\therefore - International Council for the

REPORT OF THE NORTH-EAST ARCTIC FISHERIES WORKING GROUP
Charlottenlund, 22-26 March 1976
x) General Secretary, ICES,
Charlottenlund Slot, 2920 Charlottenlund, Denmark.
https://doi.org/10.17895/ices.pub. 9451

Contents

1. Participants 1
2. Terms of Reference 1
3. The Status of the Fisheries 1
3.1 Cod 1
3.2 Haddock 2
4. Virtual Population Analyses 2
5. The State of the Stocks 2
5.1 Fishing Mortality 2
5.l.1 North-East Arctic cod 2
5.1.2 North-East Arctic haddock 3
5.2 Recruitment 3
5.2.1 Cod 3
5.2.2 Haddock 3
5.3 Spawning Stock Biomass 3
6. Yield per Recruit 4
7. Calculation of Total Allowable Catch (TAC) 5
8. Midwater Trawl 7
9. Mesh Assessment 8
10. Reference 8
Tables 1 - 20 9
Figures 1 - 6 28
. . Participants

O V Bakurin	U.S.S.R.
A Hylen (Chairman)	Norway
J Janusz	Poland
B W Jones	U.K. (England)
W Mahnke	German Democratic Republic
V P Ponomarenko	U.S.S.R.
C J Rørvik	Norway
A Schumacher	Federal Republic of Germany
G I Tokareva	U.S.S.R.
B Vaske	German. Democratic Republic

Dr V M Nikolaev (ICES Statistician) also participated in the meeting.

Terms of Reference

At the 1975 Statutory Meeting of ICES it was decided (C.Res.1975/2:24), that:
"the North-East Arctic Fisheries Working Group should meet at Charlottenlund from 22 to 26 March 1976 to:
(a) assess TACs for 1977 for cod and haddock;
(b) re-estimate the effective mesh size in use and its effect on mesh assessments. Further attention should be paid to the effect of the midwater trawl and the effects of various regulatory measures on the size of the spawning stock; and
(c) those countries which have recently commenced fishing in the North-East Arctic should also be invited to participate as members of the Working Group, or to send detailed catch statistics and age composition data to the meeting".
3. The Status of the Fisheries
3.1 Cod (Tables 1-4)

In 1975 the landings were limited by an international quota scheme. Following this the total landings were limited to 810000 tons. In addition Norway and U.S.S.R. were allowed 40000 tons each, in addition to their quota, in respect of their catches of Norwegian coastal cod and Murman cod respectively.
The Norwegian coastal cod have for a long time been treated as a separate unit stock both from a genetical and a management point of view.

Since the Murman cod type cannot at this stage be treated as an independent unit stock for management purposes (Doc. C.M.1975/F:6), the catches of Murman cod are included in the U.S.S.R. landings data for 1974 and 1975 which were used for assessments of the North-East Arctic cod stock.
Total landings are given for Sub-area I and Divisions IIa and IIb in Table 1 and the totals for each country in Table 2. Preliminary estimates of the 1975 landings show a decrease from 1100000 tons in 1974 to about 835000 tons in 1975, a figure which may be compared with the total allowable catch of

850000 tons (810000 tons +40.000 tons of Murman cod). Reductions in the landings were observed in all regions from 1974 to 1975 . In Sub-area I and Division IIb the reductions are estimated to be 21 and 33% respectively, while the reduction in Division IIa was 5%. The 1970 year class, and to a lesser extent the 1969 year class, contributed the main part of the catches in Sub-area I and Division IIb. No specific year class or year classes dominated the Division IIa catches.

3.2 Haddock (Tables 5-7)

The quota agreement in 1975 did not provide for any limitation of haddock catches. Normally only a small amount of directed fishing for haddock takes place, and most of the haddock is taken as by-catch in the cod fishery. Total catches in 1975 were about 178000 tons compared with 221000 tons in 1974。 A decrease was observed in the landings from all three fishing areas. The 1969 year class contributed the main part of the catches from Divisions IIa and IIb, while the 1969 and 1970 year classes dominated in the landings from Sub-area I.
4. Virtual Population Analyses (Tables 8-15)

Assessments were made for cod and haddock using the data for 1950-73 as used last year, together with updated age compositions for 1974 and preiliminary age compositions for 1975. U.S.S.R. landings of Murman cod and haddock were incorporated in the data for 1974 and 1975.

For cod a natural mortality of 0.30 has been used by this Working Group in its previous analyses. However, this parameter is seldom known with any degree of accuracy, and since there are indications that a value lower than 0.3 may be appropriate the Working Group found it useful at this stage to make an alternative assessment for a value of natural mortality of 0.20. However, the Group is of the opinion that more studies are needed before any decision can be taken as to which natural mortality rate is the more appropriate for the North-East Arctic cod. In the meantime, all assessments will be made for : $M=0.30$ and $M=0.20$ 。
Age compositions for total landings of cod and haddock used as input data for the VPA are given in Table 8 and 13 respectively. Calculated fishing mortality rates are given in Tables 9, 11 and 14 . The assumed values for fishing mortality in 1975 are also indicated in these tables. In deciding on the input F values for 1975 the following points were considered:

Year class strength data from pre-recruit surveys;
The expected exploitation pattern allowing for some concentration of fishing on the 1970 year class;
The overall level of fishing mortality that would be
expected in relation to the reported catches;
The changes in estimated fishing effort.
Stock sizes in numbers by age group at the beginning of each year are given in Tables 10, 12 and 15.
5. The State of the Stocks
5.1 Fishing mortality

Estimates of fishing mortality rates for 1974 and 1973 will be influenced by the values of F assumed for 1975.
5.1.1 North-East_Arctic cod

The fishing mortality appears to have remained relatively stable on the older fish during the more recent years. However, the fishing mortality on the 3 year old cod in 1973 and the 4 year old cod in 1974 appears to have been.
=- higher than it used to be in the past. This is likely to be the result 5.1.2 North-East_Arctic haddock

Fishing mortality appears to have been relatively high on the older fish in 1974. This might to some extent have been caused by a directed trawl fishing in the early part of the year in Division. IIa and in the second half of the year in Division IIb. A higher fishing mortality appears on the younger fish after the recruitment of the very rich 1969 year class.

5.2 Recruitment

As in previous years estimates of the abundance of pre-recruit year classes were available from the International 0-Group Surveys and also from the U.S.S.R. Young Fish Surveys (Tables 16 and 17).
5.2.1 Cod

The 1970 year class is now well established as being very abundant. Of the subsequent year classes that of 1971 appears to be average or below average, and that of 1972 to be of average abundance. The 1973 year class was estimated to be very abundant in the 0-Group Survey but more recent information from the U.S.S.R. Young Fish Surveys suggests that subsequent survival was poor and that it,is now much less abundant and probably only of average strength. It is possible that this year class has suffered from predation or adverse environmental conditions. The 1974 year class has been recorded as weak in both the 0-Group Surveys and the U.S.S.R. Young Fish Survey. In the 0-Group Surveys the 1975 year class was abundant. The values of absolute abundance at 3 years old used in the catch prediction.. calculations have been updated on the basis of the most recent information and these are shown in Table 18.

The 1971 year class was a poor one and the latest U.S.S.R. Survey data indicate that the 1972 and 1973 year classes are both below average abundance. The 1974 year class was estimated to be good in the 0-Group Survey and this is confirmed by the first estimates from the U.S.S.R. surveys. In the O-Group Survey the 1975 year class was the most abundant one since these surveys began. Revised estimates of absolute year class strength have been prepared for use in the catch prediction calculations and these values are shown in Table 19.
5.3 Spawning Stock Biomass

Estimates of spawning stock biomass were prepared using the stock numbers in each year as estimated by VPA and weight-at-age data given in Table 20. The mature stock has been taken as fish of 8 years and older for cod and as fish of 6 years and older for haddock. For cod two estimates were calculated corresponding to values of natural mortality of $M=0.2$ and 0.3 . These estimates of spawning stock biomass are given in Tables 18 and 19, and the trend with time is illustrated in Figures : 1 and 2.

The spawning stock biomass calculated by the method described above gives an estimate of the biomass of the adult stock at the beginning of each year. For cod, there is a fishery for mature fish in which the majority of the fish in the catch are caught before they spawn. A better estimate of the biomass of the stock which actually spawns would be the spawning stock biomass at the beginning of each year minus the weight of the mature part of the catch in this. In this report, however, no correction has been made for the catches in this fishery, and all spawning stock biomass estimates relate to the stock biomass at the beginning of the year.

For cod there was a marked decline in spawning stock biomass from 1950 to 1965 with some temporary recovery in the late l950s when a series of abundant year classes recruited to the spawning stock．After 1965 there was a recovery to a new peak in 1971－72 when the very abundant 1963 and 1964 year classes reached maturity．Since then spawning potential declined to a very low level again。 However，the spawning stock is now increasing again and a continued improvement can be expected up to 1978－79 provided catch limitation is maintained．

For haddock the spawning stock biomass has fluctuated about a level of 150000 tons，and there is no indication of any long－term decline comparable with that for cod．The large peak in 1956 was the result of the recruitment to the spawning stock of the very abundant 1950 year class． Although the 1969 year class appears to be almost equivalent in abundance to the 1950 year class，it is making a much smaller contribution to the spawning stock because higher fishing mortality rates up to age 6 have resulted in reduced survival to the age of maturity．

6．Yield per Recruit

Yield or yield per recruit curves have been calculated for cod and haddock for exploitation patterns expected in 1976 （Table 20）．In recent years there has been a tendency for the exploitation pattern to change from year to year．This has been due to low stock size and variable recruitment． When a strong year class recruits to the fishery，fishing effort tends to concentrate on that year class with a resultant increase in fishing mor－ tality which changes the traditional exploitation pattern．For cod two values of natural mortality have been used，$M=0.2$ and 0.3 ．In order to make comparison easier these curves are presented in Figure 3 as yield curves，rather than yield／recruit curves，to allow for the difference in estimated year class strengths for the two rates＿of mortality（ $M=0.2$ ， \bar{R}_{3}（year classes 1947 to 1969）$=736 ; M=0.3, \bar{R}_{3}=1066$ ）。Thus，the lower yield per recruit values calculated for $M=0.3$ are compensated for， to some extent，by higher recruitment estimates．It has been assumed that recruitment is constant at all levels of fishing mortalityo For haddock the single curve for $M=0.2$（Figure 4）has been plotted as a yield／recruit curve．For both cod and haddock the corresponding curves of equilibrium spawning stock biomass（or spawning stock biomass per recruit）are also plotted：in the Figures．The F values in the Figures refer to the value of the fishing mortality coefficient on the age groups subject to full exploitation。

For cod the current estimate of fishing mortality on the fully exploited age groups is $F=0.4-0.5$ ，which corresponds to $F_{\max }$ on the curve for $M=0.30$ On the curve for $M=0.2, F_{\max }=0.25$ and for F increasing above $F_{\max }$ ，$\dot{y} i e l d$ decreases more rapidly than on the curve for $M=0.3$ which is almost flat－topped．

For haddock the present level of fishing mortality on the fully exploited age groups is about $F=0.8$ at which point the yield per recruit is about 20% below $F_{\max }=0.25$ ．With this exploitation pattern，the decline of equilibrium spawning stock biomass with increasing F is less rapid than that for cod．

Increases in yield per recruit might be obtained with exploitation patterns different from the present ones．The possibilities for varying the exploitation patterns are almost infinite but in order to give some indication of the effect of varying the age at first capture $\left(t_{c}\right)$ ，yield per recruit curves have been calculated for a range of values of t_{c} （Figures 5 and 6）．In calculating these curves knife－edge selection has been assumed（ioe．F on age groups up to t_{c} is zero and on age groups t_{c} and above the full level of F applies）．This differs from the curves described above which were calculated from a model representing the present situation in which F varies with age and therefore the F values on the abscissae of these two sets of figures are not comparable．

For cod it can be seen that the yield per recruit increases with
increasing age at first capture over the range of t_{c} from 4 to 6 years. The gains in yield per recruit with increasing t_{c} are greater for $M=0.2$ than for $M=0.3$. In making comparisons between the curves for the two levels of M, the differences in yields for a given t_{c} will be less than the differences in yield per recruit because of the different estimates for recruitment which would have to be used.
For haddock the yield per recruit also increases with increasing age at first capture over the range of t_{c} from 4 to 6 years.
It is difficult to give a value for the mean age at first capture in the knife-edge selection models which is equivalent to the mean age at first capture for the present exploitation pattern where F varies with age. However, as a rough guide the present mean age at first capture for cod is about 5 years, and for haddock about 4 years.
7. Calculation of Total Allowable Catch (TAC)

Data used in calculating predicted catches are given in Table 20. For cod, the stock size at the beginning of 1976 was calculated from the stock size in 1975 as estimated from VPA and the corresponding estimates of fishing mortality rates.
It was assumed that the catch in 1976 would be equal to the agreed TAC (850000 tons). The fishing mortality rate which would generate this catch was estimated using the exploitation pattern shown in Table 20. This exploitation pattern has been changed slightly from that used for 1975 to allow for some concentration of fishing effort on the 1970 and 1973 year classes. The predicted stock size at the beginning of 1977 (Table 20) was then calculated from the 1976 stock and the corresponding F values. The sizes of the recruiting year classes were as given in Table 18.
For haddock a similar procedure was adopted. The exploitation pattern as given in Table 20 was used for all the years 1975-77. There is no agreed limit on the catches of haddock for 1976 and the values of F used for 1976 to calculate the stock size at the beginning of 1977 (Table 20 . and text table below) were those that the Group considered to be likely in relation to the expected trend in the cod fishery.
To convert predicted catches in numbers into catches in weight the age/weight relationships given in Table 20 were used. Reported total weights of landings in recent years were compared with weights of landings calculated from the sum of products of numbers landed and mean weight at age. For cod, this comparison showed no consistent discrepancy but in the case of haddock the calculated weights of landings were consistent underestimates. To correct for this, the calculated predicted catches were increased by 26%.
In making its recommendation for cod TACs for 1977 the Working Group had to consider the need to increase the size of the spawning stock. The immediate objective of a spawning stock size at least as large as that in the period 1970-72 is likely to be realised by 1977-78. The Group recommends, however, that as a longer-term objective the aim should be to maintain the spawning stock biomass at about 1 million tons. An analysis of the stock/recruitment relationship (Garrod and Jones, 1974) indicated that the optimum spawning stock size would be that which prevailed in the early 1950s, when the spawning stock biomass was about 1 million tons. In addition there is a need to reduce the overall level of fishing mortality to bring it closer to, or even below, the value giving the maximum yield per recruit with the present exploitation pattern. The actual value of $F_{\max }$ with the present exploitation pattern would depend on the value of the natural mortality coefficient ($M=0.3, F_{\max }=0.45$; $M=0.2, F_{\max }=0.25$).

To take a catch in 1976 equal to the TAC of 850000 tons would require a fishing mortality on the fully exploited age groups of $F=0.4$ or $F=0.47$ for $M=0.2$. If the same TAC was to apply in 1977 this would bring about a further small reduction in fishing mortality and the spawning stock biomass could be expected to reach 1 million tons by 1978. The results of these calculations are summarised in the text table below.

Cod

	Natural Mortality	0.2	0.3
1975	*Spawning stock biomass (thousands of tons)	233	276
Catch (thousands of tons) Fishing mortality on fully exploited age groups *Spawning stock biomass (thousands of tons)	850	850	
Catch (thousands of tons) Fishing mortality *Spawning stock bicmass (thousands of tons)	0.47	0.4	
*Spawning stock biomass (thousands of			
tons)			

*

Spawning stock biomass at the beginning of each year.

Although in the above strategy the spawning stock biomass reaches 1 million tons in 1978 this is to a large extent due to the recruitment of the very abundant 1970 year class to the mature stock, and this size of spawning stock could be maintained into 1979 only if the TAC for earlier years was reduced below 850000 tons.
For haddock the Working Group estimated the likely effects on the haddock fishery if the cod catch was maintained at 850000 tons. The results are summarised in the text table below:

Haddock

	Natural Mortality	0.2
1975	*Spawning stock biomass (thousands of tons) Catch (thousands of tons) Fishing mortality on fully exploited age groups *Spawning stock biomass (thousands of tons)	186

ctd.

* Spawning stock biomass at the beginning of each year.

The Working Group recommends that the TAC for cod for 1977 should be maintained at 850000 tons (including landings of Murman cod). This would permit the continued recovery of the spawning stock and would also go some way towards reducing fishing mortality to the value giving maximum yield per recruit with the present selection pattern.
In the longer term the regulation of the cod stock should be considered in relation to additional objectives which would provide further biological or economic benefits. These could include changes in the pattern and level of exploitation.
The Working Group considers that it would be difficult to regulate the haddock fishery independently of the cod fishery. However, if the Commission considered it desirable to introduce a TAC for haddock, this could be set at the level that would be expected as a by-catch while fishing for the recommended TAC for cod. In these circumstances the appropriate TAC for haddock for 1977 would be 110000 tons.
The present level of fishing mortality is much higher than that required to give the maximum yield per recruit with the present exploitation pattern and as a long-term result yield would be increased if fishing mortality was reduced. A reduction in fishing mortality would also provide scme protection for the spawning stock which in the foreseeable future is expected to decline.
The Working Group therefore recommends that consideration should be given to the possibility of reducing fishing mortality on haddock.

Any regulations designed to reduce fishing mortality would require a TAC for haddock lower than that mentioned above.

8. Midwater Trawl

In the previous report it was stated that a part of the trawler fleet operating in the North-East Arctic has been using midwater trawls in the fishery for Arcto-Norwegian cod and haddock. The effects of midwater trawls on the stocks, compared with the effects of bottom trawls, will depend on their relative selectivities and also on the behaviour and vertical distribution of fish. Experiments carried out by Norway in March 1975 gave selection factors of the same order for both gears. These experiments also indicated that due to their different behaviour young fish might be more available to pelagic trawls than to bottom trawls.
Additional selectivity experiments have been undertaken by the Federal Republic of Germany which confirm the results of the Norwegian experiments as far as the selection factors are concerned. As to the length composition of the catches, the cod caught by bottom trawl were, on average, somewhat bigger than those caught by midwater trawl, but the abundance of smaller cod in the midwater trawl catches was less pronounced than in the Norwegian experiments. This difference could be
explained by differences in the time and area of the experiments. In the case of haddock the length compositions of catches from the two types of gear show remarkable differences. The midwater trawl catch consisted mainly of bigger fish, whereas with the bottom trawl a considerable proportion of young fish (24.5 cm modal length) was caught, but here again the results might be influenced by differences in time and area.
Since the information available to the Working Group does not allow a generalised statement as to the effect of midwater trawls on the stocks in the North-East Arctic, the danger of heavy exploitation of young fish by midwater trawling - particularly in a situation where a good year class is recruiting to the fishery - could be eliminated or at least reduced by strict observance of the mesh regulations in force and by prohibiting any attachment to nets which may reduce the selectivity of the cod end.
During the next few years the biomass of the North-East Arctic cod is expected to increase. Improving abundance of older fish together with a continuation of a catch limitation scheme could be expected to reduce the incentive to fish with gears, or in areas, which yield catches with a large proportion of small fish.

9. Mesh Assessment

The North-East Arctic Fisheries Working Group indicated two years ago that there were doubts as to what was the effective mesh size used in the trawl fishery. A study of the data from the International Inspection at Sea in 1975 was made, but the Working Group could not reach any conclusive results. No mesh assessments were therefore made.
However, any increase in the effective trawl mesh size would result in an . increase in the average age at first capture. An indication of the likely benefits of increases of age at first capture is given in Section 6 .

Reference

Garrod, D J and Jones, B W, 1974. Stock and recruitment relationship in the North-East Arctic cod stock and its implications for management of the stock. J.Cons.int.Explor.Mer, 36(1):35-41.

Table 1. Cod.
Total nominal catch by fishing areas (metric tons).

Year	Sub-area I	Division IIb	Division IIa	Total catch
1960	375327	91599	155116	622042
1961	409694	220508	153019	783221
1962	548621	220797	139848	909266
1963	547469	111768	117100	776337
1964	206883	126114	104698	437695
1965	241489	103430	100011	444930
1966	292253	56653	134805	483711
1967	322798	121060	128747	572605
1968	642452	269160	162472	1074084
1969	679373	262254	255599	1197226
1970	603855	85556	243835	933246
1971	312505	56920	319623	689048
1972	197015	32982	335257	565254
1973	492716	88207	211762	792685
1974	723489	254730	124214	1102433
1975^{*}	545060	170435	120216	835711

[^0]Table 2. Cod.
Nominal catch (metric tons, whole weight) by countries.
(Sub-area I and Divisions IIa and IIb combined)

Year	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	France	German Dem.Rep.	$\begin{aligned} & \text { Germany } \\ & \text { Fed.Rep. } \end{aligned}$	Norway	Poland	U.K.	U.S.S.R.	Others	Total All countries
1960	3306	22321		9472	231997	20	141175	213400	351	622042
1961	3934	13755	3921	8129	268377	-	158113	325780	1212	783221
1962	3109	20482	1532	6503	225615	-	175020	476760	245	909266
1963	-	18318	129	4223	205056	108	129779	417964	-	775577
1964	-	8634	297	3202	149878	-	94549	180550	585	437695
1965	-	526	91	3670	197085	-	89962	152780	816	444930
1966	-	2967	228	4284	203792	-	103012	169300	121	483704
1967	-	664	45	3632	218910	-	87008	262340	6	572605
1968	-	-	255	1073	255611	-	140387	676758	-	1074084
1969	29374	- -	5907	5343	305241	7856	231066	612215	133	1197226
1970	26265	44245	12413	9451	377606	5153	181481	276632	-	933246
1971	5877	34772	4998	9726	407044	1512	80102	144802	215	689048
1972	1393	8915	1300	3405	394181	892	58382	96653	166	565287
1973	1916	17028	4684	16751	285184	843	78808	387196	276	792686
1974	5717	46028	4860	78507	287276	9898	90894	540 801 ${ }^{1}$)	38453	1102434
1975*	11262	29206	9981	31484	287300	7435	99824	345 271)	11778	833541

* Provisional figures.

1) Murman cod included.

Table 3. Cod.
Estimates of total international fishing effort
in Sub-area I and Divisions IIa and IIb.

Year	SUB-AREA I				DIVISION IIb				DIVISION IIa			
	National Effort		Total International Effort		National Effort		Total International Effort		National Effort		Total International Effort	
	U.K. ${ }^{1)}$	USSR ${ }^{2}$	Ј.K. units	USSR units	U.K.	USSR	U.K. units	USSR units	U.K.	Norway ${ }^{3}$	J.K. units	Norwegian units
1960	95	43	512	91	42	11	97	34	39	10	252	26
1961	94	53	518	109	51	22	173	39	30	9	255	20
1962	93	61	590	94	51	16	168	29	34	10	210	21
1963	78	62	635	91	45	9	120	22	29	7	176	19
1964	42	30	351	55	49	17	136	32	36	6	157	17
1965	42	25	367	62	37	11	95	4	33	5	150	16
1966	63	33	387	69	23	16	71	29	46	5	199	15
1967	51	30	395	61	10	12	110	13	50	5	261	22
1968	86	45	584	67	9	24	151	26	52	6	288	15
1969	115	45	593	72	24	19	197	26	73	5	272	18
1970	122	35	573	77	24	15	122	27	55	5	346	16
1971	82	23	576	74	4	27	79	34	48	5	523	14
1972	71	41	418	111	7	11	65	17	35	6	602	14
1973	96	61	860	94	18	12	161	16	27	7	485	14.
1974	92	48	906	86	9	18	. 243	42	29	5	435	16
1975*	109	31	1211	90	7	19	176	36	28	4	366	15

1) Hours fishing x average tonnage $x 10^{-6}=$ millions on ton-hours.
2) Hours fishing (catch/catch per hour fishing) $\times 10^{-4}$.
3) Number of men fishing at Lofoten $\times 10^{-3}$.

* Provisional figures.

Table 4. Cod.
Catch per unit effort (metric tons, round fresh)
in Sub-area I and Divisions IIa and IIb.

Year	SUB-AREA I		DIVISION IIb		DIVISION IIa	
	U.K. ${ }^{\text {1) }}$	USSR ${ }^{2)}$	U.K.	USSR	U.K.	Norway ${ }^{3}$)
1960	0.075	0.42	0.105	0.31	0.067	3.0
1961	0.079	0.38	0.129	0.44	0.058	3.7
1962	0.092	0.59	0.133	0.74	0.066	4.0
1963	0.085	0.60	0.098	0.55	0.066	3.1
1964	0.058	0.37	0.092	0.39	0.070	4.8
1965	0.066	0.39	0.109	0.49	0.066	2.9
1966	0.074	0.42	0.078	0.19	0.067	4.0
1967	0.081	0.53	0.106	0.87	0.052	3.5
1968	0.110	1.09	0.173	1.21	0.056	5.1
1969	0.113	1.00	0.135	1.17	0.094	5.9
1970	0.100	0.80	0.100	0.80	0.066	6.4
1971	0.056	0.43	0.071	0.16	0.062	10.6
1972	0.047	0.34	0.051	0.18	0.055	11.5
1973	0.057	0.56	0.054	0.57	0.043	6.8
$1974 *$	0.080	0.90	0.104	0.77	0.028	3.4
1975	0.077	0.85	0.100	0.43	0.033	3.4

1) U.K. data - tons per 100 ton-hours fishing.
2) USSR data - tons per hour fishing.
3) Norwegian data - tons per gill net boat week at Lofoten.

* Provisional figures.

Table 5. Haddock.
Total nominal catch by fishing areas (metric tons).

Year	Sub-area I	Division IIb	Division IIa	Total
1960	125675	1854	27925	155454
1961	165165	2427	25642	193234
1962	160972	1727	25189	187888
1963	124774	939	21031	146744
1964	79056	1109	18735	98900
1965	98505	939	18640	118079
1966	124115	1614	34892	160621
1967	108066	440	27980	136486
1968	140970	725	40031	1817766
1969	88960	1341	40208	130509
1970	59493	497	26611	86601
1971	56300	435	21567	78302
1972	221183	2155	41979	265317
1973	283728	12989	23348	320065
$1974 *$	159037	15068	47033	221138
1975^{*}	129777	8782	39915	178474

* Provisional figures.

Table 6. Haddock.
Nominal catch (in metric tons) by countries.
(Sub-area I and Divisions IIa and IIb combined).

Year	Faroe Islands	France	German Dem.Rep.	Germany Fed.Rep.	Norway	Poland	U.K.	USSR	Others	Total
1960	172	-	-	5597	47263	-	45469	57025	125	155651
1961	295	220	-	6304	60862	-	39650	85345	558	193234
1962	83	409	-	2895	54567	-	37486	91940	58	187438
1963	17	363	-	2554	59.955	-	19809	63526	-	146224
1964	-	208	-	1482	38695	-	14653	43870	250	99158
1965	-	226	-	1568	60447	-	14345	41750	242	118578
1966	-	1072	11	2098	82090	-	27723	48710	74	161778
1967	-	1208	3	1705	51954	-	24158	57346	23	136397
1968	-	-	-	1867	64076	-	40129	75654	-	181726
1969	2	-	309	1490	67549	-	37234	24211	25	130820
1970	541	-	656	2119	36716	-	20423	26802	-	87257
1971	81	-	16	896	45715	49	16373	15778	3	78911
1972	137	-	829	1433	46700	1433	17166	196224	2223	266145
1973	1212	3214	22	9583	86767	325	32408	186534	-	320065
1974	925	3601	454	23409	66164	3045	36293	78 5481)	8699	221138
1975*	70	2285	437	14903	61056	1080	27740	65 1361)	5767	178474

* Provisional figures.

1) Murman haddock included.

Table 7. Haddock. Catch per unit effort and estimated total international effort.

Year	Catch per Effort (U.K.) Kilos/100 ton-hours			$\begin{aligned} & \text { Estimated Total International } \\ & \text { Effort in U.K. Units } \\ & \text { Total Catch in Tons x } 10^{-6} \\ & \text { Tons } / 100 \text { Ton-Hours Sub-area I } \end{aligned}$
	$\begin{gathered} \text { Sub-area } \\ \text { I } \end{gathered}$	Divisions		
		IIa	IIb	
1960	33	34	2.8	4.7
1961	29	36	3.3	6.7
1962	23	42	2.5	8.2
1963	13	33	0.9	11.2
1964	18	18	1.6	5.5
1965	18	18	2.0	6.6
1966	17	34	2.8	9.4
1967	18	25	2.4	7.6
1968	19	50	1.0	9.6
1969	13	42	2.0	10.0
1970	7	31	1.0	12.4
1971	8	25	3.0	9.8
1972	14	18	23.0	19.0
1973	22	20	20.0	14.5
1974	20	74	14.0	11.1
1975*	15	60	4.0	11.9

* Provisional figures.

Table 8. Age composition of the total catches of COD (in 000 's) 1966-75. Input for the VPA.

Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
3	55937	34467	3709	2307	7164	7754	35536	294262	91855	46371
4	55644	160048	174585	24545	10792	13739	45431	131493	437377	63852
5	34675	69235	267961	238511	25813	11831	26832	61000	203772	233882
6	42539	22061	107051	181239	137829	9527	12089	20569	47006	114941
7	37169	26295	26701	79363	96420	59290	7918	7248	12630	29283
8	18500	25139	16399	26989	31920	52003	34885	8328	4370	9096
9	5077	11323	11597	13463	8933	12093	22315	19130	2523	2566
10	1495	2329	3657	5092	3249	2434	4572	4499	5607	1333
11	380	687	657	1913	1232	762	1215	677	2127	1802
12	403	316	122	414	260	418	353	195	322	608
13	77	225	124	121	106	149	315	81	151	200
14	9	40	70	23	39	42	121	59	83	14
15+	70	14	46	46	35	25	40	55	62	38

Table 9. Fishing mortalities for COD, 1966-75, estimated by VPA for $M=0.30$.

Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975*
3	0.03	0.02	0.02	0.02	0.03	0.01	0.03	0.13	0.14	0.04
4	0.08	0.12	0.16	0.17	0.10	0.07	0.12	0.14	0.33	0.15
5	0.16	0.15	0.34	0.39	0.31	0.18	0.22	0.26	0.36	0.33
6	0.31	0.17	0.40	0.46	0.47	0.20	0.31	0.30	0.36	0.40
7	0.40	0.36	0.35	0.67	0.54	0.43	0.28	0.34	0.34	0.45
8	0.49	0.58	0.46	0.83	0.73	0.73	0.55	0.62	0.40	0.50
9	0.60	0.73	0.68	1.01	0.85	0.80	0.96	0.79	0.44	0.50
10	0.63	0.71	0.64	0.86	0.86	0.69	0.97	0.58	0.64	0.50
11	0.37	0.77	0.50	0.98	0.59	0.56	1.08	0.40	0.70	0.50
12	0.53	0.69	0.33	0.80	0.37	0.46	0.64	0.55	0.39	0.50
13	0.39	0.75	0.74	0.74	0.55	0.42	0.89	0.33	1.41	0.50
14	0.32	0.41	0.63	0.32	0.64	0.50	0.85	0.46	0.76	0.50
$15+*$	0.65	0.65	0.65	0.65	0.65	0.65	0.80	0.80	0.80	0.50

[^1]Table 10. Stock size of COD 1966-75 (in 000's) estimated by VPA for M $=0.30$.

Age	1966	1967	1968	1969	1970.	1971	1972	1973	1974	1975
3	2262710	1842750	245348	173652	310689	647328	1654580	2757920	819513	1367500
4	850154	1628330	1335600	178579	126667	224025	472906	1195290	1791620	528617
5	264033	582189	1069470	840342	111338	84607	154202	311495	773120	955272
6	182422	165987	372146	564436	420008	60517	52578	91355	178785	399565
7	130022	98947	104128	184805	264489	194333	36703	28663	50171	92498
8	54644	64763	50957	54441	69 971	114353	93664	20449	15072	26429
9	12840	24809	26730	23847	17653	24953	40915	39882	8117	7456
10	3662	5223	8843	10024	6404	5576	8317	11618	13455	3873
11	1413	1451	1907	3464	3150	2016	2079	2333	4804	5236
12	1116	724	497	856	964	1293	849	525	1154	1767
13	273	486	270	264	286	494	603	331	224	581
14	38	137	171	95	94	122	239	183	176	41
$15+$	102	20	67	67	51	37	55	76	85	61

Table 11. Fishing mortalities for COD 1966-75 estimated by VPA for $M=0.20$.

Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975^{*}
3	0.04	0.03	0.03	0.02	0.04	0.02	0.03	0.17	0.18	0.05
4	0.10	0.15	0.21	0.23	0.14	0.10	0.15	0.17	0.41	0.18
5	0.21	0.18	0.41	0.48	0.40	0.23	0.29	0.32	0.43	0.40
6	0.38	0.20	0.47	0.54	0.56	0.25	0.38	0.37	0.43	0.47
7	0.47	0.43	0.40	0.76	0.62	0.51	0.34	0.42	0.41	0.53
8	0.57	0.67	0.52	0.93	0.83	0.82	0.64	0.74	0.48	0.59
9	0.69	0.84	0.78	1.14	0.96	0.91	1.09	0.91	0.53	0.59
10	0.72	0.82	0.73	0.98	0.99	0.77	1.14	0.68	0.76	0.59
11	0.43	0.90	0.58	1.14	0.69	0.67	1.20	0.49	0.82	0.59
12	0.61	0.80	0.39	0.92	0.44	0.53	0.76	0.62	0.46	0.59
13	0.47	0.86	0.87	0.84	0.64	0.49	1.02	0.39	1.58	0.59
14	0.38	0.48	0.73	0.38	0.74	0.57	0.96	0.53	0.90	0.59
$15+^{*}$	0.75	0.75	0.75	0.75	0.75	0.75	0.90	0.90	0.90	0.59

* Assumed values

Table 12. Stock size of COD (in 000's) 1966-75 estimated by VPA for $M=0.20$.

Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
3	1584980	1300110	164741	112165	202857	436579	1160310	2069160	621843	1048170
4	623933	1247180	1033320	131530	89750	159618	350438	917901	1429020	426391
5	199900	460655	876892	688842	85600	63755	118294	245980	633071	777554
6	147658	132450	314798	477511	350215	46920	41552	72728	146578	335562
7	109124	82707	88580	161775	228679	163378	29845	23169	41078	77850
8	46782	56026	44130	48563	61654	101009	80650	17323	12467	22300
9	11070	21746	23412	21444	15746	22033	36353	34849	6751	6291
10	3162	4529	7.715	8825	5618	4948	7276	9960	11506	3268
11	1182	1255	1633	3052	2698	1711	1880	1903	4136	4418
12	959	627	416	749	803	1109	720	463	951	1491
13	225	425	232	231	245	424	534	275	204	490
14	32	115	147	79	81	106	214	157	152	34
15+	89	18	58	58	44	32	49	67	76	51

Table 13. Age composition of the total catches of HADDOCK (in 000's) 1966-75. Input for the VPA.

Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
3	26157	15918	657	1520	23004	1979	230229	70204	9684	10181
4	22469	41373	67632	1963	2408	24359	22246	258773	41701	14369
5	62724	13505	41267	44526	1870	1258	42849	24018	88111	35160
6	28840	25736	7748	18956	21995	918	3196	6872	5827	50911
7	5711	8878	15599	3611	7.948	9279	1606	418	4138	2164
8	578	1617	5292	4925	1974	3056	6736	422	382	1206
9	435	218	655	1624	1978	826	2630	1680	617	106
10	188	176	182	315	726	1043	896	525	2043	138
11	186	155	101	43	166	369	988	146	935	465
12	25	76	115	43	26	130	538	340	276	130
13	8	27	18	14	52	27	53	68	458	35
14	7	7	19	2	19	4	42	13	143	22

Table 14. Fishing mortalities for HADDOCK 1966-75 estimated by VPA for $M=0.20$.

Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975^{*}
3	0.13	0.06	0.04	0.11	0.18	0.02	0.32	0.38	0.17	0.11
4	0.39	0.31	0.41	0.18	0.25	0.28	0.40	0.72	0.41	0.42
5	0.59	0.44	0.59	0.52	0.26	0.20	1.19	1.04	0.58	0.74
6	0.71	0.52	0.49	0.59	0.53	0.20	1.17	0.60	0.79	0.80
7	0.81	0.49	0.69	0.44	0.53	0.45	0.62	0.44	0.93	0.80
8	0.44	0.57	0.62	0.49	0.46	0.40	0.70	0.32	0.96	0.80
9	0.56	0.29	0.48	0.39	0.37	0.35	0.73	0.37	1.10	0.80
10	0.33	0.46	0.42	0.45	0.31	0.34	0.82	0.31	1.09	0.80
11	0.90	0.50	0.53	0.16	0.45	0.25	0.62	0.30	1.44	0.80
12	0.23	1.30	0.89	0.45	0.14	0.79	0.71	0.45	1.51	0.80
13	0.35	0.42	1.45	0.24	1.74	0.21	0.92	0.18	2.32	0.80
14^{*}	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.67	0.80

Assumed values.

Table 15. Stock size of HADDOCK (in 000's) 1966-75 estimated by VPA for $M=0.20$.

Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
3	236130	286795	16755	16116	157328	91915	924388	242123	66724	107641
4	75608	169750	220444	13125	11824	108090	73466	549951	135217	45907
5	153840	41738	101799	119804	8978	7515	66596	40188	219256	73293
6	61892	69842	22061	46426	58211	5669	5020	16557	11572	100675
7	11183	24923	34131	11119	21053	27965	3815	1277	7409	4279
8	1791	4065	12451	14012	5865	10120	14576	1687	671	2385
9	1112	948	1881	5463	7059	3032	5544	5919	1002	210
10	730	521	580	953	3015	4004	1741	2191	3338	273
11	340	429	269	312	498	1816	2341	627	1322	920
12	132	113	212	130	217	259	1155	1033	382	257
13	29	86	25	72	68	154	96	465	541	69
14	17	17	46	5	46	10	102	31	320	44

Table 16. ARCTO-NORWEGIAN COD.
Year class strength. The number per hour fishing for U.S.S.R. Young Fish Surveys is for 2 year old fish.

Year class	USSR Survey No. per Hour Trawling			USSR Assessment	0-Group Surveys	Virtual Population No. of 3-year-olds $\times 10^{-6 \%}$	
	$\begin{gathered} \text { Sub-area } \\ \text { I } \end{gathered}$	$\begin{gathered} \text { Division } \\ \text { IIb } \end{gathered}$	Mean				
						$\mathrm{M}=0.2$	$\mathrm{M}=0.3$
1957	12	16	13	-Average		791	1060
1958	16	24	19	+Average		919	1251
1959	18	14	16	+Average		730	1046
1960	9	19	13	Poor		473	699
1961	2	2	2	Poor		339	528
1962	7	4	6	Poor		779	1166
1963	21	120	76	Rich		1585	2263
1964	49	45	46	Rich		1300	1843
1965	<1	<1	<1	Very poor	6	165	245
1966	2	<1	1	Very poor	<1	112	174
1967	1	<1	1	Very poor	34	203	311
1968	7	1	5	Poor	25	437	647
1969	11	6	9	Poor	93	1160	1655
1970	74	86	76	Rich	606	2069	2758
1971	37	24	32	+Average	157	(621)	(820)
1972	53	17	40	+Average	140	(1)048)	(1367)
	(51)	$\binom{5}{1}$	(31)	+Average	684	(810)	(1 200)
1974 1975	(11)	(1)	(6)	Poor	51 343	(470)	(700)

() = estimated.

* USSR Murman cod included for 1974 and 1975.

Table 17. ARCTO-NORWEGIAN HADDOCK.
Year class strength. The number per hour trawling for U.S.S.R. Young Fish Surveys is for 2 year old fish.

Year class	USSR Survey No. per Hour Trawling Sub-area I	O-Group Surveys	Virtual Population No. of 3 -year-olds $\times 10^{-6} *$
1957	9		241
1958	4		110
1959	14		240
1960	40		276
1961	50		316
1962	3		99
1963	9		236
1964	12		287
1965	<1	7	17
1966	<1	<1	16
1967	13	42	157
1968	<1	8	92
1969	69	82	924
1970	38	115	(242)
1971	3	73	(67)
1972	9	46	(108)
1973	9	54	(150)
1974	(33)	147	(275)
1975		170	

() = estimated.

* USSR Murman haddock included for 1974 and 1975.

Table 18. Estimates of the spawning stock and the year class strength for COD. Estimates from VPA.

$\mathrm{M}=0.2$			
Year	Spawning stock biomass tons x 10-3	Year class	Year class strength at 3 years old Millions
		1947	705
		1948	1097
		1949	1192
1950	1458	1950	1593
1951	1385	1951	645
1952	1155	1952	273
1953	903	1953	441
1954	827	1954	805
1955	869	1955	498
1956	993	1956	685
1957	929	1957	791
1958	1019	1958	919
1959	837	1959	730
1960	600	1960	473
1961	514	1961	339
1962	474	1962	779
1963	377	1963	1584
1964	243	1964	1300
1965	213	1965	165
1966	338	1966	112
1967	458	1967	203
1968	437	1968	437
1969	470	1969	1.160
1970	469	1970	(2 069)
1971	684	1971	(621)
1972	695	1972	(1 048)
1973	402	1973	(810)
1974	239	1974	(470)
1975	233		
1976	(309)		
1977	(637)		
1978	(1 040)		

$M=0.3$			
Year	Spawning stock biomass tons $\times 10^{-3}$	Year class	Year class strength at 3 years old Millions
		1947 1948 1949	$\begin{array}{ll} 1 & 070 \\ 1 & 666 \\ 1 & 773 \end{array}$
1950	1731	1950	2333
1951	1645	1951	958
1952	1359	1952	411
1953	1079	1953	649
1954	979	1954	1133
1955	1012	1955	697
1956	1.161	1956	- 932
1957	1098	1957	1060
1958	1212	1958	1251
1959	1014	1959	1046
1960	698	1960	699
1961	587	1961	528
1962	542	1962	1166
1963	427	1963	2263
1964	280	1964	1843
1965	250	1965	- 245
1966	395	1966	174
1967	527	1967	311
1968	502	1968	647
1969	527	1969	1655
1970	532	1970	(2,758)
1971	775	1971	(820)
1972	797	1972	(1367)
1973	467	1973.	(1 200)
1974	288	1974	(700)
1975	276		
1976	(362)		
1977	(709)		
1978	(1 101)		

(,\quad) provisional figures.

Table 19. Estimates of the spawning stock and the year class strength for HADDOCK. Estimated from VPA for $M=0.20$.

Year	Spawning stock biomass tons $\times 10^{-3}$	Year class	Year class strength at 3 years old Millions
		1947	67
		1948	552
		1949	63
1950	270	1950	1029
1951	151	1951	127
1952	95	1952	52
1953	66	1953	169
1954	179	1954	53
1955	156	1955	69
1956	474	1956	325
1957	324	1957	241
1958	202	1958	110
1959	160	1959	240
1960	129	1960	276
1961	105	1961	316
1962	147	1962	99
1963	106	1963	236
1964	67	1964	287
1965	76	1965	17
1966	140	1966	16
1967	190	1967	157
1968	161	1968	92
1969	165	1969	924
1970	201	1970	(242)
1971	143	1971	(67)
1972	106	1972	(108)
1973	79 72	1973	$\left(\begin{array}{l}150 \\ 275\end{array}\right.$
1974	72 186	1974	(275)
1976	(143)		
1977	(91)		
1978	(78)		

() = provisional figures.

Table 20. Parameters used in the catch prediction.

Figure 2. Haddock.

The spawning stock biomass $1950-78$ estimated
from VPA for $M=0.20$.

Spawning stock biomass
Millions of tons

Figure 3. North-East Arctic Cod.
Curves of yield and spawning stock biomass for present exploitation pattern.

Figure 4. Haddock.
Curves of yield per recruit and spawning stock biomass for present exploitation pattern.

- •

Fishing mortality on fully exploited age groups

Yield per recruit curves for different ages at
first capture $\left(t_{c}\right)$. Knife-edge selection. Cod.
Yield

Figure 6. Haddock.
Yield per recruit curves for different ages at first capture (t_{c}). Knife-edge selection. $M=0.2$.

[^0]: * Provisional figures.

[^1]: * Assumed values.

