$$
\cdot
$$ This Report not to be auoted without prior reference to the Council ${ }^{\mathrm{X}}$)

\author{

* International Council for the
}
- Exploration of the Sea
https://doi.org/10.17895/ices.pub. 9368
C.M.1980/G:4
Demersal Fish Committee

Digitalization sponsored
by Thünen-Institut

REPORT OF THE WORKING GROUP ON REDFISH AND GREENLAND HALIBUT IN REGION 1
Copenhagen, 18-25 March 1980

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]Page

1. PARTICIPANTS AND TERMS OF REFERENCE 1
2. REDFISH IN THE NORTH-EAST ARCTIC REGION (Sub-areas I and II) 1
2.1 Status of the Fisheries 1
2.2 Catch per Unit Effort and Effort 2
2.3 Recruitment 2
2.4 Age and Length Compositions 2
2.5 Mean Weight at Age 3
2.6 Assessments (Sebastes marinus) 3
2.7 Assessments (Sebastes mentella) 4
3. REDFISH IN SUB-AREAS V AND XIV 7
3.1 Status of the Fisheries 7
3.2 Recruitment of Redfish in the Irminger Sea Areas 7
3.3 Splitting of Catches into S. marinus and S. mentella Components 8
3.4 Length and Age Compositions: S. marinus and S. mentella 8
3.5 Mean Weight at Age 9
3.6 Assessments 10
3.6.1 Sebastes marinus 10
3.6.2 Sebastes mentella 12
4. GREENLAND HALIBUT IN SUB-AREAS I AND II 13
4.1 Status of the Fisheries 13
4.2 Catch per Unit Effort and Effort 13
4.3 Virtual Population Analysis (VPA) 14
4.4 Yield and Spawning Stock per Recruit 16
4.5 Catch Predictions and the State of the Stock 16
5. GREENLAND HALIBUT IN SUB-AREAS V AND XIV 17
6. ASSESSMENT OF EFFECTIVE MESH SIZE AND EFFECTS OF A CHANGE OF MESH SIZE IN THE REDFISH FISHERIES IN SUB- AREAS I AND II 18
7. FEASIBILITY OF ASSESSING REDFISH AND GREENLAND HALIBUT OF EAST AND WEST GREENLAND AS A SINGLE UNIT. 20
7.1 Redfish 20
7.2 Greenland Halibut 20
References 21
Tables l-48 22
Figures l-23 60
APPENDIX: "Note on Mesh Assessment of the Redfish Fisheries in Sub-areas I and II", by C J Rørvik and A Hylen 82

1:- PARTICIPANTS AND TERMS OF REFERENCE

Participants

W R Bowering	Canada
K Kosswig	Germany, Fed.Rep.of
J Magnusson	Iceland
W D McKone	Canada
J Møller Jensen	Denmark
C J Rørvik	Norway
V Ryjov	USSR
H Schulz	Germany, Fed.Rep.of
A Schumacher	Germany, Fed.Rep.of
O M Smedstad	Norway
B Vaske (Chairman)	German Democratic Republic

V Nikolaev attended the meeting as the ICES Statistician.

1. 2 Terms of Reference

At the 67th Statutory Meeting in 1979 it was decided (C.Res.1979/2:10) that:
"the Working Group on Redfish in Region 1 and the Working Group
on Greenland Halibut in Region 1 should merge into one Working
Group on Redfish and Greenland Halibut in Region 1 under the
chairmanship of Mr B Vaske. It should meet at ICES headquarters
l8-25 March 1980 to:
(1) assess TACs for 1981 for redfish and Greenland halibut,
(2) estimate effective mesh sizes in use for redfish,
(3) consider the scientific feasibility of producing assessments for redfish and Greenland halibut on a total stock basis in the Iceland-Greenland-Davis Strait area".
2. REDFISH IN THE NORTH-EAST ARCTIC REGION (Sub-areas I and II)
2.1 Status of the Fisheries

A further reduction in total redfish catches in the North-East Arctic region was recorded in 1979 (Table l). The preliminary catch figures in 1979 were 110623 tonnes compared to 125352 tonnes in 1978. This was 46377 tonnes lower than the recommended total TAC of 157.000 tonnes.
The total catch in Sub-area I decreased from 4902 tonnes in 1978 to 2953 tonnes in 1979 (Table 2).
As in the previous year a reduction of catch was observed in Division IIa from 72209 tonnes in 1978 to 62440 tonnes in 1979 (Table 3).
In Division IIb, the total catch in 1979 was 44795 tonnes in comparison with 48241 tonnes in 1978 (Table 4). Redfish catches were split into Sebastes mentella and Sebastes marinus on the same area basis as used in last year's report. All redfish landings from Division IIb, together with the USSR, German Democratic Republic and Polish catches from the northern
part of Division IIa (Kopytov area), are recorded as S. mentella. ; The total landings in Sub-area I, with the exception of 20% of the USSR catches, together with the rest of the German Democratic Republic, USSR and Polish catches from Division IIa and all catches by other countries from this area, are assumed to be S. marinus (Table 5).
Compared with 1978, the total landings in 1979 of S. mentella decreased from 92911 tonnes to 85182 tonnes, and S. marinus decreased from 32441 to 25441 tonnes.

2.2 Catch per Unit Effort and Effort

Catch figures per hour trawling were available from the USSR for the S. mentella fishery for 1965-79 (Table 6). A steady decrease is observed in the USSR catch per unit effort data since 1976, when the highest value was recorded for the period.
Using these catch per unit effort values from the USSR fishery as a standard, the effort for the total fishery decreased from 1976 to 1978 , but from 1978 to 1979 effort increased by 3%.

2.3 Recruitment (Table 7)

In the International 0-Group Survey which began in 1965, only two year classes have been estimated as very poor, namely the 1967 and 1968 year classes. The 1965, 1971 and 1972 year classes were somewhat below average, while the 1966, 1969 and 1970 year classes were of average abundance. All the seven most recent year classes were above average, and most of them were strong. The 1979 year class is the most abundant year class observed at the Survey. The index of 1979 is 980 while that of 1977, which is second, is 472 . The index appears high compared to the rest of the time series.

The Group noted that the 1979 Survey was carried out in the usual way.
2.4 Age and Length Compositions

For 1979, age and length composition data and age/length keys were available from the Federal Republic of Germany for S_{o} marinus in Division IIa. In addition, Soviet length compositions were available from Sub-area I and Division IIa. Total age composition was calculated by applying the Federal Republic of Germany age composition for Division IIa to the total catch of all countries except USSR. The 1979 USSR length distributions were converted by means of the 1979 Federal Republic of Germany age/length key, which did not contain fish between 20 and 30 cm , and therefore an age/length key from 1975 was used for this age range.
The 1978 S. marinus and S. mentella age distributions were adjusted to the revised catches, and for years prior to 1978, the age distributions from the last year assessment were used. Input age composition data for S. marinus are given in Table 8 .
The 1979 S. mentella age compositions as number landed were available from the German Democratic Republic for Sub-area II and the USSR fishery in Division IIa.

For the USSR catches in Division IIb, a biased age composition as a result of a small sample size together with a representative length distribution were presented. The length distributions covered a greater range of age groups which were not evident in the age composition. Thus the Division IIb S. mentella USSR length distribution was converted to age by applying a 1979 Federal Republic of Germany age/length key.

Natural mortality of 0.1 was used as in the previous assessments.

2.6.2 Stock size

Estimates of stock size in numbers for S_{o} marinus are given in Table lo. Total stock biomass (age 12 and older) and the spawning stock biomass (age group 15 and older) (Table ll) were estimated by using the average weight at age data given in Table 12 (see also 2.5). These assessments show that both the total stock and the spawning stock have decreased steadily since 1974; whereas in the preceding period, the stock biomass seems to have been relatively stable.

2.6.3 Fishing mortality

Estimates of fishing mortalities from VPA are given in Table 9. Average fishing mortality at age 13 to 24 in the period 1965 to 1973 fluctuated around the average value of 0.045 following the trend in catches. Since 1974, when catches increased considerably over the previous level, mean weighted F increased to 0.132 for the 1974-78 period.

2.6.4 Yield per recruit

A new yield per recruit curve was calculated using the data for catch predictions given in Table 12. $F_{\max }$ derived from the curve is 0.23 and $\mathrm{F}_{0.1}=0.1$ (Figure 1).
2.6.5 Catch predictions

Catches for 1981 and both total stock biomass and spawning stock biomass for 1982 have been calculated for different levels of F in 1981
(Figure 2). These calculations are based on the assumption that the

1980 TAC for S . marinus of 19000 tonnes will be taken. This catch level is generating a fishing mortality of 0.115 in 1980.
Parameters used for the catch predictions are given in Table 12. Recruitment at age 12 used in VPA was taken as the average over the years 1965-76 for the years 1980, 1981 and 1982. The results of the calculations are given in Figure 2 and the following text table for the management options suggested by the ACFM.

1980				Management option for 1981	1981				1982	
Stock biom.	Spawning stock biom.	F	Catch		Stock biom.	Spawning stock biomass	F	Catch	Stock biom.	Spawning stock biomass
210	146	. 115	19	$\mathrm{F}_{0.1}$	216	148	. 10	16	227	136
				$F_{\text {max }}$. 23	36	207	120
				$\mathrm{F}_{1981}=\mathrm{F}_{1980}$. 115	19	224	134
				$\mathrm{F}_{1981}=\mathrm{F}_{1979}$.15.)	24	219	130
				$\begin{aligned} & \mathrm{F}_{1981}=\mathrm{F}_{1980} \\ & \text { recommended } \\ & \text { by ACFM } \end{aligned}$			$.145$			

Weights in thousand tonnes.

Under Option 1 , which means fishing at the $\mathrm{F}_{\mathrm{O}, 1}$ level, total biomass will increase above the 1980 level by about 8% while the spawning stock decreases by 6%.
Fishing at $F_{\text {max }}$ (Option 2) would keep the total stock biomass at the 1980 level, but the spawning stock biomass would be reduced by about 18\%.
Option 3 (i.e., using the same F as in 1980) provides a possible catch of 19000 tonnes in 1981, which is the same as the recommended TAC for 1980. Under this option, the total stock biomass increases by 7% while the spawning stock biomass decreases by 8%, compared to 1980.

Under Option 4, which means fishing at the 1979 level, and the recommended F of 1980, total stock biomass increases from the 1980 level by about 4%, while the spawning stock biomass is reduced by 11%.

2.7 Assessments (Sebastes mentella)
 2.7.1 Parameters used

The terminal fishing mortality was calculated iteratively from a regression between estimated mean F values for age groups 13-21 from preliminary VPA runs and the total trawl effort in USSR units for the period 1965 to 1976 (Figure 3). The best fit from this procedure gives a terminal fishing mortality of $F=0.28$ for the age groups

2.7.3 Fishing mortality

Estimates of fishing mortalities from VPA are given in Table 14. The average weighted fishing mortality for the age group 13-21 was low in the period 1965 to 1974 and fluctuated around an average value of 0.10. Since 1975, the exploitation shifted towards younger ages and in addition, the total level of fishing mortality increased considerably in the period 1975-77 to an average of 0.55 . Following the trend in the total effort the estimated average fishing mortality for the years 1978 and 1979 decreased to a level of around 0.28 .
2.7.4 Yield and spawning stock per recruit

In Figure 5 yield per recruit and spawning stock biomass per recruit curves are plotted against the F values on age groups subject to maximum exploitation. The curves were calculated for the 1979 exploitation pattern and the average weights at age as given in Table 17. For the present exploitation pattern, the $F_{0.1}$ and $F_{\max }$ values are 0.12 and 0.23, respectively. As a result, the 1979 fishing mortality is somewhat above $F_{\text {max }}$ •
For $F_{0.1}$ and $F_{\text {max }}$, the corresponding sustainable yield and equilibrium spawning stock biomass were calculated using the average recruitment level at age 6 for the period 1965-66. The results are given in the text table below.

R_{6}	F	Y / R	Sustainable yield (tonnes $\times 10^{-3}$)	S / R	Spawning stock biomass $\left(\right.$ tonnes $\times 10^{-3}$)
384×10^{6}	. 12	. 227	87	. 940	361
	. 23	. 242	93	. 323	124

2.7.5 Catch predictions

Catch predictions were made for 1981 using the exploitation pattern and the mean weight at age data given in Table l7. The stock size at the beginning of 1980 is estimated from the stock size and fishing mortalities in 1979.
Furthermore, it was assumed that the recommended TAC of 81000 tonnes will be taken in 1980. This catch level in 1980 would be achieved by a fishing mortality on age groups subject to a maximum exploitation of $F=0.23$, which is higher than $F=0.15$, estimated in last year's report (Doc. C.M.1979/G:25) for this catch level.
Recruitment of 6 year old redfish for $1980-82$ is calculated on the basis of 0-group survey abundance indices estimated at 555×10^{6} in 1980, 537×10^{6} in 1981 and 553×10^{6} in 1982.
The results of the catch prediction, Figure 6, show the possible catch in 1981 plotted against the fishing mortality rate expressed as a proportion of that estimated for the year 1979. The resulting spawning stock biomass (fish at age 15 and older) and total stock biomass (fish at age 6 and older) at the beginning of 1982 are also included in Figure 6.

Furthermore, the following options of fishing mortality were selected as reference points:

$$
\begin{array}{ll}
\text { Option 1: } & \text { Fishing at } F_{0.1} \text { in } 1981 \\
\text { Option 2: } & \begin{array}{l}
\text { Fishing at } F_{\max } \text { in 1981 which is equal to the level } \\
\text { of required to take the TAC of } 81000 \text { tonnes in } 1980
\end{array} \\
\text { Option 3: } & \begin{array}{l}
\text { Fishing at the } 1979 \text { F level }
\end{array} \\
\text { Option 4: } & \begin{array}{l}
\text { Fishing at the } F \text { level as recommended by the ACFM } \\
\text { for } 1980 .
\end{array}
\end{array}
$$

The results are summarised in the text table below.

1980				Management option for 1981	1981				1982	
$\begin{aligned} & \text { Stock } \\ & \text { biom. } \end{aligned}$	$\begin{aligned} & \text { Spawning } \\ & \text { stock } \\ & \text { biomass } \end{aligned}$	F	Catch		Stock biom.	Spawning stock biomass	F	Catch	Stock biom.	Spawning stock biomass
667	62	. 23	81	$\mathrm{F}_{0.1}$	713	73	. 12	48	802	88
				$\mathrm{F}_{\text {max }}=\mathrm{F}_{1980}$. 23	89	757	79
				$\mathrm{F}_{1981}=\mathrm{F}_{1979}$. 28	106	738	75
				$\begin{aligned} & F_{1981}=F_{1980} \\ & \text { recommended } \\ & \text { by ACFM } \end{aligned}$. 15	60	789	85

Stock biomass $=$ fish at age 6 to 24
Spawning stock biomass $=$ fish at age 15 to 24
Weights in thousand tonnes

* \cdot
.
\cdot
.
1 would require a considerable reduction of the cat
to 48000 tonnes. The total stock biomass and the spawning stock
biomass would increase from 1981 to 1982 under this option by 12%
and 21%, respectively. Option 2 provides a possible catch of
89000 tonnes in 1981. Under this option, both the stock biomass
and the spawning stock biomass should increase slightly by 1982.
Under Option 3, which projects a catch of 106000 tonnes in 1981,
the total stock biomass and the spawning stock biomass in 1982 will
be kept relatively close to the 1981 level. Option 4 provides
a possible catch of 60000 tonnes in 1981. The total stock biomass
and the spawning stock biomass in this case would increase in 1982
by 11% and 16%, respectively.
3. REDFISH IN SUB-AREAS V AND XIV
3.1 Status of the Fisheries (Tables 18-21)
The total catch from the Irminger Sea redfish stock complex
increased from 65888 tonnes in 1978 to about 100000 tonnes in
1979, i.e., about 52\%.

The catch increased in all three areas (i.e., Divisions Va and Vb , Sub-area XIV), particularly in Divisions Va and Vb. In Division Va (Iceland) the Icelandic fleet increased their effort in 1979 and the catch increased from 33318 tonnes in 1978 to about 63000 tonnes in 1979. Only about 2000 tonnes were taken by other nations.
The Icelandic trawler fleet has changed their fishing pattern since 1977. In the years 1978 and 1979 a great part of the fishery took place in the area $S W$ of Iceland. The areas W and NW of Iceland, which were the main fishing grounds in previous years for the Icelandic fleet, still remain important.
In Division Vb the catches increased from 9806 tonnes in 1978 to about 14000 tonnes in 1979, which is by far the highest catch figures on record for this Division. The Federal Republic of Germany fleet increased its catch from 7767 tonnes in 1978 to about 8400 tonnes in 1979, however, the main increase in catch was from the Faroe Islands fishery, which caught 1525 tonnes in 1978 and 5700 tonnes in 1979.
In Sub-area XIV (East Greenland) the total catch increased slightly from 20880 tonnes in 1978 to about 21100 tonnes in 1979 with these catches almost completely taken by the Federal Republic of Germany fleet.
3.2 Recruitment of Redfish in the Irminger Sea Area

The 0-group surveys in the past years have not covered the total area of distribution of redfish fry, as pointed out in the Redfish Working Group Reports. They indicate, however, a great variation in the number of fry found. Additionally, the unusual distribution of 0-group redfish found in 1979 was complicated by the late timing of the survey which was carried out $2-3$ weeks later than usual. In a large part of the central Irminger Sea they were not found in the samples, and in most other areas only few O-group redfish were found. O-group redfish were reasonably abundant in a narrow belt along the East Greenland coast, but nowhere observed in such densities as known from all previous years.

It was obvious by the beginning of September that a substantial part of the 0 -group redfish had left the plankton stage as verified by the fact that several demersal species caught with bottom trawl along the East Greenland coast were feeding heavily on 0-group redfish in some localities. The index figure calculated for 0-group redfish in 1979 is, therefore, not comparable to those of other years.
The year-to-year fluctuations in the abundance of 0-group redfish are presented in the following text table as index figure of individuals per nautical square mile.

Number of 0-group redfish $\times 10^{6}$ per nautical square mile

Year class	No. of f
1970	8.6
1971	12.6
1972	31.1
1973	74.0
1974	23.6
1975	12.6
1976	5.8
1977	13.0
1978	6.5
1979	1.3

For the first time an attempt was made to separate redfish fry in the Irminger Sea and off East Greenland into species (Method: Magnusson, 1979). According to this distinction Sebastes marinus amounted to 38.7% of the total.
3.3 Splitting of Catches into S. marinus and S. mentella Components

In Division Vb all the Federal Republic of Germany catches were S. mentella according to Federal Republic of Germany observations on the landed catches. Of the Faroe Islands catch 85% was allocated to S. marinus and 15% to \underline{S}. mentella in accordance with information from Thorshavn. This splitting was confirmed by limited observation: on Faroe Islands catches landed in the Federal Republic of Germany.
In Division Va the total catch was split on the area and depth basis by the same method as referred to in the 1979 Redfish Working Group Report (C.M.1979/G:25). According to this splitting, 13.7% were S. mentella and 86.3% S. marinus.

In Sub-area XIV the Federal Republic of Germany observations on landed catches were used for splitting the 1979 catches into S. marinus and S. mentella. Thus 75.08% were allocated to S. marinus and 24.92% to S. mentella in Sub-area XIV.
The total catch of Sebastes marinus and Sebastes mentella was estimated to be 76865 tonnes and 23397 tonnes, respectively (Table 21).
3.4 Length and Age Compositions: S. marinus and S. mentella

Division Va: Length frequencies from the Icelandic catches in 1979 were
available for both species and were used to calculate the length distribution of the total catches of each species in Division Va.

Division $\mathrm{Vb}:$ Data on length composition of the 1979 catches from
 were used to calculate the length distribution of the total catch of each species in this Division.
Sub-area XIV: Data on length compositions of the 1979 catches from the F̄̄̄̄̄̄al Republic of Germany were available for both species and were used to calculate length distributions of the total catch.
Age/length keys for both S. marinus and S. mentella in Sub-area
 Republic of Germany and age/length data from the Federal Republic of Germany research vessel catches for S. mentella in Division Va were made available to the Working Group. A combined 1979 age/length key from Sub-area XIV and Division Va was used to calculate the numbers at age for S. mentella in Division Va. For the fishery on S. marinus in Division Va, since there was no key available, the age/length key from Sub-area XIV was used to calculate the numbers at age. For Sub-area XIV and Division Vb, the respective 1979 age/length keys were used to calculate the numbers at age for S . marinus and S. mentella. The summed age compositions to the total catches in Sub-areas V and XIV are given in Table 27 for Sebastes mentella and Table 22 for Sebastes marinus.

3.5 Mean Weight at Age

The nominal catch weight of S. mentella and S. marinus for Sub-areas V and XIV combined was compared to the catch weight from average weight at age keys for each species. The estimated total biomass caught in 1979 for S_{0} mentella using the key was higher than the 1979 nominal catch. The difference being insignificant no adjustment was made to the numbers at age.
For S. marinus there was a fairly large difference in the estimated total weight caught as calculated from the key and the reported nominal weight caught (see text table below).

Year	Nominal weight	Estimated weight from key	$\%$
1973	41818	44773	6.6
1974	49845	52019	4.2
1975	60980	61773	1.3
1976	93605	105729	11.5
1977	52752	55709	5.3
1978	47791	49939	4.3
1979	76865	89887	14.5

To establish whether the discrepancy was a trend and thus indicating a change in growth rate, the nominal weight caught for 1973-79 was compared to the estimated weight from the key. No trend was indicated and the percent difference varied from 1.3 to 14.5 over the years. An attempt was made to correct for this error in 1979 by applying a new age/weight key derived from 1979 . Icelandic research length/weight relationship and Federal Republic of Germany age/length key from

East Greenland. The new key was similar to that used in the past, thus little was gained in correcting the error by using the new age/weight key. Therefore, the Working Group decided to use the previous weight at age data for the assessments and catch predictions, since the possibility cannot be excluded that the discrepancy in 1979 could be attributed to sampling errors rather than to a change in growth.

3.6 Assessments

As in previous years, no data were available on effort, catch per unit of effort and survey results, which could give fishing mortality estimates for 1979. Therefore, only qualitative information on changes in fishing effort and area distribution could be considered and evaluated against earlier situations.

3.6.1 Sebastes marinus

3.6.1.1

VPA

Total catch of S. marinus increased by 61% in 1979 compared to 1978. This increase took place mainly off Iceland but also off the Faroe Islands, where a new fishery on redfish has been developed.
The remarkable increase in catch in 1979 appears to have been associated with a considerable increase in effort directed towards S. marinus generating fishing mortality in 1979 considerably above the level estimated for 1978.
Since the 1979 catch level of 76000 tonnes is comparable to that of the 1967-70 period when the average catch was 74000 tonnes, the average F on age groups 21 to 28 of the earlier period of $F=0.5$ was used as an estimate of the 1979 fishing mortality on older ages. The catch in number in the 1967-70 period, however, was about 20% below the 1979 level, indicating that fishing mortality derived from the earlier years might be an underestimate of the true F in 1979.
The exploitation pattern used in previous assessments was derived from a cohort analysis using average length data over several years in which the high catches of small redfish taken in 1976 by the USSR . fleet have been included. Since the length composition of the catches has now reverted to the pre-1976 pattern, the exploitation pattern for the present assessment had to be revised. This was done on the basis of the relative fishing mortality per age group in 1975. In Figure 7 the relative Fs are plotted for each age group and the new exploitation pattern was derived by connecting the highest values by a line from which the intermediate values were taken. The points below the line have been ignored having in mind that the fluctuations in F for the age group could be interpreted as the effect of the standard age/length key in this year. A similar exercise was made on average data for 1973 to 1975 with almost identical results. For comparison, the previous exploitation pattern for S-marinus was included in Figure 7.
The input data for the VPA are given in Table 22, the detailed results are given in Tables 23 and 24 and summarised in Figure 8 and Table 25. Trends in fishing mortality and stock size did not change markedly from the results of the previous assessment, only the fluctuations in estimated total biomass were reduced due to the application of the new exploitation pattern.

3.6.1.2 Yield per recruit (Figure 9)

A new yield per recruit curve has been calculated, using the new exploitation pattern. The curve has no maximum within the normal range

1 of fishing mortalities and, therefore, for consideration of management strategies $F_{\max }$ was substituted by that F at which the curve approaches the top level of the curve $(F=0.35), F_{0.1}$ is 0.18 .
3.6.1.3 Catch predictions

The basic data used in the catch predictions are given in Table 26. The new exploitation pattern was applied, since the fleets engaged in the fishery for S. marinus are expected to maintain their relatively stable fishing pattern; no changes were made in the average weight per age figures.
Average recruitment of 9 year old fish over the years 1967 to 1975 was used for the years 1979 to 1982.

The total catch in 1980 of Sebastes marinus from the Irminger Sea stock complex was assumed to be in the same order of magnitude as in 1979, possibly slightly higher. In the absence of management measures for 1980 limiting the catches in Sub-areas V and XIV, it is to be expected that the increasing trend in effort observed in 1979 will continue. On this basis a catch figure of 80000 tonnes in 1980, associated with an F of 0.467 , was applied in the catch predictions.
The results of the calculations are given in Figure 10, and in the following text table with reference to the management options suggested by ACFM.

1980				Management option for 1981	1981				1982	
Stock biom.	$\begin{aligned} & \text { Spawning } \\ & \text { stock } \\ & \text { biomass } \end{aligned}$	F	Catch		Stock biom.	Spawning stock biomass	F	Catch	Stock biom.	Spawning stock biomass
795	381	. 467	80.0	$\mathrm{F}_{0.1}$	782	352	. 18	32.5	821	354
				$\mathrm{F}_{\text {max }}=$ top ${ }^{\text {level }}$. 35	60.0	792	330
				$\mathrm{F}_{1981}=\mathrm{F}_{1980}$. 467	78.0	773	314
				$\mathrm{F}_{1981}=\mathrm{F}_{1979}$. 50	86.0	768	310
				$\left\lvert\, \begin{aligned} & F_{1981}=F_{1980} \\ & \text { recommended by } \\ & \text { ACFM } \end{aligned}\right.$. 075	14.0	840	371

1) Based on $F_{0.1}$ from old exploitation pattern.

Stock biomass = fish at age 9 to 30+
Spawning stock biomass $=$ fish at age 16 to $30+$
Weights in thousand tonnes

Under the assumption made for the 1980 catch the total stock biomass in 1980 and 1981 is expected to decrease slightly below the 1969-71 level of 80000 tonnes, but, this should at present not be interpreted as a start of a downward trend since the reduction in total recruited biomass is relatively small and within the range of past fluctuations. If, however, no management action will be taken or a decision which
would imply the maintenance of the present high level of fishing mortality then a continuation of the declining trend in total recruited biomass as well as in spawning stock biomass is to be expected.
3.6.2 Sebastes mentella
3.6.2.1 VPA

The development of the fishery in 1979 as described in Section 3.1 and the separation of catches into the two species (see Section 3.3) indicate that the increased effort was mainly directed to
S. marinus, and that the slight increase in the catch of S. mentella may be considered as by-catch. A preliminary VPA run, using the same fishing mortality for 1979 as in last year's assessment for 1978 was accepted by the Working Group. In the light of the very small 1978 catch the small reduction in F for 1978 in this run was in agreement with the opinion expressed during the discussions that in last year's assessment the terminal F has been overestimated. Therefore, fishing mortality of 0.4 was used for 1979.
The Working Group also considered possible changes in the pattern of exploitation and followed the same approach applied to $\underline{S} \cdot$.marinus. Since the result of this exercise did not indicate the necessity for a change, the relative Fs to be used in the VPA and in catch predictions have not been changed.
The input data for the VPA are given in Table 27, and the results are given in detail in Tables 28 and 29 and are summarised in Figure 11 and Table 30.
The results are not very different from the previous assessment. The downward trend in total recruited biomass did continue in 1979, but the absolute figures of total biomass are somewhat higher compared to the previous assessment.
The estimated spawning stock biomass for 1979 indicates that the steady decline since 1967 did not continue in 1979. However, at present, this value is very much dependent on the estimated fishing mortality for 1979, and it would be premature at present to consider this as a. termination of the trend.

3.6.2.2 Yield per recruit

Since no changes have been made in the exploitation pattern and the weight at age data, the yield per recruit curve from the previous assessment is still valid (Figure 12).

3.6.2.3 Catch_predictions

The basic data used in the catch predictions are given in Table 31. Average recruitment at age 9 over the years 1967-75 of 86 million fish derived from the VPA run was applied for the years 1978-82.
Since it cannot be expected that the total catch of S. mentella in 1980 will be limited by fisheries regulations, and considering the possibility that effort on redfish may increase, a catch of 25000 tonnes in 1980 was assumed which is slightly above the 1979 level.
The results of the calculations are given in Figure 13 and the predictions on catch for 1981 and the stock biomass in 1982 for the options suggested by the ACFM are given in the text table below.

1980				Management option for 1981	1981				1982	
Stock biom.	Spawning stock biomass	F	Catch		Stock biom.	Spawning stock biomass	F	Catch	Stock biom.	Spawning stock biomass
271	130	. 407	25.0	$\mathrm{F}_{0.1}$	271	142	. 35	22.0	273	140
				$F_{\text {max }}=$ top level			. 50	30.4	265	132
				$\mathrm{F}_{1981}=\mathrm{F}_{1980}$. 407	25.2	270	137
				$\mathrm{F}_{1981}=\mathrm{F}_{1979}$. 40	25.0	270	137
				$\begin{aligned} & F_{1981}=F_{1980} \\ & \text { recommended } \\ & \text { by ACFM } \end{aligned}$. 15	10.0	287	150

Stock biomass $=$ fish at age 9 to 28+
Spawning stock biomass $=$ fish at age 16 to $28+$
Weights in thousand tonnes

Under all options the spawning stock biomass as well as the total stock biomass are expected to increase over the 1977-79 level. However, a direct comparison between the absolute figures in the text table with figures in Table 30 is somewhat biased since the former contain an estimated average recruitment for 4 years.
In considering the management options in the table above, it should be noted that the options associated with $F_{0.1}$ and F levels lower than $\mathrm{F}_{0.1}$ maintain or even increase both the spawning stock biomass and the total stock biomass above the level estimated for 1981.
4. GREENLAND HALIBUT IN SUB-AREAS I AND II
4.2 Catch per Unit Effort and Effort

Catch per hour trawling data were available from the USSR fishery from the period 1965-79 (Table 37).
Catch per day trawling was also calculated for the German Democratic Republic freezing trawlers for the period 1973-79. These catch data refer to the catch rate in Division IIb in October. The effort

The effort refers to the total effort exerted on all species; however, the monthly catches were dominated by Greenland halibut.. (Table 37).
From these cpue data, the total effort was calculated (Table 37). The cpue data for 1979 show some increase compared to 1978. The* total effort exerted in 1979 was 36% lower than in 1978, using the USSR cpue data and 32% lower using the cpue data from the German Democratic Republic trawlers.
4.3 Virtual Population Analysis (VPA)
4.3.1
4.3.2 Mean weight at age

The sum of products, using the mean weights from last year's report (Doc. C.M.1979/G:8, Table 12), and the age composition for 1970-79 (Table 38) were calculated. The sum of products divided by the observed catch becomes an average mean weight correction factor (Table 39). The weight correction factor shows no definite trend in the years 1970-78, varying between . 923 in 1973 to 1.063 in 1978. In 1979, however, the earlier mean weights used have to be increased by 35.9% on the average in order that the calculated age distribution can account for the observed total catch.
The Group decided to use the old mean weight at age data for the period 1970-78, since weight corrections were considered to be sufficiently close to 1.

For 1979, however, the mean weights data were updated. Figure 14 shows the mean weight at age in the USSR fishery in 1979 (males and females combined). A curve was fitted to these data by eye, and new mean weights (to the nearest 100 g) were estimated. For comparison, the mean weights used for $1970-78$ are also plotted in Figure 14.
The two sets of mean weight at age are given in Table 40.
The weight correction factor for 1979, using these weight at age data, is l.017, which is sufficiently close to 1.

It was deciced to use the same set of mean weights in the prognosis for 1980-82 as used for 1979.
4.3.3 Estimation of the input fishing mortalities for 1979

As in last year's report (Doc. C.M.1979/G:8), the fishing mortalities on the oldest age group (16) in $1970-77$ were set equal or close to the unweighted average fishing mortality on 8 to 13 year old fish in the same year. As in previous reports, a natural mortality of 0.15 was used.

The age groups are considered to be fully recruited from age 7. The fishing mortalities on the fully recruited age groups were taken to be 0.40 after some trials. Figures 15 and 16 show the corresponding values of the average unweighted fishing mortality on age groups 7 to 11 and the total effort in USSR units and German Democratic Republic units, respectively.
The USSR trawling effort seems to have been more efficient after 1975, that is, the same effort generates higher fishing mortalities compared with previous years (Figure 15). Such a change of efficiency is not discovered in the German Democratic Republic's measurements (Figure 16).
A line has been drawn through the origin and the average for 1975-78 in the case shown in Figure 15, and 1973-78 in the case shown in Figure 16. It appears that the chosen fishing mortality of 0.40 on 7 years and older fish in 1979 falls close to the fitted lines.

In the case of the fishing mortalities on the 3 and 4 year olds in 1979, $\mathrm{F}_{3}=0.003$ and $\mathrm{F}_{4}=0.035$ were chosen; the rationale being that these fishing mortalities gave an abundance of the 3 and 4 year olds at the beginning of 1979 close to the average for 1970-75 of 31 and 28 million,respectively.
The number of 5 and 6 year olds in 1979 comprised 46% of the catch compared with 33% in 1978 and 28% in 1977. There were some doubts as to whether this reflected a changed fishing pattern because of less older fish or an increased abundance of the age groups compared with the preceding years.
Although the 0-group indices for Greenland halibut (Table 41) have not been shown to reflect the strength of the incoming year classes, the increased indices of the 1974 year class compared with previous year classes.might be an indication of increased recruitment.

The Working Group decided to select the fishing mortality on the 5 and 6 year olds so that the abundance of these age groups at the beginning of 1979 were close to the averages for the period 1972-76.
The estimated fishing mortalities and the stock by numbers are given in Tables 42 and 43.
The fishing pattern for 1979 .is drawn in Figure 17, together with the average fishing patterns for 1972-75 and 1976-78.
The relations between the biomass of 4 year and older fish and the catch per unit effort are shown in Figures 18 and 19 for USSR and German Democratic Republic trawlers respectively. For reasons discussed above, only the years 1975-79 are considered in case of the USSR cpue data. The estimated stock size in 1979 is 98000 tonnes applying the new mean weights (Table 40). This value for 1979 is somewhat above the fitted lines in Figures 18 and 19. If, however, the old weights were used, the stock biomass would be 69000 tonnes, or somewhat below the fitted lines.
The input fishing mortalities on fish at age 7 and older also seem reasonable, judged from Figure 20 where the estimated biomass of 7 years and older fish is plotted versus the catch of the same age groups per unit effort by the German Democratic Republic trawlers. The latter figures are arrived at by calculating the proportion of 7 years and older fish (by weight) in the German Democratic Republic catches. These proportions were:

1973	1974	1975	$\underline{1976}$	1977	$\underline{1978}$	$\frac{1979}{0.99}$
0.96	0.93	0.91	0.82	0.87	0.47	

These proportions were then multiplied by the cpue data of the same fleet (Table 37) year by year.
4.4 Yield and Spawning Stock per Recruit

The yield and spawning stock per recruit were calculated for the 1979 exploitation pattern (Figure 2l, Table 44).
For the present exploitation pattern, the $\mathrm{F}_{0.1}=0.14$ and $\mathrm{F}_{\text {max }}=0.28$. This is somewhat above the corresponding values of 0.12 and 0.20 estimated in last year's report. The difference is caused by the increased new mean weights at age, in particular on the younger age groups (Figure 14), as well as the new fishing pattern (Figure 17).
The fishing mortality in 1979 of 0.40 is above the $F_{\max }$ level. For the 1979 fishing mortality, $\mathrm{F}_{0.1}$ and $\mathrm{F}_{\mathrm{max}}$, the corresponding sustainable yield and equilibrium spawning stock biomass were calculated assuming an average recruitment equal to the average numbers of 3 year olds in 1970-74 of $\mathrm{R}_{1970-1975}=31.6 \times 10^{6}$. (See text table below.)

F	$Y / R(k g)$	Sustainable yield (tonnes)	$\mathrm{S} / \mathrm{R} \mathrm{(kg)}$	Spawning stock biomass (tonnes)
$\mathrm{F}_{79}=0.40$	0.76	24000	0.90	28400
$\mathrm{~F}_{\max }=0.28$	0.77	24300	1.65	52100
$\mathrm{~F}_{0.1}=0.14$	0.72	22800	4.00	126000

For comparison, the TAC for 1980 has been set at 14000 tonnes, and the spawning stock (9 years and older) at the beginning of 1980 is 14400 tonnes.
4.5 Catch Predictions and the State of the Stock

The stock was projected to 1982 assuming that the TAC of 14000 tonnes in 1980 will be taken. The average recruitment for 1970-74 of 31.6×10^{6} fish at age 3 was used for 1980 and 1981. The stock size in 1980 and the parameters used in catch predictions are given in Table 44. Four management options for 1981 were considered:

Option 1: Fishing at the $F_{0.1}$ level $\left(F_{1981}=0.14\right)$
Option 2: Fishing at the $F_{\text {max }}$ level $\left(F_{1981}=0.28\right)$
Option 3: Fishing at the expected 1980 level $\left(F_{1981}=0.26\right)$
Option 4: Fishing at the 1979 level ($F_{1981}=0.40$).
For the catch in 1981 for these options, the resulting total stock (4 years and older) and the spawning stock (9 years and older) in 1982 are given in the text table below. Figure 22 shows the same parameters as a function of the fishing level in 1981 relative to the 1979 level.

1980				Management option for 1981	1981				1982	
Stock biom.	Spawning stock biomass	F	Catch		Stock biom.	Spawning stock biomass	F	Catch	Stock biom.	Spawning stock biomass
105	14	0.26	14	$\mathrm{F}_{0.1}$	117	19	0.14	9100	134	33
				$\mathrm{F}_{\text {max }}$			0.28	17300	125	29
				$F_{1981}=F_{1980}$			0.26	16300	126	29
				$F_{1981}=F_{1979}$			0.40	23600	117	26

Stock biomass $=$ fish at age 4 to 16
Spawning stock biomass $=$ fish at age 9 to 16
Weights in thousand tonnes

Figure 23 shows the estimated stock size and the spawning stock from 1970 to 1981. The estimated total stock decreased from 302000 tonnes in 1970 to 105000 in 1980. If the cpue data from the USSR trawl fishery (Table 37) are proportional to the total stock biomass in the period 1965-70, then the stock in 1965 was 1.51 times larger in 1965 than in 1970, or about 450000 tonnes.
The present stock thus seems to be between 20% and 25% of what it was before heavy exploitation started in the middle of the 1960s.
The spawning stock in 1980 (14 400 tonnes) is 13% of what it was in 1970 (127 000 tonnes). Compared with the 1965 level the spawning stock has been essentially decimated, and is now less than 10% of the nearly unexploited level.
Some increase in the total stock and the spawning stock is expected in 1981 compared to 1979 and 1980 (Figure 23). A further increase in the spawning stock is expected in 1982 for all management options considered above. This is, however, to a large extent dependent on the strength of the 1973 and later year classes, of which little is known. Irrespective of the catch levels in 1981, but assuming that the 1979 fishing pattern prevails, about 50% of the spawning stock in 1982 will be comprised of the 1973 year class, if the present assessment of this year class as 6 year olds in 1979 is correct. The 1973 and 1974 year classes are expected to account for 50% of the catch in 1981.
However, despite the uncertainties it seems clear, that the present spawning stock is low and will be so in the next few years, and the possibility of recruitment failure due to a low spawning stock would appear to be real.
5. GREENLAND HALIBUT IN SUB-AREAS V AND XIV

The total nominal catch figures for Divisions Va and Vb and Sub-area XIV are presented in Tables 45 to 48 for 1969-79. Catches are presented for each fishing area by country.
In the period during 1968-75, total nominal catches for all areas combined ranged from 20463 tonnes to 36280 tonnes. In 1976, the catch
dropped to a low level of 6045 tonnes but increased to 16578 tonnes . and 14349 tonnes in 1977 and 1978, respectively. During 1979, catches increased to near the levels of the early l970s at 23327 tonnes. The Federal Republic of Germany catch during 1979 more than doubled from 1978 to 1979 and the Icelandic landings increased by 50%.

No new data were available at the time of the meeting, therefore the Working Group felt it was not in a position to provide any new scientific advice concerning this stock at this time.

ASSESSMENT OF EFFECTIVE MESH SIZE AND EFFECTS OF A CHANGE OF MESH SIZE IN THE REDFISH FISHERIES IN SUB-AREAS I AND II
Attached to this Working Group report as an Appendix there is a study on this problem done by Rørvik and Hylen prior to the meeting of the Working Group. For a brief description of the method used, it is referred to this Appendix, to Hoydal (Doc. C.M.1977/F:51) or to the Arctic Fisheries Working Group (Doc. C.M.1979/G:20). A detailed description of the method will be given by Hoydal, Rørvik and Sparre (in prep.).
Data from the period 1967-78 are used. It should be kept in mind that the assessment is of the average effective mesh sizes used in that period and not the current effective mesh size in use.
The data base seems poor for the present mesh assessment, particularly for Sebastes marinus. The available age composition from the total fishery was not suitable for an assessment because of its multi-modal shape. The length composition data were somewhat better, in particular for the USSR fishery on S. marinus.
For other countries, length compositions from the Federal Republic of Germany trawler landings were used. The large increase of the length frequency for these trawlers between 30 and 40 cm strongly indicates substantial discarding in this fishery. Data about the discarding practice, however, were not available and it makes the assessment of the effective mesh size in this fishery very uncertain and sensitive to the recruitment curve used. The recruitment curve was shifted towards higher length until an effective mesh size of 108 mm was achieved, which was close to findings by the Arctic Fisheries Working Group (C.M.1979/G:20). For the other estimates of effective mesh sizes, the findings by the Arctic Fisheries Working Group were not used as a facit.
For Sebastes mentella both age and length frequencies were used. The results in terms of the best estimate of effective mesh sizes and maximum (effective) mesh sizes were similar.
However, comparing the frequencies, it was found that the length compositions indicate that more smaller fish are taken than shown by the total age distribution. This indication of some inconsistency in the data base is, however, dependent on the assumption that the input parameters and the model are consistent.
A common problem for the whole assessment is the selective properties of the gear. These are expected to change with the size of the catches. As clogging of the net by fish ("meshing") increases, the effective mesh size decreases. These problems mean that the estimates of the effective mesh sizes should only be taken as indications, and they may in fact be quite different from the average real mesh sizes used in the period simulated. As described in the Appendix, when the effects of a mesh change are estimated, these uncertainties to some extent cross
out. This is also evident from the last figure in the Appendix, where the long-term effects of a mesh change in the S. mentella fishery are similar whether calculations are made on the basis of the age or the length distributions.
The shortcomings of the sub-model estimating the effects of the change of mesh size are similar to the yield per recruit model in that no changes of growth rate (as a function of stock size) is assumed to occur. A constant recruitment is also used.
In the discussions that followed the presentation of the paper, a number of points were expressed:

1. The paper has a lot of merit and its use of commercial data can only strengthen results collected from research data.
2. The findings for minimum and maximum mesh sizes are not inconsistent with results from the northwestern Atlantic.
3. Similar to recent findings in the northwestern Atlantic, there would be fairly large immediate losses, but in the long term slight gains might be realised by increasing the mesh size.
4. As redfish are known to be larger at greater depths, the fishermen would likely offset immediate losses by changing their fishing pattern if mesh size were increased. The Group felt that immediate losses would perhaps be overestimates of what would happen in the fishery.
5. There are presently regulations in Icelandic waters which prescribe greater meshes than those currently being used in Sub-areas I and II. From the length and age frequencies and discussions with fishermen, there appears to be less discarding of redfish and during the 3 years of larger mesh regulation being in force, the fishing industry has not indicated any losses.
6. Both in Icelandic waters and in certain regulated areas of the northwestern Atlantic mesh regulations larger than 125 mm indicate that the fishermen do not find it difficult to catch redfish.
7. Keeping in mind the problems associated with the data, the calculated effective mesh size was found to be about that found for cod and haddock by the Arctic Fisheries Working Group.
8. There might be problems with the age and length frequencies as a result of discards and variable recruitment. Thus, field surveys to estimate discards and frequencies over a greater number of years are needed to average recruitment.
9. Experiments at sea are necessary to better estimate selection ratios which could be biased mainly by gear type differences and by the rate at which the net encountered redfish.

In conclusion, the Working Group felt that the model required further work particularly on the data base, by improving the input parameters. The three assessments, however, indicate that there would be no substantial changes in the long-term yield of redfish if the effective mesh size were increased by up to 35 mm above the average effective mesh size used in the period 1967-78.

FEASIBILITY OF ASSESSING REDFISH AND GREENLAND HALIBUT OF EAST AND WEST GREENLAND AS A SINGLE UNIT

7.1 Redfish

The main spawning area for redfish in the Iceland/East Greenland . region is in the Irminger Sea in an extensive area over the great oceanic depths, expanding from Reykjanes ridge and the area west off Iceland far to the southwest. Only very few newly spent redfish larvae are found along the banks of East Greenland and along the southernmost banks of West Greenland. Few mature Sebastes mentella have been observed in West Greenland waters, and no mature Sebastes marinus.

The redfish fry drift with the Irminger Current to the continental shelves of Iceland and East Greenland. Then they drift southward along the East Greenland coast and, to some extent, around Cape Farewell to West Greenland waters. Some of the redfish fry off West Greenland might originate from spawning areas south and southeast off Cape Farewell.
Tagging experiments were carried out in the Godthab fjord in 1956-69; however, only 5% or 34 of the recaptures were caught outside the fjord. Of these 34, 24 were caught on the West Greenland banks, 7 on the East Greenland banks and 3 without information, only that they were caught at the Greenland banks.
Since there appears to be no substantial spawning of redfish off West Greenland, the redfish in this area must originate from spawning in other regions.

There is at least some connection between the Irminger Sea stock and the West Greenland stock as the drift of fry shows, although the magnitude of this recruitment to the West Greenland stock is not established. It is, however, uncertain as to what degree the spawning southwest off Iceland and that south of Cape Farewell are connected and to which of these two spawning areas the West Greenland redfish migrate for spawning.
In view of these uncertainties the Working Group is at the present time of the opinion that the West Greenland stock should not be included in the assessments for the Irminger Sea stock.

7.2 Greenland Halibut

The Greenland halibut off East Greenland , ICES Sub-area XIV, is presently assessed as part of the East Greenland-Icelandic stock, ICES Sub-areas XIV and V, under ICES. On the other hand, the Greenland halibut off West Greenland, NAFO Subarea l, is presently being assessed as part of the West Greenland-Baffin Island stock, NAFO Subareas 0 and 1 , by NAFO Scientific Council.
Greenland halibut of the Northwest Atlantic area is distributed from the northwest coast of Greenland as far south as the northern portion of the Grand Bank of Newfoundland (NAFO Division 3L). Canadian research vessel survey results (Bowering, 1979a) indicate that Greenland halibut in the Labrador-Northeast Newfoundland shelf region are mainly smaller immature fish. Smidt (1969) has shown, on the other hand, that Greenland halibut of the West Greenland fjords and Davis Strait region are commonly found in both mature and immature conditions with spawning occurring to the south of the Greenland-Canadian ridge in Davis Strait. Zilanov et al. (1976) and Bowering (1977) have both indicated that
there appears to be a northern migration of maturing fish from the Labrador-Newfoundland area into what is probably the same spawning area described by Smidt (1969) with larval drift moving down the Baffin coast and into Greenland waters. Large numbers of juveniles off the east coast of Baffin Island (Bowering, 1979b) would tend to support this idea.

Greenland halibut off the east coast of Greenland are generally distributed in the mid to the northern part of East Greenland, where they are usually found in fishable concentrations on the continental slope of northwest Iceland after spawning. According to Icelandic investigations (Sigurdsson, 1979), the Greenland halibut of this area move to the western part of the Icelandic continental slope to spawn and afterwards form a general northeast feeding migration off the north coast of Iceland. 0-group surveys have shown that some Greenland halibut juveniles are found south towards Cape Farewell but in very minor and incidental quantities in comparison to the more northerly regions.
While detailed scientific information was not available at the time of the meeting, the Working Group felt that, with this general knowledge of the two areas, these stocks were probably not linked; however, a more thorough scientific investigation into the matter should be carried out before conclusions are reached.

References

Anon. 1979. Report of the Working Group on Greenland Halibut in Region 1. ICES, Doc. C.M.1979/G:8 (mimeo.).
Anon. 1979. Report of the Arctic Fisheries Working Group. ICES, Doc. C.M.1979/G:20 (mimeo.).

Anon. 1979. Report of the Working Group on Redfish in Region 1. Doc. C.M.1979/G:25 (mimeo.).

Bowering, W R. 1977. Trends in the Greenland halibut fishery in Sub-area 2 and Divisions 3K and 3L. ICNAF Res.Doc. 77/VI/ll, Ser.No. 5031.
Bowering, W R. 1979a. The Greenland halibut fishery in the continental shelf of ICNAF Sub-area 2 and Divisions 3KL. ICNAF Res.Doc. 79/VI/71, Ser.No. 5413.

Bowering, W R. 1979b. Recruitment prospects for Greenland halibut in Statistical Area 0. ICNAF Res.Doc. 79/VI/60, Ser. No. 5401.
Magnússon, J. 1979. Identification of Sebastes marinus and Sebastes mentella in 0-group redfish. ICES Symp. Early Life History of Fish. Doc. ICES/ELH Symp./SD:8 (mimeo.).
Sigurdsson, A. 1979. Greenland halibut in Icelandic waters. Publ. of the Fisheries Inst. of Iceland.
Smidt, E. 1969. The Greenland halibut (Reinhardtius hippoglossoides Walb.). Biology and exploitation in Greenland waters. Medd. Danmarks Fisk. \& Havunders., Ny Ser. 6(14):79-148.
Zilanov, V K, A A Stroganov, F M Troyanovsky and A K Chumakov. 1976. The results of the study of commercial reserves of Greenland halibut at the continental slope in the Northwest Atlantic. ICNAF Res.Doc. 76/VI/109, Ser.No. 3932 .

Table 1. Nominal catch of Redfish (in tonnes) by countries (Sub-area I, Divisions IIa and IIb combined)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*
Belgium						30	28	2	2	-	-
Faroe Isl.		60		9	32	6	67	137	8	1477	160
France						1116		-	660	3608	-
German Dem. Rep.	1069	7149	14786	9972	11756	28275	28020	22636	17614	16165	16162
Germany, Fed. Rep.	5573	2416	3076	1697	3479	6597	5182	7894	7231	11483	12244
Netherlands	20							127	-	-	-
Norway	3904	3832	4644	6776	7714	7055	4966	7305	7381	7802	10218
Poland	5973	4631	2532	1112	215	1269	4711	4137	175	2957	272
Portugal							331	3463	1480	378	638
Spain							1194	3398	-	-	6
U.K.	5224	4554	4002	4379	4791	3509	2746	4961	6330	3390	3000
USSR	9144	13091	29839	22647	31829	48787	230950	263546	144993	78092	67488
Total	30907	35733	58879	46592	59816	96644	278195	317606	185874	$125352^{* *}$	$11062{ }^{\text {\% }}$

* Provisional data
** The total figure used by the Working Group for assessments (including catches by non-members)

Table 2. Nominal catch of Redfish (in tonnes) by countries in Sub - area I

* Provisional data

Table 3 Nominal catch of Redfish (in tonnes) by countries in Division IIa

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*
Faroe Islands		60		9	22		67	137	8	1171	160
France						980			478	3575	-
German Dem.Rep.	812	2212	12339	8963	11474	27153	22778	16921	12688	12993	12439
Germany Fed.Rep:	5573	2165	1188	1466	2207	4167	4263	6722	4764	11482	12244
Netherlands	20							127	-	-	-
Norway	3510	3679	4277	5720	5564	6837	4444	6515	6050	6369	8362
Poland		269	1605	784	156	869	920	217	47	2477	261
Portugal								2849	1249	352	549**
Spain							153	2082	-	-	4
U.K.	3578	2741	2463	2680	2125	1991	1621	2919	4064	2067	1632
USSR	14	142	209	291	131	14	39138	20307	94639	31783	26789
Total	13507	11268	22081	19913	21679	42011	73384	58796	123987	72209	62440

* Provisional data
** As reported to Norwegian authorities

Table 4. Nominal catch of Redfish (in tonnes) by countries in Division IIb

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*
Belgium							28		-	-	-
Faroe Islands					4				-	-	-
France						110			33	306	-
$\begin{aligned} & \text { German } \\ & \text { Dem.Rep } \end{aligned}$	234	25	2369	973	282	764	5041	5625	4926	3232	3723
Germany Fed.Rep.		118	1740	224	1196	1344	436	537	1681	1	-
Norway	29	12	51	56	233	24	40	51	150	100	175
Poland		4356	926	306	59	400	3698	3873	128	480	11**
Portugal								136	176	18	89**
Spain							221	1015	-	-	2**
U.K.	261	429	133	336	772	198	77	650	580	364	700
USSR	5483	10668	25887	17953	26813	39455	161062	230828	37200	43734	40095
Total	6007	15608	31106	19848	29359	42295	170603	242715	44874	48241	44795
Non-members										296	435**

* Provisional data
** As reported to Norwegian authorities

Table 5. Nominal catch of Sebastes marinus and Sebastes mentella
in Sub-area I and Divisions IIa and IIb combined (in tonnes)

Year	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	$1979 *$
S. marinus	24071	12817	13816	17730	21436	27272	39125	48584	39509	32441	25441
S. mentella	6836	22916	45063	28862	38380	69372	239070	269022	146365	92911	85182
Total	30907	35753	58879	46592	59816	96644	278195	317606	185874	125352	110623

* Provisional data

Table 6. Sebastes mentella in Divisions IIa and IIb Effort and catch per unit of effort 1965-1979.

Year	USSR catch/hour (tonnes)	USSR effort (hours trawling)	Total effort (hours trawling)
1965	0.38	37895	41216
1966	0.39	22308	26008
1967	0.37	15135	16862
1968	0.45	9778	12029
1969	0.48	11458	14242
1970	0.46	23261	49817
1971	0.38	68158	118587
1972	0.38	47368	79953
1973	0.45	59556	85289
1974	0.69	60000	100539
1975	0.95	217789	251653
1976	0.99	244379	271739
1977	0.77	132866	190084
1978	0.63	118356	147478
1979	0.56	114868	152111

Table 7. Year class strength of Redfish in Sub-area I and Divisions IIa and IIb.

Year Class	$\begin{gathered} \text { Dragesund } \\ 1971 \end{gathered}$	Surkova, 1960		Baranenkova, 1968 S.marinus S.mentella		O-group surveys Abundance indices
		S.marinus	S.mentella			
1956	strong		strong	strong		
1957	average	average	strong	average	average	
1958	poor	poor	poor	below average	poor	
1959	average		average	strong	strong	
1960	poor			poor	poor	
1961	poor					
1962	very poor					
1963	poor					
1964	strong					
1965	strong					159
1966	strong					236
1967	average					44
1968	average					21
1969	very strong					295
1970	strong				.	247
1971	average					172
1972	average					177
1973	strong					385
1974						468
1975						315
1976						447
1977						472
1978						460
1979						980

Table 8. Sebastes marinus in Sub-area I and Division IIa. Age composition of the total catch in numbers (x 103), 1968-79.

AGE	1968	1969	1970	1971	1972	1973
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0
7	0	0	0	0	0	0
8	0	0	0	0	0	0
9	0	0	0	0	0	0
10	0	9	0	0	0	0
11	0	0	0	0	0	0
12	43	51	62	4E	2E1	590
13	32	35	122	41	332	570
14	74	97	229	107	633	913
15	165	205	444	239	1137	1527
16	550	666	1232	886	2563	32e6
17	364	556	723	594	1261	1441
18	611	954	1138	935	2014	2157
19	E84	1223	997	990	2046	1892
20	131	223	185	185	385	342
21	753	1456	1003	858	1732	1420
22	555	1084	750	595	1112	849
23	898	1518	921	779	1251	1123
24	12 EE	2259	966	1123	1121	1248
25	993	1845	716	776	746	884
26	887	1667	623	636	585	729
27	644	1362	526	426	429	568
28	614	1038	347	431	377	508
TOTAL						
	9264	16243	10984	9647	17985	20027
AGE	1974	1975	1976	1977	1978	1979
3	0	0	0	86	0	0
4	0	0	0	428	0	0
5	0	0	530	1839	20	0
6	0	0	2854	1831	13	0
7	0	0	5719	1621	31	12
8	0	0	12162	4179	335	70
9	0	0	10250	4620	655	97
10	0	0	, 9515	4501	951	143
11	0	0	5963	2359	629	139
12	387	693	5008	3306	2048	695
13	455	868	1686	2557	2894	878
14	1043	1638	2670	4242	5573	3288
15	2079	2984	2991	5334	6545	3148
16	5479	7397	6775	6072	6010	3415
17	2757	3563	2707	2372	2626	1659
18	4164	5117	3938	3462	3750	2126
19	3528	4402	3417	3115	2779	2150
20	638	775	614	964	1572	1743
21	2359	2829	2475	2408	1754	2150
22	1373	1721	1529	1170	390	922
23	1527	1813	1814	1464	502	909
24	1103	1452	1672	1318	420	922
85	702	930	1105	923	246	647
26	530	817	918	772	179	605
27	365	701	822	E6E	158	520
28	332	589	624	677	144	230
TOTAL 20.144						
	28831	38269	87789	62286	40224	26463

Table 9. Sebastes marinus in Sub-area I and Division IIa. Fishing mortalities estimated by VPA ($M=0.10$).

AGE	1968	1963	1970	1971	1972	1973
3	.000	.000	.000	.000	.000	.000
4	.000	.000	.000	.000	.000	.000
5	.000	.000	.090	.000	.000	.000
6	.000	.000	.000	.000	.000	.000
7	.000	.000	.000	.000	.000	.000
8	.000	.000	.000	.000	.000	.000
9	.000	.000	.000	.000	.000	.000
10	.000	.000	.000	.000	.009	.000
11	.000	.000	.000	.000	.000	.000
12	.001	.001	.091	.001	.005	.012
13	.061	.001	.003	.001	.006	.011
14	.002	.002	.005	.003	.011	.019
15	.005	.006	.012	.006	.030	.029
16	.018	.021	.041	.027	.079	.102
17	.016	.021	.026	.023	.045	.052
18	.036	.043	.048	.038	.090	.090
19	.029	.085	.060	.049	.099	.102
20	.007	.011	.015	.013	.022	.019
21	.048	.088	.056	.080	.143	.094
22	.054	.081	.054	.038	.127	.087
23	.079	.182	.083	.066	.095	.164
24	.158	.260	.152	.124	.114	.116
25	.139	.321	.110	.157	.102	.112
$2 E$.178	.323	.153	.121	.153	.123
27	.075	.401	.143	.133	.101	.195
28	.150	.150	.150	.150	.150	.150

MEAN F FOR AGES $>=13$ AND <= 24 (HEIGHTED BY STOCK IN NUMBERS)

	.023	.038	.031	.024	.050	.054
AGE	1974	1975	1976	1977	1978	1979
3	.000	.000	.000	.010	.000	.000
4	.000	.000	.000	.176	.000	.000
5	.000	.000	.075	.801	.010	.000
6	.000	.000	.360	.350	.010	.000
7	.000	.000	.440	.314	.008	.010
8	.000	.000	.740	.530	.088	.020
9	.000	.000	.384	.618	.150	.030
10	.000	.000	.380	.258	.017	.040
11	.000	.000	.105	.136	.047	.040
12	.010	.013	.101	.070	.150	.060
13	.011	.024	.036	.062	.073	.080
14	.023	.043	.087	.108	.166	.100
15	.050	.075	.094	.225	.216	.120
16	.126	.223	.216	.248	.376	.150
17	.106	.102	.106	.098	.145	.150
18	.187	.260	.140	.173	.199	.150
19	.187	.275	.248	.141	.183	.150
20	.041	.051	.050	.092	.088	.150
21	.162	.229	.206	.252	.215	.150
22	.111	.153	.167	.127	.053	.150
23	.199	.188	.213	.214	.066	.150
24	.215	.253	.236	.212	.079	.150
25	.080	.254	.291	.177	.050	.150
26	.081	.113	.378	.301	.043	.150
27	.076	.132	.142	.458	.083	.150
28	.150	.150	.150	.150	.150	.150

MEAN F FOR AGES $>=13$ AND <= 24 (WEIGHTED BY STOCK IN NUMBERS) $.091 .131 \quad .128 \quad .147 \quad .163 \quad .132$

Table 10. Sebastes marinus in Sub-area I_{z} and Division IIa. Stock size in --

age	1968
3	139718
4	122001
5	112324
6	77244
7	83624
8	91017
9	84440
10	92182
11	60210
12	53819
13	47169
14	39562
15	37178
16	32172
17	23384
18	18076
19	24765
20	20139
21	16895
22	11137
23	12363
24	9105
25	8931
26	5701
27	3320
28	4626
total	

AGE

3	9442
4	12194
5	20554
6	23663
7	41137
8	38495
9	76679
10	66955
11	61645
12	42392
13	45333
14	49185
15	45136
16	48519
17	28766
18	25569
19	21670
20	16677
21	16563
22	13733
23	8875
24	5969
25	9625
26	7112
27	5292
28	2502

1969
63467
126422
110391
101635
69893
75666
82356
76378
83410
54487
48657
42650
35727
33483
28588
20812
15775
21758
18098
14571
9550
10333
7037
6324
4316
7821

Table 11. Sebastes marinus in Sub-area I and Division ITa. Total stock biomass (age 12+) and spawning stock biomass (age 15+) (in '000 tonnes).

Year	Total Stock	Spawning Stock
1965	325	257
1966	318	248
1967	310	239
1968	313	240
1969	314	238
1970	308	222
1971	318	228
1972	328	234
1973	326	244
1974	316	244
1975	308	239
1976	287	216
1977	(262)	(189)
1978	(243)	(184)
1979	(215)	(176)

Table 12. Sebastes marinus in Sub-area I and Division IIa. Parameters used in catch prediction.

Age	Stock size beginning of $1980 \times 10-3$	Relative fishing mortality	Mean weight used 1965 to 1977	Mean weight for 1978 and later
12	55211	0.4	.477	.520
13	10682	0.5	.512	.564
14	10016	0.7	.577	.703
15	29702	0.8	.611	.750
16	23454	1.0	.710	.846
17	20039	1.0	.761	.860
18	9735	1.0	.826	.931
19	12476	1.0	.895	.991
20	12617	1.0	1.947	1.093
21	10228	1.0	1.148	
22	12617	1.0	1.293	1.207
23	5410	1.0	1.580	1.410
24	5334	1.0	1.793	1.702
25	5410	1.0	1.885	1.693
26	3796	1.0	2.393	2.393
27	3550	3051		2.454
$28+$				2.454

Table 13. Sebastes mentella in Divisions IIa and IIb. Age composition of the total catch in number (x 103), 1968-79

AGE	1968	1969	1976	1971	1972	1973	-
6	7	31	0	0	456	172	
7	0	94	0	0	792	1660	
8	15	409	33	114	5728	4865	
9	89	524	131	284	3E8E	9723	
10	192	838	E20	681	2045	46.36	
11	355	933	2122	1590	1770	2633	
12	436	354	3428	4.425	3865	3148	
13	554	849	3983	4884	4564	5208	
14	864	E18	3526	5451	4704	5666	
15	768	482	2808	4940	4098	4578	
16	931	807	3983	7496	4764	5380	
17	694	451	2743	4486	3632	3777	
18	E65	849	3559	7382	3167	2747	
19	702	786	2318	4770	1816	1316	
20	359	555	1567	3318	885	9.3	
21	347	440	754	2385	373	E30	
こを	251	514	653	1874	279	114	-
23	89	199	327	1590	47	10	
24	4.4	42	65	397	47	10	
TOTAL							
	7372	10375	32650	5EET1	46572	57252	
AGE	1974	1975	1976	1977	1978	1979	
6	695	5834	18891	0	2914	3551	
7	4847	19417	29815	2418	30256	20035	
8	15451	42425	59395	17175	65373	42572	
3	28781	82480	78241	33454	53564	45937	
10	30144	108462	110712	52102	33377	36625	
11	13843	119675	112524	49617	19973	25756	
12	10603	57231	93144	53938	17298	20250	
13	8634	29651	49550	33287	9300	15973	
14	8 E 34	20894	26134	19035	7434	5923	
15	E514	16499	13881	12605	5474	3505	-
16	5903	13465	9839	5736	4147	3387	
17	3332	13668	6300	4874	2141	2411	
18	2378	12207	7233	5493	1550	1920	
19	166E	6757	3486	3155	EES	1680	
20	$21 \Sigma 1$	7112	3168	3941	1064	18ES	
21	757	5113	1818	5955	424	1998	
22	454	2242	1715	2534	309	547	
23	151	735	1041	$1 \operatorname{sog} 2$	502	317	
34	151	407	211	36	$\therefore 59$; 0 S	
TUTAL	151475	563674	627098	303766	255727	234200	

Table 14. Sebastes mentella in Divisions IIa and IIb. Fishing mortalities estimated by VPA ($M=0.10$).

AGE	1968	1969	1970	1971	1972	1973
6	.000	.000	.000	.000	.001	.000
7	.000	.000	.000	.000	.002	.003
8	.000	.003	.000	.000	.013	.011
9	.001	.005	.001	.002	.014	.025
10	.002	.008	.006	.007	.014	.021
11	.004	.009	.023	.017	.019	.021
12	.007	.013	.037	.054	.048	.039
13	.010	.015	.060	.062	.066	.077
14	.021	.013	.072	.099	.071	.098
15	.026	.013	.067	.123	.090	.082
16	.053	.032	.129	.228	.148	.148
17	.054	.030	.129	.188	.147	.153
18	.081	.078	.303	.522	.176	.142
19	.146	.116	.280	.740	.207	.093
20	.085	.148	.316	.917	.256	.146
21	.108	.125	.285	.971	.173	.260
22	.323	.207	.246	1.961	.240	.066
23	.298	.406	.177	1.357	.188	.011
24	.200	.200	.200	.300	.106	.050

MEAN F FOR AGES $:=13$ AND $\{=21$ (HEIGHTED BY STOCK IN NUMBERS) .034 .023 .109 .195 .104 . 107

AGE	1974	1975	1976	1977	1978	1979
6	.002	.014	.040	.000	.006	.006
7	.013	.058	.080	.006	.086	.050
8	.036	.132	.226	.055	.192	.150
9	.073	.240	.339	.172	.215	.180
10	.089	.375	.515	.352	.231	.200
11	.105	.520	.734	.406	.197	.250
12	.097	.432	.885	.853	.215	.280
13	.127	.378	.724	.827	.298	.280
14	.158	.447	.592	.603	.384	.280
15	.140	.448	.534	.563	.305	.280
16	.130	.418	.466	.395	.322	.280
17	.115	.436	.312	.393	.220	.280
18	.149	.677	.385	.436	.186	.280
19	.108	.539	.366	.257	.076	.230
20	.190	.768	.463	.800	.116	.280
21	.146	.810	.397	.926	.158	.280
22	.270	.714	.022	1.363	.195	.280
23	.105	.895	.785	.813	.488	.280
24	.200	.400	.500	.500	.259	.280

MEAN F FOR AGES $\rangle=13$ AND $<=21$ (WEIGHTED BY STOCK IN NUMBERS) .137 . 467 . 562 . 607 . 272 . 280

Table 15. Sebastes mentella in Divisions IIa and IIb. Stock size in numbers ($x 10^{3}$) estimated by VPA.

AGE	1968	1969	1970	1971	1972	1973
6	227324	353371	575172	590018	563644	445257
7	148518	205685	324238	520437	533870	514088
8	131608	134384	186022	293383	470911	482312
9	122672	119070	121207	168288	265355	420652
10	120793	110914	107241	109548	152003	236694
11	88617	109116	99562	96446	98476	135590
12	66536	79847	97845	88070	35756	87422
13	57031	59790	71341	85275	75480	73362
14	43578	51077	53293	60767	72519	E.3960
15	30902	38.609	45629	44871	49806	61148
16	18918	27231	34477	38518	35908	41172
17	13872	16233	23873	27413	27825	28024
18	9019	11893	14259	15936	20545	21732
15	54.31	7529	9954	9527	10199	15583
20	4739	4247	6066	6808	4112	7505
21	3547	3937	3316	4002	2463	2881
22	953	2879	3145	2257	1372	1874
23	362	624	2118	2226	287	376
2.4	255	243	376	1606	519	215
TOFAL						
	1094675	1341679	1779133	2168555	2476055	2641009
AGE	1974	1975	1976	1977	1978	1979
6	399796	454825	501392	426898	479947	546000
7	402722	361176	405996	435722	386273	431504
8	463587	359789	308352	339030	391959	320767
9	431789	404784	285256	22263s	296444	292600
10	371373	363349	287996	183926	169689	211965
11	209762	307391	225964	155769	117027	121866
12	12018.4	170950	165405	98114	93327	86931
13	76110	98674	100459	61742	37849	68570
14	61938	60667	61179	44086	24430	25427
15	52490	47846	35100	30629	21807	15059
16	50979	41308	27663	18520	15785	14540
17	32145	40516	24619	15711	11355	10350
18	21771	2592!	23711	16301	9597	8242
19	17055	16966	11912	14599	9540	7212
20	12850	13849	8955	7474	10217	7998
21	5867	9614	5812	5102	30.40	8234
22	2009	4530	3870	5535	1828	2348
23	4588	1387	2034	185	819	136
24	874	1293	561	856	754	455
total						
	2734891	2784895	2486235	2082514	2076286	2181427

Table 16. Sebastes mentella in Divisions IIa and IIb. Biomasses of the recruited stock $B\left(N_{6+}\right)$, the spawning stock $B\left(N_{15+}\right)$ and the year class strength (estimates from VPA).

Year	$B(N 6+)$ (tonnes $\left.\times 10^{-3}\right)$	$B\left(N_{15+}\right)$ (tonnes $\left.\times 10^{-3}\right)$	Year class	Year class strength at age 6 (millions)
1965	281	48	1965	590
1966	308	52	1966	569
1967	343	59	1967	445
1968	392	74	1968	400
1969	465	122	1969	455
1970	575	134	1970	501
1971	675	129	1971	427
1972	762	152	1973	480
1973	854	179		
1974	939	126		
1975	991	100		
1976	842	74		
1977	660	616		
1978	645			
1979	645			

Table 17. Sebastes mentella in DivisionsIIa and IIb
Parameters used in catch predictions.

Age	Stock size at the beginning of 1980	Proportional fishing mortality (1979-1981)	Mean weight at age (kg)
6	550000	.02	.168
7	491282	.18	.183
8	371250	.54	.225
9	249513	.64	.311
10	221319	.71	.367
11	157216	1.09	.432
12	85946	1.00	.508
13	59449	1.00	.611
14	46892	1.00	.679
15	17389	1.00	.753
16	10298	1.00	.821
17	9943	1.00	.872
18	7077	1.00	.910
19	5636	1.00	.923
20	4932	1.00	.985
21	5470	1.00	1.124
22	5631	1.00	1.193
23	1606	1.215	
	1242		

Table 18. Nominal catches of Redfish (in tonnes) by countries in Division Va (Iceland).

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {² }}$
Belgium	3360	2204	2798	2484	1622	2114	1945	1522	1395	1549	1290
Faroe Isl.			35	9	243	254	82	211	292	242	698
German Dem.Rep.	656	827	238	135		11		-	-	-	-
Germany, F.R.	55831	48907	46580	43963	38358	36398	33602	32948	31632	-	-
Iceland	24321	23807	29118	26973	26470	27799	32659	34028	28119	33318	63035
Netherlands	2							-	-	-	-
Norway			1	1	4	15	22	31	87	93	50
Poland		259	17	35		18		-	-	-	-
U.K.	2302 1256	2948 10	3552 31	3697 28	2951 2	2519	2424	1124	+	-	-
Total	87736	78962	82370	77325	69650	69129	70734	69864	61525	35202	65073

Table 19. Nominal catches of Redfish (in tonnes) by countries in Division Vb (Faroe Islands).

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {F }}$
Faroe Isl.	5				121	28	9	33	$\begin{array}{r}54 \\ \hline 368\end{array}$	1525	5694
France						300	800	-	1368	448	
German Dem.Rep.						1	1	-			
Germany, F.R.	1293	1914	2328	4034	9490	7328	7628	5255	5854	7767	8373
Netherlands							105			-	-
Norway						10	7	17	10	9	10
U.K.	28	33	24	53	85	98	41	59	116	57	-
Total	1326	1947	2352	4087	9696	7765	8591	5364	7402	9806	14077

${ }^{\text {r }}$ provisional data

Table 20. Nominal catch of Redfish (in tonnes) by countries in Sub-area XIV (East Greenland). Total nominal catch ir NAF Sub-area I (West Greenland).

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
Canada								420	-	-	-
Greenland								129	1	3	-
Faroe Isl.					13	43	1	3	19	-	20
German Dem.Rep.	154	409	611	703	841	1275	4490			-	
Germany, F.R.	26289	16316	17062	7287	4491	2632	4979	4403	13347	20 7111)	21 0921)
Iceland	3906	1001	2380	5490	2144	9777	5632	7410	81	151	-
Norway							63		112	2	-
Poland		436	312	464	281	6	276	-	,	-	-
U.K.		+	$+$	5	65	127	56	286	622	13	-
USSR	18		71	21	64	118	9830	101000	251	-	-
Total SA. XIV	30367	18162	20436	13970	7899	13978	25329	113656	14433	20880	21112
Total ICNAF SA I	4252	4101	2756	2988	3319	3324	8629	13698	31808	8053	

1) catches updated for Sub-area XII included.

Table 21. Nominal catch (in tonnes) of Redfish in Sub-area XIV, Divisions Va and Vb , and by
species for Sub-area XIV and Sub-area V combined.

Year	Div. Va	Div. Vb	Sub-area XIV	Total	S. marinus	S. mentella
1965	114100	5862	36513	156475	97006	59469
1966	107	068	3297	23290	133655	80347
1967	95083	5013	33198	133294	85249	4308
1968	96475	6637	23074	126191	68712	577479
1969	87736	1326	30367	119429	79467	39962
1970	78962	1947	18162	99071	62020	37051
1971	82370	2352	20436	105158	68374	36784
1972	77325	4087	13970	95382	50961	44421
1973	69650	9696	7899	87245	41818	45347
1974	69129	7765	13978	90872	49845	41027
1975	70734	8591	25329	104654	60980	43674
1976	69864	5364	113656	188884	93605	95279
1977	61525	7402	14433	83360	52752	30608
1978	35202	9806	$208801)$	65888	47791	18097
$1979^{\text {FI }}$	65073	14077	21112^{1}	100262	76865	23397

[^1]1) catches updated for Sub-area XII included.

Table 22．Sebastes marinus in Sub－areas V and XIV．Input catch data for VPA．．

AGE	1968	1969	1970	1971	1972	1973
9	0	0	8	4	59	21
10	0	0	15	5	65	28
11	138	137	183	102	503	402
12	1101	1108	1148	803	3066	2624
13	1996	2141	1826	1565	4539	4017
14	3971	4891	3599	3713	5998	5652
15	3519	4354	3133	3323	4044	4105
16	5373	6617	4796	5081	4469	4873
17	2718	3200	2352	2424	1928	2074
18	6E：8	7746	5814	5798	4269	4287
19	5272	6047	4824	4712	3003	2883
20	1964	2245	1908	1841	1020	934
21	6025	6567	5844	6152	3217	2786
ここ	4252	4608	4592	4339	2304	1798
23	5892	6240	6596	7342	3269	2349
24	5619	E204	E85E	7233	3066	2536
25	2502	2868	3076	3189	1268	1239
26	1630	1894	1956	2205	726	783
27	774	910	916	981	303	360
28	527	717	683	762	211	255
29	210	324	275	259	59	84
30	117	264	184.	121	29	11
TOTAL						
	60218	69102	60494	62554	47415	44102
AGE	1974	1975	1976	1577	1578	1979
9	48	273	2023	50	89	E6
10	E8	374	2715	71	170	318
11	533	878	6229	556	1039	1074
12	3232	3097	19819	3539	5957	2E70
13	4987	3320	19604	5398	5667	2907
14	7437	4282	15776	7820	8023	6341
15	5こE：	3620	8889	5327	6451	6411
16	E152	5536	9193	5898	5702	10419
17	2518	2704	3780	2392	2188	5354
18	5159	6545	8440	5108	3173	10548
19	3322	4744	5596	3512	2959	5771
20	1028	1570	1844	1213	3185	4892
21	3096	4799	5552	3753	3401	5803
こ2	1956	2973	3389	2484	1511	3293
23	2537	3724	4348	3323	1746	4006
24	2549	3763	3817	2832	1474	2425
25	1229	1740	1751	1170	827	2265
26	845	1180	：283	798	011	2176
27	407	558	587	364	378	1303
2e	306	425	4 29	271	156	765
23	118	197	173	112	99	463
B	12	110	73	69	37	263
tOTAL	52850	56304	125310	56060	54844	83545

Table 23. Sebastes marinus in Sub-areas V and XIV. Fishing mortalities from VPA ($M=0.10$).

AGE	1968	1969	1970	1971	1972	1973	1974	1975
9	.000	.000	.090	.000	. 000	.000	.000	.003
10	.000	.000	.006	.000	. 000	.000	.000	.003
11	. 001	-001	. 002	-901	. 003	- 0 er	.093	. 096
12	. 211	. 011	. 009	. 008	.028	.016	. 021	.017
13	. 026	.023	. 21	. 914	. 050	. 042	. 036	.024
14	. 053	. 073	. 044	. 049	. 061	.072	.091	. 035
15	. 048	. OES	. 055	.247	.082	. 049	. 080	.053
16	.090	.109	. 088	.107	. 075	. 099	. 687	. 102
17	. 053	. 064	-646	. 953	. 048	. 041	. 055	. 045
18	. 152	. 189	. 142	. 138	. 113	.130	. 121	. 177
19	.148	. 181	. 155	. 147	. 088	. 094	. 127	.140
20	. 057	. 078	. 072	. 073	. 039	.032	. 039	. 073
21	.193	. 245	-266	. 306	. 159	.127	. 128	. 232
22	.174	. 199	- 242	. 334	-161	.113	.111	. 156
23	. 331	. 367	. 426	. 656	. 343	. 213	. 205	. 283
24	. 567	. 699	. 771	1.024	. 559	. 432	. 347	. 467
25	.455	. 564	. 614	. 907	. 427	. 408	. 342	. 375
26	.544	. 657	. 842	1.107	. 467	. 451	. 477	. 552
27	. 440	. 590	. 686	1.308	. 370	. 395	. 397	. 591
28	. 539	. 830	1.098	2.261	1.029	. 538	. 605	. 821
29	. 334	. 663	. 795	1.746	1.348	1.551	. 454	. 892
30	.130	. 130	. 130	.130	.130	. 130	.130	. 30

MEAN F FOR AGES $=16$ AND $=30$ (WEIGHTED BY STOCK IN NUMBERS) $.162 .196 .197 .243 \quad .121 \quad .109 \quad .114 \quad .153$

AGE	1976	1977	1978	1979
9	.011	.000	.001	.091
10	.030	.000	.001	.003
11	.055	.007	.007	.005
12	.170	.036	.087	.020
13	.130	.058	.067	.050
14	.135	.063	.102	.090
15	.085	.055	.061	.160
16	.164	.067	.070	.120
17	.085	.053	.029	.140
18	.174	.142	.083	.170
19	.203	.091	.103	.190
20	.067	.055	.101	.220
21	.351	.168	.194	.240
22	.220	.234	.085	.260
23	.318	.325	.229	.300
24	.461	.315	.209	.500
25	.366	.222	.127	.500
26	.462	.252	.155	.500
27	.531	.204	.162	.500
28	1.143	.443	.114	.500
29	.849	.961	.255	.509
30	.130	.130	.130	.506

MEAN F FOR AGES $s=16$ AND $\langle=30$ (WEIGHTED BY STOCK IN NUMBERS) .194 .117 .087 .192

Table 24．Sebastes marinus in Sub－areas V and XIV．Stock size in numbers from VPA．

AGE	1968	1969	1970	1971	1972	1973
9	148569	158923	228351	227279	256414	180534
10	161499	134431	143789	206613	205647	231557
11	113667	146130	121638	130101	186946	186015
12	110443	102713	132094	109885	117623	160678
13	82817	98886	31890	118432	98668	103515
14	81254	73038	87441	81410	105674	84964
15	78322	69748	E1440	75699	70134	89917
16	E5574	E7524	58373	52ele	65337	59616
17	54892	542 こ9	54812	48890	42782	54873
18	49389	47085	46027	47360	41933	363.78
19	40204	38404	35251	36126	37347	33888
20	37033	31371	29009	27315	28213	30940
21	35979	31688	26253	24435	22966	24559
ここ	27960	26835	22441	18210	16275	17726
23	21901	21262	19907	15948	11794	12538
24	13573	14230	13324	11763	7487	7572
25	7162	6963	7007	5578	3824	3873
26	4065	4110	3586	3430	2038	こと58
27	2277	2135	1928	1398	1026	1156
28	1323	1327	1071	879	342	E41
29	775	698	524	325	83	111
30	207	502	326	214	51	19
total						
	1138935	1132240	1187030	1243908	1322603	1332228

AGE	1374	1375	1976	1377	1978	1979
9	149920	105939	194776	276522	123378	69789
10	163534	135607	95652	174318	250250	111553
11	209856	147725	122347	83969	157661	226274
12	167931	189379	132833	104784	75449	141670
13	150131	148821	168497	101375	91448	62609
14	89846	131104	131502	133842	86597	77 SE1
15	71508	74230	114558	104005	113674	76735
$1 E$	77458	59704	6372e	95210	89045	967こ6
17	49313	64242	48763	48332	80545	75152
18	47673	42227	55558	40531	42002	70800
19	29237	38242	31995	42258	31823	34990
20	27924	23354	30097	23638	34900	25984
21	27107	24289	19639	25480	20236	28552
22	19575	21587	17424	12507	19432	15982
23	14331	15854	15710	12549	8959	16202
24	9116	10559	10813	10996	8204	E450
25	4443	58.32	5990	6169	7264	E024
26	2330	2860	3627	3760	4471	5787
27	1302	1308	1496	2067	2645	3466
28	705	792	656	793	1525	2035
29	339	348	315 129	183	451	$123:$
30	21	195	129	122	65	323
total	1313473	1244260	1267098	1304116	1250096	1148383

Table 25. Sebastes marinus in Sub-areas V and XIV.
Total stock biomass (age 9+) and spawning stock biomass (age 16+) (in 1000 tonnes)

Year	Total stock biomass	Spawning stock biomass
1967	857	452
1968	816	413
1969	802	397
1970	803	363
1971	811	330
1972	827	303
1973	847	311
1974	858	336
1975	845	343
1976	856	338
1977	(854)	348
1978	843	
1979	(817)	375

Table 26. Sebastes marinus in Sub-areas V and XIV. Parameters used in catch predictions.

Age	Stock size beginning of 1980×10^{-3}	Relative fishing mortality	Mean weight at age (kg)	
9	182000	. 002	0.399	
10	62723	. 006	0.440	
11	100635	. 010	0.486	
12	203720	. 04	0.536	Recruitment; (average
13	125650	. 10	0.591	over 1967-1975)
14	53888	. 18	0.652	182000×10^{-3}
15	63974	. 20	0.720	
16	57913	. 24	0.794	$\mathrm{M}=0.1$
17	77624	. 28	0.876	
18	59117	. 34	0.966	
19	54047	. 38	1.066	
20	26182	. 44	1.176	
21	18868	. 48	1.297	
22	20322	. 52	1.431	
23	10522	. 60	1.579	
24	10861	1.00	1.742	
25	3540	1.00	1.922	
26	3306	1.00	2.120	
27	3176	1.00	2.339	
28	1902	1.00	2.580	
29	1117	1.00	2.846	
$30+$	853	1.00	3.905	

Table 27．Sebastes mentella in Sub－areas V and XIV．Input catch data for VPA．

AGE	1968	1969	1970	1971	1972	1973
8	0	6	0	0	0	0
9	0	0	0	0	0	6
10	0	0	0	0	0	1
11	0	0	0	0	0	2
12	12	46	75	19	15	122
13	40	137	218	66	46	269
14	250	649	975	372	320	543
15	292	EOE	891	385	414	408
16	1024	1576	2142	1066	1567	1068
17	1221	1492	1871	1059	1685	1107
18	2260	2362	2649	1691	2743	1874
19	3433	3009	2923	2284	3500	2586
20	1136	844	820	E99	993	779
21	9195	6578	5 522	5609	6885	5741
22	3945	2610	2043	2528	2483	2379
23	12819	9126	6632	8854	8162	3044
24	6473	5960	3673	4758	4703	5862
25	2908	2390	1792	2186	2285	3063
2 E	2149	2079	1441	1647	1844	2551
27	914	717	704	666	824	1158
28	441	899	516	385	492	565
tigal						
	48512	41071	35187	34274	38961	39128

AGE	1974	1975	1976	1977	1978	1979
8	0	0	0	0	0	221
5	0	0	3202	2	321	190
10	0	0	2948	2	656	497
11	0	1	5533	3	908	663
12	71	87	22608	142	1521	1554
13	196	262	21121	362	664	1406
14	802	1331	14107	1435	816	2685
15	677	1161	5547	1334	1206	2792
16	1591	2384	4431	3411	1577	2028
17	1445	1737	2619	2897	822	1060
18	2cta	22E5	2841	3722	1581	1603
19	2730	ことらて	2229	3454	1371	2071
20	795	605	541	802	1089	937
21	5467	4474	3E25	4884	1688	3209
22	2029	1785	1192	1314	1264	1984
23	7398	6357	4050	3958	2070	1783
24	4602	4093	2403	E172	1388	1484
25	2306	2147	1232	1089	823	1484 862
26 27	19.35	1862	1061	928	506	3 mb
27	900 489	913 581	544 331	480	104	55
TOTAL		Sr	3.31	377	0	8
	35735	34327	103165	32771	20435	27382

Table 28. Sebastes mentella in Sub-areas V and XIV. Fishing mortalities from VPA $(M=0.10)$.

AGE	1968	1969	1970	1971	1972	1973	1974	1975
8	.000	.000	.000	.000	.000	.000	.000	.000
9	.000	.000	.000	.000	.000	.000	.000	.000
10	.000	.000	.000	.000	.000	.000	.000	.000
11	.000	.000	.000	.000	.000	.000	.000	.000
12	.000	.001	.001	.001	.000	.003	.002	.001
13	.001	.003	.005	.001	.002	.006	.005	.007
14	.005	.016	.021	.010	.006	.020	.015	.040
15	.006	.014	.025	.010	.012	.008	.029	.032
16	.022	.039	.058	.033	.044	.034	.036	.120
17	.025	.037	.053	.033	.061	.036	.054	.046
18	.045	.055	.077	.056	.101	.081	.085	.102
19	.076	.070	.081	.080	.142	.117	.149	.101
20	.028	.022	.022	.022	.041	.033	.043	.039
21	.284	.201	.183	.185	.283	.307	.361	.319
22	.157	.109	.080	.101	.105	.134	.152	.171
23	.673	.569	.389	.503	.477	.587	.671	.830
24	.716	.680	.417	.472	.484	.063	.597	.876
25	.572	.558	.392	.417	.387	.594	.527	.546
26	.870	.936	.688	.667	.656	.868	.832	.961
27	.571	.718	.868	.705	.743	1.025	.775	1.125
28	.400	.400	.400	.400	.400	.400	.400	.400

MEAN F FOR AGES $>=12$ AND $<=24$ (HEIGHTED BY STOCK IN NUMBERS) $.096 .084 \quad .072 .079 .095 \quad .103 .104$.100

AGE	1576	1977	1978	1979
3	.000	.000	.000	.040
9	.057	.000	.023	.040
10	.057	.000	.035	.040
11	.068	.000	.021	.040
12	.252	.002	.038	.040
13	.394	.005	.009	.040
14	.494	.037	.013	.040
15	.208	.069	.036	.050
16	.147	.171	.098	.070
17	.168	.121	.055	.080
18	.087	.338	.081	.120
19	.123	.129	.179	.130
20	.029	.653	.043	.160
21	.308	.351	.136	.189
22	.117	.156	.128	.210
23	.626	.607	.348	.240
24	.777	.725	.392	.400
25	.629	.888	.591	.400
26	.506	1.293	1.315	.400
27	.738	.400	.400	.400
28	.400	.400	.000	.000

MEAN F FOR AGES $>=12$ AND $\leqslant=24$ i WEIGHTED EY STOCK IN NUMBERS) .263 .097 .055 .021

Table 29. Sebastes mentella in Sub-areas V and XIV. Stock size in numbers

AGE	1968	1969	1970	1971	1972	1973
8	80397	65493	69586	112027	158650	141706
9	46985	72747	59261	62964	101367	143553
10	88317	42514	65824	53621	56972	91720
11	56051	79912	38468	53560	48518	51551
12	59073	50726	72308	3 ± 807	53892	43901
13	47857	53440	45855	65355	31477	48749
14	50095	43255	48224	41284	59073	22.438
15	48216	45096	38531	42708	37001	5 S 147
16	43495	43550	40223	34917	38278	33087
17	52474	42908	37727	34360	29767	35146
18	53847	46320	37405	32358	30083	25333
19	49204	46575	33667	31328	27672	24615
20	43036	41259	39292	33115	26177	21715
21	39009	37906	36530	34773	29299	22742
22	28455	26575	28055	27527	26139	19980
23	27343	22001	21566	23444	22506	21293
24	132 1	12620	11271	13228	12829	12634
25	6984	5844	5784	6718	7463	7154
26	3858	3568	3026	3535	4007	4587
27	2198	1462	1266	1375	1641	1882
28	551	1124	645	481	E15	706
TOAL	845726	784656	740514	748588	803428	831638

845726
TOAL from VPA.

AGE	1974	1975	1376	1977	1978	1979
8	68274	67116	24821	16636	5626	5321
9	128221	61777	60723	22459	15053	5090
10	129892	116019	55898	51967	20320	13315
11	82991	117531	104978	47777	46966	17762
12	46643	75093	106346	88780	43227	41633
13	39648	42137	67865	74774	80.196	37668
14	43854	35652	37878	41330	67314	71933
15	25210	38919	30994	20915	36084	60133
16	47702	22167	34111	22780	17657	31504
17	28923	41650	17.733	26657	17373	14478
18	28939	24797	35978	13613	21369	14682
19	21141	24055	20267	29855	8789	17833
20	19816	16480	13674	$1 \mathrm{E221}$	23734	6651
21	18908	17174	14337	17288	13915	20440
22	$15: 33$	11926	11297	5534	11012	10982
23	15819	11766	9696	9090	7375	8764
24	10799	7313	4643	4400	4430	4714
25	58こと	5335	2758	1931	1928	2338
26	3576	3145	2796	1330	719	565
27	1742	1408	1089	1525	330	175
28	611	T2e	414	471	0	0
TOTAL						
	783593	742192	663761	519331	443470	387587

Table 30. Sebestes mentella Sub-areas V and XIV.
Total stock biomass (age 94) and spawning stock biomass (age 16+) in 1000 tonnes

Year	Total stock biomass	Spawning stock biomass
1967	511	351
1968	476	331
1969	440	299
1970	410	275
1971	390	258
1972	379	241
1973	373	216
1974	361	196
1975	337	167
1976	317	150
1977	(265)	(136)
1978	(237)	(114)
1979	(223)	(117)

Table 31. Sebastes mentella Sub-areas V and XIV
Parameters used in catch predictions

Age	Stock size in numbers beginning of $1980\left(x 10^{-3}\right)$	Relative fishing mortality	Mean Weight at age (kg)	
9	86000	0.10	0.260	
10	74765	0.10	0.292	
11	64997	0.10	0.327	
12	37780	0.10	0.367	Recruitment: (average over 1967-75)
13	36194	0.10	0.410	86000×103
14	32747	0.10	0.461	$\mathrm{M}=0.1$
15	62536	0.13	0.516	
16	51757	0.18	0.578	
17	26579	0.20	0.648	
18	12093	0.30	0.726	
19	11943	0.33	0.813	
20	14169	0.40	0.912	
21	5128	0.45	1.022	
22	15448	0.53	1.145	
23	8059	0.60	1.284	
24	6238	1.00	1.438	
25	2859	1.00	1.614	
26	1661	1.00	1.809	
27+	692	1.00	2.028	

Table 32. Greenland halibut. Total nominal catch by main fishing areas (tonnes)

Year	Sub-area I	Div. IIb	Div. IIa	Div. Va	Div. Vb	Sub-area XIV	Total catch
1969	8393	25010	10386	23141	906	280	68116
1970	4011	70523	14950	30001	-	3822	123307
1971	5413	62764	10857	15049	11	13913	108007
1972	8549	18873	15633	10666	417	15389	69527
1973	5667	16081	8190	7386	358	12719	50401
1974	5251	24660	7852	7866	325	28089	74043
1975	6495	28511	3166	3308	560	19627	61667
1976	2479	29610	3985	5448	324	273	42119
1977	2222	16221	10384	15679	658	241	45465
1978	1591	10134	12892	11588	592	2166	38963
1979*	788	12946	3481	16966	316	6039	40536

* Preliminary

Table 33. Greenland halibut. Nominal catch (tonnes) in Sub-area I.

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*
German Dem.Rep.	2561)	_ 1)	14 ${ }^{\text {I }}$	11)	-	-	5	-	-	-	-
Germany, Fed.Rep.	-	-	14	-	25	22	6	2	1	-	
Norway	- 689	1675	1951	3116	2947	2167	2160	1203	1320	1148	5291)
Poland	5314		7	117	-	1		9	-	-	
UK (Engl.\& Wales)		- 336	$3-$	9179 4	$\begin{array}{r}995 \\ \hline\end{array}$	$\begin{array}{r}732 \\ \hline 329\end{array}$	550 3774	665	541	232	77^{2})
USSR	2134	2336	3441	4366	1700	2329	3774	600	360	211	1821)
Total	8393	4011	5413	8549	5667	5251	6495	2479	2222	1591	788

*Preliminary

1) From national statistics
2) December catch estimated.

Table 34. Greenland halibut. Nominal catch (tonnes) in Division IIa

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*
Faroe Islands	-	44						2	21	-	
German Dem.Rep.	5011)	2 1311)	3531)	1 0691)	52	656	172	354	1641	1398	7873
Germany, Fed.Rep.	+	-	3	3	$+$	49	41	17	22	321	423)
Norway	9885	6408	4974	11715	7861	6593	2265	3490	1434	2084	2 158 ${ }^{1}$
Poland	-	6291	5036	2643	137	499	66	31	95	197	
UK (Engl. \& Wales)	-	-		182	118	55	107	48	211	82	14^{2}
USSR	-	76	491	21.	22	-	515	43	6960	8809	95^{1}
Others										1	-
Total	10386	14950	10857	15633	8190	7852	3166	3985	10384	12892	3481

* Preliminary

1) From national statistics
2) December catch estimated
3) Includes IIb

Table 35. Greenland halibut. Nominal catch (tonnes) in Division IIb

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*
German Dem.Rep.	30311)	16 5981)	2 5821)	5631)	3902	5258	8295	8601	6535	3213	2701
Germany, Fed.Rep.	71	-	-	-	34	17	47	12	125		
Norway	4282	7788	2541	1152	3181	31	433	1312	1400	850	731)
Poland	-	12971	7234	5221	2003	4646	3579	3526	129	347	102
UK (Engl.\& Wales)				131	122	79	74	222	307	93	212
USSR Others	17626	33166	50407	11806	6839	14629	16083	15937	7725	5631	10 0491) 51)
Total	25010	70523	62764	18873	16081	24660	28511	29610	16221	10134	12951

* Preliminary

1) From national statistics
2) December catch estimated

Table 36. Greenland halibut. Nominal catch (tonnes) in Sub-areas I and II, 1969-79 (Data for 1969-79 from Bulletin Statistique)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*)
Faroe Islands	$3 \overline{788}{ }^{1}$)		$2 \overline{949}^{\text {1) }}$	$1{ }^{-6331)}$	3954	5914	8472	8 ${ }^{2}$	21 8176	4611	3488
Germany, Fed.Rep.	71			3	59	88	94	31	148	321	423
$\begin{aligned} & \text { Norway: } \\ & \text { trawl catch }{ }^{1)} \text { : } \end{aligned}$ long-line	-	1638	2309	9656	10217	4656	1686	4030	2526	2302	$887^{1)}$
$\begin{aligned} & \text { catch and } \\ & \text { gill netl): } \end{aligned}$	14856	14233	7157	6327	3772	4135	3172	1975	1628	1780	$1873^{1)}$
Poland	5314	19262	12277	7981	2140	5146	3645	3566	224	544	106
UK (Eng.\&Wales)	-	-	-	1262	1235	866	731	935	1059	407	1121
USSR	19760	35578	54339	16193	8561	16958	20372	16580	15045	14651	10326_{1}^{1}
Others						-	-	-	-	1	5^{1}
Total	43789	89484	79034	43055	29938	37763	38172	36074	28827	24617	172

\#)Preliminary

1) From national statistics

Table 37. Greenland halibut in Sub-areas I and II Catch per unit effort and total effort

Year	USSR catch/hour trawling (tonnes)	```Hours trawling (USSR effort)```	Total effort (USSR units)	$\begin{gathered} \text { German Dem.Rep. } \\ \text { catch/day } \\ \text { trawling (tonnes) } \end{gathered}$	Proportion Greenland halibut (\%)	Total effort (GDR units)
1965	. 80	20853	43558			
1966	. 77	12587	34084			
1967	.70	8196	34667			
1968	. 65	5226	40258			
1969	. 53	37283	82621			
1970	. 53	67128	168838			
1971	. 46	118128	171813			
1972	. 37	43765	116365			
1973	. 39	21951	76764	10.7	98	2798
1974	. 40	42395	94408	9.6	96	3934
1975	. 39	52236	97877	8.5	81	4491
1976	. 40	41458	90185	6.9	90	5228
1977	. 27	55722	106989	4.3	84	6704
1978	. 21	69767	117224	4.7	82	5238
1979	. 23	44896	74848	4.8	94	3586

Table 38. Greenland halibut in Sub-areas I and II. Input catch data for VPA.

Table 39. The estimated catch (sums of products) compared with the observed catch using the age compositions (Table 38) and last year's mean weights (C.M.1979/G:8, Table 12).

Year	Observed catch	Sum of products	Weight correction factor
1970	89484	94846	0.943
1971	79034	75749	1.043
1972	43055	44353	0.971
1973	29938	32440	0.923
1974	37763	38557	0.979
1975	38172	43505	0.877
1976	36074	39022	0.924
1977	28827	28902	0.997
1978	24617	23150	1.063
1979	17215	12665	1.359

Table 40. The two sets of mean weight at age data, one used for the period 1970-78, and the other used for 1979 and in the prognosis.

Age	$\bar{W}(\mathrm{~kg})$ $1970-1978$	$\bar{W}(\mathrm{~kg})$ $1979-$
3	0.200	0.3
4	0.441	0.6
5	0.567	0.9
6	0.737	1.2
7	1.079	1.5
8	1.421	1.8
9	1.848	2.2
10	2.281	2.6
11	2.887	3.0
12	3.247	3.5
13	4.303	4.1
14	4.931	4.8
15	5.765	5.6
16	6.308	7.0

Table 4l. 0-group indices for Greenland halibut in Sub-areas I and II, and the VPA estimates at age 3 .

Year class	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
O-group index	<1	<1	8.0	3.2	13.4	21.1	15.6	9.0	35.4	22.5
$\mathrm{~N}_{3}$ (VPA) $\times 10^{-6}$	24	24	25	38	32	32	32			

Table 42. Greenland halibut in Sub-areas I and II. Fishing mortalities from VPA ($M=0.15$) .

AGE	1970	1971	1972	1973	1974	1975	1976	1977	1978
3	.000	.000	.000	.000	.000	.001	.000	.002	.003
4	.001	.000	.015	.001	.015	.018	.005	.025	.021
5	.014	.003	.039	.008	.047	.053	.054	.126	.078
6	.067	.153	.164	.047	.117	.153	.254	.288	.320
7	.296	.454	.526	.261	.374	.466	.644	.637	.669
8	.696	.630	.414	.349	.413	.429	.750	.608	.870
9	.594	.490	.263	.269	.292	.431	.603	.542	.866
10	.606	.524	.233	.277	.319	.438	.467	.438	.674
11	.492	.498	.292	.315	.376	.539	.436	.782	.774
12	.479	.667	.420	.391	.469	.692	.778	.898	.839
13	.626	.900	.594	.434	.450	.868	.748	1.104	1.157
14	1.490	.677	.396	.433	.629	.770	1.378	1.229	.868
15	1.827	.597	.153	.221	.421	.726	.843	.947	.940
16	.580	.620	.370	.340	.390	.570	.650	.750	.850

MEAN F FOR AGES $>=7$ AND $<=11$ (NOT WEIGHTED BY STOCK IN NUMEERS) $.537 \quad .519 \quad .346 \quad .294 \quad .355 \quad .461 \quad .580 \quad .602 \quad .771$

AGE 1979

3	.003
4	.035
5	.110
6	.170
7	.400
8	.400
9	.400
10	.400
11	.400
12	.409
13	.400
14	.400
15	.400
16	.400

MEAN F FOR AGES $>=7$ AND $<=11$ (NOT WEIGHTED BY STOCK IN NUMEERS) .400

Table 43．Greenland halibut in Sub－areas I and II．Stock size in numbers from VPA．

AGE	1970	1971	1972	1973	1974	1975
3	42361	39274	29169	23943	23524	25154
4	33997	36459	33803	25105	20607	20246
5	40102	29230	31380	28667	21590	17481
E	46306	34029	25084	25982	24478	17734
7	43843	37 こ71	25139	18333	21328	18737
8	39511	28073	20363	12793	12155	12633
9	23951	16950	12866	11590	7767	6923
10	15694	11383	3942	8510	7619	4991
11	6927	7371	5801	E094	5552	4765
12	3515	3644	3854	3730	3827	3283
13	1415	1874	1610	2180	2171	2061
14	1508	652	656	765	1216	1192
15	334	293	285	380	$4 こ 7$	558
16	36	46	139	208	262	241
TOTAL						
	299501	246547	193991	168279	152523	135993

AGE	1976	1977	1978	1979
3	37657	31642	32263	31635
4	21630	32411	27177	27697
5	17117	18526	27197	22898
6	1426 c	13964	14060	21652
7	13101	9525	90.13	8789
8	10119	5921	4336	3972
9	7077	4116	2775	1563
10	3871	3531	2060	1004
11	277！	2087	1850	304
12	2392	1542	8，22	735
13	1414	946	541	306
14	745	576	276	146
i5	475	162	145	98
16	230	176	或禹	49
TOTAL				
	132868	124924	122561	121446

Table 44. Greenland halibut in Sub-areas I and II. Input parameters used in the catch predictions

Age	Exploitation pattern	Mean weights (kg)	Stock in size 1980 $(x \quad 10-3)$
3	. 01	. 3	31600
4	. 09	. 6	27147
5	. 28	. 9	23019
6	. 43	1.2	17656
7	1.00	1.5	15723
8		1.8	5071
9	\downarrow	2.2	2292
10		2.6	902
11		3.0	579
12		3.5	522
13		4.1	424
14		4.8	177
15		5.6	84
16		7.0	57
$\begin{aligned} & \text { Catch } 1980=14000 \text { tonnes } \\ & M=0.15 \\ & \text { Recruitment at age } 3 \text { in } 1981: 31600 \times 10^{3} \end{aligned}$			

Table 45. Greenland halibut. Nominal catch (tonnes) in Division Va.

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	$1979{ }^{\text {r }}$
Faroe Islands		4122	1316	1180	188	41	2	373	947	256	$42^{1)}$
German Dem.Rep.	$7 \overline{7681)}^{\text {7 }}$	$14{ }^{4} 958{ }^{1}$	1317 3	1591)	320	388	-		-	-	
Germany, F®d.Rep.of	1488	14	882	1119	826	1786	887	1719	4642		16-924
Iceland	5856	7343	5020	4640	2115	2.842	1212	1687	10090	11319	16924
Norway	54	338	369	186	-	-	-	-	+		-
Poland	-	1127	899	31 2	3648		$1 \overline{207}$	$1 \overline{669}$	-		-
$\begin{aligned} & \text { U.K. (Engl. + Wales) } \\ & \text { USSR } \end{aligned}$	7 9751)	2113	$3 \overline{246}$	2223 1128	3648 289	2314 10	1207	1669	-	-	-
Total	23141	30001	15049	10666	7386	7866	3308	5448	15679	11588	16966

${ }^{\text {Fi }}$ Preliminary. $\left.\quad 1\right)_{\text {From national statistics. }}$

Table 46. Greenland halibut. Nominal catch (tonnes) In Division Vb.

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {F }}$
Faroe Islands	-	-	-	-	-	7	6	2	304	2	$108{ }^{1)}$
France		-	-	-	-	-	-	-	-	12	-
German Dem.Rep.	$855^{1)}$	-	-	-	-	147	91		-	-	- 1)
Germany, Fed.Rep. of	51	-	11	405	287	163	437	309	341 ${ }^{\text {I }}$	570	$208{ }^{1}$
Norway		-	-	-	-		7	7	$5^{1)}$	3	-
Poland	-	-	-	$\bar{\square}$	9	-	18	-	-		-
U.K. (Eng1. + Wales)	-	-	-	12	61	8	+	6	8	8	-
USSR	-	-	-	-	1	-	-	-	-	-	-
Total	906	-	11	417	358	325	559	324	658	595	316

${ }^{\text {m) }}$ Preliminary. $\left.\quad 1\right)_{\text {From national statistics. }}$

Table 47. Greenland halibut. Nominal catch (tonnes) in Subearea XIV.

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {\# }}$
German Dem. Rep.	421)	2 9811)	3 4911)	7 3281)	8806	25266	16872				
Germany, Fed.Rep. of	183	2 981)	- 270	7.328 5		25 +	16 64	191	224	2156	$6039^{1)}$
Greenland	+	-	2	3	4	2		1	4	6	-
Iceland	24	2	+	-	3	1	+	2	- 1)	-	-
Norway	-	-	-	-	1	0	-	-		3	-
Poland	-	732	7910	7847	3122	1057	1054	-		-	-
U.K. (Engl. + Wales) USSR	31	-107	$2 \overline{240}$	1 205	1 776	1 1762	$\begin{array}{r} 2 \\ 1634 \end{array}$	5 74	11	1	-
Total	280	3822	13913	15389	12719	28089	19627	273	241	2166	6039

${ }^{3)^{2}}$ Preliminary. ${ }^{\text {1) }}$ From national statistics.

Table 48. Greenland halibut. Nominal catch (tonnes) in Sub-areas V and XIV, 1969-1979. (Data for 1969-78 from Bulletin Statistique)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {FF }}$
Faroe Islands	-	4122	1316	1180	188	48	8	375	1251	258	150
France					-	-	-		-	12	-
German Dem. Rep.	$8665^{1)}$	$17939{ }^{1}$	6808^{1}	$7487{ }^{1}$	9126	25801	16963	-	-		
Germany, Fed. Rep.	1686	-	1163	1529	1120	1949	1388	2219	5207	2726	6247
Greenland	+	-	2	3	4	2	1	1	4	6	6
Iceland	5880	7345	5020	4640	2118	2843	1212	1689	10090	11319	16924
Norway	-	338	369	186	-	-	7	7	7	19	-
Poland	-	1859	8809	7878	3131	1542	1072	-	-	-	-
U.K. (Engl. + Wales)		-	-	2236	3710	2323	1209	1680	19	9	-
USSR	$8006{ }^{1}$	2220	5486	1333	1066	1772	1634	74	-)	-
Total	24237	33823	28973	26473	20463	36280	23494	6045	16578	14349	2332.7

\#) Preliminary. \quad 1) From national statistics.

Figure 1. Sebastes marinus in Sub-area I and Division IIa. Yield per recruit and spawning stock per recruit curves for the present exploitation pattern.

Figure 2. Sebastes marinus in Sub-area I and Division IIa. Catch in $\overline{1981}$ and biomass and spawning stock biomass 1982 at different levels of F in 1981.

Figure 3. Sebastes mentella, in DivisionsIIa and IIb. Relation of weighted mean fishing mortality (ages 13-2l) to total effort.

$\mathrm{y}=0.004+0.001864 \mathrm{x}$

1977-79 not included

Total effort (hours trawling $\times 10^{-3}$)

Figure 4. Sebastes mentella in Divisions IIa and IIb. Relation of year class strength at age 6 (from VPA) to corresponding 0-group survey abundance indices.

Figure 5. Sebastes mentella in Divisions IIa and IIb. Yield per recruit and spawning stock per recruit curves for the present exploitation pattern ($M=0.1$).

Figure 6. Sebastes mentella in Divisions IIa and IIb. Catch in 1981; total biomass (age 6+) and spawning stock biomass (age 15+) 1982 at different levels of F in 1981.

Figure 7. Sebastes marinus in Sub-areas V and XIV. Exploitation pattern (Relat. F).

Figure 8. Sebastes marinus in Sub-areas V and XIV.

Figure 9. Sebastes marinus in Sub-areas V and XIV. Yield and spawning biomass per recruit in weight.

Figure 10. Sebastes marinus in Sub-areas V and XIV. Catch in 1981 and biomass (age $9+$) and spawning stock biomass (age 16+) 1982 at different levels of F in 1981.

Figure ll. Sebastes mentella in Sub-areas V and XIV.

Figure 13. Sebastes mentella in Sub-areas V and XIV. Catch in 1981, total biomass (age $9+$) and spawning stock biomass (age 16+) in 1982 at different levels of F in 1981.

Figure 14. Mean weight at age for Greenland halibut in Sub-areas I and II (both sexes). Line fitted on the bases of the data from 1979 (USSR fishery). The mean weights used for the period 1970-78 plotted for comparison.

Figure 15. Greenland halibut in Sub-areas I and II. The relation between the mean fishing mortalities on age groups 7-11 (unweighted) and the total effort based on cpue data from the USSR trawl fishery. Open symbols.
\bar{F}_{7-11} not considered in drawing the line.

Figure 18. Greenland halibut in Sub-areas I and II. The relation between the cpue of German Democratic Republic trawlers and the biomass of 4 years and older fish.

Figure 19. Greenland halibut in Sub-areas I and II. The relation between the cpue of USSR trawlers and the biomass of 4 years and older fish.

Biomass $x 10^{-3} t$

Figure 20. Greenland halibut in Sub-areas I and II. Catch per unit of effort of 7 years and older fish by German Democratic Republic trawlers versus the estimated biomass of the same age groups.

Figure 21. Greenland halibut in Sub-areas I and II. Yield per recruit and spawning stock per recruit as a function of the fishing mortality on 7 years and older fish.

Figure 22. Greenland halibut in Sub-areas I and II. Prognosis of the total stock, the spawning stock in 1982, and catch taken in 1981 versus the fishing mortality in 1981 versus the fishing mortality in 1979. ($F_{1979}=0.40$).

Figure 23. The stock biomass (4 years and older) and the spawning stock biomass (9 years and older) for Greenland halibut in Sub-areas I and II.

APPENDIX

A NOTE ON MESH ASSESSMENT OF THE REDFISH FISHERIES IN SUB-ARFAS I AND II

by C.J. Rørvik and A. Hylen

INTRODUCTION

The basic ideas of the mesh assessment method were developed by K.P. Andersen at the Danish Institute for Fisheries and Marine Research. The method is partly described by Hoydal (C.M.1977/F:51), and it has been used by the Arctic Fisheries Working Group (C.M.1979/G:20). A detailed description of the method will be given in Hoydal, Rørvik and Sparre (in prep.).

The essence of the method is that the simulated relative length (or age) distribution of the catches on each of the fisheries (one or several) of the same stock is compared with the observed relative length (or age) distributions. The mesh sizes of the fisheries are systematically changed until the sum of the squared distances between the observed and the estimated relative length distributions are minimised. The outcome is the estimations of the effective mesh sizes.

In the simulations discard practice, the recruitment and possible later derecruitment of the fish are taken into account for each fishery, as well as the selective properties of the gears. The von Bertalanffy parameters and fishing mortalities are fixed input parameters.

The second stage of the method compared the simulated age distributions of two different sets of mesh sizes (or any other fixed input parameters). The method computes the yearly changes of the yields until it stabilizes the new long-term averages corresponding to the new effective mesh sizes.

The model assumes a stable recruitment, therefore the age and length compositions used are the average from as many years as possible from the period 1967-78 when the legal mesh size was 120 mm in the fisheries concerned in the present assessment.

1. INPUT DATA
1.1. Von Bertalanffy Parameters $\mathrm{L}_{\infty}, \mathrm{K}, \mathrm{t}_{0}$
1.1.1. Sebastes mentella

We used the averaged data in document C.M.1978/G:4 (Table 12). The results are given in Appendix Figure 1.
1.1.2. Sebastes marinus

We used the averaged data from paper C.M.1978/G:4 (Table 11). The results are given in Appendix Figure 2.

1.2. Age Data
 1.2.1. Sebastes mentella

Averaged 1967-78, from Table 14 in document C.M.1979/G:25. Only total available.

1.2.2. Sebastes marinus

Averaged 1969-78, from Table 9 in document C.M.1979/G:25. Shown in Appendix Figure 3. This age distribution has a multi-mode shape (Appendix Figure 3), which may have been caused by several fisheries fishing in areas with large different recruitment curves etc. We evaluated this age distribution (from the total fishery) not too suitable for an optimization.
1.3. Length Data
1.3.1. Sebastes marinus

Length composition data for USSR in areas I and $I I a$, and for the Federal Republic of Germany in Division IIa were available. The length compositions of the total catch were split in the USSR fishery and other countries' fisheries (the rest). The class intervals in the USSR length compositions were adjusted to correspond with those for other countries. For details, see Appendix A.

1.3.2. Sebastes mentella

USSR data for 1965-78 in areas I, IIa and IIb are available. Used Divisions IIa and IIb data for 1968-78. (1967 not available.) For those years (1973-75) when Division IIa data were not available, Division IIb data were applied to the total catch. Total number caught was adjusted to be equal to that given in Table 12 in document C.M.1978/G:4. As for S. marinus an adjustment for the 0.5 cm difference in length measuring was done.

1.4. Catch Data

1.4.1. Sebastes marinus

The total catch in Sub-area I and Division IIb was given for 1967-78 in Table 5 of document C.M.1979/G:25. The total USSR catches for 196775 in Sub-area I and Division IIa were available in Table 7 of document C.M.1978/G:14. For 1976-78 the USSR catch was estimated by subtracting the USSR catch of S. mentella calculated from cpue and effort in Table 6 in C.M.1979/G:25 from the total USSR catch of redfish available in Table 1 of document C.M.1979/G:25. Total catches by all countries except USSR were calculated by subtracting the USSR catch from the total.

The USSR catch in Division IIa was estimated as the difference between its total catch and the Sub-area I catch available in Table 2 of document C.M.1979/G:25.

1.4.2. Sebastes mentella

Total catches were available for the period 1967-78 in Table 5 of document C.M.1979/G:25.
1.5. Discards

With the lack of data, no discard curve was applied (see also Section 2.2.1.1).
1.6. Gear Parameters
1.6.1. Selection factor

Selection factor - $\mathrm{L}_{75} / \mathrm{L}_{50}$ ratio
Source: Coop.Res.Rep., No. 25 (Ser.A).
Range: 2.5 - 3.5
Average: 2.90
$\mathrm{L}_{75} / \mathrm{L}_{50}: 1.17$

1.7. Selection Curve and Recruitment Curve F \& M

Modified tangens hyperbolicus curves are used:
Let:

$$
f(L) \stackrel{\operatorname{def}}{=} \operatorname{EXP}\left(\operatorname{Ln} 3 \times\left(L-L_{50}\right) /\left(L_{75}-L_{50}\right)\right)
$$

Then the selection curve as a function of length 1 is:

$$
S(L)=f(L) /(1+f(L)) \quad \text { (a modified } \tan ?)
$$

Recruitment curve:

$$
R(L)=\left(f^{\prime}(L) /\left(1+f^{\prime}(L)\right)\left(f^{\prime \prime}(L) /\left(1+f^{\prime \prime}(L)\right)\right.\right.
$$

where $f^{\prime}(L)$ describes the ascending part ($L_{75}>L_{50}$) and $f^{\prime \prime}(L)$ the descending part ($\mathrm{I}_{75}<\mathrm{I}_{50}$) of the recruitment curve.
$\mathrm{L}_{75}=$ Length at 75% selection/recruitment
$\mathrm{L}_{50}=$ Length at 50% selection/recruitment
The von Bertalanffy equation gives the relation between the length and age.

The level of the fishing mortalities were taken from VPA (last Working Group report), and in the case of the S. marinus it was split so that the percentage split of the catch corresponded to the observed split (1969-78). $\mu=0.10$ is used.

2. RESULTS
 2.1. Sebastes mentella
 2.1.1. Length data
 2.1.1.1. Maximum mesh size

That is using full recruitment for all age/length groups exploited. Results are given in Appendix Figuxe 4. The fit between the observed and estimated curve is expressed by the object function (= sum of squared distances between observed and estimated values).

Max. mesh size: 96.5 mm
Object function: 7251

2.1.1.2. Effective mesh size

The recruitment curve shown in App. Figure 5 gave a reasonable fit between the observed and estimated length distributions (Appendix Figure 6).

Eff. mesh size: 80.0 mm Object function: 4755
2.1.2. Age data
2.1.2.1. Maximum mesh size

Results shown in Appendix Figure 7.
Max. mesh size: 140 mm
Object function: 16511

2.1.2.2. Effective mesh size

The recruitment curve shown in Appendix Figure 8 gave a reasonable fit between the observed and the estimated age distribution (Appendix Figure 9). This reduced the object function from 16511 to 2168.

Eff. mesh size: 70.0 mm
Object function: 2168
2.1.3. Comparison of the estimation based on age and length data

The estimations based on the age distribution generally gave lower values of effective mesh size than the length distributions.

For comparison, Appendix Figure 6 shows the length distribution as generated by the results from the optimization based on age data, and vice versa in Appendix Figure 9.

Appendix Figure 10 shows the observed distribution of the fishing mortalities with age, compared with the fishing mortalities generated by the effective mesh size and recruitment curves as estimated from the age and length distributions, respectively.

Accepting the von Bertalanffy parameters (Appendix Figure 1) the length data indicate that the catches are comprised by more younger fish than the age data (Appendix Figure 9). The peaks
in Appendix Figure 9 are 2 years apart. A difference of 0.5 years can be explained by the fact that $t_{0}=-0.29$ (Appendix Figure 1) was used in these calculations. However, if the samples on which Appendix Figure 1 is based are taken throughout the year, rather than in the beginning of the year (the "birthday"), t_{0} will be increased by 0.5 year $\left(t_{0}=-0.29+0.5=+0.21\right)$. This would change the age distributions based on the length estimation 0.5 years to the right (Appendix Figure 9).

2.2. Sebastes marinus

2.2.1. Length data
2.2.1.1. Effective mesh size

	USSR	Other countries
Effective mesh size	86.7 mm	107.7 mm
Object function	2450	$4115(\Sigma=6565)$

For the recruitment curves shown in Appendix Figures 11-12, the results shown in Appendix Figures 13-14 are achieved.

The fit between the observed and estimated fishing mortalities (as generated by the results above) is shown in Appendix Figure 15.

It seems reasonable to conclude from the length distributions of "Other countries" (Appendix Figure 14) (based on data from the Federal Republic of Germany) that a lot of discarding takes place. With the lack of data on discarding, an extra steep recruitment curve (Appendix Figure 12) was applied, although a discard curve (with the basic assumption that discards die) would be the best. Furthermore, the estimates of the effective mesh size for "Other countries" (107.7 mm) is highly dependent on this recruitment curve, which we really do not know much about. The reason for picking the curve shown in Appendix Figure 12 was that it gave a good fit between the observed and estimated length distributions, as well as what was (subjectively) thought as a reasonable value.

For these reasons, as well as for reasons discussed below in Section 2.3 , it could well be, we believe, 30 mm higher or lower.
2.3. Some Evaluation of the Results

The effective mesh sizes are inversely proportional to the selection factor applied (2.90). A selection factor of, say, 2.5 would for example change the effective mesh size from 80 mm to 93 mm ($=80 \times 2.90 / 2.5$) in the case of the S. mentella (Section 2.1.1.2). Uncertainties because of "meshing" exist. This affects the selection factor as well as the L_{75} / L_{50} ratio. "Effective" mesh size might thus be quite different from the average real mesh sizes used in this period. There are uncertainties about the catch statistics (the split between \underline{S}. mentella and \underline{S}. marinus), the age distributions (especially the age distribution for S. marinus) (App. Figure 3) do not look very convincing to us. The length distribution shown in Appendix Figure 13, especially the ascending part, is somewhat difficult to simulate. The results from the simulations on \underline{S}. mentella
gave different results (Appendix Figures 5, 6, 8, 9 and 10). This indicates that some inconsistencies exist in the basic data (or in the method).

The basic method assumes a constant recruitment. However, this is seldom (or never) the case in natural fish populations. For this reason the length (or age) data used should be the average for a period of years of at least the same length as the number of mainexploited age groups, in order to average out the effects of a varying recruitment. For S. marinus that should be nearly 20 years (Appendix Figure 3); for S. mentella about 10 years at least (Appendix Figure 9).

This makes the results from the S. mentella fishery more credible than the results from the \underline{S}. marinus fishery.

A further complication arises because of great changes in the fishing mortalities, as the distribution used may differ significantly from a (age or length) distribution in an equilibrium situation.

Given these uncertainties we would not put too much weight on the actual values of the effective mesh sizes.

However, this does not render the results useless. Let the effective mesh size be m with some uncertainties; let the legal mesh size be increased by $b \mathrm{~mm}$, and let us assume that this also increases the effective mesh sizes by $b \mathrm{~mm}$. The second step in the mesh assessment method is to compare the age distributions generated by these two effective mesh sizes and to estimate the immediate and the long-term effects of a mesh size change. This is, simply speaking, similar to dividing $m+b$ by m. In the ratio $(m+b) / m$, the uncertainties in m are within reasonable limits crossed out. That is, the relative effects of a change in the effective mesh size are less uncertain than the value of the effective mesh size.
2.4. Changing the Mesh Size

Four altermatives were considered. Let 프 be the effective mesh size.

$m-10 \mathrm{~mm}$,	corresponding to	110 mm
$m+15 \mathrm{~mm}$,	$"$	135 mm
$m+35 \mathrm{~mm}$,	$"$	155 mm
$m+55 \mathrm{~mm}$,	$"$	175 mm

2.4.1. Sebastes mentella

The long-term effects for changes of the effective mesh size are shown in App. Figure 16. It shows the results based on the age optimization, and the results from the length optimization. The trend is similar. LNote that the considerations at the end of Section 2.3 do not fully apply to these results, as the two curves are based on data that do not seem to be fully consistent, see also Section 2.3.7

Although it seems that the effects on the long-term yield of S. mentella is not very dependent on a change of the effective mesh (whatever it may be) of -10 mm to +35 mm .

Appendix Figure 17 indicates the expected yearly catches (in an initial equilibrium situation!!) until the long-term catch is achieved with the new effective mesh sizes.

2.4.2. Sebastes marinus

In Appendix Figure 18 the immediate and the long-term changes in the yield are given as a function of the change of the effective mesh size.

It appears that the long-term yield of the total fishery will be larger than or equal to the present for an increase of up to 55 mm (175 mm legal size). The "inclusion" of the discards in the recruitment function in the case of "Other countries" (see Section 2.1.1.1) works in the direction that this long-term gain may be somewhat underestimated. However, the long-term gains or losses are rather different for the two fisheries.

The immediate effects of a mesh change seem rather similar for the two fisheries. Again, however, if a large amount of discarding takes place in "Other countries" fisheries, as indicated by the length distribution (Appendix Figure 14) in our opinion, the immediate effects of a mesh change for this part of the total fishery is definitely overestimated. Changes of the mesh would mostly affect the amount of discards, leaving the retained (landed) catch ${ }^{1}$) almost unchanged for relatively large changes of the effective mesh size.

3. CONCLUSIONS

With the probable exception of the USSR S. marinus fishery, but in the other cases, and in the total fisheries (for both species of redfish) an increase of the legal mesh size by up to 35 mm seems beneficial for the long-term yield from these stocks.

The basic age and length data, the background of independent information to "calibrate" input parameters (recruitment, discarding, selection etc.) are generally poor.

The values of the effective mesh sizes given above should therefore only be taken for what they are worth - first tentative suggestions.

1) = the yield in these calculations.

APPENDIX A

Sebastes marinus

Length Compositions

All countries, except USSR, for Sub-area I and Division IIa.
For 1969-1975, Federal Republic of Germany length compositions for Division IIa have been used.

For 1976-1978, Federal Republic of Germany length compositions for Division IIa have been used. Total length compositions taken from Table 8 in 1979 Report C.M.1979/G:25.

For USSR, length compositions submitted late 1979 have been used.
Sub-area I
Data for 1970 and 1974 missing.
For 1970 , the average length compositions for 1969 and 1971 have been used.
For 1974, the average for 1973 and 1975 have been used.
Division IIa
Data for 1970 were missing. The average length composition for 1969 and 1971 has been applied.

Average Weights

For all countries except USSR, the Federal Republic of Germany average weights in Division IIa have been used. The average weights for USSR both in Division IIa and Sub-area I have been calculated from the length/weight relationship established on the data given in Table 12 from the 1978 Report (C.M.1978/G:14).

Mean length in each cm group is 0.5 (30.5 cm). This gives:-

$$
\begin{aligned}
W & =0.0162591^{2.9506} \\
r^{2} & =0.99688
\end{aligned}
$$

All other countries except USSR have a class interval as follows:-

Average: 30.0 cm .
USSR has a class interval as follows:-

Average weights are calculated for $30.5,32.5,34.5 \mathrm{~cm}$, etc.

Appendix Figure 1. Von Bertalanffy fit for Sebastes marinus. Sub-areas I and II.

Appendix Figure 2. Von Bertalanffy fit for Sebastes marinus. Sub-areas I and II.

Appendix Figure 3. Observed relative age distribution of the Sebastes marinus catch 1967-78 (Sub-areas I and II).

Appendix Figure 4. Observed and estimated length distribution for maximum mesh size. Sebastes mentella. Length optimization.

Appendix Figure 5. Applied recruitment curve and estimated selection surve. Sebastes mentella. Length optimization.

Appendix Figure 8. Applied recruitment curve and estimated selection curve. Sebastes mentella. Age optimization.

Appendix Figure 10. Observed and estimated fishing mortalities. Total fishery of Sebastes mentella.

Appendix Figure 11. Applied recruitment curves and estimated selection curve. USSR trawl. Sebastes marinus.

Sebastes marinus

$$
\begin{aligned}
& \text { • Recruitment } \\
& \text { OーーーーO Selection }
\end{aligned}
$$

Appendix Figure 12．Applied recruitment curves and estimated selection curve．Other countries．Sebastes marinus．

Appendix Figure 13. Observed and estimated length distribution. Sebastes marinus. USSR trawl.

Appendix Figure 16. Long-term yield of Sebastes mentella as a function of a change of mesh size.

[^0]: x) General Secretary, ICES,
 Palægade 2-4, 1261 Copenhagen K, Denmark.

[^1]: F) provisional data

