 by Thünen-Institut

ERRATA SHEETT

Page 24, Table 5.6. footnote: Recruitment is based on year classes 1963-72.

Page 47, Figure 5.1.A: Landings in 1976-78 have been shifted one year to the right.

This Report not to be cited without prior reference to the Council ${ }^{\mathrm{x}}$) International Council for the
C.M.1979/G: 6 Exploration of the Sea

Demersal Fish Committee

REPORT OF THE SAITHE (COALFISH) WORKING GROUP

Charlottenlund, 25 - 28 April 1979

This Report has not yet been approved by the Inter-
national Council for the Exploration of the Sea; it
has therefore at present the status of an internal
document and does not represent advice given on
behalf of the Council. The proviso that it shall not
be cited without the consent of the Council should be
strictly observed.
x) General Secretary, ICES, Charlottenlund Slot, 2920 Charlottenlund, Denmark.

CONTENTS

Page

1. PARTICIPANTS 1
2. TERMS OF REFERENCE 1
3. LANDINGS IN THE NORTH-EAST. ATLANTIC 1
4. NORTH-EAST ARCTIC 1
4.1 Landings and Changes in the Fisheries 1
4.2 Age Composition 1
4.3 Weight at Age 2
4.4 Fishing Mortality and Stock Values from VPA 2
4.5 Yield per Recruit 2
4.6 Catch Prediction and Management Options 2
5. NORTH SEA 3
5.1 Landings and Changes in the Fisheries 3
5.2 Age Composition 3
5.3 Weight at Age 4
5.4 Fishing Mortality and Stock Values from VPA 4
5.5 Yield per Recruit 5
5.6 Catch Prediction and Management Options 5
6. ICELAND 6
6.1 Landings and Changes in the Fisheries 6
6.2 Age Composition 6
6.3 Weight at Age 6
6.4 Fishing Mortality and Stock Values from VPA 6
6.5 Yield per Recruit 7
6.6 Catch Prediction and Management Options 7
7. FAROE 7
7.1 Landings and Changes in the Fisheries 7
7.2 Age Composition 8
7.3 Weight at Age 8
7.4 Fishing Mortality and Stock Values from VPA 8
7.5 Yield per Recruit 8
7.6 Catch Prediction and Management Options 9
8. WEST OF SCOTLAND 9
8.1 Landings and Changes in the Fisheries 9
8.2 Age Composition 9
8.3 Weight at Age 10
8.4 Fishing Mortality and Stock Values from VPA 10
8.5 Yield per Recruit and Spawning Stock Biomass per Recruit 10
8.6 Catch Prediction and Management Options 10
9. MIGRATION AND STOCK IDENTITY 11
TABLES 3.1 - 8.7 12
FIGURES 4.i - 8.1 46
10. PARTICIPANTS
D W Armstrong
F van Beek
T Benjaminsen
B Fontaine
K Hoydal
T Jakobsen (Chairman)
B W Jones
H H Reinsch
S A Schopka
H Schultz

U.K. (gcotland)
Netherlands
Norway
France
Denmark (Faroe Islands)
Norway
U.K. (England)
Germany, Fed.Rep.of
Iceland
German Dem.Republic

2. TERMS OF REPERENCE

At the 66th Statutory ilieeting of ICES it was decided (C.Res.1978/2:39) that the Saithe Working Group should meet at Charlottenlund 25-28 April 1979 to assess TACs for 1980.
3. LANDINGS IN THE NORTH-EAST ATLANTIC

From 1970 to 1976 the total landings of saithe from the main fishery areas in the North-East Atlantic were in the range of $640000-720000$ tonnes and averaged 675000 tonnes over these seven years (Table 3.1). Landings in 1977 were reduced to 503000 tonnes and preliminary reported landings in 1978 are 399000 tonnes representing a reduction of about 40\% from the 1970-76 level. Decreasing trends in the landings are most evident in the North-East Arctic, the North Sea and at Iceland. The reduction in catch is caused partly by restrictions imposed on the fisheries after the extension of the coastal state jurisdiction in 1977, and partly by a deterioration in the three largest stocks. The changes in the fisheries following the extended coastal state jurisdiction have severely increased the difficulties in estimating fishing mortalities and exploitation patterns for 1978 for some of the stocks.

4. NORTH-EAST ARCTIC

4.1 Landings and Changes in the Fisheries

Landings in 1970-76 were in the range of $210000-265000$ tonnes (Table 4.1 and Figure 4.1.A). In 1977 they were reduced to 183000 tonnes and preliminary reported landings in 1978 show a further reduction to 147000 tonnes. Nearly all the fishing takes place inside the area of Norwegian coastal state jurisdiction. Norway in principle accepted the recommended TAC of 183000 tonnes for 1978, but there were no restrictions on the Norwegian fisheries. Quotas were imposed on other countries under the assumption that the Norwegian landings in 1978 would remain at the 1976-77 level of 135000 tonnes. The reason why the landings in 1978 have been considerably below the TAC level is partly that the Norwegian catches were about 20000 tonnes less than anticipated and partly that some countries did not fish their full quota.

4.2 Age Composition

The age compositions used as input for the VPA are given in Table 4.2. Data for 1977 were updated but the revised age composition differed very little from the preliminary one used last year. Provisional age
compositions of landings in 1978 were available for England, Federal Republic of Germany, German Democratic Republic, and Norway, accounting for 97% of the total landings from the area.
4.3 Weight at Age

The weight-at-age data used for the catch prediction are given in Table 4.6. Applying these to the 1978 catch in numbers gave a sum of products of weight and numbers at age which was about 2% below the total catch in 1978.
4.4 Fishing Mortality and Stock Values from VPA
4.4.1 F values

Nearly 80% of the catches in 1978 were taken by Norway. Purse seine, which exploits chiefly the $2-4$ year old fish, was responsible for about half of the Norwegian landings. There are no indications that Norwegian effort was changed in 1978, whereas quota regulations have probably forced some of the other countries to reduce their effort. This would be expected to produce a slight decrease of the Fs for the age group 3 and older and this has been the basis for the choice of the terminal Fs. The Fs from the VPA are shown in Table 4.3.
4.4.2 Spawning stock, biomass and recruitment

The stock in numbers from the VPA is given in Table 4.4. Table 4.5 and Figure 4.l.B,C show the spawning stock biomass and recruitment as they appear from the VPA. Spawning stock biomass decreased rapidly after 1974, and the estimates for 1978 give lower values than previously recorded. Recruitment appears to have been below average after 1974. There is no readily apparent relationship between recruitment and spawning stock size but on the basis of the data currently available it appears that year classes of above average size have been produced by spawning stocks in excess of 360000 tonnes.
4.5 Yield per Recruit

The yield per recruit curve resulting from the data given in Table 4.6 is shown in Figure 4.1.D. The fact that restrictions have been imposed only on the trawl fishery has resulted in an exploitation pattern with an increasing relative exploitation on the younger age groups. Present level of $F=0.65$ is well above $F_{\max }=0.4$, but the potential increase in long-term yield by reducing the effort to $\mathrm{F}_{\max }$ will only be about 5%, and there is obviously much more to gain by changing the exploitation pattern towards a relatively lower exploitation on the younger age groups.
4.6 Catch Prediction and Management Options

The input data for catch prediction are given in Table 4.6. Norwegian investigations, although not very accurate, strongly suggest that the 1977 year class is below average. On this background, the figure for the 1977 year class from the VPA seemed more reasonable than the average recruitment figure and in the catch prediction average recruitment was used only for the year classes after 1977.

Although no restrictions have been imposed on the Norwegian fisheries in 1979, the quotas allotted to other countries probably will ensure that landings will not exceed the recommended TAC of 153000 tonnes. Assuming no change in effort, the catch prediction indicates a catch of 152000 tonnes in 1979 and there seems to be no reason to adopt other options for 1979 in the predictions. For subsequent years,
three management options are given (Table 4.7). These assume no change in the exploitation pattern, one option keeping F unchanged at the 1978 level through to 1981, one reducing F to $F_{\max }$ by 1981, and one reducing F to $F_{\max }$ by 1980.
The predictions made at the Saithe Working Group in 1978 showed an increase in the spawning biomass to about 400 tonnes in 1980. The new predictions indicate that the spawning stock will increase only to 281000 tonnes and that reduction in fishing effort to $F_{\max }$ level in 1980 is necessary to avoid a new reduction of the spawning stock biomass. The main reason for the change in the predictions is that the Fs on the younger age groups were underestimated in last year's report.
At the present level of F, average recruitment will produce a long-term spawning stock biomass of 280000 tonnes whereas fishing at $F_{\max }$ will give a spawning stock of about 660000 tonnes. Bearing in mind that spawning stocks below 360000 tonnes are not known to have produced above average year classes, a reduction in the effort is desirable. The Group recommends a TAC of 122000 tonnes for 1980.
5. NORTH SEA
5.1 Landings and Changes in the Fisheries

Reported landings of saithe from the North Sea in 1978 were 145022 tonnes (provisional) which can be compared with an average during the last 10 years (1969-78) of 227000 tonnes (Table 5.1 and Figure 5.1.A). The extremely abundant year class of 1973, which made a large contribution to catches from 1975, is now decreasing in importance in the fishery. In the last two years, there have been two important changes in the North Sea fishery. Firstly, there has been a redistribution of fishing between participating countries following extension of jurisdiction by coastal states. The most obvious result has been that catches of saithe by the USSR were reduced to 10000 tonnes in 1978 compared with an average of about 100000 tonnes in the period 1971-76. The second change has been a big reduction in the quantities of saithe landed by the industrial fisheries, particularly by Denmark. Landings in industrial fisheries averaged 43000 tonnes in the period 1970-76 but were only about 6000 tonnes in 1977 and 2500 tonnes in 1978. In earlier years it is probable that a large proportion of this catch was from industrial fishing directed towards saithe but since saithe has become a protected species such fisheries are now illegal.
5.2 Age Composition (Table 5.2)

Age compositions of the catches were updated for 1977 and provisional data were available for 1978. At last year's meeting of the Working Group no age composition data were available for landings by the USSR. In the updated 1977 age compositions, USSR age compositions of landings were derived from percentage age composition data submitted for publication in Annales Biologiques. Sums of products of percentage of each age group times the mean weight at age were used to determine the weight of 100 fish and the age composition of , , landings was then calculated by multiplying the percentage at each age by the ratio of the weight of landings to the weight of 100 fish. A similar procedure was adopted for USSR landings in 1978, again using data submitted to Annales Biologiques. The revision of the USSR age composition data for 1977 resulted in a revised total 1977 age composition, which differed significantly from that used last year.

For 1978, age composition data were not available for landings by Belgium, Denmark, Faroes, German Democratic Republic, Poland, and Sweden, but quantities landed by these countries amounted to only 19000 tonnes or 13% of total landings.

For both 1977 and 1978 no age composition data were available for saithe catches taken in Danish industrial fisheries. The procedure adopted for both years to obtain total age compositions was to sum all available age compositions for the human consumption fisheries and to raise this to the weight landed by all countries in the human consumption fisheries. The age composition of industrial fishery landings by Norway was then raised to the weight landed by industrial fisheries of Norway plus Denmark, and the resultant age composition of industrial landings was then added to that for the human consumption fisheries to give a total overall age composition.

The overall level of fishing mortality is believed to have been lower in 1978 compared with the immediately preceding years and an input value of 0.35 was adopted for 1978 for age groups 5 and older. For age groups $2-4$, the values used were $0.12,0.35$ and 0.35 , which are based on the average values 1972-75 for human consumption fisheries increased somewhat (and smoothed) to allow for continuing industrial landings at a low level. The input F on age group 1 was taken to be the value which gave a stock size equal to the long-term average $\left(\bar{R}_{1}(1964-73)=282 \times 10^{6}\right)$.
The values of F calculated by VPA are given in Table 5.3. Using the indicated values for 1978, the calculated values for 1977 are higher than those assumed for 1977 at the last meeting of the Group, $\overline{\mathrm{F}}_{4-14}=0.57$ compared with the assumed value of 0.4 .
Estimates of stock in numbers calculated by VPA are given in Table 5.4.

Abstract

5.4.2 Spawning stock biomass and recruitment

Spawning stock biomass (age groups 5 and older) in each year are tabulated in Table 5.5 and illustrated in Figure 5.l.B. The average spawning stock biomass in the period $1967-76$ was 360000 tonnes, an average which was elevated by particularly high levels in 1972-74. The adult stock biomass is estimated to be 260000 tonnes in 1978.

Estimates of recruitment at one year old are given in Table 5.5 and Figure 5.l.C. After a period of good recruitment (year classes 1966-68), recruitment has fluctuated very little except for the single very abundant 1973 year class. No data were available on prerecruit year class strengths and for the catch predictions the 1977 and subsequent year classes have been assumed to be of average strength $\left(\bar{R}_{I}=282 \times 10^{6}\right)$.

5.5 Yield Per Recruit

Yield per recruit (Figure 5.1.D) has been calculated using the 1978 exploitation pattern and the weight-at-age data as in Table 5.6. On this yield curve $\mathrm{F}_{\max }=0.22$.
5.6 Catch Prediction and Management Options

Catch predictions have been calculated for a range of options and the results are given in Table 5.7.

The current VPA indicates that fishing mortality in 1977 was probably at a higher level than was assumed at the previous meeting of the Working Group, and consequently stock size in 1978 was overestimated. Part of the discrepancy will be the result of the revised age composition used this year but the main cause was an underestimate of VPA input F values. A consequence of this is that if the TAC for 1979 of 200000 tonnes, as recommended by ACFM, is fully fished, this would now be expected to generate a fishing mortality on age groups subject to maximum exploitation of $F=0.51$ instead of the previously expected value of $F=0.35$.
The current (1978) level of F on age groups subject to maximum exploitation is estimated to be 0.35 which, with the current exploitation pattern, is above $F_{\max }=0.22$. There is no indication that the spawning stock biomass has reached a dangerously low level or is likely to do so. Neither is there any indication of recruitment failure in recent years.

Catch predictions were prepared for the following options:
(a) F maintained at 0.35 in 1979, 1980 and 1981
(b) F maintained at 0.35 in 1979 followed by a stepped reduction to $F=0.28$ in 1980 and $F=0.22=F_{\max }$ in 1981.
(c) F increased in 1979 to 0.51 to take the TAC of 200000 tonnes followed by a stepped reduction to $F=0.35$ in 1980 and $F=0.22=F_{\max }$ in 1981
(d) F increasing to 0.45 in 1979 with a catch intermediate between the 1978 catch and the 1979 TAC, followed by a stepped reduction to $F=0.35$ in 1980 and $F=0.22=F_{\max }$ in 1981.

Calculated catches have been corrected for the 8% discrepancy observed between reported landed weight in 1978 and sums of products of numbers x average weight by multiplying calculated catches by 1.09.
For conditions of constant recruitment at an average ($\overrightarrow{\mathrm{R}}_{1}=282 \times 10^{6}$) level, and with an exploitation pattern as in 1978, long-term
equilibrium yields and spawning stock biomass would be:

$0.22\left(=F_{\max }\right)$
0.35169
0.5

Equilibrium yield

175

162

Equilibrium spawning stock biomass (1000 t)

677
367
192

Proposed minimum mesh size changes would not be expected to have any significant effect on the saithe fisheries in the North Sea.

6. ICELAND

6.1 Landings and Changes in the Fisheries

Due to increased year class strengths and an increase in effort, landings of saithe increased from the early 1960s from about 48000 tonnes to a peak of 137000 tonnes in 1971, which was the highest saithe catch recorded from Icelandic grounds. Since then, landings have been decreasing and by 1978 (48000 tonnes) they were back at a level similar to that in the early 1960s (Table 6.1 and Figure 6.1.A). Declining catches in the 1970s are due to a series of poor year classes well below the long-term average combined, to some extent, with a decrease in fishing effort, resulting from the extension of the coastal state fisheries jurisdiction.

6.2 Age Composition

The only available age composition data for 1978 were from Icelandic catches which accounted for 89% of the total catch (Table 6.2). Bearing in mind the increase in the minimum trawl cod end mesh size to 155 mm introduced in 1977, the relatively higher abundance of 3 year old saithe in 1978 catches indicates a better incoming year class than in previous years.

6.3 Weight at Age

The weight-at-age data introduced in the 1978 Saithe Working Group Report have been unchanged (Table 6.6). By multiplying the numbers landed per age group and the corresponding weight at age, the total calculated catch landed fitted well with reported landings (0.3% difference).

6.4 Fishing Mortality and Stock Values from VPA

6.4.1 Fvalues

Due to the extension of the fisheries jurisdiction, the effort on saithe has been decreasing. This reduction of effort mainly took place when United Kingdom and vessels from the Federal Republic of Germany left Icelandic waters. The effort of the Icelandic fleet on saithe was unchanged in 1978. According to the age composition of the United Kingdom catches and catches taken by vessels from the Federal Republic of Germany in relation to Icelandic catches in recent years, the reduction in effort has been more pronounced on age groups 4 to 7 years, whereas Icelandic vessels are more directed to the older part of the stock. The terminal F values used for 1978 in the VPA input were chosen bearing this in mind.

Results of VPA indicate that the weighted fishing mortality on age groups 5 and older decreased from $F=0.3$ in the early 1960s to $F=0.2$ in the late 1960s. It increased rapidly in 1969 to a peak in 1971 ($F=0.4$). Since 1972 the fishing mortality has been declining.
6.4.2 Spawning_stock biomass_and recruitment

In the years 1960-65, the average spawning stock biomass (6+) was 127000 tonnes (Table 6.5 and Figure 6.1.B). It gradually increased in the following years to a peak of 440000 tonnes in 1969. Due to the low recruitment in the 1970 s , the spawning stock biomass has been declining and amounted to 158000 tonnes in 1978. This level is, however, still in excess of that estimated for the early 1960s. Recruitment (Table 6.5 and Figure 6.1.C) in the 1960s was well above the long-term average (76 million at 1 year old), but the 1969-74 year classes are all poor. The 1975 year class appears to be an average one and will recruit to the spawning stock in 1981.

6.5 Yield Per Recruit

Using the assumed 1978 exploitation pattern, the yield per recruit curve gives a value of $\mathrm{F}_{\max }=0.6$ on age groups subject to maximum exploitation (Figure 6.1.D). The current fishing mortality on the fully exploited age groups, subject to maximum exploitation,is estimated to be $F=0.35$.
6.6 Catch Prediction and Management Options

The catch predictions are based on the 1978 exploitation pattern which has been used as input into the VPA. No information on the strength of the 1976 year class is available. Therefore an average recruitment value for the 1969-74 period was chosen for that year class and the 1977 year class. The fishing mortality assumed for 1979 is that which gives the recommended 1979 TAC. The spawning stock in 1980 is then expected to be at the low 1960-65 average level. By decreasing the fishing mortality to $F=0.35$ in 1980, the catch will be 48000 tonnes and the spawning stock in 1981 will increase to 175000 tonnes. Alternatively, decreasing F in 1980 to $F=0.4$ shows that the catch in 1980 will be 54000 tonnes and the spawning stock in 1981 at 169000 tonnes.
7. FAROE
7.1 Landings and Changes in the Fisheries

There was a further reduction in landings of saithe from the Faroe stock in 1978 (Table 7.1 and Figure 7.1.A). This was due especially to a reduction in effort from foreign vessels, but this was to a certain extent compensated by a large increase in Faroese effort, especially by larger trawlers fishing in rather deep water.
Effort data (Table 7.2) for France indicate a reduction in the French fishery of about 50%, but it is difficult to distinguish between effort for blue ling and effort for saithe in these figures. Faroese effort figures (Table 7.2) indicate an increase in trawl effort from 1975 to 1978, whereas the effort in the gillnet and handline fishery has remained at the same level.
Although there have been these main changes in the fishery, the change in gear composition in the fleets has not changed much, as Faroese trawlers have replaced foreign trawlers and perform a fishery which is very much like the foreign one.

No catch quotas have been imposed on the Faroese fishery yet, but for foreign vessels there are restrictions in quantity and area: EEC vessels are allowed to fish 12500 tonnes in 1979, and Norway has the right to fish for saithe in a similar manner as in former years subject to a total quota of 12000 tonnes of demersal species. This would indicate a Norwegian catch about l 000-1 500 tonnes of saithe.

7.2 Age Composition (Table 7.3)

Catches by England, Scotland, Federal Republic of Germany, and Faroe have been sampled in 1978. For French and Norwegian catches no samples were available. For these catches age compositions were prepared using Faroese monthly age distributions for trawl and gillnet, respectively. Inspection of the Faroese monthly age distributions shows that the fishery in the period April to September exploits younger fish than the fishery during the rest of the year, which catches mainly rather old fish from the spawning stock

7.3 Weight at Age

Faroese data on weight at age in the catch were at hand and were compared to the ones used both in the former reports and given now in Table 7.7. Average length at age in the Faroese catch was converted to average weight by the equation $w=13.12 \times 5.4 \times 10^{-6}$. The resultant weight-at-age data for Faroese catches differ markedly from those given in Table 7.7, but as the Faroese data were based only on a single year's observations it was not thought advisable to change the weight-at-age data from those used in former years. The sum of products of numbers x weight.at age (as used in previous years) was within 1% of the reported landed weight.
7.4 Fishing Mortality and Stock Values from VPA
7.4.1 Estimates_of_F

The effort data seem to indicate a somewhat lower fishery pressure in 1978 than in 1977, so the Fs for 1978 have been chosen mainly to reflect a moderate decrease in effort. The VPA run on this basis seems not to render unlikely results (Tables 7.4 and 7.5).
The Group used last year an $F=0.35$ to predict the catches in 1978. The predicted figure was 31000 tonnes. Provisional catches for 1978 were actually about 28000 tonnes and this catch corresponds to an F for 1978 of 0.3 .

The F of 0.30 for 1978 does not produce unlikely year classes or stocks. However, no data on recruitment are available from independent sources.
7.4.2 Spawning_stock biomass_and recruitment

Spawning stock biomass as estimated from stock in numbers calculated by VPA is given in Table 7.6 and Figure 7.l.B There has been a trend of increasing spawning stock size up to a maximum level in 1973, but since then the trend has reversed and spawning stock size has now reverted to the level of the late 1960s. The increase in spawning stock biomass in the late 1960s - early 1970s follows a period of good recruitment (Table 7.6 and Figure 7.1.C). Year classes 1966-69 were all abundant year classes, but since that period recruitment has been at a lower level

7.5 Yield Per Recruit

The same yield per recruit curve applies for 1979 and onwards as that used in the last year's report, which was calculated following the introduction of the 135 mm mesh in 1978 (Figure 7.l.D). On this
curve $F_{\max }=0.45$ which can be compared with the level of $F=0.3$ estimated for 1978 .

Catch Prediction and Management Options

Catches have been predicted for 1979 to 1981, using data given in Table 7.7. Results for a range of options are given in Table 7.8.
There are two options of recruitment, one based on the long-time average, and one reflecting the apparently lower recruitment levels in recent years. In both cases is has been found realistic to assume a certain increase in effort or F for saithe in 1979. This is expected to result from increases in the numbers of trawlers in the Faroe fishing fleet which fishes on this stock.
The $F_{\max }$ on the yield per recruit curve is 0.45 , but the curve is rather flat-topped. The Group last year advised that F should not increase above the 1977 level of $F=0.35$. The justification for this was mainly that at the present apparently low level of recruitment this would mean a stable spawning stock, whereas fishing at $F_{\max }$ would mean a reduced spawning stock.
From the same kind of reasoning, the Group this year wants to make the following points:

1. That the recruitment appears still to be at a low level.
2. That it is realistic to assume that a certain increase in effort from Faroese trawlers will take place in 1979, so an increase in F from 0.3 in 1978 to at least 0.4 in 1979 must be expected.
3. That the F should not be increased above that level.

A stable spawning stock will be the basis of a stable fishery and stable catches per unit effort for the fishing fleet. It has, however, to be pointed out, that an F of 0.4 at the present level of recruitment still means a reduction of the spawning stock to a certain degree, whereas fishery with the 1978 level of $F=0.3$ would have resulted in a moderate increase in spawning stock.

WEST OF SCOTLAND
Landings and Changes in the Fisheries
Values of landings of saithe for Sub-area VI are shown in Figure 8.1.A and in Table 8.1. Since 1972, landings have fluctuated between 30000 and 40000 tonnes.

Age Composition
Final 1977 age composition data were available for 1977 from United Kingdom (England), United Kingdom (Scotland), the Federal Republic of Germany and France. These data accounted for 96% of the total weight landed in 1977. The same nations contributed preliminary data for 1978, accounting for 98% of the total landings in that year.
Serious discrepancies (up to 35%) were noticed between the landings recorded in Bulletim Statistique and the corresponding sums of products of mean weight at age with numbers landed at age for the period 1960 to 1978. Accordingly, the whole set of age composition data were adjusted so that the sum of products agreed with the Bulletin Statistique data. This produced, in general, higher values of catch at age (Table 8.2).

8.3	Weight at Age
	Values of mean weight at age for saithe in Sub-area VI are given in Table 8.7. These values are the same as those used by the Saithe Working Group previously.
8.4	Fishing Mortality and Stock Values from VPA
8.4 .1	Choice_of terminal_F
	Total fishing effort on saithe in Sub-area VI was estimated using values of landings per 100 HP days by Lorient trawlers (Table 8.5). The estimated level of fishing effort in 1978 was not very different from that in the period 1972 to 1974. Input F at age values for the VPA were therefore derived such that they produced similar values of F at age for the period 1972 to 1974. The input set of F at age derived this year did not differ greatly from that derived at last year's meeting (Table 8.3).
8.4 .2	Recruitment_and_spawning_stock biomass
	The estimated number of recruits at age 1 in each year since 1960 is shown in Table 8.6 and Figure 8.1.C. The 1975 year class appears to be of below average strength. The 1976 year class has contributed relatively large amounts to the landings at ages 1 and 2 and for this reason no adjustment was made to the terminal F at age 2 in order to produce average year class strength in 1977. The value of terminal F at age l was adjusted to produce average recruitment of 55 million (mean of values for the year classes 1971 to 1974).
	Values of spawning stock biomass (age 5 and older) are shown for each year since 1960 in Table 8.6 and Figure 8.1.B. Spawning stock biomass increased steadily from 1966 until 1973. Since then there has been a continuous decline in spawning stock biomass, although current levels are greatly in excess of those estimated for the early 1960s.
8.5	Yield per Recruit and Spawning Stock Biomass per Recruit
	Long-term yield and spawning stock biomass for average recruitment of 55 million fish are shown in Figure 8.l.D and E. The yield curve has a maximum at about $F=0.5$, but is in reality almost flat-topped. Current levels of F are very close to $\mathrm{F}_{0.1}$.
8.6	Catch Prediction and Management Options
8.6 .1	Predicted_catch_for_1979
	There is at present no reason to believe that the fishery for saithe in Sub-area VI will change in any significant manner during 1979. A catch prediction was therefore made in which it was assumed that F at age in 1979 would be the same as that estimated for 1978. Average recruitment (55 million fish at age l) was assumed for 1979.
	The predicted 1979 catch on this basis is 32700 tonnes, which is very close both to the level of catch in 1978 and to the TAC of 32000 tonnes, which the Group recommended for 1979.
	The corresponding predicted spawning stock biomass at the start of 1980 is 160000 tonnes.
8.6 .2	Management options for 1980
	All foreseeable management options for 1980 are shown in Figure 8.1.D. If the level of F at age in 1980 is the same as that in 1978, then the expected yield in 1980 is 31000 tonnes. The corresponding spawning stock biomass at the start of 1981 is 155000 tonnes. Since the stock is currently very close to $\mathrm{F}_{0.1}$, the constant F option just discussed

is more or less equivalent to maintaining F at the $F_{0.1}$ level. The assumption, that F in 1980 equals F in 1978 implies vèry similar catch levels throughout the period 1978 to 1980. Furthermore, the predicted long-term levels of catch and biomass were very similar to current levels.

On this basis, the Group suggests that a TAC of 31000 tonnes of saithe in Sub-area VI in 1980 is the best option to choose.

MIGRATION AND STOCK IDENTITY

Norwegian tagging of young saithe after 1970 has demonstrated a high rate of migration from the Norwegian coast north of $62^{\circ} \mathrm{N}$ to the North Sea. There is also a considerable migration of spawning saithe from the North-East Arctic to the North Sea. However, in spite of this, there still seems to be basically two stocks.
The data indicate that immature saithe off the Norwegian coast from $62^{\circ} \mathrm{N}$ and at least up to $64^{\circ} \mathrm{N}$ possibly can be regarded as belonging to the North Sea stock. However, the area between $62^{\circ} \mathrm{N}$ and $64^{\circ} \mathrm{N}$ is also a regular spawning ground for saithe migrating from northern Norway, and simply to extend the area of the North Sea stock to $64^{\circ} \mathrm{N}$ will therefore not necessarily improve the assessments. A combined assessment for the stocks may produce more accurate results but as long as there are basically two stocks, this is hardly desirable from a management point of view.

The migration rate of the young saithe from ICES Division IIa to the North Sea is difficult to estimate for a number of reasons. The main problems seem to be:

1) Emigration takes place chiefly from the southern part of Division IIa which is only one part of the area of the North-East Arctic stock, for which specific F values are not known.
2) Likewise, after emigration, the young saithe tend to stay on the eastern part of the North Sea plateau, where it is conceivable that the exploitation is significantly different from the average for the North Sea.
3) Z values calculated by comparing numbers of recaptures in successive years from the same experiments are in the order of $1.2-1.4$, which is about the double of the values from VPA. This may be explained by shedding of tags or by an increase in mortality of the tagged fish.
Tagging results from other areas do not give evidence of emigration at similar levels. However, although tagging experiments may not produce results that can be used directly in assessments, more information about the migration pattern is highly desirable, also because there are indications of long-term variations. In view of the close connection between the North Sea and West of Scotland areas, tagging in the western North Sea and West of Scotland would be of particular interest.

Table 3.1 Summary of total landings of Saithe from the main fishing areas (in tonnes, whole weight). This table is based on the biological data supplied to the Working Group and used in the assessments. These figures differ to some extent from the official Bulletin Statistique data, which are used for Tables 4.1, 5.1, 6.1, 7.1 and 8.1.
(IV + IIIa includes industrial fishery by-catch by Denmark and Norway)

Year	Fishing area					Total
	$I+I I$	IV+IIIa	Va	Vb	VI	
1960	136006	31515	48120	11845	8349	235835
1961	109821	35489	50826	9592	6723	212451
1962	122841	24559	50514	10454	7159	215527
1963	148036	30300	48011	12693	6609	245649
1964	198110	58669	60257	21893	13596	352525
1965	184548	73274	60177	22181	18395	358575
1966	201860	95025	52003	25563	18534	392985
1967	191191	76759	75712	21319	16034	381015
1968	107181	98179	77549	20387	12787	316083
1969	140379	115550	115853	27437	17214	416433
1970	260404	222100	116601	29110	14538	642753
1971	244732	252619	136764	32706	19246	686067
1972	214386	245801	111301	42186	29225	642899
1973	214153	225771	110888	57574	35812	644198
1974	261223	272944	97568	47188	36298	715221
1975	233453	278126	87954	41578	30949	672060
1976	242486	319758	82003	33067	41432	718746
1977	182808	194858	62026	34835	28467	502994
1978*	146997	145022	47852	28138	31158	399167

[^0]Table 4.1 Nominal catch (tonnes) of Saithe in Sub-area I and Divisions IIa and IIb, 1969-78.
(Data for 1969-77 from Bulletin Statistique)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
Belgium	-	-	-	-	-	5	47	1	-	-
Faroe Islands	20	1097	215	109	7	46	28	20	270	615
France	193	-	14536	14519	11320	7119	3156	5609	5658	3571
German Dem.Rep.	6744	29200	16840	7474	12015	29466	28517	10266	7164	6484
Germany Fed.Rep.	4355	23466	12204	24595	30338	33155	41260	49056	19985	18179
Netherlands	23		-	-	-	-	-	64	-	-
Norway	115140	151759	128499	143775	148789	152.699	122598	131675	139705	114588
Poland	-	-	6017	1111	23	2521	3860	3164	1	35
Portugal	-	-	-	-	-	-	6430	7233	783	183
Spain	-	-	13097	9247	2115	7075	11397	21661	1327	210
Sweden	-	-	-	-	-	-		-	-	-
UK (Engl.\&Wales)	13585	15469	10361	8223	6503	3001	2623	4651	6853	2790
UK (Scotland)	-	221	106	125	248	103	140	73	82	37
USSR	-	43550	39397	1278	2411	28931	13389	9013	989	305
Total	140060	264762	241272	210456	213769	264121	233453	242486	182817	146997

* Preliminary.
a) IIa includes smaller quantities taken in other areas than $I I a$, IV and IIIa,b,c,d.

Table 4.2 North-East Arctic Saithe. Input catch data for VPA.

AGE	1961	1962	1963	1964	1965	1966
1	i	1	43	1	18596	1
2	4936	124E	2815	20308	30430	7450
3	17824	37266	42850	9001	37115	22332
4	9134	11131	28925	59601	5001	54537
5	12 ¢GE	4421	588\%	13154	26300	13124
E	3789	8230	4659	2718	18142	12859
7	1332	2427	3861	3472	2861	4652
8	GES	1024	1099	2655	2:18	1374
9	520	938	1075	1254	2733	933
10	405	451	697	1221	693	365
11	380	496	452	1056	990	472
12	154	299	384	795	568	560
13	79	こ29	328	462	444	557
14	53	182	135	365	693	443
AGE	1967	1968	1563	1970	1971	1572
1	1	28:	119	1	497	1
2	6952	5297	4090	25952	19842	11608
3	29664	25196	77333	43540	77619	65178
4	24836	18384	11949	62846	59280	52389
5	35956	5161	16939	13987	26961	29145
6	fies	8262	4747	16189	555E	10186
7	5616	787	4798	5122	3592	5616
8	29×6	1513	1426	7950	2901	3547
9	1413	909	1711	2504	4352	1865
10	1397	E\%7	675	3697	2195	2:40
11	649	391	202	1696	3136	1229
12	E2S	233	149	757	2303	796
13	550	14 i	31	323	354	331
14	488	101	43	276	232	2S 1
AGE	1973	1874	1975	1976	1977	1378
1	: 94	1	1	52	121	1663
2	13820	21159	9460:	54151	316 Ec	45459
3	76296	36732	60832	125030	99049	45510
4	25206	44027	1169:	30578	34317	26401
5	26s1!	15671	16366	7947	10140	12239
E	46031	20419	4436	8712	2062	4547
7	T114	12148	780c	3435	4332	1417
8	3935	4802	E859	3212	1456	1771
9	2871	3258	2314	267s	160E	894
10	2 Cl	2505	2350	1724	263	9 Ci
11	1565	1436	1337	1891	463	609
12	-91	1444	1245	852	244	689
13	812	432	459	489	211	271
14	442	263	26	140	58	186

Table 4． 2 North－East Arctic Saithe． Fishing mortalities from VPA．

AGE		1961	1962	1963	1964	1965	1966	1967	1968	1969	1570
1		． 00	． 60	.00	.00	.86	.00	． 80	.80	.80	． 08
2		． 22	． 60	.03	． 06	． 18	． 03	． 34	． 02	.91	． 08
3		． 25	．25	． 18	． 11	． 16	． 20	.18	． 20	． 32	． 18
4		． 20	． 25	． 32	.43	.38	． 37	． 35	.16	． 14	． 48
5		． 27	．14	． 20	． 24	． 34	． 33	． 45	． 11	． 22	． 24
6		． 24	． 29	． 21	.13	． 29	． 28	． 16	． 18	． 14	． 33
7		． 09	．24	． 22	． 25	． 20	． 21	.19	.04	． 15	． 23
8		． 58	． 69	．1E	． 23	． 23	.14	.19	． 09	.08	． 36
9		． 36	－ 10	．13	． 2 z	． 38	． 15	． 21	． 08	.11	． 24
10		． 05	－ 0.0	． 10	． 21	． 24	.23	． 36	.13	.98	.35
11		． 11	． 08	． 09	． 21	． 27	． 26	． 32	． 16	． 06	． 19
12		.13	． 11	.68	． 23	.17	． 24	． 65	.14	． 08	． 33
13		． 06	－さ2	． 17	.13	.13	.27	． 39	． 29	． 02	． 26
14		． 20	．20	.20	． 30	． 30	． 30	． 30	.15	． 15	． 30
MEAN	F	FOR AGES $=$		$\begin{aligned} & 5 \text { AND } \&=14 \\ & .18 \\ & .22 \end{aligned}$		（WEIGHTED		EY STOCK		NUMEERS ）	
		． 18	．18			． 30	． 26	． 33	.12	． 66	.29
AGE		1971	1972	1973	1974	1975	1976	1977	1978		
1		.60	－ 00	． 00	.00	． 00	． 00	.00	.01		
2		.10	． 05	． 13	.11	． 24	． 20	.24	． 20		
3		.34	．56	． 47	． 50	． 52	． 69	． 70	． 65		
4		． 41	． 41	． 43	． 56	.39	． 53	． 41	． 40		
5		.39	－36	． 38	． 53	． 42	． 50	． 34	． 25		
6		． 26	． 25	． 34	． 57	． 28	.41	． 23	． 25		
7		.34	． 24	． 27	.47	． 44	． 36	． 37	． 25		
8		.19	－20	． 26	． 36	． 53	． 3.3	． 26	．こち		
9		． 37	－18	． 25	． 35	． 30	.41	． 27	． 25		
10		． 35	． 31	.42	． 36	.47	.29	． 26	． 25		
11		． 57	． 34	． 40	． 43	． 52	.41	.12	． 25		
12		． 37	． 20	． 38	． 79	． 83	． 46	． 15	． 25		
13		． 25	．15	． 50	． 37	． 53	.96	． 19	． 25		
14		． 30	． 30	． 30	.30	． 70	． 40	.27	． 25		
MEAN	F	FOR $.34$	$\begin{gathered} \text { AGES : }= \\ 4.29 \end{gathered}$	$5 \text { AND }$ $.34$	$\begin{aligned} & <=14 \\ & .48 \end{aligned}$	$\begin{aligned} & \text { (WE I } \\ & .42 \end{aligned}$	GHTED .41	$\begin{array}{r} \text { BY } 5 T \\ .30 \end{array}$	$\begin{array}{r} C K \text { IN } \\ .25 \end{array}$	NUMBER	

AGE－NATURAL MORTALITY

1	2	3	4	5	6	7	8	9	10	11	12
.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20
.20	.20										

Table 4．4 North－East Arctic Saithe． Stock size in numbers from VPA．

AGE	1961	1962	1963	1964	1965	1966
1	413318	143768	439069	246396	327476	234792
2	227967	338395	117707	359440	291731	251334
3	87458	182187	275925	93828	275960	137758
4	55520	55572	1：5640	188042	68704	192499
5	57457	37235	35425	E8688	100496	51739
6	19645	35756	26501	23751	44401	58654
7	17345	12EEG	21855	17512	16996	27235
8	14501	13003	8186	14418	11214	11340
9	9763	10999	9722	5712	9．115	7282
10	926 C	7475	$8: 59$	6991	3552	5255
11	4176	7217	5713	E052	4625	2279
12	1752	3076	5461	4276	4904	2896
13	1436	1259	2243	4125	2789	2767
14	3 E 2	1104	E25	1546	2961	1876
AGE	1967	1968	1969	1970	1971	1972
1	463 E69	431823	471326	275679	345787	
2	192230	379620	353293	385785	225706	150771
3	198049	151169	306022	285558	2924.4	28265
4	92625	136251	101034	181068	194584	170249
5	108043	53529	94990	71951	91923	106122
$\underline{6}$	30569	56710	39227	E2525	46324	106122 51061
7	36423	21312	38974	27838	36648	29331
8	18110	24763	16738	27583	18.82	21.389
9	8046	12202	18549	12688	15447	12274
10	5122	5316	3178	13644	8135	8739
11	3434	2939	3832	6906	7851	4685
12	1442	2049	2054	2955	4667	3621
13	1867	618	1462	1555	1739	2651
14	1728	1035	379	1169	983	1106
AGE	1973	1974	1975	1975	1977	1978
1	275038	516821	393830	197611	322こ2ら	184372
$\overline{2}$	123440	225096	423137	322440	161743	263704
3	220642	88599	165141	273013	215241	103938
4	7×707	1：2511	39542	80721	111861	87772
5	92385	4.150%	52711.	21964	38712	60794
5	60713	51484	19951	28474	10863	22586
7	32842	35308	23878	12346	15495	70.39
8	159E1	20228	18029	12548	7924	8797
9	14318	11385	12327	8574	7388	4441
10	3378	9140	6886	7473	4698	4605
11	$5 \geq 32$	4511	5234	3532	4599	2959
12	2735	2875	2405	2550	1913	3523
13	$2 こ 45$	1529	1070	880	1324	1346
14	$18 \% \mathrm{c}$	1114	854	465	269	854

Table 4.5 North-East Arctic Saithe. Spawning stock biomass (1000 tonnes) at the beginning of each year and recruitment (estimates from VPA of population size (millions) at lyear old of each year class).

Year/year class	Spawning stock biomass $(6+)$	Recruitment
1961	312	144
1962	360	439
1963	358	246
1964	351	327
1965	375	235
1966	407	464
1967	390	432
1968	436	471
1969	478	276
1970	571	346
1971	524	151
1972	493	275
1973	525	517
1974	494	394
1975	360	198
1976	292	322
1977	221	184
1978	219	-

Table 4.6 North-East Arctic Saithe. Data used for catch prediction.

Age group	Stock number 1978 (thousands)	Proportional fishing mortality	Average weight (kg)
1	184372	0.015	0.25
2	263704	0.308	0.34
3	103937	1.000	0.71
4	87772	0.615	1.11
5	60794	0.385	1.63
6	22586	0.385	2.33
7	7039	0.385	3.16
8	8797	0.385	4.03
9	4441	0.385	4.87
10	4605	0.385	5.63
11	3278	0.385	6.44
12	3323	0.385	7.11
13	1346	0.385	7.82
14	1894	0.385	8.92
$15+$	1475	0.385	9.50

For year classes 1978-80, average recruitment
has been used, $\overline{\mathrm{R}}_{1}(1961-73)=334 \times 10^{6}$.

Table 4.7 North-East Arctic Saithe. Catch predictions.

Year	F^{*}	Catch $(1000$ tonnes $)$	Spawning stock biomass $(1000$ tonnes $)$
1978	0.65	147	219
1979	0.65	152	265
1980	0.65	140	281
1981	0.65	155	257
1978	0.65	147	219
1979	0.65	152	265
1980	0.55	122	281
1981	0.40	107	267
1978	0.65	147	219
1979	0.65	152	265
1980	0.40	92	281
1981	0.40	114	282

* F on age groups subject to maximum exploitation.

Table 5.1 Nominal catch (tonnes) of Saithe in Sub-area IV and Division IIIa, 1969-78.
(Data for 1969-77 from Bulletin Statistique)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
Belgium	135	36	44	59	55	33	81	127	107	23
Denmark	5566	4600	11500	17000	10100	8388	10149	15111	17334	10243
Faroe Islands	2		18	182	552	581	287	425	318	213
France	24631	38873	38330	26696	32961	28619	24396	32552	41022	38103
German Dem.Rep.	5998	4250	6398	10674	7668	5816	5882	2088	2430	2404
Germany Fed.Rep	7242	6022	4217	8665	12003	20589	18622	38698	26860	25889
Iceland		18	97	4	23	5		-	12	-
Ireland	-	- ${ }^{-180}$	-	-	-	-	-	119	126	-
Netherlands	18214	20460	18136	12532	9232	14504	8917	6101	7270	5134
Norway	8159	11201	15184	23256	15219	9246	12483	17856	14949	21483
Poland	-	-	4	186	7512	22203	35304	35819	12378	5661
Spain	-	1921	4523	190	108	308	249	-	- -	-
Sweden	4322	1921 2664	4523 3162	3899	1876	1187	913	$\begin{array}{ll}1 & 271 \\ 6 & 300\end{array}$	1275	369 8
UK(Engl. + Wales)	3819	2664 5693	3162 6106	3744	3378	4353	3472	6300 13034	6822	8454
UK (Scotland) USSR	3838 32830	5293 68062	6106 110200	10797 99883	10834 83 333	10956 104500	8898 110743	13034 83669	11366 46385	14319 10
				99883		104500	110743			
Sub-total	114758	163400	217919	217767	194854	231288	240397	253170	188642	142456
By-Catch from Industrial Fisheries:										
$\text { Denmark }{ }^{\text {a) }}$		58700	34700	22600	24400	38800	27800	53684	1805	72
Norway ${ }^{\text {a }}$				5434	6517	3469	9878	13082	4392	2494
TOTAL	114758	222100	252619	245801	225771	273557	278075	319936	195377	145022

* Preliminary.
a) Data for by-catch from industrial fisheries from national laboratories.

Table 5.2 North Sea Saithe. Input catch data for VPA.

AGE	1961	1962	1963	1964	1965	1966
1	1	1	1	1	1	1
2	599	133	862	9096	73	12937
3	4340	3587	1346	9345	13724	11485
4	7144	5156	4820	5563	13270	27279
5	2213	2472	4643	4521	7873	4367
6	1719	775	975	1615	1262	3579
7	868	214	290	743	493	727
8	295	89	37	456	121	272
9	269	52	97	316	65	193
10	139	74	32	85	57	101
11	61	30	73	75	49	78
12	E1	22	105	52	29	61
13	26	7	1	59	67	35
14	9	22	1	17	26	34
AGE	1567	1968	1969	1970	1971	1972
1	1	130	1628	626	390	457
2	7668	5615	19813	2852	10147	20434
3	13874	15489	19285	37117	68102	40294
4	12787	19625	12488	74994	53348	62533
5	13184	9668	9889	12391	30131	23124
6	2085	5725	6045	19874	3717	20826
7	1450	571	3952	3779	3874	3635
8	476	446	730	2996	2682	$3: 13$
9	294	34E	489	600	1808	1901
10	14.3	164	192	326	403	1110
11	82	123	62	¢6	223	265
12	43	70	43	55	51	126
13	13	69	33	26	18	25
14	33	53	23	26	18	68
AGE	1973	1974	1975	1976	1377	1978
1	4231	3670	311	228	2586	1175
2	30315	14750	72546	23125	12993	16316
3	47715	60680	51287	223680	22567	23164
4	33780	31883	23585	51407	51801	27584
5	247ご	12431	9828	9852	12914	17237
6	15345	20595	6717	5111	4684	3557
7	8058	14504	12660	3309	3173	1257
8	1792	5028	8655	4842	2902	12:0
9	1267	$14 \hat{5}$	3299	2978	3466	807
10	1025	809	1100	1068	1895	853
11	579	412	E:	420	875	7.14
12	261	222	254	253	342	475
13	81	132	275	121	341	244
14	37	30	77	161	123	99

Table 5.3 North Sea Saithe.
Fishing mortalities from VPA.

| AGE | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 |
| 2 | .02 | .00 | .01 | .06 | .00 | .10 | .07 | .02 | .06 | .01 |
| 3 | .18 | .15 | .04 | .21 | .13 | .14 | .14 | .19 | .08 | .16 |
| 4 | .61 | .33 | .32 | .21 | .53 | .41 | .23 | .29 | .23 | .49 |
| 5 | .44 | .44 | .57 | .55 | .52 | .33 | .36 | .28 | .24 | .39 |
| 6 | .58 | .27 | .31 | .39 | .29 | .48 | .26 | .26 | .28 | .45 |
| 7 | .44 | .13 | .16 | .41 | .20 | .27 | .36 | .10 | .29 | .28 |
| 8 | .31 | .07 | .08 | .39 | .11 | .16 | .29 | .18 | .19 | .23 |
| 9 | . .29 | .08 | .10 | .39 | .09 | .25 | .26 | .35 | .30 | .23 |
| 10 | .24 | .12 | .07 | .12 | .11 | .19 | .30 | .22 | .34 | .34 |
| 11 | .35 | .07 | .17 | .22 | .10 | .22 | .23 | .45 | .12 | .25 |
| 12 | 1.65 | .20 | .39 | .17 | .05 | .17 | .18 | .31 | .26 | .17 |
| 13 | .22 | .90 | .01 | .39 | .35 | .20 | .07 | .49 | .24 | .27 |
| 14 | .30 | .30 | .30 | .30 | .30 | .30 | .30 | .30 | .30 | .30 |

MEAN F FOR AGES $?=5$ AND $\langle=14$ (WEIGHTED BY STOCK IN NUMRERS) .45 . 29.40 .46 .41 .35 .33 . 26 . 46 . 37
$\begin{array}{llllllllll}\text { AGE } & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978\end{array}$

1	.00	.00	.02	.01	.09	.09	.01	.00
2	.06	.12	.19	.07	.15	.13	.10	.12
3	.28	.35	.47	.69	.39	.31	.18	.35
4	.36	.44	.56	.66	.63	.89	.54	.35
5	.37	.27	.31	.41	.40	.60	.58	.35
6	.19	.48	.28	.46	.41	.41	.64	.35
7	.29	.29	.35	.47	.57	.36	.48	.35
8	.34	.39	.22	.38	.58	.45	.62	.35
9	.33	.42	.27	.28	.47	.40	.68	.35
10	.24	.35	.42	.28	.36	.27	.48	.35
11	.41	.25	.31	.36	.36	.33	.37	.35
12	.23	.43	.41	.19	.31	.24	.29	.35
13	.07	.17	.55	.38	.38	.24	.60	.35
14	.30	.46	.40	.40	.40	.40	.40	.35

MEAN F FOR AGES $2=5$ AND $<=14$ (WEIGHTED BY STOCK IN NUMBERS) $.33 \quad .34 \quad .39 \quad .43 \quad .48 \quad .44 \quad .57 \quad .35$

AGE-NATURAL MORTALITY

$$
\begin{array}{rrrrrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
.20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 \\
.20 & .20
\end{array}
$$

Table 5．4 North Sea Saithe． Stock size in numbers from VPA．

AGE	1961	1962	1963	1964	1965	1566
1	68318	80890	196266	141893	191599	154993
2	34521	49733	EE227	169688	116171	156867
3	29276	27722	40647	53443	123352	95647
4	17085	20060	19465	32064	35344	88622
5	676\％	7599	11756	11605	21244	17054
6	4276	3557	4005	5470	5455	18342
7	2683	1562	2215	2403	3029	3532
8	1214	1418	1414	1553	1300	2036
9	1174	729	1081	1070	ふ®こ	856
10	728	719	550	797	592	647
11	225	471	522	421	57E	434
12	81	133	358	362	278	428
13	142	13	89	199	249	209
14	38	93	4	72	110	144
AGE	1967	1968	1969	1970	1971	1972
1	424102	436820	469971	237653	236391	240269
2	126897	347223	3575 で1	382573	194009	193188
3	115754	97631	275217	274834	310548	149684
4	67468	83095	55567	211205	191576	193099
5	48083	45732	59929	42445	105725	108949
E	10.346	27599	271i1	32799	23629	59511
7	52 c	6344	17447	16762	17104	15999
8	2074	3034	4679	10731	10326	16521
9	1422	1276	2058	3174	6999	6045
10	509	306	734	1245	2059	4699
1 i	439	370	589	428	727	1323
12	285	285	133	426	273	335
13	295	195	171	122	295	178
14	145	224	37	110	76	2CE
AGE	1973	1974	1975	1976	1977	1978
1	281607	710445	255169	179341	196903	282456
2	196303	226740	578349	208634	$146 E 26$	158880
3	$1 こ 9748$	133419	172331	408141	149571	108380
4	85363	71647	55036	9506e	135072	102461
5	102017	4.0473	30243	23975	32065	64213
E	68403	61304	21964	16659	10817	14698
7	30 c 90	42207	31728	11972	9053	46.99
8	ころこ1	17374	21555	14648	6835	4569
9	5829	5431	97：2	9904	7551	2958
10	3244	3626	3082	4994	5435	316
11	2359	1736	2こ41	22，2	3128	2－ッチ
12	845	1411	1051	1252	1483	1776
13	210	457	955	632	s2c	30e
14	120	100	256	535	409	368

Table 5.5 North Sea Saithe.
Spawning stock biomass (1000 tonnes) at the beginning of each year and recruitment (estimates) from VPA of population size (millions) at 1 year old of each year class. Estimates of year class strength of the most recent year classes are less reliable.

Year /year class	Spawning stock biomass age groups 5+)	Recruitment
1961	50	81
1962	48	196
1963	60	142
1964	66	192
1965	84	155
1966	93	424
1967	156	436
1968	200	469
1969	259	238
1970	289	236
1971	405	240
1972	509	281
1973	566	710
1974	518	255
1975	409	179
1976	297	
1978	253	

Table 5.6 North Sea Saithe. Data used for catch predictions.

Age group	Stock number 1978 (thousands)	Proportional fishing mortality $(1978-81)$	Average weight (kg)
1	282456^{*}	0.013	0.3
2	158880	0.34	0.45
3	108330	1.00	0.75
4	102461	1.00	1.16
5	64213	1.00	1.79
6	14698	1.00	2.48
7	4669	1.00	3.38
8	4569	1.00	4.2
9	2998	1.00	4.91
10	3168	1.00	5.65
11	2752	1.00	6.45
13	1776	1.00	7.16
14	906	1.00	8.07

* Recruitment based on the average for the year classes 1964-73.

Table 5.7 North Sea Saithe. Catch predictions.

Year	F^{*}	Catch (1000 tonnes)	Spawning stock biomass $(1000$ tonnes $)$
1978	0.35	145	287
1979	0.35	147	327
1980	0.35	157	314
1981	0.35	165	305
1978	0.35	145	287
1979	0.35	147	327
1980	0.28	129	314
1981	0.22	116	327
		145	287
1978	0.35	201	327
1979	0.51	131	268
1980	0.35	100	260
1981	0.22		287
1978	0.35	145	327
1979	0.45	181	284
1980	0.35	145	276
1981	0.22	104	

* F on age groups subject to maximum exploitation.

Table 6.1 Nominal catch (tonnes) of Saithe in Division Va, 1969-78.
(Data for 1969-77 from Bulletin Statistique)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
Belgium	3995	4153	3490	2250	2131	2371	1638	1615	1448	1068
Faroe Islands	119	2386	2046	857	1467	1712	1366	3267	3013	4250
France	8122	2046	3987	-	-	94	32	51	-	-
German Dem.Rep.	357	3527	2637	3471	-	-	-	-	-	-
Germany , Fed.Rep.	34732	27806	40628	30918	38565	18627	13820	13785	10575	-
Iceland	53988	63882	60080	59945	56567	65169	61430	56811	46973	42531
Netherlands	52	-	-	-	-	-	-	-	-	-
Norway	-	-	-	-	-	-	6	5	4	3
Poland	-	-	113	150	-	-	-	-	-	-
Spain	-	-	59	-	-	-	-	-	-	-
$\begin{aligned} & \text { UK (Engl. + } \\ & \text { Wales) } \end{aligned}$	13665	10634	21767	13152	11874	8845	8643	6024	13	-
UK(Scotland)	1605	2402	1743	545	509	731	1021	443	-	-
USSR	65	-	5	-	-	-	-	-	-	-
Total	116700	116836	136555	111288	111113	97549	87956	82001	62026	47852

[^1]Iceland Saithe.
Input catch data for VPA.

AGE	1961	1962	1963	1964	1965	1966
2	530	145	402	73	41	31
3	4271	1534	6134	3041	2003	946
4	3936	4395	2314	11712	4825	2990
5	4875	3861	2518	3586	7589	3283
6	1961	37.44	2902	2301	2158	4117
7	588	1019	1869	1185	1324	1285
8	311	419	797	559	642	739
9	240	230	329	237	353	390
10	246	245	271	145	164	235
11	139	143	254	107	102	133
12	116	83	193	92	85	59
13	24	28	75	59	81	102
14	20	15	こ2	33	52	73
AGE	1967	1968	1969	1970	1971	1972
2	196	1	20	13	7	49
3	1116	836	1572	287	476	555
4	3400	2505	4395	5622	3931	3786
5	5591	3562	5706	4999	10221	6584
6	4326	6318	6518	6126	6736	8646
7	4931	3207	9136	E178	6694	4178
8	1200	3008	2796	5934	5045	3320
9	550	E21	1843	1689	$4 こ 72$	2098
10	330	343	451	1191	859	1421
11	169	215	100	299	887	361
12	73	103	110	171	345	328
13	104	79	32	92	56	79
14	65	41	4.4	70	63	68
AGE	1973	1974	1575	1976	1977	1978
2	25	111	16	29	5	0
3	219	12 Ec	526	329	59	528
4	1768	3404	2997	3234	2099	1193
5	5:55	2348	2479	3045	2058	2346
E	7677	3164	1829	2530	1201	1500
7	7372	3452	3496	2154	1935	1223
8	2E16	3384	2994	2367	1068	926
5	1635	1303	1434	1530	1525	518
10	871	824	710	1064	958	554
11	412	351	325	295	538	459
12	231	141	176	191	166	269
13	80	43	102	54	71	134
14	22	13	30	68	12	8 8.

Table 6.3 Iceland Saithe.
Fishing mortalities from VPA.

AGE		1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
2		. 82	.00	.01	. 00	.00	. 00	.90	.00	.00	.90
3		. 15	. 0 E	. 08	. 06	. 02	. 01	.02	.02	. 02	. 00
4		. 20	. 27	. 11	. 23	.13	.03	. 07	. 05	.10	.09
5		. 34	. 34	. 21	. 25	. 23	. 13	.11	. 09	. 16	. 17
6		. 33	. 47	. 40	. 30	. 24	. 18	. 24	.17	. 25	. 25
7		. 20	. Es	. 45	. 28	. 29	. 22	. 35	. 29	.40	.40
8		.13	. 21	. 38	. 24	. 24	. 26	. 32	.37	. 43	. 49
9		.13	. 17	. 26	.18	. 23	. 22	. 31	. 28	.41	. 51
10		. 2 E	. 18	. 24	.17	.19	. 23	. 30	. 33	. 34	. 51
11		. 26	.19	. 29	. 14	. 18	. 23	. 26	. 32	. 15	. 39
12		. 54	. 2 E	. 42	.16	.15	.17	. 19	. 25	. 27	. 41
13		. 29	. 24	. 39	. 22	. 21	. 29	.43	. 32	. 12	. 39
14		. 30	. 3 e	. 30	. 38	. 30	.30	. 30	. 30	. 36	.40
MEAN	F	FOR $.20$	$\begin{gathered} \text { AGES : }= \\ , 33 \end{gathered}$	$\begin{aligned} & 5 \text { AND } \\ & .32 \end{aligned}$	$\begin{aligned} & s=14 \\ & .2 G \end{aligned}$	$\begin{aligned} & \text { CNEI } \\ & .23 \end{aligned}$	$\begin{aligned} & \text { ITED } \\ & .17 \end{aligned}$	$\begin{array}{r} \text { EY } 5 \mathrm{~T} \\ .19 \end{array}$	$\begin{array}{r} K I N \\ .18 \end{array}$	NuMBE $.28$). 31
fGE		1971	1972	1973	1974	1975	1976	1977	1978		
2		.00	.08	. 08	.00	.00	. 00	. 00	.00		
3		. 91	.02	.91	. 06	.02	.01	.00	.01		
4		. 07	. 11	. 10	. 20	. 18	.19	.12	. 98		
5		. 23	.19	.21	.19	. 22	. 23	. 25	. 20		
E		. 35	.34	. 33	.13	. 22	. 35	. 27	. 20		
7		. 49	. 38	. 48	. 27	.34	. 44	. 24	. 30		
8		. 67	. 48	. 44	. 43	. 40	.41	. 40	. 35		
9		. 81	. E6	. 46	. 40	. 32	. 35	. 51	. 35		
10		. E2	. 71	. 65	. 44	. 40	. 42	. 41	. 35		
11		. 33	. 51	. 46	. EO	.31	. 25	. 39	. 35		
12		1.12	1.17	. 73	. 28	. 70	. 31	. 26	. 35		
13		. 42	. 84	1.83	.28	. 33	1.06	. 18	. 35		
14		.50	. 60	. 60	. 56	. 40	.40	. 35	. 35		
MEAN	F	FOR .40	$\begin{gathered} \text { AGES }= \\ .33 \end{gathered}$	5 AND $.35$	$\begin{aligned} & <=14 \\ & .27 \end{aligned}$	$\begin{gathered} 4 \text { (NEI } \\ .30 \end{gathered}$	$\begin{array}{r} \text { GHTED } \\ .36 \end{array}$	$\begin{array}{r} B Y \\ S T \\ .31 \end{array}$	$\begin{array}{r} \text { CK IN } \\ .25 \end{array}$	NUMRERS	

AGE-NATURAL MORTALITY

2	3	4	5	6	7	0	9	10	11	12	13
.20	.20	.20	.20	.20	.29	.20	.20	.20	.20	.20	.20
.20											

Table 6.4 Iceland Saithe.
Stock size in numbers from VPA.

AGE.	1961	1962	1963	1964	1965	1966
2	38532	102832	58045	115578	85820	83969
3	33055	31969	S4061	55347	94561	70226
4	24929	23215	24052	63290	42571	756:1
5	18755	16122	1451:	17606	41278	30505
6	7637	10973	9730	9614	11159	26956
7	3570	4491	5628	5362	5803	7219
8	2504	2400	2761	2932	3324	3561
9	2233	2016	1588	1545	1898	2144
10	1386	1E12	1398	1004	1051	1236
11	632	914	1699	921	691	713
12	303	400	513	E71	641	474
13	104	145	250	334	467	448
14	85	64	93	140	220	309
AGE	1967	1968	1963	1970	1971	1372
2	74442	110298	79268	699E2	39957	31591
3	68720	60771	90303	64881	49896	25339
4	56647	55255	49000	72514	52861	40421
5	E0018	43311	4288	36154	54299	40544
6	22016	44098	32247	29973	25097	35259
7	13370	14133	30413	29538	19929	14498
8	4754	10E:1	8ES8	16792	11271	9581
9	2251	25:4	5987	4005	8357	4721
10	1404	1348	1745	3249	2258	3035
11	800	253	796	1015	1593	991
12	464	503	505	$56{ }^{\circ}$	563	$5: 5$
13	326	314	319	315	306	151
14	275	174	186	233	175	165
AGE	1973	1374	1975	1976	1377	1978
2	31300	32112	29841	23694	71504	0
3	25920	25604	26190	24417	19373	58538
4	20236	20942	19818	20968	19694	15208
5	2sege	14973	14081	13526	14255	14232
E.	27320	19600	10145	9297	8337	9280
7	21098	16011	13247	6SEO	5340	5206
8	8120	10 EET	1008.4	7706	3521	3440
9	4869	4302	5698	5504	4185	1924
10	1990	2521	2353	3377	3132	2058
11	1216	851	1325	1289	1810	1795
12	480	626	383	733	750	999
13	231	133	385	156	477	483
14	53	36	120	226	45	327

Table 6.5 Iceland Saithe.
Spawning stock biomass (1000 tonnes) at the beginning of each year and recruitment estimates from VPA of population size (millions) at 1 year old of each year class. (Estimates of year class strength of the most recent year classes are less reliable.)

Year/Year class	Spawning stock biomass $(6+)$	Recruitment
1960	107	125
1961	111	83
1962	132	141
1963	135	105
1964	131	103
1965	146	90
1966	226	135
1967	274	97
1968	389	74
1969	440	38
1970	435	39
1971	395	38
1972	374	39
1973	358	36
1974	313	29
1975	267	
1976	223	178
1978	158	

Table 6.6 Iceland Saithe.
Data used for catch predictions.

Age group	Stock number 1978 (thousands)	Proportional fishing mortality (1979-1981)	Average weight (kg)
3	49000^{*}	0.03	1.12
4	15808	0.20	1.96
5	14232	0.57	3.05
6	9100	0.57	4.34
7	5206	0.86	5.38
8	3440	1.00	6.55
9	1924	1.00	7.64
10	2058	1.00	8.63
11	1705	1.00	9.52
12	999	1.00	10.29
13	498	1.00	10.97
14	327	1.00	11.55

* Recruitment of 1975 year class based on the average for year classes 1957-74. Recruitment of year classes 1976 and 1977 taken to be 24.5×10^{6} (average 1969-74).

Table 6.7 Iceland Saithe. Catch prediction results.

Year	F^{*}	Catch $(1000$ tonnes $)$	Spawning stock biomass $(1000$ tonnes $)$
1978	0.35	48	158
1979	0.46	59	151
1980	0.35	48	129
1981	0.35	48	175
		48	
1978	0.35	59	158
1979	0.46	54	151
1980	0.40	47	129
1981	0.35		169

[^2]Table 7.1 Nominal catch (tonnes) of Saithe in Division Vb, 1969-78.
(Data for 1969-77 from Bulletin Statistique)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
Belgium	-	-	-	-	-	-	-	6	-	-
Faroe Islands	4835	2694	5653	5646	2973	3726	2517	2560	5153	15892
France	7899	11036	12394	24006	22676	20457	23980	15367	17038	8128
German Dem.Rep.	-	-	-	-	-	130	26	-	-	-
Germany, Fed.Rep.	4676	2211	2254	3440	9329	6661	5229	2605	3086	1088
He therlands	-	-	63	-	-	-	491	232	58	-
Norway	378	1495	1839	470	355	1660	486	2232	1279	1124
Poland	-	-	-	-	4050	1925	815	1007	-	-
Spain	-	-	-	423	390	500	654	117	-	-
UK(England \& Wales)	4303	3066	3305	2453	7527	3827	2428	3063	2613	557
UX(Scotland)	5346	8608	7198	6225	10131	8302	4950	5860	5608	1349
USSR	-	-	-	-	-	-	-	16	-	-
Total	27437	29110	32706	42663	57431	47188	41576	33065	34835	28138

[^3]Table 7.2 Faroe Saithe. Effort data.

Year	French effort* trawl hours x horsepower/100	Faroese trawlers 1) Hours trawled
1974	23740	(no directed fishery)
1975	37171	
1976	34679	2213
1977	39185	5135
1978	14629	4860

* Includes effort for
e.g. blue ling.

1) Trawl effort with saithe as target species.

Table 7.3 Faroe Saithe．
Input catch data for VPA．

AGE	1961	1962	1963	1964	1965	1966
1	3	1	8	1	1	1
2	138	73	97	97	112	68
3	183	562	614	584	996	488
4	379	542	340	1908	850	1540
5	483	617	340	1506	1798	1201
E	403	495	415	E17	965	1686
7	216	286	406	572	510	806
8	129	131	202	4ご	467	377
9	116	129	174	179	306	294
10	82	113	158	150	261	295
11	45	71	34	100	156	156
12	27	29	163	83	120	94
13	6	13	61	47	89	52
14	1	16	8	30	30	34
AGE	1367	1963	1969	1970	1971	1972
1	2	1	1	2	1	1
2	154	222	55	774	723	217
3	595	614	1191	1445	2857	2714
4	796	1689	2086	627%	3316	1784
5	13 E4	1116	2cs4	1558	5585	2586
6	792	1095	1414	1478	1005	2742
7	1192	548	1118	899	823	1529
3	473	E55	589	730	469	1305
9	217	254	580	316	326	1217
10	196	128	233	241	164	743
11	97	89	115	86	100	330
12	75	59	100	48	54	133
13	38	40	36	46	13	28
14	11	29	30	15	18	28
AGE	1973	1974	1975	1976	1977	1978
1	4	5	1	1	0	0
2	1650	133	189	143	229	18
3	2515	3504	2062	3178	2087	646
4	6253	412 E	3361	3217	3301	1803
5	7075	4011	3801	1720	2071	1573
6	3478	2784	1939	1250	1273	474
7	1534	1491	1945	877	766	414
8	693	E40	714	641	632	489
9	550	368	302	468	460	475
10	403	340	192	こころ	354	5.4
11	215	197	193	141	220	433
12	103	124	126	96	74	237
13	25	15	64	60	94	129
14	21	44	41	54	68	99

AGE		1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
1		.00	. 00	.80	.00	. 00	.00	. 00	. 00	. 60	.60
2		.01	. 06	.01	. 00	.81	.80	.01	. 01	. 8 a	. 02
3		. 02	.05	. 03	. 05	.05	.03	.63	. 03	.03	. 05
4		. 06	. 98	. 04	.14	.09	.11	. 06	.10	.15	. 25
5		. 11	. 13	. 08	- 24	. 18	.17	.13	.10	.18	. 15
6		.13	.15	. 12	. 20	. 24	. 27	. 16	. 15	. 19	.17
7		. 11	.13	.18	. 23	.25	.33	.31	.16	. 22	.17
8		. 11	. 09	. 13	. 29	. 26	.30	. 33	. 26	. 26	. 22
9		. 11	.15	.16	. 16	. 35	.36	. 28	.29	. 42	. 22
10		.11	.15	. 23	. 21	. 28	. 41	. 32	. 26	.49	.31
11		.10	.14	. 18	. 29	. 35	. 36	. 35	. 25	. 40	. 33
12		. 29	. 65	. 55	. 24	. 66	. 36	. 29	.37	.49	. 29
13		.05	. 22	. 25	. 23	. 44	. 69	. 25	. 25	. 41	. 43
14		. 20	. 20	. 20	. 20	.30	.30	. 30	. 30	.30	. 30
MEAN	F	FOR . 11	$\begin{gathered} \text { GES }>= \\ .13 \end{gathered}$	$\begin{aligned} & 5 \mathrm{AND} \\ & .14 \end{aligned}$	$\begin{aligned} & \ell=14 \\ & .23 \end{aligned}$	$\begin{aligned} & \text { (WEI } \\ & .23 \end{aligned}$	GHTED .25	$\begin{gathered} \text { BY STOC } \\ .20 \end{gathered}$	$\begin{aligned} \text { CK IN } \\ .16 \end{aligned}$	NUMRERS $.22$	$.18$
AGE		1971	1972	1973	1974	1975	1976	1977	1978		
1		.00	. 08	. 00	.00	.00	. 00	. 00	. 00		
2		. 02	. 81	. 08	.91	. 01	.01	. 03	.03		
3		. 09	.10	. 12	. 25	. 18	. 19	. 22	. 11		
4		. 14	. 07	. 33	. 29	. 40	. 48	. 32	. 30		
5		.36	. 16	. 45	. 37	.48	.36	. 65	. 30		
6		. 14	. 31	. 33	. 32	. 31	. 29	. 50	. 30		
7		. 14	. 33	.30	. 21	. 19	. 22	. 29	. 30		
3		.13	. 34	. 24	. 19	. 16	.17	. 25	.30		
9		.15	. 45	. 23	. 20	.13	. 15	. 17	.30		
10		.17	. 57	. 32	. 22	. 15	. 13	. 16	.30		
i 1		. 20	. 58	. 32	. 26	. 18	. 16	. 18	.30		
12		. 35	. 46	. 36	.36	. 26	.13	.12	.30		
13		.12	. 31	.14	. 26	. 25	.19	. 18	.30		
14		.30	. 40	. 40	. 40	.40	. 35	. 35	. 30		

MEAN F FOR AGES >5 AND $<=14$ (HEIGHTED RY STOCK IN NUMEERS) .24 . 28.36 . 29 . 29 . 24 . 34 . 30

AGE-NATURAL MORTALITY

$$
\begin{array}{rrrrrrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
.20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 \\
.20
\end{array}
$$

Table 7．5 Faroe Saithe．
Stock size in numbers from VPA．

AGE	1961	1562	1963	1964	1965	1966
1	30564	21776	31959	30063	37834	32072
2	15453	25021	17827	26158	24612	31024
3	8345	12ら28	20419	14508	21329	20050
4	7446	6670	9743	16163	11261	16564
5	5265	5755	4972	7675	11514	8453
6	3556	3875	4155	3764	4529	7883
7	2298	2548	2727	3028	－ 2525	3167
8	1375	1687	1829	1867	1564	1610
9	1209	1009	1263	1315	1147	1242
10	338	385	7 E	877	915	664
11	520	612	E23	439	383	569
12	120	$3 E 5$	437	425	276	337
13	125	74	289	207	273	114
14	E	77	43	182	127	144
AGE	1967	1966	1969	1970	1971	1972
1	55432	52576	57207	49494	36262	28503
2	26257	$48 \mathrm{ES7}$	43044	46836	49521	30173
3	25339	21359	39630	35192	37647	32523
4	15575	20208	16933	$3: 376$	27509	28246
5	$12: 73$	12361	15022	11983	20042	19534
5	6835	3737	9114	16233	8407	11394
7	4342	4967	E165	6188	7647	5978
8	1869	2375	2836	4042	4257	5023
5	975	1145	1847	1792	2653	3062
10	753	EOE	677	992	1183	1078
11	366	446	381	340	595	E2i
12	326	208	285	209	20：	397
13	152	199	117	144	128	116
14	47	i 23	127	64	76	93
AGE	1973	1974	1975	1976	1377	1978
1	28472	29732	17539	10499	820	0
2	23335	16758	24338	14359	8595	Eic
3	24513	17617	13600	19756	11622	6830
4	24180	17802	1127：	9278	13313	76.37
5	21525	14179	1086E	6212	4713	7954
6	13661	1125	8098	5496	3541	2098
7	ESE4	86.0	0733	4814	3371	1754
8	3520	4152	5388	4571	3：52	2071
9	2940	2255	28ころ	3727	3165	20：
10	1595	1912	$15: 8$	2039	2639	2：77
11	873	944	1269	1079	1468	1834
12	377	521	595	858	749	1044
13	206	216	315	374	F1E	540
14	79	145	13E	201	253	419

Table 7.6 Faroe Saithe.
Spawning stock biomass ('000 tonnes) at the beginning of each year and recruitment numbers (millions) at 1 year old of each year class.

Year/year class	Spawning stock biomass $(5+)$	Recruitment
1960	56	31
1961	60	22
1962	67	32
1963	70	30
1964	77	38
1965	89	32
1966	90	59
1967	99	53
1968	111	57
1969	131	49
1970	134	37
1971	162	29
1972	179	20
1973	187	30
1974	168	18
1975	153	
1976	130	
1977	112	

Table 7.7 Faroe Saithe.
Input data for catch predictions.

Age group	Stock number 1979 (thousands)	Proportional fishing mortality $(1979-81)$	Average weight (kg)
2	27000^{*}	0.00	0.67
3	22099^{*}	0.20	1.22
4	17039^{*}	0.86	1.88
5	5510	1.00	2.62
6	4812	1.00	3.40
7	1218	1.00	4.18
8	1064	1.00	4.95
9	1256	1.00	5.69
10	1220	1.00	6.38
12	1321	1.00	7.02
13	1112	1.00	7.62
14	609	1.00	8.15
15	331	1.00	8.64

* Recruitment based on the average for year classes 1969-73.
(For the second run $\overline{\mathrm{R}}_{2}(1959-73)=29000 \times 10^{-3}$ has been used.)

Table 7.8 Faroe Saithe. Catch predictions.

Year	F	$\begin{aligned} & \text { Recruitment }=\text { av. } 1959-73 \\ & 29000 \times 10^{-3} \text { age } 2 \end{aligned}$		$\begin{aligned} & \text { Recruitment }=\text { av. } 1969-73 \\ & 27000 \times 10^{-3} \text { age } 2 \end{aligned}$	
		Catch (t)	Spawning stock biomass (t)	Catch (t)	Spawning stock biomass (t)
1979	0.40	36484	118608	35714	116235
1980	0.40	35064	113811	33730	109565
1981	0.40	32641	112493	32934	106919
1979	0.40	36484	118608	35714	116235
1980	0.45	38642	113811	37169	109565
1981	0.45	36897	108498	32926	103093
1979	0.40	36484	118608	35714	116235
1980	0.30	27423	113811	26382	109565
1981	0.30	29110	121040	26243	115106

Table 8.1 Nominal catch (tonnes) of Saithe in Sub-area VI, 1969-78.
(Data for 1969-77 from Bulletin Statistique)

[^4]Table 8.2 West of Scotland Saithe. Input catch data for VPA.

AGE

1961
1562
1963
1964
1965
1966
2
199
3609
3954
1183
574
267
71
83
63
42
12
25
5

1970
1971
197 モ
$A G E \quad 1967 \quad 1968$

1	3
530	65
2829	3221
3377	3025
2665	1585
371	321
625	196
125	167
61	38
39	29
10	15
15	9
11	5
8	3

1
413
2445
5656
1847
624
701
130
98
27
22
10
10
5
1
38
3431
2804
2168
715
289
235
49
68
24
24
14
5

1	58
406	5499
1470	8703
4715	1558
2008	1789
1151	798
493	2592
383	600
318	119
55	105
65	20
23	26
32	7
11	5

1975
1976
1977
1978

23	78
227%	4399
9115	10454
3243	3245
1147	2454
1107	1477
947	818
878	626
313	704
207	365
184	474
182	213
219	208
27	221

184	55
1591	8619
$5 i 27$	4631
2998	3579
2146	1679
931	897
756	368
523	317
394	204
401	396
363	487
141	334
75	261
$14!$	164

Table 8.3 West of Scotland Saithe.
Fishing mortalities from VPA.

AGE	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
1	.00	. 06	.00	. 00	.80	.00	.00	.00	. 09	.00
2	.01	. 62	.81	.00	. 01	. 08	. 21	. 00	.81	. 00
3	.14	.11	.10	. 24	.11	.14	.10	. 07	. 06	. 03
4	. 28	. 36	. 13	. 27	. 50	. 24	.19	.16	.17	.10
5	. 24	. 26	. 19	. 24	. 27	. 41	. 13	.11	. 13	. 09
6	. 33	. 21	. 18	.38	. 22	. 15	.14	.06	- ${ }^{6}$. 07
7	. 26	. 31	.15	. 24	. 47	. 99	. 14	.10	.06	. 03
8	.15	.21	. 37	.15	. 18	.11	.07	. 05	.09	. 03
5	. 24	. 11	. 20	. 24	. 31	. 07	. 18	.03	. 04	. 04
10	. 67	. 26	.02	. 27	. 23	. 29	.10	.12	. 03	. 03
11	.18	. 02	. 15	.18	. 51	. 12	. 12	. 05	. 13	.93
12	. 40	.15	. 02	.07	. 05	.13	. 14	. 08	.64	. 20
13	. 85	. 45	. 05	. 03	. 14	. 05	. 21	. 66	.12	. 08
14	. 08	. 08	. 88	. 03	. 08	. 03	. 08	.08	.88	. 88

AGE	1971	1972	1973	1974	1975	1976	1977	1973
1	.00	.00	.00	.81	.00	.00	.00	.00
2	.01	.16	.06	.18	.05	.14	.08	.16
3	.06	.31	.87	.37	.33	.32	.23	.35
4	.14	.08	.44	.20	.26	.19	.14	.25
5	.09	.07	.09	.28	.13	.32	.19	.11
6	.06	.06	.10	.03	.19	.24	.29	.11
7	.06	.18	.09	.06	.11	.21	.18	.11
8	.06	.10	.00	.12	.08	.10	.20	.11
9	.04	.62	.07	.10	.04	.09	.08	.11
10	.06	.02	.06	.18	.04	.07	.07	.11
11	.04	.03	.04	.09	.08	.11	.09	.11
12	.63	.02	.29	.96	.08	.13	.05	.11
13	.43	.01	.04	.07	.08	.12	.06	.11
14	.08	.11	.41	.11	.11	.11	.11	.11

MEAN F FOR AGES $\geqslant=5$ AND $\langle=14$ (WEIGHTED BY STOCK IN NUMBERS) $.07 .08 \quad .09 \quad .11 \quad .10 \quad .17 \quad .14 \quad .11$

AGE-NATURAL MORTALITY

1	2	3	4	5	6	7	8	9	10	11	12
.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20
.20	.20										

Table 8．4 West of Scotland Saithe． Stock size in numbers from VPA．

AGE	1961	1962	1963	1964	1965	1966
－ 1	38034	27317	74787	52877	46817	80848
2	14437	31139	22773	61229	43290	38330
3	7208	11765	24911	18444	49951	35152
－ 4	5165	5151	8554	18488	11854	36700
5	1896	3181	2539	6119	11581	5871
E	214E	1217	2005	1979	3946	7272
7	1037	1261	806	1365	1105	2586
8	672	652	755	566	877	564
9	654	472	434	428	399	502
10	：760	419	347	292	276	240
11	189	1350	2E4	277	182	179
12	50	130	1085	186	189	90
13	165	27	92	868	141	148
－14	14	129	14	72	688	100
AGE	1967	1968	1969	1970	1971	1972
1	65495	76654	43371	54591	48789	43175
2	66192	53622	62756	35508	44694	39944
3	31293	53715	43843	51007	29637	36226
4	25034	23070	41071	33689	38666	22447
5	2357	16915	16162	28495	25054	274.07
E	3203	16002	12419	1：568	21374	18761
7	$5: 18$	2288	13097	9605	88こて	1846：
8	1939	3627	1697	10091	7603	6778
9	412	1474	2819	1272	8049	5879
10	453	282	1173	2219	997	6303
11	180	340	205	336	1755	767
12	136	$: 30$	265	148	745	1375
13	65	93	99	208	100	595
14	115	43	72	72	150	53
AGE	1973	1974	1975	1976	1977	1978
2	62839	66362	46737	27890	73097	55196
2	35296	51424	53792	38247	22764	59680
3	27750	27276	35167	41986	27349	17262
4	21837	15737	：5469	20600	24982	1777\％
5	16973	1i4SE	10593	974E	13944	17752
6	2632も	12764	7164	7539	5776	5484
7	14591	15488	10046	4826	4925	3891
B	1：ここ4	10911	11956	7371	3210	3352
9	$5 \operatorname{sog} 3$	$8 こ め 2$	7594	8997	5470	2：57
10	4706	3825	61.1	E181	6731	$4 \leq 23$
$1:$	5665	3625	2613	4833	4713	5149
12	010	3880	2704	1977	3528	3531
13	i：05	275	367	2050	1．2\％	2759
14	$\therefore 75$	087	205	2337	¢ 4 1	：190

Table 8.5 West of Scotland Saithe.
Calculation of total international fishing effort, 1971-78.

Year	Tonnes/loo horse power days - Lorient trawlers	Total landings	Total effort in Lorient units	Effort relative to 1978
1971	0.26	19863	76396	0.64
1972	0.27	29225	108241	0.40
1973	0.29	35812	123490	1.03
1974	0.32	36238	113244	0.94
1975	0.30	30949	103163	0.86
1976	0.32	41432	129475	1.08
1977	0.28	28467	101650	0.85
1978	0.26	31158	119838	1.00

Table 8.6 West of Scotland Saithe.
Spawning stock biomass (1000 tonnes) at the beginning of each year and year class strength (millions of fish) of each year class.

Year/year class	Spawning stock biomass	Recruitment at age 1
1960	34	38
1961	31	28
1962	31	75
1963	30	53
1964	36	47
1965	49	81
1966	46	65
1967	80	77
1968	105	43
1969	132	55
1970	177	49
1971	219	43
1972	258	63
1973	274	66
1974	270	47
1975	253	28
1976	240	$73)$
1977	209	
1978	200	

Table 8.7 West of Scotland Saithe. Input data for catch predictions.

Age group	Stock number l978 (thousands)	Proportional fishing mortality	Average weight (kg)
	55196^{*}	0.0031	0.48
1	59680	0.457	0.52
2	17202	1.000	0.85
3	17778	0.714	1.15
4	17752	0.314	1.66
5	9484	0.314	2.42
6	3891	0.314	3.24
7	3352	0.314	4.23
8	2157	0.314	5.06
9	4123	0.314	6.77
10	5149	0.314	6.78
11	3531	0.314	7.44
12	2759		7.86
13	1100		
14			

* Recruitment based on average for year classes 1971-74.

Values for 1980 and 1981 predicted. See text for assumptions

Fishing mortality for age groups subject to maximum exploitation.

Figure 6.1 Saithe - Division Va.

Tonnes $x 10^{-3}$

1975 value $=$ mean value for year classes 1957-74 1976 and 1977 values = mean values for year classes 1969-74
class

(average 1970-73)

Fishing mortality for age groups subject to maximum exploitation

[^0]: * Preliminary

[^1]: * Preliminary

[^2]: * F on age groups subject to maximum exploitation.

[^3]: * Preliminary.

[^4]: * Preliminary.

