International Council for the Exploration of the Sea

1 https://doi.org/10.17895/ices.pub. 9380
ERRATA
to
C.M.1980/G:13

Demersal Fish Committee

Digitalization sponsored by Thünen-Institut

REPORT OF THE WORKING GROUP ON ASSESSMENT OF HAKE STOCKS

Copenhagen, 12-17 May 1980

Page 2: Eliminate "may" in the last line.
Page 17: Table 1.4. Heading of 2nd column should read "IVa + VIa"
Page 19: New Table 1.6 (attached)
Page 20: New Table 1.7 (attached)
Page 23: Change symbols ${ }^{+}$for " σ " and σ for " $"$
Page 24: New Table 1.11 (attached)
Page 27: Table 2.2. "Reversed" should read "Revised" in the heading.
Page 30: Table 2.5. Heading should read "Length composition of the catches ($N \times 10^{3}$)"
Page 31: Table 2.6. Heading should read "Number (thousands)"
Page 33: Footnote 2. "r/u" should read "R/V"
Page 34: Table 2.9. Change symbols 9 for " $\delta "$ and δ for " 9 "
Page 36: Table 2.11. Line "1981". Eliminate "(80)" and "80 ${ }^{(2)}$ " in mesh columns and eliminate footnote (2).
Page 41: Mean " 0 " should read " 0 to 3 " age $\frac{1}{3}$

3
Page 44: "Males" should read "Females"
Page 45: "Females" should read "Males"
Page 46: Figure 1.9. On the y-axis "yield" should read "biomass".
Value for K of σ. 143 should read ".148".
Page 49: Figure 2.3. "Males" should read "Females".
Page 50: Figure 2.3 continued. "Females" should read "Males".
Page 51: Figure 2.4. On the y-axis "yield" should read "biomass". Value for K of ${ }^{\sigma} .143$ should read ".148".

Table 1.6. Length compositions (thousands of fish) for Hake landings from ICES Divisions IVa + VIa and Sub-area VII by country and vessel class for 1979.

Length class (cm)	Divisions IVa + VIa					Length class (cm)	Division VII					
	England		France				England	Fran			pain	
	$\begin{aligned} & \text { + Wales } \\ & \text { (trawl) } \end{aligned}$	Scotland	$\begin{array}{\|c} \text { Hauturiers } \\ \text { (trawl) } \\ \hline \end{array}$	(trawl)	Total		$\begin{aligned} & + \text { Wales } \\ & \text { (trawl) } \end{aligned}$	$\begin{gathered} \text { Hauturiers } \\ \text { (trawl) } \\ \hline \end{gathered}$	Artisans (trawl)	Trawl	Longline	Total
$5-$						5						
10-						10						
15-						15						
$20-$						20						
$25-$						25	4.0	13	877	9		903
30-	. 3		3		3	30	64.4	124	2091	279		2558
35-	1.2		45		46	35	63.8	237	684	1334		2319
40 -	4.2		65	7	76	40	32.4	359	80	2284		2755
45-	7.2		75	46	128	45	16.3	387	54	1802		2259
50-	9.9		133	163	306	50	11.6	566	47	1353	29	2007
$55-$	8.4		137	351	496	55	13.9	738	49	886	108	1795
60 -	7.6		176	431	615	60	27.6	594	23	637	282	1564
$65-$	4.6		80	282	367	65	10.4	442	48	444	140	1084
$70-$	3.4		107	47	157	70	5.0	273	42	338	122	780
$75-$	2.9		145	46	194	75	2.4	85	12	177	38	314
$80-$	2.2		60	20	82	80	2.8	123	13	59	56	254
85 -	1.6		40	11	53	85	2.3	39	7	32	16	96
$90-$. 8		12	3	16	90	1.4	42	1	24	13	81
95 -	. 5		25		26	95	. 7	16	-	16	6	39
100	. 4		11		11	100	. 6	8	-	-	6	15
105+	. 5				1	105+	. 2	8	-	-	-	8
Total	55.7		1114	1407	2577	Total	260	4054	4028	9675	817	18834
Obs. tonnes	106	(1400)	2499	2436	5041	Obs. tonnes	215	5691	1417	9770	1872	18965
Calc.tonnes	102		2408	2436	4946	Calc.tonnes	228	6249	1422	9720	1870	19489

Table 1.7. Length composition (thousands of fish) for Hake landings from ICES Divisions VIIIa and b, by country and vessel class for 1979.

Length class (cm)	France					Spain				Total
	Hauturiers (trawl)	Artisans		Gillnet and Longlines	Côtiers (trawl)	Bakas		Bous (trawl)	$\begin{aligned} & \text { Parejas- } \\ & \text { trios } \\ & (\mathrm{p} . \text { trawl }) \end{aligned}$	
		$\begin{gathered} \text { (Pelagic } \\ \text { trawl) } \end{gathered}$	(Bottom trawl) (1)			$\begin{gathered} \text { (trawI) } \\ (\mathrm{A}) \end{gathered}$	$\begin{gathered} \text { (trawl) } \\ (\mathrm{B}) \end{gathered}$			
5 -	-	-	19503	-	-	-	-	-	-	19503
$10-$	-	-	33282	-	-	-	105	-	-	33293
$15-$	-	-	35027	-	384	161	7086	36	203	42897
$20-$	-	32	16062	-	5801	126	5558	142	556	28277
$25-$	5	359	5307	1	8463	1714	7615	505	1538	25507
$30-$	22	679	4390	11	3056	2083	745	787	2.451	14224
$35-$	82	1057	1832	7	322	1268	318	894	1359	7139
$40-$	149	721	1198	11	19	614	435	596	551	4294
$45-$	277	215	417	7		566	89	650	249	2470
$50-$	140	115	157	16		420	118	716	280	1962
$55-$	170	55	364	67		173	84	602	232	1747
60 -	40	69	128	101		120	65	364	151	1038
$65-$	73	29	80	144		60	47	245	103	781
$70-$	30	18	7	245		38	2	116	63	519
75 -	12	8	2	76		12	3	25	27	165
$80-$	8	5	1	37		0		6	1	58
85 -	4	5	1	28		1		2	4	45
$90-$		1		4		1		0	1	7
95-				1				0	1	2
$\begin{aligned} & 100- \\ & 105+ \end{aligned}$										
Total Obs. tonnes Calc. tonnes	1012	3368	117758	756	18045	7370	28554	5687	7770	190680
	1115	1524	7465	1587	2493	3042	4548	4446	3126	29346
	1075	1602	7048	1821	2427	3048	4536	4448	3126	29131

(1) Includes discards
(A) Calculated from Port of Pasajes
(B) Calculated from Port of Ondarroa

Table 1.11 Immediate losses in percentages and tonnes by area, country and gear type calculated under different selectivity factors, for 80 mm mesh change.

Sub-area/ Division	1979 Mesh Size	Immediate Loss (percent)		1979 (3) Official Nominal Catch of Hake (t)	Immediate Loss (tonnes)		Percent of Hake in Total landing
		$\mathrm{SF}=3.6$	$S F=4.1$		$\mathrm{SF}=3.6$	$\mathrm{SF}=4.1$	
IV + VI France Hauturiers England and Wales Scotland Spain	$\begin{aligned} & 70 \\ & 80 \\ & 70 \\ & 70 \end{aligned}$	$\begin{gathered} 0.3 \\ 0.0 \\ - \\ 0.2 \end{gathered}$	$\begin{gathered} 0.2 \\ 0.0 \\ - \\ 0.0 \end{gathered}$	$\begin{array}{ll} 2 & 459 \\ & 106 \\ 1 & 400 \\ 2 & 436 \end{array}$	$\begin{array}{r} 7 \\ 0 \\ \approx 0 \\ 5 \end{array}$	$\begin{array}{r} 5 \\ 0 \\ \simeq 0 \\ 0 \end{array}$	$\begin{aligned} & <5 \\ & <5 \\ & <5 \\ & 20 \end{aligned}$
Total		0.2	0.1	6401	12	5	
VII France Hauturiers France Semi-Industrials France Artisans England and Wales Spain Longlines Spain Trawlers	$\begin{aligned} & 70 \\ & 50 \\ & 50 \\ & 75 \\ & - \\ & 70 \end{aligned}$	$\begin{array}{r} 0.6 \\ 13.0 \\ 18.0 \\ 1.7 \\ - \\ 1.5 \end{array}$	$\begin{array}{r} 0.6 \\ 19.0 \\ 28.0 \\ - \\ 1.8 \end{array}$	3200 2490 1417 215 1872 99704	$\begin{array}{r} 19 \\ 324 \\ 255 \\ 4 \\ 0 \\ 0 \\ 150 \end{array}$	$\begin{array}{r} 19 \\ 468 \\ 391 \\ 0 \\ 180 \end{array}$	$\begin{gathered} 10-40 \\ 5-15 \\ <5 \\ <1 \\ 25 \\ \hline \end{gathered}$
Total		3.9	5.5	19164	752	1058	
```VIIIa,b France Hauturiers France Pelagic Trawls France Artisans France CÔtiers France Gillnets + Longlines Spain Trawlers```	60   60   40   40   60	$\begin{array}{r} 1.6 \\ 9.2 \\ 24.0 \\ 51.0 \\ - \\ 15.0 \end{array}$	$\begin{gathered} 2.0 \\ 15.0 \\ 35.0 \\ 71.0 \\ -7 \\ 22.0^{2} \end{gathered}$		$\begin{array}{r} 18 \\ \\ 140 \\ 1090 \\ 1 \quad 271 \\ \\ \\ 2 \quad 274 \end{array}$	$\begin{array}{r} 22 \\ \\ \\ 229 \\ 1 \quad 590 \\ 1770 \\ \\ \\ 3 \quad 336 \\ \hline \end{array}$	$\sim 50$   15-35   10-20   15-20   60-80   44
Total		19.0	28.0	26424	4793	6947	
Total		10.7	15.4	51989	5557	8010	

${ }^{1}{ }^{\text {Mesh }}$ size and catch composition of 1978 used (no data available for 1979).
${ }^{2} 25 \%$ of mesh size assumed 40 mm .
$3_{\text {official Spanish data multiplied }}$ by 2

International Council for the Exploration of the Sea

## C.M 1980/G:13

Demersal Fish Committee

# REPORT OF THE WORKING GROUP ON ASSESSMENT OF HAKE STOCKS <br> Copenhagen, 12-17 May 1980 


#### Abstract

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.


x) General Secretary, ICES, Palmgade 2-4, DK-1261 Copenhagen $K$, Denmark.

## TABLE OF CONTENTS

Page
O. INTRODUCTION ..... 1
0.1 Participants ..... 1
0.2 Terms of Reference ..... 1
0.3 Nominal Landing Trends ..... 2
0.4 Stock Separation ..... 2
0.5 Assessment Data Base ..... 3
I.O NORTHERN STOCK (ICES Divisions IVa and VIa, Sub-area VII and Divisions VIIIa and b) ..... 3
1.1 Nominal Landing Trends ..... 3

1. 2 Length Compositions ..... 4
1.3 Trends in Catch per Unit Effort ..... 5
1.4 Weight at Length ..... 5
1.5 Selectivity ..... 5
1.6 Yield per Recruit ..... 5
1.7 Catch Predictions ..... 6
1.8 Management Options ..... 6
2.0 SOUTHERN STOCK (ICES Divisions VIIIc and IXa) ..... 7
2.1 Nominal Landing Trends ..... 7
2.2 Length Compositions ..... 7
2.3 Trends in Catch per Unit Effort ..... 8
2.4 Weight at Length ..... 8
2.5 Selectivity ..... 8
2.6 Yield per Recruit ..... 8
2.7 Catch Predictions ..... 9
2.8 Management Options ..... 9
Appendix I ..... 10
References ..... 11
Tables 0.1 - 2.11 ..... 12-37
Figures l.l - 2.4 ..... 38-51

## 0. INTRODUCTION

### 0.1 Participants

The ICES Working Group on Assessment of Hake Stocks met at ICES headquarters in Copenhagen from 12 to 17 May 1980. The following persons participated:

J Bridger	United Kingdom
E Cadima (Chairman)	Portugal
S Clark (Rapporteur)	USA
J Dardignac	France
A Fernandez	Spain
J Y Le Gall	France
J Pereiro	Spain
R Robles	Spain
C de Verdelhan	France

### 0.2 Terms of Reference

At the ICES 1979 Statutory Meeting it was decided (C.Res.1979/2:39) that the Working Group on the Assessment of Stocks of Hake should meet at ICES headquarters from 10-15 March 1980
"(1) to assess TACs for hake,
(2) in view of ACFM's recommendation that an 80 mm mesh should be introduced for the hake fishery, to estimate the effects of the EEC Commission's proposals regarding mesh regulations for both Recommendation 1 and Nephrops fisheres in NEAFC Region ${ }^{\prime \prime}$ ".
As complete catch and effort data for 1979 were not available in March, the meeting was postponed until May.
A number of proposed EEC regulations (COM (79) 709 final, Brussels, 27 November 1979) appear pertinent. As regards the directed fishery for hake, the relevant proposal is Article 10 of the above report, which reads as follows:
"No vessel fishing for hake shall use any trawl any part of which has a mesh size smaller than 80 mm .
However, the use of existing mesh sizes of at least 70 mm in single twine and 75 mm in double twine in Region 2 and of 60 mm in single twine and 65 mm in double twine in Region 3 shall be authorised for two months following the entry into force of this Regulation".

It has been noted by the Chairman of ACFM that as there is no acceptable definition for a directed hake fishery at present this regulation may prove difficult to enforce.
The minimum landing size for hake is 30 cm in all areas (Annex VI).
Minimum mesh sizes proposed in the above document (Article 2 and Annex I) are as follows:

North Sea (Sub-area IV) - 90 mm
Remainder of NEAFC Region 2 except ICES Division VIIa, Skagerrak and the Kattegat - 80 mm
ICES Division VIIa - 75 mm
NEAFC Region 3-65 mm

Minimum mesh sizes for Nephrops (Article 8 and Annex VII) are as follows:

NEAFC Region $2-70 \mathrm{~mm}$ ( 60 mm outside the North Sea and West of Scotland until 31.12.1982)
NEAFC Region 3-60 mm (50 mm until 31.12.1982)

### 0.3 Nominal Landing Trends

Nominal hake catches for NEAFC Regions 2 and 3 (including the stock areas considered in this report) for 1936-79 appear in Table 0.1. Nominal catches averaged 52000 tonnes during the late 1930s, declined to 0 with the cessation of fishing during World War II, and then rose sharply to 194000 tonnes in 1946. Landings subsequently declined more or less continually to an average of 111000 tonnes during 1956-60 and then increased to an average of 129000 tonnes from 1961-65. Since that year nominal catches were relatively constant from 1966-76 (averaging 101000 tonnes); an average of 57000 tonnes has been reported for 1977-79. The latter figure is believed to reflect both declining abundance and EEC restrictions on Spanish effort.

It should be noted that the data in Table 0.1 are subject to many sources of error (such as unreported landings or misreporting by area) particularly in the case of data for earlier years, and consequently only generalised interpretations are possible. Nevertheless, nominal catches have declined considerably since the early post-war years. The 1974-76 average ( 97.6 thousand tonnes) is only $55 \%$ of the 1946-48 average ( 177.8 thousand tonnes), while the 1977-79 average ( 57000 tonnes) is only $32 \%$ of the 1946-48 figure. Related evidence relative to trends in catch per unit effort supports the hypothesis of a pronounced decline in abundance and accordingly the Group accepted these data as indicative of the general condition of the resource relative to earlier years.
Nominal catches of hake as reported to ICES by country and area from 1961-79 are given in Table 0.2. Again, a general downward trend is evident, although national trends differ somewhat. Nominal catches for France declined from an average of 36000 tonnes for 1961-63 to an average of 23000 tonnes from 1969-76. French landings for 1977-79 averaged 18000 tonnes, down 50\% from the 1961-63 average. Declines in French landings in Sub-areas VIII and IX in recent years were offset by increases in Sub-area VII. Nominal catches for Portugal since 1961 have fluctuated without a noticeable trend; those for Spain declined gradually from an average of 73000 tonnes in 1961-63 to an average of 61000 tonnes in 1974-76 and then dropped sharply to an average of 30000 tonnes under EEC restrictions, down $59 \%$ from 1961-63. Nominal catches for the United Kingdom declined by over $85 \%$ during the same period; catches for other nations have fluctuated without a clear trend.

### 0.4 Stock Separation

In the preceding Working Group report (Anon., 1979), two stocks were recognised within NEAFC Regions 2 and 3, i.e., a "northern stock" (ICES Divisions IVa and VIa, Sub-area VII, and Division VIIIa+b), and a "southern stock" in ICES Divisions VIIIc and IXa. This arrangement has been based primarily on the distribution of nursery grounds and apparent differences in recruitment trends between the two areas. In addition, the narrow continental shelf along the northern coast of Spain and the Cape Breton depression (where depths increase sharply to 500 m 4 miles from the coast and to 1000 m 20 miles from the coast) also serve as a geographical barrier, resulting in limited movement may
between the Bay of Biscay and the Cantabrian Sea. There is no biological basis for further sub-divisions. Indeed, data from British larval surveys suggest a relatively continuous distribution from the Cape Breton depression northward (Figures l.l-l.4).
In the absence of more definitive data, the Group has continued to recognise a "northern" and a "southern" stock in this report, noting that different arrangements may be more appropriate when additional data become available.
0.5 Assessment Data Base

The lack of adequate catch and length and age composition data, and uncertainty in biological parameter estimates, have greatly hindered assessment of these stocks. Nominal landings data reported to ICES are obviously erroneous in many cases; information relative to amounts discarded (even for the Nephrops fishery, which has been shown to take large amounts of small hake) is very limited, and length composition data are unavailable for many major components of the fishery prior to 1976. No age composition data are available for commercial landings of either stock. Information relative to biological parameters is also limited. Decamps and Labastie (1978) have realised some success in aging hake otoliths, but due to the limited sample size available their conclusions should probably be regarded as tentative. No reliable estimates of $M$ are available for either stock at the present time. Consequently, detailed assessments have not been attempted during the meeting; work on both stocks was primarily confined to yield per recruit studies and related analyses.
1.0 NORTHERN STOCK (ICES Divisions IVa and VIa, Sub-area VII, and Divisions VIIIa and b)
1.1 Nominal Landing Trends

Nominal catches for the Northern Stock (as reported to ICES for 1961-79 by country and area) appear in Table 1.l; Table 1.2 is similar but contains revised values, based on updated landings data. Revised figures are available for France for 1961-78 and for Spain for 1973-79; remaining data have not been changed. Preliminary estimates calculated by the Group for 1979 based upon reports by French inspectors of licensing violations suggest that Spanish effort in EEC waters was approximately double expected levels based on issuance of licenses by the EEC, and accordingly reported Spanish landings were increased by a factor of 2 so as to provide an estimate of the actual Spanish catch.
Revised nominal catches for France declined more or less continually from 42000 tonnes (all areas) in 1961 to 17000 tonnes in 1977-78; preliminary data for 1979 suggest an increase to 21000 tonnes. Trends in all areas were generally similar during this period, with $47 \%$ of the French landings being taken in Sub-area VII (Table l.2). Nominal catch data for Spain for 1961-72 do not appear to be reliable, although subsequent values declined gradually from 49000 tonnes in 1973 to 27000 tonnes in 1978; preliminary data for 1979 indicate landings of 29000 tonnes (Table 1.2). Since 1973, $55 \%$ of the Spanish catch has been taken in Divisions VIIIa and b. As noted above, nominal catches for the United Kingdom have declined by over $85 \%$ during the last two decades, while catches for other nations have fluctuated without a clear.trend.
Total nominal catch for this stock declined from 96000 tonnes in 1961 to 51000 tonnes in 1971, rose to 80000 tonnes in 1973, and then declined to an average of 51000 tonnes in 1977-79. The increase observed in the early 1970s primarily reflects adjustments to Spanish data. An overall
decline of $45 \%$ is indicated for the last two decades (i.e., from 89000 tonnes in 1961-63 to 51000 tonnes in 1977-79), although it may be noted that data for earlier years are less reliable and thus the actual extent of the decline could very well have been greater.
Table 1.3 provides percentages of total nominal catch in weight by species for ICES Divisions IVa and VIa and Sub-areas VII and VIII for 1947, 1962 and 1978. (These years were chosen as representative of the immediate post-war period, intermediate years and the most recent situation.) For Divisions IVa and VIa, the percentage by weight of hake in reported catches declined from $10 \%$ in 1947 to $1 \%$ in 1978 , while in Sub-area VII this percentage declined from $28 \%$ in 1947 to $5 \%$ in 1978. Corresponding figures for Sub-area VIII were $35 \%$ and $9 \%$, respectively (Table 1.3). (French percentages for 1979 ranged from 3-52\%, depending upon port and vessel class, but averaged only 7\%.) Thus, available data point to pronounced decline both in total landings and in relative importance of this species. The directed hake fishery of former years has been largely replaced by a number of different mixed fisheries. The Group was unable to reach a consensus relative to criteria which could serve to determine a directed fishery.

### 1.2 Length Composition

Prior to 1979, only England and Wales were able to provide adequate annual length composition data by area and port of landing. However, sampling has improved and data are available by area and vessel type for some major fisheries exploiting the Northern Stock. While additional length composition data for hake rejected at sea are needed, tentative estimates of numbers landed at length by vessel class appear possible for 1977-78 (Tables 1.4-1.5). Data for 1979 are similar but include estimates of discards for French artisans in Divisions VIIIa and $b$ (Table l.7). As a rule, estimates were obtained by applying sample data collected at certain ports to corresponding landings data by country and vessel class on a monthly or quarterly basis and raising resulting distributions to total landings to obtain the final distributions.
Data for all years reflect the relative importance of fisheries in Subarea VII and Divisions VIIIa and b, as opposed to more northerly areas. English trawlers, French hauturiers, and larger Spanish trawlers tend to harvest larger fish, reflecting use of larger mesh sizes and/or more offshore distribution of effort. French artisans and other Spanish trawlers tend to take smaller hake. Estimates of numbers rejected are unavailable in most cases, although the potential magnitude of the problem is evident from French data for artisans (Table l.7); here, inclusion of estimated rejects in the sample data resulted in a total catch of 88 million fish below 20 cm in length - $75 \%$ of the total number taken.
Age/length keys are unavailable for this stock, although preliminary information on age composition by area has been derived from available growth parameter estimates and length composition data. Mean ages were calculated for a series of vessel classes/gear types for the 1969-79 period, both for total landings (Table l.8) and for younger and older age groups ( $0-3$ and 4+, Figure 1.5), using the von Bertalanffy growth equation for both sexes derived in the previous Working Group meeting (Anon., 1979). Midpoint lengths for each interval were converted to age and weighted estimates generated from appropriate age composition data.
Mean ages of the total catch (Table 1.8) for the cases examined tend to fluctuate without a definite trend from 1969-79, although a pronounced shift in size distribution (towards smaller hake) occurs in more southerly Sub-areas (VII and VIII). This trend is also clearly endorsed by French and Spanish data for ages 0-3 (Figure 1.5). Numbers of ages $0-3$ hake landed annually by France and Spain in Sub-area VIII
normally exceed numbers landed in the remaining areas and for years in which estimates of numbers rejected can be made, total annual estimates were as high as 339 million fish (Figure 1.5). The magnitude of the resulting loss in yield can be put in perspective by considering that in 1946 England and Wales took 45 million fish weighing a total of 63000 tonnes, while in 1969-74 the estimated number of young hake taken annually in Divisions VIIIa and b exceeded 450 million fish with a total weight of 13500 tonnes (Figure 1.5).

### 1.3 Trends in Catch per Unit Effort

Catch-effort data by area, country and vessel class appear in Table 1.9. Data for all areas (excluding Spain, for which catch-effort data are not available prior to 1967) indicate declines in abundance in the last two decades ranging from 30\% (French hauturiers in Divisions VIIIa and b for 1961-75) to 98\% (United Kingdom trawlers in Divisions IVa and VIa for 1961-79). Catch per unit effort in Divisions IVa and VIa has declined more or less continually for both France and the United Kingdom throughout the available time series, although for the remaining indices values have been relatively constant since the late 1960s. Evidence relative to recruitment trends is somewhat conflicting; since the mid-1960s catch per effort of $<35 \mathrm{~cm}$ hake for trawlers from the ports of Lesconil and La Rochelle (used as an index of recruitment at age 2) has fluctuated without a definite trend in Division VIIIa but has declined somewhat in Division VIIIb (Figure 1.6).
1.4 Weight at Length

Table l. 10 provides weight at length values by length interval, the weight/length relationship used to derive these values, and von.. Bertalanffy growth parameter estimates for males and females. The weight/length relationship is the same as used in the La Rochelle (1978) and Charlottenlund (1979) assessments (Anon., 1978, 1979); growth parameter estimates are those derived by Decamps and Labastie (1978). Weight at length values were calculated at the mid-point of each length interval and differ slightly from those used in preceding assessments.
1.5 Selectivity

A number of experiments have been performed on gear selectivity for this species (Monteiro, 1966; Brabant and Guillou, 1976; Dardignac and de Verdelhan, 1978). Selectivity of 40 mm and 80 mm trawl gear is of particular interest in the present situation due to current gear usage and current or proposed regulations, and accordingly selection curves for 40 mm and 80 mm trawls have been obtained from previous assessments or calculated directly (Figure 1.7). The selection curve for 40 mm trawls obtained in the 1979 Working Group meeting (Anon., 1979) by fitting the logistic equation to data of Brabant and Guillou (1976) has been used in this assessment; also, a curve for 80 mm trawls was calculated from selectivity data for 61 mm trawls obtained by Working Group members in August 1979.
1.6 Yield per Recruit

Yield per recruit analyses were performed for males and females by means of the Beverton-Holt model, assuming $M=0.2$ and using the growth parameter estimates of Decamps and Labastie (1978) presented in Table 1.10. For each sex, calculations were performed for $t_{c}$ values corresponding to $40 \mathrm{~mm}, 60 \mathrm{~mm}$ and 80 mm mesh sizes ( $\mathrm{t}_{\mathrm{c}}{ }^{c}$ values of 0.9 , 1.9 and 2.9 years, respectively); no changes in $t_{c}$ occurred by sex as the von Bertalanffy growth curves for males and females are identical for fish of up to 3 years of age.

For males, $F$ values providing maximum yield per recruit ( $F_{\text {max }}$ ) were $0.14,0.17$, and 0.21 , respectively; corresponding figures $10 r$ females were $0.16,0.21$, and 0.28 (Figure 1.8). While current levels of $F$ are unknown, the Group considered that present levels of $F$ are substantially higher than 0.2 , and are certainly in excess of $F_{\text {max }}$, particularly on smaller fish.
Curves of virgin biomass per recmuit were calculated for males and females from the growth parameters of Decamps and Labastie (1978) and the weight-length equation in Table 1.10 (Figure 1.9). Maxima in these curves occur at ages of 7.6 years for males and 8.9 years for females, substantially higher than current ages at entry for mesh sizes of up to 80 mm . Taken together, results of yield per recruit modelling suggest that current age at entry is too low, and current levels of $F$ are too high, to achieve maximum yield per recruit.
In previous meetings, assessments of long-term effects of changes in effort and mesh size have been calculated using the method of Jones (1961, 1974). However, non-equilibrium situations now appear to exist in fisheries on both the northern and southern stocks (due to changing fishing patterns in the northern stock and sharply declining recruitment in the southern stock). Accordingly, members of the Group expressed serious doubts about the applicability of Jones' method in this situation (for example, simulations were performed which indicated that the F-vector derived from cohort analysis of length composition data was more dependent upon earlier events in the fishery than on data for the last few years). Therefore, the Group chose not to apply Jones' method in the present meeting.

### 1.7 Catch Predictions

The Group calculated immediate losses (in terms of percentages and actual weight based on 1979 nominal catch data) for various components of the fishery assuming an increase in mesh size to 80 mm (see Appendix I for details of calculations). Calculations were performed based on the 1979 length composition data and mesh sizes in force during that year with the exception of French semi-industrial trawlers in ICES Sub-area VII, for which only 1978 data were available. Results appear in Table l.1l.
As might be expected, such losses were negligible for larger mesh components of the fishery employing gears in Divisions IVa and VIa (where nominal catches are relatively insignificant). For smaller mesh sizes in Sub-areas VII and VIII, however, immediate losses become appreciable. For French semi-industrials*and artisans*using 50 mm trawls in Sub-area VII, losses range from $13 \%$ to $28 \%$ or from $300-500$ tonnes, depending upon the selectivity data used. Immediate losses are also quite significant for French artisans and côtiers using 40 mm trawls in Sub-area VIII ( $24-71 \%$ or from $1100-1800$ tonnes depending upon the selectivity data used). For all cases examined, average immediate losses range from $12-17 \%$. It is thus evident that an increase in mesh size to 80 mm , while of unquestionable value to hake, would entail substantial economic hardship in certain cases. Obviously, severe and possibly unacceptable immediate losses could also occur in small mesh fisheries directed towards other species, for example, Nephrops and sole. The Group identified five additional species (gurnard, whiting, blue whiting, Norway lobster and octopus) for which a mesh size increase to 80 mm could result in long-term losses.

### 1.8 Management Options

The Group considered the implications of an increase in mesh size to 80 mm keeping effort at current levels. The potential for substantial long-term gains was noted based on yield per recruit calculations out-

[^0]trawl as of 1979 .
lined in Section 1.6; for example, at a constant $F$ of 0.4 yield per recruit increases by $70 \%$ or more with a mesh size increase of from 40 to 80 mm (Figure 1.8). Additional benefits accruing from such an increase (assuming that total effort remains constant) would include increases in total and spawning stock biomass, reduced mortality of smaller hake, and increased economic returns promoted by increases in efficiency due to increases in catch and reduced handling of discards. It was noted that in some cases, immediate losses associated with the imposition of an 80 mm mesh size might be considerable (Table 1.11) and thus the above potential benefits would have to be carefully weighed in view of current socio-economic conditions.
The Group noted the desirability of a precautionary TAC (total allowable catch) to maintain 1981 effort at current levels. The 1980 TAC set by EEC ( 40000 tonnes) was taken as the catch for 1980; adjusting this figure by the calculated average immediate loss over the entire fishery (15\%. Table l.11) associated with an increase to 80 mm mesh, provides a TAC of 34000 tonnes.
Although assessments of long-term effects of effort changes were not made in the assessment, indications are that a reduction in effort would be beneficial, and accordingly the direction taken in calculation of this recommended TAC, i.e. towards an assumed lower level of effort appears to be appropriate. Accordingly, the Group recommended a TAC of 34000 tonnes for the Northern Stock for 1981.
A summary of the TACs recommended,adopted, and the subsequent estimated catches, together with the mesh sizes recommended and in use are given in Table 1.12.
2.0 SOUTHERN STOCK (ICES Divisions VIIIc and IXa)
2.1 Nominal Landing Trends

Nominal catches for the Southern Stock (as reported to ICES for 1961-79 by country and area) appear in Table 2.l; Table 2.2 is similar but contains revised values based on updated landing data only for the divisions of the Southern Stock.
Total catches decreased from around 30000 tonnes for the period 1972-75 to 15000 tonnes in 1977-79. Portuguese and Spanish catches appear to follow similar trends in reduction during the last 6 or 7 years from 20000 tonnes to 10000 tonnes for Spain and from 15000 to 7000 tonnes for Portugal. France has occasionally fished in the area, the catches remaining below 100 tonnes.

### 2.2 Length Composition

While additional length composition data for hake rejected at sea are needed, tentative estimates in number at length by gears appear possible for the average of the period 1974-77 (Table 2.3) and for 1978 and 1979 (Table 2.4-Table 2.5).
Estimates were obtained from samples collected at certain ports (Galician and Portuguese ports) by country and gear categories and raising the resulting distributions to total landings.
For the period 1974-77, it was only possible to obtain an average composition.
Data from trawlers of both countries show large quantities of small hake (less than 30 cm long), as opposed to the other "artisanal gears" (longline and gillnets), which catch mainly older fish except in the "Beta" fishery (i.e. small mesh gillnet).

Estimates of rejected numbers are not available for the Portuguese fleet, nor for the Spanish fleet in 1979. Rejected fish in these fisheries correspond to illegal or non-registered catches of hake less than 25 cm .
By using the von Bertalanffy growth equation the mean size of each 5 cm length group was calculated, and the total number and mean age for each component of the catch were estimated, splitting the whole population in two groups: less or equal to and older than 3 years. The resultsof this analysis are given in Table 2.9 and Figure 2.1.
The ratio in numbers of young fish caught in the years before 1978 to those caught in 1978 is about 8 to l. This sharp decline may result from a possible failure in the recruitment process. The 1979 data are not comparable as they do not include discards. However, for 1977-79 Spanish research vessel surveys on the abundance of young hake confirm the decline of recruitment as shown by the length composition.

2.3	Trends in Catch per Unit Effort
	No additional data have been provided from 1979 on effort or catch per unit effort for Spain or Portugal. Table 2.7 provides this information for Portugal, Spain and France for the period 1971-78. In 1977-78 Portuguese trawlers' catch per unit effort shows a decline as compared with previous years. However, fishing effort remains stable.
2.4	Weight at Length
	Table 2.8 provides weight at length values by length classes, weight/length relationship used to derive these values and von Bertalanffy growth parameters for males and females.
	The weight/length relationship used comes from the demersal cruise of the Portuguese research vessel "Noruega" during March 1980; growth parameter estimates are those obtained by Decamps and Labastie (1978). Weight at length values were calculated at mid-point classes and are slightly higher (around $10 \%$ ) than the one used in the preceding assessment.
2.5	Selectivity
	Selectivity of 40 and 80 mm trawl gear is of particular interest in the present situation due to current gears used and proposed regulations. Selection curve for 40 mm was obtained in the 1979 Working Group meeting (Anon., 1979) by fitting the logistic equation to the data of Brabant and Guillou (1976). Selectivity curve for 80 mm was derived from the selection curve for 60 mm (Figure 2.2) obtained by Spanish scientists in August 1979 ( "Cigala" 1979 survey), taking a selection factor of 4.8 and a constant selection range.
2.6	Yield per Recruit
	Yield per recruit analyses for males and females assuming $M=0.2$ and using growth parameter estimates provided in Table 2.9 were performed (Figure 2.3). For males $F$ providing maximum yield per recruit ( $F_{\text {max }}$ ) was .14 for a mesh size of 40 mm and .21 for a mesh size of 80 mm . Corresponding values for females were . 16 and . 28 . While current levels of $F$ are not known, the Group considered that the present level of $F$ is well above the $F_{\max }$, particularly on small fish.

As the von Bertalanffy growth curve is identical for fish during the first 3 years for both sexes, for assessment purposes $t_{c}$ will be the same and so a combined yield curve was used for both sexes.

Curves of virgin biomass per recruit were calculated separately for male and female (Figure 2.4), using the von Bertalanffy equation and weight/length relationship in Table 2.9. In these curves the maximum occurs at the age of 7.6 years for males and 8.9 years for females, substantially higher than current ages at entries for mesh sizes up to 80 mm .

Taken together, the results of the yield by recruit modelling suggest that current age at entry (for 40 mm mesh size) is too low and current levels of $F$ are too high to achieve maximum yield by recruit.

### 2.7 Catch Predictions

The Group calculated immediate losses (in terms of percentage and actual weight, based on 1979 nominal catches) for various components of the fishery and the whole fishery assuming an increase in mesh size to 80 mm : Results appearing in Table 2.10 indicate that substantial losses occur for trawlers while artisanal fisheries are not affected. The resulting total immediate loss was estimated to $16 \%$ of the 1979 catches.

The potential for substantial long-term gains was noted based on yield per recruit calculations, as outlined in Section 2.6. For example, at a constant $F=.40$ the difference between yield for recruit at mesh size of 40 mm or 80 mm is $70 \%$ or more. Additional benefits accruing from such an increase in mesh size would result in an increase in the total spawning biomass, in a reduction in juvenile mortality etc.

### 2.8 Management Options

The Group considered the implications of an increase in the mesh size to 80 mm , keeping effort at current levels. Substantial long-term gains were noted, based on $Y / R$ calculations outlined in Section 2.6. For example, at a constant $F$ of 0.4 , the difference of $Y / R$ for mesh size 40 mm and 80 mm is around $70 \%$.

The Group noted the desirability of a precautionary TAC to maintain 1979 effort at current levels. The 1980 TAC ( 10000 tonnes) was taken as the catch for 1980; adjusting this figure by the estimated immediate loss ( $16 \%$, Table 2.10) associated with an increase to 80 mm mesh size provides a TAC of 8400 tonnes. Accordingly the Group recommended a TAC of 8400 tonnes for the Southern Stock for 1981.

A summary of the TACs, recommended, adopted, and the subsequent estimated catches, together with the mesh sizes recommended and in use, are given in Table 2.11.

## APPENDIX I

Immediate losses for each gear have been calculated in this report by the relation

$$
\text { I.L }(\%)=100\left(1-\frac{\sum_{i=1}^{n} C_{i} L_{i}^{b} \frac{P_{2 i}}{P_{1 i}}}{\sum_{i=1}^{n} C_{i} L_{i}^{b}}\right)
$$

where

$$
\mathrm{n}=\text { number of length intervals of size classes; }
$$

$C_{i}=$ number caught in the $i$ th size class $;$
$L_{i}=$ size class mid-point;
$\mathrm{b}=$ exponent of the weight/length relationship;
and $P_{1 i}$ and $P_{2 i} \begin{aligned} & \text { are retention ratios for the old and new mesh } \\ & \text { sizes the ith size class. }\end{aligned}$
If we assume that (l) the selection factor ( $\mathrm{SF}=\frac{\mathrm{L}_{50}}{\mathrm{~m}}$ ) is constant, (2) the selection range is proportional to $\mathrm{L}_{50}\left(\mathrm{I}_{75}-\mathrm{I}_{25}\right)=\mathrm{B} \mathrm{L}_{50}$, and (3) the selection curve is logistic in form, $P_{1 i}$ and $P_{2 i}$ may be computed by the relation

$$
P_{i j}=\frac{e^{x_{i j}}}{1+e^{x_{i j}}}
$$

where $\left.x_{i j}=\frac{2 \ln 3}{B} \frac{\left(L_{i}\right.}{S F \times m_{j}}-1\right)$
using $m=m_{1}$ to compute $P_{1 i}$ and $m=m_{2}$ for $P_{2 i}\left(m_{1}=\right.$ old mesh;

## REFERENCES

Anon., 1978. Rapport du Groupe de Travail sur le Merlu, La Rochelle, 28-31 mars 1978. ICES, Doc. C.M.1978"G:45 (mimeo.).
Anon., 1979. Report of the Working Group on Assessment of the Hake Stocks, Charlottenlund, 28-30 May 1979. ICES; Doc. C.M.1979/G:27 (mimeo.).

Brabant, J C et Guillou, A. 1976. Expérience de sélectivité d'un chalut de peche artisanale dans le Golfe de Gascogne. ICES, C.M.I976/B:35 (mimeo.).

Decamps, Ph. et Labastie, J. 1978. Note sur la lecture et l'interprétation des otolithes de merlu. ICES, Doc. C.M.1978/G:41 (mimeo.).

Dardignac, J et Verdelhan, C de. 1978. Relation entre l'écart de sélection et la taille de retenue à $50 \%$ dans la sélectivité du merlu. ICES Doc. C.M.1978/B:21 (mimeo.).

Jones, R. 1974. Assessing the long-term effects of changes in fishing effort and mesh size from length composition data. ICES, C.M.1974/F:33 (mimeo.).

Monteiro, R. 1966. Hake mesh selection experiments on the Portuguese coast. ICES, Coop.Res.Rep., Series B - Liaison Cttee Report for 1964, pp.53-57.

Table 0.1 Nominal Hake catches (thousands of tonnes) for NEAFC Regions 2 and 3, 1936-1979, as reported to ICES.

YEARS	CATCH	
19361	43.2	Mean 1936-38 $=51.8$
19371	52.5	
$1938{ }^{1}$	59.9	
1939	-	
1940	-	
1941	-	
1942	-	
1943	-	
1944	-	
1945	-	
1946	194.3	Mean 1946-48 $=177.8$
1947	179.7	
1948	158.0	
1949	130.6	
1950	114.9	
1951	128.1	
1952	119.7	
1953	109.8	
1954	105.9	
1955	143.0	
1956	101.5	
1957	113.3	
1958	112.6	
1959	110.9	
1960	114.2	
1961	133.8	
1962	128.9	
1963	133.2	
1964	130.2	
1965	120.6	
1966	107.2	
1967	107.0	
1968	107.4	
1969	100.6	
1970	117.0	
1971	62.42	
1972	110.0	
1973	109.4	
1974	98.3	Mean 1974-76 = 97.6 (Before 200 miles
1975	102.9	jurisdiction)
1976	91.7	
1977	66.7	Mean 1977-79 $=57.1$
1978 1979	49.6 54.9	
1979	54.9	

[^1]Table 0.2 Nominal Hake catches (thousands of tonnes) as reported to ICES by country and area, 1961-1979.

YEARS	TOTAL	FRANCE					PORTUGAL	SPAIN					U.K.			OTHERS		
		TOTAL	IV+VI	VII	VIII	IX	IX	TOTAL	IV+VI	VII	VIII	IX	TOTAL	IV+VI	VII	TOTAL	IV+VI	VII
1961	$(133.4)^{1}$	$35.0^{2}$	1.5	18.0	12.3	3.1	13.0	$(72.4)^{1}$	-	-	40.6	$31.8^{3}$	11.8	10.5	1.3	1.2	1.0	0.2
1962	(128.3)	$39.5{ }^{2}$	0.7	19.4	14.8	3.1	6.4	(67.8)			32.0	$35.8{ }^{3}$	13.7	12.3	1.4	0.9	0.6	0.3
1963	(132.5)	$33.4{ }^{2}$	1.5	14.9	12.4	3.2	6.9	(79.1)			39.3	$39.8{ }^{3}$	11.9	10.7	1.2	1.2	1.0	0.2
1964	(129.7)	$30.7^{2}$	3.2	11.3	13.0	2.9	9.0	(79.8)		-	34.0	$45.8^{3}$	9.2	8.7	0.5	1.0	0.8	0.2
1965	(120.0)	$26.2^{2}$	3.7	11.7	10.7	-	10.4	(74.7)		21.0	7.1	$46.6^{3}$	$7 \cdot 7$	7.3	0.4	1.0	0.8	0.2
1966	(106.6)	18.1	3.0	7.6	5.5	2.0	8.3	(73.2)	-	.	27.5	$45.7^{3}$	5.9	5.3	0.6	1.1	0.9	0.2
1967	(116.5)	25.9	2.9	9.6	11.0	2.4	7.6	(76.7)			31.6	$45.1^{3}$	4.9	4.1	0.8	1.4	0.9	0.5
1968	(106.4)	22.5	2.5	7.8	10.2	2.0	7.2	(69.7)	-	-	32.2	$37.5^{3}$	5.4	4.5	0.9	1.6	1.3	0.3
1969	(99.6)	21.3	2.9	7.9	8.8	1.7	6.6	(65.7)			27.1	$38.6{ }^{3}$	4.3	3.9	0.4	1.7	0.5	1.2
1970	(116.4)	25.7	1.5	9.8	12.8	1.5	9.3	(76.1)		-	34.3	$41.8^{3}$	3.2	2.7	0.5	2.1	1.9	0.2
1971	(61.6)	23.6	0.8	9.1	13.1	0.6	8.0	(24.8)	0.9	7.8	14.0	$2.1{ }^{3}$	2.6	2.2	0.4	2.6	2.1	0.5
1972	108.84	21.8	0.4	8.8	12.6	-	8.7	73.24	1.1	4.8	32.4	17.3	2.9	2.4	0.5	2.2	2.2	
1973	108.6	24.2	2.2	10.7	11.3	-	15.3	63.0	0.5	4.7	37.0	20.8	2.8	2.2	0.6	3.3	2.9	0.4
1974	96.5	21.7	2.5	11.8	7.3	0.1	7.8	61.7	7.1	21.9	18.5	14.1	2.7	2.1	0.6	2.6	2.3	0.3
1975	101.4	22.2	3.2	11.0	7.9	0.1	9.4	63.9	6.4	20.5	18.0	19.0	2.6	2.3	0.3	3.3	2.4	0.9
1976	90.7	19.1	3.8	10.4	4.8	0.1	7.9	58.8	4.1	20.8	20.2	13.7	2.3	1.7	0.6	2.6	1.8	0.8
1977	64.9	15.3	2.6	6.1	6.6	-	5.5	41.0	1.6	5.3	16.6	17.5	1.9	1.6	0.3	1.2	0.8	0.3
1978	49.6	18.4	2.2	7.3	8.8	-	4.4	21.7	1.3	5.0	6.6	8.8	2.0	1.6	0.3	3.1		
1979	54.9	20.5	2.5	7.1	10.9	-	6.8	25.9	1.2	5.8	9.4	9.5	1.7	1.5	0.2	.	-	.

[^2]Table 1.1 Nominal catches (thousands of tonnes) for the Northern Hake stock (ICES Divisions IVa and VIa, Sub-area VII, and Divisions VIII a and b), as reported to ICES by country and areas, 1961-1979.

YEARS	TOTAL	FRANCE				SPAIN				U.K.			OTHERS		
		TOTAL	IVa+VIa	VII	VIII ${ }^{1}$	TOTAL	IVa+VIa	VII	VIII ${ }^{1}$	TOTAL	IVa+VIa	VII	TOTAL	IVa+VIa	VII
1961	85.4	31.8	1.5	18.0	12.3	40.6	-	-	40.6	11.8	10.5	1.3	1.2	1.0	0.2
1962	81.5	34.9	0.7	19.4	14.8	32.0	-	-	32.0	13.7	12.3	1.4	0.9	0.6	0.3
1963	81.2	28.8	1.5	14.9	12.4	39.3	-	-	39.3	11.9	10.7	1.2	1.2	1.0	0.2
1964	71.7	27.5	3.2	11.3	13.0	34.0	-	-	34.0	9.2	8.7	0.5	1.0	0.8	0.2
1965	62.9	26.1	3.7	11.7	10.7	28.1	-	21.0	7.1	7.7	7.3	0.4	1.0	0.8	0.2
1966	50.6	16.1	3.0	7.6	5.5	27.5	-	-	27.5	5.9	5.3	0.6	1.1	0.9	0.2
1967	61.4	23.5	2.9	9.6	11.0	31.6	-	-	31.6	4.9	4.1	0.8	1.4	0.9	0.5
1968	59.7	20.5	2.5	7.8	10.2	32.2	-	-	32.2	5.4	4.5	0.9	1.6	1.3	0.3
1969	52.7	19.6	2.9	7.9	8.8	27.1	-	-	27.1	4.3	3.9	0.4	1.7	0.5	1.2
1970	63.7	24.1	1.5	9.8	12.8	34.3	-	-	34.3	3.2	2.7	0.5	2.1	1.9	0.2
1971	50.9	23.0	0.8	9.1	13.1	22.7	0.9	7.8	14.0	2.6	2.2	0.4	2.6	2.1	0.5
1972	65.2	21.8	0.4	8.8	12.6	38.3	1.1	4.8	32.4	2.9	2.4	0.5	2.2	2.2	-
1973	72.5	24.2	2.2	10.7	11.3	42.2	0.5	4.7	37.0	2.8	2.2	0.6	3.3	2.9	0.4
1974	74.3	21.5	2.5	11.8	7.2	47.5	7.1	21.9	18.5	2.7	2.1	0.6	2.6	2.3	0.3
1975	72.9	22.1	3.2	11.0	7.9	44.9	6.4	20.5	18.0	2.6	2.3	0.3	3.3	2.4	0.9
1976	69.0	19.0	3.8	10.4	4.8	45.1	4.1	20.8	20.2	2.3	1.7	0.6	2.6	1.8	0.8
1977	41.8	15.3	2.6	6.1	6.6	23.5	1.6	5.3	16.6	1.9	1.6	0.3	1.1	0.8	0.3
1978	36.4	18.4	2.2	7.3	8.8	12.9	1.3	5.0	6.6	2.0	1.6	0.3	3.1	-	-
1979	38.6	20.5	2.5	7.1	10.9	16.4	1.2	5.8	9.4	1.7	1.5	0.2	-	-	-

$I_{\text {Includes Divisions VIIIa, }}$ b and $c$.

Table 1.2 Revised catches (thousands of tonnes) for the Northern Hake stock (ICES Divisions IVa and VIa, Sub-area VII and Divisions VIII a and b) by country and area determined by the Hake Working Group, 1961-1979.

YEARS	TOTAL	FRANCE				SPAIN				U.K.			OTHERS		
		TOTAL	IVa+VIa	VII	VIIIa, b	TOTAL	IVa+VIa	VII	VIIIa, b	TOTAL	IVa+VIa	VII	TOTAL	IVa+VIa	VII
1961	95.6	42.0	5.3	20.7	16.0	40.6	-	-	40.6	11.8	10.5	1.3	1.2	1.0	0.2
1962	86.3	39.7	4.9	19.3	15.5	32.0	-	-	32.0	13.7	12.3	1.4	0.9	0.6	0.3
1963	86.2	33.8	4.0	16.2	13.6	39.3	-	-	39.3	11.9	10.7	1.2	1.2	1.0	0.2
1964	76.8	32.6	4.6	15.2	12.8	34.0	-	-	34.0	9.2	8.7	0.5	1.0	0.8	0.2
1965	64.7	27.9	3.3	13.0	11.6	28.1	-	21.0	7.1	7.7	7.3	0.4	1.0	0.8	0.2
1966	60.9	26.4	3.2	13.0	10.2	27.5	-	-	27.5	5.9	5.3	0.6	1.1	0.9	0.2
1967	62.1	24.2	3.2	9.9	11.1	31.6	-	-	31.6	4.9	4.1	0.8	1.4	0.9	0.5
1968	62.0	22.8	2.5	9.2	11.1	32.2	-	-	32.2	5.4	4.5	0.9	1.6	1.3	0.3
1969	54.9	21.8	3.5	10.9	7.4	27.1	-	-	27.1	4.3	3.9	0.4	1.7	0.5	1.2
1970	64.9	25.3	4.3	11.5	9.5	34.3	-	-	34.3	3.2	2.7	0.5	2.1	1.9	0.2
1971	51.3	23.4	3.3	10.7	9.4	22.7	0.9	7.8	14.0	2.6	2.2	0.4	2.6	2.1	0.5
1972	65.5	22.1	3.7	9.6	8.8	38.3	1.1	4.8	32.4	2.9	2.4	0.5	2.2	2.2	-
1973	79.5	24.0	3.2	12.3	8.5	49.4	2.4	17.9	29.1	2.8	2.2	0.6	3.3	2.9	0.4
1974	74.2	21.3	2.8	11.9	6.6	47.6	3.6	16.1	27.9	2.7	2.1	0.6	2.6	2.3	0.3
1975	74.5	22.2	3.3	12.1	6.8	46.4	4.9	15.8	25.7	2.6	2.3	0.3	3.3	2.4	0.9
1976	67.3	18.3	3.8	10.3	4.2	44.1	4.2	15.6	24.3	2.3	1.7	0.6	2.6	1.8	0.8
1977	51.2	17.2	2.8	7.6	6.8	32.0	1.6	13.0	16.4	1.9	1.6	0.3	1.1	0.8	0.3
1978	49.9	17.4	2.2	7.3	7.9	27.4	1.4	12.4	13.6	2.0	1.6	0.3	3.1	-	-
1979	51.4	20.5	2.5	7.1	10.9	29.2	2.4	11.6	15.2	1.7	1.5	0.2	-	-	-

[^3]Table 1.3 Percentage of total nominal catch by weight of demersal species as reported to ICES for Divisions IVa+VIa and Sub-areas VII and VIII in 1947, 1962 and 1978.

SPECIES	IVa+VIa			VII			VIII		
	1947	1962	1978	1947	1962	1978	1947	1962	1978
Hake	10.0	7.0	1.0	28.0	15.0	5.0 (10)*	35.0	24.0	9.0 (10)*
Horse Mackerel		1.0	0.2	0.0	0.0	12.0	20.0	25.0	35.0
Sea Bream	0.1	0.3	0.3	1.0	2.0	3.0	0.4	8.0	5.0
Cod	15.0	19.0	10.0	6.0	3.0	10.0	0.0	1.0	
Hadzock	38.0	20.0	14.0	1.0	3.0	1.0	0.0	0.0	
Gurnard	0.4	0.3	0.1	1.0	1.0		1.0		
Ling	6.0	3.0	5.0	1.0	2.0	3.0		0.6	2.0
Megrim	0.7	0.7	0.6	0.7	4.0	2.0		3.0	5.0
Monk	0.8	1.0	1.0	0.5	0.4	6.0	1.0	3.0	8.0
Plaice	1.0	2.0	1.0	3.0	4.0	4.0	1.0	0.3	0.1
Pollack	0.6	1.0	0.3	0.7	0.7	3.0	0.8	0.5	0.9
Saithe	5.0	14.0	28.0	1.0	2.0	2.0		0.6	
Skates/Rays	3.0	3.0	0.9	14.0	16.0	2.0	5.0	4.0	
Sole	0.0	0.0	0.0	1.0	2.0	2.0	0.7	1.0	1.0
Turbot	0.7	0.1	0.0	0.6	0.3		0.2	0.1	
Whiting	16.0	21.0	11.0	19.0	19.0	14.0	11.0	1.0	0.9
Conger	0.3	0.2	0.1	3.0	4.0	1.0	2.0	2.0	2.0
Blue Whiting			21.0			1.0			4.0
Norway Lobster		0.1	2.0			7.0			4.0
Cephalopods			0.1			1.0			3.0
Others	2.0	6.0	4.0	17.0	22.0	18.0	24.0	27.0	19.0
TOTAL (tonnes)	192661	191965	544641	144869	137244	208200	249236	190843	193600

* WG data.

Table 1.4 Length compositions (thousands of fish) for Hake landings from the Northern stock (ICES Divisions IVa and VIIa, Sub-area VII and Divisions VIII $a$ and b) by area, country and vessel class for 1977.

	IVa + VIIa		VII						VIII a,b			
LENGITH   CLASSES   (cm)	FRANCE	$\begin{gathered} \hline \text { ENGLAND } \\ \text { AND } \\ \text { WALES } \end{gathered}$	France			U.K.	SPAIN		FRANCE			SPAIN   BAKAS,   BOUS   AND   PAREJAS
	HAUTU-   RIERS		HAUTURIERS	SEMI-   INDUS-   TRIALS	ARTI- SANS		GIIL   NEIS +   LONG-   LINES	$\begin{aligned} & \text { TRAW- } \\ & \text { LERRS } \end{aligned}$	HAUTU-   RIERS	ARTI-   SANS	FILETS   MAILLANIS,   PALANGRES	
5-9												
10-14												
15-19								4				
20-24			1	16	39			313	8	1600	0	1243
25-29	4	1	21	458	799	2		273	145	8132	3	3875
30-34	27	2	84	1507	1423	18		1854	100	6339	4	3612
35-39	77	3	129	1321	793	33		3785	120	2898	9	2174
40-49	108	3	271	459	294	28	444	3485	140	854	5	2413
45-49	141	7	383	215	131	11	383	2534	160	225	4	2990
50-54	153	17	429	190	38	8	295	1086	154	81	2	1952
55-59	126	23	418	125	20	6	89	744	125	62	4	1743
60-64	144	24	263	78	12	11	75	486	92	90	16	1301
65-69	116	20	94	61	22	12	48	294	43	67	37	827
70-74	101	13	95	61	26	12	40	228	9	27	28	394
75-79	104	6	68	46	19	9	39	220	2	16	23	206
80-84	55	3	38	20	6	5	26	87	3	5	15	140
85-89	45	2	34	27	3	3	25	44	2	4	4	55
90-94	44	1	14	11	3	3	15	19	6	2	13	3
95-99	25	1	14	7	4	2	9	13	2	2	26	0
$100-104$ $105-109$	16	1	9 1	3	2	-	6	13	1			4
110-115	3	-	1	4								
TOTAL	1295	128	2367	4612	3635	165	1494	15482	1112	20404	193.	22932

Table 1.5 Length compositions (thousands of fish) for Hake landings from the Northerm stock (ICES Divisions IVa and VIa, Sub-area VII and Divisions VIII $a$ and $b$ ) by area, country and vessel class for 1978.


Table 1.6 Length compositions (thousands of fish) for Hake landings from ICES Divisions IVa $+V I a$ and Sub-area VII by country and vessel class for 1979 .

LEINGTH   CLASSES $(\mathrm{cm})$	$\mathrm{IVa}+\mathrm{VIa}$			VII					TOTAL
	$\begin{aligned} & \text { ENGLAND } \\ & \text { AND } \\ & \text { WALES } \\ & \text { (TRAWL) } \end{aligned}$	FRANCE	SPAIN	$\begin{gathered} \text { ENGLAND } \\ \text { AND } \\ \text { WALES } \\ \text { (TRAWL) } \end{gathered}$	FRANCE		SPAIN		
		HAUTURIERS (TRAWL)	TRAWL LONGLINES		HAUTURIERS (TRAWL)	$\begin{array}{r} \text { ARTISANS } \\ \text { (TRAWL) } \end{array}$	TRAWL	LONGLINES	
5-9	-								
10-14	-								
15-19	-								
20-24	-								
25-29	-	-	-	4.0	13	877	4.4	-	898.4
30-34	0.3	3	3.3	64.4	124	2091	139.7	-	2419.1
35-39	1.2	45	46.2	63.8	237	684	667.2	-	1652.0
40-44	4.2	65	3.372 .5	32.4	359	80	1142.0	-	1613.4
45-49	7.2	75	22.8105 .0	16.3	387	54	901.2	-	1358.5
50-54	9.9	133	81.5224 .4	11.6	566	47	676.5	14.7	1315.8
55-59	8.4	137	175.4320 .8	13.9	738	49	443.2	54.0	1298.1
60-64	7.6	176	215.6399 .2	27.6	594	23	318.5	141.1	1104.2
65-69	4.6	80	141.0225 .6	10.4	442	48	222.2	70.0	792.6
70-74	3.4	107	23.5133 .9	5.0	273	42	169.0	61.0	550.0
75-79	2.9	145	23.1171 .0	2.4	85	12	88.4	19.1	206.9
80-84	2.2	60	10.272 .4	2.8	123	13	29.3	28.1	196.2
85-89	1.6	40	5.547 .1	2.3	39	7	16.0	8.0	72.3
90-94	0.8	12	1.614 .4	1.4	42	1	12.0	6.3	62.7
95-99	0.5	25	25.5	0.7	16	-	8.0	3.1	27.8
100-104	0.4	11	11.4	0.6	8	-	-	3.1	11.7
105+	0.5		0.5	0.2	8	-	-	-	8.2
TOTAL	55.7	1114	703.51873 .2	259.8	4054	4028	4837.6	408.5	13587.9
OBS TONNES	106	2499	12183823	215	5691	1417	4885	936	13144
CALC. TONNES	102	2408	12183728	228	6249	1422	4860	935	13694

Table 1.7 Length compositions (thousands of fish) for Hake landings from ICES Divisions VIII $a$ and $b$ by country and vessel class for 1979 .

IENGTH   CLASSES   (cm)	France					SPAIN				TOTAL
	HAUTURIERS (TRAWL)	ARTISANS		$\begin{gathered} \text { GILLNET } \\ \text { AND } \\ \text { LONGLINES } \end{gathered}$	COTIERS   (TRAWL)	BAKAS ${ }^{1}$		$\begin{aligned} & \text { BOUS } \\ & \text { (TRAWL) } \end{aligned}$	PAREJAS-   TRIOS   (TRAWL)	
		$\begin{gathered} \text { (PELAGIC } \\ \text { TRAWL) } \end{gathered}$	(воттом TRAWL) ${ }^{2}$			TRAWL   (A)	TRAWL   (B)			
5-9	-	-	19503	-	-	-	-	-	-	19503.0
10-14	-	-	33282	-	-	-	52.3	-	-	33334.3
15-19	-	-	35027	-	384	85.7	3543.1	18.0	101.7	39159.5
20-24	-	32	16062	-	5801	63.0	2779.2	71.0	277.9	25086.1
25-29	5	359	5307	1	8463	857.2	3807.8	252.5	769.1	19821.6
30-34	22	679	4390	11	3056	1041.4	3135.6	393.4	1225.3	13953.7
35-39	82	1057	1832	7	322	634.2	377.7	447.0	679.4	5438.3
40-44	149	721	1198	11	19	307.0	159.1	298.0	275.5	3137.6
45-49	277	215	417	7		283.0	217.8	325.0	124.7	1866.5
50-54	140	115	157	16		210.2	44.3	358.1	140.0	1180.5
55-59	170	55	364	67		86.6	58.9	301.0	115.8	1218.3
60-64	40	69	128	101		60.2	42.0	182.0	75.6	697.8
65-69	73	29	80	144		30.2	32.7	122.7	51.5	563.1
70-74	30	18	7	245		19.1	23.8	58.0	31.7	432.6
75-79	12	8	2	76		6.2	1.1	12.4	13.7	131.4
80-84	8	5	1	37		0.2	1.8	3.1	0.3	56.4
85-89	4	5	1	28		0.3		1.1	1.8	41.2
90-94		1		4		0.5		-	0.7	6.2
95-99 $100-104$				1				0.2	0.4	1.6
$100-104$ $105+$										
TOTAL	1012	3368	117758	756	18045	3685.2	14277.2	2843.3	3885.1	165629.7
TONNES RF.	1115	1524	7465	1587	2493	1521	2274	2223	1563	
CALC. TONNES	1075	1602	7048	1821	2427	1524	2268	2224	1563	

${ }^{1}$ Data sets (A) and (B) calculated for sample data from the ports of Pasajes and Ondarra, respectively.
2 Includes discard estimates.

Table 1.8 Numbers (millions) and mean age of Hake caught from 1969-1979 by area and gear type.

AREA		IVa + VIa				VII						VIIIa, ${ }^{\text {b }}$							
NATION		$\begin{gathered} \mathrm{E} \\ + \\ + \\ \mathrm{W} \end{gathered}$	F R A	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{P} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{C} \\ & 0 \\ & \mathrm{~T} \\ & \hline \end{aligned}$	E + + W	FRANCE			SPAIN		France					SPAIN		
$\underbrace{\substack{\text { VESSEI } \\ \text { GEAR }}}_{\text {YEAR }}$	OR	$\begin{aligned} & \mathrm{T} \\ & \mathrm{R} \\ & \mathrm{~A} \\ & \mathrm{~W} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{U} \\ & \mathrm{~T}_{\text {. }} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{R} \\ & \mathrm{~A} \\ & \mathrm{~W} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{R} \\ & \mathrm{~A} \\ & \mathrm{~W} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & T \\ & R \\ & A \\ & \mathrm{~A} \\ & \mathrm{~W} \\ & \hline \end{aligned}$	H A U T 。	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{M} \\ & \mathrm{I}_{\mathbf{t}} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{R} \\ & \mathrm{~T}_{\mathrm{t}} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{R} \\ & \mathrm{~A} \\ & \mathrm{~W} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	G I I LL + LN LE	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~A} \\ & \mathrm{U} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{R} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	P   E   L.	C T T	B 0 0 U S	B A K A	P A R A.
$\begin{gathered} 69- \\ 74 \end{gathered}$	$\begin{aligned} & \text { NO. } \\ & \text { AGE } \end{aligned}$		2.2 7.3	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	$\begin{aligned} & 0.6 \\ & 4.3 \end{aligned}$		$\begin{array}{r} 10.6 \\ 5.4 \end{array}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	?	$\begin{array}{r} 31.3 \\ 3.4 \end{array}$	?	?	$118^{1}$ 1.2	?	?	?		339 1.3	
77	$\begin{aligned} & \text { NO. } \\ & \text { AGE } \end{aligned}$	$\begin{aligned} & 0.1 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 8.2 \end{aligned}$	?	?	0.1 7.0	2.4 6.8	$\begin{aligned} & 4.6 \\ & 4.1 \end{aligned}$	3.6	15.5 3.3	$\begin{aligned} & 1.5 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 5.2 \end{aligned}$	$\begin{array}{r\|r} 20.4 \\ 2.4 \end{array}$	$\left\|\begin{array}{c} 0.2 \\ 11.8 \end{array}\right\|$	?	?		22.9 4.6	
78	$\begin{aligned} & \text { NO. } \\ & \text { AGE } \end{aligned}$	0.1 9.9	0.9 9.9	?	$\begin{aligned} & 3.1 \\ & 3.8 \end{aligned}$	0.2 5.7	2.7 6.7	5.5 3.7	1.9 3.8	11.2 5.7	$\begin{aligned} & 1.2 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 5.6 \end{aligned}$	$\begin{array}{r} 21.3 \\ 3.0 \end{array}$	$\begin{array}{r} 0.2 \\ 10.7 \end{array}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	$\begin{aligned} & ? \\ & ? \end{aligned}$		37.2 3.2	
79	$\begin{aligned} & \text { NO. } \\ & \text { AGE } \end{aligned}$	0.1 8.2	1.1 9.2	0.7 8.1	?	0.3 5.2	4.0 7.4	?	4.0 3.3	4.8 5.8	$\begin{aligned} & 0.4 \\ & 9.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 118^{1} \\ & 1.2 \end{aligned}$	$1 \begin{aligned} & 0.7 \\ & 0.0 \end{aligned}$	3.4 3.9	18.0 2.2	$\begin{aligned} & 2.8 \\ & 4.9 \end{aligned}$	$\begin{array}{r} 18.0 \\ 2.5 \end{array}$	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$
$\begin{aligned} & \text { MEAN } \\ & 77-79 \end{aligned}$	$\begin{aligned} & \text { NO. } \\ & \text { AGE } \end{aligned}$	0.1 8.9	1.1	0.7 8.1	3.1 3.8	0.2 6.0	3.0 7.0	5.0 3.9	3.2 3.5	10.5 4.9	$\begin{aligned} & 1.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 5.6 \end{aligned}$	2.2	$\begin{array}{r} 0.4 \\ 10.8 \end{array}$	$\begin{aligned} & 3.2 \\ & 3.9 \end{aligned}$	18.0 2.2		2.9	

${ }^{1}$ Includes estimate of numbers rejected.

Table 1.9 Trends in catch per unit effort for trawl fisheries in ICES Divisions IVa and VIa, Sub-area VII and Divisions VIII a and b by area, country and vessel class, 1961-1979.

YEAR	$\mathrm{IVa}+\mathrm{VIa}$		VII				VIIIa, b	
	FRANCE ${ }^{1}$	U.K. ${ }^{2}$	FRANCE ${ }^{1}$		U.K. ${ }^{2}$	SPAIN ${ }^{1}$	FRANCE ${ }^{1}$	
			HAUTURIERS	ARTISANS			HAUTURIERS	ARTISANS
1961	155	151	142.2	41.9	88.9	-	174.4	37.3
1962	124	162 ,	110.8	36.7	105.3	.	159.0	31.2
1963	101	150	83.3	29.5	74.8	.	136.2	25.4
1964	74	128	65.5	25.5	33.9	-	124.8	20.6
1965	89	104	43.0	26.6	15.0	-	106.5	19.7
1966	37	61	53.2	21.9	20.0	-	75.1	20.9
1967	54	48	39.4	16.9	20.0	47.3	77.8	22.6
1968	50	41	40.7	11.7	73.7	57.4	75.1	21.6
1969	43	44	52.8	13.9	35.1	55.8	69.9	23.6
1970	48	45	60.2	17.0	25.9	76.0	78.4	40.6
1971	42	17	57.2	16.6	23.5	98.9	95.2	25.6
1972	42	9	47.0	19.5	24.7	54.0	90.6	21.1
1973	33	6	51.1	20.7	21.1	55.8	83.5	25.7
1974	26	6	57.2	19.4	34.3	51.9	82.4	18.0
1975	27	5	56.6	21.5	33.5	45.1	62.5	22.0
1976	29	4	43.1	.	29.0	53.1	63.3	.
1977	23	4	34.5	.	22.0	56.2	53.7	.
1978	17	3	41.3	.	24.6	59.4	74.7	-
1979	.	2	.	-	21.6	.	.	
$\overline{\mathrm{x}}_{61-63}$	126.7	154.3	112.1	36.0	89.7	-	156.5	31.3
$\overline{\mathrm{x}}_{\text {last }} 3$ yrs. in series	23.0	3.0	39.6	20.5	22.7	56.2	63.9	21.9
\% change	-82	-98	-65	-43	-75	-	-59	-30

[^4]Table 1. 10 Growth parameter estimates, weight-length relationship and average weights at length used for assessment of the Northern Stock.

Source: Descamps et Labastie, C.M. 1978/G:41

LENGIH CLASSES (cm)	(mid-point class)		GROWTH   ESTI	AMETER   ES
5-9	0.002			
10-14	0.012			
15-19	0.034			
20-24	0.074		9	$\sigma$
25-29	0.136	$L_{\infty}$	83.0	116.0
30-34	0.228			
35-39	0.354	K	0.148	0.098
40-44	0.520	$t_{0}$	-0.42	-0.51
45-49	0.732		4.068	11.383
50-54	0.995			
55-59	1.316			
60-64	1.701			
65-69	2.155			
70-74	2.684			
75-79	3.295			
80-84	3.993			
85-89	4.785			
90-94	5.676			
95-100	6.673			
Weight-length relationship $W_{(K g)}=0.00513 \mathrm{~L}(\mathrm{~cm})$				

Table l. 11 Immediate losses in percentages and tonnes by area, country and gear type calculated under different selectivity options.

Sub-area/   Division	$\begin{aligned} & 1979 \\ & \text { Mesh } \\ & \text { Size } \end{aligned}$	Immediate Loss (percent)		1979   Official   Nominal   Catch of   Hake ( t )	Immediate Loss (tonnes)		Percent of Hake in Total landing
		$\mathrm{SF}=3.6$	$\mathrm{SF}=4.1$		$\mathrm{SF}=3.6$	$\mathrm{SF}=4.1$	
IV + VI France Hauturiers England and Wales Scotland Spain	$\begin{aligned} & 70 \\ & 80 \\ & 70 \\ & 70 \end{aligned}$	$\begin{gathered} 0.3 \\ 0.0 \\ - \\ 0.2 \end{gathered}$	$\begin{gathered} 0.2 \\ 0.0 \\ - \\ 0.0 \end{gathered}$	2459 106 1400 1	7   0   0   2	5 0 0 0	$\begin{aligned} & <5 \\ & <5 \\ & <5 \\ & 20 \end{aligned}$
Total		0.2	0.1	5183	9	5	
VII France Hauturiers    France Semi-Industrials    France Artisans    England and Wales    Spain Longlines    Spain Trawlers	$\begin{aligned} & 70 \\ & 50 \\ & 50 \\ & 75 \\ & \overline{70} \end{aligned}$	$\begin{array}{r} 0.6 \\ 13.0 \\ 18.0 \\ 1.7 \\ - \\ 1.5 \end{array}$	$\begin{array}{r} 0.6 \\ 19.0 \\ 28.0 \\ - \\ 1.8 \end{array}$	$\begin{array}{r} 3200 \\ 2490 \\ 1417 \\ 215 \\ 936 \\ 4985 \end{array}$	$\begin{array}{r} 19 \\ 324 \\ 255 \\ 4 \\ 0 \\ 75 \end{array}$	$\begin{array}{r} 19 \\ 468 \\ 391 \\ 0 \\ 90 \\ \hline \end{array}$	$\begin{gathered} 10-40 \\ 5-15 \\ <5 \\ <1 \\ \\ 25 \\ \hline \end{gathered}$
Total		5.0	7.0	13243	677	968	
VIIIa, $b$ France Hauturiers   France Pelagic Trawls   France Artisans   France Cotiers   France Gillnets + Longlines   Spain Trawlers	$\begin{aligned} & 60 \\ & 60 \\ & 40 \\ & 40 \\ & - \\ & 60 \end{aligned}$	$\begin{array}{r} 1.6 \\ 9.2 \\ 24.0 \\ 51.0 \\ - \\ 15.0 \end{array}$	$\begin{gathered} 2.0 \\ 15.0 \\ 35.0 \\ 71.0 \\ -{ }^{2} 2 \end{gathered}$	$\begin{array}{rl} 1 & 115 \\ 1 & 524 \\ 4 & 543 \\ 2 & 493 \\ 1 & 587 \\ 15 & 162 \end{array}$	$\begin{array}{rr}  & 18 \\ & 140 \\ 1 & 090 \\ 1 & 271 \\ & 0 \\ 2 & 274 \end{array}$		$\begin{aligned} & \sim 50 \\ & 15-35 \\ & 10-20 \\ & 15-20 \\ & 60-80 \\ & 44 \end{aligned}$
Total		19.0	28.0	26424	4793	6947	
Total		12.0	17.0	44850	5479	7920	

${ }^{1}$ Mesh size and catch composition of 1978 used (no data available for 1979).
${ }^{2} 25 \%$ of mesh size assumed 40 mm .

Table 1.12 Estimated catches, TAC's recommended and adopted and mesh size recommended and in use after 1975 in the Northern stock.

Years	Estimated catch ( $\mathrm{x} 10^{3} \mathrm{t}$ )	TAC recommended$\left(x 10^{3} t\right)$	TAC adopted$\left(x 10^{3} t\right)$	Mesh size (m) recommended		Mesh size (mm) in use	
				$\begin{gathered} \text { IVa+VIa } \\ \text { VII } \end{gathered}$	VIIIa, b	$\begin{gathered} \text { IVa+VIa } \\ \text { VII } \end{gathered}$	VIIIa, b
1975	74.5			70	60	40-80	40-50
1976	67.3			70	60	40-80	40-50
1977	51.2			70	60	60-80	40-60
1978	49.9			70	60	70-80	40-60
1979	51.4	43.0	43.0	70	60	70-80	40-60
1980		30.0	40.0	80	80	70-80	40-60
1981		(34.0)		(80)	(80)		

Table 2.1 Nominal catches (thousands of tonnes) for the Southerm Hake stock (ICES Divisions VIIIc and IXa), as reported to ICES by country and area, 1961-1979.

YEARS	TOTAL	FRANCE		PORTUGAL   IXa	SPAIN	
		VIII ${ }^{1}$	IXa		VIII ${ }^{1}$	IXa
1961	100.6	12.3	3.1	13.04	40.6	$31.8{ }^{3}$
1962	92.2	14.8	3.2	6.4	32.0	$35.8{ }^{3}$
1963	101.7	12.4	3.2	7.0	39.3	$39.8{ }^{3}$
1964	104.7	13.0	2.9	9.0	34.0	45.83
1965	74.8	10.7	-	10.4	7.1	$46.6^{3}$
1966	89.1	5.5	2.1	8.3	27.5	45.73
1967	97.7	11.0	2.4	7.6	31.6	45.13
1968	89.1	10.2	2.0	7.2	32.2	$37.5^{3}$
1969	82.8	8.8	1.7	6.6	27.1	38.63
1970	99.7	12.8	1.5	9.3	34.3	$41.8^{3}$
1971	37.8	13.1	0.6	8.0	14.0	2.13
1972	71.0	12.6	-	8.7	32.4	17.3
1973	84.4	11.3	-	15.3	37.0	20.8
1974	47.8	7.3	0.1	7.8	18.5	14.1
1975	54.4	7.9	0.1	9.4	18.0	19.0
1976	46.7	4.8	0.1	7.9	20.2	13.7
1977	46.2	6.6	-	5.5	16.6	17.5
1978	28.6	8.8	-	4.4	6.6	8.8
$1979{ }^{2}$	36.6	10.9	-	6.8	9.4	9.5

${ }^{1}$ Includes Divisions VIIIa,b and VIIIc.
${ }^{2}$ Preliminary
$3^{\text {Data }}$ refer to port of landing, not area of capture (includes African catches).
4 Include catches from area $\mathrm{Xa}, \mathrm{b}$.

Table 2.2 Reversed catches (thousands of tonnes) for the Southerm Hake stock (ICES Divisions VIIIc and IXa) by country and area determined by the Hake Working Group, 1961-1979.

YEARS	TOTAL	PORTUGGAL   (IXa)	$\begin{gathered} \text { SPAIN } \\ (\text { VIIIc }+ \text { IXa }) \end{gathered}$	$\begin{gathered} \text { FRANCE } \\ (\text { VIIIc }+ \text { IXa }) \end{gathered}$
1961	-	7.5	-	. 7
1962	-	7.5	-	. 7
1963	-	8.1	-	. 6
1964	-	10.5	-	. 7
1965	-	12.1	-	. 8
1966	-	9.6	-	. 6
1967	-	7.8	-	. 6
1968	-	8.0	-	. 4
1969	-	7.1	-	. 5
1970	-	9.9	-	. 2
1971	-	9.5	-	. 1
1972	26.7	9.4	17.3	. 0
1973	35.7	14.7	20.8	. 2
1974	23.4	9.2	14.1	.1
1975	32.0	11.1	20.8	. 1
1976	26.2	9.7	16.4	. 1
1977	15.8	6.4	9.2	. 2
1978	14.5	5.6	8.6	. 1
$1979{ }^{1}$	18.1	6.8	11.3	. 0

1
Preliminary

Table 2.3 Number of Hake landed $\left(x 10^{3}\right)$ by fishing gear in Divisions VIIIc and IXa (1974-1977 average).

Length   Classes   (cm )	Portugal		Spain				Total
	Artisanal   (1)	Trawl	Trawl   (2)	Longline	Gillnet	$\begin{gathered} \text { Small } \\ \text { Gillnet } \end{gathered}$	
5-9	-	-	2497	-	-	-	2497
10-14	-	10	45626	-	-	-	45636
15-19	11	711	62474	-	-	-	63196
20-24	18	4769	21547	-	-	231	26565
25-29	104	4900	7896	-	-	1140	14040
30-34	114	3117	2904	-	-	1865	8000
35-39	201	1915	1079	3	-	680	3878
40-44	553	626	1014	32	10	198	2433
45-49	776	279	614	79	33	101	1882
50-54	787	97	371	174	100	-	1529
55-59	810	85	220	411	232	-	1758
60-64	610	55	188	425	368	-	1646
65-69	369	27	126	228	370	-	1120
70-74	212	8	37	102	221	-	580
75-79	106	1	21	31	78	-	237
$\geqslant 80$	66	-	26	10	23	-	125
Total	4737	16600	146640	1495	1435	4215	175122
Nominal Weight ( $t$ )	6287	3599	9421	2585	3099	1098	26089
Current   Mesh   Size (mm)	-	40	40	-	-	-	-

(1) Longline and Gillnet are included
(2) Includes an estimation of the illegal catch (< 25 cm )

Table 2.4 Length composition of the catches (N $\times 10^{3}$ ) by fishing gear in 1978.

Length   Classes   (cm)	VIIIc and IXa						
	Portugal		Spain				Total
	Trawl	Artisanal	Trawl   (1)	$\begin{gathered} \text { Small } \\ \text { Gillnet } \end{gathered}$	Gillnet	Longline	
5-9	4	-	39	-	-	-	43
10-14	510	-	15490	-	-	-	16000
15-19	516	7	17675	7	-	-	18205
20-24	3032	13	4049	39	-	-	7133
25-29	3327	12	1720	240	-	-	5299
30-34	941	51	1873	273	-	-	3138
35-39	409	131	606	28	3	-	1177
40-44	257	232	569	2	10	67	1137
45-49	53	316	969	1	25	259	1623
50-54	33	461	830	-	73	395	1792
55-59	70	388	692	-	246	427	1823
60-64	58	244	355	-	285	219	1141
65-69	14	171	52	-	125	96	458
70-74	6	138	14	-	26	24	208
75-79	1	48	-	-	11	9	69
$\geqslant 80$	-	110	1	-	2	2	115
Total	9231	2322	44914	590	806	1498	59361
Nominal   Weight   ( $t$ )	1629	3550	5905	118	1441	2071	14714
Current   Mesh   Size (mm)	40	-	40	-	-	-	-

(1) Includes an estimation of the illegal catches (< 25 cm )

Table 2.5 Length composition of the catches by fishing gears in 1979.

Length   Classes   ( cm )	VIIIc and IXa						
	Portugal		Spain				Total
	Trawl	Artisanal	Trawl   (1)	$\begin{gathered} \text { Small } \\ \text { Gillnet } \end{gathered}$	Gillnet	Longline	
5-9	-	-	-	-	-	-	-
10-14	-	-	91	-	-	-	91
15-19	438	10	1589	12	-	-	2049
20-24	4043	57	4425	234	-	-	8759
25-29	5277	238	4624	851	-	-	10990
30-34	1741	208	3688	373	-	-	6010
35-39	674	192	2151	6	-	1	3024
40-44	138	462	1415	-	-	39	2054
45-49	99	463	1009	-	-	91	1662
50-54	52	486	839	-	43	374	1794
55-59	46	454	682	-	263	489	1934
60-64	42	426	342	-	399	368	1577
65-69	7	302	71	-	152	66	598
70-74	-	159	18	-	31	7	215
75-79	-	88	5	-	9	1	103
$\geqslant 80$	-	53	-	-	4	8	65
Total	12557	3598	20949	1476	901	1444	40925
Nominal Weight ( t )	2168	4612	7246	237	1705	2147	18115
Current   Mesh   Size (mm)	40	-	40	-	-	-	-

(1) Does not included any estimation of the illegal catches ( $<25 \mathrm{~cm}$ )

Table 2.6 Number (millions) and mean age of Hake caught from 1974-1979 by gear type.
Southern Stock


Table 2.7 CPUE for trawl fisheries in Divisions IXa and VIIIc by countries, during the period 1961-1978.

	$\mathrm{C} P \mathrm{U}$ E		
Year	France	Spain	Portugal
1961	174		24.2
62	151		23.5
63	123		31.2
64	102		34.6
65	107		43.4
66	78		31.0
67	63		19.9
68	54		17.5
69	69		12.1
1970	67		22.2
71	87		16.6
72	53		16.0
73	108		21.1
74	102		10.9
75	93	36.0	13.4
76	67	30.3	9.7
77	-	34.3	4.4
78	-	25.2	4.3

CPUE France: $K g \times 10^{-2} \times(H P \times \text { Day })^{-1}$
CPUE Spain: $\quad \mathrm{Kg} \times 10^{-2} \times(\mathrm{BP} \times \text { Day })^{-1}$
CPUE Portugal: Kg/hour

Table 2.8 Length/weight relationship, Hake.

Length   Classes   (cm)	France   (1)	Portugal   (2) $¥$	Spain   (3)
	.002	.003	.002
$10-14$	.012	.012	.011
$15-19$	.034	.035	.033
$20-24$	.073	.078	.073
$25-29$	.136	.146	.138
$30-34$	.227	.246	.235
$35-39$	.352	.384	.372
$40-44$	.517	.569	.554
$45-49$	.987	.805	.791
$50-54$	1.309	1.101	1.089
$55-59$	1.691	1464	1.456
$60-64$	2.142	1.900	1.900
$65-69$	2.668	2.417	2.430
$70-74$	3.276	3.022	3.053
$75-79$	5.000	3.724	3.778
$>80$	-	5.000	5.000
$r$		.9986	.995

\% Up to 50 cm only 14 individuals were weighted
(1) $\mathrm{W}=.00513 \mathrm{~L}^{3.074}$
(2) $\mathrm{W}=.00458 \mathrm{~L}^{3.12819}$ Hake Working Group 1979
(3) $W=.003487 \mathrm{~L}^{3.194193}$

Cruise ASA-I-Galicia, March 1976

Table 2.9 Growth parameter estimates, weight-length relationship and average weights at length used for assessment of the Southern Stock.

Source: Decamps and Labastie, C.M. 1978/G:41


Table 2.10 Calculation of immediate losses and
long-term gains.

## Southern Stock

1. Immediate losses (on 1979) to 80 mm

Portugal, trawl	$\mathrm{Y}_{1}$	Yo	Immediate losses	
			Tonnes	$\%$
	2168	952	1216	-56
Portugal, artis.	4200	4200	0	0
Spain, trawl ${ }^{\text {* }}$	7244	5576	1668	-23
Spain, artis.	3840	3840	0	0
Total	17452	14568	2834	-16

m Does not included illegal landings
2. Long-term gains (on 1974-77 mean)

Y/R Model


$\left.\begin{array}{l}\text { Mesh } \\ =40 \mathrm{~mm} \\ \% \mathrm{~L} . \mathrm{T} .\end{array} \quad \mathrm{F}=0.4 \mathrm{x} / \mathrm{R}\right)$	+31	+37	+16	-14

Table 2.11 Abstract of the catches, TACs and meshes in use in the southerm stock of hake from 1975-1981.

Year	$\begin{aligned} & \text { Catch } \\ & \text { x1000 t } \end{aligned}$	$\begin{aligned} & \text { TAC proposed } \\ & \text { by ACFM } \\ & \mathrm{x} 000 \mathrm{t} \\ & \hline \end{aligned}$	TAC adopted	$\begin{gathered} \text { Mesh } \\ \text { in use } \end{gathered}$	Mesh recommended
1975	31.9			40	60 NEAFC
1976	26.1			40	60 NEAFC
1977	15.6			40	60 NEAFC
1978	14.2			40	60 NEAFC
1979	18.1(1)	20.0	20	40	60 NEAFC+ICES
1980		10.0	10	40	80 ICES
1981		(8.4)		(80)	80 (2)

(I) Official data for Spain.
(2) Spanish-Portuguese Working Group, Vigo, April 1980.


Figure 1.1 Abundance of Hake larvae beneath 1 square metre determined from British Survey Data, 13-28 March, 1977

$$
\begin{aligned}
& \text { 1.0-4.99 } \\
& 5.0+
\end{aligned}
$$



Figure 1.2 Abundance of Hake larvae beneath 1 square metre determined from British Survey Data, 8-16 April, 1977
$\triangle 1 \cdot 0-4.99$

$5 \cdot 0+$


Figure 1.3 Abundance of Hake larvae beneath 1 square metre as determined from British Larval Survey Data 10 - 19 May 1977



Figure 1.4 Abundance of Hake larvae beneath 1 square metre as determined from British Larval Survey Data, 2 - 12 June 1977
$\triangle 1 \cdot 0-4.99$
$5.0+$

- 41 -


Figure 1.5 Number (millions) of Hake caught in ICES Divisions IVa, VIa, VIIIa, b and Sub-area VII during 1974-1979.
$\mathrm{kg} / \mathrm{ue}$



Year
Figure 1.6 Catch per unit effort of $<35 \mathrm{~cm}$ hake by French trawlers from the ports of Lesconil and La Rochelle from 1966 to 1977


Figure 1.7 Selection curves for 40 mm and 80 nm trawls derived fromlogistic fits of selectivity data provided by Brabant and Guillou (1976) for. 40 mm trawls and by Working Group members for 60 mm trawls.

Figure 1.8 Yield per recruit curves formale and female hake (Northem stock) for $40 \mathrm{~mm}, 60 \mathrm{~mm}$ and 80 mm trawls calculated assuming $\mathrm{M}=0.2$ and utilizing the growth parameter of Decamps and Labastie. (1978).


Figure 1.8 continued ........


Figure 1.9 Virgin biomass curves for female and male hake (Northern stock) calculated assuming $\mathrm{M}=0.2$ and utilizing the growth parameters of Decamps and Labastie, (1978)



Figure 2.1 Number $\times 10^{-6}$ of Hake caught in VIIIa, b and IXa (Southern stock) 1974-1979

Figure 2.2 Survey "CIGALA - 79" - Division IXa.
R/v "Cornide de Saavedra" August 1979


Figure 2.3 Yieldser recruit curves by female and malalake (Southern Stock) for 40 and 80 mm trawls $(M=0.2)$


Figure 2.3 continued ......


Figure 2.4. Virgin biomass curves for female, and male hake (Southern stock) calculated assuming $M=0.2$ and utilizing the growth parameters of Decamps and Labastie (1978).



[^0]:    These vessels have been using 70 mm

[^1]:    ${ }^{1}$ Spanish catch assumed nil.
    ${ }^{2}$ Includes 17.6 thousand tonnes for Spain which were not reported by area but is assumed to have been taken in Regions 2 and 3.
    $3_{\text {Preliminary }}$ not reported to ICES.

[^2]:    $1_{\text {INumbers }}$ in brackets include unknown African catches for Spain (see footnote 3)
    ${ }^{2}$ Includes small amounts unreported by area.
    $3_{\text {Data }}$ refer to port of landing, not area of capture (includes African catches).
    ${ }^{4}$ Includes 17.6 thousand tonnes for Spain which were not reported by area
    ${ }^{5}$ Preliminary; not reported to ICES.

[^3]:    $1_{\text {Data }}$ for 1961-1972 and 1979 not revised; revised figures for Sub-area VIII for 1973-1978 include data for VIII a+b only. $2_{\text {Preliminary }}$

[^4]:    $I_{\text {Catch }}$ in kg per ten horsepower days.
    ${ }^{2}$ Catch in tonnes per million tonne hours.

