International Council for the Exploration of the Sea
C.M.1978/G:11

Demersal Fish Committee

REPORT OF THE WORKING GROUP ON REDFISH IN REGION 1

Charlottenlund, 21 - 28 February 1978

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.
x) General Secretary, ICES,

CONTENTS

Page

1. PARTICIPANTS AND TERMS OF REFERENCE 1
2. REDFISH IN THE NORTH-EAST ARCTIC REGION (Sub-area I and Divs. IIa and IIb) 1
2.1 Status of the Fisheries 1
2.2 Catch per Unit Effort and Effort 2
2.3 Recruitment 2
2.4 Age and Length Compositions 2
2.5 Assessments (Sebastes marinus) 3
2.6 Assessments (Sebastes mentella) 5
2.7 Enforcement of Redfish TACs in the NE Arctic 7
3. REDFISH IN SUB-AREA V AND SUB-AREA XIV 8
3.1 Latest Development in the Fishery 8
3.2 Recruitment of Redfish in the Irminger Sea Area 8
3.3 Splitting of Catches into S.marinus and S.mentella components 9
3.4 Length and Age Compositions 9
3.5 Mean Weight at Age 10
3.6 Assessments 10
3.7 Calculation of TACs 11
3.8 Note on Enforcement of TACs in Sub-areas V and XIV 14
4. MESH ASSESSMENTS 14
5. SHORTCOMINGS AND GAPS IN DATA REQUIRED FOR STOCK ASSESSMENT ON REDFISH IN REGION 1 14
5.1 Species Composition of Catches 14
5.2 Age/Length Keys for Sexes separated 15
5.3 Information on Discards 15
6. TIMING OF WORKING GROUP MEETINGS 15
TABLES 1-37 16
Figures l-8 54
7. PARTICIPANTS AND TERMS OF REFERENCE

A Hylen	Norway
J Magnusson	Iceland
J Møller Jensen	Denmark
G P Nizovtsev	USSR
O V Pankratova	USSR
V P Ponomarenko	USSR
H Schultz	German Democratic Republic
A Schumacher	
(Chairman)	Federal Republic of Germany
O M Smedstad	Norway
B Vaske	German Democratic Republic

At the 1977° Statutory Meeting of ICES it was decided (C.Res.1977/2:25), that:
"the Working Group on Redfish in Region 1 should meet at Charlottenlund 2l-28 February 1978 to:
(a) assess TACs for 1979 for redfish,
(b) calculate effective mesh sizes,
(c) identify and specify in detail shortcomings and gaps in data required for stock assessments,
(d) review and update data in the "Review of Fish Resources" given in Doc. C.M.1977/F:12".
2. REDFISH IN THE NORTH-EAST ARCTIC REGION (Sub-area I and Divs. IIa and IIb)
2.1 Status of the Fisheries

The fishery for redfish in Sub-area I and Divisions IIa and IIb is based on Sebastes mentella and Sebastes marinus. A drastic reduction in total redfish catches was recorded for these areas (Table l). The 1977 catches were 169896 tons compared with 317606 tons in 1976 . This reduction was mainly caused by the introduction of a quota scheme for some part of the fishing area. According to the preliminary figures for 1977, the expected catches of 200000 tons were not taken. The main change in the total catches was observed in Division IIb, where the landings dropped from 242715 tons in 1976 to 40867 tons in 1977 (Table 4). Some of this reduction was compensated by an increase in total landings in Division IIa from 58796 tons in 1976 to 107542 tons in 1977 (Table 3), and from 16095 tons in 1976 to 21487 tons in 1977 from Sub-area I (Table 2). Most of the increase for Division IIa comes from the northern part of this area, named Kopytov area.
The landings of the two species are not recorded separately. A splitting on an area basis has been established. All redfish landings from Division IIb together with German Democratic Republic, Polish and USSR catches from the northern part of Division IIa are recorded as Sebastes mentella. The total landings in Sub-area I together with the rest of the German Democratic Republic, Polish and USSR catches from Division IIa and all catches by other countries from this area are assumed to be Sebastes marinus (Table 5).

The total landings of Sebastes marinus increased from 48584 tons in 1976 to 49482 tons in 1977, which is the highest on record.

After a steady increase in the total landings of Sebastes mentella from 2886 tons in: 1972 to 269022 tons in 1976, the landings dropped to 120414 tons in 1977: The drastic reduction in the redfish landings from 1976 to 1977 is therefore related to a reduction in the landings of Sebastes mentella.

2.2 Catch per Unit Effort and Effort

The catches of Sebastes marinus in the North-East Arctic are to a great extent a by-catch in the fishery for cod and haddock. Catch per unit effort from this fishery might, therefore, give an unrealistic measure of the relative change in the stock size from year to year. However, a traditional fishery in the area might give some indication of changes in stock size. The fishing pattern of the British fleet fishing for cod and haddock in Division IIa might have been relatively unchanged in the period 1965-77. No trend is observed in its catch per unit effort. However, some years have a very low or a high catch per unit effort which might, to some extent, reflect changes in the fishing pattern for cod and haddock in the area.

The English catch per unit effort has been used to estimate total international effort in the fishery for Sebastes marinus. This gives high figures for total effort during the last 3 years.

A decrease is observed during the last 3 years for the Soviet fleet fishing for Sebastes mentella in the Kopytov area (Table 6). Its fishing effort was nearly reduced by 50% from $197 t$ to 1977. The total international fishing effort estimated from the USSR catch per unit effort shows a decrease from 1976 to 1977 of 46%.

2.3 Recruitment

According to the international 0-group fish surveys in the Barents Sea and adjacent waters, which started in 1965, only the 1967 and 1968 year classes have been estimated to be very poor (Table 7). The 1966, 1969 and 1970 year classes were of average abundance, while the 1965, 1971 and 1972 year classes were somewhat-below average. All the five most recent year classes were above average, and the 1973, 1974, 1976 and 1977 year classes were even rich. The 1977 year class has been the most abundant year class on record.

2.4 Age and Length Compositions

For 1976 and 1977 Federal Republic of Germany length compositions were available for Sebastes marinus in Division IIa. In addition, Soviet length compositions were available for the same years in Sub-area I and Division.IIa. Total length compositions were calculated by applying Federal Republic of Germany length compositions for Division IIa to the total catch of all countries!except USSR (Table 8). Length compositions prior to 1976 were only available from Federal Republic of Germany.
No new age determinations were available, and the Working Group therefore decided to apply the Federal'Republic of Germany age/length key for 1976 to the total length compositions for 1976 and 1977 as also used for the years prior to 1976. For fish smaller than 30 cm a Federal Republic of Germany age/length key from the Barents Sea in 1975 was used: The calculated age compositions for 1976 and 1977 consist of three year old fish and older. Fish younger than 12 years were missing in the age compositions prior to 1976.

Age composition data for Sebastes mentella were available from the USSR and German Democratic Republic fishery 1976 and 1977, covering almost the entire catch of this species. These data have been used to update the table on catch in numbers per age group from the previous report (see Table 14).

2.5 Assessments (Sebastes marinus)

2.5.1 Parameters used

A cohort analysis on the average length composition for Sebastes marinus for 1976 and 1977 was run for natural mortality $M=0.10$, with a terminal fishing mortality rate $=0.20$ on the highest length group (Table 9). The exploitation pattern by age groups was then estimated by splitting the F values estimated for the different length groups by applying the Federal Republic of Germany age/length key mentioned earlier. The exploitation pattern derived from this run had a bias for age groups 7-14, caused by an irregularity in the established age/length key. The exploitation pattern had therefore to be smoothed before the final pattern could be established (Table 10).
The fishing mortality rates estimated for length groups above 52 cm might be higher than $F=0.20$ as used as terminal F in the cohort (length) analysis. A fishing mortality of $F=0.25$, which corresponds to the average over the $53-60 \mathrm{~cm}$ groups, was therefore accepted as terminal F for age groups 24 and older in the VPA. The terminal Fs for the younger age groups were estimated by the established exploitation pattern. No recruitment data exist which would allow tocheck the terminal F on the younger age groups.

2.5.2 Stock size

Estimates of stock size for Sebastes marinus are given in numbers (Table ll). Total stock biomass, age group 12 and older, and the spawning stock biomass, age group 15 and older, were estimated by using the average weight at age given in Table 13. These assessments indicate that the stock biomass and the spawning stock biomass decreased from 1976 to 1977 by 2% and 8% respectively. Estimates prior to 1976 are influenced by the inadequate sampling on some of the catches. Even with this bias in mind, the assessments indicate a relatively stable stock biomass and spawning stock biomass over the whole period.

2.5.3 Fishing mortality (Table 12)

The addition of the USSR length compositions for Sebastes marinus in 1976 and 1977 creates difficulties in comparing the fishing mortality rates from the VPA run over the period 1967-77. This is caused by the fact that fish younger than 12 years are missing in the age compositions prior to 1976 because of inadequate sampling. The weighted fishing mortality rates for 1976 and 1977 over the age groups $16-24$ is $F=0.19$ and $F=0.17$, respectively. No reliable effort data were at hand to confirm that the fishing mortality rates were at the same level in these years.

2.5.4 Yield per recruit

A yield per recruit curve for Sebastes marinus has been calculated for fishing mortality rates on the age groups subject to maximum exploitation, using natural mortality $M=0.10$ and the exploitation pattern applied for 1977 in the VPA analysis on age groups (Figure 1). This curve has a maximum for $F=0.23$, and the fishing mortality assumed for 1977 ($F=0.25$) is just beyond that.

2.5.5 Catch prediction

TACs were calculated for 1979. Data used in the calculations are given in Table 13.

Total catch in 1978 of Sebastes marinus and Sebastes mentella was assumed to be 20000 tons and 130000 tons, respectively, giving a total expected redfish catch of 150000 tons from the North-East Arctic (Sub-area I and Divisions IIa and IIb).
An expected catch of Sebastes marinus in 1978 of 20000 tons would be achieved by assuming the 1977 exploitation pattern and a fishing mortality rate on the age groups subject to maximum exploitation of $F=0.10$. This fishing mortality rate is close to the $\mathrm{F}_{0.1}$.
Continuing this level of F into 1979 (Option l in the text table below) would increase the spawning stock biomass at the beginning of 1980 by about 13% compared to 1977. This management objective could be achieved by introducing:a TAC of 22000 tons for 1979.
Another option (Option 2) could be to increase the fishing mortality from the expected 1978 level to $F=0.23$, which corresponds to that generating maximum yield per recruit. Fishing under this option would leave a spawning stock at the beginning of 1980 by about 2% greater than in 1977 and would allow a TAC of 50000 tons in 1979. The TAC calculations are summarised in the text table below.

	Option	1977	1978	1979	1980
Spawning stock biomass (age l54) at beginning of year (1 000 tons)	1	206	201	205	232
Fishing mortality on age groups subject to maximum exploitation	1	206	201	205	210
	2	.25	.10	.10	
Calculated catch (1 000 tons)	1	.25	.10	.23	

Realistic recruitment figures are not available for 1978 and 1979. However, 3, 4 and 5 year old fish make up only a small fraction of the catches by weight and therefore, the corresponding bias in the calculated TACs is negligible.

2.5.6 Discussion and advice_on_management

The catch of Sebastes marinus in the North-East Arctic region is to a large extent taken as by-catch in the fishery for cod. Therefore, there are some uncertainties about the size of the 1978 catch of this species on which the calculation of TAC for 1979 is based. This assumption was made according to the recommended catch level for 1978 in the previous Working Group report, i.e., 20000 tons. If this assumption is a realistic one, then the calculated catch for 1979 could be taken from the text table above, depending on the management objective to be applied.
The data available do not justify a calculation of the spawning stock biomass prior to 1977, which could be compared to the actual situation.

Therefore the management objective at present should be to avoid a reduction in spawning stock biomass until a proper assessment of the size of the spawning stock could be made.
This objective could be met even by increasing fishing mortality on the age groups subject to maximum exploitation from the assumed F in $1978(F=0.1)$ to the level which would give the maximum yield per recruit $(F=0.23$, Option 2 in the text table). The corresponding catch of about 50000 tons in 1979, which is at the same level as that of 1977, would probably not generate any problems in the fishery for cod due to restrictions in the by-catch of redfish. Under this option, the spawning stock biomass at the beginning of 1980 would not increase, but remain at about the same level as in the three preceding years.
If, however, the fishery for Sebastes marinus in 1978 cannot be managed in a way that the catch assumed in the calculation, i.e. 20000 tons, will not be exceeded, then the spawning stock biomass at the beginning of 1979 will possibly be reduced below the 1977-78 level. In this situation, fishing in 1979 under Option 2, i.e., a TAC of 50000 tons, would reduce the spawning stock considerably by 1980 compared to the previous years. This reduction in spawning stock has to be avoided, and it is, therefore, advisable to adopt Option l, i.e., to limit the catch of Sebastes marinus in 1979 to a level corresponding to $F(0.1)=0.1$. This would result in a TAC of 22000 tons. In this case, the probability of maintaining the present size of the spawning stock could be increased depending on the actual catch in 1978.
The Working Group therefore recommends a TAC of 22000 tons of Sebastes marinus in 1979.
2.6 Assessments (Sebastes mentella)

2.6.1 Parameters_used

In a preliminary run of the VPA a terminal fishing mortality of $F=0.25$ was chosen for age groups 10 and older. The bias on the calculated F values introduced by incorrect assumptions of Fs in 1977 will be reduced to a minimum for 1972 and earlier years.
Therefore, the weighted mean F values were calculated for age groups 13 to $21\left(F_{13-21}\right)$ in the years 1965 to 1972 and plotted against the total trawl effort. This range of age groups was chosen, because the fishery in the period 1965-74 was mainly concentrated on these age groups.
The linear regression (Figure 2) shows that the F13-21 corresponding to the effort in 1977 would be 0.205 and therefore the terminal Fs for age groups 10 to 24 were changed to 0.20. (It was assumed that under the present exploitation pattern, the age groups 10 and older are subjected to the same fishing mortality.) The fishing mortalities for the age groups 7,8 and 9 were set at $0.003,0.03$ and 0.12 , respectively. The relationship between the astimated year class strength from VPA at age 6 and the corresponding 0 -group survey abundance indices (Figure 3) indicates that these F values for age groups 7 to 9 could be appropriate.

Stock size

Estimates of stock size from VPA are given in Table 15. In addition, the total stock biomass, age 6 and older and the spawning stock biomass, age 15 and older, were calculated using the mean weights given in Table 18. The results are summarised in Table 17.

Both the stock size and the spawning stock size increased considerably from 1965 to 1975. In 1975, where both reached their highest level, the spawning stock size was about 5 times larger than in 1965. From 1975 to 1977 the calculations show a reduction in total stock biomass (-16%) and spawning stock biomass (-23%).

2.6.3 Fishing_mortality and exploitation pattern

Estimates of fishing mortalities from cohort analysis are given in Table 16. Compared with the 1977 assessment (WG. 1977), there is a decrease of the fishing mortality for 1976. This decrease results mainly from the updated age composition for 1976, which shows a reduction in catch by number for the age groups 10 and older. The estimates of fishing mortality indicate that during the period 1965-73 the exploitation pattern was relatively stable. The fishery was mainly concentrated on the age groups 13 to 24 . Since 1974 there has been an increase of the fishing mortality for the younger age groups. For 1977 it was assumed that the age groups 10 and older are subjected to the same fishing mortality.
2.6.4 Yield_per_recruit

In Figure 4 curves of yield per recruit and spawning stock biomass per recruit for Sebastes mentella are plotted against the F values of age groups subject to maximum exploitation. The curves were calculated for the present exploitation pattern as used in the cohort analysis, and the average weights per age group as given in Table 18. The present situation $(F=0.20)$ and the; position of $F_{\max }=0.26$ are marked with arrows.

For these fishing mortalities the corresponding sustainable yield and equilibrium spawning stock biomass assuming two different levels of average recruitment at age 6

$$
\begin{aligned}
\mathrm{R}_{196-74} & =467 \times 10^{6} \\
\mathrm{R}_{1970-74} & =668 \times 10^{6}
\end{aligned}
$$

were calculated. The results are given in the text table below:

R_{6}	F	Y / R	Sustainable yield (tons $\times 10^{-3}$)	S / R	Spawning stock biomass (tons $\times 10-3$)
467×10^{6}	.20	.248	116	.442	206
	.26	.250	117	.261	122
668×10^{6}	.20	.248	166	.442	295
	.26	.250	167	.261	174

If fishing mortality is increased to 0.26 the equilibrium sustainable yield for both recruitment levels will only increase by 1%. However, fishing at $F=0.2$ would produce an equilibrium spawning stock size at a level about 70% higher than fishing at $F=0.26$.
2.6.5 Catch_prediction

Catch predictions were made for the period 1978-80. Data used in the calculations are given in Table 18. The stock size 1978 is estimated from the stock and fishing mortalities in 1977. Fishing mortality in 1978 for age group 10 and older corresponds to the catch quota of 130000 tons agreed for that year. Recruitment of 6 year old redfish for 1977 to 1980 is calculated on the basis of 0-group
survey abundance indices and amounted to 700×10^{-6} in 1977 and 1978 and to 800×10^{-6} recruits in 1979 and 1980 (see Figure 3).
On the basis of a fishing mortality of 0.2 corresponding to the present F and 0.26 corresponding to $F_{\max }$, two options of catches for 1979 are given in the text table below:

	Option	1977	1978	1979	1980
Spawning stock biomass (age 15+) at beginning of year (1 000 tons)	1	180	192	217	249
Fishing mortality	2	180	192	217	234
on age groups subject to maximum exploitation	1	.20	.20	.20	
Calculated catch (l 000 tons)	1	.20	.20	.26	

2.6.6 Discussion and_advice on management

The results of the catch prediction for Sebastes mentella are given in the text table above for two management options.
In both options, an increase of the spawning stock biomass to a maximum level ever recorded in the updated period will be reached. The remaining spawning stock biomass at the beginning of 1980 under the second option is 6% lower than at the first option, the gain in catch in the second option amounts to 27% compared to the first option.
Although the abundance indices of $0-g r o u p$ redfish indicate that the year classes entering the fishery in the 1980s are at least of average size, some uncertainty still exists about their survival up to the age of 6 years, when they recruit to the fishery. Furthermore, considering the long-term aspects of the management of Sebastes mentella (see Section 2.6.4) only a small increase in yield per recruit is to be expected by increasing the fishing mortality from the present F to the level of $F(\max)$, whereas a reduction in spawning stock biomass per recruit of about 40% is indicated by the shape of the relevant curve in Figure 4.
The Working Group therefore recommends that the present level of fishing should be maintained and a TAC of 135000 tons for Sebastes mentella in the North-East Arctic region should be introduced for 1979.
2.7 Enforcement of Redfish TACs in the North-East Arctic

In view of the fact that the two species of redfish cannot be separated in the statistics, enforcement of TACs for both species separately is impossible at present. This could generate a situation in which one species might be overfished while the other species remained only lightly exploited. This danger exists particularly in the North-East Arctic, where Sebastes mentella is caught mainly in a directed fishery, whereas Sebastes marinus is caught mainly as by-catch in the fishery for cod.

The Working Group therefore recommends to apply the TAC for Sebastes mentella as TACs for total redfish to the area where the directed fishery takes place, which is Division IIb and that part of Division IIa situated north of. $71^{\circ} 15^{\prime \prime} \mathrm{Nand}$ west of $20^{\circ} 00^{\prime} E$.
The TAC for Sebastes marinus should then be applied as TAC for total redfish to the remaining area of Division IIa and to Subarea I.

If, however, the fishery for Sebastes marinus cannot be managed as a single species' fishery, then every effort should be made to limit the by-catches of Sebastes marinus in fisheries for other species as close as possible to the recommended catch level. This necessity implies that any directed fishery on this species has to be prohibited.
3. REDFISH IN SUB-AREA V AND SUB-AREA XIV
3.2 Recruitment of Redfish in the Irminger Sea Area

Earlier surveys and present 0-group surveys of redfish larvae in the Irminger Sea indicate a great variation in the number of larvae found. None of the surveys have covered the total area of the distribution of the larvae.
It is not possible neither to separate the larvae into species nor to allocate them to the part of the redfish stocks which are exploited.

In order to indicate the year-to-year fluctuations in the abundance of young redfish, the results of the 0-group surveys are presented as index figure of individuals per nautical square mile. The results are shown in the following text table:

Number of 0 -group redfish $\times 10^{-6}$ per
nautical square mile

Year class	No. of fish
1970	8.6
1971	12.6
1972	38.1
1973	74.0
1974	23.6
1975	12.6
1976	5.8
1977	13.0

According to the reports of the 0 -group surveys, a substantial part of the 0 -group redfish drifts over the East Greenland shelf and along this coast to West Greenland.
Important nursery grounds for both species of redfish have been located on the East Greenland shelf.
3.3 Splitting of Catches into S. marinus and S.mentella Components

The 1977 catches were splitted into \underline{S}. marinus and S. mentella following the same general principles as described in the 1977 report of the Working Group. According to observations in Division $\mathrm{Vb}, 10 \%$ of the 1977 catch in that division were allocated to $\underline{\text { S }}$. marinus. The total catch in Sub-area XIV was allocated to S. marinus.
3.4 Length and Age Compositions

Sebastes marinus
Sub-area XIV - Figures for the length composition of the catches from
 the total catch in 1977 into length groups, since no other information was available.

Division Va_- In Division Va length data from the Icelandic and Federal Republic of Germany catches were available. The Icelandic figures for the length composition were used to split the catches of other nations.
Division Vb - In Division Vb , figures were available on the length composition of the 1977 catch from the fishery of the Federal Republic of Germany.

Sebastes mentella

In Divisions Va and Vb , the Federal Republic of Germany figures on the length composition in the 1977 catches were used for the total catch in the area.

Age/length keys for both species from the German (F.R.) fishery have been made available to the Working Group. These age/length keys, however, did not cover all years and all fishing areas, and it was, therefore, decided to construct overall age/length keys for the two species. On this basis the number of fish in each cm-group was allocated to the different ages (Tables 23 and 24).

3.5 Mean Weight at Age

Sebastes marinus
The mean weight at age given in the 1977 report ranges from ages 7 to 28; but in the assessments in the present report, the range of ages reaches from 9 to 38. Therefore, the regression for the natural logarithm on weight at age against age was calculated (Figure 5) and from that regression the mean weight:at age was calculated (Table 25).

Sebastes mentella
In the report from 1977, the mean weight in cm-groups is given. An average weight per age group is found by using the ranges for each age group in the age/length key (see Section 3.4), and the weight per cm-group weighted by numbers per cm-group taken from the cohort on length (1975-77). A regression of the natural logarithm of these weights at age against age has been calculated and from that regression the average weight at age to be used in the assessments was calculated (Table 25 and Figure 6).
3.6 Assessments

The assessments have been carried out by the cohort analysis using length data and by the cohort analysis based on age composition data of the catches.
3.6.1 Cohort analysis on length composition data

The comments on the limitations of this method made in the 1977 report are still valid and, therefore, the method was only used to describe the average situation in the periods 1967-74 and 1975-77, and to obtain from the latter some indications about the terminal Fs to be used in the cohort analysis on age data.

The basic data and the parameters used are given in Table 26, and the results are summarised in Table 27.
For both species an increase in fishing mortality from 1967-74 to the more recent period is indicated to be associated with a reduction in both adult and spawning stock biomass in the order of about one third.
3.6.2 Cohort_analysis_on age composition data

In the absence of any other indications from the fishery, the terminal F values for 1977 have been taken from the results of the cohort (length) analysis for the period $1975-77$ by averaging for the different age groups the F values over the respective range of cm-groups in the age/length keys.
Natural mortality was taken as 0.1 as in the 1977 report.
Sebastes marinus
The catch in numbers for the years 1967-77 is given in Table 28. Average fishing mortality (Table 29) for the spawning stock (age 16 and older) fluctuated without trend around $F=0.17$ during the years 1967 to 1971. In the period 1972-74 F decreased to a level of 0.9 but increased again in the following years up to a level of 0.17 in 1976. Total biomass (Table 3l) of the Sebastes marinus stock decreased continuously from the high level of 932000 tons in 1967 to about 846000 tons in 1971, followed by an increase up to the previous level in 1974. Since 1975 the total biomass decreased again to the lowest level of about 777000 tons in 1977. The figures for the spawning
stock biomass show a similar trend with a delay of about two years.

Sebastes mentella

The catch in numbers for the years $1967-77$ is given in Table 32. Fishing mortality (Table 33) in the spawning stock fluctuated without any recognisable trend around a value of 0.15 up to 1972 , followed by an increase to a level of 0.20 . In 1976 F dropped again to 0.15 in the spawning component of the stock, whereas in the juvenile part of the stock F was remarkably high compared to all other years as a result of the high fishing effort of the USSR fleet in the East Greenland area.
The biomass (Table 35) of the exploited part of the stock (age 12 and older) as well as the spawning stock biomass decreased continuously throughout the entire period by about 50%.

3.7 Calculation of TACs

3.7.1 Sebastes marinus

The parameters on which the calculations of catches in 1979 are based are given in Table 36. The proportion of F on younger ages is taken from the terminal fishing mortality for 1977 in the cohort analysis. The size of the recruiting year classes (age 12) in 1978 and 1979 is taken as 117.4 million of redfish, the average over, the years 1967-74.
Since no catch limitations on the Irminger Sea stock complex are imposed at present, assumptions have to be made about the fishing mortality and the corresponding catch in 1978. These assumptions and the results of the calculations are given in the text table below.

Catch prediction, Sebastes marinus

Assumption	Year	Spawning biomass at beginning of the year (1 000 t)	F	$\left(\begin{array}{c} \text { Catch } \\ (1000 \text { t }) \end{array}\right.$	Spawning biomass at beginning of the following year (1 000 t)
	1977	400	. 13	54	410
A	$\begin{aligned} & 1978 \\ & 1979 \end{aligned}$	$\begin{aligned} & 410 \\ & 452 \end{aligned}$	$\begin{aligned} & .13 \\ & .13 \end{aligned}$	$\begin{aligned} & 56 \\ & 57 \end{aligned}$	$\begin{aligned} & 452 \\ & 471 \end{aligned}$
B	$\begin{aligned} & 1978 \\ & 1979 \end{aligned}$	$\begin{aligned} & 410 \\ & 442 \end{aligned}$	$\begin{aligned} & .16 \\ & .13 \end{aligned}$	$\begin{aligned} & 68 \\ & 56 \end{aligned}$	$\begin{aligned} & 442 \\ & 461 \end{aligned}$
C	$\begin{aligned} & 1978 \\ & 1979 \end{aligned}$	$\begin{aligned} & 410 \\ & 447 \end{aligned}$	$\begin{aligned} & .145 \\ & .13 \end{aligned}$	$\begin{aligned} & 62 \\ & 57 \end{aligned}$	$\begin{aligned} & 447 \\ & 466 \end{aligned}$
c	$\begin{aligned} & 1978 \\ & 1979 \end{aligned}$	$\begin{aligned} & 410 \\ & 447 \end{aligned}$	$.145$	$\begin{aligned} & 62 \\ & 33 \end{aligned}$	$\begin{aligned} & 447 \\ & 488 \end{aligned}$

The assumptions are:
A - F in 1978 remains at the 1977 level, i.e. 0.13 on age groups subject to maximum exploitation.
$B-F$ in!l978 increases to 0.16, the level at which the yield per recruit curve (Figure 7) starts to flatten off.
C - F in 1978 increases to an intermediate value of 0.145 .

The resulting catches for 1978 under these assumptions range from 56000 tons to 68000 tons. The remaining spawning biomass at the beginning of 1979 ranges from 442000 tons to 452000 tons. This level is higher than that estimated for the beginning of 1977 and 1978 and exceeds the long-term average for the 1967-74 period of 424000 tons.

For all assumptions the catch for 1979 was calculated applying the 1977 level of F. The estimated catch ranges from 56000 tons to 57000 tons and the range of the spawning stock biomass at the beginning of 1980 is 461000 tons to 471000 tons, a level which corresponds to that of 1967.

On the basis of $\mathrm{F}_{\mathrm{O} .1}=0.075$ and Assumption C , the estimated catch for 1979 would be 33000 tons, leaving a spawning biomass of 488000 tons in 1980. Fishing at $F_{0.1}$ in 1979 would, however, impose unnecessary hardship on the fishery in a situation when the spawning stock is expected to increase considerably at the present level of fishing.

In view of the uncertainties about the catch level in 1978 and also in view of the weakness of the data base available, the. Working Group felt that an increase in fishing mortality in 1979 is not advisable.

The Working Group, therefore, recommends that the 1977 level of fishing mortality should not be exceeded and that a TAC of about 57000 tons of Sebastes marinus for 1979 should be introduced in Sub-areas V and XIV.

Sebastes mentella
The parameters for the calculation of the 1979 catch are given in Table 37 . As in the case of Sebastes marinus, the proportion of F for the younger age groups is taken from the terminal fishing mortality for 1977 in the cohort analysis. The size of the recruiting year classes at age 12 in 1978 and 1979 is taken as 65.4 million fish, the average over the years 1967-74.
Calculations of catches for 1979 have been made based on the assumption that the fishing mortality in 1978 would remain at the 1977 level of 0.4. This would result in a catch of about 32000 tons and the spawning biomass at the beginning of 1979 would be 170000 tons.
3.7.2.1 Discussion_of managementobjective_andadvice on TAC_for_1979

In view of the continuous decline in spawning stock biomass the Working Group adopted as management objective for 1979 to stop this decline and, if possible, to initiate an increase in spawning biomass. For the recommendation of a TAC in 1979 three options have been examined by the Working Group (see text table below):

Catch prediction, Sebastes mentella

Option	Year	Spawning biomass at beginning of year (1 000 tons)	F	$\begin{aligned} & \text { Catch } \\ & (1000 \mathrm{t}) \end{aligned}$	$\begin{aligned} & \text { Spawning bio- } \\ & \text { mass at } \\ & \text { beginning of } \\ & \text { fotiowing year. } \end{aligned}$
	1977	196	. 40	30	183
	1978	183	. 40	32	170
1	1979	170	. 35	27	166
2	1979	170	. 20	16	176
3	1979	170	. 15	12	180

Option 1 - fishing at $F_{0.1}=0.35$. This option would reduce further the already very low spawning biomass, and it was, therefore, rejected by the Working Group.
Option 2 - fishing at $F=0.20$, i.e., half the fishing mortality in 1977. Although this level of fishing would result in an increase in spawning biomass of about 6000 tons over the 1979 level at the beginning of 1980 , the Working Group felt that this increase is not sufficient, having in mind the relatively weak data base and the uncertainties about the 1978 fishery. Therefore, the Group adopted:
Option $3-$ fishing at $F=0.15$. This level of fishing mortality would result in a catch of 12000 tons in 1979, but about 60% less than in 1977. Spawning biomass, however, is expected to increase by about 10000 tons over the 1979 level.
Furthermore, the Working Group investigated the effect on spawning biomass of adopting Option 3 for levels of fishing mortality in 1978 higher than that in 1977. It was found that even at $F=0.6$ with a catch of 46000 tons in 1978 , the management objective could still be met.

The Working Group therefore recommends to reduce fishing mortality in 1979 to a level of 0.15 and to set a TAC of 12000 tons for Sebastes: mentella in Sub-areas V and XIV.
3.8 Note on Enforcement of TACs in Sub-areas V and XIV
Since both species of redfish are often caught together and could not be recorded separately in the statistics, the calculated TACs have to be combined as a TAC for total redfish of 70000 tons of which not more than 12000 tons should consist of Sebastes mentella.
The Working Group cannot at present provide precise advice as to how to allocate TACs for the two species to different fishing areas. It should be noted, however, that at the present pattern of fishing Sebastes mentella is mainly caught in Division Vb and off the south and southeast coasts of Iceland, whereas Sebastes marinus is mainly fished at East Greenland and off the west coast of Iceland.
In view of the fact that the assessments presented in this section of the report are worked out on a limited data base and on the basis of restricted information as to species' composition of catches in different areas, it has to be pointed out that the estimated TACs are less accurate than comparable figures for other species.
4. MESH ASSESSMENTS

A method to assess the present mesh size in use and the effect of changes in mesh size has been developed by Mr K P Andersen of the Danish Institute of Fisheries and Marine Research. The time and expertise to use this method has not beeen available to the Working Group during the meetings, and, therefore, it is not possible to report on the effective mesh size in use or on the effect of changes in mesh size. Mainly length compositions of the landings were available to the Working Group. These do not always correspond to the length composition of catches. Due to the lack of length compositions of discarded fish which are mainly small, mesh assessments on the length composition available might therefore be biased. Furthermore, it is known that the selection of redfish can be reduced considerably due to meshing of redfish and big catches. The benefit by increasing mesh size might therefore be less than estimated by assuming that selection follows the selection ogive calculated from selectivity experiments with moderate catcheg̀.
An example of the effect of increased mesh size in addition to an already existing minimum landing size is reported from Iceland, where the minimum weight of redfish allowed to be landed is 500 g corresponding to a minimum length of about 33 cm . Since May 1976 a minimum mesh size of 135 mm has been in force. Measurements on landed redfish prior to. and after this increase in the mesh. size have not shown any decrease in the relative number of the smallest size groups in the landings. Thus, the proportion of these size groups in the landings are dependent on the discarding practice, after like before the introduction of the 135 mm mesh.
5. SHORTCOMINGS AND GAPS IN DATA REQUIRED FOR STOCK ASSESSMENT ON REDFISH IN REGION 1
5.1 Species Composition of Catches

Since the two species of redfish are not separated in the landings and in the corresponding statistics, it is very difficult to estimate the proportion of the different species in the reported redfish landings from different fishing grounds. The species' separation done by the Working Group was considered to be not very accurate and it was thought that more detailed information on the distribution of the species both in respect of areas and depth zones is urgently needed.

5.2 Age/Length Keys for Sexes separated

One of the major difficulties in the redfish assessment work is the scarcity of reliable age readings and the lack of proper age/length keys. Another problem in this connection is that the growth rate of males and females is different. The length at first maturity is also different for the sexes by each species. Migration pattern for mature redfish differs also for males and females, sometimes resulting in catches of almost one sex only. It is, therefore, of greatest importance for the future assessment work to provide age/length keys for each sex by both species.
5.3 Information on Discards

No information on amount and size composition of discarded redfish or redfish reduced on board of factory vessels to fishmeal is available at present. It is well known that young redfish are caught in large quantities in the directed fishery for redfish as well as in fisheries for other species like cod, haddock and deep sea prawns. Redfish are recruiting to the directed fishery at an age of 6 to 9 years, which means that young redfish are exposed to some unknown fishing mortality over a number of years. Therefore, information on the quantity, size (length and age), and species composition of discards from all fisheries would be helpful in future assessments, in particular to estimate the size of year classes recruiting to the directed fishery.

6. TIMING OF WORKING GROUP MEETINGS

The current practice to hold the meetings of Assessment Working Groups in spring of the year in order to advise on management action for the following year creates serious problems, which are affecting the actuality of the assessments.

These problems are connected with the necessity to work with incomplete and provisional catch and age composition data or even with assumptions for the two years preceding. the year for which advice has to be given.

As a consequence, on several occasions the Working Groups had to change the management advice for the current year in the light of more recent information and sometimes even additional meetings in autumn have been necessary. This situation resulted in considerable difficulties of administrative, legal and economic nature for the user of the advice given by ICES.
Moving the meeting of the Redfish Working Group into the second half of the year would enable the Group to work on more up-to-date information on catches and on age composition data. Thereby, the accuracy of the assessments could be improved and the necessity for changing the management advice could be reduced.

The Working Group therefore asks ICES to examine this problem considering the scientific requirements for assessments as well as other contingencies which are outside the scope of the Working Group.

Table l. Nominal catch of Redfish (in metric tons) by countries (Sub-area I, Divisions IIa and IIb combined)

Country	1967	1968	1969	1970	- 1971	1972	1973.	1974	1975	1976	1977*
Belgium								30	28	2	1
Faroe Isl.				60		9	32	6	67	137	-
France								1116		-	-
German Dem.Rep.	311	852	1069	7149	14786	9972	11756	28275	28020	22636	20680
Germany, Fed.Rep.	5550	3258	5573	2416	3076	1697	3479	6597	5182	7894	7142
Netherlands			20							127	-
Norway	5205	4024	3904	3832	4644	6776	7714	7055	4966	7305	8269
Poland			5973	4631	2532	1112	215	1269	4711	4137	175
Portugal									331	3463	
Spain								,	1194	3398	
U.K.	5607	5058	5224	4554	4002	4379	4791	3509	2746	4961	$6322^{\text {a }}$
USSR	7269	5477	9144	13091	29839	22647	31829	48787	230950	263546	127307
Total	23942	18669	30907	35733	58879	46592	59816	96644	278195	317606	169896

* Provisional data.
a) U.K. (England and Wales) only.

Table 2. Nominal catch of Redfish (in metric tons) by countries in Sub-area I.

Country	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
Belgium								30		2	-
Faroe Isl.							6	6			
France								26			
German Dem. Rep.	81	25	23	4912	78	36		358	201	90	937
Germany, Fed.Rep.	354			133	148	7	76	1086	483	635	796
Netherlands											
Norway	242	464	365	141	316	1000	1917	194	482	739	...a)
Poland			5973	6	1	22			93	47	-
Portugal									331	478	
Spain									820	301	
U.K.	1419	1163	1385	1384	1406	1363	1894	1320	1048	1392	$1567{ }^{\text {b }}$
USSR	1640	1076	3647	2281	3743	4403	4885	9318	30750	12411	18187
Total	3736	2728	11393	8857	5692	6831	8778	12338	34208	16095	21487

* Provisional data.
a) Included in Division IIa.
b) U.K. (England and Wales) only.

Table 3. Nominal catch of Redfish (in metric tons) by countries in Division IIa.

Country	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
Belgium											1
Faroe Isl.				60		9	22		67	137	
France								980			
German Dem. Rep.	26		812	2212	12339	8963	11474	27153	22778	16921	13760
Germany , Fed. Fep .	5196	3258	5573	2165	1188	1466	2207	4167	4263	6722	4679
Netherlands			20							127	-
'Norway	4961	3518	3510	3679	4277	5720	5564	6837	4444	6515	8269 a
Poland				269	1605	784	156	869	920	217	47
Portugal										2849	
Spain									153	2082	
J.K.	3781	3820	3578	2741	2463	2680	2125	1991	1621	2919	$4117^{\text {b }}$)
USSR	4715	3779	14	142	209	291	131	14	39138	20307	76669
Total	18679	14375	13507	11268	22081	19913	21679	42011	73384	58796	107542

* Provisional data.
a) Includes Sub-area I and Division IIb.
b) U.K. (England and Wales) only.

Table 4. Nominal catch of Redfish (in metric tons) by countries in Division IIb.

Country	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
Belgium									28		-
Faroe Isl.							4				
France								110			
German Dem. Rep.	204	827	234	25	2369	973	282	764	5041	5625	5983
Germany, Fed.Rep.				118	1740	224	1196	1344	436	537	1667
Netherlands											
Norway	2	42	29	12	51	56	233	24	40	51	... ${ }^{\text {a }}$
Poland				4356	926	306	59	400	3698	3873	128
Portugal										136	
Spain									221	1015	
J.K.	407	75	261	429	133	336	772	198	77	650	$638^{\text {b }}$)
USSR	914	622	5483	10668	25887	17953	26813	39455	161062	230828	32451
Total	1527	1566	6007	15608	31106	19.848	29359	42295	170603	242715	40867

* Provisional data.
a) Included in Division IIa.
b) U.K. (England and Wales) only.

Table 5. Nominal catch of Sebastes marinus and Sebastes mentella in Sub-area I and Divisions IIa and IIb combined (metric tons).

YEAR	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
S. marinus	17703	13256	24071	12817	13816	17730	21436	27272	39125	48584	49482
S. mentella	6239	5413	6836	22916	45063	28862	38380	69372	239070	269022	120414
Total	23942	18669	30907	35733	58879	46592	59816	96644	278195	317606	169896

* Provisional data.

Table 6. Sebastes mentella in Divisions IIa and IIb. Effort and catch per unit of effort 1965-77.

Year	USSR catch/hour (tons)	USSR effort (hours trawling)	Total effort (hours trawling)
1965	0.38	37895	41216
1966	0.39	22308	26008
1967	0.37	15135	16862
1968	0.45	9778	12029
1969	0.48	11458	14242
1970	0.46	23261	49817
1971	0.38	68158	118587
1972	0.38	47368	79953
1973	0.45	59556	85289
1975	0.69	60000	100539
1976	0.95	217789	251653
1977	0.90	268817	298913
	0.75	136409	160552

Table 7. Year class strength of Redfish in Sub-area I and Divisions IIa and IIb.

Year class	$\begin{gathered} \text { DRAGESUND } \\ 1971 \end{gathered}$	$\begin{gathered} \text { SURKOVA, } 1960 \\ \text { S.marinus } \text { S.mentella } \end{gathered}$		$\begin{aligned} & \text { BARANE } \\ & \text { S.marinus } \end{aligned}$	VA, 1968 mentella	0-group surveys Abundance indices
1956	strong		strong	strong		
1957	average	average	strong	average	average	
1958	poor	poor	poor	below average	poor	
1959	average		average	strong	strong	
1960	poor			poor	poor	
1961	poor					
1962	very poor					
1963	poor					
1964	strong					
1965	strong					159
1966	strong					236
1967	average					44
1968	average					21
1969	very strong					295
1970	strong					247
1971	average					172
1972	average					177
1973	strong					385
1974						468
1975						315
1976						447
1977						472

Table 8. Sebastes marinus. Sub-area I and Division IIa. Length compositions 1976, 1977 and average 1976-77 in numbers ($\mathrm{x} \mathrm{10} 0^{-3}$).

Length cm	1976				1977				Mean$1976-77$
	All countries except USSR	$\begin{gathered} \text { USSR } \\ \text { Sub-area I } \\ \hline \end{gathered}$	USSR Div.IIa	$\begin{aligned} & \text { Total } \\ & 1976 \end{aligned}$	All countries except USSR	$\begin{gathered} \text { USSR } \\ \text { Sub-area I } \end{gathered}$	$\begin{gathered} \text { USSR } \\ \text { Div.IIa } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & 1977 \end{aligned}$	
11-12						237		237	119
13-14						475		475	238
15-16		966	60	1026		1425		1425	1226
17-18		4539	164	4703		2232	10	2242	3473
19-20		4250	193	4443		2802	40	2842	3643
21-22		5602	550	6152		3514	110	3624	4888
23-24		5119	714	5833		3324	229	3553	4693
25-26		7389	1086	8475		4891	439	5330	6903
27-28		8016	1517	9533	15	5698	608	6321	7927
29-30	39	4877	1027	5943	15	5176	957	6148	6046
31-32	211	3718	1398	5327	527	4131	1117	5775	5551
33-34	1249	1739	908	3896	1631	3799	1047	6477	5187
35-36	3036	1304	1413	5753	3140	3894	1356	8390	7072
37-38	4175	483	1562	6220	3933	2659	987	7579	6900
39-40	4224	193	1309	5726	3817	1662	897	6376	6051
41-42	3442	48	1205	4695	3539	712	688	4939	4817
43-44	2371	-	506	2877	2538	142	369	3049	2963
45-46	1489	-	476	1965	1564	142	409	2115	2040
47-48	1189	-	268	1457	1174	142	259	1575	1516
49-50	1006	-	134	1140	850	95	179	1124	1132
51-52	657	-	119	776	572	95	110	777	777
53-54	684	-	60	744	661	47	30	738	741
55-56	383	-	104	487	450	47	50	547	517
57-58	303	48	60	411	245	47	30	322	367
59-60	132		30	162	92	-	20	112	137
61-62	25		15	40	42	95	20	157	99
63-64	8			8			10	10	9
Total	24623	48291	14878	87792	24805	47483	9971	82259	85032

Table 9. Sebastes marinus. Sub-area I and Division IIa. Cohort (length) analysis 1976 and 1977. $\mathrm{M}=0.1, \mathrm{~L} \infty=86.45, \mathrm{~K}=0.032$.

Length (cm)	Catch numbers $\times 10^{-3}$	$F \Delta t$	$\underset{(\text { year })}{F}$	$\begin{aligned} & \text { Stock numbers } \\ & \times 10^{-6} \end{aligned}$
11-12	119	. 00041	. 00049	250.6
13-14	238	. 00089	. 00105	236.9
15-16	1226	. 005	. 006	223.4
17-18	3473	. 016	. 017	209.6
19-20	3643	. 018	. 020	194.1
21-22	4888	. 028	. 029	179.0
23-24	4693	. 030	. 031	163.3
25-26	6903	. 051	. 050	148.2
27-28	7927	. 069	. 066	131.5
29-30	6046	. 063	. 058	114.3
31-32	5551	. 069	. 061	99.5
33-34	5187	. 077	. 066	86.3
35-36	7072	. 132	. 108	73.8
37-38	6900	. 169	. 133	59.6
39-40	6051	. 203	. 153	46.2
41-42	4817	. 229	. 166	34.5
43-44	2963	. 202	. 140	25.0
45-46	2040	. 197	. 130	18.5
47-48	1516	. 209	. 131	13.8
49-50	1132	. 228	. 136	10.0
51-52	777	. 235	. 132	7.1
53-54	741	. 360	. 190	5.0
55-56	517	. 457	. 225	3.1
57-58	367	. 705	. 317	1.7
59-60	137	. 656	. 276	. 7
61-62	99	1.933	. 593	. 3
63-64	9		. 2	$<.1$

Table 10. Sebastes marinus. Age composition of the total catch in numbers $\left(\begin{array}{ll}10^{-3}\end{array}\right)$ 1967-77. Sub-area I and Division IIa.

Age	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
3											30 305
5										530	809
6										2884	1919
7										5719	3476
8		.								12162	7575
10										9515	7290
11										5963	6029
12	44	43	51	62	46	261	590	387	693	5008	7075
13	94	32	35	122	41	332	570	455	868	1686	2800
14	199	74	97	229	107	633	913	1049	1638	2670	5565
15	406	165	209	444	239	1137	1527	2079	2984	2991	3509
16	1363	550	666	1232	886	2563	3266	5479	7397	6775	7542
17	919	364	556	723	594	1261	1441	2757	3563	2707	2755
18	1536	611	954	1138	935	2014	2157	4164	5117	3938	3724
19	1695	684	1223	997	990	2046	1892	3528	4402	3417	3043
20	310	131	223	185	185	385	342	638	775	614	558
21	1459	753	1456	1003	858	1732	1420	2359	2829	2475	2832
22	951	555	1084	750	595	1112	849	1373	1721	1529	2078
23	1167	898	1518	921	779	1251	1123	1527	1813	1814	1760
24	1241	1266	2259	966	1123	1121	1248	1103	1432	1672	1661
25	896	993	1845	716	776	746	884	702	930	1106	1035
26	723	887	1667	623	636	585	729	530	817	918	843
27	504	644	1362	526	426	429	568	369	701	822	666
28	432	614	1038	347	431	377	508	332	589	624	612
Total	13939	9264	16243	10984	9647	17985	20027	28831	38269	87790	82259

Table ll. Sebastes marinus. Stock size in numbers (x 10-6) Sub-area I and Division IIa, 1967-77, estimated by $V P A(M=0.1)$.

$\begin{aligned} & \text { Age } \\ & \text { (years) } \end{aligned}$	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
3	116.9	284.3	262.1	335.8	351.5	452.9	188.4	138.1	104.4	177.3	157.6
4	172.9	105.8	257.2	237.2	. 303.8	318.0	409.8	170.5	125.0	94.4	160.4
5	98.3	156.4	95.7	232.7	214.6	274.9	287.7	370.8	154.3	113.1	85.4
6	190.2	88.9	141.5	86.6	210.6	194.2	248.8	260.4	335.5	139.6	101.8
7	84.6	172.1	80.5	128.1	78.4	190.6	175.7	225.1	235.6	303.6	123.6
8	99.0	76.6	155.7	72.8	115.9	70.9	172.4	159.0	203.7	213.2	269.3
9	86.9	89.6	69.3	140.9	65.9	104.9	64.2	156.0	143.9	184.3	181.3
10	43.9	78.7	81.1	62.7	127.5	59.6	94.9	58.1	141.2	130.2	157.0
11	69.5	39.7	72.2	73.3	56.7	115.4	54.0	85.9	52.5	127.7	108.7
12	53.0	62.9	36.0	64.4	66.4	51.3	104.4	48.8	77.7	47.5	109.9
13	45.7	47.9	56.9	32.5	58.2	60.0	46.2	93.9	43.8	69.6	38.2
14	43.0	41.2	43.3	51.5	29.3	52.6	54.0	41.3	84.5	38.8	61.4
15	33.1	38.8	37.2	39.1	46.3	26.4	47.0	48.0	36.3	74.9	32.6
16	29.7	29.6	34.9	33.5	35.0	41.7	22.8	41.1	41.4	30.0	64.9
17	24.4	25.6	26.2	31.0	29.1	30.8	35.3	17.5	32.0	30.5	20.8
18	23.0	21.2	22.8	23.2	27.3	25.8	26.7	30.6	13.2	25.6	25.0
19	19.7	19.4	18.6	19.7	19.9	23.8:	$21.4{ }^{\circ}$	22.1	23.7	7.1	19.4
20	19.0	16.3	16.9	15.7	16.9	17.1	19.6	17.6	16.6	17.3	3.2
21	13.8	16.9	14.6	15.0	14.0	15.1	15.1	17.4	15.3	14.3	15.0
22	14.7	11.1	14.6	11.8	12.7	11.8	12.0	12.3	13.5	11.2	10.6
23	11.3	12.4	9.6	12.2	10.0	10.9	9.7	10.1	9.8	10.6	8.7
24	10.2	9.1	10.3	7.2	10.1	8.3	8.7	7.7	7.7	7.2	7.9
25	7.2	8.0	7.0	7.2	5.6	8.1	6.4	6.7	5.9	5.6	4.9
26	11.1	5.7	6.3	4.6	5.8	$4 \cdot 3$	6.6	5.0	5.4	4.5	4.0
27	5.6	9.3	4.3	4.1	3.6	$4 \cdot 7$	3.4	5.3	4.0	4.1	3.2
28	3.3	4.6	7.8	2.6	3.3	2.8	3.8	2.5	4.4	3.0	2.9

Table 12. Sebastes marinus. Fishing mortality in Sub-area I and Division IIa 1967-77 estimated by VPA ($M=0.1$).

Age	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00.	.00
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.00	.01
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.02	.02
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.02	.03
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.06	.03
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.06	.04
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.08	.05
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.05	.06
12	.00	.00	.00	.00	.00	.01	.01	.01	.01	.12	.07
13	.00	.00	.00	.00	.00	.01	.01	.01	.02	.03	.08
14	.00	.00	.00	.00	.00	.01	.02	.03	.02	.07	.10
15	.01	.00	.01	.01	.01	.05	.03	.05	.09	.04	.12
16	.05	.02	.02	.04	.03	.07	.16	.15	.21	.27	.13
17	.04	.02	.02	.02	.02	.04	.04	.18	.12	.10	.15
18	.07	.03	.04	.05	.04	.09	.09	.15	.52	.18	.17
19	.09	.04	.07	.05	.05	.09	.10	.18	.22	.69	.18
20	.02	.01	.01	.01	.01	.02	.02	.04	.05	.04	.20
21	.12	.05	.11	.07	.07	.13	.10	.15	.22	.20	.22
22	.07	.05	.08	.07	.05	.10	.08	.12	.14	.16	.23
23	.11	.08	.18	.08	.09	.13	.13	.17	.21	.20	.24
24	.14	.16	.26	.15	.12	.15	.16	.16	.22	.28	.25
25	.14	.14	.32	.11	.16	.10	.16	.12	.18	.23	.25
26	.07	.18	.32	.15	.12	.15	.12	.12	.17	.24	.25
27	.10	.08	.40	.14	.13	.10	.20	.08	.20	.24	.25
28	.15	.15	.15	.15	.15	.15	.15	.15	.15	.25	.25

Table 13. Parameters used in TAC calculations.
Sebastes marinus in Sub-area I and Division IIa.

Age	Stock size at beginning of 1979	Proportional fishing mortality (1977-79)	$\begin{gathered} \text { Mean weight at } \\ \text { age (kg) } \end{gathered}$
3	165000	. 0006	. 022
4	149289	. 006	. 034
5	128967	. 04	. 059
6	130611	. 07	. 086
7	68765	. 10	. 147
8	81103	.13	. 194
9	97391	.16	-245
10	210020	. 20	. 334
11	139807	. 24	. 421
12	119378	. 29	- 477
13	81444	. 33	. 512
14	80973	. 39	. 577
15	27729	. 46	. 611
16	43550	. 53	. 710
17	22546	. 59	. 761
18	43903	. 66	. 826
19	13727	. 73	. 895
20	16130	. 79	. 947
21	12217	. 86	1.093
22	1991	. 91	1.145
23	9068	. 96	1.293
24	6284	1.00	1.580
25	5040	1.00	1.793
26	4542	1.00	1.885
27	2830	1.00	2.393
28	5800	1.00	2.454

Table 14. Sebastes mentella. Age composition of the total catch in numbers ($\mathrm{x} 10^{-3}$) 1967-77, Sub-area I and Division IIa.

Age	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
6	0	7	31	0	0	466	172	606	5834	18891	-
7	0	0	94	0	0	782	1660	4847	19417	29815	1989
8	7	15	403	33	114	5728	4865	15451	42425	59395	14130
9	15	89	524	131	284	3586	9729	28781	82480	78241	27523
10	182	192	838	620	681	2049	4636	30144	108462	110712	42867
11	285	355	933	2122	1590	1770	2633	19843	119075	112524	40820
12	343	436	954	3428	4429	3865	3148	10603	57231	93144	44375
13	394	554	849	3983	4884	4564	5208	8634	29651	49550	27385
14	489	864	618	3526	5451	4704	5666	8634	20894	26134	15709
15	496	768	482	2808	4940	4098	4578	6514	16499	13881	10370
16	628	931	807	3983	7496	4704	5380	5908	13465	9839	4768
17	613	694	451	2743	4486	3632	3777	3332	13668	6300	4010
18	540	665	849	3 55\%	7382	3167	2747	2878	12207	7233	4524
19	349	702	786	2318	4770	1816	1316	1666	6757	3486	2596
20	649	369	555	1567	3918	885	973	2121	7112	3168	3242
21	693	347	440	784	2385	373	630	757	5113	1818	2431
22	598	251	514	653	1874	279	114	454	2242	1715	2082
23	248	89	199	327	1590	47	10	151	735	1041	824
24	117	44	42	65	397	47	10	151	407	211	265
Total	6646	7372	10.375	32650	56671	46572	57252	151475	563.674	627092	249910

Table 15. Sebastes mentella. Stock size in numbers $\left(x 0^{-6}\right)$.
Divisions IIa and IIb. 1967-77 estimated by VPA ($M=0.1$).

$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
6	188.6	299.8	463.0	770.9	880.0	701.6	541.1	444.2	654.2	252.0	-
7	165.9	170.7	271.3	418.9 .	697.6	796.3	634.4	489.4	401.3	586.4	697.7
8	162.5	150.1	154.4	245.4	379.1	631.2	719.8	572.4	438.2	344.7	502.3
9	134.7	147.0	135.8	139.3	222.0	342.9	565.7	646.6	503.3	356.2	255.5
10	128.9	121.8	133.0	122.4	126.0	200.6	306.8	502.6	557.7	377.1	248.1
11	98.3	116.5	110.1	119.5	110.2	113.3	179.5	273.2	426.1	401.7	236.2
12	86.6	88.7	105.1	98.7	106.1	98.2	100.9	160.0	228.4	272.7	256.8
13	56.5	78.0	79.8	94.1	86.1	91.8	85.1	88.3	134.7	152.4	158.5
14	36.5	50.7	70.1	71.4	81.4	73.2	78.7	72.1	71.7	93:7	90.9
15	22.2	32.6	45.1	62.8	61.3	68.5	61.8	65.9	57.0	45.0	60.0
16	17.4	19.6	28.8	40.3	54.2	50.7	58.1	51.6	53.4	36.0	27.6
17	10.6	15.1	16.8	25.3	32.8	41.9	41.4	47.4	41.0	35.6	23.2
18	6.6	9.0	13.1	14.8	20.2	25.3	34.5	33.9	39.8	24.2	26.2
19	6.2	5.4	7.5	11.0	10.0	11.3	19.9	28.6	27.9	24.4	15.0
20	4.6	4.7	4.3	6.1	7.8	4.6	8.5	16.8	24.3	18.9	18.8
21	1.8	3.6	3.9	3.3	4.0	3.3	3.3	6.8	13.2	15.2	14.1
22	1.0	1.0	2.9	3.1	2.3	1.4	2.7	2.4	5.4	7.1	12.1
23	0.5	0.4	0.6	2.1	2.2	0.3	0.9	2.3	1.7	2.8	4.8
24	0.5	0.3	0.2	0.4	1.6	0.5	0.2	0.9	1.9	0.9	1.5

Table 16. Sebastes mentella. Divisions IIa and IIb. Fishing mortality by year and by age, 1965-77.

Age	1965	1966	1967	1968	1969	1970	1971	1972	1975゙	1974	1975.	1976	1977
6	. 00	0.00	0.00	. 00	. 00	0.00	0.00	$.00^{-7}$. 00	. 00	. 01	.08	. 00
7	. 00	0.00	0.00	0.00	. 00	0.00	0.00	. 00	. 00	. 01	. 05.	. 05	. 01
8	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 03.	.11.	. 20	. 03
9	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 02	. 05	. 19	. 26	. 12
10	. 01	. 01	. 00	. 00	. 01	. 01	. 01	. 01	. 02	. 07	. 23	. 37	. 20
11	. 02	. 01	. 00	. 00	. 01	. 02	. 02	. 02	. 02	. 08	. 35	. 35	. 20
12	. 04	. 01	. 00	. 01	. 01	. 04	. 04	. 04	. 03.	. 07	. 30	. 44	. 20
13	. 08	. 03	. 01	. 01	. 01	. 05	. 06	. 05	. 07	. 11	. 26	- 42	. 20
14	. 12	. 08	. 01	. 02	. 01	. 05	. 07	. 07	. 08	. 13	. 36	. 35	. 20
15	. 13	. 10	. 02	. 03	. 01	. 05	. 09	. 06	. 08	. 11	. 36	. 39	. 20
16	. 20	. 14	. 04	. 05	. 03	. 11	. 16	. 10	. 10	. 13	. 31	. 34	. 20
17	. 18	. 19	. 06	. 05	. 03	. 12	. 16	. 10	. 10	. 08.	. 43	. 21	. 20
18	. 21	. 13	. 09	. 08	. 07	. 29	. 48	. 14	. 09	. 09	. 32	. 38	. 20
19	. 34	. 16	. 17	. 15	. 12	. 25	. 69	. 18	. 07	. 06	. 29	. 16	. 20
20	. 36	. 25	. 16	. 09	. 15	. 32	- 75	. 23	. 13	. 14	. 37	. 19	. 20
21	. 39	. 28	. 52	. 11	. 12	. 28	. 97	. 13	. 23	. 12	. 52	.13	. 20
22	. 35	. 28	. 94	. 32	. 21	. 25	1.96	. 24	. 05	. 22	. 57	. 29	. 20
23	. 64	. 12	. 65	. 30	. 41	. 18	1.36	. 19	. 01	. 07	. 60	. 50	. 20
24	. 20	. 20	. 30	. 20	. 20	. 20	. 30	. 10	. 05	. 20	. 25	. 30	. 20

Table 17. Sebastes mentella, Divisions IIa and IIb.
The biomass of the recruited stock $B\left(N_{6+}\right)$, the spawning stock $B\left(N_{15+}\right)$ and the year class strength (estimates from VPA).

Year	B $\left(N_{6+}\right)$ Tons $\times 10^{-3}$	B $\left(N_{15+}\right)$ Tons $\times 10-3$	Year class	Year class strength at age (millions)
1965	324	48	1965	880
1966	356	53	1966	702
1967	399	61	1967	541
1968	465	77	1968	444
1969	559	104	1969	654
1970	707	142	1970	(750)
1971	863	166	1971	(700)
1972	983	174		
1973	1110	196		
1974	1219	221		
1975	1320	(1836)		
1976	(1225)	(180)		
1977	(1108)	(1154)		
1978	(1214)			
1979	(192)			

Table 18. Sebastes mentella, Divisions IIa and IIb. Parameters used in catch prediction.

Age	Stock size at beginning of 1979	Proportional fishing mortality $(1977-79)$	Mean weight per age (kg)
6	800000	.00	.168
7	633386	.015	.183
8	571395	.15	.255
9	521633	.60	.311
10	353949	1.00	.367
11	151907	1.00	.432
12	136155	1.00	.508
13	129653	1.00	.611
14	140945	1.00	.679
15	86981	1.00	.753
16	49895	1.00	.821
17	32937	15144	1.00
18	12737	1.00	.872
19	14369	1.00	.910
20	8245	1.00	.923
21	10297	1.00	.985
22	7721	1.00	1.056
23	1072	1.00	1.124
24			1.193

Table 19. Nominal catches of Redfish (in metric tons) by countries in Division Va (Iceland).

Country	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
Belgium	3788	4117	3360	2204	2798	2484	1622	2114	1945	1522	1345
Faroe Isl.	3		8		35	9	243	254	82	211	224
GDR	341	419	656	827	238	135		11		-	
Germany , F.R.	66638	62521	55831	48907	46580	43963	38358	36398	33602	32948	32058
Iceland -	17857	24716	24321	23807	29118	26973	26470	27799	32659	34028	28204
Netherlands			2							-	
Norway		20			1	1	4	15	22	31	91
Poland				259	17	35		18		-	-
UK (England and Wales)	5742	3727	2174	2810	3436	3608	2923	2482	2368	1. 104	-
UK(Scotland)	279	144	128	138	116	89	28	37	56	20	
USSR	435	809	1256	10	31	28				-	-
Total	95083	96475	87736	78962	82370	77325	69650	69129	70734	69864	61922

* Provisional data.

Table 20. Nominal catches of Redfish (in metric tons) by countries in Division Vb (Faroe Islands).

Country	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
Faroe Isl.		1	5				-121	28	9	33	54
GDR ${ }^{\text {F }}$	18	45						300	800	-	
Germany .F.R.	4949	6538	1293	1914	2328	4034	9490	7328	7628	5255	5378
Netherlands									105		
Norway								10	7	17	10
U.K.	46	53	28	33	24	53	85	98	41	59	12a)
Total	5013	6637	1326	1947	2352	4087	9696	7765	8591	5364	5454

* Provisional data.
a) UK (England and Wales) only.

Table 2l. Nominal catch of Redfish (in metric tons) by countries in Sub-area XIV (East Greenland). Total nominal catch in ICNAF Sub-area I (West Greenland).

Country	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
Canada Denmark										420 129	
Faroe Isl.							13	43	1	3	19
GDR	28		154	409	611	703	841	1275	4490	-	
Germany, F.R.	23225	17552	26289	16316	17062	7287	4491	2632	4979	4403	12011
Iceland	9935	5527	3906	1001	2380	5490	. 2144	9777	5632	7410	
Norway									63		62
Poland				436	312	464	281	6	276	-	-
UK(Engl.\&Wales)	10			+	$+$	5	65	127	56	286	622
USSR			18		71	21	64	118	9830	101000	251
Total SA XIV	33198	$23 \quad 079$	$30 \quad 367$	$18 \quad 162$	20436	13970	7899	13978	25329	113656	12956
Total ICNAF SA I	13210	9606	4252	4101	2756	2988	3319	3324	8629	13698	

* Provisional data.

Table 22. Nominal catch (metric tons) of Redfish in Sub-area XIV, Divisions Va and Vb, and by species for Sub-area XIV and Sub-area V combined.

Years	Div.Va	Div. Vb	Sub-area XIV	Total	S. marinus	S. mentella
1965	114100	5862	36513	156475	97006	59469
1966	107068	3297	23290	133655	80347	53308
1967	95083	5013	33198	133294	85249	48045
1968	96475	6637	23074	126191	68712	57479
1969	87736	1326	30367	119429	79467	39962
1970	78962	1947	18162	99071	62020	37051
1971	82370	2352	20436	105158	68374	36784
1972	77325	4087	13970	95382	50961	44421
1973	69650	9696	7899	87245	41818	45347
1974	69129	7765	13978	90872	49845	41027
1975	70734	8591	25329	104654	60980	43674
1976	69864	5364	113656	188.884	93605	95279
1977*	61922	5454	12965	80341	51421	28920

* Provisional figures.

Table 23. Sebastes marinus. Sub-areas V and XIV combined. Catch in numbers per cm-group (x 10^{-3}).

Length (cm)	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	Average 1967-74	Average 1975-77
20							8		13	107	12	1	44
21						28	-	8	13	107	-	4	40
22						-	-	8	57	212	25	1	98
23						28	-	-	71	321		4	131
24						57	8	15	176	1393	19	10	529
25				22		28	-	8	272	2142	34	7	816
26				-	5	28	33	8	285	2382	19	9	895
27				17	12	57	28	153	520	4163	116	33	1600
28				57	16	57	86	217	513	3673	129	54	1438
29			15	139	8	230	306	267	703	5330	159	121	2064
30	345	176	111	254	128	797	509	640	678	5144	604	370	2142
31	310	291	263	371	184	939	713	977	1072	6639	1114	506	2942
32	629	644	611	501	397	1792	1581	1778	1513	9328	2161	992	4334
33	946	1135	I 200	986	811	2620	2503	2968	1400	8608	3003	1646	4337
34	1773	1645	1840	1444	1328	3533	2979	4141	1689	8541	4182	2335	4804
35	2726	2512	2808	2005	2305	3968	3533	4129	2079	8322	4969	2998	5123
36	3490	2732	3960	2820	2899	3236	3412	5184	3029	7491	4694	3467	5071
37	3961	3551	4422	3171	3372	3619	3935	4785	3720	6648	4561	3852	4976
38	5410	4065	5208	3604	3970	2967	3342	4325	4313	6431	3920	4111	4.888
39	5596	4388	4668	3451	3755	2715	3139	3467	4275	5142	3.135	3897	4184
40	6817	4510	5259	3850	3864	2787	2598	3253	4872	5199	2904	4117	4325
41	6301	4397	5076	3740	3499	2027	2245	2498	4356	4821	9584	3723	3920
42	5664	4077	5118	4248	3.400	2376	1988	2345	$\begin{array}{ll}3 & 029\end{array}$	3908	2413	3652	3117
43	5655	4087	4153	3779	3950	1952	1656	1563	3041	3071	2413	3349	2842
44	4110	3234	3627	3493	3981	1494	1380	1488	2349	2951	2054	2851	2451
45	3955 3	3217	2906	3364	4235	2102	1276	1461	1977	2511	1.889	2815	2126
46	3657	2897	3055	3357	3818	1615		1290	1446	2058	1620	2581	1708
47	3188	2787	2839	3043	3251	1377	1030	940	1548	1679	1326	2307	1518
48	2647	2010	2613	3020	3293	1358	991	922	1647	1292	1.016	2107	1318
49	2547	1884	2032	2603	2575	1052	949	1048	1344	1048	915	1836	1102
50	1976	1754	2098	1917	2279	868	831	693	991	1612	699	1552	1101

Table 23 (continued)

Length (cm)	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	$\begin{aligned} & \text { Average } \\ & 1967-74 \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { 1975-77 } \end{aligned}$
51	1548	1322	1405	1711	1387	576	673	602	1029	645	536	1153	737
52	1015	833	1125	1115	1044	563	588	608	715	697	448	861	620
53	655	869	895	751	884	176	318	345	478	578	290	612	449
54	247	372	507	509	474	163	141	241	273	233	197	332	234
55	390	212	225	311	873	84	181	169	190	363	177	306	243
56	209	144	123	151	105	4	81	149	191	232	77	121	167
57	411	85	94	61	116	5	36	54	77	63	38	108	59
58	11	48	76	89	12	2	2	29	35	6	44	34	28
59	12	39	42	33	8	3	3	8	41	50	14	19	35
60	13	33	55	31	12	32	17	-	12	50	19	24	27
61	22	22	48	50	13	4	4	14	13	16	13	22	14
62	20	24	47	34	18	4	16	-	19	9	13	20	14
63	31	20	46	44.	15	34	3	14	17	-	-	26	6
64	32	22	51	27	18	7	4	10	17	6	6	21	10
65	37	24	47	34	26	7	4	16	19	44	13	24	25
66	31	21	44	39	26	6	3	-	24	-	19	21	14
67	33	16	51	34	26	5	3	2	23	-	6	21	10
68	31	16	47	32	32	6	2	14	22	-	6	23	9
69	28	15	46	35	24	5	2	3	17	-	-	20	6
70	27	15	47	33	20	5	1	3	30	-	-	19	10
71	18	13	42	26	19	2	1	-	27	-	13	15	13
72	18	12	39	25	16	3	1		19	-	-	14	6
73	15	17	29	20	13	2	1		9	44	6	12	20
74	11	7	28	12	13	1	1		8		6	9	5
75	11	6	16	12	9	1	1		8		-	7	3.
76 77	9	13^{5}	16 29	8 13	8						6 18	6	2 6
	76595	60218	69102	60496	62554	47407	44102	52860	56304	125310	54654	59167	78756
W	1.113	1.141	1.150	1.025	1.093	1.075	0.950	0.943	1.083	-0.747	0.941	1.070	0.872
Corresp. Catch in	85249	68712	79467	62020	68374	50961	41898	49845	60980	93605	51421	63316	68669

Table 24. Sebastes mentella. Sub-areas XIV and V combined.

Length (cm)	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	Average 1967-74	$\begin{aligned} & \text { Average } \\ & \text { 1975-77 } \end{aligned}$
9										110			37
10										110			37
11									$\begin{array}{r}85 \\ 289 \\ \hline\end{array}$	$\overline{3} 30$			28 206
12									580	441			340
14									1413	2093			1169
15									4295	8922			4406
16									8028	13989			7339
17									8001	16633			8211
18									9356	24343			11.233
19									10490	28089			9645
20									10679	28639			13106
21									3.939	24674			9.534
22									599	23242			7947
23									858	16854			5904
24									375	29521			9965
25									-	13108			4369
26									-	15972			${ }^{4} 3624$
27									-	19056			6352
28									-	21590	6		7197
29									-	21700	16		7239
30	16			6		6	88	4	22	13693	52	15	4589
31	16	15	34	67	4	9	156	30	72	7638	132	41	2614
32	53	30	70	114	29	19	222	132	142	4612	214	84	1656
33	94	35	211	307	68	62	255	323	292	3363	375	169	1343
34	236	105	359	564	297	134	309	475	772	2327	757	310	1285
35	354	296	589	894	336	323	276	770	1398	2383	1260	480	1680
36	834	402	985	1398	591	629	441	877	1927	2242	1879	770	2016
37	1209	844	1105	1625	732	1229	761	1035	1652	2721	2499	1068	2291
38	1689	1203	1628	2142	1256	2148	1261		1792	2790	3447	1618	2676
39	1843	1783	1967	2057		2590	1614		1728	1634		1898	2280
40	3365	3255	3143	3043		3 3 3	2863			2200	3196		2463
41	4503	4942	3829	3333	2882	3711	2937		2365	1923	2361	3608	2216
42	5922	6673	4070	3688	3672	4318	3758	3351	2832	1928	2315	4432	2358

Table 24 (continued)

Length (cm)	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	$\begin{aligned} & \text { Average } \\ & 1967-74 \end{aligned}$	$\begin{aligned} & \text { Average } \\ & 1975-77 \end{aligned}$
43	5693	7803	4344	3471	4689	4257	3879	3522	2939	2038	2056	4707	2344
44	5323	6976	4460	3253	4989	4236	4388	3406	3373	1984	1692	4929	2350
45	5217	5502	3843	3102	4681	3432	5264	4117	2952	2007	1521	4395	2160
46	2917	3755	6331	2161	2953	3137	3701	2899	2646	1389	1228	3482	1754
47	1965	2521	1613	1701	1585	2184	3004	2323	2240	1202	880	2112	1441
48	1170	1206	1021	956	1149	1325	2100	1261	1477	754	628	1274	953
49	581	523	591	549	374	742	1113	877	832	426	390	669	549
50	289	315	299	263	214	284	462	431	458	341	288	320	362
51	106	178	223	195	87	118	189	159	179	142	103	157	141
52	78	29	180	95	71	105	57	60	102	49	79	84	77
53	31	29	73.	67	51	37	18	40	66	36	69	43	57
54	12	38	68	69	35	32	9	21	47	21	20	36	29
55		42	48	46	8	26	1	24	15	19	20	24	18
56 57		11	15 3	20	14	4 6	-2	8	6	5 3	8 5	9 2	6 5
58						-			-	3	5		3
59 60						6			3 2	3	6	1	4
Σ	43516	48511	41102	35189	34276	38961	39128	35735	93318	369292	30980	39854	161309
$\overline{\mathrm{W}}$	1.104	1.185	0.972	1.053	1.073	1.140	11159	1.148	0.468	0.258	. 934	1.098	. 340
Corresp. catch in tons	48045	57479	39962	37051	36784	44421	45347	41027	43674	95279	28920	43765	55958

Table 25. Calculation of average weights per age.

	Sebastes marinus			Sebastes mentella			
Age	Weight (g)	$\ln \bar{W}$	$\overline{\mathrm{C}}^{\text {Calcul }}$	Weight (g)	$\ln \bar{W}$	$\begin{aligned} & \text { Calcul. } \\ & \bar{W}(\mathrm{~g}) \end{aligned}$	$\begin{aligned} & \text { Range } \\ & \text { of cm-groups } \end{aligned}$
9	454	6.118	399	178	5.182	260	23-24
10	494	6.203	440	269	5.595	292	25-29
11	431	6.066	486	285	5.652	327	25-30
12	503	6.221	536	362	5.892	367	26-34
13	557	6.323	591	476	6.165	410	29-36
14	666	6.501	652	527	6.267	460	30-37
15	714	6.571	720	618	6.426	516	32-39
16	795	6.678	794	717	6.575	578	34-41
17	875	6.774	876	770	6.646	648	35-42
18	961	6.868	966	870	6.768	726	37-44
19	1045	6.952	1066	900	6.802	813	38-44
20	1141	7.040	1176	953	6.860	912	39-45
21	1218	7.105	1297	966	6.873	1022	39-46
22	1409	7.251	1431	1051	6.957	1145	41-46
23	1537	7.338	1579	1066	6.972	1284	41-47
24	1828	7.511	1742	1135	7.034	1438	42-50
25	1980	7.591	1924			1614	
26	2257	7.722	2120			1809	
27	2461	7.808	2339			2028	
28	2502	7.825	2580			2272	
29			2846				
30			3140				
31			3464				
32			3822				
33			4216				
34			4651				
35			5131				
36			5661				
37			6245				
38			6889				

Table 26 (continued)

		$M=0$	Seb $K=0 .$ $57-1974$	stes ma $192 \text {, I }$	rinus $\infty=101$	$\begin{aligned} & 1.67 ; \frac{1}{2} \\ & 75-1977 \end{aligned}$	$=0.8$			$=0.1$	Seb $\begin{aligned} & K=0.00 \\ & 967-1974 \end{aligned}$	astes $82 ; \quad I_{\infty}$	$\begin{aligned} & \text { 2lla } \\ & 173.7 \\ & 1975 \end{aligned}$	$\begin{gathered} \frac{F}{Z}= \\ -1977 \end{gathered}$	0.8	
cm	Catch $\begin{aligned} & \text { (No.) } \\ & \times 10^{-3} \end{aligned}$		$\begin{gathered} F \\ (\text { Year }) \end{gathered}$	$\begin{aligned} & \text { Stock } \\ & \text { (No.) } \\ & \times 10^{-6} \end{aligned}$	$\begin{aligned} & \text { Catch } \\ & \text { (No.) } \\ & \times 10^{-3} \end{aligned}$	$F \Delta t$	$\begin{gathered} F \\ \text { (Year) } \end{gathered}$	Stock (No.) $\times 10^{-6}$	$\begin{aligned} & \text { Catch } \\ & \text { (No.) } \\ & \times 10^{-3} \end{aligned}$	F At	$\stackrel{F}{(\text { Year })}$	$\begin{aligned} & \text { Stock } \\ & \text { (No.) } \\ & \times 10^{-6} \end{aligned}$	$\begin{aligned} & \text { Catch } \\ & \text { (No.) } \\ & \times 10^{-3} \end{aligned}$	$F \Delta t$	$\begin{aligned} & \mathrm{F} \\ & \text { (Year) } \end{aligned}$	Stock (No.) $\times 10^{-6}$
36	3467	. 032	. 041	89.6	5071	. 057	. 072	74.9	770	. 010	. 011	70.6	2016	. 040	. 045	47.9
37	3852	. 040	. 050	81.4	4976	. 064	. 080	66.4	1068	. 016	. 017	64.5	2291	. 051	. 058	42.5
38	4111	. 049	. 060	73.4	4888	. 073	. 090	58.4	1618	. 026	. 029	58.5	2676	. 070	. 078	37.2
39	3897	. 052	. 064	65.4	4184	. 073	. 089	50.8	1898	. 035	. 038	52.5	2280	. 070	. 077	31.9
40	4117	. 064	. 076	58.1	4325	. 089	. 106	44.2	3117	. 066	. 072	46.7	2463	. 089	. 098	27.4
41	3723	. 067	. 079	50.9	3920	. 097	. 113	37.8	3.608	. 090	. 098	40.2	2216	. 096	. 105	23.1
42	3652	. 077	. 089	44.5	3117	. 092	. 106	32.0	4432	. 135	. 146	33.8	2358	.126	.136	19.3
43	3349	. 084	. 095	38.4	2842	. 101	. 114	27.2	4707	. 185	. 198	27.1	2344	. 158	. 169	15.6
44	2851	. 085	. 094	32.9	2451	. 105	. 118	22.9	4929	. 266	. 282	20.7	2350	. 209	. 222	12.2
45	2815	. 100	. 110	28.1	2126	. 111	. 122	19.6	4395	. 354	. 371	14.5	2160	.267	. 281	9.1
46	2581	. 112	. 121	23.6	1708	. 110	. 118	16.0	3482	. 462	. 477	9.4	1754	. 319	. 332	6.4
47	2307	. 124	. 131	19.6	1518	. 120	. 127	13.3	2112	. 499	. 509	5.4	1441	. 415	. 426	4.3
48	2107	. 142	. 147	16.1	1318	. 130	. 135	10.9	1274	. 563	. 567	3.0	953	. 470	. 477	2.6
49	1836	. 158	. 161	12.9	1102	. 137	. 139	8.9	669	. 578	. 576	1.6	549	. 481	. 483	1.5
50	1552	. 174	. 174	10.2	1101	. 176	. 176	7.1	320	. 534	. 530	.8	362	. 597	. 589	. 8
51	1153	. 170	. 167	7.9	737	. 154	.151	5.5	157	. 484	. 478	. 4	141	. 434	. 431	. 4
52	861	. 167	. 160	6.1	620	. 169	. 162	4.4	84	. 459	. 451	. 2	77	. 398	. 393	. 2
53	612	. 155	. 146	4.8	449	. 160	. 151	3.4	43	. 401	. 393	. 1	57	. 512	. 497	. 1
54	332	. 106	. 098	3.7	234	. 106	. 098	2.6	36	. 612	. 583	. 1	29	. 474	. 458	. 1
55	306	.123	. 111	3.1	243	. 139	. 126	2.2	24	. 980	. 884	$<.1$	18	. 540	. 514	$<.1$
56	121	. 060	. 053	2.5	167	. 122	. 108	1.7	9	1.194	1.031	$<.1$	6	. 309	. 297	<.1
. 57	108	. 063	. 055	2.1	59	. 053	. 046	1.4	2	. 855	. 772	$<.1$	5	. 408	. 386	6.1
58	34	. 023	. 020	1.8	28	. 029	. 025	1.2	0	0	0	<.1	3	. 409	. 384	6.1
59	19	. 015	. 012	1.6	35	. 043	. 035	1.1	1		4	8.1	4	1.378	1.120	<. 1
60	24	. 022	. 018	1.5	27	. 039	. 031	. 9					1		. 4	<-1
61	22	. 023	. 018	1.3	14	. 024	. 019	. 8								
62	20	. 025	. 019	1.1	14	. 027	. 021	. 7								
63	26	. 038	. 028	1.0	6	. 014	. 010	.6								
64	21	. 036	. 026	. 9	10	. 027	. 020	. 6								
65	24	. 049	. 035	. 7	25	. 081	. 058	. 5								

Table 26 (Continued)

- 44 -

Table 27. Results of the Cohort Analysis using length data

		Sebastes marinus		Sebastes mentella	
		1967-74	1975-77	1967-74	1975-77
Mean F weighted by stock size	Adults	. 067	. 089	. 075	. 090
	Spawners	. 091	. 108	. 137	. 144
Stock size in numbers (millions)	Adults	892	697	611	395
	Spawners	517	379	315	192
Stock size in weight (1 000 tons)	Adults	852	624	490	314
	Spawners	611	420	298	183

Adults $=34 \mathrm{~cm}$ and longer
Spawners $=38 \mathrm{~cm}$ and longer

Table 28. Sebastes marinus Sub-areas XIV and V combined 1967-77. Input data catch in numbers by year and by age.

AGE	1967	1968	1969	1970	1971	1972
9	0.0	0.0	0.0	8.0	4.0	59.0
10	0.0	0.0	0.0	15.0	5.0	65.0
11	154.0	138.0	137.0	183.0	102.0	503.0
12	1186.0	1101.0	1108.0	1148.0	863.0	3066.0
13	2075.0	1996.0	2141.0	1826.0	1565.0	4539.0
14	4546.0	3971.0	4891.0	3599.0	3713.0	5998.0
15	4159.0	3519.0	4354.0	3133.0	3323.0	4044.0
16	6810.0	5373.0	6617.0.	4706.0	5081.0	4469.0
17	3563.0	2718.0	3200.0	2352.0	2424.0	1928.0
18	9205.0	6618.0	7746.0	5814.0	5798.0	4269.0
19	7317.0	5272.0	6047.0	4824.0	4712.0	3003.0
20	2682.0	1564.0	2245.0	1928.0	1841.0	1020.0
21	8153.0	6025.0	6567.0	5844.0	6152.0	3217.0
22	5533.0	4252.0	4608.0	4592.0	4939.0	2304.0
23	7410.0	5892.0	6240.0	6596.0	7342.0	3269.0
24	6970.0	5619.0	6204.0	6856.0	7233.0	3066.0
25	2966.0	2502.0	2868.0	3076.0	3189.0	1268.0
26	1882.0	1630.0	1894.0	1956.0	2205.0	726.0
27	829.6	774.0	910.0	916.0	981.9	303.0
28	650.0	527.0	717.0	683.0	762.0	211.0
29	382.0	210.0	324.0	275.0	259.0	53.0
30	143.0	117.0	234.0	184.0	121.0	29.0
AGE	1973	1974	1975	1975	1377	
9	21.0	48.0	273.0	2023.0	49.0	
10	28.0	68.0	374.0	2715.0	69.0	
11	402.0	533.9	878.0	6229.0	542.8	
12	2624.0	3292.0	3099.0	19819.0	3450.0	
13	4017.0	4987.0	3320.0	19604.0	5262.0	
14	5652.0	7437.0	4282.0	15776.8	7623.0	
15	4106.0	5261.0	3620.0	8889.0	5192.0	
16	4873.0	6152.0	5538.0	9183.0	5749.0	
17	2074.0	2518.0	こ744.0	3780.0	2331.0	
18	4287.0	5159.0	6545.0	8440.0	4979.0	
19	2883.0	3322.0	4744.0	5596.0	3423.0	
20	934.0	1023.9	1570.0	1844.0	1192.0	
21	2786.0	3096.0	4799.0	5552.0	3658.0	
22	1798.0	1956.0	2973.0	3389.0	2421.0	
23	2349.0	2537.0	3724.0	4348.0	3239.0	
24	2536.0	2549.0	3763.0	3817.0	2761.0	
25	1239.0	1229.0	1740.0	1751.0	1141.0	
26	783.0	845.0	1160.0	1283.0	778.0	
27	360.0	407.0	558.0	587.0	355.8	
28	255.0	306.0	425.0	429.0	264.0	
23	84.0	118.0	197.0	173.0	109.0	
30	11.0	12.0	110.0	73.0	67.0	

Table 29. Sebastes marinus Sub-areas XIV and V combined 1967-77. Fishing mortalities by year and by age.

Table 30. Sebastes marinus Sub-areas XIV and V combined 1967-77. Stock in numbers at beginning of year.

AGE	1967	1968	1969	1970	1971	1972
9	159877.3	181481.9	110710.3	187507.8	182723.4	282428.4
10	93161.6	144663.0	164211.6	100174.8	169656.5	165331.2
11	149855.1	84295.6	130896.5	148584.8	90627.6	153506.8
12	119400.4	135448.1	76142.6	118309.8	134271.1	81906.3
13	133709.4	106929.4	121511.7	67843.3	105959.7	120730.0
14	126998.8	119012.6	94856.2	107912.9	59651.3	34388.4
15	86800.9	109777.8	163912.4	81181.0	94222.6	50446.3
16	75827.3	74587.9	95986.0	89885.5	70477.7	82097.5
17	61023.2	62141.5	62384.4	89564.0	76859.2	58942.8
18	58141.0	ㅌ1835.5	53644.6	53406.5	70661.6	67240.9
19	50726.7	43869.8	40617.6	41184.6	42801.6	58428.4
20	42569.3	38951.7	34687.1	31010.8	32683.5	34252.8
21	39450.6	35969.6	33378.4	29252.8	26246.5	27823.7
22	30008.7	27960.0	26827.1	23969.9	20923.3	17913.9
23	22760.0	21901.4	21.23.2	19899.9	17330.8	14247.1
24	15200.1	13572.8	14230.3	13323.7	11756.6	8734.2
25	7595.3	7161.9	6963.4	7906.7	5578.1	3817.8
26	4484.8	4064.6	4110.3	3586.5	3430.0	2037.5
27	2330.1	2277.0	2134.9	1928.1	1393.2	1025.8
28	1536.7	1323.2	1327.1	1070.7.	878.5	342.2
29	626.9	775.4	698.4	523.7	325.1	82.8
30	253.6	207.0	502.5	325.5	214.1	51.3
AGE	1973	1974	1975	1976	1977	
9	229798.5	174019.0	47259.3	22196.8	128752.4	
10	255495.7	207910.3	157413.3	42502.4	18162.5	
11	149536.1	231155.5	188060.4	142077.8	35877.7	
12	138420.4	134923.6	288651.3	169329.3	122636.9	
13	71197.6	122753.4	118954.5	185934.8	134391.5	
14	104926.7	60604.7	106331.8	104478.5	149618.9	
15	79706.3	89570.1	47774.2	92143.0	79557.2	
16	41803.3	68219.0	76046.7	39788.2	74930.0	
17	70037.7	33196.9	55.332.4	63549.5	27281.0	
18	51501.0	61401.2	27645.2	47994.5	53503.8	
19	56785.3	42526.9	50656.6	18806.0	35415.8	
20	50014.2	48641.5	35323.5	41329.1	11712.0	
21	30023.6	44366.8	43035.4	30469.9	35643.5	
22	22120.4	24519.7	37202.8	34381.7	22300.5	
23	14020.3	18307.0	20327.9	30837.7	27898.4	
24	9790.1	10456.2	14155.8	14858.8	23774.4	
25	4998.8	6453.5	7043.4	9248.4	9824.9	
26	2253.1	3348.0	4672.9	4722.8	6699.2	
27	1156.0	1257.0	2228.0	3128.0	3056.3	
28	641.0	784.8	787.3	1485.8	2273.3	
29	110.6	338.6	348.2	311.5	938.6	
39	19.5	21.2	194.6	129.2	118.5	

Table 31．Sebastes marinus Sub－areas XIV and V combined 1967－77． Weights at beginning of year．

AGE	1967
9	53791.1
19	40950.9
11	72829.6
12	63938.6
13	79023.3
14	822.6 .4
15	62436.6
16	60206.8
17	53461.6
18	56164.2
19	54074.7
20	50961.4
21	51157.5
22	42942.4
23	35939.0
24	26478.5
25	14593.2
26	9567.7
27	5450.1
28	$39 E 4.6$
29	1784.1
30	946.2

1968
1969
$72411.3 \quad 44173.4$ 63651.7 43967.7 72ヒ04． 2 63195.3 77596.2 79040.0 59とここ．8 3445E． 0 50073.1 46764.3 45807．2 46652.5 40010.8 34582.3 2364.3 .7 13755.2 S61E． 9 532 ． 0 3413.7 220E． 7 774.2

44173.4	74815.6
72253.1	44976.9
63615.7	72212.2
40812.4	63414.0
71813.4	40095.4
61846.2	70359.2
74816.9	58450.3
75212.9	71369.0
54648.8	70574.1
51820.7	51590.7
43298.4	43302.8
49792.1	36468.7
43291.8	37940.9
38359.5	34300.9
33573.0	31422.0
24789.2	23209.9
1.7383 .7	13467.0
5713.9	7603.3
4993.5	4509.7
2423.9	2762.4
1987.6	1490.4
1873.2	1217.5

1971
72906.7 74648.8 44045.0 71969.3 62E2こ． 38892.7 67840.3 55959.3 67328.7 E8253． 1 45626.5 38435.9 34041.7 29941．2 27365.3 20480． 1 10721.1

7271．6 3270.3 2こES．E 925．3 2ctu． 6

TOTAL EIOMASS
932091．6 $904757.7 \quad 876529.2$
SPAWNING EIOMASS（AGES）＝ 16 ）
466746.2
435295.5

441198．1
431829.2412693 .4

1977
51372.2 7991.5 17436.6 65733．4 79425.3 97551.5 57e81．2 59494.4 23858．1 52076.8 37753.3 13773.3 46223.6 31912.1 44035.9 $41+15.1$ 18883.5 14202.3 7149.9 58.65. 2671.2 443.3

TOTAL BIOMASS
112688.9 72745.7 74604.3 43901.8 71351.4 6154：．2 363さ1．3 65985.4 5：633．9 E4954．7 E22S4．7 49281.3 36087． 3 25633．5 22436.1 15215.0 7337.8 4329.6 2399．4 882.8 235.8 191.9

872294.0

AGE	1973	1574	1375	1976	1977
9	91689．6	69433.6	18856.4	8856.5	51372.2
10	112413.1	91480．5	6926：．8	18701.6	7991.5
21	72674.5	11234：．6	9：39\％．3	69049.8	17436.6
12	74193.3	7こふ13．0	11！637．1	90760.5	65753．4
13	420.7 .8	72547.3	70302.1	109887.5	79425.3
14	684：2．2	39514.3	6032． 3	58120.6	97551.5
15	57388．6	54493.4	34397.4	66343.0	57881．2
16	33151.9	54165.9	60381．0	31591.8	59494.4
17	61353.0	29080．4	48953.0	55669.4	23858．1
18	49750.0	59313.6	25705.3	463 EE .7	52076．8
19	60533.2	45333.7	53999.9	20047.2	37753.3
20	58016.7	57202．4	41540.5	48603.0	13773.3
21	38949.6	57543.7	55816.9	39519.4	46223.6
22	31654.3	35087.7	53237.2	49200.2	31912．1
23	22138．0	23906．8	32097.7	48692．8	44035.9
24	17054.4	18214.5	24550．4	25834.9	$41+15.1$
25	9607．8	12403．6	15537.4	17760.0	18883.5
26	4776.6	7097．8	5906．6	10012.3	14202.3
27	2703.9	3033.6	521：．3	7316.5	7149.9
28	1653.8	1815．4	2032.6	3335.6	50.65 .0
29	314.9	GES．7	991．1	586.6	2671．2
30	72.8	79.4	727.9	483.6	443.3

Table 32. Sebastes mentella Sub-areas XIV and V combined 1967-77. Input data catch in numbers by year and by age.

AGE	1967	1968	1969	1970	1971	1972
9	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.0	0.0
12	32.0	12.0	46.0	75.0	19.0	15.0
13	84.0	40.0	137.0	218.0	66.0	46.0
14	437.0	250.0	649.0	975.0	372.0	320.0
15	479.0	292.0	606.0	891.0	385.0	414.0
16	1452.0	1024.0	1576.0	2142.0	1066.0	1567.0
17	1519.0	1221.0	1492.0	1871.0	1059.0	1685.0
18	2515.0	2260.0	2362.0	2649.0	1691.0	2743.0
19	3349.0	3433.0	3000.0	2923.0	2284.0	3500.0
20	1060.0	1136.0	844.0	820.0	699.0	993.0
21	8121.0	9195.0	6578.0	5822.0	5609.0	6885.0
22	3203.0	3945.0	2610.0	2043.0	2528.0	2483.0
23	10430.0	12819.0	9126.0	6632.0	8854.0	8162.0
24	5339.0	6473.0	5960.0	3673.0	4758.0	4703.0
25	2490.0	2908.0	2390.0	1792.0	2186.0	2285.0
26	1851.0	2149.0	2079.0	1441.0	1647.0	1844.0
27	785.0	914.0	717.0	704.0	666.0	824.0
28	369.6	441.0	899.0	516.0	385.0	492.0
AGE	1973	1974	1975	1976	1977	
9	0.0	0.0	0.0	3202.0	2.0	
10	1.0	0.0	0.0	2948.0	2.0	
11	2.6	0.0	1.0	6533.0	3.0	
12	122.0	71.0	87.0	22603.0	134.0	
13	269.0	196.0	262.0	21121.0	342.0	
14	549.0	802.0	1331.8	14107.0	1360.0	
15	408.0	677.0	1161.0	5547.0	1261.0	
16	1068.0	1591.0	2384.0	4431.0	3225.0	
17	1107.0	1445.0	1797.0	2619.0	2739.0	
18	1874.0	2242.0	2285.0	2841.0	3519.0	
19	2586.0	2790.0	2202.0	2229.0	3266.0	
20	779.0	795.0	605.0	541.0	758.0	
21	5741.0	5467.0	4474.0	3625.0	4618.0	
22	2379.0	2029.0	1785.9	1192.0	1242.0	
23	9044.0	7398.0	6357.0	4050.0 .	3742.0	
24	5862.0	4602.0	4093.0	2403.0	2054.0	
25	3063.0	2366.0	2147.0	1232.0	1030.0	
26	2551.0	1935.0	1862.0	1061.0	877.0	
27	1158.0	900.0	913.0	544.0	454.0	
28	5E5.0	489.0	581.0	331.0	356.0	

Table 33. Sebastes mentella Sub-area XIV and V combined 1967-77. Fishing mortalities by year and by age.

Table 34. Sebastes men由ella Sub-area XIV and V combined 1967-77. Stock in numbers at beginning of year.

AGE	1967	1968	1969	1976	1971	1972
9	95762.3	93862.5	96683.3	121781.3	79731.4	93187.1
10	32906.8	86649.3	84930.3	87482.7	110192.2	72143.9
11	98254.5	29775.3	73403.6	76848.2	79157.6	99706.1
12	45694.3	88904.4	26941.8	70942.5	69535.1	71624.8
13	80755.8	41315.5	80432.5	24334.2	64120.1	62899.9
14	59546.4	72991.0	37345.7	72648.2	21811.2	57955.5
15	57778.0	53464.3	65807.3	33174.8	64807.8	19382.0
16	63518.2	51824.2	48098.9	58968.7	29170.8	58274.5
17	60879.0	56093.3	45919.0	42023.6	51321.1	25381.6
18	56947.3	53641.6	49594.6	40131.0	36246.2	45430.5
19	51135.0	49137.7	46388.9	42630.2	33794.8	31183.8
20	44225.4	43086.4	41199.5	35123.6	35795.8	28488.4
21	39964.8	39089.1	37906.3	36476.5	34620.9	31724.3
22	33581.6	28455.3	26574.6	28054.9	27478.9	26001.3
23	25520.7	27343.1	22001.3	21566.3	23443.9	22461.4
24	13303.9	13220.5	12619.9	11271.1	13228.4	:2829.2
25	6869.7	6984.2	5843.9	5783.7	6718.1	7463.1
26	4364.7	3857.7	3567.6	3025.8	3534.9	4007.5
27	1428.4	2197.9	1461.8	1266.4	1375.5	164:. 1
28	461.3	551.3	1123.8	645.0	48.1 .3	615.0
AGE	1973	1974	1975	1976	1977	

45428.0
13162.8
41104.9
76294.2
5906.4. 6 81516.4 58372.7 50936.5 46786.8 14497.6 45310.9 17551.5 32379.3 21787.4 16358.7 17803.5 10596.4 5852.3 3575.5 1742.4 611.3

11910.2		
37193.3	10776.8	
69033.8	33652.9	3590.0
53376.3	62381.7	5162.5
73572.8	48047.8	36435.5
52055.4	65306.0	30102.9
45445.6	45997.9	53821.2
40822.1	38855.2	37411.3
11745.3	35229.4	32663.9
38868.2	8459.0	29177.5
13232.4.	33076.7	5540.3
28542.3	11398.2	29414.7
14529.1	21578.5	6878.3
13417.8	11451.1	18392.2
9108.2	6130.4	6525.3
5234.1	4370.0	3272.2
3112.4	2704.0	2786.1
1407.9	1059.9	1442.3
726.3	413.8	445.0

110192.2
79157.6
69535.1
64120.1
21811.2
64897.8
29170.8
51321.1
36246.2
33794.8
35795.8
34620.9
27478.9
23443.9
13228.4
6718.1
3534.9
1375.5
481.3

1977
93187.1 72143.9 71624.8 62899.9 57955.5 19382.0 8274.5 45430.5 31189.8 28408.4 31724.3 . :2829.2 7463.1 4007.5 615.0

Table 35. Sebastes mentella Sub-areas XIV and V combined 1967-77. Weights at beginning of year.

AGE	1967	1588	1969	1970	1971	1972
9	24898.2	24404.3	25137.7	31663.1	20739.2	24228.6
10	5608.8	25301.6	24799.7	25545.8	32176.1	21066.0
11	32129.2	9736.5	25638.0	25129.3	25884.5	32603.9
12	16769.8	32627.9	99887.6	25035.9	25519.4	26286.3
13	33109.9	16939.3	32977.4	9377.0	26289.2	25789.0
14	27391.3	33575.8	17179.0	33418.2	10033.2	26659.5
15	29813.4	27587.6	33956.5	17118.2	33440.8	10001.1
16	36713.5	29954.4	27801.2	34083.9	16860.7	33682.7
17	39449.6	36348.5	29755.5	27231.3	33256.1	16447.3
13	41343.8	38943.8	36005.7	29135.1	26314.8	32982.5
19	41572.7	39948.9	37714.2	34658.3	27475.2	25357.3
20	40333.6	39294.8	37573.9	35680.7	32645.8	25908.5
21	40844.0	39867.3	38740.2	37279.9	35382.6	32422.8
22	38451.0	32581.4	30427.9	32122.9	31462.3	29771.5
23	32758.5	35108.5	28249.7	27691.1	30101.9	28840.5
24	19131.0	19011.1	18147.3	16267.8	19022.4	13448.4
25	11087.7	11272.5	9432.1	9334.9	10843.1	12045.5
26	7895.8	6973.6	5453.3	5473.7	6394.7	7249.5
27	2896.7	4457.3	2964.6	2568.3	2789.5	3328.2
28	1048.8	1252.4	2553.2	1465.4	1093.4	1397.3
Biomass (ages ≥ 12)			399819.7	379481.6	368925.0	356617.9
SPAWNING BIOMASS (AGES >= 16)				292932.3	273642.3	267832.0
AGE	1973	1374	1975	1976	1977	
9	11811.3	3422.3				
10	24621.2	12092.6	3477.8			
11	21346.1	24948.2	12162.2			
12	33109.9	21676.7	25335.4	12350.6	1317.5	
13	26565.8	33421.7	21884.3	25576.5	3756.6	
14	26160.4	26851.5	33843.5	22102.0	16760.3	
15	26902.2	26283.3	26860.6	33697.9	15533.1	
16	9909.2	27042.7	26267.6	26586.8	31108.6	
17	33203.1	9394.4	26452.7	25178.2	24242.5	
18	15511.0	32895.7	8527.1	25576.5	23717.6	
19	31300.9	14269.3	31599.8	6877.2	23721.3	
20	22706.3	29529.9	12868.0	30166.0	5052.8	
21	25305.9	22266.8	29170.2	11648.9	30961.9	
22	25388.5	13417.7	16635.8	24707.3	7875.6	
23	2.7179 .5	22859.8	17228.4	14703.3	23615.5	
24	18110.1	15237.6	13097.5	8315.6	938.3.4	
25	11547.3	3445.6	8447.9	7053.2	5291.3	
26	8298.3	E468.1	5630.3	4891.6	5046.1	
27	3817.2	3533.5	2855.3	2149.4	2925.0	
28	1604.6	1388.8	1650.0	940.0	1011.0	
$\text { Biomass (ages } \geq 12)$			307554.4	283021.0	230404.1	

SPAWNING EIOMASS (AGES)= 16)
$233882.4 \quad 213750.0 \quad 199630.6 \quad 189294.0 \quad 193036.6$

Table 36. Parameters used in TAC calculations Sebastes marinus in Sub-areas V and XIV.

Table 37. Parameters used in TAC calculations Sebastes mentella in Sub-areas XIV and V.

Age	Stock size beginning of l978 x 10.6	Proportion of fishing mortality	Mean weight year age (kg)
12	65.4	.10	.367
13	46.9	.10	.410
14	43.0	.10	.461
15	31.6	.13	.516
16	25.9	.18	.578
17	45.4	.20	.648
18	31.2	.30	.726
19	29.5	.40	.813
20	23.1	.45	.912
21	4.2	.60	1.022
22	22.2	1.00	1.145
23	5.1	1.00	1.284
24	13.1	1.00	1.638
25	4.1	1.00	1.809
26	2.0		2.028
27	1.7		2.272
28	1.1		

Age	Stock size beginning of 1978 x 10-6	Proportion of fishing mortality	Mean weight year age (kg)
12	117.4	.23	.536
13	107.7	.32	.591
14	116.7	.42	.652
15	128.2	.55	.720
16	66.2	.65	.794
17	62.3	.72	.876
18	22.5	.78	.966
19	44.1	.82	1.066
20	28.8	.88	1.176
21	9.5	1.93	1.297
22	28.7	1.00	1.431
23	17.9	1.00	1.579
24	22.2	1.00	1.742
25	18.9	1.00	1.922
26	7.8	1.00	2.120
27	5.3	1.00	2.339
28	2.5	1.00	2.580
29	1.8		2.846
$30+$.8		3.905

Fishing mortality on age group subject to maximum exploitation

Figure 1. Sebegtes merinue in Sub-area I and Division IIa. Yield per recruit curve for present exploitation pattern
$(M=0.10)$.

Figure 2. Sebastes mentella in Divisions IIa and IIb. Relation of weigtted moan fishing mortality (ages 13-21) to total effort.

Year class strength $\left(N_{6} \times 10^{-6}\right)$

Figure 3. Sebastes mentella in Divisions IIa and IIb. Relation of year class strength at age 6 (from VPA) to corresponding 0-group survey abundance indices.

Figure 4. Sebastes mentella in Divisions IIa and IIb.
Curves for yield per recruit and spawning stock biomass per recruit for present exploitation
pattern $(M=0.1)$.

Figure 5. Sebastes marinus in Sub-area XIV and Division Va. The natural log of the mean weight per age against age.

Figure 6. Sebastes mentella in Sub-area XIV and Division Va. The natural log of the mean weight per age against age.

