-

International Council for the *xploration of the Sea
C.M.1976/F:4

Demersal Fish (Northern) Committee Ref. Statistics Cttee

THÜNEN

Digitalization sponsored by Thünen-Institut

REPORT OF THE NORTH SEA FLATFISH WORKING GROUP
 Charlottenlund, 16-20 February 1976

```
x) General Secretary,
        ICES,
        Charlottenlund Slot,
        DK-2920 Charlottenlund,
        Denmark.
        https://doi.org/10.17895/ices.pub.9448
```


CONTENTS

Page

1. INTRODUCTION 1
2. NORTH SEA SOLE 2
2.1 Introduction 2
2.2 Age Composition 2
2.3 The VPA Analysis 2
2.4 Prognosis of Catch and Stock in 1976 and 1977 3
2.5 Results of the Prognosis 4
2.6 The Recommendation - 4
3. NORTH SEA PLAICE 5
3.1 The Trend in Catch 5
3.2 Age Composition Data 5
3.3 The Present Mortality Rate and Stock Size 5
3.4 VPA Analysis 6
3.5 Prognosis 6
3.6 The TAC 7
3.7 The Recommendation 8
3.8 Estimation of Recruitment 8
3.9 Mesh Size 8
4. THE ENGLISH CHANNEL STOCKS 9
4.1 Introduction 9
5. ENGLISH CHANNEL SOLE 10
5.1 Catch Trends 10
5.2 Growth 11
5.3 Yield Per Recruit Curves 11
5.4 Mortality 11
5.5 The TAC 11
6. ENGLISH CHANNEL PLAICE 12
6.1 Catch Trends 12
6.2 Mortality 12
6.3 The TAC 12
7. IRISH SEA SOLE 13
7.1 Catch Trends 13
7.2 Age Composition 13
7.3 VPA Analysis 13
7.4 Growth 13
7.5 Prognosis 13
7.6 The Recommendation 14

Contents (ctd)

Page
8. IRISH SEA PLAICE 14
8.1 Catch Trends 14
8.2 Age Composition 14
8.3 Growth 14
8.4 VPA Analysis 15
8.5 Prognosis 15
8.6 The Recommendation 15
9. BRISTOL CHANNEL SOLE 15
9.1 Catch Trends 15
9.2 Age Composition 15
9.3 VPA Analysis 16
9.4 Growth 16
9.5 Mortality 16
9.6 Recruitment 16
9.7 Prognosis 16
9.8: The Recommendation 17
10. BRISTOL CHANNEL PLAICE 17
10.1 Catch Trends 17
10.2 Mortality 17
10.3 Yield Curves 17
10.4 The Recommendation 18
Tables l-36 19
Figures 1 -17 69

- 1. INTRODUCTION

1.1 The ICES North Sea Flatfish Working Group met in Charlottenlund from 16-20 February 1976 with the following members participating:
D W Armstrong
R C A Bannister
K Brander
R de Clerck
D de G Griffith
H Lassen
G Lefranc
E Nielsen
T K Pitt
G Rauck
J F de Veen(Chairman)

U.K. (Scotland)
U.K. (England)
U.K. (England)
Belgium
Ireland
Denmark
France
Denmark
Canada
Germany, (Federal Republic of) Netherlands.

1.2 The Group was convened with the following terms of reference (C.Res. 1975/2:21):
"It was decided, that:
the North Sea Flatfish Working Group should meet at Charlottenlund from 16-20 February 1976 in order to assess TACs for 1977 for plaice and sole in the North Sea, Irish Sea, Bristol Channel and English Channel. It is strongly hoped that a representative from France will attend the meeting".

1. 3 For North Sea plaice and sole the standard programme for assessment was followed including virtual population analysis and a prognosis programme for arriving at TAC figures.

Since the number of years for which age compositions of total international landings are available has increased to a level where VPA is possible, the standard assessment programme has also applied for the first time for the Irish Sea plaice and sole and the Bristol Channel sole. This was not possible for the Bristol Channel plaice.
As will be clear from Section 4.l, the English Channel plaice and sole fisheries are still difficult to assess. However, progress has been made in understanding the biological problems in the area and some French information was produced enabling the Group to improve on their assessment. When our French colleagues are in position to collect the necessary biological data and when other problems outlined in Section 4.1 are clarified; the assessment in this area can improve considerably.
1.4 The Group had a considerable task to perform and in only half of the time of that in 1975 when it had some extra items on the agenda.
In order to deal properly with its task in the future, an increase in the time allotted to the Group of two days would be: greatly appreciated.
2.lol For calculating a total allowable catch for 1977 a new assessment was made。 Since the previous TAC calculations, a year of quota regulation has passed and the predicted trends in catch and stock for 1975 can be compared with what actually happened in that year. The procedure used in the assessment is the same as that followed with the 1975 assessment, which procedure was accepted by the Working Group as standard routine.
2.1.2 At the end of 1975 it became apparent that for a number of reasons the 1975 total catch was considerably higher than the 1975 TAC. Whereas some countries could not fill their quotas, others had no trouble in overshooting their quotas because of difficulties at home in the enforcement of the quota regime. The result is that total international effort in 1975 was at least at the same level as in 1974. However, illegal landings, not reported; have also taken place in the second half of 1975. Though very difficult to assess, these are believed to be of the order of 2000-3000 tons. It follows that total effort in 1975 in reality has been larger than in 1974, but in the calculations only the official data on landings can be taken into account, and these are given in Table 1.
2.1.3 The preliminary figures for 1974 given in last year's Report (Doc. CoM. 1975/ F84) have been replaced by the official data given in the Advance Release of "Bulletin Statistique 1974"。
2.2 Age Composition
2.2.1 The 1974 age composition was based on the updated age compositions per sex for the Netherlands, Belgian and Danish total landings, accounting for 96% of the total landings based on "Bulletin Statistique" nominal weight in metric tons.
2.2.2 The 1975 age composition was calculated in the same way, but the data for Belgium were preliminary. In addition, the landings data from all other countries are provisional since landings of the last two months have been estimated on the basis of trends in recent years.
As in the previous report no account was made for discarding.
2.3 The Virtual Population Analysis
2.3.l For male and female sole separately a new virtual population analysis was run. A constant natural mortality of $M=0.10$ for both sexes was assumed over the ages 2-14, as had been assumed in the previous VPA.
2.3.2 Terminal F values of 0.14 for males and 0.25 for females were taken for cohorts fully exploited to the age of 140° Last year, the VPA terminal F values for partially exploited cohorts were taken as the average of the 196972 F-at-age arrays in the 1974 VPA. This F-at-age array used in the 1975 Report was smoothed to eliminate any minor age to age fluctuations;and used as the new F-at-age array for this year since it could satisfactorily produce the observed 1975 catch composition from that observed in 1974. This F-at-age array per sex, given in Table 2, was taken to be the terminal F values for the partially exploited cohorts in the new VPA.
2.3.3 The resulting fishing mortality at age and the stock in numbers from this VPA were compared with those of the 1975 VPA. For the years prior to 1966 both VPAs gave the same F and stock size results. For that reason the fishing Liortalities and stock numbers resulting from the new VPA are only
given for the last ten years in Tables 3 and 4. The average F value for ages 2 and older given at the bottom of the F table refer to averages, weighted by stock number at age.

- 2.3.4 The new VPA gives F values for males slightly higher for the most recent years than in the former VPA, but for females the reverse is true, so that for the combined sexes, the F values are about the same. The new VPA shows that the average fishing mortality over 1972, 1973 and 1974 is at a level of 0.55 compared to 0.40 for the period $1966-71$ and to 0.20 for the pre-1966 level.
2.3.5 The abundance of the recruiting year classes (2 year old fish) for the 1955-73 year classes is shown in Table 5.
2.4 Prognosis of Catch and Stock in 1976 and 1977
2.4.1 In the 1975 Report advice on the TAC for 1976 was given on the assumption that the 1975 total catch should not exceed 12500 tons. The reduction in F from 1974 to 1975 resulting from this should have been 34% and on this basis a TAC of 8000 tons was recommended, which in the long term would double the stock biomass.
2.4.2 However, the overshooting of the TAC in 1975 resulted in no reduction in F at all. Thus the TAC advice for 1976 should be reconsidered. However, the 1976 TAC has already been officially agreed in NEAFC to be 12500 tons and national measures are based on the national quota derived from this quantity. Assuming that the 1976 TAC of 12500 tons will be taken, the catch and stock for several values of the fishing mortality in 1977 were estimated together with the implications for stock recovery.

2.4.3. For the forecast, the relative fishing mortality at age per sex was taken

 to be the terminal F-at-age array used in the VPA and given in Table 2.The same weight at age per sex is used as in the 1975 Report and is reproduced in Table 6, in which separate arrays are given for catch (July data) and stock biomass (lst of January data).
2.4.4 The 1975 Report demonstrated that the estimates of the 1973 and 1974 year classes from the Dutch-Belgian-German pre-recruit surveys could be used in the forecast. The 1973 year class, already reasonably abundant as 0and I-group sole, entered the fishery in the second half of 1975 and from the VPA amounts to 90.3 million soles, which is very close to the figure of 90 million soles predicted in the beginning of 1975 from the prerecruit surveys.
2.4.5 Since the previous report two extra pre-recruit surveys have been made. These suggest that the 1974 year class will be 40 millions in 1976. For the 1975 year class only the October 1975 pre-recruit survey is available. The first impression is that this year class is below average abundance and similar to the 1974 year class. Therefore a preliminary estimate of the abundance of the 1975 year class when recruiting in 1977 is also 40 millions.
On the other hand, if we disregard this estimate as being only very preliminary, we would take the recruitment for 1977 to be average, i.e. 74 million soles (Doc. C.M.1975/F:4).

The 1977 catch and stock were forecast for several fishing mortalities for a regulated sole fishery in 1976, and for the two recruitment figures for 1977 of 74 million (A) and 40 million soles (B) and are given in Table 7。
2.4.7 The same calculations have been carried out for an unregulated fishery in 1976 (i.e. quota not effective in that year) and for two recruitment levels A and B in 1977. The results are given in Table 8.
2.4.8 The implications of each entry in both tables are given in terms of longterm gain in stock biomass, relative to the expected situation at the beginning of 1977, so that the advice on a TAC can be based on the effect of the possible management strategy on stock recovery.
2.5 Results of the Prognosis
2.5.1 The amount by which the 1975 quota has been exceeded is responsible for a drop in stock biomass of 7.5% (from 39000 tons to 36000 tons) compared with the predicted stock biomass given in the 1975 Report. Further, owing to the recruitment of the poor 1974 year class, stock biomass will decline even more. Even if the 1976 catches do not exceed 12500 tons a natural stop to this decline will only occur if the 1975 year class is of at least average abundance. Since the pre-recruit estimate of this year class is only 40 million soles, this is unlikely.
2.5.2 The present sole fishery is now very dependent on a few young year classes and recruitment largely influences the fishery. Any succession of poor year classes brings the spawning stock to such a level that average recruitment can no longer be maintained.

The present position of recruitment as a function of stock density can be seen in Figure 1 (de Veen, 1975). The strength of the recruiting year classes has been adjusted to the most recent data on year class strength given: in Table 5. Both the mean and the variance of the abundance of the most recent year classes have decreased as compared with the pre-1964 year classes, which suggests that the'stock has already entered the downward leg of a stock/recruitment relaticnship.
2.5.3 To escape from this situation, fishery regulation should no longer aim merely at stabilising the stock level at the present position, which was the philosophy of the: 1974 and 1975 deliberations;at NEAFC, and on the basis of Figure. 1 a doubling of stock biomass should move the stock out of the danger area. Therefore, if the 1976 total catch is reduced to 12500 tons from the 1975 catch level of 17000 tons, the TAC for 1977 should be 7000 tons, on the optimistic view of there being average recruitment in 1977 (case A), or 6700 tons, with predicted 1977 recruitment (case B). In both cases the stock biomass will double in the long term.
2.5.4 The implications of an unregulated fishery in 1976 can be derived from Table 8, where the decline in stock biomass in 1977 will amount to an extra 12%. In this case the TAC for 1977 should be 6500 tons for case A and 6200 tons for case B, which will double the biomass in the long term.
Furthermore, if the 1977 TAC were to remain at the same level as the agreed 1976 figure of 12500 tons, this will have almost no effect in reducing the fishing mortality because from the prognosis the expected catch in 1977 will be either 13600 tons (case A) or 12800 tons (case B) and the stock biomass would decline further by 40% long term. With this situation there is a high probability that the stock and the fishery will collapse.

The Recommendation
In the previous Report (Doc. C.M.1975/F:4) the Group actually recommended a TAC for 1976 of 8000 tons, but we have shown above that due to the decline in stock biomass owing to the recruitment of the two poor year classes of 1974 and 1975, and the effectively unregulated nature of the fishery in 1975, the 1977 TAC must be lower to achieve the same management objectives as before.

	Consequently，a TAC of 6700 tons must be recommended for 1977．It should be remembered that the present calculations were based only on official statistics of landings．
$-2.6 .2$	Rebuilding the stock by a TAC regulation should ultimately make it possible to achieve a sustainable yield of 15000 tons，if the long－term average recruitment level of 74 million fish materialises．This level of yield is not necessarily the maximum sustainable yield，but conditional upon the present exploitation pattern（mesh size，minimum landing size， F over age relationship）which is far from optimal．
2.6 .3	In their 1974 Report（Doc．CoM．1974／F：6）the Working Group gave the short－and long－term effects of increases in mesh size．Increasing the present mesh size to，say， 85 mm could increase the long－term sus－ tainable yield by some 34% and bring it to 20000 tons．Immediate losses will in this case be about 15% 。
	It is recommended that the effects of simultaneous enforcement of mesh siz increase and effort limitation by TAC should be investigated more thoroughly than was possible during the present meeting．

3．2 Age Composition Data
The 1974 age composition，estimated last year，was updated and an estimate made for the 1975 age composition．As last year，data were available for all but the catch taken by France，Norway，Sweden and＂Others＂，but the 1975 data referred mainly to the first three quarters of the year and were raised to the total annual catch．The data are shown in Table 10，columns $2,3,8$ ，and 9 and have been added to the historic record in Tables 11 and 12. The most obvious feature of these data is the marked increase in the catch of two and three year old plaice in 1975 over that in 1974．These fish belong to the 1972 and 1973 year classes．
3.3 The Present Mortality Rate and Stock Size

For any latest year N ，the mortality and stock composition can normally be estimated by prognosis programme from the catch composition in，say， year N－2．Thus，using appropriate estimates of the recent recruitment， the F－at－age array can be adjusted until a satisfactory estimate is ob－ tained for the observed catches in years $N-1$ and N 。 This F array can then be used to initiate a new virtual population analysis，and for predicting the catch and stock for years $\mathrm{N}+1$ and $\mathrm{N}+2$ 。
In the present situation certain rather arbitrary assumptions were required in order to simulate the unexpectedly high 1975 catch of two and three year old place，which could have arisen either because the 1972 and 1973 year classes were much more abundant than expected，or because of a change in the availability or concentration of these year classes．The Waddensea pre－recruit survey data（see Section 3．8）do not indicate that either of these year classes is very abundant in the continental nurseries as a whole，but that the 1972 year class was locally most abundant in the Horns Reef area（＂Annales Biologiques＂，Vol．30，pp．175－182，1975）．

It is here that the best catches of small plaice were reported to be made by the English, German (Federal Republic) and Netherlands (Figure 2) fleets in 1975. English vessels are reported to have fished more heavily than usual in the area, but for the Dutch fleet, the 1974 and 1975 distributions of fishing effort were not markedly different (Figure 3). Consequently, it was decided to carry out the check prognosis and VPA runs in such a way as to (i) leave the recruitment of the 1972 and 1973 year classes in line with values indicated by the correlation between the pre-recruit survey (Section 3.8) and last year's VPA; (ii) obtain a temporarily very high value of F on ages 2 and 3 in order to simulate the effect of a localised change in the catchability of these age groups.
The resulting arrays of F at age for 1975 are shown in Table l0, columns 4 and 10. The mean 197l-73 F at age arrays deduced from last year's VPA are also shown for comparison (columns 6 and 12). Except for that on the 2 and 3 year old fish the general level of mortality has not changed because the fishing fleets have contracted slightly of late。 There is now very little difference between the male and female rates; and a rather less pronounced change in mortality with age than before o

3.4 Virtual Population Analysis

Using the new 1975 F-at-age array the historical record was brought up to date by VPA, with the results for fishing mortality and stock number at age shown in Tables Il and 12, for males and females respectively.

3.5 Prognosis

The prognosis programme was used to simulate the trend in catch and stock through to 1977, starting with the 1975 catch, the new $F-a t-a g e$ array, and using'the same weight at age data as last year. The weight data are found in Table 13. When applied to the observed 1975 catch composition, these weights at age predict a sum of products which is 10% below the recorded total catcho For 1976 and 1977 the new shape of the new F-at-age array was kept, but the maximal value of 0.9 on age group 3 was reduced to a more normal level of 0.5 , which is about the same value as that used in 19740 The 1976 F-at-age array is therefore that shown in Table lo, columns 5 and ll. For 1976 and 1977 the prognosis still allows the fleet to fish on two and three year old plaice rather more heavily than before, but discoun the possibility of there being a greatly enhanced catch of four and five year olds in 1977. If the 1972 and 1973 year classes do turn out to be larger than estimated by the pre-recruit surveys, next year's prognosis will have to be amended accordingly.

According to the: results of the pre-recruit survey, the 1974 year class is of rather below average abundance. The regression figure suggests that at the beginning of 1976 it will number approximately 214×10^{6} plaice or, since the male/female sex ratio has averaged about $0.55 / 0.45$ in recent years, 118×10^{6} male plaice and 96×10^{6} female plaice. With this recruitment the expected catch predicted for 1976 is 96300 tons which is consistent with the prognosis for 1976 made last year. At this expected level of catch, the 1976 TAC of 99900 tons agreed by NEAFC will not achieve, any reduction in fishing mortality.
In 1977 the recruits will be of the 1975 year class, which the provisicnal prerecruit survey data suggest could be above average. Based on the prerecruit survey/VPA regression the estimate is 426×10^{6}, or 284×10^{6} males and 192×10^{6} females. For the stock present at the beginning of this* year; the prognosis programme calculates the catch expected for a range of maximal values of F in the F-at-age array, with the results shown in Table 14, columns 1 and 2.

Assuming the same maximal value of 0.5 in the F－at－age array，i．e．no change in fishing mortality，the expected 1977 catch would be 85340 tons． The expected stock biomass at the beginning of the year is 203794 tons．

3.6 The TAC

The choice of TAC required for 1977 depends on the criterion adopted for the management of the stock．Currently these criteria range from attempts to either maximise or optimise yield per recruit，for a particular pattern of fishing，to those which seek to maintain either some arbitrary minimum stock biomass above the level at which recruitment is potentially highly variable，or some enhanced stock level which would．optimise or maximise recruitment．
For the present pattern of fishing，the effect of change in the maximal value of F－at－age array on steady state yield per recruit and biomass por recruit has been calculated（Figure 4）．This shows that the maximal value on the F－at－age array of 0.5 places the fishery on the flat－topped part of the yield curve，where there can be no further gain in conditional yield per recruit for an increase in mortality，and a very small increase in yield， but a substantial increase in stock，for a reduction in the fishing morta－ lity．A 50% reduction in fishing mortality would bring the fishery to the $\mathrm{F}_{\mathrm{O}} \mathrm{l}$ l level，which a graphical calculation locates at an F value of 0.25 on the axis of maximal F in the F－at－age array．

Figure 5，taken from Bannister（1975），illustrates a possible relationship between an index of stock and estimates of recruitment for the post－war years．If the curve in Figure 5 is accepted，recruitment must tend to decline with any decrease in spawning stock．Even if the curve is not considered acceptable，and a horizontal straight line is preferred，low stock．levels are eventually inevitable．From the recruitment point of view， a reasonable，though qualitative，compromise here is to consider that any further decrease in stock size is undesirable and to bear in mind that if stock is increased，recruitment will certainly not decrease and could increase。
The information relating to a TAC for 1977 is presented in Table 15，which is an interpolated version of Table 14 and shows the expected maximum value of the F－at－age array which would arise in 1977 from the range of possible catch values shown，i。e．the table shows the TACs which would be required to achieve these specified levels of fishing mortality in 1977. The major results are：
（i）if the 1977 TAC is left unchanged at 99000 tons，and this catch is actually realised，the mortality rate must increase and move the fishery to the right along the yield curve；
（ii）a 1977 TAC of 85000 tons will leave the fishing mortality rate unchanged at its present level；
（iii）a 1977 TAC of 50000 tons would reduce the maximum value of F on the F－at－age array to 0.25 ，which is equivalent to the $F_{0.1}$ level．
（iv）intermediate figures of catch lead to the intermediate mortality reductions shown。

Simulation of the long－term steady state situation for the same range of F values，but for average recruitment after 1977，leads to the data for the long－term catch，biomass，and change in biomass from the expected 1977 level，shown in Table 14，columns 4－6．These data confirm the potential long－term value of reducing the mortality to the $\mathrm{F}_{\mathrm{O}} \mathrm{I}$ level， since at $F=0.25$ the catch is 85000 tons，which is not much less than
the optimum of 93500 tons，but the stock proportional to the catch rate is about 400000 tons，which is double the expected 1977 level．If the mortality rate were to remain unchanged at the present level of 0.5 for the maximal value in the F－at－age array，average recruitment would allow catch to increase slightly to 93500 tons，and the stock would equilibrate at about the present level．On the other hand，even with recruitment maintained at an average level，increasing the mortality rate causes the stock to equilibrate at a lower level， i．e．a lower catch rate．

3．7 The Recommendation

The Working Group recommends the following：－
（i）that in no circumstance shall the 1977 TAC be greater than 85000 tons；
（ii）that the Commission should consider the value of aiming for the F_{O} l level，which would involve a positive reduction in the fishing mortality but would result in a marked improvement in catch rate。 This could be achieved directly in 1977 by means of a TAC of 50000 tons，or by a phased progression over ta？period of，say，three years，involving F values of 0.4 in 1977， 0.3 in 1978 and 0.25 in 1979. To begin this progression，the TAC for 1977 would be 71000 tons with appropriate reductions in the following years，and with any amendments occasioned by marked changes in the recruitment situation．
3.8 Estimation of Recruitment

Last year，an unsuccessful attempt was made to use a short series of data to correlate year class abundance estimates from the 0 and I－group Waddensea surveys with the subsequent virtual population ana－ lysis estimates at two years of age．This year，the exercise was repeated using Waddensea survey data for the October surveys instead of the April surveys，with the results shown in Figure 6 and Table 16。
In default of other information it was considered satisfactory to use these data as a guide to the abundance of the 1972－75 year classes． It is of course possible that the change in the result from no correlation to a very good correlation is in some way spurious，and biological investigation of the reason for the change is required．

3.9 Mesh Size

At this meeting，the Working Group had no time to consider how a change in mesh size，and hence age at first capture，would influence the results described here．However，a mesh assessment carried out in 1974 （Doc。 $\mathrm{Com} \cdot 1974 / \mathrm{F}: 6$ ）specified the marked long－term gains to be expected from increases in mesh size up to 90 and 100 mm for this species．With the present F－at－age array these gains may be，if anything，slightly on the conservative side，such that the conclusions outlined then must still stand．It is recommended that the value of increasing the minimum mesh size for the North Sea be constantly borne in mind，for implementation when a suitable occasion ariseso

. 40
 -4.i
 Introduction

In previous reports the reason for attempting to include a TAC recommendation for the English Channel flatfish was in the first instance to try and safeguard these stocks against increased exploitation resulting from the diversion of fishing effort from other regulated areas. Not unexpectedly, such data as were discussed last year, suggested that at least some of the stocks in this area could also be in need of management in their own right. However, certain difficulties with catch and biological data, and what appeared to be a lack of published or verifiable information on the distribution and biology of the stocks, prevented the Working Group from making much progress in this direction. Accordingly, the expedient of limiting the TAC recommendation to the average catch of each species for the whole Channel in recent years was eventually retained, although it was fully realised that the solution would very probably be inappropriate, or at best valueless, at the individual stock level。

Discussions at the Working Group and within the national laboratories confirm that the present situation is looked on as being unsatisfactory, bothin terms of the rather superficial nature of the advice which has been given, and the lack of detail in the report as to the nature of the problem. As a preliminary to the assessments actually carried out this year, this introductory section therefore seeks to outline the problems by summarising the known and unknown features of the stock structure and the catch data relating thereto; in order to set guidelines for research into the information and methods which will ultimately be necessary to do justice to what is in some respects a rather complex area for assessment purposes.
Recent work conducted by Houghton (personal comm.) was referred to only briefly last year. This work suggests that in the Channel there is a rather complex stock structure, involving coastal populations of both species; plus, for the plaice, a population in the mid-Channel at spawning time. Along the English coast plaice and sole populations occur in Divisions VIId and e and can probably be considered as essentially separate stocks in each division. For sole there is no movement outside the Channel area, but some mature plaice frcm both the coastal plaice stocks move into the mid-Channel in winter to join a goodly proportion of mature spawning plaice which, from their return to the southern North Sea in summer, must presumably have originated there prior to the winter. These ideas rest largely on the results of English tagging experiments conducted on English coastal and mid-Channel fish. For the plaice, some of the results are included in a recent account of the distribution of plaice eggs in the English Channel (Houghton and Harding, in press).
From discussions with Lefranc as to the location of fishing grounds frequented by French coastal fishermen, it is reasonable to infer that local populations of plaice and sole are also to be found in the Pas-deCalais and the Bay of Seine. Further, from discussions at this meeting: about the distributions of English, Belgian and French fishing and the location of recaptures from the tagging experiments, a reasonable working hypothesis is that:
the English fleet is fishing on the English coastal populations of plaice and sole in Division VIIe; the Channel population of sole in Division VIId, and a mixture of local and spawning plaice in Division VIId at differenttimes of the year;
the Belgian fleet is.fishing mainly on the VIId sole and plaice population but also to some extent in VIIein the area off Land's End and the deeper waters off Start Point;
(iii) the French fleet is fishing throughout the year on the French coastal populations of plaice and sole, on the midChannel spawning population of plaice, and possibly to a small extent on the English coastal populations in Divisions VIId and VIIe, at certain times.

While single TACs for the whole Channel will therefore effectively prevent the entry of any additional fishing effort from outside, it is obvious that only fortuitously can they have much relevance to the individual stock components.

At the moment the biological sampling data for the Channel are derived only from Belgian and English fleets. The Belgian data refer principally to VIId. The English data"for VIId: ande can be looked at separately, but for VIId it is not yet possible to distinguish between data from the local and migratory plaice populationso For catch, there have been major uncertainties as to the validity not only of the total catch reported by France, but also on its allocation between VIId and e. For a variety of reasons the Working Group decided that these problems could not be resolved for the years before 1974. It looked on the 1975 data as giving the first reliable allocation between the East and West Channel, but was still in some doubt about the total French production of both plaice and sole.
This year only the Belgian mortality data could be updated, and the assessments were made by discussing these in conjunction with the English and Belgian catch and catch per effort data, the growth and mortality data reported last year, and some growth data for sole communicated by Houghton. The results of the assessments are described in the following sections.
5. ENGLISH CHANNEL SOLE 5.1 . Catch Trends

The published data for France are included, although as mentioned above, probably only the 1975 figure is realistic. Table 17 and Figure 7 show the catches from 1964-75 for the whole area。 Figures 8 and 9 show respectively the catch and catch per effort for the two Divisions for Belgium and England.
For the Channel as a whole, the English catch increased steadily since 1964, and the Belgian catch, after being very low between 1964 and 1969, increased somewhat in 1970 and has remained fairly constant since. On the basis of the 1975 figure the French take the major share of the total catch of sole.
On a sub-division basis, the English catch has levelled off in both VIIe and VIId in the last three years, and actually fell rather dramatically in VIId in 1975, possibly as a result both of the TAC enforcement and a fall in effort. For Belgium, the major increase in the catch has been in VIId with, if anything, a slight decline in the very small VIIe catch.
The catch per effort data (Table 19) are not easy to interpret. For VIId, English catch per effort (not corrected for changes in fishing power) increased between 1971 and 1974, but the Belgian value declined very steeply. This may mean that the two fleets are fishing different parts of the stock in this area, although for catch alone the trends for the two fleets were about the same. For VIIe, English catch per effort, corrected for changes in the fishing power of the Brixham fleet (Houghton, personal comm。) declined sharply from 1969 to 1970 but has since remained more or less steady. Stock abundance has therefore probably not changed much recently in VIIe, but shows two opposing trends in VIId, depending on the choice of statisticio.

Growth
For VIId Belgian growth parameters have been used, as follows:

VIId $\quad$$\sigma$ K $=0.17$	$W_{\infty}=434 \mathrm{~g}$	$t_{0}=-2.8 \mathrm{yr}$	
	$f: K=0.28$,	$\mathrm{W}_{\infty}=660 \mathrm{~g}$	$t_{0}=-1.1 \mathrm{yr}$

These parameters give a growth curve which is quite similar to that for the North Sea. For VIIe, the combined male and female.growth parameters calculated by Houghton were used, although the K value looks low, the t_{0} value is very highly negative, and the W_{∞} is high.

VIIe $\quad K=0.10 \quad L_{\infty}=46 \mathrm{~cm} \quad W_{\infty}=954 \mathrm{~g} \quad t_{0}=-6.6 \mathrm{yr}$

*
i

Mortality
Based on the average of the 1971-75 Belgian catch per effort estimates, fishing mortality in VIId is estimated as $F=0.26$ (σ) and $F=0.42$ ($\%$). For VIIe, the value of $\mathrm{F}=0.41$ calculated by Houghton and used last year was adopted.
For VIId the present situation appears to be that the fishery is very close to the optimal yield per recruit for male sole, and a little beyond it for female sole, suggesting that the stock is not seriously overexploitsdat the moment.
For VIIe, however, the shape of the yield curve and the adopted value of fishing mortality are such that the stock in this Division must be considered overexploited. If this assessment is accepted, and there are obviously doubts about the validity of the growth and mortality data used, we have the situation that the western and eastern components of the English Channel sole are in different phases of exploitation and need separate conservation measures.

5.5 The TAC

The calculation of valid separate taCs for the eastern and western areas is made difficult by the fact that except for the latest year 1975, the French landings, which comprise 60% of the total, cannot be allocated between the areas. The split in 1975 is 60% from VIId and 40% from VIIe, and if this is used, the total catch in 1975 is 1005 tons in VIId and 646 tons in VIIe.

For VIId, where the stock appears not to be in immediate danger of overexploitation, a TAC of 1000 tons for 1977 is reccmmended.

For VIIe the situation described by the available yield curve and mortality data calls for a decrease in fishing mortality of about 32% if the optimum sustainable yield is to be obtained. On this basis, the recommended TAC for 1977 should be 440 tons.

ENGLISH CHANNEL PLAICE

Catch Trends

The recent catch trends are shown for the whole region in Table 18 and for VIId and VIIe separately in Table 12. The separate VIId and and VIIe catch per effort data are shown in Figure 13. The French data have been included but with the misgivangs described previously, although for 1975 the VIId, VIIe allocation is looked on as being accurate.
The Belgian catch of plaice (mainly in VIId) has been steady at a low level since 1970, and has been steady in both VIId and VIIe. The English catch shows several fluctuations but since 1967 the overall trend has been downward. This is especially so in VIIe, but it also true more recently, for VIId where the English catch has fallen rapidly to the same level as that in VIIe. In 1975 in fact, the English fleet was able to catch only 50% of its allowed share of the TAC.
The index of stock abundance in VIIe, based on English catch per effort, corrected for increases in fishing power, fell sharply between 1968 and 1970, and has declined continuously, though less rapidly, since. English catch per effort in VIId has fluctuated markedly but the overall trend is downward in that area too. Belgian catch per effort in VIId also declined from 1971 to 1973 but has since risen very slightly. In summary, therefore, the abundance of plaice fished by the English and Belgian fleets in the English coastal area and in the mid-Channel has been declining in the last few years, although in VIId there have been wide fluctuations about this trend.

Mortality

The low level of catch per effort in those parts of the stock described above corresponds to the high mortality rates which are observed from English and Belgian age composition data. For VIId the most recent Belgian estimate of Z is 0.95 (δ) and 0.59 ($\%$). For VIIe, the latest figures are not available but the figures for Z given in the last Report are 0.98 (0°) and 0.75 (\ddagger).
In last year's Report it was concluded that with mortality levels of this order, the stocks supporting the English and Belgian fleets must be overexploited. This conclusion was made with reference to unpublished yield per recruit against fishing mortality curves derived from the English coastal population in VIIe. There is no reason to ohange these conclusions this year.

The TAC

The conclusion that the plaice stocks supporting at least the English and Belgian fleets are overexploited raises the question of what TACs are required for their effective management. On the basis of the working hypothesis described in Section 407, the stocks in question are those in the English coastal areas in VIId and.VIIe, and in the mid-Channel. We have no knowledge of the state of affairs
off the French coast, and the queries raised concerning the true level and sub-division: allocation of the French catch ob"viously seriously com-' plicate this problem. This year, all that the Working Group could do wa's to retain the expedient of holding exploitation at its present level, but it does recommend that there be separate TACs for VIId and VIIe, and that these should be based on the 1975 catch, as being the only year for which the French catch is reasonably certain. On this basis the Group suggests a TAC for 1977 for VIIe of 450 tons and a TAC for 1977 for VIId of 2000 tons.

A much more detailed assessment of these plaice stocks which also takes account of the link between the southern North Sea and the mid-Channel ...I spawning population, is recommended for next year.
$7 . \therefore$ IRISH SEA SOLE
7.1 Gatch Trends

The updated 1974 and preliminary 1975 landings of Irish Sea sole are shown in Table20 The 1975 landings were about the same as ..those in 1974, which wereslightly less than those in the preceding year.
7.2^{5} Age Composition
The international catch at age data in Tables $21 \& 22$ are derived from Belgian, Dutch and U.K. data for 1971, 1972, 1973 and 1975 and from Belgian and U.Ko data only for 1970 and :1974.
7.3 Virtual Population Analysis

- VPA carried out on these international catches at age used natural mortalities of 0.1 for both sexes. The terminal fishing mortalities and mortalities
- on the partially exploited cohorts given in Table 23 were smoothed values derived from a preliminary VPA, for which the results are shown in Tables 21 and 22 . Tables 21 and 22 , give the stock numbers at the beginning of the year and these are the values used in the prognosis programme. The high number of two year olds in 1975 is derived from the catch of two year olds in 1975 and, judging by the catch per effort of Belgian beam trawlers for two year olds, this 1973 year class is being overestimated by about 25% 。The effect of this possible overestimate in the prognosis will be commented on later.

7.4 Growth

The catch weight at age data used in the prognosis were obtained by plotting
the mean weights at age derived from the mean lengths at age in Belgian and
U.K. catches and fitting a curve by eye.

The length-gutted weight relationships used were calculated by a functional regression from the data given in Table 24 of last year's Report of the Working Group.

Male: $\log _{e}$ weight $(\mathrm{gm})={ }^{\circ} \log _{\mathrm{e}}$ length (cm) $\times 3.5603 \because 6.5798$
Female: $l_{\text {loge wht }}(\mathrm{gm})=\log _{\mathrm{e}}$ length $(\mathrm{cm}) \times 3.1503-5.1452$
Confirmation of these weight data was obtained by multiplying the 1975 catch

- numbers at age by weights at age and checking against the total catch figure, which showed exact correspondence.
-7.5 Prognosis
In the absence of any means of estimating the abundance of 1974 and 1975 year classes, the average recruitments for 1970-73 from the VPA (Table 23) were used in the prognosis. The fishing mortalities used for 1975 and 1976 were
derived from Belgian and UoK. catch per effort values for 1974/.75 and were 0.5 for females and 0.4 for males.

7.6 The Recommendation

The results of the prognosis are given in Table 24 and if the present level of fishing mortality is maintained, the catch in 1977 is expected to be between 1350 and 1600 tons. As has been mentioned in paragraph 7.3 the 1973 year class may have been overestimated and the lower of these two values should be taken as more likely. To hold fishing mortality at. the present level the TAC for 1977 should be 1350 tons.
Although it is not possible in this report to relate the present fishing mortality array to the yield per recruit curve given in Figure 3 of last year's Working Group Report, the present level of exploitation is almost certainly very close to the maximum. This means that in the long term almost the same yield could be expected from a very much lower level of exploitation.
8. IRISH SEA PLAICE

8.1. Catch Trends

The nominal catches of plaice in the Irish Sea (VIIa) are given in. Table 25 for the period 1960-75. The 1974 figures were revised in accordance with the catches reported to "Bulletin Statistique". Preliminary figures for 1975 were obtained from NEAFC monthly reports (Belgium, Ireland, England and Wales), from preliminary data on the annual catch of selected species reported to ICES in accordance with NEAFC Recommendation 12 (Netherlands, Northern Ireland, Scotland) and from a Working Group participant (France).
The total catch of plaice in the Irish Sea remained at about the same level in 1975 as in 1974 - approximately 3700 tons.

8.2 Age Composition

For the years 1964-69, the age distribution of the international catch was obtained by raising the age distribution of Fleetwood (U.K.) landings. For the period 1970-74, the age distribution of the Belgian catch and the Fleetwood landings were raised to the international total, but for 1975 only: the Belgian age distributions were available.. The historical record of age composition data is included in Tables 27 and 28.
8.3 Growth

The 1975 Report of the Working Group (Doc.C.M.1975/F:4) drew attention to the difference in the sizes at age in the English, Belgian and Irish catches and to the younger age at first capture in the Irish fishery compared to that in the English fishery. An examination of the mean length at age of plaice landed at Fleetwood from areas east and west of $5^{\circ} \mathrm{W}$ showed' that growth west of $5^{\circ} \mathrm{W}$ resembled that found in the Irish catches and thus clearly demonstrates that the difference is due to the area being fished.
In spite of the growth difference a single assessment was carried out using growth data given in Table 26. The bulk of the plaice catch comes from the area east of $5^{\circ} \mathrm{W}$ but a complete area breakdown of catch within VIIa would be needed in order to carry out separate assessments.
The length/weight relationship was recalculated from Table 20 of last year's Report of the Working Group, using a functional regression. The relationships are:

Male: $\quad \log _{e}$ weight $(\mathrm{gm})=\log _{e}$ length (cm) $\times 2.8363-4.0656$
Female: $\log _{e}$ weight $(\mathrm{gm})=\log _{\mathrm{e}}$ length $(\mathrm{cm}) \times 2.8714-4.0627$ The mean weights at age calculated from these and used in the prognosis are given in Table 29.

－ B．4．2 Virtual Population Analysis

The international age composition data were processed by VPA using
$M=0.1$ for females and $M=0.15$ for males．The terminal F values for partially exploited cohorts are included in Tables 27 and 28 and are the averages for the period 1964－71 obtained from a preliminary VPA．Ana－ lyses were started with age 12 （males）and age 15 （females）using terminal F values of 0.3 and 0.25 respectively for fully exploited cohorts．The mortality and stock values calculated by VPA are also shown in Tables 27. and 28．No trend in mortality may be detected from these figures．
The estimates of stock number at two years at age have been taken as minimum estimates of recruitment to the exploited population．
8．5 ．Prognosis
The fluctuations in recruitment of two year olds for the period 1964－73 were fairly small and the recruitments used in the prognosis for 1976 and 1977 are the ：averages for that period，excluding the outstanding 1963 year class．
Mean fishing mortalities at age for the period 1964－72 derived from the VPA（Tables 27 and 28）are given in Table 29．The relative mortalities at age derived from these were used in the prognosis．Maximum fishing mortalities for the 1975 and 1976 F－at－age arrays were chosen to give a good fit to the actual catch in 1975．They were 0.5 for females and 0.6 for males，with natural mortalities of 0.1 and 0.15 respectively．

The mortality values calculated by VPA are slightly lower than the mean 1964－72 mortality calculated last year from catch per effort data （Table 30），although the latter do not of course take account of the trend in mortality with age．
－The results of the prognosis are given in Table 31 which shows the total stock biomass at the beginning of 1977 （males and females combined）and the F values which would result from different levels of catch being taken in that year．These F values（column 1）are the maxima of the F－at－ age array and the figures in column 2 are obtained by multiplying them by the relative F values given in Table 29 and weighting by the catch biomass at age。
If the present level of fishing mortality is maintained（ioe。 no change in fishing effort）then the catch in 1977 is expected to be between 3600 and 4200 tons．This would be about 27% of the total stock biomass at the beginning of the year and there is no evidence that recruitment would be affected．In order to determine where this level of fishing mortality is on the yield per recruit curve，it is necessary to use the weighted fishing mortality（column 2 of Table 31）which is between 0.33 and 0.4

8．6 The Recommendation

It may be seen from Figure 15 that these values lie close to $F_{\text {max }}$ and the TAC for 1977 should therefore be 4000 tons．
A reduction in effort would affect yield very little in the long term but would increase the catch rate．

9．BRISTOL CHANNEL SOLE

9．1 Catch Trends

The international catch at age data given in Tables 32 and 33 are derived from the Belgian and UoK．data，except for 1975 ，when only Belgian data were available。
9.3 Virtual Population Analysis

A VPA carried out on these international catches used natural mortalities of 0.1 for both sexes. The terminal fishing mortalities and mortalities on the partially exploited cohorts are given in Tables 32 and 33 and are smoothed values derived from a preliminary VPA. Tables 32 and 33 give the stock numbers at the beginning of the year.

9.4 Growth

The catch weight at age data used in the prognosis are given in Table 34. They were obtained by fitting a by-eye curve to mean weight (gutted) at age data derived from mean lengths at age in Belgian and J.K.catches. (Data forwarded to the Chairman of the Working Group showed that there have been slight changes in the most recent Belgian data, but a check calculation suggests that these changes will in themselves have very little effect on the end result of the current prognosis.

9.5 Mortality

For 1974/75, Belgian catch per effort data give fishing mortality estimates of 0.36 (females) and 0.38 (males). The value for males is very similar to that calculated for the previous year (Doc. C.M.1975/F:4 Figure 4) but that for females is very much higher:.

9.6 Recruitment

In principle recruitment at two years of age can here be estimated in two ways, firstly on the basis of the virtual population analysis and secondly using a VPA catch per unit effort regression. For the VPA estimates alone, the: average recruitment in 1970-73 was about 1.25×10^{6} soles, but the 1974 and 1975 recruitments (year classes 1972 and 1973) were well below this. An alternative estimate of recruitment is derived from the data shown in Figure 16, which by agreement of the Group was forwarded to the Chairman for inclusion after the meeting. It is included on the Belgian suggestion that Belgian catch per effort for the last quarter of the year gives the most accurate impression of the abundance of new year classes. If this is the case, and the data in Figure 16 for the 1969-72 year classes are acceptable, the by-eye line predicts a value of some 1.5×10^{6} soles each for males and females, which is respectively 3.5 and 4.6 times the initial VPA estimate for this year class. The data series in Figure 16 is very short but nevertheless this second estimate of recruitment of the 1973 year class was used as an alternative in the prognosis because of the importance of the 1973 year class in estimating the 1977 stock.

9.7 Prognosis

The prognosis programme was run beginning with the 1975 catch at age data and the smoothed fishing mortality-at-age array. For 1975 and 1976 the maximal values of F in the F-at-age array were taken to be the same as the Belgian catch per effort figures of 0.36 (females) and 0.38 (males). For the 1974 and 1975 year classes, recruiting in 1976 and 1977, the average recruitment for 1970-73 from the VPA was used, viz. 1.25×10^{6} soles each for males and females. However, as described above, the 1973 year class recruitment in 1975 can be estimated in two ways. Since the prognosis programme actually begins with the 1975 catch, rather than the stock, the two possibilities could only be accounted for in the time available as follows. The lower estimate of the 1976 and 1977 situation was obtained by running the programe from the 1975 catch in the normal way. The upper estimate was then obtained by raising the prediction for age 3 in. 1976 and age 4 in 1977 by the factors 3.5 for males and 4.6 for females (see Section 9.6). The results of these calculations for the specified maximal values of F in the F-at-age array are shown in Tables 35 and 36.
9.8 The Recommendation

The recent catch trend has been downward, and for both the upper and lower recruitment situations the expected 1976 catch of 455 or 533 tons is substantially below the 1976 NEAFC TAC of 700 tons, which can therefore have no regulatory effect on the fishery. Further, if the 1977 mortality rate were to be the same as at present the expected catch for both recruitment situations will remain below the 1976 TAC level, at about $400-500$ tons. To have any regulatory value the 1977 TAC will therefore obviously have to be less than the 1976 figure. Precisely by how much depends on whether it is desirable simply to maintain the present level of fishing, or actually to reduce it.
Last year's report contained Beverton and Holt yield per recruit curves for this species in which optimal yield per recruit corresponds to an F value of about 0.25 . These curves assume that F is the same on all age groups. If the mean of the VPA F-at-age array, weighted by the stock number, is assumed to give an equivalent point of entry to these yield curves, the fishery is at about the optimal position on the yield curve for the present pattern of fishing, since the mean F values calculated in this way are 0.20 (females) and 0.29 (males). This means that the fishery'will be maintained at its present level of exploitation if the maximal value of F on the F-at-age-array does not exceed 0.38 (males) and 0.36 (females). For these values the expected 1977 catches are 440 tons and 500 tons for the lower and upper recruitment estimates respectively.
There is no way of deciding which figure is actually most representative of the true abundance of the 1973 year class. If a TAC of 500 tons is recommended, and it is in fact the lower estimate of recruitment which turns out to be correct, Table 35 shows that taking the 500 tons in this situation could increase the mortality rate, perhaps by as much as a third. Therefore, biologically the safest situation must be to recommend that the 1977 TAC shall be at the lower figure of 440 tons, which prevents the fishing - mortality from being increased.
10. BRISTOL CHANNEL PLAICE

10.1 Catch Trends

The nominal catch of plaice in the Bristol Channel (VIIf) are shown in Table 25 for the period 1960-75 and are derived from the same sources as indicated for the Irish Sea plaice. The catch in the Bristol Channel in 1975 appeared to increase slightly, from 364 tons to 550 tons, but it is almost certain that the 1974 figure is too low, because it is doubtful if the zero catch reported by France for that year is correct.

10.2 Mortality

Table 30 shows estimates of Z obtained from Belgian and U.K. catch per effort data for the period 1969-74. The U.K. figures were derived from age group 5 onwards (weighted inversely by the variance, except for the 1970-73 calculations), and the Belgian figures from age group 3 onwards.. The mean total mortality coefficient over this period was thus 0.68 on females and 1.05 on males (0.87 taking males and females together), compared with 0.53 on females and 0.90 on males (0.72 together), given in the 1975 Report as derived from Belgian data alone.

10.3 Yield Curves

The curves of yields per recruit against F in F igure 17 were constructed from the parameters given in Table 26, and for $M=0.1$ and $t_{c}=t_{2}=1.5$ years. It may be seen that the average value of F on females is somewhat in excess of $F_{\max }$ (by a factor of l.4). The male yield curve is flat-topped, but the
combined yield curve shows that although a decrease in F would result in only a negligible gain in yield per recruit，the catch rate could be almost doubled by a reduction in F to 0.4 （assuming $M=0.1$ ）。

10．4 The Recommendation

In order to protect this stock from increased fishing effort diverted from other fisheries，it is recommended that the TAC for 1977 should be 500 tons． If fishing effort were to be reduced so that this yield would be taken on the left of the yield per recruit curve rather than beyond the $\mathrm{F}_{\text {max }}$ ，the catch per effort would increase in the long term．

References

Anono，1969．Report of the ICES Working Group on Assessment of Demersal Species in the North Sea．Coop。Res．Rep．，Ser．A，No．9， 74 pp．ICES．

Anono，1974．Report of the ICES North Sea Flatfish Working Group．ICES， C．M．1974／F：6（mimeo）．

Anon．，1975。 Report of the ICES North Sea Flatfish Working Group。 ICES，G．M． 1975／F：4（mimeo）。

Bannister，Ro C．A．，1975．Changes in plaice stocks and plaice fisheries in the North Sea．Contrib．No． 29 to Symposium on Changes in North Sea Fish Stocks and their Causes，Aarhus（mimeo）。

Houghton，Ro Ge and Harding，D（in press）．The plaice of the English Channel： spawning and migration。 CIEM，J．Cons。int。Explor。Mer。

Veen，de，J．F．，1975．Changes in the North Sea sole stocks．Contrib。No． 30 to Symposium on Changes in North Sea Fish Stocks and their Causes， Aarhus（mimeo）．

Veen，de，J．Fo，1975．Sole and plaice recruitment surveys in the Netherlands， German and Danish coastal area of the North Sea。 ICES，Annls biol．， Copenh．，30，p．183．

Table 1. North Sea Sole. Nominal catch (metric tons) for statistical Sub-area IV, 1960-75.

Year	Belgium	Denmark	France	Germany Fed.Rep.	Ne therlands	Sweden ${ }^{\text {b }}$)	$\begin{gathered} \text { U.K. (England } \\ \text { and Wales) } \end{gathered}$	$\begin{gathered} \text { U.K. } \\ \text { (Scotland) } \end{gathered}$	Total
1960	3974	1760	398	1776	9274	3	1444	-	18629
1961	3666	2237	827	2116	13488	3	1617	-	23954
1962	4068	2507	322	1999	16287	-	1694	-	26877
1963	7835	350	280	670	13596	-	3431	-	26162
1964	1071	570	384	277	8272	-	768	-	11342
1965	1621	653	689	371	12980	-	729	-	17043
1966	3586	536	504	1074	$25192^{\text {a }}$	-	933	-	31825
1967	4455	1593	444	1094	24 900 ${ }^{\text {a }}$)	-	1023	-	33509
. 1968	3874	1590	273	1138	$25175^{\text {a }}$	-••	1129	-	33179
1969	2703	842	364	692	22032	-	927	-	27560
1970	1880	525	265	318	16024	13	660	1	19686
1971	2227	1149	403	600	18776	12	485	2	23654
. 1972	1834	671	206	258	17662	13	449	+	21093
1973	1485	957	250	336	15883	13	387	1	19312
1974	1130	705	195	173	15343	12	340	-	17898
1975 ${ }^{\text {c }}$	1316	636	213	300	14170	16	407	9	. 17067

a) Netherlands - The 1967 and 1968 catches given here include respectively 11862 tons and 3779 tons reported originally as "area unknown". Footnote in "Bulletin Statistique" allocate these quantities to "mostly IVb, the rest in IVc". No such explanation is provided for 1515 tons reported in 1966 as "area unknown", and this quantity has not been included in the 1966 catch given in this table.
b) Sweden - Figures from 1968 onwards include catches made in IIIa. The 1968 catch was included in 148 tons of Various pleuronectiforms.
c) Preliminary figures as reported.

Table 2. North Sea Sole.
Average fishing mortalities and relative fishing mortalities for 1969-73, used as terminal F values in the VPA and the prognosis.

Age	Males		Females	
	Average F	Relative F	Average F	Relative F
2	0.22	0.28	0.28	0.35
3	0.80	1.00	0.80	1.00
4	0.72	0.90	0.66	0.83
5	0.61	0.76	0.66	0.83
6	0.60	0.75	0.66	0.83
7	0.48	0.60	0.60	0.75
8	0.24	0.30	0.40	0.50
9	0.17	0.26	0.35	0.44
10	0.13	0.16	0.29	0.36
11	0.09	0.11	0.21	0.26
12	0.10	0.13	0.16	0.20
13	0.10	0.13	0.16	0.20
14	0.14	0.18	0.25	0.31

Table 3. North Sea Sole.
Age composition of total catch 1966-75 (thousands).

Year Age	Males									
	1966	1967	1968	1969	1970	1971	1972	1973	1974	$1975=F_{1}$
1	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.01	0.05
2	0.08	0.08	0.17	0.33	0.16	0.33	0.22	0.18	0.33	0.22
3	0.36	0.39	1.19	0.59	0.58	0.57	0.85	0.70	0.91	0.80
4	0.05	0.49	0.79	0.53	0.41	0.59	0.65	0.65	0.89	0.72
5	0.25	0.22	0.53	0.74	0.23	0.43	0.41	0.48	0.61	0.61
6	0.19	0.11	2.31	0.27	0.32	0.18	0.32	0.30	0.89	0.60
7	0.19	0.12	0.68	0.00	0.24	0.26	0.08	0.14	0.32	0.48
8	0.14	0.63	0.46	0.09	0.18	0.16	0.24	0.18	0.22	0.24
9	0.05	0.26	0.27	0.09	0.05	0.38	0.18	0.51	0.16	0.17
10	0.06	0.00	0.08	0.01	0.09	0.09	0.52	0.13	0.30	0.13
11	0.07	0.08	0.02	0.13	0.17	0.07	0.03	0.68	0.10	0.09
12	0.51	0.47	0.07	0.00	0.21	0.17	0.16	0.67	0.88	0.10
13	0.16	0.70	0.26	0.13	0.07	0.18	0.10	0.11	0.09	0.10
$14=\mathrm{F}_{1}$	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
$\begin{aligned} & \text { Average } \\ & F \geq 3 \end{aligned}$	0.32	0.42	0.70	0.39	0.37	0.37	0.57	0.46	0.66	0.59

ctd.

Table 3 (ctd). North Sea Sole. Stock in numbers (thousands).

Males

Table 4. North Sea sole.
Age composition of total catch 1966-75 (thousands).

Females

Year Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
1	0	0	0	265	649	185	0	610	410	104.4
2	9470	2750	4624	13812	4068	20731	5393	7376	10207	10742.9
3	74396	17282	13898	10086	13946	7214	19772	5470	12729	13741.9
4	358	56301	10876	2174	4953	6298	3795	8795	2969	5545.6
5	402	1497	21188	5083	1042	1703	2905	2503	3199	1201.9
6	1232	418	2536	13408	1677	584	856	1208	814	2099.4
7	464	1510	1283	243	7832	914	282	748	571	416.6
8	3981	246	2551	115	168	4266	567	565	208	592.1
9	435	3062	529	537	56	79	3059	684	235	294.5
10	447	475	1371	193	479	47	47	2002	206	59.9
11	211	506	259	1544	74	219	24	188	1200	212.2
12	339	139	558	154	1542	0	186	116	48	1203.7
13	56	418	275	291	85	1094	26^{-}	207	4	20.6
14	62	97	327	96	303	72	658	46	101	68.4

ctd.

Table 4 (ctd). North Sea Sole.
Fishing mortalities 1966-75.

Females

Age Year	1966	1967	1968	1969	1970	1971	1972	1973	1974	$1975=F_{1}$
1	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.05
2	0.18	0.11	0.17	0.35	0.20	0.39	0.35	0.23	0.32	0.28
3	0.39	0.50	1.12	0.61	0.63	0.56	0.70	0.62	0.69	0.80
4	0.05	0.50	0.59	0.44	0.61	0.57	0.56	0.69	0.73	0.66
5	0.11	0.30	0.32	0.54	0.35	0.38	0.50	0.80	0.51	0.66
6	0.14	0.15	1.06	0.30	0.30	0.30	0.30	0.36	0.59	0.66
7	0.23	0.22	0.76	0.23	0.26	0.24	0.21	0.42	0.25	0.60
8	0.18	0.17	0.63	0.12	0.22	0.20	0.20	0.71	0.17	0.40
9	0.19	0.19	0.57	0.23	0.07	0.13	0.19	0.36	0.64	0.35
10	0.09	0.30	0.11	0.37	0.29	0.07	0.10	0.16	0.15	0.29
11	0.14	0.12	0.24	0.15	0.21	0.19	0.04	0.61	0.13	0.21
12	0.10	0.11	0.17	0.19	0.20	0.00	0.21	0.27	0.27	0.16
13	0.07	0.15	0.31	0.11	0.14	0.19	0.11	0.34	0.01	0.16
$14=F_{1}$	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.25	0.25	0.25
Average										

Table 4 (ctd). North Sea Sole.
Stock in numbers (thousands).

Females

Year Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
1	29.466	33566	54193	26630	74797	21489	40986	44283	51399	2249
2	61096	26662	30371	49036	23844	67062	19268	37086	39489	46118
3	242660	46291	21512	23091	31275	17714	41032	12321	26557	26051
4	7038	149057	25521	6370	11352	15107	9200	18436	5974	11996
5	3973	6028	81562	12801	3704	5586	7709	4733	8366	2600
6	10047	3213	4035	53707	6771	2364	3440	4225	1918	4541
7	2325	7921	2510	1260	35880	4536	1585	2301	2678	965
8	25012	1664	5734	1059	910	25034	3237	1166	1373	1881
9	2584	18853	1272	2775	849	664	18602	2391	521	1045
10	5590	1925	14152	650	2001	715	525	13928	1515	249
11	1711	4633	1291	11503	405	1357	602	431	10702	1175
12	3850	1348	3712	923	8942	297.	1020	522	212	8543
13	867	3162	1088	2829	689	6627	268	746	363	146
14	467	731	2464	723	2283	542	4958	218	479	324

Table 5. North Sea Sole.
Number of recruits in millions.

Year class	Males	Females	Sexes combined
1955	26.9	44.8	71.7
1956	45.4	67.2	112.6
1957	37.1	70.2	107.3
1958	142.3	200.7	343.0
1959	15.7	24.1	39.8
1960	24.4	33.6	58.0
1961	6.7	8.3	15.0
1962	7.0	9.6	16.6
1963	255.8	296.2	552.0
1964	53.9	60.1	115.0
1965	32.3	26.7	58.9
1966	31.9	30.4	62.2
1967	47.7	49.0	96.7
1968	20.9	23.8	44.8
1969	66.2	67.1	133.3
1970	18.5	19.3	37.7
1971	36.6	37.1	73.7
1972	34.7	39.5	74.2
1973	44.1	46.1	90.3

Table 6. North Sea Sole.
Nominal weight (g) at age, for catch and stock (average 1969-1973).

Age	Males		Females	
	Biomass	Catch	Biomass	Catch
2	39	90	62	124
3	146	203	199	257
4	231	259	316	377
5	283	302	425	473
6	316	326	507	540
7	339	351	566	585
8	361	371	605	622
9	377	383	639	654
10	387	392	671	684
11	395	395	694	703
12	401	403	713	723
13	404	406	729	735
14	406	407	739	745

Table 7. North Sea Sole.
Prognosis for catch and stock for 1976 and 1977 for a regulated fishery in 1976 ($F_{1976}=0.56$).

	$\begin{gathered} \text { Maximal } F \\ \text { in } F \text {-at-age array } \end{gathered}$	Catch (tons)	Stock biomass (tons) at the beginning of the year	Expected stock biomass long-term increase
$\begin{aligned} & 1975 \\ & 1976 \end{aligned}$	0.80 0.80 0.56 0.56	$\begin{array}{ll} 17 & 070 \\ 12 & 534 \end{array}$	$\begin{array}{ll} 39 & 405 \\ 36 & 125 \end{array}$	
1977.	$\begin{aligned} & 0.0 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.5 \end{aligned}$	A B 0 0 2 505 2 396 4 828 4 616 6 983 6 669 8 984 8 572 10 843 10 336	 A B 35 318 33608	A B 483 508 296 311 179 188 102 108 53 56 18 20
Level of 1976	$\begin{aligned} & 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$	12 572 11 973 14 180 13 492 16 277 14 902 17 072 15 214 18 373 17 434		-4 -5 -21 -22 -33 -35 -43 -45 -50 -52

A - recruitment in 197790000000 two-year-old soles (available recruitment) B - " " " 40000000 " (estimate of 1975 year class)

Table 8. North Sea Sole.
Prognosis for catch and stock for 1976 and 1977
for an unregulated fishery in 1976 ($\mathrm{F}_{1976}=0.80$).

A - recruitment in 197790000000 two-year old soles (average recruitment)
B - " " " 40000000 " (estimate of 1975 year class)

Table 9. North Sea Plaice.
Nominal catch (metric tons) for statistical Sub-area IV, 1960-75.

Year	Belgium	Denmark	France	(Fed.Rep.)	lands	Norway	Sweden ${ }^{\text {a) }}$	$\begin{aligned} & \text { (England } \\ & \text { and Wales) } \end{aligned}$	$\begin{aligned} & \text { (Scot- } \\ & \text { land) } \end{aligned}$	Others	Total
1960	4919	33238	699	4117	15213	73	475	23392	5366	1	87493
1961	3950	32086	1341	3830	15951	60	497	22732	5326	161	85934
1962	4535	31227	464	3768	19094	86	472	22975	5322	-	87943
1963	5662	39926	501	4526	23143	36	438	28143	5181	-	107556
1964	4339	38380	1584	4390	24594	30	372	30773	5. 525	-	109987
1965	3931	30560	1933	4333	23271	38	286	26826	5534	-	96712
1966	6490	29055	1986	4401	25682	33	148	26978	5356	-	100129
1967	6778	28287	1730	5290	29905	35	237	30974	5709	-	108945
1968	5576	30369	1310	5250	33236	38	310	29569	5810	-	111468
1969	4476	35227	1330	5071	39420	26	309	30349	4981	-	121189
1970 .	4360	32807	1406	5519	46.080	22	243	34839	4703	-	129979
1971	5073	22278	1380	3296	44502	18	235	32576	4210	-	113568
1972	5531	24494	1062	4318	52048	19	250	31642	3410	-	122774
1973	6133	23266	1355	4976	57948	15	173	30.400	4815	399	129480
$1974{ }^{\text {b }}$)	6202	19814	519	3.233	54438	13	172	27698	4002	39	116130
1975 ${ }^{\text {c }}$)	$5022{ }^{\text {e }}$	21864	554	4000	50880	8	187	25146	3236	271 ${ }^{\text {d }}$	109970

a) Sweden - From 1962 onwards, the figures reported to "Bulletin Statistique" include catches made in IIIa. A note presented to the 12 th (1974) meeting of NEAFC by the Swedish Delegation (Agenda Item 7/paper 1) stated that "at present about 40% of the Swedish catch of plaice are caught in the North Sea". This correction has been applied to the Swedish figures for IIIa and IVa in "Bulietin Statistique" for the years 1962 onwards, prior to their inclusion in this table.
b) From Advance Release of "Bulletin Statistique", but U.K. (England and Wales) amended.
c) Preliminary figures as reported and adjusted where possible to the whole year.
d) USSR, Poland.
e) Includes estimate of catches landed in coreign ports.

Table 10. North Sea Plaice.

Males
Females

Age	$\begin{aligned} & \text { Catch } \\ & 1974 \end{aligned}$	$\begin{aligned} & \text { Catch } \\ & 1975 \end{aligned}$	$\begin{aligned} & 1975 \\ & \text { F-at- } \\ & \text { age } \\ & \text { array } \end{aligned}$	$\begin{aligned} & 1976 \\ & \text { F-at- } \\ & \text { age } \\ & \text { array } \end{aligned}$	Mean 71-73 F-at- age array	Natural mortality M	Catch 1974	$\begin{aligned} & \text { Catch } \\ & 1975 \end{aligned}$	$\begin{aligned} & 1975 \\ & \text { F-at- } \\ & \text { age } \\ & \text { array } \end{aligned}$	$\begin{aligned} & 1976 \\ & \text { F-at } \\ & \text { age } \\ & \text { array } \end{aligned}$	Mean $71-73$ $\mathrm{F}-\mathrm{at}$ age array	Natural mortality M
1	890	1636	0.01	0.01	-	0.25	728	583	0.01			0.20
2	9832	28390	0.15	0.15	0.07	0.15	10456	23534	0.15	0.15	0.09	0.10
3	30891	63822	0.90	0.50	0.21	0.15	29127	47556	0.90	0.50	0.27	0.10
4	36116	19026	0.40	0.40	0.41	0.15	24431	18768	0.40	0.40	0.38	0.10
5	19987	12907	0.30	0.30	0.45	0.15	20248	12900	0.40	0.40	0.40	0.10
6	8467	8771	0.30	0.30	0.41	0.15	10270	10023	0.40	0.40	0.39	0.10
7	3085	4467	0.30	0.30	0.33	0.15	4859	5647	0.40	0.40	0.37	0.10
8	1904	2099	0.30	0.30	0.28	0.15	4450	2777	0.40	0.40	0.42	0.10
9	1807	926	0.30	0.30	0.25	0.15	3941	2035	0.40	0.40	0.39	0.10
10	1009	717	0.30	0.30	0.30	0.15	3152	1651	0.40	0.40	0.37	0.10
11	2356	275	0.20	0.20	0.20	0.15	9661	981	0.40	0.40	0.39	0.10
12	247	922	0.20	0.20	0.28	0.15	1654	4532	0.40	0.40	0.38	0.10
13	392	243	0.20	0.20	0.24	0.15	1659	591	0.30	0.30	0.29	0.10
14	162	131	0.20	0.20	0.54	0.15	1, 321	783	0.30	0.30	0.40	0.10
15	354	508					1258	641	0.30	0.30	0.27	0.10
16							709	634	0.30	0.30	0.24	0.10
17							1209	263	0.30	0.30	0.40	0.10
18							136	319	0.30	0.30	0.30	0.10
19							54	202	0.20	0.20	0.18	0.10
20							42	90	0.10	0.10	0.10	0.10
21							287	264				
1	2	3	4	5	6	7	8	9	10	11	12	13

Table 1l. North Sea Plaice.
Age composition of total catch 1966-75 (thousands).

Males

Year Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
1	0	0	0	280	1401	428	1084	437	890	1636
2	3994	4141	7247	8941	13245	18886	14557	13037	9832	28390
3	44528	17704	29209	25842	27962	27438	22094	35623	30891	63822
4	35085	116442	26674	18546	31668	16385	23947	46290	36116	19026
5	21180	29884	71530	19726	23087	11357	10059	21150	19987	12907
6	13880	16688	8597	50365	18237	10351	7461	5635	8467	8771
7	6938	12446	3530	3967	37089	6189	5968	2789	3085	4467
8	3728	3440	4620	1913	2346	10683	3204	3331	1904	2099
9	2256	2912	1007	4041	1155	1408	5720	1764	1807	926
10	831	551	1621	1084	1396	1180	1213	4290	1009	717
11	363	159	560	939	528	781	856	155	2356	275
12	552	81	335	686	663	374	736	379	247	922
13	327	231	199	209	307	487	300	276	392	243

ctd.

Males

Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	$1975=F_{1}$
1	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01
2	0.03	0.03	0.06	0.08	0.09	0.10	0.08	0.11	0.08	0.15
3	0.09	0.14	0.26	0.28	0.36	0.24	0.15	0.28	0.38	0.90
4	0.41	0.35	0.31	0.25	0.60	0.35	0.32	0.51	0.48	0.40
5	0.41	0.69	0.36	0.37	0.51	0.42	0.36	0.49	0.41	0.30
6	0.32	0.61	0.41	0.44	0.66	0.43	0.50	0.33	0.35	0.30
7	0.43	0.49	0.24	0.32	0.63	0.46	0.44	0.33	0.28	0.30
8	0.24	0.37	0.32	0.18	0.30	0.35	0.44	0.45	0.38	0.30
9	0.34	0.28	0.17	0.48	0.15	0.27	0.30	0.44	0.45	0.30
10	0.29	0.12	0.23	0.26	0.28	0.22	0.38	0.37	0.45	0.30
11	0.21	0.08	0.17	0.19	0.18	0.24	0.23	0.07	0.34	0.20
12	0.32	0.06	0.22	0.30	0.19	0.18	0.35	0.14	0.15	0.20
$13=F_{1}$	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
$\begin{aligned} & \text { Average } \\ & F>1 \end{aligned}$	0.16	0.30	0.27	0.28	0.38	0.23	0.20	0.32	0.31	0.38

Table 11 (ctd). North Sea Plaice.
Stock in numbers (thousands).

Males

Table 12. North Sea Plaice.
Age composition of total catch 1966-75 (thousands).

Females

Year	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
1	0	0	0	8	770	481	765	723	728	583
2	5700	3121	7033	9241	9311	19676	12888	12608	10456	23534
3	51936	21883	22698	25934	27086	25283	25198	33928	29127	47556
4	24445	63691	20257	18834	28301	15825	21076	41452	24431	18768
5	13172	18404	51274	13499	16990	11499	12836	19949	20248	12900
6	9705	11301	7476	39605	13838	10296	10898	7816	10270	10023
7	8531	8896	5122	5050	34679	7023	11437	6171	4859	5647
8	6371	4279	5833	3091	4509	13864	11773	6375	4450	2777
9	3677	5692	2494	4672	2747	3210	18503	5694	3941	2035
10	2056	2289	3178	1868	3772	2471	4892	12955	3152	1651
11	1608	1808	1309	3174	1522	2303	4635	2665	9661	981
12	1904	903	1336	933	2102	1536	5654	2099	1654	4532
13	1168	1342	630	990	752	1424	2687	1945	1659	591
14	1073	769	840	362	721	627	2733	2836	1321	783
15	589	671	489	687	320	742	1188	1150	1258	641
16	663	322	576	348	373	346	1475	705	709	634
17	374	504	478	481	291	826	2459	901	1209	263
18	305	163	140	179	173	307	618	413	136	319
19	316	139	134	202	95	176	368	289	54	202
20	193	165	113	173	99	88	202	328	42	90

ctd.

Table 12 (ctd). North Sea Plaice. Fishing mortalities 1966-75.

Females

Females										
Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
1	178001	169883	141865	170839	219422	170760	147144	127042	217384	64636
2	159630	145735	139089	116150	139864	178.952	139372	119780	103360	177321
3	448876	139022	128900	119168	96316	117706	143233	113865	96405	83592
4	100956	356831	105016	95088	83222	61471	82516	105684	70869	59623
5	71363	68162	262419	75798	68166	48491	40614	54676	56385	40982
6	68815	52070	44225	188786	55771	45565	32969	24585	30580	31842
7	45148	53.051	36393	32922	133241	37339	31461	19506	14836	17940
8	39503	32755	39557	28066	24995	87674	27120	17636	11802	8822
9	21521	29695	25574	30254	22459	18336	66169	13401	9920	6465
10	17691	15982	21467	20771	22940	17713	13544	42329	6738	5245
11	13273	14054	12288	16407	17020	17176	13681	7622	26023	3117
12	10432	10483	11000	9875	11833	13954	13354	7988	4372	14398
13	12219	7632	8627	8684	8049	8712	11167	6733	5237	2390
14	7961	9946	5632	7208	6917	6569	6531	7556	4249	3167
15	3607	6185	8269	4298	6178	5574	5348	3323	4152	2592
16	3375	2704	4959	7018	3237	5286	4339	3712	1918	2564
17	3330	2424	2141	3940	6019	2575	4454	2529	2690	1064
18	2004	2658	1715	1484	3108	5170	1547	1708	1435	1290
19	2344	1524	2250	1419	1173	2648	4386	815	1154	1169
20	2129	1820	1247	1909	1092	971	2229	3619	463	993

Table 13. North Sea Plaice.
Mean weight at age per catch and stock.

Age	MALE		FEMALE	
	Gutted weight stock	Gutted weight catch g	Gutted weight stock g	Gutted weight catch g
2	65	200	65	215
3	122	260	122	303
4	194	315	194	376
5	282	370	282	451
6	382	413	382	527
7	450	450	490	602
8	485	485	606	676
9	517	517	724	749
10	546	546	819	819
11	573	573	886	886
12	598	598	950	950
13	620	620	1010	1010
14	640	640	1067	1067
15	694	694	1120	1120
16			1170	1170
17			1220	1220
18			1260	1260
19			1300	1300

Table 14. North Sea Plaice.
Prognosis for catch and stock in 1976 and 1977 and long-term steady state catch and biomass.

Prognosis
Long-term steady state situation

Maximum F at age value		Catch (tons)	Biomass at beginning of year	Expected catch (tons)	Biomass	Multiple of Biomass in 1977
1975	0.5	109970	233960			
1976	0.5	96300	213844			
1977			203794			
	0.0	0			1462600	7.18
	0.1	19570		43130	818690	4.02
	0.2	37800		84030	509180	2.50
	0.3	54770		91050	346910	1.70
	0.4	70590		93160	254565	1.25
Present level						
	0.5				198060	0.97
	0.6	99100		93170	161280	0.79
	0.7	111950		92620	136100	0.67
	0.8	123950		92000	118120	0.58
	0.9	135170		91400	104830	0.51
	1.0	145650		90820	94715	0.46
Column nos.		2	3	4	5	6

Table 15. North Sea Plaice.
Maximal values of the F at age array which would be generated by various catches for 1977.

TAC (tons nominal)	Maximal F value
100000	0.61
90000	0.53
80000	0.46
70000	0.39
60000	0.33
50000	0.26
40000	0.21
30000	0.15
20000	0.10

Table 16. North Sea Plaice.
Recruitment estimates from pre-recruit surveys and virtual population analysis data.

Year class	Abundance at age 2 (from 1975 VPA) millions	Abundance index in 0 - 1 group Waddensea surveys $\%$
1968	340	92
1969	445	137
1970	426	119
1971	370	98
1972	208	50
1973	349^{*}	96
1974	$214^{\# \pi}$	49
1975	$426^{\#}$	123

Fr Estimated by extrapolation from the regression

Table 17. English Channel Sole.
Nominal catch (metric tons) in statistical Divisions VIId,e, 1964 - 1975 (Bulletin Statistique).

Year	Belgium	France	Netherlands	$\begin{gathered} \text { U.K. } \\ \text { (England \& Wales) } \end{gathered}$	Total
1964	14	465	-	207	686
1965	43	824	-	175	1042
1966	8	-	-	216	224
1967	7	816	-	261	1084
1968	30	520	-	247	797
1969	18	606	-	315	939
1970	137	753	1	353	1244
1971	160	816	1	406	1383
1972	153	676	8	523	1360
1973	128	775	-	485	1457
1974	165	706	3	490	1364
1975 ${ }^{\text {1) }}$	135	966	-	$550{ }^{2}$	1651

1) Preliminary figures as reported. 2) Figure reported to NEAFC.

Table 18. English Channel Plaice.
Nominal catch (metric tons) in statistical Divisions VIId,e, 1964 - 1975 (Bulletin Statistique).

Year	Belgium	France	Netherlands	U.K. (England \& Wales)	Total
1964	28	1393	-	1038	2459
1965	33	2130	-	1286	3449
1966	25	$\left.2700^{1}\right)$	-	1748	4473
1967	11	2905	-	1805	4721
1968	30	1920	-	1354	3304
1969	30	1681	-	1029	2740
1970	183	2161	6	1517	3867
1971	180	2635	-	1745	4280
1972	177	1866	17	182	3242
1973	144	1735	-	1256	3135
1974	152	2180	-	812	3144
$1975^{2)}$	161	1748	-	545	2454

1) Figure from Revue des Travaux de l'Institut des Pêches Maritimes raised to round fresh weight.
2) Preliminary figures as reported.

Table 12. English Channel Sole.
Catch in metric tons per 100 hours fishing for England VIIe (corrected for fishing power) for England VIId and Belgium VIId (both not corrected for fishing power).

		1.968	1969	1970	1971	1972	1973	1974	1975
$\underset{\text { U.K. (Brixham) }}{\text { (England) }}$	VIIe	1.93	1.91	1.01	0.93	1.04	0.8	1.0	
U.K. (England)	VIId	2.08	3.08	2.11	2.08	3.66	3.46	4.08	
Belgium	VIId				18	13	8	10	8

Table 20. Irish Sea Sole and Bristol Channel Sole.
Nominal catch in statistical Divisions VIIa and VIIf, 1960-1975.

Year	Belgium		France		Ire- land VIIa	Nether- lands VIIa	$\begin{gathered} \text { U.K. } \\ \text { (England \& Wales) } \end{gathered}$		```U.K. (N. Ireland) VIIa```	$\begin{gathered} \text { U.K. } \\ \text { (Scotland) } \\ \text { VIIa } \end{gathered}$	Total	
	VIIa	VIIf	VIIa	VIIf			VIIa	VIIf			VIIa	VIIf
1960	531		90		25	-	756		-	-		
1961	406		60		25	-	682		-	-		
1962	40	335	45	45	37	-	464	215	-	-	586	595
1963	64	174	43	61	25	-	323	122	+	-	455	357
1964	938	471	242	77	40	-	380	111	$+$	-	1600	659
1965	1025	498	228	72	29	13	344	75	1	-	1640	645
1966	407	248	367	150	14	-	288	112	7	-	1083	510
1967	307	451	361	83	22	-	320	209	12	-	1022	743
1968	332	292	125	179	23	-	456	127	10	-	946	598
1969	841	289	97	194	34	3	417	168	17	-	1409	651
1970	1142	567	115	118	25	235	291	145	24	1	1833	830
1971	883	595	45	40	45	552	356	131	40	1	1922	766
1972	561	343	38	82	50	514	278	123	40	9	1490	548
1973	793	416	12	240	27	281	315	122	46	11	1485	778
1974	664	545	54	24	28	320	218	94	23	-	1330	663
1975	737	417	74	33	22	203	290	147	24	14	1364	597

F Preliminary figures as reported.

Table 21. Irish Sea Sole.
Age composition of total catch 1970-75 (thousands).

Age	Year	1970	1971	1972	1973	1974
2	12	27	11	56	24	1975
3	488	94	270	178	370	104
4	565	1094	417	1145	239	349
5	321	660	568	289	654	1085
6	571	123	166	349	179	302
7	39	485	68	146	154	337
8	95	132	241	98	132	63
9	260	38	22	185	25	101
10	74	131	16	15	130	91
11	257	264	127	76	33	58
12	46	73	52	83	40	46
13	9	181	31	48	71	15
14	9	15	36	18	82	19
15	4	18	1	32	43	61

ctd.

Table 21 (ctd). Irish Sea Sole.
Fishing mortalities 1970-75.

Year	Males					
2	1970	1971	1972	1973	1974	1975
3	0.01	0.01	0.01	0.01	0.01	0.01
4	0.14	0.07	0.08	0.12	0.09	0.22
5	0.26	0.48	0.41	0.45	0.22	0.38
6	0.35	0.49	0.43	0.50	0.45	0.41
7	0.31	0.20	0.20	0.46	0.58	0.39
8	0.10	0.41	0.14	0.23	0.33	0.37
9	0.22	0.53	0.33	0.28	0.31	0.34
10	0.23	0.12	0.14	0.40	0.10	0.32
11	0.11	0.15	0.06	0.12	0.48	0.30
12	0.44	0.62	0.19	0.38	0.36	0.28
13	0.09	0.19	0.21	0.17	0.32	0.25
14	0.43	0.56	0.10	0.26	0.19	0.22
15	0.09	3.30	0.18	0.07	0.84	0.22
Mean $\mathrm{F} \geq 4$	0.22	0.22	0.22	0.22	0.22	0.22

Table 21 (ctd.) Irish Sea Sole.
Stock in numbers 1970-75.

Males

Year	1970	1971	1972	1973	1974	1975
2	1694	4361	1794	4879	2074	10982
3	3843	1522	3920	1612	4362	1854
4	2556	3014	1288	3290	1290	3595
5	1131	1777	1691	770	1893	940
6	2258	719	982	992	423	1093
7	412	1502	534	731	567	213
8	501	336	899	418	523	367
9	1350	363	179	585	285	348
10	741	975	292	141	354	235
11	760	600	758	249	113	197
12	533	444	294	565	153	71
13	27	439	332	216	433	101
14	115	16	226	271	170	324
15	21	96	1	170	228	58

Table 22. Irish Sea Sole.

Age composition of total catch 1970-75 (thousands).

Females

ctd.

Table 22. (ctd) Irish Sea Sole.
Fishing mortalities 1970-75.

Females

Age Year	1970	1971	1972	1973	1974	1975
2	0.01	0.02	0.01	0.05	0.01	0.01
3	0.20	0.27	0.13	0.15	0.16	0.22
4	0.38	0.34	0.39	0.32	0.37	0.35
5	0.18	0.45	0.49	0.60	0.41	0.40
6	0.35	0.27	0.42	0.38	1.34	0.41
7	0.51	0.29	0.58	0.32	0.37	0.40
8	0.19	0.09	0.38	0.09	0.47	0.30
9	0.34	0.26	0.51	0.26	0.36	0.36
10	0.28	0.37	0.36	0.75	0.28	0.34
11	0.38	0.21	0.21	0.52	0.55	0.33
12	0.13	0.33	0.25	0.25	1.09	0.32
13	0.07	0.38	0.66	0.36	0.26	0.30
14	0.18	0.13	0.35	0.46	0.30	0.30
15	0.30	0.30	0.30	0.30	0.30	0.30
Mean F ≥ 4	0.32	0.28	0.40	0.34	0.47	0.36

Table 22 (ctd). Irish Sea Sole.
Stock in numbers 1970-75.

Females

Table 23. Irish Sea Sole.
Relative fishing mortalities, based on 1970-73 average from VPA.

Age	Male Relative F	Female Relative F
2	0.03	0.05
3	0.55	0.48
4	0.95	0.83
5	1.00	1.00
6	0.98	0.98
7	0.93	0.95
8	0.85	0.90
9	0.80	0.86
10	0.75	0.81
11	0.75	0.79
12	0.75	0.76
13	0.75	0.71
14	0.75	0.71
15	0.75	0.71

Table 24. Irish Sea Sole. Catch prognosis for 1977.

F	Catch weight (tons)	Catch number $\times 10^{-3}$
0	0	Stock biomass at 6 039 tons beginning of year
1	382	1686
2	733	3239
3	1056	4671
4	1354	$5991 \quad$ Too high by ≈ 150 tons. 1973
5	1629	$7209 \quad$ year class has been overestimated.
6	1881	8334
7	2115	9372
8	2330	10331
9	2528	11218
10	2712	12038

Nominal catch in statistical Divisions VIIa and VIIf, 1960-1975.

Year	Belgium		France		Ireland VIIa	Netherlands VIIa	$\begin{gathered} \text { U.K. } \\ \text { (England \& Wales) } \end{gathered}$		$\underset{\substack{\text { U.K. } \\ \text { (N. } \\ \text { Ireland }) \\ \text { VIIa }}}{ }$	$\begin{gathered} \text { U.K. } \\ \text { (Scotland) } \\ \text { VIIa } \end{gathered}$	Total	
	VIIa	VIIf	VIIa	VIIf			VIIa	VIIf			VIIa	VIIf
1960	140		157		611	-	1620		34	18		
1961	82		67		743	-	1443		22	42		
1962	11	73	54	4	594	-	1436	205	28	20	2143	282
1963	23	55	60	1	545	-	1141	173	68	29	1866	229
1964	253	184	147	3	844	-	1388	204	185	62	2879	391
1965	150	224	168	10	574	1	2484	272	225	62	3664	506
1966	72	113	562	21	782	-	2527	467	174	151	4268	601
1967	69	137	1082	-	819	-	2866	655	138	85	5059	792
1968	152	260	40	669	1449	-	2764	521	178	112	4695	1450
1969	208	202	33	668	1309	-	2540	506	216	88	4394	1376
1970	305	226	250	102	909	8	1869	501	184	58	3583	829
1971	175	202	-	-	1028	61	2744	545	132	92	4232	747
1972	179	137	440	110	863	48	3366	377	134	89	5119	624
1973	221	158	500	-	1079	42	3002	381	143	73	5060	539
1974	247	154	132	-	891	47	2240	210	104	54	3715	364
1975*	246	126	106	115	842	31	2377	312	125	51	3778	553

\# Preliminary figures as reported.

Table 26. Irish Sea Plaice and Bristol Channel Plaice.
Growth data - mean lengths (cm) at age, and parameters of von Bertalanffy equation. Data for age group 0-2 from research vessel samples; data for age group 3 onwards from commercial catch samples.

	Irish Sea (VIIa)							Bristol Channel (VIIf)				
	Female			Male				Female			Male	
Age group	$\begin{aligned} & \text { Belgian } \\ & \text { 1970-74 } \end{aligned}$	English \& Welsh 1964-74	$\begin{gathered} \text { Irish } \\ 1962-66 \end{gathered}$	Age group	$\begin{aligned} & \text { Belgian } \\ & 1970-74 \end{aligned}$	English \& Welsh 1964-74	$\begin{gathered} \text { Irish } \\ 1962-66 \end{gathered}$	$\begin{aligned} & \text { Age } \\ & \text { group } \end{aligned}$	$\begin{aligned} & \text { Belgian } \\ & 1970-74 \end{aligned}$	$\begin{gathered} \text { English } \\ \text { \& Welsh } \\ 1969,70,73,74 \end{gathered}$	$\begin{aligned} & \text { Belgian } \\ & 1970-74 \end{aligned}$	English \& Welsh 1969,70
0		$7 \cdot 3$	11.3	0		7.3	11.1	0		9.6		9.5
1		15.3	18.2	1		15.3	18.3	1		17.0		17.1
2		21.0	23.2	2		21.0	22.8	2	29.5	29.6	28.8	28.1
3	31.1	26.8	31.5	3	28.8	26.8	28.9	3	32.4	30.9	30.6	30.2
4	33.8	31.7	34.0	4	31.4	29.7	31.4	4	35.0	32.5	31.5	30.1
5	37.1	33.6	37.7	5	32.4	30.6	33.9	5	37.0	33.8	32.3	31.7
6	39.3	35.9	39.9	6	32.8	31.2	35.6	6	40.4	36.1	32.0	33.3
7	41.5	38.0	43.6	7	35.8	32.0		7	42.9	36.6	35.5	31.1
8	43.7	39.1	45.6	8	36.4	34.8		8	44.8	39.0	38.0	35.0
9	45.3	41.3		9	38.0	34.8		9	47.3	42.9		-
10	46.8	44.1		$10+$		36.6		$10+$	51.8	48.1		$37 \cdot 5$
11	50.5	45.1										
12	50.6	48.3										
13	52.3	47.8				of $10+=$			$\text { of } 10+=$	$\text { of } 10+=$		$\text { of } 10+=$
14	52.5	51.0				11.5			11.5	12.1		11.0
15	51.0	48.6				11.5			11.5	12.1		11.0
$16+$		53.0										
		Mean age of $16+=$										
		17.0										
L_{∞}	53.79			37.13				50.87			35.11	
K	0.18			0.35				0.20			0.52	
t_{0}	-0.61			-0.27				-0.85			-0.09	

Males

Table-27 (ctd). Irish Sea Plaice.
Fishing mortalities 1964-75.

Males

Age	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
2	0.08	0.06	0.01	0.01	0.03	0.02	0.02	0.03	0.00	0.04	0.05	0.02
3	0.11	0.25	0.22	0.08	0.13	0.31	0.20	0.26	0.27	0.28	0.14	0.24
4	0.36	0.33	0.64	0.64	0.40	0.34	0.41	0.73	0.68	0.89	0.55	0.56
5	0.57	0.28	0.70	0.12	1.14	0.54	0.50	0.84	0.67	1.05	1.23	0.70
6	0.35	0.61	0.59	0.59	0.61	0.52	0.74	0.58	0.57	0.81	2.12	0.77
7	0.25	0.24	0.60	2.12	0.35	0.39	0.62	0.35	0.26	0.73	0.19	0.70
8	0.01	0.81	0.15	0.36	0.36	0.02	0.24	0.49	1.48	0.26	0.11	0.56
9	0.01	0.32	0.01	0.16	0.02	0.05	0.03	0.33	0.63	2.06	0.07	0.46
10	3.20	0.01	0.02	2.67	0.00	1.81	0.37	0.18	0.01	1.67	0.22	0.38
11	0.20	0.20	0.01	2.21	0.20	0.12	0.20	0.75	0.01	0.31	0.20	0.34
12	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Mean $\mathrm{F} \geq 4$	0.48	0.39	0.34	0.85	0.44	0.37	0.51	0.48	0.50	0.63	0.98	0.59

Males

Year	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
2	7203	9096	5188	6924	4487	5937	7531	6934	5811	8557	10494	8645
3	4164	5751	7376	4430	5892	3765	5014	6352	5765	4980	7106	8569
4	1805	3214	3858	5085	3508	4449	2384	3521	4214	3791	3246	5335
5	765	1088	1996	1747	2316	2027	2736	1361	1467	1832	1346	1610
6	1672	372	709	857	1331	641	1014	1422	505	647	553	340
7	450	1019	173	339	409	625	327	418	685	246	248	57
8	97	302	689	82	35	249	364	151	253	454	102	177
9	153	83	116	510	49	21	209	247	80	49	300	78
10	167	131	52	99	372	42	17	176	153	36	5	241
11	6	6	112	44	6	319	6	10	126	131	6	4
12	4	4	4	95	4	4	244	4	4	108	83	4

Table 28. Irish Sea Plaice.
Age composition of total catch 1964-75 (thousands).

Females

Year	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
2	513	812	32	166	122	200	268	246	136	486	946	123
3	-1 512	2007	2004	1245	1142	1258	910	1658	2189	1993	1762	1163
4	1176	1981	2194	3225	2148	1946	1274	2192	2749	3747	1244	1129
5	135	1161	1522	2220	3235	1317	1267	1089	847	1712	1225	1004
6	396	489	480	785	1239	1782	850	1009	508	444	449	771
7	388	124	495	305	256	694	807	390	523	280	154	322
8	139	154	273	259	121	182	221	462	388	188	110	118
9	25	15	197	180	131	62	87	128	347	134	51	95
10	1	33	18	86	26	61	37	52	171	186	43	69
11	29	13	17	60	16	44	56	37	52	99	69	51
12	1	1	5	5	7	21	21	36	44	23	31	59
13	1	1	7	5	4	5	29	12	34	19	7	19
14	1	1	3	7	2	2	5	7	20	13	6	11
15	10	1	2	5	1	1	1	1	14	17	5	1

ctd.

Table 28 (ctd). Irish Sea Plaice.
Fishing mortalities 1964-75.

Year	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
2												
Age	0.04	0.05	0.00	0.02	0.02	0.03	0.03	0.02	0.02	0.08	0.15	0.02
4	0.21	0.20	0.14	0.16	0.16	0.24	0.17	0.21	0.24	0.36	0.38	0.24
4	0.34	0.42	0.30	0.30	0.41	0.39	0.37	0.69	0.57	0.70	0.35	0.40
5	0.06	0.59	0.58	0.50	0.50	0.41	0.41	0.55	0.56	0.75	.0 .45	0.47
6	0.30	0.29	0.46	0.60	0.51	0.50	0.46	0.60	0.47	0.57	0.39	0.51
7	0.40	0.13	0.48	0.52	0.35	0.53	0.39	0.35	0.64	0.45	0.35	0.48
8	0.64	0.24	0.41	0.44	0.36	$0.4 C$	0.28	0.36	0.60	0.44	0.29	0.43
9	0.27	0.11	0.49	0.47	0.36	0.28	0.30	0.24	0.45	0.38	0.18	0.38
10	0.03	0.59	0.17	0.36	0.10	0.26	0.24	0.27	0.50	0.41	0.18	0.35
11	0.75	0.48	0.62	1.16	0.09	0.22	0.35	0.36	0.41	0.54	0.23	0.30
12	0.03	0.04	0.30	0.33	0.33	0.15	0.14	0.36	0.82	0.29	0.28	0.28
13	0.08	0.03	0.42	0.50	0.42	0.37	0.29	0.10	0.59	0.94	0.12	0.25
14	0.18	0.10	0.11	0.87	0.34	0.34	0.69	0.10	0.21	0.42	0.79	0.25
15	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Mean $\mathrm{F} \geq 4$	0.36	0.24	0.45	0.53	0.42	0.47	0.38	0.42	0.52	0.47	0.31	0.45

ctd.

Table 28 (ctd). Irish Sea Plaice.
Stock in numbers 1964-75 (thousands).

Females

Age	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
2	13647	18966	9718	9266	6875	6862	10288	12321	7826	6931	7310	6526
3	8278	11860	16389	8763	8227	6105	6019	9054	10915	6952	5810	5716
4	4246	6055	8826	12926	6747	6359	4330	4582	6619	7799	4401	3587
5	2377	2727	3602	5906	8637	4069	3910	2710	2073	3388	3514	2803
6	1590	2023	1369	1819	3241	4752	2434	2337	1421	1075	1447	2019
7	1238	1063	1366	784	903	1760	2612	1397	1160	805	552	884
8	309	752	844	768	420	575	935	1599	894	555	463	354
9	111	148	534	505	449	266	347	637	1009	442	324	315
10	40	77	120	297	286	282	182	232	455	584	273	245
11	57	36	39	91	187	234	198	129	160	250	352	206
12	38	24	20	19	26	154	170	126	82	96	132	253
13	14	33	21	13	12	17	120	134	80	33	65	90
14	6	12		13	7	7	10	81	110	40	12	52
15	47	5	9	24	5	5	5	5	66	81	24	5

	Table	Irish Sea (VIIa) and Bristol Channel (VIIf) Plaice. Total mortality estimates from United Kingdom and Belgian catch and effort data and from Irish catch curves.										\cdots
$\frac{\text { Plaice VIIa }}{\text { Female }}$		1964/5	1965/6	1966/7	1967/8	1968/9	1969/70	1970/1	1971/2	1972/3	197	
England \& Wales (Fleetwood)		0.72	0.34	0.86	1.32	0.41	0.47	0.50	0.06	0.81		
Belgium	Otter Trawl Beam Trawl								$\begin{aligned} & 0.23 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.14 \\ & 1.01 \end{aligned}$		
Male												
England \& Wales (Fleetwood)		0.20	0.34	0.93	1.61	1.59	0.47	0.63	0.60	0.81		
Belgium	Otter Trawl Beam Trawl								$\begin{aligned} & 0.43 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.56 \end{aligned}$		
Male and Female combined										1973	1974	1975
Ireland										0.70	0.39	0.79
$\frac{\text { Plaice VIIf }}{\text { Female }}$,					.			
England \& Wales (Milford Haven)							1.31		0.75			
Belgium	Otter Trawl Beam Trawl								$\begin{aligned} & 1.11 \\ & 0.49 \end{aligned}$	$\begin{array}{r} -0.12 \\ 0.53 \end{array}$		
Male												
England \& Wales (Milford Haven)							1.64		0.79			
Belgium	Otter Trawl Beam Trawl								$\begin{aligned} & 1.55 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.85 \end{aligned}$		

Table 31. Trish Sea Flaice.
Prognosis for 1977.

	F	$\underset{F}{\text { Weighted }}$	Catch weight (tons)	$\begin{aligned} & \text { Catch number } \\ & \times 10^{-3} \end{aligned}$	Stock biomass at beginning of year
	0	0	0	0	
	. 1	. 07	859	2085	14207
	. 2	. 13	1651	4022	
	. 3	. 20	2381	5820	
	. 4	. 27	3055	7491	
	. 5	. 33	3677	9045	
	. 6	. 40	4252	10492	
	. 7	. 47	4784	11841	
	. 8	. 54	4885	13098	
	. 9	. 60	5306	14272	
	1.0	. 67	5697	15369	
Column numbers	1	2	3	4	5

Table 32. Bristol Channel Sole in Division VIIf Age composition of total catch 1970-75 (thousands).

Males

ctd.

Table 32 (ctd). Bristol Channel Sole in Division VIIf. Fishing mortalities 1970-75.

Males

Age rear	1970	1971	1972	1973	1974	1975
2	0.06	0.11	0.05	0.24	0.11	0.07
3	0.35	0.36	0.31	0.48	0.28	0.33
4	0.34	0.63	0.32	0.47	0.48	0.45
5	0.47	0.56	0.50	0.70	0.35	0.57
6	0.61	0.36	0.42	0.35	0.46	0.52
7	0.25	0.25	0.27	0.38	0.36	0.48
8	0.35	0.49	0.25	0.27	0.34	0.44
9	0.28	0.60	0.35	0.23	0.17	0.38
10	0.30	0.05	0.26	0.66	0.50	0.31
11	0.13	0.79	0.10	0.39	0.18	0.27
12	0.62	0.16	0.10	0.06	0.22	0.23
13	0.19	0.51	0.12	0.21	0.15	0.21
14	0.25	0.33	0.17	0.20	0.33	0.19
15	2.50	1.01	0.05	3.60	0.14	0.17
16	0.15	0.15	0.15	0.15	0.15	0.15
Mean F > 5	0.28	0.39	0.21	0.38	0.27	0.29

ctd.

Table 32 (ctd). Bristol Channel Sole in Division VIIf. Stock in numbers 1970-75 (thousands).

Males

Age	1970	1971	1972	1973	1974	1975
2	574	1391	2110	957	489	326
3	1709	490	1128	1815	679	395
4	714	1095	308	751	1013	465
5	518	461	528	202	425	568
6	600	292	237	290	91	271
7	643	294	185	142	186	52
8	278	453	207	127	87	118
9	360	177	251	146	88	56
10	248	245	88	160	104	67
11	236	166	211	62	75	58
12	151	187	68	172	38	56
13	216	74	145	56	147	28
14	33	162	40	117	41	115
15	10	23	105	31	86	27
16	196	8	90	1	68	

Table 33. Bristol Channel Sole in Division VIIf. Age composition of total catch 1970-75 (thousands).

Females

Year	1970	1971	1972	1973	1974	1975
Age	1	75	44	94	38	16
2	131	26	85	387	93	50
3	61	77	59	101	182	56
4	91	57	173	67	138	200
5	66	75	60	126	78	102
6	189	123	38	33	95	58
7	49	106	47	23	33	102
8	44	47	65	36	48	30
9	43	28	32	55	45	25
10	36	41	13	20	55	20
11	14	64	16	13	28	33
12	25	4	43	13	16	16
13	1	1	12	32	21	9
14	8	11	9	19	24	4
15	12	2	14	10	20	

ctd.

Table 33 (ctd). Bristol Channel Sole in Division VIIf. Fishing mortalities 1970-75.

Females

Age Year	1970	1971	1972	1973	1974	1975
2	0.00	0.07	0.02	0.15	0.06	0.04
3	0.09	0.04	0.09	0.22	0.19	0.10
4	0.13	0.07	0.11	0.13	0.14	0.15
5	0.20	0.15	0.19	0.16	0.23	0.20
6	0.13	0.22	0.21	0.18	0.25	0.24
7	0.25	0.35	0.15	0.16	0.18	0.26
8	0.14	0.20	0.19	0.11	0.21	0.27
9	0.19	0.17	0.16	0.20	0.33	0.26
10	0.20	0.16	0.15	0.18	0.36	0.25
11	0.05	0.27	0.09	0.12	0.24	0.24
12	0.05	0.10	0.14	0.11	0.21	0.20
13	0.07	0.01	0.08	0.15	0.18	0.16
14	0.00	0.00	0.05	0.07	0.34	0.13
15	0.03	0.44	0.03	0.10	0.06	0.09
16	0.06	0.06	0.06	0.06	0.06	0.06
Mean F > 5	0.12	0.16	0.11	0.12	0.19	0.20

ctd.

Table 33 (ctd). Bristol Channel Sole in Division VIIf. Stock in numbers 1970-75 (thousands).

Females

Year	1970	1971	1972	1973	1974	1975
Age	761	1250	2291	722	650	429
2	1521	688	1060	2031	564	552
4	532	1252	598	878	1470	422
5	534	423	1059	485	699	1157
6	555	397	329	794	375	501
7	883	440	288	241	599	266
8	406	620	281	224	186	452
9	267	321	460	210	181	137
10	245	199	246	355	156	119
11	845	181	154	192	269	98
12	331	730	125	127	155	191
13	379	286	600	98	102	114
14	68	319	255	502	76	77
15	248	62	289	219	424	49
16	198	216	36	252	180	361

Table 34. Bristol Channel Sole.
Gutted weight at age data in grammes used in the VAP.

Age	Stock	Catch
2	140	140
3	170	170
4	190	190
5	225	225
6	250	250
7	270	270
8	290	290
9	310	310
10	330	330
11	350	350
12	360	360
13	380	380
14	400	400
15	415	415

Table 35. Bristol Channel Sole.
Prognosis for 1977.

F	Catch weight (tons)	Catch number $\left(\times 10^{-3}\right)$	Stock biomass at beginning of year
0	0	0	2358 t
0.1	134	372	
0.2	259	720	
0.3	374	1043	
0.4	482	1346	
0.5	539	1629	
0.6	624	1894	
0.7	760	2141	
0.8	840	2373	
0.9	915	2591	
1.0	984	2795	

Table 36. Bristol Channel Sole. Prognosis for 1977.

	F		Catch weight (tons)	Catch number$\left(\times 10^{-3}\right)$	Stock biomass at beginning of year (tons)
	$0^{\prime \prime}$	9			
1975	0.38	0.36	544	1475	2427
1976	0.38	0.36	533	1651	2698
1977	0		0	0	2589
	0.1		152	480	
	0.2		293	928	
	0.3		422	1345	
	0.4		543	1733	
	0.5		656	2096	
	0.6		761	2434	
	0.7		857	2750	
	0.8		947	3046	
	0.9		1032	3322	
	1.0		1110	3580	

Figure l. North Sea Sole. Stock/recruitment relationship for post-war year classes.

- year classes

Figure 3. total number of beamtrowl fishing hours per statistical rectangle in the Netherlands

Figure 4. North Sea Plaice.
Curves of steady-state yield per recruit and biomass per recruit against the maximal value of F on the F-at-age array.

Figure 5. North Sea Plaice. Stock and recruit data.

Figure 6. North Sea Plaice. Relationshif between estimates of year class abundance from the VPA and pre-recruit surveys.

Metric tons per 100 hrs fishing beam trawl
Belgium VIId

Figure 9. Catch per effort for English Channel Sole in Divisions VIId - and VIIe -----.

Figure 10. English Channel Sole, Division VIId.
Yield per recruit against fishing mor'tality for males and females separately.

Figure 11. English Channel Sole, Division VIIe.
Yield per recruit against fishing mortality
for males and females combined.

Figure 13. English Channel Plaice.
Total landings for England and Belgium in Divisions VIId —and VIIe --...

Metric tons/ 100 hrs fishing

Figure 15. Irish Sea Plaice. Yield per recruit against fishing mortality for males and females combined.

Figure 16. Bristol Channel Sole. Regression of catch per effort on VPA estimates for 2 year old soles (Belgian data for the 4th quarter of the year).

Figure 17. Bristol Channel Plaice.
Yield per recruit against fishing mortality for sexes separately and for $M=0.10$ and 0.15 .

