This Report not to be cited without prior reference to the Council ${ }^{\mathrm{x}}$)

: International Council for the

- Exploration of the Sea
C.M.1978/G:2

Demersal Fish Committee

Digitalization sponsored by Thünen-Institut

Charlottenlund, 6-10 February 1978

> This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.
x) General Secretary, ICES, Charlottenlund Slot, DK-2920 Charlottenlund, Denmark.
https://doi.org/10.17895/ices.pub. 9407

CONTENTS

Page

1. PARTICIPATION 1
2. INTRODUCTION 1
2.1 Terms of Reference 1
2.2 Management Changes and Changes in the Fishing Pattern around the Faroes 1
3. THE STATE OF THE STOCKS 1
3.1 Cod (Plateau Stock) 1
3.1.1 Trends in catch and effort 1
3.1.2 Virtual population analysis (VPA) 2
3.1.3 Catch predictions and TACs 2
3.2 Haddock 3
3.2.1 Trends in catch and effort 3
3.2.2 Virtual population analysis (VPA) 3
3.2.3 Current state of stock 4
3.2.4 Catch predictions and TACs 4
4. MESH ASSESSMENTS 6
5. INTERNATIONAL 0-GROUP SURVEYS AT FAROES IN 1978 6
6. SHORTCOMINGS AND GAPS IN DATA REQUIRED FOR STOCK ASSESSMENT PURPOSES 6
7. REFERENCES 6
Tables 1 - 25 7
Figures 1-5 24

1. PARTICIPATION

K Hoydai (Chairman)	Denmark (Faroes)
T Jakobsen	Norway
B W Jones	UK (England)
R Jones	UK. (Scotland)
J Lamolet	France
H H Reinsch	Germany (Fed.Rep.of)

V Nikolaev, ICES Statistician, also participated in the meeting.
2. INTRODUCTION
2.1 Terms of Reference

At the 65th Statutory Meeting it was decided (C.Res.1977/2:19) that the Working Group on Fish Stocks at the Faroes should meet at Charlottenlund during 6-10 February 1978 to:
(a) assess TACs for 1979 for cod and haddock,
(b) further assess the effective mesh sizes in current use, and to estimate the effects of further increases in mesh size for these species,
(c) plan and discuss the design of the International $0-G r o u p$ Survey at the Faroes in 1978,
(d) identify and specify in detail, shortcomings and gaps in the data required for stock assessment work,
(e) review and update data in the "Review of Fish Resources" given in the Appendix to the 1977 Working Group Report.
2.2 Management Changes and Changes in the Fishing Pattern around the Faroes

The "Arrangement Relating to Fisheries in Waters Surrounding the Faroes" was terminated in early 1977 and since then fishing by countries other than Faroes has been subject to quotas permitted by the Faroese authorities, and in addition access to certain fishing grounds has been restricted. On 1 January 1978 the minimum trawl cod-end mesh size was increased from 120 mm (synthetic) to 135 mm . (irrespective of material).
Tables 13 and 14 show the changes in landings of cod (Faroe Plateau) and haddock (Total Div. Vb) by the various gears. It is clear that during the last four years the proportion of the catch of both species taken by longline has been increased substantially while the proportion taken by trawl has declined. Fishing effort by the United Kingdom trawlers in 1977 was reduced to about 60% of the level in 1975-76.
3. THE STATE OF THE STOCKS
3.1 Cod.(Plateau Stock)
3.1.1 Trends_in catch and effort

As in previous years the assessment has been made only for the Faroe Plateau cod stocks as data for the Faroe Bank are not sufficiently good for a separate assessment to be made for that stock.

Data on landings have been:updated:.Estimatediandings of cod from the Faroe Plateau in 1977 were 35000 tons compared with 39917 tons in 1976. The equivalent figures for the total Division Vb were 36000 tons (1977) and 42129 tons (1976) (Table 1). Catches by Faroese vessels in 1977 were maintained at the same level as in 1976 (29000 tons) but the landings by other countries, particularly by the United Kingdom, were appreciably lower in 1977 (7000 tons in 1977 compared with 13170 tons in 1976). The recruitment of the abundant 1972 and 1973 year classes has contributed to the high catohes in 1975-77. High catch per unit effort was recorded for these years by Faroese long liners (Table 25).
3.1.2 Virtual population analysis_(VPA)

Previous estimates of total numbers landed in each age group in 1976 have been updated and provisional estimates were prepared for 1977. Age composition data for 1977 were available for Faroes, United Kingdom (England) and United Kingdom (Scotland). French length compositions were converted to age compositions using the English age/length key. Landings by other countries were assumed to have the same age distribution as the combined English, Scottish and French landings.
Age compositions of the total catches from the Faroe Plateau used as input data for the VPA are given in Table 15. Values of fishing mortality coefficients calculated by VPA are given in Table 16 together with the values assumed for 1977 which were used to initiate the computation. Estimates of stock size as calculated by VPA are given in Table 17.
Recent changes in the fishery have made it more difficult than usual to estimate both the current exploitation pattern and the overall level of fishing mortality in 1977.
Following the extension of Faroese jurisdiction to 200 miles the amount of fishing by non-Faroese vessels has declined, and access to fishing grounds has been restricted. The amount of fishing by longliners has been increasing and, especially in the latter part of 1977, increased inspection and enforcement activities are likely to have reduced the incidence ofifishing with undersized trawl cod-end meshes. All these changes would be expected to affect the overall exploitation pattern and this has been taken into account in the F values for 1977, which were adopted for input into the VPA in which the values for ages' 2 and 3 were reduced relative to those on the older ages.
3.1.3 Catch predictions_and TACs

In making catch predictions the Group considered that the increase in the minimum trawl codeend mesh size to 135 mm in 1978 would be expected to further affect the exploitation pattern, and accordingly the F values on one- and two-group fish have been reduced. The data used for the catch predictions are given in Table 22. A consequence of the changed exploitation pattern will be that the yield per recruit curve will be different from that given in the report of the 1977 meeting of the Group. The new yield per recruit curve is given in Figure 1, and on this curve the value of $\mathrm{F}_{\mathrm{max}}=0.4$ (on fully exploited age groups). There is some uncertainty about the size of recent year classes and for the catch predictions average recruitment (16×10^{6} at age 2) has been used for the 1974 and subsequent year classes. A number of catch predictions were made for differing rates of reduction in the level of fishing mortality. The resultant yield and corresponding spawning stock biomass estimates are given in Table 23.

It seems unlikely that there was any significant reduction in fishing mortality in 1977 and the recorded catch of 35000 tons (Plateau only) was close to the prediction of 34000 tons given in the previous report of the Working Group. The Group reiterates its advice of last year that fishing mortality on cod should be reduced to the $\mathrm{F}_{\text {max }}$ level. In the long term the main benefit would be from increased catch rates because the yield per recruit would be expected to increase only marginally. Spawning stock size would also be larger at a reduced level of fishing mortality, but there is no indication at present that the spawning stock size is being unduly reduced. Estimates of the spawning stock biomass at the beginning of a year for 1959-1980 are shown in Figure 5.

The TAC for 1979 would depend on the rate at which the reduction in fishing mortality could be achieved. The Working Group recommends a progressive reduction in fishing mortality to reach $\mathrm{F}_{\max }$ in 1980. On this basis the following TACs are proposed:

Recommended TACs for Cod

Year	F	TAC (including Faroe Bank)000 tons for (in tons) 1978$\quad 0.55$
1979	0.45	32000
1980	0.40	27000

This advice follows that given last year with regard to the proposed reduction in fishing mortality。 If the strategy is followed and it is aimed at achieving an $F=0.55$ in 1978, the corresponding updated TAC is now 32000 tons which is 2000 tons greater than that given in the previous report of the Working Group. This difference results from the changed exploitation pattern used in this report.

If this revised TAC is adopted for 1978 the recommended TAC for 1979 would be 27000 tons.

Haddock
Trends_in catch and effort
The provisional catch in 1977 was 25000 tons and this was similar to the catch in 1976. Both catches represent an increase in the catch level over that in the immediately preceding years (Table 2).
The proportion of the total catch taken by different gears have changed considerably in recent years. For example, over the period 1974-77 the proportion taken by long-liners (mainly Faroese vessels) rose from 25% to 69%. During the same period, the proportions taken by trawlers (mainly United Kingdom vessels) declined from 74% to 28% (Table 14).
Catch per unit effort data for the Faroese long-liners have:shown increasing catch rates for the last three years (Table 25).
3.2.2 Virtual population analysis (VPA)

For the VPA input data (Table 18), the 1976 data were revised and provisional data for 1977 added. Age compositions were available for the Faroese, English and Scottish fisheries. The percentage age composition for other countries (France, Federal Republic of Germany, Netherlands and Norway) were assumed to be the same as that for the English and Scottish fisheries combined.

In choosing input values of F, different considerations were employed when dealing with the fully exploited age groups (4 years and older) than when dealing with younger fish.
For the fully exploited age groups, trial VPA runs suggested that the previously employed value of F of 0.6 might now be too high. After further trials, a value of 0.5 was selected as appearing more suitable.
For the younger fish (2 and 3 year old) it is appropriate to choose input values of F that are consistent with stock size estimates predicted on the basis of year class strength expectations. For example, Figure 3 shows the relationship between Scottish research vessel estimates of year class strength (as 1 year old fish) and the VPA estimates based on the numbers subsequently appearing as 3 year old fish in the fishery. Figure 4 shows a similar relationship, but using the VPA estimates of year class strength as 2 year olds. Using these relationships it was estimated that in 1977 the 3 year olds (1974 year class) should number about 30 million fish. Similarly it was estimated that the 2 year olds (1975 year class) should be about 19 million fish. To satisfy these stock estimates, the following F values were calculated:

$$
\begin{aligned}
& \text { F for two year olds in } 1977=0.025 \\
& F \text { for three year olds in } 1977=0.20 .
\end{aligned}
$$

These values are lower than those given in the previous report which is consistent with effects expected from mesh size enforcements in 1977 and increased fishing by long-liners.
Estimates of fishing mortality calculated by VPA are given in Table 19 and calculated stock sizes are given in Table 20.
3.2.3 Current state of stock

Haddock landings in 1976 and 1977 were somewhat larger than they had been in the immediately preceding years and various factors may have contributed to this. These include the appearance of 3 good year classes (1972-1974), a possible decline in F values, and a change in exploitation pattern.
The decline in the trawl fishery and the increase in long-line fishery have presumably led to a change in the exploitation pattern equivalent to an increase in the age at first capture. The effect of this should have been the same as an increase in mesh size.
3.2.4 Catch_predictions_and TACs

In the catch predictions, it has been necessary to take account of the following factors:
(a) the introduction of a 135 mm mesh size from 1 January 1978;
(b) the relative strength of incoming year classes;
(c) management objectives.

The increase in mesh size to 135 mm is expected to change the exploitation pattern by reducing the values of F on the youngest age groups. Estimates of this effect were made using theoretically-derived selection curves and an age/length relationship.
Selection curves were calculated using a selection factor of 3.4 and adopting slopes of 0.12 at the 50% points. An age/length relationship was constructed using $L_{\infty}=83, K=0.15$, and $t_{0}=-1.6$.

It was estimated that with a 135 mm mesh, there should be a negligible catch of 2 year old fish. . For 3 year old fish, the value of F should be about $40-50 \%$ of its previous value. On this basis, the value of F for 3 year olds from 1978 onwards was reduced from 0.2 to 0.1. For the 4 year and older fish, the F values should be unaffected.
The data used for the catch predictions are given in Table 22.
From Scottish research vessel estimates of year class strength, it is expected that both the 1975 and 1976 year classes should be below average. The relationship in Figure 3 was used to calculate the recruitment values of these year classes a 3 year olds in 1978 and 1979. This gave the following values:

For the 1974 year class in 1977: 30 million fish
For the 1975 year class in 1978: 18 million fish
For the 1976 year class in 1979: 12 million fish.
For the prognosis program a value was also needed for the strength of the 1973 year class in 1976. A value of 28 million fish was used which was taken from VPA.

TACs were calculated using two recruitment options. For one option, the estimates of year class strength given above were used. For the other option, an average recruitment value of 26.8 million 3 year olds were adopted for all year classes.
TACs were calculated for two management objectives: to maintain the F values at the 1978 level, and to adopt an F value for the fully exploited age groups equivalent to $\mathrm{F}_{\max }$ on the yield per recruit curve. To determine this, yield per recruit curves were calculated, using the exploitation pattern thought to be appropriate for the 135 mm mesh. From this curve (Figure 2), a value of $\mathrm{F}_{\text {max }}$ equal to 0.55 was determined. This is larger than the value of 0.4 previously obtained using "the pre-1978 exploitation pattern.
A summary of haddock TACs for the four options is given in Table 24. With a mesh size of 135 mm , the value of $\mathrm{F}=0.5$ on the fully exploited age groups is about 10% below the theoretical $F_{\max }$ value of 0.55 . This means that an increase in fishing effort in 1978 and 1979 of up to 10% (compared with the 1977 level) could be considered. In that event, the TAC in 1979 could be 1000 tons higher than it would otherwise have to be (i.e., 24000 tons instead of 23000 tons and 21000 tons compared with 20000 tons).

Summary of Haddock TACS (in metric tons)

Year	F	TAC
1978	0.55	25.000
1979	0.55	21.000
1980	0.55	17.000 (subject to
revision)		

Allowance for the likelihood of poor recruitment causes the TACs to be reduced by 3000 tons for both options. Although estimates of year class strength from research vessel data tend to be uncertain, the data base appears good enough to suggest that both the 1975 and the 1976 year classes are likely to be below average strength. This factor should therefore be taken into account and it is recommended that the TAC for 1979 should be 21000 tons.

In the previous report of the Working Group a TAC of 17000 tons was recommended for 1978. This was calculated taking into account a reduction in fishing effort (or F). In the new calculation the revised exploitation pattern was used and as a consequence it was not necessary to reduce fishing mortality. Thus a revised TAC. for 1978 is 25000 tons.

4. MESH ASSESSMENTS

Although the 1976 and 1977 :length compositionldata for:cod andhaddockiwere at hand at the meeting, the Group was not able in the time available to perform any further mesh assessments. The model used in the mesh assessments last year has now been described by Hoydal (1977). This has explained some things, which did not emerge from last year's Working Group report, especially how assumptions on recruitment curves influence the estimates of effective mesh size in operation. Assumptions about recruitment could be important for cod, but probably not for haddock, although haddcck assessments could be influenced by discarding.
Further, the Group felt, that in a situation with changing fishery pattern and managementmeasures it would be difficult to make any reliable predictions of the long-term effects of any further changes.
The Group considered that increased enforcement by Faroese authorities in 1977 had probably resulted in the real mesh size being much closer to the legal mesh size than in former years.
5. INTERNATIONAL O-GROUP SURVEYS AT FAROES IMK 1978

The French research vessel "Thalassa" and the Faroese "J. Chr。Svabo" will take part in the 0-Group Surveys in Faroe waters this year. It was indicated, that "Thalassa" will be able to spend 11 days for the 0-Group Surveys, expecting to cover about 60 stations in mid-May. It was agreed to select the French stations at random as for the Faroese ones. The French cruise will mainly be aimed at covering 0-group saithe, and some comparative experiments between the 0 -group gear and the Bongo (or stramin) net will be made, in order to try to determine the size range of 0-group saithe
"J. Chr. Svabo" will cover about. 120 stations in late June and early July. The cruise will mainly be aiming at sampling cod and haddock.
6. SHORTCOMINGS AND GAPS IN DATA REQUIRED FOR STOCK ASSESSNENT PURPOSES It has already been mentioned that the uncertainty about future developments in the fishery in the Faroe Area pose problems to the assessment work.
For the data, it was noted that because of the increasing part taken by Faroese vessels, any success in the assessment work will depend on adequate Faroese sampling of age and length data。
The Group had difficulty with the lack of reliable recruitment data, especially for cod. Further 0-Group Surveys are required in order. to assess their value for making recruitment estimates.
Effort data are required from those fisheries for which they are not currently available.
7. REFERENCE

Hoydal, K. 1977. A method of mesh assessment making it possible to check growth parameters and evaluate effective mesh size in operation. ICES, Doc. © 0 Mol977/F:51 (mimeo.).

Tables 1-12. Catches in ICES Division Vb by country and species 1960-1977: Metric tons, round fresh.

Table 1. Cod.

Year	Faroe Islands	France	Germany, Fed.Rep.of	Norway	Poland	UK England	$\begin{gathered} \text { UK } \\ \text { Scotland } \end{gathered}$	Others	Total
1960	8723	-	451	-	-	13476	16300	-	39220
1961	9521	-	417	168	-	3891	12954	-	26951
1962	6751	100	301	505	-	5521	11052	-	24230
1963	7428	720	376	147	-	4558	10875	60	24164
1964	8888	989	1162	333	-	5845	7791	50	25058
1965	9948	1538	854	419	-	5470	7868	180	26277
1966	7957	1120	669	314	-	4871	7855	132	22918
1967	7835	871	845	650	-	7996	8546	63	26806
1968	13763	2519	1180	686	-	7096	8524	-	33768
1969	15718	2557	447	476	-	6.717	12249	-	38164
1970	15245	2616	225	238	-	3707	9790	-	31821
1971	12754	1426	337	881	-	3485	9102	-	27985
. 1972	12143	1462	262	266	-	3019	6483	-	23635
1973	13276	1752	305	115	419	5079	6756	$\overline{6}$	27702
1974	13237	551	292	446	320	3708	8019	60	26633
1975	22986	1409	458	1353	432	3287	8619	145	38689
1976 $_{\text {\% }}$)	28959	1607	247	1283	496	3056	6403	78	42129
1977*)	29042	1271	285	967	-	965	3500	2	36032
Table 2. Haddock.									
1960	7772	-	6	-	-	7298	10943	-	26019
1961	8454	-	22	-	-	2765	9590	-	20831
- 1962	7042	166	18	-	-	3766	16159	-	27151
1963	6336	792	22	-	-	4655	15766	-	27571
1964	6952	1866	32	111	-	3442	7087	-	19490
1965	6673	1939	8	119	-	3385	6355	-	18479
1966	6902	2717	40	-	-	2867	6240	-	18766
1967	5246	1091	30	-	-	2347	4656	11	13381
1968	6751	2286	31	-	-	2445	6339	-	17852
1969	11122	3314	45	-	-	1976	6815	-	23272
1970	11791	2006	6	-	-	1137	6421	-	21361
1971	10488	790	1	-	-	2323	5762	29	19393
1972	8314	2666	25	-	-	1371	4109	-	16485
1973	6018	3508	46	-	1190	2426	4788	-	17976
1974	4811	1451	70	5	685	1617	6072	52	14763
1975	8757	2277	173	56	544	2426	6078	383	20694
$\mathrm{I}_{1976}{ }^{\text {H }}$)	12714	2542	22	20	448	2284	8000	181	26211
$1977{ }^{\text {² }}$	19938	921	41	83	5	911	3500	32	25401

\#) Preliminary estimates.

Table 3. Saithe.

Year	Faroe Islands	France	Germany, Fed.Rep.of	Norway	Poland	$\begin{gathered} \text { UK } \\ \text { England } \end{gathered}$	$\begin{array}{\|c} \hline \text { UK } \\ \text { Scotland } \end{array}$	Others	Total
1960	685	-	2583	-	-	6437	2140	-	11845
1961	929	-	2219	-	-	4230	2214	-	9592
1962	2494	620	985	-	-	3724	2631	-	10454
1963	2431	2207	1471	-	-	3178	3463	-	12750
1964	1338	6458	6294	$+$	-	4329	3309	-	21728
1965	1000	8565	3611	-	-	5. 265	3794	$\bar{\square}$	22235
1966	1167	9967	4772	2498	-	3321	3581	66	25372
1967	2242	5555	6119	-	-	3536	3996	193	21641
1968	2629	424	7532	-	-	5123	4778	-	20486
1969	4835	7899	4775	378	-	4303	5346	-	27536
1970	2694	11036	2249	1495	-	3066	8608		29148
1971	5653	10621	2251	1839	-	3305	7198	63	30930
1972	5646	28346	3613	470	-	2453	6225	-	46753
1973	2973	22241	9087	355	4050	7527	10131	-	56364
1974	3726	19428	6661	1660	1925	3827	8302	630	46159
1975	2517	23630	5229	486	815	2428	4950	171	40226
$\mathrm{1976}^{\text {\# }}$)		15367	2605	2232	1007	3063	5860	371	33065
1977 ${ }^{\text {F }}$	5121	16564	2762	1254		2591	5605	71	33968

Table 4. Whiting.

\#) Preliminary estimates.
a) Includes Iceland grounds (Va).

Table 5. Tusk.

Year	Faroe Islands	France	Germany, Fed.Rep.of	Norway	UK Fngland	UK Scotland	Total
1960	1306	-	32	734	135	1260	3467
1961	1301	-	29	1401	67	1062	3860
1962	1902	-	21	1134	54	1405	4516
1963	2007	-	29	802	28	695	3561
1964	2775	-	137	875	30	799	4616
1965	1645	-	115	1565	32	924	4281
1966	1488	-	87	1221	21	482	3299
1967	2070	-	109	2729	18	432	5358
1968	2798	-	91	2906	23	549	6367
1969	1454	-	21	1338	16	412	3241
1970	1028	-	19	1475	11	515	3048
1971	1489	-	44	1872	13	419	3837
1972	1918	-	139	2421	16	386	4880
1973	3402	-	134	3066	36	531	7169
1974	1541	-	137	1841	22	403	3944
1975	2166	-	154	1848	36	344	4552
1976	2548	-	70	2868	29	496	6011
$\left.1977^{*}\right)$	3060	-	43	1997			

\#) Preliminary estimates.

Table 6. Ling.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year \& Faroe
Islands \& France \& $$
\begin{gathered}
\text { German } \\
\text { Dem.Rep. }
\end{gathered}
$$ \& Germany, Fed.Rep.of \& Norway \& Poland \& $$
\begin{gathered}
\text { UK } \\
\text { England }
\end{gathered}
$$ \& $$
\begin{gathered}
\text { UK } \\
\text { Scotland }
\end{gathered}
$$ \& Total

\hline 1960 \& 520 \& - \& - \& 895 \& 400 \& - \& 629 \& 855 \& 3299

\hline 1961 \& 603 \& - \& - \& 11 \& 521 \& - \& 241 \& 829 \& 2205

\hline 1962 \& 450 \& 387 \& - \& 9 \& 326 \& - \& 247 \& 572 \& 1991

\hline 1963 \& 365 \& 1512 \& - \& 17 \& 496 \& - \& 183 \& 396 \& 2969

\hline 1964 \& 480 \& 2844 \& - \& 48 \& 736 \& - \& 322 \& 632 \& 5062

\hline 1965 \& 416 \& 2618 \& - \& 30 \& 832 \& - \& 184 \& 388 \& 4468

\hline 1966 \& 416 \& 1827 \& - \& 39 \& 2115 \& - \& 276 \& 496 \& 5169

\hline 1967 \& 736 \& 23 \& - \& 60 \& 3203 \& - \& 172 \& 364 \& 4558

\hline 1968 \& 1209 \& 177 \& - \& 68 \& 3340 \& - \& 152 \& 679 \& 5625

\hline 1969 \& 486 \& 195 \& - \& 45 \& 1952 \& - \& 225 \& 602 \& 3505

\hline 1970 \& 699 \& 578 \& - \& 42 \& 1737 \& - \& 164 \& 883 \& 4103

\hline 1971 \& 752 \& 728 \& - \& 46 \& 2898 \& - \& 152 \& 879 \& 5455

\hline 1972 \& 1572 \& 866 \& - \& 74 \& 3958 \& - \& 146 \& 772 \& 7388

\hline 1973 \& 1428 \& 398 \& - \& 167 \& 3638 \& 11 \& 268 \& 850 \& 6760

\hline 1974 \& 1004 \& 296 \& \& 131 \& 2395 \& 4 \& 308 \& 575 \& 4722

\hline 1975 \& 1281 \& 345 \& 1 \& 94 \& 2297 \& 2 \& 231 \& 499 \& 4750

\hline 1976 ${ }^{\text {\% }}$) \& 1
1 500 \& 1
$>$
$>$

231 \& - \& 61 \& 3116
2975 \& - \& 220 \& 579 \& 6546

\hline
\end{tabular}

Table 6a. Blue ling.

- Indicates no catch or species not separated.
\#) Preliminary estimates.

Table 7. Lemon sole.

Year	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	France	UK England	$\begin{gathered} \text { UK } \\ \text { Scotland } \end{gathered}$	Others	Total
1960	-	-	351	1026	-	1377
1961	-	-	156	1009	-	1165
1962	-	-	187	910	-	1097
1963	-	-	142	706	-	848
1964	-	27	112	305	-	444
1965	-	42	110	393	-	545
1966	-	49	99	297	-	445
1967	-	14	104	321	-	439
1968	-	20	84	404	-	508
1969	-	-	77	362	2	441
1970	-	-	68	424	-	492
1971	590	-	76	303	-	969
1972	300	-	35	244	-	$\begin{array}{r}579 \\ \hline 709\end{array}$
1973	1190	-	126	393		1709
1974	607	-	137	503	1	1247
1975	971	-	103	369	1	1444
1976 1977^{*}	813	-	120	312 185	-	1245
Table 8	Plaice.					
1960	64	-	62	209	-	335
1961	83	-	38	194	-	315
1962	26	-	73	164	-	263
1963	4	226	39	130	-	399
1964	11	131	64	99	-	305
1965	6	92	79	143	-	320
1966	1	108	106	161	-	376
1967	7	54	120	172	2	355
1968	102	28	158	170	-	458
1969	192	31	82	181	-	486
1970	288	-	59	205	-	552
1971	143	-	45	173	-	361
1972	130	+	50	111	4	291
1973	139	-	95	134	4	372 291
1974	89	44	43	115	4	291 379
1975	178	2	52	143	4	379
1976 ${ }^{\text {³F }}$)	113	43 16	26	97 121	1	280 354
$1977{ }^{\text {si }}$	183	16	34	121	-	354

\#) Preliminary estimates.

Table 2. Halibut.

Year	Faroe Islands	France	Germany, Fed.Rep.of	Norway	Poland	UK England	UK Scotland	Total
1960	218	-	58	439	-	686	1397	2798
1961	222	-	165	327	-	287	1237	2238
1962	137	-	11	299	-	325	1126	1898
1963	161	-	10	128	-	241	887	1427
1964	174	-	63	110	-	239	792	1378
1965	276	-	35	124	-	292	725	1452
1966	169	-	36	120	-	248	636	1209
1967	245	-	57	180	-	178	749	1409
1968	267	-	64	90	-	130	698	1249
1969	205	-	18	151	-	124	558	1056
1970	296	-	10	182	-	74	514	1076
1971	234	-	14	197	-	92	371	908
1972	212	-	35	155	-	60	256	718
1973	256	-	52	78	5	144	359	894
1974	141	-	54	56	4	105	218	578
1975	162	65	73	75	-	93	207	675
1976	300	-	37	164	-	88	248	837
$1977^{\text {\# }}$			-	24	122			

Table 10. Megrim.

Year	Faroe Islands	France	Germany, Fed.Rep. of	Norway	Poland	Spain	UK England	UK Scotland	Total
1960	-	-	-	-	-	-	9	21	30
1961	-	-	-	-	-	-	8	17	25
1962	-	-	-	-	-	-	6	19	25
1963	-	-	-	-	-	-	5	26	31
1964	-	50	-	-	-	-	5	20	75
1965	-	47	-	-	-	-	5	17	69
1966	-	237	-	-	-	-	5	14	256
1967	-	212	-	-	-	-	1	6	219
1968	-	250	-	-	-	-	3	6	259
1969	-	312	1	-	-	-	3	8	324
1970	-	99	-	-	-	-	1	9	109
1971	-	37	-	-	-	-	2	9	48
1972	-	38	-	-	-	-	3	10	51
1973	-	-	-	-	-	10	4	11	15
1974	-	-	-	-	-	14	4	12	30
1975	-	6	-	-	-	8	32		
1976	-	8	-	-	-	6	3	11	28
$1977^{\# 4}$		$?$	-	-				1	

*) Preliminary estimates.

Table 11. Redfish.

Year	Faroe Islands	France	$\begin{gathered} \text { German } \\ \text { Dem.Rep. } \end{gathered}$	Germany, Fed.Rep.of	Norway	$\begin{gathered} \text { UK } \\ \text { England } \end{gathered}$	$\begin{gathered} \text { UK } \\ \text { Scotland } \end{gathered}$	Total
1960	-	-	-	2295	-	276	60	2631
1961	-	-	-	3577	-	50	38	3665
1962	-	-	-	2237	-	52	49	2338
1963	1	366	-	2035	-	31	60	2493
1964	-	705	-	7119	-	41	43	7908
1965	1	582	-	4864	-	38	27	5512
1966	-	-	-	3180	-	8	40	3228
1967	-	-	-	4853	-	24	22	4899
1968	1	-	-	6613	-	43	10	6667
1969	5	-	-	1225	-	13	15	1258
1970	-	-	-	2020	-	13	20	2053
1971	-	-	-	2479	-	12	12	2503
1972	-	-	-	4027	-	40	13	4080
1973	121	-	-	9439	-	72	13	9645
1974	28	300	1	7328	10	74	24	7765
1975	9	800	1	7628	7	18	23	8486
1976 ${ }^{1977}{ }^{\text {F }}$)	33 54	$1 \overline{0}^{0} 98$	-	5 5 5 5 585	17 10	13	46	5364

Table 12. Angler (Monk).

Year	Faroe Islands	France	Germany, Fed.Rep.of	$\begin{gathered} \text { UK } \\ \text { England } \end{gathered}$	$\begin{gathered} \text { UK } \\ \text { Scotland } \end{gathered}$	Others	Total
1960	-	-	7	314	811	-	1132
1961	-	-	11	167	695	-	- 873
1962	-	-	4	179	641	-	824
1963	-	-	2	160	618	-	780
1964	-	-	3	218	347	-	568
1965	-	-	-	212	326	-	538
1966	-	-	-	164	349	-	513
1967	-	-	-	118	308	-	426
1968	-	-	3	159	335	-	497
1969	1	26	1	175	429	-	632
1970	-	10	-	127	542	-	679
1971	-	-	-	132	532	-	664
1972	535	-	3	99	388	-	490
1973	535	-	6	193	414	-	1148
1974	418	$\bar{\square}$	22	167	413	40	1060
1975	456	19	7	125	347	90	1044
1976 ${ }^{1977}$)	511	123 $?$	5 2	138	360	3	1140

${ }^{\text {r) }}$ Preliminary estimates.

Table 13. Cod (Faroe Plateau). Catches by gear in metric tons

	Longline	Handline	Trawl	Gillnet	Others	Total
1974	2655	3462	14921	3533	24	24595
$\%$	10.8	14.1	60.6	14.4	0.1	100
1975	6011	4600	18523	6954	15	36103
$\%$	16.6	12.7	51.3	19.3	0.1	100
1976	11085	5601	17627	5522	22	39857
$\%$	27.8	14.0	44.2	13.9	0.1	100
1977	11060	4992	14118	4.491	240	34901
$\%$	31.7	14.3	40.4	12.9	0.7	100

Table 14. Faroe Haddock. Catches by gear in metric tons and \%.

	Longline	Handline	Trawl	Gillnet	Others	Total
1974	3685	108	10950	19	1	14763
$\%$	25.0	0.7	74.2	0.1	+	100
1975	6837	147	13569	55	86	20694
$\%$	33.0	0.7	65.6	0.3	0.4	100
1976	11091	228	14851	37	4	26211
$\%$	42.3	0.9	56.7	0.1	+	100
1977	17425	695	7141	61	79	25401
$\%$	68.7	2.7	28.1	0.2	0.3	100

Table 15．Cod（Faroe Plateau）．Catch in numbers by year and by age（thousands）．

AGE	1559	1560	1561	1962	1963	1964
1	272.8	859.0	1223.6	815.0	1181.0	122.0
2	2002．0	47E®0	3093.0	4424.6	4110.0	2033.0
3	$42 こ 5.0$	4027.0	2686.0	2500.9	3958.0	30ご． 0
4	¢5S．0	2574．0	1331.0	1255.0	1280．0	2300．0
5	1731.6	513.0	1066.0	855.0	662.0	630.6
6	200．0	E7E．0	232．0	481.0	284．0	350.0
7	207．	171.0	372.0	93.0	204．0	158.0
8	50.0	131.0	75.0	94.0	43.0	79.0
9	10.0	E．1．0	29．0	ここ．0	30.0	41.0
AGE	1565	1966	1967	1968	1969	1970
1	162.0	53.0	127.0	34.0	E8．0	35.0
2	852.6	1337.0	1605.0	1529.0	875.0	402.0
3	32こ0．0	976．0	2690． 0	33こ2．0	31060	1163.0
4	2564．0	208か． 0	EEO．0	26E3．0	3300.0	2172．0
5	1416.0	1359.0	170E．0	945.0	1538.0	1685.0
6	363.0	606．0	847．0	1226.0	477.0	752.0
7	155.0	137.	303.6	452.0	713.0	244.0
8	48.0	104.6	64.0	105.0	203.0	30.0
9	E3．0	33.0	27．0	11.0	92．69	44.6
AGE	1971	1972	1973	1974	1975	1976
1	75.0	44.0	211.9	284．0	92.0	13.0
2	328．0	875.0	719.6	2460.0	3248．0	1552．0
3	757.6	1176.0	3111.0	1538.0	4600．0	6092.8
4	\＆21．6	$8: 0.0$	1586.0	2036.0	18こ1．0	4310.0
5	1287．${ }^{\text {c }}$	536.0	705.0	1035.0	2518．0	1227.0
6	1451．0	1021.0	384．E1	477.0	790.0	842.6
7	510.0	556.0	312.6	250.0	233．	317.0
8	114.0	154.0	227.0	207.0	174.0	103.0
9	179.0	25.0	121.0	125.0	92.0	70.0
AGE	1977					
1	38.6					
2	553.6					
3	2624．0					
4	3439.0					
5	1953.0					
6	713.0			．		
7	8.47 .0					
8	24．4．0					
9	E3．0					

Table 16. Cod (Faroe Plateau). Estimates of fishing mortalities by year and by age and assumed values for 1977.

AGES-NATURAL MORTALITIES

$$
\begin{array}{rrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 \\
.20
\end{array}
$$

Table 17．Cod（Faroe Plateau）．Estimates of stock in numbers at beginning of year（thousands）．

AGE	1959	1960	1961	1962	1963	1964
1	17556.5	15478.0	264．48．9	25393.3	27697．1	10039.1
2	13148.8	14128.4	11897.1	20550.7	20054.5	21619.5
3	12094.0	8962.4	7320.5	6962． 1	12547．0	1272 ．3
4	2E16． 3	6094． 9	3740.2	3594.2	3460.3	5967.2
5		1373.2	2688．5	1869.7	18.18 .8	1685.7
E	6．8．5．4	1752．E	E．E4． 9	1247.2	76T．	¢95．5
7	520.5	381.7	653.7	336.4	596．6	373.7
8	26E．2	248.9	159.7	204.4	191.9	300.7
9	27.8	169.6	80.6	61.2	ES． 4	114.4
AGE	1965	1966	1967	1968	1969	1974
1	222c4．8	27914．5	21019.8	9837.7	8632.9	13876.6
2	8109.2	18049.8	228.6 .6	17094.8	8023.7	7006.6
3	15860.0	5871.2	13571.9	17221．0	12617．2	5777.8
4	7760.8	10073.6	3933.6	8631．6	11110.3	7533.0
5	3642．9	4096.1	6381.6	2447．2	4726.8	6134.8
6	816.8	1714.3	2079.4	S692． 5	1157.7	2490.8
7	415.9	344.4	860.6	544．8	1924．0	521.2
δ	164.7	＜05．0	106.8	4ご． 7	374．1	936.7
9	175.2	51.8	75.1	30.6	255.9	122.4
AGE	1971	1972	1973	1974	1975	1976
1	25020.7	14589.7	30175.3	33378．9	16729．6	11821.0
2	11324.7	20414.8	11905.3	24514.9	27671.8	13613.4
3	5373.8	8975.7	15924.4	9038． 5	17853.2	19237.4
4	SE84． 2	3717．8	6289．2	10238.8	6664.6	10484.5
5	4222.7	こご78．2	2315．5	3724.1	6551.2	3331.2
6	3509.6	2302．5	1323.9	1263.2	2119.7	3286.6
7	1364.5	1575.7	972．8	744.1	607.1	1028.6
$\stackrel{4}{4}$	298．9	660.4	756.4	516.6	385.1	288.5
9	497．8	E． 5.5	402.3	415.6	237.8	159.9
AGE	1977		－			
1	41946.9					
2	9666．5					
3	9746.9					
4	10365.9					
5	4728.8					
6	1628．4					
7	1554.4					
8	557.3					
9	143.9					

Table 18．Faroe Haddock．Catch in numbers by year and by age（thousands）．

AGE	1958	1959	1960	1961	1962	1963
1	116	525	8.54	341	784	356
2	6255	3971	6061	7932	9631	1355
3	8021	7663	10659	7330	13977	8907
4	5679	4544	EES5	5134	$5 こ ろ 3$	7403
5	3378	2056	2482	1937	2361	2242
6	1299	1844	1559	1305	1407	1539
7	817	721	1169	838	868	860
8	294	236	こ43	236	270	257
9	125	38	8.5	59	72	75
AGE	1964	1965	1966	1967	1968	1969
1	46	39	90	76	49	95
2	2284	13 EL	1081	1425	58.81	2384
3	7457	4286	3384	2405	4 －97	7539
4	3899	5133	48.04	2599	2812	4567
5	2360	1443	2710	1785	1524	1565
6	1120	1209	1112	1425	1526	1485
7	フこを	6.73	740	6S1	923	1224
8	198	1345	180	197	230	378
9	49	43	54	52	68	114
AGE	1970	1971	1972	1973	1974	1975
1	57	55	43	6E3	253	94
2	1728	717	750	3639	7446	7493
3	4855	4393	3744	7944	2562	8060
4	6581	4727	4179	1175	3324	2056
5	16.24	3267	2706	2635	400	1363
6	1383	1232	1171	871	799	237
7	1499	$8 \in 4$	696	969	489	347
8	326	222	180	139	534	234
9	68	147	113	E6	67	359
AGE	1976	1977				
1	40					
2	4671	42E				
3	8013	5080				
4	6627	5651				
5	1207	4191				
6	1131	1039				
7	298	765				
8	E60	284				
9	249	229				

Table 19. Faroe Haddock. Estimates of fishing mortalities by year and by age and assumed values for 1977.

AGE		1958	1959	1960	1961	1962	1963	1964	1965	1966	1967
1		.00	.01	. 02	. 02	. 02	. 01	.00	. 00	. 0	. 08
2		. 19	. 11	. 21	. 19	. 33	. 38	. 09	.07	. 06	. 07
3		. 44	. 39	. 46	. 42	. 59	. 57	. 38	. 24	. 24	. 28
4		. 57	. 48	. 69	. 43	. 61	. 74	. 53	. 48	. 46	. 31
5		. 54	. 42	. 53	. 44	. 35	. 57	. 55	. 38	. 51	. 31
6		. 65	. 65	. 66	. 60	. 67	. 41	. 64	. 62	. 56	. 56
7		. 98	. 98	1.22	. 95	1.08	1.22	. 35	1.05	1.81	. 73
8		. 86	. 89	1.14	. 90	. 97	1.21	1.13	2.49	. 94	. 84
9		. 80	. 80	1.60	1.00	. 80	. 80	. 80	. 80	. 80	. 80
MEAN	F	FOR	AGES :=	4 AND	$<=6$	(WEIGH	ED EY	STOCK	IN N	ERS	
		. 59	. 52	. 68	. 48	. 56	. 67	. 52	. 50	. 52	. 37
AGE		1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
1		.00	. 00	.80	.00	.00	.01	.01	.00	.00	.00
2		. 15	. 09	. 07	. 06	.03	. 19	. 17	. 22	. 13	.03
3		. 28	. 29	. 28	. 26	. 55	. 49	. 25	. 29	. 38	.20
4		.37	. 57	. 45	. 48	. 42	. 33	. 39	. 32	. 41	. 50
5		. 30	. 36	. 41	. 43	. 56	. 51	. 18	. 28	. 32	. 50
6		. 48	. 53	. 63	. 67	. 27	. 35	. 28	. 15	. 39	. 50
7		. 89	. 93	. 99	1.09	. 97	. 37	. 34	. 19	. 29	. 50
8		. 65	1.25	. 69	. 55	. 69	. 51	. 36	. 27	. 66	. 50
9		.80	. 80	. 80	. 80	. 60	. 60	. 50	. 50	.50	. 50
MEAN F		FOR AGES $3=$		$\begin{gathered} 4 \text { AND < }=6 \\ .50 \quad .51 \end{gathered}$		(HEIGHTED EY .45 .41		$\begin{gathered} \text { STOCK } \\ .34 \end{gathered}$	IN HUMBERS)$.27 \quad .39$		
		. 41	. 55			. 50					

AgES-NATURAL MORTALITIES

1	2	3	4	5	6	7	8
.20	.20	.20	.20	.20	.20	.20	.20

Table 20．Faroe Haddock．Estimates of stock in numbers at beginning of year （thousands）．

AGE	1958	1959	1960	1961	1962	1963
1	52449.7	43612.9	62616.8	47482.0	57937.6	36269.7
2	38834.8	4こ837．4	35233：5	50495.4	38025．1	46727．1
3	24678．6	26162．9	31492.0	23390.8	34199.1	22479.2
4	14210.3	13012.4	14542.6	16228.3	12575.1	15497.0
5	8824.3	6552.4	6551．8	5962．7	8681.5	5616.0
6	2951.5	4200.4	3520.5	3166.0	3144.6	4987.3
7	1419.6	1255.8	1791.5	1489.3	1424.7	1317.9
8	555.5	435.2	387.6	431.4	473.8	396.5
9	247.6	193.4	146.5	101.7	143.0	147.7
AGE	1964	1965	1966	1967	1968	1969
1	26945.4	23681.5	29667．1	56322.8	36080.5	34118.5
2	29373．4	22020.0	19353.2	24208．4	46050.3	29496.1
3	26092．6	21588.7	16794.3	14869.7	18534.4	32403.3
4	10433.1	146E8． 5	14147.0	10777.9	10908.8	11431.0
5	6080．6	5058.8	7409.6	7276.0	6488．6	5669.8
6	2591．5	ご®EE． 0	2846.3	36.39 .0	4353.1	3542.3
7	2702.2	1120.8	1265.9	1330.3	1702.9	2196.7
8	317.6	1558.8	320.5	379.1	525.4	572.9
9	97.1	84.0	105.8	102.4	134.7	225.2
AGE	1978	1971	1972	1973	1974	1975
1	15461.9	34444.8	23242.8	63110.6	52083.1	52353.7
2	27848.3	12607.9	28151．3	18991.1	51071.8	42413.5
3	21999.3	21241．0	9675.2	22371．1	12812.2	35107.4
4	19752.6	13645.7	13439.5	4569.8	11198.1	8184.9
5	5321.2	10271.9	E935．7	7254.0	2685．8	6185.1
6	3236.3	2893．4	5479.3	3256.0	3578.7	1838.7
7	1898.0	1413.8	1219.3	3433.3	1883.5	2211.6
8	709.6	577.5	351.1	379.7	1941.0	1192.8
9	134.5	290.1	273.8	159.8	186.3	1199.6
AGE	1976	1977				
1	23286.0	118.4				
2	42783.6	13028.8				
3	27980．8	30817.8				
4	21497.7	15715.5				
5	4853.9	11655.2				
6	3838.3	2889.5				
7	1291.9	2127．5				
8	1498.2	789.8				
9	6S2．5	636.9				

Table 21. Faroe Plateau Cod and Faroe Haddock.
Estimates of year class strength as millions of 2-year-old fish from VPA. Natural mortality $M=0.2$.

Year class	cod	Haddock
1955	-	35
1956	-	39
1957	13	43
1958	14	35.2
1959	12	51
1960	20	38.0
1961	20	47
1962	22	29
1963	8	22
1964	18	19
1965	23	24
1966	17	46
1967	8	29
1968	7	27
1969	11	12.6
1970	20	28
1971	12	19
1972	25	$(519$
1973	27	42
1974	14	33
1975	10	19

Table 22. Input data for the prognosis.
Cod. ICES Sub-Division Vbl.
Haddock. ICES Division Vb.

Age	Average weight (kg)	Relative $F{ }^{F}$	Stock 1978 $\times 10-3$
2	1.06	0.077	16000
3	1.89	0.54	13040
4	2.92	0.69	7516
5	4.07	0.92	5434
6	5.30	1	2134
7	6.58	1	696
8	7.85	1	827
9	9.08	1	238
$10+$	10.27	1	62

Average weight (kg)	Relative $F^{3 \pi}$	Stock 1978 $\times 10^{-3}$
-	-	
0.73	0.2	26800
1.13	1	19854
1.55	1	9859
1.97	1	5787
2.41	1	1434
2.76	1	1057
3.07	1	392
$3.55+$	1	316

${ }^{\text {F }}$) Proportion of F relative to F on age groups subject to maximum exploitation.

Recruitment (at age 2)
Recruitment of 16×10^{-6} assumed for For assumptions on recruitment, year classes after 1974.

Table 23 . Catch and spawning biomass predictions.
Natural mortality $=0.2$.

Faroe cod

Year	F	Yield*)	Spawning biomass
1 run			
1978	0.65	34000	68000
1979	0.55	28000	62000
1980	0.45	24000	62.000
2 run			
1978	0.55	30000	68000
1979	0.45	25000	66000
1980	0.40	24000	71000
3 run			
1978	0.55	30000	68000
1979	0.55	29000	66000
1980	0.40	25000	65000

¥) Not including Faroe Bank. For input values, see Table 22.

Table 24. Catch and spawning biomass predictions. Natural mortality $=0.2$.

Faroe haddock

Year	F	Yield	Spawning biomass	
1 run				
1978	0.5	22000	77000	
1979	0.5	23000	78000	
1980	0.5	23000	79000	Constant recruitment
2 mun				
1978	0.5	24000	77000	
1979	0.55	24000	76000	
1980	0.55	24000	76000	
3 run				
1978	0.5	23000	74000	
1979	0.5	20000	62000	
1980	0.5	17000	63000	Varying recruitment
4 run				
1978	0.5	25000	74000	
1979	0.55	21000	60000	
1980	0.55	17000	60000	

For input values, see Table 22.

Table 25. Catch per unit effort by Faroes long-liners, 1975-77 (kg/l 000 hooks).

Months	Cod			Haddock		
	1975	1976	1977	1975	1976	1977
1	122	141	143	140	129	145
2	120	136	123	131	120	137
3	99	165	80	94	61	46
4	82	113	71	108	115	106
5	37	55	56	34	81	103
6	9	33	19	30	68	52
7	11	37	14	37	30	55
8	14	14	17	59	34	153
10	28	39	29	61	100	230
11	72	114	65	138	145	197
12	112	134	108	110	118	165
	131	137	116	90	134	168

Figure 1. Faroe Plateau Cod.
Yield per recruit and spawning stock biomass per recruit against fishing mortality on fully exploited age groups. Recruitment at age 2.

Fishing mortality on fully exploited age groups

Figure 2. Faroe Haddock.

Yield per recruit and spawning stock biomass per recruit against fishing mortality on fully exploited age groups.
Recruitment at age 3 .

