* International Council for the Exploration of the Sea
C.M.1978/G:5

Demersal Fish Committee

Digitalization sponsored by Thünen-Institut

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the council should be strictly observed.
x) General Secretary, ICES, Charlottenlund Slot, DK-2920 Charlottenlund Denmark.
https://doi.org/10.17895/ices.pub. 9404

CONTENTS

Page

1. PARTICIPANTS 1
2. TERMS OF REFERENCE 1
3. STATUS OF THE FISHERIES 1
3.1 Cod 1
3.2 Haddock 2
4. VIRTUAL POPULATION ANALYSIS (VPA) 2
4.1 Age Compositions 2
4.2 Natural Mortality 2
4.3 Fishing Mortality in 1977 3
5. STATE OF THE STOCKS 3
5.1 Fishing Mortality 3
5.2 Recruitment 3
5.2.1 Cod 3
5.2.2 Haddock 3
5.3 Spawning Stock Biomass 4
6. YIELD PER RECRUIT 4
7. CATCH PREDICTIONS AND TOTAL ALLOWABLE CATCHES (TACs) 4
7.1 Cod 4
7.2 Haddock 5
8. MIDWATER TRAWL 6
9. MESH ASSESSMENT 7
10. TIMING OF THE WORKING GROUP MEETINGS 8
11. SHORTCOMINGS AND GAPS IN DATA REQUIRED FOR STOCK ASSESSNENT PURPOSES 8
11.1 Nominal Catches 8
11.2 Age and Length Compositions 8
11.3 Discards 8
11.4 Fecundity 8
12. REFERENCES 9
TABLES 1-24 10
FIGURES 1 and 2 32

$$
-0-0-0-
$$

1. PARTICIPANTS

A Hylen (Chairman)	Norway
J Janusz	Poland
B W Jones	U.K. (England)
A I Mukhin	USSR
V P Ponomarenko	USSR
C J Rørvik	Norway
H Schultz	German Democratic Republic
A Schumacher	Germany, Federal Republic of
G Speiser	Germany, Federal Republic of
M Volodarsky	USSR

V M Nikolaev (ICES Statistician) also participated in the meeting.
2. TERMS OF REFERENCE

At the 1977 Statutory Meeting of ICES it was decided (C.Res.1977/2:21) that:
"the North-East Arctic Fisheries Working Group shouid
meet at Charlottenlund 6-10 March 1978 to:
(a) assess TACs for 1979 for cod and haddock,
(b) examine any new data from midwater trawl
fisheries and study the effect on the exploitation of these species,
(c) assess, if possible, the effective mesh size in use, and report on the effects of increases in mesh size,
(d) identify and specify in detail shortcomings and gaps in data required for stock assessment work,
(e) review and update the "Review of Fish Resources" given in the Appendix to the 1977 Working Group Report"。
3. STATUS OF THE FISHERIES
3.1 Cod (Tables l-4)

The preliminary figure for the total catch in 1976 was 859153 tons, which was close to the final figure of 867463 tons. The final figure for the landings from Sub-area I was 12439 tons lower than the preliminary figure. For Division IIb, there was only a minor change. For Division IIa, however, the final figure was 20866 tons higher than the preliminary one.
The 1977 fishery was limited by the same Total Allowable Catch (TAC) as in 1976. For both years, the annual TAC was 810000 tons for NorthEast Arctic cod. In addition, Norway and USSR could add 40000 tons to their quota. This covered their catch of Norwegian coastal cod and Murman cod, respectively. As was the case last year, the Norwegian coastal cod was treated as an independent unit for management purposes. The USSR landings of Murman cod were included in the assessment for North-East Arctic cod. The TAC for the present management unit was 850000 tons in both 1976 and 1977. This total TAC was exceeded by 17463 tons in 1976. The preliminary catch figure for 1977 is 34459 tons above the TAC.

Total landings are given in Table 1 for Sub－area I and Divisions IIa and IIb．Totals for each country are given in Table 2．The landings in 1977，compared with 1976，decreased by 3% in Sub－area I，while in Divisions IIa and IIb the landings increased by 2% and 27% ，respectively．
Comparing the catch per unit effort（c．pou。e。）in 1976 and 1977（Table 4）， there has been a decrease in Sub－area I and Division IIb both for the United Kingdom and USSR trawlers，while there has been an increase in c．p．u．e．for United Kingdom trawlers and Norwegian gill－net boats in Division IIa．
The estimated total international effort in Sub－area I increased by 19% ， taking the average change measured by United Kingdom and USSR units （Table 3）．In Division IIb，the estimated total international effort increased by 64% ，although the estimate in USSR units may be affected by low catch rates，because most of the catch was taken as by－catch in the redfish fishery．In Division IIa，the estimated total international effort decreased by 23% ，taking the average change measured by United Kingdom and Norwegian units（Table 3）．
Thus，the increase in the catches in Division IIb of 27% resulted from an increased effort in this area．However，the catch per unit effort data（Table 4）suggest a decrease from 1976 to 1977 in the recruited stock biomass available to the fishery in Sub－area I and Division IIb， while an increase is observed in Division IIa in the same period．The most abundant year class in the catches in 1977 in Sub－area I and Division IIb was the 1973 year class．The 1970 year class was the most abundant one in Division IIa。

3.2 Haddock（Tables 5－7）

The final catch figure for 1976 was 137279 tons（Table 5）， 6305 tons below the preliminary figure in the 1977 report．
The Total Allowable Catch（TAC）in 1977 for North－East Arctic haddock was 110000 tons．The preliminary figure for the total landings in 1977 is 101977 tons，about 8000 tons below the TAC．
There was a progressive decrease in the landings from Sub－area I from 1973 （283 728 tons）to 1977 （ 66946 tons）．For Division IIa，there was a decline since 1974，while the rather small catches in Division IIb showed an increase from 1976 to 1977 （Table 5）．
The total catches，however，were decreasing continuously from the high catch of 320065 tons in 1973 to 101977 tons in 1977．This decrease was mainly caused by the reducing abundance of the very rich 1969 year class and the lower abundance of subsequent year classes．The available catch per unit effort data（Table 7）show a decrease in all areas from 1974，and a relative decrease is the greatest from 1976 to 1977.

4．VIRTUAL POPULATION ANALYSIS（VPA）
4．1 Age Compositions（Tables $8+13$ ）
Age compositions of catches in 1976 were updated and new preliminary data were available for catches in 1977．Although the revised age com－ position data for cod landings in 1976 were little changed from the preliminary data presented to last year＇s meeting of the Working Group， the revised haddock data differed substantially from the preliminary data．

4．2 Natural Mortality
Assessments were made using values for the coefficient of natural mortality $M=0.3$ and 0.2 for cod and $M=0.2$ for haddock．
4.3 Fishing Mortality in 1977

At the 1977 meeting, the Working Group considered that after a period of instability, the exploitation pattern on cod had reverted to something similar to that in earlier years. Therefore, the exploitation pattern used at the 1977 meeting was based on the average of the years 1970-74. This exploitation pattern was maintained unchanged this year for the VPA input fishing mortality values for 1977. The level of fishing mortality was taken as $\mathrm{F}=0.55$ for $\mathrm{M}=0.3$ and $\mathrm{F}=0.65$ for $\mathrm{M}=0.2$ on age:; groups subject to maximum exploitation. Recruitment estimates from prerecruit surveys can also provide some check on the suitability of the input F values used for partially recruited age groups. The adopted input F values gave estimates of stock size which were reasonably consistent with the pre-recruit survey year class strength estimates. A further check was made with a cohort analysis by length, using the average length composition for the period 1975-77. The results from this method are much less dependent on the starting F value, the estimated average F value for the fully exploited length range was $0.54(M=0.3)$ and $F=0.64$ ($M=0.2$) .

For haddock, a procedure similar to that for cod was adopted. The exploitation pattern was unchanged from last year and $F=0.55$ was used for age groups subject to maximum exploitation.
The calculated estimates of F for the earlier years resulting from the Virtual Population Analysis are given in Tables 9, 11 and 14, and stock size estimates in Tables 10,12 and 15.
5. STATE OF THE STOCKS
5.1 Fishing Mortality

The changes in the exploitation pattern for 1976-77 compared with the earlier years make it difficult to make comparisons of changes in the overall fishing mortality over the last few years. However, there appears to have been no major change in the level of fishing mortality in 1977. For haddock, the average level of fishing mortality on age groups 7-12 appears to oscillate from year to year.

5.2 Recruitment

Abundance estimates of pre-recruit year classes are available from International 0-Group Surveys and USSR young fish surveys (Tables 16 and 17). Estimates of absolute year class strength calculated by VPA are given in Tables 18 and 19.

5.2.1 Cod

The most recent assessment indicates that the 1973 year class is an abundant one and that it might be about 19% less abundant than the outstanding 1970 year class. Assessments indicate that the 1974 year class is far below average. In the 0-Group Survey the 1975 year class was rich, and data from the most recent USSR survey support this. Abundance indices from the O-Group Survey and the USSR young fish survey indicate that the 1976 year class is poor. In the 0-Group Survey the 1977 year class appears to be average, while the USSR young fish survey indicates a poor one. Estimates of absolute year class strength used in catch prediction calculations are given in Table 18。

5.2.2 Haddock

The most recent assessment indicates that the 1973 year class is a poor one and that the 1974 year class is about average. Both the 0-Group Survey and the most recent USSR young fish survey indicate that the 1975 year class is an abundant one. It may be near to the same strength
as the 1969 year class which was an outstanding one. The following 1976 and 1977 year classes were recorded to be rich in the O-Group Surveys, but this has not been confirmed in the most recent USSR young fish surveys. Estimates of absolute year class strength used in the catch prediction calculations are given in Table 19.
5.3 Spawning Stock Biomass

Spawning stock biomass was estimated by using stock numbers in each year, as calculated by VPA, and weight-at-age data given in Table 20. The mature stock has been taken as 8 years and older for cod and 6 years and older for haddock, and the spawning stock biomass estimates relate to the biomass of the adult stock at the beginning of each year. Estimates of the spawning stock biomass for cod are given in Table 18, and in Table 19 for haddock.

For cod, the spawning stock biomass reached a very low level in 1974-76. Due to improved recruitment to the adult stock from the 1969 year class, the spawning stock started to increase in 1977。 It is expected to improve further in 1978 when the rich 1970 year class reach maturity. It is expected to reach 700- 800000 tons in 1979 under the TAC scheme of 850000 tons in 1978. If the catches in 1979 do not exceed 850000 ton of cod, the adult stock is expected to recover to over 1000000 tons.
The spawning stock of haddock was at a level of about 100000 tons in 1973-74. An increase was observed in 1975 and 1976 due to improved recruitment from the very rich 1969 and the average 1970 year classes. As later year classes are less abundant, the spawning stock is expected to decrease up to 1979 when the declining trend should be reversed.
6. YIELD PER RECRUIT (Figures 1 and 2)

Last year, the yield per recruit curves were estimated for cod and haddock using the exploitation pattern and weight-at-age data given in Table 20. From the curves for cod, $\mathrm{F}_{\max }=0.3(\mathrm{M}=0.2)$ and 0.6. $(\mathrm{M}=0.3)$. The values for the fishing mortality corresponding to $\mathrm{F}_{0.1}$ were estimated to be 0.26 ($M=0.30$) and $0.15(M=0.20)$. For haddock, $\mathrm{F}_{\max }=0.3$ and $\mathrm{F}_{0.7}$ was estimated to be.0.15. All F values refer to age groups subject.to maximum exploitation.
7. GATCH PREDICTIONS AND TOTAL ALLOWABLE CATCHES (TACS)

Data used in calculating predicted catches are given in Table 20. Estimates of stock sizes in 1978 were derived from stock size estimates and fishing mortality rates in 1977. TACs for cod and haddock for 1978 are 850000 tons and 150000 tons, and for the calculation of catches for 1979 it has been assumed that the 1978 TACs would be taken in full. To do this with the present exploitation pattern would require fishing mortality rates in 1978 on age groups subject to maximum exploitation of $F=0.45$ ($M=0.3$) or $F=0.51$. $(M=0.2)$ for cod and $F=0.55$ for haddock.
7.1 Cod (Table 21)

In making a recommendation for a TAC for cod for 1979, the Group had to consider the need to allow the spawning stock to increase to, and be maintained at, a reasonable level as well as the most appropriate level of fishing mortality to maximise yield per recruit or optimize catch rates. The spawning stock size estimated for the beginning of 1978 is 813000 tons for $M=0.3$ and 699000 tons for $M=0.2$, which is less than had been anticipated in the previous report of the Working Group (1.122 or 1.047 million tons), but for the range of F values considered for 1979 and 1980, the spawning stock is expected to increase in size and should exceed 1 million tons by the beginning of 1980. To fish at $F_{0.1}$ in 1979 would involve a substantial reduction in fishing mortality compared with the expected level in 1978 and a consequent reduction in catch.

For $M=0.3$, if fishing mortality was allowed to increase to $F_{\max }=0.6$, larger catches would be taken, but in the long term the average spawning stock size would be expected to decline below 1 million tons. At an intermediate value of $F=0.4$, the expected catch in 1979 would be 822000 tons and if this level of F was maintained into 1980, the expected catch would increase to 897000 tons. Thus, an average catch for these two years would be close to the present TAC of 850000 tons. The Group therefore examined the effects in terms of fishing mortality rates and resulting spawning stock biomass of maintaining the TAC at the 1978 level for 1979 and 1980.
This strategy would result in a progressive reduction in fishing mortality from $F_{0}=0.55$ in 1977 to 0.45 in 1978, 0.42 in 1979 and 0.38 in $1980(\mathrm{M}=0.3)$. The 1979-80 levels of F would be about midway between the $\mathrm{F}_{0.1}$ and $\mathrm{F}_{\max }$ values on the yield per recruit curve.
For $M=0.2$, maintaining the 1978 TAC through 1979 and 1980, the sequence of fishing mortality rates in 1977-80 would be $0.65,0.51,0.44$, and 0.37 . Although the F levels in $1979-80$ would . still be above the $F_{\max }$ level, this strategy would result in a progressive reduction in fishing mortality towards $F_{\text {max }}$.
The spawning stock biomass with this strategy would be expected to increase up to the beginning of 1981, at least. This strategy is summarised in the table below:

1979 F on age groups subject to maximum exploitation

$$
0.42
$$

Catch (thousands of tons)
Spawning stock at beginning of year (thousands of tons)
$M=0.3$

$$
M=0.2
$$

$$
0.44
$$

850

1980 F on age groups subject to maximum exploitation
0.38
0.37

Catch (thousands of tons)
Spawning stock at beginning of year (thousands of tons)

1291
1305
1981 Spawning stock at beginning of year (thousands of tons)

1816
2056

The Working Group recommends that the TAC for North-East Arctic Cod for 1979 should be set at 850000 tons.
The recommendation for 1980 would, however, depend on catches actually taken in 1978 and 1979.

7.2 Haddock (Table 22)

For haddock, in addition to the management considerations mentioned for cod, the Group also had to take into account the effects on haddock as a by-catch species of fishing effort levels which are likely to prevail when fishing for the TAC recommended for cod. To take the TAC of 150000 tons, the fishing mortality rate in 1978 on the age group subject to maximum exploitation would be $F=0.55$ (i。e., at the same level as in 1977). The spawning stock biomass had been declining but this trend is expected to be reversed in 1979 when more abundant year classes recruit
to the spawning stock. With the present exploitation pattern the yield per recruit curve has a maximum value at $F=0.3$; thus, the present. level of fishing mortality is in excess of this value. In order to reduce fishing mortality on haddock towards the $\mathrm{F}_{\max }$ level and bearing in mind the expected reduction in fishing mortality required to take the recomended TAC for cod, the Working Group considers that a reduction in fishing mortality in 1979 to $F=0.45$ would be appropriate. This would be expected to yield a catch of 170000 tons as indicated in the summary table below.

1978 F on age group subject to maximum exploitation 0.55
Catch (thousands of tons) 150

Spawning stock at beginning of year (thousands of tons) 147

1979 F on age group subject to maximum exploitation 0.45

Catch (thousands of tons) 170
Spawning stock at beginning of year (thousands of tons) 133
$\begin{array}{ll}1980 & \begin{array}{l}\text { Spawning stock at beginning } \\ \text { of year (thousands of tons) }\end{array}\end{array}$

The Working Group therefore recommends that the TAC for North-East Arctic Haddock for 1979 should be 170000 tons.

8. MIDWATER TRAWL

It was reported to the Working Group that in the fishery for cod in the North-East Arctic, vessels from the German Democratic Republic, the United Kingdom and USSR are using midwater trawls occasionally, but the quantities taken by this gear are comparatively small. Norwegian vessels may use midwater trawls outside the 12 -mile zone of Norway but the catches taken by this gear cannot be quantified at present.
Vessels of the Federal Republic of Germany have used midwater trawls in the North-East Arctic since 1974, mainly in Sub-area I and Division IIb. Catches of this fishery in comparison to the total Federal Republic of Germany and the total international fisheries are given in Table 23. The proportion of the midwater trawl catches of cod in the Federal Republic of Germany fishery showed an increasing trend since 1975, while the midwater trawl component compared to the total catch of cod in the North-East Arctic was of about 1 to 2% in this period.
From the fishery in 1977, length and age composition data for both bottom- and midwater trawl catches were available to the Working Group. The mean length and age data compared to the data from all fisheries are given in Table 24. These data indicate that there are significant differences in the length and age composition of catches from different gears in the Federal Republic of Germany landings of cod. However, compared to the total catch from the North-East Arctic, the difference is comparatively small and the average length of midwater trawl catches in Sub-area I, Division IIb and in the combined average for all areas is still higher than in the total catches. Only in Division IIa is the mean length of midwater trawl catches significantly smaller than in the total international landings, but this is the region in which the midwater trawl component is the smallest, only

809 tons representing 29.3% of the Federal Republic of Germany catches and 0.34% of the total catch of cod in Division IIa in 1977.

The average age in the midwater trawl catches of cod is lower than in the bottom trawl catches of the Federal Republic of Germany fishery and except Sub-area I also lower than in the total catches. This supports the results of selection experiments with midwater and bottom trawls indicating that the average length per age group is higher in midwater catches than of those taken at the bottom. A similar observation, i.e. that faster growing fish of the same year class tend to stay in the midwater and slower growing fish at the bottom, was also made in the haddock catches from these experiments (Annales Biologiques, 1975, 32:81)。
In the catches of haddock which are mainly taken as by-catch in the cod fishery, the average length and the average age of midwater trawl catches is also smaller than in the bottom trawl catches of the Federal Republic of Germany fishery. However, compared to the total haddock catch in all areas, the average values in the midwater trawl catches are higher.

The data of the Federal Republic of Germany fishery in 1977 show that there are differences in the length and age composition of catches taken by different gears. in the Federal Republic of Germany fishery, but the length and age composition of midwater trawl catches are still within the range of the total international fishery.
One sample available from the German Democratic Republic fishery for cod in Division IIb in September 1977 shows an opposite result. The mean length in the midwater trawl catch was 82.3 cm compared to 70.7 cm from the bottom trawl fishery at the same time in the same area, the average age was 6.9 and 6.1 years, respectively. This result is similar to the results obtained by Bohl in selectivity experiments (Doc.C.M.1975/B:24).

All these results indicate that the effect of midwater trawls on the . stock might differ depending on the time and area distribution of the fishery. A more full analysis of the effect of midwater trawling on the stock in the North-East Arctic might become obtainable when the fishery with midwater trawls can be incorporated as a separate fishery in the model to assess the effective mesh size in use (see. Section 9 of this report).
9. MESH ASSESSMENT

The 1977 report of this Working Group stated the intention to assess the effective mesh sizes in use in the trawl fisheries for North-East Arctic cod and haddock. The method was developed by Mr K P Andersen of the Danish Institute for Fisheries and Marine Research, and it is based on the length composition of the catches.

Mr Hylen and Mr Rørvik have worked with this method since the 1977 meeting of the Working Group, and they met with Mr K P Andersen in January this year. A preliminary mesh assessment for North-East Arctic cod was presented to the members of the Working Group together with the data base, an outline of the theory, and a listing of the computer programme used.

The results were discussed, and it was agreed that the method looked promising. The data base,however, needed updating. Some of the input parameters needed to be revised. Moreover, the reliability of the best estimates should be evaluated by some sort of sensitivity analysis. A mesh assessment for North-East Arctic haddock is also needed. The results from these two mesh assessments should be
comparable. This can be done at a future meeting of this Working Group, and by then more members of the Group would have had the opportunity to familiarise themselves with the technique.
10. TIMING OF THE WORKING GROUP MEETINGS

The current practice of holding the Working Group meetings in the spring of each year creates a number of assessment problems resulting from the incompleteness and poor quality of the provisionaldata on the most recent year's fisheries. These difficulties would be reduced, if Assessment Working Groups' meetings were held later in the year, and the present time period between estimating TACs and the year in which they are applied would be reduced, hopefully reducing the need for revisions of TAC recommendations. Additional information would be available from the fishery in the year of the assessment and more up-to-date pre-recruit survey data would be available, all of which would contribute to the improved reliability of the assessments.

Because of holiday commitments it would be necessary to avoid the summer period. However, if the time-tables of the management bodies permitted it, there would be advantages in holding any subsequent meetings of the North-East Arctic Fisheries Working Group in the early autumn to provide advice for management of the stocks in the following year.
11. SHORTCOMINGS AND GAPS IN DATA REQUIRED FOR STOCK ASSESSMENT PURPOSES

The Working Group identified the following gaps and shortcomings in the 1977 data for the North-East Arctic cod and haddock assessments:
11.1 Nominal Catches
a) Preliminary nominal catch data are:required from Faroe Islands, France, Portugal and Spain;
b) Separate figures for the bottom and midwater trawl nominal catches are required from all other countries than the Federal Republic of Germany which has provided such data。

11.2 Age and Length Compositions

a) Age and length composition data were missing for the Faroese, French, the German Democratic Republic, Portuguese and Spanish catches;
b) Separate age and length compositions for the bottom and midwater trawl catches were available only for the Federal Republic of Germany;
c) Age/length keys should cover sufficiently the extreme length groups in the catches.
11.3 Discards

The amount of fish discarded or used for fish meal reduction should be reported by year, together with observations on any changes in discarding practices by length groups.
11.4 Fecundity

Fecundity data are required for stock and recruitment studies.
12. REFERENCES

Bohl, H. J., 1975. Preliminary results of comparative selection experiments with midwater trawls and bottom trawls in the NorthEast Atlantic. ICES, Doc. C.M.1975/B:24 (mimeo.).

Meyer, A., 1977. Investigations by the Federal Republic of Germany on Arcto-Norwegian cod in 1975. ICES, Annls.biol., 32 (for 1975), pp.80-81.

Table 1. COD. Total nominal catch (metric tons) by fishing areas (landings of Norwegian coastal cod not included).

Year	Sub-area I	Division IIb	Division IIa	Total catch
1960	375327	91599	155116	622042
1961	409694	220508	153019	783221
1962	548621	220797	139848	909266
1963	547469	111768	117100	776337
1964	206883	126114	104698	437695
1965	241489	103430	100011	444930
1966	292253	56653	134805	483711
1967	322798	121060	128747	572605
1968	642452	269160	162472	1074084
1969	679373	262254	255599	1197226
1970	603855	85556	243835	933246
1971	312505	56920	319623	689048
1972	197015	32982	335257	565254
1973	492716	88207	211762	792685
1974	723489	254730	124214	1102433
1975	561701	147400	120276	829377
1976	526685	103533	237245	867463
1977^{*}	512208	130931	241320	884459

[^0]Table 2. COD. Nominal catch (metric tons, whole weight) by countries (landings of Norwegian coastal cod not included). (Sub-area I and Divisions IIa and IIb combined.)
(Data provided by Working Group members)

Year	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	France	$\begin{array}{r} \text { German } \\ \text { Dem.Rep. } \end{array}$	$\begin{aligned} & \text { Germany } \\ & \text { Fed.Rep. } \end{aligned}$	Norway	Poland	United Kingdom	USSR	Others	Total all countries
1960	3306	22321		9472	231997	20	141175	213400	351	622042
1961	3934	13755	3921	8129	268377	-	158113	325780	1212	783221
1962	3109	20482	1532	6503	225615	-	175020	476760	245	909266
1963	-	18318	129	4223	205056	108	129779	417964	-	775577
1964	-	8634	297	3202	149878	-	94549	180550	585	437695
1965	-	526	91	3670	197085	-	89962	152780	816	444930
1966	-	2967	228	4284	203792	-	103012	169300	121	483704
1967	-	664	45	3632	218910	-	87008	262340	6	572605
1968	-	-	255	1073	255611	-	140387	676758	-	1074084
1969	29374	-	5907	5343	. 305241	7856	231066	612215	133	1197226
1970	26265	44245	12413	9451	377606	5153	181481	276632	-	933.246
1971	5877	34772	4998	9726	407044	1512	80102	144802	215	689048
1972	1393	8915	1300	3405	394181	892	58382	96653	166	565287
1973	1916	17028	4684	16751	285184	843	78808	387196	276	792686
1974	5717	46028	4860	78507	287276	9898	90894	540801^{1})	38453	1102434
1975	11309	28734	9981	30037	277099	7435	101834	343580^{1})	19368	829377
1976	11511	20941	8946	24369	344502	6986	89061	343057^{1})	18090	867463
1977*	9222	12756	3463	12691	382407	1084	85 2812)	368 1211)	9434	884459

* Provisional figures.

1) Murman cod included.
2) United Kingdom (England and Wales) only.

Table 3. COD. Estimates of total international effort in Sub-area I and Divisions IIa and IIb.

Year	SUB-AREA I				DIVISION IIb				DIVISION IIa			
	National effort		Total international effort		National effort		Total international effort		National effort		Total international effort	
	U.K. ${ }^{\text {l }}$	USSR ${ }^{2}$)	J.K. units	$\begin{aligned} & \hline \text { USSR } \\ & \text { units } \end{aligned}$	U.K.	USSR	$\begin{gathered} \mathrm{J}, \mathrm{~K} . \\ \text { units } \end{gathered}$	USSR units	U.K.	Norway ${ }^{3}$	U.K. units	Norwegian units
1960	95	43	500	89	42	11	87	30	39	9489	232	52
1961	94	53	519	108	51	22	171	50	30	8410	264	41
1962	93	61	596	93	51	16	166	30	34	7812	212	35
1963	78	62	644	91	45	9	114	20	29	7153	177	38
1964	42	30	357	56	49	17	137	32	36	6103	150	22
1965	42	25	366	62.	37	11	95	21	33	6883	152	34
1965	63	33	395	70	23	16	73	30.	46	6796	201	34
1967	51	30	399	61	10	12	114	14	50	7153	248	37
1968	86	45	584	59	9.	24	156	22	52	7930	290	32
1969	115	45	601	68	24	19	194	22	73	6747	272	43
1970	122	35	604	75	24	15	86	11	55	6893	369	38
1971	82	23	558	73	4	27	80	36	48	6913	516	30
1972	71	41	419	58	7	11	65	18	35	8674	610	29
1973	96	61	864	88	18	12	163	15	27	9156	492	31
1974	92	48	916	80	9	18	240	33	29	6590	444	37
1975	109	31	729	66	5	19	147	34	28	4906	364	35
1976	96	44	878	80	21	18	128	35	34	5862	678	62
1977*	82	56	966	102	44	31	230	52	37	6583	525	48

* Provisional figures.

1) Hours fishing x average tonnage $\times 10^{-6}=$ millions on ton-hours.
2) Hours fishing (catch/catch per hour fishing) $x 10^{-4}$.
3) Gill net boat week at Lofoten.

Table 4. COD. Catch per unit effort (metric tons, round fresh) in Sub-area I and Divisions IIa and IIb.

Year	SUB-AREA I		DIVISION IIb		DIVISION IIa	
	U.K.1)	USSR ${ }^{2}$)	U.K.	USSR	U.K.	Norway 3)
	0.075	0.42	0.105	0.31	0.067	3.0
1961	0.079	0.38	0.129	0.44	0.058	3.7
1962	0.092	0.59	0.133	0.74	0.066	4.0
1963	0.085	0.60	0.098	0.55	0.066	3.1
1964	0.058	0.37	0.092	0.39	0.070	4.8
1965	0.066	0.39	0.109	0.49	0.066	2.9
1966	0.074	0.42	0.078	0.19	0.067	4.0
1967	0.081	0.53	0.106	0.87	0.052	3.5
1968	0.110	1.09	0.173	1.21	0.056	5.1
1969	0.113	1.00	0.135	1.17	0.094	5.9
1970	0.100	0.80	0.100	0.80	0.066	6.4
1971	0.056	0.43	0.071	0.16	0.062	10.6
1972	0.047	0.34	0.051	0.18	0.055	11.5
1973	0.057	0.56	0.054	0.57	0.043	6.8
1974	0.079	0.90	0.106	0.77	0.028	3.4
1975	0.077	0.85	0.100	0.43	0.033	3.4
1976	0.060	0.66	0.081	0.30	0.035	3.8
1977^{*}	0.053	0.50	0.057	0.25	0.046	5.0

* Provisional figures.

1) United Kingdom data - tons per 100 ton-hours fishing.
2) USSR data - tons per hour fishing.
3) Norwegian data - tons per gill-net boat week at Lofoten.

Table 5. HADDOCK. Total nominal catch (metric tons) by fishing areas.
(Data provided by Working Group members)

Year	Sub-area I	Division IIb	Division IIa	Total
1960	125675	1854	27925	155454
1961	165165	2427	25642	193234
1962	160972	1727	25189	187888
1963	124774	939	21031	146744
1964	79056	1109	18735	98900
1965	98505	939	18640	118079
1966	124115	1614	34892	160621
1967	108066	440	27980	136486
1968	140970	725	40031	181726
1969	88960	1341	40208	130509
1970	59493	497	26611	86601
1971	56300	435	21567	78302
1972	221183	2155	41979	265317
1973	283728	12989	23348	320065
1974	159037	15068	47033	221138
1975	121686	9726	44330	175742
1976	94.064	5649	37566	137279
1977*	66946	12227	22804	101977

* Provisional figures.

Table 6. HADDOCK. Nominal catch (in metric tons) by countries. (Sub-area I and Divisions IIa and IIb combined).
(Data provided by Working Group members)

Year	Faroe Islands	France	$\begin{gathered} \text { German } \\ \text { Dem.Rep. } \end{gathered}$	Germany Fed.Rep.	Norway	Poland	U.K.	USSR	Others	Total
1960	172	-	-	5597	47263	-	45469	57025	125	155651
1961	295	220	-	6304	60862	-	39650	85345	558	193234
1962	83	409	-	2895	54567	-	37486	91940	58	187438
1963	17	363	-	2554	59955	-	19809	63526	-	146224
1964	-	208	-	1482	38695	-	14653	43870	250	99158
1965	-	226	-	1568	60447	-	14345	41750	242	118578
1966	-	1072	11	2098	82090	-	27723	48710	74	161778
1967	-	1208	3	1705	51954	-	24158	57346	23	136397
1968	-	-	-	1867	64076	-	40129	75654	-	181726
1969	2	-	309	1490	67549	-	37234	24211	25	130820
1970	541	-	656	2119	36716	-	20423	26802	-	87257
1971	81	-	16	896	45715	49	16373	15778	3	78911
1972	137	-	829	1433	46700	1433	17166	196224	2223	266145
1973	1212	3214	22	9583	86767	325	32408	186534	-	320065
1974	925	3601	454	23409	66164	3045	36293	78 5481)	8699	221138
1975	299	5191	437	15930	55966	1080	28661	$650151)$	3163	175742
1976	537	4459	348	16660	49492	986	16954	42 485 ${ }^{1}$)	5358	137279
1977*	131	1198	144	4752	39600	-	10 6322)	45 1731)	347	101977

* Provisional figures.

1) Murman haddock included.
2) United Kingdom (England and Wales) only.

Table 7. HADDOCK. Catch per unit effort and estimated total international effort.

* Provisional figure.

Table 8．COD．
Catch in numbers by year and by age（thousands）

AGE	1960	1961	1962	1963	1964	1965
1	465.6	1.0	1.0	1.0	1030	1.0
2	7147.0	1699．6	1713．0	4.0	675.0	2522．6
3	37882．0	45478.0	4こ416．0	13196.0	5293.0	15725.6
4	97e65．0	132655.0	176566．0	106984.0	4591こ．0	25995.0
5	64282.9	123458.0	167241．0	205549.0	97956．	78299.0
6	67425．0	51167.0	85460．0	95438．0	585－5．0	6851：．0
7	23117．0	38740.0	28こ97．0	35518.0		25444.0
8	8.423 .9	17376．0	21996．${ }^{13}$	16ここ1．0	916こ．6	843E．0
9	7240．0	5791.0	7956.0	11834.0	6：3E．0	3563.0
10	11675.5	6778．0	ごここ．0	38.84 .0	5555．0	1467．${ }^{\text {a }}$
11	4504.6	SEEG．0	2603.0	1021.0	－ 3.0	116：．0
12	15．3．0	16E2．0	18.470	$10 こ 5.0$	172．0	131.0
13	354.6	910.0	332.0	435.6	387.0	67．${ }^{\text {c }}$
14	102.6	ご80．0	250．0	129.0	254．0	91．0
$15+$	ここも．	10 － 0	103.0	157．6	151．6	179.6
AGE	$196 E$	1967	1968	1969	1974	1971
1	1.6	1.0	1.0	1.0	1.0	$3 ¢ .0$
2	869.6	151.0	1.9	275.0	531.0	2210．0
3	55937．0	34467．0	3769	2307.0	7164.6	7754.0
4	55644．9	160048.0	174505．0	24545．0	107ヨ2．0	13733.0
5	34E\％6．	E9235．0	267961．0	230511．0	25813．0	11831.0
6	42539．6	22061．${ }^{\text {c }}$	107651.0	1末：239．6	137ジき．	55ご．0
7	37169.0	26295．0	2670． 0	79363.0	964こも． $0^{\text {a }}$	59236．6
E	18560．0	25133．0	16339.0	2E939．0	315ご时	52003．
9	5075	：1323．0	11597.0	13463.0	\＆533．6	12033.0
14	－4せら．	ここご・年	3657．0	5092.0	3ニッツ．6	2434．0
11	300.0	E87．9	657.0	1513.6	12アこ．	フEこ．
12	463.0	こ1E．0	$1 こ 2.0$	414.0	こE． 1	416
13	77.0	ここ5．0	124．0	121.0	146.0	143.0
14	9.6	40.0	70.0	ころ．0	33.6	42．0
$15+$	78.6	14.6	$4 \varepsilon .0$	46.0	35.8	25．0
AGE	1972	1973	1974	1375	1376	2977
1	1.0	1.0	115.0	1.0	706．6	1.0
こ	4701．0	8277.0	21347.0	1184.0	1908．0	10693.0
3	35536．0	29426こ．0	91855．0	4528こ．	85337.6	38557．
4	45431．0	131493．0	437577.0	59795.0	114341.6	165530．6
5	26s32．0	61000.0	203772．0	226646．0	79393.6	135324.0
6	12089.0	20569.0	47006.0	118567.0	118236．0	522E1． 0
7	7918.0	7248	12630.6	23522．0	47872．	5－615． 1
8	34885．6	8328．0	4370.0	9353.0	13962．6	21303.0
9	22315．6	19130.0	2523．0	2617．0	4051.0	50.41 .0
10	4572．0	4499.0	5607.0	1555.0	936．0	1341.0
11	1215．0	677.0	こ1こて．0	1928.0	558.0	541.6
12	353.6	195.0	322．0	575.0	442.0	こと1．0
13	315.0	81.0	151.0	231.0	159.0	110.0
14	121.0	59.0	83.0	15.0	26.6	72.0
$15+$	40.0	55.0	62.0	37.0	53.0	47．0

Table 9. COD.
Fishing mortalities by year and by age ($M:=0.3$)

AGE	1960	1961	1962	1963	1564	1965	1966	196.7	1968	1969
1	. 30	. 00	. 00	. 80	. 00	. OC	. 00	. 00	. 00	. 00
2	. 00	. 0	.00	. 08	. 90	- 0	$\therefore{ }^{4}$. 60	. 06	. 00
3	. 04	. 84	. 05	. 02	. ${ }^{1} 1$. 02	. 03	. 02	. 02	. 02
4	. 19	. 23	. 25	.18	. 11	. 08	. 08	.12	.17	.17
5	. 29	.43	. 56	.E1	.28	. 31	. 16	. 15	. 34	. 40
6	. 38	. 44	. -2	. 8.6	. 33	.37	. 31	. 17	. 40	. 4 E
7	. 37	. 45	. 53	. E. 4	. 48	. 33	.40	. 36	. 35	. 68
8	. 42	. 68	. 57	. 77	. 62	. 44	. 49	. 58	. 46	. E. 1
9	. 33	. 65	. 71	.82	. 90	.60	. 60	. 73	. 68	1.62
10	. 62	.68	. 87	1.11	.72	. 63	. 63	. 71	. 54	. SE
11	. 77	. 86	. 69	1.20	. 82	. 6.3	. 37	. 77	. 50	. 97
12	. EO	. 88	. 6.7	. 75	. 76	. 34	. 5.3	. 59	. 33	. 80
13	. 46	. 80	. 80	. 50	. 8.5	. 31	. 33	. 75	. 74	.74
14	. 44	. 34	. 71	. 45	. 62	. 56	. 32	. 41	. 63	. 32
15 t	. 6.5	- E6	. 65	. 65	. 65	. 65	. 65	. 65	. 65	. 6.5

MEAN F FOR AGES $\geqslant=8$ AMD $\{=12$ (NOT WEIGHTED EY STOCK IN HUMBERE) .55 .76 .70 . 33 .76 .53 .52 .70 .52 .85
$\begin{array}{llllllllll}\text { AGE } & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1975 & 1977\end{array}$

1	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.01	.01	.00	.00	.01
3	.03	.01	.03	.14	.12	.03	.05	.06
4	.10	.08	.13	.16	.36	.11	.12	.14
5	.31	.10	.24	.28	.44	.35	.24	.22
6	.48	.20	.31	.32	.40	.50	.36	.28
7	.55	.45	.29	.35	.38	.55	.53	.33
8	.74	.75	.59	.64	.42	.61	.62	.55
9	.82	.82	1.02	.96	.45	.55	.66	.55
10	.86	.64	1.05	.65	.87	.65	.43	.55
11	.59	.58	.91	.47	.30	1.02	.58	.55
12	.37	.46	.66	.40	.45	.76	.81	.55
13	.55	.42	.85	.35	.70	.92	.47	.55
14	.64	.50	.83	.45	.84	.15	.27	.55
$15+$.65	.65	.80	.70	.70	.70	.60	.55

MEAN F FOR AGES $>=3$ AND $<=12$ (NOT WEIGHTED EY STOCK IN NUMBERS) .68 .65 . 85 .E1 .63 .72 .62 .55

```
Table 10． \(\operatorname{COD}(\mathrm{M}=0.3)\)
Stock in numbers at beginning of year（thousands）
```

AGE	1960	1961	1962	1963	1964	1965
1	1908488.3	1276404.4	96E262．6	2119425.8	4111024.7	3320013．1
2	1697737.1	1413444.2	945552．8	715824.1	1570108.4	3045433.7
3	1059541.6	125158E．	1045648.4	699035．2	53029 ． 1	$116258 E .1$
4	EESOEE． 9	752478．5	E88243．2	735307.7	506549.6	383305.4
5	こ 36447.6	407697.5	444349.1	512674．玉	455630.8	336000.5
E	こ42181．4	164935.0	197278.6	187745.6	206181．7	254139.5
7	－5783．1	$12 こ 145.5$	7878.6	70.93 .2	58993.1	163004.6
8	ことこころ．2	43012.0	5．ES心．0	34417．3	ここE10．5	26952．9
9	ご959．7	$13 T E C \cdot 6$	17850.4	24102.7	11047.3	9613.3
10	25316．1	15718.7	5303.1	6519.5	73E0．1	3573.1
11	5596	11488.3	5920．6	1643.3	1585.0	2829．9
12	4640.7	3248.7	3435.5	2197.7	366．9	515.4
13	1107.0	1880.9	395． 3	145 ．3	TES． 3	127.1
14	329.5	519.9	EEE．	406.1	E5．4．1	2ちこ．0
$15+$	330.3	157．	150.5	223．5	151.5	CE1．E
AGE	1965	1567	1968	1969	1970	1971
1	444928.8	312495.2	542350．0	1104299.3	2632770．8	4755064.8
2	2459525．3	329E19．5	231437.6	401781.9	818084.2	1950403.8
3	2253050．3	18こ131E．0	244052.0	171452．3	297411．5	6.5544 .9
4	847786．3	1621837.0	1319725.4	177613.1	125037.5	214183.2
5	2E541E．8	580435.2	16.64660 .1	828587． 3	110627.2	83460.3
6	$182 こ 92.5$	167012.1	370847．3	560884．4	411334.7	59991.3
7	130061.0	98E51．0	104886.2	18384E．1	261871．4	187944.2
8	54EES．E	64792．0	50.055 .9	55601．6	E9EE8．5	112428.4
9	12840.4	24828．0	26751.9	23794.7	18061.6	24433.3
10	3EE： 3	5こころ．	E856．8	10939	ESEE． 1	5873．1
11	$1 \div 12.9$	1450.5	196 E ． 7	3474.2	З1E：．5	1988.5
12	$1116 . \Sigma$	723．8	496.6	85E． 1	371．9	1300.3
13	ごこ．6	485.9	269.8	264．1	286．1	495.1
14	38.0	136.6	176.5	95.5	－3．8	122．3
154	102.3	20.5	67.2	67．2	51.2	36.5
AGE	1372	1973	1374	1975	1976	1377
1	1783893.3	3072377.7	3841583.9	1397291．0	1679483．5	1158.0
2	35ここ606．1	1521473.1	2276072．6	2845816.8	1045137.8	1243591.6
3	1442995	2605579．9	971875．	166TESE．z	210－2：7．7	765213．0
4	441952.2	1038550.7	1678811．1	E41444．8	1196780.4	1487977.2
5	146916．8	ごら57こ．1	65．UEE． 1	ET： 34.4	424063．2	788835.8
5	51684.5	85965.2	161833.7	313924.3	453307.1	245977.1
7	36314.4	23003.0	46：8．2	79985．1	132299.7	235323．8
8	8¢953．7	201E1．3	14584.2	2348．7．0	34280.1	57498.6
9	39507	364天0． 1	7905.9	7095.9	9498．5	13606.1
10	－543．0	16600.8	10355.4	3717.7	3042.9	3619.5
11	2こ96．5	EOE．E．6	4057.7	3394.6	1441．8	1460.2
12	828.9	6SE． 4	954.2	1221.9	902．3	596.5
13	603．4	316.3	340.0	434.1	421.3	296.3
14	243．3	187.1	165．5	124.6	127.9	194.3
154	55.0	78．6	E¢．6	SE． 9	79.5	フ2．6

```
Table 1l．COD．
Fishing mortalities by year and by age（ \(M=0.2\) ）
```

AGE	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
1	.00	． 00	． 00	． 20	.00	.00	.00	． 89	． 00	． 00
2	． 01	． 08	． 06	－ Ca	． 80	． 00	． 09	． 0	． 09	－ 0
3	.65	．06	． 07	． 03	． 02	． 02	． 04	． 23	.03	． 02
4	． 23	． 27	． 31	． 24	． 14	． 11	.10	． 15	． 21	． 23
5	． 35	． 49	． 65	． 74	． 35	． 39	． 21	． 12	． 41	． 48
6	． 46	． 51	． 82	1.00	． 48	． 45	． 38	． 20	． 47	54
7	.43	． 53	． 61	． 96	． 57	． 40	． 47	． 43	． 40	77
8	． 48	． 68	． 6.5	． 87	． 72	． 52	． 57	． 6.7	． 52	．ご
9	． 39	． 73	． 79	． 93	1.83	． 70	． $6 \cdot$	． 84	． 78	1.14
10	． 71	． 77	． 96	1.25	．83	． 75	． 72	．8玉	.73	． 5.5
11	． 88	． 92	． 79	1.33	． 98	． 73	． 43	． 90	． 58	1.13
12	． 69	1.02	． 78	． 85	． 87	． 42	． 61	． 80	． 33	．92
13	． 52	． 91	． 74	．5c	． 98.	1．OE	． 47	． $0 \cdot 0$	． 87	． 84
14	． 51	1.07	． 81	． 53	.71	． 65	． 35	． 48	． 73	． 3 c
154	． 75	． 75	． 75	． 75	.75	． 75	.75	.75	.75	．75
MEAN	FOR AGES ：＝		8 AND	$i=12$	（ NOT	WEIGHTED BY$.62 \quad .61$		$\begin{gathered} \text { STOCK } \\ .81 \end{gathered}$	IN NUMBEFS，$.601 .02$	
	． 63	．82	－ 8	1.05	． 89					
AGE	1970	1971	1972	1973	1974	1975	1976	1977		
1	． 00	． 00	． 00	． 08	.00	.00	． 00	． 00		
2	． 00	－03	． 08	． 01	． 02	． 60	． 90	． 01		
3	． 04	． 62	． 64	． 18	． 16	． 6.7	． 66	． 07		
4	． 14	． 16	． 16	． 20	． 75	． 15	． 15	． 17	．	
5	.40	． 23	． 30	． 34	． 52	． 14	.30	． 2 E		
E	． 57	． 25	． 39	． 39	． 4 E	． 6.7	． 43	． 33		
7	．Eこ	． 52	． 35	． 43	． 45	． 64	． 63	． 39		
8	． 84	． 83	． 67	． 75	． 51.	． 71	． 73	． 65		
9	． 94	． 93	1.14	1.01	． 54	． 6.5	． 78	． 65		
10	． 99	． 73	1.21	． 75	． 37	．TE	． 52	． 65		
11	． 69	． 67	1.07	． 56	1.03	1.15	－E． 9	． E ． 5		
12	． 4.4	． 53	． 78	． 48	． 57	． 90	． 34	． 65		
13	． 64	． 48	1.01	． 40	． 85	1.05	． 56	．65		
14	． 74	． 57	． 94	． 52	． 95	． 18	． 32	． 65		
$15+$	． 75	． 75	． 90	． 80	． 80	$\therefore 0$	． 70	． 65		

MEAN F FOR AGES $?=3$ AIID $\langle=1 \overline{2}$（NOT WEIGHTED RY STOCK IN NUMBERS） .78 .74 .97 ．71 ．72 ．83 ．73 ． 8.75

Table 12． $\operatorname{COD}(\mathrm{M}=0.2)$
Stock in numbers at beginning of year．（thousands）

AGE	1360	1961	1962	1963	1964	1965
1.	1092193.7.	708419.7	506747.5	1162320.1	2363820.2	1930092.0
2	1130537.0	893792.6	580094.1	414888.8	951626.3	1935239.3
3	790570.8	915150.1	730240.8	473319.3	339675.6	778516．6
4	531469.9	613075．5	711493.1	559597.1	3756¢7．4	273304．9
5	240315.0	347058.0	35265：．4	429223．：	361895.5	26614．E
6	200177.7	139072.6	173530.0	163820.8	167979.8	208329.3
7	72082.3	103446.9	68934.3	Eこ34E． 3	49256.3	85037.6
8	24084.4	3¢283．4	50903.7	30394.5	1946.1 .3	22751．4
9	24717．1	12165.1	15023.3	21283.0	10439.6	7755.2
10	25037.9	13738.4	4791.3	5861.1	6843.7	3043.1
11	3392．2	10075.5	5202.4	1437.0	13 Ec .7	2437.1
12	4035.9	2860． 3	3301.2	1938.2	322.9	418.0
13	55.7	1658.2	847.4	1234.1	6，3．8	111.2
14	278.7	463.0	547.7	343.8	564.8	207.6
$15+$	286.3	136.8	130.5	138.9	165.9	225.7
AGE	1965	1967	196.3	1969	1970	1971
1	245493.7	16562 c ． 0	294254.7	619198．8	1543543.9	2915989．9
2	15.90284 .8	200992.4	135603.3	240914．5	506948．0	1263.46 .0
3	15021E1．8	12929s3．	16.4422 .2	111023．	196395.7	414520.1
4	623i55．4	1244868．4	1027494.0	$13126 \pm .5$	88.814 .1	154813.4
5	200333.7	460050.3	855002.2	684074.3	85355.3	62989．3
6	147623．1	132005.2	314303.6	475368.7	346525.7	4ET45．4
7	105133.5	E2E8．2． 1	88.870 .1	161371.8	227．12，玉	160216.9
8	$4 \mathrm{ETE.3.0}$	50033.5	44109.3	48800.0	61327.5	5995． 5
9	11076.3	21751.5	23417.7	21427.2	15937.7	21768.8
10	31EE．3	4523.5	7713.4	8829.5	5664.5	51512.1
11	118．．4	1254.6	1632.7	3055.9	2702.4	1708.8
12	959．2	627．3	415.7	748.9	805.4	1112.2
13	ここ4．7	424.9	$23: 8$	230.8	244.7	426.2
14	31.5	115.0	147.5	79.4	E1． 2	105.6
15 t	88.7	17.7	58.3	58.3	44.3	31.7
AGE	1972	1973	1974	1975	1976	1977
	1031899.7	1777663.7	2303138.7	940208.4	1448755.8	1103.9
2	2587376.3	844847．1	1455427.0	1885546.6	769775.6	1185503.2
3	1632671.4	1959372.0	684226． 5	1172324.7	1542685．5	623516.3
4	352378.3	813395	1331814.7	477442.4	918943．3	1186037.2
5	114365.8	231200.3	5.45559 .7	69520e．0	337012.5	649352.2
6	40925.0	69516.2	134499.2	265814.6	368393.8	204023.7
7	29762.1	22656．8	38454.8	67994.1	1.11606 .2	195572.1
8	78068．8	17206.4	12049.1	20159.0	29281． 5	48ESE． 6
9	35525.6	32749．9	E656．6	5550.3	5153.5	1：512．a
10	7062． 3	9297．4	3813．5	3190．3	2533.0	SUE2．E
11	2004.9	1732.3	3597.8	3049.1	$1 こ 25.2$	1535.6
12	711.7	565.9	812.3	1056.1	78.1	504.7
13	536.3	267.9	286.1	376.9	352.8	251.2
14	215.4	159.2	146.7	99.7	193.6	164.4
$15+$	43.9	68.8	77.5	46.3	68.1	61.5

Table 13．HADDOCK．
Catch in numbers by year and by age（thousands）．

AGE	1960	1961	1982	1963	1964	1965
1	2319.6	こ®こ．0	1.0	3.0	149.0	1.0
2	3632．0	5531.0	4536.0	2151.0	831.0	3483.0
3	40117.0	15430.0	35604．0	28567．0	22305．0	591：．0
4	T1280．0	56859．0	30345．0	72995.0	491Eこ．0	4616：．0
5	13717.0	E3354．0	49028.0	19635.6	30592.0	40032.0
6	7138.0	2766．0	ここツここ．0	13627.9	58090	$1 \geq 578.0$
7	E2E： 0	35゙モ． 0	Sこの9．0	9290.6	3513.6	1672．0
8	1587.0	4407.6	1344.0	1243.0	2709.0	978.6
9	2352．0	78.	27\％． 0	561.0	\＆ここ．0	89E． 9
10	2015．0	5 St 0	243．0	403.0	104.0	1 ここ．
11	4E7．0	1ごす．0	247．0	79.0	20e．g．	204.0
12	70.0	－GT．0	4 ± 2.0	84.0	こ34．0	123.0
13	30.0	60.0	20.0	169.0	1こ1．0	14.0
14	12.0	20.0	E． 0	41.0	6\％．0	205．6
					$\therefore \quad:$	；
AGE．	1966	1967	1968	1969	1970	1971
1	1.0	1.0	1.0	1.0	480.8	15.0
2	2559．0	53.0	33.0	1050.0	2TE．g	35こ5．
3	2E157．0	15918.0	657．0	1520.0	23004.0	13ファ．0
4	2С4E3．0	41375.0	67632．0	1963.0	2408．0	24353．0
5	627こ4．0	13505.0	41267.0	445こE． 0	1270．0	125心． 0
6	28S40．0	25T3E．0	7748．6	18956．0	21955.0	318．0
7	5．11．0	歽た。回	15599.0	3E1：．0	7848.0	92．З．0
8	579.0	1617．0	$5 こ 92.0$	4925．0	1374．4	3056．0
3	435.0	218．0	E55．0	－1Eこ4．0	1375．0	$8 こ 6.0$
10	128．0	$1: 9.0$	182.0	315.6	「ご，守	1043.0
11	1 26.0	155.6	101.0	43.0	1E6．6	36.6
12	こ5．0	－6．0	115.0	43.0	26．a	130.0
13	\pm－	2T．0	15.0	14.0	5.6	27．0
14	$7 \cdot 6$	． 7.0	13.0	こ．0	－ 19.0	4.0
AGE	1972	1973	1974	1975	1976	1977
1	133.0	1.0	28．1．0	1321.0	3475．0	149.0
2	9369．0	5915．0	3713．0	4355.0	7496.0	15055．0
3	2302こ9．0	70204.0	SEA4．0	10037.0	1398.3 .4	46442．0
4	2224E．0	258773.0	41701．0	14089.0	13443.0	1934% ．
5	4こと49．0	24018.0	88111．0	33871.0	6808．0	EEEO． 0
6	3196．0	6872．0	5827.0	49712.0	20789．6	2407．0
7	16050	41 ¢．0	4138.0	2135．	4004	7464.0
8	67S6．0	くここ．0	382.0	12360	124% ¢	10469.0
9	2630．0	1680.0	617.6	92.0	1343.0	2总8．0
10	856.0	525.0	2043.0	131.0	193．0	387.0
11	983．0	14 E ．	335.0	500.0	279.6	94．0
12	538．	340.0	276.0	147.6	$65 \pm .0$	99.0
13	53.0	ES．0	458.0	53.0	331．0	53.4
14	42.0	13.0	143.0	92.0	46.0	98.0

Table 14．HADDOCK．
Fishing mortalities by year and by age．（ $M=0.2$ ）

GGE		1560	1961	1962	1565	15E：	：965	1965	196.7	1968	1963
1		． 01	.00	． 00	－ 0	． 09	． 06	． 09	． 0^{6}	． 90	． 60
2		． 03	． 02	． 01	.01	． 01	． 81	． 01	－ 09	． 96	.01
3		． 20	．17	.20	． 12	． 08	． 0^{-1}	． 13	－Ob	． 04	.10
4		． 38	． 49	． 59	． 68	． 31	． 24	． 39	． 50	． 40	． 15
5		． 51	． 69	1.0 E	． 92	． 69	． 4 E	． 5.	．43	． 55	． 50
E		．E． 1	． 71	1.074	1.02	． 8.3	．E． 9	． 71	． 56	． 47	． 54
7		． 50	－71	． 53	． 34	． 83	．61	． 80	．49	． 5.5	． 42
8		． 57	． 52	． 65	． 53	．$\because 2$	． 57	． 44	．5E	． 62	． 44
9		． 63	． 62	． 37	．EC	． 8		． 55	． 25	． 46	． 39
10		． 52	． 2 E	． 40	．Eこ	． $2 \pm$	． 28	． 31	． 45	． 42	． 42
11		1.02	． 77	． 20	－ここ	．$\because 4$	－E E	． 89	． $4 E$	． 51	． E
12		． 54	． 35	． 75	． 10	1．90	1.54	． 23	1.24	． 75	． 43
13		． 4.4	1.32	.17	．EE	． 20	． 55	． 35	． 42	1．2こ	． 15
14		． 80	． 60	． 60	． 60	． 60	． 60	． 60	．EG	． 60	． 40
MEAN	F	FOF．A	$5:=$	7 AHD	$<=i z$	（ NOT	WEIGH	ED EY	STOCK	IN H	ERS ）
		． 65	． 59	．EO	50	． 89	.76	． 54	． 58	． 57	． 38
AGE		1970	197：	1972	1973	1974	1975	1976	1977		
1		． 00	． 80	． 03	． 80	． 00	.00	．0．	． 000		
2		． 00	． 00	． 03	． 10	．OE．	． 64	． 02	． 9 E		
3		.17	－¢	． 23	． 31	． 22	． 23	． 17	． 20		
4		．ここ	．$\%$	． 39	－5	． 31	． 59	． 53	．37		
5		． 20	． 17	1.04	． 37	． 46	． 44	． 64	． 55		
6		． 50	．15	． 82	． 45	． 65	． 41	． 54	． 45		
7		． 48	． 41	． 41	． 3.3	． 54	． 55	．ET	． 37		
8		． 42	．3E	． 60	． 18	． 34	． 30	． 74	． 37		
9		． 31	． 31	． 51	． 23	． 43	． 13	． 53	． 37		
10		． 30	． 27	． 8.6	． 18	． 65	． 15	． 42	． 37		
11		． 41	． 25	． 45	．$=1$	． 56	． 35	． 54	． 37		
12		． 14	．EE	．E． 3	．27	． 7 E	．16	1.03	． 37		
13		1.49	．$\overline{C 1}$	．E． 2	．1E	.72	． 32	．62	． 37		
14		.40	.40	． 60	． 36	． 60	． 36	． 50	． 37		
MEAN F		$\begin{gathered} \text { FOR AGES }:= \\ .34 \quad .37 \end{gathered}$		$\begin{gathered} 7 \text { AND }<=12 \\ .55 \quad .23 \end{gathered}$		$\begin{gathered} \text { C NOT } \\ .55 \end{gathered}$	HEI GHTED BY$.27 \quad .68$		$\begin{gathered} \text { STOCK } \\ .37 \end{gathered}$	IN Num	ERS）

Table 15．HADDOCK．（ $M=0.2$ ）
Stock in numbers at beginning of year（thousands）．

AGE	1960	1961	1962	1963	1964	1965
1	369122.5	417926.7	479318.4	150285.3	365236．8	438429.8
2	137842.5	300117.4	341842.5	392431．6	123040.5	298896．
3	241519．	109576.6	240720．7	275780．5	319353.1	99986．5
4	247621.4	161622.1	75814.3	161428.5	200936．4	24：342．3
5	37829.6	138749.5	81374.1	34307．4	66962．3	11959% E
6	17164.7	18684.4	57014.9	23091．8	11 l	ご501．6
7	17369.7	7E63．5	7524.4	16550.1	6793.7	40：4．2
8	3995．6	8E0E．7	3084．7	3291．5	5こと6．2	2431．2
9	5434.3	1551．1	3118．5	1324.3	15E1．9	1913.4
10	5397.3	2395.7	2．11．9	972.2	$5 心 .7$	553.9
11	¢4こ．	2614．5	14ET．E	446.7	430.3	383.4
12	184．E	248．5	392．6	995．5	294．E	168.4
13	92.0	E． 5	145.3	382.6	759．3	36．
14	29．1	48．4	19.4	99.3	1 Eこ．${ }^{\text {c }}$	436.4
AGE	1966	1967	1968	1969	： 374	1971
1	29781．	27374.0	247973．1	141724.1	1556426.7	442534.5
2	358955．1	2438.1 .9	ここ411．0	203022．3	116032.9	12730．00．8
3	241569.8	291576．2	19914.3	18318.8	165265.0	94750.4
4	TE5टE．4	174202.0	224358．1	15711.4	13627．3	1：4584．7
5	156058．9	424 5.5	105438.0	122939．6	11094.5	8983．7
E	B20Es． 5	7164¢．4	2－674．2	49330.0	60816．6	7339.9
7	11ことこ．ど	2ちら34．1	35603.9	116.13 .1	23460．3	309EE．1
8	1751.2	4146.1	12541．4	15209.3	6273.4	120.3
9	11 ここ．5	948．2	：947．2	5536.0	E035．E	3365．5
10	769．3	5 こ5．7	580.3	1007.0	3074.3	4801.5
11	343.8	460.9	275．	311.9	541.3	1 ¢ES．0
12	13こ．こ	115.9	23c．4	135.4	216.6	294．7
13	29.5	으․ 4	27．6	92．6	72.3	153.3
14	15．9	$1 E .5$	$4 E .6$	G．E	63.2	15．3
		＇＂		．．		
AGE	1972	1973	1974	1975	1576	1977
1	87663．2	86567.3	154135.9	431861.7	352794．0	164475.8
2	362こ59．	71161.2	70874.4	125939.6	352365.2	285704．8
3	103975 ．${ }^{10}$	2E．1EE．7	5こヨこ丁．こ	5467E．	99179．2	2c1735．${ }^{\text {c }}$
4	7578 － 1	644267．5	172840.3	34617．	3573こ．4	68599.7
5	71906．	42983.5	235944．E	104031.5	15738.7	17212．4
6	6ここも．	20815．1	13095.7	163225.2	54809.0	6800.3
7	5こ31．3	ここ49．6	19880.3	5517.9	890こ2．4	26252.8
E	16303．1	2E42．1	1465.6	5203.1	2日C5．5	37120.5
9	7151.3	7327．9	194E．8．	556．	3145.0	1021．2
10	2013．2	3495.4	4489.3	1040.5	618.6	1372．2
11	2993．2	2.47 .7	2392．2	1850.8	733.3	333.3
12	1194.9	1564.8	562.6	1121.7	1066.2	351．0
13	125.1	497.7	975．4	214.4	785.9	294.3
14	101.7	55.1	346.2	389.7	127.9	347.5

Table 16. COD.
Year class strength. The number per hour trawling for USSR Young Fish Surveys is for 3 year old fish.

Year class	USSR Survey No. per hour trawling			USSR assessment	0-group survey index	Virtual Population No. of 3 year olds $\times 10^{-6}$ *	
	Sub-area	$\begin{gathered} \text { Division } \\ \text { IIb } \\ \hline \end{gathered}$	Mean			$\mathrm{M}=0.2$	$\mathrm{M}=0.3$
1957	12	16	13	-Average		791	1060
1958	16	24	19	+Average		919	1252
1959	18	14	16	+Average		730	1046
1960	9	19	13	Poor		473	699
1961	2	2	2	Poor		340	530
1962	7	4	6	Poor		779	1163
1963	21	120	76	Rich		1582	2254
1964	49	45	46	Rich		1293	1821
1965	<1	<1	<1	Very poor	6	164	244
1966	2	<1	1	Very poor	<1	111	171
1967	1	<1	1	Very poor	34	197	297
1968	7	1	5	Poor	25	415	606
1969	11	6	9	Poor	93	1033	1443
1970	74	86	76	Rich	606	1950	2606
1971	37	24	32	Average	157	684	(1972
1972	53	17	40	Average	140	$\left(\begin{array}{ll}1 & 172\end{array}\right)$	$\left(\begin{array}{ll}1 & 668\end{array}\right)$
1973	74	5	46	Rich	684	(1543)	(2 107
1974	${ }^{6}$	1	${ }^{4}$	Poor	51	(629)	\{ 765
1975	(60)	(1)	(34)	Rich	343	$\left(\begin{array}{ll}1 & 200 \\ 300\end{array}\right\}$	(1500)
1976	(2)	(1)	(3)	Poor	43	\{ 380)	$\{700$
1977	(1)	(1)	(1)	Poor	173	(850)	(1 200)

() = estimated.
*USSR Murman cod included for 1974-77.

Table 17. HADDOCK.
Year class strength. The number per hour trawling for USSR Young Fish Surveys is for 2 year old fish.

Year class	USSR Survey No. per hour trawling Sub-area I	0-group survey index	Virtual population No. of 3 year olds $\times 10^{-6}$ *
1957	9		242
1958	4		110
1959	14		241
1960	40		276
1961	50		319
1962	3		100
1963	9		242
1964	12		292
1965	<1	7	20
1966	<1	<1	18
1967	13	42	165
1968	<1	8	95
1969	69	82	1040
1970	33	115	288
1971	3	73	(53)
1972	9	46	55
1973	8	54	99
1974	35 (96) 1	147	(281)
1975 1976	(96)	170	$\left(\begin{array}{l}900 \\ 270\end{array}\right.$
1977	(1)	116	$\binom{270}{275}$

()$=$ estimated.

* USSR Murman haddock included for 1974-77.

Table 18. Estimates of spawning stock and year class strength for COD. Estimates from VPA.

$\mathrm{M}=0.2$			
Year	Spawning stock biomass tons $\times 10^{-3}$ at beginning of year (age groups 8+)	Year class	Year class strength at 3 years old Millions
		1947	705
		1948	1097
		1949	1192
1950	1458	1950	1593
1951	1385	1951	645
1952	1155	1952	273
1953	403	1953	441
1954	827	1954	805
1955	869	1955	498
1956	993	1956	685
1957	929	1957	791
1958 -	1019	1958	919
1959	837	1959	710
1960	600	1960	473
1961	514	1961	340
1962	474	1962	779
1963	377	1963	1582
1964	243	1964	1293
1965	213	1965	164
1966	338	1966	111
1967	458	1967	197
1968	437	1968	415
1969	471	1969	1033
1970	468	1970	1950
1971	679	1971	684
1972	677	1972	$\left(\begin{array}{ll}1 & 172\end{array}\right)$
1973	383	1973	(1543)
1974	222	1974	\} 629
1975	202	1975	(1200)
1976	234	1976	\} 380)
1977	347	1977	(850)
1978	(699)		
1979	(784)		
1980	(1.305)		

$M=0.3$			
Year	Spawning stock biomass tons $x 10^{-3}$ at beginning of year (age groups 8+)	Year class	Year class strength at 3 years old Millions
		1947	1070
		1948	1666
		1949	1773
1950	1731	1950	2333
1951	1645	1951	958
1952	1359	1952	411
1953	1079	1953	649
1954	979	1954	1133
1955	1012	1955	697
1956	1161	1956	932
1957	1098	1957	1060
1958	1212	1958	1252
1959	1014	1959	1046
1960	698	1960	699
1961	587	1961	530
1962	542	1962	1163
1963	427	1963	2254
1964	280	1964	1821
1965	251	1965	244
1966	395	1966	171
1967	527	1967	297
1968	502	1968	606
1969	530	1969	1443
1970	531	1970	2606
1971	765	1971	(1972
1972	765	1972	$\left(\begin{array}{ll}1 & 668\end{array}\right)$
1973	435	1973	(2107)
1974	257	1974	\} 765
1975	235	1975	(1500)
1976	275	1976	(700)
1977	; 410	1977	(1200)
1978	(813)		
1979	$\left\{\begin{array}{l}868 \\ 7\end{array}\right.$		
1980	(1 291)		

() = provisional figures.

Table 19. Estimates of the spawning stock and the year class strength for HADDOCK. Estimated from from VPA for $M=0.2$

Year	Spawning stock biomass tons $x 10^{-3}$ at the beginning of the year (age groups $6+$)	Year class	Year class strength at 3 years old Millions
		1947	67
		1948	552
		1949	63
1950	270	1950	1029
1951	151	1951	127
1952	95	1952	52
1953	66	1953	169
1954	179	1954	53
1955	156	1955	69
1956	474	. 1956	325
1957	324	1957	242
1958	202	1958	110
1959	160	1959	240
1960	129	1960	276
1961	105	1961	319
1962	147	1962	100
1963	106	1963	242
1964	- 67	1964	292
1965	76	1965	20
1966	140	1966	18
1967	193	1967	165
1968	166	1968	95
1969	174	1969	1040
1970	216	1970	288
1971	161	1971) 53
1972	127	1972	\} 55)
1973	107	1973	\} 99
1974	104	1974	(281)
1975	(316)	1975	(900)
1976 1977	\{ 334)	1976	(270)
1977	(192)	1977	(275)
1979	(133		
1980	(189)		

Table 20. Parameters used in the catch predictions.

Agre	COD			HADDOCK		
	Stock size beginning of 1979 (millions of fish)*	$\begin{aligned} & \text { Relative F } \\ & (1978-1980) \end{aligned}$	$\begin{aligned} & \text { Mean weight } \\ & \text { per age } \\ & (\mathrm{kgs}) \end{aligned}$	Stock size beginning of 1979 (millions of fish)	Relative F (1978-1980)	Mean weight per age (kgs)
3	$\begin{aligned} & 700.0 \\ & 380.0 \end{aligned}$	0.10	0.65	270	0.37	0.41
4	$\begin{array}{r} 1062.3 \\ 934.1 \end{array}$	0.26	1.00	601	0.67	0.62
5	$\begin{aligned} & 353.6 \\ & 339.2 \end{aligned}$	0.40	1.55	107	1.00	0.97
6	$\begin{aligned} & 590.0 \\ & 550.2 \end{aligned}$	0.50	2.35	18.3	0.90	1.59
7	$\begin{aligned} & 277.4 \\ & 260.7 \end{aligned}$	0.60	3.45	4.1	0.67	2.33
8	$\begin{aligned} & 79.5 \\ & 73.9 \end{aligned}$	1.00	4.70	1.9	0.67	2.72
9	$\begin{aligned} & 59.2 \\ & 53.0 \end{aligned}$	1.00	6.17	8.4	0.67	3.56
10	$\begin{aligned} & 11.6 \\ & 10.3 \end{aligned}$	1.00	7.70	11.9	0.67	4.41
11	$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$	1.00	9.25	0.3	0.67	5.40
12	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	1.00	10.85	0.4	0.67	6.70
13	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	1.00	12.50	0.1	0.67	7.40
14	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	1.00	13.90	0.1	0.67	8.00
15	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	1.00	15.00			

[^1]Table 21. COD. Catch predictions.

$\mathrm{M}=0.3$				
```1978 F on age groups subject to maximum exploitation Catch (tons) Spawning stock biomass (tons)}\mp@subsup{}{}{1```	$\begin{array}{r} 0.45 \\ 850 \quad 000 \\ 813 \quad 000 \\ \hline \end{array}$	$\begin{gathered} 0.45 \\ 850000 \\ 813000 \\ \hline \end{gathered}$	$\begin{array}{r} 0.45 \\ .850 \quad 000 \\ 813.000 \\ \hline \end{array}$	$\begin{array}{r} 0.45 \\ 850 \quad 000 \\ 813 \quad 000 \\ \hline \end{array}$
1979   F on age groups subject to maximum exploitation   Catch (tons)   Spawning stock biomass (tons) ${ }^{1}$ )	$\begin{gathered} 0.26 \\ 556000 \\ 868000 \\ \hline \end{gathered}$	$\begin{gathered} 0.4 \\ 822.000 \\ 868 \quad 000 \\ \hline \end{gathered}$	$\begin{array}{r}  \\ 0.6 \\ 1 \\ 1 \\ 166000 \\ 868 \quad 000 \\ \hline \end{array}$	$\begin{array}{r} \because \quad 0.42 \\ 850 \quad 000 \\ 868 \quad 000 \\ \hline \end{array}$
```1980 F on age groups subject to maximum exploitation Catch (tons) Spawning stock biomass (tons)}\mp@subsup{}{}{1```	$\begin{array}{r} 0.26 \\ 657: 000 \\ 1.454 .000 \\ \hline \end{array}$	$\begin{array}{r} 0.4 \\ 897000 \\ 1 \quad 305000 \\ \hline \end{array}$	$\begin{array}{\|ccc}  & 0.6 \\ 1 & 141 & 000 \\ 1 & 121 & 000 \\ \hline \end{array}$	$\begin{array}{r} 0.38 \\ 850000 \\ 1 \quad 291000 \\ \hline \end{array}$
$\frac{1981}{\text { Spawning stock biomass (tons) } \left.{ }^{\text {l }}\right)}$	2014000	1805000	1411000	1816000
$\mathrm{M}=0.2$				
```1978 F.on age groups subject. to maximum exploitation Catch (tons) Spawning stock biomass (tons)1)```	$\begin{gathered} 0.51 \\ 851000 \\ 699000 \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ 0.51 \\ 891.000 \\ 699000 \\ \hline \end{array}$	$\begin{gathered} \therefore 0.51 \\ 851000 \\ 699000 \\ \hline \end{gathered}$	$\begin{array}{r} 0.51 \\ 851000 \\ 699000 \\ \hline \end{array}$
```1979 F on age groups subject to maximum exploitation Catch (tons) Spawning stock biomass (tons)l)```	$\begin{array}{cc} 0.18 \\ 378 & 000 \\ 784 & 000 \\ \hline \end{array}$	$\begin{gathered} 0.3 \\ 608000 \\ 784000 \end{gathered}$	$\begin{gathered} 0.5 \\ 955000 \\ 784000 \end{gathered}$	$\begin{array}{r} 0.44 \\ 850 \quad 000 \\ 784000 \end{array}$
1980 F on age groups subject to maximum exploitation Catch (tons) Spawning stock biomass (tons) ${ }^{1}$)	$\begin{array}{r} 0.18 \\ 507000 \\ 1.575000 \\ \hline \end{array}$	$\begin{array}{r} 0.3 \\ 759000 \\ 1436000 \\ \hline \end{array}$	$\begin{array}{lc} & 0.5 \\ 1 & 063000 \\ 1 & 233000 \\ \hline \end{array}$	$\begin{array}{r} 0.37 \\ 850 \quad 000 \\ 1 \quad 305000 \\ \hline \end{array}$
1981 Spawning stock biomass (tons) ${ }^{1}$)	2787000	2350000	1774000	2056000

1) At beginning of year.

Table 22. HADDOCK. Catch predictions. $(M=0.2)$

```1978 F on age groups subject to maximum exploitation Catch (tons) Spawning stock biomass (tons) }\mp@subsup{}{}{1```	$\begin{gathered} 0.55 \\ 151000 \\ 147000 \end{gathered}$			
```1979 F on age groups subject to maximum exploitation Catch (tons) Spawning stock biomass (tons)}\mp@subsup{}{}{1```	$\begin{gathered} 0.15 \\ 63000 \\ 133000 \end{gathered}$	$\begin{gathered} 0.3 \\ 120000 \\ 133000 \end{gathered}$	$\begin{gathered} 0.45 \\ 170000 \\ 133000 \end{gathered}$	$\begin{gathered} 0.55 \\ 203000 \\ 133000 \end{gathered}$
```1980 F on age groups subject to maximum exploitation Catch (tons) Spawning stock biomass (tons)}\mp@subsup{}{}{1```	$\begin{gathered} 0.15 \\ 96000 \\ 243000 \end{gathered}$	$\begin{gathered} 0.3 \\ 164000 \\ 214000 \end{gathered}$	$\begin{gathered} 0.35 \\ 170000 \\ 189000 \end{gathered}$	$\begin{gathered} 0.55 \\ 233000 \\ 173000 \end{gathered}$
$\frac{1981}{\text { Spawning stock biomass (tons) }{ }^{1} \text { ) }}$	735000	572000	491000	378000

1) At beginning of year.

Table 23. Midwater trawl fishery of the Federal Republic of Germany trawlers in Sub-area I and Divisions IIa and IIb compared to Bottom trawl fishery.

Landings (1 000 tons) 1975-77								
COD					HADDOCK			
Year	Midwater trawl	Bottom trawl	Total FRG	$\begin{aligned} & \text { Total } \\ & \text { all } \\ & \text { countries } \end{aligned}$	Midwater trawl	Bottom trawl	Total FRG	Total   all   countries
1975	9.8	20.2	30.0	892.4	4.4	11.5	15.9	175.7
1976	14.4	10.0	24.4	867.5	12.0	4.6	16.6	137.3
1977	8.0	4.6	12.6	884.5	3.0	1.8	4.8	102.0

The Federal Republic of Germany Midwater trawl component (in \%)

	In German	In total	In German	In total
Year.	landings	landings	landings	landings
1975	33	1	28	3
1976	59	2	72	9
1977	64	1	63	3

Table 24. Mean length and mean age in catches taken by different gears in the Federal Republic of Germany fishery 1977 compared to the total international landings.



Fishing mortality on fully-exploited age groups.

[^2]

Fisning mortality on age groups subject to maximum exploitation
Figure 2. HADDOCK.
Curves of yield per recruit and spawning stock biomass per recruit for the present exploitation pattern. Age of recruitment = 3 years.


[^0]:    * Provisional figures.

[^1]:    *Upper figure: for $M=0.3$
    Lower figure: for $M=0.2$

[^2]:    Figure 1. COD.
    Curves of yield and spawning stock biomass for the present exploitation pattern assuming average recruitment.

