This Report not to be cited without prior reference to the Council ${ }^{x}$)
International Council for the
Exploration of the Sea
C.M.1981/G:2
Demersal Fish Committee
https://doi.org/10.17895/ices.pub. 9358

Digitalization sponsored by Thünen-Institut

REPORT OF THE ARCTIC FISHERIES WORKING GROUP

Copenhagen, 1-5 October 1980
x) General Secretary, ICES.

CONTENTS

Page

1. Participants 1
2. Terms of Feference 1
3. Introductory Remarks 1
4. North-East Arctic Cod 2
4.1 Status of the Fisheries 2
4.2 Stock Size in 1979 2
4.3 Virtual Population Analysis (VPA) 3
4.4 Recruitment 4
4.5 Catch Prediction 4
4.5.1 Management options 5
4.5.2 Effects of 1981 TACs on spawning stock biomass 6
4.6 Comments on Assessment 7
5. Haddock 7
5.1 Status of the Fisheries 7
5.2 Virtual Population Analysis (VPA) 8
5.2.1 Fishing mortalities 8
5.2.2 Recruitment 8
5.3 Catch Prediction 8
5.3.1 Management options 9
5.3.2 Effects of 1981 TACs on spawning stock biomass 10
6. Mixed Fishery 10
7. Age Composition 11
8. The Mixture of North-East Arctic Cod and Coastal Cod in Norwegian Waters 11
9. Stock/Hecruitment Relationship 12
Tables 1 - 21 13
Figures l-7 31
10. PARTIGIPANTS

V C Anthony	USA
A C Burd	United Kingdom
P Cornus	Germany, Fed.Rep, of
A Hylen	Norway
V P Ponomarenko	OSSR
C J Rørvik	Norway
V M Ryzhov	USSR
A Schumacher (Chairman)	Germany, Fed.Rep, of
M Yu. Volodarski	USSR

V Nikolaev, ICES Statistician, also participated in the meeting, which was held at ICES headquarters from 1-5 October 1980.

TERMS OF REFERENCE
At the 67th Statutory Meeting the Council decided (C.Res.1979/2:42):
"that the Arctic Fisheries Working Group should
meet at ICES headquarters 5-1U May 1980 to assess TACs for 1981 for cod and haddock".
3. INTRODUCTORY REMARKS

At its May meeting the Working Group could not produce a reliable assessment since the differences between the results of an assessment based on fisheries data and an assessment using survey data were too large to be accounted for by normal sources of error in either estimate.
The Working Group, therefore, was seeking advice from ACFM on how it should proceed on these assessments.
ACFM advised the Arctic Fisheries Working Group to take the following line:

1. In estimating fishing mortalities and stock sizes in 1979 and 1980 more weight should be given to reliable survey results, particularly if two independent surveys are in reasonable agreement, than to fishery dependent data.
2. Adjustments should be made to the estimates of total international effort given by the Working Group. The possibility of underestimation of total international effort derived from cpue data for 1978 and 1979, due to the considerable change in the distribution of cod and haddock, should be fully evaluated and corrected for if necessary.
3. In view of possible errors or biases.in the estimated age composition of commercial catches, age data reported by national laboratories should be examined by the members of the Working Group prior to its next meeting. This examination should include: (a) comparison of time and location of samples taken, in relation to season and area of the catches to which the data of these samples were to be applied; and (b) interpretation of age structures on the otoliths.
4. In evaluating the assessments, and the TACs for 1981, due consideration should be given to the mixed fishery on cod and haddock in the area.
5. The Arctic Fisheries Working Group should meet at ICES headquarters for 3 (4) days prior to the Statutory Meeting (1-3(4) October 1980) to assess TACs for North-East Arctic Cod and Haddock according to the advice given by ACFM.

In addition, at its meeting in July ACFM received a letter from
Dr Zilanov, the USSR representative in ACFM, requesting some data should
be acquired in view of analysing stock/recruitment relationship. He also requested data and explanation on the mixture of coastal cod and Arctic cod in Norwegian waters.

Comments on these topics are given in Sections 8 and 9 of this report.
4. NORTH-EAST ARCTIC COD

4.1 Status of the Fisheries

Revised figures for cod landings in 1979 amounted to 444016 tonnes, about 17000 tonnes higher than the preliminary figure used in the previous Working Group report (C.M.1980/G:12). This is 255984 tonnes less than the total TAC of 700000 tonnes, Murman cod included (Tables 1 and 2).
The estimated total landing of North-East Arctic cod by September 1980 is 332000 tonnes (Table 3). The estimated total catch for the whole year is 401000 tonnes. For assessment purposes the estimated. catch was split by regions and by countries in order to apply the appropriate age compositions. This catch is some 20% below that projected by the Working Group in 1979 assuming no change in exploitation level from that in 1978 (C.M.1979/G:20).

4.2 Stock Size in 1979

Both in the ACFM report and that of the Working Group (C.M.1980/G:12) difficulties were reported in assessing and interpreting the level of total international effort and stock abundances derived from cpue data. Despite total revision of the United Kingdom data base and a careful re-examination of other countries' cpue data, it would appear that the 1979 cpue overestimates the abundance of the stock in 1979, and as a result fishing mortalities and effective fishing effort are underestimated.

The age composition of the commercial catches in 1979 indicated that the fishery was concentrated on the 1975 year class which dominated the age compositions in the trawl fisheries. Extreme hydrographic conditions in the autumn of 1978 and the spring of 1979 are believed to have had the effect of concentrating the stock, thus rendering it more vulnerable to the fishery.

The trawl fisheries in Sub-areas I and IIb concentrate on the 4-7 year old fish, but there appeared no way in which the magnitude of the likely overestimate of abundance from cpue could be assessed. In consequence, the international effort as estimated from these cpue data is underestimated in 1978 and 1979.

The Working Group, therefore, followed the line indicated by ACFM in basing an estimation of fishing mortality and stock size in 1979 and 1980 on "reliable survey results".

Two series of data were available, the Norwegian acoustic surveys for 1978, 1979 and 1980 and the USSR groundfish surveys in 1979 and 1980. The results of both these surveys are also affected by the environmental factors mentioned above. The Norwegian acoustic surveys in February and March each year do not cover the full distributional range of the cod stock. While the younger fish may more fully occur in the surveyed area, the older fish are distributed more to the west and outside the surveyed area. The stock estimates must be regarded as underestimates, but, as with the cpue data, it is not possible to assess the magnitude of this. Difficulties in the acoustic equipment during the 1980 survey may have introduced an additional bias into the survey estimate, the
magnitude of which cannot be quantified at present.
The stock estimates from the 1979 survey are given below

$$
\text { (Table } 7 \text { C.M.1980/G:12) }
$$

Age	Year class	Stock in millions
	1976	112
4	1975	522
5	1974	77
6	1973	44

In the absence of any other estimate the Working Group accepted this stock size estimate of the 1975 year class.

The USSR ground fish survey takes place in April-May and covers a wide area. The Working Group examined these data (Table 4) to assess whether they could give valid estimates of the mumbers of fish older than age 4 and whether they could provide estimates of total mortality. Compared with the commercial fishery data, the rates of the abundance of the older fish to that of the 1975 year class in the USSR were higher. This was interpreted as further evidence of concentration by the commercial fishery and it was agreed to use the ratios in the USSR data to calculate stock sizes of older fish on the basis of 522×10^{6} fish of the 1975 year class.

Total mortality estimates were calculated from the Norwegian acoustic data, the USSR data, and the Norwegian catch data from the acoustic surveys but used as a ground fish survey, Table 5. It was concluded from the comparison of the Norwegian acoustic data and the USSR data that the latter probably was more representative of the abundances of older fish, and confirmed the procedure adopted.

In assessing the stock sizes of age groups 8-12, which are mainly taken in the fisheries in IIa, a regression was calculated relating mean fishing mortality in 1971-78 to total effort on fish older than 8 in gill net units (Figure 1, Table 6). From an estimate of gill net effort in 1979 a mean F of 0.55 was derived. In accordance with the previous exploitation pattern F values were computed which produced this mean. The fishing mortalities were applied to the catches in a number of these age groups in 1979 to arrive at stock estimates.

It is believed that the trend in increasing catchability in the gill net fishery has continued (C.M.1979/G:12, Figure 2). This would result in an underestimation of fishing mortality.

From the catches in number in 1979 the stock at 1 Jan. 1980 was computed. Taking into consideration that the 1980 total is limited by quota regulation, an estimated annual catch in muber was derived. When applied to the computed 1980 stock the fishing mortalities were in general absurdly low, particularly on ages 8-12 (. 43 compared to the level of .73 in the 1971-77 period). It was concluded that the procedure. adopted in relying on the survey data was not acceptable and that these data did not offer a reliable base.

4.3 Virtual Population Analysis (VPA)

The age compositions used for the 1979 landings were adjusted for the revised catch figures. Preliminary age compositions were derived for
the estimated 1980 landings by applying age distributions for the first half of 1980, submitted by the Federal Republic of Germany, Norway and USSR (Table 7).

These catch at ase data were used as input data for the VPA. Natural mortality was set at 0.2 , as customary.

Because of the lack of any independent method of assessing fishing mortality in 1980 and not accepting the apparent reduction in effort as calculated from the cpue data for 1979, the Working Group decided that there was no reason to suppose that the level of exploitation or its pattern was different from that in recent years. It calculated the mean fishing mortality on each age group for the period 1971-77 taken from the VFA in the previous Working Group report (C.M.1980/G:12) as input F for starting the VIA The results are given in Tables 8, 9 and 10.

Figure 2 illustrates the decline in the Arctic cod stock from 1950 in biomass. The lower part of the histogram gives the biomass of fish older than 7 years, while the upper part shows the biomass of the juvenile stock of 4-7 year olds. Even supposing that the input F values are too high in 1980 no major adjustment would reverse the obvious trend in declining spawning stock and declining recruitment.

4.4 Recruitment

The number of recruits at age 3 as calculated from the virtual population analysis (C.M.1980/G:12) were plotted against an index of abundance from the USSR young fish survey (Figure 3). A curvilinear regression ($\mathrm{r}=0.84$) was fitted to the data for the purpose of estimating the abundance of the 1976, 1977, 1978 and 1979 year classes at age 3. The USSR Young fish survey indices for these year classes are given in Table 13 of the Report of the Arctic Fisheries Working Group (C.M.1980/G:12). A straight line was fitted to these points in the previous report which produced an intercept on the y-axis of 293 million fish. This means that even when no fish were caught in the USSR survey the recruitment estimate would still be 293 million fish. This level is greater than that determined for the 1965, 1966, 1967 and 1974 year classes from the virtual population analysis. The new curve, shown in Figure 3, has an intercept of 75 million fish and represents the poor year classes much better than the previously used straight line. The estimate of recruitment for the 1976, 1977, 1978 and 1979 year classes are 325, 195, 100 and 100 million cod, respectively.

4.5 Catch Prediction

The parameters used for calculating catches in 1981 and the resulting stock sizes in 1982 are given in Table 11. No change has been made on the pattern of exploitation and on the average weight per age group from the previous assessments.

Recruitment has been estimated on the basis of the USSR Young fish survey index and a predictive regression (s. section 4.4 of this report).
4.5.1 Management_Options

Species: COD
Area: ICES SA I and II

1980				$\begin{aligned} & \text { VAIAGEMETTI } \\ & \text { OPPIONN } \\ & \text { FOR } 1981 \end{aligned}$	1981				1982	
STOCK BIOM. $(3+)$	SPAWNITYG STOCK EIOMASS (8+)	$\begin{gathered} \overline{\mathrm{F}} \\ (8-12) \end{gathered}$	$\begin{aligned} & \text { CATCH } \\ & (3+) \end{aligned}$		$\begin{aligned} & \text { STOCK } \\ & \text { BIOM. } \\ & (3+) \end{aligned}$	SPAWNING STOCK BIOMASS (8+)	$\begin{gathered} \overline{\mathrm{F}} \\ (8-12) \end{gathered}$	$\begin{aligned} & \text { CATCE } \\ & (3+) \end{aligned}$	sTock BIOM. (3+)	SPAWTIIIG STOCK BIOMASS (8)
1560	222	. 7	401	$\begin{aligned} & \text { Doubling } \\ & 1980-81 \\ & \text { SSB } \end{aligned}$	1380	244	. 06	50	1620	430
				$\mathrm{F}_{0.1}$. 15	137	1516	418
				$F_{\text {(MAX }}$. 25	220	1411	380
				Maintaining TAC 1980			. 50	400	1181	298
				Maintaining 1980 level of exploitation			. 70	521	1028	246

Weights in thousands of tonnes

The results of the catch projection are given in Figure 4. In the table above, management options related to the reference points on the yield per recruit curve as suggested by ACFM are given.
In addition, other options which are related to certain levels of spawning stock biomass and catch are also considered.

4.5.2 Effects of 1981 TACs on spawning stock biomass

In the 1979 report of the Arctic Fisheries Working Group (C.M.1979/G:20) it was pointed out that, based on a Ricker stock/recruitment relation, the optimum level of spawning stock biomass ranges from 500000 tonnes to 1000000 tonnes. Only by ceasing to fish would the spawning stock reach the level of 500000 tonnes at the beginning of 1982. This level is considered by the Working Group as a minimum requirement to reduce the probability of recruitment failure due to low spawning stock levels.
The exploitation of the stock in 1981 at a level of $\mathrm{F}_{0.1}$ would increase the spawning stock by 70% at the beginning of 1982. The 1981 TAC would then be about 140000 tonnes. If this management strategy would be continued up to the mid-1980s there would be a continuous increase in spawning stock biomass up to about 1000000 tonnes in 1984 (see table on p.7) which was the level between 1950 and 1960 (see Figure 2).
The TAC levels associated with this management policy are expected to be very low in the next few years unless extremely abundant year classes will recruit to the fishery.
Fishing at $F_{\max }$ in 1981 would increase the spawning stock in 1982 by about 55% from the 1981 level to 380000 tonnes. This level of F in 1981 would require a.reduction in TAC from the present level to 220000 tonnes in 1981. Continuation of this management policy would increase the spawning stock further in 1983 and 1984 to about 650000 and 800000 tonnes respectively. This estimated increase is mainly due to the expected contribution to the spawning stock of the 1975 year class which is entering the spawning stock in 1983. Since the following year classes are estimated to be poor, no further increase in spawning stock size can be expected in the later 1980s. However, it might be possible to keep the spawning stock biomass above the dangerously low level if this long-term management strategy will be followed (see text table, p.7). Maintaining the level of fishing mortality (0.5) which is associated with a TAC in 1981 equal to that of 1980 would increase the spawning stock biomass to about 300000 tonnes in 1982 followed by a further increase to about 400000 tonnes in 1983 and 1984. Under this management option the spawning stock is not expected to reach even the lower level of its optimal range. The estimated catch in 1982 associated with this management policy is 362000 tonnes.

Estimated spawning stock biomass 1981-85 and estimated catch 1981-82 at different levels of exploitation (catch figures for 1983-85 are dependent on recruitment estimates and are therefore not given in the table).

Year	.15(F0.1)		.25($\mathrm{F}_{\text {max }}$)		. 5		. 7	
	SSB	Catch	SSB	Catch	SSB	Catch	SSB	Catch
1981	244	137	244	220	244	400	244	521
1982	418	164	380	243	298	362	246	405
1983	780		647		405		279	
1984	1048		797		404		235	
1085	1.136		794		328		163	

Maintaining the present level of exploitation ($F=0.7$) into the mid1980s would, after a marginal increase in 1983 reduce the spawning stock further below the present level which is already dangerously low.

In general the spawning stock biomass in the mid-1980s is expected to be very low unless a drastic reduction in the overall level of exploitation will occur. This is due to the heavy overexploitation of the rich 1973 and 1975 year classes. Their contribution to the spawning stock in coming years is less than it could have been if they were only moderately exploited.

When the poor 1976-80 year classes enter the spawning stock in the mid-1980s, there is a possibility of a further reduction in spawning stock biomass as can be appreciated from the table above,
4.6 Comments on Assessment

An evaluation of the size of the 1975 year class is difficult because it is hard to explain an apparent large decline of the 1975 year class from the age composition of the catches unless there is a very low, fishing mortality on this year class in 1978, 1979 and 1980. Independent information of the 1975 year class at age 3 comes from the acoustic survey, opue data and the USSR youngfish survey.

The VPA which is based on the 1980 catches and average fishing mortalities 1971-77 (Table 9) gives an estimate of the 1975 year class at age 4 of 476 million, while that from the acoustic survey is 522 million (table in Section 4.2). Recognising that the acoustic survey tends to underestimate the stock, the present assessment of the 1975 year class seems to be somewhat low.

The concentration phenomena of the stock renders the interpretation of cpue data in 1979 and 1980 difficult.
In view of the uncertainties in interpreting the data, a conservative approach should be taken in managing this stock despite a possible underestimation of the present size of the 1975 year class.
5. HADDOCK
5.1 Status of the Fisheries

The revised figures for haddock landings in 1979 (Tables 12 and 13) amounted to 102172 tonnes, about 750 tonnes higher than the preliminary
figure used in the previous Working Group report (C.M.1980/G:12). Estimated total landings of haddock are 49000 tonnes for the period January-September 1980 (Table 14). The estimate for the whole year is 71000 tonnes. As for cod, the total catch is split by regions and by countries.

5.2 Virtual Population Analysis (VPA)

The age compositions used for the 1979 landings were adjusted for the revised catch figures. Preliminary age compositions were derived for the estimated 1980 landings by applying age compositions for the first half of 1980 , submitted by the Federal Republic of Germany, Norway and USSR (Table 15).
5.2.1 Fishing mortalities

The average fishing mortality on 3-6 years old haddock in 1979 was calculated using the results from the USSR bottom trawl survey (Table 20) Taking the cpue of the 7 year olds in 1980 to be 0.1 , and the cpue of $\leqslant 3$ year olds in 1979 to be representative for the 3 year olds in 1979, the cpue ratios give an average total mortality of 0.74 on the 3 to 6 year olds. Attributing this to 1979 and subtracting a natural mortality of $0.20, \mathrm{~F}_{3-6}=0.54$ in 1979. Using the relative fishing pattern given in Doc. C.M.1980/G:12 (Table 20) one arrives at the input fishing mortalities for 1979 (Table 17). However, the fishing mortality on the 3 year olds were revised to give a recruitment of the 1976 year class of 225 million in 1979 in accordance with Figure 5 (see Section 5.2.2).
5.2.2 Recruitment

The number of recruits at age 3 as estimated in the previous Working Group Report (C.M.1980/G:12) are used together with the USSR young fish survey indices to fit two regression lines to the data as shown in Figure 5 for the purpose of estimating recruitment levels from the USSR surveys. In last year's report, a straight line was fitted to the same data which produced a correlation coefficient of 0.58 and an intercept on the Y-axis of 99 million fish. A USSR survey which caught few or no haddock would indicate a recruitment level of, at least, 99 million fish if that regression line were used to estimate recruitment. With the present time series, 5 year classes have been less than 100 million fish at the time of recruitment. Both regression lines given in Figure 5 have correlation coefficients greater than 0.7 but the root type of regression has a negative Y-intercept. The straight line regression was therefore calculated for survey values less than thirteen fish per hour. The root equation is intended to be used for predicting recruitmer for large survey values and the straight line regression is intended to be used for low survey catches. On this basis recruitment levels of 225, 50 and 50 million fish were estimated for the 1976,1977 and 1978 year classes, respectively.

5.3 Catch Prediction

The parameters used for calculating catches in 1981 and resulting stock sizes in 1982 are given in Table 21. No changes have been made on the pattern of exploitation compared to the 1979 assessment. The average weight per age group has been revised at the last meeting of the Working Group on the basis of more recent data in order to account for the large discrepancies between the reported landings and the sum of products from catch in numbers and average weights per age group.
Recruitment has been estimated from the USSR young fish survey index and a regression (see Section 5.2.2 of this report). It has to be noted that the recruitment of the 1977 and 1978 year classes is rather low.
5.3.1 Management_Options

Species: HADDOCK
Area: ICES SA I and II

1980				MANAGEMLENTOPTIONFOR 1981	1981				1982	
STOCK BIOM. (3+)	SPAWIING STOCK BIOMASS (6+)	$\begin{gathered} \bar{F} \\ (7-14) \end{gathered}$	$\begin{aligned} & \text { CATCH } \\ & (3+) \end{aligned}$		STOCK BIOM. (3+)	SPAWNTING STOCK BIOMASS (6+)	$\begin{gathered} \bar{F} \\ (7-14) \end{gathered}$	$\begin{aligned} & \text { CATCH } \\ & (3+) \end{aligned}$	STOCK BIOM. $(3+)$	SPAWNING STOCK BIOMASS (6+)
372	71	. 53	71	$\begin{aligned} & \text { Doubling } \\ & \text { SSB=F (MAX) } \\ & =\text { present } \\ & \text { level of } F \end{aligned}$	398	114	. 27	107	345	231
				$\mathrm{F}_{0.1}$. 14	60	401	277

Weights in thousands of tonnes

The results of the catch projection are given in Figure 6. In the table on p. 9 the two options are listed which have been considered by the Working Group and which are related to reference points on the yield per recruit curve.

5.3.2 Effects of 1981 TACs on spawning stock biomass

The size of the spawning stock is very low at present (1980) and at about the same level as in 1964 and 1965 which was the lowest on record. The 1969 year class which increased the spawning stock to the level of 400000 tonnes in 1975 and 1976 has been fished down since then and is now of minor importance to the spawning biomass.
Under the two management options considered by the Working Group the spawning stock is expected to increase above the 1971-80 average of about 190000 tonnes by 1982, due to the contribution of the relative abundant 1975 year class.
Fishing at $\mathrm{F}_{0.1}$ would result in a spawning stock biomass of 277000 tonnes in 1982 and would allow a catch of 60000 tonnes in 1981 which is about 15% below the estimated 1980 catch. Fishing at $F_{\text {max }}$ would result in a spawning stock biomass of 231000 tonnes in 1982 and is associated with a TAC of 107000 tonnes for 1981 which is of the same order as the catch level in the preceeding years. Since the 1977 and 1978 year classes are expected to be poor a cautional approach in long-term management policy is advisable.
The stock situation at present offers the possibility to reduce the level of exploitation to $F_{\text {max }}$ without reductions in the level of catch in 1981.

6. MIXED FISHERY

Figure 7 shows the ratio between the total stock biomass (3+) of cod and haddock versus the ratio of the total international catch of the same two species. The broken line in Figure 7 shows the l:l relation which would be implied by a complete mixed fishery.
The deviation from this l:l relation tends to be more systematic for high and low biomass ratios. This may be because the main distributions of cod and haddock do not completely overlap.
For a high abundance of haddock relative to cod (for example in 1972 and 1973 when the rich 1969 year class of haddock entered the fishery) one would expect some concentration of effort (particularly from trawlers) in the areas where haddock is abundant. This could explain that the catch ratio of cod to haddock in 1972 and 1973 are below the l:l relation. The opposite effect, when the haddock stock is low compared to cod stock, would tend to increase the catches of cod relative to haddock above the l:l relation (Figure 7).
These considerations are supported by the data, as also shown by the line fitted by linear regression (Figure 7) which has a slope of 1.33 (>1) 。
The total stock biomass ratio in 1981 is estimated to be 3.47 which would imply a by-catch of haddock in the cod fishery of 29% taking the $1: 1$ relation (Fig.7), or 27% using the fitted line.
There are consequences for management if haddock is considered to be only a by-catch in the cod fishery. Supposing a haddock tac were set at 107000 tonnes then from the by-catch relation the expected cod
catch would be of the order of 380000 tonnes. This approximates to an F of about 0.5 on cod and would result in simply maintaining the spawning stock biomass in 1982 at about the level in 1980.
Should the management decision be to further protect the cod stock then a lower TAC would have to be set for haddock.

7. AGE COMPOSITION

The Working Group was advised by ACFM as follows:
"In view of possible errors or biases in the estimated age composition of commercial catches, age data reported by national laboratories should be examined by the members of the Working Group prior to its next meeting. This examination should include: (a) comparison of time and location of samples taken, in relation to season and area of the catches to which the data of these samples were to be applied; and (b) interpretation of age structures on the otoliths".

At the time of the Working Group meeting no documentation was. available to consider point (a).
For the interpretation of age structurea on the otoliths (b), results of comparative age readings from USSR and Norwegian scientists on 1980 samples have been presented (see text table below).

NORWEGIAN INTERPRETATION

Age	3	4	5	6	7	8	9	10	Total	\%
4		3	1						4	2.0
5			82						82	41.0
6			35	42	1				78	39.0
7				4	18	3			25	12.5
8					3	5	1		9	4.5
9							1		1	0.5
10								1	1	0.5
Total		3	118	46	22	8	2	1	200	
\%	-.	1.5	59.0	23.0	11.0	4.0	1.0	0.5		100

The number of the 6 and 7 year old fish from the USSR interpretation was higher and the number of 5 year old fish was lower compared to the interpretation done by Norwegian age readers. One explanation of these differences might be the frequent occurrence of a secondary ring in the second summer zone. Therefore, age validation studies are recommended in order to resolve this problem.
8. THE MIXTURE OF NORTH-EAST ARCTIC COD AND COASTAL COD IN NORWEGIAN WATERS

The assessment carried out by the Working Group have only dealt with the North-East Arctic. This cod stock visit Norwegian waters at different times during the course of their annual migratory movements. However, a. second cod population is living in Norwegian coastal waters throughout
their lives.
These two cod populations were first distinguished by characteristics of their otolith structure, findings which later have been confirmed by genetic testings. These observations have been the justifications for the estimation and exclusion of coastal cod from the reported landings of cod as used for assessments in the North-East Arctic (C.M.1970/F:2). The amount of coastal cod taken by Norway can be assessed from the differences between the catches reported in Bulletin Statistique and those in the Working Group reports.
9. STOCK/RECRUITMENT RELATIONSHIP

The problem of stock/recruitment relationship has not been considered by the Arctic Working Group at this meeting. However, in the report of the Working Group from its 1979 meeting (C.M.1979/G:20) a Ricker stock/recruitment relation for cod has been presented indicating an optimum level of spawning stock biomass for the range of 500000 tonnes to 1000000 tonnes. In its comments on the management options presented in this report, this range has been considered.

Table 1. COD. Total nominal catch (tonnes) by fishing areas (landings of Norwegian coastal cod not included).

Year	Sub-area I	Division IIb	Division IIa	Total catch
1960	375327	91599	155116	622042
1961	409694	220508	153019	783221
1962	548621	220797	139848	909266
1963	547469	111768	117100	776337
1964	206883	126114	104698	437695
1965	241489	103430	100011	444930
1966	292253	56653	134805	483711
1967	322798	121060	128747	572605
1968	642452	269160	162472	1074084
1969	679373	262254	255599	1197226
1970	603855	85556	243835	933246
1971	312505	56920	319623	689048
1972	197015	32982	335257	565254
1973	492716	88207	211762	792685
1974	723489	254730	124214	1102433
1975	561701	147400	120276	829377
1976	526685	103533	237245	867463
1977	538231	109997	257073	905301
1978	418265	17293	263157	698715
1979 x	193517	10044	240455	444016

x) Provisional figures, revised 2 October 1980.

Table 2. COD. Nominal catch (tonnes, whole weight) by countries (landings of Norwegian coastal cod not included). (Sub-area I and Divisions IIa and IIb combined.)

Data provided by Working Group members.

Year	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	France	$\begin{aligned} & \text { German } \\ & \text { Dem.Rep. } \end{aligned}$	$\begin{aligned} & \text { Germany } \\ & \text { Fed.Rep. } \end{aligned}$	Norway	Poland	$\begin{gathered} \text { United } \\ \text { Kingdom } \end{gathered}$	USSR	Others	Total all countries
1960	3306	22321		9472	231997	20	141175	213400	351	622042
1961	3934	13755	3921	8129	268377	-	158113	325780	1212	783221
1962	3109	20482	1532	6503	225615	-	175020	476760	245	909266
1963	-	18318	129	4223	205056	108	129779	417964	-	775577
1964	-	8634	297	3202	149878	-	94549	180550	585	437695
1965	-	526	91	3670	197085	-	89962	152780	816	444930
1966	-	2967	228	4284	203792	-	103012	169300	121	483704
1967	-	664	45	3632	218910	-	87008	262340	6	572605
1968	-	-	255	1073	255611	-	140387	676758	-	1074084
1969	29374	-	5907	5343	305241	7856	231066	612215	133	1197226
1970	26265	44245	12413	9451	377606	5153	181481	276632	-	933246
1971	5877	34772	4998	9726	407044	1512	80102	144802	215	689048
1972	1393	8915	1300	3405	394181	892	58382	96653	166	565287
1973	1916	17028	4684	16751	285184	843	78808	387196	276	792686
1974	5717	46028	4860	78507	287276	9898	90894	540801^{1})	38453	1102434
1975	11309	28734	9981	30037	277099	7435	101834	343580^{1})	19368	829377
1976	11511	20941	8946	24369	344502	6986	89061	$343057{ }^{1}$	18090	867463
1977	9167	15414	3463	12763	388982	1084	86781	369876^{1}	17771	905301
1978	9092	9394	3029	5434	363088	566	35449	267138^{1})	5525	698715
1979 ${ }^{\text {x }}$	6320	3046	547	2515	284779	15	17991	119 364 ${ }^{1}$)	9439	444016

x) Provisional figures, revised 2 October 1980.

1) Murman cod included.

Table 3. COD. Estimated catch for 1980 by countries ('000 tonnes, whole weight).

	January-September ${ }^{\mathbf{x}}$)	January-December
EEC Countries	12	17
Norway	$\left.214^{1}\right)$	$\left.247^{1}\right)$
Others	18	18
USSR	$\left.88^{2}\right)$	119
Total	332	401

Provisional figures.

1) Coastal cod excluded.
2) January-August.

Table 4. COD. Age composition of catches in April and May 1979-80 in the USSR groundfish survey.

Area	Year	Mean catch per trawling hour, specimens							Mean age, years
		Age							
		≤ 3	4	5	6	7	≥ 8	Total	
B	1979	0.7	20.5	16.7	11.4	8.4	6.2	64	5.5
Norwegian Sea	1980	0.7	1.0	16.1	6.2	2.6	3.5	30	$5 \cdot 7$
West.areas of south.	1979	10.4	54.2	9.8	1.8	0.8	0.4	77	4.1
Barents Sea	1980	8.5	6.9	12.1	2.1	0.4	0.2	30	4.3
A ${ }^{\text {a }}$, areas of Coast.	1979	3.5	11.2	1.0	0.2	0.1	0.1	16	3.9
south. Barents Sea	1980	5.3	2.3	1.5	0.2	$+$	-	9	3.6
	1979	8.0	39.6	6.8	1.2	0.5	0.3		4.1
South.Barents Sea	1980	6.9	5.1	8.2	1.4	0.3	0.1	22	4.2
A+B Norwegian Sea and	1979	5.9	33.8	9.8		2.9	2.1	59	
south.Barents Sea	1980	5.0	3.8	10.6	2.9	1.0	1.2	25	4.8 .

Table 5. North-east Arctic COD. Total mortality rates for 1979/80 estimated on the basis of Norwegian and JSSR surveys in 1979 and 1980.

Survey	Age							
	$1 / 2$	$2 / 3$	$3 / 4$	$4 / 5$	$5 / 6$	$6 / 7$	$7 / 8$	8
Norwegian acoustic survey	-0.25	-0.62	0.34	1.01	1.51	1.73	1.95	
OSSR groundfish survey								
Norwegian groundfish survey	-1.39	-1.78	-0.82	0.43	0.78	0.99	1.28	1.82

Table 6. COD. Data used to estimate total international effort in gill net units and to calculate the regression of $\bar{F}(8-12)$ to total effort (Figure 1).

Year	C8+, total fishery eff.	Lofoten cpue gill net	$\frac{C}{F_{8-12}} \cdot \mathrm{M} \cdot 1980 / \mathrm{G}: 12$	Total effort (gill net units)	9×10^{3}
1971	352175	334.3	. 74	1053	. 70
1972	358136	318.7	. 96	1124	. 85
1973	202852	189.7 .	. 67	1069	. 63
1974	106419	96.3	. 66	1105	. 60
1975	99803	122.0	. 70	818	. 86
1976	110674	131.4	. 57	842	. 68
1977	159118	173.2	. 61	919	. 66
1978	241121	237.6	$.72^{x}$)	1015	. 73
1979	146295	201.3	$.55^{\text {x }}$	727	. 55

x) From regression, see Figure 1.

Table 7. North-east Arctic COD.
Input catch data.

AGE	1963	1964	1965	1366	1967	1968
1	1	103	1	1	1	1
2	4	675	2522	869	151	1
3	13136	5298	15725	55937	34467	3705
4	106984	45912	25999	55644	160048	174585
5	205549	97950	78299	34676	69235	26796:
6	95498	58575	68511	42539	22061	107051
7	35518	19642	25444	37169	26295	26701
8	1 E221	9162	8438	18500	25139	16399
9	11894	6196	3569	5077	11323	11597
10	3884	3553	1467	1495	2329	3657
11	1021	783	1161	380	687	657
12	1025	172	131	403	316	122
13	498	387	67	77	225	124
14	129	264	91	9	40	70
+15	157	131	179	70	14	46
TOTAL						
	491579	248803	231604	252846	352331	612681
SPAWNING	$\begin{gathered} \text { STOCK I AGE } \\ 34829 \end{gathered}$	$\Rightarrow=\frac{8)}{20648}$	15103	26011	40073	32672
AGE	1969	1870	1971	1972	1973	1974
1	1	1	38	1	1	115
2	275	591	2210	4701	8277	21347
3	2367	7164	7754	35536	294262	91855
4	24545	10792	13739	45431	131493	437377
5	238511	25813	11831	25832	61000	203772
6	181239	137829	9527	12089	20569	47006
7	79363	96420	59290	7918	7248	12630
8	26989	31920	52003	34885	8328	4370
9	13463	8933	12093	22315	19130	2523
10	5092	3245	2434	4572	4499	5607
11	1913	1232	762	1215	677	2127
12	414	260	418	353	195	322
13	121	106	149	315	81	151
14	23	39	42	121	59	83
+15	46	35	25	40	55	62
TOTAL	574302	324384	172315	196324	555874	829347
SPAWNING	STOCK (AGE 48061	$>=\begin{gathered} 87 \\ 45774 \end{gathered}$	67926	63816	33024	15245
				.		
AGE	1975	1975	1977	1978	1979	1980
1	1	706	1	3	0	0
2	1184	1908	11288	802	0	0
3	45282	85337	39594	78822	8277	985
4	59798	114341	168609	45400	87262	15086
5	226646	79993	136335	88495	49808	95561
6	118567	. 18236	52925	56823	36323	38983
7	29522	47872	61821	25407	19663	20623
8	9353	13962	23338	31821	5730	9573
9	2617	4051	5659	9498	12826	3598
10	1555	936	1521	1227	2160	3992
11	1928	558	610	913	422	481
12	575	442	271	446	139	51
13	231	139	122	748	88	21
14	15	26	92	48	59	38
+15	37	53	54	51	79	91
TOTAL	497311	468560	502248	340414	226836	189083
SPAWNING	$\begin{gathered} \text { STOCK IAGE } \\ 16311 \end{gathered}$	$\begin{gathered} \quad=\begin{array}{c} 8 \\ 20167 \end{array} \end{gathered}$	31667	44662	25503	17845

Table 8. North-East Arctic COD. Fishing mortalities.

AGE	1563	1964	1965	1966	1967	1968	1969	1970	1971
1	.000	.000	.000	.000	. 000	.800	. 200	.000	.000
2	.000	. 061	. 001	. 001	.001	. 000	. 001	.001	.002
3	1031	.017	. 923	. 040	.836	. 024	-023	.041	.021
4	.236	. 144	. 111	. 103	. 153	. 207	. 220	. 141	.103
5	.738	. 352	. 389	. 211	. 181	.469	. 480	. 378	. 227
6	1.002	. 480	. 447	. 380	. 202	. 466	. 538	. 570	. 232
7	. 963	.572	. 397	. 467	. 428	. 399	. 767	. 621	. 517
8	. 868	. 718	. 520	. 564	. 672	. 522	. 918	. 834	. 83.3
9	. 934	1.031	. 694	. 694	. 831	. 775	1.141	. 936	. 921
10	1.266	. 832	. 742	. 717	.820	. 718	. 983	. 993	. 728
11	1.334	. 980	. 731	. 430	. 884	. 579	1.101	. 686	. 672
12	. 8.33	. 865	. 420	. 612	. 783	. 372	. 919	. 411	. 527
13	. 592	. 912	1.060	. 470	. 852	.841	. 782	. 641	.439
14	. 535	.737	. 563	. 375	. 478	.718	. 358	. 630	. 571
15	.490	.810	. 560	.370	. 750	. 740	. 680	.540	. 340

MEAN F FOR AGES $\geqslant=8$ AND $<=12$ (NOT WEIGHTED BY STOCK IN NUMBERS) 1.046 . 885 . 821 . 603 . 798 . 5931.012 . 772 . 736

AGE	1972	1973	1974	1975	1976	1977	1978	1979	1980
1	.000	.000	.000	.000	.001	.000	.000	.000	.000
2	.002	.014	.030	.002	.004	.015	.008	.000	.000
3	.039	.194	.211	.081	.153	.116	.139	.101	.110
4	.167	.199	.487	.207	.299	.503	.189	.225	.270
5	.297	.354	.536	.507	.468	.703	.543	.327	.410
6	.381	.390	.508	.698	.545	.655	.731	.450	.460
7	.308	.414	.443	.705	.683	.620	.779	.609	.500
8	.665	.619	.474	.657	.890	.886	.774	.802	.690
5	1.137	.992	.383	.584	.761	1.228	$1 . .200$.853	.810
10	1.188	.744	.937	.433	.427	.740	1.025	1.057	.720
11	1.050	.539	1.006	1.052	.272	.551	1.579	1.372	.720
12	.779	.459	.536	.855	.743	.205	1.051	1.271	.580
13	1.004	.404	.793	.960	.512	.467	1.402	.601	.650
14	.785	.509	.963	.160	.254	.774	.338	.357	.570
15	.910	.310	.700	.860	.430	.400	.530	.560	.560

M (CONSTANT) $=$
.200

Table 9. North-east Arctic COD. Stock size in numbers.

Table 10. North-east Arctic COD. Stock weight.

ALE	1963	1964	1965	1966	1967	1968
1	-	0	-	0	-	0
2	0	0	0	-	0	0
3	307683	220865	598189	1028544	841004	111314
4	559619	375601	273414	623389	1248643	1028197
5	EES5E5	560965	412520	310635	713324	1356475
5	384977	395084	489688	346916	312238	738918
7	215245	169932	293775	376551	285241	306777
8	142928	91634	106930	220350	263402	207300
9	131344	64487	48023	68362	134679	144535
10	45134	52724	23510	24525	34875	59517
11	13847	12598	22570	11014	11776	15100
12	21421	3503	4538	10432	6879	4672
13	15228	8788	1396	2812	5335	2966
14	4734	7672	3214	438	1601	2672
15	3316	2450	3244	1618	266	875
TOTAL						
	2511012	1966297	2188925	3025527	3855655	3979121
SPAWNING	STOCK AQE	$3=8)$				
	377953	243849	213420	339491	458814	437448
AGE	1959	1370	1971	1972	1973	1974
1	\%	0	0	θ	0	0
2	0	0	\bigcirc	0	-	0
3	73281	128336	253121	661351	1195356	345170
4	136851	90221	155183	324421	806948	1240704
5	1061206	139439	95418	177728	348267	832926
E	1118801	814967	118632	98387	163934	303569
7	557098	784936	554045	113015	80820	133354
8	229555	288642	470305	3E8386	52608	59582
9	132192	98542	134742	219580	203628	53591
10	68036	43141	39494	54815	71977	77132
11	28733	25045	15719	18748	16438	33656
12	8123	9176	12112	7709	6298	9210
13	3038	3657	5740	6746	3.336	3756
14	1165	1266	1466	3768	2251	2027
15	853	719	596	732	1357	1196
TOTAL						
	3418982	2427488	1870572	2054985	2987229	3095873
SPAWNING	STOCK (AGE	$\rangle=8)$				
	$47!734$	469589	680174	689085	397894	240150
AGE	1975	1976	1977	1978	1979	1980
1	0	0	0	0	0	0
2	0	0	0	0	0	-
3	417731	431427	258094	+34458	61523	6769
4	352007	485319	465527	289395	476199	70029
5	967816	363372	455583	357515	303884	482587
6	685153	723243	282550	280571	258100	272050
7	219611	362086	504136	176446	162385	197867
3	95509	121054	202898	302500	50305	98473
9	39873	51115	53417	89873	156811	43539
10	37319	22712	24403	15990	27648	65300
11	29724	23804	14572	11446	5644	9452
12	11814	9969	17416	80.70	2266	1374
13	5983	4741	4473	13575	2661	Bive
14	15.48	1772	2586	2552	2996	1329
15	584	1165	1215	1054	1608	1352
TOrAL	2783151	2601775	2288870	1983747	1545231	1251221
SPIWNING	STOCK AGE 221553	$\begin{aligned} & y=8) \\ & 236336 \end{aligned}$	320960	444863	283148	221919

Table 11. COD. Parameters used in catch predictions ($M=0.2$).

Age	Relative fishing mortality $\left(\bar{F}_{8-12}=1.00\right)$	Mean weights (kg)	Stock size at the beginning of 1981 (in thousands)
3	0.28	0.65	$\left.100000^{x}\right)$
4	0.41	1.00	158855
5	0.69	1.55	198305
6	0.85	2.35	169169
7	0.93	3.45	59833
8	0.95	4.70	28480
9	1.11	6.17	8604
10	1.08	7.70	2570
11	1.05	9.25	3380
12	0.83	10.85	407
13	0.87	12.50	58
14	0.73	13.90	21
$15+$	0.76	15.00	65

x) Recruitment at age 3 as estimated from USSR youngfish survey index (see Figure 3).

Table 12. HADDOCK. Total nominal catch (tonnes) by fishing areas.
(Data provided by Working Group members)

Year	Sub-area I	Division IIb	Division IIa	Total
1960	125675	1854	27925	155454
1961	165165	2427	25642	193234
1962	160972	1727	25189	187888
1963	124774	939	21031	146744
1964	79056	1109	18735	98900
1965	98505	939	18640	118079
1966	124115	1614	34892	160621
1967	108066	440	27980	136486
1968	140970	725	40031	181726
1969	88960	1341	40208	130509
1970	59493	497	26611	86601
1971	56300	435	21567	78302
1972	221183	2155	41979	265317
1973	283728	12989	23348	320065
1974	159037	15068	47033	221138
1975	121686	9726	44330	175742
1976	94064	5649	37566	137279
1977	72159	9547	28452	110158
1978	63965	979	30478	95422
$1979 x)$				38031

x) Provisional figures, revised 2 October 1980.

Table 13. HADDOCK. Nominal catch (tonnes) by countries.
(Sub-area I and Divisions IIa and IIb combined)
(Data provided by Working Group members)

Year	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	France	$\begin{gathered} \text { German } \\ \text { Dem.Rep. } \end{gathered}$	Germany Fed.Rep.	Norway	Poland	O.K.	USSR	Others	Total
1960	172	-	-	5597	47263	-	45469	57025	125	155651
1961	295	220	-	6304	60862	-	39650	85345	558	193234
1962	83	409	-	2895	54567	-	37486	91340	58	187438
1963	17	363	-	2554	59955	-	19809	63526	-	146224
1964	-	208	-	1482	38695	-	14653	43870	250	99158
1965	-	226	-	1568	60447	-	14345	41750	242	118578
1966	-	1072	11	2098	82090	-	27723	48710	74	161778
1967	-	1208	3	1705	51954	-	24158	57346	23	136397
1968	-	-	-	1867	64076	-	40129	75654	-	181726
1969	2	-	309	1490	67549	-	37234	24211	25	130 820
1970	541	-	656	2119	36716	-	20423	25802	-	87257
1971	81	-	16	896	45715	43	16373	15778	3	78905
1972	137	-	829	1433	46700	1433	17166	196224	2231	266153
1973	1212	3214	22	9534	86767	434	32408	186534	2501	322626
1974	925	3601	454	23409	66164	3045	37663	78 5481)	7348	221157
1975	299	5191	437	15930	55966	1080	28677	65 0151)	3163	175758
1976	537	4459	348	16660	49492	986	16940	$42485{ }^{1)}$	5358	137265
1977	213	1510	144	4798	40118	-	10878	52 210 ${ }^{1}$)	287	110158
1978	466	1411	369	1521	39955	1	5766	45 8951)	38	95422
1979 ${ }^{\text {x }}$	343	1. 198	10	1952	65116	2	6454	26643	454	102172

x) Provisional figures, revised 2 October 1980.

1) Murman haddock included.

Table 14. HADDOCK. Estimated catch for 1980 by countries (1000 tonnes, whole weight).

	January-September $\left.{ }^{x}\right)$	January-December
EEC countries	3	3
Norway	$\left.42^{1}\right)$	$\left.59^{1}\right)$
Others	-	7
USSR	$\left.4^{2}\right)$	2
Total	49	71

x) Provisional figures.

1) "Other haddock" excluded.
2) January-August.

Table 15. HADDOCK. Age composition and total numbers landed $x 10^{-3}$ in 1980. Preliminary figures.
(Data provided by Working Group Members, Oct.1980)

Age	Sub-area I	Division IIa	Division IIb	Σ
3	78	28	1	107
4	10046	12914	123	23083
5	12404	5554	22	17980
6	1546	1942	22	3510
7		248	5	253
8	69	319	7	395
9	82	174		256
10	254	366	7	627
11	100	611	24	735
12	47	31	1	79
13		99	1	100
14		35		35
$15+$		4		4
Total	24626	22325	213	47164
Weight landed (tonnes, round fresh)	36839	34067	315	71221

Table 16. North-east Arctic HADDOCK. Input catch data.

Table 17. North-east Arctic HADDOCK. Fishing mortalities.

AGE	1962	1963	198.4	1965	1966	1967	1968	1969	1970
1	.800	.000	. 000	. 000	.000	.000	.900	.000	.000
2	. 015	. 006	. 007	. 013	. 008	. 082	. 002	. 006	.003
3	. 200	.121	. 080	. 067	.127	. 682	. 036	. 102	.167
4	. 591	. 580	.314	. 238	. 388	. 303	. 401	. 144	. 232
5	1.060	. 920	. 690	. 457	. 578	. 428	. 562	. 505	. 199
6	1.037	1.023	. 828	. 691	. 767	. 499	. 469	. 550	. 584
7	. 627	. 941	. 828	. 607	. 801	. 491	. 651	. 416	. 471
8	. 646	. 533	.816	. 573	. 436	. 556	.613	. 438	. 423
9	. 966	. 621	. 849	. 711	. 551	. 291	. 459	. 388	. 315
10	. 398	.615	. 218	. 277	. 312	. 452	. 421	. 420	.300
11	. 202	. 216	. 738	. 865	. 887	. 459	.512	.165	.409
12	. 753	. 098	1.902	1.543	. 233	1.235	.746	. 428	. 142
13	.167	. 658	. 198	. 554	. 353	.423	1.223	. 182	1.493
14	. 600	. 600	. 600	. 600	. 600	. 500	. 600	.400	. 400

MEAN F FOR AGES $>=3$ AND $<=6$ (NOT WEIGHTED BY STOCK IN NUMBERS) .722 .686 .478 . 363.450 . 323 . 367 . 325 . 276

AGE	1971	1972	1973	1974	1975	1976	1977	1978	1979
1	.000	.002	.000	.003	.067	.013	.092	.031	.000
2	.003	.031	.094	.066	.067	.053	.087	.022	.057
3	.023	.283	.333	.220	.254	.316	.669	.331	.276
4	.268	.377	.593	.338	.569	.637	1.217	.497	.510
5	.183	1.653	.915	.412	.507	.602	.501	.778	.708
6	.142	.951	.461	.590	.433	.680	.484	.415	.666
7	.413	.352	.296	.562	.447	.755	.590	.648	.567
8	.333	.601	.168	.484	.323	.514	.481	.399	.503
9	.314	.535	.291	.394	.203	.704	.230	.551	.475
10	.273	.665	.190	.690	.134	.848	.447	.180	.475
11	.245	.449	.210	.684	.355	.466	1.615	.699	.475
12	.657	.676	.273	.765	.175	1.110	.305	.171	.475
13	.214	.621	.163	.717	.316	.734	.391	.384	.475
14	.400	.600	.300	.600	.300	.500	.500	.600	.475

$M($ CONSTANT $)=.200$

Table 18. North-east Arctic HADDOCK. Stock size in numbers.

Table 19. North-east Arctic HADDOCK. Stock weight.

AGE	1962	1963	1984	1965	1866	1967
1	-	-	-	\bigcirc	0	0
2	-	-	0	0	-	-
3	158876	182015	210773	ES99\%	158973	192389
4	78089	166271	206038	248583	78824	178837
5	145660	61554	119862	214980	279345	76056
5	135695	54959	26694	65454	147628	170523
7	21520	47333	19447	11481	32269	71598
6	10272	10961	17603	8696	5965	13865
9	11538	4900	5853	7080	4153	3504
10	3581	4287	2570	2443	3392	2336
11	8033	2412	2323	2871	1857	2489
12	665%	6670	1974	1128	886	777
13	1060	2831	5471	266	218	635
	581129	544988	619906	630642	713646	713089
5PAWNING	STOCK (AGE	$3=6$)				
	193505	135148	83233	181989	196503	265807
AGE	1968	1969	1970	1971	4972	1973
1	-	0	-	0	0)
\geq	0	0	-	0	0	0
3	13429	11405	108539	63986	676273	179498
4	231023	16547	13161	117338	79915	650878
5	187894	220075	20377	14848	127741	77960
6	53965	116539	144641	18175	13466	48501
7	101827	33231	65225	85953	15516	5119
8	41763	50647	28891	39408	54216	9991
9	7205	20483	23732	12452	25692	27028
10	2559	4441	13560	21175	8878	14886
11	149*	1684	2926	10071	16163	4578
12	1597	907	1451	1975	8006	10484
13	204	585	535	1139	926	3683
14	368	53	505	196	814	441
TOTAL						
	643323	476758	422544	386526	1027606	1032847
SPAWNING	$\begin{aligned} & \text { STOCK CAGE } \\ & \text { 218977 } \end{aligned}$	$\begin{gathered} 2=6) \\ 220770 \end{gathered}$	280466	190455	143677	124511
AGE	1974	1975	1976	1977	1978	1979
1	-	0	0	0	0	0
2	0	-	0	0	0	-
3	35634	32354	37440	82658	121505	54046
4	164388	36553	32091	34890	54112	111471
5	511749	166846	29441	24141	14695	46823
6	33996	368943	109415	17557	10671	7345
7	30899	18539	235471	54537	10646	6934
8	3629	16360	11298	105499	28810	5309
9	7683	2035	10774	6145	59355	17589
10	19715	5055	1620	5201	4762	13387
11	12170	9912	4430	696	3336	3987
12	3769	6760	7060	2825	141	1843
: 3	7218	1587	5133	2104	1883	187
12	277	31:8	1023	2120	1259	1135
TOMAL 1259 1135						
	832820	658100	485196	335434	311174	289977
SPHWNING	Stock : AGE	$\rangle=$ E)				
	121049	432308	385224	196744	120863	77636

Table 20. HADDOCK. Age composition of catches in April and May 1979-80 in the USSR groundfish survey.

Area	Year	Mean catch per trawling hour, specimens							Mean age, years	Mean length (cm)	Mean weight (g)	Mean catch per trawling hour (kg)
		Age						Total				
		≤ 3	4	5	6	7	≥ 8					
B	1979	33.8	20.0	6.3	1.0	0.3	1.5	63	3.7	41.2	1033	59
Norwegian Sea	1980	1.3	22.3	12.1	3.0	0.1	0.4	39	4.5	48.6	1300	51
${ }^{A_{I}}$	1979	18.6	25.6	0.8	+	+	+	45	3.6	33.8	396	18
West. ${ }^{\text {areas }}$ of south.Barents Sea	1980	2.6	11.5	14.0	0.1	-	+	28	4.4	41.5	847	24
					-	-	-	12			294	
Coastal areas of south. Barents Sea	1980	3.0	5.2	3.1	-	-	-	11	3.8	34.8	565	7
${ }_{\text {A }}$	1979	14.8	18.3	0.6	+	+	+	34	3.6	33.2	385	13
South.Barents Sea	1980	2.5	8.9	9.8	0.1	-	+	21	4.3	40.2	812	17
${ }^{\text {A }}$ + $\mathrm{B}^{\text {a }}$		20.6	18.8		0.3	0.1	0.5					
Norwegian Sea and south. Barents Sea	1980	2.1	13.1	10.6	1.0	$+$	0.1	27	4.4	44.1	1036	28

Table 21. HADDOCK. Parameters used in catch predictions ($M=0.2$).

Age	$\begin{aligned} & \text { Relative fishing } \\ & \text { mortality } \\ & \left(\bar{F}_{3-6}=1.00\right) \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { weights } \\ & \text { (kg) } \end{aligned}$	Stock size (in thousands) at the beginning of:	
			1980	1981
3	0.582	0.66	$50000^{\text {x }}$	$50000^{\text {x }}$
4	1.075	1.03	167995	40854
5	1.493	1.79	53208	116748
6	1.403	2.38	10561	27445
7	1.194	2.86	1298	5502
8	1.060	3.33	1126	835
9	1.0	3.70	790	568
10	1.0	$4 \cdot 41$	2421	417
11	1.0	5.40	3855	1419
12	1.0	6.70	376	2495
13	1.0	7.40	140	237
$14+$	1.0	8.00	79	56

x) Recruitment at age 3 as estimated from USSR youngfish survey index (see Figure 5).

Eigure 1. North-east Arctic COD. Effort (= total international catch ($8+$)/cpue of gillnetters in Lofoten) versus average fishing mortality on E-12 year olds (from C.M.1980/G:12, Table 10).

Figure 2. Arctic COD.

Figure 3. COD. Correlation of VPA recruitment estimates on USSR Young Fish Survey indices for 1957-74. 1975 year class is not inoluded in the regression.

Figure 4 a NE-Arctic Cod. Yield in 1981, total recruited biomass (TB)
and spawning stock biomass (SSB) at different levels of fishing mortality in 1981.

Yield 1981 (1000 t)
 t)

Figure 5. HADDOCK. Correlation of numbers of 3 year olds (from VPA) and USSR Young Fish Survey indices for the year classes 1957-74.

Figure 6.a NE-Arctic Haddock. Yield in 1981, total recruited biomass
(TB) and spawning stock biomass (SSB) in 1982 at different levels of fishing mortality in 1981.

Figure 6.b Historic yield and spawning stock biomass of Arctic haddock 1969-1980.

Figure 7. North-east Arctic COD and HADDOCK. Total international catch ratios versus recruitęd biomass ratios (3+) for the years 1960-80.

$$
\begin{aligned}
\text { Legends: } \quad \begin{aligned}
1 & - \text { The l:l line } \\
2 & -\quad \text { fitted line }(1960-79) Y=-0.84+1.33 X \\
& r=0.77(1960-79)
\end{aligned}
\end{aligned}
$$

