $1^{\circ} 1$ and $1^{\circ} 6$ centners.

Compared to the previous year in 1974 the abundance of population considerably decreased. So, if in 1973 in May and June in the coastal areas 566 specimens were registered in the mean catch per one hour trawling, then in 1974.-. 193 specimens.

In 1973 the species of the abundant 1969 and rich 1970 year classes of $31-50 \mathrm{~cm}$ long dominated in population. The species of the 1969 jear class constituted $68^{\circ} \%$ in the catches, and those of 1970-20.7\%.

In 1974 the catches of haddock in the southern Barents Sea mainly consisted of the 1969-1971 year classes species of 31-55 cm long. The species of the abundant 1969 and rich 1970 jear classes constituted the same percentage : $39^{\circ} 5$ and 39.9\%. The haddock of the 1969 year class was registered in greater quantities than those of 1970 and 1971 year classes'. Consequently;in 1974 the abundance-of species of the strong 1969 year class considerably decreased,that caused the abundance reduction of immature fish population. The investigations showed that this took place.mainly in consequence of early sex maturity of the 1969 year ciass species and transport of mature fish into the spawning stock.

It is known that sex maturity of fish depends upon their growth rate. Faster the haddock grow, at earlier age "they become to be matured and earlier migrate from the Barents Sea (Sonina, 1967,1969):

In the fifties-sixties the slowest growth was observed for the 1950 and 1951 year classes haddock (Table 4) :In this connection the species of these year classes as a whole reached the maturity at the age of 6-7 Jears and inhabited in the Barents Sea up to 8-9 years old. Comparatively low growth rate was typical for the species of the rich 1959 1961 year classes and they also matured later than those of fast growing jear classes and occurred in the Barents Sea up to 7-8 years old. On contrary, the haddock of the 1956,1957,1963-1969 year classes had the high growth rate: The species of the $1956,1957,1963$ and 1964 year classes reached their maturity at the age of $5-6$ years: Much earlier the haddock of the 1967 year class matured. The males of this year class at the age of 4 Jears constituted among the recruits on spawning grounds over 50\%, and feriales - about 25% in samples collected (Sonina, 1972):

The 1969 year class species were characterized with approximately the same growth rate as the haddock of the 1967 year class and they reached their maturity also early: They started to spawn at the age of 3 Jears, a lot of fish matured at the age of 4 years and, on the whole, they became matured at the age of 5 complete years:

The studying of the spawning population of haddock showed that in 1973 the species of the 1969. year class at the age of 4 years constituted among the recruits $85^{\circ} 5 \%$. Besides, the haddock of this year class at the age of 4 years spawned for the second time ($4^{\circ} 1 \%$). In 1974 the haddock of. the 1969 year class also dominated among the recruits po... pulation $\left(94^{\circ} 5 \%\right)$, and among the second spawners the species of this year class constituted $32^{\circ} 7 \%$:

If in 1973 the "remainder" in the spawning population ($59^{\circ} 8 \%$) exceeded the recruitment ($40^{\circ} 2 \%$), then in 1974 the recruitment ($77^{\circ} 9 \%$) was considerably greater than the "remainder" ($22 \cdot 1 \%$); that was the evidence of significant recruitment of the spaming haddock population with the species of the most abundant 1969-year class,which the recruits population was mainly consisted of ($94^{\circ} 5 \%$). In spring 1974 during the ichtivoplankton survey an extraudinary great number of extruded eegs of hadock was observed, that was also the evidence of fairly great abundance of the spawning fish, and it was considerably higher than that of 1959-1973. Thus, the main mass of fish of the 1969 year class reached their maturity at the age of 5 years and migrated away from the Barents Sea: In 1975 the species of the rich 1970 and average 1971 and 1972 year classes constituted the bulk of haddock catches in the Barents sea. In 1976 the population will recruit with the species of the rich 1973 "year class, Thus, in 1975 and 1976 the haddock stocks will be on the average level and in interests of rational exploration the annual field in the Barents Sea
in these years can constitute 100-120 thoust.

CONCLUSIONS

\therefore 1.In 1950-1974 the abundance and stock (biomass) of haddock in the Barents Sea were on the comparatively high level. The population was rather regularly recruited with the abuncont year classes: From 1950 to 1973 two strong, eight rich,seven average and seven poor year classes were registered:
2. Commercial stock of haddock depends upon the abundance of successive year classes, recruited'the commercial stock and upon the growith rate of species: The higher the growth rate, earlier haddock reach the sex maturity and migrate from the Barents Sea:
3.A close relationship exists between the haddock stocks and their annual field ($r=+0^{\circ} 89 \pm 0^{\circ} 05$).
4.The 1969 year class was more abundant than the 1950 one, that was considered up to present to be the most abu-ndant-for the last 35 years. In consequence of this in 1972 and 1973 the abundance of the commercial stock of haddock in the Barents Sea was the highest for the period analysed. However, the 1969 year class haddock had the bigh rate of growth and on the whole reached their maturity at an age of 5 years and transported into the spawning stock. Considerable abundance. reduction of the immature fish in the Barents Sea in 1974 was explained mainly by this fact:

BEFERENCES

Hylen, A. and O.Dragesund. 1973. Becruitment of young ArctoNorwegian cod and haddock in relation to parent stock size.Rapp, et proc.verboreun,Cons.int.explor.mer., vol. 164.

Konstantinov, K: G.and A.I.Mukhin. 1965. Porecasting the production of the trawl fishery in the Barents Sea.Rybnoye khozyaistro,No:2.
Ponomarenko, I:Ya.1973. The influence of food and temperature conditions on survival of "bottom" young cod in the Barents Sea. Trudy PINRO, VYp:34,Murmansk.

Sonina, M.A: 1967\% Dynamics of the size-age composition of haddock stock and their migration in the southern Barents Sea. Trudy Murmanskogo morskogo biologicheskogo - instituta, Vyp:15(19):

Sonina, M. A: : 1969. Haddock migrations in the Barents Sea and factors determining them. Trudy PINRO, vyp.26.

Sonina, M.A: 1970a: Factors Determining Haddock Stocks in the Barents Sea,ICES,COM:1970/F:22:
Sonina,M.A: 1970b: Methods of forecasting the autumn migrations of haddock in the southern Barents Sea.Materialy rybokhozyaistvennykh issledovanil Severnogo basseina, VypixVI (Part 1) $\%$

Somina,MoA: 1972. Male and Female Ratio in Arcto-Norwegian Haddock - Melanogramus aeglefinus (Linne). ICES.Demersal. Fish (Nortinern)Comittee.F:17.

Sonina, $1:$ A:1973. Fecundity of the Arcto-Norwegian haddock in relation with dynamics of a population. Trudy PINRO, vyp.33.

Nizovtsev,G.P., Ponomarenko, V.P., Sonina, M.A., Shestova, I.M. 1970. Status of stocks of demersal fishes in the Barents Sea.Sb."Sovremennoye sostoyaniye biologicheskoi productivnosti i syryevgich biologicheskikh resursov Mirovogo oceana i perspectivy ikh ispolzovaniya".Kaliningradskoye knizhnoye izdatelstro.

The indexes of abundance and stock of the Arcto-
Norwegian haddock in the Barents Sea

Year	Mean le of one cimen,		ber s in ghte 1 b	Mean per hour ing,
1950	33,0	625	I28	0,8
I95I	33,8	480	I28	0,6
I952	30,2	380	264	I, 0
1953	34,8	500	223	I,I
I954	37,5	630	255	I, 6
1955	40,I	700	329	2,3
I956	44,8	950	315	3,0
I957	43,8	860	232	2,0
I958	42,4	880	102	0,9
I959	37,0	700	I29	0,9
1960	38,I	700	187	I, 3
I96I	42,9	950	I47	I, 4
I962	42,8	930	I6I	I, 5
I963	40,9	760	I32	I, 0
1964	38,3	590	237	I, 4
I965	4I, 6	765	236	I,7
I966	42,4	850	I77	I,5
1957	46,6	IIIO	I62	I, 8
I968	46,2	980	I49	I,5
1969	49,8	I350	4 I	0,6
1970	4I,5	840	75	0.7
I97I	46,3	II35	62	0,7
1972	40,6	700	330	2,3
1973	38,7	590	546	3,2
I974	43,2	925	I60.	I,5
$\begin{aligned} & \text { I950- } \\ & \text { I974 } \end{aligned}$	40.7	795	I96	I, 5

The abundance of haddock year classes due to the data of young determination and fishery in 1950-1973

a)

Number of the 1950-1970 year classes haddock at different age in the average-weighted catch per one hour trawling (in specimens)

Year class

I950 I95I $27,8 \quad I 3,9 \quad 29,4 \quad 22,6 \quad I 3,6 \quad 4,4 \quad I, 3 \quad 0,8 \quad 0,3$ I952: $4,3 \mathrm{I} 3,4 \mathrm{IO}, 3 \mathrm{I} 2,7 \quad 4,2 \quad 0,7 \quad 0,6 \quad 0, I \quad 0, I$ I953 I7,9 46,7 96,0 39,6 II,9 2,3 I,2 $0,9 \cdots 0,2$ 1954 IO,I I8,5 $9,5 \quad 5, I \quad I, 5,0,5 \quad 0,50, I \quad-$ $1955 \quad 3,4^{\circ} 6,7 \quad 8,8 \quad 7,9 \quad I, 9 \quad I, 0.0,3 \quad 0, I \cdots-$
I956 $2 I, I \quad 70,8 \quad 84,2 \quad 39,5 \quad I 7,5 \quad 5,0 \quad I, 2 \quad 0,6 \vdots \quad-$ 1957 26,5 67,4 55,0 38,0 $7, I \quad I, 7 \quad 0,6 \quad 0,4 \quad 0,2$ I958 $\quad 9,9 \quad 27,5 \quad 27,6$ II,6 $3,8 \quad 0,8 \cdot 0,4 \quad 0, I:-$ $1959 \quad \mathrm{I} 9,2 \quad 59,9 \quad 64,0 \quad 39,9 \quad \mathrm{I}, 0 \quad 3,0 \quad \mathrm{I}, 2 \quad 0,2 \quad 0,2$ $I 960$ I4,0 39,0 II5,7 80,I 27,4 IO,0 I,7 0,3 I,I I96I $4, I \quad 69,0$ II9,3 $64,6 \quad 28,5 \quad 4,6 \quad I, 4 \quad 0,7 \quad I, 0$ I962 $4,4 \quad I 3,4 \quad 23,4 \quad I 7,9 \quad 3,3 \quad I, 3 \quad I, 0 \quad 0,4 \cdots \quad 0,2$ I963 7,4 48,7 70,0 3 IT,4 $6,6 \quad 3,7 \quad I, 8 \quad 0,6 \quad 0,2$ $1964 \quad 9, I \quad 33,9$ I07,0 $23, I \quad 9,4 \quad 2,5.0,7 \quad 0,2$ I965 0,2 0,8 I,2 I,3 0,5 0,6 -$1966-2,2 \quad 2,7 \quad I, 7 \quad 2,6 \quad 0, I$ $1967 \quad 4,8 \quad 54,6 \quad 37,6 \quad 30,4 \quad 2,4$ I968 . 0,6 2,9 I9,5 25,2

$$
\begin{array}{ll}
\text { T969 } & I 3,7252,5300,2 \\
I 970 & 2 I, 3 I 70,0
\end{array}
$$

Mean length of the 1950-1972 year classes haddock at different age in the southern Barents Sea (cm)

[^0]: F) The General Secretary, ICES,
 Charlottenlund Slot, 2920 Charlottenlund, DENMARK.

[^1]: \#) German Democratic Republic catch data taken from "Atlantic Fish Catches of the Socialist Countries, 1961-72" (Moscow, 1974).

[^2]: I/ The Polar Hesearch Institute of Marine Fisheries and

 - Oceanography (PINRO),Mumansk,USSR.

