ERRATA SHEETT

Digitalization sponsored
by Thünen-Institut

Table of Contents: add paragraph "3.2.7. Catch predictions".
Page 34, Table 3.2.3: in the sub-heading of the third column from the left change "tonnes/hours" to read "ton-hours".

Page 49, Table 4.1.10: total landings in 1978 should read "95.7".
Page 71, Table 5.2.8: in Option A4, mesh size should be " 75 " mm instead of " 80 " mm.
Page 76, Figure 3.2.1.D: F_{78} arrow should be at 0.7 .

International Council for the Exploration of the Sea

C.M.1979/G:7

Demersal Fish Committee

REPORT OF THE NORTH SEA ROUNDFISH WORKING GROUP

Charlottenlund, 7 - 11 May 1979

Abstract

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.

[^0]
CONTENTS

Page

1. PARTICIPANTS AND TERMS OF REFERENCE 1
1.1 Participants 1
1.2 Terms of Reference 1
2. GENERAL MANAGEMENT CONSIDERATIONS 2
3. COD STOCKS 4
3.1 North Sea Cod 4
3.1.1 Catch trends 4.
3.1.2 Age composition 4
3.1.3 Recruitment 4
3.1.4 Weight at age 4
3.1.5 Fishing mortality and stock size 5
3.1.6 Yield per recruit 5
3.1.7 Catch predictions 5
3.1.8 Management options 6
3.2 Cod in Division VIa 6
3.2.1 Catch trends 6
3.2.2 Age composition 6
3.2.3 Recruitment 6
3.2.4 Weight at age 7
3.2.5 Fishing mortality and stock size 7
3.2.6 Yield per recruit 7
3.2.8 Management options 7
3.3 Cod in Divisions VIId and VIIe 8
3.4 Cod in Divisions VIIb, c and VIIg-k 8
4. HADDOCK STOCKS 8
4.1 North Sea Haddock 8
4.1.1 Catch trends 8
4.1.2 Age composition 8
4.1.3 Recruitment 9
4.1.4 Weight at age 9
4.l.5 Fishing mortality and stock size 9
4.1.6 Yield per recruit 10
4.1.7 Catch predictions 11
4.1.8 Management options 11
4.2 Haddock in Division VIa 11
4.2.1 Catch trends 11
4.2.2 Age composition 12
4.2.3 Recruitment 12
4.2.4 Weight at age 12
4.2.5 Fishing mortality and stock size 12
4.2.6 Yield per recruit 13
4.2.7 Catch predictions 13
4.2.8 Management options 14
4.3 Haddock in Divisions VIId and VIIe 15
4.4 Haddock in Divisions VIIb,c and VIIg-k 15
Page
5. WHITING STOCKS 15
5.1 North Sea Whiting 15
5.1.1 Catch trends 15
5.1.2 Age composition 15
5.1.3 Recruitment 16
5.1.4 Weight at age 16
5.1.5 Fishing mortality and stock size 16
5.1.6 Yield per recruit 17
5.1.7 Catch prediction 17
5.1.8 Management options 17
5.2 Whiting in Division VIa 17
5.2.1 Catch trends 17
5.2.2 Age composition 18
5.2.3 Recruitment 18
5.2.4 Weight at age 18
5.2.5 Fishing mortality and stock size 18
5.2.6 Yield per recruit 18
5.2.7 Catch prediction 18
5.3 Whiting in Divisions VIId and VIIe 19
5.4 Whiting in Divisions VIIb, c, and VIIg-k 19
6. SKATES AND RAYS 19
7. REDUCTION IN RECRUITMENT DUE TO INCREASED PREDATION AT HIGH BIOMASS LEVELS 19
8. SHOULD THE NORTH SEA FISHERTES FOR COD, HADDOCK AND WHITING BE TREATED AS A MIXED FISHERY; T0 WHAT EXTENT ARE THE Fs ON THE THREE SPECIES INTER- RELATED? 20
9. IS THE NORTH SEA HADDOCK STOCK SUFFERING FROM RECRUITMENT OVERFISHING? 20
10. SEQUENTIAL TAGGING EXPERIMENTS 21
11. SPAWNING STOCK BIOMASS AND RECRUITMENT 21
12. EFFECTIVE MESH SIZES IN USE 21
REFERENCES 21
TABLES 2.1-6.2 23
FIGURES 3.1.1-5.2.3 74
APPENDIX 1 90
APPENDIX 2 92

1. PARTICIPATION AND TERMS OF REFERENCE

Participants

D W Armstrong	UK (Scotland)
T Benjaminsen	Norway
J E Beyer	Denmark
R de Clerck	Belgium
N Daan	Netherlands
J P Hillis	Ireland
T Jakobsen	Norway
B W Jones (Chairman)	UK (England)
F Lamp	Federal Republic of Germany
G Lefranc	France
P Lewy	Denmark
C T Macer	UK (England)
P Sparre	Denmark
G Wagner	Federal Republic of Germany

V M Nikolaev attended part of the meeting as ICES Statistician.

1.2 Terms of Reference

At the 1978 Statutory Meeting it was decided (C.Res.1978/2:47) that the North Sea Roundfish Working Group should meet at ICES headquarters on 7-11 May 1979 to:
(a) assess TACs for 1980 for cod, haddock and whiting in Sub-areas IV, VI and VII (excluding VIIa, VIIf and VIIg);
(b) assess the current exploitation status of the stocks of skates and rays in Sub-areas IV and VI and advise on regulatory measures needed, if any;
(c) determine year class strengths for cod, haddock and whiting from data collected from the North Sea Young Herring Surveys.

Subsequently, ACFM asked the Group:

1. What reduction in recruitment might be expected, due to a possible increase in predation, from reducing F to the $F_{\text {max }}$ level on each of the three gadoid species?
2. Should the North Sea fisheries for cod, haddock and whiting be treated as a mixed fishery; to what extent are the Fs on the three species inter-related?
3. Is the North Sea haddock stock suffering from recruitment overfishing?

In addition, ACFM asked the Group to consider, time permitting, the following questions:

1. Are there any sequential tagging experiment data available which should be re-examined with a view to estimating natural mortality rate, and to obtain better insight into the terminal F problem?
2. What spawning stock biomass yields the maximal recruitment?
3. What are the present effective mesh sizes in use, as estimated from the age of recruitment in cohort analysis?

2. GENERAL MANAGEMENT CONSIDERATIONS

Currently much of the advice on the regulation of fish stocks is based on the most recent stock assessment interpreted in relation to a yield per recruit curve. This approach has a number of serious shortcomings. At the simplest level a single stock yield per recruit curve is only one of a family of curves and the appropriate curve will vary according to changes in the exploitation pattern and/or weight at age data. Each yield per recruit curve will have a singular value of $F_{\max }$ and $F_{0.1}$. Changes in yield per recruit curves from one year to another may result in significant changes in the estimate of $F_{\max }$ and this will result in different management recommendations when these are determined on the basis of yield per recruit curves.
An improvement would be to determine management advice in relation to a yield curve. A yield curve would incorporate a stock/recruitment relationship, corrections for predation of young age groups by older age groups, density dependent growth, and age or density dependent natural mortality etc. To be able to refer to a yield curve when considering management advice would obviously represent a major advance, but at the present time there are very few stocks, if any, where the science is sufficiently far advanced for an approximately true yield curve to be constructed. Changes in exploitation pattern would, however, also result in a range of yield curves for a single stock.

A yield curve such as described above on a single stock basis would still suffer from the disadvantage that interactions between species are ignored and some kind of multi-species assessment technique is required to overcome this limitation.
A number of workers have drawn attention to the limitations of the yield per recruit model. One consequence of low levels of fishing mortality predicted by a yield per recruit model is an increase; often a considerable increase, in stock biomass. Workers have questioned whether the ecosystem is capable of supporting such large stock biomasses.
This aspect was discussed by R Jones (1976, 1978) and Andersen and Ursin (1977). In the introduction of his 1976 paper Jones writes:
"An essential feature of the Beverton \& Holt 'constant parameter model' is that in its simplest form, it is an unlimited food model. Beverton and Holt were well aware of this, as are most fishery biologists who use this model. The problem however, has always been to know when results are acceptable, and when they ought to be modified to take account of the effects of food limitation. The greatest difficulty arises when forecasting yields for levels of fishing effort or mesh size very different from those in current use. If fishing effort is made very small for example, an unlimited food model usually predicts relatively large increases in stock biomass. If such results are applied to several species simultaneously, the possibility of food limitation invalidating the overall result could be a very important one."
and from page 7:

[^1]Similar conclusions were given by Andersen and Ursin (1977), based on their multi-species model.
A second aspect of this problem was discussed by Daan (1975), R Jones (1954, 1975 and 1978), Corp and Houghton (1976) and Andersen and Ursin (1977).
Assuming the ecosystem can supply the round fish stocks with food, what will the effect of effort reductions on round fish be on the commercial prey species of round fish?

Sparre had considered this problem in relation to the North Sea roundfish stocks, basing his study on data from the 1978 Working Group report. . He summarises his findings in Tables $2.1,2.3$ and as follows:
"Adult cod and whiting are known to be predators on fish, whereas haddock seem to prefer benthic animals. Daan (1975) found that on average about 50% of the food of adult cod consisted of mackerel, cod, whiting, haddock, herring; plaice and sole. Also, commercially important crustaceans, such as Nephrops and shrimps, contribute to the diet of cod.
If F is reduced to $\mathrm{F}_{\max }=0.3$, the spawning stock biomass of cod will be 1.3 million tonnes, according to yield per recruit considerations.
A cod eats three times its own weight per year (Daan, 1975, Table VIII), e.g. in the North Sea a stock of 1.3 million tonnes of cod would eat about 3.9 million tonnes of food. Assuming 35% of cod food to be commercial species (Daan, 1975, Tables VIII and XIII), the effect of a reduction of effort on the cod stock can be summarised as shown in Table 2.3. Thus, if yield per recruit considerations are applicable to cod, a gain in the cod fishery (from a reduction of F_{1977} to $\mathrm{F}_{\text {max }}$) of 91000 tonnes would at the same time lead to losses of at least ten times this magnitude in other fisheries. If the extra 1145 thousand tonnes of fish eaten by a cod stock of 1264 thousand tonnes were not eaten by cod, they could later be caught, and the yield from these fish would be more than 1145 thousand tonnes (according to yield per recruit considerations for prey of cod, if not eaten by cod)."

By drawing attention to the limitations of the yield per recruit model the Group wishes to emphasise the potential dangers of extrapolating from the present level of exploitation on.ta particular yield per recruit curve to values beyond a limited range around that present level and particularly of basing stock management on a potentially variable $F_{\max }$ criterion.
The Group hopes that every encouragement will be given to the development of alternative models and assessment techniques with particular emphasis on stock and recruitment studies, predation models and multi-species assessment techniques.
Apart from the problems raised above, it should be pointed out that, especially in the case of haddock and whiting, to regulate the fishery through limitations on total allowable catches is, in fact, not
feasible. This is because the mesh sizes currently in use in these fisheries are such that undersized fish are caught and discarded and also because discarding of legal-sized fish also occurs on quite a large scale. The degree to which fish are discarded depends on many factors. Of these the only one which can be controlled is the size of mesh used in the fishery. Given that mesh sizes are increased sufficiently, all fish caught would be of legal size or greater and thus, at least potentially, total allowable catch might equal total allowable landings. The level of the latter can be regulated.
A secondary problem in fisheries with high discard rates is that any enforced reduction in fishing mortality, by whatever means, will probably result in a change in discarding practice as regards the legalsized fish. At present, this Working Group assumes that discarding practice will be unchanged if fishing effort is reduced. If this is not the case and, in particular, if the fishermen decide to keep only (say) the larger fish, then the basis on which the TAC has been worked out is invalidated.

3. COD STOCKS

3.1 North Sea Cod

3.1.1 Catch trends (Table 3.1.1 and Figure 3.1.1.A)

After a period of declining landings from the peak in 1972, provisional landings of 260000 tonnes in 1978 showed an increase of about 40% over those in 1977. The 1978 figure is about 10% higher than the TAC agreed between EEC and Norway (236000 tonnes). The increase is partly due to the recruitment of the 1976 year class, which appears from the present data to be the largest on record.

3.1.2 Age_composition

Data for the years up to and including 1975 were unchanged. The data for 1976 were modified to include Dutch discards. Data for 1977 were updated and a provisional age composition for 1978 produced. Age composition data for 1978 consumption landings were provided by Belgium, Denmark, England, France, Netherlands and Scotland. For industrial landings, Norway supplied length data and for discards Netherlands supplied age data. Age compositions for countries supplying only weights landed/discarded were derived by comparison with similar fleets. Age composition data used in VPA are given in Table 3.1.4.

3.1.3 Recruitment

Estimates of 163 million and 130 million for the 1977 and 1978 year classes respectively at age 1 were available from the IYHS results (Table 3.1.2). A value for average recruitment of 216 million was derived from VPA using the period 1963-75 and this value was used for the 1979 year class in 1980.
Recruitment has shown considerable fluctuation in recent years (Figure 3.1.1.B) but no trend is discernible. The year classes of 1969, 1970 and 1976 have been particularly strong.

3.1.4 Weight_at_age

Values for consumption landings were the same as those used last year; they gave a close sum-of-products (SOP) comparison with reported landings. The values for industrial landings were obtained from Norwegian length
and those for diacards from Dutch length data. For converting to weight, the relationship $\mathrm{W}=0.0104 \mathrm{I}{ }^{3}$ was used throughout. For use in the catch prediction programe, mean weights were adjusted so that the SOP equalled the reported weights landed or discarded. The maximum adjustment necessary was only 3% (Table 3.1.7).
No adjustment to mean weights was made in considering an increase in mesh size of 5 mm , since the effect on cod is judged to be negligible.

Fishing_mortality and_stock size
A value of $M=0.2$ was used throughout. A preliminary VPA run was made using input F values in 1978 which were the same as those used as 1977 input values last year. From the results of this run, average F values for the years 1973-75 were calculated and used as new input values. This procedure was repeated until input values stabilised, and these values were taken as a. reference point.
In order to determine what changes in F values might have occurred in 1978 relative to the period 1973-75, trends in effort were examined (Table 3.1.3) using the method described in Appendix 1. The data suggest that effort has decreased; there is a clear trend and the 1978 value is about 20% less than in the period 1973-75. The correlation between the effort index and VPA F values since 1970 is not statistically significant, but there appears to be a common trend. In the absence of better indications of trend in F, it was decided to reduce the reference level (73-75) F values by 20% in arriving at estimates of F in 1978. The F value at age 1 in 1978 was adjusted to correspond to the population number estimated from IYHS. VPA input values used for 1978 and calculated for earlier years are given in Table 3.1.5. Values from VPA of stock size in numbers are given in Table 3.1.6.

3.1.6 Yield per recruit

Curves for yield per recruit and stock biomass per recruit are given in Figure 3.1.1.D. The data used (exploitation pattern, mean weight per age group, $M=0.2$) are as used in the catch predictions (Table 3.1.7). It is assumed that these parameters are unaffected by a mesh change in 1980.
Although the conventional yield per recruit curve is given, the Group has severe reservations about its applicability, as explained in Section 2.

3.1.7 Catch predictions

The input data for catch predictions were the catches, mean weights and F values per age group in the consumption (landings, discards) and industrial fisheries in 1978 (Table 3.1.7). Discards and industrial values are relatively unimportant in this stock.
Forecasts were made under 2 assumptions for 1979 and 4 assumptions for 1980. An increase in mesh size to $75 / 80 \mathrm{~mm}$ will have a negligible effect on cod, so no changes in exploitation patterns were necessary. The results of catch predictions are given in Table 3.1.8.
Two options were necessary for 1979, since the revised data indicate that the TAC recommended by ACFM (183 000 tonnes) does not correspond to their management objectives. Option A assumes that the TAC will be adhered to in 1979 and this necessitates an F value of 0.45 , a reduction of 39% on 1978 . The ACFM management objective
of a 10% reduction in F from 1978 to 1979 is given in Option B, in which an F of 0.67 yields a catch of 248 thousand tonnes.
The reason for the increase in the predicted catch in 1979 for a stated management option is that the predicted spawning stock biomass (age 4 and older fish) at the start of 1979 is now much larger than was indicated by last yearls assessment. In particular, the 1976 year class is indicated as being extremely abundant. It should be noted, however, that the new predicted biomass depends to a large extent on the reduced 1978 input F values.
For 1980, there are four options for which catches have been calculated. Option 4 assumes no increase in mesh size but this has no effect for this stock. Options 1 to 3 involve F changes relative to 1979 of nil, a 20% reduction and a 34% reduction to the $F_{\text {max }}$ level as requested by ACFM.
3.1.8 Management_options

All options considered involve reductions in fishing effort in 1980 compared to the level in 1978, which was estimated to have become reduced relative to the period 1973-75. Of these options Bl requires the smallest reduction in effort but even this one should lead to an increase in biomass in 1981 beyond the level observed in the early 1970s. All other options are expected to lead to even larger increases in biomass.
Although the effect of such increase on other fish stocks cannot at present be evaluated quantitatively, it is bound to result in a corresponding increase in the food consumption by the cod stock. A considerable proportion of this increased food requirement will have to come from commercially important species (cf. Section 2). In managing the cod stock some caution is required.
In this respect option Bl, which would require a revised TAC for 1979 of 247000 tonnes and allows for 220000 tonnes to be taken in 1980 would limit the biomass increase. Alternatively to stabilise the catch a TAC of 230000 tonnes for both years could be preferable.
However, if the 1979 TAC is adhered to it could be argued that the 1980 TAC should be increased considerably in order to prevent the biomass from building up rapidly.
The spawning stock-recruitment scatter diagram is shown in Figure 3.1.2.
3.2 Cod in Division VIa
3.2.1 Catch trends

Landings (Table 3.2.1 and Figure 3.2.1.A) have remained fairly constant at around 13 thousand tonnes since 1970. The 1978 landings figure of nearly 15 thousand tonnes is about 36% higher than the revised figure recommended by ACFM (11 000 tonnes).

3.2.2 Age composition (Table 3.2.4)

Pre-1977 data were as used previously. 1977 data were revised and provisional age compositions for 1978 were provided by England, Scotland and Ireland. France provided a length composition which was converted to age with English age/length keys.

3.2.3 Recruitment

In the absence of (1) a recruitment survey and (2) correlation between recruitment in Sub-area IV and Division VIa , average recruitment of
7.2 million fish at age l was assumed for the year classes 1977, 1978
and l979. This was calculated as the average VPA value for the
period 1966-75. There is an indication of a slightly increasing
trend in recruitment in Figure 3.2 .1. B but it was thought advisable
not to allow for this in predicting recruitment in 1979 and 1980.

No adjustment to mean weights was made in considering mesh changes to $75 / 80 \mathrm{~mm}$, which will have a negligible effect on this stock.

3.2.5 Fishing mortality and stock size

A value of $M=0.2$ was used throughout. A reference level of F values for the period 1973-75 was calculated as described in para. 3.1.5. An index of international effort for the period 1970-78 was calculated in the same manner as for North Sea cod (Appendix 1) and the data are given in Table 3.2.3. The effort index in 1978 is 53% greater than the average for the period 1973-75. However, the validity of this increase is open to question, since it results largely from the data for one fleet (England) which takes a small part of the catch and in addition the international effort index does not correlate with VPA F values. In these circumstances, it was decided to use the average F values for the period 1973-75 as input to VPA (Table 3.2.5).
The F value at age l in 1978 was adjusted to produce a stock number corresponding to average recruitment. Values from VPA of stock in numbers are given in Table 3.2.6.

3.2.6 Yield per recruit

This is shown in Figure 3.2.1.D. The parameters used were the same as those used in the catch prediction (Table 3.2.7). The reservations referred to in para. 3.1 .6 also apply to this stock.
3.2.7 Catch predictions (Table 3.2.8)

Prediction options were the same as in para. 3.1.7. The new assessment indicates that a catch of 8000 tonnes in 1979 (the recommended TAC) will necessitate a reduction in fishing mortality of 50% relative to 1978. The F value necessary is 0.35 which is below the $F_{\text {max }}$ of 0.36 . Of the standard options for 1980, only that for Option 3 ($F_{\text {max }}$) has been included since the others also involve F values below $F_{\max }$.
A revised TAC for 1979 with the same objective as was previously used ($\mathrm{F}_{79}=0.9 \mathrm{~F}_{78}$) would yield a catch of 13.0 thousand tonnes.

3.2.8 Management_options

In 1980, the management options included give predicted catches ranging from 8.5 to 13.4 thousand tonnes. In recent years, the spawning stock biomass (age 4 and older fish) has been increasing and for.all options considered the prediction is for this trend to continue. There appears to be no need to reduce fishing mortality to safeguard the spawning stock.

A spawning stock-recruitment scatter diagram is shown in Figure 3.2.2.

No account is taken in the above assessment of the stock in Division VIb. No analytical assessment was possible for Division VIb , so that if the TAC is set for the whole of Sub-area VI an allowance will have to be made for Division VIb on the basis of average catches (see Table 3.2.2). A value of 1200 tonnes was suggested last year as an appropriate allowance for Division VIb.

3.3 Cod in Divisions VIId and VIIe

Table 3.3.1, which gives landings since 1969, shows the mean landings during the last ten years to be of the orler of 4700 tonnes with, however, 6940 tonnes in 1977 and 11147 tonnes in 1978 which are apparently due to the abundant 1976 year class which was also very strong in the North Sea. French data indicate that year class strengths in the English Channel are correlated with those in the North Sea. French biostatistical data collected since 1974 do not yet constitute a long enough series for use in VPA. Enough data to carry out a stock assessment for this region should be available in a few years.
3.4 Cod in Divisions VIIb, c and VIIg-k

Landings in the last decade (Table 3.4.1) have declined from 8830 tonnes in 1969 to about 2300 tonnes in 1978, with a mean level of about 5000 tonnes. The bulk of the catch is taken by France (over 80% up to 1972 and $60-75 \%$ since then). Some data have been collected on the mainly inshore Irish component of the catch but not enough so far to permit the use of VPA.
4. HADDOCK STOCKS
4.1 North Sea Haddock
4.1.1 Catch trends

Total international landings (Figure 4.1.l.A and Table 4.1.1) declined continuously from approximately 670000 tonnes in 1970 , when the abundant 1967 year class predominated in the fishery, to about 175000 tonnes in 1975. In 1976, when the 1974 year class first entered the human consumption fishery, catches increased to 205000 tonnes. During 1977 and 1978, catches again declined. The 1978 catch level of 90000 tonnes is the lowest in the last ten years.
4.1.2 Age composition

Age composition data for 1977 were revised and preliminary data were compiled for 1978 (Table 4.1.4). Data submitted to the Working Group accounted for 85% of the total landed weight for 1977. In addition, Netherlands and United Kingdom (Scotland) provided age compositinn data on discards while United Kingdom (England) provided an estimate of the weight of haddock discarded by English vessels. For 1978, Belgium, France, Netherlands, United Kingdom (England) and United Kingdom (Scotland) provided age composition data for their human consumption fisheries and Denmark and Norway provided age composition data on the industrial fishery by-catch. Together, these
data accounted for 91% of the total landings. Scotland provided age composition data on discards and Netherlands and United Kingdom (England) provided estimates of the total weight of haddock discarded in their respective fisheries.

4.1.3 Recruitment

Data on recruitment of North Sea haddock were available from the International Young Herring Surveys for 1978 and 1979 (Table 4.1.2). The estimated level of recruitment at age 1 in 1978 was 678 million and that for 1979 was 793 million. Both of these year classes are of above average abundance.
As stated in para. 4.1.5, F at ages 0 and 1 in 1978 was adjusted to agree with these data. The implied number of fish in the sea at age 0 in 1977 and 1978 are 882 million and 1244 million, respectively. A value of 622 million fish at age 0 has been assumed for the purpose of making prediction runs, this value being the average number of 0 group from the VPA for the period 1960-75, excluding the very high values for the 1962, 1967 and 1974 year classes.
Figure 4.1.1.B and Table 4.1 .2 show the historical series of recruitment at age 1 from 1964 to 1978. Figure 4.1 .2 shows the stock and recruitment scatter diagram for North Sea haddock.

4.1.4 Weightatage

Values of mean weight at age in the consumption, industrial and discard components of the catch are shown in Table 4.1.9.
For the 1977 data the sum of products for the human consumption fishery was 1% higher than the landed weight. The corresponding sum of products for the industrial fishery was 4% lower than the landings.
For 1978, the consumption fishery sum of products was 9% higher than the landings figure and the industrial fishery sum of products was 10% higher than the landings. The values of mean weight at age shown in Table 4.1.9 for consumption and industrial catches for 1978 have been appropriately adjusted to make the sum of products agree with the estimated total landings.

4.1.5 Fishing_mortality and stock size

A value of $M=0.2$ was assumed for all age groups. A trial VPA was carried out using the same input F values as were used at the 1978 meeting. The average values for the period 1973-75 were then computed and reintroduced iteratively as input F values.
Relative fishing effort values were computed using the method described in Appendix 1. These values are shown in Table 4.1.3. There is a clearly declining trend in these values, although the Group could not accept that the level of effort in 1978 was as low as $30-40 \%$ of that in the period 1973-75. The landings data for 1978 do, however, substantiate the belief that effort in 1978 is lower than that in the period 1973-75. Only France, Belgium, Federal Republic of Germany and United Kingdom landed amounts in 1978 similar to those in 1973 to 1975. The Group, lacking other precise information, decided that input F values for 1978 should be 20% less than the average value from the VPA for the period 1973 to 1975 (Table 4.1.5).
F values at ages 0 and 1 were adjusted to produce the recruitment values at age 1 as described in para. 4.1.3.
Values of spawning stock (age 2 and older fish) biomass are shown in Figure 4.1.1.C and Table 4.1.7. Spawning stock size declined greatly between 1969 and 1972 as the exceptionally large 1967 year class passed out of the fishery. Since 1972, the spawning stock has been at a fairly stable level of 200 to 300 thousand tonnes except in 1976 when the large 1974 year class first recruited to the spawning stock and increased the latter to approximately 440000 tonnes.

4.1.6 Yield per recruit

Yield and biomass per recruit curves were estimated on the basis of the exploitation pattern which is expected to exist in 1980 (Table 4.l.8). The yield per recruit curve was calculated using the total fishing mortality rates (Table 4.l.9), and yield, therefore, includes discards as well as landings. It is expected that a legal minimum mesh size of 80 mm will be enforced for vessels fishing for human consumption in 1980.
On this basis the F at age array estimated for 1978 was changed to allow for an increase in mesh size in the human consumption fishery from 75 to 80 mm in 1980. To do this, the mean length of haddock caught by the human consumption fishery was estimated from the human consumption mean weight values shown in Table 4.l.9 using the equation $\bar{L}=(\bar{w} / 0.009)^{1 / 3}$.
The proportion retained at each mean length by an 80 mm mesh was divided by corresponding values for a 75 mm mesh (selection factor $=$ 3.4, selection range for $75 \mathrm{~mm}=2.1 \mathrm{~cm}$. Selection range for $80 \mathrm{~mm}=2.3 \mathrm{~cm}$ (ICES, Doc. C.M.1974/F:36)). This resulted in the following correction factors:

Age	Correction for mesh change
0	0.00
1	0.57
2	0.73
3	0.98
≥ 4	1.00

Human consumption Fs and industrial by-catch Fs were then calculated for 1978 using the relationship:

$$
\begin{aligned}
& F_{h, t}=\left(C_{h, t} /\left(C_{h, t}+C_{i, t}\right)\right) \times F_{o, t} \\
& F_{i, t}=F_{o, t}-F_{h, t}
\end{aligned}
$$

where $F_{h, t}=$ human consumption F at age t
$\mathrm{F}_{\mathrm{i}, \mathrm{t}}=$ industrial by-catch F at age t
$F_{o, t}=$ total international F at age t in 1978
$C_{h, t}=$ human consumption catch in number at age t
$C_{i, t}=$ industrial by-catch in numbers at age t
The values of human consumption F in 1978 were then multiplied by the corresponding retention ratios listed above to produce a set of human consumption Fs modified in accordance with the
proposed mesh changes. These values were then added to the industrial Fs to give the modified total international F at age array for 1980.

Using this F at age array and the values of mean weight at age shown in Table 4.1 .8 , a yield per recruit curve and a biomass per recruit curve were calculated. These are shown in Figure 4.1.l.D. $F_{\max }$ on the yield per recruit curve is 0.26 . This is a considerable change from that estimated last year when $F_{\text {max }}$ was 0.5 .
The yield per recruit curve was calculated using the total fishing mortality rates (Table 4.l.9) and yield, therefore, includes discards as well as landings.

4.1.7 Catch predictions

In all of the catch forecasts it was assumed that the recommended TAC for 1979 of 83000 tonnes would be taken. This implies that F at age in 1979 will be reduced by 5% from the estimated 1978 level.
For 1980, four options were assessed:

1) $\mathrm{F}_{80}=\mathrm{F}_{79} ;$ mesh change 75 to 80 mm in 1980
2) $F_{80}=0.8 \times F_{79} ;$ mesh change 75 to 80 mm in 1980
3) $F_{80}=F_{\max }$; mesh change 75 to 80 mm in 1980
4) $\quad \mathrm{F}_{80}=\mathrm{F}_{79}$; no mesh change in 1980.

Option 4 thus provides a set of baseline statistics from which to assess short-term losses as a result of the assumed mesh and effort changes. The results of these options are shown in Table 4.1.10.
It should be noted that the option discussed for other stocks where $F_{79}=0.9 \times F_{78}$ (essentially a revision of the 1979 TAC) is not required ${ }^{9}$ for North ${ }^{8} 8$ ea haddock since taking the 1979 TAC will produce an almost identical reduction in F in 1979.

4.1.8 Management options

The acceptable option would appear to lie somewhere between Options Al and A2, i.e. a TAC between 78000 and 66000 tonnes. Adopting the upper limit should ensure that F does not increase from the expected 1979 level and will result in a spawning stock biomass at the start of 1981 at the same level as that estimated for the start of 1979. Choosing the lower level of TAC would result in a somewhat increased spawning stock biomass at the start of 1981.

Option A3 involves a severe reduction in catch and appears to be unjustified as there seems at present to be no reason to build up the spawning stock biomass to substantially higher levels as there is no evidence of recruitment overfishing (see Section 9).
4.2 Haddock in Division VIa
4.2.1 Catch trends

Landings of haddock from the West of Scotland (Division VIa) (Table 4.2.1, Figure 4.2.1.A) increased to 46000 tonnes in 1971 when the very abundant 1967 year class was contributing to the fishery. Subsequently, catches declined to a minimum of 13500 tonnes in 1975 after which catches again showed an improvement for two years when the 1974 year class recruited to the fishery. Provisional catches reported for 1978 were 16000 tonnes compared with 19000 tonnes in 1977. The

ACFM-recommended TAC for Sub-area VI (i.e., including an allowance for Div. VIb) for 1978 was 12000 tonnes.

No data were available for by-catches of haddock which may have been taken by industrial fisheries in the area.

4.2.2 Age_composition

Age composition data for landings in 1977 were updated and new data were available for 1978. Age compositions of landings were submitted by England, Ireland and Scotland. For France, length composition data were available and these were converted into age compositions using Scottish age/length keys. Thus, age compositions were available for all the major fleets covering over 99% of the total landings. Very little information on discarding was available. There were estimates of quantities of haddock discarded by English trawlers for two years only: 1778 tonnes in 1977 and 39 tonnes in 1978. For Scotland, an age composition for discarded fish was available for 1978 only. No attempt was made to include discard data in the age compositions used as input for VPA, because this would make the data for the last year incompatible with those for earlier years. Age compositions used as input for the VPA are given in Table 4.2.3.
4.2.3 Recruitment

Estimates of Division VIa haddock recruitment at one year old from VPA are available in Table 4.2.5 and Figure 4.2.1.B. In recent years the fishery has been influenced by the extremely abundant 1967 year class which was estimated to be 685×106 compared with a longterm average level (excluding the 1967 year class) of 32×10^{6}. The 1974 year class was also abundant at 175×106. The 1975, 1976 and 1977 year classes all appear to have been below average. For the most recent years there are no independent survey data of pre-recruits in the VIa area and as in past years recruitment has been estimated from North Sea year class strengths. These latter are determined from International Young Herring Surveys, and Division VIa year class strengthsare estimated from a regression of VIa year class strength on year class strength in the North Sea (Figure 4.2.2). The predicted values for the 1977 and 1978 year classes in Division VIa are 41×10^{6} and 49×10^{6} at one year old. Average recruitment of 32×10^{6} has been assumed for the 1979 year class in the catch predictions.

4.2.4 Weightatage

The weight at age data used in the catch predictions are given in Table 4.2.6. These are the same as were used last year. A check of sums of products of numbers landed x average weight gave values which differed from the reported landings by 6% in 1977 and 0% in 1978.
4.2.5 Fishing_mortality_and_stock_size
4.2.5.1 Natural mortality has been taken to be $M=0.2$ in all assessments.
4.2.5.2 Input F values for 1978 for VPA - An initial VPA run was made using for 1978 the same input F values as were used for 1977. Further runs were made adjusting the 1978 values until they were equal to the average values for 1973-75. Attempts were then made to evaluate how F in 1978 may have changed in relation to the base period 1973-75. The method described in Appendix 1 using English and Scottish data gave a trend in estimated effort which bore no relationship to the trend in estimated fishing mortality. There was a correlation between
cottish catch per unit effort and adult stock biomass by which Scottish c.p.u.e. in 1978 could give an estimate of stock biomass in that year. Input fishing mortalities in 1978 equal to the average for 1973-75 gave a stock biomass close to that predicted from Scottish c.p.u.e., and it was concluded that F in 1978 had not changed greatly from the level in 1973-75. Average 1973-75 values were therefore used as VPA input for 1978. The 1978 input F values and values for earlier years calculated by VPA are given in Table 4.2.4.
4.2.5.3 Exploitation pattern - As a result of this approach described above, the final 1978 input F values gave an exploitation pattern which differed from that used last year.
4.2.5.4 Stock numbers calculated by VPA are given in Table 4.2.5.
4.2.6 Yield per recruit

Curves of yield per recruit against F and total stock biomass against F are plotted in Figure 4.2.l.D. The reservations referred to in para. 3.1.6 also apply to these curves. These curves are the ones relating to the 1980 situation when it is expected that a $75 / 80 \mathrm{~mm}$ (single/double twine) mesh size will be in operation. Thus, the exploitation pattern used in calculating the curves is derived from the F values used as an input for VPA adjusted for an increase in mesh size in 1980. The factors used to adjust the exploitation 1978 pattern were as follows:

Selection factor $=3.4$
The weight at age data used are those given in Table 4.2.6.
Yield and stock biomass per recruit have been calculated using a model which allows F. to vary with age rather than by the Beverton and Holt equation. The F values plotted on the abscissa are the F values associated with the age group(s) subject to the highest level of $\mathrm{F}_{\mathrm{max}}$ and are not average values.
From the yield per recruit curve the value of $F_{\max }=0.5$ compared with the 1978 value of $F=0.61$.

4.2.7 Catch predictions

Input data for catch predictions (Table 4.2.6) were catch numbers in .1978, F values in 1978, and weight at age data. As there was no difference between reported landed weight in 1978 and sums of products (SOP) no correction to the weight at age data was necessary.
The recommended TAC for 1979 for total Sub-area VI is 11000 tonnes. Assuming an allowance of 2600 tonnes was made for catches in Division VIb, the corresponding TAC for Division VIa would be 8400 tonnes. If the catch in 1979 is limited to this level, it will require a reduction in fishing mortality from $F=0.61$ (on age groups subject to maximum exploitation) in 1978 to $F=0.49$ in 1979. This reduction is greater than the 10% reduction envisaged by ACFM. Consequently, two options were considered for 1979:
(A) $\quad F_{79}=0.49$ (catch in $1979=8500$ tonnes \curvearrowleft recommended.TAC)
(B) $\quad \mathrm{F}_{79}=0.55=0.9 \times \mathrm{F}_{78}$

No change in mesh size has so far been introduced, and it seems unlikely that there will now be any change before the end of 1979. Consequently no catch predictions have been made for a mesh size change in 1979.

For each of the above options for 1979 four options were examined for 1980:

1) Minimum mesh size increased to $75 / 80 \mathrm{~mm}$. Fishing mortality at the 1979 level.
2) Minimum mesh size increased to $75 / 80 \mathrm{~mm}$. Fishing mortality reduced by 20% compared with 1979 .
3) Minimum mesh size increased to $75 / 80 \mathrm{~mm}$. Fishing mortality at the $F_{\text {max }}$ level.
4) No change in minimum mesh size. Fishing mortality at the 1979 level.

The factors applied to the F values to allow for the increase in mesh size are those given in para. 4.2.6.

The results of the catch predictions are given in Table 4.2.7.

4.2.8 Management_options

The change in exploitation pattern has resulted in a value of $\mathrm{F}_{\max }=0.5$ on the current yield per recruit curve compared with $\mathrm{F}_{\max }=0.3 \frac{\mathrm{~K}}{2}$ on the yield per recruit curve in last year's report. The level of fishing mortality estimated for 1978 ($F=0.61$) is 20% above the $F_{\text {max }}$. Spawning stock biomass, i.e. age 2 and older fish (Figure 4.2.1.C) was as calculated from stock numbers (Table 4.2.5) x average weight at age (Table 4.2.6) at a high level in the period 1969-73 after the recruitment to the adult stock of the exceptionally abundant 1967 year class. At an average level of recruitment with fishing mortality maintained at the 1978 level ($F=0.61$), the equilibrium spawning stock biomass would be expected to be about 26000 tonnes. In the catch prediction options considered the minimum value for the spawning stock biomass in 1981 is 34000 tonnes. There appears to be no indication of a collapse in spawning stock. size.
With the more recent data it is difficult to make comparisons with the previous assessment. The ACFM objective in recommending the TAC for 1979 was to reduce F in 1979 to 90% of the 1977 level. The current assessments indicate that to take 1979 TAC (8500 tonnes) will require a 20% reduction in F compared with 1978 which would reduce F to the $F_{\text {max }}$ level. A 10% reduction in F from 1978 to 1979 would be expected to yield 9300 tonnes. The choice of TAC for 1980 depends on catches in 1979 and the management strategy adopted. However, for the range of options considered all the predicted catches fall in the range $9000-10000$ tonnes.
A spawning stock-recruitment scatter diagram is shown in Figure 4.2.3.

No account is taken in the above assessment of the stock in Division VIb. No analytical assessment was possible for Division VIb
so that if the TAC is set for the whole of Sub-area VI an allowance will have to be made for Division VIb on the basis of average catches (see Table 4.2.2). A value of 2600 tonnes was suggested last year as an appropriate allowance for Division VIb.
4.3 Haddock in Divisions VIId and VIIe

Haddock landings in the English Channel (Table 4.3.1) over ten years had a mean level of about 500 tonnes, with, however, 971 tonnes in 1975. Nearly all of this small catch comes from the western part of the area (Division VIIe).
There is no evidence that haddock in the English Channel is a selfcontained stock and catches are most likely to result from fish overflowing from adjacent areas. There is no biological basis for setting a separate TAC in these circumstances.
4.4 Haddock in Divisions VIIb, c and VIIg-k

Landings rose during 1969-71 from 3724 tonnes to 4853 tonnes and then further to the 8 000-9 000 tonnes level during 1972-74; from 1975 to 1978 they were declining from 6500 tonnes to 2500 tonnes (Table 4.4.1). The high level during 1972-74 and to some extent 1975 may be ascribed to the effect of the very strong 1967 year class. French landings comprised 65-90\% of the total catch during this period; some data have been collected on the Irish component, but insufficient for VPA purposes.
5. WHITING STOCKS
5.1 North Sea Whiting
5.1.1 Catch trends

Landings in 1969-77 fluctuated between 109000 tonnes and 216000 tonnes, averaging 156000 tonnes over the period (Table 5.1.1, Figure 5.1.1.A). Provisional figures for landings in 1978 give a total of 100000 tonnes which is 15000 tonnes above the recommended TAC and represents a reduction of 20000 tonnes from 1977. However, catches of industrial trawl (by-catches) in 1978 reported to ICES differed greatly from estimates obtained from biological sampling programes. The Group considered the latter estimates to be more reliable and they were accordingly used in the assessments, raising total landings to 118000 tonnes. Of the total landings 28% or 15%, depending on the catch figures, were industrial trawl by-catches compared with 40% in 1977. Discards were estimated to have been 50280 tonnes in 1977 and 52367 tonnes in 1978.

5.1.2 Age_composition

Input catch at age for VPA is given in Table 5.1.3. Age compositions of human consumption fisheries, industrial trawl by-catches and discards in 1978 are given in Table 5.1.6.
There are no radical changes from the catch in numbers in 1977 used as input for the VPA in the 1978 Working Group report.

For human consumption fisheries in 1978, age or length compositions were available from Belgium, France, Netherlands, England and Scotland, accounting for 98% of the landings.
For industrial by-catches an age composition from Denmark and a length composition from Norway were available. This accounts for all reported catches.

Estimates of numbers of whiting discarded of each age group and weight at age data were available from Scotland. From England an estimate of the total weight of discards was available and the Scottish age distribution was used. From Netherlands no data were available and the discard was estimated by assuming that the ratio between the number landed for human consumption and the number discarded was the same as in 1977 for each age group.

5.1.3 Recruitment

The results from the IYHS, using the same correlation as last year, indicate that the year classes 1977 and 1978 at l year were 1248 million and 1287 million, respectively, compared to the average 1234 million for 1960-74. Input Fs for VPA on 0 and 1 group fish were adjusted to give the estimated recruitment from IYHS. Recruitment figures from VPA and IYHS are given in Table 5.1.2. There is no apparent relationship between the spawning stock biomass (age 2 and older fish) and recruitment (see Figure 5.1.1B and C and Figure 5.1.2).

5.1.4 Weight at age

Three sets of weight-at-age data are given in Table 5.1.6. For human consumption fisheries no changes are made in the weight-at-age data except for a slight increase on the $8+$ group. The sum of products (SOP) of catch in number and weight at age gave 1.6% above the reported catch. For industrial trawl by-catches the numbers were adjusted to make the SOP correspond to the landings.
For discards the weight-at-age data were kept at the same level as last year, but were slightly smoothed. As no Dutch weight-at-age data were available, the Dutch discards by weight were set to make the total discards equal to the SOP.
5.1.5 Fishing_mortality_and_stock_size

Except for the age groups 0 and 1 (see para. 5.1.3), two different approaches were used to estimate the Fs in 1978. One was to assume that fishing mortalities in 1978 were 20% below the average for 1973-75. This gave $F=0.78$ on the fully exploited age groups and this was accepted as input F for the VPA (Table 5.1.4). The other approach was to try to correlate weighted Fs on the age groups 2-8 from VPA with total effort based on Scottish data (Figure 5.1.3). For the years 1967-76, excluding 1969 when the estimated effort was unusually high, a significant correlation ($r=0.73$) was found, but both linear and functional regression analysis have an intercept on the y-axis much above 0. Estimated effort for 1978 gave for the linear regression a weighted $F=0.72$ which corresponds exactly to $F=0.78$ for the fully exploited age groups, whereas functional regression gave weighted $F=0.66$. In neither case will the apparent reduction in effort from 1977 be borne out by the VPA. Although the effort data clearly do not give an accurate basis for estimating input $F s$, they indicate that the chosen F values are on a reasonable level and that if they are wrong, they are most likely to be too high.
The spawning stock biomass has fluctuated between 130000 and
400000 tonnes after 1965 (Figure 5.1.1.C). There is a stable trend after 1976, and the spawning stock in 1978 appears to be at about 300000 tonnes, which is close to the average of 240000 tonnes for 1966-75.

The reservations expressed in para. 3.1 .6 also apply here.
Figure 5.1.1.D shows yield per recruit for the North Sea whiting based on the 1978 exploitation pattern, but with the reductions of Fs on the younger age groups estimated to be the effect of an increase in legal mesh size to 80 mm for human consumption fisheries (see para. 5.1.7). On the curve $F_{\text {max }}=0.3$ compared with the estimated present level of $F=0.78$ max age groups subject to maximum exploitation. The yield per recruit curve was calculated using the total fishing mortality rates (Table 5.1.6) and yield therefore includes discards as well as landings.

5.1.7 Catch prediction

Two options have been considered for the catch in 1979: 1) the TAC of 85000 tonnes is taken. This means that fishing effort in 1979 will be reduced to 65% of the 1978 level. 2) Fishing effort in 1979 is reduced to 90% of the 1978 level. This gives estimated landings of 111000 tonnes in 1979.
Catch predictions for 1980 were made on the three assumptions $F_{80}=F_{79}, F_{80}=0.8 \cdot F_{79}$ and $F_{80}=F_{\text {max }}$. Input for the predictions is given in Table 5.1 .6 and the results are shown in Table 5.l.7. In all cases spawning stock biomass increases from 1980 to 1981.
The legal mesh size for human consumption fisheries is expected to increase to 80 mm for the whole area in 1980 and this has been taken into account in the predictions. The estimated changes in Fs resulting from the increased meshes are shown in Table 5.1.8. The changes were calculated in the same way as described for North Sea haddock in para. 4.1.6, using a selection factor of 3.8 (C.M.1974/F:36). No account was taken of the 80 mm mesh size introduced in the Norwegian zone in 1979, as this is not expected to greatly affect the whiting fishery as only a small proportion of the stock occurs in the Norwegian zone.
5.1.8 Management_options

The seven options for catch prediction presented in Table 5.1.7 give landings in 1980 varying from 50000 to 105000 tonnes.
In the choice of a TAC for whiting in Sub-area IV for 1980 the following points should be considered: 1) there is no imminent danger of recruitment overfishing; 2) catch and landings of whiting are to a large extent dependent on fishing effort on other species, e.g., cod and haddock; 3) estimated discards are about 30% of the total catch and are likely to prevent a restrictive TAC from being effective.
5.2 Whiting in Division VIa
5.2.1 Catch trends (Table 5.2.1 and Figure 5.2.1.A)

The catch has declined steadily since its peak in 1976 which was due to the two exceptionally strong year classes of 1972 and 1974; in fact, the French catch, which normally has a higher age composition than the other main components, Scottish, English and Welsh and Irish, showed some increase. The small Dutch catch of earlier years did not materialise as the herring fishery of which whiting were a by-catch has now ceased.

Spanish landings were estimated as French landings $x 0.225$, the level recorded in the previous two years.
5.2.2 Age composition (Table 5.2.3)

Age composition data for 1977 and 1978 were avaliable only for United Kingdom (Scotland), Ireland and France. The extremely small Division VIb catches (Table 5.2.2) were omitted from the calculations, a departure from procedure in previous years.
Discards and by-catch landings of whiting were not recorded for Division VIa.
5.2.3 Recruitment (Figure 5.2.1.B)

A significant correlation was found between the VPA abundance at age 1 in the North Sea and in Division VIa (Figure 5.2.2). Based on this, estimates of the strength of the 1977, 1978 and 1979 year classes in Division VIa gave 74 million, 77 and 77 million at age lrespectively. No relationship was discernible between spawning stock biomass (age 2 and older fish) and recruitment class strength (Figure 5.2.3).
5.2.4 Weight_at_age (Table 5.2.7)

Weight-at-age data for 1978 were available for Ireland only, and since these represented only 15% of the landings, with an apparently lower growth rate than other components of the fishery, it was decided to retain the values used by the previous Working Groups.
Sum of products (SOP) checks gave 92% of observed landed weights in 1978, and 88\% for revised 1977 data
5.2.5 Fishing_mortality_and_stock_size (Tables 5.2.4 and 5.2.5)

The value of M used was 0.2 in all cases.
In the absence of any indication of trends in effort for the stock, mean F values for the period 1973-75 were used for age groups 2-7 for 1978. Input F values for 1978 were adjusted on age 1 taking into account the estinated year class strength.
Mean F values for fully recruited age groups since 1971, have ranged between 0.45 and 0.85 with a reduction from 0.75 - 0.85 during 1971-73 to about $0.55-0.70$ during 1975-77. These values, very close to those for the North Sea during 1971-73, have been much lower in 1974-76 when North Sea values lay in the range $0.90-1.05$.

5.2.6 Yield per_recruit

The yields and stock biomass per recruit curves evaluated on the basis of the expected exploitation pattern in 1980 (Table 5.2.6) and weight-at-age data (Table 5.2.7) are shown in Figure 5.2.1.D.
5.2.7 Catch_prediction (Table 5.2.8)

Input data for the catch predictions are given in Table 5.2.7. Two options were used for F in 1979; Option A being to give the 1979 TAC which required a 20% reduction in F compared with the 1978 value; Option B representing a 10% reduction on the 1978 F value. The corresponding catches predicted for 1979 for these options were 12100 tonnes and 13300 tonnes. Option A gives a spawning stock biomass rising to 28400 tonnes at the beginning of 1980; with Option B its level stays at 27100 tonnes.
For 1980 the same options were made as for North Sea whiting, with the exception of the option for $F=F_{\text {max }}$. The exploitation pattern
used for the 80 mm mesh size is given in Table 5.2.6; this was derived in the same way as described for North Sea whiting, using the same selection factor of 3.8. Catches for 1980 are projected slightly lower, at values ranging from 10500 to 11300 tonnes with F at its 1979 value, and 8700 to 9200 tonnes if F is reduced to its 1979 value $x 0.8$

For all options considered, the predicted values of the spawning stock biomass do not differ significantly.

5.3 Whiting in Divisions VIId and VIIe

As with cod, landings of whiting follow the same fluctuations as those in the North Sea, indicating a close relationship between stocks in the two areas. Landings during 1969-78 fluctuated between 3600 tonnes (1971) and 11400 tonnes (1975) with a mean of 7100 tonnes (Table 5.3.1). The biostatistical data collected by England and France are not yet available for a long enough period for use in a VPA, but this should become possible with the collection of a few years' more data.
5.4 Whiting in Divisions VIIb, c and VIIg-k

From 1969 to 1978 landings lay in the $4000-10000$ tonnes range with the years 1970-71 and 1977-78 at the lower end of the range (Table 5.4.1). By analogy with Division VIa landings, the high 1969 landings would appear to be due to the strong 1967 year class and 1972-76 landings (apart from 1972) partly due to the combined strength of the 1972 and 1974 year classes, and partly due to Spanish landings reported in these years only. During the period France had the largest single landings of any country, with $38-52 \%$ of the total during 1973-76 and 65-88\% during other years. Some Irish data have been collected, but not enough to date to permit the use of a VPA.
6. SKATES AND RAYS

No data on skates and rays were available other than data on quantities landed. These are summarised in Tables 6.1 (for Sub-area IV) and 6.2 (for Sub-area VI). These are the data for all species combined, and it is not possible to separate the catches by species.
There are no major directed fisheries on skates and rays in Sub-areas IV and VI and most of the landings are the result of by-catches in other fisheries. Landings from Sub-area VI have remained remarkably stable at about 3500 tonnes. In the North Sea there is a slight downward trend in landings from about 5500 tonnes in the early 1970s to about 4500 tonnes in the latter part of the decade.
The Working Group cannot at this stage make any scientifically based recommendations on the management of these species but doubts whether any regulation is required at the present time.
7. REDUCTION IN RECRUITMENT DUE TO INCREASED PREDATION AT HIGH BIOMASS LEVELS
No specific calculations were made in the Working Group meeting to assess the effects of increased predation at high stock biomass levels. Workers in national laboratories are studying this problem and the results of calculations by Sparre are referred to in Section 2 on general management considerations. It is anticipated
that the results of these and other current studies will be presented in detail at the 1979 Statutory Meeting.
8. SHOULD THE NORTH SEA FISHERIES FOR COD, HADDOCK AND WHITING BE TREATED AS A MIXED FISHERY; TO WHAT EXTENT ARE THE FS ON THE THREE SPECIES INTERRELATED?

In view of the geopgraphical distribution of haddock and cod and the distribution of the catches of these two species among the different countries and different fleets within countries, there can be little doubt that treatment of these two fisheries as a mixed fishery would raise more problems than it would solve. Despite the fact that potentially the fleets might be directed towards either one depending on the relative abundance, this is not likely to occur at any large scale due to traditionally-determined fleet habits with respect of distance between fishing grounds and harbour and also due to rather fixed marketing possibilities for each individual species.

However, whiting is distributed over the entire North Sea and thus is taken as a by-catch in both the haddock and cod fisheries. In fact, directed whiting fisheries are very limited in magnitude and therefore management of this stock by means of TACs which are aimed at regulating the fishing mortality cannot be expected to have actually that effect. If the TAC for whiting was reached and enforced independently of the cod and haddock TACs, fishing for other demersal species could continue and the associated whiting catch would be discarded.

Not only is fishing mortality on whiting thus dependent on the fisheries for cod and haddock, and also on the industrial fisheries, but in addition the landings have always been restricted by a very limited market demand, resulting in a high discard rate. Under such conditions a management strategy, which supposedly optimises yield, appears to be irrational.
9. IS THE NORTH SEA HADDOCK STOCK SUFFERING FROM RECRUITMENT OVERFISHING?

In Figure 4.1 .2 the recruitment figures from VPA as numbers of 1 year old haddock are plotted against the spawning stock biomass, from which the year classes originated. Before 1964 the spawning stock biomass of North Sea haddock was at the level of approximately 100000 tonnes and in this period the extremely good year class 1962 was born, which resulted in an increase in biomass to over 500000 tonnes. By the time this biomass had decreased to 300000 tonnes, the even richer year class of 1967 was born and the resulting biomass in 1969 reached nearly 1 million tonnes. Another good year class 1974 was born when the biomass had decreased again to 300000 tonnes.

The present spawning stock biomass is estimated at approximately 200000 tonnes and this is in fact in the middle of the range which has produced the outstanding year classes. There is no indication that smaller biomasses result in smaller year classes (Figure 4.1.2).

Thus, the apparent answer has to be that the North Sea haddock stock is not suffering from recruitment overfishing. The large annual variations in biomass and landings are induced by the unpredictable variations in year class strength, particularly at the present level of exploitation which reduces the buffering capacity of the population against variations in year class strength.

Attention is drawn here to the correlation between haddock recruitment in the North Sea and Division VIa (Figure 4.2.2) and also between spawning stock biomass in both areas. This perhaps indicates that the two stocks are strongly interrelated and the conclusion drawn above for the North Sea can probably be extended to include Division VIa.

SEQUENTIAL TAGGING EXPERIMENTS
Roundfish tagging experiments have been carried out in the past by a number of countries, but these have never been designed as sequential experiments specifically to deal with problems of natural mortality rate or to estimate terminal F values. Perhaps a reanalysis of the available data could throw more light on these problems; however, the Group was not in a position to draw any firm conclusions about the possibilities in this respect.
11. SPAWNING STOCK BIOMASS AND RECRUITMENT

In each of the sections on individual species in the two areas, plots are presented of recruitment against spawning stock biomass (Figures 3.1.2, 3.2.2, 4.1.2, 4.2.3, 5.1.2 and 5.2.3). In all cases recruitment appears to be highly variable, outstanding year classes appearing now and again over considerable ranges of biomasses. For haddock the data indicate that high biomasses never produced outstanding year classes, but the number of points at high biomasses are few, because only for a very short period following an outstanding year class does the spawning stock biomass remain high. In Division VIa cod there is a suggestion of lower recruitment at higher biomass, which could reflect a density-dependent control, but this remains rather hypothetical.
In none of the cases can the estimated biomass in 1978 be considered to be at a level, where recruitment can be expected to be adversely influenced.

2. EFFECTIVE MESH SIZES IN USE

The Group had no opportunity to consider this problem in any detail. However, estimating the age of recruitment in cohort analysis seems to present an intractable problem in relation to North S_{e} a roundfish, because essentially it requires reliable discard data, which are only available for a limited number of countries, and the recruitment pattern to different fleets, about which even less is known.
Still, according to the scattered data available to the members it is obvious that a number of roundfish fleets actually use mesh sizes above the legal minimum one. This has been taken into consideration qualitatively in assessing the effects of the effectualised and proposed changes in 1978 and 1979.

REFERENCES

Andersen, K \dot{P} and E Orsin. 1977. A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorus circulation and primary production. Medd.Danmarks Fisk.- og Havunders., N.S. 7: 319-435.
Anon., 1978. Report of the North Sea Roundfish Working Group. ICES, Doc. C.M.1978/G:7 (mimeo.).

Corp, P and R G Houghton. 1976. The food of gadoids on the northeast coast of England. ICES, Doc. C.M.1976/F:22 (mimeo.).

Daan, N. 1975. Consumption and production in North Sea cod, Gadus morhua: an assessment of the ecological status of the stock. Neth.J.Sea. Res., 9:24-55.

Houghton, R G and S Flatman. 1978. A bias for calculating mean weight from a mean length and a discussion of the methodology used in Working Groups. ICES, Doc. C.M.1978/G:18 (mimeo.).
Jones, R. 1954. The food of whiting, and a comparison with that of haddock. Scott.Home Dep.Mar.Res., 1954, No. 2.

Jones, R. 1974. Supplement to the Report of the North Sea Roundfish Working Group. ICES, Doc. C.M.1974/F:36 (mimeo.).
Jones, R. 1975. Competition and co-existence with particular reference to gadoid fish species. Symp. on North Sea Fish Stocks \rightarrow Recent Changes and their Causes. Rapp. p.-v. réun. Cons.int.Explor.Mer, 172:292. (1978).
Jones, R. 1976. An energy budget for North Sea fish species and its application for fisheries management. ICES. Doc. C.M.1976/F:36. (Mimeo.)
Jones, R.1978. Estimates of the food consumption of haddock (Melanogrammus aeglefinus) and cod (Gadus morhua). J.Cons.int.Explor.Mer, 38(1): 18-27.

Jones, R. 1978. Further observations on the energy flow to the major fish species in the North Sea. ICES, Doc. C.M.1978/Gen:6 (Symp.).

Table 2.1. Spawning stock biomass. Derived from Figures 1, 2, 3 and Table 5.2 of the Roundfish Working Group Report 1978 (ICES C.M.1978/G:7)

North Sea		Cod	Haddock	Whiting	Total
Spawning stock biomass per recruit Kg	$\begin{aligned} & 1977 \text { level } \\ & \text { of } \mathrm{F} \end{aligned}$. 8	. 22	. 12	-
	$F={ }^{3}$ $\left(F=F_{\text {max }}\right)$	5.8	. 86	. 45	-
Average recruitment (from VPA) millions		218	1128	1360	-
Spawning stock biomass per 000' tonnes	$\begin{aligned} & 1977 \text { level } \\ & \text { of } F \end{aligned}$	174	248	163	585
	$F=.3$	264	970	612	2846

Table 2.2 Yield per recruit and yield. Derived from the Roundfish Working Group Report 1978 (ICES C.M.1978/G:7)

North Sea		Cod	Haddock	Whiting	Total
Yield per recruit kg	$\begin{aligned} & 1977 \text { level } \\ & \text { of } F \end{aligned}$. 98	.13	. 087	-
	$\mathrm{F}=.3$	1.40	. 19	. 103	-
$\begin{aligned} & \text { Yield } \\ & 0001 \text { tonnes } \end{aligned}$	$\begin{aligned} & 1977 \text { level } \\ & \text { of } F \end{aligned}$	214	147	118	479
	$\mathrm{F}=.3$	305	214	140	659

Table 2.3 Comparison between the yield and the food consumption of the North Sea COD stock. 000'tonnes

	Spawning stock biomass	T.otal consumption	Consumption of commercial fish species	Yield of cod				
1977 level of F	174	522	183	214				
F=.3	1264	3793	1328	305				
						Gain:	-1145	91

Table 3.1.1 Nominal catch (in tonnes) of COD in Sub-area IV, 1969-1978
(Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	2975	1976	1977	1978 ${ }^{\text {\% }}$
Belgium	13470	8.076	19334	21133	11741	10253	7566	7483	10346	16089
Denmark	36986	40017	68179	72520	47950	54207	46344	53277	42582	41318
Faroe Islands	52	78	123	284	803	416	732	448	260	49
France	10460	16058	24769	24038	23247	7275	8667	8079	7511	12143
German Dem Rep. ${ }^{\text {a) }}$	223	3	18	122	343	132	223	- 69	21	75
Germany, Fed. Rep.of	$20625^{\text {b }}$	$20093^{\text {b }}$	46647	49431	21410	17089	16457	24445	22658	37099
Iceland	+	+	1	-	-	+	-	-	-	-
Ireland	-	-	-	-	-	-	-	98	136	\ldots
Netherlands	19511	25212	46614	47634	25758	24029	23263	21835	29903	48725
Norway ${ }^{\text {c }}$	8953	5374	7732	4377	4831	2481	1528	1877	1449	2724
Poland	236	219	178	189	1551	4750	2991	2961	381	$\because \quad 115$
Spain	-	-	-	91	90	80	63	14	-	...
Sweden ${ }^{\text {d }}$)	8401	8925	9062	8769	8074	8168	900	597	36	442
U.K.(England+Wales)	44263	38464	55525	62503	47327	39857	33615	46475	35424	59127
U.K.(Scotland)	33208	30079	37229	55190	48844	39887	37308	39597	34406	41984
U.S.S.R.	2970	32147	5153	774	2497	2667	6796	6187	-	9
Total IV	199258	224745	320564	347055	234466	221291	286453	213442	185118	259899
Total IVa	56015	79606	67370	80650	69557	72406	58343	68352	55623	
Total IVb	122027	110271	184957	215160	134953	114087	107227	126218	100191	
Total IVe	21216	34868	68237	51245	29956	24798	20883	18872	29304	
W.G. Total Catch							188452	$214398^{\text {e }}$)	$186654^{\text {e }}$	$265702^{\text {e }}$)

\# Provisional figures
b) Incl. miscellaneous products
c) Figures from ${ }^{-199-72}$ do not include Cod caught in,ec. 2 fisheries
d) 1969-1974 includes IIIa
a) 1969-1972 includes IIIa
e) includes scards.

Table 3.1.2 Revised estimates of year class strength COD Sub-area IV

Year class	IYHS $^{\text {a) }}$	VPA $(M=0.2)^{\text {b }}$
1964	17.1	222
1965	12.8	315
1966	30.5	283
1967	5.5	92
1968	6.3	87
1969	59.9	368
1970	89.4	451
1971	2.8	83
1972	31.5	160
1973	11.2	145
1974	54.5	245
1975	6.1	124
1976	44.2	582
1977	12.4	$163^{\text {F }}$
1978	(6.1)	$130^{\text {F }}$

a) Geometric mean number per hour fishing during the International Young Herring Surveys (cf. ICES Doc. C.M.1978/G:51)

Figure in brackets represents preliminary estimate based on number of cod < 25 cm caught in 1979
b) Millions of fish at age 1. Figures with an asterisk (\#) estimated from predictive regression (cf. Table 5.3 in ICES Doc. C.M.1977/F:19).

Table 3.1 .3 A). Catch and effort data in selected North Sea COD fisheries (C $=$ catch in tonnes live weight; $E=$ effort in thousand hours fishing; CPUE = catch in kg per 100 hours fishing)

Year	Scotland			Belgium						Netherlands								
	Seine			Ottertrawl			Danish Seine			Beamtraw			TrawI			Pairtrawl		
	C	E	CPUE	C-		CPUE ${ }^{-1}$												
1963	19757	616	3207															
1964	15235	640	2380															
1965	17680	583	3033															
1966	18303	502	3646															
1967	21704	514	4223															
1968	28828	549	5251															
1969	21400	491	4358															
1970	17814	426	4182							6428	721	892	12964				28.6	18887
1971	21847	416	5252	13979		4413				16110	824	1954	22832	177	12891	6950	36.5	19046
1972	31491	393	8013	15630	344	4538				13117	829	1583	26702	187	14244	7502	30.9	24286
1973	26635	415	6418	7706	303	2544	909	9.9	9.220	10482	942	1113	11116	167	6656	4000	23.4	17115
1974	21262	356	5972	2984	174	1718	4027	38.3	10500	9890	895	1105	9696	185	5238	4352	31.1	13988
1975	22037	342	6444	2307	163	1419	2338	17.8	13130	10981	880	1248	9904	164	6036	2204	24.4	9036
1976	23775	308	7719	1823	142	1293	3274	18.6	17650	7380	769	960	10708	134	7965	3933	23.6	16638
1977	18971	312	6080	3660	155	2357	2554	21.2	12070	11051	698	1582	15010	129	11627	3988	15.3	26006
1978	28892	325	8890	5784	163	3540	3546	17.4	20330	13067	595	2195	27674	166	16661	7984	27.2	29399

Year	England and Wales		
	Trawl + Seine		
	C	$E^{1)}$	CPUE ${ }^{2}$
1963	26546	1088	2439
1964	25709	937	2743
1965	37195	819	4539
1966	49769	813	6122
1967	48220	696	6930
1968	61616	657	9382
1969	44263	601	7360
1970	38464	607	6341
1971	55525	590	9410
1972	62503	663	9422
1973	47327	619	7648
1974	39857	574	6943
1975	33615	447	7525
1976	46475	515	9029
1977	35424	571	6201
1978	62474	606	10303

1) Effort in 10^{5} tonnes hours
2) CPUE in $10^{-4} \mathrm{~kg}$ per tonnes hours

age	196.3	1964	1965	1966	1967	1968
\bigcirc	e	-	0	0	\bigcirc	-
1	18622	47311	40500	75633	65388	9341
2	37798	23681	68149	65785	81282	79589
3	6192	15976	14441	26341	26741	36676
4	S063	3439	6715	5896	9265	11678
5	2360	1513	1783	2513	2698	5623
6	1404	1652	873	1065	1750	12.5
7	67	433	510	409	655	623
8	485	93	275	362	304	314
9	4	390	14	77	148	154
10	5	1	81	64	36	163
11	1	1	1	25	2	21
$12+$	2	2	4	8	6	9

Table 3．1．5 North Sea COD

Fishing mortalities from VPA

AGE	1963	1364	1965	1966	1967	1968	1969	1970	1371
0	.000	． 000	.000	． 000	． 090	.080	．cee	.000	． 000
1	． 220	． 251	． 224	． 306	． 292	． 126	． 8.67	． 153	． $1 \in 2$
2	．631	． 479	．689	． 678	． 629	． 696	． 476	． 601	． 984
3	． 401	． 605	．610	． 631	． 659	． 659	． 663	． 751	.749
4	． 443	． 408	． 558	． 543	． 477	．639	．626	． 596	． 6.87
5	． 420	． 409	． 383	． 419	． 517	．E09	． 717	．659	． 678
6	． 737	． 590	． 440	． 416	． 582	． 496	． 709	． 663	．522
7	． 208	． 530	． 362	． 381	． 490	． 422	． 549	． 629	． 58.9
8	． 556	－535	． 777	． 475	． 543	．463	． 493	． 315	． 513
9	.176	1．279	． 131	． 516	． 362	． 531	． 493	． 604	．E04
10	． 456	． 8 E1	1.079	1.455	． 488	． 463	． 425	． 963	． 472
11	． 285	． 153	． 079	1.303	.137	． 534	1.413	． 793	1.450
12	． 550	． 550	．550	． 550	.550	． 550	． 550	．EEC	． 660

MEAN F FOR AGES $ン=2$ AND $<=8$（WEIGHTED BY STOCK IN NUMBERS） .569 .512 .651 .642 .617 ．672 ．596 ．641 ．925

AGE	1972	1973	1574	1975	1976	1977	1578
e	． 5 －40	－GGE	． 0 ge	． 062	．Qeor	． 091	． 000
1	． 387	．2E4	． 127	． 172	． 066	． 232	． 301
2	1．128	．こに，	． 862	． 849	． 387	． 896	． 670
3	． 917	1.155	． 774	．79E	． 8.58	． 651	． 740
4	． 660	．© Cb	． 308	．682	． 794	． 447	． 540
5	． $6 E 9$	．5．58	． 705	． 777	． 53 E	． 514	． 540
6	． 797	．6EE	．628	． 641	． 705	． 454	． 540
7	． 702	．745	．815	． 536	． 557	． 598	． 540
\pm	1.192	．542	． 714	．ESE	． 248	． 554	． 5.40
9	1.155	－ここ1	． 8197	． 565	． 526	1.092	． 546
10	． 594	－4ここ	．$冖 20$	． 455	． 8040	． 446	． 540
11	． 046	． 962	． 78.7	． 852	． 146	． 256	． 540
12	．EGE	－E．EO	．E60	．660	． 600	． 550	． 540

MEAN F FOF GGES $\geqslant=2$ RNL $\langle=8$（WEIGHTED BY STOCK IN NUMBERS） 1．OEE ． $94 G$ ． 761 ．©16 ．933 ． 767 ．665

DGE－NATUFGL MORTALITY

$$
\begin{aligned}
& 11 \text { 1こ } \\
& \text {. こe0 . } 200
\end{aligned}
$$

North Sea COD
Stock size in numbers from VPA

AGE	1963	1964	1965	1966	1967	1968
C	286.337	271476	384868	345947	112578	105664
1	10368.3	234433	222266	315193	283238	32171
2	88204	68128	149377	145527	190003	173114
3	20549	38425	34555	61433	E0453	82960
4	5395	11267	17172	15377	26749	25600
5	7536	4940	6139	8049	7311	13597
6	2336	4052	2687	3426	4335	3570
7	393	1151	1840	1417	1850	1984
8	1243	2.61	555	1049	733	327
3	27	584	125	209	534	377
10	15	19	133	90	102	304
11	4	8	14	37	17	51
12	3	3	5	11	8	12
AGE	1969	1570	1971	1972	1973	1974
0	449364	550719	101613	195753	176553	298726
1	86510	367908	450390	83194	160269	144549
2	6ESe2	66213	258595	31589	62415	100810
3	70658	338.26	29732	79153	85218	23847
4	35109	29627	13068	11507	25903	21457
5	11058	15364	13362	5383	48ES	9478
E	6103	4420	6444	5555	2258	228．1
7	1780	2459	1865	3132	2650	Sこて
8	1085	842	1674	847	1270	757
9	478	533	56.3	526	210	605
10	171	こう9	238	243	130	158
11	157	91	75	122	112	70
12	23	31	34	14	95	35

Table 3.1.7 North Sea COD. Input data for catch prediction.

Table 3.1.8 North Sea COD.
Results of catch predictions (in thousand tonnes)

1978:	$F^{\text {F }}$ Spawning stock biomass Industrial by-catch Consumption landings Total landings Discards	$\begin{array}{r} 0.74 \\ 164.0 \\ 1.8 \\ 261.9 \\ 263.7 \\ 2.0 \end{array}$							
1979:	Option F Spawning stock biomass Industrial by-catch Consumption landings Total landings Discards	$\begin{aligned} & 0.45=0 . \frac{A}{61} \times F_{78} \text { (to take TAC) } \\ & 154.5 \\ & 0.7 \\ & 181.8 \\ & 182.5 \\ & 0.5 \end{aligned}$				$\begin{aligned} & 0.67=0.9 \text { ㄹ } \times F_{78} \\ & 154.5 \\ & 0.9 \\ & 246.5 \\ & 247.4 \\ & 0.8 \end{aligned}$			
1980:	Option Mesh size (mm) F Spawning stock biomass Industrial by-catch Consumption landings Total landings Discards	$\begin{gathered} \frac{\mathrm{A} 1}{80} \\ 0.45=\mathrm{F}_{79} 79 \\ 436.6 \\ 0.6 \\ 187.4 \\ 188.0 \\ 0.7 \end{gathered}$	$\begin{gathered} \frac{\mathrm{A} 2}{80} \\ 0.36=0.8 \times \mathrm{xF}_{79} \\ \\ 436.6 \\ 0.5 \\ 155.4 \\ 155.9 \\ 0.6 \end{gathered}$	$\begin{gathered} \frac{\mathrm{A} 3}{80} \\ 0.25=\mathrm{F}_{\max } \\ 436.6 \\ 0.4 \\ 112.2 \\ 112.6 \\ 0.4 \end{gathered}$	$\frac{\mathrm{A} 4}{75}$ as A 1	$\begin{gathered} \frac{\mathrm{B} \mathrm{I}}{80} \\ 0.67=\mathrm{F}_{79} \\ 79 \\ 358.1 \\ 0.8 \\ 217.9 \\ 218.7 \\ 0.9 \end{gathered}$	$\begin{gathered} \frac{\mathrm{B} 2}{80} \\ 0.54=0.8 \times \mathrm{F}_{79} \\ 358.1 \\ 0.7 \\ 182.4 \\ 183.1 \\ 0.8 \end{gathered}$	$\begin{gathered} \frac{\mathrm{B} 3}{80} \\ 0.25=\mathrm{F}_{\max } \\ 358.1 \\ 0.3 \\ 95.1 \\ 95.4 \\ 0.4 \end{gathered}$	$\frac{\text { B } 4}{75}$ as B 1
1981:	Spawning stock biomass	473.7	555.0	603.3		327.7	364.0	454.8	

${ }^{\text {F Fishing mortality on age groups subject to maximum exploitation. }}$

Table 3.2.1 Nominal catch (in tonnes) of COD in Division VIa, 1969-1978
(Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	$1978{ }^{\text {F }}$
Belgium	107	61	41	39	75	174	49	71	-	-
Denmark	-	-	-	-	-	-	7	-	-	-
Faroe Islands	-	-	-	-	7	13	3	39	43	-
France	2496	1161	1054	2360	3445	3678	3546	5611	3583	5904
German Dem. Rep.	-	-	-	-	-	-	2	-	-	-
Germany, Fed. Rep.	$209{ }^{\text {b }}$	$136{ }^{\text {b }}$	46	3	15	6	12	1	3	32
Iceland	-	-	+	-	-	-	-	-	-	-
Ireland	538	1135	888	686	583	883	1141	1341	984	1211
Netherlands	10	5	10	21	4	5	5	11	5	
Norway	48	-	-	-	13	14	17	22	29	$99^{\text {a }}$
Poland	142	199	154	491	184	175	68	18	-	
Spain	-	-	-	102	208	137	180	15	20^{2}	
U.K. (England+Wales)	7463	2602	2414	3371	2074	2467	2217	2742	2434	2082
U.K. (Scotland)	10714	7382	5732	7018	5645	6084	5806	7475	5513	5610
U.K. (N. Ireland)	10	1	2	2	3	3	3	13	5	5
J.S.S.R.	-	-	325	606	7	13	107	46	-	-
Total VIa	21739	12682	10666	14699	12263	13652	13163	17405	12619	14943
Working Group total catch									12615	14868

¥) preliminary
a) includes VIb
b) including miscellaneous products

Table 3.2.2. Nominal catch (in tonnes) of COD in Division VIb, 1969-1978 (Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {\# }}$
Belgium	-	-	-	-	-	-	-	1	-	-
Faroe Islands						5	3	22	40	10
France	2372	745	-	1659	320	1128	4	4	3	1
Norway	-	-	-	-	-	3	-	8	3	$\ldots{ }^{\text {a }}$
Poland	-	-	-	-	8	-	-	-	-	-
Spain	-	-	-	-	-	-	-	-	... ${ }^{\text {a }}$	
U.K. (Engl.+Wales)	30	28	37	32	1	-	28	77	89	285
U.K. (Scotland)	131	102	57	175	128	39	98	61	33	384
U.S.S.R.	-	-	-	701	26	-	110	1398	-	-
Total VIb	2533	875	94	2567	483	1175	243	1571	168	680

¥) preliminary
a) included in VIa

Table 3.2.3 COD in Division VIa Effort Data

Year	England + Wales			Scotland			Relative CPUE	Relative Effort
	Catch (tonnes)	Trawl Effort tonnes/hours $\times 10^{-4}$	c/f	Catch (tonnes)	$\begin{aligned} & \text { Seine Effort } \\ & \text { hours } \times 10^{-3} \end{aligned}$	c/f		
1970	2602	1250	2.08	2153	96	22.43	1.54	0.65
1971	2414	806	3.00	1269	99	12.82	1.84	0.46
1972	3371	1495	2.25	1215	71	17.11	1.60	0.73
1973	2074	1270	1.63	1105	60	18.42	1.25	0.78
1974	2467	1092	2.26	849	56	15.16	1.58	0.68
1975	2217	1099	2.02	971	56	17.34	1.45	0.72
1976	2742	1259	2.18	1062	57	18.63	1.57	0.88
1977	2437	1944	1.25	678	42	16.14	1.00	1.00
1978	2082	1784	1.17	773	34	22.74	1.06	1.11

Table 3.2.4 COD in Division VIa. Input Catch Data for VPA

AGE	1967	1968	1969	1970	1971	1972
1	101	222	84	92	335	220
2	1004	859	986	272	884	2264
3	1427	1862	970	944	523	1068
4	141	1296	1519	457	709	483
5	140	112	624	356	220	405
6	104	121	104	133	185	91
7	21	72	84	24	68	72
$8+$	12	18	53	39	36	47
AGE	1973	1974	1975	1976	1977	1978
1	153	727	1260	1988	1179	373
2	504	1841	2043	4753	1183	1602
3	1271	752	1217	1362	1497	978
4	518	874	506	585	590	882
5	145	235	269	255	245	400
6	161	53	60	185	81	145
7	42	52	11	58	49	88
$8+$	47	22	19	18	13	61

Table 3.2.5 COD in Division VIa. Fishing Mortalities from VPA

AGE	1967	1968	1969	1970	1971	1972	1973	1974	1975
1		.023	.040	.032	.020	.042	.654	.024	.095
2	.156	.280	.248	.139	.272	.438	.167	.429	.414
3	.385	.481	.587	.398	.428	.614	.473	.399	.565
4	.285	.730	.943	.615	.593	.912	.696	.704	.516
5	.333	.384	.994	.600	.691	.828	.792	.813	.487
6	.455	.537	.751	.590	.734	.699	.978	.776	.499
7	.594	.665	.913	.382	.696	.724	.843	1.061	.355
8	.700	.700	.700	.700	.700	.700	.790	.700	.700

MEAN F FOR AGES $>=2$ AND $<=6$ (WEIGHTED BY STOCK IN NUMBERS) .256 .472 .566 .382 .416 .545 .404 .450 .470

AGE $1976 \quad 1977 \quad 1978$

1	.317	.157	.059
2	.727	.317	.330
3	.540	.531	.470
4	.589	.476	.700
5	.536	.530	.760
6	.744	.323	.700
7	1.402	.445	.700
8	.700	.700	.709

MEAN F FOR AGES >= 2 AND <= 6 (WEIGHTED BY STOCK IN NUMBERS) .665 .427 .457

[^2]| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| .200 | .200 | .200 | .200 | .200 | .200 | .200 | .200 |

Table 3.2.6 COD in Division VIa. Stock Size in Numbers from VPA

Table 3.2.7 COD in Division VIa. 1978 Input Data for Catch Prediction

Age	Consumption Landings			Discards			Industrial Landings			Total		
	$\begin{gathered} \text { Catch No. } \\ (000) \end{gathered}$	$\begin{gathered} \bar{W} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No. } \\ & (000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No. } \\ & (000) \end{aligned}$	$\begin{gathered} \overline{\bar{W}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{gathered} \text { Catch No. } \\ (000) \end{gathered}$	$\begin{gathered} \overline{\overline{\mathrm{w}}} \\ (\mathrm{~kg}) \end{gathered}$	F
1	373	0.604	. 059							373	0.604	. 059
2	1602	1.367	. 33							1602	1.367	. 33
3	978	2.979	. 47							978	2.979	. 47
4	882	5.035	. 70	No Data			No La	ings		882	5.035	. 70
5	400	6.551	. 70							400	6.551	. 70
6	145	7.939	. 70							145	7.939	. 70
7	88	8.777	. 70							88	8.777	. 70
$8+$	61	9.387	. 70							61	9.387	. 70

Year	1978	1979	1980
Recruits at age 1 (000)	7200	7200	7200

Table 3.2.8 COD in Division VIa. Results of Catch Predictions (000 tonnes)

$\text { 1978: } \begin{aligned} & F^{7} \\ & \text { Spawning stock biomass } \\ & \text { Landings } \end{aligned}$	$\begin{gathered} 0.70 \\ 20.7 \\ 14.9 \end{gathered}$							
1979: Option F Spawning stock biomass Landings	$\begin{aligned} & \frac{\mathrm{A}}{0.35} \text { take TAC) } \\ & 0.35 \\ & 17.6 \\ & 8.0 \end{aligned}$				$\begin{gathered} 0.6 \frac{B}{3}=0.9 \times F_{78} \\ 17.6 \\ 13.0 \end{gathered}$			
1980: Option Mesh size (mm) F^{H} Spawning stock biomass Landings	$\frac{\mathrm{A} I}{80}$ NA	A 2 80 NA	$\begin{gathered} \frac{A 3}{80} \\ 0.36=F_{m} \\ 24.3 \\ 10.1 \end{gathered}$	$\frac{\mathrm{A} 4}{75}$ NA	$\begin{gathered} \frac{B 1}{80} \\ 0.63=F^{\prime} 79 \\ 19.2 \\ 13.4 \end{gathered}$	$\begin{gathered} \frac{B 2}{80} \\ 0.50=0.8 \times F 79 \\ 19.2 \\ 11.1 \end{gathered}$	$\begin{gathered} \frac{B 3}{80} \\ 0.36=F_{\max } \\ 19.2 \\ 8.5 \end{gathered}$	$\begin{aligned} & \frac{\text { B } 4}{75} \\ & \text { as B } 1 \end{aligned}$
1981: Spawning stock biomass			29.3		19.4	21.6	24.3	19.4

※) Fishing mortality on age groups subject to maximum exploitation.
$N A=$ not applicable.

Table 3.3.1 Nominal catch (in tonnes) of COD in Divisions VIId and VIIe, 1969-1978. (Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	$1978^{7 \pi}$
Belgium	132	132	213	124	93	67	59	65	53	419
Denmark	-	-	-	-	-	-	2	718	1506	1120
France	3501	2139	4544	2658	1425	3099	2143	1646	5185	7939
Germany, Fed.Rep.	+	-	+	-	-	-	-	-	-	-
Netherlands	1	3	13	30	2	4	+	2	1	-
Poland	-	-	-	7	13	6	-	-	-	
U.K.(Fngl.+Wales)	222	279	662	717	499	260	159	142	581	652
U.S.S.R.				8	45	-	3	4	-	
Total VIId,e	3856	2553	5432	3544	2077	3436	5082	3	365	6940

अ) preliminary.

Table 3.4.1 Nominal catch (in tonnes) of COD in Divisions VIIb, c and VIIg-k, 1969-1978. (Data for 1969-1977 as officially reported to ICES).

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	$1978^{\#}$
Belgium	196	223	295	77	323	167	116	159	85	53
Faroe Islands	-	-	-	-	256	-	-	-	-	-
France	7893	4	320	5	570	4	168	2	791	2
Germany, Fed. Rep.	4	2	2	-	1	2	877	3196	1972	1869
Ireland	445	537	347	352	568	283	474	506	315	328
Netherlands	128	38	81	22	14	9	54	46	291	
Norway	-	-	-	-	-	-	1	-	+	-
Poland	45	59	33	130	75	39	19	40	6	
Spain	-	-	-	137	301	232	588	1140	51	
U.K.(Engl.+Wales)	119	72	13	56	60	26	73	44	33	29
U.K. (Scotland)	-	-	-	-	-	-	-	-	-	2
U.S.S.K.		116	24	139	10	72	134	203	-	
Total VIIb,c,g-k	8830	5367	6365	5081	4399	3130	4336	5234	2753	2284

\#) preliminary.
a) catch in VIIg only.

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {\% }}$
Belgium	4753	3691	971	i 601	2385	1137	2209	2166	2293	1072
Denmark	316516	158276	31043	34858	13128	44342	32930	46899	20069	8122
Faroe Islands	-	-	-	5	1198	435	- 267	183	385	- 5
France	7562	10392	8738	7814	4695	4020	4646	5500	6914	5064
German Dem.Rep. ${ }^{\text {a }}$	20	2	3	90	22	8	44	20	8	37
Germany, Fed. Rep.	3376	5075	3045	4020	4587	3478	2396	3433	3744	2573
Iceland	-	+		-	-	-	-	-	-	-
Ireland	-	-	-	-	-	-	-	31	53	. ${ }^{\text {P }}$
Netherlands	23233	8278	6914	5288	3185	3035	1901	1728	1598	798
Norway ${ }^{\text {b }}$	792	963	1063	1146	5611	5954	331	367	374	546
Poland	4	-	-	38	2553	3001	1485	1155.	485	62
Spain	-	-	-	-	101	210	-	-	-	-••
Sweden ${ }^{\text {c }}$	5108	0704	5857	5305	4550	3098	2083	2455	113	866
U.K. (Engl.+Wales)	14090	29500	16648	20827	16586	10798	21499	17238	17167	12200
U.K. (Scotland)	70253	112952	121539	96197	88132	71679	64686	80576	89465	58405
U.S.S.R.	203488	344000	62398	36467	49356	42234	49686	42852	8010	44
Total IV	639195	671833	258220	213556	196079	193429	174.163	204603	150678	89794
Total IVa	271953	455649	197.306	135095	131819	128607	110848	. 138591	116577	
Total IVb	361836	212646	58270	75325	62288	63695	62761	65594	34030	
Total IVC	5406	3538	2644	3136	1972	1127	554.	418	71	
Working Group total catch									$178154^{\text {d }}$	$117977^{\text {d }}$

अ) provisional figures; a) 1969-1972 includes IIIa; b) Figures from 1969-1972 do not include haddock caught in Rec. 2 fisheries;
c) 1969-1974 includes IIIa; d) includes discards.

Table 4.1.2 North Sea HADDOCK
Revised estimates of year class strength

Year class	IYHS $^{\text {a }}$	VPA $\left.(\mathrm{M}=0.2)^{\mathrm{b}}\right)$
1964		63
1965	25	147
1966	91	767
1967	7628	6296
1968	119	386
1969	35	111
1970	1545	901
1971	957	1324
1972	230	256
1973	1314	1278
1974	1370	2557
1975	212	302
1976	189	577
1977	458	$678^{\text {F }}$
1978	(600)	793^{*}

a) Arithmetic mean number per hour fishing during the International Young Herring Surveys (c.f. ICES Doc. C.M. 1978/G:51).
Figure in brackets represents preliminary estimate based on number of haddock < 20 cm caught in 1979.
b) Millions of fish at age 1 .
${ }^{\text {F) }}$ Estimated from prediction regression (of Table 5.3 in ICES Doc. C.M.1977/F:19).

Table 4.1.3 North Sea HADDOCK. Relative Fishing Effort*

Year	Scotland Seine		England Trawl		Total Fishery	Effort relative to 1978
	Landings (tonnes)	Landings/1 000 hrs	Landings (tonnes)	Landings $/ 10^{7}$ tonnes/hrs	Landings/tonnes	
1963	22284	36.2				
1964	40733	63.7				
1965	57639	98.8				
1966	44002	87.7				
1967	38321	74.5				
1968	37797	68.9				
1969	49652	101.0				
1970	70187	164.9	19500	4.25	671833	7.3
1971	63381	152.3	16648	3.61	258220	3.2
1972	50281	128.0	20827	3.92	213556	2.6
1973	54094	130.4	16586	3.47	196079	2.7
1974	44826	125.9	10798	2.38	193429	3.0
1975	39233	114.8	11499	3.18	174163	2.6
1976	51901	168.5	17238	4.03	204603	2.2
1977	53248	170.9	17167	3.84	150678	1.6
1978	59628	183.5	12536	2.81	89151	1.0

${ }^{*}$ See Appendix I for method of calculation.

AGE	1961	1962	1963	1964	1965	1966
0	0	0	0	0	0	c
1	20452	64398	25016	11	24631	11741
2	64283	23710	118135	426452	3723	6651
3	65993	32655	13487	146416	460835	17676
4	3884	18585	12228	17136	33171	410528
5	2326	1186	6430	9540	6839	24649
6	7350	679	533	4319	3817	4302
7	813	3436	362	323	672	468
8	398.	260	919	532	259	79
9	59	26	9	60	18	5
$10+$	1	4	9	11	1	1
AGE	1967	1968	1969	1970	1971	1972
0	0	0	0	0	0	161936
1	101980	375954	36450	6270	48309	194924
2	25414	190064	1728521	119108	22735	222225
3	3332	26678	181820	1501664	37464	27356
4	6684	2336	26798	34647	372336	20070
5	194803	2244	5169	594	11383	147479
6	4836	66077	2252	512	675	3277
7	498	566	424E1	235	206	123
8	259	72	5051	2584	1827	433
9	42	11	13	19	864	8
$10+$	3	6	1	3	211	142
AGE	1973	1974	1975	1976	1977	1978
0	41834	386956	70051	147446	45221	248588
1	21985	241173	776653	103177	137100	206962
2	265206	78126	416472	681124	73290	121784
3	240903	252116	53422	211482	316963	31072
4	8952	43950	116929	12607	39984	108089
5	6147	2636	16760	33469	3805	9064
6	1572	1136	708	5543	6715	1220
7	39	9621	489	228	1217	1956
8	1	236	3098	85	113	410
9	4	15	111	815	33	122
$10+$	23	40	64	83	167	96

MEAN F FOR AGES $\geqslant=2$ AND $<=8$ (HEIGHTED BY STOCK IN NUMBERS) 1.106 .933 .774 .627 .759 .875 .781 .840 . 627

AGE-NATURAL MORTALITY

0	1	2	3	4	5	6	7	8	9
.200	.200	.200	.200	.200	.200	.200	.200	.200	.200

AGE	1961	1962	1963	1964	1965	1966
0	772302	3670249	83268	76795	179312	937054
1	141708	632308	3004946	68174	62875	146809
2	163962	97599	459632	2437647	55806	29432
3	117468	76706	58599	270185	1611915	42331
4	7962	37472	33606	35853	90859	906026
5	5106	3054	14104	16561	14060	44676
6	14102	2103	1439	5752	5078	5410
7	1257	4997	1113	701	908	799
8	475	308	1054	586	285	152
9	68	41	26	64	21	10
10	1	5	11	13	1	1
AGE	1967	1968	1969	1970	1971	1972
0	7690049	471462	135013	1100531	1617552	490055
1	767195	6296479	386800	110540	901038	1324339
2	109607	536247	4815567	223366	84844	694113
3	18117	66893	268740	2394062	81655	49046
4	18850	11835	30895	59215	628904	33395
5	375091	9444	7588	1989	17694	184947
6	14643	133515	5715	1642	1096	4400
7	657	7652	50378	2664	885	298
8	290	100	5755	4184	1969	539
9	54	13	18	326	1133	42
10	4	7	1	4	249	168

AGE	1973	1974	1975	1976	1977	1978
0	1607549	3548969	446177	867278	881734	1243611
1	256025	1278378	2556844	302219	577332	681093
2	908713	189789	829628	-1396484	154952	349453
3	368980	505949	85505	307887	665986	61444
4	15817	88745	189401	22624	65146	213743
5	9521	4988	29097	51322	7307	17924
6	21517	2349	1736	8924	12377	2592
7	717	16139	9e9	788	2389	4955
8	134	552	4717	309	441	871
5	62	193	241	1119	177	259
10	27	47	76	98	197	115

Table 4.1.7 North Sea HADDOCK

Spawning Stock Biomass

Year	Spawning Stock Biomass (Tonnes $\times 10^{-3}$)
1961	94
1962	74
1963	144
1964	626
1965	613
1966	512
1967	292
1968	261
1969	166
1970	893
1971	380
1972	299
1973	343
1974	278
1975	322
1976	444
1977	286
1978	220

Table 4.1.8 North Sea HADDOCK
Data for Assessment of Yield per Recruit Curves ($M=0.2$ for all ages)

Age	Expected Relative F in 1980	Mean Weight (kg)
0	.31	.0143
1	.41	.0728
2	.45	.2056
3	.98	.3366
4	1.0	.505
5	.0	.643
6	.9	.810
7	.9	1.102
8	.9	1.312
9	.9	1.369
$10+$		1.460

Table 4.1.9 North Sea HADDOCK, 1978. Input Data for Catch Predictions ${ }^{\text {FF }}$)

Age	Industrial Landings			Consumption Landings			Discards		Total		
	$\begin{aligned} & \text { Catch No. } \\ & (.000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No. } \\ & (.000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No. } \\ & (.000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \text { Catch No. } \\ & (.000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{W}} \\ (\mathrm{~kg}) \end{gathered}$	F
0	241333	0.012	0.248	0	0.000	0.000	6040	0.080			
1	108245	0.041	0.215	12233	0.210	0.190	85938	0.091	206416		
2	10161	0.165	0.040	49482	0.256	0.440	62011	0.171	121654		. 405
3	666	0.274	0.020	23759	0.374	0.780	6645	0.208		0.20	0.480
4	829	0.440	0.010	98809	0.529	0.790	8451		31070	0.336	0.800
5	66	0.326	0.010	8939	0.648			0.228	108089	0.505	0.800
6	9	0.399	-				59	0.275	9064	0.643	0.800
7	5	0.399	-	1113	0.858	0.720	98	0.300	1220	0.810	0.720
	5	0.399	-	1951	1.104	0.720	0	0.000	1956	1.102	0.720
8	1	0.399	-	409	1.314	0.720	0	0.000	410	1.312	0.720
9	0	0.000	-	122	1.369	0.720	0	0.000	122	1.369	0.720
10	0	0.000	-	90	1.460	0.720	0	0.000	90	1.460	0.720

${ }^{\text {F) }}$ Adjusted so that the sum of products equals landings.

Year	1979	1980
Recruitment at a.ge 0	622000	622000

North Sea HADDOCK
Results of Catch Predictions (in thousands of tonnes)

1978:	$F^{\text {F }}$ Spawning stock biomass Industrial by-catch Consumption landings Total landings Discards	$\begin{array}{r} 0.8 \\ 220 \\ 9.6 \\ 86.1 \\ 25.7 \\ 22.3 \end{array}$							
1972:	${ }_{F}{ }^{\text {Option }}$ Spawning stock biomass Industrial by-catch Consumption landings Total landings Discards	$\begin{aligned} & 0.76=0.9{ }^{\frac{A}{2}} \times F_{78} \text { (to take TAC) } \\ & 207 \\ & 8.7 \\ & 74.5 \\ & 83.2 \\ & 24.0 \end{aligned}$				The option $\frac{\mathrm{B}}{\mathrm{F}_{79}}=0.9 \mathrm{~F}_{78}$ was not run since it is virtually identical to option A.			
1980:	Option Spawning stock biomass Industrial by-catch Consumption landings Total landings Discards	$\begin{gathered} \frac{\mathrm{A} 1}{80} \\ 0.76=\mathrm{F}_{79} \\ 224 \\ 6.9 \\ 70.7 \\ 77.6 \\ 17.5 \end{gathered}$	$\begin{gathered} \frac{A 2}{80} \\ 0.61=0.8 \times F_{79} \\ 224 \\ 5.7 \\ 59.8 \\ 65.5 \\ 14.6 \end{gathered}$	$\begin{gathered} \frac{A 3}{80} \\ 0.26=F_{\max } \\ 224 \\ 2.6 \\ 29.5 \\ 32.1 \\ 6.9 \end{gathered}$	$\begin{gathered} \frac{A 4}{75} \\ 0.76=F_{79} 79 \\ 224 \\ 6.7 \\ 75.2 \\ 81.9 \\ 22.6 \end{gathered}$	B 1	$\frac{\mathrm{B} 2}{80}$	$\frac{\mathrm{B} 3}{80}$	$\frac{B 4}{75}$
1981	Spawning stock biomass	209	230	287	195				

Fishing mortality on age groups subject to maximum exploitation.

Table 4.2.1 Nominal catch (in tonnes) of HADDOCK in Division VIa, 1969-1978
(Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {\# }}$)
Belgium	34	13	9	44	45	98	23	45	-	
Denmark	-	-	-	-	-	-	-	13	-	-
Faroe Islands	-	-	-	-	2	1	-	-	-	-
France	224	785	2354	5014	5141	3979	2328	3026	3401	3572
German Dem.Rep.	-	-	10	87	-	-	9	-	-	-
Germany,Fed. Rep.	14	9	15	7	15	18	3	30	+	19
Iceland	-	-	+	-	-	-	-	-	-	-
Ireland	1618	2720	4316	3982	2631	1715	599	1115	616	443
Netherlands	40	126	78	205	169	63	19	30	28	
Norway	-	-	-	-	-	-	-	3	7	9
Poland	-	-	10	-	402	97	20	-	-	
Spain	-	-	-	101	497	540	-	-		
Sweden	-	-	-	-	-	-	-	-	-	
U.K. (Eng1. +Wales)	3296	1785	1491	2393	2187	1512	1214	1971	3827	2805
U.K. (Scotland)	21 034	28724	33087	27730	17631	9583	8973	11992	11422	9629
U.K. (N. Ireland)	13	12	2	1	-	-	-	-	-	
U.S.S.R.	-	4	4927	1480	110	364	495	533	-	
Total VIa	26273	34178	46299	41044	28830	17970	13683	18758	19301	16477
Working Group Total Catch									19301	16925

${ }^{\text {\# }}$ Preliminary

Table 4.2.2 Nominal catch (in tonnes) of HADDOCK in Division VIb, 1969-1978
(Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {² }}$
Belgium	-	-	-	-	-	-	-	33	-	-
Faroe Islands	\pm	-	-	-	-	2	1	8	3	-
France	320	12	182	1527	600	353	21	4	4	3
Norway	-	-	-	-	-	-	-	-	+	-
Poland	-	-	-	-	54	-	-	-	-	-
U.K. (Engl.+Wales)	262	220	117	27	1	-	5	2111	2694	2365
U.K.(Scotland)	543	608	313	616	72	22	71	640	297	2059
U.S.S.R.	-	-	9	7304	3291	48911	49830	40447	-	-
Total VIb	1125	840	621	9474	4018	49288	49928	43243	2998	4427

*) Preliminary.

Table 4．2．3 HADDOCK in Division VIa
Input Catch Data for VPA

AGE	1965	1966	1267	1968	1969	1970
1	5	278	516	9311	0	230
2	1654	35.9	11419	7387	48921	164
3	84419	1164	：239	3234	5928	71520
4	$4 E 97$	47424	238	418	1386	3795
5	206	1606	18775	586	350	211
6	169	76	252	11729	576	52
7	139	30	20	655	3386	98
84	23	102	28	36	150	453
AGE	1971	1972	：973	1974	1975	1976
1	2448	550	1208	1970	4861	779
2	2844	22221	6520	3425	9519	21547
3	EEE7	2くご5	15643	9411	2773	12658
4	91387	2857	263	6131	3427	1548
5	59\％	56846	1147	97	1980	1440
6	86	612	31836	447	106	885
7	6	37	：39	11488	122	27
$8+$	$9 \overline{7}$	57	114	189	3770	1238

AGE	1577	1578
1	368	775
2	1279	926
3	29515	656
4	5689	21286
5	$E 95$	2984
6	559	416
7	565	268
$8+$	592	502

Table 4.2.4 HADDOCK in Division VIa
Fishing Mortalities from VPA

MEAN F FOR AGES $>=2$ AND $<=6$ (WEIGHTED BY STOCK IN NUMRERS) $.506 .307 .2 E 3.431 .573$

AGE-NATURAL MORTALITY

1	2	3	4	5	6	7
.200	$.200^{3}$	$.200^{3}$	$.200^{3}$.200	.200	.200

Table 4.2.5 HADDOCK in Division VIa
Stock Size in Numbers from VPA

AGE	1965	1966	1967	1968	1969	1970
1	5028	25456	33211	685402	33729	14487
2	7377	4112	20591	26725	552751	27615
3	220246	4552	$3 ¢ 43$	6698	15247	408438
4	5750	104745	2681	1383	2598	7177
5	513	3791	43396	1981	757	893
6	322	235	1668	18748	1096	307
7	443	113	125	1139	4947	384
R	54	238	65	84	350	1657
AGE	1571	1572	1973	1974	1975	1976
1	83620	39816	18655	63889	175299	5049
2	11653	6E252	32666	14183	50529	139134
3	22461	6585	34321	20388	8534	32864
4	270024	12442	3723	14124	8289	4581
5	2496	135154	7582	2811	6084	3721
6	541	1513	63078	5175	2214	3205
7	169	366	691	23260	3834	1717
8	226	133	266	441	8797	3029

AGE	1977	1578
1	5492	41133
2	3432	4164
3	96510	1665
4	16022	50961
5	$E 257$	80.0
6	175.3	1257
7	$: 830$	395
E	1301	1171

Table 4.2.6 HADDOCK in Division VIa
Input Data for Catch Predictions

Age	1978 Catch Number $\times 10^{-3}$	1978 F	$75 / 80$ mm Mesh Change Coefficients	$\overline{\mathrm{w}}$	Exploitation Pattern
1	775	0.021	0.84	0.23	0.03
2	926	0.28	0.93	0.28	0.43
3	696	0.61	0.99	0.41	1
4	21280	0.61	1	0.58	1
5	2884	0.50	1	0.71	0.82
6	416	0.45	1	0.94	0.74
7	268	0.35	1	1.21	0.57
$8+$	502	0.15	1	1.44	0.25

Recruitment at age 1: $\quad \begin{aligned} 1977 \text { year class } & =41 \times 10^{6} \\ 1978 \text { year class } & =49 \times 10^{6} \\ 1979 \text { year class } & =32 \times 10^{6}\end{aligned}$

1978:	F^{*} Spawning stock biomass Landings	$\begin{aligned} & 0.61 \\ & 45 \\ & 16.5 \end{aligned}$							
1979:	$\begin{aligned} & \text { Option } \\ & \mathrm{F}^{*} \\ & \text { Spawning stock biomass } \\ & \text { Landings } \end{aligned}$	$\begin{gathered} \underline{\mathrm{A}} \\ 0.49(\text { to take TAC }) \\ 32 \\ 8.5 \end{gathered}$				$\begin{gathered} \text { B } \\ 0.55\left(F_{78} \times 0.9\right) \\ 32 \\ 9.3 \end{gathered}$			
1980:	Option Mesh size (mm) F^{*} Spawning stock biomass Landings	$\begin{gathered} \frac{\mathrm{A} 1}{80} \\ 0.49=\mathrm{F}_{79} \\ 34 \\ 9 \end{gathered}$	$\begin{gathered} \frac{\mathrm{A} 2}{80} \\ 0.39=0.8 \times F_{79} \\ \left(F_{80}<F_{\max }\right) \end{gathered}$	$\begin{gathered} \frac{\mathrm{A} 3}{80} \\ 0.5=\mathrm{F}_{\max } \\ 34 \\ 9 \end{gathered}$	$\begin{gathered} \frac{\mathrm{A} 4}{75} \\ 0.49=\mathrm{F}_{79} 79 \\ 34 \\ 9.2 \end{gathered}$	$\begin{gathered} \frac{\mathrm{B} 1}{80} \\ 0.55=\mathrm{F}_{79} \\ 33 \\ 9.6 \end{gathered}$	$\begin{gathered} \frac{\mathrm{B} 2}{80} \\ 0.44=0.8 \times F_{79} \\ \left(F_{80}<F_{\max }\right) \end{gathered}$	$\begin{gathered} \frac{\mathrm{B} 3}{80} \\ 0.5=\mathrm{F}_{\max } \\ 33 \\ 8.9 \end{gathered}$	$\begin{gathered} \frac{\mathrm{B} 4}{75} \\ 0.55=\mathrm{F}_{79} 79 \\ 33 \\ 9.8 \end{gathered}$
1981:	Spawning stock biomass	36		36	36	34		35	34

${ }^{*} F$ on age groups subject to maximum exploitation.

Table 4.3.1 Nominal catch (in tonnes) of HADDOCK in Divisions VIId and VIIe, 1969-1978
(Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {\# }}$
Belgium	10	3	1	2	1	+	+	+	1	-
Denmark	-	-	-	-	-	-		-	2	18
France	736	295	97	224	208	487	868	405	438	364
Germany, Fed.Rep.	-	-	1	-	-	-	$+$	-		-
Ireland	-.	-	-	-	-	-	-	-	4	-
Netherlands	-	5	-	9	1	-	1	-	-	-
Poland	-	-	-	-	12	-	-	-	-	-
U.K. (Engl.+Wales)	65	118	71	166	135	113	99	45	29	22
U.S.S.R.	-	-	-	10	2	33	3	-	-	-
Total VIId, e	811	421	170	411	359	633	971	450	474	404

Table 4.4.1 Nominal catch (in tonnes) of HADDOCK in Divisions VIIb, c and VIIg-k, 1969-1978 (Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {\% }}$
Belgium	22	31	23	45	65	35	33	19	13	$4^{\text {a) }}$
Faroe Islands										
France	2941	3823	3652	6456	5524	6057	4583	3726	2244	2313
Germany, Fed.Rep.			1	-	1	-	$+$	3	-	-
Ireland	635	783	947	1103	1348	829	507	287	153	127
Netherlands	80	98	66	56	12	2	4	14	1	
Poland	-	-	3	-	62	143	-	-	-	
Spain	-	-	-	733	890	1100	-	-	294	
U.K. (Engl.+Wales)	44	46	25	107	24	39	46	24	18	16
U.K. (Scotland)	-	-	-		-.	-	-	-	-	8
U.S.S.R.	-	27	136	253	24	456	1290	183	-	-
Total VIIb, c and $\mathrm{g}-\mathrm{k}$	3724	4809	4853	8753	7953	8661	6463	4256	2723	2468

*) Preliminary
a) VIIg only

Table 5.1.1 Nominal catch (in tonnes) of WHTTING in Sub-area IV, 1969-1978
(Data for 1969-1977 as officially reported to ICES)

	1969	1970	1971	2972	1973	1974	1975	1976	1977	$1978{ }^{\text {\% }}$)
Belgium	2410	2799	2108	2745	3387	3156	3279	2640	3275	3191
Denmark	142622	102698	55618	50109	73.928	109654	61941	116973	46479	15525
Faroe Islands	-	-	-	-	1453	1126	764	1262	472	-
France	25.602	25842	16668	19822	20 353'	19825	20079	19557	17592	19868
German Dem. Rep.	-	-	-	-	5	-	3	18	-	22
Germany, Fed. Rep.	542	392	233	264	403	454	446	302	461	348
Iceland	-	-	-	-	-	-	-	4	9	...
Netherlands	15181	10115	6322	7613	8811	12057	24078	12274	9406	-••
Norway ${ }^{\text {a }}$	32	43	25	28	1527	4990	55	71	33	93
Poland	-	-	-	-	7	1002	888	509	445	8
Spain	-	-	-	107	119	110	65	18	-	. \cdot
Sweden ${ }^{\text {b }}$	1090	820	616	596	2328	2440	255	153	341	50
U.K. (Engl. + Wales)	2268	3398	4158	3789	4592	5519	5246	5112	6185	7541
U.K. (Scotland)	20573	21080	26755	23846	20756	25274	27969	26167	33017	42779
U.S.S.R.	5509	14319	541	613	3522	2978	5098	5612	2413	-
Total IV	215829	181506	113044	109532	141191	188585	140166	190672	120128	100066
Total IVa	49839	32185	23451	32932	31104	81693	75444	100001	61499	
Total IVb	157568	126024	70728	66789	96678	87842	41930	69908	42911	
Total IVe	8422	23297	18865	9811	13409	19050	22792	20763	15718	
Working Group Total Catch									172378	$170819^{\text {c }}$

;) Provisional figures.
a) Figures from 1969-1972 do not include Whiting caught in Rec. 2 fisheries.
b) 1969-1974 includes IIIa.
c) includes discards.

Table 5.1.2 North Sea WHITING
Revised estimates of year class strength

Year class	IYHS $^{\text {a }}$	VPA $(M=0.2)^{\text {b }}$
1964	418	680
1965	600	775
1966	519	975
1967	2066	2609
1968	18	860
1969	71	776
1970	225	825
1971	356	1784
1972	1161	2322
1973	325	1606
1974	943	2241
1975	832	1333
1976	436	1442
1977	473	1248^{*}
1978	(505)	$1287^{\text {F }}$

a)

Arithmetic mean number per hour fishing during the International Young Herring Surveys (c.f. ICES Doc. C.M.1978/G:51) Figure in brackets represents preliminary estimate based on numbers of whiting $<20 \mathrm{~cm}$ caught in 1979.
b) Millions of fish at age 1. Figures with an asterisk (\#) estimated from predictive regression (c.f. Table 53 in ICES Doc. C.M.1977/F:19).

Table 5.1.3 North Sea WHITING
Input Catch Data for VPA

AGE	1963	1964	1965	1966	1967	1968
0	64257	198791	35800	26864	225344	149671
1	271742	61465	80050	267347	187736	425514
2	220766	157203	53023	187031	163927	317412
3	59022	113598	222525	72901	123885	101396
4	36292	22679	61271	188881	28061	48832
5	8838	11698	8466	33896	59486	10730
6	1893	2904	3873	3226	7714	23612
7	11	501	928	1540	923	2130
i^{+}	151	63	141	451	150	138
AGE	1969	1970	1971	1972	1973	1974
0	114392	105852	969531	478565	201785	492277
1	513060	486258	208832	642039	638510	873497
2	790117	172353	96844	235436	446112	745235
3	133868	401920	22821	41610	108925	190795
4	30646	34378	115699	6816	18653	32495
5	11183	10568	13065	51301	5985	5000
6	3807	4051	2241	5971	18034	1779
7	7248	504	801	843	2638	5469
$8+$	3499	1673	662	575	635	578

AGE	1975	1976	1977	1978
0	181773	311435	264876	394280
1	602340	306092	326782	270143
2	273809	756273	310316	400877
3	255145	128010	200190	194005
4	60267	72995	26474	68918
5	11565	14483	18150	7440
6	2487	3478	4324	5802
7	781	795	481	1860
$8+$	1651	591	318	397

Table 5.1.4 North Sea WHITING
Fishing Mortalities from VPA

agE-NATURAL MORTFLITY

0	1	2	3	4	5	6	7	8
. 200	. 200	. 200	. 200	.200	. 200	. 200	. 200	. 200

$\begin{array}{ll}\text { Table 5.1.5 } & \text { North Sea WHITING } \\ & \text { Stock Size in Numbers from VPA }\end{array}$

AGE	1963	1964	1965	1966	1967	1968
0	504463	1049066	585704	1220927	3435016	1214352
1	1495430	355120	680924	774709	975353	2609047
2	599819	979789	235419	484612	394664	629632
3	117178	293358	660635	145073	229340	176514
4	64633	43312	138494	341394	53773	77468
5	15993	20634	15256	58640	111434	19024
6	297.4	5229	6490	4958	- 17880	38259
7	108	757	1697	1874	1202	7744
8	189	79	176	564	187	172
TOTAL						
	2800788	2747345	2723896	3032749	5218850	4772213
SFAWNING	$\begin{aligned} & \text { STOCK (AĠE } \\ & 800894 \end{aligned}$	$\begin{aligned} & y=2) \\ & 1343159 \end{aligned}$	1058168	1037114	808481	348813
AGE	1969	1970	1971	1972	1973	1974
0	1074186	1124145	3241938	3362559	2183986	3278622
1	859892	776350	824927	1784215	2321951	1606143
2	1752989	248352	204379	487765	885600	1327691
3	232495	729403	51055	86162	189267	327310
4	54373	71345	239503	21412	33415	58125
5	20128	17258	27735	92851	11417	10763
6	6032	6.529	4751	11045	29847	4085
7	10374	1563	T752	1889	3727.	8374
8	4374	2091	827	719	794	722
TOTAL						
	4014941	2977036	4596867	5848617	5660003	6621836
SPAWNING	STOCK (AGE	$y=2)$				
	2080763	1076541	530003	701842	1154066	1737076
AGE	1975	1976	1377	1978		
0	1827909	2103357	1823845	2030676		
1	2240953	1332689	1441585	1254095		
2	537413	1293770	815935	886478		
3	424102	195919	387209	390194		
4	98419	120674	47039	138612		
5	18680	27094	33995	14964		
E	4348	5034	32¢5	11669		
7	1755	1348	1648	3741		
8	2064	739	397	499		
TOTAL 515504245305030						
	5155642	5080615	4559530	4730837		
SFALNING	STOCK (AGE	$\rangle=\hat{c})$				
	1086780	1644577	1294899	1446157		

Table 5.1.6 North Sea WHITING, 1978. Input Data for Catch Predictions

Age	Consumption Landings			Discards			Industrial Landings			Total		
	$\begin{aligned} & \text { Catch No. } \\ & (.000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No. } \\ & (.000) \end{aligned}$	$\begin{gathered} \bar{W} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No: } \\ & (.000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No. }{ }^{\text {F }} \\ & (.000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F
0	0	-	0	23563	. 034	. 01	370725	. 012	. 23	394288	. 013	. 24
1	13924	. 187	. 01	58177	. 110	. 06	197800	. 057	. 20	269901	. 075	. 27
2	117034	. $228{ }^{\circ}$. 20	226108	. 154	. 39	55666	. 159	. 10	398808	. 176	. 68
3	118044	. 269	. 48	46333	. 184	. 19	27541	. 243	. 11	191918	. 245	. 78
4	56337	. 322	. 65	8299	. 208	. 10	3286	. 322	. 04	67922	. 308	. 78
5	6375	. 380	. 68	303	. 227	. 03	649	. 380	. 07	7329	. 374	. 78
6	5148	. 468	. 70	107	. 241	. 02	456	. 468	. 06	5711	. 464	. 78
7	1446	. 620	. 62	0	-	0	388	. 620	. 17	1834	. 620	. 78
8	259	. 900	. 52	0	-	0	133	. 900	. 26	392	. 900	. 78

Year class	1978	1979	1980
Recruits (000) at age 0	2030700	1750000	1750000

${ }^{3 f}$) adjusted so that sum of products equals landings.

Table 5.1.7 North Sea WHITING. Results of Catch Predictions (in thousand tonnes)

1978:	$F^{\text {F }}$ Spawning stock biomass Industrial by-catch Consumption landings Total landings Discards	$\begin{gathered} 0.78 \\ 306 \\ 33 \\ 85 \\ 118 \\ 52 \end{gathered}$						
	Option F^{*} Spawning stock biomass Industrial by-catch Consumption landings Total landings Discards	$\begin{aligned} & \quad \mathrm{A} \\ & \left.0.51=0.65 \times \mathrm{F}_{78} \text { (to take } \mathrm{TAC}\right) \\ & 299 \\ & 23 \\ & 63 \\ & 86 \\ & 35 \end{aligned}$				$\begin{gathered} \text { B } \\ 0.70=0.90 \times \mathrm{F}_{78} \\ 299 \\ 30 \\ 81 \\ 111 \\ 45 \end{gathered}$		
1980:	Option Mesh size (mm) $\mathrm{F}^{\text {F }}$ Spawning stock biomass Industrial by-catch Consumption landings Total landings Discards	$\begin{gathered} \frac{\mathrm{AI}}{80} \\ 0.51=\mathrm{F}_{79} \\ 358 \\ 26 \\ 67 \\ 93 \\ 31 \end{gathered}$	$\begin{aligned} & \frac{\mathrm{A} 2}{80} \\ & 0.41=0.8 \times \mathrm{F}_{79} \\ & 358 \\ & 21 \\ & 56 \\ & 77 \\ & 25 \end{aligned}$	$\begin{gathered} \frac{A 3}{80} \\ F_{\max }=0.3 \\ 358 \\ 16 \\ 42 \\ 58 \\ 19 \end{gathered}$	$\begin{gathered} \frac{\mathrm{A} 4}{75} \\ 0.51=\mathrm{F}_{79} \\ 358 \\ 25 \\ 70 \\ 95 \\ 32 \end{gathered}$	$\begin{gathered} \frac{\mathrm{B} 1}{80} \\ 0.70=\mathrm{F}_{79} \\ 315 \\ 31 \\ 74 \\ 105 \\ 36 \end{gathered}$	$\begin{gathered} \frac{\mathrm{B} 2}{80} \\ 0.56=0.8 \times \mathrm{FF}_{79} \\ 315 \\ 25 \\ 62 \\ 87 \\ 30 \end{gathered}$	$\begin{gathered} \frac{\mathrm{B} 3}{80} \\ \mathrm{~F}_{\max }=0.3 \\ 315 \\ 14 \\ 36 \\ 50 \\ 17 \end{gathered}$
1981:	Spawning stock biomass	408	434	465	403	328	357	420

[^3]Table 5.1.8 North Sea WHITING
Exploitation pattern for 1980

Age	Current F			F at 80 mm mesh		
	Consumption	Industrial	Discard	Consumption	Industrial	Discard
0	0	.23	.01			
1	.01	.20	.06	.01	0	
2	.20	.10	.39	.15	.20	.04
3	.48	.11	.19	.40	.10	.29
4	.65	.04	.10	.57	.11	.16
5	.58	.07	.03	.64	.04	.08
6	.70	.06	.02	.67	.06	.03
7	.62	.17	0	.62	.17	0
8	.52	.26	0	.52	.26	0

Table 5.2.1 Nominal catch (in tonnes) of WHITING in Division VIa, 1969-1978
(Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	$1978^{\text {\# }}$)
Belgium	12	12	9	7	5	10	1	14	-	-
Denmark	-	-	-	-	121	-	-	-	-	-
Faroe Islands	-	-	-	-	5	1	30	2	-	-
France	1176	1851	2507	1662	2777	2983	2763	3655	3395	4225
German Dem. Rep.	-	-	-	-	-	-	-	31		-
Germany, Fed. Rep.	19	-	+	148	127	80	62	1	1	2
Iceland	-	-	-	-	-	-	-	-	-	-
Ireland	1836	2420	1178	1122	2117	2431	2429	3255	2752	2080
Netherlands	12	24	28	40	57	23	85	255	78	-
Norway	-	-	,	-	-	-	-	1	-	-
Poland	-	-	2	1397	10	- 9	1871	-		9
Spain	-	-	-	1397	1540	1479	1871	821	$763^{\text {a }}$	949
U.K. (Engl.+Wales)	-180	76 6839	1166	102 10707	91 9	- 112	12668	16 244	- 520	669
U.K. (Scotland) U.S.S.R.	8946	6839	11435	10707 128	9796	9929	12668	16658	9873	8174
Total VIa	12181	11222	15225	15313	16646	17057	20041	24937	17382	16099
Working Group total catch									17384	16196

Table 5.2.2 Nominal catch (in tonnes) of WHITING in Division VIb, 1969-1978 (Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	$\left.1978^{\text {F }}\right)$
Faroe Islands	-	-	-	-	-	1	-	-	+	-
France	364	1265	800	69	62	-	-	-	-	-
Spain	-	-	-	-	-	-	-	-	\ldots	-
U.K. (Angl.+Wales)	-	+	+	+	+	-	-	3	2	5
U.K. (Scotland)	5	12	7	12	1	+	12	15	5	24
Total VIb	369	1277	807	81	63	1	12	18	7	29

\#) preliminary
a) includes VIb
b) included in VIa

Table 5.2.3 WHITING in Division VIa Input Catch Data for VPA

AGE	1977	1978
6	23	9
1	12920	12753
2	11210	15355
3	25855	7938
4	2953	14368
5	4905	1732
6	275	2124
7	12	76
$8+$	4	10

Table 5.2.4 WHITING in Division VIa
Fishing Mortalities from VPA

AGE		1965	1966	1967	1968	1969	1970	1971	1972	1973
-		. 000	.000	. 000	. ear	. 000	.000	. 000	. 000	. 000
1		. 652	. 821	. 081	. 039	. 051	. 036	. 695	. 160	. 673
2		. 647	. 471	. 864	. 563	. 191	. 289	. 671	. 579	. 736
3		. 448	. 821	. 934	1.033	. 697	. 362	. 964	. 736	1.095
4		. 809	. 640	. 783	. 998	1.825	. 840	. 772	. 764	1.206
5		1.005	. 709	1.637	. 684	1.315	1.019	.689	. 892	. 824
6		. 592	.858	. 847	1.602	. 535	. 803	1.672	. 956	1.284
7		2.128	. 735	1.055	. 790	1.385	. 193	. 414	. 797	1.369
ε		. 700	. 700	. 700	. 700	. 700	. 700	. 700	. 700	. 700
MEAN	$\begin{gathered} \text { F FOR AGES } \\ .494 \end{gathered}$		>=	2 AND < $=$	$=\begin{gathered} 5 \text { (WEIGHTED } \\ .719 \text {. } 280 \end{gathered}$		$\begin{array}{cc} \text { BY STOCK IN NUMBERS) } \\ .394 \quad .7 E 0 \quad .736 \end{array}$			$.810$
			. 593	.927						
AGE		1974	1975	$157 E$	1977	1978				
0		.000	.001	. 080	.096	. 90				
1		. 118	. 115	. 155	. 263	. 200				
2		. 360	. 473	. 472	. 468	. 578				
3		. 8.50	. $6 \in 3$	1.08 E	. 556	. 700				
4		1.307	. 630	1.029	. 533	.700				
5		1.532	. 656	1.689	. 669	. 760				
6		. 260	. 761	2.047	. 511	. 760				
7		1.772	.033	2.011	. 607	. 700				
8		. 700	. 700	. 700	. 700	. 700				
MEAN	F	FOR AGES $.44 \epsilon$	$\begin{gathered} 3= \\ .594 \end{gathered}$	$2 \underset{. \in \& 0}{\text { AND }<=}$	$\begin{gathered} 51 \mathrm{H} \\ .53 \approx \end{gathered}$	$\begin{gathered} \text { EIGHTED } \\ . E 45 \end{gathered}$	By stock	K IN N	BERS	

```
age-fatural mORtality
```


Table 5.2.5 WHITING in Division VIa
Stock Size in Numbers from VPA

AGE	1965	1966	1967	1968	1969	1970
-	72137	7395E	250778	18405	26634	39350
1	48480	59061	60550	205320	15069	21806
2	11129	37671	47338	45730	161749	11726
3	124802	4771	19249	16329	21195	109349
4	10404	65258	1719	6192	4728	8644
5	1343.	3794	28179	643	1884	1389
6	166	402	1529	8183	288	414
7	224	75	140	536	2459	138
8	15	22	30	40	199	564
AGE	1971	1972	1973	1974	1975	1976
0	100600	249587	91247	217206	60402	74968
1	32217	82364	204345	74767	177836	49404
2	17224	23956	57466	155566	54334	129771
3	7190 62310	7212	11906	22540	84869	27713
4 5	62310 3955	2383 23579	2828 903	3014 694	7573	37486
6	410	1256	7910	326	123	3306 273
7	152	115	395	1793	206	273 47
8	100	82	42	82	249	163
GGE	1977	1978				
e	94520	3				
1	61375	77366				
2	3328.	38628				
3	EE287	17198				
4	7813	31129				
5	16973	3753				
6	500	4602				
7	29	165				
ε	5	13				

Table 5.2.6 WHITTNG in Division VIa
Exploitation pattern for 1980

Age	Current. F.	Equivalent F at 80 mm mesh
1	.20	.14
2	.57	.43
3	.70	.56
4	.70	.62
5	.70	.66
6	.70	.68
7	.70	.69
8	.70	.70

Table 5.2.1 WHITING in Division VIa, 1978. Input Data for Catch Predictions

Age	Consumption Landings			Discards			Industrial Landings		
	$\begin{aligned} & \text { Catch No. } \\ & (000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No. } \\ & (000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No. } \\ & (000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F
1	14057	. 213	. 20						
2	16925	. 241	. 57		No			NO	
3	8750	. 267	. 70						
4	15837	. 310	. 70		DATA			DATA	
5	1909	. 377	. 70						
6	2341	. 471	. 70						
7	84	. 563	. 70						
8	11	. 690	. 70						

${ }^{*}$ adjusted so that sum of products equals landings.

Year class	1978	1979	1980
Recruits (000) at age 1	77000	77000	77000

Table 5.2.8 WHITING in Division VIa, 1978
Results of Catch Predictions (in thousand tonnes)

*Fishing mortality on age groups subject to maximum exploitation

$$
F_{\text {max }}>1.5
$$

Table 5.3.1 Nominal catch (in tonnes) of WHITING in Division VIId and VIIe in 1969-1978 (Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {\%) }}$
Belgium	32	41	25	19	38	39	70	103	36	80
Denmark		-	-					18		-
France	4022	4029	2999	3121	5050	7917	10060	8390	8886	6791
Netherlands			1	21	42	12	14	- 5	1	
Ireland	-	-	-	-	-	-	-	-	11	
U.K. (Eng1.+Wales)	1007	753	567	515	498	579	1255	1504	1342	1037
Germany, Fed. Rep.	+	-	$+$	-	-	25	1	-	-	-
U.s.S.R.	-	-	-	-	19	-	-	-	-	-
Total VIId, e	5066	4825	3592	3676	5647	8572	11400	10020	10276	7908

Table 5.4.1 Nominal catch (in tonnes) of WHITING in Division VIIb, c and VIIg-k
(Data for 1969-1977 as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {\% }}$
Belgium	98	113	54	20	124	75	83	97	60	39
France	7891	3066	4893	5695	4035	4331	3637	4731	3962	3475
Germany, Fed. Rep.	5	1	-		+	-	2		1	19
Ireland	985	712	482	1141	I 894	1641	2562	1980	1201	1227
Netherlands	107	73	100	377	2080	915	66	112	86	
Poland	-	-	-	-	14	-	-			
Spain	-	-	-	1491	1121	1367	2974	2772		
U.K. (Engl.+ Wales)	89	80	17	34	21	15	61	21	26	38
U.K. (Scotland)	-.	-	-	-	-	-	-	-	2	1
U.S.S.R.	-	-	-	3	16	-	64	2	-	-
Total VIIb, c and $\mathrm{g}-\mathrm{k}$	9175	4045	5546	8761	9305	8344	9449	9715	5338	4799

${ }^{\text {F) }}$ preliminary

Table 6.1 Nominal catch (in + nes) of RAYS and SKATES in Sub-area , 1969-1977 (as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977
Belgium	1728	1255	1180	1046	941	659	461	725	769
Denmark	123	104	125	115	97	77	55	48	39
Faroe Islands				-	23	19	3	8	14
France	676	487	270	255	231	353	169	171	162
German Dem. Rep.	-		-	-	-	-		3	-
Germany, Fed. Rep.	27	16	19	24	159	24	20	14	2
Iceland	-	-	-	-	+	-	-	-	-
Ireland	-	-	-	-	-	-	-	-	1
Netherlands	132	111	139	171	185	283	283	325	287
Norway	351	222	194	206	377	223	454	479	362
Poland ${ }_{\text {a }}$)	-	-	-	-	-	33	-	-	-
Sweden ${ }^{\text {a }}$	-	+		1	$2{ }^{2}$	-		-	-
U.K. (Engl.+ Wales)	1861	1380	1567	1516	1360	1227	1235	1366	1290
J.K. (Scotland)	2598	2092	2263	2148	1826	1582	1496	1594	1887
U.S.S.R.	220			-	-	-		-	-
Total IV	7716	5667	5758	5482	5201	4480	4176	4733	4813

Table 6.2 Nominal catch (in tonnes) of RAYS and SKATES in Sub-area VI, 1969-1977 (as officially reported to ICES)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977
Belgium	7	7	8	6	13	10	3	4	-
Faroe Islands	-	-	-	-	109	95	43	43	24
France	527	459	362	587	861	1330	816	962	663
Germany, Fed. Rep.	3	+	$+$	$+$	-	1	+	$+$	1
Ireland	271	395	453	318	281	336	458	425	342
Netherlands	-	-	-	1	-	-	-	1	-
Norway	27	125	194	49	116	127	193	122	156
Poland	-	-	-	-	64	-		-	-
U.K. (Engl:+Wales)	556	477	345	320	275	266	264	373	400
U.K. U.K.	1 2397	$2-5$	2060	2585	1864	$1 \overline{308}$	1700	$1 \overline{869}$	1884
Total VI	3789	3514	3422	3866	3583	3473	3477	3799	3470

a) 1970-1974 includes IIIa

Figure 3.1.1 North Sea COD.

Biomass per recruit (kg)

Figure 3.1.2 North Sea Cod. Stock-recruitment plot.

Figure 3.2.1 COD in Division VIa.

D. Yield and biomass per 1 year
old recruit

Figure 3.2.2 Stock-recruitment plot for Division VIa Cod.

Fishing mortality on age groups subject to maximum exploitation

Figure 4.1.2 North Sea haddock stock-recruitment plot.

Figure 4.2.1 HADDOCK in Division VIa.
 and Division VIa (excluding 1967 year class).
Numbers indicate year classes.

Figure 4.2.3 Haddock in Division VIa. Stock-recruitment plot.

Figure 5.1.1 North Sea WHITING.

Figure 5.1.1 (cta)

Figure 5.1.2 North Sea WHITING. Stock/recruitment plot.

Figure 5.1.3 North Sea WHITING. Relationship between fishing mortality from VPA and total fishing effort in Scottish units 1969-76.

Figure 5.2.1 WHITING in Division VIa.

C. Spawning stock biomass

continued...

Figure 5.2.1 (continued)

Fishing mortality on age groups subject to maximum exploitation

Figure 5.2.2 Relationship between year class strength of whiting in Sub-area IV and Division VIa

Figure 5.2.3 Whiting in Division VIa. Stock-recruitment plot.

APPENDIX 1

RELATIVE MEASURES OF INTERNATIONAL EFFORT

The problem of catch and effort data from selected fisheries is that effort is measured in specific units, which do not allow calculations of total effort in one common unit. Also, these data refer only to specific components of the total stock and the magnitude of each fishery has to be taken into account when trying to obtain an average value of the catch per unit effort for each fishery.

The method applied in this report to interpret the available data in terms of overall trends in effort basically operates by eliminating the units of measurement in each fishery by calculating an index ($\boldsymbol{\gamma}$) of the c.p.u.e in each fishery i for each year j, relative to an arbitrarily chosen reference year :

$$
\boldsymbol{\gamma}_{i j}=\text { spue }_{i, j} / \text { spue }_{i, \nabla}
$$

The overall index of c.p.u.e. (Γ) for year j is then calculated from the sum of all the $\boldsymbol{X}_{i j}$, weighted by the catch (c) taken in each fishery:

$$
\Gamma_{j}=\sum_{i} \gamma_{i, j} * c_{i, j} / \sum_{i} c_{i, j}
$$

The relative measure of total international effort (E_{j}) is given by the total catch (C_{j}), divided by the catch in the reference year (${ }_{\nabla} \nabla$) times the relative index of c.p.u.e. $\left(\Gamma_{j}\right)$.

$$
E_{j}=c_{j} /\left(c_{\nabla} * \Gamma_{j}\right)
$$

Nominal catches of COD (tonnes) from Recommendation 2 fisheries in Sub-area IV (data taken from NEAFC reports unless otherwise indicated).

Country	1973		1974		1975		1976		1977		$1978{ }^{\text {x }}$
	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	under- sized	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \end{aligned}$	
Belgium					13	-	7	-	. \cdot	\cdots	
Denmark	5189	1313	4215	2498	\cdots	. \cdot	
Faroe Isl.	-		415 e)	$1^{\text {e }}$	
German Dem.Rep.							
Germany, Fed.	?	?	-	1	37 249	$\overline{60}$	45	420	\ldots	\ldots	
Netherlands	5931	67	7679	-	4 3037)	-	4 228f)		4 509f)	-	
Norway (IVa)	480	659	733	368	965	223	757	27			
Poland ${ }^{\text {a }}$)	?	?	210	11	- 150	$7^{\text {d) }}$	148	$7^{\text {d }}$	19	3d)	
Sweden ${ }^{\text {a }}$	-	-	8. 260	...	6247	-	
UK(England) UK(Scotland)	-	-	$\begin{array}{r} 6 \\ 741 \end{array}$	-	522g)	-	$1 \dddot{357}$...	391	...	
						-	1357	\ldots	391	...	
Total ${ }^{\text {b }}$)	11600	2039	22259	2879	12486	290	6547	454	4919	3	\ldots

Nominal catches of HADDOCK (tonnes) from Recommendation 2 fisheries in Sub-area IV (data taken from NEAFC reports unless otherwise stated)

For footnotes, see next page.

Nominal catches of WHITING (tonnes) from Recommendation 2 fisheries in Sub-area IV (data taken from NEAFC reports unless otherwise indicated).

COUNTRY	1973		1974		1975		1976		1977		1978 ${ }^{\text {x }}$
	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	undersized	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	under- sized	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	under- sized	
Belgium											
Denmark	57194	16081	84448	$24 \quad 578$	61	$267^{x x}$	123	$161^{x x}$)	456	$20 \times x$)	$35483^{x x}$)
Faroe Isl.		-	31e)	494e)) 8	$867^{x x}$	12	988 ${ }^{\text {xx }}$)	32	$36^{x x}$)	$547^{x x}$)
German D.R.	-••	\cdots	-	[${ }^{\circ}$	3	-		-	\cdots
Germany, F.R.	+	?			368	27	${ }^{254}$ fif	594		. \cdot	...
Netherlands	2153	14	4281	312	5 059f)		$1{ }^{1} 423 \mathrm{f}$)		$756{ }^{1}$] 326 xx)
Norway (IVa)	1322	166	4710	312	12550	693	6744	-	166	$3^{\text {dx }}$)	$1226{ }^{\text {xx }}$)
Poland ${ }^{\text {Sweden }}$)	?	-	74 860	4	45	$2^{\text {d) }}$	25	-	22	3a)	...
UK(Scotland)	-	-	1860 1442	559	I 42008	940		. \cdot	$\left.437^{\circ} \mathrm{h}\right)$...	$14{ }^{10 x}$)
Total	60669	16261	95847	25947	92	180	147	451	5173		37270

x) Provisional data.
xx) Data from the report of an ad hoc Working Group on the Norway Pout Box Problem (C.M.1979/G:2).
a) Division IIIa inclusive.
b) Total of available data only.
c) Excluded from totals.
d) Estimated discards.
e) Divisions IIIa and VIa inclusive.
f) Includes catches by midwater-, pair- and shrimp trawls.
g) Besides, $1461 t$ of cod, $306 t$ of haddock and $2021 t$ of whiting were taken by Nephrops trawl in Divisions IVa, IVb and VIa combined.
h) The exact fishing area is not indicated.

[^0]: x) General Secretary, ICES, Charlottenlund Slot, 2920 Charlottenlund, Denmark.

[^1]: "The object of this paper is simply to point out that food for North Sea demersal fish may be more limiting than hitherto supposed. Consequently, catch predictions for small values of F, using an unlimited food model, should be treated with reservation."

[^2]: age-natural mortality

[^3]: * Fishing mortality on age groups subject to maximum exploitation.

