International Council for the
Exploration of the Sea https://doi.org/10.17895/ices.pub. 9386
C.M.1979/G: 8

Demersal Fish Committee

REPORT OF THE WORKING GROUP ON GREENLAND HALIBUT
IN REGION 1

Charlottenlund, 7 - 10 May 1979

> This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the council should be strictly observed.

[^0]
Page

1. PARTICIPANTS 1
2. TERMS OF REFERENCE 1
3. GREENLAND HALIBUT IN SUB-AREAS I AND II 1
3.1 Nominal Catches 1
3.2 Catch per Unit Effort and Effort Data 1
3.3 Virtual Population Analysis (VPA) 2
3.4 Mean Weight at Age 3
3.5 Yield and Spawning Stock per Recruit 3
3.6 Catch Prediction and the State of the Stock 4
4. GREENLAND HALIBUT IN SUB-AREAS V AND XIV 5
4.1 Nominal Catch 5
4.2 Virtual Population Analysis (VPA) 6
4.3 Yield and Spawning Stock per Recruit 7
4.4 Total Allowable Catch (TAC) 7
5. CONSIDERATION OF THE SCIENTICIC QUESTIONS RAISED BY ACFM 7
TABLES 1 - 21 9
FIGURES 1-8 26
6. PARTICIPANTS
W R Bowering
Canada
C J Rørvik
A Sigurdsson
Norway
B Vaske (Chairman)
Iceland
German Democratic Republic

V M Nikolaev, ICES Statistician, also attended the meeting.
No representatives were present from Poland and USSR, but the Working Group received relevant data of these countries for 1978.
2. TERMS OF REFERENCE

At the 66 th Statutory Meeting of ICES it was decided (C.Res.1978/2:41)
"that the Working Group on Greenland Halibut in Region 1 should meet at ICES headquarters to assess TACs for 1980. To facilitate this, participants are urged to bring to the meeting of the Working Group all relevant data".
3. GREENLAND HALIBUT IN SUB-AREAS I AND II
3.1 Nominal Catches

The total nominal catches for the main fishing areas are included in Table 1 for the period 1967 -78. Nominal catches by country for each fishing area are given in Tables 2,3 and 4. In Table 5 the catches are summarised for Sub-areas I and II.

For the period under consideration the total catch of Greenland halibut in Sub-areas I and II increased from a catch of 26168 tonnes in 1968 to a maximum catch of 89484 tonnes in 1970. The catches decreased to a level of 29938 tonnes in 1973. In the period 1974-76 total catches have been relatively constant in a range between 36074 tonnes and 38172 tonnes.

The preliminary catch for 1978 in Sub-areas I and II of 24448 tonnes is the lowest catch since 1978, representing a drop of 4439 tonnes from the amount taken in 1977.

3.2 Catch per Unit Effort and Effort Data

Catch figures per hour trawling were available from the USSR fishery from the period 1965 to 1978 (Table 6). Using the catch per unit effort values in the USSR trawl fishery as a standard, the effort for the total fishery was calculated (Table 6).
Data from the USSR trawl fishery show a considerable decrease in the catch per unit effort in 1977 and 1978 compared with the period before 1970-76.

Catch per unit effort values were also calculated for the German Democratic Republic freezing trawlers in Division IIb in October as catch per day for the period 1973-78
(Table 6). Unfortunately, the data are only available as the catch of Greenland halibut related to the total effort exerted on all species caught during the month. These data also show a downward trend similar to that of the USSR c.p.u.e. data. For further information the proportion of Greenland halibut to the total monthly catch is included in Table 6.
3.3 Virtual Population Analysis (VPA)

Age composition of landings
The age compositions in 1977 were adjusted according to changes in the catch statistics. For 1978, age compositions were available for the trawl catches of the German Democratic Republic, the USSR and Norway. These were raised to the total landings in the trawl fishery.

Furthermore, age compositions were presented for the Norwegian long-line and gill-net fishery. All age compositions available in 1978 represented 95% of the total landings in Sub-areas I and II.

The total age compositions for 1970-78 are given in Table 7.
3.3.2 Estimation of the input fishing mortalities_for_1978

The fishing pattern in 1978 was iteratively estimated equal to the average fishing pattern in 1975-77.

The fishing mortalities on the oldest age group (16) in 1970-77 were set equal or close to the unweighted average fishing mortality on 8 to 13 year old fish in the same year.

In estimating the actual fishing mortality in 1978 on the fully recruited age groups, the Group considered two alternatives.

A1ternative_1
The input fishing mortalities in 1978 were chosen so that the total effort and the corresponding F_{8-13} in 1978 fitted with the regression line between the same set of values for 1970-74 (Figure la). The consequences of this alternative is that as the total effort in 1978 has the same relation with F_{8-13} as the relation for 1970-74, this relationship breaks down, however, for the years 1975-77. This alternative is parallel to Alternative 2 in the last year's report (Doc. C.M.1978/G:4), where the total effort in 1975 and 1976 were assumed to be underestimated.

The results of the VPA based on the present Alternative 1 are given in Tables 8 and 9.

Alternative 2

The calculated total effort in 1978 was 18% higher than the average total effort in 1975-77. For this Alternative the fishing mortality on the fully recruited age groups was
adjusted so that the unweighted F_{8-13} in 1978 becomes 18% higher than the mean F_{8-13} in $1975-77$. This is shown in Figure l.b. The results of the VPA based on this alternative are given in Tables 10 and 11 . The change of F8-13 in 1978 from 0.42 in Alternative 1 to 0.75 in Alternative 2 resulted in little change of the total effort F8-13 relationship for 1970-74. The corresponding relationship for the years 1975-77, however, is much more sensitive to $\mathrm{F}_{8}-13$ in 1978 (Figure 1.a and Figure 1.b).
If Alternative 2 is correct, Figure l.b indicates that the relation between the total effort and the fishing mortality has changed from the periods 1970-74 to 1976-78, 1975 being an intermediate year. A possible reason for this change could be errors in the estimation of the effort.
Another reason could be that the areas where Greenland halibut concentrate have changed. This could be areaction to changes in hydrographic conditions, since the colder Arctic waters have had wider distribution in the Barents Sea during recent years. This corresponds to increased catches in Division IIa and decreased catches in Division IIb in 1977 and 1978 compared with previous years (Tables 3 and 4).
If the area of distribution has been reduced, one would expect the same effort to generate higher fishing mortality. This hypothesis could also explain why the c.p.u.e. in the USSR trawl fishery remained fairly stable in 1971-76 (Table 6), while the stock size decreased (Figure 2).

3.4 Mean Weight at Age

Mean weights at age used in the biomass calculations and catch predictions were increased by 5% compared with the data used by the Working Group in 1976 and 1977. The new mean weights per age group correspond with the average values in the USSR fishery in the period 1970-76. The adjustment was necessary to get a correspondence between the observed catches and the sum of products of the mean weights and estimated numbers per age group for the period 1970-78. The mean weight at age data used in the calculations are given in Table 12.
3.5 Yield and Spawning Stock per Recruit

The yield and spawning stock per recruit curves were calculated for the 1978 exploitation pattern (Figure 3 and Table 12).
Compared with the previous assessment (Doc. C.M.1978/G:4), there are only slight changes in the exploitation pattern. For the present exploitation pattern, the $F_{0.1}$ and $F_{\max }$ values correspond to 0.12 and 0.20 , respectively, therefore,
the 1978 fishing mortality under both alternatives (0.42 or 0.75) is far above the level corresponding to $F_{\text {max }}$. For the 1978 fishing mortality, $F_{0.1}$ and $F_{\text {max }}$, the corresponding sustainable yield and equilibrium spawning stock biomass were calculated assuming average recruitment corresponding to the different alternatives:

$$
\begin{aligned}
& \mathrm{R}_{1970-74}=36 \times 10^{6} \quad(\text { Alternative } 1) \\
& \mathrm{R}_{1970-74}=31 \times 10^{6} \quad(\text { Alternative } 2) .
\end{aligned}
$$

R	F	$\begin{aligned} & Y / R \\ & (k g) \end{aligned}$	```Sustainable yield (tonnes)```	$\begin{aligned} & \mathrm{Y} / \mathrm{R} \\ & (\mathrm{~kg}) \end{aligned}$	Spawning stock biomass (tonnes)
36×10^{6}	$F_{78}=0.42$. 62	22320	0.8	28800
	$\mathrm{F}_{0.1}=0.12$. 60	21600	4.5	162000
	$F_{\text {max }}=0.20$.66	23760	2.6	93600
31×10^{6}	$F_{78}=0.75$. 56	17360	0.2	6200
	$\mathrm{F}_{0.1}=0.12$. 60	18600	4.5	139500
	$\mathrm{F}_{\text {max }}=0.20$. 66	20460	2.6	80600

Under both alternatives it appears that the present high F values have no important effect on the yield per recruit. The spawning stock biomass per recruit, however, could be increased quite considerably by reducing the present F towards $\mathrm{F}_{\text {max }}$. Unfortunately, the data set is too short to construct a relationship between parental stock and recruitment to indicate an optimal spawning stock biomass.
3.6 Catch Prediction and the State of the Stock

Catches were projected for 1980 using the 1978 exploitation pattern and average recruitment from VPA for 1970-74 at age 3 (Table 12). Furthermore, it was assumed that the TAC of 25000 tonnes will be taken in 1979.

These calculations were performed based upon four options of fishing mortality in 1980 for each of the alternatives. The resultant total stock biomass and spawning stock biomass for the beginning of 1981 were also calculated for each option.

The four options of F are as follows:
Option A: Fishing at an F level in 1980 equal to the level of F required to take the TAC of 25000 tonnes in 1979

Option B: Fishing at an F level in 1980 corresponding to the midpoint between the required F level. to take the TAC of 25000 tonnes in 1979 and $F_{\text {max }}$

Option $C: \quad$ Fishing at $F_{\text {max }}$ in 1980
Option D: \quad Fishing at $F_{0.1}$ in 1980 .

Alternative 1 - Under Alternative 1 the catch projections $\bar{f} \bar{\prime} \overline{1} \overline{8} \overline{0}$ ranged from 9800 tonnes for option D to 29500 tonnes for Option A with projected catches of 22600 tonnes and 15700 tonnes for Options B and C, respectively (Table 13). The resultant stock size under this alternative will appear to stabilise in 1981 at Option A and show increases under the three other options. If this alternative is correct, it would appear to halt the dramatic decreases in stock size which have been occurring over the years up to 1977 (Figure 2), fishing under any of the four options. The estimates of stock biomass derived from VPA under this alternative appear to have also been stable over the past three years even though the catch per unit effort seems to have decreased (Figure 4).

Alternative 2 - Under Alternative 2 the catch projections for $\overline{1} \overline{9} \bar{o}$ ranged from 3300 tonnes for option D to 20700 tonnes for Option A with projected catches of 14200 tonnes and 5400 tonnes for Options B and C, respectively. Under this alternative the required F to catch the TAC in 1979 would have to be very high ($F=1.05$). The stock size would indicate a continuing decrease under Option A. However, for the three other options the stock would appear to slowly rebuild. The stock size under this alternative has been on a decreasing trend over the past 9 years (Figure 2) and would continue to do so until at least 1981 at the 1979 assumed fishing level. The catch per unit effort for the past three years has decreased which is in accordance with stock size (Figure 5). If Alternative 2 is correct, then this would be an expected occurrence, unlike the relationship apparent in Alternative 1 .
4. GREENLAND HALIBUT IN SUB-AREAS V AND XIV

4.1 Nominal Catch

The nominal catches for Divisions $V a$ and $V b$ and Sub-area XIV are given in Tables 14 to 17 for the period 1968-78. The tables present the nominal catches by country for each fishing area.

In the period 1968-75 total nominal catches in all the areas were in the range of 21872 tonnes to 36280 tonnes. In 1976 the total catch decreased to 6045 tonnes, but increased again to 16578 tonnes and 14208 tonnes in 1977 and 1978 , respectively.
4.2 Virtual Population Analysis (VPA)
4.2.1 Age_composition_of landings

The fishery for Greenland halibut in this area is conducted by two types of gear, that of otter trawl and longline. Therefore, in order toassess this fishery adequately, commercial samples for length and age from both gears is a basic requirement. For 1976-78 age and length distributions were obtained from both gears as supplied by Iceland and were used to estimate total catches in numbers at age for these three years. There were essentially no catches by longline in 1975, therefore the trawl catches were considered representative of the total fishery for that year. Length compositions of trawl catches from the German Democratic Republic were broken down by an Icelandic age/length key and numbers at age adjusted up to the total catch for 1975.
Length and age data were available from the Icelandic longline fishery from 1972 to 1974 , however, no samples were available from the trawl fishery during this period with the exception of a small sample in 1972. Considering the vast difference in size composition between catches from the two gears (Figure 6) and the fact that during this period the trawl catches comprised the major portion of the landings, it was considered impossible to calculate reliable estimates of the total numbers caught at age for these years.

An attempt was made by the Working Group to derive a relationship between the relative age distribution of the two gears for the years when samples were available from both gears, and use this relationship to break down trawl catches for 1973 and 1974. The variability in this relationship between years was so large that the Working Group felt that to use such data would be inappropriate and completely unrealistic. The Working Group, therefore, had to perform a virtual population analysis based only upon the last four years (1975-78) in which minimum, however reliable, data were available (Table 18).
4.2.2 Estimation of input fishing_mortalities_for_1978

Due to the lack of catch per unit effort data a definitive value for the present level of fishing mortality was impossible to obtain. A catch curve (Figure 7) was, however, constructed by combining the 1975-78 data in order to give some indication of the average fishing mortality over the past 10 years. A value of $F=0.35$ (assuming $M=0.15$) was derived with a correlation coefficient on the regression of $r=0.99$. This F value represents average removals of about 23000 tonnes annually over the past 10 years. This value was considered high for terminal F and an arbitrary value somewhat lower of 0.25 was used to initiate the calculations. This value was considered to possibly be in the neighbourhood of the true value, since the weighted F over the fully recruited age groups for 1975 was close to the value derived from the catch curve and the catch in 1975 was the same as the long-term average of 23000 tonnes. The results of the VPA are: presented in Tables 19 and 20.

In view of the uncertainty connected with the estimation of terminal F, the Working Group agreed that future catch predictions based upon this analysis would be considered very unreliable.

The results of the VPA were used, however, to derive estimates of exploitation pattern for 1978 (Table 2l) in order to produce an up-to-date yield per recruit curve and a spawning stock per recruit curve. This was done by assigning such fishing mortality values to the younger ages in 1978 that would reflect reliable recruitment estimates in 1975 and 1976.
4.3 Yield and Spawning Stock per Recruit

Yield and spawning stock per recruit curves (Figure 8) were constructed using the exploitation pattern for 1978 as derived from the VPA. The mean weights per age group (Table 21) were taken from the commercial catch composition for 1978. The age at entry into the commercial fishery was considered to be age 5.

For the 1978 exploitation pattern the $F_{0.1}$ and $F_{\text {max }}$ values correspond to 0.125 and 0.45 , respectively. The F value of 0.25 as selected for 1978 falls between $F_{0.1}$ and $F_{\text {max }}$.
4.4 Total Allowable Catch (TAC)

With the many assumptions and uncertainties connected with the data, the Working Group considered it impossible to make predictions on catch levels for 1980 or beyond. It also agreed that the yield per recruit analysis is reasonable and is probably a fair estimation of the 1978 fishing pattern.

The 1978 estimated fishing mortality, even with a fairly large degree of probable error, would still appear to occur within the range between $\mathrm{F}_{0} .1$ and $\mathrm{F}_{\text {max }}$. It was therefore agreed that the TAC for 1979 of 15000 tonnes is an acceptable catch level and should be continued for 1980.

Therefore, the Working Group recommends a TAC for Greenland halibut in Sub-areas V and XIV for 1980 of 15000 tonnes.
5. CONSIDEFATION OF THE SCIENTIFIC QUESTIONS RAISED BY ACFM

Question 1: Can independent estimates of stock be developed in Sub-areas I and II?

Answer: No. No data are available for swept area calculations. The taggings are not usable for this purpose as the tagging mortality and the shedding of tags are unknown. Acoustic surveys are not possible.

Question 2: Can catch per unit effort be used to estimate total mortality in Sub-areas I and II?

Answer:

Question_3:

Answer:

The fisheries in Sub-areas I and II are comprised of three different gears, gill net, longline and otter trawl, with varying levels of fishing by years. It was indicated that the catch at age was radically different between trawl and the other two gears; therefore, mortality levels based on the c.p.u.e. data for the same year classes between consecutive years would be biased. However, during the first meeting of the Working Group in 1977, c.p.u.e. data for individual age groups were used to estimate M by relating Z to total effort. The Z values showed a poor correlation with the total effort, and the method was, at that time, evaluated as unreliable for giving an estimate of M in this particular case.

What additional information is required for more reliable estimates of stock size in Sub-areas V and XIV?

Any age/length compositions if available from trawl for the period prior to 1975 would be useful to create a longer series of data for the total fishery and consequently a more reliable VPA. For the present data, it is considered necessary to have at least two more years of age/length data from the total fishery in order to place a higher degree of confidence on VPA results.

One basic requirement that is necessary for proper assessment is that of catch per unit effort data from all sectors of the fishing fleet. Without these data, it is almost impossible to determine a value of terminal F required to initiate the calculations of virtual population and cohort analyses.

Table 1. Greenland halibut. Total nominal catch by main fishing areas (tonnes).

Year	Sub-area I	Div. IIb	Div. IIa	Div. Va	Div. Vb	Sub-area XIV	Total catch
1967	2198	6712	15357	30657	442	200	55566
1968	2488	8935	14745	21036	647	189	48040
1969	8393	25010	10386	23141	906	280	68116
1970	4011	70523	14950	30001	-	3822	123307
1971	5413	62764	10857	15049	11	13913	108007
1972	8549	18873	15633	10666	417	15389	69527
1973	5667	16081	8190	7386	358	12719	50401
1974	5251	24660	7852	7866	325	28089	74043
1975	6495	28511	3166	3308	560	19627	61667
1976	2479	29610	3985	5448	324	273	42119
1977	2164	15492	11231	15679	658	241	45465
1978*	1280	10090	13078	11452	596	2160	38656

* Preliminary

Table 2. Greenland halibut. Nominal catch (tonnes) in Sub-area I.

Country	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
German Dem.Rep. Germany,Fed.Rep. Norway Poland UK (Engl.\&Wales) USSR		$2561)$ $-\overline{989}$ 5314 2134	- 1) $-\overline{6} 75$ - $2-$ 2336	$\begin{array}{cc} & 14^{1)} \\ & - \\ 1 & 951 \\ 7 & 7 \\ 3 & - \\ \hline 411 \end{array}$	11) 3 3 116 117 949 4 366	$\begin{array}{r} - \\ \\ 25 \\ 2947 \\ - \\ 995 \\ 1700 \end{array}$	$\begin{array}{rr} & - \\ 22 \\ 2 & 167 \\ 1 \\ 732 \\ 2 & 329 \end{array}$	$\begin{array}{r} 5 \\ \\ \\ 2 \quad 160 \\ \\ \hline \end{array}$	$\begin{array}{r} - \\ 2 \\ 1203 \\ 9 \\ 665 \\ 600 \end{array}$	$\begin{array}{r} - \\ 1 \\ 262 \\ -\quad \\ 541 \\ 360 \end{array}$	$\begin{aligned} & 942 \\ & -\quad 127^{2)} \\ & 211 \end{aligned}$
Total	2488	8393	4011	5413	8549	5667	5251	6495	2479	2164	1280

* Preliminary.

1) From national statistics.
2) December catch estimated.

Table 3. Greenland halibut. Nominal catch (tonnes) in Division IIa.

Country	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
Faroe Islands German Dem.Rep. Germany,Fed.Rep. Norway Poland UK (Engl.\&Wales) USSR	$\begin{gathered} - \\ 14 \\ + \\ 744 \\ - \\ - \end{gathered}$	$\begin{gathered} 5011) \\ + \\ 985 \\ - \\ - \end{gathered}$	$\begin{array}{cc} & 44 \\ 2 & 1311 \\ 6 & - \\ 6 & 298 \\ 6 & 291 \\ & - \\ & 76 \end{array}$	-7 $3531)$ 3 4974 5 036 - 491	$\begin{array}{rc} & - \\ & 0691) \\ & 3 \\ 11 & 715 \\ 2 & 643 \\ & 182 \\ & 21 \end{array}$	7861 137 118 22	-7 656 49 6593 499 55	$\begin{array}{r} - \\ 172 \\ 41 \\ 265 \\ 66 \\ 107 \\ 515 \end{array}$	$\begin{array}{r} 2 \\ 354 \\ 17 \\ 3490 \\ 31 \\ 48 \\ 43 \end{array}$	$\begin{array}{cc} & 21 \\ 1 & 641 \\ & 22 \\ 2 & 2811) \\ & 95 \\ & 211 \\ 6 & 960 \end{array}$	$\begin{gathered} 1398 \\ 321 \\ 2283 \\ 1971) \\ \\ 190^{2} \\ 8809 \end{gathered}$
Total	14745	10386	14950	10857	15633	8190	7852	3166	3985	11231	13078

* Preliminary.

1) From national statistics.
2) December catch estimated.

Table 4. Greenland halibut. Nominal catch (tonnes) in Division IIb.

Country	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
German Dem.Rep.	2331)	$30311)$	$165981)$	$25821)$	5631)	3902	5258	8295	8601	6535	3213
Germany ,Fed.Rep.		71	-			34	17	47	12	125	-
Norway	6282	4282	7788	2541	1152	3181	31	433	1312	$6711)$	$\left.{ }^{855} 1\right)$
Poland	-	-	12971	7234	5221	2003	4646	3579	3526	129	3471)
UK(Engl.\&Wales) USSR	$2 \overline{4}^{201}$	$17 \overline{6} 26$	$33 \overline{166}$	$150 \overline{407}$	[$\begin{array}{r}131 \\ 11806\end{array}$	122 $6 \quad 839$	79 14629	$\begin{array}{r}16 \\ 16 \\ \hline 83\end{array}$	222 15937	307 7725	44^{2} 5631
	$2420{ }^{1}$	17626		50407							
Total	8935	25010	70523	62764	18873	16081	24660	28511	29610	15492	10090

* Preliminary.

1) From national statistics.
2) December catch estimated.

Table 5. Greenland halibut. Nominal catch (tonnes) in Sub-areas I and II, 1968-78. (Data for 1968-77 from Bulletin Statistique)

Country	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
Faroe Islands German Dem.Rep. Germany,Fed.Rep.	$\underline{-257)}$	$\left.3788^{1}\right)$ 71	${ }_{18} \begin{gathered}44 \\ 7291)\end{gathered}$	$\underset{3}{29491}$	$1-6331)$ 3	3954 59	5914 88	8472 94	2 8955 31	21 $8 \quad 176$ 148	$4 \begin{array}{r}7611 \\ 321\end{array}$
$\begin{aligned} & \text { Norway: } \\ & \text { trawl catch } \\ & \text { long-line } \end{aligned}$	-	-	1638	2309	9656	10217	4656	1686	4030	2526	2300
gill net ${ }^{\text {l }}$	22514	14856	14233	7157	6327	3772	4135	3172	1975	1688	1780
Poland	-	5314	19262	12277	7981	2140	5146	3645	3566	224	544
UK(Engl.\&Wales) USSR	3 3971)	${ }_{19} \overline{7} 60$	35578	54339	$\begin{array}{rr}1 & 262 \\ 16 & 193\end{array}$	$\begin{array}{ll}1 & 235 \\ 8 & 561\end{array}$	866 16958	731 20372	935 16580	1059 15045	- 241
		19760	35578	54339	16193		1695	20372	16580	15045	14651
Total	26168	43789	89484	79034	43. 055	29938	37763	38172	36074	28887	24448

* Preliminary.

1) From national statistics.

Table 6. Greenland halibut in Sub-areas I and II. Catch per unit effort and total effort.

Year	USSR catch/hour trawling (tonnes)	Hours trawling (USSR effort)	Total effort	German Dem.Rep. catch/day trawling (tonnes)	Proportion of Greenland halibut (\%)
1965	. 80	20853	43558		
1966	. 77	12587	34084		
1967	. 70	8196	34667		
1968	. 65	5226	$40 \quad 258$		
1969	. 53	37283	82621		
1970	. 53	67128	168838		
1971	. 46	118128	171813		
1972	. 37	43765	116365		
1973	. 39	21951	76764	10.7	98
1974	. 40	42395	94408	9.6	96
1975	. 39	52236	97877	8.5	81
1976	. 40	41458	90185	6.9	90
1977	. 27	55722	106989	4.3	84
1978	. 21	69767	116419	$4 \cdot 7$	82

Table 7. Greenland halibut in Sub-areas I and II. Input data - catch in numbers by year and by age (thousands).

AGE	1570	1371	1372	1973	1974	1375
3	1	1	1	1	1	22
4	34	1	461	19	276	334
5	576	80	1109	212	917	840
6	2792	4486	3521	1117	2519	2337
7	10464	12712	9605	3923	6204	6520
8	18562	12283	6438	3515	3838	4118
9	10034	6130	2775	2551	18.34	2265
10	6671	4339	1734	1919	1942	1654
11	2517	2703	1368	1536	1622	1857
12	1250	1660	1234	1127	1338	1536
13	616	1044	675	716	734	1122
14	1104	300	200	251	531	600
15	266	123	40	70	137	270
16	15	20	40	56	79	98
TOTAL						Э8
	54852	45882	29201	17013	21972	23573
AGE	1976	1977	1978			
3	1	62	78			
4	98	755	528			
5	836	2037	1883			
6	2982	3255	3563			
7	5824	4202	4088			
8	5002	2529	2349			
9	3000	1617	1493			
10	1350	1109	939			
11	515	1066	730			
12	1212	860	435			
13	698	596	347			
14	526	385	146			
15	254	93	83			
16	104	87	28			
TOTAL						
	22796	18653	16696			

Table 8. Greenland halibut in Sub-areas I and II. Fishing mortalities by year and by age (Alternative 1).

AGE-NATURAL MORTALITY

3	4	5	6	7	8	9	10	11	12
.150	.150	.150	.150	.150	.150	.150	.150	.150	.150
14	15	16							
.150	.150	.150							

Table 9. Greenland halibut in Sub-areas I and II. Stock in numbers (thousands) at beginning of year (Alternative 1).

AGE	1970	1971	1972	1973	1374	1975
3	43820	41816	33907	30326	30375	46224
4	35815	37715	35991	29183	26101	26143
5	41941	30794	32461	30550	25101	22210
6	46945	35612	26431	26912	26098	20755
7	44238	37820	26501	19492	22129	20132
8	39E28	28413	20835	13361	13152	13322
9	24118	17051	13158	11995	8771	7779
10	15789	11526	9028	8761	7568	5855
11	6965	7453	5925	6168	5768	51384
12	3548	3676	3925	3836	3891	3468
13	1424	1902	1638	2240	2262	2116
14	1512	659	680	789	1268	1270
15	335	296	291	401	447	603
16	36	47	142	214	280	259
TOTAL						
	306115	254780	210911	184827	173610	175198
SPAWNING	STOCK (AGE	$7=5)$				
	53728	42610	34786	34403	30654	26413
$A G E$	1976	1977	1978			
3	70718	66450	420.39			
4	39765	60867	57137			
5	22192	34135	51689			
6	18338	18332	27494			
7	15701	13026	12769			
8	11316	8150	7337			
9	7668	5140	4682			
10	4606	3838	2933			
11	3513	2719	2280			
12	2648	2179	1359			
13	1572	1165	1084			
14	792	711	456			
15	542	201	259			
16	270	233	87			
TOTAL						
	199642	217147	211607			
SPAWNING	$\begin{aligned} & \text { STOCK (AGE } \\ & 21612 \end{aligned}$	$y=\begin{gathered} 9) \\ 16187 \end{gathered}$	13141			

Table 10. Greenland halibut in Sub-areas I and II. Fishing mortalities by year and by age (A1ternative 2).

AGE-NATURAL MORTALITY

3	4	5	6	7	8	9	10	11	12
.150	.150	.150	.150	.150	.150	.150	.150	.150	.150
14	15	15							
.150	.150	.150							

Table 11. Greenland halibut in Sub-areas I and II. Stock in numbers (thousands) at beginning of year (Alternative 2).

AGE	1970	1971	1972	1973	1974	1975
3	41121	38826	29817	24828	22163	28449
4	34204	35392	33417	25663	21369	19075
5	40654	29408	30461	28335	22071	18136
6	46396	34504	25238	25191	24191	18147
7	43925	37348	25547	18465	20647	18490
8	39520	28143	20429	13143	12269	12049
9	23571	16958	12926	11647	8068	7021
10	15707	11400	8949	8562	7668	5250
11	6934	7382	5816	6100	5597	4807
12	3525	3650	3864	3743	3832	3321
13	1415	1883	1615	2188	2182	2065
14	1508	652	663	769	1223	1201
15	334	293	285	386	431	564
16	36	46	139	208	268	244
TOTAL						
	299251	245984	199168	169229	151979	138821
SPANNING	STOCK (AGE	$2=9)$				
	53431	42263	34258	33604	29269	24474

AGE	1976	1977	1978
3	36511	33420	28040
4	24466	31425	28708
5	16109	20967	26348
6	14832	13096	16161
7	13457	10010	8267
8	9907	6226	4750
5	6575	3935	3031
10	3354	2902	1899
11	2994	2159	1476
12	2428	1733	880
13	1447	377	702
14	749	604	295
15	483	165	168
16	238	183	57

total

SPAWNING STOCK (AGE >= 9)
1886712657
120780
8507

Table 12. Greenland halibut in Sub-areas I and II.
Input parameters used in the catch prediction.

Age	Exploitation pattern	Mean weights (kg)	Stock size 1979 ('000)	
			$\begin{gathered} \text { Alternative } \\ 1 \end{gathered}$	$\begin{gathered} \text { Alternative } \\ 2 \end{gathered}$
3	0.006	. 200	36000	31000
4	0.025	. 441	36126	24062
5	0.10	. 567	48708	24189
6	0.36	. 737	42762	20928
7	1.00	1.079	20371	10619
8	1.00	1.421	7221	3361
9	1.00	1.848	4150	1931
10	1.00	2.281	2648	1232
11	1.00	2.887	1659	772
12	1.00	3.247	1290	600
13	1.00	4.303	768	358
14	1.00	4.931	613	285
15	1.00	5.765	258	120
16	1.00	6.308	147	68
Average recruitment			36000	31000

Table 13. Greenland halibut in Sub-areas I and II.
Catch predictions for 1980 according to Alternatives 1 and 2.

Table 14. Greenland halibut. Nominal catch (tonnes) in Division Va.

Country	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
Faroe Islands	-	-	4122	1316	1180	188	41	2	373	947	251
German Dem.Rep.	6247^{1})	7 7681)	14 9581)	3317^{1})	1591)	320	388	2	373	947	
Germany,Fed.Rep. of	1253	1488		882	1119	826	1786	887	1719	4642	-
Iceland	1	5856	7343	5020	4640	2115	2.842	1212	1687	10090	11187
Norway	-	54	338	369	186	-	-	-	-	+	14
Poland	-	-	1127	899	31	-	485	-	-	-	-
UK (Eng.\&Wales)			-	-	2223	3648	2314	1207	1669	-	-
USSR	135351)	79751)	2113	3246	1128	289	10	1	1	-	_
Total	21036	23141	30001	15049	10666	7386	7866	3308	5448	15679	11452

*Preliminary. l) From national statistics.

Table 15. Greenland halibut. Nominal catch (tonnes) in Division Vb.

[^1]Table 16. Greenland halibut. Nominal catch (tonnes) in Sub-area XIV.

Country	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
German Dem.Rep.	-	421)	2 981I)	3 4911)	$7328{ }^{1}$	8806	25266	16872	-		
Germany.Fed.Rep. of	187	183	-	270		7	$+$	64	191	224	2156
Greenland	2	+	-	2	3	4	2	1	1	4	...
Iceland	-	24	2	+	-	3	1	+	2	- 1)	
Norway	-	-	-	-	-	-	-	-	-		3
Poland	-	-	732	7910	7847	3122	1057	1054	-		- 2)
UK(Eng.\&Wales)	-	-	-	-				2	5	11	1^{2}
USSR	-	31	107	2240	205	776	I 762	1634	74	-	-
Total	189	280	3822	13913	15389	12719	28089	19627	273	241	2160

* Preliminary. 1) From national statistics. 2) December catch estimated.

Table 17. Greenland halibut. Nominal catch (tonnes) in Sub-areas V and XIV, 1968-78.
(Data for 1968-77 from Bulletin Statistique)

Country	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978*
Faroe Is lands	(3151)		4122	1316	1180	188	48	8	375	1251	252
German Dem.Rep.	6315^{1}	8665^{1}	17 9391)	6 8081)	74871)	9126	25801	16963	,	,	-
Germany,Fed.Rep.of	2019	1686	-	1163	1529	1120	1949	1388	2219	5207	2727
Greenland	2	+	-	2	3	4	2	I	1	4	. . .
Iceland	1	5880	7345	5020	4640	2118	2843	1212	1689	10090	11187
Norway	-	-	338	369	186	-	-	- 7	7	7	20
Poland	-	-	1859	8809	7878	3131	1542	1072	-	-	-
UK(Eng.\&Wales)			-	-	2236	3710	2323	1209	1680	19	22
USSR	13535^{1}	8006^{1}	2220	5.486	1333	1066	1772	1634	74	-	-
Total	21872	24237	33823	28973	26473	20463	36280	23494	6045	16578	14208

[^2]Table 18. Greenland halibut in Sub-areas V and XIV. Input data - catch in numbers by year and by age (thousands).

AGE	1975	1976	1977	1978
4				
5	120	1	1	1
6	800	296	1	23
7	1775	584	34	98
8	1782	621	1727	340
9	1259	431	2289	1019
10	926	240	834	1193
11	464	121	420	835
12	459	86	423	557
13	279	37	174	206
14	193	32	120	214
15	137	14	28	112
16	39	6	86	118
17	2	1	41	63
18	2	1	8	18
19	24	1	6	6
20	28	1	1	4
TOTAL	280	2516	6864	5119

Table 19. Greenland halibut in Sub-areas V and XIV.

 Fishing mortalities by year and by age.```
AGE 1975 1976 1977 1978
\begin{tabular}{rrrrr}
4 & .00 & .00 & .00 & .00 \\
5 & .01 & .00 & .00 & .00 \\
6 & .07 & .03 & .00 & .01 \\
7 & .17 & .06 & .09 & .04 \\
8 & .28 & .08 & .24 & .18 \\
9 & .35 & .09 & .42 & .25 \\
10 & .33 & .10 & .25 & .25 \\
11 & .22 & .06 & .23 & .25 \\
12 & .38 & .06 & .30 & .25 \\
13 & .28 & .04 & .14 & .25 \\
14 & .25 & .04 & .19 & .25 \\
15 & .54 & .03 & .05 & .25 \\
16 & .54 & .04 & .23 & .25 \\
17 & .05 & .02 & .36 & .25 \\
18 & .24 & .03 & .23 & .25 \\
15 & 1.48 & .17 & .25 & .25 \\
20 & .25 & .25 & .25 & .25
\end{tabular}
MEAN F FOR AGES }=9\mathrm{ AND <= 20 (HEIGHTED BY STOCK IN NUMBERS)
 .32.08 . 30 . 25
```


## AGE-NATURAL MORTALITY

| 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 |
| 18 | 19 | 20 |  |  |  |  |  |  |  |  |  |  |  |
| .15 | .15 | .15 |  |  |  |  |  |  |  |  |  |  |  |

Table 20. Greenland halibut in Sub-areas $V$ and XIV. Stock in numbers (thousands) at beginning of year.

| AGE | 1975 | 1976 | 1977 | 1978 |
| :---: | :---: | ---: | ---: | ---: |
| 4 | 14741 | 13149 | 19199 | 10769 |
| 5 | 11897 | 12687 | 11316 | 16524 |
| 6 | 13174 | 10129 | 10880 | 9739 |
| 7 | 12349 | 10598 | 8444 | 9333 |
| 8 | 7899 | 8987 | 8581 | 6646 |
| 9 | 4588 | 5153 | 7160 | 5790 |
| 10 | 3492 | 2787 | 4036 | 4052 |
| 11 | 2487 | 2151 | 2176 | 2703 |
| 12 | 1565 | 1712 | 1739 | 1485 |
| 13 | 1217 | 923 | 1394 | 1107 |
| 14 | 829 | 790 | 760 | 1039 |
| 15 | 350 | 535 | 650 | 544 |
| 16 | 100 | 175 | 448 | 534 |
| 17 | 43 | 50 | 145 | 306 |
| 18 | 10 | 35 | 42 | 87 |
| 13 | 25 | 716 | 5 | 29 |

Table 21. Greenland halibut in.Sub-areas $V$ and XIV. Parameters used in yield and spawning stock per recruit calculations.

| Age | Mean weights <br> $(g)$ | Exploitation <br> pattern |
| :--- | :---: | :--- |
| 5 | 968 | 0.0003 |
| 6 | 1199 | 0.04 |
| 7 | 1423 | 0.17 |
| 8 | 1854 | 0.71 |
| 9 | 2256 | 1.00 |
| 10 | 2607 | 1.00 |
| 11 | 3081 | 1.00 |
| 12 | 3591 | 1.00 |
| 13 | 4604 | 1.00 |
| 14 | 4695 | 1.00 |
| 15 | 5151 | 1.00 |
| 16 | 5893 | 1.00 |
| 17 | 6511 | 1.00 |
| 18 | 7474 | 1.00 |
| 19 | 8538 | 1.00 |
| 20 | 8476 | 1.00 |



## Figure 2. Greenland halibut in Sub-areas I and II. The stock size ( 4 years and older) and the spawning stock (9 years and older) 1970-78.



Figure 3. Greenland halibut in Sub-areas I and II. $Y_{W} / \mathrm{H}_{3}$ (kg) Yield and spawning stock per recruit curve.


Figure 4. Greenland halibut in Sub-areas $I$ and II.。 The relation between catch per hour trawling in the USSR fishery and the estimated stock size under Alternative 1 .


Figure 5. Greenland halibut in Sub-areas I and II.
The relation between catch per hour trawling in the USSR fishery and the estimated stock size under Alternative 2 .


Figure 6. Greenland halibut in Sub-areas $V$ and XIV.
Length composition of commercial trawl and longline catches for 1978.


Figure 7. Greenland halibut in Sub-areas $V$ and XIV. Catch curve for 1975-78.


Figure 8. Greenland halibut in Sub-areas $V$ and XIV.
Yield and spawning stock per recruit curves.



[^0]:    x) General Secretary, ICES, Charlottenlund Slot, 2920 Charlottenlund, Denmark.

[^1]:    * Preliminary.

    1) From national statistics.
    2) December catch estimated.
[^2]:    * Preliminary.

    1) From national statistics.
