International Council for the Exploration of the Sea
https://doi.org/10.17895/ices.pub. 9520
C.M.1975/F:4

Demersal Fish (Northern) Committee

Ref.: Statistics Cttee

Digitalization sponsored by Thünen-Institut

REPORT OF THE NORTH SEA FLATFISH WORKING GROUP
Charlottenlund, 17-28 February 1975
x) General Secretary ICES,
Charlottenlund Slot, DK-2920 Charlottenlund, Denmark.

Contents

Page

1. Introduction 1
2. Management Objectives 1
3. North Sea Plaice 2
4. North Sea Sole 8
5. Irish Sea and Bristol Channel Plaice 12
6. Irish Sea and Bristol Channel Sole 14
7. English Channel Plaice 15
8. English Channel Sole 16
9. Spawning and Nursery Areas 16
10. Closed Areas 17
11. Plaice Tagging Experiment 1976 17
12. Statistics Coverage and Reliability 18
13. ICES FISHDAT System 20
14. References 20
TABLES 1-31 22
FIGURES 1-8 51
APPENDIX I: "Summary of National Sampling Systems" 59
APPENDIX II: "Virtual Population Analysis for North Sea Plaice, with special Reference to Young Plaice Fisheries, and assuming M varying with Age", by E Ursin 63
APPENDIX IIT: "Formulas and Calculations used in the Prognosis Program", by H Lassen 75

$$
-0=0-0-
$$

1. Introduction
1.1 The ICES North Sea Flatfish Working Group met in Charlottenlund from 17 to 28 February 1975 with the following members participating:

D W Armstrong	U.K. (Scotland)
R C A Bannister	U.K. (England)
K Brander	U.K. (England)
R De Clerck	Belgium
C Duggan	Ireland
H Knudsen	Denmark
H Lassen	Denmark
E Nielsen	Denmark
G Rauck	Germany (F.R.)
J F de Veen (Chairman)	Netherlands

Mr D de G Griffith (ICES Statistician) also participated in the meeting.
1.2 The Group was convened with the following terms of reference (C.Res. 1974/2:23):
"It was decided, that:
the North Sea Flatfish Working Group should meet at Charlottenlund 17-28 February 1975 in order to:
a) assess TAC's for 1976 for plaice and sole in the North Sea, Irish Sea, Bristol Channel and English Channel;
b) define the spawning and nursery grounds of plaice and sole in the areas mentioned under a);
c) assess further the effect of restricting fishing on nursery grounds; and
d) in order to be able to identify stock structure of North Sea plaice, to discuss and organise an international tagging experiment on the spawning, feeding and nursery grounds in $1976^{\prime \prime}$.
1.3 The Group felt that in order to deal properly with the terms of reference it would also have to discuss the reliability of statistics. In addition the Group considered the recommendation made by the ADP Working Group (Doc. C.M.1975/D:2) that the North Sea Flatfish Working Group should study the results of the trial run of the ICES FISHDAT System which had been carried out on North Sea herring, and if possible define specifications for a trial run on North Sea plaice.

2. Management Objectives

2.1 A previous Report of the North Sea Flatfish Working Group (Doc. C.M. 1973/F:18) recommended Total Allowable Catches (TAC's) for sole and plaice in the North Sea, and for sole in the Irish Sea and Bristol Channel.
2.2 The North Sea sole stock, hitherto heavily overfished, has declined to a low level of abundance. The TAC's of 6000 tons recommended for

1974 (Doc. CoMol973/Fil8) provided for a reduction in fishing mortality to the level giving the maximum sustainable yield (MSY) and for the additional reduction in mortality necessary to promote some degree of recovery of the stock. The TAC eventually adopted by NEAFC for 1975 (12 500 tons) is sufficient to achieve only the first objective, and rather than bring about an increase in stock it will actually only reduce the rate of decline. An increase in the biomass of the stock is still a desirable objective because of the dependence of the fishery on the incoming year classes. The concept of stabilising stock level, discussed on occasions recently, is only a provisional step to management, since although it prevents stock decline it does not help to rebuild the stock. The Working Group is still of the opinion that the long-term objective of management is to rebuild the sole stock, and the present reassessment was conducted with this end in view. It should be pointed out that the long-term sustainable yield from North Sea sole is by no means as high as the yield levels enjoyed in the middle sixties, when the abundance of the stock was influenced by very good year classes.
2.3 For North Sea plaice, which was previously assessed as being at about the MSY level the objective of the TAC previously recommended was to prevent expansion of the fishery. Fishing mortality on plaice has increased recently but it is still possible to maintain the fishing close to the MSY position because of the rather flat-topped nature of the yield curve. On the other hand, abundance is now declining because of changes in the year class composition of the stock and the 1975 TAC finally adopted by NEAFC could now actually permit mortality to increase. The objective of the present reassessment was therefore to maintain a MSY position but to reduce the TAC to a level whereby this could be achieved, having regard to the most likely level of recruitment. As with sole the high yields of recent years have been partly the product of good year classes and are an unrealistic index of the long-term potential of the stock.
2.4 In the remaining areas the objective of TAC regulations was to ward off the effects which would arise if the stock were subject to extra mortality following increases in fishing effort, say by diversion from other regulated areas. The rather limited assessment material available for these stocks has been used to adjust the TAC to maintain this objective in the light of the observed levels of fishing mortality and the little that is kncwn about recruitment in these areas.
3. North Sea Plaice
3.1 Introduction
3.1.1 The current NEAFC regulations provide for the enforcement of a Total Allowable Catch for the North Sea plaice of 126000 metric tons. This is an increase on the TAC of 115000 tons recommended by this Working Group following previous assessments made between 1968 and 1973. These assessments included preliminary conventional Beverton and Hclt yield equation calculations for national data (Docs. CoM.1968/F:4 and C.M.1971/F:14) and, later, numerical predictions based on the use of a fishing mortality at age array,mean weight at age data, and minimum estimates of recruitment
 derived using the Virtual Population Method of analysing a series of estimated international age compositions. The international age composition data were those produced by Bannister (1973) and updated by the Working Group. The baseline mortality array was the average for the period
1968-1971。

3.1.2 | In calculating a new TAC for 1976 it was considered necessary to reassess |
| :--- |
| the state of the stock to take account of: |
| a) those changes in abundance and in the level of fishing |
| mortality likely to have occurred since the formulation |

of the original recommendations;
b) the availability of new age composition data.

The reassessment incorporated the l973 age composition and preliminary | estimates of that for 1974. A major feature was the availability of |
| :--- |
| Danish age compositions for these two years. A new raising procedure was |
| also adopted to take account of the Danish catch for previous years in |
| the series. |

The outcome of the reassessment is:
a) a new F at age array and a series of updated recruitment

As before, it has been assumed that the total international catch is supported by a single unit stock.
3.1.4 It is intended that the procedures discussed and adopted at this meeting shall form the basis of a year to year routine.

3.2 Trends_incatch

The trend in total North Sea plaice catch ("Bulletin Statistique" figures) is brought up to date in Table l. This shows that after a slight fall in 1971 and 1972, the 1973 catch was very close to the peak catch recorded previously in 1970. However, the preliminary 1974 figures indicate that catch has since fallen to 109000 tons. The most obvious feature of recent years has been the higher Netherlands catch.
3.3 Age_composition data

Summary description of the sampling system of the member nations are given in Appendix I.
3.3.2 In the past, the international age composition has been based on the following series of annual national data:

United Kingdom: 1947-1972. Lowestoft and Grimsby otter trawl age composition raised to total U.K. catch.
Netherlands: 1957-1972 Beam trawl age composition raised to total Netherlands catch.
Germany, Federal

Republic of:

Belgium:
1969-1972

Samples for the Schlickbank and Deutsche Bucht raised to total Fed.Rep. of Germany catch.
Beam trawl age composition raised to total Belgian catch.

The catches of Denmark and the remaining nations were accounted for by raising a sum of these age compositions directly to the total catch.
3．3．3 Danish samples for one year，1960／61，suggest that the above raising procedure underestimates the Danish catch of young plaice，particularly 2 year olds，and may overestimate the abundance of older plaice， especially as Danish vessels do not engage in the fishery for spawning plaice on the exposed southerly grounds in winter．
3．3．4 A report by Dr E Ursin was presented comparing the VPA results for the previous data－raising procedure（Bannister，1973）with a new analysis． In the latter，Danish catches were accounted for using a ratio of the Danish to Lowestoft age compositions per 1000 kg in $1960-61$ ，but on an unsexed basis and with an amended array of natural mortality（M）at age and different terminal fishing mortalities $\left(F_{t}\right)$ ．This report is íncluded as Appendix II．
3．3．5 Bearing in mind the differences in M and F_{t} the new results are quite similar to those obtained previously，though they do indicate a slightly higher overall level of recruitment，particularly for the newer year classes．The Group agreed that the traditional values of $M=0.1$ （Beverton and Holt，1957）or 0.1 （ 9 ）and 0.15 （ σ^{*} ）（Beverton，1964）might underestimate＂natural＂mortality arising in the I－and II－group plaice due to shrimp fishing and discarding at sea，but it could not comment on Ursin＇s view that these values could overestimate the natural mortality of older age groups．The Group accepted the point being made about the raising procedure．However，Ursin＇s analysis was based on unsexed data and did not include recent Belgian and Federal Republic of Germany age composition data．For 1958 to 1972 it was decided to adopt an intermediate series of data in which Danish landings had been estimated by raising from the Netherlands age composition。 Though still present，the underestimation of 2－year old plaice is much less pronounced．
3．3．6 For 1973 and 1974 it has been possible to include a Danish age composition based on sampling at Esbjerg，so that 98% of the total catch is accounted for directly．The estimate for 1974 is only preliminary，＇since for some countries data were available only for the first three quarters of the year．

3．3．7 The complete series of 1958－1974 age composition data is given in Table 2。 From this series the mean values of recruitment are as follows（in millions of fish）：

	σ^{\prime}	$\%$
Including 1963 year class	217 ± 228	207 ± 196
Excluding 1963 year class	197 ± 105	185 ± 109

3．4 The Virtual Population Analysis
3．4．l The new age composition data were processed by the Virtual Population Analysis（VPA）。 Following Ursin，the two year old M was increased to $0.25\left(\sigma^{\prime}\right)$ and 0.2 （ 9$)$ ，but for the remaining age groups Beverton ${ }^{\circ}$（1964） values of 0.15 （ σ° ）and 0.1 （ 9 ）were retained．To avoid problems arising from the uneven sampling of the older fish the analyses were started at age 15 （ σ° ）and 20 （ 9 ）for a terminal F value of 0.2 （ σ° ）and 0.1 （ 9 ）for fully sampled cohorts，and for the arrays showns in Table 3 for the partially sampled cohorts．The latter values were estimated by trial and error，using the previous VPA to predict the 1972／73 catches．

3．4．2 The results of the VPA calculations are presented in Tables 4－6．Table 6 shows the following：
a) 1971-73 mean fishing mortality at age; and fishing mortality relative to $F_{\text {max }}$;
b) 1967-70 mean fishing mortality at age for comparisons;
c) natural mortality at age;
d) 1974 catch;
e) 1974 stock, estimated from 1974 catch and mean 1971-73 fishing mortality.

Comparison of the 1967-70 and 1971-73 mortality rates shows more or less no change for male plaice. For females, however, mortality is now higher than that in the previous period involving increases of some $30 \%-50 \%$ up to age 6, and much larger increases for the old fish. In the case of males the rather high F value for age 14 suggests that the terminal F value at age 15 is rather low, but this assumption has not apparently affected the rest of the array.
3.4.3 The VPA estimates of stock number at two years of age (Table 7) have been taken as minimum estimates of recruitment to the exploited population.
3.5 Growth
3.5.1 The prognosis programme requires estimates of mean weight at age for the catch and, if possible, the stock. Previously, catch weight at age was determined from the 1960-71 average annual mean length at age for landings of Lowestoft otter trawlers (Bannister, 1973 b) and converted to weight using the Lowestoft length/weight relaticnship:

Males	$l_{n} W=2.897$	$l_{n} L=4.309$
Females	$l_{n} W=2.932$	$l_{n} L=4.409$

The resulting figures were very similar to the mean weights derived from the Netherlands beam trawl fleet. It was decided to continue with the use of these weight data for estimating yield.
3.5.2 For this stock the use of catch weight at age to estimate stock biomass is suspect, because the mean lengths of recruiting plaice are rather high, leading to large negative values of the parameter t_{0} of the von Bertalanffy growth equation, as already discussed previously (C.M.1971/ F:14). Separate weight data are not normally available for the stock, but for the younger ages it was decided to refer in this assessment to the original weights calculated from the growth curve of Beverton and Holt (1957), who incorporated observations from research work on young plaice by Wallace (1907), and to use the catch weights at age from the point where the Beverton and Holt curve intersected with the catch growth curve. The catch and stock weights at age are shown in Table 8. These weights are gutted weight. In the description of the prognosis results all weights have been raised to fresh weight using a factor of 1.125 .

3.6 Prognosis

3.6.1 The method adopted here is to calculate the expected stock and catch in 1975 and 1976, using the mean l971-73 relative F at age array and the 1974 catch and stock. The relative fishing mortality at age is assumed to remain unchanged. The calculation is carried out for the most likely recruitments in the two years, for a suitable value of $F_{\max }$ in 1975, and for an array of $\mathrm{F}_{\max }$ from 0.1 to 1.0 for 1976. The catch
weight, i.e. yield, is calculated on the basis of number and weight data referred to l June each year. Nominally stock is referred to as being that at'I January. The Beverton and Holt stock weights used actually refer to mean weight for July and the stock biomass is therefore overestimated here, but the adjustment for seasonal growth is unlikely to be greater than the initial error on the estimates.
3.6.2 For this stock, recruitment fluctuates with a coefficient of variation of about 50%, but so far there is no evidence of a formal relationship between recruitment and stock. In fact for catch the influence of age groups II and III is rather small, such that widely differing assumptions about R do not affect the calculation of a 1976 TAC to any high degree. This is shown below by the expected yield and stock biomass figures for the following range of recruitments, assuming that $F_{\max }$ and F at age are unchanged at the 1974 levels

		Number of recruits (millions)	
		σ	항
	Two poor recruitments	130	130
(ii)	Two low average recruitments	170	150
(iii)	Two average recruitments	197	185
(iv)	One grood and one low average recruitment	(265	$\begin{aligned} & 255 \\ & 170 \end{aligned}$

North Sea Plaice. Catch and stcck 1974-76 for a range of recruitment and for $F_{\max }$ unchanged.

		Recruitment			
		(i)	(ii)	(iii)	(iv)
$\begin{gathered} \text { Catch } \\ \text { (metric } \\ \text { tons) } \end{gathered}$	$\begin{aligned} & 1974 \\ & 1975 \\ & 1976 \end{aligned}$	$\begin{array}{ll} & - \\ 98 & 260 \\ 85587\end{array}$	- 99135 86907	$\begin{array}{r} 104350 \\ 100204 \\ 90776 \end{array}$	$\begin{array}{r} 102443 \\ 96405 \end{array}$
$\begin{gathered} \text { Stock } \\ \text { (metric } \\ \text { tons) } \end{gathered}$	$\begin{aligned} & 1974 \\ & 1975 \\ & 1976 \end{aligned}$	- 255206 232281	- 259769 242822	$\begin{array}{ll} 276 & 742 \\ 264 & 128 \\ 253 & 527 \end{array}$	$\begin{aligned} & 274219 \\ & 264422 \end{aligned}$

3.6.3 In 1976 the range of predicted catch is about 10000 tons in the different assumptions about recruitment. The influence of these assumptions on the years beyond 1976 will naturally be greater, but the plaice age composition obviously allows such assumptions to be modified on a year to year basis. In the predictions which follow, a conservative estimate of recruitment of 170×10^{6} per sex was adopted.
3.6.4 The 1974 age composition and the catch weight at age data provide a reasonable diagnosis of the present stock situation, since the sum of products of number and weight estimates the 1974 catch to be about 104350 tons, which compares with the observed catch of 109000 tons.
3.6.5 Using the mean 1971-73 relative F at age array, the $1974 F_{\max }$ of 0.54 (σ°) and 0.42 ($\%$), and recruitments of $R=170 \times 10^{6}$ per mex, the results of the catch prognosis for various assumptions about the 1975 $F_{\max }$ are shown in Table 9.
3.6.6 If $F_{\max } 1975$ is the same as $F_{\max }$ 1974, the most likely 1975 plaice catch will be 99513 tons. The 1975 TAC of 126000 tons will not therefore achieve any reduction in fishing mortality. (Carrying the prognosis through to 1976 suggests an expected catch of 91465 tons at the $1974 \mathrm{~F}_{\max }$ level). However, if each country attempts to take its 1975 plaice quota, say by diversicn of spare catching capacity from other species or areas, mortality in 1975 must obvicusly increase, and it was agreed that the Working Group should take account of this possibility in making a progncsis.
3.6.7 On a proportional basis the increase in mortality would probably need to be abcut 30% in order to realise the full TAC, but a more conservative guess as to the increase likely to be achieved by various countries would be 15%. On these assumptions, $\mathrm{F}_{\max }$ for 1975 would be increased to, respectively, 0.62 and 0.70 (σ°) and max. 48 and 0.55 (7), which would lead to the expected 1975 catches and stocks shown at the top of parts 2 and 3 of Table 9. For 1975 an increase in mortality to slightly more than 1.3 times the $1974 \mathrm{~F}_{\text {max }}$ could therefore result in the 1975 TAC being reached, whilst 1.5 times the $1974 \mathrm{~F}_{\max }$ would generate a catch of 111344 tons. The ensuing catch and stock prognosis for 1976 for the array of $F_{\max }$ of 0.1 to 1.0 is also shown in Table 9, together with the percentage long-term increase in biomass at each F level.
3.6.8 The relaticn between steady-state biomass per recruit, yield per recruit and $\mathrm{F}_{\max }$ (Table 10) shows that while an increase in fishing mortality over the present level will not reduce the potential sustainable yield very much, there would be a distinct fall in stock and catch rate. For these reasons it is undesirable to permit any permanent increase in mortality which might arise out of attempts to take the 1975 TAC. It was therefore agreed that the 1976 TAC should be such that the mortality rate achieved in 1976 is no greater than the 1974 level, which is already greater than that of three or four years ago.
3.6.9 The catch required to return the $1976 \mathrm{~F}_{\max }$ to the 1974 level is obtained by entering parts 2 and 3 of Table 9 at $F=0.54$ (σ°) and 0.42 ($\$$), leading to rounded figures of 88000 tons and 84000 tons for, respectively, $F_{\max } 1975=1.15 \times F_{\max } 1974$ and $F_{\max } 1975=1.30 \times F_{\max }$ 1974. A reasonable compromise figure for the two situations is 85000 tons, which is therefore the TAC for 1976 recommended by the Working Group.
3.6.10 This TAC will remain a valid recommendation even if no increase in $F_{\max }$ actually occurs during 1975. For $R=170 \times 10^{6}$ per sex, Table 10 shows the absolute steady-state catch and stock for the array of possible $1976 \mathrm{~F}_{\max }$ values. Entering the table at the $1974 \mathrm{~F}_{\max }$ values (0.54 , male, 0.42 , female) showa that a long-term sustainable mield of 86665 tons could be expected. The proposed TAC is very close to this value and, compared to the catch of 91465 tons expested if F_{m} does not change, would provide a small reduction in F from the 1974 level and a corresponding increase in stock.

3.6 .11	The Working Group therefore recommends a TAC of 85000 tons for 1976 to cover all the most likely circumstances in the fishery．
3.6 .12	The difference between this figure and the 115000 tons figure previously recommended in 1973 is accounted for by the intervening fall in stock associated with changing year class representation and the 1970－73 increase in mortality rate．
$3 \cdot 7$	Recruitment＿prediction
	During the last six years，in which pre－recruit surveys of plaice have been conducted by the Netherlands，Belgium and the Federal Republic of Germany，the changes in year class abundance have not been sufficiently marked to provide a good test of whether it will be possible to predict major changes in plaice recruitment using this type of survey．
4．	North Sea Sole
$4 \cdot 1$	Introduction
4.1 .1	A new assessment of the situation in the sole fishery was made in order to calculate a total allowable catch for 1976．Since the previous TAC calculations，given in the 1973 Reports of the Flatfish Working Group and meant for 1974，two years have passed and the up to date information on weight at age and recruitment from virtual population analysis and pre－ recruit surveys is now available．
4．1．2	The procedure used in the assessment is the same as for North Sea plaice and accepted by the Group as a standard routine in the coming years．
$4 \cdot 2$	Catch trends
	The annual catches of sole in the North Sea for the years 1960－74 are given in Table ll．The total catch rose from 19000 tons in 1960 to 27000 tons in 1962，and following a sharp decline to 11000 tons in 1964 it increased again rapidly to 34000 tons in 1967．Since then，the total catch has been decreasing to the 1973 level of 19000 tons． Preliminary figures for 1974 indicate a somewhat lower figure of 18000 tons．These trends may also be seen in the national sole fisheries in the North Sea．
$4 \cdot 3$	Age＿composition data
4.3 .1	For 1973 age compositions per sex were available for the Netherlands， Belgian and Danish total landings，accounting for 95% of the total landings。
	Raising the total international catch was based on＂Bulletin Statistique＂ catch figures（ncminal weight in metric tons）。
$4 \cdot 3 \cdot 2$	The 1974 age composition was calculated in the same manner but＇is preliminary，except for Belgium．Although data were provided for all 12 months by the Netherlands and Denmark，national catches were given for 10 months and those for November and December estimated on the basis of trends．
$4 \cdot 3 \cdot 3$	For the years prior to 1973 age compositions were taken from earlier assessments．Table 12 gives the age compositions per sex for the years 1957－74。

As has been accepted for the pre-1973 data no account was made for discarding.
4.4 The virtual population analysis

- 4.4.1 For male and female sole separately a new virtual population analysis was run. A constant natural mortality over the ages 2-14 was assumed, of $M=0.10$ for both sexes.
4.4.2 Terminal F values of 0.15 for males and 0.25 for females were taken for cohorts fully sampled to the age of l4. For partially sampled cohorts, terminal F values were taken from average F at age arrays of an earlier VPA over 1969-72. These values are given in Table 13.
4.4.3 The resulting fishing mortality at age, and the stook in numbers from the VPA, are shown in Tables 14 and 15. The VPA shows that the level of F on the maximally exploited age groups $3-8$ has not increased much since 1969, for although fishing effort has risen, the increase has been oriented mainly towards plaice fishing as is evident from the increased plaice fishing mortality.
4.4.4 The abundance of the recruiting year classes (2-year old fish) is shown in Table 16.
4.5 Prognosis_of catch and stock in 1975 and 1976
4.5.1 In order to assess the effect of the present catch quota of 12500 tons in 1975 in terms of reduction in F it is necessary to forecast catch and stock bicmass for 1975, assuming the same F as in 1974, thus giving the situation if no catch limitation had been enforced.
4.5.2 For this forecast the relative fishing mortality at age per sex was taken to be the VPA average of 1969-73 which is given in Table 13. The distribution is normalised so that $F_{\max } X$ relative F at age gives the actual F.
4.5.3 For the weight at age per sex the average gratted weight at age array of 1969-73 determined from the Dutch market sampling system (described in Appendix I), covering more than 80% of the total international landings of North Sea sole, was taken and raised to ncminal weight at age, using a conversion factor of 1.125. This array for the 1 June was used for the catch, whereas for the biomass the corresponding nominal weight at age for the 1 January was calculated. Both arrays are given in Table 17 .
4.5.4 The next step was to determine a value for the recruitment in 1975. Fortunately two types of pre-recruit surveys had been started in 1969, namely a 0 - and I-group study by Belgium, Federal Republic of Germany and the Netherlands in the nurseries covering the area from the BelgianFrench to the Federal Republic of Germany-Denish borders, and in addition a II-group survey by the Netherlands in the coastal areas of the Netherlands, Federal Republic of Germany and the North Sea coast of Denmark.
- 4.5.5 Although estimates of only six year classes (1967-1972) could be compared, the regression of the II-group survey estimates (X) over the present VPA recruit estimates (Y) was good. The regression equation:

$$
Y=15.5+0.652 X
$$

has a correlation coefficient of $r=0.88$.
4.5.6 The 0- and I-group survey estimates in their turn were related to the VPA recruit estimates giving

$$
Y=55.1+0.96 X
$$

with a correlation coefficient of $r=0.65$.
4.5.7 The estimates of year class strength made by the 0 - and I-Group surveys, the II-Group survey and the VPA recruitment estimates on which both regressions are based are as follows:

Year	0- and I-Group survey Average relative abundance in class	II-Group survey Average relative abundance in l967-72 $\%$	VPA Recruit estimate in millions
1967		136.7	
1968	138.6	60.2	92.8
1969	204.3	143.3	44.7
1970	98.3	44.0	132.6
1971	56.3		
1972	$150.0^{1)}$	110.6	60.0
1973	30.0	139.0	39.0
1974			72.4

1)

Year class 1972 appeared to be of lower than average abundance per 0-group fish in most of the nurseries covered by the sampling, but showed a significant increase as I-group.
4.5.8 The significant correlations demonstrate that the estimates of the 1973 and 1974 year classes as estimated in 0 - and I-group surveys could be used in the forecast. For 1975 this meant that for each sex a recruitment of 45000000 soles should be taken. In the case of the 1974 year class, abundance as 0 -group can be assessed only from one cruise and in the absence of any other reliable figure this information had to be used. Since this year class will be only two years of age in 1976 its effect on the 1976 catch will be rather small. However, its influence as three- and four-year old fish will be greater.
4.5.9 From the observed 1974 catch and corresponding stock-age composition at the beginning of 1975 and the 1973 year class estimate of
90000000 soles, the 1975 fishing mortality required to give the TAC of 12500 tons set by NEAFC was calculated. The estimated reduction in fishing mortality is 34%. This reduction was adopted in making the 1975 and 1976 prognoses.
4.5.10 For 1976 the recruitment was taken from the 0 - and I-group surveys and was estimated as 15000000 soles of each sex. The 1976 catch and stock were forecast for several fishing mortalities and are given in the table on page ll:

	$\mathrm{F}_{\text {max }}$		Catch (tons)	Biomass(tons).	Expected biomass Long-term increase (\%)
	9	σ			
1974	0.80	0.85	17800	39050	-
1975	0.53	0.57	12940	37760	-
1976	0.0		0	39037	437
	0.1		3075		268
	0.2		5907		162
	0.3		8505		93
	0.4		10891		48
Level	$\longrightarrow 0.5$		13094		17
$\begin{aligned} & \text { of } \\ & 1975 \end{aligned}$	0.6		15124		-4
	0.7		16991		-19
	0.8		18706		-30
	0.9		20300		-39
	1.0		21 $76 ?$		-45

The implications of each entry in the table are given in terms of longterm gain in biomass, relative to the expected situation at the beginning of 1976. Details of the calculations are given in Appendix III.
4.5.11 It appears from the table that the expected level of fishing mortality in 1975 leaves little room for recovery of the stock. The stock is stabilized at its present low level, and therefore no increase in the present TAC can be recommended.
$4 \cdot 5 \cdot 12$
The sole fishery is very dependent on a few young year classes. Any succession of poor recruiting year classes will lead to a breakdown of the fishery. This situation can be avoided by rebuilding the stock and increasing the bicmass. It is therefore recommended that the stock should be allowed to recover, i.e. the TAC for 1976 should oe 8000 tons which will, in the long term, double the biomass. A doubling in five years would be achieved by a TAC of 5400 tons.
4.5.13 Rebuilding the stock in this way should ultimately make it possible to achieve a sustainable yield of 15000 tons, corresponding to the present average recruitment level of 74000000 fish.
4.5.14 The present age distribution of the stock is far from stable. The average level of recruitment over the last nine years of 74000000 may be compared with the average of the period 1955-73 of 113000000 , which is largely affected by the outstanding year classes of 1958 and 1963. Whether this lcw recruitment is introduced by a stock/recruitment relationship or by other natural agencies is not known. Experience with other stocks, eog. herring, calls for care in such a situation.
4.5.15 Despite recent good year classes (1972 and 1973) which will influence catches for only two or three years, the 1977 catch prospects look rather poor at the moment due to the small 1974 year class coming into the fishery.

4.5 .16	A comparison was made between the observed catches for 1972-74 and those predicted previously in the Report of the Flatfish Working Grou 1973 (C.M.1973/F:18), as follows: Comparison of predicted and observed catches (tons)		
Year	Prediction Jan. 1973 $\left(F_{72}, 73,74=F_{71}\right)$	Observed Catches	$\begin{gathered} \text { Ratio } \\ \frac{\text { observed catch }}{\text { predicted catch }} \end{gathered}$
1971		23654	
1972	20342	21093	1.04
1973	18214	19312	106
1974	14902	17801	1.20

4.5.17 Apart from the different management objectives involved, the difference between the TAC of 6000 tons recommended earlier (C.M.1973/F:18) and that calculated here (8000 tons) is accounted for by the recruitment of the good 1972 year class and that expected for the good 1973 year class and by the anticipated reduction in F due to the 1975 TAC.
4.5.18 The present situation with regard to the North Sea sole is that the
incoming recruit year class has a significant effect on catch and
stock biomass, and thus on the reliability of predicted values of
catch and stock. Although a rather good correlation seems to exist
between the estimates of year class strength as assessed in pre-recruit
surveys and the VPA estimates, this is based on only 6 years of obser-
vations. Moreover, the present pre-recruit surveys carried out by Belgium,
Federal Republic of Germany and the Netherlands cover only 50\% of the
nursery areas. The Working Grcup.recommends that the coverage be improved
by incorporating all nurseries in the North Sea, as has been outlined in
the l973 Report of the Working Group.
5. Irish Sea and Bristol Channel Plaice
5.1 Introduction

The assessment of Irish Sea and Bristol Channel plaice has been carried out using all the available information on stock parameters from Belgium, U.K. (England and Wales) and Ireland. This is at present barely adequate to reach firm conclusions about the stocks, but the quality of the data has improved greatly in recent years and it will be possible to carry out an improved assessment in future when English data have been fully brought up to date. The improvement expected in Irish and French biological sampling will be particularly welcome.
5.2 Càtch trends
5.2.1 Nominal catches of plaice in the Irish Sea and Bristol Channel are given separately in Table 18 for the period 1962-74. Catch figures for 1960 and 1961 are also provided in the Table, but it is not pcssible to show the split between VIIa and VIIf for these two years.
5.2.2 All catches for 1974 (based on preliminary reports) are lower than in 1973. In Division VIIa the catches in the early 1960's were about 2000 tons annually, rising to about 5000 tons in 1967 and 1968. They then fell steadily to 3500 tons in 1970 and increased again to 5000 tons in 1972 and 1973. In Division VIIf, catches rose steadily from 200-300 tons in the early 1960's to about 1500 tons in 1968. Since then they have been falling steadily to their present level of about 500 tons.

- 5.2.3 English catches in VIIa and VIIf, being the largest single component, largely determine the general trend in both areas. Catch figures reported by France are of uncertain reliability; they show erratic fluctuations throughout the period and have been recorded as zero in scme years.
5.3 Growth parameters
5.3.1 Values of mean length at age for males and females from the Irish Sea and Bristol Channel are given separately in Table l9, along with the parameters of the von Bertalanffy growth equation calculated from them. For Division VIIa it is evident that the growth as measured from Irish commercial and research vessel samples is greater than that found in the English and Welsh samples, with the Belgian values intermediate. These differences are probably due to different areas being fished and are also reflected in the values of of t_{c}, the mean age of entry to the catch, which is estimated at 4 years for the English and at not more than 2.5 years for the Irish fishery. While it may be necessary in the future to consider separate assessments within Division VIIa'to account for these differences, they were not taken into account in the present assessment.
5.3.2 The conversion of length to weight was carried out using a relationship calculated from Belgian length/weight data for the Irish Sea (Table 20) as follows:

Males:	$\log _{e}$ weight $(\mathrm{gm})=\log _{e}$ length $(\mathrm{cm}) \times 2.80-3.95$
Females:	$\log _{e}$ weight $(\mathrm{gm})=\log _{e}$ length $(\mathrm{cm}) \times 2.84-3.93$

The quality of English data for the Bristol Channel dces not allow a similar comparison of growth rates to be made for this area.

Yield
Yield curves from males and females for two different levels of natural mortality for the two areas are given in Figure 2. The mean values used in making yield assessments are given in Table 2l。
5.5 Assessment

5-5.1 Irish Sea - Values of total instantaneous mortality on male and female plaice calculated from English and Belgian catch and effort statistics are given in Table 22. These were calculated from age grcup 5 onwards (weighted

* . inversely by the variance) for English and Welsh figures, and from age group 4 for the Belgian figures. The average total mortality over the period 1964-74 has been 0.67 on females and 0.80 on males, with no marked trend. For a natural mortality of 0.1 this means that fishing mortality is too high by a factor of about 2.7 for females while for males the yield curve is almost flat-topped, ioe. a decrease in effort could not be expected to improve the yield. A reduction in fishing mortality by this factor would be expected to result, in the long term, in an increase in total yield (males plus females) of 10%, and with an increase in catch per effort of about threefold.
5.5.2 Bristol Channel - Values of total instantaneous mortality for males and
females, calculated from Belgian catch and effort data are given in Table 22.
These were calculated from age group 5 onwards (weighted inversely by the
variance) for English and Welsh figures, and from age group 3 onwards for
the Belgian figures. The average total mortality over the period l97l-74
has been 0.53 on females and 0.90 on males. For a natural mortality of 0.l
this means that fishing mortality is too high by a factor of 2.4 on females.
The male yield curve is flat-topped. A reduction in fishing mortality by
a factor of 2.4 on both sexes would lead in the long term to an 8\% increase
in yield, with an increase in catch per effort of two and a half times.
5.6 Conclusions

Some reduction in the present level of catch is required to improve the long-term prospects of the plaice fisheries in the Irish Sea and Bristol Channel. At least in the Irish Sea it appears that the level of fishing mortality has been too high for a number of years.
5.7.1 The previous catch limitation proposals for these areas were intended as a holding operation to prevent further expansion of the plaice fisheries. The 1975 TAC was based on the average of the total catches in 1968-72, amended by NEAFC. The implication of the present assessment is that fishing mortality is too high and the 1974 total catch is unlikely to reach the level. of TAC set for 1975. Consequently, the TAC levels for 1976 should not be. allowed to exceed 4000 tons for the Irish Sea and 500 tons for the Bristol Channel. The downward trend in catches in the Bristol Channel is particularly marked, but in this case the absence of information on the French catch makes further analysis difficult.
5.7.2 Apart from improved reporting of statistics and the availability of the up to date information from all countries it is essential to have scme means of forecasting recruitment when trying to predict trends in stock and thus setting TACs. This could be provided by some form of pre-recruit survey.
6. Irish Sea and Bristol Channel Sole
6.1 Introduction

Previous assessments of the Irish Sea and Bristol Channel have been carried out by Holden (1971, 1972), and De Clerck (1973). The present assessment is based largely on Belgian data collected between 1970 and 1974. English and Welsh data have not been included because they were not available separately for the two sexes and a separate assessment of each was felt to be preferable。 The results of the Belgian separate assessments have, however, been compared with the English and Welsh combined assessment and were found to be very similar. Dutch data were considered to be too seasonal to provide reliable estimates, but could be included in future if a quarterly breakdown of all the information available is made。
6.2 Catch trends

The total international catches of sole in Divisions VIIa and VIIf for the period 1960-74 are given in Table 23. Levels of catch have not fluctuated greatly since 1964 although prior to that time the average catches were rather lower. Catches in both areas were at their highest levels in 1970-71 due partly to increased fishing effort and partly to good recruitment.

6.3 Growth parameters

Values of meán length and weight at age for males and females from both areas are given separately in Table 24. The growth parameters calculated . from them and used in the yield equations are given in Table 25. The values of I_{∞} and W_{∞} are higher than those used by Holden (1972), but compare closely with the growth estimates for both sexes combined from recent English and Welsh samples.
"6.4 Yield_curves_and_assessment
The yield curve for male and female sole for Divisions VII and VIIf are given in Figures 3 and 4 and present levels of mortality in Table 26.
6.4.1 Irish Sea: present levels of fishing mortality on both sexes are close to the level needed for MSY.
6.4.2 Bristol Channel: the present level of fishing mortality on females is slightly below that required to take the MSY but the level for males is slightly too high. The catch weight consists to a greater extent of females and this stock can therefore also be considered as optimally exploited.

Total_allowable_catch
6.5.1 The level of catch expected if the present optimal level of fishing is maintained will fluctuate due to changes in recruitment which might be predicted by pre-recruit surveys or from the catches of partially recruited year classes. However, the effects of these fluctuations will be small in the present situation as a large number of year classes are being fished.
6.5.2 The recommended TAC levels for 1976 are therefore 1600 tons in the Irish Sea (VIIa) and 720 tons in the Bristol Channel (VIIf). These are the averages for the years 1969-73.
7. English Channel Plaice
7.l The Working Group had before it an assessment on the English Channel plaice '(Houghton, in preparation)' and Belgian age composition data for 1971-73. Table 27 shows that the total international catch for Divisions VIId,e has been fairly steady over the period 1964-73. However, the provisional English catch for 1974 shows a marked decline. Table 28 shows the decline in English catch per effort over the period 1969-73. The average total mortality for the same pericd, calculated from English statistics, is 0.98 for males and 0.75 for females (Houghton). The Belgian catch per effort, also given in Table 28, shows an increase over the period 1972-74 and the total mortality calculated from Belgian data, for the period 1971..73, is ' 0.91 for males and 0.64 for females.
7.2 The English statistics are derived from sampling throughout the year at Brixham for the population in the western end of the English Channel. - Belgian effort is mainly in the eastern English Channel during the spawning season.
7.3 From Hcughton's yield curves for the western English Channel, or indeed any of the yield curves calculated for adjacent areas such as the Bristol Channel, these levels of fishing mortality are too high. Houghton presents evidence from age composition data that recruitment, at least in the western English Channel, was low in 1972 and 1973. A reduction in the TAC set by NEAFC (3260 tons) is therefore recommended, but in the absence of any biolcgical and statistical information on the 1974 French catch, the Working Group was unable ti give a figure for TAC. Furthermore, no biological data for the French fishery in previous years was made available to the Working Group.
7.4 There is evidence (Houghton \& Harding, in press and Houghton, in preparation) for the presence of different local populations in the English Channel as
well as a component of spawning fish which migrate to the southern North Sea, derived from English tagging experiments. The difficulty in assessing the contributions of the different local populations to the total international catch derives largely from the lack of information about the distribution of French catches. Houghton suggests that sub-area TAC's should be considered for the English Channel because of the existence of separate local populations, and the Working Group felt that this problem should be investigated in more detail.
7.5. The Working Group recommends that catch statistics for the English Channel should in future be reported and published for Divisions VIId and VIIe separately.
8. English Channel - Sole
8.1. Estimates of the growth parameters from Belgian catches taken mainly in the eastern Channel were very different from those obtained from English (Brixham) samples in the western Channel and insufficient details of the sampling were available to explain and resolve these differences. Therefore no complete assessment of sole in the area has been carried out.
8.2. The average total mortality for males and females combined obtained from Belgian catch and effort data for the period 1971-74 was 0.49, compared with an estimate of 0.56 for the period 1969-73 for English catch and effort. Assuming a natural mortality of 0.1 and applying either of these values to the Bristol Channel yield curves (this area being closest in character to the English Channel) indicates that fishing mortality is slightly too high for MSY, but that little improvement in yield would be expected from a reduction in effort. In the absence of information on recruitment the Working Group could only recommend that, in order to protect the stock from diverted effort, the TAC for 1976 should be 1300 tons, the average catch for the period 1969-73.
9. Spawning and Nursery Areas

9.1. Plaice

9.1.1 The positions of the major plaice spawning grounds in the North Sea, Irish Sea, Bristol Channel and English Channel based on Simpson (1959), Oray (1963) Griffith (unpubl., 1969), Armstrong (unpubl., 1972-74) and Bannister, Harding and Lockwood (1974) are shown in Figure 5. The most important spawning areas are those in the eastern English Channel, the Southern Bight and the Borkum area.
9.1.2 After a planktonic stage of $80-90$ days, metamorphosis occurs and the young plaice settle in shallow nursery areas in coastal waters. The extent of the major nursery areas is shown in Figure 6.
9.1.3 For the first l-2 years of their life the plaice tend to remain in the nursery areas, after which they start recruiting to the more offshore adult stocks.

9.2 Sole

9.2.1 The distribution of known sole spawning areas based on Boeke (1906), Ehrenbaum (1906-08), Tesch (1909), de Veen (unpubl., 1962), Riley (1974) and Brander (unpubl., 1975) is shown in Figure 7. Spawning areas of the sole are not as well known as those of the plaice, but the most important is the region along the coast between Belgium and Denmark. There are also small spawning areas in the English Channel which are not shown in Figure 7 because of a lack of precise information.

```
9.2.2 Spawning takes place between April and June and the subsequent development of the sole resembles that of the plaice. In the North Sea, however, the sole nursery areas coincide with the spawning areas. In the other regions, nursery areas for sole are not very well known but are probably similar to those indicated for the plaice nursery areas.
10. Closed Areas
In the previous Report of the Flatfish Working Group (C.M.1974/Fஃ6), an assessment was made of the possible increase in recruitment to the adult stocks of plaice and sole which might result from closure of areas within 15 and 30 miles of the coast. Because no new data are available it has not been possible to improve on this assessment. However, papers giving data on discarding and survival rates of discarded fish in both the Dutch beam trawl fishery and the Federal Republic of Germany shrimp fishery are in preparation.
10.2 On the basis of the previous assessment it would be necessary to close a coastal zone much wider than 15 nautical miles to protect all the pre-recruit flatfish. As noted in the previous Report, such a closure would have adverse effects on various inshore fishing fleets.
11. Plaice Tagging Experiment 1976
ll. . The Working Group discussed the possibility of carrying out an international plaice tagging programe in 1976. It was decided that any such programe should be designed with the intention of improving biological knowledge of the stocks as the primary objective.
11.2 Such a programme could be divided into three major sections:
1) Tagging mature plaice at spawning time;
2) Tagging adult plaice on the feeding grounds;
3) Tagging juvenile plaice in the nursery areas.
```


11.3 Spawning_and feeding_ground tačging

```
A considerable amount of informaticn which has not yet been worked up has been collected from plaice tagged at the spawning time by scientists of the Netherlands and the Federal Republic of Germany. In additicn, spawning plaice have been tagged in 1974 by English scientists and by Scottish, Belgian and Dutch scientists in 1975. Feeding ground experiments were also conducted by the Netherlands from 1964-67 and by England in 1974。 The Working Group realised that the design of experiments on fish on the feeding grounds could be greatly influenced by the results of experiments carried out on spawning plaice.
-
11.3.2 For these reascns it was decided to postrone the feeding and spawning ground tagging programmes until existing data have been worked up. The Group stressed the urgency of analysing and presenting the original data and recommends that the national laboratories involved should give priority to this work.
11.4 Nursery ground tageing
11.4.1 Preliminary results from nursery ground tagging by the Netherlands and the Federal Republic of Germany indicate that juvenile (I-group) plaice tagged in the nursery areas along the Dutch coast tend to move in a
```

westerly direction, whereas juveniles tagged between the mouths of the Ems and the Elbe tend to move to the north.
11.4.2 In order to define more closely the areas of the North Sea to which juvenile plaice from various nursery areas recruit, it was recommended that further studies should be carried out. These should involve tagging juveniles on all the nursery areas of the North Sea. Details of the proposed programe will be discussed by correspondence between the participating nations, and at a future meeting of the Working Group.
11.4.3 The countries which have agreed to participate in this programme are: Belgium, Federal Republic of Germany, Netherlands, UoK。 (England) and U.K. (Scotland). It is hoped that tagging of juvenile plaice along the Danish coast can be carried out by Dutch and/or Federal Republic of Germany scientists.
12. Statistics Coverage and Reliability
12.1 Catch data
12.1.1 The Working Group considered a general review of the coverage and reliability of catch statistics.
12.1.2 The main difficulty for national statistical systems, at least in the fishing areas north of $48^{\circ} \mathrm{N}$ latitude, appears to be the allocation of catch to fishing area, usually at the level of statistical division (IVa, IVb, VIIa etc.). As a result the catches of some countries are given for groups of two or more fishing areas, thus:

France	Vb 1 includes Vb_{2}
Denmark	IVb includes IVa
Norway	IVa includes IVb
Sweden	IIId includes IIIb, c
	IVa includes IIIa and IVb
	VIa includes VIb

These are regular features of the "Bulletin Statistique", and more detailed breakdowns are frequently made by participants in ICES Working Groups on the basis of information available in their respective laboratories.
12.1.3 Other inaccuracies sometimes arise from poor reporting by the national office concerned, rather than from inherent deficiencies in the collecting system. One example has been the catch reported by Ireland for Divisions VIIa, VIIg-k, VIIb,c and VIa, which fishing areas were regarded for some years up to 1971 as being identical with the coastal breakdown (east, south, west and north-west respectively) used for the domestic handling of Irish fisheries statistics. Since 1972, however, Irish catches have been reported by the correct ICES statistical divisions, and corrected plaice catches for VIIa have been provided for the years from 1960 onwards. Another inaccuracy in the statistics of some countries, and which can be ascribed to poor reporting, is the submission of landed weights rather than nominal catches. The French data for North Sea plaice for 1963-66 were an example of this.
12.1.4 Irish catches are allocated to fishing area on the basis of port of landing, but in view of the predominantly inshore nature of Irish fisheries any inaccuracies resulting from this practice will generally not be large, at least for the flatfish fisheries.
12.1.5 The area allocation of French catches could probably be improved greatlyo Over the next two years, however, a log book system is to be introduced for the larger vessels and a more effective sampling system implemented in the smaller coastal fisheries (Doc. C.M. 1974/Dஃ2).
12.1.6 Apart from inaocurate allocation to area, scme countries have diffi- . culties in identifying the species present in the catches. France, for example, grcups brill and turbot together when reporting catches to "Bulletin Statistique".

- 12.1.7 Other difficulties in the matter of species identification are more serious. In 1972, a total of over 283000 tons was reported in the category "unsorted, : unidentified fishes". Six countries accounted for 88% of this quantity, as follows:

| Spain | 67000 |
| :--- | :--- | :--- |
| Portugal | 65000 |
| Denmark | 47000 |
| France | 30000 |
| Sweden | 25000 |
| Poland | 16000 |

12.1.8 More precise details on the species composition of catches, and also on the area breakdown as mentioned earlier, are frequently provided by participants in ICES Working Groups. Considerable discrepancies regularly appear, however, between some catch figures supplied by statisticsreporting agencies and those provided by fisheries laboratories for the same species, area, or period. In some countries the degree of communication and cooperation between statistics office and fisheries laboratory is very high, but in other countries it appears to be very poor.
12.1.9 Where the source of any discrepancy can be identified with reasonable certainty, it usually falls into one of the three groups - incorrect area allocation, incorrect species identification (both discussed above), or the grouping of the catch by biological units rather than by statistical areas. Most of the discrepancies between the catch figures reported to "Bulletin Statistique", and those used by ICES Working Groups, are ascribed to the last cause. Two other aspects should also be mentioned, however. It sometimes happens that for some countries the catch statistics compiled by biological labcratories simply do not agree with those submitted for publication in "Bulletin Statistique" by the national reporting agency, and that these differences cannot be reconciled by any of the three reasons mentioned above. It should also be borne in mind that apparent changes in catch from one year to the next may not always represent real changes in the quantity of distribution of the catches themselves, but may be partly or entirely the result of changes - usually improvements - in the national reporting system。
12.l.10 The Working Group noted that the ADP Working Group had drawn the attention of member countries to these problems (C.M.1974/D:2), and endorsed the need for close cooperation between national statistics-reporting agencies and national fisheries laboratories
12.2 Catch and fishing effort
12.2.1 The coverage of data on catch and fishing effort was also discussed with regard to the principal plaice and sole, fisheries. Material. for 1972 was taken as an example。
12.2 .2 In 1972 the STATLANT27 B forms submitted by most of the member countries ("Statistical News Letter", No.62) gave information on monthly fishing effort, by gears, for a total catch of 3.5 million tons of fish, including Nephrops, Pandalid shrimps and Crangonid shrimpson This quantity represented only 35% of the total catch in the ICES area.

12.2 .3	The plaice and sole catches for 1972 for which effort data are available by statistical rectangles in＂Statistical News Letter＂，No． 61 are summarised in Table 29 for the areas under TAC regulation，together with the percentage relationship to the total catches given in＂Bulletin Statistique＂．
12．2．4	Table 30 shows a similar summary for the catches given in the stock record section of＂Statistical News Letter＂，No．61．
12.2 .5	Table 31 expresses the percentage coverage for the fisheries in question， taking what appears to be the most comprehensive data（i．e．the largest catch）from both parts of＂Statistical News Letter＂，No．62。 The coverage of the plaice and sole fisheries in VIId，e is low（ 12% and 22% respectively） and the amount of information on the fishing effort on plaice in VIIa （ 54% ）and VIIf（ 50% ）could possibly be improved．
12.2 .6	It would be more valuable，however，if a greater number of countries reported catch and fishing effort information by rectangles（and also stock record data）than are doing so at present，at least for the demersal species．The absence of such plaice and sole data from France and Ireland is particularly serious．

13．ICES FISHDAT System
13．1 The Working Group had been invited by the ADP Working Group（C．M．1975／D：2， Section 4．2）：
（i）to consider the cutcome of the trial run of the ICES FISHDAT System based on North Sea herring data，：
（ii）to discuss the benefit of the present system in assessment of demersal stocks such as the North Sea plaice，and
（iii）to provide a specification for a similar trial run based on relevant demersal data．

13．2 The North Sea Flatfish Working Group agreed that the results of the herring trial run were very encouraging with regard to the use of the system for stock assessment purposes，and discussed the possible objectives of a trial run based on North Sea plaice data．The objective proposed was the derivation of the catch in numbers per age group of males and females，for the Netherlands sampling areas（Figure 8），for each quarter of the years 1972 and 1973 。

13．3 The Working Group agreed to draw up specifications by correspondence， for presentation at the 1975 Statutory Meeting of ICES．The subsequent trial run could then be evaluated by the ADP Working Group．The North Sea Flatfish Working Group recommended that in addition to the Chairman，further members should participate in such a meeting of the ADP Working Group．

14．References
Bannister，R。CoA。，1973a。 The assessment of the state of the North Sea plaice stock，using English data．ICES，Doc．CoMo1973／Fs 30 （mimeo）．
Bannister，R．Co Ao， 1973 b。 The results of a virtual population analysis of North Sea plaice data．ICES，Doc。C．M．1973／Fs31（mimeo）。

Bannister，R．C．A．，D．Harding and S．J．Lockwood，1974．Larval mortality and subsequent year－class strength in the plaice（pleuronectes platessa L．）．In：The Early Life History of Fish，（Ed．）J．H．S．Blaxter， Springer Verlag．
Beverton，R．J．H．，1964．Differential catchability of male and female plaice in the North Sea and its effect on estimates of stock abundance． Rapp．p．－v．Réun．Cons．int．Explor．Mer，155：103－112．

Beverton，R．J．H．and S．J．Holt，1957．On the dynamics of exploited fish populations．Fish．Invest．，Ser．II，XIX．

Boeke，J．，1906．Eier und Jugendformen von Fischen der suidlichen Nordsee mit besonderer Berücksichtigung des holländischen Untersuchungsgebiet． Verhandl．Rijksinst．voor het Onderzoek der Zee，1：3－35．

Ehrenbaum，E．，1907．Eier und Jugendformen der Seezunge und anderer im Frîhjahr laichender Fische in der Nordsee．Wiss．Meeresunters．，NoF．， Bnd．VIII abt．Helgoland．

Ehrenbaum，E．，1909．Eier und Larven der im Winter laichenden Fische der Nordsee．－II．Die Laichverhältnisse von Scholle und Flunder． Wiss．Meeresunters．N．F．，Bnd．IX abt．Helgoland．

Oray，I．K．，1967．Untersuchungen über das Laichen der Scholle in der süd－ ostlichen Nordsee．Ber．Deutsch．Wiss．Komm．Meeresfcrsch．，N．F．，Bnd XIX， 194－258．

Riley，J．D．，1974．The distribution and mortality of sole eggs（Solea solea （L．））in inshore areas．In：The Early Life History of Fish，（Ed．） J．H．S．Blaxter，pp．39－52，Springer Verlag．

Simpson，A．C．，1959．The spawning of the plaice in the North Sea．Fish． Investo，Ser．II，XXII（7）：1－57。

Simpson，A．C．，1959。 The spawning of the plaice in the Irish Sea．Ibid．， Ser．II，XXII（8）：1－24．
Tesch，J．Jo，1909．Eier und Larven einiger im Frihjahr laichender Fische besonders der südlichen Nordsee．Verhandl．Rijksinst．voor het Onderzcek der Zee，2：3－44．

Tesch，J．J．，1913．Weitere Untersuchungen über das Laichen einiger Nutzfische besonders der südlichen Nordsee．Rapp．en Verhandl．Rijksinst．voor Visserijonderzoek，（1）：58－99．
Wallace，W．，1907．Report on the age and growth rate of plaice in the southern North Sea，as determined by the investigation of otoliths．Marobiol． Assoc．U．Ko，Int。Fish。Invest．，2nd Rep。（Southern Area），Part I：l－47．

Table 1. Nominal catch (metric tons) of plaice in the North Sea (statistical sub-area IV), 1960-1974

Year	Belgium	Denmark	France	Germany, Fed. Rep. of	Nether- lands	Norway	Sweden ${ }^{\text {a) }}$	$\begin{gathered} \text { U.K. (England } \\ \& \text { Wales) } \end{gathered}$	$\begin{gathered} \text { J.K. } \\ \text { (Scotland) } \end{gathered}$	Others	Total
1960	4919	33238	699	4. 117	15213	73	47.5	23392	5366	1	87493
1961	3950	32086	1341	3830	15951	60	497	22732	5326	161	85934
1962	4535	31227	464	3768	19094	86	472	22975	5322	-	87943
1963	5662	39926	501	4526	23143	36	438	28143	5181	-	107556
1964	4339	38380	1584	4390	24594	30	372	30773	5525	-	109987
1965	3931	30560	1933	4333	23271	38	286	26826	5534	-	96712
1966	6490	29055	1986	4401	25682	33	148	26978	5356	-	100129
1967	6778	28287	1730	5290	29905	35	237.	30974	5709	-	108945
1968	5576	30369	1310	5250	33236	38	310	29569	5810	-	111468
1969	4476	35227	1330	5071	39420	26	309	30349	4981	-	121189
1970	4360	32807	1406	5519	46080	22	243	34839	4703	-	129979
1971	5073	22278	1380	3296	44502	18	235	32576	4210	-	113568
1972	5531	24494	1062	4318	52048	19	250	31642	3410	-	122774
1973 ,	6133	23266	1355	4976	57948	15	173	30400	4815	399	129480
$1974{ }^{\text {b }}$	3862	19030	(1,000)	2825	53369	(15)	168	24019	4531	-	108819

a) Sweden - From 1962 onwards, the figures reported to Bulletin Statistique include catches made in IIIa. A note presented to the 12th (1974) meeting of NEAFC by the Swedish Delegation (Agenda item 7 /paper 1) stated that "at present about 40% of the Swedish catch of plaice are caught in the North Sea". This correction has been applied to the Swedish figures for IIIa and IVa in Bulletin Statistique for the years 1962 onwards, prior to their inclusion in this table.
b) Preliminary figures as reported. No reports were received from France or Norway and estimates for these catches were made as shown by the bracketed figures.

Table 2a. North Sea Plaice. Age composition of total catch 1958-1974 (in thousands).

MALE

	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1	0	0	0	0	0	0	0	0	0	0	0	280	1401	428	1084	437	552
2	3837	10954	3241	1675	2266	5390	5551	7427	3994	4141	7247	8941	13245	18886	14557	13037	8656
3	10521	18612	38948	18091	26154	17209	24448	26468	44528	17704	29209	25842	27962	27438	22094	35623	30867
4	30184	17198	25707	39245	49281	72995	43948	34481	35085	116442	26674	18546	31668	16385	23947	46290	35577
5	16225	20879	10361	16586	32518	47327	41645	30706	21180	29884	71530	19726	23087	11357	10059	21150	22075
6	7716	10287	11185	7646	12598	17947	22433	17681	13880	16688	8597	50365	18237	10351	7461	5635	9659
7	2705	5286	4976	6104	5252	7027	5968	7522	6938	12446	3530	3967	37089	6189	5968	2789	3472
8	2245	2175	- 2186	3208	3138	2766	2189	3337	3728	3440	4620	1913	2346	10683	3204	3331	2080
9	1649	1816	906	1788	790	1604	1227	1119	2256	2912	1007	4041	1155	1408	5720	1764	2123
10	742	1495	661	1057	587	879	697	1127	831	551	1621	1084	1396	1180	1213	4290	1182
11	682	714	406	496	419	453	448	1186	363	159	560	939	528	781	856	155	2512
12	105	540	129	447	900	45	302	243	552	81	335	686	663	374	736	379	318
13	68	94	215	219	114	201	194	186	327	231	199	209	307	487	300	276	271
14	0	25	10	19	119	75	120	615	96^{\prime}	180	149	217	120	183	345	261	203
15	37	86	20	2	14	33	175	28	122	168	29	89	13	198	23	424	41

Table 2b. North Sea Plaice. Age composition of total catch 1958-1974 (in thousands).
FEMALES

Age	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1	0	0	0	0	0	0	0	0	0	0	0	8	770	481	765	. 723	555
2	4181	15772	4720	1581	1232	5731	16302	9839	5700	3121	7033	9241	9311	19676	12888	12608	9962
3	13204	19626	41141	28411	32428	18337	23265	24619	51936	21883	22698	25934	27086	25283	25198	33928	29707
4	27944	11286	19921	34133	31766	48921	26576	23253	24445	63691	20257	18834	28301	15825	21076	41452	23988
5	13735	17637	7132	12008	29275	29930	21419	17064	13172	18404	51274	13499	16990	11499	12836	19949	19263
6	8616	8477	11428	4869	11936	17473	13736	14871	9705	il 301	7473	39605	13838	10296	10898	7816	8822
7	3495	6470	6398	6754	6142	6799	7014	9693	8531	8896	5122	5050	34679	7023	11437	6171	3538
8	4046	2738	4299	4992	6816	4299	2803	5207	6371	4279	5833	3091	4509	13864	11773	6375	3372
9	3266	3319	2344	3528	3857	4059	1993	2864	3677	5692	2494	4672	2747	3210	18503	5694	2902
10	2607	2976	3054	2157	3055	3173	2474	2095	2056	2289	3178	1868	3772	2471	4892	12955	1870
11	3049	2198	2094	2231	1659	2860	2095	2057	1608	1808	1309	3174	1522	2303	4635	2665	6641
12	1434	2312	1673	1765	1382	1984	1263	1802	1904	903	1336	933	2102	1536	5654	2099	1132
13	904	1270	1095	1438	1463	1505	1084	1483	1168	1342	630	990	752	1424	2687	1945	1130
14	513	657	621	1128	1161	1146	866	889	1073	769	840	362	721	627	2733	2836	915
15	329	384	508	607	545	673	527	872	589	671	489	687	320	742	1188	1150	843
16	220	306	195	255	324	456	505	633	663	322	576	348	373	346	1475	705	479
17	180	218	143	157	85	274	546	437	374	504	478	481	291	826	2459	901	630
18	59	87	94	109	45	209	410	564	305	163	140	179	173	307	618	413	246
19	42	76	46	58	41	96	297	382	316	139	134	202	95	176	368	289	97
20	37	13	79	1	6	55	141	236	193	165	113	173	99	88	202	328	52

Table 3. North Sea Plaice. Table of terminal F values for partially sampled cohorts

Age	σ^{\prime}	\neq
1	0.01	0.01
2	0.10	0.11
3	0.29	0.22
4	0.34	0.39
5	0.43	0.40
6	0.47	0.36
7	0.44	0.36
8	0.40	0.36
9	0.29	0.35
10	0.24	0.35
11	0.20	0.35
12	0.20	0.35
13	0.20	0.35
14	0.20	0.29
15	0.20	0.27
16		0.27
17		0.25
18		0.21
19		0.12
20		0.10

Table 4a. North Sea Plaice. Fishing mortalities.
MALE

	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	$\begin{aligned} & 1974 \\ & =\mathrm{F}_{\mathrm{I}} \end{aligned}$
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
2	0.02	0.04	0.01	0.01	0.01	0.03	0.03	0.01	0.02	0.02	0.05	0.07	0.08	0.08	0.06	0.08	0.10
3	0.13	0.16	0.22	0.08	0.12	0.09	0.17	0.19	0.09	0.13	0.23	0.26	0.37	0.24	0.14	0.21	0.29
4	0.36	0.33	0.34	0.36	0.31	0.55	0.35	0.40	0.41	0.34	0.29	0.22	0.59	0.39	0.34	0.49	0.34
5	0.42	0.43	0.32	0.36	0.54	0.52	0.66	0.41	0.43	0.70	0.34	0.34	0.45	0.41	0.41	0.53	0.43
6	0.34	0.48	0.41	0.38	0.47	0.62	0.48	0.61	0.31	0.66	0.41	0.40	0.56	0.35	0.49	0.40	0.47
7	0.22	0.39	0.43	0.39	0.47	0.50	0.40	0.27	0.49	0.49	0.26	0.32	0.54	0.35	0.33	0.32	0.44
8	0.29	0.27	0.26	0.51	0.33	0.45	0.27	0.39	0.20	0.45	0.31	0.21	0.30	0.27	0.29	0.29	0.40
9	0.25	0.39	0.16	0.33	0.21	0.27	0.35	0.20	0.47	0.22	0.21	0.47	0.18	0.28	0.22	0.24	0.29
10	0.32	0.36	0.22	0.27	0.16	0.36	0.17	0.59	0.21	0.19	0.18	0.36	0.28	0.27	0.39	0.24	0.24
11	0.49	0.55	0.15	0.25	0.15	0.17	0.30	0.45	0.36	0.05	0.28	0.14	0.28	0.23	0.30	0.07	0.20
12	0.56	0.86	0.17	0.23	0.88	0.02	0.16	0.25	0.37	0.12	0.15	0.62	0.13	0.30	0.34	0.20	0.20
13	0.32	1.50	0.99	0.45	0.08	0.46	0.11	0.13	0.57	0.24	0.45	0.12	0.59	0.13	- 0.40	0.19	0.20
14	0.00	0.18	0.57	0.19	0.45	0.06	0.51	0.58	0.09	0.67	0.23	1.27	0.09	0.80	0.12	0.69	0.20
$15=F_{\text {I }}$	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20

Table 4b. North Sea Plaice. Fishing mortalities.
FEMALES

	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	$\begin{aligned} & 1974 \\ & =F_{I} \end{aligned}$
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
2	0.03	0.07	0.02	0.01	0.01	0.04	0.10	0.02	0.04	0.02	0.05	0.09	0.07	0.11	0.09	0.07	0.11
3	0.15	0.17	0.24	0.16	0.18	0.13	0.20	0.21	0.13	0.18	0.20	0.26	0.37	0.26	0.20	0.35	0.22
4	0.27	0.17	0.23	0.28	0.24	0.40	.0 .24	0.28	0.30	0.21	0.23	0.23	0.44	0.34	0.31	0.50	0.39
5	0.18	0.24	0.14	0.19	0.36	0.32	0.27	0.21	0.22	0.34	0.23	0.21	c. 30	0.29	0.44	0.48	0.40
6	0.16	0.15	0.22	0.12	0.26	0.34	0.22	0.28	0.16	0.27	0.20	0.25	0.30	0.27	0.43	0.47	0.36
7	0.13	0.16	0.14	0.17	0.20	0.21	0.20	0.21	0.23	0.20	0.17	0.18	0.33	0.22	0.47	0.41	0.36
8	0.15	0.12	0.14	0.14	0.24	0.19	0.11	0.20	0.18	0.15	0.17	0.13	0.21	0.19	0.61	0.46	0.36
9	0.14	0.16	0.13	0.14	0.14	0.19	0.11	0.14	0.19	0.22	0.11	0.18	0.15	0.21	0.37	0.59	0.35
10	0.16	0.17	0.19	0.16	0.16	0.15	0.16	0.15	0.13	0.16	0.17	0.10	0.20	0.18	0.50	0.42	0.35
11	0.20	0.17	0.15	0.18	0.16	0.19	0.12	0.17	0.14	0.15	0.11	0.22	0.10	0.16	0.51	0.49	0.35
12	0.13	0.20	0.17	0.16	0.15	0.25	0.11	0.13	0.21	0.10	0.14	0.10	0.20	0.13	0.62	0.40	0.35
13	0.11	0.15	0.12	0.20	0.18	0.21	0.19	0.16	0.11	0.20	0.08	0.13	0.10	0.18	0.31	0.39	0.35
14	0.13	0.10	0.09	0.16	0.22	0.18	0.16	0.21	. 0.15	0.08	0.16	0.06	0.12	0.10	0.55	0.54	0.29
15	0.18	0.12	0.09	0.11	0.10	0.17	0.11	0.22	0.19	0.12	0.06	0.18	0.06	0.15	0.25	0.41	0.27
16	0.35	0.23	0.07	0.06	0.07	0.10	0.16	0.17	0.23	0.13	0.13	0.05	0.12	0.08	0.45	0.20	0.27
17	0.79	0.61	0.14	0.07	0.02	0.07	0.15	0.19	0.13	0.25	0.27	0.14	0.05	0.38	0.96	0.49	0.25
18	0.05	1.02	0.51	0.14	0.02	0.06	0.13	0.21	0.17	0.07	0.09	0.14	0.06	0.06	0.49	0.36	0.21 '
19	0.25	0.08	8.25	0.60	0.06	0.06	0.10	0.16	0.15	0.10	0.06	0.16	0.09	0.07	0.09	0.39	0.12
$20=F_{I}$	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

Table 5a. North Sea Plaice. Stock in numbers.

Table 5b. North Sea Plaice. Stock in numbers.
FEMALES

Age ${ }^{\text {cear }}$	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1	327464	312586	308089	245543	209353	225591	674690	214759	197530	186961	150358	188124	249782	199182	253206	129442	61531
2	166122	268105	256145	252242	201034	171404	184699	552389	175830	161724	153071	123103	154015	203809	162642	206616	105325
3	96552	132234	205274	205452	205090	163480	135160	136517	443373	138812	129590	118976	92452	117696	149124	121536	157787
4	124477	74825	101016	146699	158921	154786	130505	100213	100158	351852	104826	95713	83048	57978	82507	111013	77803
5	86059	86120	56989	72498	100359	113653	93696	92867	68618	67441	257916	75626	68731	48334	37456	54667	61196
6	60054	64829	61189	44792	54199	63057	74455	64460	67834	49587	43573	184714	55616	46076	32827	21732	30572
7	30911	46158	50610	44520	35905	37717	40490	54333	44218	52163	34147	32332	129558	37199	31923	19377	12261
8	30945	24650	35622	39717	33870	26657	27674	29979	39962	31914	38754	26034	24461	84345	26993	18053	11686
9	26094	24157	19704	28149	31197	24179	20039	22378	22183	30110	24813	29528	20621	17854	63157	13287	10296
10	18796	20509	18707	15602	22120	24565	18025	16239	17529	16532	21843	20083	22282	16050	13108	39607	6635
11	17976	14532	15731	14027	12069	17114	19214	13960	12704	13908	12830	16746	16397	16581	12177	7228	23563
12	11948	13371	11062	12246	10574	9345	12770	15395	10679	9968	10867	10366	12140	13391	12816	6629	4016
13	9031	9449	9904	8421	9405	8256	6573	10355	12219	7855	8162	8564	8493	8990	10658	6248	4009
14	4528	7313	7343	7921	6254	7121	6042	4919	7961	9946	5834	6786	6809	6970	6782	7095	3810
15	2102	3610	5993	6055	6096	4557	5355	4644	3607	6185	8269	4481	5796	5476	5711	3550	3735
16	783	1590	2902	4940	4902	4998	3485	4345	3375	2704	4959	7018	3402	4941	4250	4040	2122
17	345	500	1148	2440	4228	4127	4089	2673	3330	2424	2141	3940	6019	2724	4142	2449	2987
18	1215	142	246	903	2059	3745	3474	3182	2004	2658	1715	1484	3108	5170	1682	1428	1362
19	203	1043	47	134	714	1820	3190	2754	2344	1524	2250	1419	1173	2648	4386	937	901
20	408	143	872	0	66	607	1556	2604	2129	1820	1247	1909	1092	971	2229	3619	574

Table 6. North Sea Plaice. Results of 1975 virtual population analysis.

MALE
$\left.\begin{array}{|c|l|l|l|l|l|l|}\hline \begin{array}{c}\text { Age } \\ \text { Group }\end{array} & \begin{array}{l}\text { Fishing } \\ \text { mean } \\ 1967-70\end{array} & \begin{array}{l}\text { Mortality } \\ \text { mean } \\ \text { 1971-73 }\end{array} & \begin{array}{l}\text { Relative } \\ \text { fishing } \\ \text { mortality } \\ \text { 1971-73 }\end{array} & \begin{array}{l}\text { Natural } \\ \text { mortality }\end{array} & \begin{array}{l}1974 \\ \text { catch } \\ \text { Nx10 }\end{array} & \begin{array}{l}1974 \\ \text { stock }\end{array} \\ \text { Nx10 }\end{array}\right]$

FEMMALE

Fishing mean $1967-70$	Mortality mean $1971-73$	Relative fishing mortality 1971-73	Natural jmortality	$\begin{aligned} & 1974 \\ & \text { catch } \\ & \mathrm{N} \times 10^{-3} \end{aligned}$	$\begin{aligned} & 1974 \\ & \text { stock } \\ & \mathrm{N} \times 10^{-6} \end{aligned}$
0.10	0.09	0.21	0.20	9962	128
0.25	0.27	0.64	0.10	29707	132
0.28	0.38	0.91	0.10	23988	80
0.27	0.40	0.95	0.10	19263	61
0.26	0.39	0.93	0.10	8822	29
0.22	0.37	0.88	0.10	3538	12
0.17	0.42	1.00	0.10	3372	10
0.17	0.39	0.93	0.10	2902	9
0.16	0.37	0.88	0.10	1870	6
0.15	0.39	0.93	0.10	6641	22
0.14	0.38	0.91	0.10	1132	4
0.13	0.29	0.69	0.10	1130	5
0.11	0.40	0.95	0.10	915	3
0.11	0.27	0.64	0.10	843	4
0.11	0.24	0.57	0.10	479	2
0.18	0.40	0.95	0.10	630	2
0.09	0.30	0.71	0.10	246	1
0.10	0.18	0.43	0.10	97	0.6
115537511					

Table 7. North Sea Plaice.
Estimates of recruitment at age 2 (millions).

Year Class	MALE	FEMALE
1945	205	212
1946	180	198
1947	202	211
1948	151	161
1949	168	177
1950	157	175
1951	127	137
1952	151	177
1953	155	186
1954	189	203
1955	118	124
1956	174	166
1957	273	268
1958	323	256
1959	315	252
1960	265	201
1961	208	171
1962	209	185
1963	722	552
1964	200	176
1965	193	162
1966	157	153
1967	130	123
1968	186	154
1969	243	204
1970	263	163
1971	184	207

Table 8. North Sea Plaice. Mean weight at age per catch and stock

Age	MALE		FEMALE	
	Gutted weight stock	Gutted weight catch	Gutted weight stock	Gutted weight catch
	$\frac{\mathrm{g}}{65}$	${ }_{200}^{\text {g }}$	$\frac{8}{65}$	$\frac{8}{215}$
3	122	260	122	303
4	194	315	194	376
5	282	370	282	451
6	382	413	382	527
7	450	450	490	602
8	485	485	606	676
9	517	517	724	749
10	546	546	819	819
11	573	573	886	886
12	598	598	950	950
13	620	620	1010	1010
14	640	640	1067	1067
15	694	694	1120	1120
16			1170	1170
17			1220	1220
18			1260	1260
19			1300	1300

Table 2. North Sea Plaice. Prognosis for catch and stock (tons) for 1975 and 1976 for various values of $F_{\max }$ in 1975

	Catch	\%	Total	$\underset{\delta^{\prime}}{\text { Stock }}$	9	Total
1974	44274	60075	104349	125983	150759	276742
1975	43607	55906	99513	122561	138495	261056
1976	40501	50964	91465	116145	130079	246224

2). $\quad F_{\max } 1975=1.15 F_{\max } 1974$

	$\underset{\delta^{\prime}}{\text { Catch }}$	Total	Stock 오	Total
1975	4889362451	111344	122561138495	261056

${ }^{2} \mid$
3). $F_{\max } 1975=1.30 F_{\max } 1974$

1976
$\mathrm{F}_{\text {max }}$
0.1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

$|$| 8 | 103 | 13 | 735 |
| ---: | :--- | :--- | :--- |
| 15 | 713 | 26 | 415 |
| 22 | 862 | 38 | 125 |
| 29 | 582 | 48 | 944 |
| 35 | 901 | 58 | 947 |
| 41 | 846 | 68 | 196 |
| 47 | 442 | 76 | 757 |
| 52 | 712 | 84 | 680 |
| 57 | 679 | 92 | 021 |
| 62 | 360 | 98 | 822 |

term \%
change
in bio-
mass
134
53
10
-15
$-31:$
-42
-49
-55
-59
-62

Catch	앙	Total	Stock	Total	
53921	69699	123620	122561138495	261056	
					Longterm \% change in biov mass
7776	13101	20877	107348119043	226391	124
15081	25201	40282			46
21945	36379	58324			5
28401	46712	75113			-19
34472	56267	90739			-34
40186	65106	105292			-44
45568	73290	118858			-51
50637	80870	131507			-57
55416	87893	143309			-61
59923	94404	154327			-64

Table 10. North Sea Plaice. Steady state yield and biomass against $\mathrm{F}_{\max }$
a) per recruit b) for $R=170 \times 10^{6}$ per sex

$\mathrm{F}_{\text {max }}$	Yield per recruit (Kg)		Biomass per recruit (Kg) (gutted)		Absolute yield (tons)(fresh)			Absolute biomass (tons)		
	\bigcirc	\%	8	¢	6	¢	Total	σ°	¢	Total
0.1	0.086	0.215	1.359	2.263	16409	41042	57451	259985	432837	692822
0.2	0.132	0.265	1.028	1.337	25245	50758	76003	196586	255663	452249
0.3	0.157	0.274	0.808	0.893	30007	52307	82314	154549	170786	325335
0.4	0.171	0.271	0.658	0.656	32723	51905	84638	125823	125498	251321
0.5	0.179	0.267	0.552	0.517	34273	50968	85240	105627	98838	204465
0.6	0.184	0.262	0.477	0.428	35247	50031	85278	91150	81874	173024
0.7	0.187	0.257	0.420	0.368	35821	49209	85030	80382	70304	150686
0.8	0.189	0.254	0.377	0.324	36108	48482	84590	72140	62022	134162
-0.9	0.190	0.250	0.344	0.292	36414	47870	84284	65733	55826	121559
1.0	0.191	0.247	0.317	0.267	36510	47.239	83749	60684	51064	111748

Table 11. Nominal catch (metric tons) of sole in the North Sea (statistical sub-area IV), 1960-1973

Year	Belgium	Denmark	France	Germany, Fed. Rep. of	Netherlands	Sweden ${ }^{\text {b }}$)	$\begin{gathered} \text { U.K. (England } \\ \text { \& Wales) } \end{gathered}$	$\begin{gathered} \text { U.K. } \\ \text { (Scotland) } \end{gathered}$	Total
1960	3974	1760	398	1776	9274	3	1444	-	18629
1961	3666	2237	827	2116	13488	3	1617	-	23954
1962	4068	2507	322	1999	16287	-	1694	-	26877
1963	7835	350	280	670	13596	-	3431	-	26162
1964	1071	570	384	277	8272	-	768	-	11342
1965	1621	653	689	371	12980	-	729	-	17043
1966	3586	536	504	1074	$25192^{\text {a }}$)	-	933	-	31825
1967	4455	1593	444	1094	$24.900^{\text {a }}$)	-	1023	-	33509
1968	3874	1590	273	1138	$25175^{\text {a }}$...	1129	-	33179
1969	2703	842	364	692	22032	-	927	-	27560
1970	1880	525	265	318	16024	13	660	1	19686
1971	2227	1149	403	600	18776	12	485	2	23654
1972	1834	671	206	258	17662	13	449	+	21093
1973	1485	957	250	336	15883	13	387	1	19312
$1974{ }^{\text {c }}$	924	704.	(200)	160	15211	11	325	-	17535

[^0]Table 12a. North Sea Sole. Age composition of total catch 1957-1974 (thousands).
MALE

Age Year	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1	\bigcirc	0	0	0	0	0	0	7	0	0	0	0	0	557	331	0	113	267
2	86	259	278	4338	1640	0	84	98	23195	3929	2247	4778	12637	3015	17671	3411	5840	9328
3	2940	2184	3814	5535	18720	2163	1828	1163	168	60251	13983	18121	10291	13170	6692	23672	6500	15834
4	3376	5582	3552	7301	7752	25792	2919	2535	892	241	49210	14424	2918	3936	6709	3739.	7643	3404
5	1272	3113	4928	5108	4116	6133	22873	1907	2656	643	883	28952	5631	769	2462	2544	1419	3447
6	863	1728	2455	5614	3117	5241	2473	7656	1220	1653	$2 \uparrow 6$	3021	8780	1290	438	1116	1160	1232
7	2584	1837	819	3431	1901	2087	2443	1303	5729	319	854	836	0	5523	694	162	344	821
8	624	2463	1802	1249	1945	1902	592	2145	557	3917	635	2145	66	44	2647	464	285	421
9	440	850	1279	696	738	1197	1533	303	631	114	2769	153	278	32	64	2269	610	194
10	2180°	498	594	2181	567	416	705	254	210	189	0	666	3	240	45	51	1268	211
11	75	1941	435	888	1003	937	396	169	218	44	213	30	862	65	162	13	33	808
12	0	0	1992	298	480	526	531	92	241	151	218	169	3	1022	48	288	194	18
13	26	190	15	2569	177	469	732	259	186	153	104	77	236	98	660	22	161	16
14	0	0	73	119	1087	400	195	199	201	41	110	13	32	220	160	420	27	167

Table 12b. North Sea Sole. Age composition of total catch 1957-1974 (thousands).

$\xrightarrow{\text { Age }}$ Year	1957	1958	1959	. 1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1	0	0	0	0	0	0	0	71	0	0	0	0	265	649	185	0	610	410
2	1199	1890	3900	9148	3158	1729	537	119	26685	9470	2750	4624	13812	4068	20731	5393	7376	10207
3	5925	6622	10057	9983	38429	4053	6582	1457	756	74396	17282	13898	10086	13946	7214	19772	5470	12729
4	7243	6548	9156	11560	19004	33036	5949	4721	551	358	56301	10876	2174	4953	6298	3795	8795	2969
5	1624	3953	5173	4475	6603	8477	24975	1934	2196	402	1497	21188	5083	1042	1703	2905	2503	3199
6	1192	1304	3671	3875	3436	4651	5432	8626	1213	1232 ,	418	2536	13408	1677	584	856	1208	814
7	2260	1201	707	2621	2434	2280	3856	1753	5719	464	1510	1283	243	7832	914	282	748	571
8	573	1170	622	633	1504	2224	1580	796	812	3981	246	2551	115	168	4266	567	565	208
9	263	633	1411	475	730	1083	1864	470	712	435	3062	529	537	56	79	3059	684	235
10	1801	219	614	995	508	250	668	544	145	447	475	1371	193	479	47	47	2002	206
11	50	1783	341	500	634	516	331	283	464	211	506	259	1544	74	219	24	188	1200
${ }^{1} 2$	77	63	1063	278	536	419	130	85	121	339	139	558	154	1542	0	186	116	48
13	19	37	85	1272	427	559	1210	177	244	56	418	275	291	85	1094	26	207	4
14	49	63	22	44	995	73	170	168	203	62	97	327	96	303	72	658	46	101

Table 13. Average fishing mortalities and relative fishing mortalities for 1969-1973, used as terminal F values in the VPA and the prognosis

Age	Males		Females	
	Average F	Relative F	Average F	Relative F
2	0.23	0.27	0.28	0.35
3	0.85	1.00	0.80	1.00
4	0.77	0.91	0.66	0.83
5	0.64	0.76	0.52	0.65
6	0.81	0.95	0.66	0.83
7	0.50	0.59	0.60	0.75
8	0.25	0.29	0.40	0.50
9	0.18	0.21	0.35	0.44
10	0.14	0.16	0.29	0.36
11	0.09	0.11	0.21	0.26
12	0.11	0.13	0.16	0.20
13	0.11	0.13	0.16	0.20
14	0.15	1.8	0.25	0.31

Table 14a. North Sea Sole. Fishing mortalities 1957-1974.

Table 14b. North Sea Sole. Fishing mortalities 1957-1974.

	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	$\begin{aligned} & 1974 \\ & =F_{I} \end{aligned}$
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.05
2	0.03	0.03	0.06	0.05	0.15	0.06	0.08	0.01	0.10	0.18	0.11	0.18 .	0.37	0.20	0.39	0.34	0.25	0.28
3	0.14	0.19	0.20	0.19	0.27	0.26	0.27	0.29	0.09	0.41	0.51	1.07	0.66	0.69	0.56	0.70	0.59	0.80
4	0.30	0.20	0.39	0.32	0.59	0.34	0.64	0.29	0.15	0.05	0.54	0.63	0.40	0.70	0.69	0.58	0.70	0.66
5	0.21	0.24	0.21	0.30	0.28	0.50	0.41	0.39	0.19	0.14	0.29	0.36	0.60	0.30	0.49	0.70	0.85	0.52
6	0.12	0.23	0.33	0.21	0.36	0.28	0.62	0.22	0.40	0.14	0.19	0.96	0.36	0.36	0.25	0.43	0.62	0.66
7	0.18	0.15	0.17	0.36	0.18	0.38	0.36	0.37	0.20	0.23	0.22	1.22	0.19	0.32	0.30	0.16	0.73	0.60
8	0.08	0.12	0.10	0.20	0.32	0.22	0.43	0.10	0.26	0.18	0.17	0.63	0.27	0.17	0.26	0.28	0.50	0.40
9	0.09	0.10	0.18	0.09	0.33	0.36	0.27	0.20	0.11	0.19.	0.19	0.57	0.23	0.18	0.10	0.27	0.56	0.35
10	0.08	0.09	0.12	0.17	0.12	0.16	0.35	0.10	0.08	0.09	0.30	0.11	0.37	0.29	0.21	0.08	0.25	0.29
11	0.06	0.10	0.17	0.13	0.14	0.15	0.29	0.22	0.11	0.14	0.12	0.24	0.15	0.21	0.19	0.14	0.42	0.21
12	0.21	0.09	0.07	0.18	0.18	0.11	0.05	0.10	0.12	0.10	0.11	0.17	0.19	0.20	0.00	0.21	1.58	0.16
13	0.03	0.14	0.15	0.10	0.41	0.25	0.48	0.07	0.40	0.07	0.15	0.31	0.11	0.14	0.19	0.11	0.34	0.16
$14=\mathrm{F}_{\mathrm{I}}$	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.25	0.25

Table 15a. North Sea Sole. Stock in numbers (thousands).

MALES																		
Year	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1	50218	41009	157226	17357	26925	7333	34554	285442	61701	35382	34697	50869	23358	73246	21535	42018	52742	5750
2	26895	45439	37106	146135	15705	24362	6635	31265	258272	55829	32015	31395	46028	21135	65746	19171	38020	47616
3	35042	24254	40869	33311	128062	12653	22044	5924	27870	211658	46783	26833	23871	29666	16261	42734	14109	28857
4	25172	28914	19871	33356	24886	98064	9395	18209	4256	24499	134395	29077	7218	11863	14385	8380	16318	6619
5	10170	19570	20865	14608	23255	15171	64253	5735	14069	3005	21135	75003	12677	3769	7005	6672	4046	7538
6	15339	7994	14753	14205	8.379	17135	7923	36493	3382	10210	2109	15348	40454	6144	2681	4006	3628	2317
7	18592	13059	5593	11018	7501	4630	10537	4825	25780	1905	7669	1703	556	-28 274	4336	2010	2567	2184
8	9144	14369	10072	4284	6718	4984	2216	7217	3130	17887	1421	6128	751	503	20342	3264	1665	1996
9	9574	7681	10664	7403	2692	4235	2709	1444	4497	2304	12471	685	3513	617	413	15892	2513	1236
10	28626	8245	6142	8434	6038	1736	2697	1004	1019	3470	1976	8661	475	2914	527	313	12226	1695
11	1870	23831	6987	4994	5563	4924	1176	1772	668	722	2960	1788	7223	427	2409	435	235	9858
12	1204	1621	19719	5909	3675	4082	3566	689	1443	398	612	2476	1589	5716	324	2026	381	181
13	0	1089	1467	15950	5063	2870	3194	2723	536	1077	217	347	2080	1435	4196	248	1560	161
14	0	0	805	1313	11993	4413	2151	2196	2218	309	829	98	241	1658	1206	3165	203	1258

Table 15b. North Sea Sole. Stock in numbers (thousands).

Agear	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1	74258	77553	221800	26602	37118	8074	11000	316318	65886	30173	32114	51694	26368	74629	22096	38022	49067	8830
2	44846	67191	70173	200693	24070	33586	7305	9953	286149	59616	27301	29058	46774	23607	66910	19817	34404	43817
3	48847	39439	59001	59789	172900	18780	28747	6100	8893	233567	44952	22091	21902	29231	17499	40895	12818	24131
4	29094	38571	29399	43839	44622	119987	13148	19767	4137	7328	140840	24312	6888	10280	13264	9006	18312	6422
5	9121	19451	28685	17924	28705	22394	77246	6270	13408	3220	6291	74144	11711	4173	4619	6047	4558	8255
6	11412	6712	13849	21045	11974	19710	12236	46229	3840	10047	2532	4272	47001	5787	2787	2567	2725	1761
7	14705	9193	4836	9050	15365	7577	13422	5934	33643	2325	7921	1894	1473	29817	3647	1968	1512	1323
8	8055	11160	7178	3704	5704	11592	4695	8489	3707	25012	1664	5734	506	1102	19553	2433	1513	661
9	3356	6744	8986	5904	2751	3735	8378	2751	6925	2584	18853	1272	2775	349	838	13645	1663	834
10	23504	2787	5501	6792	4891	1797	2353	5812	2043	5590	1925	14152	650	2001	262	683	9444	858
11	890	19556	2314	4394	5201	3943	1388	1496	4742	1711	4633	1291	11503	405	1357	193	573	6646
12	420	758	16001	1770	3501	4104	3078	942	1085	3850	1348	3712	923	8942	297	1020	152	341
13	783	307	626	13468	1337	2659	3315	2661	772	867	3162	1088	2829	689	6627	268	746	28
14	541	695	243	485	10978	805	1876	1854	2240	467	731	2464	723	2283	542	4958	218^{\prime}	479

Table 16. Number of North Sea sole recruits in millions

Year class	Males	Females	Sexes combined
1955	26.9	44.8	71.7
1956	45.4	67.2	112.6
1957	37.1	70.2	107.3
1958	146.1	200.7	346.8
1959	15.7	24.1	39.8
1960	24.4	33.6	58.0
1961	6.6	7.3	13.9
1962	31.3	10.1	41.4
1963	258.3	286.1	544.4
1964	55.8	59.6	115.4
1965	32.0	27.3	59.3
1966	31.4	29.1	60.5
1967	46.0	46.8	92.8
1968	21.1	23.6	44.7
1969	65.7	66.9	132.6
1970	19.2	19.8	39.0
1971	38.0	34.4	72.4
1972	47.6	43.8	91.4

Table 17. Nominal weight (g) at age, for catch and stock (average 1969-1973)

Age	Males $^{\prime}$		Females	
	Biomass	Catch	Biomass	
2	39	90	62	124
3	146	203	199	257
4	231	259	316	377
5	283	302	425	473
6	316	326	507	540
7	339	351	566	585
8	361	371	605	622
9	377	383	639	654
10	387	392	671	684
11	395	395	694	703
12	401	403	713	723
13	404	406	729	735
14	406	407	739	745

Table 18. Nominal catches of plaice in the Irish Sea (VIIa) and Bristol Channel (VIIf), 1960-1974

	Belgium		France		Ireland		Netherlands		$\begin{gathered} \text { England/ } \\ \text { Wales } \\ \hline \end{gathered}$		N. Ireland		Scotland		Total	
	VIIa	VIIf														
1960	140		157		611	-	-	-	1620		34	-	18	-	258	
1961	82		67		743	-	-	-	1443		22	-	42	-	2399	
1962	11	73	54	4	594	-	-	-	1436	205	28	-	20	-	2143	282
1963	23	55	60	1	545	-	-	-	1141	173	68	-	29	-	1866	229
1964	253	184	147	3	844	-	-	-.	1388	204	185	-	62	-	2879	391
1965	150	224	168	10	574	-	1	-	2484	272	225	-	62	-	3664	506
1966	72	113	562	21	782	-	-	-	2527	467	174	\bullet	151	-	4268	601
1967	69	137	1082	-	819	-	-	-	2866	655	138	-	85	-	5059	792
1968	152	260	40	669	1449	-	-	-	2764	521	178	-	112	-	4695	1450
1969	208	202	33	668	1309	-	-	-	2540	506	216	-	88	-	4394	1376
1970	305	226	250	102	909	-	8	-	1869	501	184	-	58	-	3583	829
1971	175	202	-	-	1028	-	61	-	2744	545	- 132	-	92	-	4232	747
1972	179	137	440	110	863	-	48	-	3366	377	134	-	89	-	5119	624
1973	221	158	500	-	1079	-	42	-	3002	381	143	-	73	-	5060	539
1974*	254	162	(500)	(100)	848	-	48	-	2219	229	(100)	-	32	-	4001	491

*Preliminary figures as reported. No reports were recieved from France or Northern Ireland, and estimates for
these catches were made as shown by the bracketed figures.

Table 19. Plaice growth data - mean lengths (cm) at age, and parameters of von Bertalanffy equation. Data on age group 0-2 from research vessel samples; data on age group 3 onwards from commercial catch samples.

			Irish Se	(VIIa)				Bristol	. (VIIf)	
		Female			Male					
$\begin{aligned} & \text { Age } \\ & \text { group } \end{aligned}$	$\begin{aligned} & \text { Belgian } \\ & 1970-74 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Englisi } \\ & + \text { Welsh } \\ & \text { + } 964-71 \end{aligned}$	$\begin{gathered} \text { Irish } \\ 1962-66 \\ \hline \end{gathered}$	Belgian $1970-74$	English + Welsh 1964-71	$\begin{aligned} & \text { Irish } \\ & 1962-66 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Belgian } \\ & 1970-74 \end{aligned}$	English + Welsh 1969	$\begin{aligned} & \text { Belgian } \\ & 1970-74 \\ & \hline \end{aligned}$	English + Welsh 1969
0		7.3	11.8		7.3	11.6		9.6		9.5
1		15.3	18.7		15.3	18.8		17.0		17.1
2		21.0	23.7		21.0	23.3	29.5	29.9	28.8	28.1
3	31.1	26.8	32.0	28.8	26.8	29.4	32.4	31.0	30.6	29.4
4	33.8	31.8	34.5	31.4	29.8	31.9	35.0	32.2	31.5	29.8
5	37.1	33.4	38.2	32.4	30.5	34.4	37.0	32.9	32.3	32.1
6	39.3	35.5	40.4	32.8	31.1	36.6	40.4	34.7	32.0	34.5
7	41.5	37.8	44.1	35.8	32.0		42.9	35.0	35.5	27.6
8	43.7	38.9	46.1	36.4	35.2		44.8	41.9	38.0	
9	45.3	41.1		38.0	32.4		47.3	-		
10	46.8	44.1			34.1		49.0	47.5		
11	50.5	45.0			32.6		49.6	50.2		
12	50.6	48.8			39.6		50.5	53.9		
13	52.3	46.6			40.7		58.0			
14	52.5	50.8			37.7					
15	51.0	$48 \cdot 7$								
16		54.3								
17		54.7								
18		49.4								
19		56.8								
20 21		55.5 56.4		-						
	55.80			37.23			60.69		38.21	
L_{∞}										
K	0.16			0.35			0.14		0.27	
$\mathrm{t}_{\text {。 }}$	-0.83			-0.31			-0.94		-1.63	

Table 20. Irish Sea plaice (VIIa). Belgian length/weight data

Age group	Females		Males	
	Length	Weight	Length	Weight
2	26.9	247		
3	31.1	320	28.8	239
4	33.8	391	31.4	311
5	37.1	522	32.4	326
6	39.3	669	32.8	322
7	41.5	731	35.8	459
8	43.7	897	36.4	470
9	45.3	963	38.0	500
10	46.8	1096		
11	50.5	1	371	
12	50.6	1	410	
13	52.3	336		
14	52.5	1357		
15	51.0	1642		

Table 21. Parameters used in calculating yield equations - Plaice.

	VIIa		VIIf	
	σ	ρ	σ	q
W_{∞}	482.0	1757.0	518.4	2229.7
K	0.35	0.16	0.27	0.14
t_{0}	-0.32	-0.831	-1.63	-0.94
$t_{C}=t_{r}$	3.5	3.5	3.5	3.5
$t_{\text {max }}$	20	30	20	30

Table 22. Irish Sea (VIIa) and Bristol Chánnel (VIIf) plaice. Total mortality estimates from catch and effort data.

Table 23. Nominal catches of Sole in the Irish Sea (VIIa) and Bristol Channel (VIIf), 1960-1974.

Year	Belgium		Ireland		France		Netherlands		$\begin{gathered} \text { U.K. } \\ \text { (England/Wales) } \end{gathered}$		Total	
	VIIa	VIIf										
1960	531		25	-	90		-	-	756		1402	
1961	406		25	-	60		-	-	682		1173	
1962	40	335	37	-	45	45	-	-	464	215	586	595
1963	64	174	25	-	43	61	-	-	323	122	455	357
1964	938	471	40	-	242	77	-	-	380	111	1600	659
1965	1025	498	29	-	228	72	13	-	344	75	1639	645
1966	407	248	14	-	367	150	-	-	288	112	1076	510
1967	307	451	22	-	361	83	- .	-	320	209	1010	743
1968	332	292	23	-	125	179	-	-	456	127	936	598
1969	841	289	34	-	97	194	3	-	417	168	1392	651
1970	1142	567	25	-	115	118	235	-	291	145	1808	830
1971	883	595	45	-	45	40	552	-	356	131	1881	766
1972	551	343	50	-	38	82	514	-	278	123	1441	548
1973	793	416	27	-	12	240	281	-	315	122	1428	778
$1974{ }^{\text {\% }}$	690	561	25	-	(25)	(80)	321	-	209	105	1270	746

P Preliminary figures as reported. No report was received from France, and estimates were made as shown by the bracketed figures.

Table 24. Irish Sea (VIIa) and Bristol Channel (VIIf) Sole. Length and weight (gutted) per age. (Belgian data).

Age	Irish Sea				Bristol Channel.			
	- ${ }^{2}$		0°		ㅇ		σ	
	Length (cm)	Weight (g)	Length (cm)	Weight (g)	$\begin{gathered} \text { Length } \\ (\mathrm{cm}) \end{gathered}$	Weight (g)	Length (cm)	Weight (g)
2	24.7	136	24.5	119	25.4	148	25.1	140
3	26.4	173	24.8	135	29.1	226	26.5	159
4	29.0	238	25.7	148	31.6	297	28.1	190
5	31.1	293	26.7	172	33.4	- 344	23.8	235
6	33.0	363	28.1	206	35.0	415	30.9	260
7	33.8	389	28.4	204	36.1	447	31.6	284
8	34.8	427	28.6	210	37.7	517	32.2	293
9	35.6	460	29.1	221	38.8	559	32.4	299
10	36.3	499	29.7	237	32.0	578	34.4	366
11	36.3	500	29.8	238	40.8	629	34.2	355
12	37.6	537	31.0	278	40.3	629	35.1	384
13	38.3	584	30.5	263	40.1	620	35.9	403
14	37.8	556	30.2	255	41.2	692	35.6	407
15	38.9	628	32.2	310	41.4	688	35.3	372
- 16	37.5	566	31.0	276	41.5	660	37.1	428
17	40.3	626	32.0	329	43.0	736	34.8	417
18	40.2	719	34.1	357	42.4	709	36.8	453
19	41.1	726	33.0	358	44.1	827	37.0	475
20	38.3	599	32.4	358	42.1	740	35.3	383
21	41.5	690	32.0	337	45.3	863	38.4	495
22	40.7	650	33.3	340	42.3	739	38.7	551
23	37.8	534	34.1	402	45.2	976	37.5	437
24	41.6	729	34.5	460	40.6	760	41.0	682
25	39.5	618	33.8	386	46.0	962		
26	39.0	602						
27	38.0	567						
28	40.3	607						
29	40.5	551						
30 31								
32					55.0	1142		

Table 25. Irish Sea (VIIa) and Bristol Channel (VIIf) Sole.
Parameters used in the yield equation.

	Irish Sea		Bristol Channel	
Woo	590.6	370.1	807.0	529.5
L_{∞}	39.6	33.8	42.9	39.4
K	0.329	0.152	0.217	0.174
t_{0}	0.7	-4.2	-0.1	-0.6
t_{c}	3.7	4.4	3.9	5.0
t_{r}	3.0	3.0	3.0	3.0

Table 26. Irish Sea (VIIa) and Bristol Channel (VIIf) Sole. Total mortality estimates from catch and effort data.

Table 27. Nominal catch (metric tons) of Plaice in the English Channel, 1964 - 1973 (Bulletin Statistique).

Year	U.K. (England/Wales)	Frànce	Belgium	Netherlands	Total
1964	1038	1393	28	-	2459
1965	$I 286$	2130	33	-	3449
1966	1748	$2700^{\text {Fi }}$	25	-	4473
1967	1805	2905	11	-	4721
1968	$I 354$	1920	30	-	3304
1969	1029	1681	30	-	2740
1970	1517	2161	183	6	3867
1971	1465	2635	180	-	4280
1972	1182	1866	177	17	3242
1973	1256	1735	144	-	3135

F Figure from Revue des Travaux de l'Institut des Pêches Maritimes raised to round fresh weight.

Table 28. English Channel Plaice. Catch per unit of fishing effort (kg gutted wt/100 hours fishing), 1969-1974.

	1969	1970	1971	1972	1973	1974
England (Brixham)	5.7	4.0	3.2	2.6	2.1	
Belgium (Beam Trawl)			3.5	6.9	8.3	

Table 29. Statistical News Letter No. 61 (1972) catch (by statistical rectangles) for which fishing effort data are available.

Country	Fishing area	News Letter		Bulletin Statistique		A/C	B/D
		A) Plaice (tons)	$\begin{aligned} & \text { B) Sole } \\ & \text { (tons) } \end{aligned}$	C) Plaice (tons)	$\begin{aligned} & \text { D) Sole } \\ & \text { (tons) } \end{aligned}$		
Belgium	IV	4313	1693	5531	- 1834	. 78	. 92
	VIIa	178	559	179	561	. 99	1.00
	VIId, e	174	149	177	153	-98	. 97
	VIIf	135	339	137	343	. 99	. 99
Denmark	IV	9768	-	24494	671	. 40	-
Netherlands	IV	53906	17242	52048	17662	$1.04{ }^{\text {\% }}$. 98
	VIIa	45	481	48	514	. 94	. 94
Total	IV	67987	18935	123150	21093	. 60	. 90
	VIIa	223	1040	5165	1450	. 04	. 72
	VIId, e	174	149	3242	1360	. 05	. 11
	VIIf	135	339	624	548	. 22	. 62

${ }^{*}$ For IVb the coverage is 97%. A quantity of almost 3000 tons more than the Bulletin Statistique figure for IVc was reported to the News Letter.

Table 30. Statistical News Letter No.6l (1972), stock record section. Catch (by statistical sub-area or division) for which fisting effort data are available.

1)

Belgium reported gutted weight. Conversion factor used here - plaice and sole 1.08 .
2)

England/Wales reported gutted weight. Conversion factor used here - plaice and sole l.12.
3)

Netherlands data refer only to beam trawl.

Table 31. Best total coverage in Tables 1 and 2.

Fishing area	News Letter		Bulletin Statistique		${ }^{\text {A }}$ C	B / D
	A) Plaice (tons)	$\begin{gathered} \text { B) Sole } \\ \text { (tons) } \end{gathered}$	C) Plaice (tons)	D) Sole		
IV	98113	19751	123150	21093	. 80	. 94
VIIa	2785	1239	5165	1450	. 54	. 85
VIId, e	386	294	3242	1360	. 12	. 22
VIIf	313	401	624	548	. 50	. 73

Figure 1. North Sea Plaice.
Relation between yield per recruit and biomass per recruit against steady-state $\mathrm{F}_{\text {max }}$.

Figure 2. Irish Sea and Bristol Channel Plaice.
Yield per recruit against F at different levels of M .

Figure 3. Sole in the Trish Sea.
Yield curve for males and females.

Figure 4. Sole in the Bristol Channel. Yield curves for males and females.

E6 E7 E8 E9 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 G0

Monthly samples of landings in Esbjerg (20 kg from each of 4 size categories) are aged and!raised on a quarterly basis to total Danish North Sea landings. As the fleets from other west coast ports partly exploit different fishing grounds, this procedure may give a biased composition of the Danish landings.

1.2 Sole

From the landings in the port of Hvide Sande in the second quarter of the year a random sample of about 2000 sole is measured. Another sample of about 500 sole is aged (otoliths are burned). The age/length key is applied to the measured sample which is then raised to the Danish total.

2. Netherlands

2.1 Sole_and_plaice

The Dutch flatfish cutter fleet operates in a wide area covering the southern and most of the central North Sea. On a small scale they also seasonally exploit the Irish Sea sole stock. Place and sole are landed throughout the year in a number of fishing ports, of which IJmuiden takes the bulk followed at some distance by Urk.

2.2 Sampling procedure_and working_up_of the_data

2.2.1 Sampling for biological purposes (length, weight, age) is carried out throughout the year and the whole area explo\&ted is covered on a subarea basis. For plaice and sole intensive sampling is carried out during the spawning season and biological parameters for population studies are collected. In the other seasons a minimum of six samples for age determination are taken for plaice and a minimum of twelve samples for sole.
2.2.2 For sole no length measurements are carried out in the fish market since all soles are allocated to one of the five market size categories with the aid of a measuring board. The limits of these categories are the same throughout the country and thus the total of all market categories in all fish market gives an unbiased statistic. For

- age reading, samples of the market categories are purchased by the - laboratory, and since the total weight and number in the samples are known the average weight can be calculated. Each sample produces a percentage age distribution for the relevant market category. Summing all the samples per stratum and dividing the total weight of the samples by the number of sole gives an unbiased average weight. Raising this average weight to the observed total weight in the commercial category statistics and multiplying this by the average percentage age distribution of the sum of the samples gives an estimate of the observed age composition of the total landings in the relevant market category. Summing up these raised age distributions for all market categories gives the estimated age composition of the total catch.
2.2.3 For plaice the situation is not so favourable. Allocation of landings to the various market categories is done by hand without a measuring board, and may be biased by personal factors. The length distribution of the landed plaice also may influence the sorter's views on the limits of the various market categories.
2.2.4 For this reason, plaice are measured on the fish market and samples are bought for assessing the length, age, weight and other parameters.
2.2.5 Thrcugh age/length keys the estimated length distribution is transformed into an age distribution whereby the weight of the samples is later raised to the total weight of the ship's catch sampled: Later the total of all ships sampled is raised to the Netherlands total landings. For sole as well as for plaice, sampling for age and for length is spread cver the various fish markets, thus eliminating the effect of different fishing areas exploited by fleets landing in different ports.
2.2.6 Age reading for sole is carried out using the Moller Christensen burning technique, and for plaice a modified burning technique is used in difficult cases (mostly old fish). Sole otoliths are mounted in plasticine and kept in boxes. Plaice otoliths are kept in paper sacs and later read with transmitted light.

3. Federal Republic of Germany
3.1 Plaice

Most of the plaice caught by the Federal Republic of Germany cutters originate from the eastern North Sea (northern and southern Schlickbank). The majority of the plaice caught are landed at Hamburg fish market throughout the year. Sampling of the length/age data is carried out at least once a month.
3.2 Sampling_procedure
3.2.1 The sampling of plaice is done on landing. Throughout the whole landing operation baskets of unsorted gutted plaice are measured by sex.
3.2.2 During one night approximately 400-1 000 specimens are measured. Once a month 200-500 otoliths of plaice, separated by sex, are taken from unsorted landings. Occasionally some additional otoliths, especially of the larger cm-groups, are taken.
3.3 Working_up_of_the_data

All otoliths are mounted on a dark background in polyester resin and read by reflected light. After all, otoliths have been read, the age distribution per cm-group is raised to the total yearly length distribution. An average weight/length relationship per cm-group and sex is used to estimate. the total weight of the samples for the year. (This weight/length key for all cm-groups and both sexes is derived from about 10000 plaice weighed individually during the period 1969-74 during all months of the year). The age distribution (numbers per age group) is then raised to the total German landings.
4. Belgioum
4.1 Sole and plaice

The Belgian flatfish landings originate from the North Sea (mainly Southern Bight), the English Channel, the Irish Sea and the Bristol

Channel. In the two latter regions, fishing takes place mainly during the spawning season of the soles. The landings are sampled in the three Belgian fishing ports, Ostende, Zeebrugge and Nieuwport.
4.2 Sampling_procedure_and_wcrking_up_of the data

The sampling is carried out throughout the year, except for the plaice in Divisions VIIa and VIIf where samples are only taken during the first quarter of the year (spawnirgseason). The catch in the Belgian ports is divided into a number of size categories for sole and plaice. From each of these categories samples are taken on a weekly basis for length measurements. For age reading, samples are taken from every category of every region for both species. For the age reading of sole the Møller Christensen burning technique is used and for plaice the transmitted light technique. The length distribution of the total catch of each category is derived on a quarterly basis from the length measurements in the fish market. The estimaticn of the age composition is carried out by transforming the age distribution of the samples to the length composition of the total catch per quarter.
5. Scotland
5.1 Estimaticn of length frequency
5.l.l For each vessel sampled, all the fish in a 1 cwt (50.8 kg) box of each category landed by that vessel are measured. The total weight of each category landed by the vessel is recorded, and the ratio:

Weight of category landed by, vessel/Weight measured
is used to raise the categcry length frequencies. The category length frequencies are then added to give a vessel length frequency.
5.1.2 This operation is repeated each month for up to 4 seiners, trawlers, and light trawlers frcm each market sample area. Monthly boat length frequencies for each vessel type within each market sample are then added and the results raised by the ratio:

Total weight landed by vessel type during month/Weight represented by vessel length frequencies
to give the total length frequency for each vessel type for the month.

```
5.2 Age/length keys_
While measuring fish for the estimation of length frequencies, up to 10 otoliths per cmagroup are collected for each gear/area combination in each month.
\(-\)
6. Ireland
6.1 Frcm 1962 to 1966 the commercial catch was examined both on the Dublin fish market (no sales took place at the port of landing) and at sea aboard the vessels. No size grading of the commercial catch was carried out at sea, nor on the market, and so no stratification of sampling was possible on that basis. Furthermore the extent of the overlap in length range between the different age groups present was so great that sub-sampling from the normal 45 kg fish box, or even frcm the catch of one boat, was
```

not reliable for the purposes of assessing the age distribution of the landed catch. Consequently, whole boat catches were the smallest samples examined, and length data (by sexes) were collected monthly at first and later quarterly. The total weight of each sample was recorded. On commercial vessels at sea, the whole catch was examined for length and sexual maturity, and otoliths were taken from all fish. The same practice was carried out on research vessel catches.
6.2 A new catch sampling programme will commence shortly.

7. England

7.1 Since 1955 routine English market sampling of North Sea plaice landings has follcwed the principle of a random selection of the available strata at Grimsby and Lowestoft, the ports which account for most of the landings.
7.2 The length sampling programe involves measuring plaice in a lo-stone (64 kg) box from each of four size categories from four landings in each week of each month of the year. The sample length distributions are raised to the total category landing of each ship, combined by categories for the sixteen sampled ships each month, and raised to the total month by category landing. Finally, the raised measurement for all categories are combined. Subsequently, the monthly length distributions are combined on a.quarterly basis for use with the age/length key. All together about 6000 plaice are measured each month and the overall intensity of sampling is about one measured sample per 71 tons landed. The most important grounds fished by each sampled vessel are usually known, so that the length samples can be ascribed to particular areas of origin. However, the samples are actually taken at random and without prior reference to the area of origin and the final length distribution is therefore nominally representative only of the whole area fished by Lowestoft and Grimsby vessels in each quarter.
7.3 The length distributions are aged on a quarterly basis using age/length keys derived from otoliths selected at random from the landings, but stratified by length group. The target is some 150 fish per month at each port, comprising 25 fish per 5 cm length group, and representing a sampling intensity of one otolith per 22 tons landed. Otolith samples can be attributed to a specific rectangle of origin but as before the actual areas represented are not pre-determined at the time of sampling.
7.4 The annual age composition represents the sum of four quarterly age compositions, summed for Lowestoft and Grimsby and raised to the total annual English North Sea plaice landings.

Virtual Population Analysis for North Sea Plaice with Special Reference to Young Plaice Fisheries, and Assuming M Varying with Age

by E. Ursin
Danmarks Fiskeri- og Havundersøgelser, Charlottenlund

Abstract

The assumptions underlying the present application of the VPA method differ in two respects from those adopted by Bannister (C.H.1973/F:31). The raising of available data to account for the entire plaice fishery in the North Sea is made differently in order to obtain a more realistic representation of the young plaice fishery and hence of the young plaice stock. The natural mortality is guessed after some reasoning on the probable causes of mortality and their effects on individual age groups. The data was processed with a recent release of the VPA programme for the NOVA 1200 computer in Charlottenlund, written by H. Lassen and P. Sparre.

Table 3 has the age composition of total landings as calculated in the present paper. Table 4 is the estimated fishing mortality rates and Table 5 the estimated stock numbers. Tables 6 and 7 summarise Tables 4 and 5 for five year periods. Figure 1 illustrates the strength of individual year classes.

Terminal F values were selected to produce fairly constant F values for fish 8-1l years old within each year of observation. This was achieved by putting terminal F equal to 0.4 in most cases. Age groups 1-14 are included in the analysis.

Comments on underlying assumptions are given below followed by a comparison of the present results with Bannister's.

Raising Numbers Caught in Some Fisheries to Total North Sea Catch
The method used by Bannister is as follows :

1. Lowestof't (and Grimsby ?) age compositions were raised to total British catch (Bulletin Statistique).
2. For the years 1947-1957 British data were raised for the total North Sea catch.
3. Since 1958 Dutch catches (age composition in Statistical News Letters) were added to British catches and then raised to total North Sea catch.

The procedure is consistent with the assumption that until 1958 all North Sea effort was distributed as British effort. Since 1958 Britain and the Netherlands fished more or less separate areas while other nations fished both of these areas.

Although having the merit of simplicity these assumptions are perhaps not the most realistic ones possible. A different and perhaps more realistic approach can be based on a paper by Gulland (Journal du Conseil; Vol. $31, \mathrm{p} .305$; 1968) who stresses the difference in size (and age) composition of British, Dutch and Danish catches as published in Statistical News Letters : British fishing mainly on the offshore stock of adult plaice with a sprinkling of immature plaice from Dutch and German coastal waters; Dutch fishing in the Southern North Sea with a large proportion of immature
plaice; and Danish fishing in the Eastern North Sea, mainly on immature plaice. There is no clear indication that these patterns underwent major changes since the war except that English effort withdrew from the continental coast about 1950 (Gulland)and that quite recently Danish effort may have spread over a larger area.

In order to visualise the assumptions necessary to utilise this information, consider the age composition data available :

1. British landings since 1948 (courtesy of Dr Bannister);
2. Dutch landings since 1958 (Statistical News Letters);
3. Danish landings in Esbjerg in 1960 and 1961 (Statistical News Letters)。

As in Bannister's approach, the raising procedure must use the age compositions of British catches as reference. This can be done on two assumptions :

1. Year class strength is the same throughout the North Sea.
2. Such trends as there may have been in British age compositions due to changing market demands, fishery regulation measures, etc. were reflected in other landings too.

The realism of these assumptions should be appraised if possible. Suffice to say for the time being that they are inherent in Bannister's raising procedure as well.

On the said assumption a raising procedure as described below can be adopted. Table 1 shows the age composition of 1000 kg of plaice landed in 1960-61 in Lowestoft-Grimsby and in Esbjerg. Column D shows the ratio for each age group. There were 15 times as many group II plaice in Danish as in English landings and 20 times as many old plaice in English landings as in Danish. Multiplication of these ratios by, for any year, the corresponding numbers landed in Britain and the ratso between British and Danish total yields provides an estimate of the age composition of Danish landings in that year, reflecting the year class strength in the British age compositions. The two right hand columns of Table l show an example.

A similar procedure was followed to simulate Dutch age compositions before 1958. Table 2 shows the raising factors calculated from the first three years of Dutch statistics (1958-1960). The age composition of Dutch landings are more or'less intermediate between those of British and Danish landings. Landings by other countries than Great Britain, Netherlands and Denmark were pooled and assumed to have the same age compositions as Dutch landings.

The calculated age compositions of total landings 1948-1972 are given in Table 3. As already mentioned with reference to Gulland the figures for 1948-1949 are not reliable because of a pronounced change in the distribution of British effort.

Several means of improving the realism of the age compositions should probably be considered :

1. The Lowestoft-Grimsby landings might make a better source of reference if recalculated as the sum of e.g. 100 hours catch from each of the areas distinguished in Gulland's paper (his Figure 4). That would remove most of the effects of English effort moving between areas from one year to the next.
2. A more realistic simulation of Danish landings probably could be obtained by including information on the age composition in 19731974 (data being processed at the moment). There has been some change in the distribution of effort since 1960 and the minimum legal size was increased from 26.0 cm to 26.5 cm in 1962, and again to 27.0 cm in 1967. The effects on age composition are not reflected in Table 3.
3. It is not quite clear if Dutch statistics (Statisticial News Letters) include in some years fish discarded at sea. A discrepancy between Statistical News Letter data and Bulletin Statistique might be due to that :

Statistical News Letters

Bulletin Statistique

29785
21250 1968

33535
30140

Also, the Dutch figures for 1967 in Statistical News letters might be looked into: catch/effort and total catch were very low, yet the numbers caught were high even though the plaice do not seem to have been particularly young (small) that year.
4. It should be possible to make separate estimates for males and females as Bannister did. Dutch and British data are presented for each sex and Danish catches probably could fairly safely be distributed according to the sex ratio of each age group in British and Dutch age compositions.

Natural Mortality

Beverton and Holt (1957, page 242) found $Z=0.06 /$ year $^{-1}$ a slightly underestimated value for the total mortality rate of adult plaice in the North Sea during the war 1940-1945 when little fishing was going on. As a cautious estimate they put $M=0$.l which figure has been used by most workers ever since. Daan (C.M.1973/F:38) found that the numbers of young fish of several species consumed by cod in the North Sea are not much below the recruit numbers of slightly older fish. Plaice is one of these species. Odds are that natural mortality has generally been underestimated for young fish and overestimated for old fish. Also to remember is the result of the North Sea Herring Working Group who estimated $M=0.07$ for adult herring although herring is a fairly small species more vulnerable than plaice to predation in the adult phase. Plaice, therefore, may be expected to have a natural mortality lover than that of herring unless they suffer from important diseases to which herring is immune, or unless adult plaice tend to leave the North Sea.

Experience with a multi-species Beverton and Holt model (C.M.1973/H:20, C.I. 1974/H:40) shows that under the general assumption on food consumption and predation mortality underlying that model (assumptions apparently consistent with the results obtained by Daan referred to above) a natural mortality varying as outlined above is easily simulated, whereas a constant M is difficult to achieve unless it is arbitrarly decided that an appropriate number of plaice drop dead for no apparent reason.

The M values used in the present VPA are as follows :

Age	I	II	III	IV	V	VIt
II	0.43	0.22	0.21	0.09	0.05	0.04

They are supposed to include Waddensea fishing mortality, discard mortality, and natural mortality due to disease (assumed 0.02 through-
out) and predation. They are as much guesses as the traditional $M=0.1$, but seem to account for the numbers in the shrimp fisheries (CoM.1972/F:2) or discarded at sea (C.M.1971/B:11) and to leave ample opportunity for predators to feed.

Comparison with Bannister's Results

Tables 6 and 7 contain 3 sets of estimated fishing mortality com efficients and stock numbers for 1961-1965. They are 8

1. Present investigation, M varying with age (see above);
2. Present investigation, $M=0.1$;
3. Bannister's estimates, $M=0.1$, different data raising procedure.

Using for the moment case 1, as reference point we find that the introduction of a constant $M=0.1$ (case 2.) reduces the estimates of F for the older year classes, but not for the youngest ones. Stock number estimates are lower for young fish, slightly higher for old fish.

Introducing also Bannister's raising procedure (a larger part of the fishery assumed placed on the adult stock) has similar yet stronger effects : the stock of old plaice would be larger, that of young plaice smaller, fishing mortalities lower for all ages; later recruitment.

Recruit number estimates at age 2 years are shown in Figure 1 for the two extreme cases : Bannister against the present investigations with varying M. The correlation is generally good, with 30% higher numbers in the present investigation. The only discrepancy is that Bannister has high estimates for the year classes 1964-1967. The effect is the impression that recruitment stabilised itself at a higher level in 1957 whereas the present investigation has a temporary and perhaps accidental increase in 1957-1962 and, of course, in 1963 when recruitment was exceptional. The cause of the disagreement on recruitment numbers in 1964-1967 is not obvious. It is introduced by applying the different raising techniques, not by changing M.

By and large the two sets of estimates, Bannister's and the present one, are comfortably like each other in spite of conspicuous differences in data raising procedure, M, and terminal F. The immediate effect is to increase confidence in the VPA method. Yet it should cautiously be remembered that the decision that a VPA has been concluded is that the results seem sensible, i。e. are not different from the investigator's preconceived ideas. Because most workers in a field of investigation are likely to have ideas to some extent similar, it is perhaps not a complete surprise that they arrive at similar results in such circumstances.

Table 1 Example of procedure for estimating age compositions in Danish landings.

Table 2 Dutch/British age composition ratios,: c.f. Table 1

Table 3 North Sea Plaice Catcyes as calculated by E。 Ursin (6.2.1975) Millions Inp data catch in numbers by year an by age

Age	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959
1	0	0	0	0	0	0	0	0	0	0	0	0
2	17.6	4.9	1.9	6.0	18.0	1.6	10.3	4.4	9.8	2.7	11.0	28.4
3	202.6	114.7	55.6	36.0	57.7	39.4	43.7	47.6	44.0	60.4	38.1	57.2
4	161.0	259.5	118.1	130.7	59.4	88.8	80.5	38.3	83.6	67.1	98.9	44.1
5	45.0	39.3	52.9	50.0	58.9	29.6	30.1	36.8	15.4	34.0	29.3	35.3
6	10.4	9.2	9.9	19.0	22.0	31.9	12.0	14.9	14.4	7.8	13.4	15.0
7	5.0	3.6	4.7	4.9	9.9	13.7	16.7	8.5	8.4	8.8	4.9	9.6
8	3.2	2.7	2.1	2.1	12.7	6.4	6.2	8.5	5.0	5.6	5.2	3.9
9	3.1	2.1	2.3	0.9	1.6	2.6	3.7	3.3	5.2	3.8	3.8	4.1
10	2.3	2.4	2.1	0.8	1.3	1.6	1.6	2.4	2.5	3.5	2.5	3.6
11	1.7	1.9	2.0	0.7	1.1	1.5	0.8	1.2	1.4	2.0	2.9	2.3
12	1.4	1.1	1.6	1.0	1.0	1.1	0.7	0.9	0.7	1.0	1.2	2.3
13	0.8	1.1	0.7	0.8	0.6	0.8	0.9	0.7	0.5	0.6	0.8	1.1
14	0.5	0.5	0.6	0.7	0.3	0.7	0.5	0.5	0.3	0.5	0.4	0.6
$15+$	0.4	0.6	0.7	2.9	0.4	0.6	1.0	0.5	0.4	0.7	0.7	1.0
Sum	455.0	443.6	255.2	256.5	244.9	220.3	208.7	168.5	191.6	198.5	213.1	208.5

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	0	0	0	0	0	0	0	0	0	2	1.6	0.8	1.3
2	8.7	4.1	2.2	7.9	25.3	17.7	8.1	5.7	13.3	19.4	31.8	50.6	32.3
3	115.2	58.5	62.9	45.3	89.6	95.6	124.9	46.2	61.1	58.6	90.4	98.6	70.1
4	86.1	112.5	108.8	147.8	133.3	105.6	98.7	243.6	64.7	53.0	90.8	60.7	87.3
5	16.6	26.9	48.8	59.1	53.4	41.5	31.9	42.2	116.3	31.6	37.2	16.0	21.8
6	17.4	9.0	17.1	24.6	25.8	23.1	17.4	19.9	13.3	73.9	24.9	19.1	14.8
7	8.9	9.6	7.0	9.7	10.2	12.7	11.4	14.7	7.2	7.6	59.6	11.8	13.4
8	5.1	6.0	6.7	4.8	3.9	6.4	7.5	$5 \cdot 7$	7.6	4.3	5.3	23.3	12.3
9	7.9	3.8	3.3	4.0	2.3	2.9	4.4	6.2	3.0	6.2	3.1	4.1	19.2
10	2.8	2.4	2.6	2.7	2.4	2.2	2.3	2.2	3.8	2.7	3.9	3.3	4.6
11	1.9	2.1	1.5	2.3	1.9	2.3	1.4	1.5	1.6	3.1	1.6	2.8	4.2
12	1.4	1.7	1.7	1.4	1.2	1.4	1.9	0.8	1.3	1.5	2.3	1.7	4.8
13.	1.1	1.2	1.2	1.3	0.9	2.6	1.2	1.2	0.7	1.0	0.9	1.7	2.4
14	0.5	0.8	0.9	0.9	0.8	1.0	0.9	0.7	0.8	0.5	0.7	0.7	2.4
15+	0.9	1.0	0.9	2.0	3.2	3.4	3.3	2.5	2.5	2.8	2.2	3.3	5.9
Sum	274.5	239.6	265.6	313.8	354.2	318.4	315.3	393.1	297.2	266.4	356.3	298.5	296.8

Fishing-Mortalities Row 14 and column 1972 : terminal F

Age	1948	1949	1950	1951	1952	1953	-1954	1955	1956	1957	1958	1959	1960
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.04	0.01	0.01	0.02	0.06	0.01	0.03	0.02	0.03	0.01	0.03	0.06	0.02
3	0.38	0.35	0.16	0.20	0.25	0.18	0.33	0.21	0.22	0.24	0.29	0.26	0.36
4	1.06	1.19	0.69	0.62	0.55	0.71	0.63	0.50	0.65	0.59	0.70	0.59	0.73
5	1.00	0.68	0.70	0.61	0.53	0.50	0.47	0.56	0.33	0.52	0.47	0.50	0.40
6	0.57	0.46	0.30	0.48	0.49	0.51	0.32	0.37	0.37	0.23	0.33	0.39	0.41
7	0.35	0.33	0.37	0.20	0.41	0.52	0.45	0.33	0.31	0.333	0.19	0.34	0.35
8	0.29	0.27	0.27	0.24	0.89	0.41	0.39	0.36	0.27	0.29	0.28	0.19	0.26
9	0.29	0.27	0.32	0.15	0.24	0.36	0.37	0.30	0.32	0.29	0.27	0.30	0.56
10	0.30	0.32	0.38	0.14	0.27	0.33	0.33	0.36	0.33	0.31	0.26	0.36	0.29
11	0.33	0.36	0.40	0.18	0.25	0.47	0.22	0.36	0.30	0.399	0.38	0.33	0.27
12	0.32	0.31	0.48	0.29	0.34	0.36	0.34	0.35	0.31	0.31	0.36	0.48	0.29
13	0.34	0.38	0.28	0.38	0.24	0.41	0.45	0.55	0.28	0.39	0.35	0.53	0.36
14	0.40	0.30	0.30	0.40	0.20	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40

Age	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.01	0.01	0.02	0.06	0.02	0.02	0.02	0.04	0.07	0.08	0.18	0.10
3	0.18	0.18	0.14	0.32	0.35	0.16	0.19	0.28	0.28	0.50	0.40	0.40
4	0.67	0.54	0.77	0.71	0.74	0.69	0.50	0.43	0.40	0.85	0.70	0.70
5	0.45	0.59	0.55	0.60	0.43	0.44	0.61	0.40	0.33	0.46	0.29	0.50
6	0.33	0.48	0.56	0.40	0.47	0.27	0.45	0.32	0.39	0.39	0.37	0.40
7	0.34	0.37	0.45	0.39	0.29	0.37	0.31	0.24	0.26	0.52	0.27	0.40
8	0.35	0.35	0.39	0.27	0.37	0.24	0.27	0.22	0.19	0.24	0.33	0.40
9	0.26	0.27	0.30	0.27	0.27	0.39	0.26	0.18	0.23	0.17	0.25	0.40
10	0.27	0.23	0.31	0.24	0.37	0.30	0.28	0.21	0.21	0.19	0.22	0.40
11	0.30	0.23	0.28	0.31	0.32	0.35	0.27	0.28	0.22	0.15	0.17	0.40
12	0.34	0.36	0.29	0.19	0.33	0.40	0.29	0.33	0.38	0.21	0.20	0.40
13	0.35	0.35	0.42	0.25	0.65	0.43	0.39	0.37	0.37	0.34	0.20	0.40
14	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40

v. 1 .

Table 5 Virtual Population Analysis

North Sea Plaice

Stock in Numbers

Age	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960
1	824	424	563	539	335	546	471	625	327	547	857	779	815
2	555	536	276	366	351	218	355	307	407	213	356	558	506
3	700	430	426	220	289	266	173	276	242	318	168	276	422
4	256	386	246	295	146	182	180	101	181	157	203	102	173
5	73	81	107	112	146	77	82	88	56	86	80	92	52
6	24	25	39	51	58	81	44	49	48	39	49	47	53
7	17	13	15	28	30	34	47	31	32	32	29	34	31
8	13	12	9	10	22	19	20	29	21	23	22	23	23
9	12	9	-9	7	8	9	12	13	19	16	17	16	19
10	9	9	7	6	6	6	6	8	9	13	11	12	11
11	6	6	6	4	5	4	4	4	5	6	9	8	8
12	5	4	4	4	4	4	2	3	3	4	4	6	6
13	3	4	3	3	3	2	3	2	2	2	3	3	4
14	2	2	2	2	2	2	2	2	1	2	1	2	2
Age	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	
1	743	699	732	1830	570	538	536	519	689	537	581	1600	
2	530	484	455	476	1191	371	350	349	338	448	348	1 377	
3	398	422	386	358	360	940	290	276	268	254	331	234	
4	239	270	285	272	210	206	650	194	169	165	125	- 180	
5	76	112	144	120	122	92	95	362	115	104	64	57	
6	33	46	- 59	79	63	76	56	49	231	79	63	46	
7	34	23	27	32	51	38	56	34	\bigcirc	150	52	41	
8	21	23	15	17	21	36	25	39	26	25	85	38	
9	17	14	16	10	12	14	28	18	30	21	19	59	
10	10	13	10	11	7	9	9	20	15	23	17	14	
11	8	7	10	7	8	5	6	7	16	11	18	13	
12	6	6	6	7	5	6	3	5	5	12	9	15	
13	4	4	4	4	6	3	4	2	3	3	9	7	
14	2	3	3	2	3	3	2	2	2	2	2	7	

Table 6 Mean fishing mortality corefficients for five year periods, and for 1951-1970. Bannister's results for comparison

Age group	Present investigation M function of age				1951-70	$\begin{array}{\|r} M=0.10 \\ \hline 1961-65 \end{array}$	Bannister$1961-65$	
	1951-55	1956-60	1961-65	1966-70			Males	Females
2	0.03	0.03	0.02	0.05	0.03	0.03	0.02	0.02
3	0.23	0.27	0.23	0.28	0.25	0.23	0.12	0.13
4	0.60	0.65	0.69	0.57	0.63	0.61	0.39	0.25
5	0.53	0.44	0.52	0.45	0.49	0.45	0.52	0.26
6	0.43	0.35	0.45	0.36	0.40	0.37	0.53	0.25
7	0.38	0.30	0.37	0.34	0.35	0.31	0.43	0.21
8	0.46	0.26	0.35	0.23	0.33	0.29	0.37	0.19
9	0.28	0.35	0.27	0.25	0.29	0.23	0.31	0.17
10	0.29	0.31	0.28	0.24	0.28	0.25	0.30	0.17
11	0.30	0.33	0.29	0.25	0.29	0.26	0.26	0.18
12	0.34	0.35	0.30	0.32	0.33	0.28	0.21	0.19
13	0.41	0.38	0.40	0.38	0.39	0.39	0.15	0.22
(14)	(0.36)	(0.40)	(0.40)	(0.40)	(0.39)	(0.40)	0.16	0.21
Average $8-11$	0.33	0.32	0.30	0.24	0.30	0.26	0.31	0.18

Table 7 Mean stock numbers (millions) in five year periods. Figures in brackets omit the exceptionally strong year class of 1963

$\begin{aligned} & \text { Age } \\ & \text { group } \end{aligned}$	Present investigation M function of age				1951-70	$\begin{array}{\|l} \mid M=0.10 \\ \hline 1961-65 \\ \hline \end{array}$	$\begin{array}{\|c} \text { Bannister } \\ \hline 1961-65 \end{array}$
	1951-55	1956-60	1961-65	1966-70.			
1	503	665	915(686)	564	662(600)	567(426)	-
3	319	408	627(486)	371	431(391)	540(419)	480
3	245	285	385	406(272)	330(298)	374	322
4	181	163	255	277(184)	219(196)	278	238
5	101	73	115	154(102)	111(98)	133	170
6	57	47	56	98(65)	65(56)	66	97
7	34	32	33	62(40)	40(34)	40	62
8	20	22	19	30	23	23	42
9	10	17	14	22	16	17	31
10	6	11	11	15	11	12	23
11	4	7	10	9	8	9	19
12	3	5	6	6	5	7	15
13	3	3	4	3	3	4	11
14	2	2	3	2	2	3	9
Suns:							
1-14	1488	1740	2 453(2083)	2 019(1 685)	1 926(1 741)	$2073(1811)$	-
2-14	985	1075	1 538(1 397)	$1455(891)$	1 264(1 141)	$1506(1385)$	1519
5-14	240	219	271	401(294)	284(256)	314	479

Figure 1 Estimated recruit numbers

Millions at age 2 years

Formulas and Calculations used in the Prognosis Program

by
H. Lassen

The basis for the assessments presented are the Beverton and Holt model, which may be formulated.

$$
\begin{align*}
N_{a+1}^{y+1} & =N_{a}^{y} \exp \left\{-F_{a}^{y}-M_{a}\right\} \tag{1}\\
C_{a}^{y} & =N_{a}^{y} \frac{F_{a}^{y}}{Z_{a}^{y}}\left(1-\exp \left\{-Z_{a}^{y}\right\}\right) \tag{2}\\
Z_{a}^{y} & =F_{a}^{y}+M_{a}
\end{align*}
$$

$$
\begin{equation*}
y^{y}=\sum_{a} w_{a} c_{a}^{y} \tag{3}
\end{equation*}
$$

where
$N_{a}^{y} \quad$ is the number of fish in the stock at the beginning of year y at age a
C_{2}^{y} is the number of fish caught during year y at age a
$Y^{y} \quad$ is the catch in weight, yield, taken during year y
$\mathrm{F}_{\mathrm{a}}^{\mathrm{y}}$ is the instantaneous fishing mortality to which the N_{a}^{y} fisin are exposed during year y.
M_{a} is the instantaneous natural mortality to which the N_{a}^{y} fish are exposed during year y.
W_{a} is the mean weight in the catch of fish at a years of age
The Beverton and Holt yield curve is

$$
\begin{aligned}
Y^{y} & =\sum_{a} W_{a} c_{a}^{y} \\
W_{a} & =W_{\infty}\left(1-\exp \left\{-k\left(t-t_{0}\right)\right\}\right)^{3}
\end{aligned}
$$

where W_{∞}, k and t_{0} are parameters. The yield curve is based on constant recruitment and $F_{a}^{Y}=F$ and $M_{a}=M \quad a \geqslant t_{r}$ the recruiting age which obsoletes the superscript

$$
Y=\sum_{a=t_{r}}^{t_{\lambda}} w_{a} c_{a}
$$

where t_{λ} is the maximal age. Often this yield curve is presented as yield per recruits, $Y / N_{t_{r}}$.

The age distribution of catch C_{a}^{y} is observed, and an estimate of F_{a}^{y} is made on the basis of available information on fishing effort. M_{a} is only estimated once per decade and has to be assumed as being constant from year to year. Solving (2) with respect to $N_{\text {a }}^{y}$ and applying (1) advances the calculation by one year. The catch weight is calculated using (3).

The fishing mortality at age array $\mathrm{F}_{\mathrm{a}}^{\mathrm{Y}}$ is presented as $\mathrm{F}_{\max }$ - relative F where relative F at age $a=F_{a}^{\mathrm{Y}} \cdot \mathrm{F}_{\mathrm{a}}^{\mathrm{Y}} \max$
where y is the most recent year and the distribution is assumed to apply to the coming years.

The long-term biomass is calculated by

$$
B^{y}=\sum_{a} w_{a}^{1} \mathbb{N}_{a}^{Y}
$$

where
W_{a}^{\prime} is the mean weight at the beginning of the year, of fish of age a B^{y} is the biomass of the stock at the beginning of year y

$$
B=\sum_{a} W_{a}^{\prime} N_{a}
$$

where B is the biomass in the steady state situation, with N_{a} as the solution of (l) when the recruitment is constant over all years and F_{a}^{Y} and M_{a} are independent of y. The long-term effect is presented as

$$
\left(\mathrm{B}-\mathrm{B}^{\mathrm{Y}_{\mathrm{S}}}\right) / \mathrm{B} \times 100 \%
$$

y_{s} being the year when the regulatory measure investigated first takes effect, in the present Report 1976.

[^0]: a) Netherlands - The 1967 and 1968 catches given here include respectively 11862 tons and 3.779 tons reported originally as "area unknown". Footnote in Bulletin Statistique allocate these quantities to "mostly IVb, the rest in IVc". No such explanation is provided for 1515 tons reported in 1966 as "area unknown", and this quantity has not been included in the 1966 catch given in this table.
 b) Sweden - Figures from 1968 onwards include catches made in IIIa. The 1968 catch was included in 148 tons of Various pleuronectiforms.
 c) Preliminary figures as reported. No report was received from France, and the bracketed figure represents an estimate made by the Working Group.

